Really commit server.c bits of 2010-08-09's change...
[deliverable/binutils-gdb.git] / bfd / elflink.c
CommitLineData
252b5132 1/* ELF linking support for BFD.
64d03ab5 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
16583161 3 2005, 2006, 2007, 2008, 2009, 2010
9dbe8890 4 Free Software Foundation, Inc.
252b5132 5
8fdd7217 6 This file is part of BFD, the Binary File Descriptor library.
252b5132 7
8fdd7217
NC
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
cd123cb7 10 the Free Software Foundation; either version 3 of the License, or
8fdd7217 11 (at your option) any later version.
252b5132 12
8fdd7217
NC
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
252b5132 17
8fdd7217
NC
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
cd123cb7
NC
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
252b5132 22
252b5132 23#include "sysdep.h"
3db64b00 24#include "bfd.h"
252b5132
RH
25#include "bfdlink.h"
26#include "libbfd.h"
27#define ARCH_SIZE 0
28#include "elf-bfd.h"
4ad4eba5 29#include "safe-ctype.h"
ccf2f652 30#include "libiberty.h"
66eb6687 31#include "objalloc.h"
252b5132 32
28caa186
AM
33/* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36struct elf_info_failed
37{
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41};
42
43/* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46struct elf_find_verdep_info
47{
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54};
55
56static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
d98685ac
AM
59/* Define a symbol in a dynamic linkage section. */
60
61struct elf_link_hash_entry *
62_bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66{
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
ccabcbe5 69 const struct elf_backend_data *bed;
d98685ac
AM
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
ccabcbe5
AM
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
d98685ac
AM
94 return h;
95}
96
b34976b6 97bfd_boolean
268b6b39 98_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
99{
100 flagword flags;
aad5d350 101 asection *s;
252b5132 102 struct elf_link_hash_entry *h;
9c5bfbb7 103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6de2ae4a 104 struct elf_link_hash_table *htab = elf_hash_table (info);
252b5132
RH
105
106 /* This function may be called more than once. */
aad5d350
AM
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
b34976b6 109 return TRUE;
252b5132 110
e5a52504 111 flags = bed->dynamic_sec_flags;
252b5132 112
6de2ae4a
L
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
252b5132 122
64e77c6d
L
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
252b5132
RH
129 if (bed->want_got_plt)
130 {
3496cb2a 131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
252b5132 132 if (s == NULL
6de2ae4a
L
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
b34976b6 135 return FALSE;
6de2ae4a 136 htab->sgotplt = s;
252b5132
RH
137 }
138
64e77c6d
L
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
2517a57f
AM
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
6de2ae4a
L
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
2517a57f 150 elf_hash_table (info)->hgot = h;
d98685ac
AM
151 if (h == NULL)
152 return FALSE;
2517a57f 153 }
252b5132 154
b34976b6 155 return TRUE;
252b5132
RH
156}
157\f
7e9f0867
AM
158/* Create a strtab to hold the dynamic symbol names. */
159static bfd_boolean
160_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161{
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175}
176
45d6a902
AM
177/* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
252b5132 183
b34976b6 184bfd_boolean
268b6b39 185_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 186{
45d6a902 187 flagword flags;
91d6fa6a 188 asection *s;
9c5bfbb7 189 const struct elf_backend_data *bed;
252b5132 190
0eddce27 191 if (! is_elf_hash_table (info->hash))
45d6a902
AM
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
7e9f0867
AM
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
45d6a902 199
7e9f0867 200 abfd = elf_hash_table (info)->dynobj;
e5a52504
MM
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
45d6a902
AM
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
36af4a4e 207 if (info->executable)
252b5132 208 {
3496cb2a
L
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
45d6a902
AM
212 return FALSE;
213 }
bb0deeff 214
45d6a902
AM
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
3496cb2a
L
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
45d6a902 219 if (s == NULL
45d6a902
AM
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
3496cb2a
L
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
45d6a902 225 if (s == NULL
45d6a902
AM
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
3496cb2a
L
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
45d6a902 231 if (s == NULL
45d6a902
AM
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
3496cb2a
L
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
45d6a902 237 if (s == NULL
45d6a902
AM
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
3496cb2a
L
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
45d6a902
AM
244 return FALSE;
245
3496cb2a 246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
45d6a902 247 if (s == NULL
45d6a902
AM
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
77cfaee6
AM
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
d98685ac 257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
45d6a902
AM
258 return FALSE;
259
fdc90cb4
JJ
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
45d6a902
AM
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
290
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
292
293 return TRUE;
294}
295
296/* Create dynamic sections when linking against a dynamic object. */
297
298bfd_boolean
268b6b39 299_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
45d6a902
AM
300{
301 flagword flags, pltflags;
7325306f 302 struct elf_link_hash_entry *h;
45d6a902 303 asection *s;
9c5bfbb7 304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6de2ae4a 305 struct elf_link_hash_table *htab = elf_hash_table (info);
45d6a902 306
252b5132
RH
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
e5a52504 309 flags = bed->dynamic_sec_flags;
252b5132
RH
310
311 pltflags = flags;
252b5132 312 if (bed->plt_not_loaded)
6df4d94c
MM
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
5d1634d7 316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
6df4d94c
MM
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
252b5132
RH
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
3496cb2a 322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
252b5132 323 if (s == NULL
252b5132 324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
b34976b6 325 return FALSE;
6de2ae4a 326 htab->splt = s;
252b5132 327
d98685ac
AM
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
7325306f
RS
330 if (bed->want_plt_sym)
331 {
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
337 }
252b5132 338
3496cb2a 339 s = bfd_make_section_with_flags (abfd,
d35fd659 340 (bed->rela_plts_and_copies_p
3496cb2a
L
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
252b5132 343 if (s == NULL
45d6a902 344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 345 return FALSE;
6de2ae4a 346 htab->srelplt = s;
252b5132
RH
347
348 if (! _bfd_elf_create_got_section (abfd, info))
b34976b6 349 return FALSE;
252b5132 350
3018b441
RH
351 if (bed->want_dynbss)
352 {
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
3496cb2a
L
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
b34976b6 363 return FALSE;
252b5132 364
3018b441 365 /* The .rel[a].bss section holds copy relocs. This section is not
77cfaee6
AM
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
3018b441
RH
376 if (! info->shared)
377 {
3496cb2a 378 s = bfd_make_section_with_flags (abfd,
d35fd659 379 (bed->rela_plts_and_copies_p
3496cb2a
L
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
3018b441 382 if (s == NULL
45d6a902 383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 384 return FALSE;
3018b441 385 }
252b5132
RH
386 }
387
b34976b6 388 return TRUE;
252b5132
RH
389}
390\f
252b5132
RH
391/* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
398
b34976b6 399bfd_boolean
c152c796
AM
400bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
252b5132
RH
402{
403 if (h->dynindx == -1)
404 {
2b0f7ef9 405 struct elf_strtab_hash *dynstr;
68b6ddd0 406 char *p;
252b5132 407 const char *name;
252b5132
RH
408 bfd_size_type indx;
409
7a13edea
NC
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
415 {
416 case STV_INTERNAL:
417 case STV_HIDDEN:
9d6eee78
L
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
38048eb9 420 {
f5385ebf 421 h->forced_local = 1;
67687978
PB
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
7a13edea 424 }
0444bdd4 425
7a13edea
NC
426 default:
427 break;
428 }
429
252b5132
RH
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
432
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
435 {
436 /* Create a strtab to hold the dynamic symbol names. */
2b0f7ef9 437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
252b5132 438 if (dynstr == NULL)
b34976b6 439 return FALSE;
252b5132
RH
440 }
441
442 /* We don't put any version information in the dynamic string
aad5d350 443 table. */
252b5132
RH
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
68b6ddd0
AM
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
453
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
455
456 if (p != NULL)
457 *p = ELF_VER_CHR;
252b5132
RH
458
459 if (indx == (bfd_size_type) -1)
b34976b6 460 return FALSE;
252b5132
RH
461 h->dynstr_index = indx;
462 }
463
b34976b6 464 return TRUE;
252b5132 465}
45d6a902 466\f
55255dae
L
467/* Mark a symbol dynamic. */
468
28caa186 469static void
55255dae 470bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
40b36307
L
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
55255dae 473{
40b36307 474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
55255dae 475
40b36307
L
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
55255dae
L
478 return;
479
40b36307
L
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
a0c8462f 484 || (d != NULL
40b36307
L
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
55255dae
L
487 h->dynamic = 1;
488}
489
45d6a902
AM
490/* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
492
493bfd_boolean
fe21a8fc
L
494bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
268b6b39 496 const char *name,
fe21a8fc
L
497 bfd_boolean provide,
498 bfd_boolean hidden)
45d6a902 499{
00cbee0a 500 struct elf_link_hash_entry *h, *hv;
4ea42fb7 501 struct elf_link_hash_table *htab;
00cbee0a 502 const struct elf_backend_data *bed;
45d6a902 503
0eddce27 504 if (!is_elf_hash_table (info->hash))
45d6a902
AM
505 return TRUE;
506
4ea42fb7
AM
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
45d6a902 509 if (h == NULL)
4ea42fb7 510 return provide;
45d6a902 511
00cbee0a 512 switch (h->root.type)
77cfaee6 513 {
00cbee0a
L
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
4ea42fb7 523 h->root.type = bfd_link_hash_new;
77cfaee6
AM
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
00cbee0a
L
526 break;
527 case bfd_link_hash_new:
40b36307 528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
55255dae 529 h->non_elf = 0;
00cbee0a
L
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
a0c8462f 533 the versioned symbol point to this one. */
00cbee0a
L
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
55255dae 549 }
45d6a902
AM
550
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
f5385ebf
AM
556 && h->def_dynamic
557 && !h->def_regular)
45d6a902
AM
558 h->root.type = bfd_link_hash_undefined;
559
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
f5385ebf
AM
565 && h->def_dynamic
566 && !h->def_regular)
45d6a902
AM
567 h->verinfo.verdef = NULL;
568
f5385ebf 569 h->def_regular = 1;
45d6a902 570
fe21a8fc
L
571 if (provide && hidden)
572 {
91d6fa6a 573 bed = get_elf_backend_data (output_bfd);
fe21a8fc
L
574 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
575 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
576 }
577
6fa3860b
PB
578 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
579 and executables. */
580 if (!info->relocatable
581 && h->dynindx != -1
582 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
583 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
584 h->forced_local = 1;
585
f5385ebf
AM
586 if ((h->def_dynamic
587 || h->ref_dynamic
67687978
PB
588 || info->shared
589 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
45d6a902
AM
590 && h->dynindx == -1)
591 {
c152c796 592 if (! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
593 return FALSE;
594
595 /* If this is a weak defined symbol, and we know a corresponding
596 real symbol from the same dynamic object, make sure the real
597 symbol is also made into a dynamic symbol. */
f6e332e6
AM
598 if (h->u.weakdef != NULL
599 && h->u.weakdef->dynindx == -1)
45d6a902 600 {
f6e332e6 601 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
45d6a902
AM
602 return FALSE;
603 }
604 }
605
606 return TRUE;
607}
42751cf3 608
8c58d23b
AM
609/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
610 success, and 2 on a failure caused by attempting to record a symbol
611 in a discarded section, eg. a discarded link-once section symbol. */
612
613int
c152c796
AM
614bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
615 bfd *input_bfd,
616 long input_indx)
8c58d23b
AM
617{
618 bfd_size_type amt;
619 struct elf_link_local_dynamic_entry *entry;
620 struct elf_link_hash_table *eht;
621 struct elf_strtab_hash *dynstr;
622 unsigned long dynstr_index;
623 char *name;
624 Elf_External_Sym_Shndx eshndx;
625 char esym[sizeof (Elf64_External_Sym)];
626
0eddce27 627 if (! is_elf_hash_table (info->hash))
8c58d23b
AM
628 return 0;
629
630 /* See if the entry exists already. */
631 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
632 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
633 return 1;
634
635 amt = sizeof (*entry);
a50b1753 636 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
8c58d23b
AM
637 if (entry == NULL)
638 return 0;
639
640 /* Go find the symbol, so that we can find it's name. */
641 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
268b6b39 642 1, input_indx, &entry->isym, esym, &eshndx))
8c58d23b
AM
643 {
644 bfd_release (input_bfd, entry);
645 return 0;
646 }
647
648 if (entry->isym.st_shndx != SHN_UNDEF
4fbb74a6 649 && entry->isym.st_shndx < SHN_LORESERVE)
8c58d23b
AM
650 {
651 asection *s;
652
653 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
654 if (s == NULL || bfd_is_abs_section (s->output_section))
655 {
656 /* We can still bfd_release here as nothing has done another
657 bfd_alloc. We can't do this later in this function. */
658 bfd_release (input_bfd, entry);
659 return 2;
660 }
661 }
662
663 name = (bfd_elf_string_from_elf_section
664 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
665 entry->isym.st_name));
666
667 dynstr = elf_hash_table (info)->dynstr;
668 if (dynstr == NULL)
669 {
670 /* Create a strtab to hold the dynamic symbol names. */
671 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
672 if (dynstr == NULL)
673 return 0;
674 }
675
b34976b6 676 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
8c58d23b
AM
677 if (dynstr_index == (unsigned long) -1)
678 return 0;
679 entry->isym.st_name = dynstr_index;
680
681 eht = elf_hash_table (info);
682
683 entry->next = eht->dynlocal;
684 eht->dynlocal = entry;
685 entry->input_bfd = input_bfd;
686 entry->input_indx = input_indx;
687 eht->dynsymcount++;
688
689 /* Whatever binding the symbol had before, it's now local. */
690 entry->isym.st_info
691 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
692
693 /* The dynindx will be set at the end of size_dynamic_sections. */
694
695 return 1;
696}
697
30b30c21 698/* Return the dynindex of a local dynamic symbol. */
42751cf3 699
30b30c21 700long
268b6b39
AM
701_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
702 bfd *input_bfd,
703 long input_indx)
30b30c21
RH
704{
705 struct elf_link_local_dynamic_entry *e;
706
707 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
708 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
709 return e->dynindx;
710 return -1;
711}
712
713/* This function is used to renumber the dynamic symbols, if some of
714 them are removed because they are marked as local. This is called
715 via elf_link_hash_traverse. */
716
b34976b6 717static bfd_boolean
268b6b39
AM
718elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
719 void *data)
42751cf3 720{
a50b1753 721 size_t *count = (size_t *) data;
30b30c21 722
e92d460e
AM
723 if (h->root.type == bfd_link_hash_warning)
724 h = (struct elf_link_hash_entry *) h->root.u.i.link;
725
6fa3860b
PB
726 if (h->forced_local)
727 return TRUE;
728
729 if (h->dynindx != -1)
730 h->dynindx = ++(*count);
731
732 return TRUE;
733}
734
735
736/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
737 STB_LOCAL binding. */
738
739static bfd_boolean
740elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
741 void *data)
742{
a50b1753 743 size_t *count = (size_t *) data;
6fa3860b
PB
744
745 if (h->root.type == bfd_link_hash_warning)
746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
747
748 if (!h->forced_local)
749 return TRUE;
750
42751cf3 751 if (h->dynindx != -1)
30b30c21
RH
752 h->dynindx = ++(*count);
753
b34976b6 754 return TRUE;
42751cf3 755}
30b30c21 756
aee6f5b4
AO
757/* Return true if the dynamic symbol for a given section should be
758 omitted when creating a shared library. */
759bfd_boolean
760_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
761 struct bfd_link_info *info,
762 asection *p)
763{
74541ad4
AM
764 struct elf_link_hash_table *htab;
765
aee6f5b4
AO
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
74541ad4
AM
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
aee6f5b4
AO
780 if (strcmp (p->name, ".got") == 0
781 || strcmp (p->name, ".got.plt") == 0
782 || strcmp (p->name, ".plt") == 0)
783 {
784 asection *ip;
aee6f5b4 785
74541ad4
AM
786 if (htab->dynobj != NULL
787 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
aee6f5b4
AO
788 && (ip->flags & SEC_LINKER_CREATED)
789 && ip->output_section == p)
790 return TRUE;
791 }
792 return FALSE;
793
794 /* There shouldn't be section relative relocations
795 against any other section. */
796 default:
797 return TRUE;
798 }
799}
800
062e2358 801/* Assign dynsym indices. In a shared library we generate a section
6fa3860b
PB
802 symbol for each output section, which come first. Next come symbols
803 which have been forced to local binding. Then all of the back-end
804 allocated local dynamic syms, followed by the rest of the global
805 symbols. */
30b30c21 806
554220db
AM
807static unsigned long
808_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
809 struct bfd_link_info *info,
810 unsigned long *section_sym_count)
30b30c21
RH
811{
812 unsigned long dynsymcount = 0;
813
67687978 814 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
30b30c21 815 {
aee6f5b4 816 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
30b30c21
RH
817 asection *p;
818 for (p = output_bfd->sections; p ; p = p->next)
8c37241b 819 if ((p->flags & SEC_EXCLUDE) == 0
aee6f5b4
AO
820 && (p->flags & SEC_ALLOC) != 0
821 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
822 elf_section_data (p)->dynindx = ++dynsymcount;
74541ad4
AM
823 else
824 elf_section_data (p)->dynindx = 0;
30b30c21 825 }
554220db 826 *section_sym_count = dynsymcount;
30b30c21 827
6fa3860b
PB
828 elf_link_hash_traverse (elf_hash_table (info),
829 elf_link_renumber_local_hash_table_dynsyms,
830 &dynsymcount);
831
30b30c21
RH
832 if (elf_hash_table (info)->dynlocal)
833 {
834 struct elf_link_local_dynamic_entry *p;
835 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
836 p->dynindx = ++dynsymcount;
837 }
838
839 elf_link_hash_traverse (elf_hash_table (info),
840 elf_link_renumber_hash_table_dynsyms,
841 &dynsymcount);
842
843 /* There is an unused NULL entry at the head of the table which
844 we must account for in our count. Unless there weren't any
845 symbols, which means we'll have no table at all. */
846 if (dynsymcount != 0)
847 ++dynsymcount;
848
ccabcbe5
AM
849 elf_hash_table (info)->dynsymcount = dynsymcount;
850 return dynsymcount;
30b30c21 851}
252b5132 852
54ac0771
L
853/* Merge st_other field. */
854
855static void
856elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
857 Elf_Internal_Sym *isym, bfd_boolean definition,
858 bfd_boolean dynamic)
859{
860 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
861
862 /* If st_other has a processor-specific meaning, specific
863 code might be needed here. We never merge the visibility
864 attribute with the one from a dynamic object. */
865 if (bed->elf_backend_merge_symbol_attribute)
866 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
867 dynamic);
868
869 /* If this symbol has default visibility and the user has requested
870 we not re-export it, then mark it as hidden. */
871 if (definition
872 && !dynamic
873 && (abfd->no_export
874 || (abfd->my_archive && abfd->my_archive->no_export))
875 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
876 isym->st_other = (STV_HIDDEN
877 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
878
879 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
880 {
881 unsigned char hvis, symvis, other, nvis;
882
883 /* Only merge the visibility. Leave the remainder of the
884 st_other field to elf_backend_merge_symbol_attribute. */
885 other = h->other & ~ELF_ST_VISIBILITY (-1);
886
887 /* Combine visibilities, using the most constraining one. */
888 hvis = ELF_ST_VISIBILITY (h->other);
889 symvis = ELF_ST_VISIBILITY (isym->st_other);
890 if (! hvis)
891 nvis = symvis;
892 else if (! symvis)
893 nvis = hvis;
894 else
895 nvis = hvis < symvis ? hvis : symvis;
896
897 h->other = other | nvis;
898 }
899}
900
45d6a902
AM
901/* This function is called when we want to define a new symbol. It
902 handles the various cases which arise when we find a definition in
903 a dynamic object, or when there is already a definition in a
904 dynamic object. The new symbol is described by NAME, SYM, PSEC,
905 and PVALUE. We set SYM_HASH to the hash table entry. We set
906 OVERRIDE if the old symbol is overriding a new definition. We set
907 TYPE_CHANGE_OK if it is OK for the type to change. We set
908 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
909 change, we mean that we shouldn't warn if the type or size does
af44c138
L
910 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
911 object is overridden by a regular object. */
45d6a902
AM
912
913bfd_boolean
268b6b39
AM
914_bfd_elf_merge_symbol (bfd *abfd,
915 struct bfd_link_info *info,
916 const char *name,
917 Elf_Internal_Sym *sym,
918 asection **psec,
919 bfd_vma *pvalue,
af44c138 920 unsigned int *pold_alignment,
268b6b39
AM
921 struct elf_link_hash_entry **sym_hash,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
0f8a2703 925 bfd_boolean *size_change_ok)
252b5132 926{
7479dfd4 927 asection *sec, *oldsec;
45d6a902
AM
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *flip;
930 int bind;
931 bfd *oldbfd;
932 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
0a36a439 933 bfd_boolean newweak, oldweak, newfunc, oldfunc;
a4d8e49b 934 const struct elf_backend_data *bed;
45d6a902
AM
935
936 *skip = FALSE;
937 *override = FALSE;
938
939 sec = *psec;
940 bind = ELF_ST_BIND (sym->st_info);
941
cd7be95b
KH
942 /* Silently discard TLS symbols from --just-syms. There's no way to
943 combine a static TLS block with a new TLS block for this executable. */
944 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
945 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
946 {
947 *skip = TRUE;
948 return TRUE;
949 }
950
45d6a902
AM
951 if (! bfd_is_und_section (sec))
952 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
953 else
954 h = ((struct elf_link_hash_entry *)
955 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
956 if (h == NULL)
957 return FALSE;
958 *sym_hash = h;
252b5132 959
88ba32a0
L
960 bed = get_elf_backend_data (abfd);
961
45d6a902
AM
962 /* This code is for coping with dynamic objects, and is only useful
963 if we are doing an ELF link. */
88ba32a0 964 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
45d6a902 965 return TRUE;
252b5132 966
45d6a902
AM
967 /* For merging, we only care about real symbols. */
968
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
972
40b36307
L
973 /* We have to check it for every instance since the first few may be
974 refereences and not all compilers emit symbol type for undefined
975 symbols. */
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977
45d6a902
AM
978 /* If we just created the symbol, mark it as being an ELF symbol.
979 Other than that, there is nothing to do--there is no merge issue
980 with a newly defined symbol--so we just return. */
981
982 if (h->root.type == bfd_link_hash_new)
252b5132 983 {
f5385ebf 984 h->non_elf = 0;
45d6a902
AM
985 return TRUE;
986 }
252b5132 987
7479dfd4
L
988 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
989 existing symbol. */
252b5132 990
45d6a902
AM
991 switch (h->root.type)
992 {
993 default:
994 oldbfd = NULL;
7479dfd4 995 oldsec = NULL;
45d6a902 996 break;
252b5132 997
45d6a902
AM
998 case bfd_link_hash_undefined:
999 case bfd_link_hash_undefweak:
1000 oldbfd = h->root.u.undef.abfd;
7479dfd4 1001 oldsec = NULL;
45d6a902
AM
1002 break;
1003
1004 case bfd_link_hash_defined:
1005 case bfd_link_hash_defweak:
1006 oldbfd = h->root.u.def.section->owner;
7479dfd4 1007 oldsec = h->root.u.def.section;
45d6a902
AM
1008 break;
1009
1010 case bfd_link_hash_common:
1011 oldbfd = h->root.u.c.p->section->owner;
7479dfd4 1012 oldsec = h->root.u.c.p->section;
45d6a902
AM
1013 break;
1014 }
1015
895fa45f
MGD
1016 /* Differentiate strong and weak symbols. */
1017 newweak = bind == STB_WEAK;
1018 oldweak = (h->root.type == bfd_link_hash_defweak
1019 || h->root.type == bfd_link_hash_undefweak);
1020
45d6a902
AM
1021 /* In cases involving weak versioned symbols, we may wind up trying
1022 to merge a symbol with itself. Catch that here, to avoid the
1023 confusion that results if we try to override a symbol with
1024 itself. The additional tests catch cases like
1025 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1026 dynamic object, which we do want to handle here. */
1027 if (abfd == oldbfd
895fa45f 1028 && (newweak || oldweak)
45d6a902 1029 && ((abfd->flags & DYNAMIC) == 0
f5385ebf 1030 || !h->def_regular))
45d6a902
AM
1031 return TRUE;
1032
1033 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1034 respectively, is from a dynamic object. */
1035
707bba77 1036 newdyn = (abfd->flags & DYNAMIC) != 0;
45d6a902 1037
707bba77 1038 olddyn = FALSE;
45d6a902
AM
1039 if (oldbfd != NULL)
1040 olddyn = (oldbfd->flags & DYNAMIC) != 0;
707bba77 1041 else if (oldsec != NULL)
45d6a902 1042 {
707bba77 1043 /* This handles the special SHN_MIPS_{TEXT,DATA} section
45d6a902 1044 indices used by MIPS ELF. */
707bba77 1045 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
45d6a902 1046 }
252b5132 1047
45d6a902
AM
1048 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1049 respectively, appear to be a definition rather than reference. */
1050
707bba77 1051 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
45d6a902 1052
707bba77
AM
1053 olddef = (h->root.type != bfd_link_hash_undefined
1054 && h->root.type != bfd_link_hash_undefweak
1055 && h->root.type != bfd_link_hash_common);
45d6a902 1056
0a36a439
L
1057 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1058 respectively, appear to be a function. */
1059
1060 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1061 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1062
1063 oldfunc = (h->type != STT_NOTYPE
1064 && bed->is_function_type (h->type));
1065
580a2b6e
L
1066 /* When we try to create a default indirect symbol from the dynamic
1067 definition with the default version, we skip it if its type and
1068 the type of existing regular definition mismatch. We only do it
1069 if the existing regular definition won't be dynamic. */
1070 if (pold_alignment == NULL
1071 && !info->shared
1072 && !info->export_dynamic
1073 && !h->ref_dynamic
1074 && newdyn
1075 && newdef
1076 && !olddyn
1077 && (olddef || h->root.type == bfd_link_hash_common)
1078 && ELF_ST_TYPE (sym->st_info) != h->type
1079 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
fcb93ecf 1080 && h->type != STT_NOTYPE
0a36a439 1081 && !(newfunc && oldfunc))
580a2b6e
L
1082 {
1083 *skip = TRUE;
1084 return TRUE;
1085 }
1086
68f49ba3
L
1087 /* Check TLS symbol. We don't check undefined symbol introduced by
1088 "ld -u". */
7479dfd4 1089 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
68f49ba3
L
1090 && ELF_ST_TYPE (sym->st_info) != h->type
1091 && oldbfd != NULL)
7479dfd4
L
1092 {
1093 bfd *ntbfd, *tbfd;
1094 bfd_boolean ntdef, tdef;
1095 asection *ntsec, *tsec;
1096
1097 if (h->type == STT_TLS)
1098 {
3b36f7e6 1099 ntbfd = abfd;
7479dfd4
L
1100 ntsec = sec;
1101 ntdef = newdef;
1102 tbfd = oldbfd;
1103 tsec = oldsec;
1104 tdef = olddef;
1105 }
1106 else
1107 {
1108 ntbfd = oldbfd;
1109 ntsec = oldsec;
1110 ntdef = olddef;
1111 tbfd = abfd;
1112 tsec = sec;
1113 tdef = newdef;
1114 }
1115
1116 if (tdef && ntdef)
1117 (*_bfd_error_handler)
fc3e1e3c 1118 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
7479dfd4
L
1119 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1120 else if (!tdef && !ntdef)
1121 (*_bfd_error_handler)
fc3e1e3c 1122 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
7479dfd4
L
1123 tbfd, ntbfd, h->root.root.string);
1124 else if (tdef)
1125 (*_bfd_error_handler)
fc3e1e3c 1126 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
7479dfd4
L
1127 tbfd, tsec, ntbfd, h->root.root.string);
1128 else
1129 (*_bfd_error_handler)
fc3e1e3c 1130 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
7479dfd4
L
1131 tbfd, ntbfd, ntsec, h->root.root.string);
1132
1133 bfd_set_error (bfd_error_bad_value);
1134 return FALSE;
1135 }
1136
4cc11e76 1137 /* We need to remember if a symbol has a definition in a dynamic
45d6a902
AM
1138 object or is weak in all dynamic objects. Internal and hidden
1139 visibility will make it unavailable to dynamic objects. */
f5385ebf 1140 if (newdyn && !h->dynamic_def)
45d6a902
AM
1141 {
1142 if (!bfd_is_und_section (sec))
f5385ebf 1143 h->dynamic_def = 1;
45d6a902 1144 else
252b5132 1145 {
45d6a902
AM
1146 /* Check if this symbol is weak in all dynamic objects. If it
1147 is the first time we see it in a dynamic object, we mark
1148 if it is weak. Otherwise, we clear it. */
f5385ebf 1149 if (!h->ref_dynamic)
79349b09 1150 {
45d6a902 1151 if (bind == STB_WEAK)
f5385ebf 1152 h->dynamic_weak = 1;
252b5132 1153 }
45d6a902 1154 else if (bind != STB_WEAK)
f5385ebf 1155 h->dynamic_weak = 0;
252b5132 1156 }
45d6a902 1157 }
252b5132 1158
45d6a902
AM
1159 /* If the old symbol has non-default visibility, we ignore the new
1160 definition from a dynamic object. */
1161 if (newdyn
9c7a29a3 1162 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
1163 && !bfd_is_und_section (sec))
1164 {
1165 *skip = TRUE;
1166 /* Make sure this symbol is dynamic. */
f5385ebf 1167 h->ref_dynamic = 1;
45d6a902
AM
1168 /* A protected symbol has external availability. Make sure it is
1169 recorded as dynamic.
1170
1171 FIXME: Should we check type and size for protected symbol? */
1172 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
c152c796 1173 return bfd_elf_link_record_dynamic_symbol (info, h);
45d6a902
AM
1174 else
1175 return TRUE;
1176 }
1177 else if (!newdyn
9c7a29a3 1178 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
f5385ebf 1179 && h->def_dynamic)
45d6a902
AM
1180 {
1181 /* If the new symbol with non-default visibility comes from a
1182 relocatable file and the old definition comes from a dynamic
1183 object, we remove the old definition. */
1184 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
d2dee3b2
L
1185 {
1186 /* Handle the case where the old dynamic definition is
1187 default versioned. We need to copy the symbol info from
1188 the symbol with default version to the normal one if it
1189 was referenced before. */
1190 if (h->ref_regular)
1191 {
d2dee3b2 1192 struct elf_link_hash_entry *vh = *sym_hash;
91d6fa6a 1193
d2dee3b2
L
1194 vh->root.type = h->root.type;
1195 h->root.type = bfd_link_hash_indirect;
1196 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1197 /* Protected symbols will override the dynamic definition
1198 with default version. */
1199 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1200 {
1201 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1202 vh->dynamic_def = 1;
1203 vh->ref_dynamic = 1;
1204 }
1205 else
1206 {
1207 h->root.type = vh->root.type;
1208 vh->ref_dynamic = 0;
1209 /* We have to hide it here since it was made dynamic
1210 global with extra bits when the symbol info was
1211 copied from the old dynamic definition. */
1212 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1213 }
1214 h = vh;
1215 }
1216 else
1217 h = *sym_hash;
1218 }
1de1a317 1219
f6e332e6 1220 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1de1a317
L
1221 && bfd_is_und_section (sec))
1222 {
1223 /* If the new symbol is undefined and the old symbol was
1224 also undefined before, we need to make sure
1225 _bfd_generic_link_add_one_symbol doesn't mess
f6e332e6 1226 up the linker hash table undefs list. Since the old
1de1a317
L
1227 definition came from a dynamic object, it is still on the
1228 undefs list. */
1229 h->root.type = bfd_link_hash_undefined;
1de1a317
L
1230 h->root.u.undef.abfd = abfd;
1231 }
1232 else
1233 {
1234 h->root.type = bfd_link_hash_new;
1235 h->root.u.undef.abfd = NULL;
1236 }
1237
f5385ebf 1238 if (h->def_dynamic)
252b5132 1239 {
f5385ebf
AM
1240 h->def_dynamic = 0;
1241 h->ref_dynamic = 1;
1242 h->dynamic_def = 1;
45d6a902
AM
1243 }
1244 /* FIXME: Should we check type and size for protected symbol? */
1245 h->size = 0;
1246 h->type = 0;
1247 return TRUE;
1248 }
14a793b2 1249
3e7a7d11
NC
1250 if (bind == STB_GNU_UNIQUE)
1251 h->unique_global = 1;
1252
15b43f48
AM
1253 /* If a new weak symbol definition comes from a regular file and the
1254 old symbol comes from a dynamic library, we treat the new one as
1255 strong. Similarly, an old weak symbol definition from a regular
1256 file is treated as strong when the new symbol comes from a dynamic
1257 library. Further, an old weak symbol from a dynamic library is
1258 treated as strong if the new symbol is from a dynamic library.
1259 This reflects the way glibc's ld.so works.
1260
1261 Do this before setting *type_change_ok or *size_change_ok so that
1262 we warn properly when dynamic library symbols are overridden. */
1263
1264 if (newdef && !newdyn && olddyn)
0f8a2703 1265 newweak = FALSE;
15b43f48 1266 if (olddef && newdyn)
0f8a2703
AM
1267 oldweak = FALSE;
1268
d334575b 1269 /* Allow changes between different types of function symbol. */
0a36a439 1270 if (newfunc && oldfunc)
fcb93ecf
PB
1271 *type_change_ok = TRUE;
1272
79349b09
AM
1273 /* It's OK to change the type if either the existing symbol or the
1274 new symbol is weak. A type change is also OK if the old symbol
1275 is undefined and the new symbol is defined. */
252b5132 1276
79349b09
AM
1277 if (oldweak
1278 || newweak
1279 || (newdef
1280 && h->root.type == bfd_link_hash_undefined))
1281 *type_change_ok = TRUE;
1282
1283 /* It's OK to change the size if either the existing symbol or the
1284 new symbol is weak, or if the old symbol is undefined. */
1285
1286 if (*type_change_ok
1287 || h->root.type == bfd_link_hash_undefined)
1288 *size_change_ok = TRUE;
45d6a902 1289
45d6a902
AM
1290 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1291 symbol, respectively, appears to be a common symbol in a dynamic
1292 object. If a symbol appears in an uninitialized section, and is
1293 not weak, and is not a function, then it may be a common symbol
1294 which was resolved when the dynamic object was created. We want
1295 to treat such symbols specially, because they raise special
1296 considerations when setting the symbol size: if the symbol
1297 appears as a common symbol in a regular object, and the size in
1298 the regular object is larger, we must make sure that we use the
1299 larger size. This problematic case can always be avoided in C,
1300 but it must be handled correctly when using Fortran shared
1301 libraries.
1302
1303 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1304 likewise for OLDDYNCOMMON and OLDDEF.
1305
1306 Note that this test is just a heuristic, and that it is quite
1307 possible to have an uninitialized symbol in a shared object which
1308 is really a definition, rather than a common symbol. This could
1309 lead to some minor confusion when the symbol really is a common
1310 symbol in some regular object. However, I think it will be
1311 harmless. */
1312
1313 if (newdyn
1314 && newdef
79349b09 1315 && !newweak
45d6a902
AM
1316 && (sec->flags & SEC_ALLOC) != 0
1317 && (sec->flags & SEC_LOAD) == 0
1318 && sym->st_size > 0
0a36a439 1319 && !newfunc)
45d6a902
AM
1320 newdyncommon = TRUE;
1321 else
1322 newdyncommon = FALSE;
1323
1324 if (olddyn
1325 && olddef
1326 && h->root.type == bfd_link_hash_defined
f5385ebf 1327 && h->def_dynamic
45d6a902
AM
1328 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1329 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1330 && h->size > 0
0a36a439 1331 && !oldfunc)
45d6a902
AM
1332 olddyncommon = TRUE;
1333 else
1334 olddyncommon = FALSE;
1335
a4d8e49b
L
1336 /* We now know everything about the old and new symbols. We ask the
1337 backend to check if we can merge them. */
a4d8e49b
L
1338 if (bed->merge_symbol
1339 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1340 pold_alignment, skip, override,
1341 type_change_ok, size_change_ok,
1342 &newdyn, &newdef, &newdyncommon, &newweak,
1343 abfd, &sec,
1344 &olddyn, &olddef, &olddyncommon, &oldweak,
1345 oldbfd, &oldsec))
1346 return FALSE;
1347
45d6a902
AM
1348 /* If both the old and the new symbols look like common symbols in a
1349 dynamic object, set the size of the symbol to the larger of the
1350 two. */
1351
1352 if (olddyncommon
1353 && newdyncommon
1354 && sym->st_size != h->size)
1355 {
1356 /* Since we think we have two common symbols, issue a multiple
1357 common warning if desired. Note that we only warn if the
1358 size is different. If the size is the same, we simply let
1359 the old symbol override the new one as normally happens with
1360 symbols defined in dynamic objects. */
1361
1362 if (! ((*info->callbacks->multiple_common)
1363 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1364 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1365 return FALSE;
252b5132 1366
45d6a902
AM
1367 if (sym->st_size > h->size)
1368 h->size = sym->st_size;
252b5132 1369
45d6a902 1370 *size_change_ok = TRUE;
252b5132
RH
1371 }
1372
45d6a902
AM
1373 /* If we are looking at a dynamic object, and we have found a
1374 definition, we need to see if the symbol was already defined by
1375 some other object. If so, we want to use the existing
1376 definition, and we do not want to report a multiple symbol
1377 definition error; we do this by clobbering *PSEC to be
1378 bfd_und_section_ptr.
1379
1380 We treat a common symbol as a definition if the symbol in the
1381 shared library is a function, since common symbols always
1382 represent variables; this can cause confusion in principle, but
1383 any such confusion would seem to indicate an erroneous program or
1384 shared library. We also permit a common symbol in a regular
79349b09 1385 object to override a weak symbol in a shared object. */
45d6a902
AM
1386
1387 if (newdyn
1388 && newdef
77cfaee6 1389 && (olddef
45d6a902 1390 || (h->root.type == bfd_link_hash_common
0a36a439 1391 && (newweak || newfunc))))
45d6a902
AM
1392 {
1393 *override = TRUE;
1394 newdef = FALSE;
1395 newdyncommon = FALSE;
252b5132 1396
45d6a902
AM
1397 *psec = sec = bfd_und_section_ptr;
1398 *size_change_ok = TRUE;
252b5132 1399
45d6a902
AM
1400 /* If we get here when the old symbol is a common symbol, then
1401 we are explicitly letting it override a weak symbol or
1402 function in a dynamic object, and we don't want to warn about
1403 a type change. If the old symbol is a defined symbol, a type
1404 change warning may still be appropriate. */
252b5132 1405
45d6a902
AM
1406 if (h->root.type == bfd_link_hash_common)
1407 *type_change_ok = TRUE;
1408 }
1409
1410 /* Handle the special case of an old common symbol merging with a
1411 new symbol which looks like a common symbol in a shared object.
1412 We change *PSEC and *PVALUE to make the new symbol look like a
91134c82
L
1413 common symbol, and let _bfd_generic_link_add_one_symbol do the
1414 right thing. */
45d6a902
AM
1415
1416 if (newdyncommon
1417 && h->root.type == bfd_link_hash_common)
1418 {
1419 *override = TRUE;
1420 newdef = FALSE;
1421 newdyncommon = FALSE;
1422 *pvalue = sym->st_size;
a4d8e49b 1423 *psec = sec = bed->common_section (oldsec);
45d6a902
AM
1424 *size_change_ok = TRUE;
1425 }
1426
c5e2cead 1427 /* Skip weak definitions of symbols that are already defined. */
f41d945b 1428 if (newdef && olddef && newweak)
54ac0771
L
1429 {
1430 *skip = TRUE;
1431
1432 /* Merge st_other. If the symbol already has a dynamic index,
1433 but visibility says it should not be visible, turn it into a
1434 local symbol. */
1435 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1436 if (h->dynindx != -1)
1437 switch (ELF_ST_VISIBILITY (h->other))
1438 {
1439 case STV_INTERNAL:
1440 case STV_HIDDEN:
1441 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1442 break;
1443 }
1444 }
c5e2cead 1445
45d6a902
AM
1446 /* If the old symbol is from a dynamic object, and the new symbol is
1447 a definition which is not from a dynamic object, then the new
1448 symbol overrides the old symbol. Symbols from regular files
1449 always take precedence over symbols from dynamic objects, even if
1450 they are defined after the dynamic object in the link.
1451
1452 As above, we again permit a common symbol in a regular object to
1453 override a definition in a shared object if the shared object
0f8a2703 1454 symbol is a function or is weak. */
45d6a902
AM
1455
1456 flip = NULL;
77cfaee6 1457 if (!newdyn
45d6a902
AM
1458 && (newdef
1459 || (bfd_is_com_section (sec)
0a36a439 1460 && (oldweak || oldfunc)))
45d6a902
AM
1461 && olddyn
1462 && olddef
f5385ebf 1463 && h->def_dynamic)
45d6a902
AM
1464 {
1465 /* Change the hash table entry to undefined, and let
1466 _bfd_generic_link_add_one_symbol do the right thing with the
1467 new definition. */
1468
1469 h->root.type = bfd_link_hash_undefined;
1470 h->root.u.undef.abfd = h->root.u.def.section->owner;
1471 *size_change_ok = TRUE;
1472
1473 olddef = FALSE;
1474 olddyncommon = FALSE;
1475
1476 /* We again permit a type change when a common symbol may be
1477 overriding a function. */
1478
1479 if (bfd_is_com_section (sec))
0a36a439
L
1480 {
1481 if (oldfunc)
1482 {
1483 /* If a common symbol overrides a function, make sure
1484 that it isn't defined dynamically nor has type
1485 function. */
1486 h->def_dynamic = 0;
1487 h->type = STT_NOTYPE;
1488 }
1489 *type_change_ok = TRUE;
1490 }
45d6a902
AM
1491
1492 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1493 flip = *sym_hash;
1494 else
1495 /* This union may have been set to be non-NULL when this symbol
1496 was seen in a dynamic object. We must force the union to be
1497 NULL, so that it is correct for a regular symbol. */
1498 h->verinfo.vertree = NULL;
1499 }
1500
1501 /* Handle the special case of a new common symbol merging with an
1502 old symbol that looks like it might be a common symbol defined in
1503 a shared object. Note that we have already handled the case in
1504 which a new common symbol should simply override the definition
1505 in the shared library. */
1506
1507 if (! newdyn
1508 && bfd_is_com_section (sec)
1509 && olddyncommon)
1510 {
1511 /* It would be best if we could set the hash table entry to a
1512 common symbol, but we don't know what to use for the section
1513 or the alignment. */
1514 if (! ((*info->callbacks->multiple_common)
1515 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1516 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1517 return FALSE;
1518
4cc11e76 1519 /* If the presumed common symbol in the dynamic object is
45d6a902
AM
1520 larger, pretend that the new symbol has its size. */
1521
1522 if (h->size > *pvalue)
1523 *pvalue = h->size;
1524
af44c138
L
1525 /* We need to remember the alignment required by the symbol
1526 in the dynamic object. */
1527 BFD_ASSERT (pold_alignment);
1528 *pold_alignment = h->root.u.def.section->alignment_power;
45d6a902
AM
1529
1530 olddef = FALSE;
1531 olddyncommon = FALSE;
1532
1533 h->root.type = bfd_link_hash_undefined;
1534 h->root.u.undef.abfd = h->root.u.def.section->owner;
1535
1536 *size_change_ok = TRUE;
1537 *type_change_ok = TRUE;
1538
1539 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1540 flip = *sym_hash;
1541 else
1542 h->verinfo.vertree = NULL;
1543 }
1544
1545 if (flip != NULL)
1546 {
1547 /* Handle the case where we had a versioned symbol in a dynamic
1548 library and now find a definition in a normal object. In this
1549 case, we make the versioned symbol point to the normal one. */
45d6a902 1550 flip->root.type = h->root.type;
00cbee0a 1551 flip->root.u.undef.abfd = h->root.u.undef.abfd;
45d6a902
AM
1552 h->root.type = bfd_link_hash_indirect;
1553 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
fcfa13d2 1554 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
f5385ebf 1555 if (h->def_dynamic)
45d6a902 1556 {
f5385ebf
AM
1557 h->def_dynamic = 0;
1558 flip->ref_dynamic = 1;
45d6a902
AM
1559 }
1560 }
1561
45d6a902
AM
1562 return TRUE;
1563}
1564
1565/* This function is called to create an indirect symbol from the
1566 default for the symbol with the default version if needed. The
1567 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
0f8a2703 1568 set DYNSYM if the new indirect symbol is dynamic. */
45d6a902 1569
28caa186 1570static bfd_boolean
268b6b39
AM
1571_bfd_elf_add_default_symbol (bfd *abfd,
1572 struct bfd_link_info *info,
1573 struct elf_link_hash_entry *h,
1574 const char *name,
1575 Elf_Internal_Sym *sym,
1576 asection **psec,
1577 bfd_vma *value,
1578 bfd_boolean *dynsym,
0f8a2703 1579 bfd_boolean override)
45d6a902
AM
1580{
1581 bfd_boolean type_change_ok;
1582 bfd_boolean size_change_ok;
1583 bfd_boolean skip;
1584 char *shortname;
1585 struct elf_link_hash_entry *hi;
1586 struct bfd_link_hash_entry *bh;
9c5bfbb7 1587 const struct elf_backend_data *bed;
45d6a902
AM
1588 bfd_boolean collect;
1589 bfd_boolean dynamic;
1590 char *p;
1591 size_t len, shortlen;
1592 asection *sec;
1593
1594 /* If this symbol has a version, and it is the default version, we
1595 create an indirect symbol from the default name to the fully
1596 decorated name. This will cause external references which do not
1597 specify a version to be bound to this version of the symbol. */
1598 p = strchr (name, ELF_VER_CHR);
1599 if (p == NULL || p[1] != ELF_VER_CHR)
1600 return TRUE;
1601
1602 if (override)
1603 {
4cc11e76 1604 /* We are overridden by an old definition. We need to check if we
45d6a902
AM
1605 need to create the indirect symbol from the default name. */
1606 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1607 FALSE, FALSE);
1608 BFD_ASSERT (hi != NULL);
1609 if (hi == h)
1610 return TRUE;
1611 while (hi->root.type == bfd_link_hash_indirect
1612 || hi->root.type == bfd_link_hash_warning)
1613 {
1614 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1615 if (hi == h)
1616 return TRUE;
1617 }
1618 }
1619
1620 bed = get_elf_backend_data (abfd);
1621 collect = bed->collect;
1622 dynamic = (abfd->flags & DYNAMIC) != 0;
1623
1624 shortlen = p - name;
a50b1753 1625 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
45d6a902
AM
1626 if (shortname == NULL)
1627 return FALSE;
1628 memcpy (shortname, name, shortlen);
1629 shortname[shortlen] = '\0';
1630
1631 /* We are going to create a new symbol. Merge it with any existing
1632 symbol with this name. For the purposes of the merge, act as
1633 though we were defining the symbol we just defined, although we
1634 actually going to define an indirect symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
45d6a902
AM
1641 return FALSE;
1642
1643 if (skip)
1644 goto nondefault;
1645
1646 if (! override)
1647 {
1648 bh = &hi->root;
1649 if (! (_bfd_generic_link_add_one_symbol
1650 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
268b6b39 1651 0, name, FALSE, collect, &bh)))
45d6a902
AM
1652 return FALSE;
1653 hi = (struct elf_link_hash_entry *) bh;
1654 }
1655 else
1656 {
1657 /* In this case the symbol named SHORTNAME is overriding the
1658 indirect symbol we want to add. We were planning on making
1659 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1660 is the name without a version. NAME is the fully versioned
1661 name, and it is the default version.
1662
1663 Overriding means that we already saw a definition for the
1664 symbol SHORTNAME in a regular object, and it is overriding
1665 the symbol defined in the dynamic object.
1666
1667 When this happens, we actually want to change NAME, the
1668 symbol we just added, to refer to SHORTNAME. This will cause
1669 references to NAME in the shared object to become references
1670 to SHORTNAME in the regular object. This is what we expect
1671 when we override a function in a shared object: that the
1672 references in the shared object will be mapped to the
1673 definition in the regular object. */
1674
1675 while (hi->root.type == bfd_link_hash_indirect
1676 || hi->root.type == bfd_link_hash_warning)
1677 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1678
1679 h->root.type = bfd_link_hash_indirect;
1680 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
f5385ebf 1681 if (h->def_dynamic)
45d6a902 1682 {
f5385ebf
AM
1683 h->def_dynamic = 0;
1684 hi->ref_dynamic = 1;
1685 if (hi->ref_regular
1686 || hi->def_regular)
45d6a902 1687 {
c152c796 1688 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
45d6a902
AM
1689 return FALSE;
1690 }
1691 }
1692
1693 /* Now set HI to H, so that the following code will set the
1694 other fields correctly. */
1695 hi = h;
1696 }
1697
fab4a87f
L
1698 /* Check if HI is a warning symbol. */
1699 if (hi->root.type == bfd_link_hash_warning)
1700 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1701
45d6a902
AM
1702 /* If there is a duplicate definition somewhere, then HI may not
1703 point to an indirect symbol. We will have reported an error to
1704 the user in that case. */
1705
1706 if (hi->root.type == bfd_link_hash_indirect)
1707 {
1708 struct elf_link_hash_entry *ht;
1709
45d6a902 1710 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
fcfa13d2 1711 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
45d6a902
AM
1712
1713 /* See if the new flags lead us to realize that the symbol must
1714 be dynamic. */
1715 if (! *dynsym)
1716 {
1717 if (! dynamic)
1718 {
ca4a656b 1719 if (! info->executable
f5385ebf 1720 || hi->ref_dynamic)
45d6a902
AM
1721 *dynsym = TRUE;
1722 }
1723 else
1724 {
f5385ebf 1725 if (hi->ref_regular)
45d6a902
AM
1726 *dynsym = TRUE;
1727 }
1728 }
1729 }
1730
1731 /* We also need to define an indirection from the nondefault version
1732 of the symbol. */
1733
1734nondefault:
1735 len = strlen (name);
a50b1753 1736 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
45d6a902
AM
1737 if (shortname == NULL)
1738 return FALSE;
1739 memcpy (shortname, name, shortlen);
1740 memcpy (shortname + shortlen, p + 1, len - shortlen);
1741
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok = FALSE;
1744 size_change_ok = FALSE;
1745 sec = *psec;
1746 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1747 NULL, &hi, &skip, &override,
1748 &type_change_ok, &size_change_ok))
45d6a902
AM
1749 return FALSE;
1750
1751 if (skip)
1752 return TRUE;
1753
1754 if (override)
1755 {
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
4cc11e76 1758 overridden by a versioned definition. */
45d6a902
AM
1759 if (hi->root.type != bfd_link_hash_defined
1760 && hi->root.type != bfd_link_hash_defweak)
1761 (*_bfd_error_handler)
d003868e
AM
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1763 abfd, shortname);
45d6a902
AM
1764 }
1765 else
1766 {
1767 bh = &hi->root;
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info, abfd, shortname, BSF_INDIRECT,
268b6b39 1770 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
45d6a902
AM
1771 return FALSE;
1772 hi = (struct elf_link_hash_entry *) bh;
1773
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1777
1778 if (hi->root.type == bfd_link_hash_indirect)
1779 {
fcfa13d2 1780 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
45d6a902
AM
1781
1782 /* See if the new flags lead us to realize that the symbol
1783 must be dynamic. */
1784 if (! *dynsym)
1785 {
1786 if (! dynamic)
1787 {
ca4a656b 1788 if (! info->executable
f5385ebf 1789 || hi->ref_dynamic)
45d6a902
AM
1790 *dynsym = TRUE;
1791 }
1792 else
1793 {
f5385ebf 1794 if (hi->ref_regular)
45d6a902
AM
1795 *dynsym = TRUE;
1796 }
1797 }
1798 }
1799 }
1800
1801 return TRUE;
1802}
1803\f
1804/* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1806
28caa186 1807static bfd_boolean
268b6b39 1808_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 1809{
a50b1753 1810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
45d6a902 1811
55255dae
L
1812 /* Ignore this if we won't export it. */
1813 if (!eif->info->export_dynamic && !h->dynamic)
1814 return TRUE;
1815
45d6a902
AM
1816 /* Ignore indirect symbols. These are added by the versioning code. */
1817 if (h->root.type == bfd_link_hash_indirect)
1818 return TRUE;
1819
1820 if (h->root.type == bfd_link_hash_warning)
1821 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1822
1823 if (h->dynindx == -1
f5385ebf
AM
1824 && (h->def_regular
1825 || h->ref_regular))
45d6a902 1826 {
1e8fa21e 1827 bfd_boolean hide;
45d6a902 1828
1e8fa21e 1829 if (eif->verdefs == NULL
09e2aba4 1830 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1e8fa21e 1831 && !hide))
45d6a902 1832 {
c152c796 1833 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
1834 {
1835 eif->failed = TRUE;
1836 return FALSE;
1837 }
1838 }
1839 }
1840
1841 return TRUE;
1842}
1843\f
1844/* Look through the symbols which are defined in other shared
1845 libraries and referenced here. Update the list of version
1846 dependencies. This will be put into the .gnu.version_r section.
1847 This function is called via elf_link_hash_traverse. */
1848
28caa186 1849static bfd_boolean
268b6b39
AM
1850_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1851 void *data)
45d6a902 1852{
a50b1753 1853 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
45d6a902
AM
1854 Elf_Internal_Verneed *t;
1855 Elf_Internal_Vernaux *a;
1856 bfd_size_type amt;
1857
1858 if (h->root.type == bfd_link_hash_warning)
1859 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1860
1861 /* We only care about symbols defined in shared objects with version
1862 information. */
f5385ebf
AM
1863 if (!h->def_dynamic
1864 || h->def_regular
45d6a902
AM
1865 || h->dynindx == -1
1866 || h->verinfo.verdef == NULL)
1867 return TRUE;
1868
1869 /* See if we already know about this version. */
28caa186
AM
1870 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1871 t != NULL;
1872 t = t->vn_nextref)
45d6a902
AM
1873 {
1874 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1875 continue;
1876
1877 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1878 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1879 return TRUE;
1880
1881 break;
1882 }
1883
1884 /* This is a new version. Add it to tree we are building. */
1885
1886 if (t == NULL)
1887 {
1888 amt = sizeof *t;
a50b1753 1889 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
45d6a902
AM
1890 if (t == NULL)
1891 {
1892 rinfo->failed = TRUE;
1893 return FALSE;
1894 }
1895
1896 t->vn_bfd = h->verinfo.verdef->vd_bfd;
28caa186
AM
1897 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1898 elf_tdata (rinfo->info->output_bfd)->verref = t;
45d6a902
AM
1899 }
1900
1901 amt = sizeof *a;
a50b1753 1902 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
14b1c01e
AM
1903 if (a == NULL)
1904 {
1905 rinfo->failed = TRUE;
1906 return FALSE;
1907 }
45d6a902
AM
1908
1909 /* Note that we are copying a string pointer here, and testing it
1910 above. If bfd_elf_string_from_elf_section is ever changed to
1911 discard the string data when low in memory, this will have to be
1912 fixed. */
1913 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1914
1915 a->vna_flags = h->verinfo.verdef->vd_flags;
1916 a->vna_nextptr = t->vn_auxptr;
1917
1918 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1919 ++rinfo->vers;
1920
1921 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1922
1923 t->vn_auxptr = a;
1924
1925 return TRUE;
1926}
1927
1928/* Figure out appropriate versions for all the symbols. We may not
1929 have the version number script until we have read all of the input
1930 files, so until that point we don't know which symbols should be
1931 local. This function is called via elf_link_hash_traverse. */
1932
28caa186 1933static bfd_boolean
268b6b39 1934_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
45d6a902 1935{
28caa186 1936 struct elf_info_failed *sinfo;
45d6a902 1937 struct bfd_link_info *info;
9c5bfbb7 1938 const struct elf_backend_data *bed;
45d6a902
AM
1939 struct elf_info_failed eif;
1940 char *p;
1941 bfd_size_type amt;
1942
a50b1753 1943 sinfo = (struct elf_info_failed *) data;
45d6a902
AM
1944 info = sinfo->info;
1945
1946 if (h->root.type == bfd_link_hash_warning)
1947 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1948
1949 /* Fix the symbol flags. */
1950 eif.failed = FALSE;
1951 eif.info = info;
1952 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1953 {
1954 if (eif.failed)
1955 sinfo->failed = TRUE;
1956 return FALSE;
1957 }
1958
1959 /* We only need version numbers for symbols defined in regular
1960 objects. */
f5385ebf 1961 if (!h->def_regular)
45d6a902
AM
1962 return TRUE;
1963
28caa186 1964 bed = get_elf_backend_data (info->output_bfd);
45d6a902
AM
1965 p = strchr (h->root.root.string, ELF_VER_CHR);
1966 if (p != NULL && h->verinfo.vertree == NULL)
1967 {
1968 struct bfd_elf_version_tree *t;
1969 bfd_boolean hidden;
1970
1971 hidden = TRUE;
1972
1973 /* There are two consecutive ELF_VER_CHR characters if this is
1974 not a hidden symbol. */
1975 ++p;
1976 if (*p == ELF_VER_CHR)
1977 {
1978 hidden = FALSE;
1979 ++p;
1980 }
1981
1982 /* If there is no version string, we can just return out. */
1983 if (*p == '\0')
1984 {
1985 if (hidden)
f5385ebf 1986 h->hidden = 1;
45d6a902
AM
1987 return TRUE;
1988 }
1989
1990 /* Look for the version. If we find it, it is no longer weak. */
1991 for (t = sinfo->verdefs; t != NULL; t = t->next)
1992 {
1993 if (strcmp (t->name, p) == 0)
1994 {
1995 size_t len;
1996 char *alc;
1997 struct bfd_elf_version_expr *d;
1998
1999 len = p - h->root.root.string;
a50b1753 2000 alc = (char *) bfd_malloc (len);
45d6a902 2001 if (alc == NULL)
14b1c01e
AM
2002 {
2003 sinfo->failed = TRUE;
2004 return FALSE;
2005 }
45d6a902
AM
2006 memcpy (alc, h->root.root.string, len - 1);
2007 alc[len - 1] = '\0';
2008 if (alc[len - 2] == ELF_VER_CHR)
2009 alc[len - 2] = '\0';
2010
2011 h->verinfo.vertree = t;
2012 t->used = TRUE;
2013 d = NULL;
2014
108ba305
JJ
2015 if (t->globals.list != NULL)
2016 d = (*t->match) (&t->globals, NULL, alc);
45d6a902
AM
2017
2018 /* See if there is anything to force this symbol to
2019 local scope. */
108ba305 2020 if (d == NULL && t->locals.list != NULL)
45d6a902 2021 {
108ba305
JJ
2022 d = (*t->match) (&t->locals, NULL, alc);
2023 if (d != NULL
2024 && h->dynindx != -1
108ba305
JJ
2025 && ! info->export_dynamic)
2026 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
2027 }
2028
2029 free (alc);
2030 break;
2031 }
2032 }
2033
2034 /* If we are building an application, we need to create a
2035 version node for this version. */
36af4a4e 2036 if (t == NULL && info->executable)
45d6a902
AM
2037 {
2038 struct bfd_elf_version_tree **pp;
2039 int version_index;
2040
2041 /* If we aren't going to export this symbol, we don't need
2042 to worry about it. */
2043 if (h->dynindx == -1)
2044 return TRUE;
2045
2046 amt = sizeof *t;
a50b1753 2047 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
45d6a902
AM
2048 if (t == NULL)
2049 {
2050 sinfo->failed = TRUE;
2051 return FALSE;
2052 }
2053
45d6a902 2054 t->name = p;
45d6a902
AM
2055 t->name_indx = (unsigned int) -1;
2056 t->used = TRUE;
2057
2058 version_index = 1;
2059 /* Don't count anonymous version tag. */
2060 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2061 version_index = 0;
2062 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2063 ++version_index;
2064 t->vernum = version_index;
2065
2066 *pp = t;
2067
2068 h->verinfo.vertree = t;
2069 }
2070 else if (t == NULL)
2071 {
2072 /* We could not find the version for a symbol when
2073 generating a shared archive. Return an error. */
2074 (*_bfd_error_handler)
c55fe096 2075 (_("%B: version node not found for symbol %s"),
28caa186 2076 info->output_bfd, h->root.root.string);
45d6a902
AM
2077 bfd_set_error (bfd_error_bad_value);
2078 sinfo->failed = TRUE;
2079 return FALSE;
2080 }
2081
2082 if (hidden)
f5385ebf 2083 h->hidden = 1;
45d6a902
AM
2084 }
2085
2086 /* If we don't have a version for this symbol, see if we can find
2087 something. */
2088 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2089 {
1e8fa21e 2090 bfd_boolean hide;
ae5a3597 2091
09e2aba4 2092 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
1e8fa21e
AM
2093 h->root.root.string, &hide);
2094 if (h->verinfo.vertree != NULL && hide)
2095 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
2096 }
2097
2098 return TRUE;
2099}
2100\f
45d6a902
AM
2101/* Read and swap the relocs from the section indicated by SHDR. This
2102 may be either a REL or a RELA section. The relocations are
2103 translated into RELA relocations and stored in INTERNAL_RELOCS,
2104 which should have already been allocated to contain enough space.
2105 The EXTERNAL_RELOCS are a buffer where the external form of the
2106 relocations should be stored.
2107
2108 Returns FALSE if something goes wrong. */
2109
2110static bfd_boolean
268b6b39 2111elf_link_read_relocs_from_section (bfd *abfd,
243ef1e0 2112 asection *sec,
268b6b39
AM
2113 Elf_Internal_Shdr *shdr,
2114 void *external_relocs,
2115 Elf_Internal_Rela *internal_relocs)
45d6a902 2116{
9c5bfbb7 2117 const struct elf_backend_data *bed;
268b6b39 2118 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
45d6a902
AM
2119 const bfd_byte *erela;
2120 const bfd_byte *erelaend;
2121 Elf_Internal_Rela *irela;
243ef1e0
L
2122 Elf_Internal_Shdr *symtab_hdr;
2123 size_t nsyms;
45d6a902 2124
45d6a902
AM
2125 /* Position ourselves at the start of the section. */
2126 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2127 return FALSE;
2128
2129 /* Read the relocations. */
2130 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2131 return FALSE;
2132
243ef1e0 2133 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
ce98a316 2134 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
243ef1e0 2135
45d6a902
AM
2136 bed = get_elf_backend_data (abfd);
2137
2138 /* Convert the external relocations to the internal format. */
2139 if (shdr->sh_entsize == bed->s->sizeof_rel)
2140 swap_in = bed->s->swap_reloc_in;
2141 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2142 swap_in = bed->s->swap_reloca_in;
2143 else
2144 {
2145 bfd_set_error (bfd_error_wrong_format);
2146 return FALSE;
2147 }
2148
a50b1753 2149 erela = (const bfd_byte *) external_relocs;
51992aec 2150 erelaend = erela + shdr->sh_size;
45d6a902
AM
2151 irela = internal_relocs;
2152 while (erela < erelaend)
2153 {
243ef1e0
L
2154 bfd_vma r_symndx;
2155
45d6a902 2156 (*swap_in) (abfd, erela, irela);
243ef1e0
L
2157 r_symndx = ELF32_R_SYM (irela->r_info);
2158 if (bed->s->arch_size == 64)
2159 r_symndx >>= 24;
ce98a316
NC
2160 if (nsyms > 0)
2161 {
2162 if ((size_t) r_symndx >= nsyms)
2163 {
2164 (*_bfd_error_handler)
2165 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2166 " for offset 0x%lx in section `%A'"),
2167 abfd, sec,
2168 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2169 bfd_set_error (bfd_error_bad_value);
2170 return FALSE;
2171 }
2172 }
2173 else if (r_symndx != 0)
243ef1e0
L
2174 {
2175 (*_bfd_error_handler)
ce98a316
NC
2176 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2177 " when the object file has no symbol table"),
d003868e
AM
2178 abfd, sec,
2179 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
243ef1e0
L
2180 bfd_set_error (bfd_error_bad_value);
2181 return FALSE;
2182 }
45d6a902
AM
2183 irela += bed->s->int_rels_per_ext_rel;
2184 erela += shdr->sh_entsize;
2185 }
2186
2187 return TRUE;
2188}
2189
2190/* Read and swap the relocs for a section O. They may have been
2191 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2192 not NULL, they are used as buffers to read into. They are known to
2193 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2194 the return value is allocated using either malloc or bfd_alloc,
2195 according to the KEEP_MEMORY argument. If O has two relocation
2196 sections (both REL and RELA relocations), then the REL_HDR
2197 relocations will appear first in INTERNAL_RELOCS, followed by the
2198 REL_HDR2 relocations. */
2199
2200Elf_Internal_Rela *
268b6b39
AM
2201_bfd_elf_link_read_relocs (bfd *abfd,
2202 asection *o,
2203 void *external_relocs,
2204 Elf_Internal_Rela *internal_relocs,
2205 bfd_boolean keep_memory)
45d6a902
AM
2206{
2207 Elf_Internal_Shdr *rel_hdr;
268b6b39 2208 void *alloc1 = NULL;
45d6a902 2209 Elf_Internal_Rela *alloc2 = NULL;
9c5bfbb7 2210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
2211
2212 if (elf_section_data (o)->relocs != NULL)
2213 return elf_section_data (o)->relocs;
2214
2215 if (o->reloc_count == 0)
2216 return NULL;
2217
2218 rel_hdr = &elf_section_data (o)->rel_hdr;
2219
2220 if (internal_relocs == NULL)
2221 {
2222 bfd_size_type size;
2223
2224 size = o->reloc_count;
2225 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2226 if (keep_memory)
a50b1753 2227 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
45d6a902 2228 else
a50b1753 2229 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
45d6a902
AM
2230 if (internal_relocs == NULL)
2231 goto error_return;
2232 }
2233
2234 if (external_relocs == NULL)
2235 {
2236 bfd_size_type size = rel_hdr->sh_size;
2237
2238 if (elf_section_data (o)->rel_hdr2)
2239 size += elf_section_data (o)->rel_hdr2->sh_size;
268b6b39 2240 alloc1 = bfd_malloc (size);
45d6a902
AM
2241 if (alloc1 == NULL)
2242 goto error_return;
2243 external_relocs = alloc1;
2244 }
2245
243ef1e0 2246 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
45d6a902
AM
2247 external_relocs,
2248 internal_relocs))
2249 goto error_return;
51992aec
AM
2250 if (elf_section_data (o)->rel_hdr2
2251 && (!elf_link_read_relocs_from_section
2252 (abfd, o,
2253 elf_section_data (o)->rel_hdr2,
2254 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2255 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2256 * bed->s->int_rels_per_ext_rel))))
45d6a902
AM
2257 goto error_return;
2258
2259 /* Cache the results for next time, if we can. */
2260 if (keep_memory)
2261 elf_section_data (o)->relocs = internal_relocs;
2262
2263 if (alloc1 != NULL)
2264 free (alloc1);
2265
2266 /* Don't free alloc2, since if it was allocated we are passing it
2267 back (under the name of internal_relocs). */
2268
2269 return internal_relocs;
2270
2271 error_return:
2272 if (alloc1 != NULL)
2273 free (alloc1);
2274 if (alloc2 != NULL)
4dd07732
AM
2275 {
2276 if (keep_memory)
2277 bfd_release (abfd, alloc2);
2278 else
2279 free (alloc2);
2280 }
45d6a902
AM
2281 return NULL;
2282}
2283
2284/* Compute the size of, and allocate space for, REL_HDR which is the
2285 section header for a section containing relocations for O. */
2286
28caa186 2287static bfd_boolean
268b6b39
AM
2288_bfd_elf_link_size_reloc_section (bfd *abfd,
2289 Elf_Internal_Shdr *rel_hdr,
2290 asection *o)
45d6a902
AM
2291{
2292 bfd_size_type reloc_count;
2293 bfd_size_type num_rel_hashes;
2294
2295 /* Figure out how many relocations there will be. */
2296 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2297 reloc_count = elf_section_data (o)->rel_count;
2298 else
2299 reloc_count = elf_section_data (o)->rel_count2;
2300
2301 num_rel_hashes = o->reloc_count;
2302 if (num_rel_hashes < reloc_count)
2303 num_rel_hashes = reloc_count;
2304
2305 /* That allows us to calculate the size of the section. */
2306 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2307
2308 /* The contents field must last into write_object_contents, so we
2309 allocate it with bfd_alloc rather than malloc. Also since we
2310 cannot be sure that the contents will actually be filled in,
2311 we zero the allocated space. */
a50b1753 2312 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
45d6a902
AM
2313 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2314 return FALSE;
2315
2316 /* We only allocate one set of hash entries, so we only do it the
2317 first time we are called. */
2318 if (elf_section_data (o)->rel_hashes == NULL
2319 && num_rel_hashes)
2320 {
2321 struct elf_link_hash_entry **p;
2322
a50b1753
NC
2323 p = (struct elf_link_hash_entry **)
2324 bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
45d6a902
AM
2325 if (p == NULL)
2326 return FALSE;
2327
2328 elf_section_data (o)->rel_hashes = p;
2329 }
2330
2331 return TRUE;
2332}
2333
2334/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2335 originated from the section given by INPUT_REL_HDR) to the
2336 OUTPUT_BFD. */
2337
2338bfd_boolean
268b6b39
AM
2339_bfd_elf_link_output_relocs (bfd *output_bfd,
2340 asection *input_section,
2341 Elf_Internal_Shdr *input_rel_hdr,
eac338cf
PB
2342 Elf_Internal_Rela *internal_relocs,
2343 struct elf_link_hash_entry **rel_hash
2344 ATTRIBUTE_UNUSED)
45d6a902
AM
2345{
2346 Elf_Internal_Rela *irela;
2347 Elf_Internal_Rela *irelaend;
2348 bfd_byte *erel;
2349 Elf_Internal_Shdr *output_rel_hdr;
2350 asection *output_section;
2351 unsigned int *rel_countp = NULL;
9c5bfbb7 2352 const struct elf_backend_data *bed;
268b6b39 2353 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
45d6a902
AM
2354
2355 output_section = input_section->output_section;
2356 output_rel_hdr = NULL;
2357
2358 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2359 == input_rel_hdr->sh_entsize)
2360 {
2361 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2362 rel_countp = &elf_section_data (output_section)->rel_count;
2363 }
2364 else if (elf_section_data (output_section)->rel_hdr2
2365 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2366 == input_rel_hdr->sh_entsize))
2367 {
2368 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2369 rel_countp = &elf_section_data (output_section)->rel_count2;
2370 }
2371 else
2372 {
2373 (*_bfd_error_handler)
d003868e
AM
2374 (_("%B: relocation size mismatch in %B section %A"),
2375 output_bfd, input_section->owner, input_section);
297d8443 2376 bfd_set_error (bfd_error_wrong_format);
45d6a902
AM
2377 return FALSE;
2378 }
2379
2380 bed = get_elf_backend_data (output_bfd);
2381 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2382 swap_out = bed->s->swap_reloc_out;
2383 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2384 swap_out = bed->s->swap_reloca_out;
2385 else
2386 abort ();
2387
2388 erel = output_rel_hdr->contents;
2389 erel += *rel_countp * input_rel_hdr->sh_entsize;
2390 irela = internal_relocs;
2391 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2392 * bed->s->int_rels_per_ext_rel);
2393 while (irela < irelaend)
2394 {
2395 (*swap_out) (output_bfd, irela, erel);
2396 irela += bed->s->int_rels_per_ext_rel;
2397 erel += input_rel_hdr->sh_entsize;
2398 }
2399
2400 /* Bump the counter, so that we know where to add the next set of
2401 relocations. */
2402 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2403
2404 return TRUE;
2405}
2406\f
508c3946
L
2407/* Make weak undefined symbols in PIE dynamic. */
2408
2409bfd_boolean
2410_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2411 struct elf_link_hash_entry *h)
2412{
2413 if (info->pie
2414 && h->dynindx == -1
2415 && h->root.type == bfd_link_hash_undefweak)
2416 return bfd_elf_link_record_dynamic_symbol (info, h);
2417
2418 return TRUE;
2419}
2420
45d6a902
AM
2421/* Fix up the flags for a symbol. This handles various cases which
2422 can only be fixed after all the input files are seen. This is
2423 currently called by both adjust_dynamic_symbol and
2424 assign_sym_version, which is unnecessary but perhaps more robust in
2425 the face of future changes. */
2426
28caa186 2427static bfd_boolean
268b6b39
AM
2428_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2429 struct elf_info_failed *eif)
45d6a902 2430{
33774f08 2431 const struct elf_backend_data *bed;
508c3946 2432
45d6a902
AM
2433 /* If this symbol was mentioned in a non-ELF file, try to set
2434 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2435 permit a non-ELF file to correctly refer to a symbol defined in
2436 an ELF dynamic object. */
f5385ebf 2437 if (h->non_elf)
45d6a902
AM
2438 {
2439 while (h->root.type == bfd_link_hash_indirect)
2440 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2441
2442 if (h->root.type != bfd_link_hash_defined
2443 && h->root.type != bfd_link_hash_defweak)
f5385ebf
AM
2444 {
2445 h->ref_regular = 1;
2446 h->ref_regular_nonweak = 1;
2447 }
45d6a902
AM
2448 else
2449 {
2450 if (h->root.u.def.section->owner != NULL
2451 && (bfd_get_flavour (h->root.u.def.section->owner)
2452 == bfd_target_elf_flavour))
f5385ebf
AM
2453 {
2454 h->ref_regular = 1;
2455 h->ref_regular_nonweak = 1;
2456 }
45d6a902 2457 else
f5385ebf 2458 h->def_regular = 1;
45d6a902
AM
2459 }
2460
2461 if (h->dynindx == -1
f5385ebf
AM
2462 && (h->def_dynamic
2463 || h->ref_dynamic))
45d6a902 2464 {
c152c796 2465 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
2466 {
2467 eif->failed = TRUE;
2468 return FALSE;
2469 }
2470 }
2471 }
2472 else
2473 {
f5385ebf 2474 /* Unfortunately, NON_ELF is only correct if the symbol
45d6a902
AM
2475 was first seen in a non-ELF file. Fortunately, if the symbol
2476 was first seen in an ELF file, we're probably OK unless the
2477 symbol was defined in a non-ELF file. Catch that case here.
2478 FIXME: We're still in trouble if the symbol was first seen in
2479 a dynamic object, and then later in a non-ELF regular object. */
2480 if ((h->root.type == bfd_link_hash_defined
2481 || h->root.type == bfd_link_hash_defweak)
f5385ebf 2482 && !h->def_regular
45d6a902
AM
2483 && (h->root.u.def.section->owner != NULL
2484 ? (bfd_get_flavour (h->root.u.def.section->owner)
2485 != bfd_target_elf_flavour)
2486 : (bfd_is_abs_section (h->root.u.def.section)
f5385ebf
AM
2487 && !h->def_dynamic)))
2488 h->def_regular = 1;
45d6a902
AM
2489 }
2490
508c3946 2491 /* Backend specific symbol fixup. */
33774f08
AM
2492 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2493 if (bed->elf_backend_fixup_symbol
2494 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2495 return FALSE;
508c3946 2496
45d6a902
AM
2497 /* If this is a final link, and the symbol was defined as a common
2498 symbol in a regular object file, and there was no definition in
2499 any dynamic object, then the linker will have allocated space for
f5385ebf 2500 the symbol in a common section but the DEF_REGULAR
45d6a902
AM
2501 flag will not have been set. */
2502 if (h->root.type == bfd_link_hash_defined
f5385ebf
AM
2503 && !h->def_regular
2504 && h->ref_regular
2505 && !h->def_dynamic
45d6a902 2506 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
f5385ebf 2507 h->def_regular = 1;
45d6a902
AM
2508
2509 /* If -Bsymbolic was used (which means to bind references to global
2510 symbols to the definition within the shared object), and this
2511 symbol was defined in a regular object, then it actually doesn't
9c7a29a3
AM
2512 need a PLT entry. Likewise, if the symbol has non-default
2513 visibility. If the symbol has hidden or internal visibility, we
c1be741f 2514 will force it local. */
f5385ebf 2515 if (h->needs_plt
45d6a902 2516 && eif->info->shared
0eddce27 2517 && is_elf_hash_table (eif->info->hash)
55255dae 2518 && (SYMBOLIC_BIND (eif->info, h)
c1be741f 2519 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
f5385ebf 2520 && h->def_regular)
45d6a902 2521 {
45d6a902
AM
2522 bfd_boolean force_local;
2523
45d6a902
AM
2524 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2525 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2526 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2527 }
2528
2529 /* If a weak undefined symbol has non-default visibility, we also
2530 hide it from the dynamic linker. */
9c7a29a3 2531 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902 2532 && h->root.type == bfd_link_hash_undefweak)
33774f08 2533 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
45d6a902
AM
2534
2535 /* If this is a weak defined symbol in a dynamic object, and we know
2536 the real definition in the dynamic object, copy interesting flags
2537 over to the real definition. */
f6e332e6 2538 if (h->u.weakdef != NULL)
45d6a902
AM
2539 {
2540 struct elf_link_hash_entry *weakdef;
2541
f6e332e6 2542 weakdef = h->u.weakdef;
45d6a902
AM
2543 if (h->root.type == bfd_link_hash_indirect)
2544 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2545
2546 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2547 || h->root.type == bfd_link_hash_defweak);
f5385ebf 2548 BFD_ASSERT (weakdef->def_dynamic);
45d6a902
AM
2549
2550 /* If the real definition is defined by a regular object file,
2551 don't do anything special. See the longer description in
2552 _bfd_elf_adjust_dynamic_symbol, below. */
f5385ebf 2553 if (weakdef->def_regular)
f6e332e6 2554 h->u.weakdef = NULL;
45d6a902 2555 else
a26587ba
RS
2556 {
2557 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2558 || weakdef->root.type == bfd_link_hash_defweak);
2559 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2560 }
45d6a902
AM
2561 }
2562
2563 return TRUE;
2564}
2565
2566/* Make the backend pick a good value for a dynamic symbol. This is
2567 called via elf_link_hash_traverse, and also calls itself
2568 recursively. */
2569
28caa186 2570static bfd_boolean
268b6b39 2571_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 2572{
a50b1753 2573 struct elf_info_failed *eif = (struct elf_info_failed *) data;
45d6a902 2574 bfd *dynobj;
9c5bfbb7 2575 const struct elf_backend_data *bed;
45d6a902 2576
0eddce27 2577 if (! is_elf_hash_table (eif->info->hash))
45d6a902
AM
2578 return FALSE;
2579
2580 if (h->root.type == bfd_link_hash_warning)
2581 {
a6aa5195
AM
2582 h->got = elf_hash_table (eif->info)->init_got_offset;
2583 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2584
2585 /* When warning symbols are created, they **replace** the "real"
2586 entry in the hash table, thus we never get to see the real
2587 symbol in a hash traversal. So look at it now. */
2588 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2589 }
2590
2591 /* Ignore indirect symbols. These are added by the versioning code. */
2592 if (h->root.type == bfd_link_hash_indirect)
2593 return TRUE;
2594
2595 /* Fix the symbol flags. */
2596 if (! _bfd_elf_fix_symbol_flags (h, eif))
2597 return FALSE;
2598
2599 /* If this symbol does not require a PLT entry, and it is not
2600 defined by a dynamic object, or is not referenced by a regular
2601 object, ignore it. We do have to handle a weak defined symbol,
2602 even if no regular object refers to it, if we decided to add it
2603 to the dynamic symbol table. FIXME: Do we normally need to worry
2604 about symbols which are defined by one dynamic object and
2605 referenced by another one? */
f5385ebf 2606 if (!h->needs_plt
91e21fb7 2607 && h->type != STT_GNU_IFUNC
f5385ebf
AM
2608 && (h->def_regular
2609 || !h->def_dynamic
2610 || (!h->ref_regular
f6e332e6 2611 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
45d6a902 2612 {
a6aa5195 2613 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2614 return TRUE;
2615 }
2616
2617 /* If we've already adjusted this symbol, don't do it again. This
2618 can happen via a recursive call. */
f5385ebf 2619 if (h->dynamic_adjusted)
45d6a902
AM
2620 return TRUE;
2621
2622 /* Don't look at this symbol again. Note that we must set this
2623 after checking the above conditions, because we may look at a
2624 symbol once, decide not to do anything, and then get called
2625 recursively later after REF_REGULAR is set below. */
f5385ebf 2626 h->dynamic_adjusted = 1;
45d6a902
AM
2627
2628 /* If this is a weak definition, and we know a real definition, and
2629 the real symbol is not itself defined by a regular object file,
2630 then get a good value for the real definition. We handle the
2631 real symbol first, for the convenience of the backend routine.
2632
2633 Note that there is a confusing case here. If the real definition
2634 is defined by a regular object file, we don't get the real symbol
2635 from the dynamic object, but we do get the weak symbol. If the
2636 processor backend uses a COPY reloc, then if some routine in the
2637 dynamic object changes the real symbol, we will not see that
2638 change in the corresponding weak symbol. This is the way other
2639 ELF linkers work as well, and seems to be a result of the shared
2640 library model.
2641
2642 I will clarify this issue. Most SVR4 shared libraries define the
2643 variable _timezone and define timezone as a weak synonym. The
2644 tzset call changes _timezone. If you write
2645 extern int timezone;
2646 int _timezone = 5;
2647 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2648 you might expect that, since timezone is a synonym for _timezone,
2649 the same number will print both times. However, if the processor
2650 backend uses a COPY reloc, then actually timezone will be copied
2651 into your process image, and, since you define _timezone
2652 yourself, _timezone will not. Thus timezone and _timezone will
2653 wind up at different memory locations. The tzset call will set
2654 _timezone, leaving timezone unchanged. */
2655
f6e332e6 2656 if (h->u.weakdef != NULL)
45d6a902
AM
2657 {
2658 /* If we get to this point, we know there is an implicit
2659 reference by a regular object file via the weak symbol H.
2660 FIXME: Is this really true? What if the traversal finds
f6e332e6
AM
2661 H->U.WEAKDEF before it finds H? */
2662 h->u.weakdef->ref_regular = 1;
45d6a902 2663
f6e332e6 2664 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
45d6a902
AM
2665 return FALSE;
2666 }
2667
2668 /* If a symbol has no type and no size and does not require a PLT
2669 entry, then we are probably about to do the wrong thing here: we
2670 are probably going to create a COPY reloc for an empty object.
2671 This case can arise when a shared object is built with assembly
2672 code, and the assembly code fails to set the symbol type. */
2673 if (h->size == 0
2674 && h->type == STT_NOTYPE
f5385ebf 2675 && !h->needs_plt)
45d6a902
AM
2676 (*_bfd_error_handler)
2677 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2678 h->root.root.string);
2679
2680 dynobj = elf_hash_table (eif->info)->dynobj;
2681 bed = get_elf_backend_data (dynobj);
e7c33416 2682
45d6a902
AM
2683 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2684 {
2685 eif->failed = TRUE;
2686 return FALSE;
2687 }
2688
2689 return TRUE;
2690}
2691
027297b7
L
2692/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2693 DYNBSS. */
2694
2695bfd_boolean
2696_bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2697 asection *dynbss)
2698{
91ac5911 2699 unsigned int power_of_two;
027297b7
L
2700 bfd_vma mask;
2701 asection *sec = h->root.u.def.section;
2702
2703 /* The section aligment of definition is the maximum alignment
91ac5911
L
2704 requirement of symbols defined in the section. Since we don't
2705 know the symbol alignment requirement, we start with the
2706 maximum alignment and check low bits of the symbol address
2707 for the minimum alignment. */
2708 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2709 mask = ((bfd_vma) 1 << power_of_two) - 1;
2710 while ((h->root.u.def.value & mask) != 0)
2711 {
2712 mask >>= 1;
2713 --power_of_two;
2714 }
027297b7 2715
91ac5911
L
2716 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2717 dynbss))
027297b7
L
2718 {
2719 /* Adjust the section alignment if needed. */
2720 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
91ac5911 2721 power_of_two))
027297b7
L
2722 return FALSE;
2723 }
2724
91ac5911 2725 /* We make sure that the symbol will be aligned properly. */
027297b7
L
2726 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2727
2728 /* Define the symbol as being at this point in DYNBSS. */
2729 h->root.u.def.section = dynbss;
2730 h->root.u.def.value = dynbss->size;
2731
2732 /* Increment the size of DYNBSS to make room for the symbol. */
2733 dynbss->size += h->size;
2734
2735 return TRUE;
2736}
2737
45d6a902
AM
2738/* Adjust all external symbols pointing into SEC_MERGE sections
2739 to reflect the object merging within the sections. */
2740
28caa186 2741static bfd_boolean
268b6b39 2742_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
2743{
2744 asection *sec;
2745
2746 if (h->root.type == bfd_link_hash_warning)
2747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2748
2749 if ((h->root.type == bfd_link_hash_defined
2750 || h->root.type == bfd_link_hash_defweak)
2751 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2752 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2753 {
a50b1753 2754 bfd *output_bfd = (bfd *) data;
45d6a902
AM
2755
2756 h->root.u.def.value =
2757 _bfd_merged_section_offset (output_bfd,
2758 &h->root.u.def.section,
2759 elf_section_data (sec)->sec_info,
753731ee 2760 h->root.u.def.value);
45d6a902
AM
2761 }
2762
2763 return TRUE;
2764}
986a241f
RH
2765
2766/* Returns false if the symbol referred to by H should be considered
2767 to resolve local to the current module, and true if it should be
2768 considered to bind dynamically. */
2769
2770bfd_boolean
268b6b39
AM
2771_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2772 struct bfd_link_info *info,
2773 bfd_boolean ignore_protected)
986a241f
RH
2774{
2775 bfd_boolean binding_stays_local_p;
fcb93ecf
PB
2776 const struct elf_backend_data *bed;
2777 struct elf_link_hash_table *hash_table;
986a241f
RH
2778
2779 if (h == NULL)
2780 return FALSE;
2781
2782 while (h->root.type == bfd_link_hash_indirect
2783 || h->root.type == bfd_link_hash_warning)
2784 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2785
2786 /* If it was forced local, then clearly it's not dynamic. */
2787 if (h->dynindx == -1)
2788 return FALSE;
f5385ebf 2789 if (h->forced_local)
986a241f
RH
2790 return FALSE;
2791
2792 /* Identify the cases where name binding rules say that a
2793 visible symbol resolves locally. */
55255dae 2794 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
986a241f
RH
2795
2796 switch (ELF_ST_VISIBILITY (h->other))
2797 {
2798 case STV_INTERNAL:
2799 case STV_HIDDEN:
2800 return FALSE;
2801
2802 case STV_PROTECTED:
fcb93ecf
PB
2803 hash_table = elf_hash_table (info);
2804 if (!is_elf_hash_table (hash_table))
2805 return FALSE;
2806
2807 bed = get_elf_backend_data (hash_table->dynobj);
2808
986a241f
RH
2809 /* Proper resolution for function pointer equality may require
2810 that these symbols perhaps be resolved dynamically, even though
2811 we should be resolving them to the current module. */
fcb93ecf 2812 if (!ignore_protected || !bed->is_function_type (h->type))
986a241f
RH
2813 binding_stays_local_p = TRUE;
2814 break;
2815
2816 default:
986a241f
RH
2817 break;
2818 }
2819
aa37626c 2820 /* If it isn't defined locally, then clearly it's dynamic. */
f5385ebf 2821 if (!h->def_regular)
aa37626c
L
2822 return TRUE;
2823
986a241f
RH
2824 /* Otherwise, the symbol is dynamic if binding rules don't tell
2825 us that it remains local. */
2826 return !binding_stays_local_p;
2827}
f6c52c13
AM
2828
2829/* Return true if the symbol referred to by H should be considered
2830 to resolve local to the current module, and false otherwise. Differs
2831 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2832 undefined symbols and weak symbols. */
2833
2834bfd_boolean
268b6b39
AM
2835_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2836 struct bfd_link_info *info,
2837 bfd_boolean local_protected)
f6c52c13 2838{
fcb93ecf
PB
2839 const struct elf_backend_data *bed;
2840 struct elf_link_hash_table *hash_table;
2841
f6c52c13
AM
2842 /* If it's a local sym, of course we resolve locally. */
2843 if (h == NULL)
2844 return TRUE;
2845
d95edcac
L
2846 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2847 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2848 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2849 return TRUE;
2850
7e2294f9
AO
2851 /* Common symbols that become definitions don't get the DEF_REGULAR
2852 flag set, so test it first, and don't bail out. */
2853 if (ELF_COMMON_DEF_P (h))
2854 /* Do nothing. */;
f6c52c13 2855 /* If we don't have a definition in a regular file, then we can't
49ff44d6
L
2856 resolve locally. The sym is either undefined or dynamic. */
2857 else if (!h->def_regular)
f6c52c13
AM
2858 return FALSE;
2859
2860 /* Forced local symbols resolve locally. */
f5385ebf 2861 if (h->forced_local)
f6c52c13
AM
2862 return TRUE;
2863
2864 /* As do non-dynamic symbols. */
2865 if (h->dynindx == -1)
2866 return TRUE;
2867
2868 /* At this point, we know the symbol is defined and dynamic. In an
2869 executable it must resolve locally, likewise when building symbolic
2870 shared libraries. */
55255dae 2871 if (info->executable || SYMBOLIC_BIND (info, h))
f6c52c13
AM
2872 return TRUE;
2873
2874 /* Now deal with defined dynamic symbols in shared libraries. Ones
2875 with default visibility might not resolve locally. */
2876 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2877 return FALSE;
2878
fcb93ecf
PB
2879 hash_table = elf_hash_table (info);
2880 if (!is_elf_hash_table (hash_table))
2881 return TRUE;
2882
2883 bed = get_elf_backend_data (hash_table->dynobj);
2884
1c16dfa5 2885 /* STV_PROTECTED non-function symbols are local. */
fcb93ecf 2886 if (!bed->is_function_type (h->type))
1c16dfa5
L
2887 return TRUE;
2888
f6c52c13
AM
2889 /* Function pointer equality tests may require that STV_PROTECTED
2890 symbols be treated as dynamic symbols, even when we know that the
2891 dynamic linker will resolve them locally. */
2892 return local_protected;
2893}
e1918d23
AM
2894
2895/* Caches some TLS segment info, and ensures that the TLS segment vma is
2896 aligned. Returns the first TLS output section. */
2897
2898struct bfd_section *
2899_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2900{
2901 struct bfd_section *sec, *tls;
2902 unsigned int align = 0;
2903
2904 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2905 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2906 break;
2907 tls = sec;
2908
2909 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2910 if (sec->alignment_power > align)
2911 align = sec->alignment_power;
2912
2913 elf_hash_table (info)->tls_sec = tls;
2914
2915 /* Ensure the alignment of the first section is the largest alignment,
2916 so that the tls segment starts aligned. */
2917 if (tls != NULL)
2918 tls->alignment_power = align;
2919
2920 return tls;
2921}
0ad989f9
L
2922
2923/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2924static bfd_boolean
2925is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2926 Elf_Internal_Sym *sym)
2927{
a4d8e49b
L
2928 const struct elf_backend_data *bed;
2929
0ad989f9
L
2930 /* Local symbols do not count, but target specific ones might. */
2931 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2932 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2933 return FALSE;
2934
fcb93ecf 2935 bed = get_elf_backend_data (abfd);
0ad989f9 2936 /* Function symbols do not count. */
fcb93ecf 2937 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
0ad989f9
L
2938 return FALSE;
2939
2940 /* If the section is undefined, then so is the symbol. */
2941 if (sym->st_shndx == SHN_UNDEF)
2942 return FALSE;
2943
2944 /* If the symbol is defined in the common section, then
2945 it is a common definition and so does not count. */
a4d8e49b 2946 if (bed->common_definition (sym))
0ad989f9
L
2947 return FALSE;
2948
2949 /* If the symbol is in a target specific section then we
2950 must rely upon the backend to tell us what it is. */
2951 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2952 /* FIXME - this function is not coded yet:
2953
2954 return _bfd_is_global_symbol_definition (abfd, sym);
2955
2956 Instead for now assume that the definition is not global,
2957 Even if this is wrong, at least the linker will behave
2958 in the same way that it used to do. */
2959 return FALSE;
2960
2961 return TRUE;
2962}
2963
2964/* Search the symbol table of the archive element of the archive ABFD
2965 whose archive map contains a mention of SYMDEF, and determine if
2966 the symbol is defined in this element. */
2967static bfd_boolean
2968elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2969{
2970 Elf_Internal_Shdr * hdr;
2971 bfd_size_type symcount;
2972 bfd_size_type extsymcount;
2973 bfd_size_type extsymoff;
2974 Elf_Internal_Sym *isymbuf;
2975 Elf_Internal_Sym *isym;
2976 Elf_Internal_Sym *isymend;
2977 bfd_boolean result;
2978
2979 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2980 if (abfd == NULL)
2981 return FALSE;
2982
2983 if (! bfd_check_format (abfd, bfd_object))
2984 return FALSE;
2985
2986 /* If we have already included the element containing this symbol in the
2987 link then we do not need to include it again. Just claim that any symbol
2988 it contains is not a definition, so that our caller will not decide to
2989 (re)include this element. */
2990 if (abfd->archive_pass)
2991 return FALSE;
2992
2993 /* Select the appropriate symbol table. */
2994 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2995 hdr = &elf_tdata (abfd)->symtab_hdr;
2996 else
2997 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2998
2999 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3000
3001 /* The sh_info field of the symtab header tells us where the
3002 external symbols start. We don't care about the local symbols. */
3003 if (elf_bad_symtab (abfd))
3004 {
3005 extsymcount = symcount;
3006 extsymoff = 0;
3007 }
3008 else
3009 {
3010 extsymcount = symcount - hdr->sh_info;
3011 extsymoff = hdr->sh_info;
3012 }
3013
3014 if (extsymcount == 0)
3015 return FALSE;
3016
3017 /* Read in the symbol table. */
3018 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3019 NULL, NULL, NULL);
3020 if (isymbuf == NULL)
3021 return FALSE;
3022
3023 /* Scan the symbol table looking for SYMDEF. */
3024 result = FALSE;
3025 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3026 {
3027 const char *name;
3028
3029 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3030 isym->st_name);
3031 if (name == NULL)
3032 break;
3033
3034 if (strcmp (name, symdef->name) == 0)
3035 {
3036 result = is_global_data_symbol_definition (abfd, isym);
3037 break;
3038 }
3039 }
3040
3041 free (isymbuf);
3042
3043 return result;
3044}
3045\f
5a580b3a
AM
3046/* Add an entry to the .dynamic table. */
3047
3048bfd_boolean
3049_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3050 bfd_vma tag,
3051 bfd_vma val)
3052{
3053 struct elf_link_hash_table *hash_table;
3054 const struct elf_backend_data *bed;
3055 asection *s;
3056 bfd_size_type newsize;
3057 bfd_byte *newcontents;
3058 Elf_Internal_Dyn dyn;
3059
3060 hash_table = elf_hash_table (info);
3061 if (! is_elf_hash_table (hash_table))
3062 return FALSE;
3063
3064 bed = get_elf_backend_data (hash_table->dynobj);
3065 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3066 BFD_ASSERT (s != NULL);
3067
eea6121a 3068 newsize = s->size + bed->s->sizeof_dyn;
a50b1753 3069 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
5a580b3a
AM
3070 if (newcontents == NULL)
3071 return FALSE;
3072
3073 dyn.d_tag = tag;
3074 dyn.d_un.d_val = val;
eea6121a 3075 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
5a580b3a 3076
eea6121a 3077 s->size = newsize;
5a580b3a
AM
3078 s->contents = newcontents;
3079
3080 return TRUE;
3081}
3082
3083/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3084 otherwise just check whether one already exists. Returns -1 on error,
3085 1 if a DT_NEEDED tag already exists, and 0 on success. */
3086
4ad4eba5 3087static int
7e9f0867
AM
3088elf_add_dt_needed_tag (bfd *abfd,
3089 struct bfd_link_info *info,
4ad4eba5
AM
3090 const char *soname,
3091 bfd_boolean do_it)
5a580b3a
AM
3092{
3093 struct elf_link_hash_table *hash_table;
3094 bfd_size_type oldsize;
3095 bfd_size_type strindex;
3096
7e9f0867
AM
3097 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3098 return -1;
3099
5a580b3a
AM
3100 hash_table = elf_hash_table (info);
3101 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3102 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3103 if (strindex == (bfd_size_type) -1)
3104 return -1;
3105
3106 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3107 {
3108 asection *sdyn;
3109 const struct elf_backend_data *bed;
3110 bfd_byte *extdyn;
3111
3112 bed = get_elf_backend_data (hash_table->dynobj);
3113 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
7e9f0867
AM
3114 if (sdyn != NULL)
3115 for (extdyn = sdyn->contents;
3116 extdyn < sdyn->contents + sdyn->size;
3117 extdyn += bed->s->sizeof_dyn)
3118 {
3119 Elf_Internal_Dyn dyn;
5a580b3a 3120
7e9f0867
AM
3121 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3122 if (dyn.d_tag == DT_NEEDED
3123 && dyn.d_un.d_val == strindex)
3124 {
3125 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3126 return 1;
3127 }
3128 }
5a580b3a
AM
3129 }
3130
3131 if (do_it)
3132 {
7e9f0867
AM
3133 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3134 return -1;
3135
5a580b3a
AM
3136 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3137 return -1;
3138 }
3139 else
3140 /* We were just checking for existence of the tag. */
3141 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3142
3143 return 0;
3144}
3145
010e5ae2
AM
3146static bfd_boolean
3147on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3148{
3149 for (; needed != NULL; needed = needed->next)
3150 if (strcmp (soname, needed->name) == 0)
3151 return TRUE;
3152
3153 return FALSE;
3154}
3155
5a580b3a 3156/* Sort symbol by value and section. */
4ad4eba5
AM
3157static int
3158elf_sort_symbol (const void *arg1, const void *arg2)
5a580b3a
AM
3159{
3160 const struct elf_link_hash_entry *h1;
3161 const struct elf_link_hash_entry *h2;
10b7e05b 3162 bfd_signed_vma vdiff;
5a580b3a
AM
3163
3164 h1 = *(const struct elf_link_hash_entry **) arg1;
3165 h2 = *(const struct elf_link_hash_entry **) arg2;
10b7e05b
NC
3166 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3167 if (vdiff != 0)
3168 return vdiff > 0 ? 1 : -1;
3169 else
3170 {
3171 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3172 if (sdiff != 0)
3173 return sdiff > 0 ? 1 : -1;
3174 }
5a580b3a
AM
3175 return 0;
3176}
4ad4eba5 3177
5a580b3a
AM
3178/* This function is used to adjust offsets into .dynstr for
3179 dynamic symbols. This is called via elf_link_hash_traverse. */
3180
3181static bfd_boolean
3182elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3183{
a50b1753 3184 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
5a580b3a
AM
3185
3186 if (h->root.type == bfd_link_hash_warning)
3187 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3188
3189 if (h->dynindx != -1)
3190 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3191 return TRUE;
3192}
3193
3194/* Assign string offsets in .dynstr, update all structures referencing
3195 them. */
3196
4ad4eba5
AM
3197static bfd_boolean
3198elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5a580b3a
AM
3199{
3200 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3201 struct elf_link_local_dynamic_entry *entry;
3202 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3203 bfd *dynobj = hash_table->dynobj;
3204 asection *sdyn;
3205 bfd_size_type size;
3206 const struct elf_backend_data *bed;
3207 bfd_byte *extdyn;
3208
3209 _bfd_elf_strtab_finalize (dynstr);
3210 size = _bfd_elf_strtab_size (dynstr);
3211
3212 bed = get_elf_backend_data (dynobj);
3213 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3214 BFD_ASSERT (sdyn != NULL);
3215
3216 /* Update all .dynamic entries referencing .dynstr strings. */
3217 for (extdyn = sdyn->contents;
eea6121a 3218 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
3219 extdyn += bed->s->sizeof_dyn)
3220 {
3221 Elf_Internal_Dyn dyn;
3222
3223 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3224 switch (dyn.d_tag)
3225 {
3226 case DT_STRSZ:
3227 dyn.d_un.d_val = size;
3228 break;
3229 case DT_NEEDED:
3230 case DT_SONAME:
3231 case DT_RPATH:
3232 case DT_RUNPATH:
3233 case DT_FILTER:
3234 case DT_AUXILIARY:
7ee314fa
AM
3235 case DT_AUDIT:
3236 case DT_DEPAUDIT:
5a580b3a
AM
3237 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3238 break;
3239 default:
3240 continue;
3241 }
3242 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3243 }
3244
3245 /* Now update local dynamic symbols. */
3246 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3247 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3248 entry->isym.st_name);
3249
3250 /* And the rest of dynamic symbols. */
3251 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3252
3253 /* Adjust version definitions. */
3254 if (elf_tdata (output_bfd)->cverdefs)
3255 {
3256 asection *s;
3257 bfd_byte *p;
3258 bfd_size_type i;
3259 Elf_Internal_Verdef def;
3260 Elf_Internal_Verdaux defaux;
3261
3262 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3263 p = s->contents;
3264 do
3265 {
3266 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3267 &def);
3268 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
3269 if (def.vd_aux != sizeof (Elf_External_Verdef))
3270 continue;
5a580b3a
AM
3271 for (i = 0; i < def.vd_cnt; ++i)
3272 {
3273 _bfd_elf_swap_verdaux_in (output_bfd,
3274 (Elf_External_Verdaux *) p, &defaux);
3275 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3276 defaux.vda_name);
3277 _bfd_elf_swap_verdaux_out (output_bfd,
3278 &defaux, (Elf_External_Verdaux *) p);
3279 p += sizeof (Elf_External_Verdaux);
3280 }
3281 }
3282 while (def.vd_next);
3283 }
3284
3285 /* Adjust version references. */
3286 if (elf_tdata (output_bfd)->verref)
3287 {
3288 asection *s;
3289 bfd_byte *p;
3290 bfd_size_type i;
3291 Elf_Internal_Verneed need;
3292 Elf_Internal_Vernaux needaux;
3293
3294 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3295 p = s->contents;
3296 do
3297 {
3298 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3299 &need);
3300 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3301 _bfd_elf_swap_verneed_out (output_bfd, &need,
3302 (Elf_External_Verneed *) p);
3303 p += sizeof (Elf_External_Verneed);
3304 for (i = 0; i < need.vn_cnt; ++i)
3305 {
3306 _bfd_elf_swap_vernaux_in (output_bfd,
3307 (Elf_External_Vernaux *) p, &needaux);
3308 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3309 needaux.vna_name);
3310 _bfd_elf_swap_vernaux_out (output_bfd,
3311 &needaux,
3312 (Elf_External_Vernaux *) p);
3313 p += sizeof (Elf_External_Vernaux);
3314 }
3315 }
3316 while (need.vn_next);
3317 }
3318
3319 return TRUE;
3320}
3321\f
13285a1b
AM
3322/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3323 The default is to only match when the INPUT and OUTPUT are exactly
3324 the same target. */
3325
3326bfd_boolean
3327_bfd_elf_default_relocs_compatible (const bfd_target *input,
3328 const bfd_target *output)
3329{
3330 return input == output;
3331}
3332
3333/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3334 This version is used when different targets for the same architecture
3335 are virtually identical. */
3336
3337bfd_boolean
3338_bfd_elf_relocs_compatible (const bfd_target *input,
3339 const bfd_target *output)
3340{
3341 const struct elf_backend_data *obed, *ibed;
3342
3343 if (input == output)
3344 return TRUE;
3345
3346 ibed = xvec_get_elf_backend_data (input);
3347 obed = xvec_get_elf_backend_data (output);
3348
3349 if (ibed->arch != obed->arch)
3350 return FALSE;
3351
3352 /* If both backends are using this function, deem them compatible. */
3353 return ibed->relocs_compatible == obed->relocs_compatible;
3354}
3355
4ad4eba5
AM
3356/* Add symbols from an ELF object file to the linker hash table. */
3357
3358static bfd_boolean
3359elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3360{
a0c402a5 3361 Elf_Internal_Ehdr *ehdr;
4ad4eba5
AM
3362 Elf_Internal_Shdr *hdr;
3363 bfd_size_type symcount;
3364 bfd_size_type extsymcount;
3365 bfd_size_type extsymoff;
3366 struct elf_link_hash_entry **sym_hash;
3367 bfd_boolean dynamic;
3368 Elf_External_Versym *extversym = NULL;
3369 Elf_External_Versym *ever;
3370 struct elf_link_hash_entry *weaks;
3371 struct elf_link_hash_entry **nondeflt_vers = NULL;
3372 bfd_size_type nondeflt_vers_cnt = 0;
3373 Elf_Internal_Sym *isymbuf = NULL;
3374 Elf_Internal_Sym *isym;
3375 Elf_Internal_Sym *isymend;
3376 const struct elf_backend_data *bed;
3377 bfd_boolean add_needed;
66eb6687 3378 struct elf_link_hash_table *htab;
4ad4eba5 3379 bfd_size_type amt;
66eb6687 3380 void *alloc_mark = NULL;
4f87808c
AM
3381 struct bfd_hash_entry **old_table = NULL;
3382 unsigned int old_size = 0;
3383 unsigned int old_count = 0;
66eb6687
AM
3384 void *old_tab = NULL;
3385 void *old_hash;
3386 void *old_ent;
3387 struct bfd_link_hash_entry *old_undefs = NULL;
3388 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3389 long old_dynsymcount = 0;
3390 size_t tabsize = 0;
3391 size_t hashsize = 0;
4ad4eba5 3392
66eb6687 3393 htab = elf_hash_table (info);
4ad4eba5 3394 bed = get_elf_backend_data (abfd);
4ad4eba5
AM
3395
3396 if ((abfd->flags & DYNAMIC) == 0)
3397 dynamic = FALSE;
3398 else
3399 {
3400 dynamic = TRUE;
3401
3402 /* You can't use -r against a dynamic object. Also, there's no
3403 hope of using a dynamic object which does not exactly match
3404 the format of the output file. */
3405 if (info->relocatable
66eb6687 3406 || !is_elf_hash_table (htab)
f13a99db 3407 || info->output_bfd->xvec != abfd->xvec)
4ad4eba5 3408 {
9a0789ec
NC
3409 if (info->relocatable)
3410 bfd_set_error (bfd_error_invalid_operation);
3411 else
3412 bfd_set_error (bfd_error_wrong_format);
4ad4eba5
AM
3413 goto error_return;
3414 }
3415 }
3416
a0c402a5
L
3417 ehdr = elf_elfheader (abfd);
3418 if (info->warn_alternate_em
3419 && bed->elf_machine_code != ehdr->e_machine
3420 && ((bed->elf_machine_alt1 != 0
3421 && ehdr->e_machine == bed->elf_machine_alt1)
3422 || (bed->elf_machine_alt2 != 0
3423 && ehdr->e_machine == bed->elf_machine_alt2)))
3424 info->callbacks->einfo
3425 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3426 ehdr->e_machine, abfd, bed->elf_machine_code);
3427
4ad4eba5
AM
3428 /* As a GNU extension, any input sections which are named
3429 .gnu.warning.SYMBOL are treated as warning symbols for the given
3430 symbol. This differs from .gnu.warning sections, which generate
3431 warnings when they are included in an output file. */
3432 if (info->executable)
3433 {
3434 asection *s;
3435
3436 for (s = abfd->sections; s != NULL; s = s->next)
3437 {
3438 const char *name;
3439
3440 name = bfd_get_section_name (abfd, s);
0112cd26 3441 if (CONST_STRNEQ (name, ".gnu.warning."))
4ad4eba5
AM
3442 {
3443 char *msg;
3444 bfd_size_type sz;
4ad4eba5
AM
3445
3446 name += sizeof ".gnu.warning." - 1;
3447
3448 /* If this is a shared object, then look up the symbol
3449 in the hash table. If it is there, and it is already
3450 been defined, then we will not be using the entry
3451 from this shared object, so we don't need to warn.
3452 FIXME: If we see the definition in a regular object
3453 later on, we will warn, but we shouldn't. The only
3454 fix is to keep track of what warnings we are supposed
3455 to emit, and then handle them all at the end of the
3456 link. */
3457 if (dynamic)
3458 {
3459 struct elf_link_hash_entry *h;
3460
66eb6687 3461 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4ad4eba5
AM
3462
3463 /* FIXME: What about bfd_link_hash_common? */
3464 if (h != NULL
3465 && (h->root.type == bfd_link_hash_defined
3466 || h->root.type == bfd_link_hash_defweak))
3467 {
3468 /* We don't want to issue this warning. Clobber
3469 the section size so that the warning does not
3470 get copied into the output file. */
eea6121a 3471 s->size = 0;
4ad4eba5
AM
3472 continue;
3473 }
3474 }
3475
eea6121a 3476 sz = s->size;
a50b1753 3477 msg = (char *) bfd_alloc (abfd, sz + 1);
4ad4eba5
AM
3478 if (msg == NULL)
3479 goto error_return;
3480
370a0e1b 3481 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4ad4eba5
AM
3482 goto error_return;
3483
370a0e1b 3484 msg[sz] = '\0';
4ad4eba5
AM
3485
3486 if (! (_bfd_generic_link_add_one_symbol
3487 (info, abfd, name, BSF_WARNING, s, 0, msg,
66eb6687 3488 FALSE, bed->collect, NULL)))
4ad4eba5
AM
3489 goto error_return;
3490
3491 if (! info->relocatable)
3492 {
3493 /* Clobber the section size so that the warning does
3494 not get copied into the output file. */
eea6121a 3495 s->size = 0;
11d2f718
AM
3496
3497 /* Also set SEC_EXCLUDE, so that symbols defined in
3498 the warning section don't get copied to the output. */
3499 s->flags |= SEC_EXCLUDE;
4ad4eba5
AM
3500 }
3501 }
3502 }
3503 }
3504
3505 add_needed = TRUE;
3506 if (! dynamic)
3507 {
3508 /* If we are creating a shared library, create all the dynamic
3509 sections immediately. We need to attach them to something,
3510 so we attach them to this BFD, provided it is the right
3511 format. FIXME: If there are no input BFD's of the same
3512 format as the output, we can't make a shared library. */
3513 if (info->shared
66eb6687 3514 && is_elf_hash_table (htab)
f13a99db 3515 && info->output_bfd->xvec == abfd->xvec
66eb6687 3516 && !htab->dynamic_sections_created)
4ad4eba5
AM
3517 {
3518 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3519 goto error_return;
3520 }
3521 }
66eb6687 3522 else if (!is_elf_hash_table (htab))
4ad4eba5
AM
3523 goto error_return;
3524 else
3525 {
3526 asection *s;
3527 const char *soname = NULL;
7ee314fa 3528 char *audit = NULL;
4ad4eba5
AM
3529 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3530 int ret;
3531
3532 /* ld --just-symbols and dynamic objects don't mix very well.
92fd189d 3533 ld shouldn't allow it. */
4ad4eba5
AM
3534 if ((s = abfd->sections) != NULL
3535 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
92fd189d 3536 abort ();
4ad4eba5
AM
3537
3538 /* If this dynamic lib was specified on the command line with
3539 --as-needed in effect, then we don't want to add a DT_NEEDED
3540 tag unless the lib is actually used. Similary for libs brought
e56f61be
L
3541 in by another lib's DT_NEEDED. When --no-add-needed is used
3542 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3543 any dynamic library in DT_NEEDED tags in the dynamic lib at
3544 all. */
3545 add_needed = (elf_dyn_lib_class (abfd)
3546 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3547 | DYN_NO_NEEDED)) == 0;
4ad4eba5
AM
3548
3549 s = bfd_get_section_by_name (abfd, ".dynamic");
3550 if (s != NULL)
3551 {
3552 bfd_byte *dynbuf;
3553 bfd_byte *extdyn;
cb33740c 3554 unsigned int elfsec;
4ad4eba5
AM
3555 unsigned long shlink;
3556
eea6121a 3557 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
f8703194
L
3558 {
3559error_free_dyn:
3560 free (dynbuf);
3561 goto error_return;
3562 }
4ad4eba5
AM
3563
3564 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
cb33740c 3565 if (elfsec == SHN_BAD)
4ad4eba5
AM
3566 goto error_free_dyn;
3567 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3568
3569 for (extdyn = dynbuf;
eea6121a 3570 extdyn < dynbuf + s->size;
4ad4eba5
AM
3571 extdyn += bed->s->sizeof_dyn)
3572 {
3573 Elf_Internal_Dyn dyn;
3574
3575 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3576 if (dyn.d_tag == DT_SONAME)
3577 {
3578 unsigned int tagv = dyn.d_un.d_val;
3579 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3580 if (soname == NULL)
3581 goto error_free_dyn;
3582 }
3583 if (dyn.d_tag == DT_NEEDED)
3584 {
3585 struct bfd_link_needed_list *n, **pn;
3586 char *fnm, *anm;
3587 unsigned int tagv = dyn.d_un.d_val;
3588
3589 amt = sizeof (struct bfd_link_needed_list);
a50b1753 3590 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4ad4eba5
AM
3591 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3592 if (n == NULL || fnm == NULL)
3593 goto error_free_dyn;
3594 amt = strlen (fnm) + 1;
a50b1753 3595 anm = (char *) bfd_alloc (abfd, amt);
4ad4eba5
AM
3596 if (anm == NULL)
3597 goto error_free_dyn;
3598 memcpy (anm, fnm, amt);
3599 n->name = anm;
3600 n->by = abfd;
3601 n->next = NULL;
66eb6687 3602 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4ad4eba5
AM
3603 ;
3604 *pn = n;
3605 }
3606 if (dyn.d_tag == DT_RUNPATH)
3607 {
3608 struct bfd_link_needed_list *n, **pn;
3609 char *fnm, *anm;
3610 unsigned int tagv = dyn.d_un.d_val;
3611
3612 amt = sizeof (struct bfd_link_needed_list);
a50b1753 3613 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4ad4eba5
AM
3614 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3615 if (n == NULL || fnm == NULL)
3616 goto error_free_dyn;
3617 amt = strlen (fnm) + 1;
a50b1753 3618 anm = (char *) bfd_alloc (abfd, amt);
4ad4eba5
AM
3619 if (anm == NULL)
3620 goto error_free_dyn;
3621 memcpy (anm, fnm, amt);
3622 n->name = anm;
3623 n->by = abfd;
3624 n->next = NULL;
3625 for (pn = & runpath;
3626 *pn != NULL;
3627 pn = &(*pn)->next)
3628 ;
3629 *pn = n;
3630 }
3631 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3632 if (!runpath && dyn.d_tag == DT_RPATH)
3633 {
3634 struct bfd_link_needed_list *n, **pn;
3635 char *fnm, *anm;
3636 unsigned int tagv = dyn.d_un.d_val;
3637
3638 amt = sizeof (struct bfd_link_needed_list);
a50b1753 3639 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4ad4eba5
AM
3640 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3641 if (n == NULL || fnm == NULL)
3642 goto error_free_dyn;
3643 amt = strlen (fnm) + 1;
a50b1753 3644 anm = (char *) bfd_alloc (abfd, amt);
4ad4eba5 3645 if (anm == NULL)
f8703194 3646 goto error_free_dyn;
4ad4eba5
AM
3647 memcpy (anm, fnm, amt);
3648 n->name = anm;
3649 n->by = abfd;
3650 n->next = NULL;
3651 for (pn = & rpath;
3652 *pn != NULL;
3653 pn = &(*pn)->next)
3654 ;
3655 *pn = n;
3656 }
7ee314fa
AM
3657 if (dyn.d_tag == DT_AUDIT)
3658 {
3659 unsigned int tagv = dyn.d_un.d_val;
3660 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3661 }
4ad4eba5
AM
3662 }
3663
3664 free (dynbuf);
3665 }
3666
3667 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3668 frees all more recently bfd_alloc'd blocks as well. */
3669 if (runpath)
3670 rpath = runpath;
3671
3672 if (rpath)
3673 {
3674 struct bfd_link_needed_list **pn;
66eb6687 3675 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4ad4eba5
AM
3676 ;
3677 *pn = rpath;
3678 }
3679
3680 /* We do not want to include any of the sections in a dynamic
3681 object in the output file. We hack by simply clobbering the
3682 list of sections in the BFD. This could be handled more
3683 cleanly by, say, a new section flag; the existing
3684 SEC_NEVER_LOAD flag is not the one we want, because that one
3685 still implies that the section takes up space in the output
3686 file. */
3687 bfd_section_list_clear (abfd);
3688
4ad4eba5
AM
3689 /* Find the name to use in a DT_NEEDED entry that refers to this
3690 object. If the object has a DT_SONAME entry, we use it.
3691 Otherwise, if the generic linker stuck something in
3692 elf_dt_name, we use that. Otherwise, we just use the file
3693 name. */
3694 if (soname == NULL || *soname == '\0')
3695 {
3696 soname = elf_dt_name (abfd);
3697 if (soname == NULL || *soname == '\0')
3698 soname = bfd_get_filename (abfd);
3699 }
3700
3701 /* Save the SONAME because sometimes the linker emulation code
3702 will need to know it. */
3703 elf_dt_name (abfd) = soname;
3704
7e9f0867 3705 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
3706 if (ret < 0)
3707 goto error_return;
3708
3709 /* If we have already included this dynamic object in the
3710 link, just ignore it. There is no reason to include a
3711 particular dynamic object more than once. */
3712 if (ret > 0)
3713 return TRUE;
7ee314fa
AM
3714
3715 /* Save the DT_AUDIT entry for the linker emulation code. */
3716 elf_dt_audit (abfd) = audit;
4ad4eba5
AM
3717 }
3718
3719 /* If this is a dynamic object, we always link against the .dynsym
3720 symbol table, not the .symtab symbol table. The dynamic linker
3721 will only see the .dynsym symbol table, so there is no reason to
3722 look at .symtab for a dynamic object. */
3723
3724 if (! dynamic || elf_dynsymtab (abfd) == 0)
3725 hdr = &elf_tdata (abfd)->symtab_hdr;
3726 else
3727 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3728
3729 symcount = hdr->sh_size / bed->s->sizeof_sym;
3730
3731 /* The sh_info field of the symtab header tells us where the
3732 external symbols start. We don't care about the local symbols at
3733 this point. */
3734 if (elf_bad_symtab (abfd))
3735 {
3736 extsymcount = symcount;
3737 extsymoff = 0;
3738 }
3739 else
3740 {
3741 extsymcount = symcount - hdr->sh_info;
3742 extsymoff = hdr->sh_info;
3743 }
3744
3745 sym_hash = NULL;
3746 if (extsymcount != 0)
3747 {
3748 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3749 NULL, NULL, NULL);
3750 if (isymbuf == NULL)
3751 goto error_return;
3752
3753 /* We store a pointer to the hash table entry for each external
3754 symbol. */
3755 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
a50b1753 3756 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
4ad4eba5
AM
3757 if (sym_hash == NULL)
3758 goto error_free_sym;
3759 elf_sym_hashes (abfd) = sym_hash;
3760 }
3761
3762 if (dynamic)
3763 {
3764 /* Read in any version definitions. */
fc0e6df6
PB
3765 if (!_bfd_elf_slurp_version_tables (abfd,
3766 info->default_imported_symver))
4ad4eba5
AM
3767 goto error_free_sym;
3768
3769 /* Read in the symbol versions, but don't bother to convert them
3770 to internal format. */
3771 if (elf_dynversym (abfd) != 0)
3772 {
3773 Elf_Internal_Shdr *versymhdr;
3774
3775 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
a50b1753 3776 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4ad4eba5
AM
3777 if (extversym == NULL)
3778 goto error_free_sym;
3779 amt = versymhdr->sh_size;
3780 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3781 || bfd_bread (extversym, amt, abfd) != amt)
3782 goto error_free_vers;
3783 }
3784 }
3785
66eb6687
AM
3786 /* If we are loading an as-needed shared lib, save the symbol table
3787 state before we start adding symbols. If the lib turns out
3788 to be unneeded, restore the state. */
3789 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3790 {
3791 unsigned int i;
3792 size_t entsize;
3793
3794 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3795 {
3796 struct bfd_hash_entry *p;
2de92251 3797 struct elf_link_hash_entry *h;
66eb6687
AM
3798
3799 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
2de92251
AM
3800 {
3801 h = (struct elf_link_hash_entry *) p;
3802 entsize += htab->root.table.entsize;
3803 if (h->root.type == bfd_link_hash_warning)
3804 entsize += htab->root.table.entsize;
3805 }
66eb6687
AM
3806 }
3807
3808 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3809 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3810 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3811 if (old_tab == NULL)
3812 goto error_free_vers;
3813
3814 /* Remember the current objalloc pointer, so that all mem for
3815 symbols added can later be reclaimed. */
3816 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3817 if (alloc_mark == NULL)
3818 goto error_free_vers;
3819
5061a885
AM
3820 /* Make a special call to the linker "notice" function to
3821 tell it that we are about to handle an as-needed lib. */
3822 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3823 notice_as_needed))
9af2a943 3824 goto error_free_vers;
5061a885 3825
66eb6687
AM
3826 /* Clone the symbol table and sym hashes. Remember some
3827 pointers into the symbol table, and dynamic symbol count. */
3828 old_hash = (char *) old_tab + tabsize;
3829 old_ent = (char *) old_hash + hashsize;
3830 memcpy (old_tab, htab->root.table.table, tabsize);
3831 memcpy (old_hash, sym_hash, hashsize);
3832 old_undefs = htab->root.undefs;
3833 old_undefs_tail = htab->root.undefs_tail;
4f87808c
AM
3834 old_table = htab->root.table.table;
3835 old_size = htab->root.table.size;
3836 old_count = htab->root.table.count;
66eb6687
AM
3837 old_dynsymcount = htab->dynsymcount;
3838
3839 for (i = 0; i < htab->root.table.size; i++)
3840 {
3841 struct bfd_hash_entry *p;
2de92251 3842 struct elf_link_hash_entry *h;
66eb6687
AM
3843
3844 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3845 {
3846 memcpy (old_ent, p, htab->root.table.entsize);
3847 old_ent = (char *) old_ent + htab->root.table.entsize;
2de92251
AM
3848 h = (struct elf_link_hash_entry *) p;
3849 if (h->root.type == bfd_link_hash_warning)
3850 {
3851 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3852 old_ent = (char *) old_ent + htab->root.table.entsize;
3853 }
66eb6687
AM
3854 }
3855 }
3856 }
4ad4eba5 3857
66eb6687 3858 weaks = NULL;
4ad4eba5
AM
3859 ever = extversym != NULL ? extversym + extsymoff : NULL;
3860 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3861 isym < isymend;
3862 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3863 {
3864 int bind;
3865 bfd_vma value;
af44c138 3866 asection *sec, *new_sec;
4ad4eba5
AM
3867 flagword flags;
3868 const char *name;
3869 struct elf_link_hash_entry *h;
3870 bfd_boolean definition;
3871 bfd_boolean size_change_ok;
3872 bfd_boolean type_change_ok;
3873 bfd_boolean new_weakdef;
3874 bfd_boolean override;
a4d8e49b 3875 bfd_boolean common;
4ad4eba5
AM
3876 unsigned int old_alignment;
3877 bfd *old_bfd;
3cbc5de0 3878 bfd * undef_bfd = NULL;
4ad4eba5
AM
3879
3880 override = FALSE;
3881
3882 flags = BSF_NO_FLAGS;
3883 sec = NULL;
3884 value = isym->st_value;
3885 *sym_hash = NULL;
a4d8e49b 3886 common = bed->common_definition (isym);
4ad4eba5
AM
3887
3888 bind = ELF_ST_BIND (isym->st_info);
3e7a7d11 3889 switch (bind)
4ad4eba5 3890 {
3e7a7d11 3891 case STB_LOCAL:
4ad4eba5
AM
3892 /* This should be impossible, since ELF requires that all
3893 global symbols follow all local symbols, and that sh_info
3894 point to the first global symbol. Unfortunately, Irix 5
3895 screws this up. */
3896 continue;
3e7a7d11
NC
3897
3898 case STB_GLOBAL:
a4d8e49b 3899 if (isym->st_shndx != SHN_UNDEF && !common)
4ad4eba5 3900 flags = BSF_GLOBAL;
3e7a7d11
NC
3901 break;
3902
3903 case STB_WEAK:
3904 flags = BSF_WEAK;
3905 break;
3906
3907 case STB_GNU_UNIQUE:
3908 flags = BSF_GNU_UNIQUE;
3909 break;
3910
3911 default:
4ad4eba5 3912 /* Leave it up to the processor backend. */
3e7a7d11 3913 break;
4ad4eba5
AM
3914 }
3915
3916 if (isym->st_shndx == SHN_UNDEF)
3917 sec = bfd_und_section_ptr;
cb33740c
AM
3918 else if (isym->st_shndx == SHN_ABS)
3919 sec = bfd_abs_section_ptr;
3920 else if (isym->st_shndx == SHN_COMMON)
3921 {
3922 sec = bfd_com_section_ptr;
3923 /* What ELF calls the size we call the value. What ELF
3924 calls the value we call the alignment. */
3925 value = isym->st_size;
3926 }
3927 else
4ad4eba5
AM
3928 {
3929 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3930 if (sec == NULL)
3931 sec = bfd_abs_section_ptr;
529fcb95
PB
3932 else if (sec->kept_section)
3933 {
e5d08002
L
3934 /* Symbols from discarded section are undefined. We keep
3935 its visibility. */
529fcb95
PB
3936 sec = bfd_und_section_ptr;
3937 isym->st_shndx = SHN_UNDEF;
3938 }
4ad4eba5
AM
3939 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3940 value -= sec->vma;
3941 }
4ad4eba5
AM
3942
3943 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3944 isym->st_name);
3945 if (name == NULL)
3946 goto error_free_vers;
3947
3948 if (isym->st_shndx == SHN_COMMON
6a4a0940
JJ
3949 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3950 && !info->relocatable)
4ad4eba5
AM
3951 {
3952 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3953
3954 if (tcomm == NULL)
3955 {
3496cb2a
L
3956 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3957 (SEC_ALLOC
3958 | SEC_IS_COMMON
3959 | SEC_LINKER_CREATED
3960 | SEC_THREAD_LOCAL));
3961 if (tcomm == NULL)
4ad4eba5
AM
3962 goto error_free_vers;
3963 }
3964 sec = tcomm;
3965 }
66eb6687 3966 else if (bed->elf_add_symbol_hook)
4ad4eba5 3967 {
66eb6687
AM
3968 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3969 &sec, &value))
4ad4eba5
AM
3970 goto error_free_vers;
3971
3972 /* The hook function sets the name to NULL if this symbol
3973 should be skipped for some reason. */
3974 if (name == NULL)
3975 continue;
3976 }
3977
3978 /* Sanity check that all possibilities were handled. */
3979 if (sec == NULL)
3980 {
3981 bfd_set_error (bfd_error_bad_value);
3982 goto error_free_vers;
3983 }
3984
3985 if (bfd_is_und_section (sec)
3986 || bfd_is_com_section (sec))
3987 definition = FALSE;
3988 else
3989 definition = TRUE;
3990
3991 size_change_ok = FALSE;
66eb6687 3992 type_change_ok = bed->type_change_ok;
4ad4eba5
AM
3993 old_alignment = 0;
3994 old_bfd = NULL;
af44c138 3995 new_sec = sec;
4ad4eba5 3996
66eb6687 3997 if (is_elf_hash_table (htab))
4ad4eba5
AM
3998 {
3999 Elf_Internal_Versym iver;
4000 unsigned int vernum = 0;
4001 bfd_boolean skip;
4002
b918acf9
NC
4003 /* If this is a definition of a symbol which was previously
4004 referenced in a non-weak manner then make a note of the bfd
4005 that contained the reference. This is used if we need to
4006 refer to the source of the reference later on. */
4007 if (! bfd_is_und_section (sec))
4008 {
4009 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4010
4011 if (h != NULL
4012 && h->root.type == bfd_link_hash_undefined
4013 && h->root.u.undef.abfd)
4014 undef_bfd = h->root.u.undef.abfd;
4015 }
4016
fc0e6df6 4017 if (ever == NULL)
4ad4eba5 4018 {
fc0e6df6
PB
4019 if (info->default_imported_symver)
4020 /* Use the default symbol version created earlier. */
4021 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4022 else
4023 iver.vs_vers = 0;
4024 }
4025 else
4026 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4027
4028 vernum = iver.vs_vers & VERSYM_VERSION;
4029
4030 /* If this is a hidden symbol, or if it is not version
4031 1, we append the version name to the symbol name.
cc86ff91
EB
4032 However, we do not modify a non-hidden absolute symbol
4033 if it is not a function, because it might be the version
4034 symbol itself. FIXME: What if it isn't? */
fc0e6df6 4035 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
fcb93ecf
PB
4036 || (vernum > 1
4037 && (!bfd_is_abs_section (sec)
4038 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
fc0e6df6
PB
4039 {
4040 const char *verstr;
4041 size_t namelen, verlen, newlen;
4042 char *newname, *p;
4043
4044 if (isym->st_shndx != SHN_UNDEF)
4ad4eba5 4045 {
fc0e6df6
PB
4046 if (vernum > elf_tdata (abfd)->cverdefs)
4047 verstr = NULL;
4048 else if (vernum > 1)
4049 verstr =
4050 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4051 else
4052 verstr = "";
4ad4eba5 4053
fc0e6df6 4054 if (verstr == NULL)
4ad4eba5 4055 {
fc0e6df6
PB
4056 (*_bfd_error_handler)
4057 (_("%B: %s: invalid version %u (max %d)"),
4058 abfd, name, vernum,
4059 elf_tdata (abfd)->cverdefs);
4060 bfd_set_error (bfd_error_bad_value);
4061 goto error_free_vers;
4ad4eba5 4062 }
fc0e6df6
PB
4063 }
4064 else
4065 {
4066 /* We cannot simply test for the number of
4067 entries in the VERNEED section since the
4068 numbers for the needed versions do not start
4069 at 0. */
4070 Elf_Internal_Verneed *t;
4071
4072 verstr = NULL;
4073 for (t = elf_tdata (abfd)->verref;
4074 t != NULL;
4075 t = t->vn_nextref)
4ad4eba5 4076 {
fc0e6df6 4077 Elf_Internal_Vernaux *a;
4ad4eba5 4078
fc0e6df6
PB
4079 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4080 {
4081 if (a->vna_other == vernum)
4ad4eba5 4082 {
fc0e6df6
PB
4083 verstr = a->vna_nodename;
4084 break;
4ad4eba5 4085 }
4ad4eba5 4086 }
fc0e6df6
PB
4087 if (a != NULL)
4088 break;
4089 }
4090 if (verstr == NULL)
4091 {
4092 (*_bfd_error_handler)
4093 (_("%B: %s: invalid needed version %d"),
4094 abfd, name, vernum);
4095 bfd_set_error (bfd_error_bad_value);
4096 goto error_free_vers;
4ad4eba5 4097 }
4ad4eba5 4098 }
fc0e6df6
PB
4099
4100 namelen = strlen (name);
4101 verlen = strlen (verstr);
4102 newlen = namelen + verlen + 2;
4103 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4104 && isym->st_shndx != SHN_UNDEF)
4105 ++newlen;
4106
a50b1753 4107 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
fc0e6df6
PB
4108 if (newname == NULL)
4109 goto error_free_vers;
4110 memcpy (newname, name, namelen);
4111 p = newname + namelen;
4112 *p++ = ELF_VER_CHR;
4113 /* If this is a defined non-hidden version symbol,
4114 we add another @ to the name. This indicates the
4115 default version of the symbol. */
4116 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4117 && isym->st_shndx != SHN_UNDEF)
4118 *p++ = ELF_VER_CHR;
4119 memcpy (p, verstr, verlen + 1);
4120
4121 name = newname;
4ad4eba5
AM
4122 }
4123
b918acf9
NC
4124 /* If necessary, make a second attempt to locate the bfd
4125 containing an unresolved, non-weak reference to the
4126 current symbol. */
4127 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
3cbc5de0
NC
4128 {
4129 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4130
4131 if (h != NULL
b918acf9 4132 && h->root.type == bfd_link_hash_undefined
3cbc5de0
NC
4133 && h->root.u.undef.abfd)
4134 undef_bfd = h->root.u.undef.abfd;
4135 }
4136
af44c138
L
4137 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4138 &value, &old_alignment,
4ad4eba5
AM
4139 sym_hash, &skip, &override,
4140 &type_change_ok, &size_change_ok))
4141 goto error_free_vers;
4142
4143 if (skip)
4144 continue;
4145
4146 if (override)
4147 definition = FALSE;
4148
4149 h = *sym_hash;
4150 while (h->root.type == bfd_link_hash_indirect
4151 || h->root.type == bfd_link_hash_warning)
4152 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4153
4154 /* Remember the old alignment if this is a common symbol, so
4155 that we don't reduce the alignment later on. We can't
4156 check later, because _bfd_generic_link_add_one_symbol
4157 will set a default for the alignment which we want to
4158 override. We also remember the old bfd where the existing
4159 definition comes from. */
4160 switch (h->root.type)
4161 {
4162 default:
4163 break;
4164
4165 case bfd_link_hash_defined:
4166 case bfd_link_hash_defweak:
4167 old_bfd = h->root.u.def.section->owner;
4168 break;
4169
4170 case bfd_link_hash_common:
4171 old_bfd = h->root.u.c.p->section->owner;
4172 old_alignment = h->root.u.c.p->alignment_power;
4173 break;
4174 }
4175
4176 if (elf_tdata (abfd)->verdef != NULL
4177 && ! override
4178 && vernum > 1
4179 && definition)
4180 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4181 }
4182
4183 if (! (_bfd_generic_link_add_one_symbol
66eb6687 4184 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4ad4eba5
AM
4185 (struct bfd_link_hash_entry **) sym_hash)))
4186 goto error_free_vers;
4187
4188 h = *sym_hash;
4189 while (h->root.type == bfd_link_hash_indirect
4190 || h->root.type == bfd_link_hash_warning)
4191 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3e7a7d11 4192
4ad4eba5 4193 *sym_hash = h;
3e7a7d11 4194 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4ad4eba5
AM
4195
4196 new_weakdef = FALSE;
4197 if (dynamic
4198 && definition
4199 && (flags & BSF_WEAK) != 0
fcb93ecf 4200 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
66eb6687 4201 && is_elf_hash_table (htab)
f6e332e6 4202 && h->u.weakdef == NULL)
4ad4eba5
AM
4203 {
4204 /* Keep a list of all weak defined non function symbols from
4205 a dynamic object, using the weakdef field. Later in this
4206 function we will set the weakdef field to the correct
4207 value. We only put non-function symbols from dynamic
4208 objects on this list, because that happens to be the only
4209 time we need to know the normal symbol corresponding to a
4210 weak symbol, and the information is time consuming to
4211 figure out. If the weakdef field is not already NULL,
4212 then this symbol was already defined by some previous
4213 dynamic object, and we will be using that previous
4214 definition anyhow. */
4215
f6e332e6 4216 h->u.weakdef = weaks;
4ad4eba5
AM
4217 weaks = h;
4218 new_weakdef = TRUE;
4219 }
4220
4221 /* Set the alignment of a common symbol. */
a4d8e49b 4222 if ((common || bfd_is_com_section (sec))
4ad4eba5
AM
4223 && h->root.type == bfd_link_hash_common)
4224 {
4225 unsigned int align;
4226
a4d8e49b 4227 if (common)
af44c138
L
4228 align = bfd_log2 (isym->st_value);
4229 else
4230 {
4231 /* The new symbol is a common symbol in a shared object.
4232 We need to get the alignment from the section. */
4233 align = new_sec->alignment_power;
4234 }
4ad4eba5
AM
4235 if (align > old_alignment
4236 /* Permit an alignment power of zero if an alignment of one
4237 is specified and no other alignments have been specified. */
4238 || (isym->st_value == 1 && old_alignment == 0))
4239 h->root.u.c.p->alignment_power = align;
4240 else
4241 h->root.u.c.p->alignment_power = old_alignment;
4242 }
4243
66eb6687 4244 if (is_elf_hash_table (htab))
4ad4eba5 4245 {
4ad4eba5 4246 bfd_boolean dynsym;
4ad4eba5
AM
4247
4248 /* Check the alignment when a common symbol is involved. This
4249 can change when a common symbol is overridden by a normal
4250 definition or a common symbol is ignored due to the old
4251 normal definition. We need to make sure the maximum
4252 alignment is maintained. */
a4d8e49b 4253 if ((old_alignment || common)
4ad4eba5
AM
4254 && h->root.type != bfd_link_hash_common)
4255 {
4256 unsigned int common_align;
4257 unsigned int normal_align;
4258 unsigned int symbol_align;
4259 bfd *normal_bfd;
4260 bfd *common_bfd;
4261
4262 symbol_align = ffs (h->root.u.def.value) - 1;
4263 if (h->root.u.def.section->owner != NULL
4264 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4265 {
4266 normal_align = h->root.u.def.section->alignment_power;
4267 if (normal_align > symbol_align)
4268 normal_align = symbol_align;
4269 }
4270 else
4271 normal_align = symbol_align;
4272
4273 if (old_alignment)
4274 {
4275 common_align = old_alignment;
4276 common_bfd = old_bfd;
4277 normal_bfd = abfd;
4278 }
4279 else
4280 {
4281 common_align = bfd_log2 (isym->st_value);
4282 common_bfd = abfd;
4283 normal_bfd = old_bfd;
4284 }
4285
4286 if (normal_align < common_align)
d07676f8
NC
4287 {
4288 /* PR binutils/2735 */
4289 if (normal_bfd == NULL)
4290 (*_bfd_error_handler)
4291 (_("Warning: alignment %u of common symbol `%s' in %B"
4292 " is greater than the alignment (%u) of its section %A"),
4293 common_bfd, h->root.u.def.section,
4294 1 << common_align, name, 1 << normal_align);
4295 else
4296 (*_bfd_error_handler)
4297 (_("Warning: alignment %u of symbol `%s' in %B"
4298 " is smaller than %u in %B"),
4299 normal_bfd, common_bfd,
4300 1 << normal_align, name, 1 << common_align);
4301 }
4ad4eba5
AM
4302 }
4303
83ad0046
L
4304 /* Remember the symbol size if it isn't undefined. */
4305 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4ad4eba5
AM
4306 && (definition || h->size == 0))
4307 {
83ad0046
L
4308 if (h->size != 0
4309 && h->size != isym->st_size
4310 && ! size_change_ok)
4ad4eba5 4311 (*_bfd_error_handler)
d003868e
AM
4312 (_("Warning: size of symbol `%s' changed"
4313 " from %lu in %B to %lu in %B"),
4314 old_bfd, abfd,
4ad4eba5 4315 name, (unsigned long) h->size,
d003868e 4316 (unsigned long) isym->st_size);
4ad4eba5
AM
4317
4318 h->size = isym->st_size;
4319 }
4320
4321 /* If this is a common symbol, then we always want H->SIZE
4322 to be the size of the common symbol. The code just above
4323 won't fix the size if a common symbol becomes larger. We
4324 don't warn about a size change here, because that is
fcb93ecf
PB
4325 covered by --warn-common. Allow changed between different
4326 function types. */
4ad4eba5
AM
4327 if (h->root.type == bfd_link_hash_common)
4328 h->size = h->root.u.c.size;
4329
4330 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4331 && (definition || h->type == STT_NOTYPE))
4332 {
2955ec4c
L
4333 unsigned int type = ELF_ST_TYPE (isym->st_info);
4334
4335 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4336 symbol. */
4337 if (type == STT_GNU_IFUNC
4338 && (abfd->flags & DYNAMIC) != 0)
4339 type = STT_FUNC;
4ad4eba5 4340
2955ec4c
L
4341 if (h->type != type)
4342 {
4343 if (h->type != STT_NOTYPE && ! type_change_ok)
4344 (*_bfd_error_handler)
4345 (_("Warning: type of symbol `%s' changed"
4346 " from %d to %d in %B"),
4347 abfd, name, h->type, type);
4348
4349 h->type = type;
4350 }
4ad4eba5
AM
4351 }
4352
54ac0771
L
4353 /* Merge st_other field. */
4354 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4ad4eba5
AM
4355
4356 /* Set a flag in the hash table entry indicating the type of
4357 reference or definition we just found. Keep a count of
4358 the number of dynamic symbols we find. A dynamic symbol
4359 is one which is referenced or defined by both a regular
4360 object and a shared object. */
4ad4eba5
AM
4361 dynsym = FALSE;
4362 if (! dynamic)
4363 {
4364 if (! definition)
4365 {
f5385ebf 4366 h->ref_regular = 1;
4ad4eba5 4367 if (bind != STB_WEAK)
f5385ebf 4368 h->ref_regular_nonweak = 1;
4ad4eba5
AM
4369 }
4370 else
d8880531
L
4371 {
4372 h->def_regular = 1;
4373 if (h->def_dynamic)
4374 {
4375 h->def_dynamic = 0;
4376 h->ref_dynamic = 1;
4377 h->dynamic_def = 1;
4378 }
4379 }
4ad4eba5 4380 if (! info->executable
f5385ebf
AM
4381 || h->def_dynamic
4382 || h->ref_dynamic)
4ad4eba5
AM
4383 dynsym = TRUE;
4384 }
4385 else
4386 {
4387 if (! definition)
f5385ebf 4388 h->ref_dynamic = 1;
4ad4eba5 4389 else
f5385ebf
AM
4390 h->def_dynamic = 1;
4391 if (h->def_regular
4392 || h->ref_regular
f6e332e6 4393 || (h->u.weakdef != NULL
4ad4eba5 4394 && ! new_weakdef
f6e332e6 4395 && h->u.weakdef->dynindx != -1))
4ad4eba5
AM
4396 dynsym = TRUE;
4397 }
4398
b2064611 4399 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
92b7c7b6
L
4400 {
4401 /* We don't want to make debug symbol dynamic. */
92b7c7b6
L
4402 dynsym = FALSE;
4403 }
4404
4ad4eba5
AM
4405 /* Check to see if we need to add an indirect symbol for
4406 the default name. */
4407 if (definition || h->root.type == bfd_link_hash_common)
4408 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4409 &sec, &value, &dynsym,
4410 override))
4411 goto error_free_vers;
4412
4413 if (definition && !dynamic)
4414 {
4415 char *p = strchr (name, ELF_VER_CHR);
4416 if (p != NULL && p[1] != ELF_VER_CHR)
4417 {
4418 /* Queue non-default versions so that .symver x, x@FOO
4419 aliases can be checked. */
66eb6687 4420 if (!nondeflt_vers)
4ad4eba5 4421 {
66eb6687
AM
4422 amt = ((isymend - isym + 1)
4423 * sizeof (struct elf_link_hash_entry *));
a50b1753
NC
4424 nondeflt_vers =
4425 (struct elf_link_hash_entry **) bfd_malloc (amt);
14b1c01e
AM
4426 if (!nondeflt_vers)
4427 goto error_free_vers;
4ad4eba5 4428 }
66eb6687 4429 nondeflt_vers[nondeflt_vers_cnt++] = h;
4ad4eba5
AM
4430 }
4431 }
4432
4433 if (dynsym && h->dynindx == -1)
4434 {
c152c796 4435 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5 4436 goto error_free_vers;
f6e332e6 4437 if (h->u.weakdef != NULL
4ad4eba5 4438 && ! new_weakdef
f6e332e6 4439 && h->u.weakdef->dynindx == -1)
4ad4eba5 4440 {
66eb6687 4441 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4ad4eba5
AM
4442 goto error_free_vers;
4443 }
4444 }
4445 else if (dynsym && h->dynindx != -1)
4446 /* If the symbol already has a dynamic index, but
4447 visibility says it should not be visible, turn it into
4448 a local symbol. */
4449 switch (ELF_ST_VISIBILITY (h->other))
4450 {
4451 case STV_INTERNAL:
4452 case STV_HIDDEN:
4453 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4454 dynsym = FALSE;
4455 break;
4456 }
4457
4458 if (!add_needed
4459 && definition
010e5ae2
AM
4460 && ((dynsym
4461 && h->ref_regular)
4462 || (h->ref_dynamic
4463 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4464 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4ad4eba5
AM
4465 {
4466 int ret;
4467 const char *soname = elf_dt_name (abfd);
4468
4469 /* A symbol from a library loaded via DT_NEEDED of some
4470 other library is referenced by a regular object.
e56f61be 4471 Add a DT_NEEDED entry for it. Issue an error if
b918acf9
NC
4472 --no-add-needed is used and the reference was not
4473 a weak one. */
4474 if (undef_bfd != NULL
4475 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
e56f61be
L
4476 {
4477 (*_bfd_error_handler)
3cbc5de0 4478 (_("%B: undefined reference to symbol '%s'"),
b918acf9 4479 undef_bfd, name);
3cbc5de0
NC
4480 (*_bfd_error_handler)
4481 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
d003868e 4482 abfd, name);
3cbc5de0 4483 bfd_set_error (bfd_error_invalid_operation);
e56f61be
L
4484 goto error_free_vers;
4485 }
4486
a50b1753
NC
4487 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4488 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
a5db907e 4489
4ad4eba5 4490 add_needed = TRUE;
7e9f0867 4491 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
4492 if (ret < 0)
4493 goto error_free_vers;
4494
4495 BFD_ASSERT (ret == 0);
4496 }
4497 }
4498 }
4499
66eb6687
AM
4500 if (extversym != NULL)
4501 {
4502 free (extversym);
4503 extversym = NULL;
4504 }
4505
4506 if (isymbuf != NULL)
4507 {
4508 free (isymbuf);
4509 isymbuf = NULL;
4510 }
4511
4512 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4513 {
4514 unsigned int i;
4515
4516 /* Restore the symbol table. */
97fed1c9
JJ
4517 if (bed->as_needed_cleanup)
4518 (*bed->as_needed_cleanup) (abfd, info);
66eb6687
AM
4519 old_hash = (char *) old_tab + tabsize;
4520 old_ent = (char *) old_hash + hashsize;
4521 sym_hash = elf_sym_hashes (abfd);
4f87808c
AM
4522 htab->root.table.table = old_table;
4523 htab->root.table.size = old_size;
4524 htab->root.table.count = old_count;
66eb6687
AM
4525 memcpy (htab->root.table.table, old_tab, tabsize);
4526 memcpy (sym_hash, old_hash, hashsize);
4527 htab->root.undefs = old_undefs;
4528 htab->root.undefs_tail = old_undefs_tail;
4529 for (i = 0; i < htab->root.table.size; i++)
4530 {
4531 struct bfd_hash_entry *p;
4532 struct elf_link_hash_entry *h;
4533
4534 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4535 {
4536 h = (struct elf_link_hash_entry *) p;
2de92251
AM
4537 if (h->root.type == bfd_link_hash_warning)
4538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
66eb6687
AM
4539 if (h->dynindx >= old_dynsymcount)
4540 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
2de92251 4541
66eb6687
AM
4542 memcpy (p, old_ent, htab->root.table.entsize);
4543 old_ent = (char *) old_ent + htab->root.table.entsize;
2de92251
AM
4544 h = (struct elf_link_hash_entry *) p;
4545 if (h->root.type == bfd_link_hash_warning)
4546 {
4547 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4548 old_ent = (char *) old_ent + htab->root.table.entsize;
4549 }
66eb6687
AM
4550 }
4551 }
4552
5061a885
AM
4553 /* Make a special call to the linker "notice" function to
4554 tell it that symbols added for crefs may need to be removed. */
4555 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4556 notice_not_needed))
9af2a943 4557 goto error_free_vers;
5061a885 4558
66eb6687
AM
4559 free (old_tab);
4560 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4561 alloc_mark);
4562 if (nondeflt_vers != NULL)
4563 free (nondeflt_vers);
4564 return TRUE;
4565 }
2de92251 4566
66eb6687
AM
4567 if (old_tab != NULL)
4568 {
5061a885
AM
4569 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4570 notice_needed))
9af2a943 4571 goto error_free_vers;
66eb6687
AM
4572 free (old_tab);
4573 old_tab = NULL;
4574 }
4575
4ad4eba5
AM
4576 /* Now that all the symbols from this input file are created, handle
4577 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4578 if (nondeflt_vers != NULL)
4579 {
4580 bfd_size_type cnt, symidx;
4581
4582 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4583 {
4584 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4585 char *shortname, *p;
4586
4587 p = strchr (h->root.root.string, ELF_VER_CHR);
4588 if (p == NULL
4589 || (h->root.type != bfd_link_hash_defined
4590 && h->root.type != bfd_link_hash_defweak))
4591 continue;
4592
4593 amt = p - h->root.root.string;
a50b1753 4594 shortname = (char *) bfd_malloc (amt + 1);
14b1c01e
AM
4595 if (!shortname)
4596 goto error_free_vers;
4ad4eba5
AM
4597 memcpy (shortname, h->root.root.string, amt);
4598 shortname[amt] = '\0';
4599
4600 hi = (struct elf_link_hash_entry *)
66eb6687 4601 bfd_link_hash_lookup (&htab->root, shortname,
4ad4eba5
AM
4602 FALSE, FALSE, FALSE);
4603 if (hi != NULL
4604 && hi->root.type == h->root.type
4605 && hi->root.u.def.value == h->root.u.def.value
4606 && hi->root.u.def.section == h->root.u.def.section)
4607 {
4608 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4609 hi->root.type = bfd_link_hash_indirect;
4610 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
fcfa13d2 4611 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4ad4eba5
AM
4612 sym_hash = elf_sym_hashes (abfd);
4613 if (sym_hash)
4614 for (symidx = 0; symidx < extsymcount; ++symidx)
4615 if (sym_hash[symidx] == hi)
4616 {
4617 sym_hash[symidx] = h;
4618 break;
4619 }
4620 }
4621 free (shortname);
4622 }
4623 free (nondeflt_vers);
4624 nondeflt_vers = NULL;
4625 }
4626
4ad4eba5
AM
4627 /* Now set the weakdefs field correctly for all the weak defined
4628 symbols we found. The only way to do this is to search all the
4629 symbols. Since we only need the information for non functions in
4630 dynamic objects, that's the only time we actually put anything on
4631 the list WEAKS. We need this information so that if a regular
4632 object refers to a symbol defined weakly in a dynamic object, the
4633 real symbol in the dynamic object is also put in the dynamic
4634 symbols; we also must arrange for both symbols to point to the
4635 same memory location. We could handle the general case of symbol
4636 aliasing, but a general symbol alias can only be generated in
4637 assembler code, handling it correctly would be very time
4638 consuming, and other ELF linkers don't handle general aliasing
4639 either. */
4640 if (weaks != NULL)
4641 {
4642 struct elf_link_hash_entry **hpp;
4643 struct elf_link_hash_entry **hppend;
4644 struct elf_link_hash_entry **sorted_sym_hash;
4645 struct elf_link_hash_entry *h;
4646 size_t sym_count;
4647
4648 /* Since we have to search the whole symbol list for each weak
4649 defined symbol, search time for N weak defined symbols will be
4650 O(N^2). Binary search will cut it down to O(NlogN). */
4651 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
a50b1753 4652 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4ad4eba5
AM
4653 if (sorted_sym_hash == NULL)
4654 goto error_return;
4655 sym_hash = sorted_sym_hash;
4656 hpp = elf_sym_hashes (abfd);
4657 hppend = hpp + extsymcount;
4658 sym_count = 0;
4659 for (; hpp < hppend; hpp++)
4660 {
4661 h = *hpp;
4662 if (h != NULL
4663 && h->root.type == bfd_link_hash_defined
fcb93ecf 4664 && !bed->is_function_type (h->type))
4ad4eba5
AM
4665 {
4666 *sym_hash = h;
4667 sym_hash++;
4668 sym_count++;
4669 }
4670 }
4671
4672 qsort (sorted_sym_hash, sym_count,
4673 sizeof (struct elf_link_hash_entry *),
4674 elf_sort_symbol);
4675
4676 while (weaks != NULL)
4677 {
4678 struct elf_link_hash_entry *hlook;
4679 asection *slook;
4680 bfd_vma vlook;
4681 long ilook;
4682 size_t i, j, idx;
4683
4684 hlook = weaks;
f6e332e6
AM
4685 weaks = hlook->u.weakdef;
4686 hlook->u.weakdef = NULL;
4ad4eba5
AM
4687
4688 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4689 || hlook->root.type == bfd_link_hash_defweak
4690 || hlook->root.type == bfd_link_hash_common
4691 || hlook->root.type == bfd_link_hash_indirect);
4692 slook = hlook->root.u.def.section;
4693 vlook = hlook->root.u.def.value;
4694
4695 ilook = -1;
4696 i = 0;
4697 j = sym_count;
4698 while (i < j)
4699 {
4700 bfd_signed_vma vdiff;
4701 idx = (i + j) / 2;
4702 h = sorted_sym_hash [idx];
4703 vdiff = vlook - h->root.u.def.value;
4704 if (vdiff < 0)
4705 j = idx;
4706 else if (vdiff > 0)
4707 i = idx + 1;
4708 else
4709 {
a9b881be 4710 long sdiff = slook->id - h->root.u.def.section->id;
4ad4eba5
AM
4711 if (sdiff < 0)
4712 j = idx;
4713 else if (sdiff > 0)
4714 i = idx + 1;
4715 else
4716 {
4717 ilook = idx;
4718 break;
4719 }
4720 }
4721 }
4722
4723 /* We didn't find a value/section match. */
4724 if (ilook == -1)
4725 continue;
4726
4727 for (i = ilook; i < sym_count; i++)
4728 {
4729 h = sorted_sym_hash [i];
4730
4731 /* Stop if value or section doesn't match. */
4732 if (h->root.u.def.value != vlook
4733 || h->root.u.def.section != slook)
4734 break;
4735 else if (h != hlook)
4736 {
f6e332e6 4737 hlook->u.weakdef = h;
4ad4eba5
AM
4738
4739 /* If the weak definition is in the list of dynamic
4740 symbols, make sure the real definition is put
4741 there as well. */
4742 if (hlook->dynindx != -1 && h->dynindx == -1)
4743 {
c152c796 4744 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4dd07732
AM
4745 {
4746 err_free_sym_hash:
4747 free (sorted_sym_hash);
4748 goto error_return;
4749 }
4ad4eba5
AM
4750 }
4751
4752 /* If the real definition is in the list of dynamic
4753 symbols, make sure the weak definition is put
4754 there as well. If we don't do this, then the
4755 dynamic loader might not merge the entries for the
4756 real definition and the weak definition. */
4757 if (h->dynindx != -1 && hlook->dynindx == -1)
4758 {
c152c796 4759 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4dd07732 4760 goto err_free_sym_hash;
4ad4eba5
AM
4761 }
4762 break;
4763 }
4764 }
4765 }
4766
4767 free (sorted_sym_hash);
4768 }
4769
33177bb1
AM
4770 if (bed->check_directives
4771 && !(*bed->check_directives) (abfd, info))
4772 return FALSE;
85fbca6a 4773
4ad4eba5
AM
4774 /* If this object is the same format as the output object, and it is
4775 not a shared library, then let the backend look through the
4776 relocs.
4777
4778 This is required to build global offset table entries and to
4779 arrange for dynamic relocs. It is not required for the
4780 particular common case of linking non PIC code, even when linking
4781 against shared libraries, but unfortunately there is no way of
4782 knowing whether an object file has been compiled PIC or not.
4783 Looking through the relocs is not particularly time consuming.
4784 The problem is that we must either (1) keep the relocs in memory,
4785 which causes the linker to require additional runtime memory or
4786 (2) read the relocs twice from the input file, which wastes time.
4787 This would be a good case for using mmap.
4788
4789 I have no idea how to handle linking PIC code into a file of a
4790 different format. It probably can't be done. */
4ad4eba5 4791 if (! dynamic
66eb6687 4792 && is_elf_hash_table (htab)
13285a1b 4793 && bed->check_relocs != NULL
f13a99db 4794 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4ad4eba5
AM
4795 {
4796 asection *o;
4797
4798 for (o = abfd->sections; o != NULL; o = o->next)
4799 {
4800 Elf_Internal_Rela *internal_relocs;
4801 bfd_boolean ok;
4802
4803 if ((o->flags & SEC_RELOC) == 0
4804 || o->reloc_count == 0
4805 || ((info->strip == strip_all || info->strip == strip_debugger)
4806 && (o->flags & SEC_DEBUGGING) != 0)
4807 || bfd_is_abs_section (o->output_section))
4808 continue;
4809
4810 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4811 info->keep_memory);
4812 if (internal_relocs == NULL)
4813 goto error_return;
4814
66eb6687 4815 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4ad4eba5
AM
4816
4817 if (elf_section_data (o)->relocs != internal_relocs)
4818 free (internal_relocs);
4819
4820 if (! ok)
4821 goto error_return;
4822 }
4823 }
4824
4825 /* If this is a non-traditional link, try to optimize the handling
4826 of the .stab/.stabstr sections. */
4827 if (! dynamic
4828 && ! info->traditional_format
66eb6687 4829 && is_elf_hash_table (htab)
4ad4eba5
AM
4830 && (info->strip != strip_all && info->strip != strip_debugger))
4831 {
4832 asection *stabstr;
4833
4834 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4835 if (stabstr != NULL)
4836 {
4837 bfd_size_type string_offset = 0;
4838 asection *stab;
4839
4840 for (stab = abfd->sections; stab; stab = stab->next)
0112cd26 4841 if (CONST_STRNEQ (stab->name, ".stab")
4ad4eba5
AM
4842 && (!stab->name[5] ||
4843 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4844 && (stab->flags & SEC_MERGE) == 0
4845 && !bfd_is_abs_section (stab->output_section))
4846 {
4847 struct bfd_elf_section_data *secdata;
4848
4849 secdata = elf_section_data (stab);
66eb6687
AM
4850 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4851 stabstr, &secdata->sec_info,
4ad4eba5
AM
4852 &string_offset))
4853 goto error_return;
4854 if (secdata->sec_info)
4855 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4856 }
4857 }
4858 }
4859
66eb6687 4860 if (is_elf_hash_table (htab) && add_needed)
4ad4eba5
AM
4861 {
4862 /* Add this bfd to the loaded list. */
4863 struct elf_link_loaded_list *n;
4864
a50b1753
NC
4865 n = (struct elf_link_loaded_list *)
4866 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4ad4eba5
AM
4867 if (n == NULL)
4868 goto error_return;
4869 n->abfd = abfd;
66eb6687
AM
4870 n->next = htab->loaded;
4871 htab->loaded = n;
4ad4eba5
AM
4872 }
4873
4874 return TRUE;
4875
4876 error_free_vers:
66eb6687
AM
4877 if (old_tab != NULL)
4878 free (old_tab);
4ad4eba5
AM
4879 if (nondeflt_vers != NULL)
4880 free (nondeflt_vers);
4881 if (extversym != NULL)
4882 free (extversym);
4883 error_free_sym:
4884 if (isymbuf != NULL)
4885 free (isymbuf);
4886 error_return:
4887 return FALSE;
4888}
4889
8387904d
AM
4890/* Return the linker hash table entry of a symbol that might be
4891 satisfied by an archive symbol. Return -1 on error. */
4892
4893struct elf_link_hash_entry *
4894_bfd_elf_archive_symbol_lookup (bfd *abfd,
4895 struct bfd_link_info *info,
4896 const char *name)
4897{
4898 struct elf_link_hash_entry *h;
4899 char *p, *copy;
4900 size_t len, first;
4901
4902 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4903 if (h != NULL)
4904 return h;
4905
4906 /* If this is a default version (the name contains @@), look up the
4907 symbol again with only one `@' as well as without the version.
4908 The effect is that references to the symbol with and without the
4909 version will be matched by the default symbol in the archive. */
4910
4911 p = strchr (name, ELF_VER_CHR);
4912 if (p == NULL || p[1] != ELF_VER_CHR)
4913 return h;
4914
4915 /* First check with only one `@'. */
4916 len = strlen (name);
a50b1753 4917 copy = (char *) bfd_alloc (abfd, len);
8387904d
AM
4918 if (copy == NULL)
4919 return (struct elf_link_hash_entry *) 0 - 1;
4920
4921 first = p - name + 1;
4922 memcpy (copy, name, first);
4923 memcpy (copy + first, name + first + 1, len - first);
4924
4925 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4926 if (h == NULL)
4927 {
4928 /* We also need to check references to the symbol without the
4929 version. */
4930 copy[first - 1] = '\0';
4931 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4932 FALSE, FALSE, FALSE);
4933 }
4934
4935 bfd_release (abfd, copy);
4936 return h;
4937}
4938
0ad989f9
L
4939/* Add symbols from an ELF archive file to the linker hash table. We
4940 don't use _bfd_generic_link_add_archive_symbols because of a
4941 problem which arises on UnixWare. The UnixWare libc.so is an
4942 archive which includes an entry libc.so.1 which defines a bunch of
4943 symbols. The libc.so archive also includes a number of other
4944 object files, which also define symbols, some of which are the same
4945 as those defined in libc.so.1. Correct linking requires that we
4946 consider each object file in turn, and include it if it defines any
4947 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4948 this; it looks through the list of undefined symbols, and includes
4949 any object file which defines them. When this algorithm is used on
4950 UnixWare, it winds up pulling in libc.so.1 early and defining a
4951 bunch of symbols. This means that some of the other objects in the
4952 archive are not included in the link, which is incorrect since they
4953 precede libc.so.1 in the archive.
4954
4955 Fortunately, ELF archive handling is simpler than that done by
4956 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4957 oddities. In ELF, if we find a symbol in the archive map, and the
4958 symbol is currently undefined, we know that we must pull in that
4959 object file.
4960
4961 Unfortunately, we do have to make multiple passes over the symbol
4962 table until nothing further is resolved. */
4963
4ad4eba5
AM
4964static bfd_boolean
4965elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
0ad989f9
L
4966{
4967 symindex c;
4968 bfd_boolean *defined = NULL;
4969 bfd_boolean *included = NULL;
4970 carsym *symdefs;
4971 bfd_boolean loop;
4972 bfd_size_type amt;
8387904d
AM
4973 const struct elf_backend_data *bed;
4974 struct elf_link_hash_entry * (*archive_symbol_lookup)
4975 (bfd *, struct bfd_link_info *, const char *);
0ad989f9
L
4976
4977 if (! bfd_has_map (abfd))
4978 {
4979 /* An empty archive is a special case. */
4980 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4981 return TRUE;
4982 bfd_set_error (bfd_error_no_armap);
4983 return FALSE;
4984 }
4985
4986 /* Keep track of all symbols we know to be already defined, and all
4987 files we know to be already included. This is to speed up the
4988 second and subsequent passes. */
4989 c = bfd_ardata (abfd)->symdef_count;
4990 if (c == 0)
4991 return TRUE;
4992 amt = c;
4993 amt *= sizeof (bfd_boolean);
a50b1753
NC
4994 defined = (bfd_boolean *) bfd_zmalloc (amt);
4995 included = (bfd_boolean *) bfd_zmalloc (amt);
0ad989f9
L
4996 if (defined == NULL || included == NULL)
4997 goto error_return;
4998
4999 symdefs = bfd_ardata (abfd)->symdefs;
8387904d
AM
5000 bed = get_elf_backend_data (abfd);
5001 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
0ad989f9
L
5002
5003 do
5004 {
5005 file_ptr last;
5006 symindex i;
5007 carsym *symdef;
5008 carsym *symdefend;
5009
5010 loop = FALSE;
5011 last = -1;
5012
5013 symdef = symdefs;
5014 symdefend = symdef + c;
5015 for (i = 0; symdef < symdefend; symdef++, i++)
5016 {
5017 struct elf_link_hash_entry *h;
5018 bfd *element;
5019 struct bfd_link_hash_entry *undefs_tail;
5020 symindex mark;
5021
5022 if (defined[i] || included[i])
5023 continue;
5024 if (symdef->file_offset == last)
5025 {
5026 included[i] = TRUE;
5027 continue;
5028 }
5029
8387904d
AM
5030 h = archive_symbol_lookup (abfd, info, symdef->name);
5031 if (h == (struct elf_link_hash_entry *) 0 - 1)
5032 goto error_return;
0ad989f9
L
5033
5034 if (h == NULL)
5035 continue;
5036
5037 if (h->root.type == bfd_link_hash_common)
5038 {
5039 /* We currently have a common symbol. The archive map contains
5040 a reference to this symbol, so we may want to include it. We
5041 only want to include it however, if this archive element
5042 contains a definition of the symbol, not just another common
5043 declaration of it.
5044
5045 Unfortunately some archivers (including GNU ar) will put
5046 declarations of common symbols into their archive maps, as
5047 well as real definitions, so we cannot just go by the archive
5048 map alone. Instead we must read in the element's symbol
5049 table and check that to see what kind of symbol definition
5050 this is. */
5051 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5052 continue;
5053 }
5054 else if (h->root.type != bfd_link_hash_undefined)
5055 {
5056 if (h->root.type != bfd_link_hash_undefweak)
5057 defined[i] = TRUE;
5058 continue;
5059 }
5060
5061 /* We need to include this archive member. */
5062 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5063 if (element == NULL)
5064 goto error_return;
5065
5066 if (! bfd_check_format (element, bfd_object))
5067 goto error_return;
5068
5069 /* Doublecheck that we have not included this object
5070 already--it should be impossible, but there may be
5071 something wrong with the archive. */
5072 if (element->archive_pass != 0)
5073 {
5074 bfd_set_error (bfd_error_bad_value);
5075 goto error_return;
5076 }
5077 element->archive_pass = 1;
5078
5079 undefs_tail = info->hash->undefs_tail;
5080
5081 if (! (*info->callbacks->add_archive_element) (info, element,
5082 symdef->name))
5083 goto error_return;
5084 if (! bfd_link_add_symbols (element, info))
5085 goto error_return;
5086
5087 /* If there are any new undefined symbols, we need to make
5088 another pass through the archive in order to see whether
5089 they can be defined. FIXME: This isn't perfect, because
5090 common symbols wind up on undefs_tail and because an
5091 undefined symbol which is defined later on in this pass
5092 does not require another pass. This isn't a bug, but it
5093 does make the code less efficient than it could be. */
5094 if (undefs_tail != info->hash->undefs_tail)
5095 loop = TRUE;
5096
5097 /* Look backward to mark all symbols from this object file
5098 which we have already seen in this pass. */
5099 mark = i;
5100 do
5101 {
5102 included[mark] = TRUE;
5103 if (mark == 0)
5104 break;
5105 --mark;
5106 }
5107 while (symdefs[mark].file_offset == symdef->file_offset);
5108
5109 /* We mark subsequent symbols from this object file as we go
5110 on through the loop. */
5111 last = symdef->file_offset;
5112 }
5113 }
5114 while (loop);
5115
5116 free (defined);
5117 free (included);
5118
5119 return TRUE;
5120
5121 error_return:
5122 if (defined != NULL)
5123 free (defined);
5124 if (included != NULL)
5125 free (included);
5126 return FALSE;
5127}
4ad4eba5
AM
5128
5129/* Given an ELF BFD, add symbols to the global hash table as
5130 appropriate. */
5131
5132bfd_boolean
5133bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5134{
5135 switch (bfd_get_format (abfd))
5136 {
5137 case bfd_object:
5138 return elf_link_add_object_symbols (abfd, info);
5139 case bfd_archive:
5140 return elf_link_add_archive_symbols (abfd, info);
5141 default:
5142 bfd_set_error (bfd_error_wrong_format);
5143 return FALSE;
5144 }
5145}
5a580b3a 5146\f
14b1c01e
AM
5147struct hash_codes_info
5148{
5149 unsigned long *hashcodes;
5150 bfd_boolean error;
5151};
a0c8462f 5152
5a580b3a
AM
5153/* This function will be called though elf_link_hash_traverse to store
5154 all hash value of the exported symbols in an array. */
5155
5156static bfd_boolean
5157elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5158{
a50b1753 5159 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5a580b3a
AM
5160 const char *name;
5161 char *p;
5162 unsigned long ha;
5163 char *alc = NULL;
5164
5165 if (h->root.type == bfd_link_hash_warning)
5166 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5167
5168 /* Ignore indirect symbols. These are added by the versioning code. */
5169 if (h->dynindx == -1)
5170 return TRUE;
5171
5172 name = h->root.root.string;
5173 p = strchr (name, ELF_VER_CHR);
5174 if (p != NULL)
5175 {
a50b1753 5176 alc = (char *) bfd_malloc (p - name + 1);
14b1c01e
AM
5177 if (alc == NULL)
5178 {
5179 inf->error = TRUE;
5180 return FALSE;
5181 }
5a580b3a
AM
5182 memcpy (alc, name, p - name);
5183 alc[p - name] = '\0';
5184 name = alc;
5185 }
5186
5187 /* Compute the hash value. */
5188 ha = bfd_elf_hash (name);
5189
5190 /* Store the found hash value in the array given as the argument. */
14b1c01e 5191 *(inf->hashcodes)++ = ha;
5a580b3a
AM
5192
5193 /* And store it in the struct so that we can put it in the hash table
5194 later. */
f6e332e6 5195 h->u.elf_hash_value = ha;
5a580b3a
AM
5196
5197 if (alc != NULL)
5198 free (alc);
5199
5200 return TRUE;
5201}
5202
fdc90cb4
JJ
5203struct collect_gnu_hash_codes
5204{
5205 bfd *output_bfd;
5206 const struct elf_backend_data *bed;
5207 unsigned long int nsyms;
5208 unsigned long int maskbits;
5209 unsigned long int *hashcodes;
5210 unsigned long int *hashval;
5211 unsigned long int *indx;
5212 unsigned long int *counts;
5213 bfd_vma *bitmask;
5214 bfd_byte *contents;
5215 long int min_dynindx;
5216 unsigned long int bucketcount;
5217 unsigned long int symindx;
5218 long int local_indx;
5219 long int shift1, shift2;
5220 unsigned long int mask;
14b1c01e 5221 bfd_boolean error;
fdc90cb4
JJ
5222};
5223
5224/* This function will be called though elf_link_hash_traverse to store
5225 all hash value of the exported symbols in an array. */
5226
5227static bfd_boolean
5228elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5229{
a50b1753 5230 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
fdc90cb4
JJ
5231 const char *name;
5232 char *p;
5233 unsigned long ha;
5234 char *alc = NULL;
5235
5236 if (h->root.type == bfd_link_hash_warning)
5237 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5238
5239 /* Ignore indirect symbols. These are added by the versioning code. */
5240 if (h->dynindx == -1)
5241 return TRUE;
5242
5243 /* Ignore also local symbols and undefined symbols. */
5244 if (! (*s->bed->elf_hash_symbol) (h))
5245 return TRUE;
5246
5247 name = h->root.root.string;
5248 p = strchr (name, ELF_VER_CHR);
5249 if (p != NULL)
5250 {
a50b1753 5251 alc = (char *) bfd_malloc (p - name + 1);
14b1c01e
AM
5252 if (alc == NULL)
5253 {
5254 s->error = TRUE;
5255 return FALSE;
5256 }
fdc90cb4
JJ
5257 memcpy (alc, name, p - name);
5258 alc[p - name] = '\0';
5259 name = alc;
5260 }
5261
5262 /* Compute the hash value. */
5263 ha = bfd_elf_gnu_hash (name);
5264
5265 /* Store the found hash value in the array for compute_bucket_count,
5266 and also for .dynsym reordering purposes. */
5267 s->hashcodes[s->nsyms] = ha;
5268 s->hashval[h->dynindx] = ha;
5269 ++s->nsyms;
5270 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5271 s->min_dynindx = h->dynindx;
5272
5273 if (alc != NULL)
5274 free (alc);
5275
5276 return TRUE;
5277}
5278
5279/* This function will be called though elf_link_hash_traverse to do
5280 final dynaminc symbol renumbering. */
5281
5282static bfd_boolean
5283elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5284{
a50b1753 5285 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
fdc90cb4
JJ
5286 unsigned long int bucket;
5287 unsigned long int val;
5288
5289 if (h->root.type == bfd_link_hash_warning)
5290 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5291
5292 /* Ignore indirect symbols. */
5293 if (h->dynindx == -1)
5294 return TRUE;
5295
5296 /* Ignore also local symbols and undefined symbols. */
5297 if (! (*s->bed->elf_hash_symbol) (h))
5298 {
5299 if (h->dynindx >= s->min_dynindx)
5300 h->dynindx = s->local_indx++;
5301 return TRUE;
5302 }
5303
5304 bucket = s->hashval[h->dynindx] % s->bucketcount;
5305 val = (s->hashval[h->dynindx] >> s->shift1)
5306 & ((s->maskbits >> s->shift1) - 1);
5307 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5308 s->bitmask[val]
5309 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5310 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5311 if (s->counts[bucket] == 1)
5312 /* Last element terminates the chain. */
5313 val |= 1;
5314 bfd_put_32 (s->output_bfd, val,
5315 s->contents + (s->indx[bucket] - s->symindx) * 4);
5316 --s->counts[bucket];
5317 h->dynindx = s->indx[bucket]++;
5318 return TRUE;
5319}
5320
5321/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5322
5323bfd_boolean
5324_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5325{
5326 return !(h->forced_local
5327 || h->root.type == bfd_link_hash_undefined
5328 || h->root.type == bfd_link_hash_undefweak
5329 || ((h->root.type == bfd_link_hash_defined
5330 || h->root.type == bfd_link_hash_defweak)
5331 && h->root.u.def.section->output_section == NULL));
5332}
5333
5a580b3a
AM
5334/* Array used to determine the number of hash table buckets to use
5335 based on the number of symbols there are. If there are fewer than
5336 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5337 fewer than 37 we use 17 buckets, and so forth. We never use more
5338 than 32771 buckets. */
5339
5340static const size_t elf_buckets[] =
5341{
5342 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5343 16411, 32771, 0
5344};
5345
5346/* Compute bucket count for hashing table. We do not use a static set
5347 of possible tables sizes anymore. Instead we determine for all
5348 possible reasonable sizes of the table the outcome (i.e., the
5349 number of collisions etc) and choose the best solution. The
5350 weighting functions are not too simple to allow the table to grow
5351 without bounds. Instead one of the weighting factors is the size.
5352 Therefore the result is always a good payoff between few collisions
5353 (= short chain lengths) and table size. */
5354static size_t
b20dd2ce 5355compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
d40f3da9
AM
5356 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5357 unsigned long int nsyms,
5358 int gnu_hash)
5a580b3a 5359{
5a580b3a 5360 size_t best_size = 0;
5a580b3a 5361 unsigned long int i;
5a580b3a 5362
5a580b3a
AM
5363 /* We have a problem here. The following code to optimize the table
5364 size requires an integer type with more the 32 bits. If
5365 BFD_HOST_U_64_BIT is set we know about such a type. */
5366#ifdef BFD_HOST_U_64_BIT
5367 if (info->optimize)
5368 {
5a580b3a
AM
5369 size_t minsize;
5370 size_t maxsize;
5371 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5a580b3a 5372 bfd *dynobj = elf_hash_table (info)->dynobj;
d40f3da9 5373 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5a580b3a 5374 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
fdc90cb4 5375 unsigned long int *counts;
d40f3da9 5376 bfd_size_type amt;
5a580b3a
AM
5377
5378 /* Possible optimization parameters: if we have NSYMS symbols we say
5379 that the hashing table must at least have NSYMS/4 and at most
5380 2*NSYMS buckets. */
5381 minsize = nsyms / 4;
5382 if (minsize == 0)
5383 minsize = 1;
5384 best_size = maxsize = nsyms * 2;
fdc90cb4
JJ
5385 if (gnu_hash)
5386 {
5387 if (minsize < 2)
5388 minsize = 2;
5389 if ((best_size & 31) == 0)
5390 ++best_size;
5391 }
5a580b3a
AM
5392
5393 /* Create array where we count the collisions in. We must use bfd_malloc
5394 since the size could be large. */
5395 amt = maxsize;
5396 amt *= sizeof (unsigned long int);
a50b1753 5397 counts = (unsigned long int *) bfd_malloc (amt);
5a580b3a 5398 if (counts == NULL)
fdc90cb4 5399 return 0;
5a580b3a
AM
5400
5401 /* Compute the "optimal" size for the hash table. The criteria is a
5402 minimal chain length. The minor criteria is (of course) the size
5403 of the table. */
5404 for (i = minsize; i < maxsize; ++i)
5405 {
5406 /* Walk through the array of hashcodes and count the collisions. */
5407 BFD_HOST_U_64_BIT max;
5408 unsigned long int j;
5409 unsigned long int fact;
5410
fdc90cb4
JJ
5411 if (gnu_hash && (i & 31) == 0)
5412 continue;
5413
5a580b3a
AM
5414 memset (counts, '\0', i * sizeof (unsigned long int));
5415
5416 /* Determine how often each hash bucket is used. */
5417 for (j = 0; j < nsyms; ++j)
5418 ++counts[hashcodes[j] % i];
5419
5420 /* For the weight function we need some information about the
5421 pagesize on the target. This is information need not be 100%
5422 accurate. Since this information is not available (so far) we
5423 define it here to a reasonable default value. If it is crucial
5424 to have a better value some day simply define this value. */
5425# ifndef BFD_TARGET_PAGESIZE
5426# define BFD_TARGET_PAGESIZE (4096)
5427# endif
5428
fdc90cb4
JJ
5429 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5430 and the chains. */
5431 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5a580b3a
AM
5432
5433# if 1
5434 /* Variant 1: optimize for short chains. We add the squares
5435 of all the chain lengths (which favors many small chain
5436 over a few long chains). */
5437 for (j = 0; j < i; ++j)
5438 max += counts[j] * counts[j];
5439
5440 /* This adds penalties for the overall size of the table. */
fdc90cb4 5441 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5a580b3a
AM
5442 max *= fact * fact;
5443# else
5444 /* Variant 2: Optimize a lot more for small table. Here we
5445 also add squares of the size but we also add penalties for
5446 empty slots (the +1 term). */
5447 for (j = 0; j < i; ++j)
5448 max += (1 + counts[j]) * (1 + counts[j]);
5449
5450 /* The overall size of the table is considered, but not as
5451 strong as in variant 1, where it is squared. */
fdc90cb4 5452 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5a580b3a
AM
5453 max *= fact;
5454# endif
5455
5456 /* Compare with current best results. */
5457 if (max < best_chlen)
5458 {
5459 best_chlen = max;
5460 best_size = i;
5461 }
5462 }
5463
5464 free (counts);
5465 }
5466 else
5467#endif /* defined (BFD_HOST_U_64_BIT) */
5468 {
5469 /* This is the fallback solution if no 64bit type is available or if we
5470 are not supposed to spend much time on optimizations. We select the
5471 bucket count using a fixed set of numbers. */
5472 for (i = 0; elf_buckets[i] != 0; i++)
5473 {
5474 best_size = elf_buckets[i];
fdc90cb4 5475 if (nsyms < elf_buckets[i + 1])
5a580b3a
AM
5476 break;
5477 }
fdc90cb4
JJ
5478 if (gnu_hash && best_size < 2)
5479 best_size = 2;
5a580b3a
AM
5480 }
5481
5a580b3a
AM
5482 return best_size;
5483}
5484
d0bf826b
AM
5485/* Size any SHT_GROUP section for ld -r. */
5486
5487bfd_boolean
5488_bfd_elf_size_group_sections (struct bfd_link_info *info)
5489{
5490 bfd *ibfd;
5491
5492 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5493 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5494 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5495 return FALSE;
5496 return TRUE;
5497}
5498
5a580b3a
AM
5499/* Set up the sizes and contents of the ELF dynamic sections. This is
5500 called by the ELF linker emulation before_allocation routine. We
5501 must set the sizes of the sections before the linker sets the
5502 addresses of the various sections. */
5503
5504bfd_boolean
5505bfd_elf_size_dynamic_sections (bfd *output_bfd,
5506 const char *soname,
5507 const char *rpath,
5508 const char *filter_shlib,
7ee314fa
AM
5509 const char *audit,
5510 const char *depaudit,
5a580b3a
AM
5511 const char * const *auxiliary_filters,
5512 struct bfd_link_info *info,
5513 asection **sinterpptr,
5514 struct bfd_elf_version_tree *verdefs)
5515{
5516 bfd_size_type soname_indx;
5517 bfd *dynobj;
5518 const struct elf_backend_data *bed;
28caa186 5519 struct elf_info_failed asvinfo;
5a580b3a
AM
5520
5521 *sinterpptr = NULL;
5522
5523 soname_indx = (bfd_size_type) -1;
5524
5525 if (!is_elf_hash_table (info->hash))
5526 return TRUE;
5527
6bfdb61b 5528 bed = get_elf_backend_data (output_bfd);
5a580b3a
AM
5529 if (info->execstack)
5530 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5531 else if (info->noexecstack)
5532 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5533 else
5534 {
5535 bfd *inputobj;
5536 asection *notesec = NULL;
5537 int exec = 0;
5538
5539 for (inputobj = info->input_bfds;
5540 inputobj;
5541 inputobj = inputobj->link_next)
5542 {
5543 asection *s;
5544
a94b9d2d 5545 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5a580b3a
AM
5546 continue;
5547 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5548 if (s)
5549 {
5550 if (s->flags & SEC_CODE)
5551 exec = PF_X;
5552 notesec = s;
5553 }
6bfdb61b 5554 else if (bed->default_execstack)
5a580b3a
AM
5555 exec = PF_X;
5556 }
5557 if (notesec)
5558 {
5559 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5560 if (exec && info->relocatable
5561 && notesec->output_section != bfd_abs_section_ptr)
5562 notesec->output_section->flags |= SEC_CODE;
5563 }
5564 }
5565
5566 /* Any syms created from now on start with -1 in
5567 got.refcount/offset and plt.refcount/offset. */
a6aa5195
AM
5568 elf_hash_table (info)->init_got_refcount
5569 = elf_hash_table (info)->init_got_offset;
5570 elf_hash_table (info)->init_plt_refcount
5571 = elf_hash_table (info)->init_plt_offset;
5a580b3a 5572
d0bf826b
AM
5573 if (info->relocatable
5574 && !_bfd_elf_size_group_sections (info))
5575 return FALSE;
5576
5a580b3a
AM
5577 /* The backend may have to create some sections regardless of whether
5578 we're dynamic or not. */
5a580b3a
AM
5579 if (bed->elf_backend_always_size_sections
5580 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5581 return FALSE;
5582
eb3d5f3b
JB
5583 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5584 return FALSE;
5585
5a580b3a
AM
5586 dynobj = elf_hash_table (info)->dynobj;
5587
5588 /* If there were no dynamic objects in the link, there is nothing to
5589 do here. */
5590 if (dynobj == NULL)
5591 return TRUE;
5592
5a580b3a
AM
5593 if (elf_hash_table (info)->dynamic_sections_created)
5594 {
5595 struct elf_info_failed eif;
5596 struct elf_link_hash_entry *h;
5597 asection *dynstr;
5598 struct bfd_elf_version_tree *t;
5599 struct bfd_elf_version_expr *d;
046183de 5600 asection *s;
5a580b3a
AM
5601 bfd_boolean all_defined;
5602
5603 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5604 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5605
5606 if (soname != NULL)
5607 {
5608 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5609 soname, TRUE);
5610 if (soname_indx == (bfd_size_type) -1
5611 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5612 return FALSE;
5613 }
5614
5615 if (info->symbolic)
5616 {
5617 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5618 return FALSE;
5619 info->flags |= DF_SYMBOLIC;
5620 }
5621
5622 if (rpath != NULL)
5623 {
5624 bfd_size_type indx;
5625
5626 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5627 TRUE);
5628 if (indx == (bfd_size_type) -1
5629 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5630 return FALSE;
5631
5632 if (info->new_dtags)
5633 {
5634 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5635 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5636 return FALSE;
5637 }
5638 }
5639
5640 if (filter_shlib != NULL)
5641 {
5642 bfd_size_type indx;
5643
5644 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5645 filter_shlib, TRUE);
5646 if (indx == (bfd_size_type) -1
5647 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5648 return FALSE;
5649 }
5650
5651 if (auxiliary_filters != NULL)
5652 {
5653 const char * const *p;
5654
5655 for (p = auxiliary_filters; *p != NULL; p++)
5656 {
5657 bfd_size_type indx;
5658
5659 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5660 *p, TRUE);
5661 if (indx == (bfd_size_type) -1
5662 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5663 return FALSE;
5664 }
5665 }
5666
7ee314fa
AM
5667 if (audit != NULL)
5668 {
5669 bfd_size_type indx;
5670
5671 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5672 TRUE);
5673 if (indx == (bfd_size_type) -1
5674 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5675 return FALSE;
5676 }
5677
5678 if (depaudit != NULL)
5679 {
5680 bfd_size_type indx;
5681
5682 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5683 TRUE);
5684 if (indx == (bfd_size_type) -1
5685 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5686 return FALSE;
5687 }
5688
5a580b3a
AM
5689 eif.info = info;
5690 eif.verdefs = verdefs;
5691 eif.failed = FALSE;
5692
5693 /* If we are supposed to export all symbols into the dynamic symbol
5694 table (this is not the normal case), then do so. */
55255dae
L
5695 if (info->export_dynamic
5696 || (info->executable && info->dynamic))
5a580b3a
AM
5697 {
5698 elf_link_hash_traverse (elf_hash_table (info),
5699 _bfd_elf_export_symbol,
5700 &eif);
5701 if (eif.failed)
5702 return FALSE;
5703 }
5704
5705 /* Make all global versions with definition. */
5706 for (t = verdefs; t != NULL; t = t->next)
5707 for (d = t->globals.list; d != NULL; d = d->next)
ae5a3597 5708 if (!d->symver && d->literal)
5a580b3a
AM
5709 {
5710 const char *verstr, *name;
5711 size_t namelen, verlen, newlen;
5712 char *newname, *p;
5713 struct elf_link_hash_entry *newh;
5714
ae5a3597 5715 name = d->pattern;
5a580b3a
AM
5716 namelen = strlen (name);
5717 verstr = t->name;
5718 verlen = strlen (verstr);
5719 newlen = namelen + verlen + 3;
5720
a50b1753 5721 newname = (char *) bfd_malloc (newlen);
5a580b3a
AM
5722 if (newname == NULL)
5723 return FALSE;
5724 memcpy (newname, name, namelen);
5725
5726 /* Check the hidden versioned definition. */
5727 p = newname + namelen;
5728 *p++ = ELF_VER_CHR;
5729 memcpy (p, verstr, verlen + 1);
5730 newh = elf_link_hash_lookup (elf_hash_table (info),
5731 newname, FALSE, FALSE,
5732 FALSE);
5733 if (newh == NULL
5734 || (newh->root.type != bfd_link_hash_defined
5735 && newh->root.type != bfd_link_hash_defweak))
5736 {
5737 /* Check the default versioned definition. */
5738 *p++ = ELF_VER_CHR;
5739 memcpy (p, verstr, verlen + 1);
5740 newh = elf_link_hash_lookup (elf_hash_table (info),
5741 newname, FALSE, FALSE,
5742 FALSE);
5743 }
5744 free (newname);
5745
5746 /* Mark this version if there is a definition and it is
5747 not defined in a shared object. */
5748 if (newh != NULL
f5385ebf 5749 && !newh->def_dynamic
5a580b3a
AM
5750 && (newh->root.type == bfd_link_hash_defined
5751 || newh->root.type == bfd_link_hash_defweak))
5752 d->symver = 1;
5753 }
5754
5755 /* Attach all the symbols to their version information. */
5a580b3a
AM
5756 asvinfo.info = info;
5757 asvinfo.verdefs = verdefs;
5758 asvinfo.failed = FALSE;
5759
5760 elf_link_hash_traverse (elf_hash_table (info),
5761 _bfd_elf_link_assign_sym_version,
5762 &asvinfo);
5763 if (asvinfo.failed)
5764 return FALSE;
5765
5766 if (!info->allow_undefined_version)
5767 {
5768 /* Check if all global versions have a definition. */
5769 all_defined = TRUE;
5770 for (t = verdefs; t != NULL; t = t->next)
5771 for (d = t->globals.list; d != NULL; d = d->next)
ae5a3597 5772 if (d->literal && !d->symver && !d->script)
5a580b3a
AM
5773 {
5774 (*_bfd_error_handler)
5775 (_("%s: undefined version: %s"),
5776 d->pattern, t->name);
5777 all_defined = FALSE;
5778 }
5779
5780 if (!all_defined)
5781 {
5782 bfd_set_error (bfd_error_bad_value);
5783 return FALSE;
5784 }
5785 }
5786
5787 /* Find all symbols which were defined in a dynamic object and make
5788 the backend pick a reasonable value for them. */
5789 elf_link_hash_traverse (elf_hash_table (info),
5790 _bfd_elf_adjust_dynamic_symbol,
5791 &eif);
5792 if (eif.failed)
5793 return FALSE;
5794
5795 /* Add some entries to the .dynamic section. We fill in some of the
ee75fd95 5796 values later, in bfd_elf_final_link, but we must add the entries
5a580b3a
AM
5797 now so that we know the final size of the .dynamic section. */
5798
5799 /* If there are initialization and/or finalization functions to
5800 call then add the corresponding DT_INIT/DT_FINI entries. */
5801 h = (info->init_function
5802 ? elf_link_hash_lookup (elf_hash_table (info),
5803 info->init_function, FALSE,
5804 FALSE, FALSE)
5805 : NULL);
5806 if (h != NULL
f5385ebf
AM
5807 && (h->ref_regular
5808 || h->def_regular))
5a580b3a
AM
5809 {
5810 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5811 return FALSE;
5812 }
5813 h = (info->fini_function
5814 ? elf_link_hash_lookup (elf_hash_table (info),
5815 info->fini_function, FALSE,
5816 FALSE, FALSE)
5817 : NULL);
5818 if (h != NULL
f5385ebf
AM
5819 && (h->ref_regular
5820 || h->def_regular))
5a580b3a
AM
5821 {
5822 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5823 return FALSE;
5824 }
5825
046183de
AM
5826 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5827 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5828 {
5829 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5830 if (! info->executable)
5831 {
5832 bfd *sub;
5833 asection *o;
5834
5835 for (sub = info->input_bfds; sub != NULL;
5836 sub = sub->link_next)
3fcd97f1
JJ
5837 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5838 for (o = sub->sections; o != NULL; o = o->next)
5839 if (elf_section_data (o)->this_hdr.sh_type
5840 == SHT_PREINIT_ARRAY)
5841 {
5842 (*_bfd_error_handler)
5843 (_("%B: .preinit_array section is not allowed in DSO"),
5844 sub);
5845 break;
5846 }
5a580b3a
AM
5847
5848 bfd_set_error (bfd_error_nonrepresentable_section);
5849 return FALSE;
5850 }
5851
5852 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5853 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5854 return FALSE;
5855 }
046183de
AM
5856 s = bfd_get_section_by_name (output_bfd, ".init_array");
5857 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5858 {
5859 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5860 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5861 return FALSE;
5862 }
046183de
AM
5863 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5864 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5865 {
5866 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5867 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5868 return FALSE;
5869 }
5870
5871 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5872 /* If .dynstr is excluded from the link, we don't want any of
5873 these tags. Strictly, we should be checking each section
5874 individually; This quick check covers for the case where
5875 someone does a /DISCARD/ : { *(*) }. */
5876 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5877 {
5878 bfd_size_type strsize;
5879
5880 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
fdc90cb4
JJ
5881 if ((info->emit_hash
5882 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5883 || (info->emit_gnu_hash
5884 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5a580b3a
AM
5885 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5886 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5887 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5888 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5889 bed->s->sizeof_sym))
5890 return FALSE;
5891 }
5892 }
5893
5894 /* The backend must work out the sizes of all the other dynamic
5895 sections. */
5896 if (bed->elf_backend_size_dynamic_sections
5897 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5898 return FALSE;
5899
5900 if (elf_hash_table (info)->dynamic_sections_created)
5901 {
554220db 5902 unsigned long section_sym_count;
5a580b3a 5903 asection *s;
5a580b3a
AM
5904
5905 /* Set up the version definition section. */
5906 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5907 BFD_ASSERT (s != NULL);
5908
5909 /* We may have created additional version definitions if we are
5910 just linking a regular application. */
5911 verdefs = asvinfo.verdefs;
5912
5913 /* Skip anonymous version tag. */
5914 if (verdefs != NULL && verdefs->vernum == 0)
5915 verdefs = verdefs->next;
5916
3e3b46e5 5917 if (verdefs == NULL && !info->create_default_symver)
8423293d 5918 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
5919 else
5920 {
5921 unsigned int cdefs;
5922 bfd_size_type size;
5923 struct bfd_elf_version_tree *t;
5924 bfd_byte *p;
5925 Elf_Internal_Verdef def;
5926 Elf_Internal_Verdaux defaux;
3e3b46e5
PB
5927 struct bfd_link_hash_entry *bh;
5928 struct elf_link_hash_entry *h;
5929 const char *name;
5a580b3a
AM
5930
5931 cdefs = 0;
5932 size = 0;
5933
5934 /* Make space for the base version. */
5935 size += sizeof (Elf_External_Verdef);
5936 size += sizeof (Elf_External_Verdaux);
5937 ++cdefs;
5938
3e3b46e5
PB
5939 /* Make space for the default version. */
5940 if (info->create_default_symver)
5941 {
5942 size += sizeof (Elf_External_Verdef);
5943 ++cdefs;
5944 }
5945
5a580b3a
AM
5946 for (t = verdefs; t != NULL; t = t->next)
5947 {
5948 struct bfd_elf_version_deps *n;
5949
a6cc6b3b
RO
5950 /* Don't emit base version twice. */
5951 if (t->vernum == 0)
5952 continue;
5953
5a580b3a
AM
5954 size += sizeof (Elf_External_Verdef);
5955 size += sizeof (Elf_External_Verdaux);
5956 ++cdefs;
5957
5958 for (n = t->deps; n != NULL; n = n->next)
5959 size += sizeof (Elf_External_Verdaux);
5960 }
5961
eea6121a 5962 s->size = size;
a50b1753 5963 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
eea6121a 5964 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5965 return FALSE;
5966
5967 /* Fill in the version definition section. */
5968
5969 p = s->contents;
5970
5971 def.vd_version = VER_DEF_CURRENT;
5972 def.vd_flags = VER_FLG_BASE;
5973 def.vd_ndx = 1;
5974 def.vd_cnt = 1;
3e3b46e5
PB
5975 if (info->create_default_symver)
5976 {
5977 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5978 def.vd_next = sizeof (Elf_External_Verdef);
5979 }
5980 else
5981 {
5982 def.vd_aux = sizeof (Elf_External_Verdef);
5983 def.vd_next = (sizeof (Elf_External_Verdef)
5984 + sizeof (Elf_External_Verdaux));
5985 }
5a580b3a
AM
5986
5987 if (soname_indx != (bfd_size_type) -1)
5988 {
5989 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5990 soname_indx);
5991 def.vd_hash = bfd_elf_hash (soname);
5992 defaux.vda_name = soname_indx;
3e3b46e5 5993 name = soname;
5a580b3a
AM
5994 }
5995 else
5996 {
5a580b3a
AM
5997 bfd_size_type indx;
5998
06084812 5999 name = lbasename (output_bfd->filename);
5a580b3a
AM
6000 def.vd_hash = bfd_elf_hash (name);
6001 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6002 name, FALSE);
6003 if (indx == (bfd_size_type) -1)
6004 return FALSE;
6005 defaux.vda_name = indx;
6006 }
6007 defaux.vda_next = 0;
6008
6009 _bfd_elf_swap_verdef_out (output_bfd, &def,
6010 (Elf_External_Verdef *) p);
6011 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
6012 if (info->create_default_symver)
6013 {
6014 /* Add a symbol representing this version. */
6015 bh = NULL;
6016 if (! (_bfd_generic_link_add_one_symbol
6017 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6018 0, NULL, FALSE,
6019 get_elf_backend_data (dynobj)->collect, &bh)))
6020 return FALSE;
6021 h = (struct elf_link_hash_entry *) bh;
6022 h->non_elf = 0;
6023 h->def_regular = 1;
6024 h->type = STT_OBJECT;
6025 h->verinfo.vertree = NULL;
6026
6027 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6028 return FALSE;
6029
6030 /* Create a duplicate of the base version with the same
6031 aux block, but different flags. */
6032 def.vd_flags = 0;
6033 def.vd_ndx = 2;
6034 def.vd_aux = sizeof (Elf_External_Verdef);
6035 if (verdefs)
6036 def.vd_next = (sizeof (Elf_External_Verdef)
6037 + sizeof (Elf_External_Verdaux));
6038 else
6039 def.vd_next = 0;
6040 _bfd_elf_swap_verdef_out (output_bfd, &def,
6041 (Elf_External_Verdef *) p);
6042 p += sizeof (Elf_External_Verdef);
6043 }
5a580b3a
AM
6044 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6045 (Elf_External_Verdaux *) p);
6046 p += sizeof (Elf_External_Verdaux);
6047
6048 for (t = verdefs; t != NULL; t = t->next)
6049 {
6050 unsigned int cdeps;
6051 struct bfd_elf_version_deps *n;
5a580b3a 6052
a6cc6b3b
RO
6053 /* Don't emit the base version twice. */
6054 if (t->vernum == 0)
6055 continue;
6056
5a580b3a
AM
6057 cdeps = 0;
6058 for (n = t->deps; n != NULL; n = n->next)
6059 ++cdeps;
6060
6061 /* Add a symbol representing this version. */
6062 bh = NULL;
6063 if (! (_bfd_generic_link_add_one_symbol
6064 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6065 0, NULL, FALSE,
6066 get_elf_backend_data (dynobj)->collect, &bh)))
6067 return FALSE;
6068 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6069 h->non_elf = 0;
6070 h->def_regular = 1;
5a580b3a
AM
6071 h->type = STT_OBJECT;
6072 h->verinfo.vertree = t;
6073
c152c796 6074 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5a580b3a
AM
6075 return FALSE;
6076
6077 def.vd_version = VER_DEF_CURRENT;
6078 def.vd_flags = 0;
6079 if (t->globals.list == NULL
6080 && t->locals.list == NULL
6081 && ! t->used)
6082 def.vd_flags |= VER_FLG_WEAK;
3e3b46e5 6083 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5a580b3a
AM
6084 def.vd_cnt = cdeps + 1;
6085 def.vd_hash = bfd_elf_hash (t->name);
6086 def.vd_aux = sizeof (Elf_External_Verdef);
6087 def.vd_next = 0;
a6cc6b3b
RO
6088
6089 /* If a basever node is next, it *must* be the last node in
6090 the chain, otherwise Verdef construction breaks. */
6091 if (t->next != NULL && t->next->vernum == 0)
6092 BFD_ASSERT (t->next->next == NULL);
6093
6094 if (t->next != NULL && t->next->vernum != 0)
5a580b3a
AM
6095 def.vd_next = (sizeof (Elf_External_Verdef)
6096 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6097
6098 _bfd_elf_swap_verdef_out (output_bfd, &def,
6099 (Elf_External_Verdef *) p);
6100 p += sizeof (Elf_External_Verdef);
6101
6102 defaux.vda_name = h->dynstr_index;
6103 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6104 h->dynstr_index);
6105 defaux.vda_next = 0;
6106 if (t->deps != NULL)
6107 defaux.vda_next = sizeof (Elf_External_Verdaux);
6108 t->name_indx = defaux.vda_name;
6109
6110 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6111 (Elf_External_Verdaux *) p);
6112 p += sizeof (Elf_External_Verdaux);
6113
6114 for (n = t->deps; n != NULL; n = n->next)
6115 {
6116 if (n->version_needed == NULL)
6117 {
6118 /* This can happen if there was an error in the
6119 version script. */
6120 defaux.vda_name = 0;
6121 }
6122 else
6123 {
6124 defaux.vda_name = n->version_needed->name_indx;
6125 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6126 defaux.vda_name);
6127 }
6128 if (n->next == NULL)
6129 defaux.vda_next = 0;
6130 else
6131 defaux.vda_next = sizeof (Elf_External_Verdaux);
6132
6133 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6134 (Elf_External_Verdaux *) p);
6135 p += sizeof (Elf_External_Verdaux);
6136 }
6137 }
6138
6139 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6140 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6141 return FALSE;
6142
6143 elf_tdata (output_bfd)->cverdefs = cdefs;
6144 }
6145
6146 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6147 {
6148 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6149 return FALSE;
6150 }
6151 else if (info->flags & DF_BIND_NOW)
6152 {
6153 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6154 return FALSE;
6155 }
6156
6157 if (info->flags_1)
6158 {
6159 if (info->executable)
6160 info->flags_1 &= ~ (DF_1_INITFIRST
6161 | DF_1_NODELETE
6162 | DF_1_NOOPEN);
6163 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6164 return FALSE;
6165 }
6166
6167 /* Work out the size of the version reference section. */
6168
6169 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6170 BFD_ASSERT (s != NULL);
6171 {
6172 struct elf_find_verdep_info sinfo;
6173
5a580b3a
AM
6174 sinfo.info = info;
6175 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6176 if (sinfo.vers == 0)
6177 sinfo.vers = 1;
6178 sinfo.failed = FALSE;
6179
6180 elf_link_hash_traverse (elf_hash_table (info),
6181 _bfd_elf_link_find_version_dependencies,
6182 &sinfo);
14b1c01e
AM
6183 if (sinfo.failed)
6184 return FALSE;
5a580b3a
AM
6185
6186 if (elf_tdata (output_bfd)->verref == NULL)
8423293d 6187 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
6188 else
6189 {
6190 Elf_Internal_Verneed *t;
6191 unsigned int size;
6192 unsigned int crefs;
6193 bfd_byte *p;
6194
a6cc6b3b 6195 /* Build the version dependency section. */
5a580b3a
AM
6196 size = 0;
6197 crefs = 0;
6198 for (t = elf_tdata (output_bfd)->verref;
6199 t != NULL;
6200 t = t->vn_nextref)
6201 {
6202 Elf_Internal_Vernaux *a;
6203
6204 size += sizeof (Elf_External_Verneed);
6205 ++crefs;
6206 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6207 size += sizeof (Elf_External_Vernaux);
6208 }
6209
eea6121a 6210 s->size = size;
a50b1753 6211 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5a580b3a
AM
6212 if (s->contents == NULL)
6213 return FALSE;
6214
6215 p = s->contents;
6216 for (t = elf_tdata (output_bfd)->verref;
6217 t != NULL;
6218 t = t->vn_nextref)
6219 {
6220 unsigned int caux;
6221 Elf_Internal_Vernaux *a;
6222 bfd_size_type indx;
6223
6224 caux = 0;
6225 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6226 ++caux;
6227
6228 t->vn_version = VER_NEED_CURRENT;
6229 t->vn_cnt = caux;
6230 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6231 elf_dt_name (t->vn_bfd) != NULL
6232 ? elf_dt_name (t->vn_bfd)
06084812 6233 : lbasename (t->vn_bfd->filename),
5a580b3a
AM
6234 FALSE);
6235 if (indx == (bfd_size_type) -1)
6236 return FALSE;
6237 t->vn_file = indx;
6238 t->vn_aux = sizeof (Elf_External_Verneed);
6239 if (t->vn_nextref == NULL)
6240 t->vn_next = 0;
6241 else
6242 t->vn_next = (sizeof (Elf_External_Verneed)
6243 + caux * sizeof (Elf_External_Vernaux));
6244
6245 _bfd_elf_swap_verneed_out (output_bfd, t,
6246 (Elf_External_Verneed *) p);
6247 p += sizeof (Elf_External_Verneed);
6248
6249 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6250 {
6251 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6252 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6253 a->vna_nodename, FALSE);
6254 if (indx == (bfd_size_type) -1)
6255 return FALSE;
6256 a->vna_name = indx;
6257 if (a->vna_nextptr == NULL)
6258 a->vna_next = 0;
6259 else
6260 a->vna_next = sizeof (Elf_External_Vernaux);
6261
6262 _bfd_elf_swap_vernaux_out (output_bfd, a,
6263 (Elf_External_Vernaux *) p);
6264 p += sizeof (Elf_External_Vernaux);
6265 }
6266 }
6267
6268 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6269 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6270 return FALSE;
6271
6272 elf_tdata (output_bfd)->cverrefs = crefs;
6273 }
6274 }
6275
8423293d
AM
6276 if ((elf_tdata (output_bfd)->cverrefs == 0
6277 && elf_tdata (output_bfd)->cverdefs == 0)
6278 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6279 &section_sym_count) == 0)
6280 {
6281 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6282 s->flags |= SEC_EXCLUDE;
6283 }
6284 }
6285 return TRUE;
6286}
6287
74541ad4
AM
6288/* Find the first non-excluded output section. We'll use its
6289 section symbol for some emitted relocs. */
6290void
6291_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6292{
6293 asection *s;
6294
6295 for (s = output_bfd->sections; s != NULL; s = s->next)
6296 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6297 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6298 {
6299 elf_hash_table (info)->text_index_section = s;
6300 break;
6301 }
6302}
6303
6304/* Find two non-excluded output sections, one for code, one for data.
6305 We'll use their section symbols for some emitted relocs. */
6306void
6307_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6308{
6309 asection *s;
6310
266b05cf
DJ
6311 /* Data first, since setting text_index_section changes
6312 _bfd_elf_link_omit_section_dynsym. */
74541ad4 6313 for (s = output_bfd->sections; s != NULL; s = s->next)
266b05cf 6314 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
74541ad4
AM
6315 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6316 {
266b05cf 6317 elf_hash_table (info)->data_index_section = s;
74541ad4
AM
6318 break;
6319 }
6320
6321 for (s = output_bfd->sections; s != NULL; s = s->next)
266b05cf
DJ
6322 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6323 == (SEC_ALLOC | SEC_READONLY))
74541ad4
AM
6324 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6325 {
266b05cf 6326 elf_hash_table (info)->text_index_section = s;
74541ad4
AM
6327 break;
6328 }
6329
6330 if (elf_hash_table (info)->text_index_section == NULL)
6331 elf_hash_table (info)->text_index_section
6332 = elf_hash_table (info)->data_index_section;
6333}
6334
8423293d
AM
6335bfd_boolean
6336bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6337{
74541ad4
AM
6338 const struct elf_backend_data *bed;
6339
8423293d
AM
6340 if (!is_elf_hash_table (info->hash))
6341 return TRUE;
6342
74541ad4
AM
6343 bed = get_elf_backend_data (output_bfd);
6344 (*bed->elf_backend_init_index_section) (output_bfd, info);
6345
8423293d
AM
6346 if (elf_hash_table (info)->dynamic_sections_created)
6347 {
6348 bfd *dynobj;
8423293d
AM
6349 asection *s;
6350 bfd_size_type dynsymcount;
6351 unsigned long section_sym_count;
8423293d
AM
6352 unsigned int dtagcount;
6353
6354 dynobj = elf_hash_table (info)->dynobj;
6355
5a580b3a
AM
6356 /* Assign dynsym indicies. In a shared library we generate a
6357 section symbol for each output section, which come first.
6358 Next come all of the back-end allocated local dynamic syms,
6359 followed by the rest of the global symbols. */
6360
554220db
AM
6361 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6362 &section_sym_count);
5a580b3a
AM
6363
6364 /* Work out the size of the symbol version section. */
6365 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6366 BFD_ASSERT (s != NULL);
8423293d
AM
6367 if (dynsymcount != 0
6368 && (s->flags & SEC_EXCLUDE) == 0)
5a580b3a 6369 {
eea6121a 6370 s->size = dynsymcount * sizeof (Elf_External_Versym);
a50b1753 6371 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
6372 if (s->contents == NULL)
6373 return FALSE;
6374
6375 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6376 return FALSE;
6377 }
6378
6379 /* Set the size of the .dynsym and .hash sections. We counted
6380 the number of dynamic symbols in elf_link_add_object_symbols.
6381 We will build the contents of .dynsym and .hash when we build
6382 the final symbol table, because until then we do not know the
6383 correct value to give the symbols. We built the .dynstr
6384 section as we went along in elf_link_add_object_symbols. */
6385 s = bfd_get_section_by_name (dynobj, ".dynsym");
6386 BFD_ASSERT (s != NULL);
eea6121a 6387 s->size = dynsymcount * bed->s->sizeof_sym;
5a580b3a
AM
6388
6389 if (dynsymcount != 0)
6390 {
a50b1753 6391 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
554220db
AM
6392 if (s->contents == NULL)
6393 return FALSE;
5a580b3a 6394
554220db
AM
6395 /* The first entry in .dynsym is a dummy symbol.
6396 Clear all the section syms, in case we don't output them all. */
6397 ++section_sym_count;
6398 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5a580b3a
AM
6399 }
6400
fdc90cb4
JJ
6401 elf_hash_table (info)->bucketcount = 0;
6402
5a580b3a
AM
6403 /* Compute the size of the hashing table. As a side effect this
6404 computes the hash values for all the names we export. */
fdc90cb4
JJ
6405 if (info->emit_hash)
6406 {
6407 unsigned long int *hashcodes;
14b1c01e 6408 struct hash_codes_info hashinf;
fdc90cb4
JJ
6409 bfd_size_type amt;
6410 unsigned long int nsyms;
6411 size_t bucketcount;
6412 size_t hash_entry_size;
6413
6414 /* Compute the hash values for all exported symbols. At the same
6415 time store the values in an array so that we could use them for
6416 optimizations. */
6417 amt = dynsymcount * sizeof (unsigned long int);
a50b1753 6418 hashcodes = (unsigned long int *) bfd_malloc (amt);
fdc90cb4
JJ
6419 if (hashcodes == NULL)
6420 return FALSE;
14b1c01e
AM
6421 hashinf.hashcodes = hashcodes;
6422 hashinf.error = FALSE;
5a580b3a 6423
fdc90cb4
JJ
6424 /* Put all hash values in HASHCODES. */
6425 elf_link_hash_traverse (elf_hash_table (info),
14b1c01e
AM
6426 elf_collect_hash_codes, &hashinf);
6427 if (hashinf.error)
4dd07732
AM
6428 {
6429 free (hashcodes);
6430 return FALSE;
6431 }
5a580b3a 6432
14b1c01e 6433 nsyms = hashinf.hashcodes - hashcodes;
fdc90cb4
JJ
6434 bucketcount
6435 = compute_bucket_count (info, hashcodes, nsyms, 0);
6436 free (hashcodes);
6437
6438 if (bucketcount == 0)
6439 return FALSE;
5a580b3a 6440
fdc90cb4
JJ
6441 elf_hash_table (info)->bucketcount = bucketcount;
6442
6443 s = bfd_get_section_by_name (dynobj, ".hash");
6444 BFD_ASSERT (s != NULL);
6445 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6446 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
a50b1753 6447 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
fdc90cb4
JJ
6448 if (s->contents == NULL)
6449 return FALSE;
6450
6451 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6452 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6453 s->contents + hash_entry_size);
6454 }
6455
6456 if (info->emit_gnu_hash)
6457 {
6458 size_t i, cnt;
6459 unsigned char *contents;
6460 struct collect_gnu_hash_codes cinfo;
6461 bfd_size_type amt;
6462 size_t bucketcount;
6463
6464 memset (&cinfo, 0, sizeof (cinfo));
6465
6466 /* Compute the hash values for all exported symbols. At the same
6467 time store the values in an array so that we could use them for
6468 optimizations. */
6469 amt = dynsymcount * 2 * sizeof (unsigned long int);
a50b1753 6470 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
fdc90cb4
JJ
6471 if (cinfo.hashcodes == NULL)
6472 return FALSE;
6473
6474 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6475 cinfo.min_dynindx = -1;
6476 cinfo.output_bfd = output_bfd;
6477 cinfo.bed = bed;
6478
6479 /* Put all hash values in HASHCODES. */
6480 elf_link_hash_traverse (elf_hash_table (info),
6481 elf_collect_gnu_hash_codes, &cinfo);
14b1c01e 6482 if (cinfo.error)
4dd07732
AM
6483 {
6484 free (cinfo.hashcodes);
6485 return FALSE;
6486 }
fdc90cb4
JJ
6487
6488 bucketcount
6489 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6490
6491 if (bucketcount == 0)
6492 {
6493 free (cinfo.hashcodes);
6494 return FALSE;
6495 }
6496
6497 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6498 BFD_ASSERT (s != NULL);
6499
6500 if (cinfo.nsyms == 0)
6501 {
6502 /* Empty .gnu.hash section is special. */
6503 BFD_ASSERT (cinfo.min_dynindx == -1);
6504 free (cinfo.hashcodes);
6505 s->size = 5 * 4 + bed->s->arch_size / 8;
a50b1753 6506 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
fdc90cb4
JJ
6507 if (contents == NULL)
6508 return FALSE;
6509 s->contents = contents;
6510 /* 1 empty bucket. */
6511 bfd_put_32 (output_bfd, 1, contents);
6512 /* SYMIDX above the special symbol 0. */
6513 bfd_put_32 (output_bfd, 1, contents + 4);
6514 /* Just one word for bitmask. */
6515 bfd_put_32 (output_bfd, 1, contents + 8);
6516 /* Only hash fn bloom filter. */
6517 bfd_put_32 (output_bfd, 0, contents + 12);
6518 /* No hashes are valid - empty bitmask. */
6519 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6520 /* No hashes in the only bucket. */
6521 bfd_put_32 (output_bfd, 0,
6522 contents + 16 + bed->s->arch_size / 8);
6523 }
6524 else
6525 {
fdc90cb4 6526 unsigned long int maskwords, maskbitslog2;
0b33793d 6527 BFD_ASSERT (cinfo.min_dynindx != -1);
fdc90cb4
JJ
6528
6529 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6530 if (maskbitslog2 < 3)
6531 maskbitslog2 = 5;
6532 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6533 maskbitslog2 = maskbitslog2 + 3;
6534 else
6535 maskbitslog2 = maskbitslog2 + 2;
6536 if (bed->s->arch_size == 64)
6537 {
6538 if (maskbitslog2 == 5)
6539 maskbitslog2 = 6;
6540 cinfo.shift1 = 6;
6541 }
6542 else
6543 cinfo.shift1 = 5;
6544 cinfo.mask = (1 << cinfo.shift1) - 1;
2ccdbfcc 6545 cinfo.shift2 = maskbitslog2;
fdc90cb4
JJ
6546 cinfo.maskbits = 1 << maskbitslog2;
6547 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6548 amt = bucketcount * sizeof (unsigned long int) * 2;
6549 amt += maskwords * sizeof (bfd_vma);
a50b1753 6550 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
fdc90cb4
JJ
6551 if (cinfo.bitmask == NULL)
6552 {
6553 free (cinfo.hashcodes);
6554 return FALSE;
6555 }
6556
a50b1753 6557 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
fdc90cb4
JJ
6558 cinfo.indx = cinfo.counts + bucketcount;
6559 cinfo.symindx = dynsymcount - cinfo.nsyms;
6560 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6561
6562 /* Determine how often each hash bucket is used. */
6563 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6564 for (i = 0; i < cinfo.nsyms; ++i)
6565 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6566
6567 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6568 if (cinfo.counts[i] != 0)
6569 {
6570 cinfo.indx[i] = cnt;
6571 cnt += cinfo.counts[i];
6572 }
6573 BFD_ASSERT (cnt == dynsymcount);
6574 cinfo.bucketcount = bucketcount;
6575 cinfo.local_indx = cinfo.min_dynindx;
6576
6577 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6578 s->size += cinfo.maskbits / 8;
a50b1753 6579 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
fdc90cb4
JJ
6580 if (contents == NULL)
6581 {
6582 free (cinfo.bitmask);
6583 free (cinfo.hashcodes);
6584 return FALSE;
6585 }
6586
6587 s->contents = contents;
6588 bfd_put_32 (output_bfd, bucketcount, contents);
6589 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6590 bfd_put_32 (output_bfd, maskwords, contents + 8);
6591 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6592 contents += 16 + cinfo.maskbits / 8;
6593
6594 for (i = 0; i < bucketcount; ++i)
6595 {
6596 if (cinfo.counts[i] == 0)
6597 bfd_put_32 (output_bfd, 0, contents);
6598 else
6599 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6600 contents += 4;
6601 }
6602
6603 cinfo.contents = contents;
6604
6605 /* Renumber dynamic symbols, populate .gnu.hash section. */
6606 elf_link_hash_traverse (elf_hash_table (info),
6607 elf_renumber_gnu_hash_syms, &cinfo);
6608
6609 contents = s->contents + 16;
6610 for (i = 0; i < maskwords; ++i)
6611 {
6612 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6613 contents);
6614 contents += bed->s->arch_size / 8;
6615 }
6616
6617 free (cinfo.bitmask);
6618 free (cinfo.hashcodes);
6619 }
6620 }
5a580b3a
AM
6621
6622 s = bfd_get_section_by_name (dynobj, ".dynstr");
6623 BFD_ASSERT (s != NULL);
6624
4ad4eba5 6625 elf_finalize_dynstr (output_bfd, info);
5a580b3a 6626
eea6121a 6627 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5a580b3a
AM
6628
6629 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6630 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6631 return FALSE;
6632 }
6633
6634 return TRUE;
6635}
4d269e42
AM
6636\f
6637/* Indicate that we are only retrieving symbol values from this
6638 section. */
6639
6640void
6641_bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6642{
6643 if (is_elf_hash_table (info->hash))
6644 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6645 _bfd_generic_link_just_syms (sec, info);
6646}
6647
6648/* Make sure sec_info_type is cleared if sec_info is cleared too. */
6649
6650static void
6651merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6652 asection *sec)
6653{
6654 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6655 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6656}
6657
6658/* Finish SHF_MERGE section merging. */
6659
6660bfd_boolean
6661_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6662{
6663 bfd *ibfd;
6664 asection *sec;
6665
6666 if (!is_elf_hash_table (info->hash))
6667 return FALSE;
6668
6669 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6670 if ((ibfd->flags & DYNAMIC) == 0)
6671 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6672 if ((sec->flags & SEC_MERGE) != 0
6673 && !bfd_is_abs_section (sec->output_section))
6674 {
6675 struct bfd_elf_section_data *secdata;
6676
6677 secdata = elf_section_data (sec);
6678 if (! _bfd_add_merge_section (abfd,
6679 &elf_hash_table (info)->merge_info,
6680 sec, &secdata->sec_info))
6681 return FALSE;
6682 else if (secdata->sec_info)
6683 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6684 }
6685
6686 if (elf_hash_table (info)->merge_info != NULL)
6687 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6688 merge_sections_remove_hook);
6689 return TRUE;
6690}
6691
6692/* Create an entry in an ELF linker hash table. */
6693
6694struct bfd_hash_entry *
6695_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6696 struct bfd_hash_table *table,
6697 const char *string)
6698{
6699 /* Allocate the structure if it has not already been allocated by a
6700 subclass. */
6701 if (entry == NULL)
6702 {
a50b1753
NC
6703 entry = (struct bfd_hash_entry *)
6704 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
4d269e42
AM
6705 if (entry == NULL)
6706 return entry;
6707 }
6708
6709 /* Call the allocation method of the superclass. */
6710 entry = _bfd_link_hash_newfunc (entry, table, string);
6711 if (entry != NULL)
6712 {
6713 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6714 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6715
6716 /* Set local fields. */
6717 ret->indx = -1;
6718 ret->dynindx = -1;
6719 ret->got = htab->init_got_refcount;
6720 ret->plt = htab->init_plt_refcount;
6721 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6722 - offsetof (struct elf_link_hash_entry, size)));
6723 /* Assume that we have been called by a non-ELF symbol reader.
6724 This flag is then reset by the code which reads an ELF input
6725 file. This ensures that a symbol created by a non-ELF symbol
6726 reader will have the flag set correctly. */
6727 ret->non_elf = 1;
6728 }
6729
6730 return entry;
6731}
6732
6733/* Copy data from an indirect symbol to its direct symbol, hiding the
6734 old indirect symbol. Also used for copying flags to a weakdef. */
6735
6736void
6737_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6738 struct elf_link_hash_entry *dir,
6739 struct elf_link_hash_entry *ind)
6740{
6741 struct elf_link_hash_table *htab;
6742
6743 /* Copy down any references that we may have already seen to the
6744 symbol which just became indirect. */
6745
6746 dir->ref_dynamic |= ind->ref_dynamic;
6747 dir->ref_regular |= ind->ref_regular;
6748 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6749 dir->non_got_ref |= ind->non_got_ref;
6750 dir->needs_plt |= ind->needs_plt;
6751 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6752
6753 if (ind->root.type != bfd_link_hash_indirect)
6754 return;
6755
6756 /* Copy over the global and procedure linkage table refcount entries.
6757 These may have been already set up by a check_relocs routine. */
6758 htab = elf_hash_table (info);
6759 if (ind->got.refcount > htab->init_got_refcount.refcount)
6760 {
6761 if (dir->got.refcount < 0)
6762 dir->got.refcount = 0;
6763 dir->got.refcount += ind->got.refcount;
6764 ind->got.refcount = htab->init_got_refcount.refcount;
6765 }
6766
6767 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6768 {
6769 if (dir->plt.refcount < 0)
6770 dir->plt.refcount = 0;
6771 dir->plt.refcount += ind->plt.refcount;
6772 ind->plt.refcount = htab->init_plt_refcount.refcount;
6773 }
6774
6775 if (ind->dynindx != -1)
6776 {
6777 if (dir->dynindx != -1)
6778 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6779 dir->dynindx = ind->dynindx;
6780 dir->dynstr_index = ind->dynstr_index;
6781 ind->dynindx = -1;
6782 ind->dynstr_index = 0;
6783 }
6784}
6785
6786void
6787_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6788 struct elf_link_hash_entry *h,
6789 bfd_boolean force_local)
6790{
3aa14d16
L
6791 /* STT_GNU_IFUNC symbol must go through PLT. */
6792 if (h->type != STT_GNU_IFUNC)
6793 {
6794 h->plt = elf_hash_table (info)->init_plt_offset;
6795 h->needs_plt = 0;
6796 }
4d269e42
AM
6797 if (force_local)
6798 {
6799 h->forced_local = 1;
6800 if (h->dynindx != -1)
6801 {
6802 h->dynindx = -1;
6803 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6804 h->dynstr_index);
6805 }
6806 }
6807}
6808
6809/* Initialize an ELF linker hash table. */
6810
6811bfd_boolean
6812_bfd_elf_link_hash_table_init
6813 (struct elf_link_hash_table *table,
6814 bfd *abfd,
6815 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6816 struct bfd_hash_table *,
6817 const char *),
4dfe6ac6
NC
6818 unsigned int entsize,
6819 enum elf_target_id target_id)
4d269e42
AM
6820{
6821 bfd_boolean ret;
6822 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6823
6824 memset (table, 0, sizeof * table);
6825 table->init_got_refcount.refcount = can_refcount - 1;
6826 table->init_plt_refcount.refcount = can_refcount - 1;
6827 table->init_got_offset.offset = -(bfd_vma) 1;
6828 table->init_plt_offset.offset = -(bfd_vma) 1;
6829 /* The first dynamic symbol is a dummy. */
6830 table->dynsymcount = 1;
6831
6832 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
4dfe6ac6 6833
4d269e42 6834 table->root.type = bfd_link_elf_hash_table;
4dfe6ac6 6835 table->hash_table_id = target_id;
4d269e42
AM
6836
6837 return ret;
6838}
6839
6840/* Create an ELF linker hash table. */
6841
6842struct bfd_link_hash_table *
6843_bfd_elf_link_hash_table_create (bfd *abfd)
6844{
6845 struct elf_link_hash_table *ret;
6846 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6847
a50b1753 6848 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
4d269e42
AM
6849 if (ret == NULL)
6850 return NULL;
6851
6852 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
4dfe6ac6
NC
6853 sizeof (struct elf_link_hash_entry),
6854 GENERIC_ELF_DATA))
4d269e42
AM
6855 {
6856 free (ret);
6857 return NULL;
6858 }
6859
6860 return &ret->root;
6861}
6862
6863/* This is a hook for the ELF emulation code in the generic linker to
6864 tell the backend linker what file name to use for the DT_NEEDED
6865 entry for a dynamic object. */
6866
6867void
6868bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6869{
6870 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6871 && bfd_get_format (abfd) == bfd_object)
6872 elf_dt_name (abfd) = name;
6873}
6874
6875int
6876bfd_elf_get_dyn_lib_class (bfd *abfd)
6877{
6878 int lib_class;
6879 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6880 && bfd_get_format (abfd) == bfd_object)
6881 lib_class = elf_dyn_lib_class (abfd);
6882 else
6883 lib_class = 0;
6884 return lib_class;
6885}
6886
6887void
6888bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6889{
6890 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6891 && bfd_get_format (abfd) == bfd_object)
6892 elf_dyn_lib_class (abfd) = lib_class;
6893}
6894
6895/* Get the list of DT_NEEDED entries for a link. This is a hook for
6896 the linker ELF emulation code. */
6897
6898struct bfd_link_needed_list *
6899bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6900 struct bfd_link_info *info)
6901{
6902 if (! is_elf_hash_table (info->hash))
6903 return NULL;
6904 return elf_hash_table (info)->needed;
6905}
6906
6907/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6908 hook for the linker ELF emulation code. */
6909
6910struct bfd_link_needed_list *
6911bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6912 struct bfd_link_info *info)
6913{
6914 if (! is_elf_hash_table (info->hash))
6915 return NULL;
6916 return elf_hash_table (info)->runpath;
6917}
6918
6919/* Get the name actually used for a dynamic object for a link. This
6920 is the SONAME entry if there is one. Otherwise, it is the string
6921 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6922
6923const char *
6924bfd_elf_get_dt_soname (bfd *abfd)
6925{
6926 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6927 && bfd_get_format (abfd) == bfd_object)
6928 return elf_dt_name (abfd);
6929 return NULL;
6930}
6931
6932/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6933 the ELF linker emulation code. */
6934
6935bfd_boolean
6936bfd_elf_get_bfd_needed_list (bfd *abfd,
6937 struct bfd_link_needed_list **pneeded)
6938{
6939 asection *s;
6940 bfd_byte *dynbuf = NULL;
cb33740c 6941 unsigned int elfsec;
4d269e42
AM
6942 unsigned long shlink;
6943 bfd_byte *extdyn, *extdynend;
6944 size_t extdynsize;
6945 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6946
6947 *pneeded = NULL;
6948
6949 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6950 || bfd_get_format (abfd) != bfd_object)
6951 return TRUE;
6952
6953 s = bfd_get_section_by_name (abfd, ".dynamic");
6954 if (s == NULL || s->size == 0)
6955 return TRUE;
6956
6957 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6958 goto error_return;
6959
6960 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
cb33740c 6961 if (elfsec == SHN_BAD)
4d269e42
AM
6962 goto error_return;
6963
6964 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
c152c796 6965
4d269e42
AM
6966 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6967 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6968
6969 extdyn = dynbuf;
6970 extdynend = extdyn + s->size;
6971 for (; extdyn < extdynend; extdyn += extdynsize)
6972 {
6973 Elf_Internal_Dyn dyn;
6974
6975 (*swap_dyn_in) (abfd, extdyn, &dyn);
6976
6977 if (dyn.d_tag == DT_NULL)
6978 break;
6979
6980 if (dyn.d_tag == DT_NEEDED)
6981 {
6982 const char *string;
6983 struct bfd_link_needed_list *l;
6984 unsigned int tagv = dyn.d_un.d_val;
6985 bfd_size_type amt;
6986
6987 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6988 if (string == NULL)
6989 goto error_return;
6990
6991 amt = sizeof *l;
a50b1753 6992 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4d269e42
AM
6993 if (l == NULL)
6994 goto error_return;
6995
6996 l->by = abfd;
6997 l->name = string;
6998 l->next = *pneeded;
6999 *pneeded = l;
7000 }
7001 }
7002
7003 free (dynbuf);
7004
7005 return TRUE;
7006
7007 error_return:
7008 if (dynbuf != NULL)
7009 free (dynbuf);
7010 return FALSE;
7011}
7012
7013struct elf_symbuf_symbol
7014{
7015 unsigned long st_name; /* Symbol name, index in string tbl */
7016 unsigned char st_info; /* Type and binding attributes */
7017 unsigned char st_other; /* Visibilty, and target specific */
7018};
7019
7020struct elf_symbuf_head
7021{
7022 struct elf_symbuf_symbol *ssym;
7023 bfd_size_type count;
7024 unsigned int st_shndx;
7025};
7026
7027struct elf_symbol
7028{
7029 union
7030 {
7031 Elf_Internal_Sym *isym;
7032 struct elf_symbuf_symbol *ssym;
7033 } u;
7034 const char *name;
7035};
7036
7037/* Sort references to symbols by ascending section number. */
7038
7039static int
7040elf_sort_elf_symbol (const void *arg1, const void *arg2)
7041{
7042 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7043 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7044
7045 return s1->st_shndx - s2->st_shndx;
7046}
7047
7048static int
7049elf_sym_name_compare (const void *arg1, const void *arg2)
7050{
7051 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7052 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7053 return strcmp (s1->name, s2->name);
7054}
7055
7056static struct elf_symbuf_head *
7057elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7058{
14b1c01e 7059 Elf_Internal_Sym **ind, **indbufend, **indbuf;
4d269e42
AM
7060 struct elf_symbuf_symbol *ssym;
7061 struct elf_symbuf_head *ssymbuf, *ssymhead;
3ae181ee 7062 bfd_size_type i, shndx_count, total_size;
4d269e42 7063
a50b1753 7064 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
4d269e42
AM
7065 if (indbuf == NULL)
7066 return NULL;
7067
7068 for (ind = indbuf, i = 0; i < symcount; i++)
7069 if (isymbuf[i].st_shndx != SHN_UNDEF)
7070 *ind++ = &isymbuf[i];
7071 indbufend = ind;
7072
7073 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7074 elf_sort_elf_symbol);
7075
7076 shndx_count = 0;
7077 if (indbufend > indbuf)
7078 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7079 if (ind[0]->st_shndx != ind[1]->st_shndx)
7080 shndx_count++;
7081
3ae181ee
L
7082 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7083 + (indbufend - indbuf) * sizeof (*ssym));
a50b1753 7084 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
4d269e42
AM
7085 if (ssymbuf == NULL)
7086 {
7087 free (indbuf);
7088 return NULL;
7089 }
7090
3ae181ee 7091 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
4d269e42
AM
7092 ssymbuf->ssym = NULL;
7093 ssymbuf->count = shndx_count;
7094 ssymbuf->st_shndx = 0;
7095 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7096 {
7097 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7098 {
7099 ssymhead++;
7100 ssymhead->ssym = ssym;
7101 ssymhead->count = 0;
7102 ssymhead->st_shndx = (*ind)->st_shndx;
7103 }
7104 ssym->st_name = (*ind)->st_name;
7105 ssym->st_info = (*ind)->st_info;
7106 ssym->st_other = (*ind)->st_other;
7107 ssymhead->count++;
7108 }
3ae181ee
L
7109 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7110 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7111 == total_size));
4d269e42
AM
7112
7113 free (indbuf);
7114 return ssymbuf;
7115}
7116
7117/* Check if 2 sections define the same set of local and global
7118 symbols. */
7119
8f317e31 7120static bfd_boolean
4d269e42
AM
7121bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7122 struct bfd_link_info *info)
7123{
7124 bfd *bfd1, *bfd2;
7125 const struct elf_backend_data *bed1, *bed2;
7126 Elf_Internal_Shdr *hdr1, *hdr2;
7127 bfd_size_type symcount1, symcount2;
7128 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7129 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7130 Elf_Internal_Sym *isym, *isymend;
7131 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7132 bfd_size_type count1, count2, i;
cb33740c 7133 unsigned int shndx1, shndx2;
4d269e42
AM
7134 bfd_boolean result;
7135
7136 bfd1 = sec1->owner;
7137 bfd2 = sec2->owner;
7138
4d269e42
AM
7139 /* Both sections have to be in ELF. */
7140 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7141 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7142 return FALSE;
7143
7144 if (elf_section_type (sec1) != elf_section_type (sec2))
7145 return FALSE;
7146
4d269e42
AM
7147 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7148 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
cb33740c 7149 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
4d269e42
AM
7150 return FALSE;
7151
7152 bed1 = get_elf_backend_data (bfd1);
7153 bed2 = get_elf_backend_data (bfd2);
7154 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7155 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7156 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7157 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7158
7159 if (symcount1 == 0 || symcount2 == 0)
7160 return FALSE;
7161
7162 result = FALSE;
7163 isymbuf1 = NULL;
7164 isymbuf2 = NULL;
a50b1753
NC
7165 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7166 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
4d269e42
AM
7167
7168 if (ssymbuf1 == NULL)
7169 {
7170 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7171 NULL, NULL, NULL);
7172 if (isymbuf1 == NULL)
7173 goto done;
7174
7175 if (!info->reduce_memory_overheads)
7176 elf_tdata (bfd1)->symbuf = ssymbuf1
7177 = elf_create_symbuf (symcount1, isymbuf1);
7178 }
7179
7180 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7181 {
7182 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7183 NULL, NULL, NULL);
7184 if (isymbuf2 == NULL)
7185 goto done;
7186
7187 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7188 elf_tdata (bfd2)->symbuf = ssymbuf2
7189 = elf_create_symbuf (symcount2, isymbuf2);
7190 }
7191
7192 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7193 {
7194 /* Optimized faster version. */
7195 bfd_size_type lo, hi, mid;
7196 struct elf_symbol *symp;
7197 struct elf_symbuf_symbol *ssym, *ssymend;
7198
7199 lo = 0;
7200 hi = ssymbuf1->count;
7201 ssymbuf1++;
7202 count1 = 0;
7203 while (lo < hi)
7204 {
7205 mid = (lo + hi) / 2;
cb33740c 7206 if (shndx1 < ssymbuf1[mid].st_shndx)
4d269e42 7207 hi = mid;
cb33740c 7208 else if (shndx1 > ssymbuf1[mid].st_shndx)
4d269e42
AM
7209 lo = mid + 1;
7210 else
7211 {
7212 count1 = ssymbuf1[mid].count;
7213 ssymbuf1 += mid;
7214 break;
7215 }
7216 }
7217
7218 lo = 0;
7219 hi = ssymbuf2->count;
7220 ssymbuf2++;
7221 count2 = 0;
7222 while (lo < hi)
7223 {
7224 mid = (lo + hi) / 2;
cb33740c 7225 if (shndx2 < ssymbuf2[mid].st_shndx)
4d269e42 7226 hi = mid;
cb33740c 7227 else if (shndx2 > ssymbuf2[mid].st_shndx)
4d269e42
AM
7228 lo = mid + 1;
7229 else
7230 {
7231 count2 = ssymbuf2[mid].count;
7232 ssymbuf2 += mid;
7233 break;
7234 }
7235 }
7236
7237 if (count1 == 0 || count2 == 0 || count1 != count2)
7238 goto done;
7239
a50b1753
NC
7240 symtable1 = (struct elf_symbol *)
7241 bfd_malloc (count1 * sizeof (struct elf_symbol));
7242 symtable2 = (struct elf_symbol *)
7243 bfd_malloc (count2 * sizeof (struct elf_symbol));
4d269e42
AM
7244 if (symtable1 == NULL || symtable2 == NULL)
7245 goto done;
7246
7247 symp = symtable1;
7248 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7249 ssym < ssymend; ssym++, symp++)
7250 {
7251 symp->u.ssym = ssym;
7252 symp->name = bfd_elf_string_from_elf_section (bfd1,
7253 hdr1->sh_link,
7254 ssym->st_name);
7255 }
7256
7257 symp = symtable2;
7258 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7259 ssym < ssymend; ssym++, symp++)
7260 {
7261 symp->u.ssym = ssym;
7262 symp->name = bfd_elf_string_from_elf_section (bfd2,
7263 hdr2->sh_link,
7264 ssym->st_name);
7265 }
7266
7267 /* Sort symbol by name. */
7268 qsort (symtable1, count1, sizeof (struct elf_symbol),
7269 elf_sym_name_compare);
7270 qsort (symtable2, count1, sizeof (struct elf_symbol),
7271 elf_sym_name_compare);
7272
7273 for (i = 0; i < count1; i++)
7274 /* Two symbols must have the same binding, type and name. */
7275 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7276 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7277 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7278 goto done;
7279
7280 result = TRUE;
7281 goto done;
7282 }
7283
a50b1753
NC
7284 symtable1 = (struct elf_symbol *)
7285 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7286 symtable2 = (struct elf_symbol *)
7287 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
4d269e42
AM
7288 if (symtable1 == NULL || symtable2 == NULL)
7289 goto done;
7290
7291 /* Count definitions in the section. */
7292 count1 = 0;
7293 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
cb33740c 7294 if (isym->st_shndx == shndx1)
4d269e42
AM
7295 symtable1[count1++].u.isym = isym;
7296
7297 count2 = 0;
7298 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
cb33740c 7299 if (isym->st_shndx == shndx2)
4d269e42
AM
7300 symtable2[count2++].u.isym = isym;
7301
7302 if (count1 == 0 || count2 == 0 || count1 != count2)
7303 goto done;
7304
7305 for (i = 0; i < count1; i++)
7306 symtable1[i].name
7307 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7308 symtable1[i].u.isym->st_name);
7309
7310 for (i = 0; i < count2; i++)
7311 symtable2[i].name
7312 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7313 symtable2[i].u.isym->st_name);
7314
7315 /* Sort symbol by name. */
7316 qsort (symtable1, count1, sizeof (struct elf_symbol),
7317 elf_sym_name_compare);
7318 qsort (symtable2, count1, sizeof (struct elf_symbol),
7319 elf_sym_name_compare);
7320
7321 for (i = 0; i < count1; i++)
7322 /* Two symbols must have the same binding, type and name. */
7323 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7324 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7325 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7326 goto done;
7327
7328 result = TRUE;
7329
7330done:
7331 if (symtable1)
7332 free (symtable1);
7333 if (symtable2)
7334 free (symtable2);
7335 if (isymbuf1)
7336 free (isymbuf1);
7337 if (isymbuf2)
7338 free (isymbuf2);
7339
7340 return result;
7341}
7342
7343/* Return TRUE if 2 section types are compatible. */
7344
7345bfd_boolean
7346_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7347 bfd *bbfd, const asection *bsec)
7348{
7349 if (asec == NULL
7350 || bsec == NULL
7351 || abfd->xvec->flavour != bfd_target_elf_flavour
7352 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7353 return TRUE;
7354
7355 return elf_section_type (asec) == elf_section_type (bsec);
7356}
7357\f
c152c796
AM
7358/* Final phase of ELF linker. */
7359
7360/* A structure we use to avoid passing large numbers of arguments. */
7361
7362struct elf_final_link_info
7363{
7364 /* General link information. */
7365 struct bfd_link_info *info;
7366 /* Output BFD. */
7367 bfd *output_bfd;
7368 /* Symbol string table. */
7369 struct bfd_strtab_hash *symstrtab;
7370 /* .dynsym section. */
7371 asection *dynsym_sec;
7372 /* .hash section. */
7373 asection *hash_sec;
7374 /* symbol version section (.gnu.version). */
7375 asection *symver_sec;
7376 /* Buffer large enough to hold contents of any section. */
7377 bfd_byte *contents;
7378 /* Buffer large enough to hold external relocs of any section. */
7379 void *external_relocs;
7380 /* Buffer large enough to hold internal relocs of any section. */
7381 Elf_Internal_Rela *internal_relocs;
7382 /* Buffer large enough to hold external local symbols of any input
7383 BFD. */
7384 bfd_byte *external_syms;
7385 /* And a buffer for symbol section indices. */
7386 Elf_External_Sym_Shndx *locsym_shndx;
7387 /* Buffer large enough to hold internal local symbols of any input
7388 BFD. */
7389 Elf_Internal_Sym *internal_syms;
7390 /* Array large enough to hold a symbol index for each local symbol
7391 of any input BFD. */
7392 long *indices;
7393 /* Array large enough to hold a section pointer for each local
7394 symbol of any input BFD. */
7395 asection **sections;
7396 /* Buffer to hold swapped out symbols. */
7397 bfd_byte *symbuf;
7398 /* And one for symbol section indices. */
7399 Elf_External_Sym_Shndx *symshndxbuf;
7400 /* Number of swapped out symbols in buffer. */
7401 size_t symbuf_count;
7402 /* Number of symbols which fit in symbuf. */
7403 size_t symbuf_size;
7404 /* And same for symshndxbuf. */
7405 size_t shndxbuf_size;
7406};
7407
7408/* This struct is used to pass information to elf_link_output_extsym. */
7409
7410struct elf_outext_info
7411{
7412 bfd_boolean failed;
7413 bfd_boolean localsyms;
7414 struct elf_final_link_info *finfo;
7415};
7416
d9352518
DB
7417
7418/* Support for evaluating a complex relocation.
7419
7420 Complex relocations are generalized, self-describing relocations. The
7421 implementation of them consists of two parts: complex symbols, and the
a0c8462f 7422 relocations themselves.
d9352518
DB
7423
7424 The relocations are use a reserved elf-wide relocation type code (R_RELC
7425 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7426 information (start bit, end bit, word width, etc) into the addend. This
7427 information is extracted from CGEN-generated operand tables within gas.
7428
7429 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7430 internal) representing prefix-notation expressions, including but not
7431 limited to those sorts of expressions normally encoded as addends in the
7432 addend field. The symbol mangling format is:
7433
7434 <node> := <literal>
7435 | <unary-operator> ':' <node>
7436 | <binary-operator> ':' <node> ':' <node>
7437 ;
7438
7439 <literal> := 's' <digits=N> ':' <N character symbol name>
7440 | 'S' <digits=N> ':' <N character section name>
7441 | '#' <hexdigits>
7442 ;
7443
7444 <binary-operator> := as in C
7445 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7446
7447static void
a0c8462f
AM
7448set_symbol_value (bfd *bfd_with_globals,
7449 Elf_Internal_Sym *isymbuf,
7450 size_t locsymcount,
7451 size_t symidx,
7452 bfd_vma val)
d9352518 7453{
8977835c
AM
7454 struct elf_link_hash_entry **sym_hashes;
7455 struct elf_link_hash_entry *h;
7456 size_t extsymoff = locsymcount;
d9352518 7457
8977835c 7458 if (symidx < locsymcount)
d9352518 7459 {
8977835c
AM
7460 Elf_Internal_Sym *sym;
7461
7462 sym = isymbuf + symidx;
7463 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7464 {
7465 /* It is a local symbol: move it to the
7466 "absolute" section and give it a value. */
7467 sym->st_shndx = SHN_ABS;
7468 sym->st_value = val;
7469 return;
7470 }
7471 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7472 extsymoff = 0;
d9352518 7473 }
8977835c
AM
7474
7475 /* It is a global symbol: set its link type
7476 to "defined" and give it a value. */
7477
7478 sym_hashes = elf_sym_hashes (bfd_with_globals);
7479 h = sym_hashes [symidx - extsymoff];
7480 while (h->root.type == bfd_link_hash_indirect
7481 || h->root.type == bfd_link_hash_warning)
7482 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7483 h->root.type = bfd_link_hash_defined;
7484 h->root.u.def.value = val;
7485 h->root.u.def.section = bfd_abs_section_ptr;
d9352518
DB
7486}
7487
a0c8462f
AM
7488static bfd_boolean
7489resolve_symbol (const char *name,
7490 bfd *input_bfd,
7491 struct elf_final_link_info *finfo,
7492 bfd_vma *result,
7493 Elf_Internal_Sym *isymbuf,
7494 size_t locsymcount)
d9352518 7495{
a0c8462f
AM
7496 Elf_Internal_Sym *sym;
7497 struct bfd_link_hash_entry *global_entry;
7498 const char *candidate = NULL;
7499 Elf_Internal_Shdr *symtab_hdr;
7500 size_t i;
7501
d9352518
DB
7502 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7503
7504 for (i = 0; i < locsymcount; ++ i)
7505 {
8977835c 7506 sym = isymbuf + i;
d9352518
DB
7507
7508 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7509 continue;
7510
7511 candidate = bfd_elf_string_from_elf_section (input_bfd,
7512 symtab_hdr->sh_link,
7513 sym->st_name);
7514#ifdef DEBUG
0f02bbd9
AM
7515 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7516 name, candidate, (unsigned long) sym->st_value);
d9352518
DB
7517#endif
7518 if (candidate && strcmp (candidate, name) == 0)
7519 {
0f02bbd9 7520 asection *sec = finfo->sections [i];
d9352518 7521
0f02bbd9
AM
7522 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7523 *result += sec->output_offset + sec->output_section->vma;
d9352518 7524#ifdef DEBUG
0f02bbd9
AM
7525 printf ("Found symbol with value %8.8lx\n",
7526 (unsigned long) *result);
d9352518
DB
7527#endif
7528 return TRUE;
7529 }
7530 }
7531
7532 /* Hmm, haven't found it yet. perhaps it is a global. */
a0c8462f
AM
7533 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7534 FALSE, FALSE, TRUE);
d9352518
DB
7535 if (!global_entry)
7536 return FALSE;
a0c8462f 7537
d9352518
DB
7538 if (global_entry->type == bfd_link_hash_defined
7539 || global_entry->type == bfd_link_hash_defweak)
7540 {
a0c8462f
AM
7541 *result = (global_entry->u.def.value
7542 + global_entry->u.def.section->output_section->vma
7543 + global_entry->u.def.section->output_offset);
d9352518 7544#ifdef DEBUG
0f02bbd9
AM
7545 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7546 global_entry->root.string, (unsigned long) *result);
d9352518
DB
7547#endif
7548 return TRUE;
a0c8462f 7549 }
d9352518 7550
d9352518
DB
7551 return FALSE;
7552}
7553
7554static bfd_boolean
a0c8462f
AM
7555resolve_section (const char *name,
7556 asection *sections,
7557 bfd_vma *result)
d9352518 7558{
a0c8462f
AM
7559 asection *curr;
7560 unsigned int len;
d9352518 7561
a0c8462f 7562 for (curr = sections; curr; curr = curr->next)
d9352518
DB
7563 if (strcmp (curr->name, name) == 0)
7564 {
7565 *result = curr->vma;
7566 return TRUE;
7567 }
7568
7569 /* Hmm. still haven't found it. try pseudo-section names. */
a0c8462f 7570 for (curr = sections; curr; curr = curr->next)
d9352518
DB
7571 {
7572 len = strlen (curr->name);
a0c8462f 7573 if (len > strlen (name))
d9352518
DB
7574 continue;
7575
7576 if (strncmp (curr->name, name, len) == 0)
7577 {
7578 if (strncmp (".end", name + len, 4) == 0)
7579 {
7580 *result = curr->vma + curr->size;
7581 return TRUE;
7582 }
7583
7584 /* Insert more pseudo-section names here, if you like. */
7585 }
7586 }
a0c8462f 7587
d9352518
DB
7588 return FALSE;
7589}
7590
7591static void
a0c8462f 7592undefined_reference (const char *reftype, const char *name)
d9352518 7593{
a0c8462f
AM
7594 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7595 reftype, name);
d9352518
DB
7596}
7597
7598static bfd_boolean
a0c8462f
AM
7599eval_symbol (bfd_vma *result,
7600 const char **symp,
7601 bfd *input_bfd,
7602 struct elf_final_link_info *finfo,
7603 bfd_vma dot,
7604 Elf_Internal_Sym *isymbuf,
7605 size_t locsymcount,
7606 int signed_p)
d9352518 7607{
4b93929b
NC
7608 size_t len;
7609 size_t symlen;
a0c8462f
AM
7610 bfd_vma a;
7611 bfd_vma b;
4b93929b 7612 char symbuf[4096];
0f02bbd9 7613 const char *sym = *symp;
a0c8462f
AM
7614 const char *symend;
7615 bfd_boolean symbol_is_section = FALSE;
d9352518
DB
7616
7617 len = strlen (sym);
7618 symend = sym + len;
7619
4b93929b 7620 if (len < 1 || len > sizeof (symbuf))
d9352518
DB
7621 {
7622 bfd_set_error (bfd_error_invalid_operation);
7623 return FALSE;
7624 }
a0c8462f 7625
d9352518
DB
7626 switch (* sym)
7627 {
7628 case '.':
0f02bbd9
AM
7629 *result = dot;
7630 *symp = sym + 1;
d9352518
DB
7631 return TRUE;
7632
7633 case '#':
0f02bbd9
AM
7634 ++sym;
7635 *result = strtoul (sym, (char **) symp, 16);
d9352518
DB
7636 return TRUE;
7637
7638 case 'S':
7639 symbol_is_section = TRUE;
a0c8462f 7640 case 's':
0f02bbd9
AM
7641 ++sym;
7642 symlen = strtol (sym, (char **) symp, 10);
7643 sym = *symp + 1; /* Skip the trailing ':'. */
d9352518 7644
4b93929b 7645 if (symend < sym || symlen + 1 > sizeof (symbuf))
d9352518
DB
7646 {
7647 bfd_set_error (bfd_error_invalid_operation);
7648 return FALSE;
7649 }
7650
7651 memcpy (symbuf, sym, symlen);
a0c8462f 7652 symbuf[symlen] = '\0';
0f02bbd9 7653 *symp = sym + symlen;
a0c8462f
AM
7654
7655 /* Is it always possible, with complex symbols, that gas "mis-guessed"
d9352518
DB
7656 the symbol as a section, or vice-versa. so we're pretty liberal in our
7657 interpretation here; section means "try section first", not "must be a
7658 section", and likewise with symbol. */
7659
a0c8462f 7660 if (symbol_is_section)
d9352518 7661 {
8977835c
AM
7662 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7663 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7664 isymbuf, locsymcount))
d9352518
DB
7665 {
7666 undefined_reference ("section", symbuf);
7667 return FALSE;
7668 }
a0c8462f
AM
7669 }
7670 else
d9352518 7671 {
8977835c
AM
7672 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7673 isymbuf, locsymcount)
7674 && !resolve_section (symbuf, finfo->output_bfd->sections,
7675 result))
d9352518
DB
7676 {
7677 undefined_reference ("symbol", symbuf);
7678 return FALSE;
7679 }
7680 }
7681
7682 return TRUE;
a0c8462f 7683
d9352518
DB
7684 /* All that remains are operators. */
7685
7686#define UNARY_OP(op) \
7687 if (strncmp (sym, #op, strlen (#op)) == 0) \
7688 { \
7689 sym += strlen (#op); \
a0c8462f
AM
7690 if (*sym == ':') \
7691 ++sym; \
0f02bbd9
AM
7692 *symp = sym; \
7693 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7694 isymbuf, locsymcount, signed_p)) \
a0c8462f
AM
7695 return FALSE; \
7696 if (signed_p) \
0f02bbd9 7697 *result = op ((bfd_signed_vma) a); \
a0c8462f
AM
7698 else \
7699 *result = op a; \
d9352518
DB
7700 return TRUE; \
7701 }
7702
7703#define BINARY_OP(op) \
7704 if (strncmp (sym, #op, strlen (#op)) == 0) \
7705 { \
7706 sym += strlen (#op); \
a0c8462f
AM
7707 if (*sym == ':') \
7708 ++sym; \
0f02bbd9
AM
7709 *symp = sym; \
7710 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7711 isymbuf, locsymcount, signed_p)) \
a0c8462f 7712 return FALSE; \
0f02bbd9
AM
7713 ++*symp; \
7714 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7715 isymbuf, locsymcount, signed_p)) \
a0c8462f
AM
7716 return FALSE; \
7717 if (signed_p) \
0f02bbd9 7718 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
a0c8462f
AM
7719 else \
7720 *result = a op b; \
d9352518
DB
7721 return TRUE; \
7722 }
7723
7724 default:
7725 UNARY_OP (0-);
7726 BINARY_OP (<<);
7727 BINARY_OP (>>);
7728 BINARY_OP (==);
7729 BINARY_OP (!=);
7730 BINARY_OP (<=);
7731 BINARY_OP (>=);
7732 BINARY_OP (&&);
7733 BINARY_OP (||);
7734 UNARY_OP (~);
7735 UNARY_OP (!);
7736 BINARY_OP (*);
7737 BINARY_OP (/);
7738 BINARY_OP (%);
7739 BINARY_OP (^);
7740 BINARY_OP (|);
7741 BINARY_OP (&);
7742 BINARY_OP (+);
7743 BINARY_OP (-);
7744 BINARY_OP (<);
7745 BINARY_OP (>);
7746#undef UNARY_OP
7747#undef BINARY_OP
7748 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7749 bfd_set_error (bfd_error_invalid_operation);
7750 return FALSE;
7751 }
7752}
7753
d9352518 7754static void
a0c8462f
AM
7755put_value (bfd_vma size,
7756 unsigned long chunksz,
7757 bfd *input_bfd,
7758 bfd_vma x,
7759 bfd_byte *location)
d9352518
DB
7760{
7761 location += (size - chunksz);
7762
a0c8462f 7763 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
d9352518
DB
7764 {
7765 switch (chunksz)
7766 {
7767 default:
7768 case 0:
7769 abort ();
7770 case 1:
7771 bfd_put_8 (input_bfd, x, location);
7772 break;
7773 case 2:
7774 bfd_put_16 (input_bfd, x, location);
7775 break;
7776 case 4:
7777 bfd_put_32 (input_bfd, x, location);
7778 break;
7779 case 8:
7780#ifdef BFD64
7781 bfd_put_64 (input_bfd, x, location);
7782#else
7783 abort ();
7784#endif
7785 break;
7786 }
7787 }
7788}
7789
a0c8462f
AM
7790static bfd_vma
7791get_value (bfd_vma size,
7792 unsigned long chunksz,
7793 bfd *input_bfd,
7794 bfd_byte *location)
d9352518
DB
7795{
7796 bfd_vma x = 0;
7797
a0c8462f 7798 for (; size; size -= chunksz, location += chunksz)
d9352518
DB
7799 {
7800 switch (chunksz)
7801 {
7802 default:
7803 case 0:
7804 abort ();
7805 case 1:
7806 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7807 break;
7808 case 2:
7809 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7810 break;
7811 case 4:
7812 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7813 break;
7814 case 8:
7815#ifdef BFD64
7816 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7817#else
7818 abort ();
7819#endif
7820 break;
7821 }
7822 }
7823 return x;
7824}
7825
a0c8462f
AM
7826static void
7827decode_complex_addend (unsigned long *start, /* in bits */
7828 unsigned long *oplen, /* in bits */
7829 unsigned long *len, /* in bits */
7830 unsigned long *wordsz, /* in bytes */
7831 unsigned long *chunksz, /* in bytes */
7832 unsigned long *lsb0_p,
7833 unsigned long *signed_p,
7834 unsigned long *trunc_p,
7835 unsigned long encoded)
d9352518
DB
7836{
7837 * start = encoded & 0x3F;
7838 * len = (encoded >> 6) & 0x3F;
7839 * oplen = (encoded >> 12) & 0x3F;
7840 * wordsz = (encoded >> 18) & 0xF;
7841 * chunksz = (encoded >> 22) & 0xF;
7842 * lsb0_p = (encoded >> 27) & 1;
7843 * signed_p = (encoded >> 28) & 1;
7844 * trunc_p = (encoded >> 29) & 1;
7845}
7846
cdfeee4f 7847bfd_reloc_status_type
0f02bbd9 7848bfd_elf_perform_complex_relocation (bfd *input_bfd,
cdfeee4f 7849 asection *input_section ATTRIBUTE_UNUSED,
0f02bbd9
AM
7850 bfd_byte *contents,
7851 Elf_Internal_Rela *rel,
7852 bfd_vma relocation)
d9352518 7853{
0f02bbd9
AM
7854 bfd_vma shift, x, mask;
7855 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
cdfeee4f 7856 bfd_reloc_status_type r;
d9352518
DB
7857
7858 /* Perform this reloc, since it is complex.
7859 (this is not to say that it necessarily refers to a complex
7860 symbol; merely that it is a self-describing CGEN based reloc.
7861 i.e. the addend has the complete reloc information (bit start, end,
a0c8462f 7862 word size, etc) encoded within it.). */
d9352518 7863
a0c8462f
AM
7864 decode_complex_addend (&start, &oplen, &len, &wordsz,
7865 &chunksz, &lsb0_p, &signed_p,
7866 &trunc_p, rel->r_addend);
d9352518
DB
7867
7868 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7869
7870 if (lsb0_p)
7871 shift = (start + 1) - len;
7872 else
7873 shift = (8 * wordsz) - (start + len);
7874
5dabe785 7875 /* FIXME: octets_per_byte. */
a0c8462f 7876 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
d9352518
DB
7877
7878#ifdef DEBUG
7879 printf ("Doing complex reloc: "
7880 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7881 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7882 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7883 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7884 oplen, x, mask, relocation);
7885#endif
7886
cdfeee4f 7887 r = bfd_reloc_ok;
d9352518 7888 if (! trunc_p)
cdfeee4f
AM
7889 /* Now do an overflow check. */
7890 r = bfd_check_overflow ((signed_p
7891 ? complain_overflow_signed
7892 : complain_overflow_unsigned),
7893 len, 0, (8 * wordsz),
7894 relocation);
a0c8462f 7895
d9352518
DB
7896 /* Do the deed. */
7897 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7898
7899#ifdef DEBUG
7900 printf (" relocation: %8.8lx\n"
7901 " shifted mask: %8.8lx\n"
7902 " shifted/masked reloc: %8.8lx\n"
7903 " result: %8.8lx\n",
a0c8462f 7904 relocation, (mask << shift),
d9352518
DB
7905 ((relocation & mask) << shift), x);
7906#endif
5dabe785 7907 /* FIXME: octets_per_byte. */
d9352518 7908 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
cdfeee4f 7909 return r;
d9352518
DB
7910}
7911
c152c796
AM
7912/* When performing a relocatable link, the input relocations are
7913 preserved. But, if they reference global symbols, the indices
7914 referenced must be updated. Update all the relocations in
7915 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7916
7917static void
7918elf_link_adjust_relocs (bfd *abfd,
7919 Elf_Internal_Shdr *rel_hdr,
7920 unsigned int count,
7921 struct elf_link_hash_entry **rel_hash)
7922{
7923 unsigned int i;
7924 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7925 bfd_byte *erela;
7926 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7927 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7928 bfd_vma r_type_mask;
7929 int r_sym_shift;
7930
7931 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7932 {
7933 swap_in = bed->s->swap_reloc_in;
7934 swap_out = bed->s->swap_reloc_out;
7935 }
7936 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7937 {
7938 swap_in = bed->s->swap_reloca_in;
7939 swap_out = bed->s->swap_reloca_out;
7940 }
7941 else
7942 abort ();
7943
7944 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7945 abort ();
7946
7947 if (bed->s->arch_size == 32)
7948 {
7949 r_type_mask = 0xff;
7950 r_sym_shift = 8;
7951 }
7952 else
7953 {
7954 r_type_mask = 0xffffffff;
7955 r_sym_shift = 32;
7956 }
7957
7958 erela = rel_hdr->contents;
7959 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7960 {
7961 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7962 unsigned int j;
7963
7964 if (*rel_hash == NULL)
7965 continue;
7966
7967 BFD_ASSERT ((*rel_hash)->indx >= 0);
7968
7969 (*swap_in) (abfd, erela, irela);
7970 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7971 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7972 | (irela[j].r_info & r_type_mask));
7973 (*swap_out) (abfd, irela, erela);
7974 }
7975}
7976
7977struct elf_link_sort_rela
7978{
7979 union {
7980 bfd_vma offset;
7981 bfd_vma sym_mask;
7982 } u;
7983 enum elf_reloc_type_class type;
7984 /* We use this as an array of size int_rels_per_ext_rel. */
7985 Elf_Internal_Rela rela[1];
7986};
7987
7988static int
7989elf_link_sort_cmp1 (const void *A, const void *B)
7990{
a50b1753
NC
7991 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7992 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
c152c796
AM
7993 int relativea, relativeb;
7994
7995 relativea = a->type == reloc_class_relative;
7996 relativeb = b->type == reloc_class_relative;
7997
7998 if (relativea < relativeb)
7999 return 1;
8000 if (relativea > relativeb)
8001 return -1;
8002 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8003 return -1;
8004 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8005 return 1;
8006 if (a->rela->r_offset < b->rela->r_offset)
8007 return -1;
8008 if (a->rela->r_offset > b->rela->r_offset)
8009 return 1;
8010 return 0;
8011}
8012
8013static int
8014elf_link_sort_cmp2 (const void *A, const void *B)
8015{
a50b1753
NC
8016 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8017 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
c152c796
AM
8018 int copya, copyb;
8019
8020 if (a->u.offset < b->u.offset)
8021 return -1;
8022 if (a->u.offset > b->u.offset)
8023 return 1;
8024 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8025 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8026 if (copya < copyb)
8027 return -1;
8028 if (copya > copyb)
8029 return 1;
8030 if (a->rela->r_offset < b->rela->r_offset)
8031 return -1;
8032 if (a->rela->r_offset > b->rela->r_offset)
8033 return 1;
8034 return 0;
8035}
8036
8037static size_t
8038elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8039{
3410fea8 8040 asection *dynamic_relocs;
fc66a176
L
8041 asection *rela_dyn;
8042 asection *rel_dyn;
c152c796
AM
8043 bfd_size_type count, size;
8044 size_t i, ret, sort_elt, ext_size;
8045 bfd_byte *sort, *s_non_relative, *p;
8046 struct elf_link_sort_rela *sq;
8047 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8048 int i2e = bed->s->int_rels_per_ext_rel;
8049 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8050 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8051 struct bfd_link_order *lo;
8052 bfd_vma r_sym_mask;
3410fea8 8053 bfd_boolean use_rela;
c152c796 8054
3410fea8
NC
8055 /* Find a dynamic reloc section. */
8056 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8057 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8058 if (rela_dyn != NULL && rela_dyn->size > 0
8059 && rel_dyn != NULL && rel_dyn->size > 0)
c152c796 8060 {
3410fea8
NC
8061 bfd_boolean use_rela_initialised = FALSE;
8062
8063 /* This is just here to stop gcc from complaining.
8064 It's initialization checking code is not perfect. */
8065 use_rela = TRUE;
8066
8067 /* Both sections are present. Examine the sizes
8068 of the indirect sections to help us choose. */
8069 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8070 if (lo->type == bfd_indirect_link_order)
8071 {
8072 asection *o = lo->u.indirect.section;
8073
8074 if ((o->size % bed->s->sizeof_rela) == 0)
8075 {
8076 if ((o->size % bed->s->sizeof_rel) == 0)
8077 /* Section size is divisible by both rel and rela sizes.
8078 It is of no help to us. */
8079 ;
8080 else
8081 {
8082 /* Section size is only divisible by rela. */
8083 if (use_rela_initialised && (use_rela == FALSE))
8084 {
8085 _bfd_error_handler
8086 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8087 bfd_set_error (bfd_error_invalid_operation);
8088 return 0;
8089 }
8090 else
8091 {
8092 use_rela = TRUE;
8093 use_rela_initialised = TRUE;
8094 }
8095 }
8096 }
8097 else if ((o->size % bed->s->sizeof_rel) == 0)
8098 {
8099 /* Section size is only divisible by rel. */
8100 if (use_rela_initialised && (use_rela == TRUE))
8101 {
8102 _bfd_error_handler
8103 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8104 bfd_set_error (bfd_error_invalid_operation);
8105 return 0;
8106 }
8107 else
8108 {
8109 use_rela = FALSE;
8110 use_rela_initialised = TRUE;
8111 }
8112 }
8113 else
8114 {
8115 /* The section size is not divisible by either - something is wrong. */
8116 _bfd_error_handler
8117 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8118 bfd_set_error (bfd_error_invalid_operation);
8119 return 0;
8120 }
8121 }
8122
8123 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8124 if (lo->type == bfd_indirect_link_order)
8125 {
8126 asection *o = lo->u.indirect.section;
8127
8128 if ((o->size % bed->s->sizeof_rela) == 0)
8129 {
8130 if ((o->size % bed->s->sizeof_rel) == 0)
8131 /* Section size is divisible by both rel and rela sizes.
8132 It is of no help to us. */
8133 ;
8134 else
8135 {
8136 /* Section size is only divisible by rela. */
8137 if (use_rela_initialised && (use_rela == FALSE))
8138 {
8139 _bfd_error_handler
8140 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8141 bfd_set_error (bfd_error_invalid_operation);
8142 return 0;
8143 }
8144 else
8145 {
8146 use_rela = TRUE;
8147 use_rela_initialised = TRUE;
8148 }
8149 }
8150 }
8151 else if ((o->size % bed->s->sizeof_rel) == 0)
8152 {
8153 /* Section size is only divisible by rel. */
8154 if (use_rela_initialised && (use_rela == TRUE))
8155 {
8156 _bfd_error_handler
8157 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8158 bfd_set_error (bfd_error_invalid_operation);
8159 return 0;
8160 }
8161 else
8162 {
8163 use_rela = FALSE;
8164 use_rela_initialised = TRUE;
8165 }
8166 }
8167 else
8168 {
8169 /* The section size is not divisible by either - something is wrong. */
8170 _bfd_error_handler
8171 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8172 bfd_set_error (bfd_error_invalid_operation);
8173 return 0;
8174 }
8175 }
8176
8177 if (! use_rela_initialised)
8178 /* Make a guess. */
8179 use_rela = TRUE;
c152c796 8180 }
fc66a176
L
8181 else if (rela_dyn != NULL && rela_dyn->size > 0)
8182 use_rela = TRUE;
8183 else if (rel_dyn != NULL && rel_dyn->size > 0)
3410fea8 8184 use_rela = FALSE;
c152c796 8185 else
fc66a176 8186 return 0;
3410fea8
NC
8187
8188 if (use_rela)
c152c796 8189 {
3410fea8 8190 dynamic_relocs = rela_dyn;
c152c796
AM
8191 ext_size = bed->s->sizeof_rela;
8192 swap_in = bed->s->swap_reloca_in;
8193 swap_out = bed->s->swap_reloca_out;
8194 }
3410fea8
NC
8195 else
8196 {
8197 dynamic_relocs = rel_dyn;
8198 ext_size = bed->s->sizeof_rel;
8199 swap_in = bed->s->swap_reloc_in;
8200 swap_out = bed->s->swap_reloc_out;
8201 }
c152c796
AM
8202
8203 size = 0;
3410fea8 8204 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
c152c796 8205 if (lo->type == bfd_indirect_link_order)
3410fea8 8206 size += lo->u.indirect.section->size;
c152c796 8207
3410fea8 8208 if (size != dynamic_relocs->size)
c152c796
AM
8209 return 0;
8210
8211 sort_elt = (sizeof (struct elf_link_sort_rela)
8212 + (i2e - 1) * sizeof (Elf_Internal_Rela));
3410fea8
NC
8213
8214 count = dynamic_relocs->size / ext_size;
5e486aa1
NC
8215 if (count == 0)
8216 return 0;
a50b1753 8217 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
3410fea8 8218
c152c796
AM
8219 if (sort == NULL)
8220 {
8221 (*info->callbacks->warning)
8222 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8223 return 0;
8224 }
8225
8226 if (bed->s->arch_size == 32)
8227 r_sym_mask = ~(bfd_vma) 0xff;
8228 else
8229 r_sym_mask = ~(bfd_vma) 0xffffffff;
8230
3410fea8 8231 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
8232 if (lo->type == bfd_indirect_link_order)
8233 {
8234 bfd_byte *erel, *erelend;
8235 asection *o = lo->u.indirect.section;
8236
1da212d6
AM
8237 if (o->contents == NULL && o->size != 0)
8238 {
8239 /* This is a reloc section that is being handled as a normal
8240 section. See bfd_section_from_shdr. We can't combine
8241 relocs in this case. */
8242 free (sort);
8243 return 0;
8244 }
c152c796 8245 erel = o->contents;
eea6121a 8246 erelend = o->contents + o->size;
5dabe785 8247 /* FIXME: octets_per_byte. */
c152c796 8248 p = sort + o->output_offset / ext_size * sort_elt;
3410fea8 8249
c152c796
AM
8250 while (erel < erelend)
8251 {
8252 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
3410fea8 8253
c152c796
AM
8254 (*swap_in) (abfd, erel, s->rela);
8255 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8256 s->u.sym_mask = r_sym_mask;
8257 p += sort_elt;
8258 erel += ext_size;
8259 }
8260 }
8261
8262 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8263
8264 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8265 {
8266 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8267 if (s->type != reloc_class_relative)
8268 break;
8269 }
8270 ret = i;
8271 s_non_relative = p;
8272
8273 sq = (struct elf_link_sort_rela *) s_non_relative;
8274 for (; i < count; i++, p += sort_elt)
8275 {
8276 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8277 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8278 sq = sp;
8279 sp->u.offset = sq->rela->r_offset;
8280 }
8281
8282 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8283
3410fea8 8284 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
8285 if (lo->type == bfd_indirect_link_order)
8286 {
8287 bfd_byte *erel, *erelend;
8288 asection *o = lo->u.indirect.section;
8289
8290 erel = o->contents;
eea6121a 8291 erelend = o->contents + o->size;
5dabe785 8292 /* FIXME: octets_per_byte. */
c152c796
AM
8293 p = sort + o->output_offset / ext_size * sort_elt;
8294 while (erel < erelend)
8295 {
8296 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8297 (*swap_out) (abfd, s->rela, erel);
8298 p += sort_elt;
8299 erel += ext_size;
8300 }
8301 }
8302
8303 free (sort);
3410fea8 8304 *psec = dynamic_relocs;
c152c796
AM
8305 return ret;
8306}
8307
8308/* Flush the output symbols to the file. */
8309
8310static bfd_boolean
8311elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8312 const struct elf_backend_data *bed)
8313{
8314 if (finfo->symbuf_count > 0)
8315 {
8316 Elf_Internal_Shdr *hdr;
8317 file_ptr pos;
8318 bfd_size_type amt;
8319
8320 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8321 pos = hdr->sh_offset + hdr->sh_size;
8322 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8323 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8324 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8325 return FALSE;
8326
8327 hdr->sh_size += amt;
8328 finfo->symbuf_count = 0;
8329 }
8330
8331 return TRUE;
8332}
8333
8334/* Add a symbol to the output symbol table. */
8335
6e0b88f1 8336static int
c152c796
AM
8337elf_link_output_sym (struct elf_final_link_info *finfo,
8338 const char *name,
8339 Elf_Internal_Sym *elfsym,
8340 asection *input_sec,
8341 struct elf_link_hash_entry *h)
8342{
8343 bfd_byte *dest;
8344 Elf_External_Sym_Shndx *destshndx;
6e0b88f1 8345 int (*output_symbol_hook)
c152c796
AM
8346 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8347 struct elf_link_hash_entry *);
8348 const struct elf_backend_data *bed;
8349
8350 bed = get_elf_backend_data (finfo->output_bfd);
8351 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8352 if (output_symbol_hook != NULL)
8353 {
6e0b88f1
AM
8354 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8355 if (ret != 1)
8356 return ret;
c152c796
AM
8357 }
8358
8359 if (name == NULL || *name == '\0')
8360 elfsym->st_name = 0;
8361 else if (input_sec->flags & SEC_EXCLUDE)
8362 elfsym->st_name = 0;
8363 else
8364 {
8365 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8366 name, TRUE, FALSE);
8367 if (elfsym->st_name == (unsigned long) -1)
6e0b88f1 8368 return 0;
c152c796
AM
8369 }
8370
8371 if (finfo->symbuf_count >= finfo->symbuf_size)
8372 {
8373 if (! elf_link_flush_output_syms (finfo, bed))
6e0b88f1 8374 return 0;
c152c796
AM
8375 }
8376
8377 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8378 destshndx = finfo->symshndxbuf;
8379 if (destshndx != NULL)
8380 {
8381 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8382 {
8383 bfd_size_type amt;
8384
8385 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
a50b1753
NC
8386 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8387 amt * 2);
c152c796 8388 if (destshndx == NULL)
6e0b88f1 8389 return 0;
515ef31d 8390 finfo->symshndxbuf = destshndx;
c152c796
AM
8391 memset ((char *) destshndx + amt, 0, amt);
8392 finfo->shndxbuf_size *= 2;
8393 }
8394 destshndx += bfd_get_symcount (finfo->output_bfd);
8395 }
8396
8397 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8398 finfo->symbuf_count += 1;
8399 bfd_get_symcount (finfo->output_bfd) += 1;
8400
6e0b88f1 8401 return 1;
c152c796
AM
8402}
8403
c0d5a53d
L
8404/* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8405
8406static bfd_boolean
8407check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8408{
4fbb74a6
AM
8409 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8410 && sym->st_shndx < SHN_LORESERVE)
c0d5a53d
L
8411 {
8412 /* The gABI doesn't support dynamic symbols in output sections
a0c8462f 8413 beyond 64k. */
c0d5a53d
L
8414 (*_bfd_error_handler)
8415 (_("%B: Too many sections: %d (>= %d)"),
4fbb74a6 8416 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
c0d5a53d
L
8417 bfd_set_error (bfd_error_nonrepresentable_section);
8418 return FALSE;
8419 }
8420 return TRUE;
8421}
8422
c152c796
AM
8423/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8424 allowing an unsatisfied unversioned symbol in the DSO to match a
8425 versioned symbol that would normally require an explicit version.
8426 We also handle the case that a DSO references a hidden symbol
8427 which may be satisfied by a versioned symbol in another DSO. */
8428
8429static bfd_boolean
8430elf_link_check_versioned_symbol (struct bfd_link_info *info,
8431 const struct elf_backend_data *bed,
8432 struct elf_link_hash_entry *h)
8433{
8434 bfd *abfd;
8435 struct elf_link_loaded_list *loaded;
8436
8437 if (!is_elf_hash_table (info->hash))
8438 return FALSE;
8439
8440 switch (h->root.type)
8441 {
8442 default:
8443 abfd = NULL;
8444 break;
8445
8446 case bfd_link_hash_undefined:
8447 case bfd_link_hash_undefweak:
8448 abfd = h->root.u.undef.abfd;
8449 if ((abfd->flags & DYNAMIC) == 0
e56f61be 8450 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
c152c796
AM
8451 return FALSE;
8452 break;
8453
8454 case bfd_link_hash_defined:
8455 case bfd_link_hash_defweak:
8456 abfd = h->root.u.def.section->owner;
8457 break;
8458
8459 case bfd_link_hash_common:
8460 abfd = h->root.u.c.p->section->owner;
8461 break;
8462 }
8463 BFD_ASSERT (abfd != NULL);
8464
8465 for (loaded = elf_hash_table (info)->loaded;
8466 loaded != NULL;
8467 loaded = loaded->next)
8468 {
8469 bfd *input;
8470 Elf_Internal_Shdr *hdr;
8471 bfd_size_type symcount;
8472 bfd_size_type extsymcount;
8473 bfd_size_type extsymoff;
8474 Elf_Internal_Shdr *versymhdr;
8475 Elf_Internal_Sym *isym;
8476 Elf_Internal_Sym *isymend;
8477 Elf_Internal_Sym *isymbuf;
8478 Elf_External_Versym *ever;
8479 Elf_External_Versym *extversym;
8480
8481 input = loaded->abfd;
8482
8483 /* We check each DSO for a possible hidden versioned definition. */
8484 if (input == abfd
8485 || (input->flags & DYNAMIC) == 0
8486 || elf_dynversym (input) == 0)
8487 continue;
8488
8489 hdr = &elf_tdata (input)->dynsymtab_hdr;
8490
8491 symcount = hdr->sh_size / bed->s->sizeof_sym;
8492 if (elf_bad_symtab (input))
8493 {
8494 extsymcount = symcount;
8495 extsymoff = 0;
8496 }
8497 else
8498 {
8499 extsymcount = symcount - hdr->sh_info;
8500 extsymoff = hdr->sh_info;
8501 }
8502
8503 if (extsymcount == 0)
8504 continue;
8505
8506 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8507 NULL, NULL, NULL);
8508 if (isymbuf == NULL)
8509 return FALSE;
8510
8511 /* Read in any version definitions. */
8512 versymhdr = &elf_tdata (input)->dynversym_hdr;
a50b1753 8513 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
c152c796
AM
8514 if (extversym == NULL)
8515 goto error_ret;
8516
8517 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8518 || (bfd_bread (extversym, versymhdr->sh_size, input)
8519 != versymhdr->sh_size))
8520 {
8521 free (extversym);
8522 error_ret:
8523 free (isymbuf);
8524 return FALSE;
8525 }
8526
8527 ever = extversym + extsymoff;
8528 isymend = isymbuf + extsymcount;
8529 for (isym = isymbuf; isym < isymend; isym++, ever++)
8530 {
8531 const char *name;
8532 Elf_Internal_Versym iver;
8533 unsigned short version_index;
8534
8535 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8536 || isym->st_shndx == SHN_UNDEF)
8537 continue;
8538
8539 name = bfd_elf_string_from_elf_section (input,
8540 hdr->sh_link,
8541 isym->st_name);
8542 if (strcmp (name, h->root.root.string) != 0)
8543 continue;
8544
8545 _bfd_elf_swap_versym_in (input, ever, &iver);
8546
d023c380
L
8547 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8548 && !(h->def_regular
8549 && h->forced_local))
c152c796
AM
8550 {
8551 /* If we have a non-hidden versioned sym, then it should
d023c380
L
8552 have provided a definition for the undefined sym unless
8553 it is defined in a non-shared object and forced local.
8554 */
c152c796
AM
8555 abort ();
8556 }
8557
8558 version_index = iver.vs_vers & VERSYM_VERSION;
8559 if (version_index == 1 || version_index == 2)
8560 {
8561 /* This is the base or first version. We can use it. */
8562 free (extversym);
8563 free (isymbuf);
8564 return TRUE;
8565 }
8566 }
8567
8568 free (extversym);
8569 free (isymbuf);
8570 }
8571
8572 return FALSE;
8573}
8574
8575/* Add an external symbol to the symbol table. This is called from
8576 the hash table traversal routine. When generating a shared object,
8577 we go through the symbol table twice. The first time we output
8578 anything that might have been forced to local scope in a version
8579 script. The second time we output the symbols that are still
8580 global symbols. */
8581
8582static bfd_boolean
8583elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8584{
a50b1753 8585 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
c152c796
AM
8586 struct elf_final_link_info *finfo = eoinfo->finfo;
8587 bfd_boolean strip;
8588 Elf_Internal_Sym sym;
8589 asection *input_sec;
8590 const struct elf_backend_data *bed;
6e0b88f1
AM
8591 long indx;
8592 int ret;
c152c796
AM
8593
8594 if (h->root.type == bfd_link_hash_warning)
8595 {
8596 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8597 if (h->root.type == bfd_link_hash_new)
8598 return TRUE;
8599 }
8600
8601 /* Decide whether to output this symbol in this pass. */
8602 if (eoinfo->localsyms)
8603 {
f5385ebf 8604 if (!h->forced_local)
c152c796
AM
8605 return TRUE;
8606 }
8607 else
8608 {
f5385ebf 8609 if (h->forced_local)
c152c796
AM
8610 return TRUE;
8611 }
8612
8613 bed = get_elf_backend_data (finfo->output_bfd);
8614
12ac1cf5 8615 if (h->root.type == bfd_link_hash_undefined)
c152c796 8616 {
12ac1cf5
NC
8617 /* If we have an undefined symbol reference here then it must have
8618 come from a shared library that is being linked in. (Undefined
98da7939
L
8619 references in regular files have already been handled unless
8620 they are in unreferenced sections which are removed by garbage
8621 collection). */
12ac1cf5
NC
8622 bfd_boolean ignore_undef = FALSE;
8623
8624 /* Some symbols may be special in that the fact that they're
8625 undefined can be safely ignored - let backend determine that. */
8626 if (bed->elf_backend_ignore_undef_symbol)
8627 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8628
8629 /* If we are reporting errors for this situation then do so now. */
8630 if (ignore_undef == FALSE
8631 && h->ref_dynamic
98da7939 8632 && (!h->ref_regular || finfo->info->gc_sections)
12ac1cf5
NC
8633 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8634 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
c152c796 8635 {
12ac1cf5 8636 if (! (finfo->info->callbacks->undefined_symbol
98da7939
L
8637 (finfo->info, h->root.root.string,
8638 h->ref_regular ? NULL : h->root.u.undef.abfd,
12ac1cf5
NC
8639 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8640 {
8641 eoinfo->failed = TRUE;
8642 return FALSE;
8643 }
c152c796
AM
8644 }
8645 }
8646
8647 /* We should also warn if a forced local symbol is referenced from
8648 shared libraries. */
8649 if (! finfo->info->relocatable
8650 && (! finfo->info->shared)
f5385ebf
AM
8651 && h->forced_local
8652 && h->ref_dynamic
8653 && !h->dynamic_def
8654 && !h->dynamic_weak
c152c796
AM
8655 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8656 {
8657 (*_bfd_error_handler)
d003868e 8658 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
cfca085c
L
8659 finfo->output_bfd,
8660 h->root.u.def.section == bfd_abs_section_ptr
8661 ? finfo->output_bfd : h->root.u.def.section->owner,
c152c796
AM
8662 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8663 ? "internal"
8664 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
d003868e
AM
8665 ? "hidden" : "local",
8666 h->root.root.string);
c152c796
AM
8667 eoinfo->failed = TRUE;
8668 return FALSE;
8669 }
8670
8671 /* We don't want to output symbols that have never been mentioned by
8672 a regular file, or that we have been told to strip. However, if
8673 h->indx is set to -2, the symbol is used by a reloc and we must
8674 output it. */
8675 if (h->indx == -2)
8676 strip = FALSE;
f5385ebf 8677 else if ((h->def_dynamic
77cfaee6
AM
8678 || h->ref_dynamic
8679 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
8680 && !h->def_regular
8681 && !h->ref_regular)
c152c796
AM
8682 strip = TRUE;
8683 else if (finfo->info->strip == strip_all)
8684 strip = TRUE;
8685 else if (finfo->info->strip == strip_some
8686 && bfd_hash_lookup (finfo->info->keep_hash,
8687 h->root.root.string, FALSE, FALSE) == NULL)
8688 strip = TRUE;
8689 else if (finfo->info->strip_discarded
8690 && (h->root.type == bfd_link_hash_defined
8691 || h->root.type == bfd_link_hash_defweak)
8692 && elf_discarded_section (h->root.u.def.section))
8693 strip = TRUE;
8694 else
8695 strip = FALSE;
8696
8697 /* If we're stripping it, and it's not a dynamic symbol, there's
57ca8ac7
L
8698 nothing else to do unless it is a forced local symbol or a
8699 STT_GNU_IFUNC symbol. */
c152c796
AM
8700 if (strip
8701 && h->dynindx == -1
57ca8ac7 8702 && h->type != STT_GNU_IFUNC
f5385ebf 8703 && !h->forced_local)
c152c796
AM
8704 return TRUE;
8705
8706 sym.st_value = 0;
8707 sym.st_size = h->size;
8708 sym.st_other = h->other;
f5385ebf 8709 if (h->forced_local)
935bd1e0
L
8710 {
8711 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8712 /* Turn off visibility on local symbol. */
8713 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8714 }
3e7a7d11
NC
8715 else if (h->unique_global)
8716 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
c152c796
AM
8717 else if (h->root.type == bfd_link_hash_undefweak
8718 || h->root.type == bfd_link_hash_defweak)
8719 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8720 else
8721 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8722
8723 switch (h->root.type)
8724 {
8725 default:
8726 case bfd_link_hash_new:
8727 case bfd_link_hash_warning:
8728 abort ();
8729 return FALSE;
8730
8731 case bfd_link_hash_undefined:
8732 case bfd_link_hash_undefweak:
8733 input_sec = bfd_und_section_ptr;
8734 sym.st_shndx = SHN_UNDEF;
8735 break;
8736
8737 case bfd_link_hash_defined:
8738 case bfd_link_hash_defweak:
8739 {
8740 input_sec = h->root.u.def.section;
8741 if (input_sec->output_section != NULL)
8742 {
8743 sym.st_shndx =
8744 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8745 input_sec->output_section);
8746 if (sym.st_shndx == SHN_BAD)
8747 {
8748 (*_bfd_error_handler)
d003868e
AM
8749 (_("%B: could not find output section %A for input section %A"),
8750 finfo->output_bfd, input_sec->output_section, input_sec);
c152c796
AM
8751 eoinfo->failed = TRUE;
8752 return FALSE;
8753 }
8754
8755 /* ELF symbols in relocatable files are section relative,
8756 but in nonrelocatable files they are virtual
8757 addresses. */
8758 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8759 if (! finfo->info->relocatable)
8760 {
8761 sym.st_value += input_sec->output_section->vma;
8762 if (h->type == STT_TLS)
8763 {
430a16a5
NC
8764 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8765 if (tls_sec != NULL)
8766 sym.st_value -= tls_sec->vma;
8767 else
8768 {
8769 /* The TLS section may have been garbage collected. */
8770 BFD_ASSERT (finfo->info->gc_sections
8771 && !input_sec->gc_mark);
8772 }
c152c796
AM
8773 }
8774 }
8775 }
8776 else
8777 {
8778 BFD_ASSERT (input_sec->owner == NULL
8779 || (input_sec->owner->flags & DYNAMIC) != 0);
8780 sym.st_shndx = SHN_UNDEF;
8781 input_sec = bfd_und_section_ptr;
8782 }
8783 }
8784 break;
8785
8786 case bfd_link_hash_common:
8787 input_sec = h->root.u.c.p->section;
a4d8e49b 8788 sym.st_shndx = bed->common_section_index (input_sec);
c152c796
AM
8789 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8790 break;
8791
8792 case bfd_link_hash_indirect:
8793 /* These symbols are created by symbol versioning. They point
8794 to the decorated version of the name. For example, if the
8795 symbol foo@@GNU_1.2 is the default, which should be used when
8796 foo is used with no version, then we add an indirect symbol
8797 foo which points to foo@@GNU_1.2. We ignore these symbols,
8798 since the indirected symbol is already in the hash table. */
8799 return TRUE;
8800 }
8801
8802 /* Give the processor backend a chance to tweak the symbol value,
8803 and also to finish up anything that needs to be done for this
8804 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
3aa14d16 8805 forced local syms when non-shared is due to a historical quirk.
5f35ea9c 8806 STT_GNU_IFUNC symbol must go through PLT. */
3aa14d16 8807 if ((h->type == STT_GNU_IFUNC
5f35ea9c 8808 && h->def_regular
3aa14d16
L
8809 && !finfo->info->relocatable)
8810 || ((h->dynindx != -1
8811 || h->forced_local)
8812 && ((finfo->info->shared
8813 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8814 || h->root.type != bfd_link_hash_undefweak))
8815 || !h->forced_local)
8816 && elf_hash_table (finfo->info)->dynamic_sections_created))
c152c796
AM
8817 {
8818 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8819 (finfo->output_bfd, finfo->info, h, &sym)))
8820 {
8821 eoinfo->failed = TRUE;
8822 return FALSE;
8823 }
8824 }
8825
8826 /* If we are marking the symbol as undefined, and there are no
8827 non-weak references to this symbol from a regular object, then
8828 mark the symbol as weak undefined; if there are non-weak
8829 references, mark the symbol as strong. We can't do this earlier,
8830 because it might not be marked as undefined until the
8831 finish_dynamic_symbol routine gets through with it. */
8832 if (sym.st_shndx == SHN_UNDEF
f5385ebf 8833 && h->ref_regular
c152c796
AM
8834 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8835 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8836 {
8837 int bindtype;
2955ec4c
L
8838 unsigned int type = ELF_ST_TYPE (sym.st_info);
8839
8840 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8841 if (type == STT_GNU_IFUNC)
8842 type = STT_FUNC;
c152c796 8843
f5385ebf 8844 if (h->ref_regular_nonweak)
c152c796
AM
8845 bindtype = STB_GLOBAL;
8846 else
8847 bindtype = STB_WEAK;
2955ec4c 8848 sym.st_info = ELF_ST_INFO (bindtype, type);
c152c796
AM
8849 }
8850
bda987c2
CD
8851 /* If this is a symbol defined in a dynamic library, don't use the
8852 symbol size from the dynamic library. Relinking an executable
8853 against a new library may introduce gratuitous changes in the
8854 executable's symbols if we keep the size. */
8855 if (sym.st_shndx == SHN_UNDEF
8856 && !h->def_regular
8857 && h->def_dynamic)
8858 sym.st_size = 0;
8859
c152c796
AM
8860 /* If a non-weak symbol with non-default visibility is not defined
8861 locally, it is a fatal error. */
8862 if (! finfo->info->relocatable
8863 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8864 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8865 && h->root.type == bfd_link_hash_undefined
f5385ebf 8866 && !h->def_regular)
c152c796
AM
8867 {
8868 (*_bfd_error_handler)
d003868e
AM
8869 (_("%B: %s symbol `%s' isn't defined"),
8870 finfo->output_bfd,
8871 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8872 ? "protected"
8873 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8874 ? "internal" : "hidden",
8875 h->root.root.string);
c152c796
AM
8876 eoinfo->failed = TRUE;
8877 return FALSE;
8878 }
8879
8880 /* If this symbol should be put in the .dynsym section, then put it
8881 there now. We already know the symbol index. We also fill in
8882 the entry in the .hash section. */
8883 if (h->dynindx != -1
8884 && elf_hash_table (finfo->info)->dynamic_sections_created)
8885 {
c152c796
AM
8886 bfd_byte *esym;
8887
8888 sym.st_name = h->dynstr_index;
8889 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
c0d5a53d
L
8890 if (! check_dynsym (finfo->output_bfd, &sym))
8891 {
8892 eoinfo->failed = TRUE;
8893 return FALSE;
8894 }
c152c796
AM
8895 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8896
fdc90cb4
JJ
8897 if (finfo->hash_sec != NULL)
8898 {
8899 size_t hash_entry_size;
8900 bfd_byte *bucketpos;
8901 bfd_vma chain;
41198d0c
L
8902 size_t bucketcount;
8903 size_t bucket;
8904
8905 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8906 bucket = h->u.elf_hash_value % bucketcount;
fdc90cb4
JJ
8907
8908 hash_entry_size
8909 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8910 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8911 + (bucket + 2) * hash_entry_size);
8912 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8913 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8914 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8915 ((bfd_byte *) finfo->hash_sec->contents
8916 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8917 }
c152c796
AM
8918
8919 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8920 {
8921 Elf_Internal_Versym iversym;
8922 Elf_External_Versym *eversym;
8923
f5385ebf 8924 if (!h->def_regular)
c152c796
AM
8925 {
8926 if (h->verinfo.verdef == NULL)
8927 iversym.vs_vers = 0;
8928 else
8929 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8930 }
8931 else
8932 {
8933 if (h->verinfo.vertree == NULL)
8934 iversym.vs_vers = 1;
8935 else
8936 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
3e3b46e5
PB
8937 if (finfo->info->create_default_symver)
8938 iversym.vs_vers++;
c152c796
AM
8939 }
8940
f5385ebf 8941 if (h->hidden)
c152c796
AM
8942 iversym.vs_vers |= VERSYM_HIDDEN;
8943
8944 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8945 eversym += h->dynindx;
8946 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8947 }
8948 }
8949
8950 /* If we're stripping it, then it was just a dynamic symbol, and
8951 there's nothing else to do. */
8952 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8953 return TRUE;
8954
6e0b88f1
AM
8955 indx = bfd_get_symcount (finfo->output_bfd);
8956 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8957 if (ret == 0)
c152c796
AM
8958 {
8959 eoinfo->failed = TRUE;
8960 return FALSE;
8961 }
6e0b88f1
AM
8962 else if (ret == 1)
8963 h->indx = indx;
8964 else if (h->indx == -2)
8965 abort();
c152c796
AM
8966
8967 return TRUE;
8968}
8969
cdd3575c
AM
8970/* Return TRUE if special handling is done for relocs in SEC against
8971 symbols defined in discarded sections. */
8972
c152c796
AM
8973static bfd_boolean
8974elf_section_ignore_discarded_relocs (asection *sec)
8975{
8976 const struct elf_backend_data *bed;
8977
cdd3575c
AM
8978 switch (sec->sec_info_type)
8979 {
8980 case ELF_INFO_TYPE_STABS:
8981 case ELF_INFO_TYPE_EH_FRAME:
8982 return TRUE;
8983 default:
8984 break;
8985 }
c152c796
AM
8986
8987 bed = get_elf_backend_data (sec->owner);
8988 if (bed->elf_backend_ignore_discarded_relocs != NULL
8989 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8990 return TRUE;
8991
8992 return FALSE;
8993}
8994
9e66c942
AM
8995/* Return a mask saying how ld should treat relocations in SEC against
8996 symbols defined in discarded sections. If this function returns
8997 COMPLAIN set, ld will issue a warning message. If this function
8998 returns PRETEND set, and the discarded section was link-once and the
8999 same size as the kept link-once section, ld will pretend that the
9000 symbol was actually defined in the kept section. Otherwise ld will
9001 zero the reloc (at least that is the intent, but some cooperation by
9002 the target dependent code is needed, particularly for REL targets). */
9003
8a696751
AM
9004unsigned int
9005_bfd_elf_default_action_discarded (asection *sec)
cdd3575c 9006{
9e66c942 9007 if (sec->flags & SEC_DEBUGGING)
69d54b1b 9008 return PRETEND;
cdd3575c
AM
9009
9010 if (strcmp (".eh_frame", sec->name) == 0)
9e66c942 9011 return 0;
cdd3575c
AM
9012
9013 if (strcmp (".gcc_except_table", sec->name) == 0)
9e66c942 9014 return 0;
cdd3575c 9015
9e66c942 9016 return COMPLAIN | PRETEND;
cdd3575c
AM
9017}
9018
3d7f7666
L
9019/* Find a match between a section and a member of a section group. */
9020
9021static asection *
c0f00686
L
9022match_group_member (asection *sec, asection *group,
9023 struct bfd_link_info *info)
3d7f7666
L
9024{
9025 asection *first = elf_next_in_group (group);
9026 asection *s = first;
9027
9028 while (s != NULL)
9029 {
c0f00686 9030 if (bfd_elf_match_symbols_in_sections (s, sec, info))
3d7f7666
L
9031 return s;
9032
83180ade 9033 s = elf_next_in_group (s);
3d7f7666
L
9034 if (s == first)
9035 break;
9036 }
9037
9038 return NULL;
9039}
9040
01b3c8ab 9041/* Check if the kept section of a discarded section SEC can be used
c2370991
AM
9042 to replace it. Return the replacement if it is OK. Otherwise return
9043 NULL. */
01b3c8ab
L
9044
9045asection *
c0f00686 9046_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
01b3c8ab
L
9047{
9048 asection *kept;
9049
9050 kept = sec->kept_section;
9051 if (kept != NULL)
9052 {
c2370991 9053 if ((kept->flags & SEC_GROUP) != 0)
c0f00686 9054 kept = match_group_member (sec, kept, info);
1dd2625f
BW
9055 if (kept != NULL
9056 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9057 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
01b3c8ab 9058 kept = NULL;
c2370991 9059 sec->kept_section = kept;
01b3c8ab
L
9060 }
9061 return kept;
9062}
9063
c152c796
AM
9064/* Link an input file into the linker output file. This function
9065 handles all the sections and relocations of the input file at once.
9066 This is so that we only have to read the local symbols once, and
9067 don't have to keep them in memory. */
9068
9069static bfd_boolean
9070elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9071{
ece5ef60 9072 int (*relocate_section)
c152c796
AM
9073 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9074 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9075 bfd *output_bfd;
9076 Elf_Internal_Shdr *symtab_hdr;
9077 size_t locsymcount;
9078 size_t extsymoff;
9079 Elf_Internal_Sym *isymbuf;
9080 Elf_Internal_Sym *isym;
9081 Elf_Internal_Sym *isymend;
9082 long *pindex;
9083 asection **ppsection;
9084 asection *o;
9085 const struct elf_backend_data *bed;
c152c796
AM
9086 struct elf_link_hash_entry **sym_hashes;
9087
9088 output_bfd = finfo->output_bfd;
9089 bed = get_elf_backend_data (output_bfd);
9090 relocate_section = bed->elf_backend_relocate_section;
9091
9092 /* If this is a dynamic object, we don't want to do anything here:
9093 we don't want the local symbols, and we don't want the section
9094 contents. */
9095 if ((input_bfd->flags & DYNAMIC) != 0)
9096 return TRUE;
9097
c152c796
AM
9098 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9099 if (elf_bad_symtab (input_bfd))
9100 {
9101 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9102 extsymoff = 0;
9103 }
9104 else
9105 {
9106 locsymcount = symtab_hdr->sh_info;
9107 extsymoff = symtab_hdr->sh_info;
9108 }
9109
9110 /* Read the local symbols. */
9111 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9112 if (isymbuf == NULL && locsymcount != 0)
9113 {
9114 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9115 finfo->internal_syms,
9116 finfo->external_syms,
9117 finfo->locsym_shndx);
9118 if (isymbuf == NULL)
9119 return FALSE;
9120 }
9121
9122 /* Find local symbol sections and adjust values of symbols in
9123 SEC_MERGE sections. Write out those local symbols we know are
9124 going into the output file. */
9125 isymend = isymbuf + locsymcount;
9126 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9127 isym < isymend;
9128 isym++, pindex++, ppsection++)
9129 {
9130 asection *isec;
9131 const char *name;
9132 Elf_Internal_Sym osym;
6e0b88f1
AM
9133 long indx;
9134 int ret;
c152c796
AM
9135
9136 *pindex = -1;
9137
9138 if (elf_bad_symtab (input_bfd))
9139 {
9140 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9141 {
9142 *ppsection = NULL;
9143 continue;
9144 }
9145 }
9146
9147 if (isym->st_shndx == SHN_UNDEF)
9148 isec = bfd_und_section_ptr;
c152c796
AM
9149 else if (isym->st_shndx == SHN_ABS)
9150 isec = bfd_abs_section_ptr;
9151 else if (isym->st_shndx == SHN_COMMON)
9152 isec = bfd_com_section_ptr;
9153 else
9154 {
cb33740c
AM
9155 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9156 if (isec == NULL)
9157 {
9158 /* Don't attempt to output symbols with st_shnx in the
9159 reserved range other than SHN_ABS and SHN_COMMON. */
9160 *ppsection = NULL;
9161 continue;
9162 }
9163 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9164 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9165 isym->st_value =
9166 _bfd_merged_section_offset (output_bfd, &isec,
9167 elf_section_data (isec)->sec_info,
9168 isym->st_value);
c152c796
AM
9169 }
9170
9171 *ppsection = isec;
9172
9173 /* Don't output the first, undefined, symbol. */
9174 if (ppsection == finfo->sections)
9175 continue;
9176
9177 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9178 {
9179 /* We never output section symbols. Instead, we use the
9180 section symbol of the corresponding section in the output
9181 file. */
9182 continue;
9183 }
9184
9185 /* If we are stripping all symbols, we don't want to output this
9186 one. */
9187 if (finfo->info->strip == strip_all)
9188 continue;
9189
9190 /* If we are discarding all local symbols, we don't want to
9191 output this one. If we are generating a relocatable output
9192 file, then some of the local symbols may be required by
9193 relocs; we output them below as we discover that they are
9194 needed. */
9195 if (finfo->info->discard == discard_all)
9196 continue;
9197
9198 /* If this symbol is defined in a section which we are
f02571c5
AM
9199 discarding, we don't need to keep it. */
9200 if (isym->st_shndx != SHN_UNDEF
4fbb74a6
AM
9201 && isym->st_shndx < SHN_LORESERVE
9202 && bfd_section_removed_from_list (output_bfd,
9203 isec->output_section))
e75a280b
L
9204 continue;
9205
c152c796
AM
9206 /* Get the name of the symbol. */
9207 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9208 isym->st_name);
9209 if (name == NULL)
9210 return FALSE;
9211
9212 /* See if we are discarding symbols with this name. */
9213 if ((finfo->info->strip == strip_some
9214 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9215 == NULL))
9216 || (((finfo->info->discard == discard_sec_merge
9217 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9218 || finfo->info->discard == discard_l)
9219 && bfd_is_local_label_name (input_bfd, name)))
9220 continue;
9221
c152c796
AM
9222 osym = *isym;
9223
9224 /* Adjust the section index for the output file. */
9225 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9226 isec->output_section);
9227 if (osym.st_shndx == SHN_BAD)
9228 return FALSE;
9229
c152c796
AM
9230 /* ELF symbols in relocatable files are section relative, but
9231 in executable files they are virtual addresses. Note that
9232 this code assumes that all ELF sections have an associated
9233 BFD section with a reasonable value for output_offset; below
9234 we assume that they also have a reasonable value for
9235 output_section. Any special sections must be set up to meet
9236 these requirements. */
9237 osym.st_value += isec->output_offset;
9238 if (! finfo->info->relocatable)
9239 {
9240 osym.st_value += isec->output_section->vma;
9241 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9242 {
9243 /* STT_TLS symbols are relative to PT_TLS segment base. */
9244 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9245 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9246 }
9247 }
9248
6e0b88f1
AM
9249 indx = bfd_get_symcount (output_bfd);
9250 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9251 if (ret == 0)
c152c796 9252 return FALSE;
6e0b88f1
AM
9253 else if (ret == 1)
9254 *pindex = indx;
c152c796
AM
9255 }
9256
9257 /* Relocate the contents of each section. */
9258 sym_hashes = elf_sym_hashes (input_bfd);
9259 for (o = input_bfd->sections; o != NULL; o = o->next)
9260 {
9261 bfd_byte *contents;
9262
9263 if (! o->linker_mark)
9264 {
9265 /* This section was omitted from the link. */
9266 continue;
9267 }
9268
bcacc0f5
AM
9269 if (finfo->info->relocatable
9270 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9271 {
9272 /* Deal with the group signature symbol. */
9273 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9274 unsigned long symndx = sec_data->this_hdr.sh_info;
9275 asection *osec = o->output_section;
9276
9277 if (symndx >= locsymcount
9278 || (elf_bad_symtab (input_bfd)
9279 && finfo->sections[symndx] == NULL))
9280 {
9281 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9282 while (h->root.type == bfd_link_hash_indirect
9283 || h->root.type == bfd_link_hash_warning)
9284 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9285 /* Arrange for symbol to be output. */
9286 h->indx = -2;
9287 elf_section_data (osec)->this_hdr.sh_info = -2;
9288 }
9289 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9290 {
9291 /* We'll use the output section target_index. */
9292 asection *sec = finfo->sections[symndx]->output_section;
9293 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9294 }
9295 else
9296 {
9297 if (finfo->indices[symndx] == -1)
9298 {
9299 /* Otherwise output the local symbol now. */
9300 Elf_Internal_Sym sym = isymbuf[symndx];
9301 asection *sec = finfo->sections[symndx]->output_section;
9302 const char *name;
6e0b88f1
AM
9303 long indx;
9304 int ret;
bcacc0f5
AM
9305
9306 name = bfd_elf_string_from_elf_section (input_bfd,
9307 symtab_hdr->sh_link,
9308 sym.st_name);
9309 if (name == NULL)
9310 return FALSE;
9311
9312 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9313 sec);
9314 if (sym.st_shndx == SHN_BAD)
9315 return FALSE;
9316
9317 sym.st_value += o->output_offset;
9318
6e0b88f1
AM
9319 indx = bfd_get_symcount (output_bfd);
9320 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9321 if (ret == 0)
bcacc0f5 9322 return FALSE;
6e0b88f1
AM
9323 else if (ret == 1)
9324 finfo->indices[symndx] = indx;
9325 else
9326 abort ();
bcacc0f5
AM
9327 }
9328 elf_section_data (osec)->this_hdr.sh_info
9329 = finfo->indices[symndx];
9330 }
9331 }
9332
c152c796 9333 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 9334 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
c152c796
AM
9335 continue;
9336
9337 if ((o->flags & SEC_LINKER_CREATED) != 0)
9338 {
9339 /* Section was created by _bfd_elf_link_create_dynamic_sections
9340 or somesuch. */
9341 continue;
9342 }
9343
9344 /* Get the contents of the section. They have been cached by a
9345 relaxation routine. Note that o is a section in an input
9346 file, so the contents field will not have been set by any of
9347 the routines which work on output files. */
9348 if (elf_section_data (o)->this_hdr.contents != NULL)
9349 contents = elf_section_data (o)->this_hdr.contents;
9350 else
9351 {
eea6121a
AM
9352 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9353
c152c796 9354 contents = finfo->contents;
eea6121a 9355 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
c152c796
AM
9356 return FALSE;
9357 }
9358
9359 if ((o->flags & SEC_RELOC) != 0)
9360 {
9361 Elf_Internal_Rela *internal_relocs;
0f02bbd9 9362 Elf_Internal_Rela *rel, *relend;
c152c796
AM
9363 bfd_vma r_type_mask;
9364 int r_sym_shift;
0f02bbd9 9365 int action_discarded;
ece5ef60 9366 int ret;
c152c796
AM
9367
9368 /* Get the swapped relocs. */
9369 internal_relocs
9370 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9371 finfo->internal_relocs, FALSE);
9372 if (internal_relocs == NULL
9373 && o->reloc_count > 0)
9374 return FALSE;
9375
9376 if (bed->s->arch_size == 32)
9377 {
9378 r_type_mask = 0xff;
9379 r_sym_shift = 8;
9380 }
9381 else
9382 {
9383 r_type_mask = 0xffffffff;
9384 r_sym_shift = 32;
9385 }
9386
0f02bbd9 9387 action_discarded = -1;
c152c796 9388 if (!elf_section_ignore_discarded_relocs (o))
0f02bbd9
AM
9389 action_discarded = (*bed->action_discarded) (o);
9390
9391 /* Run through the relocs evaluating complex reloc symbols and
9392 looking for relocs against symbols from discarded sections
9393 or section symbols from removed link-once sections.
9394 Complain about relocs against discarded sections. Zero
9395 relocs against removed link-once sections. */
9396
9397 rel = internal_relocs;
9398 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9399 for ( ; rel < relend; rel++)
c152c796 9400 {
0f02bbd9
AM
9401 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9402 unsigned int s_type;
9403 asection **ps, *sec;
9404 struct elf_link_hash_entry *h = NULL;
9405 const char *sym_name;
c152c796 9406
0f02bbd9
AM
9407 if (r_symndx == STN_UNDEF)
9408 continue;
c152c796 9409
0f02bbd9
AM
9410 if (r_symndx >= locsymcount
9411 || (elf_bad_symtab (input_bfd)
9412 && finfo->sections[r_symndx] == NULL))
9413 {
9414 h = sym_hashes[r_symndx - extsymoff];
ee75fd95 9415
0f02bbd9
AM
9416 /* Badly formatted input files can contain relocs that
9417 reference non-existant symbols. Check here so that
9418 we do not seg fault. */
9419 if (h == NULL)
c152c796 9420 {
0f02bbd9 9421 char buffer [32];
dce669a1 9422
0f02bbd9
AM
9423 sprintf_vma (buffer, rel->r_info);
9424 (*_bfd_error_handler)
9425 (_("error: %B contains a reloc (0x%s) for section %A "
9426 "that references a non-existent global symbol"),
9427 input_bfd, o, buffer);
9428 bfd_set_error (bfd_error_bad_value);
9429 return FALSE;
9430 }
3b36f7e6 9431
0f02bbd9
AM
9432 while (h->root.type == bfd_link_hash_indirect
9433 || h->root.type == bfd_link_hash_warning)
9434 h = (struct elf_link_hash_entry *) h->root.u.i.link;
c152c796 9435
0f02bbd9 9436 s_type = h->type;
cdd3575c 9437
0f02bbd9
AM
9438 ps = NULL;
9439 if (h->root.type == bfd_link_hash_defined
9440 || h->root.type == bfd_link_hash_defweak)
9441 ps = &h->root.u.def.section;
9442
9443 sym_name = h->root.root.string;
9444 }
9445 else
9446 {
9447 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9448
9449 s_type = ELF_ST_TYPE (sym->st_info);
9450 ps = &finfo->sections[r_symndx];
9451 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9452 sym, *ps);
9453 }
c152c796 9454
c301e700
DD
9455 if ((s_type == STT_RELC || s_type == STT_SRELC)
9456 && !finfo->info->relocatable)
0f02bbd9
AM
9457 {
9458 bfd_vma val;
9459 bfd_vma dot = (rel->r_offset
9460 + o->output_offset + o->output_section->vma);
9461#ifdef DEBUG
9462 printf ("Encountered a complex symbol!");
9463 printf (" (input_bfd %s, section %s, reloc %ld\n",
9464 input_bfd->filename, o->name, rel - internal_relocs);
9465 printf (" symbol: idx %8.8lx, name %s\n",
9466 r_symndx, sym_name);
9467 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9468 (unsigned long) rel->r_info,
9469 (unsigned long) rel->r_offset);
9470#endif
9471 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9472 isymbuf, locsymcount, s_type == STT_SRELC))
9473 return FALSE;
9474
9475 /* Symbol evaluated OK. Update to absolute value. */
9476 set_symbol_value (input_bfd, isymbuf, locsymcount,
9477 r_symndx, val);
9478 continue;
9479 }
9480
9481 if (action_discarded != -1 && ps != NULL)
9482 {
cdd3575c
AM
9483 /* Complain if the definition comes from a
9484 discarded section. */
9485 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9486 {
87e5235d 9487 BFD_ASSERT (r_symndx != 0);
0f02bbd9 9488 if (action_discarded & COMPLAIN)
e1fffbe6
AM
9489 (*finfo->info->callbacks->einfo)
9490 (_("%X`%s' referenced in section `%A' of %B: "
58ac56d0 9491 "defined in discarded section `%A' of %B\n"),
e1fffbe6 9492 sym_name, o, input_bfd, sec, sec->owner);
cdd3575c 9493
87e5235d 9494 /* Try to do the best we can to support buggy old
e0ae6d6f 9495 versions of gcc. Pretend that the symbol is
87e5235d
AM
9496 really defined in the kept linkonce section.
9497 FIXME: This is quite broken. Modifying the
9498 symbol here means we will be changing all later
e0ae6d6f 9499 uses of the symbol, not just in this section. */
0f02bbd9 9500 if (action_discarded & PRETEND)
87e5235d 9501 {
01b3c8ab
L
9502 asection *kept;
9503
c0f00686
L
9504 kept = _bfd_elf_check_kept_section (sec,
9505 finfo->info);
01b3c8ab 9506 if (kept != NULL)
87e5235d
AM
9507 {
9508 *ps = kept;
9509 continue;
9510 }
9511 }
c152c796
AM
9512 }
9513 }
9514 }
9515
9516 /* Relocate the section by invoking a back end routine.
9517
9518 The back end routine is responsible for adjusting the
9519 section contents as necessary, and (if using Rela relocs
9520 and generating a relocatable output file) adjusting the
9521 reloc addend as necessary.
9522
9523 The back end routine does not have to worry about setting
9524 the reloc address or the reloc symbol index.
9525
9526 The back end routine is given a pointer to the swapped in
9527 internal symbols, and can access the hash table entries
9528 for the external symbols via elf_sym_hashes (input_bfd).
9529
9530 When generating relocatable output, the back end routine
9531 must handle STB_LOCAL/STT_SECTION symbols specially. The
9532 output symbol is going to be a section symbol
9533 corresponding to the output section, which will require
9534 the addend to be adjusted. */
9535
ece5ef60 9536 ret = (*relocate_section) (output_bfd, finfo->info,
c152c796
AM
9537 input_bfd, o, contents,
9538 internal_relocs,
9539 isymbuf,
ece5ef60
AM
9540 finfo->sections);
9541 if (!ret)
c152c796
AM
9542 return FALSE;
9543
ece5ef60
AM
9544 if (ret == 2
9545 || finfo->info->relocatable
9546 || finfo->info->emitrelocations)
c152c796
AM
9547 {
9548 Elf_Internal_Rela *irela;
9549 Elf_Internal_Rela *irelaend;
9550 bfd_vma last_offset;
9551 struct elf_link_hash_entry **rel_hash;
eac338cf 9552 struct elf_link_hash_entry **rel_hash_list;
c152c796
AM
9553 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9554 unsigned int next_erel;
c152c796
AM
9555 bfd_boolean rela_normal;
9556
9557 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9558 rela_normal = (bed->rela_normal
9559 && (input_rel_hdr->sh_entsize
9560 == bed->s->sizeof_rela));
9561
9562 /* Adjust the reloc addresses and symbol indices. */
9563
9564 irela = internal_relocs;
9565 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9566 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9567 + elf_section_data (o->output_section)->rel_count
9568 + elf_section_data (o->output_section)->rel_count2);
eac338cf 9569 rel_hash_list = rel_hash;
c152c796
AM
9570 last_offset = o->output_offset;
9571 if (!finfo->info->relocatable)
9572 last_offset += o->output_section->vma;
9573 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9574 {
9575 unsigned long r_symndx;
9576 asection *sec;
9577 Elf_Internal_Sym sym;
9578
9579 if (next_erel == bed->s->int_rels_per_ext_rel)
9580 {
9581 rel_hash++;
9582 next_erel = 0;
9583 }
9584
9585 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9586 finfo->info, o,
9587 irela->r_offset);
9588 if (irela->r_offset >= (bfd_vma) -2)
9589 {
9590 /* This is a reloc for a deleted entry or somesuch.
9591 Turn it into an R_*_NONE reloc, at the same
9592 offset as the last reloc. elf_eh_frame.c and
e460dd0d 9593 bfd_elf_discard_info rely on reloc offsets
c152c796
AM
9594 being ordered. */
9595 irela->r_offset = last_offset;
9596 irela->r_info = 0;
9597 irela->r_addend = 0;
9598 continue;
9599 }
9600
9601 irela->r_offset += o->output_offset;
9602
9603 /* Relocs in an executable have to be virtual addresses. */
9604 if (!finfo->info->relocatable)
9605 irela->r_offset += o->output_section->vma;
9606
9607 last_offset = irela->r_offset;
9608
9609 r_symndx = irela->r_info >> r_sym_shift;
9610 if (r_symndx == STN_UNDEF)
9611 continue;
9612
9613 if (r_symndx >= locsymcount
9614 || (elf_bad_symtab (input_bfd)
9615 && finfo->sections[r_symndx] == NULL))
9616 {
9617 struct elf_link_hash_entry *rh;
9618 unsigned long indx;
9619
9620 /* This is a reloc against a global symbol. We
9621 have not yet output all the local symbols, so
9622 we do not know the symbol index of any global
9623 symbol. We set the rel_hash entry for this
9624 reloc to point to the global hash table entry
9625 for this symbol. The symbol index is then
ee75fd95 9626 set at the end of bfd_elf_final_link. */
c152c796
AM
9627 indx = r_symndx - extsymoff;
9628 rh = elf_sym_hashes (input_bfd)[indx];
9629 while (rh->root.type == bfd_link_hash_indirect
9630 || rh->root.type == bfd_link_hash_warning)
9631 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9632
9633 /* Setting the index to -2 tells
9634 elf_link_output_extsym that this symbol is
9635 used by a reloc. */
9636 BFD_ASSERT (rh->indx < 0);
9637 rh->indx = -2;
9638
9639 *rel_hash = rh;
9640
9641 continue;
9642 }
9643
9644 /* This is a reloc against a local symbol. */
9645
9646 *rel_hash = NULL;
9647 sym = isymbuf[r_symndx];
9648 sec = finfo->sections[r_symndx];
9649 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9650 {
9651 /* I suppose the backend ought to fill in the
9652 section of any STT_SECTION symbol against a
6a8d1586
AM
9653 processor specific section. */
9654 r_symndx = 0;
9655 if (bfd_is_abs_section (sec))
9656 ;
c152c796
AM
9657 else if (sec == NULL || sec->owner == NULL)
9658 {
9659 bfd_set_error (bfd_error_bad_value);
9660 return FALSE;
9661 }
9662 else
9663 {
6a8d1586
AM
9664 asection *osec = sec->output_section;
9665
9666 /* If we have discarded a section, the output
9667 section will be the absolute section. In
ab96bf03
AM
9668 case of discarded SEC_MERGE sections, use
9669 the kept section. relocate_section should
9670 have already handled discarded linkonce
9671 sections. */
6a8d1586
AM
9672 if (bfd_is_abs_section (osec)
9673 && sec->kept_section != NULL
9674 && sec->kept_section->output_section != NULL)
9675 {
9676 osec = sec->kept_section->output_section;
9677 irela->r_addend -= osec->vma;
9678 }
9679
9680 if (!bfd_is_abs_section (osec))
9681 {
9682 r_symndx = osec->target_index;
74541ad4
AM
9683 if (r_symndx == 0)
9684 {
9685 struct elf_link_hash_table *htab;
9686 asection *oi;
9687
9688 htab = elf_hash_table (finfo->info);
9689 oi = htab->text_index_section;
9690 if ((osec->flags & SEC_READONLY) == 0
9691 && htab->data_index_section != NULL)
9692 oi = htab->data_index_section;
9693
9694 if (oi != NULL)
9695 {
9696 irela->r_addend += osec->vma - oi->vma;
9697 r_symndx = oi->target_index;
9698 }
9699 }
9700
6a8d1586
AM
9701 BFD_ASSERT (r_symndx != 0);
9702 }
c152c796
AM
9703 }
9704
9705 /* Adjust the addend according to where the
9706 section winds up in the output section. */
9707 if (rela_normal)
9708 irela->r_addend += sec->output_offset;
9709 }
9710 else
9711 {
9712 if (finfo->indices[r_symndx] == -1)
9713 {
9714 unsigned long shlink;
9715 const char *name;
9716 asection *osec;
6e0b88f1 9717 long indx;
c152c796
AM
9718
9719 if (finfo->info->strip == strip_all)
9720 {
9721 /* You can't do ld -r -s. */
9722 bfd_set_error (bfd_error_invalid_operation);
9723 return FALSE;
9724 }
9725
9726 /* This symbol was skipped earlier, but
9727 since it is needed by a reloc, we
9728 must output it now. */
9729 shlink = symtab_hdr->sh_link;
9730 name = (bfd_elf_string_from_elf_section
9731 (input_bfd, shlink, sym.st_name));
9732 if (name == NULL)
9733 return FALSE;
9734
9735 osec = sec->output_section;
9736 sym.st_shndx =
9737 _bfd_elf_section_from_bfd_section (output_bfd,
9738 osec);
9739 if (sym.st_shndx == SHN_BAD)
9740 return FALSE;
9741
9742 sym.st_value += sec->output_offset;
9743 if (! finfo->info->relocatable)
9744 {
9745 sym.st_value += osec->vma;
9746 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9747 {
9748 /* STT_TLS symbols are relative to PT_TLS
9749 segment base. */
9750 BFD_ASSERT (elf_hash_table (finfo->info)
9751 ->tls_sec != NULL);
9752 sym.st_value -= (elf_hash_table (finfo->info)
9753 ->tls_sec->vma);
9754 }
9755 }
9756
6e0b88f1
AM
9757 indx = bfd_get_symcount (output_bfd);
9758 ret = elf_link_output_sym (finfo, name, &sym, sec,
9759 NULL);
9760 if (ret == 0)
c152c796 9761 return FALSE;
6e0b88f1
AM
9762 else if (ret == 1)
9763 finfo->indices[r_symndx] = indx;
9764 else
9765 abort ();
c152c796
AM
9766 }
9767
9768 r_symndx = finfo->indices[r_symndx];
9769 }
9770
9771 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9772 | (irela->r_info & r_type_mask));
9773 }
9774
9775 /* Swap out the relocs. */
c152c796 9776 if (input_rel_hdr->sh_size != 0
eac338cf
PB
9777 && !bed->elf_backend_emit_relocs (output_bfd, o,
9778 input_rel_hdr,
9779 internal_relocs,
9780 rel_hash_list))
c152c796
AM
9781 return FALSE;
9782
9783 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9784 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9785 {
9786 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9787 * bed->s->int_rels_per_ext_rel);
eac338cf
PB
9788 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9789 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9790 input_rel_hdr2,
9791 internal_relocs,
9792 rel_hash_list))
c152c796
AM
9793 return FALSE;
9794 }
9795 }
9796 }
9797
9798 /* Write out the modified section contents. */
9799 if (bed->elf_backend_write_section
c7b8f16e
JB
9800 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9801 contents))
c152c796
AM
9802 {
9803 /* Section written out. */
9804 }
9805 else switch (o->sec_info_type)
9806 {
9807 case ELF_INFO_TYPE_STABS:
9808 if (! (_bfd_write_section_stabs
9809 (output_bfd,
9810 &elf_hash_table (finfo->info)->stab_info,
9811 o, &elf_section_data (o)->sec_info, contents)))
9812 return FALSE;
9813 break;
9814 case ELF_INFO_TYPE_MERGE:
9815 if (! _bfd_write_merged_section (output_bfd, o,
9816 elf_section_data (o)->sec_info))
9817 return FALSE;
9818 break;
9819 case ELF_INFO_TYPE_EH_FRAME:
9820 {
9821 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9822 o, contents))
9823 return FALSE;
9824 }
9825 break;
9826 default:
9827 {
5dabe785 9828 /* FIXME: octets_per_byte. */
c152c796 9829 if (! (o->flags & SEC_EXCLUDE)
ace79388 9830 && ! (o->output_section->flags & SEC_NEVER_LOAD)
c152c796
AM
9831 && ! bfd_set_section_contents (output_bfd, o->output_section,
9832 contents,
9833 (file_ptr) o->output_offset,
eea6121a 9834 o->size))
c152c796
AM
9835 return FALSE;
9836 }
9837 break;
9838 }
9839 }
9840
9841 return TRUE;
9842}
9843
9844/* Generate a reloc when linking an ELF file. This is a reloc
3a800eb9 9845 requested by the linker, and does not come from any input file. This
c152c796
AM
9846 is used to build constructor and destructor tables when linking
9847 with -Ur. */
9848
9849static bfd_boolean
9850elf_reloc_link_order (bfd *output_bfd,
9851 struct bfd_link_info *info,
9852 asection *output_section,
9853 struct bfd_link_order *link_order)
9854{
9855 reloc_howto_type *howto;
9856 long indx;
9857 bfd_vma offset;
9858 bfd_vma addend;
9859 struct elf_link_hash_entry **rel_hash_ptr;
9860 Elf_Internal_Shdr *rel_hdr;
9861 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9862 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9863 bfd_byte *erel;
9864 unsigned int i;
9865
9866 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9867 if (howto == NULL)
9868 {
9869 bfd_set_error (bfd_error_bad_value);
9870 return FALSE;
9871 }
9872
9873 addend = link_order->u.reloc.p->addend;
9874
9875 /* Figure out the symbol index. */
9876 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9877 + elf_section_data (output_section)->rel_count
9878 + elf_section_data (output_section)->rel_count2);
9879 if (link_order->type == bfd_section_reloc_link_order)
9880 {
9881 indx = link_order->u.reloc.p->u.section->target_index;
9882 BFD_ASSERT (indx != 0);
9883 *rel_hash_ptr = NULL;
9884 }
9885 else
9886 {
9887 struct elf_link_hash_entry *h;
9888
9889 /* Treat a reloc against a defined symbol as though it were
9890 actually against the section. */
9891 h = ((struct elf_link_hash_entry *)
9892 bfd_wrapped_link_hash_lookup (output_bfd, info,
9893 link_order->u.reloc.p->u.name,
9894 FALSE, FALSE, TRUE));
9895 if (h != NULL
9896 && (h->root.type == bfd_link_hash_defined
9897 || h->root.type == bfd_link_hash_defweak))
9898 {
9899 asection *section;
9900
9901 section = h->root.u.def.section;
9902 indx = section->output_section->target_index;
9903 *rel_hash_ptr = NULL;
9904 /* It seems that we ought to add the symbol value to the
9905 addend here, but in practice it has already been added
9906 because it was passed to constructor_callback. */
9907 addend += section->output_section->vma + section->output_offset;
9908 }
9909 else if (h != NULL)
9910 {
9911 /* Setting the index to -2 tells elf_link_output_extsym that
9912 this symbol is used by a reloc. */
9913 h->indx = -2;
9914 *rel_hash_ptr = h;
9915 indx = 0;
9916 }
9917 else
9918 {
9919 if (! ((*info->callbacks->unattached_reloc)
9920 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9921 return FALSE;
9922 indx = 0;
9923 }
9924 }
9925
9926 /* If this is an inplace reloc, we must write the addend into the
9927 object file. */
9928 if (howto->partial_inplace && addend != 0)
9929 {
9930 bfd_size_type size;
9931 bfd_reloc_status_type rstat;
9932 bfd_byte *buf;
9933 bfd_boolean ok;
9934 const char *sym_name;
9935
a50b1753
NC
9936 size = (bfd_size_type) bfd_get_reloc_size (howto);
9937 buf = (bfd_byte *) bfd_zmalloc (size);
c152c796
AM
9938 if (buf == NULL)
9939 return FALSE;
9940 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9941 switch (rstat)
9942 {
9943 case bfd_reloc_ok:
9944 break;
9945
9946 default:
9947 case bfd_reloc_outofrange:
9948 abort ();
9949
9950 case bfd_reloc_overflow:
9951 if (link_order->type == bfd_section_reloc_link_order)
9952 sym_name = bfd_section_name (output_bfd,
9953 link_order->u.reloc.p->u.section);
9954 else
9955 sym_name = link_order->u.reloc.p->u.name;
9956 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f
L
9957 (info, NULL, sym_name, howto->name, addend, NULL,
9958 NULL, (bfd_vma) 0)))
c152c796
AM
9959 {
9960 free (buf);
9961 return FALSE;
9962 }
9963 break;
9964 }
9965 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9966 link_order->offset, size);
9967 free (buf);
9968 if (! ok)
9969 return FALSE;
9970 }
9971
9972 /* The address of a reloc is relative to the section in a
9973 relocatable file, and is a virtual address in an executable
9974 file. */
9975 offset = link_order->offset;
9976 if (! info->relocatable)
9977 offset += output_section->vma;
9978
9979 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9980 {
9981 irel[i].r_offset = offset;
9982 irel[i].r_info = 0;
9983 irel[i].r_addend = 0;
9984 }
9985 if (bed->s->arch_size == 32)
9986 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9987 else
9988 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9989
9990 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9991 erel = rel_hdr->contents;
9992 if (rel_hdr->sh_type == SHT_REL)
9993 {
9994 erel += (elf_section_data (output_section)->rel_count
9995 * bed->s->sizeof_rel);
9996 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9997 }
9998 else
9999 {
10000 irel[0].r_addend = addend;
10001 erel += (elf_section_data (output_section)->rel_count
10002 * bed->s->sizeof_rela);
10003 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10004 }
10005
10006 ++elf_section_data (output_section)->rel_count;
10007
10008 return TRUE;
10009}
10010
0b52efa6
PB
10011
10012/* Get the output vma of the section pointed to by the sh_link field. */
10013
10014static bfd_vma
10015elf_get_linked_section_vma (struct bfd_link_order *p)
10016{
10017 Elf_Internal_Shdr **elf_shdrp;
10018 asection *s;
10019 int elfsec;
10020
10021 s = p->u.indirect.section;
10022 elf_shdrp = elf_elfsections (s->owner);
10023 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10024 elfsec = elf_shdrp[elfsec]->sh_link;
185d09ad
L
10025 /* PR 290:
10026 The Intel C compiler generates SHT_IA_64_UNWIND with
e04bcc6d 10027 SHF_LINK_ORDER. But it doesn't set the sh_link or
185d09ad
L
10028 sh_info fields. Hence we could get the situation
10029 where elfsec is 0. */
10030 if (elfsec == 0)
10031 {
10032 const struct elf_backend_data *bed
10033 = get_elf_backend_data (s->owner);
10034 if (bed->link_order_error_handler)
d003868e
AM
10035 bed->link_order_error_handler
10036 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
185d09ad
L
10037 return 0;
10038 }
10039 else
10040 {
10041 s = elf_shdrp[elfsec]->bfd_section;
10042 return s->output_section->vma + s->output_offset;
10043 }
0b52efa6
PB
10044}
10045
10046
10047/* Compare two sections based on the locations of the sections they are
10048 linked to. Used by elf_fixup_link_order. */
10049
10050static int
10051compare_link_order (const void * a, const void * b)
10052{
10053 bfd_vma apos;
10054 bfd_vma bpos;
10055
10056 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10057 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10058 if (apos < bpos)
10059 return -1;
10060 return apos > bpos;
10061}
10062
10063
10064/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10065 order as their linked sections. Returns false if this could not be done
10066 because an output section includes both ordered and unordered
10067 sections. Ideally we'd do this in the linker proper. */
10068
10069static bfd_boolean
10070elf_fixup_link_order (bfd *abfd, asection *o)
10071{
10072 int seen_linkorder;
10073 int seen_other;
10074 int n;
10075 struct bfd_link_order *p;
10076 bfd *sub;
10077 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
b761a207 10078 unsigned elfsec;
0b52efa6 10079 struct bfd_link_order **sections;
d33cdfe3 10080 asection *s, *other_sec, *linkorder_sec;
0b52efa6 10081 bfd_vma offset;
3b36f7e6 10082
d33cdfe3
L
10083 other_sec = NULL;
10084 linkorder_sec = NULL;
0b52efa6
PB
10085 seen_other = 0;
10086 seen_linkorder = 0;
8423293d 10087 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6 10088 {
d33cdfe3 10089 if (p->type == bfd_indirect_link_order)
0b52efa6
PB
10090 {
10091 s = p->u.indirect.section;
d33cdfe3
L
10092 sub = s->owner;
10093 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10094 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
b761a207
BE
10095 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10096 && elfsec < elf_numsections (sub)
4fbb74a6
AM
10097 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10098 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
d33cdfe3
L
10099 {
10100 seen_linkorder++;
10101 linkorder_sec = s;
10102 }
0b52efa6 10103 else
d33cdfe3
L
10104 {
10105 seen_other++;
10106 other_sec = s;
10107 }
0b52efa6
PB
10108 }
10109 else
10110 seen_other++;
d33cdfe3
L
10111
10112 if (seen_other && seen_linkorder)
10113 {
10114 if (other_sec && linkorder_sec)
10115 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10116 o, linkorder_sec,
10117 linkorder_sec->owner, other_sec,
10118 other_sec->owner);
10119 else
10120 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10121 o);
10122 bfd_set_error (bfd_error_bad_value);
10123 return FALSE;
10124 }
0b52efa6
PB
10125 }
10126
10127 if (!seen_linkorder)
10128 return TRUE;
10129
0b52efa6 10130 sections = (struct bfd_link_order **)
14b1c01e
AM
10131 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10132 if (sections == NULL)
10133 return FALSE;
0b52efa6 10134 seen_linkorder = 0;
3b36f7e6 10135
8423293d 10136 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6
PB
10137 {
10138 sections[seen_linkorder++] = p;
10139 }
10140 /* Sort the input sections in the order of their linked section. */
10141 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10142 compare_link_order);
10143
10144 /* Change the offsets of the sections. */
10145 offset = 0;
10146 for (n = 0; n < seen_linkorder; n++)
10147 {
10148 s = sections[n]->u.indirect.section;
461686a3 10149 offset &= ~(bfd_vma) 0 << s->alignment_power;
0b52efa6
PB
10150 s->output_offset = offset;
10151 sections[n]->offset = offset;
5dabe785 10152 /* FIXME: octets_per_byte. */
0b52efa6
PB
10153 offset += sections[n]->size;
10154 }
10155
4dd07732 10156 free (sections);
0b52efa6
PB
10157 return TRUE;
10158}
10159
10160
c152c796
AM
10161/* Do the final step of an ELF link. */
10162
10163bfd_boolean
10164bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10165{
10166 bfd_boolean dynamic;
10167 bfd_boolean emit_relocs;
10168 bfd *dynobj;
10169 struct elf_final_link_info finfo;
91d6fa6a
NC
10170 asection *o;
10171 struct bfd_link_order *p;
10172 bfd *sub;
c152c796
AM
10173 bfd_size_type max_contents_size;
10174 bfd_size_type max_external_reloc_size;
10175 bfd_size_type max_internal_reloc_count;
10176 bfd_size_type max_sym_count;
10177 bfd_size_type max_sym_shndx_count;
10178 file_ptr off;
10179 Elf_Internal_Sym elfsym;
10180 unsigned int i;
10181 Elf_Internal_Shdr *symtab_hdr;
10182 Elf_Internal_Shdr *symtab_shndx_hdr;
10183 Elf_Internal_Shdr *symstrtab_hdr;
10184 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10185 struct elf_outext_info eoinfo;
10186 bfd_boolean merged;
10187 size_t relativecount = 0;
10188 asection *reldyn = 0;
10189 bfd_size_type amt;
104d59d1
JM
10190 asection *attr_section = NULL;
10191 bfd_vma attr_size = 0;
10192 const char *std_attrs_section;
c152c796
AM
10193
10194 if (! is_elf_hash_table (info->hash))
10195 return FALSE;
10196
10197 if (info->shared)
10198 abfd->flags |= DYNAMIC;
10199
10200 dynamic = elf_hash_table (info)->dynamic_sections_created;
10201 dynobj = elf_hash_table (info)->dynobj;
10202
10203 emit_relocs = (info->relocatable
a4676736 10204 || info->emitrelocations);
c152c796
AM
10205
10206 finfo.info = info;
10207 finfo.output_bfd = abfd;
10208 finfo.symstrtab = _bfd_elf_stringtab_init ();
10209 if (finfo.symstrtab == NULL)
10210 return FALSE;
10211
10212 if (! dynamic)
10213 {
10214 finfo.dynsym_sec = NULL;
10215 finfo.hash_sec = NULL;
10216 finfo.symver_sec = NULL;
10217 }
10218 else
10219 {
10220 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10221 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
fdc90cb4 10222 BFD_ASSERT (finfo.dynsym_sec != NULL);
c152c796
AM
10223 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10224 /* Note that it is OK if symver_sec is NULL. */
10225 }
10226
10227 finfo.contents = NULL;
10228 finfo.external_relocs = NULL;
10229 finfo.internal_relocs = NULL;
10230 finfo.external_syms = NULL;
10231 finfo.locsym_shndx = NULL;
10232 finfo.internal_syms = NULL;
10233 finfo.indices = NULL;
10234 finfo.sections = NULL;
10235 finfo.symbuf = NULL;
10236 finfo.symshndxbuf = NULL;
10237 finfo.symbuf_count = 0;
10238 finfo.shndxbuf_size = 0;
10239
104d59d1
JM
10240 /* The object attributes have been merged. Remove the input
10241 sections from the link, and set the contents of the output
10242 secton. */
10243 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10244 for (o = abfd->sections; o != NULL; o = o->next)
10245 {
10246 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10247 || strcmp (o->name, ".gnu.attributes") == 0)
10248 {
10249 for (p = o->map_head.link_order; p != NULL; p = p->next)
10250 {
10251 asection *input_section;
10252
10253 if (p->type != bfd_indirect_link_order)
10254 continue;
10255 input_section = p->u.indirect.section;
10256 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10257 elf_link_input_bfd ignores this section. */
10258 input_section->flags &= ~SEC_HAS_CONTENTS;
10259 }
a0c8462f 10260
104d59d1
JM
10261 attr_size = bfd_elf_obj_attr_size (abfd);
10262 if (attr_size)
10263 {
10264 bfd_set_section_size (abfd, o, attr_size);
10265 attr_section = o;
10266 /* Skip this section later on. */
10267 o->map_head.link_order = NULL;
10268 }
10269 else
10270 o->flags |= SEC_EXCLUDE;
10271 }
10272 }
10273
c152c796
AM
10274 /* Count up the number of relocations we will output for each output
10275 section, so that we know the sizes of the reloc sections. We
10276 also figure out some maximum sizes. */
10277 max_contents_size = 0;
10278 max_external_reloc_size = 0;
10279 max_internal_reloc_count = 0;
10280 max_sym_count = 0;
10281 max_sym_shndx_count = 0;
10282 merged = FALSE;
10283 for (o = abfd->sections; o != NULL; o = o->next)
10284 {
10285 struct bfd_elf_section_data *esdo = elf_section_data (o);
10286 o->reloc_count = 0;
10287
8423293d 10288 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
10289 {
10290 unsigned int reloc_count = 0;
10291 struct bfd_elf_section_data *esdi = NULL;
10292 unsigned int *rel_count1;
10293
10294 if (p->type == bfd_section_reloc_link_order
10295 || p->type == bfd_symbol_reloc_link_order)
10296 reloc_count = 1;
10297 else if (p->type == bfd_indirect_link_order)
10298 {
10299 asection *sec;
10300
10301 sec = p->u.indirect.section;
10302 esdi = elf_section_data (sec);
10303
10304 /* Mark all sections which are to be included in the
10305 link. This will normally be every section. We need
10306 to do this so that we can identify any sections which
10307 the linker has decided to not include. */
10308 sec->linker_mark = TRUE;
10309
10310 if (sec->flags & SEC_MERGE)
10311 merged = TRUE;
10312
10313 if (info->relocatable || info->emitrelocations)
10314 reloc_count = sec->reloc_count;
10315 else if (bed->elf_backend_count_relocs)
58217f29 10316 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
c152c796 10317
eea6121a
AM
10318 if (sec->rawsize > max_contents_size)
10319 max_contents_size = sec->rawsize;
10320 if (sec->size > max_contents_size)
10321 max_contents_size = sec->size;
c152c796
AM
10322
10323 /* We are interested in just local symbols, not all
10324 symbols. */
10325 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10326 && (sec->owner->flags & DYNAMIC) == 0)
10327 {
10328 size_t sym_count;
10329
10330 if (elf_bad_symtab (sec->owner))
10331 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10332 / bed->s->sizeof_sym);
10333 else
10334 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10335
10336 if (sym_count > max_sym_count)
10337 max_sym_count = sym_count;
10338
10339 if (sym_count > max_sym_shndx_count
10340 && elf_symtab_shndx (sec->owner) != 0)
10341 max_sym_shndx_count = sym_count;
10342
10343 if ((sec->flags & SEC_RELOC) != 0)
10344 {
10345 size_t ext_size;
10346
10347 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10348 if (ext_size > max_external_reloc_size)
10349 max_external_reloc_size = ext_size;
10350 if (sec->reloc_count > max_internal_reloc_count)
10351 max_internal_reloc_count = sec->reloc_count;
10352 }
10353 }
10354 }
10355
10356 if (reloc_count == 0)
10357 continue;
10358
10359 o->reloc_count += reloc_count;
10360
10361 /* MIPS may have a mix of REL and RELA relocs on sections.
10362 To support this curious ABI we keep reloc counts in
10363 elf_section_data too. We must be careful to add the
10364 relocations from the input section to the right output
10365 count. FIXME: Get rid of one count. We have
10366 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10367 rel_count1 = &esdo->rel_count;
10368 if (esdi != NULL)
10369 {
10370 bfd_boolean same_size;
10371 bfd_size_type entsize1;
10372
10373 entsize1 = esdi->rel_hdr.sh_entsize;
2c2b4ed4
NC
10374 /* PR 9827: If the header size has not been set yet then
10375 assume that it will match the output section's reloc type. */
10376 if (entsize1 == 0)
10377 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10378 else
10379 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10380 || entsize1 == bed->s->sizeof_rela);
c152c796
AM
10381 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10382
10383 if (!same_size)
10384 rel_count1 = &esdo->rel_count2;
10385
10386 if (esdi->rel_hdr2 != NULL)
10387 {
10388 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10389 unsigned int alt_count;
10390 unsigned int *rel_count2;
10391
10392 BFD_ASSERT (entsize2 != entsize1
10393 && (entsize2 == bed->s->sizeof_rel
10394 || entsize2 == bed->s->sizeof_rela));
10395
10396 rel_count2 = &esdo->rel_count2;
10397 if (!same_size)
10398 rel_count2 = &esdo->rel_count;
10399
10400 /* The following is probably too simplistic if the
10401 backend counts output relocs unusually. */
10402 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10403 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10404 *rel_count2 += alt_count;
10405 reloc_count -= alt_count;
10406 }
10407 }
10408 *rel_count1 += reloc_count;
10409 }
10410
10411 if (o->reloc_count > 0)
10412 o->flags |= SEC_RELOC;
10413 else
10414 {
10415 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10416 set it (this is probably a bug) and if it is set
10417 assign_section_numbers will create a reloc section. */
10418 o->flags &=~ SEC_RELOC;
10419 }
10420
10421 /* If the SEC_ALLOC flag is not set, force the section VMA to
10422 zero. This is done in elf_fake_sections as well, but forcing
10423 the VMA to 0 here will ensure that relocs against these
10424 sections are handled correctly. */
10425 if ((o->flags & SEC_ALLOC) == 0
10426 && ! o->user_set_vma)
10427 o->vma = 0;
10428 }
10429
10430 if (! info->relocatable && merged)
10431 elf_link_hash_traverse (elf_hash_table (info),
10432 _bfd_elf_link_sec_merge_syms, abfd);
10433
10434 /* Figure out the file positions for everything but the symbol table
10435 and the relocs. We set symcount to force assign_section_numbers
10436 to create a symbol table. */
10437 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10438 BFD_ASSERT (! abfd->output_has_begun);
10439 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10440 goto error_return;
10441
ee75fd95 10442 /* Set sizes, and assign file positions for reloc sections. */
c152c796
AM
10443 for (o = abfd->sections; o != NULL; o = o->next)
10444 {
10445 if ((o->flags & SEC_RELOC) != 0)
10446 {
10447 if (!(_bfd_elf_link_size_reloc_section
10448 (abfd, &elf_section_data (o)->rel_hdr, o)))
10449 goto error_return;
10450
10451 if (elf_section_data (o)->rel_hdr2
10452 && !(_bfd_elf_link_size_reloc_section
10453 (abfd, elf_section_data (o)->rel_hdr2, o)))
10454 goto error_return;
10455 }
10456
10457 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10458 to count upwards while actually outputting the relocations. */
10459 elf_section_data (o)->rel_count = 0;
10460 elf_section_data (o)->rel_count2 = 0;
10461 }
10462
10463 _bfd_elf_assign_file_positions_for_relocs (abfd);
10464
10465 /* We have now assigned file positions for all the sections except
10466 .symtab and .strtab. We start the .symtab section at the current
10467 file position, and write directly to it. We build the .strtab
10468 section in memory. */
10469 bfd_get_symcount (abfd) = 0;
10470 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10471 /* sh_name is set in prep_headers. */
10472 symtab_hdr->sh_type = SHT_SYMTAB;
10473 /* sh_flags, sh_addr and sh_size all start off zero. */
10474 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10475 /* sh_link is set in assign_section_numbers. */
10476 /* sh_info is set below. */
10477 /* sh_offset is set just below. */
72de5009 10478 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
c152c796
AM
10479
10480 off = elf_tdata (abfd)->next_file_pos;
10481 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10482
10483 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10484 incorrect. We do not yet know the size of the .symtab section.
10485 We correct next_file_pos below, after we do know the size. */
10486
10487 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10488 continuously seeking to the right position in the file. */
10489 if (! info->keep_memory || max_sym_count < 20)
10490 finfo.symbuf_size = 20;
10491 else
10492 finfo.symbuf_size = max_sym_count;
10493 amt = finfo.symbuf_size;
10494 amt *= bed->s->sizeof_sym;
a50b1753 10495 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
c152c796
AM
10496 if (finfo.symbuf == NULL)
10497 goto error_return;
4fbb74a6 10498 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
c152c796
AM
10499 {
10500 /* Wild guess at number of output symbols. realloc'd as needed. */
10501 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10502 finfo.shndxbuf_size = amt;
10503 amt *= sizeof (Elf_External_Sym_Shndx);
a50b1753 10504 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
c152c796
AM
10505 if (finfo.symshndxbuf == NULL)
10506 goto error_return;
10507 }
10508
10509 /* Start writing out the symbol table. The first symbol is always a
10510 dummy symbol. */
10511 if (info->strip != strip_all
10512 || emit_relocs)
10513 {
10514 elfsym.st_value = 0;
10515 elfsym.st_size = 0;
10516 elfsym.st_info = 0;
10517 elfsym.st_other = 0;
10518 elfsym.st_shndx = SHN_UNDEF;
6e0b88f1
AM
10519 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10520 NULL) != 1)
c152c796
AM
10521 goto error_return;
10522 }
10523
c152c796
AM
10524 /* Output a symbol for each section. We output these even if we are
10525 discarding local symbols, since they are used for relocs. These
10526 symbols have no names. We store the index of each one in the
10527 index field of the section, so that we can find it again when
10528 outputting relocs. */
10529 if (info->strip != strip_all
10530 || emit_relocs)
10531 {
10532 elfsym.st_size = 0;
10533 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10534 elfsym.st_other = 0;
f0b5bb34 10535 elfsym.st_value = 0;
c152c796
AM
10536 for (i = 1; i < elf_numsections (abfd); i++)
10537 {
10538 o = bfd_section_from_elf_index (abfd, i);
10539 if (o != NULL)
f0b5bb34
AM
10540 {
10541 o->target_index = bfd_get_symcount (abfd);
10542 elfsym.st_shndx = i;
10543 if (!info->relocatable)
10544 elfsym.st_value = o->vma;
6e0b88f1 10545 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
f0b5bb34
AM
10546 goto error_return;
10547 }
c152c796
AM
10548 }
10549 }
10550
10551 /* Allocate some memory to hold information read in from the input
10552 files. */
10553 if (max_contents_size != 0)
10554 {
a50b1753 10555 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
c152c796
AM
10556 if (finfo.contents == NULL)
10557 goto error_return;
10558 }
10559
10560 if (max_external_reloc_size != 0)
10561 {
10562 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10563 if (finfo.external_relocs == NULL)
10564 goto error_return;
10565 }
10566
10567 if (max_internal_reloc_count != 0)
10568 {
10569 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10570 amt *= sizeof (Elf_Internal_Rela);
a50b1753 10571 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
c152c796
AM
10572 if (finfo.internal_relocs == NULL)
10573 goto error_return;
10574 }
10575
10576 if (max_sym_count != 0)
10577 {
10578 amt = max_sym_count * bed->s->sizeof_sym;
a50b1753 10579 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
c152c796
AM
10580 if (finfo.external_syms == NULL)
10581 goto error_return;
10582
10583 amt = max_sym_count * sizeof (Elf_Internal_Sym);
a50b1753 10584 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
c152c796
AM
10585 if (finfo.internal_syms == NULL)
10586 goto error_return;
10587
10588 amt = max_sym_count * sizeof (long);
a50b1753 10589 finfo.indices = (long int *) bfd_malloc (amt);
c152c796
AM
10590 if (finfo.indices == NULL)
10591 goto error_return;
10592
10593 amt = max_sym_count * sizeof (asection *);
a50b1753 10594 finfo.sections = (asection **) bfd_malloc (amt);
c152c796
AM
10595 if (finfo.sections == NULL)
10596 goto error_return;
10597 }
10598
10599 if (max_sym_shndx_count != 0)
10600 {
10601 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
a50b1753 10602 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
c152c796
AM
10603 if (finfo.locsym_shndx == NULL)
10604 goto error_return;
10605 }
10606
10607 if (elf_hash_table (info)->tls_sec)
10608 {
10609 bfd_vma base, end = 0;
10610 asection *sec;
10611
10612 for (sec = elf_hash_table (info)->tls_sec;
10613 sec && (sec->flags & SEC_THREAD_LOCAL);
10614 sec = sec->next)
10615 {
3a800eb9 10616 bfd_size_type size = sec->size;
c152c796 10617
3a800eb9
AM
10618 if (size == 0
10619 && (sec->flags & SEC_HAS_CONTENTS) == 0)
c152c796 10620 {
91d6fa6a
NC
10621 struct bfd_link_order *ord = sec->map_tail.link_order;
10622
10623 if (ord != NULL)
10624 size = ord->offset + ord->size;
c152c796
AM
10625 }
10626 end = sec->vma + size;
10627 }
10628 base = elf_hash_table (info)->tls_sec->vma;
10629 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10630 elf_hash_table (info)->tls_size = end - base;
10631 }
10632
0b52efa6
PB
10633 /* Reorder SHF_LINK_ORDER sections. */
10634 for (o = abfd->sections; o != NULL; o = o->next)
10635 {
10636 if (!elf_fixup_link_order (abfd, o))
10637 return FALSE;
10638 }
10639
c152c796
AM
10640 /* Since ELF permits relocations to be against local symbols, we
10641 must have the local symbols available when we do the relocations.
10642 Since we would rather only read the local symbols once, and we
10643 would rather not keep them in memory, we handle all the
10644 relocations for a single input file at the same time.
10645
10646 Unfortunately, there is no way to know the total number of local
10647 symbols until we have seen all of them, and the local symbol
10648 indices precede the global symbol indices. This means that when
10649 we are generating relocatable output, and we see a reloc against
10650 a global symbol, we can not know the symbol index until we have
10651 finished examining all the local symbols to see which ones we are
10652 going to output. To deal with this, we keep the relocations in
10653 memory, and don't output them until the end of the link. This is
10654 an unfortunate waste of memory, but I don't see a good way around
10655 it. Fortunately, it only happens when performing a relocatable
10656 link, which is not the common case. FIXME: If keep_memory is set
10657 we could write the relocs out and then read them again; I don't
10658 know how bad the memory loss will be. */
10659
10660 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10661 sub->output_has_begun = FALSE;
10662 for (o = abfd->sections; o != NULL; o = o->next)
10663 {
8423293d 10664 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
10665 {
10666 if (p->type == bfd_indirect_link_order
10667 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10668 == bfd_target_elf_flavour)
10669 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10670 {
10671 if (! sub->output_has_begun)
10672 {
10673 if (! elf_link_input_bfd (&finfo, sub))
10674 goto error_return;
10675 sub->output_has_begun = TRUE;
10676 }
10677 }
10678 else if (p->type == bfd_section_reloc_link_order
10679 || p->type == bfd_symbol_reloc_link_order)
10680 {
10681 if (! elf_reloc_link_order (abfd, info, o, p))
10682 goto error_return;
10683 }
10684 else
10685 {
10686 if (! _bfd_default_link_order (abfd, info, o, p))
10687 goto error_return;
10688 }
10689 }
10690 }
10691
c0f00686
L
10692 /* Free symbol buffer if needed. */
10693 if (!info->reduce_memory_overheads)
10694 {
10695 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
3fcd97f1
JJ
10696 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10697 && elf_tdata (sub)->symbuf)
c0f00686
L
10698 {
10699 free (elf_tdata (sub)->symbuf);
10700 elf_tdata (sub)->symbuf = NULL;
10701 }
10702 }
10703
c152c796
AM
10704 /* Output any global symbols that got converted to local in a
10705 version script or due to symbol visibility. We do this in a
10706 separate step since ELF requires all local symbols to appear
10707 prior to any global symbols. FIXME: We should only do this if
10708 some global symbols were, in fact, converted to become local.
10709 FIXME: Will this work correctly with the Irix 5 linker? */
10710 eoinfo.failed = FALSE;
10711 eoinfo.finfo = &finfo;
10712 eoinfo.localsyms = TRUE;
10713 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10714 &eoinfo);
10715 if (eoinfo.failed)
10716 return FALSE;
10717
4e617b1e
PB
10718 /* If backend needs to output some local symbols not present in the hash
10719 table, do it now. */
10720 if (bed->elf_backend_output_arch_local_syms)
10721 {
6e0b88f1 10722 typedef int (*out_sym_func)
4e617b1e
PB
10723 (void *, const char *, Elf_Internal_Sym *, asection *,
10724 struct elf_link_hash_entry *);
10725
10726 if (! ((*bed->elf_backend_output_arch_local_syms)
10727 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10728 return FALSE;
10729 }
10730
c152c796
AM
10731 /* That wrote out all the local symbols. Finish up the symbol table
10732 with the global symbols. Even if we want to strip everything we
10733 can, we still need to deal with those global symbols that got
10734 converted to local in a version script. */
10735
10736 /* The sh_info field records the index of the first non local symbol. */
10737 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10738
10739 if (dynamic
10740 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10741 {
10742 Elf_Internal_Sym sym;
10743 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10744 long last_local = 0;
10745
10746 /* Write out the section symbols for the output sections. */
67687978 10747 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
c152c796
AM
10748 {
10749 asection *s;
10750
10751 sym.st_size = 0;
10752 sym.st_name = 0;
10753 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10754 sym.st_other = 0;
10755
10756 for (s = abfd->sections; s != NULL; s = s->next)
10757 {
10758 int indx;
10759 bfd_byte *dest;
10760 long dynindx;
10761
c152c796 10762 dynindx = elf_section_data (s)->dynindx;
8c37241b
JJ
10763 if (dynindx <= 0)
10764 continue;
10765 indx = elf_section_data (s)->this_idx;
c152c796
AM
10766 BFD_ASSERT (indx > 0);
10767 sym.st_shndx = indx;
c0d5a53d
L
10768 if (! check_dynsym (abfd, &sym))
10769 return FALSE;
c152c796
AM
10770 sym.st_value = s->vma;
10771 dest = dynsym + dynindx * bed->s->sizeof_sym;
8c37241b
JJ
10772 if (last_local < dynindx)
10773 last_local = dynindx;
c152c796
AM
10774 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10775 }
c152c796
AM
10776 }
10777
10778 /* Write out the local dynsyms. */
10779 if (elf_hash_table (info)->dynlocal)
10780 {
10781 struct elf_link_local_dynamic_entry *e;
10782 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10783 {
10784 asection *s;
10785 bfd_byte *dest;
10786
935bd1e0 10787 /* Copy the internal symbol and turn off visibility.
c152c796
AM
10788 Note that we saved a word of storage and overwrote
10789 the original st_name with the dynstr_index. */
10790 sym = e->isym;
935bd1e0 10791 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
c152c796 10792
cb33740c
AM
10793 s = bfd_section_from_elf_index (e->input_bfd,
10794 e->isym.st_shndx);
10795 if (s != NULL)
c152c796 10796 {
c152c796
AM
10797 sym.st_shndx =
10798 elf_section_data (s->output_section)->this_idx;
c0d5a53d
L
10799 if (! check_dynsym (abfd, &sym))
10800 return FALSE;
c152c796
AM
10801 sym.st_value = (s->output_section->vma
10802 + s->output_offset
10803 + e->isym.st_value);
10804 }
10805
10806 if (last_local < e->dynindx)
10807 last_local = e->dynindx;
10808
10809 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10810 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10811 }
10812 }
10813
10814 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10815 last_local + 1;
10816 }
10817
10818 /* We get the global symbols from the hash table. */
10819 eoinfo.failed = FALSE;
10820 eoinfo.localsyms = FALSE;
10821 eoinfo.finfo = &finfo;
10822 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10823 &eoinfo);
10824 if (eoinfo.failed)
10825 return FALSE;
10826
10827 /* If backend needs to output some symbols not present in the hash
10828 table, do it now. */
10829 if (bed->elf_backend_output_arch_syms)
10830 {
6e0b88f1 10831 typedef int (*out_sym_func)
c152c796
AM
10832 (void *, const char *, Elf_Internal_Sym *, asection *,
10833 struct elf_link_hash_entry *);
10834
10835 if (! ((*bed->elf_backend_output_arch_syms)
10836 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10837 return FALSE;
10838 }
10839
10840 /* Flush all symbols to the file. */
10841 if (! elf_link_flush_output_syms (&finfo, bed))
10842 return FALSE;
10843
10844 /* Now we know the size of the symtab section. */
10845 off += symtab_hdr->sh_size;
10846
10847 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10848 if (symtab_shndx_hdr->sh_name != 0)
10849 {
10850 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10851 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10852 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10853 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10854 symtab_shndx_hdr->sh_size = amt;
10855
10856 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10857 off, TRUE);
10858
10859 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10860 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10861 return FALSE;
10862 }
10863
10864
10865 /* Finish up and write out the symbol string table (.strtab)
10866 section. */
10867 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10868 /* sh_name was set in prep_headers. */
10869 symstrtab_hdr->sh_type = SHT_STRTAB;
10870 symstrtab_hdr->sh_flags = 0;
10871 symstrtab_hdr->sh_addr = 0;
10872 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10873 symstrtab_hdr->sh_entsize = 0;
10874 symstrtab_hdr->sh_link = 0;
10875 symstrtab_hdr->sh_info = 0;
10876 /* sh_offset is set just below. */
10877 symstrtab_hdr->sh_addralign = 1;
10878
10879 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10880 elf_tdata (abfd)->next_file_pos = off;
10881
10882 if (bfd_get_symcount (abfd) > 0)
10883 {
10884 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10885 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10886 return FALSE;
10887 }
10888
10889 /* Adjust the relocs to have the correct symbol indices. */
10890 for (o = abfd->sections; o != NULL; o = o->next)
10891 {
10892 if ((o->flags & SEC_RELOC) == 0)
10893 continue;
10894
10895 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10896 elf_section_data (o)->rel_count,
10897 elf_section_data (o)->rel_hashes);
10898 if (elf_section_data (o)->rel_hdr2 != NULL)
10899 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10900 elf_section_data (o)->rel_count2,
10901 (elf_section_data (o)->rel_hashes
10902 + elf_section_data (o)->rel_count));
10903
10904 /* Set the reloc_count field to 0 to prevent write_relocs from
10905 trying to swap the relocs out itself. */
10906 o->reloc_count = 0;
10907 }
10908
10909 if (dynamic && info->combreloc && dynobj != NULL)
10910 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10911
10912 /* If we are linking against a dynamic object, or generating a
10913 shared library, finish up the dynamic linking information. */
10914 if (dynamic)
10915 {
10916 bfd_byte *dyncon, *dynconend;
10917
10918 /* Fix up .dynamic entries. */
10919 o = bfd_get_section_by_name (dynobj, ".dynamic");
10920 BFD_ASSERT (o != NULL);
10921
10922 dyncon = o->contents;
eea6121a 10923 dynconend = o->contents + o->size;
c152c796
AM
10924 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10925 {
10926 Elf_Internal_Dyn dyn;
10927 const char *name;
10928 unsigned int type;
10929
10930 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10931
10932 switch (dyn.d_tag)
10933 {
10934 default:
10935 continue;
10936 case DT_NULL:
10937 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10938 {
10939 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10940 {
10941 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10942 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10943 default: continue;
10944 }
10945 dyn.d_un.d_val = relativecount;
10946 relativecount = 0;
10947 break;
10948 }
10949 continue;
10950
10951 case DT_INIT:
10952 name = info->init_function;
10953 goto get_sym;
10954 case DT_FINI:
10955 name = info->fini_function;
10956 get_sym:
10957 {
10958 struct elf_link_hash_entry *h;
10959
10960 h = elf_link_hash_lookup (elf_hash_table (info), name,
10961 FALSE, FALSE, TRUE);
10962 if (h != NULL
10963 && (h->root.type == bfd_link_hash_defined
10964 || h->root.type == bfd_link_hash_defweak))
10965 {
bef26483 10966 dyn.d_un.d_ptr = h->root.u.def.value;
c152c796
AM
10967 o = h->root.u.def.section;
10968 if (o->output_section != NULL)
bef26483 10969 dyn.d_un.d_ptr += (o->output_section->vma
c152c796
AM
10970 + o->output_offset);
10971 else
10972 {
10973 /* The symbol is imported from another shared
10974 library and does not apply to this one. */
bef26483 10975 dyn.d_un.d_ptr = 0;
c152c796
AM
10976 }
10977 break;
10978 }
10979 }
10980 continue;
10981
10982 case DT_PREINIT_ARRAYSZ:
10983 name = ".preinit_array";
10984 goto get_size;
10985 case DT_INIT_ARRAYSZ:
10986 name = ".init_array";
10987 goto get_size;
10988 case DT_FINI_ARRAYSZ:
10989 name = ".fini_array";
10990 get_size:
10991 o = bfd_get_section_by_name (abfd, name);
10992 if (o == NULL)
10993 {
10994 (*_bfd_error_handler)
d003868e 10995 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
10996 goto error_return;
10997 }
eea6121a 10998 if (o->size == 0)
c152c796
AM
10999 (*_bfd_error_handler)
11000 (_("warning: %s section has zero size"), name);
eea6121a 11001 dyn.d_un.d_val = o->size;
c152c796
AM
11002 break;
11003
11004 case DT_PREINIT_ARRAY:
11005 name = ".preinit_array";
11006 goto get_vma;
11007 case DT_INIT_ARRAY:
11008 name = ".init_array";
11009 goto get_vma;
11010 case DT_FINI_ARRAY:
11011 name = ".fini_array";
11012 goto get_vma;
11013
11014 case DT_HASH:
11015 name = ".hash";
11016 goto get_vma;
fdc90cb4
JJ
11017 case DT_GNU_HASH:
11018 name = ".gnu.hash";
11019 goto get_vma;
c152c796
AM
11020 case DT_STRTAB:
11021 name = ".dynstr";
11022 goto get_vma;
11023 case DT_SYMTAB:
11024 name = ".dynsym";
11025 goto get_vma;
11026 case DT_VERDEF:
11027 name = ".gnu.version_d";
11028 goto get_vma;
11029 case DT_VERNEED:
11030 name = ".gnu.version_r";
11031 goto get_vma;
11032 case DT_VERSYM:
11033 name = ".gnu.version";
11034 get_vma:
11035 o = bfd_get_section_by_name (abfd, name);
11036 if (o == NULL)
11037 {
11038 (*_bfd_error_handler)
d003868e 11039 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
11040 goto error_return;
11041 }
11042 dyn.d_un.d_ptr = o->vma;
11043 break;
11044
11045 case DT_REL:
11046 case DT_RELA:
11047 case DT_RELSZ:
11048 case DT_RELASZ:
11049 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11050 type = SHT_REL;
11051 else
11052 type = SHT_RELA;
11053 dyn.d_un.d_val = 0;
bef26483 11054 dyn.d_un.d_ptr = 0;
c152c796
AM
11055 for (i = 1; i < elf_numsections (abfd); i++)
11056 {
11057 Elf_Internal_Shdr *hdr;
11058
11059 hdr = elf_elfsections (abfd)[i];
11060 if (hdr->sh_type == type
11061 && (hdr->sh_flags & SHF_ALLOC) != 0)
11062 {
11063 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11064 dyn.d_un.d_val += hdr->sh_size;
11065 else
11066 {
bef26483
AM
11067 if (dyn.d_un.d_ptr == 0
11068 || hdr->sh_addr < dyn.d_un.d_ptr)
11069 dyn.d_un.d_ptr = hdr->sh_addr;
c152c796
AM
11070 }
11071 }
11072 }
11073 break;
11074 }
11075 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11076 }
11077 }
11078
11079 /* If we have created any dynamic sections, then output them. */
11080 if (dynobj != NULL)
11081 {
11082 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11083 goto error_return;
11084
943284cc
DJ
11085 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11086 if (info->warn_shared_textrel && info->shared)
11087 {
11088 bfd_byte *dyncon, *dynconend;
11089
11090 /* Fix up .dynamic entries. */
11091 o = bfd_get_section_by_name (dynobj, ".dynamic");
11092 BFD_ASSERT (o != NULL);
11093
11094 dyncon = o->contents;
11095 dynconend = o->contents + o->size;
11096 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11097 {
11098 Elf_Internal_Dyn dyn;
11099
11100 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11101
11102 if (dyn.d_tag == DT_TEXTREL)
11103 {
a0c8462f 11104 info->callbacks->einfo
9267588c 11105 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
943284cc
DJ
11106 break;
11107 }
11108 }
11109 }
11110
c152c796
AM
11111 for (o = dynobj->sections; o != NULL; o = o->next)
11112 {
11113 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 11114 || o->size == 0
c152c796
AM
11115 || o->output_section == bfd_abs_section_ptr)
11116 continue;
11117 if ((o->flags & SEC_LINKER_CREATED) == 0)
11118 {
11119 /* At this point, we are only interested in sections
11120 created by _bfd_elf_link_create_dynamic_sections. */
11121 continue;
11122 }
3722b82f
AM
11123 if (elf_hash_table (info)->stab_info.stabstr == o)
11124 continue;
eea6121a
AM
11125 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11126 continue;
c152c796
AM
11127 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11128 != SHT_STRTAB)
11129 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11130 {
5dabe785 11131 /* FIXME: octets_per_byte. */
c152c796
AM
11132 if (! bfd_set_section_contents (abfd, o->output_section,
11133 o->contents,
11134 (file_ptr) o->output_offset,
eea6121a 11135 o->size))
c152c796
AM
11136 goto error_return;
11137 }
11138 else
11139 {
11140 /* The contents of the .dynstr section are actually in a
11141 stringtab. */
11142 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11143 if (bfd_seek (abfd, off, SEEK_SET) != 0
11144 || ! _bfd_elf_strtab_emit (abfd,
11145 elf_hash_table (info)->dynstr))
11146 goto error_return;
11147 }
11148 }
11149 }
11150
11151 if (info->relocatable)
11152 {
11153 bfd_boolean failed = FALSE;
11154
11155 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11156 if (failed)
11157 goto error_return;
11158 }
11159
11160 /* If we have optimized stabs strings, output them. */
3722b82f 11161 if (elf_hash_table (info)->stab_info.stabstr != NULL)
c152c796
AM
11162 {
11163 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11164 goto error_return;
11165 }
11166
11167 if (info->eh_frame_hdr)
11168 {
11169 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11170 goto error_return;
11171 }
11172
11173 if (finfo.symstrtab != NULL)
11174 _bfd_stringtab_free (finfo.symstrtab);
11175 if (finfo.contents != NULL)
11176 free (finfo.contents);
11177 if (finfo.external_relocs != NULL)
11178 free (finfo.external_relocs);
11179 if (finfo.internal_relocs != NULL)
11180 free (finfo.internal_relocs);
11181 if (finfo.external_syms != NULL)
11182 free (finfo.external_syms);
11183 if (finfo.locsym_shndx != NULL)
11184 free (finfo.locsym_shndx);
11185 if (finfo.internal_syms != NULL)
11186 free (finfo.internal_syms);
11187 if (finfo.indices != NULL)
11188 free (finfo.indices);
11189 if (finfo.sections != NULL)
11190 free (finfo.sections);
11191 if (finfo.symbuf != NULL)
11192 free (finfo.symbuf);
11193 if (finfo.symshndxbuf != NULL)
11194 free (finfo.symshndxbuf);
11195 for (o = abfd->sections; o != NULL; o = o->next)
11196 {
11197 if ((o->flags & SEC_RELOC) != 0
11198 && elf_section_data (o)->rel_hashes != NULL)
11199 free (elf_section_data (o)->rel_hashes);
11200 }
11201
11202 elf_tdata (abfd)->linker = TRUE;
11203
104d59d1
JM
11204 if (attr_section)
11205 {
a50b1753 11206 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
104d59d1 11207 if (contents == NULL)
d0f16d5e 11208 return FALSE; /* Bail out and fail. */
104d59d1
JM
11209 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11210 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11211 free (contents);
11212 }
11213
c152c796
AM
11214 return TRUE;
11215
11216 error_return:
11217 if (finfo.symstrtab != NULL)
11218 _bfd_stringtab_free (finfo.symstrtab);
11219 if (finfo.contents != NULL)
11220 free (finfo.contents);
11221 if (finfo.external_relocs != NULL)
11222 free (finfo.external_relocs);
11223 if (finfo.internal_relocs != NULL)
11224 free (finfo.internal_relocs);
11225 if (finfo.external_syms != NULL)
11226 free (finfo.external_syms);
11227 if (finfo.locsym_shndx != NULL)
11228 free (finfo.locsym_shndx);
11229 if (finfo.internal_syms != NULL)
11230 free (finfo.internal_syms);
11231 if (finfo.indices != NULL)
11232 free (finfo.indices);
11233 if (finfo.sections != NULL)
11234 free (finfo.sections);
11235 if (finfo.symbuf != NULL)
11236 free (finfo.symbuf);
11237 if (finfo.symshndxbuf != NULL)
11238 free (finfo.symshndxbuf);
11239 for (o = abfd->sections; o != NULL; o = o->next)
11240 {
11241 if ((o->flags & SEC_RELOC) != 0
11242 && elf_section_data (o)->rel_hashes != NULL)
11243 free (elf_section_data (o)->rel_hashes);
11244 }
11245
11246 return FALSE;
11247}
11248\f
5241d853
RS
11249/* Initialize COOKIE for input bfd ABFD. */
11250
11251static bfd_boolean
11252init_reloc_cookie (struct elf_reloc_cookie *cookie,
11253 struct bfd_link_info *info, bfd *abfd)
11254{
11255 Elf_Internal_Shdr *symtab_hdr;
11256 const struct elf_backend_data *bed;
11257
11258 bed = get_elf_backend_data (abfd);
11259 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11260
11261 cookie->abfd = abfd;
11262 cookie->sym_hashes = elf_sym_hashes (abfd);
11263 cookie->bad_symtab = elf_bad_symtab (abfd);
11264 if (cookie->bad_symtab)
11265 {
11266 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11267 cookie->extsymoff = 0;
11268 }
11269 else
11270 {
11271 cookie->locsymcount = symtab_hdr->sh_info;
11272 cookie->extsymoff = symtab_hdr->sh_info;
11273 }
11274
11275 if (bed->s->arch_size == 32)
11276 cookie->r_sym_shift = 8;
11277 else
11278 cookie->r_sym_shift = 32;
11279
11280 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11281 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11282 {
11283 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11284 cookie->locsymcount, 0,
11285 NULL, NULL, NULL);
11286 if (cookie->locsyms == NULL)
11287 {
11288 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11289 return FALSE;
11290 }
11291 if (info->keep_memory)
11292 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11293 }
11294 return TRUE;
11295}
11296
11297/* Free the memory allocated by init_reloc_cookie, if appropriate. */
11298
11299static void
11300fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11301{
11302 Elf_Internal_Shdr *symtab_hdr;
11303
11304 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11305 if (cookie->locsyms != NULL
11306 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11307 free (cookie->locsyms);
11308}
11309
11310/* Initialize the relocation information in COOKIE for input section SEC
11311 of input bfd ABFD. */
11312
11313static bfd_boolean
11314init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11315 struct bfd_link_info *info, bfd *abfd,
11316 asection *sec)
11317{
11318 const struct elf_backend_data *bed;
11319
11320 if (sec->reloc_count == 0)
11321 {
11322 cookie->rels = NULL;
11323 cookie->relend = NULL;
11324 }
11325 else
11326 {
11327 bed = get_elf_backend_data (abfd);
11328
11329 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11330 info->keep_memory);
11331 if (cookie->rels == NULL)
11332 return FALSE;
11333 cookie->rel = cookie->rels;
11334 cookie->relend = (cookie->rels
11335 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11336 }
11337 cookie->rel = cookie->rels;
11338 return TRUE;
11339}
11340
11341/* Free the memory allocated by init_reloc_cookie_rels,
11342 if appropriate. */
11343
11344static void
11345fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11346 asection *sec)
11347{
11348 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11349 free (cookie->rels);
11350}
11351
11352/* Initialize the whole of COOKIE for input section SEC. */
11353
11354static bfd_boolean
11355init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11356 struct bfd_link_info *info,
11357 asection *sec)
11358{
11359 if (!init_reloc_cookie (cookie, info, sec->owner))
11360 goto error1;
11361 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11362 goto error2;
11363 return TRUE;
11364
11365 error2:
11366 fini_reloc_cookie (cookie, sec->owner);
11367 error1:
11368 return FALSE;
11369}
11370
11371/* Free the memory allocated by init_reloc_cookie_for_section,
11372 if appropriate. */
11373
11374static void
11375fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11376 asection *sec)
11377{
11378 fini_reloc_cookie_rels (cookie, sec);
11379 fini_reloc_cookie (cookie, sec->owner);
11380}
11381\f
c152c796
AM
11382/* Garbage collect unused sections. */
11383
07adf181
AM
11384/* Default gc_mark_hook. */
11385
11386asection *
11387_bfd_elf_gc_mark_hook (asection *sec,
11388 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11389 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11390 struct elf_link_hash_entry *h,
11391 Elf_Internal_Sym *sym)
11392{
bde6f3eb
L
11393 const char *sec_name;
11394
07adf181
AM
11395 if (h != NULL)
11396 {
11397 switch (h->root.type)
11398 {
11399 case bfd_link_hash_defined:
11400 case bfd_link_hash_defweak:
11401 return h->root.u.def.section;
11402
11403 case bfd_link_hash_common:
11404 return h->root.u.c.p->section;
11405
bde6f3eb
L
11406 case bfd_link_hash_undefined:
11407 case bfd_link_hash_undefweak:
11408 /* To work around a glibc bug, keep all XXX input sections
11409 when there is an as yet undefined reference to __start_XXX
11410 or __stop_XXX symbols. The linker will later define such
11411 symbols for orphan input sections that have a name
11412 representable as a C identifier. */
11413 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11414 sec_name = h->root.root.string + 8;
11415 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11416 sec_name = h->root.root.string + 7;
11417 else
11418 sec_name = NULL;
11419
11420 if (sec_name && *sec_name != '\0')
11421 {
11422 bfd *i;
11423
11424 for (i = info->input_bfds; i; i = i->link_next)
11425 {
11426 sec = bfd_get_section_by_name (i, sec_name);
11427 if (sec)
11428 sec->flags |= SEC_KEEP;
11429 }
11430 }
11431 break;
11432
07adf181
AM
11433 default:
11434 break;
11435 }
11436 }
11437 else
11438 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11439
11440 return NULL;
11441}
11442
5241d853
RS
11443/* COOKIE->rel describes a relocation against section SEC, which is
11444 a section we've decided to keep. Return the section that contains
11445 the relocation symbol, or NULL if no section contains it. */
11446
11447asection *
11448_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11449 elf_gc_mark_hook_fn gc_mark_hook,
11450 struct elf_reloc_cookie *cookie)
11451{
11452 unsigned long r_symndx;
11453 struct elf_link_hash_entry *h;
11454
11455 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11456 if (r_symndx == 0)
11457 return NULL;
11458
11459 if (r_symndx >= cookie->locsymcount
11460 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11461 {
11462 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11463 while (h->root.type == bfd_link_hash_indirect
11464 || h->root.type == bfd_link_hash_warning)
11465 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11466 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11467 }
11468
11469 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11470 &cookie->locsyms[r_symndx]);
11471}
11472
11473/* COOKIE->rel describes a relocation against section SEC, which is
11474 a section we've decided to keep. Mark the section that contains
9d0a14d3 11475 the relocation symbol. */
5241d853
RS
11476
11477bfd_boolean
11478_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11479 asection *sec,
11480 elf_gc_mark_hook_fn gc_mark_hook,
9d0a14d3 11481 struct elf_reloc_cookie *cookie)
5241d853
RS
11482{
11483 asection *rsec;
11484
11485 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11486 if (rsec && !rsec->gc_mark)
11487 {
11488 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11489 rsec->gc_mark = 1;
5241d853
RS
11490 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11491 return FALSE;
11492 }
11493 return TRUE;
11494}
11495
07adf181
AM
11496/* The mark phase of garbage collection. For a given section, mark
11497 it and any sections in this section's group, and all the sections
11498 which define symbols to which it refers. */
11499
ccfa59ea
AM
11500bfd_boolean
11501_bfd_elf_gc_mark (struct bfd_link_info *info,
11502 asection *sec,
6a5bb875 11503 elf_gc_mark_hook_fn gc_mark_hook)
c152c796
AM
11504{
11505 bfd_boolean ret;
9d0a14d3 11506 asection *group_sec, *eh_frame;
c152c796
AM
11507
11508 sec->gc_mark = 1;
11509
11510 /* Mark all the sections in the group. */
11511 group_sec = elf_section_data (sec)->next_in_group;
11512 if (group_sec && !group_sec->gc_mark)
ccfa59ea 11513 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
c152c796
AM
11514 return FALSE;
11515
11516 /* Look through the section relocs. */
11517 ret = TRUE;
9d0a14d3
RS
11518 eh_frame = elf_eh_frame_section (sec->owner);
11519 if ((sec->flags & SEC_RELOC) != 0
11520 && sec->reloc_count > 0
11521 && sec != eh_frame)
c152c796 11522 {
5241d853 11523 struct elf_reloc_cookie cookie;
c152c796 11524
5241d853
RS
11525 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11526 ret = FALSE;
c152c796 11527 else
c152c796 11528 {
5241d853 11529 for (; cookie.rel < cookie.relend; cookie.rel++)
9d0a14d3 11530 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
5241d853
RS
11531 {
11532 ret = FALSE;
11533 break;
11534 }
11535 fini_reloc_cookie_for_section (&cookie, sec);
c152c796
AM
11536 }
11537 }
9d0a14d3
RS
11538
11539 if (ret && eh_frame && elf_fde_list (sec))
11540 {
11541 struct elf_reloc_cookie cookie;
11542
11543 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11544 ret = FALSE;
11545 else
11546 {
11547 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11548 gc_mark_hook, &cookie))
11549 ret = FALSE;
11550 fini_reloc_cookie_for_section (&cookie, eh_frame);
11551 }
11552 }
11553
c152c796
AM
11554 return ret;
11555}
11556
11557/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11558
c17d87de
NC
11559struct elf_gc_sweep_symbol_info
11560{
ccabcbe5
AM
11561 struct bfd_link_info *info;
11562 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11563 bfd_boolean);
11564};
11565
c152c796 11566static bfd_boolean
ccabcbe5 11567elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
c152c796 11568{
c152c796
AM
11569 if (h->root.type == bfd_link_hash_warning)
11570 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11571
ccabcbe5
AM
11572 if ((h->root.type == bfd_link_hash_defined
11573 || h->root.type == bfd_link_hash_defweak)
11574 && !h->root.u.def.section->gc_mark
11575 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11576 {
a50b1753
NC
11577 struct elf_gc_sweep_symbol_info *inf =
11578 (struct elf_gc_sweep_symbol_info *) data;
ccabcbe5
AM
11579 (*inf->hide_symbol) (inf->info, h, TRUE);
11580 }
c152c796
AM
11581
11582 return TRUE;
11583}
11584
11585/* The sweep phase of garbage collection. Remove all garbage sections. */
11586
11587typedef bfd_boolean (*gc_sweep_hook_fn)
11588 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11589
11590static bfd_boolean
ccabcbe5 11591elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
c152c796
AM
11592{
11593 bfd *sub;
ccabcbe5
AM
11594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11595 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11596 unsigned long section_sym_count;
11597 struct elf_gc_sweep_symbol_info sweep_info;
c152c796
AM
11598
11599 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11600 {
11601 asection *o;
11602
11603 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11604 continue;
11605
11606 for (o = sub->sections; o != NULL; o = o->next)
11607 {
a33dafc3
L
11608 /* When any section in a section group is kept, we keep all
11609 sections in the section group. If the first member of
11610 the section group is excluded, we will also exclude the
11611 group section. */
11612 if (o->flags & SEC_GROUP)
11613 {
11614 asection *first = elf_next_in_group (o);
11615 o->gc_mark = first->gc_mark;
11616 }
11617 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
16583161
L
11618 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11619 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
a33dafc3 11620 {
16583161 11621 /* Keep debug, special and SHT_NOTE sections. */
a33dafc3
L
11622 o->gc_mark = 1;
11623 }
c152c796
AM
11624
11625 if (o->gc_mark)
11626 continue;
11627
11628 /* Skip sweeping sections already excluded. */
11629 if (o->flags & SEC_EXCLUDE)
11630 continue;
11631
11632 /* Since this is early in the link process, it is simple
11633 to remove a section from the output. */
11634 o->flags |= SEC_EXCLUDE;
11635
c55fe096 11636 if (info->print_gc_sections && o->size != 0)
c17d87de
NC
11637 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11638
c152c796
AM
11639 /* But we also have to update some of the relocation
11640 info we collected before. */
11641 if (gc_sweep_hook
e8aaee2a
AM
11642 && (o->flags & SEC_RELOC) != 0
11643 && o->reloc_count > 0
11644 && !bfd_is_abs_section (o->output_section))
c152c796
AM
11645 {
11646 Elf_Internal_Rela *internal_relocs;
11647 bfd_boolean r;
11648
11649 internal_relocs
11650 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11651 info->keep_memory);
11652 if (internal_relocs == NULL)
11653 return FALSE;
11654
11655 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11656
11657 if (elf_section_data (o)->relocs != internal_relocs)
11658 free (internal_relocs);
11659
11660 if (!r)
11661 return FALSE;
11662 }
11663 }
11664 }
11665
11666 /* Remove the symbols that were in the swept sections from the dynamic
11667 symbol table. GCFIXME: Anyone know how to get them out of the
11668 static symbol table as well? */
ccabcbe5
AM
11669 sweep_info.info = info;
11670 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11671 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11672 &sweep_info);
c152c796 11673
ccabcbe5 11674 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
c152c796
AM
11675 return TRUE;
11676}
11677
11678/* Propagate collected vtable information. This is called through
11679 elf_link_hash_traverse. */
11680
11681static bfd_boolean
11682elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11683{
11684 if (h->root.type == bfd_link_hash_warning)
11685 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11686
11687 /* Those that are not vtables. */
f6e332e6 11688 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
11689 return TRUE;
11690
11691 /* Those vtables that do not have parents, we cannot merge. */
f6e332e6 11692 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
c152c796
AM
11693 return TRUE;
11694
11695 /* If we've already been done, exit. */
f6e332e6 11696 if (h->vtable->used && h->vtable->used[-1])
c152c796
AM
11697 return TRUE;
11698
11699 /* Make sure the parent's table is up to date. */
f6e332e6 11700 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
c152c796 11701
f6e332e6 11702 if (h->vtable->used == NULL)
c152c796
AM
11703 {
11704 /* None of this table's entries were referenced. Re-use the
11705 parent's table. */
f6e332e6
AM
11706 h->vtable->used = h->vtable->parent->vtable->used;
11707 h->vtable->size = h->vtable->parent->vtable->size;
c152c796
AM
11708 }
11709 else
11710 {
11711 size_t n;
11712 bfd_boolean *cu, *pu;
11713
11714 /* Or the parent's entries into ours. */
f6e332e6 11715 cu = h->vtable->used;
c152c796 11716 cu[-1] = TRUE;
f6e332e6 11717 pu = h->vtable->parent->vtable->used;
c152c796
AM
11718 if (pu != NULL)
11719 {
11720 const struct elf_backend_data *bed;
11721 unsigned int log_file_align;
11722
11723 bed = get_elf_backend_data (h->root.u.def.section->owner);
11724 log_file_align = bed->s->log_file_align;
f6e332e6 11725 n = h->vtable->parent->vtable->size >> log_file_align;
c152c796
AM
11726 while (n--)
11727 {
11728 if (*pu)
11729 *cu = TRUE;
11730 pu++;
11731 cu++;
11732 }
11733 }
11734 }
11735
11736 return TRUE;
11737}
11738
11739static bfd_boolean
11740elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11741{
11742 asection *sec;
11743 bfd_vma hstart, hend;
11744 Elf_Internal_Rela *relstart, *relend, *rel;
11745 const struct elf_backend_data *bed;
11746 unsigned int log_file_align;
11747
11748 if (h->root.type == bfd_link_hash_warning)
11749 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11750
11751 /* Take care of both those symbols that do not describe vtables as
11752 well as those that are not loaded. */
f6e332e6 11753 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
11754 return TRUE;
11755
11756 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11757 || h->root.type == bfd_link_hash_defweak);
11758
11759 sec = h->root.u.def.section;
11760 hstart = h->root.u.def.value;
11761 hend = hstart + h->size;
11762
11763 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11764 if (!relstart)
11765 return *(bfd_boolean *) okp = FALSE;
11766 bed = get_elf_backend_data (sec->owner);
11767 log_file_align = bed->s->log_file_align;
11768
11769 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11770
11771 for (rel = relstart; rel < relend; ++rel)
11772 if (rel->r_offset >= hstart && rel->r_offset < hend)
11773 {
11774 /* If the entry is in use, do nothing. */
f6e332e6
AM
11775 if (h->vtable->used
11776 && (rel->r_offset - hstart) < h->vtable->size)
c152c796
AM
11777 {
11778 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
f6e332e6 11779 if (h->vtable->used[entry])
c152c796
AM
11780 continue;
11781 }
11782 /* Otherwise, kill it. */
11783 rel->r_offset = rel->r_info = rel->r_addend = 0;
11784 }
11785
11786 return TRUE;
11787}
11788
87538722
AM
11789/* Mark sections containing dynamically referenced symbols. When
11790 building shared libraries, we must assume that any visible symbol is
11791 referenced. */
715df9b8 11792
64d03ab5
AM
11793bfd_boolean
11794bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
715df9b8 11795{
87538722
AM
11796 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11797
715df9b8
EB
11798 if (h->root.type == bfd_link_hash_warning)
11799 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11800
11801 if ((h->root.type == bfd_link_hash_defined
11802 || h->root.type == bfd_link_hash_defweak)
87538722 11803 && (h->ref_dynamic
5adcfd8b 11804 || (!info->executable
87538722
AM
11805 && h->def_regular
11806 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11807 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
715df9b8
EB
11808 h->root.u.def.section->flags |= SEC_KEEP;
11809
11810 return TRUE;
11811}
3b36f7e6 11812
74f0fb50
AM
11813/* Keep all sections containing symbols undefined on the command-line,
11814 and the section containing the entry symbol. */
11815
11816void
11817_bfd_elf_gc_keep (struct bfd_link_info *info)
11818{
11819 struct bfd_sym_chain *sym;
11820
11821 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11822 {
11823 struct elf_link_hash_entry *h;
11824
11825 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11826 FALSE, FALSE, FALSE);
11827
11828 if (h != NULL
11829 && (h->root.type == bfd_link_hash_defined
11830 || h->root.type == bfd_link_hash_defweak)
11831 && !bfd_is_abs_section (h->root.u.def.section))
11832 h->root.u.def.section->flags |= SEC_KEEP;
11833 }
11834}
11835
c152c796
AM
11836/* Do mark and sweep of unused sections. */
11837
11838bfd_boolean
11839bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11840{
11841 bfd_boolean ok = TRUE;
11842 bfd *sub;
6a5bb875 11843 elf_gc_mark_hook_fn gc_mark_hook;
64d03ab5 11844 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
c152c796 11845
64d03ab5 11846 if (!bed->can_gc_sections
715df9b8 11847 || !is_elf_hash_table (info->hash))
c152c796
AM
11848 {
11849 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11850 return TRUE;
11851 }
11852
74f0fb50
AM
11853 bed->gc_keep (info);
11854
9d0a14d3
RS
11855 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11856 at the .eh_frame section if we can mark the FDEs individually. */
11857 _bfd_elf_begin_eh_frame_parsing (info);
11858 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11859 {
11860 asection *sec;
11861 struct elf_reloc_cookie cookie;
11862
11863 sec = bfd_get_section_by_name (sub, ".eh_frame");
11864 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11865 {
11866 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11867 if (elf_section_data (sec)->sec_info)
11868 elf_eh_frame_section (sub) = sec;
11869 fini_reloc_cookie_for_section (&cookie, sec);
11870 }
11871 }
11872 _bfd_elf_end_eh_frame_parsing (info);
11873
c152c796
AM
11874 /* Apply transitive closure to the vtable entry usage info. */
11875 elf_link_hash_traverse (elf_hash_table (info),
11876 elf_gc_propagate_vtable_entries_used,
11877 &ok);
11878 if (!ok)
11879 return FALSE;
11880
11881 /* Kill the vtable relocations that were not used. */
11882 elf_link_hash_traverse (elf_hash_table (info),
11883 elf_gc_smash_unused_vtentry_relocs,
11884 &ok);
11885 if (!ok)
11886 return FALSE;
11887
715df9b8
EB
11888 /* Mark dynamically referenced symbols. */
11889 if (elf_hash_table (info)->dynamic_sections_created)
11890 elf_link_hash_traverse (elf_hash_table (info),
64d03ab5 11891 bed->gc_mark_dynamic_ref,
87538722 11892 info);
c152c796 11893
715df9b8 11894 /* Grovel through relocs to find out who stays ... */
64d03ab5 11895 gc_mark_hook = bed->gc_mark_hook;
c152c796
AM
11896 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11897 {
11898 asection *o;
11899
11900 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11901 continue;
11902
11903 for (o = sub->sections; o != NULL; o = o->next)
a14a5de3 11904 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
39c2f51b
AM
11905 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11906 return FALSE;
c152c796
AM
11907 }
11908
6a5bb875
PB
11909 /* Allow the backend to mark additional target specific sections. */
11910 if (bed->gc_mark_extra_sections)
74f0fb50 11911 bed->gc_mark_extra_sections (info, gc_mark_hook);
6a5bb875 11912
c152c796 11913 /* ... and mark SEC_EXCLUDE for those that go. */
ccabcbe5 11914 return elf_gc_sweep (abfd, info);
c152c796
AM
11915}
11916\f
11917/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11918
11919bfd_boolean
11920bfd_elf_gc_record_vtinherit (bfd *abfd,
11921 asection *sec,
11922 struct elf_link_hash_entry *h,
11923 bfd_vma offset)
11924{
11925 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11926 struct elf_link_hash_entry **search, *child;
11927 bfd_size_type extsymcount;
11928 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11929
11930 /* The sh_info field of the symtab header tells us where the
11931 external symbols start. We don't care about the local symbols at
11932 this point. */
11933 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11934 if (!elf_bad_symtab (abfd))
11935 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11936
11937 sym_hashes = elf_sym_hashes (abfd);
11938 sym_hashes_end = sym_hashes + extsymcount;
11939
11940 /* Hunt down the child symbol, which is in this section at the same
11941 offset as the relocation. */
11942 for (search = sym_hashes; search != sym_hashes_end; ++search)
11943 {
11944 if ((child = *search) != NULL
11945 && (child->root.type == bfd_link_hash_defined
11946 || child->root.type == bfd_link_hash_defweak)
11947 && child->root.u.def.section == sec
11948 && child->root.u.def.value == offset)
11949 goto win;
11950 }
11951
d003868e
AM
11952 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11953 abfd, sec, (unsigned long) offset);
c152c796
AM
11954 bfd_set_error (bfd_error_invalid_operation);
11955 return FALSE;
11956
11957 win:
f6e332e6
AM
11958 if (!child->vtable)
11959 {
a50b1753
NC
11960 child->vtable = (struct elf_link_virtual_table_entry *)
11961 bfd_zalloc (abfd, sizeof (*child->vtable));
f6e332e6
AM
11962 if (!child->vtable)
11963 return FALSE;
11964 }
c152c796
AM
11965 if (!h)
11966 {
11967 /* This *should* only be the absolute section. It could potentially
11968 be that someone has defined a non-global vtable though, which
11969 would be bad. It isn't worth paging in the local symbols to be
11970 sure though; that case should simply be handled by the assembler. */
11971
f6e332e6 11972 child->vtable->parent = (struct elf_link_hash_entry *) -1;
c152c796
AM
11973 }
11974 else
f6e332e6 11975 child->vtable->parent = h;
c152c796
AM
11976
11977 return TRUE;
11978}
11979
11980/* Called from check_relocs to record the existence of a VTENTRY reloc. */
11981
11982bfd_boolean
11983bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11984 asection *sec ATTRIBUTE_UNUSED,
11985 struct elf_link_hash_entry *h,
11986 bfd_vma addend)
11987{
11988 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11989 unsigned int log_file_align = bed->s->log_file_align;
11990
f6e332e6
AM
11991 if (!h->vtable)
11992 {
a50b1753
NC
11993 h->vtable = (struct elf_link_virtual_table_entry *)
11994 bfd_zalloc (abfd, sizeof (*h->vtable));
f6e332e6
AM
11995 if (!h->vtable)
11996 return FALSE;
11997 }
11998
11999 if (addend >= h->vtable->size)
c152c796
AM
12000 {
12001 size_t size, bytes, file_align;
f6e332e6 12002 bfd_boolean *ptr = h->vtable->used;
c152c796
AM
12003
12004 /* While the symbol is undefined, we have to be prepared to handle
12005 a zero size. */
12006 file_align = 1 << log_file_align;
12007 if (h->root.type == bfd_link_hash_undefined)
12008 size = addend + file_align;
12009 else
12010 {
12011 size = h->size;
12012 if (addend >= size)
12013 {
12014 /* Oops! We've got a reference past the defined end of
12015 the table. This is probably a bug -- shall we warn? */
12016 size = addend + file_align;
12017 }
12018 }
12019 size = (size + file_align - 1) & -file_align;
12020
12021 /* Allocate one extra entry for use as a "done" flag for the
12022 consolidation pass. */
12023 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12024
12025 if (ptr)
12026 {
a50b1753 12027 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
c152c796
AM
12028
12029 if (ptr != NULL)
12030 {
12031 size_t oldbytes;
12032
f6e332e6 12033 oldbytes = (((h->vtable->size >> log_file_align) + 1)
c152c796
AM
12034 * sizeof (bfd_boolean));
12035 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12036 }
12037 }
12038 else
a50b1753 12039 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
c152c796
AM
12040
12041 if (ptr == NULL)
12042 return FALSE;
12043
12044 /* And arrange for that done flag to be at index -1. */
f6e332e6
AM
12045 h->vtable->used = ptr + 1;
12046 h->vtable->size = size;
c152c796
AM
12047 }
12048
f6e332e6 12049 h->vtable->used[addend >> log_file_align] = TRUE;
c152c796
AM
12050
12051 return TRUE;
12052}
12053
12054struct alloc_got_off_arg {
12055 bfd_vma gotoff;
10455f89 12056 struct bfd_link_info *info;
c152c796
AM
12057};
12058
12059/* We need a special top-level link routine to convert got reference counts
12060 to real got offsets. */
12061
12062static bfd_boolean
12063elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12064{
a50b1753 12065 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
10455f89
HPN
12066 bfd *obfd = gofarg->info->output_bfd;
12067 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
c152c796
AM
12068
12069 if (h->root.type == bfd_link_hash_warning)
12070 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12071
12072 if (h->got.refcount > 0)
12073 {
12074 h->got.offset = gofarg->gotoff;
10455f89 12075 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
c152c796
AM
12076 }
12077 else
12078 h->got.offset = (bfd_vma) -1;
12079
12080 return TRUE;
12081}
12082
12083/* And an accompanying bit to work out final got entry offsets once
12084 we're done. Should be called from final_link. */
12085
12086bfd_boolean
12087bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12088 struct bfd_link_info *info)
12089{
12090 bfd *i;
12091 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12092 bfd_vma gotoff;
c152c796
AM
12093 struct alloc_got_off_arg gofarg;
12094
10455f89
HPN
12095 BFD_ASSERT (abfd == info->output_bfd);
12096
c152c796
AM
12097 if (! is_elf_hash_table (info->hash))
12098 return FALSE;
12099
12100 /* The GOT offset is relative to the .got section, but the GOT header is
12101 put into the .got.plt section, if the backend uses it. */
12102 if (bed->want_got_plt)
12103 gotoff = 0;
12104 else
12105 gotoff = bed->got_header_size;
12106
12107 /* Do the local .got entries first. */
12108 for (i = info->input_bfds; i; i = i->link_next)
12109 {
12110 bfd_signed_vma *local_got;
12111 bfd_size_type j, locsymcount;
12112 Elf_Internal_Shdr *symtab_hdr;
12113
12114 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12115 continue;
12116
12117 local_got = elf_local_got_refcounts (i);
12118 if (!local_got)
12119 continue;
12120
12121 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12122 if (elf_bad_symtab (i))
12123 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12124 else
12125 locsymcount = symtab_hdr->sh_info;
12126
12127 for (j = 0; j < locsymcount; ++j)
12128 {
12129 if (local_got[j] > 0)
12130 {
12131 local_got[j] = gotoff;
10455f89 12132 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
c152c796
AM
12133 }
12134 else
12135 local_got[j] = (bfd_vma) -1;
12136 }
12137 }
12138
12139 /* Then the global .got entries. .plt refcounts are handled by
12140 adjust_dynamic_symbol */
12141 gofarg.gotoff = gotoff;
10455f89 12142 gofarg.info = info;
c152c796
AM
12143 elf_link_hash_traverse (elf_hash_table (info),
12144 elf_gc_allocate_got_offsets,
12145 &gofarg);
12146 return TRUE;
12147}
12148
12149/* Many folk need no more in the way of final link than this, once
12150 got entry reference counting is enabled. */
12151
12152bfd_boolean
12153bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12154{
12155 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12156 return FALSE;
12157
12158 /* Invoke the regular ELF backend linker to do all the work. */
12159 return bfd_elf_final_link (abfd, info);
12160}
12161
12162bfd_boolean
12163bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12164{
a50b1753 12165 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
c152c796
AM
12166
12167 if (rcookie->bad_symtab)
12168 rcookie->rel = rcookie->rels;
12169
12170 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12171 {
12172 unsigned long r_symndx;
12173
12174 if (! rcookie->bad_symtab)
12175 if (rcookie->rel->r_offset > offset)
12176 return FALSE;
12177 if (rcookie->rel->r_offset != offset)
12178 continue;
12179
12180 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12181 if (r_symndx == SHN_UNDEF)
12182 return TRUE;
12183
12184 if (r_symndx >= rcookie->locsymcount
12185 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12186 {
12187 struct elf_link_hash_entry *h;
12188
12189 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12190
12191 while (h->root.type == bfd_link_hash_indirect
12192 || h->root.type == bfd_link_hash_warning)
12193 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12194
12195 if ((h->root.type == bfd_link_hash_defined
12196 || h->root.type == bfd_link_hash_defweak)
12197 && elf_discarded_section (h->root.u.def.section))
12198 return TRUE;
12199 else
12200 return FALSE;
12201 }
12202 else
12203 {
12204 /* It's not a relocation against a global symbol,
12205 but it could be a relocation against a local
12206 symbol for a discarded section. */
12207 asection *isec;
12208 Elf_Internal_Sym *isym;
12209
12210 /* Need to: get the symbol; get the section. */
12211 isym = &rcookie->locsyms[r_symndx];
cb33740c
AM
12212 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12213 if (isec != NULL && elf_discarded_section (isec))
12214 return TRUE;
c152c796
AM
12215 }
12216 return FALSE;
12217 }
12218 return FALSE;
12219}
12220
12221/* Discard unneeded references to discarded sections.
12222 Returns TRUE if any section's size was changed. */
12223/* This function assumes that the relocations are in sorted order,
12224 which is true for all known assemblers. */
12225
12226bfd_boolean
12227bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12228{
12229 struct elf_reloc_cookie cookie;
12230 asection *stab, *eh;
c152c796
AM
12231 const struct elf_backend_data *bed;
12232 bfd *abfd;
c152c796
AM
12233 bfd_boolean ret = FALSE;
12234
12235 if (info->traditional_format
12236 || !is_elf_hash_table (info->hash))
12237 return FALSE;
12238
ca92cecb 12239 _bfd_elf_begin_eh_frame_parsing (info);
c152c796
AM
12240 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12241 {
12242 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12243 continue;
12244
12245 bed = get_elf_backend_data (abfd);
12246
12247 if ((abfd->flags & DYNAMIC) != 0)
12248 continue;
12249
8da3dbc5
AM
12250 eh = NULL;
12251 if (!info->relocatable)
12252 {
12253 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12254 if (eh != NULL
eea6121a 12255 && (eh->size == 0
8da3dbc5
AM
12256 || bfd_is_abs_section (eh->output_section)))
12257 eh = NULL;
12258 }
c152c796
AM
12259
12260 stab = bfd_get_section_by_name (abfd, ".stab");
12261 if (stab != NULL
eea6121a 12262 && (stab->size == 0
c152c796
AM
12263 || bfd_is_abs_section (stab->output_section)
12264 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12265 stab = NULL;
12266
12267 if (stab == NULL
12268 && eh == NULL
12269 && bed->elf_backend_discard_info == NULL)
12270 continue;
12271
5241d853
RS
12272 if (!init_reloc_cookie (&cookie, info, abfd))
12273 return FALSE;
c152c796 12274
5241d853
RS
12275 if (stab != NULL
12276 && stab->reloc_count > 0
12277 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
c152c796 12278 {
5241d853
RS
12279 if (_bfd_discard_section_stabs (abfd, stab,
12280 elf_section_data (stab)->sec_info,
12281 bfd_elf_reloc_symbol_deleted_p,
12282 &cookie))
12283 ret = TRUE;
12284 fini_reloc_cookie_rels (&cookie, stab);
c152c796
AM
12285 }
12286
5241d853
RS
12287 if (eh != NULL
12288 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
c152c796 12289 {
ca92cecb 12290 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
c152c796
AM
12291 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12292 bfd_elf_reloc_symbol_deleted_p,
12293 &cookie))
12294 ret = TRUE;
5241d853 12295 fini_reloc_cookie_rels (&cookie, eh);
c152c796
AM
12296 }
12297
12298 if (bed->elf_backend_discard_info != NULL
12299 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12300 ret = TRUE;
12301
5241d853 12302 fini_reloc_cookie (&cookie, abfd);
c152c796 12303 }
ca92cecb 12304 _bfd_elf_end_eh_frame_parsing (info);
c152c796
AM
12305
12306 if (info->eh_frame_hdr
12307 && !info->relocatable
12308 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12309 ret = TRUE;
12310
12311 return ret;
12312}
082b7297 12313
9659de1c
AM
12314/* For a SHT_GROUP section, return the group signature. For other
12315 sections, return the normal section name. */
12316
12317static const char *
12318section_signature (asection *sec)
12319{
12320 if ((sec->flags & SEC_GROUP) != 0
12321 && elf_next_in_group (sec) != NULL
12322 && elf_group_name (elf_next_in_group (sec)) != NULL)
12323 return elf_group_name (elf_next_in_group (sec));
12324 return sec->name;
12325}
12326
082b7297 12327void
9659de1c 12328_bfd_elf_section_already_linked (bfd *abfd, asection *sec,
c0f00686 12329 struct bfd_link_info *info)
082b7297
L
12330{
12331 flagword flags;
6d2cd210 12332 const char *name, *p;
082b7297
L
12333 struct bfd_section_already_linked *l;
12334 struct bfd_section_already_linked_hash_entry *already_linked_list;
3d7f7666 12335
3d7f7666
L
12336 if (sec->output_section == bfd_abs_section_ptr)
12337 return;
082b7297
L
12338
12339 flags = sec->flags;
3d7f7666 12340
c2370991
AM
12341 /* Return if it isn't a linkonce section. A comdat group section
12342 also has SEC_LINK_ONCE set. */
12343 if ((flags & SEC_LINK_ONCE) == 0)
082b7297
L
12344 return;
12345
c2370991
AM
12346 /* Don't put group member sections on our list of already linked
12347 sections. They are handled as a group via their group section. */
12348 if (elf_sec_group (sec) != NULL)
12349 return;
3d7f7666 12350
082b7297
L
12351 /* FIXME: When doing a relocatable link, we may have trouble
12352 copying relocations in other sections that refer to local symbols
12353 in the section being discarded. Those relocations will have to
12354 be converted somehow; as of this writing I'm not sure that any of
12355 the backends handle that correctly.
12356
12357 It is tempting to instead not discard link once sections when
12358 doing a relocatable link (technically, they should be discarded
12359 whenever we are building constructors). However, that fails,
12360 because the linker winds up combining all the link once sections
12361 into a single large link once section, which defeats the purpose
12362 of having link once sections in the first place.
12363
12364 Also, not merging link once sections in a relocatable link
12365 causes trouble for MIPS ELF, which relies on link once semantics
12366 to handle the .reginfo section correctly. */
12367
9659de1c 12368 name = section_signature (sec);
082b7297 12369
0112cd26 12370 if (CONST_STRNEQ (name, ".gnu.linkonce.")
6d2cd210
JJ
12371 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12372 p++;
12373 else
12374 p = name;
12375
12376 already_linked_list = bfd_section_already_linked_table_lookup (p);
082b7297
L
12377
12378 for (l = already_linked_list->entry; l != NULL; l = l->next)
12379 {
c2370991
AM
12380 /* We may have 2 different types of sections on the list: group
12381 sections and linkonce sections. Match like sections. */
3d7f7666 12382 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9659de1c 12383 && strcmp (name, section_signature (l->sec)) == 0
082b7297
L
12384 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12385 {
12386 /* The section has already been linked. See if we should
6d2cd210 12387 issue a warning. */
082b7297
L
12388 switch (flags & SEC_LINK_DUPLICATES)
12389 {
12390 default:
12391 abort ();
12392
12393 case SEC_LINK_DUPLICATES_DISCARD:
12394 break;
12395
12396 case SEC_LINK_DUPLICATES_ONE_ONLY:
12397 (*_bfd_error_handler)
c93625e2 12398 (_("%B: ignoring duplicate section `%A'"),
d003868e 12399 abfd, sec);
082b7297
L
12400 break;
12401
12402 case SEC_LINK_DUPLICATES_SAME_SIZE:
12403 if (sec->size != l->sec->size)
12404 (*_bfd_error_handler)
c93625e2 12405 (_("%B: duplicate section `%A' has different size"),
d003868e 12406 abfd, sec);
082b7297 12407 break;
ea5158d8
DJ
12408
12409 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12410 if (sec->size != l->sec->size)
12411 (*_bfd_error_handler)
c93625e2 12412 (_("%B: duplicate section `%A' has different size"),
ea5158d8
DJ
12413 abfd, sec);
12414 else if (sec->size != 0)
12415 {
12416 bfd_byte *sec_contents, *l_sec_contents;
12417
12418 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12419 (*_bfd_error_handler)
c93625e2 12420 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
12421 abfd, sec);
12422 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12423 &l_sec_contents))
12424 (*_bfd_error_handler)
c93625e2 12425 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
12426 l->sec->owner, l->sec);
12427 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12428 (*_bfd_error_handler)
c93625e2 12429 (_("%B: warning: duplicate section `%A' has different contents"),
ea5158d8
DJ
12430 abfd, sec);
12431
12432 if (sec_contents)
12433 free (sec_contents);
12434 if (l_sec_contents)
12435 free (l_sec_contents);
12436 }
12437 break;
082b7297
L
12438 }
12439
12440 /* Set the output_section field so that lang_add_section
12441 does not create a lang_input_section structure for this
12442 section. Since there might be a symbol in the section
12443 being discarded, we must retain a pointer to the section
12444 which we are really going to use. */
12445 sec->output_section = bfd_abs_section_ptr;
12446 sec->kept_section = l->sec;
3b36f7e6 12447
082b7297 12448 if (flags & SEC_GROUP)
3d7f7666
L
12449 {
12450 asection *first = elf_next_in_group (sec);
12451 asection *s = first;
12452
12453 while (s != NULL)
12454 {
12455 s->output_section = bfd_abs_section_ptr;
12456 /* Record which group discards it. */
12457 s->kept_section = l->sec;
12458 s = elf_next_in_group (s);
12459 /* These lists are circular. */
12460 if (s == first)
12461 break;
12462 }
12463 }
082b7297
L
12464
12465 return;
12466 }
12467 }
12468
c2370991
AM
12469 /* A single member comdat group section may be discarded by a
12470 linkonce section and vice versa. */
12471
12472 if ((flags & SEC_GROUP) != 0)
3d7f7666 12473 {
c2370991
AM
12474 asection *first = elf_next_in_group (sec);
12475
12476 if (first != NULL && elf_next_in_group (first) == first)
12477 /* Check this single member group against linkonce sections. */
12478 for (l = already_linked_list->entry; l != NULL; l = l->next)
12479 if ((l->sec->flags & SEC_GROUP) == 0
12480 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12481 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12482 {
12483 first->output_section = bfd_abs_section_ptr;
12484 first->kept_section = l->sec;
12485 sec->output_section = bfd_abs_section_ptr;
12486 break;
12487 }
3d7f7666
L
12488 }
12489 else
c2370991 12490 /* Check this linkonce section against single member groups. */
6d2cd210
JJ
12491 for (l = already_linked_list->entry; l != NULL; l = l->next)
12492 if (l->sec->flags & SEC_GROUP)
12493 {
12494 asection *first = elf_next_in_group (l->sec);
12495
12496 if (first != NULL
12497 && elf_next_in_group (first) == first
c0f00686 12498 && bfd_elf_match_symbols_in_sections (first, sec, info))
6d2cd210
JJ
12499 {
12500 sec->output_section = bfd_abs_section_ptr;
c2370991 12501 sec->kept_section = first;
6d2cd210
JJ
12502 break;
12503 }
12504 }
12505
80c29487
JK
12506 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12507 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12508 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12509 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12510 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12511 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12512 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12513 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12514 The reverse order cannot happen as there is never a bfd with only the
12515 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12516 matter as here were are looking only for cross-bfd sections. */
12517
12518 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12519 for (l = already_linked_list->entry; l != NULL; l = l->next)
12520 if ((l->sec->flags & SEC_GROUP) == 0
12521 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12522 {
12523 if (abfd != l->sec->owner)
12524 sec->output_section = bfd_abs_section_ptr;
12525 break;
12526 }
12527
082b7297 12528 /* This is the first section with this name. Record it. */
a6626e8c 12529 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
bb6198d2 12530 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
082b7297 12531}
81e1b023 12532
a4d8e49b
L
12533bfd_boolean
12534_bfd_elf_common_definition (Elf_Internal_Sym *sym)
12535{
12536 return sym->st_shndx == SHN_COMMON;
12537}
12538
12539unsigned int
12540_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12541{
12542 return SHN_COMMON;
12543}
12544
12545asection *
12546_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12547{
12548 return bfd_com_section_ptr;
12549}
10455f89
HPN
12550
12551bfd_vma
12552_bfd_elf_default_got_elt_size (bfd *abfd,
12553 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12554 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12555 bfd *ibfd ATTRIBUTE_UNUSED,
12556 unsigned long symndx ATTRIBUTE_UNUSED)
12557{
12558 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12559 return bed->s->arch_size / 8;
12560}
83bac4b0
NC
12561
12562/* Routines to support the creation of dynamic relocs. */
12563
12564/* Return true if NAME is a name of a relocation
12565 section associated with section S. */
12566
12567static bfd_boolean
12568is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12569{
12570 if (rela)
12571 return CONST_STRNEQ (name, ".rela")
12572 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12573
12574 return CONST_STRNEQ (name, ".rel")
12575 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12576}
12577
12578/* Returns the name of the dynamic reloc section associated with SEC. */
12579
12580static const char *
12581get_dynamic_reloc_section_name (bfd * abfd,
12582 asection * sec,
12583 bfd_boolean is_rela)
12584{
12585 const char * name;
12586 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12587 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12588
12589 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12590 if (name == NULL)
12591 return NULL;
12592
12593 if (! is_reloc_section (is_rela, name, sec))
12594 {
12595 static bfd_boolean complained = FALSE;
12596
12597 if (! complained)
12598 {
12599 (*_bfd_error_handler)
12600 (_("%B: bad relocation section name `%s\'"), abfd, name);
12601 complained = TRUE;
12602 }
12603 name = NULL;
12604 }
12605
12606 return name;
12607}
12608
12609/* Returns the dynamic reloc section associated with SEC.
12610 If necessary compute the name of the dynamic reloc section based
12611 on SEC's name (looked up in ABFD's string table) and the setting
12612 of IS_RELA. */
12613
12614asection *
12615_bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12616 asection * sec,
12617 bfd_boolean is_rela)
12618{
12619 asection * reloc_sec = elf_section_data (sec)->sreloc;
12620
12621 if (reloc_sec == NULL)
12622 {
12623 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12624
12625 if (name != NULL)
12626 {
12627 reloc_sec = bfd_get_section_by_name (abfd, name);
12628
12629 if (reloc_sec != NULL)
12630 elf_section_data (sec)->sreloc = reloc_sec;
12631 }
12632 }
12633
12634 return reloc_sec;
12635}
12636
12637/* Returns the dynamic reloc section associated with SEC. If the
12638 section does not exist it is created and attached to the DYNOBJ
12639 bfd and stored in the SRELOC field of SEC's elf_section_data
12640 structure.
f8076f98 12641
83bac4b0
NC
12642 ALIGNMENT is the alignment for the newly created section and
12643 IS_RELA defines whether the name should be .rela.<SEC's name>
12644 or .rel.<SEC's name>. The section name is looked up in the
12645 string table associated with ABFD. */
12646
12647asection *
12648_bfd_elf_make_dynamic_reloc_section (asection * sec,
12649 bfd * dynobj,
12650 unsigned int alignment,
12651 bfd * abfd,
12652 bfd_boolean is_rela)
12653{
12654 asection * reloc_sec = elf_section_data (sec)->sreloc;
12655
12656 if (reloc_sec == NULL)
12657 {
12658 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12659
12660 if (name == NULL)
12661 return NULL;
12662
12663 reloc_sec = bfd_get_section_by_name (dynobj, name);
12664
12665 if (reloc_sec == NULL)
12666 {
12667 flagword flags;
12668
12669 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12670 if ((sec->flags & SEC_ALLOC) != 0)
12671 flags |= SEC_ALLOC | SEC_LOAD;
12672
12673 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12674 if (reloc_sec != NULL)
12675 {
12676 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12677 reloc_sec = NULL;
12678 }
12679 }
12680
12681 elf_section_data (sec)->sreloc = reloc_sec;
12682 }
12683
12684 return reloc_sec;
12685}
1338dd10
PB
12686
12687/* Copy the ELF symbol type associated with a linker hash entry. */
12688void
12689_bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12690 struct bfd_link_hash_entry * hdest,
12691 struct bfd_link_hash_entry * hsrc)
12692{
12693 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12694 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12695
12696 ehdest->type = ehsrc->type;
12697}
This page took 2.17513 seconds and 4 git commands to generate.