Handle CRLF when reading XML on Windows
[deliverable/binutils-gdb.git] / bfd / elf64-mmix.c
CommitLineData
3c3bdf30 1/* MMIX-specific support for 64-bit ELF.
82704155 2 Copyright (C) 2001-2019 Free Software Foundation, Inc.
3c3bdf30
NC
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
cd123cb7 5 This file is part of BFD, the Binary File Descriptor library.
3c3bdf30 6
cd123cb7
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
3c3bdf30 11
cd123cb7
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
3c3bdf30 21
3c3bdf30
NC
22
23/* No specific ABI or "processor-specific supplement" defined. */
24
25/* TODO:
f60ebe14
HPN
26 - "Traditional" linker relaxation (shrinking whole sections).
27 - Merge reloc stubs jumping to same location.
28 - GETA stub relaxation (call a stub for out of range new
29 R_MMIX_GETA_STUBBABLE). */
3c3bdf30 30
3c3bdf30 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
3c3bdf30
NC
33#include "libbfd.h"
34#include "elf-bfd.h"
35#include "elf/mmix.h"
36#include "opcode/mmix.h"
37
38#define MINUS_ONE (((bfd_vma) 0) - 1)
39
f60ebe14
HPN
40#define MAX_PUSHJ_STUB_SIZE (5 * 4)
41
3c3bdf30
NC
42/* Put these everywhere in new code. */
43#define FATAL_DEBUG \
44 _bfd_abort (__FILE__, __LINE__, \
45 "Internal: Non-debugged code (test-case missing)")
46
47#define BAD_CASE(x) \
48 _bfd_abort (__FILE__, __LINE__, \
49 "bad case for " #x)
50
f0abc2a1
AM
51struct _mmix_elf_section_data
52{
53 struct bfd_elf_section_data elf;
54 union
55 {
56 struct bpo_reloc_section_info *reloc;
57 struct bpo_greg_section_info *greg;
58 } bpo;
f60ebe14
HPN
59
60 struct pushj_stub_info
61 {
62 /* Maximum number of stubs needed for this section. */
63 bfd_size_type n_pushj_relocs;
64
65 /* Size of stubs after a mmix_elf_relax_section round. */
66 bfd_size_type stubs_size_sum;
67
68 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
69 of these. Allocated in mmix_elf_check_common_relocs. */
70 bfd_size_type *stub_size;
71
72 /* Offset of next stub during relocation. Somewhat redundant with the
73 above: error coverage is easier and we don't have to reset the
74 stubs_size_sum for relocation. */
75 bfd_size_type stub_offset;
76 } pjs;
18978b27
HPN
77
78 /* Whether there has been a warning that this section could not be
79 linked due to a specific cause. FIXME: a way to access the
80 linker info or output section, then stuff the limiter guard
81 there. */
82 bfd_boolean has_warned_bpo;
83 bfd_boolean has_warned_pushj;
f0abc2a1
AM
84};
85
86#define mmix_elf_section_data(sec) \
68bfbfcc 87 ((struct _mmix_elf_section_data *) elf_section_data (sec))
f0abc2a1 88
930b4cb2 89/* For each section containing a base-plus-offset (BPO) reloc, we attach
f0abc2a1 90 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
930b4cb2
HPN
91 NULL. */
92struct bpo_reloc_section_info
93 {
94 /* The base is 1; this is the first number in this section. */
95 size_t first_base_plus_offset_reloc;
96
97 /* Number of BPO-relocs in this section. */
98 size_t n_bpo_relocs_this_section;
99
100 /* Running index, used at relocation time. */
101 size_t bpo_index;
102
103 /* We don't have access to the bfd_link_info struct in
104 mmix_final_link_relocate. What we really want to get at is the
105 global single struct greg_relocation, so we stash it here. */
106 asection *bpo_greg_section;
107 };
108
109/* Helper struct (in global context) for the one below.
110 There's one of these created for every BPO reloc. */
111struct bpo_reloc_request
112 {
113 bfd_vma value;
114
115 /* Valid after relaxation. The base is 0; the first register number
116 must be added. The offset is in range 0..255. */
117 size_t regindex;
118 size_t offset;
119
120 /* The order number for this BPO reloc, corresponding to the order in
121 which BPO relocs were found. Used to create an index after reloc
122 requests are sorted. */
123 size_t bpo_reloc_no;
124
125 /* Set when the value is computed. Better than coding "guard values"
b34976b6 126 into the other members. Is FALSE only for BPO relocs in a GC:ed
930b4cb2 127 section. */
b34976b6 128 bfd_boolean valid;
930b4cb2
HPN
129 };
130
f0abc2a1 131/* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
930b4cb2
HPN
132 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
133 which is linked into the register contents section
134 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
135 linker; using the same hook as for usual with BPO relocs does not
136 collide. */
137struct bpo_greg_section_info
138 {
139 /* After GC, this reflects the number of remaining, non-excluded
140 BPO-relocs. */
141 size_t n_bpo_relocs;
142
143 /* This is the number of allocated bpo_reloc_requests; the size of
144 sorted_indexes. Valid after the check.*relocs functions are called
145 for all incoming sections. It includes the number of BPO relocs in
146 sections that were GC:ed. */
147 size_t n_max_bpo_relocs;
148
149 /* A counter used to find out when to fold the BPO gregs, since we
150 don't have a single "after-relaxation" hook. */
151 size_t n_remaining_bpo_relocs_this_relaxation_round;
152
153 /* The number of linker-allocated GREGs resulting from BPO relocs.
f60ebe14
HPN
154 This is an approximation after _bfd_mmix_before_linker_allocation
155 and supposedly accurate after mmix_elf_relax_section is called for
156 all incoming non-collected sections. */
930b4cb2
HPN
157 size_t n_allocated_bpo_gregs;
158
159 /* Index into reloc_request[], sorted on increasing "value", secondary
160 by increasing index for strict sorting order. */
161 size_t *bpo_reloc_indexes;
162
163 /* An array of all relocations, with the "value" member filled in by
164 the relaxation function. */
165 struct bpo_reloc_request *reloc_request;
166 };
167
3c3bdf30 168
2c3fc389 169extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
3c3bdf30 170
2c3fc389 171extern void mmix_elf_symbol_processing (bfd *, asymbol *);
3c3bdf30 172
4fa5c2a8
HPN
173/* Only intended to be called from a debugger. */
174extern void mmix_dump_bpo_gregs
52d45da3 175 (struct bfd_link_info *, void (*) (const char *, ...));
4fa5c2a8 176
f60ebe14 177static void
2c3fc389
NC
178mmix_set_relaxable_size (bfd *, asection *, void *);
179static bfd_reloc_status_type
180mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
181 asection *, bfd *, char **);
182static bfd_reloc_status_type
183mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
184 bfd_signed_vma, bfd_vma, const char *, asection *,
185 char **);
f60ebe14 186
f60ebe14 187
3c3bdf30
NC
188/* Watch out: this currently needs to have elements with the same index as
189 their R_MMIX_ number. */
190static reloc_howto_type elf_mmix_howto_table[] =
191 {
192 /* This reloc does nothing. */
193 HOWTO (R_MMIX_NONE, /* type */
194 0, /* rightshift */
6346d5ca
AM
195 3, /* size (0 = byte, 1 = short, 2 = long) */
196 0, /* bitsize */
b34976b6 197 FALSE, /* pc_relative */
3c3bdf30 198 0, /* bitpos */
6346d5ca 199 complain_overflow_dont, /* complain_on_overflow */
3c3bdf30
NC
200 bfd_elf_generic_reloc, /* special_function */
201 "R_MMIX_NONE", /* name */
b34976b6 202 FALSE, /* partial_inplace */
3c3bdf30
NC
203 0, /* src_mask */
204 0, /* dst_mask */
b34976b6 205 FALSE), /* pcrel_offset */
3c3bdf30
NC
206
207 /* An 8 bit absolute relocation. */
208 HOWTO (R_MMIX_8, /* type */
209 0, /* rightshift */
210 0, /* size (0 = byte, 1 = short, 2 = long) */
211 8, /* bitsize */
b34976b6 212 FALSE, /* pc_relative */
3c3bdf30
NC
213 0, /* bitpos */
214 complain_overflow_bitfield, /* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_MMIX_8", /* name */
b34976b6 217 FALSE, /* partial_inplace */
930b4cb2 218 0, /* src_mask */
3c3bdf30 219 0xff, /* dst_mask */
b34976b6 220 FALSE), /* pcrel_offset */
3c3bdf30
NC
221
222 /* An 16 bit absolute relocation. */
223 HOWTO (R_MMIX_16, /* type */
224 0, /* rightshift */
225 1, /* size (0 = byte, 1 = short, 2 = long) */
226 16, /* bitsize */
b34976b6 227 FALSE, /* pc_relative */
3c3bdf30
NC
228 0, /* bitpos */
229 complain_overflow_bitfield, /* complain_on_overflow */
230 bfd_elf_generic_reloc, /* special_function */
231 "R_MMIX_16", /* name */
b34976b6 232 FALSE, /* partial_inplace */
930b4cb2 233 0, /* src_mask */
3c3bdf30 234 0xffff, /* dst_mask */
b34976b6 235 FALSE), /* pcrel_offset */
3c3bdf30
NC
236
237 /* An 24 bit absolute relocation. */
238 HOWTO (R_MMIX_24, /* type */
239 0, /* rightshift */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
241 24, /* bitsize */
b34976b6 242 FALSE, /* pc_relative */
3c3bdf30
NC
243 0, /* bitpos */
244 complain_overflow_bitfield, /* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_MMIX_24", /* name */
b34976b6 247 FALSE, /* partial_inplace */
930b4cb2 248 ~0xffffff, /* src_mask */
3c3bdf30 249 0xffffff, /* dst_mask */
b34976b6 250 FALSE), /* pcrel_offset */
3c3bdf30
NC
251
252 /* A 32 bit absolute relocation. */
253 HOWTO (R_MMIX_32, /* type */
254 0, /* rightshift */
255 2, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
b34976b6 257 FALSE, /* pc_relative */
3c3bdf30
NC
258 0, /* bitpos */
259 complain_overflow_bitfield, /* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_MMIX_32", /* name */
b34976b6 262 FALSE, /* partial_inplace */
930b4cb2 263 0, /* src_mask */
3c3bdf30 264 0xffffffff, /* dst_mask */
b34976b6 265 FALSE), /* pcrel_offset */
3c3bdf30
NC
266
267 /* 64 bit relocation. */
268 HOWTO (R_MMIX_64, /* type */
269 0, /* rightshift */
270 4, /* size (0 = byte, 1 = short, 2 = long) */
271 64, /* bitsize */
b34976b6 272 FALSE, /* pc_relative */
3c3bdf30
NC
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_MMIX_64", /* name */
b34976b6 277 FALSE, /* partial_inplace */
930b4cb2 278 0, /* src_mask */
3c3bdf30 279 MINUS_ONE, /* dst_mask */
b34976b6 280 FALSE), /* pcrel_offset */
3c3bdf30
NC
281
282 /* An 8 bit PC-relative relocation. */
283 HOWTO (R_MMIX_PC_8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 8, /* bitsize */
b34976b6 287 TRUE, /* pc_relative */
3c3bdf30
NC
288 0, /* bitpos */
289 complain_overflow_bitfield, /* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_MMIX_PC_8", /* name */
b34976b6 292 FALSE, /* partial_inplace */
930b4cb2 293 0, /* src_mask */
3c3bdf30 294 0xff, /* dst_mask */
b34976b6 295 TRUE), /* pcrel_offset */
3c3bdf30
NC
296
297 /* An 16 bit PC-relative relocation. */
298 HOWTO (R_MMIX_PC_16, /* type */
299 0, /* rightshift */
300 1, /* size (0 = byte, 1 = short, 2 = long) */
301 16, /* bitsize */
b34976b6 302 TRUE, /* pc_relative */
3c3bdf30
NC
303 0, /* bitpos */
304 complain_overflow_bitfield, /* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_MMIX_PC_16", /* name */
b34976b6 307 FALSE, /* partial_inplace */
930b4cb2 308 0, /* src_mask */
3c3bdf30 309 0xffff, /* dst_mask */
b34976b6 310 TRUE), /* pcrel_offset */
3c3bdf30
NC
311
312 /* An 24 bit PC-relative relocation. */
313 HOWTO (R_MMIX_PC_24, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 24, /* bitsize */
b34976b6 317 TRUE, /* pc_relative */
3c3bdf30
NC
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_MMIX_PC_24", /* name */
b34976b6 322 FALSE, /* partial_inplace */
930b4cb2 323 ~0xffffff, /* src_mask */
3c3bdf30 324 0xffffff, /* dst_mask */
b34976b6 325 TRUE), /* pcrel_offset */
3c3bdf30
NC
326
327 /* A 32 bit absolute PC-relative relocation. */
328 HOWTO (R_MMIX_PC_32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
b34976b6 332 TRUE, /* pc_relative */
3c3bdf30
NC
333 0, /* bitpos */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_MMIX_PC_32", /* name */
b34976b6 337 FALSE, /* partial_inplace */
930b4cb2 338 0, /* src_mask */
3c3bdf30 339 0xffffffff, /* dst_mask */
b34976b6 340 TRUE), /* pcrel_offset */
3c3bdf30
NC
341
342 /* 64 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_64, /* type */
344 0, /* rightshift */
345 4, /* size (0 = byte, 1 = short, 2 = long) */
346 64, /* bitsize */
b34976b6 347 TRUE, /* pc_relative */
3c3bdf30
NC
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_MMIX_PC_64", /* name */
b34976b6 352 FALSE, /* partial_inplace */
930b4cb2 353 0, /* src_mask */
3c3bdf30 354 MINUS_ONE, /* dst_mask */
b34976b6 355 TRUE), /* pcrel_offset */
3c3bdf30
NC
356
357 /* GNU extension to record C++ vtable hierarchy. */
358 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
359 0, /* rightshift */
360 0, /* size (0 = byte, 1 = short, 2 = long) */
361 0, /* bitsize */
b34976b6 362 FALSE, /* pc_relative */
3c3bdf30
NC
363 0, /* bitpos */
364 complain_overflow_dont, /* complain_on_overflow */
365 NULL, /* special_function */
366 "R_MMIX_GNU_VTINHERIT", /* name */
b34976b6 367 FALSE, /* partial_inplace */
3c3bdf30
NC
368 0, /* src_mask */
369 0, /* dst_mask */
b34976b6 370 TRUE), /* pcrel_offset */
3c3bdf30
NC
371
372 /* GNU extension to record C++ vtable member usage. */
373 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
374 0, /* rightshift */
375 0, /* size (0 = byte, 1 = short, 2 = long) */
376 0, /* bitsize */
b34976b6 377 FALSE, /* pc_relative */
3c3bdf30
NC
378 0, /* bitpos */
379 complain_overflow_dont, /* complain_on_overflow */
380 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
381 "R_MMIX_GNU_VTENTRY", /* name */
b34976b6 382 FALSE, /* partial_inplace */
3c3bdf30
NC
383 0, /* src_mask */
384 0, /* dst_mask */
b34976b6 385 FALSE), /* pcrel_offset */
3c3bdf30
NC
386
387 /* The GETA relocation is supposed to get any address that could
388 possibly be reached by the GETA instruction. It can silently expand
389 to get a 64-bit operand, but will complain if any of the two least
390 significant bits are set. The howto members reflect a simple GETA. */
391 HOWTO (R_MMIX_GETA, /* type */
392 2, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 19, /* bitsize */
b34976b6 395 TRUE, /* pc_relative */
3c3bdf30
NC
396 0, /* bitpos */
397 complain_overflow_signed, /* complain_on_overflow */
398 mmix_elf_reloc, /* special_function */
399 "R_MMIX_GETA", /* name */
b34976b6 400 FALSE, /* partial_inplace */
930b4cb2 401 ~0x0100ffff, /* src_mask */
3c3bdf30 402 0x0100ffff, /* dst_mask */
b34976b6 403 TRUE), /* pcrel_offset */
3c3bdf30
NC
404
405 HOWTO (R_MMIX_GETA_1, /* type */
406 2, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 19, /* bitsize */
b34976b6 409 TRUE, /* pc_relative */
3c3bdf30
NC
410 0, /* bitpos */
411 complain_overflow_signed, /* complain_on_overflow */
412 mmix_elf_reloc, /* special_function */
413 "R_MMIX_GETA_1", /* name */
b34976b6 414 FALSE, /* partial_inplace */
930b4cb2 415 ~0x0100ffff, /* src_mask */
3c3bdf30 416 0x0100ffff, /* dst_mask */
b34976b6 417 TRUE), /* pcrel_offset */
3c3bdf30
NC
418
419 HOWTO (R_MMIX_GETA_2, /* type */
420 2, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 19, /* bitsize */
b34976b6 423 TRUE, /* pc_relative */
3c3bdf30
NC
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 mmix_elf_reloc, /* special_function */
427 "R_MMIX_GETA_2", /* name */
b34976b6 428 FALSE, /* partial_inplace */
930b4cb2 429 ~0x0100ffff, /* src_mask */
3c3bdf30 430 0x0100ffff, /* dst_mask */
b34976b6 431 TRUE), /* pcrel_offset */
3c3bdf30
NC
432
433 HOWTO (R_MMIX_GETA_3, /* type */
434 2, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 19, /* bitsize */
b34976b6 437 TRUE, /* pc_relative */
3c3bdf30
NC
438 0, /* bitpos */
439 complain_overflow_signed, /* complain_on_overflow */
440 mmix_elf_reloc, /* special_function */
441 "R_MMIX_GETA_3", /* name */
b34976b6 442 FALSE, /* partial_inplace */
930b4cb2 443 ~0x0100ffff, /* src_mask */
3c3bdf30 444 0x0100ffff, /* dst_mask */
b34976b6 445 TRUE), /* pcrel_offset */
3c3bdf30
NC
446
447 /* The conditional branches are supposed to reach any (code) address.
448 It can silently expand to a 64-bit operand, but will emit an error if
449 any of the two least significant bits are set. The howto members
450 reflect a simple branch. */
451 HOWTO (R_MMIX_CBRANCH, /* type */
452 2, /* rightshift */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
454 19, /* bitsize */
b34976b6 455 TRUE, /* pc_relative */
3c3bdf30
NC
456 0, /* bitpos */
457 complain_overflow_signed, /* complain_on_overflow */
458 mmix_elf_reloc, /* special_function */
459 "R_MMIX_CBRANCH", /* name */
b34976b6 460 FALSE, /* partial_inplace */
930b4cb2 461 ~0x0100ffff, /* src_mask */
3c3bdf30 462 0x0100ffff, /* dst_mask */
07d6d2b8 463 TRUE), /* pcrel_offset */
3c3bdf30
NC
464
465 HOWTO (R_MMIX_CBRANCH_J, /* type */
466 2, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 19, /* bitsize */
b34976b6 469 TRUE, /* pc_relative */
3c3bdf30
NC
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 mmix_elf_reloc, /* special_function */
473 "R_MMIX_CBRANCH_J", /* name */
b34976b6 474 FALSE, /* partial_inplace */
930b4cb2 475 ~0x0100ffff, /* src_mask */
3c3bdf30 476 0x0100ffff, /* dst_mask */
b34976b6 477 TRUE), /* pcrel_offset */
3c3bdf30
NC
478
479 HOWTO (R_MMIX_CBRANCH_1, /* type */
480 2, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 19, /* bitsize */
b34976b6 483 TRUE, /* pc_relative */
3c3bdf30
NC
484 0, /* bitpos */
485 complain_overflow_signed, /* complain_on_overflow */
486 mmix_elf_reloc, /* special_function */
487 "R_MMIX_CBRANCH_1", /* name */
b34976b6 488 FALSE, /* partial_inplace */
930b4cb2 489 ~0x0100ffff, /* src_mask */
3c3bdf30 490 0x0100ffff, /* dst_mask */
b34976b6 491 TRUE), /* pcrel_offset */
3c3bdf30
NC
492
493 HOWTO (R_MMIX_CBRANCH_2, /* type */
494 2, /* rightshift */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
496 19, /* bitsize */
b34976b6 497 TRUE, /* pc_relative */
3c3bdf30
NC
498 0, /* bitpos */
499 complain_overflow_signed, /* complain_on_overflow */
500 mmix_elf_reloc, /* special_function */
501 "R_MMIX_CBRANCH_2", /* name */
b34976b6 502 FALSE, /* partial_inplace */
930b4cb2 503 ~0x0100ffff, /* src_mask */
3c3bdf30 504 0x0100ffff, /* dst_mask */
b34976b6 505 TRUE), /* pcrel_offset */
3c3bdf30
NC
506
507 HOWTO (R_MMIX_CBRANCH_3, /* type */
508 2, /* rightshift */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
510 19, /* bitsize */
b34976b6 511 TRUE, /* pc_relative */
3c3bdf30
NC
512 0, /* bitpos */
513 complain_overflow_signed, /* complain_on_overflow */
514 mmix_elf_reloc, /* special_function */
515 "R_MMIX_CBRANCH_3", /* name */
b34976b6 516 FALSE, /* partial_inplace */
930b4cb2 517 ~0x0100ffff, /* src_mask */
3c3bdf30 518 0x0100ffff, /* dst_mask */
b34976b6 519 TRUE), /* pcrel_offset */
3c3bdf30
NC
520
521 /* The PUSHJ instruction can reach any (code) address, as long as it's
522 the beginning of a function (no usable restriction). It can silently
523 expand to a 64-bit operand, but will emit an error if any of the two
f60ebe14
HPN
524 least significant bits are set. It can also expand into a call to a
525 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
3c3bdf30
NC
526 PUSHJ. */
527 HOWTO (R_MMIX_PUSHJ, /* type */
528 2, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 19, /* bitsize */
b34976b6 531 TRUE, /* pc_relative */
3c3bdf30
NC
532 0, /* bitpos */
533 complain_overflow_signed, /* complain_on_overflow */
534 mmix_elf_reloc, /* special_function */
535 "R_MMIX_PUSHJ", /* name */
b34976b6 536 FALSE, /* partial_inplace */
930b4cb2 537 ~0x0100ffff, /* src_mask */
3c3bdf30 538 0x0100ffff, /* dst_mask */
b34976b6 539 TRUE), /* pcrel_offset */
3c3bdf30
NC
540
541 HOWTO (R_MMIX_PUSHJ_1, /* type */
542 2, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 19, /* bitsize */
b34976b6 545 TRUE, /* pc_relative */
3c3bdf30
NC
546 0, /* bitpos */
547 complain_overflow_signed, /* complain_on_overflow */
548 mmix_elf_reloc, /* special_function */
549 "R_MMIX_PUSHJ_1", /* name */
b34976b6 550 FALSE, /* partial_inplace */
930b4cb2 551 ~0x0100ffff, /* src_mask */
3c3bdf30 552 0x0100ffff, /* dst_mask */
b34976b6 553 TRUE), /* pcrel_offset */
3c3bdf30
NC
554
555 HOWTO (R_MMIX_PUSHJ_2, /* type */
556 2, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 19, /* bitsize */
b34976b6 559 TRUE, /* pc_relative */
3c3bdf30
NC
560 0, /* bitpos */
561 complain_overflow_signed, /* complain_on_overflow */
562 mmix_elf_reloc, /* special_function */
563 "R_MMIX_PUSHJ_2", /* name */
b34976b6 564 FALSE, /* partial_inplace */
930b4cb2 565 ~0x0100ffff, /* src_mask */
3c3bdf30 566 0x0100ffff, /* dst_mask */
b34976b6 567 TRUE), /* pcrel_offset */
3c3bdf30
NC
568
569 HOWTO (R_MMIX_PUSHJ_3, /* type */
570 2, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 19, /* bitsize */
b34976b6 573 TRUE, /* pc_relative */
3c3bdf30
NC
574 0, /* bitpos */
575 complain_overflow_signed, /* complain_on_overflow */
576 mmix_elf_reloc, /* special_function */
577 "R_MMIX_PUSHJ_3", /* name */
b34976b6 578 FALSE, /* partial_inplace */
930b4cb2 579 ~0x0100ffff, /* src_mask */
3c3bdf30 580 0x0100ffff, /* dst_mask */
b34976b6 581 TRUE), /* pcrel_offset */
3c3bdf30
NC
582
583 /* A JMP is supposed to reach any (code) address. By itself, it can
584 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
585 limit is soon reached if you link the program in wildly different
586 memory segments. The howto members reflect a trivial JMP. */
587 HOWTO (R_MMIX_JMP, /* type */
588 2, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 27, /* bitsize */
b34976b6 591 TRUE, /* pc_relative */
3c3bdf30
NC
592 0, /* bitpos */
593 complain_overflow_signed, /* complain_on_overflow */
594 mmix_elf_reloc, /* special_function */
595 "R_MMIX_JMP", /* name */
b34976b6 596 FALSE, /* partial_inplace */
930b4cb2 597 ~0x1ffffff, /* src_mask */
3c3bdf30 598 0x1ffffff, /* dst_mask */
b34976b6 599 TRUE), /* pcrel_offset */
3c3bdf30
NC
600
601 HOWTO (R_MMIX_JMP_1, /* type */
602 2, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 27, /* bitsize */
b34976b6 605 TRUE, /* pc_relative */
3c3bdf30
NC
606 0, /* bitpos */
607 complain_overflow_signed, /* complain_on_overflow */
608 mmix_elf_reloc, /* special_function */
609 "R_MMIX_JMP_1", /* name */
b34976b6 610 FALSE, /* partial_inplace */
930b4cb2 611 ~0x1ffffff, /* src_mask */
3c3bdf30 612 0x1ffffff, /* dst_mask */
b34976b6 613 TRUE), /* pcrel_offset */
3c3bdf30
NC
614
615 HOWTO (R_MMIX_JMP_2, /* type */
616 2, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 27, /* bitsize */
b34976b6 619 TRUE, /* pc_relative */
3c3bdf30
NC
620 0, /* bitpos */
621 complain_overflow_signed, /* complain_on_overflow */
622 mmix_elf_reloc, /* special_function */
623 "R_MMIX_JMP_2", /* name */
b34976b6 624 FALSE, /* partial_inplace */
930b4cb2 625 ~0x1ffffff, /* src_mask */
3c3bdf30 626 0x1ffffff, /* dst_mask */
b34976b6 627 TRUE), /* pcrel_offset */
3c3bdf30
NC
628
629 HOWTO (R_MMIX_JMP_3, /* type */
630 2, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 27, /* bitsize */
b34976b6 633 TRUE, /* pc_relative */
3c3bdf30
NC
634 0, /* bitpos */
635 complain_overflow_signed, /* complain_on_overflow */
636 mmix_elf_reloc, /* special_function */
637 "R_MMIX_JMP_3", /* name */
b34976b6 638 FALSE, /* partial_inplace */
930b4cb2 639 ~0x1ffffff, /* src_mask */
3c3bdf30 640 0x1ffffff, /* dst_mask */
b34976b6 641 TRUE), /* pcrel_offset */
3c3bdf30
NC
642
643 /* When we don't emit link-time-relaxable code from the assembler, or
644 when relaxation has done all it can do, these relocs are used. For
645 GETA/PUSHJ/branches. */
646 HOWTO (R_MMIX_ADDR19, /* type */
647 2, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 19, /* bitsize */
b34976b6 650 TRUE, /* pc_relative */
3c3bdf30
NC
651 0, /* bitpos */
652 complain_overflow_signed, /* complain_on_overflow */
653 mmix_elf_reloc, /* special_function */
654 "R_MMIX_ADDR19", /* name */
b34976b6 655 FALSE, /* partial_inplace */
930b4cb2 656 ~0x0100ffff, /* src_mask */
3c3bdf30 657 0x0100ffff, /* dst_mask */
b34976b6 658 TRUE), /* pcrel_offset */
3c3bdf30
NC
659
660 /* For JMP. */
661 HOWTO (R_MMIX_ADDR27, /* type */
662 2, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 27, /* bitsize */
b34976b6 665 TRUE, /* pc_relative */
3c3bdf30
NC
666 0, /* bitpos */
667 complain_overflow_signed, /* complain_on_overflow */
668 mmix_elf_reloc, /* special_function */
669 "R_MMIX_ADDR27", /* name */
b34976b6 670 FALSE, /* partial_inplace */
930b4cb2 671 ~0x1ffffff, /* src_mask */
3c3bdf30 672 0x1ffffff, /* dst_mask */
b34976b6 673 TRUE), /* pcrel_offset */
3c3bdf30
NC
674
675 /* A general register or the value 0..255. If a value, then the
676 instruction (offset -3) needs adjusting. */
677 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
678 0, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 8, /* bitsize */
b34976b6 681 FALSE, /* pc_relative */
3c3bdf30
NC
682 0, /* bitpos */
683 complain_overflow_bitfield, /* complain_on_overflow */
684 mmix_elf_reloc, /* special_function */
685 "R_MMIX_REG_OR_BYTE", /* name */
b34976b6 686 FALSE, /* partial_inplace */
930b4cb2 687 0, /* src_mask */
3c3bdf30 688 0xff, /* dst_mask */
b34976b6 689 FALSE), /* pcrel_offset */
3c3bdf30
NC
690
691 /* A general register. */
692 HOWTO (R_MMIX_REG, /* type */
693 0, /* rightshift */
694 1, /* size (0 = byte, 1 = short, 2 = long) */
695 8, /* bitsize */
b34976b6 696 FALSE, /* pc_relative */
3c3bdf30
NC
697 0, /* bitpos */
698 complain_overflow_bitfield, /* complain_on_overflow */
699 mmix_elf_reloc, /* special_function */
700 "R_MMIX_REG", /* name */
b34976b6 701 FALSE, /* partial_inplace */
930b4cb2 702 0, /* src_mask */
3c3bdf30 703 0xff, /* dst_mask */
b34976b6 704 FALSE), /* pcrel_offset */
3c3bdf30
NC
705
706 /* A register plus an index, corresponding to the relocation expression.
707 The sizes must correspond to the valid range of the expression, while
708 the bitmasks correspond to what we store in the image. */
709 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
710 0, /* rightshift */
711 4, /* size (0 = byte, 1 = short, 2 = long) */
712 64, /* bitsize */
b34976b6 713 FALSE, /* pc_relative */
3c3bdf30
NC
714 0, /* bitpos */
715 complain_overflow_bitfield, /* complain_on_overflow */
716 mmix_elf_reloc, /* special_function */
717 "R_MMIX_BASE_PLUS_OFFSET", /* name */
b34976b6 718 FALSE, /* partial_inplace */
930b4cb2 719 0, /* src_mask */
3c3bdf30 720 0xffff, /* dst_mask */
b34976b6 721 FALSE), /* pcrel_offset */
3c3bdf30
NC
722
723 /* A "magic" relocation for a LOCAL expression, asserting that the
724 expression is less than the number of global registers. No actual
725 modification of the contents is done. Implementing this as a
726 relocation was less intrusive than e.g. putting such expressions in a
727 section to discard *after* relocation. */
728 HOWTO (R_MMIX_LOCAL, /* type */
729 0, /* rightshift */
730 0, /* size (0 = byte, 1 = short, 2 = long) */
731 0, /* bitsize */
b34976b6 732 FALSE, /* pc_relative */
3c3bdf30
NC
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 mmix_elf_reloc, /* special_function */
736 "R_MMIX_LOCAL", /* name */
b34976b6 737 FALSE, /* partial_inplace */
3c3bdf30
NC
738 0, /* src_mask */
739 0, /* dst_mask */
b34976b6 740 FALSE), /* pcrel_offset */
f60ebe14
HPN
741
742 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
743 2, /* rightshift */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
745 19, /* bitsize */
746 TRUE, /* pc_relative */
747 0, /* bitpos */
748 complain_overflow_signed, /* complain_on_overflow */
749 mmix_elf_reloc, /* special_function */
750 "R_MMIX_PUSHJ_STUBBABLE", /* name */
751 FALSE, /* partial_inplace */
752 ~0x0100ffff, /* src_mask */
753 0x0100ffff, /* dst_mask */
754 TRUE) /* pcrel_offset */
3c3bdf30
NC
755 };
756
757
758/* Map BFD reloc types to MMIX ELF reloc types. */
759
760struct mmix_reloc_map
761 {
762 bfd_reloc_code_real_type bfd_reloc_val;
763 enum elf_mmix_reloc_type elf_reloc_val;
764 };
765
766
767static const struct mmix_reloc_map mmix_reloc_map[] =
768 {
769 {BFD_RELOC_NONE, R_MMIX_NONE},
770 {BFD_RELOC_8, R_MMIX_8},
771 {BFD_RELOC_16, R_MMIX_16},
772 {BFD_RELOC_24, R_MMIX_24},
773 {BFD_RELOC_32, R_MMIX_32},
774 {BFD_RELOC_64, R_MMIX_64},
775 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
776 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
777 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
778 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
779 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
780 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
781 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
782 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
783 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
784 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
785 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
786 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
787 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
788 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
789 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
790 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
f60ebe14
HPN
791 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
792 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
3c3bdf30
NC
793 };
794
795static reloc_howto_type *
2c3fc389
NC
796bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
797 bfd_reloc_code_real_type code)
3c3bdf30
NC
798{
799 unsigned int i;
800
801 for (i = 0;
802 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
803 i++)
804 {
805 if (mmix_reloc_map[i].bfd_reloc_val == code)
806 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
807 }
808
809 return NULL;
157090f7
AM
810}
811
812static reloc_howto_type *
813bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
814 const char *r_name)
815{
816 unsigned int i;
817
818 for (i = 0;
819 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
820 i++)
821 if (elf_mmix_howto_table[i].name != NULL
822 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
823 return &elf_mmix_howto_table[i];
824
825 return NULL;
3c3bdf30
NC
826}
827
f0abc2a1 828static bfd_boolean
2c3fc389 829mmix_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 830{
f592407e
AM
831 if (!sec->used_by_bfd)
832 {
833 struct _mmix_elf_section_data *sdata;
834 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 835
f592407e
AM
836 sdata = bfd_zalloc (abfd, amt);
837 if (sdata == NULL)
838 return FALSE;
839 sec->used_by_bfd = sdata;
840 }
f0abc2a1
AM
841
842 return _bfd_elf_new_section_hook (abfd, sec);
843}
844
3c3bdf30
NC
845
846/* This function performs the actual bitfiddling and sanity check for a
847 final relocation. Each relocation gets its *worst*-case expansion
848 in size when it arrives here; any reduction in size should have been
849 caught in linker relaxation earlier. When we get here, the relocation
850 looks like the smallest instruction with SWYM:s (nop:s) appended to the
851 max size. We fill in those nop:s.
852
853 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
854 GETA $N,foo
855 ->
856 SETL $N,foo & 0xffff
857 INCML $N,(foo >> 16) & 0xffff
858 INCMH $N,(foo >> 32) & 0xffff
859 INCH $N,(foo >> 48) & 0xffff
860
861 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
862 condbranches needing relaxation might be rare enough to not be
863 worthwhile.)
864 [P]Bcc $N,foo
865 ->
866 [~P]B~cc $N,.+20
867 SETL $255,foo & ...
868 INCML ...
869 INCMH ...
870 INCH ...
871 GO $255,$255,0
872
873 R_MMIX_PUSHJ: (FIXME: Relaxation...)
874 PUSHJ $N,foo
875 ->
876 SETL $255,foo & ...
877 INCML ...
878 INCMH ...
879 INCH ...
880 PUSHGO $N,$255,0
881
882 R_MMIX_JMP: (FIXME: Relaxation...)
883 JMP foo
884 ->
885 SETL $255,foo & ...
886 INCML ...
887 INCMH ...
888 INCH ...
889 GO $255,$255,0
890
891 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
892
893static bfd_reloc_status_type
18978b27
HPN
894mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
895 void *datap, bfd_vma addr, bfd_vma value,
896 char **error_message)
3c3bdf30
NC
897{
898 bfd *abfd = isec->owner;
899 bfd_reloc_status_type flag = bfd_reloc_ok;
900 bfd_reloc_status_type r;
901 int offs = 0;
902 int reg = 255;
903
904 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
905 We handle the differences here and the common sequence later. */
906 switch (howto->type)
907 {
908 case R_MMIX_GETA:
909 offs = 0;
910 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
911
912 /* We change to an absolute value. */
913 value += addr;
914 break;
915
916 case R_MMIX_CBRANCH:
917 {
918 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
919
920 /* Invert the condition and prediction bit, and set the offset
921 to five instructions ahead.
922
923 We *can* do better if we want to. If the branch is found to be
924 within limits, we could leave the branch as is; there'll just
925 be a bunch of NOP:s after it. But we shouldn't see this
926 sequence often enough that it's worth doing it. */
927
928 bfd_put_32 (abfd,
929 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
930 | (24/4)),
931 (bfd_byte *) datap);
932
933 /* Put a "GO $255,$255,0" after the common sequence. */
934 bfd_put_32 (abfd,
935 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
936 (bfd_byte *) datap + 20);
937
938 /* Common sequence starts at offset 4. */
939 offs = 4;
940
941 /* We change to an absolute value. */
942 value += addr;
943 }
944 break;
945
f60ebe14
HPN
946 case R_MMIX_PUSHJ_STUBBABLE:
947 /* If the address fits, we're fine. */
948 if ((value & 3) == 0
949 /* Note rightshift 0; see R_MMIX_JMP case below. */
950 && (r = bfd_check_overflow (complain_overflow_signed,
951 howto->bitsize,
952 0,
953 bfd_arch_bits_per_address (abfd),
954 value)) == bfd_reloc_ok)
955 goto pcrel_mmix_reloc_fits;
956 else
957 {
1a23a9e6 958 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
f60ebe14
HPN
959
960 /* We have the bytes at the PUSHJ insn and need to get the
961 position for the stub. There's supposed to be room allocated
962 for the stub. */
963 bfd_byte *stubcontents
f075ee0c 964 = ((bfd_byte *) datap
f60ebe14 965 - (addr - (isec->output_section->vma + isec->output_offset))
eea6121a 966 + size
f60ebe14
HPN
967 + mmix_elf_section_data (isec)->pjs.stub_offset);
968 bfd_vma stubaddr;
969
18978b27
HPN
970 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
971 {
972 /* This shouldn't happen when linking to ELF or mmo, so
973 this is an attempt to link to "binary", right? We
974 can't access the output bfd, so we can't verify that
975 assumption. We only know that the critical
976 mmix_elf_check_common_relocs has not been called,
977 which happens when the output format is different
978 from the input format (and is not mmo). */
979 if (! mmix_elf_section_data (isec)->has_warned_pushj)
980 {
981 /* For the first such error per input section, produce
982 a verbose message. */
983 *error_message
984 = _("invalid input relocation when producing"
38f14ab8
AM
985 " non-ELF, non-mmo format output;"
986 " please use the objcopy program to convert from"
18978b27 987 " ELF or mmo,"
38f14ab8 988 " or assemble using"
18978b27
HPN
989 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
990 mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
991 return bfd_reloc_dangerous;
992 }
993
994 /* For subsequent errors, return this one, which is
995 rate-limited but looks a little bit different,
996 hopefully without affecting user-friendliness. */
997 return bfd_reloc_overflow;
998 }
999
f60ebe14
HPN
1000 /* The address doesn't fit, so redirect the PUSHJ to the
1001 location of the stub. */
1002 r = mmix_elf_perform_relocation (isec,
1003 &elf_mmix_howto_table
1004 [R_MMIX_ADDR19],
1005 datap,
1006 addr,
1007 isec->output_section->vma
1008 + isec->output_offset
eea6121a 1009 + size
f60ebe14
HPN
1010 + (mmix_elf_section_data (isec)
1011 ->pjs.stub_offset)
18978b27
HPN
1012 - addr,
1013 error_message);
f60ebe14
HPN
1014 if (r != bfd_reloc_ok)
1015 return r;
1016
1017 stubaddr
1018 = (isec->output_section->vma
1019 + isec->output_offset
eea6121a 1020 + size
f60ebe14
HPN
1021 + mmix_elf_section_data (isec)->pjs.stub_offset);
1022
1023 /* We generate a simple JMP if that suffices, else the whole 5
1024 insn stub. */
1025 if (bfd_check_overflow (complain_overflow_signed,
1026 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1027 0,
1028 bfd_arch_bits_per_address (abfd),
1029 addr + value - stubaddr) == bfd_reloc_ok)
1030 {
1031 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1032 r = mmix_elf_perform_relocation (isec,
1033 &elf_mmix_howto_table
1034 [R_MMIX_ADDR27],
1035 stubcontents,
1036 stubaddr,
18978b27
HPN
1037 value + addr - stubaddr,
1038 error_message);
f60ebe14
HPN
1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040
eea6121a
AM
1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 > isec->size)
f60ebe14
HPN
1043 abort ();
1044
1045 return r;
1046 }
1047 else
1048 {
1049 /* Put a "GO $255,0" after the common sequence. */
1050 bfd_put_32 (abfd,
1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 | 0xff00, (bfd_byte *) stubcontents + 16);
1053
1054 /* Prepare for the general code to set the first part of the
1055 linker stub, and */
1056 value += addr;
1057 datap = stubcontents;
1058 mmix_elf_section_data (isec)->pjs.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE;
1060 }
1061 }
1062 break;
1063
3c3bdf30
NC
1064 case R_MMIX_PUSHJ:
1065 {
1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1069 bfd_put_32 (abfd,
1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 | (inreg << 16)
1072 | 0xff00,
1073 (bfd_byte *) datap + 16);
1074
1075 /* We change to an absolute value. */
1076 value += addr;
1077 }
1078 break;
1079
1080 case R_MMIX_JMP:
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1083 execute the nops.
1084 If so, we fall through to the bit-fiddling relocs.
1085
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1088
1089 if (! ((value & 3) == 0
1090 && (r = bfd_check_overflow (complain_overflow_signed,
1091 howto->bitsize,
1092 0,
1093 bfd_arch_bits_per_address (abfd),
1094 value)) == bfd_reloc_ok))
1095 {
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1099 bfd_put_32 (abfd,
1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 | 0xffff00,
1102 (bfd_byte *) datap + 16);
1103
1104 /* We change to an absolute value. */
1105 value += addr;
1106 break;
1107 }
cedb70c5 1108 /* FALLTHROUGH. */
3c3bdf30
NC
1109 case R_MMIX_ADDR19:
1110 case R_MMIX_ADDR27:
f60ebe14 1111 pcrel_mmix_reloc_fits:
3c3bdf30
NC
1112 /* These must be in range, or else we emit an error. */
1113 if ((value & 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r = bfd_check_overflow (complain_overflow_signed,
1116 howto->bitsize,
1117 0,
1118 bfd_arch_bits_per_address (abfd),
1119 value)) == bfd_reloc_ok)
1120 {
1121 bfd_vma in1
1122 = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 bfd_vma highbit;
1124
1125 if ((bfd_signed_vma) value < 0)
1126 {
f60ebe14 1127 highbit = 1 << 24;
3c3bdf30
NC
1128 value += (1 << (howto->bitsize - 1));
1129 }
1130 else
1131 highbit = 0;
1132
1133 value >>= 2;
1134
1135 bfd_put_32 (abfd,
930b4cb2 1136 (in1 & howto->src_mask)
3c3bdf30
NC
1137 | highbit
1138 | (value & howto->dst_mask),
1139 (bfd_byte *) datap);
1140
1141 return bfd_reloc_ok;
1142 }
1143 else
1144 return bfd_reloc_overflow;
1145
930b4cb2
HPN
1146 case R_MMIX_BASE_PLUS_OFFSET:
1147 {
1148 struct bpo_reloc_section_info *bpodata
f0abc2a1 1149 = mmix_elf_section_data (isec)->bpo.reloc;
18978b27
HPN
1150 asection *bpo_greg_section;
1151 struct bpo_greg_section_info *gregdata;
1152 size_t bpo_index;
1153
1154 if (bpodata == NULL)
1155 {
1156 /* This shouldn't happen when linking to ELF or mmo, so
1157 this is an attempt to link to "binary", right? We
1158 can't access the output bfd, so we can't verify that
1159 assumption. We only know that the critical
1160 mmix_elf_check_common_relocs has not been called, which
1161 happens when the output format is different from the
1162 input format (and is not mmo). */
1163 if (! mmix_elf_section_data (isec)->has_warned_bpo)
1164 {
1165 /* For the first such error per input section, produce
1166 a verbose message. */
1167 *error_message
1168 = _("invalid input relocation when producing"
38f14ab8
AM
1169 " non-ELF, non-mmo format output;"
1170 " please use the objcopy program to convert from"
18978b27 1171 " ELF or mmo,"
38f14ab8 1172 " or compile using the gcc-option"
18978b27
HPN
1173 " \"-mno-base-addresses\".");
1174 mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1175 return bfd_reloc_dangerous;
1176 }
1177
1178 /* For subsequent errors, return this one, which is
1179 rate-limited but looks a little bit different,
1180 hopefully without affecting user-friendliness. */
1181 return bfd_reloc_overflow;
1182 }
1183
1184 bpo_greg_section = bpodata->bpo_greg_section;
1185 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1186 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
930b4cb2
HPN
1187
1188 /* A consistency check: The value we now have in "relocation" must
1189 be the same as the value we stored for that relocation. It
1190 doesn't cost much, so can be left in at all times. */
1191 if (value != gregdata->reloc_request[bpo_index].value)
1192 {
4eca0228 1193 _bfd_error_handler
695344c0 1194 /* xgettext:c-format */
871b3ab2 1195 (_("%pB: Internal inconsistency error for value for\n\
2dcf00ce 1196 linker-allocated global register: linked: %#" PRIx64 " != relaxed: %#" PRIx64 ""),
dae82561 1197 isec->owner,
2dcf00ce
AM
1198 (uint64_t) value,
1199 (uint64_t) gregdata->reloc_request[bpo_index].value);
930b4cb2
HPN
1200 bfd_set_error (bfd_error_bad_value);
1201 return bfd_reloc_overflow;
1202 }
1203
1204 /* Then store the register number and offset for that register
1205 into datap and datap + 1 respectively. */
1206 bfd_put_8 (abfd,
1207 gregdata->reloc_request[bpo_index].regindex
1208 + bpo_greg_section->output_section->vma / 8,
1209 datap);
1210 bfd_put_8 (abfd,
1211 gregdata->reloc_request[bpo_index].offset,
1212 ((unsigned char *) datap) + 1);
1213 return bfd_reloc_ok;
1214 }
1215
3c3bdf30
NC
1216 case R_MMIX_REG_OR_BYTE:
1217 case R_MMIX_REG:
1218 if (value > 255)
1219 return bfd_reloc_overflow;
1220 bfd_put_8 (abfd, value, datap);
1221 return bfd_reloc_ok;
1222
1223 default:
1224 BAD_CASE (howto->type);
1225 }
1226
1227 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1228 sequence. */
1229
1230 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1231 everything that looks strange. */
1232 if (value & 3)
1233 flag = bfd_reloc_overflow;
1234
1235 bfd_put_32 (abfd,
1236 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1237 (bfd_byte *) datap + offs);
1238 bfd_put_32 (abfd,
1239 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1240 (bfd_byte *) datap + offs + 4);
1241 bfd_put_32 (abfd,
1242 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1243 (bfd_byte *) datap + offs + 8);
1244 bfd_put_32 (abfd,
1245 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1246 (bfd_byte *) datap + offs + 12);
1247
1248 return flag;
1249}
1250
1251/* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1252
f3185997 1253static bfd_boolean
0aa13fee 1254mmix_info_to_howto_rela (bfd *abfd,
2c3fc389
NC
1255 arelent *cache_ptr,
1256 Elf_Internal_Rela *dst)
3c3bdf30
NC
1257{
1258 unsigned int r_type;
1259
1260 r_type = ELF64_R_TYPE (dst->r_info);
5860e3f8
NC
1261 if (r_type >= (unsigned int) R_MMIX_max)
1262 {
695344c0 1263 /* xgettext:c-format */
0aa13fee
AM
1264 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1265 abfd, r_type);
f3185997
NC
1266 bfd_set_error (bfd_error_bad_value);
1267 return FALSE;
5860e3f8 1268 }
3c3bdf30 1269 cache_ptr->howto = &elf_mmix_howto_table[r_type];
f3185997 1270 return TRUE;
3c3bdf30
NC
1271}
1272
1273/* Any MMIX-specific relocation gets here at assembly time or when linking
1274 to other formats (such as mmo); this is the relocation function from
1275 the reloc_table. We don't get here for final pure ELF linking. */
1276
1277static bfd_reloc_status_type
2c3fc389
NC
1278mmix_elf_reloc (bfd *abfd,
1279 arelent *reloc_entry,
1280 asymbol *symbol,
1281 void * data,
1282 asection *input_section,
1283 bfd *output_bfd,
1284 char **error_message)
3c3bdf30
NC
1285{
1286 bfd_vma relocation;
1287 bfd_reloc_status_type r;
1288 asection *reloc_target_output_section;
1289 bfd_reloc_status_type flag = bfd_reloc_ok;
1290 bfd_vma output_base = 0;
3c3bdf30
NC
1291
1292 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1293 input_section, output_bfd, error_message);
1294
1295 /* If that was all that was needed (i.e. this isn't a final link, only
1296 some segment adjustments), we're done. */
1297 if (r != bfd_reloc_continue)
1298 return r;
1299
1300 if (bfd_is_und_section (symbol->section)
1301 && (symbol->flags & BSF_WEAK) == 0
1302 && output_bfd == (bfd *) NULL)
1303 return bfd_reloc_undefined;
1304
1305 /* Is the address of the relocation really within the section? */
07515404 1306 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
3c3bdf30
NC
1307 return bfd_reloc_outofrange;
1308
4cc11e76 1309 /* Work out which section the relocation is targeted at and the
3c3bdf30
NC
1310 initial relocation command value. */
1311
1312 /* Get symbol value. (Common symbols are special.) */
1313 if (bfd_is_com_section (symbol->section))
1314 relocation = 0;
1315 else
1316 relocation = symbol->value;
1317
e6f7f6d1 1318 reloc_target_output_section = bfd_asymbol_section (symbol)->output_section;
3c3bdf30
NC
1319
1320 /* Here the variable relocation holds the final address of the symbol we
1321 are relocating against, plus any addend. */
1322 if (output_bfd)
1323 output_base = 0;
1324 else
1325 output_base = reloc_target_output_section->vma;
1326
1327 relocation += output_base + symbol->section->output_offset;
1328
3c3bdf30
NC
1329 if (output_bfd != (bfd *) NULL)
1330 {
1331 /* Add in supplied addend. */
1332 relocation += reloc_entry->addend;
1333
1334 /* This is a partial relocation, and we want to apply the
1335 relocation to the reloc entry rather than the raw data.
1336 Modify the reloc inplace to reflect what we now know. */
1337 reloc_entry->addend = relocation;
1338 reloc_entry->address += input_section->output_offset;
1339 return flag;
1340 }
1341
1342 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1343 data, reloc_entry->address,
1344 reloc_entry->addend, relocation,
1345 bfd_asymbol_name (symbol),
18978b27
HPN
1346 reloc_target_output_section,
1347 error_message);
3c3bdf30 1348}
e06fcc86 1349\f
3c3bdf30
NC
1350/* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1351 for guidance if you're thinking of copying this. */
1352
b34976b6 1353static bfd_boolean
2c3fc389
NC
1354mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1355 struct bfd_link_info *info,
1356 bfd *input_bfd,
1357 asection *input_section,
1358 bfd_byte *contents,
1359 Elf_Internal_Rela *relocs,
1360 Elf_Internal_Sym *local_syms,
1361 asection **local_sections)
3c3bdf30
NC
1362{
1363 Elf_Internal_Shdr *symtab_hdr;
1364 struct elf_link_hash_entry **sym_hashes;
1365 Elf_Internal_Rela *rel;
1366 Elf_Internal_Rela *relend;
1a23a9e6 1367 bfd_size_type size;
f60ebe14 1368 size_t pjsno = 0;
3c3bdf30 1369
1a23a9e6 1370 size = input_section->rawsize ? input_section->rawsize : input_section->size;
3c3bdf30
NC
1371 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1372 sym_hashes = elf_sym_hashes (input_bfd);
1373 relend = relocs + input_section->reloc_count;
1374
1a23a9e6
AM
1375 /* Zero the stub area before we start. */
1376 if (input_section->rawsize != 0
1377 && input_section->size > input_section->rawsize)
1378 memset (contents + input_section->rawsize, 0,
1379 input_section->size - input_section->rawsize);
1380
3c3bdf30
NC
1381 for (rel = relocs; rel < relend; rel ++)
1382 {
1383 reloc_howto_type *howto;
1384 unsigned long r_symndx;
1385 Elf_Internal_Sym *sym;
1386 asection *sec;
1387 struct elf_link_hash_entry *h;
1388 bfd_vma relocation;
1389 bfd_reloc_status_type r;
1390 const char *name = NULL;
1391 int r_type;
b34976b6 1392 bfd_boolean undefined_signalled = FALSE;
3c3bdf30
NC
1393
1394 r_type = ELF64_R_TYPE (rel->r_info);
1395
1396 if (r_type == R_MMIX_GNU_VTINHERIT
1397 || r_type == R_MMIX_GNU_VTENTRY)
1398 continue;
1399
1400 r_symndx = ELF64_R_SYM (rel->r_info);
1401
ab96bf03
AM
1402 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1403 h = NULL;
1404 sym = NULL;
1405 sec = NULL;
1406
1407 if (r_symndx < symtab_hdr->sh_info)
1408 {
1409 sym = local_syms + r_symndx;
1410 sec = local_sections [r_symndx];
1411 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1412
1413 name = bfd_elf_string_from_elf_section (input_bfd,
1414 symtab_hdr->sh_link,
1415 sym->st_name);
1416 if (name == NULL)
fd361982 1417 name = bfd_section_name (sec);
ab96bf03
AM
1418 }
1419 else
1420 {
62d887d4 1421 bfd_boolean unresolved_reloc, ignored;
ab96bf03
AM
1422
1423 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1424 r_symndx, symtab_hdr, sym_hashes,
1425 h, sec, relocation,
62d887d4
L
1426 unresolved_reloc, undefined_signalled,
1427 ignored);
ab96bf03
AM
1428 name = h->root.root.string;
1429 }
1430
dbaa2011 1431 if (sec != NULL && discarded_section (sec))
e4067dbb 1432 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 1433 rel, 1, relend, howto, 0, contents);
ab96bf03 1434
0e1862bb 1435 if (bfd_link_relocatable (info))
3c3bdf30 1436 {
f60ebe14
HPN
1437 /* This is a relocatable link. For most relocs we don't have to
1438 change anything, unless the reloc is against a section
1439 symbol, in which case we have to adjust according to where
1440 the section symbol winds up in the output section. */
ab96bf03
AM
1441 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1442 rel->r_addend += sec->output_offset;
3c3bdf30 1443
f60ebe14
HPN
1444 /* For PUSHJ stub relocs however, we may need to change the
1445 reloc and the section contents, if the reloc doesn't reach
1446 beyond the end of the output section and previous stubs.
1447 Then we change the section contents to be a PUSHJ to the end
1448 of the input section plus stubs (we can do that without using
1449 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1450 at the stub location. */
1451 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1452 {
1453 /* We've already checked whether we need a stub; use that
1454 knowledge. */
1455 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1456 != 0)
1457 {
1458 Elf_Internal_Rela relcpy;
1459
1460 if (mmix_elf_section_data (input_section)
1461 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1462 abort ();
1463
1464 /* There's already a PUSHJ insn there, so just fill in
1465 the offset bits to the stub. */
1466 if (mmix_final_link_relocate (elf_mmix_howto_table
1467 + R_MMIX_ADDR19,
1468 input_section,
1469 contents,
1470 rel->r_offset,
1471 0,
1472 input_section
1473 ->output_section->vma
1474 + input_section->output_offset
eea6121a 1475 + size
f60ebe14
HPN
1476 + mmix_elf_section_data (input_section)
1477 ->pjs.stub_offset,
18978b27 1478 NULL, NULL, NULL) != bfd_reloc_ok)
f60ebe14
HPN
1479 return FALSE;
1480
1481 /* Put a JMP insn at the stub; it goes with the
1482 R_MMIX_JMP reloc. */
1483 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1484 contents
eea6121a 1485 + size
f60ebe14
HPN
1486 + mmix_elf_section_data (input_section)
1487 ->pjs.stub_offset);
1488
1489 /* Change the reloc to be at the stub, and to a full
1490 R_MMIX_JMP reloc. */
1491 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1492 rel->r_offset
eea6121a 1493 = (size
f60ebe14
HPN
1494 + mmix_elf_section_data (input_section)
1495 ->pjs.stub_offset);
1496
1497 mmix_elf_section_data (input_section)->pjs.stub_offset
1498 += MAX_PUSHJ_STUB_SIZE;
1499
1500 /* Shift this reloc to the end of the relocs to maintain
1501 the r_offset sorted reloc order. */
1502 relcpy = *rel;
1503 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1504 relend[-1] = relcpy;
1505
1506 /* Back up one reloc, or else we'd skip the next reloc
1507 in turn. */
1508 rel--;
1509 }
1510
1511 pjsno++;
1512 }
3c3bdf30
NC
1513 continue;
1514 }
1515
3c3bdf30
NC
1516 r = mmix_final_link_relocate (howto, input_section,
1517 contents, rel->r_offset,
18978b27 1518 rel->r_addend, relocation, name, sec, NULL);
3c3bdf30
NC
1519
1520 if (r != bfd_reloc_ok)
1521 {
3c3bdf30
NC
1522 const char * msg = (const char *) NULL;
1523
1524 switch (r)
1525 {
1526 case bfd_reloc_overflow:
1a72702b 1527 info->callbacks->reloc_overflow
dfeffb9f
L
1528 (info, (h ? &h->root : NULL), name, howto->name,
1529 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3c3bdf30
NC
1530 break;
1531
1532 case bfd_reloc_undefined:
1533 /* We may have sent this message above. */
1534 if (! undefined_signalled)
1a72702b
AM
1535 info->callbacks->undefined_symbol
1536 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
b34976b6 1537 undefined_signalled = TRUE;
3c3bdf30
NC
1538 break;
1539
1540 case bfd_reloc_outofrange:
1541 msg = _("internal error: out of range error");
1542 break;
1543
1544 case bfd_reloc_notsupported:
1545 msg = _("internal error: unsupported relocation error");
1546 break;
1547
1548 case bfd_reloc_dangerous:
1549 msg = _("internal error: dangerous relocation");
1550 break;
1551
1552 default:
1553 msg = _("internal error: unknown error");
1554 break;
1555 }
1556
1557 if (msg)
1a72702b
AM
1558 (*info->callbacks->warning) (info, msg, name, input_bfd,
1559 input_section, rel->r_offset);
3c3bdf30
NC
1560 }
1561 }
1562
b34976b6 1563 return TRUE;
3c3bdf30 1564}
e06fcc86 1565\f
3c3bdf30
NC
1566/* Perform a single relocation. By default we use the standard BFD
1567 routines. A few relocs we have to do ourselves. */
1568
1569static bfd_reloc_status_type
18978b27
HPN
1570mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1571 bfd_byte *contents, bfd_vma r_offset,
1572 bfd_signed_vma r_addend, bfd_vma relocation,
1573 const char *symname, asection *symsec,
1574 char **error_message)
3c3bdf30
NC
1575{
1576 bfd_reloc_status_type r = bfd_reloc_ok;
1577 bfd_vma addr
1578 = (input_section->output_section->vma
1579 + input_section->output_offset
1580 + r_offset);
1581 bfd_signed_vma srel
1582 = (bfd_signed_vma) relocation + r_addend;
1583
1584 switch (howto->type)
1585 {
1586 /* All these are PC-relative. */
f60ebe14 1587 case R_MMIX_PUSHJ_STUBBABLE:
3c3bdf30
NC
1588 case R_MMIX_PUSHJ:
1589 case R_MMIX_CBRANCH:
1590 case R_MMIX_ADDR19:
1591 case R_MMIX_GETA:
1592 case R_MMIX_ADDR27:
1593 case R_MMIX_JMP:
1594 contents += r_offset;
1595
1596 srel -= (input_section->output_section->vma
1597 + input_section->output_offset
1598 + r_offset);
1599
1600 r = mmix_elf_perform_relocation (input_section, howto, contents,
18978b27 1601 addr, srel, error_message);
3c3bdf30
NC
1602 break;
1603
930b4cb2
HPN
1604 case R_MMIX_BASE_PLUS_OFFSET:
1605 if (symsec == NULL)
1606 return bfd_reloc_undefined;
1607
1608 /* Check that we're not relocating against a register symbol. */
fd361982 1609 if (strcmp (bfd_section_name (symsec),
930b4cb2 1610 MMIX_REG_CONTENTS_SECTION_NAME) == 0
fd361982 1611 || strcmp (bfd_section_name (symsec),
930b4cb2
HPN
1612 MMIX_REG_SECTION_NAME) == 0)
1613 {
1614 /* Note: This is separated out into two messages in order
1615 to ease the translation into other languages. */
1616 if (symname == NULL || *symname == 0)
4eca0228 1617 _bfd_error_handler
695344c0 1618 /* xgettext:c-format */
871b3ab2
AM
1619 (_("%pB: base-plus-offset relocation against register symbol:"
1620 " (unknown) in %pA"),
dae82561 1621 input_section->owner, symsec);
930b4cb2 1622 else
4eca0228 1623 _bfd_error_handler
695344c0 1624 /* xgettext:c-format */
871b3ab2
AM
1625 (_("%pB: base-plus-offset relocation against register symbol:"
1626 " %s in %pA"),
dae82561 1627 input_section->owner, symname, symsec);
930b4cb2
HPN
1628 return bfd_reloc_overflow;
1629 }
1630 goto do_mmix_reloc;
1631
3c3bdf30
NC
1632 case R_MMIX_REG_OR_BYTE:
1633 case R_MMIX_REG:
1634 /* For now, we handle these alike. They must refer to an register
1635 symbol, which is either relative to the register section and in
1636 the range 0..255, or is in the register contents section with vma
1637 regno * 8. */
1638
1639 /* FIXME: A better way to check for reg contents section?
1640 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1641 if (symsec == NULL)
1642 return bfd_reloc_undefined;
1643
fd361982 1644 if (strcmp (bfd_section_name (symsec),
3c3bdf30
NC
1645 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1646 {
1647 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1648 {
1649 /* The bfd_reloc_outofrange return value, though intuitively
1650 a better value, will not get us an error. */
1651 return bfd_reloc_overflow;
1652 }
1653 srel /= 8;
1654 }
fd361982 1655 else if (strcmp (bfd_section_name (symsec),
3c3bdf30
NC
1656 MMIX_REG_SECTION_NAME) == 0)
1657 {
1658 if (srel < 0 || srel > 255)
1659 /* The bfd_reloc_outofrange return value, though intuitively a
1660 better value, will not get us an error. */
1661 return bfd_reloc_overflow;
1662 }
1663 else
1664 {
930b4cb2 1665 /* Note: This is separated out into two messages in order
ca09e32b
NC
1666 to ease the translation into other languages. */
1667 if (symname == NULL || *symname == 0)
4eca0228 1668 _bfd_error_handler
695344c0 1669 /* xgettext:c-format */
871b3ab2
AM
1670 (_("%pB: register relocation against non-register symbol:"
1671 " (unknown) in %pA"),
dae82561 1672 input_section->owner, symsec);
ca09e32b 1673 else
4eca0228 1674 _bfd_error_handler
695344c0 1675 /* xgettext:c-format */
871b3ab2
AM
1676 (_("%pB: register relocation against non-register symbol:"
1677 " %s in %pA"),
dae82561 1678 input_section->owner, symname, symsec);
3c3bdf30
NC
1679
1680 /* The bfd_reloc_outofrange return value, though intuitively a
1681 better value, will not get us an error. */
1682 return bfd_reloc_overflow;
1683 }
930b4cb2 1684 do_mmix_reloc:
3c3bdf30
NC
1685 contents += r_offset;
1686 r = mmix_elf_perform_relocation (input_section, howto, contents,
18978b27 1687 addr, srel, error_message);
3c3bdf30
NC
1688 break;
1689
1690 case R_MMIX_LOCAL:
1691 /* This isn't a real relocation, it's just an assertion that the
1692 final relocation value corresponds to a local register. We
1693 ignore the actual relocation; nothing is changed. */
1694 {
1695 asection *regsec
1696 = bfd_get_section_by_name (input_section->output_section->owner,
1697 MMIX_REG_CONTENTS_SECTION_NAME);
1698 bfd_vma first_global;
1699
1700 /* Check that this is an absolute value, or a reference to the
1701 register contents section or the register (symbol) section.
1702 Absolute numbers can get here as undefined section. Undefined
1703 symbols are signalled elsewhere, so there's no conflict in us
1704 accidentally handling it. */
1705 if (!bfd_is_abs_section (symsec)
1706 && !bfd_is_und_section (symsec)
fd361982 1707 && strcmp (bfd_section_name (symsec),
3c3bdf30 1708 MMIX_REG_CONTENTS_SECTION_NAME) != 0
fd361982 1709 && strcmp (bfd_section_name (symsec),
3c3bdf30
NC
1710 MMIX_REG_SECTION_NAME) != 0)
1711 {
4eca0228 1712 _bfd_error_handler
871b3ab2 1713 (_("%pB: directive LOCAL valid only with a register or absolute value"),
dae82561 1714 input_section->owner);
3c3bdf30
NC
1715
1716 return bfd_reloc_overflow;
1717 }
1718
1719 /* If we don't have a register contents section, then $255 is the
1720 first global register. */
1721 if (regsec == NULL)
1722 first_global = 255;
1723 else
1724 {
fd361982
AM
1725 first_global = bfd_section_vma (regsec) / 8;
1726 if (strcmp (bfd_section_name (symsec),
3c3bdf30
NC
1727 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1728 {
1729 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1730 /* The bfd_reloc_outofrange return value, though
1731 intuitively a better value, will not get us an error. */
1732 return bfd_reloc_overflow;
1733 srel /= 8;
1734 }
1735 }
1736
1737 if ((bfd_vma) srel >= first_global)
1738 {
1739 /* FIXME: Better error message. */
4eca0228 1740 _bfd_error_handler
695344c0 1741 /* xgettext:c-format */
2dcf00ce 1742 (_("%pB: LOCAL directive: "
38f14ab8
AM
1743 "register $%" PRId64 " is not a local register;"
1744 " first global register is $%" PRId64),
2dcf00ce 1745 input_section->owner, (int64_t) srel, (int64_t) first_global);
3c3bdf30
NC
1746
1747 return bfd_reloc_overflow;
1748 }
1749 }
1750 r = bfd_reloc_ok;
1751 break;
1752
1753 default:
1754 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1755 contents, r_offset,
1756 relocation, r_addend);
1757 }
1758
1759 return r;
1760}
e06fcc86 1761\f
3c3bdf30
NC
1762/* Return the section that should be marked against GC for a given
1763 relocation. */
1764
1765static asection *
07adf181
AM
1766mmix_elf_gc_mark_hook (asection *sec,
1767 struct bfd_link_info *info,
1768 Elf_Internal_Rela *rel,
1769 struct elf_link_hash_entry *h,
1770 Elf_Internal_Sym *sym)
3c3bdf30
NC
1771{
1772 if (h != NULL)
07adf181
AM
1773 switch (ELF64_R_TYPE (rel->r_info))
1774 {
1775 case R_MMIX_GNU_VTINHERIT:
1776 case R_MMIX_GNU_VTENTRY:
1777 return NULL;
1778 }
3c3bdf30 1779
07adf181 1780 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
3c3bdf30 1781}
e06fcc86 1782\f
3c3bdf30
NC
1783/* Sort register relocs to come before expanding relocs. */
1784
1785static int
2c3fc389 1786mmix_elf_sort_relocs (const void * p1, const void * p2)
3c3bdf30
NC
1787{
1788 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1789 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1790 int r1_is_reg, r2_is_reg;
1791
1792 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1793 insns. */
1794 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1795 return 1;
1796 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1797 return -1;
1798
1799 r1_is_reg
1800 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1801 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1802 r2_is_reg
1803 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1804 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1805 if (r1_is_reg != r2_is_reg)
1806 return r2_is_reg - r1_is_reg;
1807
1808 /* Neither or both are register relocs. Then sort on full offset. */
1809 if (r1->r_offset > r2->r_offset)
1810 return 1;
1811 else if (r1->r_offset < r2->r_offset)
1812 return -1;
1813 return 0;
1814}
1815
930b4cb2
HPN
1816/* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1817
b34976b6 1818static bfd_boolean
2c3fc389
NC
1819mmix_elf_check_common_relocs (bfd *abfd,
1820 struct bfd_link_info *info,
1821 asection *sec,
1822 const Elf_Internal_Rela *relocs)
930b4cb2
HPN
1823{
1824 bfd *bpo_greg_owner = NULL;
1825 asection *allocated_gregs_section = NULL;
1826 struct bpo_greg_section_info *gregdata = NULL;
1827 struct bpo_reloc_section_info *bpodata = NULL;
1828 const Elf_Internal_Rela *rel;
1829 const Elf_Internal_Rela *rel_end;
1830
930b4cb2
HPN
1831 /* We currently have to abuse this COFF-specific member, since there's
1832 no target-machine-dedicated member. There's no alternative outside
1833 the bfd_link_info struct; we can't specialize a hash-table since
1834 they're different between ELF and mmo. */
1835 bpo_greg_owner = (bfd *) info->base_file;
1836
1837 rel_end = relocs + sec->reloc_count;
1838 for (rel = relocs; rel < rel_end; rel++)
1839 {
1840 switch (ELF64_R_TYPE (rel->r_info))
07d6d2b8 1841 {
930b4cb2
HPN
1842 /* This relocation causes a GREG allocation. We need to count
1843 them, and we need to create a section for them, so we need an
1844 object to fake as the owner of that section. We can't use
1845 the ELF dynobj for this, since the ELF bits assume lots of
1846 DSO-related stuff if that member is non-NULL. */
1847 case R_MMIX_BASE_PLUS_OFFSET:
f60ebe14 1848 /* We don't do anything with this reloc for a relocatable link. */
0e1862bb 1849 if (bfd_link_relocatable (info))
f60ebe14
HPN
1850 break;
1851
930b4cb2
HPN
1852 if (bpo_greg_owner == NULL)
1853 {
1854 bpo_greg_owner = abfd;
2c3fc389 1855 info->base_file = bpo_greg_owner;
930b4cb2
HPN
1856 }
1857
4fa5c2a8
HPN
1858 if (allocated_gregs_section == NULL)
1859 allocated_gregs_section
1860 = bfd_get_section_by_name (bpo_greg_owner,
1861 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1862
930b4cb2
HPN
1863 if (allocated_gregs_section == NULL)
1864 {
1865 allocated_gregs_section
3496cb2a
L
1866 = bfd_make_section_with_flags (bpo_greg_owner,
1867 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1868 (SEC_HAS_CONTENTS
1869 | SEC_IN_MEMORY
1870 | SEC_LINKER_CREATED));
930b4cb2
HPN
1871 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1872 treated like any other section, and we'd get errors for
1873 address overlap with the text section. Let's set none of
1874 those flags, as that is what currently happens for usual
1875 GREG allocations, and that works. */
1876 if (allocated_gregs_section == NULL
fd361982 1877 || !bfd_set_section_alignment (allocated_gregs_section, 3))
b34976b6 1878 return FALSE;
930b4cb2
HPN
1879
1880 gregdata = (struct bpo_greg_section_info *)
1881 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1882 if (gregdata == NULL)
b34976b6 1883 return FALSE;
f0abc2a1
AM
1884 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1885 = gregdata;
930b4cb2
HPN
1886 }
1887 else if (gregdata == NULL)
f0abc2a1
AM
1888 gregdata
1889 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
930b4cb2
HPN
1890
1891 /* Get ourselves some auxiliary info for the BPO-relocs. */
1892 if (bpodata == NULL)
1893 {
1894 /* No use doing a separate iteration pass to find the upper
1895 limit - just use the number of relocs. */
1896 bpodata = (struct bpo_reloc_section_info *)
1897 bfd_alloc (bpo_greg_owner,
1898 sizeof (struct bpo_reloc_section_info)
1899 * (sec->reloc_count + 1));
1900 if (bpodata == NULL)
b34976b6 1901 return FALSE;
f0abc2a1 1902 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
930b4cb2
HPN
1903 bpodata->first_base_plus_offset_reloc
1904 = bpodata->bpo_index
1905 = gregdata->n_max_bpo_relocs;
1906 bpodata->bpo_greg_section
1907 = allocated_gregs_section;
4fa5c2a8 1908 bpodata->n_bpo_relocs_this_section = 0;
930b4cb2
HPN
1909 }
1910
1911 bpodata->n_bpo_relocs_this_section++;
1912 gregdata->n_max_bpo_relocs++;
1913
1914 /* We don't get another chance to set this before GC; we've not
f60ebe14 1915 set up any hook that runs before GC. */
930b4cb2
HPN
1916 gregdata->n_bpo_relocs
1917 = gregdata->n_max_bpo_relocs;
1918 break;
f60ebe14
HPN
1919
1920 case R_MMIX_PUSHJ_STUBBABLE:
1921 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1922 break;
930b4cb2
HPN
1923 }
1924 }
1925
f60ebe14
HPN
1926 /* Allocate per-reloc stub storage and initialize it to the max stub
1927 size. */
1928 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1929 {
1930 size_t i;
1931
1932 mmix_elf_section_data (sec)->pjs.stub_size
1933 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1934 * sizeof (mmix_elf_section_data (sec)
1935 ->pjs.stub_size[0]));
1936 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1937 return FALSE;
1938
1939 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1940 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1941 }
1942
b34976b6 1943 return TRUE;
930b4cb2
HPN
1944}
1945
3c3bdf30
NC
1946/* Look through the relocs for a section during the first phase. */
1947
b34976b6 1948static bfd_boolean
2c3fc389
NC
1949mmix_elf_check_relocs (bfd *abfd,
1950 struct bfd_link_info *info,
1951 asection *sec,
1952 const Elf_Internal_Rela *relocs)
3c3bdf30
NC
1953{
1954 Elf_Internal_Shdr *symtab_hdr;
5582a088 1955 struct elf_link_hash_entry **sym_hashes;
3c3bdf30
NC
1956 const Elf_Internal_Rela *rel;
1957 const Elf_Internal_Rela *rel_end;
1958
3c3bdf30
NC
1959 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1960 sym_hashes = elf_sym_hashes (abfd);
3c3bdf30
NC
1961
1962 /* First we sort the relocs so that any register relocs come before
1963 expansion-relocs to the same insn. FIXME: Not done for mmo. */
2c3fc389 1964 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
3c3bdf30
NC
1965 mmix_elf_sort_relocs);
1966
930b4cb2
HPN
1967 /* Do the common part. */
1968 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
b34976b6 1969 return FALSE;
930b4cb2 1970
0e1862bb 1971 if (bfd_link_relocatable (info))
f60ebe14
HPN
1972 return TRUE;
1973
3c3bdf30
NC
1974 rel_end = relocs + sec->reloc_count;
1975 for (rel = relocs; rel < rel_end; rel++)
1976 {
1977 struct elf_link_hash_entry *h;
1978 unsigned long r_symndx;
1979
1980 r_symndx = ELF64_R_SYM (rel->r_info);
1981 if (r_symndx < symtab_hdr->sh_info)
07d6d2b8 1982 h = NULL;
3c3bdf30 1983 else
973a3492
L
1984 {
1985 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1986 while (h->root.type == bfd_link_hash_indirect
1987 || h->root.type == bfd_link_hash_warning)
1988 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1989 }
3c3bdf30
NC
1990
1991 switch (ELF64_R_TYPE (rel->r_info))
930b4cb2 1992 {
07d6d2b8
AM
1993 /* This relocation describes the C++ object vtable hierarchy.
1994 Reconstruct it for later use during GC. */
1995 case R_MMIX_GNU_VTINHERIT:
1996 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1997 return FALSE;
1998 break;
1999
2000 /* This relocation describes which C++ vtable entries are actually
2001 used. Record for later use during GC. */
2002 case R_MMIX_GNU_VTENTRY:
a0ea3a14 2003 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
07d6d2b8
AM
2004 return FALSE;
2005 break;
930b4cb2
HPN
2006 }
2007 }
2008
b34976b6 2009 return TRUE;
930b4cb2
HPN
2010}
2011
2012/* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2013 Copied from elf_link_add_object_symbols. */
2014
b34976b6 2015bfd_boolean
2c3fc389 2016_bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
930b4cb2
HPN
2017{
2018 asection *o;
2019
2020 for (o = abfd->sections; o != NULL; o = o->next)
2021 {
2022 Elf_Internal_Rela *internal_relocs;
b34976b6 2023 bfd_boolean ok;
930b4cb2
HPN
2024
2025 if ((o->flags & SEC_RELOC) == 0
2026 || o->reloc_count == 0
2027 || ((info->strip == strip_all || info->strip == strip_debugger)
2028 && (o->flags & SEC_DEBUGGING) != 0)
2029 || bfd_is_abs_section (o->output_section))
2030 continue;
2031
2032 internal_relocs
2c3fc389 2033 = _bfd_elf_link_read_relocs (abfd, o, NULL,
45d6a902
AM
2034 (Elf_Internal_Rela *) NULL,
2035 info->keep_memory);
930b4cb2 2036 if (internal_relocs == NULL)
b34976b6 2037 return FALSE;
930b4cb2
HPN
2038
2039 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2040
2041 if (! info->keep_memory)
2042 free (internal_relocs);
2043
2044 if (! ok)
b34976b6 2045 return FALSE;
3c3bdf30
NC
2046 }
2047
b34976b6 2048 return TRUE;
3c3bdf30 2049}
e06fcc86 2050\f
3c3bdf30
NC
2051/* Change symbols relative to the reg contents section to instead be to
2052 the register section, and scale them down to correspond to the register
2053 number. */
2054
6e0b88f1 2055static int
2c3fc389
NC
2056mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2057 const char *name ATTRIBUTE_UNUSED,
2058 Elf_Internal_Sym *sym,
2059 asection *input_sec,
2060 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
3c3bdf30
NC
2061{
2062 if (input_sec != NULL
2063 && input_sec->name != NULL
2064 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2065 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2066 {
2067 sym->st_value /= 8;
2068 sym->st_shndx = SHN_REGISTER;
2069 }
2070
6e0b88f1 2071 return 1;
3c3bdf30
NC
2072}
2073
2074/* We fake a register section that holds values that are register numbers.
2075 Having a SHN_REGISTER and register section translates better to other
2076 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2077 This section faking is based on a construct in elf32-mips.c. */
2078static asection mmix_elf_reg_section;
2079static asymbol mmix_elf_reg_section_symbol;
2080static asymbol *mmix_elf_reg_section_symbol_ptr;
2081
f60ebe14 2082/* Handle the special section numbers that a symbol may use. */
3c3bdf30
NC
2083
2084void
e6c7cdec 2085mmix_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
3c3bdf30
NC
2086{
2087 elf_symbol_type *elfsym;
2088
2089 elfsym = (elf_symbol_type *) asym;
2090 switch (elfsym->internal_elf_sym.st_shndx)
2091 {
2092 case SHN_REGISTER:
2093 if (mmix_elf_reg_section.name == NULL)
2094 {
2095 /* Initialize the register section. */
2096 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2097 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2098 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2099 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2100 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2101 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2102 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2103 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2104 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2105 }
2106 asym->section = &mmix_elf_reg_section;
2107 break;
2108
2109 default:
2110 break;
2111 }
2112}
2113
2114/* Given a BFD section, try to locate the corresponding ELF section
2115 index. */
2116
b34976b6 2117static bfd_boolean
2c3fc389
NC
2118mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED,
2119 asection * sec,
2120 int * retval)
3c3bdf30 2121{
fd361982 2122 if (strcmp (bfd_section_name (sec), MMIX_REG_SECTION_NAME) == 0)
3c3bdf30
NC
2123 *retval = SHN_REGISTER;
2124 else
b34976b6 2125 return FALSE;
3c3bdf30 2126
b34976b6 2127 return TRUE;
3c3bdf30
NC
2128}
2129
2130/* Hook called by the linker routine which adds symbols from an object
2131 file. We must handle the special SHN_REGISTER section number here.
2132
2133 We also check that we only have *one* each of the section-start
2134 symbols, since otherwise having two with the same value would cause
2135 them to be "merged", but with the contents serialized. */
2136
2c3fc389
NC
2137static bfd_boolean
2138mmix_elf_add_symbol_hook (bfd *abfd,
2139 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2140 Elf_Internal_Sym *sym,
2141 const char **namep ATTRIBUTE_UNUSED,
2142 flagword *flagsp ATTRIBUTE_UNUSED,
2143 asection **secp,
2144 bfd_vma *valp ATTRIBUTE_UNUSED)
3c3bdf30
NC
2145{
2146 if (sym->st_shndx == SHN_REGISTER)
46fda84e
AM
2147 {
2148 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2149 (*secp)->flags |= SEC_LINKER_CREATED;
2150 }
3c3bdf30 2151 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
0112cd26 2152 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
3c3bdf30
NC
2153 {
2154 /* See if we have another one. */
4ab82700
AM
2155 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2156 *namep,
b34976b6
AM
2157 FALSE,
2158 FALSE,
2159 FALSE);
3c3bdf30 2160
4ab82700 2161 if (h != NULL && h->type != bfd_link_hash_undefined)
3c3bdf30
NC
2162 {
2163 /* How do we get the asymbol (or really: the filename) from h?
4ab82700 2164 h->u.def.section->owner is NULL. */
4eca0228 2165 _bfd_error_handler
695344c0 2166 /* xgettext:c-format */
38f14ab8
AM
2167 (_("%pB: error: multiple definition of `%s'; start of %s "
2168 "is set in a earlier linked file"),
dae82561 2169 abfd, *namep,
4eca0228 2170 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX));
3c3bdf30 2171 bfd_set_error (bfd_error_bad_value);
b34976b6 2172 return FALSE;
3c3bdf30
NC
2173 }
2174 }
2175
b34976b6 2176 return TRUE;
3c3bdf30
NC
2177}
2178
2179/* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2180
2c3fc389
NC
2181static bfd_boolean
2182mmix_elf_is_local_label_name (bfd *abfd, const char *name)
3c3bdf30
NC
2183{
2184 const char *colpos;
2185 int digits;
2186
2187 /* Also include the default local-label definition. */
2188 if (_bfd_elf_is_local_label_name (abfd, name))
b34976b6 2189 return TRUE;
3c3bdf30
NC
2190
2191 if (*name != 'L')
b34976b6 2192 return FALSE;
3c3bdf30
NC
2193
2194 /* If there's no ":", or more than one, it's not a local symbol. */
2195 colpos = strchr (name, ':');
2196 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
b34976b6 2197 return FALSE;
3c3bdf30
NC
2198
2199 /* Check that there are remaining characters and that they are digits. */
2200 if (colpos[1] == 0)
b34976b6 2201 return FALSE;
3c3bdf30
NC
2202
2203 digits = strspn (colpos + 1, "0123456789");
2204 return digits != 0 && colpos[1 + digits] == 0;
2205}
2206
2207/* We get rid of the register section here. */
2208
b34976b6 2209bfd_boolean
2c3fc389 2210mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
3c3bdf30
NC
2211{
2212 /* We never output a register section, though we create one for
2213 temporary measures. Check that nobody entered contents into it. */
2214 asection *reg_section;
3c3bdf30
NC
2215
2216 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2217
2218 if (reg_section != NULL)
2219 {
2220 /* FIXME: Pass error state gracefully. */
fd361982 2221 if (bfd_section_flags (reg_section) & SEC_HAS_CONTENTS)
38f14ab8 2222 _bfd_abort (__FILE__, __LINE__, _("register section has contents\n"));
3c3bdf30 2223
46fda84e
AM
2224 /* Really remove the section, if it hasn't already been done. */
2225 if (!bfd_section_removed_from_list (abfd, reg_section))
2226 {
2227 bfd_section_list_remove (abfd, reg_section);
2228 --abfd->section_count;
2229 }
3c3bdf30
NC
2230 }
2231
c152c796 2232 if (! bfd_elf_final_link (abfd, info))
b34976b6 2233 return FALSE;
3c3bdf30 2234
930b4cb2
HPN
2235 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2236 the regular linker machinery. We do it here, like other targets with
2237 special sections. */
2238 if (info->base_file != NULL)
2239 {
2240 asection *greg_section
2241 = bfd_get_section_by_name ((bfd *) info->base_file,
2242 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2243 if (!bfd_set_section_contents (abfd,
2244 greg_section->output_section,
2245 greg_section->contents,
2246 (file_ptr) greg_section->output_offset,
eea6121a 2247 greg_section->size))
b34976b6 2248 return FALSE;
930b4cb2 2249 }
b34976b6 2250 return TRUE;
930b4cb2
HPN
2251}
2252
f60ebe14 2253/* We need to include the maximum size of PUSHJ-stubs in the initial
eea6121a 2254 section size. This is expected to shrink during linker relaxation. */
f60ebe14
HPN
2255
2256static void
2c3fc389
NC
2257mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2258 asection *sec,
2259 void *ptr)
f60ebe14
HPN
2260{
2261 struct bfd_link_info *info = ptr;
2262
2263 /* Make sure we only do this for section where we know we want this,
2264 otherwise we might end up resetting the size of COMMONs. */
2265 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2266 return;
2267
1a23a9e6 2268 sec->rawsize = sec->size;
eea6121a
AM
2269 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2270 * MAX_PUSHJ_STUB_SIZE);
f60ebe14
HPN
2271
2272 /* For use in relocatable link, we start with a max stubs size. See
2273 mmix_elf_relax_section. */
0e1862bb 2274 if (bfd_link_relocatable (info) && sec->output_section)
f60ebe14
HPN
2275 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2276 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2277 * MAX_PUSHJ_STUB_SIZE);
2278}
2279
930b4cb2
HPN
2280/* Initialize stuff for the linker-generated GREGs to match
2281 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2282
b34976b6 2283bfd_boolean
2c3fc389
NC
2284_bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2285 struct bfd_link_info *info)
930b4cb2
HPN
2286{
2287 asection *bpo_gregs_section;
2288 bfd *bpo_greg_owner;
2289 struct bpo_greg_section_info *gregdata;
2290 size_t n_gregs;
2291 bfd_vma gregs_size;
2292 size_t i;
2293 size_t *bpo_reloc_indexes;
f60ebe14
HPN
2294 bfd *ibfd;
2295
2296 /* Set the initial size of sections. */
c72f2fb2 2297 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
f60ebe14 2298 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
930b4cb2
HPN
2299
2300 /* The bpo_greg_owner bfd is supposed to have been set by
2301 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2302 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2303 bpo_greg_owner = (bfd *) info->base_file;
2304 if (bpo_greg_owner == NULL)
b34976b6 2305 return TRUE;
930b4cb2
HPN
2306
2307 bpo_gregs_section
2308 = bfd_get_section_by_name (bpo_greg_owner,
2309 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2310
930b4cb2 2311 if (bpo_gregs_section == NULL)
b34976b6 2312 return TRUE;
930b4cb2
HPN
2313
2314 /* We use the target-data handle in the ELF section data. */
f0abc2a1 2315 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
930b4cb2 2316 if (gregdata == NULL)
b34976b6 2317 return FALSE;
930b4cb2
HPN
2318
2319 n_gregs = gregdata->n_bpo_relocs;
2320 gregdata->n_allocated_bpo_gregs = n_gregs;
2321
2322 /* When this reaches zero during relaxation, all entries have been
2323 filled in and the size of the linker gregs can be calculated. */
2324 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2325
2326 /* Set the zeroth-order estimate for the GREGs size. */
2327 gregs_size = n_gregs * 8;
2328
fd361982 2329 if (!bfd_set_section_size (bpo_gregs_section, gregs_size))
b34976b6 2330 return FALSE;
930b4cb2
HPN
2331
2332 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2333 time. Note that we must use the max number ever noted for the array,
2334 since the index numbers were created before GC. */
2335 gregdata->reloc_request
2336 = bfd_zalloc (bpo_greg_owner,
2337 sizeof (struct bpo_reloc_request)
2338 * gregdata->n_max_bpo_relocs);
2339
2340 gregdata->bpo_reloc_indexes
2341 = bpo_reloc_indexes
2342 = bfd_alloc (bpo_greg_owner,
2343 gregdata->n_max_bpo_relocs
2344 * sizeof (size_t));
2345 if (bpo_reloc_indexes == NULL)
b34976b6 2346 return FALSE;
930b4cb2
HPN
2347
2348 /* The default order is an identity mapping. */
2349 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2350 {
2351 bpo_reloc_indexes[i] = i;
2352 gregdata->reloc_request[i].bpo_reloc_no = i;
2353 }
2354
b34976b6 2355 return TRUE;
3c3bdf30 2356}
e06fcc86 2357\f
930b4cb2
HPN
2358/* Fill in contents in the linker allocated gregs. Everything is
2359 calculated at this point; we just move the contents into place here. */
2360
b34976b6 2361bfd_boolean
2c3fc389
NC
2362_bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2363 struct bfd_link_info *link_info)
930b4cb2
HPN
2364{
2365 asection *bpo_gregs_section;
2366 bfd *bpo_greg_owner;
2367 struct bpo_greg_section_info *gregdata;
2368 size_t n_gregs;
2369 size_t i, j;
2370 size_t lastreg;
2371 bfd_byte *contents;
2372
2373 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2374 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2375 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2376 bpo_greg_owner = (bfd *) link_info->base_file;
2377 if (bpo_greg_owner == NULL)
b34976b6 2378 return TRUE;
930b4cb2
HPN
2379
2380 bpo_gregs_section
2381 = bfd_get_section_by_name (bpo_greg_owner,
2382 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2383
2384 /* This can't happen without DSO handling. When DSOs are handled
2385 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2386 section. */
2387 if (bpo_gregs_section == NULL)
b34976b6 2388 return TRUE;
930b4cb2
HPN
2389
2390 /* We use the target-data handle in the ELF section data. */
2391
f0abc2a1 2392 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
930b4cb2 2393 if (gregdata == NULL)
b34976b6 2394 return FALSE;
930b4cb2
HPN
2395
2396 n_gregs = gregdata->n_allocated_bpo_gregs;
2397
2398 bpo_gregs_section->contents
eea6121a 2399 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
930b4cb2 2400 if (contents == NULL)
b34976b6 2401 return FALSE;
930b4cb2 2402
7e799044
HPN
2403 /* Sanity check: If these numbers mismatch, some relocation has not been
2404 accounted for and the rest of gregdata is probably inconsistent.
2405 It's a bug, but it's more helpful to identify it than segfaulting
2406 below. */
2407 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2408 != gregdata->n_bpo_relocs)
2409 {
4eca0228 2410 _bfd_error_handler
695344c0 2411 /* xgettext:c-format */
38f14ab8
AM
2412 (_("internal inconsistency: remaining %lu != max %lu;"
2413 " please report this bug"),
d42c267e
AM
2414 (unsigned long) gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2415 (unsigned long) gregdata->n_bpo_relocs);
b34976b6 2416 return FALSE;
7e799044
HPN
2417 }
2418
930b4cb2
HPN
2419 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2420 if (gregdata->reloc_request[i].regindex != lastreg)
2421 {
2422 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2423 contents + j * 8);
2424 lastreg = gregdata->reloc_request[i].regindex;
2425 j++;
2426 }
2427
b34976b6 2428 return TRUE;
930b4cb2
HPN
2429}
2430
2431/* Sort valid relocs to come before non-valid relocs, then on increasing
2432 value. */
2433
2434static int
2c3fc389 2435bpo_reloc_request_sort_fn (const void * p1, const void * p2)
930b4cb2
HPN
2436{
2437 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2438 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2439
2440 /* Primary function is validity; non-valid relocs sorted after valid
2441 ones. */
2442 if (r1->valid != r2->valid)
2443 return r2->valid - r1->valid;
2444
4fa5c2a8
HPN
2445 /* Then sort on value. Don't simplify and return just the difference of
2446 the values: the upper bits of the 64-bit value would be truncated on
2447 a host with 32-bit ints. */
930b4cb2 2448 if (r1->value != r2->value)
4fa5c2a8 2449 return r1->value > r2->value ? 1 : -1;
930b4cb2 2450
dfbbae4c
HPN
2451 /* As a last re-sort, use the relocation number, so we get a stable
2452 sort. The *addresses* aren't stable since items are swapped during
2453 sorting. It depends on the qsort implementation if this actually
2454 happens. */
2455 return r1->bpo_reloc_no > r2->bpo_reloc_no
2456 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
930b4cb2
HPN
2457}
2458
4fa5c2a8
HPN
2459/* For debug use only. Dumps the global register allocations resulting
2460 from base-plus-offset relocs. */
2461
2462void
e6c7cdec 2463mmix_dump_bpo_gregs (struct bfd_link_info *link_info,
52d45da3 2464 void (*pf) (const char *fmt, ...))
4fa5c2a8
HPN
2465{
2466 bfd *bpo_greg_owner;
2467 asection *bpo_gregs_section;
2468 struct bpo_greg_section_info *gregdata;
2469 unsigned int i;
2470
2471 if (link_info == NULL || link_info->base_file == NULL)
2472 return;
2473
2474 bpo_greg_owner = (bfd *) link_info->base_file;
2475
2476 bpo_gregs_section
2477 = bfd_get_section_by_name (bpo_greg_owner,
2478 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2479
2480 if (bpo_gregs_section == NULL)
2481 return;
2482
f0abc2a1 2483 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
4fa5c2a8
HPN
2484 if (gregdata == NULL)
2485 return;
2486
2487 if (pf == NULL)
2488 pf = _bfd_error_handler;
2489
2490 /* These format strings are not translated. They are for debug purposes
2491 only and never displayed to an end user. Should they escape, we
2492 surely want them in original. */
2493 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2494 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2495 gregdata->n_max_bpo_relocs,
2496 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2497 gregdata->n_allocated_bpo_gregs);
2498
2499 if (gregdata->reloc_request)
2500 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2501 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2502 i,
cf3d882d
AM
2503 (gregdata->bpo_reloc_indexes != NULL
2504 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
4fa5c2a8
HPN
2505 gregdata->reloc_request[i].bpo_reloc_no,
2506 gregdata->reloc_request[i].valid,
2507
2508 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2509 (unsigned long) gregdata->reloc_request[i].value,
2510 gregdata->reloc_request[i].regindex,
2511 gregdata->reloc_request[i].offset);
2512}
2513
930b4cb2
HPN
2514/* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2515 when the last such reloc is done, an index-array is sorted according to
2516 the values and iterated over to produce register numbers (indexed by 0
2517 from the first allocated register number) and offsets for use in real
80f540b7 2518 relocation. (N.B.: Relocatable runs are handled, not just punted.)
930b4cb2 2519
f60ebe14
HPN
2520 PUSHJ stub accounting is also done here.
2521
930b4cb2
HPN
2522 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2523
b34976b6 2524static bfd_boolean
2c3fc389
NC
2525mmix_elf_relax_section (bfd *abfd,
2526 asection *sec,
2527 struct bfd_link_info *link_info,
2528 bfd_boolean *again)
930b4cb2 2529{
930b4cb2 2530 Elf_Internal_Shdr *symtab_hdr;
930b4cb2 2531 Elf_Internal_Rela *internal_relocs;
930b4cb2
HPN
2532 Elf_Internal_Rela *irel, *irelend;
2533 asection *bpo_gregs_section = NULL;
2534 struct bpo_greg_section_info *gregdata;
2535 struct bpo_reloc_section_info *bpodata
f0abc2a1 2536 = mmix_elf_section_data (sec)->bpo.reloc;
f60ebe14
HPN
2537 /* The initialization is to quiet compiler warnings. The value is to
2538 spot a missing actual initialization. */
2539 size_t bpono = (size_t) -1;
2540 size_t pjsno = 0;
6cdc0ccc 2541 Elf_Internal_Sym *isymbuf = NULL;
1a23a9e6 2542 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
f60ebe14
HPN
2543
2544 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
930b4cb2
HPN
2545
2546 /* Assume nothing changes. */
b34976b6 2547 *again = FALSE;
930b4cb2 2548
f60ebe14
HPN
2549 /* We don't have to do anything if this section does not have relocs, or
2550 if this is not a code section. */
2551 if ((sec->flags & SEC_RELOC) == 0
930b4cb2
HPN
2552 || sec->reloc_count == 0
2553 || (sec->flags & SEC_CODE) == 0
2554 || (sec->flags & SEC_LINKER_CREATED) != 0
f60ebe14 2555 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
07d6d2b8 2556 then nothing to do. */
f60ebe14
HPN
2557 || (bpodata == NULL
2558 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
b34976b6 2559 return TRUE;
930b4cb2
HPN
2560
2561 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
930b4cb2 2562
f60ebe14
HPN
2563 if (bpodata != NULL)
2564 {
2565 bpo_gregs_section = bpodata->bpo_greg_section;
2566 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2567 bpono = bpodata->first_base_plus_offset_reloc;
2568 }
2569 else
2570 gregdata = NULL;
930b4cb2
HPN
2571
2572 /* Get a copy of the native relocations. */
2573 internal_relocs
2c3fc389 2574 = _bfd_elf_link_read_relocs (abfd, sec, NULL,
45d6a902
AM
2575 (Elf_Internal_Rela *) NULL,
2576 link_info->keep_memory);
930b4cb2
HPN
2577 if (internal_relocs == NULL)
2578 goto error_return;
930b4cb2
HPN
2579
2580 /* Walk through them looking for relaxing opportunities. */
2581 irelend = internal_relocs + sec->reloc_count;
2582 for (irel = internal_relocs; irel < irelend; irel++)
2583 {
2584 bfd_vma symval;
f60ebe14 2585 struct elf_link_hash_entry *h = NULL;
930b4cb2 2586
f60ebe14
HPN
2587 /* We only process two relocs. */
2588 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2589 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
930b4cb2
HPN
2590 continue;
2591
f60ebe14
HPN
2592 /* We process relocs in a distinctly different way when this is a
2593 relocatable link (for one, we don't look at symbols), so we avoid
2594 mixing its code with that for the "normal" relaxation. */
0e1862bb 2595 if (bfd_link_relocatable (link_info))
f60ebe14
HPN
2596 {
2597 /* The only transformation in a relocatable link is to generate
2598 a full stub at the location of the stub calculated for the
2599 input section, if the relocated stub location, the end of the
2600 output section plus earlier stubs, cannot be reached. Thus
2601 relocatable linking can only lead to worse code, but it still
2602 works. */
2603 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2604 {
2605 /* If we can reach the end of the output-section and beyond
2606 any current stubs, then we don't need a stub for this
2607 reloc. The relaxed order of output stub allocation may
2608 not exactly match the straightforward order, so we always
2609 assume presence of output stubs, which will allow
2610 relaxation only on relocations indifferent to the
2611 presence of output stub allocations for other relocations
2612 and thus the order of output stub allocation. */
2613 if (bfd_check_overflow (complain_overflow_signed,
2614 19,
2615 0,
2616 bfd_arch_bits_per_address (abfd),
2617 /* Output-stub location. */
1a23a9e6 2618 sec->output_section->rawsize
f60ebe14
HPN
2619 + (mmix_elf_section_data (sec
2620 ->output_section)
2621 ->pjs.stubs_size_sum)
2622 /* Location of this PUSHJ reloc. */
2623 - (sec->output_offset + irel->r_offset)
2624 /* Don't count *this* stub twice. */
2625 - (mmix_elf_section_data (sec)
2626 ->pjs.stub_size[pjsno]
2627 + MAX_PUSHJ_STUB_SIZE))
2628 == bfd_reloc_ok)
2629 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2630
2631 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2632 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2633
2634 pjsno++;
2635 }
2636
2637 continue;
2638 }
2639
930b4cb2
HPN
2640 /* Get the value of the symbol referred to by the reloc. */
2641 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2642 {
2643 /* A local symbol. */
6cdc0ccc 2644 Elf_Internal_Sym *isym;
930b4cb2
HPN
2645 asection *sym_sec;
2646
6cdc0ccc
AM
2647 /* Read this BFD's local symbols if we haven't already. */
2648 if (isymbuf == NULL)
2649 {
2650 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2651 if (isymbuf == NULL)
2652 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2653 symtab_hdr->sh_info, 0,
2654 NULL, NULL, NULL);
2655 if (isymbuf == 0)
2656 goto error_return;
2657 }
930b4cb2 2658
6cdc0ccc
AM
2659 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2660 if (isym->st_shndx == SHN_UNDEF)
930b4cb2 2661 sym_sec = bfd_und_section_ptr;
6cdc0ccc 2662 else if (isym->st_shndx == SHN_ABS)
930b4cb2 2663 sym_sec = bfd_abs_section_ptr;
6cdc0ccc 2664 else if (isym->st_shndx == SHN_COMMON)
930b4cb2
HPN
2665 sym_sec = bfd_com_section_ptr;
2666 else
6cdc0ccc
AM
2667 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2668 symval = (isym->st_value
930b4cb2
HPN
2669 + sym_sec->output_section->vma
2670 + sym_sec->output_offset);
2671 }
2672 else
2673 {
2674 unsigned long indx;
930b4cb2
HPN
2675
2676 /* An external symbol. */
2677 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2678 h = elf_sym_hashes (abfd)[indx];
2679 BFD_ASSERT (h != NULL);
284d826d
HPN
2680 if (h->root.type == bfd_link_hash_undefweak)
2681 /* FIXME: for R_MMIX_PUSHJ_STUBBABLE, there are alternatives to
2682 the canonical value 0 for an unresolved weak symbol to
2683 consider: as the debug-friendly approach, resolve to "abort"
2684 (or a port-specific function), or as the space-friendly
2685 approach resolve to the next instruction (like some other
2686 ports, notably ARM and AArch64). These alternatives require
2687 matching code in mmix_elf_perform_relocation or its caller. */
2688 symval = 0;
2689 else if (h->root.type == bfd_link_hash_defined
2690 || h->root.type == bfd_link_hash_defweak)
2691 symval = (h->root.u.def.value
2692 + h->root.u.def.section->output_section->vma
2693 + h->root.u.def.section->output_offset);
2694 else
930b4cb2 2695 {
f60ebe14
HPN
2696 /* This appears to be a reference to an undefined symbol. Just
2697 ignore it--it will be caught by the regular reloc processing.
2698 We need to keep BPO reloc accounting consistent, though
2699 else we'll abort instead of emitting an error message. */
2700 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2701 && gregdata != NULL)
2702 {
2703 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2704 bpono++;
2705 }
930b4cb2
HPN
2706 continue;
2707 }
930b4cb2
HPN
2708 }
2709
f60ebe14
HPN
2710 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2711 {
2712 bfd_vma value = symval + irel->r_addend;
2713 bfd_vma dot
2714 = (sec->output_section->vma
2715 + sec->output_offset
2716 + irel->r_offset);
2717 bfd_vma stubaddr
2718 = (sec->output_section->vma
2719 + sec->output_offset
eea6121a 2720 + size
f60ebe14
HPN
2721 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2722
2723 if ((value & 3) == 0
2724 && bfd_check_overflow (complain_overflow_signed,
2725 19,
2726 0,
2727 bfd_arch_bits_per_address (abfd),
2728 value - dot
2729 - (value > dot
2730 ? mmix_elf_section_data (sec)
2731 ->pjs.stub_size[pjsno]
2732 : 0))
2733 == bfd_reloc_ok)
2734 /* If the reloc fits, no stub is needed. */
2735 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2736 else
2737 /* Maybe we can get away with just a JMP insn? */
2738 if ((value & 3) == 0
2739 && bfd_check_overflow (complain_overflow_signed,
2740 27,
2741 0,
2742 bfd_arch_bits_per_address (abfd),
2743 value - stubaddr
2744 - (value > dot
2745 ? mmix_elf_section_data (sec)
2746 ->pjs.stub_size[pjsno] - 4
2747 : 0))
2748 == bfd_reloc_ok)
2749 /* Yep, account for a stub consisting of a single JMP insn. */
2750 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2751 else
2752 /* Nope, go for the full insn stub. It doesn't seem useful to
2753 emit the intermediate sizes; those will only be useful for
2754 a >64M program assuming contiguous code. */
2755 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2756 = MAX_PUSHJ_STUB_SIZE;
2757
2758 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2759 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2760 pjsno++;
2761 continue;
2762 }
2763
2764 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2765
930b4cb2
HPN
2766 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2767 = symval + irel->r_addend;
b34976b6 2768 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
930b4cb2
HPN
2769 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2770 }
2771
2772 /* Check if that was the last BPO-reloc. If so, sort the values and
2773 calculate how many registers we need to cover them. Set the size of
2774 the linker gregs, and if the number of registers changed, indicate
2775 that we need to relax some more because we have more work to do. */
f60ebe14
HPN
2776 if (gregdata != NULL
2777 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
930b4cb2
HPN
2778 {
2779 size_t i;
2780 bfd_vma prev_base;
2781 size_t regindex;
2782
2783 /* First, reset the remaining relocs for the next round. */
2784 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2785 = gregdata->n_bpo_relocs;
2786
2c3fc389 2787 qsort (gregdata->reloc_request,
930b4cb2
HPN
2788 gregdata->n_max_bpo_relocs,
2789 sizeof (struct bpo_reloc_request),
2790 bpo_reloc_request_sort_fn);
2791
2792 /* Recalculate indexes. When we find a change (however unlikely
2793 after the initial iteration), we know we need to relax again,
2794 since items in the GREG-array are sorted by increasing value and
2795 stored in the relaxation phase. */
2796 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2797 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2798 != i)
2799 {
2800 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2801 = i;
b34976b6 2802 *again = TRUE;
930b4cb2
HPN
2803 }
2804
2805 /* Allocate register numbers (indexing from 0). Stop at the first
2806 non-valid reloc. */
2807 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2808 i < gregdata->n_bpo_relocs;
2809 i++)
2810 {
2811 if (gregdata->reloc_request[i].value > prev_base + 255)
2812 {
2813 regindex++;
2814 prev_base = gregdata->reloc_request[i].value;
2815 }
2816 gregdata->reloc_request[i].regindex = regindex;
2817 gregdata->reloc_request[i].offset
2818 = gregdata->reloc_request[i].value - prev_base;
2819 }
2820
2821 /* If it's not the same as the last time, we need to relax again,
2822 because the size of the section has changed. I'm not sure we
2823 actually need to do any adjustments since the shrinking happens
2824 at the start of this section, but better safe than sorry. */
2825 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2826 {
2827 gregdata->n_allocated_bpo_gregs = regindex + 1;
b34976b6 2828 *again = TRUE;
930b4cb2
HPN
2829 }
2830
eea6121a 2831 bpo_gregs_section->size = (regindex + 1) * 8;
930b4cb2
HPN
2832 }
2833
6cdc0ccc 2834 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
930b4cb2
HPN
2835 {
2836 if (! link_info->keep_memory)
6cdc0ccc
AM
2837 free (isymbuf);
2838 else
930b4cb2 2839 {
6cdc0ccc
AM
2840 /* Cache the symbols for elf_link_input_bfd. */
2841 symtab_hdr->contents = (unsigned char *) isymbuf;
930b4cb2
HPN
2842 }
2843 }
2844
284d826d
HPN
2845 BFD_ASSERT(pjsno == mmix_elf_section_data (sec)->pjs.n_pushj_relocs);
2846
6cdc0ccc
AM
2847 if (internal_relocs != NULL
2848 && elf_section_data (sec)->relocs != internal_relocs)
2849 free (internal_relocs);
2850
eea6121a 2851 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
f60ebe14
HPN
2852 abort ();
2853
eea6121a 2854 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
f60ebe14 2855 {
eea6121a 2856 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
f60ebe14
HPN
2857 *again = TRUE;
2858 }
2859
b34976b6 2860 return TRUE;
930b4cb2
HPN
2861
2862 error_return:
6cdc0ccc
AM
2863 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2864 free (isymbuf);
2865 if (internal_relocs != NULL
2866 && elf_section_data (sec)->relocs != internal_relocs)
2867 free (internal_relocs);
b34976b6 2868 return FALSE;
930b4cb2
HPN
2869}
2870\f
3c3bdf30 2871#define ELF_ARCH bfd_arch_mmix
07d6d2b8 2872#define ELF_MACHINE_CODE EM_MMIX
3c3bdf30
NC
2873
2874/* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2875 However, that's too much for something somewhere in the linker part of
2876 BFD; perhaps the start-address has to be a non-zero multiple of this
2877 number, or larger than this number. The symptom is that the linker
2878 complains: "warning: allocated section `.text' not in segment". We
2879 settle for 64k; the page-size used in examples is 8k.
2880 #define ELF_MAXPAGESIZE 0x10000
2881
2882 Unfortunately, this causes excessive padding in the supposedly small
2883 for-education programs that are the expected usage (where people would
2884 inspect output). We stick to 256 bytes just to have *some* default
2885 alignment. */
2886#define ELF_MAXPAGESIZE 0x100
2887
6d00b590 2888#define TARGET_BIG_SYM mmix_elf64_vec
3c3bdf30
NC
2889#define TARGET_BIG_NAME "elf64-mmix"
2890
2891#define elf_info_to_howto_rel NULL
2892#define elf_info_to_howto mmix_info_to_howto_rela
2893#define elf_backend_relocate_section mmix_elf_relocate_section
2894#define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
930b4cb2 2895
3c3bdf30
NC
2896#define elf_backend_link_output_symbol_hook \
2897 mmix_elf_link_output_symbol_hook
2898#define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2899
2900#define elf_backend_check_relocs mmix_elf_check_relocs
2901#define elf_backend_symbol_processing mmix_elf_symbol_processing
d00dd7dc 2902#define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
3c3bdf30 2903
cd5b2bab
AM
2904#define bfd_elf64_bfd_copy_link_hash_symbol_type \
2905 _bfd_generic_copy_link_hash_symbol_type
2906
3c3bdf30
NC
2907#define bfd_elf64_bfd_is_local_label_name \
2908 mmix_elf_is_local_label_name
2909
2910#define elf_backend_may_use_rel_p 0
2911#define elf_backend_may_use_rela_p 1
2912#define elf_backend_default_use_rela_p 1
2913
2914#define elf_backend_can_gc_sections 1
2915#define elf_backend_section_from_bfd_section \
2916 mmix_elf_section_from_bfd_section
2917
f0abc2a1 2918#define bfd_elf64_new_section_hook mmix_elf_new_section_hook
3c3bdf30 2919#define bfd_elf64_bfd_final_link mmix_elf_final_link
930b4cb2 2920#define bfd_elf64_bfd_relax_section mmix_elf_relax_section
3c3bdf30
NC
2921
2922#include "elf64-target.h"
This page took 1.247169 seconds and 4 git commands to generate.