* gdbtypes.c (make_qualified_type, replace_type): Reformat to the GNU
[deliverable/binutils-gdb.git] / bfd / elflink.c
CommitLineData
252b5132 1/* ELF linking support for BFD.
64d03ab5 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
9dbe8890
L
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
252b5132 5
8fdd7217 6 This file is part of BFD, the Binary File Descriptor library.
252b5132 7
8fdd7217
NC
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
cd123cb7 10 the Free Software Foundation; either version 3 of the License, or
8fdd7217 11 (at your option) any later version.
252b5132 12
8fdd7217
NC
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
252b5132 17
8fdd7217
NC
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
cd123cb7
NC
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
252b5132 22
252b5132 23#include "sysdep.h"
3db64b00 24#include "bfd.h"
252b5132
RH
25#include "bfdlink.h"
26#include "libbfd.h"
27#define ARCH_SIZE 0
28#include "elf-bfd.h"
4ad4eba5 29#include "safe-ctype.h"
ccf2f652 30#include "libiberty.h"
66eb6687 31#include "objalloc.h"
252b5132 32
d98685ac
AM
33/* Define a symbol in a dynamic linkage section. */
34
35struct elf_link_hash_entry *
36_bfd_elf_define_linkage_sym (bfd *abfd,
37 struct bfd_link_info *info,
38 asection *sec,
39 const char *name)
40{
41 struct elf_link_hash_entry *h;
42 struct bfd_link_hash_entry *bh;
ccabcbe5 43 const struct elf_backend_data *bed;
d98685ac
AM
44
45 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
46 if (h != NULL)
47 {
48 /* Zap symbol defined in an as-needed lib that wasn't linked.
49 This is a symptom of a larger problem: Absolute symbols
50 defined in shared libraries can't be overridden, because we
51 lose the link to the bfd which is via the symbol section. */
52 h->root.type = bfd_link_hash_new;
53 }
54
55 bh = &h->root;
56 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
57 sec, 0, NULL, FALSE,
58 get_elf_backend_data (abfd)->collect,
59 &bh))
60 return NULL;
61 h = (struct elf_link_hash_entry *) bh;
62 h->def_regular = 1;
63 h->type = STT_OBJECT;
64 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
65
ccabcbe5
AM
66 bed = get_elf_backend_data (abfd);
67 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
d98685ac
AM
68 return h;
69}
70
b34976b6 71bfd_boolean
268b6b39 72_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
73{
74 flagword flags;
aad5d350 75 asection *s;
252b5132 76 struct elf_link_hash_entry *h;
9c5bfbb7 77 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
78 int ptralign;
79
80 /* This function may be called more than once. */
aad5d350
AM
81 s = bfd_get_section_by_name (abfd, ".got");
82 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
b34976b6 83 return TRUE;
252b5132
RH
84
85 switch (bed->s->arch_size)
86 {
bb0deeff
AO
87 case 32:
88 ptralign = 2;
89 break;
90
91 case 64:
92 ptralign = 3;
93 break;
94
95 default:
96 bfd_set_error (bfd_error_bad_value);
b34976b6 97 return FALSE;
252b5132
RH
98 }
99
e5a52504 100 flags = bed->dynamic_sec_flags;
252b5132 101
3496cb2a 102 s = bfd_make_section_with_flags (abfd, ".got", flags);
252b5132 103 if (s == NULL
252b5132 104 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 105 return FALSE;
252b5132
RH
106
107 if (bed->want_got_plt)
108 {
3496cb2a 109 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
252b5132 110 if (s == NULL
252b5132 111 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 112 return FALSE;
252b5132
RH
113 }
114
2517a57f
AM
115 if (bed->want_got_sym)
116 {
117 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
118 (or .got.plt) section. We don't do this in the linker script
119 because we don't want to define the symbol if we are not creating
120 a global offset table. */
d98685ac 121 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
2517a57f 122 elf_hash_table (info)->hgot = h;
d98685ac
AM
123 if (h == NULL)
124 return FALSE;
2517a57f 125 }
252b5132
RH
126
127 /* The first bit of the global offset table is the header. */
3b36f7e6 128 s->size += bed->got_header_size;
252b5132 129
b34976b6 130 return TRUE;
252b5132
RH
131}
132\f
7e9f0867
AM
133/* Create a strtab to hold the dynamic symbol names. */
134static bfd_boolean
135_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
136{
137 struct elf_link_hash_table *hash_table;
138
139 hash_table = elf_hash_table (info);
140 if (hash_table->dynobj == NULL)
141 hash_table->dynobj = abfd;
142
143 if (hash_table->dynstr == NULL)
144 {
145 hash_table->dynstr = _bfd_elf_strtab_init ();
146 if (hash_table->dynstr == NULL)
147 return FALSE;
148 }
149 return TRUE;
150}
151
45d6a902
AM
152/* Create some sections which will be filled in with dynamic linking
153 information. ABFD is an input file which requires dynamic sections
154 to be created. The dynamic sections take up virtual memory space
155 when the final executable is run, so we need to create them before
156 addresses are assigned to the output sections. We work out the
157 actual contents and size of these sections later. */
252b5132 158
b34976b6 159bfd_boolean
268b6b39 160_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 161{
45d6a902
AM
162 flagword flags;
163 register asection *s;
9c5bfbb7 164 const struct elf_backend_data *bed;
252b5132 165
0eddce27 166 if (! is_elf_hash_table (info->hash))
45d6a902
AM
167 return FALSE;
168
169 if (elf_hash_table (info)->dynamic_sections_created)
170 return TRUE;
171
7e9f0867
AM
172 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
173 return FALSE;
45d6a902 174
7e9f0867 175 abfd = elf_hash_table (info)->dynobj;
e5a52504
MM
176 bed = get_elf_backend_data (abfd);
177
178 flags = bed->dynamic_sec_flags;
45d6a902
AM
179
180 /* A dynamically linked executable has a .interp section, but a
181 shared library does not. */
36af4a4e 182 if (info->executable)
252b5132 183 {
3496cb2a
L
184 s = bfd_make_section_with_flags (abfd, ".interp",
185 flags | SEC_READONLY);
186 if (s == NULL)
45d6a902
AM
187 return FALSE;
188 }
bb0deeff 189
45d6a902
AM
190 /* Create sections to hold version informations. These are removed
191 if they are not needed. */
3496cb2a
L
192 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
193 flags | SEC_READONLY);
45d6a902 194 if (s == NULL
45d6a902
AM
195 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
196 return FALSE;
197
3496cb2a
L
198 s = bfd_make_section_with_flags (abfd, ".gnu.version",
199 flags | SEC_READONLY);
45d6a902 200 if (s == NULL
45d6a902
AM
201 || ! bfd_set_section_alignment (abfd, s, 1))
202 return FALSE;
203
3496cb2a
L
204 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
205 flags | SEC_READONLY);
45d6a902 206 if (s == NULL
45d6a902
AM
207 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
208 return FALSE;
209
3496cb2a
L
210 s = bfd_make_section_with_flags (abfd, ".dynsym",
211 flags | SEC_READONLY);
45d6a902 212 if (s == NULL
45d6a902
AM
213 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
214 return FALSE;
215
3496cb2a
L
216 s = bfd_make_section_with_flags (abfd, ".dynstr",
217 flags | SEC_READONLY);
218 if (s == NULL)
45d6a902
AM
219 return FALSE;
220
3496cb2a 221 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
45d6a902 222 if (s == NULL
45d6a902
AM
223 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
224 return FALSE;
225
226 /* The special symbol _DYNAMIC is always set to the start of the
77cfaee6
AM
227 .dynamic section. We could set _DYNAMIC in a linker script, but we
228 only want to define it if we are, in fact, creating a .dynamic
229 section. We don't want to define it if there is no .dynamic
230 section, since on some ELF platforms the start up code examines it
231 to decide how to initialize the process. */
d98685ac 232 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
45d6a902
AM
233 return FALSE;
234
fdc90cb4
JJ
235 if (info->emit_hash)
236 {
237 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
242 }
243
244 if (info->emit_gnu_hash)
245 {
246 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
247 flags | SEC_READONLY);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
252 4 32-bit words followed by variable count of 64-bit words, then
253 variable count of 32-bit words. */
254 if (bed->s->arch_size == 64)
255 elf_section_data (s)->this_hdr.sh_entsize = 0;
256 else
257 elf_section_data (s)->this_hdr.sh_entsize = 4;
258 }
45d6a902
AM
259
260 /* Let the backend create the rest of the sections. This lets the
261 backend set the right flags. The backend will normally create
262 the .got and .plt sections. */
263 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
264 return FALSE;
265
266 elf_hash_table (info)->dynamic_sections_created = TRUE;
267
268 return TRUE;
269}
270
271/* Create dynamic sections when linking against a dynamic object. */
272
273bfd_boolean
268b6b39 274_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
45d6a902
AM
275{
276 flagword flags, pltflags;
7325306f 277 struct elf_link_hash_entry *h;
45d6a902 278 asection *s;
9c5bfbb7 279 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 280
252b5132
RH
281 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
282 .rel[a].bss sections. */
e5a52504 283 flags = bed->dynamic_sec_flags;
252b5132
RH
284
285 pltflags = flags;
252b5132 286 if (bed->plt_not_loaded)
6df4d94c
MM
287 /* We do not clear SEC_ALLOC here because we still want the OS to
288 allocate space for the section; it's just that there's nothing
289 to read in from the object file. */
5d1634d7 290 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
6df4d94c
MM
291 else
292 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
252b5132
RH
293 if (bed->plt_readonly)
294 pltflags |= SEC_READONLY;
295
3496cb2a 296 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
252b5132 297 if (s == NULL
252b5132 298 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
b34976b6 299 return FALSE;
252b5132 300
d98685ac
AM
301 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
302 .plt section. */
7325306f
RS
303 if (bed->want_plt_sym)
304 {
305 h = _bfd_elf_define_linkage_sym (abfd, info, s,
306 "_PROCEDURE_LINKAGE_TABLE_");
307 elf_hash_table (info)->hplt = h;
308 if (h == NULL)
309 return FALSE;
310 }
252b5132 311
3496cb2a 312 s = bfd_make_section_with_flags (abfd,
d35fd659 313 (bed->rela_plts_and_copies_p
3496cb2a
L
314 ? ".rela.plt" : ".rel.plt"),
315 flags | SEC_READONLY);
252b5132 316 if (s == NULL
45d6a902 317 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 318 return FALSE;
252b5132
RH
319
320 if (! _bfd_elf_create_got_section (abfd, info))
b34976b6 321 return FALSE;
252b5132 322
3018b441
RH
323 if (bed->want_dynbss)
324 {
325 /* The .dynbss section is a place to put symbols which are defined
326 by dynamic objects, are referenced by regular objects, and are
327 not functions. We must allocate space for them in the process
328 image and use a R_*_COPY reloc to tell the dynamic linker to
329 initialize them at run time. The linker script puts the .dynbss
330 section into the .bss section of the final image. */
3496cb2a
L
331 s = bfd_make_section_with_flags (abfd, ".dynbss",
332 (SEC_ALLOC
333 | SEC_LINKER_CREATED));
334 if (s == NULL)
b34976b6 335 return FALSE;
252b5132 336
3018b441 337 /* The .rel[a].bss section holds copy relocs. This section is not
77cfaee6
AM
338 normally needed. We need to create it here, though, so that the
339 linker will map it to an output section. We can't just create it
340 only if we need it, because we will not know whether we need it
341 until we have seen all the input files, and the first time the
342 main linker code calls BFD after examining all the input files
343 (size_dynamic_sections) the input sections have already been
344 mapped to the output sections. If the section turns out not to
345 be needed, we can discard it later. We will never need this
346 section when generating a shared object, since they do not use
347 copy relocs. */
3018b441
RH
348 if (! info->shared)
349 {
3496cb2a 350 s = bfd_make_section_with_flags (abfd,
d35fd659 351 (bed->rela_plts_and_copies_p
3496cb2a
L
352 ? ".rela.bss" : ".rel.bss"),
353 flags | SEC_READONLY);
3018b441 354 if (s == NULL
45d6a902 355 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 356 return FALSE;
3018b441 357 }
252b5132
RH
358 }
359
b34976b6 360 return TRUE;
252b5132
RH
361}
362\f
252b5132
RH
363/* Record a new dynamic symbol. We record the dynamic symbols as we
364 read the input files, since we need to have a list of all of them
365 before we can determine the final sizes of the output sections.
366 Note that we may actually call this function even though we are not
367 going to output any dynamic symbols; in some cases we know that a
368 symbol should be in the dynamic symbol table, but only if there is
369 one. */
370
b34976b6 371bfd_boolean
c152c796
AM
372bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
373 struct elf_link_hash_entry *h)
252b5132
RH
374{
375 if (h->dynindx == -1)
376 {
2b0f7ef9 377 struct elf_strtab_hash *dynstr;
68b6ddd0 378 char *p;
252b5132 379 const char *name;
252b5132
RH
380 bfd_size_type indx;
381
7a13edea
NC
382 /* XXX: The ABI draft says the linker must turn hidden and
383 internal symbols into STB_LOCAL symbols when producing the
384 DSO. However, if ld.so honors st_other in the dynamic table,
385 this would not be necessary. */
386 switch (ELF_ST_VISIBILITY (h->other))
387 {
388 case STV_INTERNAL:
389 case STV_HIDDEN:
9d6eee78
L
390 if (h->root.type != bfd_link_hash_undefined
391 && h->root.type != bfd_link_hash_undefweak)
38048eb9 392 {
f5385ebf 393 h->forced_local = 1;
67687978
PB
394 if (!elf_hash_table (info)->is_relocatable_executable)
395 return TRUE;
7a13edea 396 }
0444bdd4 397
7a13edea
NC
398 default:
399 break;
400 }
401
252b5132
RH
402 h->dynindx = elf_hash_table (info)->dynsymcount;
403 ++elf_hash_table (info)->dynsymcount;
404
405 dynstr = elf_hash_table (info)->dynstr;
406 if (dynstr == NULL)
407 {
408 /* Create a strtab to hold the dynamic symbol names. */
2b0f7ef9 409 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
252b5132 410 if (dynstr == NULL)
b34976b6 411 return FALSE;
252b5132
RH
412 }
413
414 /* We don't put any version information in the dynamic string
aad5d350 415 table. */
252b5132
RH
416 name = h->root.root.string;
417 p = strchr (name, ELF_VER_CHR);
68b6ddd0
AM
418 if (p != NULL)
419 /* We know that the p points into writable memory. In fact,
420 there are only a few symbols that have read-only names, being
421 those like _GLOBAL_OFFSET_TABLE_ that are created specially
422 by the backends. Most symbols will have names pointing into
423 an ELF string table read from a file, or to objalloc memory. */
424 *p = 0;
425
426 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
427
428 if (p != NULL)
429 *p = ELF_VER_CHR;
252b5132
RH
430
431 if (indx == (bfd_size_type) -1)
b34976b6 432 return FALSE;
252b5132
RH
433 h->dynstr_index = indx;
434 }
435
b34976b6 436 return TRUE;
252b5132 437}
45d6a902 438\f
55255dae
L
439/* Mark a symbol dynamic. */
440
441void
442bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
40b36307
L
443 struct elf_link_hash_entry *h,
444 Elf_Internal_Sym *sym)
55255dae 445{
40b36307 446 struct bfd_elf_dynamic_list *d = info->dynamic_list;
55255dae 447
40b36307
L
448 /* It may be called more than once on the same H. */
449 if(h->dynamic || info->relocatable)
55255dae
L
450 return;
451
40b36307
L
452 if ((info->dynamic_data
453 && (h->type == STT_OBJECT
454 || (sym != NULL
455 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
a0c8462f 456 || (d != NULL
40b36307
L
457 && h->root.type == bfd_link_hash_new
458 && (*d->match) (&d->head, NULL, h->root.root.string)))
55255dae
L
459 h->dynamic = 1;
460}
461
45d6a902
AM
462/* Record an assignment to a symbol made by a linker script. We need
463 this in case some dynamic object refers to this symbol. */
464
465bfd_boolean
fe21a8fc
L
466bfd_elf_record_link_assignment (bfd *output_bfd,
467 struct bfd_link_info *info,
268b6b39 468 const char *name,
fe21a8fc
L
469 bfd_boolean provide,
470 bfd_boolean hidden)
45d6a902 471{
00cbee0a 472 struct elf_link_hash_entry *h, *hv;
4ea42fb7 473 struct elf_link_hash_table *htab;
00cbee0a 474 const struct elf_backend_data *bed;
45d6a902 475
0eddce27 476 if (!is_elf_hash_table (info->hash))
45d6a902
AM
477 return TRUE;
478
4ea42fb7
AM
479 htab = elf_hash_table (info);
480 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
45d6a902 481 if (h == NULL)
4ea42fb7 482 return provide;
45d6a902 483
00cbee0a 484 switch (h->root.type)
77cfaee6 485 {
00cbee0a
L
486 case bfd_link_hash_defined:
487 case bfd_link_hash_defweak:
488 case bfd_link_hash_common:
489 break;
490 case bfd_link_hash_undefweak:
491 case bfd_link_hash_undefined:
492 /* Since we're defining the symbol, don't let it seem to have not
493 been defined. record_dynamic_symbol and size_dynamic_sections
494 may depend on this. */
4ea42fb7 495 h->root.type = bfd_link_hash_new;
77cfaee6
AM
496 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
497 bfd_link_repair_undef_list (&htab->root);
00cbee0a
L
498 break;
499 case bfd_link_hash_new:
40b36307 500 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
55255dae 501 h->non_elf = 0;
00cbee0a
L
502 break;
503 case bfd_link_hash_indirect:
504 /* We had a versioned symbol in a dynamic library. We make the
a0c8462f 505 the versioned symbol point to this one. */
00cbee0a
L
506 bed = get_elf_backend_data (output_bfd);
507 hv = h;
508 while (hv->root.type == bfd_link_hash_indirect
509 || hv->root.type == bfd_link_hash_warning)
510 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
511 /* We don't need to update h->root.u since linker will set them
512 later. */
513 h->root.type = bfd_link_hash_undefined;
514 hv->root.type = bfd_link_hash_indirect;
515 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
516 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
517 break;
518 case bfd_link_hash_warning:
519 abort ();
520 break;
55255dae 521 }
45d6a902
AM
522
523 /* If this symbol is being provided by the linker script, and it is
524 currently defined by a dynamic object, but not by a regular
525 object, then mark it as undefined so that the generic linker will
526 force the correct value. */
527 if (provide
f5385ebf
AM
528 && h->def_dynamic
529 && !h->def_regular)
45d6a902
AM
530 h->root.type = bfd_link_hash_undefined;
531
532 /* If this symbol is not being provided by the linker script, and it is
533 currently defined by a dynamic object, but not by a regular object,
534 then clear out any version information because the symbol will not be
535 associated with the dynamic object any more. */
536 if (!provide
f5385ebf
AM
537 && h->def_dynamic
538 && !h->def_regular)
45d6a902
AM
539 h->verinfo.verdef = NULL;
540
f5385ebf 541 h->def_regular = 1;
45d6a902 542
fe21a8fc
L
543 if (provide && hidden)
544 {
545 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
546
547 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
548 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
549 }
550
6fa3860b
PB
551 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
552 and executables. */
553 if (!info->relocatable
554 && h->dynindx != -1
555 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
556 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
557 h->forced_local = 1;
558
f5385ebf
AM
559 if ((h->def_dynamic
560 || h->ref_dynamic
67687978
PB
561 || info->shared
562 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
45d6a902
AM
563 && h->dynindx == -1)
564 {
c152c796 565 if (! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
566 return FALSE;
567
568 /* If this is a weak defined symbol, and we know a corresponding
569 real symbol from the same dynamic object, make sure the real
570 symbol is also made into a dynamic symbol. */
f6e332e6
AM
571 if (h->u.weakdef != NULL
572 && h->u.weakdef->dynindx == -1)
45d6a902 573 {
f6e332e6 574 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
45d6a902
AM
575 return FALSE;
576 }
577 }
578
579 return TRUE;
580}
42751cf3 581
8c58d23b
AM
582/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
583 success, and 2 on a failure caused by attempting to record a symbol
584 in a discarded section, eg. a discarded link-once section symbol. */
585
586int
c152c796
AM
587bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
588 bfd *input_bfd,
589 long input_indx)
8c58d23b
AM
590{
591 bfd_size_type amt;
592 struct elf_link_local_dynamic_entry *entry;
593 struct elf_link_hash_table *eht;
594 struct elf_strtab_hash *dynstr;
595 unsigned long dynstr_index;
596 char *name;
597 Elf_External_Sym_Shndx eshndx;
598 char esym[sizeof (Elf64_External_Sym)];
599
0eddce27 600 if (! is_elf_hash_table (info->hash))
8c58d23b
AM
601 return 0;
602
603 /* See if the entry exists already. */
604 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
605 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
606 return 1;
607
608 amt = sizeof (*entry);
268b6b39 609 entry = bfd_alloc (input_bfd, amt);
8c58d23b
AM
610 if (entry == NULL)
611 return 0;
612
613 /* Go find the symbol, so that we can find it's name. */
614 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
268b6b39 615 1, input_indx, &entry->isym, esym, &eshndx))
8c58d23b
AM
616 {
617 bfd_release (input_bfd, entry);
618 return 0;
619 }
620
621 if (entry->isym.st_shndx != SHN_UNDEF
4fbb74a6 622 && entry->isym.st_shndx < SHN_LORESERVE)
8c58d23b
AM
623 {
624 asection *s;
625
626 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
627 if (s == NULL || bfd_is_abs_section (s->output_section))
628 {
629 /* We can still bfd_release here as nothing has done another
630 bfd_alloc. We can't do this later in this function. */
631 bfd_release (input_bfd, entry);
632 return 2;
633 }
634 }
635
636 name = (bfd_elf_string_from_elf_section
637 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
638 entry->isym.st_name));
639
640 dynstr = elf_hash_table (info)->dynstr;
641 if (dynstr == NULL)
642 {
643 /* Create a strtab to hold the dynamic symbol names. */
644 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
645 if (dynstr == NULL)
646 return 0;
647 }
648
b34976b6 649 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
8c58d23b
AM
650 if (dynstr_index == (unsigned long) -1)
651 return 0;
652 entry->isym.st_name = dynstr_index;
653
654 eht = elf_hash_table (info);
655
656 entry->next = eht->dynlocal;
657 eht->dynlocal = entry;
658 entry->input_bfd = input_bfd;
659 entry->input_indx = input_indx;
660 eht->dynsymcount++;
661
662 /* Whatever binding the symbol had before, it's now local. */
663 entry->isym.st_info
664 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
665
666 /* The dynindx will be set at the end of size_dynamic_sections. */
667
668 return 1;
669}
670
30b30c21 671/* Return the dynindex of a local dynamic symbol. */
42751cf3 672
30b30c21 673long
268b6b39
AM
674_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
675 bfd *input_bfd,
676 long input_indx)
30b30c21
RH
677{
678 struct elf_link_local_dynamic_entry *e;
679
680 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
681 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
682 return e->dynindx;
683 return -1;
684}
685
686/* This function is used to renumber the dynamic symbols, if some of
687 them are removed because they are marked as local. This is called
688 via elf_link_hash_traverse. */
689
b34976b6 690static bfd_boolean
268b6b39
AM
691elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
692 void *data)
42751cf3 693{
268b6b39 694 size_t *count = data;
30b30c21 695
e92d460e
AM
696 if (h->root.type == bfd_link_hash_warning)
697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
698
6fa3860b
PB
699 if (h->forced_local)
700 return TRUE;
701
702 if (h->dynindx != -1)
703 h->dynindx = ++(*count);
704
705 return TRUE;
706}
707
708
709/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
710 STB_LOCAL binding. */
711
712static bfd_boolean
713elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
714 void *data)
715{
716 size_t *count = data;
717
718 if (h->root.type == bfd_link_hash_warning)
719 h = (struct elf_link_hash_entry *) h->root.u.i.link;
720
721 if (!h->forced_local)
722 return TRUE;
723
42751cf3 724 if (h->dynindx != -1)
30b30c21
RH
725 h->dynindx = ++(*count);
726
b34976b6 727 return TRUE;
42751cf3 728}
30b30c21 729
aee6f5b4
AO
730/* Return true if the dynamic symbol for a given section should be
731 omitted when creating a shared library. */
732bfd_boolean
733_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
734 struct bfd_link_info *info,
735 asection *p)
736{
74541ad4
AM
737 struct elf_link_hash_table *htab;
738
aee6f5b4
AO
739 switch (elf_section_data (p)->this_hdr.sh_type)
740 {
741 case SHT_PROGBITS:
742 case SHT_NOBITS:
743 /* If sh_type is yet undecided, assume it could be
744 SHT_PROGBITS/SHT_NOBITS. */
745 case SHT_NULL:
74541ad4
AM
746 htab = elf_hash_table (info);
747 if (p == htab->tls_sec)
748 return FALSE;
749
750 if (htab->text_index_section != NULL)
751 return p != htab->text_index_section && p != htab->data_index_section;
752
aee6f5b4
AO
753 if (strcmp (p->name, ".got") == 0
754 || strcmp (p->name, ".got.plt") == 0
755 || strcmp (p->name, ".plt") == 0)
756 {
757 asection *ip;
aee6f5b4 758
74541ad4
AM
759 if (htab->dynobj != NULL
760 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
aee6f5b4
AO
761 && (ip->flags & SEC_LINKER_CREATED)
762 && ip->output_section == p)
763 return TRUE;
764 }
765 return FALSE;
766
767 /* There shouldn't be section relative relocations
768 against any other section. */
769 default:
770 return TRUE;
771 }
772}
773
062e2358 774/* Assign dynsym indices. In a shared library we generate a section
6fa3860b
PB
775 symbol for each output section, which come first. Next come symbols
776 which have been forced to local binding. Then all of the back-end
777 allocated local dynamic syms, followed by the rest of the global
778 symbols. */
30b30c21 779
554220db
AM
780static unsigned long
781_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
782 struct bfd_link_info *info,
783 unsigned long *section_sym_count)
30b30c21
RH
784{
785 unsigned long dynsymcount = 0;
786
67687978 787 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
30b30c21 788 {
aee6f5b4 789 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
30b30c21
RH
790 asection *p;
791 for (p = output_bfd->sections; p ; p = p->next)
8c37241b 792 if ((p->flags & SEC_EXCLUDE) == 0
aee6f5b4
AO
793 && (p->flags & SEC_ALLOC) != 0
794 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
795 elf_section_data (p)->dynindx = ++dynsymcount;
74541ad4
AM
796 else
797 elf_section_data (p)->dynindx = 0;
30b30c21 798 }
554220db 799 *section_sym_count = dynsymcount;
30b30c21 800
6fa3860b
PB
801 elf_link_hash_traverse (elf_hash_table (info),
802 elf_link_renumber_local_hash_table_dynsyms,
803 &dynsymcount);
804
30b30c21
RH
805 if (elf_hash_table (info)->dynlocal)
806 {
807 struct elf_link_local_dynamic_entry *p;
808 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
809 p->dynindx = ++dynsymcount;
810 }
811
812 elf_link_hash_traverse (elf_hash_table (info),
813 elf_link_renumber_hash_table_dynsyms,
814 &dynsymcount);
815
816 /* There is an unused NULL entry at the head of the table which
817 we must account for in our count. Unless there weren't any
818 symbols, which means we'll have no table at all. */
819 if (dynsymcount != 0)
820 ++dynsymcount;
821
ccabcbe5
AM
822 elf_hash_table (info)->dynsymcount = dynsymcount;
823 return dynsymcount;
30b30c21 824}
252b5132 825
54ac0771
L
826/* Merge st_other field. */
827
828static void
829elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
830 Elf_Internal_Sym *isym, bfd_boolean definition,
831 bfd_boolean dynamic)
832{
833 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
834
835 /* If st_other has a processor-specific meaning, specific
836 code might be needed here. We never merge the visibility
837 attribute with the one from a dynamic object. */
838 if (bed->elf_backend_merge_symbol_attribute)
839 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
840 dynamic);
841
842 /* If this symbol has default visibility and the user has requested
843 we not re-export it, then mark it as hidden. */
844 if (definition
845 && !dynamic
846 && (abfd->no_export
847 || (abfd->my_archive && abfd->my_archive->no_export))
848 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
849 isym->st_other = (STV_HIDDEN
850 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
851
852 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
853 {
854 unsigned char hvis, symvis, other, nvis;
855
856 /* Only merge the visibility. Leave the remainder of the
857 st_other field to elf_backend_merge_symbol_attribute. */
858 other = h->other & ~ELF_ST_VISIBILITY (-1);
859
860 /* Combine visibilities, using the most constraining one. */
861 hvis = ELF_ST_VISIBILITY (h->other);
862 symvis = ELF_ST_VISIBILITY (isym->st_other);
863 if (! hvis)
864 nvis = symvis;
865 else if (! symvis)
866 nvis = hvis;
867 else
868 nvis = hvis < symvis ? hvis : symvis;
869
870 h->other = other | nvis;
871 }
872}
873
45d6a902
AM
874/* This function is called when we want to define a new symbol. It
875 handles the various cases which arise when we find a definition in
876 a dynamic object, or when there is already a definition in a
877 dynamic object. The new symbol is described by NAME, SYM, PSEC,
878 and PVALUE. We set SYM_HASH to the hash table entry. We set
879 OVERRIDE if the old symbol is overriding a new definition. We set
880 TYPE_CHANGE_OK if it is OK for the type to change. We set
881 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
882 change, we mean that we shouldn't warn if the type or size does
af44c138
L
883 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
884 object is overridden by a regular object. */
45d6a902
AM
885
886bfd_boolean
268b6b39
AM
887_bfd_elf_merge_symbol (bfd *abfd,
888 struct bfd_link_info *info,
889 const char *name,
890 Elf_Internal_Sym *sym,
891 asection **psec,
892 bfd_vma *pvalue,
af44c138 893 unsigned int *pold_alignment,
268b6b39
AM
894 struct elf_link_hash_entry **sym_hash,
895 bfd_boolean *skip,
896 bfd_boolean *override,
897 bfd_boolean *type_change_ok,
0f8a2703 898 bfd_boolean *size_change_ok)
252b5132 899{
7479dfd4 900 asection *sec, *oldsec;
45d6a902
AM
901 struct elf_link_hash_entry *h;
902 struct elf_link_hash_entry *flip;
903 int bind;
904 bfd *oldbfd;
905 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
0a36a439 906 bfd_boolean newweak, oldweak, newfunc, oldfunc;
a4d8e49b 907 const struct elf_backend_data *bed;
45d6a902
AM
908
909 *skip = FALSE;
910 *override = FALSE;
911
912 sec = *psec;
913 bind = ELF_ST_BIND (sym->st_info);
914
cd7be95b
KH
915 /* Silently discard TLS symbols from --just-syms. There's no way to
916 combine a static TLS block with a new TLS block for this executable. */
917 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
918 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
919 {
920 *skip = TRUE;
921 return TRUE;
922 }
923
45d6a902
AM
924 if (! bfd_is_und_section (sec))
925 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
926 else
927 h = ((struct elf_link_hash_entry *)
928 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
929 if (h == NULL)
930 return FALSE;
931 *sym_hash = h;
252b5132 932
88ba32a0
L
933 bed = get_elf_backend_data (abfd);
934
45d6a902
AM
935 /* This code is for coping with dynamic objects, and is only useful
936 if we are doing an ELF link. */
88ba32a0 937 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
45d6a902 938 return TRUE;
252b5132 939
45d6a902
AM
940 /* For merging, we only care about real symbols. */
941
942 while (h->root.type == bfd_link_hash_indirect
943 || h->root.type == bfd_link_hash_warning)
944 h = (struct elf_link_hash_entry *) h->root.u.i.link;
945
40b36307
L
946 /* We have to check it for every instance since the first few may be
947 refereences and not all compilers emit symbol type for undefined
948 symbols. */
949 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
950
45d6a902
AM
951 /* If we just created the symbol, mark it as being an ELF symbol.
952 Other than that, there is nothing to do--there is no merge issue
953 with a newly defined symbol--so we just return. */
954
955 if (h->root.type == bfd_link_hash_new)
252b5132 956 {
f5385ebf 957 h->non_elf = 0;
45d6a902
AM
958 return TRUE;
959 }
252b5132 960
7479dfd4
L
961 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
962 existing symbol. */
252b5132 963
45d6a902
AM
964 switch (h->root.type)
965 {
966 default:
967 oldbfd = NULL;
7479dfd4 968 oldsec = NULL;
45d6a902 969 break;
252b5132 970
45d6a902
AM
971 case bfd_link_hash_undefined:
972 case bfd_link_hash_undefweak:
973 oldbfd = h->root.u.undef.abfd;
7479dfd4 974 oldsec = NULL;
45d6a902
AM
975 break;
976
977 case bfd_link_hash_defined:
978 case bfd_link_hash_defweak:
979 oldbfd = h->root.u.def.section->owner;
7479dfd4 980 oldsec = h->root.u.def.section;
45d6a902
AM
981 break;
982
983 case bfd_link_hash_common:
984 oldbfd = h->root.u.c.p->section->owner;
7479dfd4 985 oldsec = h->root.u.c.p->section;
45d6a902
AM
986 break;
987 }
988
989 /* In cases involving weak versioned symbols, we may wind up trying
990 to merge a symbol with itself. Catch that here, to avoid the
991 confusion that results if we try to override a symbol with
992 itself. The additional tests catch cases like
993 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
994 dynamic object, which we do want to handle here. */
995 if (abfd == oldbfd
996 && ((abfd->flags & DYNAMIC) == 0
f5385ebf 997 || !h->def_regular))
45d6a902
AM
998 return TRUE;
999
1000 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1001 respectively, is from a dynamic object. */
1002
707bba77 1003 newdyn = (abfd->flags & DYNAMIC) != 0;
45d6a902 1004
707bba77 1005 olddyn = FALSE;
45d6a902
AM
1006 if (oldbfd != NULL)
1007 olddyn = (oldbfd->flags & DYNAMIC) != 0;
707bba77 1008 else if (oldsec != NULL)
45d6a902 1009 {
707bba77 1010 /* This handles the special SHN_MIPS_{TEXT,DATA} section
45d6a902 1011 indices used by MIPS ELF. */
707bba77 1012 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
45d6a902 1013 }
252b5132 1014
45d6a902
AM
1015 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1016 respectively, appear to be a definition rather than reference. */
1017
707bba77 1018 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
45d6a902 1019
707bba77
AM
1020 olddef = (h->root.type != bfd_link_hash_undefined
1021 && h->root.type != bfd_link_hash_undefweak
1022 && h->root.type != bfd_link_hash_common);
45d6a902 1023
0a36a439
L
1024 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1025 respectively, appear to be a function. */
1026
1027 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1028 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1029
1030 oldfunc = (h->type != STT_NOTYPE
1031 && bed->is_function_type (h->type));
1032
580a2b6e
L
1033 /* When we try to create a default indirect symbol from the dynamic
1034 definition with the default version, we skip it if its type and
1035 the type of existing regular definition mismatch. We only do it
1036 if the existing regular definition won't be dynamic. */
1037 if (pold_alignment == NULL
1038 && !info->shared
1039 && !info->export_dynamic
1040 && !h->ref_dynamic
1041 && newdyn
1042 && newdef
1043 && !olddyn
1044 && (olddef || h->root.type == bfd_link_hash_common)
1045 && ELF_ST_TYPE (sym->st_info) != h->type
1046 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
fcb93ecf 1047 && h->type != STT_NOTYPE
0a36a439 1048 && !(newfunc && oldfunc))
580a2b6e
L
1049 {
1050 *skip = TRUE;
1051 return TRUE;
1052 }
1053
68f49ba3
L
1054 /* Check TLS symbol. We don't check undefined symbol introduced by
1055 "ld -u". */
7479dfd4 1056 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
68f49ba3
L
1057 && ELF_ST_TYPE (sym->st_info) != h->type
1058 && oldbfd != NULL)
7479dfd4
L
1059 {
1060 bfd *ntbfd, *tbfd;
1061 bfd_boolean ntdef, tdef;
1062 asection *ntsec, *tsec;
1063
1064 if (h->type == STT_TLS)
1065 {
3b36f7e6 1066 ntbfd = abfd;
7479dfd4
L
1067 ntsec = sec;
1068 ntdef = newdef;
1069 tbfd = oldbfd;
1070 tsec = oldsec;
1071 tdef = olddef;
1072 }
1073 else
1074 {
1075 ntbfd = oldbfd;
1076 ntsec = oldsec;
1077 ntdef = olddef;
1078 tbfd = abfd;
1079 tsec = sec;
1080 tdef = newdef;
1081 }
1082
1083 if (tdef && ntdef)
1084 (*_bfd_error_handler)
1085 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1086 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1087 else if (!tdef && !ntdef)
1088 (*_bfd_error_handler)
1089 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1090 tbfd, ntbfd, h->root.root.string);
1091 else if (tdef)
1092 (*_bfd_error_handler)
1093 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1094 tbfd, tsec, ntbfd, h->root.root.string);
1095 else
1096 (*_bfd_error_handler)
1097 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1098 tbfd, ntbfd, ntsec, h->root.root.string);
1099
1100 bfd_set_error (bfd_error_bad_value);
1101 return FALSE;
1102 }
1103
4cc11e76 1104 /* We need to remember if a symbol has a definition in a dynamic
45d6a902
AM
1105 object or is weak in all dynamic objects. Internal and hidden
1106 visibility will make it unavailable to dynamic objects. */
f5385ebf 1107 if (newdyn && !h->dynamic_def)
45d6a902
AM
1108 {
1109 if (!bfd_is_und_section (sec))
f5385ebf 1110 h->dynamic_def = 1;
45d6a902 1111 else
252b5132 1112 {
45d6a902
AM
1113 /* Check if this symbol is weak in all dynamic objects. If it
1114 is the first time we see it in a dynamic object, we mark
1115 if it is weak. Otherwise, we clear it. */
f5385ebf 1116 if (!h->ref_dynamic)
79349b09 1117 {
45d6a902 1118 if (bind == STB_WEAK)
f5385ebf 1119 h->dynamic_weak = 1;
252b5132 1120 }
45d6a902 1121 else if (bind != STB_WEAK)
f5385ebf 1122 h->dynamic_weak = 0;
252b5132 1123 }
45d6a902 1124 }
252b5132 1125
45d6a902
AM
1126 /* If the old symbol has non-default visibility, we ignore the new
1127 definition from a dynamic object. */
1128 if (newdyn
9c7a29a3 1129 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
1130 && !bfd_is_und_section (sec))
1131 {
1132 *skip = TRUE;
1133 /* Make sure this symbol is dynamic. */
f5385ebf 1134 h->ref_dynamic = 1;
45d6a902
AM
1135 /* A protected symbol has external availability. Make sure it is
1136 recorded as dynamic.
1137
1138 FIXME: Should we check type and size for protected symbol? */
1139 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
c152c796 1140 return bfd_elf_link_record_dynamic_symbol (info, h);
45d6a902
AM
1141 else
1142 return TRUE;
1143 }
1144 else if (!newdyn
9c7a29a3 1145 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
f5385ebf 1146 && h->def_dynamic)
45d6a902
AM
1147 {
1148 /* If the new symbol with non-default visibility comes from a
1149 relocatable file and the old definition comes from a dynamic
1150 object, we remove the old definition. */
1151 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
d2dee3b2
L
1152 {
1153 /* Handle the case where the old dynamic definition is
1154 default versioned. We need to copy the symbol info from
1155 the symbol with default version to the normal one if it
1156 was referenced before. */
1157 if (h->ref_regular)
1158 {
1159 const struct elf_backend_data *bed
1160 = get_elf_backend_data (abfd);
1161 struct elf_link_hash_entry *vh = *sym_hash;
1162 vh->root.type = h->root.type;
1163 h->root.type = bfd_link_hash_indirect;
1164 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1165 /* Protected symbols will override the dynamic definition
1166 with default version. */
1167 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1168 {
1169 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1170 vh->dynamic_def = 1;
1171 vh->ref_dynamic = 1;
1172 }
1173 else
1174 {
1175 h->root.type = vh->root.type;
1176 vh->ref_dynamic = 0;
1177 /* We have to hide it here since it was made dynamic
1178 global with extra bits when the symbol info was
1179 copied from the old dynamic definition. */
1180 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1181 }
1182 h = vh;
1183 }
1184 else
1185 h = *sym_hash;
1186 }
1de1a317 1187
f6e332e6 1188 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1de1a317
L
1189 && bfd_is_und_section (sec))
1190 {
1191 /* If the new symbol is undefined and the old symbol was
1192 also undefined before, we need to make sure
1193 _bfd_generic_link_add_one_symbol doesn't mess
f6e332e6 1194 up the linker hash table undefs list. Since the old
1de1a317
L
1195 definition came from a dynamic object, it is still on the
1196 undefs list. */
1197 h->root.type = bfd_link_hash_undefined;
1de1a317
L
1198 h->root.u.undef.abfd = abfd;
1199 }
1200 else
1201 {
1202 h->root.type = bfd_link_hash_new;
1203 h->root.u.undef.abfd = NULL;
1204 }
1205
f5385ebf 1206 if (h->def_dynamic)
252b5132 1207 {
f5385ebf
AM
1208 h->def_dynamic = 0;
1209 h->ref_dynamic = 1;
1210 h->dynamic_def = 1;
45d6a902
AM
1211 }
1212 /* FIXME: Should we check type and size for protected symbol? */
1213 h->size = 0;
1214 h->type = 0;
1215 return TRUE;
1216 }
14a793b2 1217
79349b09
AM
1218 /* Differentiate strong and weak symbols. */
1219 newweak = bind == STB_WEAK;
1220 oldweak = (h->root.type == bfd_link_hash_defweak
1221 || h->root.type == bfd_link_hash_undefweak);
14a793b2 1222
15b43f48
AM
1223 /* If a new weak symbol definition comes from a regular file and the
1224 old symbol comes from a dynamic library, we treat the new one as
1225 strong. Similarly, an old weak symbol definition from a regular
1226 file is treated as strong when the new symbol comes from a dynamic
1227 library. Further, an old weak symbol from a dynamic library is
1228 treated as strong if the new symbol is from a dynamic library.
1229 This reflects the way glibc's ld.so works.
1230
1231 Do this before setting *type_change_ok or *size_change_ok so that
1232 we warn properly when dynamic library symbols are overridden. */
1233
1234 if (newdef && !newdyn && olddyn)
0f8a2703 1235 newweak = FALSE;
15b43f48 1236 if (olddef && newdyn)
0f8a2703
AM
1237 oldweak = FALSE;
1238
fcb93ecf 1239 /* Allow changes between different types of funciton symbol. */
0a36a439 1240 if (newfunc && oldfunc)
fcb93ecf
PB
1241 *type_change_ok = TRUE;
1242
79349b09
AM
1243 /* It's OK to change the type if either the existing symbol or the
1244 new symbol is weak. A type change is also OK if the old symbol
1245 is undefined and the new symbol is defined. */
252b5132 1246
79349b09
AM
1247 if (oldweak
1248 || newweak
1249 || (newdef
1250 && h->root.type == bfd_link_hash_undefined))
1251 *type_change_ok = TRUE;
1252
1253 /* It's OK to change the size if either the existing symbol or the
1254 new symbol is weak, or if the old symbol is undefined. */
1255
1256 if (*type_change_ok
1257 || h->root.type == bfd_link_hash_undefined)
1258 *size_change_ok = TRUE;
45d6a902 1259
45d6a902
AM
1260 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1261 symbol, respectively, appears to be a common symbol in a dynamic
1262 object. If a symbol appears in an uninitialized section, and is
1263 not weak, and is not a function, then it may be a common symbol
1264 which was resolved when the dynamic object was created. We want
1265 to treat such symbols specially, because they raise special
1266 considerations when setting the symbol size: if the symbol
1267 appears as a common symbol in a regular object, and the size in
1268 the regular object is larger, we must make sure that we use the
1269 larger size. This problematic case can always be avoided in C,
1270 but it must be handled correctly when using Fortran shared
1271 libraries.
1272
1273 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1274 likewise for OLDDYNCOMMON and OLDDEF.
1275
1276 Note that this test is just a heuristic, and that it is quite
1277 possible to have an uninitialized symbol in a shared object which
1278 is really a definition, rather than a common symbol. This could
1279 lead to some minor confusion when the symbol really is a common
1280 symbol in some regular object. However, I think it will be
1281 harmless. */
1282
1283 if (newdyn
1284 && newdef
79349b09 1285 && !newweak
45d6a902
AM
1286 && (sec->flags & SEC_ALLOC) != 0
1287 && (sec->flags & SEC_LOAD) == 0
1288 && sym->st_size > 0
0a36a439 1289 && !newfunc)
45d6a902
AM
1290 newdyncommon = TRUE;
1291 else
1292 newdyncommon = FALSE;
1293
1294 if (olddyn
1295 && olddef
1296 && h->root.type == bfd_link_hash_defined
f5385ebf 1297 && h->def_dynamic
45d6a902
AM
1298 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1299 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1300 && h->size > 0
0a36a439 1301 && !oldfunc)
45d6a902
AM
1302 olddyncommon = TRUE;
1303 else
1304 olddyncommon = FALSE;
1305
a4d8e49b
L
1306 /* We now know everything about the old and new symbols. We ask the
1307 backend to check if we can merge them. */
a4d8e49b
L
1308 if (bed->merge_symbol
1309 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1310 pold_alignment, skip, override,
1311 type_change_ok, size_change_ok,
1312 &newdyn, &newdef, &newdyncommon, &newweak,
1313 abfd, &sec,
1314 &olddyn, &olddef, &olddyncommon, &oldweak,
1315 oldbfd, &oldsec))
1316 return FALSE;
1317
45d6a902
AM
1318 /* If both the old and the new symbols look like common symbols in a
1319 dynamic object, set the size of the symbol to the larger of the
1320 two. */
1321
1322 if (olddyncommon
1323 && newdyncommon
1324 && sym->st_size != h->size)
1325 {
1326 /* Since we think we have two common symbols, issue a multiple
1327 common warning if desired. Note that we only warn if the
1328 size is different. If the size is the same, we simply let
1329 the old symbol override the new one as normally happens with
1330 symbols defined in dynamic objects. */
1331
1332 if (! ((*info->callbacks->multiple_common)
1333 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1334 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1335 return FALSE;
252b5132 1336
45d6a902
AM
1337 if (sym->st_size > h->size)
1338 h->size = sym->st_size;
252b5132 1339
45d6a902 1340 *size_change_ok = TRUE;
252b5132
RH
1341 }
1342
45d6a902
AM
1343 /* If we are looking at a dynamic object, and we have found a
1344 definition, we need to see if the symbol was already defined by
1345 some other object. If so, we want to use the existing
1346 definition, and we do not want to report a multiple symbol
1347 definition error; we do this by clobbering *PSEC to be
1348 bfd_und_section_ptr.
1349
1350 We treat a common symbol as a definition if the symbol in the
1351 shared library is a function, since common symbols always
1352 represent variables; this can cause confusion in principle, but
1353 any such confusion would seem to indicate an erroneous program or
1354 shared library. We also permit a common symbol in a regular
79349b09 1355 object to override a weak symbol in a shared object. */
45d6a902
AM
1356
1357 if (newdyn
1358 && newdef
77cfaee6 1359 && (olddef
45d6a902 1360 || (h->root.type == bfd_link_hash_common
0a36a439 1361 && (newweak || newfunc))))
45d6a902
AM
1362 {
1363 *override = TRUE;
1364 newdef = FALSE;
1365 newdyncommon = FALSE;
252b5132 1366
45d6a902
AM
1367 *psec = sec = bfd_und_section_ptr;
1368 *size_change_ok = TRUE;
252b5132 1369
45d6a902
AM
1370 /* If we get here when the old symbol is a common symbol, then
1371 we are explicitly letting it override a weak symbol or
1372 function in a dynamic object, and we don't want to warn about
1373 a type change. If the old symbol is a defined symbol, a type
1374 change warning may still be appropriate. */
252b5132 1375
45d6a902
AM
1376 if (h->root.type == bfd_link_hash_common)
1377 *type_change_ok = TRUE;
1378 }
1379
1380 /* Handle the special case of an old common symbol merging with a
1381 new symbol which looks like a common symbol in a shared object.
1382 We change *PSEC and *PVALUE to make the new symbol look like a
91134c82
L
1383 common symbol, and let _bfd_generic_link_add_one_symbol do the
1384 right thing. */
45d6a902
AM
1385
1386 if (newdyncommon
1387 && h->root.type == bfd_link_hash_common)
1388 {
1389 *override = TRUE;
1390 newdef = FALSE;
1391 newdyncommon = FALSE;
1392 *pvalue = sym->st_size;
a4d8e49b 1393 *psec = sec = bed->common_section (oldsec);
45d6a902
AM
1394 *size_change_ok = TRUE;
1395 }
1396
c5e2cead 1397 /* Skip weak definitions of symbols that are already defined. */
f41d945b 1398 if (newdef && olddef && newweak)
54ac0771
L
1399 {
1400 *skip = TRUE;
1401
1402 /* Merge st_other. If the symbol already has a dynamic index,
1403 but visibility says it should not be visible, turn it into a
1404 local symbol. */
1405 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1406 if (h->dynindx != -1)
1407 switch (ELF_ST_VISIBILITY (h->other))
1408 {
1409 case STV_INTERNAL:
1410 case STV_HIDDEN:
1411 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1412 break;
1413 }
1414 }
c5e2cead 1415
45d6a902
AM
1416 /* If the old symbol is from a dynamic object, and the new symbol is
1417 a definition which is not from a dynamic object, then the new
1418 symbol overrides the old symbol. Symbols from regular files
1419 always take precedence over symbols from dynamic objects, even if
1420 they are defined after the dynamic object in the link.
1421
1422 As above, we again permit a common symbol in a regular object to
1423 override a definition in a shared object if the shared object
0f8a2703 1424 symbol is a function or is weak. */
45d6a902
AM
1425
1426 flip = NULL;
77cfaee6 1427 if (!newdyn
45d6a902
AM
1428 && (newdef
1429 || (bfd_is_com_section (sec)
0a36a439 1430 && (oldweak || oldfunc)))
45d6a902
AM
1431 && olddyn
1432 && olddef
f5385ebf 1433 && h->def_dynamic)
45d6a902
AM
1434 {
1435 /* Change the hash table entry to undefined, and let
1436 _bfd_generic_link_add_one_symbol do the right thing with the
1437 new definition. */
1438
1439 h->root.type = bfd_link_hash_undefined;
1440 h->root.u.undef.abfd = h->root.u.def.section->owner;
1441 *size_change_ok = TRUE;
1442
1443 olddef = FALSE;
1444 olddyncommon = FALSE;
1445
1446 /* We again permit a type change when a common symbol may be
1447 overriding a function. */
1448
1449 if (bfd_is_com_section (sec))
0a36a439
L
1450 {
1451 if (oldfunc)
1452 {
1453 /* If a common symbol overrides a function, make sure
1454 that it isn't defined dynamically nor has type
1455 function. */
1456 h->def_dynamic = 0;
1457 h->type = STT_NOTYPE;
1458 }
1459 *type_change_ok = TRUE;
1460 }
45d6a902
AM
1461
1462 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1463 flip = *sym_hash;
1464 else
1465 /* This union may have been set to be non-NULL when this symbol
1466 was seen in a dynamic object. We must force the union to be
1467 NULL, so that it is correct for a regular symbol. */
1468 h->verinfo.vertree = NULL;
1469 }
1470
1471 /* Handle the special case of a new common symbol merging with an
1472 old symbol that looks like it might be a common symbol defined in
1473 a shared object. Note that we have already handled the case in
1474 which a new common symbol should simply override the definition
1475 in the shared library. */
1476
1477 if (! newdyn
1478 && bfd_is_com_section (sec)
1479 && olddyncommon)
1480 {
1481 /* It would be best if we could set the hash table entry to a
1482 common symbol, but we don't know what to use for the section
1483 or the alignment. */
1484 if (! ((*info->callbacks->multiple_common)
1485 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1486 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1487 return FALSE;
1488
4cc11e76 1489 /* If the presumed common symbol in the dynamic object is
45d6a902
AM
1490 larger, pretend that the new symbol has its size. */
1491
1492 if (h->size > *pvalue)
1493 *pvalue = h->size;
1494
af44c138
L
1495 /* We need to remember the alignment required by the symbol
1496 in the dynamic object. */
1497 BFD_ASSERT (pold_alignment);
1498 *pold_alignment = h->root.u.def.section->alignment_power;
45d6a902
AM
1499
1500 olddef = FALSE;
1501 olddyncommon = FALSE;
1502
1503 h->root.type = bfd_link_hash_undefined;
1504 h->root.u.undef.abfd = h->root.u.def.section->owner;
1505
1506 *size_change_ok = TRUE;
1507 *type_change_ok = TRUE;
1508
1509 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1510 flip = *sym_hash;
1511 else
1512 h->verinfo.vertree = NULL;
1513 }
1514
1515 if (flip != NULL)
1516 {
1517 /* Handle the case where we had a versioned symbol in a dynamic
1518 library and now find a definition in a normal object. In this
1519 case, we make the versioned symbol point to the normal one. */
9c5bfbb7 1520 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 1521 flip->root.type = h->root.type;
00cbee0a 1522 flip->root.u.undef.abfd = h->root.u.undef.abfd;
45d6a902
AM
1523 h->root.type = bfd_link_hash_indirect;
1524 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
fcfa13d2 1525 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
f5385ebf 1526 if (h->def_dynamic)
45d6a902 1527 {
f5385ebf
AM
1528 h->def_dynamic = 0;
1529 flip->ref_dynamic = 1;
45d6a902
AM
1530 }
1531 }
1532
45d6a902
AM
1533 return TRUE;
1534}
1535
1536/* This function is called to create an indirect symbol from the
1537 default for the symbol with the default version if needed. The
1538 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
0f8a2703 1539 set DYNSYM if the new indirect symbol is dynamic. */
45d6a902
AM
1540
1541bfd_boolean
268b6b39
AM
1542_bfd_elf_add_default_symbol (bfd *abfd,
1543 struct bfd_link_info *info,
1544 struct elf_link_hash_entry *h,
1545 const char *name,
1546 Elf_Internal_Sym *sym,
1547 asection **psec,
1548 bfd_vma *value,
1549 bfd_boolean *dynsym,
0f8a2703 1550 bfd_boolean override)
45d6a902
AM
1551{
1552 bfd_boolean type_change_ok;
1553 bfd_boolean size_change_ok;
1554 bfd_boolean skip;
1555 char *shortname;
1556 struct elf_link_hash_entry *hi;
1557 struct bfd_link_hash_entry *bh;
9c5bfbb7 1558 const struct elf_backend_data *bed;
45d6a902
AM
1559 bfd_boolean collect;
1560 bfd_boolean dynamic;
1561 char *p;
1562 size_t len, shortlen;
1563 asection *sec;
1564
1565 /* If this symbol has a version, and it is the default version, we
1566 create an indirect symbol from the default name to the fully
1567 decorated name. This will cause external references which do not
1568 specify a version to be bound to this version of the symbol. */
1569 p = strchr (name, ELF_VER_CHR);
1570 if (p == NULL || p[1] != ELF_VER_CHR)
1571 return TRUE;
1572
1573 if (override)
1574 {
4cc11e76 1575 /* We are overridden by an old definition. We need to check if we
45d6a902
AM
1576 need to create the indirect symbol from the default name. */
1577 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1578 FALSE, FALSE);
1579 BFD_ASSERT (hi != NULL);
1580 if (hi == h)
1581 return TRUE;
1582 while (hi->root.type == bfd_link_hash_indirect
1583 || hi->root.type == bfd_link_hash_warning)
1584 {
1585 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1586 if (hi == h)
1587 return TRUE;
1588 }
1589 }
1590
1591 bed = get_elf_backend_data (abfd);
1592 collect = bed->collect;
1593 dynamic = (abfd->flags & DYNAMIC) != 0;
1594
1595 shortlen = p - name;
1596 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1597 if (shortname == NULL)
1598 return FALSE;
1599 memcpy (shortname, name, shortlen);
1600 shortname[shortlen] = '\0';
1601
1602 /* We are going to create a new symbol. Merge it with any existing
1603 symbol with this name. For the purposes of the merge, act as
1604 though we were defining the symbol we just defined, although we
1605 actually going to define an indirect symbol. */
1606 type_change_ok = FALSE;
1607 size_change_ok = FALSE;
1608 sec = *psec;
1609 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1610 NULL, &hi, &skip, &override,
1611 &type_change_ok, &size_change_ok))
45d6a902
AM
1612 return FALSE;
1613
1614 if (skip)
1615 goto nondefault;
1616
1617 if (! override)
1618 {
1619 bh = &hi->root;
1620 if (! (_bfd_generic_link_add_one_symbol
1621 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
268b6b39 1622 0, name, FALSE, collect, &bh)))
45d6a902
AM
1623 return FALSE;
1624 hi = (struct elf_link_hash_entry *) bh;
1625 }
1626 else
1627 {
1628 /* In this case the symbol named SHORTNAME is overriding the
1629 indirect symbol we want to add. We were planning on making
1630 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1631 is the name without a version. NAME is the fully versioned
1632 name, and it is the default version.
1633
1634 Overriding means that we already saw a definition for the
1635 symbol SHORTNAME in a regular object, and it is overriding
1636 the symbol defined in the dynamic object.
1637
1638 When this happens, we actually want to change NAME, the
1639 symbol we just added, to refer to SHORTNAME. This will cause
1640 references to NAME in the shared object to become references
1641 to SHORTNAME in the regular object. This is what we expect
1642 when we override a function in a shared object: that the
1643 references in the shared object will be mapped to the
1644 definition in the regular object. */
1645
1646 while (hi->root.type == bfd_link_hash_indirect
1647 || hi->root.type == bfd_link_hash_warning)
1648 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1649
1650 h->root.type = bfd_link_hash_indirect;
1651 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
f5385ebf 1652 if (h->def_dynamic)
45d6a902 1653 {
f5385ebf
AM
1654 h->def_dynamic = 0;
1655 hi->ref_dynamic = 1;
1656 if (hi->ref_regular
1657 || hi->def_regular)
45d6a902 1658 {
c152c796 1659 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
45d6a902
AM
1660 return FALSE;
1661 }
1662 }
1663
1664 /* Now set HI to H, so that the following code will set the
1665 other fields correctly. */
1666 hi = h;
1667 }
1668
fab4a87f
L
1669 /* Check if HI is a warning symbol. */
1670 if (hi->root.type == bfd_link_hash_warning)
1671 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1672
45d6a902
AM
1673 /* If there is a duplicate definition somewhere, then HI may not
1674 point to an indirect symbol. We will have reported an error to
1675 the user in that case. */
1676
1677 if (hi->root.type == bfd_link_hash_indirect)
1678 {
1679 struct elf_link_hash_entry *ht;
1680
45d6a902 1681 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
fcfa13d2 1682 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
45d6a902
AM
1683
1684 /* See if the new flags lead us to realize that the symbol must
1685 be dynamic. */
1686 if (! *dynsym)
1687 {
1688 if (! dynamic)
1689 {
1690 if (info->shared
f5385ebf 1691 || hi->ref_dynamic)
45d6a902
AM
1692 *dynsym = TRUE;
1693 }
1694 else
1695 {
f5385ebf 1696 if (hi->ref_regular)
45d6a902
AM
1697 *dynsym = TRUE;
1698 }
1699 }
1700 }
1701
1702 /* We also need to define an indirection from the nondefault version
1703 of the symbol. */
1704
1705nondefault:
1706 len = strlen (name);
1707 shortname = bfd_hash_allocate (&info->hash->table, len);
1708 if (shortname == NULL)
1709 return FALSE;
1710 memcpy (shortname, name, shortlen);
1711 memcpy (shortname + shortlen, p + 1, len - shortlen);
1712
1713 /* Once again, merge with any existing symbol. */
1714 type_change_ok = FALSE;
1715 size_change_ok = FALSE;
1716 sec = *psec;
1717 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1718 NULL, &hi, &skip, &override,
1719 &type_change_ok, &size_change_ok))
45d6a902
AM
1720 return FALSE;
1721
1722 if (skip)
1723 return TRUE;
1724
1725 if (override)
1726 {
1727 /* Here SHORTNAME is a versioned name, so we don't expect to see
1728 the type of override we do in the case above unless it is
4cc11e76 1729 overridden by a versioned definition. */
45d6a902
AM
1730 if (hi->root.type != bfd_link_hash_defined
1731 && hi->root.type != bfd_link_hash_defweak)
1732 (*_bfd_error_handler)
d003868e
AM
1733 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1734 abfd, shortname);
45d6a902
AM
1735 }
1736 else
1737 {
1738 bh = &hi->root;
1739 if (! (_bfd_generic_link_add_one_symbol
1740 (info, abfd, shortname, BSF_INDIRECT,
268b6b39 1741 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
45d6a902
AM
1742 return FALSE;
1743 hi = (struct elf_link_hash_entry *) bh;
1744
1745 /* If there is a duplicate definition somewhere, then HI may not
1746 point to an indirect symbol. We will have reported an error
1747 to the user in that case. */
1748
1749 if (hi->root.type == bfd_link_hash_indirect)
1750 {
fcfa13d2 1751 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
45d6a902
AM
1752
1753 /* See if the new flags lead us to realize that the symbol
1754 must be dynamic. */
1755 if (! *dynsym)
1756 {
1757 if (! dynamic)
1758 {
1759 if (info->shared
f5385ebf 1760 || hi->ref_dynamic)
45d6a902
AM
1761 *dynsym = TRUE;
1762 }
1763 else
1764 {
f5385ebf 1765 if (hi->ref_regular)
45d6a902
AM
1766 *dynsym = TRUE;
1767 }
1768 }
1769 }
1770 }
1771
1772 return TRUE;
1773}
1774\f
1775/* This routine is used to export all defined symbols into the dynamic
1776 symbol table. It is called via elf_link_hash_traverse. */
1777
1778bfd_boolean
268b6b39 1779_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 1780{
268b6b39 1781 struct elf_info_failed *eif = data;
45d6a902 1782
55255dae
L
1783 /* Ignore this if we won't export it. */
1784 if (!eif->info->export_dynamic && !h->dynamic)
1785 return TRUE;
1786
45d6a902
AM
1787 /* Ignore indirect symbols. These are added by the versioning code. */
1788 if (h->root.type == bfd_link_hash_indirect)
1789 return TRUE;
1790
1791 if (h->root.type == bfd_link_hash_warning)
1792 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1793
1794 if (h->dynindx == -1
f5385ebf
AM
1795 && (h->def_regular
1796 || h->ref_regular))
45d6a902
AM
1797 {
1798 struct bfd_elf_version_tree *t;
1799 struct bfd_elf_version_expr *d;
1800
1801 for (t = eif->verdefs; t != NULL; t = t->next)
1802 {
108ba305 1803 if (t->globals.list != NULL)
45d6a902 1804 {
108ba305
JJ
1805 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1806 if (d != NULL)
1807 goto doit;
45d6a902
AM
1808 }
1809
108ba305 1810 if (t->locals.list != NULL)
45d6a902 1811 {
108ba305
JJ
1812 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1813 if (d != NULL)
1814 return TRUE;
45d6a902
AM
1815 }
1816 }
1817
1818 if (!eif->verdefs)
1819 {
1820 doit:
c152c796 1821 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
1822 {
1823 eif->failed = TRUE;
1824 return FALSE;
1825 }
1826 }
1827 }
1828
1829 return TRUE;
1830}
1831\f
1832/* Look through the symbols which are defined in other shared
1833 libraries and referenced here. Update the list of version
1834 dependencies. This will be put into the .gnu.version_r section.
1835 This function is called via elf_link_hash_traverse. */
1836
1837bfd_boolean
268b6b39
AM
1838_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1839 void *data)
45d6a902 1840{
268b6b39 1841 struct elf_find_verdep_info *rinfo = data;
45d6a902
AM
1842 Elf_Internal_Verneed *t;
1843 Elf_Internal_Vernaux *a;
1844 bfd_size_type amt;
1845
1846 if (h->root.type == bfd_link_hash_warning)
1847 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1848
1849 /* We only care about symbols defined in shared objects with version
1850 information. */
f5385ebf
AM
1851 if (!h->def_dynamic
1852 || h->def_regular
45d6a902
AM
1853 || h->dynindx == -1
1854 || h->verinfo.verdef == NULL)
1855 return TRUE;
1856
1857 /* See if we already know about this version. */
1858 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1859 {
1860 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1861 continue;
1862
1863 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1864 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1865 return TRUE;
1866
1867 break;
1868 }
1869
1870 /* This is a new version. Add it to tree we are building. */
1871
1872 if (t == NULL)
1873 {
1874 amt = sizeof *t;
268b6b39 1875 t = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1876 if (t == NULL)
1877 {
1878 rinfo->failed = TRUE;
1879 return FALSE;
1880 }
1881
1882 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1883 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1884 elf_tdata (rinfo->output_bfd)->verref = t;
1885 }
1886
1887 amt = sizeof *a;
268b6b39 1888 a = bfd_zalloc (rinfo->output_bfd, amt);
14b1c01e
AM
1889 if (a == NULL)
1890 {
1891 rinfo->failed = TRUE;
1892 return FALSE;
1893 }
45d6a902
AM
1894
1895 /* Note that we are copying a string pointer here, and testing it
1896 above. If bfd_elf_string_from_elf_section is ever changed to
1897 discard the string data when low in memory, this will have to be
1898 fixed. */
1899 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1900
1901 a->vna_flags = h->verinfo.verdef->vd_flags;
1902 a->vna_nextptr = t->vn_auxptr;
1903
1904 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1905 ++rinfo->vers;
1906
1907 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1908
1909 t->vn_auxptr = a;
1910
1911 return TRUE;
1912}
1913
1914/* Figure out appropriate versions for all the symbols. We may not
1915 have the version number script until we have read all of the input
1916 files, so until that point we don't know which symbols should be
1917 local. This function is called via elf_link_hash_traverse. */
1918
1919bfd_boolean
268b6b39 1920_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
1921{
1922 struct elf_assign_sym_version_info *sinfo;
1923 struct bfd_link_info *info;
9c5bfbb7 1924 const struct elf_backend_data *bed;
45d6a902
AM
1925 struct elf_info_failed eif;
1926 char *p;
1927 bfd_size_type amt;
1928
268b6b39 1929 sinfo = data;
45d6a902
AM
1930 info = sinfo->info;
1931
1932 if (h->root.type == bfd_link_hash_warning)
1933 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1934
1935 /* Fix the symbol flags. */
1936 eif.failed = FALSE;
1937 eif.info = info;
1938 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1939 {
1940 if (eif.failed)
1941 sinfo->failed = TRUE;
1942 return FALSE;
1943 }
1944
1945 /* We only need version numbers for symbols defined in regular
1946 objects. */
f5385ebf 1947 if (!h->def_regular)
45d6a902
AM
1948 return TRUE;
1949
1950 bed = get_elf_backend_data (sinfo->output_bfd);
1951 p = strchr (h->root.root.string, ELF_VER_CHR);
1952 if (p != NULL && h->verinfo.vertree == NULL)
1953 {
1954 struct bfd_elf_version_tree *t;
1955 bfd_boolean hidden;
1956
1957 hidden = TRUE;
1958
1959 /* There are two consecutive ELF_VER_CHR characters if this is
1960 not a hidden symbol. */
1961 ++p;
1962 if (*p == ELF_VER_CHR)
1963 {
1964 hidden = FALSE;
1965 ++p;
1966 }
1967
1968 /* If there is no version string, we can just return out. */
1969 if (*p == '\0')
1970 {
1971 if (hidden)
f5385ebf 1972 h->hidden = 1;
45d6a902
AM
1973 return TRUE;
1974 }
1975
1976 /* Look for the version. If we find it, it is no longer weak. */
1977 for (t = sinfo->verdefs; t != NULL; t = t->next)
1978 {
1979 if (strcmp (t->name, p) == 0)
1980 {
1981 size_t len;
1982 char *alc;
1983 struct bfd_elf_version_expr *d;
1984
1985 len = p - h->root.root.string;
268b6b39 1986 alc = bfd_malloc (len);
45d6a902 1987 if (alc == NULL)
14b1c01e
AM
1988 {
1989 sinfo->failed = TRUE;
1990 return FALSE;
1991 }
45d6a902
AM
1992 memcpy (alc, h->root.root.string, len - 1);
1993 alc[len - 1] = '\0';
1994 if (alc[len - 2] == ELF_VER_CHR)
1995 alc[len - 2] = '\0';
1996
1997 h->verinfo.vertree = t;
1998 t->used = TRUE;
1999 d = NULL;
2000
108ba305
JJ
2001 if (t->globals.list != NULL)
2002 d = (*t->match) (&t->globals, NULL, alc);
45d6a902
AM
2003
2004 /* See if there is anything to force this symbol to
2005 local scope. */
108ba305 2006 if (d == NULL && t->locals.list != NULL)
45d6a902 2007 {
108ba305
JJ
2008 d = (*t->match) (&t->locals, NULL, alc);
2009 if (d != NULL
2010 && h->dynindx != -1
108ba305
JJ
2011 && ! info->export_dynamic)
2012 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
2013 }
2014
2015 free (alc);
2016 break;
2017 }
2018 }
2019
2020 /* If we are building an application, we need to create a
2021 version node for this version. */
36af4a4e 2022 if (t == NULL && info->executable)
45d6a902
AM
2023 {
2024 struct bfd_elf_version_tree **pp;
2025 int version_index;
2026
2027 /* If we aren't going to export this symbol, we don't need
2028 to worry about it. */
2029 if (h->dynindx == -1)
2030 return TRUE;
2031
2032 amt = sizeof *t;
108ba305 2033 t = bfd_zalloc (sinfo->output_bfd, amt);
45d6a902
AM
2034 if (t == NULL)
2035 {
2036 sinfo->failed = TRUE;
2037 return FALSE;
2038 }
2039
45d6a902 2040 t->name = p;
45d6a902
AM
2041 t->name_indx = (unsigned int) -1;
2042 t->used = TRUE;
2043
2044 version_index = 1;
2045 /* Don't count anonymous version tag. */
2046 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2047 version_index = 0;
2048 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2049 ++version_index;
2050 t->vernum = version_index;
2051
2052 *pp = t;
2053
2054 h->verinfo.vertree = t;
2055 }
2056 else if (t == NULL)
2057 {
2058 /* We could not find the version for a symbol when
2059 generating a shared archive. Return an error. */
2060 (*_bfd_error_handler)
c55fe096 2061 (_("%B: version node not found for symbol %s"),
d003868e 2062 sinfo->output_bfd, h->root.root.string);
45d6a902
AM
2063 bfd_set_error (bfd_error_bad_value);
2064 sinfo->failed = TRUE;
2065 return FALSE;
2066 }
2067
2068 if (hidden)
f5385ebf 2069 h->hidden = 1;
45d6a902
AM
2070 }
2071
2072 /* If we don't have a version for this symbol, see if we can find
2073 something. */
2074 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2075 {
2076 struct bfd_elf_version_tree *t;
ae5a3597 2077 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
45d6a902
AM
2078 struct bfd_elf_version_expr *d;
2079
2080 /* See if can find what version this symbol is in. If the
2081 symbol is supposed to be local, then don't actually register
2082 it. */
2083 local_ver = NULL;
ae5a3597
AM
2084 global_ver = NULL;
2085 exist_ver = NULL;
45d6a902
AM
2086 for (t = sinfo->verdefs; t != NULL; t = t->next)
2087 {
108ba305 2088 if (t->globals.list != NULL)
45d6a902 2089 {
108ba305
JJ
2090 d = NULL;
2091 while ((d = (*t->match) (&t->globals, d,
2092 h->root.root.string)) != NULL)
ae5a3597
AM
2093 {
2094 global_ver = t;
2095 local_ver = NULL;
2096 if (d->symver)
2097 exist_ver = t;
2098 d->script = 1;
2099 /* If the match is a wildcard pattern, keep looking for
2100 a more explicit, perhaps even local, match. */
2101 if (d->literal)
108ba305 2102 break;
ae5a3597
AM
2103 }
2104
45d6a902
AM
2105 if (d != NULL)
2106 break;
45d6a902
AM
2107 }
2108
108ba305 2109 if (t->locals.list != NULL)
45d6a902 2110 {
108ba305
JJ
2111 d = NULL;
2112 while ((d = (*t->match) (&t->locals, d,
2113 h->root.root.string)) != NULL)
45d6a902 2114 {
108ba305 2115 local_ver = t;
ae5a3597
AM
2116 /* If the match is a wildcard pattern, keep looking for
2117 a more explicit, perhaps even global, match. */
2118 if (d->literal)
2119 {
2120 /* An exact match overrides a global wildcard. */
2121 global_ver = NULL;
2122 break;
2123 }
45d6a902
AM
2124 }
2125
2126 if (d != NULL)
2127 break;
2128 }
2129 }
2130
ae5a3597
AM
2131 if (global_ver != NULL)
2132 {
2133 h->verinfo.vertree = global_ver;
2134 /* If we already have a versioned symbol that matches the
2135 node for this symbol, then we don't want to create a
2136 duplicate from the unversioned symbol. Instead hide the
2137 unversioned symbol. */
2138 if (exist_ver == global_ver)
2139 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2140 }
2141 else if (local_ver != NULL)
45d6a902
AM
2142 {
2143 h->verinfo.vertree = local_ver;
ae5a3597
AM
2144 if (!info->export_dynamic
2145 || exist_ver == local_ver)
2146 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
2147 }
2148 }
2149
2150 return TRUE;
2151}
2152\f
45d6a902
AM
2153/* Read and swap the relocs from the section indicated by SHDR. This
2154 may be either a REL or a RELA section. The relocations are
2155 translated into RELA relocations and stored in INTERNAL_RELOCS,
2156 which should have already been allocated to contain enough space.
2157 The EXTERNAL_RELOCS are a buffer where the external form of the
2158 relocations should be stored.
2159
2160 Returns FALSE if something goes wrong. */
2161
2162static bfd_boolean
268b6b39 2163elf_link_read_relocs_from_section (bfd *abfd,
243ef1e0 2164 asection *sec,
268b6b39
AM
2165 Elf_Internal_Shdr *shdr,
2166 void *external_relocs,
2167 Elf_Internal_Rela *internal_relocs)
45d6a902 2168{
9c5bfbb7 2169 const struct elf_backend_data *bed;
268b6b39 2170 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
45d6a902
AM
2171 const bfd_byte *erela;
2172 const bfd_byte *erelaend;
2173 Elf_Internal_Rela *irela;
243ef1e0
L
2174 Elf_Internal_Shdr *symtab_hdr;
2175 size_t nsyms;
45d6a902 2176
45d6a902
AM
2177 /* Position ourselves at the start of the section. */
2178 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2179 return FALSE;
2180
2181 /* Read the relocations. */
2182 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2183 return FALSE;
2184
243ef1e0
L
2185 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2186 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2187
45d6a902
AM
2188 bed = get_elf_backend_data (abfd);
2189
2190 /* Convert the external relocations to the internal format. */
2191 if (shdr->sh_entsize == bed->s->sizeof_rel)
2192 swap_in = bed->s->swap_reloc_in;
2193 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2194 swap_in = bed->s->swap_reloca_in;
2195 else
2196 {
2197 bfd_set_error (bfd_error_wrong_format);
2198 return FALSE;
2199 }
2200
2201 erela = external_relocs;
51992aec 2202 erelaend = erela + shdr->sh_size;
45d6a902
AM
2203 irela = internal_relocs;
2204 while (erela < erelaend)
2205 {
243ef1e0
L
2206 bfd_vma r_symndx;
2207
45d6a902 2208 (*swap_in) (abfd, erela, irela);
243ef1e0
L
2209 r_symndx = ELF32_R_SYM (irela->r_info);
2210 if (bed->s->arch_size == 64)
2211 r_symndx >>= 24;
2212 if ((size_t) r_symndx >= nsyms)
2213 {
2214 (*_bfd_error_handler)
d003868e
AM
2215 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2216 " for offset 0x%lx in section `%A'"),
2217 abfd, sec,
2218 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
243ef1e0
L
2219 bfd_set_error (bfd_error_bad_value);
2220 return FALSE;
2221 }
45d6a902
AM
2222 irela += bed->s->int_rels_per_ext_rel;
2223 erela += shdr->sh_entsize;
2224 }
2225
2226 return TRUE;
2227}
2228
2229/* Read and swap the relocs for a section O. They may have been
2230 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2231 not NULL, they are used as buffers to read into. They are known to
2232 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2233 the return value is allocated using either malloc or bfd_alloc,
2234 according to the KEEP_MEMORY argument. If O has two relocation
2235 sections (both REL and RELA relocations), then the REL_HDR
2236 relocations will appear first in INTERNAL_RELOCS, followed by the
2237 REL_HDR2 relocations. */
2238
2239Elf_Internal_Rela *
268b6b39
AM
2240_bfd_elf_link_read_relocs (bfd *abfd,
2241 asection *o,
2242 void *external_relocs,
2243 Elf_Internal_Rela *internal_relocs,
2244 bfd_boolean keep_memory)
45d6a902
AM
2245{
2246 Elf_Internal_Shdr *rel_hdr;
268b6b39 2247 void *alloc1 = NULL;
45d6a902 2248 Elf_Internal_Rela *alloc2 = NULL;
9c5bfbb7 2249 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
2250
2251 if (elf_section_data (o)->relocs != NULL)
2252 return elf_section_data (o)->relocs;
2253
2254 if (o->reloc_count == 0)
2255 return NULL;
2256
2257 rel_hdr = &elf_section_data (o)->rel_hdr;
2258
2259 if (internal_relocs == NULL)
2260 {
2261 bfd_size_type size;
2262
2263 size = o->reloc_count;
2264 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2265 if (keep_memory)
4dd07732 2266 internal_relocs = alloc2 = bfd_alloc (abfd, size);
45d6a902 2267 else
268b6b39 2268 internal_relocs = alloc2 = bfd_malloc (size);
45d6a902
AM
2269 if (internal_relocs == NULL)
2270 goto error_return;
2271 }
2272
2273 if (external_relocs == NULL)
2274 {
2275 bfd_size_type size = rel_hdr->sh_size;
2276
2277 if (elf_section_data (o)->rel_hdr2)
2278 size += elf_section_data (o)->rel_hdr2->sh_size;
268b6b39 2279 alloc1 = bfd_malloc (size);
45d6a902
AM
2280 if (alloc1 == NULL)
2281 goto error_return;
2282 external_relocs = alloc1;
2283 }
2284
243ef1e0 2285 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
45d6a902
AM
2286 external_relocs,
2287 internal_relocs))
2288 goto error_return;
51992aec
AM
2289 if (elf_section_data (o)->rel_hdr2
2290 && (!elf_link_read_relocs_from_section
2291 (abfd, o,
2292 elf_section_data (o)->rel_hdr2,
2293 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2294 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2295 * bed->s->int_rels_per_ext_rel))))
45d6a902
AM
2296 goto error_return;
2297
2298 /* Cache the results for next time, if we can. */
2299 if (keep_memory)
2300 elf_section_data (o)->relocs = internal_relocs;
2301
2302 if (alloc1 != NULL)
2303 free (alloc1);
2304
2305 /* Don't free alloc2, since if it was allocated we are passing it
2306 back (under the name of internal_relocs). */
2307
2308 return internal_relocs;
2309
2310 error_return:
2311 if (alloc1 != NULL)
2312 free (alloc1);
2313 if (alloc2 != NULL)
4dd07732
AM
2314 {
2315 if (keep_memory)
2316 bfd_release (abfd, alloc2);
2317 else
2318 free (alloc2);
2319 }
45d6a902
AM
2320 return NULL;
2321}
2322
2323/* Compute the size of, and allocate space for, REL_HDR which is the
2324 section header for a section containing relocations for O. */
2325
2326bfd_boolean
268b6b39
AM
2327_bfd_elf_link_size_reloc_section (bfd *abfd,
2328 Elf_Internal_Shdr *rel_hdr,
2329 asection *o)
45d6a902
AM
2330{
2331 bfd_size_type reloc_count;
2332 bfd_size_type num_rel_hashes;
2333
2334 /* Figure out how many relocations there will be. */
2335 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2336 reloc_count = elf_section_data (o)->rel_count;
2337 else
2338 reloc_count = elf_section_data (o)->rel_count2;
2339
2340 num_rel_hashes = o->reloc_count;
2341 if (num_rel_hashes < reloc_count)
2342 num_rel_hashes = reloc_count;
2343
2344 /* That allows us to calculate the size of the section. */
2345 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2346
2347 /* The contents field must last into write_object_contents, so we
2348 allocate it with bfd_alloc rather than malloc. Also since we
2349 cannot be sure that the contents will actually be filled in,
2350 we zero the allocated space. */
268b6b39 2351 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
45d6a902
AM
2352 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2353 return FALSE;
2354
2355 /* We only allocate one set of hash entries, so we only do it the
2356 first time we are called. */
2357 if (elf_section_data (o)->rel_hashes == NULL
2358 && num_rel_hashes)
2359 {
2360 struct elf_link_hash_entry **p;
2361
268b6b39 2362 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
45d6a902
AM
2363 if (p == NULL)
2364 return FALSE;
2365
2366 elf_section_data (o)->rel_hashes = p;
2367 }
2368
2369 return TRUE;
2370}
2371
2372/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2373 originated from the section given by INPUT_REL_HDR) to the
2374 OUTPUT_BFD. */
2375
2376bfd_boolean
268b6b39
AM
2377_bfd_elf_link_output_relocs (bfd *output_bfd,
2378 asection *input_section,
2379 Elf_Internal_Shdr *input_rel_hdr,
eac338cf
PB
2380 Elf_Internal_Rela *internal_relocs,
2381 struct elf_link_hash_entry **rel_hash
2382 ATTRIBUTE_UNUSED)
45d6a902
AM
2383{
2384 Elf_Internal_Rela *irela;
2385 Elf_Internal_Rela *irelaend;
2386 bfd_byte *erel;
2387 Elf_Internal_Shdr *output_rel_hdr;
2388 asection *output_section;
2389 unsigned int *rel_countp = NULL;
9c5bfbb7 2390 const struct elf_backend_data *bed;
268b6b39 2391 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
45d6a902
AM
2392
2393 output_section = input_section->output_section;
2394 output_rel_hdr = NULL;
2395
2396 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2397 == input_rel_hdr->sh_entsize)
2398 {
2399 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2400 rel_countp = &elf_section_data (output_section)->rel_count;
2401 }
2402 else if (elf_section_data (output_section)->rel_hdr2
2403 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2404 == input_rel_hdr->sh_entsize))
2405 {
2406 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2407 rel_countp = &elf_section_data (output_section)->rel_count2;
2408 }
2409 else
2410 {
2411 (*_bfd_error_handler)
d003868e
AM
2412 (_("%B: relocation size mismatch in %B section %A"),
2413 output_bfd, input_section->owner, input_section);
297d8443 2414 bfd_set_error (bfd_error_wrong_format);
45d6a902
AM
2415 return FALSE;
2416 }
2417
2418 bed = get_elf_backend_data (output_bfd);
2419 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2420 swap_out = bed->s->swap_reloc_out;
2421 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2422 swap_out = bed->s->swap_reloca_out;
2423 else
2424 abort ();
2425
2426 erel = output_rel_hdr->contents;
2427 erel += *rel_countp * input_rel_hdr->sh_entsize;
2428 irela = internal_relocs;
2429 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2430 * bed->s->int_rels_per_ext_rel);
2431 while (irela < irelaend)
2432 {
2433 (*swap_out) (output_bfd, irela, erel);
2434 irela += bed->s->int_rels_per_ext_rel;
2435 erel += input_rel_hdr->sh_entsize;
2436 }
2437
2438 /* Bump the counter, so that we know where to add the next set of
2439 relocations. */
2440 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2441
2442 return TRUE;
2443}
2444\f
508c3946
L
2445/* Make weak undefined symbols in PIE dynamic. */
2446
2447bfd_boolean
2448_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2449 struct elf_link_hash_entry *h)
2450{
2451 if (info->pie
2452 && h->dynindx == -1
2453 && h->root.type == bfd_link_hash_undefweak)
2454 return bfd_elf_link_record_dynamic_symbol (info, h);
2455
2456 return TRUE;
2457}
2458
45d6a902
AM
2459/* Fix up the flags for a symbol. This handles various cases which
2460 can only be fixed after all the input files are seen. This is
2461 currently called by both adjust_dynamic_symbol and
2462 assign_sym_version, which is unnecessary but perhaps more robust in
2463 the face of future changes. */
2464
2465bfd_boolean
268b6b39
AM
2466_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2467 struct elf_info_failed *eif)
45d6a902 2468{
33774f08 2469 const struct elf_backend_data *bed;
508c3946 2470
45d6a902
AM
2471 /* If this symbol was mentioned in a non-ELF file, try to set
2472 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2473 permit a non-ELF file to correctly refer to a symbol defined in
2474 an ELF dynamic object. */
f5385ebf 2475 if (h->non_elf)
45d6a902
AM
2476 {
2477 while (h->root.type == bfd_link_hash_indirect)
2478 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2479
2480 if (h->root.type != bfd_link_hash_defined
2481 && h->root.type != bfd_link_hash_defweak)
f5385ebf
AM
2482 {
2483 h->ref_regular = 1;
2484 h->ref_regular_nonweak = 1;
2485 }
45d6a902
AM
2486 else
2487 {
2488 if (h->root.u.def.section->owner != NULL
2489 && (bfd_get_flavour (h->root.u.def.section->owner)
2490 == bfd_target_elf_flavour))
f5385ebf
AM
2491 {
2492 h->ref_regular = 1;
2493 h->ref_regular_nonweak = 1;
2494 }
45d6a902 2495 else
f5385ebf 2496 h->def_regular = 1;
45d6a902
AM
2497 }
2498
2499 if (h->dynindx == -1
f5385ebf
AM
2500 && (h->def_dynamic
2501 || h->ref_dynamic))
45d6a902 2502 {
c152c796 2503 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
2504 {
2505 eif->failed = TRUE;
2506 return FALSE;
2507 }
2508 }
2509 }
2510 else
2511 {
f5385ebf 2512 /* Unfortunately, NON_ELF is only correct if the symbol
45d6a902
AM
2513 was first seen in a non-ELF file. Fortunately, if the symbol
2514 was first seen in an ELF file, we're probably OK unless the
2515 symbol was defined in a non-ELF file. Catch that case here.
2516 FIXME: We're still in trouble if the symbol was first seen in
2517 a dynamic object, and then later in a non-ELF regular object. */
2518 if ((h->root.type == bfd_link_hash_defined
2519 || h->root.type == bfd_link_hash_defweak)
f5385ebf 2520 && !h->def_regular
45d6a902
AM
2521 && (h->root.u.def.section->owner != NULL
2522 ? (bfd_get_flavour (h->root.u.def.section->owner)
2523 != bfd_target_elf_flavour)
2524 : (bfd_is_abs_section (h->root.u.def.section)
f5385ebf
AM
2525 && !h->def_dynamic)))
2526 h->def_regular = 1;
45d6a902
AM
2527 }
2528
508c3946 2529 /* Backend specific symbol fixup. */
33774f08
AM
2530 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2531 if (bed->elf_backend_fixup_symbol
2532 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2533 return FALSE;
508c3946 2534
45d6a902
AM
2535 /* If this is a final link, and the symbol was defined as a common
2536 symbol in a regular object file, and there was no definition in
2537 any dynamic object, then the linker will have allocated space for
f5385ebf 2538 the symbol in a common section but the DEF_REGULAR
45d6a902
AM
2539 flag will not have been set. */
2540 if (h->root.type == bfd_link_hash_defined
f5385ebf
AM
2541 && !h->def_regular
2542 && h->ref_regular
2543 && !h->def_dynamic
45d6a902 2544 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
f5385ebf 2545 h->def_regular = 1;
45d6a902
AM
2546
2547 /* If -Bsymbolic was used (which means to bind references to global
2548 symbols to the definition within the shared object), and this
2549 symbol was defined in a regular object, then it actually doesn't
9c7a29a3
AM
2550 need a PLT entry. Likewise, if the symbol has non-default
2551 visibility. If the symbol has hidden or internal visibility, we
c1be741f 2552 will force it local. */
f5385ebf 2553 if (h->needs_plt
45d6a902 2554 && eif->info->shared
0eddce27 2555 && is_elf_hash_table (eif->info->hash)
55255dae 2556 && (SYMBOLIC_BIND (eif->info, h)
c1be741f 2557 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
f5385ebf 2558 && h->def_regular)
45d6a902 2559 {
45d6a902
AM
2560 bfd_boolean force_local;
2561
45d6a902
AM
2562 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2563 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2564 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2565 }
2566
2567 /* If a weak undefined symbol has non-default visibility, we also
2568 hide it from the dynamic linker. */
9c7a29a3 2569 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902 2570 && h->root.type == bfd_link_hash_undefweak)
33774f08 2571 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
45d6a902
AM
2572
2573 /* If this is a weak defined symbol in a dynamic object, and we know
2574 the real definition in the dynamic object, copy interesting flags
2575 over to the real definition. */
f6e332e6 2576 if (h->u.weakdef != NULL)
45d6a902
AM
2577 {
2578 struct elf_link_hash_entry *weakdef;
2579
f6e332e6 2580 weakdef = h->u.weakdef;
45d6a902
AM
2581 if (h->root.type == bfd_link_hash_indirect)
2582 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2583
2584 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2585 || h->root.type == bfd_link_hash_defweak);
f5385ebf 2586 BFD_ASSERT (weakdef->def_dynamic);
45d6a902
AM
2587
2588 /* If the real definition is defined by a regular object file,
2589 don't do anything special. See the longer description in
2590 _bfd_elf_adjust_dynamic_symbol, below. */
f5385ebf 2591 if (weakdef->def_regular)
f6e332e6 2592 h->u.weakdef = NULL;
45d6a902 2593 else
a26587ba
RS
2594 {
2595 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2596 || weakdef->root.type == bfd_link_hash_defweak);
2597 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2598 }
45d6a902
AM
2599 }
2600
2601 return TRUE;
2602}
2603
2604/* Make the backend pick a good value for a dynamic symbol. This is
2605 called via elf_link_hash_traverse, and also calls itself
2606 recursively. */
2607
2608bfd_boolean
268b6b39 2609_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 2610{
268b6b39 2611 struct elf_info_failed *eif = data;
45d6a902 2612 bfd *dynobj;
9c5bfbb7 2613 const struct elf_backend_data *bed;
45d6a902 2614
0eddce27 2615 if (! is_elf_hash_table (eif->info->hash))
45d6a902
AM
2616 return FALSE;
2617
2618 if (h->root.type == bfd_link_hash_warning)
2619 {
a6aa5195
AM
2620 h->got = elf_hash_table (eif->info)->init_got_offset;
2621 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2622
2623 /* When warning symbols are created, they **replace** the "real"
2624 entry in the hash table, thus we never get to see the real
2625 symbol in a hash traversal. So look at it now. */
2626 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2627 }
2628
2629 /* Ignore indirect symbols. These are added by the versioning code. */
2630 if (h->root.type == bfd_link_hash_indirect)
2631 return TRUE;
2632
2633 /* Fix the symbol flags. */
2634 if (! _bfd_elf_fix_symbol_flags (h, eif))
2635 return FALSE;
2636
2637 /* If this symbol does not require a PLT entry, and it is not
2638 defined by a dynamic object, or is not referenced by a regular
2639 object, ignore it. We do have to handle a weak defined symbol,
2640 even if no regular object refers to it, if we decided to add it
2641 to the dynamic symbol table. FIXME: Do we normally need to worry
2642 about symbols which are defined by one dynamic object and
2643 referenced by another one? */
f5385ebf
AM
2644 if (!h->needs_plt
2645 && (h->def_regular
2646 || !h->def_dynamic
2647 || (!h->ref_regular
f6e332e6 2648 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
45d6a902 2649 {
a6aa5195 2650 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2651 return TRUE;
2652 }
2653
2654 /* If we've already adjusted this symbol, don't do it again. This
2655 can happen via a recursive call. */
f5385ebf 2656 if (h->dynamic_adjusted)
45d6a902
AM
2657 return TRUE;
2658
2659 /* Don't look at this symbol again. Note that we must set this
2660 after checking the above conditions, because we may look at a
2661 symbol once, decide not to do anything, and then get called
2662 recursively later after REF_REGULAR is set below. */
f5385ebf 2663 h->dynamic_adjusted = 1;
45d6a902
AM
2664
2665 /* If this is a weak definition, and we know a real definition, and
2666 the real symbol is not itself defined by a regular object file,
2667 then get a good value for the real definition. We handle the
2668 real symbol first, for the convenience of the backend routine.
2669
2670 Note that there is a confusing case here. If the real definition
2671 is defined by a regular object file, we don't get the real symbol
2672 from the dynamic object, but we do get the weak symbol. If the
2673 processor backend uses a COPY reloc, then if some routine in the
2674 dynamic object changes the real symbol, we will not see that
2675 change in the corresponding weak symbol. This is the way other
2676 ELF linkers work as well, and seems to be a result of the shared
2677 library model.
2678
2679 I will clarify this issue. Most SVR4 shared libraries define the
2680 variable _timezone and define timezone as a weak synonym. The
2681 tzset call changes _timezone. If you write
2682 extern int timezone;
2683 int _timezone = 5;
2684 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2685 you might expect that, since timezone is a synonym for _timezone,
2686 the same number will print both times. However, if the processor
2687 backend uses a COPY reloc, then actually timezone will be copied
2688 into your process image, and, since you define _timezone
2689 yourself, _timezone will not. Thus timezone and _timezone will
2690 wind up at different memory locations. The tzset call will set
2691 _timezone, leaving timezone unchanged. */
2692
f6e332e6 2693 if (h->u.weakdef != NULL)
45d6a902
AM
2694 {
2695 /* If we get to this point, we know there is an implicit
2696 reference by a regular object file via the weak symbol H.
2697 FIXME: Is this really true? What if the traversal finds
f6e332e6
AM
2698 H->U.WEAKDEF before it finds H? */
2699 h->u.weakdef->ref_regular = 1;
45d6a902 2700
f6e332e6 2701 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
45d6a902
AM
2702 return FALSE;
2703 }
2704
2705 /* If a symbol has no type and no size and does not require a PLT
2706 entry, then we are probably about to do the wrong thing here: we
2707 are probably going to create a COPY reloc for an empty object.
2708 This case can arise when a shared object is built with assembly
2709 code, and the assembly code fails to set the symbol type. */
2710 if (h->size == 0
2711 && h->type == STT_NOTYPE
f5385ebf 2712 && !h->needs_plt)
45d6a902
AM
2713 (*_bfd_error_handler)
2714 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2715 h->root.root.string);
2716
2717 dynobj = elf_hash_table (eif->info)->dynobj;
2718 bed = get_elf_backend_data (dynobj);
e7c33416 2719
45d6a902
AM
2720 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2721 {
2722 eif->failed = TRUE;
2723 return FALSE;
2724 }
2725
2726 return TRUE;
2727}
2728
027297b7
L
2729/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2730 DYNBSS. */
2731
2732bfd_boolean
2733_bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2734 asection *dynbss)
2735{
91ac5911 2736 unsigned int power_of_two;
027297b7
L
2737 bfd_vma mask;
2738 asection *sec = h->root.u.def.section;
2739
2740 /* The section aligment of definition is the maximum alignment
91ac5911
L
2741 requirement of symbols defined in the section. Since we don't
2742 know the symbol alignment requirement, we start with the
2743 maximum alignment and check low bits of the symbol address
2744 for the minimum alignment. */
2745 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2746 mask = ((bfd_vma) 1 << power_of_two) - 1;
2747 while ((h->root.u.def.value & mask) != 0)
2748 {
2749 mask >>= 1;
2750 --power_of_two;
2751 }
027297b7 2752
91ac5911
L
2753 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2754 dynbss))
027297b7
L
2755 {
2756 /* Adjust the section alignment if needed. */
2757 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
91ac5911 2758 power_of_two))
027297b7
L
2759 return FALSE;
2760 }
2761
91ac5911 2762 /* We make sure that the symbol will be aligned properly. */
027297b7
L
2763 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2764
2765 /* Define the symbol as being at this point in DYNBSS. */
2766 h->root.u.def.section = dynbss;
2767 h->root.u.def.value = dynbss->size;
2768
2769 /* Increment the size of DYNBSS to make room for the symbol. */
2770 dynbss->size += h->size;
2771
2772 return TRUE;
2773}
2774
45d6a902
AM
2775/* Adjust all external symbols pointing into SEC_MERGE sections
2776 to reflect the object merging within the sections. */
2777
2778bfd_boolean
268b6b39 2779_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
2780{
2781 asection *sec;
2782
2783 if (h->root.type == bfd_link_hash_warning)
2784 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2785
2786 if ((h->root.type == bfd_link_hash_defined
2787 || h->root.type == bfd_link_hash_defweak)
2788 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2789 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2790 {
268b6b39 2791 bfd *output_bfd = data;
45d6a902
AM
2792
2793 h->root.u.def.value =
2794 _bfd_merged_section_offset (output_bfd,
2795 &h->root.u.def.section,
2796 elf_section_data (sec)->sec_info,
753731ee 2797 h->root.u.def.value);
45d6a902
AM
2798 }
2799
2800 return TRUE;
2801}
986a241f
RH
2802
2803/* Returns false if the symbol referred to by H should be considered
2804 to resolve local to the current module, and true if it should be
2805 considered to bind dynamically. */
2806
2807bfd_boolean
268b6b39
AM
2808_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2809 struct bfd_link_info *info,
2810 bfd_boolean ignore_protected)
986a241f
RH
2811{
2812 bfd_boolean binding_stays_local_p;
fcb93ecf
PB
2813 const struct elf_backend_data *bed;
2814 struct elf_link_hash_table *hash_table;
986a241f
RH
2815
2816 if (h == NULL)
2817 return FALSE;
2818
2819 while (h->root.type == bfd_link_hash_indirect
2820 || h->root.type == bfd_link_hash_warning)
2821 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2822
2823 /* If it was forced local, then clearly it's not dynamic. */
2824 if (h->dynindx == -1)
2825 return FALSE;
f5385ebf 2826 if (h->forced_local)
986a241f
RH
2827 return FALSE;
2828
2829 /* Identify the cases where name binding rules say that a
2830 visible symbol resolves locally. */
55255dae 2831 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
986a241f
RH
2832
2833 switch (ELF_ST_VISIBILITY (h->other))
2834 {
2835 case STV_INTERNAL:
2836 case STV_HIDDEN:
2837 return FALSE;
2838
2839 case STV_PROTECTED:
fcb93ecf
PB
2840 hash_table = elf_hash_table (info);
2841 if (!is_elf_hash_table (hash_table))
2842 return FALSE;
2843
2844 bed = get_elf_backend_data (hash_table->dynobj);
2845
986a241f
RH
2846 /* Proper resolution for function pointer equality may require
2847 that these symbols perhaps be resolved dynamically, even though
2848 we should be resolving them to the current module. */
fcb93ecf 2849 if (!ignore_protected || !bed->is_function_type (h->type))
986a241f
RH
2850 binding_stays_local_p = TRUE;
2851 break;
2852
2853 default:
986a241f
RH
2854 break;
2855 }
2856
aa37626c 2857 /* If it isn't defined locally, then clearly it's dynamic. */
f5385ebf 2858 if (!h->def_regular)
aa37626c
L
2859 return TRUE;
2860
986a241f
RH
2861 /* Otherwise, the symbol is dynamic if binding rules don't tell
2862 us that it remains local. */
2863 return !binding_stays_local_p;
2864}
f6c52c13
AM
2865
2866/* Return true if the symbol referred to by H should be considered
2867 to resolve local to the current module, and false otherwise. Differs
2868 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2869 undefined symbols and weak symbols. */
2870
2871bfd_boolean
268b6b39
AM
2872_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2873 struct bfd_link_info *info,
2874 bfd_boolean local_protected)
f6c52c13 2875{
fcb93ecf
PB
2876 const struct elf_backend_data *bed;
2877 struct elf_link_hash_table *hash_table;
2878
f6c52c13
AM
2879 /* If it's a local sym, of course we resolve locally. */
2880 if (h == NULL)
2881 return TRUE;
2882
d95edcac
L
2883 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2884 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2885 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2886 return TRUE;
2887
7e2294f9
AO
2888 /* Common symbols that become definitions don't get the DEF_REGULAR
2889 flag set, so test it first, and don't bail out. */
2890 if (ELF_COMMON_DEF_P (h))
2891 /* Do nothing. */;
f6c52c13 2892 /* If we don't have a definition in a regular file, then we can't
49ff44d6
L
2893 resolve locally. The sym is either undefined or dynamic. */
2894 else if (!h->def_regular)
f6c52c13
AM
2895 return FALSE;
2896
2897 /* Forced local symbols resolve locally. */
f5385ebf 2898 if (h->forced_local)
f6c52c13
AM
2899 return TRUE;
2900
2901 /* As do non-dynamic symbols. */
2902 if (h->dynindx == -1)
2903 return TRUE;
2904
2905 /* At this point, we know the symbol is defined and dynamic. In an
2906 executable it must resolve locally, likewise when building symbolic
2907 shared libraries. */
55255dae 2908 if (info->executable || SYMBOLIC_BIND (info, h))
f6c52c13
AM
2909 return TRUE;
2910
2911 /* Now deal with defined dynamic symbols in shared libraries. Ones
2912 with default visibility might not resolve locally. */
2913 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2914 return FALSE;
2915
fcb93ecf
PB
2916 hash_table = elf_hash_table (info);
2917 if (!is_elf_hash_table (hash_table))
2918 return TRUE;
2919
2920 bed = get_elf_backend_data (hash_table->dynobj);
2921
1c16dfa5 2922 /* STV_PROTECTED non-function symbols are local. */
fcb93ecf 2923 if (!bed->is_function_type (h->type))
1c16dfa5
L
2924 return TRUE;
2925
f6c52c13
AM
2926 /* Function pointer equality tests may require that STV_PROTECTED
2927 symbols be treated as dynamic symbols, even when we know that the
2928 dynamic linker will resolve them locally. */
2929 return local_protected;
2930}
e1918d23
AM
2931
2932/* Caches some TLS segment info, and ensures that the TLS segment vma is
2933 aligned. Returns the first TLS output section. */
2934
2935struct bfd_section *
2936_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2937{
2938 struct bfd_section *sec, *tls;
2939 unsigned int align = 0;
2940
2941 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2942 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2943 break;
2944 tls = sec;
2945
2946 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2947 if (sec->alignment_power > align)
2948 align = sec->alignment_power;
2949
2950 elf_hash_table (info)->tls_sec = tls;
2951
2952 /* Ensure the alignment of the first section is the largest alignment,
2953 so that the tls segment starts aligned. */
2954 if (tls != NULL)
2955 tls->alignment_power = align;
2956
2957 return tls;
2958}
0ad989f9
L
2959
2960/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2961static bfd_boolean
2962is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2963 Elf_Internal_Sym *sym)
2964{
a4d8e49b
L
2965 const struct elf_backend_data *bed;
2966
0ad989f9
L
2967 /* Local symbols do not count, but target specific ones might. */
2968 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2969 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2970 return FALSE;
2971
fcb93ecf 2972 bed = get_elf_backend_data (abfd);
0ad989f9 2973 /* Function symbols do not count. */
fcb93ecf 2974 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
0ad989f9
L
2975 return FALSE;
2976
2977 /* If the section is undefined, then so is the symbol. */
2978 if (sym->st_shndx == SHN_UNDEF)
2979 return FALSE;
2980
2981 /* If the symbol is defined in the common section, then
2982 it is a common definition and so does not count. */
a4d8e49b 2983 if (bed->common_definition (sym))
0ad989f9
L
2984 return FALSE;
2985
2986 /* If the symbol is in a target specific section then we
2987 must rely upon the backend to tell us what it is. */
2988 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2989 /* FIXME - this function is not coded yet:
2990
2991 return _bfd_is_global_symbol_definition (abfd, sym);
2992
2993 Instead for now assume that the definition is not global,
2994 Even if this is wrong, at least the linker will behave
2995 in the same way that it used to do. */
2996 return FALSE;
2997
2998 return TRUE;
2999}
3000
3001/* Search the symbol table of the archive element of the archive ABFD
3002 whose archive map contains a mention of SYMDEF, and determine if
3003 the symbol is defined in this element. */
3004static bfd_boolean
3005elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3006{
3007 Elf_Internal_Shdr * hdr;
3008 bfd_size_type symcount;
3009 bfd_size_type extsymcount;
3010 bfd_size_type extsymoff;
3011 Elf_Internal_Sym *isymbuf;
3012 Elf_Internal_Sym *isym;
3013 Elf_Internal_Sym *isymend;
3014 bfd_boolean result;
3015
3016 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3017 if (abfd == NULL)
3018 return FALSE;
3019
3020 if (! bfd_check_format (abfd, bfd_object))
3021 return FALSE;
3022
3023 /* If we have already included the element containing this symbol in the
3024 link then we do not need to include it again. Just claim that any symbol
3025 it contains is not a definition, so that our caller will not decide to
3026 (re)include this element. */
3027 if (abfd->archive_pass)
3028 return FALSE;
3029
3030 /* Select the appropriate symbol table. */
3031 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3032 hdr = &elf_tdata (abfd)->symtab_hdr;
3033 else
3034 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3035
3036 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3037
3038 /* The sh_info field of the symtab header tells us where the
3039 external symbols start. We don't care about the local symbols. */
3040 if (elf_bad_symtab (abfd))
3041 {
3042 extsymcount = symcount;
3043 extsymoff = 0;
3044 }
3045 else
3046 {
3047 extsymcount = symcount - hdr->sh_info;
3048 extsymoff = hdr->sh_info;
3049 }
3050
3051 if (extsymcount == 0)
3052 return FALSE;
3053
3054 /* Read in the symbol table. */
3055 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3056 NULL, NULL, NULL);
3057 if (isymbuf == NULL)
3058 return FALSE;
3059
3060 /* Scan the symbol table looking for SYMDEF. */
3061 result = FALSE;
3062 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3063 {
3064 const char *name;
3065
3066 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3067 isym->st_name);
3068 if (name == NULL)
3069 break;
3070
3071 if (strcmp (name, symdef->name) == 0)
3072 {
3073 result = is_global_data_symbol_definition (abfd, isym);
3074 break;
3075 }
3076 }
3077
3078 free (isymbuf);
3079
3080 return result;
3081}
3082\f
5a580b3a
AM
3083/* Add an entry to the .dynamic table. */
3084
3085bfd_boolean
3086_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3087 bfd_vma tag,
3088 bfd_vma val)
3089{
3090 struct elf_link_hash_table *hash_table;
3091 const struct elf_backend_data *bed;
3092 asection *s;
3093 bfd_size_type newsize;
3094 bfd_byte *newcontents;
3095 Elf_Internal_Dyn dyn;
3096
3097 hash_table = elf_hash_table (info);
3098 if (! is_elf_hash_table (hash_table))
3099 return FALSE;
3100
3101 bed = get_elf_backend_data (hash_table->dynobj);
3102 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3103 BFD_ASSERT (s != NULL);
3104
eea6121a 3105 newsize = s->size + bed->s->sizeof_dyn;
5a580b3a
AM
3106 newcontents = bfd_realloc (s->contents, newsize);
3107 if (newcontents == NULL)
3108 return FALSE;
3109
3110 dyn.d_tag = tag;
3111 dyn.d_un.d_val = val;
eea6121a 3112 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
5a580b3a 3113
eea6121a 3114 s->size = newsize;
5a580b3a
AM
3115 s->contents = newcontents;
3116
3117 return TRUE;
3118}
3119
3120/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3121 otherwise just check whether one already exists. Returns -1 on error,
3122 1 if a DT_NEEDED tag already exists, and 0 on success. */
3123
4ad4eba5 3124static int
7e9f0867
AM
3125elf_add_dt_needed_tag (bfd *abfd,
3126 struct bfd_link_info *info,
4ad4eba5
AM
3127 const char *soname,
3128 bfd_boolean do_it)
5a580b3a
AM
3129{
3130 struct elf_link_hash_table *hash_table;
3131 bfd_size_type oldsize;
3132 bfd_size_type strindex;
3133
7e9f0867
AM
3134 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3135 return -1;
3136
5a580b3a
AM
3137 hash_table = elf_hash_table (info);
3138 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3139 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3140 if (strindex == (bfd_size_type) -1)
3141 return -1;
3142
3143 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3144 {
3145 asection *sdyn;
3146 const struct elf_backend_data *bed;
3147 bfd_byte *extdyn;
3148
3149 bed = get_elf_backend_data (hash_table->dynobj);
3150 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
7e9f0867
AM
3151 if (sdyn != NULL)
3152 for (extdyn = sdyn->contents;
3153 extdyn < sdyn->contents + sdyn->size;
3154 extdyn += bed->s->sizeof_dyn)
3155 {
3156 Elf_Internal_Dyn dyn;
5a580b3a 3157
7e9f0867
AM
3158 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3159 if (dyn.d_tag == DT_NEEDED
3160 && dyn.d_un.d_val == strindex)
3161 {
3162 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3163 return 1;
3164 }
3165 }
5a580b3a
AM
3166 }
3167
3168 if (do_it)
3169 {
7e9f0867
AM
3170 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3171 return -1;
3172
5a580b3a
AM
3173 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3174 return -1;
3175 }
3176 else
3177 /* We were just checking for existence of the tag. */
3178 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3179
3180 return 0;
3181}
3182
3183/* Sort symbol by value and section. */
4ad4eba5
AM
3184static int
3185elf_sort_symbol (const void *arg1, const void *arg2)
5a580b3a
AM
3186{
3187 const struct elf_link_hash_entry *h1;
3188 const struct elf_link_hash_entry *h2;
10b7e05b 3189 bfd_signed_vma vdiff;
5a580b3a
AM
3190
3191 h1 = *(const struct elf_link_hash_entry **) arg1;
3192 h2 = *(const struct elf_link_hash_entry **) arg2;
10b7e05b
NC
3193 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3194 if (vdiff != 0)
3195 return vdiff > 0 ? 1 : -1;
3196 else
3197 {
3198 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3199 if (sdiff != 0)
3200 return sdiff > 0 ? 1 : -1;
3201 }
5a580b3a
AM
3202 return 0;
3203}
4ad4eba5 3204
5a580b3a
AM
3205/* This function is used to adjust offsets into .dynstr for
3206 dynamic symbols. This is called via elf_link_hash_traverse. */
3207
3208static bfd_boolean
3209elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3210{
3211 struct elf_strtab_hash *dynstr = data;
3212
3213 if (h->root.type == bfd_link_hash_warning)
3214 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3215
3216 if (h->dynindx != -1)
3217 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3218 return TRUE;
3219}
3220
3221/* Assign string offsets in .dynstr, update all structures referencing
3222 them. */
3223
4ad4eba5
AM
3224static bfd_boolean
3225elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5a580b3a
AM
3226{
3227 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3228 struct elf_link_local_dynamic_entry *entry;
3229 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3230 bfd *dynobj = hash_table->dynobj;
3231 asection *sdyn;
3232 bfd_size_type size;
3233 const struct elf_backend_data *bed;
3234 bfd_byte *extdyn;
3235
3236 _bfd_elf_strtab_finalize (dynstr);
3237 size = _bfd_elf_strtab_size (dynstr);
3238
3239 bed = get_elf_backend_data (dynobj);
3240 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3241 BFD_ASSERT (sdyn != NULL);
3242
3243 /* Update all .dynamic entries referencing .dynstr strings. */
3244 for (extdyn = sdyn->contents;
eea6121a 3245 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
3246 extdyn += bed->s->sizeof_dyn)
3247 {
3248 Elf_Internal_Dyn dyn;
3249
3250 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3251 switch (dyn.d_tag)
3252 {
3253 case DT_STRSZ:
3254 dyn.d_un.d_val = size;
3255 break;
3256 case DT_NEEDED:
3257 case DT_SONAME:
3258 case DT_RPATH:
3259 case DT_RUNPATH:
3260 case DT_FILTER:
3261 case DT_AUXILIARY:
3262 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3263 break;
3264 default:
3265 continue;
3266 }
3267 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3268 }
3269
3270 /* Now update local dynamic symbols. */
3271 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3272 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3273 entry->isym.st_name);
3274
3275 /* And the rest of dynamic symbols. */
3276 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3277
3278 /* Adjust version definitions. */
3279 if (elf_tdata (output_bfd)->cverdefs)
3280 {
3281 asection *s;
3282 bfd_byte *p;
3283 bfd_size_type i;
3284 Elf_Internal_Verdef def;
3285 Elf_Internal_Verdaux defaux;
3286
3287 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3288 p = s->contents;
3289 do
3290 {
3291 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3292 &def);
3293 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
3294 if (def.vd_aux != sizeof (Elf_External_Verdef))
3295 continue;
5a580b3a
AM
3296 for (i = 0; i < def.vd_cnt; ++i)
3297 {
3298 _bfd_elf_swap_verdaux_in (output_bfd,
3299 (Elf_External_Verdaux *) p, &defaux);
3300 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3301 defaux.vda_name);
3302 _bfd_elf_swap_verdaux_out (output_bfd,
3303 &defaux, (Elf_External_Verdaux *) p);
3304 p += sizeof (Elf_External_Verdaux);
3305 }
3306 }
3307 while (def.vd_next);
3308 }
3309
3310 /* Adjust version references. */
3311 if (elf_tdata (output_bfd)->verref)
3312 {
3313 asection *s;
3314 bfd_byte *p;
3315 bfd_size_type i;
3316 Elf_Internal_Verneed need;
3317 Elf_Internal_Vernaux needaux;
3318
3319 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3320 p = s->contents;
3321 do
3322 {
3323 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3324 &need);
3325 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3326 _bfd_elf_swap_verneed_out (output_bfd, &need,
3327 (Elf_External_Verneed *) p);
3328 p += sizeof (Elf_External_Verneed);
3329 for (i = 0; i < need.vn_cnt; ++i)
3330 {
3331 _bfd_elf_swap_vernaux_in (output_bfd,
3332 (Elf_External_Vernaux *) p, &needaux);
3333 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3334 needaux.vna_name);
3335 _bfd_elf_swap_vernaux_out (output_bfd,
3336 &needaux,
3337 (Elf_External_Vernaux *) p);
3338 p += sizeof (Elf_External_Vernaux);
3339 }
3340 }
3341 while (need.vn_next);
3342 }
3343
3344 return TRUE;
3345}
3346\f
13285a1b
AM
3347/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3348 The default is to only match when the INPUT and OUTPUT are exactly
3349 the same target. */
3350
3351bfd_boolean
3352_bfd_elf_default_relocs_compatible (const bfd_target *input,
3353 const bfd_target *output)
3354{
3355 return input == output;
3356}
3357
3358/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3359 This version is used when different targets for the same architecture
3360 are virtually identical. */
3361
3362bfd_boolean
3363_bfd_elf_relocs_compatible (const bfd_target *input,
3364 const bfd_target *output)
3365{
3366 const struct elf_backend_data *obed, *ibed;
3367
3368 if (input == output)
3369 return TRUE;
3370
3371 ibed = xvec_get_elf_backend_data (input);
3372 obed = xvec_get_elf_backend_data (output);
3373
3374 if (ibed->arch != obed->arch)
3375 return FALSE;
3376
3377 /* If both backends are using this function, deem them compatible. */
3378 return ibed->relocs_compatible == obed->relocs_compatible;
3379}
3380
4ad4eba5
AM
3381/* Add symbols from an ELF object file to the linker hash table. */
3382
3383static bfd_boolean
3384elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3385{
4ad4eba5
AM
3386 Elf_Internal_Shdr *hdr;
3387 bfd_size_type symcount;
3388 bfd_size_type extsymcount;
3389 bfd_size_type extsymoff;
3390 struct elf_link_hash_entry **sym_hash;
3391 bfd_boolean dynamic;
3392 Elf_External_Versym *extversym = NULL;
3393 Elf_External_Versym *ever;
3394 struct elf_link_hash_entry *weaks;
3395 struct elf_link_hash_entry **nondeflt_vers = NULL;
3396 bfd_size_type nondeflt_vers_cnt = 0;
3397 Elf_Internal_Sym *isymbuf = NULL;
3398 Elf_Internal_Sym *isym;
3399 Elf_Internal_Sym *isymend;
3400 const struct elf_backend_data *bed;
3401 bfd_boolean add_needed;
66eb6687 3402 struct elf_link_hash_table *htab;
4ad4eba5 3403 bfd_size_type amt;
66eb6687 3404 void *alloc_mark = NULL;
4f87808c
AM
3405 struct bfd_hash_entry **old_table = NULL;
3406 unsigned int old_size = 0;
3407 unsigned int old_count = 0;
66eb6687
AM
3408 void *old_tab = NULL;
3409 void *old_hash;
3410 void *old_ent;
3411 struct bfd_link_hash_entry *old_undefs = NULL;
3412 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3413 long old_dynsymcount = 0;
3414 size_t tabsize = 0;
3415 size_t hashsize = 0;
4ad4eba5 3416
66eb6687 3417 htab = elf_hash_table (info);
4ad4eba5 3418 bed = get_elf_backend_data (abfd);
4ad4eba5
AM
3419
3420 if ((abfd->flags & DYNAMIC) == 0)
3421 dynamic = FALSE;
3422 else
3423 {
3424 dynamic = TRUE;
3425
3426 /* You can't use -r against a dynamic object. Also, there's no
3427 hope of using a dynamic object which does not exactly match
3428 the format of the output file. */
3429 if (info->relocatable
66eb6687 3430 || !is_elf_hash_table (htab)
f13a99db 3431 || info->output_bfd->xvec != abfd->xvec)
4ad4eba5 3432 {
9a0789ec
NC
3433 if (info->relocatable)
3434 bfd_set_error (bfd_error_invalid_operation);
3435 else
3436 bfd_set_error (bfd_error_wrong_format);
4ad4eba5
AM
3437 goto error_return;
3438 }
3439 }
3440
3441 /* As a GNU extension, any input sections which are named
3442 .gnu.warning.SYMBOL are treated as warning symbols for the given
3443 symbol. This differs from .gnu.warning sections, which generate
3444 warnings when they are included in an output file. */
3445 if (info->executable)
3446 {
3447 asection *s;
3448
3449 for (s = abfd->sections; s != NULL; s = s->next)
3450 {
3451 const char *name;
3452
3453 name = bfd_get_section_name (abfd, s);
0112cd26 3454 if (CONST_STRNEQ (name, ".gnu.warning."))
4ad4eba5
AM
3455 {
3456 char *msg;
3457 bfd_size_type sz;
4ad4eba5
AM
3458
3459 name += sizeof ".gnu.warning." - 1;
3460
3461 /* If this is a shared object, then look up the symbol
3462 in the hash table. If it is there, and it is already
3463 been defined, then we will not be using the entry
3464 from this shared object, so we don't need to warn.
3465 FIXME: If we see the definition in a regular object
3466 later on, we will warn, but we shouldn't. The only
3467 fix is to keep track of what warnings we are supposed
3468 to emit, and then handle them all at the end of the
3469 link. */
3470 if (dynamic)
3471 {
3472 struct elf_link_hash_entry *h;
3473
66eb6687 3474 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4ad4eba5
AM
3475
3476 /* FIXME: What about bfd_link_hash_common? */
3477 if (h != NULL
3478 && (h->root.type == bfd_link_hash_defined
3479 || h->root.type == bfd_link_hash_defweak))
3480 {
3481 /* We don't want to issue this warning. Clobber
3482 the section size so that the warning does not
3483 get copied into the output file. */
eea6121a 3484 s->size = 0;
4ad4eba5
AM
3485 continue;
3486 }
3487 }
3488
eea6121a 3489 sz = s->size;
370a0e1b 3490 msg = bfd_alloc (abfd, sz + 1);
4ad4eba5
AM
3491 if (msg == NULL)
3492 goto error_return;
3493
370a0e1b 3494 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4ad4eba5
AM
3495 goto error_return;
3496
370a0e1b 3497 msg[sz] = '\0';
4ad4eba5
AM
3498
3499 if (! (_bfd_generic_link_add_one_symbol
3500 (info, abfd, name, BSF_WARNING, s, 0, msg,
66eb6687 3501 FALSE, bed->collect, NULL)))
4ad4eba5
AM
3502 goto error_return;
3503
3504 if (! info->relocatable)
3505 {
3506 /* Clobber the section size so that the warning does
3507 not get copied into the output file. */
eea6121a 3508 s->size = 0;
11d2f718
AM
3509
3510 /* Also set SEC_EXCLUDE, so that symbols defined in
3511 the warning section don't get copied to the output. */
3512 s->flags |= SEC_EXCLUDE;
4ad4eba5
AM
3513 }
3514 }
3515 }
3516 }
3517
3518 add_needed = TRUE;
3519 if (! dynamic)
3520 {
3521 /* If we are creating a shared library, create all the dynamic
3522 sections immediately. We need to attach them to something,
3523 so we attach them to this BFD, provided it is the right
3524 format. FIXME: If there are no input BFD's of the same
3525 format as the output, we can't make a shared library. */
3526 if (info->shared
66eb6687 3527 && is_elf_hash_table (htab)
f13a99db 3528 && info->output_bfd->xvec == abfd->xvec
66eb6687 3529 && !htab->dynamic_sections_created)
4ad4eba5
AM
3530 {
3531 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3532 goto error_return;
3533 }
3534 }
66eb6687 3535 else if (!is_elf_hash_table (htab))
4ad4eba5
AM
3536 goto error_return;
3537 else
3538 {
3539 asection *s;
3540 const char *soname = NULL;
3541 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3542 int ret;
3543
3544 /* ld --just-symbols and dynamic objects don't mix very well.
92fd189d 3545 ld shouldn't allow it. */
4ad4eba5
AM
3546 if ((s = abfd->sections) != NULL
3547 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
92fd189d 3548 abort ();
4ad4eba5
AM
3549
3550 /* If this dynamic lib was specified on the command line with
3551 --as-needed in effect, then we don't want to add a DT_NEEDED
3552 tag unless the lib is actually used. Similary for libs brought
e56f61be
L
3553 in by another lib's DT_NEEDED. When --no-add-needed is used
3554 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3555 any dynamic library in DT_NEEDED tags in the dynamic lib at
3556 all. */
3557 add_needed = (elf_dyn_lib_class (abfd)
3558 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3559 | DYN_NO_NEEDED)) == 0;
4ad4eba5
AM
3560
3561 s = bfd_get_section_by_name (abfd, ".dynamic");
3562 if (s != NULL)
3563 {
3564 bfd_byte *dynbuf;
3565 bfd_byte *extdyn;
cb33740c 3566 unsigned int elfsec;
4ad4eba5
AM
3567 unsigned long shlink;
3568
eea6121a 3569 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4ad4eba5
AM
3570 goto error_free_dyn;
3571
3572 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
cb33740c 3573 if (elfsec == SHN_BAD)
4ad4eba5
AM
3574 goto error_free_dyn;
3575 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3576
3577 for (extdyn = dynbuf;
eea6121a 3578 extdyn < dynbuf + s->size;
4ad4eba5
AM
3579 extdyn += bed->s->sizeof_dyn)
3580 {
3581 Elf_Internal_Dyn dyn;
3582
3583 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3584 if (dyn.d_tag == DT_SONAME)
3585 {
3586 unsigned int tagv = dyn.d_un.d_val;
3587 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3588 if (soname == NULL)
3589 goto error_free_dyn;
3590 }
3591 if (dyn.d_tag == DT_NEEDED)
3592 {
3593 struct bfd_link_needed_list *n, **pn;
3594 char *fnm, *anm;
3595 unsigned int tagv = dyn.d_un.d_val;
3596
3597 amt = sizeof (struct bfd_link_needed_list);
3598 n = bfd_alloc (abfd, amt);
3599 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3600 if (n == NULL || fnm == NULL)
3601 goto error_free_dyn;
3602 amt = strlen (fnm) + 1;
3603 anm = bfd_alloc (abfd, amt);
3604 if (anm == NULL)
3605 goto error_free_dyn;
3606 memcpy (anm, fnm, amt);
3607 n->name = anm;
3608 n->by = abfd;
3609 n->next = NULL;
66eb6687 3610 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4ad4eba5
AM
3611 ;
3612 *pn = n;
3613 }
3614 if (dyn.d_tag == DT_RUNPATH)
3615 {
3616 struct bfd_link_needed_list *n, **pn;
3617 char *fnm, *anm;
3618 unsigned int tagv = dyn.d_un.d_val;
3619
3620 amt = sizeof (struct bfd_link_needed_list);
3621 n = bfd_alloc (abfd, amt);
3622 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3623 if (n == NULL || fnm == NULL)
3624 goto error_free_dyn;
3625 amt = strlen (fnm) + 1;
3626 anm = bfd_alloc (abfd, amt);
3627 if (anm == NULL)
3628 goto error_free_dyn;
3629 memcpy (anm, fnm, amt);
3630 n->name = anm;
3631 n->by = abfd;
3632 n->next = NULL;
3633 for (pn = & runpath;
3634 *pn != NULL;
3635 pn = &(*pn)->next)
3636 ;
3637 *pn = n;
3638 }
3639 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3640 if (!runpath && dyn.d_tag == DT_RPATH)
3641 {
3642 struct bfd_link_needed_list *n, **pn;
3643 char *fnm, *anm;
3644 unsigned int tagv = dyn.d_un.d_val;
3645
3646 amt = sizeof (struct bfd_link_needed_list);
3647 n = bfd_alloc (abfd, amt);
3648 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3649 if (n == NULL || fnm == NULL)
3650 goto error_free_dyn;
3651 amt = strlen (fnm) + 1;
3652 anm = bfd_alloc (abfd, amt);
3653 if (anm == NULL)
3654 {
3655 error_free_dyn:
3656 free (dynbuf);
3657 goto error_return;
3658 }
3659 memcpy (anm, fnm, amt);
3660 n->name = anm;
3661 n->by = abfd;
3662 n->next = NULL;
3663 for (pn = & rpath;
3664 *pn != NULL;
3665 pn = &(*pn)->next)
3666 ;
3667 *pn = n;
3668 }
3669 }
3670
3671 free (dynbuf);
3672 }
3673
3674 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3675 frees all more recently bfd_alloc'd blocks as well. */
3676 if (runpath)
3677 rpath = runpath;
3678
3679 if (rpath)
3680 {
3681 struct bfd_link_needed_list **pn;
66eb6687 3682 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4ad4eba5
AM
3683 ;
3684 *pn = rpath;
3685 }
3686
3687 /* We do not want to include any of the sections in a dynamic
3688 object in the output file. We hack by simply clobbering the
3689 list of sections in the BFD. This could be handled more
3690 cleanly by, say, a new section flag; the existing
3691 SEC_NEVER_LOAD flag is not the one we want, because that one
3692 still implies that the section takes up space in the output
3693 file. */
3694 bfd_section_list_clear (abfd);
3695
4ad4eba5
AM
3696 /* Find the name to use in a DT_NEEDED entry that refers to this
3697 object. If the object has a DT_SONAME entry, we use it.
3698 Otherwise, if the generic linker stuck something in
3699 elf_dt_name, we use that. Otherwise, we just use the file
3700 name. */
3701 if (soname == NULL || *soname == '\0')
3702 {
3703 soname = elf_dt_name (abfd);
3704 if (soname == NULL || *soname == '\0')
3705 soname = bfd_get_filename (abfd);
3706 }
3707
3708 /* Save the SONAME because sometimes the linker emulation code
3709 will need to know it. */
3710 elf_dt_name (abfd) = soname;
3711
7e9f0867 3712 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
3713 if (ret < 0)
3714 goto error_return;
3715
3716 /* If we have already included this dynamic object in the
3717 link, just ignore it. There is no reason to include a
3718 particular dynamic object more than once. */
3719 if (ret > 0)
3720 return TRUE;
3721 }
3722
3723 /* If this is a dynamic object, we always link against the .dynsym
3724 symbol table, not the .symtab symbol table. The dynamic linker
3725 will only see the .dynsym symbol table, so there is no reason to
3726 look at .symtab for a dynamic object. */
3727
3728 if (! dynamic || elf_dynsymtab (abfd) == 0)
3729 hdr = &elf_tdata (abfd)->symtab_hdr;
3730 else
3731 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3732
3733 symcount = hdr->sh_size / bed->s->sizeof_sym;
3734
3735 /* The sh_info field of the symtab header tells us where the
3736 external symbols start. We don't care about the local symbols at
3737 this point. */
3738 if (elf_bad_symtab (abfd))
3739 {
3740 extsymcount = symcount;
3741 extsymoff = 0;
3742 }
3743 else
3744 {
3745 extsymcount = symcount - hdr->sh_info;
3746 extsymoff = hdr->sh_info;
3747 }
3748
3749 sym_hash = NULL;
3750 if (extsymcount != 0)
3751 {
3752 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3753 NULL, NULL, NULL);
3754 if (isymbuf == NULL)
3755 goto error_return;
3756
3757 /* We store a pointer to the hash table entry for each external
3758 symbol. */
3759 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3760 sym_hash = bfd_alloc (abfd, amt);
3761 if (sym_hash == NULL)
3762 goto error_free_sym;
3763 elf_sym_hashes (abfd) = sym_hash;
3764 }
3765
3766 if (dynamic)
3767 {
3768 /* Read in any version definitions. */
fc0e6df6
PB
3769 if (!_bfd_elf_slurp_version_tables (abfd,
3770 info->default_imported_symver))
4ad4eba5
AM
3771 goto error_free_sym;
3772
3773 /* Read in the symbol versions, but don't bother to convert them
3774 to internal format. */
3775 if (elf_dynversym (abfd) != 0)
3776 {
3777 Elf_Internal_Shdr *versymhdr;
3778
3779 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3780 extversym = bfd_malloc (versymhdr->sh_size);
3781 if (extversym == NULL)
3782 goto error_free_sym;
3783 amt = versymhdr->sh_size;
3784 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3785 || bfd_bread (extversym, amt, abfd) != amt)
3786 goto error_free_vers;
3787 }
3788 }
3789
66eb6687
AM
3790 /* If we are loading an as-needed shared lib, save the symbol table
3791 state before we start adding symbols. If the lib turns out
3792 to be unneeded, restore the state. */
3793 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3794 {
3795 unsigned int i;
3796 size_t entsize;
3797
3798 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3799 {
3800 struct bfd_hash_entry *p;
2de92251 3801 struct elf_link_hash_entry *h;
66eb6687
AM
3802
3803 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
2de92251
AM
3804 {
3805 h = (struct elf_link_hash_entry *) p;
3806 entsize += htab->root.table.entsize;
3807 if (h->root.type == bfd_link_hash_warning)
3808 entsize += htab->root.table.entsize;
3809 }
66eb6687
AM
3810 }
3811
3812 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3813 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3814 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3815 if (old_tab == NULL)
3816 goto error_free_vers;
3817
3818 /* Remember the current objalloc pointer, so that all mem for
3819 symbols added can later be reclaimed. */
3820 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3821 if (alloc_mark == NULL)
3822 goto error_free_vers;
3823
5061a885
AM
3824 /* Make a special call to the linker "notice" function to
3825 tell it that we are about to handle an as-needed lib. */
3826 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3827 notice_as_needed))
9af2a943 3828 goto error_free_vers;
5061a885 3829
66eb6687
AM
3830 /* Clone the symbol table and sym hashes. Remember some
3831 pointers into the symbol table, and dynamic symbol count. */
3832 old_hash = (char *) old_tab + tabsize;
3833 old_ent = (char *) old_hash + hashsize;
3834 memcpy (old_tab, htab->root.table.table, tabsize);
3835 memcpy (old_hash, sym_hash, hashsize);
3836 old_undefs = htab->root.undefs;
3837 old_undefs_tail = htab->root.undefs_tail;
4f87808c
AM
3838 old_table = htab->root.table.table;
3839 old_size = htab->root.table.size;
3840 old_count = htab->root.table.count;
66eb6687
AM
3841 old_dynsymcount = htab->dynsymcount;
3842
3843 for (i = 0; i < htab->root.table.size; i++)
3844 {
3845 struct bfd_hash_entry *p;
2de92251 3846 struct elf_link_hash_entry *h;
66eb6687
AM
3847
3848 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3849 {
3850 memcpy (old_ent, p, htab->root.table.entsize);
3851 old_ent = (char *) old_ent + htab->root.table.entsize;
2de92251
AM
3852 h = (struct elf_link_hash_entry *) p;
3853 if (h->root.type == bfd_link_hash_warning)
3854 {
3855 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3856 old_ent = (char *) old_ent + htab->root.table.entsize;
3857 }
66eb6687
AM
3858 }
3859 }
3860 }
4ad4eba5 3861
66eb6687 3862 weaks = NULL;
4ad4eba5
AM
3863 ever = extversym != NULL ? extversym + extsymoff : NULL;
3864 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3865 isym < isymend;
3866 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3867 {
3868 int bind;
3869 bfd_vma value;
af44c138 3870 asection *sec, *new_sec;
4ad4eba5
AM
3871 flagword flags;
3872 const char *name;
3873 struct elf_link_hash_entry *h;
3874 bfd_boolean definition;
3875 bfd_boolean size_change_ok;
3876 bfd_boolean type_change_ok;
3877 bfd_boolean new_weakdef;
3878 bfd_boolean override;
a4d8e49b 3879 bfd_boolean common;
4ad4eba5
AM
3880 unsigned int old_alignment;
3881 bfd *old_bfd;
3882
3883 override = FALSE;
3884
3885 flags = BSF_NO_FLAGS;
3886 sec = NULL;
3887 value = isym->st_value;
3888 *sym_hash = NULL;
a4d8e49b 3889 common = bed->common_definition (isym);
4ad4eba5
AM
3890
3891 bind = ELF_ST_BIND (isym->st_info);
3892 if (bind == STB_LOCAL)
3893 {
3894 /* This should be impossible, since ELF requires that all
3895 global symbols follow all local symbols, and that sh_info
3896 point to the first global symbol. Unfortunately, Irix 5
3897 screws this up. */
3898 continue;
3899 }
3900 else if (bind == STB_GLOBAL)
3901 {
a4d8e49b 3902 if (isym->st_shndx != SHN_UNDEF && !common)
4ad4eba5
AM
3903 flags = BSF_GLOBAL;
3904 }
3905 else if (bind == STB_WEAK)
3906 flags = BSF_WEAK;
3907 else
3908 {
3909 /* Leave it up to the processor backend. */
3910 }
3911
3912 if (isym->st_shndx == SHN_UNDEF)
3913 sec = bfd_und_section_ptr;
cb33740c
AM
3914 else if (isym->st_shndx == SHN_ABS)
3915 sec = bfd_abs_section_ptr;
3916 else if (isym->st_shndx == SHN_COMMON)
3917 {
3918 sec = bfd_com_section_ptr;
3919 /* What ELF calls the size we call the value. What ELF
3920 calls the value we call the alignment. */
3921 value = isym->st_size;
3922 }
3923 else
4ad4eba5
AM
3924 {
3925 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3926 if (sec == NULL)
3927 sec = bfd_abs_section_ptr;
529fcb95
PB
3928 else if (sec->kept_section)
3929 {
e5d08002
L
3930 /* Symbols from discarded section are undefined. We keep
3931 its visibility. */
529fcb95
PB
3932 sec = bfd_und_section_ptr;
3933 isym->st_shndx = SHN_UNDEF;
3934 }
4ad4eba5
AM
3935 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3936 value -= sec->vma;
3937 }
4ad4eba5
AM
3938
3939 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3940 isym->st_name);
3941 if (name == NULL)
3942 goto error_free_vers;
3943
3944 if (isym->st_shndx == SHN_COMMON
6a4a0940
JJ
3945 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3946 && !info->relocatable)
4ad4eba5
AM
3947 {
3948 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3949
3950 if (tcomm == NULL)
3951 {
3496cb2a
L
3952 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3953 (SEC_ALLOC
3954 | SEC_IS_COMMON
3955 | SEC_LINKER_CREATED
3956 | SEC_THREAD_LOCAL));
3957 if (tcomm == NULL)
4ad4eba5
AM
3958 goto error_free_vers;
3959 }
3960 sec = tcomm;
3961 }
66eb6687 3962 else if (bed->elf_add_symbol_hook)
4ad4eba5 3963 {
66eb6687
AM
3964 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3965 &sec, &value))
4ad4eba5
AM
3966 goto error_free_vers;
3967
3968 /* The hook function sets the name to NULL if this symbol
3969 should be skipped for some reason. */
3970 if (name == NULL)
3971 continue;
3972 }
3973
3974 /* Sanity check that all possibilities were handled. */
3975 if (sec == NULL)
3976 {
3977 bfd_set_error (bfd_error_bad_value);
3978 goto error_free_vers;
3979 }
3980
3981 if (bfd_is_und_section (sec)
3982 || bfd_is_com_section (sec))
3983 definition = FALSE;
3984 else
3985 definition = TRUE;
3986
3987 size_change_ok = FALSE;
66eb6687 3988 type_change_ok = bed->type_change_ok;
4ad4eba5
AM
3989 old_alignment = 0;
3990 old_bfd = NULL;
af44c138 3991 new_sec = sec;
4ad4eba5 3992
66eb6687 3993 if (is_elf_hash_table (htab))
4ad4eba5
AM
3994 {
3995 Elf_Internal_Versym iver;
3996 unsigned int vernum = 0;
3997 bfd_boolean skip;
3998
fc0e6df6 3999 if (ever == NULL)
4ad4eba5 4000 {
fc0e6df6
PB
4001 if (info->default_imported_symver)
4002 /* Use the default symbol version created earlier. */
4003 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4004 else
4005 iver.vs_vers = 0;
4006 }
4007 else
4008 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4009
4010 vernum = iver.vs_vers & VERSYM_VERSION;
4011
4012 /* If this is a hidden symbol, or if it is not version
4013 1, we append the version name to the symbol name.
cc86ff91
EB
4014 However, we do not modify a non-hidden absolute symbol
4015 if it is not a function, because it might be the version
4016 symbol itself. FIXME: What if it isn't? */
fc0e6df6 4017 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
fcb93ecf
PB
4018 || (vernum > 1
4019 && (!bfd_is_abs_section (sec)
4020 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
fc0e6df6
PB
4021 {
4022 const char *verstr;
4023 size_t namelen, verlen, newlen;
4024 char *newname, *p;
4025
4026 if (isym->st_shndx != SHN_UNDEF)
4ad4eba5 4027 {
fc0e6df6
PB
4028 if (vernum > elf_tdata (abfd)->cverdefs)
4029 verstr = NULL;
4030 else if (vernum > 1)
4031 verstr =
4032 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4033 else
4034 verstr = "";
4ad4eba5 4035
fc0e6df6 4036 if (verstr == NULL)
4ad4eba5 4037 {
fc0e6df6
PB
4038 (*_bfd_error_handler)
4039 (_("%B: %s: invalid version %u (max %d)"),
4040 abfd, name, vernum,
4041 elf_tdata (abfd)->cverdefs);
4042 bfd_set_error (bfd_error_bad_value);
4043 goto error_free_vers;
4ad4eba5 4044 }
fc0e6df6
PB
4045 }
4046 else
4047 {
4048 /* We cannot simply test for the number of
4049 entries in the VERNEED section since the
4050 numbers for the needed versions do not start
4051 at 0. */
4052 Elf_Internal_Verneed *t;
4053
4054 verstr = NULL;
4055 for (t = elf_tdata (abfd)->verref;
4056 t != NULL;
4057 t = t->vn_nextref)
4ad4eba5 4058 {
fc0e6df6 4059 Elf_Internal_Vernaux *a;
4ad4eba5 4060
fc0e6df6
PB
4061 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4062 {
4063 if (a->vna_other == vernum)
4ad4eba5 4064 {
fc0e6df6
PB
4065 verstr = a->vna_nodename;
4066 break;
4ad4eba5 4067 }
4ad4eba5 4068 }
fc0e6df6
PB
4069 if (a != NULL)
4070 break;
4071 }
4072 if (verstr == NULL)
4073 {
4074 (*_bfd_error_handler)
4075 (_("%B: %s: invalid needed version %d"),
4076 abfd, name, vernum);
4077 bfd_set_error (bfd_error_bad_value);
4078 goto error_free_vers;
4ad4eba5 4079 }
4ad4eba5 4080 }
fc0e6df6
PB
4081
4082 namelen = strlen (name);
4083 verlen = strlen (verstr);
4084 newlen = namelen + verlen + 2;
4085 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4086 && isym->st_shndx != SHN_UNDEF)
4087 ++newlen;
4088
66eb6687 4089 newname = bfd_hash_allocate (&htab->root.table, newlen);
fc0e6df6
PB
4090 if (newname == NULL)
4091 goto error_free_vers;
4092 memcpy (newname, name, namelen);
4093 p = newname + namelen;
4094 *p++ = ELF_VER_CHR;
4095 /* If this is a defined non-hidden version symbol,
4096 we add another @ to the name. This indicates the
4097 default version of the symbol. */
4098 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4099 && isym->st_shndx != SHN_UNDEF)
4100 *p++ = ELF_VER_CHR;
4101 memcpy (p, verstr, verlen + 1);
4102
4103 name = newname;
4ad4eba5
AM
4104 }
4105
af44c138
L
4106 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4107 &value, &old_alignment,
4ad4eba5
AM
4108 sym_hash, &skip, &override,
4109 &type_change_ok, &size_change_ok))
4110 goto error_free_vers;
4111
4112 if (skip)
4113 continue;
4114
4115 if (override)
4116 definition = FALSE;
4117
4118 h = *sym_hash;
4119 while (h->root.type == bfd_link_hash_indirect
4120 || h->root.type == bfd_link_hash_warning)
4121 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4122
4123 /* Remember the old alignment if this is a common symbol, so
4124 that we don't reduce the alignment later on. We can't
4125 check later, because _bfd_generic_link_add_one_symbol
4126 will set a default for the alignment which we want to
4127 override. We also remember the old bfd where the existing
4128 definition comes from. */
4129 switch (h->root.type)
4130 {
4131 default:
4132 break;
4133
4134 case bfd_link_hash_defined:
4135 case bfd_link_hash_defweak:
4136 old_bfd = h->root.u.def.section->owner;
4137 break;
4138
4139 case bfd_link_hash_common:
4140 old_bfd = h->root.u.c.p->section->owner;
4141 old_alignment = h->root.u.c.p->alignment_power;
4142 break;
4143 }
4144
4145 if (elf_tdata (abfd)->verdef != NULL
4146 && ! override
4147 && vernum > 1
4148 && definition)
4149 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4150 }
4151
4152 if (! (_bfd_generic_link_add_one_symbol
66eb6687 4153 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4ad4eba5
AM
4154 (struct bfd_link_hash_entry **) sym_hash)))
4155 goto error_free_vers;
4156
4157 h = *sym_hash;
4158 while (h->root.type == bfd_link_hash_indirect
4159 || h->root.type == bfd_link_hash_warning)
4160 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4161 *sym_hash = h;
4162
4163 new_weakdef = FALSE;
4164 if (dynamic
4165 && definition
4166 && (flags & BSF_WEAK) != 0
fcb93ecf 4167 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
66eb6687 4168 && is_elf_hash_table (htab)
f6e332e6 4169 && h->u.weakdef == NULL)
4ad4eba5
AM
4170 {
4171 /* Keep a list of all weak defined non function symbols from
4172 a dynamic object, using the weakdef field. Later in this
4173 function we will set the weakdef field to the correct
4174 value. We only put non-function symbols from dynamic
4175 objects on this list, because that happens to be the only
4176 time we need to know the normal symbol corresponding to a
4177 weak symbol, and the information is time consuming to
4178 figure out. If the weakdef field is not already NULL,
4179 then this symbol was already defined by some previous
4180 dynamic object, and we will be using that previous
4181 definition anyhow. */
4182
f6e332e6 4183 h->u.weakdef = weaks;
4ad4eba5
AM
4184 weaks = h;
4185 new_weakdef = TRUE;
4186 }
4187
4188 /* Set the alignment of a common symbol. */
a4d8e49b 4189 if ((common || bfd_is_com_section (sec))
4ad4eba5
AM
4190 && h->root.type == bfd_link_hash_common)
4191 {
4192 unsigned int align;
4193
a4d8e49b 4194 if (common)
af44c138
L
4195 align = bfd_log2 (isym->st_value);
4196 else
4197 {
4198 /* The new symbol is a common symbol in a shared object.
4199 We need to get the alignment from the section. */
4200 align = new_sec->alignment_power;
4201 }
4ad4eba5
AM
4202 if (align > old_alignment
4203 /* Permit an alignment power of zero if an alignment of one
4204 is specified and no other alignments have been specified. */
4205 || (isym->st_value == 1 && old_alignment == 0))
4206 h->root.u.c.p->alignment_power = align;
4207 else
4208 h->root.u.c.p->alignment_power = old_alignment;
4209 }
4210
66eb6687 4211 if (is_elf_hash_table (htab))
4ad4eba5 4212 {
4ad4eba5 4213 bfd_boolean dynsym;
4ad4eba5
AM
4214
4215 /* Check the alignment when a common symbol is involved. This
4216 can change when a common symbol is overridden by a normal
4217 definition or a common symbol is ignored due to the old
4218 normal definition. We need to make sure the maximum
4219 alignment is maintained. */
a4d8e49b 4220 if ((old_alignment || common)
4ad4eba5
AM
4221 && h->root.type != bfd_link_hash_common)
4222 {
4223 unsigned int common_align;
4224 unsigned int normal_align;
4225 unsigned int symbol_align;
4226 bfd *normal_bfd;
4227 bfd *common_bfd;
4228
4229 symbol_align = ffs (h->root.u.def.value) - 1;
4230 if (h->root.u.def.section->owner != NULL
4231 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4232 {
4233 normal_align = h->root.u.def.section->alignment_power;
4234 if (normal_align > symbol_align)
4235 normal_align = symbol_align;
4236 }
4237 else
4238 normal_align = symbol_align;
4239
4240 if (old_alignment)
4241 {
4242 common_align = old_alignment;
4243 common_bfd = old_bfd;
4244 normal_bfd = abfd;
4245 }
4246 else
4247 {
4248 common_align = bfd_log2 (isym->st_value);
4249 common_bfd = abfd;
4250 normal_bfd = old_bfd;
4251 }
4252
4253 if (normal_align < common_align)
d07676f8
NC
4254 {
4255 /* PR binutils/2735 */
4256 if (normal_bfd == NULL)
4257 (*_bfd_error_handler)
4258 (_("Warning: alignment %u of common symbol `%s' in %B"
4259 " is greater than the alignment (%u) of its section %A"),
4260 common_bfd, h->root.u.def.section,
4261 1 << common_align, name, 1 << normal_align);
4262 else
4263 (*_bfd_error_handler)
4264 (_("Warning: alignment %u of symbol `%s' in %B"
4265 " is smaller than %u in %B"),
4266 normal_bfd, common_bfd,
4267 1 << normal_align, name, 1 << common_align);
4268 }
4ad4eba5
AM
4269 }
4270
83ad0046
L
4271 /* Remember the symbol size if it isn't undefined. */
4272 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4ad4eba5
AM
4273 && (definition || h->size == 0))
4274 {
83ad0046
L
4275 if (h->size != 0
4276 && h->size != isym->st_size
4277 && ! size_change_ok)
4ad4eba5 4278 (*_bfd_error_handler)
d003868e
AM
4279 (_("Warning: size of symbol `%s' changed"
4280 " from %lu in %B to %lu in %B"),
4281 old_bfd, abfd,
4ad4eba5 4282 name, (unsigned long) h->size,
d003868e 4283 (unsigned long) isym->st_size);
4ad4eba5
AM
4284
4285 h->size = isym->st_size;
4286 }
4287
4288 /* If this is a common symbol, then we always want H->SIZE
4289 to be the size of the common symbol. The code just above
4290 won't fix the size if a common symbol becomes larger. We
4291 don't warn about a size change here, because that is
fcb93ecf
PB
4292 covered by --warn-common. Allow changed between different
4293 function types. */
4ad4eba5
AM
4294 if (h->root.type == bfd_link_hash_common)
4295 h->size = h->root.u.c.size;
4296
4297 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4298 && (definition || h->type == STT_NOTYPE))
4299 {
4300 if (h->type != STT_NOTYPE
4301 && h->type != ELF_ST_TYPE (isym->st_info)
4302 && ! type_change_ok)
4303 (*_bfd_error_handler)
d003868e
AM
4304 (_("Warning: type of symbol `%s' changed"
4305 " from %d to %d in %B"),
4306 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4ad4eba5
AM
4307
4308 h->type = ELF_ST_TYPE (isym->st_info);
4309 }
4310
54ac0771
L
4311 /* Merge st_other field. */
4312 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4ad4eba5
AM
4313
4314 /* Set a flag in the hash table entry indicating the type of
4315 reference or definition we just found. Keep a count of
4316 the number of dynamic symbols we find. A dynamic symbol
4317 is one which is referenced or defined by both a regular
4318 object and a shared object. */
4ad4eba5
AM
4319 dynsym = FALSE;
4320 if (! dynamic)
4321 {
4322 if (! definition)
4323 {
f5385ebf 4324 h->ref_regular = 1;
4ad4eba5 4325 if (bind != STB_WEAK)
f5385ebf 4326 h->ref_regular_nonweak = 1;
4ad4eba5
AM
4327 }
4328 else
d8880531
L
4329 {
4330 h->def_regular = 1;
4331 if (h->def_dynamic)
4332 {
4333 h->def_dynamic = 0;
4334 h->ref_dynamic = 1;
4335 h->dynamic_def = 1;
4336 }
4337 }
4ad4eba5 4338 if (! info->executable
f5385ebf
AM
4339 || h->def_dynamic
4340 || h->ref_dynamic)
4ad4eba5
AM
4341 dynsym = TRUE;
4342 }
4343 else
4344 {
4345 if (! definition)
f5385ebf 4346 h->ref_dynamic = 1;
4ad4eba5 4347 else
f5385ebf
AM
4348 h->def_dynamic = 1;
4349 if (h->def_regular
4350 || h->ref_regular
f6e332e6 4351 || (h->u.weakdef != NULL
4ad4eba5 4352 && ! new_weakdef
f6e332e6 4353 && h->u.weakdef->dynindx != -1))
4ad4eba5
AM
4354 dynsym = TRUE;
4355 }
4356
b2064611 4357 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
92b7c7b6
L
4358 {
4359 /* We don't want to make debug symbol dynamic. */
4360 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4361 dynsym = FALSE;
4362 }
4363
4ad4eba5
AM
4364 /* Check to see if we need to add an indirect symbol for
4365 the default name. */
4366 if (definition || h->root.type == bfd_link_hash_common)
4367 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4368 &sec, &value, &dynsym,
4369 override))
4370 goto error_free_vers;
4371
4372 if (definition && !dynamic)
4373 {
4374 char *p = strchr (name, ELF_VER_CHR);
4375 if (p != NULL && p[1] != ELF_VER_CHR)
4376 {
4377 /* Queue non-default versions so that .symver x, x@FOO
4378 aliases can be checked. */
66eb6687 4379 if (!nondeflt_vers)
4ad4eba5 4380 {
66eb6687
AM
4381 amt = ((isymend - isym + 1)
4382 * sizeof (struct elf_link_hash_entry *));
4ad4eba5 4383 nondeflt_vers = bfd_malloc (amt);
14b1c01e
AM
4384 if (!nondeflt_vers)
4385 goto error_free_vers;
4ad4eba5 4386 }
66eb6687 4387 nondeflt_vers[nondeflt_vers_cnt++] = h;
4ad4eba5
AM
4388 }
4389 }
4390
4391 if (dynsym && h->dynindx == -1)
4392 {
c152c796 4393 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5 4394 goto error_free_vers;
f6e332e6 4395 if (h->u.weakdef != NULL
4ad4eba5 4396 && ! new_weakdef
f6e332e6 4397 && h->u.weakdef->dynindx == -1)
4ad4eba5 4398 {
66eb6687 4399 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4ad4eba5
AM
4400 goto error_free_vers;
4401 }
4402 }
4403 else if (dynsym && h->dynindx != -1)
4404 /* If the symbol already has a dynamic index, but
4405 visibility says it should not be visible, turn it into
4406 a local symbol. */
4407 switch (ELF_ST_VISIBILITY (h->other))
4408 {
4409 case STV_INTERNAL:
4410 case STV_HIDDEN:
4411 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4412 dynsym = FALSE;
4413 break;
4414 }
4415
4416 if (!add_needed
4417 && definition
4418 && dynsym
f5385ebf 4419 && h->ref_regular)
4ad4eba5
AM
4420 {
4421 int ret;
4422 const char *soname = elf_dt_name (abfd);
4423
4424 /* A symbol from a library loaded via DT_NEEDED of some
4425 other library is referenced by a regular object.
e56f61be
L
4426 Add a DT_NEEDED entry for it. Issue an error if
4427 --no-add-needed is used. */
4428 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4429 {
4430 (*_bfd_error_handler)
4431 (_("%s: invalid DSO for symbol `%s' definition"),
d003868e 4432 abfd, name);
e56f61be
L
4433 bfd_set_error (bfd_error_bad_value);
4434 goto error_free_vers;
4435 }
4436
a5db907e
AM
4437 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4438
4ad4eba5 4439 add_needed = TRUE;
7e9f0867 4440 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
4441 if (ret < 0)
4442 goto error_free_vers;
4443
4444 BFD_ASSERT (ret == 0);
4445 }
4446 }
4447 }
4448
66eb6687
AM
4449 if (extversym != NULL)
4450 {
4451 free (extversym);
4452 extversym = NULL;
4453 }
4454
4455 if (isymbuf != NULL)
4456 {
4457 free (isymbuf);
4458 isymbuf = NULL;
4459 }
4460
4461 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4462 {
4463 unsigned int i;
4464
4465 /* Restore the symbol table. */
97fed1c9
JJ
4466 if (bed->as_needed_cleanup)
4467 (*bed->as_needed_cleanup) (abfd, info);
66eb6687
AM
4468 old_hash = (char *) old_tab + tabsize;
4469 old_ent = (char *) old_hash + hashsize;
4470 sym_hash = elf_sym_hashes (abfd);
4f87808c
AM
4471 htab->root.table.table = old_table;
4472 htab->root.table.size = old_size;
4473 htab->root.table.count = old_count;
66eb6687
AM
4474 memcpy (htab->root.table.table, old_tab, tabsize);
4475 memcpy (sym_hash, old_hash, hashsize);
4476 htab->root.undefs = old_undefs;
4477 htab->root.undefs_tail = old_undefs_tail;
4478 for (i = 0; i < htab->root.table.size; i++)
4479 {
4480 struct bfd_hash_entry *p;
4481 struct elf_link_hash_entry *h;
4482
4483 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4484 {
4485 h = (struct elf_link_hash_entry *) p;
2de92251
AM
4486 if (h->root.type == bfd_link_hash_warning)
4487 h = (struct elf_link_hash_entry *) h->root.u.i.link;
66eb6687
AM
4488 if (h->dynindx >= old_dynsymcount)
4489 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
2de92251 4490
66eb6687
AM
4491 memcpy (p, old_ent, htab->root.table.entsize);
4492 old_ent = (char *) old_ent + htab->root.table.entsize;
2de92251
AM
4493 h = (struct elf_link_hash_entry *) p;
4494 if (h->root.type == bfd_link_hash_warning)
4495 {
4496 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4497 old_ent = (char *) old_ent + htab->root.table.entsize;
4498 }
66eb6687
AM
4499 }
4500 }
4501
5061a885
AM
4502 /* Make a special call to the linker "notice" function to
4503 tell it that symbols added for crefs may need to be removed. */
4504 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4505 notice_not_needed))
9af2a943 4506 goto error_free_vers;
5061a885 4507
66eb6687
AM
4508 free (old_tab);
4509 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4510 alloc_mark);
4511 if (nondeflt_vers != NULL)
4512 free (nondeflt_vers);
4513 return TRUE;
4514 }
2de92251 4515
66eb6687
AM
4516 if (old_tab != NULL)
4517 {
5061a885
AM
4518 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4519 notice_needed))
9af2a943 4520 goto error_free_vers;
66eb6687
AM
4521 free (old_tab);
4522 old_tab = NULL;
4523 }
4524
4ad4eba5
AM
4525 /* Now that all the symbols from this input file are created, handle
4526 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4527 if (nondeflt_vers != NULL)
4528 {
4529 bfd_size_type cnt, symidx;
4530
4531 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4532 {
4533 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4534 char *shortname, *p;
4535
4536 p = strchr (h->root.root.string, ELF_VER_CHR);
4537 if (p == NULL
4538 || (h->root.type != bfd_link_hash_defined
4539 && h->root.type != bfd_link_hash_defweak))
4540 continue;
4541
4542 amt = p - h->root.root.string;
4543 shortname = bfd_malloc (amt + 1);
14b1c01e
AM
4544 if (!shortname)
4545 goto error_free_vers;
4ad4eba5
AM
4546 memcpy (shortname, h->root.root.string, amt);
4547 shortname[amt] = '\0';
4548
4549 hi = (struct elf_link_hash_entry *)
66eb6687 4550 bfd_link_hash_lookup (&htab->root, shortname,
4ad4eba5
AM
4551 FALSE, FALSE, FALSE);
4552 if (hi != NULL
4553 && hi->root.type == h->root.type
4554 && hi->root.u.def.value == h->root.u.def.value
4555 && hi->root.u.def.section == h->root.u.def.section)
4556 {
4557 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4558 hi->root.type = bfd_link_hash_indirect;
4559 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
fcfa13d2 4560 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4ad4eba5
AM
4561 sym_hash = elf_sym_hashes (abfd);
4562 if (sym_hash)
4563 for (symidx = 0; symidx < extsymcount; ++symidx)
4564 if (sym_hash[symidx] == hi)
4565 {
4566 sym_hash[symidx] = h;
4567 break;
4568 }
4569 }
4570 free (shortname);
4571 }
4572 free (nondeflt_vers);
4573 nondeflt_vers = NULL;
4574 }
4575
4ad4eba5
AM
4576 /* Now set the weakdefs field correctly for all the weak defined
4577 symbols we found. The only way to do this is to search all the
4578 symbols. Since we only need the information for non functions in
4579 dynamic objects, that's the only time we actually put anything on
4580 the list WEAKS. We need this information so that if a regular
4581 object refers to a symbol defined weakly in a dynamic object, the
4582 real symbol in the dynamic object is also put in the dynamic
4583 symbols; we also must arrange for both symbols to point to the
4584 same memory location. We could handle the general case of symbol
4585 aliasing, but a general symbol alias can only be generated in
4586 assembler code, handling it correctly would be very time
4587 consuming, and other ELF linkers don't handle general aliasing
4588 either. */
4589 if (weaks != NULL)
4590 {
4591 struct elf_link_hash_entry **hpp;
4592 struct elf_link_hash_entry **hppend;
4593 struct elf_link_hash_entry **sorted_sym_hash;
4594 struct elf_link_hash_entry *h;
4595 size_t sym_count;
4596
4597 /* Since we have to search the whole symbol list for each weak
4598 defined symbol, search time for N weak defined symbols will be
4599 O(N^2). Binary search will cut it down to O(NlogN). */
4600 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4601 sorted_sym_hash = bfd_malloc (amt);
4602 if (sorted_sym_hash == NULL)
4603 goto error_return;
4604 sym_hash = sorted_sym_hash;
4605 hpp = elf_sym_hashes (abfd);
4606 hppend = hpp + extsymcount;
4607 sym_count = 0;
4608 for (; hpp < hppend; hpp++)
4609 {
4610 h = *hpp;
4611 if (h != NULL
4612 && h->root.type == bfd_link_hash_defined
fcb93ecf 4613 && !bed->is_function_type (h->type))
4ad4eba5
AM
4614 {
4615 *sym_hash = h;
4616 sym_hash++;
4617 sym_count++;
4618 }
4619 }
4620
4621 qsort (sorted_sym_hash, sym_count,
4622 sizeof (struct elf_link_hash_entry *),
4623 elf_sort_symbol);
4624
4625 while (weaks != NULL)
4626 {
4627 struct elf_link_hash_entry *hlook;
4628 asection *slook;
4629 bfd_vma vlook;
4630 long ilook;
4631 size_t i, j, idx;
4632
4633 hlook = weaks;
f6e332e6
AM
4634 weaks = hlook->u.weakdef;
4635 hlook->u.weakdef = NULL;
4ad4eba5
AM
4636
4637 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4638 || hlook->root.type == bfd_link_hash_defweak
4639 || hlook->root.type == bfd_link_hash_common
4640 || hlook->root.type == bfd_link_hash_indirect);
4641 slook = hlook->root.u.def.section;
4642 vlook = hlook->root.u.def.value;
4643
4644 ilook = -1;
4645 i = 0;
4646 j = sym_count;
4647 while (i < j)
4648 {
4649 bfd_signed_vma vdiff;
4650 idx = (i + j) / 2;
4651 h = sorted_sym_hash [idx];
4652 vdiff = vlook - h->root.u.def.value;
4653 if (vdiff < 0)
4654 j = idx;
4655 else if (vdiff > 0)
4656 i = idx + 1;
4657 else
4658 {
a9b881be 4659 long sdiff = slook->id - h->root.u.def.section->id;
4ad4eba5
AM
4660 if (sdiff < 0)
4661 j = idx;
4662 else if (sdiff > 0)
4663 i = idx + 1;
4664 else
4665 {
4666 ilook = idx;
4667 break;
4668 }
4669 }
4670 }
4671
4672 /* We didn't find a value/section match. */
4673 if (ilook == -1)
4674 continue;
4675
4676 for (i = ilook; i < sym_count; i++)
4677 {
4678 h = sorted_sym_hash [i];
4679
4680 /* Stop if value or section doesn't match. */
4681 if (h->root.u.def.value != vlook
4682 || h->root.u.def.section != slook)
4683 break;
4684 else if (h != hlook)
4685 {
f6e332e6 4686 hlook->u.weakdef = h;
4ad4eba5
AM
4687
4688 /* If the weak definition is in the list of dynamic
4689 symbols, make sure the real definition is put
4690 there as well. */
4691 if (hlook->dynindx != -1 && h->dynindx == -1)
4692 {
c152c796 4693 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4dd07732
AM
4694 {
4695 err_free_sym_hash:
4696 free (sorted_sym_hash);
4697 goto error_return;
4698 }
4ad4eba5
AM
4699 }
4700
4701 /* If the real definition is in the list of dynamic
4702 symbols, make sure the weak definition is put
4703 there as well. If we don't do this, then the
4704 dynamic loader might not merge the entries for the
4705 real definition and the weak definition. */
4706 if (h->dynindx != -1 && hlook->dynindx == -1)
4707 {
c152c796 4708 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4dd07732 4709 goto err_free_sym_hash;
4ad4eba5
AM
4710 }
4711 break;
4712 }
4713 }
4714 }
4715
4716 free (sorted_sym_hash);
4717 }
4718
33177bb1
AM
4719 if (bed->check_directives
4720 && !(*bed->check_directives) (abfd, info))
4721 return FALSE;
85fbca6a 4722
4ad4eba5
AM
4723 /* If this object is the same format as the output object, and it is
4724 not a shared library, then let the backend look through the
4725 relocs.
4726
4727 This is required to build global offset table entries and to
4728 arrange for dynamic relocs. It is not required for the
4729 particular common case of linking non PIC code, even when linking
4730 against shared libraries, but unfortunately there is no way of
4731 knowing whether an object file has been compiled PIC or not.
4732 Looking through the relocs is not particularly time consuming.
4733 The problem is that we must either (1) keep the relocs in memory,
4734 which causes the linker to require additional runtime memory or
4735 (2) read the relocs twice from the input file, which wastes time.
4736 This would be a good case for using mmap.
4737
4738 I have no idea how to handle linking PIC code into a file of a
4739 different format. It probably can't be done. */
4ad4eba5 4740 if (! dynamic
66eb6687 4741 && is_elf_hash_table (htab)
13285a1b 4742 && bed->check_relocs != NULL
f13a99db 4743 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4ad4eba5
AM
4744 {
4745 asection *o;
4746
4747 for (o = abfd->sections; o != NULL; o = o->next)
4748 {
4749 Elf_Internal_Rela *internal_relocs;
4750 bfd_boolean ok;
4751
4752 if ((o->flags & SEC_RELOC) == 0
4753 || o->reloc_count == 0
4754 || ((info->strip == strip_all || info->strip == strip_debugger)
4755 && (o->flags & SEC_DEBUGGING) != 0)
4756 || bfd_is_abs_section (o->output_section))
4757 continue;
4758
4759 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4760 info->keep_memory);
4761 if (internal_relocs == NULL)
4762 goto error_return;
4763
66eb6687 4764 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4ad4eba5
AM
4765
4766 if (elf_section_data (o)->relocs != internal_relocs)
4767 free (internal_relocs);
4768
4769 if (! ok)
4770 goto error_return;
4771 }
4772 }
4773
4774 /* If this is a non-traditional link, try to optimize the handling
4775 of the .stab/.stabstr sections. */
4776 if (! dynamic
4777 && ! info->traditional_format
66eb6687 4778 && is_elf_hash_table (htab)
4ad4eba5
AM
4779 && (info->strip != strip_all && info->strip != strip_debugger))
4780 {
4781 asection *stabstr;
4782
4783 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4784 if (stabstr != NULL)
4785 {
4786 bfd_size_type string_offset = 0;
4787 asection *stab;
4788
4789 for (stab = abfd->sections; stab; stab = stab->next)
0112cd26 4790 if (CONST_STRNEQ (stab->name, ".stab")
4ad4eba5
AM
4791 && (!stab->name[5] ||
4792 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4793 && (stab->flags & SEC_MERGE) == 0
4794 && !bfd_is_abs_section (stab->output_section))
4795 {
4796 struct bfd_elf_section_data *secdata;
4797
4798 secdata = elf_section_data (stab);
66eb6687
AM
4799 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4800 stabstr, &secdata->sec_info,
4ad4eba5
AM
4801 &string_offset))
4802 goto error_return;
4803 if (secdata->sec_info)
4804 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4805 }
4806 }
4807 }
4808
66eb6687 4809 if (is_elf_hash_table (htab) && add_needed)
4ad4eba5
AM
4810 {
4811 /* Add this bfd to the loaded list. */
4812 struct elf_link_loaded_list *n;
4813
4814 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4815 if (n == NULL)
4816 goto error_return;
4817 n->abfd = abfd;
66eb6687
AM
4818 n->next = htab->loaded;
4819 htab->loaded = n;
4ad4eba5
AM
4820 }
4821
4822 return TRUE;
4823
4824 error_free_vers:
66eb6687
AM
4825 if (old_tab != NULL)
4826 free (old_tab);
4ad4eba5
AM
4827 if (nondeflt_vers != NULL)
4828 free (nondeflt_vers);
4829 if (extversym != NULL)
4830 free (extversym);
4831 error_free_sym:
4832 if (isymbuf != NULL)
4833 free (isymbuf);
4834 error_return:
4835 return FALSE;
4836}
4837
8387904d
AM
4838/* Return the linker hash table entry of a symbol that might be
4839 satisfied by an archive symbol. Return -1 on error. */
4840
4841struct elf_link_hash_entry *
4842_bfd_elf_archive_symbol_lookup (bfd *abfd,
4843 struct bfd_link_info *info,
4844 const char *name)
4845{
4846 struct elf_link_hash_entry *h;
4847 char *p, *copy;
4848 size_t len, first;
4849
4850 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4851 if (h != NULL)
4852 return h;
4853
4854 /* If this is a default version (the name contains @@), look up the
4855 symbol again with only one `@' as well as without the version.
4856 The effect is that references to the symbol with and without the
4857 version will be matched by the default symbol in the archive. */
4858
4859 p = strchr (name, ELF_VER_CHR);
4860 if (p == NULL || p[1] != ELF_VER_CHR)
4861 return h;
4862
4863 /* First check with only one `@'. */
4864 len = strlen (name);
4865 copy = bfd_alloc (abfd, len);
4866 if (copy == NULL)
4867 return (struct elf_link_hash_entry *) 0 - 1;
4868
4869 first = p - name + 1;
4870 memcpy (copy, name, first);
4871 memcpy (copy + first, name + first + 1, len - first);
4872
4873 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4874 if (h == NULL)
4875 {
4876 /* We also need to check references to the symbol without the
4877 version. */
4878 copy[first - 1] = '\0';
4879 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4880 FALSE, FALSE, FALSE);
4881 }
4882
4883 bfd_release (abfd, copy);
4884 return h;
4885}
4886
0ad989f9
L
4887/* Add symbols from an ELF archive file to the linker hash table. We
4888 don't use _bfd_generic_link_add_archive_symbols because of a
4889 problem which arises on UnixWare. The UnixWare libc.so is an
4890 archive which includes an entry libc.so.1 which defines a bunch of
4891 symbols. The libc.so archive also includes a number of other
4892 object files, which also define symbols, some of which are the same
4893 as those defined in libc.so.1. Correct linking requires that we
4894 consider each object file in turn, and include it if it defines any
4895 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4896 this; it looks through the list of undefined symbols, and includes
4897 any object file which defines them. When this algorithm is used on
4898 UnixWare, it winds up pulling in libc.so.1 early and defining a
4899 bunch of symbols. This means that some of the other objects in the
4900 archive are not included in the link, which is incorrect since they
4901 precede libc.so.1 in the archive.
4902
4903 Fortunately, ELF archive handling is simpler than that done by
4904 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4905 oddities. In ELF, if we find a symbol in the archive map, and the
4906 symbol is currently undefined, we know that we must pull in that
4907 object file.
4908
4909 Unfortunately, we do have to make multiple passes over the symbol
4910 table until nothing further is resolved. */
4911
4ad4eba5
AM
4912static bfd_boolean
4913elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
0ad989f9
L
4914{
4915 symindex c;
4916 bfd_boolean *defined = NULL;
4917 bfd_boolean *included = NULL;
4918 carsym *symdefs;
4919 bfd_boolean loop;
4920 bfd_size_type amt;
8387904d
AM
4921 const struct elf_backend_data *bed;
4922 struct elf_link_hash_entry * (*archive_symbol_lookup)
4923 (bfd *, struct bfd_link_info *, const char *);
0ad989f9
L
4924
4925 if (! bfd_has_map (abfd))
4926 {
4927 /* An empty archive is a special case. */
4928 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4929 return TRUE;
4930 bfd_set_error (bfd_error_no_armap);
4931 return FALSE;
4932 }
4933
4934 /* Keep track of all symbols we know to be already defined, and all
4935 files we know to be already included. This is to speed up the
4936 second and subsequent passes. */
4937 c = bfd_ardata (abfd)->symdef_count;
4938 if (c == 0)
4939 return TRUE;
4940 amt = c;
4941 amt *= sizeof (bfd_boolean);
4942 defined = bfd_zmalloc (amt);
4943 included = bfd_zmalloc (amt);
4944 if (defined == NULL || included == NULL)
4945 goto error_return;
4946
4947 symdefs = bfd_ardata (abfd)->symdefs;
8387904d
AM
4948 bed = get_elf_backend_data (abfd);
4949 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
0ad989f9
L
4950
4951 do
4952 {
4953 file_ptr last;
4954 symindex i;
4955 carsym *symdef;
4956 carsym *symdefend;
4957
4958 loop = FALSE;
4959 last = -1;
4960
4961 symdef = symdefs;
4962 symdefend = symdef + c;
4963 for (i = 0; symdef < symdefend; symdef++, i++)
4964 {
4965 struct elf_link_hash_entry *h;
4966 bfd *element;
4967 struct bfd_link_hash_entry *undefs_tail;
4968 symindex mark;
4969
4970 if (defined[i] || included[i])
4971 continue;
4972 if (symdef->file_offset == last)
4973 {
4974 included[i] = TRUE;
4975 continue;
4976 }
4977
8387904d
AM
4978 h = archive_symbol_lookup (abfd, info, symdef->name);
4979 if (h == (struct elf_link_hash_entry *) 0 - 1)
4980 goto error_return;
0ad989f9
L
4981
4982 if (h == NULL)
4983 continue;
4984
4985 if (h->root.type == bfd_link_hash_common)
4986 {
4987 /* We currently have a common symbol. The archive map contains
4988 a reference to this symbol, so we may want to include it. We
4989 only want to include it however, if this archive element
4990 contains a definition of the symbol, not just another common
4991 declaration of it.
4992
4993 Unfortunately some archivers (including GNU ar) will put
4994 declarations of common symbols into their archive maps, as
4995 well as real definitions, so we cannot just go by the archive
4996 map alone. Instead we must read in the element's symbol
4997 table and check that to see what kind of symbol definition
4998 this is. */
4999 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5000 continue;
5001 }
5002 else if (h->root.type != bfd_link_hash_undefined)
5003 {
5004 if (h->root.type != bfd_link_hash_undefweak)
5005 defined[i] = TRUE;
5006 continue;
5007 }
5008
5009 /* We need to include this archive member. */
5010 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5011 if (element == NULL)
5012 goto error_return;
5013
5014 if (! bfd_check_format (element, bfd_object))
5015 goto error_return;
5016
5017 /* Doublecheck that we have not included this object
5018 already--it should be impossible, but there may be
5019 something wrong with the archive. */
5020 if (element->archive_pass != 0)
5021 {
5022 bfd_set_error (bfd_error_bad_value);
5023 goto error_return;
5024 }
5025 element->archive_pass = 1;
5026
5027 undefs_tail = info->hash->undefs_tail;
5028
5029 if (! (*info->callbacks->add_archive_element) (info, element,
5030 symdef->name))
5031 goto error_return;
5032 if (! bfd_link_add_symbols (element, info))
5033 goto error_return;
5034
5035 /* If there are any new undefined symbols, we need to make
5036 another pass through the archive in order to see whether
5037 they can be defined. FIXME: This isn't perfect, because
5038 common symbols wind up on undefs_tail and because an
5039 undefined symbol which is defined later on in this pass
5040 does not require another pass. This isn't a bug, but it
5041 does make the code less efficient than it could be. */
5042 if (undefs_tail != info->hash->undefs_tail)
5043 loop = TRUE;
5044
5045 /* Look backward to mark all symbols from this object file
5046 which we have already seen in this pass. */
5047 mark = i;
5048 do
5049 {
5050 included[mark] = TRUE;
5051 if (mark == 0)
5052 break;
5053 --mark;
5054 }
5055 while (symdefs[mark].file_offset == symdef->file_offset);
5056
5057 /* We mark subsequent symbols from this object file as we go
5058 on through the loop. */
5059 last = symdef->file_offset;
5060 }
5061 }
5062 while (loop);
5063
5064 free (defined);
5065 free (included);
5066
5067 return TRUE;
5068
5069 error_return:
5070 if (defined != NULL)
5071 free (defined);
5072 if (included != NULL)
5073 free (included);
5074 return FALSE;
5075}
4ad4eba5
AM
5076
5077/* Given an ELF BFD, add symbols to the global hash table as
5078 appropriate. */
5079
5080bfd_boolean
5081bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5082{
5083 switch (bfd_get_format (abfd))
5084 {
5085 case bfd_object:
5086 return elf_link_add_object_symbols (abfd, info);
5087 case bfd_archive:
5088 return elf_link_add_archive_symbols (abfd, info);
5089 default:
5090 bfd_set_error (bfd_error_wrong_format);
5091 return FALSE;
5092 }
5093}
5a580b3a 5094\f
14b1c01e
AM
5095struct hash_codes_info
5096{
5097 unsigned long *hashcodes;
5098 bfd_boolean error;
5099};
a0c8462f 5100
5a580b3a
AM
5101/* This function will be called though elf_link_hash_traverse to store
5102 all hash value of the exported symbols in an array. */
5103
5104static bfd_boolean
5105elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5106{
14b1c01e 5107 struct hash_codes_info *inf = data;
5a580b3a
AM
5108 const char *name;
5109 char *p;
5110 unsigned long ha;
5111 char *alc = NULL;
5112
5113 if (h->root.type == bfd_link_hash_warning)
5114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5115
5116 /* Ignore indirect symbols. These are added by the versioning code. */
5117 if (h->dynindx == -1)
5118 return TRUE;
5119
5120 name = h->root.root.string;
5121 p = strchr (name, ELF_VER_CHR);
5122 if (p != NULL)
5123 {
5124 alc = bfd_malloc (p - name + 1);
14b1c01e
AM
5125 if (alc == NULL)
5126 {
5127 inf->error = TRUE;
5128 return FALSE;
5129 }
5a580b3a
AM
5130 memcpy (alc, name, p - name);
5131 alc[p - name] = '\0';
5132 name = alc;
5133 }
5134
5135 /* Compute the hash value. */
5136 ha = bfd_elf_hash (name);
5137
5138 /* Store the found hash value in the array given as the argument. */
14b1c01e 5139 *(inf->hashcodes)++ = ha;
5a580b3a
AM
5140
5141 /* And store it in the struct so that we can put it in the hash table
5142 later. */
f6e332e6 5143 h->u.elf_hash_value = ha;
5a580b3a
AM
5144
5145 if (alc != NULL)
5146 free (alc);
5147
5148 return TRUE;
5149}
5150
fdc90cb4
JJ
5151struct collect_gnu_hash_codes
5152{
5153 bfd *output_bfd;
5154 const struct elf_backend_data *bed;
5155 unsigned long int nsyms;
5156 unsigned long int maskbits;
5157 unsigned long int *hashcodes;
5158 unsigned long int *hashval;
5159 unsigned long int *indx;
5160 unsigned long int *counts;
5161 bfd_vma *bitmask;
5162 bfd_byte *contents;
5163 long int min_dynindx;
5164 unsigned long int bucketcount;
5165 unsigned long int symindx;
5166 long int local_indx;
5167 long int shift1, shift2;
5168 unsigned long int mask;
14b1c01e 5169 bfd_boolean error;
fdc90cb4
JJ
5170};
5171
5172/* This function will be called though elf_link_hash_traverse to store
5173 all hash value of the exported symbols in an array. */
5174
5175static bfd_boolean
5176elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5177{
5178 struct collect_gnu_hash_codes *s = data;
5179 const char *name;
5180 char *p;
5181 unsigned long ha;
5182 char *alc = NULL;
5183
5184 if (h->root.type == bfd_link_hash_warning)
5185 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5186
5187 /* Ignore indirect symbols. These are added by the versioning code. */
5188 if (h->dynindx == -1)
5189 return TRUE;
5190
5191 /* Ignore also local symbols and undefined symbols. */
5192 if (! (*s->bed->elf_hash_symbol) (h))
5193 return TRUE;
5194
5195 name = h->root.root.string;
5196 p = strchr (name, ELF_VER_CHR);
5197 if (p != NULL)
5198 {
5199 alc = bfd_malloc (p - name + 1);
14b1c01e
AM
5200 if (alc == NULL)
5201 {
5202 s->error = TRUE;
5203 return FALSE;
5204 }
fdc90cb4
JJ
5205 memcpy (alc, name, p - name);
5206 alc[p - name] = '\0';
5207 name = alc;
5208 }
5209
5210 /* Compute the hash value. */
5211 ha = bfd_elf_gnu_hash (name);
5212
5213 /* Store the found hash value in the array for compute_bucket_count,
5214 and also for .dynsym reordering purposes. */
5215 s->hashcodes[s->nsyms] = ha;
5216 s->hashval[h->dynindx] = ha;
5217 ++s->nsyms;
5218 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5219 s->min_dynindx = h->dynindx;
5220
5221 if (alc != NULL)
5222 free (alc);
5223
5224 return TRUE;
5225}
5226
5227/* This function will be called though elf_link_hash_traverse to do
5228 final dynaminc symbol renumbering. */
5229
5230static bfd_boolean
5231elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5232{
5233 struct collect_gnu_hash_codes *s = data;
5234 unsigned long int bucket;
5235 unsigned long int val;
5236
5237 if (h->root.type == bfd_link_hash_warning)
5238 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5239
5240 /* Ignore indirect symbols. */
5241 if (h->dynindx == -1)
5242 return TRUE;
5243
5244 /* Ignore also local symbols and undefined symbols. */
5245 if (! (*s->bed->elf_hash_symbol) (h))
5246 {
5247 if (h->dynindx >= s->min_dynindx)
5248 h->dynindx = s->local_indx++;
5249 return TRUE;
5250 }
5251
5252 bucket = s->hashval[h->dynindx] % s->bucketcount;
5253 val = (s->hashval[h->dynindx] >> s->shift1)
5254 & ((s->maskbits >> s->shift1) - 1);
5255 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5256 s->bitmask[val]
5257 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5258 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5259 if (s->counts[bucket] == 1)
5260 /* Last element terminates the chain. */
5261 val |= 1;
5262 bfd_put_32 (s->output_bfd, val,
5263 s->contents + (s->indx[bucket] - s->symindx) * 4);
5264 --s->counts[bucket];
5265 h->dynindx = s->indx[bucket]++;
5266 return TRUE;
5267}
5268
5269/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5270
5271bfd_boolean
5272_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5273{
5274 return !(h->forced_local
5275 || h->root.type == bfd_link_hash_undefined
5276 || h->root.type == bfd_link_hash_undefweak
5277 || ((h->root.type == bfd_link_hash_defined
5278 || h->root.type == bfd_link_hash_defweak)
5279 && h->root.u.def.section->output_section == NULL));
5280}
5281
5a580b3a
AM
5282/* Array used to determine the number of hash table buckets to use
5283 based on the number of symbols there are. If there are fewer than
5284 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5285 fewer than 37 we use 17 buckets, and so forth. We never use more
5286 than 32771 buckets. */
5287
5288static const size_t elf_buckets[] =
5289{
5290 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5291 16411, 32771, 0
5292};
5293
5294/* Compute bucket count for hashing table. We do not use a static set
5295 of possible tables sizes anymore. Instead we determine for all
5296 possible reasonable sizes of the table the outcome (i.e., the
5297 number of collisions etc) and choose the best solution. The
5298 weighting functions are not too simple to allow the table to grow
5299 without bounds. Instead one of the weighting factors is the size.
5300 Therefore the result is always a good payoff between few collisions
5301 (= short chain lengths) and table size. */
5302static size_t
d40f3da9
AM
5303compute_bucket_count (struct bfd_link_info *info,
5304 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5305 unsigned long int nsyms,
5306 int gnu_hash)
5a580b3a 5307{
5a580b3a 5308 size_t best_size = 0;
5a580b3a 5309 unsigned long int i;
5a580b3a 5310
5a580b3a
AM
5311 /* We have a problem here. The following code to optimize the table
5312 size requires an integer type with more the 32 bits. If
5313 BFD_HOST_U_64_BIT is set we know about such a type. */
5314#ifdef BFD_HOST_U_64_BIT
5315 if (info->optimize)
5316 {
5a580b3a
AM
5317 size_t minsize;
5318 size_t maxsize;
5319 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5a580b3a 5320 bfd *dynobj = elf_hash_table (info)->dynobj;
d40f3da9 5321 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5a580b3a 5322 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
fdc90cb4 5323 unsigned long int *counts;
d40f3da9 5324 bfd_size_type amt;
5a580b3a
AM
5325
5326 /* Possible optimization parameters: if we have NSYMS symbols we say
5327 that the hashing table must at least have NSYMS/4 and at most
5328 2*NSYMS buckets. */
5329 minsize = nsyms / 4;
5330 if (minsize == 0)
5331 minsize = 1;
5332 best_size = maxsize = nsyms * 2;
fdc90cb4
JJ
5333 if (gnu_hash)
5334 {
5335 if (minsize < 2)
5336 minsize = 2;
5337 if ((best_size & 31) == 0)
5338 ++best_size;
5339 }
5a580b3a
AM
5340
5341 /* Create array where we count the collisions in. We must use bfd_malloc
5342 since the size could be large. */
5343 amt = maxsize;
5344 amt *= sizeof (unsigned long int);
5345 counts = bfd_malloc (amt);
5346 if (counts == NULL)
fdc90cb4 5347 return 0;
5a580b3a
AM
5348
5349 /* Compute the "optimal" size for the hash table. The criteria is a
5350 minimal chain length. The minor criteria is (of course) the size
5351 of the table. */
5352 for (i = minsize; i < maxsize; ++i)
5353 {
5354 /* Walk through the array of hashcodes and count the collisions. */
5355 BFD_HOST_U_64_BIT max;
5356 unsigned long int j;
5357 unsigned long int fact;
5358
fdc90cb4
JJ
5359 if (gnu_hash && (i & 31) == 0)
5360 continue;
5361
5a580b3a
AM
5362 memset (counts, '\0', i * sizeof (unsigned long int));
5363
5364 /* Determine how often each hash bucket is used. */
5365 for (j = 0; j < nsyms; ++j)
5366 ++counts[hashcodes[j] % i];
5367
5368 /* For the weight function we need some information about the
5369 pagesize on the target. This is information need not be 100%
5370 accurate. Since this information is not available (so far) we
5371 define it here to a reasonable default value. If it is crucial
5372 to have a better value some day simply define this value. */
5373# ifndef BFD_TARGET_PAGESIZE
5374# define BFD_TARGET_PAGESIZE (4096)
5375# endif
5376
fdc90cb4
JJ
5377 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5378 and the chains. */
5379 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5a580b3a
AM
5380
5381# if 1
5382 /* Variant 1: optimize for short chains. We add the squares
5383 of all the chain lengths (which favors many small chain
5384 over a few long chains). */
5385 for (j = 0; j < i; ++j)
5386 max += counts[j] * counts[j];
5387
5388 /* This adds penalties for the overall size of the table. */
fdc90cb4 5389 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5a580b3a
AM
5390 max *= fact * fact;
5391# else
5392 /* Variant 2: Optimize a lot more for small table. Here we
5393 also add squares of the size but we also add penalties for
5394 empty slots (the +1 term). */
5395 for (j = 0; j < i; ++j)
5396 max += (1 + counts[j]) * (1 + counts[j]);
5397
5398 /* The overall size of the table is considered, but not as
5399 strong as in variant 1, where it is squared. */
fdc90cb4 5400 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5a580b3a
AM
5401 max *= fact;
5402# endif
5403
5404 /* Compare with current best results. */
5405 if (max < best_chlen)
5406 {
5407 best_chlen = max;
5408 best_size = i;
5409 }
5410 }
5411
5412 free (counts);
5413 }
5414 else
5415#endif /* defined (BFD_HOST_U_64_BIT) */
5416 {
5417 /* This is the fallback solution if no 64bit type is available or if we
5418 are not supposed to spend much time on optimizations. We select the
5419 bucket count using a fixed set of numbers. */
5420 for (i = 0; elf_buckets[i] != 0; i++)
5421 {
5422 best_size = elf_buckets[i];
fdc90cb4 5423 if (nsyms < elf_buckets[i + 1])
5a580b3a
AM
5424 break;
5425 }
fdc90cb4
JJ
5426 if (gnu_hash && best_size < 2)
5427 best_size = 2;
5a580b3a
AM
5428 }
5429
5a580b3a
AM
5430 return best_size;
5431}
5432
5433/* Set up the sizes and contents of the ELF dynamic sections. This is
5434 called by the ELF linker emulation before_allocation routine. We
5435 must set the sizes of the sections before the linker sets the
5436 addresses of the various sections. */
5437
5438bfd_boolean
5439bfd_elf_size_dynamic_sections (bfd *output_bfd,
5440 const char *soname,
5441 const char *rpath,
5442 const char *filter_shlib,
5443 const char * const *auxiliary_filters,
5444 struct bfd_link_info *info,
5445 asection **sinterpptr,
5446 struct bfd_elf_version_tree *verdefs)
5447{
5448 bfd_size_type soname_indx;
5449 bfd *dynobj;
5450 const struct elf_backend_data *bed;
5451 struct elf_assign_sym_version_info asvinfo;
5452
5453 *sinterpptr = NULL;
5454
5455 soname_indx = (bfd_size_type) -1;
5456
5457 if (!is_elf_hash_table (info->hash))
5458 return TRUE;
5459
6bfdb61b 5460 bed = get_elf_backend_data (output_bfd);
5a580b3a
AM
5461 if (info->execstack)
5462 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5463 else if (info->noexecstack)
5464 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5465 else
5466 {
5467 bfd *inputobj;
5468 asection *notesec = NULL;
5469 int exec = 0;
5470
5471 for (inputobj = info->input_bfds;
5472 inputobj;
5473 inputobj = inputobj->link_next)
5474 {
5475 asection *s;
5476
a94b9d2d 5477 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5a580b3a
AM
5478 continue;
5479 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5480 if (s)
5481 {
5482 if (s->flags & SEC_CODE)
5483 exec = PF_X;
5484 notesec = s;
5485 }
6bfdb61b 5486 else if (bed->default_execstack)
5a580b3a
AM
5487 exec = PF_X;
5488 }
5489 if (notesec)
5490 {
5491 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5492 if (exec && info->relocatable
5493 && notesec->output_section != bfd_abs_section_ptr)
5494 notesec->output_section->flags |= SEC_CODE;
5495 }
5496 }
5497
5498 /* Any syms created from now on start with -1 in
5499 got.refcount/offset and plt.refcount/offset. */
a6aa5195
AM
5500 elf_hash_table (info)->init_got_refcount
5501 = elf_hash_table (info)->init_got_offset;
5502 elf_hash_table (info)->init_plt_refcount
5503 = elf_hash_table (info)->init_plt_offset;
5a580b3a
AM
5504
5505 /* The backend may have to create some sections regardless of whether
5506 we're dynamic or not. */
5a580b3a
AM
5507 if (bed->elf_backend_always_size_sections
5508 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5509 return FALSE;
5510
eb3d5f3b
JB
5511 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5512 return FALSE;
5513
5a580b3a
AM
5514 dynobj = elf_hash_table (info)->dynobj;
5515
5516 /* If there were no dynamic objects in the link, there is nothing to
5517 do here. */
5518 if (dynobj == NULL)
5519 return TRUE;
5520
5a580b3a
AM
5521 if (elf_hash_table (info)->dynamic_sections_created)
5522 {
5523 struct elf_info_failed eif;
5524 struct elf_link_hash_entry *h;
5525 asection *dynstr;
5526 struct bfd_elf_version_tree *t;
5527 struct bfd_elf_version_expr *d;
046183de 5528 asection *s;
5a580b3a
AM
5529 bfd_boolean all_defined;
5530
5531 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5532 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5533
5534 if (soname != NULL)
5535 {
5536 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5537 soname, TRUE);
5538 if (soname_indx == (bfd_size_type) -1
5539 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5540 return FALSE;
5541 }
5542
5543 if (info->symbolic)
5544 {
5545 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5546 return FALSE;
5547 info->flags |= DF_SYMBOLIC;
5548 }
5549
5550 if (rpath != NULL)
5551 {
5552 bfd_size_type indx;
5553
5554 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5555 TRUE);
5556 if (indx == (bfd_size_type) -1
5557 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5558 return FALSE;
5559
5560 if (info->new_dtags)
5561 {
5562 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5563 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5564 return FALSE;
5565 }
5566 }
5567
5568 if (filter_shlib != NULL)
5569 {
5570 bfd_size_type indx;
5571
5572 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5573 filter_shlib, TRUE);
5574 if (indx == (bfd_size_type) -1
5575 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5576 return FALSE;
5577 }
5578
5579 if (auxiliary_filters != NULL)
5580 {
5581 const char * const *p;
5582
5583 for (p = auxiliary_filters; *p != NULL; p++)
5584 {
5585 bfd_size_type indx;
5586
5587 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5588 *p, TRUE);
5589 if (indx == (bfd_size_type) -1
5590 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5591 return FALSE;
5592 }
5593 }
5594
5595 eif.info = info;
5596 eif.verdefs = verdefs;
5597 eif.failed = FALSE;
5598
5599 /* If we are supposed to export all symbols into the dynamic symbol
5600 table (this is not the normal case), then do so. */
55255dae
L
5601 if (info->export_dynamic
5602 || (info->executable && info->dynamic))
5a580b3a
AM
5603 {
5604 elf_link_hash_traverse (elf_hash_table (info),
5605 _bfd_elf_export_symbol,
5606 &eif);
5607 if (eif.failed)
5608 return FALSE;
5609 }
5610
5611 /* Make all global versions with definition. */
5612 for (t = verdefs; t != NULL; t = t->next)
5613 for (d = t->globals.list; d != NULL; d = d->next)
ae5a3597 5614 if (!d->symver && d->literal)
5a580b3a
AM
5615 {
5616 const char *verstr, *name;
5617 size_t namelen, verlen, newlen;
5618 char *newname, *p;
5619 struct elf_link_hash_entry *newh;
5620
ae5a3597 5621 name = d->pattern;
5a580b3a
AM
5622 namelen = strlen (name);
5623 verstr = t->name;
5624 verlen = strlen (verstr);
5625 newlen = namelen + verlen + 3;
5626
5627 newname = bfd_malloc (newlen);
5628 if (newname == NULL)
5629 return FALSE;
5630 memcpy (newname, name, namelen);
5631
5632 /* Check the hidden versioned definition. */
5633 p = newname + namelen;
5634 *p++ = ELF_VER_CHR;
5635 memcpy (p, verstr, verlen + 1);
5636 newh = elf_link_hash_lookup (elf_hash_table (info),
5637 newname, FALSE, FALSE,
5638 FALSE);
5639 if (newh == NULL
5640 || (newh->root.type != bfd_link_hash_defined
5641 && newh->root.type != bfd_link_hash_defweak))
5642 {
5643 /* Check the default versioned definition. */
5644 *p++ = ELF_VER_CHR;
5645 memcpy (p, verstr, verlen + 1);
5646 newh = elf_link_hash_lookup (elf_hash_table (info),
5647 newname, FALSE, FALSE,
5648 FALSE);
5649 }
5650 free (newname);
5651
5652 /* Mark this version if there is a definition and it is
5653 not defined in a shared object. */
5654 if (newh != NULL
f5385ebf 5655 && !newh->def_dynamic
5a580b3a
AM
5656 && (newh->root.type == bfd_link_hash_defined
5657 || newh->root.type == bfd_link_hash_defweak))
5658 d->symver = 1;
5659 }
5660
5661 /* Attach all the symbols to their version information. */
5662 asvinfo.output_bfd = output_bfd;
5663 asvinfo.info = info;
5664 asvinfo.verdefs = verdefs;
5665 asvinfo.failed = FALSE;
5666
5667 elf_link_hash_traverse (elf_hash_table (info),
5668 _bfd_elf_link_assign_sym_version,
5669 &asvinfo);
5670 if (asvinfo.failed)
5671 return FALSE;
5672
5673 if (!info->allow_undefined_version)
5674 {
5675 /* Check if all global versions have a definition. */
5676 all_defined = TRUE;
5677 for (t = verdefs; t != NULL; t = t->next)
5678 for (d = t->globals.list; d != NULL; d = d->next)
ae5a3597 5679 if (d->literal && !d->symver && !d->script)
5a580b3a
AM
5680 {
5681 (*_bfd_error_handler)
5682 (_("%s: undefined version: %s"),
5683 d->pattern, t->name);
5684 all_defined = FALSE;
5685 }
5686
5687 if (!all_defined)
5688 {
5689 bfd_set_error (bfd_error_bad_value);
5690 return FALSE;
5691 }
5692 }
5693
5694 /* Find all symbols which were defined in a dynamic object and make
5695 the backend pick a reasonable value for them. */
5696 elf_link_hash_traverse (elf_hash_table (info),
5697 _bfd_elf_adjust_dynamic_symbol,
5698 &eif);
5699 if (eif.failed)
5700 return FALSE;
5701
5702 /* Add some entries to the .dynamic section. We fill in some of the
ee75fd95 5703 values later, in bfd_elf_final_link, but we must add the entries
5a580b3a
AM
5704 now so that we know the final size of the .dynamic section. */
5705
5706 /* If there are initialization and/or finalization functions to
5707 call then add the corresponding DT_INIT/DT_FINI entries. */
5708 h = (info->init_function
5709 ? elf_link_hash_lookup (elf_hash_table (info),
5710 info->init_function, FALSE,
5711 FALSE, FALSE)
5712 : NULL);
5713 if (h != NULL
f5385ebf
AM
5714 && (h->ref_regular
5715 || h->def_regular))
5a580b3a
AM
5716 {
5717 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5718 return FALSE;
5719 }
5720 h = (info->fini_function
5721 ? elf_link_hash_lookup (elf_hash_table (info),
5722 info->fini_function, FALSE,
5723 FALSE, FALSE)
5724 : NULL);
5725 if (h != NULL
f5385ebf
AM
5726 && (h->ref_regular
5727 || h->def_regular))
5a580b3a
AM
5728 {
5729 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5730 return FALSE;
5731 }
5732
046183de
AM
5733 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5734 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5735 {
5736 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5737 if (! info->executable)
5738 {
5739 bfd *sub;
5740 asection *o;
5741
5742 for (sub = info->input_bfds; sub != NULL;
5743 sub = sub->link_next)
3fcd97f1
JJ
5744 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5745 for (o = sub->sections; o != NULL; o = o->next)
5746 if (elf_section_data (o)->this_hdr.sh_type
5747 == SHT_PREINIT_ARRAY)
5748 {
5749 (*_bfd_error_handler)
5750 (_("%B: .preinit_array section is not allowed in DSO"),
5751 sub);
5752 break;
5753 }
5a580b3a
AM
5754
5755 bfd_set_error (bfd_error_nonrepresentable_section);
5756 return FALSE;
5757 }
5758
5759 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5760 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5761 return FALSE;
5762 }
046183de
AM
5763 s = bfd_get_section_by_name (output_bfd, ".init_array");
5764 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5765 {
5766 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5767 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5768 return FALSE;
5769 }
046183de
AM
5770 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5771 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5772 {
5773 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5774 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5775 return FALSE;
5776 }
5777
5778 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5779 /* If .dynstr is excluded from the link, we don't want any of
5780 these tags. Strictly, we should be checking each section
5781 individually; This quick check covers for the case where
5782 someone does a /DISCARD/ : { *(*) }. */
5783 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5784 {
5785 bfd_size_type strsize;
5786
5787 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
fdc90cb4
JJ
5788 if ((info->emit_hash
5789 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5790 || (info->emit_gnu_hash
5791 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5a580b3a
AM
5792 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5793 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5794 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5795 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5796 bed->s->sizeof_sym))
5797 return FALSE;
5798 }
5799 }
5800
5801 /* The backend must work out the sizes of all the other dynamic
5802 sections. */
5803 if (bed->elf_backend_size_dynamic_sections
5804 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5805 return FALSE;
5806
5807 if (elf_hash_table (info)->dynamic_sections_created)
5808 {
554220db 5809 unsigned long section_sym_count;
5a580b3a 5810 asection *s;
5a580b3a
AM
5811
5812 /* Set up the version definition section. */
5813 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5814 BFD_ASSERT (s != NULL);
5815
5816 /* We may have created additional version definitions if we are
5817 just linking a regular application. */
5818 verdefs = asvinfo.verdefs;
5819
5820 /* Skip anonymous version tag. */
5821 if (verdefs != NULL && verdefs->vernum == 0)
5822 verdefs = verdefs->next;
5823
3e3b46e5 5824 if (verdefs == NULL && !info->create_default_symver)
8423293d 5825 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
5826 else
5827 {
5828 unsigned int cdefs;
5829 bfd_size_type size;
5830 struct bfd_elf_version_tree *t;
5831 bfd_byte *p;
5832 Elf_Internal_Verdef def;
5833 Elf_Internal_Verdaux defaux;
3e3b46e5
PB
5834 struct bfd_link_hash_entry *bh;
5835 struct elf_link_hash_entry *h;
5836 const char *name;
5a580b3a
AM
5837
5838 cdefs = 0;
5839 size = 0;
5840
5841 /* Make space for the base version. */
5842 size += sizeof (Elf_External_Verdef);
5843 size += sizeof (Elf_External_Verdaux);
5844 ++cdefs;
5845
3e3b46e5
PB
5846 /* Make space for the default version. */
5847 if (info->create_default_symver)
5848 {
5849 size += sizeof (Elf_External_Verdef);
5850 ++cdefs;
5851 }
5852
5a580b3a
AM
5853 for (t = verdefs; t != NULL; t = t->next)
5854 {
5855 struct bfd_elf_version_deps *n;
5856
5857 size += sizeof (Elf_External_Verdef);
5858 size += sizeof (Elf_External_Verdaux);
5859 ++cdefs;
5860
5861 for (n = t->deps; n != NULL; n = n->next)
5862 size += sizeof (Elf_External_Verdaux);
5863 }
5864
eea6121a
AM
5865 s->size = size;
5866 s->contents = bfd_alloc (output_bfd, s->size);
5867 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5868 return FALSE;
5869
5870 /* Fill in the version definition section. */
5871
5872 p = s->contents;
5873
5874 def.vd_version = VER_DEF_CURRENT;
5875 def.vd_flags = VER_FLG_BASE;
5876 def.vd_ndx = 1;
5877 def.vd_cnt = 1;
3e3b46e5
PB
5878 if (info->create_default_symver)
5879 {
5880 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5881 def.vd_next = sizeof (Elf_External_Verdef);
5882 }
5883 else
5884 {
5885 def.vd_aux = sizeof (Elf_External_Verdef);
5886 def.vd_next = (sizeof (Elf_External_Verdef)
5887 + sizeof (Elf_External_Verdaux));
5888 }
5a580b3a
AM
5889
5890 if (soname_indx != (bfd_size_type) -1)
5891 {
5892 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5893 soname_indx);
5894 def.vd_hash = bfd_elf_hash (soname);
5895 defaux.vda_name = soname_indx;
3e3b46e5 5896 name = soname;
5a580b3a
AM
5897 }
5898 else
5899 {
5a580b3a
AM
5900 bfd_size_type indx;
5901
06084812 5902 name = lbasename (output_bfd->filename);
5a580b3a
AM
5903 def.vd_hash = bfd_elf_hash (name);
5904 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5905 name, FALSE);
5906 if (indx == (bfd_size_type) -1)
5907 return FALSE;
5908 defaux.vda_name = indx;
5909 }
5910 defaux.vda_next = 0;
5911
5912 _bfd_elf_swap_verdef_out (output_bfd, &def,
5913 (Elf_External_Verdef *) p);
5914 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
5915 if (info->create_default_symver)
5916 {
5917 /* Add a symbol representing this version. */
5918 bh = NULL;
5919 if (! (_bfd_generic_link_add_one_symbol
5920 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5921 0, NULL, FALSE,
5922 get_elf_backend_data (dynobj)->collect, &bh)))
5923 return FALSE;
5924 h = (struct elf_link_hash_entry *) bh;
5925 h->non_elf = 0;
5926 h->def_regular = 1;
5927 h->type = STT_OBJECT;
5928 h->verinfo.vertree = NULL;
5929
5930 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5931 return FALSE;
5932
5933 /* Create a duplicate of the base version with the same
5934 aux block, but different flags. */
5935 def.vd_flags = 0;
5936 def.vd_ndx = 2;
5937 def.vd_aux = sizeof (Elf_External_Verdef);
5938 if (verdefs)
5939 def.vd_next = (sizeof (Elf_External_Verdef)
5940 + sizeof (Elf_External_Verdaux));
5941 else
5942 def.vd_next = 0;
5943 _bfd_elf_swap_verdef_out (output_bfd, &def,
5944 (Elf_External_Verdef *) p);
5945 p += sizeof (Elf_External_Verdef);
5946 }
5a580b3a
AM
5947 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5948 (Elf_External_Verdaux *) p);
5949 p += sizeof (Elf_External_Verdaux);
5950
5951 for (t = verdefs; t != NULL; t = t->next)
5952 {
5953 unsigned int cdeps;
5954 struct bfd_elf_version_deps *n;
5a580b3a
AM
5955
5956 cdeps = 0;
5957 for (n = t->deps; n != NULL; n = n->next)
5958 ++cdeps;
5959
5960 /* Add a symbol representing this version. */
5961 bh = NULL;
5962 if (! (_bfd_generic_link_add_one_symbol
5963 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5964 0, NULL, FALSE,
5965 get_elf_backend_data (dynobj)->collect, &bh)))
5966 return FALSE;
5967 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5968 h->non_elf = 0;
5969 h->def_regular = 1;
5a580b3a
AM
5970 h->type = STT_OBJECT;
5971 h->verinfo.vertree = t;
5972
c152c796 5973 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5a580b3a
AM
5974 return FALSE;
5975
5976 def.vd_version = VER_DEF_CURRENT;
5977 def.vd_flags = 0;
5978 if (t->globals.list == NULL
5979 && t->locals.list == NULL
5980 && ! t->used)
5981 def.vd_flags |= VER_FLG_WEAK;
3e3b46e5 5982 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5a580b3a
AM
5983 def.vd_cnt = cdeps + 1;
5984 def.vd_hash = bfd_elf_hash (t->name);
5985 def.vd_aux = sizeof (Elf_External_Verdef);
5986 def.vd_next = 0;
5987 if (t->next != NULL)
5988 def.vd_next = (sizeof (Elf_External_Verdef)
5989 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5990
5991 _bfd_elf_swap_verdef_out (output_bfd, &def,
5992 (Elf_External_Verdef *) p);
5993 p += sizeof (Elf_External_Verdef);
5994
5995 defaux.vda_name = h->dynstr_index;
5996 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5997 h->dynstr_index);
5998 defaux.vda_next = 0;
5999 if (t->deps != NULL)
6000 defaux.vda_next = sizeof (Elf_External_Verdaux);
6001 t->name_indx = defaux.vda_name;
6002
6003 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6004 (Elf_External_Verdaux *) p);
6005 p += sizeof (Elf_External_Verdaux);
6006
6007 for (n = t->deps; n != NULL; n = n->next)
6008 {
6009 if (n->version_needed == NULL)
6010 {
6011 /* This can happen if there was an error in the
6012 version script. */
6013 defaux.vda_name = 0;
6014 }
6015 else
6016 {
6017 defaux.vda_name = n->version_needed->name_indx;
6018 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6019 defaux.vda_name);
6020 }
6021 if (n->next == NULL)
6022 defaux.vda_next = 0;
6023 else
6024 defaux.vda_next = sizeof (Elf_External_Verdaux);
6025
6026 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6027 (Elf_External_Verdaux *) p);
6028 p += sizeof (Elf_External_Verdaux);
6029 }
6030 }
6031
6032 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6033 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6034 return FALSE;
6035
6036 elf_tdata (output_bfd)->cverdefs = cdefs;
6037 }
6038
6039 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6040 {
6041 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6042 return FALSE;
6043 }
6044 else if (info->flags & DF_BIND_NOW)
6045 {
6046 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6047 return FALSE;
6048 }
6049
6050 if (info->flags_1)
6051 {
6052 if (info->executable)
6053 info->flags_1 &= ~ (DF_1_INITFIRST
6054 | DF_1_NODELETE
6055 | DF_1_NOOPEN);
6056 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6057 return FALSE;
6058 }
6059
6060 /* Work out the size of the version reference section. */
6061
6062 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6063 BFD_ASSERT (s != NULL);
6064 {
6065 struct elf_find_verdep_info sinfo;
6066
6067 sinfo.output_bfd = output_bfd;
6068 sinfo.info = info;
6069 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6070 if (sinfo.vers == 0)
6071 sinfo.vers = 1;
6072 sinfo.failed = FALSE;
6073
6074 elf_link_hash_traverse (elf_hash_table (info),
6075 _bfd_elf_link_find_version_dependencies,
6076 &sinfo);
14b1c01e
AM
6077 if (sinfo.failed)
6078 return FALSE;
5a580b3a
AM
6079
6080 if (elf_tdata (output_bfd)->verref == NULL)
8423293d 6081 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
6082 else
6083 {
6084 Elf_Internal_Verneed *t;
6085 unsigned int size;
6086 unsigned int crefs;
6087 bfd_byte *p;
6088
6089 /* Build the version definition section. */
6090 size = 0;
6091 crefs = 0;
6092 for (t = elf_tdata (output_bfd)->verref;
6093 t != NULL;
6094 t = t->vn_nextref)
6095 {
6096 Elf_Internal_Vernaux *a;
6097
6098 size += sizeof (Elf_External_Verneed);
6099 ++crefs;
6100 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6101 size += sizeof (Elf_External_Vernaux);
6102 }
6103
eea6121a
AM
6104 s->size = size;
6105 s->contents = bfd_alloc (output_bfd, s->size);
5a580b3a
AM
6106 if (s->contents == NULL)
6107 return FALSE;
6108
6109 p = s->contents;
6110 for (t = elf_tdata (output_bfd)->verref;
6111 t != NULL;
6112 t = t->vn_nextref)
6113 {
6114 unsigned int caux;
6115 Elf_Internal_Vernaux *a;
6116 bfd_size_type indx;
6117
6118 caux = 0;
6119 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6120 ++caux;
6121
6122 t->vn_version = VER_NEED_CURRENT;
6123 t->vn_cnt = caux;
6124 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6125 elf_dt_name (t->vn_bfd) != NULL
6126 ? elf_dt_name (t->vn_bfd)
06084812 6127 : lbasename (t->vn_bfd->filename),
5a580b3a
AM
6128 FALSE);
6129 if (indx == (bfd_size_type) -1)
6130 return FALSE;
6131 t->vn_file = indx;
6132 t->vn_aux = sizeof (Elf_External_Verneed);
6133 if (t->vn_nextref == NULL)
6134 t->vn_next = 0;
6135 else
6136 t->vn_next = (sizeof (Elf_External_Verneed)
6137 + caux * sizeof (Elf_External_Vernaux));
6138
6139 _bfd_elf_swap_verneed_out (output_bfd, t,
6140 (Elf_External_Verneed *) p);
6141 p += sizeof (Elf_External_Verneed);
6142
6143 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6144 {
6145 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6146 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6147 a->vna_nodename, FALSE);
6148 if (indx == (bfd_size_type) -1)
6149 return FALSE;
6150 a->vna_name = indx;
6151 if (a->vna_nextptr == NULL)
6152 a->vna_next = 0;
6153 else
6154 a->vna_next = sizeof (Elf_External_Vernaux);
6155
6156 _bfd_elf_swap_vernaux_out (output_bfd, a,
6157 (Elf_External_Vernaux *) p);
6158 p += sizeof (Elf_External_Vernaux);
6159 }
6160 }
6161
6162 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6163 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6164 return FALSE;
6165
6166 elf_tdata (output_bfd)->cverrefs = crefs;
6167 }
6168 }
6169
8423293d
AM
6170 if ((elf_tdata (output_bfd)->cverrefs == 0
6171 && elf_tdata (output_bfd)->cverdefs == 0)
6172 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6173 &section_sym_count) == 0)
6174 {
6175 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6176 s->flags |= SEC_EXCLUDE;
6177 }
6178 }
6179 return TRUE;
6180}
6181
74541ad4
AM
6182/* Find the first non-excluded output section. We'll use its
6183 section symbol for some emitted relocs. */
6184void
6185_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6186{
6187 asection *s;
6188
6189 for (s = output_bfd->sections; s != NULL; s = s->next)
6190 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6191 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6192 {
6193 elf_hash_table (info)->text_index_section = s;
6194 break;
6195 }
6196}
6197
6198/* Find two non-excluded output sections, one for code, one for data.
6199 We'll use their section symbols for some emitted relocs. */
6200void
6201_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6202{
6203 asection *s;
6204
266b05cf
DJ
6205 /* Data first, since setting text_index_section changes
6206 _bfd_elf_link_omit_section_dynsym. */
74541ad4 6207 for (s = output_bfd->sections; s != NULL; s = s->next)
266b05cf 6208 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
74541ad4
AM
6209 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6210 {
266b05cf 6211 elf_hash_table (info)->data_index_section = s;
74541ad4
AM
6212 break;
6213 }
6214
6215 for (s = output_bfd->sections; s != NULL; s = s->next)
266b05cf
DJ
6216 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6217 == (SEC_ALLOC | SEC_READONLY))
74541ad4
AM
6218 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6219 {
266b05cf 6220 elf_hash_table (info)->text_index_section = s;
74541ad4
AM
6221 break;
6222 }
6223
6224 if (elf_hash_table (info)->text_index_section == NULL)
6225 elf_hash_table (info)->text_index_section
6226 = elf_hash_table (info)->data_index_section;
6227}
6228
8423293d
AM
6229bfd_boolean
6230bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6231{
74541ad4
AM
6232 const struct elf_backend_data *bed;
6233
8423293d
AM
6234 if (!is_elf_hash_table (info->hash))
6235 return TRUE;
6236
74541ad4
AM
6237 bed = get_elf_backend_data (output_bfd);
6238 (*bed->elf_backend_init_index_section) (output_bfd, info);
6239
8423293d
AM
6240 if (elf_hash_table (info)->dynamic_sections_created)
6241 {
6242 bfd *dynobj;
8423293d
AM
6243 asection *s;
6244 bfd_size_type dynsymcount;
6245 unsigned long section_sym_count;
8423293d
AM
6246 unsigned int dtagcount;
6247
6248 dynobj = elf_hash_table (info)->dynobj;
6249
5a580b3a
AM
6250 /* Assign dynsym indicies. In a shared library we generate a
6251 section symbol for each output section, which come first.
6252 Next come all of the back-end allocated local dynamic syms,
6253 followed by the rest of the global symbols. */
6254
554220db
AM
6255 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6256 &section_sym_count);
5a580b3a
AM
6257
6258 /* Work out the size of the symbol version section. */
6259 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6260 BFD_ASSERT (s != NULL);
8423293d
AM
6261 if (dynsymcount != 0
6262 && (s->flags & SEC_EXCLUDE) == 0)
5a580b3a 6263 {
eea6121a
AM
6264 s->size = dynsymcount * sizeof (Elf_External_Versym);
6265 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
6266 if (s->contents == NULL)
6267 return FALSE;
6268
6269 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6270 return FALSE;
6271 }
6272
6273 /* Set the size of the .dynsym and .hash sections. We counted
6274 the number of dynamic symbols in elf_link_add_object_symbols.
6275 We will build the contents of .dynsym and .hash when we build
6276 the final symbol table, because until then we do not know the
6277 correct value to give the symbols. We built the .dynstr
6278 section as we went along in elf_link_add_object_symbols. */
6279 s = bfd_get_section_by_name (dynobj, ".dynsym");
6280 BFD_ASSERT (s != NULL);
eea6121a 6281 s->size = dynsymcount * bed->s->sizeof_sym;
5a580b3a
AM
6282
6283 if (dynsymcount != 0)
6284 {
554220db
AM
6285 s->contents = bfd_alloc (output_bfd, s->size);
6286 if (s->contents == NULL)
6287 return FALSE;
5a580b3a 6288
554220db
AM
6289 /* The first entry in .dynsym is a dummy symbol.
6290 Clear all the section syms, in case we don't output them all. */
6291 ++section_sym_count;
6292 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5a580b3a
AM
6293 }
6294
fdc90cb4
JJ
6295 elf_hash_table (info)->bucketcount = 0;
6296
5a580b3a
AM
6297 /* Compute the size of the hashing table. As a side effect this
6298 computes the hash values for all the names we export. */
fdc90cb4
JJ
6299 if (info->emit_hash)
6300 {
6301 unsigned long int *hashcodes;
14b1c01e 6302 struct hash_codes_info hashinf;
fdc90cb4
JJ
6303 bfd_size_type amt;
6304 unsigned long int nsyms;
6305 size_t bucketcount;
6306 size_t hash_entry_size;
6307
6308 /* Compute the hash values for all exported symbols. At the same
6309 time store the values in an array so that we could use them for
6310 optimizations. */
6311 amt = dynsymcount * sizeof (unsigned long int);
6312 hashcodes = bfd_malloc (amt);
6313 if (hashcodes == NULL)
6314 return FALSE;
14b1c01e
AM
6315 hashinf.hashcodes = hashcodes;
6316 hashinf.error = FALSE;
5a580b3a 6317
fdc90cb4
JJ
6318 /* Put all hash values in HASHCODES. */
6319 elf_link_hash_traverse (elf_hash_table (info),
14b1c01e
AM
6320 elf_collect_hash_codes, &hashinf);
6321 if (hashinf.error)
4dd07732
AM
6322 {
6323 free (hashcodes);
6324 return FALSE;
6325 }
5a580b3a 6326
14b1c01e 6327 nsyms = hashinf.hashcodes - hashcodes;
fdc90cb4
JJ
6328 bucketcount
6329 = compute_bucket_count (info, hashcodes, nsyms, 0);
6330 free (hashcodes);
6331
6332 if (bucketcount == 0)
6333 return FALSE;
5a580b3a 6334
fdc90cb4
JJ
6335 elf_hash_table (info)->bucketcount = bucketcount;
6336
6337 s = bfd_get_section_by_name (dynobj, ".hash");
6338 BFD_ASSERT (s != NULL);
6339 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6340 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6341 s->contents = bfd_zalloc (output_bfd, s->size);
6342 if (s->contents == NULL)
6343 return FALSE;
6344
6345 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6346 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6347 s->contents + hash_entry_size);
6348 }
6349
6350 if (info->emit_gnu_hash)
6351 {
6352 size_t i, cnt;
6353 unsigned char *contents;
6354 struct collect_gnu_hash_codes cinfo;
6355 bfd_size_type amt;
6356 size_t bucketcount;
6357
6358 memset (&cinfo, 0, sizeof (cinfo));
6359
6360 /* Compute the hash values for all exported symbols. At the same
6361 time store the values in an array so that we could use them for
6362 optimizations. */
6363 amt = dynsymcount * 2 * sizeof (unsigned long int);
6364 cinfo.hashcodes = bfd_malloc (amt);
6365 if (cinfo.hashcodes == NULL)
6366 return FALSE;
6367
6368 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6369 cinfo.min_dynindx = -1;
6370 cinfo.output_bfd = output_bfd;
6371 cinfo.bed = bed;
6372
6373 /* Put all hash values in HASHCODES. */
6374 elf_link_hash_traverse (elf_hash_table (info),
6375 elf_collect_gnu_hash_codes, &cinfo);
14b1c01e 6376 if (cinfo.error)
4dd07732
AM
6377 {
6378 free (cinfo.hashcodes);
6379 return FALSE;
6380 }
fdc90cb4
JJ
6381
6382 bucketcount
6383 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6384
6385 if (bucketcount == 0)
6386 {
6387 free (cinfo.hashcodes);
6388 return FALSE;
6389 }
6390
6391 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6392 BFD_ASSERT (s != NULL);
6393
6394 if (cinfo.nsyms == 0)
6395 {
6396 /* Empty .gnu.hash section is special. */
6397 BFD_ASSERT (cinfo.min_dynindx == -1);
6398 free (cinfo.hashcodes);
6399 s->size = 5 * 4 + bed->s->arch_size / 8;
6400 contents = bfd_zalloc (output_bfd, s->size);
6401 if (contents == NULL)
6402 return FALSE;
6403 s->contents = contents;
6404 /* 1 empty bucket. */
6405 bfd_put_32 (output_bfd, 1, contents);
6406 /* SYMIDX above the special symbol 0. */
6407 bfd_put_32 (output_bfd, 1, contents + 4);
6408 /* Just one word for bitmask. */
6409 bfd_put_32 (output_bfd, 1, contents + 8);
6410 /* Only hash fn bloom filter. */
6411 bfd_put_32 (output_bfd, 0, contents + 12);
6412 /* No hashes are valid - empty bitmask. */
6413 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6414 /* No hashes in the only bucket. */
6415 bfd_put_32 (output_bfd, 0,
6416 contents + 16 + bed->s->arch_size / 8);
6417 }
6418 else
6419 {
fdc90cb4 6420 unsigned long int maskwords, maskbitslog2;
0b33793d 6421 BFD_ASSERT (cinfo.min_dynindx != -1);
fdc90cb4
JJ
6422
6423 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6424 if (maskbitslog2 < 3)
6425 maskbitslog2 = 5;
6426 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6427 maskbitslog2 = maskbitslog2 + 3;
6428 else
6429 maskbitslog2 = maskbitslog2 + 2;
6430 if (bed->s->arch_size == 64)
6431 {
6432 if (maskbitslog2 == 5)
6433 maskbitslog2 = 6;
6434 cinfo.shift1 = 6;
6435 }
6436 else
6437 cinfo.shift1 = 5;
6438 cinfo.mask = (1 << cinfo.shift1) - 1;
2ccdbfcc 6439 cinfo.shift2 = maskbitslog2;
fdc90cb4
JJ
6440 cinfo.maskbits = 1 << maskbitslog2;
6441 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6442 amt = bucketcount * sizeof (unsigned long int) * 2;
6443 amt += maskwords * sizeof (bfd_vma);
6444 cinfo.bitmask = bfd_malloc (amt);
6445 if (cinfo.bitmask == NULL)
6446 {
6447 free (cinfo.hashcodes);
6448 return FALSE;
6449 }
6450
6451 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6452 cinfo.indx = cinfo.counts + bucketcount;
6453 cinfo.symindx = dynsymcount - cinfo.nsyms;
6454 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6455
6456 /* Determine how often each hash bucket is used. */
6457 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6458 for (i = 0; i < cinfo.nsyms; ++i)
6459 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6460
6461 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6462 if (cinfo.counts[i] != 0)
6463 {
6464 cinfo.indx[i] = cnt;
6465 cnt += cinfo.counts[i];
6466 }
6467 BFD_ASSERT (cnt == dynsymcount);
6468 cinfo.bucketcount = bucketcount;
6469 cinfo.local_indx = cinfo.min_dynindx;
6470
6471 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6472 s->size += cinfo.maskbits / 8;
6473 contents = bfd_zalloc (output_bfd, s->size);
6474 if (contents == NULL)
6475 {
6476 free (cinfo.bitmask);
6477 free (cinfo.hashcodes);
6478 return FALSE;
6479 }
6480
6481 s->contents = contents;
6482 bfd_put_32 (output_bfd, bucketcount, contents);
6483 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6484 bfd_put_32 (output_bfd, maskwords, contents + 8);
6485 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6486 contents += 16 + cinfo.maskbits / 8;
6487
6488 for (i = 0; i < bucketcount; ++i)
6489 {
6490 if (cinfo.counts[i] == 0)
6491 bfd_put_32 (output_bfd, 0, contents);
6492 else
6493 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6494 contents += 4;
6495 }
6496
6497 cinfo.contents = contents;
6498
6499 /* Renumber dynamic symbols, populate .gnu.hash section. */
6500 elf_link_hash_traverse (elf_hash_table (info),
6501 elf_renumber_gnu_hash_syms, &cinfo);
6502
6503 contents = s->contents + 16;
6504 for (i = 0; i < maskwords; ++i)
6505 {
6506 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6507 contents);
6508 contents += bed->s->arch_size / 8;
6509 }
6510
6511 free (cinfo.bitmask);
6512 free (cinfo.hashcodes);
6513 }
6514 }
5a580b3a
AM
6515
6516 s = bfd_get_section_by_name (dynobj, ".dynstr");
6517 BFD_ASSERT (s != NULL);
6518
4ad4eba5 6519 elf_finalize_dynstr (output_bfd, info);
5a580b3a 6520
eea6121a 6521 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5a580b3a
AM
6522
6523 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6524 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6525 return FALSE;
6526 }
6527
6528 return TRUE;
6529}
4d269e42
AM
6530\f
6531/* Indicate that we are only retrieving symbol values from this
6532 section. */
6533
6534void
6535_bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6536{
6537 if (is_elf_hash_table (info->hash))
6538 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6539 _bfd_generic_link_just_syms (sec, info);
6540}
6541
6542/* Make sure sec_info_type is cleared if sec_info is cleared too. */
6543
6544static void
6545merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6546 asection *sec)
6547{
6548 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6549 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6550}
6551
6552/* Finish SHF_MERGE section merging. */
6553
6554bfd_boolean
6555_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6556{
6557 bfd *ibfd;
6558 asection *sec;
6559
6560 if (!is_elf_hash_table (info->hash))
6561 return FALSE;
6562
6563 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6564 if ((ibfd->flags & DYNAMIC) == 0)
6565 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6566 if ((sec->flags & SEC_MERGE) != 0
6567 && !bfd_is_abs_section (sec->output_section))
6568 {
6569 struct bfd_elf_section_data *secdata;
6570
6571 secdata = elf_section_data (sec);
6572 if (! _bfd_add_merge_section (abfd,
6573 &elf_hash_table (info)->merge_info,
6574 sec, &secdata->sec_info))
6575 return FALSE;
6576 else if (secdata->sec_info)
6577 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6578 }
6579
6580 if (elf_hash_table (info)->merge_info != NULL)
6581 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6582 merge_sections_remove_hook);
6583 return TRUE;
6584}
6585
6586/* Create an entry in an ELF linker hash table. */
6587
6588struct bfd_hash_entry *
6589_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6590 struct bfd_hash_table *table,
6591 const char *string)
6592{
6593 /* Allocate the structure if it has not already been allocated by a
6594 subclass. */
6595 if (entry == NULL)
6596 {
6597 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6598 if (entry == NULL)
6599 return entry;
6600 }
6601
6602 /* Call the allocation method of the superclass. */
6603 entry = _bfd_link_hash_newfunc (entry, table, string);
6604 if (entry != NULL)
6605 {
6606 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6607 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6608
6609 /* Set local fields. */
6610 ret->indx = -1;
6611 ret->dynindx = -1;
6612 ret->got = htab->init_got_refcount;
6613 ret->plt = htab->init_plt_refcount;
6614 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6615 - offsetof (struct elf_link_hash_entry, size)));
6616 /* Assume that we have been called by a non-ELF symbol reader.
6617 This flag is then reset by the code which reads an ELF input
6618 file. This ensures that a symbol created by a non-ELF symbol
6619 reader will have the flag set correctly. */
6620 ret->non_elf = 1;
6621 }
6622
6623 return entry;
6624}
6625
6626/* Copy data from an indirect symbol to its direct symbol, hiding the
6627 old indirect symbol. Also used for copying flags to a weakdef. */
6628
6629void
6630_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6631 struct elf_link_hash_entry *dir,
6632 struct elf_link_hash_entry *ind)
6633{
6634 struct elf_link_hash_table *htab;
6635
6636 /* Copy down any references that we may have already seen to the
6637 symbol which just became indirect. */
6638
6639 dir->ref_dynamic |= ind->ref_dynamic;
6640 dir->ref_regular |= ind->ref_regular;
6641 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6642 dir->non_got_ref |= ind->non_got_ref;
6643 dir->needs_plt |= ind->needs_plt;
6644 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6645
6646 if (ind->root.type != bfd_link_hash_indirect)
6647 return;
6648
6649 /* Copy over the global and procedure linkage table refcount entries.
6650 These may have been already set up by a check_relocs routine. */
6651 htab = elf_hash_table (info);
6652 if (ind->got.refcount > htab->init_got_refcount.refcount)
6653 {
6654 if (dir->got.refcount < 0)
6655 dir->got.refcount = 0;
6656 dir->got.refcount += ind->got.refcount;
6657 ind->got.refcount = htab->init_got_refcount.refcount;
6658 }
6659
6660 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6661 {
6662 if (dir->plt.refcount < 0)
6663 dir->plt.refcount = 0;
6664 dir->plt.refcount += ind->plt.refcount;
6665 ind->plt.refcount = htab->init_plt_refcount.refcount;
6666 }
6667
6668 if (ind->dynindx != -1)
6669 {
6670 if (dir->dynindx != -1)
6671 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6672 dir->dynindx = ind->dynindx;
6673 dir->dynstr_index = ind->dynstr_index;
6674 ind->dynindx = -1;
6675 ind->dynstr_index = 0;
6676 }
6677}
6678
6679void
6680_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6681 struct elf_link_hash_entry *h,
6682 bfd_boolean force_local)
6683{
6684 h->plt = elf_hash_table (info)->init_plt_offset;
6685 h->needs_plt = 0;
6686 if (force_local)
6687 {
6688 h->forced_local = 1;
6689 if (h->dynindx != -1)
6690 {
6691 h->dynindx = -1;
6692 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6693 h->dynstr_index);
6694 }
6695 }
6696}
6697
6698/* Initialize an ELF linker hash table. */
6699
6700bfd_boolean
6701_bfd_elf_link_hash_table_init
6702 (struct elf_link_hash_table *table,
6703 bfd *abfd,
6704 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6705 struct bfd_hash_table *,
6706 const char *),
6707 unsigned int entsize)
6708{
6709 bfd_boolean ret;
6710 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6711
6712 memset (table, 0, sizeof * table);
6713 table->init_got_refcount.refcount = can_refcount - 1;
6714 table->init_plt_refcount.refcount = can_refcount - 1;
6715 table->init_got_offset.offset = -(bfd_vma) 1;
6716 table->init_plt_offset.offset = -(bfd_vma) 1;
6717 /* The first dynamic symbol is a dummy. */
6718 table->dynsymcount = 1;
6719
6720 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6721 table->root.type = bfd_link_elf_hash_table;
6722
6723 return ret;
6724}
6725
6726/* Create an ELF linker hash table. */
6727
6728struct bfd_link_hash_table *
6729_bfd_elf_link_hash_table_create (bfd *abfd)
6730{
6731 struct elf_link_hash_table *ret;
6732 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6733
6734 ret = bfd_malloc (amt);
6735 if (ret == NULL)
6736 return NULL;
6737
6738 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6739 sizeof (struct elf_link_hash_entry)))
6740 {
6741 free (ret);
6742 return NULL;
6743 }
6744
6745 return &ret->root;
6746}
6747
6748/* This is a hook for the ELF emulation code in the generic linker to
6749 tell the backend linker what file name to use for the DT_NEEDED
6750 entry for a dynamic object. */
6751
6752void
6753bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6754{
6755 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6756 && bfd_get_format (abfd) == bfd_object)
6757 elf_dt_name (abfd) = name;
6758}
6759
6760int
6761bfd_elf_get_dyn_lib_class (bfd *abfd)
6762{
6763 int lib_class;
6764 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6765 && bfd_get_format (abfd) == bfd_object)
6766 lib_class = elf_dyn_lib_class (abfd);
6767 else
6768 lib_class = 0;
6769 return lib_class;
6770}
6771
6772void
6773bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6774{
6775 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6776 && bfd_get_format (abfd) == bfd_object)
6777 elf_dyn_lib_class (abfd) = lib_class;
6778}
6779
6780/* Get the list of DT_NEEDED entries for a link. This is a hook for
6781 the linker ELF emulation code. */
6782
6783struct bfd_link_needed_list *
6784bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6785 struct bfd_link_info *info)
6786{
6787 if (! is_elf_hash_table (info->hash))
6788 return NULL;
6789 return elf_hash_table (info)->needed;
6790}
6791
6792/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6793 hook for the linker ELF emulation code. */
6794
6795struct bfd_link_needed_list *
6796bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6797 struct bfd_link_info *info)
6798{
6799 if (! is_elf_hash_table (info->hash))
6800 return NULL;
6801 return elf_hash_table (info)->runpath;
6802}
6803
6804/* Get the name actually used for a dynamic object for a link. This
6805 is the SONAME entry if there is one. Otherwise, it is the string
6806 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6807
6808const char *
6809bfd_elf_get_dt_soname (bfd *abfd)
6810{
6811 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6812 && bfd_get_format (abfd) == bfd_object)
6813 return elf_dt_name (abfd);
6814 return NULL;
6815}
6816
6817/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6818 the ELF linker emulation code. */
6819
6820bfd_boolean
6821bfd_elf_get_bfd_needed_list (bfd *abfd,
6822 struct bfd_link_needed_list **pneeded)
6823{
6824 asection *s;
6825 bfd_byte *dynbuf = NULL;
cb33740c 6826 unsigned int elfsec;
4d269e42
AM
6827 unsigned long shlink;
6828 bfd_byte *extdyn, *extdynend;
6829 size_t extdynsize;
6830 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6831
6832 *pneeded = NULL;
6833
6834 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6835 || bfd_get_format (abfd) != bfd_object)
6836 return TRUE;
6837
6838 s = bfd_get_section_by_name (abfd, ".dynamic");
6839 if (s == NULL || s->size == 0)
6840 return TRUE;
6841
6842 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6843 goto error_return;
6844
6845 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
cb33740c 6846 if (elfsec == SHN_BAD)
4d269e42
AM
6847 goto error_return;
6848
6849 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
c152c796 6850
4d269e42
AM
6851 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6852 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6853
6854 extdyn = dynbuf;
6855 extdynend = extdyn + s->size;
6856 for (; extdyn < extdynend; extdyn += extdynsize)
6857 {
6858 Elf_Internal_Dyn dyn;
6859
6860 (*swap_dyn_in) (abfd, extdyn, &dyn);
6861
6862 if (dyn.d_tag == DT_NULL)
6863 break;
6864
6865 if (dyn.d_tag == DT_NEEDED)
6866 {
6867 const char *string;
6868 struct bfd_link_needed_list *l;
6869 unsigned int tagv = dyn.d_un.d_val;
6870 bfd_size_type amt;
6871
6872 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6873 if (string == NULL)
6874 goto error_return;
6875
6876 amt = sizeof *l;
6877 l = bfd_alloc (abfd, amt);
6878 if (l == NULL)
6879 goto error_return;
6880
6881 l->by = abfd;
6882 l->name = string;
6883 l->next = *pneeded;
6884 *pneeded = l;
6885 }
6886 }
6887
6888 free (dynbuf);
6889
6890 return TRUE;
6891
6892 error_return:
6893 if (dynbuf != NULL)
6894 free (dynbuf);
6895 return FALSE;
6896}
6897
6898struct elf_symbuf_symbol
6899{
6900 unsigned long st_name; /* Symbol name, index in string tbl */
6901 unsigned char st_info; /* Type and binding attributes */
6902 unsigned char st_other; /* Visibilty, and target specific */
6903};
6904
6905struct elf_symbuf_head
6906{
6907 struct elf_symbuf_symbol *ssym;
6908 bfd_size_type count;
6909 unsigned int st_shndx;
6910};
6911
6912struct elf_symbol
6913{
6914 union
6915 {
6916 Elf_Internal_Sym *isym;
6917 struct elf_symbuf_symbol *ssym;
6918 } u;
6919 const char *name;
6920};
6921
6922/* Sort references to symbols by ascending section number. */
6923
6924static int
6925elf_sort_elf_symbol (const void *arg1, const void *arg2)
6926{
6927 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6928 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6929
6930 return s1->st_shndx - s2->st_shndx;
6931}
6932
6933static int
6934elf_sym_name_compare (const void *arg1, const void *arg2)
6935{
6936 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6937 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6938 return strcmp (s1->name, s2->name);
6939}
6940
6941static struct elf_symbuf_head *
6942elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6943{
14b1c01e 6944 Elf_Internal_Sym **ind, **indbufend, **indbuf;
4d269e42
AM
6945 struct elf_symbuf_symbol *ssym;
6946 struct elf_symbuf_head *ssymbuf, *ssymhead;
3ae181ee 6947 bfd_size_type i, shndx_count, total_size;
4d269e42 6948
14b1c01e 6949 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
4d269e42
AM
6950 if (indbuf == NULL)
6951 return NULL;
6952
6953 for (ind = indbuf, i = 0; i < symcount; i++)
6954 if (isymbuf[i].st_shndx != SHN_UNDEF)
6955 *ind++ = &isymbuf[i];
6956 indbufend = ind;
6957
6958 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6959 elf_sort_elf_symbol);
6960
6961 shndx_count = 0;
6962 if (indbufend > indbuf)
6963 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6964 if (ind[0]->st_shndx != ind[1]->st_shndx)
6965 shndx_count++;
6966
3ae181ee
L
6967 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6968 + (indbufend - indbuf) * sizeof (*ssym));
6969 ssymbuf = bfd_malloc (total_size);
4d269e42
AM
6970 if (ssymbuf == NULL)
6971 {
6972 free (indbuf);
6973 return NULL;
6974 }
6975
3ae181ee 6976 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
4d269e42
AM
6977 ssymbuf->ssym = NULL;
6978 ssymbuf->count = shndx_count;
6979 ssymbuf->st_shndx = 0;
6980 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6981 {
6982 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6983 {
6984 ssymhead++;
6985 ssymhead->ssym = ssym;
6986 ssymhead->count = 0;
6987 ssymhead->st_shndx = (*ind)->st_shndx;
6988 }
6989 ssym->st_name = (*ind)->st_name;
6990 ssym->st_info = (*ind)->st_info;
6991 ssym->st_other = (*ind)->st_other;
6992 ssymhead->count++;
6993 }
3ae181ee
L
6994 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
6995 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
6996 == total_size));
4d269e42
AM
6997
6998 free (indbuf);
6999 return ssymbuf;
7000}
7001
7002/* Check if 2 sections define the same set of local and global
7003 symbols. */
7004
8f317e31 7005static bfd_boolean
4d269e42
AM
7006bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7007 struct bfd_link_info *info)
7008{
7009 bfd *bfd1, *bfd2;
7010 const struct elf_backend_data *bed1, *bed2;
7011 Elf_Internal_Shdr *hdr1, *hdr2;
7012 bfd_size_type symcount1, symcount2;
7013 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7014 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7015 Elf_Internal_Sym *isym, *isymend;
7016 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7017 bfd_size_type count1, count2, i;
cb33740c 7018 unsigned int shndx1, shndx2;
4d269e42
AM
7019 bfd_boolean result;
7020
7021 bfd1 = sec1->owner;
7022 bfd2 = sec2->owner;
7023
4d269e42
AM
7024 /* Both sections have to be in ELF. */
7025 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7026 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7027 return FALSE;
7028
7029 if (elf_section_type (sec1) != elf_section_type (sec2))
7030 return FALSE;
7031
4d269e42
AM
7032 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7033 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
cb33740c 7034 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
4d269e42
AM
7035 return FALSE;
7036
7037 bed1 = get_elf_backend_data (bfd1);
7038 bed2 = get_elf_backend_data (bfd2);
7039 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7040 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7041 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7042 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7043
7044 if (symcount1 == 0 || symcount2 == 0)
7045 return FALSE;
7046
7047 result = FALSE;
7048 isymbuf1 = NULL;
7049 isymbuf2 = NULL;
7050 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7051 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7052
7053 if (ssymbuf1 == NULL)
7054 {
7055 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7056 NULL, NULL, NULL);
7057 if (isymbuf1 == NULL)
7058 goto done;
7059
7060 if (!info->reduce_memory_overheads)
7061 elf_tdata (bfd1)->symbuf = ssymbuf1
7062 = elf_create_symbuf (symcount1, isymbuf1);
7063 }
7064
7065 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7066 {
7067 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7068 NULL, NULL, NULL);
7069 if (isymbuf2 == NULL)
7070 goto done;
7071
7072 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7073 elf_tdata (bfd2)->symbuf = ssymbuf2
7074 = elf_create_symbuf (symcount2, isymbuf2);
7075 }
7076
7077 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7078 {
7079 /* Optimized faster version. */
7080 bfd_size_type lo, hi, mid;
7081 struct elf_symbol *symp;
7082 struct elf_symbuf_symbol *ssym, *ssymend;
7083
7084 lo = 0;
7085 hi = ssymbuf1->count;
7086 ssymbuf1++;
7087 count1 = 0;
7088 while (lo < hi)
7089 {
7090 mid = (lo + hi) / 2;
cb33740c 7091 if (shndx1 < ssymbuf1[mid].st_shndx)
4d269e42 7092 hi = mid;
cb33740c 7093 else if (shndx1 > ssymbuf1[mid].st_shndx)
4d269e42
AM
7094 lo = mid + 1;
7095 else
7096 {
7097 count1 = ssymbuf1[mid].count;
7098 ssymbuf1 += mid;
7099 break;
7100 }
7101 }
7102
7103 lo = 0;
7104 hi = ssymbuf2->count;
7105 ssymbuf2++;
7106 count2 = 0;
7107 while (lo < hi)
7108 {
7109 mid = (lo + hi) / 2;
cb33740c 7110 if (shndx2 < ssymbuf2[mid].st_shndx)
4d269e42 7111 hi = mid;
cb33740c 7112 else if (shndx2 > ssymbuf2[mid].st_shndx)
4d269e42
AM
7113 lo = mid + 1;
7114 else
7115 {
7116 count2 = ssymbuf2[mid].count;
7117 ssymbuf2 += mid;
7118 break;
7119 }
7120 }
7121
7122 if (count1 == 0 || count2 == 0 || count1 != count2)
7123 goto done;
7124
7125 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7126 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7127 if (symtable1 == NULL || symtable2 == NULL)
7128 goto done;
7129
7130 symp = symtable1;
7131 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7132 ssym < ssymend; ssym++, symp++)
7133 {
7134 symp->u.ssym = ssym;
7135 symp->name = bfd_elf_string_from_elf_section (bfd1,
7136 hdr1->sh_link,
7137 ssym->st_name);
7138 }
7139
7140 symp = symtable2;
7141 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7142 ssym < ssymend; ssym++, symp++)
7143 {
7144 symp->u.ssym = ssym;
7145 symp->name = bfd_elf_string_from_elf_section (bfd2,
7146 hdr2->sh_link,
7147 ssym->st_name);
7148 }
7149
7150 /* Sort symbol by name. */
7151 qsort (symtable1, count1, sizeof (struct elf_symbol),
7152 elf_sym_name_compare);
7153 qsort (symtable2, count1, sizeof (struct elf_symbol),
7154 elf_sym_name_compare);
7155
7156 for (i = 0; i < count1; i++)
7157 /* Two symbols must have the same binding, type and name. */
7158 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7159 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7160 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7161 goto done;
7162
7163 result = TRUE;
7164 goto done;
7165 }
7166
7167 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7168 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7169 if (symtable1 == NULL || symtable2 == NULL)
7170 goto done;
7171
7172 /* Count definitions in the section. */
7173 count1 = 0;
7174 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
cb33740c 7175 if (isym->st_shndx == shndx1)
4d269e42
AM
7176 symtable1[count1++].u.isym = isym;
7177
7178 count2 = 0;
7179 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
cb33740c 7180 if (isym->st_shndx == shndx2)
4d269e42
AM
7181 symtable2[count2++].u.isym = isym;
7182
7183 if (count1 == 0 || count2 == 0 || count1 != count2)
7184 goto done;
7185
7186 for (i = 0; i < count1; i++)
7187 symtable1[i].name
7188 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7189 symtable1[i].u.isym->st_name);
7190
7191 for (i = 0; i < count2; i++)
7192 symtable2[i].name
7193 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7194 symtable2[i].u.isym->st_name);
7195
7196 /* Sort symbol by name. */
7197 qsort (symtable1, count1, sizeof (struct elf_symbol),
7198 elf_sym_name_compare);
7199 qsort (symtable2, count1, sizeof (struct elf_symbol),
7200 elf_sym_name_compare);
7201
7202 for (i = 0; i < count1; i++)
7203 /* Two symbols must have the same binding, type and name. */
7204 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7205 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7206 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7207 goto done;
7208
7209 result = TRUE;
7210
7211done:
7212 if (symtable1)
7213 free (symtable1);
7214 if (symtable2)
7215 free (symtable2);
7216 if (isymbuf1)
7217 free (isymbuf1);
7218 if (isymbuf2)
7219 free (isymbuf2);
7220
7221 return result;
7222}
7223
7224/* Return TRUE if 2 section types are compatible. */
7225
7226bfd_boolean
7227_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7228 bfd *bbfd, const asection *bsec)
7229{
7230 if (asec == NULL
7231 || bsec == NULL
7232 || abfd->xvec->flavour != bfd_target_elf_flavour
7233 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7234 return TRUE;
7235
7236 return elf_section_type (asec) == elf_section_type (bsec);
7237}
7238\f
c152c796
AM
7239/* Final phase of ELF linker. */
7240
7241/* A structure we use to avoid passing large numbers of arguments. */
7242
7243struct elf_final_link_info
7244{
7245 /* General link information. */
7246 struct bfd_link_info *info;
7247 /* Output BFD. */
7248 bfd *output_bfd;
7249 /* Symbol string table. */
7250 struct bfd_strtab_hash *symstrtab;
7251 /* .dynsym section. */
7252 asection *dynsym_sec;
7253 /* .hash section. */
7254 asection *hash_sec;
7255 /* symbol version section (.gnu.version). */
7256 asection *symver_sec;
7257 /* Buffer large enough to hold contents of any section. */
7258 bfd_byte *contents;
7259 /* Buffer large enough to hold external relocs of any section. */
7260 void *external_relocs;
7261 /* Buffer large enough to hold internal relocs of any section. */
7262 Elf_Internal_Rela *internal_relocs;
7263 /* Buffer large enough to hold external local symbols of any input
7264 BFD. */
7265 bfd_byte *external_syms;
7266 /* And a buffer for symbol section indices. */
7267 Elf_External_Sym_Shndx *locsym_shndx;
7268 /* Buffer large enough to hold internal local symbols of any input
7269 BFD. */
7270 Elf_Internal_Sym *internal_syms;
7271 /* Array large enough to hold a symbol index for each local symbol
7272 of any input BFD. */
7273 long *indices;
7274 /* Array large enough to hold a section pointer for each local
7275 symbol of any input BFD. */
7276 asection **sections;
7277 /* Buffer to hold swapped out symbols. */
7278 bfd_byte *symbuf;
7279 /* And one for symbol section indices. */
7280 Elf_External_Sym_Shndx *symshndxbuf;
7281 /* Number of swapped out symbols in buffer. */
7282 size_t symbuf_count;
7283 /* Number of symbols which fit in symbuf. */
7284 size_t symbuf_size;
7285 /* And same for symshndxbuf. */
7286 size_t shndxbuf_size;
7287};
7288
7289/* This struct is used to pass information to elf_link_output_extsym. */
7290
7291struct elf_outext_info
7292{
7293 bfd_boolean failed;
7294 bfd_boolean localsyms;
7295 struct elf_final_link_info *finfo;
7296};
7297
d9352518
DB
7298
7299/* Support for evaluating a complex relocation.
7300
7301 Complex relocations are generalized, self-describing relocations. The
7302 implementation of them consists of two parts: complex symbols, and the
a0c8462f 7303 relocations themselves.
d9352518
DB
7304
7305 The relocations are use a reserved elf-wide relocation type code (R_RELC
7306 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7307 information (start bit, end bit, word width, etc) into the addend. This
7308 information is extracted from CGEN-generated operand tables within gas.
7309
7310 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7311 internal) representing prefix-notation expressions, including but not
7312 limited to those sorts of expressions normally encoded as addends in the
7313 addend field. The symbol mangling format is:
7314
7315 <node> := <literal>
7316 | <unary-operator> ':' <node>
7317 | <binary-operator> ':' <node> ':' <node>
7318 ;
7319
7320 <literal> := 's' <digits=N> ':' <N character symbol name>
7321 | 'S' <digits=N> ':' <N character section name>
7322 | '#' <hexdigits>
7323 ;
7324
7325 <binary-operator> := as in C
7326 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7327
7328static void
a0c8462f
AM
7329set_symbol_value (bfd *bfd_with_globals,
7330 Elf_Internal_Sym *isymbuf,
7331 size_t locsymcount,
7332 size_t symidx,
7333 bfd_vma val)
d9352518 7334{
8977835c
AM
7335 struct elf_link_hash_entry **sym_hashes;
7336 struct elf_link_hash_entry *h;
7337 size_t extsymoff = locsymcount;
d9352518 7338
8977835c 7339 if (symidx < locsymcount)
d9352518 7340 {
8977835c
AM
7341 Elf_Internal_Sym *sym;
7342
7343 sym = isymbuf + symidx;
7344 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7345 {
7346 /* It is a local symbol: move it to the
7347 "absolute" section and give it a value. */
7348 sym->st_shndx = SHN_ABS;
7349 sym->st_value = val;
7350 return;
7351 }
7352 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7353 extsymoff = 0;
d9352518 7354 }
8977835c
AM
7355
7356 /* It is a global symbol: set its link type
7357 to "defined" and give it a value. */
7358
7359 sym_hashes = elf_sym_hashes (bfd_with_globals);
7360 h = sym_hashes [symidx - extsymoff];
7361 while (h->root.type == bfd_link_hash_indirect
7362 || h->root.type == bfd_link_hash_warning)
7363 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7364 h->root.type = bfd_link_hash_defined;
7365 h->root.u.def.value = val;
7366 h->root.u.def.section = bfd_abs_section_ptr;
d9352518
DB
7367}
7368
a0c8462f
AM
7369static bfd_boolean
7370resolve_symbol (const char *name,
7371 bfd *input_bfd,
7372 struct elf_final_link_info *finfo,
7373 bfd_vma *result,
7374 Elf_Internal_Sym *isymbuf,
7375 size_t locsymcount)
d9352518 7376{
a0c8462f
AM
7377 Elf_Internal_Sym *sym;
7378 struct bfd_link_hash_entry *global_entry;
7379 const char *candidate = NULL;
7380 Elf_Internal_Shdr *symtab_hdr;
7381 size_t i;
7382
d9352518
DB
7383 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7384
7385 for (i = 0; i < locsymcount; ++ i)
7386 {
8977835c 7387 sym = isymbuf + i;
d9352518
DB
7388
7389 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7390 continue;
7391
7392 candidate = bfd_elf_string_from_elf_section (input_bfd,
7393 symtab_hdr->sh_link,
7394 sym->st_name);
7395#ifdef DEBUG
0f02bbd9
AM
7396 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7397 name, candidate, (unsigned long) sym->st_value);
d9352518
DB
7398#endif
7399 if (candidate && strcmp (candidate, name) == 0)
7400 {
0f02bbd9 7401 asection *sec = finfo->sections [i];
d9352518 7402
0f02bbd9
AM
7403 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7404 *result += sec->output_offset + sec->output_section->vma;
d9352518 7405#ifdef DEBUG
0f02bbd9
AM
7406 printf ("Found symbol with value %8.8lx\n",
7407 (unsigned long) *result);
d9352518
DB
7408#endif
7409 return TRUE;
7410 }
7411 }
7412
7413 /* Hmm, haven't found it yet. perhaps it is a global. */
a0c8462f
AM
7414 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7415 FALSE, FALSE, TRUE);
d9352518
DB
7416 if (!global_entry)
7417 return FALSE;
a0c8462f 7418
d9352518
DB
7419 if (global_entry->type == bfd_link_hash_defined
7420 || global_entry->type == bfd_link_hash_defweak)
7421 {
a0c8462f
AM
7422 *result = (global_entry->u.def.value
7423 + global_entry->u.def.section->output_section->vma
7424 + global_entry->u.def.section->output_offset);
d9352518 7425#ifdef DEBUG
0f02bbd9
AM
7426 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7427 global_entry->root.string, (unsigned long) *result);
d9352518
DB
7428#endif
7429 return TRUE;
a0c8462f 7430 }
d9352518 7431
d9352518
DB
7432 return FALSE;
7433}
7434
7435static bfd_boolean
a0c8462f
AM
7436resolve_section (const char *name,
7437 asection *sections,
7438 bfd_vma *result)
d9352518 7439{
a0c8462f
AM
7440 asection *curr;
7441 unsigned int len;
d9352518 7442
a0c8462f 7443 for (curr = sections; curr; curr = curr->next)
d9352518
DB
7444 if (strcmp (curr->name, name) == 0)
7445 {
7446 *result = curr->vma;
7447 return TRUE;
7448 }
7449
7450 /* Hmm. still haven't found it. try pseudo-section names. */
a0c8462f 7451 for (curr = sections; curr; curr = curr->next)
d9352518
DB
7452 {
7453 len = strlen (curr->name);
a0c8462f 7454 if (len > strlen (name))
d9352518
DB
7455 continue;
7456
7457 if (strncmp (curr->name, name, len) == 0)
7458 {
7459 if (strncmp (".end", name + len, 4) == 0)
7460 {
7461 *result = curr->vma + curr->size;
7462 return TRUE;
7463 }
7464
7465 /* Insert more pseudo-section names here, if you like. */
7466 }
7467 }
a0c8462f 7468
d9352518
DB
7469 return FALSE;
7470}
7471
7472static void
a0c8462f 7473undefined_reference (const char *reftype, const char *name)
d9352518 7474{
a0c8462f
AM
7475 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7476 reftype, name);
d9352518
DB
7477}
7478
7479static bfd_boolean
a0c8462f
AM
7480eval_symbol (bfd_vma *result,
7481 const char **symp,
7482 bfd *input_bfd,
7483 struct elf_final_link_info *finfo,
7484 bfd_vma dot,
7485 Elf_Internal_Sym *isymbuf,
7486 size_t locsymcount,
7487 int signed_p)
d9352518 7488{
4b93929b
NC
7489 size_t len;
7490 size_t symlen;
a0c8462f
AM
7491 bfd_vma a;
7492 bfd_vma b;
4b93929b 7493 char symbuf[4096];
0f02bbd9 7494 const char *sym = *symp;
a0c8462f
AM
7495 const char *symend;
7496 bfd_boolean symbol_is_section = FALSE;
d9352518
DB
7497
7498 len = strlen (sym);
7499 symend = sym + len;
7500
4b93929b 7501 if (len < 1 || len > sizeof (symbuf))
d9352518
DB
7502 {
7503 bfd_set_error (bfd_error_invalid_operation);
7504 return FALSE;
7505 }
a0c8462f 7506
d9352518
DB
7507 switch (* sym)
7508 {
7509 case '.':
0f02bbd9
AM
7510 *result = dot;
7511 *symp = sym + 1;
d9352518
DB
7512 return TRUE;
7513
7514 case '#':
0f02bbd9
AM
7515 ++sym;
7516 *result = strtoul (sym, (char **) symp, 16);
d9352518
DB
7517 return TRUE;
7518
7519 case 'S':
7520 symbol_is_section = TRUE;
a0c8462f 7521 case 's':
0f02bbd9
AM
7522 ++sym;
7523 symlen = strtol (sym, (char **) symp, 10);
7524 sym = *symp + 1; /* Skip the trailing ':'. */
d9352518 7525
4b93929b 7526 if (symend < sym || symlen + 1 > sizeof (symbuf))
d9352518
DB
7527 {
7528 bfd_set_error (bfd_error_invalid_operation);
7529 return FALSE;
7530 }
7531
7532 memcpy (symbuf, sym, symlen);
a0c8462f 7533 symbuf[symlen] = '\0';
0f02bbd9 7534 *symp = sym + symlen;
a0c8462f
AM
7535
7536 /* Is it always possible, with complex symbols, that gas "mis-guessed"
d9352518
DB
7537 the symbol as a section, or vice-versa. so we're pretty liberal in our
7538 interpretation here; section means "try section first", not "must be a
7539 section", and likewise with symbol. */
7540
a0c8462f 7541 if (symbol_is_section)
d9352518 7542 {
8977835c
AM
7543 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7544 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7545 isymbuf, locsymcount))
d9352518
DB
7546 {
7547 undefined_reference ("section", symbuf);
7548 return FALSE;
7549 }
a0c8462f
AM
7550 }
7551 else
d9352518 7552 {
8977835c
AM
7553 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7554 isymbuf, locsymcount)
7555 && !resolve_section (symbuf, finfo->output_bfd->sections,
7556 result))
d9352518
DB
7557 {
7558 undefined_reference ("symbol", symbuf);
7559 return FALSE;
7560 }
7561 }
7562
7563 return TRUE;
a0c8462f 7564
d9352518
DB
7565 /* All that remains are operators. */
7566
7567#define UNARY_OP(op) \
7568 if (strncmp (sym, #op, strlen (#op)) == 0) \
7569 { \
7570 sym += strlen (#op); \
a0c8462f
AM
7571 if (*sym == ':') \
7572 ++sym; \
0f02bbd9
AM
7573 *symp = sym; \
7574 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7575 isymbuf, locsymcount, signed_p)) \
a0c8462f
AM
7576 return FALSE; \
7577 if (signed_p) \
0f02bbd9 7578 *result = op ((bfd_signed_vma) a); \
a0c8462f
AM
7579 else \
7580 *result = op a; \
d9352518
DB
7581 return TRUE; \
7582 }
7583
7584#define BINARY_OP(op) \
7585 if (strncmp (sym, #op, strlen (#op)) == 0) \
7586 { \
7587 sym += strlen (#op); \
a0c8462f
AM
7588 if (*sym == ':') \
7589 ++sym; \
0f02bbd9
AM
7590 *symp = sym; \
7591 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7592 isymbuf, locsymcount, signed_p)) \
a0c8462f 7593 return FALSE; \
0f02bbd9
AM
7594 ++*symp; \
7595 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7596 isymbuf, locsymcount, signed_p)) \
a0c8462f
AM
7597 return FALSE; \
7598 if (signed_p) \
0f02bbd9 7599 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
a0c8462f
AM
7600 else \
7601 *result = a op b; \
d9352518
DB
7602 return TRUE; \
7603 }
7604
7605 default:
7606 UNARY_OP (0-);
7607 BINARY_OP (<<);
7608 BINARY_OP (>>);
7609 BINARY_OP (==);
7610 BINARY_OP (!=);
7611 BINARY_OP (<=);
7612 BINARY_OP (>=);
7613 BINARY_OP (&&);
7614 BINARY_OP (||);
7615 UNARY_OP (~);
7616 UNARY_OP (!);
7617 BINARY_OP (*);
7618 BINARY_OP (/);
7619 BINARY_OP (%);
7620 BINARY_OP (^);
7621 BINARY_OP (|);
7622 BINARY_OP (&);
7623 BINARY_OP (+);
7624 BINARY_OP (-);
7625 BINARY_OP (<);
7626 BINARY_OP (>);
7627#undef UNARY_OP
7628#undef BINARY_OP
7629 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7630 bfd_set_error (bfd_error_invalid_operation);
7631 return FALSE;
7632 }
7633}
7634
d9352518 7635static void
a0c8462f
AM
7636put_value (bfd_vma size,
7637 unsigned long chunksz,
7638 bfd *input_bfd,
7639 bfd_vma x,
7640 bfd_byte *location)
d9352518
DB
7641{
7642 location += (size - chunksz);
7643
a0c8462f 7644 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
d9352518
DB
7645 {
7646 switch (chunksz)
7647 {
7648 default:
7649 case 0:
7650 abort ();
7651 case 1:
7652 bfd_put_8 (input_bfd, x, location);
7653 break;
7654 case 2:
7655 bfd_put_16 (input_bfd, x, location);
7656 break;
7657 case 4:
7658 bfd_put_32 (input_bfd, x, location);
7659 break;
7660 case 8:
7661#ifdef BFD64
7662 bfd_put_64 (input_bfd, x, location);
7663#else
7664 abort ();
7665#endif
7666 break;
7667 }
7668 }
7669}
7670
a0c8462f
AM
7671static bfd_vma
7672get_value (bfd_vma size,
7673 unsigned long chunksz,
7674 bfd *input_bfd,
7675 bfd_byte *location)
d9352518
DB
7676{
7677 bfd_vma x = 0;
7678
a0c8462f 7679 for (; size; size -= chunksz, location += chunksz)
d9352518
DB
7680 {
7681 switch (chunksz)
7682 {
7683 default:
7684 case 0:
7685 abort ();
7686 case 1:
7687 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7688 break;
7689 case 2:
7690 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7691 break;
7692 case 4:
7693 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7694 break;
7695 case 8:
7696#ifdef BFD64
7697 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7698#else
7699 abort ();
7700#endif
7701 break;
7702 }
7703 }
7704 return x;
7705}
7706
a0c8462f
AM
7707static void
7708decode_complex_addend (unsigned long *start, /* in bits */
7709 unsigned long *oplen, /* in bits */
7710 unsigned long *len, /* in bits */
7711 unsigned long *wordsz, /* in bytes */
7712 unsigned long *chunksz, /* in bytes */
7713 unsigned long *lsb0_p,
7714 unsigned long *signed_p,
7715 unsigned long *trunc_p,
7716 unsigned long encoded)
d9352518
DB
7717{
7718 * start = encoded & 0x3F;
7719 * len = (encoded >> 6) & 0x3F;
7720 * oplen = (encoded >> 12) & 0x3F;
7721 * wordsz = (encoded >> 18) & 0xF;
7722 * chunksz = (encoded >> 22) & 0xF;
7723 * lsb0_p = (encoded >> 27) & 1;
7724 * signed_p = (encoded >> 28) & 1;
7725 * trunc_p = (encoded >> 29) & 1;
7726}
7727
cdfeee4f 7728bfd_reloc_status_type
0f02bbd9 7729bfd_elf_perform_complex_relocation (bfd *input_bfd,
cdfeee4f 7730 asection *input_section ATTRIBUTE_UNUSED,
0f02bbd9
AM
7731 bfd_byte *contents,
7732 Elf_Internal_Rela *rel,
7733 bfd_vma relocation)
d9352518 7734{
0f02bbd9
AM
7735 bfd_vma shift, x, mask;
7736 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
cdfeee4f 7737 bfd_reloc_status_type r;
d9352518
DB
7738
7739 /* Perform this reloc, since it is complex.
7740 (this is not to say that it necessarily refers to a complex
7741 symbol; merely that it is a self-describing CGEN based reloc.
7742 i.e. the addend has the complete reloc information (bit start, end,
a0c8462f 7743 word size, etc) encoded within it.). */
d9352518 7744
a0c8462f
AM
7745 decode_complex_addend (&start, &oplen, &len, &wordsz,
7746 &chunksz, &lsb0_p, &signed_p,
7747 &trunc_p, rel->r_addend);
d9352518
DB
7748
7749 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7750
7751 if (lsb0_p)
7752 shift = (start + 1) - len;
7753 else
7754 shift = (8 * wordsz) - (start + len);
7755
a0c8462f 7756 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
d9352518
DB
7757
7758#ifdef DEBUG
7759 printf ("Doing complex reloc: "
7760 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7761 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7762 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7763 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7764 oplen, x, mask, relocation);
7765#endif
7766
cdfeee4f 7767 r = bfd_reloc_ok;
d9352518 7768 if (! trunc_p)
cdfeee4f
AM
7769 /* Now do an overflow check. */
7770 r = bfd_check_overflow ((signed_p
7771 ? complain_overflow_signed
7772 : complain_overflow_unsigned),
7773 len, 0, (8 * wordsz),
7774 relocation);
a0c8462f 7775
d9352518
DB
7776 /* Do the deed. */
7777 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7778
7779#ifdef DEBUG
7780 printf (" relocation: %8.8lx\n"
7781 " shifted mask: %8.8lx\n"
7782 " shifted/masked reloc: %8.8lx\n"
7783 " result: %8.8lx\n",
a0c8462f 7784 relocation, (mask << shift),
d9352518
DB
7785 ((relocation & mask) << shift), x);
7786#endif
7787 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
cdfeee4f 7788 return r;
d9352518
DB
7789}
7790
c152c796
AM
7791/* When performing a relocatable link, the input relocations are
7792 preserved. But, if they reference global symbols, the indices
7793 referenced must be updated. Update all the relocations in
7794 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7795
7796static void
7797elf_link_adjust_relocs (bfd *abfd,
7798 Elf_Internal_Shdr *rel_hdr,
7799 unsigned int count,
7800 struct elf_link_hash_entry **rel_hash)
7801{
7802 unsigned int i;
7803 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7804 bfd_byte *erela;
7805 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7806 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7807 bfd_vma r_type_mask;
7808 int r_sym_shift;
7809
7810 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7811 {
7812 swap_in = bed->s->swap_reloc_in;
7813 swap_out = bed->s->swap_reloc_out;
7814 }
7815 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7816 {
7817 swap_in = bed->s->swap_reloca_in;
7818 swap_out = bed->s->swap_reloca_out;
7819 }
7820 else
7821 abort ();
7822
7823 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7824 abort ();
7825
7826 if (bed->s->arch_size == 32)
7827 {
7828 r_type_mask = 0xff;
7829 r_sym_shift = 8;
7830 }
7831 else
7832 {
7833 r_type_mask = 0xffffffff;
7834 r_sym_shift = 32;
7835 }
7836
7837 erela = rel_hdr->contents;
7838 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7839 {
7840 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7841 unsigned int j;
7842
7843 if (*rel_hash == NULL)
7844 continue;
7845
7846 BFD_ASSERT ((*rel_hash)->indx >= 0);
7847
7848 (*swap_in) (abfd, erela, irela);
7849 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7850 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7851 | (irela[j].r_info & r_type_mask));
7852 (*swap_out) (abfd, irela, erela);
7853 }
7854}
7855
7856struct elf_link_sort_rela
7857{
7858 union {
7859 bfd_vma offset;
7860 bfd_vma sym_mask;
7861 } u;
7862 enum elf_reloc_type_class type;
7863 /* We use this as an array of size int_rels_per_ext_rel. */
7864 Elf_Internal_Rela rela[1];
7865};
7866
7867static int
7868elf_link_sort_cmp1 (const void *A, const void *B)
7869{
7870 const struct elf_link_sort_rela *a = A;
7871 const struct elf_link_sort_rela *b = B;
7872 int relativea, relativeb;
7873
7874 relativea = a->type == reloc_class_relative;
7875 relativeb = b->type == reloc_class_relative;
7876
7877 if (relativea < relativeb)
7878 return 1;
7879 if (relativea > relativeb)
7880 return -1;
7881 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7882 return -1;
7883 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7884 return 1;
7885 if (a->rela->r_offset < b->rela->r_offset)
7886 return -1;
7887 if (a->rela->r_offset > b->rela->r_offset)
7888 return 1;
7889 return 0;
7890}
7891
7892static int
7893elf_link_sort_cmp2 (const void *A, const void *B)
7894{
7895 const struct elf_link_sort_rela *a = A;
7896 const struct elf_link_sort_rela *b = B;
7897 int copya, copyb;
7898
7899 if (a->u.offset < b->u.offset)
7900 return -1;
7901 if (a->u.offset > b->u.offset)
7902 return 1;
7903 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7904 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7905 if (copya < copyb)
7906 return -1;
7907 if (copya > copyb)
7908 return 1;
7909 if (a->rela->r_offset < b->rela->r_offset)
7910 return -1;
7911 if (a->rela->r_offset > b->rela->r_offset)
7912 return 1;
7913 return 0;
7914}
7915
7916static size_t
7917elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7918{
3410fea8 7919 asection *dynamic_relocs;
fc66a176
L
7920 asection *rela_dyn;
7921 asection *rel_dyn;
c152c796
AM
7922 bfd_size_type count, size;
7923 size_t i, ret, sort_elt, ext_size;
7924 bfd_byte *sort, *s_non_relative, *p;
7925 struct elf_link_sort_rela *sq;
7926 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7927 int i2e = bed->s->int_rels_per_ext_rel;
7928 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7929 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7930 struct bfd_link_order *lo;
7931 bfd_vma r_sym_mask;
3410fea8 7932 bfd_boolean use_rela;
c152c796 7933
3410fea8
NC
7934 /* Find a dynamic reloc section. */
7935 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7936 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7937 if (rela_dyn != NULL && rela_dyn->size > 0
7938 && rel_dyn != NULL && rel_dyn->size > 0)
c152c796 7939 {
3410fea8
NC
7940 bfd_boolean use_rela_initialised = FALSE;
7941
7942 /* This is just here to stop gcc from complaining.
7943 It's initialization checking code is not perfect. */
7944 use_rela = TRUE;
7945
7946 /* Both sections are present. Examine the sizes
7947 of the indirect sections to help us choose. */
7948 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7949 if (lo->type == bfd_indirect_link_order)
7950 {
7951 asection *o = lo->u.indirect.section;
7952
7953 if ((o->size % bed->s->sizeof_rela) == 0)
7954 {
7955 if ((o->size % bed->s->sizeof_rel) == 0)
7956 /* Section size is divisible by both rel and rela sizes.
7957 It is of no help to us. */
7958 ;
7959 else
7960 {
7961 /* Section size is only divisible by rela. */
7962 if (use_rela_initialised && (use_rela == FALSE))
7963 {
7964 _bfd_error_handler
7965 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7966 bfd_set_error (bfd_error_invalid_operation);
7967 return 0;
7968 }
7969 else
7970 {
7971 use_rela = TRUE;
7972 use_rela_initialised = TRUE;
7973 }
7974 }
7975 }
7976 else if ((o->size % bed->s->sizeof_rel) == 0)
7977 {
7978 /* Section size is only divisible by rel. */
7979 if (use_rela_initialised && (use_rela == TRUE))
7980 {
7981 _bfd_error_handler
7982 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7983 bfd_set_error (bfd_error_invalid_operation);
7984 return 0;
7985 }
7986 else
7987 {
7988 use_rela = FALSE;
7989 use_rela_initialised = TRUE;
7990 }
7991 }
7992 else
7993 {
7994 /* The section size is not divisible by either - something is wrong. */
7995 _bfd_error_handler
7996 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7997 bfd_set_error (bfd_error_invalid_operation);
7998 return 0;
7999 }
8000 }
8001
8002 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8003 if (lo->type == bfd_indirect_link_order)
8004 {
8005 asection *o = lo->u.indirect.section;
8006
8007 if ((o->size % bed->s->sizeof_rela) == 0)
8008 {
8009 if ((o->size % bed->s->sizeof_rel) == 0)
8010 /* Section size is divisible by both rel and rela sizes.
8011 It is of no help to us. */
8012 ;
8013 else
8014 {
8015 /* Section size is only divisible by rela. */
8016 if (use_rela_initialised && (use_rela == FALSE))
8017 {
8018 _bfd_error_handler
8019 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8020 bfd_set_error (bfd_error_invalid_operation);
8021 return 0;
8022 }
8023 else
8024 {
8025 use_rela = TRUE;
8026 use_rela_initialised = TRUE;
8027 }
8028 }
8029 }
8030 else if ((o->size % bed->s->sizeof_rel) == 0)
8031 {
8032 /* Section size is only divisible by rel. */
8033 if (use_rela_initialised && (use_rela == TRUE))
8034 {
8035 _bfd_error_handler
8036 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8037 bfd_set_error (bfd_error_invalid_operation);
8038 return 0;
8039 }
8040 else
8041 {
8042 use_rela = FALSE;
8043 use_rela_initialised = TRUE;
8044 }
8045 }
8046 else
8047 {
8048 /* The section size is not divisible by either - something is wrong. */
8049 _bfd_error_handler
8050 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8051 bfd_set_error (bfd_error_invalid_operation);
8052 return 0;
8053 }
8054 }
8055
8056 if (! use_rela_initialised)
8057 /* Make a guess. */
8058 use_rela = TRUE;
c152c796 8059 }
fc66a176
L
8060 else if (rela_dyn != NULL && rela_dyn->size > 0)
8061 use_rela = TRUE;
8062 else if (rel_dyn != NULL && rel_dyn->size > 0)
3410fea8 8063 use_rela = FALSE;
c152c796 8064 else
fc66a176 8065 return 0;
3410fea8
NC
8066
8067 if (use_rela)
c152c796 8068 {
3410fea8 8069 dynamic_relocs = rela_dyn;
c152c796
AM
8070 ext_size = bed->s->sizeof_rela;
8071 swap_in = bed->s->swap_reloca_in;
8072 swap_out = bed->s->swap_reloca_out;
8073 }
3410fea8
NC
8074 else
8075 {
8076 dynamic_relocs = rel_dyn;
8077 ext_size = bed->s->sizeof_rel;
8078 swap_in = bed->s->swap_reloc_in;
8079 swap_out = bed->s->swap_reloc_out;
8080 }
c152c796
AM
8081
8082 size = 0;
3410fea8 8083 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
c152c796 8084 if (lo->type == bfd_indirect_link_order)
3410fea8 8085 size += lo->u.indirect.section->size;
c152c796 8086
3410fea8 8087 if (size != dynamic_relocs->size)
c152c796
AM
8088 return 0;
8089
8090 sort_elt = (sizeof (struct elf_link_sort_rela)
8091 + (i2e - 1) * sizeof (Elf_Internal_Rela));
3410fea8
NC
8092
8093 count = dynamic_relocs->size / ext_size;
c152c796 8094 sort = bfd_zmalloc (sort_elt * count);
3410fea8 8095
c152c796
AM
8096 if (sort == NULL)
8097 {
8098 (*info->callbacks->warning)
8099 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8100 return 0;
8101 }
8102
8103 if (bed->s->arch_size == 32)
8104 r_sym_mask = ~(bfd_vma) 0xff;
8105 else
8106 r_sym_mask = ~(bfd_vma) 0xffffffff;
8107
3410fea8 8108 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
8109 if (lo->type == bfd_indirect_link_order)
8110 {
8111 bfd_byte *erel, *erelend;
8112 asection *o = lo->u.indirect.section;
8113
1da212d6
AM
8114 if (o->contents == NULL && o->size != 0)
8115 {
8116 /* This is a reloc section that is being handled as a normal
8117 section. See bfd_section_from_shdr. We can't combine
8118 relocs in this case. */
8119 free (sort);
8120 return 0;
8121 }
c152c796 8122 erel = o->contents;
eea6121a 8123 erelend = o->contents + o->size;
c152c796 8124 p = sort + o->output_offset / ext_size * sort_elt;
3410fea8 8125
c152c796
AM
8126 while (erel < erelend)
8127 {
8128 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
3410fea8 8129
c152c796
AM
8130 (*swap_in) (abfd, erel, s->rela);
8131 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8132 s->u.sym_mask = r_sym_mask;
8133 p += sort_elt;
8134 erel += ext_size;
8135 }
8136 }
8137
8138 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8139
8140 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8141 {
8142 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8143 if (s->type != reloc_class_relative)
8144 break;
8145 }
8146 ret = i;
8147 s_non_relative = p;
8148
8149 sq = (struct elf_link_sort_rela *) s_non_relative;
8150 for (; i < count; i++, p += sort_elt)
8151 {
8152 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8153 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8154 sq = sp;
8155 sp->u.offset = sq->rela->r_offset;
8156 }
8157
8158 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8159
3410fea8 8160 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
8161 if (lo->type == bfd_indirect_link_order)
8162 {
8163 bfd_byte *erel, *erelend;
8164 asection *o = lo->u.indirect.section;
8165
8166 erel = o->contents;
eea6121a 8167 erelend = o->contents + o->size;
c152c796
AM
8168 p = sort + o->output_offset / ext_size * sort_elt;
8169 while (erel < erelend)
8170 {
8171 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8172 (*swap_out) (abfd, s->rela, erel);
8173 p += sort_elt;
8174 erel += ext_size;
8175 }
8176 }
8177
8178 free (sort);
3410fea8 8179 *psec = dynamic_relocs;
c152c796
AM
8180 return ret;
8181}
8182
8183/* Flush the output symbols to the file. */
8184
8185static bfd_boolean
8186elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8187 const struct elf_backend_data *bed)
8188{
8189 if (finfo->symbuf_count > 0)
8190 {
8191 Elf_Internal_Shdr *hdr;
8192 file_ptr pos;
8193 bfd_size_type amt;
8194
8195 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8196 pos = hdr->sh_offset + hdr->sh_size;
8197 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8198 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8199 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8200 return FALSE;
8201
8202 hdr->sh_size += amt;
8203 finfo->symbuf_count = 0;
8204 }
8205
8206 return TRUE;
8207}
8208
8209/* Add a symbol to the output symbol table. */
8210
8211static bfd_boolean
8212elf_link_output_sym (struct elf_final_link_info *finfo,
8213 const char *name,
8214 Elf_Internal_Sym *elfsym,
8215 asection *input_sec,
8216 struct elf_link_hash_entry *h)
8217{
8218 bfd_byte *dest;
8219 Elf_External_Sym_Shndx *destshndx;
8220 bfd_boolean (*output_symbol_hook)
8221 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8222 struct elf_link_hash_entry *);
8223 const struct elf_backend_data *bed;
8224
8225 bed = get_elf_backend_data (finfo->output_bfd);
8226 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8227 if (output_symbol_hook != NULL)
8228 {
8229 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8230 return FALSE;
8231 }
8232
8233 if (name == NULL || *name == '\0')
8234 elfsym->st_name = 0;
8235 else if (input_sec->flags & SEC_EXCLUDE)
8236 elfsym->st_name = 0;
8237 else
8238 {
8239 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8240 name, TRUE, FALSE);
8241 if (elfsym->st_name == (unsigned long) -1)
8242 return FALSE;
8243 }
8244
8245 if (finfo->symbuf_count >= finfo->symbuf_size)
8246 {
8247 if (! elf_link_flush_output_syms (finfo, bed))
8248 return FALSE;
8249 }
8250
8251 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8252 destshndx = finfo->symshndxbuf;
8253 if (destshndx != NULL)
8254 {
8255 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8256 {
8257 bfd_size_type amt;
8258
8259 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
515ef31d 8260 destshndx = bfd_realloc (destshndx, amt * 2);
c152c796
AM
8261 if (destshndx == NULL)
8262 return FALSE;
515ef31d 8263 finfo->symshndxbuf = destshndx;
c152c796
AM
8264 memset ((char *) destshndx + amt, 0, amt);
8265 finfo->shndxbuf_size *= 2;
8266 }
8267 destshndx += bfd_get_symcount (finfo->output_bfd);
8268 }
8269
8270 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8271 finfo->symbuf_count += 1;
8272 bfd_get_symcount (finfo->output_bfd) += 1;
8273
8274 return TRUE;
8275}
8276
c0d5a53d
L
8277/* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8278
8279static bfd_boolean
8280check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8281{
4fbb74a6
AM
8282 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8283 && sym->st_shndx < SHN_LORESERVE)
c0d5a53d
L
8284 {
8285 /* The gABI doesn't support dynamic symbols in output sections
a0c8462f 8286 beyond 64k. */
c0d5a53d
L
8287 (*_bfd_error_handler)
8288 (_("%B: Too many sections: %d (>= %d)"),
4fbb74a6 8289 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
c0d5a53d
L
8290 bfd_set_error (bfd_error_nonrepresentable_section);
8291 return FALSE;
8292 }
8293 return TRUE;
8294}
8295
c152c796
AM
8296/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8297 allowing an unsatisfied unversioned symbol in the DSO to match a
8298 versioned symbol that would normally require an explicit version.
8299 We also handle the case that a DSO references a hidden symbol
8300 which may be satisfied by a versioned symbol in another DSO. */
8301
8302static bfd_boolean
8303elf_link_check_versioned_symbol (struct bfd_link_info *info,
8304 const struct elf_backend_data *bed,
8305 struct elf_link_hash_entry *h)
8306{
8307 bfd *abfd;
8308 struct elf_link_loaded_list *loaded;
8309
8310 if (!is_elf_hash_table (info->hash))
8311 return FALSE;
8312
8313 switch (h->root.type)
8314 {
8315 default:
8316 abfd = NULL;
8317 break;
8318
8319 case bfd_link_hash_undefined:
8320 case bfd_link_hash_undefweak:
8321 abfd = h->root.u.undef.abfd;
8322 if ((abfd->flags & DYNAMIC) == 0
e56f61be 8323 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
c152c796
AM
8324 return FALSE;
8325 break;
8326
8327 case bfd_link_hash_defined:
8328 case bfd_link_hash_defweak:
8329 abfd = h->root.u.def.section->owner;
8330 break;
8331
8332 case bfd_link_hash_common:
8333 abfd = h->root.u.c.p->section->owner;
8334 break;
8335 }
8336 BFD_ASSERT (abfd != NULL);
8337
8338 for (loaded = elf_hash_table (info)->loaded;
8339 loaded != NULL;
8340 loaded = loaded->next)
8341 {
8342 bfd *input;
8343 Elf_Internal_Shdr *hdr;
8344 bfd_size_type symcount;
8345 bfd_size_type extsymcount;
8346 bfd_size_type extsymoff;
8347 Elf_Internal_Shdr *versymhdr;
8348 Elf_Internal_Sym *isym;
8349 Elf_Internal_Sym *isymend;
8350 Elf_Internal_Sym *isymbuf;
8351 Elf_External_Versym *ever;
8352 Elf_External_Versym *extversym;
8353
8354 input = loaded->abfd;
8355
8356 /* We check each DSO for a possible hidden versioned definition. */
8357 if (input == abfd
8358 || (input->flags & DYNAMIC) == 0
8359 || elf_dynversym (input) == 0)
8360 continue;
8361
8362 hdr = &elf_tdata (input)->dynsymtab_hdr;
8363
8364 symcount = hdr->sh_size / bed->s->sizeof_sym;
8365 if (elf_bad_symtab (input))
8366 {
8367 extsymcount = symcount;
8368 extsymoff = 0;
8369 }
8370 else
8371 {
8372 extsymcount = symcount - hdr->sh_info;
8373 extsymoff = hdr->sh_info;
8374 }
8375
8376 if (extsymcount == 0)
8377 continue;
8378
8379 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8380 NULL, NULL, NULL);
8381 if (isymbuf == NULL)
8382 return FALSE;
8383
8384 /* Read in any version definitions. */
8385 versymhdr = &elf_tdata (input)->dynversym_hdr;
8386 extversym = bfd_malloc (versymhdr->sh_size);
8387 if (extversym == NULL)
8388 goto error_ret;
8389
8390 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8391 || (bfd_bread (extversym, versymhdr->sh_size, input)
8392 != versymhdr->sh_size))
8393 {
8394 free (extversym);
8395 error_ret:
8396 free (isymbuf);
8397 return FALSE;
8398 }
8399
8400 ever = extversym + extsymoff;
8401 isymend = isymbuf + extsymcount;
8402 for (isym = isymbuf; isym < isymend; isym++, ever++)
8403 {
8404 const char *name;
8405 Elf_Internal_Versym iver;
8406 unsigned short version_index;
8407
8408 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8409 || isym->st_shndx == SHN_UNDEF)
8410 continue;
8411
8412 name = bfd_elf_string_from_elf_section (input,
8413 hdr->sh_link,
8414 isym->st_name);
8415 if (strcmp (name, h->root.root.string) != 0)
8416 continue;
8417
8418 _bfd_elf_swap_versym_in (input, ever, &iver);
8419
8420 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8421 {
8422 /* If we have a non-hidden versioned sym, then it should
8423 have provided a definition for the undefined sym. */
8424 abort ();
8425 }
8426
8427 version_index = iver.vs_vers & VERSYM_VERSION;
8428 if (version_index == 1 || version_index == 2)
8429 {
8430 /* This is the base or first version. We can use it. */
8431 free (extversym);
8432 free (isymbuf);
8433 return TRUE;
8434 }
8435 }
8436
8437 free (extversym);
8438 free (isymbuf);
8439 }
8440
8441 return FALSE;
8442}
8443
8444/* Add an external symbol to the symbol table. This is called from
8445 the hash table traversal routine. When generating a shared object,
8446 we go through the symbol table twice. The first time we output
8447 anything that might have been forced to local scope in a version
8448 script. The second time we output the symbols that are still
8449 global symbols. */
8450
8451static bfd_boolean
8452elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8453{
8454 struct elf_outext_info *eoinfo = data;
8455 struct elf_final_link_info *finfo = eoinfo->finfo;
8456 bfd_boolean strip;
8457 Elf_Internal_Sym sym;
8458 asection *input_sec;
8459 const struct elf_backend_data *bed;
8460
8461 if (h->root.type == bfd_link_hash_warning)
8462 {
8463 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8464 if (h->root.type == bfd_link_hash_new)
8465 return TRUE;
8466 }
8467
8468 /* Decide whether to output this symbol in this pass. */
8469 if (eoinfo->localsyms)
8470 {
f5385ebf 8471 if (!h->forced_local)
c152c796
AM
8472 return TRUE;
8473 }
8474 else
8475 {
f5385ebf 8476 if (h->forced_local)
c152c796
AM
8477 return TRUE;
8478 }
8479
8480 bed = get_elf_backend_data (finfo->output_bfd);
8481
12ac1cf5 8482 if (h->root.type == bfd_link_hash_undefined)
c152c796 8483 {
12ac1cf5
NC
8484 /* If we have an undefined symbol reference here then it must have
8485 come from a shared library that is being linked in. (Undefined
8486 references in regular files have already been handled). */
8487 bfd_boolean ignore_undef = FALSE;
8488
8489 /* Some symbols may be special in that the fact that they're
8490 undefined can be safely ignored - let backend determine that. */
8491 if (bed->elf_backend_ignore_undef_symbol)
8492 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8493
8494 /* If we are reporting errors for this situation then do so now. */
8495 if (ignore_undef == FALSE
8496 && h->ref_dynamic
8497 && ! h->ref_regular
8498 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8499 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
c152c796 8500 {
12ac1cf5
NC
8501 if (! (finfo->info->callbacks->undefined_symbol
8502 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8503 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8504 {
8505 eoinfo->failed = TRUE;
8506 return FALSE;
8507 }
c152c796
AM
8508 }
8509 }
8510
8511 /* We should also warn if a forced local symbol is referenced from
8512 shared libraries. */
8513 if (! finfo->info->relocatable
8514 && (! finfo->info->shared)
f5385ebf
AM
8515 && h->forced_local
8516 && h->ref_dynamic
8517 && !h->dynamic_def
8518 && !h->dynamic_weak
c152c796
AM
8519 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8520 {
8521 (*_bfd_error_handler)
d003868e 8522 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
cfca085c
L
8523 finfo->output_bfd,
8524 h->root.u.def.section == bfd_abs_section_ptr
8525 ? finfo->output_bfd : h->root.u.def.section->owner,
c152c796
AM
8526 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8527 ? "internal"
8528 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
d003868e
AM
8529 ? "hidden" : "local",
8530 h->root.root.string);
c152c796
AM
8531 eoinfo->failed = TRUE;
8532 return FALSE;
8533 }
8534
8535 /* We don't want to output symbols that have never been mentioned by
8536 a regular file, or that we have been told to strip. However, if
8537 h->indx is set to -2, the symbol is used by a reloc and we must
8538 output it. */
8539 if (h->indx == -2)
8540 strip = FALSE;
f5385ebf 8541 else if ((h->def_dynamic
77cfaee6
AM
8542 || h->ref_dynamic
8543 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
8544 && !h->def_regular
8545 && !h->ref_regular)
c152c796
AM
8546 strip = TRUE;
8547 else if (finfo->info->strip == strip_all)
8548 strip = TRUE;
8549 else if (finfo->info->strip == strip_some
8550 && bfd_hash_lookup (finfo->info->keep_hash,
8551 h->root.root.string, FALSE, FALSE) == NULL)
8552 strip = TRUE;
8553 else if (finfo->info->strip_discarded
8554 && (h->root.type == bfd_link_hash_defined
8555 || h->root.type == bfd_link_hash_defweak)
8556 && elf_discarded_section (h->root.u.def.section))
8557 strip = TRUE;
8558 else
8559 strip = FALSE;
8560
8561 /* If we're stripping it, and it's not a dynamic symbol, there's
8562 nothing else to do unless it is a forced local symbol. */
8563 if (strip
8564 && h->dynindx == -1
f5385ebf 8565 && !h->forced_local)
c152c796
AM
8566 return TRUE;
8567
8568 sym.st_value = 0;
8569 sym.st_size = h->size;
8570 sym.st_other = h->other;
f5385ebf 8571 if (h->forced_local)
c152c796
AM
8572 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8573 else if (h->root.type == bfd_link_hash_undefweak
8574 || h->root.type == bfd_link_hash_defweak)
8575 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8576 else
8577 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8578
8579 switch (h->root.type)
8580 {
8581 default:
8582 case bfd_link_hash_new:
8583 case bfd_link_hash_warning:
8584 abort ();
8585 return FALSE;
8586
8587 case bfd_link_hash_undefined:
8588 case bfd_link_hash_undefweak:
8589 input_sec = bfd_und_section_ptr;
8590 sym.st_shndx = SHN_UNDEF;
8591 break;
8592
8593 case bfd_link_hash_defined:
8594 case bfd_link_hash_defweak:
8595 {
8596 input_sec = h->root.u.def.section;
8597 if (input_sec->output_section != NULL)
8598 {
8599 sym.st_shndx =
8600 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8601 input_sec->output_section);
8602 if (sym.st_shndx == SHN_BAD)
8603 {
8604 (*_bfd_error_handler)
d003868e
AM
8605 (_("%B: could not find output section %A for input section %A"),
8606 finfo->output_bfd, input_sec->output_section, input_sec);
c152c796
AM
8607 eoinfo->failed = TRUE;
8608 return FALSE;
8609 }
8610
8611 /* ELF symbols in relocatable files are section relative,
8612 but in nonrelocatable files they are virtual
8613 addresses. */
8614 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8615 if (! finfo->info->relocatable)
8616 {
8617 sym.st_value += input_sec->output_section->vma;
8618 if (h->type == STT_TLS)
8619 {
430a16a5
NC
8620 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8621 if (tls_sec != NULL)
8622 sym.st_value -= tls_sec->vma;
8623 else
8624 {
8625 /* The TLS section may have been garbage collected. */
8626 BFD_ASSERT (finfo->info->gc_sections
8627 && !input_sec->gc_mark);
8628 }
c152c796
AM
8629 }
8630 }
8631 }
8632 else
8633 {
8634 BFD_ASSERT (input_sec->owner == NULL
8635 || (input_sec->owner->flags & DYNAMIC) != 0);
8636 sym.st_shndx = SHN_UNDEF;
8637 input_sec = bfd_und_section_ptr;
8638 }
8639 }
8640 break;
8641
8642 case bfd_link_hash_common:
8643 input_sec = h->root.u.c.p->section;
a4d8e49b 8644 sym.st_shndx = bed->common_section_index (input_sec);
c152c796
AM
8645 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8646 break;
8647
8648 case bfd_link_hash_indirect:
8649 /* These symbols are created by symbol versioning. They point
8650 to the decorated version of the name. For example, if the
8651 symbol foo@@GNU_1.2 is the default, which should be used when
8652 foo is used with no version, then we add an indirect symbol
8653 foo which points to foo@@GNU_1.2. We ignore these symbols,
8654 since the indirected symbol is already in the hash table. */
8655 return TRUE;
8656 }
8657
8658 /* Give the processor backend a chance to tweak the symbol value,
8659 and also to finish up anything that needs to be done for this
8660 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8661 forced local syms when non-shared is due to a historical quirk. */
8662 if ((h->dynindx != -1
f5385ebf 8663 || h->forced_local)
c152c796
AM
8664 && ((finfo->info->shared
8665 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8666 || h->root.type != bfd_link_hash_undefweak))
f5385ebf 8667 || !h->forced_local)
c152c796
AM
8668 && elf_hash_table (finfo->info)->dynamic_sections_created)
8669 {
8670 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8671 (finfo->output_bfd, finfo->info, h, &sym)))
8672 {
8673 eoinfo->failed = TRUE;
8674 return FALSE;
8675 }
8676 }
8677
8678 /* If we are marking the symbol as undefined, and there are no
8679 non-weak references to this symbol from a regular object, then
8680 mark the symbol as weak undefined; if there are non-weak
8681 references, mark the symbol as strong. We can't do this earlier,
8682 because it might not be marked as undefined until the
8683 finish_dynamic_symbol routine gets through with it. */
8684 if (sym.st_shndx == SHN_UNDEF
f5385ebf 8685 && h->ref_regular
c152c796
AM
8686 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8687 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8688 {
8689 int bindtype;
8690
f5385ebf 8691 if (h->ref_regular_nonweak)
c152c796
AM
8692 bindtype = STB_GLOBAL;
8693 else
8694 bindtype = STB_WEAK;
8695 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8696 }
8697
bda987c2
CD
8698 /* If this is a symbol defined in a dynamic library, don't use the
8699 symbol size from the dynamic library. Relinking an executable
8700 against a new library may introduce gratuitous changes in the
8701 executable's symbols if we keep the size. */
8702 if (sym.st_shndx == SHN_UNDEF
8703 && !h->def_regular
8704 && h->def_dynamic)
8705 sym.st_size = 0;
8706
c152c796
AM
8707 /* If a non-weak symbol with non-default visibility is not defined
8708 locally, it is a fatal error. */
8709 if (! finfo->info->relocatable
8710 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8711 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8712 && h->root.type == bfd_link_hash_undefined
f5385ebf 8713 && !h->def_regular)
c152c796
AM
8714 {
8715 (*_bfd_error_handler)
d003868e
AM
8716 (_("%B: %s symbol `%s' isn't defined"),
8717 finfo->output_bfd,
8718 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8719 ? "protected"
8720 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8721 ? "internal" : "hidden",
8722 h->root.root.string);
c152c796
AM
8723 eoinfo->failed = TRUE;
8724 return FALSE;
8725 }
8726
8727 /* If this symbol should be put in the .dynsym section, then put it
8728 there now. We already know the symbol index. We also fill in
8729 the entry in the .hash section. */
8730 if (h->dynindx != -1
8731 && elf_hash_table (finfo->info)->dynamic_sections_created)
8732 {
c152c796
AM
8733 bfd_byte *esym;
8734
8735 sym.st_name = h->dynstr_index;
8736 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
c0d5a53d
L
8737 if (! check_dynsym (finfo->output_bfd, &sym))
8738 {
8739 eoinfo->failed = TRUE;
8740 return FALSE;
8741 }
c152c796
AM
8742 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8743
fdc90cb4
JJ
8744 if (finfo->hash_sec != NULL)
8745 {
8746 size_t hash_entry_size;
8747 bfd_byte *bucketpos;
8748 bfd_vma chain;
41198d0c
L
8749 size_t bucketcount;
8750 size_t bucket;
8751
8752 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8753 bucket = h->u.elf_hash_value % bucketcount;
fdc90cb4
JJ
8754
8755 hash_entry_size
8756 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8757 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8758 + (bucket + 2) * hash_entry_size);
8759 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8760 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8761 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8762 ((bfd_byte *) finfo->hash_sec->contents
8763 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8764 }
c152c796
AM
8765
8766 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8767 {
8768 Elf_Internal_Versym iversym;
8769 Elf_External_Versym *eversym;
8770
f5385ebf 8771 if (!h->def_regular)
c152c796
AM
8772 {
8773 if (h->verinfo.verdef == NULL)
8774 iversym.vs_vers = 0;
8775 else
8776 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8777 }
8778 else
8779 {
8780 if (h->verinfo.vertree == NULL)
8781 iversym.vs_vers = 1;
8782 else
8783 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
3e3b46e5
PB
8784 if (finfo->info->create_default_symver)
8785 iversym.vs_vers++;
c152c796
AM
8786 }
8787
f5385ebf 8788 if (h->hidden)
c152c796
AM
8789 iversym.vs_vers |= VERSYM_HIDDEN;
8790
8791 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8792 eversym += h->dynindx;
8793 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8794 }
8795 }
8796
8797 /* If we're stripping it, then it was just a dynamic symbol, and
8798 there's nothing else to do. */
8799 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8800 return TRUE;
8801
8802 h->indx = bfd_get_symcount (finfo->output_bfd);
8803
8804 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8805 {
8806 eoinfo->failed = TRUE;
8807 return FALSE;
8808 }
8809
8810 return TRUE;
8811}
8812
cdd3575c
AM
8813/* Return TRUE if special handling is done for relocs in SEC against
8814 symbols defined in discarded sections. */
8815
c152c796
AM
8816static bfd_boolean
8817elf_section_ignore_discarded_relocs (asection *sec)
8818{
8819 const struct elf_backend_data *bed;
8820
cdd3575c
AM
8821 switch (sec->sec_info_type)
8822 {
8823 case ELF_INFO_TYPE_STABS:
8824 case ELF_INFO_TYPE_EH_FRAME:
8825 return TRUE;
8826 default:
8827 break;
8828 }
c152c796
AM
8829
8830 bed = get_elf_backend_data (sec->owner);
8831 if (bed->elf_backend_ignore_discarded_relocs != NULL
8832 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8833 return TRUE;
8834
8835 return FALSE;
8836}
8837
9e66c942
AM
8838/* Return a mask saying how ld should treat relocations in SEC against
8839 symbols defined in discarded sections. If this function returns
8840 COMPLAIN set, ld will issue a warning message. If this function
8841 returns PRETEND set, and the discarded section was link-once and the
8842 same size as the kept link-once section, ld will pretend that the
8843 symbol was actually defined in the kept section. Otherwise ld will
8844 zero the reloc (at least that is the intent, but some cooperation by
8845 the target dependent code is needed, particularly for REL targets). */
8846
8a696751
AM
8847unsigned int
8848_bfd_elf_default_action_discarded (asection *sec)
cdd3575c 8849{
9e66c942 8850 if (sec->flags & SEC_DEBUGGING)
69d54b1b 8851 return PRETEND;
cdd3575c
AM
8852
8853 if (strcmp (".eh_frame", sec->name) == 0)
9e66c942 8854 return 0;
cdd3575c
AM
8855
8856 if (strcmp (".gcc_except_table", sec->name) == 0)
9e66c942 8857 return 0;
cdd3575c 8858
9e66c942 8859 return COMPLAIN | PRETEND;
cdd3575c
AM
8860}
8861
3d7f7666
L
8862/* Find a match between a section and a member of a section group. */
8863
8864static asection *
c0f00686
L
8865match_group_member (asection *sec, asection *group,
8866 struct bfd_link_info *info)
3d7f7666
L
8867{
8868 asection *first = elf_next_in_group (group);
8869 asection *s = first;
8870
8871 while (s != NULL)
8872 {
c0f00686 8873 if (bfd_elf_match_symbols_in_sections (s, sec, info))
3d7f7666
L
8874 return s;
8875
83180ade 8876 s = elf_next_in_group (s);
3d7f7666
L
8877 if (s == first)
8878 break;
8879 }
8880
8881 return NULL;
8882}
8883
01b3c8ab 8884/* Check if the kept section of a discarded section SEC can be used
c2370991
AM
8885 to replace it. Return the replacement if it is OK. Otherwise return
8886 NULL. */
01b3c8ab
L
8887
8888asection *
c0f00686 8889_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
01b3c8ab
L
8890{
8891 asection *kept;
8892
8893 kept = sec->kept_section;
8894 if (kept != NULL)
8895 {
c2370991 8896 if ((kept->flags & SEC_GROUP) != 0)
c0f00686 8897 kept = match_group_member (sec, kept, info);
1dd2625f
BW
8898 if (kept != NULL
8899 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8900 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
01b3c8ab 8901 kept = NULL;
c2370991 8902 sec->kept_section = kept;
01b3c8ab
L
8903 }
8904 return kept;
8905}
8906
c152c796
AM
8907/* Link an input file into the linker output file. This function
8908 handles all the sections and relocations of the input file at once.
8909 This is so that we only have to read the local symbols once, and
8910 don't have to keep them in memory. */
8911
8912static bfd_boolean
8913elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8914{
ece5ef60 8915 int (*relocate_section)
c152c796
AM
8916 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8917 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8918 bfd *output_bfd;
8919 Elf_Internal_Shdr *symtab_hdr;
8920 size_t locsymcount;
8921 size_t extsymoff;
8922 Elf_Internal_Sym *isymbuf;
8923 Elf_Internal_Sym *isym;
8924 Elf_Internal_Sym *isymend;
8925 long *pindex;
8926 asection **ppsection;
8927 asection *o;
8928 const struct elf_backend_data *bed;
c152c796
AM
8929 struct elf_link_hash_entry **sym_hashes;
8930
8931 output_bfd = finfo->output_bfd;
8932 bed = get_elf_backend_data (output_bfd);
8933 relocate_section = bed->elf_backend_relocate_section;
8934
8935 /* If this is a dynamic object, we don't want to do anything here:
8936 we don't want the local symbols, and we don't want the section
8937 contents. */
8938 if ((input_bfd->flags & DYNAMIC) != 0)
8939 return TRUE;
8940
c152c796
AM
8941 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8942 if (elf_bad_symtab (input_bfd))
8943 {
8944 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8945 extsymoff = 0;
8946 }
8947 else
8948 {
8949 locsymcount = symtab_hdr->sh_info;
8950 extsymoff = symtab_hdr->sh_info;
8951 }
8952
8953 /* Read the local symbols. */
8954 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8955 if (isymbuf == NULL && locsymcount != 0)
8956 {
8957 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8958 finfo->internal_syms,
8959 finfo->external_syms,
8960 finfo->locsym_shndx);
8961 if (isymbuf == NULL)
8962 return FALSE;
8963 }
8964
8965 /* Find local symbol sections and adjust values of symbols in
8966 SEC_MERGE sections. Write out those local symbols we know are
8967 going into the output file. */
8968 isymend = isymbuf + locsymcount;
8969 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8970 isym < isymend;
8971 isym++, pindex++, ppsection++)
8972 {
8973 asection *isec;
8974 const char *name;
8975 Elf_Internal_Sym osym;
8976
8977 *pindex = -1;
8978
8979 if (elf_bad_symtab (input_bfd))
8980 {
8981 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8982 {
8983 *ppsection = NULL;
8984 continue;
8985 }
8986 }
8987
8988 if (isym->st_shndx == SHN_UNDEF)
8989 isec = bfd_und_section_ptr;
c152c796
AM
8990 else if (isym->st_shndx == SHN_ABS)
8991 isec = bfd_abs_section_ptr;
8992 else if (isym->st_shndx == SHN_COMMON)
8993 isec = bfd_com_section_ptr;
8994 else
8995 {
cb33740c
AM
8996 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8997 if (isec == NULL)
8998 {
8999 /* Don't attempt to output symbols with st_shnx in the
9000 reserved range other than SHN_ABS and SHN_COMMON. */
9001 *ppsection = NULL;
9002 continue;
9003 }
9004 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9005 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9006 isym->st_value =
9007 _bfd_merged_section_offset (output_bfd, &isec,
9008 elf_section_data (isec)->sec_info,
9009 isym->st_value);
c152c796
AM
9010 }
9011
9012 *ppsection = isec;
9013
9014 /* Don't output the first, undefined, symbol. */
9015 if (ppsection == finfo->sections)
9016 continue;
9017
9018 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9019 {
9020 /* We never output section symbols. Instead, we use the
9021 section symbol of the corresponding section in the output
9022 file. */
9023 continue;
9024 }
9025
9026 /* If we are stripping all symbols, we don't want to output this
9027 one. */
9028 if (finfo->info->strip == strip_all)
9029 continue;
9030
9031 /* If we are discarding all local symbols, we don't want to
9032 output this one. If we are generating a relocatable output
9033 file, then some of the local symbols may be required by
9034 relocs; we output them below as we discover that they are
9035 needed. */
9036 if (finfo->info->discard == discard_all)
9037 continue;
9038
9039 /* If this symbol is defined in a section which we are
f02571c5
AM
9040 discarding, we don't need to keep it. */
9041 if (isym->st_shndx != SHN_UNDEF
4fbb74a6
AM
9042 && isym->st_shndx < SHN_LORESERVE
9043 && bfd_section_removed_from_list (output_bfd,
9044 isec->output_section))
e75a280b
L
9045 continue;
9046
c152c796
AM
9047 /* Get the name of the symbol. */
9048 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9049 isym->st_name);
9050 if (name == NULL)
9051 return FALSE;
9052
9053 /* See if we are discarding symbols with this name. */
9054 if ((finfo->info->strip == strip_some
9055 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9056 == NULL))
9057 || (((finfo->info->discard == discard_sec_merge
9058 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9059 || finfo->info->discard == discard_l)
9060 && bfd_is_local_label_name (input_bfd, name)))
9061 continue;
9062
9063 /* If we get here, we are going to output this symbol. */
9064
9065 osym = *isym;
9066
9067 /* Adjust the section index for the output file. */
9068 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9069 isec->output_section);
9070 if (osym.st_shndx == SHN_BAD)
9071 return FALSE;
9072
9073 *pindex = bfd_get_symcount (output_bfd);
9074
9075 /* ELF symbols in relocatable files are section relative, but
9076 in executable files they are virtual addresses. Note that
9077 this code assumes that all ELF sections have an associated
9078 BFD section with a reasonable value for output_offset; below
9079 we assume that they also have a reasonable value for
9080 output_section. Any special sections must be set up to meet
9081 these requirements. */
9082 osym.st_value += isec->output_offset;
9083 if (! finfo->info->relocatable)
9084 {
9085 osym.st_value += isec->output_section->vma;
9086 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9087 {
9088 /* STT_TLS symbols are relative to PT_TLS segment base. */
9089 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9090 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9091 }
9092 }
9093
9094 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9095 return FALSE;
9096 }
9097
9098 /* Relocate the contents of each section. */
9099 sym_hashes = elf_sym_hashes (input_bfd);
9100 for (o = input_bfd->sections; o != NULL; o = o->next)
9101 {
9102 bfd_byte *contents;
9103
9104 if (! o->linker_mark)
9105 {
9106 /* This section was omitted from the link. */
9107 continue;
9108 }
9109
bcacc0f5
AM
9110 if (finfo->info->relocatable
9111 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9112 {
9113 /* Deal with the group signature symbol. */
9114 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9115 unsigned long symndx = sec_data->this_hdr.sh_info;
9116 asection *osec = o->output_section;
9117
9118 if (symndx >= locsymcount
9119 || (elf_bad_symtab (input_bfd)
9120 && finfo->sections[symndx] == NULL))
9121 {
9122 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9123 while (h->root.type == bfd_link_hash_indirect
9124 || h->root.type == bfd_link_hash_warning)
9125 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9126 /* Arrange for symbol to be output. */
9127 h->indx = -2;
9128 elf_section_data (osec)->this_hdr.sh_info = -2;
9129 }
9130 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9131 {
9132 /* We'll use the output section target_index. */
9133 asection *sec = finfo->sections[symndx]->output_section;
9134 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9135 }
9136 else
9137 {
9138 if (finfo->indices[symndx] == -1)
9139 {
9140 /* Otherwise output the local symbol now. */
9141 Elf_Internal_Sym sym = isymbuf[symndx];
9142 asection *sec = finfo->sections[symndx]->output_section;
9143 const char *name;
9144
9145 name = bfd_elf_string_from_elf_section (input_bfd,
9146 symtab_hdr->sh_link,
9147 sym.st_name);
9148 if (name == NULL)
9149 return FALSE;
9150
9151 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9152 sec);
9153 if (sym.st_shndx == SHN_BAD)
9154 return FALSE;
9155
9156 sym.st_value += o->output_offset;
9157
9158 finfo->indices[symndx] = bfd_get_symcount (output_bfd);
9159 if (! elf_link_output_sym (finfo, name, &sym, o, NULL))
9160 return FALSE;
9161 }
9162 elf_section_data (osec)->this_hdr.sh_info
9163 = finfo->indices[symndx];
9164 }
9165 }
9166
c152c796 9167 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 9168 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
c152c796
AM
9169 continue;
9170
9171 if ((o->flags & SEC_LINKER_CREATED) != 0)
9172 {
9173 /* Section was created by _bfd_elf_link_create_dynamic_sections
9174 or somesuch. */
9175 continue;
9176 }
9177
9178 /* Get the contents of the section. They have been cached by a
9179 relaxation routine. Note that o is a section in an input
9180 file, so the contents field will not have been set by any of
9181 the routines which work on output files. */
9182 if (elf_section_data (o)->this_hdr.contents != NULL)
9183 contents = elf_section_data (o)->this_hdr.contents;
9184 else
9185 {
eea6121a
AM
9186 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9187
c152c796 9188 contents = finfo->contents;
eea6121a 9189 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
c152c796
AM
9190 return FALSE;
9191 }
9192
9193 if ((o->flags & SEC_RELOC) != 0)
9194 {
9195 Elf_Internal_Rela *internal_relocs;
0f02bbd9 9196 Elf_Internal_Rela *rel, *relend;
c152c796
AM
9197 bfd_vma r_type_mask;
9198 int r_sym_shift;
0f02bbd9 9199 int action_discarded;
ece5ef60 9200 int ret;
c152c796
AM
9201
9202 /* Get the swapped relocs. */
9203 internal_relocs
9204 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9205 finfo->internal_relocs, FALSE);
9206 if (internal_relocs == NULL
9207 && o->reloc_count > 0)
9208 return FALSE;
9209
9210 if (bed->s->arch_size == 32)
9211 {
9212 r_type_mask = 0xff;
9213 r_sym_shift = 8;
9214 }
9215 else
9216 {
9217 r_type_mask = 0xffffffff;
9218 r_sym_shift = 32;
9219 }
9220
0f02bbd9 9221 action_discarded = -1;
c152c796 9222 if (!elf_section_ignore_discarded_relocs (o))
0f02bbd9
AM
9223 action_discarded = (*bed->action_discarded) (o);
9224
9225 /* Run through the relocs evaluating complex reloc symbols and
9226 looking for relocs against symbols from discarded sections
9227 or section symbols from removed link-once sections.
9228 Complain about relocs against discarded sections. Zero
9229 relocs against removed link-once sections. */
9230
9231 rel = internal_relocs;
9232 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9233 for ( ; rel < relend; rel++)
c152c796 9234 {
0f02bbd9
AM
9235 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9236 unsigned int s_type;
9237 asection **ps, *sec;
9238 struct elf_link_hash_entry *h = NULL;
9239 const char *sym_name;
c152c796 9240
0f02bbd9
AM
9241 if (r_symndx == STN_UNDEF)
9242 continue;
c152c796 9243
0f02bbd9
AM
9244 if (r_symndx >= locsymcount
9245 || (elf_bad_symtab (input_bfd)
9246 && finfo->sections[r_symndx] == NULL))
9247 {
9248 h = sym_hashes[r_symndx - extsymoff];
ee75fd95 9249
0f02bbd9
AM
9250 /* Badly formatted input files can contain relocs that
9251 reference non-existant symbols. Check here so that
9252 we do not seg fault. */
9253 if (h == NULL)
c152c796 9254 {
0f02bbd9 9255 char buffer [32];
dce669a1 9256
0f02bbd9
AM
9257 sprintf_vma (buffer, rel->r_info);
9258 (*_bfd_error_handler)
9259 (_("error: %B contains a reloc (0x%s) for section %A "
9260 "that references a non-existent global symbol"),
9261 input_bfd, o, buffer);
9262 bfd_set_error (bfd_error_bad_value);
9263 return FALSE;
9264 }
3b36f7e6 9265
0f02bbd9
AM
9266 while (h->root.type == bfd_link_hash_indirect
9267 || h->root.type == bfd_link_hash_warning)
9268 h = (struct elf_link_hash_entry *) h->root.u.i.link;
c152c796 9269
0f02bbd9 9270 s_type = h->type;
cdd3575c 9271
0f02bbd9
AM
9272 ps = NULL;
9273 if (h->root.type == bfd_link_hash_defined
9274 || h->root.type == bfd_link_hash_defweak)
9275 ps = &h->root.u.def.section;
9276
9277 sym_name = h->root.root.string;
9278 }
9279 else
9280 {
9281 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9282
9283 s_type = ELF_ST_TYPE (sym->st_info);
9284 ps = &finfo->sections[r_symndx];
9285 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9286 sym, *ps);
9287 }
c152c796 9288
0f02bbd9
AM
9289 if (s_type == STT_RELC || s_type == STT_SRELC)
9290 {
9291 bfd_vma val;
9292 bfd_vma dot = (rel->r_offset
9293 + o->output_offset + o->output_section->vma);
9294#ifdef DEBUG
9295 printf ("Encountered a complex symbol!");
9296 printf (" (input_bfd %s, section %s, reloc %ld\n",
9297 input_bfd->filename, o->name, rel - internal_relocs);
9298 printf (" symbol: idx %8.8lx, name %s\n",
9299 r_symndx, sym_name);
9300 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9301 (unsigned long) rel->r_info,
9302 (unsigned long) rel->r_offset);
9303#endif
9304 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9305 isymbuf, locsymcount, s_type == STT_SRELC))
9306 return FALSE;
9307
9308 /* Symbol evaluated OK. Update to absolute value. */
9309 set_symbol_value (input_bfd, isymbuf, locsymcount,
9310 r_symndx, val);
9311 continue;
9312 }
9313
9314 if (action_discarded != -1 && ps != NULL)
9315 {
cdd3575c
AM
9316 /* Complain if the definition comes from a
9317 discarded section. */
9318 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9319 {
87e5235d 9320 BFD_ASSERT (r_symndx != 0);
0f02bbd9 9321 if (action_discarded & COMPLAIN)
e1fffbe6
AM
9322 (*finfo->info->callbacks->einfo)
9323 (_("%X`%s' referenced in section `%A' of %B: "
58ac56d0 9324 "defined in discarded section `%A' of %B\n"),
e1fffbe6 9325 sym_name, o, input_bfd, sec, sec->owner);
cdd3575c 9326
87e5235d 9327 /* Try to do the best we can to support buggy old
e0ae6d6f 9328 versions of gcc. Pretend that the symbol is
87e5235d
AM
9329 really defined in the kept linkonce section.
9330 FIXME: This is quite broken. Modifying the
9331 symbol here means we will be changing all later
e0ae6d6f 9332 uses of the symbol, not just in this section. */
0f02bbd9 9333 if (action_discarded & PRETEND)
87e5235d 9334 {
01b3c8ab
L
9335 asection *kept;
9336
c0f00686
L
9337 kept = _bfd_elf_check_kept_section (sec,
9338 finfo->info);
01b3c8ab 9339 if (kept != NULL)
87e5235d
AM
9340 {
9341 *ps = kept;
9342 continue;
9343 }
9344 }
c152c796
AM
9345 }
9346 }
9347 }
9348
9349 /* Relocate the section by invoking a back end routine.
9350
9351 The back end routine is responsible for adjusting the
9352 section contents as necessary, and (if using Rela relocs
9353 and generating a relocatable output file) adjusting the
9354 reloc addend as necessary.
9355
9356 The back end routine does not have to worry about setting
9357 the reloc address or the reloc symbol index.
9358
9359 The back end routine is given a pointer to the swapped in
9360 internal symbols, and can access the hash table entries
9361 for the external symbols via elf_sym_hashes (input_bfd).
9362
9363 When generating relocatable output, the back end routine
9364 must handle STB_LOCAL/STT_SECTION symbols specially. The
9365 output symbol is going to be a section symbol
9366 corresponding to the output section, which will require
9367 the addend to be adjusted. */
9368
ece5ef60 9369 ret = (*relocate_section) (output_bfd, finfo->info,
c152c796
AM
9370 input_bfd, o, contents,
9371 internal_relocs,
9372 isymbuf,
ece5ef60
AM
9373 finfo->sections);
9374 if (!ret)
c152c796
AM
9375 return FALSE;
9376
ece5ef60
AM
9377 if (ret == 2
9378 || finfo->info->relocatable
9379 || finfo->info->emitrelocations)
c152c796
AM
9380 {
9381 Elf_Internal_Rela *irela;
9382 Elf_Internal_Rela *irelaend;
9383 bfd_vma last_offset;
9384 struct elf_link_hash_entry **rel_hash;
eac338cf 9385 struct elf_link_hash_entry **rel_hash_list;
c152c796
AM
9386 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9387 unsigned int next_erel;
c152c796
AM
9388 bfd_boolean rela_normal;
9389
9390 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9391 rela_normal = (bed->rela_normal
9392 && (input_rel_hdr->sh_entsize
9393 == bed->s->sizeof_rela));
9394
9395 /* Adjust the reloc addresses and symbol indices. */
9396
9397 irela = internal_relocs;
9398 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9399 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9400 + elf_section_data (o->output_section)->rel_count
9401 + elf_section_data (o->output_section)->rel_count2);
eac338cf 9402 rel_hash_list = rel_hash;
c152c796
AM
9403 last_offset = o->output_offset;
9404 if (!finfo->info->relocatable)
9405 last_offset += o->output_section->vma;
9406 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9407 {
9408 unsigned long r_symndx;
9409 asection *sec;
9410 Elf_Internal_Sym sym;
9411
9412 if (next_erel == bed->s->int_rels_per_ext_rel)
9413 {
9414 rel_hash++;
9415 next_erel = 0;
9416 }
9417
9418 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9419 finfo->info, o,
9420 irela->r_offset);
9421 if (irela->r_offset >= (bfd_vma) -2)
9422 {
9423 /* This is a reloc for a deleted entry or somesuch.
9424 Turn it into an R_*_NONE reloc, at the same
9425 offset as the last reloc. elf_eh_frame.c and
e460dd0d 9426 bfd_elf_discard_info rely on reloc offsets
c152c796
AM
9427 being ordered. */
9428 irela->r_offset = last_offset;
9429 irela->r_info = 0;
9430 irela->r_addend = 0;
9431 continue;
9432 }
9433
9434 irela->r_offset += o->output_offset;
9435
9436 /* Relocs in an executable have to be virtual addresses. */
9437 if (!finfo->info->relocatable)
9438 irela->r_offset += o->output_section->vma;
9439
9440 last_offset = irela->r_offset;
9441
9442 r_symndx = irela->r_info >> r_sym_shift;
9443 if (r_symndx == STN_UNDEF)
9444 continue;
9445
9446 if (r_symndx >= locsymcount
9447 || (elf_bad_symtab (input_bfd)
9448 && finfo->sections[r_symndx] == NULL))
9449 {
9450 struct elf_link_hash_entry *rh;
9451 unsigned long indx;
9452
9453 /* This is a reloc against a global symbol. We
9454 have not yet output all the local symbols, so
9455 we do not know the symbol index of any global
9456 symbol. We set the rel_hash entry for this
9457 reloc to point to the global hash table entry
9458 for this symbol. The symbol index is then
ee75fd95 9459 set at the end of bfd_elf_final_link. */
c152c796
AM
9460 indx = r_symndx - extsymoff;
9461 rh = elf_sym_hashes (input_bfd)[indx];
9462 while (rh->root.type == bfd_link_hash_indirect
9463 || rh->root.type == bfd_link_hash_warning)
9464 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9465
9466 /* Setting the index to -2 tells
9467 elf_link_output_extsym that this symbol is
9468 used by a reloc. */
9469 BFD_ASSERT (rh->indx < 0);
9470 rh->indx = -2;
9471
9472 *rel_hash = rh;
9473
9474 continue;
9475 }
9476
9477 /* This is a reloc against a local symbol. */
9478
9479 *rel_hash = NULL;
9480 sym = isymbuf[r_symndx];
9481 sec = finfo->sections[r_symndx];
9482 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9483 {
9484 /* I suppose the backend ought to fill in the
9485 section of any STT_SECTION symbol against a
6a8d1586
AM
9486 processor specific section. */
9487 r_symndx = 0;
9488 if (bfd_is_abs_section (sec))
9489 ;
c152c796
AM
9490 else if (sec == NULL || sec->owner == NULL)
9491 {
9492 bfd_set_error (bfd_error_bad_value);
9493 return FALSE;
9494 }
9495 else
9496 {
6a8d1586
AM
9497 asection *osec = sec->output_section;
9498
9499 /* If we have discarded a section, the output
9500 section will be the absolute section. In
ab96bf03
AM
9501 case of discarded SEC_MERGE sections, use
9502 the kept section. relocate_section should
9503 have already handled discarded linkonce
9504 sections. */
6a8d1586
AM
9505 if (bfd_is_abs_section (osec)
9506 && sec->kept_section != NULL
9507 && sec->kept_section->output_section != NULL)
9508 {
9509 osec = sec->kept_section->output_section;
9510 irela->r_addend -= osec->vma;
9511 }
9512
9513 if (!bfd_is_abs_section (osec))
9514 {
9515 r_symndx = osec->target_index;
74541ad4
AM
9516 if (r_symndx == 0)
9517 {
9518 struct elf_link_hash_table *htab;
9519 asection *oi;
9520
9521 htab = elf_hash_table (finfo->info);
9522 oi = htab->text_index_section;
9523 if ((osec->flags & SEC_READONLY) == 0
9524 && htab->data_index_section != NULL)
9525 oi = htab->data_index_section;
9526
9527 if (oi != NULL)
9528 {
9529 irela->r_addend += osec->vma - oi->vma;
9530 r_symndx = oi->target_index;
9531 }
9532 }
9533
6a8d1586
AM
9534 BFD_ASSERT (r_symndx != 0);
9535 }
c152c796
AM
9536 }
9537
9538 /* Adjust the addend according to where the
9539 section winds up in the output section. */
9540 if (rela_normal)
9541 irela->r_addend += sec->output_offset;
9542 }
9543 else
9544 {
9545 if (finfo->indices[r_symndx] == -1)
9546 {
9547 unsigned long shlink;
9548 const char *name;
9549 asection *osec;
9550
9551 if (finfo->info->strip == strip_all)
9552 {
9553 /* You can't do ld -r -s. */
9554 bfd_set_error (bfd_error_invalid_operation);
9555 return FALSE;
9556 }
9557
9558 /* This symbol was skipped earlier, but
9559 since it is needed by a reloc, we
9560 must output it now. */
9561 shlink = symtab_hdr->sh_link;
9562 name = (bfd_elf_string_from_elf_section
9563 (input_bfd, shlink, sym.st_name));
9564 if (name == NULL)
9565 return FALSE;
9566
9567 osec = sec->output_section;
9568 sym.st_shndx =
9569 _bfd_elf_section_from_bfd_section (output_bfd,
9570 osec);
9571 if (sym.st_shndx == SHN_BAD)
9572 return FALSE;
9573
9574 sym.st_value += sec->output_offset;
9575 if (! finfo->info->relocatable)
9576 {
9577 sym.st_value += osec->vma;
9578 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9579 {
9580 /* STT_TLS symbols are relative to PT_TLS
9581 segment base. */
9582 BFD_ASSERT (elf_hash_table (finfo->info)
9583 ->tls_sec != NULL);
9584 sym.st_value -= (elf_hash_table (finfo->info)
9585 ->tls_sec->vma);
9586 }
9587 }
9588
9589 finfo->indices[r_symndx]
9590 = bfd_get_symcount (output_bfd);
9591
9592 if (! elf_link_output_sym (finfo, name, &sym, sec,
9593 NULL))
9594 return FALSE;
9595 }
9596
9597 r_symndx = finfo->indices[r_symndx];
9598 }
9599
9600 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9601 | (irela->r_info & r_type_mask));
9602 }
9603
9604 /* Swap out the relocs. */
c152c796 9605 if (input_rel_hdr->sh_size != 0
eac338cf
PB
9606 && !bed->elf_backend_emit_relocs (output_bfd, o,
9607 input_rel_hdr,
9608 internal_relocs,
9609 rel_hash_list))
c152c796
AM
9610 return FALSE;
9611
9612 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9613 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9614 {
9615 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9616 * bed->s->int_rels_per_ext_rel);
eac338cf
PB
9617 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9618 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9619 input_rel_hdr2,
9620 internal_relocs,
9621 rel_hash_list))
c152c796
AM
9622 return FALSE;
9623 }
9624 }
9625 }
9626
9627 /* Write out the modified section contents. */
9628 if (bed->elf_backend_write_section
c7b8f16e
JB
9629 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9630 contents))
c152c796
AM
9631 {
9632 /* Section written out. */
9633 }
9634 else switch (o->sec_info_type)
9635 {
9636 case ELF_INFO_TYPE_STABS:
9637 if (! (_bfd_write_section_stabs
9638 (output_bfd,
9639 &elf_hash_table (finfo->info)->stab_info,
9640 o, &elf_section_data (o)->sec_info, contents)))
9641 return FALSE;
9642 break;
9643 case ELF_INFO_TYPE_MERGE:
9644 if (! _bfd_write_merged_section (output_bfd, o,
9645 elf_section_data (o)->sec_info))
9646 return FALSE;
9647 break;
9648 case ELF_INFO_TYPE_EH_FRAME:
9649 {
9650 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9651 o, contents))
9652 return FALSE;
9653 }
9654 break;
9655 default:
9656 {
c152c796 9657 if (! (o->flags & SEC_EXCLUDE)
ace79388 9658 && ! (o->output_section->flags & SEC_NEVER_LOAD)
c152c796
AM
9659 && ! bfd_set_section_contents (output_bfd, o->output_section,
9660 contents,
9661 (file_ptr) o->output_offset,
eea6121a 9662 o->size))
c152c796
AM
9663 return FALSE;
9664 }
9665 break;
9666 }
9667 }
9668
9669 return TRUE;
9670}
9671
9672/* Generate a reloc when linking an ELF file. This is a reloc
3a800eb9 9673 requested by the linker, and does not come from any input file. This
c152c796
AM
9674 is used to build constructor and destructor tables when linking
9675 with -Ur. */
9676
9677static bfd_boolean
9678elf_reloc_link_order (bfd *output_bfd,
9679 struct bfd_link_info *info,
9680 asection *output_section,
9681 struct bfd_link_order *link_order)
9682{
9683 reloc_howto_type *howto;
9684 long indx;
9685 bfd_vma offset;
9686 bfd_vma addend;
9687 struct elf_link_hash_entry **rel_hash_ptr;
9688 Elf_Internal_Shdr *rel_hdr;
9689 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9690 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9691 bfd_byte *erel;
9692 unsigned int i;
9693
9694 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9695 if (howto == NULL)
9696 {
9697 bfd_set_error (bfd_error_bad_value);
9698 return FALSE;
9699 }
9700
9701 addend = link_order->u.reloc.p->addend;
9702
9703 /* Figure out the symbol index. */
9704 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9705 + elf_section_data (output_section)->rel_count
9706 + elf_section_data (output_section)->rel_count2);
9707 if (link_order->type == bfd_section_reloc_link_order)
9708 {
9709 indx = link_order->u.reloc.p->u.section->target_index;
9710 BFD_ASSERT (indx != 0);
9711 *rel_hash_ptr = NULL;
9712 }
9713 else
9714 {
9715 struct elf_link_hash_entry *h;
9716
9717 /* Treat a reloc against a defined symbol as though it were
9718 actually against the section. */
9719 h = ((struct elf_link_hash_entry *)
9720 bfd_wrapped_link_hash_lookup (output_bfd, info,
9721 link_order->u.reloc.p->u.name,
9722 FALSE, FALSE, TRUE));
9723 if (h != NULL
9724 && (h->root.type == bfd_link_hash_defined
9725 || h->root.type == bfd_link_hash_defweak))
9726 {
9727 asection *section;
9728
9729 section = h->root.u.def.section;
9730 indx = section->output_section->target_index;
9731 *rel_hash_ptr = NULL;
9732 /* It seems that we ought to add the symbol value to the
9733 addend here, but in practice it has already been added
9734 because it was passed to constructor_callback. */
9735 addend += section->output_section->vma + section->output_offset;
9736 }
9737 else if (h != NULL)
9738 {
9739 /* Setting the index to -2 tells elf_link_output_extsym that
9740 this symbol is used by a reloc. */
9741 h->indx = -2;
9742 *rel_hash_ptr = h;
9743 indx = 0;
9744 }
9745 else
9746 {
9747 if (! ((*info->callbacks->unattached_reloc)
9748 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9749 return FALSE;
9750 indx = 0;
9751 }
9752 }
9753
9754 /* If this is an inplace reloc, we must write the addend into the
9755 object file. */
9756 if (howto->partial_inplace && addend != 0)
9757 {
9758 bfd_size_type size;
9759 bfd_reloc_status_type rstat;
9760 bfd_byte *buf;
9761 bfd_boolean ok;
9762 const char *sym_name;
9763
9764 size = bfd_get_reloc_size (howto);
9765 buf = bfd_zmalloc (size);
9766 if (buf == NULL)
9767 return FALSE;
9768 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9769 switch (rstat)
9770 {
9771 case bfd_reloc_ok:
9772 break;
9773
9774 default:
9775 case bfd_reloc_outofrange:
9776 abort ();
9777
9778 case bfd_reloc_overflow:
9779 if (link_order->type == bfd_section_reloc_link_order)
9780 sym_name = bfd_section_name (output_bfd,
9781 link_order->u.reloc.p->u.section);
9782 else
9783 sym_name = link_order->u.reloc.p->u.name;
9784 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f
L
9785 (info, NULL, sym_name, howto->name, addend, NULL,
9786 NULL, (bfd_vma) 0)))
c152c796
AM
9787 {
9788 free (buf);
9789 return FALSE;
9790 }
9791 break;
9792 }
9793 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9794 link_order->offset, size);
9795 free (buf);
9796 if (! ok)
9797 return FALSE;
9798 }
9799
9800 /* The address of a reloc is relative to the section in a
9801 relocatable file, and is a virtual address in an executable
9802 file. */
9803 offset = link_order->offset;
9804 if (! info->relocatable)
9805 offset += output_section->vma;
9806
9807 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9808 {
9809 irel[i].r_offset = offset;
9810 irel[i].r_info = 0;
9811 irel[i].r_addend = 0;
9812 }
9813 if (bed->s->arch_size == 32)
9814 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9815 else
9816 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9817
9818 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9819 erel = rel_hdr->contents;
9820 if (rel_hdr->sh_type == SHT_REL)
9821 {
9822 erel += (elf_section_data (output_section)->rel_count
9823 * bed->s->sizeof_rel);
9824 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9825 }
9826 else
9827 {
9828 irel[0].r_addend = addend;
9829 erel += (elf_section_data (output_section)->rel_count
9830 * bed->s->sizeof_rela);
9831 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9832 }
9833
9834 ++elf_section_data (output_section)->rel_count;
9835
9836 return TRUE;
9837}
9838
0b52efa6
PB
9839
9840/* Get the output vma of the section pointed to by the sh_link field. */
9841
9842static bfd_vma
9843elf_get_linked_section_vma (struct bfd_link_order *p)
9844{
9845 Elf_Internal_Shdr **elf_shdrp;
9846 asection *s;
9847 int elfsec;
9848
9849 s = p->u.indirect.section;
9850 elf_shdrp = elf_elfsections (s->owner);
9851 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9852 elfsec = elf_shdrp[elfsec]->sh_link;
185d09ad
L
9853 /* PR 290:
9854 The Intel C compiler generates SHT_IA_64_UNWIND with
e04bcc6d 9855 SHF_LINK_ORDER. But it doesn't set the sh_link or
185d09ad
L
9856 sh_info fields. Hence we could get the situation
9857 where elfsec is 0. */
9858 if (elfsec == 0)
9859 {
9860 const struct elf_backend_data *bed
9861 = get_elf_backend_data (s->owner);
9862 if (bed->link_order_error_handler)
d003868e
AM
9863 bed->link_order_error_handler
9864 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
185d09ad
L
9865 return 0;
9866 }
9867 else
9868 {
9869 s = elf_shdrp[elfsec]->bfd_section;
9870 return s->output_section->vma + s->output_offset;
9871 }
0b52efa6
PB
9872}
9873
9874
9875/* Compare two sections based on the locations of the sections they are
9876 linked to. Used by elf_fixup_link_order. */
9877
9878static int
9879compare_link_order (const void * a, const void * b)
9880{
9881 bfd_vma apos;
9882 bfd_vma bpos;
9883
9884 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9885 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9886 if (apos < bpos)
9887 return -1;
9888 return apos > bpos;
9889}
9890
9891
9892/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9893 order as their linked sections. Returns false if this could not be done
9894 because an output section includes both ordered and unordered
9895 sections. Ideally we'd do this in the linker proper. */
9896
9897static bfd_boolean
9898elf_fixup_link_order (bfd *abfd, asection *o)
9899{
9900 int seen_linkorder;
9901 int seen_other;
9902 int n;
9903 struct bfd_link_order *p;
9904 bfd *sub;
9905 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
b761a207 9906 unsigned elfsec;
0b52efa6 9907 struct bfd_link_order **sections;
d33cdfe3 9908 asection *s, *other_sec, *linkorder_sec;
0b52efa6 9909 bfd_vma offset;
3b36f7e6 9910
d33cdfe3
L
9911 other_sec = NULL;
9912 linkorder_sec = NULL;
0b52efa6
PB
9913 seen_other = 0;
9914 seen_linkorder = 0;
8423293d 9915 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6 9916 {
d33cdfe3 9917 if (p->type == bfd_indirect_link_order)
0b52efa6
PB
9918 {
9919 s = p->u.indirect.section;
d33cdfe3
L
9920 sub = s->owner;
9921 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9922 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
b761a207
BE
9923 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9924 && elfsec < elf_numsections (sub)
4fbb74a6
AM
9925 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9926 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
d33cdfe3
L
9927 {
9928 seen_linkorder++;
9929 linkorder_sec = s;
9930 }
0b52efa6 9931 else
d33cdfe3
L
9932 {
9933 seen_other++;
9934 other_sec = s;
9935 }
0b52efa6
PB
9936 }
9937 else
9938 seen_other++;
d33cdfe3
L
9939
9940 if (seen_other && seen_linkorder)
9941 {
9942 if (other_sec && linkorder_sec)
9943 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9944 o, linkorder_sec,
9945 linkorder_sec->owner, other_sec,
9946 other_sec->owner);
9947 else
9948 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9949 o);
9950 bfd_set_error (bfd_error_bad_value);
9951 return FALSE;
9952 }
0b52efa6
PB
9953 }
9954
9955 if (!seen_linkorder)
9956 return TRUE;
9957
0b52efa6 9958 sections = (struct bfd_link_order **)
14b1c01e
AM
9959 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9960 if (sections == NULL)
9961 return FALSE;
0b52efa6 9962 seen_linkorder = 0;
3b36f7e6 9963
8423293d 9964 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6
PB
9965 {
9966 sections[seen_linkorder++] = p;
9967 }
9968 /* Sort the input sections in the order of their linked section. */
9969 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9970 compare_link_order);
9971
9972 /* Change the offsets of the sections. */
9973 offset = 0;
9974 for (n = 0; n < seen_linkorder; n++)
9975 {
9976 s = sections[n]->u.indirect.section;
461686a3 9977 offset &= ~(bfd_vma) 0 << s->alignment_power;
0b52efa6
PB
9978 s->output_offset = offset;
9979 sections[n]->offset = offset;
9980 offset += sections[n]->size;
9981 }
9982
4dd07732 9983 free (sections);
0b52efa6
PB
9984 return TRUE;
9985}
9986
9987
c152c796
AM
9988/* Do the final step of an ELF link. */
9989
9990bfd_boolean
9991bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9992{
9993 bfd_boolean dynamic;
9994 bfd_boolean emit_relocs;
9995 bfd *dynobj;
9996 struct elf_final_link_info finfo;
9997 register asection *o;
9998 register struct bfd_link_order *p;
9999 register bfd *sub;
10000 bfd_size_type max_contents_size;
10001 bfd_size_type max_external_reloc_size;
10002 bfd_size_type max_internal_reloc_count;
10003 bfd_size_type max_sym_count;
10004 bfd_size_type max_sym_shndx_count;
10005 file_ptr off;
10006 Elf_Internal_Sym elfsym;
10007 unsigned int i;
10008 Elf_Internal_Shdr *symtab_hdr;
10009 Elf_Internal_Shdr *symtab_shndx_hdr;
10010 Elf_Internal_Shdr *symstrtab_hdr;
10011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10012 struct elf_outext_info eoinfo;
10013 bfd_boolean merged;
10014 size_t relativecount = 0;
10015 asection *reldyn = 0;
10016 bfd_size_type amt;
104d59d1
JM
10017 asection *attr_section = NULL;
10018 bfd_vma attr_size = 0;
10019 const char *std_attrs_section;
c152c796
AM
10020
10021 if (! is_elf_hash_table (info->hash))
10022 return FALSE;
10023
10024 if (info->shared)
10025 abfd->flags |= DYNAMIC;
10026
10027 dynamic = elf_hash_table (info)->dynamic_sections_created;
10028 dynobj = elf_hash_table (info)->dynobj;
10029
10030 emit_relocs = (info->relocatable
a4676736 10031 || info->emitrelocations);
c152c796
AM
10032
10033 finfo.info = info;
10034 finfo.output_bfd = abfd;
10035 finfo.symstrtab = _bfd_elf_stringtab_init ();
10036 if (finfo.symstrtab == NULL)
10037 return FALSE;
10038
10039 if (! dynamic)
10040 {
10041 finfo.dynsym_sec = NULL;
10042 finfo.hash_sec = NULL;
10043 finfo.symver_sec = NULL;
10044 }
10045 else
10046 {
10047 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10048 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
fdc90cb4 10049 BFD_ASSERT (finfo.dynsym_sec != NULL);
c152c796
AM
10050 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10051 /* Note that it is OK if symver_sec is NULL. */
10052 }
10053
10054 finfo.contents = NULL;
10055 finfo.external_relocs = NULL;
10056 finfo.internal_relocs = NULL;
10057 finfo.external_syms = NULL;
10058 finfo.locsym_shndx = NULL;
10059 finfo.internal_syms = NULL;
10060 finfo.indices = NULL;
10061 finfo.sections = NULL;
10062 finfo.symbuf = NULL;
10063 finfo.symshndxbuf = NULL;
10064 finfo.symbuf_count = 0;
10065 finfo.shndxbuf_size = 0;
10066
104d59d1
JM
10067 /* The object attributes have been merged. Remove the input
10068 sections from the link, and set the contents of the output
10069 secton. */
10070 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10071 for (o = abfd->sections; o != NULL; o = o->next)
10072 {
10073 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10074 || strcmp (o->name, ".gnu.attributes") == 0)
10075 {
10076 for (p = o->map_head.link_order; p != NULL; p = p->next)
10077 {
10078 asection *input_section;
10079
10080 if (p->type != bfd_indirect_link_order)
10081 continue;
10082 input_section = p->u.indirect.section;
10083 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10084 elf_link_input_bfd ignores this section. */
10085 input_section->flags &= ~SEC_HAS_CONTENTS;
10086 }
a0c8462f 10087
104d59d1
JM
10088 attr_size = bfd_elf_obj_attr_size (abfd);
10089 if (attr_size)
10090 {
10091 bfd_set_section_size (abfd, o, attr_size);
10092 attr_section = o;
10093 /* Skip this section later on. */
10094 o->map_head.link_order = NULL;
10095 }
10096 else
10097 o->flags |= SEC_EXCLUDE;
10098 }
10099 }
10100
c152c796
AM
10101 /* Count up the number of relocations we will output for each output
10102 section, so that we know the sizes of the reloc sections. We
10103 also figure out some maximum sizes. */
10104 max_contents_size = 0;
10105 max_external_reloc_size = 0;
10106 max_internal_reloc_count = 0;
10107 max_sym_count = 0;
10108 max_sym_shndx_count = 0;
10109 merged = FALSE;
10110 for (o = abfd->sections; o != NULL; o = o->next)
10111 {
10112 struct bfd_elf_section_data *esdo = elf_section_data (o);
10113 o->reloc_count = 0;
10114
8423293d 10115 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
10116 {
10117 unsigned int reloc_count = 0;
10118 struct bfd_elf_section_data *esdi = NULL;
10119 unsigned int *rel_count1;
10120
10121 if (p->type == bfd_section_reloc_link_order
10122 || p->type == bfd_symbol_reloc_link_order)
10123 reloc_count = 1;
10124 else if (p->type == bfd_indirect_link_order)
10125 {
10126 asection *sec;
10127
10128 sec = p->u.indirect.section;
10129 esdi = elf_section_data (sec);
10130
10131 /* Mark all sections which are to be included in the
10132 link. This will normally be every section. We need
10133 to do this so that we can identify any sections which
10134 the linker has decided to not include. */
10135 sec->linker_mark = TRUE;
10136
10137 if (sec->flags & SEC_MERGE)
10138 merged = TRUE;
10139
10140 if (info->relocatable || info->emitrelocations)
10141 reloc_count = sec->reloc_count;
10142 else if (bed->elf_backend_count_relocs)
58217f29 10143 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
c152c796 10144
eea6121a
AM
10145 if (sec->rawsize > max_contents_size)
10146 max_contents_size = sec->rawsize;
10147 if (sec->size > max_contents_size)
10148 max_contents_size = sec->size;
c152c796
AM
10149
10150 /* We are interested in just local symbols, not all
10151 symbols. */
10152 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10153 && (sec->owner->flags & DYNAMIC) == 0)
10154 {
10155 size_t sym_count;
10156
10157 if (elf_bad_symtab (sec->owner))
10158 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10159 / bed->s->sizeof_sym);
10160 else
10161 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10162
10163 if (sym_count > max_sym_count)
10164 max_sym_count = sym_count;
10165
10166 if (sym_count > max_sym_shndx_count
10167 && elf_symtab_shndx (sec->owner) != 0)
10168 max_sym_shndx_count = sym_count;
10169
10170 if ((sec->flags & SEC_RELOC) != 0)
10171 {
10172 size_t ext_size;
10173
10174 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10175 if (ext_size > max_external_reloc_size)
10176 max_external_reloc_size = ext_size;
10177 if (sec->reloc_count > max_internal_reloc_count)
10178 max_internal_reloc_count = sec->reloc_count;
10179 }
10180 }
10181 }
10182
10183 if (reloc_count == 0)
10184 continue;
10185
10186 o->reloc_count += reloc_count;
10187
10188 /* MIPS may have a mix of REL and RELA relocs on sections.
10189 To support this curious ABI we keep reloc counts in
10190 elf_section_data too. We must be careful to add the
10191 relocations from the input section to the right output
10192 count. FIXME: Get rid of one count. We have
10193 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10194 rel_count1 = &esdo->rel_count;
10195 if (esdi != NULL)
10196 {
10197 bfd_boolean same_size;
10198 bfd_size_type entsize1;
10199
10200 entsize1 = esdi->rel_hdr.sh_entsize;
10201 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10202 || entsize1 == bed->s->sizeof_rela);
10203 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10204
10205 if (!same_size)
10206 rel_count1 = &esdo->rel_count2;
10207
10208 if (esdi->rel_hdr2 != NULL)
10209 {
10210 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10211 unsigned int alt_count;
10212 unsigned int *rel_count2;
10213
10214 BFD_ASSERT (entsize2 != entsize1
10215 && (entsize2 == bed->s->sizeof_rel
10216 || entsize2 == bed->s->sizeof_rela));
10217
10218 rel_count2 = &esdo->rel_count2;
10219 if (!same_size)
10220 rel_count2 = &esdo->rel_count;
10221
10222 /* The following is probably too simplistic if the
10223 backend counts output relocs unusually. */
10224 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10225 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10226 *rel_count2 += alt_count;
10227 reloc_count -= alt_count;
10228 }
10229 }
10230 *rel_count1 += reloc_count;
10231 }
10232
10233 if (o->reloc_count > 0)
10234 o->flags |= SEC_RELOC;
10235 else
10236 {
10237 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10238 set it (this is probably a bug) and if it is set
10239 assign_section_numbers will create a reloc section. */
10240 o->flags &=~ SEC_RELOC;
10241 }
10242
10243 /* If the SEC_ALLOC flag is not set, force the section VMA to
10244 zero. This is done in elf_fake_sections as well, but forcing
10245 the VMA to 0 here will ensure that relocs against these
10246 sections are handled correctly. */
10247 if ((o->flags & SEC_ALLOC) == 0
10248 && ! o->user_set_vma)
10249 o->vma = 0;
10250 }
10251
10252 if (! info->relocatable && merged)
10253 elf_link_hash_traverse (elf_hash_table (info),
10254 _bfd_elf_link_sec_merge_syms, abfd);
10255
10256 /* Figure out the file positions for everything but the symbol table
10257 and the relocs. We set symcount to force assign_section_numbers
10258 to create a symbol table. */
10259 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10260 BFD_ASSERT (! abfd->output_has_begun);
10261 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10262 goto error_return;
10263
ee75fd95 10264 /* Set sizes, and assign file positions for reloc sections. */
c152c796
AM
10265 for (o = abfd->sections; o != NULL; o = o->next)
10266 {
10267 if ((o->flags & SEC_RELOC) != 0)
10268 {
10269 if (!(_bfd_elf_link_size_reloc_section
10270 (abfd, &elf_section_data (o)->rel_hdr, o)))
10271 goto error_return;
10272
10273 if (elf_section_data (o)->rel_hdr2
10274 && !(_bfd_elf_link_size_reloc_section
10275 (abfd, elf_section_data (o)->rel_hdr2, o)))
10276 goto error_return;
10277 }
10278
10279 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10280 to count upwards while actually outputting the relocations. */
10281 elf_section_data (o)->rel_count = 0;
10282 elf_section_data (o)->rel_count2 = 0;
10283 }
10284
10285 _bfd_elf_assign_file_positions_for_relocs (abfd);
10286
10287 /* We have now assigned file positions for all the sections except
10288 .symtab and .strtab. We start the .symtab section at the current
10289 file position, and write directly to it. We build the .strtab
10290 section in memory. */
10291 bfd_get_symcount (abfd) = 0;
10292 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10293 /* sh_name is set in prep_headers. */
10294 symtab_hdr->sh_type = SHT_SYMTAB;
10295 /* sh_flags, sh_addr and sh_size all start off zero. */
10296 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10297 /* sh_link is set in assign_section_numbers. */
10298 /* sh_info is set below. */
10299 /* sh_offset is set just below. */
72de5009 10300 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
c152c796
AM
10301
10302 off = elf_tdata (abfd)->next_file_pos;
10303 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10304
10305 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10306 incorrect. We do not yet know the size of the .symtab section.
10307 We correct next_file_pos below, after we do know the size. */
10308
10309 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10310 continuously seeking to the right position in the file. */
10311 if (! info->keep_memory || max_sym_count < 20)
10312 finfo.symbuf_size = 20;
10313 else
10314 finfo.symbuf_size = max_sym_count;
10315 amt = finfo.symbuf_size;
10316 amt *= bed->s->sizeof_sym;
10317 finfo.symbuf = bfd_malloc (amt);
10318 if (finfo.symbuf == NULL)
10319 goto error_return;
4fbb74a6 10320 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
c152c796
AM
10321 {
10322 /* Wild guess at number of output symbols. realloc'd as needed. */
10323 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10324 finfo.shndxbuf_size = amt;
10325 amt *= sizeof (Elf_External_Sym_Shndx);
10326 finfo.symshndxbuf = bfd_zmalloc (amt);
10327 if (finfo.symshndxbuf == NULL)
10328 goto error_return;
10329 }
10330
10331 /* Start writing out the symbol table. The first symbol is always a
10332 dummy symbol. */
10333 if (info->strip != strip_all
10334 || emit_relocs)
10335 {
10336 elfsym.st_value = 0;
10337 elfsym.st_size = 0;
10338 elfsym.st_info = 0;
10339 elfsym.st_other = 0;
10340 elfsym.st_shndx = SHN_UNDEF;
10341 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10342 NULL))
10343 goto error_return;
10344 }
10345
c152c796
AM
10346 /* Output a symbol for each section. We output these even if we are
10347 discarding local symbols, since they are used for relocs. These
10348 symbols have no names. We store the index of each one in the
10349 index field of the section, so that we can find it again when
10350 outputting relocs. */
10351 if (info->strip != strip_all
10352 || emit_relocs)
10353 {
10354 elfsym.st_size = 0;
10355 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10356 elfsym.st_other = 0;
f0b5bb34 10357 elfsym.st_value = 0;
c152c796
AM
10358 for (i = 1; i < elf_numsections (abfd); i++)
10359 {
10360 o = bfd_section_from_elf_index (abfd, i);
10361 if (o != NULL)
f0b5bb34
AM
10362 {
10363 o->target_index = bfd_get_symcount (abfd);
10364 elfsym.st_shndx = i;
10365 if (!info->relocatable)
10366 elfsym.st_value = o->vma;
10367 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10368 goto error_return;
10369 }
c152c796
AM
10370 }
10371 }
10372
10373 /* Allocate some memory to hold information read in from the input
10374 files. */
10375 if (max_contents_size != 0)
10376 {
10377 finfo.contents = bfd_malloc (max_contents_size);
10378 if (finfo.contents == NULL)
10379 goto error_return;
10380 }
10381
10382 if (max_external_reloc_size != 0)
10383 {
10384 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10385 if (finfo.external_relocs == NULL)
10386 goto error_return;
10387 }
10388
10389 if (max_internal_reloc_count != 0)
10390 {
10391 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10392 amt *= sizeof (Elf_Internal_Rela);
10393 finfo.internal_relocs = bfd_malloc (amt);
10394 if (finfo.internal_relocs == NULL)
10395 goto error_return;
10396 }
10397
10398 if (max_sym_count != 0)
10399 {
10400 amt = max_sym_count * bed->s->sizeof_sym;
10401 finfo.external_syms = bfd_malloc (amt);
10402 if (finfo.external_syms == NULL)
10403 goto error_return;
10404
10405 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10406 finfo.internal_syms = bfd_malloc (amt);
10407 if (finfo.internal_syms == NULL)
10408 goto error_return;
10409
10410 amt = max_sym_count * sizeof (long);
10411 finfo.indices = bfd_malloc (amt);
10412 if (finfo.indices == NULL)
10413 goto error_return;
10414
10415 amt = max_sym_count * sizeof (asection *);
10416 finfo.sections = bfd_malloc (amt);
10417 if (finfo.sections == NULL)
10418 goto error_return;
10419 }
10420
10421 if (max_sym_shndx_count != 0)
10422 {
10423 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10424 finfo.locsym_shndx = bfd_malloc (amt);
10425 if (finfo.locsym_shndx == NULL)
10426 goto error_return;
10427 }
10428
10429 if (elf_hash_table (info)->tls_sec)
10430 {
10431 bfd_vma base, end = 0;
10432 asection *sec;
10433
10434 for (sec = elf_hash_table (info)->tls_sec;
10435 sec && (sec->flags & SEC_THREAD_LOCAL);
10436 sec = sec->next)
10437 {
3a800eb9 10438 bfd_size_type size = sec->size;
c152c796 10439
3a800eb9
AM
10440 if (size == 0
10441 && (sec->flags & SEC_HAS_CONTENTS) == 0)
c152c796 10442 {
3a800eb9
AM
10443 struct bfd_link_order *o = sec->map_tail.link_order;
10444 if (o != NULL)
10445 size = o->offset + o->size;
c152c796
AM
10446 }
10447 end = sec->vma + size;
10448 }
10449 base = elf_hash_table (info)->tls_sec->vma;
10450 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10451 elf_hash_table (info)->tls_size = end - base;
10452 }
10453
0b52efa6
PB
10454 /* Reorder SHF_LINK_ORDER sections. */
10455 for (o = abfd->sections; o != NULL; o = o->next)
10456 {
10457 if (!elf_fixup_link_order (abfd, o))
10458 return FALSE;
10459 }
10460
c152c796
AM
10461 /* Since ELF permits relocations to be against local symbols, we
10462 must have the local symbols available when we do the relocations.
10463 Since we would rather only read the local symbols once, and we
10464 would rather not keep them in memory, we handle all the
10465 relocations for a single input file at the same time.
10466
10467 Unfortunately, there is no way to know the total number of local
10468 symbols until we have seen all of them, and the local symbol
10469 indices precede the global symbol indices. This means that when
10470 we are generating relocatable output, and we see a reloc against
10471 a global symbol, we can not know the symbol index until we have
10472 finished examining all the local symbols to see which ones we are
10473 going to output. To deal with this, we keep the relocations in
10474 memory, and don't output them until the end of the link. This is
10475 an unfortunate waste of memory, but I don't see a good way around
10476 it. Fortunately, it only happens when performing a relocatable
10477 link, which is not the common case. FIXME: If keep_memory is set
10478 we could write the relocs out and then read them again; I don't
10479 know how bad the memory loss will be. */
10480
10481 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10482 sub->output_has_begun = FALSE;
10483 for (o = abfd->sections; o != NULL; o = o->next)
10484 {
8423293d 10485 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
10486 {
10487 if (p->type == bfd_indirect_link_order
10488 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10489 == bfd_target_elf_flavour)
10490 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10491 {
10492 if (! sub->output_has_begun)
10493 {
10494 if (! elf_link_input_bfd (&finfo, sub))
10495 goto error_return;
10496 sub->output_has_begun = TRUE;
10497 }
10498 }
10499 else if (p->type == bfd_section_reloc_link_order
10500 || p->type == bfd_symbol_reloc_link_order)
10501 {
10502 if (! elf_reloc_link_order (abfd, info, o, p))
10503 goto error_return;
10504 }
10505 else
10506 {
10507 if (! _bfd_default_link_order (abfd, info, o, p))
10508 goto error_return;
10509 }
10510 }
10511 }
10512
c0f00686
L
10513 /* Free symbol buffer if needed. */
10514 if (!info->reduce_memory_overheads)
10515 {
10516 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
3fcd97f1
JJ
10517 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10518 && elf_tdata (sub)->symbuf)
c0f00686
L
10519 {
10520 free (elf_tdata (sub)->symbuf);
10521 elf_tdata (sub)->symbuf = NULL;
10522 }
10523 }
10524
c152c796
AM
10525 /* Output any global symbols that got converted to local in a
10526 version script or due to symbol visibility. We do this in a
10527 separate step since ELF requires all local symbols to appear
10528 prior to any global symbols. FIXME: We should only do this if
10529 some global symbols were, in fact, converted to become local.
10530 FIXME: Will this work correctly with the Irix 5 linker? */
10531 eoinfo.failed = FALSE;
10532 eoinfo.finfo = &finfo;
10533 eoinfo.localsyms = TRUE;
10534 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10535 &eoinfo);
10536 if (eoinfo.failed)
10537 return FALSE;
10538
4e617b1e
PB
10539 /* If backend needs to output some local symbols not present in the hash
10540 table, do it now. */
10541 if (bed->elf_backend_output_arch_local_syms)
10542 {
10543 typedef bfd_boolean (*out_sym_func)
10544 (void *, const char *, Elf_Internal_Sym *, asection *,
10545 struct elf_link_hash_entry *);
10546
10547 if (! ((*bed->elf_backend_output_arch_local_syms)
10548 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10549 return FALSE;
10550 }
10551
c152c796
AM
10552 /* That wrote out all the local symbols. Finish up the symbol table
10553 with the global symbols. Even if we want to strip everything we
10554 can, we still need to deal with those global symbols that got
10555 converted to local in a version script. */
10556
10557 /* The sh_info field records the index of the first non local symbol. */
10558 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10559
10560 if (dynamic
10561 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10562 {
10563 Elf_Internal_Sym sym;
10564 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10565 long last_local = 0;
10566
10567 /* Write out the section symbols for the output sections. */
67687978 10568 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
c152c796
AM
10569 {
10570 asection *s;
10571
10572 sym.st_size = 0;
10573 sym.st_name = 0;
10574 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10575 sym.st_other = 0;
10576
10577 for (s = abfd->sections; s != NULL; s = s->next)
10578 {
10579 int indx;
10580 bfd_byte *dest;
10581 long dynindx;
10582
c152c796 10583 dynindx = elf_section_data (s)->dynindx;
8c37241b
JJ
10584 if (dynindx <= 0)
10585 continue;
10586 indx = elf_section_data (s)->this_idx;
c152c796
AM
10587 BFD_ASSERT (indx > 0);
10588 sym.st_shndx = indx;
c0d5a53d
L
10589 if (! check_dynsym (abfd, &sym))
10590 return FALSE;
c152c796
AM
10591 sym.st_value = s->vma;
10592 dest = dynsym + dynindx * bed->s->sizeof_sym;
8c37241b
JJ
10593 if (last_local < dynindx)
10594 last_local = dynindx;
c152c796
AM
10595 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10596 }
c152c796
AM
10597 }
10598
10599 /* Write out the local dynsyms. */
10600 if (elf_hash_table (info)->dynlocal)
10601 {
10602 struct elf_link_local_dynamic_entry *e;
10603 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10604 {
10605 asection *s;
10606 bfd_byte *dest;
10607
10608 sym.st_size = e->isym.st_size;
10609 sym.st_other = e->isym.st_other;
10610
10611 /* Copy the internal symbol as is.
10612 Note that we saved a word of storage and overwrote
10613 the original st_name with the dynstr_index. */
10614 sym = e->isym;
10615
cb33740c
AM
10616 s = bfd_section_from_elf_index (e->input_bfd,
10617 e->isym.st_shndx);
10618 if (s != NULL)
c152c796 10619 {
c152c796
AM
10620 sym.st_shndx =
10621 elf_section_data (s->output_section)->this_idx;
c0d5a53d
L
10622 if (! check_dynsym (abfd, &sym))
10623 return FALSE;
c152c796
AM
10624 sym.st_value = (s->output_section->vma
10625 + s->output_offset
10626 + e->isym.st_value);
10627 }
10628
10629 if (last_local < e->dynindx)
10630 last_local = e->dynindx;
10631
10632 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10633 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10634 }
10635 }
10636
10637 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10638 last_local + 1;
10639 }
10640
10641 /* We get the global symbols from the hash table. */
10642 eoinfo.failed = FALSE;
10643 eoinfo.localsyms = FALSE;
10644 eoinfo.finfo = &finfo;
10645 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10646 &eoinfo);
10647 if (eoinfo.failed)
10648 return FALSE;
10649
10650 /* If backend needs to output some symbols not present in the hash
10651 table, do it now. */
10652 if (bed->elf_backend_output_arch_syms)
10653 {
10654 typedef bfd_boolean (*out_sym_func)
10655 (void *, const char *, Elf_Internal_Sym *, asection *,
10656 struct elf_link_hash_entry *);
10657
10658 if (! ((*bed->elf_backend_output_arch_syms)
10659 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10660 return FALSE;
10661 }
10662
10663 /* Flush all symbols to the file. */
10664 if (! elf_link_flush_output_syms (&finfo, bed))
10665 return FALSE;
10666
10667 /* Now we know the size of the symtab section. */
10668 off += symtab_hdr->sh_size;
10669
10670 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10671 if (symtab_shndx_hdr->sh_name != 0)
10672 {
10673 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10674 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10675 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10676 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10677 symtab_shndx_hdr->sh_size = amt;
10678
10679 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10680 off, TRUE);
10681
10682 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10683 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10684 return FALSE;
10685 }
10686
10687
10688 /* Finish up and write out the symbol string table (.strtab)
10689 section. */
10690 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10691 /* sh_name was set in prep_headers. */
10692 symstrtab_hdr->sh_type = SHT_STRTAB;
10693 symstrtab_hdr->sh_flags = 0;
10694 symstrtab_hdr->sh_addr = 0;
10695 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10696 symstrtab_hdr->sh_entsize = 0;
10697 symstrtab_hdr->sh_link = 0;
10698 symstrtab_hdr->sh_info = 0;
10699 /* sh_offset is set just below. */
10700 symstrtab_hdr->sh_addralign = 1;
10701
10702 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10703 elf_tdata (abfd)->next_file_pos = off;
10704
10705 if (bfd_get_symcount (abfd) > 0)
10706 {
10707 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10708 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10709 return FALSE;
10710 }
10711
10712 /* Adjust the relocs to have the correct symbol indices. */
10713 for (o = abfd->sections; o != NULL; o = o->next)
10714 {
10715 if ((o->flags & SEC_RELOC) == 0)
10716 continue;
10717
10718 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10719 elf_section_data (o)->rel_count,
10720 elf_section_data (o)->rel_hashes);
10721 if (elf_section_data (o)->rel_hdr2 != NULL)
10722 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10723 elf_section_data (o)->rel_count2,
10724 (elf_section_data (o)->rel_hashes
10725 + elf_section_data (o)->rel_count));
10726
10727 /* Set the reloc_count field to 0 to prevent write_relocs from
10728 trying to swap the relocs out itself. */
10729 o->reloc_count = 0;
10730 }
10731
10732 if (dynamic && info->combreloc && dynobj != NULL)
10733 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10734
10735 /* If we are linking against a dynamic object, or generating a
10736 shared library, finish up the dynamic linking information. */
10737 if (dynamic)
10738 {
10739 bfd_byte *dyncon, *dynconend;
10740
10741 /* Fix up .dynamic entries. */
10742 o = bfd_get_section_by_name (dynobj, ".dynamic");
10743 BFD_ASSERT (o != NULL);
10744
10745 dyncon = o->contents;
eea6121a 10746 dynconend = o->contents + o->size;
c152c796
AM
10747 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10748 {
10749 Elf_Internal_Dyn dyn;
10750 const char *name;
10751 unsigned int type;
10752
10753 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10754
10755 switch (dyn.d_tag)
10756 {
10757 default:
10758 continue;
10759 case DT_NULL:
10760 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10761 {
10762 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10763 {
10764 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10765 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10766 default: continue;
10767 }
10768 dyn.d_un.d_val = relativecount;
10769 relativecount = 0;
10770 break;
10771 }
10772 continue;
10773
10774 case DT_INIT:
10775 name = info->init_function;
10776 goto get_sym;
10777 case DT_FINI:
10778 name = info->fini_function;
10779 get_sym:
10780 {
10781 struct elf_link_hash_entry *h;
10782
10783 h = elf_link_hash_lookup (elf_hash_table (info), name,
10784 FALSE, FALSE, TRUE);
10785 if (h != NULL
10786 && (h->root.type == bfd_link_hash_defined
10787 || h->root.type == bfd_link_hash_defweak))
10788 {
bef26483 10789 dyn.d_un.d_ptr = h->root.u.def.value;
c152c796
AM
10790 o = h->root.u.def.section;
10791 if (o->output_section != NULL)
bef26483 10792 dyn.d_un.d_ptr += (o->output_section->vma
c152c796
AM
10793 + o->output_offset);
10794 else
10795 {
10796 /* The symbol is imported from another shared
10797 library and does not apply to this one. */
bef26483 10798 dyn.d_un.d_ptr = 0;
c152c796
AM
10799 }
10800 break;
10801 }
10802 }
10803 continue;
10804
10805 case DT_PREINIT_ARRAYSZ:
10806 name = ".preinit_array";
10807 goto get_size;
10808 case DT_INIT_ARRAYSZ:
10809 name = ".init_array";
10810 goto get_size;
10811 case DT_FINI_ARRAYSZ:
10812 name = ".fini_array";
10813 get_size:
10814 o = bfd_get_section_by_name (abfd, name);
10815 if (o == NULL)
10816 {
10817 (*_bfd_error_handler)
d003868e 10818 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
10819 goto error_return;
10820 }
eea6121a 10821 if (o->size == 0)
c152c796
AM
10822 (*_bfd_error_handler)
10823 (_("warning: %s section has zero size"), name);
eea6121a 10824 dyn.d_un.d_val = o->size;
c152c796
AM
10825 break;
10826
10827 case DT_PREINIT_ARRAY:
10828 name = ".preinit_array";
10829 goto get_vma;
10830 case DT_INIT_ARRAY:
10831 name = ".init_array";
10832 goto get_vma;
10833 case DT_FINI_ARRAY:
10834 name = ".fini_array";
10835 goto get_vma;
10836
10837 case DT_HASH:
10838 name = ".hash";
10839 goto get_vma;
fdc90cb4
JJ
10840 case DT_GNU_HASH:
10841 name = ".gnu.hash";
10842 goto get_vma;
c152c796
AM
10843 case DT_STRTAB:
10844 name = ".dynstr";
10845 goto get_vma;
10846 case DT_SYMTAB:
10847 name = ".dynsym";
10848 goto get_vma;
10849 case DT_VERDEF:
10850 name = ".gnu.version_d";
10851 goto get_vma;
10852 case DT_VERNEED:
10853 name = ".gnu.version_r";
10854 goto get_vma;
10855 case DT_VERSYM:
10856 name = ".gnu.version";
10857 get_vma:
10858 o = bfd_get_section_by_name (abfd, name);
10859 if (o == NULL)
10860 {
10861 (*_bfd_error_handler)
d003868e 10862 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
10863 goto error_return;
10864 }
10865 dyn.d_un.d_ptr = o->vma;
10866 break;
10867
10868 case DT_REL:
10869 case DT_RELA:
10870 case DT_RELSZ:
10871 case DT_RELASZ:
10872 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10873 type = SHT_REL;
10874 else
10875 type = SHT_RELA;
10876 dyn.d_un.d_val = 0;
bef26483 10877 dyn.d_un.d_ptr = 0;
c152c796
AM
10878 for (i = 1; i < elf_numsections (abfd); i++)
10879 {
10880 Elf_Internal_Shdr *hdr;
10881
10882 hdr = elf_elfsections (abfd)[i];
10883 if (hdr->sh_type == type
10884 && (hdr->sh_flags & SHF_ALLOC) != 0)
10885 {
10886 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10887 dyn.d_un.d_val += hdr->sh_size;
10888 else
10889 {
bef26483
AM
10890 if (dyn.d_un.d_ptr == 0
10891 || hdr->sh_addr < dyn.d_un.d_ptr)
10892 dyn.d_un.d_ptr = hdr->sh_addr;
c152c796
AM
10893 }
10894 }
10895 }
10896 break;
10897 }
10898 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10899 }
10900 }
10901
10902 /* If we have created any dynamic sections, then output them. */
10903 if (dynobj != NULL)
10904 {
10905 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10906 goto error_return;
10907
943284cc
DJ
10908 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10909 if (info->warn_shared_textrel && info->shared)
10910 {
10911 bfd_byte *dyncon, *dynconend;
10912
10913 /* Fix up .dynamic entries. */
10914 o = bfd_get_section_by_name (dynobj, ".dynamic");
10915 BFD_ASSERT (o != NULL);
10916
10917 dyncon = o->contents;
10918 dynconend = o->contents + o->size;
10919 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10920 {
10921 Elf_Internal_Dyn dyn;
10922
10923 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10924
10925 if (dyn.d_tag == DT_TEXTREL)
10926 {
a0c8462f 10927 info->callbacks->einfo
9267588c 10928 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
943284cc
DJ
10929 break;
10930 }
10931 }
10932 }
10933
c152c796
AM
10934 for (o = dynobj->sections; o != NULL; o = o->next)
10935 {
10936 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 10937 || o->size == 0
c152c796
AM
10938 || o->output_section == bfd_abs_section_ptr)
10939 continue;
10940 if ((o->flags & SEC_LINKER_CREATED) == 0)
10941 {
10942 /* At this point, we are only interested in sections
10943 created by _bfd_elf_link_create_dynamic_sections. */
10944 continue;
10945 }
3722b82f
AM
10946 if (elf_hash_table (info)->stab_info.stabstr == o)
10947 continue;
eea6121a
AM
10948 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10949 continue;
c152c796
AM
10950 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10951 != SHT_STRTAB)
10952 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10953 {
10954 if (! bfd_set_section_contents (abfd, o->output_section,
10955 o->contents,
10956 (file_ptr) o->output_offset,
eea6121a 10957 o->size))
c152c796
AM
10958 goto error_return;
10959 }
10960 else
10961 {
10962 /* The contents of the .dynstr section are actually in a
10963 stringtab. */
10964 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10965 if (bfd_seek (abfd, off, SEEK_SET) != 0
10966 || ! _bfd_elf_strtab_emit (abfd,
10967 elf_hash_table (info)->dynstr))
10968 goto error_return;
10969 }
10970 }
10971 }
10972
10973 if (info->relocatable)
10974 {
10975 bfd_boolean failed = FALSE;
10976
10977 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10978 if (failed)
10979 goto error_return;
10980 }
10981
10982 /* If we have optimized stabs strings, output them. */
3722b82f 10983 if (elf_hash_table (info)->stab_info.stabstr != NULL)
c152c796
AM
10984 {
10985 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10986 goto error_return;
10987 }
10988
10989 if (info->eh_frame_hdr)
10990 {
10991 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
10992 goto error_return;
10993 }
10994
10995 if (finfo.symstrtab != NULL)
10996 _bfd_stringtab_free (finfo.symstrtab);
10997 if (finfo.contents != NULL)
10998 free (finfo.contents);
10999 if (finfo.external_relocs != NULL)
11000 free (finfo.external_relocs);
11001 if (finfo.internal_relocs != NULL)
11002 free (finfo.internal_relocs);
11003 if (finfo.external_syms != NULL)
11004 free (finfo.external_syms);
11005 if (finfo.locsym_shndx != NULL)
11006 free (finfo.locsym_shndx);
11007 if (finfo.internal_syms != NULL)
11008 free (finfo.internal_syms);
11009 if (finfo.indices != NULL)
11010 free (finfo.indices);
11011 if (finfo.sections != NULL)
11012 free (finfo.sections);
11013 if (finfo.symbuf != NULL)
11014 free (finfo.symbuf);
11015 if (finfo.symshndxbuf != NULL)
11016 free (finfo.symshndxbuf);
11017 for (o = abfd->sections; o != NULL; o = o->next)
11018 {
11019 if ((o->flags & SEC_RELOC) != 0
11020 && elf_section_data (o)->rel_hashes != NULL)
11021 free (elf_section_data (o)->rel_hashes);
11022 }
11023
11024 elf_tdata (abfd)->linker = TRUE;
11025
104d59d1
JM
11026 if (attr_section)
11027 {
11028 bfd_byte *contents = bfd_malloc (attr_size);
11029 if (contents == NULL)
d0f16d5e 11030 return FALSE; /* Bail out and fail. */
104d59d1
JM
11031 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11032 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11033 free (contents);
11034 }
11035
c152c796
AM
11036 return TRUE;
11037
11038 error_return:
11039 if (finfo.symstrtab != NULL)
11040 _bfd_stringtab_free (finfo.symstrtab);
11041 if (finfo.contents != NULL)
11042 free (finfo.contents);
11043 if (finfo.external_relocs != NULL)
11044 free (finfo.external_relocs);
11045 if (finfo.internal_relocs != NULL)
11046 free (finfo.internal_relocs);
11047 if (finfo.external_syms != NULL)
11048 free (finfo.external_syms);
11049 if (finfo.locsym_shndx != NULL)
11050 free (finfo.locsym_shndx);
11051 if (finfo.internal_syms != NULL)
11052 free (finfo.internal_syms);
11053 if (finfo.indices != NULL)
11054 free (finfo.indices);
11055 if (finfo.sections != NULL)
11056 free (finfo.sections);
11057 if (finfo.symbuf != NULL)
11058 free (finfo.symbuf);
11059 if (finfo.symshndxbuf != NULL)
11060 free (finfo.symshndxbuf);
11061 for (o = abfd->sections; o != NULL; o = o->next)
11062 {
11063 if ((o->flags & SEC_RELOC) != 0
11064 && elf_section_data (o)->rel_hashes != NULL)
11065 free (elf_section_data (o)->rel_hashes);
11066 }
11067
11068 return FALSE;
11069}
11070\f
5241d853
RS
11071/* Initialize COOKIE for input bfd ABFD. */
11072
11073static bfd_boolean
11074init_reloc_cookie (struct elf_reloc_cookie *cookie,
11075 struct bfd_link_info *info, bfd *abfd)
11076{
11077 Elf_Internal_Shdr *symtab_hdr;
11078 const struct elf_backend_data *bed;
11079
11080 bed = get_elf_backend_data (abfd);
11081 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11082
11083 cookie->abfd = abfd;
11084 cookie->sym_hashes = elf_sym_hashes (abfd);
11085 cookie->bad_symtab = elf_bad_symtab (abfd);
11086 if (cookie->bad_symtab)
11087 {
11088 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11089 cookie->extsymoff = 0;
11090 }
11091 else
11092 {
11093 cookie->locsymcount = symtab_hdr->sh_info;
11094 cookie->extsymoff = symtab_hdr->sh_info;
11095 }
11096
11097 if (bed->s->arch_size == 32)
11098 cookie->r_sym_shift = 8;
11099 else
11100 cookie->r_sym_shift = 32;
11101
11102 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11103 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11104 {
11105 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11106 cookie->locsymcount, 0,
11107 NULL, NULL, NULL);
11108 if (cookie->locsyms == NULL)
11109 {
11110 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11111 return FALSE;
11112 }
11113 if (info->keep_memory)
11114 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11115 }
11116 return TRUE;
11117}
11118
11119/* Free the memory allocated by init_reloc_cookie, if appropriate. */
11120
11121static void
11122fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11123{
11124 Elf_Internal_Shdr *symtab_hdr;
11125
11126 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11127 if (cookie->locsyms != NULL
11128 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11129 free (cookie->locsyms);
11130}
11131
11132/* Initialize the relocation information in COOKIE for input section SEC
11133 of input bfd ABFD. */
11134
11135static bfd_boolean
11136init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11137 struct bfd_link_info *info, bfd *abfd,
11138 asection *sec)
11139{
11140 const struct elf_backend_data *bed;
11141
11142 if (sec->reloc_count == 0)
11143 {
11144 cookie->rels = NULL;
11145 cookie->relend = NULL;
11146 }
11147 else
11148 {
11149 bed = get_elf_backend_data (abfd);
11150
11151 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11152 info->keep_memory);
11153 if (cookie->rels == NULL)
11154 return FALSE;
11155 cookie->rel = cookie->rels;
11156 cookie->relend = (cookie->rels
11157 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11158 }
11159 cookie->rel = cookie->rels;
11160 return TRUE;
11161}
11162
11163/* Free the memory allocated by init_reloc_cookie_rels,
11164 if appropriate. */
11165
11166static void
11167fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11168 asection *sec)
11169{
11170 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11171 free (cookie->rels);
11172}
11173
11174/* Initialize the whole of COOKIE for input section SEC. */
11175
11176static bfd_boolean
11177init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11178 struct bfd_link_info *info,
11179 asection *sec)
11180{
11181 if (!init_reloc_cookie (cookie, info, sec->owner))
11182 goto error1;
11183 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11184 goto error2;
11185 return TRUE;
11186
11187 error2:
11188 fini_reloc_cookie (cookie, sec->owner);
11189 error1:
11190 return FALSE;
11191}
11192
11193/* Free the memory allocated by init_reloc_cookie_for_section,
11194 if appropriate. */
11195
11196static void
11197fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11198 asection *sec)
11199{
11200 fini_reloc_cookie_rels (cookie, sec);
11201 fini_reloc_cookie (cookie, sec->owner);
11202}
11203\f
c152c796
AM
11204/* Garbage collect unused sections. */
11205
07adf181
AM
11206/* Default gc_mark_hook. */
11207
11208asection *
11209_bfd_elf_gc_mark_hook (asection *sec,
11210 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11211 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11212 struct elf_link_hash_entry *h,
11213 Elf_Internal_Sym *sym)
11214{
11215 if (h != NULL)
11216 {
11217 switch (h->root.type)
11218 {
11219 case bfd_link_hash_defined:
11220 case bfd_link_hash_defweak:
11221 return h->root.u.def.section;
11222
11223 case bfd_link_hash_common:
11224 return h->root.u.c.p->section;
11225
11226 default:
11227 break;
11228 }
11229 }
11230 else
11231 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11232
11233 return NULL;
11234}
11235
5241d853
RS
11236/* COOKIE->rel describes a relocation against section SEC, which is
11237 a section we've decided to keep. Return the section that contains
11238 the relocation symbol, or NULL if no section contains it. */
11239
11240asection *
11241_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11242 elf_gc_mark_hook_fn gc_mark_hook,
11243 struct elf_reloc_cookie *cookie)
11244{
11245 unsigned long r_symndx;
11246 struct elf_link_hash_entry *h;
11247
11248 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11249 if (r_symndx == 0)
11250 return NULL;
11251
11252 if (r_symndx >= cookie->locsymcount
11253 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11254 {
11255 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11256 while (h->root.type == bfd_link_hash_indirect
11257 || h->root.type == bfd_link_hash_warning)
11258 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11259 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11260 }
11261
11262 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11263 &cookie->locsyms[r_symndx]);
11264}
11265
11266/* COOKIE->rel describes a relocation against section SEC, which is
11267 a section we've decided to keep. Mark the section that contains
9d0a14d3 11268 the relocation symbol. */
5241d853
RS
11269
11270bfd_boolean
11271_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11272 asection *sec,
11273 elf_gc_mark_hook_fn gc_mark_hook,
9d0a14d3 11274 struct elf_reloc_cookie *cookie)
5241d853
RS
11275{
11276 asection *rsec;
11277
11278 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11279 if (rsec && !rsec->gc_mark)
11280 {
11281 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11282 rsec->gc_mark = 1;
5241d853
RS
11283 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11284 return FALSE;
11285 }
11286 return TRUE;
11287}
11288
07adf181
AM
11289/* The mark phase of garbage collection. For a given section, mark
11290 it and any sections in this section's group, and all the sections
11291 which define symbols to which it refers. */
11292
ccfa59ea
AM
11293bfd_boolean
11294_bfd_elf_gc_mark (struct bfd_link_info *info,
11295 asection *sec,
6a5bb875 11296 elf_gc_mark_hook_fn gc_mark_hook)
c152c796
AM
11297{
11298 bfd_boolean ret;
9d0a14d3 11299 asection *group_sec, *eh_frame;
c152c796
AM
11300
11301 sec->gc_mark = 1;
11302
11303 /* Mark all the sections in the group. */
11304 group_sec = elf_section_data (sec)->next_in_group;
11305 if (group_sec && !group_sec->gc_mark)
ccfa59ea 11306 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
c152c796
AM
11307 return FALSE;
11308
11309 /* Look through the section relocs. */
11310 ret = TRUE;
9d0a14d3
RS
11311 eh_frame = elf_eh_frame_section (sec->owner);
11312 if ((sec->flags & SEC_RELOC) != 0
11313 && sec->reloc_count > 0
11314 && sec != eh_frame)
c152c796 11315 {
5241d853 11316 struct elf_reloc_cookie cookie;
c152c796 11317
5241d853
RS
11318 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11319 ret = FALSE;
c152c796 11320 else
c152c796 11321 {
5241d853 11322 for (; cookie.rel < cookie.relend; cookie.rel++)
9d0a14d3 11323 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
5241d853
RS
11324 {
11325 ret = FALSE;
11326 break;
11327 }
11328 fini_reloc_cookie_for_section (&cookie, sec);
c152c796
AM
11329 }
11330 }
9d0a14d3
RS
11331
11332 if (ret && eh_frame && elf_fde_list (sec))
11333 {
11334 struct elf_reloc_cookie cookie;
11335
11336 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11337 ret = FALSE;
11338 else
11339 {
11340 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11341 gc_mark_hook, &cookie))
11342 ret = FALSE;
11343 fini_reloc_cookie_for_section (&cookie, eh_frame);
11344 }
11345 }
11346
c152c796
AM
11347 return ret;
11348}
11349
11350/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11351
c17d87de
NC
11352struct elf_gc_sweep_symbol_info
11353{
ccabcbe5
AM
11354 struct bfd_link_info *info;
11355 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11356 bfd_boolean);
11357};
11358
c152c796 11359static bfd_boolean
ccabcbe5 11360elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
c152c796 11361{
c152c796
AM
11362 if (h->root.type == bfd_link_hash_warning)
11363 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11364
ccabcbe5
AM
11365 if ((h->root.type == bfd_link_hash_defined
11366 || h->root.type == bfd_link_hash_defweak)
11367 && !h->root.u.def.section->gc_mark
11368 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11369 {
11370 struct elf_gc_sweep_symbol_info *inf = data;
11371 (*inf->hide_symbol) (inf->info, h, TRUE);
11372 }
c152c796
AM
11373
11374 return TRUE;
11375}
11376
11377/* The sweep phase of garbage collection. Remove all garbage sections. */
11378
11379typedef bfd_boolean (*gc_sweep_hook_fn)
11380 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11381
11382static bfd_boolean
ccabcbe5 11383elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
c152c796
AM
11384{
11385 bfd *sub;
ccabcbe5
AM
11386 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11387 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11388 unsigned long section_sym_count;
11389 struct elf_gc_sweep_symbol_info sweep_info;
c152c796
AM
11390
11391 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11392 {
11393 asection *o;
11394
11395 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11396 continue;
11397
11398 for (o = sub->sections; o != NULL; o = o->next)
11399 {
7c2c8505
AM
11400 /* Keep debug and special sections. */
11401 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
dea5f36a 11402 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
c152c796
AM
11403 o->gc_mark = 1;
11404
11405 if (o->gc_mark)
11406 continue;
11407
11408 /* Skip sweeping sections already excluded. */
11409 if (o->flags & SEC_EXCLUDE)
11410 continue;
11411
11412 /* Since this is early in the link process, it is simple
11413 to remove a section from the output. */
11414 o->flags |= SEC_EXCLUDE;
11415
c55fe096 11416 if (info->print_gc_sections && o->size != 0)
c17d87de
NC
11417 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11418
c152c796
AM
11419 /* But we also have to update some of the relocation
11420 info we collected before. */
11421 if (gc_sweep_hook
e8aaee2a
AM
11422 && (o->flags & SEC_RELOC) != 0
11423 && o->reloc_count > 0
11424 && !bfd_is_abs_section (o->output_section))
c152c796
AM
11425 {
11426 Elf_Internal_Rela *internal_relocs;
11427 bfd_boolean r;
11428
11429 internal_relocs
11430 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11431 info->keep_memory);
11432 if (internal_relocs == NULL)
11433 return FALSE;
11434
11435 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11436
11437 if (elf_section_data (o)->relocs != internal_relocs)
11438 free (internal_relocs);
11439
11440 if (!r)
11441 return FALSE;
11442 }
11443 }
11444 }
11445
11446 /* Remove the symbols that were in the swept sections from the dynamic
11447 symbol table. GCFIXME: Anyone know how to get them out of the
11448 static symbol table as well? */
ccabcbe5
AM
11449 sweep_info.info = info;
11450 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11451 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11452 &sweep_info);
c152c796 11453
ccabcbe5 11454 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
c152c796
AM
11455 return TRUE;
11456}
11457
11458/* Propagate collected vtable information. This is called through
11459 elf_link_hash_traverse. */
11460
11461static bfd_boolean
11462elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11463{
11464 if (h->root.type == bfd_link_hash_warning)
11465 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11466
11467 /* Those that are not vtables. */
f6e332e6 11468 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
11469 return TRUE;
11470
11471 /* Those vtables that do not have parents, we cannot merge. */
f6e332e6 11472 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
c152c796
AM
11473 return TRUE;
11474
11475 /* If we've already been done, exit. */
f6e332e6 11476 if (h->vtable->used && h->vtable->used[-1])
c152c796
AM
11477 return TRUE;
11478
11479 /* Make sure the parent's table is up to date. */
f6e332e6 11480 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
c152c796 11481
f6e332e6 11482 if (h->vtable->used == NULL)
c152c796
AM
11483 {
11484 /* None of this table's entries were referenced. Re-use the
11485 parent's table. */
f6e332e6
AM
11486 h->vtable->used = h->vtable->parent->vtable->used;
11487 h->vtable->size = h->vtable->parent->vtable->size;
c152c796
AM
11488 }
11489 else
11490 {
11491 size_t n;
11492 bfd_boolean *cu, *pu;
11493
11494 /* Or the parent's entries into ours. */
f6e332e6 11495 cu = h->vtable->used;
c152c796 11496 cu[-1] = TRUE;
f6e332e6 11497 pu = h->vtable->parent->vtable->used;
c152c796
AM
11498 if (pu != NULL)
11499 {
11500 const struct elf_backend_data *bed;
11501 unsigned int log_file_align;
11502
11503 bed = get_elf_backend_data (h->root.u.def.section->owner);
11504 log_file_align = bed->s->log_file_align;
f6e332e6 11505 n = h->vtable->parent->vtable->size >> log_file_align;
c152c796
AM
11506 while (n--)
11507 {
11508 if (*pu)
11509 *cu = TRUE;
11510 pu++;
11511 cu++;
11512 }
11513 }
11514 }
11515
11516 return TRUE;
11517}
11518
11519static bfd_boolean
11520elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11521{
11522 asection *sec;
11523 bfd_vma hstart, hend;
11524 Elf_Internal_Rela *relstart, *relend, *rel;
11525 const struct elf_backend_data *bed;
11526 unsigned int log_file_align;
11527
11528 if (h->root.type == bfd_link_hash_warning)
11529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11530
11531 /* Take care of both those symbols that do not describe vtables as
11532 well as those that are not loaded. */
f6e332e6 11533 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
11534 return TRUE;
11535
11536 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11537 || h->root.type == bfd_link_hash_defweak);
11538
11539 sec = h->root.u.def.section;
11540 hstart = h->root.u.def.value;
11541 hend = hstart + h->size;
11542
11543 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11544 if (!relstart)
11545 return *(bfd_boolean *) okp = FALSE;
11546 bed = get_elf_backend_data (sec->owner);
11547 log_file_align = bed->s->log_file_align;
11548
11549 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11550
11551 for (rel = relstart; rel < relend; ++rel)
11552 if (rel->r_offset >= hstart && rel->r_offset < hend)
11553 {
11554 /* If the entry is in use, do nothing. */
f6e332e6
AM
11555 if (h->vtable->used
11556 && (rel->r_offset - hstart) < h->vtable->size)
c152c796
AM
11557 {
11558 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
f6e332e6 11559 if (h->vtable->used[entry])
c152c796
AM
11560 continue;
11561 }
11562 /* Otherwise, kill it. */
11563 rel->r_offset = rel->r_info = rel->r_addend = 0;
11564 }
11565
11566 return TRUE;
11567}
11568
87538722
AM
11569/* Mark sections containing dynamically referenced symbols. When
11570 building shared libraries, we must assume that any visible symbol is
11571 referenced. */
715df9b8 11572
64d03ab5
AM
11573bfd_boolean
11574bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
715df9b8 11575{
87538722
AM
11576 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11577
715df9b8
EB
11578 if (h->root.type == bfd_link_hash_warning)
11579 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11580
11581 if ((h->root.type == bfd_link_hash_defined
11582 || h->root.type == bfd_link_hash_defweak)
87538722 11583 && (h->ref_dynamic
5adcfd8b 11584 || (!info->executable
87538722
AM
11585 && h->def_regular
11586 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11587 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
715df9b8
EB
11588 h->root.u.def.section->flags |= SEC_KEEP;
11589
11590 return TRUE;
11591}
3b36f7e6 11592
74f0fb50
AM
11593/* Keep all sections containing symbols undefined on the command-line,
11594 and the section containing the entry symbol. */
11595
11596void
11597_bfd_elf_gc_keep (struct bfd_link_info *info)
11598{
11599 struct bfd_sym_chain *sym;
11600
11601 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11602 {
11603 struct elf_link_hash_entry *h;
11604
11605 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11606 FALSE, FALSE, FALSE);
11607
11608 if (h != NULL
11609 && (h->root.type == bfd_link_hash_defined
11610 || h->root.type == bfd_link_hash_defweak)
11611 && !bfd_is_abs_section (h->root.u.def.section))
11612 h->root.u.def.section->flags |= SEC_KEEP;
11613 }
11614}
11615
c152c796
AM
11616/* Do mark and sweep of unused sections. */
11617
11618bfd_boolean
11619bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11620{
11621 bfd_boolean ok = TRUE;
11622 bfd *sub;
6a5bb875 11623 elf_gc_mark_hook_fn gc_mark_hook;
64d03ab5 11624 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
c152c796 11625
64d03ab5 11626 if (!bed->can_gc_sections
715df9b8 11627 || !is_elf_hash_table (info->hash))
c152c796
AM
11628 {
11629 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11630 return TRUE;
11631 }
11632
74f0fb50
AM
11633 bed->gc_keep (info);
11634
9d0a14d3
RS
11635 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11636 at the .eh_frame section if we can mark the FDEs individually. */
11637 _bfd_elf_begin_eh_frame_parsing (info);
11638 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11639 {
11640 asection *sec;
11641 struct elf_reloc_cookie cookie;
11642
11643 sec = bfd_get_section_by_name (sub, ".eh_frame");
11644 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11645 {
11646 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11647 if (elf_section_data (sec)->sec_info)
11648 elf_eh_frame_section (sub) = sec;
11649 fini_reloc_cookie_for_section (&cookie, sec);
11650 }
11651 }
11652 _bfd_elf_end_eh_frame_parsing (info);
11653
c152c796
AM
11654 /* Apply transitive closure to the vtable entry usage info. */
11655 elf_link_hash_traverse (elf_hash_table (info),
11656 elf_gc_propagate_vtable_entries_used,
11657 &ok);
11658 if (!ok)
11659 return FALSE;
11660
11661 /* Kill the vtable relocations that were not used. */
11662 elf_link_hash_traverse (elf_hash_table (info),
11663 elf_gc_smash_unused_vtentry_relocs,
11664 &ok);
11665 if (!ok)
11666 return FALSE;
11667
715df9b8
EB
11668 /* Mark dynamically referenced symbols. */
11669 if (elf_hash_table (info)->dynamic_sections_created)
11670 elf_link_hash_traverse (elf_hash_table (info),
64d03ab5 11671 bed->gc_mark_dynamic_ref,
87538722 11672 info);
c152c796 11673
715df9b8 11674 /* Grovel through relocs to find out who stays ... */
64d03ab5 11675 gc_mark_hook = bed->gc_mark_hook;
c152c796
AM
11676 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11677 {
11678 asection *o;
11679
11680 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11681 continue;
11682
11683 for (o = sub->sections; o != NULL; o = o->next)
a14a5de3 11684 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
39c2f51b
AM
11685 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11686 return FALSE;
c152c796
AM
11687 }
11688
6a5bb875
PB
11689 /* Allow the backend to mark additional target specific sections. */
11690 if (bed->gc_mark_extra_sections)
74f0fb50 11691 bed->gc_mark_extra_sections (info, gc_mark_hook);
6a5bb875 11692
c152c796 11693 /* ... and mark SEC_EXCLUDE for those that go. */
ccabcbe5 11694 return elf_gc_sweep (abfd, info);
c152c796
AM
11695}
11696\f
11697/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11698
11699bfd_boolean
11700bfd_elf_gc_record_vtinherit (bfd *abfd,
11701 asection *sec,
11702 struct elf_link_hash_entry *h,
11703 bfd_vma offset)
11704{
11705 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11706 struct elf_link_hash_entry **search, *child;
11707 bfd_size_type extsymcount;
11708 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11709
11710 /* The sh_info field of the symtab header tells us where the
11711 external symbols start. We don't care about the local symbols at
11712 this point. */
11713 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11714 if (!elf_bad_symtab (abfd))
11715 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11716
11717 sym_hashes = elf_sym_hashes (abfd);
11718 sym_hashes_end = sym_hashes + extsymcount;
11719
11720 /* Hunt down the child symbol, which is in this section at the same
11721 offset as the relocation. */
11722 for (search = sym_hashes; search != sym_hashes_end; ++search)
11723 {
11724 if ((child = *search) != NULL
11725 && (child->root.type == bfd_link_hash_defined
11726 || child->root.type == bfd_link_hash_defweak)
11727 && child->root.u.def.section == sec
11728 && child->root.u.def.value == offset)
11729 goto win;
11730 }
11731
d003868e
AM
11732 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11733 abfd, sec, (unsigned long) offset);
c152c796
AM
11734 bfd_set_error (bfd_error_invalid_operation);
11735 return FALSE;
11736
11737 win:
f6e332e6
AM
11738 if (!child->vtable)
11739 {
11740 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11741 if (!child->vtable)
11742 return FALSE;
11743 }
c152c796
AM
11744 if (!h)
11745 {
11746 /* This *should* only be the absolute section. It could potentially
11747 be that someone has defined a non-global vtable though, which
11748 would be bad. It isn't worth paging in the local symbols to be
11749 sure though; that case should simply be handled by the assembler. */
11750
f6e332e6 11751 child->vtable->parent = (struct elf_link_hash_entry *) -1;
c152c796
AM
11752 }
11753 else
f6e332e6 11754 child->vtable->parent = h;
c152c796
AM
11755
11756 return TRUE;
11757}
11758
11759/* Called from check_relocs to record the existence of a VTENTRY reloc. */
11760
11761bfd_boolean
11762bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11763 asection *sec ATTRIBUTE_UNUSED,
11764 struct elf_link_hash_entry *h,
11765 bfd_vma addend)
11766{
11767 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11768 unsigned int log_file_align = bed->s->log_file_align;
11769
f6e332e6
AM
11770 if (!h->vtable)
11771 {
11772 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11773 if (!h->vtable)
11774 return FALSE;
11775 }
11776
11777 if (addend >= h->vtable->size)
c152c796
AM
11778 {
11779 size_t size, bytes, file_align;
f6e332e6 11780 bfd_boolean *ptr = h->vtable->used;
c152c796
AM
11781
11782 /* While the symbol is undefined, we have to be prepared to handle
11783 a zero size. */
11784 file_align = 1 << log_file_align;
11785 if (h->root.type == bfd_link_hash_undefined)
11786 size = addend + file_align;
11787 else
11788 {
11789 size = h->size;
11790 if (addend >= size)
11791 {
11792 /* Oops! We've got a reference past the defined end of
11793 the table. This is probably a bug -- shall we warn? */
11794 size = addend + file_align;
11795 }
11796 }
11797 size = (size + file_align - 1) & -file_align;
11798
11799 /* Allocate one extra entry for use as a "done" flag for the
11800 consolidation pass. */
11801 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11802
11803 if (ptr)
11804 {
11805 ptr = bfd_realloc (ptr - 1, bytes);
11806
11807 if (ptr != NULL)
11808 {
11809 size_t oldbytes;
11810
f6e332e6 11811 oldbytes = (((h->vtable->size >> log_file_align) + 1)
c152c796
AM
11812 * sizeof (bfd_boolean));
11813 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11814 }
11815 }
11816 else
11817 ptr = bfd_zmalloc (bytes);
11818
11819 if (ptr == NULL)
11820 return FALSE;
11821
11822 /* And arrange for that done flag to be at index -1. */
f6e332e6
AM
11823 h->vtable->used = ptr + 1;
11824 h->vtable->size = size;
c152c796
AM
11825 }
11826
f6e332e6 11827 h->vtable->used[addend >> log_file_align] = TRUE;
c152c796
AM
11828
11829 return TRUE;
11830}
11831
11832struct alloc_got_off_arg {
11833 bfd_vma gotoff;
10455f89 11834 struct bfd_link_info *info;
c152c796
AM
11835};
11836
11837/* We need a special top-level link routine to convert got reference counts
11838 to real got offsets. */
11839
11840static bfd_boolean
11841elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11842{
11843 struct alloc_got_off_arg *gofarg = arg;
10455f89
HPN
11844 bfd *obfd = gofarg->info->output_bfd;
11845 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
c152c796
AM
11846
11847 if (h->root.type == bfd_link_hash_warning)
11848 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11849
11850 if (h->got.refcount > 0)
11851 {
11852 h->got.offset = gofarg->gotoff;
10455f89 11853 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
c152c796
AM
11854 }
11855 else
11856 h->got.offset = (bfd_vma) -1;
11857
11858 return TRUE;
11859}
11860
11861/* And an accompanying bit to work out final got entry offsets once
11862 we're done. Should be called from final_link. */
11863
11864bfd_boolean
11865bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11866 struct bfd_link_info *info)
11867{
11868 bfd *i;
11869 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11870 bfd_vma gotoff;
c152c796
AM
11871 struct alloc_got_off_arg gofarg;
11872
10455f89
HPN
11873 BFD_ASSERT (abfd == info->output_bfd);
11874
c152c796
AM
11875 if (! is_elf_hash_table (info->hash))
11876 return FALSE;
11877
11878 /* The GOT offset is relative to the .got section, but the GOT header is
11879 put into the .got.plt section, if the backend uses it. */
11880 if (bed->want_got_plt)
11881 gotoff = 0;
11882 else
11883 gotoff = bed->got_header_size;
11884
11885 /* Do the local .got entries first. */
11886 for (i = info->input_bfds; i; i = i->link_next)
11887 {
11888 bfd_signed_vma *local_got;
11889 bfd_size_type j, locsymcount;
11890 Elf_Internal_Shdr *symtab_hdr;
11891
11892 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11893 continue;
11894
11895 local_got = elf_local_got_refcounts (i);
11896 if (!local_got)
11897 continue;
11898
11899 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11900 if (elf_bad_symtab (i))
11901 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11902 else
11903 locsymcount = symtab_hdr->sh_info;
11904
11905 for (j = 0; j < locsymcount; ++j)
11906 {
11907 if (local_got[j] > 0)
11908 {
11909 local_got[j] = gotoff;
10455f89 11910 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
c152c796
AM
11911 }
11912 else
11913 local_got[j] = (bfd_vma) -1;
11914 }
11915 }
11916
11917 /* Then the global .got entries. .plt refcounts are handled by
11918 adjust_dynamic_symbol */
11919 gofarg.gotoff = gotoff;
10455f89 11920 gofarg.info = info;
c152c796
AM
11921 elf_link_hash_traverse (elf_hash_table (info),
11922 elf_gc_allocate_got_offsets,
11923 &gofarg);
11924 return TRUE;
11925}
11926
11927/* Many folk need no more in the way of final link than this, once
11928 got entry reference counting is enabled. */
11929
11930bfd_boolean
11931bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11932{
11933 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11934 return FALSE;
11935
11936 /* Invoke the regular ELF backend linker to do all the work. */
11937 return bfd_elf_final_link (abfd, info);
11938}
11939
11940bfd_boolean
11941bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11942{
11943 struct elf_reloc_cookie *rcookie = cookie;
11944
11945 if (rcookie->bad_symtab)
11946 rcookie->rel = rcookie->rels;
11947
11948 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11949 {
11950 unsigned long r_symndx;
11951
11952 if (! rcookie->bad_symtab)
11953 if (rcookie->rel->r_offset > offset)
11954 return FALSE;
11955 if (rcookie->rel->r_offset != offset)
11956 continue;
11957
11958 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11959 if (r_symndx == SHN_UNDEF)
11960 return TRUE;
11961
11962 if (r_symndx >= rcookie->locsymcount
11963 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11964 {
11965 struct elf_link_hash_entry *h;
11966
11967 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11968
11969 while (h->root.type == bfd_link_hash_indirect
11970 || h->root.type == bfd_link_hash_warning)
11971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11972
11973 if ((h->root.type == bfd_link_hash_defined
11974 || h->root.type == bfd_link_hash_defweak)
11975 && elf_discarded_section (h->root.u.def.section))
11976 return TRUE;
11977 else
11978 return FALSE;
11979 }
11980 else
11981 {
11982 /* It's not a relocation against a global symbol,
11983 but it could be a relocation against a local
11984 symbol for a discarded section. */
11985 asection *isec;
11986 Elf_Internal_Sym *isym;
11987
11988 /* Need to: get the symbol; get the section. */
11989 isym = &rcookie->locsyms[r_symndx];
cb33740c
AM
11990 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11991 if (isec != NULL && elf_discarded_section (isec))
11992 return TRUE;
c152c796
AM
11993 }
11994 return FALSE;
11995 }
11996 return FALSE;
11997}
11998
11999/* Discard unneeded references to discarded sections.
12000 Returns TRUE if any section's size was changed. */
12001/* This function assumes that the relocations are in sorted order,
12002 which is true for all known assemblers. */
12003
12004bfd_boolean
12005bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12006{
12007 struct elf_reloc_cookie cookie;
12008 asection *stab, *eh;
c152c796
AM
12009 const struct elf_backend_data *bed;
12010 bfd *abfd;
c152c796
AM
12011 bfd_boolean ret = FALSE;
12012
12013 if (info->traditional_format
12014 || !is_elf_hash_table (info->hash))
12015 return FALSE;
12016
ca92cecb 12017 _bfd_elf_begin_eh_frame_parsing (info);
c152c796
AM
12018 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12019 {
12020 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12021 continue;
12022
12023 bed = get_elf_backend_data (abfd);
12024
12025 if ((abfd->flags & DYNAMIC) != 0)
12026 continue;
12027
8da3dbc5
AM
12028 eh = NULL;
12029 if (!info->relocatable)
12030 {
12031 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12032 if (eh != NULL
eea6121a 12033 && (eh->size == 0
8da3dbc5
AM
12034 || bfd_is_abs_section (eh->output_section)))
12035 eh = NULL;
12036 }
c152c796
AM
12037
12038 stab = bfd_get_section_by_name (abfd, ".stab");
12039 if (stab != NULL
eea6121a 12040 && (stab->size == 0
c152c796
AM
12041 || bfd_is_abs_section (stab->output_section)
12042 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12043 stab = NULL;
12044
12045 if (stab == NULL
12046 && eh == NULL
12047 && bed->elf_backend_discard_info == NULL)
12048 continue;
12049
5241d853
RS
12050 if (!init_reloc_cookie (&cookie, info, abfd))
12051 return FALSE;
c152c796 12052
5241d853
RS
12053 if (stab != NULL
12054 && stab->reloc_count > 0
12055 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
c152c796 12056 {
5241d853
RS
12057 if (_bfd_discard_section_stabs (abfd, stab,
12058 elf_section_data (stab)->sec_info,
12059 bfd_elf_reloc_symbol_deleted_p,
12060 &cookie))
12061 ret = TRUE;
12062 fini_reloc_cookie_rels (&cookie, stab);
c152c796
AM
12063 }
12064
5241d853
RS
12065 if (eh != NULL
12066 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
c152c796 12067 {
ca92cecb 12068 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
c152c796
AM
12069 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12070 bfd_elf_reloc_symbol_deleted_p,
12071 &cookie))
12072 ret = TRUE;
5241d853 12073 fini_reloc_cookie_rels (&cookie, eh);
c152c796
AM
12074 }
12075
12076 if (bed->elf_backend_discard_info != NULL
12077 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12078 ret = TRUE;
12079
5241d853 12080 fini_reloc_cookie (&cookie, abfd);
c152c796 12081 }
ca92cecb 12082 _bfd_elf_end_eh_frame_parsing (info);
c152c796
AM
12083
12084 if (info->eh_frame_hdr
12085 && !info->relocatable
12086 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12087 ret = TRUE;
12088
12089 return ret;
12090}
082b7297 12091
9659de1c
AM
12092/* For a SHT_GROUP section, return the group signature. For other
12093 sections, return the normal section name. */
12094
12095static const char *
12096section_signature (asection *sec)
12097{
12098 if ((sec->flags & SEC_GROUP) != 0
12099 && elf_next_in_group (sec) != NULL
12100 && elf_group_name (elf_next_in_group (sec)) != NULL)
12101 return elf_group_name (elf_next_in_group (sec));
12102 return sec->name;
12103}
12104
082b7297 12105void
9659de1c 12106_bfd_elf_section_already_linked (bfd *abfd, asection *sec,
c0f00686 12107 struct bfd_link_info *info)
082b7297
L
12108{
12109 flagword flags;
6d2cd210 12110 const char *name, *p;
082b7297
L
12111 struct bfd_section_already_linked *l;
12112 struct bfd_section_already_linked_hash_entry *already_linked_list;
3d7f7666 12113
3d7f7666
L
12114 if (sec->output_section == bfd_abs_section_ptr)
12115 return;
082b7297
L
12116
12117 flags = sec->flags;
3d7f7666 12118
c2370991
AM
12119 /* Return if it isn't a linkonce section. A comdat group section
12120 also has SEC_LINK_ONCE set. */
12121 if ((flags & SEC_LINK_ONCE) == 0)
082b7297
L
12122 return;
12123
c2370991
AM
12124 /* Don't put group member sections on our list of already linked
12125 sections. They are handled as a group via their group section. */
12126 if (elf_sec_group (sec) != NULL)
12127 return;
3d7f7666 12128
082b7297
L
12129 /* FIXME: When doing a relocatable link, we may have trouble
12130 copying relocations in other sections that refer to local symbols
12131 in the section being discarded. Those relocations will have to
12132 be converted somehow; as of this writing I'm not sure that any of
12133 the backends handle that correctly.
12134
12135 It is tempting to instead not discard link once sections when
12136 doing a relocatable link (technically, they should be discarded
12137 whenever we are building constructors). However, that fails,
12138 because the linker winds up combining all the link once sections
12139 into a single large link once section, which defeats the purpose
12140 of having link once sections in the first place.
12141
12142 Also, not merging link once sections in a relocatable link
12143 causes trouble for MIPS ELF, which relies on link once semantics
12144 to handle the .reginfo section correctly. */
12145
9659de1c 12146 name = section_signature (sec);
082b7297 12147
0112cd26 12148 if (CONST_STRNEQ (name, ".gnu.linkonce.")
6d2cd210
JJ
12149 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12150 p++;
12151 else
12152 p = name;
12153
12154 already_linked_list = bfd_section_already_linked_table_lookup (p);
082b7297
L
12155
12156 for (l = already_linked_list->entry; l != NULL; l = l->next)
12157 {
c2370991
AM
12158 /* We may have 2 different types of sections on the list: group
12159 sections and linkonce sections. Match like sections. */
3d7f7666 12160 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9659de1c 12161 && strcmp (name, section_signature (l->sec)) == 0
082b7297
L
12162 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12163 {
12164 /* The section has already been linked. See if we should
6d2cd210 12165 issue a warning. */
082b7297
L
12166 switch (flags & SEC_LINK_DUPLICATES)
12167 {
12168 default:
12169 abort ();
12170
12171 case SEC_LINK_DUPLICATES_DISCARD:
12172 break;
12173
12174 case SEC_LINK_DUPLICATES_ONE_ONLY:
12175 (*_bfd_error_handler)
c93625e2 12176 (_("%B: ignoring duplicate section `%A'"),
d003868e 12177 abfd, sec);
082b7297
L
12178 break;
12179
12180 case SEC_LINK_DUPLICATES_SAME_SIZE:
12181 if (sec->size != l->sec->size)
12182 (*_bfd_error_handler)
c93625e2 12183 (_("%B: duplicate section `%A' has different size"),
d003868e 12184 abfd, sec);
082b7297 12185 break;
ea5158d8
DJ
12186
12187 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12188 if (sec->size != l->sec->size)
12189 (*_bfd_error_handler)
c93625e2 12190 (_("%B: duplicate section `%A' has different size"),
ea5158d8
DJ
12191 abfd, sec);
12192 else if (sec->size != 0)
12193 {
12194 bfd_byte *sec_contents, *l_sec_contents;
12195
12196 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12197 (*_bfd_error_handler)
c93625e2 12198 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
12199 abfd, sec);
12200 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12201 &l_sec_contents))
12202 (*_bfd_error_handler)
c93625e2 12203 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
12204 l->sec->owner, l->sec);
12205 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12206 (*_bfd_error_handler)
c93625e2 12207 (_("%B: warning: duplicate section `%A' has different contents"),
ea5158d8
DJ
12208 abfd, sec);
12209
12210 if (sec_contents)
12211 free (sec_contents);
12212 if (l_sec_contents)
12213 free (l_sec_contents);
12214 }
12215 break;
082b7297
L
12216 }
12217
12218 /* Set the output_section field so that lang_add_section
12219 does not create a lang_input_section structure for this
12220 section. Since there might be a symbol in the section
12221 being discarded, we must retain a pointer to the section
12222 which we are really going to use. */
12223 sec->output_section = bfd_abs_section_ptr;
12224 sec->kept_section = l->sec;
3b36f7e6 12225
082b7297 12226 if (flags & SEC_GROUP)
3d7f7666
L
12227 {
12228 asection *first = elf_next_in_group (sec);
12229 asection *s = first;
12230
12231 while (s != NULL)
12232 {
12233 s->output_section = bfd_abs_section_ptr;
12234 /* Record which group discards it. */
12235 s->kept_section = l->sec;
12236 s = elf_next_in_group (s);
12237 /* These lists are circular. */
12238 if (s == first)
12239 break;
12240 }
12241 }
082b7297
L
12242
12243 return;
12244 }
12245 }
12246
c2370991
AM
12247 /* A single member comdat group section may be discarded by a
12248 linkonce section and vice versa. */
12249
12250 if ((flags & SEC_GROUP) != 0)
3d7f7666 12251 {
c2370991
AM
12252 asection *first = elf_next_in_group (sec);
12253
12254 if (first != NULL && elf_next_in_group (first) == first)
12255 /* Check this single member group against linkonce sections. */
12256 for (l = already_linked_list->entry; l != NULL; l = l->next)
12257 if ((l->sec->flags & SEC_GROUP) == 0
12258 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12259 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12260 {
12261 first->output_section = bfd_abs_section_ptr;
12262 first->kept_section = l->sec;
12263 sec->output_section = bfd_abs_section_ptr;
12264 break;
12265 }
3d7f7666
L
12266 }
12267 else
c2370991 12268 /* Check this linkonce section against single member groups. */
6d2cd210
JJ
12269 for (l = already_linked_list->entry; l != NULL; l = l->next)
12270 if (l->sec->flags & SEC_GROUP)
12271 {
12272 asection *first = elf_next_in_group (l->sec);
12273
12274 if (first != NULL
12275 && elf_next_in_group (first) == first
c0f00686 12276 && bfd_elf_match_symbols_in_sections (first, sec, info))
6d2cd210
JJ
12277 {
12278 sec->output_section = bfd_abs_section_ptr;
c2370991 12279 sec->kept_section = first;
6d2cd210
JJ
12280 break;
12281 }
12282 }
12283
082b7297 12284 /* This is the first section with this name. Record it. */
a6626e8c
MS
12285 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12286 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
082b7297 12287}
81e1b023 12288
a4d8e49b
L
12289bfd_boolean
12290_bfd_elf_common_definition (Elf_Internal_Sym *sym)
12291{
12292 return sym->st_shndx == SHN_COMMON;
12293}
12294
12295unsigned int
12296_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12297{
12298 return SHN_COMMON;
12299}
12300
12301asection *
12302_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12303{
12304 return bfd_com_section_ptr;
12305}
10455f89
HPN
12306
12307bfd_vma
12308_bfd_elf_default_got_elt_size (bfd *abfd,
12309 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12310 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12311 bfd *ibfd ATTRIBUTE_UNUSED,
12312 unsigned long symndx ATTRIBUTE_UNUSED)
12313{
12314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12315 return bed->s->arch_size / 8;
12316}
83bac4b0
NC
12317
12318/* Routines to support the creation of dynamic relocs. */
12319
12320/* Return true if NAME is a name of a relocation
12321 section associated with section S. */
12322
12323static bfd_boolean
12324is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12325{
12326 if (rela)
12327 return CONST_STRNEQ (name, ".rela")
12328 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12329
12330 return CONST_STRNEQ (name, ".rel")
12331 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12332}
12333
12334/* Returns the name of the dynamic reloc section associated with SEC. */
12335
12336static const char *
12337get_dynamic_reloc_section_name (bfd * abfd,
12338 asection * sec,
12339 bfd_boolean is_rela)
12340{
12341 const char * name;
12342 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12343 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12344
12345 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12346 if (name == NULL)
12347 return NULL;
12348
12349 if (! is_reloc_section (is_rela, name, sec))
12350 {
12351 static bfd_boolean complained = FALSE;
12352
12353 if (! complained)
12354 {
12355 (*_bfd_error_handler)
12356 (_("%B: bad relocation section name `%s\'"), abfd, name);
12357 complained = TRUE;
12358 }
12359 name = NULL;
12360 }
12361
12362 return name;
12363}
12364
12365/* Returns the dynamic reloc section associated with SEC.
12366 If necessary compute the name of the dynamic reloc section based
12367 on SEC's name (looked up in ABFD's string table) and the setting
12368 of IS_RELA. */
12369
12370asection *
12371_bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12372 asection * sec,
12373 bfd_boolean is_rela)
12374{
12375 asection * reloc_sec = elf_section_data (sec)->sreloc;
12376
12377 if (reloc_sec == NULL)
12378 {
12379 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12380
12381 if (name != NULL)
12382 {
12383 reloc_sec = bfd_get_section_by_name (abfd, name);
12384
12385 if (reloc_sec != NULL)
12386 elf_section_data (sec)->sreloc = reloc_sec;
12387 }
12388 }
12389
12390 return reloc_sec;
12391}
12392
12393/* Returns the dynamic reloc section associated with SEC. If the
12394 section does not exist it is created and attached to the DYNOBJ
12395 bfd and stored in the SRELOC field of SEC's elf_section_data
12396 structure.
12397
12398 ALIGNMENT is the alignment for the newly created section and
12399 IS_RELA defines whether the name should be .rela.<SEC's name>
12400 or .rel.<SEC's name>. The section name is looked up in the
12401 string table associated with ABFD. */
12402
12403asection *
12404_bfd_elf_make_dynamic_reloc_section (asection * sec,
12405 bfd * dynobj,
12406 unsigned int alignment,
12407 bfd * abfd,
12408 bfd_boolean is_rela)
12409{
12410 asection * reloc_sec = elf_section_data (sec)->sreloc;
12411
12412 if (reloc_sec == NULL)
12413 {
12414 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12415
12416 if (name == NULL)
12417 return NULL;
12418
12419 reloc_sec = bfd_get_section_by_name (dynobj, name);
12420
12421 if (reloc_sec == NULL)
12422 {
12423 flagword flags;
12424
12425 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12426 if ((sec->flags & SEC_ALLOC) != 0)
12427 flags |= SEC_ALLOC | SEC_LOAD;
12428
12429 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12430 if (reloc_sec != NULL)
12431 {
12432 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12433 reloc_sec = NULL;
12434 }
12435 }
12436
12437 elf_section_data (sec)->sreloc = reloc_sec;
12438 }
12439
12440 return reloc_sec;
12441}
This page took 1.284655 seconds and 4 git commands to generate.