Use std::vector on tdesc->reg_defs (gdbserver/tdesc.h)
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
CommitLineData
cec5225b 1/* AArch64-specific support for NN-bit ELF.
2571583a 2 Copyright (C) 2009-2017 Free Software Foundation, Inc.
a06ea964
NC
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21/* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
418009c2 43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
a06ea964
NC
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
a6bb11b2 53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
a06ea964
NC
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
a6bb11b2 67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
a06ea964
NC
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
a6bb11b2 72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
a06ea964
NC
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
cec5225b 95 elfNN_aarch64_check_relocs()
a06ea964
NC
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
a6bb11b2 100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
a06ea964
NC
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
cec5225b 107 elfNN_aarch64_allocate_dynrelocs ()
a06ea964
NC
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
cec5225b 115 elfNN_aarch64_size_dynamic_sections ()
a06ea964
NC
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
cec5225b 122 elfNN_aarch64_relocate_section ()
a06ea964 123
cec5225b 124 Calls elfNN_aarch64_final_link_relocate ()
a06ea964
NC
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
cec5225b 134 elfNN_aarch64_final_link_relocate ()
a06ea964
NC
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138#include "sysdep.h"
139#include "bfd.h"
140#include "libiberty.h"
141#include "libbfd.h"
142#include "bfd_stdint.h"
143#include "elf-bfd.h"
144#include "bfdlink.h"
1419bbe5 145#include "objalloc.h"
a06ea964 146#include "elf/aarch64.h"
caed7120 147#include "elfxx-aarch64.h"
a06ea964 148
cec5225b
YZ
149#define ARCH_SIZE NN
150
151#if ARCH_SIZE == 64
152#define AARCH64_R(NAME) R_AARCH64_ ## NAME
153#define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
a6bb11b2
YZ
154#define HOWTO64(...) HOWTO (__VA_ARGS__)
155#define HOWTO32(...) EMPTY_HOWTO (0)
cec5225b 156#define LOG_FILE_ALIGN 3
f955cccf 157#define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
cec5225b
YZ
158#endif
159
160#if ARCH_SIZE == 32
161#define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162#define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
a6bb11b2
YZ
163#define HOWTO64(...) EMPTY_HOWTO (0)
164#define HOWTO32(...) HOWTO (__VA_ARGS__)
cec5225b 165#define LOG_FILE_ALIGN 2
f955cccf
NC
166#define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167#define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
cec5225b
YZ
168#endif
169
a6bb11b2 170#define IS_AARCH64_TLS_RELOC(R_TYPE) \
4c0a9a6f
JW
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
3c12b054 173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
3e8286c0 174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
1aa66fb1 175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
a6bb11b2 176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
a6bb11b2 177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
4c0a9a6f 178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
a6bb11b2 179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
4c0a9a6f
JW
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
6ffe9a1b 182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
40fbed84 183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
753999c1 184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
73f925cc 185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
f69e4920 186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
77a69ff8 187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
07c9aa07
JW
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
6ffe9a1b
JW
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
a6bb11b2 201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
4c0a9a6f 202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
a6bb11b2 203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
a6bb11b2
YZ
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
4c0a9a6f
JW
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
a6bb11b2
YZ
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
a06ea964
NC
212 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
213
9331eea1 214#define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
f955cccf
NC
215 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
4af68b9c
JW
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
0484b454
RL
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
4af68b9c 226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
9331eea1
JW
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
ac734732
RL
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
9331eea1
JW
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
259364ad
JW
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
4af68b9c 236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
9331eea1 237
a6bb11b2 238#define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
4c0a9a6f
JW
239 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
f955cccf 241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
a6bb11b2 242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
389b8029 243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
4c0a9a6f 244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
a6bb11b2 245 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
f955cccf 246 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
a6bb11b2 247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
4c0a9a6f
JW
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
a06ea964 251
6353d82b 252#define ELIMINATE_COPY_RELOCS 1
a06ea964 253
a06ea964 254/* Return size of a relocation entry. HTAB is the bfd's
cec5225b
YZ
255 elf_aarch64_link_hash_entry. */
256#define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
a06ea964 257
cec5225b
YZ
258/* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
259#define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
a06ea964
NC
260#define PLT_ENTRY_SIZE (32)
261#define PLT_SMALL_ENTRY_SIZE (16)
262#define PLT_TLSDESC_ENTRY_SIZE (32)
263
2d0ca824 264/* Encoding of the nop instruction. */
a06ea964
NC
265#define INSN_NOP 0xd503201f
266
267#define aarch64_compute_jump_table_size(htab) \
268 (((htab)->root.srelplt == NULL) ? 0 \
269 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
270
271/* The first entry in a procedure linkage table looks like this
272 if the distance between the PLTGOT and the PLT is < 4GB use
273 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
274 in x16 and needs to work out PLTGOT[1] by using an address of
cec5225b
YZ
275 [x16,#-GOT_ENTRY_SIZE]. */
276static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
a06ea964
NC
277{
278 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
279 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
caed7120 280#if ARCH_SIZE == 64
a06ea964
NC
281 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
282 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
caed7120
YZ
283#else
284 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
285 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
286#endif
a06ea964
NC
287 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
288 0x1f, 0x20, 0x03, 0xd5, /* nop */
289 0x1f, 0x20, 0x03, 0xd5, /* nop */
290 0x1f, 0x20, 0x03, 0xd5, /* nop */
291};
292
293/* Per function entry in a procedure linkage table looks like this
294 if the distance between the PLTGOT and the PLT is < 4GB use
295 these PLT entries. */
cec5225b 296static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
a06ea964
NC
297{
298 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
caed7120 299#if ARCH_SIZE == 64
a06ea964
NC
300 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
301 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
caed7120
YZ
302#else
303 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
304 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
305#endif
a06ea964
NC
306 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
307};
308
309static const bfd_byte
cec5225b 310elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
a06ea964
NC
311{
312 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
313 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
314 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
caed7120
YZ
315#if ARCH_SIZE == 64
316 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
a06ea964 317 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
caed7120
YZ
318#else
319 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
320 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
321#endif
322 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
a06ea964
NC
323 0x1f, 0x20, 0x03, 0xd5, /* nop */
324 0x1f, 0x20, 0x03, 0xd5, /* nop */
325};
326
cec5225b
YZ
327#define elf_info_to_howto elfNN_aarch64_info_to_howto
328#define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
a06ea964
NC
329
330#define AARCH64_ELF_ABI_VERSION 0
a06ea964
NC
331
332/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
333#define ALL_ONES (~ (bfd_vma) 0)
334
a6bb11b2
YZ
335/* Indexed by the bfd interal reloc enumerators.
336 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
337 in reloc.c. */
a06ea964 338
a6bb11b2 339static reloc_howto_type elfNN_aarch64_howto_table[] =
a06ea964 340{
a6bb11b2 341 EMPTY_HOWTO (0),
a06ea964 342
a6bb11b2 343 /* Basic data relocations. */
a06ea964 344
b7f28d87
JW
345 /* Deprecated, but retained for backwards compatibility. */
346 HOWTO64 (R_AARCH64_NULL, /* type */
a06ea964 347 0, /* rightshift */
6346d5ca 348 3, /* size (0 = byte, 1 = short, 2 = long) */
a6bb11b2 349 0, /* bitsize */
a06ea964
NC
350 FALSE, /* pc_relative */
351 0, /* bitpos */
352 complain_overflow_dont, /* complain_on_overflow */
353 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 354 "R_AARCH64_NULL", /* name */
a06ea964
NC
355 FALSE, /* partial_inplace */
356 0, /* src_mask */
a6bb11b2 357 0, /* dst_mask */
a06ea964 358 FALSE), /* pcrel_offset */
a6bb11b2 359 HOWTO (R_AARCH64_NONE, /* type */
a06ea964 360 0, /* rightshift */
6346d5ca 361 3, /* size (0 = byte, 1 = short, 2 = long) */
a06ea964
NC
362 0, /* bitsize */
363 FALSE, /* pc_relative */
364 0, /* bitpos */
365 complain_overflow_dont, /* complain_on_overflow */
366 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 367 "R_AARCH64_NONE", /* name */
a06ea964
NC
368 FALSE, /* partial_inplace */
369 0, /* src_mask */
370 0, /* dst_mask */
371 FALSE), /* pcrel_offset */
372
373 /* .xword: (S+A) */
a6bb11b2 374 HOWTO64 (AARCH64_R (ABS64), /* type */
a06ea964
NC
375 0, /* rightshift */
376 4, /* size (4 = long long) */
377 64, /* bitsize */
378 FALSE, /* pc_relative */
379 0, /* bitpos */
380 complain_overflow_unsigned, /* complain_on_overflow */
381 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 382 AARCH64_R_STR (ABS64), /* name */
a06ea964
NC
383 FALSE, /* partial_inplace */
384 ALL_ONES, /* src_mask */
385 ALL_ONES, /* dst_mask */
386 FALSE), /* pcrel_offset */
387
388 /* .word: (S+A) */
a6bb11b2 389 HOWTO (AARCH64_R (ABS32), /* type */
a06ea964
NC
390 0, /* rightshift */
391 2, /* size (0 = byte, 1 = short, 2 = long) */
392 32, /* bitsize */
393 FALSE, /* pc_relative */
394 0, /* bitpos */
395 complain_overflow_unsigned, /* complain_on_overflow */
396 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 397 AARCH64_R_STR (ABS32), /* name */
a06ea964
NC
398 FALSE, /* partial_inplace */
399 0xffffffff, /* src_mask */
400 0xffffffff, /* dst_mask */
401 FALSE), /* pcrel_offset */
402
403 /* .half: (S+A) */
a6bb11b2 404 HOWTO (AARCH64_R (ABS16), /* type */
a06ea964
NC
405 0, /* rightshift */
406 1, /* size (0 = byte, 1 = short, 2 = long) */
407 16, /* bitsize */
408 FALSE, /* pc_relative */
409 0, /* bitpos */
410 complain_overflow_unsigned, /* complain_on_overflow */
411 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 412 AARCH64_R_STR (ABS16), /* name */
a06ea964
NC
413 FALSE, /* partial_inplace */
414 0xffff, /* src_mask */
415 0xffff, /* dst_mask */
416 FALSE), /* pcrel_offset */
417
418 /* .xword: (S+A-P) */
a6bb11b2 419 HOWTO64 (AARCH64_R (PREL64), /* type */
a06ea964
NC
420 0, /* rightshift */
421 4, /* size (4 = long long) */
422 64, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 427 AARCH64_R_STR (PREL64), /* name */
a06ea964
NC
428 FALSE, /* partial_inplace */
429 ALL_ONES, /* src_mask */
430 ALL_ONES, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 /* .word: (S+A-P) */
a6bb11b2 434 HOWTO (AARCH64_R (PREL32), /* type */
a06ea964
NC
435 0, /* rightshift */
436 2, /* size (0 = byte, 1 = short, 2 = long) */
437 32, /* bitsize */
438 TRUE, /* pc_relative */
439 0, /* bitpos */
440 complain_overflow_signed, /* complain_on_overflow */
441 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 442 AARCH64_R_STR (PREL32), /* name */
a06ea964
NC
443 FALSE, /* partial_inplace */
444 0xffffffff, /* src_mask */
445 0xffffffff, /* dst_mask */
446 TRUE), /* pcrel_offset */
447
448 /* .half: (S+A-P) */
a6bb11b2 449 HOWTO (AARCH64_R (PREL16), /* type */
a06ea964
NC
450 0, /* rightshift */
451 1, /* size (0 = byte, 1 = short, 2 = long) */
452 16, /* bitsize */
453 TRUE, /* pc_relative */
454 0, /* bitpos */
455 complain_overflow_signed, /* complain_on_overflow */
456 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 457 AARCH64_R_STR (PREL16), /* name */
a06ea964
NC
458 FALSE, /* partial_inplace */
459 0xffff, /* src_mask */
460 0xffff, /* dst_mask */
461 TRUE), /* pcrel_offset */
462
463 /* Group relocations to create a 16, 32, 48 or 64 bit
464 unsigned data or abs address inline. */
465
466 /* MOVZ: ((S+A) >> 0) & 0xffff */
a6bb11b2 467 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
a06ea964
NC
468 0, /* rightshift */
469 2, /* size (0 = byte, 1 = short, 2 = long) */
470 16, /* bitsize */
471 FALSE, /* pc_relative */
472 0, /* bitpos */
473 complain_overflow_unsigned, /* complain_on_overflow */
474 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 475 AARCH64_R_STR (MOVW_UABS_G0), /* name */
a06ea964
NC
476 FALSE, /* partial_inplace */
477 0xffff, /* src_mask */
478 0xffff, /* dst_mask */
479 FALSE), /* pcrel_offset */
480
481 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
a6bb11b2 482 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
a06ea964
NC
483 0, /* rightshift */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
485 16, /* bitsize */
486 FALSE, /* pc_relative */
487 0, /* bitpos */
488 complain_overflow_dont, /* complain_on_overflow */
489 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 490 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
a06ea964
NC
491 FALSE, /* partial_inplace */
492 0xffff, /* src_mask */
493 0xffff, /* dst_mask */
494 FALSE), /* pcrel_offset */
495
496 /* MOVZ: ((S+A) >> 16) & 0xffff */
a6bb11b2 497 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
a06ea964
NC
498 16, /* rightshift */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_unsigned, /* complain_on_overflow */
504 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 505 AARCH64_R_STR (MOVW_UABS_G1), /* name */
a06ea964
NC
506 FALSE, /* partial_inplace */
507 0xffff, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
a6bb11b2 512 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
a06ea964
NC
513 16, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 16, /* bitsize */
516 FALSE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_dont, /* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 520 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
a06ea964
NC
521 FALSE, /* partial_inplace */
522 0xffff, /* src_mask */
523 0xffff, /* dst_mask */
524 FALSE), /* pcrel_offset */
525
526 /* MOVZ: ((S+A) >> 32) & 0xffff */
a6bb11b2 527 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
a06ea964
NC
528 32, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 16, /* bitsize */
531 FALSE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_unsigned, /* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 535 AARCH64_R_STR (MOVW_UABS_G2), /* name */
a06ea964
NC
536 FALSE, /* partial_inplace */
537 0xffff, /* src_mask */
538 0xffff, /* dst_mask */
539 FALSE), /* pcrel_offset */
540
541 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
a6bb11b2 542 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
a06ea964
NC
543 32, /* rightshift */
544 2, /* size (0 = byte, 1 = short, 2 = long) */
545 16, /* bitsize */
546 FALSE, /* pc_relative */
547 0, /* bitpos */
548 complain_overflow_dont, /* complain_on_overflow */
549 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 550 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
a06ea964
NC
551 FALSE, /* partial_inplace */
552 0xffff, /* src_mask */
553 0xffff, /* dst_mask */
554 FALSE), /* pcrel_offset */
555
556 /* MOVZ: ((S+A) >> 48) & 0xffff */
a6bb11b2 557 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
a06ea964
NC
558 48, /* rightshift */
559 2, /* size (0 = byte, 1 = short, 2 = long) */
560 16, /* bitsize */
561 FALSE, /* pc_relative */
562 0, /* bitpos */
563 complain_overflow_unsigned, /* complain_on_overflow */
564 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 565 AARCH64_R_STR (MOVW_UABS_G3), /* name */
a06ea964
NC
566 FALSE, /* partial_inplace */
567 0xffff, /* src_mask */
568 0xffff, /* dst_mask */
569 FALSE), /* pcrel_offset */
570
571 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
572 signed data or abs address inline. Will change instruction
573 to MOVN or MOVZ depending on sign of calculated value. */
574
575 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
a6bb11b2 576 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
a06ea964
NC
577 0, /* rightshift */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
c5e3a364 579 17, /* bitsize */
a06ea964
NC
580 FALSE, /* pc_relative */
581 0, /* bitpos */
582 complain_overflow_signed, /* complain_on_overflow */
583 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 584 AARCH64_R_STR (MOVW_SABS_G0), /* name */
a06ea964
NC
585 FALSE, /* partial_inplace */
586 0xffff, /* src_mask */
587 0xffff, /* dst_mask */
588 FALSE), /* pcrel_offset */
589
590 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
a6bb11b2 591 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
a06ea964
NC
592 16, /* rightshift */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
c5e3a364 594 17, /* bitsize */
a06ea964
NC
595 FALSE, /* pc_relative */
596 0, /* bitpos */
597 complain_overflow_signed, /* complain_on_overflow */
598 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 599 AARCH64_R_STR (MOVW_SABS_G1), /* name */
a06ea964
NC
600 FALSE, /* partial_inplace */
601 0xffff, /* src_mask */
602 0xffff, /* dst_mask */
603 FALSE), /* pcrel_offset */
604
605 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
a6bb11b2 606 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
a06ea964
NC
607 32, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
c5e3a364 609 17, /* bitsize */
a06ea964
NC
610 FALSE, /* pc_relative */
611 0, /* bitpos */
612 complain_overflow_signed, /* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 614 AARCH64_R_STR (MOVW_SABS_G2), /* name */
a06ea964
NC
615 FALSE, /* partial_inplace */
616 0xffff, /* src_mask */
617 0xffff, /* dst_mask */
618 FALSE), /* pcrel_offset */
619
620/* Relocations to generate 19, 21 and 33 bit PC-relative load/store
621 addresses: PG(x) is (x & ~0xfff). */
622
623 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 624 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
a06ea964
NC
625 2, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 19, /* bitsize */
628 TRUE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_signed, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 632 AARCH64_R_STR (LD_PREL_LO19), /* name */
a06ea964
NC
633 FALSE, /* partial_inplace */
634 0x7ffff, /* src_mask */
635 0x7ffff, /* dst_mask */
636 TRUE), /* pcrel_offset */
637
638 /* ADR: (S+A-P) & 0x1fffff */
a6bb11b2 639 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
a06ea964
NC
640 0, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 21, /* bitsize */
643 TRUE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_signed, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 647 AARCH64_R_STR (ADR_PREL_LO21), /* name */
a06ea964
NC
648 FALSE, /* partial_inplace */
649 0x1fffff, /* src_mask */
650 0x1fffff, /* dst_mask */
651 TRUE), /* pcrel_offset */
652
653 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
a6bb11b2 654 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
a06ea964
NC
655 12, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 21, /* bitsize */
658 TRUE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_signed, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 662 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
a06ea964
NC
663 FALSE, /* partial_inplace */
664 0x1fffff, /* src_mask */
665 0x1fffff, /* dst_mask */
666 TRUE), /* pcrel_offset */
667
668 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
a6bb11b2 669 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
a06ea964
NC
670 12, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 21, /* bitsize */
673 TRUE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_dont, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 677 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
a06ea964
NC
678 FALSE, /* partial_inplace */
679 0x1fffff, /* src_mask */
680 0x1fffff, /* dst_mask */
681 TRUE), /* pcrel_offset */
682
683 /* ADD: (S+A) & 0xfff [no overflow check] */
a6bb11b2 684 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
a06ea964
NC
685 0, /* rightshift */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
687 12, /* bitsize */
688 FALSE, /* pc_relative */
689 10, /* bitpos */
690 complain_overflow_dont, /* complain_on_overflow */
691 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 692 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
a06ea964
NC
693 FALSE, /* partial_inplace */
694 0x3ffc00, /* src_mask */
695 0x3ffc00, /* dst_mask */
696 FALSE), /* pcrel_offset */
697
698 /* LD/ST8: (S+A) & 0xfff */
a6bb11b2 699 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
a06ea964
NC
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 12, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_dont, /* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 707 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
a06ea964
NC
708 FALSE, /* partial_inplace */
709 0xfff, /* src_mask */
710 0xfff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 /* Relocations for control-flow instructions. */
714
715 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
a6bb11b2 716 HOWTO (AARCH64_R (TSTBR14), /* type */
a06ea964
NC
717 2, /* rightshift */
718 2, /* size (0 = byte, 1 = short, 2 = long) */
719 14, /* bitsize */
720 TRUE, /* pc_relative */
721 0, /* bitpos */
722 complain_overflow_signed, /* complain_on_overflow */
723 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 724 AARCH64_R_STR (TSTBR14), /* name */
a06ea964
NC
725 FALSE, /* partial_inplace */
726 0x3fff, /* src_mask */
727 0x3fff, /* dst_mask */
728 TRUE), /* pcrel_offset */
729
730 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 731 HOWTO (AARCH64_R (CONDBR19), /* type */
a06ea964
NC
732 2, /* rightshift */
733 2, /* size (0 = byte, 1 = short, 2 = long) */
734 19, /* bitsize */
735 TRUE, /* pc_relative */
736 0, /* bitpos */
737 complain_overflow_signed, /* complain_on_overflow */
738 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 739 AARCH64_R_STR (CONDBR19), /* name */
a06ea964
NC
740 FALSE, /* partial_inplace */
741 0x7ffff, /* src_mask */
742 0x7ffff, /* dst_mask */
743 TRUE), /* pcrel_offset */
744
a06ea964 745 /* B: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 746 HOWTO (AARCH64_R (JUMP26), /* type */
a06ea964
NC
747 2, /* rightshift */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
749 26, /* bitsize */
750 TRUE, /* pc_relative */
751 0, /* bitpos */
752 complain_overflow_signed, /* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 754 AARCH64_R_STR (JUMP26), /* name */
a06ea964
NC
755 FALSE, /* partial_inplace */
756 0x3ffffff, /* src_mask */
757 0x3ffffff, /* dst_mask */
758 TRUE), /* pcrel_offset */
759
760 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 761 HOWTO (AARCH64_R (CALL26), /* type */
a06ea964
NC
762 2, /* rightshift */
763 2, /* size (0 = byte, 1 = short, 2 = long) */
764 26, /* bitsize */
765 TRUE, /* pc_relative */
766 0, /* bitpos */
767 complain_overflow_signed, /* complain_on_overflow */
768 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 769 AARCH64_R_STR (CALL26), /* name */
a06ea964
NC
770 FALSE, /* partial_inplace */
771 0x3ffffff, /* src_mask */
772 0x3ffffff, /* dst_mask */
773 TRUE), /* pcrel_offset */
774
775 /* LD/ST16: (S+A) & 0xffe */
a6bb11b2 776 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
a06ea964
NC
777 1, /* rightshift */
778 2, /* size (0 = byte, 1 = short, 2 = long) */
779 12, /* bitsize */
780 FALSE, /* pc_relative */
781 0, /* bitpos */
782 complain_overflow_dont, /* complain_on_overflow */
783 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 784 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
a06ea964
NC
785 FALSE, /* partial_inplace */
786 0xffe, /* src_mask */
787 0xffe, /* dst_mask */
788 FALSE), /* pcrel_offset */
789
790 /* LD/ST32: (S+A) & 0xffc */
a6bb11b2 791 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
a06ea964
NC
792 2, /* rightshift */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
794 12, /* bitsize */
795 FALSE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_dont, /* complain_on_overflow */
798 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 799 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
a06ea964
NC
800 FALSE, /* partial_inplace */
801 0xffc, /* src_mask */
802 0xffc, /* dst_mask */
803 FALSE), /* pcrel_offset */
804
805 /* LD/ST64: (S+A) & 0xff8 */
a6bb11b2 806 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
a06ea964
NC
807 3, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 12, /* bitsize */
810 FALSE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 814 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
a06ea964
NC
815 FALSE, /* partial_inplace */
816 0xff8, /* src_mask */
817 0xff8, /* dst_mask */
818 FALSE), /* pcrel_offset */
819
a06ea964 820 /* LD/ST128: (S+A) & 0xff0 */
a6bb11b2 821 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
a06ea964
NC
822 4, /* rightshift */
823 2, /* size (0 = byte, 1 = short, 2 = long) */
824 12, /* bitsize */
825 FALSE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_dont, /* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 829 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
a06ea964
NC
830 FALSE, /* partial_inplace */
831 0xff0, /* src_mask */
832 0xff0, /* dst_mask */
833 FALSE), /* pcrel_offset */
834
f41aef5f
RE
835 /* Set a load-literal immediate field to bits
836 0x1FFFFC of G(S)-P */
a6bb11b2 837 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
f41aef5f
RE
838 2, /* rightshift */
839 2, /* size (0 = byte,1 = short,2 = long) */
840 19, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_signed, /* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 845 AARCH64_R_STR (GOT_LD_PREL19), /* name */
f41aef5f
RE
846 FALSE, /* partial_inplace */
847 0xffffe0, /* src_mask */
848 0xffffe0, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
a06ea964
NC
851 /* Get to the page for the GOT entry for the symbol
852 (G(S) - P) using an ADRP instruction. */
a6bb11b2 853 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
a06ea964
NC
854 12, /* rightshift */
855 2, /* size (0 = byte, 1 = short, 2 = long) */
856 21, /* bitsize */
857 TRUE, /* pc_relative */
858 0, /* bitpos */
859 complain_overflow_dont, /* complain_on_overflow */
860 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 861 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
a06ea964
NC
862 FALSE, /* partial_inplace */
863 0x1fffff, /* src_mask */
864 0x1fffff, /* dst_mask */
865 TRUE), /* pcrel_offset */
866
a6bb11b2
YZ
867 /* LD64: GOT offset G(S) & 0xff8 */
868 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
a06ea964
NC
869 3, /* rightshift */
870 2, /* size (0 = byte, 1 = short, 2 = long) */
871 12, /* bitsize */
872 FALSE, /* pc_relative */
873 0, /* bitpos */
874 complain_overflow_dont, /* complain_on_overflow */
875 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 876 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
a06ea964
NC
877 FALSE, /* partial_inplace */
878 0xff8, /* src_mask */
879 0xff8, /* dst_mask */
a6bb11b2 880 FALSE), /* pcrel_offset */
a06ea964 881
a6bb11b2
YZ
882 /* LD32: GOT offset G(S) & 0xffc */
883 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
884 2, /* rightshift */
885 2, /* size (0 = byte, 1 = short, 2 = long) */
886 12, /* bitsize */
887 FALSE, /* pc_relative */
888 0, /* bitpos */
889 complain_overflow_dont, /* complain_on_overflow */
890 bfd_elf_generic_reloc, /* special_function */
891 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
892 FALSE, /* partial_inplace */
893 0xffc, /* src_mask */
894 0xffc, /* dst_mask */
895 FALSE), /* pcrel_offset */
a06ea964 896
ca632371
RL
897 /* Lower 16 bits of GOT offset for the symbol. */
898 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
899 0, /* rightshift */
900 2, /* size (0 = byte, 1 = short, 2 = long) */
901 16, /* bitsize */
902 FALSE, /* pc_relative */
903 0, /* bitpos */
904 complain_overflow_dont, /* complain_on_overflow */
905 bfd_elf_generic_reloc, /* special_function */
906 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
907 FALSE, /* partial_inplace */
908 0xffff, /* src_mask */
909 0xffff, /* dst_mask */
910 FALSE), /* pcrel_offset */
911
654248e7
RL
912 /* Higher 16 bits of GOT offset for the symbol. */
913 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
914 16, /* rightshift */
915 2, /* size (0 = byte, 1 = short, 2 = long) */
916 16, /* bitsize */
917 FALSE, /* pc_relative */
918 0, /* bitpos */
919 complain_overflow_unsigned, /* complain_on_overflow */
920 bfd_elf_generic_reloc, /* special_function */
921 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
922 FALSE, /* partial_inplace */
923 0xffff, /* src_mask */
924 0xffff, /* dst_mask */
925 FALSE), /* pcrel_offset */
926
87f5fbcc
RL
927 /* LD64: GOT offset for the symbol. */
928 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
929 3, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 12, /* bitsize */
932 FALSE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_unsigned, /* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
937 FALSE, /* partial_inplace */
938 0x7ff8, /* src_mask */
939 0x7ff8, /* dst_mask */
940 FALSE), /* pcrel_offset */
941
3d715ce4
JW
942 /* LD32: GOT offset to the page address of GOT table.
943 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
944 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
945 2, /* rightshift */
946 2, /* size (0 = byte, 1 = short, 2 = long) */
947 12, /* bitsize */
948 FALSE, /* pc_relative */
949 0, /* bitpos */
950 complain_overflow_unsigned, /* complain_on_overflow */
951 bfd_elf_generic_reloc, /* special_function */
952 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
953 FALSE, /* partial_inplace */
954 0x5ffc, /* src_mask */
955 0x5ffc, /* dst_mask */
956 FALSE), /* pcrel_offset */
957
a921b5bd
JW
958 /* LD64: GOT offset to the page address of GOT table.
959 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
960 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
961 3, /* rightshift */
962 2, /* size (0 = byte, 1 = short, 2 = long) */
963 12, /* bitsize */
964 FALSE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_unsigned, /* complain_on_overflow */
967 bfd_elf_generic_reloc, /* special_function */
968 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
969 FALSE, /* partial_inplace */
970 0x7ff8, /* src_mask */
971 0x7ff8, /* dst_mask */
972 FALSE), /* pcrel_offset */
973
a06ea964
NC
974 /* Get to the page for the GOT entry for the symbol
975 (G(S) - P) using an ADRP instruction. */
a6bb11b2 976 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
a06ea964
NC
977 12, /* rightshift */
978 2, /* size (0 = byte, 1 = short, 2 = long) */
979 21, /* bitsize */
980 TRUE, /* pc_relative */
981 0, /* bitpos */
982 complain_overflow_dont, /* complain_on_overflow */
983 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 984 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
a06ea964
NC
985 FALSE, /* partial_inplace */
986 0x1fffff, /* src_mask */
987 0x1fffff, /* dst_mask */
988 TRUE), /* pcrel_offset */
989
3c12b054
MS
990 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
991 0, /* rightshift */
992 2, /* size (0 = byte, 1 = short, 2 = long) */
993 21, /* bitsize */
994 TRUE, /* pc_relative */
995 0, /* bitpos */
996 complain_overflow_dont, /* complain_on_overflow */
997 bfd_elf_generic_reloc, /* special_function */
998 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
999 FALSE, /* partial_inplace */
1000 0x1fffff, /* src_mask */
1001 0x1fffff, /* dst_mask */
1002 TRUE), /* pcrel_offset */
1003
a06ea964 1004 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
a6bb11b2 1005 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
a06ea964
NC
1006 0, /* rightshift */
1007 2, /* size (0 = byte, 1 = short, 2 = long) */
1008 12, /* bitsize */
1009 FALSE, /* pc_relative */
1010 0, /* bitpos */
1011 complain_overflow_dont, /* complain_on_overflow */
1012 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1013 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
a06ea964
NC
1014 FALSE, /* partial_inplace */
1015 0xfff, /* src_mask */
1016 0xfff, /* dst_mask */
1017 FALSE), /* pcrel_offset */
1018
3e8286c0
RL
1019 /* Lower 16 bits of GOT offset to tls_index. */
1020 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1021 0, /* rightshift */
1022 2, /* size (0 = byte, 1 = short, 2 = long) */
1023 16, /* bitsize */
1024 FALSE, /* pc_relative */
1025 0, /* bitpos */
1026 complain_overflow_dont, /* complain_on_overflow */
1027 bfd_elf_generic_reloc, /* special_function */
1028 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1029 FALSE, /* partial_inplace */
1030 0xffff, /* src_mask */
1031 0xffff, /* dst_mask */
1032 FALSE), /* pcrel_offset */
1033
1aa66fb1
RL
1034 /* Higher 16 bits of GOT offset to tls_index. */
1035 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1036 16, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 16, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_unsigned, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1044 FALSE, /* partial_inplace */
1045 0xffff, /* src_mask */
1046 0xffff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
a6bb11b2 1049 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
a06ea964
NC
1050 12, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 21, /* bitsize */
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1057 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
a06ea964
NC
1058 FALSE, /* partial_inplace */
1059 0x1fffff, /* src_mask */
1060 0x1fffff, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
a6bb11b2 1063 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
a06ea964
NC
1064 3, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 12, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1071 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
a06ea964
NC
1072 FALSE, /* partial_inplace */
1073 0xff8, /* src_mask */
1074 0xff8, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
a6bb11b2
YZ
1077 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1078 2, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 12, /* bitsize */
1081 FALSE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont, /* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1086 FALSE, /* partial_inplace */
1087 0xffc, /* src_mask */
1088 0xffc, /* dst_mask */
1089 FALSE), /* pcrel_offset */
1090
1091 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
bb3f9ed8 1092 2, /* rightshift */
a06ea964 1093 2, /* size (0 = byte, 1 = short, 2 = long) */
043bf05a 1094 19, /* bitsize */
a06ea964
NC
1095 FALSE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1099 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
a06ea964
NC
1100 FALSE, /* partial_inplace */
1101 0x1ffffc, /* src_mask */
1102 0x1ffffc, /* dst_mask */
1103 FALSE), /* pcrel_offset */
1104
3b957e5b
RL
1105 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 16, /* bitsize */
1109 FALSE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont, /* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1114 FALSE, /* partial_inplace */
1115 0xffff, /* src_mask */
1116 0xffff, /* dst_mask */
1117 FALSE), /* pcrel_offset */
1118
1119 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1120 16, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 16, /* bitsize */
1123 FALSE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_unsigned, /* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1128 FALSE, /* partial_inplace */
1129 0xffff, /* src_mask */
1130 0xffff, /* dst_mask */
1131 FALSE), /* pcrel_offset */
1132
49df5539
JW
1133 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1134 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1135 12, /* rightshift */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1137 12, /* bitsize */
1138 FALSE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_unsigned, /* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
1142 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1143 FALSE, /* partial_inplace */
1144 0xfff, /* src_mask */
1145 0xfff, /* dst_mask */
1146 FALSE), /* pcrel_offset */
1147
70151fb5
JW
1148 /* Unsigned 12 bit byte offset to module TLS base address. */
1149 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1150 0, /* rightshift */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 12, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_unsigned, /* complain_on_overflow */
1156 bfd_elf_generic_reloc, /* special_function */
1157 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1158 FALSE, /* partial_inplace */
1159 0xfff, /* src_mask */
1160 0xfff, /* dst_mask */
1161 FALSE), /* pcrel_offset */
13289c10
JW
1162
1163 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1164 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1165 0, /* rightshift */
1166 2, /* size (0 = byte, 1 = short, 2 = long) */
1167 12, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_dont, /* complain_on_overflow */
1171 bfd_elf_generic_reloc, /* special_function */
1172 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1173 FALSE, /* partial_inplace */
1174 0xfff, /* src_mask */
1175 0xfff, /* dst_mask */
1176 FALSE), /* pcrel_offset */
70151fb5 1177
a12fad50
JW
1178 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1179 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1180 0, /* rightshift */
1181 2, /* size (0 = byte, 1 = short, 2 = long) */
1182 12, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 bfd_elf_generic_reloc, /* special_function */
1187 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1188 FALSE, /* partial_inplace */
1189 0xfff, /* src_mask */
1190 0xfff, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1107e076
JW
1193 /* Get to the page for the GOT entry for the symbol
1194 (G(S) - P) using an ADRP instruction. */
1195 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1196 12, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 21, /* bitsize */
1199 TRUE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_signed, /* complain_on_overflow */
1202 bfd_elf_generic_reloc, /* special_function */
1203 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1204 FALSE, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE), /* pcrel_offset */
1208
6c37fedc
JW
1209 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1210 0, /* rightshift */
1211 2, /* size (0 = byte, 1 = short, 2 = long) */
1212 21, /* bitsize */
1213 TRUE, /* pc_relative */
1214 0, /* bitpos */
1215 complain_overflow_signed, /* complain_on_overflow */
1216 bfd_elf_generic_reloc, /* special_function */
1217 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1218 FALSE, /* partial_inplace */
1219 0x1fffff, /* src_mask */
1220 0x1fffff, /* dst_mask */
1221 TRUE), /* pcrel_offset */
1222
4c562523
JW
1223 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1224 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1225 1, /* rightshift */
1226 2, /* size (0 = byte, 1 = short, 2 = long) */
1227 11, /* bitsize */
1228 FALSE, /* pc_relative */
1229 10, /* bitpos */
1230 complain_overflow_unsigned, /* complain_on_overflow */
1231 bfd_elf_generic_reloc, /* special_function */
1232 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1233 FALSE, /* partial_inplace */
1234 0x1ffc00, /* src_mask */
1235 0x1ffc00, /* dst_mask */
1236 FALSE), /* pcrel_offset */
1237
1238 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1239 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1240 1, /* rightshift */
1241 2, /* size (0 = byte, 1 = short, 2 = long) */
1242 11, /* bitsize */
1243 FALSE, /* pc_relative */
1244 10, /* bitpos */
1245 complain_overflow_dont, /* complain_on_overflow */
1246 bfd_elf_generic_reloc, /* special_function */
1247 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1248 FALSE, /* partial_inplace */
1249 0x1ffc00, /* src_mask */
1250 0x1ffc00, /* dst_mask */
1251 FALSE), /* pcrel_offset */
1252
1253 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1254 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1255 2, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 10, /* bitsize */
1258 FALSE, /* pc_relative */
1259 10, /* bitpos */
1260 complain_overflow_unsigned, /* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1263 FALSE, /* partial_inplace */
1264 0x3ffc00, /* src_mask */
1265 0x3ffc00, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1269 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1270 2, /* rightshift */
1271 2, /* size (0 = byte, 1 = short, 2 = long) */
1272 10, /* bitsize */
1273 FALSE, /* pc_relative */
1274 10, /* bitpos */
1275 complain_overflow_dont, /* complain_on_overflow */
1276 bfd_elf_generic_reloc, /* special_function */
1277 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1278 FALSE, /* partial_inplace */
1279 0xffc00, /* src_mask */
1280 0xffc00, /* dst_mask */
1281 FALSE), /* pcrel_offset */
1282
1283 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1284 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1285 3, /* rightshift */
1286 2, /* size (0 = byte, 1 = short, 2 = long) */
1287 9, /* bitsize */
1288 FALSE, /* pc_relative */
1289 10, /* bitpos */
1290 complain_overflow_unsigned, /* complain_on_overflow */
1291 bfd_elf_generic_reloc, /* special_function */
1292 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1293 FALSE, /* partial_inplace */
1294 0x3ffc00, /* src_mask */
1295 0x3ffc00, /* dst_mask */
1296 FALSE), /* pcrel_offset */
1297
1298 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1299 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1300 3, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 9, /* bitsize */
1303 FALSE, /* pc_relative */
1304 10, /* bitpos */
1305 complain_overflow_dont, /* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1308 FALSE, /* partial_inplace */
1309 0x7fc00, /* src_mask */
1310 0x7fc00, /* dst_mask */
1311 FALSE), /* pcrel_offset */
1312
1313 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1314 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1315 0, /* rightshift */
1316 2, /* size (0 = byte, 1 = short, 2 = long) */
1317 12, /* bitsize */
1318 FALSE, /* pc_relative */
1319 10, /* bitpos */
1320 complain_overflow_unsigned, /* complain_on_overflow */
1321 bfd_elf_generic_reloc, /* special_function */
1322 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1323 FALSE, /* partial_inplace */
1324 0x3ffc00, /* src_mask */
1325 0x3ffc00, /* dst_mask */
1326 FALSE), /* pcrel_offset */
1327
1328 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1329 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1330 0, /* rightshift */
1331 2, /* size (0 = byte, 1 = short, 2 = long) */
1332 12, /* bitsize */
1333 FALSE, /* pc_relative */
1334 10, /* bitpos */
1335 complain_overflow_dont, /* complain_on_overflow */
1336 bfd_elf_generic_reloc, /* special_function */
1337 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1338 FALSE, /* partial_inplace */
1339 0x3ffc00, /* src_mask */
1340 0x3ffc00, /* dst_mask */
1341 FALSE), /* pcrel_offset */
1342
49df5539
JW
1343 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1344 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1345 0, /* rightshift */
1346 2, /* size (0 = byte, 1 = short, 2 = long) */
1347 16, /* bitsize */
1348 FALSE, /* pc_relative */
1349 0, /* bitpos */
1350 complain_overflow_unsigned, /* complain_on_overflow */
1351 bfd_elf_generic_reloc, /* special_function */
1352 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1353 FALSE, /* partial_inplace */
1354 0xffff, /* src_mask */
1355 0xffff, /* dst_mask */
1356 FALSE), /* pcrel_offset */
1357
1358 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1359 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 16, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_dont, /* complain_on_overflow */
1366 bfd_elf_generic_reloc, /* special_function */
1367 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1368 FALSE, /* partial_inplace */
1369 0xffff, /* src_mask */
1370 0xffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1374 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1375 16, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 16, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_unsigned, /* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1383 FALSE, /* partial_inplace */
1384 0xffff, /* src_mask */
1385 0xffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1389 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1390 16, /* rightshift */
1391 2, /* size (0 = byte, 1 = short, 2 = long) */
1392 16, /* bitsize */
1393 FALSE, /* pc_relative */
1394 0, /* bitpos */
1395 complain_overflow_dont, /* complain_on_overflow */
1396 bfd_elf_generic_reloc, /* special_function */
1397 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1398 FALSE, /* partial_inplace */
1399 0xffff, /* src_mask */
1400 0xffff, /* dst_mask */
1401 FALSE), /* pcrel_offset */
1402
1403 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1404 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1405 32, /* rightshift */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
1407 16, /* bitsize */
1408 FALSE, /* pc_relative */
1409 0, /* bitpos */
1410 complain_overflow_unsigned, /* complain_on_overflow */
1411 bfd_elf_generic_reloc, /* special_function */
1412 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1413 FALSE, /* partial_inplace */
1414 0xffff, /* src_mask */
1415 0xffff, /* dst_mask */
1416 FALSE), /* pcrel_offset */
1417
a6bb11b2 1418 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
bb3f9ed8 1419 32, /* rightshift */
a06ea964 1420 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1421 16, /* bitsize */
a06ea964
NC
1422 FALSE, /* pc_relative */
1423 0, /* bitpos */
0172429c 1424 complain_overflow_unsigned, /* complain_on_overflow */
a06ea964 1425 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1426 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
a06ea964
NC
1427 FALSE, /* partial_inplace */
1428 0xffff, /* src_mask */
1429 0xffff, /* dst_mask */
1430 FALSE), /* pcrel_offset */
1431
a6bb11b2 1432 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
bb3f9ed8 1433 16, /* rightshift */
a06ea964 1434 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1435 16, /* bitsize */
a06ea964
NC
1436 FALSE, /* pc_relative */
1437 0, /* bitpos */
1438 complain_overflow_dont, /* complain_on_overflow */
1439 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1440 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
a06ea964
NC
1441 FALSE, /* partial_inplace */
1442 0xffff, /* src_mask */
1443 0xffff, /* dst_mask */
1444 FALSE), /* pcrel_offset */
1445
a6bb11b2 1446 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
bb3f9ed8 1447 16, /* rightshift */
a06ea964 1448 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1449 16, /* bitsize */
a06ea964
NC
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1454 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
a06ea964
NC
1455 FALSE, /* partial_inplace */
1456 0xffff, /* src_mask */
1457 0xffff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
a6bb11b2 1460 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
a06ea964
NC
1461 0, /* rightshift */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1463 16, /* bitsize */
a06ea964
NC
1464 FALSE, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_dont, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1468 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
a06ea964
NC
1469 FALSE, /* partial_inplace */
1470 0xffff, /* src_mask */
1471 0xffff, /* dst_mask */
1472 FALSE), /* pcrel_offset */
1473
a6bb11b2 1474 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
a06ea964
NC
1475 0, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1477 16, /* bitsize */
a06ea964
NC
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1482 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
a06ea964
NC
1483 FALSE, /* partial_inplace */
1484 0xffff, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
a6bb11b2 1488 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
bb3f9ed8 1489 12, /* rightshift */
a06ea964
NC
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 12, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
bab91cce 1494 complain_overflow_unsigned, /* complain_on_overflow */
a06ea964 1495 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1496 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
a06ea964
NC
1497 FALSE, /* partial_inplace */
1498 0xfff, /* src_mask */
1499 0xfff, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
a6bb11b2 1502 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
a06ea964
NC
1503 0, /* rightshift */
1504 2, /* size (0 = byte, 1 = short, 2 = long) */
1505 12, /* bitsize */
1506 FALSE, /* pc_relative */
1507 0, /* bitpos */
36e6c140 1508 complain_overflow_unsigned, /* complain_on_overflow */
a06ea964 1509 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1510 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
a06ea964
NC
1511 FALSE, /* partial_inplace */
1512 0xfff, /* src_mask */
1513 0xfff, /* dst_mask */
1514 FALSE), /* pcrel_offset */
1515
a6bb11b2 1516 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
a06ea964
NC
1517 0, /* rightshift */
1518 2, /* size (0 = byte, 1 = short, 2 = long) */
1519 12, /* bitsize */
1520 FALSE, /* pc_relative */
1521 0, /* bitpos */
1522 complain_overflow_dont, /* complain_on_overflow */
1523 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1524 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
a06ea964
NC
1525 FALSE, /* partial_inplace */
1526 0xfff, /* src_mask */
1527 0xfff, /* dst_mask */
1528 FALSE), /* pcrel_offset */
a06ea964 1529
a6bb11b2 1530 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
bb3f9ed8 1531 2, /* rightshift */
a06ea964 1532 2, /* size (0 = byte, 1 = short, 2 = long) */
1ada945d 1533 19, /* bitsize */
a06ea964
NC
1534 TRUE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1538 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
a06ea964 1539 FALSE, /* partial_inplace */
1ada945d
MS
1540 0x0ffffe0, /* src_mask */
1541 0x0ffffe0, /* dst_mask */
a06ea964
NC
1542 TRUE), /* pcrel_offset */
1543
a6bb11b2 1544 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
a06ea964
NC
1545 0, /* rightshift */
1546 2, /* size (0 = byte, 1 = short, 2 = long) */
1547 21, /* bitsize */
1548 TRUE, /* pc_relative */
1549 0, /* bitpos */
1550 complain_overflow_dont, /* complain_on_overflow */
1551 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1552 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
a06ea964
NC
1553 FALSE, /* partial_inplace */
1554 0x1fffff, /* src_mask */
1555 0x1fffff, /* dst_mask */
1556 TRUE), /* pcrel_offset */
1557
1558 /* Get to the page for the GOT entry for the symbol
1559 (G(S) - P) using an ADRP instruction. */
a6bb11b2 1560 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
a06ea964
NC
1561 12, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 21, /* bitsize */
1564 TRUE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_dont, /* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1568 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
a06ea964
NC
1569 FALSE, /* partial_inplace */
1570 0x1fffff, /* src_mask */
1571 0x1fffff, /* dst_mask */
1572 TRUE), /* pcrel_offset */
1573
a6bb11b2 1574 /* LD64: GOT offset G(S) & 0xff8. */
f955cccf 1575 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
a06ea964
NC
1576 3, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 12, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_dont, /* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
f955cccf 1583 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
a06ea964 1584 FALSE, /* partial_inplace */
a6bb11b2
YZ
1585 0xff8, /* src_mask */
1586 0xff8, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 /* LD32: GOT offset G(S) & 0xffc. */
1590 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1591 2, /* rightshift */
1592 2, /* size (0 = byte, 1 = short, 2 = long) */
1593 12, /* bitsize */
1594 FALSE, /* pc_relative */
1595 0, /* bitpos */
1596 complain_overflow_dont, /* complain_on_overflow */
1597 bfd_elf_generic_reloc, /* special_function */
1598 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1599 FALSE, /* partial_inplace */
1600 0xffc, /* src_mask */
1601 0xffc, /* dst_mask */
a06ea964
NC
1602 FALSE), /* pcrel_offset */
1603
1604 /* ADD: GOT offset G(S) & 0xfff. */
f955cccf 1605 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
a06ea964
NC
1606 0, /* rightshift */
1607 2, /* size (0 = byte, 1 = short, 2 = long) */
1608 12, /* bitsize */
1609 FALSE, /* pc_relative */
1610 0, /* bitpos */
f955cccf 1611 complain_overflow_dont,/* complain_on_overflow */
a06ea964 1612 bfd_elf_generic_reloc, /* special_function */
f955cccf 1613 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
a06ea964
NC
1614 FALSE, /* partial_inplace */
1615 0xfff, /* src_mask */
1616 0xfff, /* dst_mask */
1617 FALSE), /* pcrel_offset */
1618
a6bb11b2 1619 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
bb3f9ed8 1620 16, /* rightshift */
a06ea964
NC
1621 2, /* size (0 = byte, 1 = short, 2 = long) */
1622 12, /* bitsize */
1623 FALSE, /* pc_relative */
1624 0, /* bitpos */
43a357f9 1625 complain_overflow_unsigned, /* complain_on_overflow */
a06ea964 1626 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1627 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
a06ea964
NC
1628 FALSE, /* partial_inplace */
1629 0xffff, /* src_mask */
1630 0xffff, /* dst_mask */
1631 FALSE), /* pcrel_offset */
1632
a6bb11b2 1633 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
a06ea964
NC
1634 0, /* rightshift */
1635 2, /* size (0 = byte, 1 = short, 2 = long) */
1636 12, /* bitsize */
1637 FALSE, /* pc_relative */
1638 0, /* bitpos */
1639 complain_overflow_dont, /* complain_on_overflow */
1640 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1641 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
a06ea964
NC
1642 FALSE, /* partial_inplace */
1643 0xffff, /* src_mask */
1644 0xffff, /* dst_mask */
1645 FALSE), /* pcrel_offset */
1646
a6bb11b2 1647 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
a06ea964
NC
1648 0, /* rightshift */
1649 2, /* size (0 = byte, 1 = short, 2 = long) */
1650 12, /* bitsize */
1651 FALSE, /* pc_relative */
1652 0, /* bitpos */
1653 complain_overflow_dont, /* complain_on_overflow */
1654 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1655 AARCH64_R_STR (TLSDESC_LDR), /* name */
a06ea964
NC
1656 FALSE, /* partial_inplace */
1657 0x0, /* src_mask */
1658 0x0, /* dst_mask */
1659 FALSE), /* pcrel_offset */
1660
a6bb11b2 1661 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
a06ea964
NC
1662 0, /* rightshift */
1663 2, /* size (0 = byte, 1 = short, 2 = long) */
1664 12, /* bitsize */
1665 FALSE, /* pc_relative */
1666 0, /* bitpos */
1667 complain_overflow_dont, /* complain_on_overflow */
1668 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1669 AARCH64_R_STR (TLSDESC_ADD), /* name */
a06ea964
NC
1670 FALSE, /* partial_inplace */
1671 0x0, /* src_mask */
1672 0x0, /* dst_mask */
1673 FALSE), /* pcrel_offset */
1674
a6bb11b2 1675 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
a06ea964
NC
1676 0, /* rightshift */
1677 2, /* size (0 = byte, 1 = short, 2 = long) */
7366006f 1678 0, /* bitsize */
a06ea964
NC
1679 FALSE, /* pc_relative */
1680 0, /* bitpos */
1681 complain_overflow_dont, /* complain_on_overflow */
1682 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1683 AARCH64_R_STR (TLSDESC_CALL), /* name */
a06ea964
NC
1684 FALSE, /* partial_inplace */
1685 0x0, /* src_mask */
1686 0x0, /* dst_mask */
1687 FALSE), /* pcrel_offset */
a6bb11b2
YZ
1688
1689 HOWTO (AARCH64_R (COPY), /* type */
1690 0, /* rightshift */
1691 2, /* size (0 = byte, 1 = short, 2 = long) */
1692 64, /* bitsize */
1693 FALSE, /* pc_relative */
1694 0, /* bitpos */
1695 complain_overflow_bitfield, /* complain_on_overflow */
1696 bfd_elf_generic_reloc, /* special_function */
1697 AARCH64_R_STR (COPY), /* name */
1698 TRUE, /* partial_inplace */
1699 0xffffffff, /* src_mask */
1700 0xffffffff, /* dst_mask */
1701 FALSE), /* pcrel_offset */
1702
1703 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1704 0, /* rightshift */
1705 2, /* size (0 = byte, 1 = short, 2 = long) */
1706 64, /* bitsize */
1707 FALSE, /* pc_relative */
1708 0, /* bitpos */
1709 complain_overflow_bitfield, /* complain_on_overflow */
1710 bfd_elf_generic_reloc, /* special_function */
1711 AARCH64_R_STR (GLOB_DAT), /* name */
1712 TRUE, /* partial_inplace */
1713 0xffffffff, /* src_mask */
1714 0xffffffff, /* dst_mask */
1715 FALSE), /* pcrel_offset */
1716
1717 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1718 0, /* rightshift */
1719 2, /* size (0 = byte, 1 = short, 2 = long) */
1720 64, /* bitsize */
1721 FALSE, /* pc_relative */
1722 0, /* bitpos */
1723 complain_overflow_bitfield, /* complain_on_overflow */
1724 bfd_elf_generic_reloc, /* special_function */
1725 AARCH64_R_STR (JUMP_SLOT), /* name */
1726 TRUE, /* partial_inplace */
1727 0xffffffff, /* src_mask */
1728 0xffffffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 HOWTO (AARCH64_R (RELATIVE), /* type */
1732 0, /* rightshift */
1733 2, /* size (0 = byte, 1 = short, 2 = long) */
1734 64, /* bitsize */
1735 FALSE, /* pc_relative */
1736 0, /* bitpos */
1737 complain_overflow_bitfield, /* complain_on_overflow */
1738 bfd_elf_generic_reloc, /* special_function */
1739 AARCH64_R_STR (RELATIVE), /* name */
1740 TRUE, /* partial_inplace */
1741 ALL_ONES, /* src_mask */
1742 ALL_ONES, /* dst_mask */
1743 FALSE), /* pcrel_offset */
1744
1745 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1746 0, /* rightshift */
1747 2, /* size (0 = byte, 1 = short, 2 = long) */
1748 64, /* bitsize */
1749 FALSE, /* pc_relative */
1750 0, /* bitpos */
1751 complain_overflow_dont, /* complain_on_overflow */
1752 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1753#if ARCH_SIZE == 64
1754 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1755#else
a6bb11b2 1756 AARCH64_R_STR (TLS_DTPMOD), /* name */
da0781dc 1757#endif
a6bb11b2
YZ
1758 FALSE, /* partial_inplace */
1759 0, /* src_mask */
1760 ALL_ONES, /* dst_mask */
1761 FALSE), /* pc_reloffset */
1762
1763 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1764 0, /* rightshift */
1765 2, /* size (0 = byte, 1 = short, 2 = long) */
1766 64, /* bitsize */
1767 FALSE, /* pc_relative */
1768 0, /* bitpos */
1769 complain_overflow_dont, /* complain_on_overflow */
1770 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1771#if ARCH_SIZE == 64
1772 AARCH64_R_STR (TLS_DTPREL64), /* name */
1773#else
a6bb11b2 1774 AARCH64_R_STR (TLS_DTPREL), /* name */
da0781dc 1775#endif
a6bb11b2
YZ
1776 FALSE, /* partial_inplace */
1777 0, /* src_mask */
1778 ALL_ONES, /* dst_mask */
1779 FALSE), /* pcrel_offset */
1780
1781 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1782 0, /* rightshift */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1784 64, /* bitsize */
1785 FALSE, /* pc_relative */
1786 0, /* bitpos */
1787 complain_overflow_dont, /* complain_on_overflow */
1788 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1789#if ARCH_SIZE == 64
1790 AARCH64_R_STR (TLS_TPREL64), /* name */
1791#else
a6bb11b2 1792 AARCH64_R_STR (TLS_TPREL), /* name */
da0781dc 1793#endif
a6bb11b2
YZ
1794 FALSE, /* partial_inplace */
1795 0, /* src_mask */
1796 ALL_ONES, /* dst_mask */
1797 FALSE), /* pcrel_offset */
1798
1799 HOWTO (AARCH64_R (TLSDESC), /* type */
1800 0, /* rightshift */
1801 2, /* size (0 = byte, 1 = short, 2 = long) */
1802 64, /* bitsize */
1803 FALSE, /* pc_relative */
1804 0, /* bitpos */
1805 complain_overflow_dont, /* complain_on_overflow */
1806 bfd_elf_generic_reloc, /* special_function */
1807 AARCH64_R_STR (TLSDESC), /* name */
1808 FALSE, /* partial_inplace */
1809 0, /* src_mask */
1810 ALL_ONES, /* dst_mask */
1811 FALSE), /* pcrel_offset */
1812
1813 HOWTO (AARCH64_R (IRELATIVE), /* type */
1814 0, /* rightshift */
1815 2, /* size (0 = byte, 1 = short, 2 = long) */
1816 64, /* bitsize */
1817 FALSE, /* pc_relative */
1818 0, /* bitpos */
1819 complain_overflow_bitfield, /* complain_on_overflow */
1820 bfd_elf_generic_reloc, /* special_function */
1821 AARCH64_R_STR (IRELATIVE), /* name */
1822 FALSE, /* partial_inplace */
1823 0, /* src_mask */
1824 ALL_ONES, /* dst_mask */
1825 FALSE), /* pcrel_offset */
1826
1827 EMPTY_HOWTO (0),
a06ea964
NC
1828};
1829
a6bb11b2
YZ
1830static reloc_howto_type elfNN_aarch64_howto_none =
1831 HOWTO (R_AARCH64_NONE, /* type */
1832 0, /* rightshift */
6346d5ca 1833 3, /* size (0 = byte, 1 = short, 2 = long) */
a6bb11b2
YZ
1834 0, /* bitsize */
1835 FALSE, /* pc_relative */
1836 0, /* bitpos */
1837 complain_overflow_dont,/* complain_on_overflow */
1838 bfd_elf_generic_reloc, /* special_function */
1839 "R_AARCH64_NONE", /* name */
1840 FALSE, /* partial_inplace */
1841 0, /* src_mask */
1842 0, /* dst_mask */
1843 FALSE); /* pcrel_offset */
1844
1845/* Given HOWTO, return the bfd internal relocation enumerator. */
1846
1847static bfd_reloc_code_real_type
1848elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1849{
1850 const int size
1851 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1852 const ptrdiff_t offset
1853 = howto - elfNN_aarch64_howto_table;
1854
1855 if (offset > 0 && offset < size - 1)
1856 return BFD_RELOC_AARCH64_RELOC_START + offset;
1857
1858 if (howto == &elfNN_aarch64_howto_none)
1859 return BFD_RELOC_AARCH64_NONE;
1860
1861 return BFD_RELOC_AARCH64_RELOC_START;
1862}
1863
1864/* Given R_TYPE, return the bfd internal relocation enumerator. */
1865
1866static bfd_reloc_code_real_type
1867elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1868{
1869 static bfd_boolean initialized_p = FALSE;
1870 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1871 static unsigned int offsets[R_AARCH64_end];
1872
535b785f 1873 if (!initialized_p)
a6bb11b2
YZ
1874 {
1875 unsigned int i;
1876
1877 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1878 if (elfNN_aarch64_howto_table[i].type != 0)
1879 offsets[elfNN_aarch64_howto_table[i].type] = i;
1880
1881 initialized_p = TRUE;
1882 }
1883
1884 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1885 return BFD_RELOC_AARCH64_NONE;
1886
5860e3f8
NC
1887 /* PR 17512: file: b371e70a. */
1888 if (r_type >= R_AARCH64_end)
1889 {
1890 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1891 bfd_set_error (bfd_error_bad_value);
1892 return BFD_RELOC_AARCH64_NONE;
1893 }
1894
a6bb11b2
YZ
1895 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1896}
1897
1898struct elf_aarch64_reloc_map
1899{
1900 bfd_reloc_code_real_type from;
1901 bfd_reloc_code_real_type to;
1902};
1903
1904/* Map bfd generic reloc to AArch64-specific reloc. */
1905static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1906{
1907 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1908
1909 /* Basic data relocations. */
1910 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1911 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1912 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1913 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1914 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1915 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1916 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1917};
1918
1919/* Given the bfd internal relocation enumerator in CODE, return the
1920 corresponding howto entry. */
1921
1922static reloc_howto_type *
1923elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1924{
1925 unsigned int i;
1926
1927 /* Convert bfd generic reloc to AArch64-specific reloc. */
1928 if (code < BFD_RELOC_AARCH64_RELOC_START
1929 || code > BFD_RELOC_AARCH64_RELOC_END)
1930 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1931 if (elf_aarch64_reloc_map[i].from == code)
1932 {
1933 code = elf_aarch64_reloc_map[i].to;
1934 break;
1935 }
1936
1937 if (code > BFD_RELOC_AARCH64_RELOC_START
1938 && code < BFD_RELOC_AARCH64_RELOC_END)
1939 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1940 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1941
54757ed1
AP
1942 if (code == BFD_RELOC_AARCH64_NONE)
1943 return &elfNN_aarch64_howto_none;
1944
a6bb11b2
YZ
1945 return NULL;
1946}
1947
a06ea964 1948static reloc_howto_type *
cec5225b 1949elfNN_aarch64_howto_from_type (unsigned int r_type)
a06ea964 1950{
a6bb11b2
YZ
1951 bfd_reloc_code_real_type val;
1952 reloc_howto_type *howto;
1953
cec5225b
YZ
1954#if ARCH_SIZE == 32
1955 if (r_type > 256)
1956 {
1957 bfd_set_error (bfd_error_bad_value);
1958 return NULL;
1959 }
1960#endif
1961
a6bb11b2
YZ
1962 if (r_type == R_AARCH64_NONE)
1963 return &elfNN_aarch64_howto_none;
a06ea964 1964
a6bb11b2
YZ
1965 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1966 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
a06ea964 1967
a6bb11b2
YZ
1968 if (howto != NULL)
1969 return howto;
a06ea964 1970
a06ea964
NC
1971 bfd_set_error (bfd_error_bad_value);
1972 return NULL;
1973}
1974
1975static void
cec5225b 1976elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
a06ea964
NC
1977 Elf_Internal_Rela *elf_reloc)
1978{
1979 unsigned int r_type;
1980
cec5225b
YZ
1981 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1982 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
1983}
1984
a06ea964 1985static reloc_howto_type *
cec5225b 1986elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1987 bfd_reloc_code_real_type code)
1988{
a6bb11b2 1989 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
a06ea964 1990
a6bb11b2
YZ
1991 if (howto != NULL)
1992 return howto;
a06ea964
NC
1993
1994 bfd_set_error (bfd_error_bad_value);
1995 return NULL;
1996}
1997
1998static reloc_howto_type *
cec5225b 1999elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
2000 const char *r_name)
2001{
2002 unsigned int i;
2003
a6bb11b2
YZ
2004 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2005 if (elfNN_aarch64_howto_table[i].name != NULL
2006 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2007 return &elfNN_aarch64_howto_table[i];
a06ea964
NC
2008
2009 return NULL;
2010}
2011
6d00b590 2012#define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
cec5225b 2013#define TARGET_LITTLE_NAME "elfNN-littleaarch64"
6d00b590 2014#define TARGET_BIG_SYM aarch64_elfNN_be_vec
cec5225b 2015#define TARGET_BIG_NAME "elfNN-bigaarch64"
a06ea964 2016
a06ea964
NC
2017/* The linker script knows the section names for placement.
2018 The entry_names are used to do simple name mangling on the stubs.
2019 Given a function name, and its type, the stub can be found. The
2020 name can be changed. The only requirement is the %s be present. */
2021#define STUB_ENTRY_NAME "__%s_veneer"
2022
2023/* The name of the dynamic interpreter. This is put in the .interp
2024 section. */
2025#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2026
2027#define AARCH64_MAX_FWD_BRANCH_OFFSET \
2028 (((1 << 25) - 1) << 2)
2029#define AARCH64_MAX_BWD_BRANCH_OFFSET \
2030 (-((1 << 25) << 2))
2031
2032#define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2033#define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2034
2035static int
2036aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2037{
2038 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2039 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2040}
2041
2042static int
2043aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2044{
2045 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2046 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2047 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2048}
2049
2050static const uint32_t aarch64_adrp_branch_stub [] =
2051{
2052 0x90000010, /* adrp ip0, X */
2053 /* R_AARCH64_ADR_HI21_PCREL(X) */
2054 0x91000210, /* add ip0, ip0, :lo12:X */
2055 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2056 0xd61f0200, /* br ip0 */
2057};
2058
2059static const uint32_t aarch64_long_branch_stub[] =
2060{
cec5225b 2061#if ARCH_SIZE == 64
a06ea964 2062 0x58000090, /* ldr ip0, 1f */
cec5225b
YZ
2063#else
2064 0x18000090, /* ldr wip0, 1f */
2065#endif
a06ea964
NC
2066 0x10000011, /* adr ip1, #0 */
2067 0x8b110210, /* add ip0, ip0, ip1 */
2068 0xd61f0200, /* br ip0 */
cec5225b
YZ
2069 0x00000000, /* 1: .xword or .word
2070 R_AARCH64_PRELNN(X) + 12
a06ea964
NC
2071 */
2072 0x00000000,
2073};
2074
68fcca92
JW
2075static const uint32_t aarch64_erratum_835769_stub[] =
2076{
2077 0x00000000, /* Placeholder for multiply accumulate. */
2078 0x14000000, /* b <label> */
2079};
2080
4106101c
MS
2081static const uint32_t aarch64_erratum_843419_stub[] =
2082{
2083 0x00000000, /* Placeholder for LDR instruction. */
2084 0x14000000, /* b <label> */
2085};
2086
a06ea964
NC
2087/* Section name for stubs is the associated section name plus this
2088 string. */
2089#define STUB_SUFFIX ".stub"
2090
cec5225b 2091enum elf_aarch64_stub_type
a06ea964
NC
2092{
2093 aarch64_stub_none,
2094 aarch64_stub_adrp_branch,
2095 aarch64_stub_long_branch,
68fcca92 2096 aarch64_stub_erratum_835769_veneer,
4106101c 2097 aarch64_stub_erratum_843419_veneer,
a06ea964
NC
2098};
2099
cec5225b 2100struct elf_aarch64_stub_hash_entry
a06ea964
NC
2101{
2102 /* Base hash table entry structure. */
2103 struct bfd_hash_entry root;
2104
2105 /* The stub section. */
2106 asection *stub_sec;
2107
2108 /* Offset within stub_sec of the beginning of this stub. */
2109 bfd_vma stub_offset;
2110
2111 /* Given the symbol's value and its section we can determine its final
2112 value when building the stubs (so the stub knows where to jump). */
2113 bfd_vma target_value;
2114 asection *target_section;
2115
cec5225b 2116 enum elf_aarch64_stub_type stub_type;
a06ea964
NC
2117
2118 /* The symbol table entry, if any, that this was derived from. */
cec5225b 2119 struct elf_aarch64_link_hash_entry *h;
a06ea964
NC
2120
2121 /* Destination symbol type */
2122 unsigned char st_type;
2123
2124 /* Where this stub is being called from, or, in the case of combined
2125 stub sections, the first input section in the group. */
2126 asection *id_sec;
2127
2128 /* The name for the local symbol at the start of this stub. The
2129 stub name in the hash table has to be unique; this does not, so
2130 it can be friendlier. */
2131 char *output_name;
68fcca92
JW
2132
2133 /* The instruction which caused this stub to be generated (only valid for
2134 erratum 835769 workaround stubs at present). */
2135 uint32_t veneered_insn;
4106101c
MS
2136
2137 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2138 bfd_vma adrp_offset;
a06ea964
NC
2139};
2140
2141/* Used to build a map of a section. This is required for mixed-endian
2142 code/data. */
2143
cec5225b 2144typedef struct elf_elf_section_map
a06ea964
NC
2145{
2146 bfd_vma vma;
2147 char type;
2148}
cec5225b 2149elf_aarch64_section_map;
a06ea964
NC
2150
2151
2152typedef struct _aarch64_elf_section_data
2153{
2154 struct bfd_elf_section_data elf;
2155 unsigned int mapcount;
2156 unsigned int mapsize;
cec5225b 2157 elf_aarch64_section_map *map;
a06ea964
NC
2158}
2159_aarch64_elf_section_data;
2160
cec5225b 2161#define elf_aarch64_section_data(sec) \
a06ea964
NC
2162 ((_aarch64_elf_section_data *) elf_section_data (sec))
2163
4e8516b2
AP
2164/* The size of the thread control block which is defined to be two pointers. */
2165#define TCB_SIZE (ARCH_SIZE/8)*2
a06ea964
NC
2166
2167struct elf_aarch64_local_symbol
2168{
2169 unsigned int got_type;
2170 bfd_signed_vma got_refcount;
2171 bfd_vma got_offset;
2172
2173 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2174 offset is from the end of the jump table and reserved entries
2175 within the PLTGOT.
2176
2177 The magic value (bfd_vma) -1 indicates that an offset has not be
2178 allocated. */
2179 bfd_vma tlsdesc_got_jump_table_offset;
2180};
2181
2182struct elf_aarch64_obj_tdata
2183{
2184 struct elf_obj_tdata root;
2185
2186 /* local symbol descriptors */
2187 struct elf_aarch64_local_symbol *locals;
2188
2189 /* Zero to warn when linking objects with incompatible enum sizes. */
2190 int no_enum_size_warning;
2191
2192 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2193 int no_wchar_size_warning;
2194};
2195
2196#define elf_aarch64_tdata(bfd) \
2197 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2198
cec5225b 2199#define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
a06ea964
NC
2200
2201#define is_aarch64_elf(bfd) \
2202 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2203 && elf_tdata (bfd) != NULL \
2204 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2205
2206static bfd_boolean
cec5225b 2207elfNN_aarch64_mkobject (bfd *abfd)
a06ea964
NC
2208{
2209 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2210 AARCH64_ELF_DATA);
2211}
2212
cec5225b
YZ
2213#define elf_aarch64_hash_entry(ent) \
2214 ((struct elf_aarch64_link_hash_entry *)(ent))
a06ea964
NC
2215
2216#define GOT_UNKNOWN 0
2217#define GOT_NORMAL 1
2218#define GOT_TLS_GD 2
2219#define GOT_TLS_IE 4
2220#define GOT_TLSDESC_GD 8
2221
2222#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2223
2224/* AArch64 ELF linker hash entry. */
cec5225b 2225struct elf_aarch64_link_hash_entry
a06ea964
NC
2226{
2227 struct elf_link_hash_entry root;
2228
2229 /* Track dynamic relocs copied for this symbol. */
2230 struct elf_dyn_relocs *dyn_relocs;
2231
a06ea964
NC
2232 /* Since PLT entries have variable size, we need to record the
2233 index into .got.plt instead of recomputing it from the PLT
2234 offset. */
2235 bfd_signed_vma plt_got_offset;
2236
2237 /* Bit mask representing the type of GOT entry(s) if any required by
2238 this symbol. */
2239 unsigned int got_type;
2240
2241 /* A pointer to the most recently used stub hash entry against this
2242 symbol. */
cec5225b 2243 struct elf_aarch64_stub_hash_entry *stub_cache;
a06ea964
NC
2244
2245 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2246 is from the end of the jump table and reserved entries within the PLTGOT.
2247
2248 The magic value (bfd_vma) -1 indicates that an offset has not
2249 be allocated. */
2250 bfd_vma tlsdesc_got_jump_table_offset;
2251};
2252
2253static unsigned int
cec5225b 2254elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
a06ea964
NC
2255 bfd *abfd,
2256 unsigned long r_symndx)
2257{
2258 if (h)
cec5225b 2259 return elf_aarch64_hash_entry (h)->got_type;
a06ea964 2260
cec5225b 2261 if (! elf_aarch64_locals (abfd))
a06ea964
NC
2262 return GOT_UNKNOWN;
2263
cec5225b 2264 return elf_aarch64_locals (abfd)[r_symndx].got_type;
a06ea964
NC
2265}
2266
a06ea964 2267/* Get the AArch64 elf linker hash table from a link_info structure. */
cec5225b
YZ
2268#define elf_aarch64_hash_table(info) \
2269 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
a06ea964
NC
2270
2271#define aarch64_stub_hash_lookup(table, string, create, copy) \
cec5225b 2272 ((struct elf_aarch64_stub_hash_entry *) \
a06ea964
NC
2273 bfd_hash_lookup ((table), (string), (create), (copy)))
2274
2275/* AArch64 ELF linker hash table. */
cec5225b 2276struct elf_aarch64_link_hash_table
a06ea964
NC
2277{
2278 /* The main hash table. */
2279 struct elf_link_hash_table root;
2280
2281 /* Nonzero to force PIC branch veneers. */
2282 int pic_veneer;
2283
68fcca92
JW
2284 /* Fix erratum 835769. */
2285 int fix_erratum_835769;
2286
4106101c
MS
2287 /* Fix erratum 843419. */
2288 int fix_erratum_843419;
2289
2290 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2291 int fix_erratum_843419_adr;
2292
1f56df9d
JW
2293 /* Don't apply link-time values for dynamic relocations. */
2294 int no_apply_dynamic_relocs;
2295
a06ea964
NC
2296 /* The number of bytes in the initial entry in the PLT. */
2297 bfd_size_type plt_header_size;
2298
2299 /* The number of bytes in the subsequent PLT etries. */
2300 bfd_size_type plt_entry_size;
2301
a06ea964
NC
2302 /* Small local sym cache. */
2303 struct sym_cache sym_cache;
2304
2305 /* For convenience in allocate_dynrelocs. */
2306 bfd *obfd;
2307
2308 /* The amount of space used by the reserved portion of the sgotplt
2309 section, plus whatever space is used by the jump slots. */
2310 bfd_vma sgotplt_jump_table_size;
2311
2312 /* The stub hash table. */
2313 struct bfd_hash_table stub_hash_table;
2314
2315 /* Linker stub bfd. */
2316 bfd *stub_bfd;
2317
2318 /* Linker call-backs. */
2319 asection *(*add_stub_section) (const char *, asection *);
2320 void (*layout_sections_again) (void);
2321
2322 /* Array to keep track of which stub sections have been created, and
2323 information on stub grouping. */
2324 struct map_stub
2325 {
2326 /* This is the section to which stubs in the group will be
2327 attached. */
2328 asection *link_sec;
2329 /* The stub section. */
2330 asection *stub_sec;
2331 } *stub_group;
2332
cec5225b 2333 /* Assorted information used by elfNN_aarch64_size_stubs. */
a06ea964 2334 unsigned int bfd_count;
7292b3ac 2335 unsigned int top_index;
a06ea964
NC
2336 asection **input_list;
2337
2338 /* The offset into splt of the PLT entry for the TLS descriptor
2339 resolver. Special values are 0, if not necessary (or not found
2340 to be necessary yet), and -1 if needed but not determined
2341 yet. */
2342 bfd_vma tlsdesc_plt;
2343
2344 /* The GOT offset for the lazy trampoline. Communicated to the
2345 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2346 indicates an offset is not allocated. */
2347 bfd_vma dt_tlsdesc_got;
1419bbe5
WN
2348
2349 /* Used by local STT_GNU_IFUNC symbols. */
2350 htab_t loc_hash_table;
2351 void * loc_hash_memory;
a06ea964
NC
2352};
2353
a06ea964
NC
2354/* Create an entry in an AArch64 ELF linker hash table. */
2355
2356static struct bfd_hash_entry *
cec5225b 2357elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
a06ea964
NC
2358 struct bfd_hash_table *table,
2359 const char *string)
2360{
cec5225b
YZ
2361 struct elf_aarch64_link_hash_entry *ret =
2362 (struct elf_aarch64_link_hash_entry *) entry;
a06ea964
NC
2363
2364 /* Allocate the structure if it has not already been allocated by a
2365 subclass. */
2366 if (ret == NULL)
2367 ret = bfd_hash_allocate (table,
cec5225b 2368 sizeof (struct elf_aarch64_link_hash_entry));
a06ea964
NC
2369 if (ret == NULL)
2370 return (struct bfd_hash_entry *) ret;
2371
2372 /* Call the allocation method of the superclass. */
cec5225b 2373 ret = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
2374 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2375 table, string));
2376 if (ret != NULL)
2377 {
2378 ret->dyn_relocs = NULL;
a06ea964
NC
2379 ret->got_type = GOT_UNKNOWN;
2380 ret->plt_got_offset = (bfd_vma) - 1;
2381 ret->stub_cache = NULL;
2382 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2383 }
2384
2385 return (struct bfd_hash_entry *) ret;
2386}
2387
2388/* Initialize an entry in the stub hash table. */
2389
2390static struct bfd_hash_entry *
2391stub_hash_newfunc (struct bfd_hash_entry *entry,
2392 struct bfd_hash_table *table, const char *string)
2393{
2394 /* Allocate the structure if it has not already been allocated by a
2395 subclass. */
2396 if (entry == NULL)
2397 {
2398 entry = bfd_hash_allocate (table,
2399 sizeof (struct
cec5225b 2400 elf_aarch64_stub_hash_entry));
a06ea964
NC
2401 if (entry == NULL)
2402 return entry;
2403 }
2404
2405 /* Call the allocation method of the superclass. */
2406 entry = bfd_hash_newfunc (entry, table, string);
2407 if (entry != NULL)
2408 {
cec5225b 2409 struct elf_aarch64_stub_hash_entry *eh;
a06ea964
NC
2410
2411 /* Initialize the local fields. */
cec5225b 2412 eh = (struct elf_aarch64_stub_hash_entry *) entry;
4106101c 2413 eh->adrp_offset = 0;
a06ea964
NC
2414 eh->stub_sec = NULL;
2415 eh->stub_offset = 0;
2416 eh->target_value = 0;
2417 eh->target_section = NULL;
2418 eh->stub_type = aarch64_stub_none;
2419 eh->h = NULL;
2420 eh->id_sec = NULL;
2421 }
2422
2423 return entry;
2424}
2425
1419bbe5
WN
2426/* Compute a hash of a local hash entry. We use elf_link_hash_entry
2427 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2428 as global symbol. We reuse indx and dynstr_index for local symbol
2429 hash since they aren't used by global symbols in this backend. */
2430
2431static hashval_t
2432elfNN_aarch64_local_htab_hash (const void *ptr)
2433{
2434 struct elf_link_hash_entry *h
2435 = (struct elf_link_hash_entry *) ptr;
2436 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2437}
2438
2439/* Compare local hash entries. */
2440
2441static int
2442elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2443{
2444 struct elf_link_hash_entry *h1
2445 = (struct elf_link_hash_entry *) ptr1;
2446 struct elf_link_hash_entry *h2
2447 = (struct elf_link_hash_entry *) ptr2;
2448
2449 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2450}
2451
2452/* Find and/or create a hash entry for local symbol. */
2453
2454static struct elf_link_hash_entry *
2455elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2456 bfd *abfd, const Elf_Internal_Rela *rel,
2457 bfd_boolean create)
2458{
2459 struct elf_aarch64_link_hash_entry e, *ret;
2460 asection *sec = abfd->sections;
2461 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2462 ELFNN_R_SYM (rel->r_info));
2463 void **slot;
2464
2465 e.root.indx = sec->id;
2466 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2467 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2468 create ? INSERT : NO_INSERT);
2469
2470 if (!slot)
2471 return NULL;
2472
2473 if (*slot)
2474 {
2475 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2476 return &ret->root;
2477 }
2478
2479 ret = (struct elf_aarch64_link_hash_entry *)
2480 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2481 sizeof (struct elf_aarch64_link_hash_entry));
2482 if (ret)
2483 {
2484 memset (ret, 0, sizeof (*ret));
2485 ret->root.indx = sec->id;
2486 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2487 ret->root.dynindx = -1;
2488 *slot = ret;
2489 }
2490 return &ret->root;
2491}
a06ea964
NC
2492
2493/* Copy the extra info we tack onto an elf_link_hash_entry. */
2494
2495static void
cec5225b 2496elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
a06ea964
NC
2497 struct elf_link_hash_entry *dir,
2498 struct elf_link_hash_entry *ind)
2499{
cec5225b 2500 struct elf_aarch64_link_hash_entry *edir, *eind;
a06ea964 2501
cec5225b
YZ
2502 edir = (struct elf_aarch64_link_hash_entry *) dir;
2503 eind = (struct elf_aarch64_link_hash_entry *) ind;
a06ea964
NC
2504
2505 if (eind->dyn_relocs != NULL)
2506 {
2507 if (edir->dyn_relocs != NULL)
2508 {
2509 struct elf_dyn_relocs **pp;
2510 struct elf_dyn_relocs *p;
2511
2512 /* Add reloc counts against the indirect sym to the direct sym
2513 list. Merge any entries against the same section. */
2514 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2515 {
2516 struct elf_dyn_relocs *q;
2517
2518 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2519 if (q->sec == p->sec)
2520 {
2521 q->pc_count += p->pc_count;
2522 q->count += p->count;
2523 *pp = p->next;
2524 break;
2525 }
2526 if (q == NULL)
2527 pp = &p->next;
2528 }
2529 *pp = edir->dyn_relocs;
2530 }
2531
2532 edir->dyn_relocs = eind->dyn_relocs;
2533 eind->dyn_relocs = NULL;
2534 }
2535
a06ea964
NC
2536 if (ind->root.type == bfd_link_hash_indirect)
2537 {
2538 /* Copy over PLT info. */
2539 if (dir->got.refcount <= 0)
2540 {
2541 edir->got_type = eind->got_type;
2542 eind->got_type = GOT_UNKNOWN;
2543 }
2544 }
2545
2546 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2547}
2548
68faa637
AM
2549/* Destroy an AArch64 elf linker hash table. */
2550
2551static void
d495ab0d 2552elfNN_aarch64_link_hash_table_free (bfd *obfd)
68faa637
AM
2553{
2554 struct elf_aarch64_link_hash_table *ret
d495ab0d 2555 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
68faa637
AM
2556
2557 if (ret->loc_hash_table)
2558 htab_delete (ret->loc_hash_table);
2559 if (ret->loc_hash_memory)
2560 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2561
2562 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 2563 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
2564}
2565
a06ea964
NC
2566/* Create an AArch64 elf linker hash table. */
2567
2568static struct bfd_link_hash_table *
cec5225b 2569elfNN_aarch64_link_hash_table_create (bfd *abfd)
a06ea964 2570{
cec5225b
YZ
2571 struct elf_aarch64_link_hash_table *ret;
2572 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
a06ea964 2573
7bf52ea2 2574 ret = bfd_zmalloc (amt);
a06ea964
NC
2575 if (ret == NULL)
2576 return NULL;
2577
2578 if (!_bfd_elf_link_hash_table_init
cec5225b
YZ
2579 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2580 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
a06ea964
NC
2581 {
2582 free (ret);
2583 return NULL;
2584 }
2585
a06ea964
NC
2586 ret->plt_header_size = PLT_ENTRY_SIZE;
2587 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
a06ea964 2588 ret->obfd = abfd;
a06ea964
NC
2589 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2590
2591 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
cec5225b 2592 sizeof (struct elf_aarch64_stub_hash_entry)))
a06ea964 2593 {
d495ab0d 2594 _bfd_elf_link_hash_table_free (abfd);
a06ea964
NC
2595 return NULL;
2596 }
2597
1419bbe5
WN
2598 ret->loc_hash_table = htab_try_create (1024,
2599 elfNN_aarch64_local_htab_hash,
2600 elfNN_aarch64_local_htab_eq,
2601 NULL);
2602 ret->loc_hash_memory = objalloc_create ();
2603 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2604 {
d495ab0d 2605 elfNN_aarch64_link_hash_table_free (abfd);
1419bbe5
WN
2606 return NULL;
2607 }
d495ab0d 2608 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
1419bbe5 2609
a06ea964
NC
2610 return &ret->root.root;
2611}
2612
a06ea964
NC
2613static bfd_boolean
2614aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2615 bfd_vma offset, bfd_vma value)
2616{
2617 reloc_howto_type *howto;
2618 bfd_vma place;
2619
cec5225b 2620 howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
2621 place = (input_section->output_section->vma + input_section->output_offset
2622 + offset);
caed7120
YZ
2623
2624 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2625 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2626 return _bfd_aarch64_elf_put_addend (input_bfd,
2627 input_section->contents + offset, r_type,
2628 howto, value);
a06ea964
NC
2629}
2630
cec5225b 2631static enum elf_aarch64_stub_type
a06ea964
NC
2632aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2633{
2634 if (aarch64_valid_for_adrp_p (value, place))
2635 return aarch64_stub_adrp_branch;
2636 return aarch64_stub_long_branch;
2637}
2638
2639/* Determine the type of stub needed, if any, for a call. */
2640
cec5225b 2641static enum elf_aarch64_stub_type
9a228467 2642aarch64_type_of_stub (asection *input_sec,
a06ea964 2643 const Elf_Internal_Rela *rel,
f678ded7 2644 asection *sym_sec,
a06ea964 2645 unsigned char st_type,
a06ea964
NC
2646 bfd_vma destination)
2647{
2648 bfd_vma location;
2649 bfd_signed_vma branch_offset;
2650 unsigned int r_type;
cec5225b 2651 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
a06ea964 2652
f678ded7 2653 if (st_type != STT_FUNC
2f340668 2654 && (sym_sec == input_sec))
a06ea964
NC
2655 return stub_type;
2656
a06ea964
NC
2657 /* Determine where the call point is. */
2658 location = (input_sec->output_offset
2659 + input_sec->output_section->vma + rel->r_offset);
2660
2661 branch_offset = (bfd_signed_vma) (destination - location);
2662
cec5225b 2663 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
2664
2665 /* We don't want to redirect any old unconditional jump in this way,
2666 only one which is being used for a sibcall, where it is
2667 acceptable for the IP0 and IP1 registers to be clobbered. */
a6bb11b2 2668 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
a06ea964
NC
2669 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2670 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2671 {
2672 stub_type = aarch64_stub_long_branch;
2673 }
2674
2675 return stub_type;
2676}
2677
2678/* Build a name for an entry in the stub hash table. */
2679
2680static char *
cec5225b 2681elfNN_aarch64_stub_name (const asection *input_section,
a06ea964 2682 const asection *sym_sec,
cec5225b 2683 const struct elf_aarch64_link_hash_entry *hash,
a06ea964
NC
2684 const Elf_Internal_Rela *rel)
2685{
2686 char *stub_name;
2687 bfd_size_type len;
2688
2689 if (hash)
2690 {
2691 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2692 stub_name = bfd_malloc (len);
2693 if (stub_name != NULL)
2694 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2695 (unsigned int) input_section->id,
2696 hash->root.root.root.string,
2697 rel->r_addend);
2698 }
2699 else
2700 {
2701 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2702 stub_name = bfd_malloc (len);
2703 if (stub_name != NULL)
2704 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2705 (unsigned int) input_section->id,
2706 (unsigned int) sym_sec->id,
cec5225b 2707 (unsigned int) ELFNN_R_SYM (rel->r_info),
a06ea964
NC
2708 rel->r_addend);
2709 }
2710
2711 return stub_name;
2712}
2713
7f784814
JW
2714/* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
2715 executable PLT slots where the executable never takes the address of those
2716 functions, the function symbols are not added to the hash table. */
2717
2718static bfd_boolean
2719elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
2720{
2721 if (h->plt.offset != (bfd_vma) -1
2722 && !h->def_regular
2723 && !h->pointer_equality_needed)
2724 return FALSE;
2725
2726 return _bfd_elf_hash_symbol (h);
2727}
2728
2729
a06ea964
NC
2730/* Look up an entry in the stub hash. Stub entries are cached because
2731 creating the stub name takes a bit of time. */
2732
cec5225b
YZ
2733static struct elf_aarch64_stub_hash_entry *
2734elfNN_aarch64_get_stub_entry (const asection *input_section,
a06ea964
NC
2735 const asection *sym_sec,
2736 struct elf_link_hash_entry *hash,
2737 const Elf_Internal_Rela *rel,
cec5225b 2738 struct elf_aarch64_link_hash_table *htab)
a06ea964 2739{
cec5225b
YZ
2740 struct elf_aarch64_stub_hash_entry *stub_entry;
2741 struct elf_aarch64_link_hash_entry *h =
2742 (struct elf_aarch64_link_hash_entry *) hash;
a06ea964
NC
2743 const asection *id_sec;
2744
2745 if ((input_section->flags & SEC_CODE) == 0)
2746 return NULL;
2747
2748 /* If this input section is part of a group of sections sharing one
2749 stub section, then use the id of the first section in the group.
2750 Stub names need to include a section id, as there may well be
2751 more than one stub used to reach say, printf, and we need to
2752 distinguish between them. */
2753 id_sec = htab->stub_group[input_section->id].link_sec;
2754
2755 if (h != NULL && h->stub_cache != NULL
2756 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2757 {
2758 stub_entry = h->stub_cache;
2759 }
2760 else
2761 {
2762 char *stub_name;
2763
cec5225b 2764 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
a06ea964
NC
2765 if (stub_name == NULL)
2766 return NULL;
2767
2768 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2769 stub_name, FALSE, FALSE);
2770 if (h != NULL)
2771 h->stub_cache = stub_entry;
2772
2773 free (stub_name);
2774 }
2775
2776 return stub_entry;
2777}
2778
a06ea964 2779
66585675
MS
2780/* Create a stub section. */
2781
2782static asection *
2783_bfd_aarch64_create_stub_section (asection *section,
2784 struct elf_aarch64_link_hash_table *htab)
2785{
2786 size_t namelen;
2787 bfd_size_type len;
2788 char *s_name;
2789
2790 namelen = strlen (section->name);
2791 len = namelen + sizeof (STUB_SUFFIX);
2792 s_name = bfd_alloc (htab->stub_bfd, len);
2793 if (s_name == NULL)
2794 return NULL;
2795
2796 memcpy (s_name, section->name, namelen);
2797 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2798 return (*htab->add_stub_section) (s_name, section);
2799}
2800
2801
fc6d53be
MS
2802/* Find or create a stub section for a link section.
2803
2804 Fix or create the stub section used to collect stubs attached to
2805 the specified link section. */
2806
2807static asection *
2808_bfd_aarch64_get_stub_for_link_section (asection *link_section,
2809 struct elf_aarch64_link_hash_table *htab)
2810{
2811 if (htab->stub_group[link_section->id].stub_sec == NULL)
2812 htab->stub_group[link_section->id].stub_sec
2813 = _bfd_aarch64_create_stub_section (link_section, htab);
2814 return htab->stub_group[link_section->id].stub_sec;
2815}
2816
2817
ef857521
MS
2818/* Find or create a stub section in the stub group for an input
2819 section. */
2820
2821static asection *
2822_bfd_aarch64_create_or_find_stub_sec (asection *section,
2823 struct elf_aarch64_link_hash_table *htab)
a06ea964 2824{
fc6d53be
MS
2825 asection *link_sec = htab->stub_group[section->id].link_sec;
2826 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
ef857521
MS
2827}
2828
2829
2830/* Add a new stub entry in the stub group associated with an input
2831 section to the stub hash. Not all fields of the new stub entry are
2832 initialised. */
2833
2834static struct elf_aarch64_stub_hash_entry *
2835_bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2836 asection *section,
2837 struct elf_aarch64_link_hash_table *htab)
2838{
2839 asection *link_sec;
2840 asection *stub_sec;
2841 struct elf_aarch64_stub_hash_entry *stub_entry;
2842
2843 link_sec = htab->stub_group[section->id].link_sec;
2844 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2845
a06ea964
NC
2846 /* Enter this entry into the linker stub hash table. */
2847 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2848 TRUE, FALSE);
2849 if (stub_entry == NULL)
2850 {
695344c0 2851 /* xgettext:c-format */
dae82561 2852 _bfd_error_handler (_("%B: cannot create stub entry %s"),
4eca0228 2853 section->owner, stub_name);
a06ea964
NC
2854 return NULL;
2855 }
2856
2857 stub_entry->stub_sec = stub_sec;
2858 stub_entry->stub_offset = 0;
2859 stub_entry->id_sec = link_sec;
2860
2861 return stub_entry;
2862}
2863
4106101c
MS
2864/* Add a new stub entry in the final stub section to the stub hash.
2865 Not all fields of the new stub entry are initialised. */
2866
2867static struct elf_aarch64_stub_hash_entry *
2868_bfd_aarch64_add_stub_entry_after (const char *stub_name,
2869 asection *link_section,
2870 struct elf_aarch64_link_hash_table *htab)
2871{
2872 asection *stub_sec;
2873 struct elf_aarch64_stub_hash_entry *stub_entry;
2874
2875 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2876 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2877 TRUE, FALSE);
2878 if (stub_entry == NULL)
2879 {
4eca0228 2880 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
4106101c
MS
2881 return NULL;
2882 }
2883
2884 stub_entry->stub_sec = stub_sec;
2885 stub_entry->stub_offset = 0;
2886 stub_entry->id_sec = link_section;
2887
2888 return stub_entry;
2889}
2890
2891
a06ea964
NC
2892static bfd_boolean
2893aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2894 void *in_arg ATTRIBUTE_UNUSED)
2895{
cec5225b 2896 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2897 asection *stub_sec;
2898 bfd *stub_bfd;
2899 bfd_byte *loc;
2900 bfd_vma sym_value;
68fcca92
JW
2901 bfd_vma veneered_insn_loc;
2902 bfd_vma veneer_entry_loc;
2903 bfd_signed_vma branch_offset = 0;
a06ea964
NC
2904 unsigned int template_size;
2905 const uint32_t *template;
2906 unsigned int i;
2907
2908 /* Massage our args to the form they really have. */
cec5225b 2909 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
2910
2911 stub_sec = stub_entry->stub_sec;
2912
2913 /* Make a note of the offset within the stubs for this entry. */
2914 stub_entry->stub_offset = stub_sec->size;
2915 loc = stub_sec->contents + stub_entry->stub_offset;
2916
2917 stub_bfd = stub_sec->owner;
2918
2919 /* This is the address of the stub destination. */
2920 sym_value = (stub_entry->target_value
2921 + stub_entry->target_section->output_offset
2922 + stub_entry->target_section->output_section->vma);
2923
2924 if (stub_entry->stub_type == aarch64_stub_long_branch)
2925 {
2926 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2927 + stub_sec->output_offset);
2928
2929 /* See if we can relax the stub. */
2930 if (aarch64_valid_for_adrp_p (sym_value, place))
2931 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2932 }
2933
2934 switch (stub_entry->stub_type)
2935 {
2936 case aarch64_stub_adrp_branch:
2937 template = aarch64_adrp_branch_stub;
2938 template_size = sizeof (aarch64_adrp_branch_stub);
2939 break;
2940 case aarch64_stub_long_branch:
2941 template = aarch64_long_branch_stub;
2942 template_size = sizeof (aarch64_long_branch_stub);
2943 break;
68fcca92
JW
2944 case aarch64_stub_erratum_835769_veneer:
2945 template = aarch64_erratum_835769_stub;
2946 template_size = sizeof (aarch64_erratum_835769_stub);
2947 break;
4106101c
MS
2948 case aarch64_stub_erratum_843419_veneer:
2949 template = aarch64_erratum_843419_stub;
2950 template_size = sizeof (aarch64_erratum_843419_stub);
2951 break;
a06ea964 2952 default:
8e2fe09f 2953 abort ();
a06ea964
NC
2954 }
2955
2956 for (i = 0; i < (template_size / sizeof template[0]); i++)
2957 {
2958 bfd_putl32 (template[i], loc);
2959 loc += 4;
2960 }
2961
2962 template_size = (template_size + 7) & ~7;
2963 stub_sec->size += template_size;
2964
2965 switch (stub_entry->stub_type)
2966 {
2967 case aarch64_stub_adrp_branch:
a6bb11b2 2968 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
a06ea964
NC
2969 stub_entry->stub_offset, sym_value))
2970 /* The stub would not have been relaxed if the offset was out
2971 of range. */
2972 BFD_FAIL ();
2973
93ca8569
TB
2974 if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2975 stub_entry->stub_offset + 4, sym_value))
2976 BFD_FAIL ();
a06ea964
NC
2977 break;
2978
2979 case aarch64_stub_long_branch:
2980 /* We want the value relative to the address 12 bytes back from the
2981 value itself. */
93ca8569
TB
2982 if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2983 stub_entry->stub_offset + 16, sym_value + 12))
2984 BFD_FAIL ();
a06ea964 2985 break;
68fcca92
JW
2986
2987 case aarch64_stub_erratum_835769_veneer:
2988 veneered_insn_loc = stub_entry->target_section->output_section->vma
2989 + stub_entry->target_section->output_offset
2990 + stub_entry->target_value;
2991 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2992 + stub_entry->stub_sec->output_offset
2993 + stub_entry->stub_offset;
2994 branch_offset = veneered_insn_loc - veneer_entry_loc;
2995 branch_offset >>= 2;
2996 branch_offset &= 0x3ffffff;
2997 bfd_putl32 (stub_entry->veneered_insn,
2998 stub_sec->contents + stub_entry->stub_offset);
2999 bfd_putl32 (template[1] | branch_offset,
3000 stub_sec->contents + stub_entry->stub_offset + 4);
3001 break;
3002
4106101c
MS
3003 case aarch64_stub_erratum_843419_veneer:
3004 if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3005 stub_entry->stub_offset + 4, sym_value + 4))
3006 BFD_FAIL ();
3007 break;
3008
a06ea964 3009 default:
8e2fe09f 3010 abort ();
a06ea964
NC
3011 }
3012
3013 return TRUE;
3014}
3015
3016/* As above, but don't actually build the stub. Just bump offset so
3017 we know stub section sizes. */
3018
3019static bfd_boolean
3020aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3021 void *in_arg ATTRIBUTE_UNUSED)
3022{
cec5225b 3023 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
3024 int size;
3025
3026 /* Massage our args to the form they really have. */
cec5225b 3027 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
3028
3029 switch (stub_entry->stub_type)
3030 {
3031 case aarch64_stub_adrp_branch:
3032 size = sizeof (aarch64_adrp_branch_stub);
3033 break;
3034 case aarch64_stub_long_branch:
3035 size = sizeof (aarch64_long_branch_stub);
3036 break;
68fcca92
JW
3037 case aarch64_stub_erratum_835769_veneer:
3038 size = sizeof (aarch64_erratum_835769_stub);
3039 break;
4106101c
MS
3040 case aarch64_stub_erratum_843419_veneer:
3041 size = sizeof (aarch64_erratum_843419_stub);
3042 break;
a06ea964 3043 default:
8e2fe09f 3044 abort ();
a06ea964
NC
3045 }
3046
3047 size = (size + 7) & ~7;
3048 stub_entry->stub_sec->size += size;
3049 return TRUE;
3050}
3051
3052/* External entry points for sizing and building linker stubs. */
3053
3054/* Set up various things so that we can make a list of input sections
3055 for each output section included in the link. Returns -1 on error,
3056 0 when no stubs will be needed, and 1 on success. */
3057
3058int
cec5225b 3059elfNN_aarch64_setup_section_lists (bfd *output_bfd,
a06ea964
NC
3060 struct bfd_link_info *info)
3061{
3062 bfd *input_bfd;
3063 unsigned int bfd_count;
7292b3ac 3064 unsigned int top_id, top_index;
a06ea964
NC
3065 asection *section;
3066 asection **input_list, **list;
3067 bfd_size_type amt;
cec5225b
YZ
3068 struct elf_aarch64_link_hash_table *htab =
3069 elf_aarch64_hash_table (info);
a06ea964
NC
3070
3071 if (!is_elf_hash_table (htab))
3072 return 0;
3073
3074 /* Count the number of input BFDs and find the top input section id. */
3075 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
c72f2fb2 3076 input_bfd != NULL; input_bfd = input_bfd->link.next)
a06ea964
NC
3077 {
3078 bfd_count += 1;
3079 for (section = input_bfd->sections;
3080 section != NULL; section = section->next)
3081 {
3082 if (top_id < section->id)
3083 top_id = section->id;
3084 }
3085 }
3086 htab->bfd_count = bfd_count;
3087
3088 amt = sizeof (struct map_stub) * (top_id + 1);
3089 htab->stub_group = bfd_zmalloc (amt);
3090 if (htab->stub_group == NULL)
3091 return -1;
3092
3093 /* We can't use output_bfd->section_count here to find the top output
3094 section index as some sections may have been removed, and
3095 _bfd_strip_section_from_output doesn't renumber the indices. */
3096 for (section = output_bfd->sections, top_index = 0;
3097 section != NULL; section = section->next)
3098 {
3099 if (top_index < section->index)
3100 top_index = section->index;
3101 }
3102
3103 htab->top_index = top_index;
3104 amt = sizeof (asection *) * (top_index + 1);
3105 input_list = bfd_malloc (amt);
3106 htab->input_list = input_list;
3107 if (input_list == NULL)
3108 return -1;
3109
3110 /* For sections we aren't interested in, mark their entries with a
3111 value we can check later. */
3112 list = input_list + top_index;
3113 do
3114 *list = bfd_abs_section_ptr;
3115 while (list-- != input_list);
3116
3117 for (section = output_bfd->sections;
3118 section != NULL; section = section->next)
3119 {
3120 if ((section->flags & SEC_CODE) != 0)
3121 input_list[section->index] = NULL;
3122 }
3123
3124 return 1;
3125}
3126
cec5225b 3127/* Used by elfNN_aarch64_next_input_section and group_sections. */
a06ea964
NC
3128#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3129
3130/* The linker repeatedly calls this function for each input section,
3131 in the order that input sections are linked into output sections.
3132 Build lists of input sections to determine groupings between which
3133 we may insert linker stubs. */
3134
3135void
cec5225b 3136elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
a06ea964 3137{
cec5225b
YZ
3138 struct elf_aarch64_link_hash_table *htab =
3139 elf_aarch64_hash_table (info);
a06ea964
NC
3140
3141 if (isec->output_section->index <= htab->top_index)
3142 {
3143 asection **list = htab->input_list + isec->output_section->index;
3144
3145 if (*list != bfd_abs_section_ptr)
3146 {
3147 /* Steal the link_sec pointer for our list. */
3148 /* This happens to make the list in reverse order,
3149 which is what we want. */
3150 PREV_SEC (isec) = *list;
3151 *list = isec;
3152 }
3153 }
3154}
3155
3156/* See whether we can group stub sections together. Grouping stub
3157 sections may result in fewer stubs. More importantly, we need to
3158 put all .init* and .fini* stubs at the beginning of the .init or
3159 .fini output sections respectively, because glibc splits the
3160 _init and _fini functions into multiple parts. Putting a stub in
3161 the middle of a function is not a good idea. */
3162
3163static void
cec5225b 3164group_sections (struct elf_aarch64_link_hash_table *htab,
a06ea964
NC
3165 bfd_size_type stub_group_size,
3166 bfd_boolean stubs_always_before_branch)
3167{
3168 asection **list = htab->input_list + htab->top_index;
3169
3170 do
3171 {
3172 asection *tail = *list;
3173
3174 if (tail == bfd_abs_section_ptr)
3175 continue;
3176
3177 while (tail != NULL)
3178 {
3179 asection *curr;
3180 asection *prev;
3181 bfd_size_type total;
3182
3183 curr = tail;
3184 total = tail->size;
3185 while ((prev = PREV_SEC (curr)) != NULL
3186 && ((total += curr->output_offset - prev->output_offset)
3187 < stub_group_size))
3188 curr = prev;
3189
3190 /* OK, the size from the start of CURR to the end is less
3191 than stub_group_size and thus can be handled by one stub
3192 section. (Or the tail section is itself larger than
3193 stub_group_size, in which case we may be toast.)
3194 We should really be keeping track of the total size of
3195 stubs added here, as stubs contribute to the final output
3196 section size. */
3197 do
3198 {
3199 prev = PREV_SEC (tail);
3200 /* Set up this stub group. */
3201 htab->stub_group[tail->id].link_sec = curr;
3202 }
3203 while (tail != curr && (tail = prev) != NULL);
3204
3205 /* But wait, there's more! Input sections up to stub_group_size
3206 bytes before the stub section can be handled by it too. */
3207 if (!stubs_always_before_branch)
3208 {
3209 total = 0;
3210 while (prev != NULL
3211 && ((total += tail->output_offset - prev->output_offset)
3212 < stub_group_size))
3213 {
3214 tail = prev;
3215 prev = PREV_SEC (tail);
3216 htab->stub_group[tail->id].link_sec = curr;
3217 }
3218 }
3219 tail = prev;
3220 }
3221 }
3222 while (list-- != htab->input_list);
3223
3224 free (htab->input_list);
3225}
3226
3227#undef PREV_SEC
3228
68fcca92
JW
3229#define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3230
3231#define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3232#define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3233#define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3234#define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3235#define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3236#define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3237
3238#define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3239#define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3240#define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3241#define AARCH64_ZR 0x1f
3242
3243/* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3244 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3245
3246#define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3247#define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3248#define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3249#define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3250#define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3251#define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3252#define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3253#define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3254#define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3255#define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3256#define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3257#define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3258#define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3259#define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3260#define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3261#define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3262#define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3263#define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3264
3d14faea
MS
3265/* Classify an INSN if it is indeed a load/store.
3266
3267 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3268
3269 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3270 is set equal to RT.
3271
2d0ca824 3272 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
68fcca92
JW
3273
3274static bfd_boolean
3d14faea 3275aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
68fcca92
JW
3276 bfd_boolean *pair, bfd_boolean *load)
3277{
3278 uint32_t opcode;
3279 unsigned int r;
3280 uint32_t opc = 0;
3281 uint32_t v = 0;
3282 uint32_t opc_v = 0;
3283
de194d85 3284 /* Bail out quickly if INSN doesn't fall into the load-store
68fcca92
JW
3285 encoding space. */
3286 if (!AARCH64_LDST (insn))
3287 return FALSE;
3288
3289 *pair = FALSE;
3290 *load = FALSE;
3291 if (AARCH64_LDST_EX (insn))
3292 {
3293 *rt = AARCH64_RT (insn);
3d14faea 3294 *rt2 = *rt;
68fcca92
JW
3295 if (AARCH64_BIT (insn, 21) == 1)
3296 {
3297 *pair = TRUE;
3d14faea 3298 *rt2 = AARCH64_RT2 (insn);
68fcca92
JW
3299 }
3300 *load = AARCH64_LD (insn);
3301 return TRUE;
3302 }
3303 else if (AARCH64_LDST_NAP (insn)
3304 || AARCH64_LDSTP_PI (insn)
3305 || AARCH64_LDSTP_O (insn)
3306 || AARCH64_LDSTP_PRE (insn))
3307 {
3308 *pair = TRUE;
3309 *rt = AARCH64_RT (insn);
3d14faea 3310 *rt2 = AARCH64_RT2 (insn);
68fcca92
JW
3311 *load = AARCH64_LD (insn);
3312 return TRUE;
3313 }
3314 else if (AARCH64_LDST_PCREL (insn)
3315 || AARCH64_LDST_UI (insn)
3316 || AARCH64_LDST_PIIMM (insn)
3317 || AARCH64_LDST_U (insn)
3318 || AARCH64_LDST_PREIMM (insn)
3319 || AARCH64_LDST_RO (insn)
3320 || AARCH64_LDST_UIMM (insn))
3321 {
3322 *rt = AARCH64_RT (insn);
3d14faea 3323 *rt2 = *rt;
68fcca92
JW
3324 if (AARCH64_LDST_PCREL (insn))
3325 *load = TRUE;
3326 opc = AARCH64_BITS (insn, 22, 2);
3327 v = AARCH64_BIT (insn, 26);
3328 opc_v = opc | (v << 2);
3329 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3330 || opc_v == 5 || opc_v == 7);
3331 return TRUE;
3332 }
3333 else if (AARCH64_LDST_SIMD_M (insn)
3334 || AARCH64_LDST_SIMD_M_PI (insn))
3335 {
3336 *rt = AARCH64_RT (insn);
3337 *load = AARCH64_BIT (insn, 22);
3338 opcode = (insn >> 12) & 0xf;
3339 switch (opcode)
3340 {
3341 case 0:
3342 case 2:
3d14faea 3343 *rt2 = *rt + 3;
68fcca92
JW
3344 break;
3345
3346 case 4:
3347 case 6:
3d14faea 3348 *rt2 = *rt + 2;
68fcca92
JW
3349 break;
3350
3351 case 7:
3d14faea 3352 *rt2 = *rt;
68fcca92
JW
3353 break;
3354
3355 case 8:
3356 case 10:
3d14faea 3357 *rt2 = *rt + 1;
68fcca92
JW
3358 break;
3359
3360 default:
3361 return FALSE;
3362 }
3363 return TRUE;
3364 }
3365 else if (AARCH64_LDST_SIMD_S (insn)
3366 || AARCH64_LDST_SIMD_S_PI (insn))
3367 {
3368 *rt = AARCH64_RT (insn);
3369 r = (insn >> 21) & 1;
3370 *load = AARCH64_BIT (insn, 22);
3371 opcode = (insn >> 13) & 0x7;
3372 switch (opcode)
3373 {
3374 case 0:
3375 case 2:
3376 case 4:
3d14faea 3377 *rt2 = *rt + r;
68fcca92
JW
3378 break;
3379
3380 case 1:
3381 case 3:
3382 case 5:
3d14faea 3383 *rt2 = *rt + (r == 0 ? 2 : 3);
68fcca92
JW
3384 break;
3385
3386 case 6:
3d14faea 3387 *rt2 = *rt + r;
68fcca92
JW
3388 break;
3389
3390 case 7:
3d14faea 3391 *rt2 = *rt + (r == 0 ? 2 : 3);
68fcca92
JW
3392 break;
3393
3394 default:
3395 return FALSE;
3396 }
3397 return TRUE;
3398 }
3399
3400 return FALSE;
3401}
3402
3403/* Return TRUE if INSN is multiply-accumulate. */
3404
3405static bfd_boolean
3406aarch64_mlxl_p (uint32_t insn)
3407{
3408 uint32_t op31 = AARCH64_OP31 (insn);
3409
3410 if (AARCH64_MAC (insn)
3411 && (op31 == 0 || op31 == 1 || op31 == 5)
3412 /* Exclude MUL instructions which are encoded as a multiple accumulate
3413 with RA = XZR. */
3414 && AARCH64_RA (insn) != AARCH64_ZR)
3415 return TRUE;
3416
3417 return FALSE;
3418}
3419
3420/* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3421 it is possible for a 64-bit multiply-accumulate instruction to generate an
3422 incorrect result. The details are quite complex and hard to
3423 determine statically, since branches in the code may exist in some
3424 circumstances, but all cases end with a memory (load, store, or
3425 prefetch) instruction followed immediately by the multiply-accumulate
3426 operation. We employ a linker patching technique, by moving the potentially
3427 affected multiply-accumulate instruction into a patch region and replacing
3428 the original instruction with a branch to the patch. This function checks
3429 if INSN_1 is the memory operation followed by a multiply-accumulate
3430 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3431 if INSN_1 and INSN_2 are safe. */
3432
3433static bfd_boolean
3434aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3435{
3436 uint32_t rt;
3d14faea 3437 uint32_t rt2;
68fcca92
JW
3438 uint32_t rn;
3439 uint32_t rm;
3440 uint32_t ra;
3441 bfd_boolean pair;
3442 bfd_boolean load;
3443
3444 if (aarch64_mlxl_p (insn_2)
3d14faea 3445 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
68fcca92
JW
3446 {
3447 /* Any SIMD memory op is independent of the subsequent MLA
3448 by definition of the erratum. */
3449 if (AARCH64_BIT (insn_1, 26))
3450 return TRUE;
3451
3452 /* If not SIMD, check for integer memory ops and MLA relationship. */
3453 rn = AARCH64_RN (insn_2);
3454 ra = AARCH64_RA (insn_2);
3455 rm = AARCH64_RM (insn_2);
3456
3457 /* If this is a load and there's a true(RAW) dependency, we are safe
3458 and this is not an erratum sequence. */
3459 if (load &&
3460 (rt == rn || rt == rm || rt == ra
3d14faea 3461 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
68fcca92
JW
3462 return FALSE;
3463
3464 /* We conservatively put out stubs for all other cases (including
3465 writebacks). */
3466 return TRUE;
3467 }
3468
3469 return FALSE;
3470}
3471
520c7b56
JW
3472/* Used to order a list of mapping symbols by address. */
3473
3474static int
3475elf_aarch64_compare_mapping (const void *a, const void *b)
3476{
3477 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3478 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3479
3480 if (amap->vma > bmap->vma)
3481 return 1;
3482 else if (amap->vma < bmap->vma)
3483 return -1;
3484 else if (amap->type > bmap->type)
3485 /* Ensure results do not depend on the host qsort for objects with
3486 multiple mapping symbols at the same address by sorting on type
3487 after vma. */
3488 return 1;
3489 else if (amap->type < bmap->type)
3490 return -1;
3491 else
3492 return 0;
3493}
3494
2144188d 3495
35fee8b7
MS
3496static char *
3497_bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3498{
3499 char *stub_name = (char *) bfd_malloc
3500 (strlen ("__erratum_835769_veneer_") + 16);
3501 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3502 return stub_name;
3503}
3504
4106101c 3505/* Scan for Cortex-A53 erratum 835769 sequence.
2144188d
MS
3506
3507 Return TRUE else FALSE on abnormal termination. */
3508
68fcca92 3509static bfd_boolean
5421cc6e
MS
3510_bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3511 struct bfd_link_info *info,
3512 unsigned int *num_fixes_p)
68fcca92
JW
3513{
3514 asection *section;
3515 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
68fcca92 3516 unsigned int num_fixes = *num_fixes_p;
68fcca92
JW
3517
3518 if (htab == NULL)
2144188d 3519 return TRUE;
68fcca92
JW
3520
3521 for (section = input_bfd->sections;
3522 section != NULL;
3523 section = section->next)
3524 {
3525 bfd_byte *contents = NULL;
3526 struct _aarch64_elf_section_data *sec_data;
3527 unsigned int span;
3528
3529 if (elf_section_type (section) != SHT_PROGBITS
3530 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3531 || (section->flags & SEC_EXCLUDE) != 0
3532 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3533 || (section->output_section == bfd_abs_section_ptr))
3534 continue;
3535
3536 if (elf_section_data (section)->this_hdr.contents != NULL)
3537 contents = elf_section_data (section)->this_hdr.contents;
3538 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
2144188d 3539 return FALSE;
68fcca92
JW
3540
3541 sec_data = elf_aarch64_section_data (section);
520c7b56
JW
3542
3543 qsort (sec_data->map, sec_data->mapcount,
3544 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3545
68fcca92
JW
3546 for (span = 0; span < sec_data->mapcount; span++)
3547 {
3548 unsigned int span_start = sec_data->map[span].vma;
3549 unsigned int span_end = ((span == sec_data->mapcount - 1)
3550 ? sec_data->map[0].vma + section->size
3551 : sec_data->map[span + 1].vma);
3552 unsigned int i;
3553 char span_type = sec_data->map[span].type;
3554
3555 if (span_type == 'd')
3556 continue;
3557
3558 for (i = span_start; i + 4 < span_end; i += 4)
3559 {
3560 uint32_t insn_1 = bfd_getl32 (contents + i);
3561 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3562
3563 if (aarch64_erratum_sequence (insn_1, insn_2))
3564 {
5421cc6e 3565 struct elf_aarch64_stub_hash_entry *stub_entry;
35fee8b7
MS
3566 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3567 if (! stub_name)
2144188d 3568 return FALSE;
68fcca92 3569
5421cc6e
MS
3570 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3571 section,
3572 htab);
3573 if (! stub_entry)
3574 return FALSE;
68fcca92 3575
5421cc6e
MS
3576 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3577 stub_entry->target_section = section;
3578 stub_entry->target_value = i + 4;
3579 stub_entry->veneered_insn = insn_2;
3580 stub_entry->output_name = stub_name;
68fcca92
JW
3581 num_fixes++;
3582 }
3583 }
3584 }
3585 if (elf_section_data (section)->this_hdr.contents == NULL)
3586 free (contents);
3587 }
3588
357d1523
MS
3589 *num_fixes_p = num_fixes;
3590
2144188d 3591 return TRUE;
68fcca92
JW
3592}
3593
13f622ec 3594
4106101c
MS
3595/* Test if instruction INSN is ADRP. */
3596
3597static bfd_boolean
3598_bfd_aarch64_adrp_p (uint32_t insn)
3599{
3600 return ((insn & 0x9f000000) == 0x90000000);
3601}
3602
3603
3604/* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3605
3606static bfd_boolean
3607_bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3608 uint32_t insn_3)
3609{
3610 uint32_t rt;
3611 uint32_t rt2;
3612 bfd_boolean pair;
3613 bfd_boolean load;
3614
3615 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3616 && (!pair
3617 || (pair && !load))
3618 && AARCH64_LDST_UIMM (insn_3)
3619 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3620}
3621
3622
3623/* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3624
3625 Return TRUE if section CONTENTS at offset I contains one of the
3626 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3627 seen set P_VENEER_I to the offset of the final LOAD/STORE
3628 instruction in the sequence.
3629 */
3630
3631static bfd_boolean
3632_bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3633 bfd_vma i, bfd_vma span_end,
3634 bfd_vma *p_veneer_i)
3635{
3636 uint32_t insn_1 = bfd_getl32 (contents + i);
3637
3638 if (!_bfd_aarch64_adrp_p (insn_1))
3639 return FALSE;
3640
3641 if (span_end < i + 12)
3642 return FALSE;
3643
3644 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3645 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3646
3647 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3648 return FALSE;
3649
3650 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3651 {
3652 *p_veneer_i = i + 8;
3653 return TRUE;
3654 }
3655
3656 if (span_end < i + 16)
3657 return FALSE;
3658
3659 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3660
3661 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3662 {
3663 *p_veneer_i = i + 12;
3664 return TRUE;
3665 }
3666
3667 return FALSE;
3668}
3669
3670
13f622ec
MS
3671/* Resize all stub sections. */
3672
3673static void
3674_bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3675{
3676 asection *section;
3677
3678 /* OK, we've added some stubs. Find out the new size of the
3679 stub sections. */
3680 for (section = htab->stub_bfd->sections;
3681 section != NULL; section = section->next)
3682 {
3683 /* Ignore non-stub sections. */
3684 if (!strstr (section->name, STUB_SUFFIX))
3685 continue;
3686 section->size = 0;
3687 }
3688
3689 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
13f622ec 3690
61865519
MS
3691 for (section = htab->stub_bfd->sections;
3692 section != NULL; section = section->next)
3693 {
3694 if (!strstr (section->name, STUB_SUFFIX))
3695 continue;
3696
3697 if (section->size)
3698 section->size += 4;
4106101c
MS
3699
3700 /* Ensure all stub sections have a size which is a multiple of
3701 4096. This is important in order to ensure that the insertion
3702 of stub sections does not in itself move existing code around
3703 in such a way that new errata sequences are created. */
3704 if (htab->fix_erratum_843419)
3705 if (section->size)
3706 section->size = BFD_ALIGN (section->size, 0x1000);
3707 }
3708}
3709
3710
3711/* Construct an erratum 843419 workaround stub name.
3712 */
3713
3714static char *
3715_bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3716 bfd_vma offset)
3717{
3718 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3719 char *stub_name = bfd_malloc (len);
3720
3721 if (stub_name != NULL)
3722 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3723 input_section->owner->id,
3724 input_section->id,
3725 offset);
3726 return stub_name;
3727}
3728
3729/* Build a stub_entry structure describing an 843419 fixup.
3730
3731 The stub_entry constructed is populated with the bit pattern INSN
3732 of the instruction located at OFFSET within input SECTION.
3733
3734 Returns TRUE on success. */
3735
3736static bfd_boolean
3737_bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3738 bfd_vma adrp_offset,
3739 bfd_vma ldst_offset,
3740 asection *section,
3741 struct bfd_link_info *info)
3742{
3743 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3744 char *stub_name;
3745 struct elf_aarch64_stub_hash_entry *stub_entry;
3746
3747 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3748 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3749 FALSE, FALSE);
3750 if (stub_entry)
3751 {
3752 free (stub_name);
3753 return TRUE;
3754 }
3755
3756 /* We always place an 843419 workaround veneer in the stub section
3757 attached to the input section in which an erratum sequence has
3758 been found. This ensures that later in the link process (in
3759 elfNN_aarch64_write_section) when we copy the veneered
3760 instruction from the input section into the stub section the
3761 copied instruction will have had any relocations applied to it.
3762 If we placed workaround veneers in any other stub section then we
3763 could not assume that all relocations have been processed on the
3764 corresponding input section at the point we output the stub
3765 section.
3766 */
3767
3768 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3769 if (stub_entry == NULL)
3770 {
3771 free (stub_name);
3772 return FALSE;
3773 }
3774
3775 stub_entry->adrp_offset = adrp_offset;
3776 stub_entry->target_value = ldst_offset;
3777 stub_entry->target_section = section;
3778 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3779 stub_entry->veneered_insn = insn;
3780 stub_entry->output_name = stub_name;
3781
3782 return TRUE;
3783}
3784
3785
3786/* Scan an input section looking for the signature of erratum 843419.
3787
3788 Scans input SECTION in INPUT_BFD looking for erratum 843419
3789 signatures, for each signature found a stub_entry is created
3790 describing the location of the erratum for subsequent fixup.
3791
3792 Return TRUE on successful scan, FALSE on failure to scan.
3793 */
3794
3795static bfd_boolean
3796_bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3797 struct bfd_link_info *info)
3798{
3799 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3800
3801 if (htab == NULL)
3802 return TRUE;
3803
3804 if (elf_section_type (section) != SHT_PROGBITS
3805 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3806 || (section->flags & SEC_EXCLUDE) != 0
3807 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3808 || (section->output_section == bfd_abs_section_ptr))
3809 return TRUE;
3810
3811 do
3812 {
3813 bfd_byte *contents = NULL;
3814 struct _aarch64_elf_section_data *sec_data;
3815 unsigned int span;
3816
3817 if (elf_section_data (section)->this_hdr.contents != NULL)
3818 contents = elf_section_data (section)->this_hdr.contents;
3819 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3820 return FALSE;
3821
3822 sec_data = elf_aarch64_section_data (section);
3823
3824 qsort (sec_data->map, sec_data->mapcount,
3825 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3826
3827 for (span = 0; span < sec_data->mapcount; span++)
3828 {
3829 unsigned int span_start = sec_data->map[span].vma;
3830 unsigned int span_end = ((span == sec_data->mapcount - 1)
3831 ? sec_data->map[0].vma + section->size
3832 : sec_data->map[span + 1].vma);
3833 unsigned int i;
3834 char span_type = sec_data->map[span].type;
3835
3836 if (span_type == 'd')
3837 continue;
3838
3839 for (i = span_start; i + 8 < span_end; i += 4)
3840 {
3841 bfd_vma vma = (section->output_section->vma
3842 + section->output_offset
3843 + i);
3844 bfd_vma veneer_i;
3845
3846 if (_bfd_aarch64_erratum_843419_p
3847 (contents, vma, i, span_end, &veneer_i))
3848 {
3849 uint32_t insn = bfd_getl32 (contents + veneer_i);
3850
3851 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3852 section, info))
3853 return FALSE;
3854 }
3855 }
3856 }
3857
3858 if (elf_section_data (section)->this_hdr.contents == NULL)
3859 free (contents);
61865519 3860 }
4106101c
MS
3861 while (0);
3862
3863 return TRUE;
61865519 3864}
13f622ec 3865
4106101c 3866
a06ea964
NC
3867/* Determine and set the size of the stub section for a final link.
3868
3869 The basic idea here is to examine all the relocations looking for
3870 PC-relative calls to a target that is unreachable with a "bl"
3871 instruction. */
3872
3873bfd_boolean
cec5225b 3874elfNN_aarch64_size_stubs (bfd *output_bfd,
a06ea964
NC
3875 bfd *stub_bfd,
3876 struct bfd_link_info *info,
3877 bfd_signed_vma group_size,
3878 asection * (*add_stub_section) (const char *,
3879 asection *),
3880 void (*layout_sections_again) (void))
3881{
3882 bfd_size_type stub_group_size;
3883 bfd_boolean stubs_always_before_branch;
5421cc6e 3884 bfd_boolean stub_changed = FALSE;
cec5225b 3885 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
68fcca92 3886 unsigned int num_erratum_835769_fixes = 0;
a06ea964
NC
3887
3888 /* Propagate mach to stub bfd, because it may not have been
3889 finalized when we created stub_bfd. */
3890 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3891 bfd_get_mach (output_bfd));
3892
3893 /* Stash our params away. */
3894 htab->stub_bfd = stub_bfd;
3895 htab->add_stub_section = add_stub_section;
3896 htab->layout_sections_again = layout_sections_again;
3897 stubs_always_before_branch = group_size < 0;
3898 if (group_size < 0)
3899 stub_group_size = -group_size;
3900 else
3901 stub_group_size = group_size;
3902
3903 if (stub_group_size == 1)
3904 {
3905 /* Default values. */
b9eead84 3906 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
a06ea964
NC
3907 stub_group_size = 127 * 1024 * 1024;
3908 }
3909
3910 group_sections (htab, stub_group_size, stubs_always_before_branch);
3911
4106101c
MS
3912 (*htab->layout_sections_again) ();
3913
5421cc6e
MS
3914 if (htab->fix_erratum_835769)
3915 {
3916 bfd *input_bfd;
3917
3918 for (input_bfd = info->input_bfds;
3919 input_bfd != NULL; input_bfd = input_bfd->link.next)
3920 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3921 &num_erratum_835769_fixes))
3922 return FALSE;
3923
4106101c
MS
3924 _bfd_aarch64_resize_stubs (htab);
3925 (*htab->layout_sections_again) ();
3926 }
3927
3928 if (htab->fix_erratum_843419)
3929 {
3930 bfd *input_bfd;
3931
3932 for (input_bfd = info->input_bfds;
3933 input_bfd != NULL;
3934 input_bfd = input_bfd->link.next)
3935 {
3936 asection *section;
3937
3938 for (section = input_bfd->sections;
3939 section != NULL;
3940 section = section->next)
3941 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3942 return FALSE;
3943 }
3944
3945 _bfd_aarch64_resize_stubs (htab);
3946 (*htab->layout_sections_again) ();
5421cc6e
MS
3947 }
3948
a06ea964
NC
3949 while (1)
3950 {
3951 bfd *input_bfd;
a06ea964 3952
9b9971aa
MS
3953 for (input_bfd = info->input_bfds;
3954 input_bfd != NULL; input_bfd = input_bfd->link.next)
a06ea964
NC
3955 {
3956 Elf_Internal_Shdr *symtab_hdr;
3957 asection *section;
3958 Elf_Internal_Sym *local_syms = NULL;
3959
3960 /* We'll need the symbol table in a second. */
3961 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3962 if (symtab_hdr->sh_info == 0)
3963 continue;
3964
3965 /* Walk over each section attached to the input bfd. */
3966 for (section = input_bfd->sections;
3967 section != NULL; section = section->next)
3968 {
3969 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3970
3971 /* If there aren't any relocs, then there's nothing more
3972 to do. */
3973 if ((section->flags & SEC_RELOC) == 0
3974 || section->reloc_count == 0
3975 || (section->flags & SEC_CODE) == 0)
3976 continue;
3977
3978 /* If this section is a link-once section that will be
3979 discarded, then don't create any stubs. */
3980 if (section->output_section == NULL
3981 || section->output_section->owner != output_bfd)
3982 continue;
3983
3984 /* Get the relocs. */
3985 internal_relocs
3986 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3987 NULL, info->keep_memory);
3988 if (internal_relocs == NULL)
3989 goto error_ret_free_local;
3990
3991 /* Now examine each relocation. */
3992 irela = internal_relocs;
3993 irelaend = irela + section->reloc_count;
3994 for (; irela < irelaend; irela++)
3995 {
3996 unsigned int r_type, r_indx;
cec5225b
YZ
3997 enum elf_aarch64_stub_type stub_type;
3998 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
3999 asection *sym_sec;
4000 bfd_vma sym_value;
4001 bfd_vma destination;
cec5225b 4002 struct elf_aarch64_link_hash_entry *hash;
a06ea964
NC
4003 const char *sym_name;
4004 char *stub_name;
4005 const asection *id_sec;
4006 unsigned char st_type;
4007 bfd_size_type len;
4008
cec5225b
YZ
4009 r_type = ELFNN_R_TYPE (irela->r_info);
4010 r_indx = ELFNN_R_SYM (irela->r_info);
a06ea964
NC
4011
4012 if (r_type >= (unsigned int) R_AARCH64_end)
4013 {
4014 bfd_set_error (bfd_error_bad_value);
4015 error_ret_free_internal:
4016 if (elf_section_data (section)->relocs == NULL)
4017 free (internal_relocs);
4018 goto error_ret_free_local;
4019 }
4020
4021 /* Only look for stubs on unconditional branch and
4022 branch and link instructions. */
a6bb11b2
YZ
4023 if (r_type != (unsigned int) AARCH64_R (CALL26)
4024 && r_type != (unsigned int) AARCH64_R (JUMP26))
a06ea964
NC
4025 continue;
4026
4027 /* Now determine the call target, its name, value,
4028 section. */
4029 sym_sec = NULL;
4030 sym_value = 0;
4031 destination = 0;
4032 hash = NULL;
4033 sym_name = NULL;
4034 if (r_indx < symtab_hdr->sh_info)
4035 {
4036 /* It's a local symbol. */
4037 Elf_Internal_Sym *sym;
4038 Elf_Internal_Shdr *hdr;
4039
4040 if (local_syms == NULL)
4041 {
4042 local_syms
4043 = (Elf_Internal_Sym *) symtab_hdr->contents;
4044 if (local_syms == NULL)
4045 local_syms
4046 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4047 symtab_hdr->sh_info, 0,
4048 NULL, NULL, NULL);
4049 if (local_syms == NULL)
4050 goto error_ret_free_internal;
4051 }
4052
4053 sym = local_syms + r_indx;
4054 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4055 sym_sec = hdr->bfd_section;
4056 if (!sym_sec)
4057 /* This is an undefined symbol. It can never
4058 be resolved. */
4059 continue;
4060
4061 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4062 sym_value = sym->st_value;
4063 destination = (sym_value + irela->r_addend
4064 + sym_sec->output_offset
4065 + sym_sec->output_section->vma);
4066 st_type = ELF_ST_TYPE (sym->st_info);
4067 sym_name
4068 = bfd_elf_string_from_elf_section (input_bfd,
4069 symtab_hdr->sh_link,
4070 sym->st_name);
4071 }
4072 else
4073 {
4074 int e_indx;
4075
4076 e_indx = r_indx - symtab_hdr->sh_info;
cec5225b 4077 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
4078 elf_sym_hashes (input_bfd)[e_indx]);
4079
4080 while (hash->root.root.type == bfd_link_hash_indirect
4081 || hash->root.root.type == bfd_link_hash_warning)
cec5225b 4082 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
4083 hash->root.root.u.i.link);
4084
4085 if (hash->root.root.type == bfd_link_hash_defined
4086 || hash->root.root.type == bfd_link_hash_defweak)
4087 {
cec5225b
YZ
4088 struct elf_aarch64_link_hash_table *globals =
4089 elf_aarch64_hash_table (info);
a06ea964
NC
4090 sym_sec = hash->root.root.u.def.section;
4091 sym_value = hash->root.root.u.def.value;
4092 /* For a destination in a shared library,
4093 use the PLT stub as target address to
4094 decide whether a branch stub is
4095 needed. */
4096 if (globals->root.splt != NULL && hash != NULL
4097 && hash->root.plt.offset != (bfd_vma) - 1)
4098 {
4099 sym_sec = globals->root.splt;
4100 sym_value = hash->root.plt.offset;
4101 if (sym_sec->output_section != NULL)
4102 destination = (sym_value
4103 + sym_sec->output_offset
4104 +
4105 sym_sec->output_section->vma);
4106 }
4107 else if (sym_sec->output_section != NULL)
4108 destination = (sym_value + irela->r_addend
4109 + sym_sec->output_offset
4110 + sym_sec->output_section->vma);
4111 }
4112 else if (hash->root.root.type == bfd_link_hash_undefined
4113 || (hash->root.root.type
4114 == bfd_link_hash_undefweak))
4115 {
4116 /* For a shared library, use the PLT stub as
4117 target address to decide whether a long
4118 branch stub is needed.
4119 For absolute code, they cannot be handled. */
cec5225b
YZ
4120 struct elf_aarch64_link_hash_table *globals =
4121 elf_aarch64_hash_table (info);
a06ea964
NC
4122
4123 if (globals->root.splt != NULL && hash != NULL
4124 && hash->root.plt.offset != (bfd_vma) - 1)
4125 {
4126 sym_sec = globals->root.splt;
4127 sym_value = hash->root.plt.offset;
4128 if (sym_sec->output_section != NULL)
4129 destination = (sym_value
4130 + sym_sec->output_offset
4131 +
4132 sym_sec->output_section->vma);
4133 }
4134 else
4135 continue;
4136 }
4137 else
4138 {
4139 bfd_set_error (bfd_error_bad_value);
4140 goto error_ret_free_internal;
4141 }
4142 st_type = ELF_ST_TYPE (hash->root.type);
4143 sym_name = hash->root.root.root.string;
4144 }
4145
4146 /* Determine what (if any) linker stub is needed. */
9a228467
JW
4147 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4148 st_type, destination);
a06ea964
NC
4149 if (stub_type == aarch64_stub_none)
4150 continue;
4151
4152 /* Support for grouping stub sections. */
4153 id_sec = htab->stub_group[section->id].link_sec;
4154
4155 /* Get the name of this stub. */
cec5225b 4156 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
a06ea964
NC
4157 irela);
4158 if (!stub_name)
4159 goto error_ret_free_internal;
4160
4161 stub_entry =
4162 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4163 stub_name, FALSE, FALSE);
4164 if (stub_entry != NULL)
4165 {
4166 /* The proper stub has already been created. */
4167 free (stub_name);
4168 continue;
4169 }
4170
ef857521
MS
4171 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4172 (stub_name, section, htab);
a06ea964
NC
4173 if (stub_entry == NULL)
4174 {
4175 free (stub_name);
4176 goto error_ret_free_internal;
4177 }
4178
2f340668 4179 stub_entry->target_value = sym_value + irela->r_addend;
a06ea964
NC
4180 stub_entry->target_section = sym_sec;
4181 stub_entry->stub_type = stub_type;
4182 stub_entry->h = hash;
4183 stub_entry->st_type = st_type;
4184
4185 if (sym_name == NULL)
4186 sym_name = "unnamed";
4187 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4188 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4189 if (stub_entry->output_name == NULL)
4190 {
4191 free (stub_name);
4192 goto error_ret_free_internal;
4193 }
4194
4195 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4196 sym_name);
4197
4198 stub_changed = TRUE;
4199 }
4200
4201 /* We're done with the internal relocs, free them. */
4202 if (elf_section_data (section)->relocs == NULL)
4203 free (internal_relocs);
4204 }
4205 }
4206
4207 if (!stub_changed)
4208 break;
4209
13f622ec 4210 _bfd_aarch64_resize_stubs (htab);
a06ea964
NC
4211
4212 /* Ask the linker to do its stuff. */
4213 (*htab->layout_sections_again) ();
4214 stub_changed = FALSE;
4215 }
4216
4217 return TRUE;
4218
4219error_ret_free_local:
4220 return FALSE;
4221}
4222
4223/* Build all the stubs associated with the current output file. The
4224 stubs are kept in a hash table attached to the main linker hash
4225 table. We also set up the .plt entries for statically linked PIC
4226 functions here. This function is called via aarch64_elf_finish in the
4227 linker. */
4228
4229bfd_boolean
cec5225b 4230elfNN_aarch64_build_stubs (struct bfd_link_info *info)
a06ea964
NC
4231{
4232 asection *stub_sec;
4233 struct bfd_hash_table *table;
cec5225b 4234 struct elf_aarch64_link_hash_table *htab;
a06ea964 4235
cec5225b 4236 htab = elf_aarch64_hash_table (info);
a06ea964
NC
4237
4238 for (stub_sec = htab->stub_bfd->sections;
4239 stub_sec != NULL; stub_sec = stub_sec->next)
4240 {
4241 bfd_size_type size;
4242
4243 /* Ignore non-stub sections. */
4244 if (!strstr (stub_sec->name, STUB_SUFFIX))
4245 continue;
4246
4247 /* Allocate memory to hold the linker stubs. */
4248 size = stub_sec->size;
4249 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4250 if (stub_sec->contents == NULL && size != 0)
4251 return FALSE;
4252 stub_sec->size = 0;
61865519
MS
4253
4254 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4255 stub_sec->size += 4;
a06ea964
NC
4256 }
4257
4258 /* Build the stubs as directed by the stub hash table. */
4259 table = &htab->stub_hash_table;
4260 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4261
4262 return TRUE;
4263}
4264
4265
4266/* Add an entry to the code/data map for section SEC. */
4267
4268static void
cec5225b 4269elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
a06ea964
NC
4270{
4271 struct _aarch64_elf_section_data *sec_data =
cec5225b 4272 elf_aarch64_section_data (sec);
a06ea964
NC
4273 unsigned int newidx;
4274
4275 if (sec_data->map == NULL)
4276 {
cec5225b 4277 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
a06ea964
NC
4278 sec_data->mapcount = 0;
4279 sec_data->mapsize = 1;
4280 }
4281
4282 newidx = sec_data->mapcount++;
4283
4284 if (sec_data->mapcount > sec_data->mapsize)
4285 {
4286 sec_data->mapsize *= 2;
4287 sec_data->map = bfd_realloc_or_free
cec5225b 4288 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
a06ea964
NC
4289 }
4290
4291 if (sec_data->map)
4292 {
4293 sec_data->map[newidx].vma = vma;
4294 sec_data->map[newidx].type = type;
4295 }
4296}
4297
4298
4299/* Initialise maps of insn/data for input BFDs. */
4300void
cec5225b 4301bfd_elfNN_aarch64_init_maps (bfd *abfd)
a06ea964
NC
4302{
4303 Elf_Internal_Sym *isymbuf;
4304 Elf_Internal_Shdr *hdr;
4305 unsigned int i, localsyms;
4306
4307 /* Make sure that we are dealing with an AArch64 elf binary. */
4308 if (!is_aarch64_elf (abfd))
4309 return;
4310
4311 if ((abfd->flags & DYNAMIC) != 0)
68fcca92 4312 return;
a06ea964
NC
4313
4314 hdr = &elf_symtab_hdr (abfd);
4315 localsyms = hdr->sh_info;
4316
4317 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4318 should contain the number of local symbols, which should come before any
4319 global symbols. Mapping symbols are always local. */
4320 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4321
4322 /* No internal symbols read? Skip this BFD. */
4323 if (isymbuf == NULL)
4324 return;
4325
4326 for (i = 0; i < localsyms; i++)
4327 {
4328 Elf_Internal_Sym *isym = &isymbuf[i];
4329 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4330 const char *name;
4331
4332 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4333 {
4334 name = bfd_elf_string_from_elf_section (abfd,
4335 hdr->sh_link,
4336 isym->st_name);
4337
4338 if (bfd_is_aarch64_special_symbol_name
4339 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
cec5225b 4340 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
a06ea964
NC
4341 }
4342 }
4343}
4344
4345/* Set option values needed during linking. */
4346void
cec5225b 4347bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
a06ea964
NC
4348 struct bfd_link_info *link_info,
4349 int no_enum_warn,
68fcca92 4350 int no_wchar_warn, int pic_veneer,
4106101c 4351 int fix_erratum_835769,
1f56df9d
JW
4352 int fix_erratum_843419,
4353 int no_apply_dynamic_relocs)
a06ea964 4354{
cec5225b 4355 struct elf_aarch64_link_hash_table *globals;
a06ea964 4356
cec5225b 4357 globals = elf_aarch64_hash_table (link_info);
a06ea964 4358 globals->pic_veneer = pic_veneer;
68fcca92 4359 globals->fix_erratum_835769 = fix_erratum_835769;
4106101c
MS
4360 globals->fix_erratum_843419 = fix_erratum_843419;
4361 globals->fix_erratum_843419_adr = TRUE;
1f56df9d 4362 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
a06ea964
NC
4363
4364 BFD_ASSERT (is_aarch64_elf (output_bfd));
4365 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4366 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4367}
4368
a06ea964
NC
4369static bfd_vma
4370aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
cec5225b 4371 struct elf_aarch64_link_hash_table
a06ea964
NC
4372 *globals, struct bfd_link_info *info,
4373 bfd_vma value, bfd *output_bfd,
4374 bfd_boolean *unresolved_reloc_p)
4375{
4376 bfd_vma off = (bfd_vma) - 1;
4377 asection *basegot = globals->root.sgot;
4378 bfd_boolean dyn = globals->root.dynamic_sections_created;
4379
4380 if (h != NULL)
4381 {
a6bb11b2 4382 BFD_ASSERT (basegot != NULL);
a06ea964
NC
4383 off = h->got.offset;
4384 BFD_ASSERT (off != (bfd_vma) - 1);
0e1862bb
L
4385 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4386 || (bfd_link_pic (info)
a06ea964
NC
4387 && SYMBOL_REFERENCES_LOCAL (info, h))
4388 || (ELF_ST_VISIBILITY (h->other)
4389 && h->root.type == bfd_link_hash_undefweak))
4390 {
4391 /* This is actually a static link, or it is a -Bsymbolic link
4392 and the symbol is defined locally. We must initialize this
4393 entry in the global offset table. Since the offset must
a6bb11b2
YZ
4394 always be a multiple of 8 (4 in the case of ILP32), we use
4395 the least significant bit to record whether we have
4396 initialized it already.
a06ea964
NC
4397 When doing a dynamic link, we create a .rel(a).got relocation
4398 entry to initialize the value. This is done in the
4399 finish_dynamic_symbol routine. */
4400 if ((off & 1) != 0)
4401 off &= ~1;
4402 else
4403 {
cec5225b 4404 bfd_put_NN (output_bfd, value, basegot->contents + off);
a06ea964
NC
4405 h->got.offset |= 1;
4406 }
4407 }
4408 else
4409 *unresolved_reloc_p = FALSE;
4410
4411 off = off + basegot->output_section->vma + basegot->output_offset;
4412 }
4413
4414 return off;
4415}
4416
4417/* Change R_TYPE to a more efficient access model where possible,
4418 return the new reloc type. */
4419
a6bb11b2
YZ
4420static bfd_reloc_code_real_type
4421aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
a06ea964
NC
4422 struct elf_link_hash_entry *h)
4423{
4424 bfd_boolean is_local = h == NULL;
a6bb11b2 4425
a06ea964
NC
4426 switch (r_type)
4427 {
a6bb11b2 4428 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
ce336788 4429 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a6bb11b2
YZ
4430 return (is_local
4431 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4432 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4433
389b8029
MS
4434 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4435 return (is_local
4436 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4437 : r_type);
4438
1ada945d
MS
4439 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4440 return (is_local
4441 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4442 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4443
0484b454
RL
4444 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4445 return (is_local
4446 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4447 : BFD_RELOC_AARCH64_NONE);
4448
4449 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4450 return (is_local
4451 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4452 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4453
4454 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4455 return (is_local
4456 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4457 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4458
a6bb11b2 4459 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
ce336788 4460 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a6bb11b2
YZ
4461 return (is_local
4462 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4463 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4464
4465 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4466 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4467
4468 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4469 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4470
043bf05a
MS
4471 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4472 return r_type;
4473
3c12b054
MS
4474 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4475 return (is_local
4476 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4477 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4478
0484b454 4479 case BFD_RELOC_AARCH64_TLSDESC_ADD:
f955cccf 4480 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
a6bb11b2 4481 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964 4482 /* Instructions with these relocations will become NOPs. */
a6bb11b2
YZ
4483 return BFD_RELOC_AARCH64_NONE;
4484
259364ad
JW
4485 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4486 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4487 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4488 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4489
ac734732
RL
4490#if ARCH_SIZE == 64
4491 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4492 return is_local
4493 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4494 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4495
4496 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4497 return is_local
4498 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4499 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4500#endif
4501
a6bb11b2
YZ
4502 default:
4503 break;
a06ea964
NC
4504 }
4505
4506 return r_type;
4507}
4508
4509static unsigned int
a6bb11b2 4510aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
a06ea964
NC
4511{
4512 switch (r_type)
4513 {
a6bb11b2
YZ
4514 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4515 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 4516 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
ce336788 4517 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
a2e1db00 4518 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
99ad26cb 4519 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
ce336788 4520 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
dc8008f5 4521 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
74a1bfe1 4522 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
a06ea964
NC
4523 return GOT_NORMAL;
4524
ce336788 4525 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a6bb11b2 4526 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 4527 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7ba7cfe4 4528 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
94facae3 4529 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
73f925cc 4530 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 4531 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 4532 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a06ea964
NC
4533 return GOT_TLS_GD;
4534
0484b454 4535 case BFD_RELOC_AARCH64_TLSDESC_ADD:
f955cccf 4536 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
a6bb11b2 4537 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 4538 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
a6bb11b2 4539 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a6bb11b2 4540 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
f955cccf 4541 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
1ada945d 4542 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
0484b454
RL
4543 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4544 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4545 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964
NC
4546 return GOT_TLSDESC_GD;
4547
a6bb11b2 4548 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 4549 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
ce336788 4550 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 4551 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
4552 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4553 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
a06ea964
NC
4554 return GOT_TLS_IE;
4555
a6bb11b2
YZ
4556 default:
4557 break;
a06ea964
NC
4558 }
4559 return GOT_UNKNOWN;
4560}
4561
4562static bfd_boolean
4563aarch64_can_relax_tls (bfd *input_bfd,
4564 struct bfd_link_info *info,
a6bb11b2 4565 bfd_reloc_code_real_type r_type,
a06ea964
NC
4566 struct elf_link_hash_entry *h,
4567 unsigned long r_symndx)
4568{
4569 unsigned int symbol_got_type;
4570 unsigned int reloc_got_type;
4571
9331eea1 4572 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
a06ea964
NC
4573 return FALSE;
4574
cec5225b 4575 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
a06ea964
NC
4576 reloc_got_type = aarch64_reloc_got_type (r_type);
4577
4578 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4579 return TRUE;
4580
0e1862bb 4581 if (bfd_link_pic (info))
a06ea964
NC
4582 return FALSE;
4583
4584 if (h && h->root.type == bfd_link_hash_undefweak)
4585 return FALSE;
4586
4587 return TRUE;
4588}
4589
a6bb11b2
YZ
4590/* Given the relocation code R_TYPE, return the relaxed bfd reloc
4591 enumerator. */
4592
4593static bfd_reloc_code_real_type
a06ea964
NC
4594aarch64_tls_transition (bfd *input_bfd,
4595 struct bfd_link_info *info,
4596 unsigned int r_type,
4597 struct elf_link_hash_entry *h,
4598 unsigned long r_symndx)
4599{
a6bb11b2
YZ
4600 bfd_reloc_code_real_type bfd_r_type
4601 = elfNN_aarch64_bfd_reloc_from_type (r_type);
a06ea964 4602
a6bb11b2
YZ
4603 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4604 return bfd_r_type;
4605
4606 return aarch64_tls_transition_without_check (bfd_r_type, h);
a06ea964
NC
4607}
4608
4609/* Return the base VMA address which should be subtracted from real addresses
a6bb11b2 4610 when resolving R_AARCH64_TLS_DTPREL relocation. */
a06ea964
NC
4611
4612static bfd_vma
4613dtpoff_base (struct bfd_link_info *info)
4614{
4615 /* If tls_sec is NULL, we should have signalled an error already. */
4616 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4617 return elf_hash_table (info)->tls_sec->vma;
4618}
4619
a06ea964
NC
4620/* Return the base VMA address which should be subtracted from real addresses
4621 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4622
4623static bfd_vma
4624tpoff_base (struct bfd_link_info *info)
4625{
4626 struct elf_link_hash_table *htab = elf_hash_table (info);
4627
4628 /* If tls_sec is NULL, we should have signalled an error already. */
ac21917f 4629 BFD_ASSERT (htab->tls_sec != NULL);
a06ea964
NC
4630
4631 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4632 htab->tls_sec->alignment_power);
4633 return htab->tls_sec->vma - base;
4634}
4635
4636static bfd_vma *
4637symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4638 unsigned long r_symndx)
4639{
4640 /* Calculate the address of the GOT entry for symbol
4641 referred to in h. */
4642 if (h != NULL)
4643 return &h->got.offset;
4644 else
4645 {
4646 /* local symbol */
4647 struct elf_aarch64_local_symbol *l;
4648
cec5225b 4649 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
4650 return &l[r_symndx].got_offset;
4651 }
4652}
4653
4654static void
4655symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4656 unsigned long r_symndx)
4657{
4658 bfd_vma *p;
4659 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4660 *p |= 1;
4661}
4662
4663static int
4664symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4665 unsigned long r_symndx)
4666{
4667 bfd_vma value;
4668 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4669 return value & 1;
4670}
4671
4672static bfd_vma
4673symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4674 unsigned long r_symndx)
4675{
4676 bfd_vma value;
4677 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4678 value &= ~1;
4679 return value;
4680}
4681
4682static bfd_vma *
4683symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4684 unsigned long r_symndx)
4685{
4686 /* Calculate the address of the GOT entry for symbol
4687 referred to in h. */
4688 if (h != NULL)
4689 {
cec5225b
YZ
4690 struct elf_aarch64_link_hash_entry *eh;
4691 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
4692 return &eh->tlsdesc_got_jump_table_offset;
4693 }
4694 else
4695 {
4696 /* local symbol */
4697 struct elf_aarch64_local_symbol *l;
4698
cec5225b 4699 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
4700 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4701 }
4702}
4703
4704static void
4705symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4706 unsigned long r_symndx)
4707{
4708 bfd_vma *p;
4709 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4710 *p |= 1;
4711}
4712
4713static int
4714symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4715 struct elf_link_hash_entry *h,
4716 unsigned long r_symndx)
4717{
4718 bfd_vma value;
4719 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4720 return value & 1;
4721}
4722
4723static bfd_vma
4724symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4725 unsigned long r_symndx)
4726{
4727 bfd_vma value;
4728 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4729 value &= ~1;
4730 return value;
4731}
4732
68fcca92
JW
4733/* Data for make_branch_to_erratum_835769_stub(). */
4734
4735struct erratum_835769_branch_to_stub_data
4736{
4106101c 4737 struct bfd_link_info *info;
68fcca92
JW
4738 asection *output_section;
4739 bfd_byte *contents;
4740};
4741
4742/* Helper to insert branches to erratum 835769 stubs in the right
4743 places for a particular section. */
4744
4745static bfd_boolean
4746make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4747 void *in_arg)
4748{
4749 struct elf_aarch64_stub_hash_entry *stub_entry;
4750 struct erratum_835769_branch_to_stub_data *data;
4751 bfd_byte *contents;
4752 unsigned long branch_insn = 0;
4753 bfd_vma veneered_insn_loc, veneer_entry_loc;
4754 bfd_signed_vma branch_offset;
4755 unsigned int target;
4756 bfd *abfd;
4757
4758 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4759 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4760
4761 if (stub_entry->target_section != data->output_section
4762 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4763 return TRUE;
4764
4765 contents = data->contents;
4766 veneered_insn_loc = stub_entry->target_section->output_section->vma
4767 + stub_entry->target_section->output_offset
4768 + stub_entry->target_value;
4769 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4770 + stub_entry->stub_sec->output_offset
4771 + stub_entry->stub_offset;
4772 branch_offset = veneer_entry_loc - veneered_insn_loc;
4773
4774 abfd = stub_entry->target_section->owner;
4775 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4eca0228
AM
4776 _bfd_error_handler
4777 (_("%B: error: Erratum 835769 stub out "
4778 "of range (input file too large)"), abfd);
68fcca92
JW
4779
4780 target = stub_entry->target_value;
4781 branch_insn = 0x14000000;
4782 branch_offset >>= 2;
4783 branch_offset &= 0x3ffffff;
4784 branch_insn |= branch_offset;
4785 bfd_putl32 (branch_insn, &contents[target]);
4786
4787 return TRUE;
4788}
4789
4106101c
MS
4790
4791static bfd_boolean
4792_bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4793 void *in_arg)
4794{
4795 struct elf_aarch64_stub_hash_entry *stub_entry
4796 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4797 struct erratum_835769_branch_to_stub_data *data
4798 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4799 struct bfd_link_info *info;
4800 struct elf_aarch64_link_hash_table *htab;
4801 bfd_byte *contents;
4802 asection *section;
4803 bfd *abfd;
4804 bfd_vma place;
4805 uint32_t insn;
4806
4807 info = data->info;
4808 contents = data->contents;
4809 section = data->output_section;
4810
4811 htab = elf_aarch64_hash_table (info);
4812
4813 if (stub_entry->target_section != section
4814 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4815 return TRUE;
4816
4817 insn = bfd_getl32 (contents + stub_entry->target_value);
4818 bfd_putl32 (insn,
4819 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4820
4821 place = (section->output_section->vma + section->output_offset
4822 + stub_entry->adrp_offset);
4823 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4824
4825 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4826 abort ();
4827
4828 bfd_signed_vma imm =
4829 (_bfd_aarch64_sign_extend
4830 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4831 - (place & 0xfff));
4832
4833 if (htab->fix_erratum_843419_adr
4834 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4835 {
4836 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4837 | AARCH64_RT (insn));
4838 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4839 }
4840 else
4841 {
4842 bfd_vma veneered_insn_loc;
4843 bfd_vma veneer_entry_loc;
4844 bfd_signed_vma branch_offset;
4845 uint32_t branch_insn;
4846
4847 veneered_insn_loc = stub_entry->target_section->output_section->vma
4848 + stub_entry->target_section->output_offset
4849 + stub_entry->target_value;
4850 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4851 + stub_entry->stub_sec->output_offset
4852 + stub_entry->stub_offset;
4853 branch_offset = veneer_entry_loc - veneered_insn_loc;
4854
4855 abfd = stub_entry->target_section->owner;
4856 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4eca0228 4857 _bfd_error_handler
4106101c
MS
4858 (_("%B: error: Erratum 843419 stub out "
4859 "of range (input file too large)"), abfd);
4860
4861 branch_insn = 0x14000000;
4862 branch_offset >>= 2;
4863 branch_offset &= 0x3ffffff;
4864 branch_insn |= branch_offset;
4865 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4866 }
4867 return TRUE;
4868}
4869
4870
68fcca92
JW
4871static bfd_boolean
4872elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4873 struct bfd_link_info *link_info,
4874 asection *sec,
4875 bfd_byte *contents)
4876
4877{
4878 struct elf_aarch64_link_hash_table *globals =
f872121a 4879 elf_aarch64_hash_table (link_info);
68fcca92
JW
4880
4881 if (globals == NULL)
4882 return FALSE;
4883
4884 /* Fix code to point to erratum 835769 stubs. */
4885 if (globals->fix_erratum_835769)
4886 {
4887 struct erratum_835769_branch_to_stub_data data;
4888
4106101c 4889 data.info = link_info;
68fcca92
JW
4890 data.output_section = sec;
4891 data.contents = contents;
4892 bfd_hash_traverse (&globals->stub_hash_table,
4893 make_branch_to_erratum_835769_stub, &data);
4894 }
4895
4106101c
MS
4896 if (globals->fix_erratum_843419)
4897 {
4898 struct erratum_835769_branch_to_stub_data data;
4899
4900 data.info = link_info;
4901 data.output_section = sec;
4902 data.contents = contents;
4903 bfd_hash_traverse (&globals->stub_hash_table,
4904 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4905 }
4906
68fcca92
JW
4907 return FALSE;
4908}
4909
2aff25ba
JW
4910/* Return TRUE if RELOC is a relocation against the base of GOT table. */
4911
4912static bfd_boolean
4913aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
4914{
4915 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
4916 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
4917 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
4918 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
4919 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
4920}
4921
4e7fbb34
JW
4922/* Perform a relocation as part of a final link. The input relocation type
4923 should be TLS relaxed. */
4924
a06ea964 4925static bfd_reloc_status_type
cec5225b 4926elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
a06ea964
NC
4927 bfd *input_bfd,
4928 bfd *output_bfd,
4929 asection *input_section,
4930 bfd_byte *contents,
4931 Elf_Internal_Rela *rel,
4932 bfd_vma value,
4933 struct bfd_link_info *info,
4934 asection *sym_sec,
4935 struct elf_link_hash_entry *h,
4936 bfd_boolean *unresolved_reloc_p,
4937 bfd_boolean save_addend,
1419bbe5
WN
4938 bfd_vma *saved_addend,
4939 Elf_Internal_Sym *sym)
a06ea964 4940{
1419bbe5 4941 Elf_Internal_Shdr *symtab_hdr;
a06ea964 4942 unsigned int r_type = howto->type;
a6bb11b2
YZ
4943 bfd_reloc_code_real_type bfd_r_type
4944 = elfNN_aarch64_bfd_reloc_from_howto (howto);
a06ea964
NC
4945 unsigned long r_symndx;
4946 bfd_byte *hit_data = contents + rel->r_offset;
96d01d93 4947 bfd_vma place, off, got_entry_addr = 0;
a06ea964 4948 bfd_signed_vma signed_addend;
cec5225b 4949 struct elf_aarch64_link_hash_table *globals;
a06ea964 4950 bfd_boolean weak_undef_p;
ff07562f 4951 bfd_boolean relative_reloc;
b53b1bed 4952 asection *base_got;
ff07562f 4953 bfd_vma orig_value = value;
a06ea964 4954
cec5225b 4955 globals = elf_aarch64_hash_table (info);
a06ea964 4956
1419bbe5
WN
4957 symtab_hdr = &elf_symtab_hdr (input_bfd);
4958
a06ea964
NC
4959 BFD_ASSERT (is_aarch64_elf (input_bfd));
4960
cec5225b 4961 r_symndx = ELFNN_R_SYM (rel->r_info);
a06ea964 4962
a06ea964
NC
4963 place = input_section->output_section->vma
4964 + input_section->output_offset + rel->r_offset;
4965
4966 /* Get addend, accumulating the addend for consecutive relocs
4967 which refer to the same offset. */
4968 signed_addend = saved_addend ? *saved_addend : 0;
4969 signed_addend += rel->r_addend;
4970
4971 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4972 : bfd_is_und_section (sym_sec));
a6bb11b2 4973
1419bbe5
WN
4974 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4975 it here if it is defined in a non-shared object. */
4976 if (h != NULL
4977 && h->type == STT_GNU_IFUNC
4978 && h->def_regular)
4979 {
4980 asection *plt;
4981 const char *name;
99ad26cb 4982 bfd_vma addend = 0;
1419bbe5 4983
545bc2b3
SN
4984 if ((input_section->flags & SEC_ALLOC) == 0)
4985 {
4986 /* Dynamic relocs are not propagated for SEC_DEBUGGING
4987 sections because such sections are not SEC_ALLOC and
4988 thus ld.so will not process them. */
4989 if ((input_section->flags & SEC_DEBUGGING) != 0)
4990 return bfd_reloc_ok;
4991
4992 if (h->root.root.string)
4993 name = h->root.root.string;
4994 else
4995 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
4996 _bfd_error_handler
4997 /* xgettext:c-format */
4998 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
4999 input_bfd, input_section, rel->r_offset, howto->name, name);
5000 bfd_set_error (bfd_error_bad_value);
5001 return FALSE;
5002 }
5003 else if (h->plt.offset == (bfd_vma) -1)
5004 goto bad_ifunc_reloc;
1419bbe5
WN
5005
5006 /* STT_GNU_IFUNC symbol must go through PLT. */
5007 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5008 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5009
5010 switch (bfd_r_type)
5011 {
5012 default:
545bc2b3 5013bad_ifunc_reloc:
1419bbe5
WN
5014 if (h->root.root.string)
5015 name = h->root.root.string;
5016 else
5017 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5018 NULL);
4eca0228 5019 _bfd_error_handler
695344c0 5020 /* xgettext:c-format */
1419bbe5
WN
5021 (_("%B: relocation %s against STT_GNU_IFUNC "
5022 "symbol `%s' isn't handled by %s"), input_bfd,
5023 howto->name, name, __FUNCTION__);
5024 bfd_set_error (bfd_error_bad_value);
5025 return FALSE;
5026
5027 case BFD_RELOC_AARCH64_NN:
5028 if (rel->r_addend != 0)
5029 {
5030 if (h->root.root.string)
5031 name = h->root.root.string;
5032 else
5033 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5034 sym, NULL);
4eca0228 5035 _bfd_error_handler
695344c0 5036 /* xgettext:c-format */
1419bbe5 5037 (_("%B: relocation %s against STT_GNU_IFUNC "
d42c267e 5038 "symbol `%s' has non-zero addend: %Ld"),
1419bbe5
WN
5039 input_bfd, howto->name, name, rel->r_addend);
5040 bfd_set_error (bfd_error_bad_value);
5041 return FALSE;
5042 }
5043
5044 /* Generate dynamic relocation only when there is a
5045 non-GOT reference in a shared object. */
0e1862bb 5046 if (bfd_link_pic (info) && h->non_got_ref)
1419bbe5
WN
5047 {
5048 Elf_Internal_Rela outrel;
5049 asection *sreloc;
5050
5051 /* Need a dynamic relocation to get the real function
5052 address. */
5053 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5054 info,
5055 input_section,
5056 rel->r_offset);
5057 if (outrel.r_offset == (bfd_vma) -1
5058 || outrel.r_offset == (bfd_vma) -2)
5059 abort ();
5060
5061 outrel.r_offset += (input_section->output_section->vma
5062 + input_section->output_offset);
5063
5064 if (h->dynindx == -1
5065 || h->forced_local
0e1862bb 5066 || bfd_link_executable (info))
1419bbe5
WN
5067 {
5068 /* This symbol is resolved locally. */
5069 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5070 outrel.r_addend = (h->root.u.def.value
5071 + h->root.u.def.section->output_section->vma
5072 + h->root.u.def.section->output_offset);
5073 }
5074 else
5075 {
5076 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5077 outrel.r_addend = 0;
5078 }
5079
5080 sreloc = globals->root.irelifunc;
5081 elf_append_rela (output_bfd, sreloc, &outrel);
5082
5083 /* If this reloc is against an external symbol, we
5084 do not want to fiddle with the addend. Otherwise,
5085 we need to include the symbol value so that it
5086 becomes an addend for the dynamic reloc. For an
5087 internal symbol, we have updated addend. */
5088 return bfd_reloc_ok;
5089 }
5090 /* FALLTHROUGH */
1419bbe5 5091 case BFD_RELOC_AARCH64_CALL26:
ce336788 5092 case BFD_RELOC_AARCH64_JUMP26:
1419bbe5
WN
5093 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5094 signed_addend,
5095 weak_undef_p);
5096 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5097 howto, value);
1419bbe5
WN
5098 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5099 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 5100 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
ce336788 5101 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
99ad26cb 5102 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
dc8008f5 5103 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
74a1bfe1 5104 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
a2e1db00 5105 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
ce336788 5106 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
1419bbe5
WN
5107 base_got = globals->root.sgot;
5108 off = h->got.offset;
5109
5110 if (base_got == NULL)
5111 abort ();
5112
5113 if (off == (bfd_vma) -1)
5114 {
5115 bfd_vma plt_index;
5116
5117 /* We can't use h->got.offset here to save state, or
5118 even just remember the offset, as finish_dynamic_symbol
5119 would use that as offset into .got. */
5120
5121 if (globals->root.splt != NULL)
5122 {
b1ee0cc4
WN
5123 plt_index = ((h->plt.offset - globals->plt_header_size) /
5124 globals->plt_entry_size);
1419bbe5
WN
5125 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5126 base_got = globals->root.sgotplt;
5127 }
5128 else
5129 {
5130 plt_index = h->plt.offset / globals->plt_entry_size;
5131 off = plt_index * GOT_ENTRY_SIZE;
5132 base_got = globals->root.igotplt;
5133 }
5134
5135 if (h->dynindx == -1
5136 || h->forced_local
5137 || info->symbolic)
5138 {
5139 /* This references the local definition. We must
5140 initialize this entry in the global offset table.
5141 Since the offset must always be a multiple of 8,
5142 we use the least significant bit to record
5143 whether we have initialized it already.
5144
5145 When doing a dynamic link, we create a .rela.got
5146 relocation entry to initialize the value. This
5147 is done in the finish_dynamic_symbol routine. */
5148 if ((off & 1) != 0)
5149 off &= ~1;
5150 else
5151 {
5152 bfd_put_NN (output_bfd, value,
5153 base_got->contents + off);
5154 /* Note that this is harmless as -1 | 1 still is -1. */
5155 h->got.offset |= 1;
5156 }
5157 }
5158 value = (base_got->output_section->vma
5159 + base_got->output_offset + off);
5160 }
5161 else
5162 value = aarch64_calculate_got_entry_vma (h, globals, info,
5163 value, output_bfd,
5164 unresolved_reloc_p);
a0becb89 5165
2aff25ba
JW
5166 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5167 addend = (globals->root.sgot->output_section->vma
5168 + globals->root.sgot->output_offset);
a0becb89 5169
1419bbe5 5170 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
99ad26cb 5171 addend, weak_undef_p);
1419bbe5 5172 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
1419bbe5 5173 case BFD_RELOC_AARCH64_ADD_LO12:
ce336788 5174 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
1419bbe5
WN
5175 break;
5176 }
5177 }
5178
a6bb11b2 5179 switch (bfd_r_type)
a06ea964 5180 {
a6bb11b2 5181 case BFD_RELOC_AARCH64_NONE:
0484b454 5182 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a6bb11b2 5183 case BFD_RELOC_AARCH64_TLSDESC_CALL:
0484b454 5184 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
5185 *unresolved_reloc_p = FALSE;
5186 return bfd_reloc_ok;
5187
a6bb11b2 5188 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
5189
5190 /* When generating a shared object or relocatable executable, these
5191 relocations are copied into the output file to be resolved at
5192 run time. */
6353d82b
JW
5193 if (((bfd_link_pic (info)
5194 || globals->root.is_relocatable_executable)
5195 && (input_section->flags & SEC_ALLOC)
5196 && (h == NULL
5197 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5198 || h->root.type != bfd_link_hash_undefweak))
5199 /* Or we are creating an executable, we may need to keep relocations
5200 for symbols satisfied by a dynamic library if we manage to avoid
5201 copy relocs for the symbol. */
5202 || (ELIMINATE_COPY_RELOCS
5203 && !bfd_link_pic (info)
5204 && h != NULL
5205 && (input_section->flags & SEC_ALLOC)
5206 && h->dynindx != -1
5207 && !h->non_got_ref
5208 && ((h->def_dynamic
5209 && !h->def_regular)
5210 || h->root.type == bfd_link_hash_undefweak
5211 || h->root.type == bfd_link_hash_undefined)))
a06ea964
NC
5212 {
5213 Elf_Internal_Rela outrel;
5214 bfd_byte *loc;
5215 bfd_boolean skip, relocate;
5216 asection *sreloc;
5217
5218 *unresolved_reloc_p = FALSE;
5219
a06ea964
NC
5220 skip = FALSE;
5221 relocate = FALSE;
5222
5223 outrel.r_addend = signed_addend;
5224 outrel.r_offset =
5225 _bfd_elf_section_offset (output_bfd, info, input_section,
5226 rel->r_offset);
5227 if (outrel.r_offset == (bfd_vma) - 1)
5228 skip = TRUE;
5229 else if (outrel.r_offset == (bfd_vma) - 2)
5230 {
5231 skip = TRUE;
5232 relocate = TRUE;
5233 }
5234
5235 outrel.r_offset += (input_section->output_section->vma
5236 + input_section->output_offset);
5237
5238 if (skip)
5239 memset (&outrel, 0, sizeof outrel);
5240 else if (h != NULL
5241 && h->dynindx != -1
0e1862bb 5242 && (!bfd_link_pic (info)
ac33b731
JW
5243 || !(bfd_link_pie (info)
5244 || SYMBOLIC_BIND (info, h))
0e1862bb 5245 || !h->def_regular))
cec5225b 5246 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
a06ea964
NC
5247 else
5248 {
5249 int symbol;
5250
5251 /* On SVR4-ish systems, the dynamic loader cannot
5252 relocate the text and data segments independently,
5253 so the symbol does not matter. */
5254 symbol = 0;
1f56df9d 5255 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
a6bb11b2 5256 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
a06ea964
NC
5257 outrel.r_addend += value;
5258 }
5259
1419bbe5
WN
5260 sreloc = elf_section_data (input_section)->sreloc;
5261 if (sreloc == NULL || sreloc->contents == NULL)
5262 return bfd_reloc_notsupported;
5263
5264 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
cec5225b 5265 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
a06ea964 5266
1419bbe5 5267 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
a06ea964
NC
5268 {
5269 /* Sanity to check that we have previously allocated
5270 sufficient space in the relocation section for the
5271 number of relocations we actually want to emit. */
5272 abort ();
5273 }
5274
5275 /* If this reloc is against an external symbol, we do not want to
5276 fiddle with the addend. Otherwise, we need to include the symbol
5277 value so that it becomes an addend for the dynamic reloc. */
5278 if (!relocate)
5279 return bfd_reloc_ok;
5280
5281 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5282 contents, rel->r_offset, value,
5283 signed_addend);
5284 }
5285 else
5286 value += signed_addend;
5287 break;
5288
a6bb11b2 5289 case BFD_RELOC_AARCH64_CALL26:
ce336788 5290 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
5291 {
5292 asection *splt = globals->root.splt;
5293 bfd_boolean via_plt_p =
5294 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5295
5296 /* A call to an undefined weak symbol is converted to a jump to
5297 the next instruction unless a PLT entry will be created.
5298 The jump to the next instruction is optimized as a NOP.
5299 Do the same for local undefined symbols. */
5300 if (weak_undef_p && ! via_plt_p)
5301 {
5302 bfd_putl32 (INSN_NOP, hit_data);
5303 return bfd_reloc_ok;
5304 }
5305
5306 /* If the call goes through a PLT entry, make sure to
5307 check distance to the right destination address. */
5308 if (via_plt_p)
07f9ddfe
JW
5309 value = (splt->output_section->vma
5310 + splt->output_offset + h->plt.offset);
5311
5312 /* Check if a stub has to be inserted because the destination
5313 is too far away. */
5314 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
2f340668
JW
5315
5316 /* If the branch destination is directed to plt stub, "value" will be
5317 the final destination, otherwise we should plus signed_addend, it may
5318 contain non-zero value, for example call to local function symbol
5319 which are turned into "sec_sym + sec_off", and sec_off is kept in
5320 signed_addend. */
5321 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5322 place))
07f9ddfe
JW
5323 /* The target is out of reach, so redirect the branch to
5324 the local stub for this function. */
5325 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5326 rel, globals);
5327 if (stub_entry != NULL)
2f340668
JW
5328 {
5329 value = (stub_entry->stub_offset
5330 + stub_entry->stub_sec->output_offset
5331 + stub_entry->stub_sec->output_section->vma);
5332
5333 /* We have redirected the destination to stub entry address,
5334 so ignore any addend record in the original rela entry. */
5335 signed_addend = 0;
5336 }
a06ea964 5337 }
caed7120
YZ
5338 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5339 signed_addend, weak_undef_p);
07f9ddfe 5340 *unresolved_reloc_p = FALSE;
a06ea964
NC
5341 break;
5342
dcbd20eb
JW
5343 case BFD_RELOC_AARCH64_16_PCREL:
5344 case BFD_RELOC_AARCH64_32_PCREL:
5345 case BFD_RELOC_AARCH64_64_PCREL:
ce336788
JW
5346 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5347 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5348 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5349 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
0e1862bb 5350 if (bfd_link_pic (info)
dcbd20eb
JW
5351 && (input_section->flags & SEC_ALLOC) != 0
5352 && (input_section->flags & SEC_READONLY) != 0
d68f1976 5353 && !SYMBOL_REFERENCES_LOCAL (info, h))
dcbd20eb
JW
5354 {
5355 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5356
4eca0228 5357 _bfd_error_handler
695344c0 5358 /* xgettext:c-format */
d68f1976
JW
5359 (_("%B: relocation %s against symbol `%s' which may bind "
5360 "externally can not be used when making a shared object; "
5361 "recompile with -fPIC"),
dcbd20eb
JW
5362 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5363 h->root.root.string);
5364 bfd_set_error (bfd_error_bad_value);
5365 return FALSE;
5366 }
1a0670f3 5367 /* Fall through. */
dcbd20eb 5368
a6bb11b2 5369 case BFD_RELOC_AARCH64_16:
92d77487
RL
5370#if ARCH_SIZE == 64
5371 case BFD_RELOC_AARCH64_32:
5372#endif
a6bb11b2 5373 case BFD_RELOC_AARCH64_ADD_LO12:
a6bb11b2 5374 case BFD_RELOC_AARCH64_BRANCH19:
ce336788 5375 case BFD_RELOC_AARCH64_LDST128_LO12:
a6bb11b2
YZ
5376 case BFD_RELOC_AARCH64_LDST16_LO12:
5377 case BFD_RELOC_AARCH64_LDST32_LO12:
5378 case BFD_RELOC_AARCH64_LDST64_LO12:
ce336788 5379 case BFD_RELOC_AARCH64_LDST8_LO12:
a6bb11b2
YZ
5380 case BFD_RELOC_AARCH64_MOVW_G0:
5381 case BFD_RELOC_AARCH64_MOVW_G0_NC:
ce336788 5382 case BFD_RELOC_AARCH64_MOVW_G0_S:
a6bb11b2
YZ
5383 case BFD_RELOC_AARCH64_MOVW_G1:
5384 case BFD_RELOC_AARCH64_MOVW_G1_NC:
ce336788 5385 case BFD_RELOC_AARCH64_MOVW_G1_S:
a6bb11b2
YZ
5386 case BFD_RELOC_AARCH64_MOVW_G2:
5387 case BFD_RELOC_AARCH64_MOVW_G2_NC:
ce336788 5388 case BFD_RELOC_AARCH64_MOVW_G2_S:
a6bb11b2 5389 case BFD_RELOC_AARCH64_MOVW_G3:
a6bb11b2 5390 case BFD_RELOC_AARCH64_TSTBR14:
caed7120
YZ
5391 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5392 signed_addend, weak_undef_p);
a06ea964
NC
5393 break;
5394
a6bb11b2
YZ
5395 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5396 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 5397 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
ce336788 5398 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
99ad26cb 5399 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
ce336788 5400 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
2aff25ba
JW
5401 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5402 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5403 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
a06ea964
NC
5404 if (globals->root.sgot == NULL)
5405 BFD_ASSERT (h != NULL);
5406
ff07562f 5407 relative_reloc = FALSE;
a06ea964
NC
5408 if (h != NULL)
5409 {
99ad26cb 5410 bfd_vma addend = 0;
ff07562f
JW
5411
5412 /* If a symbol is not dynamic and is not undefined weak, bind it
5413 locally and generate a RELATIVE relocation under PIC mode.
5414
5415 NOTE: one symbol may be referenced by several relocations, we
5416 should only generate one RELATIVE relocation for that symbol.
5417 Therefore, check GOT offset mark first. */
5418 if (h->dynindx == -1
5419 && !h->forced_local
5420 && h->root.type != bfd_link_hash_undefweak
5421 && bfd_link_pic (info)
5422 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5423 relative_reloc = TRUE;
5424
a06ea964
NC
5425 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5426 output_bfd,
5427 unresolved_reloc_p);
ff07562f
JW
5428 /* Record the GOT entry address which will be used when generating
5429 RELATIVE relocation. */
5430 if (relative_reloc)
5431 got_entry_addr = value;
5432
2aff25ba 5433 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
99ad26cb
JW
5434 addend = (globals->root.sgot->output_section->vma
5435 + globals->root.sgot->output_offset);
caed7120 5436 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
99ad26cb 5437 addend, weak_undef_p);
a06ea964 5438 }
b53b1bed
JW
5439 else
5440 {
99ad26cb 5441 bfd_vma addend = 0;
b53b1bed
JW
5442 struct elf_aarch64_local_symbol *locals
5443 = elf_aarch64_locals (input_bfd);
5444
5445 if (locals == NULL)
5446 {
5447 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
4eca0228 5448 _bfd_error_handler
695344c0 5449 /* xgettext:c-format */
b53b1bed
JW
5450 (_("%B: Local symbol descriptor table be NULL when applying "
5451 "relocation %s against local symbol"),
5452 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5453 abort ();
5454 }
5455
5456 off = symbol_got_offset (input_bfd, h, r_symndx);
5457 base_got = globals->root.sgot;
ff07562f
JW
5458 got_entry_addr = (base_got->output_section->vma
5459 + base_got->output_offset + off);
b53b1bed
JW
5460
5461 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5462 {
5463 bfd_put_64 (output_bfd, value, base_got->contents + off);
5464
ff07562f
JW
5465 /* For local symbol, we have done absolute relocation in static
5466 linking stage. While for shared library, we need to update the
5467 content of GOT entry according to the shared object's runtime
5468 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5469 for dynamic linker. */
0e1862bb 5470 if (bfd_link_pic (info))
ff07562f 5471 relative_reloc = TRUE;
b53b1bed
JW
5472
5473 symbol_got_offset_mark (input_bfd, h, r_symndx);
5474 }
5475
5476 /* Update the relocation value to GOT entry addr as we have transformed
5477 the direct data access into indirect data access through GOT. */
5478 value = got_entry_addr;
99ad26cb 5479
2aff25ba 5480 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
99ad26cb
JW
5481 addend = base_got->output_section->vma + base_got->output_offset;
5482
5483 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5484 addend, weak_undef_p);
b53b1bed 5485 }
ff07562f
JW
5486
5487 if (relative_reloc)
5488 {
5489 asection *s;
5490 Elf_Internal_Rela outrel;
5491
5492 s = globals->root.srelgot;
5493 if (s == NULL)
5494 abort ();
5495
5496 outrel.r_offset = got_entry_addr;
5497 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5498 outrel.r_addend = orig_value;
5499 elf_append_rela (output_bfd, s, &outrel);
5500 }
a2e1db00
RL
5501 break;
5502
ce336788 5503 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a6bb11b2 5504 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 5505 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a6bb11b2 5506 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 5507 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
ce336788 5508 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 5509 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
73f925cc 5510 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 5511 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 5512 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a06ea964
NC
5513 if (globals->root.sgot == NULL)
5514 return bfd_reloc_notsupported;
5515
5516 value = (symbol_got_offset (input_bfd, h, r_symndx)
5517 + globals->root.sgot->output_section->vma
f44a1f8e 5518 + globals->root.sgot->output_offset);
a06ea964 5519
caed7120
YZ
5520 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5521 0, weak_undef_p);
a06ea964
NC
5522 *unresolved_reloc_p = FALSE;
5523 break;
5524
7ba7cfe4 5525 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
94facae3 5526 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
3b957e5b
RL
5527 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5528 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
94facae3
RL
5529 if (globals->root.sgot == NULL)
5530 return bfd_reloc_notsupported;
5531
5532 value = symbol_got_offset (input_bfd, h, r_symndx);
5533 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5534 0, weak_undef_p);
5535 *unresolved_reloc_p = FALSE;
5536 break;
5537
6ffe9a1b 5538 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
40fbed84 5539 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
753999c1 5540 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
07c9aa07
JW
5541 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5542 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5543 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5544 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5545 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5546 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5547 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5548 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6ffe9a1b
JW
5549 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5550 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5551 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5552 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5553 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
40fbed84
JW
5554 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5555 signed_addend - dtpoff_base (info),
5556 weak_undef_p);
5557 break;
5558
a6bb11b2
YZ
5559 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5560 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5561 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5562 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5563 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5564 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5565 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5566 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
caed7120
YZ
5567 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5568 signed_addend - tpoff_base (info),
5569 weak_undef_p);
a06ea964
NC
5570 *unresolved_reloc_p = FALSE;
5571 break;
5572
f955cccf 5573 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
a6bb11b2 5574 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 5575 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
a6bb11b2 5576 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
f955cccf 5577 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
1ada945d 5578 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964
NC
5579 if (globals->root.sgot == NULL)
5580 return bfd_reloc_notsupported;
a06ea964
NC
5581 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5582 + globals->root.sgotplt->output_section->vma
f44a1f8e 5583 + globals->root.sgotplt->output_offset
a06ea964
NC
5584 + globals->sgotplt_jump_table_size);
5585
caed7120
YZ
5586 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5587 0, weak_undef_p);
a06ea964
NC
5588 *unresolved_reloc_p = FALSE;
5589 break;
5590
0484b454
RL
5591 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5592 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5593 if (globals->root.sgot == NULL)
5594 return bfd_reloc_notsupported;
5595
5596 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5597 + globals->root.sgotplt->output_section->vma
5598 + globals->root.sgotplt->output_offset
5599 + globals->sgotplt_jump_table_size);
5600
5601 value -= (globals->root.sgot->output_section->vma
5602 + globals->root.sgot->output_offset);
5603
5604 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5605 0, weak_undef_p);
5606 *unresolved_reloc_p = FALSE;
5607 break;
5608
a06ea964
NC
5609 default:
5610 return bfd_reloc_notsupported;
5611 }
5612
5613 if (saved_addend)
5614 *saved_addend = value;
5615
5616 /* Only apply the final relocation in a sequence. */
5617 if (save_addend)
5618 return bfd_reloc_continue;
5619
caed7120
YZ
5620 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5621 howto, value);
a06ea964
NC
5622}
5623
2d0ca824
YN
5624/* LP64 and ILP32 operates on x- and w-registers respectively.
5625 Next definitions take into account the difference between
5626 corresponding machine codes. R means x-register if the target
5627 arch is LP64, and w-register if the target is ILP32. */
5628
5629#if ARCH_SIZE == 64
5630# define add_R0_R0 (0x91000000)
5631# define add_R0_R0_R1 (0x8b000020)
5632# define add_R0_R1 (0x91400020)
5633# define ldr_R0 (0x58000000)
5634# define ldr_R0_mask(i) (i & 0xffffffe0)
5635# define ldr_R0_x0 (0xf9400000)
5636# define ldr_hw_R0 (0xf2a00000)
5637# define movk_R0 (0xf2800000)
5638# define movz_R0 (0xd2a00000)
5639# define movz_hw_R0 (0xd2c00000)
5640#else /*ARCH_SIZE == 32 */
5641# define add_R0_R0 (0x11000000)
5642# define add_R0_R0_R1 (0x0b000020)
5643# define add_R0_R1 (0x11400020)
5644# define ldr_R0 (0x18000000)
5645# define ldr_R0_mask(i) (i & 0xbfffffe0)
5646# define ldr_R0_x0 (0xb9400000)
5647# define ldr_hw_R0 (0x72a00000)
5648# define movk_R0 (0x72800000)
5649# define movz_R0 (0x52a00000)
5650# define movz_hw_R0 (0x52c00000)
5651#endif
5652
a06ea964
NC
5653/* Handle TLS relaxations. Relaxing is possible for symbols that use
5654 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5655 link.
5656
5657 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5658 is to then call final_link_relocate. Return other values in the
5659 case of error. */
5660
5661static bfd_reloc_status_type
cec5225b 5662elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
a06ea964 5663 bfd *input_bfd, bfd_byte *contents,
06d2788c 5664 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
a06ea964
NC
5665{
5666 bfd_boolean is_local = h == NULL;
cec5225b 5667 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
5668 unsigned long insn;
5669
5670 BFD_ASSERT (globals && input_bfd && contents && rel);
5671
a6bb11b2 5672 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 5673 {
a6bb11b2 5674 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
ce336788 5675 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a06ea964
NC
5676 if (is_local)
5677 {
5678 /* GD->LE relaxation:
2d0ca824 5679 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
a06ea964 5680 or
2d0ca824
YN
5681 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
5682
5683 Where R is x for LP64, and w for ILP32. */
5684 bfd_putl32 (movz_R0, contents + rel->r_offset);
a06ea964
NC
5685 return bfd_reloc_continue;
5686 }
5687 else
5688 {
5689 /* GD->IE relaxation:
5690 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5691 or
5692 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5693 */
a06ea964
NC
5694 return bfd_reloc_continue;
5695 }
5696
389b8029
MS
5697 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5698 BFD_ASSERT (0);
5699 break;
5700
1ada945d
MS
5701 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5702 if (is_local)
5703 {
5704 /* Tiny TLSDESC->LE relaxation:
2d0ca824
YN
5705 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
5706 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
1ada945d
MS
5707 .tlsdesccall var
5708 blr x1 => nop
2d0ca824
YN
5709
5710 Where R is x for LP64, and w for ILP32. */
1ada945d
MS
5711 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5712 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5713
5714 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5715 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5716 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5717
2d0ca824
YN
5718 bfd_putl32 (movz_R0, contents + rel->r_offset);
5719 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
1ada945d
MS
5720 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5721 return bfd_reloc_continue;
5722 }
5723 else
5724 {
5725 /* Tiny TLSDESC->IE relaxation:
5726 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5727 adr x0, :tlsdesc:var => nop
5728 .tlsdesccall var
5729 blr x1 => nop
5730 */
5731 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5732 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5733
5734 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5735 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5736
2d0ca824 5737 bfd_putl32 (ldr_R0, contents + rel->r_offset);
1ada945d
MS
5738 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5739 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5740 return bfd_reloc_continue;
5741 }
5742
3c12b054
MS
5743 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5744 if (is_local)
5745 {
5746 /* Tiny GD->LE relaxation:
5747 adr x0, :tlsgd:var => mrs x1, tpidr_el0
2d0ca824
YN
5748 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
5749 nop => add R0, R0, #:tprel_lo12_nc:x
5750
5751 Where R is x for LP64, and x for Ilp32. */
3c12b054
MS
5752
5753 /* First kill the tls_get_addr reloc on the bl instruction. */
5754 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5755
5756 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
2d0ca824
YN
5757 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
5758 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
3c12b054
MS
5759
5760 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5761 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5762 rel[1].r_offset = rel->r_offset + 8;
5763
5764 /* Move the current relocation to the second instruction in
5765 the sequence. */
5766 rel->r_offset += 4;
5767 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5768 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5769 return bfd_reloc_continue;
5770 }
5771 else
5772 {
5773 /* Tiny GD->IE relaxation:
2d0ca824 5774 adr x0, :tlsgd:var => ldr R0, :gottprel:var
3c12b054 5775 bl __tls_get_addr => mrs x1, tpidr_el0
2d0ca824
YN
5776 nop => add R0, R0, R1
5777
5778 Where R is x for LP64, and w for Ilp32. */
3c12b054
MS
5779
5780 /* First kill the tls_get_addr reloc on the bl instruction. */
5781 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5782 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5783
2d0ca824 5784 bfd_putl32 (ldr_R0, contents + rel->r_offset);
3c12b054 5785 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
2d0ca824 5786 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
3c12b054
MS
5787 return bfd_reloc_continue;
5788 }
5789
ac734732
RL
5790#if ARCH_SIZE == 64
5791 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5792 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
5793 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
5794 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
5795
5796 if (is_local)
5797 {
5798 /* Large GD->LE relaxation:
5799 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
5800 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5801 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
5802 bl __tls_get_addr => mrs x1, tpidr_el0
5803 nop => add x0, x0, x1
5804 */
5805 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5806 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5807 rel[2].r_offset = rel->r_offset + 8;
5808
2d0ca824
YN
5809 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
5810 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
5811 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
ac734732 5812 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
2d0ca824 5813 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
ac734732
RL
5814 }
5815 else
5816 {
5817 /* Large GD->IE relaxation:
5818 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
5819 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
5820 add x0, gp, x0 => ldr x0, [gp, x0]
5821 bl __tls_get_addr => mrs x1, tpidr_el0
5822 nop => add x0, x0, x1
5823 */
5824 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5825 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
2d0ca824 5826 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
ac734732 5827 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
2d0ca824 5828 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
ac734732
RL
5829 }
5830 return bfd_reloc_continue;
5831
5832 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5833 return bfd_reloc_continue;
5834#endif
5835
043bf05a
MS
5836 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5837 return bfd_reloc_continue;
5838
a6bb11b2 5839 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
a06ea964
NC
5840 if (is_local)
5841 {
5842 /* GD->LE relaxation:
5843 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
2d0ca824
YN
5844
5845 Where R is x for lp64 mode, and w for ILP32 mode. */
5846 bfd_putl32 (movk_R0, contents + rel->r_offset);
a06ea964
NC
5847 return bfd_reloc_continue;
5848 }
5849 else
5850 {
5851 /* GD->IE relaxation:
2d0ca824
YN
5852 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
5853
5854 Where R is x for lp64 mode, and w for ILP32 mode. */
a06ea964 5855 insn = bfd_getl32 (contents + rel->r_offset);
2d0ca824 5856 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
a06ea964
NC
5857 return bfd_reloc_continue;
5858 }
5859
a6bb11b2 5860 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
5861 if (is_local)
5862 {
5863 /* GD->LE relaxation
2d0ca824 5864 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
a06ea964 5865 bl __tls_get_addr => mrs x1, tpidr_el0
2d0ca824
YN
5866 nop => add R0, R1, R0
5867
5868 Where R is x for lp64 mode, and w for ILP32 mode. */
a06ea964
NC
5869
5870 /* First kill the tls_get_addr reloc on the bl instruction. */
5871 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
cec5225b 5872 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964 5873
2d0ca824 5874 bfd_putl32 (movk_R0, contents + rel->r_offset);
a06ea964 5875 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
2d0ca824 5876 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
a06ea964
NC
5877 return bfd_reloc_continue;
5878 }
5879 else
5880 {
5881 /* GD->IE relaxation
5cd1d8bc 5882 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
a06ea964
NC
5883 BL __tls_get_addr => mrs x1, tpidr_el0
5884 R_AARCH64_CALL26
5cd1d8bc
YN
5885 NOP => add R0, R1, R0
5886
5887 Where R is x for lp64 mode, and w for ilp32 mode. */
a06ea964 5888
a6bb11b2 5889 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
a06ea964
NC
5890
5891 /* Remove the relocation on the BL instruction. */
cec5225b 5892 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964 5893
a06ea964
NC
5894 /* We choose to fixup the BL and NOP instructions using the
5895 offset from the second relocation to allow flexibility in
5896 scheduling instructions between the ADD and BL. */
2d0ca824 5897 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
5cd1d8bc 5898 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
2d0ca824 5899 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
a06ea964
NC
5900 return bfd_reloc_continue;
5901 }
5902
0484b454 5903 case BFD_RELOC_AARCH64_TLSDESC_ADD:
f955cccf 5904 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
a6bb11b2 5905 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964
NC
5906 /* GD->IE/LE relaxation:
5907 add x0, x0, #:tlsdesc_lo12:var => nop
5908 blr xd => nop
5909 */
5910 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5911 return bfd_reloc_ok;
5912
0484b454
RL
5913 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5914 if (is_local)
5915 {
5916 /* GD->LE relaxation:
2d0ca824
YN
5917 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
5918
5919 Where R is x for lp64 mode, and w for ILP32 mode. */
5920 bfd_putl32 (movk_R0, contents + rel->r_offset);
0484b454
RL
5921 return bfd_reloc_continue;
5922 }
5923 else
5924 {
5925 /* GD->IE relaxation:
2d0ca824
YN
5926 ldr xd, [gp, xn] => ldr R0, [gp, xn]
5927
5928 Where R is x for lp64 mode, and w for ILP32 mode. */
0484b454 5929 insn = bfd_getl32 (contents + rel->r_offset);
2d0ca824 5930 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
0484b454
RL
5931 return bfd_reloc_ok;
5932 }
5933
5934 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5935 /* GD->LE relaxation:
2d0ca824 5936 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
0484b454 5937 GD->IE relaxation:
2d0ca824
YN
5938 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
5939
5940 Where R is x for lp64 mode, and w for ILP32 mode. */
0484b454 5941 if (is_local)
2d0ca824 5942 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
0484b454
RL
5943 return bfd_reloc_continue;
5944
5945 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5946 if (is_local)
5947 {
5948 /* GD->LE relaxation:
2d0ca824
YN
5949 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
5950
5951 Where R is x for lp64 mode, and w for ILP32 mode. */
5952 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
0484b454
RL
5953 return bfd_reloc_continue;
5954 }
5955 else
5956 {
5957 /* GD->IE relaxation:
2d0ca824
YN
5958 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
5959
5960 Where R is x for lp64 mode, and w for ILP32 mode. */
0484b454 5961 insn = bfd_getl32 (contents + rel->r_offset);
2d0ca824 5962 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
0484b454
RL
5963 return bfd_reloc_continue;
5964 }
5965
a6bb11b2 5966 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a06ea964 5967 /* IE->LE relaxation:
2d0ca824
YN
5968 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
5969
5970 Where R is x for lp64 mode, and w for ILP32 mode. */
a06ea964
NC
5971 if (is_local)
5972 {
5973 insn = bfd_getl32 (contents + rel->r_offset);
2d0ca824 5974 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
a06ea964
NC
5975 }
5976 return bfd_reloc_continue;
5977
a6bb11b2 5978 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
a06ea964 5979 /* IE->LE relaxation:
2d0ca824
YN
5980 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
5981
5982 Where R is x for lp64 mode, and w for ILP32 mode. */
a06ea964
NC
5983 if (is_local)
5984 {
5985 insn = bfd_getl32 (contents + rel->r_offset);
2d0ca824 5986 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
a06ea964
NC
5987 }
5988 return bfd_reloc_continue;
5989
259364ad
JW
5990 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5991 /* LD->LE relaxation (tiny):
5992 adr x0, :tlsldm:x => mrs x0, tpidr_el0
c1fc2d7e
YN
5993 bl __tls_get_addr => add R0, R0, TCB_SIZE
5994
5995 Where R is x for lp64 mode, and w for ilp32 mode. */
259364ad
JW
5996 if (is_local)
5997 {
5998 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5999 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6000 /* No need of CALL26 relocation for tls_get_addr. */
6001 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6002 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
2d0ca824
YN
6003 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6004 contents + rel->r_offset + 4);
259364ad
JW
6005 return bfd_reloc_ok;
6006 }
6007 return bfd_reloc_continue;
6008
6009 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6010 /* LD->LE relaxation (small):
6011 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6012 */
6013 if (is_local)
6014 {
6015 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6016 return bfd_reloc_ok;
6017 }
6018 return bfd_reloc_continue;
6019
6020 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6021 /* LD->LE relaxation (small):
c1fc2d7e 6022 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
259364ad 6023 bl __tls_get_addr => nop
c1fc2d7e
YN
6024
6025 Where R is x for lp64 mode, and w for ilp32 mode. */
259364ad
JW
6026 if (is_local)
6027 {
6028 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6029 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6030 /* No need of CALL26 relocation for tls_get_addr. */
6031 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
2d0ca824
YN
6032 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6033 contents + rel->r_offset + 0);
c1fc2d7e 6034 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
259364ad
JW
6035 return bfd_reloc_ok;
6036 }
6037 return bfd_reloc_continue;
6038
a06ea964
NC
6039 default:
6040 return bfd_reloc_continue;
6041 }
6042
6043 return bfd_reloc_ok;
6044}
6045
6046/* Relocate an AArch64 ELF section. */
6047
6048static bfd_boolean
cec5225b 6049elfNN_aarch64_relocate_section (bfd *output_bfd,
a06ea964
NC
6050 struct bfd_link_info *info,
6051 bfd *input_bfd,
6052 asection *input_section,
6053 bfd_byte *contents,
6054 Elf_Internal_Rela *relocs,
6055 Elf_Internal_Sym *local_syms,
6056 asection **local_sections)
6057{
6058 Elf_Internal_Shdr *symtab_hdr;
6059 struct elf_link_hash_entry **sym_hashes;
6060 Elf_Internal_Rela *rel;
6061 Elf_Internal_Rela *relend;
6062 const char *name;
cec5225b 6063 struct elf_aarch64_link_hash_table *globals;
a06ea964
NC
6064 bfd_boolean save_addend = FALSE;
6065 bfd_vma addend = 0;
6066
cec5225b 6067 globals = elf_aarch64_hash_table (info);
a06ea964
NC
6068
6069 symtab_hdr = &elf_symtab_hdr (input_bfd);
6070 sym_hashes = elf_sym_hashes (input_bfd);
6071
6072 rel = relocs;
6073 relend = relocs + input_section->reloc_count;
6074 for (; rel < relend; rel++)
6075 {
6076 unsigned int r_type;
a6bb11b2
YZ
6077 bfd_reloc_code_real_type bfd_r_type;
6078 bfd_reloc_code_real_type relaxed_bfd_r_type;
a06ea964
NC
6079 reloc_howto_type *howto;
6080 unsigned long r_symndx;
6081 Elf_Internal_Sym *sym;
6082 asection *sec;
6083 struct elf_link_hash_entry *h;
6084 bfd_vma relocation;
6085 bfd_reloc_status_type r;
6086 arelent bfd_reloc;
6087 char sym_type;
6088 bfd_boolean unresolved_reloc = FALSE;
6089 char *error_message = NULL;
6090
cec5225b
YZ
6091 r_symndx = ELFNN_R_SYM (rel->r_info);
6092 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964 6093
47aeb64c 6094 howto = bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964 6095
7fcfd62d 6096 if (howto == NULL)
47aeb64c
NC
6097 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6098
a6bb11b2 6099 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
7fcfd62d 6100
a06ea964
NC
6101 h = NULL;
6102 sym = NULL;
6103 sec = NULL;
6104
6105 if (r_symndx < symtab_hdr->sh_info)
6106 {
6107 sym = local_syms + r_symndx;
cec5225b 6108 sym_type = ELFNN_ST_TYPE (sym->st_info);
a06ea964
NC
6109 sec = local_sections[r_symndx];
6110
6111 /* An object file might have a reference to a local
6112 undefined symbol. This is a daft object file, but we
6113 should at least do something about it. */
6114 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6115 && bfd_is_und_section (sec)
6116 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
1a72702b
AM
6117 (*info->callbacks->undefined_symbol)
6118 (info, bfd_elf_string_from_elf_section
6119 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6120 input_bfd, input_section, rel->r_offset, TRUE);
a06ea964 6121
a06ea964 6122 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1419bbe5
WN
6123
6124 /* Relocate against local STT_GNU_IFUNC symbol. */
0e1862bb 6125 if (!bfd_link_relocatable (info)
1419bbe5
WN
6126 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6127 {
6128 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6129 rel, FALSE);
6130 if (h == NULL)
6131 abort ();
6132
6133 /* Set STT_GNU_IFUNC symbol value. */
6134 h->root.u.def.value = sym->st_value;
6135 h->root.u.def.section = sec;
6136 }
a06ea964
NC
6137 }
6138 else
6139 {
62d887d4 6140 bfd_boolean warned, ignored;
a06ea964
NC
6141
6142 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6143 r_symndx, symtab_hdr, sym_hashes,
6144 h, sec, relocation,
62d887d4 6145 unresolved_reloc, warned, ignored);
a06ea964
NC
6146
6147 sym_type = h->type;
6148 }
6149
6150 if (sec != NULL && discarded_section (sec))
6151 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6152 rel, 1, relend, howto, 0, contents);
6153
0e1862bb 6154 if (bfd_link_relocatable (info))
2e0488d3 6155 continue;
a06ea964
NC
6156
6157 if (h != NULL)
6158 name = h->root.root.string;
6159 else
6160 {
6161 name = (bfd_elf_string_from_elf_section
6162 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6163 if (name == NULL || *name == '\0')
6164 name = bfd_section_name (input_bfd, sec);
6165 }
6166
6167 if (r_symndx != 0
6168 && r_type != R_AARCH64_NONE
6169 && r_type != R_AARCH64_NULL
6170 && (h == NULL
6171 || h->root.type == bfd_link_hash_defined
6172 || h->root.type == bfd_link_hash_defweak)
a6bb11b2 6173 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
a06ea964 6174 {
4eca0228 6175 _bfd_error_handler
a06ea964 6176 ((sym_type == STT_TLS
695344c0 6177 /* xgettext:c-format */
d42c267e 6178 ? _("%B(%A+%#Lx): %s used with TLS symbol %s")
695344c0 6179 /* xgettext:c-format */
d42c267e 6180 : _("%B(%A+%#Lx): %s used with non-TLS symbol %s")),
a06ea964 6181 input_bfd,
d42c267e 6182 input_section, rel->r_offset, howto->name, name);
a06ea964
NC
6183 }
6184
a06ea964
NC
6185 /* We relax only if we can see that there can be a valid transition
6186 from a reloc type to another.
cec5225b 6187 We call elfNN_aarch64_final_link_relocate unless we're completely
a06ea964
NC
6188 done, i.e., the relaxation produced the final output we want. */
6189
a6bb11b2
YZ
6190 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6191 h, r_symndx);
6192 if (relaxed_bfd_r_type != bfd_r_type)
a06ea964 6193 {
a6bb11b2
YZ
6194 bfd_r_type = relaxed_bfd_r_type;
6195 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6196 BFD_ASSERT (howto != NULL);
6197 r_type = howto->type;
06d2788c 6198 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
a06ea964
NC
6199 unresolved_reloc = 0;
6200 }
6201 else
6202 r = bfd_reloc_continue;
6203
6204 /* There may be multiple consecutive relocations for the
6205 same offset. In that case we are supposed to treat the
6206 output of each relocation as the addend for the next. */
6207 if (rel + 1 < relend
6208 && rel->r_offset == rel[1].r_offset
cec5225b
YZ
6209 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6210 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
a06ea964
NC
6211 save_addend = TRUE;
6212 else
6213 save_addend = FALSE;
6214
6215 if (r == bfd_reloc_continue)
cec5225b 6216 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
a06ea964
NC
6217 input_section, contents, rel,
6218 relocation, info, sec,
6219 h, &unresolved_reloc,
1419bbe5 6220 save_addend, &addend, sym);
a06ea964 6221
a6bb11b2 6222 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 6223 {
ce336788 6224 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a6bb11b2 6225 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 6226 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7ba7cfe4 6227 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
94facae3 6228 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
73f925cc 6229 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 6230 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 6231 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a06ea964
NC
6232 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6233 {
6234 bfd_boolean need_relocs = FALSE;
6235 bfd_byte *loc;
6236 int indx;
6237 bfd_vma off;
6238
6239 off = symbol_got_offset (input_bfd, h, r_symndx);
6240 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6241
6242 need_relocs =
0e1862bb 6243 (bfd_link_pic (info) || indx != 0) &&
a06ea964
NC
6244 (h == NULL
6245 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6246 || h->root.type != bfd_link_hash_undefweak);
6247
6248 BFD_ASSERT (globals->root.srelgot != NULL);
6249
6250 if (need_relocs)
6251 {
6252 Elf_Internal_Rela rela;
a6bb11b2 6253 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
a06ea964
NC
6254 rela.r_addend = 0;
6255 rela.r_offset = globals->root.sgot->output_section->vma +
6256 globals->root.sgot->output_offset + off;
6257
6258
6259 loc = globals->root.srelgot->contents;
6260 loc += globals->root.srelgot->reloc_count++
6261 * RELOC_SIZE (htab);
cec5225b 6262 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 6263
f69e4920
JW
6264 bfd_reloc_code_real_type real_type =
6265 elfNN_aarch64_bfd_reloc_from_type (r_type);
6266
6267 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
73f925cc
JW
6268 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6269 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
77a69ff8
JW
6270 {
6271 /* For local dynamic, don't generate DTPREL in any case.
6272 Initialize the DTPREL slot into zero, so we get module
6273 base address when invoke runtime TLS resolver. */
6274 bfd_put_NN (output_bfd, 0,
6275 globals->root.sgot->contents + off
6276 + GOT_ENTRY_SIZE);
6277 }
6278 else if (indx == 0)
a06ea964 6279 {
cec5225b 6280 bfd_put_NN (output_bfd,
a06ea964
NC
6281 relocation - dtpoff_base (info),
6282 globals->root.sgot->contents + off
6283 + GOT_ENTRY_SIZE);
6284 }
6285 else
6286 {
6287 /* This TLS symbol is global. We emit a
6288 relocation to fixup the tls offset at load
6289 time. */
6290 rela.r_info =
a6bb11b2 6291 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
a06ea964
NC
6292 rela.r_addend = 0;
6293 rela.r_offset =
6294 (globals->root.sgot->output_section->vma
6295 + globals->root.sgot->output_offset + off
6296 + GOT_ENTRY_SIZE);
6297
6298 loc = globals->root.srelgot->contents;
6299 loc += globals->root.srelgot->reloc_count++
6300 * RELOC_SIZE (globals);
cec5225b
YZ
6301 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6302 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
6303 globals->root.sgot->contents + off
6304 + GOT_ENTRY_SIZE);
6305 }
6306 }
6307 else
6308 {
cec5225b 6309 bfd_put_NN (output_bfd, (bfd_vma) 1,
a06ea964 6310 globals->root.sgot->contents + off);
cec5225b 6311 bfd_put_NN (output_bfd,
a06ea964
NC
6312 relocation - dtpoff_base (info),
6313 globals->root.sgot->contents + off
6314 + GOT_ENTRY_SIZE);
6315 }
6316
6317 symbol_got_offset_mark (input_bfd, h, r_symndx);
6318 }
6319 break;
6320
a6bb11b2
YZ
6321 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6322 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
043bf05a 6323 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
6324 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6325 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
a06ea964
NC
6326 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6327 {
6328 bfd_boolean need_relocs = FALSE;
6329 bfd_byte *loc;
6330 int indx;
6331 bfd_vma off;
6332
6333 off = symbol_got_offset (input_bfd, h, r_symndx);
6334
6335 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6336
6337 need_relocs =
0e1862bb 6338 (bfd_link_pic (info) || indx != 0) &&
a06ea964
NC
6339 (h == NULL
6340 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6341 || h->root.type != bfd_link_hash_undefweak);
6342
6343 BFD_ASSERT (globals->root.srelgot != NULL);
6344
6345 if (need_relocs)
6346 {
6347 Elf_Internal_Rela rela;
6348
6349 if (indx == 0)
6350 rela.r_addend = relocation - dtpoff_base (info);
6351 else
6352 rela.r_addend = 0;
6353
a6bb11b2 6354 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
a06ea964
NC
6355 rela.r_offset = globals->root.sgot->output_section->vma +
6356 globals->root.sgot->output_offset + off;
6357
6358 loc = globals->root.srelgot->contents;
6359 loc += globals->root.srelgot->reloc_count++
6360 * RELOC_SIZE (htab);
6361
cec5225b 6362 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 6363
cec5225b 6364 bfd_put_NN (output_bfd, rela.r_addend,
a06ea964
NC
6365 globals->root.sgot->contents + off);
6366 }
6367 else
cec5225b 6368 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
a06ea964
NC
6369 globals->root.sgot->contents + off);
6370
6371 symbol_got_offset_mark (input_bfd, h, r_symndx);
6372 }
6373 break;
6374
f955cccf 6375 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
a6bb11b2 6376 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6377 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
a6bb11b2 6378 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
1ada945d 6379 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
0484b454
RL
6380 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6381 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964
NC
6382 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6383 {
6384 bfd_boolean need_relocs = FALSE;
6385 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6386 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6387
6388 need_relocs = (h == NULL
6389 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6390 || h->root.type != bfd_link_hash_undefweak);
6391
6392 BFD_ASSERT (globals->root.srelgot != NULL);
6393 BFD_ASSERT (globals->root.sgot != NULL);
6394
6395 if (need_relocs)
6396 {
6397 bfd_byte *loc;
6398 Elf_Internal_Rela rela;
a6bb11b2
YZ
6399 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6400
a06ea964
NC
6401 rela.r_addend = 0;
6402 rela.r_offset = (globals->root.sgotplt->output_section->vma
6403 + globals->root.sgotplt->output_offset
6404 + off + globals->sgotplt_jump_table_size);
6405
6406 if (indx == 0)
6407 rela.r_addend = relocation - dtpoff_base (info);
6408
6409 /* Allocate the next available slot in the PLT reloc
6410 section to hold our R_AARCH64_TLSDESC, the next
6411 available slot is determined from reloc_count,
6412 which we step. But note, reloc_count was
6413 artifically moved down while allocating slots for
6414 real PLT relocs such that all of the PLT relocs
6415 will fit above the initial reloc_count and the
6416 extra stuff will fit below. */
6417 loc = globals->root.srelplt->contents;
6418 loc += globals->root.srelplt->reloc_count++
6419 * RELOC_SIZE (globals);
6420
cec5225b 6421 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 6422
cec5225b 6423 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
6424 globals->root.sgotplt->contents + off +
6425 globals->sgotplt_jump_table_size);
cec5225b 6426 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
6427 globals->root.sgotplt->contents + off +
6428 globals->sgotplt_jump_table_size +
6429 GOT_ENTRY_SIZE);
6430 }
6431
6432 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6433 }
6434 break;
a6bb11b2
YZ
6435 default:
6436 break;
a06ea964
NC
6437 }
6438
a06ea964
NC
6439 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6440 because such sections are not SEC_ALLOC and thus ld.so will
6441 not process them. */
6442 if (unresolved_reloc
6443 && !((input_section->flags & SEC_DEBUGGING) != 0
6444 && h->def_dynamic)
6445 && _bfd_elf_section_offset (output_bfd, info, input_section,
6446 +rel->r_offset) != (bfd_vma) - 1)
6447 {
4eca0228 6448 _bfd_error_handler
695344c0 6449 /* xgettext:c-format */
d42c267e
AM
6450 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
6451 input_bfd, input_section, rel->r_offset, howto->name,
a06ea964
NC
6452 h->root.root.string);
6453 return FALSE;
6454 }
6455
6456 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6457 {
c674f5cd
JW
6458 bfd_reloc_code_real_type real_r_type
6459 = elfNN_aarch64_bfd_reloc_from_type (r_type);
6460
a06ea964
NC
6461 switch (r)
6462 {
6463 case bfd_reloc_overflow:
1a72702b
AM
6464 (*info->callbacks->reloc_overflow)
6465 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6466 input_bfd, input_section, rel->r_offset);
c674f5cd
JW
6467 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6468 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6469 {
6470 (*info->callbacks->warning)
6471 (info,
6472 _("Too many GOT entries for -fpic, "
6473 "please recompile with -fPIC"),
6474 name, input_bfd, input_section, rel->r_offset);
6475 return FALSE;
6476 }
027e9c75
NC
6477 /* Overflow can occur when a variable is referenced with a type
6478 that has a larger alignment than the type with which it was
6479 declared. eg:
6480 file1.c: extern int foo; int a (void) { return foo; }
6481 file2.c: char bar, foo, baz;
6482 If the variable is placed into a data section at an offset
6483 that is incompatible with the larger alignment requirement
6484 overflow will occur. (Strictly speaking this is not overflow
6485 but rather an alignment problem, but the bfd_reloc_ error
6486 enum does not have a value to cover that situation).
6487
6488 Try to catch this situation here and provide a more helpful
6489 error message to the user. */
6490 if (addend & ((1 << howto->rightshift) - 1)
6491 /* FIXME: Are we testing all of the appropriate reloc
6492 types here ? */
6493 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6494 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6495 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6496 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6497 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6498 {
6499 info->callbacks->warning
6500 (info, _("One possible cause of this error is that the \
6501symbol is being referenced in the indicated code as if it had a larger \
6502alignment than was declared where it was defined."),
6503 name, input_bfd, input_section, rel->r_offset);
6504 }
a06ea964
NC
6505 break;
6506
6507 case bfd_reloc_undefined:
1a72702b
AM
6508 (*info->callbacks->undefined_symbol)
6509 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
a06ea964
NC
6510 break;
6511
6512 case bfd_reloc_outofrange:
6513 error_message = _("out of range");
6514 goto common_error;
6515
6516 case bfd_reloc_notsupported:
6517 error_message = _("unsupported relocation");
6518 goto common_error;
6519
6520 case bfd_reloc_dangerous:
6521 /* error_message should already be set. */
6522 goto common_error;
6523
6524 default:
6525 error_message = _("unknown error");
6526 /* Fall through. */
6527
6528 common_error:
6529 BFD_ASSERT (error_message != NULL);
1a72702b
AM
6530 (*info->callbacks->reloc_dangerous)
6531 (info, error_message, input_bfd, input_section, rel->r_offset);
a06ea964
NC
6532 break;
6533 }
6534 }
027e9c75
NC
6535
6536 if (!save_addend)
6537 addend = 0;
a06ea964
NC
6538 }
6539
6540 return TRUE;
6541}
6542
6543/* Set the right machine number. */
6544
6545static bfd_boolean
cec5225b 6546elfNN_aarch64_object_p (bfd *abfd)
a06ea964 6547{
cec5225b
YZ
6548#if ARCH_SIZE == 32
6549 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6550#else
a06ea964 6551 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
cec5225b 6552#endif
a06ea964
NC
6553 return TRUE;
6554}
6555
6556/* Function to keep AArch64 specific flags in the ELF header. */
6557
6558static bfd_boolean
cec5225b 6559elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
a06ea964
NC
6560{
6561 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6562 {
6563 }
6564 else
6565 {
6566 elf_elfheader (abfd)->e_flags = flags;
6567 elf_flags_init (abfd) = TRUE;
6568 }
6569
6570 return TRUE;
6571}
6572
a06ea964
NC
6573/* Merge backend specific data from an object file to the output
6574 object file when linking. */
6575
6576static bfd_boolean
50e03d47 6577elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
a06ea964 6578{
50e03d47 6579 bfd *obfd = info->output_bfd;
a06ea964
NC
6580 flagword out_flags;
6581 flagword in_flags;
6582 bfd_boolean flags_compatible = TRUE;
6583 asection *sec;
6584
6585 /* Check if we have the same endianess. */
50e03d47 6586 if (!_bfd_generic_verify_endian_match (ibfd, info))
a06ea964
NC
6587 return FALSE;
6588
6589 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6590 return TRUE;
6591
6592 /* The input BFD must have had its flags initialised. */
6593 /* The following seems bogus to me -- The flags are initialized in
6594 the assembler but I don't think an elf_flags_init field is
6595 written into the object. */
6596 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6597
6598 in_flags = elf_elfheader (ibfd)->e_flags;
6599 out_flags = elf_elfheader (obfd)->e_flags;
6600
6601 if (!elf_flags_init (obfd))
6602 {
6603 /* If the input is the default architecture and had the default
6604 flags then do not bother setting the flags for the output
6605 architecture, instead allow future merges to do this. If no
6606 future merges ever set these flags then they will retain their
6607 uninitialised values, which surprise surprise, correspond
6608 to the default values. */
6609 if (bfd_get_arch_info (ibfd)->the_default
6610 && elf_elfheader (ibfd)->e_flags == 0)
6611 return TRUE;
6612
6613 elf_flags_init (obfd) = TRUE;
6614 elf_elfheader (obfd)->e_flags = in_flags;
6615
6616 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6617 && bfd_get_arch_info (obfd)->the_default)
6618 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6619 bfd_get_mach (ibfd));
6620
6621 return TRUE;
6622 }
6623
6624 /* Identical flags must be compatible. */
6625 if (in_flags == out_flags)
6626 return TRUE;
6627
6628 /* Check to see if the input BFD actually contains any sections. If
6629 not, its flags may not have been initialised either, but it
6630 cannot actually cause any incompatiblity. Do not short-circuit
6631 dynamic objects; their section list may be emptied by
6632 elf_link_add_object_symbols.
6633
6634 Also check to see if there are no code sections in the input.
6635 In this case there is no need to check for code specific flags.
6636 XXX - do we need to worry about floating-point format compatability
6637 in data sections ? */
6638 if (!(ibfd->flags & DYNAMIC))
6639 {
6640 bfd_boolean null_input_bfd = TRUE;
6641 bfd_boolean only_data_sections = TRUE;
6642
6643 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6644 {
6645 if ((bfd_get_section_flags (ibfd, sec)
6646 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6647 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6648 only_data_sections = FALSE;
6649
6650 null_input_bfd = FALSE;
6651 break;
6652 }
6653
6654 if (null_input_bfd || only_data_sections)
6655 return TRUE;
6656 }
6657
6658 return flags_compatible;
6659}
6660
6661/* Display the flags field. */
6662
6663static bfd_boolean
cec5225b 6664elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
a06ea964
NC
6665{
6666 FILE *file = (FILE *) ptr;
6667 unsigned long flags;
6668
6669 BFD_ASSERT (abfd != NULL && ptr != NULL);
6670
6671 /* Print normal ELF private data. */
6672 _bfd_elf_print_private_bfd_data (abfd, ptr);
6673
6674 flags = elf_elfheader (abfd)->e_flags;
6675 /* Ignore init flag - it may not be set, despite the flags field
6676 containing valid data. */
6677
6678 /* xgettext:c-format */
6679 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6680
6681 if (flags)
6682 fprintf (file, _("<Unrecognised flag bits set>"));
6683
6684 fputc ('\n', file);
6685
6686 return TRUE;
6687}
6688
6689/* Update the got entry reference counts for the section being removed. */
6690
6691static bfd_boolean
cec5225b 6692elfNN_aarch64_gc_sweep_hook (bfd *abfd,
cb8af559
NC
6693 struct bfd_link_info *info,
6694 asection *sec,
6695 const Elf_Internal_Rela * relocs)
a06ea964 6696{
cec5225b 6697 struct elf_aarch64_link_hash_table *htab;
59c108f7
NC
6698 Elf_Internal_Shdr *symtab_hdr;
6699 struct elf_link_hash_entry **sym_hashes;
cb8af559 6700 struct elf_aarch64_local_symbol *locals;
59c108f7
NC
6701 const Elf_Internal_Rela *rel, *relend;
6702
0e1862bb 6703 if (bfd_link_relocatable (info))
59c108f7
NC
6704 return TRUE;
6705
cec5225b 6706 htab = elf_aarch64_hash_table (info);
59c108f7
NC
6707
6708 if (htab == NULL)
6709 return FALSE;
6710
6711 elf_section_data (sec)->local_dynrel = NULL;
6712
6713 symtab_hdr = &elf_symtab_hdr (abfd);
6714 sym_hashes = elf_sym_hashes (abfd);
6715
cec5225b 6716 locals = elf_aarch64_locals (abfd);
59c108f7
NC
6717
6718 relend = relocs + sec->reloc_count;
6719 for (rel = relocs; rel < relend; rel++)
6720 {
6721 unsigned long r_symndx;
6722 unsigned int r_type;
6723 struct elf_link_hash_entry *h = NULL;
6724
cec5225b 6725 r_symndx = ELFNN_R_SYM (rel->r_info);
8847944f 6726
59c108f7
NC
6727 if (r_symndx >= symtab_hdr->sh_info)
6728 {
8847944f 6729
59c108f7
NC
6730 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6731 while (h->root.type == bfd_link_hash_indirect
6732 || h->root.type == bfd_link_hash_warning)
6733 h = (struct elf_link_hash_entry *) h->root.u.i.link;
59c108f7
NC
6734 }
6735 else
6736 {
6737 Elf_Internal_Sym *isym;
6738
8847944f 6739 /* A local symbol. */
59c108f7
NC
6740 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6741 abfd, r_symndx);
1419bbe5
WN
6742
6743 /* Check relocation against local STT_GNU_IFUNC symbol. */
6744 if (isym != NULL
6745 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6746 {
6747 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6748 if (h == NULL)
6749 abort ();
6750 }
6751 }
6752
6753 if (h)
6754 {
6755 struct elf_aarch64_link_hash_entry *eh;
6756 struct elf_dyn_relocs **pp;
6757 struct elf_dyn_relocs *p;
6758
6759 eh = (struct elf_aarch64_link_hash_entry *) h;
6760
6761 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6762 if (p->sec == sec)
6763 {
6764 /* Everything must go for SEC. */
6765 *pp = p->next;
6766 break;
6767 }
59c108f7
NC
6768 }
6769
cec5225b 6770 r_type = ELFNN_R_TYPE (rel->r_info);
a6bb11b2 6771 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
59c108f7 6772 {
a6bb11b2 6773 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57 6774 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 6775 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7bcccb57 6776 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
a2e1db00 6777 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
99ad26cb 6778 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7bcccb57 6779 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
dc8008f5 6780 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
74a1bfe1 6781 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
f955cccf 6782 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7bcccb57 6783 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6784 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7bcccb57 6785 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
f955cccf 6786 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
1ada945d 6787 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
0484b454
RL
6788 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6789 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a6bb11b2 6790 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 6791 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 6792 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7ba7cfe4 6793 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
94facae3 6794 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a6bb11b2 6795 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6796 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 6797 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 6798 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
6799 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6800 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
73f925cc 6801 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 6802 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 6803 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a6bb11b2 6804 if (h != NULL)
59c108f7
NC
6805 {
6806 if (h->got.refcount > 0)
6807 h->got.refcount -= 1;
1419bbe5
WN
6808
6809 if (h->type == STT_GNU_IFUNC)
6810 {
6811 if (h->plt.refcount > 0)
6812 h->plt.refcount -= 1;
6813 }
59c108f7 6814 }
cb8af559 6815 else if (locals != NULL)
59c108f7 6816 {
cb8af559
NC
6817 if (locals[r_symndx].got_refcount > 0)
6818 locals[r_symndx].got_refcount -= 1;
59c108f7
NC
6819 }
6820 break;
6821
a6bb11b2
YZ
6822 case BFD_RELOC_AARCH64_CALL26:
6823 case BFD_RELOC_AARCH64_JUMP26:
6824 /* If this is a local symbol then we resolve it
6825 directly without creating a PLT entry. */
59c108f7
NC
6826 if (h == NULL)
6827 continue;
6828
6829 if (h->plt.refcount > 0)
6830 h->plt.refcount -= 1;
6831 break;
6832
6353d82b 6833 case BFD_RELOC_AARCH64_ADD_LO12:
ce336788
JW
6834 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6835 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6836 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6353d82b
JW
6837 case BFD_RELOC_AARCH64_LDST128_LO12:
6838 case BFD_RELOC_AARCH64_LDST16_LO12:
6839 case BFD_RELOC_AARCH64_LDST32_LO12:
6840 case BFD_RELOC_AARCH64_LDST64_LO12:
6841 case BFD_RELOC_AARCH64_LDST8_LO12:
6842 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
614b09ce
JW
6843 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6844 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6845 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6846 case BFD_RELOC_AARCH64_MOVW_G3:
a6bb11b2 6847 case BFD_RELOC_AARCH64_NN:
6353d82b 6848 if (h != NULL && !bfd_link_pic (info))
59c108f7
NC
6849 {
6850 if (h->plt.refcount > 0)
6851 h->plt.refcount -= 1;
6852 }
6853 break;
cec5225b 6854
59c108f7
NC
6855 default:
6856 break;
6857 }
6858 }
6859
a06ea964
NC
6860 return TRUE;
6861}
6862
6353d82b
JW
6863/* Return true if we need copy relocation against EH. */
6864
6865static bfd_boolean
6866need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
6867{
6868 struct elf_dyn_relocs *p;
6869 asection *s;
6870
6871 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6872 {
6873 /* If there is any pc-relative reference, we need to keep copy relocation
6874 to avoid propagating the relocation into runtime that current glibc
6875 does not support. */
6876 if (p->pc_count)
6877 return TRUE;
6878
6879 s = p->sec->output_section;
6880 /* Need copy relocation if it's against read-only section. */
6881 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6882 return TRUE;
6883 }
6884
6885 return FALSE;
6886}
6887
a06ea964
NC
6888/* Adjust a symbol defined by a dynamic object and referenced by a
6889 regular object. The current definition is in some section of the
6890 dynamic object, but we're not including those sections. We have to
6891 change the definition to something the rest of the link can
6892 understand. */
6893
6894static bfd_boolean
cec5225b 6895elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
a06ea964
NC
6896 struct elf_link_hash_entry *h)
6897{
cec5225b 6898 struct elf_aarch64_link_hash_table *htab;
5474d94f 6899 asection *s, *srel;
a06ea964
NC
6900
6901 /* If this is a function, put it in the procedure linkage table. We
6902 will fill in the contents of the procedure linkage table later,
6903 when we know the address of the .got section. */
1419bbe5 6904 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
a06ea964
NC
6905 {
6906 if (h->plt.refcount <= 0
1419bbe5
WN
6907 || (h->type != STT_GNU_IFUNC
6908 && (SYMBOL_CALLS_LOCAL (info, h)
6909 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6910 && h->root.type == bfd_link_hash_undefweak))))
a06ea964
NC
6911 {
6912 /* This case can occur if we saw a CALL26 reloc in
6913 an input file, but the symbol wasn't referred to
6914 by a dynamic object or all references were
6915 garbage collected. In which case we can end up
6916 resolving. */
6917 h->plt.offset = (bfd_vma) - 1;
6918 h->needs_plt = 0;
6919 }
6920
6921 return TRUE;
6922 }
6923 else
80de0c6d 6924 /* Otherwise, reset to -1. */
a06ea964
NC
6925 h->plt.offset = (bfd_vma) - 1;
6926
6927
6928 /* If this is a weak symbol, and there is a real definition, the
6929 processor independent code will have arranged for us to see the
6930 real definition first, and we can just use the same value. */
6931 if (h->u.weakdef != NULL)
6932 {
6933 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6934 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6935 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6936 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6937 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6938 h->non_got_ref = h->u.weakdef->non_got_ref;
6939 return TRUE;
6940 }
6941
6942 /* If we are creating a shared library, we must presume that the
6943 only references to the symbol are via the global offset table.
6944 For such cases we need not do anything here; the relocations will
6945 be handled correctly by relocate_section. */
0e1862bb 6946 if (bfd_link_pic (info))
a06ea964
NC
6947 return TRUE;
6948
6949 /* If there are no references to this symbol that do not use the
6950 GOT, we don't need to generate a copy reloc. */
6951 if (!h->non_got_ref)
6952 return TRUE;
6953
6954 /* If -z nocopyreloc was given, we won't generate them either. */
6955 if (info->nocopyreloc)
6956 {
6957 h->non_got_ref = 0;
6958 return TRUE;
6959 }
6960
6353d82b
JW
6961 if (ELIMINATE_COPY_RELOCS)
6962 {
6963 struct elf_aarch64_link_hash_entry *eh;
6964 /* If we didn't find any dynamic relocs in read-only sections, then
6965 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6966 eh = (struct elf_aarch64_link_hash_entry *) h;
6967 if (!need_copy_relocation_p (eh))
6968 {
6969 h->non_got_ref = 0;
6970 return TRUE;
6971 }
6972 }
6973
a06ea964
NC
6974 /* We must allocate the symbol in our .dynbss section, which will
6975 become part of the .bss section of the executable. There will be
6976 an entry for this symbol in the .dynsym section. The dynamic
6977 object will contain position independent code, so all references
6978 from the dynamic object to this symbol will go through the global
6979 offset table. The dynamic linker will use the .dynsym entry to
6980 determine the address it must put in the global offset table, so
6981 both the dynamic object and the regular object will refer to the
6982 same memory location for the variable. */
6983
cec5225b 6984 htab = elf_aarch64_hash_table (info);
a06ea964
NC
6985
6986 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6987 to copy the initial value out of the dynamic object and into the
6988 runtime process image. */
5474d94f
AM
6989 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6990 {
6991 s = htab->root.sdynrelro;
6992 srel = htab->root.sreldynrelro;
6993 }
6994 else
6995 {
6996 s = htab->root.sdynbss;
6997 srel = htab->root.srelbss;
6998 }
a06ea964
NC
6999 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7000 {
5474d94f 7001 srel->size += RELOC_SIZE (htab);
a06ea964
NC
7002 h->needs_copy = 1;
7003 }
7004
6cabe1ea 7005 return _bfd_elf_adjust_dynamic_copy (info, h, s);
a06ea964
NC
7006
7007}
7008
7009static bfd_boolean
cec5225b 7010elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
a06ea964
NC
7011{
7012 struct elf_aarch64_local_symbol *locals;
cec5225b 7013 locals = elf_aarch64_locals (abfd);
a06ea964
NC
7014 if (locals == NULL)
7015 {
7016 locals = (struct elf_aarch64_local_symbol *)
7017 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7018 if (locals == NULL)
7019 return FALSE;
cec5225b 7020 elf_aarch64_locals (abfd) = locals;
a06ea964
NC
7021 }
7022 return TRUE;
7023}
7024
cc0efaa8
MS
7025/* Create the .got section to hold the global offset table. */
7026
7027static bfd_boolean
7028aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7029{
7030 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7031 flagword flags;
7032 asection *s;
7033 struct elf_link_hash_entry *h;
7034 struct elf_link_hash_table *htab = elf_hash_table (info);
7035
7036 /* This function may be called more than once. */
ce558b89 7037 if (htab->sgot != NULL)
cc0efaa8
MS
7038 return TRUE;
7039
7040 flags = bed->dynamic_sec_flags;
7041
7042 s = bfd_make_section_anyway_with_flags (abfd,
7043 (bed->rela_plts_and_copies_p
7044 ? ".rela.got" : ".rel.got"),
7045 (bed->dynamic_sec_flags
7046 | SEC_READONLY));
7047 if (s == NULL
7048 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7049 return FALSE;
7050 htab->srelgot = s;
7051
7052 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7053 if (s == NULL
7054 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7055 return FALSE;
7056 htab->sgot = s;
7057 htab->sgot->size += GOT_ENTRY_SIZE;
7058
7059 if (bed->want_got_sym)
7060 {
7061 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7062 (or .got.plt) section. We don't do this in the linker script
7063 because we don't want to define the symbol if we are not creating
7064 a global offset table. */
7065 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7066 "_GLOBAL_OFFSET_TABLE_");
7067 elf_hash_table (info)->hgot = h;
7068 if (h == NULL)
7069 return FALSE;
7070 }
7071
7072 if (bed->want_got_plt)
7073 {
7074 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7075 if (s == NULL
7076 || !bfd_set_section_alignment (abfd, s,
7077 bed->s->log_file_align))
7078 return FALSE;
7079 htab->sgotplt = s;
7080 }
7081
7082 /* The first bit of the global offset table is the header. */
7083 s->size += bed->got_header_size;
7084
7085 return TRUE;
7086}
7087
a06ea964
NC
7088/* Look through the relocs for a section during the first phase. */
7089
7090static bfd_boolean
cec5225b 7091elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
a06ea964
NC
7092 asection *sec, const Elf_Internal_Rela *relocs)
7093{
7094 Elf_Internal_Shdr *symtab_hdr;
7095 struct elf_link_hash_entry **sym_hashes;
7096 const Elf_Internal_Rela *rel;
7097 const Elf_Internal_Rela *rel_end;
7098 asection *sreloc;
7099
cec5225b 7100 struct elf_aarch64_link_hash_table *htab;
a06ea964 7101
0e1862bb 7102 if (bfd_link_relocatable (info))
a06ea964
NC
7103 return TRUE;
7104
7105 BFD_ASSERT (is_aarch64_elf (abfd));
7106
cec5225b 7107 htab = elf_aarch64_hash_table (info);
a06ea964
NC
7108 sreloc = NULL;
7109
7110 symtab_hdr = &elf_symtab_hdr (abfd);
7111 sym_hashes = elf_sym_hashes (abfd);
a06ea964
NC
7112
7113 rel_end = relocs + sec->reloc_count;
7114 for (rel = relocs; rel < rel_end; rel++)
7115 {
7116 struct elf_link_hash_entry *h;
d42c267e 7117 unsigned int r_symndx;
a06ea964 7118 unsigned int r_type;
a6bb11b2 7119 bfd_reloc_code_real_type bfd_r_type;
1419bbe5 7120 Elf_Internal_Sym *isym;
a06ea964 7121
cec5225b
YZ
7122 r_symndx = ELFNN_R_SYM (rel->r_info);
7123 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
7124
7125 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7126 {
695344c0 7127 /* xgettext:c-format */
4eca0228 7128 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd, r_symndx);
a06ea964
NC
7129 return FALSE;
7130 }
7131
ed5acf27 7132 if (r_symndx < symtab_hdr->sh_info)
1419bbe5
WN
7133 {
7134 /* A local symbol. */
7135 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7136 abfd, r_symndx);
7137 if (isym == NULL)
7138 return FALSE;
7139
7140 /* Check relocation against local STT_GNU_IFUNC symbol. */
7141 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7142 {
7143 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7144 TRUE);
7145 if (h == NULL)
7146 return FALSE;
7147
7148 /* Fake a STT_GNU_IFUNC symbol. */
7149 h->type = STT_GNU_IFUNC;
7150 h->def_regular = 1;
7151 h->ref_regular = 1;
7152 h->forced_local = 1;
7153 h->root.type = bfd_link_hash_defined;
7154 }
7155 else
7156 h = NULL;
7157 }
a06ea964
NC
7158 else
7159 {
7160 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7161 while (h->root.type == bfd_link_hash_indirect
7162 || h->root.type == bfd_link_hash_warning)
7163 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
7164
7165 /* PR15323, ref flags aren't set for references in the same
7166 object. */
bc4e12de 7167 h->root.non_ir_ref_regular = 1;
a06ea964
NC
7168 }
7169
7170 /* Could be done earlier, if h were already available. */
a6bb11b2 7171 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
a06ea964 7172
1419bbe5
WN
7173 if (h != NULL)
7174 {
18f822a0
JW
7175 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7176 This shows up in particular in an R_AARCH64_PREL64 in large model
7177 when calculating the pc-relative address to .got section which is
7178 used to initialize the gp register. */
7179 if (h->root.root.string
7180 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7181 {
7182 if (htab->root.dynobj == NULL)
7183 htab->root.dynobj = abfd;
7184
7185 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7186 return FALSE;
7187
7188 BFD_ASSERT (h == htab->root.hgot);
7189 }
7190
1419bbe5
WN
7191 /* Create the ifunc sections for static executables. If we
7192 never see an indirect function symbol nor we are building
7193 a static executable, those sections will be empty and
7194 won't appear in output. */
7195 switch (bfd_r_type)
7196 {
7197 default:
7198 break;
7199
ce336788
JW
7200 case BFD_RELOC_AARCH64_ADD_LO12:
7201 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7202 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
1419bbe5 7203 case BFD_RELOC_AARCH64_CALL26:
ce336788 7204 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
1419bbe5 7205 case BFD_RELOC_AARCH64_JUMP26:
7018c030 7206 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
1419bbe5 7207 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
a2e1db00 7208 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
99ad26cb 7209 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
1419bbe5 7210 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
dc8008f5 7211 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
74a1bfe1 7212 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
ce336788 7213 case BFD_RELOC_AARCH64_NN:
1419bbe5
WN
7214 if (htab->root.dynobj == NULL)
7215 htab->root.dynobj = abfd;
7216 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7217 return FALSE;
7218 break;
7219 }
7220
2d0ca824 7221 /* It is referenced by a non-shared object. */
1419bbe5 7222 h->ref_regular = 1;
bc4e12de 7223 h->root.non_ir_ref_regular = 1;
1419bbe5
WN
7224 }
7225
a6bb11b2 7226 switch (bfd_r_type)
a06ea964 7227 {
6353d82b
JW
7228 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7229 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7230 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7231 case BFD_RELOC_AARCH64_MOVW_G3:
7232 if (bfd_link_pic (info))
7233 {
7234 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7235 _bfd_error_handler
7236 /* xgettext:c-format */
7237 (_("%B: relocation %s against `%s' can not be used when making "
7238 "a shared object; recompile with -fPIC"),
7239 abfd, elfNN_aarch64_howto_table[howto_index].name,
7240 (h) ? h->root.root.string : "a local symbol");
7241 bfd_set_error (bfd_error_bad_value);
7242 return FALSE;
7243 }
7244 /* Fall through. */
7245
7246 case BFD_RELOC_AARCH64_16_PCREL:
7247 case BFD_RELOC_AARCH64_32_PCREL:
7248 case BFD_RELOC_AARCH64_64_PCREL:
7249 case BFD_RELOC_AARCH64_ADD_LO12:
7250 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7251 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7252 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7253 case BFD_RELOC_AARCH64_LDST128_LO12:
7254 case BFD_RELOC_AARCH64_LDST16_LO12:
7255 case BFD_RELOC_AARCH64_LDST32_LO12:
7256 case BFD_RELOC_AARCH64_LDST64_LO12:
7257 case BFD_RELOC_AARCH64_LDST8_LO12:
7258 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7259 if (h == NULL || bfd_link_pic (info))
7260 break;
7261 /* Fall through. */
7262
a6bb11b2 7263 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
7264
7265 /* We don't need to handle relocs into sections not going into
7266 the "real" output. */
7267 if ((sec->flags & SEC_ALLOC) == 0)
7268 break;
7269
7270 if (h != NULL)
7271 {
0e1862bb 7272 if (!bfd_link_pic (info))
a06ea964
NC
7273 h->non_got_ref = 1;
7274
7275 h->plt.refcount += 1;
7276 h->pointer_equality_needed = 1;
7277 }
7278
7279 /* No need to do anything if we're not creating a shared
7280 object. */
6353d82b
JW
7281 if (!(bfd_link_pic (info)
7282 /* If on the other hand, we are creating an executable, we
7283 may need to keep relocations for symbols satisfied by a
7284 dynamic library if we manage to avoid copy relocs for the
7285 symbol.
7286
7287 NOTE: Currently, there is no support of copy relocs
7288 elimination on pc-relative relocation types, because there is
7289 no dynamic relocation support for them in glibc. We still
7290 record the dynamic symbol reference for them. This is
7291 because one symbol may be referenced by both absolute
7292 relocation (for example, BFD_RELOC_AARCH64_NN) and
7293 pc-relative relocation. We need full symbol reference
7294 information to make correct decision later in
7295 elfNN_aarch64_adjust_dynamic_symbol. */
7296 || (ELIMINATE_COPY_RELOCS
7297 && !bfd_link_pic (info)
7298 && h != NULL
7299 && (h->root.type == bfd_link_hash_defweak
7300 || !h->def_regular))))
a06ea964
NC
7301 break;
7302
7303 {
7304 struct elf_dyn_relocs *p;
7305 struct elf_dyn_relocs **head;
6353d82b 7306 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
a06ea964
NC
7307
7308 /* We must copy these reloc types into the output file.
7309 Create a reloc section in dynobj and make room for
7310 this reloc. */
7311 if (sreloc == NULL)
7312 {
7313 if (htab->root.dynobj == NULL)
7314 htab->root.dynobj = abfd;
7315
7316 sreloc = _bfd_elf_make_dynamic_reloc_section
0608afa7 7317 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
a06ea964
NC
7318
7319 if (sreloc == NULL)
7320 return FALSE;
7321 }
7322
7323 /* If this is a global symbol, we count the number of
7324 relocations we need for this symbol. */
7325 if (h != NULL)
7326 {
cec5225b
YZ
7327 struct elf_aarch64_link_hash_entry *eh;
7328 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
7329 head = &eh->dyn_relocs;
7330 }
7331 else
7332 {
7333 /* Track dynamic relocs needed for local syms too.
7334 We really need local syms available to do this
7335 easily. Oh well. */
7336
7337 asection *s;
7338 void **vpp;
a06ea964
NC
7339
7340 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7341 abfd, r_symndx);
7342 if (isym == NULL)
7343 return FALSE;
7344
7345 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7346 if (s == NULL)
7347 s = sec;
7348
7349 /* Beware of type punned pointers vs strict aliasing
7350 rules. */
7351 vpp = &(elf_section_data (s)->local_dynrel);
7352 head = (struct elf_dyn_relocs **) vpp;
7353 }
7354
7355 p = *head;
7356 if (p == NULL || p->sec != sec)
7357 {
7358 bfd_size_type amt = sizeof *p;
7359 p = ((struct elf_dyn_relocs *)
7360 bfd_zalloc (htab->root.dynobj, amt));
7361 if (p == NULL)
7362 return FALSE;
7363 p->next = *head;
7364 *head = p;
7365 p->sec = sec;
7366 }
7367
7368 p->count += 1;
7369
6353d82b
JW
7370 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7371 p->pc_count += 1;
a06ea964
NC
7372 }
7373 break;
7374
7375 /* RR: We probably want to keep a consistency check that
7376 there are no dangling GOT_PAGE relocs. */
a6bb11b2 7377 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57 7378 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 7379 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7bcccb57 7380 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
a2e1db00 7381 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
99ad26cb 7382 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7bcccb57 7383 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
dc8008f5 7384 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
74a1bfe1 7385 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
f955cccf 7386 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7bcccb57 7387 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7388 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7bcccb57 7389 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
f955cccf 7390 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
1ada945d 7391 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
0484b454
RL
7392 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7393 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a6bb11b2 7394 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 7395 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7396 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7ba7cfe4 7397 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
94facae3 7398 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a6bb11b2 7399 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7400 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 7401 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7402 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
7403 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7404 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
73f925cc 7405 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 7406 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 7407 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
b7a944fe
RL
7408 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7409 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7410 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7411 {
7412 unsigned got_type;
7413 unsigned old_got_type;
7414
a6bb11b2 7415 got_type = aarch64_reloc_got_type (bfd_r_type);
a06ea964
NC
7416
7417 if (h)
7418 {
7419 h->got.refcount += 1;
cec5225b 7420 old_got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
7421 }
7422 else
7423 {
7424 struct elf_aarch64_local_symbol *locals;
7425
cec5225b 7426 if (!elfNN_aarch64_allocate_local_symbols
a06ea964
NC
7427 (abfd, symtab_hdr->sh_info))
7428 return FALSE;
7429
cec5225b 7430 locals = elf_aarch64_locals (abfd);
a06ea964
NC
7431 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7432 locals[r_symndx].got_refcount += 1;
7433 old_got_type = locals[r_symndx].got_type;
7434 }
7435
7436 /* If a variable is accessed with both general dynamic TLS
7437 methods, two slots may be created. */
7438 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7439 got_type |= old_got_type;
7440
7441 /* We will already have issued an error message if there
7442 is a TLS/non-TLS mismatch, based on the symbol type.
7443 So just combine any TLS types needed. */
7444 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7445 && got_type != GOT_NORMAL)
7446 got_type |= old_got_type;
7447
7448 /* If the symbol is accessed by both IE and GD methods, we
7449 are able to relax. Turn off the GD flag, without
7450 messing up with any other kind of TLS types that may be
7451 involved. */
7452 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7453 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7454
7455 if (old_got_type != got_type)
7456 {
7457 if (h != NULL)
cec5225b 7458 elf_aarch64_hash_entry (h)->got_type = got_type;
a06ea964
NC
7459 else
7460 {
7461 struct elf_aarch64_local_symbol *locals;
cec5225b 7462 locals = elf_aarch64_locals (abfd);
a06ea964
NC
7463 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7464 locals[r_symndx].got_type = got_type;
7465 }
7466 }
7467
cc0efaa8
MS
7468 if (htab->root.dynobj == NULL)
7469 htab->root.dynobj = abfd;
7470 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7471 return FALSE;
a06ea964
NC
7472 break;
7473 }
7474
a6bb11b2
YZ
7475 case BFD_RELOC_AARCH64_CALL26:
7476 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
7477 /* If this is a local symbol then we resolve it
7478 directly without creating a PLT entry. */
7479 if (h == NULL)
7480 continue;
7481
7482 h->needs_plt = 1;
1419bbe5
WN
7483 if (h->plt.refcount <= 0)
7484 h->plt.refcount = 1;
7485 else
7486 h->plt.refcount += 1;
a06ea964 7487 break;
a6bb11b2
YZ
7488
7489 default:
7490 break;
a06ea964
NC
7491 }
7492 }
a6bb11b2 7493
a06ea964
NC
7494 return TRUE;
7495}
7496
7497/* Treat mapping symbols as special target symbols. */
7498
7499static bfd_boolean
cec5225b 7500elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
7501 asymbol *sym)
7502{
7503 return bfd_is_aarch64_special_symbol_name (sym->name,
7504 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7505}
7506
7507/* This is a copy of elf_find_function () from elf.c except that
7508 AArch64 mapping symbols are ignored when looking for function names. */
7509
7510static bfd_boolean
7511aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964 7512 asymbol **symbols,
fb167eb2 7513 asection *section,
a06ea964
NC
7514 bfd_vma offset,
7515 const char **filename_ptr,
7516 const char **functionname_ptr)
7517{
7518 const char *filename = NULL;
7519 asymbol *func = NULL;
7520 bfd_vma low_func = 0;
7521 asymbol **p;
7522
7523 for (p = symbols; *p != NULL; p++)
7524 {
7525 elf_symbol_type *q;
7526
7527 q = (elf_symbol_type *) * p;
7528
7529 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7530 {
7531 default:
7532 break;
7533 case STT_FILE:
7534 filename = bfd_asymbol_name (&q->symbol);
7535 break;
7536 case STT_FUNC:
7537 case STT_NOTYPE:
7538 /* Skip mapping symbols. */
7539 if ((q->symbol.flags & BSF_LOCAL)
7540 && (bfd_is_aarch64_special_symbol_name
7541 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7542 continue;
7543 /* Fall through. */
7544 if (bfd_get_section (&q->symbol) == section
7545 && q->symbol.value >= low_func && q->symbol.value <= offset)
7546 {
7547 func = (asymbol *) q;
7548 low_func = q->symbol.value;
7549 }
7550 break;
7551 }
7552 }
7553
7554 if (func == NULL)
7555 return FALSE;
7556
7557 if (filename_ptr)
7558 *filename_ptr = filename;
7559 if (functionname_ptr)
7560 *functionname_ptr = bfd_asymbol_name (func);
7561
7562 return TRUE;
7563}
7564
7565
7566/* Find the nearest line to a particular section and offset, for error
7567 reporting. This code is a duplicate of the code in elf.c, except
7568 that it uses aarch64_elf_find_function. */
7569
7570static bfd_boolean
cec5225b 7571elfNN_aarch64_find_nearest_line (bfd *abfd,
a06ea964 7572 asymbol **symbols,
fb167eb2 7573 asection *section,
a06ea964
NC
7574 bfd_vma offset,
7575 const char **filename_ptr,
7576 const char **functionname_ptr,
fb167eb2
AM
7577 unsigned int *line_ptr,
7578 unsigned int *discriminator_ptr)
a06ea964
NC
7579{
7580 bfd_boolean found = FALSE;
7581
fb167eb2 7582 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
a06ea964 7583 filename_ptr, functionname_ptr,
fb167eb2
AM
7584 line_ptr, discriminator_ptr,
7585 dwarf_debug_sections, 0,
a06ea964
NC
7586 &elf_tdata (abfd)->dwarf2_find_line_info))
7587 {
7588 if (!*functionname_ptr)
fb167eb2 7589 aarch64_elf_find_function (abfd, symbols, section, offset,
a06ea964
NC
7590 *filename_ptr ? NULL : filename_ptr,
7591 functionname_ptr);
7592
7593 return TRUE;
7594 }
7595
fb167eb2
AM
7596 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7597 toolchain uses DWARF1. */
7598
a06ea964
NC
7599 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7600 &found, filename_ptr,
7601 functionname_ptr, line_ptr,
7602 &elf_tdata (abfd)->line_info))
7603 return FALSE;
7604
7605 if (found && (*functionname_ptr || *line_ptr))
7606 return TRUE;
7607
7608 if (symbols == NULL)
7609 return FALSE;
7610
fb167eb2 7611 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
a06ea964
NC
7612 filename_ptr, functionname_ptr))
7613 return FALSE;
7614
7615 *line_ptr = 0;
7616 return TRUE;
7617}
7618
7619static bfd_boolean
cec5225b 7620elfNN_aarch64_find_inliner_info (bfd *abfd,
a06ea964
NC
7621 const char **filename_ptr,
7622 const char **functionname_ptr,
7623 unsigned int *line_ptr)
7624{
7625 bfd_boolean found;
7626 found = _bfd_dwarf2_find_inliner_info
7627 (abfd, filename_ptr,
7628 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7629 return found;
7630}
7631
7632
7633static void
cec5225b 7634elfNN_aarch64_post_process_headers (bfd *abfd,
1419bbe5 7635 struct bfd_link_info *link_info)
a06ea964
NC
7636{
7637 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7638
7639 i_ehdrp = elf_elfheader (abfd);
a06ea964 7640 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
1419bbe5 7641
78245035 7642 _bfd_elf_post_process_headers (abfd, link_info);
a06ea964
NC
7643}
7644
7645static enum elf_reloc_type_class
cec5225b 7646elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7e612e98
AM
7647 const asection *rel_sec ATTRIBUTE_UNUSED,
7648 const Elf_Internal_Rela *rela)
a06ea964 7649{
f2e6a843
SN
7650 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
7651
7652 if (htab->root.dynsym != NULL
7653 && htab->root.dynsym->contents != NULL)
7654 {
7655 /* Check relocation against STT_GNU_IFUNC symbol if there are
7656 dynamic symbols. */
7657 bfd *abfd = info->output_bfd;
7658 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7659 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
7660 if (r_symndx != STN_UNDEF)
7661 {
7662 Elf_Internal_Sym sym;
7663 if (!bed->s->swap_symbol_in (abfd,
7664 (htab->root.dynsym->contents
7665 + r_symndx * bed->s->sizeof_sym),
7666 0, &sym))
7667 {
7668 /* xgettext:c-format */
7669 _bfd_error_handler (_("%B symbol number %lu references"
7670 " nonexistent SHT_SYMTAB_SHNDX section"),
7671 abfd, r_symndx);
7672 /* Ideally an error class should be returned here. */
7673 }
7674 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
7675 return reloc_class_ifunc;
7676 }
7677 }
7678
cec5225b 7679 switch ((int) ELFNN_R_TYPE (rela->r_info))
a06ea964 7680 {
f2e6a843
SN
7681 case AARCH64_R (IRELATIVE):
7682 return reloc_class_ifunc;
a6bb11b2 7683 case AARCH64_R (RELATIVE):
a06ea964 7684 return reloc_class_relative;
a6bb11b2 7685 case AARCH64_R (JUMP_SLOT):
a06ea964 7686 return reloc_class_plt;
a6bb11b2 7687 case AARCH64_R (COPY):
a06ea964
NC
7688 return reloc_class_copy;
7689 default:
7690 return reloc_class_normal;
7691 }
7692}
7693
a06ea964
NC
7694/* Handle an AArch64 specific section when reading an object file. This is
7695 called when bfd_section_from_shdr finds a section with an unknown
7696 type. */
7697
7698static bfd_boolean
cec5225b 7699elfNN_aarch64_section_from_shdr (bfd *abfd,
a06ea964
NC
7700 Elf_Internal_Shdr *hdr,
7701 const char *name, int shindex)
7702{
7703 /* There ought to be a place to keep ELF backend specific flags, but
7704 at the moment there isn't one. We just keep track of the
7705 sections by their name, instead. Fortunately, the ABI gives
7706 names for all the AArch64 specific sections, so we will probably get
7707 away with this. */
7708 switch (hdr->sh_type)
7709 {
7710 case SHT_AARCH64_ATTRIBUTES:
7711 break;
7712
7713 default:
7714 return FALSE;
7715 }
7716
7717 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7718 return FALSE;
7719
7720 return TRUE;
7721}
7722
7723/* A structure used to record a list of sections, independently
7724 of the next and prev fields in the asection structure. */
7725typedef struct section_list
7726{
7727 asection *sec;
7728 struct section_list *next;
7729 struct section_list *prev;
7730}
7731section_list;
7732
7733/* Unfortunately we need to keep a list of sections for which
7734 an _aarch64_elf_section_data structure has been allocated. This
cec5225b 7735 is because it is possible for functions like elfNN_aarch64_write_section
a06ea964
NC
7736 to be called on a section which has had an elf_data_structure
7737 allocated for it (and so the used_by_bfd field is valid) but
7738 for which the AArch64 extended version of this structure - the
7739 _aarch64_elf_section_data structure - has not been allocated. */
7740static section_list *sections_with_aarch64_elf_section_data = NULL;
7741
7742static void
7743record_section_with_aarch64_elf_section_data (asection *sec)
7744{
7745 struct section_list *entry;
7746
7747 entry = bfd_malloc (sizeof (*entry));
7748 if (entry == NULL)
7749 return;
7750 entry->sec = sec;
7751 entry->next = sections_with_aarch64_elf_section_data;
7752 entry->prev = NULL;
7753 if (entry->next != NULL)
7754 entry->next->prev = entry;
7755 sections_with_aarch64_elf_section_data = entry;
7756}
7757
7758static struct section_list *
7759find_aarch64_elf_section_entry (asection *sec)
7760{
7761 struct section_list *entry;
7762 static struct section_list *last_entry = NULL;
7763
7764 /* This is a short cut for the typical case where the sections are added
7765 to the sections_with_aarch64_elf_section_data list in forward order and
7766 then looked up here in backwards order. This makes a real difference
7767 to the ld-srec/sec64k.exp linker test. */
7768 entry = sections_with_aarch64_elf_section_data;
7769 if (last_entry != NULL)
7770 {
7771 if (last_entry->sec == sec)
7772 entry = last_entry;
7773 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7774 entry = last_entry->next;
7775 }
7776
7777 for (; entry; entry = entry->next)
7778 if (entry->sec == sec)
7779 break;
7780
7781 if (entry)
7782 /* Record the entry prior to this one - it is the entry we are
7783 most likely to want to locate next time. Also this way if we
7784 have been called from
7785 unrecord_section_with_aarch64_elf_section_data () we will not
7786 be caching a pointer that is about to be freed. */
7787 last_entry = entry->prev;
7788
7789 return entry;
7790}
7791
7792static void
7793unrecord_section_with_aarch64_elf_section_data (asection *sec)
7794{
7795 struct section_list *entry;
7796
7797 entry = find_aarch64_elf_section_entry (sec);
7798
7799 if (entry)
7800 {
7801 if (entry->prev != NULL)
7802 entry->prev->next = entry->next;
7803 if (entry->next != NULL)
7804 entry->next->prev = entry->prev;
7805 if (entry == sections_with_aarch64_elf_section_data)
7806 sections_with_aarch64_elf_section_data = entry->next;
7807 free (entry);
7808 }
7809}
7810
7811
7812typedef struct
7813{
7814 void *finfo;
7815 struct bfd_link_info *info;
7816 asection *sec;
7817 int sec_shndx;
7818 int (*func) (void *, const char *, Elf_Internal_Sym *,
7819 asection *, struct elf_link_hash_entry *);
7820} output_arch_syminfo;
7821
7822enum map_symbol_type
7823{
7824 AARCH64_MAP_INSN,
7825 AARCH64_MAP_DATA
7826};
7827
7828
7829/* Output a single mapping symbol. */
7830
7831static bfd_boolean
cec5225b 7832elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
a06ea964
NC
7833 enum map_symbol_type type, bfd_vma offset)
7834{
7835 static const char *names[2] = { "$x", "$d" };
7836 Elf_Internal_Sym sym;
7837
7838 sym.st_value = (osi->sec->output_section->vma
7839 + osi->sec->output_offset + offset);
7840 sym.st_size = 0;
7841 sym.st_other = 0;
7842 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7843 sym.st_shndx = osi->sec_shndx;
7844 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7845}
7846
a06ea964
NC
7847/* Output a single local symbol for a generated stub. */
7848
7849static bfd_boolean
cec5225b 7850elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
a06ea964
NC
7851 bfd_vma offset, bfd_vma size)
7852{
7853 Elf_Internal_Sym sym;
7854
7855 sym.st_value = (osi->sec->output_section->vma
7856 + osi->sec->output_offset + offset);
7857 sym.st_size = size;
7858 sym.st_other = 0;
7859 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7860 sym.st_shndx = osi->sec_shndx;
7861 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7862}
7863
7864static bfd_boolean
7865aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7866{
cec5225b 7867 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
7868 asection *stub_sec;
7869 bfd_vma addr;
7870 char *stub_name;
7871 output_arch_syminfo *osi;
7872
7873 /* Massage our args to the form they really have. */
cec5225b 7874 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
7875 osi = (output_arch_syminfo *) in_arg;
7876
7877 stub_sec = stub_entry->stub_sec;
7878
7879 /* Ensure this stub is attached to the current section being
7880 processed. */
7881 if (stub_sec != osi->sec)
7882 return TRUE;
7883
7884 addr = (bfd_vma) stub_entry->stub_offset;
7885
7886 stub_name = stub_entry->output_name;
7887
7888 switch (stub_entry->stub_type)
7889 {
7890 case aarch64_stub_adrp_branch:
cec5225b 7891 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
a06ea964
NC
7892 sizeof (aarch64_adrp_branch_stub)))
7893 return FALSE;
cec5225b 7894 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964
NC
7895 return FALSE;
7896 break;
7897 case aarch64_stub_long_branch:
cec5225b 7898 if (!elfNN_aarch64_output_stub_sym
a06ea964
NC
7899 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7900 return FALSE;
cec5225b 7901 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964 7902 return FALSE;
cec5225b 7903 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
a06ea964
NC
7904 return FALSE;
7905 break;
68fcca92
JW
7906 case aarch64_stub_erratum_835769_veneer:
7907 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7908 sizeof (aarch64_erratum_835769_stub)))
7909 return FALSE;
7910 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7911 return FALSE;
7912 break;
4106101c
MS
7913 case aarch64_stub_erratum_843419_veneer:
7914 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7915 sizeof (aarch64_erratum_843419_stub)))
7916 return FALSE;
7917 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7918 return FALSE;
7919 break;
7920
a06ea964 7921 default:
8e2fe09f 7922 abort ();
a06ea964
NC
7923 }
7924
7925 return TRUE;
7926}
7927
7928/* Output mapping symbols for linker generated sections. */
7929
7930static bfd_boolean
cec5225b 7931elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
a06ea964
NC
7932 struct bfd_link_info *info,
7933 void *finfo,
7934 int (*func) (void *, const char *,
7935 Elf_Internal_Sym *,
7936 asection *,
7937 struct elf_link_hash_entry
7938 *))
7939{
7940 output_arch_syminfo osi;
cec5225b 7941 struct elf_aarch64_link_hash_table *htab;
a06ea964 7942
cec5225b 7943 htab = elf_aarch64_hash_table (info);
a06ea964
NC
7944
7945 osi.finfo = finfo;
7946 osi.info = info;
7947 osi.func = func;
7948
7949 /* Long calls stubs. */
7950 if (htab->stub_bfd && htab->stub_bfd->sections)
7951 {
7952 asection *stub_sec;
7953
7954 for (stub_sec = htab->stub_bfd->sections;
7955 stub_sec != NULL; stub_sec = stub_sec->next)
7956 {
7957 /* Ignore non-stub sections. */
7958 if (!strstr (stub_sec->name, STUB_SUFFIX))
7959 continue;
7960
7961 osi.sec = stub_sec;
7962
7963 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7964 (output_bfd, osi.sec->output_section);
7965
61865519
MS
7966 /* The first instruction in a stub is always a branch. */
7967 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7968 return FALSE;
7969
a06ea964
NC
7970 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7971 &osi);
7972 }
7973 }
7974
7975 /* Finally, output mapping symbols for the PLT. */
7976 if (!htab->root.splt || htab->root.splt->size == 0)
7977 return TRUE;
7978
a06ea964
NC
7979 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7980 (output_bfd, htab->root.splt->output_section);
7981 osi.sec = htab->root.splt;
7982
73524045 7983 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
a06ea964
NC
7984
7985 return TRUE;
7986
7987}
7988
7989/* Allocate target specific section data. */
7990
7991static bfd_boolean
cec5225b 7992elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
a06ea964
NC
7993{
7994 if (!sec->used_by_bfd)
7995 {
7996 _aarch64_elf_section_data *sdata;
7997 bfd_size_type amt = sizeof (*sdata);
7998
7999 sdata = bfd_zalloc (abfd, amt);
8000 if (sdata == NULL)
8001 return FALSE;
8002 sec->used_by_bfd = sdata;
8003 }
8004
8005 record_section_with_aarch64_elf_section_data (sec);
8006
8007 return _bfd_elf_new_section_hook (abfd, sec);
8008}
8009
8010
8011static void
8012unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8013 asection *sec,
8014 void *ignore ATTRIBUTE_UNUSED)
8015{
8016 unrecord_section_with_aarch64_elf_section_data (sec);
8017}
8018
8019static bfd_boolean
cec5225b 8020elfNN_aarch64_close_and_cleanup (bfd *abfd)
a06ea964
NC
8021{
8022 if (abfd->sections)
8023 bfd_map_over_sections (abfd,
8024 unrecord_section_via_map_over_sections, NULL);
8025
8026 return _bfd_elf_close_and_cleanup (abfd);
8027}
8028
8029static bfd_boolean
cec5225b 8030elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
a06ea964
NC
8031{
8032 if (abfd->sections)
8033 bfd_map_over_sections (abfd,
8034 unrecord_section_via_map_over_sections, NULL);
8035
8036 return _bfd_free_cached_info (abfd);
8037}
8038
a06ea964
NC
8039/* Create dynamic sections. This is different from the ARM backend in that
8040 the got, plt, gotplt and their relocation sections are all created in the
8041 standard part of the bfd elf backend. */
8042
8043static bfd_boolean
cec5225b 8044elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
a06ea964
NC
8045 struct bfd_link_info *info)
8046{
cc0efaa8
MS
8047 /* We need to create .got section. */
8048 if (!aarch64_elf_create_got_section (dynobj, info))
8049 return FALSE;
a06ea964 8050
9d19e4fd 8051 return _bfd_elf_create_dynamic_sections (dynobj, info);
a06ea964
NC
8052}
8053
8054
8055/* Allocate space in .plt, .got and associated reloc sections for
8056 dynamic relocs. */
8057
8058static bfd_boolean
cec5225b 8059elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
a06ea964
NC
8060{
8061 struct bfd_link_info *info;
cec5225b
YZ
8062 struct elf_aarch64_link_hash_table *htab;
8063 struct elf_aarch64_link_hash_entry *eh;
a06ea964
NC
8064 struct elf_dyn_relocs *p;
8065
8066 /* An example of a bfd_link_hash_indirect symbol is versioned
8067 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8068 -> __gxx_personality_v0(bfd_link_hash_defined)
8069
8070 There is no need to process bfd_link_hash_indirect symbols here
8071 because we will also be presented with the concrete instance of
cec5225b 8072 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
a06ea964 8073 called to copy all relevant data from the generic to the concrete
2d0ca824 8074 symbol instance. */
a06ea964
NC
8075 if (h->root.type == bfd_link_hash_indirect)
8076 return TRUE;
8077
8078 if (h->root.type == bfd_link_hash_warning)
8079 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8080
8081 info = (struct bfd_link_info *) inf;
cec5225b 8082 htab = elf_aarch64_hash_table (info);
a06ea964 8083
1419bbe5
WN
8084 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8085 here if it is defined and referenced in a non-shared object. */
8086 if (h->type == STT_GNU_IFUNC
8087 && h->def_regular)
8088 return TRUE;
8089 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
a06ea964
NC
8090 {
8091 /* Make sure this symbol is output as a dynamic symbol.
8092 Undefined weak syms won't yet be marked as dynamic. */
ff07562f
JW
8093 if (h->dynindx == -1 && !h->forced_local
8094 && h->root.type == bfd_link_hash_undefweak)
a06ea964
NC
8095 {
8096 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8097 return FALSE;
8098 }
8099
0e1862bb 8100 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
a06ea964
NC
8101 {
8102 asection *s = htab->root.splt;
8103
8104 /* If this is the first .plt entry, make room for the special
8105 first entry. */
8106 if (s->size == 0)
8107 s->size += htab->plt_header_size;
8108
8109 h->plt.offset = s->size;
8110
8111 /* If this symbol is not defined in a regular file, and we are
8112 not generating a shared library, then set the symbol to this
8113 location in the .plt. This is required to make function
8114 pointers compare as equal between the normal executable and
8115 the shared library. */
0e1862bb 8116 if (!bfd_link_pic (info) && !h->def_regular)
a06ea964
NC
8117 {
8118 h->root.u.def.section = s;
8119 h->root.u.def.value = h->plt.offset;
8120 }
8121
8122 /* Make room for this entry. For now we only create the
8123 small model PLT entries. We later need to find a way
8124 of relaxing into these from the large model PLT entries. */
8125 s->size += PLT_SMALL_ENTRY_SIZE;
8126
8127 /* We also need to make an entry in the .got.plt section, which
8128 will be placed in the .got section by the linker script. */
8129 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8130
8131 /* We also need to make an entry in the .rela.plt section. */
8132 htab->root.srelplt->size += RELOC_SIZE (htab);
8133
8134 /* We need to ensure that all GOT entries that serve the PLT
8135 are consecutive with the special GOT slots [0] [1] and
8136 [2]. Any addtional relocations, such as
8137 R_AARCH64_TLSDESC, must be placed after the PLT related
8138 entries. We abuse the reloc_count such that during
8139 sizing we adjust reloc_count to indicate the number of
8140 PLT related reserved entries. In subsequent phases when
8141 filling in the contents of the reloc entries, PLT related
8142 entries are placed by computing their PLT index (0
8143 .. reloc_count). While other none PLT relocs are placed
8144 at the slot indicated by reloc_count and reloc_count is
8145 updated. */
8146
8147 htab->root.srelplt->reloc_count++;
8148 }
8149 else
8150 {
8151 h->plt.offset = (bfd_vma) - 1;
8152 h->needs_plt = 0;
8153 }
8154 }
8155 else
8156 {
8157 h->plt.offset = (bfd_vma) - 1;
8158 h->needs_plt = 0;
8159 }
8160
cec5225b 8161 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
8162 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8163
8164 if (h->got.refcount > 0)
8165 {
8166 bfd_boolean dyn;
cec5225b 8167 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
8168
8169 h->got.offset = (bfd_vma) - 1;
8170
8171 dyn = htab->root.dynamic_sections_created;
8172
8173 /* Make sure this symbol is output as a dynamic symbol.
8174 Undefined weak syms won't yet be marked as dynamic. */
ff07562f
JW
8175 if (dyn && h->dynindx == -1 && !h->forced_local
8176 && h->root.type == bfd_link_hash_undefweak)
a06ea964
NC
8177 {
8178 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8179 return FALSE;
8180 }
8181
8182 if (got_type == GOT_UNKNOWN)
8183 {
8184 }
8185 else if (got_type == GOT_NORMAL)
8186 {
8187 h->got.offset = htab->root.sgot->size;
8188 htab->root.sgot->size += GOT_ENTRY_SIZE;
8189 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8190 || h->root.type != bfd_link_hash_undefweak)
0e1862bb 8191 && (bfd_link_pic (info)
a06ea964
NC
8192 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8193 {
8194 htab->root.srelgot->size += RELOC_SIZE (htab);
8195 }
8196 }
8197 else
8198 {
8199 int indx;
8200 if (got_type & GOT_TLSDESC_GD)
8201 {
8202 eh->tlsdesc_got_jump_table_offset =
8203 (htab->root.sgotplt->size
8204 - aarch64_compute_jump_table_size (htab));
8205 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8206 h->got.offset = (bfd_vma) - 2;
8207 }
8208
8209 if (got_type & GOT_TLS_GD)
8210 {
8211 h->got.offset = htab->root.sgot->size;
8212 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8213 }
8214
8215 if (got_type & GOT_TLS_IE)
8216 {
8217 h->got.offset = htab->root.sgot->size;
8218 htab->root.sgot->size += GOT_ENTRY_SIZE;
8219 }
8220
8221 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8222 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8223 || h->root.type != bfd_link_hash_undefweak)
0e1862bb 8224 && (bfd_link_pic (info)
a06ea964
NC
8225 || indx != 0
8226 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8227 {
8228 if (got_type & GOT_TLSDESC_GD)
8229 {
8230 htab->root.srelplt->size += RELOC_SIZE (htab);
8231 /* Note reloc_count not incremented here! We have
8232 already adjusted reloc_count for this relocation
8233 type. */
8234
8235 /* TLSDESC PLT is now needed, but not yet determined. */
8236 htab->tlsdesc_plt = (bfd_vma) - 1;
8237 }
8238
8239 if (got_type & GOT_TLS_GD)
8240 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8241
8242 if (got_type & GOT_TLS_IE)
8243 htab->root.srelgot->size += RELOC_SIZE (htab);
8244 }
8245 }
8246 }
8247 else
8248 {
8249 h->got.offset = (bfd_vma) - 1;
8250 }
8251
8252 if (eh->dyn_relocs == NULL)
8253 return TRUE;
8254
8255 /* In the shared -Bsymbolic case, discard space allocated for
8256 dynamic pc-relative relocs against symbols which turn out to be
8257 defined in regular objects. For the normal shared case, discard
8258 space for pc-relative relocs that have become local due to symbol
8259 visibility changes. */
8260
0e1862bb 8261 if (bfd_link_pic (info))
a06ea964
NC
8262 {
8263 /* Relocs that use pc_count are those that appear on a call
8264 insn, or certain REL relocs that can generated via assembly.
8265 We want calls to protected symbols to resolve directly to the
8266 function rather than going via the plt. If people want
8267 function pointer comparisons to work as expected then they
8268 should avoid writing weird assembly. */
8269 if (SYMBOL_CALLS_LOCAL (info, h))
8270 {
8271 struct elf_dyn_relocs **pp;
8272
8273 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8274 {
8275 p->count -= p->pc_count;
8276 p->pc_count = 0;
8277 if (p->count == 0)
8278 *pp = p->next;
8279 else
8280 pp = &p->next;
8281 }
8282 }
8283
8284 /* Also discard relocs on undefined weak syms with non-default
8285 visibility. */
8286 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8287 {
8288 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8289 eh->dyn_relocs = NULL;
8290
8291 /* Make sure undefined weak symbols are output as a dynamic
8292 symbol in PIEs. */
8293 else if (h->dynindx == -1
8294 && !h->forced_local
ff07562f 8295 && h->root.type == bfd_link_hash_undefweak
a06ea964
NC
8296 && !bfd_elf_link_record_dynamic_symbol (info, h))
8297 return FALSE;
8298 }
8299
8300 }
8301 else if (ELIMINATE_COPY_RELOCS)
8302 {
8303 /* For the non-shared case, discard space for relocs against
8304 symbols which turn out to need copy relocs or are not
8305 dynamic. */
8306
8307 if (!h->non_got_ref
8308 && ((h->def_dynamic
8309 && !h->def_regular)
8310 || (htab->root.dynamic_sections_created
8311 && (h->root.type == bfd_link_hash_undefweak
8312 || h->root.type == bfd_link_hash_undefined))))
8313 {
8314 /* Make sure this symbol is output as a dynamic symbol.
8315 Undefined weak syms won't yet be marked as dynamic. */
8316 if (h->dynindx == -1
8317 && !h->forced_local
ff07562f 8318 && h->root.type == bfd_link_hash_undefweak
a06ea964
NC
8319 && !bfd_elf_link_record_dynamic_symbol (info, h))
8320 return FALSE;
8321
8322 /* If that succeeded, we know we'll be keeping all the
8323 relocs. */
8324 if (h->dynindx != -1)
8325 goto keep;
8326 }
8327
8328 eh->dyn_relocs = NULL;
8329
8330 keep:;
8331 }
8332
8333 /* Finally, allocate space. */
8334 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8335 {
8336 asection *sreloc;
8337
8338 sreloc = elf_section_data (p->sec)->sreloc;
8339
8340 BFD_ASSERT (sreloc != NULL);
8341
8342 sreloc->size += p->count * RELOC_SIZE (htab);
8343 }
8344
8345 return TRUE;
8346}
8347
1419bbe5
WN
8348/* Allocate space in .plt, .got and associated reloc sections for
8349 ifunc dynamic relocs. */
8350
8351static bfd_boolean
8352elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8353 void *inf)
8354{
8355 struct bfd_link_info *info;
8356 struct elf_aarch64_link_hash_table *htab;
8357 struct elf_aarch64_link_hash_entry *eh;
8358
8359 /* An example of a bfd_link_hash_indirect symbol is versioned
8360 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8361 -> __gxx_personality_v0(bfd_link_hash_defined)
8362
8363 There is no need to process bfd_link_hash_indirect symbols here
8364 because we will also be presented with the concrete instance of
8365 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8366 called to copy all relevant data from the generic to the concrete
2d0ca824 8367 symbol instance. */
1419bbe5
WN
8368 if (h->root.type == bfd_link_hash_indirect)
8369 return TRUE;
8370
8371 if (h->root.type == bfd_link_hash_warning)
8372 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8373
8374 info = (struct bfd_link_info *) inf;
8375 htab = elf_aarch64_hash_table (info);
8376
8377 eh = (struct elf_aarch64_link_hash_entry *) h;
8378
8379 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8380 here if it is defined and referenced in a non-shared object. */
8381 if (h->type == STT_GNU_IFUNC
8382 && h->def_regular)
8383 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8384 &eh->dyn_relocs,
2df3368d 8385 NULL,
1419bbe5
WN
8386 htab->plt_entry_size,
8387 htab->plt_header_size,
233cc9c1
L
8388 GOT_ENTRY_SIZE,
8389 FALSE);
1419bbe5
WN
8390 return TRUE;
8391}
8392
8393/* Allocate space in .plt, .got and associated reloc sections for
8394 local dynamic relocs. */
8395
8396static bfd_boolean
8397elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8398{
8399 struct elf_link_hash_entry *h
8400 = (struct elf_link_hash_entry *) *slot;
8401
8402 if (h->type != STT_GNU_IFUNC
8403 || !h->def_regular
8404 || !h->ref_regular
8405 || !h->forced_local
8406 || h->root.type != bfd_link_hash_defined)
8407 abort ();
8408
8409 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8410}
8411
8412/* Allocate space in .plt, .got and associated reloc sections for
8413 local ifunc dynamic relocs. */
8414
8415static bfd_boolean
8416elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8417{
8418 struct elf_link_hash_entry *h
8419 = (struct elf_link_hash_entry *) *slot;
8420
8421 if (h->type != STT_GNU_IFUNC
8422 || !h->def_regular
8423 || !h->ref_regular
8424 || !h->forced_local
8425 || h->root.type != bfd_link_hash_defined)
8426 abort ();
8427
8428 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8429}
a06ea964 8430
c2170589
JW
8431/* Find any dynamic relocs that apply to read-only sections. */
8432
8433static bfd_boolean
8434aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
8435{
8436 struct elf_aarch64_link_hash_entry * eh;
8437 struct elf_dyn_relocs * p;
8438
8439 eh = (struct elf_aarch64_link_hash_entry *) h;
8440 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8441 {
8442 asection *s = p->sec;
8443
8444 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8445 {
8446 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8447
8448 info->flags |= DF_TEXTREL;
8449
8450 /* Not an error, just cut short the traversal. */
8451 return FALSE;
8452 }
8453 }
8454 return TRUE;
8455}
8456
a06ea964
NC
8457/* This is the most important function of all . Innocuosly named
8458 though ! */
2d0ca824 8459
a06ea964 8460static bfd_boolean
cec5225b 8461elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
a06ea964
NC
8462 struct bfd_link_info *info)
8463{
cec5225b 8464 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
8465 bfd *dynobj;
8466 asection *s;
8467 bfd_boolean relocs;
8468 bfd *ibfd;
8469
cec5225b 8470 htab = elf_aarch64_hash_table ((info));
a06ea964
NC
8471 dynobj = htab->root.dynobj;
8472
8473 BFD_ASSERT (dynobj != NULL);
8474
8475 if (htab->root.dynamic_sections_created)
8476 {
9b8b325a 8477 if (bfd_link_executable (info) && !info->nointerp)
a06ea964
NC
8478 {
8479 s = bfd_get_linker_section (dynobj, ".interp");
8480 if (s == NULL)
8481 abort ();
8482 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8483 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8484 }
8485 }
8486
8487 /* Set up .got offsets for local syms, and space for local dynamic
8488 relocs. */
c72f2fb2 8489 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
a06ea964
NC
8490 {
8491 struct elf_aarch64_local_symbol *locals = NULL;
8492 Elf_Internal_Shdr *symtab_hdr;
8493 asection *srel;
8494 unsigned int i;
8495
8496 if (!is_aarch64_elf (ibfd))
8497 continue;
8498
8499 for (s = ibfd->sections; s != NULL; s = s->next)
8500 {
8501 struct elf_dyn_relocs *p;
8502
8503 for (p = (struct elf_dyn_relocs *)
8504 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8505 {
8506 if (!bfd_is_abs_section (p->sec)
8507 && bfd_is_abs_section (p->sec->output_section))
8508 {
8509 /* Input section has been discarded, either because
8510 it is a copy of a linkonce section or due to
8511 linker script /DISCARD/, so we'll be discarding
8512 the relocs too. */
8513 }
8514 else if (p->count != 0)
8515 {
8516 srel = elf_section_data (p->sec)->sreloc;
8517 srel->size += p->count * RELOC_SIZE (htab);
8518 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8519 info->flags |= DF_TEXTREL;
8520 }
8521 }
8522 }
8523
cec5225b 8524 locals = elf_aarch64_locals (ibfd);
a06ea964
NC
8525 if (!locals)
8526 continue;
8527
8528 symtab_hdr = &elf_symtab_hdr (ibfd);
8529 srel = htab->root.srelgot;
8530 for (i = 0; i < symtab_hdr->sh_info; i++)
8531 {
8532 locals[i].got_offset = (bfd_vma) - 1;
8533 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8534 if (locals[i].got_refcount > 0)
8535 {
8536 unsigned got_type = locals[i].got_type;
8537 if (got_type & GOT_TLSDESC_GD)
8538 {
8539 locals[i].tlsdesc_got_jump_table_offset =
8540 (htab->root.sgotplt->size
8541 - aarch64_compute_jump_table_size (htab));
8542 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8543 locals[i].got_offset = (bfd_vma) - 2;
8544 }
8545
8546 if (got_type & GOT_TLS_GD)
8547 {
8548 locals[i].got_offset = htab->root.sgot->size;
8549 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8550 }
8551
b53b1bed
JW
8552 if (got_type & GOT_TLS_IE
8553 || got_type & GOT_NORMAL)
a06ea964
NC
8554 {
8555 locals[i].got_offset = htab->root.sgot->size;
8556 htab->root.sgot->size += GOT_ENTRY_SIZE;
8557 }
8558
8559 if (got_type == GOT_UNKNOWN)
8560 {
8561 }
8562
0e1862bb 8563 if (bfd_link_pic (info))
a06ea964
NC
8564 {
8565 if (got_type & GOT_TLSDESC_GD)
8566 {
8567 htab->root.srelplt->size += RELOC_SIZE (htab);
8568 /* Note RELOC_COUNT not incremented here! */
8569 htab->tlsdesc_plt = (bfd_vma) - 1;
8570 }
8571
8572 if (got_type & GOT_TLS_GD)
8573 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8574
b53b1bed
JW
8575 if (got_type & GOT_TLS_IE
8576 || got_type & GOT_NORMAL)
a06ea964
NC
8577 htab->root.srelgot->size += RELOC_SIZE (htab);
8578 }
8579 }
8580 else
8581 {
8582 locals[i].got_refcount = (bfd_vma) - 1;
8583 }
8584 }
8585 }
8586
8587
8588 /* Allocate global sym .plt and .got entries, and space for global
8589 sym dynamic relocs. */
cec5225b 8590 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
a06ea964
NC
8591 info);
8592
1419bbe5
WN
8593 /* Allocate global ifunc sym .plt and .got entries, and space for global
8594 ifunc sym dynamic relocs. */
8595 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8596 info);
8597
8598 /* Allocate .plt and .got entries, and space for local symbols. */
8599 htab_traverse (htab->loc_hash_table,
8600 elfNN_aarch64_allocate_local_dynrelocs,
8601 info);
8602
8603 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8604 htab_traverse (htab->loc_hash_table,
8605 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8606 info);
a06ea964
NC
8607
8608 /* For every jump slot reserved in the sgotplt, reloc_count is
8609 incremented. However, when we reserve space for TLS descriptors,
8610 it's not incremented, so in order to compute the space reserved
8611 for them, it suffices to multiply the reloc count by the jump
8612 slot size. */
8613
8614 if (htab->root.srelplt)
8847944f 8615 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
a06ea964
NC
8616
8617 if (htab->tlsdesc_plt)
8618 {
8619 if (htab->root.splt->size == 0)
8620 htab->root.splt->size += PLT_ENTRY_SIZE;
8621
8622 htab->tlsdesc_plt = htab->root.splt->size;
8623 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8624
8625 /* If we're not using lazy TLS relocations, don't generate the
8626 GOT entry required. */
8627 if (!(info->flags & DF_BIND_NOW))
8628 {
8629 htab->dt_tlsdesc_got = htab->root.sgot->size;
8630 htab->root.sgot->size += GOT_ENTRY_SIZE;
8631 }
8632 }
8633
68fcca92 8634 /* Init mapping symbols information to use later to distingush between
4106101c
MS
8635 code and data while scanning for errata. */
8636 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
68fcca92
JW
8637 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8638 {
8639 if (!is_aarch64_elf (ibfd))
8640 continue;
8641 bfd_elfNN_aarch64_init_maps (ibfd);
8642 }
8643
a06ea964
NC
8644 /* We now have determined the sizes of the various dynamic sections.
8645 Allocate memory for them. */
8646 relocs = FALSE;
8647 for (s = dynobj->sections; s != NULL; s = s->next)
8648 {
8649 if ((s->flags & SEC_LINKER_CREATED) == 0)
8650 continue;
8651
8652 if (s == htab->root.splt
8653 || s == htab->root.sgot
8654 || s == htab->root.sgotplt
8655 || s == htab->root.iplt
9d19e4fd 8656 || s == htab->root.igotplt
5474d94f
AM
8657 || s == htab->root.sdynbss
8658 || s == htab->root.sdynrelro)
a06ea964
NC
8659 {
8660 /* Strip this section if we don't need it; see the
8661 comment below. */
8662 }
8663 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8664 {
8665 if (s->size != 0 && s != htab->root.srelplt)
8666 relocs = TRUE;
8667
8668 /* We use the reloc_count field as a counter if we need
8669 to copy relocs into the output file. */
8670 if (s != htab->root.srelplt)
8671 s->reloc_count = 0;
8672 }
8673 else
8674 {
8675 /* It's not one of our sections, so don't allocate space. */
8676 continue;
8677 }
8678
8679 if (s->size == 0)
8680 {
8681 /* If we don't need this section, strip it from the
8682 output file. This is mostly to handle .rela.bss and
8683 .rela.plt. We must create both sections in
8684 create_dynamic_sections, because they must be created
8685 before the linker maps input sections to output
8686 sections. The linker does that before
8687 adjust_dynamic_symbol is called, and it is that
8688 function which decides whether anything needs to go
8689 into these sections. */
a06ea964
NC
8690 s->flags |= SEC_EXCLUDE;
8691 continue;
8692 }
8693
8694 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8695 continue;
8696
8697 /* Allocate memory for the section contents. We use bfd_zalloc
8698 here in case unused entries are not reclaimed before the
8699 section's contents are written out. This should not happen,
8700 but this way if it does, we get a R_AARCH64_NONE reloc instead
8701 of garbage. */
8702 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8703 if (s->contents == NULL)
8704 return FALSE;
8705 }
8706
8707 if (htab->root.dynamic_sections_created)
8708 {
8709 /* Add some entries to the .dynamic section. We fill in the
cec5225b 8710 values later, in elfNN_aarch64_finish_dynamic_sections, but we
a06ea964
NC
8711 must add the entries now so that we get the correct size for
8712 the .dynamic section. The DT_DEBUG entry is filled in by the
8713 dynamic linker and used by the debugger. */
8714#define add_dynamic_entry(TAG, VAL) \
8715 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8716
0e1862bb 8717 if (bfd_link_executable (info))
a06ea964
NC
8718 {
8719 if (!add_dynamic_entry (DT_DEBUG, 0))
8720 return FALSE;
8721 }
8722
8723 if (htab->root.splt->size != 0)
8724 {
8725 if (!add_dynamic_entry (DT_PLTGOT, 0)
8726 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8727 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8728 || !add_dynamic_entry (DT_JMPREL, 0))
8729 return FALSE;
8730
8731 if (htab->tlsdesc_plt
8732 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8733 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8734 return FALSE;
8735 }
8736
8737 if (relocs)
8738 {
8739 if (!add_dynamic_entry (DT_RELA, 0)
8740 || !add_dynamic_entry (DT_RELASZ, 0)
8741 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8742 return FALSE;
8743
8744 /* If any dynamic relocs apply to a read-only section,
8745 then we need a DT_TEXTREL entry. */
c2170589
JW
8746 if ((info->flags & DF_TEXTREL) == 0)
8747 elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
8748 info);
8749
a06ea964
NC
8750 if ((info->flags & DF_TEXTREL) != 0)
8751 {
8752 if (!add_dynamic_entry (DT_TEXTREL, 0))
8753 return FALSE;
8754 }
8755 }
8756 }
8757#undef add_dynamic_entry
8758
8759 return TRUE;
a06ea964
NC
8760}
8761
8762static inline void
caed7120
YZ
8763elf_aarch64_update_plt_entry (bfd *output_bfd,
8764 bfd_reloc_code_real_type r_type,
8765 bfd_byte *plt_entry, bfd_vma value)
a06ea964 8766{
caed7120
YZ
8767 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8768
8769 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
a06ea964
NC
8770}
8771
8772static void
cec5225b
YZ
8773elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8774 struct elf_aarch64_link_hash_table
1419bbe5
WN
8775 *htab, bfd *output_bfd,
8776 struct bfd_link_info *info)
a06ea964
NC
8777{
8778 bfd_byte *plt_entry;
8779 bfd_vma plt_index;
8780 bfd_vma got_offset;
8781 bfd_vma gotplt_entry_address;
8782 bfd_vma plt_entry_address;
8783 Elf_Internal_Rela rela;
8784 bfd_byte *loc;
1419bbe5
WN
8785 asection *plt, *gotplt, *relplt;
8786
8787 /* When building a static executable, use .iplt, .igot.plt and
8788 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8789 if (htab->root.splt != NULL)
8790 {
8791 plt = htab->root.splt;
8792 gotplt = htab->root.sgotplt;
8793 relplt = htab->root.srelplt;
8794 }
8795 else
8796 {
8797 plt = htab->root.iplt;
8798 gotplt = htab->root.igotplt;
8799 relplt = htab->root.irelplt;
8800 }
8801
8802 /* Get the index in the procedure linkage table which
8803 corresponds to this symbol. This is the index of this symbol
8804 in all the symbols for which we are making plt entries. The
8805 first entry in the procedure linkage table is reserved.
a06ea964 8806
1419bbe5
WN
8807 Get the offset into the .got table of the entry that
8808 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8809 bytes. The first three are reserved for the dynamic linker.
692e2b8b 8810
1419bbe5
WN
8811 For static executables, we don't reserve anything. */
8812
8813 if (plt == htab->root.splt)
8814 {
8815 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8816 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8817 }
8818 else
8819 {
8820 plt_index = h->plt.offset / htab->plt_entry_size;
8821 got_offset = plt_index * GOT_ENTRY_SIZE;
8822 }
8823
8824 plt_entry = plt->contents + h->plt.offset;
8825 plt_entry_address = plt->output_section->vma
f44a1f8e 8826 + plt->output_offset + h->plt.offset;
1419bbe5
WN
8827 gotplt_entry_address = gotplt->output_section->vma +
8828 gotplt->output_offset + got_offset;
a06ea964
NC
8829
8830 /* Copy in the boiler-plate for the PLTn entry. */
cec5225b 8831 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
a06ea964
NC
8832
8833 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8834 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
8835 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8836 plt_entry,
8837 PG (gotplt_entry_address) -
8838 PG (plt_entry_address));
a06ea964
NC
8839
8840 /* Fill in the lo12 bits for the load from the pltgot. */
caed7120
YZ
8841 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8842 plt_entry + 4,
8843 PG_OFFSET (gotplt_entry_address));
a06ea964 8844
9aff4b7a 8845 /* Fill in the lo12 bits for the add from the pltgot entry. */
caed7120
YZ
8846 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8847 plt_entry + 8,
8848 PG_OFFSET (gotplt_entry_address));
a06ea964
NC
8849
8850 /* All the GOTPLT Entries are essentially initialized to PLT0. */
cec5225b 8851 bfd_put_NN (output_bfd,
1419bbe5
WN
8852 plt->output_section->vma + plt->output_offset,
8853 gotplt->contents + got_offset);
a06ea964 8854
a06ea964 8855 rela.r_offset = gotplt_entry_address;
1419bbe5
WN
8856
8857 if (h->dynindx == -1
0e1862bb 8858 || ((bfd_link_executable (info)
1419bbe5
WN
8859 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8860 && h->def_regular
8861 && h->type == STT_GNU_IFUNC))
8862 {
8863 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8864 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8865 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8866 rela.r_addend = (h->root.u.def.value
8867 + h->root.u.def.section->output_section->vma
8868 + h->root.u.def.section->output_offset);
8869 }
8870 else
8871 {
8872 /* Fill in the entry in the .rela.plt section. */
8873 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8874 rela.r_addend = 0;
8875 }
a06ea964
NC
8876
8877 /* Compute the relocation entry to used based on PLT index and do
8878 not adjust reloc_count. The reloc_count has already been adjusted
8879 to account for this entry. */
1419bbe5 8880 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
cec5225b 8881 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
8882}
8883
8884/* Size sections even though they're not dynamic. We use it to setup
8885 _TLS_MODULE_BASE_, if needed. */
8886
8887static bfd_boolean
cec5225b 8888elfNN_aarch64_always_size_sections (bfd *output_bfd,
a06ea964
NC
8889 struct bfd_link_info *info)
8890{
8891 asection *tls_sec;
8892
0e1862bb 8893 if (bfd_link_relocatable (info))
a06ea964
NC
8894 return TRUE;
8895
8896 tls_sec = elf_hash_table (info)->tls_sec;
8897
8898 if (tls_sec)
8899 {
8900 struct elf_link_hash_entry *tlsbase;
8901
8902 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8903 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8904
8905 if (tlsbase)
8906 {
8907 struct bfd_link_hash_entry *h = NULL;
8908 const struct elf_backend_data *bed =
8909 get_elf_backend_data (output_bfd);
8910
8911 if (!(_bfd_generic_link_add_one_symbol
8912 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8913 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8914 return FALSE;
8915
8916 tlsbase->type = STT_TLS;
8917 tlsbase = (struct elf_link_hash_entry *) h;
8918 tlsbase->def_regular = 1;
8919 tlsbase->other = STV_HIDDEN;
8920 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8921 }
8922 }
8923
8924 return TRUE;
8925}
8926
8927/* Finish up dynamic symbol handling. We set the contents of various
8928 dynamic sections here. */
2d0ca824 8929
a06ea964 8930static bfd_boolean
cec5225b 8931elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
a06ea964
NC
8932 struct bfd_link_info *info,
8933 struct elf_link_hash_entry *h,
8934 Elf_Internal_Sym *sym)
8935{
cec5225b
YZ
8936 struct elf_aarch64_link_hash_table *htab;
8937 htab = elf_aarch64_hash_table (info);
a06ea964
NC
8938
8939 if (h->plt.offset != (bfd_vma) - 1)
8940 {
1419bbe5
WN
8941 asection *plt, *gotplt, *relplt;
8942
a06ea964
NC
8943 /* This symbol has an entry in the procedure linkage table. Set
8944 it up. */
8945
1419bbe5
WN
8946 /* When building a static executable, use .iplt, .igot.plt and
8947 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8948 if (htab->root.splt != NULL)
8949 {
8950 plt = htab->root.splt;
8951 gotplt = htab->root.sgotplt;
8952 relplt = htab->root.srelplt;
8953 }
8954 else
8955 {
8956 plt = htab->root.iplt;
8957 gotplt = htab->root.igotplt;
8958 relplt = htab->root.irelplt;
8959 }
8960
8961 /* This symbol has an entry in the procedure linkage table. Set
8962 it up. */
8963 if ((h->dynindx == -1
0e1862bb 8964 && !((h->forced_local || bfd_link_executable (info))
1419bbe5
WN
8965 && h->def_regular
8966 && h->type == STT_GNU_IFUNC))
8967 || plt == NULL
8968 || gotplt == NULL
8969 || relplt == NULL)
f955cccf 8970 return FALSE;
a06ea964 8971
1419bbe5 8972 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
a06ea964
NC
8973 if (!h->def_regular)
8974 {
8975 /* Mark the symbol as undefined, rather than as defined in
46b87d49 8976 the .plt section. */
a06ea964 8977 sym->st_shndx = SHN_UNDEF;
46b87d49
WN
8978 /* If the symbol is weak we need to clear the value.
8979 Otherwise, the PLT entry would provide a definition for
8980 the symbol even if the symbol wasn't defined anywhere,
8981 and so the symbol would never be NULL. Leave the value if
8982 there were any relocations where pointer equality matters
8983 (this is a clue for the dynamic linker, to make function
8984 pointer comparisons work between an application and shared
8985 library). */
8986 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8987 sym->st_value = 0;
a06ea964
NC
8988 }
8989 }
8990
8991 if (h->got.offset != (bfd_vma) - 1
cec5225b 8992 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
a06ea964
NC
8993 {
8994 Elf_Internal_Rela rela;
8995 bfd_byte *loc;
8996
8997 /* This symbol has an entry in the global offset table. Set it
8998 up. */
8999 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9000 abort ();
9001
9002 rela.r_offset = (htab->root.sgot->output_section->vma
9003 + htab->root.sgot->output_offset
9004 + (h->got.offset & ~(bfd_vma) 1));
9005
49206388
WN
9006 if (h->def_regular
9007 && h->type == STT_GNU_IFUNC)
9008 {
0e1862bb 9009 if (bfd_link_pic (info))
49206388
WN
9010 {
9011 /* Generate R_AARCH64_GLOB_DAT. */
9012 goto do_glob_dat;
9013 }
9014 else
9015 {
9016 asection *plt;
9017
9018 if (!h->pointer_equality_needed)
9019 abort ();
9020
9021 /* For non-shared object, we can't use .got.plt, which
9022 contains the real function address if we need pointer
9023 equality. We load the GOT entry with the PLT entry. */
9024 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9025 bfd_put_NN (output_bfd, (plt->output_section->vma
9026 + plt->output_offset
9027 + h->plt.offset),
9028 htab->root.sgot->contents
9029 + (h->got.offset & ~(bfd_vma) 1));
9030 return TRUE;
9031 }
9032 }
0e1862bb 9033 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
a06ea964 9034 {
0ee3a6db 9035 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
a06ea964
NC
9036 return FALSE;
9037
9038 BFD_ASSERT ((h->got.offset & 1) != 0);
a6bb11b2 9039 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
a06ea964
NC
9040 rela.r_addend = (h->root.u.def.value
9041 + h->root.u.def.section->output_section->vma
9042 + h->root.u.def.section->output_offset);
9043 }
9044 else
9045 {
49206388 9046do_glob_dat:
a06ea964 9047 BFD_ASSERT ((h->got.offset & 1) == 0);
cec5225b 9048 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964 9049 htab->root.sgot->contents + h->got.offset);
a6bb11b2 9050 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
a06ea964
NC
9051 rela.r_addend = 0;
9052 }
9053
9054 loc = htab->root.srelgot->contents;
9055 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
cec5225b 9056 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
9057 }
9058
9059 if (h->needs_copy)
9060 {
9061 Elf_Internal_Rela rela;
5474d94f 9062 asection *s;
a06ea964
NC
9063 bfd_byte *loc;
9064
9065 /* This symbol needs a copy reloc. Set it up. */
a06ea964
NC
9066 if (h->dynindx == -1
9067 || (h->root.type != bfd_link_hash_defined
9068 && h->root.type != bfd_link_hash_defweak)
9d19e4fd 9069 || htab->root.srelbss == NULL)
a06ea964
NC
9070 abort ();
9071
9072 rela.r_offset = (h->root.u.def.value
9073 + h->root.u.def.section->output_section->vma
9074 + h->root.u.def.section->output_offset);
a6bb11b2 9075 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
a06ea964 9076 rela.r_addend = 0;
afbf7e8e 9077 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
9078 s = htab->root.sreldynrelro;
9079 else
9080 s = htab->root.srelbss;
9081 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
cec5225b 9082 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
9083 }
9084
9085 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9086 be NULL for local symbols. */
9087 if (sym != NULL
9637f6ef 9088 && (h == elf_hash_table (info)->hdynamic
a06ea964
NC
9089 || h == elf_hash_table (info)->hgot))
9090 sym->st_shndx = SHN_ABS;
9091
9092 return TRUE;
9093}
9094
1419bbe5
WN
9095/* Finish up local dynamic symbol handling. We set the contents of
9096 various dynamic sections here. */
9097
9098static bfd_boolean
9099elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9100{
9101 struct elf_link_hash_entry *h
9102 = (struct elf_link_hash_entry *) *slot;
9103 struct bfd_link_info *info
9104 = (struct bfd_link_info *) inf;
9105
9106 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9107 info, h, NULL);
9108}
9109
a06ea964 9110static void
cec5225b
YZ
9111elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9112 struct elf_aarch64_link_hash_table
a06ea964
NC
9113 *htab)
9114{
9115 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9116 small and large plts and at the minute just generates
9117 the small PLT. */
9118
cec5225b 9119 /* PLT0 of the small PLT looks like this in ELF64 -
a06ea964
NC
9120 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9121 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9122 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9123 // symbol resolver
9124 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9125 // GOTPLT entry for this.
9126 br x17
cec5225b 9127 PLT0 will be slightly different in ELF32 due to different got entry
2d0ca824 9128 size. */
caed7120 9129 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
a06ea964
NC
9130 bfd_vma plt_base;
9131
9132
cec5225b 9133 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
a06ea964
NC
9134 PLT_ENTRY_SIZE);
9135 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9136 PLT_ENTRY_SIZE;
9137
caed7120
YZ
9138 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9139 + htab->root.sgotplt->output_offset
9140 + GOT_ENTRY_SIZE * 2);
a06ea964
NC
9141
9142 plt_base = htab->root.splt->output_section->vma +
f44a1f8e 9143 htab->root.splt->output_offset;
a06ea964
NC
9144
9145 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9146 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
9147 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9148 htab->root.splt->contents + 4,
9149 PG (plt_got_2nd_ent) - PG (plt_base + 4));
a06ea964 9150
caed7120
YZ
9151 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9152 htab->root.splt->contents + 8,
9153 PG_OFFSET (plt_got_2nd_ent));
a06ea964 9154
caed7120
YZ
9155 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9156 htab->root.splt->contents + 12,
9157 PG_OFFSET (plt_got_2nd_ent));
a06ea964
NC
9158}
9159
9160static bfd_boolean
cec5225b 9161elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
a06ea964
NC
9162 struct bfd_link_info *info)
9163{
cec5225b 9164 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
9165 bfd *dynobj;
9166 asection *sdyn;
9167
cec5225b 9168 htab = elf_aarch64_hash_table (info);
a06ea964
NC
9169 dynobj = htab->root.dynobj;
9170 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9171
9172 if (htab->root.dynamic_sections_created)
9173 {
cec5225b 9174 ElfNN_External_Dyn *dyncon, *dynconend;
a06ea964
NC
9175
9176 if (sdyn == NULL || htab->root.sgot == NULL)
9177 abort ();
9178
cec5225b
YZ
9179 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9180 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
a06ea964
NC
9181 for (; dyncon < dynconend; dyncon++)
9182 {
9183 Elf_Internal_Dyn dyn;
9184 asection *s;
9185
cec5225b 9186 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
a06ea964
NC
9187
9188 switch (dyn.d_tag)
9189 {
9190 default:
9191 continue;
9192
9193 case DT_PLTGOT:
9194 s = htab->root.sgotplt;
9195 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9196 break;
9197
9198 case DT_JMPREL:
4ade44b7
AM
9199 s = htab->root.srelplt;
9200 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
a06ea964
NC
9201 break;
9202
9203 case DT_PLTRELSZ:
c955de36 9204 s = htab->root.srelplt;
a06ea964
NC
9205 dyn.d_un.d_val = s->size;
9206 break;
9207
a06ea964
NC
9208 case DT_TLSDESC_PLT:
9209 s = htab->root.splt;
9210 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9211 + htab->tlsdesc_plt;
9212 break;
9213
9214 case DT_TLSDESC_GOT:
9215 s = htab->root.sgot;
9216 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9217 + htab->dt_tlsdesc_got;
9218 break;
9219 }
9220
cec5225b 9221 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
a06ea964
NC
9222 }
9223
9224 }
9225
9226 /* Fill in the special first entry in the procedure linkage table. */
9227 if (htab->root.splt && htab->root.splt->size > 0)
9228 {
cec5225b 9229 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
a06ea964
NC
9230
9231 elf_section_data (htab->root.splt->output_section)->
9232 this_hdr.sh_entsize = htab->plt_entry_size;
9233
9234
9235 if (htab->tlsdesc_plt)
9236 {
cec5225b 9237 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
9238 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9239
9240 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
cec5225b
YZ
9241 elfNN_aarch64_tlsdesc_small_plt_entry,
9242 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
a06ea964
NC
9243
9244 {
9245 bfd_vma adrp1_addr =
9246 htab->root.splt->output_section->vma
9247 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9248
caed7120 9249 bfd_vma adrp2_addr = adrp1_addr + 4;
a06ea964
NC
9250
9251 bfd_vma got_addr =
9252 htab->root.sgot->output_section->vma
9253 + htab->root.sgot->output_offset;
9254
9255 bfd_vma pltgot_addr =
9256 htab->root.sgotplt->output_section->vma
9257 + htab->root.sgotplt->output_offset;
9258
9259 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
caed7120
YZ
9260
9261 bfd_byte *plt_entry =
9262 htab->root.splt->contents + htab->tlsdesc_plt;
a06ea964
NC
9263
9264 /* adrp x2, DT_TLSDESC_GOT */
caed7120
YZ
9265 elf_aarch64_update_plt_entry (output_bfd,
9266 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9267 plt_entry + 4,
9268 (PG (dt_tlsdesc_got)
9269 - PG (adrp1_addr)));
a06ea964
NC
9270
9271 /* adrp x3, 0 */
caed7120
YZ
9272 elf_aarch64_update_plt_entry (output_bfd,
9273 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9274 plt_entry + 8,
9275 (PG (pltgot_addr)
9276 - PG (adrp2_addr)));
a06ea964
NC
9277
9278 /* ldr x2, [x2, #0] */
caed7120
YZ
9279 elf_aarch64_update_plt_entry (output_bfd,
9280 BFD_RELOC_AARCH64_LDSTNN_LO12,
9281 plt_entry + 12,
9282 PG_OFFSET (dt_tlsdesc_got));
a06ea964
NC
9283
9284 /* add x3, x3, 0 */
caed7120
YZ
9285 elf_aarch64_update_plt_entry (output_bfd,
9286 BFD_RELOC_AARCH64_ADD_LO12,
9287 plt_entry + 16,
9288 PG_OFFSET (pltgot_addr));
a06ea964
NC
9289 }
9290 }
9291 }
9292
9293 if (htab->root.sgotplt)
9294 {
9295 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9296 {
4eca0228 9297 _bfd_error_handler
a06ea964
NC
9298 (_("discarded output section: `%A'"), htab->root.sgotplt);
9299 return FALSE;
9300 }
9301
9302 /* Fill in the first three entries in the global offset table. */
9303 if (htab->root.sgotplt->size > 0)
9304 {
8db339a6
MS
9305 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9306
a06ea964 9307 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
cec5225b 9308 bfd_put_NN (output_bfd,
a06ea964
NC
9309 (bfd_vma) 0,
9310 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
cec5225b 9311 bfd_put_NN (output_bfd,
a06ea964
NC
9312 (bfd_vma) 0,
9313 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9314 }
9315
8db339a6
MS
9316 if (htab->root.sgot)
9317 {
9318 if (htab->root.sgot->size > 0)
9319 {
9320 bfd_vma addr =
9321 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9322 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9323 }
9324 }
9325
a06ea964
NC
9326 elf_section_data (htab->root.sgotplt->output_section)->
9327 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9328 }
9329
9330 if (htab->root.sgot && htab->root.sgot->size > 0)
9331 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9332 = GOT_ENTRY_SIZE;
9333
1419bbe5
WN
9334 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9335 htab_traverse (htab->loc_hash_table,
9336 elfNN_aarch64_finish_local_dynamic_symbol,
9337 info);
9338
a06ea964
NC
9339 return TRUE;
9340}
9341
9342/* Return address for Ith PLT stub in section PLT, for relocation REL
9343 or (bfd_vma) -1 if it should not be included. */
9344
9345static bfd_vma
cec5225b 9346elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
a06ea964
NC
9347 const arelent *rel ATTRIBUTE_UNUSED)
9348{
9349 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9350}
9351
d691934d
NC
9352/* Returns TRUE if NAME is an AArch64 mapping symbol.
9353 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9354 It also allows a period initiated suffix to be added to the symbol, ie:
9355 "$[adtx]\.[:sym_char]+". */
9356
9357static bfd_boolean
9358is_aarch64_mapping_symbol (const char * name)
9359{
9360 return name != NULL /* Paranoia. */
9361 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9362 the mapping symbols could have acquired a prefix.
9363 We do not support this here, since such symbols no
9364 longer conform to the ARM ELF ABI. */
9365 && (name[1] == 'd' || name[1] == 'x')
9366 && (name[2] == 0 || name[2] == '.');
9367 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9368 any characters that follow the period are legal characters for the body
9369 of a symbol's name. For now we just assume that this is the case. */
9370}
9371
9372/* Make sure that mapping symbols in object files are not removed via the
9373 "strip --strip-unneeded" tool. These symbols might needed in order to
9374 correctly generate linked files. Once an object file has been linked,
9375 it should be safe to remove them. */
9376
9377static void
9378elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9379{
9380 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9381 && sym->section != bfd_abs_section_ptr
9382 && is_aarch64_mapping_symbol (sym->name))
9383 sym->flags |= BSF_KEEP;
9384}
9385
a06ea964
NC
9386
9387/* We use this so we can override certain functions
9388 (though currently we don't). */
9389
cec5225b 9390const struct elf_size_info elfNN_aarch64_size_info =
a06ea964 9391{
cec5225b
YZ
9392 sizeof (ElfNN_External_Ehdr),
9393 sizeof (ElfNN_External_Phdr),
9394 sizeof (ElfNN_External_Shdr),
9395 sizeof (ElfNN_External_Rel),
9396 sizeof (ElfNN_External_Rela),
9397 sizeof (ElfNN_External_Sym),
9398 sizeof (ElfNN_External_Dyn),
a06ea964
NC
9399 sizeof (Elf_External_Note),
9400 4, /* Hash table entry size. */
9401 1, /* Internal relocs per external relocs. */
cec5225b
YZ
9402 ARCH_SIZE, /* Arch size. */
9403 LOG_FILE_ALIGN, /* Log_file_align. */
9404 ELFCLASSNN, EV_CURRENT,
9405 bfd_elfNN_write_out_phdrs,
9406 bfd_elfNN_write_shdrs_and_ehdr,
9407 bfd_elfNN_checksum_contents,
9408 bfd_elfNN_write_relocs,
9409 bfd_elfNN_swap_symbol_in,
9410 bfd_elfNN_swap_symbol_out,
9411 bfd_elfNN_slurp_reloc_table,
9412 bfd_elfNN_slurp_symbol_table,
9413 bfd_elfNN_swap_dyn_in,
9414 bfd_elfNN_swap_dyn_out,
9415 bfd_elfNN_swap_reloc_in,
9416 bfd_elfNN_swap_reloc_out,
9417 bfd_elfNN_swap_reloca_in,
9418 bfd_elfNN_swap_reloca_out
a06ea964
NC
9419};
9420
9421#define ELF_ARCH bfd_arch_aarch64
9422#define ELF_MACHINE_CODE EM_AARCH64
9423#define ELF_MAXPAGESIZE 0x10000
9424#define ELF_MINPAGESIZE 0x1000
9425#define ELF_COMMONPAGESIZE 0x1000
9426
cec5225b
YZ
9427#define bfd_elfNN_close_and_cleanup \
9428 elfNN_aarch64_close_and_cleanup
a06ea964 9429
cec5225b
YZ
9430#define bfd_elfNN_bfd_free_cached_info \
9431 elfNN_aarch64_bfd_free_cached_info
a06ea964 9432
cec5225b
YZ
9433#define bfd_elfNN_bfd_is_target_special_symbol \
9434 elfNN_aarch64_is_target_special_symbol
a06ea964 9435
cec5225b
YZ
9436#define bfd_elfNN_bfd_link_hash_table_create \
9437 elfNN_aarch64_link_hash_table_create
a06ea964 9438
cec5225b
YZ
9439#define bfd_elfNN_bfd_merge_private_bfd_data \
9440 elfNN_aarch64_merge_private_bfd_data
a06ea964 9441
cec5225b
YZ
9442#define bfd_elfNN_bfd_print_private_bfd_data \
9443 elfNN_aarch64_print_private_bfd_data
a06ea964 9444
cec5225b
YZ
9445#define bfd_elfNN_bfd_reloc_type_lookup \
9446 elfNN_aarch64_reloc_type_lookup
a06ea964 9447
cec5225b
YZ
9448#define bfd_elfNN_bfd_reloc_name_lookup \
9449 elfNN_aarch64_reloc_name_lookup
a06ea964 9450
cec5225b
YZ
9451#define bfd_elfNN_bfd_set_private_flags \
9452 elfNN_aarch64_set_private_flags
a06ea964 9453
cec5225b
YZ
9454#define bfd_elfNN_find_inliner_info \
9455 elfNN_aarch64_find_inliner_info
a06ea964 9456
cec5225b
YZ
9457#define bfd_elfNN_find_nearest_line \
9458 elfNN_aarch64_find_nearest_line
a06ea964 9459
cec5225b
YZ
9460#define bfd_elfNN_mkobject \
9461 elfNN_aarch64_mkobject
a06ea964 9462
cec5225b
YZ
9463#define bfd_elfNN_new_section_hook \
9464 elfNN_aarch64_new_section_hook
a06ea964
NC
9465
9466#define elf_backend_adjust_dynamic_symbol \
cec5225b 9467 elfNN_aarch64_adjust_dynamic_symbol
a06ea964
NC
9468
9469#define elf_backend_always_size_sections \
cec5225b 9470 elfNN_aarch64_always_size_sections
a06ea964
NC
9471
9472#define elf_backend_check_relocs \
cec5225b 9473 elfNN_aarch64_check_relocs
a06ea964
NC
9474
9475#define elf_backend_copy_indirect_symbol \
cec5225b 9476 elfNN_aarch64_copy_indirect_symbol
a06ea964
NC
9477
9478/* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9479 to them in our hash. */
9480#define elf_backend_create_dynamic_sections \
cec5225b 9481 elfNN_aarch64_create_dynamic_sections
a06ea964
NC
9482
9483#define elf_backend_init_index_section \
9484 _bfd_elf_init_2_index_sections
9485
a06ea964 9486#define elf_backend_finish_dynamic_sections \
cec5225b 9487 elfNN_aarch64_finish_dynamic_sections
a06ea964
NC
9488
9489#define elf_backend_finish_dynamic_symbol \
cec5225b 9490 elfNN_aarch64_finish_dynamic_symbol
a06ea964
NC
9491
9492#define elf_backend_gc_sweep_hook \
cec5225b 9493 elfNN_aarch64_gc_sweep_hook
a06ea964
NC
9494
9495#define elf_backend_object_p \
cec5225b 9496 elfNN_aarch64_object_p
a06ea964
NC
9497
9498#define elf_backend_output_arch_local_syms \
cec5225b 9499 elfNN_aarch64_output_arch_local_syms
a06ea964
NC
9500
9501#define elf_backend_plt_sym_val \
cec5225b 9502 elfNN_aarch64_plt_sym_val
a06ea964
NC
9503
9504#define elf_backend_post_process_headers \
cec5225b 9505 elfNN_aarch64_post_process_headers
a06ea964
NC
9506
9507#define elf_backend_relocate_section \
cec5225b 9508 elfNN_aarch64_relocate_section
a06ea964
NC
9509
9510#define elf_backend_reloc_type_class \
cec5225b 9511 elfNN_aarch64_reloc_type_class
a06ea964 9512
a06ea964 9513#define elf_backend_section_from_shdr \
cec5225b 9514 elfNN_aarch64_section_from_shdr
a06ea964
NC
9515
9516#define elf_backend_size_dynamic_sections \
cec5225b 9517 elfNN_aarch64_size_dynamic_sections
a06ea964
NC
9518
9519#define elf_backend_size_info \
cec5225b 9520 elfNN_aarch64_size_info
a06ea964 9521
68fcca92
JW
9522#define elf_backend_write_section \
9523 elfNN_aarch64_write_section
9524
d691934d
NC
9525#define elf_backend_symbol_processing \
9526 elfNN_aarch64_backend_symbol_processing
9527
a06ea964 9528#define elf_backend_can_refcount 1
59c108f7 9529#define elf_backend_can_gc_sections 1
a06ea964
NC
9530#define elf_backend_plt_readonly 1
9531#define elf_backend_want_got_plt 1
9532#define elf_backend_want_plt_sym 0
5474d94f 9533#define elf_backend_want_dynrelro 1
a06ea964
NC
9534#define elf_backend_may_use_rel_p 0
9535#define elf_backend_may_use_rela_p 1
9536#define elf_backend_default_use_rela_p 1
2e0488d3 9537#define elf_backend_rela_normal 1
64f52338 9538#define elf_backend_dtrel_excludes_plt 1
a06ea964 9539#define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
c495064d 9540#define elf_backend_default_execstack 0
32f573bc 9541#define elf_backend_extern_protected_data 1
7f784814 9542#define elf_backend_hash_symbol elf_aarch64_hash_symbol
a06ea964
NC
9543
9544#undef elf_backend_obj_attrs_section
9545#define elf_backend_obj_attrs_section ".ARM.attributes"
9546
cec5225b 9547#include "elfNN-target.h"
a75cf613
ES
9548
9549/* CloudABI support. */
9550
9551#undef TARGET_LITTLE_SYM
9552#define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
9553#undef TARGET_LITTLE_NAME
9554#define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
9555#undef TARGET_BIG_SYM
9556#define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
9557#undef TARGET_BIG_NAME
9558#define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
9559
9560#undef ELF_OSABI
9561#define ELF_OSABI ELFOSABI_CLOUDABI
9562
9563#undef elfNN_bed
9564#define elfNN_bed elfNN_aarch64_cloudabi_bed
9565
9566#include "elfNN-target.h"
This page took 0.979004 seconds and 4 git commands to generate.