*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elflink.c
CommitLineData
252b5132 1/* ELF linking support for BFD.
051d5130 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
7898deda 3 Free Software Foundation, Inc.
252b5132
RH
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#define ARCH_SIZE 0
26#include "elf-bfd.h"
4ad4eba5 27#include "safe-ctype.h"
ccf2f652 28#include "libiberty.h"
252b5132 29
b34976b6 30bfd_boolean
268b6b39 31_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
32{
33 flagword flags;
aad5d350 34 asection *s;
252b5132 35 struct elf_link_hash_entry *h;
14a793b2 36 struct bfd_link_hash_entry *bh;
9c5bfbb7 37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
38 int ptralign;
39
40 /* This function may be called more than once. */
aad5d350
AM
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
b34976b6 43 return TRUE;
252b5132
RH
44
45 switch (bed->s->arch_size)
46 {
bb0deeff
AO
47 case 32:
48 ptralign = 2;
49 break;
50
51 case 64:
52 ptralign = 3;
53 break;
54
55 default:
56 bfd_set_error (bfd_error_bad_value);
b34976b6 57 return FALSE;
252b5132
RH
58 }
59
60 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
61 | SEC_LINKER_CREATED);
62
63 s = bfd_make_section (abfd, ".got");
64 if (s == NULL
65 || !bfd_set_section_flags (abfd, s, flags)
66 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 67 return FALSE;
252b5132
RH
68
69 if (bed->want_got_plt)
70 {
71 s = bfd_make_section (abfd, ".got.plt");
72 if (s == NULL
73 || !bfd_set_section_flags (abfd, s, flags)
74 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 75 return FALSE;
252b5132
RH
76 }
77
2517a57f
AM
78 if (bed->want_got_sym)
79 {
80 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
81 (or .got.plt) section. We don't do this in the linker script
82 because we don't want to define the symbol if we are not creating
83 a global offset table. */
14a793b2 84 bh = NULL;
2517a57f
AM
85 if (!(_bfd_generic_link_add_one_symbol
86 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
268b6b39 87 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
b34976b6 88 return FALSE;
14a793b2 89 h = (struct elf_link_hash_entry *) bh;
2517a57f
AM
90 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
91 h->type = STT_OBJECT;
252b5132 92
36af4a4e 93 if (! info->executable
c152c796 94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 95 return FALSE;
252b5132 96
2517a57f
AM
97 elf_hash_table (info)->hgot = h;
98 }
252b5132
RH
99
100 /* The first bit of the global offset table is the header. */
eea6121a 101 s->size += bed->got_header_size + bed->got_symbol_offset;
252b5132 102
b34976b6 103 return TRUE;
252b5132
RH
104}
105\f
45d6a902
AM
106/* Create some sections which will be filled in with dynamic linking
107 information. ABFD is an input file which requires dynamic sections
108 to be created. The dynamic sections take up virtual memory space
109 when the final executable is run, so we need to create them before
110 addresses are assigned to the output sections. We work out the
111 actual contents and size of these sections later. */
252b5132 112
b34976b6 113bfd_boolean
268b6b39 114_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 115{
45d6a902
AM
116 flagword flags;
117 register asection *s;
118 struct elf_link_hash_entry *h;
119 struct bfd_link_hash_entry *bh;
9c5bfbb7 120 const struct elf_backend_data *bed;
252b5132 121
0eddce27 122 if (! is_elf_hash_table (info->hash))
45d6a902
AM
123 return FALSE;
124
125 if (elf_hash_table (info)->dynamic_sections_created)
126 return TRUE;
127
128 /* Make sure that all dynamic sections use the same input BFD. */
129 if (elf_hash_table (info)->dynobj == NULL)
130 elf_hash_table (info)->dynobj = abfd;
131 else
132 abfd = elf_hash_table (info)->dynobj;
133
134 /* Note that we set the SEC_IN_MEMORY flag for all of these
135 sections. */
136 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
137 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
138
139 /* A dynamically linked executable has a .interp section, but a
140 shared library does not. */
36af4a4e 141 if (info->executable)
252b5132 142 {
45d6a902
AM
143 s = bfd_make_section (abfd, ".interp");
144 if (s == NULL
145 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
146 return FALSE;
147 }
bb0deeff 148
0eddce27 149 if (! info->traditional_format)
45d6a902
AM
150 {
151 s = bfd_make_section (abfd, ".eh_frame_hdr");
152 if (s == NULL
153 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
154 || ! bfd_set_section_alignment (abfd, s, 2))
155 return FALSE;
156 elf_hash_table (info)->eh_info.hdr_sec = s;
157 }
bb0deeff 158
45d6a902
AM
159 bed = get_elf_backend_data (abfd);
160
161 /* Create sections to hold version informations. These are removed
162 if they are not needed. */
163 s = bfd_make_section (abfd, ".gnu.version_d");
164 if (s == NULL
165 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168
169 s = bfd_make_section (abfd, ".gnu.version");
170 if (s == NULL
171 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
172 || ! bfd_set_section_alignment (abfd, s, 1))
173 return FALSE;
174
175 s = bfd_make_section (abfd, ".gnu.version_r");
176 if (s == NULL
177 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
178 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
179 return FALSE;
180
181 s = bfd_make_section (abfd, ".dynsym");
182 if (s == NULL
183 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
184 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
185 return FALSE;
186
187 s = bfd_make_section (abfd, ".dynstr");
188 if (s == NULL
189 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
190 return FALSE;
191
192 /* Create a strtab to hold the dynamic symbol names. */
193 if (elf_hash_table (info)->dynstr == NULL)
194 {
195 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
196 if (elf_hash_table (info)->dynstr == NULL)
197 return FALSE;
252b5132
RH
198 }
199
45d6a902
AM
200 s = bfd_make_section (abfd, ".dynamic");
201 if (s == NULL
202 || ! bfd_set_section_flags (abfd, s, flags)
203 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
204 return FALSE;
205
206 /* The special symbol _DYNAMIC is always set to the start of the
207 .dynamic section. This call occurs before we have processed the
208 symbols for any dynamic object, so we don't have to worry about
209 overriding a dynamic definition. We could set _DYNAMIC in a
210 linker script, but we only want to define it if we are, in fact,
211 creating a .dynamic section. We don't want to define it if there
212 is no .dynamic section, since on some ELF platforms the start up
213 code examines it to decide how to initialize the process. */
214 bh = NULL;
215 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
216 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
217 get_elf_backend_data (abfd)->collect, &bh)))
45d6a902
AM
218 return FALSE;
219 h = (struct elf_link_hash_entry *) bh;
220 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
221 h->type = STT_OBJECT;
222
36af4a4e 223 if (! info->executable
c152c796 224 && ! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
225 return FALSE;
226
227 s = bfd_make_section (abfd, ".hash");
228 if (s == NULL
229 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
230 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
231 return FALSE;
232 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
233
234 /* Let the backend create the rest of the sections. This lets the
235 backend set the right flags. The backend will normally create
236 the .got and .plt sections. */
237 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
238 return FALSE;
239
240 elf_hash_table (info)->dynamic_sections_created = TRUE;
241
242 return TRUE;
243}
244
245/* Create dynamic sections when linking against a dynamic object. */
246
247bfd_boolean
268b6b39 248_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
45d6a902
AM
249{
250 flagword flags, pltflags;
251 asection *s;
9c5bfbb7 252 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 253
252b5132
RH
254 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
255 .rel[a].bss sections. */
256
257 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
258 | SEC_LINKER_CREATED);
259
260 pltflags = flags;
261 pltflags |= SEC_CODE;
262 if (bed->plt_not_loaded)
5d1634d7 263 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
252b5132
RH
264 if (bed->plt_readonly)
265 pltflags |= SEC_READONLY;
266
267 s = bfd_make_section (abfd, ".plt");
268 if (s == NULL
269 || ! bfd_set_section_flags (abfd, s, pltflags)
270 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
b34976b6 271 return FALSE;
252b5132
RH
272
273 if (bed->want_plt_sym)
274 {
275 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
276 .plt section. */
14a793b2
AM
277 struct elf_link_hash_entry *h;
278 struct bfd_link_hash_entry *bh = NULL;
279
252b5132 280 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
281 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
282 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 283 return FALSE;
14a793b2 284 h = (struct elf_link_hash_entry *) bh;
252b5132
RH
285 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
286 h->type = STT_OBJECT;
287
36af4a4e 288 if (! info->executable
c152c796 289 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 290 return FALSE;
252b5132
RH
291 }
292
3e932841 293 s = bfd_make_section (abfd,
bf572ba0 294 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
252b5132
RH
295 if (s == NULL
296 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
45d6a902 297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 298 return FALSE;
252b5132
RH
299
300 if (! _bfd_elf_create_got_section (abfd, info))
b34976b6 301 return FALSE;
252b5132 302
3018b441
RH
303 if (bed->want_dynbss)
304 {
305 /* The .dynbss section is a place to put symbols which are defined
306 by dynamic objects, are referenced by regular objects, and are
307 not functions. We must allocate space for them in the process
308 image and use a R_*_COPY reloc to tell the dynamic linker to
309 initialize them at run time. The linker script puts the .dynbss
310 section into the .bss section of the final image. */
311 s = bfd_make_section (abfd, ".dynbss");
312 if (s == NULL
77f3d027 313 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
b34976b6 314 return FALSE;
252b5132 315
3018b441 316 /* The .rel[a].bss section holds copy relocs. This section is not
252b5132
RH
317 normally needed. We need to create it here, though, so that the
318 linker will map it to an output section. We can't just create it
319 only if we need it, because we will not know whether we need it
320 until we have seen all the input files, and the first time the
321 main linker code calls BFD after examining all the input files
322 (size_dynamic_sections) the input sections have already been
323 mapped to the output sections. If the section turns out not to
324 be needed, we can discard it later. We will never need this
325 section when generating a shared object, since they do not use
326 copy relocs. */
3018b441
RH
327 if (! info->shared)
328 {
3e932841
KH
329 s = bfd_make_section (abfd,
330 (bed->default_use_rela_p
331 ? ".rela.bss" : ".rel.bss"));
3018b441
RH
332 if (s == NULL
333 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
45d6a902 334 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 335 return FALSE;
3018b441 336 }
252b5132
RH
337 }
338
b34976b6 339 return TRUE;
252b5132
RH
340}
341\f
252b5132
RH
342/* Record a new dynamic symbol. We record the dynamic symbols as we
343 read the input files, since we need to have a list of all of them
344 before we can determine the final sizes of the output sections.
345 Note that we may actually call this function even though we are not
346 going to output any dynamic symbols; in some cases we know that a
347 symbol should be in the dynamic symbol table, but only if there is
348 one. */
349
b34976b6 350bfd_boolean
c152c796
AM
351bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
352 struct elf_link_hash_entry *h)
252b5132
RH
353{
354 if (h->dynindx == -1)
355 {
2b0f7ef9 356 struct elf_strtab_hash *dynstr;
68b6ddd0 357 char *p;
252b5132 358 const char *name;
252b5132
RH
359 bfd_size_type indx;
360
7a13edea
NC
361 /* XXX: The ABI draft says the linker must turn hidden and
362 internal symbols into STB_LOCAL symbols when producing the
363 DSO. However, if ld.so honors st_other in the dynamic table,
364 this would not be necessary. */
365 switch (ELF_ST_VISIBILITY (h->other))
366 {
367 case STV_INTERNAL:
368 case STV_HIDDEN:
9d6eee78
L
369 if (h->root.type != bfd_link_hash_undefined
370 && h->root.type != bfd_link_hash_undefweak)
38048eb9
L
371 {
372 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
b34976b6 373 return TRUE;
7a13edea 374 }
0444bdd4 375
7a13edea
NC
376 default:
377 break;
378 }
379
252b5132
RH
380 h->dynindx = elf_hash_table (info)->dynsymcount;
381 ++elf_hash_table (info)->dynsymcount;
382
383 dynstr = elf_hash_table (info)->dynstr;
384 if (dynstr == NULL)
385 {
386 /* Create a strtab to hold the dynamic symbol names. */
2b0f7ef9 387 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
252b5132 388 if (dynstr == NULL)
b34976b6 389 return FALSE;
252b5132
RH
390 }
391
392 /* We don't put any version information in the dynamic string
aad5d350 393 table. */
252b5132
RH
394 name = h->root.root.string;
395 p = strchr (name, ELF_VER_CHR);
68b6ddd0
AM
396 if (p != NULL)
397 /* We know that the p points into writable memory. In fact,
398 there are only a few symbols that have read-only names, being
399 those like _GLOBAL_OFFSET_TABLE_ that are created specially
400 by the backends. Most symbols will have names pointing into
401 an ELF string table read from a file, or to objalloc memory. */
402 *p = 0;
403
404 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
405
406 if (p != NULL)
407 *p = ELF_VER_CHR;
252b5132
RH
408
409 if (indx == (bfd_size_type) -1)
b34976b6 410 return FALSE;
252b5132
RH
411 h->dynstr_index = indx;
412 }
413
b34976b6 414 return TRUE;
252b5132 415}
45d6a902
AM
416\f
417/* Record an assignment to a symbol made by a linker script. We need
418 this in case some dynamic object refers to this symbol. */
419
420bfd_boolean
268b6b39
AM
421bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
422 struct bfd_link_info *info,
423 const char *name,
424 bfd_boolean provide)
45d6a902
AM
425{
426 struct elf_link_hash_entry *h;
427
0eddce27 428 if (!is_elf_hash_table (info->hash))
45d6a902
AM
429 return TRUE;
430
431 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE);
432 if (h == NULL)
433 return FALSE;
434
02bb6eae
AO
435 /* Since we're defining the symbol, don't let it seem to have not
436 been defined. record_dynamic_symbol and size_dynamic_sections
437 may depend on this. */
438 if (h->root.type == bfd_link_hash_undefweak
439 || h->root.type == bfd_link_hash_undefined)
440 h->root.type = bfd_link_hash_new;
441
45d6a902
AM
442 if (h->root.type == bfd_link_hash_new)
443 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
444
445 /* If this symbol is being provided by the linker script, and it is
446 currently defined by a dynamic object, but not by a regular
447 object, then mark it as undefined so that the generic linker will
448 force the correct value. */
449 if (provide
450 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
451 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
452 h->root.type = bfd_link_hash_undefined;
453
454 /* If this symbol is not being provided by the linker script, and it is
455 currently defined by a dynamic object, but not by a regular object,
456 then clear out any version information because the symbol will not be
457 associated with the dynamic object any more. */
458 if (!provide
459 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
460 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
461 h->verinfo.verdef = NULL;
462
463 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
464
465 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
466 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
467 || info->shared)
468 && h->dynindx == -1)
469 {
c152c796 470 if (! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
471 return FALSE;
472
473 /* If this is a weak defined symbol, and we know a corresponding
474 real symbol from the same dynamic object, make sure the real
475 symbol is also made into a dynamic symbol. */
476 if (h->weakdef != NULL
477 && h->weakdef->dynindx == -1)
478 {
c152c796 479 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
45d6a902
AM
480 return FALSE;
481 }
482 }
483
484 return TRUE;
485}
42751cf3 486
8c58d23b
AM
487/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
488 success, and 2 on a failure caused by attempting to record a symbol
489 in a discarded section, eg. a discarded link-once section symbol. */
490
491int
c152c796
AM
492bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
493 bfd *input_bfd,
494 long input_indx)
8c58d23b
AM
495{
496 bfd_size_type amt;
497 struct elf_link_local_dynamic_entry *entry;
498 struct elf_link_hash_table *eht;
499 struct elf_strtab_hash *dynstr;
500 unsigned long dynstr_index;
501 char *name;
502 Elf_External_Sym_Shndx eshndx;
503 char esym[sizeof (Elf64_External_Sym)];
504
0eddce27 505 if (! is_elf_hash_table (info->hash))
8c58d23b
AM
506 return 0;
507
508 /* See if the entry exists already. */
509 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
510 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
511 return 1;
512
513 amt = sizeof (*entry);
268b6b39 514 entry = bfd_alloc (input_bfd, amt);
8c58d23b
AM
515 if (entry == NULL)
516 return 0;
517
518 /* Go find the symbol, so that we can find it's name. */
519 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
268b6b39 520 1, input_indx, &entry->isym, esym, &eshndx))
8c58d23b
AM
521 {
522 bfd_release (input_bfd, entry);
523 return 0;
524 }
525
526 if (entry->isym.st_shndx != SHN_UNDEF
527 && (entry->isym.st_shndx < SHN_LORESERVE
528 || entry->isym.st_shndx > SHN_HIRESERVE))
529 {
530 asection *s;
531
532 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
533 if (s == NULL || bfd_is_abs_section (s->output_section))
534 {
535 /* We can still bfd_release here as nothing has done another
536 bfd_alloc. We can't do this later in this function. */
537 bfd_release (input_bfd, entry);
538 return 2;
539 }
540 }
541
542 name = (bfd_elf_string_from_elf_section
543 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
544 entry->isym.st_name));
545
546 dynstr = elf_hash_table (info)->dynstr;
547 if (dynstr == NULL)
548 {
549 /* Create a strtab to hold the dynamic symbol names. */
550 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
551 if (dynstr == NULL)
552 return 0;
553 }
554
b34976b6 555 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
8c58d23b
AM
556 if (dynstr_index == (unsigned long) -1)
557 return 0;
558 entry->isym.st_name = dynstr_index;
559
560 eht = elf_hash_table (info);
561
562 entry->next = eht->dynlocal;
563 eht->dynlocal = entry;
564 entry->input_bfd = input_bfd;
565 entry->input_indx = input_indx;
566 eht->dynsymcount++;
567
568 /* Whatever binding the symbol had before, it's now local. */
569 entry->isym.st_info
570 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
571
572 /* The dynindx will be set at the end of size_dynamic_sections. */
573
574 return 1;
575}
576
30b30c21 577/* Return the dynindex of a local dynamic symbol. */
42751cf3 578
30b30c21 579long
268b6b39
AM
580_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
581 bfd *input_bfd,
582 long input_indx)
30b30c21
RH
583{
584 struct elf_link_local_dynamic_entry *e;
585
586 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
587 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
588 return e->dynindx;
589 return -1;
590}
591
592/* This function is used to renumber the dynamic symbols, if some of
593 them are removed because they are marked as local. This is called
594 via elf_link_hash_traverse. */
595
b34976b6 596static bfd_boolean
268b6b39
AM
597elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
598 void *data)
42751cf3 599{
268b6b39 600 size_t *count = data;
30b30c21 601
e92d460e
AM
602 if (h->root.type == bfd_link_hash_warning)
603 h = (struct elf_link_hash_entry *) h->root.u.i.link;
604
42751cf3 605 if (h->dynindx != -1)
30b30c21
RH
606 h->dynindx = ++(*count);
607
b34976b6 608 return TRUE;
42751cf3 609}
30b30c21 610
aee6f5b4
AO
611/* Return true if the dynamic symbol for a given section should be
612 omitted when creating a shared library. */
613bfd_boolean
614_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
615 struct bfd_link_info *info,
616 asection *p)
617{
618 switch (elf_section_data (p)->this_hdr.sh_type)
619 {
620 case SHT_PROGBITS:
621 case SHT_NOBITS:
622 /* If sh_type is yet undecided, assume it could be
623 SHT_PROGBITS/SHT_NOBITS. */
624 case SHT_NULL:
625 if (strcmp (p->name, ".got") == 0
626 || strcmp (p->name, ".got.plt") == 0
627 || strcmp (p->name, ".plt") == 0)
628 {
629 asection *ip;
630 bfd *dynobj = elf_hash_table (info)->dynobj;
631
632 if (dynobj != NULL
633 && (ip = bfd_get_section_by_name (dynobj, p->name))
634 != NULL
635 && (ip->flags & SEC_LINKER_CREATED)
636 && ip->output_section == p)
637 return TRUE;
638 }
639 return FALSE;
640
641 /* There shouldn't be section relative relocations
642 against any other section. */
643 default:
644 return TRUE;
645 }
646}
647
062e2358 648/* Assign dynsym indices. In a shared library we generate a section
30b30c21
RH
649 symbol for each output section, which come first. Next come all of
650 the back-end allocated local dynamic syms, followed by the rest of
651 the global symbols. */
652
653unsigned long
268b6b39 654_bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
30b30c21
RH
655{
656 unsigned long dynsymcount = 0;
657
658 if (info->shared)
659 {
aee6f5b4 660 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
30b30c21
RH
661 asection *p;
662 for (p = output_bfd->sections; p ; p = p->next)
8c37241b 663 if ((p->flags & SEC_EXCLUDE) == 0
aee6f5b4
AO
664 && (p->flags & SEC_ALLOC) != 0
665 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
666 elf_section_data (p)->dynindx = ++dynsymcount;
30b30c21
RH
667 }
668
669 if (elf_hash_table (info)->dynlocal)
670 {
671 struct elf_link_local_dynamic_entry *p;
672 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
673 p->dynindx = ++dynsymcount;
674 }
675
676 elf_link_hash_traverse (elf_hash_table (info),
677 elf_link_renumber_hash_table_dynsyms,
678 &dynsymcount);
679
680 /* There is an unused NULL entry at the head of the table which
681 we must account for in our count. Unless there weren't any
682 symbols, which means we'll have no table at all. */
683 if (dynsymcount != 0)
684 ++dynsymcount;
685
686 return elf_hash_table (info)->dynsymcount = dynsymcount;
687}
252b5132 688
45d6a902
AM
689/* This function is called when we want to define a new symbol. It
690 handles the various cases which arise when we find a definition in
691 a dynamic object, or when there is already a definition in a
692 dynamic object. The new symbol is described by NAME, SYM, PSEC,
693 and PVALUE. We set SYM_HASH to the hash table entry. We set
694 OVERRIDE if the old symbol is overriding a new definition. We set
695 TYPE_CHANGE_OK if it is OK for the type to change. We set
696 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
697 change, we mean that we shouldn't warn if the type or size does
0f8a2703 698 change. */
45d6a902
AM
699
700bfd_boolean
268b6b39
AM
701_bfd_elf_merge_symbol (bfd *abfd,
702 struct bfd_link_info *info,
703 const char *name,
704 Elf_Internal_Sym *sym,
705 asection **psec,
706 bfd_vma *pvalue,
707 struct elf_link_hash_entry **sym_hash,
708 bfd_boolean *skip,
709 bfd_boolean *override,
710 bfd_boolean *type_change_ok,
0f8a2703 711 bfd_boolean *size_change_ok)
252b5132 712{
45d6a902
AM
713 asection *sec;
714 struct elf_link_hash_entry *h;
715 struct elf_link_hash_entry *flip;
716 int bind;
717 bfd *oldbfd;
718 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
79349b09 719 bfd_boolean newweak, oldweak;
45d6a902
AM
720
721 *skip = FALSE;
722 *override = FALSE;
723
724 sec = *psec;
725 bind = ELF_ST_BIND (sym->st_info);
726
727 if (! bfd_is_und_section (sec))
728 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
729 else
730 h = ((struct elf_link_hash_entry *)
731 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
732 if (h == NULL)
733 return FALSE;
734 *sym_hash = h;
252b5132 735
45d6a902
AM
736 /* This code is for coping with dynamic objects, and is only useful
737 if we are doing an ELF link. */
738 if (info->hash->creator != abfd->xvec)
739 return TRUE;
252b5132 740
45d6a902
AM
741 /* For merging, we only care about real symbols. */
742
743 while (h->root.type == bfd_link_hash_indirect
744 || h->root.type == bfd_link_hash_warning)
745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
746
747 /* If we just created the symbol, mark it as being an ELF symbol.
748 Other than that, there is nothing to do--there is no merge issue
749 with a newly defined symbol--so we just return. */
750
751 if (h->root.type == bfd_link_hash_new)
252b5132 752 {
45d6a902
AM
753 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
754 return TRUE;
755 }
252b5132 756
45d6a902 757 /* OLDBFD is a BFD associated with the existing symbol. */
252b5132 758
45d6a902
AM
759 switch (h->root.type)
760 {
761 default:
762 oldbfd = NULL;
763 break;
252b5132 764
45d6a902
AM
765 case bfd_link_hash_undefined:
766 case bfd_link_hash_undefweak:
767 oldbfd = h->root.u.undef.abfd;
768 break;
769
770 case bfd_link_hash_defined:
771 case bfd_link_hash_defweak:
772 oldbfd = h->root.u.def.section->owner;
773 break;
774
775 case bfd_link_hash_common:
776 oldbfd = h->root.u.c.p->section->owner;
777 break;
778 }
779
780 /* In cases involving weak versioned symbols, we may wind up trying
781 to merge a symbol with itself. Catch that here, to avoid the
782 confusion that results if we try to override a symbol with
783 itself. The additional tests catch cases like
784 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
785 dynamic object, which we do want to handle here. */
786 if (abfd == oldbfd
787 && ((abfd->flags & DYNAMIC) == 0
788 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
789 return TRUE;
790
791 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
792 respectively, is from a dynamic object. */
793
794 if ((abfd->flags & DYNAMIC) != 0)
795 newdyn = TRUE;
796 else
797 newdyn = FALSE;
798
799 if (oldbfd != NULL)
800 olddyn = (oldbfd->flags & DYNAMIC) != 0;
801 else
802 {
803 asection *hsec;
804
805 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
806 indices used by MIPS ELF. */
807 switch (h->root.type)
252b5132 808 {
45d6a902
AM
809 default:
810 hsec = NULL;
811 break;
252b5132 812
45d6a902
AM
813 case bfd_link_hash_defined:
814 case bfd_link_hash_defweak:
815 hsec = h->root.u.def.section;
816 break;
252b5132 817
45d6a902
AM
818 case bfd_link_hash_common:
819 hsec = h->root.u.c.p->section;
820 break;
252b5132 821 }
252b5132 822
45d6a902
AM
823 if (hsec == NULL)
824 olddyn = FALSE;
825 else
826 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
827 }
252b5132 828
45d6a902
AM
829 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
830 respectively, appear to be a definition rather than reference. */
831
832 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
833 newdef = FALSE;
834 else
835 newdef = TRUE;
836
837 if (h->root.type == bfd_link_hash_undefined
838 || h->root.type == bfd_link_hash_undefweak
839 || h->root.type == bfd_link_hash_common)
840 olddef = FALSE;
841 else
842 olddef = TRUE;
843
4cc11e76 844 /* We need to remember if a symbol has a definition in a dynamic
45d6a902
AM
845 object or is weak in all dynamic objects. Internal and hidden
846 visibility will make it unavailable to dynamic objects. */
847 if (newdyn && (h->elf_link_hash_flags & ELF_LINK_DYNAMIC_DEF) == 0)
848 {
849 if (!bfd_is_und_section (sec))
850 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_DEF;
851 else
252b5132 852 {
45d6a902
AM
853 /* Check if this symbol is weak in all dynamic objects. If it
854 is the first time we see it in a dynamic object, we mark
855 if it is weak. Otherwise, we clear it. */
856 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
79349b09 857 {
45d6a902
AM
858 if (bind == STB_WEAK)
859 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_WEAK;
252b5132 860 }
45d6a902
AM
861 else if (bind != STB_WEAK)
862 h->elf_link_hash_flags &= ~ELF_LINK_DYNAMIC_WEAK;
252b5132 863 }
45d6a902 864 }
252b5132 865
45d6a902
AM
866 /* If the old symbol has non-default visibility, we ignore the new
867 definition from a dynamic object. */
868 if (newdyn
9c7a29a3 869 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
870 && !bfd_is_und_section (sec))
871 {
872 *skip = TRUE;
873 /* Make sure this symbol is dynamic. */
874 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
875 /* A protected symbol has external availability. Make sure it is
876 recorded as dynamic.
877
878 FIXME: Should we check type and size for protected symbol? */
879 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
c152c796 880 return bfd_elf_link_record_dynamic_symbol (info, h);
45d6a902
AM
881 else
882 return TRUE;
883 }
884 else if (!newdyn
9c7a29a3 885 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
45d6a902
AM
886 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
887 {
888 /* If the new symbol with non-default visibility comes from a
889 relocatable file and the old definition comes from a dynamic
890 object, we remove the old definition. */
891 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
892 h = *sym_hash;
1de1a317
L
893
894 if ((h->root.und_next || info->hash->undefs_tail == &h->root)
895 && bfd_is_und_section (sec))
896 {
897 /* If the new symbol is undefined and the old symbol was
898 also undefined before, we need to make sure
899 _bfd_generic_link_add_one_symbol doesn't mess
900 up the linker hash table undefs list. Since the old
901 definition came from a dynamic object, it is still on the
902 undefs list. */
903 h->root.type = bfd_link_hash_undefined;
904 /* FIXME: What if the new symbol is weak undefined? */
905 h->root.u.undef.abfd = abfd;
906 }
907 else
908 {
909 h->root.type = bfd_link_hash_new;
910 h->root.u.undef.abfd = NULL;
911 }
912
45d6a902 913 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
252b5132 914 {
45d6a902 915 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
22d5e339
L
916 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_DYNAMIC
917 | ELF_LINK_DYNAMIC_DEF);
45d6a902
AM
918 }
919 /* FIXME: Should we check type and size for protected symbol? */
920 h->size = 0;
921 h->type = 0;
922 return TRUE;
923 }
14a793b2 924
79349b09
AM
925 /* Differentiate strong and weak symbols. */
926 newweak = bind == STB_WEAK;
927 oldweak = (h->root.type == bfd_link_hash_defweak
928 || h->root.type == bfd_link_hash_undefweak);
14a793b2 929
15b43f48
AM
930 /* If a new weak symbol definition comes from a regular file and the
931 old symbol comes from a dynamic library, we treat the new one as
932 strong. Similarly, an old weak symbol definition from a regular
933 file is treated as strong when the new symbol comes from a dynamic
934 library. Further, an old weak symbol from a dynamic library is
935 treated as strong if the new symbol is from a dynamic library.
936 This reflects the way glibc's ld.so works.
937
938 Do this before setting *type_change_ok or *size_change_ok so that
939 we warn properly when dynamic library symbols are overridden. */
940
941 if (newdef && !newdyn && olddyn)
0f8a2703 942 newweak = FALSE;
15b43f48 943 if (olddef && newdyn)
0f8a2703
AM
944 oldweak = FALSE;
945
79349b09
AM
946 /* It's OK to change the type if either the existing symbol or the
947 new symbol is weak. A type change is also OK if the old symbol
948 is undefined and the new symbol is defined. */
252b5132 949
79349b09
AM
950 if (oldweak
951 || newweak
952 || (newdef
953 && h->root.type == bfd_link_hash_undefined))
954 *type_change_ok = TRUE;
955
956 /* It's OK to change the size if either the existing symbol or the
957 new symbol is weak, or if the old symbol is undefined. */
958
959 if (*type_change_ok
960 || h->root.type == bfd_link_hash_undefined)
961 *size_change_ok = TRUE;
45d6a902 962
45d6a902
AM
963 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
964 symbol, respectively, appears to be a common symbol in a dynamic
965 object. If a symbol appears in an uninitialized section, and is
966 not weak, and is not a function, then it may be a common symbol
967 which was resolved when the dynamic object was created. We want
968 to treat such symbols specially, because they raise special
969 considerations when setting the symbol size: if the symbol
970 appears as a common symbol in a regular object, and the size in
971 the regular object is larger, we must make sure that we use the
972 larger size. This problematic case can always be avoided in C,
973 but it must be handled correctly when using Fortran shared
974 libraries.
975
976 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
977 likewise for OLDDYNCOMMON and OLDDEF.
978
979 Note that this test is just a heuristic, and that it is quite
980 possible to have an uninitialized symbol in a shared object which
981 is really a definition, rather than a common symbol. This could
982 lead to some minor confusion when the symbol really is a common
983 symbol in some regular object. However, I think it will be
984 harmless. */
985
986 if (newdyn
987 && newdef
79349b09 988 && !newweak
45d6a902
AM
989 && (sec->flags & SEC_ALLOC) != 0
990 && (sec->flags & SEC_LOAD) == 0
991 && sym->st_size > 0
45d6a902
AM
992 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
993 newdyncommon = TRUE;
994 else
995 newdyncommon = FALSE;
996
997 if (olddyn
998 && olddef
999 && h->root.type == bfd_link_hash_defined
1000 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1001 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1002 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1003 && h->size > 0
1004 && h->type != STT_FUNC)
1005 olddyncommon = TRUE;
1006 else
1007 olddyncommon = FALSE;
1008
45d6a902
AM
1009 /* If both the old and the new symbols look like common symbols in a
1010 dynamic object, set the size of the symbol to the larger of the
1011 two. */
1012
1013 if (olddyncommon
1014 && newdyncommon
1015 && sym->st_size != h->size)
1016 {
1017 /* Since we think we have two common symbols, issue a multiple
1018 common warning if desired. Note that we only warn if the
1019 size is different. If the size is the same, we simply let
1020 the old symbol override the new one as normally happens with
1021 symbols defined in dynamic objects. */
1022
1023 if (! ((*info->callbacks->multiple_common)
1024 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1025 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1026 return FALSE;
252b5132 1027
45d6a902
AM
1028 if (sym->st_size > h->size)
1029 h->size = sym->st_size;
252b5132 1030
45d6a902 1031 *size_change_ok = TRUE;
252b5132
RH
1032 }
1033
45d6a902
AM
1034 /* If we are looking at a dynamic object, and we have found a
1035 definition, we need to see if the symbol was already defined by
1036 some other object. If so, we want to use the existing
1037 definition, and we do not want to report a multiple symbol
1038 definition error; we do this by clobbering *PSEC to be
1039 bfd_und_section_ptr.
1040
1041 We treat a common symbol as a definition if the symbol in the
1042 shared library is a function, since common symbols always
1043 represent variables; this can cause confusion in principle, but
1044 any such confusion would seem to indicate an erroneous program or
1045 shared library. We also permit a common symbol in a regular
79349b09 1046 object to override a weak symbol in a shared object. */
45d6a902
AM
1047
1048 if (newdyn
1049 && newdef
1050 && (olddef
1051 || (h->root.type == bfd_link_hash_common
79349b09 1052 && (newweak
0f8a2703 1053 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
45d6a902
AM
1054 {
1055 *override = TRUE;
1056 newdef = FALSE;
1057 newdyncommon = FALSE;
252b5132 1058
45d6a902
AM
1059 *psec = sec = bfd_und_section_ptr;
1060 *size_change_ok = TRUE;
252b5132 1061
45d6a902
AM
1062 /* If we get here when the old symbol is a common symbol, then
1063 we are explicitly letting it override a weak symbol or
1064 function in a dynamic object, and we don't want to warn about
1065 a type change. If the old symbol is a defined symbol, a type
1066 change warning may still be appropriate. */
252b5132 1067
45d6a902
AM
1068 if (h->root.type == bfd_link_hash_common)
1069 *type_change_ok = TRUE;
1070 }
1071
1072 /* Handle the special case of an old common symbol merging with a
1073 new symbol which looks like a common symbol in a shared object.
1074 We change *PSEC and *PVALUE to make the new symbol look like a
1075 common symbol, and let _bfd_generic_link_add_one_symbol will do
1076 the right thing. */
1077
1078 if (newdyncommon
1079 && h->root.type == bfd_link_hash_common)
1080 {
1081 *override = TRUE;
1082 newdef = FALSE;
1083 newdyncommon = FALSE;
1084 *pvalue = sym->st_size;
1085 *psec = sec = bfd_com_section_ptr;
1086 *size_change_ok = TRUE;
1087 }
1088
1089 /* If the old symbol is from a dynamic object, and the new symbol is
1090 a definition which is not from a dynamic object, then the new
1091 symbol overrides the old symbol. Symbols from regular files
1092 always take precedence over symbols from dynamic objects, even if
1093 they are defined after the dynamic object in the link.
1094
1095 As above, we again permit a common symbol in a regular object to
1096 override a definition in a shared object if the shared object
0f8a2703 1097 symbol is a function or is weak. */
45d6a902
AM
1098
1099 flip = NULL;
1100 if (! newdyn
1101 && (newdef
1102 || (bfd_is_com_section (sec)
79349b09
AM
1103 && (oldweak
1104 || h->type == STT_FUNC)))
45d6a902
AM
1105 && olddyn
1106 && olddef
0f8a2703 1107 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
45d6a902
AM
1108 {
1109 /* Change the hash table entry to undefined, and let
1110 _bfd_generic_link_add_one_symbol do the right thing with the
1111 new definition. */
1112
1113 h->root.type = bfd_link_hash_undefined;
1114 h->root.u.undef.abfd = h->root.u.def.section->owner;
1115 *size_change_ok = TRUE;
1116
1117 olddef = FALSE;
1118 olddyncommon = FALSE;
1119
1120 /* We again permit a type change when a common symbol may be
1121 overriding a function. */
1122
1123 if (bfd_is_com_section (sec))
1124 *type_change_ok = TRUE;
1125
1126 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1127 flip = *sym_hash;
1128 else
1129 /* This union may have been set to be non-NULL when this symbol
1130 was seen in a dynamic object. We must force the union to be
1131 NULL, so that it is correct for a regular symbol. */
1132 h->verinfo.vertree = NULL;
1133 }
1134
1135 /* Handle the special case of a new common symbol merging with an
1136 old symbol that looks like it might be a common symbol defined in
1137 a shared object. Note that we have already handled the case in
1138 which a new common symbol should simply override the definition
1139 in the shared library. */
1140
1141 if (! newdyn
1142 && bfd_is_com_section (sec)
1143 && olddyncommon)
1144 {
1145 /* It would be best if we could set the hash table entry to a
1146 common symbol, but we don't know what to use for the section
1147 or the alignment. */
1148 if (! ((*info->callbacks->multiple_common)
1149 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1150 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1151 return FALSE;
1152
4cc11e76 1153 /* If the presumed common symbol in the dynamic object is
45d6a902
AM
1154 larger, pretend that the new symbol has its size. */
1155
1156 if (h->size > *pvalue)
1157 *pvalue = h->size;
1158
1159 /* FIXME: We no longer know the alignment required by the symbol
1160 in the dynamic object, so we just wind up using the one from
1161 the regular object. */
1162
1163 olddef = FALSE;
1164 olddyncommon = FALSE;
1165
1166 h->root.type = bfd_link_hash_undefined;
1167 h->root.u.undef.abfd = h->root.u.def.section->owner;
1168
1169 *size_change_ok = TRUE;
1170 *type_change_ok = TRUE;
1171
1172 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1173 flip = *sym_hash;
1174 else
1175 h->verinfo.vertree = NULL;
1176 }
1177
1178 if (flip != NULL)
1179 {
1180 /* Handle the case where we had a versioned symbol in a dynamic
1181 library and now find a definition in a normal object. In this
1182 case, we make the versioned symbol point to the normal one. */
9c5bfbb7 1183 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
1184 flip->root.type = h->root.type;
1185 h->root.type = bfd_link_hash_indirect;
1186 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1187 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1188 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1189 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1190 {
1191 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
1192 flip->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1193 }
1194 }
1195
45d6a902
AM
1196 return TRUE;
1197}
1198
1199/* This function is called to create an indirect symbol from the
1200 default for the symbol with the default version if needed. The
1201 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
0f8a2703 1202 set DYNSYM if the new indirect symbol is dynamic. */
45d6a902
AM
1203
1204bfd_boolean
268b6b39
AM
1205_bfd_elf_add_default_symbol (bfd *abfd,
1206 struct bfd_link_info *info,
1207 struct elf_link_hash_entry *h,
1208 const char *name,
1209 Elf_Internal_Sym *sym,
1210 asection **psec,
1211 bfd_vma *value,
1212 bfd_boolean *dynsym,
0f8a2703 1213 bfd_boolean override)
45d6a902
AM
1214{
1215 bfd_boolean type_change_ok;
1216 bfd_boolean size_change_ok;
1217 bfd_boolean skip;
1218 char *shortname;
1219 struct elf_link_hash_entry *hi;
1220 struct bfd_link_hash_entry *bh;
9c5bfbb7 1221 const struct elf_backend_data *bed;
45d6a902
AM
1222 bfd_boolean collect;
1223 bfd_boolean dynamic;
1224 char *p;
1225 size_t len, shortlen;
1226 asection *sec;
1227
1228 /* If this symbol has a version, and it is the default version, we
1229 create an indirect symbol from the default name to the fully
1230 decorated name. This will cause external references which do not
1231 specify a version to be bound to this version of the symbol. */
1232 p = strchr (name, ELF_VER_CHR);
1233 if (p == NULL || p[1] != ELF_VER_CHR)
1234 return TRUE;
1235
1236 if (override)
1237 {
4cc11e76 1238 /* We are overridden by an old definition. We need to check if we
45d6a902
AM
1239 need to create the indirect symbol from the default name. */
1240 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1241 FALSE, FALSE);
1242 BFD_ASSERT (hi != NULL);
1243 if (hi == h)
1244 return TRUE;
1245 while (hi->root.type == bfd_link_hash_indirect
1246 || hi->root.type == bfd_link_hash_warning)
1247 {
1248 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1249 if (hi == h)
1250 return TRUE;
1251 }
1252 }
1253
1254 bed = get_elf_backend_data (abfd);
1255 collect = bed->collect;
1256 dynamic = (abfd->flags & DYNAMIC) != 0;
1257
1258 shortlen = p - name;
1259 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1260 if (shortname == NULL)
1261 return FALSE;
1262 memcpy (shortname, name, shortlen);
1263 shortname[shortlen] = '\0';
1264
1265 /* We are going to create a new symbol. Merge it with any existing
1266 symbol with this name. For the purposes of the merge, act as
1267 though we were defining the symbol we just defined, although we
1268 actually going to define an indirect symbol. */
1269 type_change_ok = FALSE;
1270 size_change_ok = FALSE;
1271 sec = *psec;
1272 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1273 &hi, &skip, &override, &type_change_ok,
0f8a2703 1274 &size_change_ok))
45d6a902
AM
1275 return FALSE;
1276
1277 if (skip)
1278 goto nondefault;
1279
1280 if (! override)
1281 {
1282 bh = &hi->root;
1283 if (! (_bfd_generic_link_add_one_symbol
1284 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
268b6b39 1285 0, name, FALSE, collect, &bh)))
45d6a902
AM
1286 return FALSE;
1287 hi = (struct elf_link_hash_entry *) bh;
1288 }
1289 else
1290 {
1291 /* In this case the symbol named SHORTNAME is overriding the
1292 indirect symbol we want to add. We were planning on making
1293 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1294 is the name without a version. NAME is the fully versioned
1295 name, and it is the default version.
1296
1297 Overriding means that we already saw a definition for the
1298 symbol SHORTNAME in a regular object, and it is overriding
1299 the symbol defined in the dynamic object.
1300
1301 When this happens, we actually want to change NAME, the
1302 symbol we just added, to refer to SHORTNAME. This will cause
1303 references to NAME in the shared object to become references
1304 to SHORTNAME in the regular object. This is what we expect
1305 when we override a function in a shared object: that the
1306 references in the shared object will be mapped to the
1307 definition in the regular object. */
1308
1309 while (hi->root.type == bfd_link_hash_indirect
1310 || hi->root.type == bfd_link_hash_warning)
1311 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1312
1313 h->root.type = bfd_link_hash_indirect;
1314 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1315 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1316 {
1317 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1318 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1319 if (hi->elf_link_hash_flags
1320 & (ELF_LINK_HASH_REF_REGULAR
1321 | ELF_LINK_HASH_DEF_REGULAR))
1322 {
c152c796 1323 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
45d6a902
AM
1324 return FALSE;
1325 }
1326 }
1327
1328 /* Now set HI to H, so that the following code will set the
1329 other fields correctly. */
1330 hi = h;
1331 }
1332
1333 /* If there is a duplicate definition somewhere, then HI may not
1334 point to an indirect symbol. We will have reported an error to
1335 the user in that case. */
1336
1337 if (hi->root.type == bfd_link_hash_indirect)
1338 {
1339 struct elf_link_hash_entry *ht;
1340
45d6a902
AM
1341 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1342 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1343
1344 /* See if the new flags lead us to realize that the symbol must
1345 be dynamic. */
1346 if (! *dynsym)
1347 {
1348 if (! dynamic)
1349 {
1350 if (info->shared
1351 || ((hi->elf_link_hash_flags
1352 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1353 *dynsym = TRUE;
1354 }
1355 else
1356 {
1357 if ((hi->elf_link_hash_flags
1358 & ELF_LINK_HASH_REF_REGULAR) != 0)
1359 *dynsym = TRUE;
1360 }
1361 }
1362 }
1363
1364 /* We also need to define an indirection from the nondefault version
1365 of the symbol. */
1366
1367nondefault:
1368 len = strlen (name);
1369 shortname = bfd_hash_allocate (&info->hash->table, len);
1370 if (shortname == NULL)
1371 return FALSE;
1372 memcpy (shortname, name, shortlen);
1373 memcpy (shortname + shortlen, p + 1, len - shortlen);
1374
1375 /* Once again, merge with any existing symbol. */
1376 type_change_ok = FALSE;
1377 size_change_ok = FALSE;
1378 sec = *psec;
1379 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1380 &hi, &skip, &override, &type_change_ok,
0f8a2703 1381 &size_change_ok))
45d6a902
AM
1382 return FALSE;
1383
1384 if (skip)
1385 return TRUE;
1386
1387 if (override)
1388 {
1389 /* Here SHORTNAME is a versioned name, so we don't expect to see
1390 the type of override we do in the case above unless it is
4cc11e76 1391 overridden by a versioned definition. */
45d6a902
AM
1392 if (hi->root.type != bfd_link_hash_defined
1393 && hi->root.type != bfd_link_hash_defweak)
1394 (*_bfd_error_handler)
1395 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
1396 bfd_archive_filename (abfd), shortname);
1397 }
1398 else
1399 {
1400 bh = &hi->root;
1401 if (! (_bfd_generic_link_add_one_symbol
1402 (info, abfd, shortname, BSF_INDIRECT,
268b6b39 1403 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
45d6a902
AM
1404 return FALSE;
1405 hi = (struct elf_link_hash_entry *) bh;
1406
1407 /* If there is a duplicate definition somewhere, then HI may not
1408 point to an indirect symbol. We will have reported an error
1409 to the user in that case. */
1410
1411 if (hi->root.type == bfd_link_hash_indirect)
1412 {
45d6a902
AM
1413 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1414
1415 /* See if the new flags lead us to realize that the symbol
1416 must be dynamic. */
1417 if (! *dynsym)
1418 {
1419 if (! dynamic)
1420 {
1421 if (info->shared
1422 || ((hi->elf_link_hash_flags
1423 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1424 *dynsym = TRUE;
1425 }
1426 else
1427 {
1428 if ((hi->elf_link_hash_flags
1429 & ELF_LINK_HASH_REF_REGULAR) != 0)
1430 *dynsym = TRUE;
1431 }
1432 }
1433 }
1434 }
1435
1436 return TRUE;
1437}
1438\f
1439/* This routine is used to export all defined symbols into the dynamic
1440 symbol table. It is called via elf_link_hash_traverse. */
1441
1442bfd_boolean
268b6b39 1443_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 1444{
268b6b39 1445 struct elf_info_failed *eif = data;
45d6a902
AM
1446
1447 /* Ignore indirect symbols. These are added by the versioning code. */
1448 if (h->root.type == bfd_link_hash_indirect)
1449 return TRUE;
1450
1451 if (h->root.type == bfd_link_hash_warning)
1452 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1453
1454 if (h->dynindx == -1
1455 && (h->elf_link_hash_flags
1456 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
1457 {
1458 struct bfd_elf_version_tree *t;
1459 struct bfd_elf_version_expr *d;
1460
1461 for (t = eif->verdefs; t != NULL; t = t->next)
1462 {
108ba305 1463 if (t->globals.list != NULL)
45d6a902 1464 {
108ba305
JJ
1465 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1466 if (d != NULL)
1467 goto doit;
45d6a902
AM
1468 }
1469
108ba305 1470 if (t->locals.list != NULL)
45d6a902 1471 {
108ba305
JJ
1472 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1473 if (d != NULL)
1474 return TRUE;
45d6a902
AM
1475 }
1476 }
1477
1478 if (!eif->verdefs)
1479 {
1480 doit:
c152c796 1481 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
1482 {
1483 eif->failed = TRUE;
1484 return FALSE;
1485 }
1486 }
1487 }
1488
1489 return TRUE;
1490}
1491\f
1492/* Look through the symbols which are defined in other shared
1493 libraries and referenced here. Update the list of version
1494 dependencies. This will be put into the .gnu.version_r section.
1495 This function is called via elf_link_hash_traverse. */
1496
1497bfd_boolean
268b6b39
AM
1498_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1499 void *data)
45d6a902 1500{
268b6b39 1501 struct elf_find_verdep_info *rinfo = data;
45d6a902
AM
1502 Elf_Internal_Verneed *t;
1503 Elf_Internal_Vernaux *a;
1504 bfd_size_type amt;
1505
1506 if (h->root.type == bfd_link_hash_warning)
1507 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1508
1509 /* We only care about symbols defined in shared objects with version
1510 information. */
1511 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1512 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1513 || h->dynindx == -1
1514 || h->verinfo.verdef == NULL)
1515 return TRUE;
1516
1517 /* See if we already know about this version. */
1518 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1519 {
1520 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1521 continue;
1522
1523 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1524 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1525 return TRUE;
1526
1527 break;
1528 }
1529
1530 /* This is a new version. Add it to tree we are building. */
1531
1532 if (t == NULL)
1533 {
1534 amt = sizeof *t;
268b6b39 1535 t = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1536 if (t == NULL)
1537 {
1538 rinfo->failed = TRUE;
1539 return FALSE;
1540 }
1541
1542 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1543 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1544 elf_tdata (rinfo->output_bfd)->verref = t;
1545 }
1546
1547 amt = sizeof *a;
268b6b39 1548 a = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1549
1550 /* Note that we are copying a string pointer here, and testing it
1551 above. If bfd_elf_string_from_elf_section is ever changed to
1552 discard the string data when low in memory, this will have to be
1553 fixed. */
1554 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1555
1556 a->vna_flags = h->verinfo.verdef->vd_flags;
1557 a->vna_nextptr = t->vn_auxptr;
1558
1559 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1560 ++rinfo->vers;
1561
1562 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1563
1564 t->vn_auxptr = a;
1565
1566 return TRUE;
1567}
1568
1569/* Figure out appropriate versions for all the symbols. We may not
1570 have the version number script until we have read all of the input
1571 files, so until that point we don't know which symbols should be
1572 local. This function is called via elf_link_hash_traverse. */
1573
1574bfd_boolean
268b6b39 1575_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
1576{
1577 struct elf_assign_sym_version_info *sinfo;
1578 struct bfd_link_info *info;
9c5bfbb7 1579 const struct elf_backend_data *bed;
45d6a902
AM
1580 struct elf_info_failed eif;
1581 char *p;
1582 bfd_size_type amt;
1583
268b6b39 1584 sinfo = data;
45d6a902
AM
1585 info = sinfo->info;
1586
1587 if (h->root.type == bfd_link_hash_warning)
1588 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1589
1590 /* Fix the symbol flags. */
1591 eif.failed = FALSE;
1592 eif.info = info;
1593 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1594 {
1595 if (eif.failed)
1596 sinfo->failed = TRUE;
1597 return FALSE;
1598 }
1599
1600 /* We only need version numbers for symbols defined in regular
1601 objects. */
1602 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1603 return TRUE;
1604
1605 bed = get_elf_backend_data (sinfo->output_bfd);
1606 p = strchr (h->root.root.string, ELF_VER_CHR);
1607 if (p != NULL && h->verinfo.vertree == NULL)
1608 {
1609 struct bfd_elf_version_tree *t;
1610 bfd_boolean hidden;
1611
1612 hidden = TRUE;
1613
1614 /* There are two consecutive ELF_VER_CHR characters if this is
1615 not a hidden symbol. */
1616 ++p;
1617 if (*p == ELF_VER_CHR)
1618 {
1619 hidden = FALSE;
1620 ++p;
1621 }
1622
1623 /* If there is no version string, we can just return out. */
1624 if (*p == '\0')
1625 {
1626 if (hidden)
1627 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1628 return TRUE;
1629 }
1630
1631 /* Look for the version. If we find it, it is no longer weak. */
1632 for (t = sinfo->verdefs; t != NULL; t = t->next)
1633 {
1634 if (strcmp (t->name, p) == 0)
1635 {
1636 size_t len;
1637 char *alc;
1638 struct bfd_elf_version_expr *d;
1639
1640 len = p - h->root.root.string;
268b6b39 1641 alc = bfd_malloc (len);
45d6a902
AM
1642 if (alc == NULL)
1643 return FALSE;
1644 memcpy (alc, h->root.root.string, len - 1);
1645 alc[len - 1] = '\0';
1646 if (alc[len - 2] == ELF_VER_CHR)
1647 alc[len - 2] = '\0';
1648
1649 h->verinfo.vertree = t;
1650 t->used = TRUE;
1651 d = NULL;
1652
108ba305
JJ
1653 if (t->globals.list != NULL)
1654 d = (*t->match) (&t->globals, NULL, alc);
45d6a902
AM
1655
1656 /* See if there is anything to force this symbol to
1657 local scope. */
108ba305 1658 if (d == NULL && t->locals.list != NULL)
45d6a902 1659 {
108ba305
JJ
1660 d = (*t->match) (&t->locals, NULL, alc);
1661 if (d != NULL
1662 && h->dynindx != -1
1663 && info->shared
1664 && ! info->export_dynamic)
1665 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
1666 }
1667
1668 free (alc);
1669 break;
1670 }
1671 }
1672
1673 /* If we are building an application, we need to create a
1674 version node for this version. */
36af4a4e 1675 if (t == NULL && info->executable)
45d6a902
AM
1676 {
1677 struct bfd_elf_version_tree **pp;
1678 int version_index;
1679
1680 /* If we aren't going to export this symbol, we don't need
1681 to worry about it. */
1682 if (h->dynindx == -1)
1683 return TRUE;
1684
1685 amt = sizeof *t;
108ba305 1686 t = bfd_zalloc (sinfo->output_bfd, amt);
45d6a902
AM
1687 if (t == NULL)
1688 {
1689 sinfo->failed = TRUE;
1690 return FALSE;
1691 }
1692
45d6a902 1693 t->name = p;
45d6a902
AM
1694 t->name_indx = (unsigned int) -1;
1695 t->used = TRUE;
1696
1697 version_index = 1;
1698 /* Don't count anonymous version tag. */
1699 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1700 version_index = 0;
1701 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1702 ++version_index;
1703 t->vernum = version_index;
1704
1705 *pp = t;
1706
1707 h->verinfo.vertree = t;
1708 }
1709 else if (t == NULL)
1710 {
1711 /* We could not find the version for a symbol when
1712 generating a shared archive. Return an error. */
1713 (*_bfd_error_handler)
1714 (_("%s: undefined versioned symbol name %s"),
1715 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
1716 bfd_set_error (bfd_error_bad_value);
1717 sinfo->failed = TRUE;
1718 return FALSE;
1719 }
1720
1721 if (hidden)
1722 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1723 }
1724
1725 /* If we don't have a version for this symbol, see if we can find
1726 something. */
1727 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1728 {
1729 struct bfd_elf_version_tree *t;
1730 struct bfd_elf_version_tree *local_ver;
1731 struct bfd_elf_version_expr *d;
1732
1733 /* See if can find what version this symbol is in. If the
1734 symbol is supposed to be local, then don't actually register
1735 it. */
1736 local_ver = NULL;
1737 for (t = sinfo->verdefs; t != NULL; t = t->next)
1738 {
108ba305 1739 if (t->globals.list != NULL)
45d6a902
AM
1740 {
1741 bfd_boolean matched;
1742
1743 matched = FALSE;
108ba305
JJ
1744 d = NULL;
1745 while ((d = (*t->match) (&t->globals, d,
1746 h->root.root.string)) != NULL)
1747 if (d->symver)
1748 matched = TRUE;
1749 else
1750 {
1751 /* There is a version without definition. Make
1752 the symbol the default definition for this
1753 version. */
1754 h->verinfo.vertree = t;
1755 local_ver = NULL;
1756 d->script = 1;
1757 break;
1758 }
45d6a902
AM
1759 if (d != NULL)
1760 break;
1761 else if (matched)
1762 /* There is no undefined version for this symbol. Hide the
1763 default one. */
1764 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1765 }
1766
108ba305 1767 if (t->locals.list != NULL)
45d6a902 1768 {
108ba305
JJ
1769 d = NULL;
1770 while ((d = (*t->match) (&t->locals, d,
1771 h->root.root.string)) != NULL)
45d6a902 1772 {
108ba305 1773 local_ver = t;
45d6a902 1774 /* If the match is "*", keep looking for a more
108ba305
JJ
1775 explicit, perhaps even global, match.
1776 XXX: Shouldn't this be !d->wildcard instead? */
1777 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1778 break;
45d6a902
AM
1779 }
1780
1781 if (d != NULL)
1782 break;
1783 }
1784 }
1785
1786 if (local_ver != NULL)
1787 {
1788 h->verinfo.vertree = local_ver;
1789 if (h->dynindx != -1
1790 && info->shared
1791 && ! info->export_dynamic)
1792 {
1793 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1794 }
1795 }
1796 }
1797
1798 return TRUE;
1799}
1800\f
45d6a902
AM
1801/* Read and swap the relocs from the section indicated by SHDR. This
1802 may be either a REL or a RELA section. The relocations are
1803 translated into RELA relocations and stored in INTERNAL_RELOCS,
1804 which should have already been allocated to contain enough space.
1805 The EXTERNAL_RELOCS are a buffer where the external form of the
1806 relocations should be stored.
1807
1808 Returns FALSE if something goes wrong. */
1809
1810static bfd_boolean
268b6b39 1811elf_link_read_relocs_from_section (bfd *abfd,
243ef1e0 1812 asection *sec,
268b6b39
AM
1813 Elf_Internal_Shdr *shdr,
1814 void *external_relocs,
1815 Elf_Internal_Rela *internal_relocs)
45d6a902 1816{
9c5bfbb7 1817 const struct elf_backend_data *bed;
268b6b39 1818 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
45d6a902
AM
1819 const bfd_byte *erela;
1820 const bfd_byte *erelaend;
1821 Elf_Internal_Rela *irela;
243ef1e0
L
1822 Elf_Internal_Shdr *symtab_hdr;
1823 size_t nsyms;
45d6a902 1824
45d6a902
AM
1825 /* Position ourselves at the start of the section. */
1826 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1827 return FALSE;
1828
1829 /* Read the relocations. */
1830 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1831 return FALSE;
1832
243ef1e0
L
1833 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1834 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1835
45d6a902
AM
1836 bed = get_elf_backend_data (abfd);
1837
1838 /* Convert the external relocations to the internal format. */
1839 if (shdr->sh_entsize == bed->s->sizeof_rel)
1840 swap_in = bed->s->swap_reloc_in;
1841 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1842 swap_in = bed->s->swap_reloca_in;
1843 else
1844 {
1845 bfd_set_error (bfd_error_wrong_format);
1846 return FALSE;
1847 }
1848
1849 erela = external_relocs;
51992aec 1850 erelaend = erela + shdr->sh_size;
45d6a902
AM
1851 irela = internal_relocs;
1852 while (erela < erelaend)
1853 {
243ef1e0
L
1854 bfd_vma r_symndx;
1855
45d6a902 1856 (*swap_in) (abfd, erela, irela);
243ef1e0
L
1857 r_symndx = ELF32_R_SYM (irela->r_info);
1858 if (bed->s->arch_size == 64)
1859 r_symndx >>= 24;
1860 if ((size_t) r_symndx >= nsyms)
1861 {
b602c853 1862 char *sec_name = bfd_get_section_ident (sec);
243ef1e0
L
1863 (*_bfd_error_handler)
1864 (_("%s: bad reloc symbol index (0x%lx >= 0x%lx) for offset 0x%lx in section `%s'"),
1865 bfd_archive_filename (abfd), (unsigned long) r_symndx,
b602c853
L
1866 (unsigned long) nsyms, irela->r_offset,
1867 sec_name ? sec_name : sec->name);
1868 if (sec_name)
1869 free (sec_name);
243ef1e0
L
1870 bfd_set_error (bfd_error_bad_value);
1871 return FALSE;
1872 }
45d6a902
AM
1873 irela += bed->s->int_rels_per_ext_rel;
1874 erela += shdr->sh_entsize;
1875 }
1876
1877 return TRUE;
1878}
1879
1880/* Read and swap the relocs for a section O. They may have been
1881 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1882 not NULL, they are used as buffers to read into. They are known to
1883 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1884 the return value is allocated using either malloc or bfd_alloc,
1885 according to the KEEP_MEMORY argument. If O has two relocation
1886 sections (both REL and RELA relocations), then the REL_HDR
1887 relocations will appear first in INTERNAL_RELOCS, followed by the
1888 REL_HDR2 relocations. */
1889
1890Elf_Internal_Rela *
268b6b39
AM
1891_bfd_elf_link_read_relocs (bfd *abfd,
1892 asection *o,
1893 void *external_relocs,
1894 Elf_Internal_Rela *internal_relocs,
1895 bfd_boolean keep_memory)
45d6a902
AM
1896{
1897 Elf_Internal_Shdr *rel_hdr;
268b6b39 1898 void *alloc1 = NULL;
45d6a902 1899 Elf_Internal_Rela *alloc2 = NULL;
9c5bfbb7 1900 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
1901
1902 if (elf_section_data (o)->relocs != NULL)
1903 return elf_section_data (o)->relocs;
1904
1905 if (o->reloc_count == 0)
1906 return NULL;
1907
1908 rel_hdr = &elf_section_data (o)->rel_hdr;
1909
1910 if (internal_relocs == NULL)
1911 {
1912 bfd_size_type size;
1913
1914 size = o->reloc_count;
1915 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
1916 if (keep_memory)
268b6b39 1917 internal_relocs = bfd_alloc (abfd, size);
45d6a902 1918 else
268b6b39 1919 internal_relocs = alloc2 = bfd_malloc (size);
45d6a902
AM
1920 if (internal_relocs == NULL)
1921 goto error_return;
1922 }
1923
1924 if (external_relocs == NULL)
1925 {
1926 bfd_size_type size = rel_hdr->sh_size;
1927
1928 if (elf_section_data (o)->rel_hdr2)
1929 size += elf_section_data (o)->rel_hdr2->sh_size;
268b6b39 1930 alloc1 = bfd_malloc (size);
45d6a902
AM
1931 if (alloc1 == NULL)
1932 goto error_return;
1933 external_relocs = alloc1;
1934 }
1935
243ef1e0 1936 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
45d6a902
AM
1937 external_relocs,
1938 internal_relocs))
1939 goto error_return;
51992aec
AM
1940 if (elf_section_data (o)->rel_hdr2
1941 && (!elf_link_read_relocs_from_section
1942 (abfd, o,
1943 elf_section_data (o)->rel_hdr2,
1944 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
1945 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
1946 * bed->s->int_rels_per_ext_rel))))
45d6a902
AM
1947 goto error_return;
1948
1949 /* Cache the results for next time, if we can. */
1950 if (keep_memory)
1951 elf_section_data (o)->relocs = internal_relocs;
1952
1953 if (alloc1 != NULL)
1954 free (alloc1);
1955
1956 /* Don't free alloc2, since if it was allocated we are passing it
1957 back (under the name of internal_relocs). */
1958
1959 return internal_relocs;
1960
1961 error_return:
1962 if (alloc1 != NULL)
1963 free (alloc1);
1964 if (alloc2 != NULL)
1965 free (alloc2);
1966 return NULL;
1967}
1968
1969/* Compute the size of, and allocate space for, REL_HDR which is the
1970 section header for a section containing relocations for O. */
1971
1972bfd_boolean
268b6b39
AM
1973_bfd_elf_link_size_reloc_section (bfd *abfd,
1974 Elf_Internal_Shdr *rel_hdr,
1975 asection *o)
45d6a902
AM
1976{
1977 bfd_size_type reloc_count;
1978 bfd_size_type num_rel_hashes;
1979
1980 /* Figure out how many relocations there will be. */
1981 if (rel_hdr == &elf_section_data (o)->rel_hdr)
1982 reloc_count = elf_section_data (o)->rel_count;
1983 else
1984 reloc_count = elf_section_data (o)->rel_count2;
1985
1986 num_rel_hashes = o->reloc_count;
1987 if (num_rel_hashes < reloc_count)
1988 num_rel_hashes = reloc_count;
1989
1990 /* That allows us to calculate the size of the section. */
1991 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
1992
1993 /* The contents field must last into write_object_contents, so we
1994 allocate it with bfd_alloc rather than malloc. Also since we
1995 cannot be sure that the contents will actually be filled in,
1996 we zero the allocated space. */
268b6b39 1997 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
45d6a902
AM
1998 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
1999 return FALSE;
2000
2001 /* We only allocate one set of hash entries, so we only do it the
2002 first time we are called. */
2003 if (elf_section_data (o)->rel_hashes == NULL
2004 && num_rel_hashes)
2005 {
2006 struct elf_link_hash_entry **p;
2007
268b6b39 2008 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
45d6a902
AM
2009 if (p == NULL)
2010 return FALSE;
2011
2012 elf_section_data (o)->rel_hashes = p;
2013 }
2014
2015 return TRUE;
2016}
2017
2018/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2019 originated from the section given by INPUT_REL_HDR) to the
2020 OUTPUT_BFD. */
2021
2022bfd_boolean
268b6b39
AM
2023_bfd_elf_link_output_relocs (bfd *output_bfd,
2024 asection *input_section,
2025 Elf_Internal_Shdr *input_rel_hdr,
2026 Elf_Internal_Rela *internal_relocs)
45d6a902
AM
2027{
2028 Elf_Internal_Rela *irela;
2029 Elf_Internal_Rela *irelaend;
2030 bfd_byte *erel;
2031 Elf_Internal_Shdr *output_rel_hdr;
2032 asection *output_section;
2033 unsigned int *rel_countp = NULL;
9c5bfbb7 2034 const struct elf_backend_data *bed;
268b6b39 2035 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
45d6a902
AM
2036
2037 output_section = input_section->output_section;
2038 output_rel_hdr = NULL;
2039
2040 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2041 == input_rel_hdr->sh_entsize)
2042 {
2043 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2044 rel_countp = &elf_section_data (output_section)->rel_count;
2045 }
2046 else if (elf_section_data (output_section)->rel_hdr2
2047 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2048 == input_rel_hdr->sh_entsize))
2049 {
2050 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2051 rel_countp = &elf_section_data (output_section)->rel_count2;
2052 }
2053 else
2054 {
b602c853 2055 char *sec_name = bfd_get_section_ident (input_section);
45d6a902
AM
2056 (*_bfd_error_handler)
2057 (_("%s: relocation size mismatch in %s section %s"),
2058 bfd_get_filename (output_bfd),
2059 bfd_archive_filename (input_section->owner),
b602c853
L
2060 sec_name ? sec_name : input_section->name);
2061 if (sec_name)
2062 free (sec_name);
45d6a902
AM
2063 bfd_set_error (bfd_error_wrong_object_format);
2064 return FALSE;
2065 }
2066
2067 bed = get_elf_backend_data (output_bfd);
2068 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2069 swap_out = bed->s->swap_reloc_out;
2070 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2071 swap_out = bed->s->swap_reloca_out;
2072 else
2073 abort ();
2074
2075 erel = output_rel_hdr->contents;
2076 erel += *rel_countp * input_rel_hdr->sh_entsize;
2077 irela = internal_relocs;
2078 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2079 * bed->s->int_rels_per_ext_rel);
2080 while (irela < irelaend)
2081 {
2082 (*swap_out) (output_bfd, irela, erel);
2083 irela += bed->s->int_rels_per_ext_rel;
2084 erel += input_rel_hdr->sh_entsize;
2085 }
2086
2087 /* Bump the counter, so that we know where to add the next set of
2088 relocations. */
2089 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2090
2091 return TRUE;
2092}
2093\f
2094/* Fix up the flags for a symbol. This handles various cases which
2095 can only be fixed after all the input files are seen. This is
2096 currently called by both adjust_dynamic_symbol and
2097 assign_sym_version, which is unnecessary but perhaps more robust in
2098 the face of future changes. */
2099
2100bfd_boolean
268b6b39
AM
2101_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2102 struct elf_info_failed *eif)
45d6a902
AM
2103{
2104 /* If this symbol was mentioned in a non-ELF file, try to set
2105 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2106 permit a non-ELF file to correctly refer to a symbol defined in
2107 an ELF dynamic object. */
2108 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
2109 {
2110 while (h->root.type == bfd_link_hash_indirect)
2111 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2112
2113 if (h->root.type != bfd_link_hash_defined
2114 && h->root.type != bfd_link_hash_defweak)
2115 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2116 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2117 else
2118 {
2119 if (h->root.u.def.section->owner != NULL
2120 && (bfd_get_flavour (h->root.u.def.section->owner)
2121 == bfd_target_elf_flavour))
2122 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2123 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2124 else
2125 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2126 }
2127
2128 if (h->dynindx == -1
2129 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2130 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
2131 {
c152c796 2132 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
2133 {
2134 eif->failed = TRUE;
2135 return FALSE;
2136 }
2137 }
2138 }
2139 else
2140 {
2141 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
2142 was first seen in a non-ELF file. Fortunately, if the symbol
2143 was first seen in an ELF file, we're probably OK unless the
2144 symbol was defined in a non-ELF file. Catch that case here.
2145 FIXME: We're still in trouble if the symbol was first seen in
2146 a dynamic object, and then later in a non-ELF regular object. */
2147 if ((h->root.type == bfd_link_hash_defined
2148 || h->root.type == bfd_link_hash_defweak)
2149 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2150 && (h->root.u.def.section->owner != NULL
2151 ? (bfd_get_flavour (h->root.u.def.section->owner)
2152 != bfd_target_elf_flavour)
2153 : (bfd_is_abs_section (h->root.u.def.section)
2154 && (h->elf_link_hash_flags
2155 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
2156 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2157 }
2158
2159 /* If this is a final link, and the symbol was defined as a common
2160 symbol in a regular object file, and there was no definition in
2161 any dynamic object, then the linker will have allocated space for
2162 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
2163 flag will not have been set. */
2164 if (h->root.type == bfd_link_hash_defined
2165 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2166 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
2167 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2168 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2169 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2170
2171 /* If -Bsymbolic was used (which means to bind references to global
2172 symbols to the definition within the shared object), and this
2173 symbol was defined in a regular object, then it actually doesn't
9c7a29a3
AM
2174 need a PLT entry. Likewise, if the symbol has non-default
2175 visibility. If the symbol has hidden or internal visibility, we
c1be741f 2176 will force it local. */
45d6a902
AM
2177 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
2178 && eif->info->shared
0eddce27 2179 && is_elf_hash_table (eif->info->hash)
45d6a902 2180 && (eif->info->symbolic
c1be741f 2181 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
45d6a902
AM
2182 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2183 {
9c5bfbb7 2184 const struct elf_backend_data *bed;
45d6a902
AM
2185 bfd_boolean force_local;
2186
2187 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2188
2189 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2190 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2191 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2192 }
2193
2194 /* If a weak undefined symbol has non-default visibility, we also
2195 hide it from the dynamic linker. */
9c7a29a3 2196 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
2197 && h->root.type == bfd_link_hash_undefweak)
2198 {
9c5bfbb7 2199 const struct elf_backend_data *bed;
45d6a902
AM
2200 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2201 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2202 }
2203
2204 /* If this is a weak defined symbol in a dynamic object, and we know
2205 the real definition in the dynamic object, copy interesting flags
2206 over to the real definition. */
2207 if (h->weakdef != NULL)
2208 {
2209 struct elf_link_hash_entry *weakdef;
2210
2211 weakdef = h->weakdef;
2212 if (h->root.type == bfd_link_hash_indirect)
2213 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2214
2215 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2216 || h->root.type == bfd_link_hash_defweak);
2217 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2218 || weakdef->root.type == bfd_link_hash_defweak);
2219 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
2220
2221 /* If the real definition is defined by a regular object file,
2222 don't do anything special. See the longer description in
2223 _bfd_elf_adjust_dynamic_symbol, below. */
2224 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2225 h->weakdef = NULL;
2226 else
2227 {
9c5bfbb7 2228 const struct elf_backend_data *bed;
45d6a902
AM
2229
2230 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2231 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2232 }
2233 }
2234
2235 return TRUE;
2236}
2237
2238/* Make the backend pick a good value for a dynamic symbol. This is
2239 called via elf_link_hash_traverse, and also calls itself
2240 recursively. */
2241
2242bfd_boolean
268b6b39 2243_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 2244{
268b6b39 2245 struct elf_info_failed *eif = data;
45d6a902 2246 bfd *dynobj;
9c5bfbb7 2247 const struct elf_backend_data *bed;
45d6a902 2248
0eddce27 2249 if (! is_elf_hash_table (eif->info->hash))
45d6a902
AM
2250 return FALSE;
2251
2252 if (h->root.type == bfd_link_hash_warning)
2253 {
2254 h->plt = elf_hash_table (eif->info)->init_offset;
2255 h->got = elf_hash_table (eif->info)->init_offset;
2256
2257 /* When warning symbols are created, they **replace** the "real"
2258 entry in the hash table, thus we never get to see the real
2259 symbol in a hash traversal. So look at it now. */
2260 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2261 }
2262
2263 /* Ignore indirect symbols. These are added by the versioning code. */
2264 if (h->root.type == bfd_link_hash_indirect)
2265 return TRUE;
2266
2267 /* Fix the symbol flags. */
2268 if (! _bfd_elf_fix_symbol_flags (h, eif))
2269 return FALSE;
2270
2271 /* If this symbol does not require a PLT entry, and it is not
2272 defined by a dynamic object, or is not referenced by a regular
2273 object, ignore it. We do have to handle a weak defined symbol,
2274 even if no regular object refers to it, if we decided to add it
2275 to the dynamic symbol table. FIXME: Do we normally need to worry
2276 about symbols which are defined by one dynamic object and
2277 referenced by another one? */
2278 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
2279 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2280 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2281 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
2282 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
2283 {
2284 h->plt = elf_hash_table (eif->info)->init_offset;
2285 return TRUE;
2286 }
2287
2288 /* If we've already adjusted this symbol, don't do it again. This
2289 can happen via a recursive call. */
2290 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
2291 return TRUE;
2292
2293 /* Don't look at this symbol again. Note that we must set this
2294 after checking the above conditions, because we may look at a
2295 symbol once, decide not to do anything, and then get called
2296 recursively later after REF_REGULAR is set below. */
2297 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
2298
2299 /* If this is a weak definition, and we know a real definition, and
2300 the real symbol is not itself defined by a regular object file,
2301 then get a good value for the real definition. We handle the
2302 real symbol first, for the convenience of the backend routine.
2303
2304 Note that there is a confusing case here. If the real definition
2305 is defined by a regular object file, we don't get the real symbol
2306 from the dynamic object, but we do get the weak symbol. If the
2307 processor backend uses a COPY reloc, then if some routine in the
2308 dynamic object changes the real symbol, we will not see that
2309 change in the corresponding weak symbol. This is the way other
2310 ELF linkers work as well, and seems to be a result of the shared
2311 library model.
2312
2313 I will clarify this issue. Most SVR4 shared libraries define the
2314 variable _timezone and define timezone as a weak synonym. The
2315 tzset call changes _timezone. If you write
2316 extern int timezone;
2317 int _timezone = 5;
2318 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2319 you might expect that, since timezone is a synonym for _timezone,
2320 the same number will print both times. However, if the processor
2321 backend uses a COPY reloc, then actually timezone will be copied
2322 into your process image, and, since you define _timezone
2323 yourself, _timezone will not. Thus timezone and _timezone will
2324 wind up at different memory locations. The tzset call will set
2325 _timezone, leaving timezone unchanged. */
2326
2327 if (h->weakdef != NULL)
2328 {
2329 /* If we get to this point, we know there is an implicit
2330 reference by a regular object file via the weak symbol H.
2331 FIXME: Is this really true? What if the traversal finds
2332 H->WEAKDEF before it finds H? */
2333 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2334
268b6b39 2335 if (! _bfd_elf_adjust_dynamic_symbol (h->weakdef, eif))
45d6a902
AM
2336 return FALSE;
2337 }
2338
2339 /* If a symbol has no type and no size and does not require a PLT
2340 entry, then we are probably about to do the wrong thing here: we
2341 are probably going to create a COPY reloc for an empty object.
2342 This case can arise when a shared object is built with assembly
2343 code, and the assembly code fails to set the symbol type. */
2344 if (h->size == 0
2345 && h->type == STT_NOTYPE
2346 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
2347 (*_bfd_error_handler)
2348 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2349 h->root.root.string);
2350
2351 dynobj = elf_hash_table (eif->info)->dynobj;
2352 bed = get_elf_backend_data (dynobj);
2353 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2354 {
2355 eif->failed = TRUE;
2356 return FALSE;
2357 }
2358
2359 return TRUE;
2360}
2361
2362/* Adjust all external symbols pointing into SEC_MERGE sections
2363 to reflect the object merging within the sections. */
2364
2365bfd_boolean
268b6b39 2366_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
2367{
2368 asection *sec;
2369
2370 if (h->root.type == bfd_link_hash_warning)
2371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2372
2373 if ((h->root.type == bfd_link_hash_defined
2374 || h->root.type == bfd_link_hash_defweak)
2375 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2376 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2377 {
268b6b39 2378 bfd *output_bfd = data;
45d6a902
AM
2379
2380 h->root.u.def.value =
2381 _bfd_merged_section_offset (output_bfd,
2382 &h->root.u.def.section,
2383 elf_section_data (sec)->sec_info,
753731ee 2384 h->root.u.def.value);
45d6a902
AM
2385 }
2386
2387 return TRUE;
2388}
986a241f
RH
2389
2390/* Returns false if the symbol referred to by H should be considered
2391 to resolve local to the current module, and true if it should be
2392 considered to bind dynamically. */
2393
2394bfd_boolean
268b6b39
AM
2395_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2396 struct bfd_link_info *info,
2397 bfd_boolean ignore_protected)
986a241f
RH
2398{
2399 bfd_boolean binding_stays_local_p;
2400
2401 if (h == NULL)
2402 return FALSE;
2403
2404 while (h->root.type == bfd_link_hash_indirect
2405 || h->root.type == bfd_link_hash_warning)
2406 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2407
2408 /* If it was forced local, then clearly it's not dynamic. */
2409 if (h->dynindx == -1)
2410 return FALSE;
2411 if (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2412 return FALSE;
2413
2414 /* Identify the cases where name binding rules say that a
2415 visible symbol resolves locally. */
2416 binding_stays_local_p = info->executable || info->symbolic;
2417
2418 switch (ELF_ST_VISIBILITY (h->other))
2419 {
2420 case STV_INTERNAL:
2421 case STV_HIDDEN:
2422 return FALSE;
2423
2424 case STV_PROTECTED:
2425 /* Proper resolution for function pointer equality may require
2426 that these symbols perhaps be resolved dynamically, even though
2427 we should be resolving them to the current module. */
2428 if (!ignore_protected)
2429 binding_stays_local_p = TRUE;
2430 break;
2431
2432 default:
986a241f
RH
2433 break;
2434 }
2435
aa37626c
L
2436 /* If it isn't defined locally, then clearly it's dynamic. */
2437 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2438 return TRUE;
2439
986a241f
RH
2440 /* Otherwise, the symbol is dynamic if binding rules don't tell
2441 us that it remains local. */
2442 return !binding_stays_local_p;
2443}
f6c52c13
AM
2444
2445/* Return true if the symbol referred to by H should be considered
2446 to resolve local to the current module, and false otherwise. Differs
2447 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2448 undefined symbols and weak symbols. */
2449
2450bfd_boolean
268b6b39
AM
2451_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2452 struct bfd_link_info *info,
2453 bfd_boolean local_protected)
f6c52c13
AM
2454{
2455 /* If it's a local sym, of course we resolve locally. */
2456 if (h == NULL)
2457 return TRUE;
2458
2459 /* If we don't have a definition in a regular file, then we can't
2460 resolve locally. The sym is either undefined or dynamic. */
2461 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2462 return FALSE;
2463
2464 /* Forced local symbols resolve locally. */
2465 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2466 return TRUE;
2467
2468 /* As do non-dynamic symbols. */
2469 if (h->dynindx == -1)
2470 return TRUE;
2471
2472 /* At this point, we know the symbol is defined and dynamic. In an
2473 executable it must resolve locally, likewise when building symbolic
2474 shared libraries. */
2475 if (info->executable || info->symbolic)
2476 return TRUE;
2477
2478 /* Now deal with defined dynamic symbols in shared libraries. Ones
2479 with default visibility might not resolve locally. */
2480 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2481 return FALSE;
2482
2483 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2484 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2485 return TRUE;
2486
2487 /* Function pointer equality tests may require that STV_PROTECTED
2488 symbols be treated as dynamic symbols, even when we know that the
2489 dynamic linker will resolve them locally. */
2490 return local_protected;
2491}
e1918d23
AM
2492
2493/* Caches some TLS segment info, and ensures that the TLS segment vma is
2494 aligned. Returns the first TLS output section. */
2495
2496struct bfd_section *
2497_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2498{
2499 struct bfd_section *sec, *tls;
2500 unsigned int align = 0;
2501
2502 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2503 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2504 break;
2505 tls = sec;
2506
2507 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2508 if (sec->alignment_power > align)
2509 align = sec->alignment_power;
2510
2511 elf_hash_table (info)->tls_sec = tls;
2512
2513 /* Ensure the alignment of the first section is the largest alignment,
2514 so that the tls segment starts aligned. */
2515 if (tls != NULL)
2516 tls->alignment_power = align;
2517
2518 return tls;
2519}
0ad989f9
L
2520
2521/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2522static bfd_boolean
2523is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2524 Elf_Internal_Sym *sym)
2525{
2526 /* Local symbols do not count, but target specific ones might. */
2527 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2528 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2529 return FALSE;
2530
2531 /* Function symbols do not count. */
2532 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2533 return FALSE;
2534
2535 /* If the section is undefined, then so is the symbol. */
2536 if (sym->st_shndx == SHN_UNDEF)
2537 return FALSE;
2538
2539 /* If the symbol is defined in the common section, then
2540 it is a common definition and so does not count. */
2541 if (sym->st_shndx == SHN_COMMON)
2542 return FALSE;
2543
2544 /* If the symbol is in a target specific section then we
2545 must rely upon the backend to tell us what it is. */
2546 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2547 /* FIXME - this function is not coded yet:
2548
2549 return _bfd_is_global_symbol_definition (abfd, sym);
2550
2551 Instead for now assume that the definition is not global,
2552 Even if this is wrong, at least the linker will behave
2553 in the same way that it used to do. */
2554 return FALSE;
2555
2556 return TRUE;
2557}
2558
2559/* Search the symbol table of the archive element of the archive ABFD
2560 whose archive map contains a mention of SYMDEF, and determine if
2561 the symbol is defined in this element. */
2562static bfd_boolean
2563elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2564{
2565 Elf_Internal_Shdr * hdr;
2566 bfd_size_type symcount;
2567 bfd_size_type extsymcount;
2568 bfd_size_type extsymoff;
2569 Elf_Internal_Sym *isymbuf;
2570 Elf_Internal_Sym *isym;
2571 Elf_Internal_Sym *isymend;
2572 bfd_boolean result;
2573
2574 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2575 if (abfd == NULL)
2576 return FALSE;
2577
2578 if (! bfd_check_format (abfd, bfd_object))
2579 return FALSE;
2580
2581 /* If we have already included the element containing this symbol in the
2582 link then we do not need to include it again. Just claim that any symbol
2583 it contains is not a definition, so that our caller will not decide to
2584 (re)include this element. */
2585 if (abfd->archive_pass)
2586 return FALSE;
2587
2588 /* Select the appropriate symbol table. */
2589 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2590 hdr = &elf_tdata (abfd)->symtab_hdr;
2591 else
2592 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2593
2594 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2595
2596 /* The sh_info field of the symtab header tells us where the
2597 external symbols start. We don't care about the local symbols. */
2598 if (elf_bad_symtab (abfd))
2599 {
2600 extsymcount = symcount;
2601 extsymoff = 0;
2602 }
2603 else
2604 {
2605 extsymcount = symcount - hdr->sh_info;
2606 extsymoff = hdr->sh_info;
2607 }
2608
2609 if (extsymcount == 0)
2610 return FALSE;
2611
2612 /* Read in the symbol table. */
2613 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2614 NULL, NULL, NULL);
2615 if (isymbuf == NULL)
2616 return FALSE;
2617
2618 /* Scan the symbol table looking for SYMDEF. */
2619 result = FALSE;
2620 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2621 {
2622 const char *name;
2623
2624 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2625 isym->st_name);
2626 if (name == NULL)
2627 break;
2628
2629 if (strcmp (name, symdef->name) == 0)
2630 {
2631 result = is_global_data_symbol_definition (abfd, isym);
2632 break;
2633 }
2634 }
2635
2636 free (isymbuf);
2637
2638 return result;
2639}
2640\f
5a580b3a
AM
2641/* Add an entry to the .dynamic table. */
2642
2643bfd_boolean
2644_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2645 bfd_vma tag,
2646 bfd_vma val)
2647{
2648 struct elf_link_hash_table *hash_table;
2649 const struct elf_backend_data *bed;
2650 asection *s;
2651 bfd_size_type newsize;
2652 bfd_byte *newcontents;
2653 Elf_Internal_Dyn dyn;
2654
2655 hash_table = elf_hash_table (info);
2656 if (! is_elf_hash_table (hash_table))
2657 return FALSE;
2658
2659 bed = get_elf_backend_data (hash_table->dynobj);
2660 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2661 BFD_ASSERT (s != NULL);
2662
eea6121a 2663 newsize = s->size + bed->s->sizeof_dyn;
5a580b3a
AM
2664 newcontents = bfd_realloc (s->contents, newsize);
2665 if (newcontents == NULL)
2666 return FALSE;
2667
2668 dyn.d_tag = tag;
2669 dyn.d_un.d_val = val;
eea6121a 2670 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
5a580b3a 2671
eea6121a 2672 s->size = newsize;
5a580b3a
AM
2673 s->contents = newcontents;
2674
2675 return TRUE;
2676}
2677
2678/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2679 otherwise just check whether one already exists. Returns -1 on error,
2680 1 if a DT_NEEDED tag already exists, and 0 on success. */
2681
4ad4eba5
AM
2682static int
2683elf_add_dt_needed_tag (struct bfd_link_info *info,
2684 const char *soname,
2685 bfd_boolean do_it)
5a580b3a
AM
2686{
2687 struct elf_link_hash_table *hash_table;
2688 bfd_size_type oldsize;
2689 bfd_size_type strindex;
2690
2691 hash_table = elf_hash_table (info);
2692 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2693 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2694 if (strindex == (bfd_size_type) -1)
2695 return -1;
2696
2697 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2698 {
2699 asection *sdyn;
2700 const struct elf_backend_data *bed;
2701 bfd_byte *extdyn;
2702
2703 bed = get_elf_backend_data (hash_table->dynobj);
2704 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2705 BFD_ASSERT (sdyn != NULL);
2706
2707 for (extdyn = sdyn->contents;
eea6121a 2708 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
2709 extdyn += bed->s->sizeof_dyn)
2710 {
2711 Elf_Internal_Dyn dyn;
2712
2713 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2714 if (dyn.d_tag == DT_NEEDED
2715 && dyn.d_un.d_val == strindex)
2716 {
2717 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2718 return 1;
2719 }
2720 }
2721 }
2722
2723 if (do_it)
2724 {
2725 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2726 return -1;
2727 }
2728 else
2729 /* We were just checking for existence of the tag. */
2730 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2731
2732 return 0;
2733}
2734
2735/* Sort symbol by value and section. */
4ad4eba5
AM
2736static int
2737elf_sort_symbol (const void *arg1, const void *arg2)
5a580b3a
AM
2738{
2739 const struct elf_link_hash_entry *h1;
2740 const struct elf_link_hash_entry *h2;
10b7e05b 2741 bfd_signed_vma vdiff;
5a580b3a
AM
2742
2743 h1 = *(const struct elf_link_hash_entry **) arg1;
2744 h2 = *(const struct elf_link_hash_entry **) arg2;
10b7e05b
NC
2745 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2746 if (vdiff != 0)
2747 return vdiff > 0 ? 1 : -1;
2748 else
2749 {
2750 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2751 if (sdiff != 0)
2752 return sdiff > 0 ? 1 : -1;
2753 }
5a580b3a
AM
2754 return 0;
2755}
4ad4eba5 2756
5a580b3a
AM
2757/* This function is used to adjust offsets into .dynstr for
2758 dynamic symbols. This is called via elf_link_hash_traverse. */
2759
2760static bfd_boolean
2761elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2762{
2763 struct elf_strtab_hash *dynstr = data;
2764
2765 if (h->root.type == bfd_link_hash_warning)
2766 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2767
2768 if (h->dynindx != -1)
2769 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2770 return TRUE;
2771}
2772
2773/* Assign string offsets in .dynstr, update all structures referencing
2774 them. */
2775
4ad4eba5
AM
2776static bfd_boolean
2777elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5a580b3a
AM
2778{
2779 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2780 struct elf_link_local_dynamic_entry *entry;
2781 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2782 bfd *dynobj = hash_table->dynobj;
2783 asection *sdyn;
2784 bfd_size_type size;
2785 const struct elf_backend_data *bed;
2786 bfd_byte *extdyn;
2787
2788 _bfd_elf_strtab_finalize (dynstr);
2789 size = _bfd_elf_strtab_size (dynstr);
2790
2791 bed = get_elf_backend_data (dynobj);
2792 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2793 BFD_ASSERT (sdyn != NULL);
2794
2795 /* Update all .dynamic entries referencing .dynstr strings. */
2796 for (extdyn = sdyn->contents;
eea6121a 2797 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
2798 extdyn += bed->s->sizeof_dyn)
2799 {
2800 Elf_Internal_Dyn dyn;
2801
2802 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
2803 switch (dyn.d_tag)
2804 {
2805 case DT_STRSZ:
2806 dyn.d_un.d_val = size;
2807 break;
2808 case DT_NEEDED:
2809 case DT_SONAME:
2810 case DT_RPATH:
2811 case DT_RUNPATH:
2812 case DT_FILTER:
2813 case DT_AUXILIARY:
2814 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
2815 break;
2816 default:
2817 continue;
2818 }
2819 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
2820 }
2821
2822 /* Now update local dynamic symbols. */
2823 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
2824 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
2825 entry->isym.st_name);
2826
2827 /* And the rest of dynamic symbols. */
2828 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
2829
2830 /* Adjust version definitions. */
2831 if (elf_tdata (output_bfd)->cverdefs)
2832 {
2833 asection *s;
2834 bfd_byte *p;
2835 bfd_size_type i;
2836 Elf_Internal_Verdef def;
2837 Elf_Internal_Verdaux defaux;
2838
2839 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2840 p = s->contents;
2841 do
2842 {
2843 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
2844 &def);
2845 p += sizeof (Elf_External_Verdef);
2846 for (i = 0; i < def.vd_cnt; ++i)
2847 {
2848 _bfd_elf_swap_verdaux_in (output_bfd,
2849 (Elf_External_Verdaux *) p, &defaux);
2850 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
2851 defaux.vda_name);
2852 _bfd_elf_swap_verdaux_out (output_bfd,
2853 &defaux, (Elf_External_Verdaux *) p);
2854 p += sizeof (Elf_External_Verdaux);
2855 }
2856 }
2857 while (def.vd_next);
2858 }
2859
2860 /* Adjust version references. */
2861 if (elf_tdata (output_bfd)->verref)
2862 {
2863 asection *s;
2864 bfd_byte *p;
2865 bfd_size_type i;
2866 Elf_Internal_Verneed need;
2867 Elf_Internal_Vernaux needaux;
2868
2869 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2870 p = s->contents;
2871 do
2872 {
2873 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
2874 &need);
2875 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
2876 _bfd_elf_swap_verneed_out (output_bfd, &need,
2877 (Elf_External_Verneed *) p);
2878 p += sizeof (Elf_External_Verneed);
2879 for (i = 0; i < need.vn_cnt; ++i)
2880 {
2881 _bfd_elf_swap_vernaux_in (output_bfd,
2882 (Elf_External_Vernaux *) p, &needaux);
2883 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
2884 needaux.vna_name);
2885 _bfd_elf_swap_vernaux_out (output_bfd,
2886 &needaux,
2887 (Elf_External_Vernaux *) p);
2888 p += sizeof (Elf_External_Vernaux);
2889 }
2890 }
2891 while (need.vn_next);
2892 }
2893
2894 return TRUE;
2895}
2896\f
4ad4eba5
AM
2897/* Add symbols from an ELF object file to the linker hash table. */
2898
2899static bfd_boolean
2900elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
2901{
2902 bfd_boolean (*add_symbol_hook)
555cd476 2903 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
4ad4eba5
AM
2904 const char **, flagword *, asection **, bfd_vma *);
2905 bfd_boolean (*check_relocs)
2906 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
85fbca6a
NC
2907 bfd_boolean (*check_directives)
2908 (bfd *, struct bfd_link_info *);
4ad4eba5
AM
2909 bfd_boolean collect;
2910 Elf_Internal_Shdr *hdr;
2911 bfd_size_type symcount;
2912 bfd_size_type extsymcount;
2913 bfd_size_type extsymoff;
2914 struct elf_link_hash_entry **sym_hash;
2915 bfd_boolean dynamic;
2916 Elf_External_Versym *extversym = NULL;
2917 Elf_External_Versym *ever;
2918 struct elf_link_hash_entry *weaks;
2919 struct elf_link_hash_entry **nondeflt_vers = NULL;
2920 bfd_size_type nondeflt_vers_cnt = 0;
2921 Elf_Internal_Sym *isymbuf = NULL;
2922 Elf_Internal_Sym *isym;
2923 Elf_Internal_Sym *isymend;
2924 const struct elf_backend_data *bed;
2925 bfd_boolean add_needed;
2926 struct elf_link_hash_table * hash_table;
2927 bfd_size_type amt;
2928
2929 hash_table = elf_hash_table (info);
2930
2931 bed = get_elf_backend_data (abfd);
2932 add_symbol_hook = bed->elf_add_symbol_hook;
2933 collect = bed->collect;
2934
2935 if ((abfd->flags & DYNAMIC) == 0)
2936 dynamic = FALSE;
2937 else
2938 {
2939 dynamic = TRUE;
2940
2941 /* You can't use -r against a dynamic object. Also, there's no
2942 hope of using a dynamic object which does not exactly match
2943 the format of the output file. */
2944 if (info->relocatable
2945 || !is_elf_hash_table (hash_table)
2946 || hash_table->root.creator != abfd->xvec)
2947 {
2948 bfd_set_error (bfd_error_invalid_operation);
2949 goto error_return;
2950 }
2951 }
2952
2953 /* As a GNU extension, any input sections which are named
2954 .gnu.warning.SYMBOL are treated as warning symbols for the given
2955 symbol. This differs from .gnu.warning sections, which generate
2956 warnings when they are included in an output file. */
2957 if (info->executable)
2958 {
2959 asection *s;
2960
2961 for (s = abfd->sections; s != NULL; s = s->next)
2962 {
2963 const char *name;
2964
2965 name = bfd_get_section_name (abfd, s);
2966 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
2967 {
2968 char *msg;
2969 bfd_size_type sz;
2970 bfd_size_type prefix_len;
2971 const char * gnu_warning_prefix = _("warning: ");
2972
2973 name += sizeof ".gnu.warning." - 1;
2974
2975 /* If this is a shared object, then look up the symbol
2976 in the hash table. If it is there, and it is already
2977 been defined, then we will not be using the entry
2978 from this shared object, so we don't need to warn.
2979 FIXME: If we see the definition in a regular object
2980 later on, we will warn, but we shouldn't. The only
2981 fix is to keep track of what warnings we are supposed
2982 to emit, and then handle them all at the end of the
2983 link. */
2984 if (dynamic)
2985 {
2986 struct elf_link_hash_entry *h;
2987
2988 h = elf_link_hash_lookup (hash_table, name,
2989 FALSE, FALSE, TRUE);
2990
2991 /* FIXME: What about bfd_link_hash_common? */
2992 if (h != NULL
2993 && (h->root.type == bfd_link_hash_defined
2994 || h->root.type == bfd_link_hash_defweak))
2995 {
2996 /* We don't want to issue this warning. Clobber
2997 the section size so that the warning does not
2998 get copied into the output file. */
eea6121a 2999 s->size = 0;
4ad4eba5
AM
3000 continue;
3001 }
3002 }
3003
eea6121a 3004 sz = s->size;
4ad4eba5
AM
3005 prefix_len = strlen (gnu_warning_prefix);
3006 msg = bfd_alloc (abfd, prefix_len + sz + 1);
3007 if (msg == NULL)
3008 goto error_return;
3009
3010 strcpy (msg, gnu_warning_prefix);
3011 if (! bfd_get_section_contents (abfd, s, msg + prefix_len, 0, sz))
3012 goto error_return;
3013
3014 msg[prefix_len + sz] = '\0';
3015
3016 if (! (_bfd_generic_link_add_one_symbol
3017 (info, abfd, name, BSF_WARNING, s, 0, msg,
3018 FALSE, collect, NULL)))
3019 goto error_return;
3020
3021 if (! info->relocatable)
3022 {
3023 /* Clobber the section size so that the warning does
3024 not get copied into the output file. */
eea6121a 3025 s->size = 0;
4ad4eba5
AM
3026 }
3027 }
3028 }
3029 }
3030
3031 add_needed = TRUE;
3032 if (! dynamic)
3033 {
3034 /* If we are creating a shared library, create all the dynamic
3035 sections immediately. We need to attach them to something,
3036 so we attach them to this BFD, provided it is the right
3037 format. FIXME: If there are no input BFD's of the same
3038 format as the output, we can't make a shared library. */
3039 if (info->shared
3040 && is_elf_hash_table (hash_table)
3041 && hash_table->root.creator == abfd->xvec
3042 && ! hash_table->dynamic_sections_created)
3043 {
3044 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3045 goto error_return;
3046 }
3047 }
3048 else if (!is_elf_hash_table (hash_table))
3049 goto error_return;
3050 else
3051 {
3052 asection *s;
3053 const char *soname = NULL;
3054 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3055 int ret;
3056
3057 /* ld --just-symbols and dynamic objects don't mix very well.
3058 Test for --just-symbols by looking at info set up by
3059 _bfd_elf_link_just_syms. */
3060 if ((s = abfd->sections) != NULL
3061 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3062 goto error_return;
3063
3064 /* If this dynamic lib was specified on the command line with
3065 --as-needed in effect, then we don't want to add a DT_NEEDED
3066 tag unless the lib is actually used. Similary for libs brought
e56f61be
L
3067 in by another lib's DT_NEEDED. When --no-add-needed is used
3068 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3069 any dynamic library in DT_NEEDED tags in the dynamic lib at
3070 all. */
3071 add_needed = (elf_dyn_lib_class (abfd)
3072 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3073 | DYN_NO_NEEDED)) == 0;
4ad4eba5
AM
3074
3075 s = bfd_get_section_by_name (abfd, ".dynamic");
3076 if (s != NULL)
3077 {
3078 bfd_byte *dynbuf;
3079 bfd_byte *extdyn;
3080 int elfsec;
3081 unsigned long shlink;
3082
eea6121a 3083 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4ad4eba5
AM
3084 goto error_free_dyn;
3085
3086 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3087 if (elfsec == -1)
3088 goto error_free_dyn;
3089 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3090
3091 for (extdyn = dynbuf;
eea6121a 3092 extdyn < dynbuf + s->size;
4ad4eba5
AM
3093 extdyn += bed->s->sizeof_dyn)
3094 {
3095 Elf_Internal_Dyn dyn;
3096
3097 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3098 if (dyn.d_tag == DT_SONAME)
3099 {
3100 unsigned int tagv = dyn.d_un.d_val;
3101 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3102 if (soname == NULL)
3103 goto error_free_dyn;
3104 }
3105 if (dyn.d_tag == DT_NEEDED)
3106 {
3107 struct bfd_link_needed_list *n, **pn;
3108 char *fnm, *anm;
3109 unsigned int tagv = dyn.d_un.d_val;
3110
3111 amt = sizeof (struct bfd_link_needed_list);
3112 n = bfd_alloc (abfd, amt);
3113 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3114 if (n == NULL || fnm == NULL)
3115 goto error_free_dyn;
3116 amt = strlen (fnm) + 1;
3117 anm = bfd_alloc (abfd, amt);
3118 if (anm == NULL)
3119 goto error_free_dyn;
3120 memcpy (anm, fnm, amt);
3121 n->name = anm;
3122 n->by = abfd;
3123 n->next = NULL;
3124 for (pn = & hash_table->needed;
3125 *pn != NULL;
3126 pn = &(*pn)->next)
3127 ;
3128 *pn = n;
3129 }
3130 if (dyn.d_tag == DT_RUNPATH)
3131 {
3132 struct bfd_link_needed_list *n, **pn;
3133 char *fnm, *anm;
3134 unsigned int tagv = dyn.d_un.d_val;
3135
3136 amt = sizeof (struct bfd_link_needed_list);
3137 n = bfd_alloc (abfd, amt);
3138 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3139 if (n == NULL || fnm == NULL)
3140 goto error_free_dyn;
3141 amt = strlen (fnm) + 1;
3142 anm = bfd_alloc (abfd, amt);
3143 if (anm == NULL)
3144 goto error_free_dyn;
3145 memcpy (anm, fnm, amt);
3146 n->name = anm;
3147 n->by = abfd;
3148 n->next = NULL;
3149 for (pn = & runpath;
3150 *pn != NULL;
3151 pn = &(*pn)->next)
3152 ;
3153 *pn = n;
3154 }
3155 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3156 if (!runpath && dyn.d_tag == DT_RPATH)
3157 {
3158 struct bfd_link_needed_list *n, **pn;
3159 char *fnm, *anm;
3160 unsigned int tagv = dyn.d_un.d_val;
3161
3162 amt = sizeof (struct bfd_link_needed_list);
3163 n = bfd_alloc (abfd, amt);
3164 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3165 if (n == NULL || fnm == NULL)
3166 goto error_free_dyn;
3167 amt = strlen (fnm) + 1;
3168 anm = bfd_alloc (abfd, amt);
3169 if (anm == NULL)
3170 {
3171 error_free_dyn:
3172 free (dynbuf);
3173 goto error_return;
3174 }
3175 memcpy (anm, fnm, amt);
3176 n->name = anm;
3177 n->by = abfd;
3178 n->next = NULL;
3179 for (pn = & rpath;
3180 *pn != NULL;
3181 pn = &(*pn)->next)
3182 ;
3183 *pn = n;
3184 }
3185 }
3186
3187 free (dynbuf);
3188 }
3189
3190 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3191 frees all more recently bfd_alloc'd blocks as well. */
3192 if (runpath)
3193 rpath = runpath;
3194
3195 if (rpath)
3196 {
3197 struct bfd_link_needed_list **pn;
3198 for (pn = & hash_table->runpath;
3199 *pn != NULL;
3200 pn = &(*pn)->next)
3201 ;
3202 *pn = rpath;
3203 }
3204
3205 /* We do not want to include any of the sections in a dynamic
3206 object in the output file. We hack by simply clobbering the
3207 list of sections in the BFD. This could be handled more
3208 cleanly by, say, a new section flag; the existing
3209 SEC_NEVER_LOAD flag is not the one we want, because that one
3210 still implies that the section takes up space in the output
3211 file. */
3212 bfd_section_list_clear (abfd);
3213
3214 /* If this is the first dynamic object found in the link, create
3215 the special sections required for dynamic linking. */
3216 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3217 goto error_return;
3218
3219 /* Find the name to use in a DT_NEEDED entry that refers to this
3220 object. If the object has a DT_SONAME entry, we use it.
3221 Otherwise, if the generic linker stuck something in
3222 elf_dt_name, we use that. Otherwise, we just use the file
3223 name. */
3224 if (soname == NULL || *soname == '\0')
3225 {
3226 soname = elf_dt_name (abfd);
3227 if (soname == NULL || *soname == '\0')
3228 soname = bfd_get_filename (abfd);
3229 }
3230
3231 /* Save the SONAME because sometimes the linker emulation code
3232 will need to know it. */
3233 elf_dt_name (abfd) = soname;
3234
3235 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3236 if (ret < 0)
3237 goto error_return;
3238
3239 /* If we have already included this dynamic object in the
3240 link, just ignore it. There is no reason to include a
3241 particular dynamic object more than once. */
3242 if (ret > 0)
3243 return TRUE;
3244 }
3245
3246 /* If this is a dynamic object, we always link against the .dynsym
3247 symbol table, not the .symtab symbol table. The dynamic linker
3248 will only see the .dynsym symbol table, so there is no reason to
3249 look at .symtab for a dynamic object. */
3250
3251 if (! dynamic || elf_dynsymtab (abfd) == 0)
3252 hdr = &elf_tdata (abfd)->symtab_hdr;
3253 else
3254 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3255
3256 symcount = hdr->sh_size / bed->s->sizeof_sym;
3257
3258 /* The sh_info field of the symtab header tells us where the
3259 external symbols start. We don't care about the local symbols at
3260 this point. */
3261 if (elf_bad_symtab (abfd))
3262 {
3263 extsymcount = symcount;
3264 extsymoff = 0;
3265 }
3266 else
3267 {
3268 extsymcount = symcount - hdr->sh_info;
3269 extsymoff = hdr->sh_info;
3270 }
3271
3272 sym_hash = NULL;
3273 if (extsymcount != 0)
3274 {
3275 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3276 NULL, NULL, NULL);
3277 if (isymbuf == NULL)
3278 goto error_return;
3279
3280 /* We store a pointer to the hash table entry for each external
3281 symbol. */
3282 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3283 sym_hash = bfd_alloc (abfd, amt);
3284 if (sym_hash == NULL)
3285 goto error_free_sym;
3286 elf_sym_hashes (abfd) = sym_hash;
3287 }
3288
3289 if (dynamic)
3290 {
3291 /* Read in any version definitions. */
3292 if (! _bfd_elf_slurp_version_tables (abfd))
3293 goto error_free_sym;
3294
3295 /* Read in the symbol versions, but don't bother to convert them
3296 to internal format. */
3297 if (elf_dynversym (abfd) != 0)
3298 {
3299 Elf_Internal_Shdr *versymhdr;
3300
3301 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3302 extversym = bfd_malloc (versymhdr->sh_size);
3303 if (extversym == NULL)
3304 goto error_free_sym;
3305 amt = versymhdr->sh_size;
3306 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3307 || bfd_bread (extversym, amt, abfd) != amt)
3308 goto error_free_vers;
3309 }
3310 }
3311
3312 weaks = NULL;
3313
3314 ever = extversym != NULL ? extversym + extsymoff : NULL;
3315 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3316 isym < isymend;
3317 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3318 {
3319 int bind;
3320 bfd_vma value;
3321 asection *sec;
3322 flagword flags;
3323 const char *name;
3324 struct elf_link_hash_entry *h;
3325 bfd_boolean definition;
3326 bfd_boolean size_change_ok;
3327 bfd_boolean type_change_ok;
3328 bfd_boolean new_weakdef;
3329 bfd_boolean override;
3330 unsigned int old_alignment;
3331 bfd *old_bfd;
3332
3333 override = FALSE;
3334
3335 flags = BSF_NO_FLAGS;
3336 sec = NULL;
3337 value = isym->st_value;
3338 *sym_hash = NULL;
3339
3340 bind = ELF_ST_BIND (isym->st_info);
3341 if (bind == STB_LOCAL)
3342 {
3343 /* This should be impossible, since ELF requires that all
3344 global symbols follow all local symbols, and that sh_info
3345 point to the first global symbol. Unfortunately, Irix 5
3346 screws this up. */
3347 continue;
3348 }
3349 else if (bind == STB_GLOBAL)
3350 {
3351 if (isym->st_shndx != SHN_UNDEF
3352 && isym->st_shndx != SHN_COMMON)
3353 flags = BSF_GLOBAL;
3354 }
3355 else if (bind == STB_WEAK)
3356 flags = BSF_WEAK;
3357 else
3358 {
3359 /* Leave it up to the processor backend. */
3360 }
3361
3362 if (isym->st_shndx == SHN_UNDEF)
3363 sec = bfd_und_section_ptr;
3364 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3365 {
3366 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3367 if (sec == NULL)
3368 sec = bfd_abs_section_ptr;
3369 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3370 value -= sec->vma;
3371 }
3372 else if (isym->st_shndx == SHN_ABS)
3373 sec = bfd_abs_section_ptr;
3374 else if (isym->st_shndx == SHN_COMMON)
3375 {
3376 sec = bfd_com_section_ptr;
3377 /* What ELF calls the size we call the value. What ELF
3378 calls the value we call the alignment. */
3379 value = isym->st_size;
3380 }
3381 else
3382 {
3383 /* Leave it up to the processor backend. */
3384 }
3385
3386 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3387 isym->st_name);
3388 if (name == NULL)
3389 goto error_free_vers;
3390
3391 if (isym->st_shndx == SHN_COMMON
3392 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3393 {
3394 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3395
3396 if (tcomm == NULL)
3397 {
3398 tcomm = bfd_make_section (abfd, ".tcommon");
3399 if (tcomm == NULL
3400 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3401 | SEC_IS_COMMON
3402 | SEC_LINKER_CREATED
3403 | SEC_THREAD_LOCAL)))
3404 goto error_free_vers;
3405 }
3406 sec = tcomm;
3407 }
3408 else if (add_symbol_hook)
3409 {
3410 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3411 &value))
3412 goto error_free_vers;
3413
3414 /* The hook function sets the name to NULL if this symbol
3415 should be skipped for some reason. */
3416 if (name == NULL)
3417 continue;
3418 }
3419
3420 /* Sanity check that all possibilities were handled. */
3421 if (sec == NULL)
3422 {
3423 bfd_set_error (bfd_error_bad_value);
3424 goto error_free_vers;
3425 }
3426
3427 if (bfd_is_und_section (sec)
3428 || bfd_is_com_section (sec))
3429 definition = FALSE;
3430 else
3431 definition = TRUE;
3432
3433 size_change_ok = FALSE;
3434 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3435 old_alignment = 0;
3436 old_bfd = NULL;
3437
3438 if (is_elf_hash_table (hash_table))
3439 {
3440 Elf_Internal_Versym iver;
3441 unsigned int vernum = 0;
3442 bfd_boolean skip;
3443
3444 if (ever != NULL)
3445 {
3446 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3447 vernum = iver.vs_vers & VERSYM_VERSION;
3448
3449 /* If this is a hidden symbol, or if it is not version
3450 1, we append the version name to the symbol name.
3451 However, we do not modify a non-hidden absolute
3452 symbol, because it might be the version symbol
3453 itself. FIXME: What if it isn't? */
3454 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3455 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3456 {
3457 const char *verstr;
3458 size_t namelen, verlen, newlen;
3459 char *newname, *p;
3460
3461 if (isym->st_shndx != SHN_UNDEF)
3462 {
3463 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
3464 {
3465 (*_bfd_error_handler)
3466 (_("%s: %s: invalid version %u (max %d)"),
3467 bfd_archive_filename (abfd), name, vernum,
3468 elf_tdata (abfd)->dynverdef_hdr.sh_info);
3469 bfd_set_error (bfd_error_bad_value);
3470 goto error_free_vers;
3471 }
3472 else if (vernum > 1)
3473 verstr =
3474 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3475 else
3476 verstr = "";
3477 }
3478 else
3479 {
3480 /* We cannot simply test for the number of
3481 entries in the VERNEED section since the
3482 numbers for the needed versions do not start
3483 at 0. */
3484 Elf_Internal_Verneed *t;
3485
3486 verstr = NULL;
3487 for (t = elf_tdata (abfd)->verref;
3488 t != NULL;
3489 t = t->vn_nextref)
3490 {
3491 Elf_Internal_Vernaux *a;
3492
3493 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3494 {
3495 if (a->vna_other == vernum)
3496 {
3497 verstr = a->vna_nodename;
3498 break;
3499 }
3500 }
3501 if (a != NULL)
3502 break;
3503 }
3504 if (verstr == NULL)
3505 {
3506 (*_bfd_error_handler)
3507 (_("%s: %s: invalid needed version %d"),
3508 bfd_archive_filename (abfd), name, vernum);
3509 bfd_set_error (bfd_error_bad_value);
3510 goto error_free_vers;
3511 }
3512 }
3513
3514 namelen = strlen (name);
3515 verlen = strlen (verstr);
3516 newlen = namelen + verlen + 2;
3517 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3518 && isym->st_shndx != SHN_UNDEF)
3519 ++newlen;
3520
3521 newname = bfd_alloc (abfd, newlen);
3522 if (newname == NULL)
3523 goto error_free_vers;
3524 memcpy (newname, name, namelen);
3525 p = newname + namelen;
3526 *p++ = ELF_VER_CHR;
3527 /* If this is a defined non-hidden version symbol,
3528 we add another @ to the name. This indicates the
3529 default version of the symbol. */
3530 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3531 && isym->st_shndx != SHN_UNDEF)
3532 *p++ = ELF_VER_CHR;
3533 memcpy (p, verstr, verlen + 1);
3534
3535 name = newname;
3536 }
3537 }
3538
3539 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
3540 sym_hash, &skip, &override,
3541 &type_change_ok, &size_change_ok))
3542 goto error_free_vers;
3543
3544 if (skip)
3545 continue;
3546
3547 if (override)
3548 definition = FALSE;
3549
3550 h = *sym_hash;
3551 while (h->root.type == bfd_link_hash_indirect
3552 || h->root.type == bfd_link_hash_warning)
3553 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3554
3555 /* Remember the old alignment if this is a common symbol, so
3556 that we don't reduce the alignment later on. We can't
3557 check later, because _bfd_generic_link_add_one_symbol
3558 will set a default for the alignment which we want to
3559 override. We also remember the old bfd where the existing
3560 definition comes from. */
3561 switch (h->root.type)
3562 {
3563 default:
3564 break;
3565
3566 case bfd_link_hash_defined:
3567 case bfd_link_hash_defweak:
3568 old_bfd = h->root.u.def.section->owner;
3569 break;
3570
3571 case bfd_link_hash_common:
3572 old_bfd = h->root.u.c.p->section->owner;
3573 old_alignment = h->root.u.c.p->alignment_power;
3574 break;
3575 }
3576
3577 if (elf_tdata (abfd)->verdef != NULL
3578 && ! override
3579 && vernum > 1
3580 && definition)
3581 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3582 }
3583
3584 if (! (_bfd_generic_link_add_one_symbol
3585 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3586 (struct bfd_link_hash_entry **) sym_hash)))
3587 goto error_free_vers;
3588
3589 h = *sym_hash;
3590 while (h->root.type == bfd_link_hash_indirect
3591 || h->root.type == bfd_link_hash_warning)
3592 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3593 *sym_hash = h;
3594
3595 new_weakdef = FALSE;
3596 if (dynamic
3597 && definition
3598 && (flags & BSF_WEAK) != 0
3599 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3600 && is_elf_hash_table (hash_table)
3601 && h->weakdef == NULL)
3602 {
3603 /* Keep a list of all weak defined non function symbols from
3604 a dynamic object, using the weakdef field. Later in this
3605 function we will set the weakdef field to the correct
3606 value. We only put non-function symbols from dynamic
3607 objects on this list, because that happens to be the only
3608 time we need to know the normal symbol corresponding to a
3609 weak symbol, and the information is time consuming to
3610 figure out. If the weakdef field is not already NULL,
3611 then this symbol was already defined by some previous
3612 dynamic object, and we will be using that previous
3613 definition anyhow. */
3614
3615 h->weakdef = weaks;
3616 weaks = h;
3617 new_weakdef = TRUE;
3618 }
3619
3620 /* Set the alignment of a common symbol. */
3621 if (isym->st_shndx == SHN_COMMON
3622 && h->root.type == bfd_link_hash_common)
3623 {
3624 unsigned int align;
3625
3626 align = bfd_log2 (isym->st_value);
3627 if (align > old_alignment
3628 /* Permit an alignment power of zero if an alignment of one
3629 is specified and no other alignments have been specified. */
3630 || (isym->st_value == 1 && old_alignment == 0))
3631 h->root.u.c.p->alignment_power = align;
3632 else
3633 h->root.u.c.p->alignment_power = old_alignment;
3634 }
3635
3636 if (is_elf_hash_table (hash_table))
3637 {
3638 int old_flags;
3639 bfd_boolean dynsym;
3640 int new_flag;
3641
3642 /* Check the alignment when a common symbol is involved. This
3643 can change when a common symbol is overridden by a normal
3644 definition or a common symbol is ignored due to the old
3645 normal definition. We need to make sure the maximum
3646 alignment is maintained. */
3647 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3648 && h->root.type != bfd_link_hash_common)
3649 {
3650 unsigned int common_align;
3651 unsigned int normal_align;
3652 unsigned int symbol_align;
3653 bfd *normal_bfd;
3654 bfd *common_bfd;
3655
3656 symbol_align = ffs (h->root.u.def.value) - 1;
3657 if (h->root.u.def.section->owner != NULL
3658 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3659 {
3660 normal_align = h->root.u.def.section->alignment_power;
3661 if (normal_align > symbol_align)
3662 normal_align = symbol_align;
3663 }
3664 else
3665 normal_align = symbol_align;
3666
3667 if (old_alignment)
3668 {
3669 common_align = old_alignment;
3670 common_bfd = old_bfd;
3671 normal_bfd = abfd;
3672 }
3673 else
3674 {
3675 common_align = bfd_log2 (isym->st_value);
3676 common_bfd = abfd;
3677 normal_bfd = old_bfd;
3678 }
3679
3680 if (normal_align < common_align)
3681 (*_bfd_error_handler)
3682 (_("Warning: alignment %u of symbol `%s' in %s is smaller than %u in %s"),
3683 1 << normal_align,
3684 name,
3685 bfd_archive_filename (normal_bfd),
3686 1 << common_align,
3687 bfd_archive_filename (common_bfd));
3688 }
3689
3690 /* Remember the symbol size and type. */
3691 if (isym->st_size != 0
3692 && (definition || h->size == 0))
3693 {
3694 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3695 (*_bfd_error_handler)
3696 (_("Warning: size of symbol `%s' changed from %lu in %s to %lu in %s"),
3697 name, (unsigned long) h->size,
3698 bfd_archive_filename (old_bfd),
3699 (unsigned long) isym->st_size,
3700 bfd_archive_filename (abfd));
3701
3702 h->size = isym->st_size;
3703 }
3704
3705 /* If this is a common symbol, then we always want H->SIZE
3706 to be the size of the common symbol. The code just above
3707 won't fix the size if a common symbol becomes larger. We
3708 don't warn about a size change here, because that is
3709 covered by --warn-common. */
3710 if (h->root.type == bfd_link_hash_common)
3711 h->size = h->root.u.c.size;
3712
3713 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3714 && (definition || h->type == STT_NOTYPE))
3715 {
3716 if (h->type != STT_NOTYPE
3717 && h->type != ELF_ST_TYPE (isym->st_info)
3718 && ! type_change_ok)
3719 (*_bfd_error_handler)
3720 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
3721 name, h->type, ELF_ST_TYPE (isym->st_info),
3722 bfd_archive_filename (abfd));
3723
3724 h->type = ELF_ST_TYPE (isym->st_info);
3725 }
3726
3727 /* If st_other has a processor-specific meaning, specific
3728 code might be needed here. We never merge the visibility
3729 attribute with the one from a dynamic object. */
3730 if (bed->elf_backend_merge_symbol_attribute)
3731 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3732 dynamic);
3733
3734 if (isym->st_other != 0 && !dynamic)
3735 {
3736 unsigned char hvis, symvis, other, nvis;
3737
3738 /* Take the balance of OTHER from the definition. */
3739 other = (definition ? isym->st_other : h->other);
3740 other &= ~ ELF_ST_VISIBILITY (-1);
3741
3742 /* Combine visibilities, using the most constraining one. */
3743 hvis = ELF_ST_VISIBILITY (h->other);
3744 symvis = ELF_ST_VISIBILITY (isym->st_other);
3745 if (! hvis)
3746 nvis = symvis;
3747 else if (! symvis)
3748 nvis = hvis;
3749 else
3750 nvis = hvis < symvis ? hvis : symvis;
3751
3752 h->other = other | nvis;
3753 }
3754
3755 /* Set a flag in the hash table entry indicating the type of
3756 reference or definition we just found. Keep a count of
3757 the number of dynamic symbols we find. A dynamic symbol
3758 is one which is referenced or defined by both a regular
3759 object and a shared object. */
3760 old_flags = h->elf_link_hash_flags;
3761 dynsym = FALSE;
3762 if (! dynamic)
3763 {
3764 if (! definition)
3765 {
3766 new_flag = ELF_LINK_HASH_REF_REGULAR;
3767 if (bind != STB_WEAK)
3768 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3769 }
3770 else
3771 new_flag = ELF_LINK_HASH_DEF_REGULAR;
3772 if (! info->executable
3773 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
3774 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
3775 dynsym = TRUE;
3776 }
3777 else
3778 {
3779 if (! definition)
3780 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
3781 else
3782 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
3783 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
3784 | ELF_LINK_HASH_REF_REGULAR)) != 0
3785 || (h->weakdef != NULL
3786 && ! new_weakdef
3787 && h->weakdef->dynindx != -1))
3788 dynsym = TRUE;
3789 }
3790
3791 h->elf_link_hash_flags |= new_flag;
3792
3793 /* Check to see if we need to add an indirect symbol for
3794 the default name. */
3795 if (definition || h->root.type == bfd_link_hash_common)
3796 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
3797 &sec, &value, &dynsym,
3798 override))
3799 goto error_free_vers;
3800
3801 if (definition && !dynamic)
3802 {
3803 char *p = strchr (name, ELF_VER_CHR);
3804 if (p != NULL && p[1] != ELF_VER_CHR)
3805 {
3806 /* Queue non-default versions so that .symver x, x@FOO
3807 aliases can be checked. */
3808 if (! nondeflt_vers)
3809 {
3810 amt = (isymend - isym + 1)
3811 * sizeof (struct elf_link_hash_entry *);
3812 nondeflt_vers = bfd_malloc (amt);
3813 }
3814 nondeflt_vers [nondeflt_vers_cnt++] = h;
3815 }
3816 }
3817
3818 if (dynsym && h->dynindx == -1)
3819 {
c152c796 3820 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5
AM
3821 goto error_free_vers;
3822 if (h->weakdef != NULL
3823 && ! new_weakdef
3824 && h->weakdef->dynindx == -1)
3825 {
c152c796 3826 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
4ad4eba5
AM
3827 goto error_free_vers;
3828 }
3829 }
3830 else if (dynsym && h->dynindx != -1)
3831 /* If the symbol already has a dynamic index, but
3832 visibility says it should not be visible, turn it into
3833 a local symbol. */
3834 switch (ELF_ST_VISIBILITY (h->other))
3835 {
3836 case STV_INTERNAL:
3837 case STV_HIDDEN:
3838 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
3839 dynsym = FALSE;
3840 break;
3841 }
3842
3843 if (!add_needed
3844 && definition
3845 && dynsym
3846 && (h->elf_link_hash_flags
3847 & ELF_LINK_HASH_REF_REGULAR) != 0)
3848 {
3849 int ret;
3850 const char *soname = elf_dt_name (abfd);
3851
3852 /* A symbol from a library loaded via DT_NEEDED of some
3853 other library is referenced by a regular object.
e56f61be
L
3854 Add a DT_NEEDED entry for it. Issue an error if
3855 --no-add-needed is used. */
3856 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
3857 {
3858 (*_bfd_error_handler)
3859 (_("%s: invalid DSO for symbol `%s' definition"),
3860 bfd_archive_filename (abfd), name);
3861 bfd_set_error (bfd_error_bad_value);
3862 goto error_free_vers;
3863 }
3864
4ad4eba5
AM
3865 add_needed = TRUE;
3866 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3867 if (ret < 0)
3868 goto error_free_vers;
3869
3870 BFD_ASSERT (ret == 0);
3871 }
3872 }
3873 }
3874
3875 /* Now that all the symbols from this input file are created, handle
3876 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
3877 if (nondeflt_vers != NULL)
3878 {
3879 bfd_size_type cnt, symidx;
3880
3881 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
3882 {
3883 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
3884 char *shortname, *p;
3885
3886 p = strchr (h->root.root.string, ELF_VER_CHR);
3887 if (p == NULL
3888 || (h->root.type != bfd_link_hash_defined
3889 && h->root.type != bfd_link_hash_defweak))
3890 continue;
3891
3892 amt = p - h->root.root.string;
3893 shortname = bfd_malloc (amt + 1);
3894 memcpy (shortname, h->root.root.string, amt);
3895 shortname[amt] = '\0';
3896
3897 hi = (struct elf_link_hash_entry *)
3898 bfd_link_hash_lookup (&hash_table->root, shortname,
3899 FALSE, FALSE, FALSE);
3900 if (hi != NULL
3901 && hi->root.type == h->root.type
3902 && hi->root.u.def.value == h->root.u.def.value
3903 && hi->root.u.def.section == h->root.u.def.section)
3904 {
3905 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
3906 hi->root.type = bfd_link_hash_indirect;
3907 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
3908 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
3909 sym_hash = elf_sym_hashes (abfd);
3910 if (sym_hash)
3911 for (symidx = 0; symidx < extsymcount; ++symidx)
3912 if (sym_hash[symidx] == hi)
3913 {
3914 sym_hash[symidx] = h;
3915 break;
3916 }
3917 }
3918 free (shortname);
3919 }
3920 free (nondeflt_vers);
3921 nondeflt_vers = NULL;
3922 }
3923
3924 if (extversym != NULL)
3925 {
3926 free (extversym);
3927 extversym = NULL;
3928 }
3929
3930 if (isymbuf != NULL)
3931 free (isymbuf);
3932 isymbuf = NULL;
3933
3934 /* Now set the weakdefs field correctly for all the weak defined
3935 symbols we found. The only way to do this is to search all the
3936 symbols. Since we only need the information for non functions in
3937 dynamic objects, that's the only time we actually put anything on
3938 the list WEAKS. We need this information so that if a regular
3939 object refers to a symbol defined weakly in a dynamic object, the
3940 real symbol in the dynamic object is also put in the dynamic
3941 symbols; we also must arrange for both symbols to point to the
3942 same memory location. We could handle the general case of symbol
3943 aliasing, but a general symbol alias can only be generated in
3944 assembler code, handling it correctly would be very time
3945 consuming, and other ELF linkers don't handle general aliasing
3946 either. */
3947 if (weaks != NULL)
3948 {
3949 struct elf_link_hash_entry **hpp;
3950 struct elf_link_hash_entry **hppend;
3951 struct elf_link_hash_entry **sorted_sym_hash;
3952 struct elf_link_hash_entry *h;
3953 size_t sym_count;
3954
3955 /* Since we have to search the whole symbol list for each weak
3956 defined symbol, search time for N weak defined symbols will be
3957 O(N^2). Binary search will cut it down to O(NlogN). */
3958 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3959 sorted_sym_hash = bfd_malloc (amt);
3960 if (sorted_sym_hash == NULL)
3961 goto error_return;
3962 sym_hash = sorted_sym_hash;
3963 hpp = elf_sym_hashes (abfd);
3964 hppend = hpp + extsymcount;
3965 sym_count = 0;
3966 for (; hpp < hppend; hpp++)
3967 {
3968 h = *hpp;
3969 if (h != NULL
3970 && h->root.type == bfd_link_hash_defined
3971 && h->type != STT_FUNC)
3972 {
3973 *sym_hash = h;
3974 sym_hash++;
3975 sym_count++;
3976 }
3977 }
3978
3979 qsort (sorted_sym_hash, sym_count,
3980 sizeof (struct elf_link_hash_entry *),
3981 elf_sort_symbol);
3982
3983 while (weaks != NULL)
3984 {
3985 struct elf_link_hash_entry *hlook;
3986 asection *slook;
3987 bfd_vma vlook;
3988 long ilook;
3989 size_t i, j, idx;
3990
3991 hlook = weaks;
3992 weaks = hlook->weakdef;
3993 hlook->weakdef = NULL;
3994
3995 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
3996 || hlook->root.type == bfd_link_hash_defweak
3997 || hlook->root.type == bfd_link_hash_common
3998 || hlook->root.type == bfd_link_hash_indirect);
3999 slook = hlook->root.u.def.section;
4000 vlook = hlook->root.u.def.value;
4001
4002 ilook = -1;
4003 i = 0;
4004 j = sym_count;
4005 while (i < j)
4006 {
4007 bfd_signed_vma vdiff;
4008 idx = (i + j) / 2;
4009 h = sorted_sym_hash [idx];
4010 vdiff = vlook - h->root.u.def.value;
4011 if (vdiff < 0)
4012 j = idx;
4013 else if (vdiff > 0)
4014 i = idx + 1;
4015 else
4016 {
a9b881be 4017 long sdiff = slook->id - h->root.u.def.section->id;
4ad4eba5
AM
4018 if (sdiff < 0)
4019 j = idx;
4020 else if (sdiff > 0)
4021 i = idx + 1;
4022 else
4023 {
4024 ilook = idx;
4025 break;
4026 }
4027 }
4028 }
4029
4030 /* We didn't find a value/section match. */
4031 if (ilook == -1)
4032 continue;
4033
4034 for (i = ilook; i < sym_count; i++)
4035 {
4036 h = sorted_sym_hash [i];
4037
4038 /* Stop if value or section doesn't match. */
4039 if (h->root.u.def.value != vlook
4040 || h->root.u.def.section != slook)
4041 break;
4042 else if (h != hlook)
4043 {
4044 hlook->weakdef = h;
4045
4046 /* If the weak definition is in the list of dynamic
4047 symbols, make sure the real definition is put
4048 there as well. */
4049 if (hlook->dynindx != -1 && h->dynindx == -1)
4050 {
c152c796 4051 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5
AM
4052 goto error_return;
4053 }
4054
4055 /* If the real definition is in the list of dynamic
4056 symbols, make sure the weak definition is put
4057 there as well. If we don't do this, then the
4058 dynamic loader might not merge the entries for the
4059 real definition and the weak definition. */
4060 if (h->dynindx != -1 && hlook->dynindx == -1)
4061 {
c152c796 4062 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4ad4eba5
AM
4063 goto error_return;
4064 }
4065 break;
4066 }
4067 }
4068 }
4069
4070 free (sorted_sym_hash);
4071 }
4072
85fbca6a
NC
4073 check_directives = get_elf_backend_data (abfd)->check_directives;
4074 if (check_directives)
4075 check_directives (abfd, info);
4076
4ad4eba5
AM
4077 /* If this object is the same format as the output object, and it is
4078 not a shared library, then let the backend look through the
4079 relocs.
4080
4081 This is required to build global offset table entries and to
4082 arrange for dynamic relocs. It is not required for the
4083 particular common case of linking non PIC code, even when linking
4084 against shared libraries, but unfortunately there is no way of
4085 knowing whether an object file has been compiled PIC or not.
4086 Looking through the relocs is not particularly time consuming.
4087 The problem is that we must either (1) keep the relocs in memory,
4088 which causes the linker to require additional runtime memory or
4089 (2) read the relocs twice from the input file, which wastes time.
4090 This would be a good case for using mmap.
4091
4092 I have no idea how to handle linking PIC code into a file of a
4093 different format. It probably can't be done. */
4094 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4095 if (! dynamic
4096 && is_elf_hash_table (hash_table)
4097 && hash_table->root.creator == abfd->xvec
4098 && check_relocs != NULL)
4099 {
4100 asection *o;
4101
4102 for (o = abfd->sections; o != NULL; o = o->next)
4103 {
4104 Elf_Internal_Rela *internal_relocs;
4105 bfd_boolean ok;
4106
4107 if ((o->flags & SEC_RELOC) == 0
4108 || o->reloc_count == 0
4109 || ((info->strip == strip_all || info->strip == strip_debugger)
4110 && (o->flags & SEC_DEBUGGING) != 0)
4111 || bfd_is_abs_section (o->output_section))
4112 continue;
4113
4114 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4115 info->keep_memory);
4116 if (internal_relocs == NULL)
4117 goto error_return;
4118
4119 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4120
4121 if (elf_section_data (o)->relocs != internal_relocs)
4122 free (internal_relocs);
4123
4124 if (! ok)
4125 goto error_return;
4126 }
4127 }
4128
4129 /* If this is a non-traditional link, try to optimize the handling
4130 of the .stab/.stabstr sections. */
4131 if (! dynamic
4132 && ! info->traditional_format
4133 && is_elf_hash_table (hash_table)
4134 && (info->strip != strip_all && info->strip != strip_debugger))
4135 {
4136 asection *stabstr;
4137
4138 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4139 if (stabstr != NULL)
4140 {
4141 bfd_size_type string_offset = 0;
4142 asection *stab;
4143
4144 for (stab = abfd->sections; stab; stab = stab->next)
4145 if (strncmp (".stab", stab->name, 5) == 0
4146 && (!stab->name[5] ||
4147 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4148 && (stab->flags & SEC_MERGE) == 0
4149 && !bfd_is_abs_section (stab->output_section))
4150 {
4151 struct bfd_elf_section_data *secdata;
4152
4153 secdata = elf_section_data (stab);
4154 if (! _bfd_link_section_stabs (abfd,
3722b82f 4155 &hash_table->stab_info,
4ad4eba5
AM
4156 stab, stabstr,
4157 &secdata->sec_info,
4158 &string_offset))
4159 goto error_return;
4160 if (secdata->sec_info)
4161 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4162 }
4163 }
4164 }
4165
4ad4eba5
AM
4166 if (is_elf_hash_table (hash_table))
4167 {
4168 /* Add this bfd to the loaded list. */
4169 struct elf_link_loaded_list *n;
4170
4171 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4172 if (n == NULL)
4173 goto error_return;
4174 n->abfd = abfd;
4175 n->next = hash_table->loaded;
4176 hash_table->loaded = n;
4177 }
4178
4179 return TRUE;
4180
4181 error_free_vers:
4182 if (nondeflt_vers != NULL)
4183 free (nondeflt_vers);
4184 if (extversym != NULL)
4185 free (extversym);
4186 error_free_sym:
4187 if (isymbuf != NULL)
4188 free (isymbuf);
4189 error_return:
4190 return FALSE;
4191}
4192
0ad989f9
L
4193/* Add symbols from an ELF archive file to the linker hash table. We
4194 don't use _bfd_generic_link_add_archive_symbols because of a
4195 problem which arises on UnixWare. The UnixWare libc.so is an
4196 archive which includes an entry libc.so.1 which defines a bunch of
4197 symbols. The libc.so archive also includes a number of other
4198 object files, which also define symbols, some of which are the same
4199 as those defined in libc.so.1. Correct linking requires that we
4200 consider each object file in turn, and include it if it defines any
4201 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4202 this; it looks through the list of undefined symbols, and includes
4203 any object file which defines them. When this algorithm is used on
4204 UnixWare, it winds up pulling in libc.so.1 early and defining a
4205 bunch of symbols. This means that some of the other objects in the
4206 archive are not included in the link, which is incorrect since they
4207 precede libc.so.1 in the archive.
4208
4209 Fortunately, ELF archive handling is simpler than that done by
4210 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4211 oddities. In ELF, if we find a symbol in the archive map, and the
4212 symbol is currently undefined, we know that we must pull in that
4213 object file.
4214
4215 Unfortunately, we do have to make multiple passes over the symbol
4216 table until nothing further is resolved. */
4217
4ad4eba5
AM
4218static bfd_boolean
4219elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
0ad989f9
L
4220{
4221 symindex c;
4222 bfd_boolean *defined = NULL;
4223 bfd_boolean *included = NULL;
4224 carsym *symdefs;
4225 bfd_boolean loop;
4226 bfd_size_type amt;
4227
4228 if (! bfd_has_map (abfd))
4229 {
4230 /* An empty archive is a special case. */
4231 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4232 return TRUE;
4233 bfd_set_error (bfd_error_no_armap);
4234 return FALSE;
4235 }
4236
4237 /* Keep track of all symbols we know to be already defined, and all
4238 files we know to be already included. This is to speed up the
4239 second and subsequent passes. */
4240 c = bfd_ardata (abfd)->symdef_count;
4241 if (c == 0)
4242 return TRUE;
4243 amt = c;
4244 amt *= sizeof (bfd_boolean);
4245 defined = bfd_zmalloc (amt);
4246 included = bfd_zmalloc (amt);
4247 if (defined == NULL || included == NULL)
4248 goto error_return;
4249
4250 symdefs = bfd_ardata (abfd)->symdefs;
4251
4252 do
4253 {
4254 file_ptr last;
4255 symindex i;
4256 carsym *symdef;
4257 carsym *symdefend;
4258
4259 loop = FALSE;
4260 last = -1;
4261
4262 symdef = symdefs;
4263 symdefend = symdef + c;
4264 for (i = 0; symdef < symdefend; symdef++, i++)
4265 {
4266 struct elf_link_hash_entry *h;
4267 bfd *element;
4268 struct bfd_link_hash_entry *undefs_tail;
4269 symindex mark;
4270
4271 if (defined[i] || included[i])
4272 continue;
4273 if (symdef->file_offset == last)
4274 {
4275 included[i] = TRUE;
4276 continue;
4277 }
4278
4279 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
4280 FALSE, FALSE, FALSE);
4281
4282 if (h == NULL)
4283 {
4284 char *p, *copy;
4285 size_t len, first;
4286
4287 /* If this is a default version (the name contains @@),
4288 look up the symbol again with only one `@' as well
4289 as without the version. The effect is that references
4290 to the symbol with and without the version will be
4291 matched by the default symbol in the archive. */
4292
4293 p = strchr (symdef->name, ELF_VER_CHR);
4294 if (p == NULL || p[1] != ELF_VER_CHR)
4295 continue;
4296
4297 /* First check with only one `@'. */
4298 len = strlen (symdef->name);
4299 copy = bfd_alloc (abfd, len);
4300 if (copy == NULL)
4301 goto error_return;
4302 first = p - symdef->name + 1;
4303 memcpy (copy, symdef->name, first);
4304 memcpy (copy + first, symdef->name + first + 1, len - first);
4305
4306 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4307 FALSE, FALSE, FALSE);
4308
4309 if (h == NULL)
4310 {
4311 /* We also need to check references to the symbol
4312 without the version. */
4313
4314 copy[first - 1] = '\0';
4315 h = elf_link_hash_lookup (elf_hash_table (info),
4316 copy, FALSE, FALSE, FALSE);
4317 }
4318
4319 bfd_release (abfd, copy);
4320 }
4321
4322 if (h == NULL)
4323 continue;
4324
4325 if (h->root.type == bfd_link_hash_common)
4326 {
4327 /* We currently have a common symbol. The archive map contains
4328 a reference to this symbol, so we may want to include it. We
4329 only want to include it however, if this archive element
4330 contains a definition of the symbol, not just another common
4331 declaration of it.
4332
4333 Unfortunately some archivers (including GNU ar) will put
4334 declarations of common symbols into their archive maps, as
4335 well as real definitions, so we cannot just go by the archive
4336 map alone. Instead we must read in the element's symbol
4337 table and check that to see what kind of symbol definition
4338 this is. */
4339 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4340 continue;
4341 }
4342 else if (h->root.type != bfd_link_hash_undefined)
4343 {
4344 if (h->root.type != bfd_link_hash_undefweak)
4345 defined[i] = TRUE;
4346 continue;
4347 }
4348
4349 /* We need to include this archive member. */
4350 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4351 if (element == NULL)
4352 goto error_return;
4353
4354 if (! bfd_check_format (element, bfd_object))
4355 goto error_return;
4356
4357 /* Doublecheck that we have not included this object
4358 already--it should be impossible, but there may be
4359 something wrong with the archive. */
4360 if (element->archive_pass != 0)
4361 {
4362 bfd_set_error (bfd_error_bad_value);
4363 goto error_return;
4364 }
4365 element->archive_pass = 1;
4366
4367 undefs_tail = info->hash->undefs_tail;
4368
4369 if (! (*info->callbacks->add_archive_element) (info, element,
4370 symdef->name))
4371 goto error_return;
4372 if (! bfd_link_add_symbols (element, info))
4373 goto error_return;
4374
4375 /* If there are any new undefined symbols, we need to make
4376 another pass through the archive in order to see whether
4377 they can be defined. FIXME: This isn't perfect, because
4378 common symbols wind up on undefs_tail and because an
4379 undefined symbol which is defined later on in this pass
4380 does not require another pass. This isn't a bug, but it
4381 does make the code less efficient than it could be. */
4382 if (undefs_tail != info->hash->undefs_tail)
4383 loop = TRUE;
4384
4385 /* Look backward to mark all symbols from this object file
4386 which we have already seen in this pass. */
4387 mark = i;
4388 do
4389 {
4390 included[mark] = TRUE;
4391 if (mark == 0)
4392 break;
4393 --mark;
4394 }
4395 while (symdefs[mark].file_offset == symdef->file_offset);
4396
4397 /* We mark subsequent symbols from this object file as we go
4398 on through the loop. */
4399 last = symdef->file_offset;
4400 }
4401 }
4402 while (loop);
4403
4404 free (defined);
4405 free (included);
4406
4407 return TRUE;
4408
4409 error_return:
4410 if (defined != NULL)
4411 free (defined);
4412 if (included != NULL)
4413 free (included);
4414 return FALSE;
4415}
4ad4eba5
AM
4416
4417/* Given an ELF BFD, add symbols to the global hash table as
4418 appropriate. */
4419
4420bfd_boolean
4421bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4422{
4423 switch (bfd_get_format (abfd))
4424 {
4425 case bfd_object:
4426 return elf_link_add_object_symbols (abfd, info);
4427 case bfd_archive:
4428 return elf_link_add_archive_symbols (abfd, info);
4429 default:
4430 bfd_set_error (bfd_error_wrong_format);
4431 return FALSE;
4432 }
4433}
5a580b3a
AM
4434\f
4435/* This function will be called though elf_link_hash_traverse to store
4436 all hash value of the exported symbols in an array. */
4437
4438static bfd_boolean
4439elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4440{
4441 unsigned long **valuep = data;
4442 const char *name;
4443 char *p;
4444 unsigned long ha;
4445 char *alc = NULL;
4446
4447 if (h->root.type == bfd_link_hash_warning)
4448 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4449
4450 /* Ignore indirect symbols. These are added by the versioning code. */
4451 if (h->dynindx == -1)
4452 return TRUE;
4453
4454 name = h->root.root.string;
4455 p = strchr (name, ELF_VER_CHR);
4456 if (p != NULL)
4457 {
4458 alc = bfd_malloc (p - name + 1);
4459 memcpy (alc, name, p - name);
4460 alc[p - name] = '\0';
4461 name = alc;
4462 }
4463
4464 /* Compute the hash value. */
4465 ha = bfd_elf_hash (name);
4466
4467 /* Store the found hash value in the array given as the argument. */
4468 *(*valuep)++ = ha;
4469
4470 /* And store it in the struct so that we can put it in the hash table
4471 later. */
4472 h->elf_hash_value = ha;
4473
4474 if (alc != NULL)
4475 free (alc);
4476
4477 return TRUE;
4478}
4479
4480/* Array used to determine the number of hash table buckets to use
4481 based on the number of symbols there are. If there are fewer than
4482 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4483 fewer than 37 we use 17 buckets, and so forth. We never use more
4484 than 32771 buckets. */
4485
4486static const size_t elf_buckets[] =
4487{
4488 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4489 16411, 32771, 0
4490};
4491
4492/* Compute bucket count for hashing table. We do not use a static set
4493 of possible tables sizes anymore. Instead we determine for all
4494 possible reasonable sizes of the table the outcome (i.e., the
4495 number of collisions etc) and choose the best solution. The
4496 weighting functions are not too simple to allow the table to grow
4497 without bounds. Instead one of the weighting factors is the size.
4498 Therefore the result is always a good payoff between few collisions
4499 (= short chain lengths) and table size. */
4500static size_t
4501compute_bucket_count (struct bfd_link_info *info)
4502{
4503 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4504 size_t best_size = 0;
4505 unsigned long int *hashcodes;
4506 unsigned long int *hashcodesp;
4507 unsigned long int i;
4508 bfd_size_type amt;
4509
4510 /* Compute the hash values for all exported symbols. At the same
4511 time store the values in an array so that we could use them for
4512 optimizations. */
4513 amt = dynsymcount;
4514 amt *= sizeof (unsigned long int);
4515 hashcodes = bfd_malloc (amt);
4516 if (hashcodes == NULL)
4517 return 0;
4518 hashcodesp = hashcodes;
4519
4520 /* Put all hash values in HASHCODES. */
4521 elf_link_hash_traverse (elf_hash_table (info),
4522 elf_collect_hash_codes, &hashcodesp);
4523
4524 /* We have a problem here. The following code to optimize the table
4525 size requires an integer type with more the 32 bits. If
4526 BFD_HOST_U_64_BIT is set we know about such a type. */
4527#ifdef BFD_HOST_U_64_BIT
4528 if (info->optimize)
4529 {
4530 unsigned long int nsyms = hashcodesp - hashcodes;
4531 size_t minsize;
4532 size_t maxsize;
4533 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4534 unsigned long int *counts ;
4535 bfd *dynobj = elf_hash_table (info)->dynobj;
4536 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4537
4538 /* Possible optimization parameters: if we have NSYMS symbols we say
4539 that the hashing table must at least have NSYMS/4 and at most
4540 2*NSYMS buckets. */
4541 minsize = nsyms / 4;
4542 if (minsize == 0)
4543 minsize = 1;
4544 best_size = maxsize = nsyms * 2;
4545
4546 /* Create array where we count the collisions in. We must use bfd_malloc
4547 since the size could be large. */
4548 amt = maxsize;
4549 amt *= sizeof (unsigned long int);
4550 counts = bfd_malloc (amt);
4551 if (counts == NULL)
4552 {
4553 free (hashcodes);
4554 return 0;
4555 }
4556
4557 /* Compute the "optimal" size for the hash table. The criteria is a
4558 minimal chain length. The minor criteria is (of course) the size
4559 of the table. */
4560 for (i = minsize; i < maxsize; ++i)
4561 {
4562 /* Walk through the array of hashcodes and count the collisions. */
4563 BFD_HOST_U_64_BIT max;
4564 unsigned long int j;
4565 unsigned long int fact;
4566
4567 memset (counts, '\0', i * sizeof (unsigned long int));
4568
4569 /* Determine how often each hash bucket is used. */
4570 for (j = 0; j < nsyms; ++j)
4571 ++counts[hashcodes[j] % i];
4572
4573 /* For the weight function we need some information about the
4574 pagesize on the target. This is information need not be 100%
4575 accurate. Since this information is not available (so far) we
4576 define it here to a reasonable default value. If it is crucial
4577 to have a better value some day simply define this value. */
4578# ifndef BFD_TARGET_PAGESIZE
4579# define BFD_TARGET_PAGESIZE (4096)
4580# endif
4581
4582 /* We in any case need 2 + NSYMS entries for the size values and
4583 the chains. */
4584 max = (2 + nsyms) * (bed->s->arch_size / 8);
4585
4586# if 1
4587 /* Variant 1: optimize for short chains. We add the squares
4588 of all the chain lengths (which favors many small chain
4589 over a few long chains). */
4590 for (j = 0; j < i; ++j)
4591 max += counts[j] * counts[j];
4592
4593 /* This adds penalties for the overall size of the table. */
4594 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4595 max *= fact * fact;
4596# else
4597 /* Variant 2: Optimize a lot more for small table. Here we
4598 also add squares of the size but we also add penalties for
4599 empty slots (the +1 term). */
4600 for (j = 0; j < i; ++j)
4601 max += (1 + counts[j]) * (1 + counts[j]);
4602
4603 /* The overall size of the table is considered, but not as
4604 strong as in variant 1, where it is squared. */
4605 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4606 max *= fact;
4607# endif
4608
4609 /* Compare with current best results. */
4610 if (max < best_chlen)
4611 {
4612 best_chlen = max;
4613 best_size = i;
4614 }
4615 }
4616
4617 free (counts);
4618 }
4619 else
4620#endif /* defined (BFD_HOST_U_64_BIT) */
4621 {
4622 /* This is the fallback solution if no 64bit type is available or if we
4623 are not supposed to spend much time on optimizations. We select the
4624 bucket count using a fixed set of numbers. */
4625 for (i = 0; elf_buckets[i] != 0; i++)
4626 {
4627 best_size = elf_buckets[i];
4628 if (dynsymcount < elf_buckets[i + 1])
4629 break;
4630 }
4631 }
4632
4633 /* Free the arrays we needed. */
4634 free (hashcodes);
4635
4636 return best_size;
4637}
4638
4639/* Set up the sizes and contents of the ELF dynamic sections. This is
4640 called by the ELF linker emulation before_allocation routine. We
4641 must set the sizes of the sections before the linker sets the
4642 addresses of the various sections. */
4643
4644bfd_boolean
4645bfd_elf_size_dynamic_sections (bfd *output_bfd,
4646 const char *soname,
4647 const char *rpath,
4648 const char *filter_shlib,
4649 const char * const *auxiliary_filters,
4650 struct bfd_link_info *info,
4651 asection **sinterpptr,
4652 struct bfd_elf_version_tree *verdefs)
4653{
4654 bfd_size_type soname_indx;
4655 bfd *dynobj;
4656 const struct elf_backend_data *bed;
4657 struct elf_assign_sym_version_info asvinfo;
4658
4659 *sinterpptr = NULL;
4660
4661 soname_indx = (bfd_size_type) -1;
4662
4663 if (!is_elf_hash_table (info->hash))
4664 return TRUE;
4665
8c37241b 4666 elf_tdata (output_bfd)->relro = info->relro;
5a580b3a
AM
4667 if (info->execstack)
4668 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4669 else if (info->noexecstack)
4670 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4671 else
4672 {
4673 bfd *inputobj;
4674 asection *notesec = NULL;
4675 int exec = 0;
4676
4677 for (inputobj = info->input_bfds;
4678 inputobj;
4679 inputobj = inputobj->link_next)
4680 {
4681 asection *s;
4682
4683 if (inputobj->flags & DYNAMIC)
4684 continue;
4685 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4686 if (s)
4687 {
4688 if (s->flags & SEC_CODE)
4689 exec = PF_X;
4690 notesec = s;
4691 }
4692 else
4693 exec = PF_X;
4694 }
4695 if (notesec)
4696 {
4697 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4698 if (exec && info->relocatable
4699 && notesec->output_section != bfd_abs_section_ptr)
4700 notesec->output_section->flags |= SEC_CODE;
4701 }
4702 }
4703
4704 /* Any syms created from now on start with -1 in
4705 got.refcount/offset and plt.refcount/offset. */
4706 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4707
4708 /* The backend may have to create some sections regardless of whether
4709 we're dynamic or not. */
4710 bed = get_elf_backend_data (output_bfd);
4711 if (bed->elf_backend_always_size_sections
4712 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4713 return FALSE;
4714
4715 dynobj = elf_hash_table (info)->dynobj;
4716
4717 /* If there were no dynamic objects in the link, there is nothing to
4718 do here. */
4719 if (dynobj == NULL)
4720 return TRUE;
4721
4722 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
4723 return FALSE;
4724
4725 if (elf_hash_table (info)->dynamic_sections_created)
4726 {
4727 struct elf_info_failed eif;
4728 struct elf_link_hash_entry *h;
4729 asection *dynstr;
4730 struct bfd_elf_version_tree *t;
4731 struct bfd_elf_version_expr *d;
4732 bfd_boolean all_defined;
4733
4734 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
4735 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
4736
4737 if (soname != NULL)
4738 {
4739 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4740 soname, TRUE);
4741 if (soname_indx == (bfd_size_type) -1
4742 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
4743 return FALSE;
4744 }
4745
4746 if (info->symbolic)
4747 {
4748 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
4749 return FALSE;
4750 info->flags |= DF_SYMBOLIC;
4751 }
4752
4753 if (rpath != NULL)
4754 {
4755 bfd_size_type indx;
4756
4757 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
4758 TRUE);
4759 if (indx == (bfd_size_type) -1
4760 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
4761 return FALSE;
4762
4763 if (info->new_dtags)
4764 {
4765 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
4766 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
4767 return FALSE;
4768 }
4769 }
4770
4771 if (filter_shlib != NULL)
4772 {
4773 bfd_size_type indx;
4774
4775 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4776 filter_shlib, TRUE);
4777 if (indx == (bfd_size_type) -1
4778 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
4779 return FALSE;
4780 }
4781
4782 if (auxiliary_filters != NULL)
4783 {
4784 const char * const *p;
4785
4786 for (p = auxiliary_filters; *p != NULL; p++)
4787 {
4788 bfd_size_type indx;
4789
4790 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4791 *p, TRUE);
4792 if (indx == (bfd_size_type) -1
4793 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
4794 return FALSE;
4795 }
4796 }
4797
4798 eif.info = info;
4799 eif.verdefs = verdefs;
4800 eif.failed = FALSE;
4801
4802 /* If we are supposed to export all symbols into the dynamic symbol
4803 table (this is not the normal case), then do so. */
4804 if (info->export_dynamic)
4805 {
4806 elf_link_hash_traverse (elf_hash_table (info),
4807 _bfd_elf_export_symbol,
4808 &eif);
4809 if (eif.failed)
4810 return FALSE;
4811 }
4812
4813 /* Make all global versions with definition. */
4814 for (t = verdefs; t != NULL; t = t->next)
4815 for (d = t->globals.list; d != NULL; d = d->next)
4816 if (!d->symver && d->symbol)
4817 {
4818 const char *verstr, *name;
4819 size_t namelen, verlen, newlen;
4820 char *newname, *p;
4821 struct elf_link_hash_entry *newh;
4822
4823 name = d->symbol;
4824 namelen = strlen (name);
4825 verstr = t->name;
4826 verlen = strlen (verstr);
4827 newlen = namelen + verlen + 3;
4828
4829 newname = bfd_malloc (newlen);
4830 if (newname == NULL)
4831 return FALSE;
4832 memcpy (newname, name, namelen);
4833
4834 /* Check the hidden versioned definition. */
4835 p = newname + namelen;
4836 *p++ = ELF_VER_CHR;
4837 memcpy (p, verstr, verlen + 1);
4838 newh = elf_link_hash_lookup (elf_hash_table (info),
4839 newname, FALSE, FALSE,
4840 FALSE);
4841 if (newh == NULL
4842 || (newh->root.type != bfd_link_hash_defined
4843 && newh->root.type != bfd_link_hash_defweak))
4844 {
4845 /* Check the default versioned definition. */
4846 *p++ = ELF_VER_CHR;
4847 memcpy (p, verstr, verlen + 1);
4848 newh = elf_link_hash_lookup (elf_hash_table (info),
4849 newname, FALSE, FALSE,
4850 FALSE);
4851 }
4852 free (newname);
4853
4854 /* Mark this version if there is a definition and it is
4855 not defined in a shared object. */
4856 if (newh != NULL
4857 && ((newh->elf_link_hash_flags
4858 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
4859 && (newh->root.type == bfd_link_hash_defined
4860 || newh->root.type == bfd_link_hash_defweak))
4861 d->symver = 1;
4862 }
4863
4864 /* Attach all the symbols to their version information. */
4865 asvinfo.output_bfd = output_bfd;
4866 asvinfo.info = info;
4867 asvinfo.verdefs = verdefs;
4868 asvinfo.failed = FALSE;
4869
4870 elf_link_hash_traverse (elf_hash_table (info),
4871 _bfd_elf_link_assign_sym_version,
4872 &asvinfo);
4873 if (asvinfo.failed)
4874 return FALSE;
4875
4876 if (!info->allow_undefined_version)
4877 {
4878 /* Check if all global versions have a definition. */
4879 all_defined = TRUE;
4880 for (t = verdefs; t != NULL; t = t->next)
4881 for (d = t->globals.list; d != NULL; d = d->next)
4882 if (!d->symver && !d->script)
4883 {
4884 (*_bfd_error_handler)
4885 (_("%s: undefined version: %s"),
4886 d->pattern, t->name);
4887 all_defined = FALSE;
4888 }
4889
4890 if (!all_defined)
4891 {
4892 bfd_set_error (bfd_error_bad_value);
4893 return FALSE;
4894 }
4895 }
4896
4897 /* Find all symbols which were defined in a dynamic object and make
4898 the backend pick a reasonable value for them. */
4899 elf_link_hash_traverse (elf_hash_table (info),
4900 _bfd_elf_adjust_dynamic_symbol,
4901 &eif);
4902 if (eif.failed)
4903 return FALSE;
4904
4905 /* Add some entries to the .dynamic section. We fill in some of the
4906 values later, in elf_bfd_final_link, but we must add the entries
4907 now so that we know the final size of the .dynamic section. */
4908
4909 /* If there are initialization and/or finalization functions to
4910 call then add the corresponding DT_INIT/DT_FINI entries. */
4911 h = (info->init_function
4912 ? elf_link_hash_lookup (elf_hash_table (info),
4913 info->init_function, FALSE,
4914 FALSE, FALSE)
4915 : NULL);
4916 if (h != NULL
4917 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
4918 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
4919 {
4920 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
4921 return FALSE;
4922 }
4923 h = (info->fini_function
4924 ? elf_link_hash_lookup (elf_hash_table (info),
4925 info->fini_function, FALSE,
4926 FALSE, FALSE)
4927 : NULL);
4928 if (h != NULL
4929 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
4930 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
4931 {
4932 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
4933 return FALSE;
4934 }
4935
4936 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
4937 {
4938 /* DT_PREINIT_ARRAY is not allowed in shared library. */
4939 if (! info->executable)
4940 {
4941 bfd *sub;
4942 asection *o;
4943
4944 for (sub = info->input_bfds; sub != NULL;
4945 sub = sub->link_next)
4946 for (o = sub->sections; o != NULL; o = o->next)
4947 if (elf_section_data (o)->this_hdr.sh_type
4948 == SHT_PREINIT_ARRAY)
4949 {
4950 (*_bfd_error_handler)
4951 (_("%s: .preinit_array section is not allowed in DSO"),
4952 bfd_archive_filename (sub));
4953 break;
4954 }
4955
4956 bfd_set_error (bfd_error_nonrepresentable_section);
4957 return FALSE;
4958 }
4959
4960 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
4961 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
4962 return FALSE;
4963 }
4964 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
4965 {
4966 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
4967 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
4968 return FALSE;
4969 }
4970 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
4971 {
4972 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
4973 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
4974 return FALSE;
4975 }
4976
4977 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
4978 /* If .dynstr is excluded from the link, we don't want any of
4979 these tags. Strictly, we should be checking each section
4980 individually; This quick check covers for the case where
4981 someone does a /DISCARD/ : { *(*) }. */
4982 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
4983 {
4984 bfd_size_type strsize;
4985
4986 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
4987 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
4988 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
4989 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
4990 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
4991 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
4992 bed->s->sizeof_sym))
4993 return FALSE;
4994 }
4995 }
4996
4997 /* The backend must work out the sizes of all the other dynamic
4998 sections. */
4999 if (bed->elf_backend_size_dynamic_sections
5000 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5001 return FALSE;
5002
5003 if (elf_hash_table (info)->dynamic_sections_created)
5004 {
5005 bfd_size_type dynsymcount;
5006 asection *s;
5007 size_t bucketcount = 0;
5008 size_t hash_entry_size;
5009 unsigned int dtagcount;
5010
5011 /* Set up the version definition section. */
5012 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5013 BFD_ASSERT (s != NULL);
5014
5015 /* We may have created additional version definitions if we are
5016 just linking a regular application. */
5017 verdefs = asvinfo.verdefs;
5018
5019 /* Skip anonymous version tag. */
5020 if (verdefs != NULL && verdefs->vernum == 0)
5021 verdefs = verdefs->next;
5022
5023 if (verdefs == NULL)
5024 _bfd_strip_section_from_output (info, s);
5025 else
5026 {
5027 unsigned int cdefs;
5028 bfd_size_type size;
5029 struct bfd_elf_version_tree *t;
5030 bfd_byte *p;
5031 Elf_Internal_Verdef def;
5032 Elf_Internal_Verdaux defaux;
5033
5034 cdefs = 0;
5035 size = 0;
5036
5037 /* Make space for the base version. */
5038 size += sizeof (Elf_External_Verdef);
5039 size += sizeof (Elf_External_Verdaux);
5040 ++cdefs;
5041
5042 for (t = verdefs; t != NULL; t = t->next)
5043 {
5044 struct bfd_elf_version_deps *n;
5045
5046 size += sizeof (Elf_External_Verdef);
5047 size += sizeof (Elf_External_Verdaux);
5048 ++cdefs;
5049
5050 for (n = t->deps; n != NULL; n = n->next)
5051 size += sizeof (Elf_External_Verdaux);
5052 }
5053
eea6121a
AM
5054 s->size = size;
5055 s->contents = bfd_alloc (output_bfd, s->size);
5056 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5057 return FALSE;
5058
5059 /* Fill in the version definition section. */
5060
5061 p = s->contents;
5062
5063 def.vd_version = VER_DEF_CURRENT;
5064 def.vd_flags = VER_FLG_BASE;
5065 def.vd_ndx = 1;
5066 def.vd_cnt = 1;
5067 def.vd_aux = sizeof (Elf_External_Verdef);
5068 def.vd_next = (sizeof (Elf_External_Verdef)
5069 + sizeof (Elf_External_Verdaux));
5070
5071 if (soname_indx != (bfd_size_type) -1)
5072 {
5073 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5074 soname_indx);
5075 def.vd_hash = bfd_elf_hash (soname);
5076 defaux.vda_name = soname_indx;
5077 }
5078 else
5079 {
5080 const char *name;
5081 bfd_size_type indx;
5082
5083 name = basename (output_bfd->filename);
5084 def.vd_hash = bfd_elf_hash (name);
5085 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5086 name, FALSE);
5087 if (indx == (bfd_size_type) -1)
5088 return FALSE;
5089 defaux.vda_name = indx;
5090 }
5091 defaux.vda_next = 0;
5092
5093 _bfd_elf_swap_verdef_out (output_bfd, &def,
5094 (Elf_External_Verdef *) p);
5095 p += sizeof (Elf_External_Verdef);
5096 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5097 (Elf_External_Verdaux *) p);
5098 p += sizeof (Elf_External_Verdaux);
5099
5100 for (t = verdefs; t != NULL; t = t->next)
5101 {
5102 unsigned int cdeps;
5103 struct bfd_elf_version_deps *n;
5104 struct elf_link_hash_entry *h;
5105 struct bfd_link_hash_entry *bh;
5106
5107 cdeps = 0;
5108 for (n = t->deps; n != NULL; n = n->next)
5109 ++cdeps;
5110
5111 /* Add a symbol representing this version. */
5112 bh = NULL;
5113 if (! (_bfd_generic_link_add_one_symbol
5114 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5115 0, NULL, FALSE,
5116 get_elf_backend_data (dynobj)->collect, &bh)))
5117 return FALSE;
5118 h = (struct elf_link_hash_entry *) bh;
5119 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
5120 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5121 h->type = STT_OBJECT;
5122 h->verinfo.vertree = t;
5123
c152c796 5124 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5a580b3a
AM
5125 return FALSE;
5126
5127 def.vd_version = VER_DEF_CURRENT;
5128 def.vd_flags = 0;
5129 if (t->globals.list == NULL
5130 && t->locals.list == NULL
5131 && ! t->used)
5132 def.vd_flags |= VER_FLG_WEAK;
5133 def.vd_ndx = t->vernum + 1;
5134 def.vd_cnt = cdeps + 1;
5135 def.vd_hash = bfd_elf_hash (t->name);
5136 def.vd_aux = sizeof (Elf_External_Verdef);
5137 def.vd_next = 0;
5138 if (t->next != NULL)
5139 def.vd_next = (sizeof (Elf_External_Verdef)
5140 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5141
5142 _bfd_elf_swap_verdef_out (output_bfd, &def,
5143 (Elf_External_Verdef *) p);
5144 p += sizeof (Elf_External_Verdef);
5145
5146 defaux.vda_name = h->dynstr_index;
5147 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5148 h->dynstr_index);
5149 defaux.vda_next = 0;
5150 if (t->deps != NULL)
5151 defaux.vda_next = sizeof (Elf_External_Verdaux);
5152 t->name_indx = defaux.vda_name;
5153
5154 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5155 (Elf_External_Verdaux *) p);
5156 p += sizeof (Elf_External_Verdaux);
5157
5158 for (n = t->deps; n != NULL; n = n->next)
5159 {
5160 if (n->version_needed == NULL)
5161 {
5162 /* This can happen if there was an error in the
5163 version script. */
5164 defaux.vda_name = 0;
5165 }
5166 else
5167 {
5168 defaux.vda_name = n->version_needed->name_indx;
5169 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5170 defaux.vda_name);
5171 }
5172 if (n->next == NULL)
5173 defaux.vda_next = 0;
5174 else
5175 defaux.vda_next = sizeof (Elf_External_Verdaux);
5176
5177 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5178 (Elf_External_Verdaux *) p);
5179 p += sizeof (Elf_External_Verdaux);
5180 }
5181 }
5182
5183 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5184 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5185 return FALSE;
5186
5187 elf_tdata (output_bfd)->cverdefs = cdefs;
5188 }
5189
5190 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5191 {
5192 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5193 return FALSE;
5194 }
5195 else if (info->flags & DF_BIND_NOW)
5196 {
5197 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5198 return FALSE;
5199 }
5200
5201 if (info->flags_1)
5202 {
5203 if (info->executable)
5204 info->flags_1 &= ~ (DF_1_INITFIRST
5205 | DF_1_NODELETE
5206 | DF_1_NOOPEN);
5207 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5208 return FALSE;
5209 }
5210
5211 /* Work out the size of the version reference section. */
5212
5213 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5214 BFD_ASSERT (s != NULL);
5215 {
5216 struct elf_find_verdep_info sinfo;
5217
5218 sinfo.output_bfd = output_bfd;
5219 sinfo.info = info;
5220 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5221 if (sinfo.vers == 0)
5222 sinfo.vers = 1;
5223 sinfo.failed = FALSE;
5224
5225 elf_link_hash_traverse (elf_hash_table (info),
5226 _bfd_elf_link_find_version_dependencies,
5227 &sinfo);
5228
5229 if (elf_tdata (output_bfd)->verref == NULL)
5230 _bfd_strip_section_from_output (info, s);
5231 else
5232 {
5233 Elf_Internal_Verneed *t;
5234 unsigned int size;
5235 unsigned int crefs;
5236 bfd_byte *p;
5237
5238 /* Build the version definition section. */
5239 size = 0;
5240 crefs = 0;
5241 for (t = elf_tdata (output_bfd)->verref;
5242 t != NULL;
5243 t = t->vn_nextref)
5244 {
5245 Elf_Internal_Vernaux *a;
5246
5247 size += sizeof (Elf_External_Verneed);
5248 ++crefs;
5249 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5250 size += sizeof (Elf_External_Vernaux);
5251 }
5252
eea6121a
AM
5253 s->size = size;
5254 s->contents = bfd_alloc (output_bfd, s->size);
5a580b3a
AM
5255 if (s->contents == NULL)
5256 return FALSE;
5257
5258 p = s->contents;
5259 for (t = elf_tdata (output_bfd)->verref;
5260 t != NULL;
5261 t = t->vn_nextref)
5262 {
5263 unsigned int caux;
5264 Elf_Internal_Vernaux *a;
5265 bfd_size_type indx;
5266
5267 caux = 0;
5268 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5269 ++caux;
5270
5271 t->vn_version = VER_NEED_CURRENT;
5272 t->vn_cnt = caux;
5273 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5274 elf_dt_name (t->vn_bfd) != NULL
5275 ? elf_dt_name (t->vn_bfd)
5276 : basename (t->vn_bfd->filename),
5277 FALSE);
5278 if (indx == (bfd_size_type) -1)
5279 return FALSE;
5280 t->vn_file = indx;
5281 t->vn_aux = sizeof (Elf_External_Verneed);
5282 if (t->vn_nextref == NULL)
5283 t->vn_next = 0;
5284 else
5285 t->vn_next = (sizeof (Elf_External_Verneed)
5286 + caux * sizeof (Elf_External_Vernaux));
5287
5288 _bfd_elf_swap_verneed_out (output_bfd, t,
5289 (Elf_External_Verneed *) p);
5290 p += sizeof (Elf_External_Verneed);
5291
5292 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5293 {
5294 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5295 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5296 a->vna_nodename, FALSE);
5297 if (indx == (bfd_size_type) -1)
5298 return FALSE;
5299 a->vna_name = indx;
5300 if (a->vna_nextptr == NULL)
5301 a->vna_next = 0;
5302 else
5303 a->vna_next = sizeof (Elf_External_Vernaux);
5304
5305 _bfd_elf_swap_vernaux_out (output_bfd, a,
5306 (Elf_External_Vernaux *) p);
5307 p += sizeof (Elf_External_Vernaux);
5308 }
5309 }
5310
5311 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5312 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5313 return FALSE;
5314
5315 elf_tdata (output_bfd)->cverrefs = crefs;
5316 }
5317 }
5318
5319 /* Assign dynsym indicies. In a shared library we generate a
5320 section symbol for each output section, which come first.
5321 Next come all of the back-end allocated local dynamic syms,
5322 followed by the rest of the global symbols. */
5323
5324 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5325
5326 /* Work out the size of the symbol version section. */
5327 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5328 BFD_ASSERT (s != NULL);
5329 if (dynsymcount == 0
5330 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
5331 {
5332 _bfd_strip_section_from_output (info, s);
5333 /* The DYNSYMCOUNT might have changed if we were going to
5334 output a dynamic symbol table entry for S. */
5335 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5336 }
5337 else
5338 {
eea6121a
AM
5339 s->size = dynsymcount * sizeof (Elf_External_Versym);
5340 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5341 if (s->contents == NULL)
5342 return FALSE;
5343
5344 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5345 return FALSE;
5346 }
5347
5348 /* Set the size of the .dynsym and .hash sections. We counted
5349 the number of dynamic symbols in elf_link_add_object_symbols.
5350 We will build the contents of .dynsym and .hash when we build
5351 the final symbol table, because until then we do not know the
5352 correct value to give the symbols. We built the .dynstr
5353 section as we went along in elf_link_add_object_symbols. */
5354 s = bfd_get_section_by_name (dynobj, ".dynsym");
5355 BFD_ASSERT (s != NULL);
eea6121a
AM
5356 s->size = dynsymcount * bed->s->sizeof_sym;
5357 s->contents = bfd_alloc (output_bfd, s->size);
5358 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5359 return FALSE;
5360
5361 if (dynsymcount != 0)
5362 {
5363 Elf_Internal_Sym isym;
5364
5365 /* The first entry in .dynsym is a dummy symbol. */
5366 isym.st_value = 0;
5367 isym.st_size = 0;
5368 isym.st_name = 0;
5369 isym.st_info = 0;
5370 isym.st_other = 0;
5371 isym.st_shndx = 0;
5372 bed->s->swap_symbol_out (output_bfd, &isym, s->contents, 0);
5373 }
5374
5375 /* Compute the size of the hashing table. As a side effect this
5376 computes the hash values for all the names we export. */
5377 bucketcount = compute_bucket_count (info);
5378
5379 s = bfd_get_section_by_name (dynobj, ".hash");
5380 BFD_ASSERT (s != NULL);
5381 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
eea6121a
AM
5382 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5383 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5384 if (s->contents == NULL)
5385 return FALSE;
5386
5387 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5388 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5389 s->contents + hash_entry_size);
5390
5391 elf_hash_table (info)->bucketcount = bucketcount;
5392
5393 s = bfd_get_section_by_name (dynobj, ".dynstr");
5394 BFD_ASSERT (s != NULL);
5395
4ad4eba5 5396 elf_finalize_dynstr (output_bfd, info);
5a580b3a 5397
eea6121a 5398 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5a580b3a
AM
5399
5400 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5401 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5402 return FALSE;
5403 }
5404
5405 return TRUE;
5406}
c152c796
AM
5407
5408/* Final phase of ELF linker. */
5409
5410/* A structure we use to avoid passing large numbers of arguments. */
5411
5412struct elf_final_link_info
5413{
5414 /* General link information. */
5415 struct bfd_link_info *info;
5416 /* Output BFD. */
5417 bfd *output_bfd;
5418 /* Symbol string table. */
5419 struct bfd_strtab_hash *symstrtab;
5420 /* .dynsym section. */
5421 asection *dynsym_sec;
5422 /* .hash section. */
5423 asection *hash_sec;
5424 /* symbol version section (.gnu.version). */
5425 asection *symver_sec;
5426 /* Buffer large enough to hold contents of any section. */
5427 bfd_byte *contents;
5428 /* Buffer large enough to hold external relocs of any section. */
5429 void *external_relocs;
5430 /* Buffer large enough to hold internal relocs of any section. */
5431 Elf_Internal_Rela *internal_relocs;
5432 /* Buffer large enough to hold external local symbols of any input
5433 BFD. */
5434 bfd_byte *external_syms;
5435 /* And a buffer for symbol section indices. */
5436 Elf_External_Sym_Shndx *locsym_shndx;
5437 /* Buffer large enough to hold internal local symbols of any input
5438 BFD. */
5439 Elf_Internal_Sym *internal_syms;
5440 /* Array large enough to hold a symbol index for each local symbol
5441 of any input BFD. */
5442 long *indices;
5443 /* Array large enough to hold a section pointer for each local
5444 symbol of any input BFD. */
5445 asection **sections;
5446 /* Buffer to hold swapped out symbols. */
5447 bfd_byte *symbuf;
5448 /* And one for symbol section indices. */
5449 Elf_External_Sym_Shndx *symshndxbuf;
5450 /* Number of swapped out symbols in buffer. */
5451 size_t symbuf_count;
5452 /* Number of symbols which fit in symbuf. */
5453 size_t symbuf_size;
5454 /* And same for symshndxbuf. */
5455 size_t shndxbuf_size;
5456};
5457
5458/* This struct is used to pass information to elf_link_output_extsym. */
5459
5460struct elf_outext_info
5461{
5462 bfd_boolean failed;
5463 bfd_boolean localsyms;
5464 struct elf_final_link_info *finfo;
5465};
5466
5467/* When performing a relocatable link, the input relocations are
5468 preserved. But, if they reference global symbols, the indices
5469 referenced must be updated. Update all the relocations in
5470 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5471
5472static void
5473elf_link_adjust_relocs (bfd *abfd,
5474 Elf_Internal_Shdr *rel_hdr,
5475 unsigned int count,
5476 struct elf_link_hash_entry **rel_hash)
5477{
5478 unsigned int i;
5479 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5480 bfd_byte *erela;
5481 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5482 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5483 bfd_vma r_type_mask;
5484 int r_sym_shift;
5485
5486 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5487 {
5488 swap_in = bed->s->swap_reloc_in;
5489 swap_out = bed->s->swap_reloc_out;
5490 }
5491 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5492 {
5493 swap_in = bed->s->swap_reloca_in;
5494 swap_out = bed->s->swap_reloca_out;
5495 }
5496 else
5497 abort ();
5498
5499 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5500 abort ();
5501
5502 if (bed->s->arch_size == 32)
5503 {
5504 r_type_mask = 0xff;
5505 r_sym_shift = 8;
5506 }
5507 else
5508 {
5509 r_type_mask = 0xffffffff;
5510 r_sym_shift = 32;
5511 }
5512
5513 erela = rel_hdr->contents;
5514 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5515 {
5516 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5517 unsigned int j;
5518
5519 if (*rel_hash == NULL)
5520 continue;
5521
5522 BFD_ASSERT ((*rel_hash)->indx >= 0);
5523
5524 (*swap_in) (abfd, erela, irela);
5525 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5526 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5527 | (irela[j].r_info & r_type_mask));
5528 (*swap_out) (abfd, irela, erela);
5529 }
5530}
5531
5532struct elf_link_sort_rela
5533{
5534 union {
5535 bfd_vma offset;
5536 bfd_vma sym_mask;
5537 } u;
5538 enum elf_reloc_type_class type;
5539 /* We use this as an array of size int_rels_per_ext_rel. */
5540 Elf_Internal_Rela rela[1];
5541};
5542
5543static int
5544elf_link_sort_cmp1 (const void *A, const void *B)
5545{
5546 const struct elf_link_sort_rela *a = A;
5547 const struct elf_link_sort_rela *b = B;
5548 int relativea, relativeb;
5549
5550 relativea = a->type == reloc_class_relative;
5551 relativeb = b->type == reloc_class_relative;
5552
5553 if (relativea < relativeb)
5554 return 1;
5555 if (relativea > relativeb)
5556 return -1;
5557 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5558 return -1;
5559 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5560 return 1;
5561 if (a->rela->r_offset < b->rela->r_offset)
5562 return -1;
5563 if (a->rela->r_offset > b->rela->r_offset)
5564 return 1;
5565 return 0;
5566}
5567
5568static int
5569elf_link_sort_cmp2 (const void *A, const void *B)
5570{
5571 const struct elf_link_sort_rela *a = A;
5572 const struct elf_link_sort_rela *b = B;
5573 int copya, copyb;
5574
5575 if (a->u.offset < b->u.offset)
5576 return -1;
5577 if (a->u.offset > b->u.offset)
5578 return 1;
5579 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5580 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5581 if (copya < copyb)
5582 return -1;
5583 if (copya > copyb)
5584 return 1;
5585 if (a->rela->r_offset < b->rela->r_offset)
5586 return -1;
5587 if (a->rela->r_offset > b->rela->r_offset)
5588 return 1;
5589 return 0;
5590}
5591
5592static size_t
5593elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5594{
5595 asection *reldyn;
5596 bfd_size_type count, size;
5597 size_t i, ret, sort_elt, ext_size;
5598 bfd_byte *sort, *s_non_relative, *p;
5599 struct elf_link_sort_rela *sq;
5600 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5601 int i2e = bed->s->int_rels_per_ext_rel;
5602 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5603 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5604 struct bfd_link_order *lo;
5605 bfd_vma r_sym_mask;
5606
5607 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
eea6121a 5608 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5609 {
5610 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
eea6121a 5611 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5612 return 0;
5613 ext_size = bed->s->sizeof_rel;
5614 swap_in = bed->s->swap_reloc_in;
5615 swap_out = bed->s->swap_reloc_out;
5616 }
5617 else
5618 {
5619 ext_size = bed->s->sizeof_rela;
5620 swap_in = bed->s->swap_reloca_in;
5621 swap_out = bed->s->swap_reloca_out;
5622 }
eea6121a 5623 count = reldyn->size / ext_size;
c152c796
AM
5624
5625 size = 0;
5626 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5627 if (lo->type == bfd_indirect_link_order)
5628 {
5629 asection *o = lo->u.indirect.section;
eea6121a 5630 size += o->size;
c152c796
AM
5631 }
5632
eea6121a 5633 if (size != reldyn->size)
c152c796
AM
5634 return 0;
5635
5636 sort_elt = (sizeof (struct elf_link_sort_rela)
5637 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5638 sort = bfd_zmalloc (sort_elt * count);
5639 if (sort == NULL)
5640 {
5641 (*info->callbacks->warning)
5642 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5643 return 0;
5644 }
5645
5646 if (bed->s->arch_size == 32)
5647 r_sym_mask = ~(bfd_vma) 0xff;
5648 else
5649 r_sym_mask = ~(bfd_vma) 0xffffffff;
5650
5651 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5652 if (lo->type == bfd_indirect_link_order)
5653 {
5654 bfd_byte *erel, *erelend;
5655 asection *o = lo->u.indirect.section;
5656
5657 erel = o->contents;
eea6121a 5658 erelend = o->contents + o->size;
c152c796
AM
5659 p = sort + o->output_offset / ext_size * sort_elt;
5660 while (erel < erelend)
5661 {
5662 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5663 (*swap_in) (abfd, erel, s->rela);
5664 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
5665 s->u.sym_mask = r_sym_mask;
5666 p += sort_elt;
5667 erel += ext_size;
5668 }
5669 }
5670
5671 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
5672
5673 for (i = 0, p = sort; i < count; i++, p += sort_elt)
5674 {
5675 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5676 if (s->type != reloc_class_relative)
5677 break;
5678 }
5679 ret = i;
5680 s_non_relative = p;
5681
5682 sq = (struct elf_link_sort_rela *) s_non_relative;
5683 for (; i < count; i++, p += sort_elt)
5684 {
5685 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
5686 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
5687 sq = sp;
5688 sp->u.offset = sq->rela->r_offset;
5689 }
5690
5691 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
5692
5693 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5694 if (lo->type == bfd_indirect_link_order)
5695 {
5696 bfd_byte *erel, *erelend;
5697 asection *o = lo->u.indirect.section;
5698
5699 erel = o->contents;
eea6121a 5700 erelend = o->contents + o->size;
c152c796
AM
5701 p = sort + o->output_offset / ext_size * sort_elt;
5702 while (erel < erelend)
5703 {
5704 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5705 (*swap_out) (abfd, s->rela, erel);
5706 p += sort_elt;
5707 erel += ext_size;
5708 }
5709 }
5710
5711 free (sort);
5712 *psec = reldyn;
5713 return ret;
5714}
5715
5716/* Flush the output symbols to the file. */
5717
5718static bfd_boolean
5719elf_link_flush_output_syms (struct elf_final_link_info *finfo,
5720 const struct elf_backend_data *bed)
5721{
5722 if (finfo->symbuf_count > 0)
5723 {
5724 Elf_Internal_Shdr *hdr;
5725 file_ptr pos;
5726 bfd_size_type amt;
5727
5728 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5729 pos = hdr->sh_offset + hdr->sh_size;
5730 amt = finfo->symbuf_count * bed->s->sizeof_sym;
5731 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5732 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
5733 return FALSE;
5734
5735 hdr->sh_size += amt;
5736 finfo->symbuf_count = 0;
5737 }
5738
5739 return TRUE;
5740}
5741
5742/* Add a symbol to the output symbol table. */
5743
5744static bfd_boolean
5745elf_link_output_sym (struct elf_final_link_info *finfo,
5746 const char *name,
5747 Elf_Internal_Sym *elfsym,
5748 asection *input_sec,
5749 struct elf_link_hash_entry *h)
5750{
5751 bfd_byte *dest;
5752 Elf_External_Sym_Shndx *destshndx;
5753 bfd_boolean (*output_symbol_hook)
5754 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
5755 struct elf_link_hash_entry *);
5756 const struct elf_backend_data *bed;
5757
5758 bed = get_elf_backend_data (finfo->output_bfd);
5759 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
5760 if (output_symbol_hook != NULL)
5761 {
5762 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
5763 return FALSE;
5764 }
5765
5766 if (name == NULL || *name == '\0')
5767 elfsym->st_name = 0;
5768 else if (input_sec->flags & SEC_EXCLUDE)
5769 elfsym->st_name = 0;
5770 else
5771 {
5772 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5773 name, TRUE, FALSE);
5774 if (elfsym->st_name == (unsigned long) -1)
5775 return FALSE;
5776 }
5777
5778 if (finfo->symbuf_count >= finfo->symbuf_size)
5779 {
5780 if (! elf_link_flush_output_syms (finfo, bed))
5781 return FALSE;
5782 }
5783
5784 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
5785 destshndx = finfo->symshndxbuf;
5786 if (destshndx != NULL)
5787 {
5788 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
5789 {
5790 bfd_size_type amt;
5791
5792 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
5793 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
5794 if (destshndx == NULL)
5795 return FALSE;
5796 memset ((char *) destshndx + amt, 0, amt);
5797 finfo->shndxbuf_size *= 2;
5798 }
5799 destshndx += bfd_get_symcount (finfo->output_bfd);
5800 }
5801
5802 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
5803 finfo->symbuf_count += 1;
5804 bfd_get_symcount (finfo->output_bfd) += 1;
5805
5806 return TRUE;
5807}
5808
5809/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
5810 allowing an unsatisfied unversioned symbol in the DSO to match a
5811 versioned symbol that would normally require an explicit version.
5812 We also handle the case that a DSO references a hidden symbol
5813 which may be satisfied by a versioned symbol in another DSO. */
5814
5815static bfd_boolean
5816elf_link_check_versioned_symbol (struct bfd_link_info *info,
5817 const struct elf_backend_data *bed,
5818 struct elf_link_hash_entry *h)
5819{
5820 bfd *abfd;
5821 struct elf_link_loaded_list *loaded;
5822
5823 if (!is_elf_hash_table (info->hash))
5824 return FALSE;
5825
5826 switch (h->root.type)
5827 {
5828 default:
5829 abfd = NULL;
5830 break;
5831
5832 case bfd_link_hash_undefined:
5833 case bfd_link_hash_undefweak:
5834 abfd = h->root.u.undef.abfd;
5835 if ((abfd->flags & DYNAMIC) == 0
e56f61be 5836 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
c152c796
AM
5837 return FALSE;
5838 break;
5839
5840 case bfd_link_hash_defined:
5841 case bfd_link_hash_defweak:
5842 abfd = h->root.u.def.section->owner;
5843 break;
5844
5845 case bfd_link_hash_common:
5846 abfd = h->root.u.c.p->section->owner;
5847 break;
5848 }
5849 BFD_ASSERT (abfd != NULL);
5850
5851 for (loaded = elf_hash_table (info)->loaded;
5852 loaded != NULL;
5853 loaded = loaded->next)
5854 {
5855 bfd *input;
5856 Elf_Internal_Shdr *hdr;
5857 bfd_size_type symcount;
5858 bfd_size_type extsymcount;
5859 bfd_size_type extsymoff;
5860 Elf_Internal_Shdr *versymhdr;
5861 Elf_Internal_Sym *isym;
5862 Elf_Internal_Sym *isymend;
5863 Elf_Internal_Sym *isymbuf;
5864 Elf_External_Versym *ever;
5865 Elf_External_Versym *extversym;
5866
5867 input = loaded->abfd;
5868
5869 /* We check each DSO for a possible hidden versioned definition. */
5870 if (input == abfd
5871 || (input->flags & DYNAMIC) == 0
5872 || elf_dynversym (input) == 0)
5873 continue;
5874
5875 hdr = &elf_tdata (input)->dynsymtab_hdr;
5876
5877 symcount = hdr->sh_size / bed->s->sizeof_sym;
5878 if (elf_bad_symtab (input))
5879 {
5880 extsymcount = symcount;
5881 extsymoff = 0;
5882 }
5883 else
5884 {
5885 extsymcount = symcount - hdr->sh_info;
5886 extsymoff = hdr->sh_info;
5887 }
5888
5889 if (extsymcount == 0)
5890 continue;
5891
5892 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
5893 NULL, NULL, NULL);
5894 if (isymbuf == NULL)
5895 return FALSE;
5896
5897 /* Read in any version definitions. */
5898 versymhdr = &elf_tdata (input)->dynversym_hdr;
5899 extversym = bfd_malloc (versymhdr->sh_size);
5900 if (extversym == NULL)
5901 goto error_ret;
5902
5903 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
5904 || (bfd_bread (extversym, versymhdr->sh_size, input)
5905 != versymhdr->sh_size))
5906 {
5907 free (extversym);
5908 error_ret:
5909 free (isymbuf);
5910 return FALSE;
5911 }
5912
5913 ever = extversym + extsymoff;
5914 isymend = isymbuf + extsymcount;
5915 for (isym = isymbuf; isym < isymend; isym++, ever++)
5916 {
5917 const char *name;
5918 Elf_Internal_Versym iver;
5919 unsigned short version_index;
5920
5921 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
5922 || isym->st_shndx == SHN_UNDEF)
5923 continue;
5924
5925 name = bfd_elf_string_from_elf_section (input,
5926 hdr->sh_link,
5927 isym->st_name);
5928 if (strcmp (name, h->root.root.string) != 0)
5929 continue;
5930
5931 _bfd_elf_swap_versym_in (input, ever, &iver);
5932
5933 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
5934 {
5935 /* If we have a non-hidden versioned sym, then it should
5936 have provided a definition for the undefined sym. */
5937 abort ();
5938 }
5939
5940 version_index = iver.vs_vers & VERSYM_VERSION;
5941 if (version_index == 1 || version_index == 2)
5942 {
5943 /* This is the base or first version. We can use it. */
5944 free (extversym);
5945 free (isymbuf);
5946 return TRUE;
5947 }
5948 }
5949
5950 free (extversym);
5951 free (isymbuf);
5952 }
5953
5954 return FALSE;
5955}
5956
5957/* Add an external symbol to the symbol table. This is called from
5958 the hash table traversal routine. When generating a shared object,
5959 we go through the symbol table twice. The first time we output
5960 anything that might have been forced to local scope in a version
5961 script. The second time we output the symbols that are still
5962 global symbols. */
5963
5964static bfd_boolean
5965elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
5966{
5967 struct elf_outext_info *eoinfo = data;
5968 struct elf_final_link_info *finfo = eoinfo->finfo;
5969 bfd_boolean strip;
5970 Elf_Internal_Sym sym;
5971 asection *input_sec;
5972 const struct elf_backend_data *bed;
5973
5974 if (h->root.type == bfd_link_hash_warning)
5975 {
5976 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5977 if (h->root.type == bfd_link_hash_new)
5978 return TRUE;
5979 }
5980
5981 /* Decide whether to output this symbol in this pass. */
5982 if (eoinfo->localsyms)
5983 {
5984 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5985 return TRUE;
5986 }
5987 else
5988 {
5989 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5990 return TRUE;
5991 }
5992
5993 bed = get_elf_backend_data (finfo->output_bfd);
5994
5995 /* If we have an undefined symbol reference here then it must have
5996 come from a shared library that is being linked in. (Undefined
5997 references in regular files have already been handled). If we
5998 are reporting errors for this situation then do so now. */
5999 if (h->root.type == bfd_link_hash_undefined
6000 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
6001 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
6002 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6003 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6004 {
6005 if (! ((*finfo->info->callbacks->undefined_symbol)
6006 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6007 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6008 {
6009 eoinfo->failed = TRUE;
6010 return FALSE;
6011 }
6012 }
6013
6014 /* We should also warn if a forced local symbol is referenced from
6015 shared libraries. */
6016 if (! finfo->info->relocatable
6017 && (! finfo->info->shared)
6018 && (h->elf_link_hash_flags
6019 & (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC | ELF_LINK_DYNAMIC_DEF | ELF_LINK_DYNAMIC_WEAK))
6020 == (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC)
6021 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6022 {
6023 (*_bfd_error_handler)
6024 (_("%s: %s symbol `%s' in %s is referenced by DSO"),
6025 bfd_get_filename (finfo->output_bfd),
6026 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6027 ? "internal"
6028 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6029 ? "hidden" : "local",
6030 h->root.root.string,
6031 bfd_archive_filename (h->root.u.def.section->owner));
6032 eoinfo->failed = TRUE;
6033 return FALSE;
6034 }
6035
6036 /* We don't want to output symbols that have never been mentioned by
6037 a regular file, or that we have been told to strip. However, if
6038 h->indx is set to -2, the symbol is used by a reloc and we must
6039 output it. */
6040 if (h->indx == -2)
6041 strip = FALSE;
6042 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6043 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6044 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6045 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6046 strip = TRUE;
6047 else if (finfo->info->strip == strip_all)
6048 strip = TRUE;
6049 else if (finfo->info->strip == strip_some
6050 && bfd_hash_lookup (finfo->info->keep_hash,
6051 h->root.root.string, FALSE, FALSE) == NULL)
6052 strip = TRUE;
6053 else if (finfo->info->strip_discarded
6054 && (h->root.type == bfd_link_hash_defined
6055 || h->root.type == bfd_link_hash_defweak)
6056 && elf_discarded_section (h->root.u.def.section))
6057 strip = TRUE;
6058 else
6059 strip = FALSE;
6060
6061 /* If we're stripping it, and it's not a dynamic symbol, there's
6062 nothing else to do unless it is a forced local symbol. */
6063 if (strip
6064 && h->dynindx == -1
6065 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6066 return TRUE;
6067
6068 sym.st_value = 0;
6069 sym.st_size = h->size;
6070 sym.st_other = h->other;
6071 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6072 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6073 else if (h->root.type == bfd_link_hash_undefweak
6074 || h->root.type == bfd_link_hash_defweak)
6075 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6076 else
6077 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6078
6079 switch (h->root.type)
6080 {
6081 default:
6082 case bfd_link_hash_new:
6083 case bfd_link_hash_warning:
6084 abort ();
6085 return FALSE;
6086
6087 case bfd_link_hash_undefined:
6088 case bfd_link_hash_undefweak:
6089 input_sec = bfd_und_section_ptr;
6090 sym.st_shndx = SHN_UNDEF;
6091 break;
6092
6093 case bfd_link_hash_defined:
6094 case bfd_link_hash_defweak:
6095 {
6096 input_sec = h->root.u.def.section;
6097 if (input_sec->output_section != NULL)
6098 {
6099 sym.st_shndx =
6100 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6101 input_sec->output_section);
6102 if (sym.st_shndx == SHN_BAD)
6103 {
b602c853 6104 char *sec_name = bfd_get_section_ident (input_sec);
c152c796
AM
6105 (*_bfd_error_handler)
6106 (_("%s: could not find output section %s for input section %s"),
6107 bfd_get_filename (finfo->output_bfd),
6108 input_sec->output_section->name,
b602c853
L
6109 sec_name ? sec_name : input_sec->name);
6110 if (sec_name)
6111 free (sec_name);
c152c796
AM
6112 eoinfo->failed = TRUE;
6113 return FALSE;
6114 }
6115
6116 /* ELF symbols in relocatable files are section relative,
6117 but in nonrelocatable files they are virtual
6118 addresses. */
6119 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6120 if (! finfo->info->relocatable)
6121 {
6122 sym.st_value += input_sec->output_section->vma;
6123 if (h->type == STT_TLS)
6124 {
6125 /* STT_TLS symbols are relative to PT_TLS segment
6126 base. */
6127 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6128 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6129 }
6130 }
6131 }
6132 else
6133 {
6134 BFD_ASSERT (input_sec->owner == NULL
6135 || (input_sec->owner->flags & DYNAMIC) != 0);
6136 sym.st_shndx = SHN_UNDEF;
6137 input_sec = bfd_und_section_ptr;
6138 }
6139 }
6140 break;
6141
6142 case bfd_link_hash_common:
6143 input_sec = h->root.u.c.p->section;
6144 sym.st_shndx = SHN_COMMON;
6145 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6146 break;
6147
6148 case bfd_link_hash_indirect:
6149 /* These symbols are created by symbol versioning. They point
6150 to the decorated version of the name. For example, if the
6151 symbol foo@@GNU_1.2 is the default, which should be used when
6152 foo is used with no version, then we add an indirect symbol
6153 foo which points to foo@@GNU_1.2. We ignore these symbols,
6154 since the indirected symbol is already in the hash table. */
6155 return TRUE;
6156 }
6157
6158 /* Give the processor backend a chance to tweak the symbol value,
6159 and also to finish up anything that needs to be done for this
6160 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6161 forced local syms when non-shared is due to a historical quirk. */
6162 if ((h->dynindx != -1
6163 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6164 && ((finfo->info->shared
6165 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6166 || h->root.type != bfd_link_hash_undefweak))
6167 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6168 && elf_hash_table (finfo->info)->dynamic_sections_created)
6169 {
6170 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6171 (finfo->output_bfd, finfo->info, h, &sym)))
6172 {
6173 eoinfo->failed = TRUE;
6174 return FALSE;
6175 }
6176 }
6177
6178 /* If we are marking the symbol as undefined, and there are no
6179 non-weak references to this symbol from a regular object, then
6180 mark the symbol as weak undefined; if there are non-weak
6181 references, mark the symbol as strong. We can't do this earlier,
6182 because it might not be marked as undefined until the
6183 finish_dynamic_symbol routine gets through with it. */
6184 if (sym.st_shndx == SHN_UNDEF
6185 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6186 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6187 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6188 {
6189 int bindtype;
6190
6191 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6192 bindtype = STB_GLOBAL;
6193 else
6194 bindtype = STB_WEAK;
6195 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6196 }
6197
6198 /* If a non-weak symbol with non-default visibility is not defined
6199 locally, it is a fatal error. */
6200 if (! finfo->info->relocatable
6201 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6202 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6203 && h->root.type == bfd_link_hash_undefined
6204 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6205 {
6206 (*_bfd_error_handler)
6207 (_("%s: %s symbol `%s' isn't defined"),
6208 bfd_get_filename (finfo->output_bfd),
6209 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6210 ? "protected"
6211 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6212 ? "internal" : "hidden",
6213 h->root.root.string);
6214 eoinfo->failed = TRUE;
6215 return FALSE;
6216 }
6217
6218 /* If this symbol should be put in the .dynsym section, then put it
6219 there now. We already know the symbol index. We also fill in
6220 the entry in the .hash section. */
6221 if (h->dynindx != -1
6222 && elf_hash_table (finfo->info)->dynamic_sections_created)
6223 {
6224 size_t bucketcount;
6225 size_t bucket;
6226 size_t hash_entry_size;
6227 bfd_byte *bucketpos;
6228 bfd_vma chain;
6229 bfd_byte *esym;
6230
6231 sym.st_name = h->dynstr_index;
6232 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6233 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6234
6235 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6236 bucket = h->elf_hash_value % bucketcount;
6237 hash_entry_size
6238 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6239 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6240 + (bucket + 2) * hash_entry_size);
6241 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6242 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6243 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6244 ((bfd_byte *) finfo->hash_sec->contents
6245 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6246
6247 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6248 {
6249 Elf_Internal_Versym iversym;
6250 Elf_External_Versym *eversym;
6251
6252 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6253 {
6254 if (h->verinfo.verdef == NULL)
6255 iversym.vs_vers = 0;
6256 else
6257 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6258 }
6259 else
6260 {
6261 if (h->verinfo.vertree == NULL)
6262 iversym.vs_vers = 1;
6263 else
6264 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6265 }
6266
6267 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6268 iversym.vs_vers |= VERSYM_HIDDEN;
6269
6270 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6271 eversym += h->dynindx;
6272 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6273 }
6274 }
6275
6276 /* If we're stripping it, then it was just a dynamic symbol, and
6277 there's nothing else to do. */
6278 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6279 return TRUE;
6280
6281 h->indx = bfd_get_symcount (finfo->output_bfd);
6282
6283 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6284 {
6285 eoinfo->failed = TRUE;
6286 return FALSE;
6287 }
6288
6289 return TRUE;
6290}
6291
cdd3575c
AM
6292/* Return TRUE if special handling is done for relocs in SEC against
6293 symbols defined in discarded sections. */
6294
c152c796
AM
6295static bfd_boolean
6296elf_section_ignore_discarded_relocs (asection *sec)
6297{
6298 const struct elf_backend_data *bed;
6299
cdd3575c
AM
6300 switch (sec->sec_info_type)
6301 {
6302 case ELF_INFO_TYPE_STABS:
6303 case ELF_INFO_TYPE_EH_FRAME:
6304 return TRUE;
6305 default:
6306 break;
6307 }
c152c796
AM
6308
6309 bed = get_elf_backend_data (sec->owner);
6310 if (bed->elf_backend_ignore_discarded_relocs != NULL
6311 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6312 return TRUE;
6313
6314 return FALSE;
6315}
6316
cdd3575c
AM
6317/* Return TRUE if we should complain about a reloc in SEC against a
6318 symbol defined in a discarded section. */
6319
6320static bfd_boolean
6321elf_section_complain_discarded (asection *sec)
6322{
6323 if (strncmp (".stab", sec->name, 5) == 0
6324 && (!sec->name[5] ||
6325 (sec->name[5] == '.' && ISDIGIT (sec->name[6]))))
6326 return FALSE;
6327
6328 if (strcmp (".eh_frame", sec->name) == 0)
6329 return FALSE;
6330
6331 if (strcmp (".gcc_except_table", sec->name) == 0)
6332 return FALSE;
6333
27b56da8
DA
6334 if (strcmp (".PARISC.unwind", sec->name) == 0)
6335 return FALSE;
6336
cdd3575c
AM
6337 return TRUE;
6338}
6339
c152c796
AM
6340/* Link an input file into the linker output file. This function
6341 handles all the sections and relocations of the input file at once.
6342 This is so that we only have to read the local symbols once, and
6343 don't have to keep them in memory. */
6344
6345static bfd_boolean
6346elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6347{
6348 bfd_boolean (*relocate_section)
6349 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6350 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6351 bfd *output_bfd;
6352 Elf_Internal_Shdr *symtab_hdr;
6353 size_t locsymcount;
6354 size_t extsymoff;
6355 Elf_Internal_Sym *isymbuf;
6356 Elf_Internal_Sym *isym;
6357 Elf_Internal_Sym *isymend;
6358 long *pindex;
6359 asection **ppsection;
6360 asection *o;
6361 const struct elf_backend_data *bed;
6362 bfd_boolean emit_relocs;
6363 struct elf_link_hash_entry **sym_hashes;
6364
6365 output_bfd = finfo->output_bfd;
6366 bed = get_elf_backend_data (output_bfd);
6367 relocate_section = bed->elf_backend_relocate_section;
6368
6369 /* If this is a dynamic object, we don't want to do anything here:
6370 we don't want the local symbols, and we don't want the section
6371 contents. */
6372 if ((input_bfd->flags & DYNAMIC) != 0)
6373 return TRUE;
6374
6375 emit_relocs = (finfo->info->relocatable
6376 || finfo->info->emitrelocations
6377 || bed->elf_backend_emit_relocs);
6378
6379 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6380 if (elf_bad_symtab (input_bfd))
6381 {
6382 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6383 extsymoff = 0;
6384 }
6385 else
6386 {
6387 locsymcount = symtab_hdr->sh_info;
6388 extsymoff = symtab_hdr->sh_info;
6389 }
6390
6391 /* Read the local symbols. */
6392 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6393 if (isymbuf == NULL && locsymcount != 0)
6394 {
6395 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6396 finfo->internal_syms,
6397 finfo->external_syms,
6398 finfo->locsym_shndx);
6399 if (isymbuf == NULL)
6400 return FALSE;
6401 }
6402
6403 /* Find local symbol sections and adjust values of symbols in
6404 SEC_MERGE sections. Write out those local symbols we know are
6405 going into the output file. */
6406 isymend = isymbuf + locsymcount;
6407 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6408 isym < isymend;
6409 isym++, pindex++, ppsection++)
6410 {
6411 asection *isec;
6412 const char *name;
6413 Elf_Internal_Sym osym;
6414
6415 *pindex = -1;
6416
6417 if (elf_bad_symtab (input_bfd))
6418 {
6419 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6420 {
6421 *ppsection = NULL;
6422 continue;
6423 }
6424 }
6425
6426 if (isym->st_shndx == SHN_UNDEF)
6427 isec = bfd_und_section_ptr;
6428 else if (isym->st_shndx < SHN_LORESERVE
6429 || isym->st_shndx > SHN_HIRESERVE)
6430 {
6431 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6432 if (isec
6433 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6434 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6435 isym->st_value =
6436 _bfd_merged_section_offset (output_bfd, &isec,
6437 elf_section_data (isec)->sec_info,
753731ee 6438 isym->st_value);
c152c796
AM
6439 }
6440 else if (isym->st_shndx == SHN_ABS)
6441 isec = bfd_abs_section_ptr;
6442 else if (isym->st_shndx == SHN_COMMON)
6443 isec = bfd_com_section_ptr;
6444 else
6445 {
6446 /* Who knows? */
6447 isec = NULL;
6448 }
6449
6450 *ppsection = isec;
6451
6452 /* Don't output the first, undefined, symbol. */
6453 if (ppsection == finfo->sections)
6454 continue;
6455
6456 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6457 {
6458 /* We never output section symbols. Instead, we use the
6459 section symbol of the corresponding section in the output
6460 file. */
6461 continue;
6462 }
6463
6464 /* If we are stripping all symbols, we don't want to output this
6465 one. */
6466 if (finfo->info->strip == strip_all)
6467 continue;
6468
6469 /* If we are discarding all local symbols, we don't want to
6470 output this one. If we are generating a relocatable output
6471 file, then some of the local symbols may be required by
6472 relocs; we output them below as we discover that they are
6473 needed. */
6474 if (finfo->info->discard == discard_all)
6475 continue;
6476
6477 /* If this symbol is defined in a section which we are
6478 discarding, we don't need to keep it, but note that
6479 linker_mark is only reliable for sections that have contents.
6480 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6481 as well as linker_mark. */
6482 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6483 && isec != NULL
6484 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6485 || (! finfo->info->relocatable
6486 && (isec->flags & SEC_EXCLUDE) != 0)))
6487 continue;
6488
6489 /* Get the name of the symbol. */
6490 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6491 isym->st_name);
6492 if (name == NULL)
6493 return FALSE;
6494
6495 /* See if we are discarding symbols with this name. */
6496 if ((finfo->info->strip == strip_some
6497 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6498 == NULL))
6499 || (((finfo->info->discard == discard_sec_merge
6500 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6501 || finfo->info->discard == discard_l)
6502 && bfd_is_local_label_name (input_bfd, name)))
6503 continue;
6504
6505 /* If we get here, we are going to output this symbol. */
6506
6507 osym = *isym;
6508
6509 /* Adjust the section index for the output file. */
6510 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6511 isec->output_section);
6512 if (osym.st_shndx == SHN_BAD)
6513 return FALSE;
6514
6515 *pindex = bfd_get_symcount (output_bfd);
6516
6517 /* ELF symbols in relocatable files are section relative, but
6518 in executable files they are virtual addresses. Note that
6519 this code assumes that all ELF sections have an associated
6520 BFD section with a reasonable value for output_offset; below
6521 we assume that they also have a reasonable value for
6522 output_section. Any special sections must be set up to meet
6523 these requirements. */
6524 osym.st_value += isec->output_offset;
6525 if (! finfo->info->relocatable)
6526 {
6527 osym.st_value += isec->output_section->vma;
6528 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6529 {
6530 /* STT_TLS symbols are relative to PT_TLS segment base. */
6531 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6532 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6533 }
6534 }
6535
6536 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6537 return FALSE;
6538 }
6539
6540 /* Relocate the contents of each section. */
6541 sym_hashes = elf_sym_hashes (input_bfd);
6542 for (o = input_bfd->sections; o != NULL; o = o->next)
6543 {
6544 bfd_byte *contents;
6545
6546 if (! o->linker_mark)
6547 {
6548 /* This section was omitted from the link. */
6549 continue;
6550 }
6551
6552 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 6553 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
c152c796
AM
6554 continue;
6555
6556 if ((o->flags & SEC_LINKER_CREATED) != 0)
6557 {
6558 /* Section was created by _bfd_elf_link_create_dynamic_sections
6559 or somesuch. */
6560 continue;
6561 }
6562
6563 /* Get the contents of the section. They have been cached by a
6564 relaxation routine. Note that o is a section in an input
6565 file, so the contents field will not have been set by any of
6566 the routines which work on output files. */
6567 if (elf_section_data (o)->this_hdr.contents != NULL)
6568 contents = elf_section_data (o)->this_hdr.contents;
6569 else
6570 {
eea6121a
AM
6571 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6572
c152c796 6573 contents = finfo->contents;
eea6121a 6574 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
c152c796
AM
6575 return FALSE;
6576 }
6577
6578 if ((o->flags & SEC_RELOC) != 0)
6579 {
6580 Elf_Internal_Rela *internal_relocs;
6581 bfd_vma r_type_mask;
6582 int r_sym_shift;
6583
6584 /* Get the swapped relocs. */
6585 internal_relocs
6586 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6587 finfo->internal_relocs, FALSE);
6588 if (internal_relocs == NULL
6589 && o->reloc_count > 0)
6590 return FALSE;
6591
6592 if (bed->s->arch_size == 32)
6593 {
6594 r_type_mask = 0xff;
6595 r_sym_shift = 8;
6596 }
6597 else
6598 {
6599 r_type_mask = 0xffffffff;
6600 r_sym_shift = 32;
6601 }
6602
6603 /* Run through the relocs looking for any against symbols
6604 from discarded sections and section symbols from
6605 removed link-once sections. Complain about relocs
6606 against discarded sections. Zero relocs against removed
6607 link-once sections. Preserve debug information as much
6608 as we can. */
6609 if (!elf_section_ignore_discarded_relocs (o))
6610 {
6611 Elf_Internal_Rela *rel, *relend;
cdd3575c 6612 bfd_boolean complain = elf_section_complain_discarded (o);
c152c796
AM
6613
6614 rel = internal_relocs;
6615 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6616 for ( ; rel < relend; rel++)
6617 {
6618 unsigned long r_symndx = rel->r_info >> r_sym_shift;
cdd3575c
AM
6619 asection **ps, *sec;
6620 struct elf_link_hash_entry *h = NULL;
6621 const char *sym_name;
c152c796
AM
6622
6623 if (r_symndx >= locsymcount
6624 || (elf_bad_symtab (input_bfd)
6625 && finfo->sections[r_symndx] == NULL))
6626 {
c152c796
AM
6627 h = sym_hashes[r_symndx - extsymoff];
6628 while (h->root.type == bfd_link_hash_indirect
6629 || h->root.type == bfd_link_hash_warning)
6630 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6631
cdd3575c
AM
6632 if (h->root.type != bfd_link_hash_defined
6633 && h->root.type != bfd_link_hash_defweak)
6634 continue;
6635
6636 ps = &h->root.u.def.section;
6637 sym_name = h->root.root.string;
c152c796
AM
6638 }
6639 else
6640 {
cdd3575c
AM
6641 Elf_Internal_Sym *sym = isymbuf + r_symndx;
6642 ps = &finfo->sections[r_symndx];
6643 sym_name = bfd_elf_local_sym_name (input_bfd, sym);
6644 }
c152c796 6645
cdd3575c
AM
6646 /* Complain if the definition comes from a
6647 discarded section. */
6648 if ((sec = *ps) != NULL && elf_discarded_section (sec))
6649 {
6650 if ((o->flags & SEC_DEBUGGING) != 0)
c152c796 6651 {
cdd3575c
AM
6652 BFD_ASSERT (r_symndx != 0);
6653
6654 /* Try to preserve debug information.
6655 FIXME: This is quite broken. Modifying
6656 the symbol here means we will be changing
6657 all uses of the symbol, not just those in
6658 debug sections. The only thing that makes
6659 this half reasonable is that debug sections
6660 tend to come after other sections. Of
6661 course, that doesn't help with globals.
6662 ??? All link-once sections of the same name
6663 ought to define the same set of symbols, so
6664 it would seem that globals ought to always
6665 be defined in the kept section. */
6666 if (sec->kept_section != NULL
6667 && sec->size == sec->kept_section->size)
c152c796 6668 {
cdd3575c
AM
6669 *ps = sec->kept_section;
6670 continue;
c152c796
AM
6671 }
6672 }
cdd3575c
AM
6673 else if (complain)
6674 {
b602c853
L
6675 char *r_sec
6676 = bfd_get_section_ident (o);
6677 char *d_sec
6678 = bfd_get_section_ident (sec);
cdd3575c
AM
6679 finfo->info->callbacks->error_handler
6680 (LD_DEFINITION_IN_DISCARDED_SECTION,
6681 _("`%T' referenced in section `%s' of %B: "
6682 "defined in discarded section `%s' of %B\n"),
b602c853
L
6683 sym_name, sym_name,
6684 r_sec ? r_sec : o->name, input_bfd,
6685 d_sec ? d_sec : sec->name, sec->owner);
6686 if (r_sec)
6687 free (r_sec);
6688 if (d_sec)
6689 free (d_sec);
cdd3575c
AM
6690 }
6691
6692 /* Remove the symbol reference from the reloc, but
6693 don't kill the reloc completely. This is so that
6694 a zero value will be written into the section,
6695 which may have non-zero contents put there by the
6696 assembler. Zero in things like an eh_frame fde
6697 pc_begin allows stack unwinders to recognize the
6698 fde as bogus. */
6699 rel->r_info &= r_type_mask;
6700 rel->r_addend = 0;
c152c796
AM
6701 }
6702 }
6703 }
6704
6705 /* Relocate the section by invoking a back end routine.
6706
6707 The back end routine is responsible for adjusting the
6708 section contents as necessary, and (if using Rela relocs
6709 and generating a relocatable output file) adjusting the
6710 reloc addend as necessary.
6711
6712 The back end routine does not have to worry about setting
6713 the reloc address or the reloc symbol index.
6714
6715 The back end routine is given a pointer to the swapped in
6716 internal symbols, and can access the hash table entries
6717 for the external symbols via elf_sym_hashes (input_bfd).
6718
6719 When generating relocatable output, the back end routine
6720 must handle STB_LOCAL/STT_SECTION symbols specially. The
6721 output symbol is going to be a section symbol
6722 corresponding to the output section, which will require
6723 the addend to be adjusted. */
6724
6725 if (! (*relocate_section) (output_bfd, finfo->info,
6726 input_bfd, o, contents,
6727 internal_relocs,
6728 isymbuf,
6729 finfo->sections))
6730 return FALSE;
6731
6732 if (emit_relocs)
6733 {
6734 Elf_Internal_Rela *irela;
6735 Elf_Internal_Rela *irelaend;
6736 bfd_vma last_offset;
6737 struct elf_link_hash_entry **rel_hash;
6738 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6739 unsigned int next_erel;
6740 bfd_boolean (*reloc_emitter)
6741 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
6742 bfd_boolean rela_normal;
6743
6744 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6745 rela_normal = (bed->rela_normal
6746 && (input_rel_hdr->sh_entsize
6747 == bed->s->sizeof_rela));
6748
6749 /* Adjust the reloc addresses and symbol indices. */
6750
6751 irela = internal_relocs;
6752 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6753 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6754 + elf_section_data (o->output_section)->rel_count
6755 + elf_section_data (o->output_section)->rel_count2);
6756 last_offset = o->output_offset;
6757 if (!finfo->info->relocatable)
6758 last_offset += o->output_section->vma;
6759 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6760 {
6761 unsigned long r_symndx;
6762 asection *sec;
6763 Elf_Internal_Sym sym;
6764
6765 if (next_erel == bed->s->int_rels_per_ext_rel)
6766 {
6767 rel_hash++;
6768 next_erel = 0;
6769 }
6770
6771 irela->r_offset = _bfd_elf_section_offset (output_bfd,
6772 finfo->info, o,
6773 irela->r_offset);
6774 if (irela->r_offset >= (bfd_vma) -2)
6775 {
6776 /* This is a reloc for a deleted entry or somesuch.
6777 Turn it into an R_*_NONE reloc, at the same
6778 offset as the last reloc. elf_eh_frame.c and
6779 elf_bfd_discard_info rely on reloc offsets
6780 being ordered. */
6781 irela->r_offset = last_offset;
6782 irela->r_info = 0;
6783 irela->r_addend = 0;
6784 continue;
6785 }
6786
6787 irela->r_offset += o->output_offset;
6788
6789 /* Relocs in an executable have to be virtual addresses. */
6790 if (!finfo->info->relocatable)
6791 irela->r_offset += o->output_section->vma;
6792
6793 last_offset = irela->r_offset;
6794
6795 r_symndx = irela->r_info >> r_sym_shift;
6796 if (r_symndx == STN_UNDEF)
6797 continue;
6798
6799 if (r_symndx >= locsymcount
6800 || (elf_bad_symtab (input_bfd)
6801 && finfo->sections[r_symndx] == NULL))
6802 {
6803 struct elf_link_hash_entry *rh;
6804 unsigned long indx;
6805
6806 /* This is a reloc against a global symbol. We
6807 have not yet output all the local symbols, so
6808 we do not know the symbol index of any global
6809 symbol. We set the rel_hash entry for this
6810 reloc to point to the global hash table entry
6811 for this symbol. The symbol index is then
6812 set at the end of elf_bfd_final_link. */
6813 indx = r_symndx - extsymoff;
6814 rh = elf_sym_hashes (input_bfd)[indx];
6815 while (rh->root.type == bfd_link_hash_indirect
6816 || rh->root.type == bfd_link_hash_warning)
6817 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6818
6819 /* Setting the index to -2 tells
6820 elf_link_output_extsym that this symbol is
6821 used by a reloc. */
6822 BFD_ASSERT (rh->indx < 0);
6823 rh->indx = -2;
6824
6825 *rel_hash = rh;
6826
6827 continue;
6828 }
6829
6830 /* This is a reloc against a local symbol. */
6831
6832 *rel_hash = NULL;
6833 sym = isymbuf[r_symndx];
6834 sec = finfo->sections[r_symndx];
6835 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
6836 {
6837 /* I suppose the backend ought to fill in the
6838 section of any STT_SECTION symbol against a
6a8d1586
AM
6839 processor specific section. */
6840 r_symndx = 0;
6841 if (bfd_is_abs_section (sec))
6842 ;
c152c796
AM
6843 else if (sec == NULL || sec->owner == NULL)
6844 {
6845 bfd_set_error (bfd_error_bad_value);
6846 return FALSE;
6847 }
6848 else
6849 {
6a8d1586
AM
6850 asection *osec = sec->output_section;
6851
6852 /* If we have discarded a section, the output
6853 section will be the absolute section. In
6854 case of discarded link-once and discarded
6855 SEC_MERGE sections, use the kept section. */
6856 if (bfd_is_abs_section (osec)
6857 && sec->kept_section != NULL
6858 && sec->kept_section->output_section != NULL)
6859 {
6860 osec = sec->kept_section->output_section;
6861 irela->r_addend -= osec->vma;
6862 }
6863
6864 if (!bfd_is_abs_section (osec))
6865 {
6866 r_symndx = osec->target_index;
6867 BFD_ASSERT (r_symndx != 0);
6868 }
c152c796
AM
6869 }
6870
6871 /* Adjust the addend according to where the
6872 section winds up in the output section. */
6873 if (rela_normal)
6874 irela->r_addend += sec->output_offset;
6875 }
6876 else
6877 {
6878 if (finfo->indices[r_symndx] == -1)
6879 {
6880 unsigned long shlink;
6881 const char *name;
6882 asection *osec;
6883
6884 if (finfo->info->strip == strip_all)
6885 {
6886 /* You can't do ld -r -s. */
6887 bfd_set_error (bfd_error_invalid_operation);
6888 return FALSE;
6889 }
6890
6891 /* This symbol was skipped earlier, but
6892 since it is needed by a reloc, we
6893 must output it now. */
6894 shlink = symtab_hdr->sh_link;
6895 name = (bfd_elf_string_from_elf_section
6896 (input_bfd, shlink, sym.st_name));
6897 if (name == NULL)
6898 return FALSE;
6899
6900 osec = sec->output_section;
6901 sym.st_shndx =
6902 _bfd_elf_section_from_bfd_section (output_bfd,
6903 osec);
6904 if (sym.st_shndx == SHN_BAD)
6905 return FALSE;
6906
6907 sym.st_value += sec->output_offset;
6908 if (! finfo->info->relocatable)
6909 {
6910 sym.st_value += osec->vma;
6911 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
6912 {
6913 /* STT_TLS symbols are relative to PT_TLS
6914 segment base. */
6915 BFD_ASSERT (elf_hash_table (finfo->info)
6916 ->tls_sec != NULL);
6917 sym.st_value -= (elf_hash_table (finfo->info)
6918 ->tls_sec->vma);
6919 }
6920 }
6921
6922 finfo->indices[r_symndx]
6923 = bfd_get_symcount (output_bfd);
6924
6925 if (! elf_link_output_sym (finfo, name, &sym, sec,
6926 NULL))
6927 return FALSE;
6928 }
6929
6930 r_symndx = finfo->indices[r_symndx];
6931 }
6932
6933 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
6934 | (irela->r_info & r_type_mask));
6935 }
6936
6937 /* Swap out the relocs. */
6938 if (bed->elf_backend_emit_relocs
6939 && !(finfo->info->relocatable
6940 || finfo->info->emitrelocations))
6941 reloc_emitter = bed->elf_backend_emit_relocs;
6942 else
6943 reloc_emitter = _bfd_elf_link_output_relocs;
6944
6945 if (input_rel_hdr->sh_size != 0
6946 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
6947 internal_relocs))
6948 return FALSE;
6949
6950 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
6951 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
6952 {
6953 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
6954 * bed->s->int_rels_per_ext_rel);
6955 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
6956 internal_relocs))
6957 return FALSE;
6958 }
6959 }
6960 }
6961
6962 /* Write out the modified section contents. */
6963 if (bed->elf_backend_write_section
6964 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
6965 {
6966 /* Section written out. */
6967 }
6968 else switch (o->sec_info_type)
6969 {
6970 case ELF_INFO_TYPE_STABS:
6971 if (! (_bfd_write_section_stabs
6972 (output_bfd,
6973 &elf_hash_table (finfo->info)->stab_info,
6974 o, &elf_section_data (o)->sec_info, contents)))
6975 return FALSE;
6976 break;
6977 case ELF_INFO_TYPE_MERGE:
6978 if (! _bfd_write_merged_section (output_bfd, o,
6979 elf_section_data (o)->sec_info))
6980 return FALSE;
6981 break;
6982 case ELF_INFO_TYPE_EH_FRAME:
6983 {
6984 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
6985 o, contents))
6986 return FALSE;
6987 }
6988 break;
6989 default:
6990 {
c152c796
AM
6991 if (! (o->flags & SEC_EXCLUDE)
6992 && ! bfd_set_section_contents (output_bfd, o->output_section,
6993 contents,
6994 (file_ptr) o->output_offset,
eea6121a 6995 o->size))
c152c796
AM
6996 return FALSE;
6997 }
6998 break;
6999 }
7000 }
7001
7002 return TRUE;
7003}
7004
7005/* Generate a reloc when linking an ELF file. This is a reloc
7006 requested by the linker, and does come from any input file. This
7007 is used to build constructor and destructor tables when linking
7008 with -Ur. */
7009
7010static bfd_boolean
7011elf_reloc_link_order (bfd *output_bfd,
7012 struct bfd_link_info *info,
7013 asection *output_section,
7014 struct bfd_link_order *link_order)
7015{
7016 reloc_howto_type *howto;
7017 long indx;
7018 bfd_vma offset;
7019 bfd_vma addend;
7020 struct elf_link_hash_entry **rel_hash_ptr;
7021 Elf_Internal_Shdr *rel_hdr;
7022 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7023 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7024 bfd_byte *erel;
7025 unsigned int i;
7026
7027 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7028 if (howto == NULL)
7029 {
7030 bfd_set_error (bfd_error_bad_value);
7031 return FALSE;
7032 }
7033
7034 addend = link_order->u.reloc.p->addend;
7035
7036 /* Figure out the symbol index. */
7037 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7038 + elf_section_data (output_section)->rel_count
7039 + elf_section_data (output_section)->rel_count2);
7040 if (link_order->type == bfd_section_reloc_link_order)
7041 {
7042 indx = link_order->u.reloc.p->u.section->target_index;
7043 BFD_ASSERT (indx != 0);
7044 *rel_hash_ptr = NULL;
7045 }
7046 else
7047 {
7048 struct elf_link_hash_entry *h;
7049
7050 /* Treat a reloc against a defined symbol as though it were
7051 actually against the section. */
7052 h = ((struct elf_link_hash_entry *)
7053 bfd_wrapped_link_hash_lookup (output_bfd, info,
7054 link_order->u.reloc.p->u.name,
7055 FALSE, FALSE, TRUE));
7056 if (h != NULL
7057 && (h->root.type == bfd_link_hash_defined
7058 || h->root.type == bfd_link_hash_defweak))
7059 {
7060 asection *section;
7061
7062 section = h->root.u.def.section;
7063 indx = section->output_section->target_index;
7064 *rel_hash_ptr = NULL;
7065 /* It seems that we ought to add the symbol value to the
7066 addend here, but in practice it has already been added
7067 because it was passed to constructor_callback. */
7068 addend += section->output_section->vma + section->output_offset;
7069 }
7070 else if (h != NULL)
7071 {
7072 /* Setting the index to -2 tells elf_link_output_extsym that
7073 this symbol is used by a reloc. */
7074 h->indx = -2;
7075 *rel_hash_ptr = h;
7076 indx = 0;
7077 }
7078 else
7079 {
7080 if (! ((*info->callbacks->unattached_reloc)
7081 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7082 return FALSE;
7083 indx = 0;
7084 }
7085 }
7086
7087 /* If this is an inplace reloc, we must write the addend into the
7088 object file. */
7089 if (howto->partial_inplace && addend != 0)
7090 {
7091 bfd_size_type size;
7092 bfd_reloc_status_type rstat;
7093 bfd_byte *buf;
7094 bfd_boolean ok;
7095 const char *sym_name;
7096
7097 size = bfd_get_reloc_size (howto);
7098 buf = bfd_zmalloc (size);
7099 if (buf == NULL)
7100 return FALSE;
7101 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7102 switch (rstat)
7103 {
7104 case bfd_reloc_ok:
7105 break;
7106
7107 default:
7108 case bfd_reloc_outofrange:
7109 abort ();
7110
7111 case bfd_reloc_overflow:
7112 if (link_order->type == bfd_section_reloc_link_order)
7113 sym_name = bfd_section_name (output_bfd,
7114 link_order->u.reloc.p->u.section);
7115 else
7116 sym_name = link_order->u.reloc.p->u.name;
7117 if (! ((*info->callbacks->reloc_overflow)
7118 (info, sym_name, howto->name, addend, NULL, NULL, 0)))
7119 {
7120 free (buf);
7121 return FALSE;
7122 }
7123 break;
7124 }
7125 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7126 link_order->offset, size);
7127 free (buf);
7128 if (! ok)
7129 return FALSE;
7130 }
7131
7132 /* The address of a reloc is relative to the section in a
7133 relocatable file, and is a virtual address in an executable
7134 file. */
7135 offset = link_order->offset;
7136 if (! info->relocatable)
7137 offset += output_section->vma;
7138
7139 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7140 {
7141 irel[i].r_offset = offset;
7142 irel[i].r_info = 0;
7143 irel[i].r_addend = 0;
7144 }
7145 if (bed->s->arch_size == 32)
7146 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7147 else
7148 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7149
7150 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7151 erel = rel_hdr->contents;
7152 if (rel_hdr->sh_type == SHT_REL)
7153 {
7154 erel += (elf_section_data (output_section)->rel_count
7155 * bed->s->sizeof_rel);
7156 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7157 }
7158 else
7159 {
7160 irel[0].r_addend = addend;
7161 erel += (elf_section_data (output_section)->rel_count
7162 * bed->s->sizeof_rela);
7163 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7164 }
7165
7166 ++elf_section_data (output_section)->rel_count;
7167
7168 return TRUE;
7169}
7170
7171/* Do the final step of an ELF link. */
7172
7173bfd_boolean
7174bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7175{
7176 bfd_boolean dynamic;
7177 bfd_boolean emit_relocs;
7178 bfd *dynobj;
7179 struct elf_final_link_info finfo;
7180 register asection *o;
7181 register struct bfd_link_order *p;
7182 register bfd *sub;
7183 bfd_size_type max_contents_size;
7184 bfd_size_type max_external_reloc_size;
7185 bfd_size_type max_internal_reloc_count;
7186 bfd_size_type max_sym_count;
7187 bfd_size_type max_sym_shndx_count;
7188 file_ptr off;
7189 Elf_Internal_Sym elfsym;
7190 unsigned int i;
7191 Elf_Internal_Shdr *symtab_hdr;
7192 Elf_Internal_Shdr *symtab_shndx_hdr;
7193 Elf_Internal_Shdr *symstrtab_hdr;
7194 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7195 struct elf_outext_info eoinfo;
7196 bfd_boolean merged;
7197 size_t relativecount = 0;
7198 asection *reldyn = 0;
7199 bfd_size_type amt;
7200
7201 if (! is_elf_hash_table (info->hash))
7202 return FALSE;
7203
7204 if (info->shared)
7205 abfd->flags |= DYNAMIC;
7206
7207 dynamic = elf_hash_table (info)->dynamic_sections_created;
7208 dynobj = elf_hash_table (info)->dynobj;
7209
7210 emit_relocs = (info->relocatable
7211 || info->emitrelocations
7212 || bed->elf_backend_emit_relocs);
7213
7214 finfo.info = info;
7215 finfo.output_bfd = abfd;
7216 finfo.symstrtab = _bfd_elf_stringtab_init ();
7217 if (finfo.symstrtab == NULL)
7218 return FALSE;
7219
7220 if (! dynamic)
7221 {
7222 finfo.dynsym_sec = NULL;
7223 finfo.hash_sec = NULL;
7224 finfo.symver_sec = NULL;
7225 }
7226 else
7227 {
7228 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7229 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7230 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7231 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7232 /* Note that it is OK if symver_sec is NULL. */
7233 }
7234
7235 finfo.contents = NULL;
7236 finfo.external_relocs = NULL;
7237 finfo.internal_relocs = NULL;
7238 finfo.external_syms = NULL;
7239 finfo.locsym_shndx = NULL;
7240 finfo.internal_syms = NULL;
7241 finfo.indices = NULL;
7242 finfo.sections = NULL;
7243 finfo.symbuf = NULL;
7244 finfo.symshndxbuf = NULL;
7245 finfo.symbuf_count = 0;
7246 finfo.shndxbuf_size = 0;
7247
7248 /* Count up the number of relocations we will output for each output
7249 section, so that we know the sizes of the reloc sections. We
7250 also figure out some maximum sizes. */
7251 max_contents_size = 0;
7252 max_external_reloc_size = 0;
7253 max_internal_reloc_count = 0;
7254 max_sym_count = 0;
7255 max_sym_shndx_count = 0;
7256 merged = FALSE;
7257 for (o = abfd->sections; o != NULL; o = o->next)
7258 {
7259 struct bfd_elf_section_data *esdo = elf_section_data (o);
7260 o->reloc_count = 0;
7261
7262 for (p = o->link_order_head; p != NULL; p = p->next)
7263 {
7264 unsigned int reloc_count = 0;
7265 struct bfd_elf_section_data *esdi = NULL;
7266 unsigned int *rel_count1;
7267
7268 if (p->type == bfd_section_reloc_link_order
7269 || p->type == bfd_symbol_reloc_link_order)
7270 reloc_count = 1;
7271 else if (p->type == bfd_indirect_link_order)
7272 {
7273 asection *sec;
7274
7275 sec = p->u.indirect.section;
7276 esdi = elf_section_data (sec);
7277
7278 /* Mark all sections which are to be included in the
7279 link. This will normally be every section. We need
7280 to do this so that we can identify any sections which
7281 the linker has decided to not include. */
7282 sec->linker_mark = TRUE;
7283
7284 if (sec->flags & SEC_MERGE)
7285 merged = TRUE;
7286
7287 if (info->relocatable || info->emitrelocations)
7288 reloc_count = sec->reloc_count;
7289 else if (bed->elf_backend_count_relocs)
7290 {
7291 Elf_Internal_Rela * relocs;
7292
7293 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7294 info->keep_memory);
7295
7296 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7297
7298 if (elf_section_data (o)->relocs != relocs)
7299 free (relocs);
7300 }
7301
eea6121a
AM
7302 if (sec->rawsize > max_contents_size)
7303 max_contents_size = sec->rawsize;
7304 if (sec->size > max_contents_size)
7305 max_contents_size = sec->size;
c152c796
AM
7306
7307 /* We are interested in just local symbols, not all
7308 symbols. */
7309 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7310 && (sec->owner->flags & DYNAMIC) == 0)
7311 {
7312 size_t sym_count;
7313
7314 if (elf_bad_symtab (sec->owner))
7315 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7316 / bed->s->sizeof_sym);
7317 else
7318 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7319
7320 if (sym_count > max_sym_count)
7321 max_sym_count = sym_count;
7322
7323 if (sym_count > max_sym_shndx_count
7324 && elf_symtab_shndx (sec->owner) != 0)
7325 max_sym_shndx_count = sym_count;
7326
7327 if ((sec->flags & SEC_RELOC) != 0)
7328 {
7329 size_t ext_size;
7330
7331 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7332 if (ext_size > max_external_reloc_size)
7333 max_external_reloc_size = ext_size;
7334 if (sec->reloc_count > max_internal_reloc_count)
7335 max_internal_reloc_count = sec->reloc_count;
7336 }
7337 }
7338 }
7339
7340 if (reloc_count == 0)
7341 continue;
7342
7343 o->reloc_count += reloc_count;
7344
7345 /* MIPS may have a mix of REL and RELA relocs on sections.
7346 To support this curious ABI we keep reloc counts in
7347 elf_section_data too. We must be careful to add the
7348 relocations from the input section to the right output
7349 count. FIXME: Get rid of one count. We have
7350 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7351 rel_count1 = &esdo->rel_count;
7352 if (esdi != NULL)
7353 {
7354 bfd_boolean same_size;
7355 bfd_size_type entsize1;
7356
7357 entsize1 = esdi->rel_hdr.sh_entsize;
7358 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7359 || entsize1 == bed->s->sizeof_rela);
7360 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7361
7362 if (!same_size)
7363 rel_count1 = &esdo->rel_count2;
7364
7365 if (esdi->rel_hdr2 != NULL)
7366 {
7367 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7368 unsigned int alt_count;
7369 unsigned int *rel_count2;
7370
7371 BFD_ASSERT (entsize2 != entsize1
7372 && (entsize2 == bed->s->sizeof_rel
7373 || entsize2 == bed->s->sizeof_rela));
7374
7375 rel_count2 = &esdo->rel_count2;
7376 if (!same_size)
7377 rel_count2 = &esdo->rel_count;
7378
7379 /* The following is probably too simplistic if the
7380 backend counts output relocs unusually. */
7381 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7382 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7383 *rel_count2 += alt_count;
7384 reloc_count -= alt_count;
7385 }
7386 }
7387 *rel_count1 += reloc_count;
7388 }
7389
7390 if (o->reloc_count > 0)
7391 o->flags |= SEC_RELOC;
7392 else
7393 {
7394 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7395 set it (this is probably a bug) and if it is set
7396 assign_section_numbers will create a reloc section. */
7397 o->flags &=~ SEC_RELOC;
7398 }
7399
7400 /* If the SEC_ALLOC flag is not set, force the section VMA to
7401 zero. This is done in elf_fake_sections as well, but forcing
7402 the VMA to 0 here will ensure that relocs against these
7403 sections are handled correctly. */
7404 if ((o->flags & SEC_ALLOC) == 0
7405 && ! o->user_set_vma)
7406 o->vma = 0;
7407 }
7408
7409 if (! info->relocatable && merged)
7410 elf_link_hash_traverse (elf_hash_table (info),
7411 _bfd_elf_link_sec_merge_syms, abfd);
7412
7413 /* Figure out the file positions for everything but the symbol table
7414 and the relocs. We set symcount to force assign_section_numbers
7415 to create a symbol table. */
7416 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7417 BFD_ASSERT (! abfd->output_has_begun);
7418 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7419 goto error_return;
7420
7421 /* That created the reloc sections. Set their sizes, and assign
7422 them file positions, and allocate some buffers. */
7423 for (o = abfd->sections; o != NULL; o = o->next)
7424 {
7425 if ((o->flags & SEC_RELOC) != 0)
7426 {
7427 if (!(_bfd_elf_link_size_reloc_section
7428 (abfd, &elf_section_data (o)->rel_hdr, o)))
7429 goto error_return;
7430
7431 if (elf_section_data (o)->rel_hdr2
7432 && !(_bfd_elf_link_size_reloc_section
7433 (abfd, elf_section_data (o)->rel_hdr2, o)))
7434 goto error_return;
7435 }
7436
7437 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7438 to count upwards while actually outputting the relocations. */
7439 elf_section_data (o)->rel_count = 0;
7440 elf_section_data (o)->rel_count2 = 0;
7441 }
7442
7443 _bfd_elf_assign_file_positions_for_relocs (abfd);
7444
7445 /* We have now assigned file positions for all the sections except
7446 .symtab and .strtab. We start the .symtab section at the current
7447 file position, and write directly to it. We build the .strtab
7448 section in memory. */
7449 bfd_get_symcount (abfd) = 0;
7450 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7451 /* sh_name is set in prep_headers. */
7452 symtab_hdr->sh_type = SHT_SYMTAB;
7453 /* sh_flags, sh_addr and sh_size all start off zero. */
7454 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7455 /* sh_link is set in assign_section_numbers. */
7456 /* sh_info is set below. */
7457 /* sh_offset is set just below. */
7458 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7459
7460 off = elf_tdata (abfd)->next_file_pos;
7461 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7462
7463 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7464 incorrect. We do not yet know the size of the .symtab section.
7465 We correct next_file_pos below, after we do know the size. */
7466
7467 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7468 continuously seeking to the right position in the file. */
7469 if (! info->keep_memory || max_sym_count < 20)
7470 finfo.symbuf_size = 20;
7471 else
7472 finfo.symbuf_size = max_sym_count;
7473 amt = finfo.symbuf_size;
7474 amt *= bed->s->sizeof_sym;
7475 finfo.symbuf = bfd_malloc (amt);
7476 if (finfo.symbuf == NULL)
7477 goto error_return;
7478 if (elf_numsections (abfd) > SHN_LORESERVE)
7479 {
7480 /* Wild guess at number of output symbols. realloc'd as needed. */
7481 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
7482 finfo.shndxbuf_size = amt;
7483 amt *= sizeof (Elf_External_Sym_Shndx);
7484 finfo.symshndxbuf = bfd_zmalloc (amt);
7485 if (finfo.symshndxbuf == NULL)
7486 goto error_return;
7487 }
7488
7489 /* Start writing out the symbol table. The first symbol is always a
7490 dummy symbol. */
7491 if (info->strip != strip_all
7492 || emit_relocs)
7493 {
7494 elfsym.st_value = 0;
7495 elfsym.st_size = 0;
7496 elfsym.st_info = 0;
7497 elfsym.st_other = 0;
7498 elfsym.st_shndx = SHN_UNDEF;
7499 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
7500 NULL))
7501 goto error_return;
7502 }
7503
7504#if 0
7505 /* Some standard ELF linkers do this, but we don't because it causes
7506 bootstrap comparison failures. */
7507 /* Output a file symbol for the output file as the second symbol.
7508 We output this even if we are discarding local symbols, although
7509 I'm not sure if this is correct. */
7510 elfsym.st_value = 0;
7511 elfsym.st_size = 0;
7512 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7513 elfsym.st_other = 0;
7514 elfsym.st_shndx = SHN_ABS;
7515 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
7516 &elfsym, bfd_abs_section_ptr, NULL))
7517 goto error_return;
7518#endif
7519
7520 /* Output a symbol for each section. We output these even if we are
7521 discarding local symbols, since they are used for relocs. These
7522 symbols have no names. We store the index of each one in the
7523 index field of the section, so that we can find it again when
7524 outputting relocs. */
7525 if (info->strip != strip_all
7526 || emit_relocs)
7527 {
7528 elfsym.st_size = 0;
7529 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7530 elfsym.st_other = 0;
7531 for (i = 1; i < elf_numsections (abfd); i++)
7532 {
7533 o = bfd_section_from_elf_index (abfd, i);
7534 if (o != NULL)
7535 o->target_index = bfd_get_symcount (abfd);
7536 elfsym.st_shndx = i;
7537 if (info->relocatable || o == NULL)
7538 elfsym.st_value = 0;
7539 else
7540 elfsym.st_value = o->vma;
7541 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
7542 goto error_return;
7543 if (i == SHN_LORESERVE - 1)
7544 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
7545 }
7546 }
7547
7548 /* Allocate some memory to hold information read in from the input
7549 files. */
7550 if (max_contents_size != 0)
7551 {
7552 finfo.contents = bfd_malloc (max_contents_size);
7553 if (finfo.contents == NULL)
7554 goto error_return;
7555 }
7556
7557 if (max_external_reloc_size != 0)
7558 {
7559 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
7560 if (finfo.external_relocs == NULL)
7561 goto error_return;
7562 }
7563
7564 if (max_internal_reloc_count != 0)
7565 {
7566 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
7567 amt *= sizeof (Elf_Internal_Rela);
7568 finfo.internal_relocs = bfd_malloc (amt);
7569 if (finfo.internal_relocs == NULL)
7570 goto error_return;
7571 }
7572
7573 if (max_sym_count != 0)
7574 {
7575 amt = max_sym_count * bed->s->sizeof_sym;
7576 finfo.external_syms = bfd_malloc (amt);
7577 if (finfo.external_syms == NULL)
7578 goto error_return;
7579
7580 amt = max_sym_count * sizeof (Elf_Internal_Sym);
7581 finfo.internal_syms = bfd_malloc (amt);
7582 if (finfo.internal_syms == NULL)
7583 goto error_return;
7584
7585 amt = max_sym_count * sizeof (long);
7586 finfo.indices = bfd_malloc (amt);
7587 if (finfo.indices == NULL)
7588 goto error_return;
7589
7590 amt = max_sym_count * sizeof (asection *);
7591 finfo.sections = bfd_malloc (amt);
7592 if (finfo.sections == NULL)
7593 goto error_return;
7594 }
7595
7596 if (max_sym_shndx_count != 0)
7597 {
7598 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
7599 finfo.locsym_shndx = bfd_malloc (amt);
7600 if (finfo.locsym_shndx == NULL)
7601 goto error_return;
7602 }
7603
7604 if (elf_hash_table (info)->tls_sec)
7605 {
7606 bfd_vma base, end = 0;
7607 asection *sec;
7608
7609 for (sec = elf_hash_table (info)->tls_sec;
7610 sec && (sec->flags & SEC_THREAD_LOCAL);
7611 sec = sec->next)
7612 {
eea6121a 7613 bfd_vma size = sec->size;
c152c796
AM
7614
7615 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
7616 {
7617 struct bfd_link_order *o;
7618
7619 for (o = sec->link_order_head; o != NULL; o = o->next)
7620 if (size < o->offset + o->size)
7621 size = o->offset + o->size;
7622 }
7623 end = sec->vma + size;
7624 }
7625 base = elf_hash_table (info)->tls_sec->vma;
7626 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
7627 elf_hash_table (info)->tls_size = end - base;
7628 }
7629
7630 /* Since ELF permits relocations to be against local symbols, we
7631 must have the local symbols available when we do the relocations.
7632 Since we would rather only read the local symbols once, and we
7633 would rather not keep them in memory, we handle all the
7634 relocations for a single input file at the same time.
7635
7636 Unfortunately, there is no way to know the total number of local
7637 symbols until we have seen all of them, and the local symbol
7638 indices precede the global symbol indices. This means that when
7639 we are generating relocatable output, and we see a reloc against
7640 a global symbol, we can not know the symbol index until we have
7641 finished examining all the local symbols to see which ones we are
7642 going to output. To deal with this, we keep the relocations in
7643 memory, and don't output them until the end of the link. This is
7644 an unfortunate waste of memory, but I don't see a good way around
7645 it. Fortunately, it only happens when performing a relocatable
7646 link, which is not the common case. FIXME: If keep_memory is set
7647 we could write the relocs out and then read them again; I don't
7648 know how bad the memory loss will be. */
7649
7650 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7651 sub->output_has_begun = FALSE;
7652 for (o = abfd->sections; o != NULL; o = o->next)
7653 {
7654 for (p = o->link_order_head; p != NULL; p = p->next)
7655 {
7656 if (p->type == bfd_indirect_link_order
7657 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7658 == bfd_target_elf_flavour)
7659 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7660 {
7661 if (! sub->output_has_begun)
7662 {
7663 if (! elf_link_input_bfd (&finfo, sub))
7664 goto error_return;
7665 sub->output_has_begun = TRUE;
7666 }
7667 }
7668 else if (p->type == bfd_section_reloc_link_order
7669 || p->type == bfd_symbol_reloc_link_order)
7670 {
7671 if (! elf_reloc_link_order (abfd, info, o, p))
7672 goto error_return;
7673 }
7674 else
7675 {
7676 if (! _bfd_default_link_order (abfd, info, o, p))
7677 goto error_return;
7678 }
7679 }
7680 }
7681
7682 /* Output any global symbols that got converted to local in a
7683 version script or due to symbol visibility. We do this in a
7684 separate step since ELF requires all local symbols to appear
7685 prior to any global symbols. FIXME: We should only do this if
7686 some global symbols were, in fact, converted to become local.
7687 FIXME: Will this work correctly with the Irix 5 linker? */
7688 eoinfo.failed = FALSE;
7689 eoinfo.finfo = &finfo;
7690 eoinfo.localsyms = TRUE;
7691 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7692 &eoinfo);
7693 if (eoinfo.failed)
7694 return FALSE;
7695
7696 /* That wrote out all the local symbols. Finish up the symbol table
7697 with the global symbols. Even if we want to strip everything we
7698 can, we still need to deal with those global symbols that got
7699 converted to local in a version script. */
7700
7701 /* The sh_info field records the index of the first non local symbol. */
7702 symtab_hdr->sh_info = bfd_get_symcount (abfd);
7703
7704 if (dynamic
7705 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
7706 {
7707 Elf_Internal_Sym sym;
7708 bfd_byte *dynsym = finfo.dynsym_sec->contents;
7709 long last_local = 0;
7710
7711 /* Write out the section symbols for the output sections. */
7712 if (info->shared)
7713 {
7714 asection *s;
7715
7716 sym.st_size = 0;
7717 sym.st_name = 0;
7718 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7719 sym.st_other = 0;
7720
7721 for (s = abfd->sections; s != NULL; s = s->next)
7722 {
7723 int indx;
7724 bfd_byte *dest;
7725 long dynindx;
7726
c152c796 7727 dynindx = elf_section_data (s)->dynindx;
8c37241b
JJ
7728 if (dynindx <= 0)
7729 continue;
7730 indx = elf_section_data (s)->this_idx;
c152c796
AM
7731 BFD_ASSERT (indx > 0);
7732 sym.st_shndx = indx;
7733 sym.st_value = s->vma;
7734 dest = dynsym + dynindx * bed->s->sizeof_sym;
8c37241b
JJ
7735 if (last_local < dynindx)
7736 last_local = dynindx;
c152c796
AM
7737 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7738 }
c152c796
AM
7739 }
7740
7741 /* Write out the local dynsyms. */
7742 if (elf_hash_table (info)->dynlocal)
7743 {
7744 struct elf_link_local_dynamic_entry *e;
7745 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
7746 {
7747 asection *s;
7748 bfd_byte *dest;
7749
7750 sym.st_size = e->isym.st_size;
7751 sym.st_other = e->isym.st_other;
7752
7753 /* Copy the internal symbol as is.
7754 Note that we saved a word of storage and overwrote
7755 the original st_name with the dynstr_index. */
7756 sym = e->isym;
7757
7758 if (e->isym.st_shndx != SHN_UNDEF
7759 && (e->isym.st_shndx < SHN_LORESERVE
7760 || e->isym.st_shndx > SHN_HIRESERVE))
7761 {
7762 s = bfd_section_from_elf_index (e->input_bfd,
7763 e->isym.st_shndx);
7764
7765 sym.st_shndx =
7766 elf_section_data (s->output_section)->this_idx;
7767 sym.st_value = (s->output_section->vma
7768 + s->output_offset
7769 + e->isym.st_value);
7770 }
7771
7772 if (last_local < e->dynindx)
7773 last_local = e->dynindx;
7774
7775 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
7776 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7777 }
7778 }
7779
7780 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
7781 last_local + 1;
7782 }
7783
7784 /* We get the global symbols from the hash table. */
7785 eoinfo.failed = FALSE;
7786 eoinfo.localsyms = FALSE;
7787 eoinfo.finfo = &finfo;
7788 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7789 &eoinfo);
7790 if (eoinfo.failed)
7791 return FALSE;
7792
7793 /* If backend needs to output some symbols not present in the hash
7794 table, do it now. */
7795 if (bed->elf_backend_output_arch_syms)
7796 {
7797 typedef bfd_boolean (*out_sym_func)
7798 (void *, const char *, Elf_Internal_Sym *, asection *,
7799 struct elf_link_hash_entry *);
7800
7801 if (! ((*bed->elf_backend_output_arch_syms)
7802 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
7803 return FALSE;
7804 }
7805
7806 /* Flush all symbols to the file. */
7807 if (! elf_link_flush_output_syms (&finfo, bed))
7808 return FALSE;
7809
7810 /* Now we know the size of the symtab section. */
7811 off += symtab_hdr->sh_size;
7812
7813 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
7814 if (symtab_shndx_hdr->sh_name != 0)
7815 {
7816 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7817 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7818 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7819 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
7820 symtab_shndx_hdr->sh_size = amt;
7821
7822 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
7823 off, TRUE);
7824
7825 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
7826 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
7827 return FALSE;
7828 }
7829
7830
7831 /* Finish up and write out the symbol string table (.strtab)
7832 section. */
7833 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7834 /* sh_name was set in prep_headers. */
7835 symstrtab_hdr->sh_type = SHT_STRTAB;
7836 symstrtab_hdr->sh_flags = 0;
7837 symstrtab_hdr->sh_addr = 0;
7838 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
7839 symstrtab_hdr->sh_entsize = 0;
7840 symstrtab_hdr->sh_link = 0;
7841 symstrtab_hdr->sh_info = 0;
7842 /* sh_offset is set just below. */
7843 symstrtab_hdr->sh_addralign = 1;
7844
7845 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
7846 elf_tdata (abfd)->next_file_pos = off;
7847
7848 if (bfd_get_symcount (abfd) > 0)
7849 {
7850 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
7851 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
7852 return FALSE;
7853 }
7854
7855 /* Adjust the relocs to have the correct symbol indices. */
7856 for (o = abfd->sections; o != NULL; o = o->next)
7857 {
7858 if ((o->flags & SEC_RELOC) == 0)
7859 continue;
7860
7861 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
7862 elf_section_data (o)->rel_count,
7863 elf_section_data (o)->rel_hashes);
7864 if (elf_section_data (o)->rel_hdr2 != NULL)
7865 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
7866 elf_section_data (o)->rel_count2,
7867 (elf_section_data (o)->rel_hashes
7868 + elf_section_data (o)->rel_count));
7869
7870 /* Set the reloc_count field to 0 to prevent write_relocs from
7871 trying to swap the relocs out itself. */
7872 o->reloc_count = 0;
7873 }
7874
7875 if (dynamic && info->combreloc && dynobj != NULL)
7876 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
7877
7878 /* If we are linking against a dynamic object, or generating a
7879 shared library, finish up the dynamic linking information. */
7880 if (dynamic)
7881 {
7882 bfd_byte *dyncon, *dynconend;
7883
7884 /* Fix up .dynamic entries. */
7885 o = bfd_get_section_by_name (dynobj, ".dynamic");
7886 BFD_ASSERT (o != NULL);
7887
7888 dyncon = o->contents;
eea6121a 7889 dynconend = o->contents + o->size;
c152c796
AM
7890 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
7891 {
7892 Elf_Internal_Dyn dyn;
7893 const char *name;
7894 unsigned int type;
7895
7896 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
7897
7898 switch (dyn.d_tag)
7899 {
7900 default:
7901 continue;
7902 case DT_NULL:
7903 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
7904 {
7905 switch (elf_section_data (reldyn)->this_hdr.sh_type)
7906 {
7907 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
7908 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
7909 default: continue;
7910 }
7911 dyn.d_un.d_val = relativecount;
7912 relativecount = 0;
7913 break;
7914 }
7915 continue;
7916
7917 case DT_INIT:
7918 name = info->init_function;
7919 goto get_sym;
7920 case DT_FINI:
7921 name = info->fini_function;
7922 get_sym:
7923 {
7924 struct elf_link_hash_entry *h;
7925
7926 h = elf_link_hash_lookup (elf_hash_table (info), name,
7927 FALSE, FALSE, TRUE);
7928 if (h != NULL
7929 && (h->root.type == bfd_link_hash_defined
7930 || h->root.type == bfd_link_hash_defweak))
7931 {
7932 dyn.d_un.d_val = h->root.u.def.value;
7933 o = h->root.u.def.section;
7934 if (o->output_section != NULL)
7935 dyn.d_un.d_val += (o->output_section->vma
7936 + o->output_offset);
7937 else
7938 {
7939 /* The symbol is imported from another shared
7940 library and does not apply to this one. */
7941 dyn.d_un.d_val = 0;
7942 }
7943 break;
7944 }
7945 }
7946 continue;
7947
7948 case DT_PREINIT_ARRAYSZ:
7949 name = ".preinit_array";
7950 goto get_size;
7951 case DT_INIT_ARRAYSZ:
7952 name = ".init_array";
7953 goto get_size;
7954 case DT_FINI_ARRAYSZ:
7955 name = ".fini_array";
7956 get_size:
7957 o = bfd_get_section_by_name (abfd, name);
7958 if (o == NULL)
7959 {
7960 (*_bfd_error_handler)
7961 (_("%s: could not find output section %s"),
7962 bfd_get_filename (abfd), name);
7963 goto error_return;
7964 }
eea6121a 7965 if (o->size == 0)
c152c796
AM
7966 (*_bfd_error_handler)
7967 (_("warning: %s section has zero size"), name);
eea6121a 7968 dyn.d_un.d_val = o->size;
c152c796
AM
7969 break;
7970
7971 case DT_PREINIT_ARRAY:
7972 name = ".preinit_array";
7973 goto get_vma;
7974 case DT_INIT_ARRAY:
7975 name = ".init_array";
7976 goto get_vma;
7977 case DT_FINI_ARRAY:
7978 name = ".fini_array";
7979 goto get_vma;
7980
7981 case DT_HASH:
7982 name = ".hash";
7983 goto get_vma;
7984 case DT_STRTAB:
7985 name = ".dynstr";
7986 goto get_vma;
7987 case DT_SYMTAB:
7988 name = ".dynsym";
7989 goto get_vma;
7990 case DT_VERDEF:
7991 name = ".gnu.version_d";
7992 goto get_vma;
7993 case DT_VERNEED:
7994 name = ".gnu.version_r";
7995 goto get_vma;
7996 case DT_VERSYM:
7997 name = ".gnu.version";
7998 get_vma:
7999 o = bfd_get_section_by_name (abfd, name);
8000 if (o == NULL)
8001 {
8002 (*_bfd_error_handler)
8003 (_("%s: could not find output section %s"),
8004 bfd_get_filename (abfd), name);
8005 goto error_return;
8006 }
8007 dyn.d_un.d_ptr = o->vma;
8008 break;
8009
8010 case DT_REL:
8011 case DT_RELA:
8012 case DT_RELSZ:
8013 case DT_RELASZ:
8014 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8015 type = SHT_REL;
8016 else
8017 type = SHT_RELA;
8018 dyn.d_un.d_val = 0;
8019 for (i = 1; i < elf_numsections (abfd); i++)
8020 {
8021 Elf_Internal_Shdr *hdr;
8022
8023 hdr = elf_elfsections (abfd)[i];
8024 if (hdr->sh_type == type
8025 && (hdr->sh_flags & SHF_ALLOC) != 0)
8026 {
8027 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8028 dyn.d_un.d_val += hdr->sh_size;
8029 else
8030 {
8031 if (dyn.d_un.d_val == 0
8032 || hdr->sh_addr < dyn.d_un.d_val)
8033 dyn.d_un.d_val = hdr->sh_addr;
8034 }
8035 }
8036 }
8037 break;
8038 }
8039 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8040 }
8041 }
8042
8043 /* If we have created any dynamic sections, then output them. */
8044 if (dynobj != NULL)
8045 {
8046 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8047 goto error_return;
8048
8049 for (o = dynobj->sections; o != NULL; o = o->next)
8050 {
8051 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 8052 || o->size == 0
c152c796
AM
8053 || o->output_section == bfd_abs_section_ptr)
8054 continue;
8055 if ((o->flags & SEC_LINKER_CREATED) == 0)
8056 {
8057 /* At this point, we are only interested in sections
8058 created by _bfd_elf_link_create_dynamic_sections. */
8059 continue;
8060 }
3722b82f
AM
8061 if (elf_hash_table (info)->stab_info.stabstr == o)
8062 continue;
eea6121a
AM
8063 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8064 continue;
c152c796
AM
8065 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8066 != SHT_STRTAB)
8067 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8068 {
8069 if (! bfd_set_section_contents (abfd, o->output_section,
8070 o->contents,
8071 (file_ptr) o->output_offset,
eea6121a 8072 o->size))
c152c796
AM
8073 goto error_return;
8074 }
8075 else
8076 {
8077 /* The contents of the .dynstr section are actually in a
8078 stringtab. */
8079 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8080 if (bfd_seek (abfd, off, SEEK_SET) != 0
8081 || ! _bfd_elf_strtab_emit (abfd,
8082 elf_hash_table (info)->dynstr))
8083 goto error_return;
8084 }
8085 }
8086 }
8087
8088 if (info->relocatable)
8089 {
8090 bfd_boolean failed = FALSE;
8091
8092 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8093 if (failed)
8094 goto error_return;
8095 }
8096
8097 /* If we have optimized stabs strings, output them. */
3722b82f 8098 if (elf_hash_table (info)->stab_info.stabstr != NULL)
c152c796
AM
8099 {
8100 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8101 goto error_return;
8102 }
8103
8104 if (info->eh_frame_hdr)
8105 {
8106 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8107 goto error_return;
8108 }
8109
8110 if (finfo.symstrtab != NULL)
8111 _bfd_stringtab_free (finfo.symstrtab);
8112 if (finfo.contents != NULL)
8113 free (finfo.contents);
8114 if (finfo.external_relocs != NULL)
8115 free (finfo.external_relocs);
8116 if (finfo.internal_relocs != NULL)
8117 free (finfo.internal_relocs);
8118 if (finfo.external_syms != NULL)
8119 free (finfo.external_syms);
8120 if (finfo.locsym_shndx != NULL)
8121 free (finfo.locsym_shndx);
8122 if (finfo.internal_syms != NULL)
8123 free (finfo.internal_syms);
8124 if (finfo.indices != NULL)
8125 free (finfo.indices);
8126 if (finfo.sections != NULL)
8127 free (finfo.sections);
8128 if (finfo.symbuf != NULL)
8129 free (finfo.symbuf);
8130 if (finfo.symshndxbuf != NULL)
8131 free (finfo.symshndxbuf);
8132 for (o = abfd->sections; o != NULL; o = o->next)
8133 {
8134 if ((o->flags & SEC_RELOC) != 0
8135 && elf_section_data (o)->rel_hashes != NULL)
8136 free (elf_section_data (o)->rel_hashes);
8137 }
8138
8139 elf_tdata (abfd)->linker = TRUE;
8140
8141 return TRUE;
8142
8143 error_return:
8144 if (finfo.symstrtab != NULL)
8145 _bfd_stringtab_free (finfo.symstrtab);
8146 if (finfo.contents != NULL)
8147 free (finfo.contents);
8148 if (finfo.external_relocs != NULL)
8149 free (finfo.external_relocs);
8150 if (finfo.internal_relocs != NULL)
8151 free (finfo.internal_relocs);
8152 if (finfo.external_syms != NULL)
8153 free (finfo.external_syms);
8154 if (finfo.locsym_shndx != NULL)
8155 free (finfo.locsym_shndx);
8156 if (finfo.internal_syms != NULL)
8157 free (finfo.internal_syms);
8158 if (finfo.indices != NULL)
8159 free (finfo.indices);
8160 if (finfo.sections != NULL)
8161 free (finfo.sections);
8162 if (finfo.symbuf != NULL)
8163 free (finfo.symbuf);
8164 if (finfo.symshndxbuf != NULL)
8165 free (finfo.symshndxbuf);
8166 for (o = abfd->sections; o != NULL; o = o->next)
8167 {
8168 if ((o->flags & SEC_RELOC) != 0
8169 && elf_section_data (o)->rel_hashes != NULL)
8170 free (elf_section_data (o)->rel_hashes);
8171 }
8172
8173 return FALSE;
8174}
8175\f
8176/* Garbage collect unused sections. */
8177
8178/* The mark phase of garbage collection. For a given section, mark
8179 it and any sections in this section's group, and all the sections
8180 which define symbols to which it refers. */
8181
8182typedef asection * (*gc_mark_hook_fn)
8183 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8184 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8185
8186static bfd_boolean
8187elf_gc_mark (struct bfd_link_info *info,
8188 asection *sec,
8189 gc_mark_hook_fn gc_mark_hook)
8190{
8191 bfd_boolean ret;
8192 asection *group_sec;
8193
8194 sec->gc_mark = 1;
8195
8196 /* Mark all the sections in the group. */
8197 group_sec = elf_section_data (sec)->next_in_group;
8198 if (group_sec && !group_sec->gc_mark)
8199 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
8200 return FALSE;
8201
8202 /* Look through the section relocs. */
8203 ret = TRUE;
8204 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8205 {
8206 Elf_Internal_Rela *relstart, *rel, *relend;
8207 Elf_Internal_Shdr *symtab_hdr;
8208 struct elf_link_hash_entry **sym_hashes;
8209 size_t nlocsyms;
8210 size_t extsymoff;
8211 bfd *input_bfd = sec->owner;
8212 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8213 Elf_Internal_Sym *isym = NULL;
8214 int r_sym_shift;
8215
8216 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8217 sym_hashes = elf_sym_hashes (input_bfd);
8218
8219 /* Read the local symbols. */
8220 if (elf_bad_symtab (input_bfd))
8221 {
8222 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8223 extsymoff = 0;
8224 }
8225 else
8226 extsymoff = nlocsyms = symtab_hdr->sh_info;
8227
8228 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8229 if (isym == NULL && nlocsyms != 0)
8230 {
8231 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8232 NULL, NULL, NULL);
8233 if (isym == NULL)
8234 return FALSE;
8235 }
8236
8237 /* Read the relocations. */
8238 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8239 info->keep_memory);
8240 if (relstart == NULL)
8241 {
8242 ret = FALSE;
8243 goto out1;
8244 }
8245 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8246
8247 if (bed->s->arch_size == 32)
8248 r_sym_shift = 8;
8249 else
8250 r_sym_shift = 32;
8251
8252 for (rel = relstart; rel < relend; rel++)
8253 {
8254 unsigned long r_symndx;
8255 asection *rsec;
8256 struct elf_link_hash_entry *h;
8257
8258 r_symndx = rel->r_info >> r_sym_shift;
8259 if (r_symndx == 0)
8260 continue;
8261
8262 if (r_symndx >= nlocsyms
8263 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8264 {
8265 h = sym_hashes[r_symndx - extsymoff];
20f0a1ad
AM
8266 while (h->root.type == bfd_link_hash_indirect
8267 || h->root.type == bfd_link_hash_warning)
8268 h = (struct elf_link_hash_entry *) h->root.u.i.link;
c152c796
AM
8269 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8270 }
8271 else
8272 {
8273 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8274 }
8275
8276 if (rsec && !rsec->gc_mark)
8277 {
8278 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8279 rsec->gc_mark = 1;
8280 else if (!elf_gc_mark (info, rsec, gc_mark_hook))
8281 {
8282 ret = FALSE;
8283 goto out2;
8284 }
8285 }
8286 }
8287
8288 out2:
8289 if (elf_section_data (sec)->relocs != relstart)
8290 free (relstart);
8291 out1:
8292 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8293 {
8294 if (! info->keep_memory)
8295 free (isym);
8296 else
8297 symtab_hdr->contents = (unsigned char *) isym;
8298 }
8299 }
8300
8301 return ret;
8302}
8303
8304/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8305
8306static bfd_boolean
8307elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8308{
8309 int *idx = idxptr;
8310
8311 if (h->root.type == bfd_link_hash_warning)
8312 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8313
8314 if (h->dynindx != -1
8315 && ((h->root.type != bfd_link_hash_defined
8316 && h->root.type != bfd_link_hash_defweak)
8317 || h->root.u.def.section->gc_mark))
8318 h->dynindx = (*idx)++;
8319
8320 return TRUE;
8321}
8322
8323/* The sweep phase of garbage collection. Remove all garbage sections. */
8324
8325typedef bfd_boolean (*gc_sweep_hook_fn)
8326 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8327
8328static bfd_boolean
8329elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8330{
8331 bfd *sub;
8332
8333 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8334 {
8335 asection *o;
8336
8337 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8338 continue;
8339
8340 for (o = sub->sections; o != NULL; o = o->next)
8341 {
8342 /* Keep special sections. Keep .debug sections. */
8343 if ((o->flags & SEC_LINKER_CREATED)
8344 || (o->flags & SEC_DEBUGGING))
8345 o->gc_mark = 1;
8346
8347 if (o->gc_mark)
8348 continue;
8349
8350 /* Skip sweeping sections already excluded. */
8351 if (o->flags & SEC_EXCLUDE)
8352 continue;
8353
8354 /* Since this is early in the link process, it is simple
8355 to remove a section from the output. */
8356 o->flags |= SEC_EXCLUDE;
8357
8358 /* But we also have to update some of the relocation
8359 info we collected before. */
8360 if (gc_sweep_hook
8361 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8362 {
8363 Elf_Internal_Rela *internal_relocs;
8364 bfd_boolean r;
8365
8366 internal_relocs
8367 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8368 info->keep_memory);
8369 if (internal_relocs == NULL)
8370 return FALSE;
8371
8372 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8373
8374 if (elf_section_data (o)->relocs != internal_relocs)
8375 free (internal_relocs);
8376
8377 if (!r)
8378 return FALSE;
8379 }
8380 }
8381 }
8382
8383 /* Remove the symbols that were in the swept sections from the dynamic
8384 symbol table. GCFIXME: Anyone know how to get them out of the
8385 static symbol table as well? */
8386 {
8387 int i = 0;
8388
8389 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8390
8391 elf_hash_table (info)->dynsymcount = i;
8392 }
8393
8394 return TRUE;
8395}
8396
8397/* Propagate collected vtable information. This is called through
8398 elf_link_hash_traverse. */
8399
8400static bfd_boolean
8401elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8402{
8403 if (h->root.type == bfd_link_hash_warning)
8404 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8405
8406 /* Those that are not vtables. */
8407 if (h->vtable_parent == NULL)
8408 return TRUE;
8409
8410 /* Those vtables that do not have parents, we cannot merge. */
8411 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
8412 return TRUE;
8413
8414 /* If we've already been done, exit. */
8415 if (h->vtable_entries_used && h->vtable_entries_used[-1])
8416 return TRUE;
8417
8418 /* Make sure the parent's table is up to date. */
8419 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
8420
8421 if (h->vtable_entries_used == NULL)
8422 {
8423 /* None of this table's entries were referenced. Re-use the
8424 parent's table. */
8425 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
8426 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
8427 }
8428 else
8429 {
8430 size_t n;
8431 bfd_boolean *cu, *pu;
8432
8433 /* Or the parent's entries into ours. */
8434 cu = h->vtable_entries_used;
8435 cu[-1] = TRUE;
8436 pu = h->vtable_parent->vtable_entries_used;
8437 if (pu != NULL)
8438 {
8439 const struct elf_backend_data *bed;
8440 unsigned int log_file_align;
8441
8442 bed = get_elf_backend_data (h->root.u.def.section->owner);
8443 log_file_align = bed->s->log_file_align;
8444 n = h->vtable_parent->vtable_entries_size >> log_file_align;
8445 while (n--)
8446 {
8447 if (*pu)
8448 *cu = TRUE;
8449 pu++;
8450 cu++;
8451 }
8452 }
8453 }
8454
8455 return TRUE;
8456}
8457
8458static bfd_boolean
8459elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8460{
8461 asection *sec;
8462 bfd_vma hstart, hend;
8463 Elf_Internal_Rela *relstart, *relend, *rel;
8464 const struct elf_backend_data *bed;
8465 unsigned int log_file_align;
8466
8467 if (h->root.type == bfd_link_hash_warning)
8468 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8469
8470 /* Take care of both those symbols that do not describe vtables as
8471 well as those that are not loaded. */
8472 if (h->vtable_parent == NULL)
8473 return TRUE;
8474
8475 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8476 || h->root.type == bfd_link_hash_defweak);
8477
8478 sec = h->root.u.def.section;
8479 hstart = h->root.u.def.value;
8480 hend = hstart + h->size;
8481
8482 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
8483 if (!relstart)
8484 return *(bfd_boolean *) okp = FALSE;
8485 bed = get_elf_backend_data (sec->owner);
8486 log_file_align = bed->s->log_file_align;
8487
8488 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8489
8490 for (rel = relstart; rel < relend; ++rel)
8491 if (rel->r_offset >= hstart && rel->r_offset < hend)
8492 {
8493 /* If the entry is in use, do nothing. */
8494 if (h->vtable_entries_used
8495 && (rel->r_offset - hstart) < h->vtable_entries_size)
8496 {
8497 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
8498 if (h->vtable_entries_used[entry])
8499 continue;
8500 }
8501 /* Otherwise, kill it. */
8502 rel->r_offset = rel->r_info = rel->r_addend = 0;
8503 }
8504
8505 return TRUE;
8506}
8507
715df9b8
EB
8508/* Mark sections containing dynamically referenced symbols. This is called
8509 through elf_link_hash_traverse. */
8510
8511static bfd_boolean
8512elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
8513 void *okp ATTRIBUTE_UNUSED)
8514{
8515 if (h->root.type == bfd_link_hash_warning)
8516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8517
8518 if ((h->root.type == bfd_link_hash_defined
8519 || h->root.type == bfd_link_hash_defweak)
8520 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC))
8521 h->root.u.def.section->flags |= SEC_KEEP;
8522
8523 return TRUE;
8524}
8525
c152c796
AM
8526/* Do mark and sweep of unused sections. */
8527
8528bfd_boolean
8529bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
8530{
8531 bfd_boolean ok = TRUE;
8532 bfd *sub;
8533 asection * (*gc_mark_hook)
8534 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8535 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
8536
8537 if (!get_elf_backend_data (abfd)->can_gc_sections
8538 || info->relocatable
8539 || info->emitrelocations
715df9b8
EB
8540 || info->shared
8541 || !is_elf_hash_table (info->hash))
c152c796
AM
8542 {
8543 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
8544 return TRUE;
8545 }
8546
8547 /* Apply transitive closure to the vtable entry usage info. */
8548 elf_link_hash_traverse (elf_hash_table (info),
8549 elf_gc_propagate_vtable_entries_used,
8550 &ok);
8551 if (!ok)
8552 return FALSE;
8553
8554 /* Kill the vtable relocations that were not used. */
8555 elf_link_hash_traverse (elf_hash_table (info),
8556 elf_gc_smash_unused_vtentry_relocs,
8557 &ok);
8558 if (!ok)
8559 return FALSE;
8560
715df9b8
EB
8561 /* Mark dynamically referenced symbols. */
8562 if (elf_hash_table (info)->dynamic_sections_created)
8563 elf_link_hash_traverse (elf_hash_table (info),
8564 elf_gc_mark_dynamic_ref_symbol,
8565 &ok);
8566 if (!ok)
8567 return FALSE;
c152c796 8568
715df9b8 8569 /* Grovel through relocs to find out who stays ... */
c152c796
AM
8570 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8571 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8572 {
8573 asection *o;
8574
8575 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8576 continue;
8577
8578 for (o = sub->sections; o != NULL; o = o->next)
8579 {
8580 if (o->flags & SEC_KEEP)
715df9b8
EB
8581 {
8582 /* _bfd_elf_discard_section_eh_frame knows how to discard
8583 orphaned FDEs so don't mark sections referenced by the
8584 EH frame section. */
8585 if (strcmp (o->name, ".eh_frame") == 0)
8586 o->gc_mark = 1;
8587 else if (!elf_gc_mark (info, o, gc_mark_hook))
8588 return FALSE;
8589 }
c152c796
AM
8590 }
8591 }
8592
8593 /* ... and mark SEC_EXCLUDE for those that go. */
8594 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8595 return FALSE;
8596
8597 return TRUE;
8598}
8599\f
8600/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
8601
8602bfd_boolean
8603bfd_elf_gc_record_vtinherit (bfd *abfd,
8604 asection *sec,
8605 struct elf_link_hash_entry *h,
8606 bfd_vma offset)
8607{
8608 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8609 struct elf_link_hash_entry **search, *child;
8610 bfd_size_type extsymcount;
8611 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
b602c853 8612 char *sec_name;
c152c796
AM
8613
8614 /* The sh_info field of the symtab header tells us where the
8615 external symbols start. We don't care about the local symbols at
8616 this point. */
8617 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
8618 if (!elf_bad_symtab (abfd))
8619 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8620
8621 sym_hashes = elf_sym_hashes (abfd);
8622 sym_hashes_end = sym_hashes + extsymcount;
8623
8624 /* Hunt down the child symbol, which is in this section at the same
8625 offset as the relocation. */
8626 for (search = sym_hashes; search != sym_hashes_end; ++search)
8627 {
8628 if ((child = *search) != NULL
8629 && (child->root.type == bfd_link_hash_defined
8630 || child->root.type == bfd_link_hash_defweak)
8631 && child->root.u.def.section == sec
8632 && child->root.u.def.value == offset)
8633 goto win;
8634 }
8635
b602c853 8636 sec_name = bfd_get_section_ident (sec);
c152c796 8637 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
b602c853
L
8638 bfd_archive_filename (abfd),
8639 sec_name ? sec_name : sec->name,
c152c796
AM
8640 (unsigned long) offset);
8641 bfd_set_error (bfd_error_invalid_operation);
8642 return FALSE;
8643
8644 win:
8645 if (!h)
8646 {
8647 /* This *should* only be the absolute section. It could potentially
8648 be that someone has defined a non-global vtable though, which
8649 would be bad. It isn't worth paging in the local symbols to be
8650 sure though; that case should simply be handled by the assembler. */
8651
8652 child->vtable_parent = (struct elf_link_hash_entry *) -1;
8653 }
8654 else
8655 child->vtable_parent = h;
8656
8657 return TRUE;
8658}
8659
8660/* Called from check_relocs to record the existence of a VTENTRY reloc. */
8661
8662bfd_boolean
8663bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
8664 asection *sec ATTRIBUTE_UNUSED,
8665 struct elf_link_hash_entry *h,
8666 bfd_vma addend)
8667{
8668 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8669 unsigned int log_file_align = bed->s->log_file_align;
8670
8671 if (addend >= h->vtable_entries_size)
8672 {
8673 size_t size, bytes, file_align;
8674 bfd_boolean *ptr = h->vtable_entries_used;
8675
8676 /* While the symbol is undefined, we have to be prepared to handle
8677 a zero size. */
8678 file_align = 1 << log_file_align;
8679 if (h->root.type == bfd_link_hash_undefined)
8680 size = addend + file_align;
8681 else
8682 {
8683 size = h->size;
8684 if (addend >= size)
8685 {
8686 /* Oops! We've got a reference past the defined end of
8687 the table. This is probably a bug -- shall we warn? */
8688 size = addend + file_align;
8689 }
8690 }
8691 size = (size + file_align - 1) & -file_align;
8692
8693 /* Allocate one extra entry for use as a "done" flag for the
8694 consolidation pass. */
8695 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
8696
8697 if (ptr)
8698 {
8699 ptr = bfd_realloc (ptr - 1, bytes);
8700
8701 if (ptr != NULL)
8702 {
8703 size_t oldbytes;
8704
8705 oldbytes = (((h->vtable_entries_size >> log_file_align) + 1)
8706 * sizeof (bfd_boolean));
8707 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
8708 }
8709 }
8710 else
8711 ptr = bfd_zmalloc (bytes);
8712
8713 if (ptr == NULL)
8714 return FALSE;
8715
8716 /* And arrange for that done flag to be at index -1. */
8717 h->vtable_entries_used = ptr + 1;
8718 h->vtable_entries_size = size;
8719 }
8720
8721 h->vtable_entries_used[addend >> log_file_align] = TRUE;
8722
8723 return TRUE;
8724}
8725
8726struct alloc_got_off_arg {
8727 bfd_vma gotoff;
8728 unsigned int got_elt_size;
8729};
8730
8731/* We need a special top-level link routine to convert got reference counts
8732 to real got offsets. */
8733
8734static bfd_boolean
8735elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
8736{
8737 struct alloc_got_off_arg *gofarg = arg;
8738
8739 if (h->root.type == bfd_link_hash_warning)
8740 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8741
8742 if (h->got.refcount > 0)
8743 {
8744 h->got.offset = gofarg->gotoff;
8745 gofarg->gotoff += gofarg->got_elt_size;
8746 }
8747 else
8748 h->got.offset = (bfd_vma) -1;
8749
8750 return TRUE;
8751}
8752
8753/* And an accompanying bit to work out final got entry offsets once
8754 we're done. Should be called from final_link. */
8755
8756bfd_boolean
8757bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
8758 struct bfd_link_info *info)
8759{
8760 bfd *i;
8761 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8762 bfd_vma gotoff;
8763 unsigned int got_elt_size = bed->s->arch_size / 8;
8764 struct alloc_got_off_arg gofarg;
8765
8766 if (! is_elf_hash_table (info->hash))
8767 return FALSE;
8768
8769 /* The GOT offset is relative to the .got section, but the GOT header is
8770 put into the .got.plt section, if the backend uses it. */
8771 if (bed->want_got_plt)
8772 gotoff = 0;
8773 else
8774 gotoff = bed->got_header_size;
8775
8776 /* Do the local .got entries first. */
8777 for (i = info->input_bfds; i; i = i->link_next)
8778 {
8779 bfd_signed_vma *local_got;
8780 bfd_size_type j, locsymcount;
8781 Elf_Internal_Shdr *symtab_hdr;
8782
8783 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8784 continue;
8785
8786 local_got = elf_local_got_refcounts (i);
8787 if (!local_got)
8788 continue;
8789
8790 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8791 if (elf_bad_symtab (i))
8792 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8793 else
8794 locsymcount = symtab_hdr->sh_info;
8795
8796 for (j = 0; j < locsymcount; ++j)
8797 {
8798 if (local_got[j] > 0)
8799 {
8800 local_got[j] = gotoff;
8801 gotoff += got_elt_size;
8802 }
8803 else
8804 local_got[j] = (bfd_vma) -1;
8805 }
8806 }
8807
8808 /* Then the global .got entries. .plt refcounts are handled by
8809 adjust_dynamic_symbol */
8810 gofarg.gotoff = gotoff;
8811 gofarg.got_elt_size = got_elt_size;
8812 elf_link_hash_traverse (elf_hash_table (info),
8813 elf_gc_allocate_got_offsets,
8814 &gofarg);
8815 return TRUE;
8816}
8817
8818/* Many folk need no more in the way of final link than this, once
8819 got entry reference counting is enabled. */
8820
8821bfd_boolean
8822bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
8823{
8824 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
8825 return FALSE;
8826
8827 /* Invoke the regular ELF backend linker to do all the work. */
8828 return bfd_elf_final_link (abfd, info);
8829}
8830
8831bfd_boolean
8832bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
8833{
8834 struct elf_reloc_cookie *rcookie = cookie;
8835
8836 if (rcookie->bad_symtab)
8837 rcookie->rel = rcookie->rels;
8838
8839 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8840 {
8841 unsigned long r_symndx;
8842
8843 if (! rcookie->bad_symtab)
8844 if (rcookie->rel->r_offset > offset)
8845 return FALSE;
8846 if (rcookie->rel->r_offset != offset)
8847 continue;
8848
8849 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
8850 if (r_symndx == SHN_UNDEF)
8851 return TRUE;
8852
8853 if (r_symndx >= rcookie->locsymcount
8854 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
8855 {
8856 struct elf_link_hash_entry *h;
8857
8858 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8859
8860 while (h->root.type == bfd_link_hash_indirect
8861 || h->root.type == bfd_link_hash_warning)
8862 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8863
8864 if ((h->root.type == bfd_link_hash_defined
8865 || h->root.type == bfd_link_hash_defweak)
8866 && elf_discarded_section (h->root.u.def.section))
8867 return TRUE;
8868 else
8869 return FALSE;
8870 }
8871 else
8872 {
8873 /* It's not a relocation against a global symbol,
8874 but it could be a relocation against a local
8875 symbol for a discarded section. */
8876 asection *isec;
8877 Elf_Internal_Sym *isym;
8878
8879 /* Need to: get the symbol; get the section. */
8880 isym = &rcookie->locsyms[r_symndx];
8881 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8882 {
8883 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
8884 if (isec != NULL && elf_discarded_section (isec))
8885 return TRUE;
8886 }
8887 }
8888 return FALSE;
8889 }
8890 return FALSE;
8891}
8892
8893/* Discard unneeded references to discarded sections.
8894 Returns TRUE if any section's size was changed. */
8895/* This function assumes that the relocations are in sorted order,
8896 which is true for all known assemblers. */
8897
8898bfd_boolean
8899bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
8900{
8901 struct elf_reloc_cookie cookie;
8902 asection *stab, *eh;
8903 Elf_Internal_Shdr *symtab_hdr;
8904 const struct elf_backend_data *bed;
8905 bfd *abfd;
8906 unsigned int count;
8907 bfd_boolean ret = FALSE;
8908
8909 if (info->traditional_format
8910 || !is_elf_hash_table (info->hash))
8911 return FALSE;
8912
8913 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8914 {
8915 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8916 continue;
8917
8918 bed = get_elf_backend_data (abfd);
8919
8920 if ((abfd->flags & DYNAMIC) != 0)
8921 continue;
8922
8923 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8924 if (info->relocatable
8925 || (eh != NULL
eea6121a 8926 && (eh->size == 0
c152c796
AM
8927 || bfd_is_abs_section (eh->output_section))))
8928 eh = NULL;
8929
8930 stab = bfd_get_section_by_name (abfd, ".stab");
8931 if (stab != NULL
eea6121a 8932 && (stab->size == 0
c152c796
AM
8933 || bfd_is_abs_section (stab->output_section)
8934 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
8935 stab = NULL;
8936
8937 if (stab == NULL
8938 && eh == NULL
8939 && bed->elf_backend_discard_info == NULL)
8940 continue;
8941
8942 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8943 cookie.abfd = abfd;
8944 cookie.sym_hashes = elf_sym_hashes (abfd);
8945 cookie.bad_symtab = elf_bad_symtab (abfd);
8946 if (cookie.bad_symtab)
8947 {
8948 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8949 cookie.extsymoff = 0;
8950 }
8951 else
8952 {
8953 cookie.locsymcount = symtab_hdr->sh_info;
8954 cookie.extsymoff = symtab_hdr->sh_info;
8955 }
8956
8957 if (bed->s->arch_size == 32)
8958 cookie.r_sym_shift = 8;
8959 else
8960 cookie.r_sym_shift = 32;
8961
8962 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
8963 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
8964 {
8965 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8966 cookie.locsymcount, 0,
8967 NULL, NULL, NULL);
8968 if (cookie.locsyms == NULL)
8969 return FALSE;
8970 }
8971
8972 if (stab != NULL)
8973 {
8974 cookie.rels = NULL;
8975 count = stab->reloc_count;
8976 if (count != 0)
8977 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
8978 info->keep_memory);
8979 if (cookie.rels != NULL)
8980 {
8981 cookie.rel = cookie.rels;
8982 cookie.relend = cookie.rels;
8983 cookie.relend += count * bed->s->int_rels_per_ext_rel;
8984 if (_bfd_discard_section_stabs (abfd, stab,
8985 elf_section_data (stab)->sec_info,
8986 bfd_elf_reloc_symbol_deleted_p,
8987 &cookie))
8988 ret = TRUE;
8989 if (elf_section_data (stab)->relocs != cookie.rels)
8990 free (cookie.rels);
8991 }
8992 }
8993
8994 if (eh != NULL)
8995 {
8996 cookie.rels = NULL;
8997 count = eh->reloc_count;
8998 if (count != 0)
8999 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9000 info->keep_memory);
9001 cookie.rel = cookie.rels;
9002 cookie.relend = cookie.rels;
9003 if (cookie.rels != NULL)
9004 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9005
9006 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9007 bfd_elf_reloc_symbol_deleted_p,
9008 &cookie))
9009 ret = TRUE;
9010
9011 if (cookie.rels != NULL
9012 && elf_section_data (eh)->relocs != cookie.rels)
9013 free (cookie.rels);
9014 }
9015
9016 if (bed->elf_backend_discard_info != NULL
9017 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9018 ret = TRUE;
9019
9020 if (cookie.locsyms != NULL
9021 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9022 {
9023 if (! info->keep_memory)
9024 free (cookie.locsyms);
9025 else
9026 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9027 }
9028 }
9029
9030 if (info->eh_frame_hdr
9031 && !info->relocatable
9032 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9033 ret = TRUE;
9034
9035 return ret;
9036}
This page took 0.710897 seconds and 4 git commands to generate.