[AArch64] Relax TLS local dynamic traditional into local executable
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
CommitLineData
cec5225b 1/* AArch64-specific support for NN-bit ELF.
b90efa5b 2 Copyright (C) 2009-2015 Free Software Foundation, Inc.
a06ea964
NC
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21/* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
418009c2 43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
a06ea964
NC
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
a6bb11b2 53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
a06ea964
NC
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
a6bb11b2 67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
a06ea964
NC
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
a6bb11b2 72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
a06ea964
NC
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
cec5225b 95 elfNN_aarch64_check_relocs()
a06ea964
NC
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
a6bb11b2 100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
a06ea964
NC
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
cec5225b 107 elfNN_aarch64_allocate_dynrelocs ()
a06ea964
NC
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
cec5225b 115 elfNN_aarch64_size_dynamic_sections ()
a06ea964
NC
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
cec5225b 122 elfNN_aarch64_relocate_section ()
a06ea964 123
cec5225b 124 Calls elfNN_aarch64_final_link_relocate ()
a06ea964
NC
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
cec5225b 134 elfNN_aarch64_final_link_relocate ()
a06ea964
NC
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138#include "sysdep.h"
139#include "bfd.h"
140#include "libiberty.h"
141#include "libbfd.h"
142#include "bfd_stdint.h"
143#include "elf-bfd.h"
144#include "bfdlink.h"
1419bbe5 145#include "objalloc.h"
a06ea964 146#include "elf/aarch64.h"
caed7120 147#include "elfxx-aarch64.h"
a06ea964 148
cec5225b
YZ
149#define ARCH_SIZE NN
150
151#if ARCH_SIZE == 64
152#define AARCH64_R(NAME) R_AARCH64_ ## NAME
153#define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
a6bb11b2
YZ
154#define HOWTO64(...) HOWTO (__VA_ARGS__)
155#define HOWTO32(...) EMPTY_HOWTO (0)
cec5225b
YZ
156#define LOG_FILE_ALIGN 3
157#endif
158
159#if ARCH_SIZE == 32
160#define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161#define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
a6bb11b2
YZ
162#define HOWTO64(...) EMPTY_HOWTO (0)
163#define HOWTO32(...) HOWTO (__VA_ARGS__)
cec5225b
YZ
164#define LOG_FILE_ALIGN 2
165#endif
166
a6bb11b2 167#define IS_AARCH64_TLS_RELOC(R_TYPE) \
4c0a9a6f
JW
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
3c12b054 170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
a6bb11b2 171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
a6bb11b2 172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
4c0a9a6f 173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
a6bb11b2 174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
4c0a9a6f
JW
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
6ffe9a1b 177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
40fbed84 178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
753999c1 179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
73f925cc 180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
f69e4920 181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
77a69ff8 182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
07c9aa07
JW
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
6ffe9a1b
JW
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
a6bb11b2 196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
4c0a9a6f 197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
a6bb11b2 198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
a6bb11b2
YZ
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
4c0a9a6f
JW
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
a6bb11b2
YZ
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
a06ea964
NC
207 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
208
9331eea1
JW
209#define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
210 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
259364ad
JW
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
9331eea1
JW
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC)
225
a6bb11b2 226#define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
4c0a9a6f
JW
227 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
a6bb11b2 230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
389b8029 231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
4c0a9a6f 232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
a6bb11b2 233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
4c0a9a6f 234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
a6bb11b2 235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
4c0a9a6f
JW
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
a06ea964
NC
239
240#define ELIMINATE_COPY_RELOCS 0
241
a06ea964 242/* Return size of a relocation entry. HTAB is the bfd's
cec5225b
YZ
243 elf_aarch64_link_hash_entry. */
244#define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
a06ea964 245
cec5225b
YZ
246/* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
247#define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
a06ea964
NC
248#define PLT_ENTRY_SIZE (32)
249#define PLT_SMALL_ENTRY_SIZE (16)
250#define PLT_TLSDESC_ENTRY_SIZE (32)
251
a06ea964
NC
252/* Encoding of the nop instruction */
253#define INSN_NOP 0xd503201f
254
255#define aarch64_compute_jump_table_size(htab) \
256 (((htab)->root.srelplt == NULL) ? 0 \
257 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
258
259/* The first entry in a procedure linkage table looks like this
260 if the distance between the PLTGOT and the PLT is < 4GB use
261 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
262 in x16 and needs to work out PLTGOT[1] by using an address of
cec5225b
YZ
263 [x16,#-GOT_ENTRY_SIZE]. */
264static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
a06ea964
NC
265{
266 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
267 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
caed7120 268#if ARCH_SIZE == 64
a06ea964
NC
269 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
270 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
caed7120
YZ
271#else
272 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
273 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
274#endif
a06ea964
NC
275 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
276 0x1f, 0x20, 0x03, 0xd5, /* nop */
277 0x1f, 0x20, 0x03, 0xd5, /* nop */
278 0x1f, 0x20, 0x03, 0xd5, /* nop */
279};
280
281/* Per function entry in a procedure linkage table looks like this
282 if the distance between the PLTGOT and the PLT is < 4GB use
283 these PLT entries. */
cec5225b 284static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
a06ea964
NC
285{
286 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
caed7120 287#if ARCH_SIZE == 64
a06ea964
NC
288 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
289 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
caed7120
YZ
290#else
291 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
292 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
293#endif
a06ea964
NC
294 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
295};
296
297static const bfd_byte
cec5225b 298elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
a06ea964
NC
299{
300 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
301 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
302 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
caed7120
YZ
303#if ARCH_SIZE == 64
304 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
a06ea964 305 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
caed7120
YZ
306#else
307 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
308 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
309#endif
310 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
a06ea964
NC
311 0x1f, 0x20, 0x03, 0xd5, /* nop */
312 0x1f, 0x20, 0x03, 0xd5, /* nop */
313};
314
cec5225b
YZ
315#define elf_info_to_howto elfNN_aarch64_info_to_howto
316#define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
a06ea964
NC
317
318#define AARCH64_ELF_ABI_VERSION 0
a06ea964
NC
319
320/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
321#define ALL_ONES (~ (bfd_vma) 0)
322
a6bb11b2
YZ
323/* Indexed by the bfd interal reloc enumerators.
324 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
325 in reloc.c. */
a06ea964 326
a6bb11b2 327static reloc_howto_type elfNN_aarch64_howto_table[] =
a06ea964 328{
a6bb11b2 329 EMPTY_HOWTO (0),
a06ea964 330
a6bb11b2 331 /* Basic data relocations. */
a06ea964 332
a6bb11b2
YZ
333#if ARCH_SIZE == 64
334 HOWTO (R_AARCH64_NULL, /* type */
a06ea964 335 0, /* rightshift */
6346d5ca 336 3, /* size (0 = byte, 1 = short, 2 = long) */
a6bb11b2 337 0, /* bitsize */
a06ea964
NC
338 FALSE, /* pc_relative */
339 0, /* bitpos */
340 complain_overflow_dont, /* complain_on_overflow */
341 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 342 "R_AARCH64_NULL", /* name */
a06ea964
NC
343 FALSE, /* partial_inplace */
344 0, /* src_mask */
a6bb11b2 345 0, /* dst_mask */
a06ea964 346 FALSE), /* pcrel_offset */
a6bb11b2
YZ
347#else
348 HOWTO (R_AARCH64_NONE, /* type */
a06ea964 349 0, /* rightshift */
6346d5ca 350 3, /* size (0 = byte, 1 = short, 2 = long) */
a06ea964
NC
351 0, /* bitsize */
352 FALSE, /* pc_relative */
353 0, /* bitpos */
354 complain_overflow_dont, /* complain_on_overflow */
355 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 356 "R_AARCH64_NONE", /* name */
a06ea964
NC
357 FALSE, /* partial_inplace */
358 0, /* src_mask */
359 0, /* dst_mask */
360 FALSE), /* pcrel_offset */
a6bb11b2 361#endif
a06ea964
NC
362
363 /* .xword: (S+A) */
a6bb11b2 364 HOWTO64 (AARCH64_R (ABS64), /* type */
a06ea964
NC
365 0, /* rightshift */
366 4, /* size (4 = long long) */
367 64, /* bitsize */
368 FALSE, /* pc_relative */
369 0, /* bitpos */
370 complain_overflow_unsigned, /* complain_on_overflow */
371 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 372 AARCH64_R_STR (ABS64), /* name */
a06ea964
NC
373 FALSE, /* partial_inplace */
374 ALL_ONES, /* src_mask */
375 ALL_ONES, /* dst_mask */
376 FALSE), /* pcrel_offset */
377
378 /* .word: (S+A) */
a6bb11b2 379 HOWTO (AARCH64_R (ABS32), /* type */
a06ea964
NC
380 0, /* rightshift */
381 2, /* size (0 = byte, 1 = short, 2 = long) */
382 32, /* bitsize */
383 FALSE, /* pc_relative */
384 0, /* bitpos */
385 complain_overflow_unsigned, /* complain_on_overflow */
386 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 387 AARCH64_R_STR (ABS32), /* name */
a06ea964
NC
388 FALSE, /* partial_inplace */
389 0xffffffff, /* src_mask */
390 0xffffffff, /* dst_mask */
391 FALSE), /* pcrel_offset */
392
393 /* .half: (S+A) */
a6bb11b2 394 HOWTO (AARCH64_R (ABS16), /* type */
a06ea964
NC
395 0, /* rightshift */
396 1, /* size (0 = byte, 1 = short, 2 = long) */
397 16, /* bitsize */
398 FALSE, /* pc_relative */
399 0, /* bitpos */
400 complain_overflow_unsigned, /* complain_on_overflow */
401 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 402 AARCH64_R_STR (ABS16), /* name */
a06ea964
NC
403 FALSE, /* partial_inplace */
404 0xffff, /* src_mask */
405 0xffff, /* dst_mask */
406 FALSE), /* pcrel_offset */
407
408 /* .xword: (S+A-P) */
a6bb11b2 409 HOWTO64 (AARCH64_R (PREL64), /* type */
a06ea964
NC
410 0, /* rightshift */
411 4, /* size (4 = long long) */
412 64, /* bitsize */
413 TRUE, /* pc_relative */
414 0, /* bitpos */
415 complain_overflow_signed, /* complain_on_overflow */
416 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 417 AARCH64_R_STR (PREL64), /* name */
a06ea964
NC
418 FALSE, /* partial_inplace */
419 ALL_ONES, /* src_mask */
420 ALL_ONES, /* dst_mask */
421 TRUE), /* pcrel_offset */
422
423 /* .word: (S+A-P) */
a6bb11b2 424 HOWTO (AARCH64_R (PREL32), /* type */
a06ea964
NC
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 32, /* bitsize */
428 TRUE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_signed, /* complain_on_overflow */
431 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 432 AARCH64_R_STR (PREL32), /* name */
a06ea964
NC
433 FALSE, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 TRUE), /* pcrel_offset */
437
438 /* .half: (S+A-P) */
a6bb11b2 439 HOWTO (AARCH64_R (PREL16), /* type */
a06ea964
NC
440 0, /* rightshift */
441 1, /* size (0 = byte, 1 = short, 2 = long) */
442 16, /* bitsize */
443 TRUE, /* pc_relative */
444 0, /* bitpos */
445 complain_overflow_signed, /* complain_on_overflow */
446 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 447 AARCH64_R_STR (PREL16), /* name */
a06ea964
NC
448 FALSE, /* partial_inplace */
449 0xffff, /* src_mask */
450 0xffff, /* dst_mask */
451 TRUE), /* pcrel_offset */
452
453 /* Group relocations to create a 16, 32, 48 or 64 bit
454 unsigned data or abs address inline. */
455
456 /* MOVZ: ((S+A) >> 0) & 0xffff */
a6bb11b2 457 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
a06ea964
NC
458 0, /* rightshift */
459 2, /* size (0 = byte, 1 = short, 2 = long) */
460 16, /* bitsize */
461 FALSE, /* pc_relative */
462 0, /* bitpos */
463 complain_overflow_unsigned, /* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 465 AARCH64_R_STR (MOVW_UABS_G0), /* name */
a06ea964
NC
466 FALSE, /* partial_inplace */
467 0xffff, /* src_mask */
468 0xffff, /* dst_mask */
469 FALSE), /* pcrel_offset */
470
471 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
a6bb11b2 472 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
a06ea964
NC
473 0, /* rightshift */
474 2, /* size (0 = byte, 1 = short, 2 = long) */
475 16, /* bitsize */
476 FALSE, /* pc_relative */
477 0, /* bitpos */
478 complain_overflow_dont, /* complain_on_overflow */
479 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 480 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
a06ea964
NC
481 FALSE, /* partial_inplace */
482 0xffff, /* src_mask */
483 0xffff, /* dst_mask */
484 FALSE), /* pcrel_offset */
485
486 /* MOVZ: ((S+A) >> 16) & 0xffff */
a6bb11b2 487 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
a06ea964
NC
488 16, /* rightshift */
489 2, /* size (0 = byte, 1 = short, 2 = long) */
490 16, /* bitsize */
491 FALSE, /* pc_relative */
492 0, /* bitpos */
493 complain_overflow_unsigned, /* complain_on_overflow */
494 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 495 AARCH64_R_STR (MOVW_UABS_G1), /* name */
a06ea964
NC
496 FALSE, /* partial_inplace */
497 0xffff, /* src_mask */
498 0xffff, /* dst_mask */
499 FALSE), /* pcrel_offset */
500
501 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
a6bb11b2 502 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
a06ea964
NC
503 16, /* rightshift */
504 2, /* size (0 = byte, 1 = short, 2 = long) */
505 16, /* bitsize */
506 FALSE, /* pc_relative */
507 0, /* bitpos */
508 complain_overflow_dont, /* complain_on_overflow */
509 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 510 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
a06ea964
NC
511 FALSE, /* partial_inplace */
512 0xffff, /* src_mask */
513 0xffff, /* dst_mask */
514 FALSE), /* pcrel_offset */
515
516 /* MOVZ: ((S+A) >> 32) & 0xffff */
a6bb11b2 517 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
a06ea964
NC
518 32, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 16, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_unsigned, /* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 525 AARCH64_R_STR (MOVW_UABS_G2), /* name */
a06ea964
NC
526 FALSE, /* partial_inplace */
527 0xffff, /* src_mask */
528 0xffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
a6bb11b2 532 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
a06ea964
NC
533 32, /* rightshift */
534 2, /* size (0 = byte, 1 = short, 2 = long) */
535 16, /* bitsize */
536 FALSE, /* pc_relative */
537 0, /* bitpos */
538 complain_overflow_dont, /* complain_on_overflow */
539 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 540 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
a06ea964
NC
541 FALSE, /* partial_inplace */
542 0xffff, /* src_mask */
543 0xffff, /* dst_mask */
544 FALSE), /* pcrel_offset */
545
546 /* MOVZ: ((S+A) >> 48) & 0xffff */
a6bb11b2 547 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
a06ea964
NC
548 48, /* rightshift */
549 2, /* size (0 = byte, 1 = short, 2 = long) */
550 16, /* bitsize */
551 FALSE, /* pc_relative */
552 0, /* bitpos */
553 complain_overflow_unsigned, /* complain_on_overflow */
554 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 555 AARCH64_R_STR (MOVW_UABS_G3), /* name */
a06ea964
NC
556 FALSE, /* partial_inplace */
557 0xffff, /* src_mask */
558 0xffff, /* dst_mask */
559 FALSE), /* pcrel_offset */
560
561 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
562 signed data or abs address inline. Will change instruction
563 to MOVN or MOVZ depending on sign of calculated value. */
564
565 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
a6bb11b2 566 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
a06ea964
NC
567 0, /* rightshift */
568 2, /* size (0 = byte, 1 = short, 2 = long) */
569 16, /* bitsize */
570 FALSE, /* pc_relative */
571 0, /* bitpos */
572 complain_overflow_signed, /* complain_on_overflow */
573 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 574 AARCH64_R_STR (MOVW_SABS_G0), /* name */
a06ea964
NC
575 FALSE, /* partial_inplace */
576 0xffff, /* src_mask */
577 0xffff, /* dst_mask */
578 FALSE), /* pcrel_offset */
579
580 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
a6bb11b2 581 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
a06ea964
NC
582 16, /* rightshift */
583 2, /* size (0 = byte, 1 = short, 2 = long) */
584 16, /* bitsize */
585 FALSE, /* pc_relative */
586 0, /* bitpos */
587 complain_overflow_signed, /* complain_on_overflow */
588 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 589 AARCH64_R_STR (MOVW_SABS_G1), /* name */
a06ea964
NC
590 FALSE, /* partial_inplace */
591 0xffff, /* src_mask */
592 0xffff, /* dst_mask */
593 FALSE), /* pcrel_offset */
594
595 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
a6bb11b2 596 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
a06ea964
NC
597 32, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 16, /* bitsize */
600 FALSE, /* pc_relative */
601 0, /* bitpos */
602 complain_overflow_signed, /* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 604 AARCH64_R_STR (MOVW_SABS_G2), /* name */
a06ea964
NC
605 FALSE, /* partial_inplace */
606 0xffff, /* src_mask */
607 0xffff, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610/* Relocations to generate 19, 21 and 33 bit PC-relative load/store
611 addresses: PG(x) is (x & ~0xfff). */
612
613 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 614 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
a06ea964
NC
615 2, /* rightshift */
616 2, /* size (0 = byte, 1 = short, 2 = long) */
617 19, /* bitsize */
618 TRUE, /* pc_relative */
619 0, /* bitpos */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 622 AARCH64_R_STR (LD_PREL_LO19), /* name */
a06ea964
NC
623 FALSE, /* partial_inplace */
624 0x7ffff, /* src_mask */
625 0x7ffff, /* dst_mask */
626 TRUE), /* pcrel_offset */
627
628 /* ADR: (S+A-P) & 0x1fffff */
a6bb11b2 629 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
a06ea964
NC
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 21, /* bitsize */
633 TRUE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_signed, /* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 637 AARCH64_R_STR (ADR_PREL_LO21), /* name */
a06ea964
NC
638 FALSE, /* partial_inplace */
639 0x1fffff, /* src_mask */
640 0x1fffff, /* dst_mask */
641 TRUE), /* pcrel_offset */
642
643 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
a6bb11b2 644 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
a06ea964
NC
645 12, /* rightshift */
646 2, /* size (0 = byte, 1 = short, 2 = long) */
647 21, /* bitsize */
648 TRUE, /* pc_relative */
649 0, /* bitpos */
650 complain_overflow_signed, /* complain_on_overflow */
651 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 652 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
a06ea964
NC
653 FALSE, /* partial_inplace */
654 0x1fffff, /* src_mask */
655 0x1fffff, /* dst_mask */
656 TRUE), /* pcrel_offset */
657
658 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
a6bb11b2 659 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
a06ea964
NC
660 12, /* rightshift */
661 2, /* size (0 = byte, 1 = short, 2 = long) */
662 21, /* bitsize */
663 TRUE, /* pc_relative */
664 0, /* bitpos */
665 complain_overflow_dont, /* complain_on_overflow */
666 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 667 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
a06ea964
NC
668 FALSE, /* partial_inplace */
669 0x1fffff, /* src_mask */
670 0x1fffff, /* dst_mask */
671 TRUE), /* pcrel_offset */
672
673 /* ADD: (S+A) & 0xfff [no overflow check] */
a6bb11b2 674 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
a06ea964
NC
675 0, /* rightshift */
676 2, /* size (0 = byte, 1 = short, 2 = long) */
677 12, /* bitsize */
678 FALSE, /* pc_relative */
679 10, /* bitpos */
680 complain_overflow_dont, /* complain_on_overflow */
681 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 682 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
a06ea964
NC
683 FALSE, /* partial_inplace */
684 0x3ffc00, /* src_mask */
685 0x3ffc00, /* dst_mask */
686 FALSE), /* pcrel_offset */
687
688 /* LD/ST8: (S+A) & 0xfff */
a6bb11b2 689 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
a06ea964
NC
690 0, /* rightshift */
691 2, /* size (0 = byte, 1 = short, 2 = long) */
692 12, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont, /* complain_on_overflow */
696 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 697 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
a06ea964
NC
698 FALSE, /* partial_inplace */
699 0xfff, /* src_mask */
700 0xfff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 /* Relocations for control-flow instructions. */
704
705 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
a6bb11b2 706 HOWTO (AARCH64_R (TSTBR14), /* type */
a06ea964
NC
707 2, /* rightshift */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
709 14, /* bitsize */
710 TRUE, /* pc_relative */
711 0, /* bitpos */
712 complain_overflow_signed, /* complain_on_overflow */
713 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 714 AARCH64_R_STR (TSTBR14), /* name */
a06ea964
NC
715 FALSE, /* partial_inplace */
716 0x3fff, /* src_mask */
717 0x3fff, /* dst_mask */
718 TRUE), /* pcrel_offset */
719
720 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 721 HOWTO (AARCH64_R (CONDBR19), /* type */
a06ea964
NC
722 2, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 19, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 729 AARCH64_R_STR (CONDBR19), /* name */
a06ea964
NC
730 FALSE, /* partial_inplace */
731 0x7ffff, /* src_mask */
732 0x7ffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
a06ea964 735 /* B: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 736 HOWTO (AARCH64_R (JUMP26), /* type */
a06ea964
NC
737 2, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 26, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_signed, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 744 AARCH64_R_STR (JUMP26), /* name */
a06ea964
NC
745 FALSE, /* partial_inplace */
746 0x3ffffff, /* src_mask */
747 0x3ffffff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 751 HOWTO (AARCH64_R (CALL26), /* type */
a06ea964
NC
752 2, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 26, /* bitsize */
755 TRUE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_signed, /* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 759 AARCH64_R_STR (CALL26), /* name */
a06ea964
NC
760 FALSE, /* partial_inplace */
761 0x3ffffff, /* src_mask */
762 0x3ffffff, /* dst_mask */
763 TRUE), /* pcrel_offset */
764
765 /* LD/ST16: (S+A) & 0xffe */
a6bb11b2 766 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
a06ea964
NC
767 1, /* rightshift */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
769 12, /* bitsize */
770 FALSE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_dont, /* complain_on_overflow */
773 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 774 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
a06ea964
NC
775 FALSE, /* partial_inplace */
776 0xffe, /* src_mask */
777 0xffe, /* dst_mask */
778 FALSE), /* pcrel_offset */
779
780 /* LD/ST32: (S+A) & 0xffc */
a6bb11b2 781 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
a06ea964
NC
782 2, /* rightshift */
783 2, /* size (0 = byte, 1 = short, 2 = long) */
784 12, /* bitsize */
785 FALSE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_dont, /* complain_on_overflow */
788 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 789 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
a06ea964
NC
790 FALSE, /* partial_inplace */
791 0xffc, /* src_mask */
792 0xffc, /* dst_mask */
793 FALSE), /* pcrel_offset */
794
795 /* LD/ST64: (S+A) & 0xff8 */
a6bb11b2 796 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
a06ea964
NC
797 3, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 12, /* bitsize */
800 FALSE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 804 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
a06ea964
NC
805 FALSE, /* partial_inplace */
806 0xff8, /* src_mask */
807 0xff8, /* dst_mask */
808 FALSE), /* pcrel_offset */
809
a06ea964 810 /* LD/ST128: (S+A) & 0xff0 */
a6bb11b2 811 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
a06ea964
NC
812 4, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 12, /* bitsize */
815 FALSE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 819 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
a06ea964
NC
820 FALSE, /* partial_inplace */
821 0xff0, /* src_mask */
822 0xff0, /* dst_mask */
823 FALSE), /* pcrel_offset */
824
f41aef5f
RE
825 /* Set a load-literal immediate field to bits
826 0x1FFFFC of G(S)-P */
a6bb11b2 827 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
f41aef5f
RE
828 2, /* rightshift */
829 2, /* size (0 = byte,1 = short,2 = long) */
830 19, /* bitsize */
831 TRUE, /* pc_relative */
832 0, /* bitpos */
833 complain_overflow_signed, /* complain_on_overflow */
834 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 835 AARCH64_R_STR (GOT_LD_PREL19), /* name */
f41aef5f
RE
836 FALSE, /* partial_inplace */
837 0xffffe0, /* src_mask */
838 0xffffe0, /* dst_mask */
839 TRUE), /* pcrel_offset */
840
a06ea964
NC
841 /* Get to the page for the GOT entry for the symbol
842 (G(S) - P) using an ADRP instruction. */
a6bb11b2 843 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
a06ea964
NC
844 12, /* rightshift */
845 2, /* size (0 = byte, 1 = short, 2 = long) */
846 21, /* bitsize */
847 TRUE, /* pc_relative */
848 0, /* bitpos */
849 complain_overflow_dont, /* complain_on_overflow */
850 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 851 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
a06ea964
NC
852 FALSE, /* partial_inplace */
853 0x1fffff, /* src_mask */
854 0x1fffff, /* dst_mask */
855 TRUE), /* pcrel_offset */
856
a6bb11b2
YZ
857 /* LD64: GOT offset G(S) & 0xff8 */
858 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
a06ea964
NC
859 3, /* rightshift */
860 2, /* size (0 = byte, 1 = short, 2 = long) */
861 12, /* bitsize */
862 FALSE, /* pc_relative */
863 0, /* bitpos */
864 complain_overflow_dont, /* complain_on_overflow */
865 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 866 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
a06ea964
NC
867 FALSE, /* partial_inplace */
868 0xff8, /* src_mask */
869 0xff8, /* dst_mask */
a6bb11b2 870 FALSE), /* pcrel_offset */
a06ea964 871
a6bb11b2
YZ
872 /* LD32: GOT offset G(S) & 0xffc */
873 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
874 2, /* rightshift */
875 2, /* size (0 = byte, 1 = short, 2 = long) */
876 12, /* bitsize */
877 FALSE, /* pc_relative */
878 0, /* bitpos */
879 complain_overflow_dont, /* complain_on_overflow */
880 bfd_elf_generic_reloc, /* special_function */
881 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
882 FALSE, /* partial_inplace */
883 0xffc, /* src_mask */
884 0xffc, /* dst_mask */
885 FALSE), /* pcrel_offset */
a06ea964 886
87f5fbcc
RL
887 /* LD64: GOT offset for the symbol. */
888 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
889 3, /* rightshift */
890 2, /* size (0 = byte, 1 = short, 2 = long) */
891 12, /* bitsize */
892 FALSE, /* pc_relative */
893 0, /* bitpos */
894 complain_overflow_unsigned, /* complain_on_overflow */
895 bfd_elf_generic_reloc, /* special_function */
896 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
897 FALSE, /* partial_inplace */
898 0x7ff8, /* src_mask */
899 0x7ff8, /* dst_mask */
900 FALSE), /* pcrel_offset */
901
3d715ce4
JW
902 /* LD32: GOT offset to the page address of GOT table.
903 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
904 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
905 2, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 12, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_unsigned, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
913 FALSE, /* partial_inplace */
914 0x5ffc, /* src_mask */
915 0x5ffc, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
a921b5bd
JW
918 /* LD64: GOT offset to the page address of GOT table.
919 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
920 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
921 3, /* rightshift */
922 2, /* size (0 = byte, 1 = short, 2 = long) */
923 12, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_unsigned, /* complain_on_overflow */
927 bfd_elf_generic_reloc, /* special_function */
928 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
929 FALSE, /* partial_inplace */
930 0x7ff8, /* src_mask */
931 0x7ff8, /* dst_mask */
932 FALSE), /* pcrel_offset */
933
a06ea964
NC
934 /* Get to the page for the GOT entry for the symbol
935 (G(S) - P) using an ADRP instruction. */
a6bb11b2 936 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
a06ea964
NC
937 12, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 21, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_dont, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 944 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
a06ea964
NC
945 FALSE, /* partial_inplace */
946 0x1fffff, /* src_mask */
947 0x1fffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
3c12b054
MS
950 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
951 0, /* rightshift */
952 2, /* size (0 = byte, 1 = short, 2 = long) */
953 21, /* bitsize */
954 TRUE, /* pc_relative */
955 0, /* bitpos */
956 complain_overflow_dont, /* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
959 FALSE, /* partial_inplace */
960 0x1fffff, /* src_mask */
961 0x1fffff, /* dst_mask */
962 TRUE), /* pcrel_offset */
963
a06ea964 964 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
a6bb11b2 965 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
a06ea964
NC
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 12, /* bitsize */
969 FALSE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 973 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
a06ea964
NC
974 FALSE, /* partial_inplace */
975 0xfff, /* src_mask */
976 0xfff, /* dst_mask */
977 FALSE), /* pcrel_offset */
978
a6bb11b2 979 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
a06ea964
NC
980 16, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 16, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 987 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
a06ea964
NC
988 FALSE, /* partial_inplace */
989 0xffff, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
a6bb11b2 993 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
a06ea964
NC
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
49d8f92c 996 16, /* bitsize */
a06ea964
NC
997 FALSE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont, /* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1001 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
a06ea964
NC
1002 FALSE, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE), /* pcrel_offset */
1006
a6bb11b2 1007 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
a06ea964
NC
1008 12, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 21, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont, /* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1015 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
a06ea964
NC
1016 FALSE, /* partial_inplace */
1017 0x1fffff, /* src_mask */
1018 0x1fffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
a6bb11b2 1021 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
a06ea964
NC
1022 3, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 12, /* bitsize */
1025 FALSE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont, /* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1029 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
a06ea964
NC
1030 FALSE, /* partial_inplace */
1031 0xff8, /* src_mask */
1032 0xff8, /* dst_mask */
1033 FALSE), /* pcrel_offset */
1034
a6bb11b2
YZ
1035 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1036 2, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 12, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1044 FALSE, /* partial_inplace */
1045 0xffc, /* src_mask */
1046 0xffc, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
bb3f9ed8 1050 2, /* rightshift */
a06ea964 1051 2, /* size (0 = byte, 1 = short, 2 = long) */
043bf05a 1052 19, /* bitsize */
a06ea964
NC
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1057 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
a06ea964
NC
1058 FALSE, /* partial_inplace */
1059 0x1ffffc, /* src_mask */
1060 0x1ffffc, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
49df5539
JW
1063 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1064 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1065 12, /* rightshift */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 12, /* bitsize */
1068 FALSE, /* pc_relative */
1069 0, /* bitpos */
1070 complain_overflow_unsigned, /* complain_on_overflow */
1071 bfd_elf_generic_reloc, /* special_function */
1072 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1073 FALSE, /* partial_inplace */
1074 0xfff, /* src_mask */
1075 0xfff, /* dst_mask */
1076 FALSE), /* pcrel_offset */
1077
70151fb5
JW
1078 /* Unsigned 12 bit byte offset to module TLS base address. */
1079 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1080 0, /* rightshift */
1081 2, /* size (0 = byte, 1 = short, 2 = long) */
1082 12, /* bitsize */
1083 FALSE, /* pc_relative */
1084 0, /* bitpos */
1085 complain_overflow_unsigned, /* complain_on_overflow */
1086 bfd_elf_generic_reloc, /* special_function */
1087 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1088 FALSE, /* partial_inplace */
1089 0xfff, /* src_mask */
1090 0xfff, /* dst_mask */
1091 FALSE), /* pcrel_offset */
13289c10
JW
1092
1093 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1094 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1095 0, /* rightshift */
1096 2, /* size (0 = byte, 1 = short, 2 = long) */
1097 12, /* bitsize */
1098 FALSE, /* pc_relative */
1099 0, /* bitpos */
1100 complain_overflow_dont, /* complain_on_overflow */
1101 bfd_elf_generic_reloc, /* special_function */
1102 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1103 FALSE, /* partial_inplace */
1104 0xfff, /* src_mask */
1105 0xfff, /* dst_mask */
1106 FALSE), /* pcrel_offset */
70151fb5 1107
a12fad50
JW
1108 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1109 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1110 0, /* rightshift */
1111 2, /* size (0 = byte, 1 = short, 2 = long) */
1112 12, /* bitsize */
1113 FALSE, /* pc_relative */
1114 0, /* bitpos */
1115 complain_overflow_dont, /* complain_on_overflow */
1116 bfd_elf_generic_reloc, /* special_function */
1117 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1118 FALSE, /* partial_inplace */
1119 0xfff, /* src_mask */
1120 0xfff, /* dst_mask */
1121 FALSE), /* pcrel_offset */
1122
1107e076
JW
1123 /* Get to the page for the GOT entry for the symbol
1124 (G(S) - P) using an ADRP instruction. */
1125 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1126 12, /* rightshift */
1127 2, /* size (0 = byte, 1 = short, 2 = long) */
1128 21, /* bitsize */
1129 TRUE, /* pc_relative */
1130 0, /* bitpos */
1131 complain_overflow_signed, /* complain_on_overflow */
1132 bfd_elf_generic_reloc, /* special_function */
1133 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1134 FALSE, /* partial_inplace */
1135 0x1fffff, /* src_mask */
1136 0x1fffff, /* dst_mask */
1137 TRUE), /* pcrel_offset */
1138
6c37fedc
JW
1139 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1140 0, /* rightshift */
1141 2, /* size (0 = byte, 1 = short, 2 = long) */
1142 21, /* bitsize */
1143 TRUE, /* pc_relative */
1144 0, /* bitpos */
1145 complain_overflow_signed, /* complain_on_overflow */
1146 bfd_elf_generic_reloc, /* special_function */
1147 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1148 FALSE, /* partial_inplace */
1149 0x1fffff, /* src_mask */
1150 0x1fffff, /* dst_mask */
1151 TRUE), /* pcrel_offset */
1152
4c562523
JW
1153 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1154 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1155 1, /* rightshift */
1156 2, /* size (0 = byte, 1 = short, 2 = long) */
1157 11, /* bitsize */
1158 FALSE, /* pc_relative */
1159 10, /* bitpos */
1160 complain_overflow_unsigned, /* complain_on_overflow */
1161 bfd_elf_generic_reloc, /* special_function */
1162 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1163 FALSE, /* partial_inplace */
1164 0x1ffc00, /* src_mask */
1165 0x1ffc00, /* dst_mask */
1166 FALSE), /* pcrel_offset */
1167
1168 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1169 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1170 1, /* rightshift */
1171 2, /* size (0 = byte, 1 = short, 2 = long) */
1172 11, /* bitsize */
1173 FALSE, /* pc_relative */
1174 10, /* bitpos */
1175 complain_overflow_dont, /* complain_on_overflow */
1176 bfd_elf_generic_reloc, /* special_function */
1177 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1178 FALSE, /* partial_inplace */
1179 0x1ffc00, /* src_mask */
1180 0x1ffc00, /* dst_mask */
1181 FALSE), /* pcrel_offset */
1182
1183 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1184 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1185 2, /* rightshift */
1186 2, /* size (0 = byte, 1 = short, 2 = long) */
1187 10, /* bitsize */
1188 FALSE, /* pc_relative */
1189 10, /* bitpos */
1190 complain_overflow_unsigned, /* complain_on_overflow */
1191 bfd_elf_generic_reloc, /* special_function */
1192 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1193 FALSE, /* partial_inplace */
1194 0x3ffc00, /* src_mask */
1195 0x3ffc00, /* dst_mask */
1196 FALSE), /* pcrel_offset */
1197
1198 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1199 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1200 2, /* rightshift */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1202 10, /* bitsize */
1203 FALSE, /* pc_relative */
1204 10, /* bitpos */
1205 complain_overflow_dont, /* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1208 FALSE, /* partial_inplace */
1209 0xffc00, /* src_mask */
1210 0xffc00, /* dst_mask */
1211 FALSE), /* pcrel_offset */
1212
1213 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1214 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1215 3, /* rightshift */
1216 2, /* size (0 = byte, 1 = short, 2 = long) */
1217 9, /* bitsize */
1218 FALSE, /* pc_relative */
1219 10, /* bitpos */
1220 complain_overflow_unsigned, /* complain_on_overflow */
1221 bfd_elf_generic_reloc, /* special_function */
1222 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1223 FALSE, /* partial_inplace */
1224 0x3ffc00, /* src_mask */
1225 0x3ffc00, /* dst_mask */
1226 FALSE), /* pcrel_offset */
1227
1228 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1229 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1230 3, /* rightshift */
1231 2, /* size (0 = byte, 1 = short, 2 = long) */
1232 9, /* bitsize */
1233 FALSE, /* pc_relative */
1234 10, /* bitpos */
1235 complain_overflow_dont, /* complain_on_overflow */
1236 bfd_elf_generic_reloc, /* special_function */
1237 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1238 FALSE, /* partial_inplace */
1239 0x7fc00, /* src_mask */
1240 0x7fc00, /* dst_mask */
1241 FALSE), /* pcrel_offset */
1242
1243 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1244 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1245 0, /* rightshift */
1246 2, /* size (0 = byte, 1 = short, 2 = long) */
1247 12, /* bitsize */
1248 FALSE, /* pc_relative */
1249 10, /* bitpos */
1250 complain_overflow_unsigned, /* complain_on_overflow */
1251 bfd_elf_generic_reloc, /* special_function */
1252 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1253 FALSE, /* partial_inplace */
1254 0x3ffc00, /* src_mask */
1255 0x3ffc00, /* dst_mask */
1256 FALSE), /* pcrel_offset */
1257
1258 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1259 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 12, /* bitsize */
1263 FALSE, /* pc_relative */
1264 10, /* bitpos */
1265 complain_overflow_dont, /* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1268 FALSE, /* partial_inplace */
1269 0x3ffc00, /* src_mask */
1270 0x3ffc00, /* dst_mask */
1271 FALSE), /* pcrel_offset */
1272
49df5539
JW
1273 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1274 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1275 0, /* rightshift */
1276 2, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_unsigned, /* complain_on_overflow */
1281 bfd_elf_generic_reloc, /* special_function */
1282 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1283 FALSE, /* partial_inplace */
1284 0xffff, /* src_mask */
1285 0xffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1289 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_dont, /* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1298 FALSE, /* partial_inplace */
1299 0xffff, /* src_mask */
1300 0xffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1304 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1305 16, /* rightshift */
1306 2, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_unsigned, /* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1313 FALSE, /* partial_inplace */
1314 0xffff, /* src_mask */
1315 0xffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1319 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1320 16, /* rightshift */
1321 2, /* size (0 = byte, 1 = short, 2 = long) */
1322 16, /* bitsize */
1323 FALSE, /* pc_relative */
1324 0, /* bitpos */
1325 complain_overflow_dont, /* complain_on_overflow */
1326 bfd_elf_generic_reloc, /* special_function */
1327 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1328 FALSE, /* partial_inplace */
1329 0xffff, /* src_mask */
1330 0xffff, /* dst_mask */
1331 FALSE), /* pcrel_offset */
1332
1333 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1334 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1335 32, /* rightshift */
1336 2, /* size (0 = byte, 1 = short, 2 = long) */
1337 16, /* bitsize */
1338 FALSE, /* pc_relative */
1339 0, /* bitpos */
1340 complain_overflow_unsigned, /* complain_on_overflow */
1341 bfd_elf_generic_reloc, /* special_function */
1342 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1343 FALSE, /* partial_inplace */
1344 0xffff, /* src_mask */
1345 0xffff, /* dst_mask */
1346 FALSE), /* pcrel_offset */
1347
a6bb11b2 1348 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
bb3f9ed8 1349 32, /* rightshift */
a06ea964 1350 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1351 16, /* bitsize */
a06ea964
NC
1352 FALSE, /* pc_relative */
1353 0, /* bitpos */
0172429c 1354 complain_overflow_unsigned, /* complain_on_overflow */
a06ea964 1355 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1356 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
a06ea964
NC
1357 FALSE, /* partial_inplace */
1358 0xffff, /* src_mask */
1359 0xffff, /* dst_mask */
1360 FALSE), /* pcrel_offset */
1361
a6bb11b2 1362 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
bb3f9ed8 1363 16, /* rightshift */
a06ea964 1364 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1365 16, /* bitsize */
a06ea964
NC
1366 FALSE, /* pc_relative */
1367 0, /* bitpos */
1368 complain_overflow_dont, /* complain_on_overflow */
1369 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1370 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
a06ea964
NC
1371 FALSE, /* partial_inplace */
1372 0xffff, /* src_mask */
1373 0xffff, /* dst_mask */
1374 FALSE), /* pcrel_offset */
1375
a6bb11b2 1376 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
bb3f9ed8 1377 16, /* rightshift */
a06ea964 1378 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1379 16, /* bitsize */
a06ea964
NC
1380 FALSE, /* pc_relative */
1381 0, /* bitpos */
1382 complain_overflow_dont, /* complain_on_overflow */
1383 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1384 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
a06ea964
NC
1385 FALSE, /* partial_inplace */
1386 0xffff, /* src_mask */
1387 0xffff, /* dst_mask */
1388 FALSE), /* pcrel_offset */
1389
a6bb11b2 1390 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
a06ea964
NC
1391 0, /* rightshift */
1392 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1393 16, /* bitsize */
a06ea964
NC
1394 FALSE, /* pc_relative */
1395 0, /* bitpos */
1396 complain_overflow_dont, /* complain_on_overflow */
1397 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1398 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
a06ea964
NC
1399 FALSE, /* partial_inplace */
1400 0xffff, /* src_mask */
1401 0xffff, /* dst_mask */
1402 FALSE), /* pcrel_offset */
1403
a6bb11b2 1404 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
a06ea964
NC
1405 0, /* rightshift */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
07875fbc 1407 16, /* bitsize */
a06ea964
NC
1408 FALSE, /* pc_relative */
1409 0, /* bitpos */
1410 complain_overflow_dont, /* complain_on_overflow */
1411 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1412 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
a06ea964
NC
1413 FALSE, /* partial_inplace */
1414 0xffff, /* src_mask */
1415 0xffff, /* dst_mask */
1416 FALSE), /* pcrel_offset */
1417
a6bb11b2 1418 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
bb3f9ed8 1419 12, /* rightshift */
a06ea964
NC
1420 2, /* size (0 = byte, 1 = short, 2 = long) */
1421 12, /* bitsize */
1422 FALSE, /* pc_relative */
1423 0, /* bitpos */
bab91cce 1424 complain_overflow_unsigned, /* complain_on_overflow */
a06ea964 1425 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1426 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
a06ea964
NC
1427 FALSE, /* partial_inplace */
1428 0xfff, /* src_mask */
1429 0xfff, /* dst_mask */
1430 FALSE), /* pcrel_offset */
1431
a6bb11b2 1432 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
a06ea964
NC
1433 0, /* rightshift */
1434 2, /* size (0 = byte, 1 = short, 2 = long) */
1435 12, /* bitsize */
1436 FALSE, /* pc_relative */
1437 0, /* bitpos */
36e6c140 1438 complain_overflow_unsigned, /* complain_on_overflow */
a06ea964 1439 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1440 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
a06ea964
NC
1441 FALSE, /* partial_inplace */
1442 0xfff, /* src_mask */
1443 0xfff, /* dst_mask */
1444 FALSE), /* pcrel_offset */
1445
a6bb11b2 1446 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
a06ea964
NC
1447 0, /* rightshift */
1448 2, /* size (0 = byte, 1 = short, 2 = long) */
1449 12, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1454 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
a06ea964
NC
1455 FALSE, /* partial_inplace */
1456 0xfff, /* src_mask */
1457 0xfff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
a06ea964 1459
a6bb11b2 1460 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
bb3f9ed8 1461 2, /* rightshift */
a06ea964 1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1ada945d 1463 19, /* bitsize */
a06ea964
NC
1464 TRUE, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_dont, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1468 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
a06ea964 1469 FALSE, /* partial_inplace */
1ada945d
MS
1470 0x0ffffe0, /* src_mask */
1471 0x0ffffe0, /* dst_mask */
a06ea964
NC
1472 TRUE), /* pcrel_offset */
1473
a6bb11b2 1474 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
a06ea964
NC
1475 0, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 21, /* bitsize */
1478 TRUE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1482 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
a06ea964
NC
1483 FALSE, /* partial_inplace */
1484 0x1fffff, /* src_mask */
1485 0x1fffff, /* dst_mask */
1486 TRUE), /* pcrel_offset */
1487
1488 /* Get to the page for the GOT entry for the symbol
1489 (G(S) - P) using an ADRP instruction. */
a6bb11b2 1490 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
a06ea964
NC
1491 12, /* rightshift */
1492 2, /* size (0 = byte, 1 = short, 2 = long) */
1493 21, /* bitsize */
1494 TRUE, /* pc_relative */
1495 0, /* bitpos */
1496 complain_overflow_dont, /* complain_on_overflow */
1497 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1498 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
a06ea964
NC
1499 FALSE, /* partial_inplace */
1500 0x1fffff, /* src_mask */
1501 0x1fffff, /* dst_mask */
1502 TRUE), /* pcrel_offset */
1503
a6bb11b2
YZ
1504 /* LD64: GOT offset G(S) & 0xff8. */
1505 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
a06ea964
NC
1506 3, /* rightshift */
1507 2, /* size (0 = byte, 1 = short, 2 = long) */
1508 12, /* bitsize */
1509 FALSE, /* pc_relative */
1510 0, /* bitpos */
1511 complain_overflow_dont, /* complain_on_overflow */
1512 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1513 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
a06ea964 1514 FALSE, /* partial_inplace */
a6bb11b2
YZ
1515 0xff8, /* src_mask */
1516 0xff8, /* dst_mask */
1517 FALSE), /* pcrel_offset */
1518
1519 /* LD32: GOT offset G(S) & 0xffc. */
1520 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1521 2, /* rightshift */
1522 2, /* size (0 = byte, 1 = short, 2 = long) */
1523 12, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 bfd_elf_generic_reloc, /* special_function */
1528 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1529 FALSE, /* partial_inplace */
1530 0xffc, /* src_mask */
1531 0xffc, /* dst_mask */
a06ea964
NC
1532 FALSE), /* pcrel_offset */
1533
1534 /* ADD: GOT offset G(S) & 0xfff. */
a6bb11b2 1535 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
a06ea964
NC
1536 0, /* rightshift */
1537 2, /* size (0 = byte, 1 = short, 2 = long) */
1538 12, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_dont, /* complain_on_overflow */
1542 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1543 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
a06ea964
NC
1544 FALSE, /* partial_inplace */
1545 0xfff, /* src_mask */
1546 0xfff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1548
a6bb11b2 1549 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
bb3f9ed8 1550 16, /* rightshift */
a06ea964
NC
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1552 12, /* bitsize */
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
1555 complain_overflow_dont, /* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1557 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
a06ea964
NC
1558 FALSE, /* partial_inplace */
1559 0xffff, /* src_mask */
1560 0xffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
1562
a6bb11b2 1563 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
a06ea964
NC
1564 0, /* rightshift */
1565 2, /* size (0 = byte, 1 = short, 2 = long) */
1566 12, /* bitsize */
1567 FALSE, /* pc_relative */
1568 0, /* bitpos */
1569 complain_overflow_dont, /* complain_on_overflow */
1570 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1571 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
a06ea964
NC
1572 FALSE, /* partial_inplace */
1573 0xffff, /* src_mask */
1574 0xffff, /* dst_mask */
1575 FALSE), /* pcrel_offset */
1576
a6bb11b2 1577 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
a06ea964
NC
1578 0, /* rightshift */
1579 2, /* size (0 = byte, 1 = short, 2 = long) */
1580 12, /* bitsize */
1581 FALSE, /* pc_relative */
1582 0, /* bitpos */
1583 complain_overflow_dont, /* complain_on_overflow */
1584 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1585 AARCH64_R_STR (TLSDESC_LDR), /* name */
a06ea964
NC
1586 FALSE, /* partial_inplace */
1587 0x0, /* src_mask */
1588 0x0, /* dst_mask */
1589 FALSE), /* pcrel_offset */
1590
a6bb11b2 1591 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
a06ea964
NC
1592 0, /* rightshift */
1593 2, /* size (0 = byte, 1 = short, 2 = long) */
1594 12, /* bitsize */
1595 FALSE, /* pc_relative */
1596 0, /* bitpos */
1597 complain_overflow_dont, /* complain_on_overflow */
1598 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1599 AARCH64_R_STR (TLSDESC_ADD), /* name */
a06ea964
NC
1600 FALSE, /* partial_inplace */
1601 0x0, /* src_mask */
1602 0x0, /* dst_mask */
1603 FALSE), /* pcrel_offset */
1604
a6bb11b2 1605 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
a06ea964
NC
1606 0, /* rightshift */
1607 2, /* size (0 = byte, 1 = short, 2 = long) */
7366006f 1608 0, /* bitsize */
a06ea964
NC
1609 FALSE, /* pc_relative */
1610 0, /* bitpos */
1611 complain_overflow_dont, /* complain_on_overflow */
1612 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1613 AARCH64_R_STR (TLSDESC_CALL), /* name */
a06ea964
NC
1614 FALSE, /* partial_inplace */
1615 0x0, /* src_mask */
1616 0x0, /* dst_mask */
1617 FALSE), /* pcrel_offset */
a6bb11b2
YZ
1618
1619 HOWTO (AARCH64_R (COPY), /* type */
1620 0, /* rightshift */
1621 2, /* size (0 = byte, 1 = short, 2 = long) */
1622 64, /* bitsize */
1623 FALSE, /* pc_relative */
1624 0, /* bitpos */
1625 complain_overflow_bitfield, /* complain_on_overflow */
1626 bfd_elf_generic_reloc, /* special_function */
1627 AARCH64_R_STR (COPY), /* name */
1628 TRUE, /* partial_inplace */
1629 0xffffffff, /* src_mask */
1630 0xffffffff, /* dst_mask */
1631 FALSE), /* pcrel_offset */
1632
1633 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1634 0, /* rightshift */
1635 2, /* size (0 = byte, 1 = short, 2 = long) */
1636 64, /* bitsize */
1637 FALSE, /* pc_relative */
1638 0, /* bitpos */
1639 complain_overflow_bitfield, /* complain_on_overflow */
1640 bfd_elf_generic_reloc, /* special_function */
1641 AARCH64_R_STR (GLOB_DAT), /* name */
1642 TRUE, /* partial_inplace */
1643 0xffffffff, /* src_mask */
1644 0xffffffff, /* dst_mask */
1645 FALSE), /* pcrel_offset */
1646
1647 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1648 0, /* rightshift */
1649 2, /* size (0 = byte, 1 = short, 2 = long) */
1650 64, /* bitsize */
1651 FALSE, /* pc_relative */
1652 0, /* bitpos */
1653 complain_overflow_bitfield, /* complain_on_overflow */
1654 bfd_elf_generic_reloc, /* special_function */
1655 AARCH64_R_STR (JUMP_SLOT), /* name */
1656 TRUE, /* partial_inplace */
1657 0xffffffff, /* src_mask */
1658 0xffffffff, /* dst_mask */
1659 FALSE), /* pcrel_offset */
1660
1661 HOWTO (AARCH64_R (RELATIVE), /* type */
1662 0, /* rightshift */
1663 2, /* size (0 = byte, 1 = short, 2 = long) */
1664 64, /* bitsize */
1665 FALSE, /* pc_relative */
1666 0, /* bitpos */
1667 complain_overflow_bitfield, /* complain_on_overflow */
1668 bfd_elf_generic_reloc, /* special_function */
1669 AARCH64_R_STR (RELATIVE), /* name */
1670 TRUE, /* partial_inplace */
1671 ALL_ONES, /* src_mask */
1672 ALL_ONES, /* dst_mask */
1673 FALSE), /* pcrel_offset */
1674
1675 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1676 0, /* rightshift */
1677 2, /* size (0 = byte, 1 = short, 2 = long) */
1678 64, /* bitsize */
1679 FALSE, /* pc_relative */
1680 0, /* bitpos */
1681 complain_overflow_dont, /* complain_on_overflow */
1682 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1683#if ARCH_SIZE == 64
1684 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1685#else
a6bb11b2 1686 AARCH64_R_STR (TLS_DTPMOD), /* name */
da0781dc 1687#endif
a6bb11b2
YZ
1688 FALSE, /* partial_inplace */
1689 0, /* src_mask */
1690 ALL_ONES, /* dst_mask */
1691 FALSE), /* pc_reloffset */
1692
1693 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1694 0, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 64, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_dont, /* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1701#if ARCH_SIZE == 64
1702 AARCH64_R_STR (TLS_DTPREL64), /* name */
1703#else
a6bb11b2 1704 AARCH64_R_STR (TLS_DTPREL), /* name */
da0781dc 1705#endif
a6bb11b2
YZ
1706 FALSE, /* partial_inplace */
1707 0, /* src_mask */
1708 ALL_ONES, /* dst_mask */
1709 FALSE), /* pcrel_offset */
1710
1711 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1712 0, /* rightshift */
1713 2, /* size (0 = byte, 1 = short, 2 = long) */
1714 64, /* bitsize */
1715 FALSE, /* pc_relative */
1716 0, /* bitpos */
1717 complain_overflow_dont, /* complain_on_overflow */
1718 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1719#if ARCH_SIZE == 64
1720 AARCH64_R_STR (TLS_TPREL64), /* name */
1721#else
a6bb11b2 1722 AARCH64_R_STR (TLS_TPREL), /* name */
da0781dc 1723#endif
a6bb11b2
YZ
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 ALL_ONES, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 HOWTO (AARCH64_R (TLSDESC), /* type */
1730 0, /* rightshift */
1731 2, /* size (0 = byte, 1 = short, 2 = long) */
1732 64, /* bitsize */
1733 FALSE, /* pc_relative */
1734 0, /* bitpos */
1735 complain_overflow_dont, /* complain_on_overflow */
1736 bfd_elf_generic_reloc, /* special_function */
1737 AARCH64_R_STR (TLSDESC), /* name */
1738 FALSE, /* partial_inplace */
1739 0, /* src_mask */
1740 ALL_ONES, /* dst_mask */
1741 FALSE), /* pcrel_offset */
1742
1743 HOWTO (AARCH64_R (IRELATIVE), /* type */
1744 0, /* rightshift */
1745 2, /* size (0 = byte, 1 = short, 2 = long) */
1746 64, /* bitsize */
1747 FALSE, /* pc_relative */
1748 0, /* bitpos */
1749 complain_overflow_bitfield, /* complain_on_overflow */
1750 bfd_elf_generic_reloc, /* special_function */
1751 AARCH64_R_STR (IRELATIVE), /* name */
1752 FALSE, /* partial_inplace */
1753 0, /* src_mask */
1754 ALL_ONES, /* dst_mask */
1755 FALSE), /* pcrel_offset */
1756
1757 EMPTY_HOWTO (0),
a06ea964
NC
1758};
1759
a6bb11b2
YZ
1760static reloc_howto_type elfNN_aarch64_howto_none =
1761 HOWTO (R_AARCH64_NONE, /* type */
1762 0, /* rightshift */
6346d5ca 1763 3, /* size (0 = byte, 1 = short, 2 = long) */
a6bb11b2
YZ
1764 0, /* bitsize */
1765 FALSE, /* pc_relative */
1766 0, /* bitpos */
1767 complain_overflow_dont,/* complain_on_overflow */
1768 bfd_elf_generic_reloc, /* special_function */
1769 "R_AARCH64_NONE", /* name */
1770 FALSE, /* partial_inplace */
1771 0, /* src_mask */
1772 0, /* dst_mask */
1773 FALSE); /* pcrel_offset */
1774
1775/* Given HOWTO, return the bfd internal relocation enumerator. */
1776
1777static bfd_reloc_code_real_type
1778elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1779{
1780 const int size
1781 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1782 const ptrdiff_t offset
1783 = howto - elfNN_aarch64_howto_table;
1784
1785 if (offset > 0 && offset < size - 1)
1786 return BFD_RELOC_AARCH64_RELOC_START + offset;
1787
1788 if (howto == &elfNN_aarch64_howto_none)
1789 return BFD_RELOC_AARCH64_NONE;
1790
1791 return BFD_RELOC_AARCH64_RELOC_START;
1792}
1793
1794/* Given R_TYPE, return the bfd internal relocation enumerator. */
1795
1796static bfd_reloc_code_real_type
1797elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1798{
1799 static bfd_boolean initialized_p = FALSE;
1800 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1801 static unsigned int offsets[R_AARCH64_end];
1802
1803 if (initialized_p == FALSE)
1804 {
1805 unsigned int i;
1806
1807 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1808 if (elfNN_aarch64_howto_table[i].type != 0)
1809 offsets[elfNN_aarch64_howto_table[i].type] = i;
1810
1811 initialized_p = TRUE;
1812 }
1813
1814 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1815 return BFD_RELOC_AARCH64_NONE;
1816
5860e3f8
NC
1817 /* PR 17512: file: b371e70a. */
1818 if (r_type >= R_AARCH64_end)
1819 {
1820 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1821 bfd_set_error (bfd_error_bad_value);
1822 return BFD_RELOC_AARCH64_NONE;
1823 }
1824
a6bb11b2
YZ
1825 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1826}
1827
1828struct elf_aarch64_reloc_map
1829{
1830 bfd_reloc_code_real_type from;
1831 bfd_reloc_code_real_type to;
1832};
1833
1834/* Map bfd generic reloc to AArch64-specific reloc. */
1835static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1836{
1837 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1838
1839 /* Basic data relocations. */
1840 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1841 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1842 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1843 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1844 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1845 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1846 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1847};
1848
1849/* Given the bfd internal relocation enumerator in CODE, return the
1850 corresponding howto entry. */
1851
1852static reloc_howto_type *
1853elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1854{
1855 unsigned int i;
1856
1857 /* Convert bfd generic reloc to AArch64-specific reloc. */
1858 if (code < BFD_RELOC_AARCH64_RELOC_START
1859 || code > BFD_RELOC_AARCH64_RELOC_END)
1860 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1861 if (elf_aarch64_reloc_map[i].from == code)
1862 {
1863 code = elf_aarch64_reloc_map[i].to;
1864 break;
1865 }
1866
1867 if (code > BFD_RELOC_AARCH64_RELOC_START
1868 && code < BFD_RELOC_AARCH64_RELOC_END)
1869 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1870 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1871
54757ed1
AP
1872 if (code == BFD_RELOC_AARCH64_NONE)
1873 return &elfNN_aarch64_howto_none;
1874
a6bb11b2
YZ
1875 return NULL;
1876}
1877
a06ea964 1878static reloc_howto_type *
cec5225b 1879elfNN_aarch64_howto_from_type (unsigned int r_type)
a06ea964 1880{
a6bb11b2
YZ
1881 bfd_reloc_code_real_type val;
1882 reloc_howto_type *howto;
1883
cec5225b
YZ
1884#if ARCH_SIZE == 32
1885 if (r_type > 256)
1886 {
1887 bfd_set_error (bfd_error_bad_value);
1888 return NULL;
1889 }
1890#endif
1891
a6bb11b2
YZ
1892 if (r_type == R_AARCH64_NONE)
1893 return &elfNN_aarch64_howto_none;
a06ea964 1894
a6bb11b2
YZ
1895 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1896 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
a06ea964 1897
a6bb11b2
YZ
1898 if (howto != NULL)
1899 return howto;
a06ea964 1900
a06ea964
NC
1901 bfd_set_error (bfd_error_bad_value);
1902 return NULL;
1903}
1904
1905static void
cec5225b 1906elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
a06ea964
NC
1907 Elf_Internal_Rela *elf_reloc)
1908{
1909 unsigned int r_type;
1910
cec5225b
YZ
1911 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1912 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
1913}
1914
a06ea964 1915static reloc_howto_type *
cec5225b 1916elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1917 bfd_reloc_code_real_type code)
1918{
a6bb11b2 1919 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
a06ea964 1920
a6bb11b2
YZ
1921 if (howto != NULL)
1922 return howto;
a06ea964
NC
1923
1924 bfd_set_error (bfd_error_bad_value);
1925 return NULL;
1926}
1927
1928static reloc_howto_type *
cec5225b 1929elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1930 const char *r_name)
1931{
1932 unsigned int i;
1933
a6bb11b2
YZ
1934 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1935 if (elfNN_aarch64_howto_table[i].name != NULL
1936 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
1937 return &elfNN_aarch64_howto_table[i];
a06ea964
NC
1938
1939 return NULL;
1940}
1941
6d00b590 1942#define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
cec5225b 1943#define TARGET_LITTLE_NAME "elfNN-littleaarch64"
6d00b590 1944#define TARGET_BIG_SYM aarch64_elfNN_be_vec
cec5225b 1945#define TARGET_BIG_NAME "elfNN-bigaarch64"
a06ea964 1946
a06ea964
NC
1947/* The linker script knows the section names for placement.
1948 The entry_names are used to do simple name mangling on the stubs.
1949 Given a function name, and its type, the stub can be found. The
1950 name can be changed. The only requirement is the %s be present. */
1951#define STUB_ENTRY_NAME "__%s_veneer"
1952
1953/* The name of the dynamic interpreter. This is put in the .interp
1954 section. */
1955#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1956
1957#define AARCH64_MAX_FWD_BRANCH_OFFSET \
1958 (((1 << 25) - 1) << 2)
1959#define AARCH64_MAX_BWD_BRANCH_OFFSET \
1960 (-((1 << 25) << 2))
1961
1962#define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1963#define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1964
1965static int
1966aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
1967{
1968 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
1969 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
1970}
1971
1972static int
1973aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
1974{
1975 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
1976 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
1977 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
1978}
1979
1980static const uint32_t aarch64_adrp_branch_stub [] =
1981{
1982 0x90000010, /* adrp ip0, X */
1983 /* R_AARCH64_ADR_HI21_PCREL(X) */
1984 0x91000210, /* add ip0, ip0, :lo12:X */
1985 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
1986 0xd61f0200, /* br ip0 */
1987};
1988
1989static const uint32_t aarch64_long_branch_stub[] =
1990{
cec5225b 1991#if ARCH_SIZE == 64
a06ea964 1992 0x58000090, /* ldr ip0, 1f */
cec5225b
YZ
1993#else
1994 0x18000090, /* ldr wip0, 1f */
1995#endif
a06ea964
NC
1996 0x10000011, /* adr ip1, #0 */
1997 0x8b110210, /* add ip0, ip0, ip1 */
1998 0xd61f0200, /* br ip0 */
cec5225b
YZ
1999 0x00000000, /* 1: .xword or .word
2000 R_AARCH64_PRELNN(X) + 12
a06ea964
NC
2001 */
2002 0x00000000,
2003};
2004
68fcca92
JW
2005static const uint32_t aarch64_erratum_835769_stub[] =
2006{
2007 0x00000000, /* Placeholder for multiply accumulate. */
2008 0x14000000, /* b <label> */
2009};
2010
4106101c
MS
2011static const uint32_t aarch64_erratum_843419_stub[] =
2012{
2013 0x00000000, /* Placeholder for LDR instruction. */
2014 0x14000000, /* b <label> */
2015};
2016
a06ea964
NC
2017/* Section name for stubs is the associated section name plus this
2018 string. */
2019#define STUB_SUFFIX ".stub"
2020
cec5225b 2021enum elf_aarch64_stub_type
a06ea964
NC
2022{
2023 aarch64_stub_none,
2024 aarch64_stub_adrp_branch,
2025 aarch64_stub_long_branch,
68fcca92 2026 aarch64_stub_erratum_835769_veneer,
4106101c 2027 aarch64_stub_erratum_843419_veneer,
a06ea964
NC
2028};
2029
cec5225b 2030struct elf_aarch64_stub_hash_entry
a06ea964
NC
2031{
2032 /* Base hash table entry structure. */
2033 struct bfd_hash_entry root;
2034
2035 /* The stub section. */
2036 asection *stub_sec;
2037
2038 /* Offset within stub_sec of the beginning of this stub. */
2039 bfd_vma stub_offset;
2040
2041 /* Given the symbol's value and its section we can determine its final
2042 value when building the stubs (so the stub knows where to jump). */
2043 bfd_vma target_value;
2044 asection *target_section;
2045
cec5225b 2046 enum elf_aarch64_stub_type stub_type;
a06ea964
NC
2047
2048 /* The symbol table entry, if any, that this was derived from. */
cec5225b 2049 struct elf_aarch64_link_hash_entry *h;
a06ea964
NC
2050
2051 /* Destination symbol type */
2052 unsigned char st_type;
2053
2054 /* Where this stub is being called from, or, in the case of combined
2055 stub sections, the first input section in the group. */
2056 asection *id_sec;
2057
2058 /* The name for the local symbol at the start of this stub. The
2059 stub name in the hash table has to be unique; this does not, so
2060 it can be friendlier. */
2061 char *output_name;
68fcca92
JW
2062
2063 /* The instruction which caused this stub to be generated (only valid for
2064 erratum 835769 workaround stubs at present). */
2065 uint32_t veneered_insn;
4106101c
MS
2066
2067 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2068 bfd_vma adrp_offset;
a06ea964
NC
2069};
2070
2071/* Used to build a map of a section. This is required for mixed-endian
2072 code/data. */
2073
cec5225b 2074typedef struct elf_elf_section_map
a06ea964
NC
2075{
2076 bfd_vma vma;
2077 char type;
2078}
cec5225b 2079elf_aarch64_section_map;
a06ea964
NC
2080
2081
2082typedef struct _aarch64_elf_section_data
2083{
2084 struct bfd_elf_section_data elf;
2085 unsigned int mapcount;
2086 unsigned int mapsize;
cec5225b 2087 elf_aarch64_section_map *map;
a06ea964
NC
2088}
2089_aarch64_elf_section_data;
2090
cec5225b 2091#define elf_aarch64_section_data(sec) \
a06ea964
NC
2092 ((_aarch64_elf_section_data *) elf_section_data (sec))
2093
4e8516b2
AP
2094/* The size of the thread control block which is defined to be two pointers. */
2095#define TCB_SIZE (ARCH_SIZE/8)*2
a06ea964
NC
2096
2097struct elf_aarch64_local_symbol
2098{
2099 unsigned int got_type;
2100 bfd_signed_vma got_refcount;
2101 bfd_vma got_offset;
2102
2103 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2104 offset is from the end of the jump table and reserved entries
2105 within the PLTGOT.
2106
2107 The magic value (bfd_vma) -1 indicates that an offset has not be
2108 allocated. */
2109 bfd_vma tlsdesc_got_jump_table_offset;
2110};
2111
2112struct elf_aarch64_obj_tdata
2113{
2114 struct elf_obj_tdata root;
2115
2116 /* local symbol descriptors */
2117 struct elf_aarch64_local_symbol *locals;
2118
2119 /* Zero to warn when linking objects with incompatible enum sizes. */
2120 int no_enum_size_warning;
2121
2122 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2123 int no_wchar_size_warning;
2124};
2125
2126#define elf_aarch64_tdata(bfd) \
2127 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2128
cec5225b 2129#define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
a06ea964
NC
2130
2131#define is_aarch64_elf(bfd) \
2132 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2133 && elf_tdata (bfd) != NULL \
2134 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2135
2136static bfd_boolean
cec5225b 2137elfNN_aarch64_mkobject (bfd *abfd)
a06ea964
NC
2138{
2139 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2140 AARCH64_ELF_DATA);
2141}
2142
cec5225b
YZ
2143#define elf_aarch64_hash_entry(ent) \
2144 ((struct elf_aarch64_link_hash_entry *)(ent))
a06ea964
NC
2145
2146#define GOT_UNKNOWN 0
2147#define GOT_NORMAL 1
2148#define GOT_TLS_GD 2
2149#define GOT_TLS_IE 4
2150#define GOT_TLSDESC_GD 8
2151
2152#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2153
2154/* AArch64 ELF linker hash entry. */
cec5225b 2155struct elf_aarch64_link_hash_entry
a06ea964
NC
2156{
2157 struct elf_link_hash_entry root;
2158
2159 /* Track dynamic relocs copied for this symbol. */
2160 struct elf_dyn_relocs *dyn_relocs;
2161
a06ea964
NC
2162 /* Since PLT entries have variable size, we need to record the
2163 index into .got.plt instead of recomputing it from the PLT
2164 offset. */
2165 bfd_signed_vma plt_got_offset;
2166
2167 /* Bit mask representing the type of GOT entry(s) if any required by
2168 this symbol. */
2169 unsigned int got_type;
2170
2171 /* A pointer to the most recently used stub hash entry against this
2172 symbol. */
cec5225b 2173 struct elf_aarch64_stub_hash_entry *stub_cache;
a06ea964
NC
2174
2175 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2176 is from the end of the jump table and reserved entries within the PLTGOT.
2177
2178 The magic value (bfd_vma) -1 indicates that an offset has not
2179 be allocated. */
2180 bfd_vma tlsdesc_got_jump_table_offset;
2181};
2182
2183static unsigned int
cec5225b 2184elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
a06ea964
NC
2185 bfd *abfd,
2186 unsigned long r_symndx)
2187{
2188 if (h)
cec5225b 2189 return elf_aarch64_hash_entry (h)->got_type;
a06ea964 2190
cec5225b 2191 if (! elf_aarch64_locals (abfd))
a06ea964
NC
2192 return GOT_UNKNOWN;
2193
cec5225b 2194 return elf_aarch64_locals (abfd)[r_symndx].got_type;
a06ea964
NC
2195}
2196
a06ea964 2197/* Get the AArch64 elf linker hash table from a link_info structure. */
cec5225b
YZ
2198#define elf_aarch64_hash_table(info) \
2199 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
a06ea964
NC
2200
2201#define aarch64_stub_hash_lookup(table, string, create, copy) \
cec5225b 2202 ((struct elf_aarch64_stub_hash_entry *) \
a06ea964
NC
2203 bfd_hash_lookup ((table), (string), (create), (copy)))
2204
2205/* AArch64 ELF linker hash table. */
cec5225b 2206struct elf_aarch64_link_hash_table
a06ea964
NC
2207{
2208 /* The main hash table. */
2209 struct elf_link_hash_table root;
2210
2211 /* Nonzero to force PIC branch veneers. */
2212 int pic_veneer;
2213
68fcca92
JW
2214 /* Fix erratum 835769. */
2215 int fix_erratum_835769;
2216
4106101c
MS
2217 /* Fix erratum 843419. */
2218 int fix_erratum_843419;
2219
2220 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2221 int fix_erratum_843419_adr;
2222
a06ea964
NC
2223 /* The number of bytes in the initial entry in the PLT. */
2224 bfd_size_type plt_header_size;
2225
2226 /* The number of bytes in the subsequent PLT etries. */
2227 bfd_size_type plt_entry_size;
2228
2229 /* Short-cuts to get to dynamic linker sections. */
2230 asection *sdynbss;
2231 asection *srelbss;
2232
2233 /* Small local sym cache. */
2234 struct sym_cache sym_cache;
2235
2236 /* For convenience in allocate_dynrelocs. */
2237 bfd *obfd;
2238
2239 /* The amount of space used by the reserved portion of the sgotplt
2240 section, plus whatever space is used by the jump slots. */
2241 bfd_vma sgotplt_jump_table_size;
2242
2243 /* The stub hash table. */
2244 struct bfd_hash_table stub_hash_table;
2245
2246 /* Linker stub bfd. */
2247 bfd *stub_bfd;
2248
2249 /* Linker call-backs. */
2250 asection *(*add_stub_section) (const char *, asection *);
2251 void (*layout_sections_again) (void);
2252
2253 /* Array to keep track of which stub sections have been created, and
2254 information on stub grouping. */
2255 struct map_stub
2256 {
2257 /* This is the section to which stubs in the group will be
2258 attached. */
2259 asection *link_sec;
2260 /* The stub section. */
2261 asection *stub_sec;
2262 } *stub_group;
2263
cec5225b 2264 /* Assorted information used by elfNN_aarch64_size_stubs. */
a06ea964 2265 unsigned int bfd_count;
7292b3ac 2266 unsigned int top_index;
a06ea964
NC
2267 asection **input_list;
2268
2269 /* The offset into splt of the PLT entry for the TLS descriptor
2270 resolver. Special values are 0, if not necessary (or not found
2271 to be necessary yet), and -1 if needed but not determined
2272 yet. */
2273 bfd_vma tlsdesc_plt;
2274
2275 /* The GOT offset for the lazy trampoline. Communicated to the
2276 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2277 indicates an offset is not allocated. */
2278 bfd_vma dt_tlsdesc_got;
1419bbe5
WN
2279
2280 /* Used by local STT_GNU_IFUNC symbols. */
2281 htab_t loc_hash_table;
2282 void * loc_hash_memory;
a06ea964
NC
2283};
2284
a06ea964
NC
2285/* Create an entry in an AArch64 ELF linker hash table. */
2286
2287static struct bfd_hash_entry *
cec5225b 2288elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
a06ea964
NC
2289 struct bfd_hash_table *table,
2290 const char *string)
2291{
cec5225b
YZ
2292 struct elf_aarch64_link_hash_entry *ret =
2293 (struct elf_aarch64_link_hash_entry *) entry;
a06ea964
NC
2294
2295 /* Allocate the structure if it has not already been allocated by a
2296 subclass. */
2297 if (ret == NULL)
2298 ret = bfd_hash_allocate (table,
cec5225b 2299 sizeof (struct elf_aarch64_link_hash_entry));
a06ea964
NC
2300 if (ret == NULL)
2301 return (struct bfd_hash_entry *) ret;
2302
2303 /* Call the allocation method of the superclass. */
cec5225b 2304 ret = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
2305 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2306 table, string));
2307 if (ret != NULL)
2308 {
2309 ret->dyn_relocs = NULL;
a06ea964
NC
2310 ret->got_type = GOT_UNKNOWN;
2311 ret->plt_got_offset = (bfd_vma) - 1;
2312 ret->stub_cache = NULL;
2313 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2314 }
2315
2316 return (struct bfd_hash_entry *) ret;
2317}
2318
2319/* Initialize an entry in the stub hash table. */
2320
2321static struct bfd_hash_entry *
2322stub_hash_newfunc (struct bfd_hash_entry *entry,
2323 struct bfd_hash_table *table, const char *string)
2324{
2325 /* Allocate the structure if it has not already been allocated by a
2326 subclass. */
2327 if (entry == NULL)
2328 {
2329 entry = bfd_hash_allocate (table,
2330 sizeof (struct
cec5225b 2331 elf_aarch64_stub_hash_entry));
a06ea964
NC
2332 if (entry == NULL)
2333 return entry;
2334 }
2335
2336 /* Call the allocation method of the superclass. */
2337 entry = bfd_hash_newfunc (entry, table, string);
2338 if (entry != NULL)
2339 {
cec5225b 2340 struct elf_aarch64_stub_hash_entry *eh;
a06ea964
NC
2341
2342 /* Initialize the local fields. */
cec5225b 2343 eh = (struct elf_aarch64_stub_hash_entry *) entry;
4106101c 2344 eh->adrp_offset = 0;
a06ea964
NC
2345 eh->stub_sec = NULL;
2346 eh->stub_offset = 0;
2347 eh->target_value = 0;
2348 eh->target_section = NULL;
2349 eh->stub_type = aarch64_stub_none;
2350 eh->h = NULL;
2351 eh->id_sec = NULL;
2352 }
2353
2354 return entry;
2355}
2356
1419bbe5
WN
2357/* Compute a hash of a local hash entry. We use elf_link_hash_entry
2358 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2359 as global symbol. We reuse indx and dynstr_index for local symbol
2360 hash since they aren't used by global symbols in this backend. */
2361
2362static hashval_t
2363elfNN_aarch64_local_htab_hash (const void *ptr)
2364{
2365 struct elf_link_hash_entry *h
2366 = (struct elf_link_hash_entry *) ptr;
2367 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2368}
2369
2370/* Compare local hash entries. */
2371
2372static int
2373elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2374{
2375 struct elf_link_hash_entry *h1
2376 = (struct elf_link_hash_entry *) ptr1;
2377 struct elf_link_hash_entry *h2
2378 = (struct elf_link_hash_entry *) ptr2;
2379
2380 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2381}
2382
2383/* Find and/or create a hash entry for local symbol. */
2384
2385static struct elf_link_hash_entry *
2386elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2387 bfd *abfd, const Elf_Internal_Rela *rel,
2388 bfd_boolean create)
2389{
2390 struct elf_aarch64_link_hash_entry e, *ret;
2391 asection *sec = abfd->sections;
2392 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2393 ELFNN_R_SYM (rel->r_info));
2394 void **slot;
2395
2396 e.root.indx = sec->id;
2397 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2398 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2399 create ? INSERT : NO_INSERT);
2400
2401 if (!slot)
2402 return NULL;
2403
2404 if (*slot)
2405 {
2406 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2407 return &ret->root;
2408 }
2409
2410 ret = (struct elf_aarch64_link_hash_entry *)
2411 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2412 sizeof (struct elf_aarch64_link_hash_entry));
2413 if (ret)
2414 {
2415 memset (ret, 0, sizeof (*ret));
2416 ret->root.indx = sec->id;
2417 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2418 ret->root.dynindx = -1;
2419 *slot = ret;
2420 }
2421 return &ret->root;
2422}
a06ea964
NC
2423
2424/* Copy the extra info we tack onto an elf_link_hash_entry. */
2425
2426static void
cec5225b 2427elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
a06ea964
NC
2428 struct elf_link_hash_entry *dir,
2429 struct elf_link_hash_entry *ind)
2430{
cec5225b 2431 struct elf_aarch64_link_hash_entry *edir, *eind;
a06ea964 2432
cec5225b
YZ
2433 edir = (struct elf_aarch64_link_hash_entry *) dir;
2434 eind = (struct elf_aarch64_link_hash_entry *) ind;
a06ea964
NC
2435
2436 if (eind->dyn_relocs != NULL)
2437 {
2438 if (edir->dyn_relocs != NULL)
2439 {
2440 struct elf_dyn_relocs **pp;
2441 struct elf_dyn_relocs *p;
2442
2443 /* Add reloc counts against the indirect sym to the direct sym
2444 list. Merge any entries against the same section. */
2445 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2446 {
2447 struct elf_dyn_relocs *q;
2448
2449 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2450 if (q->sec == p->sec)
2451 {
2452 q->pc_count += p->pc_count;
2453 q->count += p->count;
2454 *pp = p->next;
2455 break;
2456 }
2457 if (q == NULL)
2458 pp = &p->next;
2459 }
2460 *pp = edir->dyn_relocs;
2461 }
2462
2463 edir->dyn_relocs = eind->dyn_relocs;
2464 eind->dyn_relocs = NULL;
2465 }
2466
a06ea964
NC
2467 if (ind->root.type == bfd_link_hash_indirect)
2468 {
2469 /* Copy over PLT info. */
2470 if (dir->got.refcount <= 0)
2471 {
2472 edir->got_type = eind->got_type;
2473 eind->got_type = GOT_UNKNOWN;
2474 }
2475 }
2476
2477 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2478}
2479
68faa637
AM
2480/* Destroy an AArch64 elf linker hash table. */
2481
2482static void
d495ab0d 2483elfNN_aarch64_link_hash_table_free (bfd *obfd)
68faa637
AM
2484{
2485 struct elf_aarch64_link_hash_table *ret
d495ab0d 2486 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
68faa637
AM
2487
2488 if (ret->loc_hash_table)
2489 htab_delete (ret->loc_hash_table);
2490 if (ret->loc_hash_memory)
2491 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2492
2493 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 2494 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
2495}
2496
a06ea964
NC
2497/* Create an AArch64 elf linker hash table. */
2498
2499static struct bfd_link_hash_table *
cec5225b 2500elfNN_aarch64_link_hash_table_create (bfd *abfd)
a06ea964 2501{
cec5225b
YZ
2502 struct elf_aarch64_link_hash_table *ret;
2503 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
a06ea964 2504
7bf52ea2 2505 ret = bfd_zmalloc (amt);
a06ea964
NC
2506 if (ret == NULL)
2507 return NULL;
2508
2509 if (!_bfd_elf_link_hash_table_init
cec5225b
YZ
2510 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2511 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
a06ea964
NC
2512 {
2513 free (ret);
2514 return NULL;
2515 }
2516
a06ea964
NC
2517 ret->plt_header_size = PLT_ENTRY_SIZE;
2518 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
a06ea964 2519 ret->obfd = abfd;
a06ea964
NC
2520 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2521
2522 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
cec5225b 2523 sizeof (struct elf_aarch64_stub_hash_entry)))
a06ea964 2524 {
d495ab0d 2525 _bfd_elf_link_hash_table_free (abfd);
a06ea964
NC
2526 return NULL;
2527 }
2528
1419bbe5
WN
2529 ret->loc_hash_table = htab_try_create (1024,
2530 elfNN_aarch64_local_htab_hash,
2531 elfNN_aarch64_local_htab_eq,
2532 NULL);
2533 ret->loc_hash_memory = objalloc_create ();
2534 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2535 {
d495ab0d 2536 elfNN_aarch64_link_hash_table_free (abfd);
1419bbe5
WN
2537 return NULL;
2538 }
d495ab0d 2539 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
1419bbe5 2540
a06ea964
NC
2541 return &ret->root.root;
2542}
2543
a06ea964
NC
2544static bfd_boolean
2545aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2546 bfd_vma offset, bfd_vma value)
2547{
2548 reloc_howto_type *howto;
2549 bfd_vma place;
2550
cec5225b 2551 howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
2552 place = (input_section->output_section->vma + input_section->output_offset
2553 + offset);
caed7120
YZ
2554
2555 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2556 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2557 return _bfd_aarch64_elf_put_addend (input_bfd,
2558 input_section->contents + offset, r_type,
2559 howto, value);
a06ea964
NC
2560}
2561
cec5225b 2562static enum elf_aarch64_stub_type
a06ea964
NC
2563aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2564{
2565 if (aarch64_valid_for_adrp_p (value, place))
2566 return aarch64_stub_adrp_branch;
2567 return aarch64_stub_long_branch;
2568}
2569
2570/* Determine the type of stub needed, if any, for a call. */
2571
cec5225b 2572static enum elf_aarch64_stub_type
a06ea964
NC
2573aarch64_type_of_stub (struct bfd_link_info *info,
2574 asection *input_sec,
2575 const Elf_Internal_Rela *rel,
f678ded7 2576 asection *sym_sec,
a06ea964 2577 unsigned char st_type,
cec5225b 2578 struct elf_aarch64_link_hash_entry *hash,
a06ea964
NC
2579 bfd_vma destination)
2580{
2581 bfd_vma location;
2582 bfd_signed_vma branch_offset;
2583 unsigned int r_type;
cec5225b
YZ
2584 struct elf_aarch64_link_hash_table *globals;
2585 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
a06ea964
NC
2586 bfd_boolean via_plt_p;
2587
f678ded7
JW
2588 if (st_type != STT_FUNC
2589 && (sym_sec != bfd_abs_section_ptr))
a06ea964
NC
2590 return stub_type;
2591
cec5225b 2592 globals = elf_aarch64_hash_table (info);
a06ea964
NC
2593 via_plt_p = (globals->root.splt != NULL && hash != NULL
2594 && hash->root.plt.offset != (bfd_vma) - 1);
07f9ddfe 2595 /* Make sure call to plt stub can fit into the branch range. */
a06ea964 2596 if (via_plt_p)
07f9ddfe
JW
2597 destination = (globals->root.splt->output_section->vma
2598 + globals->root.splt->output_offset
2599 + hash->root.plt.offset);
a06ea964
NC
2600
2601 /* Determine where the call point is. */
2602 location = (input_sec->output_offset
2603 + input_sec->output_section->vma + rel->r_offset);
2604
2605 branch_offset = (bfd_signed_vma) (destination - location);
2606
cec5225b 2607 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
2608
2609 /* We don't want to redirect any old unconditional jump in this way,
2610 only one which is being used for a sibcall, where it is
2611 acceptable for the IP0 and IP1 registers to be clobbered. */
a6bb11b2 2612 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
a06ea964
NC
2613 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2614 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2615 {
2616 stub_type = aarch64_stub_long_branch;
2617 }
2618
2619 return stub_type;
2620}
2621
2622/* Build a name for an entry in the stub hash table. */
2623
2624static char *
cec5225b 2625elfNN_aarch64_stub_name (const asection *input_section,
a06ea964 2626 const asection *sym_sec,
cec5225b 2627 const struct elf_aarch64_link_hash_entry *hash,
a06ea964
NC
2628 const Elf_Internal_Rela *rel)
2629{
2630 char *stub_name;
2631 bfd_size_type len;
2632
2633 if (hash)
2634 {
2635 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2636 stub_name = bfd_malloc (len);
2637 if (stub_name != NULL)
2638 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2639 (unsigned int) input_section->id,
2640 hash->root.root.root.string,
2641 rel->r_addend);
2642 }
2643 else
2644 {
2645 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2646 stub_name = bfd_malloc (len);
2647 if (stub_name != NULL)
2648 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2649 (unsigned int) input_section->id,
2650 (unsigned int) sym_sec->id,
cec5225b 2651 (unsigned int) ELFNN_R_SYM (rel->r_info),
a06ea964
NC
2652 rel->r_addend);
2653 }
2654
2655 return stub_name;
2656}
2657
2658/* Look up an entry in the stub hash. Stub entries are cached because
2659 creating the stub name takes a bit of time. */
2660
cec5225b
YZ
2661static struct elf_aarch64_stub_hash_entry *
2662elfNN_aarch64_get_stub_entry (const asection *input_section,
a06ea964
NC
2663 const asection *sym_sec,
2664 struct elf_link_hash_entry *hash,
2665 const Elf_Internal_Rela *rel,
cec5225b 2666 struct elf_aarch64_link_hash_table *htab)
a06ea964 2667{
cec5225b
YZ
2668 struct elf_aarch64_stub_hash_entry *stub_entry;
2669 struct elf_aarch64_link_hash_entry *h =
2670 (struct elf_aarch64_link_hash_entry *) hash;
a06ea964
NC
2671 const asection *id_sec;
2672
2673 if ((input_section->flags & SEC_CODE) == 0)
2674 return NULL;
2675
2676 /* If this input section is part of a group of sections sharing one
2677 stub section, then use the id of the first section in the group.
2678 Stub names need to include a section id, as there may well be
2679 more than one stub used to reach say, printf, and we need to
2680 distinguish between them. */
2681 id_sec = htab->stub_group[input_section->id].link_sec;
2682
2683 if (h != NULL && h->stub_cache != NULL
2684 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2685 {
2686 stub_entry = h->stub_cache;
2687 }
2688 else
2689 {
2690 char *stub_name;
2691
cec5225b 2692 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
a06ea964
NC
2693 if (stub_name == NULL)
2694 return NULL;
2695
2696 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2697 stub_name, FALSE, FALSE);
2698 if (h != NULL)
2699 h->stub_cache = stub_entry;
2700
2701 free (stub_name);
2702 }
2703
2704 return stub_entry;
2705}
2706
a06ea964 2707
66585675
MS
2708/* Create a stub section. */
2709
2710static asection *
2711_bfd_aarch64_create_stub_section (asection *section,
2712 struct elf_aarch64_link_hash_table *htab)
2713{
2714 size_t namelen;
2715 bfd_size_type len;
2716 char *s_name;
2717
2718 namelen = strlen (section->name);
2719 len = namelen + sizeof (STUB_SUFFIX);
2720 s_name = bfd_alloc (htab->stub_bfd, len);
2721 if (s_name == NULL)
2722 return NULL;
2723
2724 memcpy (s_name, section->name, namelen);
2725 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2726 return (*htab->add_stub_section) (s_name, section);
2727}
2728
2729
fc6d53be
MS
2730/* Find or create a stub section for a link section.
2731
2732 Fix or create the stub section used to collect stubs attached to
2733 the specified link section. */
2734
2735static asection *
2736_bfd_aarch64_get_stub_for_link_section (asection *link_section,
2737 struct elf_aarch64_link_hash_table *htab)
2738{
2739 if (htab->stub_group[link_section->id].stub_sec == NULL)
2740 htab->stub_group[link_section->id].stub_sec
2741 = _bfd_aarch64_create_stub_section (link_section, htab);
2742 return htab->stub_group[link_section->id].stub_sec;
2743}
2744
2745
ef857521
MS
2746/* Find or create a stub section in the stub group for an input
2747 section. */
2748
2749static asection *
2750_bfd_aarch64_create_or_find_stub_sec (asection *section,
2751 struct elf_aarch64_link_hash_table *htab)
a06ea964 2752{
fc6d53be
MS
2753 asection *link_sec = htab->stub_group[section->id].link_sec;
2754 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
ef857521
MS
2755}
2756
2757
2758/* Add a new stub entry in the stub group associated with an input
2759 section to the stub hash. Not all fields of the new stub entry are
2760 initialised. */
2761
2762static struct elf_aarch64_stub_hash_entry *
2763_bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2764 asection *section,
2765 struct elf_aarch64_link_hash_table *htab)
2766{
2767 asection *link_sec;
2768 asection *stub_sec;
2769 struct elf_aarch64_stub_hash_entry *stub_entry;
2770
2771 link_sec = htab->stub_group[section->id].link_sec;
2772 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2773
a06ea964
NC
2774 /* Enter this entry into the linker stub hash table. */
2775 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2776 TRUE, FALSE);
2777 if (stub_entry == NULL)
2778 {
2779 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2780 section->owner, stub_name);
2781 return NULL;
2782 }
2783
2784 stub_entry->stub_sec = stub_sec;
2785 stub_entry->stub_offset = 0;
2786 stub_entry->id_sec = link_sec;
2787
2788 return stub_entry;
2789}
2790
4106101c
MS
2791/* Add a new stub entry in the final stub section to the stub hash.
2792 Not all fields of the new stub entry are initialised. */
2793
2794static struct elf_aarch64_stub_hash_entry *
2795_bfd_aarch64_add_stub_entry_after (const char *stub_name,
2796 asection *link_section,
2797 struct elf_aarch64_link_hash_table *htab)
2798{
2799 asection *stub_sec;
2800 struct elf_aarch64_stub_hash_entry *stub_entry;
2801
2802 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2803 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2804 TRUE, FALSE);
2805 if (stub_entry == NULL)
2806 {
2807 (*_bfd_error_handler) (_("cannot create stub entry %s"), stub_name);
2808 return NULL;
2809 }
2810
2811 stub_entry->stub_sec = stub_sec;
2812 stub_entry->stub_offset = 0;
2813 stub_entry->id_sec = link_section;
2814
2815 return stub_entry;
2816}
2817
2818
a06ea964
NC
2819static bfd_boolean
2820aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2821 void *in_arg ATTRIBUTE_UNUSED)
2822{
cec5225b 2823 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2824 asection *stub_sec;
2825 bfd *stub_bfd;
2826 bfd_byte *loc;
2827 bfd_vma sym_value;
68fcca92
JW
2828 bfd_vma veneered_insn_loc;
2829 bfd_vma veneer_entry_loc;
2830 bfd_signed_vma branch_offset = 0;
a06ea964
NC
2831 unsigned int template_size;
2832 const uint32_t *template;
2833 unsigned int i;
2834
2835 /* Massage our args to the form they really have. */
cec5225b 2836 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
2837
2838 stub_sec = stub_entry->stub_sec;
2839
2840 /* Make a note of the offset within the stubs for this entry. */
2841 stub_entry->stub_offset = stub_sec->size;
2842 loc = stub_sec->contents + stub_entry->stub_offset;
2843
2844 stub_bfd = stub_sec->owner;
2845
2846 /* This is the address of the stub destination. */
2847 sym_value = (stub_entry->target_value
2848 + stub_entry->target_section->output_offset
2849 + stub_entry->target_section->output_section->vma);
2850
2851 if (stub_entry->stub_type == aarch64_stub_long_branch)
2852 {
2853 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2854 + stub_sec->output_offset);
2855
2856 /* See if we can relax the stub. */
2857 if (aarch64_valid_for_adrp_p (sym_value, place))
2858 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2859 }
2860
2861 switch (stub_entry->stub_type)
2862 {
2863 case aarch64_stub_adrp_branch:
2864 template = aarch64_adrp_branch_stub;
2865 template_size = sizeof (aarch64_adrp_branch_stub);
2866 break;
2867 case aarch64_stub_long_branch:
2868 template = aarch64_long_branch_stub;
2869 template_size = sizeof (aarch64_long_branch_stub);
2870 break;
68fcca92
JW
2871 case aarch64_stub_erratum_835769_veneer:
2872 template = aarch64_erratum_835769_stub;
2873 template_size = sizeof (aarch64_erratum_835769_stub);
2874 break;
4106101c
MS
2875 case aarch64_stub_erratum_843419_veneer:
2876 template = aarch64_erratum_843419_stub;
2877 template_size = sizeof (aarch64_erratum_843419_stub);
2878 break;
a06ea964 2879 default:
8e2fe09f 2880 abort ();
a06ea964
NC
2881 }
2882
2883 for (i = 0; i < (template_size / sizeof template[0]); i++)
2884 {
2885 bfd_putl32 (template[i], loc);
2886 loc += 4;
2887 }
2888
2889 template_size = (template_size + 7) & ~7;
2890 stub_sec->size += template_size;
2891
2892 switch (stub_entry->stub_type)
2893 {
2894 case aarch64_stub_adrp_branch:
a6bb11b2 2895 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
a06ea964
NC
2896 stub_entry->stub_offset, sym_value))
2897 /* The stub would not have been relaxed if the offset was out
2898 of range. */
2899 BFD_FAIL ();
2900
93ca8569
TB
2901 if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2902 stub_entry->stub_offset + 4, sym_value))
2903 BFD_FAIL ();
a06ea964
NC
2904 break;
2905
2906 case aarch64_stub_long_branch:
2907 /* We want the value relative to the address 12 bytes back from the
2908 value itself. */
93ca8569
TB
2909 if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2910 stub_entry->stub_offset + 16, sym_value + 12))
2911 BFD_FAIL ();
a06ea964 2912 break;
68fcca92
JW
2913
2914 case aarch64_stub_erratum_835769_veneer:
2915 veneered_insn_loc = stub_entry->target_section->output_section->vma
2916 + stub_entry->target_section->output_offset
2917 + stub_entry->target_value;
2918 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2919 + stub_entry->stub_sec->output_offset
2920 + stub_entry->stub_offset;
2921 branch_offset = veneered_insn_loc - veneer_entry_loc;
2922 branch_offset >>= 2;
2923 branch_offset &= 0x3ffffff;
2924 bfd_putl32 (stub_entry->veneered_insn,
2925 stub_sec->contents + stub_entry->stub_offset);
2926 bfd_putl32 (template[1] | branch_offset,
2927 stub_sec->contents + stub_entry->stub_offset + 4);
2928 break;
2929
4106101c
MS
2930 case aarch64_stub_erratum_843419_veneer:
2931 if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
2932 stub_entry->stub_offset + 4, sym_value + 4))
2933 BFD_FAIL ();
2934 break;
2935
a06ea964 2936 default:
8e2fe09f 2937 abort ();
a06ea964
NC
2938 }
2939
2940 return TRUE;
2941}
2942
2943/* As above, but don't actually build the stub. Just bump offset so
2944 we know stub section sizes. */
2945
2946static bfd_boolean
2947aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
2948 void *in_arg ATTRIBUTE_UNUSED)
2949{
cec5225b 2950 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2951 int size;
2952
2953 /* Massage our args to the form they really have. */
cec5225b 2954 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
2955
2956 switch (stub_entry->stub_type)
2957 {
2958 case aarch64_stub_adrp_branch:
2959 size = sizeof (aarch64_adrp_branch_stub);
2960 break;
2961 case aarch64_stub_long_branch:
2962 size = sizeof (aarch64_long_branch_stub);
2963 break;
68fcca92
JW
2964 case aarch64_stub_erratum_835769_veneer:
2965 size = sizeof (aarch64_erratum_835769_stub);
2966 break;
4106101c
MS
2967 case aarch64_stub_erratum_843419_veneer:
2968 size = sizeof (aarch64_erratum_843419_stub);
2969 break;
a06ea964 2970 default:
8e2fe09f 2971 abort ();
a06ea964
NC
2972 }
2973
2974 size = (size + 7) & ~7;
2975 stub_entry->stub_sec->size += size;
2976 return TRUE;
2977}
2978
2979/* External entry points for sizing and building linker stubs. */
2980
2981/* Set up various things so that we can make a list of input sections
2982 for each output section included in the link. Returns -1 on error,
2983 0 when no stubs will be needed, and 1 on success. */
2984
2985int
cec5225b 2986elfNN_aarch64_setup_section_lists (bfd *output_bfd,
a06ea964
NC
2987 struct bfd_link_info *info)
2988{
2989 bfd *input_bfd;
2990 unsigned int bfd_count;
7292b3ac 2991 unsigned int top_id, top_index;
a06ea964
NC
2992 asection *section;
2993 asection **input_list, **list;
2994 bfd_size_type amt;
cec5225b
YZ
2995 struct elf_aarch64_link_hash_table *htab =
2996 elf_aarch64_hash_table (info);
a06ea964
NC
2997
2998 if (!is_elf_hash_table (htab))
2999 return 0;
3000
3001 /* Count the number of input BFDs and find the top input section id. */
3002 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
c72f2fb2 3003 input_bfd != NULL; input_bfd = input_bfd->link.next)
a06ea964
NC
3004 {
3005 bfd_count += 1;
3006 for (section = input_bfd->sections;
3007 section != NULL; section = section->next)
3008 {
3009 if (top_id < section->id)
3010 top_id = section->id;
3011 }
3012 }
3013 htab->bfd_count = bfd_count;
3014
3015 amt = sizeof (struct map_stub) * (top_id + 1);
3016 htab->stub_group = bfd_zmalloc (amt);
3017 if (htab->stub_group == NULL)
3018 return -1;
3019
3020 /* We can't use output_bfd->section_count here to find the top output
3021 section index as some sections may have been removed, and
3022 _bfd_strip_section_from_output doesn't renumber the indices. */
3023 for (section = output_bfd->sections, top_index = 0;
3024 section != NULL; section = section->next)
3025 {
3026 if (top_index < section->index)
3027 top_index = section->index;
3028 }
3029
3030 htab->top_index = top_index;
3031 amt = sizeof (asection *) * (top_index + 1);
3032 input_list = bfd_malloc (amt);
3033 htab->input_list = input_list;
3034 if (input_list == NULL)
3035 return -1;
3036
3037 /* For sections we aren't interested in, mark their entries with a
3038 value we can check later. */
3039 list = input_list + top_index;
3040 do
3041 *list = bfd_abs_section_ptr;
3042 while (list-- != input_list);
3043
3044 for (section = output_bfd->sections;
3045 section != NULL; section = section->next)
3046 {
3047 if ((section->flags & SEC_CODE) != 0)
3048 input_list[section->index] = NULL;
3049 }
3050
3051 return 1;
3052}
3053
cec5225b 3054/* Used by elfNN_aarch64_next_input_section and group_sections. */
a06ea964
NC
3055#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3056
3057/* The linker repeatedly calls this function for each input section,
3058 in the order that input sections are linked into output sections.
3059 Build lists of input sections to determine groupings between which
3060 we may insert linker stubs. */
3061
3062void
cec5225b 3063elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
a06ea964 3064{
cec5225b
YZ
3065 struct elf_aarch64_link_hash_table *htab =
3066 elf_aarch64_hash_table (info);
a06ea964
NC
3067
3068 if (isec->output_section->index <= htab->top_index)
3069 {
3070 asection **list = htab->input_list + isec->output_section->index;
3071
3072 if (*list != bfd_abs_section_ptr)
3073 {
3074 /* Steal the link_sec pointer for our list. */
3075 /* This happens to make the list in reverse order,
3076 which is what we want. */
3077 PREV_SEC (isec) = *list;
3078 *list = isec;
3079 }
3080 }
3081}
3082
3083/* See whether we can group stub sections together. Grouping stub
3084 sections may result in fewer stubs. More importantly, we need to
3085 put all .init* and .fini* stubs at the beginning of the .init or
3086 .fini output sections respectively, because glibc splits the
3087 _init and _fini functions into multiple parts. Putting a stub in
3088 the middle of a function is not a good idea. */
3089
3090static void
cec5225b 3091group_sections (struct elf_aarch64_link_hash_table *htab,
a06ea964
NC
3092 bfd_size_type stub_group_size,
3093 bfd_boolean stubs_always_before_branch)
3094{
3095 asection **list = htab->input_list + htab->top_index;
3096
3097 do
3098 {
3099 asection *tail = *list;
3100
3101 if (tail == bfd_abs_section_ptr)
3102 continue;
3103
3104 while (tail != NULL)
3105 {
3106 asection *curr;
3107 asection *prev;
3108 bfd_size_type total;
3109
3110 curr = tail;
3111 total = tail->size;
3112 while ((prev = PREV_SEC (curr)) != NULL
3113 && ((total += curr->output_offset - prev->output_offset)
3114 < stub_group_size))
3115 curr = prev;
3116
3117 /* OK, the size from the start of CURR to the end is less
3118 than stub_group_size and thus can be handled by one stub
3119 section. (Or the tail section is itself larger than
3120 stub_group_size, in which case we may be toast.)
3121 We should really be keeping track of the total size of
3122 stubs added here, as stubs contribute to the final output
3123 section size. */
3124 do
3125 {
3126 prev = PREV_SEC (tail);
3127 /* Set up this stub group. */
3128 htab->stub_group[tail->id].link_sec = curr;
3129 }
3130 while (tail != curr && (tail = prev) != NULL);
3131
3132 /* But wait, there's more! Input sections up to stub_group_size
3133 bytes before the stub section can be handled by it too. */
3134 if (!stubs_always_before_branch)
3135 {
3136 total = 0;
3137 while (prev != NULL
3138 && ((total += tail->output_offset - prev->output_offset)
3139 < stub_group_size))
3140 {
3141 tail = prev;
3142 prev = PREV_SEC (tail);
3143 htab->stub_group[tail->id].link_sec = curr;
3144 }
3145 }
3146 tail = prev;
3147 }
3148 }
3149 while (list-- != htab->input_list);
3150
3151 free (htab->input_list);
3152}
3153
3154#undef PREV_SEC
3155
68fcca92
JW
3156#define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3157
3158#define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3159#define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3160#define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3161#define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3162#define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3163#define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3164
3165#define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3166#define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3167#define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3168#define AARCH64_ZR 0x1f
3169
3170/* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3171 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3172
3173#define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3174#define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3175#define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3176#define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3177#define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3178#define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3179#define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3180#define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3181#define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3182#define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3183#define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3184#define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3185#define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3186#define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3187#define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3188#define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3189#define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3190#define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3191
3d14faea
MS
3192/* Classify an INSN if it is indeed a load/store.
3193
3194 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3195
3196 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3197 is set equal to RT.
3198
3199 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned.
3200
3201 */
68fcca92
JW
3202
3203static bfd_boolean
3d14faea 3204aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
68fcca92
JW
3205 bfd_boolean *pair, bfd_boolean *load)
3206{
3207 uint32_t opcode;
3208 unsigned int r;
3209 uint32_t opc = 0;
3210 uint32_t v = 0;
3211 uint32_t opc_v = 0;
3212
3213 /* Bail out quickly if INSN doesn't fall into the the load-store
3214 encoding space. */
3215 if (!AARCH64_LDST (insn))
3216 return FALSE;
3217
3218 *pair = FALSE;
3219 *load = FALSE;
3220 if (AARCH64_LDST_EX (insn))
3221 {
3222 *rt = AARCH64_RT (insn);
3d14faea 3223 *rt2 = *rt;
68fcca92
JW
3224 if (AARCH64_BIT (insn, 21) == 1)
3225 {
3226 *pair = TRUE;
3d14faea 3227 *rt2 = AARCH64_RT2 (insn);
68fcca92
JW
3228 }
3229 *load = AARCH64_LD (insn);
3230 return TRUE;
3231 }
3232 else if (AARCH64_LDST_NAP (insn)
3233 || AARCH64_LDSTP_PI (insn)
3234 || AARCH64_LDSTP_O (insn)
3235 || AARCH64_LDSTP_PRE (insn))
3236 {
3237 *pair = TRUE;
3238 *rt = AARCH64_RT (insn);
3d14faea 3239 *rt2 = AARCH64_RT2 (insn);
68fcca92
JW
3240 *load = AARCH64_LD (insn);
3241 return TRUE;
3242 }
3243 else if (AARCH64_LDST_PCREL (insn)
3244 || AARCH64_LDST_UI (insn)
3245 || AARCH64_LDST_PIIMM (insn)
3246 || AARCH64_LDST_U (insn)
3247 || AARCH64_LDST_PREIMM (insn)
3248 || AARCH64_LDST_RO (insn)
3249 || AARCH64_LDST_UIMM (insn))
3250 {
3251 *rt = AARCH64_RT (insn);
3d14faea 3252 *rt2 = *rt;
68fcca92
JW
3253 if (AARCH64_LDST_PCREL (insn))
3254 *load = TRUE;
3255 opc = AARCH64_BITS (insn, 22, 2);
3256 v = AARCH64_BIT (insn, 26);
3257 opc_v = opc | (v << 2);
3258 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3259 || opc_v == 5 || opc_v == 7);
3260 return TRUE;
3261 }
3262 else if (AARCH64_LDST_SIMD_M (insn)
3263 || AARCH64_LDST_SIMD_M_PI (insn))
3264 {
3265 *rt = AARCH64_RT (insn);
3266 *load = AARCH64_BIT (insn, 22);
3267 opcode = (insn >> 12) & 0xf;
3268 switch (opcode)
3269 {
3270 case 0:
3271 case 2:
3d14faea 3272 *rt2 = *rt + 3;
68fcca92
JW
3273 break;
3274
3275 case 4:
3276 case 6:
3d14faea 3277 *rt2 = *rt + 2;
68fcca92
JW
3278 break;
3279
3280 case 7:
3d14faea 3281 *rt2 = *rt;
68fcca92
JW
3282 break;
3283
3284 case 8:
3285 case 10:
3d14faea 3286 *rt2 = *rt + 1;
68fcca92
JW
3287 break;
3288
3289 default:
3290 return FALSE;
3291 }
3292 return TRUE;
3293 }
3294 else if (AARCH64_LDST_SIMD_S (insn)
3295 || AARCH64_LDST_SIMD_S_PI (insn))
3296 {
3297 *rt = AARCH64_RT (insn);
3298 r = (insn >> 21) & 1;
3299 *load = AARCH64_BIT (insn, 22);
3300 opcode = (insn >> 13) & 0x7;
3301 switch (opcode)
3302 {
3303 case 0:
3304 case 2:
3305 case 4:
3d14faea 3306 *rt2 = *rt + r;
68fcca92
JW
3307 break;
3308
3309 case 1:
3310 case 3:
3311 case 5:
3d14faea 3312 *rt2 = *rt + (r == 0 ? 2 : 3);
68fcca92
JW
3313 break;
3314
3315 case 6:
3d14faea 3316 *rt2 = *rt + r;
68fcca92
JW
3317 break;
3318
3319 case 7:
3d14faea 3320 *rt2 = *rt + (r == 0 ? 2 : 3);
68fcca92
JW
3321 break;
3322
3323 default:
3324 return FALSE;
3325 }
3326 return TRUE;
3327 }
3328
3329 return FALSE;
3330}
3331
3332/* Return TRUE if INSN is multiply-accumulate. */
3333
3334static bfd_boolean
3335aarch64_mlxl_p (uint32_t insn)
3336{
3337 uint32_t op31 = AARCH64_OP31 (insn);
3338
3339 if (AARCH64_MAC (insn)
3340 && (op31 == 0 || op31 == 1 || op31 == 5)
3341 /* Exclude MUL instructions which are encoded as a multiple accumulate
3342 with RA = XZR. */
3343 && AARCH64_RA (insn) != AARCH64_ZR)
3344 return TRUE;
3345
3346 return FALSE;
3347}
3348
3349/* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3350 it is possible for a 64-bit multiply-accumulate instruction to generate an
3351 incorrect result. The details are quite complex and hard to
3352 determine statically, since branches in the code may exist in some
3353 circumstances, but all cases end with a memory (load, store, or
3354 prefetch) instruction followed immediately by the multiply-accumulate
3355 operation. We employ a linker patching technique, by moving the potentially
3356 affected multiply-accumulate instruction into a patch region and replacing
3357 the original instruction with a branch to the patch. This function checks
3358 if INSN_1 is the memory operation followed by a multiply-accumulate
3359 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3360 if INSN_1 and INSN_2 are safe. */
3361
3362static bfd_boolean
3363aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3364{
3365 uint32_t rt;
3d14faea 3366 uint32_t rt2;
68fcca92
JW
3367 uint32_t rn;
3368 uint32_t rm;
3369 uint32_t ra;
3370 bfd_boolean pair;
3371 bfd_boolean load;
3372
3373 if (aarch64_mlxl_p (insn_2)
3d14faea 3374 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
68fcca92
JW
3375 {
3376 /* Any SIMD memory op is independent of the subsequent MLA
3377 by definition of the erratum. */
3378 if (AARCH64_BIT (insn_1, 26))
3379 return TRUE;
3380
3381 /* If not SIMD, check for integer memory ops and MLA relationship. */
3382 rn = AARCH64_RN (insn_2);
3383 ra = AARCH64_RA (insn_2);
3384 rm = AARCH64_RM (insn_2);
3385
3386 /* If this is a load and there's a true(RAW) dependency, we are safe
3387 and this is not an erratum sequence. */
3388 if (load &&
3389 (rt == rn || rt == rm || rt == ra
3d14faea 3390 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
68fcca92
JW
3391 return FALSE;
3392
3393 /* We conservatively put out stubs for all other cases (including
3394 writebacks). */
3395 return TRUE;
3396 }
3397
3398 return FALSE;
3399}
3400
520c7b56
JW
3401/* Used to order a list of mapping symbols by address. */
3402
3403static int
3404elf_aarch64_compare_mapping (const void *a, const void *b)
3405{
3406 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3407 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3408
3409 if (amap->vma > bmap->vma)
3410 return 1;
3411 else if (amap->vma < bmap->vma)
3412 return -1;
3413 else if (amap->type > bmap->type)
3414 /* Ensure results do not depend on the host qsort for objects with
3415 multiple mapping symbols at the same address by sorting on type
3416 after vma. */
3417 return 1;
3418 else if (amap->type < bmap->type)
3419 return -1;
3420 else
3421 return 0;
3422}
3423
2144188d 3424
35fee8b7
MS
3425static char *
3426_bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3427{
3428 char *stub_name = (char *) bfd_malloc
3429 (strlen ("__erratum_835769_veneer_") + 16);
3430 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3431 return stub_name;
3432}
3433
4106101c 3434/* Scan for Cortex-A53 erratum 835769 sequence.
2144188d
MS
3435
3436 Return TRUE else FALSE on abnormal termination. */
3437
68fcca92 3438static bfd_boolean
5421cc6e
MS
3439_bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3440 struct bfd_link_info *info,
3441 unsigned int *num_fixes_p)
68fcca92
JW
3442{
3443 asection *section;
3444 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
68fcca92 3445 unsigned int num_fixes = *num_fixes_p;
68fcca92
JW
3446
3447 if (htab == NULL)
2144188d 3448 return TRUE;
68fcca92
JW
3449
3450 for (section = input_bfd->sections;
3451 section != NULL;
3452 section = section->next)
3453 {
3454 bfd_byte *contents = NULL;
3455 struct _aarch64_elf_section_data *sec_data;
3456 unsigned int span;
3457
3458 if (elf_section_type (section) != SHT_PROGBITS
3459 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3460 || (section->flags & SEC_EXCLUDE) != 0
3461 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3462 || (section->output_section == bfd_abs_section_ptr))
3463 continue;
3464
3465 if (elf_section_data (section)->this_hdr.contents != NULL)
3466 contents = elf_section_data (section)->this_hdr.contents;
3467 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
2144188d 3468 return FALSE;
68fcca92
JW
3469
3470 sec_data = elf_aarch64_section_data (section);
520c7b56
JW
3471
3472 qsort (sec_data->map, sec_data->mapcount,
3473 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3474
68fcca92
JW
3475 for (span = 0; span < sec_data->mapcount; span++)
3476 {
3477 unsigned int span_start = sec_data->map[span].vma;
3478 unsigned int span_end = ((span == sec_data->mapcount - 1)
3479 ? sec_data->map[0].vma + section->size
3480 : sec_data->map[span + 1].vma);
3481 unsigned int i;
3482 char span_type = sec_data->map[span].type;
3483
3484 if (span_type == 'd')
3485 continue;
3486
3487 for (i = span_start; i + 4 < span_end; i += 4)
3488 {
3489 uint32_t insn_1 = bfd_getl32 (contents + i);
3490 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3491
3492 if (aarch64_erratum_sequence (insn_1, insn_2))
3493 {
5421cc6e 3494 struct elf_aarch64_stub_hash_entry *stub_entry;
35fee8b7
MS
3495 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3496 if (! stub_name)
2144188d 3497 return FALSE;
68fcca92 3498
5421cc6e
MS
3499 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3500 section,
3501 htab);
3502 if (! stub_entry)
3503 return FALSE;
68fcca92 3504
5421cc6e
MS
3505 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3506 stub_entry->target_section = section;
3507 stub_entry->target_value = i + 4;
3508 stub_entry->veneered_insn = insn_2;
3509 stub_entry->output_name = stub_name;
68fcca92
JW
3510 num_fixes++;
3511 }
3512 }
3513 }
3514 if (elf_section_data (section)->this_hdr.contents == NULL)
3515 free (contents);
3516 }
3517
357d1523
MS
3518 *num_fixes_p = num_fixes;
3519
2144188d 3520 return TRUE;
68fcca92
JW
3521}
3522
13f622ec 3523
4106101c
MS
3524/* Test if instruction INSN is ADRP. */
3525
3526static bfd_boolean
3527_bfd_aarch64_adrp_p (uint32_t insn)
3528{
3529 return ((insn & 0x9f000000) == 0x90000000);
3530}
3531
3532
3533/* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3534
3535static bfd_boolean
3536_bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3537 uint32_t insn_3)
3538{
3539 uint32_t rt;
3540 uint32_t rt2;
3541 bfd_boolean pair;
3542 bfd_boolean load;
3543
3544 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3545 && (!pair
3546 || (pair && !load))
3547 && AARCH64_LDST_UIMM (insn_3)
3548 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3549}
3550
3551
3552/* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3553
3554 Return TRUE if section CONTENTS at offset I contains one of the
3555 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3556 seen set P_VENEER_I to the offset of the final LOAD/STORE
3557 instruction in the sequence.
3558 */
3559
3560static bfd_boolean
3561_bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3562 bfd_vma i, bfd_vma span_end,
3563 bfd_vma *p_veneer_i)
3564{
3565 uint32_t insn_1 = bfd_getl32 (contents + i);
3566
3567 if (!_bfd_aarch64_adrp_p (insn_1))
3568 return FALSE;
3569
3570 if (span_end < i + 12)
3571 return FALSE;
3572
3573 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3574 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3575
3576 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3577 return FALSE;
3578
3579 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3580 {
3581 *p_veneer_i = i + 8;
3582 return TRUE;
3583 }
3584
3585 if (span_end < i + 16)
3586 return FALSE;
3587
3588 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3589
3590 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3591 {
3592 *p_veneer_i = i + 12;
3593 return TRUE;
3594 }
3595
3596 return FALSE;
3597}
3598
3599
13f622ec
MS
3600/* Resize all stub sections. */
3601
3602static void
3603_bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3604{
3605 asection *section;
3606
3607 /* OK, we've added some stubs. Find out the new size of the
3608 stub sections. */
3609 for (section = htab->stub_bfd->sections;
3610 section != NULL; section = section->next)
3611 {
3612 /* Ignore non-stub sections. */
3613 if (!strstr (section->name, STUB_SUFFIX))
3614 continue;
3615 section->size = 0;
3616 }
3617
3618 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
13f622ec 3619
61865519
MS
3620 for (section = htab->stub_bfd->sections;
3621 section != NULL; section = section->next)
3622 {
3623 if (!strstr (section->name, STUB_SUFFIX))
3624 continue;
3625
3626 if (section->size)
3627 section->size += 4;
4106101c
MS
3628
3629 /* Ensure all stub sections have a size which is a multiple of
3630 4096. This is important in order to ensure that the insertion
3631 of stub sections does not in itself move existing code around
3632 in such a way that new errata sequences are created. */
3633 if (htab->fix_erratum_843419)
3634 if (section->size)
3635 section->size = BFD_ALIGN (section->size, 0x1000);
3636 }
3637}
3638
3639
3640/* Construct an erratum 843419 workaround stub name.
3641 */
3642
3643static char *
3644_bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3645 bfd_vma offset)
3646{
3647 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3648 char *stub_name = bfd_malloc (len);
3649
3650 if (stub_name != NULL)
3651 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3652 input_section->owner->id,
3653 input_section->id,
3654 offset);
3655 return stub_name;
3656}
3657
3658/* Build a stub_entry structure describing an 843419 fixup.
3659
3660 The stub_entry constructed is populated with the bit pattern INSN
3661 of the instruction located at OFFSET within input SECTION.
3662
3663 Returns TRUE on success. */
3664
3665static bfd_boolean
3666_bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3667 bfd_vma adrp_offset,
3668 bfd_vma ldst_offset,
3669 asection *section,
3670 struct bfd_link_info *info)
3671{
3672 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3673 char *stub_name;
3674 struct elf_aarch64_stub_hash_entry *stub_entry;
3675
3676 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3677 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3678 FALSE, FALSE);
3679 if (stub_entry)
3680 {
3681 free (stub_name);
3682 return TRUE;
3683 }
3684
3685 /* We always place an 843419 workaround veneer in the stub section
3686 attached to the input section in which an erratum sequence has
3687 been found. This ensures that later in the link process (in
3688 elfNN_aarch64_write_section) when we copy the veneered
3689 instruction from the input section into the stub section the
3690 copied instruction will have had any relocations applied to it.
3691 If we placed workaround veneers in any other stub section then we
3692 could not assume that all relocations have been processed on the
3693 corresponding input section at the point we output the stub
3694 section.
3695 */
3696
3697 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3698 if (stub_entry == NULL)
3699 {
3700 free (stub_name);
3701 return FALSE;
3702 }
3703
3704 stub_entry->adrp_offset = adrp_offset;
3705 stub_entry->target_value = ldst_offset;
3706 stub_entry->target_section = section;
3707 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3708 stub_entry->veneered_insn = insn;
3709 stub_entry->output_name = stub_name;
3710
3711 return TRUE;
3712}
3713
3714
3715/* Scan an input section looking for the signature of erratum 843419.
3716
3717 Scans input SECTION in INPUT_BFD looking for erratum 843419
3718 signatures, for each signature found a stub_entry is created
3719 describing the location of the erratum for subsequent fixup.
3720
3721 Return TRUE on successful scan, FALSE on failure to scan.
3722 */
3723
3724static bfd_boolean
3725_bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3726 struct bfd_link_info *info)
3727{
3728 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3729
3730 if (htab == NULL)
3731 return TRUE;
3732
3733 if (elf_section_type (section) != SHT_PROGBITS
3734 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3735 || (section->flags & SEC_EXCLUDE) != 0
3736 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3737 || (section->output_section == bfd_abs_section_ptr))
3738 return TRUE;
3739
3740 do
3741 {
3742 bfd_byte *contents = NULL;
3743 struct _aarch64_elf_section_data *sec_data;
3744 unsigned int span;
3745
3746 if (elf_section_data (section)->this_hdr.contents != NULL)
3747 contents = elf_section_data (section)->this_hdr.contents;
3748 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3749 return FALSE;
3750
3751 sec_data = elf_aarch64_section_data (section);
3752
3753 qsort (sec_data->map, sec_data->mapcount,
3754 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3755
3756 for (span = 0; span < sec_data->mapcount; span++)
3757 {
3758 unsigned int span_start = sec_data->map[span].vma;
3759 unsigned int span_end = ((span == sec_data->mapcount - 1)
3760 ? sec_data->map[0].vma + section->size
3761 : sec_data->map[span + 1].vma);
3762 unsigned int i;
3763 char span_type = sec_data->map[span].type;
3764
3765 if (span_type == 'd')
3766 continue;
3767
3768 for (i = span_start; i + 8 < span_end; i += 4)
3769 {
3770 bfd_vma vma = (section->output_section->vma
3771 + section->output_offset
3772 + i);
3773 bfd_vma veneer_i;
3774
3775 if (_bfd_aarch64_erratum_843419_p
3776 (contents, vma, i, span_end, &veneer_i))
3777 {
3778 uint32_t insn = bfd_getl32 (contents + veneer_i);
3779
3780 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3781 section, info))
3782 return FALSE;
3783 }
3784 }
3785 }
3786
3787 if (elf_section_data (section)->this_hdr.contents == NULL)
3788 free (contents);
61865519 3789 }
4106101c
MS
3790 while (0);
3791
3792 return TRUE;
61865519 3793}
13f622ec 3794
4106101c 3795
a06ea964
NC
3796/* Determine and set the size of the stub section for a final link.
3797
3798 The basic idea here is to examine all the relocations looking for
3799 PC-relative calls to a target that is unreachable with a "bl"
3800 instruction. */
3801
3802bfd_boolean
cec5225b 3803elfNN_aarch64_size_stubs (bfd *output_bfd,
a06ea964
NC
3804 bfd *stub_bfd,
3805 struct bfd_link_info *info,
3806 bfd_signed_vma group_size,
3807 asection * (*add_stub_section) (const char *,
3808 asection *),
3809 void (*layout_sections_again) (void))
3810{
3811 bfd_size_type stub_group_size;
3812 bfd_boolean stubs_always_before_branch;
5421cc6e 3813 bfd_boolean stub_changed = FALSE;
cec5225b 3814 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
68fcca92 3815 unsigned int num_erratum_835769_fixes = 0;
a06ea964
NC
3816
3817 /* Propagate mach to stub bfd, because it may not have been
3818 finalized when we created stub_bfd. */
3819 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3820 bfd_get_mach (output_bfd));
3821
3822 /* Stash our params away. */
3823 htab->stub_bfd = stub_bfd;
3824 htab->add_stub_section = add_stub_section;
3825 htab->layout_sections_again = layout_sections_again;
3826 stubs_always_before_branch = group_size < 0;
3827 if (group_size < 0)
3828 stub_group_size = -group_size;
3829 else
3830 stub_group_size = group_size;
3831
3832 if (stub_group_size == 1)
3833 {
3834 /* Default values. */
b9eead84 3835 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
a06ea964
NC
3836 stub_group_size = 127 * 1024 * 1024;
3837 }
3838
3839 group_sections (htab, stub_group_size, stubs_always_before_branch);
3840
4106101c
MS
3841 (*htab->layout_sections_again) ();
3842
5421cc6e
MS
3843 if (htab->fix_erratum_835769)
3844 {
3845 bfd *input_bfd;
3846
3847 for (input_bfd = info->input_bfds;
3848 input_bfd != NULL; input_bfd = input_bfd->link.next)
3849 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3850 &num_erratum_835769_fixes))
3851 return FALSE;
3852
4106101c
MS
3853 _bfd_aarch64_resize_stubs (htab);
3854 (*htab->layout_sections_again) ();
3855 }
3856
3857 if (htab->fix_erratum_843419)
3858 {
3859 bfd *input_bfd;
3860
3861 for (input_bfd = info->input_bfds;
3862 input_bfd != NULL;
3863 input_bfd = input_bfd->link.next)
3864 {
3865 asection *section;
3866
3867 for (section = input_bfd->sections;
3868 section != NULL;
3869 section = section->next)
3870 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3871 return FALSE;
3872 }
3873
3874 _bfd_aarch64_resize_stubs (htab);
3875 (*htab->layout_sections_again) ();
5421cc6e
MS
3876 }
3877
a06ea964
NC
3878 while (1)
3879 {
3880 bfd *input_bfd;
a06ea964 3881
9b9971aa
MS
3882 for (input_bfd = info->input_bfds;
3883 input_bfd != NULL; input_bfd = input_bfd->link.next)
a06ea964
NC
3884 {
3885 Elf_Internal_Shdr *symtab_hdr;
3886 asection *section;
3887 Elf_Internal_Sym *local_syms = NULL;
3888
3889 /* We'll need the symbol table in a second. */
3890 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3891 if (symtab_hdr->sh_info == 0)
3892 continue;
3893
3894 /* Walk over each section attached to the input bfd. */
3895 for (section = input_bfd->sections;
3896 section != NULL; section = section->next)
3897 {
3898 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3899
3900 /* If there aren't any relocs, then there's nothing more
3901 to do. */
3902 if ((section->flags & SEC_RELOC) == 0
3903 || section->reloc_count == 0
3904 || (section->flags & SEC_CODE) == 0)
3905 continue;
3906
3907 /* If this section is a link-once section that will be
3908 discarded, then don't create any stubs. */
3909 if (section->output_section == NULL
3910 || section->output_section->owner != output_bfd)
3911 continue;
3912
3913 /* Get the relocs. */
3914 internal_relocs
3915 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3916 NULL, info->keep_memory);
3917 if (internal_relocs == NULL)
3918 goto error_ret_free_local;
3919
3920 /* Now examine each relocation. */
3921 irela = internal_relocs;
3922 irelaend = irela + section->reloc_count;
3923 for (; irela < irelaend; irela++)
3924 {
3925 unsigned int r_type, r_indx;
cec5225b
YZ
3926 enum elf_aarch64_stub_type stub_type;
3927 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
3928 asection *sym_sec;
3929 bfd_vma sym_value;
3930 bfd_vma destination;
cec5225b 3931 struct elf_aarch64_link_hash_entry *hash;
a06ea964
NC
3932 const char *sym_name;
3933 char *stub_name;
3934 const asection *id_sec;
3935 unsigned char st_type;
3936 bfd_size_type len;
3937
cec5225b
YZ
3938 r_type = ELFNN_R_TYPE (irela->r_info);
3939 r_indx = ELFNN_R_SYM (irela->r_info);
a06ea964
NC
3940
3941 if (r_type >= (unsigned int) R_AARCH64_end)
3942 {
3943 bfd_set_error (bfd_error_bad_value);
3944 error_ret_free_internal:
3945 if (elf_section_data (section)->relocs == NULL)
3946 free (internal_relocs);
3947 goto error_ret_free_local;
3948 }
3949
3950 /* Only look for stubs on unconditional branch and
3951 branch and link instructions. */
a6bb11b2
YZ
3952 if (r_type != (unsigned int) AARCH64_R (CALL26)
3953 && r_type != (unsigned int) AARCH64_R (JUMP26))
a06ea964
NC
3954 continue;
3955
3956 /* Now determine the call target, its name, value,
3957 section. */
3958 sym_sec = NULL;
3959 sym_value = 0;
3960 destination = 0;
3961 hash = NULL;
3962 sym_name = NULL;
3963 if (r_indx < symtab_hdr->sh_info)
3964 {
3965 /* It's a local symbol. */
3966 Elf_Internal_Sym *sym;
3967 Elf_Internal_Shdr *hdr;
3968
3969 if (local_syms == NULL)
3970 {
3971 local_syms
3972 = (Elf_Internal_Sym *) symtab_hdr->contents;
3973 if (local_syms == NULL)
3974 local_syms
3975 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3976 symtab_hdr->sh_info, 0,
3977 NULL, NULL, NULL);
3978 if (local_syms == NULL)
3979 goto error_ret_free_internal;
3980 }
3981
3982 sym = local_syms + r_indx;
3983 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3984 sym_sec = hdr->bfd_section;
3985 if (!sym_sec)
3986 /* This is an undefined symbol. It can never
3987 be resolved. */
3988 continue;
3989
3990 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3991 sym_value = sym->st_value;
3992 destination = (sym_value + irela->r_addend
3993 + sym_sec->output_offset
3994 + sym_sec->output_section->vma);
3995 st_type = ELF_ST_TYPE (sym->st_info);
3996 sym_name
3997 = bfd_elf_string_from_elf_section (input_bfd,
3998 symtab_hdr->sh_link,
3999 sym->st_name);
4000 }
4001 else
4002 {
4003 int e_indx;
4004
4005 e_indx = r_indx - symtab_hdr->sh_info;
cec5225b 4006 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
4007 elf_sym_hashes (input_bfd)[e_indx]);
4008
4009 while (hash->root.root.type == bfd_link_hash_indirect
4010 || hash->root.root.type == bfd_link_hash_warning)
cec5225b 4011 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
4012 hash->root.root.u.i.link);
4013
4014 if (hash->root.root.type == bfd_link_hash_defined
4015 || hash->root.root.type == bfd_link_hash_defweak)
4016 {
cec5225b
YZ
4017 struct elf_aarch64_link_hash_table *globals =
4018 elf_aarch64_hash_table (info);
a06ea964
NC
4019 sym_sec = hash->root.root.u.def.section;
4020 sym_value = hash->root.root.u.def.value;
4021 /* For a destination in a shared library,
4022 use the PLT stub as target address to
4023 decide whether a branch stub is
4024 needed. */
4025 if (globals->root.splt != NULL && hash != NULL
4026 && hash->root.plt.offset != (bfd_vma) - 1)
4027 {
4028 sym_sec = globals->root.splt;
4029 sym_value = hash->root.plt.offset;
4030 if (sym_sec->output_section != NULL)
4031 destination = (sym_value
4032 + sym_sec->output_offset
4033 +
4034 sym_sec->output_section->vma);
4035 }
4036 else if (sym_sec->output_section != NULL)
4037 destination = (sym_value + irela->r_addend
4038 + sym_sec->output_offset
4039 + sym_sec->output_section->vma);
4040 }
4041 else if (hash->root.root.type == bfd_link_hash_undefined
4042 || (hash->root.root.type
4043 == bfd_link_hash_undefweak))
4044 {
4045 /* For a shared library, use the PLT stub as
4046 target address to decide whether a long
4047 branch stub is needed.
4048 For absolute code, they cannot be handled. */
cec5225b
YZ
4049 struct elf_aarch64_link_hash_table *globals =
4050 elf_aarch64_hash_table (info);
a06ea964
NC
4051
4052 if (globals->root.splt != NULL && hash != NULL
4053 && hash->root.plt.offset != (bfd_vma) - 1)
4054 {
4055 sym_sec = globals->root.splt;
4056 sym_value = hash->root.plt.offset;
4057 if (sym_sec->output_section != NULL)
4058 destination = (sym_value
4059 + sym_sec->output_offset
4060 +
4061 sym_sec->output_section->vma);
4062 }
4063 else
4064 continue;
4065 }
4066 else
4067 {
4068 bfd_set_error (bfd_error_bad_value);
4069 goto error_ret_free_internal;
4070 }
4071 st_type = ELF_ST_TYPE (hash->root.type);
4072 sym_name = hash->root.root.root.string;
4073 }
4074
4075 /* Determine what (if any) linker stub is needed. */
4076 stub_type = aarch64_type_of_stub
f678ded7 4077 (info, section, irela, sym_sec, st_type, hash, destination);
a06ea964
NC
4078 if (stub_type == aarch64_stub_none)
4079 continue;
4080
4081 /* Support for grouping stub sections. */
4082 id_sec = htab->stub_group[section->id].link_sec;
4083
4084 /* Get the name of this stub. */
cec5225b 4085 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
a06ea964
NC
4086 irela);
4087 if (!stub_name)
4088 goto error_ret_free_internal;
4089
4090 stub_entry =
4091 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4092 stub_name, FALSE, FALSE);
4093 if (stub_entry != NULL)
4094 {
4095 /* The proper stub has already been created. */
4096 free (stub_name);
4097 continue;
4098 }
4099
ef857521
MS
4100 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4101 (stub_name, section, htab);
a06ea964
NC
4102 if (stub_entry == NULL)
4103 {
4104 free (stub_name);
4105 goto error_ret_free_internal;
4106 }
4107
4108 stub_entry->target_value = sym_value;
4109 stub_entry->target_section = sym_sec;
4110 stub_entry->stub_type = stub_type;
4111 stub_entry->h = hash;
4112 stub_entry->st_type = st_type;
4113
4114 if (sym_name == NULL)
4115 sym_name = "unnamed";
4116 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4117 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4118 if (stub_entry->output_name == NULL)
4119 {
4120 free (stub_name);
4121 goto error_ret_free_internal;
4122 }
4123
4124 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4125 sym_name);
4126
4127 stub_changed = TRUE;
4128 }
4129
4130 /* We're done with the internal relocs, free them. */
4131 if (elf_section_data (section)->relocs == NULL)
4132 free (internal_relocs);
4133 }
4134 }
4135
4136 if (!stub_changed)
4137 break;
4138
13f622ec 4139 _bfd_aarch64_resize_stubs (htab);
a06ea964
NC
4140
4141 /* Ask the linker to do its stuff. */
4142 (*htab->layout_sections_again) ();
4143 stub_changed = FALSE;
4144 }
4145
4146 return TRUE;
4147
4148error_ret_free_local:
4149 return FALSE;
4150}
4151
4152/* Build all the stubs associated with the current output file. The
4153 stubs are kept in a hash table attached to the main linker hash
4154 table. We also set up the .plt entries for statically linked PIC
4155 functions here. This function is called via aarch64_elf_finish in the
4156 linker. */
4157
4158bfd_boolean
cec5225b 4159elfNN_aarch64_build_stubs (struct bfd_link_info *info)
a06ea964
NC
4160{
4161 asection *stub_sec;
4162 struct bfd_hash_table *table;
cec5225b 4163 struct elf_aarch64_link_hash_table *htab;
a06ea964 4164
cec5225b 4165 htab = elf_aarch64_hash_table (info);
a06ea964
NC
4166
4167 for (stub_sec = htab->stub_bfd->sections;
4168 stub_sec != NULL; stub_sec = stub_sec->next)
4169 {
4170 bfd_size_type size;
4171
4172 /* Ignore non-stub sections. */
4173 if (!strstr (stub_sec->name, STUB_SUFFIX))
4174 continue;
4175
4176 /* Allocate memory to hold the linker stubs. */
4177 size = stub_sec->size;
4178 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4179 if (stub_sec->contents == NULL && size != 0)
4180 return FALSE;
4181 stub_sec->size = 0;
61865519
MS
4182
4183 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4184 stub_sec->size += 4;
a06ea964
NC
4185 }
4186
4187 /* Build the stubs as directed by the stub hash table. */
4188 table = &htab->stub_hash_table;
4189 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4190
4191 return TRUE;
4192}
4193
4194
4195/* Add an entry to the code/data map for section SEC. */
4196
4197static void
cec5225b 4198elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
a06ea964
NC
4199{
4200 struct _aarch64_elf_section_data *sec_data =
cec5225b 4201 elf_aarch64_section_data (sec);
a06ea964
NC
4202 unsigned int newidx;
4203
4204 if (sec_data->map == NULL)
4205 {
cec5225b 4206 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
a06ea964
NC
4207 sec_data->mapcount = 0;
4208 sec_data->mapsize = 1;
4209 }
4210
4211 newidx = sec_data->mapcount++;
4212
4213 if (sec_data->mapcount > sec_data->mapsize)
4214 {
4215 sec_data->mapsize *= 2;
4216 sec_data->map = bfd_realloc_or_free
cec5225b 4217 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
a06ea964
NC
4218 }
4219
4220 if (sec_data->map)
4221 {
4222 sec_data->map[newidx].vma = vma;
4223 sec_data->map[newidx].type = type;
4224 }
4225}
4226
4227
4228/* Initialise maps of insn/data for input BFDs. */
4229void
cec5225b 4230bfd_elfNN_aarch64_init_maps (bfd *abfd)
a06ea964
NC
4231{
4232 Elf_Internal_Sym *isymbuf;
4233 Elf_Internal_Shdr *hdr;
4234 unsigned int i, localsyms;
4235
4236 /* Make sure that we are dealing with an AArch64 elf binary. */
4237 if (!is_aarch64_elf (abfd))
4238 return;
4239
4240 if ((abfd->flags & DYNAMIC) != 0)
68fcca92 4241 return;
a06ea964
NC
4242
4243 hdr = &elf_symtab_hdr (abfd);
4244 localsyms = hdr->sh_info;
4245
4246 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4247 should contain the number of local symbols, which should come before any
4248 global symbols. Mapping symbols are always local. */
4249 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4250
4251 /* No internal symbols read? Skip this BFD. */
4252 if (isymbuf == NULL)
4253 return;
4254
4255 for (i = 0; i < localsyms; i++)
4256 {
4257 Elf_Internal_Sym *isym = &isymbuf[i];
4258 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4259 const char *name;
4260
4261 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4262 {
4263 name = bfd_elf_string_from_elf_section (abfd,
4264 hdr->sh_link,
4265 isym->st_name);
4266
4267 if (bfd_is_aarch64_special_symbol_name
4268 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
cec5225b 4269 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
a06ea964
NC
4270 }
4271 }
4272}
4273
4274/* Set option values needed during linking. */
4275void
cec5225b 4276bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
a06ea964
NC
4277 struct bfd_link_info *link_info,
4278 int no_enum_warn,
68fcca92 4279 int no_wchar_warn, int pic_veneer,
4106101c
MS
4280 int fix_erratum_835769,
4281 int fix_erratum_843419)
a06ea964 4282{
cec5225b 4283 struct elf_aarch64_link_hash_table *globals;
a06ea964 4284
cec5225b 4285 globals = elf_aarch64_hash_table (link_info);
a06ea964 4286 globals->pic_veneer = pic_veneer;
68fcca92 4287 globals->fix_erratum_835769 = fix_erratum_835769;
4106101c
MS
4288 globals->fix_erratum_843419 = fix_erratum_843419;
4289 globals->fix_erratum_843419_adr = TRUE;
a06ea964
NC
4290
4291 BFD_ASSERT (is_aarch64_elf (output_bfd));
4292 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4293 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4294}
4295
a06ea964
NC
4296static bfd_vma
4297aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
cec5225b 4298 struct elf_aarch64_link_hash_table
a06ea964
NC
4299 *globals, struct bfd_link_info *info,
4300 bfd_vma value, bfd *output_bfd,
4301 bfd_boolean *unresolved_reloc_p)
4302{
4303 bfd_vma off = (bfd_vma) - 1;
4304 asection *basegot = globals->root.sgot;
4305 bfd_boolean dyn = globals->root.dynamic_sections_created;
4306
4307 if (h != NULL)
4308 {
a6bb11b2 4309 BFD_ASSERT (basegot != NULL);
a06ea964
NC
4310 off = h->got.offset;
4311 BFD_ASSERT (off != (bfd_vma) - 1);
0e1862bb
L
4312 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4313 || (bfd_link_pic (info)
a06ea964
NC
4314 && SYMBOL_REFERENCES_LOCAL (info, h))
4315 || (ELF_ST_VISIBILITY (h->other)
4316 && h->root.type == bfd_link_hash_undefweak))
4317 {
4318 /* This is actually a static link, or it is a -Bsymbolic link
4319 and the symbol is defined locally. We must initialize this
4320 entry in the global offset table. Since the offset must
a6bb11b2
YZ
4321 always be a multiple of 8 (4 in the case of ILP32), we use
4322 the least significant bit to record whether we have
4323 initialized it already.
a06ea964
NC
4324 When doing a dynamic link, we create a .rel(a).got relocation
4325 entry to initialize the value. This is done in the
4326 finish_dynamic_symbol routine. */
4327 if ((off & 1) != 0)
4328 off &= ~1;
4329 else
4330 {
cec5225b 4331 bfd_put_NN (output_bfd, value, basegot->contents + off);
a06ea964
NC
4332 h->got.offset |= 1;
4333 }
4334 }
4335 else
4336 *unresolved_reloc_p = FALSE;
4337
4338 off = off + basegot->output_section->vma + basegot->output_offset;
4339 }
4340
4341 return off;
4342}
4343
4344/* Change R_TYPE to a more efficient access model where possible,
4345 return the new reloc type. */
4346
a6bb11b2
YZ
4347static bfd_reloc_code_real_type
4348aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
a06ea964
NC
4349 struct elf_link_hash_entry *h)
4350{
4351 bfd_boolean is_local = h == NULL;
a6bb11b2 4352
a06ea964
NC
4353 switch (r_type)
4354 {
a6bb11b2 4355 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
ce336788 4356 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a6bb11b2
YZ
4357 return (is_local
4358 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4359 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4360
389b8029
MS
4361 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4362 return (is_local
4363 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4364 : r_type);
4365
1ada945d
MS
4366 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4367 return (is_local
4368 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4369 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4370
a6bb11b2 4371 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
ce336788 4372 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a6bb11b2
YZ
4373 return (is_local
4374 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4375 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4376
4377 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4378 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4379
4380 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4381 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4382
043bf05a
MS
4383 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4384 return r_type;
4385
3c12b054
MS
4386 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4387 return (is_local
4388 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4389 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4390
a6bb11b2
YZ
4391 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4392 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964 4393 /* Instructions with these relocations will become NOPs. */
a6bb11b2
YZ
4394 return BFD_RELOC_AARCH64_NONE;
4395
259364ad
JW
4396 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4397 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4398 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4399 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4400
a6bb11b2
YZ
4401 default:
4402 break;
a06ea964
NC
4403 }
4404
4405 return r_type;
4406}
4407
4408static unsigned int
a6bb11b2 4409aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
a06ea964
NC
4410{
4411 switch (r_type)
4412 {
a6bb11b2
YZ
4413 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4414 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 4415 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
ce336788 4416 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
99ad26cb 4417 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
ce336788 4418 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
a06ea964
NC
4419 return GOT_NORMAL;
4420
ce336788 4421 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a6bb11b2 4422 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 4423 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
73f925cc 4424 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 4425 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 4426 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a06ea964
NC
4427 return GOT_TLS_GD;
4428
a6bb11b2
YZ
4429 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4430 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 4431 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
a6bb11b2 4432 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a6bb11b2 4433 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
ce336788 4434 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 4435 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964
NC
4436 return GOT_TLSDESC_GD;
4437
a6bb11b2 4438 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 4439 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
ce336788 4440 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 4441 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
a06ea964
NC
4442 return GOT_TLS_IE;
4443
a6bb11b2
YZ
4444 default:
4445 break;
a06ea964
NC
4446 }
4447 return GOT_UNKNOWN;
4448}
4449
4450static bfd_boolean
4451aarch64_can_relax_tls (bfd *input_bfd,
4452 struct bfd_link_info *info,
a6bb11b2 4453 bfd_reloc_code_real_type r_type,
a06ea964
NC
4454 struct elf_link_hash_entry *h,
4455 unsigned long r_symndx)
4456{
4457 unsigned int symbol_got_type;
4458 unsigned int reloc_got_type;
4459
9331eea1 4460 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
a06ea964
NC
4461 return FALSE;
4462
cec5225b 4463 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
a06ea964
NC
4464 reloc_got_type = aarch64_reloc_got_type (r_type);
4465
4466 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4467 return TRUE;
4468
0e1862bb 4469 if (bfd_link_pic (info))
a06ea964
NC
4470 return FALSE;
4471
4472 if (h && h->root.type == bfd_link_hash_undefweak)
4473 return FALSE;
4474
4475 return TRUE;
4476}
4477
a6bb11b2
YZ
4478/* Given the relocation code R_TYPE, return the relaxed bfd reloc
4479 enumerator. */
4480
4481static bfd_reloc_code_real_type
a06ea964
NC
4482aarch64_tls_transition (bfd *input_bfd,
4483 struct bfd_link_info *info,
4484 unsigned int r_type,
4485 struct elf_link_hash_entry *h,
4486 unsigned long r_symndx)
4487{
a6bb11b2
YZ
4488 bfd_reloc_code_real_type bfd_r_type
4489 = elfNN_aarch64_bfd_reloc_from_type (r_type);
a06ea964 4490
a6bb11b2
YZ
4491 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4492 return bfd_r_type;
4493
4494 return aarch64_tls_transition_without_check (bfd_r_type, h);
a06ea964
NC
4495}
4496
4497/* Return the base VMA address which should be subtracted from real addresses
a6bb11b2 4498 when resolving R_AARCH64_TLS_DTPREL relocation. */
a06ea964
NC
4499
4500static bfd_vma
4501dtpoff_base (struct bfd_link_info *info)
4502{
4503 /* If tls_sec is NULL, we should have signalled an error already. */
4504 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4505 return elf_hash_table (info)->tls_sec->vma;
4506}
4507
a06ea964
NC
4508/* Return the base VMA address which should be subtracted from real addresses
4509 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4510
4511static bfd_vma
4512tpoff_base (struct bfd_link_info *info)
4513{
4514 struct elf_link_hash_table *htab = elf_hash_table (info);
4515
4516 /* If tls_sec is NULL, we should have signalled an error already. */
ac21917f 4517 BFD_ASSERT (htab->tls_sec != NULL);
a06ea964
NC
4518
4519 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4520 htab->tls_sec->alignment_power);
4521 return htab->tls_sec->vma - base;
4522}
4523
4524static bfd_vma *
4525symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4526 unsigned long r_symndx)
4527{
4528 /* Calculate the address of the GOT entry for symbol
4529 referred to in h. */
4530 if (h != NULL)
4531 return &h->got.offset;
4532 else
4533 {
4534 /* local symbol */
4535 struct elf_aarch64_local_symbol *l;
4536
cec5225b 4537 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
4538 return &l[r_symndx].got_offset;
4539 }
4540}
4541
4542static void
4543symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4544 unsigned long r_symndx)
4545{
4546 bfd_vma *p;
4547 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4548 *p |= 1;
4549}
4550
4551static int
4552symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4553 unsigned long r_symndx)
4554{
4555 bfd_vma value;
4556 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4557 return value & 1;
4558}
4559
4560static bfd_vma
4561symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4562 unsigned long r_symndx)
4563{
4564 bfd_vma value;
4565 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4566 value &= ~1;
4567 return value;
4568}
4569
4570static bfd_vma *
4571symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4572 unsigned long r_symndx)
4573{
4574 /* Calculate the address of the GOT entry for symbol
4575 referred to in h. */
4576 if (h != NULL)
4577 {
cec5225b
YZ
4578 struct elf_aarch64_link_hash_entry *eh;
4579 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
4580 return &eh->tlsdesc_got_jump_table_offset;
4581 }
4582 else
4583 {
4584 /* local symbol */
4585 struct elf_aarch64_local_symbol *l;
4586
cec5225b 4587 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
4588 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4589 }
4590}
4591
4592static void
4593symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4594 unsigned long r_symndx)
4595{
4596 bfd_vma *p;
4597 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4598 *p |= 1;
4599}
4600
4601static int
4602symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4603 struct elf_link_hash_entry *h,
4604 unsigned long r_symndx)
4605{
4606 bfd_vma value;
4607 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4608 return value & 1;
4609}
4610
4611static bfd_vma
4612symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4613 unsigned long r_symndx)
4614{
4615 bfd_vma value;
4616 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4617 value &= ~1;
4618 return value;
4619}
4620
68fcca92
JW
4621/* Data for make_branch_to_erratum_835769_stub(). */
4622
4623struct erratum_835769_branch_to_stub_data
4624{
4106101c 4625 struct bfd_link_info *info;
68fcca92
JW
4626 asection *output_section;
4627 bfd_byte *contents;
4628};
4629
4630/* Helper to insert branches to erratum 835769 stubs in the right
4631 places for a particular section. */
4632
4633static bfd_boolean
4634make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4635 void *in_arg)
4636{
4637 struct elf_aarch64_stub_hash_entry *stub_entry;
4638 struct erratum_835769_branch_to_stub_data *data;
4639 bfd_byte *contents;
4640 unsigned long branch_insn = 0;
4641 bfd_vma veneered_insn_loc, veneer_entry_loc;
4642 bfd_signed_vma branch_offset;
4643 unsigned int target;
4644 bfd *abfd;
4645
4646 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4647 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4648
4649 if (stub_entry->target_section != data->output_section
4650 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4651 return TRUE;
4652
4653 contents = data->contents;
4654 veneered_insn_loc = stub_entry->target_section->output_section->vma
4655 + stub_entry->target_section->output_offset
4656 + stub_entry->target_value;
4657 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4658 + stub_entry->stub_sec->output_offset
4659 + stub_entry->stub_offset;
4660 branch_offset = veneer_entry_loc - veneered_insn_loc;
4661
4662 abfd = stub_entry->target_section->owner;
4663 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4664 (*_bfd_error_handler)
4665 (_("%B: error: Erratum 835769 stub out "
4666 "of range (input file too large)"), abfd);
4667
4668 target = stub_entry->target_value;
4669 branch_insn = 0x14000000;
4670 branch_offset >>= 2;
4671 branch_offset &= 0x3ffffff;
4672 branch_insn |= branch_offset;
4673 bfd_putl32 (branch_insn, &contents[target]);
4674
4675 return TRUE;
4676}
4677
4106101c
MS
4678
4679static bfd_boolean
4680_bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4681 void *in_arg)
4682{
4683 struct elf_aarch64_stub_hash_entry *stub_entry
4684 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4685 struct erratum_835769_branch_to_stub_data *data
4686 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4687 struct bfd_link_info *info;
4688 struct elf_aarch64_link_hash_table *htab;
4689 bfd_byte *contents;
4690 asection *section;
4691 bfd *abfd;
4692 bfd_vma place;
4693 uint32_t insn;
4694
4695 info = data->info;
4696 contents = data->contents;
4697 section = data->output_section;
4698
4699 htab = elf_aarch64_hash_table (info);
4700
4701 if (stub_entry->target_section != section
4702 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4703 return TRUE;
4704
4705 insn = bfd_getl32 (contents + stub_entry->target_value);
4706 bfd_putl32 (insn,
4707 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4708
4709 place = (section->output_section->vma + section->output_offset
4710 + stub_entry->adrp_offset);
4711 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4712
4713 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4714 abort ();
4715
4716 bfd_signed_vma imm =
4717 (_bfd_aarch64_sign_extend
4718 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4719 - (place & 0xfff));
4720
4721 if (htab->fix_erratum_843419_adr
4722 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4723 {
4724 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4725 | AARCH64_RT (insn));
4726 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4727 }
4728 else
4729 {
4730 bfd_vma veneered_insn_loc;
4731 bfd_vma veneer_entry_loc;
4732 bfd_signed_vma branch_offset;
4733 uint32_t branch_insn;
4734
4735 veneered_insn_loc = stub_entry->target_section->output_section->vma
4736 + stub_entry->target_section->output_offset
4737 + stub_entry->target_value;
4738 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4739 + stub_entry->stub_sec->output_offset
4740 + stub_entry->stub_offset;
4741 branch_offset = veneer_entry_loc - veneered_insn_loc;
4742
4743 abfd = stub_entry->target_section->owner;
4744 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4745 (*_bfd_error_handler)
4746 (_("%B: error: Erratum 843419 stub out "
4747 "of range (input file too large)"), abfd);
4748
4749 branch_insn = 0x14000000;
4750 branch_offset >>= 2;
4751 branch_offset &= 0x3ffffff;
4752 branch_insn |= branch_offset;
4753 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4754 }
4755 return TRUE;
4756}
4757
4758
68fcca92
JW
4759static bfd_boolean
4760elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4761 struct bfd_link_info *link_info,
4762 asection *sec,
4763 bfd_byte *contents)
4764
4765{
4766 struct elf_aarch64_link_hash_table *globals =
f872121a 4767 elf_aarch64_hash_table (link_info);
68fcca92
JW
4768
4769 if (globals == NULL)
4770 return FALSE;
4771
4772 /* Fix code to point to erratum 835769 stubs. */
4773 if (globals->fix_erratum_835769)
4774 {
4775 struct erratum_835769_branch_to_stub_data data;
4776
4106101c 4777 data.info = link_info;
68fcca92
JW
4778 data.output_section = sec;
4779 data.contents = contents;
4780 bfd_hash_traverse (&globals->stub_hash_table,
4781 make_branch_to_erratum_835769_stub, &data);
4782 }
4783
4106101c
MS
4784 if (globals->fix_erratum_843419)
4785 {
4786 struct erratum_835769_branch_to_stub_data data;
4787
4788 data.info = link_info;
4789 data.output_section = sec;
4790 data.contents = contents;
4791 bfd_hash_traverse (&globals->stub_hash_table,
4792 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4793 }
4794
68fcca92
JW
4795 return FALSE;
4796}
4797
a06ea964
NC
4798/* Perform a relocation as part of a final link. */
4799static bfd_reloc_status_type
cec5225b 4800elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
a06ea964
NC
4801 bfd *input_bfd,
4802 bfd *output_bfd,
4803 asection *input_section,
4804 bfd_byte *contents,
4805 Elf_Internal_Rela *rel,
4806 bfd_vma value,
4807 struct bfd_link_info *info,
4808 asection *sym_sec,
4809 struct elf_link_hash_entry *h,
4810 bfd_boolean *unresolved_reloc_p,
4811 bfd_boolean save_addend,
1419bbe5
WN
4812 bfd_vma *saved_addend,
4813 Elf_Internal_Sym *sym)
a06ea964 4814{
1419bbe5 4815 Elf_Internal_Shdr *symtab_hdr;
a06ea964 4816 unsigned int r_type = howto->type;
a6bb11b2
YZ
4817 bfd_reloc_code_real_type bfd_r_type
4818 = elfNN_aarch64_bfd_reloc_from_howto (howto);
4819 bfd_reloc_code_real_type new_bfd_r_type;
a06ea964
NC
4820 unsigned long r_symndx;
4821 bfd_byte *hit_data = contents + rel->r_offset;
b53b1bed 4822 bfd_vma place, off;
a06ea964 4823 bfd_signed_vma signed_addend;
cec5225b 4824 struct elf_aarch64_link_hash_table *globals;
a06ea964 4825 bfd_boolean weak_undef_p;
b53b1bed 4826 asection *base_got;
a06ea964 4827
cec5225b 4828 globals = elf_aarch64_hash_table (info);
a06ea964 4829
1419bbe5
WN
4830 symtab_hdr = &elf_symtab_hdr (input_bfd);
4831
a06ea964
NC
4832 BFD_ASSERT (is_aarch64_elf (input_bfd));
4833
cec5225b 4834 r_symndx = ELFNN_R_SYM (rel->r_info);
a06ea964
NC
4835
4836 /* It is possible to have linker relaxations on some TLS access
4837 models. Update our information here. */
a6bb11b2
YZ
4838 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
4839 if (new_bfd_r_type != bfd_r_type)
4840 {
4841 bfd_r_type = new_bfd_r_type;
4842 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4843 BFD_ASSERT (howto != NULL);
4844 r_type = howto->type;
4845 }
a06ea964
NC
4846
4847 place = input_section->output_section->vma
4848 + input_section->output_offset + rel->r_offset;
4849
4850 /* Get addend, accumulating the addend for consecutive relocs
4851 which refer to the same offset. */
4852 signed_addend = saved_addend ? *saved_addend : 0;
4853 signed_addend += rel->r_addend;
4854
4855 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4856 : bfd_is_und_section (sym_sec));
a6bb11b2 4857
1419bbe5
WN
4858 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4859 it here if it is defined in a non-shared object. */
4860 if (h != NULL
4861 && h->type == STT_GNU_IFUNC
4862 && h->def_regular)
4863 {
4864 asection *plt;
4865 const char *name;
99ad26cb 4866 bfd_vma addend = 0;
1419bbe5
WN
4867
4868 if ((input_section->flags & SEC_ALLOC) == 0
4869 || h->plt.offset == (bfd_vma) -1)
4870 abort ();
4871
4872 /* STT_GNU_IFUNC symbol must go through PLT. */
4873 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
4874 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
4875
4876 switch (bfd_r_type)
4877 {
4878 default:
4879 if (h->root.root.string)
4880 name = h->root.root.string;
4881 else
4882 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4883 NULL);
4884 (*_bfd_error_handler)
4885 (_("%B: relocation %s against STT_GNU_IFUNC "
4886 "symbol `%s' isn't handled by %s"), input_bfd,
4887 howto->name, name, __FUNCTION__);
4888 bfd_set_error (bfd_error_bad_value);
4889 return FALSE;
4890
4891 case BFD_RELOC_AARCH64_NN:
4892 if (rel->r_addend != 0)
4893 {
4894 if (h->root.root.string)
4895 name = h->root.root.string;
4896 else
4897 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4898 sym, NULL);
4899 (*_bfd_error_handler)
4900 (_("%B: relocation %s against STT_GNU_IFUNC "
4901 "symbol `%s' has non-zero addend: %d"),
4902 input_bfd, howto->name, name, rel->r_addend);
4903 bfd_set_error (bfd_error_bad_value);
4904 return FALSE;
4905 }
4906
4907 /* Generate dynamic relocation only when there is a
4908 non-GOT reference in a shared object. */
0e1862bb 4909 if (bfd_link_pic (info) && h->non_got_ref)
1419bbe5
WN
4910 {
4911 Elf_Internal_Rela outrel;
4912 asection *sreloc;
4913
4914 /* Need a dynamic relocation to get the real function
4915 address. */
4916 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
4917 info,
4918 input_section,
4919 rel->r_offset);
4920 if (outrel.r_offset == (bfd_vma) -1
4921 || outrel.r_offset == (bfd_vma) -2)
4922 abort ();
4923
4924 outrel.r_offset += (input_section->output_section->vma
4925 + input_section->output_offset);
4926
4927 if (h->dynindx == -1
4928 || h->forced_local
0e1862bb 4929 || bfd_link_executable (info))
1419bbe5
WN
4930 {
4931 /* This symbol is resolved locally. */
4932 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
4933 outrel.r_addend = (h->root.u.def.value
4934 + h->root.u.def.section->output_section->vma
4935 + h->root.u.def.section->output_offset);
4936 }
4937 else
4938 {
4939 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
4940 outrel.r_addend = 0;
4941 }
4942
4943 sreloc = globals->root.irelifunc;
4944 elf_append_rela (output_bfd, sreloc, &outrel);
4945
4946 /* If this reloc is against an external symbol, we
4947 do not want to fiddle with the addend. Otherwise,
4948 we need to include the symbol value so that it
4949 becomes an addend for the dynamic reloc. For an
4950 internal symbol, we have updated addend. */
4951 return bfd_reloc_ok;
4952 }
4953 /* FALLTHROUGH */
1419bbe5 4954 case BFD_RELOC_AARCH64_CALL26:
ce336788 4955 case BFD_RELOC_AARCH64_JUMP26:
1419bbe5
WN
4956 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
4957 signed_addend,
4958 weak_undef_p);
4959 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
4960 howto, value);
1419bbe5
WN
4961 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4962 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 4963 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
ce336788 4964 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
99ad26cb 4965 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
ce336788 4966 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
1419bbe5
WN
4967 base_got = globals->root.sgot;
4968 off = h->got.offset;
4969
4970 if (base_got == NULL)
4971 abort ();
4972
4973 if (off == (bfd_vma) -1)
4974 {
4975 bfd_vma plt_index;
4976
4977 /* We can't use h->got.offset here to save state, or
4978 even just remember the offset, as finish_dynamic_symbol
4979 would use that as offset into .got. */
4980
4981 if (globals->root.splt != NULL)
4982 {
b1ee0cc4
WN
4983 plt_index = ((h->plt.offset - globals->plt_header_size) /
4984 globals->plt_entry_size);
1419bbe5
WN
4985 off = (plt_index + 3) * GOT_ENTRY_SIZE;
4986 base_got = globals->root.sgotplt;
4987 }
4988 else
4989 {
4990 plt_index = h->plt.offset / globals->plt_entry_size;
4991 off = plt_index * GOT_ENTRY_SIZE;
4992 base_got = globals->root.igotplt;
4993 }
4994
4995 if (h->dynindx == -1
4996 || h->forced_local
4997 || info->symbolic)
4998 {
4999 /* This references the local definition. We must
5000 initialize this entry in the global offset table.
5001 Since the offset must always be a multiple of 8,
5002 we use the least significant bit to record
5003 whether we have initialized it already.
5004
5005 When doing a dynamic link, we create a .rela.got
5006 relocation entry to initialize the value. This
5007 is done in the finish_dynamic_symbol routine. */
5008 if ((off & 1) != 0)
5009 off &= ~1;
5010 else
5011 {
5012 bfd_put_NN (output_bfd, value,
5013 base_got->contents + off);
5014 /* Note that this is harmless as -1 | 1 still is -1. */
5015 h->got.offset |= 1;
5016 }
5017 }
5018 value = (base_got->output_section->vma
5019 + base_got->output_offset + off);
5020 }
5021 else
5022 value = aarch64_calculate_got_entry_vma (h, globals, info,
5023 value, output_bfd,
5024 unresolved_reloc_p);
7018c030
JW
5025 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5026 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
99ad26cb
JW
5027 addend = (globals->root.sgot->output_section->vma
5028 + globals->root.sgot->output_offset);
1419bbe5 5029 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
99ad26cb 5030 addend, weak_undef_p);
1419bbe5 5031 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
1419bbe5 5032 case BFD_RELOC_AARCH64_ADD_LO12:
ce336788 5033 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
1419bbe5
WN
5034 break;
5035 }
5036 }
5037
a6bb11b2 5038 switch (bfd_r_type)
a06ea964 5039 {
a6bb11b2
YZ
5040 case BFD_RELOC_AARCH64_NONE:
5041 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964
NC
5042 *unresolved_reloc_p = FALSE;
5043 return bfd_reloc_ok;
5044
a6bb11b2 5045 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
5046
5047 /* When generating a shared object or relocatable executable, these
5048 relocations are copied into the output file to be resolved at
5049 run time. */
0e1862bb
L
5050 if (((bfd_link_pic (info) == TRUE)
5051 || globals->root.is_relocatable_executable)
a06ea964
NC
5052 && (input_section->flags & SEC_ALLOC)
5053 && (h == NULL
5054 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5055 || h->root.type != bfd_link_hash_undefweak))
5056 {
5057 Elf_Internal_Rela outrel;
5058 bfd_byte *loc;
5059 bfd_boolean skip, relocate;
5060 asection *sreloc;
5061
5062 *unresolved_reloc_p = FALSE;
5063
a06ea964
NC
5064 skip = FALSE;
5065 relocate = FALSE;
5066
5067 outrel.r_addend = signed_addend;
5068 outrel.r_offset =
5069 _bfd_elf_section_offset (output_bfd, info, input_section,
5070 rel->r_offset);
5071 if (outrel.r_offset == (bfd_vma) - 1)
5072 skip = TRUE;
5073 else if (outrel.r_offset == (bfd_vma) - 2)
5074 {
5075 skip = TRUE;
5076 relocate = TRUE;
5077 }
5078
5079 outrel.r_offset += (input_section->output_section->vma
5080 + input_section->output_offset);
5081
5082 if (skip)
5083 memset (&outrel, 0, sizeof outrel);
5084 else if (h != NULL
5085 && h->dynindx != -1
0e1862bb
L
5086 && (!bfd_link_pic (info)
5087 || !SYMBOLIC_BIND (info, h)
5088 || !h->def_regular))
cec5225b 5089 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
a06ea964
NC
5090 else
5091 {
5092 int symbol;
5093
5094 /* On SVR4-ish systems, the dynamic loader cannot
5095 relocate the text and data segments independently,
5096 so the symbol does not matter. */
5097 symbol = 0;
a6bb11b2 5098 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
a06ea964
NC
5099 outrel.r_addend += value;
5100 }
5101
1419bbe5
WN
5102 sreloc = elf_section_data (input_section)->sreloc;
5103 if (sreloc == NULL || sreloc->contents == NULL)
5104 return bfd_reloc_notsupported;
5105
5106 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
cec5225b 5107 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
a06ea964 5108
1419bbe5 5109 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
a06ea964
NC
5110 {
5111 /* Sanity to check that we have previously allocated
5112 sufficient space in the relocation section for the
5113 number of relocations we actually want to emit. */
5114 abort ();
5115 }
5116
5117 /* If this reloc is against an external symbol, we do not want to
5118 fiddle with the addend. Otherwise, we need to include the symbol
5119 value so that it becomes an addend for the dynamic reloc. */
5120 if (!relocate)
5121 return bfd_reloc_ok;
5122
5123 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5124 contents, rel->r_offset, value,
5125 signed_addend);
5126 }
5127 else
5128 value += signed_addend;
5129 break;
5130
a6bb11b2 5131 case BFD_RELOC_AARCH64_CALL26:
ce336788 5132 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
5133 {
5134 asection *splt = globals->root.splt;
5135 bfd_boolean via_plt_p =
5136 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5137
5138 /* A call to an undefined weak symbol is converted to a jump to
5139 the next instruction unless a PLT entry will be created.
5140 The jump to the next instruction is optimized as a NOP.
5141 Do the same for local undefined symbols. */
5142 if (weak_undef_p && ! via_plt_p)
5143 {
5144 bfd_putl32 (INSN_NOP, hit_data);
5145 return bfd_reloc_ok;
5146 }
5147
5148 /* If the call goes through a PLT entry, make sure to
5149 check distance to the right destination address. */
5150 if (via_plt_p)
07f9ddfe
JW
5151 value = (splt->output_section->vma
5152 + splt->output_offset + h->plt.offset);
5153
5154 /* Check if a stub has to be inserted because the destination
5155 is too far away. */
5156 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5157 if (! aarch64_valid_branch_p (value, place))
5158 /* The target is out of reach, so redirect the branch to
5159 the local stub for this function. */
5160 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5161 rel, globals);
5162 if (stub_entry != NULL)
5163 value = (stub_entry->stub_offset
5164 + stub_entry->stub_sec->output_offset
5165 + stub_entry->stub_sec->output_section->vma);
a06ea964 5166 }
caed7120
YZ
5167 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5168 signed_addend, weak_undef_p);
07f9ddfe 5169 *unresolved_reloc_p = FALSE;
a06ea964
NC
5170 break;
5171
dcbd20eb
JW
5172 case BFD_RELOC_AARCH64_16_PCREL:
5173 case BFD_RELOC_AARCH64_32_PCREL:
5174 case BFD_RELOC_AARCH64_64_PCREL:
ce336788
JW
5175 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5176 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5177 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5178 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
0e1862bb 5179 if (bfd_link_pic (info)
dcbd20eb
JW
5180 && (input_section->flags & SEC_ALLOC) != 0
5181 && (input_section->flags & SEC_READONLY) != 0
5182 && h != NULL
5183 && !h->def_regular)
5184 {
5185 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5186
5187 (*_bfd_error_handler)
5188 (_("%B: relocation %s against external symbol `%s' can not be used"
5189 " when making a shared object; recompile with -fPIC"),
5190 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5191 h->root.root.string);
5192 bfd_set_error (bfd_error_bad_value);
5193 return FALSE;
5194 }
5195
a6bb11b2
YZ
5196 case BFD_RELOC_AARCH64_16:
5197#if ARCH_SIZE == 64
5198 case BFD_RELOC_AARCH64_32:
5199#endif
5200 case BFD_RELOC_AARCH64_ADD_LO12:
a6bb11b2 5201 case BFD_RELOC_AARCH64_BRANCH19:
ce336788 5202 case BFD_RELOC_AARCH64_LDST128_LO12:
a6bb11b2
YZ
5203 case BFD_RELOC_AARCH64_LDST16_LO12:
5204 case BFD_RELOC_AARCH64_LDST32_LO12:
5205 case BFD_RELOC_AARCH64_LDST64_LO12:
ce336788 5206 case BFD_RELOC_AARCH64_LDST8_LO12:
a6bb11b2
YZ
5207 case BFD_RELOC_AARCH64_MOVW_G0:
5208 case BFD_RELOC_AARCH64_MOVW_G0_NC:
ce336788 5209 case BFD_RELOC_AARCH64_MOVW_G0_S:
a6bb11b2
YZ
5210 case BFD_RELOC_AARCH64_MOVW_G1:
5211 case BFD_RELOC_AARCH64_MOVW_G1_NC:
ce336788 5212 case BFD_RELOC_AARCH64_MOVW_G1_S:
a6bb11b2
YZ
5213 case BFD_RELOC_AARCH64_MOVW_G2:
5214 case BFD_RELOC_AARCH64_MOVW_G2_NC:
ce336788 5215 case BFD_RELOC_AARCH64_MOVW_G2_S:
a6bb11b2 5216 case BFD_RELOC_AARCH64_MOVW_G3:
a6bb11b2 5217 case BFD_RELOC_AARCH64_TSTBR14:
caed7120
YZ
5218 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5219 signed_addend, weak_undef_p);
a06ea964
NC
5220 break;
5221
a6bb11b2
YZ
5222 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5223 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 5224 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
ce336788 5225 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
99ad26cb 5226 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
ce336788 5227 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
a06ea964
NC
5228 if (globals->root.sgot == NULL)
5229 BFD_ASSERT (h != NULL);
5230
5231 if (h != NULL)
5232 {
99ad26cb 5233 bfd_vma addend = 0;
a06ea964
NC
5234 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5235 output_bfd,
5236 unresolved_reloc_p);
7018c030
JW
5237 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5238 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
99ad26cb
JW
5239 addend = (globals->root.sgot->output_section->vma
5240 + globals->root.sgot->output_offset);
caed7120 5241 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
99ad26cb 5242 addend, weak_undef_p);
a06ea964 5243 }
b53b1bed
JW
5244 else
5245 {
99ad26cb 5246 bfd_vma addend = 0;
b53b1bed
JW
5247 struct elf_aarch64_local_symbol *locals
5248 = elf_aarch64_locals (input_bfd);
5249
5250 if (locals == NULL)
5251 {
5252 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5253 (*_bfd_error_handler)
5254 (_("%B: Local symbol descriptor table be NULL when applying "
5255 "relocation %s against local symbol"),
5256 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5257 abort ();
5258 }
5259
5260 off = symbol_got_offset (input_bfd, h, r_symndx);
5261 base_got = globals->root.sgot;
5262 bfd_vma got_entry_addr = (base_got->output_section->vma
5263 + base_got->output_offset + off);
5264
5265 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5266 {
5267 bfd_put_64 (output_bfd, value, base_got->contents + off);
5268
0e1862bb 5269 if (bfd_link_pic (info))
b53b1bed
JW
5270 {
5271 asection *s;
5272 Elf_Internal_Rela outrel;
5273
5274 /* For local symbol, we have done absolute relocation in static
5275 linking stageh. While for share library, we need to update
5276 the content of GOT entry according to the share objects
5277 loading base address. So we need to generate a
5278 R_AARCH64_RELATIVE reloc for dynamic linker. */
5279 s = globals->root.srelgot;
5280 if (s == NULL)
5281 abort ();
5282
5283 outrel.r_offset = got_entry_addr;
5284 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5285 outrel.r_addend = value;
5286 elf_append_rela (output_bfd, s, &outrel);
5287 }
5288
5289 symbol_got_offset_mark (input_bfd, h, r_symndx);
5290 }
5291
5292 /* Update the relocation value to GOT entry addr as we have transformed
5293 the direct data access into indirect data access through GOT. */
5294 value = got_entry_addr;
99ad26cb 5295
7018c030
JW
5296 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5297 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
99ad26cb
JW
5298 addend = base_got->output_section->vma + base_got->output_offset;
5299
5300 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5301 addend, weak_undef_p);
b53b1bed
JW
5302 }
5303
a06ea964
NC
5304 break;
5305
ce336788 5306 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a6bb11b2 5307 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 5308 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a6bb11b2 5309 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 5310 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
ce336788 5311 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 5312 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
73f925cc 5313 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 5314 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 5315 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a06ea964
NC
5316 if (globals->root.sgot == NULL)
5317 return bfd_reloc_notsupported;
5318
5319 value = (symbol_got_offset (input_bfd, h, r_symndx)
5320 + globals->root.sgot->output_section->vma
f44a1f8e 5321 + globals->root.sgot->output_offset);
a06ea964 5322
caed7120
YZ
5323 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5324 0, weak_undef_p);
a06ea964
NC
5325 *unresolved_reloc_p = FALSE;
5326 break;
5327
6ffe9a1b 5328 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
40fbed84 5329 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
753999c1 5330 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
07c9aa07
JW
5331 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5332 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5333 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5334 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5335 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5336 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5337 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5338 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6ffe9a1b
JW
5339 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5340 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5341 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5342 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5343 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
40fbed84
JW
5344 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5345 signed_addend - dtpoff_base (info),
5346 weak_undef_p);
5347 break;
5348
a6bb11b2
YZ
5349 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5350 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5351 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5352 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5353 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5354 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5355 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5356 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
caed7120
YZ
5357 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5358 signed_addend - tpoff_base (info),
5359 weak_undef_p);
a06ea964
NC
5360 *unresolved_reloc_p = FALSE;
5361 break;
5362
7bcccb57
MS
5363 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5364 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
a6bb11b2 5365 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 5366 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
a6bb11b2 5367 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7bcccb57 5368 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 5369 case BFD_RELOC_AARCH64_TLSDESC_LDR:
1ada945d 5370 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964
NC
5371 if (globals->root.sgot == NULL)
5372 return bfd_reloc_notsupported;
a06ea964
NC
5373 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5374 + globals->root.sgotplt->output_section->vma
f44a1f8e 5375 + globals->root.sgotplt->output_offset
a06ea964
NC
5376 + globals->sgotplt_jump_table_size);
5377
caed7120
YZ
5378 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5379 0, weak_undef_p);
a06ea964
NC
5380 *unresolved_reloc_p = FALSE;
5381 break;
5382
5383 default:
5384 return bfd_reloc_notsupported;
5385 }
5386
5387 if (saved_addend)
5388 *saved_addend = value;
5389
5390 /* Only apply the final relocation in a sequence. */
5391 if (save_addend)
5392 return bfd_reloc_continue;
5393
caed7120
YZ
5394 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5395 howto, value);
a06ea964
NC
5396}
5397
5398/* Handle TLS relaxations. Relaxing is possible for symbols that use
5399 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5400 link.
5401
5402 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5403 is to then call final_link_relocate. Return other values in the
5404 case of error. */
5405
5406static bfd_reloc_status_type
cec5225b 5407elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
a06ea964
NC
5408 bfd *input_bfd, bfd_byte *contents,
5409 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5410{
5411 bfd_boolean is_local = h == NULL;
cec5225b 5412 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
5413 unsigned long insn;
5414
5415 BFD_ASSERT (globals && input_bfd && contents && rel);
5416
a6bb11b2 5417 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 5418 {
a6bb11b2 5419 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
ce336788 5420 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a06ea964
NC
5421 if (is_local)
5422 {
5423 /* GD->LE relaxation:
5424 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
5425 or
5426 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
5427 */
5428 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5429 return bfd_reloc_continue;
5430 }
5431 else
5432 {
5433 /* GD->IE relaxation:
5434 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5435 or
5436 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5437 */
a06ea964
NC
5438 return bfd_reloc_continue;
5439 }
5440
389b8029
MS
5441 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5442 BFD_ASSERT (0);
5443 break;
5444
1ada945d
MS
5445 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5446 if (is_local)
5447 {
5448 /* Tiny TLSDESC->LE relaxation:
5449 ldr x1, :tlsdesc:var => movz x0, #:tprel_g1:var
5450 adr x0, :tlsdesc:var => movk x0, #:tprel_g0_nc:var
5451 .tlsdesccall var
5452 blr x1 => nop
5453 */
5454 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5455 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5456
5457 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5458 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5459 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5460
5461 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5462 bfd_putl32 (0xf2800000, contents + rel->r_offset + 4);
5463 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5464 return bfd_reloc_continue;
5465 }
5466 else
5467 {
5468 /* Tiny TLSDESC->IE relaxation:
5469 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5470 adr x0, :tlsdesc:var => nop
5471 .tlsdesccall var
5472 blr x1 => nop
5473 */
5474 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5475 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5476
5477 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5478 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5479
5480 bfd_putl32 (0x58000000, contents + rel->r_offset);
5481 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5482 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5483 return bfd_reloc_continue;
5484 }
5485
3c12b054
MS
5486 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5487 if (is_local)
5488 {
5489 /* Tiny GD->LE relaxation:
5490 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5491 bl __tls_get_addr => add x0, x1, #:tprel_hi12:x, lsl #12
5492 nop => add x0, x0, #:tprel_lo12_nc:x
5493 */
5494
5495 /* First kill the tls_get_addr reloc on the bl instruction. */
5496 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5497
5498 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5499 bfd_putl32 (0x91400020, contents + rel->r_offset + 4);
5500 bfd_putl32 (0x91000000, contents + rel->r_offset + 8);
5501
5502 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5503 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5504 rel[1].r_offset = rel->r_offset + 8;
5505
5506 /* Move the current relocation to the second instruction in
5507 the sequence. */
5508 rel->r_offset += 4;
5509 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5510 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5511 return bfd_reloc_continue;
5512 }
5513 else
5514 {
5515 /* Tiny GD->IE relaxation:
5516 adr x0, :tlsgd:var => ldr x0, :gottprel:var
5517 bl __tls_get_addr => mrs x1, tpidr_el0
5518 nop => add x0, x0, x1
5519 */
5520
5521 /* First kill the tls_get_addr reloc on the bl instruction. */
5522 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5523 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5524
5525 bfd_putl32 (0x58000000, contents + rel->r_offset);
5526 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5527 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5528 return bfd_reloc_continue;
5529 }
5530
043bf05a
MS
5531 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5532 return bfd_reloc_continue;
5533
a6bb11b2 5534 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
a06ea964
NC
5535 if (is_local)
5536 {
5537 /* GD->LE relaxation:
5538 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5539 */
5540 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5541 return bfd_reloc_continue;
5542 }
5543 else
5544 {
5545 /* GD->IE relaxation:
5546 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
5547 */
5548 insn = bfd_getl32 (contents + rel->r_offset);
fa85fb9a 5549 insn &= 0xffffffe0;
a06ea964
NC
5550 bfd_putl32 (insn, contents + rel->r_offset);
5551 return bfd_reloc_continue;
5552 }
5553
a6bb11b2 5554 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
5555 if (is_local)
5556 {
5557 /* GD->LE relaxation
5558 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
5559 bl __tls_get_addr => mrs x1, tpidr_el0
5560 nop => add x0, x1, x0
5561 */
5562
5563 /* First kill the tls_get_addr reloc on the bl instruction. */
5564 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
cec5225b 5565 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964
NC
5566
5567 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5568 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5569 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5570 return bfd_reloc_continue;
5571 }
5572 else
5573 {
5574 /* GD->IE relaxation
5575 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
5576 BL __tls_get_addr => mrs x1, tpidr_el0
5577 R_AARCH64_CALL26
5578 NOP => add x0, x1, x0
5579 */
5580
a6bb11b2 5581 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
a06ea964
NC
5582
5583 /* Remove the relocation on the BL instruction. */
cec5225b 5584 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964
NC
5585
5586 bfd_putl32 (0xf9400000, contents + rel->r_offset);
5587
5588 /* We choose to fixup the BL and NOP instructions using the
5589 offset from the second relocation to allow flexibility in
5590 scheduling instructions between the ADD and BL. */
5591 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
5592 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
5593 return bfd_reloc_continue;
5594 }
5595
a6bb11b2
YZ
5596 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5597 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964
NC
5598 /* GD->IE/LE relaxation:
5599 add x0, x0, #:tlsdesc_lo12:var => nop
5600 blr xd => nop
5601 */
5602 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5603 return bfd_reloc_ok;
5604
a6bb11b2 5605 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a06ea964
NC
5606 /* IE->LE relaxation:
5607 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
5608 */
5609 if (is_local)
5610 {
5611 insn = bfd_getl32 (contents + rel->r_offset);
5612 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5613 }
5614 return bfd_reloc_continue;
5615
a6bb11b2 5616 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
a06ea964
NC
5617 /* IE->LE relaxation:
5618 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
5619 */
5620 if (is_local)
5621 {
5622 insn = bfd_getl32 (contents + rel->r_offset);
5623 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
5624 }
5625 return bfd_reloc_continue;
5626
259364ad
JW
5627 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5628 /* LD->LE relaxation (tiny):
5629 adr x0, :tlsldm:x => mrs x0, tpidr_el0
5630 bl __tls_get_addr => add x0, x0, TCB_SIZE
5631 */
5632 if (is_local)
5633 {
5634 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5635 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5636 /* No need of CALL26 relocation for tls_get_addr. */
5637 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5638 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
5639 bfd_putl32 (0x91004000, contents + rel->r_offset + 4);
5640 return bfd_reloc_ok;
5641 }
5642 return bfd_reloc_continue;
5643
5644 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5645 /* LD->LE relaxation (small):
5646 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
5647 */
5648 if (is_local)
5649 {
5650 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
5651 return bfd_reloc_ok;
5652 }
5653 return bfd_reloc_continue;
5654
5655 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5656 /* LD->LE relaxation (small):
5657 add x0, #:tlsldm_lo12:x => add x0, x0, TCB_SIZE
5658 bl __tls_get_addr => nop
5659 */
5660 if (is_local)
5661 {
5662 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5663 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5664 /* No need of CALL26 relocation for tls_get_addr. */
5665 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5666 bfd_putl32 (0x91004000, contents + rel->r_offset + 0);
5667 bfd_putl32 (0xd503201f, contents + rel->r_offset + 4);
5668 return bfd_reloc_ok;
5669 }
5670 return bfd_reloc_continue;
5671
a06ea964
NC
5672 default:
5673 return bfd_reloc_continue;
5674 }
5675
5676 return bfd_reloc_ok;
5677}
5678
5679/* Relocate an AArch64 ELF section. */
5680
5681static bfd_boolean
cec5225b 5682elfNN_aarch64_relocate_section (bfd *output_bfd,
a06ea964
NC
5683 struct bfd_link_info *info,
5684 bfd *input_bfd,
5685 asection *input_section,
5686 bfd_byte *contents,
5687 Elf_Internal_Rela *relocs,
5688 Elf_Internal_Sym *local_syms,
5689 asection **local_sections)
5690{
5691 Elf_Internal_Shdr *symtab_hdr;
5692 struct elf_link_hash_entry **sym_hashes;
5693 Elf_Internal_Rela *rel;
5694 Elf_Internal_Rela *relend;
5695 const char *name;
cec5225b 5696 struct elf_aarch64_link_hash_table *globals;
a06ea964
NC
5697 bfd_boolean save_addend = FALSE;
5698 bfd_vma addend = 0;
5699
cec5225b 5700 globals = elf_aarch64_hash_table (info);
a06ea964
NC
5701
5702 symtab_hdr = &elf_symtab_hdr (input_bfd);
5703 sym_hashes = elf_sym_hashes (input_bfd);
5704
5705 rel = relocs;
5706 relend = relocs + input_section->reloc_count;
5707 for (; rel < relend; rel++)
5708 {
5709 unsigned int r_type;
a6bb11b2
YZ
5710 bfd_reloc_code_real_type bfd_r_type;
5711 bfd_reloc_code_real_type relaxed_bfd_r_type;
a06ea964
NC
5712 reloc_howto_type *howto;
5713 unsigned long r_symndx;
5714 Elf_Internal_Sym *sym;
5715 asection *sec;
5716 struct elf_link_hash_entry *h;
5717 bfd_vma relocation;
5718 bfd_reloc_status_type r;
5719 arelent bfd_reloc;
5720 char sym_type;
5721 bfd_boolean unresolved_reloc = FALSE;
5722 char *error_message = NULL;
5723
cec5225b
YZ
5724 r_symndx = ELFNN_R_SYM (rel->r_info);
5725 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964 5726
cec5225b 5727 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
5728 howto = bfd_reloc.howto;
5729
7fcfd62d
NC
5730 if (howto == NULL)
5731 {
5732 (*_bfd_error_handler)
5733 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
5734 input_bfd, input_section, r_type);
5735 return FALSE;
5736 }
a6bb11b2 5737 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
7fcfd62d 5738
a06ea964
NC
5739 h = NULL;
5740 sym = NULL;
5741 sec = NULL;
5742
5743 if (r_symndx < symtab_hdr->sh_info)
5744 {
5745 sym = local_syms + r_symndx;
cec5225b 5746 sym_type = ELFNN_ST_TYPE (sym->st_info);
a06ea964
NC
5747 sec = local_sections[r_symndx];
5748
5749 /* An object file might have a reference to a local
5750 undefined symbol. This is a daft object file, but we
5751 should at least do something about it. */
5752 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
5753 && bfd_is_und_section (sec)
5754 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
5755 {
5756 if (!info->callbacks->undefined_symbol
5757 (info, bfd_elf_string_from_elf_section
5758 (input_bfd, symtab_hdr->sh_link, sym->st_name),
5759 input_bfd, input_section, rel->r_offset, TRUE))
5760 return FALSE;
5761 }
5762
a06ea964 5763 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1419bbe5
WN
5764
5765 /* Relocate against local STT_GNU_IFUNC symbol. */
0e1862bb 5766 if (!bfd_link_relocatable (info)
1419bbe5
WN
5767 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
5768 {
5769 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
5770 rel, FALSE);
5771 if (h == NULL)
5772 abort ();
5773
5774 /* Set STT_GNU_IFUNC symbol value. */
5775 h->root.u.def.value = sym->st_value;
5776 h->root.u.def.section = sec;
5777 }
a06ea964
NC
5778 }
5779 else
5780 {
62d887d4 5781 bfd_boolean warned, ignored;
a06ea964
NC
5782
5783 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
5784 r_symndx, symtab_hdr, sym_hashes,
5785 h, sec, relocation,
62d887d4 5786 unresolved_reloc, warned, ignored);
a06ea964
NC
5787
5788 sym_type = h->type;
5789 }
5790
5791 if (sec != NULL && discarded_section (sec))
5792 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
5793 rel, 1, relend, howto, 0, contents);
5794
0e1862bb 5795 if (bfd_link_relocatable (info))
2e0488d3 5796 continue;
a06ea964
NC
5797
5798 if (h != NULL)
5799 name = h->root.root.string;
5800 else
5801 {
5802 name = (bfd_elf_string_from_elf_section
5803 (input_bfd, symtab_hdr->sh_link, sym->st_name));
5804 if (name == NULL || *name == '\0')
5805 name = bfd_section_name (input_bfd, sec);
5806 }
5807
5808 if (r_symndx != 0
5809 && r_type != R_AARCH64_NONE
5810 && r_type != R_AARCH64_NULL
5811 && (h == NULL
5812 || h->root.type == bfd_link_hash_defined
5813 || h->root.type == bfd_link_hash_defweak)
a6bb11b2 5814 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
a06ea964
NC
5815 {
5816 (*_bfd_error_handler)
5817 ((sym_type == STT_TLS
5818 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
5819 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
5820 input_bfd,
5821 input_section, (long) rel->r_offset, howto->name, name);
5822 }
5823
a06ea964
NC
5824 /* We relax only if we can see that there can be a valid transition
5825 from a reloc type to another.
cec5225b 5826 We call elfNN_aarch64_final_link_relocate unless we're completely
a06ea964
NC
5827 done, i.e., the relaxation produced the final output we want. */
5828
a6bb11b2
YZ
5829 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
5830 h, r_symndx);
5831 if (relaxed_bfd_r_type != bfd_r_type)
a06ea964 5832 {
a6bb11b2
YZ
5833 bfd_r_type = relaxed_bfd_r_type;
5834 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
5835 BFD_ASSERT (howto != NULL);
5836 r_type = howto->type;
cec5225b 5837 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
a06ea964
NC
5838 unresolved_reloc = 0;
5839 }
5840 else
5841 r = bfd_reloc_continue;
5842
5843 /* There may be multiple consecutive relocations for the
5844 same offset. In that case we are supposed to treat the
5845 output of each relocation as the addend for the next. */
5846 if (rel + 1 < relend
5847 && rel->r_offset == rel[1].r_offset
cec5225b
YZ
5848 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
5849 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
a06ea964
NC
5850 save_addend = TRUE;
5851 else
5852 save_addend = FALSE;
5853
5854 if (r == bfd_reloc_continue)
cec5225b 5855 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
a06ea964
NC
5856 input_section, contents, rel,
5857 relocation, info, sec,
5858 h, &unresolved_reloc,
1419bbe5 5859 save_addend, &addend, sym);
a06ea964 5860
a6bb11b2 5861 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 5862 {
ce336788 5863 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a6bb11b2 5864 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 5865 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
73f925cc 5866 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 5867 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 5868 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a06ea964
NC
5869 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5870 {
5871 bfd_boolean need_relocs = FALSE;
5872 bfd_byte *loc;
5873 int indx;
5874 bfd_vma off;
5875
5876 off = symbol_got_offset (input_bfd, h, r_symndx);
5877 indx = h && h->dynindx != -1 ? h->dynindx : 0;
5878
5879 need_relocs =
0e1862bb 5880 (bfd_link_pic (info) || indx != 0) &&
a06ea964
NC
5881 (h == NULL
5882 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5883 || h->root.type != bfd_link_hash_undefweak);
5884
5885 BFD_ASSERT (globals->root.srelgot != NULL);
5886
5887 if (need_relocs)
5888 {
5889 Elf_Internal_Rela rela;
a6bb11b2 5890 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
a06ea964
NC
5891 rela.r_addend = 0;
5892 rela.r_offset = globals->root.sgot->output_section->vma +
5893 globals->root.sgot->output_offset + off;
5894
5895
5896 loc = globals->root.srelgot->contents;
5897 loc += globals->root.srelgot->reloc_count++
5898 * RELOC_SIZE (htab);
cec5225b 5899 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 5900
f69e4920
JW
5901 bfd_reloc_code_real_type real_type =
5902 elfNN_aarch64_bfd_reloc_from_type (r_type);
5903
5904 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
73f925cc
JW
5905 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
5906 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
77a69ff8
JW
5907 {
5908 /* For local dynamic, don't generate DTPREL in any case.
5909 Initialize the DTPREL slot into zero, so we get module
5910 base address when invoke runtime TLS resolver. */
5911 bfd_put_NN (output_bfd, 0,
5912 globals->root.sgot->contents + off
5913 + GOT_ENTRY_SIZE);
5914 }
5915 else if (indx == 0)
a06ea964 5916 {
cec5225b 5917 bfd_put_NN (output_bfd,
a06ea964
NC
5918 relocation - dtpoff_base (info),
5919 globals->root.sgot->contents + off
5920 + GOT_ENTRY_SIZE);
5921 }
5922 else
5923 {
5924 /* This TLS symbol is global. We emit a
5925 relocation to fixup the tls offset at load
5926 time. */
5927 rela.r_info =
a6bb11b2 5928 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
a06ea964
NC
5929 rela.r_addend = 0;
5930 rela.r_offset =
5931 (globals->root.sgot->output_section->vma
5932 + globals->root.sgot->output_offset + off
5933 + GOT_ENTRY_SIZE);
5934
5935 loc = globals->root.srelgot->contents;
5936 loc += globals->root.srelgot->reloc_count++
5937 * RELOC_SIZE (globals);
cec5225b
YZ
5938 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
5939 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
5940 globals->root.sgot->contents + off
5941 + GOT_ENTRY_SIZE);
5942 }
5943 }
5944 else
5945 {
cec5225b 5946 bfd_put_NN (output_bfd, (bfd_vma) 1,
a06ea964 5947 globals->root.sgot->contents + off);
cec5225b 5948 bfd_put_NN (output_bfd,
a06ea964
NC
5949 relocation - dtpoff_base (info),
5950 globals->root.sgot->contents + off
5951 + GOT_ENTRY_SIZE);
5952 }
5953
5954 symbol_got_offset_mark (input_bfd, h, r_symndx);
5955 }
5956 break;
5957
a6bb11b2
YZ
5958 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5959 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
043bf05a 5960 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
a06ea964
NC
5961 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5962 {
5963 bfd_boolean need_relocs = FALSE;
5964 bfd_byte *loc;
5965 int indx;
5966 bfd_vma off;
5967
5968 off = symbol_got_offset (input_bfd, h, r_symndx);
5969
5970 indx = h && h->dynindx != -1 ? h->dynindx : 0;
5971
5972 need_relocs =
0e1862bb 5973 (bfd_link_pic (info) || indx != 0) &&
a06ea964
NC
5974 (h == NULL
5975 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5976 || h->root.type != bfd_link_hash_undefweak);
5977
5978 BFD_ASSERT (globals->root.srelgot != NULL);
5979
5980 if (need_relocs)
5981 {
5982 Elf_Internal_Rela rela;
5983
5984 if (indx == 0)
5985 rela.r_addend = relocation - dtpoff_base (info);
5986 else
5987 rela.r_addend = 0;
5988
a6bb11b2 5989 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
a06ea964
NC
5990 rela.r_offset = globals->root.sgot->output_section->vma +
5991 globals->root.sgot->output_offset + off;
5992
5993 loc = globals->root.srelgot->contents;
5994 loc += globals->root.srelgot->reloc_count++
5995 * RELOC_SIZE (htab);
5996
cec5225b 5997 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 5998
cec5225b 5999 bfd_put_NN (output_bfd, rela.r_addend,
a06ea964
NC
6000 globals->root.sgot->contents + off);
6001 }
6002 else
cec5225b 6003 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
a06ea964
NC
6004 globals->root.sgot->contents + off);
6005
6006 symbol_got_offset_mark (input_bfd, h, r_symndx);
6007 }
6008 break;
6009
7bcccb57 6010 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
a6bb11b2 6011 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6012 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
a6bb11b2 6013 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
1ada945d 6014 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964
NC
6015 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6016 {
6017 bfd_boolean need_relocs = FALSE;
6018 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6019 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6020
6021 need_relocs = (h == NULL
6022 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6023 || h->root.type != bfd_link_hash_undefweak);
6024
6025 BFD_ASSERT (globals->root.srelgot != NULL);
6026 BFD_ASSERT (globals->root.sgot != NULL);
6027
6028 if (need_relocs)
6029 {
6030 bfd_byte *loc;
6031 Elf_Internal_Rela rela;
a6bb11b2
YZ
6032 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6033
a06ea964
NC
6034 rela.r_addend = 0;
6035 rela.r_offset = (globals->root.sgotplt->output_section->vma
6036 + globals->root.sgotplt->output_offset
6037 + off + globals->sgotplt_jump_table_size);
6038
6039 if (indx == 0)
6040 rela.r_addend = relocation - dtpoff_base (info);
6041
6042 /* Allocate the next available slot in the PLT reloc
6043 section to hold our R_AARCH64_TLSDESC, the next
6044 available slot is determined from reloc_count,
6045 which we step. But note, reloc_count was
6046 artifically moved down while allocating slots for
6047 real PLT relocs such that all of the PLT relocs
6048 will fit above the initial reloc_count and the
6049 extra stuff will fit below. */
6050 loc = globals->root.srelplt->contents;
6051 loc += globals->root.srelplt->reloc_count++
6052 * RELOC_SIZE (globals);
6053
cec5225b 6054 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 6055
cec5225b 6056 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
6057 globals->root.sgotplt->contents + off +
6058 globals->sgotplt_jump_table_size);
cec5225b 6059 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
6060 globals->root.sgotplt->contents + off +
6061 globals->sgotplt_jump_table_size +
6062 GOT_ENTRY_SIZE);
6063 }
6064
6065 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6066 }
6067 break;
a6bb11b2
YZ
6068 default:
6069 break;
a06ea964
NC
6070 }
6071
6072 if (!save_addend)
6073 addend = 0;
6074
6075
6076 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6077 because such sections are not SEC_ALLOC and thus ld.so will
6078 not process them. */
6079 if (unresolved_reloc
6080 && !((input_section->flags & SEC_DEBUGGING) != 0
6081 && h->def_dynamic)
6082 && _bfd_elf_section_offset (output_bfd, info, input_section,
6083 +rel->r_offset) != (bfd_vma) - 1)
6084 {
6085 (*_bfd_error_handler)
6086 (_
6087 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6088 input_bfd, input_section, (long) rel->r_offset, howto->name,
6089 h->root.root.string);
6090 return FALSE;
6091 }
6092
6093 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6094 {
c674f5cd
JW
6095 bfd_reloc_code_real_type real_r_type
6096 = elfNN_aarch64_bfd_reloc_from_type (r_type);
6097
a06ea964
NC
6098 switch (r)
6099 {
6100 case bfd_reloc_overflow:
fdc3b1b1
JW
6101 if (!(*info->callbacks->reloc_overflow)
6102 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6103 input_bfd, input_section, rel->r_offset))
a06ea964 6104 return FALSE;
c674f5cd
JW
6105 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6106 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6107 {
6108 (*info->callbacks->warning)
6109 (info,
6110 _("Too many GOT entries for -fpic, "
6111 "please recompile with -fPIC"),
6112 name, input_bfd, input_section, rel->r_offset);
6113 return FALSE;
6114 }
a06ea964
NC
6115 break;
6116
6117 case bfd_reloc_undefined:
6118 if (!((*info->callbacks->undefined_symbol)
6119 (info, name, input_bfd, input_section,
6120 rel->r_offset, TRUE)))
6121 return FALSE;
6122 break;
6123
6124 case bfd_reloc_outofrange:
6125 error_message = _("out of range");
6126 goto common_error;
6127
6128 case bfd_reloc_notsupported:
6129 error_message = _("unsupported relocation");
6130 goto common_error;
6131
6132 case bfd_reloc_dangerous:
6133 /* error_message should already be set. */
6134 goto common_error;
6135
6136 default:
6137 error_message = _("unknown error");
6138 /* Fall through. */
6139
6140 common_error:
6141 BFD_ASSERT (error_message != NULL);
6142 if (!((*info->callbacks->reloc_dangerous)
6143 (info, error_message, input_bfd, input_section,
6144 rel->r_offset)))
6145 return FALSE;
6146 break;
6147 }
6148 }
6149 }
6150
6151 return TRUE;
6152}
6153
6154/* Set the right machine number. */
6155
6156static bfd_boolean
cec5225b 6157elfNN_aarch64_object_p (bfd *abfd)
a06ea964 6158{
cec5225b
YZ
6159#if ARCH_SIZE == 32
6160 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6161#else
a06ea964 6162 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
cec5225b 6163#endif
a06ea964
NC
6164 return TRUE;
6165}
6166
6167/* Function to keep AArch64 specific flags in the ELF header. */
6168
6169static bfd_boolean
cec5225b 6170elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
a06ea964
NC
6171{
6172 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6173 {
6174 }
6175 else
6176 {
6177 elf_elfheader (abfd)->e_flags = flags;
6178 elf_flags_init (abfd) = TRUE;
6179 }
6180
6181 return TRUE;
6182}
6183
a06ea964
NC
6184/* Merge backend specific data from an object file to the output
6185 object file when linking. */
6186
6187static bfd_boolean
cec5225b 6188elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
a06ea964
NC
6189{
6190 flagword out_flags;
6191 flagword in_flags;
6192 bfd_boolean flags_compatible = TRUE;
6193 asection *sec;
6194
6195 /* Check if we have the same endianess. */
6196 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
6197 return FALSE;
6198
6199 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6200 return TRUE;
6201
6202 /* The input BFD must have had its flags initialised. */
6203 /* The following seems bogus to me -- The flags are initialized in
6204 the assembler but I don't think an elf_flags_init field is
6205 written into the object. */
6206 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6207
6208 in_flags = elf_elfheader (ibfd)->e_flags;
6209 out_flags = elf_elfheader (obfd)->e_flags;
6210
6211 if (!elf_flags_init (obfd))
6212 {
6213 /* If the input is the default architecture and had the default
6214 flags then do not bother setting the flags for the output
6215 architecture, instead allow future merges to do this. If no
6216 future merges ever set these flags then they will retain their
6217 uninitialised values, which surprise surprise, correspond
6218 to the default values. */
6219 if (bfd_get_arch_info (ibfd)->the_default
6220 && elf_elfheader (ibfd)->e_flags == 0)
6221 return TRUE;
6222
6223 elf_flags_init (obfd) = TRUE;
6224 elf_elfheader (obfd)->e_flags = in_flags;
6225
6226 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6227 && bfd_get_arch_info (obfd)->the_default)
6228 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6229 bfd_get_mach (ibfd));
6230
6231 return TRUE;
6232 }
6233
6234 /* Identical flags must be compatible. */
6235 if (in_flags == out_flags)
6236 return TRUE;
6237
6238 /* Check to see if the input BFD actually contains any sections. If
6239 not, its flags may not have been initialised either, but it
6240 cannot actually cause any incompatiblity. Do not short-circuit
6241 dynamic objects; their section list may be emptied by
6242 elf_link_add_object_symbols.
6243
6244 Also check to see if there are no code sections in the input.
6245 In this case there is no need to check for code specific flags.
6246 XXX - do we need to worry about floating-point format compatability
6247 in data sections ? */
6248 if (!(ibfd->flags & DYNAMIC))
6249 {
6250 bfd_boolean null_input_bfd = TRUE;
6251 bfd_boolean only_data_sections = TRUE;
6252
6253 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6254 {
6255 if ((bfd_get_section_flags (ibfd, sec)
6256 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6257 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6258 only_data_sections = FALSE;
6259
6260 null_input_bfd = FALSE;
6261 break;
6262 }
6263
6264 if (null_input_bfd || only_data_sections)
6265 return TRUE;
6266 }
6267
6268 return flags_compatible;
6269}
6270
6271/* Display the flags field. */
6272
6273static bfd_boolean
cec5225b 6274elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
a06ea964
NC
6275{
6276 FILE *file = (FILE *) ptr;
6277 unsigned long flags;
6278
6279 BFD_ASSERT (abfd != NULL && ptr != NULL);
6280
6281 /* Print normal ELF private data. */
6282 _bfd_elf_print_private_bfd_data (abfd, ptr);
6283
6284 flags = elf_elfheader (abfd)->e_flags;
6285 /* Ignore init flag - it may not be set, despite the flags field
6286 containing valid data. */
6287
6288 /* xgettext:c-format */
6289 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6290
6291 if (flags)
6292 fprintf (file, _("<Unrecognised flag bits set>"));
6293
6294 fputc ('\n', file);
6295
6296 return TRUE;
6297}
6298
6299/* Update the got entry reference counts for the section being removed. */
6300
6301static bfd_boolean
cec5225b 6302elfNN_aarch64_gc_sweep_hook (bfd *abfd,
cb8af559
NC
6303 struct bfd_link_info *info,
6304 asection *sec,
6305 const Elf_Internal_Rela * relocs)
a06ea964 6306{
cec5225b 6307 struct elf_aarch64_link_hash_table *htab;
59c108f7
NC
6308 Elf_Internal_Shdr *symtab_hdr;
6309 struct elf_link_hash_entry **sym_hashes;
cb8af559 6310 struct elf_aarch64_local_symbol *locals;
59c108f7
NC
6311 const Elf_Internal_Rela *rel, *relend;
6312
0e1862bb 6313 if (bfd_link_relocatable (info))
59c108f7
NC
6314 return TRUE;
6315
cec5225b 6316 htab = elf_aarch64_hash_table (info);
59c108f7
NC
6317
6318 if (htab == NULL)
6319 return FALSE;
6320
6321 elf_section_data (sec)->local_dynrel = NULL;
6322
6323 symtab_hdr = &elf_symtab_hdr (abfd);
6324 sym_hashes = elf_sym_hashes (abfd);
6325
cec5225b 6326 locals = elf_aarch64_locals (abfd);
59c108f7
NC
6327
6328 relend = relocs + sec->reloc_count;
6329 for (rel = relocs; rel < relend; rel++)
6330 {
6331 unsigned long r_symndx;
6332 unsigned int r_type;
6333 struct elf_link_hash_entry *h = NULL;
6334
cec5225b 6335 r_symndx = ELFNN_R_SYM (rel->r_info);
8847944f 6336
59c108f7
NC
6337 if (r_symndx >= symtab_hdr->sh_info)
6338 {
8847944f 6339
59c108f7
NC
6340 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6341 while (h->root.type == bfd_link_hash_indirect
6342 || h->root.type == bfd_link_hash_warning)
6343 h = (struct elf_link_hash_entry *) h->root.u.i.link;
59c108f7
NC
6344 }
6345 else
6346 {
6347 Elf_Internal_Sym *isym;
6348
8847944f 6349 /* A local symbol. */
59c108f7
NC
6350 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6351 abfd, r_symndx);
1419bbe5
WN
6352
6353 /* Check relocation against local STT_GNU_IFUNC symbol. */
6354 if (isym != NULL
6355 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6356 {
6357 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6358 if (h == NULL)
6359 abort ();
6360 }
6361 }
6362
6363 if (h)
6364 {
6365 struct elf_aarch64_link_hash_entry *eh;
6366 struct elf_dyn_relocs **pp;
6367 struct elf_dyn_relocs *p;
6368
6369 eh = (struct elf_aarch64_link_hash_entry *) h;
6370
6371 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6372 if (p->sec == sec)
6373 {
6374 /* Everything must go for SEC. */
6375 *pp = p->next;
6376 break;
6377 }
59c108f7
NC
6378 }
6379
cec5225b 6380 r_type = ELFNN_R_TYPE (rel->r_info);
a6bb11b2 6381 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
59c108f7 6382 {
a6bb11b2 6383 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57 6384 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 6385 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7bcccb57 6386 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
99ad26cb 6387 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7bcccb57
MS
6388 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6389 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6390 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6391 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7bcccb57
MS
6392 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6393 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 6394 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a6bb11b2 6395 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 6396 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 6397 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a6bb11b2 6398 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6399 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 6400 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 6401 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
73f925cc 6402 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 6403 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 6404 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a6bb11b2 6405 if (h != NULL)
59c108f7
NC
6406 {
6407 if (h->got.refcount > 0)
6408 h->got.refcount -= 1;
1419bbe5
WN
6409
6410 if (h->type == STT_GNU_IFUNC)
6411 {
6412 if (h->plt.refcount > 0)
6413 h->plt.refcount -= 1;
6414 }
59c108f7 6415 }
cb8af559 6416 else if (locals != NULL)
59c108f7 6417 {
cb8af559
NC
6418 if (locals[r_symndx].got_refcount > 0)
6419 locals[r_symndx].got_refcount -= 1;
59c108f7
NC
6420 }
6421 break;
6422
a6bb11b2
YZ
6423 case BFD_RELOC_AARCH64_CALL26:
6424 case BFD_RELOC_AARCH64_JUMP26:
6425 /* If this is a local symbol then we resolve it
6426 directly without creating a PLT entry. */
59c108f7
NC
6427 if (h == NULL)
6428 continue;
6429
6430 if (h->plt.refcount > 0)
6431 h->plt.refcount -= 1;
6432 break;
6433
ce336788
JW
6434 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6435 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6436 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
614b09ce
JW
6437 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6438 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6439 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6440 case BFD_RELOC_AARCH64_MOVW_G3:
a6bb11b2 6441 case BFD_RELOC_AARCH64_NN:
0e1862bb 6442 if (h != NULL && bfd_link_executable (info))
59c108f7
NC
6443 {
6444 if (h->plt.refcount > 0)
6445 h->plt.refcount -= 1;
6446 }
6447 break;
cec5225b 6448
59c108f7
NC
6449 default:
6450 break;
6451 }
6452 }
6453
a06ea964
NC
6454 return TRUE;
6455}
6456
6457/* Adjust a symbol defined by a dynamic object and referenced by a
6458 regular object. The current definition is in some section of the
6459 dynamic object, but we're not including those sections. We have to
6460 change the definition to something the rest of the link can
6461 understand. */
6462
6463static bfd_boolean
cec5225b 6464elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
a06ea964
NC
6465 struct elf_link_hash_entry *h)
6466{
cec5225b 6467 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
6468 asection *s;
6469
6470 /* If this is a function, put it in the procedure linkage table. We
6471 will fill in the contents of the procedure linkage table later,
6472 when we know the address of the .got section. */
1419bbe5 6473 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
a06ea964
NC
6474 {
6475 if (h->plt.refcount <= 0
1419bbe5
WN
6476 || (h->type != STT_GNU_IFUNC
6477 && (SYMBOL_CALLS_LOCAL (info, h)
6478 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6479 && h->root.type == bfd_link_hash_undefweak))))
a06ea964
NC
6480 {
6481 /* This case can occur if we saw a CALL26 reloc in
6482 an input file, but the symbol wasn't referred to
6483 by a dynamic object or all references were
6484 garbage collected. In which case we can end up
6485 resolving. */
6486 h->plt.offset = (bfd_vma) - 1;
6487 h->needs_plt = 0;
6488 }
6489
6490 return TRUE;
6491 }
6492 else
80de0c6d 6493 /* Otherwise, reset to -1. */
a06ea964
NC
6494 h->plt.offset = (bfd_vma) - 1;
6495
6496
6497 /* If this is a weak symbol, and there is a real definition, the
6498 processor independent code will have arranged for us to see the
6499 real definition first, and we can just use the same value. */
6500 if (h->u.weakdef != NULL)
6501 {
6502 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6503 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6504 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6505 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6506 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6507 h->non_got_ref = h->u.weakdef->non_got_ref;
6508 return TRUE;
6509 }
6510
6511 /* If we are creating a shared library, we must presume that the
6512 only references to the symbol are via the global offset table.
6513 For such cases we need not do anything here; the relocations will
6514 be handled correctly by relocate_section. */
0e1862bb 6515 if (bfd_link_pic (info))
a06ea964
NC
6516 return TRUE;
6517
6518 /* If there are no references to this symbol that do not use the
6519 GOT, we don't need to generate a copy reloc. */
6520 if (!h->non_got_ref)
6521 return TRUE;
6522
6523 /* If -z nocopyreloc was given, we won't generate them either. */
6524 if (info->nocopyreloc)
6525 {
6526 h->non_got_ref = 0;
6527 return TRUE;
6528 }
6529
6530 /* We must allocate the symbol in our .dynbss section, which will
6531 become part of the .bss section of the executable. There will be
6532 an entry for this symbol in the .dynsym section. The dynamic
6533 object will contain position independent code, so all references
6534 from the dynamic object to this symbol will go through the global
6535 offset table. The dynamic linker will use the .dynsym entry to
6536 determine the address it must put in the global offset table, so
6537 both the dynamic object and the regular object will refer to the
6538 same memory location for the variable. */
6539
cec5225b 6540 htab = elf_aarch64_hash_table (info);
a06ea964
NC
6541
6542 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6543 to copy the initial value out of the dynamic object and into the
6544 runtime process image. */
6545 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6546 {
6547 htab->srelbss->size += RELOC_SIZE (htab);
6548 h->needs_copy = 1;
6549 }
6550
6551 s = htab->sdynbss;
6552
6cabe1ea 6553 return _bfd_elf_adjust_dynamic_copy (info, h, s);
a06ea964
NC
6554
6555}
6556
6557static bfd_boolean
cec5225b 6558elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
a06ea964
NC
6559{
6560 struct elf_aarch64_local_symbol *locals;
cec5225b 6561 locals = elf_aarch64_locals (abfd);
a06ea964
NC
6562 if (locals == NULL)
6563 {
6564 locals = (struct elf_aarch64_local_symbol *)
6565 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
6566 if (locals == NULL)
6567 return FALSE;
cec5225b 6568 elf_aarch64_locals (abfd) = locals;
a06ea964
NC
6569 }
6570 return TRUE;
6571}
6572
cc0efaa8
MS
6573/* Create the .got section to hold the global offset table. */
6574
6575static bfd_boolean
6576aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
6577{
6578 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6579 flagword flags;
6580 asection *s;
6581 struct elf_link_hash_entry *h;
6582 struct elf_link_hash_table *htab = elf_hash_table (info);
6583
6584 /* This function may be called more than once. */
6585 s = bfd_get_linker_section (abfd, ".got");
6586 if (s != NULL)
6587 return TRUE;
6588
6589 flags = bed->dynamic_sec_flags;
6590
6591 s = bfd_make_section_anyway_with_flags (abfd,
6592 (bed->rela_plts_and_copies_p
6593 ? ".rela.got" : ".rel.got"),
6594 (bed->dynamic_sec_flags
6595 | SEC_READONLY));
6596 if (s == NULL
6597 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6598 return FALSE;
6599 htab->srelgot = s;
6600
6601 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
6602 if (s == NULL
6603 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6604 return FALSE;
6605 htab->sgot = s;
6606 htab->sgot->size += GOT_ENTRY_SIZE;
6607
6608 if (bed->want_got_sym)
6609 {
6610 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
6611 (or .got.plt) section. We don't do this in the linker script
6612 because we don't want to define the symbol if we are not creating
6613 a global offset table. */
6614 h = _bfd_elf_define_linkage_sym (abfd, info, s,
6615 "_GLOBAL_OFFSET_TABLE_");
6616 elf_hash_table (info)->hgot = h;
6617 if (h == NULL)
6618 return FALSE;
6619 }
6620
6621 if (bed->want_got_plt)
6622 {
6623 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
6624 if (s == NULL
6625 || !bfd_set_section_alignment (abfd, s,
6626 bed->s->log_file_align))
6627 return FALSE;
6628 htab->sgotplt = s;
6629 }
6630
6631 /* The first bit of the global offset table is the header. */
6632 s->size += bed->got_header_size;
6633
6634 return TRUE;
6635}
6636
a06ea964
NC
6637/* Look through the relocs for a section during the first phase. */
6638
6639static bfd_boolean
cec5225b 6640elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
a06ea964
NC
6641 asection *sec, const Elf_Internal_Rela *relocs)
6642{
6643 Elf_Internal_Shdr *symtab_hdr;
6644 struct elf_link_hash_entry **sym_hashes;
6645 const Elf_Internal_Rela *rel;
6646 const Elf_Internal_Rela *rel_end;
6647 asection *sreloc;
6648
cec5225b 6649 struct elf_aarch64_link_hash_table *htab;
a06ea964 6650
0e1862bb 6651 if (bfd_link_relocatable (info))
a06ea964
NC
6652 return TRUE;
6653
6654 BFD_ASSERT (is_aarch64_elf (abfd));
6655
cec5225b 6656 htab = elf_aarch64_hash_table (info);
a06ea964
NC
6657 sreloc = NULL;
6658
6659 symtab_hdr = &elf_symtab_hdr (abfd);
6660 sym_hashes = elf_sym_hashes (abfd);
a06ea964
NC
6661
6662 rel_end = relocs + sec->reloc_count;
6663 for (rel = relocs; rel < rel_end; rel++)
6664 {
6665 struct elf_link_hash_entry *h;
6666 unsigned long r_symndx;
6667 unsigned int r_type;
a6bb11b2 6668 bfd_reloc_code_real_type bfd_r_type;
1419bbe5 6669 Elf_Internal_Sym *isym;
a06ea964 6670
cec5225b
YZ
6671 r_symndx = ELFNN_R_SYM (rel->r_info);
6672 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
6673
6674 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
6675 {
6676 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
6677 r_symndx);
6678 return FALSE;
6679 }
6680
ed5acf27 6681 if (r_symndx < symtab_hdr->sh_info)
1419bbe5
WN
6682 {
6683 /* A local symbol. */
6684 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6685 abfd, r_symndx);
6686 if (isym == NULL)
6687 return FALSE;
6688
6689 /* Check relocation against local STT_GNU_IFUNC symbol. */
6690 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6691 {
6692 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
6693 TRUE);
6694 if (h == NULL)
6695 return FALSE;
6696
6697 /* Fake a STT_GNU_IFUNC symbol. */
6698 h->type = STT_GNU_IFUNC;
6699 h->def_regular = 1;
6700 h->ref_regular = 1;
6701 h->forced_local = 1;
6702 h->root.type = bfd_link_hash_defined;
6703 }
6704 else
6705 h = NULL;
6706 }
a06ea964
NC
6707 else
6708 {
6709 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6710 while (h->root.type == bfd_link_hash_indirect
6711 || h->root.type == bfd_link_hash_warning)
6712 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
6713
6714 /* PR15323, ref flags aren't set for references in the same
6715 object. */
6716 h->root.non_ir_ref = 1;
a06ea964
NC
6717 }
6718
6719 /* Could be done earlier, if h were already available. */
a6bb11b2 6720 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
a06ea964 6721
1419bbe5
WN
6722 if (h != NULL)
6723 {
6724 /* Create the ifunc sections for static executables. If we
6725 never see an indirect function symbol nor we are building
6726 a static executable, those sections will be empty and
6727 won't appear in output. */
6728 switch (bfd_r_type)
6729 {
6730 default:
6731 break;
6732
ce336788
JW
6733 case BFD_RELOC_AARCH64_ADD_LO12:
6734 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6735 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
1419bbe5 6736 case BFD_RELOC_AARCH64_CALL26:
ce336788 6737 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
1419bbe5 6738 case BFD_RELOC_AARCH64_JUMP26:
7018c030 6739 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
1419bbe5 6740 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
99ad26cb 6741 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
1419bbe5 6742 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
ce336788 6743 case BFD_RELOC_AARCH64_NN:
1419bbe5
WN
6744 if (htab->root.dynobj == NULL)
6745 htab->root.dynobj = abfd;
6746 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
6747 return FALSE;
6748 break;
6749 }
6750
6751 /* It is referenced by a non-shared object. */
6752 h->ref_regular = 1;
6753 h->root.non_ir_ref = 1;
6754 }
6755
a6bb11b2 6756 switch (bfd_r_type)
a06ea964 6757 {
a6bb11b2 6758 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
6759
6760 /* We don't need to handle relocs into sections not going into
6761 the "real" output. */
6762 if ((sec->flags & SEC_ALLOC) == 0)
6763 break;
6764
6765 if (h != NULL)
6766 {
0e1862bb 6767 if (!bfd_link_pic (info))
a06ea964
NC
6768 h->non_got_ref = 1;
6769
6770 h->plt.refcount += 1;
6771 h->pointer_equality_needed = 1;
6772 }
6773
6774 /* No need to do anything if we're not creating a shared
6775 object. */
0e1862bb 6776 if (! bfd_link_pic (info))
a06ea964
NC
6777 break;
6778
6779 {
6780 struct elf_dyn_relocs *p;
6781 struct elf_dyn_relocs **head;
6782
6783 /* We must copy these reloc types into the output file.
6784 Create a reloc section in dynobj and make room for
6785 this reloc. */
6786 if (sreloc == NULL)
6787 {
6788 if (htab->root.dynobj == NULL)
6789 htab->root.dynobj = abfd;
6790
6791 sreloc = _bfd_elf_make_dynamic_reloc_section
0608afa7 6792 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
a06ea964
NC
6793
6794 if (sreloc == NULL)
6795 return FALSE;
6796 }
6797
6798 /* If this is a global symbol, we count the number of
6799 relocations we need for this symbol. */
6800 if (h != NULL)
6801 {
cec5225b
YZ
6802 struct elf_aarch64_link_hash_entry *eh;
6803 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
6804 head = &eh->dyn_relocs;
6805 }
6806 else
6807 {
6808 /* Track dynamic relocs needed for local syms too.
6809 We really need local syms available to do this
6810 easily. Oh well. */
6811
6812 asection *s;
6813 void **vpp;
a06ea964
NC
6814
6815 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6816 abfd, r_symndx);
6817 if (isym == NULL)
6818 return FALSE;
6819
6820 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
6821 if (s == NULL)
6822 s = sec;
6823
6824 /* Beware of type punned pointers vs strict aliasing
6825 rules. */
6826 vpp = &(elf_section_data (s)->local_dynrel);
6827 head = (struct elf_dyn_relocs **) vpp;
6828 }
6829
6830 p = *head;
6831 if (p == NULL || p->sec != sec)
6832 {
6833 bfd_size_type amt = sizeof *p;
6834 p = ((struct elf_dyn_relocs *)
6835 bfd_zalloc (htab->root.dynobj, amt));
6836 if (p == NULL)
6837 return FALSE;
6838 p->next = *head;
6839 *head = p;
6840 p->sec = sec;
6841 }
6842
6843 p->count += 1;
6844
6845 }
6846 break;
6847
6848 /* RR: We probably want to keep a consistency check that
6849 there are no dangling GOT_PAGE relocs. */
a6bb11b2 6850 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57 6851 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7018c030 6852 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7bcccb57 6853 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
99ad26cb 6854 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7bcccb57
MS
6855 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6856 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6857 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6858 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7bcccb57
MS
6859 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6860 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 6861 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a6bb11b2 6862 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 6863 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 6864 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a6bb11b2 6865 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6866 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 6867 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 6868 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
73f925cc 6869 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
f69e4920 6870 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
77a69ff8 6871 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a06ea964
NC
6872 {
6873 unsigned got_type;
6874 unsigned old_got_type;
6875
a6bb11b2 6876 got_type = aarch64_reloc_got_type (bfd_r_type);
a06ea964
NC
6877
6878 if (h)
6879 {
6880 h->got.refcount += 1;
cec5225b 6881 old_got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
6882 }
6883 else
6884 {
6885 struct elf_aarch64_local_symbol *locals;
6886
cec5225b 6887 if (!elfNN_aarch64_allocate_local_symbols
a06ea964
NC
6888 (abfd, symtab_hdr->sh_info))
6889 return FALSE;
6890
cec5225b 6891 locals = elf_aarch64_locals (abfd);
a06ea964
NC
6892 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
6893 locals[r_symndx].got_refcount += 1;
6894 old_got_type = locals[r_symndx].got_type;
6895 }
6896
6897 /* If a variable is accessed with both general dynamic TLS
6898 methods, two slots may be created. */
6899 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
6900 got_type |= old_got_type;
6901
6902 /* We will already have issued an error message if there
6903 is a TLS/non-TLS mismatch, based on the symbol type.
6904 So just combine any TLS types needed. */
6905 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
6906 && got_type != GOT_NORMAL)
6907 got_type |= old_got_type;
6908
6909 /* If the symbol is accessed by both IE and GD methods, we
6910 are able to relax. Turn off the GD flag, without
6911 messing up with any other kind of TLS types that may be
6912 involved. */
6913 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
6914 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
6915
6916 if (old_got_type != got_type)
6917 {
6918 if (h != NULL)
cec5225b 6919 elf_aarch64_hash_entry (h)->got_type = got_type;
a06ea964
NC
6920 else
6921 {
6922 struct elf_aarch64_local_symbol *locals;
cec5225b 6923 locals = elf_aarch64_locals (abfd);
a06ea964
NC
6924 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
6925 locals[r_symndx].got_type = got_type;
6926 }
6927 }
6928
cc0efaa8
MS
6929 if (htab->root.dynobj == NULL)
6930 htab->root.dynobj = abfd;
6931 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
6932 return FALSE;
a06ea964
NC
6933 break;
6934 }
6935
614b09ce
JW
6936 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6937 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6938 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6939 case BFD_RELOC_AARCH64_MOVW_G3:
0e1862bb 6940 if (bfd_link_pic (info))
614b09ce
JW
6941 {
6942 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6943 (*_bfd_error_handler)
6944 (_("%B: relocation %s against `%s' can not be used when making "
6945 "a shared object; recompile with -fPIC"),
6946 abfd, elfNN_aarch64_howto_table[howto_index].name,
6947 (h) ? h->root.root.string : "a local symbol");
6948 bfd_set_error (bfd_error_bad_value);
6949 return FALSE;
6950 }
6951
a6bb11b2
YZ
6952 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6953 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6954 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
0e1862bb 6955 if (h != NULL && bfd_link_executable (info))
a06ea964
NC
6956 {
6957 /* If this reloc is in a read-only section, we might
6958 need a copy reloc. We can't check reliably at this
6959 stage whether the section is read-only, as input
6960 sections have not yet been mapped to output sections.
6961 Tentatively set the flag for now, and correct in
6962 adjust_dynamic_symbol. */
6963 h->non_got_ref = 1;
6964 h->plt.refcount += 1;
6965 h->pointer_equality_needed = 1;
6966 }
6967 /* FIXME:: RR need to handle these in shared libraries
6968 and essentially bomb out as these being non-PIC
6969 relocations in shared libraries. */
6970 break;
6971
a6bb11b2
YZ
6972 case BFD_RELOC_AARCH64_CALL26:
6973 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
6974 /* If this is a local symbol then we resolve it
6975 directly without creating a PLT entry. */
6976 if (h == NULL)
6977 continue;
6978
6979 h->needs_plt = 1;
1419bbe5
WN
6980 if (h->plt.refcount <= 0)
6981 h->plt.refcount = 1;
6982 else
6983 h->plt.refcount += 1;
a06ea964 6984 break;
a6bb11b2
YZ
6985
6986 default:
6987 break;
a06ea964
NC
6988 }
6989 }
a6bb11b2 6990
a06ea964
NC
6991 return TRUE;
6992}
6993
6994/* Treat mapping symbols as special target symbols. */
6995
6996static bfd_boolean
cec5225b 6997elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
6998 asymbol *sym)
6999{
7000 return bfd_is_aarch64_special_symbol_name (sym->name,
7001 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7002}
7003
7004/* This is a copy of elf_find_function () from elf.c except that
7005 AArch64 mapping symbols are ignored when looking for function names. */
7006
7007static bfd_boolean
7008aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964 7009 asymbol **symbols,
fb167eb2 7010 asection *section,
a06ea964
NC
7011 bfd_vma offset,
7012 const char **filename_ptr,
7013 const char **functionname_ptr)
7014{
7015 const char *filename = NULL;
7016 asymbol *func = NULL;
7017 bfd_vma low_func = 0;
7018 asymbol **p;
7019
7020 for (p = symbols; *p != NULL; p++)
7021 {
7022 elf_symbol_type *q;
7023
7024 q = (elf_symbol_type *) * p;
7025
7026 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7027 {
7028 default:
7029 break;
7030 case STT_FILE:
7031 filename = bfd_asymbol_name (&q->symbol);
7032 break;
7033 case STT_FUNC:
7034 case STT_NOTYPE:
7035 /* Skip mapping symbols. */
7036 if ((q->symbol.flags & BSF_LOCAL)
7037 && (bfd_is_aarch64_special_symbol_name
7038 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7039 continue;
7040 /* Fall through. */
7041 if (bfd_get_section (&q->symbol) == section
7042 && q->symbol.value >= low_func && q->symbol.value <= offset)
7043 {
7044 func = (asymbol *) q;
7045 low_func = q->symbol.value;
7046 }
7047 break;
7048 }
7049 }
7050
7051 if (func == NULL)
7052 return FALSE;
7053
7054 if (filename_ptr)
7055 *filename_ptr = filename;
7056 if (functionname_ptr)
7057 *functionname_ptr = bfd_asymbol_name (func);
7058
7059 return TRUE;
7060}
7061
7062
7063/* Find the nearest line to a particular section and offset, for error
7064 reporting. This code is a duplicate of the code in elf.c, except
7065 that it uses aarch64_elf_find_function. */
7066
7067static bfd_boolean
cec5225b 7068elfNN_aarch64_find_nearest_line (bfd *abfd,
a06ea964 7069 asymbol **symbols,
fb167eb2 7070 asection *section,
a06ea964
NC
7071 bfd_vma offset,
7072 const char **filename_ptr,
7073 const char **functionname_ptr,
fb167eb2
AM
7074 unsigned int *line_ptr,
7075 unsigned int *discriminator_ptr)
a06ea964
NC
7076{
7077 bfd_boolean found = FALSE;
7078
fb167eb2 7079 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
a06ea964 7080 filename_ptr, functionname_ptr,
fb167eb2
AM
7081 line_ptr, discriminator_ptr,
7082 dwarf_debug_sections, 0,
a06ea964
NC
7083 &elf_tdata (abfd)->dwarf2_find_line_info))
7084 {
7085 if (!*functionname_ptr)
fb167eb2 7086 aarch64_elf_find_function (abfd, symbols, section, offset,
a06ea964
NC
7087 *filename_ptr ? NULL : filename_ptr,
7088 functionname_ptr);
7089
7090 return TRUE;
7091 }
7092
fb167eb2
AM
7093 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7094 toolchain uses DWARF1. */
7095
a06ea964
NC
7096 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7097 &found, filename_ptr,
7098 functionname_ptr, line_ptr,
7099 &elf_tdata (abfd)->line_info))
7100 return FALSE;
7101
7102 if (found && (*functionname_ptr || *line_ptr))
7103 return TRUE;
7104
7105 if (symbols == NULL)
7106 return FALSE;
7107
fb167eb2 7108 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
a06ea964
NC
7109 filename_ptr, functionname_ptr))
7110 return FALSE;
7111
7112 *line_ptr = 0;
7113 return TRUE;
7114}
7115
7116static bfd_boolean
cec5225b 7117elfNN_aarch64_find_inliner_info (bfd *abfd,
a06ea964
NC
7118 const char **filename_ptr,
7119 const char **functionname_ptr,
7120 unsigned int *line_ptr)
7121{
7122 bfd_boolean found;
7123 found = _bfd_dwarf2_find_inliner_info
7124 (abfd, filename_ptr,
7125 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7126 return found;
7127}
7128
7129
7130static void
cec5225b 7131elfNN_aarch64_post_process_headers (bfd *abfd,
1419bbe5 7132 struct bfd_link_info *link_info)
a06ea964
NC
7133{
7134 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7135
7136 i_ehdrp = elf_elfheader (abfd);
a06ea964 7137 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
1419bbe5 7138
78245035 7139 _bfd_elf_post_process_headers (abfd, link_info);
a06ea964
NC
7140}
7141
7142static enum elf_reloc_type_class
cec5225b 7143elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7e612e98
AM
7144 const asection *rel_sec ATTRIBUTE_UNUSED,
7145 const Elf_Internal_Rela *rela)
a06ea964 7146{
cec5225b 7147 switch ((int) ELFNN_R_TYPE (rela->r_info))
a06ea964 7148 {
a6bb11b2 7149 case AARCH64_R (RELATIVE):
a06ea964 7150 return reloc_class_relative;
a6bb11b2 7151 case AARCH64_R (JUMP_SLOT):
a06ea964 7152 return reloc_class_plt;
a6bb11b2 7153 case AARCH64_R (COPY):
a06ea964
NC
7154 return reloc_class_copy;
7155 default:
7156 return reloc_class_normal;
7157 }
7158}
7159
a06ea964
NC
7160/* Handle an AArch64 specific section when reading an object file. This is
7161 called when bfd_section_from_shdr finds a section with an unknown
7162 type. */
7163
7164static bfd_boolean
cec5225b 7165elfNN_aarch64_section_from_shdr (bfd *abfd,
a06ea964
NC
7166 Elf_Internal_Shdr *hdr,
7167 const char *name, int shindex)
7168{
7169 /* There ought to be a place to keep ELF backend specific flags, but
7170 at the moment there isn't one. We just keep track of the
7171 sections by their name, instead. Fortunately, the ABI gives
7172 names for all the AArch64 specific sections, so we will probably get
7173 away with this. */
7174 switch (hdr->sh_type)
7175 {
7176 case SHT_AARCH64_ATTRIBUTES:
7177 break;
7178
7179 default:
7180 return FALSE;
7181 }
7182
7183 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7184 return FALSE;
7185
7186 return TRUE;
7187}
7188
7189/* A structure used to record a list of sections, independently
7190 of the next and prev fields in the asection structure. */
7191typedef struct section_list
7192{
7193 asection *sec;
7194 struct section_list *next;
7195 struct section_list *prev;
7196}
7197section_list;
7198
7199/* Unfortunately we need to keep a list of sections for which
7200 an _aarch64_elf_section_data structure has been allocated. This
cec5225b 7201 is because it is possible for functions like elfNN_aarch64_write_section
a06ea964
NC
7202 to be called on a section which has had an elf_data_structure
7203 allocated for it (and so the used_by_bfd field is valid) but
7204 for which the AArch64 extended version of this structure - the
7205 _aarch64_elf_section_data structure - has not been allocated. */
7206static section_list *sections_with_aarch64_elf_section_data = NULL;
7207
7208static void
7209record_section_with_aarch64_elf_section_data (asection *sec)
7210{
7211 struct section_list *entry;
7212
7213 entry = bfd_malloc (sizeof (*entry));
7214 if (entry == NULL)
7215 return;
7216 entry->sec = sec;
7217 entry->next = sections_with_aarch64_elf_section_data;
7218 entry->prev = NULL;
7219 if (entry->next != NULL)
7220 entry->next->prev = entry;
7221 sections_with_aarch64_elf_section_data = entry;
7222}
7223
7224static struct section_list *
7225find_aarch64_elf_section_entry (asection *sec)
7226{
7227 struct section_list *entry;
7228 static struct section_list *last_entry = NULL;
7229
7230 /* This is a short cut for the typical case where the sections are added
7231 to the sections_with_aarch64_elf_section_data list in forward order and
7232 then looked up here in backwards order. This makes a real difference
7233 to the ld-srec/sec64k.exp linker test. */
7234 entry = sections_with_aarch64_elf_section_data;
7235 if (last_entry != NULL)
7236 {
7237 if (last_entry->sec == sec)
7238 entry = last_entry;
7239 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7240 entry = last_entry->next;
7241 }
7242
7243 for (; entry; entry = entry->next)
7244 if (entry->sec == sec)
7245 break;
7246
7247 if (entry)
7248 /* Record the entry prior to this one - it is the entry we are
7249 most likely to want to locate next time. Also this way if we
7250 have been called from
7251 unrecord_section_with_aarch64_elf_section_data () we will not
7252 be caching a pointer that is about to be freed. */
7253 last_entry = entry->prev;
7254
7255 return entry;
7256}
7257
7258static void
7259unrecord_section_with_aarch64_elf_section_data (asection *sec)
7260{
7261 struct section_list *entry;
7262
7263 entry = find_aarch64_elf_section_entry (sec);
7264
7265 if (entry)
7266 {
7267 if (entry->prev != NULL)
7268 entry->prev->next = entry->next;
7269 if (entry->next != NULL)
7270 entry->next->prev = entry->prev;
7271 if (entry == sections_with_aarch64_elf_section_data)
7272 sections_with_aarch64_elf_section_data = entry->next;
7273 free (entry);
7274 }
7275}
7276
7277
7278typedef struct
7279{
7280 void *finfo;
7281 struct bfd_link_info *info;
7282 asection *sec;
7283 int sec_shndx;
7284 int (*func) (void *, const char *, Elf_Internal_Sym *,
7285 asection *, struct elf_link_hash_entry *);
7286} output_arch_syminfo;
7287
7288enum map_symbol_type
7289{
7290 AARCH64_MAP_INSN,
7291 AARCH64_MAP_DATA
7292};
7293
7294
7295/* Output a single mapping symbol. */
7296
7297static bfd_boolean
cec5225b 7298elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
a06ea964
NC
7299 enum map_symbol_type type, bfd_vma offset)
7300{
7301 static const char *names[2] = { "$x", "$d" };
7302 Elf_Internal_Sym sym;
7303
7304 sym.st_value = (osi->sec->output_section->vma
7305 + osi->sec->output_offset + offset);
7306 sym.st_size = 0;
7307 sym.st_other = 0;
7308 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7309 sym.st_shndx = osi->sec_shndx;
7310 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7311}
7312
7313
7314
7315/* Output mapping symbols for PLT entries associated with H. */
7316
7317static bfd_boolean
cec5225b 7318elfNN_aarch64_output_plt_map (struct elf_link_hash_entry *h, void *inf)
a06ea964
NC
7319{
7320 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
7321 bfd_vma addr;
7322
7323 if (h->root.type == bfd_link_hash_indirect)
7324 return TRUE;
7325
7326 if (h->root.type == bfd_link_hash_warning)
7327 /* When warning symbols are created, they **replace** the "real"
7328 entry in the hash table, thus we never get to see the real
7329 symbol in a hash traversal. So look at it now. */
7330 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7331
7332 if (h->plt.offset == (bfd_vma) - 1)
7333 return TRUE;
7334
7335 addr = h->plt.offset;
7336 if (addr == 32)
7337 {
cec5225b 7338 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964
NC
7339 return FALSE;
7340 }
7341 return TRUE;
7342}
7343
7344
7345/* Output a single local symbol for a generated stub. */
7346
7347static bfd_boolean
cec5225b 7348elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
a06ea964
NC
7349 bfd_vma offset, bfd_vma size)
7350{
7351 Elf_Internal_Sym sym;
7352
7353 sym.st_value = (osi->sec->output_section->vma
7354 + osi->sec->output_offset + offset);
7355 sym.st_size = size;
7356 sym.st_other = 0;
7357 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7358 sym.st_shndx = osi->sec_shndx;
7359 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7360}
7361
7362static bfd_boolean
7363aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7364{
cec5225b 7365 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
7366 asection *stub_sec;
7367 bfd_vma addr;
7368 char *stub_name;
7369 output_arch_syminfo *osi;
7370
7371 /* Massage our args to the form they really have. */
cec5225b 7372 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
7373 osi = (output_arch_syminfo *) in_arg;
7374
7375 stub_sec = stub_entry->stub_sec;
7376
7377 /* Ensure this stub is attached to the current section being
7378 processed. */
7379 if (stub_sec != osi->sec)
7380 return TRUE;
7381
7382 addr = (bfd_vma) stub_entry->stub_offset;
7383
7384 stub_name = stub_entry->output_name;
7385
7386 switch (stub_entry->stub_type)
7387 {
7388 case aarch64_stub_adrp_branch:
cec5225b 7389 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
a06ea964
NC
7390 sizeof (aarch64_adrp_branch_stub)))
7391 return FALSE;
cec5225b 7392 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964
NC
7393 return FALSE;
7394 break;
7395 case aarch64_stub_long_branch:
cec5225b 7396 if (!elfNN_aarch64_output_stub_sym
a06ea964
NC
7397 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7398 return FALSE;
cec5225b 7399 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964 7400 return FALSE;
cec5225b 7401 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
a06ea964
NC
7402 return FALSE;
7403 break;
68fcca92
JW
7404 case aarch64_stub_erratum_835769_veneer:
7405 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7406 sizeof (aarch64_erratum_835769_stub)))
7407 return FALSE;
7408 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7409 return FALSE;
7410 break;
4106101c
MS
7411 case aarch64_stub_erratum_843419_veneer:
7412 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7413 sizeof (aarch64_erratum_843419_stub)))
7414 return FALSE;
7415 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7416 return FALSE;
7417 break;
7418
a06ea964 7419 default:
8e2fe09f 7420 abort ();
a06ea964
NC
7421 }
7422
7423 return TRUE;
7424}
7425
7426/* Output mapping symbols for linker generated sections. */
7427
7428static bfd_boolean
cec5225b 7429elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
a06ea964
NC
7430 struct bfd_link_info *info,
7431 void *finfo,
7432 int (*func) (void *, const char *,
7433 Elf_Internal_Sym *,
7434 asection *,
7435 struct elf_link_hash_entry
7436 *))
7437{
7438 output_arch_syminfo osi;
cec5225b 7439 struct elf_aarch64_link_hash_table *htab;
a06ea964 7440
cec5225b 7441 htab = elf_aarch64_hash_table (info);
a06ea964
NC
7442
7443 osi.finfo = finfo;
7444 osi.info = info;
7445 osi.func = func;
7446
7447 /* Long calls stubs. */
7448 if (htab->stub_bfd && htab->stub_bfd->sections)
7449 {
7450 asection *stub_sec;
7451
7452 for (stub_sec = htab->stub_bfd->sections;
7453 stub_sec != NULL; stub_sec = stub_sec->next)
7454 {
7455 /* Ignore non-stub sections. */
7456 if (!strstr (stub_sec->name, STUB_SUFFIX))
7457 continue;
7458
7459 osi.sec = stub_sec;
7460
7461 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7462 (output_bfd, osi.sec->output_section);
7463
61865519
MS
7464 /* The first instruction in a stub is always a branch. */
7465 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7466 return FALSE;
7467
a06ea964
NC
7468 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7469 &osi);
7470 }
7471 }
7472
7473 /* Finally, output mapping symbols for the PLT. */
7474 if (!htab->root.splt || htab->root.splt->size == 0)
7475 return TRUE;
7476
7477 /* For now live without mapping symbols for the plt. */
7478 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7479 (output_bfd, htab->root.splt->output_section);
7480 osi.sec = htab->root.splt;
7481
cec5225b 7482 elf_link_hash_traverse (&htab->root, elfNN_aarch64_output_plt_map,
a06ea964
NC
7483 (void *) &osi);
7484
7485 return TRUE;
7486
7487}
7488
7489/* Allocate target specific section data. */
7490
7491static bfd_boolean
cec5225b 7492elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
a06ea964
NC
7493{
7494 if (!sec->used_by_bfd)
7495 {
7496 _aarch64_elf_section_data *sdata;
7497 bfd_size_type amt = sizeof (*sdata);
7498
7499 sdata = bfd_zalloc (abfd, amt);
7500 if (sdata == NULL)
7501 return FALSE;
7502 sec->used_by_bfd = sdata;
7503 }
7504
7505 record_section_with_aarch64_elf_section_data (sec);
7506
7507 return _bfd_elf_new_section_hook (abfd, sec);
7508}
7509
7510
7511static void
7512unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
7513 asection *sec,
7514 void *ignore ATTRIBUTE_UNUSED)
7515{
7516 unrecord_section_with_aarch64_elf_section_data (sec);
7517}
7518
7519static bfd_boolean
cec5225b 7520elfNN_aarch64_close_and_cleanup (bfd *abfd)
a06ea964
NC
7521{
7522 if (abfd->sections)
7523 bfd_map_over_sections (abfd,
7524 unrecord_section_via_map_over_sections, NULL);
7525
7526 return _bfd_elf_close_and_cleanup (abfd);
7527}
7528
7529static bfd_boolean
cec5225b 7530elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
a06ea964
NC
7531{
7532 if (abfd->sections)
7533 bfd_map_over_sections (abfd,
7534 unrecord_section_via_map_over_sections, NULL);
7535
7536 return _bfd_free_cached_info (abfd);
7537}
7538
a06ea964
NC
7539/* Create dynamic sections. This is different from the ARM backend in that
7540 the got, plt, gotplt and their relocation sections are all created in the
7541 standard part of the bfd elf backend. */
7542
7543static bfd_boolean
cec5225b 7544elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
a06ea964
NC
7545 struct bfd_link_info *info)
7546{
cec5225b 7547 struct elf_aarch64_link_hash_table *htab;
cc0efaa8
MS
7548
7549 /* We need to create .got section. */
7550 if (!aarch64_elf_create_got_section (dynobj, info))
7551 return FALSE;
a06ea964
NC
7552
7553 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
7554 return FALSE;
7555
cec5225b 7556 htab = elf_aarch64_hash_table (info);
a06ea964 7557 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
0e1862bb 7558 if (!bfd_link_pic (info))
a06ea964
NC
7559 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
7560
0e1862bb 7561 if (!htab->sdynbss || (!bfd_link_pic (info) && !htab->srelbss))
a06ea964
NC
7562 abort ();
7563
a06ea964
NC
7564 return TRUE;
7565}
7566
7567
7568/* Allocate space in .plt, .got and associated reloc sections for
7569 dynamic relocs. */
7570
7571static bfd_boolean
cec5225b 7572elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
a06ea964
NC
7573{
7574 struct bfd_link_info *info;
cec5225b
YZ
7575 struct elf_aarch64_link_hash_table *htab;
7576 struct elf_aarch64_link_hash_entry *eh;
a06ea964
NC
7577 struct elf_dyn_relocs *p;
7578
7579 /* An example of a bfd_link_hash_indirect symbol is versioned
7580 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7581 -> __gxx_personality_v0(bfd_link_hash_defined)
7582
7583 There is no need to process bfd_link_hash_indirect symbols here
7584 because we will also be presented with the concrete instance of
cec5225b 7585 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
a06ea964
NC
7586 called to copy all relevant data from the generic to the concrete
7587 symbol instance.
7588 */
7589 if (h->root.type == bfd_link_hash_indirect)
7590 return TRUE;
7591
7592 if (h->root.type == bfd_link_hash_warning)
7593 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7594
7595 info = (struct bfd_link_info *) inf;
cec5225b 7596 htab = elf_aarch64_hash_table (info);
a06ea964 7597
1419bbe5
WN
7598 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7599 here if it is defined and referenced in a non-shared object. */
7600 if (h->type == STT_GNU_IFUNC
7601 && h->def_regular)
7602 return TRUE;
7603 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
a06ea964
NC
7604 {
7605 /* Make sure this symbol is output as a dynamic symbol.
7606 Undefined weak syms won't yet be marked as dynamic. */
7607 if (h->dynindx == -1 && !h->forced_local)
7608 {
7609 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7610 return FALSE;
7611 }
7612
0e1862bb 7613 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
a06ea964
NC
7614 {
7615 asection *s = htab->root.splt;
7616
7617 /* If this is the first .plt entry, make room for the special
7618 first entry. */
7619 if (s->size == 0)
7620 s->size += htab->plt_header_size;
7621
7622 h->plt.offset = s->size;
7623
7624 /* If this symbol is not defined in a regular file, and we are
7625 not generating a shared library, then set the symbol to this
7626 location in the .plt. This is required to make function
7627 pointers compare as equal between the normal executable and
7628 the shared library. */
0e1862bb 7629 if (!bfd_link_pic (info) && !h->def_regular)
a06ea964
NC
7630 {
7631 h->root.u.def.section = s;
7632 h->root.u.def.value = h->plt.offset;
7633 }
7634
7635 /* Make room for this entry. For now we only create the
7636 small model PLT entries. We later need to find a way
7637 of relaxing into these from the large model PLT entries. */
7638 s->size += PLT_SMALL_ENTRY_SIZE;
7639
7640 /* We also need to make an entry in the .got.plt section, which
7641 will be placed in the .got section by the linker script. */
7642 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
7643
7644 /* We also need to make an entry in the .rela.plt section. */
7645 htab->root.srelplt->size += RELOC_SIZE (htab);
7646
7647 /* We need to ensure that all GOT entries that serve the PLT
7648 are consecutive with the special GOT slots [0] [1] and
7649 [2]. Any addtional relocations, such as
7650 R_AARCH64_TLSDESC, must be placed after the PLT related
7651 entries. We abuse the reloc_count such that during
7652 sizing we adjust reloc_count to indicate the number of
7653 PLT related reserved entries. In subsequent phases when
7654 filling in the contents of the reloc entries, PLT related
7655 entries are placed by computing their PLT index (0
7656 .. reloc_count). While other none PLT relocs are placed
7657 at the slot indicated by reloc_count and reloc_count is
7658 updated. */
7659
7660 htab->root.srelplt->reloc_count++;
7661 }
7662 else
7663 {
7664 h->plt.offset = (bfd_vma) - 1;
7665 h->needs_plt = 0;
7666 }
7667 }
7668 else
7669 {
7670 h->plt.offset = (bfd_vma) - 1;
7671 h->needs_plt = 0;
7672 }
7673
cec5225b 7674 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
7675 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
7676
7677 if (h->got.refcount > 0)
7678 {
7679 bfd_boolean dyn;
cec5225b 7680 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
7681
7682 h->got.offset = (bfd_vma) - 1;
7683
7684 dyn = htab->root.dynamic_sections_created;
7685
7686 /* Make sure this symbol is output as a dynamic symbol.
7687 Undefined weak syms won't yet be marked as dynamic. */
7688 if (dyn && h->dynindx == -1 && !h->forced_local)
7689 {
7690 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7691 return FALSE;
7692 }
7693
7694 if (got_type == GOT_UNKNOWN)
7695 {
7696 }
7697 else if (got_type == GOT_NORMAL)
7698 {
7699 h->got.offset = htab->root.sgot->size;
7700 htab->root.sgot->size += GOT_ENTRY_SIZE;
7701 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7702 || h->root.type != bfd_link_hash_undefweak)
0e1862bb 7703 && (bfd_link_pic (info)
a06ea964
NC
7704 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
7705 {
7706 htab->root.srelgot->size += RELOC_SIZE (htab);
7707 }
7708 }
7709 else
7710 {
7711 int indx;
7712 if (got_type & GOT_TLSDESC_GD)
7713 {
7714 eh->tlsdesc_got_jump_table_offset =
7715 (htab->root.sgotplt->size
7716 - aarch64_compute_jump_table_size (htab));
7717 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
7718 h->got.offset = (bfd_vma) - 2;
7719 }
7720
7721 if (got_type & GOT_TLS_GD)
7722 {
7723 h->got.offset = htab->root.sgot->size;
7724 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
7725 }
7726
7727 if (got_type & GOT_TLS_IE)
7728 {
7729 h->got.offset = htab->root.sgot->size;
7730 htab->root.sgot->size += GOT_ENTRY_SIZE;
7731 }
7732
7733 indx = h && h->dynindx != -1 ? h->dynindx : 0;
7734 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7735 || h->root.type != bfd_link_hash_undefweak)
0e1862bb 7736 && (bfd_link_pic (info)
a06ea964
NC
7737 || indx != 0
7738 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
7739 {
7740 if (got_type & GOT_TLSDESC_GD)
7741 {
7742 htab->root.srelplt->size += RELOC_SIZE (htab);
7743 /* Note reloc_count not incremented here! We have
7744 already adjusted reloc_count for this relocation
7745 type. */
7746
7747 /* TLSDESC PLT is now needed, but not yet determined. */
7748 htab->tlsdesc_plt = (bfd_vma) - 1;
7749 }
7750
7751 if (got_type & GOT_TLS_GD)
7752 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
7753
7754 if (got_type & GOT_TLS_IE)
7755 htab->root.srelgot->size += RELOC_SIZE (htab);
7756 }
7757 }
7758 }
7759 else
7760 {
7761 h->got.offset = (bfd_vma) - 1;
7762 }
7763
7764 if (eh->dyn_relocs == NULL)
7765 return TRUE;
7766
7767 /* In the shared -Bsymbolic case, discard space allocated for
7768 dynamic pc-relative relocs against symbols which turn out to be
7769 defined in regular objects. For the normal shared case, discard
7770 space for pc-relative relocs that have become local due to symbol
7771 visibility changes. */
7772
0e1862bb 7773 if (bfd_link_pic (info))
a06ea964
NC
7774 {
7775 /* Relocs that use pc_count are those that appear on a call
7776 insn, or certain REL relocs that can generated via assembly.
7777 We want calls to protected symbols to resolve directly to the
7778 function rather than going via the plt. If people want
7779 function pointer comparisons to work as expected then they
7780 should avoid writing weird assembly. */
7781 if (SYMBOL_CALLS_LOCAL (info, h))
7782 {
7783 struct elf_dyn_relocs **pp;
7784
7785 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
7786 {
7787 p->count -= p->pc_count;
7788 p->pc_count = 0;
7789 if (p->count == 0)
7790 *pp = p->next;
7791 else
7792 pp = &p->next;
7793 }
7794 }
7795
7796 /* Also discard relocs on undefined weak syms with non-default
7797 visibility. */
7798 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
7799 {
7800 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
7801 eh->dyn_relocs = NULL;
7802
7803 /* Make sure undefined weak symbols are output as a dynamic
7804 symbol in PIEs. */
7805 else if (h->dynindx == -1
7806 && !h->forced_local
7807 && !bfd_elf_link_record_dynamic_symbol (info, h))
7808 return FALSE;
7809 }
7810
7811 }
7812 else if (ELIMINATE_COPY_RELOCS)
7813 {
7814 /* For the non-shared case, discard space for relocs against
7815 symbols which turn out to need copy relocs or are not
7816 dynamic. */
7817
7818 if (!h->non_got_ref
7819 && ((h->def_dynamic
7820 && !h->def_regular)
7821 || (htab->root.dynamic_sections_created
7822 && (h->root.type == bfd_link_hash_undefweak
7823 || h->root.type == bfd_link_hash_undefined))))
7824 {
7825 /* Make sure this symbol is output as a dynamic symbol.
7826 Undefined weak syms won't yet be marked as dynamic. */
7827 if (h->dynindx == -1
7828 && !h->forced_local
7829 && !bfd_elf_link_record_dynamic_symbol (info, h))
7830 return FALSE;
7831
7832 /* If that succeeded, we know we'll be keeping all the
7833 relocs. */
7834 if (h->dynindx != -1)
7835 goto keep;
7836 }
7837
7838 eh->dyn_relocs = NULL;
7839
7840 keep:;
7841 }
7842
7843 /* Finally, allocate space. */
7844 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7845 {
7846 asection *sreloc;
7847
7848 sreloc = elf_section_data (p->sec)->sreloc;
7849
7850 BFD_ASSERT (sreloc != NULL);
7851
7852 sreloc->size += p->count * RELOC_SIZE (htab);
7853 }
7854
7855 return TRUE;
7856}
7857
1419bbe5
WN
7858/* Allocate space in .plt, .got and associated reloc sections for
7859 ifunc dynamic relocs. */
7860
7861static bfd_boolean
7862elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
7863 void *inf)
7864{
7865 struct bfd_link_info *info;
7866 struct elf_aarch64_link_hash_table *htab;
7867 struct elf_aarch64_link_hash_entry *eh;
7868
7869 /* An example of a bfd_link_hash_indirect symbol is versioned
7870 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7871 -> __gxx_personality_v0(bfd_link_hash_defined)
7872
7873 There is no need to process bfd_link_hash_indirect symbols here
7874 because we will also be presented with the concrete instance of
7875 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7876 called to copy all relevant data from the generic to the concrete
7877 symbol instance.
7878 */
7879 if (h->root.type == bfd_link_hash_indirect)
7880 return TRUE;
7881
7882 if (h->root.type == bfd_link_hash_warning)
7883 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7884
7885 info = (struct bfd_link_info *) inf;
7886 htab = elf_aarch64_hash_table (info);
7887
7888 eh = (struct elf_aarch64_link_hash_entry *) h;
7889
7890 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7891 here if it is defined and referenced in a non-shared object. */
7892 if (h->type == STT_GNU_IFUNC
7893 && h->def_regular)
7894 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
7895 &eh->dyn_relocs,
7896 htab->plt_entry_size,
7897 htab->plt_header_size,
7898 GOT_ENTRY_SIZE);
7899 return TRUE;
7900}
7901
7902/* Allocate space in .plt, .got and associated reloc sections for
7903 local dynamic relocs. */
7904
7905static bfd_boolean
7906elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
7907{
7908 struct elf_link_hash_entry *h
7909 = (struct elf_link_hash_entry *) *slot;
7910
7911 if (h->type != STT_GNU_IFUNC
7912 || !h->def_regular
7913 || !h->ref_regular
7914 || !h->forced_local
7915 || h->root.type != bfd_link_hash_defined)
7916 abort ();
7917
7918 return elfNN_aarch64_allocate_dynrelocs (h, inf);
7919}
7920
7921/* Allocate space in .plt, .got and associated reloc sections for
7922 local ifunc dynamic relocs. */
7923
7924static bfd_boolean
7925elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
7926{
7927 struct elf_link_hash_entry *h
7928 = (struct elf_link_hash_entry *) *slot;
7929
7930 if (h->type != STT_GNU_IFUNC
7931 || !h->def_regular
7932 || !h->ref_regular
7933 || !h->forced_local
7934 || h->root.type != bfd_link_hash_defined)
7935 abort ();
7936
7937 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
7938}
a06ea964 7939
c2170589
JW
7940/* Find any dynamic relocs that apply to read-only sections. */
7941
7942static bfd_boolean
7943aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
7944{
7945 struct elf_aarch64_link_hash_entry * eh;
7946 struct elf_dyn_relocs * p;
7947
7948 eh = (struct elf_aarch64_link_hash_entry *) h;
7949 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7950 {
7951 asection *s = p->sec;
7952
7953 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7954 {
7955 struct bfd_link_info *info = (struct bfd_link_info *) inf;
7956
7957 info->flags |= DF_TEXTREL;
7958
7959 /* Not an error, just cut short the traversal. */
7960 return FALSE;
7961 }
7962 }
7963 return TRUE;
7964}
7965
a06ea964
NC
7966/* This is the most important function of all . Innocuosly named
7967 though ! */
7968static bfd_boolean
cec5225b 7969elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
a06ea964
NC
7970 struct bfd_link_info *info)
7971{
cec5225b 7972 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
7973 bfd *dynobj;
7974 asection *s;
7975 bfd_boolean relocs;
7976 bfd *ibfd;
7977
cec5225b 7978 htab = elf_aarch64_hash_table ((info));
a06ea964
NC
7979 dynobj = htab->root.dynobj;
7980
7981 BFD_ASSERT (dynobj != NULL);
7982
7983 if (htab->root.dynamic_sections_created)
7984 {
0e1862bb 7985 if (bfd_link_executable (info))
a06ea964
NC
7986 {
7987 s = bfd_get_linker_section (dynobj, ".interp");
7988 if (s == NULL)
7989 abort ();
7990 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
7991 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
7992 }
7993 }
7994
7995 /* Set up .got offsets for local syms, and space for local dynamic
7996 relocs. */
c72f2fb2 7997 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
a06ea964
NC
7998 {
7999 struct elf_aarch64_local_symbol *locals = NULL;
8000 Elf_Internal_Shdr *symtab_hdr;
8001 asection *srel;
8002 unsigned int i;
8003
8004 if (!is_aarch64_elf (ibfd))
8005 continue;
8006
8007 for (s = ibfd->sections; s != NULL; s = s->next)
8008 {
8009 struct elf_dyn_relocs *p;
8010
8011 for (p = (struct elf_dyn_relocs *)
8012 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8013 {
8014 if (!bfd_is_abs_section (p->sec)
8015 && bfd_is_abs_section (p->sec->output_section))
8016 {
8017 /* Input section has been discarded, either because
8018 it is a copy of a linkonce section or due to
8019 linker script /DISCARD/, so we'll be discarding
8020 the relocs too. */
8021 }
8022 else if (p->count != 0)
8023 {
8024 srel = elf_section_data (p->sec)->sreloc;
8025 srel->size += p->count * RELOC_SIZE (htab);
8026 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8027 info->flags |= DF_TEXTREL;
8028 }
8029 }
8030 }
8031
cec5225b 8032 locals = elf_aarch64_locals (ibfd);
a06ea964
NC
8033 if (!locals)
8034 continue;
8035
8036 symtab_hdr = &elf_symtab_hdr (ibfd);
8037 srel = htab->root.srelgot;
8038 for (i = 0; i < symtab_hdr->sh_info; i++)
8039 {
8040 locals[i].got_offset = (bfd_vma) - 1;
8041 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8042 if (locals[i].got_refcount > 0)
8043 {
8044 unsigned got_type = locals[i].got_type;
8045 if (got_type & GOT_TLSDESC_GD)
8046 {
8047 locals[i].tlsdesc_got_jump_table_offset =
8048 (htab->root.sgotplt->size
8049 - aarch64_compute_jump_table_size (htab));
8050 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8051 locals[i].got_offset = (bfd_vma) - 2;
8052 }
8053
8054 if (got_type & GOT_TLS_GD)
8055 {
8056 locals[i].got_offset = htab->root.sgot->size;
8057 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8058 }
8059
b53b1bed
JW
8060 if (got_type & GOT_TLS_IE
8061 || got_type & GOT_NORMAL)
a06ea964
NC
8062 {
8063 locals[i].got_offset = htab->root.sgot->size;
8064 htab->root.sgot->size += GOT_ENTRY_SIZE;
8065 }
8066
8067 if (got_type == GOT_UNKNOWN)
8068 {
8069 }
8070
0e1862bb 8071 if (bfd_link_pic (info))
a06ea964
NC
8072 {
8073 if (got_type & GOT_TLSDESC_GD)
8074 {
8075 htab->root.srelplt->size += RELOC_SIZE (htab);
8076 /* Note RELOC_COUNT not incremented here! */
8077 htab->tlsdesc_plt = (bfd_vma) - 1;
8078 }
8079
8080 if (got_type & GOT_TLS_GD)
8081 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8082
b53b1bed
JW
8083 if (got_type & GOT_TLS_IE
8084 || got_type & GOT_NORMAL)
a06ea964
NC
8085 htab->root.srelgot->size += RELOC_SIZE (htab);
8086 }
8087 }
8088 else
8089 {
8090 locals[i].got_refcount = (bfd_vma) - 1;
8091 }
8092 }
8093 }
8094
8095
8096 /* Allocate global sym .plt and .got entries, and space for global
8097 sym dynamic relocs. */
cec5225b 8098 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
a06ea964
NC
8099 info);
8100
1419bbe5
WN
8101 /* Allocate global ifunc sym .plt and .got entries, and space for global
8102 ifunc sym dynamic relocs. */
8103 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8104 info);
8105
8106 /* Allocate .plt and .got entries, and space for local symbols. */
8107 htab_traverse (htab->loc_hash_table,
8108 elfNN_aarch64_allocate_local_dynrelocs,
8109 info);
8110
8111 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8112 htab_traverse (htab->loc_hash_table,
8113 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8114 info);
a06ea964
NC
8115
8116 /* For every jump slot reserved in the sgotplt, reloc_count is
8117 incremented. However, when we reserve space for TLS descriptors,
8118 it's not incremented, so in order to compute the space reserved
8119 for them, it suffices to multiply the reloc count by the jump
8120 slot size. */
8121
8122 if (htab->root.srelplt)
8847944f 8123 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
a06ea964
NC
8124
8125 if (htab->tlsdesc_plt)
8126 {
8127 if (htab->root.splt->size == 0)
8128 htab->root.splt->size += PLT_ENTRY_SIZE;
8129
8130 htab->tlsdesc_plt = htab->root.splt->size;
8131 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8132
8133 /* If we're not using lazy TLS relocations, don't generate the
8134 GOT entry required. */
8135 if (!(info->flags & DF_BIND_NOW))
8136 {
8137 htab->dt_tlsdesc_got = htab->root.sgot->size;
8138 htab->root.sgot->size += GOT_ENTRY_SIZE;
8139 }
8140 }
8141
68fcca92 8142 /* Init mapping symbols information to use later to distingush between
4106101c
MS
8143 code and data while scanning for errata. */
8144 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
68fcca92
JW
8145 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8146 {
8147 if (!is_aarch64_elf (ibfd))
8148 continue;
8149 bfd_elfNN_aarch64_init_maps (ibfd);
8150 }
8151
a06ea964
NC
8152 /* We now have determined the sizes of the various dynamic sections.
8153 Allocate memory for them. */
8154 relocs = FALSE;
8155 for (s = dynobj->sections; s != NULL; s = s->next)
8156 {
8157 if ((s->flags & SEC_LINKER_CREATED) == 0)
8158 continue;
8159
8160 if (s == htab->root.splt
8161 || s == htab->root.sgot
8162 || s == htab->root.sgotplt
8163 || s == htab->root.iplt
8164 || s == htab->root.igotplt || s == htab->sdynbss)
8165 {
8166 /* Strip this section if we don't need it; see the
8167 comment below. */
8168 }
8169 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8170 {
8171 if (s->size != 0 && s != htab->root.srelplt)
8172 relocs = TRUE;
8173
8174 /* We use the reloc_count field as a counter if we need
8175 to copy relocs into the output file. */
8176 if (s != htab->root.srelplt)
8177 s->reloc_count = 0;
8178 }
8179 else
8180 {
8181 /* It's not one of our sections, so don't allocate space. */
8182 continue;
8183 }
8184
8185 if (s->size == 0)
8186 {
8187 /* If we don't need this section, strip it from the
8188 output file. This is mostly to handle .rela.bss and
8189 .rela.plt. We must create both sections in
8190 create_dynamic_sections, because they must be created
8191 before the linker maps input sections to output
8192 sections. The linker does that before
8193 adjust_dynamic_symbol is called, and it is that
8194 function which decides whether anything needs to go
8195 into these sections. */
8196
8197 s->flags |= SEC_EXCLUDE;
8198 continue;
8199 }
8200
8201 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8202 continue;
8203
8204 /* Allocate memory for the section contents. We use bfd_zalloc
8205 here in case unused entries are not reclaimed before the
8206 section's contents are written out. This should not happen,
8207 but this way if it does, we get a R_AARCH64_NONE reloc instead
8208 of garbage. */
8209 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8210 if (s->contents == NULL)
8211 return FALSE;
8212 }
8213
8214 if (htab->root.dynamic_sections_created)
8215 {
8216 /* Add some entries to the .dynamic section. We fill in the
cec5225b 8217 values later, in elfNN_aarch64_finish_dynamic_sections, but we
a06ea964
NC
8218 must add the entries now so that we get the correct size for
8219 the .dynamic section. The DT_DEBUG entry is filled in by the
8220 dynamic linker and used by the debugger. */
8221#define add_dynamic_entry(TAG, VAL) \
8222 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8223
0e1862bb 8224 if (bfd_link_executable (info))
a06ea964
NC
8225 {
8226 if (!add_dynamic_entry (DT_DEBUG, 0))
8227 return FALSE;
8228 }
8229
8230 if (htab->root.splt->size != 0)
8231 {
8232 if (!add_dynamic_entry (DT_PLTGOT, 0)
8233 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8234 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8235 || !add_dynamic_entry (DT_JMPREL, 0))
8236 return FALSE;
8237
8238 if (htab->tlsdesc_plt
8239 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8240 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8241 return FALSE;
8242 }
8243
8244 if (relocs)
8245 {
8246 if (!add_dynamic_entry (DT_RELA, 0)
8247 || !add_dynamic_entry (DT_RELASZ, 0)
8248 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8249 return FALSE;
8250
8251 /* If any dynamic relocs apply to a read-only section,
8252 then we need a DT_TEXTREL entry. */
c2170589
JW
8253 if ((info->flags & DF_TEXTREL) == 0)
8254 elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
8255 info);
8256
a06ea964
NC
8257 if ((info->flags & DF_TEXTREL) != 0)
8258 {
8259 if (!add_dynamic_entry (DT_TEXTREL, 0))
8260 return FALSE;
8261 }
8262 }
8263 }
8264#undef add_dynamic_entry
8265
8266 return TRUE;
a06ea964
NC
8267}
8268
8269static inline void
caed7120
YZ
8270elf_aarch64_update_plt_entry (bfd *output_bfd,
8271 bfd_reloc_code_real_type r_type,
8272 bfd_byte *plt_entry, bfd_vma value)
a06ea964 8273{
caed7120
YZ
8274 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8275
8276 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
a06ea964
NC
8277}
8278
8279static void
cec5225b
YZ
8280elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8281 struct elf_aarch64_link_hash_table
1419bbe5
WN
8282 *htab, bfd *output_bfd,
8283 struct bfd_link_info *info)
a06ea964
NC
8284{
8285 bfd_byte *plt_entry;
8286 bfd_vma plt_index;
8287 bfd_vma got_offset;
8288 bfd_vma gotplt_entry_address;
8289 bfd_vma plt_entry_address;
8290 Elf_Internal_Rela rela;
8291 bfd_byte *loc;
1419bbe5
WN
8292 asection *plt, *gotplt, *relplt;
8293
8294 /* When building a static executable, use .iplt, .igot.plt and
8295 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8296 if (htab->root.splt != NULL)
8297 {
8298 plt = htab->root.splt;
8299 gotplt = htab->root.sgotplt;
8300 relplt = htab->root.srelplt;
8301 }
8302 else
8303 {
8304 plt = htab->root.iplt;
8305 gotplt = htab->root.igotplt;
8306 relplt = htab->root.irelplt;
8307 }
8308
8309 /* Get the index in the procedure linkage table which
8310 corresponds to this symbol. This is the index of this symbol
8311 in all the symbols for which we are making plt entries. The
8312 first entry in the procedure linkage table is reserved.
a06ea964 8313
1419bbe5
WN
8314 Get the offset into the .got table of the entry that
8315 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8316 bytes. The first three are reserved for the dynamic linker.
692e2b8b 8317
1419bbe5
WN
8318 For static executables, we don't reserve anything. */
8319
8320 if (plt == htab->root.splt)
8321 {
8322 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8323 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8324 }
8325 else
8326 {
8327 plt_index = h->plt.offset / htab->plt_entry_size;
8328 got_offset = plt_index * GOT_ENTRY_SIZE;
8329 }
8330
8331 plt_entry = plt->contents + h->plt.offset;
8332 plt_entry_address = plt->output_section->vma
f44a1f8e 8333 + plt->output_offset + h->plt.offset;
1419bbe5
WN
8334 gotplt_entry_address = gotplt->output_section->vma +
8335 gotplt->output_offset + got_offset;
a06ea964
NC
8336
8337 /* Copy in the boiler-plate for the PLTn entry. */
cec5225b 8338 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
a06ea964
NC
8339
8340 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8341 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
8342 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8343 plt_entry,
8344 PG (gotplt_entry_address) -
8345 PG (plt_entry_address));
a06ea964
NC
8346
8347 /* Fill in the lo12 bits for the load from the pltgot. */
caed7120
YZ
8348 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8349 plt_entry + 4,
8350 PG_OFFSET (gotplt_entry_address));
a06ea964 8351
9aff4b7a 8352 /* Fill in the lo12 bits for the add from the pltgot entry. */
caed7120
YZ
8353 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8354 plt_entry + 8,
8355 PG_OFFSET (gotplt_entry_address));
a06ea964
NC
8356
8357 /* All the GOTPLT Entries are essentially initialized to PLT0. */
cec5225b 8358 bfd_put_NN (output_bfd,
1419bbe5
WN
8359 plt->output_section->vma + plt->output_offset,
8360 gotplt->contents + got_offset);
a06ea964 8361
a06ea964 8362 rela.r_offset = gotplt_entry_address;
1419bbe5
WN
8363
8364 if (h->dynindx == -1
0e1862bb 8365 || ((bfd_link_executable (info)
1419bbe5
WN
8366 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8367 && h->def_regular
8368 && h->type == STT_GNU_IFUNC))
8369 {
8370 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8371 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8372 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8373 rela.r_addend = (h->root.u.def.value
8374 + h->root.u.def.section->output_section->vma
8375 + h->root.u.def.section->output_offset);
8376 }
8377 else
8378 {
8379 /* Fill in the entry in the .rela.plt section. */
8380 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8381 rela.r_addend = 0;
8382 }
a06ea964
NC
8383
8384 /* Compute the relocation entry to used based on PLT index and do
8385 not adjust reloc_count. The reloc_count has already been adjusted
8386 to account for this entry. */
1419bbe5 8387 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
cec5225b 8388 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
8389}
8390
8391/* Size sections even though they're not dynamic. We use it to setup
8392 _TLS_MODULE_BASE_, if needed. */
8393
8394static bfd_boolean
cec5225b 8395elfNN_aarch64_always_size_sections (bfd *output_bfd,
a06ea964
NC
8396 struct bfd_link_info *info)
8397{
8398 asection *tls_sec;
8399
0e1862bb 8400 if (bfd_link_relocatable (info))
a06ea964
NC
8401 return TRUE;
8402
8403 tls_sec = elf_hash_table (info)->tls_sec;
8404
8405 if (tls_sec)
8406 {
8407 struct elf_link_hash_entry *tlsbase;
8408
8409 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8410 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8411
8412 if (tlsbase)
8413 {
8414 struct bfd_link_hash_entry *h = NULL;
8415 const struct elf_backend_data *bed =
8416 get_elf_backend_data (output_bfd);
8417
8418 if (!(_bfd_generic_link_add_one_symbol
8419 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8420 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8421 return FALSE;
8422
8423 tlsbase->type = STT_TLS;
8424 tlsbase = (struct elf_link_hash_entry *) h;
8425 tlsbase->def_regular = 1;
8426 tlsbase->other = STV_HIDDEN;
8427 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8428 }
8429 }
8430
8431 return TRUE;
8432}
8433
8434/* Finish up dynamic symbol handling. We set the contents of various
8435 dynamic sections here. */
8436static bfd_boolean
cec5225b 8437elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
a06ea964
NC
8438 struct bfd_link_info *info,
8439 struct elf_link_hash_entry *h,
8440 Elf_Internal_Sym *sym)
8441{
cec5225b
YZ
8442 struct elf_aarch64_link_hash_table *htab;
8443 htab = elf_aarch64_hash_table (info);
a06ea964
NC
8444
8445 if (h->plt.offset != (bfd_vma) - 1)
8446 {
1419bbe5
WN
8447 asection *plt, *gotplt, *relplt;
8448
a06ea964
NC
8449 /* This symbol has an entry in the procedure linkage table. Set
8450 it up. */
8451
1419bbe5
WN
8452 /* When building a static executable, use .iplt, .igot.plt and
8453 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8454 if (htab->root.splt != NULL)
8455 {
8456 plt = htab->root.splt;
8457 gotplt = htab->root.sgotplt;
8458 relplt = htab->root.srelplt;
8459 }
8460 else
8461 {
8462 plt = htab->root.iplt;
8463 gotplt = htab->root.igotplt;
8464 relplt = htab->root.irelplt;
8465 }
8466
8467 /* This symbol has an entry in the procedure linkage table. Set
8468 it up. */
8469 if ((h->dynindx == -1
0e1862bb 8470 && !((h->forced_local || bfd_link_executable (info))
1419bbe5
WN
8471 && h->def_regular
8472 && h->type == STT_GNU_IFUNC))
8473 || plt == NULL
8474 || gotplt == NULL
8475 || relplt == NULL)
a06ea964
NC
8476 abort ();
8477
1419bbe5 8478 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
a06ea964
NC
8479 if (!h->def_regular)
8480 {
8481 /* Mark the symbol as undefined, rather than as defined in
46b87d49 8482 the .plt section. */
a06ea964 8483 sym->st_shndx = SHN_UNDEF;
46b87d49
WN
8484 /* If the symbol is weak we need to clear the value.
8485 Otherwise, the PLT entry would provide a definition for
8486 the symbol even if the symbol wasn't defined anywhere,
8487 and so the symbol would never be NULL. Leave the value if
8488 there were any relocations where pointer equality matters
8489 (this is a clue for the dynamic linker, to make function
8490 pointer comparisons work between an application and shared
8491 library). */
8492 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8493 sym->st_value = 0;
a06ea964
NC
8494 }
8495 }
8496
8497 if (h->got.offset != (bfd_vma) - 1
cec5225b 8498 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
a06ea964
NC
8499 {
8500 Elf_Internal_Rela rela;
8501 bfd_byte *loc;
8502
8503 /* This symbol has an entry in the global offset table. Set it
8504 up. */
8505 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8506 abort ();
8507
8508 rela.r_offset = (htab->root.sgot->output_section->vma
8509 + htab->root.sgot->output_offset
8510 + (h->got.offset & ~(bfd_vma) 1));
8511
49206388
WN
8512 if (h->def_regular
8513 && h->type == STT_GNU_IFUNC)
8514 {
0e1862bb 8515 if (bfd_link_pic (info))
49206388
WN
8516 {
8517 /* Generate R_AARCH64_GLOB_DAT. */
8518 goto do_glob_dat;
8519 }
8520 else
8521 {
8522 asection *plt;
8523
8524 if (!h->pointer_equality_needed)
8525 abort ();
8526
8527 /* For non-shared object, we can't use .got.plt, which
8528 contains the real function address if we need pointer
8529 equality. We load the GOT entry with the PLT entry. */
8530 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
8531 bfd_put_NN (output_bfd, (plt->output_section->vma
8532 + plt->output_offset
8533 + h->plt.offset),
8534 htab->root.sgot->contents
8535 + (h->got.offset & ~(bfd_vma) 1));
8536 return TRUE;
8537 }
8538 }
0e1862bb 8539 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
a06ea964
NC
8540 {
8541 if (!h->def_regular)
8542 return FALSE;
8543
8544 BFD_ASSERT ((h->got.offset & 1) != 0);
a6bb11b2 8545 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
a06ea964
NC
8546 rela.r_addend = (h->root.u.def.value
8547 + h->root.u.def.section->output_section->vma
8548 + h->root.u.def.section->output_offset);
8549 }
8550 else
8551 {
49206388 8552do_glob_dat:
a06ea964 8553 BFD_ASSERT ((h->got.offset & 1) == 0);
cec5225b 8554 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964 8555 htab->root.sgot->contents + h->got.offset);
a6bb11b2 8556 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
a06ea964
NC
8557 rela.r_addend = 0;
8558 }
8559
8560 loc = htab->root.srelgot->contents;
8561 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
cec5225b 8562 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
8563 }
8564
8565 if (h->needs_copy)
8566 {
8567 Elf_Internal_Rela rela;
8568 bfd_byte *loc;
8569
8570 /* This symbol needs a copy reloc. Set it up. */
8571
8572 if (h->dynindx == -1
8573 || (h->root.type != bfd_link_hash_defined
8574 && h->root.type != bfd_link_hash_defweak)
8575 || htab->srelbss == NULL)
8576 abort ();
8577
8578 rela.r_offset = (h->root.u.def.value
8579 + h->root.u.def.section->output_section->vma
8580 + h->root.u.def.section->output_offset);
a6bb11b2 8581 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
a06ea964
NC
8582 rela.r_addend = 0;
8583 loc = htab->srelbss->contents;
8584 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
cec5225b 8585 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
8586 }
8587
8588 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
8589 be NULL for local symbols. */
8590 if (sym != NULL
9637f6ef 8591 && (h == elf_hash_table (info)->hdynamic
a06ea964
NC
8592 || h == elf_hash_table (info)->hgot))
8593 sym->st_shndx = SHN_ABS;
8594
8595 return TRUE;
8596}
8597
1419bbe5
WN
8598/* Finish up local dynamic symbol handling. We set the contents of
8599 various dynamic sections here. */
8600
8601static bfd_boolean
8602elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
8603{
8604 struct elf_link_hash_entry *h
8605 = (struct elf_link_hash_entry *) *slot;
8606 struct bfd_link_info *info
8607 = (struct bfd_link_info *) inf;
8608
8609 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
8610 info, h, NULL);
8611}
8612
a06ea964 8613static void
cec5225b
YZ
8614elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
8615 struct elf_aarch64_link_hash_table
a06ea964
NC
8616 *htab)
8617{
8618 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
8619 small and large plts and at the minute just generates
8620 the small PLT. */
8621
cec5225b 8622 /* PLT0 of the small PLT looks like this in ELF64 -
a06ea964
NC
8623 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
8624 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
8625 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
8626 // symbol resolver
8627 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
8628 // GOTPLT entry for this.
8629 br x17
cec5225b
YZ
8630 PLT0 will be slightly different in ELF32 due to different got entry
8631 size.
a06ea964 8632 */
caed7120 8633 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
a06ea964
NC
8634 bfd_vma plt_base;
8635
8636
cec5225b 8637 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
a06ea964
NC
8638 PLT_ENTRY_SIZE);
8639 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
8640 PLT_ENTRY_SIZE;
8641
caed7120
YZ
8642 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
8643 + htab->root.sgotplt->output_offset
8644 + GOT_ENTRY_SIZE * 2);
a06ea964
NC
8645
8646 plt_base = htab->root.splt->output_section->vma +
f44a1f8e 8647 htab->root.splt->output_offset;
a06ea964
NC
8648
8649 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8650 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
8651 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8652 htab->root.splt->contents + 4,
8653 PG (plt_got_2nd_ent) - PG (plt_base + 4));
a06ea964 8654
caed7120
YZ
8655 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8656 htab->root.splt->contents + 8,
8657 PG_OFFSET (plt_got_2nd_ent));
a06ea964 8658
caed7120
YZ
8659 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8660 htab->root.splt->contents + 12,
8661 PG_OFFSET (plt_got_2nd_ent));
a06ea964
NC
8662}
8663
8664static bfd_boolean
cec5225b 8665elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
a06ea964
NC
8666 struct bfd_link_info *info)
8667{
cec5225b 8668 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
8669 bfd *dynobj;
8670 asection *sdyn;
8671
cec5225b 8672 htab = elf_aarch64_hash_table (info);
a06ea964
NC
8673 dynobj = htab->root.dynobj;
8674 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
8675
8676 if (htab->root.dynamic_sections_created)
8677 {
cec5225b 8678 ElfNN_External_Dyn *dyncon, *dynconend;
a06ea964
NC
8679
8680 if (sdyn == NULL || htab->root.sgot == NULL)
8681 abort ();
8682
cec5225b
YZ
8683 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
8684 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
a06ea964
NC
8685 for (; dyncon < dynconend; dyncon++)
8686 {
8687 Elf_Internal_Dyn dyn;
8688 asection *s;
8689
cec5225b 8690 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
a06ea964
NC
8691
8692 switch (dyn.d_tag)
8693 {
8694 default:
8695 continue;
8696
8697 case DT_PLTGOT:
8698 s = htab->root.sgotplt;
8699 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8700 break;
8701
8702 case DT_JMPREL:
8703 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
8704 break;
8705
8706 case DT_PLTRELSZ:
c955de36 8707 s = htab->root.srelplt;
a06ea964
NC
8708 dyn.d_un.d_val = s->size;
8709 break;
8710
8711 case DT_RELASZ:
8712 /* The procedure linkage table relocs (DT_JMPREL) should
8713 not be included in the overall relocs (DT_RELA).
8714 Therefore, we override the DT_RELASZ entry here to
8715 make it not include the JMPREL relocs. Since the
8716 linker script arranges for .rela.plt to follow all
8717 other relocation sections, we don't have to worry
8718 about changing the DT_RELA entry. */
8719 if (htab->root.srelplt != NULL)
8720 {
c955de36 8721 s = htab->root.srelplt;
a06ea964
NC
8722 dyn.d_un.d_val -= s->size;
8723 }
8724 break;
8725
8726 case DT_TLSDESC_PLT:
8727 s = htab->root.splt;
8728 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
8729 + htab->tlsdesc_plt;
8730 break;
8731
8732 case DT_TLSDESC_GOT:
8733 s = htab->root.sgot;
8734 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
8735 + htab->dt_tlsdesc_got;
8736 break;
8737 }
8738
cec5225b 8739 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
a06ea964
NC
8740 }
8741
8742 }
8743
8744 /* Fill in the special first entry in the procedure linkage table. */
8745 if (htab->root.splt && htab->root.splt->size > 0)
8746 {
cec5225b 8747 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
a06ea964
NC
8748
8749 elf_section_data (htab->root.splt->output_section)->
8750 this_hdr.sh_entsize = htab->plt_entry_size;
8751
8752
8753 if (htab->tlsdesc_plt)
8754 {
cec5225b 8755 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
8756 htab->root.sgot->contents + htab->dt_tlsdesc_got);
8757
8758 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
cec5225b
YZ
8759 elfNN_aarch64_tlsdesc_small_plt_entry,
8760 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
a06ea964
NC
8761
8762 {
8763 bfd_vma adrp1_addr =
8764 htab->root.splt->output_section->vma
8765 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
8766
caed7120 8767 bfd_vma adrp2_addr = adrp1_addr + 4;
a06ea964
NC
8768
8769 bfd_vma got_addr =
8770 htab->root.sgot->output_section->vma
8771 + htab->root.sgot->output_offset;
8772
8773 bfd_vma pltgot_addr =
8774 htab->root.sgotplt->output_section->vma
8775 + htab->root.sgotplt->output_offset;
8776
8777 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
caed7120
YZ
8778
8779 bfd_byte *plt_entry =
8780 htab->root.splt->contents + htab->tlsdesc_plt;
a06ea964
NC
8781
8782 /* adrp x2, DT_TLSDESC_GOT */
caed7120
YZ
8783 elf_aarch64_update_plt_entry (output_bfd,
8784 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8785 plt_entry + 4,
8786 (PG (dt_tlsdesc_got)
8787 - PG (adrp1_addr)));
a06ea964
NC
8788
8789 /* adrp x3, 0 */
caed7120
YZ
8790 elf_aarch64_update_plt_entry (output_bfd,
8791 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8792 plt_entry + 8,
8793 (PG (pltgot_addr)
8794 - PG (adrp2_addr)));
a06ea964
NC
8795
8796 /* ldr x2, [x2, #0] */
caed7120
YZ
8797 elf_aarch64_update_plt_entry (output_bfd,
8798 BFD_RELOC_AARCH64_LDSTNN_LO12,
8799 plt_entry + 12,
8800 PG_OFFSET (dt_tlsdesc_got));
a06ea964
NC
8801
8802 /* add x3, x3, 0 */
caed7120
YZ
8803 elf_aarch64_update_plt_entry (output_bfd,
8804 BFD_RELOC_AARCH64_ADD_LO12,
8805 plt_entry + 16,
8806 PG_OFFSET (pltgot_addr));
a06ea964
NC
8807 }
8808 }
8809 }
8810
8811 if (htab->root.sgotplt)
8812 {
8813 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
8814 {
8815 (*_bfd_error_handler)
8816 (_("discarded output section: `%A'"), htab->root.sgotplt);
8817 return FALSE;
8818 }
8819
8820 /* Fill in the first three entries in the global offset table. */
8821 if (htab->root.sgotplt->size > 0)
8822 {
8db339a6
MS
8823 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
8824
a06ea964 8825 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
cec5225b 8826 bfd_put_NN (output_bfd,
a06ea964
NC
8827 (bfd_vma) 0,
8828 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
cec5225b 8829 bfd_put_NN (output_bfd,
a06ea964
NC
8830 (bfd_vma) 0,
8831 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
8832 }
8833
8db339a6
MS
8834 if (htab->root.sgot)
8835 {
8836 if (htab->root.sgot->size > 0)
8837 {
8838 bfd_vma addr =
8839 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
8840 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
8841 }
8842 }
8843
a06ea964
NC
8844 elf_section_data (htab->root.sgotplt->output_section)->
8845 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
8846 }
8847
8848 if (htab->root.sgot && htab->root.sgot->size > 0)
8849 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
8850 = GOT_ENTRY_SIZE;
8851
1419bbe5
WN
8852 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
8853 htab_traverse (htab->loc_hash_table,
8854 elfNN_aarch64_finish_local_dynamic_symbol,
8855 info);
8856
a06ea964
NC
8857 return TRUE;
8858}
8859
8860/* Return address for Ith PLT stub in section PLT, for relocation REL
8861 or (bfd_vma) -1 if it should not be included. */
8862
8863static bfd_vma
cec5225b 8864elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
a06ea964
NC
8865 const arelent *rel ATTRIBUTE_UNUSED)
8866{
8867 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
8868}
8869
8870
8871/* We use this so we can override certain functions
8872 (though currently we don't). */
8873
cec5225b 8874const struct elf_size_info elfNN_aarch64_size_info =
a06ea964 8875{
cec5225b
YZ
8876 sizeof (ElfNN_External_Ehdr),
8877 sizeof (ElfNN_External_Phdr),
8878 sizeof (ElfNN_External_Shdr),
8879 sizeof (ElfNN_External_Rel),
8880 sizeof (ElfNN_External_Rela),
8881 sizeof (ElfNN_External_Sym),
8882 sizeof (ElfNN_External_Dyn),
a06ea964
NC
8883 sizeof (Elf_External_Note),
8884 4, /* Hash table entry size. */
8885 1, /* Internal relocs per external relocs. */
cec5225b
YZ
8886 ARCH_SIZE, /* Arch size. */
8887 LOG_FILE_ALIGN, /* Log_file_align. */
8888 ELFCLASSNN, EV_CURRENT,
8889 bfd_elfNN_write_out_phdrs,
8890 bfd_elfNN_write_shdrs_and_ehdr,
8891 bfd_elfNN_checksum_contents,
8892 bfd_elfNN_write_relocs,
8893 bfd_elfNN_swap_symbol_in,
8894 bfd_elfNN_swap_symbol_out,
8895 bfd_elfNN_slurp_reloc_table,
8896 bfd_elfNN_slurp_symbol_table,
8897 bfd_elfNN_swap_dyn_in,
8898 bfd_elfNN_swap_dyn_out,
8899 bfd_elfNN_swap_reloc_in,
8900 bfd_elfNN_swap_reloc_out,
8901 bfd_elfNN_swap_reloca_in,
8902 bfd_elfNN_swap_reloca_out
a06ea964
NC
8903};
8904
8905#define ELF_ARCH bfd_arch_aarch64
8906#define ELF_MACHINE_CODE EM_AARCH64
8907#define ELF_MAXPAGESIZE 0x10000
8908#define ELF_MINPAGESIZE 0x1000
8909#define ELF_COMMONPAGESIZE 0x1000
8910
cec5225b
YZ
8911#define bfd_elfNN_close_and_cleanup \
8912 elfNN_aarch64_close_and_cleanup
a06ea964 8913
cec5225b
YZ
8914#define bfd_elfNN_bfd_free_cached_info \
8915 elfNN_aarch64_bfd_free_cached_info
a06ea964 8916
cec5225b
YZ
8917#define bfd_elfNN_bfd_is_target_special_symbol \
8918 elfNN_aarch64_is_target_special_symbol
a06ea964 8919
cec5225b
YZ
8920#define bfd_elfNN_bfd_link_hash_table_create \
8921 elfNN_aarch64_link_hash_table_create
a06ea964 8922
cec5225b
YZ
8923#define bfd_elfNN_bfd_merge_private_bfd_data \
8924 elfNN_aarch64_merge_private_bfd_data
a06ea964 8925
cec5225b
YZ
8926#define bfd_elfNN_bfd_print_private_bfd_data \
8927 elfNN_aarch64_print_private_bfd_data
a06ea964 8928
cec5225b
YZ
8929#define bfd_elfNN_bfd_reloc_type_lookup \
8930 elfNN_aarch64_reloc_type_lookup
a06ea964 8931
cec5225b
YZ
8932#define bfd_elfNN_bfd_reloc_name_lookup \
8933 elfNN_aarch64_reloc_name_lookup
a06ea964 8934
cec5225b
YZ
8935#define bfd_elfNN_bfd_set_private_flags \
8936 elfNN_aarch64_set_private_flags
a06ea964 8937
cec5225b
YZ
8938#define bfd_elfNN_find_inliner_info \
8939 elfNN_aarch64_find_inliner_info
a06ea964 8940
cec5225b
YZ
8941#define bfd_elfNN_find_nearest_line \
8942 elfNN_aarch64_find_nearest_line
a06ea964 8943
cec5225b
YZ
8944#define bfd_elfNN_mkobject \
8945 elfNN_aarch64_mkobject
a06ea964 8946
cec5225b
YZ
8947#define bfd_elfNN_new_section_hook \
8948 elfNN_aarch64_new_section_hook
a06ea964
NC
8949
8950#define elf_backend_adjust_dynamic_symbol \
cec5225b 8951 elfNN_aarch64_adjust_dynamic_symbol
a06ea964
NC
8952
8953#define elf_backend_always_size_sections \
cec5225b 8954 elfNN_aarch64_always_size_sections
a06ea964
NC
8955
8956#define elf_backend_check_relocs \
cec5225b 8957 elfNN_aarch64_check_relocs
a06ea964
NC
8958
8959#define elf_backend_copy_indirect_symbol \
cec5225b 8960 elfNN_aarch64_copy_indirect_symbol
a06ea964
NC
8961
8962/* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
8963 to them in our hash. */
8964#define elf_backend_create_dynamic_sections \
cec5225b 8965 elfNN_aarch64_create_dynamic_sections
a06ea964
NC
8966
8967#define elf_backend_init_index_section \
8968 _bfd_elf_init_2_index_sections
8969
a06ea964 8970#define elf_backend_finish_dynamic_sections \
cec5225b 8971 elfNN_aarch64_finish_dynamic_sections
a06ea964
NC
8972
8973#define elf_backend_finish_dynamic_symbol \
cec5225b 8974 elfNN_aarch64_finish_dynamic_symbol
a06ea964
NC
8975
8976#define elf_backend_gc_sweep_hook \
cec5225b 8977 elfNN_aarch64_gc_sweep_hook
a06ea964
NC
8978
8979#define elf_backend_object_p \
cec5225b 8980 elfNN_aarch64_object_p
a06ea964
NC
8981
8982#define elf_backend_output_arch_local_syms \
cec5225b 8983 elfNN_aarch64_output_arch_local_syms
a06ea964
NC
8984
8985#define elf_backend_plt_sym_val \
cec5225b 8986 elfNN_aarch64_plt_sym_val
a06ea964
NC
8987
8988#define elf_backend_post_process_headers \
cec5225b 8989 elfNN_aarch64_post_process_headers
a06ea964
NC
8990
8991#define elf_backend_relocate_section \
cec5225b 8992 elfNN_aarch64_relocate_section
a06ea964
NC
8993
8994#define elf_backend_reloc_type_class \
cec5225b 8995 elfNN_aarch64_reloc_type_class
a06ea964 8996
a06ea964 8997#define elf_backend_section_from_shdr \
cec5225b 8998 elfNN_aarch64_section_from_shdr
a06ea964
NC
8999
9000#define elf_backend_size_dynamic_sections \
cec5225b 9001 elfNN_aarch64_size_dynamic_sections
a06ea964
NC
9002
9003#define elf_backend_size_info \
cec5225b 9004 elfNN_aarch64_size_info
a06ea964 9005
68fcca92
JW
9006#define elf_backend_write_section \
9007 elfNN_aarch64_write_section
9008
a06ea964 9009#define elf_backend_can_refcount 1
59c108f7 9010#define elf_backend_can_gc_sections 1
a06ea964
NC
9011#define elf_backend_plt_readonly 1
9012#define elf_backend_want_got_plt 1
9013#define elf_backend_want_plt_sym 0
9014#define elf_backend_may_use_rel_p 0
9015#define elf_backend_may_use_rela_p 1
9016#define elf_backend_default_use_rela_p 1
2e0488d3 9017#define elf_backend_rela_normal 1
a06ea964 9018#define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
c495064d 9019#define elf_backend_default_execstack 0
32f573bc 9020#define elf_backend_extern_protected_data 1
a06ea964
NC
9021
9022#undef elf_backend_obj_attrs_section
9023#define elf_backend_obj_attrs_section ".ARM.attributes"
9024
cec5225b 9025#include "elfNN-target.h"
This page took 0.915846 seconds and 4 git commands to generate.