daily update
[deliverable/binutils-gdb.git] / bfd / elflink.c
CommitLineData
252b5132 1/* ELF linking support for BFD.
64d03ab5 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
9dbe8890
L
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
252b5132 5
8fdd7217 6 This file is part of BFD, the Binary File Descriptor library.
252b5132 7
8fdd7217
NC
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
cd123cb7 10 the Free Software Foundation; either version 3 of the License, or
8fdd7217 11 (at your option) any later version.
252b5132 12
8fdd7217
NC
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
252b5132 17
8fdd7217
NC
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
cd123cb7
NC
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
252b5132 22
252b5132 23#include "sysdep.h"
3db64b00 24#include "bfd.h"
252b5132
RH
25#include "bfdlink.h"
26#include "libbfd.h"
27#define ARCH_SIZE 0
28#include "elf-bfd.h"
4ad4eba5 29#include "safe-ctype.h"
ccf2f652 30#include "libiberty.h"
66eb6687 31#include "objalloc.h"
252b5132 32
28caa186
AM
33/* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36struct elf_info_failed
37{
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41};
42
43/* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46struct elf_find_verdep_info
47{
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54};
55
56static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
d98685ac
AM
59/* Define a symbol in a dynamic linkage section. */
60
61struct elf_link_hash_entry *
62_bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66{
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
ccabcbe5 69 const struct elf_backend_data *bed;
d98685ac
AM
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
ccabcbe5
AM
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
d98685ac
AM
94 return h;
95}
96
b34976b6 97bfd_boolean
268b6b39 98_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
99{
100 flagword flags;
aad5d350 101 asection *s;
252b5132 102 struct elf_link_hash_entry *h;
9c5bfbb7 103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
104 int ptralign;
105
106 /* This function may be called more than once. */
aad5d350
AM
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
b34976b6 109 return TRUE;
252b5132
RH
110
111 switch (bed->s->arch_size)
112 {
bb0deeff
AO
113 case 32:
114 ptralign = 2;
115 break;
116
117 case 64:
118 ptralign = 3;
119 break;
120
121 default:
122 bfd_set_error (bfd_error_bad_value);
b34976b6 123 return FALSE;
252b5132
RH
124 }
125
e5a52504 126 flags = bed->dynamic_sec_flags;
252b5132 127
3496cb2a 128 s = bfd_make_section_with_flags (abfd, ".got", flags);
252b5132 129 if (s == NULL
252b5132 130 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 131 return FALSE;
252b5132
RH
132
133 if (bed->want_got_plt)
134 {
3496cb2a 135 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
252b5132 136 if (s == NULL
252b5132 137 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 138 return FALSE;
252b5132
RH
139 }
140
2517a57f
AM
141 if (bed->want_got_sym)
142 {
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
d98685ac 147 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
2517a57f 148 elf_hash_table (info)->hgot = h;
d98685ac
AM
149 if (h == NULL)
150 return FALSE;
2517a57f 151 }
252b5132
RH
152
153 /* The first bit of the global offset table is the header. */
3b36f7e6 154 s->size += bed->got_header_size;
252b5132 155
b34976b6 156 return TRUE;
252b5132
RH
157}
158\f
7e9f0867
AM
159/* Create a strtab to hold the dynamic symbol names. */
160static bfd_boolean
161_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162{
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176}
177
45d6a902
AM
178/* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
252b5132 184
b34976b6 185bfd_boolean
268b6b39 186_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 187{
45d6a902
AM
188 flagword flags;
189 register asection *s;
9c5bfbb7 190 const struct elf_backend_data *bed;
252b5132 191
0eddce27 192 if (! is_elf_hash_table (info->hash))
45d6a902
AM
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
7e9f0867
AM
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
45d6a902 200
7e9f0867 201 abfd = elf_hash_table (info)->dynobj;
e5a52504
MM
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
45d6a902
AM
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
36af4a4e 208 if (info->executable)
252b5132 209 {
3496cb2a
L
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
45d6a902
AM
213 return FALSE;
214 }
bb0deeff 215
45d6a902
AM
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
3496cb2a
L
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
45d6a902 220 if (s == NULL
45d6a902
AM
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
3496cb2a
L
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
45d6a902 226 if (s == NULL
45d6a902
AM
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
3496cb2a
L
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
45d6a902 232 if (s == NULL
45d6a902
AM
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
3496cb2a
L
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
45d6a902 238 if (s == NULL
45d6a902
AM
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
3496cb2a
L
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
45d6a902
AM
245 return FALSE;
246
3496cb2a 247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
45d6a902 248 if (s == NULL
45d6a902
AM
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
77cfaee6
AM
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
d98685ac 258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
45d6a902
AM
259 return FALSE;
260
fdc90cb4
JJ
261 if (info->emit_hash)
262 {
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
45d6a902
AM
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
291
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
293
294 return TRUE;
295}
296
297/* Create dynamic sections when linking against a dynamic object. */
298
299bfd_boolean
268b6b39 300_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
45d6a902
AM
301{
302 flagword flags, pltflags;
7325306f 303 struct elf_link_hash_entry *h;
45d6a902 304 asection *s;
9c5bfbb7 305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 306
252b5132
RH
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
e5a52504 309 flags = bed->dynamic_sec_flags;
252b5132
RH
310
311 pltflags = flags;
252b5132 312 if (bed->plt_not_loaded)
6df4d94c
MM
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
5d1634d7 316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
6df4d94c
MM
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
252b5132
RH
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
3496cb2a 322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
252b5132 323 if (s == NULL
252b5132 324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
b34976b6 325 return FALSE;
252b5132 326
d98685ac
AM
327 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
328 .plt section. */
7325306f
RS
329 if (bed->want_plt_sym)
330 {
331 h = _bfd_elf_define_linkage_sym (abfd, info, s,
332 "_PROCEDURE_LINKAGE_TABLE_");
333 elf_hash_table (info)->hplt = h;
334 if (h == NULL)
335 return FALSE;
336 }
252b5132 337
3496cb2a 338 s = bfd_make_section_with_flags (abfd,
d35fd659 339 (bed->rela_plts_and_copies_p
3496cb2a
L
340 ? ".rela.plt" : ".rel.plt"),
341 flags | SEC_READONLY);
252b5132 342 if (s == NULL
45d6a902 343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 344 return FALSE;
252b5132
RH
345
346 if (! _bfd_elf_create_got_section (abfd, info))
b34976b6 347 return FALSE;
252b5132 348
3018b441
RH
349 if (bed->want_dynbss)
350 {
351 /* The .dynbss section is a place to put symbols which are defined
352 by dynamic objects, are referenced by regular objects, and are
353 not functions. We must allocate space for them in the process
354 image and use a R_*_COPY reloc to tell the dynamic linker to
355 initialize them at run time. The linker script puts the .dynbss
356 section into the .bss section of the final image. */
3496cb2a
L
357 s = bfd_make_section_with_flags (abfd, ".dynbss",
358 (SEC_ALLOC
359 | SEC_LINKER_CREATED));
360 if (s == NULL)
b34976b6 361 return FALSE;
252b5132 362
3018b441 363 /* The .rel[a].bss section holds copy relocs. This section is not
77cfaee6
AM
364 normally needed. We need to create it here, though, so that the
365 linker will map it to an output section. We can't just create it
366 only if we need it, because we will not know whether we need it
367 until we have seen all the input files, and the first time the
368 main linker code calls BFD after examining all the input files
369 (size_dynamic_sections) the input sections have already been
370 mapped to the output sections. If the section turns out not to
371 be needed, we can discard it later. We will never need this
372 section when generating a shared object, since they do not use
373 copy relocs. */
3018b441
RH
374 if (! info->shared)
375 {
3496cb2a 376 s = bfd_make_section_with_flags (abfd,
d35fd659 377 (bed->rela_plts_and_copies_p
3496cb2a
L
378 ? ".rela.bss" : ".rel.bss"),
379 flags | SEC_READONLY);
3018b441 380 if (s == NULL
45d6a902 381 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 382 return FALSE;
3018b441 383 }
252b5132
RH
384 }
385
b34976b6 386 return TRUE;
252b5132
RH
387}
388\f
252b5132
RH
389/* Record a new dynamic symbol. We record the dynamic symbols as we
390 read the input files, since we need to have a list of all of them
391 before we can determine the final sizes of the output sections.
392 Note that we may actually call this function even though we are not
393 going to output any dynamic symbols; in some cases we know that a
394 symbol should be in the dynamic symbol table, but only if there is
395 one. */
396
b34976b6 397bfd_boolean
c152c796
AM
398bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
399 struct elf_link_hash_entry *h)
252b5132
RH
400{
401 if (h->dynindx == -1)
402 {
2b0f7ef9 403 struct elf_strtab_hash *dynstr;
68b6ddd0 404 char *p;
252b5132 405 const char *name;
252b5132
RH
406 bfd_size_type indx;
407
7a13edea
NC
408 /* XXX: The ABI draft says the linker must turn hidden and
409 internal symbols into STB_LOCAL symbols when producing the
410 DSO. However, if ld.so honors st_other in the dynamic table,
411 this would not be necessary. */
412 switch (ELF_ST_VISIBILITY (h->other))
413 {
414 case STV_INTERNAL:
415 case STV_HIDDEN:
9d6eee78
L
416 if (h->root.type != bfd_link_hash_undefined
417 && h->root.type != bfd_link_hash_undefweak)
38048eb9 418 {
f5385ebf 419 h->forced_local = 1;
67687978
PB
420 if (!elf_hash_table (info)->is_relocatable_executable)
421 return TRUE;
7a13edea 422 }
0444bdd4 423
7a13edea
NC
424 default:
425 break;
426 }
427
252b5132
RH
428 h->dynindx = elf_hash_table (info)->dynsymcount;
429 ++elf_hash_table (info)->dynsymcount;
430
431 dynstr = elf_hash_table (info)->dynstr;
432 if (dynstr == NULL)
433 {
434 /* Create a strtab to hold the dynamic symbol names. */
2b0f7ef9 435 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
252b5132 436 if (dynstr == NULL)
b34976b6 437 return FALSE;
252b5132
RH
438 }
439
440 /* We don't put any version information in the dynamic string
aad5d350 441 table. */
252b5132
RH
442 name = h->root.root.string;
443 p = strchr (name, ELF_VER_CHR);
68b6ddd0
AM
444 if (p != NULL)
445 /* We know that the p points into writable memory. In fact,
446 there are only a few symbols that have read-only names, being
447 those like _GLOBAL_OFFSET_TABLE_ that are created specially
448 by the backends. Most symbols will have names pointing into
449 an ELF string table read from a file, or to objalloc memory. */
450 *p = 0;
451
452 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
453
454 if (p != NULL)
455 *p = ELF_VER_CHR;
252b5132
RH
456
457 if (indx == (bfd_size_type) -1)
b34976b6 458 return FALSE;
252b5132
RH
459 h->dynstr_index = indx;
460 }
461
b34976b6 462 return TRUE;
252b5132 463}
45d6a902 464\f
55255dae
L
465/* Mark a symbol dynamic. */
466
28caa186 467static void
55255dae 468bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
40b36307
L
469 struct elf_link_hash_entry *h,
470 Elf_Internal_Sym *sym)
55255dae 471{
40b36307 472 struct bfd_elf_dynamic_list *d = info->dynamic_list;
55255dae 473
40b36307
L
474 /* It may be called more than once on the same H. */
475 if(h->dynamic || info->relocatable)
55255dae
L
476 return;
477
40b36307
L
478 if ((info->dynamic_data
479 && (h->type == STT_OBJECT
480 || (sym != NULL
481 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
a0c8462f 482 || (d != NULL
40b36307
L
483 && h->root.type == bfd_link_hash_new
484 && (*d->match) (&d->head, NULL, h->root.root.string)))
55255dae
L
485 h->dynamic = 1;
486}
487
45d6a902
AM
488/* Record an assignment to a symbol made by a linker script. We need
489 this in case some dynamic object refers to this symbol. */
490
491bfd_boolean
fe21a8fc
L
492bfd_elf_record_link_assignment (bfd *output_bfd,
493 struct bfd_link_info *info,
268b6b39 494 const char *name,
fe21a8fc
L
495 bfd_boolean provide,
496 bfd_boolean hidden)
45d6a902 497{
00cbee0a 498 struct elf_link_hash_entry *h, *hv;
4ea42fb7 499 struct elf_link_hash_table *htab;
00cbee0a 500 const struct elf_backend_data *bed;
45d6a902 501
0eddce27 502 if (!is_elf_hash_table (info->hash))
45d6a902
AM
503 return TRUE;
504
4ea42fb7
AM
505 htab = elf_hash_table (info);
506 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
45d6a902 507 if (h == NULL)
4ea42fb7 508 return provide;
45d6a902 509
00cbee0a 510 switch (h->root.type)
77cfaee6 511 {
00cbee0a
L
512 case bfd_link_hash_defined:
513 case bfd_link_hash_defweak:
514 case bfd_link_hash_common:
515 break;
516 case bfd_link_hash_undefweak:
517 case bfd_link_hash_undefined:
518 /* Since we're defining the symbol, don't let it seem to have not
519 been defined. record_dynamic_symbol and size_dynamic_sections
520 may depend on this. */
4ea42fb7 521 h->root.type = bfd_link_hash_new;
77cfaee6
AM
522 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
523 bfd_link_repair_undef_list (&htab->root);
00cbee0a
L
524 break;
525 case bfd_link_hash_new:
40b36307 526 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
55255dae 527 h->non_elf = 0;
00cbee0a
L
528 break;
529 case bfd_link_hash_indirect:
530 /* We had a versioned symbol in a dynamic library. We make the
a0c8462f 531 the versioned symbol point to this one. */
00cbee0a
L
532 bed = get_elf_backend_data (output_bfd);
533 hv = h;
534 while (hv->root.type == bfd_link_hash_indirect
535 || hv->root.type == bfd_link_hash_warning)
536 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
537 /* We don't need to update h->root.u since linker will set them
538 later. */
539 h->root.type = bfd_link_hash_undefined;
540 hv->root.type = bfd_link_hash_indirect;
541 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
542 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
543 break;
544 case bfd_link_hash_warning:
545 abort ();
546 break;
55255dae 547 }
45d6a902
AM
548
549 /* If this symbol is being provided by the linker script, and it is
550 currently defined by a dynamic object, but not by a regular
551 object, then mark it as undefined so that the generic linker will
552 force the correct value. */
553 if (provide
f5385ebf
AM
554 && h->def_dynamic
555 && !h->def_regular)
45d6a902
AM
556 h->root.type = bfd_link_hash_undefined;
557
558 /* If this symbol is not being provided by the linker script, and it is
559 currently defined by a dynamic object, but not by a regular object,
560 then clear out any version information because the symbol will not be
561 associated with the dynamic object any more. */
562 if (!provide
f5385ebf
AM
563 && h->def_dynamic
564 && !h->def_regular)
45d6a902
AM
565 h->verinfo.verdef = NULL;
566
f5385ebf 567 h->def_regular = 1;
45d6a902 568
fe21a8fc
L
569 if (provide && hidden)
570 {
571 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
572
573 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
574 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
575 }
576
6fa3860b
PB
577 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
578 and executables. */
579 if (!info->relocatable
580 && h->dynindx != -1
581 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
582 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
583 h->forced_local = 1;
584
f5385ebf
AM
585 if ((h->def_dynamic
586 || h->ref_dynamic
67687978
PB
587 || info->shared
588 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
45d6a902
AM
589 && h->dynindx == -1)
590 {
c152c796 591 if (! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
592 return FALSE;
593
594 /* If this is a weak defined symbol, and we know a corresponding
595 real symbol from the same dynamic object, make sure the real
596 symbol is also made into a dynamic symbol. */
f6e332e6
AM
597 if (h->u.weakdef != NULL
598 && h->u.weakdef->dynindx == -1)
45d6a902 599 {
f6e332e6 600 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
45d6a902
AM
601 return FALSE;
602 }
603 }
604
605 return TRUE;
606}
42751cf3 607
8c58d23b
AM
608/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
609 success, and 2 on a failure caused by attempting to record a symbol
610 in a discarded section, eg. a discarded link-once section symbol. */
611
612int
c152c796
AM
613bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
614 bfd *input_bfd,
615 long input_indx)
8c58d23b
AM
616{
617 bfd_size_type amt;
618 struct elf_link_local_dynamic_entry *entry;
619 struct elf_link_hash_table *eht;
620 struct elf_strtab_hash *dynstr;
621 unsigned long dynstr_index;
622 char *name;
623 Elf_External_Sym_Shndx eshndx;
624 char esym[sizeof (Elf64_External_Sym)];
625
0eddce27 626 if (! is_elf_hash_table (info->hash))
8c58d23b
AM
627 return 0;
628
629 /* See if the entry exists already. */
630 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
631 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
632 return 1;
633
634 amt = sizeof (*entry);
268b6b39 635 entry = bfd_alloc (input_bfd, amt);
8c58d23b
AM
636 if (entry == NULL)
637 return 0;
638
639 /* Go find the symbol, so that we can find it's name. */
640 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
268b6b39 641 1, input_indx, &entry->isym, esym, &eshndx))
8c58d23b
AM
642 {
643 bfd_release (input_bfd, entry);
644 return 0;
645 }
646
647 if (entry->isym.st_shndx != SHN_UNDEF
4fbb74a6 648 && entry->isym.st_shndx < SHN_LORESERVE)
8c58d23b
AM
649 {
650 asection *s;
651
652 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
653 if (s == NULL || bfd_is_abs_section (s->output_section))
654 {
655 /* We can still bfd_release here as nothing has done another
656 bfd_alloc. We can't do this later in this function. */
657 bfd_release (input_bfd, entry);
658 return 2;
659 }
660 }
661
662 name = (bfd_elf_string_from_elf_section
663 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
664 entry->isym.st_name));
665
666 dynstr = elf_hash_table (info)->dynstr;
667 if (dynstr == NULL)
668 {
669 /* Create a strtab to hold the dynamic symbol names. */
670 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
671 if (dynstr == NULL)
672 return 0;
673 }
674
b34976b6 675 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
8c58d23b
AM
676 if (dynstr_index == (unsigned long) -1)
677 return 0;
678 entry->isym.st_name = dynstr_index;
679
680 eht = elf_hash_table (info);
681
682 entry->next = eht->dynlocal;
683 eht->dynlocal = entry;
684 entry->input_bfd = input_bfd;
685 entry->input_indx = input_indx;
686 eht->dynsymcount++;
687
688 /* Whatever binding the symbol had before, it's now local. */
689 entry->isym.st_info
690 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
691
692 /* The dynindx will be set at the end of size_dynamic_sections. */
693
694 return 1;
695}
696
30b30c21 697/* Return the dynindex of a local dynamic symbol. */
42751cf3 698
30b30c21 699long
268b6b39
AM
700_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
701 bfd *input_bfd,
702 long input_indx)
30b30c21
RH
703{
704 struct elf_link_local_dynamic_entry *e;
705
706 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
707 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
708 return e->dynindx;
709 return -1;
710}
711
712/* This function is used to renumber the dynamic symbols, if some of
713 them are removed because they are marked as local. This is called
714 via elf_link_hash_traverse. */
715
b34976b6 716static bfd_boolean
268b6b39
AM
717elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
718 void *data)
42751cf3 719{
268b6b39 720 size_t *count = data;
30b30c21 721
e92d460e
AM
722 if (h->root.type == bfd_link_hash_warning)
723 h = (struct elf_link_hash_entry *) h->root.u.i.link;
724
6fa3860b
PB
725 if (h->forced_local)
726 return TRUE;
727
728 if (h->dynindx != -1)
729 h->dynindx = ++(*count);
730
731 return TRUE;
732}
733
734
735/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
736 STB_LOCAL binding. */
737
738static bfd_boolean
739elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
740 void *data)
741{
742 size_t *count = data;
743
744 if (h->root.type == bfd_link_hash_warning)
745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
746
747 if (!h->forced_local)
748 return TRUE;
749
42751cf3 750 if (h->dynindx != -1)
30b30c21
RH
751 h->dynindx = ++(*count);
752
b34976b6 753 return TRUE;
42751cf3 754}
30b30c21 755
aee6f5b4
AO
756/* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758bfd_boolean
759_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
762{
74541ad4
AM
763 struct elf_link_hash_table *htab;
764
aee6f5b4
AO
765 switch (elf_section_data (p)->this_hdr.sh_type)
766 {
767 case SHT_PROGBITS:
768 case SHT_NOBITS:
769 /* If sh_type is yet undecided, assume it could be
770 SHT_PROGBITS/SHT_NOBITS. */
771 case SHT_NULL:
74541ad4
AM
772 htab = elf_hash_table (info);
773 if (p == htab->tls_sec)
774 return FALSE;
775
776 if (htab->text_index_section != NULL)
777 return p != htab->text_index_section && p != htab->data_index_section;
778
aee6f5b4
AO
779 if (strcmp (p->name, ".got") == 0
780 || strcmp (p->name, ".got.plt") == 0
781 || strcmp (p->name, ".plt") == 0)
782 {
783 asection *ip;
aee6f5b4 784
74541ad4
AM
785 if (htab->dynobj != NULL
786 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
aee6f5b4
AO
787 && (ip->flags & SEC_LINKER_CREATED)
788 && ip->output_section == p)
789 return TRUE;
790 }
791 return FALSE;
792
793 /* There shouldn't be section relative relocations
794 against any other section. */
795 default:
796 return TRUE;
797 }
798}
799
062e2358 800/* Assign dynsym indices. In a shared library we generate a section
6fa3860b
PB
801 symbol for each output section, which come first. Next come symbols
802 which have been forced to local binding. Then all of the back-end
803 allocated local dynamic syms, followed by the rest of the global
804 symbols. */
30b30c21 805
554220db
AM
806static unsigned long
807_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
808 struct bfd_link_info *info,
809 unsigned long *section_sym_count)
30b30c21
RH
810{
811 unsigned long dynsymcount = 0;
812
67687978 813 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
30b30c21 814 {
aee6f5b4 815 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
30b30c21
RH
816 asection *p;
817 for (p = output_bfd->sections; p ; p = p->next)
8c37241b 818 if ((p->flags & SEC_EXCLUDE) == 0
aee6f5b4
AO
819 && (p->flags & SEC_ALLOC) != 0
820 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
821 elf_section_data (p)->dynindx = ++dynsymcount;
74541ad4
AM
822 else
823 elf_section_data (p)->dynindx = 0;
30b30c21 824 }
554220db 825 *section_sym_count = dynsymcount;
30b30c21 826
6fa3860b
PB
827 elf_link_hash_traverse (elf_hash_table (info),
828 elf_link_renumber_local_hash_table_dynsyms,
829 &dynsymcount);
830
30b30c21
RH
831 if (elf_hash_table (info)->dynlocal)
832 {
833 struct elf_link_local_dynamic_entry *p;
834 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
835 p->dynindx = ++dynsymcount;
836 }
837
838 elf_link_hash_traverse (elf_hash_table (info),
839 elf_link_renumber_hash_table_dynsyms,
840 &dynsymcount);
841
842 /* There is an unused NULL entry at the head of the table which
843 we must account for in our count. Unless there weren't any
844 symbols, which means we'll have no table at all. */
845 if (dynsymcount != 0)
846 ++dynsymcount;
847
ccabcbe5
AM
848 elf_hash_table (info)->dynsymcount = dynsymcount;
849 return dynsymcount;
30b30c21 850}
252b5132 851
54ac0771
L
852/* Merge st_other field. */
853
854static void
855elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
856 Elf_Internal_Sym *isym, bfd_boolean definition,
857 bfd_boolean dynamic)
858{
859 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
860
861 /* If st_other has a processor-specific meaning, specific
862 code might be needed here. We never merge the visibility
863 attribute with the one from a dynamic object. */
864 if (bed->elf_backend_merge_symbol_attribute)
865 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
866 dynamic);
867
868 /* If this symbol has default visibility and the user has requested
869 we not re-export it, then mark it as hidden. */
870 if (definition
871 && !dynamic
872 && (abfd->no_export
873 || (abfd->my_archive && abfd->my_archive->no_export))
874 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
875 isym->st_other = (STV_HIDDEN
876 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
877
878 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
879 {
880 unsigned char hvis, symvis, other, nvis;
881
882 /* Only merge the visibility. Leave the remainder of the
883 st_other field to elf_backend_merge_symbol_attribute. */
884 other = h->other & ~ELF_ST_VISIBILITY (-1);
885
886 /* Combine visibilities, using the most constraining one. */
887 hvis = ELF_ST_VISIBILITY (h->other);
888 symvis = ELF_ST_VISIBILITY (isym->st_other);
889 if (! hvis)
890 nvis = symvis;
891 else if (! symvis)
892 nvis = hvis;
893 else
894 nvis = hvis < symvis ? hvis : symvis;
895
896 h->other = other | nvis;
897 }
898}
899
45d6a902
AM
900/* This function is called when we want to define a new symbol. It
901 handles the various cases which arise when we find a definition in
902 a dynamic object, or when there is already a definition in a
903 dynamic object. The new symbol is described by NAME, SYM, PSEC,
904 and PVALUE. We set SYM_HASH to the hash table entry. We set
905 OVERRIDE if the old symbol is overriding a new definition. We set
906 TYPE_CHANGE_OK if it is OK for the type to change. We set
907 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
908 change, we mean that we shouldn't warn if the type or size does
af44c138
L
909 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
910 object is overridden by a regular object. */
45d6a902
AM
911
912bfd_boolean
268b6b39
AM
913_bfd_elf_merge_symbol (bfd *abfd,
914 struct bfd_link_info *info,
915 const char *name,
916 Elf_Internal_Sym *sym,
917 asection **psec,
918 bfd_vma *pvalue,
af44c138 919 unsigned int *pold_alignment,
268b6b39
AM
920 struct elf_link_hash_entry **sym_hash,
921 bfd_boolean *skip,
922 bfd_boolean *override,
923 bfd_boolean *type_change_ok,
0f8a2703 924 bfd_boolean *size_change_ok)
252b5132 925{
7479dfd4 926 asection *sec, *oldsec;
45d6a902
AM
927 struct elf_link_hash_entry *h;
928 struct elf_link_hash_entry *flip;
929 int bind;
930 bfd *oldbfd;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
0a36a439 932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
a4d8e49b 933 const struct elf_backend_data *bed;
45d6a902
AM
934
935 *skip = FALSE;
936 *override = FALSE;
937
938 sec = *psec;
939 bind = ELF_ST_BIND (sym->st_info);
940
cd7be95b
KH
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
945 {
946 *skip = TRUE;
947 return TRUE;
948 }
949
45d6a902
AM
950 if (! bfd_is_und_section (sec))
951 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
952 else
953 h = ((struct elf_link_hash_entry *)
954 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955 if (h == NULL)
956 return FALSE;
957 *sym_hash = h;
252b5132 958
88ba32a0
L
959 bed = get_elf_backend_data (abfd);
960
45d6a902
AM
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
88ba32a0 963 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
45d6a902 964 return TRUE;
252b5132 965
45d6a902
AM
966 /* For merging, we only care about real symbols. */
967
968 while (h->root.type == bfd_link_hash_indirect
969 || h->root.type == bfd_link_hash_warning)
970 h = (struct elf_link_hash_entry *) h->root.u.i.link;
971
40b36307
L
972 /* We have to check it for every instance since the first few may be
973 refereences and not all compilers emit symbol type for undefined
974 symbols. */
975 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
976
45d6a902
AM
977 /* If we just created the symbol, mark it as being an ELF symbol.
978 Other than that, there is nothing to do--there is no merge issue
979 with a newly defined symbol--so we just return. */
980
981 if (h->root.type == bfd_link_hash_new)
252b5132 982 {
f5385ebf 983 h->non_elf = 0;
45d6a902
AM
984 return TRUE;
985 }
252b5132 986
7479dfd4
L
987 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
988 existing symbol. */
252b5132 989
45d6a902
AM
990 switch (h->root.type)
991 {
992 default:
993 oldbfd = NULL;
7479dfd4 994 oldsec = NULL;
45d6a902 995 break;
252b5132 996
45d6a902
AM
997 case bfd_link_hash_undefined:
998 case bfd_link_hash_undefweak:
999 oldbfd = h->root.u.undef.abfd;
7479dfd4 1000 oldsec = NULL;
45d6a902
AM
1001 break;
1002
1003 case bfd_link_hash_defined:
1004 case bfd_link_hash_defweak:
1005 oldbfd = h->root.u.def.section->owner;
7479dfd4 1006 oldsec = h->root.u.def.section;
45d6a902
AM
1007 break;
1008
1009 case bfd_link_hash_common:
1010 oldbfd = h->root.u.c.p->section->owner;
7479dfd4 1011 oldsec = h->root.u.c.p->section;
45d6a902
AM
1012 break;
1013 }
1014
1015 /* In cases involving weak versioned symbols, we may wind up trying
1016 to merge a symbol with itself. Catch that here, to avoid the
1017 confusion that results if we try to override a symbol with
1018 itself. The additional tests catch cases like
1019 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1020 dynamic object, which we do want to handle here. */
1021 if (abfd == oldbfd
1022 && ((abfd->flags & DYNAMIC) == 0
f5385ebf 1023 || !h->def_regular))
45d6a902
AM
1024 return TRUE;
1025
1026 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1027 respectively, is from a dynamic object. */
1028
707bba77 1029 newdyn = (abfd->flags & DYNAMIC) != 0;
45d6a902 1030
707bba77 1031 olddyn = FALSE;
45d6a902
AM
1032 if (oldbfd != NULL)
1033 olddyn = (oldbfd->flags & DYNAMIC) != 0;
707bba77 1034 else if (oldsec != NULL)
45d6a902 1035 {
707bba77 1036 /* This handles the special SHN_MIPS_{TEXT,DATA} section
45d6a902 1037 indices used by MIPS ELF. */
707bba77 1038 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
45d6a902 1039 }
252b5132 1040
45d6a902
AM
1041 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1042 respectively, appear to be a definition rather than reference. */
1043
707bba77 1044 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
45d6a902 1045
707bba77
AM
1046 olddef = (h->root.type != bfd_link_hash_undefined
1047 && h->root.type != bfd_link_hash_undefweak
1048 && h->root.type != bfd_link_hash_common);
45d6a902 1049
0a36a439
L
1050 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1051 respectively, appear to be a function. */
1052
1053 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1054 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1055
1056 oldfunc = (h->type != STT_NOTYPE
1057 && bed->is_function_type (h->type));
1058
580a2b6e
L
1059 /* When we try to create a default indirect symbol from the dynamic
1060 definition with the default version, we skip it if its type and
1061 the type of existing regular definition mismatch. We only do it
1062 if the existing regular definition won't be dynamic. */
1063 if (pold_alignment == NULL
1064 && !info->shared
1065 && !info->export_dynamic
1066 && !h->ref_dynamic
1067 && newdyn
1068 && newdef
1069 && !olddyn
1070 && (olddef || h->root.type == bfd_link_hash_common)
1071 && ELF_ST_TYPE (sym->st_info) != h->type
1072 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
fcb93ecf 1073 && h->type != STT_NOTYPE
0a36a439 1074 && !(newfunc && oldfunc))
580a2b6e
L
1075 {
1076 *skip = TRUE;
1077 return TRUE;
1078 }
1079
68f49ba3
L
1080 /* Check TLS symbol. We don't check undefined symbol introduced by
1081 "ld -u". */
7479dfd4 1082 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
68f49ba3
L
1083 && ELF_ST_TYPE (sym->st_info) != h->type
1084 && oldbfd != NULL)
7479dfd4
L
1085 {
1086 bfd *ntbfd, *tbfd;
1087 bfd_boolean ntdef, tdef;
1088 asection *ntsec, *tsec;
1089
1090 if (h->type == STT_TLS)
1091 {
3b36f7e6 1092 ntbfd = abfd;
7479dfd4
L
1093 ntsec = sec;
1094 ntdef = newdef;
1095 tbfd = oldbfd;
1096 tsec = oldsec;
1097 tdef = olddef;
1098 }
1099 else
1100 {
1101 ntbfd = oldbfd;
1102 ntsec = oldsec;
1103 ntdef = olddef;
1104 tbfd = abfd;
1105 tsec = sec;
1106 tdef = newdef;
1107 }
1108
1109 if (tdef && ntdef)
1110 (*_bfd_error_handler)
1111 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1112 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1113 else if (!tdef && !ntdef)
1114 (*_bfd_error_handler)
1115 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1116 tbfd, ntbfd, h->root.root.string);
1117 else if (tdef)
1118 (*_bfd_error_handler)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1120 tbfd, tsec, ntbfd, h->root.root.string);
1121 else
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1124 tbfd, ntbfd, ntsec, h->root.root.string);
1125
1126 bfd_set_error (bfd_error_bad_value);
1127 return FALSE;
1128 }
1129
4cc11e76 1130 /* We need to remember if a symbol has a definition in a dynamic
45d6a902
AM
1131 object or is weak in all dynamic objects. Internal and hidden
1132 visibility will make it unavailable to dynamic objects. */
f5385ebf 1133 if (newdyn && !h->dynamic_def)
45d6a902
AM
1134 {
1135 if (!bfd_is_und_section (sec))
f5385ebf 1136 h->dynamic_def = 1;
45d6a902 1137 else
252b5132 1138 {
45d6a902
AM
1139 /* Check if this symbol is weak in all dynamic objects. If it
1140 is the first time we see it in a dynamic object, we mark
1141 if it is weak. Otherwise, we clear it. */
f5385ebf 1142 if (!h->ref_dynamic)
79349b09 1143 {
45d6a902 1144 if (bind == STB_WEAK)
f5385ebf 1145 h->dynamic_weak = 1;
252b5132 1146 }
45d6a902 1147 else if (bind != STB_WEAK)
f5385ebf 1148 h->dynamic_weak = 0;
252b5132 1149 }
45d6a902 1150 }
252b5132 1151
45d6a902
AM
1152 /* If the old symbol has non-default visibility, we ignore the new
1153 definition from a dynamic object. */
1154 if (newdyn
9c7a29a3 1155 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
1156 && !bfd_is_und_section (sec))
1157 {
1158 *skip = TRUE;
1159 /* Make sure this symbol is dynamic. */
f5385ebf 1160 h->ref_dynamic = 1;
45d6a902
AM
1161 /* A protected symbol has external availability. Make sure it is
1162 recorded as dynamic.
1163
1164 FIXME: Should we check type and size for protected symbol? */
1165 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
c152c796 1166 return bfd_elf_link_record_dynamic_symbol (info, h);
45d6a902
AM
1167 else
1168 return TRUE;
1169 }
1170 else if (!newdyn
9c7a29a3 1171 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
f5385ebf 1172 && h->def_dynamic)
45d6a902
AM
1173 {
1174 /* If the new symbol with non-default visibility comes from a
1175 relocatable file and the old definition comes from a dynamic
1176 object, we remove the old definition. */
1177 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
d2dee3b2
L
1178 {
1179 /* Handle the case where the old dynamic definition is
1180 default versioned. We need to copy the symbol info from
1181 the symbol with default version to the normal one if it
1182 was referenced before. */
1183 if (h->ref_regular)
1184 {
1185 const struct elf_backend_data *bed
1186 = get_elf_backend_data (abfd);
1187 struct elf_link_hash_entry *vh = *sym_hash;
1188 vh->root.type = h->root.type;
1189 h->root.type = bfd_link_hash_indirect;
1190 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1191 /* Protected symbols will override the dynamic definition
1192 with default version. */
1193 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1194 {
1195 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1196 vh->dynamic_def = 1;
1197 vh->ref_dynamic = 1;
1198 }
1199 else
1200 {
1201 h->root.type = vh->root.type;
1202 vh->ref_dynamic = 0;
1203 /* We have to hide it here since it was made dynamic
1204 global with extra bits when the symbol info was
1205 copied from the old dynamic definition. */
1206 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1207 }
1208 h = vh;
1209 }
1210 else
1211 h = *sym_hash;
1212 }
1de1a317 1213
f6e332e6 1214 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1de1a317
L
1215 && bfd_is_und_section (sec))
1216 {
1217 /* If the new symbol is undefined and the old symbol was
1218 also undefined before, we need to make sure
1219 _bfd_generic_link_add_one_symbol doesn't mess
f6e332e6 1220 up the linker hash table undefs list. Since the old
1de1a317
L
1221 definition came from a dynamic object, it is still on the
1222 undefs list. */
1223 h->root.type = bfd_link_hash_undefined;
1de1a317
L
1224 h->root.u.undef.abfd = abfd;
1225 }
1226 else
1227 {
1228 h->root.type = bfd_link_hash_new;
1229 h->root.u.undef.abfd = NULL;
1230 }
1231
f5385ebf 1232 if (h->def_dynamic)
252b5132 1233 {
f5385ebf
AM
1234 h->def_dynamic = 0;
1235 h->ref_dynamic = 1;
1236 h->dynamic_def = 1;
45d6a902
AM
1237 }
1238 /* FIXME: Should we check type and size for protected symbol? */
1239 h->size = 0;
1240 h->type = 0;
1241 return TRUE;
1242 }
14a793b2 1243
79349b09
AM
1244 /* Differentiate strong and weak symbols. */
1245 newweak = bind == STB_WEAK;
1246 oldweak = (h->root.type == bfd_link_hash_defweak
1247 || h->root.type == bfd_link_hash_undefweak);
14a793b2 1248
15b43f48
AM
1249 /* If a new weak symbol definition comes from a regular file and the
1250 old symbol comes from a dynamic library, we treat the new one as
1251 strong. Similarly, an old weak symbol definition from a regular
1252 file is treated as strong when the new symbol comes from a dynamic
1253 library. Further, an old weak symbol from a dynamic library is
1254 treated as strong if the new symbol is from a dynamic library.
1255 This reflects the way glibc's ld.so works.
1256
1257 Do this before setting *type_change_ok or *size_change_ok so that
1258 we warn properly when dynamic library symbols are overridden. */
1259
1260 if (newdef && !newdyn && olddyn)
0f8a2703 1261 newweak = FALSE;
15b43f48 1262 if (olddef && newdyn)
0f8a2703
AM
1263 oldweak = FALSE;
1264
fcb93ecf 1265 /* Allow changes between different types of funciton symbol. */
0a36a439 1266 if (newfunc && oldfunc)
fcb93ecf
PB
1267 *type_change_ok = TRUE;
1268
79349b09
AM
1269 /* It's OK to change the type if either the existing symbol or the
1270 new symbol is weak. A type change is also OK if the old symbol
1271 is undefined and the new symbol is defined. */
252b5132 1272
79349b09
AM
1273 if (oldweak
1274 || newweak
1275 || (newdef
1276 && h->root.type == bfd_link_hash_undefined))
1277 *type_change_ok = TRUE;
1278
1279 /* It's OK to change the size if either the existing symbol or the
1280 new symbol is weak, or if the old symbol is undefined. */
1281
1282 if (*type_change_ok
1283 || h->root.type == bfd_link_hash_undefined)
1284 *size_change_ok = TRUE;
45d6a902 1285
45d6a902
AM
1286 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1287 symbol, respectively, appears to be a common symbol in a dynamic
1288 object. If a symbol appears in an uninitialized section, and is
1289 not weak, and is not a function, then it may be a common symbol
1290 which was resolved when the dynamic object was created. We want
1291 to treat such symbols specially, because they raise special
1292 considerations when setting the symbol size: if the symbol
1293 appears as a common symbol in a regular object, and the size in
1294 the regular object is larger, we must make sure that we use the
1295 larger size. This problematic case can always be avoided in C,
1296 but it must be handled correctly when using Fortran shared
1297 libraries.
1298
1299 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1300 likewise for OLDDYNCOMMON and OLDDEF.
1301
1302 Note that this test is just a heuristic, and that it is quite
1303 possible to have an uninitialized symbol in a shared object which
1304 is really a definition, rather than a common symbol. This could
1305 lead to some minor confusion when the symbol really is a common
1306 symbol in some regular object. However, I think it will be
1307 harmless. */
1308
1309 if (newdyn
1310 && newdef
79349b09 1311 && !newweak
45d6a902
AM
1312 && (sec->flags & SEC_ALLOC) != 0
1313 && (sec->flags & SEC_LOAD) == 0
1314 && sym->st_size > 0
0a36a439 1315 && !newfunc)
45d6a902
AM
1316 newdyncommon = TRUE;
1317 else
1318 newdyncommon = FALSE;
1319
1320 if (olddyn
1321 && olddef
1322 && h->root.type == bfd_link_hash_defined
f5385ebf 1323 && h->def_dynamic
45d6a902
AM
1324 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1325 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1326 && h->size > 0
0a36a439 1327 && !oldfunc)
45d6a902
AM
1328 olddyncommon = TRUE;
1329 else
1330 olddyncommon = FALSE;
1331
a4d8e49b
L
1332 /* We now know everything about the old and new symbols. We ask the
1333 backend to check if we can merge them. */
a4d8e49b
L
1334 if (bed->merge_symbol
1335 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1336 pold_alignment, skip, override,
1337 type_change_ok, size_change_ok,
1338 &newdyn, &newdef, &newdyncommon, &newweak,
1339 abfd, &sec,
1340 &olddyn, &olddef, &olddyncommon, &oldweak,
1341 oldbfd, &oldsec))
1342 return FALSE;
1343
45d6a902
AM
1344 /* If both the old and the new symbols look like common symbols in a
1345 dynamic object, set the size of the symbol to the larger of the
1346 two. */
1347
1348 if (olddyncommon
1349 && newdyncommon
1350 && sym->st_size != h->size)
1351 {
1352 /* Since we think we have two common symbols, issue a multiple
1353 common warning if desired. Note that we only warn if the
1354 size is different. If the size is the same, we simply let
1355 the old symbol override the new one as normally happens with
1356 symbols defined in dynamic objects. */
1357
1358 if (! ((*info->callbacks->multiple_common)
1359 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1360 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1361 return FALSE;
252b5132 1362
45d6a902
AM
1363 if (sym->st_size > h->size)
1364 h->size = sym->st_size;
252b5132 1365
45d6a902 1366 *size_change_ok = TRUE;
252b5132
RH
1367 }
1368
45d6a902
AM
1369 /* If we are looking at a dynamic object, and we have found a
1370 definition, we need to see if the symbol was already defined by
1371 some other object. If so, we want to use the existing
1372 definition, and we do not want to report a multiple symbol
1373 definition error; we do this by clobbering *PSEC to be
1374 bfd_und_section_ptr.
1375
1376 We treat a common symbol as a definition if the symbol in the
1377 shared library is a function, since common symbols always
1378 represent variables; this can cause confusion in principle, but
1379 any such confusion would seem to indicate an erroneous program or
1380 shared library. We also permit a common symbol in a regular
79349b09 1381 object to override a weak symbol in a shared object. */
45d6a902
AM
1382
1383 if (newdyn
1384 && newdef
77cfaee6 1385 && (olddef
45d6a902 1386 || (h->root.type == bfd_link_hash_common
0a36a439 1387 && (newweak || newfunc))))
45d6a902
AM
1388 {
1389 *override = TRUE;
1390 newdef = FALSE;
1391 newdyncommon = FALSE;
252b5132 1392
45d6a902
AM
1393 *psec = sec = bfd_und_section_ptr;
1394 *size_change_ok = TRUE;
252b5132 1395
45d6a902
AM
1396 /* If we get here when the old symbol is a common symbol, then
1397 we are explicitly letting it override a weak symbol or
1398 function in a dynamic object, and we don't want to warn about
1399 a type change. If the old symbol is a defined symbol, a type
1400 change warning may still be appropriate. */
252b5132 1401
45d6a902
AM
1402 if (h->root.type == bfd_link_hash_common)
1403 *type_change_ok = TRUE;
1404 }
1405
1406 /* Handle the special case of an old common symbol merging with a
1407 new symbol which looks like a common symbol in a shared object.
1408 We change *PSEC and *PVALUE to make the new symbol look like a
91134c82
L
1409 common symbol, and let _bfd_generic_link_add_one_symbol do the
1410 right thing. */
45d6a902
AM
1411
1412 if (newdyncommon
1413 && h->root.type == bfd_link_hash_common)
1414 {
1415 *override = TRUE;
1416 newdef = FALSE;
1417 newdyncommon = FALSE;
1418 *pvalue = sym->st_size;
a4d8e49b 1419 *psec = sec = bed->common_section (oldsec);
45d6a902
AM
1420 *size_change_ok = TRUE;
1421 }
1422
c5e2cead 1423 /* Skip weak definitions of symbols that are already defined. */
f41d945b 1424 if (newdef && olddef && newweak)
54ac0771
L
1425 {
1426 *skip = TRUE;
1427
1428 /* Merge st_other. If the symbol already has a dynamic index,
1429 but visibility says it should not be visible, turn it into a
1430 local symbol. */
1431 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1432 if (h->dynindx != -1)
1433 switch (ELF_ST_VISIBILITY (h->other))
1434 {
1435 case STV_INTERNAL:
1436 case STV_HIDDEN:
1437 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1438 break;
1439 }
1440 }
c5e2cead 1441
45d6a902
AM
1442 /* If the old symbol is from a dynamic object, and the new symbol is
1443 a definition which is not from a dynamic object, then the new
1444 symbol overrides the old symbol. Symbols from regular files
1445 always take precedence over symbols from dynamic objects, even if
1446 they are defined after the dynamic object in the link.
1447
1448 As above, we again permit a common symbol in a regular object to
1449 override a definition in a shared object if the shared object
0f8a2703 1450 symbol is a function or is weak. */
45d6a902
AM
1451
1452 flip = NULL;
77cfaee6 1453 if (!newdyn
45d6a902
AM
1454 && (newdef
1455 || (bfd_is_com_section (sec)
0a36a439 1456 && (oldweak || oldfunc)))
45d6a902
AM
1457 && olddyn
1458 && olddef
f5385ebf 1459 && h->def_dynamic)
45d6a902
AM
1460 {
1461 /* Change the hash table entry to undefined, and let
1462 _bfd_generic_link_add_one_symbol do the right thing with the
1463 new definition. */
1464
1465 h->root.type = bfd_link_hash_undefined;
1466 h->root.u.undef.abfd = h->root.u.def.section->owner;
1467 *size_change_ok = TRUE;
1468
1469 olddef = FALSE;
1470 olddyncommon = FALSE;
1471
1472 /* We again permit a type change when a common symbol may be
1473 overriding a function. */
1474
1475 if (bfd_is_com_section (sec))
0a36a439
L
1476 {
1477 if (oldfunc)
1478 {
1479 /* If a common symbol overrides a function, make sure
1480 that it isn't defined dynamically nor has type
1481 function. */
1482 h->def_dynamic = 0;
1483 h->type = STT_NOTYPE;
1484 }
1485 *type_change_ok = TRUE;
1486 }
45d6a902
AM
1487
1488 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1489 flip = *sym_hash;
1490 else
1491 /* This union may have been set to be non-NULL when this symbol
1492 was seen in a dynamic object. We must force the union to be
1493 NULL, so that it is correct for a regular symbol. */
1494 h->verinfo.vertree = NULL;
1495 }
1496
1497 /* Handle the special case of a new common symbol merging with an
1498 old symbol that looks like it might be a common symbol defined in
1499 a shared object. Note that we have already handled the case in
1500 which a new common symbol should simply override the definition
1501 in the shared library. */
1502
1503 if (! newdyn
1504 && bfd_is_com_section (sec)
1505 && olddyncommon)
1506 {
1507 /* It would be best if we could set the hash table entry to a
1508 common symbol, but we don't know what to use for the section
1509 or the alignment. */
1510 if (! ((*info->callbacks->multiple_common)
1511 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1512 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1513 return FALSE;
1514
4cc11e76 1515 /* If the presumed common symbol in the dynamic object is
45d6a902
AM
1516 larger, pretend that the new symbol has its size. */
1517
1518 if (h->size > *pvalue)
1519 *pvalue = h->size;
1520
af44c138
L
1521 /* We need to remember the alignment required by the symbol
1522 in the dynamic object. */
1523 BFD_ASSERT (pold_alignment);
1524 *pold_alignment = h->root.u.def.section->alignment_power;
45d6a902
AM
1525
1526 olddef = FALSE;
1527 olddyncommon = FALSE;
1528
1529 h->root.type = bfd_link_hash_undefined;
1530 h->root.u.undef.abfd = h->root.u.def.section->owner;
1531
1532 *size_change_ok = TRUE;
1533 *type_change_ok = TRUE;
1534
1535 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1536 flip = *sym_hash;
1537 else
1538 h->verinfo.vertree = NULL;
1539 }
1540
1541 if (flip != NULL)
1542 {
1543 /* Handle the case where we had a versioned symbol in a dynamic
1544 library and now find a definition in a normal object. In this
1545 case, we make the versioned symbol point to the normal one. */
9c5bfbb7 1546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 1547 flip->root.type = h->root.type;
00cbee0a 1548 flip->root.u.undef.abfd = h->root.u.undef.abfd;
45d6a902
AM
1549 h->root.type = bfd_link_hash_indirect;
1550 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
fcfa13d2 1551 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
f5385ebf 1552 if (h->def_dynamic)
45d6a902 1553 {
f5385ebf
AM
1554 h->def_dynamic = 0;
1555 flip->ref_dynamic = 1;
45d6a902
AM
1556 }
1557 }
1558
45d6a902
AM
1559 return TRUE;
1560}
1561
1562/* This function is called to create an indirect symbol from the
1563 default for the symbol with the default version if needed. The
1564 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
0f8a2703 1565 set DYNSYM if the new indirect symbol is dynamic. */
45d6a902 1566
28caa186 1567static bfd_boolean
268b6b39
AM
1568_bfd_elf_add_default_symbol (bfd *abfd,
1569 struct bfd_link_info *info,
1570 struct elf_link_hash_entry *h,
1571 const char *name,
1572 Elf_Internal_Sym *sym,
1573 asection **psec,
1574 bfd_vma *value,
1575 bfd_boolean *dynsym,
0f8a2703 1576 bfd_boolean override)
45d6a902
AM
1577{
1578 bfd_boolean type_change_ok;
1579 bfd_boolean size_change_ok;
1580 bfd_boolean skip;
1581 char *shortname;
1582 struct elf_link_hash_entry *hi;
1583 struct bfd_link_hash_entry *bh;
9c5bfbb7 1584 const struct elf_backend_data *bed;
45d6a902
AM
1585 bfd_boolean collect;
1586 bfd_boolean dynamic;
1587 char *p;
1588 size_t len, shortlen;
1589 asection *sec;
1590
1591 /* If this symbol has a version, and it is the default version, we
1592 create an indirect symbol from the default name to the fully
1593 decorated name. This will cause external references which do not
1594 specify a version to be bound to this version of the symbol. */
1595 p = strchr (name, ELF_VER_CHR);
1596 if (p == NULL || p[1] != ELF_VER_CHR)
1597 return TRUE;
1598
1599 if (override)
1600 {
4cc11e76 1601 /* We are overridden by an old definition. We need to check if we
45d6a902
AM
1602 need to create the indirect symbol from the default name. */
1603 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1604 FALSE, FALSE);
1605 BFD_ASSERT (hi != NULL);
1606 if (hi == h)
1607 return TRUE;
1608 while (hi->root.type == bfd_link_hash_indirect
1609 || hi->root.type == bfd_link_hash_warning)
1610 {
1611 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1612 if (hi == h)
1613 return TRUE;
1614 }
1615 }
1616
1617 bed = get_elf_backend_data (abfd);
1618 collect = bed->collect;
1619 dynamic = (abfd->flags & DYNAMIC) != 0;
1620
1621 shortlen = p - name;
1622 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1623 if (shortname == NULL)
1624 return FALSE;
1625 memcpy (shortname, name, shortlen);
1626 shortname[shortlen] = '\0';
1627
1628 /* We are going to create a new symbol. Merge it with any existing
1629 symbol with this name. For the purposes of the merge, act as
1630 though we were defining the symbol we just defined, although we
1631 actually going to define an indirect symbol. */
1632 type_change_ok = FALSE;
1633 size_change_ok = FALSE;
1634 sec = *psec;
1635 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1636 NULL, &hi, &skip, &override,
1637 &type_change_ok, &size_change_ok))
45d6a902
AM
1638 return FALSE;
1639
1640 if (skip)
1641 goto nondefault;
1642
1643 if (! override)
1644 {
1645 bh = &hi->root;
1646 if (! (_bfd_generic_link_add_one_symbol
1647 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
268b6b39 1648 0, name, FALSE, collect, &bh)))
45d6a902
AM
1649 return FALSE;
1650 hi = (struct elf_link_hash_entry *) bh;
1651 }
1652 else
1653 {
1654 /* In this case the symbol named SHORTNAME is overriding the
1655 indirect symbol we want to add. We were planning on making
1656 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1657 is the name without a version. NAME is the fully versioned
1658 name, and it is the default version.
1659
1660 Overriding means that we already saw a definition for the
1661 symbol SHORTNAME in a regular object, and it is overriding
1662 the symbol defined in the dynamic object.
1663
1664 When this happens, we actually want to change NAME, the
1665 symbol we just added, to refer to SHORTNAME. This will cause
1666 references to NAME in the shared object to become references
1667 to SHORTNAME in the regular object. This is what we expect
1668 when we override a function in a shared object: that the
1669 references in the shared object will be mapped to the
1670 definition in the regular object. */
1671
1672 while (hi->root.type == bfd_link_hash_indirect
1673 || hi->root.type == bfd_link_hash_warning)
1674 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1675
1676 h->root.type = bfd_link_hash_indirect;
1677 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
f5385ebf 1678 if (h->def_dynamic)
45d6a902 1679 {
f5385ebf
AM
1680 h->def_dynamic = 0;
1681 hi->ref_dynamic = 1;
1682 if (hi->ref_regular
1683 || hi->def_regular)
45d6a902 1684 {
c152c796 1685 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
45d6a902
AM
1686 return FALSE;
1687 }
1688 }
1689
1690 /* Now set HI to H, so that the following code will set the
1691 other fields correctly. */
1692 hi = h;
1693 }
1694
fab4a87f
L
1695 /* Check if HI is a warning symbol. */
1696 if (hi->root.type == bfd_link_hash_warning)
1697 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1698
45d6a902
AM
1699 /* If there is a duplicate definition somewhere, then HI may not
1700 point to an indirect symbol. We will have reported an error to
1701 the user in that case. */
1702
1703 if (hi->root.type == bfd_link_hash_indirect)
1704 {
1705 struct elf_link_hash_entry *ht;
1706
45d6a902 1707 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
fcfa13d2 1708 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
45d6a902
AM
1709
1710 /* See if the new flags lead us to realize that the symbol must
1711 be dynamic. */
1712 if (! *dynsym)
1713 {
1714 if (! dynamic)
1715 {
1716 if (info->shared
f5385ebf 1717 || hi->ref_dynamic)
45d6a902
AM
1718 *dynsym = TRUE;
1719 }
1720 else
1721 {
f5385ebf 1722 if (hi->ref_regular)
45d6a902
AM
1723 *dynsym = TRUE;
1724 }
1725 }
1726 }
1727
1728 /* We also need to define an indirection from the nondefault version
1729 of the symbol. */
1730
1731nondefault:
1732 len = strlen (name);
1733 shortname = bfd_hash_allocate (&info->hash->table, len);
1734 if (shortname == NULL)
1735 return FALSE;
1736 memcpy (shortname, name, shortlen);
1737 memcpy (shortname + shortlen, p + 1, len - shortlen);
1738
1739 /* Once again, merge with any existing symbol. */
1740 type_change_ok = FALSE;
1741 size_change_ok = FALSE;
1742 sec = *psec;
1743 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1744 NULL, &hi, &skip, &override,
1745 &type_change_ok, &size_change_ok))
45d6a902
AM
1746 return FALSE;
1747
1748 if (skip)
1749 return TRUE;
1750
1751 if (override)
1752 {
1753 /* Here SHORTNAME is a versioned name, so we don't expect to see
1754 the type of override we do in the case above unless it is
4cc11e76 1755 overridden by a versioned definition. */
45d6a902
AM
1756 if (hi->root.type != bfd_link_hash_defined
1757 && hi->root.type != bfd_link_hash_defweak)
1758 (*_bfd_error_handler)
d003868e
AM
1759 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1760 abfd, shortname);
45d6a902
AM
1761 }
1762 else
1763 {
1764 bh = &hi->root;
1765 if (! (_bfd_generic_link_add_one_symbol
1766 (info, abfd, shortname, BSF_INDIRECT,
268b6b39 1767 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
45d6a902
AM
1768 return FALSE;
1769 hi = (struct elf_link_hash_entry *) bh;
1770
1771 /* If there is a duplicate definition somewhere, then HI may not
1772 point to an indirect symbol. We will have reported an error
1773 to the user in that case. */
1774
1775 if (hi->root.type == bfd_link_hash_indirect)
1776 {
fcfa13d2 1777 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
45d6a902
AM
1778
1779 /* See if the new flags lead us to realize that the symbol
1780 must be dynamic. */
1781 if (! *dynsym)
1782 {
1783 if (! dynamic)
1784 {
1785 if (info->shared
f5385ebf 1786 || hi->ref_dynamic)
45d6a902
AM
1787 *dynsym = TRUE;
1788 }
1789 else
1790 {
f5385ebf 1791 if (hi->ref_regular)
45d6a902
AM
1792 *dynsym = TRUE;
1793 }
1794 }
1795 }
1796 }
1797
1798 return TRUE;
1799}
1800\f
1801/* This routine is used to export all defined symbols into the dynamic
1802 symbol table. It is called via elf_link_hash_traverse. */
1803
28caa186 1804static bfd_boolean
268b6b39 1805_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 1806{
268b6b39 1807 struct elf_info_failed *eif = data;
45d6a902 1808
55255dae
L
1809 /* Ignore this if we won't export it. */
1810 if (!eif->info->export_dynamic && !h->dynamic)
1811 return TRUE;
1812
45d6a902
AM
1813 /* Ignore indirect symbols. These are added by the versioning code. */
1814 if (h->root.type == bfd_link_hash_indirect)
1815 return TRUE;
1816
1817 if (h->root.type == bfd_link_hash_warning)
1818 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1819
1820 if (h->dynindx == -1
f5385ebf
AM
1821 && (h->def_regular
1822 || h->ref_regular))
45d6a902
AM
1823 {
1824 struct bfd_elf_version_tree *t;
1825 struct bfd_elf_version_expr *d;
1826
1827 for (t = eif->verdefs; t != NULL; t = t->next)
1828 {
108ba305 1829 if (t->globals.list != NULL)
45d6a902 1830 {
108ba305
JJ
1831 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1832 if (d != NULL)
1833 goto doit;
45d6a902
AM
1834 }
1835
108ba305 1836 if (t->locals.list != NULL)
45d6a902 1837 {
108ba305
JJ
1838 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1839 if (d != NULL)
1840 return TRUE;
45d6a902
AM
1841 }
1842 }
1843
1844 if (!eif->verdefs)
1845 {
1846 doit:
c152c796 1847 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
1848 {
1849 eif->failed = TRUE;
1850 return FALSE;
1851 }
1852 }
1853 }
1854
1855 return TRUE;
1856}
1857\f
1858/* Look through the symbols which are defined in other shared
1859 libraries and referenced here. Update the list of version
1860 dependencies. This will be put into the .gnu.version_r section.
1861 This function is called via elf_link_hash_traverse. */
1862
28caa186 1863static bfd_boolean
268b6b39
AM
1864_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1865 void *data)
45d6a902 1866{
268b6b39 1867 struct elf_find_verdep_info *rinfo = data;
45d6a902
AM
1868 Elf_Internal_Verneed *t;
1869 Elf_Internal_Vernaux *a;
1870 bfd_size_type amt;
1871
1872 if (h->root.type == bfd_link_hash_warning)
1873 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1874
1875 /* We only care about symbols defined in shared objects with version
1876 information. */
f5385ebf
AM
1877 if (!h->def_dynamic
1878 || h->def_regular
45d6a902
AM
1879 || h->dynindx == -1
1880 || h->verinfo.verdef == NULL)
1881 return TRUE;
1882
1883 /* See if we already know about this version. */
28caa186
AM
1884 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1885 t != NULL;
1886 t = t->vn_nextref)
45d6a902
AM
1887 {
1888 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1889 continue;
1890
1891 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1892 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1893 return TRUE;
1894
1895 break;
1896 }
1897
1898 /* This is a new version. Add it to tree we are building. */
1899
1900 if (t == NULL)
1901 {
1902 amt = sizeof *t;
28caa186 1903 t = bfd_zalloc (rinfo->info->output_bfd, amt);
45d6a902
AM
1904 if (t == NULL)
1905 {
1906 rinfo->failed = TRUE;
1907 return FALSE;
1908 }
1909
1910 t->vn_bfd = h->verinfo.verdef->vd_bfd;
28caa186
AM
1911 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1912 elf_tdata (rinfo->info->output_bfd)->verref = t;
45d6a902
AM
1913 }
1914
1915 amt = sizeof *a;
28caa186 1916 a = bfd_zalloc (rinfo->info->output_bfd, amt);
14b1c01e
AM
1917 if (a == NULL)
1918 {
1919 rinfo->failed = TRUE;
1920 return FALSE;
1921 }
45d6a902
AM
1922
1923 /* Note that we are copying a string pointer here, and testing it
1924 above. If bfd_elf_string_from_elf_section is ever changed to
1925 discard the string data when low in memory, this will have to be
1926 fixed. */
1927 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1928
1929 a->vna_flags = h->verinfo.verdef->vd_flags;
1930 a->vna_nextptr = t->vn_auxptr;
1931
1932 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1933 ++rinfo->vers;
1934
1935 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1936
1937 t->vn_auxptr = a;
1938
1939 return TRUE;
1940}
1941
1942/* Figure out appropriate versions for all the symbols. We may not
1943 have the version number script until we have read all of the input
1944 files, so until that point we don't know which symbols should be
1945 local. This function is called via elf_link_hash_traverse. */
1946
28caa186 1947static bfd_boolean
268b6b39 1948_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
45d6a902 1949{
28caa186 1950 struct elf_info_failed *sinfo;
45d6a902 1951 struct bfd_link_info *info;
9c5bfbb7 1952 const struct elf_backend_data *bed;
45d6a902
AM
1953 struct elf_info_failed eif;
1954 char *p;
1955 bfd_size_type amt;
1956
268b6b39 1957 sinfo = data;
45d6a902
AM
1958 info = sinfo->info;
1959
1960 if (h->root.type == bfd_link_hash_warning)
1961 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1962
1963 /* Fix the symbol flags. */
1964 eif.failed = FALSE;
1965 eif.info = info;
1966 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1967 {
1968 if (eif.failed)
1969 sinfo->failed = TRUE;
1970 return FALSE;
1971 }
1972
1973 /* We only need version numbers for symbols defined in regular
1974 objects. */
f5385ebf 1975 if (!h->def_regular)
45d6a902
AM
1976 return TRUE;
1977
28caa186 1978 bed = get_elf_backend_data (info->output_bfd);
45d6a902
AM
1979 p = strchr (h->root.root.string, ELF_VER_CHR);
1980 if (p != NULL && h->verinfo.vertree == NULL)
1981 {
1982 struct bfd_elf_version_tree *t;
1983 bfd_boolean hidden;
1984
1985 hidden = TRUE;
1986
1987 /* There are two consecutive ELF_VER_CHR characters if this is
1988 not a hidden symbol. */
1989 ++p;
1990 if (*p == ELF_VER_CHR)
1991 {
1992 hidden = FALSE;
1993 ++p;
1994 }
1995
1996 /* If there is no version string, we can just return out. */
1997 if (*p == '\0')
1998 {
1999 if (hidden)
f5385ebf 2000 h->hidden = 1;
45d6a902
AM
2001 return TRUE;
2002 }
2003
2004 /* Look for the version. If we find it, it is no longer weak. */
2005 for (t = sinfo->verdefs; t != NULL; t = t->next)
2006 {
2007 if (strcmp (t->name, p) == 0)
2008 {
2009 size_t len;
2010 char *alc;
2011 struct bfd_elf_version_expr *d;
2012
2013 len = p - h->root.root.string;
268b6b39 2014 alc = bfd_malloc (len);
45d6a902 2015 if (alc == NULL)
14b1c01e
AM
2016 {
2017 sinfo->failed = TRUE;
2018 return FALSE;
2019 }
45d6a902
AM
2020 memcpy (alc, h->root.root.string, len - 1);
2021 alc[len - 1] = '\0';
2022 if (alc[len - 2] == ELF_VER_CHR)
2023 alc[len - 2] = '\0';
2024
2025 h->verinfo.vertree = t;
2026 t->used = TRUE;
2027 d = NULL;
2028
108ba305
JJ
2029 if (t->globals.list != NULL)
2030 d = (*t->match) (&t->globals, NULL, alc);
45d6a902
AM
2031
2032 /* See if there is anything to force this symbol to
2033 local scope. */
108ba305 2034 if (d == NULL && t->locals.list != NULL)
45d6a902 2035 {
108ba305
JJ
2036 d = (*t->match) (&t->locals, NULL, alc);
2037 if (d != NULL
2038 && h->dynindx != -1
108ba305
JJ
2039 && ! info->export_dynamic)
2040 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
2041 }
2042
2043 free (alc);
2044 break;
2045 }
2046 }
2047
2048 /* If we are building an application, we need to create a
2049 version node for this version. */
36af4a4e 2050 if (t == NULL && info->executable)
45d6a902
AM
2051 {
2052 struct bfd_elf_version_tree **pp;
2053 int version_index;
2054
2055 /* If we aren't going to export this symbol, we don't need
2056 to worry about it. */
2057 if (h->dynindx == -1)
2058 return TRUE;
2059
2060 amt = sizeof *t;
28caa186 2061 t = bfd_zalloc (info->output_bfd, amt);
45d6a902
AM
2062 if (t == NULL)
2063 {
2064 sinfo->failed = TRUE;
2065 return FALSE;
2066 }
2067
45d6a902 2068 t->name = p;
45d6a902
AM
2069 t->name_indx = (unsigned int) -1;
2070 t->used = TRUE;
2071
2072 version_index = 1;
2073 /* Don't count anonymous version tag. */
2074 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2075 version_index = 0;
2076 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2077 ++version_index;
2078 t->vernum = version_index;
2079
2080 *pp = t;
2081
2082 h->verinfo.vertree = t;
2083 }
2084 else if (t == NULL)
2085 {
2086 /* We could not find the version for a symbol when
2087 generating a shared archive. Return an error. */
2088 (*_bfd_error_handler)
c55fe096 2089 (_("%B: version node not found for symbol %s"),
28caa186 2090 info->output_bfd, h->root.root.string);
45d6a902
AM
2091 bfd_set_error (bfd_error_bad_value);
2092 sinfo->failed = TRUE;
2093 return FALSE;
2094 }
2095
2096 if (hidden)
f5385ebf 2097 h->hidden = 1;
45d6a902
AM
2098 }
2099
2100 /* If we don't have a version for this symbol, see if we can find
2101 something. */
2102 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2103 {
2104 struct bfd_elf_version_tree *t;
ae5a3597 2105 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
45d6a902
AM
2106 struct bfd_elf_version_expr *d;
2107
2108 /* See if can find what version this symbol is in. If the
2109 symbol is supposed to be local, then don't actually register
2110 it. */
2111 local_ver = NULL;
ae5a3597
AM
2112 global_ver = NULL;
2113 exist_ver = NULL;
45d6a902
AM
2114 for (t = sinfo->verdefs; t != NULL; t = t->next)
2115 {
108ba305 2116 if (t->globals.list != NULL)
45d6a902 2117 {
108ba305
JJ
2118 d = NULL;
2119 while ((d = (*t->match) (&t->globals, d,
2120 h->root.root.string)) != NULL)
ae5a3597
AM
2121 {
2122 global_ver = t;
2123 local_ver = NULL;
2124 if (d->symver)
2125 exist_ver = t;
2126 d->script = 1;
2127 /* If the match is a wildcard pattern, keep looking for
2128 a more explicit, perhaps even local, match. */
2129 if (d->literal)
108ba305 2130 break;
ae5a3597
AM
2131 }
2132
45d6a902
AM
2133 if (d != NULL)
2134 break;
45d6a902
AM
2135 }
2136
108ba305 2137 if (t->locals.list != NULL)
45d6a902 2138 {
108ba305
JJ
2139 d = NULL;
2140 while ((d = (*t->match) (&t->locals, d,
2141 h->root.root.string)) != NULL)
45d6a902 2142 {
108ba305 2143 local_ver = t;
ae5a3597
AM
2144 /* If the match is a wildcard pattern, keep looking for
2145 a more explicit, perhaps even global, match. */
2146 if (d->literal)
2147 {
2148 /* An exact match overrides a global wildcard. */
2149 global_ver = NULL;
2150 break;
2151 }
45d6a902
AM
2152 }
2153
2154 if (d != NULL)
2155 break;
2156 }
2157 }
2158
ae5a3597
AM
2159 if (global_ver != NULL)
2160 {
2161 h->verinfo.vertree = global_ver;
2162 /* If we already have a versioned symbol that matches the
2163 node for this symbol, then we don't want to create a
2164 duplicate from the unversioned symbol. Instead hide the
2165 unversioned symbol. */
2166 if (exist_ver == global_ver)
2167 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2168 }
2169 else if (local_ver != NULL)
45d6a902
AM
2170 {
2171 h->verinfo.vertree = local_ver;
ae5a3597
AM
2172 if (!info->export_dynamic
2173 || exist_ver == local_ver)
2174 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
2175 }
2176 }
2177
2178 return TRUE;
2179}
2180\f
45d6a902
AM
2181/* Read and swap the relocs from the section indicated by SHDR. This
2182 may be either a REL or a RELA section. The relocations are
2183 translated into RELA relocations and stored in INTERNAL_RELOCS,
2184 which should have already been allocated to contain enough space.
2185 The EXTERNAL_RELOCS are a buffer where the external form of the
2186 relocations should be stored.
2187
2188 Returns FALSE if something goes wrong. */
2189
2190static bfd_boolean
268b6b39 2191elf_link_read_relocs_from_section (bfd *abfd,
243ef1e0 2192 asection *sec,
268b6b39
AM
2193 Elf_Internal_Shdr *shdr,
2194 void *external_relocs,
2195 Elf_Internal_Rela *internal_relocs)
45d6a902 2196{
9c5bfbb7 2197 const struct elf_backend_data *bed;
268b6b39 2198 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
45d6a902
AM
2199 const bfd_byte *erela;
2200 const bfd_byte *erelaend;
2201 Elf_Internal_Rela *irela;
243ef1e0
L
2202 Elf_Internal_Shdr *symtab_hdr;
2203 size_t nsyms;
45d6a902 2204
45d6a902
AM
2205 /* Position ourselves at the start of the section. */
2206 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2207 return FALSE;
2208
2209 /* Read the relocations. */
2210 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2211 return FALSE;
2212
243ef1e0
L
2213 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2214 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2215
45d6a902
AM
2216 bed = get_elf_backend_data (abfd);
2217
2218 /* Convert the external relocations to the internal format. */
2219 if (shdr->sh_entsize == bed->s->sizeof_rel)
2220 swap_in = bed->s->swap_reloc_in;
2221 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2222 swap_in = bed->s->swap_reloca_in;
2223 else
2224 {
2225 bfd_set_error (bfd_error_wrong_format);
2226 return FALSE;
2227 }
2228
2229 erela = external_relocs;
51992aec 2230 erelaend = erela + shdr->sh_size;
45d6a902
AM
2231 irela = internal_relocs;
2232 while (erela < erelaend)
2233 {
243ef1e0
L
2234 bfd_vma r_symndx;
2235
45d6a902 2236 (*swap_in) (abfd, erela, irela);
243ef1e0
L
2237 r_symndx = ELF32_R_SYM (irela->r_info);
2238 if (bed->s->arch_size == 64)
2239 r_symndx >>= 24;
2240 if ((size_t) r_symndx >= nsyms)
2241 {
2242 (*_bfd_error_handler)
d003868e
AM
2243 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2244 " for offset 0x%lx in section `%A'"),
2245 abfd, sec,
2246 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
243ef1e0
L
2247 bfd_set_error (bfd_error_bad_value);
2248 return FALSE;
2249 }
45d6a902
AM
2250 irela += bed->s->int_rels_per_ext_rel;
2251 erela += shdr->sh_entsize;
2252 }
2253
2254 return TRUE;
2255}
2256
2257/* Read and swap the relocs for a section O. They may have been
2258 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2259 not NULL, they are used as buffers to read into. They are known to
2260 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2261 the return value is allocated using either malloc or bfd_alloc,
2262 according to the KEEP_MEMORY argument. If O has two relocation
2263 sections (both REL and RELA relocations), then the REL_HDR
2264 relocations will appear first in INTERNAL_RELOCS, followed by the
2265 REL_HDR2 relocations. */
2266
2267Elf_Internal_Rela *
268b6b39
AM
2268_bfd_elf_link_read_relocs (bfd *abfd,
2269 asection *o,
2270 void *external_relocs,
2271 Elf_Internal_Rela *internal_relocs,
2272 bfd_boolean keep_memory)
45d6a902
AM
2273{
2274 Elf_Internal_Shdr *rel_hdr;
268b6b39 2275 void *alloc1 = NULL;
45d6a902 2276 Elf_Internal_Rela *alloc2 = NULL;
9c5bfbb7 2277 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
2278
2279 if (elf_section_data (o)->relocs != NULL)
2280 return elf_section_data (o)->relocs;
2281
2282 if (o->reloc_count == 0)
2283 return NULL;
2284
2285 rel_hdr = &elf_section_data (o)->rel_hdr;
2286
2287 if (internal_relocs == NULL)
2288 {
2289 bfd_size_type size;
2290
2291 size = o->reloc_count;
2292 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2293 if (keep_memory)
4dd07732 2294 internal_relocs = alloc2 = bfd_alloc (abfd, size);
45d6a902 2295 else
268b6b39 2296 internal_relocs = alloc2 = bfd_malloc (size);
45d6a902
AM
2297 if (internal_relocs == NULL)
2298 goto error_return;
2299 }
2300
2301 if (external_relocs == NULL)
2302 {
2303 bfd_size_type size = rel_hdr->sh_size;
2304
2305 if (elf_section_data (o)->rel_hdr2)
2306 size += elf_section_data (o)->rel_hdr2->sh_size;
268b6b39 2307 alloc1 = bfd_malloc (size);
45d6a902
AM
2308 if (alloc1 == NULL)
2309 goto error_return;
2310 external_relocs = alloc1;
2311 }
2312
243ef1e0 2313 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
45d6a902
AM
2314 external_relocs,
2315 internal_relocs))
2316 goto error_return;
51992aec
AM
2317 if (elf_section_data (o)->rel_hdr2
2318 && (!elf_link_read_relocs_from_section
2319 (abfd, o,
2320 elf_section_data (o)->rel_hdr2,
2321 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2322 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2323 * bed->s->int_rels_per_ext_rel))))
45d6a902
AM
2324 goto error_return;
2325
2326 /* Cache the results for next time, if we can. */
2327 if (keep_memory)
2328 elf_section_data (o)->relocs = internal_relocs;
2329
2330 if (alloc1 != NULL)
2331 free (alloc1);
2332
2333 /* Don't free alloc2, since if it was allocated we are passing it
2334 back (under the name of internal_relocs). */
2335
2336 return internal_relocs;
2337
2338 error_return:
2339 if (alloc1 != NULL)
2340 free (alloc1);
2341 if (alloc2 != NULL)
4dd07732
AM
2342 {
2343 if (keep_memory)
2344 bfd_release (abfd, alloc2);
2345 else
2346 free (alloc2);
2347 }
45d6a902
AM
2348 return NULL;
2349}
2350
2351/* Compute the size of, and allocate space for, REL_HDR which is the
2352 section header for a section containing relocations for O. */
2353
28caa186 2354static bfd_boolean
268b6b39
AM
2355_bfd_elf_link_size_reloc_section (bfd *abfd,
2356 Elf_Internal_Shdr *rel_hdr,
2357 asection *o)
45d6a902
AM
2358{
2359 bfd_size_type reloc_count;
2360 bfd_size_type num_rel_hashes;
2361
2362 /* Figure out how many relocations there will be. */
2363 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2364 reloc_count = elf_section_data (o)->rel_count;
2365 else
2366 reloc_count = elf_section_data (o)->rel_count2;
2367
2368 num_rel_hashes = o->reloc_count;
2369 if (num_rel_hashes < reloc_count)
2370 num_rel_hashes = reloc_count;
2371
2372 /* That allows us to calculate the size of the section. */
2373 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2374
2375 /* The contents field must last into write_object_contents, so we
2376 allocate it with bfd_alloc rather than malloc. Also since we
2377 cannot be sure that the contents will actually be filled in,
2378 we zero the allocated space. */
268b6b39 2379 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
45d6a902
AM
2380 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2381 return FALSE;
2382
2383 /* We only allocate one set of hash entries, so we only do it the
2384 first time we are called. */
2385 if (elf_section_data (o)->rel_hashes == NULL
2386 && num_rel_hashes)
2387 {
2388 struct elf_link_hash_entry **p;
2389
268b6b39 2390 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
45d6a902
AM
2391 if (p == NULL)
2392 return FALSE;
2393
2394 elf_section_data (o)->rel_hashes = p;
2395 }
2396
2397 return TRUE;
2398}
2399
2400/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2401 originated from the section given by INPUT_REL_HDR) to the
2402 OUTPUT_BFD. */
2403
2404bfd_boolean
268b6b39
AM
2405_bfd_elf_link_output_relocs (bfd *output_bfd,
2406 asection *input_section,
2407 Elf_Internal_Shdr *input_rel_hdr,
eac338cf
PB
2408 Elf_Internal_Rela *internal_relocs,
2409 struct elf_link_hash_entry **rel_hash
2410 ATTRIBUTE_UNUSED)
45d6a902
AM
2411{
2412 Elf_Internal_Rela *irela;
2413 Elf_Internal_Rela *irelaend;
2414 bfd_byte *erel;
2415 Elf_Internal_Shdr *output_rel_hdr;
2416 asection *output_section;
2417 unsigned int *rel_countp = NULL;
9c5bfbb7 2418 const struct elf_backend_data *bed;
268b6b39 2419 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
45d6a902
AM
2420
2421 output_section = input_section->output_section;
2422 output_rel_hdr = NULL;
2423
2424 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2425 == input_rel_hdr->sh_entsize)
2426 {
2427 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2428 rel_countp = &elf_section_data (output_section)->rel_count;
2429 }
2430 else if (elf_section_data (output_section)->rel_hdr2
2431 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2432 == input_rel_hdr->sh_entsize))
2433 {
2434 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2435 rel_countp = &elf_section_data (output_section)->rel_count2;
2436 }
2437 else
2438 {
2439 (*_bfd_error_handler)
d003868e
AM
2440 (_("%B: relocation size mismatch in %B section %A"),
2441 output_bfd, input_section->owner, input_section);
297d8443 2442 bfd_set_error (bfd_error_wrong_format);
45d6a902
AM
2443 return FALSE;
2444 }
2445
2446 bed = get_elf_backend_data (output_bfd);
2447 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2448 swap_out = bed->s->swap_reloc_out;
2449 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2450 swap_out = bed->s->swap_reloca_out;
2451 else
2452 abort ();
2453
2454 erel = output_rel_hdr->contents;
2455 erel += *rel_countp * input_rel_hdr->sh_entsize;
2456 irela = internal_relocs;
2457 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2458 * bed->s->int_rels_per_ext_rel);
2459 while (irela < irelaend)
2460 {
2461 (*swap_out) (output_bfd, irela, erel);
2462 irela += bed->s->int_rels_per_ext_rel;
2463 erel += input_rel_hdr->sh_entsize;
2464 }
2465
2466 /* Bump the counter, so that we know where to add the next set of
2467 relocations. */
2468 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2469
2470 return TRUE;
2471}
2472\f
508c3946
L
2473/* Make weak undefined symbols in PIE dynamic. */
2474
2475bfd_boolean
2476_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2477 struct elf_link_hash_entry *h)
2478{
2479 if (info->pie
2480 && h->dynindx == -1
2481 && h->root.type == bfd_link_hash_undefweak)
2482 return bfd_elf_link_record_dynamic_symbol (info, h);
2483
2484 return TRUE;
2485}
2486
45d6a902
AM
2487/* Fix up the flags for a symbol. This handles various cases which
2488 can only be fixed after all the input files are seen. This is
2489 currently called by both adjust_dynamic_symbol and
2490 assign_sym_version, which is unnecessary but perhaps more robust in
2491 the face of future changes. */
2492
28caa186 2493static bfd_boolean
268b6b39
AM
2494_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2495 struct elf_info_failed *eif)
45d6a902 2496{
33774f08 2497 const struct elf_backend_data *bed;
508c3946 2498
45d6a902
AM
2499 /* If this symbol was mentioned in a non-ELF file, try to set
2500 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2501 permit a non-ELF file to correctly refer to a symbol defined in
2502 an ELF dynamic object. */
f5385ebf 2503 if (h->non_elf)
45d6a902
AM
2504 {
2505 while (h->root.type == bfd_link_hash_indirect)
2506 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2507
2508 if (h->root.type != bfd_link_hash_defined
2509 && h->root.type != bfd_link_hash_defweak)
f5385ebf
AM
2510 {
2511 h->ref_regular = 1;
2512 h->ref_regular_nonweak = 1;
2513 }
45d6a902
AM
2514 else
2515 {
2516 if (h->root.u.def.section->owner != NULL
2517 && (bfd_get_flavour (h->root.u.def.section->owner)
2518 == bfd_target_elf_flavour))
f5385ebf
AM
2519 {
2520 h->ref_regular = 1;
2521 h->ref_regular_nonweak = 1;
2522 }
45d6a902 2523 else
f5385ebf 2524 h->def_regular = 1;
45d6a902
AM
2525 }
2526
2527 if (h->dynindx == -1
f5385ebf
AM
2528 && (h->def_dynamic
2529 || h->ref_dynamic))
45d6a902 2530 {
c152c796 2531 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
2532 {
2533 eif->failed = TRUE;
2534 return FALSE;
2535 }
2536 }
2537 }
2538 else
2539 {
f5385ebf 2540 /* Unfortunately, NON_ELF is only correct if the symbol
45d6a902
AM
2541 was first seen in a non-ELF file. Fortunately, if the symbol
2542 was first seen in an ELF file, we're probably OK unless the
2543 symbol was defined in a non-ELF file. Catch that case here.
2544 FIXME: We're still in trouble if the symbol was first seen in
2545 a dynamic object, and then later in a non-ELF regular object. */
2546 if ((h->root.type == bfd_link_hash_defined
2547 || h->root.type == bfd_link_hash_defweak)
f5385ebf 2548 && !h->def_regular
45d6a902
AM
2549 && (h->root.u.def.section->owner != NULL
2550 ? (bfd_get_flavour (h->root.u.def.section->owner)
2551 != bfd_target_elf_flavour)
2552 : (bfd_is_abs_section (h->root.u.def.section)
f5385ebf
AM
2553 && !h->def_dynamic)))
2554 h->def_regular = 1;
45d6a902
AM
2555 }
2556
508c3946 2557 /* Backend specific symbol fixup. */
33774f08
AM
2558 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2559 if (bed->elf_backend_fixup_symbol
2560 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2561 return FALSE;
508c3946 2562
45d6a902
AM
2563 /* If this is a final link, and the symbol was defined as a common
2564 symbol in a regular object file, and there was no definition in
2565 any dynamic object, then the linker will have allocated space for
f5385ebf 2566 the symbol in a common section but the DEF_REGULAR
45d6a902
AM
2567 flag will not have been set. */
2568 if (h->root.type == bfd_link_hash_defined
f5385ebf
AM
2569 && !h->def_regular
2570 && h->ref_regular
2571 && !h->def_dynamic
45d6a902 2572 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
f5385ebf 2573 h->def_regular = 1;
45d6a902
AM
2574
2575 /* If -Bsymbolic was used (which means to bind references to global
2576 symbols to the definition within the shared object), and this
2577 symbol was defined in a regular object, then it actually doesn't
9c7a29a3
AM
2578 need a PLT entry. Likewise, if the symbol has non-default
2579 visibility. If the symbol has hidden or internal visibility, we
c1be741f 2580 will force it local. */
f5385ebf 2581 if (h->needs_plt
45d6a902 2582 && eif->info->shared
0eddce27 2583 && is_elf_hash_table (eif->info->hash)
55255dae 2584 && (SYMBOLIC_BIND (eif->info, h)
c1be741f 2585 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
f5385ebf 2586 && h->def_regular)
45d6a902 2587 {
45d6a902
AM
2588 bfd_boolean force_local;
2589
45d6a902
AM
2590 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2591 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2592 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2593 }
2594
2595 /* If a weak undefined symbol has non-default visibility, we also
2596 hide it from the dynamic linker. */
9c7a29a3 2597 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902 2598 && h->root.type == bfd_link_hash_undefweak)
33774f08 2599 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
45d6a902
AM
2600
2601 /* If this is a weak defined symbol in a dynamic object, and we know
2602 the real definition in the dynamic object, copy interesting flags
2603 over to the real definition. */
f6e332e6 2604 if (h->u.weakdef != NULL)
45d6a902
AM
2605 {
2606 struct elf_link_hash_entry *weakdef;
2607
f6e332e6 2608 weakdef = h->u.weakdef;
45d6a902
AM
2609 if (h->root.type == bfd_link_hash_indirect)
2610 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2611
2612 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2613 || h->root.type == bfd_link_hash_defweak);
f5385ebf 2614 BFD_ASSERT (weakdef->def_dynamic);
45d6a902
AM
2615
2616 /* If the real definition is defined by a regular object file,
2617 don't do anything special. See the longer description in
2618 _bfd_elf_adjust_dynamic_symbol, below. */
f5385ebf 2619 if (weakdef->def_regular)
f6e332e6 2620 h->u.weakdef = NULL;
45d6a902 2621 else
a26587ba
RS
2622 {
2623 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2624 || weakdef->root.type == bfd_link_hash_defweak);
2625 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2626 }
45d6a902
AM
2627 }
2628
2629 return TRUE;
2630}
2631
2632/* Make the backend pick a good value for a dynamic symbol. This is
2633 called via elf_link_hash_traverse, and also calls itself
2634 recursively. */
2635
28caa186 2636static bfd_boolean
268b6b39 2637_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 2638{
268b6b39 2639 struct elf_info_failed *eif = data;
45d6a902 2640 bfd *dynobj;
9c5bfbb7 2641 const struct elf_backend_data *bed;
45d6a902 2642
0eddce27 2643 if (! is_elf_hash_table (eif->info->hash))
45d6a902
AM
2644 return FALSE;
2645
2646 if (h->root.type == bfd_link_hash_warning)
2647 {
a6aa5195
AM
2648 h->got = elf_hash_table (eif->info)->init_got_offset;
2649 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2650
2651 /* When warning symbols are created, they **replace** the "real"
2652 entry in the hash table, thus we never get to see the real
2653 symbol in a hash traversal. So look at it now. */
2654 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2655 }
2656
2657 /* Ignore indirect symbols. These are added by the versioning code. */
2658 if (h->root.type == bfd_link_hash_indirect)
2659 return TRUE;
2660
2661 /* Fix the symbol flags. */
2662 if (! _bfd_elf_fix_symbol_flags (h, eif))
2663 return FALSE;
2664
2665 /* If this symbol does not require a PLT entry, and it is not
2666 defined by a dynamic object, or is not referenced by a regular
2667 object, ignore it. We do have to handle a weak defined symbol,
2668 even if no regular object refers to it, if we decided to add it
2669 to the dynamic symbol table. FIXME: Do we normally need to worry
2670 about symbols which are defined by one dynamic object and
2671 referenced by another one? */
f5385ebf
AM
2672 if (!h->needs_plt
2673 && (h->def_regular
2674 || !h->def_dynamic
2675 || (!h->ref_regular
f6e332e6 2676 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
45d6a902 2677 {
a6aa5195 2678 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2679 return TRUE;
2680 }
2681
2682 /* If we've already adjusted this symbol, don't do it again. This
2683 can happen via a recursive call. */
f5385ebf 2684 if (h->dynamic_adjusted)
45d6a902
AM
2685 return TRUE;
2686
2687 /* Don't look at this symbol again. Note that we must set this
2688 after checking the above conditions, because we may look at a
2689 symbol once, decide not to do anything, and then get called
2690 recursively later after REF_REGULAR is set below. */
f5385ebf 2691 h->dynamic_adjusted = 1;
45d6a902
AM
2692
2693 /* If this is a weak definition, and we know a real definition, and
2694 the real symbol is not itself defined by a regular object file,
2695 then get a good value for the real definition. We handle the
2696 real symbol first, for the convenience of the backend routine.
2697
2698 Note that there is a confusing case here. If the real definition
2699 is defined by a regular object file, we don't get the real symbol
2700 from the dynamic object, but we do get the weak symbol. If the
2701 processor backend uses a COPY reloc, then if some routine in the
2702 dynamic object changes the real symbol, we will not see that
2703 change in the corresponding weak symbol. This is the way other
2704 ELF linkers work as well, and seems to be a result of the shared
2705 library model.
2706
2707 I will clarify this issue. Most SVR4 shared libraries define the
2708 variable _timezone and define timezone as a weak synonym. The
2709 tzset call changes _timezone. If you write
2710 extern int timezone;
2711 int _timezone = 5;
2712 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2713 you might expect that, since timezone is a synonym for _timezone,
2714 the same number will print both times. However, if the processor
2715 backend uses a COPY reloc, then actually timezone will be copied
2716 into your process image, and, since you define _timezone
2717 yourself, _timezone will not. Thus timezone and _timezone will
2718 wind up at different memory locations. The tzset call will set
2719 _timezone, leaving timezone unchanged. */
2720
f6e332e6 2721 if (h->u.weakdef != NULL)
45d6a902
AM
2722 {
2723 /* If we get to this point, we know there is an implicit
2724 reference by a regular object file via the weak symbol H.
2725 FIXME: Is this really true? What if the traversal finds
f6e332e6
AM
2726 H->U.WEAKDEF before it finds H? */
2727 h->u.weakdef->ref_regular = 1;
45d6a902 2728
f6e332e6 2729 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
45d6a902
AM
2730 return FALSE;
2731 }
2732
2733 /* If a symbol has no type and no size and does not require a PLT
2734 entry, then we are probably about to do the wrong thing here: we
2735 are probably going to create a COPY reloc for an empty object.
2736 This case can arise when a shared object is built with assembly
2737 code, and the assembly code fails to set the symbol type. */
2738 if (h->size == 0
2739 && h->type == STT_NOTYPE
f5385ebf 2740 && !h->needs_plt)
45d6a902
AM
2741 (*_bfd_error_handler)
2742 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2743 h->root.root.string);
2744
2745 dynobj = elf_hash_table (eif->info)->dynobj;
2746 bed = get_elf_backend_data (dynobj);
e7c33416 2747
45d6a902
AM
2748 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2749 {
2750 eif->failed = TRUE;
2751 return FALSE;
2752 }
2753
2754 return TRUE;
2755}
2756
027297b7
L
2757/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2758 DYNBSS. */
2759
2760bfd_boolean
2761_bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2762 asection *dynbss)
2763{
91ac5911 2764 unsigned int power_of_two;
027297b7
L
2765 bfd_vma mask;
2766 asection *sec = h->root.u.def.section;
2767
2768 /* The section aligment of definition is the maximum alignment
91ac5911
L
2769 requirement of symbols defined in the section. Since we don't
2770 know the symbol alignment requirement, we start with the
2771 maximum alignment and check low bits of the symbol address
2772 for the minimum alignment. */
2773 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2774 mask = ((bfd_vma) 1 << power_of_two) - 1;
2775 while ((h->root.u.def.value & mask) != 0)
2776 {
2777 mask >>= 1;
2778 --power_of_two;
2779 }
027297b7 2780
91ac5911
L
2781 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2782 dynbss))
027297b7
L
2783 {
2784 /* Adjust the section alignment if needed. */
2785 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
91ac5911 2786 power_of_two))
027297b7
L
2787 return FALSE;
2788 }
2789
91ac5911 2790 /* We make sure that the symbol will be aligned properly. */
027297b7
L
2791 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2792
2793 /* Define the symbol as being at this point in DYNBSS. */
2794 h->root.u.def.section = dynbss;
2795 h->root.u.def.value = dynbss->size;
2796
2797 /* Increment the size of DYNBSS to make room for the symbol. */
2798 dynbss->size += h->size;
2799
2800 return TRUE;
2801}
2802
45d6a902
AM
2803/* Adjust all external symbols pointing into SEC_MERGE sections
2804 to reflect the object merging within the sections. */
2805
28caa186 2806static bfd_boolean
268b6b39 2807_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
2808{
2809 asection *sec;
2810
2811 if (h->root.type == bfd_link_hash_warning)
2812 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2813
2814 if ((h->root.type == bfd_link_hash_defined
2815 || h->root.type == bfd_link_hash_defweak)
2816 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2817 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2818 {
268b6b39 2819 bfd *output_bfd = data;
45d6a902
AM
2820
2821 h->root.u.def.value =
2822 _bfd_merged_section_offset (output_bfd,
2823 &h->root.u.def.section,
2824 elf_section_data (sec)->sec_info,
753731ee 2825 h->root.u.def.value);
45d6a902
AM
2826 }
2827
2828 return TRUE;
2829}
986a241f
RH
2830
2831/* Returns false if the symbol referred to by H should be considered
2832 to resolve local to the current module, and true if it should be
2833 considered to bind dynamically. */
2834
2835bfd_boolean
268b6b39
AM
2836_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2837 struct bfd_link_info *info,
2838 bfd_boolean ignore_protected)
986a241f
RH
2839{
2840 bfd_boolean binding_stays_local_p;
fcb93ecf
PB
2841 const struct elf_backend_data *bed;
2842 struct elf_link_hash_table *hash_table;
986a241f
RH
2843
2844 if (h == NULL)
2845 return FALSE;
2846
2847 while (h->root.type == bfd_link_hash_indirect
2848 || h->root.type == bfd_link_hash_warning)
2849 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2850
2851 /* If it was forced local, then clearly it's not dynamic. */
2852 if (h->dynindx == -1)
2853 return FALSE;
f5385ebf 2854 if (h->forced_local)
986a241f
RH
2855 return FALSE;
2856
2857 /* Identify the cases where name binding rules say that a
2858 visible symbol resolves locally. */
55255dae 2859 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
986a241f
RH
2860
2861 switch (ELF_ST_VISIBILITY (h->other))
2862 {
2863 case STV_INTERNAL:
2864 case STV_HIDDEN:
2865 return FALSE;
2866
2867 case STV_PROTECTED:
fcb93ecf
PB
2868 hash_table = elf_hash_table (info);
2869 if (!is_elf_hash_table (hash_table))
2870 return FALSE;
2871
2872 bed = get_elf_backend_data (hash_table->dynobj);
2873
986a241f
RH
2874 /* Proper resolution for function pointer equality may require
2875 that these symbols perhaps be resolved dynamically, even though
2876 we should be resolving them to the current module. */
fcb93ecf 2877 if (!ignore_protected || !bed->is_function_type (h->type))
986a241f
RH
2878 binding_stays_local_p = TRUE;
2879 break;
2880
2881 default:
986a241f
RH
2882 break;
2883 }
2884
aa37626c 2885 /* If it isn't defined locally, then clearly it's dynamic. */
f5385ebf 2886 if (!h->def_regular)
aa37626c
L
2887 return TRUE;
2888
986a241f
RH
2889 /* Otherwise, the symbol is dynamic if binding rules don't tell
2890 us that it remains local. */
2891 return !binding_stays_local_p;
2892}
f6c52c13
AM
2893
2894/* Return true if the symbol referred to by H should be considered
2895 to resolve local to the current module, and false otherwise. Differs
2896 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2897 undefined symbols and weak symbols. */
2898
2899bfd_boolean
268b6b39
AM
2900_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2901 struct bfd_link_info *info,
2902 bfd_boolean local_protected)
f6c52c13 2903{
fcb93ecf
PB
2904 const struct elf_backend_data *bed;
2905 struct elf_link_hash_table *hash_table;
2906
f6c52c13
AM
2907 /* If it's a local sym, of course we resolve locally. */
2908 if (h == NULL)
2909 return TRUE;
2910
d95edcac
L
2911 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2912 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2913 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2914 return TRUE;
2915
7e2294f9
AO
2916 /* Common symbols that become definitions don't get the DEF_REGULAR
2917 flag set, so test it first, and don't bail out. */
2918 if (ELF_COMMON_DEF_P (h))
2919 /* Do nothing. */;
f6c52c13 2920 /* If we don't have a definition in a regular file, then we can't
49ff44d6
L
2921 resolve locally. The sym is either undefined or dynamic. */
2922 else if (!h->def_regular)
f6c52c13
AM
2923 return FALSE;
2924
2925 /* Forced local symbols resolve locally. */
f5385ebf 2926 if (h->forced_local)
f6c52c13
AM
2927 return TRUE;
2928
2929 /* As do non-dynamic symbols. */
2930 if (h->dynindx == -1)
2931 return TRUE;
2932
2933 /* At this point, we know the symbol is defined and dynamic. In an
2934 executable it must resolve locally, likewise when building symbolic
2935 shared libraries. */
55255dae 2936 if (info->executable || SYMBOLIC_BIND (info, h))
f6c52c13
AM
2937 return TRUE;
2938
2939 /* Now deal with defined dynamic symbols in shared libraries. Ones
2940 with default visibility might not resolve locally. */
2941 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2942 return FALSE;
2943
fcb93ecf
PB
2944 hash_table = elf_hash_table (info);
2945 if (!is_elf_hash_table (hash_table))
2946 return TRUE;
2947
2948 bed = get_elf_backend_data (hash_table->dynobj);
2949
1c16dfa5 2950 /* STV_PROTECTED non-function symbols are local. */
fcb93ecf 2951 if (!bed->is_function_type (h->type))
1c16dfa5
L
2952 return TRUE;
2953
f6c52c13
AM
2954 /* Function pointer equality tests may require that STV_PROTECTED
2955 symbols be treated as dynamic symbols, even when we know that the
2956 dynamic linker will resolve them locally. */
2957 return local_protected;
2958}
e1918d23
AM
2959
2960/* Caches some TLS segment info, and ensures that the TLS segment vma is
2961 aligned. Returns the first TLS output section. */
2962
2963struct bfd_section *
2964_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2965{
2966 struct bfd_section *sec, *tls;
2967 unsigned int align = 0;
2968
2969 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2970 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2971 break;
2972 tls = sec;
2973
2974 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2975 if (sec->alignment_power > align)
2976 align = sec->alignment_power;
2977
2978 elf_hash_table (info)->tls_sec = tls;
2979
2980 /* Ensure the alignment of the first section is the largest alignment,
2981 so that the tls segment starts aligned. */
2982 if (tls != NULL)
2983 tls->alignment_power = align;
2984
2985 return tls;
2986}
0ad989f9
L
2987
2988/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2989static bfd_boolean
2990is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2991 Elf_Internal_Sym *sym)
2992{
a4d8e49b
L
2993 const struct elf_backend_data *bed;
2994
0ad989f9
L
2995 /* Local symbols do not count, but target specific ones might. */
2996 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2997 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2998 return FALSE;
2999
fcb93ecf 3000 bed = get_elf_backend_data (abfd);
0ad989f9 3001 /* Function symbols do not count. */
fcb93ecf 3002 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
0ad989f9
L
3003 return FALSE;
3004
3005 /* If the section is undefined, then so is the symbol. */
3006 if (sym->st_shndx == SHN_UNDEF)
3007 return FALSE;
3008
3009 /* If the symbol is defined in the common section, then
3010 it is a common definition and so does not count. */
a4d8e49b 3011 if (bed->common_definition (sym))
0ad989f9
L
3012 return FALSE;
3013
3014 /* If the symbol is in a target specific section then we
3015 must rely upon the backend to tell us what it is. */
3016 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3017 /* FIXME - this function is not coded yet:
3018
3019 return _bfd_is_global_symbol_definition (abfd, sym);
3020
3021 Instead for now assume that the definition is not global,
3022 Even if this is wrong, at least the linker will behave
3023 in the same way that it used to do. */
3024 return FALSE;
3025
3026 return TRUE;
3027}
3028
3029/* Search the symbol table of the archive element of the archive ABFD
3030 whose archive map contains a mention of SYMDEF, and determine if
3031 the symbol is defined in this element. */
3032static bfd_boolean
3033elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3034{
3035 Elf_Internal_Shdr * hdr;
3036 bfd_size_type symcount;
3037 bfd_size_type extsymcount;
3038 bfd_size_type extsymoff;
3039 Elf_Internal_Sym *isymbuf;
3040 Elf_Internal_Sym *isym;
3041 Elf_Internal_Sym *isymend;
3042 bfd_boolean result;
3043
3044 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3045 if (abfd == NULL)
3046 return FALSE;
3047
3048 if (! bfd_check_format (abfd, bfd_object))
3049 return FALSE;
3050
3051 /* If we have already included the element containing this symbol in the
3052 link then we do not need to include it again. Just claim that any symbol
3053 it contains is not a definition, so that our caller will not decide to
3054 (re)include this element. */
3055 if (abfd->archive_pass)
3056 return FALSE;
3057
3058 /* Select the appropriate symbol table. */
3059 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3060 hdr = &elf_tdata (abfd)->symtab_hdr;
3061 else
3062 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3063
3064 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3065
3066 /* The sh_info field of the symtab header tells us where the
3067 external symbols start. We don't care about the local symbols. */
3068 if (elf_bad_symtab (abfd))
3069 {
3070 extsymcount = symcount;
3071 extsymoff = 0;
3072 }
3073 else
3074 {
3075 extsymcount = symcount - hdr->sh_info;
3076 extsymoff = hdr->sh_info;
3077 }
3078
3079 if (extsymcount == 0)
3080 return FALSE;
3081
3082 /* Read in the symbol table. */
3083 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3084 NULL, NULL, NULL);
3085 if (isymbuf == NULL)
3086 return FALSE;
3087
3088 /* Scan the symbol table looking for SYMDEF. */
3089 result = FALSE;
3090 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3091 {
3092 const char *name;
3093
3094 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3095 isym->st_name);
3096 if (name == NULL)
3097 break;
3098
3099 if (strcmp (name, symdef->name) == 0)
3100 {
3101 result = is_global_data_symbol_definition (abfd, isym);
3102 break;
3103 }
3104 }
3105
3106 free (isymbuf);
3107
3108 return result;
3109}
3110\f
5a580b3a
AM
3111/* Add an entry to the .dynamic table. */
3112
3113bfd_boolean
3114_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3115 bfd_vma tag,
3116 bfd_vma val)
3117{
3118 struct elf_link_hash_table *hash_table;
3119 const struct elf_backend_data *bed;
3120 asection *s;
3121 bfd_size_type newsize;
3122 bfd_byte *newcontents;
3123 Elf_Internal_Dyn dyn;
3124
3125 hash_table = elf_hash_table (info);
3126 if (! is_elf_hash_table (hash_table))
3127 return FALSE;
3128
3129 bed = get_elf_backend_data (hash_table->dynobj);
3130 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3131 BFD_ASSERT (s != NULL);
3132
eea6121a 3133 newsize = s->size + bed->s->sizeof_dyn;
5a580b3a
AM
3134 newcontents = bfd_realloc (s->contents, newsize);
3135 if (newcontents == NULL)
3136 return FALSE;
3137
3138 dyn.d_tag = tag;
3139 dyn.d_un.d_val = val;
eea6121a 3140 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
5a580b3a 3141
eea6121a 3142 s->size = newsize;
5a580b3a
AM
3143 s->contents = newcontents;
3144
3145 return TRUE;
3146}
3147
3148/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3149 otherwise just check whether one already exists. Returns -1 on error,
3150 1 if a DT_NEEDED tag already exists, and 0 on success. */
3151
4ad4eba5 3152static int
7e9f0867
AM
3153elf_add_dt_needed_tag (bfd *abfd,
3154 struct bfd_link_info *info,
4ad4eba5
AM
3155 const char *soname,
3156 bfd_boolean do_it)
5a580b3a
AM
3157{
3158 struct elf_link_hash_table *hash_table;
3159 bfd_size_type oldsize;
3160 bfd_size_type strindex;
3161
7e9f0867
AM
3162 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3163 return -1;
3164
5a580b3a
AM
3165 hash_table = elf_hash_table (info);
3166 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3167 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3168 if (strindex == (bfd_size_type) -1)
3169 return -1;
3170
3171 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3172 {
3173 asection *sdyn;
3174 const struct elf_backend_data *bed;
3175 bfd_byte *extdyn;
3176
3177 bed = get_elf_backend_data (hash_table->dynobj);
3178 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
7e9f0867
AM
3179 if (sdyn != NULL)
3180 for (extdyn = sdyn->contents;
3181 extdyn < sdyn->contents + sdyn->size;
3182 extdyn += bed->s->sizeof_dyn)
3183 {
3184 Elf_Internal_Dyn dyn;
5a580b3a 3185
7e9f0867
AM
3186 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3187 if (dyn.d_tag == DT_NEEDED
3188 && dyn.d_un.d_val == strindex)
3189 {
3190 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3191 return 1;
3192 }
3193 }
5a580b3a
AM
3194 }
3195
3196 if (do_it)
3197 {
7e9f0867
AM
3198 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3199 return -1;
3200
5a580b3a
AM
3201 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3202 return -1;
3203 }
3204 else
3205 /* We were just checking for existence of the tag. */
3206 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3207
3208 return 0;
3209}
3210
3211/* Sort symbol by value and section. */
4ad4eba5
AM
3212static int
3213elf_sort_symbol (const void *arg1, const void *arg2)
5a580b3a
AM
3214{
3215 const struct elf_link_hash_entry *h1;
3216 const struct elf_link_hash_entry *h2;
10b7e05b 3217 bfd_signed_vma vdiff;
5a580b3a
AM
3218
3219 h1 = *(const struct elf_link_hash_entry **) arg1;
3220 h2 = *(const struct elf_link_hash_entry **) arg2;
10b7e05b
NC
3221 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3222 if (vdiff != 0)
3223 return vdiff > 0 ? 1 : -1;
3224 else
3225 {
3226 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3227 if (sdiff != 0)
3228 return sdiff > 0 ? 1 : -1;
3229 }
5a580b3a
AM
3230 return 0;
3231}
4ad4eba5 3232
5a580b3a
AM
3233/* This function is used to adjust offsets into .dynstr for
3234 dynamic symbols. This is called via elf_link_hash_traverse. */
3235
3236static bfd_boolean
3237elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3238{
3239 struct elf_strtab_hash *dynstr = data;
3240
3241 if (h->root.type == bfd_link_hash_warning)
3242 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3243
3244 if (h->dynindx != -1)
3245 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3246 return TRUE;
3247}
3248
3249/* Assign string offsets in .dynstr, update all structures referencing
3250 them. */
3251
4ad4eba5
AM
3252static bfd_boolean
3253elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5a580b3a
AM
3254{
3255 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3256 struct elf_link_local_dynamic_entry *entry;
3257 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3258 bfd *dynobj = hash_table->dynobj;
3259 asection *sdyn;
3260 bfd_size_type size;
3261 const struct elf_backend_data *bed;
3262 bfd_byte *extdyn;
3263
3264 _bfd_elf_strtab_finalize (dynstr);
3265 size = _bfd_elf_strtab_size (dynstr);
3266
3267 bed = get_elf_backend_data (dynobj);
3268 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3269 BFD_ASSERT (sdyn != NULL);
3270
3271 /* Update all .dynamic entries referencing .dynstr strings. */
3272 for (extdyn = sdyn->contents;
eea6121a 3273 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
3274 extdyn += bed->s->sizeof_dyn)
3275 {
3276 Elf_Internal_Dyn dyn;
3277
3278 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3279 switch (dyn.d_tag)
3280 {
3281 case DT_STRSZ:
3282 dyn.d_un.d_val = size;
3283 break;
3284 case DT_NEEDED:
3285 case DT_SONAME:
3286 case DT_RPATH:
3287 case DT_RUNPATH:
3288 case DT_FILTER:
3289 case DT_AUXILIARY:
3290 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3291 break;
3292 default:
3293 continue;
3294 }
3295 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3296 }
3297
3298 /* Now update local dynamic symbols. */
3299 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3300 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3301 entry->isym.st_name);
3302
3303 /* And the rest of dynamic symbols. */
3304 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3305
3306 /* Adjust version definitions. */
3307 if (elf_tdata (output_bfd)->cverdefs)
3308 {
3309 asection *s;
3310 bfd_byte *p;
3311 bfd_size_type i;
3312 Elf_Internal_Verdef def;
3313 Elf_Internal_Verdaux defaux;
3314
3315 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3316 p = s->contents;
3317 do
3318 {
3319 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3320 &def);
3321 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
3322 if (def.vd_aux != sizeof (Elf_External_Verdef))
3323 continue;
5a580b3a
AM
3324 for (i = 0; i < def.vd_cnt; ++i)
3325 {
3326 _bfd_elf_swap_verdaux_in (output_bfd,
3327 (Elf_External_Verdaux *) p, &defaux);
3328 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3329 defaux.vda_name);
3330 _bfd_elf_swap_verdaux_out (output_bfd,
3331 &defaux, (Elf_External_Verdaux *) p);
3332 p += sizeof (Elf_External_Verdaux);
3333 }
3334 }
3335 while (def.vd_next);
3336 }
3337
3338 /* Adjust version references. */
3339 if (elf_tdata (output_bfd)->verref)
3340 {
3341 asection *s;
3342 bfd_byte *p;
3343 bfd_size_type i;
3344 Elf_Internal_Verneed need;
3345 Elf_Internal_Vernaux needaux;
3346
3347 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3348 p = s->contents;
3349 do
3350 {
3351 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3352 &need);
3353 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3354 _bfd_elf_swap_verneed_out (output_bfd, &need,
3355 (Elf_External_Verneed *) p);
3356 p += sizeof (Elf_External_Verneed);
3357 for (i = 0; i < need.vn_cnt; ++i)
3358 {
3359 _bfd_elf_swap_vernaux_in (output_bfd,
3360 (Elf_External_Vernaux *) p, &needaux);
3361 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3362 needaux.vna_name);
3363 _bfd_elf_swap_vernaux_out (output_bfd,
3364 &needaux,
3365 (Elf_External_Vernaux *) p);
3366 p += sizeof (Elf_External_Vernaux);
3367 }
3368 }
3369 while (need.vn_next);
3370 }
3371
3372 return TRUE;
3373}
3374\f
13285a1b
AM
3375/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3376 The default is to only match when the INPUT and OUTPUT are exactly
3377 the same target. */
3378
3379bfd_boolean
3380_bfd_elf_default_relocs_compatible (const bfd_target *input,
3381 const bfd_target *output)
3382{
3383 return input == output;
3384}
3385
3386/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3387 This version is used when different targets for the same architecture
3388 are virtually identical. */
3389
3390bfd_boolean
3391_bfd_elf_relocs_compatible (const bfd_target *input,
3392 const bfd_target *output)
3393{
3394 const struct elf_backend_data *obed, *ibed;
3395
3396 if (input == output)
3397 return TRUE;
3398
3399 ibed = xvec_get_elf_backend_data (input);
3400 obed = xvec_get_elf_backend_data (output);
3401
3402 if (ibed->arch != obed->arch)
3403 return FALSE;
3404
3405 /* If both backends are using this function, deem them compatible. */
3406 return ibed->relocs_compatible == obed->relocs_compatible;
3407}
3408
4ad4eba5
AM
3409/* Add symbols from an ELF object file to the linker hash table. */
3410
3411static bfd_boolean
3412elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3413{
4ad4eba5
AM
3414 Elf_Internal_Shdr *hdr;
3415 bfd_size_type symcount;
3416 bfd_size_type extsymcount;
3417 bfd_size_type extsymoff;
3418 struct elf_link_hash_entry **sym_hash;
3419 bfd_boolean dynamic;
3420 Elf_External_Versym *extversym = NULL;
3421 Elf_External_Versym *ever;
3422 struct elf_link_hash_entry *weaks;
3423 struct elf_link_hash_entry **nondeflt_vers = NULL;
3424 bfd_size_type nondeflt_vers_cnt = 0;
3425 Elf_Internal_Sym *isymbuf = NULL;
3426 Elf_Internal_Sym *isym;
3427 Elf_Internal_Sym *isymend;
3428 const struct elf_backend_data *bed;
3429 bfd_boolean add_needed;
66eb6687 3430 struct elf_link_hash_table *htab;
4ad4eba5 3431 bfd_size_type amt;
66eb6687 3432 void *alloc_mark = NULL;
4f87808c
AM
3433 struct bfd_hash_entry **old_table = NULL;
3434 unsigned int old_size = 0;
3435 unsigned int old_count = 0;
66eb6687
AM
3436 void *old_tab = NULL;
3437 void *old_hash;
3438 void *old_ent;
3439 struct bfd_link_hash_entry *old_undefs = NULL;
3440 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3441 long old_dynsymcount = 0;
3442 size_t tabsize = 0;
3443 size_t hashsize = 0;
4ad4eba5 3444
66eb6687 3445 htab = elf_hash_table (info);
4ad4eba5 3446 bed = get_elf_backend_data (abfd);
4ad4eba5
AM
3447
3448 if ((abfd->flags & DYNAMIC) == 0)
3449 dynamic = FALSE;
3450 else
3451 {
3452 dynamic = TRUE;
3453
3454 /* You can't use -r against a dynamic object. Also, there's no
3455 hope of using a dynamic object which does not exactly match
3456 the format of the output file. */
3457 if (info->relocatable
66eb6687 3458 || !is_elf_hash_table (htab)
f13a99db 3459 || info->output_bfd->xvec != abfd->xvec)
4ad4eba5 3460 {
9a0789ec
NC
3461 if (info->relocatable)
3462 bfd_set_error (bfd_error_invalid_operation);
3463 else
3464 bfd_set_error (bfd_error_wrong_format);
4ad4eba5
AM
3465 goto error_return;
3466 }
3467 }
3468
3469 /* As a GNU extension, any input sections which are named
3470 .gnu.warning.SYMBOL are treated as warning symbols for the given
3471 symbol. This differs from .gnu.warning sections, which generate
3472 warnings when they are included in an output file. */
3473 if (info->executable)
3474 {
3475 asection *s;
3476
3477 for (s = abfd->sections; s != NULL; s = s->next)
3478 {
3479 const char *name;
3480
3481 name = bfd_get_section_name (abfd, s);
0112cd26 3482 if (CONST_STRNEQ (name, ".gnu.warning."))
4ad4eba5
AM
3483 {
3484 char *msg;
3485 bfd_size_type sz;
4ad4eba5
AM
3486
3487 name += sizeof ".gnu.warning." - 1;
3488
3489 /* If this is a shared object, then look up the symbol
3490 in the hash table. If it is there, and it is already
3491 been defined, then we will not be using the entry
3492 from this shared object, so we don't need to warn.
3493 FIXME: If we see the definition in a regular object
3494 later on, we will warn, but we shouldn't. The only
3495 fix is to keep track of what warnings we are supposed
3496 to emit, and then handle them all at the end of the
3497 link. */
3498 if (dynamic)
3499 {
3500 struct elf_link_hash_entry *h;
3501
66eb6687 3502 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4ad4eba5
AM
3503
3504 /* FIXME: What about bfd_link_hash_common? */
3505 if (h != NULL
3506 && (h->root.type == bfd_link_hash_defined
3507 || h->root.type == bfd_link_hash_defweak))
3508 {
3509 /* We don't want to issue this warning. Clobber
3510 the section size so that the warning does not
3511 get copied into the output file. */
eea6121a 3512 s->size = 0;
4ad4eba5
AM
3513 continue;
3514 }
3515 }
3516
eea6121a 3517 sz = s->size;
370a0e1b 3518 msg = bfd_alloc (abfd, sz + 1);
4ad4eba5
AM
3519 if (msg == NULL)
3520 goto error_return;
3521
370a0e1b 3522 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4ad4eba5
AM
3523 goto error_return;
3524
370a0e1b 3525 msg[sz] = '\0';
4ad4eba5
AM
3526
3527 if (! (_bfd_generic_link_add_one_symbol
3528 (info, abfd, name, BSF_WARNING, s, 0, msg,
66eb6687 3529 FALSE, bed->collect, NULL)))
4ad4eba5
AM
3530 goto error_return;
3531
3532 if (! info->relocatable)
3533 {
3534 /* Clobber the section size so that the warning does
3535 not get copied into the output file. */
eea6121a 3536 s->size = 0;
11d2f718
AM
3537
3538 /* Also set SEC_EXCLUDE, so that symbols defined in
3539 the warning section don't get copied to the output. */
3540 s->flags |= SEC_EXCLUDE;
4ad4eba5
AM
3541 }
3542 }
3543 }
3544 }
3545
3546 add_needed = TRUE;
3547 if (! dynamic)
3548 {
3549 /* If we are creating a shared library, create all the dynamic
3550 sections immediately. We need to attach them to something,
3551 so we attach them to this BFD, provided it is the right
3552 format. FIXME: If there are no input BFD's of the same
3553 format as the output, we can't make a shared library. */
3554 if (info->shared
66eb6687 3555 && is_elf_hash_table (htab)
f13a99db 3556 && info->output_bfd->xvec == abfd->xvec
66eb6687 3557 && !htab->dynamic_sections_created)
4ad4eba5
AM
3558 {
3559 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3560 goto error_return;
3561 }
3562 }
66eb6687 3563 else if (!is_elf_hash_table (htab))
4ad4eba5
AM
3564 goto error_return;
3565 else
3566 {
3567 asection *s;
3568 const char *soname = NULL;
3569 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3570 int ret;
3571
3572 /* ld --just-symbols and dynamic objects don't mix very well.
92fd189d 3573 ld shouldn't allow it. */
4ad4eba5
AM
3574 if ((s = abfd->sections) != NULL
3575 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
92fd189d 3576 abort ();
4ad4eba5
AM
3577
3578 /* If this dynamic lib was specified on the command line with
3579 --as-needed in effect, then we don't want to add a DT_NEEDED
3580 tag unless the lib is actually used. Similary for libs brought
e56f61be
L
3581 in by another lib's DT_NEEDED. When --no-add-needed is used
3582 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3583 any dynamic library in DT_NEEDED tags in the dynamic lib at
3584 all. */
3585 add_needed = (elf_dyn_lib_class (abfd)
3586 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3587 | DYN_NO_NEEDED)) == 0;
4ad4eba5
AM
3588
3589 s = bfd_get_section_by_name (abfd, ".dynamic");
3590 if (s != NULL)
3591 {
3592 bfd_byte *dynbuf;
3593 bfd_byte *extdyn;
cb33740c 3594 unsigned int elfsec;
4ad4eba5
AM
3595 unsigned long shlink;
3596
eea6121a 3597 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4ad4eba5
AM
3598 goto error_free_dyn;
3599
3600 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
cb33740c 3601 if (elfsec == SHN_BAD)
4ad4eba5
AM
3602 goto error_free_dyn;
3603 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3604
3605 for (extdyn = dynbuf;
eea6121a 3606 extdyn < dynbuf + s->size;
4ad4eba5
AM
3607 extdyn += bed->s->sizeof_dyn)
3608 {
3609 Elf_Internal_Dyn dyn;
3610
3611 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3612 if (dyn.d_tag == DT_SONAME)
3613 {
3614 unsigned int tagv = dyn.d_un.d_val;
3615 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3616 if (soname == NULL)
3617 goto error_free_dyn;
3618 }
3619 if (dyn.d_tag == DT_NEEDED)
3620 {
3621 struct bfd_link_needed_list *n, **pn;
3622 char *fnm, *anm;
3623 unsigned int tagv = dyn.d_un.d_val;
3624
3625 amt = sizeof (struct bfd_link_needed_list);
3626 n = bfd_alloc (abfd, amt);
3627 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3628 if (n == NULL || fnm == NULL)
3629 goto error_free_dyn;
3630 amt = strlen (fnm) + 1;
3631 anm = bfd_alloc (abfd, amt);
3632 if (anm == NULL)
3633 goto error_free_dyn;
3634 memcpy (anm, fnm, amt);
3635 n->name = anm;
3636 n->by = abfd;
3637 n->next = NULL;
66eb6687 3638 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4ad4eba5
AM
3639 ;
3640 *pn = n;
3641 }
3642 if (dyn.d_tag == DT_RUNPATH)
3643 {
3644 struct bfd_link_needed_list *n, **pn;
3645 char *fnm, *anm;
3646 unsigned int tagv = dyn.d_un.d_val;
3647
3648 amt = sizeof (struct bfd_link_needed_list);
3649 n = bfd_alloc (abfd, amt);
3650 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3651 if (n == NULL || fnm == NULL)
3652 goto error_free_dyn;
3653 amt = strlen (fnm) + 1;
3654 anm = bfd_alloc (abfd, amt);
3655 if (anm == NULL)
3656 goto error_free_dyn;
3657 memcpy (anm, fnm, amt);
3658 n->name = anm;
3659 n->by = abfd;
3660 n->next = NULL;
3661 for (pn = & runpath;
3662 *pn != NULL;
3663 pn = &(*pn)->next)
3664 ;
3665 *pn = n;
3666 }
3667 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3668 if (!runpath && dyn.d_tag == DT_RPATH)
3669 {
3670 struct bfd_link_needed_list *n, **pn;
3671 char *fnm, *anm;
3672 unsigned int tagv = dyn.d_un.d_val;
3673
3674 amt = sizeof (struct bfd_link_needed_list);
3675 n = bfd_alloc (abfd, amt);
3676 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3677 if (n == NULL || fnm == NULL)
3678 goto error_free_dyn;
3679 amt = strlen (fnm) + 1;
3680 anm = bfd_alloc (abfd, amt);
3681 if (anm == NULL)
3682 {
3683 error_free_dyn:
3684 free (dynbuf);
3685 goto error_return;
3686 }
3687 memcpy (anm, fnm, amt);
3688 n->name = anm;
3689 n->by = abfd;
3690 n->next = NULL;
3691 for (pn = & rpath;
3692 *pn != NULL;
3693 pn = &(*pn)->next)
3694 ;
3695 *pn = n;
3696 }
3697 }
3698
3699 free (dynbuf);
3700 }
3701
3702 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3703 frees all more recently bfd_alloc'd blocks as well. */
3704 if (runpath)
3705 rpath = runpath;
3706
3707 if (rpath)
3708 {
3709 struct bfd_link_needed_list **pn;
66eb6687 3710 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4ad4eba5
AM
3711 ;
3712 *pn = rpath;
3713 }
3714
3715 /* We do not want to include any of the sections in a dynamic
3716 object in the output file. We hack by simply clobbering the
3717 list of sections in the BFD. This could be handled more
3718 cleanly by, say, a new section flag; the existing
3719 SEC_NEVER_LOAD flag is not the one we want, because that one
3720 still implies that the section takes up space in the output
3721 file. */
3722 bfd_section_list_clear (abfd);
3723
4ad4eba5
AM
3724 /* Find the name to use in a DT_NEEDED entry that refers to this
3725 object. If the object has a DT_SONAME entry, we use it.
3726 Otherwise, if the generic linker stuck something in
3727 elf_dt_name, we use that. Otherwise, we just use the file
3728 name. */
3729 if (soname == NULL || *soname == '\0')
3730 {
3731 soname = elf_dt_name (abfd);
3732 if (soname == NULL || *soname == '\0')
3733 soname = bfd_get_filename (abfd);
3734 }
3735
3736 /* Save the SONAME because sometimes the linker emulation code
3737 will need to know it. */
3738 elf_dt_name (abfd) = soname;
3739
7e9f0867 3740 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
3741 if (ret < 0)
3742 goto error_return;
3743
3744 /* If we have already included this dynamic object in the
3745 link, just ignore it. There is no reason to include a
3746 particular dynamic object more than once. */
3747 if (ret > 0)
3748 return TRUE;
3749 }
3750
3751 /* If this is a dynamic object, we always link against the .dynsym
3752 symbol table, not the .symtab symbol table. The dynamic linker
3753 will only see the .dynsym symbol table, so there is no reason to
3754 look at .symtab for a dynamic object. */
3755
3756 if (! dynamic || elf_dynsymtab (abfd) == 0)
3757 hdr = &elf_tdata (abfd)->symtab_hdr;
3758 else
3759 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3760
3761 symcount = hdr->sh_size / bed->s->sizeof_sym;
3762
3763 /* The sh_info field of the symtab header tells us where the
3764 external symbols start. We don't care about the local symbols at
3765 this point. */
3766 if (elf_bad_symtab (abfd))
3767 {
3768 extsymcount = symcount;
3769 extsymoff = 0;
3770 }
3771 else
3772 {
3773 extsymcount = symcount - hdr->sh_info;
3774 extsymoff = hdr->sh_info;
3775 }
3776
3777 sym_hash = NULL;
3778 if (extsymcount != 0)
3779 {
3780 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3781 NULL, NULL, NULL);
3782 if (isymbuf == NULL)
3783 goto error_return;
3784
3785 /* We store a pointer to the hash table entry for each external
3786 symbol. */
3787 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3788 sym_hash = bfd_alloc (abfd, amt);
3789 if (sym_hash == NULL)
3790 goto error_free_sym;
3791 elf_sym_hashes (abfd) = sym_hash;
3792 }
3793
3794 if (dynamic)
3795 {
3796 /* Read in any version definitions. */
fc0e6df6
PB
3797 if (!_bfd_elf_slurp_version_tables (abfd,
3798 info->default_imported_symver))
4ad4eba5
AM
3799 goto error_free_sym;
3800
3801 /* Read in the symbol versions, but don't bother to convert them
3802 to internal format. */
3803 if (elf_dynversym (abfd) != 0)
3804 {
3805 Elf_Internal_Shdr *versymhdr;
3806
3807 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3808 extversym = bfd_malloc (versymhdr->sh_size);
3809 if (extversym == NULL)
3810 goto error_free_sym;
3811 amt = versymhdr->sh_size;
3812 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3813 || bfd_bread (extversym, amt, abfd) != amt)
3814 goto error_free_vers;
3815 }
3816 }
3817
66eb6687
AM
3818 /* If we are loading an as-needed shared lib, save the symbol table
3819 state before we start adding symbols. If the lib turns out
3820 to be unneeded, restore the state. */
3821 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3822 {
3823 unsigned int i;
3824 size_t entsize;
3825
3826 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3827 {
3828 struct bfd_hash_entry *p;
2de92251 3829 struct elf_link_hash_entry *h;
66eb6687
AM
3830
3831 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
2de92251
AM
3832 {
3833 h = (struct elf_link_hash_entry *) p;
3834 entsize += htab->root.table.entsize;
3835 if (h->root.type == bfd_link_hash_warning)
3836 entsize += htab->root.table.entsize;
3837 }
66eb6687
AM
3838 }
3839
3840 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3841 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3842 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3843 if (old_tab == NULL)
3844 goto error_free_vers;
3845
3846 /* Remember the current objalloc pointer, so that all mem for
3847 symbols added can later be reclaimed. */
3848 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3849 if (alloc_mark == NULL)
3850 goto error_free_vers;
3851
5061a885
AM
3852 /* Make a special call to the linker "notice" function to
3853 tell it that we are about to handle an as-needed lib. */
3854 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3855 notice_as_needed))
9af2a943 3856 goto error_free_vers;
5061a885 3857
66eb6687
AM
3858 /* Clone the symbol table and sym hashes. Remember some
3859 pointers into the symbol table, and dynamic symbol count. */
3860 old_hash = (char *) old_tab + tabsize;
3861 old_ent = (char *) old_hash + hashsize;
3862 memcpy (old_tab, htab->root.table.table, tabsize);
3863 memcpy (old_hash, sym_hash, hashsize);
3864 old_undefs = htab->root.undefs;
3865 old_undefs_tail = htab->root.undefs_tail;
4f87808c
AM
3866 old_table = htab->root.table.table;
3867 old_size = htab->root.table.size;
3868 old_count = htab->root.table.count;
66eb6687
AM
3869 old_dynsymcount = htab->dynsymcount;
3870
3871 for (i = 0; i < htab->root.table.size; i++)
3872 {
3873 struct bfd_hash_entry *p;
2de92251 3874 struct elf_link_hash_entry *h;
66eb6687
AM
3875
3876 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3877 {
3878 memcpy (old_ent, p, htab->root.table.entsize);
3879 old_ent = (char *) old_ent + htab->root.table.entsize;
2de92251
AM
3880 h = (struct elf_link_hash_entry *) p;
3881 if (h->root.type == bfd_link_hash_warning)
3882 {
3883 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3884 old_ent = (char *) old_ent + htab->root.table.entsize;
3885 }
66eb6687
AM
3886 }
3887 }
3888 }
4ad4eba5 3889
66eb6687 3890 weaks = NULL;
4ad4eba5
AM
3891 ever = extversym != NULL ? extversym + extsymoff : NULL;
3892 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3893 isym < isymend;
3894 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3895 {
3896 int bind;
3897 bfd_vma value;
af44c138 3898 asection *sec, *new_sec;
4ad4eba5
AM
3899 flagword flags;
3900 const char *name;
3901 struct elf_link_hash_entry *h;
3902 bfd_boolean definition;
3903 bfd_boolean size_change_ok;
3904 bfd_boolean type_change_ok;
3905 bfd_boolean new_weakdef;
3906 bfd_boolean override;
a4d8e49b 3907 bfd_boolean common;
4ad4eba5
AM
3908 unsigned int old_alignment;
3909 bfd *old_bfd;
3910
3911 override = FALSE;
3912
3913 flags = BSF_NO_FLAGS;
3914 sec = NULL;
3915 value = isym->st_value;
3916 *sym_hash = NULL;
a4d8e49b 3917 common = bed->common_definition (isym);
4ad4eba5
AM
3918
3919 bind = ELF_ST_BIND (isym->st_info);
3920 if (bind == STB_LOCAL)
3921 {
3922 /* This should be impossible, since ELF requires that all
3923 global symbols follow all local symbols, and that sh_info
3924 point to the first global symbol. Unfortunately, Irix 5
3925 screws this up. */
3926 continue;
3927 }
3928 else if (bind == STB_GLOBAL)
3929 {
a4d8e49b 3930 if (isym->st_shndx != SHN_UNDEF && !common)
4ad4eba5
AM
3931 flags = BSF_GLOBAL;
3932 }
3933 else if (bind == STB_WEAK)
3934 flags = BSF_WEAK;
3935 else
3936 {
3937 /* Leave it up to the processor backend. */
3938 }
3939
3940 if (isym->st_shndx == SHN_UNDEF)
3941 sec = bfd_und_section_ptr;
cb33740c
AM
3942 else if (isym->st_shndx == SHN_ABS)
3943 sec = bfd_abs_section_ptr;
3944 else if (isym->st_shndx == SHN_COMMON)
3945 {
3946 sec = bfd_com_section_ptr;
3947 /* What ELF calls the size we call the value. What ELF
3948 calls the value we call the alignment. */
3949 value = isym->st_size;
3950 }
3951 else
4ad4eba5
AM
3952 {
3953 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3954 if (sec == NULL)
3955 sec = bfd_abs_section_ptr;
529fcb95
PB
3956 else if (sec->kept_section)
3957 {
e5d08002
L
3958 /* Symbols from discarded section are undefined. We keep
3959 its visibility. */
529fcb95
PB
3960 sec = bfd_und_section_ptr;
3961 isym->st_shndx = SHN_UNDEF;
3962 }
4ad4eba5
AM
3963 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3964 value -= sec->vma;
3965 }
4ad4eba5
AM
3966
3967 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3968 isym->st_name);
3969 if (name == NULL)
3970 goto error_free_vers;
3971
3972 if (isym->st_shndx == SHN_COMMON
6a4a0940
JJ
3973 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3974 && !info->relocatable)
4ad4eba5
AM
3975 {
3976 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3977
3978 if (tcomm == NULL)
3979 {
3496cb2a
L
3980 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3981 (SEC_ALLOC
3982 | SEC_IS_COMMON
3983 | SEC_LINKER_CREATED
3984 | SEC_THREAD_LOCAL));
3985 if (tcomm == NULL)
4ad4eba5
AM
3986 goto error_free_vers;
3987 }
3988 sec = tcomm;
3989 }
66eb6687 3990 else if (bed->elf_add_symbol_hook)
4ad4eba5 3991 {
66eb6687
AM
3992 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3993 &sec, &value))
4ad4eba5
AM
3994 goto error_free_vers;
3995
3996 /* The hook function sets the name to NULL if this symbol
3997 should be skipped for some reason. */
3998 if (name == NULL)
3999 continue;
4000 }
4001
4002 /* Sanity check that all possibilities were handled. */
4003 if (sec == NULL)
4004 {
4005 bfd_set_error (bfd_error_bad_value);
4006 goto error_free_vers;
4007 }
4008
4009 if (bfd_is_und_section (sec)
4010 || bfd_is_com_section (sec))
4011 definition = FALSE;
4012 else
4013 definition = TRUE;
4014
4015 size_change_ok = FALSE;
66eb6687 4016 type_change_ok = bed->type_change_ok;
4ad4eba5
AM
4017 old_alignment = 0;
4018 old_bfd = NULL;
af44c138 4019 new_sec = sec;
4ad4eba5 4020
66eb6687 4021 if (is_elf_hash_table (htab))
4ad4eba5
AM
4022 {
4023 Elf_Internal_Versym iver;
4024 unsigned int vernum = 0;
4025 bfd_boolean skip;
4026
fc0e6df6 4027 if (ever == NULL)
4ad4eba5 4028 {
fc0e6df6
PB
4029 if (info->default_imported_symver)
4030 /* Use the default symbol version created earlier. */
4031 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4032 else
4033 iver.vs_vers = 0;
4034 }
4035 else
4036 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4037
4038 vernum = iver.vs_vers & VERSYM_VERSION;
4039
4040 /* If this is a hidden symbol, or if it is not version
4041 1, we append the version name to the symbol name.
cc86ff91
EB
4042 However, we do not modify a non-hidden absolute symbol
4043 if it is not a function, because it might be the version
4044 symbol itself. FIXME: What if it isn't? */
fc0e6df6 4045 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
fcb93ecf
PB
4046 || (vernum > 1
4047 && (!bfd_is_abs_section (sec)
4048 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
fc0e6df6
PB
4049 {
4050 const char *verstr;
4051 size_t namelen, verlen, newlen;
4052 char *newname, *p;
4053
4054 if (isym->st_shndx != SHN_UNDEF)
4ad4eba5 4055 {
fc0e6df6
PB
4056 if (vernum > elf_tdata (abfd)->cverdefs)
4057 verstr = NULL;
4058 else if (vernum > 1)
4059 verstr =
4060 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4061 else
4062 verstr = "";
4ad4eba5 4063
fc0e6df6 4064 if (verstr == NULL)
4ad4eba5 4065 {
fc0e6df6
PB
4066 (*_bfd_error_handler)
4067 (_("%B: %s: invalid version %u (max %d)"),
4068 abfd, name, vernum,
4069 elf_tdata (abfd)->cverdefs);
4070 bfd_set_error (bfd_error_bad_value);
4071 goto error_free_vers;
4ad4eba5 4072 }
fc0e6df6
PB
4073 }
4074 else
4075 {
4076 /* We cannot simply test for the number of
4077 entries in the VERNEED section since the
4078 numbers for the needed versions do not start
4079 at 0. */
4080 Elf_Internal_Verneed *t;
4081
4082 verstr = NULL;
4083 for (t = elf_tdata (abfd)->verref;
4084 t != NULL;
4085 t = t->vn_nextref)
4ad4eba5 4086 {
fc0e6df6 4087 Elf_Internal_Vernaux *a;
4ad4eba5 4088
fc0e6df6
PB
4089 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4090 {
4091 if (a->vna_other == vernum)
4ad4eba5 4092 {
fc0e6df6
PB
4093 verstr = a->vna_nodename;
4094 break;
4ad4eba5 4095 }
4ad4eba5 4096 }
fc0e6df6
PB
4097 if (a != NULL)
4098 break;
4099 }
4100 if (verstr == NULL)
4101 {
4102 (*_bfd_error_handler)
4103 (_("%B: %s: invalid needed version %d"),
4104 abfd, name, vernum);
4105 bfd_set_error (bfd_error_bad_value);
4106 goto error_free_vers;
4ad4eba5 4107 }
4ad4eba5 4108 }
fc0e6df6
PB
4109
4110 namelen = strlen (name);
4111 verlen = strlen (verstr);
4112 newlen = namelen + verlen + 2;
4113 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4114 && isym->st_shndx != SHN_UNDEF)
4115 ++newlen;
4116
66eb6687 4117 newname = bfd_hash_allocate (&htab->root.table, newlen);
fc0e6df6
PB
4118 if (newname == NULL)
4119 goto error_free_vers;
4120 memcpy (newname, name, namelen);
4121 p = newname + namelen;
4122 *p++ = ELF_VER_CHR;
4123 /* If this is a defined non-hidden version symbol,
4124 we add another @ to the name. This indicates the
4125 default version of the symbol. */
4126 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4127 && isym->st_shndx != SHN_UNDEF)
4128 *p++ = ELF_VER_CHR;
4129 memcpy (p, verstr, verlen + 1);
4130
4131 name = newname;
4ad4eba5
AM
4132 }
4133
af44c138
L
4134 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4135 &value, &old_alignment,
4ad4eba5
AM
4136 sym_hash, &skip, &override,
4137 &type_change_ok, &size_change_ok))
4138 goto error_free_vers;
4139
4140 if (skip)
4141 continue;
4142
4143 if (override)
4144 definition = FALSE;
4145
4146 h = *sym_hash;
4147 while (h->root.type == bfd_link_hash_indirect
4148 || h->root.type == bfd_link_hash_warning)
4149 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4150
4151 /* Remember the old alignment if this is a common symbol, so
4152 that we don't reduce the alignment later on. We can't
4153 check later, because _bfd_generic_link_add_one_symbol
4154 will set a default for the alignment which we want to
4155 override. We also remember the old bfd where the existing
4156 definition comes from. */
4157 switch (h->root.type)
4158 {
4159 default:
4160 break;
4161
4162 case bfd_link_hash_defined:
4163 case bfd_link_hash_defweak:
4164 old_bfd = h->root.u.def.section->owner;
4165 break;
4166
4167 case bfd_link_hash_common:
4168 old_bfd = h->root.u.c.p->section->owner;
4169 old_alignment = h->root.u.c.p->alignment_power;
4170 break;
4171 }
4172
4173 if (elf_tdata (abfd)->verdef != NULL
4174 && ! override
4175 && vernum > 1
4176 && definition)
4177 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4178 }
4179
4180 if (! (_bfd_generic_link_add_one_symbol
66eb6687 4181 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4ad4eba5
AM
4182 (struct bfd_link_hash_entry **) sym_hash)))
4183 goto error_free_vers;
4184
4185 h = *sym_hash;
4186 while (h->root.type == bfd_link_hash_indirect
4187 || h->root.type == bfd_link_hash_warning)
4188 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4189 *sym_hash = h;
4190
4191 new_weakdef = FALSE;
4192 if (dynamic
4193 && definition
4194 && (flags & BSF_WEAK) != 0
fcb93ecf 4195 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
66eb6687 4196 && is_elf_hash_table (htab)
f6e332e6 4197 && h->u.weakdef == NULL)
4ad4eba5
AM
4198 {
4199 /* Keep a list of all weak defined non function symbols from
4200 a dynamic object, using the weakdef field. Later in this
4201 function we will set the weakdef field to the correct
4202 value. We only put non-function symbols from dynamic
4203 objects on this list, because that happens to be the only
4204 time we need to know the normal symbol corresponding to a
4205 weak symbol, and the information is time consuming to
4206 figure out. If the weakdef field is not already NULL,
4207 then this symbol was already defined by some previous
4208 dynamic object, and we will be using that previous
4209 definition anyhow. */
4210
f6e332e6 4211 h->u.weakdef = weaks;
4ad4eba5
AM
4212 weaks = h;
4213 new_weakdef = TRUE;
4214 }
4215
4216 /* Set the alignment of a common symbol. */
a4d8e49b 4217 if ((common || bfd_is_com_section (sec))
4ad4eba5
AM
4218 && h->root.type == bfd_link_hash_common)
4219 {
4220 unsigned int align;
4221
a4d8e49b 4222 if (common)
af44c138
L
4223 align = bfd_log2 (isym->st_value);
4224 else
4225 {
4226 /* The new symbol is a common symbol in a shared object.
4227 We need to get the alignment from the section. */
4228 align = new_sec->alignment_power;
4229 }
4ad4eba5
AM
4230 if (align > old_alignment
4231 /* Permit an alignment power of zero if an alignment of one
4232 is specified and no other alignments have been specified. */
4233 || (isym->st_value == 1 && old_alignment == 0))
4234 h->root.u.c.p->alignment_power = align;
4235 else
4236 h->root.u.c.p->alignment_power = old_alignment;
4237 }
4238
66eb6687 4239 if (is_elf_hash_table (htab))
4ad4eba5 4240 {
4ad4eba5 4241 bfd_boolean dynsym;
4ad4eba5
AM
4242
4243 /* Check the alignment when a common symbol is involved. This
4244 can change when a common symbol is overridden by a normal
4245 definition or a common symbol is ignored due to the old
4246 normal definition. We need to make sure the maximum
4247 alignment is maintained. */
a4d8e49b 4248 if ((old_alignment || common)
4ad4eba5
AM
4249 && h->root.type != bfd_link_hash_common)
4250 {
4251 unsigned int common_align;
4252 unsigned int normal_align;
4253 unsigned int symbol_align;
4254 bfd *normal_bfd;
4255 bfd *common_bfd;
4256
4257 symbol_align = ffs (h->root.u.def.value) - 1;
4258 if (h->root.u.def.section->owner != NULL
4259 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4260 {
4261 normal_align = h->root.u.def.section->alignment_power;
4262 if (normal_align > symbol_align)
4263 normal_align = symbol_align;
4264 }
4265 else
4266 normal_align = symbol_align;
4267
4268 if (old_alignment)
4269 {
4270 common_align = old_alignment;
4271 common_bfd = old_bfd;
4272 normal_bfd = abfd;
4273 }
4274 else
4275 {
4276 common_align = bfd_log2 (isym->st_value);
4277 common_bfd = abfd;
4278 normal_bfd = old_bfd;
4279 }
4280
4281 if (normal_align < common_align)
d07676f8
NC
4282 {
4283 /* PR binutils/2735 */
4284 if (normal_bfd == NULL)
4285 (*_bfd_error_handler)
4286 (_("Warning: alignment %u of common symbol `%s' in %B"
4287 " is greater than the alignment (%u) of its section %A"),
4288 common_bfd, h->root.u.def.section,
4289 1 << common_align, name, 1 << normal_align);
4290 else
4291 (*_bfd_error_handler)
4292 (_("Warning: alignment %u of symbol `%s' in %B"
4293 " is smaller than %u in %B"),
4294 normal_bfd, common_bfd,
4295 1 << normal_align, name, 1 << common_align);
4296 }
4ad4eba5
AM
4297 }
4298
83ad0046
L
4299 /* Remember the symbol size if it isn't undefined. */
4300 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4ad4eba5
AM
4301 && (definition || h->size == 0))
4302 {
83ad0046
L
4303 if (h->size != 0
4304 && h->size != isym->st_size
4305 && ! size_change_ok)
4ad4eba5 4306 (*_bfd_error_handler)
d003868e
AM
4307 (_("Warning: size of symbol `%s' changed"
4308 " from %lu in %B to %lu in %B"),
4309 old_bfd, abfd,
4ad4eba5 4310 name, (unsigned long) h->size,
d003868e 4311 (unsigned long) isym->st_size);
4ad4eba5
AM
4312
4313 h->size = isym->st_size;
4314 }
4315
4316 /* If this is a common symbol, then we always want H->SIZE
4317 to be the size of the common symbol. The code just above
4318 won't fix the size if a common symbol becomes larger. We
4319 don't warn about a size change here, because that is
fcb93ecf
PB
4320 covered by --warn-common. Allow changed between different
4321 function types. */
4ad4eba5
AM
4322 if (h->root.type == bfd_link_hash_common)
4323 h->size = h->root.u.c.size;
4324
4325 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4326 && (definition || h->type == STT_NOTYPE))
4327 {
4328 if (h->type != STT_NOTYPE
4329 && h->type != ELF_ST_TYPE (isym->st_info)
4330 && ! type_change_ok)
4331 (*_bfd_error_handler)
d003868e
AM
4332 (_("Warning: type of symbol `%s' changed"
4333 " from %d to %d in %B"),
4334 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4ad4eba5
AM
4335
4336 h->type = ELF_ST_TYPE (isym->st_info);
4337 }
4338
54ac0771
L
4339 /* Merge st_other field. */
4340 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4ad4eba5
AM
4341
4342 /* Set a flag in the hash table entry indicating the type of
4343 reference or definition we just found. Keep a count of
4344 the number of dynamic symbols we find. A dynamic symbol
4345 is one which is referenced or defined by both a regular
4346 object and a shared object. */
4ad4eba5
AM
4347 dynsym = FALSE;
4348 if (! dynamic)
4349 {
4350 if (! definition)
4351 {
f5385ebf 4352 h->ref_regular = 1;
4ad4eba5 4353 if (bind != STB_WEAK)
f5385ebf 4354 h->ref_regular_nonweak = 1;
4ad4eba5
AM
4355 }
4356 else
d8880531
L
4357 {
4358 h->def_regular = 1;
4359 if (h->def_dynamic)
4360 {
4361 h->def_dynamic = 0;
4362 h->ref_dynamic = 1;
4363 h->dynamic_def = 1;
4364 }
4365 }
4ad4eba5 4366 if (! info->executable
f5385ebf
AM
4367 || h->def_dynamic
4368 || h->ref_dynamic)
4ad4eba5
AM
4369 dynsym = TRUE;
4370 }
4371 else
4372 {
4373 if (! definition)
f5385ebf 4374 h->ref_dynamic = 1;
4ad4eba5 4375 else
f5385ebf
AM
4376 h->def_dynamic = 1;
4377 if (h->def_regular
4378 || h->ref_regular
f6e332e6 4379 || (h->u.weakdef != NULL
4ad4eba5 4380 && ! new_weakdef
f6e332e6 4381 && h->u.weakdef->dynindx != -1))
4ad4eba5
AM
4382 dynsym = TRUE;
4383 }
4384
b2064611 4385 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
92b7c7b6
L
4386 {
4387 /* We don't want to make debug symbol dynamic. */
4388 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4389 dynsym = FALSE;
4390 }
4391
4ad4eba5
AM
4392 /* Check to see if we need to add an indirect symbol for
4393 the default name. */
4394 if (definition || h->root.type == bfd_link_hash_common)
4395 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4396 &sec, &value, &dynsym,
4397 override))
4398 goto error_free_vers;
4399
4400 if (definition && !dynamic)
4401 {
4402 char *p = strchr (name, ELF_VER_CHR);
4403 if (p != NULL && p[1] != ELF_VER_CHR)
4404 {
4405 /* Queue non-default versions so that .symver x, x@FOO
4406 aliases can be checked. */
66eb6687 4407 if (!nondeflt_vers)
4ad4eba5 4408 {
66eb6687
AM
4409 amt = ((isymend - isym + 1)
4410 * sizeof (struct elf_link_hash_entry *));
4ad4eba5 4411 nondeflt_vers = bfd_malloc (amt);
14b1c01e
AM
4412 if (!nondeflt_vers)
4413 goto error_free_vers;
4ad4eba5 4414 }
66eb6687 4415 nondeflt_vers[nondeflt_vers_cnt++] = h;
4ad4eba5
AM
4416 }
4417 }
4418
4419 if (dynsym && h->dynindx == -1)
4420 {
c152c796 4421 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5 4422 goto error_free_vers;
f6e332e6 4423 if (h->u.weakdef != NULL
4ad4eba5 4424 && ! new_weakdef
f6e332e6 4425 && h->u.weakdef->dynindx == -1)
4ad4eba5 4426 {
66eb6687 4427 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4ad4eba5
AM
4428 goto error_free_vers;
4429 }
4430 }
4431 else if (dynsym && h->dynindx != -1)
4432 /* If the symbol already has a dynamic index, but
4433 visibility says it should not be visible, turn it into
4434 a local symbol. */
4435 switch (ELF_ST_VISIBILITY (h->other))
4436 {
4437 case STV_INTERNAL:
4438 case STV_HIDDEN:
4439 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4440 dynsym = FALSE;
4441 break;
4442 }
4443
4444 if (!add_needed
4445 && definition
4446 && dynsym
f5385ebf 4447 && h->ref_regular)
4ad4eba5
AM
4448 {
4449 int ret;
4450 const char *soname = elf_dt_name (abfd);
4451
4452 /* A symbol from a library loaded via DT_NEEDED of some
4453 other library is referenced by a regular object.
e56f61be
L
4454 Add a DT_NEEDED entry for it. Issue an error if
4455 --no-add-needed is used. */
4456 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4457 {
4458 (*_bfd_error_handler)
4459 (_("%s: invalid DSO for symbol `%s' definition"),
d003868e 4460 abfd, name);
e56f61be
L
4461 bfd_set_error (bfd_error_bad_value);
4462 goto error_free_vers;
4463 }
4464
a5db907e
AM
4465 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4466
4ad4eba5 4467 add_needed = TRUE;
7e9f0867 4468 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
4469 if (ret < 0)
4470 goto error_free_vers;
4471
4472 BFD_ASSERT (ret == 0);
4473 }
4474 }
4475 }
4476
66eb6687
AM
4477 if (extversym != NULL)
4478 {
4479 free (extversym);
4480 extversym = NULL;
4481 }
4482
4483 if (isymbuf != NULL)
4484 {
4485 free (isymbuf);
4486 isymbuf = NULL;
4487 }
4488
4489 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4490 {
4491 unsigned int i;
4492
4493 /* Restore the symbol table. */
97fed1c9
JJ
4494 if (bed->as_needed_cleanup)
4495 (*bed->as_needed_cleanup) (abfd, info);
66eb6687
AM
4496 old_hash = (char *) old_tab + tabsize;
4497 old_ent = (char *) old_hash + hashsize;
4498 sym_hash = elf_sym_hashes (abfd);
4f87808c
AM
4499 htab->root.table.table = old_table;
4500 htab->root.table.size = old_size;
4501 htab->root.table.count = old_count;
66eb6687
AM
4502 memcpy (htab->root.table.table, old_tab, tabsize);
4503 memcpy (sym_hash, old_hash, hashsize);
4504 htab->root.undefs = old_undefs;
4505 htab->root.undefs_tail = old_undefs_tail;
4506 for (i = 0; i < htab->root.table.size; i++)
4507 {
4508 struct bfd_hash_entry *p;
4509 struct elf_link_hash_entry *h;
4510
4511 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4512 {
4513 h = (struct elf_link_hash_entry *) p;
2de92251
AM
4514 if (h->root.type == bfd_link_hash_warning)
4515 h = (struct elf_link_hash_entry *) h->root.u.i.link;
66eb6687
AM
4516 if (h->dynindx >= old_dynsymcount)
4517 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
2de92251 4518
66eb6687
AM
4519 memcpy (p, old_ent, htab->root.table.entsize);
4520 old_ent = (char *) old_ent + htab->root.table.entsize;
2de92251
AM
4521 h = (struct elf_link_hash_entry *) p;
4522 if (h->root.type == bfd_link_hash_warning)
4523 {
4524 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4525 old_ent = (char *) old_ent + htab->root.table.entsize;
4526 }
66eb6687
AM
4527 }
4528 }
4529
5061a885
AM
4530 /* Make a special call to the linker "notice" function to
4531 tell it that symbols added for crefs may need to be removed. */
4532 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4533 notice_not_needed))
9af2a943 4534 goto error_free_vers;
5061a885 4535
66eb6687
AM
4536 free (old_tab);
4537 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4538 alloc_mark);
4539 if (nondeflt_vers != NULL)
4540 free (nondeflt_vers);
4541 return TRUE;
4542 }
2de92251 4543
66eb6687
AM
4544 if (old_tab != NULL)
4545 {
5061a885
AM
4546 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4547 notice_needed))
9af2a943 4548 goto error_free_vers;
66eb6687
AM
4549 free (old_tab);
4550 old_tab = NULL;
4551 }
4552
4ad4eba5
AM
4553 /* Now that all the symbols from this input file are created, handle
4554 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4555 if (nondeflt_vers != NULL)
4556 {
4557 bfd_size_type cnt, symidx;
4558
4559 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4560 {
4561 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4562 char *shortname, *p;
4563
4564 p = strchr (h->root.root.string, ELF_VER_CHR);
4565 if (p == NULL
4566 || (h->root.type != bfd_link_hash_defined
4567 && h->root.type != bfd_link_hash_defweak))
4568 continue;
4569
4570 amt = p - h->root.root.string;
4571 shortname = bfd_malloc (amt + 1);
14b1c01e
AM
4572 if (!shortname)
4573 goto error_free_vers;
4ad4eba5
AM
4574 memcpy (shortname, h->root.root.string, amt);
4575 shortname[amt] = '\0';
4576
4577 hi = (struct elf_link_hash_entry *)
66eb6687 4578 bfd_link_hash_lookup (&htab->root, shortname,
4ad4eba5
AM
4579 FALSE, FALSE, FALSE);
4580 if (hi != NULL
4581 && hi->root.type == h->root.type
4582 && hi->root.u.def.value == h->root.u.def.value
4583 && hi->root.u.def.section == h->root.u.def.section)
4584 {
4585 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4586 hi->root.type = bfd_link_hash_indirect;
4587 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
fcfa13d2 4588 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4ad4eba5
AM
4589 sym_hash = elf_sym_hashes (abfd);
4590 if (sym_hash)
4591 for (symidx = 0; symidx < extsymcount; ++symidx)
4592 if (sym_hash[symidx] == hi)
4593 {
4594 sym_hash[symidx] = h;
4595 break;
4596 }
4597 }
4598 free (shortname);
4599 }
4600 free (nondeflt_vers);
4601 nondeflt_vers = NULL;
4602 }
4603
4ad4eba5
AM
4604 /* Now set the weakdefs field correctly for all the weak defined
4605 symbols we found. The only way to do this is to search all the
4606 symbols. Since we only need the information for non functions in
4607 dynamic objects, that's the only time we actually put anything on
4608 the list WEAKS. We need this information so that if a regular
4609 object refers to a symbol defined weakly in a dynamic object, the
4610 real symbol in the dynamic object is also put in the dynamic
4611 symbols; we also must arrange for both symbols to point to the
4612 same memory location. We could handle the general case of symbol
4613 aliasing, but a general symbol alias can only be generated in
4614 assembler code, handling it correctly would be very time
4615 consuming, and other ELF linkers don't handle general aliasing
4616 either. */
4617 if (weaks != NULL)
4618 {
4619 struct elf_link_hash_entry **hpp;
4620 struct elf_link_hash_entry **hppend;
4621 struct elf_link_hash_entry **sorted_sym_hash;
4622 struct elf_link_hash_entry *h;
4623 size_t sym_count;
4624
4625 /* Since we have to search the whole symbol list for each weak
4626 defined symbol, search time for N weak defined symbols will be
4627 O(N^2). Binary search will cut it down to O(NlogN). */
4628 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4629 sorted_sym_hash = bfd_malloc (amt);
4630 if (sorted_sym_hash == NULL)
4631 goto error_return;
4632 sym_hash = sorted_sym_hash;
4633 hpp = elf_sym_hashes (abfd);
4634 hppend = hpp + extsymcount;
4635 sym_count = 0;
4636 for (; hpp < hppend; hpp++)
4637 {
4638 h = *hpp;
4639 if (h != NULL
4640 && h->root.type == bfd_link_hash_defined
fcb93ecf 4641 && !bed->is_function_type (h->type))
4ad4eba5
AM
4642 {
4643 *sym_hash = h;
4644 sym_hash++;
4645 sym_count++;
4646 }
4647 }
4648
4649 qsort (sorted_sym_hash, sym_count,
4650 sizeof (struct elf_link_hash_entry *),
4651 elf_sort_symbol);
4652
4653 while (weaks != NULL)
4654 {
4655 struct elf_link_hash_entry *hlook;
4656 asection *slook;
4657 bfd_vma vlook;
4658 long ilook;
4659 size_t i, j, idx;
4660
4661 hlook = weaks;
f6e332e6
AM
4662 weaks = hlook->u.weakdef;
4663 hlook->u.weakdef = NULL;
4ad4eba5
AM
4664
4665 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4666 || hlook->root.type == bfd_link_hash_defweak
4667 || hlook->root.type == bfd_link_hash_common
4668 || hlook->root.type == bfd_link_hash_indirect);
4669 slook = hlook->root.u.def.section;
4670 vlook = hlook->root.u.def.value;
4671
4672 ilook = -1;
4673 i = 0;
4674 j = sym_count;
4675 while (i < j)
4676 {
4677 bfd_signed_vma vdiff;
4678 idx = (i + j) / 2;
4679 h = sorted_sym_hash [idx];
4680 vdiff = vlook - h->root.u.def.value;
4681 if (vdiff < 0)
4682 j = idx;
4683 else if (vdiff > 0)
4684 i = idx + 1;
4685 else
4686 {
a9b881be 4687 long sdiff = slook->id - h->root.u.def.section->id;
4ad4eba5
AM
4688 if (sdiff < 0)
4689 j = idx;
4690 else if (sdiff > 0)
4691 i = idx + 1;
4692 else
4693 {
4694 ilook = idx;
4695 break;
4696 }
4697 }
4698 }
4699
4700 /* We didn't find a value/section match. */
4701 if (ilook == -1)
4702 continue;
4703
4704 for (i = ilook; i < sym_count; i++)
4705 {
4706 h = sorted_sym_hash [i];
4707
4708 /* Stop if value or section doesn't match. */
4709 if (h->root.u.def.value != vlook
4710 || h->root.u.def.section != slook)
4711 break;
4712 else if (h != hlook)
4713 {
f6e332e6 4714 hlook->u.weakdef = h;
4ad4eba5
AM
4715
4716 /* If the weak definition is in the list of dynamic
4717 symbols, make sure the real definition is put
4718 there as well. */
4719 if (hlook->dynindx != -1 && h->dynindx == -1)
4720 {
c152c796 4721 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4dd07732
AM
4722 {
4723 err_free_sym_hash:
4724 free (sorted_sym_hash);
4725 goto error_return;
4726 }
4ad4eba5
AM
4727 }
4728
4729 /* If the real definition is in the list of dynamic
4730 symbols, make sure the weak definition is put
4731 there as well. If we don't do this, then the
4732 dynamic loader might not merge the entries for the
4733 real definition and the weak definition. */
4734 if (h->dynindx != -1 && hlook->dynindx == -1)
4735 {
c152c796 4736 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4dd07732 4737 goto err_free_sym_hash;
4ad4eba5
AM
4738 }
4739 break;
4740 }
4741 }
4742 }
4743
4744 free (sorted_sym_hash);
4745 }
4746
33177bb1
AM
4747 if (bed->check_directives
4748 && !(*bed->check_directives) (abfd, info))
4749 return FALSE;
85fbca6a 4750
4ad4eba5
AM
4751 /* If this object is the same format as the output object, and it is
4752 not a shared library, then let the backend look through the
4753 relocs.
4754
4755 This is required to build global offset table entries and to
4756 arrange for dynamic relocs. It is not required for the
4757 particular common case of linking non PIC code, even when linking
4758 against shared libraries, but unfortunately there is no way of
4759 knowing whether an object file has been compiled PIC or not.
4760 Looking through the relocs is not particularly time consuming.
4761 The problem is that we must either (1) keep the relocs in memory,
4762 which causes the linker to require additional runtime memory or
4763 (2) read the relocs twice from the input file, which wastes time.
4764 This would be a good case for using mmap.
4765
4766 I have no idea how to handle linking PIC code into a file of a
4767 different format. It probably can't be done. */
4ad4eba5 4768 if (! dynamic
66eb6687 4769 && is_elf_hash_table (htab)
13285a1b 4770 && bed->check_relocs != NULL
f13a99db 4771 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4ad4eba5
AM
4772 {
4773 asection *o;
4774
4775 for (o = abfd->sections; o != NULL; o = o->next)
4776 {
4777 Elf_Internal_Rela *internal_relocs;
4778 bfd_boolean ok;
4779
4780 if ((o->flags & SEC_RELOC) == 0
4781 || o->reloc_count == 0
4782 || ((info->strip == strip_all || info->strip == strip_debugger)
4783 && (o->flags & SEC_DEBUGGING) != 0)
4784 || bfd_is_abs_section (o->output_section))
4785 continue;
4786
4787 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4788 info->keep_memory);
4789 if (internal_relocs == NULL)
4790 goto error_return;
4791
66eb6687 4792 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4ad4eba5
AM
4793
4794 if (elf_section_data (o)->relocs != internal_relocs)
4795 free (internal_relocs);
4796
4797 if (! ok)
4798 goto error_return;
4799 }
4800 }
4801
4802 /* If this is a non-traditional link, try to optimize the handling
4803 of the .stab/.stabstr sections. */
4804 if (! dynamic
4805 && ! info->traditional_format
66eb6687 4806 && is_elf_hash_table (htab)
4ad4eba5
AM
4807 && (info->strip != strip_all && info->strip != strip_debugger))
4808 {
4809 asection *stabstr;
4810
4811 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4812 if (stabstr != NULL)
4813 {
4814 bfd_size_type string_offset = 0;
4815 asection *stab;
4816
4817 for (stab = abfd->sections; stab; stab = stab->next)
0112cd26 4818 if (CONST_STRNEQ (stab->name, ".stab")
4ad4eba5
AM
4819 && (!stab->name[5] ||
4820 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4821 && (stab->flags & SEC_MERGE) == 0
4822 && !bfd_is_abs_section (stab->output_section))
4823 {
4824 struct bfd_elf_section_data *secdata;
4825
4826 secdata = elf_section_data (stab);
66eb6687
AM
4827 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4828 stabstr, &secdata->sec_info,
4ad4eba5
AM
4829 &string_offset))
4830 goto error_return;
4831 if (secdata->sec_info)
4832 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4833 }
4834 }
4835 }
4836
66eb6687 4837 if (is_elf_hash_table (htab) && add_needed)
4ad4eba5
AM
4838 {
4839 /* Add this bfd to the loaded list. */
4840 struct elf_link_loaded_list *n;
4841
4842 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4843 if (n == NULL)
4844 goto error_return;
4845 n->abfd = abfd;
66eb6687
AM
4846 n->next = htab->loaded;
4847 htab->loaded = n;
4ad4eba5
AM
4848 }
4849
4850 return TRUE;
4851
4852 error_free_vers:
66eb6687
AM
4853 if (old_tab != NULL)
4854 free (old_tab);
4ad4eba5
AM
4855 if (nondeflt_vers != NULL)
4856 free (nondeflt_vers);
4857 if (extversym != NULL)
4858 free (extversym);
4859 error_free_sym:
4860 if (isymbuf != NULL)
4861 free (isymbuf);
4862 error_return:
4863 return FALSE;
4864}
4865
8387904d
AM
4866/* Return the linker hash table entry of a symbol that might be
4867 satisfied by an archive symbol. Return -1 on error. */
4868
4869struct elf_link_hash_entry *
4870_bfd_elf_archive_symbol_lookup (bfd *abfd,
4871 struct bfd_link_info *info,
4872 const char *name)
4873{
4874 struct elf_link_hash_entry *h;
4875 char *p, *copy;
4876 size_t len, first;
4877
4878 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4879 if (h != NULL)
4880 return h;
4881
4882 /* If this is a default version (the name contains @@), look up the
4883 symbol again with only one `@' as well as without the version.
4884 The effect is that references to the symbol with and without the
4885 version will be matched by the default symbol in the archive. */
4886
4887 p = strchr (name, ELF_VER_CHR);
4888 if (p == NULL || p[1] != ELF_VER_CHR)
4889 return h;
4890
4891 /* First check with only one `@'. */
4892 len = strlen (name);
4893 copy = bfd_alloc (abfd, len);
4894 if (copy == NULL)
4895 return (struct elf_link_hash_entry *) 0 - 1;
4896
4897 first = p - name + 1;
4898 memcpy (copy, name, first);
4899 memcpy (copy + first, name + first + 1, len - first);
4900
4901 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4902 if (h == NULL)
4903 {
4904 /* We also need to check references to the symbol without the
4905 version. */
4906 copy[first - 1] = '\0';
4907 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4908 FALSE, FALSE, FALSE);
4909 }
4910
4911 bfd_release (abfd, copy);
4912 return h;
4913}
4914
0ad989f9
L
4915/* Add symbols from an ELF archive file to the linker hash table. We
4916 don't use _bfd_generic_link_add_archive_symbols because of a
4917 problem which arises on UnixWare. The UnixWare libc.so is an
4918 archive which includes an entry libc.so.1 which defines a bunch of
4919 symbols. The libc.so archive also includes a number of other
4920 object files, which also define symbols, some of which are the same
4921 as those defined in libc.so.1. Correct linking requires that we
4922 consider each object file in turn, and include it if it defines any
4923 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4924 this; it looks through the list of undefined symbols, and includes
4925 any object file which defines them. When this algorithm is used on
4926 UnixWare, it winds up pulling in libc.so.1 early and defining a
4927 bunch of symbols. This means that some of the other objects in the
4928 archive are not included in the link, which is incorrect since they
4929 precede libc.so.1 in the archive.
4930
4931 Fortunately, ELF archive handling is simpler than that done by
4932 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4933 oddities. In ELF, if we find a symbol in the archive map, and the
4934 symbol is currently undefined, we know that we must pull in that
4935 object file.
4936
4937 Unfortunately, we do have to make multiple passes over the symbol
4938 table until nothing further is resolved. */
4939
4ad4eba5
AM
4940static bfd_boolean
4941elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
0ad989f9
L
4942{
4943 symindex c;
4944 bfd_boolean *defined = NULL;
4945 bfd_boolean *included = NULL;
4946 carsym *symdefs;
4947 bfd_boolean loop;
4948 bfd_size_type amt;
8387904d
AM
4949 const struct elf_backend_data *bed;
4950 struct elf_link_hash_entry * (*archive_symbol_lookup)
4951 (bfd *, struct bfd_link_info *, const char *);
0ad989f9
L
4952
4953 if (! bfd_has_map (abfd))
4954 {
4955 /* An empty archive is a special case. */
4956 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4957 return TRUE;
4958 bfd_set_error (bfd_error_no_armap);
4959 return FALSE;
4960 }
4961
4962 /* Keep track of all symbols we know to be already defined, and all
4963 files we know to be already included. This is to speed up the
4964 second and subsequent passes. */
4965 c = bfd_ardata (abfd)->symdef_count;
4966 if (c == 0)
4967 return TRUE;
4968 amt = c;
4969 amt *= sizeof (bfd_boolean);
4970 defined = bfd_zmalloc (amt);
4971 included = bfd_zmalloc (amt);
4972 if (defined == NULL || included == NULL)
4973 goto error_return;
4974
4975 symdefs = bfd_ardata (abfd)->symdefs;
8387904d
AM
4976 bed = get_elf_backend_data (abfd);
4977 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
0ad989f9
L
4978
4979 do
4980 {
4981 file_ptr last;
4982 symindex i;
4983 carsym *symdef;
4984 carsym *symdefend;
4985
4986 loop = FALSE;
4987 last = -1;
4988
4989 symdef = symdefs;
4990 symdefend = symdef + c;
4991 for (i = 0; symdef < symdefend; symdef++, i++)
4992 {
4993 struct elf_link_hash_entry *h;
4994 bfd *element;
4995 struct bfd_link_hash_entry *undefs_tail;
4996 symindex mark;
4997
4998 if (defined[i] || included[i])
4999 continue;
5000 if (symdef->file_offset == last)
5001 {
5002 included[i] = TRUE;
5003 continue;
5004 }
5005
8387904d
AM
5006 h = archive_symbol_lookup (abfd, info, symdef->name);
5007 if (h == (struct elf_link_hash_entry *) 0 - 1)
5008 goto error_return;
0ad989f9
L
5009
5010 if (h == NULL)
5011 continue;
5012
5013 if (h->root.type == bfd_link_hash_common)
5014 {
5015 /* We currently have a common symbol. The archive map contains
5016 a reference to this symbol, so we may want to include it. We
5017 only want to include it however, if this archive element
5018 contains a definition of the symbol, not just another common
5019 declaration of it.
5020
5021 Unfortunately some archivers (including GNU ar) will put
5022 declarations of common symbols into their archive maps, as
5023 well as real definitions, so we cannot just go by the archive
5024 map alone. Instead we must read in the element's symbol
5025 table and check that to see what kind of symbol definition
5026 this is. */
5027 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5028 continue;
5029 }
5030 else if (h->root.type != bfd_link_hash_undefined)
5031 {
5032 if (h->root.type != bfd_link_hash_undefweak)
5033 defined[i] = TRUE;
5034 continue;
5035 }
5036
5037 /* We need to include this archive member. */
5038 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5039 if (element == NULL)
5040 goto error_return;
5041
5042 if (! bfd_check_format (element, bfd_object))
5043 goto error_return;
5044
5045 /* Doublecheck that we have not included this object
5046 already--it should be impossible, but there may be
5047 something wrong with the archive. */
5048 if (element->archive_pass != 0)
5049 {
5050 bfd_set_error (bfd_error_bad_value);
5051 goto error_return;
5052 }
5053 element->archive_pass = 1;
5054
5055 undefs_tail = info->hash->undefs_tail;
5056
5057 if (! (*info->callbacks->add_archive_element) (info, element,
5058 symdef->name))
5059 goto error_return;
5060 if (! bfd_link_add_symbols (element, info))
5061 goto error_return;
5062
5063 /* If there are any new undefined symbols, we need to make
5064 another pass through the archive in order to see whether
5065 they can be defined. FIXME: This isn't perfect, because
5066 common symbols wind up on undefs_tail and because an
5067 undefined symbol which is defined later on in this pass
5068 does not require another pass. This isn't a bug, but it
5069 does make the code less efficient than it could be. */
5070 if (undefs_tail != info->hash->undefs_tail)
5071 loop = TRUE;
5072
5073 /* Look backward to mark all symbols from this object file
5074 which we have already seen in this pass. */
5075 mark = i;
5076 do
5077 {
5078 included[mark] = TRUE;
5079 if (mark == 0)
5080 break;
5081 --mark;
5082 }
5083 while (symdefs[mark].file_offset == symdef->file_offset);
5084
5085 /* We mark subsequent symbols from this object file as we go
5086 on through the loop. */
5087 last = symdef->file_offset;
5088 }
5089 }
5090 while (loop);
5091
5092 free (defined);
5093 free (included);
5094
5095 return TRUE;
5096
5097 error_return:
5098 if (defined != NULL)
5099 free (defined);
5100 if (included != NULL)
5101 free (included);
5102 return FALSE;
5103}
4ad4eba5
AM
5104
5105/* Given an ELF BFD, add symbols to the global hash table as
5106 appropriate. */
5107
5108bfd_boolean
5109bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5110{
5111 switch (bfd_get_format (abfd))
5112 {
5113 case bfd_object:
5114 return elf_link_add_object_symbols (abfd, info);
5115 case bfd_archive:
5116 return elf_link_add_archive_symbols (abfd, info);
5117 default:
5118 bfd_set_error (bfd_error_wrong_format);
5119 return FALSE;
5120 }
5121}
5a580b3a 5122\f
14b1c01e
AM
5123struct hash_codes_info
5124{
5125 unsigned long *hashcodes;
5126 bfd_boolean error;
5127};
a0c8462f 5128
5a580b3a
AM
5129/* This function will be called though elf_link_hash_traverse to store
5130 all hash value of the exported symbols in an array. */
5131
5132static bfd_boolean
5133elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5134{
14b1c01e 5135 struct hash_codes_info *inf = data;
5a580b3a
AM
5136 const char *name;
5137 char *p;
5138 unsigned long ha;
5139 char *alc = NULL;
5140
5141 if (h->root.type == bfd_link_hash_warning)
5142 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5143
5144 /* Ignore indirect symbols. These are added by the versioning code. */
5145 if (h->dynindx == -1)
5146 return TRUE;
5147
5148 name = h->root.root.string;
5149 p = strchr (name, ELF_VER_CHR);
5150 if (p != NULL)
5151 {
5152 alc = bfd_malloc (p - name + 1);
14b1c01e
AM
5153 if (alc == NULL)
5154 {
5155 inf->error = TRUE;
5156 return FALSE;
5157 }
5a580b3a
AM
5158 memcpy (alc, name, p - name);
5159 alc[p - name] = '\0';
5160 name = alc;
5161 }
5162
5163 /* Compute the hash value. */
5164 ha = bfd_elf_hash (name);
5165
5166 /* Store the found hash value in the array given as the argument. */
14b1c01e 5167 *(inf->hashcodes)++ = ha;
5a580b3a
AM
5168
5169 /* And store it in the struct so that we can put it in the hash table
5170 later. */
f6e332e6 5171 h->u.elf_hash_value = ha;
5a580b3a
AM
5172
5173 if (alc != NULL)
5174 free (alc);
5175
5176 return TRUE;
5177}
5178
fdc90cb4
JJ
5179struct collect_gnu_hash_codes
5180{
5181 bfd *output_bfd;
5182 const struct elf_backend_data *bed;
5183 unsigned long int nsyms;
5184 unsigned long int maskbits;
5185 unsigned long int *hashcodes;
5186 unsigned long int *hashval;
5187 unsigned long int *indx;
5188 unsigned long int *counts;
5189 bfd_vma *bitmask;
5190 bfd_byte *contents;
5191 long int min_dynindx;
5192 unsigned long int bucketcount;
5193 unsigned long int symindx;
5194 long int local_indx;
5195 long int shift1, shift2;
5196 unsigned long int mask;
14b1c01e 5197 bfd_boolean error;
fdc90cb4
JJ
5198};
5199
5200/* This function will be called though elf_link_hash_traverse to store
5201 all hash value of the exported symbols in an array. */
5202
5203static bfd_boolean
5204elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5205{
5206 struct collect_gnu_hash_codes *s = data;
5207 const char *name;
5208 char *p;
5209 unsigned long ha;
5210 char *alc = NULL;
5211
5212 if (h->root.type == bfd_link_hash_warning)
5213 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5214
5215 /* Ignore indirect symbols. These are added by the versioning code. */
5216 if (h->dynindx == -1)
5217 return TRUE;
5218
5219 /* Ignore also local symbols and undefined symbols. */
5220 if (! (*s->bed->elf_hash_symbol) (h))
5221 return TRUE;
5222
5223 name = h->root.root.string;
5224 p = strchr (name, ELF_VER_CHR);
5225 if (p != NULL)
5226 {
5227 alc = bfd_malloc (p - name + 1);
14b1c01e
AM
5228 if (alc == NULL)
5229 {
5230 s->error = TRUE;
5231 return FALSE;
5232 }
fdc90cb4
JJ
5233 memcpy (alc, name, p - name);
5234 alc[p - name] = '\0';
5235 name = alc;
5236 }
5237
5238 /* Compute the hash value. */
5239 ha = bfd_elf_gnu_hash (name);
5240
5241 /* Store the found hash value in the array for compute_bucket_count,
5242 and also for .dynsym reordering purposes. */
5243 s->hashcodes[s->nsyms] = ha;
5244 s->hashval[h->dynindx] = ha;
5245 ++s->nsyms;
5246 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5247 s->min_dynindx = h->dynindx;
5248
5249 if (alc != NULL)
5250 free (alc);
5251
5252 return TRUE;
5253}
5254
5255/* This function will be called though elf_link_hash_traverse to do
5256 final dynaminc symbol renumbering. */
5257
5258static bfd_boolean
5259elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5260{
5261 struct collect_gnu_hash_codes *s = data;
5262 unsigned long int bucket;
5263 unsigned long int val;
5264
5265 if (h->root.type == bfd_link_hash_warning)
5266 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5267
5268 /* Ignore indirect symbols. */
5269 if (h->dynindx == -1)
5270 return TRUE;
5271
5272 /* Ignore also local symbols and undefined symbols. */
5273 if (! (*s->bed->elf_hash_symbol) (h))
5274 {
5275 if (h->dynindx >= s->min_dynindx)
5276 h->dynindx = s->local_indx++;
5277 return TRUE;
5278 }
5279
5280 bucket = s->hashval[h->dynindx] % s->bucketcount;
5281 val = (s->hashval[h->dynindx] >> s->shift1)
5282 & ((s->maskbits >> s->shift1) - 1);
5283 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5284 s->bitmask[val]
5285 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5286 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5287 if (s->counts[bucket] == 1)
5288 /* Last element terminates the chain. */
5289 val |= 1;
5290 bfd_put_32 (s->output_bfd, val,
5291 s->contents + (s->indx[bucket] - s->symindx) * 4);
5292 --s->counts[bucket];
5293 h->dynindx = s->indx[bucket]++;
5294 return TRUE;
5295}
5296
5297/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5298
5299bfd_boolean
5300_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5301{
5302 return !(h->forced_local
5303 || h->root.type == bfd_link_hash_undefined
5304 || h->root.type == bfd_link_hash_undefweak
5305 || ((h->root.type == bfd_link_hash_defined
5306 || h->root.type == bfd_link_hash_defweak)
5307 && h->root.u.def.section->output_section == NULL));
5308}
5309
5a580b3a
AM
5310/* Array used to determine the number of hash table buckets to use
5311 based on the number of symbols there are. If there are fewer than
5312 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5313 fewer than 37 we use 17 buckets, and so forth. We never use more
5314 than 32771 buckets. */
5315
5316static const size_t elf_buckets[] =
5317{
5318 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5319 16411, 32771, 0
5320};
5321
5322/* Compute bucket count for hashing table. We do not use a static set
5323 of possible tables sizes anymore. Instead we determine for all
5324 possible reasonable sizes of the table the outcome (i.e., the
5325 number of collisions etc) and choose the best solution. The
5326 weighting functions are not too simple to allow the table to grow
5327 without bounds. Instead one of the weighting factors is the size.
5328 Therefore the result is always a good payoff between few collisions
5329 (= short chain lengths) and table size. */
5330static size_t
d40f3da9
AM
5331compute_bucket_count (struct bfd_link_info *info,
5332 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5333 unsigned long int nsyms,
5334 int gnu_hash)
5a580b3a 5335{
5a580b3a 5336 size_t best_size = 0;
5a580b3a 5337 unsigned long int i;
5a580b3a 5338
5a580b3a
AM
5339 /* We have a problem here. The following code to optimize the table
5340 size requires an integer type with more the 32 bits. If
5341 BFD_HOST_U_64_BIT is set we know about such a type. */
5342#ifdef BFD_HOST_U_64_BIT
5343 if (info->optimize)
5344 {
5a580b3a
AM
5345 size_t minsize;
5346 size_t maxsize;
5347 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5a580b3a 5348 bfd *dynobj = elf_hash_table (info)->dynobj;
d40f3da9 5349 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5a580b3a 5350 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
fdc90cb4 5351 unsigned long int *counts;
d40f3da9 5352 bfd_size_type amt;
5a580b3a
AM
5353
5354 /* Possible optimization parameters: if we have NSYMS symbols we say
5355 that the hashing table must at least have NSYMS/4 and at most
5356 2*NSYMS buckets. */
5357 minsize = nsyms / 4;
5358 if (minsize == 0)
5359 minsize = 1;
5360 best_size = maxsize = nsyms * 2;
fdc90cb4
JJ
5361 if (gnu_hash)
5362 {
5363 if (minsize < 2)
5364 minsize = 2;
5365 if ((best_size & 31) == 0)
5366 ++best_size;
5367 }
5a580b3a
AM
5368
5369 /* Create array where we count the collisions in. We must use bfd_malloc
5370 since the size could be large. */
5371 amt = maxsize;
5372 amt *= sizeof (unsigned long int);
5373 counts = bfd_malloc (amt);
5374 if (counts == NULL)
fdc90cb4 5375 return 0;
5a580b3a
AM
5376
5377 /* Compute the "optimal" size for the hash table. The criteria is a
5378 minimal chain length. The minor criteria is (of course) the size
5379 of the table. */
5380 for (i = minsize; i < maxsize; ++i)
5381 {
5382 /* Walk through the array of hashcodes and count the collisions. */
5383 BFD_HOST_U_64_BIT max;
5384 unsigned long int j;
5385 unsigned long int fact;
5386
fdc90cb4
JJ
5387 if (gnu_hash && (i & 31) == 0)
5388 continue;
5389
5a580b3a
AM
5390 memset (counts, '\0', i * sizeof (unsigned long int));
5391
5392 /* Determine how often each hash bucket is used. */
5393 for (j = 0; j < nsyms; ++j)
5394 ++counts[hashcodes[j] % i];
5395
5396 /* For the weight function we need some information about the
5397 pagesize on the target. This is information need not be 100%
5398 accurate. Since this information is not available (so far) we
5399 define it here to a reasonable default value. If it is crucial
5400 to have a better value some day simply define this value. */
5401# ifndef BFD_TARGET_PAGESIZE
5402# define BFD_TARGET_PAGESIZE (4096)
5403# endif
5404
fdc90cb4
JJ
5405 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5406 and the chains. */
5407 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5a580b3a
AM
5408
5409# if 1
5410 /* Variant 1: optimize for short chains. We add the squares
5411 of all the chain lengths (which favors many small chain
5412 over a few long chains). */
5413 for (j = 0; j < i; ++j)
5414 max += counts[j] * counts[j];
5415
5416 /* This adds penalties for the overall size of the table. */
fdc90cb4 5417 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5a580b3a
AM
5418 max *= fact * fact;
5419# else
5420 /* Variant 2: Optimize a lot more for small table. Here we
5421 also add squares of the size but we also add penalties for
5422 empty slots (the +1 term). */
5423 for (j = 0; j < i; ++j)
5424 max += (1 + counts[j]) * (1 + counts[j]);
5425
5426 /* The overall size of the table is considered, but not as
5427 strong as in variant 1, where it is squared. */
fdc90cb4 5428 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5a580b3a
AM
5429 max *= fact;
5430# endif
5431
5432 /* Compare with current best results. */
5433 if (max < best_chlen)
5434 {
5435 best_chlen = max;
5436 best_size = i;
5437 }
5438 }
5439
5440 free (counts);
5441 }
5442 else
5443#endif /* defined (BFD_HOST_U_64_BIT) */
5444 {
5445 /* This is the fallback solution if no 64bit type is available or if we
5446 are not supposed to spend much time on optimizations. We select the
5447 bucket count using a fixed set of numbers. */
5448 for (i = 0; elf_buckets[i] != 0; i++)
5449 {
5450 best_size = elf_buckets[i];
fdc90cb4 5451 if (nsyms < elf_buckets[i + 1])
5a580b3a
AM
5452 break;
5453 }
fdc90cb4
JJ
5454 if (gnu_hash && best_size < 2)
5455 best_size = 2;
5a580b3a
AM
5456 }
5457
5a580b3a
AM
5458 return best_size;
5459}
5460
5461/* Set up the sizes and contents of the ELF dynamic sections. This is
5462 called by the ELF linker emulation before_allocation routine. We
5463 must set the sizes of the sections before the linker sets the
5464 addresses of the various sections. */
5465
5466bfd_boolean
5467bfd_elf_size_dynamic_sections (bfd *output_bfd,
5468 const char *soname,
5469 const char *rpath,
5470 const char *filter_shlib,
5471 const char * const *auxiliary_filters,
5472 struct bfd_link_info *info,
5473 asection **sinterpptr,
5474 struct bfd_elf_version_tree *verdefs)
5475{
5476 bfd_size_type soname_indx;
5477 bfd *dynobj;
5478 const struct elf_backend_data *bed;
28caa186 5479 struct elf_info_failed asvinfo;
5a580b3a
AM
5480
5481 *sinterpptr = NULL;
5482
5483 soname_indx = (bfd_size_type) -1;
5484
5485 if (!is_elf_hash_table (info->hash))
5486 return TRUE;
5487
6bfdb61b 5488 bed = get_elf_backend_data (output_bfd);
5a580b3a
AM
5489 if (info->execstack)
5490 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5491 else if (info->noexecstack)
5492 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5493 else
5494 {
5495 bfd *inputobj;
5496 asection *notesec = NULL;
5497 int exec = 0;
5498
5499 for (inputobj = info->input_bfds;
5500 inputobj;
5501 inputobj = inputobj->link_next)
5502 {
5503 asection *s;
5504
a94b9d2d 5505 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5a580b3a
AM
5506 continue;
5507 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5508 if (s)
5509 {
5510 if (s->flags & SEC_CODE)
5511 exec = PF_X;
5512 notesec = s;
5513 }
6bfdb61b 5514 else if (bed->default_execstack)
5a580b3a
AM
5515 exec = PF_X;
5516 }
5517 if (notesec)
5518 {
5519 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5520 if (exec && info->relocatable
5521 && notesec->output_section != bfd_abs_section_ptr)
5522 notesec->output_section->flags |= SEC_CODE;
5523 }
5524 }
5525
5526 /* Any syms created from now on start with -1 in
5527 got.refcount/offset and plt.refcount/offset. */
a6aa5195
AM
5528 elf_hash_table (info)->init_got_refcount
5529 = elf_hash_table (info)->init_got_offset;
5530 elf_hash_table (info)->init_plt_refcount
5531 = elf_hash_table (info)->init_plt_offset;
5a580b3a
AM
5532
5533 /* The backend may have to create some sections regardless of whether
5534 we're dynamic or not. */
5a580b3a
AM
5535 if (bed->elf_backend_always_size_sections
5536 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5537 return FALSE;
5538
eb3d5f3b
JB
5539 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5540 return FALSE;
5541
5a580b3a
AM
5542 dynobj = elf_hash_table (info)->dynobj;
5543
5544 /* If there were no dynamic objects in the link, there is nothing to
5545 do here. */
5546 if (dynobj == NULL)
5547 return TRUE;
5548
5a580b3a
AM
5549 if (elf_hash_table (info)->dynamic_sections_created)
5550 {
5551 struct elf_info_failed eif;
5552 struct elf_link_hash_entry *h;
5553 asection *dynstr;
5554 struct bfd_elf_version_tree *t;
5555 struct bfd_elf_version_expr *d;
046183de 5556 asection *s;
5a580b3a
AM
5557 bfd_boolean all_defined;
5558
5559 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5560 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5561
5562 if (soname != NULL)
5563 {
5564 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5565 soname, TRUE);
5566 if (soname_indx == (bfd_size_type) -1
5567 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5568 return FALSE;
5569 }
5570
5571 if (info->symbolic)
5572 {
5573 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5574 return FALSE;
5575 info->flags |= DF_SYMBOLIC;
5576 }
5577
5578 if (rpath != NULL)
5579 {
5580 bfd_size_type indx;
5581
5582 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5583 TRUE);
5584 if (indx == (bfd_size_type) -1
5585 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5586 return FALSE;
5587
5588 if (info->new_dtags)
5589 {
5590 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5591 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5592 return FALSE;
5593 }
5594 }
5595
5596 if (filter_shlib != NULL)
5597 {
5598 bfd_size_type indx;
5599
5600 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5601 filter_shlib, TRUE);
5602 if (indx == (bfd_size_type) -1
5603 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5604 return FALSE;
5605 }
5606
5607 if (auxiliary_filters != NULL)
5608 {
5609 const char * const *p;
5610
5611 for (p = auxiliary_filters; *p != NULL; p++)
5612 {
5613 bfd_size_type indx;
5614
5615 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5616 *p, TRUE);
5617 if (indx == (bfd_size_type) -1
5618 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5619 return FALSE;
5620 }
5621 }
5622
5623 eif.info = info;
5624 eif.verdefs = verdefs;
5625 eif.failed = FALSE;
5626
5627 /* If we are supposed to export all symbols into the dynamic symbol
5628 table (this is not the normal case), then do so. */
55255dae
L
5629 if (info->export_dynamic
5630 || (info->executable && info->dynamic))
5a580b3a
AM
5631 {
5632 elf_link_hash_traverse (elf_hash_table (info),
5633 _bfd_elf_export_symbol,
5634 &eif);
5635 if (eif.failed)
5636 return FALSE;
5637 }
5638
5639 /* Make all global versions with definition. */
5640 for (t = verdefs; t != NULL; t = t->next)
5641 for (d = t->globals.list; d != NULL; d = d->next)
ae5a3597 5642 if (!d->symver && d->literal)
5a580b3a
AM
5643 {
5644 const char *verstr, *name;
5645 size_t namelen, verlen, newlen;
5646 char *newname, *p;
5647 struct elf_link_hash_entry *newh;
5648
ae5a3597 5649 name = d->pattern;
5a580b3a
AM
5650 namelen = strlen (name);
5651 verstr = t->name;
5652 verlen = strlen (verstr);
5653 newlen = namelen + verlen + 3;
5654
5655 newname = bfd_malloc (newlen);
5656 if (newname == NULL)
5657 return FALSE;
5658 memcpy (newname, name, namelen);
5659
5660 /* Check the hidden versioned definition. */
5661 p = newname + namelen;
5662 *p++ = ELF_VER_CHR;
5663 memcpy (p, verstr, verlen + 1);
5664 newh = elf_link_hash_lookup (elf_hash_table (info),
5665 newname, FALSE, FALSE,
5666 FALSE);
5667 if (newh == NULL
5668 || (newh->root.type != bfd_link_hash_defined
5669 && newh->root.type != bfd_link_hash_defweak))
5670 {
5671 /* Check the default versioned definition. */
5672 *p++ = ELF_VER_CHR;
5673 memcpy (p, verstr, verlen + 1);
5674 newh = elf_link_hash_lookup (elf_hash_table (info),
5675 newname, FALSE, FALSE,
5676 FALSE);
5677 }
5678 free (newname);
5679
5680 /* Mark this version if there is a definition and it is
5681 not defined in a shared object. */
5682 if (newh != NULL
f5385ebf 5683 && !newh->def_dynamic
5a580b3a
AM
5684 && (newh->root.type == bfd_link_hash_defined
5685 || newh->root.type == bfd_link_hash_defweak))
5686 d->symver = 1;
5687 }
5688
5689 /* Attach all the symbols to their version information. */
5a580b3a
AM
5690 asvinfo.info = info;
5691 asvinfo.verdefs = verdefs;
5692 asvinfo.failed = FALSE;
5693
5694 elf_link_hash_traverse (elf_hash_table (info),
5695 _bfd_elf_link_assign_sym_version,
5696 &asvinfo);
5697 if (asvinfo.failed)
5698 return FALSE;
5699
5700 if (!info->allow_undefined_version)
5701 {
5702 /* Check if all global versions have a definition. */
5703 all_defined = TRUE;
5704 for (t = verdefs; t != NULL; t = t->next)
5705 for (d = t->globals.list; d != NULL; d = d->next)
ae5a3597 5706 if (d->literal && !d->symver && !d->script)
5a580b3a
AM
5707 {
5708 (*_bfd_error_handler)
5709 (_("%s: undefined version: %s"),
5710 d->pattern, t->name);
5711 all_defined = FALSE;
5712 }
5713
5714 if (!all_defined)
5715 {
5716 bfd_set_error (bfd_error_bad_value);
5717 return FALSE;
5718 }
5719 }
5720
5721 /* Find all symbols which were defined in a dynamic object and make
5722 the backend pick a reasonable value for them. */
5723 elf_link_hash_traverse (elf_hash_table (info),
5724 _bfd_elf_adjust_dynamic_symbol,
5725 &eif);
5726 if (eif.failed)
5727 return FALSE;
5728
5729 /* Add some entries to the .dynamic section. We fill in some of the
ee75fd95 5730 values later, in bfd_elf_final_link, but we must add the entries
5a580b3a
AM
5731 now so that we know the final size of the .dynamic section. */
5732
5733 /* If there are initialization and/or finalization functions to
5734 call then add the corresponding DT_INIT/DT_FINI entries. */
5735 h = (info->init_function
5736 ? elf_link_hash_lookup (elf_hash_table (info),
5737 info->init_function, FALSE,
5738 FALSE, FALSE)
5739 : NULL);
5740 if (h != NULL
f5385ebf
AM
5741 && (h->ref_regular
5742 || h->def_regular))
5a580b3a
AM
5743 {
5744 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5745 return FALSE;
5746 }
5747 h = (info->fini_function
5748 ? elf_link_hash_lookup (elf_hash_table (info),
5749 info->fini_function, FALSE,
5750 FALSE, FALSE)
5751 : NULL);
5752 if (h != NULL
f5385ebf
AM
5753 && (h->ref_regular
5754 || h->def_regular))
5a580b3a
AM
5755 {
5756 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5757 return FALSE;
5758 }
5759
046183de
AM
5760 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5761 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5762 {
5763 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5764 if (! info->executable)
5765 {
5766 bfd *sub;
5767 asection *o;
5768
5769 for (sub = info->input_bfds; sub != NULL;
5770 sub = sub->link_next)
3fcd97f1
JJ
5771 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5772 for (o = sub->sections; o != NULL; o = o->next)
5773 if (elf_section_data (o)->this_hdr.sh_type
5774 == SHT_PREINIT_ARRAY)
5775 {
5776 (*_bfd_error_handler)
5777 (_("%B: .preinit_array section is not allowed in DSO"),
5778 sub);
5779 break;
5780 }
5a580b3a
AM
5781
5782 bfd_set_error (bfd_error_nonrepresentable_section);
5783 return FALSE;
5784 }
5785
5786 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5787 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5788 return FALSE;
5789 }
046183de
AM
5790 s = bfd_get_section_by_name (output_bfd, ".init_array");
5791 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5792 {
5793 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5794 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5795 return FALSE;
5796 }
046183de
AM
5797 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5798 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5799 {
5800 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5801 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5802 return FALSE;
5803 }
5804
5805 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5806 /* If .dynstr is excluded from the link, we don't want any of
5807 these tags. Strictly, we should be checking each section
5808 individually; This quick check covers for the case where
5809 someone does a /DISCARD/ : { *(*) }. */
5810 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5811 {
5812 bfd_size_type strsize;
5813
5814 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
fdc90cb4
JJ
5815 if ((info->emit_hash
5816 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5817 || (info->emit_gnu_hash
5818 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5a580b3a
AM
5819 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5820 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5821 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5822 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5823 bed->s->sizeof_sym))
5824 return FALSE;
5825 }
5826 }
5827
5828 /* The backend must work out the sizes of all the other dynamic
5829 sections. */
5830 if (bed->elf_backend_size_dynamic_sections
5831 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5832 return FALSE;
5833
5834 if (elf_hash_table (info)->dynamic_sections_created)
5835 {
554220db 5836 unsigned long section_sym_count;
5a580b3a 5837 asection *s;
5a580b3a
AM
5838
5839 /* Set up the version definition section. */
5840 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5841 BFD_ASSERT (s != NULL);
5842
5843 /* We may have created additional version definitions if we are
5844 just linking a regular application. */
5845 verdefs = asvinfo.verdefs;
5846
5847 /* Skip anonymous version tag. */
5848 if (verdefs != NULL && verdefs->vernum == 0)
5849 verdefs = verdefs->next;
5850
3e3b46e5 5851 if (verdefs == NULL && !info->create_default_symver)
8423293d 5852 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
5853 else
5854 {
5855 unsigned int cdefs;
5856 bfd_size_type size;
5857 struct bfd_elf_version_tree *t;
5858 bfd_byte *p;
5859 Elf_Internal_Verdef def;
5860 Elf_Internal_Verdaux defaux;
3e3b46e5
PB
5861 struct bfd_link_hash_entry *bh;
5862 struct elf_link_hash_entry *h;
5863 const char *name;
5a580b3a
AM
5864
5865 cdefs = 0;
5866 size = 0;
5867
5868 /* Make space for the base version. */
5869 size += sizeof (Elf_External_Verdef);
5870 size += sizeof (Elf_External_Verdaux);
5871 ++cdefs;
5872
3e3b46e5
PB
5873 /* Make space for the default version. */
5874 if (info->create_default_symver)
5875 {
5876 size += sizeof (Elf_External_Verdef);
5877 ++cdefs;
5878 }
5879
5a580b3a
AM
5880 for (t = verdefs; t != NULL; t = t->next)
5881 {
5882 struct bfd_elf_version_deps *n;
5883
5884 size += sizeof (Elf_External_Verdef);
5885 size += sizeof (Elf_External_Verdaux);
5886 ++cdefs;
5887
5888 for (n = t->deps; n != NULL; n = n->next)
5889 size += sizeof (Elf_External_Verdaux);
5890 }
5891
eea6121a
AM
5892 s->size = size;
5893 s->contents = bfd_alloc (output_bfd, s->size);
5894 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5895 return FALSE;
5896
5897 /* Fill in the version definition section. */
5898
5899 p = s->contents;
5900
5901 def.vd_version = VER_DEF_CURRENT;
5902 def.vd_flags = VER_FLG_BASE;
5903 def.vd_ndx = 1;
5904 def.vd_cnt = 1;
3e3b46e5
PB
5905 if (info->create_default_symver)
5906 {
5907 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5908 def.vd_next = sizeof (Elf_External_Verdef);
5909 }
5910 else
5911 {
5912 def.vd_aux = sizeof (Elf_External_Verdef);
5913 def.vd_next = (sizeof (Elf_External_Verdef)
5914 + sizeof (Elf_External_Verdaux));
5915 }
5a580b3a
AM
5916
5917 if (soname_indx != (bfd_size_type) -1)
5918 {
5919 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5920 soname_indx);
5921 def.vd_hash = bfd_elf_hash (soname);
5922 defaux.vda_name = soname_indx;
3e3b46e5 5923 name = soname;
5a580b3a
AM
5924 }
5925 else
5926 {
5a580b3a
AM
5927 bfd_size_type indx;
5928
06084812 5929 name = lbasename (output_bfd->filename);
5a580b3a
AM
5930 def.vd_hash = bfd_elf_hash (name);
5931 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5932 name, FALSE);
5933 if (indx == (bfd_size_type) -1)
5934 return FALSE;
5935 defaux.vda_name = indx;
5936 }
5937 defaux.vda_next = 0;
5938
5939 _bfd_elf_swap_verdef_out (output_bfd, &def,
5940 (Elf_External_Verdef *) p);
5941 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
5942 if (info->create_default_symver)
5943 {
5944 /* Add a symbol representing this version. */
5945 bh = NULL;
5946 if (! (_bfd_generic_link_add_one_symbol
5947 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5948 0, NULL, FALSE,
5949 get_elf_backend_data (dynobj)->collect, &bh)))
5950 return FALSE;
5951 h = (struct elf_link_hash_entry *) bh;
5952 h->non_elf = 0;
5953 h->def_regular = 1;
5954 h->type = STT_OBJECT;
5955 h->verinfo.vertree = NULL;
5956
5957 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5958 return FALSE;
5959
5960 /* Create a duplicate of the base version with the same
5961 aux block, but different flags. */
5962 def.vd_flags = 0;
5963 def.vd_ndx = 2;
5964 def.vd_aux = sizeof (Elf_External_Verdef);
5965 if (verdefs)
5966 def.vd_next = (sizeof (Elf_External_Verdef)
5967 + sizeof (Elf_External_Verdaux));
5968 else
5969 def.vd_next = 0;
5970 _bfd_elf_swap_verdef_out (output_bfd, &def,
5971 (Elf_External_Verdef *) p);
5972 p += sizeof (Elf_External_Verdef);
5973 }
5a580b3a
AM
5974 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5975 (Elf_External_Verdaux *) p);
5976 p += sizeof (Elf_External_Verdaux);
5977
5978 for (t = verdefs; t != NULL; t = t->next)
5979 {
5980 unsigned int cdeps;
5981 struct bfd_elf_version_deps *n;
5a580b3a
AM
5982
5983 cdeps = 0;
5984 for (n = t->deps; n != NULL; n = n->next)
5985 ++cdeps;
5986
5987 /* Add a symbol representing this version. */
5988 bh = NULL;
5989 if (! (_bfd_generic_link_add_one_symbol
5990 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5991 0, NULL, FALSE,
5992 get_elf_backend_data (dynobj)->collect, &bh)))
5993 return FALSE;
5994 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5995 h->non_elf = 0;
5996 h->def_regular = 1;
5a580b3a
AM
5997 h->type = STT_OBJECT;
5998 h->verinfo.vertree = t;
5999
c152c796 6000 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5a580b3a
AM
6001 return FALSE;
6002
6003 def.vd_version = VER_DEF_CURRENT;
6004 def.vd_flags = 0;
6005 if (t->globals.list == NULL
6006 && t->locals.list == NULL
6007 && ! t->used)
6008 def.vd_flags |= VER_FLG_WEAK;
3e3b46e5 6009 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5a580b3a
AM
6010 def.vd_cnt = cdeps + 1;
6011 def.vd_hash = bfd_elf_hash (t->name);
6012 def.vd_aux = sizeof (Elf_External_Verdef);
6013 def.vd_next = 0;
6014 if (t->next != NULL)
6015 def.vd_next = (sizeof (Elf_External_Verdef)
6016 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6017
6018 _bfd_elf_swap_verdef_out (output_bfd, &def,
6019 (Elf_External_Verdef *) p);
6020 p += sizeof (Elf_External_Verdef);
6021
6022 defaux.vda_name = h->dynstr_index;
6023 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6024 h->dynstr_index);
6025 defaux.vda_next = 0;
6026 if (t->deps != NULL)
6027 defaux.vda_next = sizeof (Elf_External_Verdaux);
6028 t->name_indx = defaux.vda_name;
6029
6030 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6031 (Elf_External_Verdaux *) p);
6032 p += sizeof (Elf_External_Verdaux);
6033
6034 for (n = t->deps; n != NULL; n = n->next)
6035 {
6036 if (n->version_needed == NULL)
6037 {
6038 /* This can happen if there was an error in the
6039 version script. */
6040 defaux.vda_name = 0;
6041 }
6042 else
6043 {
6044 defaux.vda_name = n->version_needed->name_indx;
6045 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6046 defaux.vda_name);
6047 }
6048 if (n->next == NULL)
6049 defaux.vda_next = 0;
6050 else
6051 defaux.vda_next = sizeof (Elf_External_Verdaux);
6052
6053 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6054 (Elf_External_Verdaux *) p);
6055 p += sizeof (Elf_External_Verdaux);
6056 }
6057 }
6058
6059 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6060 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6061 return FALSE;
6062
6063 elf_tdata (output_bfd)->cverdefs = cdefs;
6064 }
6065
6066 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6067 {
6068 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6069 return FALSE;
6070 }
6071 else if (info->flags & DF_BIND_NOW)
6072 {
6073 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6074 return FALSE;
6075 }
6076
6077 if (info->flags_1)
6078 {
6079 if (info->executable)
6080 info->flags_1 &= ~ (DF_1_INITFIRST
6081 | DF_1_NODELETE
6082 | DF_1_NOOPEN);
6083 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6084 return FALSE;
6085 }
6086
6087 /* Work out the size of the version reference section. */
6088
6089 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6090 BFD_ASSERT (s != NULL);
6091 {
6092 struct elf_find_verdep_info sinfo;
6093
5a580b3a
AM
6094 sinfo.info = info;
6095 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6096 if (sinfo.vers == 0)
6097 sinfo.vers = 1;
6098 sinfo.failed = FALSE;
6099
6100 elf_link_hash_traverse (elf_hash_table (info),
6101 _bfd_elf_link_find_version_dependencies,
6102 &sinfo);
14b1c01e
AM
6103 if (sinfo.failed)
6104 return FALSE;
5a580b3a
AM
6105
6106 if (elf_tdata (output_bfd)->verref == NULL)
8423293d 6107 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
6108 else
6109 {
6110 Elf_Internal_Verneed *t;
6111 unsigned int size;
6112 unsigned int crefs;
6113 bfd_byte *p;
6114
6115 /* Build the version definition section. */
6116 size = 0;
6117 crefs = 0;
6118 for (t = elf_tdata (output_bfd)->verref;
6119 t != NULL;
6120 t = t->vn_nextref)
6121 {
6122 Elf_Internal_Vernaux *a;
6123
6124 size += sizeof (Elf_External_Verneed);
6125 ++crefs;
6126 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6127 size += sizeof (Elf_External_Vernaux);
6128 }
6129
eea6121a
AM
6130 s->size = size;
6131 s->contents = bfd_alloc (output_bfd, s->size);
5a580b3a
AM
6132 if (s->contents == NULL)
6133 return FALSE;
6134
6135 p = s->contents;
6136 for (t = elf_tdata (output_bfd)->verref;
6137 t != NULL;
6138 t = t->vn_nextref)
6139 {
6140 unsigned int caux;
6141 Elf_Internal_Vernaux *a;
6142 bfd_size_type indx;
6143
6144 caux = 0;
6145 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6146 ++caux;
6147
6148 t->vn_version = VER_NEED_CURRENT;
6149 t->vn_cnt = caux;
6150 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6151 elf_dt_name (t->vn_bfd) != NULL
6152 ? elf_dt_name (t->vn_bfd)
06084812 6153 : lbasename (t->vn_bfd->filename),
5a580b3a
AM
6154 FALSE);
6155 if (indx == (bfd_size_type) -1)
6156 return FALSE;
6157 t->vn_file = indx;
6158 t->vn_aux = sizeof (Elf_External_Verneed);
6159 if (t->vn_nextref == NULL)
6160 t->vn_next = 0;
6161 else
6162 t->vn_next = (sizeof (Elf_External_Verneed)
6163 + caux * sizeof (Elf_External_Vernaux));
6164
6165 _bfd_elf_swap_verneed_out (output_bfd, t,
6166 (Elf_External_Verneed *) p);
6167 p += sizeof (Elf_External_Verneed);
6168
6169 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6170 {
6171 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6172 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6173 a->vna_nodename, FALSE);
6174 if (indx == (bfd_size_type) -1)
6175 return FALSE;
6176 a->vna_name = indx;
6177 if (a->vna_nextptr == NULL)
6178 a->vna_next = 0;
6179 else
6180 a->vna_next = sizeof (Elf_External_Vernaux);
6181
6182 _bfd_elf_swap_vernaux_out (output_bfd, a,
6183 (Elf_External_Vernaux *) p);
6184 p += sizeof (Elf_External_Vernaux);
6185 }
6186 }
6187
6188 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6189 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6190 return FALSE;
6191
6192 elf_tdata (output_bfd)->cverrefs = crefs;
6193 }
6194 }
6195
8423293d
AM
6196 if ((elf_tdata (output_bfd)->cverrefs == 0
6197 && elf_tdata (output_bfd)->cverdefs == 0)
6198 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6199 &section_sym_count) == 0)
6200 {
6201 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6202 s->flags |= SEC_EXCLUDE;
6203 }
6204 }
6205 return TRUE;
6206}
6207
74541ad4
AM
6208/* Find the first non-excluded output section. We'll use its
6209 section symbol for some emitted relocs. */
6210void
6211_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6212{
6213 asection *s;
6214
6215 for (s = output_bfd->sections; s != NULL; s = s->next)
6216 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6217 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6218 {
6219 elf_hash_table (info)->text_index_section = s;
6220 break;
6221 }
6222}
6223
6224/* Find two non-excluded output sections, one for code, one for data.
6225 We'll use their section symbols for some emitted relocs. */
6226void
6227_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6228{
6229 asection *s;
6230
266b05cf
DJ
6231 /* Data first, since setting text_index_section changes
6232 _bfd_elf_link_omit_section_dynsym. */
74541ad4 6233 for (s = output_bfd->sections; s != NULL; s = s->next)
266b05cf 6234 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
74541ad4
AM
6235 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6236 {
266b05cf 6237 elf_hash_table (info)->data_index_section = s;
74541ad4
AM
6238 break;
6239 }
6240
6241 for (s = output_bfd->sections; s != NULL; s = s->next)
266b05cf
DJ
6242 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6243 == (SEC_ALLOC | SEC_READONLY))
74541ad4
AM
6244 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6245 {
266b05cf 6246 elf_hash_table (info)->text_index_section = s;
74541ad4
AM
6247 break;
6248 }
6249
6250 if (elf_hash_table (info)->text_index_section == NULL)
6251 elf_hash_table (info)->text_index_section
6252 = elf_hash_table (info)->data_index_section;
6253}
6254
8423293d
AM
6255bfd_boolean
6256bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6257{
74541ad4
AM
6258 const struct elf_backend_data *bed;
6259
8423293d
AM
6260 if (!is_elf_hash_table (info->hash))
6261 return TRUE;
6262
74541ad4
AM
6263 bed = get_elf_backend_data (output_bfd);
6264 (*bed->elf_backend_init_index_section) (output_bfd, info);
6265
8423293d
AM
6266 if (elf_hash_table (info)->dynamic_sections_created)
6267 {
6268 bfd *dynobj;
8423293d
AM
6269 asection *s;
6270 bfd_size_type dynsymcount;
6271 unsigned long section_sym_count;
8423293d
AM
6272 unsigned int dtagcount;
6273
6274 dynobj = elf_hash_table (info)->dynobj;
6275
5a580b3a
AM
6276 /* Assign dynsym indicies. In a shared library we generate a
6277 section symbol for each output section, which come first.
6278 Next come all of the back-end allocated local dynamic syms,
6279 followed by the rest of the global symbols. */
6280
554220db
AM
6281 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6282 &section_sym_count);
5a580b3a
AM
6283
6284 /* Work out the size of the symbol version section. */
6285 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6286 BFD_ASSERT (s != NULL);
8423293d
AM
6287 if (dynsymcount != 0
6288 && (s->flags & SEC_EXCLUDE) == 0)
5a580b3a 6289 {
eea6121a
AM
6290 s->size = dynsymcount * sizeof (Elf_External_Versym);
6291 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
6292 if (s->contents == NULL)
6293 return FALSE;
6294
6295 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6296 return FALSE;
6297 }
6298
6299 /* Set the size of the .dynsym and .hash sections. We counted
6300 the number of dynamic symbols in elf_link_add_object_symbols.
6301 We will build the contents of .dynsym and .hash when we build
6302 the final symbol table, because until then we do not know the
6303 correct value to give the symbols. We built the .dynstr
6304 section as we went along in elf_link_add_object_symbols. */
6305 s = bfd_get_section_by_name (dynobj, ".dynsym");
6306 BFD_ASSERT (s != NULL);
eea6121a 6307 s->size = dynsymcount * bed->s->sizeof_sym;
5a580b3a
AM
6308
6309 if (dynsymcount != 0)
6310 {
554220db
AM
6311 s->contents = bfd_alloc (output_bfd, s->size);
6312 if (s->contents == NULL)
6313 return FALSE;
5a580b3a 6314
554220db
AM
6315 /* The first entry in .dynsym is a dummy symbol.
6316 Clear all the section syms, in case we don't output them all. */
6317 ++section_sym_count;
6318 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5a580b3a
AM
6319 }
6320
fdc90cb4
JJ
6321 elf_hash_table (info)->bucketcount = 0;
6322
5a580b3a
AM
6323 /* Compute the size of the hashing table. As a side effect this
6324 computes the hash values for all the names we export. */
fdc90cb4
JJ
6325 if (info->emit_hash)
6326 {
6327 unsigned long int *hashcodes;
14b1c01e 6328 struct hash_codes_info hashinf;
fdc90cb4
JJ
6329 bfd_size_type amt;
6330 unsigned long int nsyms;
6331 size_t bucketcount;
6332 size_t hash_entry_size;
6333
6334 /* Compute the hash values for all exported symbols. At the same
6335 time store the values in an array so that we could use them for
6336 optimizations. */
6337 amt = dynsymcount * sizeof (unsigned long int);
6338 hashcodes = bfd_malloc (amt);
6339 if (hashcodes == NULL)
6340 return FALSE;
14b1c01e
AM
6341 hashinf.hashcodes = hashcodes;
6342 hashinf.error = FALSE;
5a580b3a 6343
fdc90cb4
JJ
6344 /* Put all hash values in HASHCODES. */
6345 elf_link_hash_traverse (elf_hash_table (info),
14b1c01e
AM
6346 elf_collect_hash_codes, &hashinf);
6347 if (hashinf.error)
4dd07732
AM
6348 {
6349 free (hashcodes);
6350 return FALSE;
6351 }
5a580b3a 6352
14b1c01e 6353 nsyms = hashinf.hashcodes - hashcodes;
fdc90cb4
JJ
6354 bucketcount
6355 = compute_bucket_count (info, hashcodes, nsyms, 0);
6356 free (hashcodes);
6357
6358 if (bucketcount == 0)
6359 return FALSE;
5a580b3a 6360
fdc90cb4
JJ
6361 elf_hash_table (info)->bucketcount = bucketcount;
6362
6363 s = bfd_get_section_by_name (dynobj, ".hash");
6364 BFD_ASSERT (s != NULL);
6365 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6366 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6367 s->contents = bfd_zalloc (output_bfd, s->size);
6368 if (s->contents == NULL)
6369 return FALSE;
6370
6371 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6372 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6373 s->contents + hash_entry_size);
6374 }
6375
6376 if (info->emit_gnu_hash)
6377 {
6378 size_t i, cnt;
6379 unsigned char *contents;
6380 struct collect_gnu_hash_codes cinfo;
6381 bfd_size_type amt;
6382 size_t bucketcount;
6383
6384 memset (&cinfo, 0, sizeof (cinfo));
6385
6386 /* Compute the hash values for all exported symbols. At the same
6387 time store the values in an array so that we could use them for
6388 optimizations. */
6389 amt = dynsymcount * 2 * sizeof (unsigned long int);
6390 cinfo.hashcodes = bfd_malloc (amt);
6391 if (cinfo.hashcodes == NULL)
6392 return FALSE;
6393
6394 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6395 cinfo.min_dynindx = -1;
6396 cinfo.output_bfd = output_bfd;
6397 cinfo.bed = bed;
6398
6399 /* Put all hash values in HASHCODES. */
6400 elf_link_hash_traverse (elf_hash_table (info),
6401 elf_collect_gnu_hash_codes, &cinfo);
14b1c01e 6402 if (cinfo.error)
4dd07732
AM
6403 {
6404 free (cinfo.hashcodes);
6405 return FALSE;
6406 }
fdc90cb4
JJ
6407
6408 bucketcount
6409 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6410
6411 if (bucketcount == 0)
6412 {
6413 free (cinfo.hashcodes);
6414 return FALSE;
6415 }
6416
6417 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6418 BFD_ASSERT (s != NULL);
6419
6420 if (cinfo.nsyms == 0)
6421 {
6422 /* Empty .gnu.hash section is special. */
6423 BFD_ASSERT (cinfo.min_dynindx == -1);
6424 free (cinfo.hashcodes);
6425 s->size = 5 * 4 + bed->s->arch_size / 8;
6426 contents = bfd_zalloc (output_bfd, s->size);
6427 if (contents == NULL)
6428 return FALSE;
6429 s->contents = contents;
6430 /* 1 empty bucket. */
6431 bfd_put_32 (output_bfd, 1, contents);
6432 /* SYMIDX above the special symbol 0. */
6433 bfd_put_32 (output_bfd, 1, contents + 4);
6434 /* Just one word for bitmask. */
6435 bfd_put_32 (output_bfd, 1, contents + 8);
6436 /* Only hash fn bloom filter. */
6437 bfd_put_32 (output_bfd, 0, contents + 12);
6438 /* No hashes are valid - empty bitmask. */
6439 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6440 /* No hashes in the only bucket. */
6441 bfd_put_32 (output_bfd, 0,
6442 contents + 16 + bed->s->arch_size / 8);
6443 }
6444 else
6445 {
fdc90cb4 6446 unsigned long int maskwords, maskbitslog2;
0b33793d 6447 BFD_ASSERT (cinfo.min_dynindx != -1);
fdc90cb4
JJ
6448
6449 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6450 if (maskbitslog2 < 3)
6451 maskbitslog2 = 5;
6452 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6453 maskbitslog2 = maskbitslog2 + 3;
6454 else
6455 maskbitslog2 = maskbitslog2 + 2;
6456 if (bed->s->arch_size == 64)
6457 {
6458 if (maskbitslog2 == 5)
6459 maskbitslog2 = 6;
6460 cinfo.shift1 = 6;
6461 }
6462 else
6463 cinfo.shift1 = 5;
6464 cinfo.mask = (1 << cinfo.shift1) - 1;
2ccdbfcc 6465 cinfo.shift2 = maskbitslog2;
fdc90cb4
JJ
6466 cinfo.maskbits = 1 << maskbitslog2;
6467 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6468 amt = bucketcount * sizeof (unsigned long int) * 2;
6469 amt += maskwords * sizeof (bfd_vma);
6470 cinfo.bitmask = bfd_malloc (amt);
6471 if (cinfo.bitmask == NULL)
6472 {
6473 free (cinfo.hashcodes);
6474 return FALSE;
6475 }
6476
6477 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6478 cinfo.indx = cinfo.counts + bucketcount;
6479 cinfo.symindx = dynsymcount - cinfo.nsyms;
6480 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6481
6482 /* Determine how often each hash bucket is used. */
6483 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6484 for (i = 0; i < cinfo.nsyms; ++i)
6485 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6486
6487 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6488 if (cinfo.counts[i] != 0)
6489 {
6490 cinfo.indx[i] = cnt;
6491 cnt += cinfo.counts[i];
6492 }
6493 BFD_ASSERT (cnt == dynsymcount);
6494 cinfo.bucketcount = bucketcount;
6495 cinfo.local_indx = cinfo.min_dynindx;
6496
6497 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6498 s->size += cinfo.maskbits / 8;
6499 contents = bfd_zalloc (output_bfd, s->size);
6500 if (contents == NULL)
6501 {
6502 free (cinfo.bitmask);
6503 free (cinfo.hashcodes);
6504 return FALSE;
6505 }
6506
6507 s->contents = contents;
6508 bfd_put_32 (output_bfd, bucketcount, contents);
6509 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6510 bfd_put_32 (output_bfd, maskwords, contents + 8);
6511 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6512 contents += 16 + cinfo.maskbits / 8;
6513
6514 for (i = 0; i < bucketcount; ++i)
6515 {
6516 if (cinfo.counts[i] == 0)
6517 bfd_put_32 (output_bfd, 0, contents);
6518 else
6519 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6520 contents += 4;
6521 }
6522
6523 cinfo.contents = contents;
6524
6525 /* Renumber dynamic symbols, populate .gnu.hash section. */
6526 elf_link_hash_traverse (elf_hash_table (info),
6527 elf_renumber_gnu_hash_syms, &cinfo);
6528
6529 contents = s->contents + 16;
6530 for (i = 0; i < maskwords; ++i)
6531 {
6532 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6533 contents);
6534 contents += bed->s->arch_size / 8;
6535 }
6536
6537 free (cinfo.bitmask);
6538 free (cinfo.hashcodes);
6539 }
6540 }
5a580b3a
AM
6541
6542 s = bfd_get_section_by_name (dynobj, ".dynstr");
6543 BFD_ASSERT (s != NULL);
6544
4ad4eba5 6545 elf_finalize_dynstr (output_bfd, info);
5a580b3a 6546
eea6121a 6547 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5a580b3a
AM
6548
6549 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6550 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6551 return FALSE;
6552 }
6553
6554 return TRUE;
6555}
4d269e42
AM
6556\f
6557/* Indicate that we are only retrieving symbol values from this
6558 section. */
6559
6560void
6561_bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6562{
6563 if (is_elf_hash_table (info->hash))
6564 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6565 _bfd_generic_link_just_syms (sec, info);
6566}
6567
6568/* Make sure sec_info_type is cleared if sec_info is cleared too. */
6569
6570static void
6571merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6572 asection *sec)
6573{
6574 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6575 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6576}
6577
6578/* Finish SHF_MERGE section merging. */
6579
6580bfd_boolean
6581_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6582{
6583 bfd *ibfd;
6584 asection *sec;
6585
6586 if (!is_elf_hash_table (info->hash))
6587 return FALSE;
6588
6589 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6590 if ((ibfd->flags & DYNAMIC) == 0)
6591 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6592 if ((sec->flags & SEC_MERGE) != 0
6593 && !bfd_is_abs_section (sec->output_section))
6594 {
6595 struct bfd_elf_section_data *secdata;
6596
6597 secdata = elf_section_data (sec);
6598 if (! _bfd_add_merge_section (abfd,
6599 &elf_hash_table (info)->merge_info,
6600 sec, &secdata->sec_info))
6601 return FALSE;
6602 else if (secdata->sec_info)
6603 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6604 }
6605
6606 if (elf_hash_table (info)->merge_info != NULL)
6607 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6608 merge_sections_remove_hook);
6609 return TRUE;
6610}
6611
6612/* Create an entry in an ELF linker hash table. */
6613
6614struct bfd_hash_entry *
6615_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6616 struct bfd_hash_table *table,
6617 const char *string)
6618{
6619 /* Allocate the structure if it has not already been allocated by a
6620 subclass. */
6621 if (entry == NULL)
6622 {
6623 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6624 if (entry == NULL)
6625 return entry;
6626 }
6627
6628 /* Call the allocation method of the superclass. */
6629 entry = _bfd_link_hash_newfunc (entry, table, string);
6630 if (entry != NULL)
6631 {
6632 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6633 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6634
6635 /* Set local fields. */
6636 ret->indx = -1;
6637 ret->dynindx = -1;
6638 ret->got = htab->init_got_refcount;
6639 ret->plt = htab->init_plt_refcount;
6640 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6641 - offsetof (struct elf_link_hash_entry, size)));
6642 /* Assume that we have been called by a non-ELF symbol reader.
6643 This flag is then reset by the code which reads an ELF input
6644 file. This ensures that a symbol created by a non-ELF symbol
6645 reader will have the flag set correctly. */
6646 ret->non_elf = 1;
6647 }
6648
6649 return entry;
6650}
6651
6652/* Copy data from an indirect symbol to its direct symbol, hiding the
6653 old indirect symbol. Also used for copying flags to a weakdef. */
6654
6655void
6656_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6657 struct elf_link_hash_entry *dir,
6658 struct elf_link_hash_entry *ind)
6659{
6660 struct elf_link_hash_table *htab;
6661
6662 /* Copy down any references that we may have already seen to the
6663 symbol which just became indirect. */
6664
6665 dir->ref_dynamic |= ind->ref_dynamic;
6666 dir->ref_regular |= ind->ref_regular;
6667 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6668 dir->non_got_ref |= ind->non_got_ref;
6669 dir->needs_plt |= ind->needs_plt;
6670 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6671
6672 if (ind->root.type != bfd_link_hash_indirect)
6673 return;
6674
6675 /* Copy over the global and procedure linkage table refcount entries.
6676 These may have been already set up by a check_relocs routine. */
6677 htab = elf_hash_table (info);
6678 if (ind->got.refcount > htab->init_got_refcount.refcount)
6679 {
6680 if (dir->got.refcount < 0)
6681 dir->got.refcount = 0;
6682 dir->got.refcount += ind->got.refcount;
6683 ind->got.refcount = htab->init_got_refcount.refcount;
6684 }
6685
6686 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6687 {
6688 if (dir->plt.refcount < 0)
6689 dir->plt.refcount = 0;
6690 dir->plt.refcount += ind->plt.refcount;
6691 ind->plt.refcount = htab->init_plt_refcount.refcount;
6692 }
6693
6694 if (ind->dynindx != -1)
6695 {
6696 if (dir->dynindx != -1)
6697 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6698 dir->dynindx = ind->dynindx;
6699 dir->dynstr_index = ind->dynstr_index;
6700 ind->dynindx = -1;
6701 ind->dynstr_index = 0;
6702 }
6703}
6704
6705void
6706_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6707 struct elf_link_hash_entry *h,
6708 bfd_boolean force_local)
6709{
6710 h->plt = elf_hash_table (info)->init_plt_offset;
6711 h->needs_plt = 0;
6712 if (force_local)
6713 {
6714 h->forced_local = 1;
6715 if (h->dynindx != -1)
6716 {
6717 h->dynindx = -1;
6718 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6719 h->dynstr_index);
6720 }
6721 }
6722}
6723
6724/* Initialize an ELF linker hash table. */
6725
6726bfd_boolean
6727_bfd_elf_link_hash_table_init
6728 (struct elf_link_hash_table *table,
6729 bfd *abfd,
6730 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6731 struct bfd_hash_table *,
6732 const char *),
6733 unsigned int entsize)
6734{
6735 bfd_boolean ret;
6736 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6737
6738 memset (table, 0, sizeof * table);
6739 table->init_got_refcount.refcount = can_refcount - 1;
6740 table->init_plt_refcount.refcount = can_refcount - 1;
6741 table->init_got_offset.offset = -(bfd_vma) 1;
6742 table->init_plt_offset.offset = -(bfd_vma) 1;
6743 /* The first dynamic symbol is a dummy. */
6744 table->dynsymcount = 1;
6745
6746 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6747 table->root.type = bfd_link_elf_hash_table;
6748
6749 return ret;
6750}
6751
6752/* Create an ELF linker hash table. */
6753
6754struct bfd_link_hash_table *
6755_bfd_elf_link_hash_table_create (bfd *abfd)
6756{
6757 struct elf_link_hash_table *ret;
6758 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6759
6760 ret = bfd_malloc (amt);
6761 if (ret == NULL)
6762 return NULL;
6763
6764 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6765 sizeof (struct elf_link_hash_entry)))
6766 {
6767 free (ret);
6768 return NULL;
6769 }
6770
6771 return &ret->root;
6772}
6773
6774/* This is a hook for the ELF emulation code in the generic linker to
6775 tell the backend linker what file name to use for the DT_NEEDED
6776 entry for a dynamic object. */
6777
6778void
6779bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6780{
6781 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6782 && bfd_get_format (abfd) == bfd_object)
6783 elf_dt_name (abfd) = name;
6784}
6785
6786int
6787bfd_elf_get_dyn_lib_class (bfd *abfd)
6788{
6789 int lib_class;
6790 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6791 && bfd_get_format (abfd) == bfd_object)
6792 lib_class = elf_dyn_lib_class (abfd);
6793 else
6794 lib_class = 0;
6795 return lib_class;
6796}
6797
6798void
6799bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6800{
6801 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6802 && bfd_get_format (abfd) == bfd_object)
6803 elf_dyn_lib_class (abfd) = lib_class;
6804}
6805
6806/* Get the list of DT_NEEDED entries for a link. This is a hook for
6807 the linker ELF emulation code. */
6808
6809struct bfd_link_needed_list *
6810bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6811 struct bfd_link_info *info)
6812{
6813 if (! is_elf_hash_table (info->hash))
6814 return NULL;
6815 return elf_hash_table (info)->needed;
6816}
6817
6818/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6819 hook for the linker ELF emulation code. */
6820
6821struct bfd_link_needed_list *
6822bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6823 struct bfd_link_info *info)
6824{
6825 if (! is_elf_hash_table (info->hash))
6826 return NULL;
6827 return elf_hash_table (info)->runpath;
6828}
6829
6830/* Get the name actually used for a dynamic object for a link. This
6831 is the SONAME entry if there is one. Otherwise, it is the string
6832 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6833
6834const char *
6835bfd_elf_get_dt_soname (bfd *abfd)
6836{
6837 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6838 && bfd_get_format (abfd) == bfd_object)
6839 return elf_dt_name (abfd);
6840 return NULL;
6841}
6842
6843/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6844 the ELF linker emulation code. */
6845
6846bfd_boolean
6847bfd_elf_get_bfd_needed_list (bfd *abfd,
6848 struct bfd_link_needed_list **pneeded)
6849{
6850 asection *s;
6851 bfd_byte *dynbuf = NULL;
cb33740c 6852 unsigned int elfsec;
4d269e42
AM
6853 unsigned long shlink;
6854 bfd_byte *extdyn, *extdynend;
6855 size_t extdynsize;
6856 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6857
6858 *pneeded = NULL;
6859
6860 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6861 || bfd_get_format (abfd) != bfd_object)
6862 return TRUE;
6863
6864 s = bfd_get_section_by_name (abfd, ".dynamic");
6865 if (s == NULL || s->size == 0)
6866 return TRUE;
6867
6868 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6869 goto error_return;
6870
6871 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
cb33740c 6872 if (elfsec == SHN_BAD)
4d269e42
AM
6873 goto error_return;
6874
6875 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
c152c796 6876
4d269e42
AM
6877 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6878 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6879
6880 extdyn = dynbuf;
6881 extdynend = extdyn + s->size;
6882 for (; extdyn < extdynend; extdyn += extdynsize)
6883 {
6884 Elf_Internal_Dyn dyn;
6885
6886 (*swap_dyn_in) (abfd, extdyn, &dyn);
6887
6888 if (dyn.d_tag == DT_NULL)
6889 break;
6890
6891 if (dyn.d_tag == DT_NEEDED)
6892 {
6893 const char *string;
6894 struct bfd_link_needed_list *l;
6895 unsigned int tagv = dyn.d_un.d_val;
6896 bfd_size_type amt;
6897
6898 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6899 if (string == NULL)
6900 goto error_return;
6901
6902 amt = sizeof *l;
6903 l = bfd_alloc (abfd, amt);
6904 if (l == NULL)
6905 goto error_return;
6906
6907 l->by = abfd;
6908 l->name = string;
6909 l->next = *pneeded;
6910 *pneeded = l;
6911 }
6912 }
6913
6914 free (dynbuf);
6915
6916 return TRUE;
6917
6918 error_return:
6919 if (dynbuf != NULL)
6920 free (dynbuf);
6921 return FALSE;
6922}
6923
6924struct elf_symbuf_symbol
6925{
6926 unsigned long st_name; /* Symbol name, index in string tbl */
6927 unsigned char st_info; /* Type and binding attributes */
6928 unsigned char st_other; /* Visibilty, and target specific */
6929};
6930
6931struct elf_symbuf_head
6932{
6933 struct elf_symbuf_symbol *ssym;
6934 bfd_size_type count;
6935 unsigned int st_shndx;
6936};
6937
6938struct elf_symbol
6939{
6940 union
6941 {
6942 Elf_Internal_Sym *isym;
6943 struct elf_symbuf_symbol *ssym;
6944 } u;
6945 const char *name;
6946};
6947
6948/* Sort references to symbols by ascending section number. */
6949
6950static int
6951elf_sort_elf_symbol (const void *arg1, const void *arg2)
6952{
6953 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6954 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6955
6956 return s1->st_shndx - s2->st_shndx;
6957}
6958
6959static int
6960elf_sym_name_compare (const void *arg1, const void *arg2)
6961{
6962 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6963 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6964 return strcmp (s1->name, s2->name);
6965}
6966
6967static struct elf_symbuf_head *
6968elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6969{
14b1c01e 6970 Elf_Internal_Sym **ind, **indbufend, **indbuf;
4d269e42
AM
6971 struct elf_symbuf_symbol *ssym;
6972 struct elf_symbuf_head *ssymbuf, *ssymhead;
3ae181ee 6973 bfd_size_type i, shndx_count, total_size;
4d269e42 6974
14b1c01e 6975 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
4d269e42
AM
6976 if (indbuf == NULL)
6977 return NULL;
6978
6979 for (ind = indbuf, i = 0; i < symcount; i++)
6980 if (isymbuf[i].st_shndx != SHN_UNDEF)
6981 *ind++ = &isymbuf[i];
6982 indbufend = ind;
6983
6984 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6985 elf_sort_elf_symbol);
6986
6987 shndx_count = 0;
6988 if (indbufend > indbuf)
6989 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6990 if (ind[0]->st_shndx != ind[1]->st_shndx)
6991 shndx_count++;
6992
3ae181ee
L
6993 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6994 + (indbufend - indbuf) * sizeof (*ssym));
6995 ssymbuf = bfd_malloc (total_size);
4d269e42
AM
6996 if (ssymbuf == NULL)
6997 {
6998 free (indbuf);
6999 return NULL;
7000 }
7001
3ae181ee 7002 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
4d269e42
AM
7003 ssymbuf->ssym = NULL;
7004 ssymbuf->count = shndx_count;
7005 ssymbuf->st_shndx = 0;
7006 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7007 {
7008 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7009 {
7010 ssymhead++;
7011 ssymhead->ssym = ssym;
7012 ssymhead->count = 0;
7013 ssymhead->st_shndx = (*ind)->st_shndx;
7014 }
7015 ssym->st_name = (*ind)->st_name;
7016 ssym->st_info = (*ind)->st_info;
7017 ssym->st_other = (*ind)->st_other;
7018 ssymhead->count++;
7019 }
3ae181ee
L
7020 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7021 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7022 == total_size));
4d269e42
AM
7023
7024 free (indbuf);
7025 return ssymbuf;
7026}
7027
7028/* Check if 2 sections define the same set of local and global
7029 symbols. */
7030
8f317e31 7031static bfd_boolean
4d269e42
AM
7032bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7033 struct bfd_link_info *info)
7034{
7035 bfd *bfd1, *bfd2;
7036 const struct elf_backend_data *bed1, *bed2;
7037 Elf_Internal_Shdr *hdr1, *hdr2;
7038 bfd_size_type symcount1, symcount2;
7039 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7040 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7041 Elf_Internal_Sym *isym, *isymend;
7042 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7043 bfd_size_type count1, count2, i;
cb33740c 7044 unsigned int shndx1, shndx2;
4d269e42
AM
7045 bfd_boolean result;
7046
7047 bfd1 = sec1->owner;
7048 bfd2 = sec2->owner;
7049
4d269e42
AM
7050 /* Both sections have to be in ELF. */
7051 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7052 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7053 return FALSE;
7054
7055 if (elf_section_type (sec1) != elf_section_type (sec2))
7056 return FALSE;
7057
4d269e42
AM
7058 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7059 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
cb33740c 7060 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
4d269e42
AM
7061 return FALSE;
7062
7063 bed1 = get_elf_backend_data (bfd1);
7064 bed2 = get_elf_backend_data (bfd2);
7065 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7066 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7067 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7068 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7069
7070 if (symcount1 == 0 || symcount2 == 0)
7071 return FALSE;
7072
7073 result = FALSE;
7074 isymbuf1 = NULL;
7075 isymbuf2 = NULL;
7076 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7077 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7078
7079 if (ssymbuf1 == NULL)
7080 {
7081 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7082 NULL, NULL, NULL);
7083 if (isymbuf1 == NULL)
7084 goto done;
7085
7086 if (!info->reduce_memory_overheads)
7087 elf_tdata (bfd1)->symbuf = ssymbuf1
7088 = elf_create_symbuf (symcount1, isymbuf1);
7089 }
7090
7091 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7092 {
7093 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7094 NULL, NULL, NULL);
7095 if (isymbuf2 == NULL)
7096 goto done;
7097
7098 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7099 elf_tdata (bfd2)->symbuf = ssymbuf2
7100 = elf_create_symbuf (symcount2, isymbuf2);
7101 }
7102
7103 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7104 {
7105 /* Optimized faster version. */
7106 bfd_size_type lo, hi, mid;
7107 struct elf_symbol *symp;
7108 struct elf_symbuf_symbol *ssym, *ssymend;
7109
7110 lo = 0;
7111 hi = ssymbuf1->count;
7112 ssymbuf1++;
7113 count1 = 0;
7114 while (lo < hi)
7115 {
7116 mid = (lo + hi) / 2;
cb33740c 7117 if (shndx1 < ssymbuf1[mid].st_shndx)
4d269e42 7118 hi = mid;
cb33740c 7119 else if (shndx1 > ssymbuf1[mid].st_shndx)
4d269e42
AM
7120 lo = mid + 1;
7121 else
7122 {
7123 count1 = ssymbuf1[mid].count;
7124 ssymbuf1 += mid;
7125 break;
7126 }
7127 }
7128
7129 lo = 0;
7130 hi = ssymbuf2->count;
7131 ssymbuf2++;
7132 count2 = 0;
7133 while (lo < hi)
7134 {
7135 mid = (lo + hi) / 2;
cb33740c 7136 if (shndx2 < ssymbuf2[mid].st_shndx)
4d269e42 7137 hi = mid;
cb33740c 7138 else if (shndx2 > ssymbuf2[mid].st_shndx)
4d269e42
AM
7139 lo = mid + 1;
7140 else
7141 {
7142 count2 = ssymbuf2[mid].count;
7143 ssymbuf2 += mid;
7144 break;
7145 }
7146 }
7147
7148 if (count1 == 0 || count2 == 0 || count1 != count2)
7149 goto done;
7150
7151 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7152 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7153 if (symtable1 == NULL || symtable2 == NULL)
7154 goto done;
7155
7156 symp = symtable1;
7157 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7158 ssym < ssymend; ssym++, symp++)
7159 {
7160 symp->u.ssym = ssym;
7161 symp->name = bfd_elf_string_from_elf_section (bfd1,
7162 hdr1->sh_link,
7163 ssym->st_name);
7164 }
7165
7166 symp = symtable2;
7167 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7168 ssym < ssymend; ssym++, symp++)
7169 {
7170 symp->u.ssym = ssym;
7171 symp->name = bfd_elf_string_from_elf_section (bfd2,
7172 hdr2->sh_link,
7173 ssym->st_name);
7174 }
7175
7176 /* Sort symbol by name. */
7177 qsort (symtable1, count1, sizeof (struct elf_symbol),
7178 elf_sym_name_compare);
7179 qsort (symtable2, count1, sizeof (struct elf_symbol),
7180 elf_sym_name_compare);
7181
7182 for (i = 0; i < count1; i++)
7183 /* Two symbols must have the same binding, type and name. */
7184 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7185 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7186 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7187 goto done;
7188
7189 result = TRUE;
7190 goto done;
7191 }
7192
7193 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7194 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7195 if (symtable1 == NULL || symtable2 == NULL)
7196 goto done;
7197
7198 /* Count definitions in the section. */
7199 count1 = 0;
7200 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
cb33740c 7201 if (isym->st_shndx == shndx1)
4d269e42
AM
7202 symtable1[count1++].u.isym = isym;
7203
7204 count2 = 0;
7205 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
cb33740c 7206 if (isym->st_shndx == shndx2)
4d269e42
AM
7207 symtable2[count2++].u.isym = isym;
7208
7209 if (count1 == 0 || count2 == 0 || count1 != count2)
7210 goto done;
7211
7212 for (i = 0; i < count1; i++)
7213 symtable1[i].name
7214 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7215 symtable1[i].u.isym->st_name);
7216
7217 for (i = 0; i < count2; i++)
7218 symtable2[i].name
7219 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7220 symtable2[i].u.isym->st_name);
7221
7222 /* Sort symbol by name. */
7223 qsort (symtable1, count1, sizeof (struct elf_symbol),
7224 elf_sym_name_compare);
7225 qsort (symtable2, count1, sizeof (struct elf_symbol),
7226 elf_sym_name_compare);
7227
7228 for (i = 0; i < count1; i++)
7229 /* Two symbols must have the same binding, type and name. */
7230 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7231 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7232 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7233 goto done;
7234
7235 result = TRUE;
7236
7237done:
7238 if (symtable1)
7239 free (symtable1);
7240 if (symtable2)
7241 free (symtable2);
7242 if (isymbuf1)
7243 free (isymbuf1);
7244 if (isymbuf2)
7245 free (isymbuf2);
7246
7247 return result;
7248}
7249
7250/* Return TRUE if 2 section types are compatible. */
7251
7252bfd_boolean
7253_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7254 bfd *bbfd, const asection *bsec)
7255{
7256 if (asec == NULL
7257 || bsec == NULL
7258 || abfd->xvec->flavour != bfd_target_elf_flavour
7259 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7260 return TRUE;
7261
7262 return elf_section_type (asec) == elf_section_type (bsec);
7263}
7264\f
c152c796
AM
7265/* Final phase of ELF linker. */
7266
7267/* A structure we use to avoid passing large numbers of arguments. */
7268
7269struct elf_final_link_info
7270{
7271 /* General link information. */
7272 struct bfd_link_info *info;
7273 /* Output BFD. */
7274 bfd *output_bfd;
7275 /* Symbol string table. */
7276 struct bfd_strtab_hash *symstrtab;
7277 /* .dynsym section. */
7278 asection *dynsym_sec;
7279 /* .hash section. */
7280 asection *hash_sec;
7281 /* symbol version section (.gnu.version). */
7282 asection *symver_sec;
7283 /* Buffer large enough to hold contents of any section. */
7284 bfd_byte *contents;
7285 /* Buffer large enough to hold external relocs of any section. */
7286 void *external_relocs;
7287 /* Buffer large enough to hold internal relocs of any section. */
7288 Elf_Internal_Rela *internal_relocs;
7289 /* Buffer large enough to hold external local symbols of any input
7290 BFD. */
7291 bfd_byte *external_syms;
7292 /* And a buffer for symbol section indices. */
7293 Elf_External_Sym_Shndx *locsym_shndx;
7294 /* Buffer large enough to hold internal local symbols of any input
7295 BFD. */
7296 Elf_Internal_Sym *internal_syms;
7297 /* Array large enough to hold a symbol index for each local symbol
7298 of any input BFD. */
7299 long *indices;
7300 /* Array large enough to hold a section pointer for each local
7301 symbol of any input BFD. */
7302 asection **sections;
7303 /* Buffer to hold swapped out symbols. */
7304 bfd_byte *symbuf;
7305 /* And one for symbol section indices. */
7306 Elf_External_Sym_Shndx *symshndxbuf;
7307 /* Number of swapped out symbols in buffer. */
7308 size_t symbuf_count;
7309 /* Number of symbols which fit in symbuf. */
7310 size_t symbuf_size;
7311 /* And same for symshndxbuf. */
7312 size_t shndxbuf_size;
7313};
7314
7315/* This struct is used to pass information to elf_link_output_extsym. */
7316
7317struct elf_outext_info
7318{
7319 bfd_boolean failed;
7320 bfd_boolean localsyms;
7321 struct elf_final_link_info *finfo;
7322};
7323
d9352518
DB
7324
7325/* Support for evaluating a complex relocation.
7326
7327 Complex relocations are generalized, self-describing relocations. The
7328 implementation of them consists of two parts: complex symbols, and the
a0c8462f 7329 relocations themselves.
d9352518
DB
7330
7331 The relocations are use a reserved elf-wide relocation type code (R_RELC
7332 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7333 information (start bit, end bit, word width, etc) into the addend. This
7334 information is extracted from CGEN-generated operand tables within gas.
7335
7336 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7337 internal) representing prefix-notation expressions, including but not
7338 limited to those sorts of expressions normally encoded as addends in the
7339 addend field. The symbol mangling format is:
7340
7341 <node> := <literal>
7342 | <unary-operator> ':' <node>
7343 | <binary-operator> ':' <node> ':' <node>
7344 ;
7345
7346 <literal> := 's' <digits=N> ':' <N character symbol name>
7347 | 'S' <digits=N> ':' <N character section name>
7348 | '#' <hexdigits>
7349 ;
7350
7351 <binary-operator> := as in C
7352 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7353
7354static void
a0c8462f
AM
7355set_symbol_value (bfd *bfd_with_globals,
7356 Elf_Internal_Sym *isymbuf,
7357 size_t locsymcount,
7358 size_t symidx,
7359 bfd_vma val)
d9352518 7360{
8977835c
AM
7361 struct elf_link_hash_entry **sym_hashes;
7362 struct elf_link_hash_entry *h;
7363 size_t extsymoff = locsymcount;
d9352518 7364
8977835c 7365 if (symidx < locsymcount)
d9352518 7366 {
8977835c
AM
7367 Elf_Internal_Sym *sym;
7368
7369 sym = isymbuf + symidx;
7370 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7371 {
7372 /* It is a local symbol: move it to the
7373 "absolute" section and give it a value. */
7374 sym->st_shndx = SHN_ABS;
7375 sym->st_value = val;
7376 return;
7377 }
7378 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7379 extsymoff = 0;
d9352518 7380 }
8977835c
AM
7381
7382 /* It is a global symbol: set its link type
7383 to "defined" and give it a value. */
7384
7385 sym_hashes = elf_sym_hashes (bfd_with_globals);
7386 h = sym_hashes [symidx - extsymoff];
7387 while (h->root.type == bfd_link_hash_indirect
7388 || h->root.type == bfd_link_hash_warning)
7389 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7390 h->root.type = bfd_link_hash_defined;
7391 h->root.u.def.value = val;
7392 h->root.u.def.section = bfd_abs_section_ptr;
d9352518
DB
7393}
7394
a0c8462f
AM
7395static bfd_boolean
7396resolve_symbol (const char *name,
7397 bfd *input_bfd,
7398 struct elf_final_link_info *finfo,
7399 bfd_vma *result,
7400 Elf_Internal_Sym *isymbuf,
7401 size_t locsymcount)
d9352518 7402{
a0c8462f
AM
7403 Elf_Internal_Sym *sym;
7404 struct bfd_link_hash_entry *global_entry;
7405 const char *candidate = NULL;
7406 Elf_Internal_Shdr *symtab_hdr;
7407 size_t i;
7408
d9352518
DB
7409 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7410
7411 for (i = 0; i < locsymcount; ++ i)
7412 {
8977835c 7413 sym = isymbuf + i;
d9352518
DB
7414
7415 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7416 continue;
7417
7418 candidate = bfd_elf_string_from_elf_section (input_bfd,
7419 symtab_hdr->sh_link,
7420 sym->st_name);
7421#ifdef DEBUG
0f02bbd9
AM
7422 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7423 name, candidate, (unsigned long) sym->st_value);
d9352518
DB
7424#endif
7425 if (candidate && strcmp (candidate, name) == 0)
7426 {
0f02bbd9 7427 asection *sec = finfo->sections [i];
d9352518 7428
0f02bbd9
AM
7429 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7430 *result += sec->output_offset + sec->output_section->vma;
d9352518 7431#ifdef DEBUG
0f02bbd9
AM
7432 printf ("Found symbol with value %8.8lx\n",
7433 (unsigned long) *result);
d9352518
DB
7434#endif
7435 return TRUE;
7436 }
7437 }
7438
7439 /* Hmm, haven't found it yet. perhaps it is a global. */
a0c8462f
AM
7440 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7441 FALSE, FALSE, TRUE);
d9352518
DB
7442 if (!global_entry)
7443 return FALSE;
a0c8462f 7444
d9352518
DB
7445 if (global_entry->type == bfd_link_hash_defined
7446 || global_entry->type == bfd_link_hash_defweak)
7447 {
a0c8462f
AM
7448 *result = (global_entry->u.def.value
7449 + global_entry->u.def.section->output_section->vma
7450 + global_entry->u.def.section->output_offset);
d9352518 7451#ifdef DEBUG
0f02bbd9
AM
7452 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7453 global_entry->root.string, (unsigned long) *result);
d9352518
DB
7454#endif
7455 return TRUE;
a0c8462f 7456 }
d9352518 7457
d9352518
DB
7458 return FALSE;
7459}
7460
7461static bfd_boolean
a0c8462f
AM
7462resolve_section (const char *name,
7463 asection *sections,
7464 bfd_vma *result)
d9352518 7465{
a0c8462f
AM
7466 asection *curr;
7467 unsigned int len;
d9352518 7468
a0c8462f 7469 for (curr = sections; curr; curr = curr->next)
d9352518
DB
7470 if (strcmp (curr->name, name) == 0)
7471 {
7472 *result = curr->vma;
7473 return TRUE;
7474 }
7475
7476 /* Hmm. still haven't found it. try pseudo-section names. */
a0c8462f 7477 for (curr = sections; curr; curr = curr->next)
d9352518
DB
7478 {
7479 len = strlen (curr->name);
a0c8462f 7480 if (len > strlen (name))
d9352518
DB
7481 continue;
7482
7483 if (strncmp (curr->name, name, len) == 0)
7484 {
7485 if (strncmp (".end", name + len, 4) == 0)
7486 {
7487 *result = curr->vma + curr->size;
7488 return TRUE;
7489 }
7490
7491 /* Insert more pseudo-section names here, if you like. */
7492 }
7493 }
a0c8462f 7494
d9352518
DB
7495 return FALSE;
7496}
7497
7498static void
a0c8462f 7499undefined_reference (const char *reftype, const char *name)
d9352518 7500{
a0c8462f
AM
7501 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7502 reftype, name);
d9352518
DB
7503}
7504
7505static bfd_boolean
a0c8462f
AM
7506eval_symbol (bfd_vma *result,
7507 const char **symp,
7508 bfd *input_bfd,
7509 struct elf_final_link_info *finfo,
7510 bfd_vma dot,
7511 Elf_Internal_Sym *isymbuf,
7512 size_t locsymcount,
7513 int signed_p)
d9352518 7514{
4b93929b
NC
7515 size_t len;
7516 size_t symlen;
a0c8462f
AM
7517 bfd_vma a;
7518 bfd_vma b;
4b93929b 7519 char symbuf[4096];
0f02bbd9 7520 const char *sym = *symp;
a0c8462f
AM
7521 const char *symend;
7522 bfd_boolean symbol_is_section = FALSE;
d9352518
DB
7523
7524 len = strlen (sym);
7525 symend = sym + len;
7526
4b93929b 7527 if (len < 1 || len > sizeof (symbuf))
d9352518
DB
7528 {
7529 bfd_set_error (bfd_error_invalid_operation);
7530 return FALSE;
7531 }
a0c8462f 7532
d9352518
DB
7533 switch (* sym)
7534 {
7535 case '.':
0f02bbd9
AM
7536 *result = dot;
7537 *symp = sym + 1;
d9352518
DB
7538 return TRUE;
7539
7540 case '#':
0f02bbd9
AM
7541 ++sym;
7542 *result = strtoul (sym, (char **) symp, 16);
d9352518
DB
7543 return TRUE;
7544
7545 case 'S':
7546 symbol_is_section = TRUE;
a0c8462f 7547 case 's':
0f02bbd9
AM
7548 ++sym;
7549 symlen = strtol (sym, (char **) symp, 10);
7550 sym = *symp + 1; /* Skip the trailing ':'. */
d9352518 7551
4b93929b 7552 if (symend < sym || symlen + 1 > sizeof (symbuf))
d9352518
DB
7553 {
7554 bfd_set_error (bfd_error_invalid_operation);
7555 return FALSE;
7556 }
7557
7558 memcpy (symbuf, sym, symlen);
a0c8462f 7559 symbuf[symlen] = '\0';
0f02bbd9 7560 *symp = sym + symlen;
a0c8462f
AM
7561
7562 /* Is it always possible, with complex symbols, that gas "mis-guessed"
d9352518
DB
7563 the symbol as a section, or vice-versa. so we're pretty liberal in our
7564 interpretation here; section means "try section first", not "must be a
7565 section", and likewise with symbol. */
7566
a0c8462f 7567 if (symbol_is_section)
d9352518 7568 {
8977835c
AM
7569 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7570 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7571 isymbuf, locsymcount))
d9352518
DB
7572 {
7573 undefined_reference ("section", symbuf);
7574 return FALSE;
7575 }
a0c8462f
AM
7576 }
7577 else
d9352518 7578 {
8977835c
AM
7579 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7580 isymbuf, locsymcount)
7581 && !resolve_section (symbuf, finfo->output_bfd->sections,
7582 result))
d9352518
DB
7583 {
7584 undefined_reference ("symbol", symbuf);
7585 return FALSE;
7586 }
7587 }
7588
7589 return TRUE;
a0c8462f 7590
d9352518
DB
7591 /* All that remains are operators. */
7592
7593#define UNARY_OP(op) \
7594 if (strncmp (sym, #op, strlen (#op)) == 0) \
7595 { \
7596 sym += strlen (#op); \
a0c8462f
AM
7597 if (*sym == ':') \
7598 ++sym; \
0f02bbd9
AM
7599 *symp = sym; \
7600 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7601 isymbuf, locsymcount, signed_p)) \
a0c8462f
AM
7602 return FALSE; \
7603 if (signed_p) \
0f02bbd9 7604 *result = op ((bfd_signed_vma) a); \
a0c8462f
AM
7605 else \
7606 *result = op a; \
d9352518
DB
7607 return TRUE; \
7608 }
7609
7610#define BINARY_OP(op) \
7611 if (strncmp (sym, #op, strlen (#op)) == 0) \
7612 { \
7613 sym += strlen (#op); \
a0c8462f
AM
7614 if (*sym == ':') \
7615 ++sym; \
0f02bbd9
AM
7616 *symp = sym; \
7617 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7618 isymbuf, locsymcount, signed_p)) \
a0c8462f 7619 return FALSE; \
0f02bbd9
AM
7620 ++*symp; \
7621 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7622 isymbuf, locsymcount, signed_p)) \
a0c8462f
AM
7623 return FALSE; \
7624 if (signed_p) \
0f02bbd9 7625 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
a0c8462f
AM
7626 else \
7627 *result = a op b; \
d9352518
DB
7628 return TRUE; \
7629 }
7630
7631 default:
7632 UNARY_OP (0-);
7633 BINARY_OP (<<);
7634 BINARY_OP (>>);
7635 BINARY_OP (==);
7636 BINARY_OP (!=);
7637 BINARY_OP (<=);
7638 BINARY_OP (>=);
7639 BINARY_OP (&&);
7640 BINARY_OP (||);
7641 UNARY_OP (~);
7642 UNARY_OP (!);
7643 BINARY_OP (*);
7644 BINARY_OP (/);
7645 BINARY_OP (%);
7646 BINARY_OP (^);
7647 BINARY_OP (|);
7648 BINARY_OP (&);
7649 BINARY_OP (+);
7650 BINARY_OP (-);
7651 BINARY_OP (<);
7652 BINARY_OP (>);
7653#undef UNARY_OP
7654#undef BINARY_OP
7655 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7656 bfd_set_error (bfd_error_invalid_operation);
7657 return FALSE;
7658 }
7659}
7660
d9352518 7661static void
a0c8462f
AM
7662put_value (bfd_vma size,
7663 unsigned long chunksz,
7664 bfd *input_bfd,
7665 bfd_vma x,
7666 bfd_byte *location)
d9352518
DB
7667{
7668 location += (size - chunksz);
7669
a0c8462f 7670 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
d9352518
DB
7671 {
7672 switch (chunksz)
7673 {
7674 default:
7675 case 0:
7676 abort ();
7677 case 1:
7678 bfd_put_8 (input_bfd, x, location);
7679 break;
7680 case 2:
7681 bfd_put_16 (input_bfd, x, location);
7682 break;
7683 case 4:
7684 bfd_put_32 (input_bfd, x, location);
7685 break;
7686 case 8:
7687#ifdef BFD64
7688 bfd_put_64 (input_bfd, x, location);
7689#else
7690 abort ();
7691#endif
7692 break;
7693 }
7694 }
7695}
7696
a0c8462f
AM
7697static bfd_vma
7698get_value (bfd_vma size,
7699 unsigned long chunksz,
7700 bfd *input_bfd,
7701 bfd_byte *location)
d9352518
DB
7702{
7703 bfd_vma x = 0;
7704
a0c8462f 7705 for (; size; size -= chunksz, location += chunksz)
d9352518
DB
7706 {
7707 switch (chunksz)
7708 {
7709 default:
7710 case 0:
7711 abort ();
7712 case 1:
7713 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7714 break;
7715 case 2:
7716 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7717 break;
7718 case 4:
7719 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7720 break;
7721 case 8:
7722#ifdef BFD64
7723 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7724#else
7725 abort ();
7726#endif
7727 break;
7728 }
7729 }
7730 return x;
7731}
7732
a0c8462f
AM
7733static void
7734decode_complex_addend (unsigned long *start, /* in bits */
7735 unsigned long *oplen, /* in bits */
7736 unsigned long *len, /* in bits */
7737 unsigned long *wordsz, /* in bytes */
7738 unsigned long *chunksz, /* in bytes */
7739 unsigned long *lsb0_p,
7740 unsigned long *signed_p,
7741 unsigned long *trunc_p,
7742 unsigned long encoded)
d9352518
DB
7743{
7744 * start = encoded & 0x3F;
7745 * len = (encoded >> 6) & 0x3F;
7746 * oplen = (encoded >> 12) & 0x3F;
7747 * wordsz = (encoded >> 18) & 0xF;
7748 * chunksz = (encoded >> 22) & 0xF;
7749 * lsb0_p = (encoded >> 27) & 1;
7750 * signed_p = (encoded >> 28) & 1;
7751 * trunc_p = (encoded >> 29) & 1;
7752}
7753
cdfeee4f 7754bfd_reloc_status_type
0f02bbd9 7755bfd_elf_perform_complex_relocation (bfd *input_bfd,
cdfeee4f 7756 asection *input_section ATTRIBUTE_UNUSED,
0f02bbd9
AM
7757 bfd_byte *contents,
7758 Elf_Internal_Rela *rel,
7759 bfd_vma relocation)
d9352518 7760{
0f02bbd9
AM
7761 bfd_vma shift, x, mask;
7762 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
cdfeee4f 7763 bfd_reloc_status_type r;
d9352518
DB
7764
7765 /* Perform this reloc, since it is complex.
7766 (this is not to say that it necessarily refers to a complex
7767 symbol; merely that it is a self-describing CGEN based reloc.
7768 i.e. the addend has the complete reloc information (bit start, end,
a0c8462f 7769 word size, etc) encoded within it.). */
d9352518 7770
a0c8462f
AM
7771 decode_complex_addend (&start, &oplen, &len, &wordsz,
7772 &chunksz, &lsb0_p, &signed_p,
7773 &trunc_p, rel->r_addend);
d9352518
DB
7774
7775 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7776
7777 if (lsb0_p)
7778 shift = (start + 1) - len;
7779 else
7780 shift = (8 * wordsz) - (start + len);
7781
a0c8462f 7782 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
d9352518
DB
7783
7784#ifdef DEBUG
7785 printf ("Doing complex reloc: "
7786 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7787 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7788 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7789 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7790 oplen, x, mask, relocation);
7791#endif
7792
cdfeee4f 7793 r = bfd_reloc_ok;
d9352518 7794 if (! trunc_p)
cdfeee4f
AM
7795 /* Now do an overflow check. */
7796 r = bfd_check_overflow ((signed_p
7797 ? complain_overflow_signed
7798 : complain_overflow_unsigned),
7799 len, 0, (8 * wordsz),
7800 relocation);
a0c8462f 7801
d9352518
DB
7802 /* Do the deed. */
7803 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7804
7805#ifdef DEBUG
7806 printf (" relocation: %8.8lx\n"
7807 " shifted mask: %8.8lx\n"
7808 " shifted/masked reloc: %8.8lx\n"
7809 " result: %8.8lx\n",
a0c8462f 7810 relocation, (mask << shift),
d9352518
DB
7811 ((relocation & mask) << shift), x);
7812#endif
7813 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
cdfeee4f 7814 return r;
d9352518
DB
7815}
7816
c152c796
AM
7817/* When performing a relocatable link, the input relocations are
7818 preserved. But, if they reference global symbols, the indices
7819 referenced must be updated. Update all the relocations in
7820 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7821
7822static void
7823elf_link_adjust_relocs (bfd *abfd,
7824 Elf_Internal_Shdr *rel_hdr,
7825 unsigned int count,
7826 struct elf_link_hash_entry **rel_hash)
7827{
7828 unsigned int i;
7829 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7830 bfd_byte *erela;
7831 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7832 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7833 bfd_vma r_type_mask;
7834 int r_sym_shift;
7835
7836 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7837 {
7838 swap_in = bed->s->swap_reloc_in;
7839 swap_out = bed->s->swap_reloc_out;
7840 }
7841 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7842 {
7843 swap_in = bed->s->swap_reloca_in;
7844 swap_out = bed->s->swap_reloca_out;
7845 }
7846 else
7847 abort ();
7848
7849 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7850 abort ();
7851
7852 if (bed->s->arch_size == 32)
7853 {
7854 r_type_mask = 0xff;
7855 r_sym_shift = 8;
7856 }
7857 else
7858 {
7859 r_type_mask = 0xffffffff;
7860 r_sym_shift = 32;
7861 }
7862
7863 erela = rel_hdr->contents;
7864 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7865 {
7866 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7867 unsigned int j;
7868
7869 if (*rel_hash == NULL)
7870 continue;
7871
7872 BFD_ASSERT ((*rel_hash)->indx >= 0);
7873
7874 (*swap_in) (abfd, erela, irela);
7875 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7876 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7877 | (irela[j].r_info & r_type_mask));
7878 (*swap_out) (abfd, irela, erela);
7879 }
7880}
7881
7882struct elf_link_sort_rela
7883{
7884 union {
7885 bfd_vma offset;
7886 bfd_vma sym_mask;
7887 } u;
7888 enum elf_reloc_type_class type;
7889 /* We use this as an array of size int_rels_per_ext_rel. */
7890 Elf_Internal_Rela rela[1];
7891};
7892
7893static int
7894elf_link_sort_cmp1 (const void *A, const void *B)
7895{
7896 const struct elf_link_sort_rela *a = A;
7897 const struct elf_link_sort_rela *b = B;
7898 int relativea, relativeb;
7899
7900 relativea = a->type == reloc_class_relative;
7901 relativeb = b->type == reloc_class_relative;
7902
7903 if (relativea < relativeb)
7904 return 1;
7905 if (relativea > relativeb)
7906 return -1;
7907 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7908 return -1;
7909 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7910 return 1;
7911 if (a->rela->r_offset < b->rela->r_offset)
7912 return -1;
7913 if (a->rela->r_offset > b->rela->r_offset)
7914 return 1;
7915 return 0;
7916}
7917
7918static int
7919elf_link_sort_cmp2 (const void *A, const void *B)
7920{
7921 const struct elf_link_sort_rela *a = A;
7922 const struct elf_link_sort_rela *b = B;
7923 int copya, copyb;
7924
7925 if (a->u.offset < b->u.offset)
7926 return -1;
7927 if (a->u.offset > b->u.offset)
7928 return 1;
7929 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7930 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7931 if (copya < copyb)
7932 return -1;
7933 if (copya > copyb)
7934 return 1;
7935 if (a->rela->r_offset < b->rela->r_offset)
7936 return -1;
7937 if (a->rela->r_offset > b->rela->r_offset)
7938 return 1;
7939 return 0;
7940}
7941
7942static size_t
7943elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7944{
3410fea8 7945 asection *dynamic_relocs;
fc66a176
L
7946 asection *rela_dyn;
7947 asection *rel_dyn;
c152c796
AM
7948 bfd_size_type count, size;
7949 size_t i, ret, sort_elt, ext_size;
7950 bfd_byte *sort, *s_non_relative, *p;
7951 struct elf_link_sort_rela *sq;
7952 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7953 int i2e = bed->s->int_rels_per_ext_rel;
7954 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7955 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7956 struct bfd_link_order *lo;
7957 bfd_vma r_sym_mask;
3410fea8 7958 bfd_boolean use_rela;
c152c796 7959
3410fea8
NC
7960 /* Find a dynamic reloc section. */
7961 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7962 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7963 if (rela_dyn != NULL && rela_dyn->size > 0
7964 && rel_dyn != NULL && rel_dyn->size > 0)
c152c796 7965 {
3410fea8
NC
7966 bfd_boolean use_rela_initialised = FALSE;
7967
7968 /* This is just here to stop gcc from complaining.
7969 It's initialization checking code is not perfect. */
7970 use_rela = TRUE;
7971
7972 /* Both sections are present. Examine the sizes
7973 of the indirect sections to help us choose. */
7974 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7975 if (lo->type == bfd_indirect_link_order)
7976 {
7977 asection *o = lo->u.indirect.section;
7978
7979 if ((o->size % bed->s->sizeof_rela) == 0)
7980 {
7981 if ((o->size % bed->s->sizeof_rel) == 0)
7982 /* Section size is divisible by both rel and rela sizes.
7983 It is of no help to us. */
7984 ;
7985 else
7986 {
7987 /* Section size is only divisible by rela. */
7988 if (use_rela_initialised && (use_rela == FALSE))
7989 {
7990 _bfd_error_handler
7991 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7992 bfd_set_error (bfd_error_invalid_operation);
7993 return 0;
7994 }
7995 else
7996 {
7997 use_rela = TRUE;
7998 use_rela_initialised = TRUE;
7999 }
8000 }
8001 }
8002 else if ((o->size % bed->s->sizeof_rel) == 0)
8003 {
8004 /* Section size is only divisible by rel. */
8005 if (use_rela_initialised && (use_rela == TRUE))
8006 {
8007 _bfd_error_handler
8008 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8009 bfd_set_error (bfd_error_invalid_operation);
8010 return 0;
8011 }
8012 else
8013 {
8014 use_rela = FALSE;
8015 use_rela_initialised = TRUE;
8016 }
8017 }
8018 else
8019 {
8020 /* The section size is not divisible by either - something is wrong. */
8021 _bfd_error_handler
8022 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8023 bfd_set_error (bfd_error_invalid_operation);
8024 return 0;
8025 }
8026 }
8027
8028 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8029 if (lo->type == bfd_indirect_link_order)
8030 {
8031 asection *o = lo->u.indirect.section;
8032
8033 if ((o->size % bed->s->sizeof_rela) == 0)
8034 {
8035 if ((o->size % bed->s->sizeof_rel) == 0)
8036 /* Section size is divisible by both rel and rela sizes.
8037 It is of no help to us. */
8038 ;
8039 else
8040 {
8041 /* Section size is only divisible by rela. */
8042 if (use_rela_initialised && (use_rela == FALSE))
8043 {
8044 _bfd_error_handler
8045 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8046 bfd_set_error (bfd_error_invalid_operation);
8047 return 0;
8048 }
8049 else
8050 {
8051 use_rela = TRUE;
8052 use_rela_initialised = TRUE;
8053 }
8054 }
8055 }
8056 else if ((o->size % bed->s->sizeof_rel) == 0)
8057 {
8058 /* Section size is only divisible by rel. */
8059 if (use_rela_initialised && (use_rela == TRUE))
8060 {
8061 _bfd_error_handler
8062 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8063 bfd_set_error (bfd_error_invalid_operation);
8064 return 0;
8065 }
8066 else
8067 {
8068 use_rela = FALSE;
8069 use_rela_initialised = TRUE;
8070 }
8071 }
8072 else
8073 {
8074 /* The section size is not divisible by either - something is wrong. */
8075 _bfd_error_handler
8076 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8077 bfd_set_error (bfd_error_invalid_operation);
8078 return 0;
8079 }
8080 }
8081
8082 if (! use_rela_initialised)
8083 /* Make a guess. */
8084 use_rela = TRUE;
c152c796 8085 }
fc66a176
L
8086 else if (rela_dyn != NULL && rela_dyn->size > 0)
8087 use_rela = TRUE;
8088 else if (rel_dyn != NULL && rel_dyn->size > 0)
3410fea8 8089 use_rela = FALSE;
c152c796 8090 else
fc66a176 8091 return 0;
3410fea8
NC
8092
8093 if (use_rela)
c152c796 8094 {
3410fea8 8095 dynamic_relocs = rela_dyn;
c152c796
AM
8096 ext_size = bed->s->sizeof_rela;
8097 swap_in = bed->s->swap_reloca_in;
8098 swap_out = bed->s->swap_reloca_out;
8099 }
3410fea8
NC
8100 else
8101 {
8102 dynamic_relocs = rel_dyn;
8103 ext_size = bed->s->sizeof_rel;
8104 swap_in = bed->s->swap_reloc_in;
8105 swap_out = bed->s->swap_reloc_out;
8106 }
c152c796
AM
8107
8108 size = 0;
3410fea8 8109 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
c152c796 8110 if (lo->type == bfd_indirect_link_order)
3410fea8 8111 size += lo->u.indirect.section->size;
c152c796 8112
3410fea8 8113 if (size != dynamic_relocs->size)
c152c796
AM
8114 return 0;
8115
8116 sort_elt = (sizeof (struct elf_link_sort_rela)
8117 + (i2e - 1) * sizeof (Elf_Internal_Rela));
3410fea8
NC
8118
8119 count = dynamic_relocs->size / ext_size;
c152c796 8120 sort = bfd_zmalloc (sort_elt * count);
3410fea8 8121
c152c796
AM
8122 if (sort == NULL)
8123 {
8124 (*info->callbacks->warning)
8125 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8126 return 0;
8127 }
8128
8129 if (bed->s->arch_size == 32)
8130 r_sym_mask = ~(bfd_vma) 0xff;
8131 else
8132 r_sym_mask = ~(bfd_vma) 0xffffffff;
8133
3410fea8 8134 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
8135 if (lo->type == bfd_indirect_link_order)
8136 {
8137 bfd_byte *erel, *erelend;
8138 asection *o = lo->u.indirect.section;
8139
1da212d6
AM
8140 if (o->contents == NULL && o->size != 0)
8141 {
8142 /* This is a reloc section that is being handled as a normal
8143 section. See bfd_section_from_shdr. We can't combine
8144 relocs in this case. */
8145 free (sort);
8146 return 0;
8147 }
c152c796 8148 erel = o->contents;
eea6121a 8149 erelend = o->contents + o->size;
c152c796 8150 p = sort + o->output_offset / ext_size * sort_elt;
3410fea8 8151
c152c796
AM
8152 while (erel < erelend)
8153 {
8154 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
3410fea8 8155
c152c796
AM
8156 (*swap_in) (abfd, erel, s->rela);
8157 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8158 s->u.sym_mask = r_sym_mask;
8159 p += sort_elt;
8160 erel += ext_size;
8161 }
8162 }
8163
8164 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8165
8166 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8167 {
8168 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8169 if (s->type != reloc_class_relative)
8170 break;
8171 }
8172 ret = i;
8173 s_non_relative = p;
8174
8175 sq = (struct elf_link_sort_rela *) s_non_relative;
8176 for (; i < count; i++, p += sort_elt)
8177 {
8178 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8179 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8180 sq = sp;
8181 sp->u.offset = sq->rela->r_offset;
8182 }
8183
8184 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8185
3410fea8 8186 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
8187 if (lo->type == bfd_indirect_link_order)
8188 {
8189 bfd_byte *erel, *erelend;
8190 asection *o = lo->u.indirect.section;
8191
8192 erel = o->contents;
eea6121a 8193 erelend = o->contents + o->size;
c152c796
AM
8194 p = sort + o->output_offset / ext_size * sort_elt;
8195 while (erel < erelend)
8196 {
8197 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8198 (*swap_out) (abfd, s->rela, erel);
8199 p += sort_elt;
8200 erel += ext_size;
8201 }
8202 }
8203
8204 free (sort);
3410fea8 8205 *psec = dynamic_relocs;
c152c796
AM
8206 return ret;
8207}
8208
8209/* Flush the output symbols to the file. */
8210
8211static bfd_boolean
8212elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8213 const struct elf_backend_data *bed)
8214{
8215 if (finfo->symbuf_count > 0)
8216 {
8217 Elf_Internal_Shdr *hdr;
8218 file_ptr pos;
8219 bfd_size_type amt;
8220
8221 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8222 pos = hdr->sh_offset + hdr->sh_size;
8223 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8224 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8225 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8226 return FALSE;
8227
8228 hdr->sh_size += amt;
8229 finfo->symbuf_count = 0;
8230 }
8231
8232 return TRUE;
8233}
8234
8235/* Add a symbol to the output symbol table. */
8236
8237static bfd_boolean
8238elf_link_output_sym (struct elf_final_link_info *finfo,
8239 const char *name,
8240 Elf_Internal_Sym *elfsym,
8241 asection *input_sec,
8242 struct elf_link_hash_entry *h)
8243{
8244 bfd_byte *dest;
8245 Elf_External_Sym_Shndx *destshndx;
8246 bfd_boolean (*output_symbol_hook)
8247 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8248 struct elf_link_hash_entry *);
8249 const struct elf_backend_data *bed;
8250
8251 bed = get_elf_backend_data (finfo->output_bfd);
8252 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8253 if (output_symbol_hook != NULL)
8254 {
8255 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8256 return FALSE;
8257 }
8258
8259 if (name == NULL || *name == '\0')
8260 elfsym->st_name = 0;
8261 else if (input_sec->flags & SEC_EXCLUDE)
8262 elfsym->st_name = 0;
8263 else
8264 {
8265 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8266 name, TRUE, FALSE);
8267 if (elfsym->st_name == (unsigned long) -1)
8268 return FALSE;
8269 }
8270
8271 if (finfo->symbuf_count >= finfo->symbuf_size)
8272 {
8273 if (! elf_link_flush_output_syms (finfo, bed))
8274 return FALSE;
8275 }
8276
8277 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8278 destshndx = finfo->symshndxbuf;
8279 if (destshndx != NULL)
8280 {
8281 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8282 {
8283 bfd_size_type amt;
8284
8285 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
515ef31d 8286 destshndx = bfd_realloc (destshndx, amt * 2);
c152c796
AM
8287 if (destshndx == NULL)
8288 return FALSE;
515ef31d 8289 finfo->symshndxbuf = destshndx;
c152c796
AM
8290 memset ((char *) destshndx + amt, 0, amt);
8291 finfo->shndxbuf_size *= 2;
8292 }
8293 destshndx += bfd_get_symcount (finfo->output_bfd);
8294 }
8295
8296 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8297 finfo->symbuf_count += 1;
8298 bfd_get_symcount (finfo->output_bfd) += 1;
8299
8300 return TRUE;
8301}
8302
c0d5a53d
L
8303/* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8304
8305static bfd_boolean
8306check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8307{
4fbb74a6
AM
8308 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8309 && sym->st_shndx < SHN_LORESERVE)
c0d5a53d
L
8310 {
8311 /* The gABI doesn't support dynamic symbols in output sections
a0c8462f 8312 beyond 64k. */
c0d5a53d
L
8313 (*_bfd_error_handler)
8314 (_("%B: Too many sections: %d (>= %d)"),
4fbb74a6 8315 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
c0d5a53d
L
8316 bfd_set_error (bfd_error_nonrepresentable_section);
8317 return FALSE;
8318 }
8319 return TRUE;
8320}
8321
c152c796
AM
8322/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8323 allowing an unsatisfied unversioned symbol in the DSO to match a
8324 versioned symbol that would normally require an explicit version.
8325 We also handle the case that a DSO references a hidden symbol
8326 which may be satisfied by a versioned symbol in another DSO. */
8327
8328static bfd_boolean
8329elf_link_check_versioned_symbol (struct bfd_link_info *info,
8330 const struct elf_backend_data *bed,
8331 struct elf_link_hash_entry *h)
8332{
8333 bfd *abfd;
8334 struct elf_link_loaded_list *loaded;
8335
8336 if (!is_elf_hash_table (info->hash))
8337 return FALSE;
8338
8339 switch (h->root.type)
8340 {
8341 default:
8342 abfd = NULL;
8343 break;
8344
8345 case bfd_link_hash_undefined:
8346 case bfd_link_hash_undefweak:
8347 abfd = h->root.u.undef.abfd;
8348 if ((abfd->flags & DYNAMIC) == 0
e56f61be 8349 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
c152c796
AM
8350 return FALSE;
8351 break;
8352
8353 case bfd_link_hash_defined:
8354 case bfd_link_hash_defweak:
8355 abfd = h->root.u.def.section->owner;
8356 break;
8357
8358 case bfd_link_hash_common:
8359 abfd = h->root.u.c.p->section->owner;
8360 break;
8361 }
8362 BFD_ASSERT (abfd != NULL);
8363
8364 for (loaded = elf_hash_table (info)->loaded;
8365 loaded != NULL;
8366 loaded = loaded->next)
8367 {
8368 bfd *input;
8369 Elf_Internal_Shdr *hdr;
8370 bfd_size_type symcount;
8371 bfd_size_type extsymcount;
8372 bfd_size_type extsymoff;
8373 Elf_Internal_Shdr *versymhdr;
8374 Elf_Internal_Sym *isym;
8375 Elf_Internal_Sym *isymend;
8376 Elf_Internal_Sym *isymbuf;
8377 Elf_External_Versym *ever;
8378 Elf_External_Versym *extversym;
8379
8380 input = loaded->abfd;
8381
8382 /* We check each DSO for a possible hidden versioned definition. */
8383 if (input == abfd
8384 || (input->flags & DYNAMIC) == 0
8385 || elf_dynversym (input) == 0)
8386 continue;
8387
8388 hdr = &elf_tdata (input)->dynsymtab_hdr;
8389
8390 symcount = hdr->sh_size / bed->s->sizeof_sym;
8391 if (elf_bad_symtab (input))
8392 {
8393 extsymcount = symcount;
8394 extsymoff = 0;
8395 }
8396 else
8397 {
8398 extsymcount = symcount - hdr->sh_info;
8399 extsymoff = hdr->sh_info;
8400 }
8401
8402 if (extsymcount == 0)
8403 continue;
8404
8405 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8406 NULL, NULL, NULL);
8407 if (isymbuf == NULL)
8408 return FALSE;
8409
8410 /* Read in any version definitions. */
8411 versymhdr = &elf_tdata (input)->dynversym_hdr;
8412 extversym = bfd_malloc (versymhdr->sh_size);
8413 if (extversym == NULL)
8414 goto error_ret;
8415
8416 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8417 || (bfd_bread (extversym, versymhdr->sh_size, input)
8418 != versymhdr->sh_size))
8419 {
8420 free (extversym);
8421 error_ret:
8422 free (isymbuf);
8423 return FALSE;
8424 }
8425
8426 ever = extversym + extsymoff;
8427 isymend = isymbuf + extsymcount;
8428 for (isym = isymbuf; isym < isymend; isym++, ever++)
8429 {
8430 const char *name;
8431 Elf_Internal_Versym iver;
8432 unsigned short version_index;
8433
8434 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8435 || isym->st_shndx == SHN_UNDEF)
8436 continue;
8437
8438 name = bfd_elf_string_from_elf_section (input,
8439 hdr->sh_link,
8440 isym->st_name);
8441 if (strcmp (name, h->root.root.string) != 0)
8442 continue;
8443
8444 _bfd_elf_swap_versym_in (input, ever, &iver);
8445
8446 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8447 {
8448 /* If we have a non-hidden versioned sym, then it should
8449 have provided a definition for the undefined sym. */
8450 abort ();
8451 }
8452
8453 version_index = iver.vs_vers & VERSYM_VERSION;
8454 if (version_index == 1 || version_index == 2)
8455 {
8456 /* This is the base or first version. We can use it. */
8457 free (extversym);
8458 free (isymbuf);
8459 return TRUE;
8460 }
8461 }
8462
8463 free (extversym);
8464 free (isymbuf);
8465 }
8466
8467 return FALSE;
8468}
8469
8470/* Add an external symbol to the symbol table. This is called from
8471 the hash table traversal routine. When generating a shared object,
8472 we go through the symbol table twice. The first time we output
8473 anything that might have been forced to local scope in a version
8474 script. The second time we output the symbols that are still
8475 global symbols. */
8476
8477static bfd_boolean
8478elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8479{
8480 struct elf_outext_info *eoinfo = data;
8481 struct elf_final_link_info *finfo = eoinfo->finfo;
8482 bfd_boolean strip;
8483 Elf_Internal_Sym sym;
8484 asection *input_sec;
8485 const struct elf_backend_data *bed;
8486
8487 if (h->root.type == bfd_link_hash_warning)
8488 {
8489 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8490 if (h->root.type == bfd_link_hash_new)
8491 return TRUE;
8492 }
8493
8494 /* Decide whether to output this symbol in this pass. */
8495 if (eoinfo->localsyms)
8496 {
f5385ebf 8497 if (!h->forced_local)
c152c796
AM
8498 return TRUE;
8499 }
8500 else
8501 {
f5385ebf 8502 if (h->forced_local)
c152c796
AM
8503 return TRUE;
8504 }
8505
8506 bed = get_elf_backend_data (finfo->output_bfd);
8507
12ac1cf5 8508 if (h->root.type == bfd_link_hash_undefined)
c152c796 8509 {
12ac1cf5
NC
8510 /* If we have an undefined symbol reference here then it must have
8511 come from a shared library that is being linked in. (Undefined
8512 references in regular files have already been handled). */
8513 bfd_boolean ignore_undef = FALSE;
8514
8515 /* Some symbols may be special in that the fact that they're
8516 undefined can be safely ignored - let backend determine that. */
8517 if (bed->elf_backend_ignore_undef_symbol)
8518 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8519
8520 /* If we are reporting errors for this situation then do so now. */
8521 if (ignore_undef == FALSE
8522 && h->ref_dynamic
8523 && ! h->ref_regular
8524 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8525 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
c152c796 8526 {
12ac1cf5
NC
8527 if (! (finfo->info->callbacks->undefined_symbol
8528 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8529 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8530 {
8531 eoinfo->failed = TRUE;
8532 return FALSE;
8533 }
c152c796
AM
8534 }
8535 }
8536
8537 /* We should also warn if a forced local symbol is referenced from
8538 shared libraries. */
8539 if (! finfo->info->relocatable
8540 && (! finfo->info->shared)
f5385ebf
AM
8541 && h->forced_local
8542 && h->ref_dynamic
8543 && !h->dynamic_def
8544 && !h->dynamic_weak
c152c796
AM
8545 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8546 {
8547 (*_bfd_error_handler)
d003868e 8548 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
cfca085c
L
8549 finfo->output_bfd,
8550 h->root.u.def.section == bfd_abs_section_ptr
8551 ? finfo->output_bfd : h->root.u.def.section->owner,
c152c796
AM
8552 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8553 ? "internal"
8554 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
d003868e
AM
8555 ? "hidden" : "local",
8556 h->root.root.string);
c152c796
AM
8557 eoinfo->failed = TRUE;
8558 return FALSE;
8559 }
8560
8561 /* We don't want to output symbols that have never been mentioned by
8562 a regular file, or that we have been told to strip. However, if
8563 h->indx is set to -2, the symbol is used by a reloc and we must
8564 output it. */
8565 if (h->indx == -2)
8566 strip = FALSE;
f5385ebf 8567 else if ((h->def_dynamic
77cfaee6
AM
8568 || h->ref_dynamic
8569 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
8570 && !h->def_regular
8571 && !h->ref_regular)
c152c796
AM
8572 strip = TRUE;
8573 else if (finfo->info->strip == strip_all)
8574 strip = TRUE;
8575 else if (finfo->info->strip == strip_some
8576 && bfd_hash_lookup (finfo->info->keep_hash,
8577 h->root.root.string, FALSE, FALSE) == NULL)
8578 strip = TRUE;
8579 else if (finfo->info->strip_discarded
8580 && (h->root.type == bfd_link_hash_defined
8581 || h->root.type == bfd_link_hash_defweak)
8582 && elf_discarded_section (h->root.u.def.section))
8583 strip = TRUE;
8584 else
8585 strip = FALSE;
8586
8587 /* If we're stripping it, and it's not a dynamic symbol, there's
8588 nothing else to do unless it is a forced local symbol. */
8589 if (strip
8590 && h->dynindx == -1
f5385ebf 8591 && !h->forced_local)
c152c796
AM
8592 return TRUE;
8593
8594 sym.st_value = 0;
8595 sym.st_size = h->size;
8596 sym.st_other = h->other;
f5385ebf 8597 if (h->forced_local)
c152c796
AM
8598 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8599 else if (h->root.type == bfd_link_hash_undefweak
8600 || h->root.type == bfd_link_hash_defweak)
8601 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8602 else
8603 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8604
8605 switch (h->root.type)
8606 {
8607 default:
8608 case bfd_link_hash_new:
8609 case bfd_link_hash_warning:
8610 abort ();
8611 return FALSE;
8612
8613 case bfd_link_hash_undefined:
8614 case bfd_link_hash_undefweak:
8615 input_sec = bfd_und_section_ptr;
8616 sym.st_shndx = SHN_UNDEF;
8617 break;
8618
8619 case bfd_link_hash_defined:
8620 case bfd_link_hash_defweak:
8621 {
8622 input_sec = h->root.u.def.section;
8623 if (input_sec->output_section != NULL)
8624 {
8625 sym.st_shndx =
8626 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8627 input_sec->output_section);
8628 if (sym.st_shndx == SHN_BAD)
8629 {
8630 (*_bfd_error_handler)
d003868e
AM
8631 (_("%B: could not find output section %A for input section %A"),
8632 finfo->output_bfd, input_sec->output_section, input_sec);
c152c796
AM
8633 eoinfo->failed = TRUE;
8634 return FALSE;
8635 }
8636
8637 /* ELF symbols in relocatable files are section relative,
8638 but in nonrelocatable files they are virtual
8639 addresses. */
8640 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8641 if (! finfo->info->relocatable)
8642 {
8643 sym.st_value += input_sec->output_section->vma;
8644 if (h->type == STT_TLS)
8645 {
430a16a5
NC
8646 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8647 if (tls_sec != NULL)
8648 sym.st_value -= tls_sec->vma;
8649 else
8650 {
8651 /* The TLS section may have been garbage collected. */
8652 BFD_ASSERT (finfo->info->gc_sections
8653 && !input_sec->gc_mark);
8654 }
c152c796
AM
8655 }
8656 }
8657 }
8658 else
8659 {
8660 BFD_ASSERT (input_sec->owner == NULL
8661 || (input_sec->owner->flags & DYNAMIC) != 0);
8662 sym.st_shndx = SHN_UNDEF;
8663 input_sec = bfd_und_section_ptr;
8664 }
8665 }
8666 break;
8667
8668 case bfd_link_hash_common:
8669 input_sec = h->root.u.c.p->section;
a4d8e49b 8670 sym.st_shndx = bed->common_section_index (input_sec);
c152c796
AM
8671 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8672 break;
8673
8674 case bfd_link_hash_indirect:
8675 /* These symbols are created by symbol versioning. They point
8676 to the decorated version of the name. For example, if the
8677 symbol foo@@GNU_1.2 is the default, which should be used when
8678 foo is used with no version, then we add an indirect symbol
8679 foo which points to foo@@GNU_1.2. We ignore these symbols,
8680 since the indirected symbol is already in the hash table. */
8681 return TRUE;
8682 }
8683
8684 /* Give the processor backend a chance to tweak the symbol value,
8685 and also to finish up anything that needs to be done for this
8686 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8687 forced local syms when non-shared is due to a historical quirk. */
8688 if ((h->dynindx != -1
f5385ebf 8689 || h->forced_local)
c152c796
AM
8690 && ((finfo->info->shared
8691 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8692 || h->root.type != bfd_link_hash_undefweak))
f5385ebf 8693 || !h->forced_local)
c152c796
AM
8694 && elf_hash_table (finfo->info)->dynamic_sections_created)
8695 {
8696 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8697 (finfo->output_bfd, finfo->info, h, &sym)))
8698 {
8699 eoinfo->failed = TRUE;
8700 return FALSE;
8701 }
8702 }
8703
8704 /* If we are marking the symbol as undefined, and there are no
8705 non-weak references to this symbol from a regular object, then
8706 mark the symbol as weak undefined; if there are non-weak
8707 references, mark the symbol as strong. We can't do this earlier,
8708 because it might not be marked as undefined until the
8709 finish_dynamic_symbol routine gets through with it. */
8710 if (sym.st_shndx == SHN_UNDEF
f5385ebf 8711 && h->ref_regular
c152c796
AM
8712 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8713 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8714 {
8715 int bindtype;
8716
f5385ebf 8717 if (h->ref_regular_nonweak)
c152c796
AM
8718 bindtype = STB_GLOBAL;
8719 else
8720 bindtype = STB_WEAK;
8721 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8722 }
8723
bda987c2
CD
8724 /* If this is a symbol defined in a dynamic library, don't use the
8725 symbol size from the dynamic library. Relinking an executable
8726 against a new library may introduce gratuitous changes in the
8727 executable's symbols if we keep the size. */
8728 if (sym.st_shndx == SHN_UNDEF
8729 && !h->def_regular
8730 && h->def_dynamic)
8731 sym.st_size = 0;
8732
c152c796
AM
8733 /* If a non-weak symbol with non-default visibility is not defined
8734 locally, it is a fatal error. */
8735 if (! finfo->info->relocatable
8736 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8737 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8738 && h->root.type == bfd_link_hash_undefined
f5385ebf 8739 && !h->def_regular)
c152c796
AM
8740 {
8741 (*_bfd_error_handler)
d003868e
AM
8742 (_("%B: %s symbol `%s' isn't defined"),
8743 finfo->output_bfd,
8744 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8745 ? "protected"
8746 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8747 ? "internal" : "hidden",
8748 h->root.root.string);
c152c796
AM
8749 eoinfo->failed = TRUE;
8750 return FALSE;
8751 }
8752
8753 /* If this symbol should be put in the .dynsym section, then put it
8754 there now. We already know the symbol index. We also fill in
8755 the entry in the .hash section. */
8756 if (h->dynindx != -1
8757 && elf_hash_table (finfo->info)->dynamic_sections_created)
8758 {
c152c796
AM
8759 bfd_byte *esym;
8760
8761 sym.st_name = h->dynstr_index;
8762 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
c0d5a53d
L
8763 if (! check_dynsym (finfo->output_bfd, &sym))
8764 {
8765 eoinfo->failed = TRUE;
8766 return FALSE;
8767 }
c152c796
AM
8768 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8769
fdc90cb4
JJ
8770 if (finfo->hash_sec != NULL)
8771 {
8772 size_t hash_entry_size;
8773 bfd_byte *bucketpos;
8774 bfd_vma chain;
41198d0c
L
8775 size_t bucketcount;
8776 size_t bucket;
8777
8778 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8779 bucket = h->u.elf_hash_value % bucketcount;
fdc90cb4
JJ
8780
8781 hash_entry_size
8782 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8783 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8784 + (bucket + 2) * hash_entry_size);
8785 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8786 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8787 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8788 ((bfd_byte *) finfo->hash_sec->contents
8789 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8790 }
c152c796
AM
8791
8792 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8793 {
8794 Elf_Internal_Versym iversym;
8795 Elf_External_Versym *eversym;
8796
f5385ebf 8797 if (!h->def_regular)
c152c796
AM
8798 {
8799 if (h->verinfo.verdef == NULL)
8800 iversym.vs_vers = 0;
8801 else
8802 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8803 }
8804 else
8805 {
8806 if (h->verinfo.vertree == NULL)
8807 iversym.vs_vers = 1;
8808 else
8809 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
3e3b46e5
PB
8810 if (finfo->info->create_default_symver)
8811 iversym.vs_vers++;
c152c796
AM
8812 }
8813
f5385ebf 8814 if (h->hidden)
c152c796
AM
8815 iversym.vs_vers |= VERSYM_HIDDEN;
8816
8817 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8818 eversym += h->dynindx;
8819 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8820 }
8821 }
8822
8823 /* If we're stripping it, then it was just a dynamic symbol, and
8824 there's nothing else to do. */
8825 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8826 return TRUE;
8827
8828 h->indx = bfd_get_symcount (finfo->output_bfd);
8829
8830 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8831 {
8832 eoinfo->failed = TRUE;
8833 return FALSE;
8834 }
8835
8836 return TRUE;
8837}
8838
cdd3575c
AM
8839/* Return TRUE if special handling is done for relocs in SEC against
8840 symbols defined in discarded sections. */
8841
c152c796
AM
8842static bfd_boolean
8843elf_section_ignore_discarded_relocs (asection *sec)
8844{
8845 const struct elf_backend_data *bed;
8846
cdd3575c
AM
8847 switch (sec->sec_info_type)
8848 {
8849 case ELF_INFO_TYPE_STABS:
8850 case ELF_INFO_TYPE_EH_FRAME:
8851 return TRUE;
8852 default:
8853 break;
8854 }
c152c796
AM
8855
8856 bed = get_elf_backend_data (sec->owner);
8857 if (bed->elf_backend_ignore_discarded_relocs != NULL
8858 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8859 return TRUE;
8860
8861 return FALSE;
8862}
8863
9e66c942
AM
8864/* Return a mask saying how ld should treat relocations in SEC against
8865 symbols defined in discarded sections. If this function returns
8866 COMPLAIN set, ld will issue a warning message. If this function
8867 returns PRETEND set, and the discarded section was link-once and the
8868 same size as the kept link-once section, ld will pretend that the
8869 symbol was actually defined in the kept section. Otherwise ld will
8870 zero the reloc (at least that is the intent, but some cooperation by
8871 the target dependent code is needed, particularly for REL targets). */
8872
8a696751
AM
8873unsigned int
8874_bfd_elf_default_action_discarded (asection *sec)
cdd3575c 8875{
9e66c942 8876 if (sec->flags & SEC_DEBUGGING)
69d54b1b 8877 return PRETEND;
cdd3575c
AM
8878
8879 if (strcmp (".eh_frame", sec->name) == 0)
9e66c942 8880 return 0;
cdd3575c
AM
8881
8882 if (strcmp (".gcc_except_table", sec->name) == 0)
9e66c942 8883 return 0;
cdd3575c 8884
9e66c942 8885 return COMPLAIN | PRETEND;
cdd3575c
AM
8886}
8887
3d7f7666
L
8888/* Find a match between a section and a member of a section group. */
8889
8890static asection *
c0f00686
L
8891match_group_member (asection *sec, asection *group,
8892 struct bfd_link_info *info)
3d7f7666
L
8893{
8894 asection *first = elf_next_in_group (group);
8895 asection *s = first;
8896
8897 while (s != NULL)
8898 {
c0f00686 8899 if (bfd_elf_match_symbols_in_sections (s, sec, info))
3d7f7666
L
8900 return s;
8901
83180ade 8902 s = elf_next_in_group (s);
3d7f7666
L
8903 if (s == first)
8904 break;
8905 }
8906
8907 return NULL;
8908}
8909
01b3c8ab 8910/* Check if the kept section of a discarded section SEC can be used
c2370991
AM
8911 to replace it. Return the replacement if it is OK. Otherwise return
8912 NULL. */
01b3c8ab
L
8913
8914asection *
c0f00686 8915_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
01b3c8ab
L
8916{
8917 asection *kept;
8918
8919 kept = sec->kept_section;
8920 if (kept != NULL)
8921 {
c2370991 8922 if ((kept->flags & SEC_GROUP) != 0)
c0f00686 8923 kept = match_group_member (sec, kept, info);
1dd2625f
BW
8924 if (kept != NULL
8925 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8926 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
01b3c8ab 8927 kept = NULL;
c2370991 8928 sec->kept_section = kept;
01b3c8ab
L
8929 }
8930 return kept;
8931}
8932
c152c796
AM
8933/* Link an input file into the linker output file. This function
8934 handles all the sections and relocations of the input file at once.
8935 This is so that we only have to read the local symbols once, and
8936 don't have to keep them in memory. */
8937
8938static bfd_boolean
8939elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8940{
ece5ef60 8941 int (*relocate_section)
c152c796
AM
8942 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8943 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8944 bfd *output_bfd;
8945 Elf_Internal_Shdr *symtab_hdr;
8946 size_t locsymcount;
8947 size_t extsymoff;
8948 Elf_Internal_Sym *isymbuf;
8949 Elf_Internal_Sym *isym;
8950 Elf_Internal_Sym *isymend;
8951 long *pindex;
8952 asection **ppsection;
8953 asection *o;
8954 const struct elf_backend_data *bed;
c152c796
AM
8955 struct elf_link_hash_entry **sym_hashes;
8956
8957 output_bfd = finfo->output_bfd;
8958 bed = get_elf_backend_data (output_bfd);
8959 relocate_section = bed->elf_backend_relocate_section;
8960
8961 /* If this is a dynamic object, we don't want to do anything here:
8962 we don't want the local symbols, and we don't want the section
8963 contents. */
8964 if ((input_bfd->flags & DYNAMIC) != 0)
8965 return TRUE;
8966
c152c796
AM
8967 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8968 if (elf_bad_symtab (input_bfd))
8969 {
8970 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8971 extsymoff = 0;
8972 }
8973 else
8974 {
8975 locsymcount = symtab_hdr->sh_info;
8976 extsymoff = symtab_hdr->sh_info;
8977 }
8978
8979 /* Read the local symbols. */
8980 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8981 if (isymbuf == NULL && locsymcount != 0)
8982 {
8983 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8984 finfo->internal_syms,
8985 finfo->external_syms,
8986 finfo->locsym_shndx);
8987 if (isymbuf == NULL)
8988 return FALSE;
8989 }
8990
8991 /* Find local symbol sections and adjust values of symbols in
8992 SEC_MERGE sections. Write out those local symbols we know are
8993 going into the output file. */
8994 isymend = isymbuf + locsymcount;
8995 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8996 isym < isymend;
8997 isym++, pindex++, ppsection++)
8998 {
8999 asection *isec;
9000 const char *name;
9001 Elf_Internal_Sym osym;
9002
9003 *pindex = -1;
9004
9005 if (elf_bad_symtab (input_bfd))
9006 {
9007 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9008 {
9009 *ppsection = NULL;
9010 continue;
9011 }
9012 }
9013
9014 if (isym->st_shndx == SHN_UNDEF)
9015 isec = bfd_und_section_ptr;
c152c796
AM
9016 else if (isym->st_shndx == SHN_ABS)
9017 isec = bfd_abs_section_ptr;
9018 else if (isym->st_shndx == SHN_COMMON)
9019 isec = bfd_com_section_ptr;
9020 else
9021 {
cb33740c
AM
9022 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9023 if (isec == NULL)
9024 {
9025 /* Don't attempt to output symbols with st_shnx in the
9026 reserved range other than SHN_ABS and SHN_COMMON. */
9027 *ppsection = NULL;
9028 continue;
9029 }
9030 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9031 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9032 isym->st_value =
9033 _bfd_merged_section_offset (output_bfd, &isec,
9034 elf_section_data (isec)->sec_info,
9035 isym->st_value);
c152c796
AM
9036 }
9037
9038 *ppsection = isec;
9039
9040 /* Don't output the first, undefined, symbol. */
9041 if (ppsection == finfo->sections)
9042 continue;
9043
9044 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9045 {
9046 /* We never output section symbols. Instead, we use the
9047 section symbol of the corresponding section in the output
9048 file. */
9049 continue;
9050 }
9051
9052 /* If we are stripping all symbols, we don't want to output this
9053 one. */
9054 if (finfo->info->strip == strip_all)
9055 continue;
9056
9057 /* If we are discarding all local symbols, we don't want to
9058 output this one. If we are generating a relocatable output
9059 file, then some of the local symbols may be required by
9060 relocs; we output them below as we discover that they are
9061 needed. */
9062 if (finfo->info->discard == discard_all)
9063 continue;
9064
9065 /* If this symbol is defined in a section which we are
f02571c5
AM
9066 discarding, we don't need to keep it. */
9067 if (isym->st_shndx != SHN_UNDEF
4fbb74a6
AM
9068 && isym->st_shndx < SHN_LORESERVE
9069 && bfd_section_removed_from_list (output_bfd,
9070 isec->output_section))
e75a280b
L
9071 continue;
9072
c152c796
AM
9073 /* Get the name of the symbol. */
9074 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9075 isym->st_name);
9076 if (name == NULL)
9077 return FALSE;
9078
9079 /* See if we are discarding symbols with this name. */
9080 if ((finfo->info->strip == strip_some
9081 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9082 == NULL))
9083 || (((finfo->info->discard == discard_sec_merge
9084 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9085 || finfo->info->discard == discard_l)
9086 && bfd_is_local_label_name (input_bfd, name)))
9087 continue;
9088
9089 /* If we get here, we are going to output this symbol. */
9090
9091 osym = *isym;
9092
9093 /* Adjust the section index for the output file. */
9094 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9095 isec->output_section);
9096 if (osym.st_shndx == SHN_BAD)
9097 return FALSE;
9098
9099 *pindex = bfd_get_symcount (output_bfd);
9100
9101 /* ELF symbols in relocatable files are section relative, but
9102 in executable files they are virtual addresses. Note that
9103 this code assumes that all ELF sections have an associated
9104 BFD section with a reasonable value for output_offset; below
9105 we assume that they also have a reasonable value for
9106 output_section. Any special sections must be set up to meet
9107 these requirements. */
9108 osym.st_value += isec->output_offset;
9109 if (! finfo->info->relocatable)
9110 {
9111 osym.st_value += isec->output_section->vma;
9112 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9113 {
9114 /* STT_TLS symbols are relative to PT_TLS segment base. */
9115 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9116 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9117 }
9118 }
9119
9120 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9121 return FALSE;
9122 }
9123
9124 /* Relocate the contents of each section. */
9125 sym_hashes = elf_sym_hashes (input_bfd);
9126 for (o = input_bfd->sections; o != NULL; o = o->next)
9127 {
9128 bfd_byte *contents;
9129
9130 if (! o->linker_mark)
9131 {
9132 /* This section was omitted from the link. */
9133 continue;
9134 }
9135
bcacc0f5
AM
9136 if (finfo->info->relocatable
9137 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9138 {
9139 /* Deal with the group signature symbol. */
9140 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9141 unsigned long symndx = sec_data->this_hdr.sh_info;
9142 asection *osec = o->output_section;
9143
9144 if (symndx >= locsymcount
9145 || (elf_bad_symtab (input_bfd)
9146 && finfo->sections[symndx] == NULL))
9147 {
9148 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9149 while (h->root.type == bfd_link_hash_indirect
9150 || h->root.type == bfd_link_hash_warning)
9151 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9152 /* Arrange for symbol to be output. */
9153 h->indx = -2;
9154 elf_section_data (osec)->this_hdr.sh_info = -2;
9155 }
9156 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9157 {
9158 /* We'll use the output section target_index. */
9159 asection *sec = finfo->sections[symndx]->output_section;
9160 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9161 }
9162 else
9163 {
9164 if (finfo->indices[symndx] == -1)
9165 {
9166 /* Otherwise output the local symbol now. */
9167 Elf_Internal_Sym sym = isymbuf[symndx];
9168 asection *sec = finfo->sections[symndx]->output_section;
9169 const char *name;
9170
9171 name = bfd_elf_string_from_elf_section (input_bfd,
9172 symtab_hdr->sh_link,
9173 sym.st_name);
9174 if (name == NULL)
9175 return FALSE;
9176
9177 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9178 sec);
9179 if (sym.st_shndx == SHN_BAD)
9180 return FALSE;
9181
9182 sym.st_value += o->output_offset;
9183
9184 finfo->indices[symndx] = bfd_get_symcount (output_bfd);
9185 if (! elf_link_output_sym (finfo, name, &sym, o, NULL))
9186 return FALSE;
9187 }
9188 elf_section_data (osec)->this_hdr.sh_info
9189 = finfo->indices[symndx];
9190 }
9191 }
9192
c152c796 9193 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 9194 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
c152c796
AM
9195 continue;
9196
9197 if ((o->flags & SEC_LINKER_CREATED) != 0)
9198 {
9199 /* Section was created by _bfd_elf_link_create_dynamic_sections
9200 or somesuch. */
9201 continue;
9202 }
9203
9204 /* Get the contents of the section. They have been cached by a
9205 relaxation routine. Note that o is a section in an input
9206 file, so the contents field will not have been set by any of
9207 the routines which work on output files. */
9208 if (elf_section_data (o)->this_hdr.contents != NULL)
9209 contents = elf_section_data (o)->this_hdr.contents;
9210 else
9211 {
eea6121a
AM
9212 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9213
c152c796 9214 contents = finfo->contents;
eea6121a 9215 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
c152c796
AM
9216 return FALSE;
9217 }
9218
9219 if ((o->flags & SEC_RELOC) != 0)
9220 {
9221 Elf_Internal_Rela *internal_relocs;
0f02bbd9 9222 Elf_Internal_Rela *rel, *relend;
c152c796
AM
9223 bfd_vma r_type_mask;
9224 int r_sym_shift;
0f02bbd9 9225 int action_discarded;
ece5ef60 9226 int ret;
c152c796
AM
9227
9228 /* Get the swapped relocs. */
9229 internal_relocs
9230 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9231 finfo->internal_relocs, FALSE);
9232 if (internal_relocs == NULL
9233 && o->reloc_count > 0)
9234 return FALSE;
9235
9236 if (bed->s->arch_size == 32)
9237 {
9238 r_type_mask = 0xff;
9239 r_sym_shift = 8;
9240 }
9241 else
9242 {
9243 r_type_mask = 0xffffffff;
9244 r_sym_shift = 32;
9245 }
9246
0f02bbd9 9247 action_discarded = -1;
c152c796 9248 if (!elf_section_ignore_discarded_relocs (o))
0f02bbd9
AM
9249 action_discarded = (*bed->action_discarded) (o);
9250
9251 /* Run through the relocs evaluating complex reloc symbols and
9252 looking for relocs against symbols from discarded sections
9253 or section symbols from removed link-once sections.
9254 Complain about relocs against discarded sections. Zero
9255 relocs against removed link-once sections. */
9256
9257 rel = internal_relocs;
9258 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9259 for ( ; rel < relend; rel++)
c152c796 9260 {
0f02bbd9
AM
9261 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9262 unsigned int s_type;
9263 asection **ps, *sec;
9264 struct elf_link_hash_entry *h = NULL;
9265 const char *sym_name;
c152c796 9266
0f02bbd9
AM
9267 if (r_symndx == STN_UNDEF)
9268 continue;
c152c796 9269
0f02bbd9
AM
9270 if (r_symndx >= locsymcount
9271 || (elf_bad_symtab (input_bfd)
9272 && finfo->sections[r_symndx] == NULL))
9273 {
9274 h = sym_hashes[r_symndx - extsymoff];
ee75fd95 9275
0f02bbd9
AM
9276 /* Badly formatted input files can contain relocs that
9277 reference non-existant symbols. Check here so that
9278 we do not seg fault. */
9279 if (h == NULL)
c152c796 9280 {
0f02bbd9 9281 char buffer [32];
dce669a1 9282
0f02bbd9
AM
9283 sprintf_vma (buffer, rel->r_info);
9284 (*_bfd_error_handler)
9285 (_("error: %B contains a reloc (0x%s) for section %A "
9286 "that references a non-existent global symbol"),
9287 input_bfd, o, buffer);
9288 bfd_set_error (bfd_error_bad_value);
9289 return FALSE;
9290 }
3b36f7e6 9291
0f02bbd9
AM
9292 while (h->root.type == bfd_link_hash_indirect
9293 || h->root.type == bfd_link_hash_warning)
9294 h = (struct elf_link_hash_entry *) h->root.u.i.link;
c152c796 9295
0f02bbd9 9296 s_type = h->type;
cdd3575c 9297
0f02bbd9
AM
9298 ps = NULL;
9299 if (h->root.type == bfd_link_hash_defined
9300 || h->root.type == bfd_link_hash_defweak)
9301 ps = &h->root.u.def.section;
9302
9303 sym_name = h->root.root.string;
9304 }
9305 else
9306 {
9307 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9308
9309 s_type = ELF_ST_TYPE (sym->st_info);
9310 ps = &finfo->sections[r_symndx];
9311 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9312 sym, *ps);
9313 }
c152c796 9314
0f02bbd9
AM
9315 if (s_type == STT_RELC || s_type == STT_SRELC)
9316 {
9317 bfd_vma val;
9318 bfd_vma dot = (rel->r_offset
9319 + o->output_offset + o->output_section->vma);
9320#ifdef DEBUG
9321 printf ("Encountered a complex symbol!");
9322 printf (" (input_bfd %s, section %s, reloc %ld\n",
9323 input_bfd->filename, o->name, rel - internal_relocs);
9324 printf (" symbol: idx %8.8lx, name %s\n",
9325 r_symndx, sym_name);
9326 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9327 (unsigned long) rel->r_info,
9328 (unsigned long) rel->r_offset);
9329#endif
9330 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9331 isymbuf, locsymcount, s_type == STT_SRELC))
9332 return FALSE;
9333
9334 /* Symbol evaluated OK. Update to absolute value. */
9335 set_symbol_value (input_bfd, isymbuf, locsymcount,
9336 r_symndx, val);
9337 continue;
9338 }
9339
9340 if (action_discarded != -1 && ps != NULL)
9341 {
cdd3575c
AM
9342 /* Complain if the definition comes from a
9343 discarded section. */
9344 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9345 {
87e5235d 9346 BFD_ASSERT (r_symndx != 0);
0f02bbd9 9347 if (action_discarded & COMPLAIN)
e1fffbe6
AM
9348 (*finfo->info->callbacks->einfo)
9349 (_("%X`%s' referenced in section `%A' of %B: "
58ac56d0 9350 "defined in discarded section `%A' of %B\n"),
e1fffbe6 9351 sym_name, o, input_bfd, sec, sec->owner);
cdd3575c 9352
87e5235d 9353 /* Try to do the best we can to support buggy old
e0ae6d6f 9354 versions of gcc. Pretend that the symbol is
87e5235d
AM
9355 really defined in the kept linkonce section.
9356 FIXME: This is quite broken. Modifying the
9357 symbol here means we will be changing all later
e0ae6d6f 9358 uses of the symbol, not just in this section. */
0f02bbd9 9359 if (action_discarded & PRETEND)
87e5235d 9360 {
01b3c8ab
L
9361 asection *kept;
9362
c0f00686
L
9363 kept = _bfd_elf_check_kept_section (sec,
9364 finfo->info);
01b3c8ab 9365 if (kept != NULL)
87e5235d
AM
9366 {
9367 *ps = kept;
9368 continue;
9369 }
9370 }
c152c796
AM
9371 }
9372 }
9373 }
9374
9375 /* Relocate the section by invoking a back end routine.
9376
9377 The back end routine is responsible for adjusting the
9378 section contents as necessary, and (if using Rela relocs
9379 and generating a relocatable output file) adjusting the
9380 reloc addend as necessary.
9381
9382 The back end routine does not have to worry about setting
9383 the reloc address or the reloc symbol index.
9384
9385 The back end routine is given a pointer to the swapped in
9386 internal symbols, and can access the hash table entries
9387 for the external symbols via elf_sym_hashes (input_bfd).
9388
9389 When generating relocatable output, the back end routine
9390 must handle STB_LOCAL/STT_SECTION symbols specially. The
9391 output symbol is going to be a section symbol
9392 corresponding to the output section, which will require
9393 the addend to be adjusted. */
9394
ece5ef60 9395 ret = (*relocate_section) (output_bfd, finfo->info,
c152c796
AM
9396 input_bfd, o, contents,
9397 internal_relocs,
9398 isymbuf,
ece5ef60
AM
9399 finfo->sections);
9400 if (!ret)
c152c796
AM
9401 return FALSE;
9402
ece5ef60
AM
9403 if (ret == 2
9404 || finfo->info->relocatable
9405 || finfo->info->emitrelocations)
c152c796
AM
9406 {
9407 Elf_Internal_Rela *irela;
9408 Elf_Internal_Rela *irelaend;
9409 bfd_vma last_offset;
9410 struct elf_link_hash_entry **rel_hash;
eac338cf 9411 struct elf_link_hash_entry **rel_hash_list;
c152c796
AM
9412 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9413 unsigned int next_erel;
c152c796
AM
9414 bfd_boolean rela_normal;
9415
9416 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9417 rela_normal = (bed->rela_normal
9418 && (input_rel_hdr->sh_entsize
9419 == bed->s->sizeof_rela));
9420
9421 /* Adjust the reloc addresses and symbol indices. */
9422
9423 irela = internal_relocs;
9424 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9425 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9426 + elf_section_data (o->output_section)->rel_count
9427 + elf_section_data (o->output_section)->rel_count2);
eac338cf 9428 rel_hash_list = rel_hash;
c152c796
AM
9429 last_offset = o->output_offset;
9430 if (!finfo->info->relocatable)
9431 last_offset += o->output_section->vma;
9432 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9433 {
9434 unsigned long r_symndx;
9435 asection *sec;
9436 Elf_Internal_Sym sym;
9437
9438 if (next_erel == bed->s->int_rels_per_ext_rel)
9439 {
9440 rel_hash++;
9441 next_erel = 0;
9442 }
9443
9444 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9445 finfo->info, o,
9446 irela->r_offset);
9447 if (irela->r_offset >= (bfd_vma) -2)
9448 {
9449 /* This is a reloc for a deleted entry or somesuch.
9450 Turn it into an R_*_NONE reloc, at the same
9451 offset as the last reloc. elf_eh_frame.c and
e460dd0d 9452 bfd_elf_discard_info rely on reloc offsets
c152c796
AM
9453 being ordered. */
9454 irela->r_offset = last_offset;
9455 irela->r_info = 0;
9456 irela->r_addend = 0;
9457 continue;
9458 }
9459
9460 irela->r_offset += o->output_offset;
9461
9462 /* Relocs in an executable have to be virtual addresses. */
9463 if (!finfo->info->relocatable)
9464 irela->r_offset += o->output_section->vma;
9465
9466 last_offset = irela->r_offset;
9467
9468 r_symndx = irela->r_info >> r_sym_shift;
9469 if (r_symndx == STN_UNDEF)
9470 continue;
9471
9472 if (r_symndx >= locsymcount
9473 || (elf_bad_symtab (input_bfd)
9474 && finfo->sections[r_symndx] == NULL))
9475 {
9476 struct elf_link_hash_entry *rh;
9477 unsigned long indx;
9478
9479 /* This is a reloc against a global symbol. We
9480 have not yet output all the local symbols, so
9481 we do not know the symbol index of any global
9482 symbol. We set the rel_hash entry for this
9483 reloc to point to the global hash table entry
9484 for this symbol. The symbol index is then
ee75fd95 9485 set at the end of bfd_elf_final_link. */
c152c796
AM
9486 indx = r_symndx - extsymoff;
9487 rh = elf_sym_hashes (input_bfd)[indx];
9488 while (rh->root.type == bfd_link_hash_indirect
9489 || rh->root.type == bfd_link_hash_warning)
9490 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9491
9492 /* Setting the index to -2 tells
9493 elf_link_output_extsym that this symbol is
9494 used by a reloc. */
9495 BFD_ASSERT (rh->indx < 0);
9496 rh->indx = -2;
9497
9498 *rel_hash = rh;
9499
9500 continue;
9501 }
9502
9503 /* This is a reloc against a local symbol. */
9504
9505 *rel_hash = NULL;
9506 sym = isymbuf[r_symndx];
9507 sec = finfo->sections[r_symndx];
9508 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9509 {
9510 /* I suppose the backend ought to fill in the
9511 section of any STT_SECTION symbol against a
6a8d1586
AM
9512 processor specific section. */
9513 r_symndx = 0;
9514 if (bfd_is_abs_section (sec))
9515 ;
c152c796
AM
9516 else if (sec == NULL || sec->owner == NULL)
9517 {
9518 bfd_set_error (bfd_error_bad_value);
9519 return FALSE;
9520 }
9521 else
9522 {
6a8d1586
AM
9523 asection *osec = sec->output_section;
9524
9525 /* If we have discarded a section, the output
9526 section will be the absolute section. In
ab96bf03
AM
9527 case of discarded SEC_MERGE sections, use
9528 the kept section. relocate_section should
9529 have already handled discarded linkonce
9530 sections. */
6a8d1586
AM
9531 if (bfd_is_abs_section (osec)
9532 && sec->kept_section != NULL
9533 && sec->kept_section->output_section != NULL)
9534 {
9535 osec = sec->kept_section->output_section;
9536 irela->r_addend -= osec->vma;
9537 }
9538
9539 if (!bfd_is_abs_section (osec))
9540 {
9541 r_symndx = osec->target_index;
74541ad4
AM
9542 if (r_symndx == 0)
9543 {
9544 struct elf_link_hash_table *htab;
9545 asection *oi;
9546
9547 htab = elf_hash_table (finfo->info);
9548 oi = htab->text_index_section;
9549 if ((osec->flags & SEC_READONLY) == 0
9550 && htab->data_index_section != NULL)
9551 oi = htab->data_index_section;
9552
9553 if (oi != NULL)
9554 {
9555 irela->r_addend += osec->vma - oi->vma;
9556 r_symndx = oi->target_index;
9557 }
9558 }
9559
6a8d1586
AM
9560 BFD_ASSERT (r_symndx != 0);
9561 }
c152c796
AM
9562 }
9563
9564 /* Adjust the addend according to where the
9565 section winds up in the output section. */
9566 if (rela_normal)
9567 irela->r_addend += sec->output_offset;
9568 }
9569 else
9570 {
9571 if (finfo->indices[r_symndx] == -1)
9572 {
9573 unsigned long shlink;
9574 const char *name;
9575 asection *osec;
9576
9577 if (finfo->info->strip == strip_all)
9578 {
9579 /* You can't do ld -r -s. */
9580 bfd_set_error (bfd_error_invalid_operation);
9581 return FALSE;
9582 }
9583
9584 /* This symbol was skipped earlier, but
9585 since it is needed by a reloc, we
9586 must output it now. */
9587 shlink = symtab_hdr->sh_link;
9588 name = (bfd_elf_string_from_elf_section
9589 (input_bfd, shlink, sym.st_name));
9590 if (name == NULL)
9591 return FALSE;
9592
9593 osec = sec->output_section;
9594 sym.st_shndx =
9595 _bfd_elf_section_from_bfd_section (output_bfd,
9596 osec);
9597 if (sym.st_shndx == SHN_BAD)
9598 return FALSE;
9599
9600 sym.st_value += sec->output_offset;
9601 if (! finfo->info->relocatable)
9602 {
9603 sym.st_value += osec->vma;
9604 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9605 {
9606 /* STT_TLS symbols are relative to PT_TLS
9607 segment base. */
9608 BFD_ASSERT (elf_hash_table (finfo->info)
9609 ->tls_sec != NULL);
9610 sym.st_value -= (elf_hash_table (finfo->info)
9611 ->tls_sec->vma);
9612 }
9613 }
9614
9615 finfo->indices[r_symndx]
9616 = bfd_get_symcount (output_bfd);
9617
9618 if (! elf_link_output_sym (finfo, name, &sym, sec,
9619 NULL))
9620 return FALSE;
9621 }
9622
9623 r_symndx = finfo->indices[r_symndx];
9624 }
9625
9626 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9627 | (irela->r_info & r_type_mask));
9628 }
9629
9630 /* Swap out the relocs. */
c152c796 9631 if (input_rel_hdr->sh_size != 0
eac338cf
PB
9632 && !bed->elf_backend_emit_relocs (output_bfd, o,
9633 input_rel_hdr,
9634 internal_relocs,
9635 rel_hash_list))
c152c796
AM
9636 return FALSE;
9637
9638 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9639 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9640 {
9641 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9642 * bed->s->int_rels_per_ext_rel);
eac338cf
PB
9643 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9644 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9645 input_rel_hdr2,
9646 internal_relocs,
9647 rel_hash_list))
c152c796
AM
9648 return FALSE;
9649 }
9650 }
9651 }
9652
9653 /* Write out the modified section contents. */
9654 if (bed->elf_backend_write_section
c7b8f16e
JB
9655 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9656 contents))
c152c796
AM
9657 {
9658 /* Section written out. */
9659 }
9660 else switch (o->sec_info_type)
9661 {
9662 case ELF_INFO_TYPE_STABS:
9663 if (! (_bfd_write_section_stabs
9664 (output_bfd,
9665 &elf_hash_table (finfo->info)->stab_info,
9666 o, &elf_section_data (o)->sec_info, contents)))
9667 return FALSE;
9668 break;
9669 case ELF_INFO_TYPE_MERGE:
9670 if (! _bfd_write_merged_section (output_bfd, o,
9671 elf_section_data (o)->sec_info))
9672 return FALSE;
9673 break;
9674 case ELF_INFO_TYPE_EH_FRAME:
9675 {
9676 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9677 o, contents))
9678 return FALSE;
9679 }
9680 break;
9681 default:
9682 {
c152c796 9683 if (! (o->flags & SEC_EXCLUDE)
ace79388 9684 && ! (o->output_section->flags & SEC_NEVER_LOAD)
c152c796
AM
9685 && ! bfd_set_section_contents (output_bfd, o->output_section,
9686 contents,
9687 (file_ptr) o->output_offset,
eea6121a 9688 o->size))
c152c796
AM
9689 return FALSE;
9690 }
9691 break;
9692 }
9693 }
9694
9695 return TRUE;
9696}
9697
9698/* Generate a reloc when linking an ELF file. This is a reloc
3a800eb9 9699 requested by the linker, and does not come from any input file. This
c152c796
AM
9700 is used to build constructor and destructor tables when linking
9701 with -Ur. */
9702
9703static bfd_boolean
9704elf_reloc_link_order (bfd *output_bfd,
9705 struct bfd_link_info *info,
9706 asection *output_section,
9707 struct bfd_link_order *link_order)
9708{
9709 reloc_howto_type *howto;
9710 long indx;
9711 bfd_vma offset;
9712 bfd_vma addend;
9713 struct elf_link_hash_entry **rel_hash_ptr;
9714 Elf_Internal_Shdr *rel_hdr;
9715 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9716 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9717 bfd_byte *erel;
9718 unsigned int i;
9719
9720 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9721 if (howto == NULL)
9722 {
9723 bfd_set_error (bfd_error_bad_value);
9724 return FALSE;
9725 }
9726
9727 addend = link_order->u.reloc.p->addend;
9728
9729 /* Figure out the symbol index. */
9730 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9731 + elf_section_data (output_section)->rel_count
9732 + elf_section_data (output_section)->rel_count2);
9733 if (link_order->type == bfd_section_reloc_link_order)
9734 {
9735 indx = link_order->u.reloc.p->u.section->target_index;
9736 BFD_ASSERT (indx != 0);
9737 *rel_hash_ptr = NULL;
9738 }
9739 else
9740 {
9741 struct elf_link_hash_entry *h;
9742
9743 /* Treat a reloc against a defined symbol as though it were
9744 actually against the section. */
9745 h = ((struct elf_link_hash_entry *)
9746 bfd_wrapped_link_hash_lookup (output_bfd, info,
9747 link_order->u.reloc.p->u.name,
9748 FALSE, FALSE, TRUE));
9749 if (h != NULL
9750 && (h->root.type == bfd_link_hash_defined
9751 || h->root.type == bfd_link_hash_defweak))
9752 {
9753 asection *section;
9754
9755 section = h->root.u.def.section;
9756 indx = section->output_section->target_index;
9757 *rel_hash_ptr = NULL;
9758 /* It seems that we ought to add the symbol value to the
9759 addend here, but in practice it has already been added
9760 because it was passed to constructor_callback. */
9761 addend += section->output_section->vma + section->output_offset;
9762 }
9763 else if (h != NULL)
9764 {
9765 /* Setting the index to -2 tells elf_link_output_extsym that
9766 this symbol is used by a reloc. */
9767 h->indx = -2;
9768 *rel_hash_ptr = h;
9769 indx = 0;
9770 }
9771 else
9772 {
9773 if (! ((*info->callbacks->unattached_reloc)
9774 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9775 return FALSE;
9776 indx = 0;
9777 }
9778 }
9779
9780 /* If this is an inplace reloc, we must write the addend into the
9781 object file. */
9782 if (howto->partial_inplace && addend != 0)
9783 {
9784 bfd_size_type size;
9785 bfd_reloc_status_type rstat;
9786 bfd_byte *buf;
9787 bfd_boolean ok;
9788 const char *sym_name;
9789
9790 size = bfd_get_reloc_size (howto);
9791 buf = bfd_zmalloc (size);
9792 if (buf == NULL)
9793 return FALSE;
9794 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9795 switch (rstat)
9796 {
9797 case bfd_reloc_ok:
9798 break;
9799
9800 default:
9801 case bfd_reloc_outofrange:
9802 abort ();
9803
9804 case bfd_reloc_overflow:
9805 if (link_order->type == bfd_section_reloc_link_order)
9806 sym_name = bfd_section_name (output_bfd,
9807 link_order->u.reloc.p->u.section);
9808 else
9809 sym_name = link_order->u.reloc.p->u.name;
9810 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f
L
9811 (info, NULL, sym_name, howto->name, addend, NULL,
9812 NULL, (bfd_vma) 0)))
c152c796
AM
9813 {
9814 free (buf);
9815 return FALSE;
9816 }
9817 break;
9818 }
9819 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9820 link_order->offset, size);
9821 free (buf);
9822 if (! ok)
9823 return FALSE;
9824 }
9825
9826 /* The address of a reloc is relative to the section in a
9827 relocatable file, and is a virtual address in an executable
9828 file. */
9829 offset = link_order->offset;
9830 if (! info->relocatable)
9831 offset += output_section->vma;
9832
9833 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9834 {
9835 irel[i].r_offset = offset;
9836 irel[i].r_info = 0;
9837 irel[i].r_addend = 0;
9838 }
9839 if (bed->s->arch_size == 32)
9840 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9841 else
9842 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9843
9844 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9845 erel = rel_hdr->contents;
9846 if (rel_hdr->sh_type == SHT_REL)
9847 {
9848 erel += (elf_section_data (output_section)->rel_count
9849 * bed->s->sizeof_rel);
9850 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9851 }
9852 else
9853 {
9854 irel[0].r_addend = addend;
9855 erel += (elf_section_data (output_section)->rel_count
9856 * bed->s->sizeof_rela);
9857 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9858 }
9859
9860 ++elf_section_data (output_section)->rel_count;
9861
9862 return TRUE;
9863}
9864
0b52efa6
PB
9865
9866/* Get the output vma of the section pointed to by the sh_link field. */
9867
9868static bfd_vma
9869elf_get_linked_section_vma (struct bfd_link_order *p)
9870{
9871 Elf_Internal_Shdr **elf_shdrp;
9872 asection *s;
9873 int elfsec;
9874
9875 s = p->u.indirect.section;
9876 elf_shdrp = elf_elfsections (s->owner);
9877 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9878 elfsec = elf_shdrp[elfsec]->sh_link;
185d09ad
L
9879 /* PR 290:
9880 The Intel C compiler generates SHT_IA_64_UNWIND with
e04bcc6d 9881 SHF_LINK_ORDER. But it doesn't set the sh_link or
185d09ad
L
9882 sh_info fields. Hence we could get the situation
9883 where elfsec is 0. */
9884 if (elfsec == 0)
9885 {
9886 const struct elf_backend_data *bed
9887 = get_elf_backend_data (s->owner);
9888 if (bed->link_order_error_handler)
d003868e
AM
9889 bed->link_order_error_handler
9890 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
185d09ad
L
9891 return 0;
9892 }
9893 else
9894 {
9895 s = elf_shdrp[elfsec]->bfd_section;
9896 return s->output_section->vma + s->output_offset;
9897 }
0b52efa6
PB
9898}
9899
9900
9901/* Compare two sections based on the locations of the sections they are
9902 linked to. Used by elf_fixup_link_order. */
9903
9904static int
9905compare_link_order (const void * a, const void * b)
9906{
9907 bfd_vma apos;
9908 bfd_vma bpos;
9909
9910 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9911 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9912 if (apos < bpos)
9913 return -1;
9914 return apos > bpos;
9915}
9916
9917
9918/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9919 order as their linked sections. Returns false if this could not be done
9920 because an output section includes both ordered and unordered
9921 sections. Ideally we'd do this in the linker proper. */
9922
9923static bfd_boolean
9924elf_fixup_link_order (bfd *abfd, asection *o)
9925{
9926 int seen_linkorder;
9927 int seen_other;
9928 int n;
9929 struct bfd_link_order *p;
9930 bfd *sub;
9931 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
b761a207 9932 unsigned elfsec;
0b52efa6 9933 struct bfd_link_order **sections;
d33cdfe3 9934 asection *s, *other_sec, *linkorder_sec;
0b52efa6 9935 bfd_vma offset;
3b36f7e6 9936
d33cdfe3
L
9937 other_sec = NULL;
9938 linkorder_sec = NULL;
0b52efa6
PB
9939 seen_other = 0;
9940 seen_linkorder = 0;
8423293d 9941 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6 9942 {
d33cdfe3 9943 if (p->type == bfd_indirect_link_order)
0b52efa6
PB
9944 {
9945 s = p->u.indirect.section;
d33cdfe3
L
9946 sub = s->owner;
9947 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9948 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
b761a207
BE
9949 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9950 && elfsec < elf_numsections (sub)
4fbb74a6
AM
9951 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9952 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
d33cdfe3
L
9953 {
9954 seen_linkorder++;
9955 linkorder_sec = s;
9956 }
0b52efa6 9957 else
d33cdfe3
L
9958 {
9959 seen_other++;
9960 other_sec = s;
9961 }
0b52efa6
PB
9962 }
9963 else
9964 seen_other++;
d33cdfe3
L
9965
9966 if (seen_other && seen_linkorder)
9967 {
9968 if (other_sec && linkorder_sec)
9969 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9970 o, linkorder_sec,
9971 linkorder_sec->owner, other_sec,
9972 other_sec->owner);
9973 else
9974 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9975 o);
9976 bfd_set_error (bfd_error_bad_value);
9977 return FALSE;
9978 }
0b52efa6
PB
9979 }
9980
9981 if (!seen_linkorder)
9982 return TRUE;
9983
0b52efa6 9984 sections = (struct bfd_link_order **)
14b1c01e
AM
9985 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9986 if (sections == NULL)
9987 return FALSE;
0b52efa6 9988 seen_linkorder = 0;
3b36f7e6 9989
8423293d 9990 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6
PB
9991 {
9992 sections[seen_linkorder++] = p;
9993 }
9994 /* Sort the input sections in the order of their linked section. */
9995 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9996 compare_link_order);
9997
9998 /* Change the offsets of the sections. */
9999 offset = 0;
10000 for (n = 0; n < seen_linkorder; n++)
10001 {
10002 s = sections[n]->u.indirect.section;
461686a3 10003 offset &= ~(bfd_vma) 0 << s->alignment_power;
0b52efa6
PB
10004 s->output_offset = offset;
10005 sections[n]->offset = offset;
10006 offset += sections[n]->size;
10007 }
10008
4dd07732 10009 free (sections);
0b52efa6
PB
10010 return TRUE;
10011}
10012
10013
c152c796
AM
10014/* Do the final step of an ELF link. */
10015
10016bfd_boolean
10017bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10018{
10019 bfd_boolean dynamic;
10020 bfd_boolean emit_relocs;
10021 bfd *dynobj;
10022 struct elf_final_link_info finfo;
10023 register asection *o;
10024 register struct bfd_link_order *p;
10025 register bfd *sub;
10026 bfd_size_type max_contents_size;
10027 bfd_size_type max_external_reloc_size;
10028 bfd_size_type max_internal_reloc_count;
10029 bfd_size_type max_sym_count;
10030 bfd_size_type max_sym_shndx_count;
10031 file_ptr off;
10032 Elf_Internal_Sym elfsym;
10033 unsigned int i;
10034 Elf_Internal_Shdr *symtab_hdr;
10035 Elf_Internal_Shdr *symtab_shndx_hdr;
10036 Elf_Internal_Shdr *symstrtab_hdr;
10037 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10038 struct elf_outext_info eoinfo;
10039 bfd_boolean merged;
10040 size_t relativecount = 0;
10041 asection *reldyn = 0;
10042 bfd_size_type amt;
104d59d1
JM
10043 asection *attr_section = NULL;
10044 bfd_vma attr_size = 0;
10045 const char *std_attrs_section;
c152c796
AM
10046
10047 if (! is_elf_hash_table (info->hash))
10048 return FALSE;
10049
10050 if (info->shared)
10051 abfd->flags |= DYNAMIC;
10052
10053 dynamic = elf_hash_table (info)->dynamic_sections_created;
10054 dynobj = elf_hash_table (info)->dynobj;
10055
10056 emit_relocs = (info->relocatable
a4676736 10057 || info->emitrelocations);
c152c796
AM
10058
10059 finfo.info = info;
10060 finfo.output_bfd = abfd;
10061 finfo.symstrtab = _bfd_elf_stringtab_init ();
10062 if (finfo.symstrtab == NULL)
10063 return FALSE;
10064
10065 if (! dynamic)
10066 {
10067 finfo.dynsym_sec = NULL;
10068 finfo.hash_sec = NULL;
10069 finfo.symver_sec = NULL;
10070 }
10071 else
10072 {
10073 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10074 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
fdc90cb4 10075 BFD_ASSERT (finfo.dynsym_sec != NULL);
c152c796
AM
10076 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10077 /* Note that it is OK if symver_sec is NULL. */
10078 }
10079
10080 finfo.contents = NULL;
10081 finfo.external_relocs = NULL;
10082 finfo.internal_relocs = NULL;
10083 finfo.external_syms = NULL;
10084 finfo.locsym_shndx = NULL;
10085 finfo.internal_syms = NULL;
10086 finfo.indices = NULL;
10087 finfo.sections = NULL;
10088 finfo.symbuf = NULL;
10089 finfo.symshndxbuf = NULL;
10090 finfo.symbuf_count = 0;
10091 finfo.shndxbuf_size = 0;
10092
104d59d1
JM
10093 /* The object attributes have been merged. Remove the input
10094 sections from the link, and set the contents of the output
10095 secton. */
10096 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10097 for (o = abfd->sections; o != NULL; o = o->next)
10098 {
10099 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10100 || strcmp (o->name, ".gnu.attributes") == 0)
10101 {
10102 for (p = o->map_head.link_order; p != NULL; p = p->next)
10103 {
10104 asection *input_section;
10105
10106 if (p->type != bfd_indirect_link_order)
10107 continue;
10108 input_section = p->u.indirect.section;
10109 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10110 elf_link_input_bfd ignores this section. */
10111 input_section->flags &= ~SEC_HAS_CONTENTS;
10112 }
a0c8462f 10113
104d59d1
JM
10114 attr_size = bfd_elf_obj_attr_size (abfd);
10115 if (attr_size)
10116 {
10117 bfd_set_section_size (abfd, o, attr_size);
10118 attr_section = o;
10119 /* Skip this section later on. */
10120 o->map_head.link_order = NULL;
10121 }
10122 else
10123 o->flags |= SEC_EXCLUDE;
10124 }
10125 }
10126
c152c796
AM
10127 /* Count up the number of relocations we will output for each output
10128 section, so that we know the sizes of the reloc sections. We
10129 also figure out some maximum sizes. */
10130 max_contents_size = 0;
10131 max_external_reloc_size = 0;
10132 max_internal_reloc_count = 0;
10133 max_sym_count = 0;
10134 max_sym_shndx_count = 0;
10135 merged = FALSE;
10136 for (o = abfd->sections; o != NULL; o = o->next)
10137 {
10138 struct bfd_elf_section_data *esdo = elf_section_data (o);
10139 o->reloc_count = 0;
10140
8423293d 10141 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
10142 {
10143 unsigned int reloc_count = 0;
10144 struct bfd_elf_section_data *esdi = NULL;
10145 unsigned int *rel_count1;
10146
10147 if (p->type == bfd_section_reloc_link_order
10148 || p->type == bfd_symbol_reloc_link_order)
10149 reloc_count = 1;
10150 else if (p->type == bfd_indirect_link_order)
10151 {
10152 asection *sec;
10153
10154 sec = p->u.indirect.section;
10155 esdi = elf_section_data (sec);
10156
10157 /* Mark all sections which are to be included in the
10158 link. This will normally be every section. We need
10159 to do this so that we can identify any sections which
10160 the linker has decided to not include. */
10161 sec->linker_mark = TRUE;
10162
10163 if (sec->flags & SEC_MERGE)
10164 merged = TRUE;
10165
10166 if (info->relocatable || info->emitrelocations)
10167 reloc_count = sec->reloc_count;
10168 else if (bed->elf_backend_count_relocs)
58217f29 10169 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
c152c796 10170
eea6121a
AM
10171 if (sec->rawsize > max_contents_size)
10172 max_contents_size = sec->rawsize;
10173 if (sec->size > max_contents_size)
10174 max_contents_size = sec->size;
c152c796
AM
10175
10176 /* We are interested in just local symbols, not all
10177 symbols. */
10178 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10179 && (sec->owner->flags & DYNAMIC) == 0)
10180 {
10181 size_t sym_count;
10182
10183 if (elf_bad_symtab (sec->owner))
10184 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10185 / bed->s->sizeof_sym);
10186 else
10187 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10188
10189 if (sym_count > max_sym_count)
10190 max_sym_count = sym_count;
10191
10192 if (sym_count > max_sym_shndx_count
10193 && elf_symtab_shndx (sec->owner) != 0)
10194 max_sym_shndx_count = sym_count;
10195
10196 if ((sec->flags & SEC_RELOC) != 0)
10197 {
10198 size_t ext_size;
10199
10200 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10201 if (ext_size > max_external_reloc_size)
10202 max_external_reloc_size = ext_size;
10203 if (sec->reloc_count > max_internal_reloc_count)
10204 max_internal_reloc_count = sec->reloc_count;
10205 }
10206 }
10207 }
10208
10209 if (reloc_count == 0)
10210 continue;
10211
10212 o->reloc_count += reloc_count;
10213
10214 /* MIPS may have a mix of REL and RELA relocs on sections.
10215 To support this curious ABI we keep reloc counts in
10216 elf_section_data too. We must be careful to add the
10217 relocations from the input section to the right output
10218 count. FIXME: Get rid of one count. We have
10219 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10220 rel_count1 = &esdo->rel_count;
10221 if (esdi != NULL)
10222 {
10223 bfd_boolean same_size;
10224 bfd_size_type entsize1;
10225
10226 entsize1 = esdi->rel_hdr.sh_entsize;
10227 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10228 || entsize1 == bed->s->sizeof_rela);
10229 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10230
10231 if (!same_size)
10232 rel_count1 = &esdo->rel_count2;
10233
10234 if (esdi->rel_hdr2 != NULL)
10235 {
10236 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10237 unsigned int alt_count;
10238 unsigned int *rel_count2;
10239
10240 BFD_ASSERT (entsize2 != entsize1
10241 && (entsize2 == bed->s->sizeof_rel
10242 || entsize2 == bed->s->sizeof_rela));
10243
10244 rel_count2 = &esdo->rel_count2;
10245 if (!same_size)
10246 rel_count2 = &esdo->rel_count;
10247
10248 /* The following is probably too simplistic if the
10249 backend counts output relocs unusually. */
10250 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10251 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10252 *rel_count2 += alt_count;
10253 reloc_count -= alt_count;
10254 }
10255 }
10256 *rel_count1 += reloc_count;
10257 }
10258
10259 if (o->reloc_count > 0)
10260 o->flags |= SEC_RELOC;
10261 else
10262 {
10263 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10264 set it (this is probably a bug) and if it is set
10265 assign_section_numbers will create a reloc section. */
10266 o->flags &=~ SEC_RELOC;
10267 }
10268
10269 /* If the SEC_ALLOC flag is not set, force the section VMA to
10270 zero. This is done in elf_fake_sections as well, but forcing
10271 the VMA to 0 here will ensure that relocs against these
10272 sections are handled correctly. */
10273 if ((o->flags & SEC_ALLOC) == 0
10274 && ! o->user_set_vma)
10275 o->vma = 0;
10276 }
10277
10278 if (! info->relocatable && merged)
10279 elf_link_hash_traverse (elf_hash_table (info),
10280 _bfd_elf_link_sec_merge_syms, abfd);
10281
10282 /* Figure out the file positions for everything but the symbol table
10283 and the relocs. We set symcount to force assign_section_numbers
10284 to create a symbol table. */
10285 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10286 BFD_ASSERT (! abfd->output_has_begun);
10287 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10288 goto error_return;
10289
ee75fd95 10290 /* Set sizes, and assign file positions for reloc sections. */
c152c796
AM
10291 for (o = abfd->sections; o != NULL; o = o->next)
10292 {
10293 if ((o->flags & SEC_RELOC) != 0)
10294 {
10295 if (!(_bfd_elf_link_size_reloc_section
10296 (abfd, &elf_section_data (o)->rel_hdr, o)))
10297 goto error_return;
10298
10299 if (elf_section_data (o)->rel_hdr2
10300 && !(_bfd_elf_link_size_reloc_section
10301 (abfd, elf_section_data (o)->rel_hdr2, o)))
10302 goto error_return;
10303 }
10304
10305 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10306 to count upwards while actually outputting the relocations. */
10307 elf_section_data (o)->rel_count = 0;
10308 elf_section_data (o)->rel_count2 = 0;
10309 }
10310
10311 _bfd_elf_assign_file_positions_for_relocs (abfd);
10312
10313 /* We have now assigned file positions for all the sections except
10314 .symtab and .strtab. We start the .symtab section at the current
10315 file position, and write directly to it. We build the .strtab
10316 section in memory. */
10317 bfd_get_symcount (abfd) = 0;
10318 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10319 /* sh_name is set in prep_headers. */
10320 symtab_hdr->sh_type = SHT_SYMTAB;
10321 /* sh_flags, sh_addr and sh_size all start off zero. */
10322 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10323 /* sh_link is set in assign_section_numbers. */
10324 /* sh_info is set below. */
10325 /* sh_offset is set just below. */
72de5009 10326 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
c152c796
AM
10327
10328 off = elf_tdata (abfd)->next_file_pos;
10329 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10330
10331 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10332 incorrect. We do not yet know the size of the .symtab section.
10333 We correct next_file_pos below, after we do know the size. */
10334
10335 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10336 continuously seeking to the right position in the file. */
10337 if (! info->keep_memory || max_sym_count < 20)
10338 finfo.symbuf_size = 20;
10339 else
10340 finfo.symbuf_size = max_sym_count;
10341 amt = finfo.symbuf_size;
10342 amt *= bed->s->sizeof_sym;
10343 finfo.symbuf = bfd_malloc (amt);
10344 if (finfo.symbuf == NULL)
10345 goto error_return;
4fbb74a6 10346 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
c152c796
AM
10347 {
10348 /* Wild guess at number of output symbols. realloc'd as needed. */
10349 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10350 finfo.shndxbuf_size = amt;
10351 amt *= sizeof (Elf_External_Sym_Shndx);
10352 finfo.symshndxbuf = bfd_zmalloc (amt);
10353 if (finfo.symshndxbuf == NULL)
10354 goto error_return;
10355 }
10356
10357 /* Start writing out the symbol table. The first symbol is always a
10358 dummy symbol. */
10359 if (info->strip != strip_all
10360 || emit_relocs)
10361 {
10362 elfsym.st_value = 0;
10363 elfsym.st_size = 0;
10364 elfsym.st_info = 0;
10365 elfsym.st_other = 0;
10366 elfsym.st_shndx = SHN_UNDEF;
10367 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10368 NULL))
10369 goto error_return;
10370 }
10371
c152c796
AM
10372 /* Output a symbol for each section. We output these even if we are
10373 discarding local symbols, since they are used for relocs. These
10374 symbols have no names. We store the index of each one in the
10375 index field of the section, so that we can find it again when
10376 outputting relocs. */
10377 if (info->strip != strip_all
10378 || emit_relocs)
10379 {
10380 elfsym.st_size = 0;
10381 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10382 elfsym.st_other = 0;
f0b5bb34 10383 elfsym.st_value = 0;
c152c796
AM
10384 for (i = 1; i < elf_numsections (abfd); i++)
10385 {
10386 o = bfd_section_from_elf_index (abfd, i);
10387 if (o != NULL)
f0b5bb34
AM
10388 {
10389 o->target_index = bfd_get_symcount (abfd);
10390 elfsym.st_shndx = i;
10391 if (!info->relocatable)
10392 elfsym.st_value = o->vma;
10393 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10394 goto error_return;
10395 }
c152c796
AM
10396 }
10397 }
10398
10399 /* Allocate some memory to hold information read in from the input
10400 files. */
10401 if (max_contents_size != 0)
10402 {
10403 finfo.contents = bfd_malloc (max_contents_size);
10404 if (finfo.contents == NULL)
10405 goto error_return;
10406 }
10407
10408 if (max_external_reloc_size != 0)
10409 {
10410 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10411 if (finfo.external_relocs == NULL)
10412 goto error_return;
10413 }
10414
10415 if (max_internal_reloc_count != 0)
10416 {
10417 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10418 amt *= sizeof (Elf_Internal_Rela);
10419 finfo.internal_relocs = bfd_malloc (amt);
10420 if (finfo.internal_relocs == NULL)
10421 goto error_return;
10422 }
10423
10424 if (max_sym_count != 0)
10425 {
10426 amt = max_sym_count * bed->s->sizeof_sym;
10427 finfo.external_syms = bfd_malloc (amt);
10428 if (finfo.external_syms == NULL)
10429 goto error_return;
10430
10431 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10432 finfo.internal_syms = bfd_malloc (amt);
10433 if (finfo.internal_syms == NULL)
10434 goto error_return;
10435
10436 amt = max_sym_count * sizeof (long);
10437 finfo.indices = bfd_malloc (amt);
10438 if (finfo.indices == NULL)
10439 goto error_return;
10440
10441 amt = max_sym_count * sizeof (asection *);
10442 finfo.sections = bfd_malloc (amt);
10443 if (finfo.sections == NULL)
10444 goto error_return;
10445 }
10446
10447 if (max_sym_shndx_count != 0)
10448 {
10449 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10450 finfo.locsym_shndx = bfd_malloc (amt);
10451 if (finfo.locsym_shndx == NULL)
10452 goto error_return;
10453 }
10454
10455 if (elf_hash_table (info)->tls_sec)
10456 {
10457 bfd_vma base, end = 0;
10458 asection *sec;
10459
10460 for (sec = elf_hash_table (info)->tls_sec;
10461 sec && (sec->flags & SEC_THREAD_LOCAL);
10462 sec = sec->next)
10463 {
3a800eb9 10464 bfd_size_type size = sec->size;
c152c796 10465
3a800eb9
AM
10466 if (size == 0
10467 && (sec->flags & SEC_HAS_CONTENTS) == 0)
c152c796 10468 {
3a800eb9
AM
10469 struct bfd_link_order *o = sec->map_tail.link_order;
10470 if (o != NULL)
10471 size = o->offset + o->size;
c152c796
AM
10472 }
10473 end = sec->vma + size;
10474 }
10475 base = elf_hash_table (info)->tls_sec->vma;
10476 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10477 elf_hash_table (info)->tls_size = end - base;
10478 }
10479
0b52efa6
PB
10480 /* Reorder SHF_LINK_ORDER sections. */
10481 for (o = abfd->sections; o != NULL; o = o->next)
10482 {
10483 if (!elf_fixup_link_order (abfd, o))
10484 return FALSE;
10485 }
10486
c152c796
AM
10487 /* Since ELF permits relocations to be against local symbols, we
10488 must have the local symbols available when we do the relocations.
10489 Since we would rather only read the local symbols once, and we
10490 would rather not keep them in memory, we handle all the
10491 relocations for a single input file at the same time.
10492
10493 Unfortunately, there is no way to know the total number of local
10494 symbols until we have seen all of them, and the local symbol
10495 indices precede the global symbol indices. This means that when
10496 we are generating relocatable output, and we see a reloc against
10497 a global symbol, we can not know the symbol index until we have
10498 finished examining all the local symbols to see which ones we are
10499 going to output. To deal with this, we keep the relocations in
10500 memory, and don't output them until the end of the link. This is
10501 an unfortunate waste of memory, but I don't see a good way around
10502 it. Fortunately, it only happens when performing a relocatable
10503 link, which is not the common case. FIXME: If keep_memory is set
10504 we could write the relocs out and then read them again; I don't
10505 know how bad the memory loss will be. */
10506
10507 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10508 sub->output_has_begun = FALSE;
10509 for (o = abfd->sections; o != NULL; o = o->next)
10510 {
8423293d 10511 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
10512 {
10513 if (p->type == bfd_indirect_link_order
10514 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10515 == bfd_target_elf_flavour)
10516 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10517 {
10518 if (! sub->output_has_begun)
10519 {
10520 if (! elf_link_input_bfd (&finfo, sub))
10521 goto error_return;
10522 sub->output_has_begun = TRUE;
10523 }
10524 }
10525 else if (p->type == bfd_section_reloc_link_order
10526 || p->type == bfd_symbol_reloc_link_order)
10527 {
10528 if (! elf_reloc_link_order (abfd, info, o, p))
10529 goto error_return;
10530 }
10531 else
10532 {
10533 if (! _bfd_default_link_order (abfd, info, o, p))
10534 goto error_return;
10535 }
10536 }
10537 }
10538
c0f00686
L
10539 /* Free symbol buffer if needed. */
10540 if (!info->reduce_memory_overheads)
10541 {
10542 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
3fcd97f1
JJ
10543 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10544 && elf_tdata (sub)->symbuf)
c0f00686
L
10545 {
10546 free (elf_tdata (sub)->symbuf);
10547 elf_tdata (sub)->symbuf = NULL;
10548 }
10549 }
10550
c152c796
AM
10551 /* Output any global symbols that got converted to local in a
10552 version script or due to symbol visibility. We do this in a
10553 separate step since ELF requires all local symbols to appear
10554 prior to any global symbols. FIXME: We should only do this if
10555 some global symbols were, in fact, converted to become local.
10556 FIXME: Will this work correctly with the Irix 5 linker? */
10557 eoinfo.failed = FALSE;
10558 eoinfo.finfo = &finfo;
10559 eoinfo.localsyms = TRUE;
10560 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10561 &eoinfo);
10562 if (eoinfo.failed)
10563 return FALSE;
10564
4e617b1e
PB
10565 /* If backend needs to output some local symbols not present in the hash
10566 table, do it now. */
10567 if (bed->elf_backend_output_arch_local_syms)
10568 {
10569 typedef bfd_boolean (*out_sym_func)
10570 (void *, const char *, Elf_Internal_Sym *, asection *,
10571 struct elf_link_hash_entry *);
10572
10573 if (! ((*bed->elf_backend_output_arch_local_syms)
10574 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10575 return FALSE;
10576 }
10577
c152c796
AM
10578 /* That wrote out all the local symbols. Finish up the symbol table
10579 with the global symbols. Even if we want to strip everything we
10580 can, we still need to deal with those global symbols that got
10581 converted to local in a version script. */
10582
10583 /* The sh_info field records the index of the first non local symbol. */
10584 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10585
10586 if (dynamic
10587 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10588 {
10589 Elf_Internal_Sym sym;
10590 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10591 long last_local = 0;
10592
10593 /* Write out the section symbols for the output sections. */
67687978 10594 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
c152c796
AM
10595 {
10596 asection *s;
10597
10598 sym.st_size = 0;
10599 sym.st_name = 0;
10600 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10601 sym.st_other = 0;
10602
10603 for (s = abfd->sections; s != NULL; s = s->next)
10604 {
10605 int indx;
10606 bfd_byte *dest;
10607 long dynindx;
10608
c152c796 10609 dynindx = elf_section_data (s)->dynindx;
8c37241b
JJ
10610 if (dynindx <= 0)
10611 continue;
10612 indx = elf_section_data (s)->this_idx;
c152c796
AM
10613 BFD_ASSERT (indx > 0);
10614 sym.st_shndx = indx;
c0d5a53d
L
10615 if (! check_dynsym (abfd, &sym))
10616 return FALSE;
c152c796
AM
10617 sym.st_value = s->vma;
10618 dest = dynsym + dynindx * bed->s->sizeof_sym;
8c37241b
JJ
10619 if (last_local < dynindx)
10620 last_local = dynindx;
c152c796
AM
10621 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10622 }
c152c796
AM
10623 }
10624
10625 /* Write out the local dynsyms. */
10626 if (elf_hash_table (info)->dynlocal)
10627 {
10628 struct elf_link_local_dynamic_entry *e;
10629 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10630 {
10631 asection *s;
10632 bfd_byte *dest;
10633
10634 sym.st_size = e->isym.st_size;
10635 sym.st_other = e->isym.st_other;
10636
10637 /* Copy the internal symbol as is.
10638 Note that we saved a word of storage and overwrote
10639 the original st_name with the dynstr_index. */
10640 sym = e->isym;
10641
cb33740c
AM
10642 s = bfd_section_from_elf_index (e->input_bfd,
10643 e->isym.st_shndx);
10644 if (s != NULL)
c152c796 10645 {
c152c796
AM
10646 sym.st_shndx =
10647 elf_section_data (s->output_section)->this_idx;
c0d5a53d
L
10648 if (! check_dynsym (abfd, &sym))
10649 return FALSE;
c152c796
AM
10650 sym.st_value = (s->output_section->vma
10651 + s->output_offset
10652 + e->isym.st_value);
10653 }
10654
10655 if (last_local < e->dynindx)
10656 last_local = e->dynindx;
10657
10658 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10659 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10660 }
10661 }
10662
10663 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10664 last_local + 1;
10665 }
10666
10667 /* We get the global symbols from the hash table. */
10668 eoinfo.failed = FALSE;
10669 eoinfo.localsyms = FALSE;
10670 eoinfo.finfo = &finfo;
10671 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10672 &eoinfo);
10673 if (eoinfo.failed)
10674 return FALSE;
10675
10676 /* If backend needs to output some symbols not present in the hash
10677 table, do it now. */
10678 if (bed->elf_backend_output_arch_syms)
10679 {
10680 typedef bfd_boolean (*out_sym_func)
10681 (void *, const char *, Elf_Internal_Sym *, asection *,
10682 struct elf_link_hash_entry *);
10683
10684 if (! ((*bed->elf_backend_output_arch_syms)
10685 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10686 return FALSE;
10687 }
10688
10689 /* Flush all symbols to the file. */
10690 if (! elf_link_flush_output_syms (&finfo, bed))
10691 return FALSE;
10692
10693 /* Now we know the size of the symtab section. */
10694 off += symtab_hdr->sh_size;
10695
10696 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10697 if (symtab_shndx_hdr->sh_name != 0)
10698 {
10699 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10700 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10701 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10702 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10703 symtab_shndx_hdr->sh_size = amt;
10704
10705 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10706 off, TRUE);
10707
10708 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10709 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10710 return FALSE;
10711 }
10712
10713
10714 /* Finish up and write out the symbol string table (.strtab)
10715 section. */
10716 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10717 /* sh_name was set in prep_headers. */
10718 symstrtab_hdr->sh_type = SHT_STRTAB;
10719 symstrtab_hdr->sh_flags = 0;
10720 symstrtab_hdr->sh_addr = 0;
10721 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10722 symstrtab_hdr->sh_entsize = 0;
10723 symstrtab_hdr->sh_link = 0;
10724 symstrtab_hdr->sh_info = 0;
10725 /* sh_offset is set just below. */
10726 symstrtab_hdr->sh_addralign = 1;
10727
10728 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10729 elf_tdata (abfd)->next_file_pos = off;
10730
10731 if (bfd_get_symcount (abfd) > 0)
10732 {
10733 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10734 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10735 return FALSE;
10736 }
10737
10738 /* Adjust the relocs to have the correct symbol indices. */
10739 for (o = abfd->sections; o != NULL; o = o->next)
10740 {
10741 if ((o->flags & SEC_RELOC) == 0)
10742 continue;
10743
10744 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10745 elf_section_data (o)->rel_count,
10746 elf_section_data (o)->rel_hashes);
10747 if (elf_section_data (o)->rel_hdr2 != NULL)
10748 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10749 elf_section_data (o)->rel_count2,
10750 (elf_section_data (o)->rel_hashes
10751 + elf_section_data (o)->rel_count));
10752
10753 /* Set the reloc_count field to 0 to prevent write_relocs from
10754 trying to swap the relocs out itself. */
10755 o->reloc_count = 0;
10756 }
10757
10758 if (dynamic && info->combreloc && dynobj != NULL)
10759 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10760
10761 /* If we are linking against a dynamic object, or generating a
10762 shared library, finish up the dynamic linking information. */
10763 if (dynamic)
10764 {
10765 bfd_byte *dyncon, *dynconend;
10766
10767 /* Fix up .dynamic entries. */
10768 o = bfd_get_section_by_name (dynobj, ".dynamic");
10769 BFD_ASSERT (o != NULL);
10770
10771 dyncon = o->contents;
eea6121a 10772 dynconend = o->contents + o->size;
c152c796
AM
10773 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10774 {
10775 Elf_Internal_Dyn dyn;
10776 const char *name;
10777 unsigned int type;
10778
10779 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10780
10781 switch (dyn.d_tag)
10782 {
10783 default:
10784 continue;
10785 case DT_NULL:
10786 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10787 {
10788 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10789 {
10790 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10791 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10792 default: continue;
10793 }
10794 dyn.d_un.d_val = relativecount;
10795 relativecount = 0;
10796 break;
10797 }
10798 continue;
10799
10800 case DT_INIT:
10801 name = info->init_function;
10802 goto get_sym;
10803 case DT_FINI:
10804 name = info->fini_function;
10805 get_sym:
10806 {
10807 struct elf_link_hash_entry *h;
10808
10809 h = elf_link_hash_lookup (elf_hash_table (info), name,
10810 FALSE, FALSE, TRUE);
10811 if (h != NULL
10812 && (h->root.type == bfd_link_hash_defined
10813 || h->root.type == bfd_link_hash_defweak))
10814 {
bef26483 10815 dyn.d_un.d_ptr = h->root.u.def.value;
c152c796
AM
10816 o = h->root.u.def.section;
10817 if (o->output_section != NULL)
bef26483 10818 dyn.d_un.d_ptr += (o->output_section->vma
c152c796
AM
10819 + o->output_offset);
10820 else
10821 {
10822 /* The symbol is imported from another shared
10823 library and does not apply to this one. */
bef26483 10824 dyn.d_un.d_ptr = 0;
c152c796
AM
10825 }
10826 break;
10827 }
10828 }
10829 continue;
10830
10831 case DT_PREINIT_ARRAYSZ:
10832 name = ".preinit_array";
10833 goto get_size;
10834 case DT_INIT_ARRAYSZ:
10835 name = ".init_array";
10836 goto get_size;
10837 case DT_FINI_ARRAYSZ:
10838 name = ".fini_array";
10839 get_size:
10840 o = bfd_get_section_by_name (abfd, name);
10841 if (o == NULL)
10842 {
10843 (*_bfd_error_handler)
d003868e 10844 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
10845 goto error_return;
10846 }
eea6121a 10847 if (o->size == 0)
c152c796
AM
10848 (*_bfd_error_handler)
10849 (_("warning: %s section has zero size"), name);
eea6121a 10850 dyn.d_un.d_val = o->size;
c152c796
AM
10851 break;
10852
10853 case DT_PREINIT_ARRAY:
10854 name = ".preinit_array";
10855 goto get_vma;
10856 case DT_INIT_ARRAY:
10857 name = ".init_array";
10858 goto get_vma;
10859 case DT_FINI_ARRAY:
10860 name = ".fini_array";
10861 goto get_vma;
10862
10863 case DT_HASH:
10864 name = ".hash";
10865 goto get_vma;
fdc90cb4
JJ
10866 case DT_GNU_HASH:
10867 name = ".gnu.hash";
10868 goto get_vma;
c152c796
AM
10869 case DT_STRTAB:
10870 name = ".dynstr";
10871 goto get_vma;
10872 case DT_SYMTAB:
10873 name = ".dynsym";
10874 goto get_vma;
10875 case DT_VERDEF:
10876 name = ".gnu.version_d";
10877 goto get_vma;
10878 case DT_VERNEED:
10879 name = ".gnu.version_r";
10880 goto get_vma;
10881 case DT_VERSYM:
10882 name = ".gnu.version";
10883 get_vma:
10884 o = bfd_get_section_by_name (abfd, name);
10885 if (o == NULL)
10886 {
10887 (*_bfd_error_handler)
d003868e 10888 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
10889 goto error_return;
10890 }
10891 dyn.d_un.d_ptr = o->vma;
10892 break;
10893
10894 case DT_REL:
10895 case DT_RELA:
10896 case DT_RELSZ:
10897 case DT_RELASZ:
10898 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10899 type = SHT_REL;
10900 else
10901 type = SHT_RELA;
10902 dyn.d_un.d_val = 0;
bef26483 10903 dyn.d_un.d_ptr = 0;
c152c796
AM
10904 for (i = 1; i < elf_numsections (abfd); i++)
10905 {
10906 Elf_Internal_Shdr *hdr;
10907
10908 hdr = elf_elfsections (abfd)[i];
10909 if (hdr->sh_type == type
10910 && (hdr->sh_flags & SHF_ALLOC) != 0)
10911 {
10912 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10913 dyn.d_un.d_val += hdr->sh_size;
10914 else
10915 {
bef26483
AM
10916 if (dyn.d_un.d_ptr == 0
10917 || hdr->sh_addr < dyn.d_un.d_ptr)
10918 dyn.d_un.d_ptr = hdr->sh_addr;
c152c796
AM
10919 }
10920 }
10921 }
10922 break;
10923 }
10924 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10925 }
10926 }
10927
10928 /* If we have created any dynamic sections, then output them. */
10929 if (dynobj != NULL)
10930 {
10931 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10932 goto error_return;
10933
943284cc
DJ
10934 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10935 if (info->warn_shared_textrel && info->shared)
10936 {
10937 bfd_byte *dyncon, *dynconend;
10938
10939 /* Fix up .dynamic entries. */
10940 o = bfd_get_section_by_name (dynobj, ".dynamic");
10941 BFD_ASSERT (o != NULL);
10942
10943 dyncon = o->contents;
10944 dynconend = o->contents + o->size;
10945 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10946 {
10947 Elf_Internal_Dyn dyn;
10948
10949 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10950
10951 if (dyn.d_tag == DT_TEXTREL)
10952 {
a0c8462f 10953 info->callbacks->einfo
9267588c 10954 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
943284cc
DJ
10955 break;
10956 }
10957 }
10958 }
10959
c152c796
AM
10960 for (o = dynobj->sections; o != NULL; o = o->next)
10961 {
10962 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 10963 || o->size == 0
c152c796
AM
10964 || o->output_section == bfd_abs_section_ptr)
10965 continue;
10966 if ((o->flags & SEC_LINKER_CREATED) == 0)
10967 {
10968 /* At this point, we are only interested in sections
10969 created by _bfd_elf_link_create_dynamic_sections. */
10970 continue;
10971 }
3722b82f
AM
10972 if (elf_hash_table (info)->stab_info.stabstr == o)
10973 continue;
eea6121a
AM
10974 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10975 continue;
c152c796
AM
10976 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10977 != SHT_STRTAB)
10978 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10979 {
10980 if (! bfd_set_section_contents (abfd, o->output_section,
10981 o->contents,
10982 (file_ptr) o->output_offset,
eea6121a 10983 o->size))
c152c796
AM
10984 goto error_return;
10985 }
10986 else
10987 {
10988 /* The contents of the .dynstr section are actually in a
10989 stringtab. */
10990 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10991 if (bfd_seek (abfd, off, SEEK_SET) != 0
10992 || ! _bfd_elf_strtab_emit (abfd,
10993 elf_hash_table (info)->dynstr))
10994 goto error_return;
10995 }
10996 }
10997 }
10998
10999 if (info->relocatable)
11000 {
11001 bfd_boolean failed = FALSE;
11002
11003 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11004 if (failed)
11005 goto error_return;
11006 }
11007
11008 /* If we have optimized stabs strings, output them. */
3722b82f 11009 if (elf_hash_table (info)->stab_info.stabstr != NULL)
c152c796
AM
11010 {
11011 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11012 goto error_return;
11013 }
11014
11015 if (info->eh_frame_hdr)
11016 {
11017 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11018 goto error_return;
11019 }
11020
11021 if (finfo.symstrtab != NULL)
11022 _bfd_stringtab_free (finfo.symstrtab);
11023 if (finfo.contents != NULL)
11024 free (finfo.contents);
11025 if (finfo.external_relocs != NULL)
11026 free (finfo.external_relocs);
11027 if (finfo.internal_relocs != NULL)
11028 free (finfo.internal_relocs);
11029 if (finfo.external_syms != NULL)
11030 free (finfo.external_syms);
11031 if (finfo.locsym_shndx != NULL)
11032 free (finfo.locsym_shndx);
11033 if (finfo.internal_syms != NULL)
11034 free (finfo.internal_syms);
11035 if (finfo.indices != NULL)
11036 free (finfo.indices);
11037 if (finfo.sections != NULL)
11038 free (finfo.sections);
11039 if (finfo.symbuf != NULL)
11040 free (finfo.symbuf);
11041 if (finfo.symshndxbuf != NULL)
11042 free (finfo.symshndxbuf);
11043 for (o = abfd->sections; o != NULL; o = o->next)
11044 {
11045 if ((o->flags & SEC_RELOC) != 0
11046 && elf_section_data (o)->rel_hashes != NULL)
11047 free (elf_section_data (o)->rel_hashes);
11048 }
11049
11050 elf_tdata (abfd)->linker = TRUE;
11051
104d59d1
JM
11052 if (attr_section)
11053 {
11054 bfd_byte *contents = bfd_malloc (attr_size);
11055 if (contents == NULL)
d0f16d5e 11056 return FALSE; /* Bail out and fail. */
104d59d1
JM
11057 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11058 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11059 free (contents);
11060 }
11061
c152c796
AM
11062 return TRUE;
11063
11064 error_return:
11065 if (finfo.symstrtab != NULL)
11066 _bfd_stringtab_free (finfo.symstrtab);
11067 if (finfo.contents != NULL)
11068 free (finfo.contents);
11069 if (finfo.external_relocs != NULL)
11070 free (finfo.external_relocs);
11071 if (finfo.internal_relocs != NULL)
11072 free (finfo.internal_relocs);
11073 if (finfo.external_syms != NULL)
11074 free (finfo.external_syms);
11075 if (finfo.locsym_shndx != NULL)
11076 free (finfo.locsym_shndx);
11077 if (finfo.internal_syms != NULL)
11078 free (finfo.internal_syms);
11079 if (finfo.indices != NULL)
11080 free (finfo.indices);
11081 if (finfo.sections != NULL)
11082 free (finfo.sections);
11083 if (finfo.symbuf != NULL)
11084 free (finfo.symbuf);
11085 if (finfo.symshndxbuf != NULL)
11086 free (finfo.symshndxbuf);
11087 for (o = abfd->sections; o != NULL; o = o->next)
11088 {
11089 if ((o->flags & SEC_RELOC) != 0
11090 && elf_section_data (o)->rel_hashes != NULL)
11091 free (elf_section_data (o)->rel_hashes);
11092 }
11093
11094 return FALSE;
11095}
11096\f
5241d853
RS
11097/* Initialize COOKIE for input bfd ABFD. */
11098
11099static bfd_boolean
11100init_reloc_cookie (struct elf_reloc_cookie *cookie,
11101 struct bfd_link_info *info, bfd *abfd)
11102{
11103 Elf_Internal_Shdr *symtab_hdr;
11104 const struct elf_backend_data *bed;
11105
11106 bed = get_elf_backend_data (abfd);
11107 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11108
11109 cookie->abfd = abfd;
11110 cookie->sym_hashes = elf_sym_hashes (abfd);
11111 cookie->bad_symtab = elf_bad_symtab (abfd);
11112 if (cookie->bad_symtab)
11113 {
11114 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11115 cookie->extsymoff = 0;
11116 }
11117 else
11118 {
11119 cookie->locsymcount = symtab_hdr->sh_info;
11120 cookie->extsymoff = symtab_hdr->sh_info;
11121 }
11122
11123 if (bed->s->arch_size == 32)
11124 cookie->r_sym_shift = 8;
11125 else
11126 cookie->r_sym_shift = 32;
11127
11128 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11129 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11130 {
11131 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11132 cookie->locsymcount, 0,
11133 NULL, NULL, NULL);
11134 if (cookie->locsyms == NULL)
11135 {
11136 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11137 return FALSE;
11138 }
11139 if (info->keep_memory)
11140 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11141 }
11142 return TRUE;
11143}
11144
11145/* Free the memory allocated by init_reloc_cookie, if appropriate. */
11146
11147static void
11148fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11149{
11150 Elf_Internal_Shdr *symtab_hdr;
11151
11152 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11153 if (cookie->locsyms != NULL
11154 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11155 free (cookie->locsyms);
11156}
11157
11158/* Initialize the relocation information in COOKIE for input section SEC
11159 of input bfd ABFD. */
11160
11161static bfd_boolean
11162init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11163 struct bfd_link_info *info, bfd *abfd,
11164 asection *sec)
11165{
11166 const struct elf_backend_data *bed;
11167
11168 if (sec->reloc_count == 0)
11169 {
11170 cookie->rels = NULL;
11171 cookie->relend = NULL;
11172 }
11173 else
11174 {
11175 bed = get_elf_backend_data (abfd);
11176
11177 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11178 info->keep_memory);
11179 if (cookie->rels == NULL)
11180 return FALSE;
11181 cookie->rel = cookie->rels;
11182 cookie->relend = (cookie->rels
11183 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11184 }
11185 cookie->rel = cookie->rels;
11186 return TRUE;
11187}
11188
11189/* Free the memory allocated by init_reloc_cookie_rels,
11190 if appropriate. */
11191
11192static void
11193fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11194 asection *sec)
11195{
11196 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11197 free (cookie->rels);
11198}
11199
11200/* Initialize the whole of COOKIE for input section SEC. */
11201
11202static bfd_boolean
11203init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11204 struct bfd_link_info *info,
11205 asection *sec)
11206{
11207 if (!init_reloc_cookie (cookie, info, sec->owner))
11208 goto error1;
11209 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11210 goto error2;
11211 return TRUE;
11212
11213 error2:
11214 fini_reloc_cookie (cookie, sec->owner);
11215 error1:
11216 return FALSE;
11217}
11218
11219/* Free the memory allocated by init_reloc_cookie_for_section,
11220 if appropriate. */
11221
11222static void
11223fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11224 asection *sec)
11225{
11226 fini_reloc_cookie_rels (cookie, sec);
11227 fini_reloc_cookie (cookie, sec->owner);
11228}
11229\f
c152c796
AM
11230/* Garbage collect unused sections. */
11231
07adf181
AM
11232/* Default gc_mark_hook. */
11233
11234asection *
11235_bfd_elf_gc_mark_hook (asection *sec,
11236 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11237 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11238 struct elf_link_hash_entry *h,
11239 Elf_Internal_Sym *sym)
11240{
11241 if (h != NULL)
11242 {
11243 switch (h->root.type)
11244 {
11245 case bfd_link_hash_defined:
11246 case bfd_link_hash_defweak:
11247 return h->root.u.def.section;
11248
11249 case bfd_link_hash_common:
11250 return h->root.u.c.p->section;
11251
11252 default:
11253 break;
11254 }
11255 }
11256 else
11257 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11258
11259 return NULL;
11260}
11261
5241d853
RS
11262/* COOKIE->rel describes a relocation against section SEC, which is
11263 a section we've decided to keep. Return the section that contains
11264 the relocation symbol, or NULL if no section contains it. */
11265
11266asection *
11267_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11268 elf_gc_mark_hook_fn gc_mark_hook,
11269 struct elf_reloc_cookie *cookie)
11270{
11271 unsigned long r_symndx;
11272 struct elf_link_hash_entry *h;
11273
11274 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11275 if (r_symndx == 0)
11276 return NULL;
11277
11278 if (r_symndx >= cookie->locsymcount
11279 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11280 {
11281 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11282 while (h->root.type == bfd_link_hash_indirect
11283 || h->root.type == bfd_link_hash_warning)
11284 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11285 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11286 }
11287
11288 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11289 &cookie->locsyms[r_symndx]);
11290}
11291
11292/* COOKIE->rel describes a relocation against section SEC, which is
11293 a section we've decided to keep. Mark the section that contains
9d0a14d3 11294 the relocation symbol. */
5241d853
RS
11295
11296bfd_boolean
11297_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11298 asection *sec,
11299 elf_gc_mark_hook_fn gc_mark_hook,
9d0a14d3 11300 struct elf_reloc_cookie *cookie)
5241d853
RS
11301{
11302 asection *rsec;
11303
11304 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11305 if (rsec && !rsec->gc_mark)
11306 {
11307 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11308 rsec->gc_mark = 1;
5241d853
RS
11309 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11310 return FALSE;
11311 }
11312 return TRUE;
11313}
11314
07adf181
AM
11315/* The mark phase of garbage collection. For a given section, mark
11316 it and any sections in this section's group, and all the sections
11317 which define symbols to which it refers. */
11318
ccfa59ea
AM
11319bfd_boolean
11320_bfd_elf_gc_mark (struct bfd_link_info *info,
11321 asection *sec,
6a5bb875 11322 elf_gc_mark_hook_fn gc_mark_hook)
c152c796
AM
11323{
11324 bfd_boolean ret;
9d0a14d3 11325 asection *group_sec, *eh_frame;
c152c796
AM
11326
11327 sec->gc_mark = 1;
11328
11329 /* Mark all the sections in the group. */
11330 group_sec = elf_section_data (sec)->next_in_group;
11331 if (group_sec && !group_sec->gc_mark)
ccfa59ea 11332 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
c152c796
AM
11333 return FALSE;
11334
11335 /* Look through the section relocs. */
11336 ret = TRUE;
9d0a14d3
RS
11337 eh_frame = elf_eh_frame_section (sec->owner);
11338 if ((sec->flags & SEC_RELOC) != 0
11339 && sec->reloc_count > 0
11340 && sec != eh_frame)
c152c796 11341 {
5241d853 11342 struct elf_reloc_cookie cookie;
c152c796 11343
5241d853
RS
11344 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11345 ret = FALSE;
c152c796 11346 else
c152c796 11347 {
5241d853 11348 for (; cookie.rel < cookie.relend; cookie.rel++)
9d0a14d3 11349 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
5241d853
RS
11350 {
11351 ret = FALSE;
11352 break;
11353 }
11354 fini_reloc_cookie_for_section (&cookie, sec);
c152c796
AM
11355 }
11356 }
9d0a14d3
RS
11357
11358 if (ret && eh_frame && elf_fde_list (sec))
11359 {
11360 struct elf_reloc_cookie cookie;
11361
11362 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11363 ret = FALSE;
11364 else
11365 {
11366 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11367 gc_mark_hook, &cookie))
11368 ret = FALSE;
11369 fini_reloc_cookie_for_section (&cookie, eh_frame);
11370 }
11371 }
11372
c152c796
AM
11373 return ret;
11374}
11375
11376/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11377
c17d87de
NC
11378struct elf_gc_sweep_symbol_info
11379{
ccabcbe5
AM
11380 struct bfd_link_info *info;
11381 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11382 bfd_boolean);
11383};
11384
c152c796 11385static bfd_boolean
ccabcbe5 11386elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
c152c796 11387{
c152c796
AM
11388 if (h->root.type == bfd_link_hash_warning)
11389 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11390
ccabcbe5
AM
11391 if ((h->root.type == bfd_link_hash_defined
11392 || h->root.type == bfd_link_hash_defweak)
11393 && !h->root.u.def.section->gc_mark
11394 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11395 {
11396 struct elf_gc_sweep_symbol_info *inf = data;
11397 (*inf->hide_symbol) (inf->info, h, TRUE);
11398 }
c152c796
AM
11399
11400 return TRUE;
11401}
11402
11403/* The sweep phase of garbage collection. Remove all garbage sections. */
11404
11405typedef bfd_boolean (*gc_sweep_hook_fn)
11406 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11407
11408static bfd_boolean
ccabcbe5 11409elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
c152c796
AM
11410{
11411 bfd *sub;
ccabcbe5
AM
11412 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11413 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11414 unsigned long section_sym_count;
11415 struct elf_gc_sweep_symbol_info sweep_info;
c152c796
AM
11416
11417 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11418 {
11419 asection *o;
11420
11421 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11422 continue;
11423
11424 for (o = sub->sections; o != NULL; o = o->next)
11425 {
a33dafc3
L
11426 /* When any section in a section group is kept, we keep all
11427 sections in the section group. If the first member of
11428 the section group is excluded, we will also exclude the
11429 group section. */
11430 if (o->flags & SEC_GROUP)
11431 {
11432 asection *first = elf_next_in_group (o);
11433 o->gc_mark = first->gc_mark;
11434 }
11435 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11436 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11437 {
11438 /* Keep debug and special sections. */
11439 o->gc_mark = 1;
11440 }
c152c796
AM
11441
11442 if (o->gc_mark)
11443 continue;
11444
11445 /* Skip sweeping sections already excluded. */
11446 if (o->flags & SEC_EXCLUDE)
11447 continue;
11448
11449 /* Since this is early in the link process, it is simple
11450 to remove a section from the output. */
11451 o->flags |= SEC_EXCLUDE;
11452
c55fe096 11453 if (info->print_gc_sections && o->size != 0)
c17d87de
NC
11454 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11455
c152c796
AM
11456 /* But we also have to update some of the relocation
11457 info we collected before. */
11458 if (gc_sweep_hook
e8aaee2a
AM
11459 && (o->flags & SEC_RELOC) != 0
11460 && o->reloc_count > 0
11461 && !bfd_is_abs_section (o->output_section))
c152c796
AM
11462 {
11463 Elf_Internal_Rela *internal_relocs;
11464 bfd_boolean r;
11465
11466 internal_relocs
11467 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11468 info->keep_memory);
11469 if (internal_relocs == NULL)
11470 return FALSE;
11471
11472 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11473
11474 if (elf_section_data (o)->relocs != internal_relocs)
11475 free (internal_relocs);
11476
11477 if (!r)
11478 return FALSE;
11479 }
11480 }
11481 }
11482
11483 /* Remove the symbols that were in the swept sections from the dynamic
11484 symbol table. GCFIXME: Anyone know how to get them out of the
11485 static symbol table as well? */
ccabcbe5
AM
11486 sweep_info.info = info;
11487 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11488 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11489 &sweep_info);
c152c796 11490
ccabcbe5 11491 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
c152c796
AM
11492 return TRUE;
11493}
11494
11495/* Propagate collected vtable information. This is called through
11496 elf_link_hash_traverse. */
11497
11498static bfd_boolean
11499elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11500{
11501 if (h->root.type == bfd_link_hash_warning)
11502 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11503
11504 /* Those that are not vtables. */
f6e332e6 11505 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
11506 return TRUE;
11507
11508 /* Those vtables that do not have parents, we cannot merge. */
f6e332e6 11509 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
c152c796
AM
11510 return TRUE;
11511
11512 /* If we've already been done, exit. */
f6e332e6 11513 if (h->vtable->used && h->vtable->used[-1])
c152c796
AM
11514 return TRUE;
11515
11516 /* Make sure the parent's table is up to date. */
f6e332e6 11517 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
c152c796 11518
f6e332e6 11519 if (h->vtable->used == NULL)
c152c796
AM
11520 {
11521 /* None of this table's entries were referenced. Re-use the
11522 parent's table. */
f6e332e6
AM
11523 h->vtable->used = h->vtable->parent->vtable->used;
11524 h->vtable->size = h->vtable->parent->vtable->size;
c152c796
AM
11525 }
11526 else
11527 {
11528 size_t n;
11529 bfd_boolean *cu, *pu;
11530
11531 /* Or the parent's entries into ours. */
f6e332e6 11532 cu = h->vtable->used;
c152c796 11533 cu[-1] = TRUE;
f6e332e6 11534 pu = h->vtable->parent->vtable->used;
c152c796
AM
11535 if (pu != NULL)
11536 {
11537 const struct elf_backend_data *bed;
11538 unsigned int log_file_align;
11539
11540 bed = get_elf_backend_data (h->root.u.def.section->owner);
11541 log_file_align = bed->s->log_file_align;
f6e332e6 11542 n = h->vtable->parent->vtable->size >> log_file_align;
c152c796
AM
11543 while (n--)
11544 {
11545 if (*pu)
11546 *cu = TRUE;
11547 pu++;
11548 cu++;
11549 }
11550 }
11551 }
11552
11553 return TRUE;
11554}
11555
11556static bfd_boolean
11557elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11558{
11559 asection *sec;
11560 bfd_vma hstart, hend;
11561 Elf_Internal_Rela *relstart, *relend, *rel;
11562 const struct elf_backend_data *bed;
11563 unsigned int log_file_align;
11564
11565 if (h->root.type == bfd_link_hash_warning)
11566 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11567
11568 /* Take care of both those symbols that do not describe vtables as
11569 well as those that are not loaded. */
f6e332e6 11570 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
11571 return TRUE;
11572
11573 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11574 || h->root.type == bfd_link_hash_defweak);
11575
11576 sec = h->root.u.def.section;
11577 hstart = h->root.u.def.value;
11578 hend = hstart + h->size;
11579
11580 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11581 if (!relstart)
11582 return *(bfd_boolean *) okp = FALSE;
11583 bed = get_elf_backend_data (sec->owner);
11584 log_file_align = bed->s->log_file_align;
11585
11586 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11587
11588 for (rel = relstart; rel < relend; ++rel)
11589 if (rel->r_offset >= hstart && rel->r_offset < hend)
11590 {
11591 /* If the entry is in use, do nothing. */
f6e332e6
AM
11592 if (h->vtable->used
11593 && (rel->r_offset - hstart) < h->vtable->size)
c152c796
AM
11594 {
11595 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
f6e332e6 11596 if (h->vtable->used[entry])
c152c796
AM
11597 continue;
11598 }
11599 /* Otherwise, kill it. */
11600 rel->r_offset = rel->r_info = rel->r_addend = 0;
11601 }
11602
11603 return TRUE;
11604}
11605
87538722
AM
11606/* Mark sections containing dynamically referenced symbols. When
11607 building shared libraries, we must assume that any visible symbol is
11608 referenced. */
715df9b8 11609
64d03ab5
AM
11610bfd_boolean
11611bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
715df9b8 11612{
87538722
AM
11613 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11614
715df9b8
EB
11615 if (h->root.type == bfd_link_hash_warning)
11616 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11617
11618 if ((h->root.type == bfd_link_hash_defined
11619 || h->root.type == bfd_link_hash_defweak)
87538722 11620 && (h->ref_dynamic
5adcfd8b 11621 || (!info->executable
87538722
AM
11622 && h->def_regular
11623 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11624 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
715df9b8
EB
11625 h->root.u.def.section->flags |= SEC_KEEP;
11626
11627 return TRUE;
11628}
3b36f7e6 11629
74f0fb50
AM
11630/* Keep all sections containing symbols undefined on the command-line,
11631 and the section containing the entry symbol. */
11632
11633void
11634_bfd_elf_gc_keep (struct bfd_link_info *info)
11635{
11636 struct bfd_sym_chain *sym;
11637
11638 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11639 {
11640 struct elf_link_hash_entry *h;
11641
11642 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11643 FALSE, FALSE, FALSE);
11644
11645 if (h != NULL
11646 && (h->root.type == bfd_link_hash_defined
11647 || h->root.type == bfd_link_hash_defweak)
11648 && !bfd_is_abs_section (h->root.u.def.section))
11649 h->root.u.def.section->flags |= SEC_KEEP;
11650 }
11651}
11652
c152c796
AM
11653/* Do mark and sweep of unused sections. */
11654
11655bfd_boolean
11656bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11657{
11658 bfd_boolean ok = TRUE;
11659 bfd *sub;
6a5bb875 11660 elf_gc_mark_hook_fn gc_mark_hook;
64d03ab5 11661 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
c152c796 11662
64d03ab5 11663 if (!bed->can_gc_sections
715df9b8 11664 || !is_elf_hash_table (info->hash))
c152c796
AM
11665 {
11666 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11667 return TRUE;
11668 }
11669
74f0fb50
AM
11670 bed->gc_keep (info);
11671
9d0a14d3
RS
11672 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11673 at the .eh_frame section if we can mark the FDEs individually. */
11674 _bfd_elf_begin_eh_frame_parsing (info);
11675 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11676 {
11677 asection *sec;
11678 struct elf_reloc_cookie cookie;
11679
11680 sec = bfd_get_section_by_name (sub, ".eh_frame");
11681 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11682 {
11683 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11684 if (elf_section_data (sec)->sec_info)
11685 elf_eh_frame_section (sub) = sec;
11686 fini_reloc_cookie_for_section (&cookie, sec);
11687 }
11688 }
11689 _bfd_elf_end_eh_frame_parsing (info);
11690
c152c796
AM
11691 /* Apply transitive closure to the vtable entry usage info. */
11692 elf_link_hash_traverse (elf_hash_table (info),
11693 elf_gc_propagate_vtable_entries_used,
11694 &ok);
11695 if (!ok)
11696 return FALSE;
11697
11698 /* Kill the vtable relocations that were not used. */
11699 elf_link_hash_traverse (elf_hash_table (info),
11700 elf_gc_smash_unused_vtentry_relocs,
11701 &ok);
11702 if (!ok)
11703 return FALSE;
11704
715df9b8
EB
11705 /* Mark dynamically referenced symbols. */
11706 if (elf_hash_table (info)->dynamic_sections_created)
11707 elf_link_hash_traverse (elf_hash_table (info),
64d03ab5 11708 bed->gc_mark_dynamic_ref,
87538722 11709 info);
c152c796 11710
715df9b8 11711 /* Grovel through relocs to find out who stays ... */
64d03ab5 11712 gc_mark_hook = bed->gc_mark_hook;
c152c796
AM
11713 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11714 {
11715 asection *o;
11716
11717 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11718 continue;
11719
11720 for (o = sub->sections; o != NULL; o = o->next)
a14a5de3 11721 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
39c2f51b
AM
11722 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11723 return FALSE;
c152c796
AM
11724 }
11725
6a5bb875
PB
11726 /* Allow the backend to mark additional target specific sections. */
11727 if (bed->gc_mark_extra_sections)
74f0fb50 11728 bed->gc_mark_extra_sections (info, gc_mark_hook);
6a5bb875 11729
c152c796 11730 /* ... and mark SEC_EXCLUDE for those that go. */
ccabcbe5 11731 return elf_gc_sweep (abfd, info);
c152c796
AM
11732}
11733\f
11734/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11735
11736bfd_boolean
11737bfd_elf_gc_record_vtinherit (bfd *abfd,
11738 asection *sec,
11739 struct elf_link_hash_entry *h,
11740 bfd_vma offset)
11741{
11742 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11743 struct elf_link_hash_entry **search, *child;
11744 bfd_size_type extsymcount;
11745 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11746
11747 /* The sh_info field of the symtab header tells us where the
11748 external symbols start. We don't care about the local symbols at
11749 this point. */
11750 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11751 if (!elf_bad_symtab (abfd))
11752 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11753
11754 sym_hashes = elf_sym_hashes (abfd);
11755 sym_hashes_end = sym_hashes + extsymcount;
11756
11757 /* Hunt down the child symbol, which is in this section at the same
11758 offset as the relocation. */
11759 for (search = sym_hashes; search != sym_hashes_end; ++search)
11760 {
11761 if ((child = *search) != NULL
11762 && (child->root.type == bfd_link_hash_defined
11763 || child->root.type == bfd_link_hash_defweak)
11764 && child->root.u.def.section == sec
11765 && child->root.u.def.value == offset)
11766 goto win;
11767 }
11768
d003868e
AM
11769 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11770 abfd, sec, (unsigned long) offset);
c152c796
AM
11771 bfd_set_error (bfd_error_invalid_operation);
11772 return FALSE;
11773
11774 win:
f6e332e6
AM
11775 if (!child->vtable)
11776 {
11777 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11778 if (!child->vtable)
11779 return FALSE;
11780 }
c152c796
AM
11781 if (!h)
11782 {
11783 /* This *should* only be the absolute section. It could potentially
11784 be that someone has defined a non-global vtable though, which
11785 would be bad. It isn't worth paging in the local symbols to be
11786 sure though; that case should simply be handled by the assembler. */
11787
f6e332e6 11788 child->vtable->parent = (struct elf_link_hash_entry *) -1;
c152c796
AM
11789 }
11790 else
f6e332e6 11791 child->vtable->parent = h;
c152c796
AM
11792
11793 return TRUE;
11794}
11795
11796/* Called from check_relocs to record the existence of a VTENTRY reloc. */
11797
11798bfd_boolean
11799bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11800 asection *sec ATTRIBUTE_UNUSED,
11801 struct elf_link_hash_entry *h,
11802 bfd_vma addend)
11803{
11804 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11805 unsigned int log_file_align = bed->s->log_file_align;
11806
f6e332e6
AM
11807 if (!h->vtable)
11808 {
11809 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11810 if (!h->vtable)
11811 return FALSE;
11812 }
11813
11814 if (addend >= h->vtable->size)
c152c796
AM
11815 {
11816 size_t size, bytes, file_align;
f6e332e6 11817 bfd_boolean *ptr = h->vtable->used;
c152c796
AM
11818
11819 /* While the symbol is undefined, we have to be prepared to handle
11820 a zero size. */
11821 file_align = 1 << log_file_align;
11822 if (h->root.type == bfd_link_hash_undefined)
11823 size = addend + file_align;
11824 else
11825 {
11826 size = h->size;
11827 if (addend >= size)
11828 {
11829 /* Oops! We've got a reference past the defined end of
11830 the table. This is probably a bug -- shall we warn? */
11831 size = addend + file_align;
11832 }
11833 }
11834 size = (size + file_align - 1) & -file_align;
11835
11836 /* Allocate one extra entry for use as a "done" flag for the
11837 consolidation pass. */
11838 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11839
11840 if (ptr)
11841 {
11842 ptr = bfd_realloc (ptr - 1, bytes);
11843
11844 if (ptr != NULL)
11845 {
11846 size_t oldbytes;
11847
f6e332e6 11848 oldbytes = (((h->vtable->size >> log_file_align) + 1)
c152c796
AM
11849 * sizeof (bfd_boolean));
11850 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11851 }
11852 }
11853 else
11854 ptr = bfd_zmalloc (bytes);
11855
11856 if (ptr == NULL)
11857 return FALSE;
11858
11859 /* And arrange for that done flag to be at index -1. */
f6e332e6
AM
11860 h->vtable->used = ptr + 1;
11861 h->vtable->size = size;
c152c796
AM
11862 }
11863
f6e332e6 11864 h->vtable->used[addend >> log_file_align] = TRUE;
c152c796
AM
11865
11866 return TRUE;
11867}
11868
11869struct alloc_got_off_arg {
11870 bfd_vma gotoff;
10455f89 11871 struct bfd_link_info *info;
c152c796
AM
11872};
11873
11874/* We need a special top-level link routine to convert got reference counts
11875 to real got offsets. */
11876
11877static bfd_boolean
11878elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11879{
11880 struct alloc_got_off_arg *gofarg = arg;
10455f89
HPN
11881 bfd *obfd = gofarg->info->output_bfd;
11882 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
c152c796
AM
11883
11884 if (h->root.type == bfd_link_hash_warning)
11885 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11886
11887 if (h->got.refcount > 0)
11888 {
11889 h->got.offset = gofarg->gotoff;
10455f89 11890 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
c152c796
AM
11891 }
11892 else
11893 h->got.offset = (bfd_vma) -1;
11894
11895 return TRUE;
11896}
11897
11898/* And an accompanying bit to work out final got entry offsets once
11899 we're done. Should be called from final_link. */
11900
11901bfd_boolean
11902bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11903 struct bfd_link_info *info)
11904{
11905 bfd *i;
11906 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11907 bfd_vma gotoff;
c152c796
AM
11908 struct alloc_got_off_arg gofarg;
11909
10455f89
HPN
11910 BFD_ASSERT (abfd == info->output_bfd);
11911
c152c796
AM
11912 if (! is_elf_hash_table (info->hash))
11913 return FALSE;
11914
11915 /* The GOT offset is relative to the .got section, but the GOT header is
11916 put into the .got.plt section, if the backend uses it. */
11917 if (bed->want_got_plt)
11918 gotoff = 0;
11919 else
11920 gotoff = bed->got_header_size;
11921
11922 /* Do the local .got entries first. */
11923 for (i = info->input_bfds; i; i = i->link_next)
11924 {
11925 bfd_signed_vma *local_got;
11926 bfd_size_type j, locsymcount;
11927 Elf_Internal_Shdr *symtab_hdr;
11928
11929 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11930 continue;
11931
11932 local_got = elf_local_got_refcounts (i);
11933 if (!local_got)
11934 continue;
11935
11936 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11937 if (elf_bad_symtab (i))
11938 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11939 else
11940 locsymcount = symtab_hdr->sh_info;
11941
11942 for (j = 0; j < locsymcount; ++j)
11943 {
11944 if (local_got[j] > 0)
11945 {
11946 local_got[j] = gotoff;
10455f89 11947 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
c152c796
AM
11948 }
11949 else
11950 local_got[j] = (bfd_vma) -1;
11951 }
11952 }
11953
11954 /* Then the global .got entries. .plt refcounts are handled by
11955 adjust_dynamic_symbol */
11956 gofarg.gotoff = gotoff;
10455f89 11957 gofarg.info = info;
c152c796
AM
11958 elf_link_hash_traverse (elf_hash_table (info),
11959 elf_gc_allocate_got_offsets,
11960 &gofarg);
11961 return TRUE;
11962}
11963
11964/* Many folk need no more in the way of final link than this, once
11965 got entry reference counting is enabled. */
11966
11967bfd_boolean
11968bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11969{
11970 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11971 return FALSE;
11972
11973 /* Invoke the regular ELF backend linker to do all the work. */
11974 return bfd_elf_final_link (abfd, info);
11975}
11976
11977bfd_boolean
11978bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11979{
11980 struct elf_reloc_cookie *rcookie = cookie;
11981
11982 if (rcookie->bad_symtab)
11983 rcookie->rel = rcookie->rels;
11984
11985 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11986 {
11987 unsigned long r_symndx;
11988
11989 if (! rcookie->bad_symtab)
11990 if (rcookie->rel->r_offset > offset)
11991 return FALSE;
11992 if (rcookie->rel->r_offset != offset)
11993 continue;
11994
11995 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11996 if (r_symndx == SHN_UNDEF)
11997 return TRUE;
11998
11999 if (r_symndx >= rcookie->locsymcount
12000 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12001 {
12002 struct elf_link_hash_entry *h;
12003
12004 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12005
12006 while (h->root.type == bfd_link_hash_indirect
12007 || h->root.type == bfd_link_hash_warning)
12008 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12009
12010 if ((h->root.type == bfd_link_hash_defined
12011 || h->root.type == bfd_link_hash_defweak)
12012 && elf_discarded_section (h->root.u.def.section))
12013 return TRUE;
12014 else
12015 return FALSE;
12016 }
12017 else
12018 {
12019 /* It's not a relocation against a global symbol,
12020 but it could be a relocation against a local
12021 symbol for a discarded section. */
12022 asection *isec;
12023 Elf_Internal_Sym *isym;
12024
12025 /* Need to: get the symbol; get the section. */
12026 isym = &rcookie->locsyms[r_symndx];
cb33740c
AM
12027 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12028 if (isec != NULL && elf_discarded_section (isec))
12029 return TRUE;
c152c796
AM
12030 }
12031 return FALSE;
12032 }
12033 return FALSE;
12034}
12035
12036/* Discard unneeded references to discarded sections.
12037 Returns TRUE if any section's size was changed. */
12038/* This function assumes that the relocations are in sorted order,
12039 which is true for all known assemblers. */
12040
12041bfd_boolean
12042bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12043{
12044 struct elf_reloc_cookie cookie;
12045 asection *stab, *eh;
c152c796
AM
12046 const struct elf_backend_data *bed;
12047 bfd *abfd;
c152c796
AM
12048 bfd_boolean ret = FALSE;
12049
12050 if (info->traditional_format
12051 || !is_elf_hash_table (info->hash))
12052 return FALSE;
12053
ca92cecb 12054 _bfd_elf_begin_eh_frame_parsing (info);
c152c796
AM
12055 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12056 {
12057 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12058 continue;
12059
12060 bed = get_elf_backend_data (abfd);
12061
12062 if ((abfd->flags & DYNAMIC) != 0)
12063 continue;
12064
8da3dbc5
AM
12065 eh = NULL;
12066 if (!info->relocatable)
12067 {
12068 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12069 if (eh != NULL
eea6121a 12070 && (eh->size == 0
8da3dbc5
AM
12071 || bfd_is_abs_section (eh->output_section)))
12072 eh = NULL;
12073 }
c152c796
AM
12074
12075 stab = bfd_get_section_by_name (abfd, ".stab");
12076 if (stab != NULL
eea6121a 12077 && (stab->size == 0
c152c796
AM
12078 || bfd_is_abs_section (stab->output_section)
12079 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12080 stab = NULL;
12081
12082 if (stab == NULL
12083 && eh == NULL
12084 && bed->elf_backend_discard_info == NULL)
12085 continue;
12086
5241d853
RS
12087 if (!init_reloc_cookie (&cookie, info, abfd))
12088 return FALSE;
c152c796 12089
5241d853
RS
12090 if (stab != NULL
12091 && stab->reloc_count > 0
12092 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
c152c796 12093 {
5241d853
RS
12094 if (_bfd_discard_section_stabs (abfd, stab,
12095 elf_section_data (stab)->sec_info,
12096 bfd_elf_reloc_symbol_deleted_p,
12097 &cookie))
12098 ret = TRUE;
12099 fini_reloc_cookie_rels (&cookie, stab);
c152c796
AM
12100 }
12101
5241d853
RS
12102 if (eh != NULL
12103 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
c152c796 12104 {
ca92cecb 12105 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
c152c796
AM
12106 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12107 bfd_elf_reloc_symbol_deleted_p,
12108 &cookie))
12109 ret = TRUE;
5241d853 12110 fini_reloc_cookie_rels (&cookie, eh);
c152c796
AM
12111 }
12112
12113 if (bed->elf_backend_discard_info != NULL
12114 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12115 ret = TRUE;
12116
5241d853 12117 fini_reloc_cookie (&cookie, abfd);
c152c796 12118 }
ca92cecb 12119 _bfd_elf_end_eh_frame_parsing (info);
c152c796
AM
12120
12121 if (info->eh_frame_hdr
12122 && !info->relocatable
12123 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12124 ret = TRUE;
12125
12126 return ret;
12127}
082b7297 12128
9659de1c
AM
12129/* For a SHT_GROUP section, return the group signature. For other
12130 sections, return the normal section name. */
12131
12132static const char *
12133section_signature (asection *sec)
12134{
12135 if ((sec->flags & SEC_GROUP) != 0
12136 && elf_next_in_group (sec) != NULL
12137 && elf_group_name (elf_next_in_group (sec)) != NULL)
12138 return elf_group_name (elf_next_in_group (sec));
12139 return sec->name;
12140}
12141
082b7297 12142void
9659de1c 12143_bfd_elf_section_already_linked (bfd *abfd, asection *sec,
c0f00686 12144 struct bfd_link_info *info)
082b7297
L
12145{
12146 flagword flags;
6d2cd210 12147 const char *name, *p;
082b7297
L
12148 struct bfd_section_already_linked *l;
12149 struct bfd_section_already_linked_hash_entry *already_linked_list;
3d7f7666 12150
3d7f7666
L
12151 if (sec->output_section == bfd_abs_section_ptr)
12152 return;
082b7297
L
12153
12154 flags = sec->flags;
3d7f7666 12155
c2370991
AM
12156 /* Return if it isn't a linkonce section. A comdat group section
12157 also has SEC_LINK_ONCE set. */
12158 if ((flags & SEC_LINK_ONCE) == 0)
082b7297
L
12159 return;
12160
c2370991
AM
12161 /* Don't put group member sections on our list of already linked
12162 sections. They are handled as a group via their group section. */
12163 if (elf_sec_group (sec) != NULL)
12164 return;
3d7f7666 12165
082b7297
L
12166 /* FIXME: When doing a relocatable link, we may have trouble
12167 copying relocations in other sections that refer to local symbols
12168 in the section being discarded. Those relocations will have to
12169 be converted somehow; as of this writing I'm not sure that any of
12170 the backends handle that correctly.
12171
12172 It is tempting to instead not discard link once sections when
12173 doing a relocatable link (technically, they should be discarded
12174 whenever we are building constructors). However, that fails,
12175 because the linker winds up combining all the link once sections
12176 into a single large link once section, which defeats the purpose
12177 of having link once sections in the first place.
12178
12179 Also, not merging link once sections in a relocatable link
12180 causes trouble for MIPS ELF, which relies on link once semantics
12181 to handle the .reginfo section correctly. */
12182
9659de1c 12183 name = section_signature (sec);
082b7297 12184
0112cd26 12185 if (CONST_STRNEQ (name, ".gnu.linkonce.")
6d2cd210
JJ
12186 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12187 p++;
12188 else
12189 p = name;
12190
12191 already_linked_list = bfd_section_already_linked_table_lookup (p);
082b7297
L
12192
12193 for (l = already_linked_list->entry; l != NULL; l = l->next)
12194 {
c2370991
AM
12195 /* We may have 2 different types of sections on the list: group
12196 sections and linkonce sections. Match like sections. */
3d7f7666 12197 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9659de1c 12198 && strcmp (name, section_signature (l->sec)) == 0
082b7297
L
12199 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12200 {
12201 /* The section has already been linked. See if we should
6d2cd210 12202 issue a warning. */
082b7297
L
12203 switch (flags & SEC_LINK_DUPLICATES)
12204 {
12205 default:
12206 abort ();
12207
12208 case SEC_LINK_DUPLICATES_DISCARD:
12209 break;
12210
12211 case SEC_LINK_DUPLICATES_ONE_ONLY:
12212 (*_bfd_error_handler)
c93625e2 12213 (_("%B: ignoring duplicate section `%A'"),
d003868e 12214 abfd, sec);
082b7297
L
12215 break;
12216
12217 case SEC_LINK_DUPLICATES_SAME_SIZE:
12218 if (sec->size != l->sec->size)
12219 (*_bfd_error_handler)
c93625e2 12220 (_("%B: duplicate section `%A' has different size"),
d003868e 12221 abfd, sec);
082b7297 12222 break;
ea5158d8
DJ
12223
12224 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12225 if (sec->size != l->sec->size)
12226 (*_bfd_error_handler)
c93625e2 12227 (_("%B: duplicate section `%A' has different size"),
ea5158d8
DJ
12228 abfd, sec);
12229 else if (sec->size != 0)
12230 {
12231 bfd_byte *sec_contents, *l_sec_contents;
12232
12233 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12234 (*_bfd_error_handler)
c93625e2 12235 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
12236 abfd, sec);
12237 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12238 &l_sec_contents))
12239 (*_bfd_error_handler)
c93625e2 12240 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
12241 l->sec->owner, l->sec);
12242 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12243 (*_bfd_error_handler)
c93625e2 12244 (_("%B: warning: duplicate section `%A' has different contents"),
ea5158d8
DJ
12245 abfd, sec);
12246
12247 if (sec_contents)
12248 free (sec_contents);
12249 if (l_sec_contents)
12250 free (l_sec_contents);
12251 }
12252 break;
082b7297
L
12253 }
12254
12255 /* Set the output_section field so that lang_add_section
12256 does not create a lang_input_section structure for this
12257 section. Since there might be a symbol in the section
12258 being discarded, we must retain a pointer to the section
12259 which we are really going to use. */
12260 sec->output_section = bfd_abs_section_ptr;
12261 sec->kept_section = l->sec;
3b36f7e6 12262
082b7297 12263 if (flags & SEC_GROUP)
3d7f7666
L
12264 {
12265 asection *first = elf_next_in_group (sec);
12266 asection *s = first;
12267
12268 while (s != NULL)
12269 {
12270 s->output_section = bfd_abs_section_ptr;
12271 /* Record which group discards it. */
12272 s->kept_section = l->sec;
12273 s = elf_next_in_group (s);
12274 /* These lists are circular. */
12275 if (s == first)
12276 break;
12277 }
12278 }
082b7297
L
12279
12280 return;
12281 }
12282 }
12283
c2370991
AM
12284 /* A single member comdat group section may be discarded by a
12285 linkonce section and vice versa. */
12286
12287 if ((flags & SEC_GROUP) != 0)
3d7f7666 12288 {
c2370991
AM
12289 asection *first = elf_next_in_group (sec);
12290
12291 if (first != NULL && elf_next_in_group (first) == first)
12292 /* Check this single member group against linkonce sections. */
12293 for (l = already_linked_list->entry; l != NULL; l = l->next)
12294 if ((l->sec->flags & SEC_GROUP) == 0
12295 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12296 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12297 {
12298 first->output_section = bfd_abs_section_ptr;
12299 first->kept_section = l->sec;
12300 sec->output_section = bfd_abs_section_ptr;
12301 break;
12302 }
3d7f7666
L
12303 }
12304 else
c2370991 12305 /* Check this linkonce section against single member groups. */
6d2cd210
JJ
12306 for (l = already_linked_list->entry; l != NULL; l = l->next)
12307 if (l->sec->flags & SEC_GROUP)
12308 {
12309 asection *first = elf_next_in_group (l->sec);
12310
12311 if (first != NULL
12312 && elf_next_in_group (first) == first
c0f00686 12313 && bfd_elf_match_symbols_in_sections (first, sec, info))
6d2cd210
JJ
12314 {
12315 sec->output_section = bfd_abs_section_ptr;
c2370991 12316 sec->kept_section = first;
6d2cd210
JJ
12317 break;
12318 }
12319 }
12320
80c29487
JK
12321 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12322 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12323 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12324 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12325 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12326 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12327 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12328 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12329 The reverse order cannot happen as there is never a bfd with only the
12330 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12331 matter as here were are looking only for cross-bfd sections. */
12332
12333 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12334 for (l = already_linked_list->entry; l != NULL; l = l->next)
12335 if ((l->sec->flags & SEC_GROUP) == 0
12336 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12337 {
12338 if (abfd != l->sec->owner)
12339 sec->output_section = bfd_abs_section_ptr;
12340 break;
12341 }
12342
082b7297 12343 /* This is the first section with this name. Record it. */
a6626e8c
MS
12344 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12345 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
082b7297 12346}
81e1b023 12347
a4d8e49b
L
12348bfd_boolean
12349_bfd_elf_common_definition (Elf_Internal_Sym *sym)
12350{
12351 return sym->st_shndx == SHN_COMMON;
12352}
12353
12354unsigned int
12355_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12356{
12357 return SHN_COMMON;
12358}
12359
12360asection *
12361_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12362{
12363 return bfd_com_section_ptr;
12364}
10455f89
HPN
12365
12366bfd_vma
12367_bfd_elf_default_got_elt_size (bfd *abfd,
12368 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12369 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12370 bfd *ibfd ATTRIBUTE_UNUSED,
12371 unsigned long symndx ATTRIBUTE_UNUSED)
12372{
12373 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12374 return bed->s->arch_size / 8;
12375}
83bac4b0
NC
12376
12377/* Routines to support the creation of dynamic relocs. */
12378
12379/* Return true if NAME is a name of a relocation
12380 section associated with section S. */
12381
12382static bfd_boolean
12383is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12384{
12385 if (rela)
12386 return CONST_STRNEQ (name, ".rela")
12387 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12388
12389 return CONST_STRNEQ (name, ".rel")
12390 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12391}
12392
12393/* Returns the name of the dynamic reloc section associated with SEC. */
12394
12395static const char *
12396get_dynamic_reloc_section_name (bfd * abfd,
12397 asection * sec,
12398 bfd_boolean is_rela)
12399{
12400 const char * name;
12401 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12402 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12403
12404 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12405 if (name == NULL)
12406 return NULL;
12407
12408 if (! is_reloc_section (is_rela, name, sec))
12409 {
12410 static bfd_boolean complained = FALSE;
12411
12412 if (! complained)
12413 {
12414 (*_bfd_error_handler)
12415 (_("%B: bad relocation section name `%s\'"), abfd, name);
12416 complained = TRUE;
12417 }
12418 name = NULL;
12419 }
12420
12421 return name;
12422}
12423
12424/* Returns the dynamic reloc section associated with SEC.
12425 If necessary compute the name of the dynamic reloc section based
12426 on SEC's name (looked up in ABFD's string table) and the setting
12427 of IS_RELA. */
12428
12429asection *
12430_bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12431 asection * sec,
12432 bfd_boolean is_rela)
12433{
12434 asection * reloc_sec = elf_section_data (sec)->sreloc;
12435
12436 if (reloc_sec == NULL)
12437 {
12438 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12439
12440 if (name != NULL)
12441 {
12442 reloc_sec = bfd_get_section_by_name (abfd, name);
12443
12444 if (reloc_sec != NULL)
12445 elf_section_data (sec)->sreloc = reloc_sec;
12446 }
12447 }
12448
12449 return reloc_sec;
12450}
12451
12452/* Returns the dynamic reloc section associated with SEC. If the
12453 section does not exist it is created and attached to the DYNOBJ
12454 bfd and stored in the SRELOC field of SEC's elf_section_data
12455 structure.
12456
12457 ALIGNMENT is the alignment for the newly created section and
12458 IS_RELA defines whether the name should be .rela.<SEC's name>
12459 or .rel.<SEC's name>. The section name is looked up in the
12460 string table associated with ABFD. */
12461
12462asection *
12463_bfd_elf_make_dynamic_reloc_section (asection * sec,
12464 bfd * dynobj,
12465 unsigned int alignment,
12466 bfd * abfd,
12467 bfd_boolean is_rela)
12468{
12469 asection * reloc_sec = elf_section_data (sec)->sreloc;
12470
12471 if (reloc_sec == NULL)
12472 {
12473 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12474
12475 if (name == NULL)
12476 return NULL;
12477
12478 reloc_sec = bfd_get_section_by_name (dynobj, name);
12479
12480 if (reloc_sec == NULL)
12481 {
12482 flagword flags;
12483
12484 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12485 if ((sec->flags & SEC_ALLOC) != 0)
12486 flags |= SEC_ALLOC | SEC_LOAD;
12487
12488 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12489 if (reloc_sec != NULL)
12490 {
12491 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12492 reloc_sec = NULL;
12493 }
12494 }
12495
12496 elf_section_data (sec)->sreloc = reloc_sec;
12497 }
12498
12499 return reloc_sec;
12500}
This page took 1.552664 seconds and 4 git commands to generate.