Fix linker testsuite failures for Aarch64.
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
CommitLineData
cec5225b 1/* AArch64-specific support for NN-bit ELF.
4b95cf5c 2 Copyright (C) 2009-2014 Free Software Foundation, Inc.
a06ea964
NC
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21/* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
418009c2 43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
a06ea964
NC
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
a6bb11b2 53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
a06ea964
NC
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
a6bb11b2 67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
a06ea964
NC
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
a6bb11b2 72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
a06ea964
NC
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
cec5225b 95 elfNN_aarch64_check_relocs()
a06ea964
NC
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
a6bb11b2 100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
a06ea964
NC
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
cec5225b 107 elfNN_aarch64_allocate_dynrelocs ()
a06ea964
NC
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
cec5225b 115 elfNN_aarch64_size_dynamic_sections ()
a06ea964
NC
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
cec5225b 122 elfNN_aarch64_relocate_section ()
a06ea964 123
cec5225b 124 Calls elfNN_aarch64_final_link_relocate ()
a06ea964
NC
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
cec5225b 134 elfNN_aarch64_final_link_relocate ()
a06ea964
NC
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138#include "sysdep.h"
139#include "bfd.h"
140#include "libiberty.h"
141#include "libbfd.h"
142#include "bfd_stdint.h"
143#include "elf-bfd.h"
144#include "bfdlink.h"
1419bbe5 145#include "objalloc.h"
a06ea964 146#include "elf/aarch64.h"
caed7120 147#include "elfxx-aarch64.h"
a06ea964 148
cec5225b
YZ
149#define ARCH_SIZE NN
150
151#if ARCH_SIZE == 64
152#define AARCH64_R(NAME) R_AARCH64_ ## NAME
153#define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
a6bb11b2
YZ
154#define HOWTO64(...) HOWTO (__VA_ARGS__)
155#define HOWTO32(...) EMPTY_HOWTO (0)
cec5225b
YZ
156#define LOG_FILE_ALIGN 3
157#endif
158
159#if ARCH_SIZE == 32
160#define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161#define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
a6bb11b2
YZ
162#define HOWTO64(...) EMPTY_HOWTO (0)
163#define HOWTO32(...) HOWTO (__VA_ARGS__)
cec5225b
YZ
164#define LOG_FILE_ALIGN 2
165#endif
166
a6bb11b2
YZ
167#define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
a06ea964
NC
187 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
188
a6bb11b2
YZ
189#define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
190 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC)
a06ea964
NC
202
203#define ELIMINATE_COPY_RELOCS 0
204
a06ea964 205/* Return size of a relocation entry. HTAB is the bfd's
cec5225b
YZ
206 elf_aarch64_link_hash_entry. */
207#define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
a06ea964 208
cec5225b
YZ
209/* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
210#define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
a06ea964
NC
211#define PLT_ENTRY_SIZE (32)
212#define PLT_SMALL_ENTRY_SIZE (16)
213#define PLT_TLSDESC_ENTRY_SIZE (32)
214
a06ea964
NC
215/* Encoding of the nop instruction */
216#define INSN_NOP 0xd503201f
217
218#define aarch64_compute_jump_table_size(htab) \
219 (((htab)->root.srelplt == NULL) ? 0 \
220 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
221
222/* The first entry in a procedure linkage table looks like this
223 if the distance between the PLTGOT and the PLT is < 4GB use
224 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
225 in x16 and needs to work out PLTGOT[1] by using an address of
cec5225b
YZ
226 [x16,#-GOT_ENTRY_SIZE]. */
227static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
a06ea964
NC
228{
229 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
230 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
caed7120 231#if ARCH_SIZE == 64
a06ea964
NC
232 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
233 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
caed7120
YZ
234#else
235 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
236 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
237#endif
a06ea964
NC
238 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
239 0x1f, 0x20, 0x03, 0xd5, /* nop */
240 0x1f, 0x20, 0x03, 0xd5, /* nop */
241 0x1f, 0x20, 0x03, 0xd5, /* nop */
242};
243
244/* Per function entry in a procedure linkage table looks like this
245 if the distance between the PLTGOT and the PLT is < 4GB use
246 these PLT entries. */
cec5225b 247static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
a06ea964
NC
248{
249 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
caed7120 250#if ARCH_SIZE == 64
a06ea964
NC
251 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
252 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
caed7120
YZ
253#else
254 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
255 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
256#endif
a06ea964
NC
257 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
258};
259
260static const bfd_byte
cec5225b 261elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
a06ea964
NC
262{
263 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
264 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
265 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
caed7120
YZ
266#if ARCH_SIZE == 64
267 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
a06ea964 268 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
caed7120
YZ
269#else
270 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
271 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
272#endif
273 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
a06ea964
NC
274 0x1f, 0x20, 0x03, 0xd5, /* nop */
275 0x1f, 0x20, 0x03, 0xd5, /* nop */
276};
277
cec5225b
YZ
278#define elf_info_to_howto elfNN_aarch64_info_to_howto
279#define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
a06ea964
NC
280
281#define AARCH64_ELF_ABI_VERSION 0
a06ea964
NC
282
283/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
284#define ALL_ONES (~ (bfd_vma) 0)
285
a6bb11b2
YZ
286/* Indexed by the bfd interal reloc enumerators.
287 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
288 in reloc.c. */
a06ea964 289
a6bb11b2 290static reloc_howto_type elfNN_aarch64_howto_table[] =
a06ea964 291{
a6bb11b2 292 EMPTY_HOWTO (0),
a06ea964 293
a6bb11b2 294 /* Basic data relocations. */
a06ea964 295
a6bb11b2
YZ
296#if ARCH_SIZE == 64
297 HOWTO (R_AARCH64_NULL, /* type */
a06ea964 298 0, /* rightshift */
a6bb11b2
YZ
299 0, /* size (0 = byte, 1 = short, 2 = long) */
300 0, /* bitsize */
a06ea964
NC
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 305 "R_AARCH64_NULL", /* name */
a06ea964
NC
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
a6bb11b2 308 0, /* dst_mask */
a06ea964 309 FALSE), /* pcrel_offset */
a6bb11b2
YZ
310#else
311 HOWTO (R_AARCH64_NONE, /* type */
a06ea964
NC
312 0, /* rightshift */
313 0, /* size (0 = byte, 1 = short, 2 = long) */
314 0, /* bitsize */
315 FALSE, /* pc_relative */
316 0, /* bitpos */
317 complain_overflow_dont, /* complain_on_overflow */
318 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 319 "R_AARCH64_NONE", /* name */
a06ea964
NC
320 FALSE, /* partial_inplace */
321 0, /* src_mask */
322 0, /* dst_mask */
323 FALSE), /* pcrel_offset */
a6bb11b2 324#endif
a06ea964
NC
325
326 /* .xword: (S+A) */
a6bb11b2 327 HOWTO64 (AARCH64_R (ABS64), /* type */
a06ea964
NC
328 0, /* rightshift */
329 4, /* size (4 = long long) */
330 64, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_unsigned, /* complain_on_overflow */
334 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 335 AARCH64_R_STR (ABS64), /* name */
a06ea964
NC
336 FALSE, /* partial_inplace */
337 ALL_ONES, /* src_mask */
338 ALL_ONES, /* dst_mask */
339 FALSE), /* pcrel_offset */
340
341 /* .word: (S+A) */
a6bb11b2 342 HOWTO (AARCH64_R (ABS32), /* type */
a06ea964
NC
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_unsigned, /* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 350 AARCH64_R_STR (ABS32), /* name */
a06ea964
NC
351 FALSE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 /* .half: (S+A) */
a6bb11b2 357 HOWTO (AARCH64_R (ABS16), /* type */
a06ea964
NC
358 0, /* rightshift */
359 1, /* size (0 = byte, 1 = short, 2 = long) */
360 16, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
363 complain_overflow_unsigned, /* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 365 AARCH64_R_STR (ABS16), /* name */
a06ea964
NC
366 FALSE, /* partial_inplace */
367 0xffff, /* src_mask */
368 0xffff, /* dst_mask */
369 FALSE), /* pcrel_offset */
370
371 /* .xword: (S+A-P) */
a6bb11b2 372 HOWTO64 (AARCH64_R (PREL64), /* type */
a06ea964
NC
373 0, /* rightshift */
374 4, /* size (4 = long long) */
375 64, /* bitsize */
376 TRUE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_signed, /* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 380 AARCH64_R_STR (PREL64), /* name */
a06ea964
NC
381 FALSE, /* partial_inplace */
382 ALL_ONES, /* src_mask */
383 ALL_ONES, /* dst_mask */
384 TRUE), /* pcrel_offset */
385
386 /* .word: (S+A-P) */
a6bb11b2 387 HOWTO (AARCH64_R (PREL32), /* type */
a06ea964
NC
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 395 AARCH64_R_STR (PREL32), /* name */
a06ea964
NC
396 FALSE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* .half: (S+A-P) */
a6bb11b2 402 HOWTO (AARCH64_R (PREL16), /* type */
a06ea964
NC
403 0, /* rightshift */
404 1, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 410 AARCH64_R_STR (PREL16), /* name */
a06ea964
NC
411 FALSE, /* partial_inplace */
412 0xffff, /* src_mask */
413 0xffff, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* Group relocations to create a 16, 32, 48 or 64 bit
417 unsigned data or abs address inline. */
418
419 /* MOVZ: ((S+A) >> 0) & 0xffff */
a6bb11b2 420 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
a06ea964
NC
421 0, /* rightshift */
422 2, /* size (0 = byte, 1 = short, 2 = long) */
423 16, /* bitsize */
424 FALSE, /* pc_relative */
425 0, /* bitpos */
426 complain_overflow_unsigned, /* complain_on_overflow */
427 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 428 AARCH64_R_STR (MOVW_UABS_G0), /* name */
a06ea964
NC
429 FALSE, /* partial_inplace */
430 0xffff, /* src_mask */
431 0xffff, /* dst_mask */
432 FALSE), /* pcrel_offset */
433
434 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
a6bb11b2 435 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
a06ea964
NC
436 0, /* rightshift */
437 2, /* size (0 = byte, 1 = short, 2 = long) */
438 16, /* bitsize */
439 FALSE, /* pc_relative */
440 0, /* bitpos */
441 complain_overflow_dont, /* complain_on_overflow */
442 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 443 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
a06ea964
NC
444 FALSE, /* partial_inplace */
445 0xffff, /* src_mask */
446 0xffff, /* dst_mask */
447 FALSE), /* pcrel_offset */
448
449 /* MOVZ: ((S+A) >> 16) & 0xffff */
a6bb11b2 450 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
a06ea964
NC
451 16, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 16, /* bitsize */
454 FALSE, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_unsigned, /* complain_on_overflow */
457 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 458 AARCH64_R_STR (MOVW_UABS_G1), /* name */
a06ea964
NC
459 FALSE, /* partial_inplace */
460 0xffff, /* src_mask */
461 0xffff, /* dst_mask */
462 FALSE), /* pcrel_offset */
463
464 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
a6bb11b2 465 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
a06ea964
NC
466 16, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 FALSE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_dont, /* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 473 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
a06ea964
NC
474 FALSE, /* partial_inplace */
475 0xffff, /* src_mask */
476 0xffff, /* dst_mask */
477 FALSE), /* pcrel_offset */
478
479 /* MOVZ: ((S+A) >> 32) & 0xffff */
a6bb11b2 480 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
a06ea964
NC
481 32, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 16, /* bitsize */
484 FALSE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_unsigned, /* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 488 AARCH64_R_STR (MOVW_UABS_G2), /* name */
a06ea964
NC
489 FALSE, /* partial_inplace */
490 0xffff, /* src_mask */
491 0xffff, /* dst_mask */
492 FALSE), /* pcrel_offset */
493
494 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
a6bb11b2 495 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
a06ea964
NC
496 32, /* rightshift */
497 2, /* size (0 = byte, 1 = short, 2 = long) */
498 16, /* bitsize */
499 FALSE, /* pc_relative */
500 0, /* bitpos */
501 complain_overflow_dont, /* complain_on_overflow */
502 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 503 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
a06ea964
NC
504 FALSE, /* partial_inplace */
505 0xffff, /* src_mask */
506 0xffff, /* dst_mask */
507 FALSE), /* pcrel_offset */
508
509 /* MOVZ: ((S+A) >> 48) & 0xffff */
a6bb11b2 510 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
a06ea964
NC
511 48, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 16, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_unsigned, /* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 518 AARCH64_R_STR (MOVW_UABS_G3), /* name */
a06ea964
NC
519 FALSE, /* partial_inplace */
520 0xffff, /* src_mask */
521 0xffff, /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
525 signed data or abs address inline. Will change instruction
526 to MOVN or MOVZ depending on sign of calculated value. */
527
528 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
a6bb11b2 529 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
a06ea964
NC
530 0, /* rightshift */
531 2, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed, /* complain_on_overflow */
536 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 537 AARCH64_R_STR (MOVW_SABS_G0), /* name */
a06ea964
NC
538 FALSE, /* partial_inplace */
539 0xffff, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
a6bb11b2 544 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
a06ea964
NC
545 16, /* rightshift */
546 2, /* size (0 = byte, 1 = short, 2 = long) */
547 16, /* bitsize */
548 FALSE, /* pc_relative */
549 0, /* bitpos */
550 complain_overflow_signed, /* complain_on_overflow */
551 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 552 AARCH64_R_STR (MOVW_SABS_G1), /* name */
a06ea964
NC
553 FALSE, /* partial_inplace */
554 0xffff, /* src_mask */
555 0xffff, /* dst_mask */
556 FALSE), /* pcrel_offset */
557
558 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
a6bb11b2 559 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
a06ea964
NC
560 32, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 16, /* bitsize */
563 FALSE, /* pc_relative */
564 0, /* bitpos */
565 complain_overflow_signed, /* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 567 AARCH64_R_STR (MOVW_SABS_G2), /* name */
a06ea964
NC
568 FALSE, /* partial_inplace */
569 0xffff, /* src_mask */
570 0xffff, /* dst_mask */
571 FALSE), /* pcrel_offset */
572
573/* Relocations to generate 19, 21 and 33 bit PC-relative load/store
574 addresses: PG(x) is (x & ~0xfff). */
575
576 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 577 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
a06ea964
NC
578 2, /* rightshift */
579 2, /* size (0 = byte, 1 = short, 2 = long) */
580 19, /* bitsize */
581 TRUE, /* pc_relative */
582 0, /* bitpos */
583 complain_overflow_signed, /* complain_on_overflow */
584 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 585 AARCH64_R_STR (LD_PREL_LO19), /* name */
a06ea964
NC
586 FALSE, /* partial_inplace */
587 0x7ffff, /* src_mask */
588 0x7ffff, /* dst_mask */
589 TRUE), /* pcrel_offset */
590
591 /* ADR: (S+A-P) & 0x1fffff */
a6bb11b2 592 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
a06ea964
NC
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 21, /* bitsize */
596 TRUE, /* pc_relative */
597 0, /* bitpos */
598 complain_overflow_signed, /* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 600 AARCH64_R_STR (ADR_PREL_LO21), /* name */
a06ea964
NC
601 FALSE, /* partial_inplace */
602 0x1fffff, /* src_mask */
603 0x1fffff, /* dst_mask */
604 TRUE), /* pcrel_offset */
605
606 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
a6bb11b2 607 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
a06ea964
NC
608 12, /* rightshift */
609 2, /* size (0 = byte, 1 = short, 2 = long) */
610 21, /* bitsize */
611 TRUE, /* pc_relative */
612 0, /* bitpos */
613 complain_overflow_signed, /* complain_on_overflow */
614 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 615 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
a06ea964
NC
616 FALSE, /* partial_inplace */
617 0x1fffff, /* src_mask */
618 0x1fffff, /* dst_mask */
619 TRUE), /* pcrel_offset */
620
621 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
a6bb11b2 622 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
a06ea964
NC
623 12, /* rightshift */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
625 21, /* bitsize */
626 TRUE, /* pc_relative */
627 0, /* bitpos */
628 complain_overflow_dont, /* complain_on_overflow */
629 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 630 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
a06ea964
NC
631 FALSE, /* partial_inplace */
632 0x1fffff, /* src_mask */
633 0x1fffff, /* dst_mask */
634 TRUE), /* pcrel_offset */
635
636 /* ADD: (S+A) & 0xfff [no overflow check] */
a6bb11b2 637 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
a06ea964
NC
638 0, /* rightshift */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
640 12, /* bitsize */
641 FALSE, /* pc_relative */
642 10, /* bitpos */
643 complain_overflow_dont, /* complain_on_overflow */
644 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 645 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
a06ea964
NC
646 FALSE, /* partial_inplace */
647 0x3ffc00, /* src_mask */
648 0x3ffc00, /* dst_mask */
649 FALSE), /* pcrel_offset */
650
651 /* LD/ST8: (S+A) & 0xfff */
a6bb11b2 652 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
a06ea964
NC
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 12, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 660 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
a06ea964
NC
661 FALSE, /* partial_inplace */
662 0xfff, /* src_mask */
663 0xfff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Relocations for control-flow instructions. */
667
668 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
a6bb11b2 669 HOWTO (AARCH64_R (TSTBR14), /* type */
a06ea964
NC
670 2, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 14, /* bitsize */
673 TRUE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_signed, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 677 AARCH64_R_STR (TSTBR14), /* name */
a06ea964
NC
678 FALSE, /* partial_inplace */
679 0x3fff, /* src_mask */
680 0x3fff, /* dst_mask */
681 TRUE), /* pcrel_offset */
682
683 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 684 HOWTO (AARCH64_R (CONDBR19), /* type */
a06ea964
NC
685 2, /* rightshift */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
687 19, /* bitsize */
688 TRUE, /* pc_relative */
689 0, /* bitpos */
690 complain_overflow_signed, /* complain_on_overflow */
691 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 692 AARCH64_R_STR (CONDBR19), /* name */
a06ea964
NC
693 FALSE, /* partial_inplace */
694 0x7ffff, /* src_mask */
695 0x7ffff, /* dst_mask */
696 TRUE), /* pcrel_offset */
697
a06ea964 698 /* B: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 699 HOWTO (AARCH64_R (JUMP26), /* type */
a06ea964
NC
700 2, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 26, /* bitsize */
703 TRUE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_signed, /* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 707 AARCH64_R_STR (JUMP26), /* name */
a06ea964
NC
708 FALSE, /* partial_inplace */
709 0x3ffffff, /* src_mask */
710 0x3ffffff, /* dst_mask */
711 TRUE), /* pcrel_offset */
712
713 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 714 HOWTO (AARCH64_R (CALL26), /* type */
a06ea964
NC
715 2, /* rightshift */
716 2, /* size (0 = byte, 1 = short, 2 = long) */
717 26, /* bitsize */
718 TRUE, /* pc_relative */
719 0, /* bitpos */
720 complain_overflow_signed, /* complain_on_overflow */
721 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 722 AARCH64_R_STR (CALL26), /* name */
a06ea964
NC
723 FALSE, /* partial_inplace */
724 0x3ffffff, /* src_mask */
725 0x3ffffff, /* dst_mask */
726 TRUE), /* pcrel_offset */
727
728 /* LD/ST16: (S+A) & 0xffe */
a6bb11b2 729 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
a06ea964
NC
730 1, /* rightshift */
731 2, /* size (0 = byte, 1 = short, 2 = long) */
732 12, /* bitsize */
733 FALSE, /* pc_relative */
734 0, /* bitpos */
735 complain_overflow_dont, /* complain_on_overflow */
736 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 737 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
a06ea964
NC
738 FALSE, /* partial_inplace */
739 0xffe, /* src_mask */
740 0xffe, /* dst_mask */
741 FALSE), /* pcrel_offset */
742
743 /* LD/ST32: (S+A) & 0xffc */
a6bb11b2 744 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
a06ea964
NC
745 2, /* rightshift */
746 2, /* size (0 = byte, 1 = short, 2 = long) */
747 12, /* bitsize */
748 FALSE, /* pc_relative */
749 0, /* bitpos */
750 complain_overflow_dont, /* complain_on_overflow */
751 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 752 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
a06ea964
NC
753 FALSE, /* partial_inplace */
754 0xffc, /* src_mask */
755 0xffc, /* dst_mask */
756 FALSE), /* pcrel_offset */
757
758 /* LD/ST64: (S+A) & 0xff8 */
a6bb11b2 759 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
a06ea964
NC
760 3, /* rightshift */
761 2, /* size (0 = byte, 1 = short, 2 = long) */
762 12, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_dont, /* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 767 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
a06ea964
NC
768 FALSE, /* partial_inplace */
769 0xff8, /* src_mask */
770 0xff8, /* dst_mask */
771 FALSE), /* pcrel_offset */
772
a06ea964 773 /* LD/ST128: (S+A) & 0xff0 */
a6bb11b2 774 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
a06ea964
NC
775 4, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 12, /* bitsize */
778 FALSE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont, /* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 782 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
a06ea964
NC
783 FALSE, /* partial_inplace */
784 0xff0, /* src_mask */
785 0xff0, /* dst_mask */
786 FALSE), /* pcrel_offset */
787
f41aef5f
RE
788 /* Set a load-literal immediate field to bits
789 0x1FFFFC of G(S)-P */
a6bb11b2 790 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
f41aef5f
RE
791 2, /* rightshift */
792 2, /* size (0 = byte,1 = short,2 = long) */
793 19, /* bitsize */
794 TRUE, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_signed, /* complain_on_overflow */
797 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 798 AARCH64_R_STR (GOT_LD_PREL19), /* name */
f41aef5f
RE
799 FALSE, /* partial_inplace */
800 0xffffe0, /* src_mask */
801 0xffffe0, /* dst_mask */
802 TRUE), /* pcrel_offset */
803
a06ea964
NC
804 /* Get to the page for the GOT entry for the symbol
805 (G(S) - P) using an ADRP instruction. */
a6bb11b2 806 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
a06ea964
NC
807 12, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 21, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 814 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
a06ea964
NC
815 FALSE, /* partial_inplace */
816 0x1fffff, /* src_mask */
817 0x1fffff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
a6bb11b2
YZ
820 /* LD64: GOT offset G(S) & 0xff8 */
821 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
a06ea964
NC
822 3, /* rightshift */
823 2, /* size (0 = byte, 1 = short, 2 = long) */
824 12, /* bitsize */
825 FALSE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_dont, /* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 829 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
a06ea964
NC
830 FALSE, /* partial_inplace */
831 0xff8, /* src_mask */
832 0xff8, /* dst_mask */
a6bb11b2 833 FALSE), /* pcrel_offset */
a06ea964 834
a6bb11b2
YZ
835 /* LD32: GOT offset G(S) & 0xffc */
836 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
837 2, /* rightshift */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
839 12, /* bitsize */
840 FALSE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont, /* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
845 FALSE, /* partial_inplace */
846 0xffc, /* src_mask */
847 0xffc, /* dst_mask */
848 FALSE), /* pcrel_offset */
a06ea964
NC
849
850 /* Get to the page for the GOT entry for the symbol
851 (G(S) - P) using an ADRP instruction. */
a6bb11b2 852 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
a06ea964
NC
853 12, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 21, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 860 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
a06ea964
NC
861 FALSE, /* partial_inplace */
862 0x1fffff, /* src_mask */
863 0x1fffff, /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
a6bb11b2 867 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
a06ea964
NC
868 0, /* rightshift */
869 2, /* size (0 = byte, 1 = short, 2 = long) */
870 12, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 875 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
a06ea964
NC
876 FALSE, /* partial_inplace */
877 0xfff, /* src_mask */
878 0xfff, /* dst_mask */
879 FALSE), /* pcrel_offset */
880
a6bb11b2 881 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
a06ea964
NC
882 16, /* rightshift */
883 2, /* size (0 = byte, 1 = short, 2 = long) */
884 16, /* bitsize */
885 FALSE, /* pc_relative */
886 0, /* bitpos */
887 complain_overflow_dont, /* complain_on_overflow */
888 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 889 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
a06ea964
NC
890 FALSE, /* partial_inplace */
891 0xffff, /* src_mask */
892 0xffff, /* dst_mask */
893 FALSE), /* pcrel_offset */
894
a6bb11b2 895 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
a06ea964
NC
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 FALSE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 903 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
a06ea964
NC
904 FALSE, /* partial_inplace */
905 0xffff, /* src_mask */
906 0xffff, /* dst_mask */
907 FALSE), /* pcrel_offset */
908
a6bb11b2 909 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
a06ea964
NC
910 12, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 21, /* bitsize */
913 FALSE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 917 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
a06ea964
NC
918 FALSE, /* partial_inplace */
919 0x1fffff, /* src_mask */
920 0x1fffff, /* dst_mask */
921 FALSE), /* pcrel_offset */
922
a6bb11b2 923 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
a06ea964
NC
924 3, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 12, /* bitsize */
927 FALSE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont, /* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 931 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
a06ea964
NC
932 FALSE, /* partial_inplace */
933 0xff8, /* src_mask */
934 0xff8, /* dst_mask */
935 FALSE), /* pcrel_offset */
936
a6bb11b2
YZ
937 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
938 2, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 12, /* bitsize */
941 FALSE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
946 FALSE, /* partial_inplace */
947 0xffc, /* src_mask */
948 0xffc, /* dst_mask */
949 FALSE), /* pcrel_offset */
950
951 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
bb3f9ed8 952 2, /* rightshift */
a06ea964
NC
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 21, /* bitsize */
955 FALSE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 959 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
a06ea964
NC
960 FALSE, /* partial_inplace */
961 0x1ffffc, /* src_mask */
962 0x1ffffc, /* dst_mask */
963 FALSE), /* pcrel_offset */
964
a6bb11b2 965 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
bb3f9ed8 966 32, /* rightshift */
a06ea964
NC
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 12, /* bitsize */
969 FALSE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 973 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
a06ea964
NC
974 FALSE, /* partial_inplace */
975 0xffff, /* src_mask */
976 0xffff, /* dst_mask */
977 FALSE), /* pcrel_offset */
978
a6bb11b2 979 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
bb3f9ed8 980 16, /* rightshift */
a06ea964
NC
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 12, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 987 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
a06ea964
NC
988 FALSE, /* partial_inplace */
989 0xffff, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
a6bb11b2 993 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
bb3f9ed8 994 16, /* rightshift */
a06ea964
NC
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 12, /* bitsize */
997 FALSE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont, /* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1001 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
a06ea964
NC
1002 FALSE, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE), /* pcrel_offset */
1006
a6bb11b2 1007 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
a06ea964
NC
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 12, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont, /* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1015 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
a06ea964
NC
1016 FALSE, /* partial_inplace */
1017 0xffff, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
a6bb11b2 1021 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
a06ea964
NC
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 12, /* bitsize */
1025 FALSE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont, /* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1029 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
a06ea964
NC
1030 FALSE, /* partial_inplace */
1031 0xffff, /* src_mask */
1032 0xffff, /* dst_mask */
1033 FALSE), /* pcrel_offset */
1034
a6bb11b2 1035 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
bb3f9ed8 1036 12, /* rightshift */
a06ea964
NC
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 12, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1043 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
a06ea964
NC
1044 FALSE, /* partial_inplace */
1045 0xfff, /* src_mask */
1046 0xfff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
a6bb11b2 1049 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
a06ea964
NC
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 12, /* bitsize */
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1057 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
a06ea964
NC
1058 FALSE, /* partial_inplace */
1059 0xfff, /* src_mask */
1060 0xfff, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
a6bb11b2 1063 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
a06ea964
NC
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 12, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1071 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
a06ea964
NC
1072 FALSE, /* partial_inplace */
1073 0xfff, /* src_mask */
1074 0xfff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
a06ea964 1076
a6bb11b2 1077 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
bb3f9ed8 1078 2, /* rightshift */
a06ea964
NC
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 21, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont, /* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1085 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
a06ea964
NC
1086 FALSE, /* partial_inplace */
1087 0x1ffffc, /* src_mask */
1088 0x1ffffc, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
a6bb11b2 1091 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
a06ea964
NC
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 21, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1099 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
a06ea964
NC
1100 FALSE, /* partial_inplace */
1101 0x1fffff, /* src_mask */
1102 0x1fffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 /* Get to the page for the GOT entry for the symbol
1106 (G(S) - P) using an ADRP instruction. */
a6bb11b2 1107 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
a06ea964
NC
1108 12, /* rightshift */
1109 2, /* size (0 = byte, 1 = short, 2 = long) */
1110 21, /* bitsize */
1111 TRUE, /* pc_relative */
1112 0, /* bitpos */
1113 complain_overflow_dont, /* complain_on_overflow */
1114 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1115 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
a06ea964
NC
1116 FALSE, /* partial_inplace */
1117 0x1fffff, /* src_mask */
1118 0x1fffff, /* dst_mask */
1119 TRUE), /* pcrel_offset */
1120
a6bb11b2
YZ
1121 /* LD64: GOT offset G(S) & 0xff8. */
1122 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
a06ea964
NC
1123 3, /* rightshift */
1124 2, /* size (0 = byte, 1 = short, 2 = long) */
1125 12, /* bitsize */
1126 FALSE, /* pc_relative */
1127 0, /* bitpos */
1128 complain_overflow_dont, /* complain_on_overflow */
1129 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1130 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
a06ea964 1131 FALSE, /* partial_inplace */
a6bb11b2
YZ
1132 0xff8, /* src_mask */
1133 0xff8, /* dst_mask */
1134 FALSE), /* pcrel_offset */
1135
1136 /* LD32: GOT offset G(S) & 0xffc. */
1137 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1138 2, /* rightshift */
1139 2, /* size (0 = byte, 1 = short, 2 = long) */
1140 12, /* bitsize */
1141 FALSE, /* pc_relative */
1142 0, /* bitpos */
1143 complain_overflow_dont, /* complain_on_overflow */
1144 bfd_elf_generic_reloc, /* special_function */
1145 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1146 FALSE, /* partial_inplace */
1147 0xffc, /* src_mask */
1148 0xffc, /* dst_mask */
a06ea964
NC
1149 FALSE), /* pcrel_offset */
1150
1151 /* ADD: GOT offset G(S) & 0xfff. */
a6bb11b2 1152 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
a06ea964
NC
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 12, /* bitsize */
1156 FALSE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont, /* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1160 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
a06ea964
NC
1161 FALSE, /* partial_inplace */
1162 0xfff, /* src_mask */
1163 0xfff, /* dst_mask */
1164 FALSE), /* pcrel_offset */
1165
a6bb11b2 1166 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
bb3f9ed8 1167 16, /* rightshift */
a06ea964
NC
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 12, /* bitsize */
1170 FALSE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont, /* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1174 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
a06ea964
NC
1175 FALSE, /* partial_inplace */
1176 0xffff, /* src_mask */
1177 0xffff, /* dst_mask */
1178 FALSE), /* pcrel_offset */
1179
a6bb11b2 1180 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
a06ea964
NC
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 12, /* bitsize */
1184 FALSE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont, /* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1188 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
a06ea964
NC
1189 FALSE, /* partial_inplace */
1190 0xffff, /* src_mask */
1191 0xffff, /* dst_mask */
1192 FALSE), /* pcrel_offset */
1193
a6bb11b2 1194 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
a06ea964
NC
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 12, /* bitsize */
1198 FALSE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont, /* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1202 AARCH64_R_STR (TLSDESC_LDR), /* name */
a06ea964
NC
1203 FALSE, /* partial_inplace */
1204 0x0, /* src_mask */
1205 0x0, /* dst_mask */
1206 FALSE), /* pcrel_offset */
1207
a6bb11b2 1208 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
a06ea964
NC
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 12, /* bitsize */
1212 FALSE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont, /* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1216 AARCH64_R_STR (TLSDESC_ADD), /* name */
a06ea964
NC
1217 FALSE, /* partial_inplace */
1218 0x0, /* src_mask */
1219 0x0, /* dst_mask */
1220 FALSE), /* pcrel_offset */
1221
a6bb11b2 1222 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
a06ea964
NC
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 12, /* bitsize */
1226 FALSE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont, /* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1230 AARCH64_R_STR (TLSDESC_CALL), /* name */
a06ea964
NC
1231 FALSE, /* partial_inplace */
1232 0x0, /* src_mask */
1233 0x0, /* dst_mask */
1234 FALSE), /* pcrel_offset */
a6bb11b2
YZ
1235
1236 HOWTO (AARCH64_R (COPY), /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 64, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_bitfield, /* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 AARCH64_R_STR (COPY), /* name */
1245 TRUE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 64, /* bitsize */
1254 FALSE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_bitfield, /* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 AARCH64_R_STR (GLOB_DAT), /* name */
1259 TRUE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 FALSE), /* pcrel_offset */
1263
1264 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1265 0, /* rightshift */
1266 2, /* size (0 = byte, 1 = short, 2 = long) */
1267 64, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_bitfield, /* complain_on_overflow */
1271 bfd_elf_generic_reloc, /* special_function */
1272 AARCH64_R_STR (JUMP_SLOT), /* name */
1273 TRUE, /* partial_inplace */
1274 0xffffffff, /* src_mask */
1275 0xffffffff, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 HOWTO (AARCH64_R (RELATIVE), /* type */
1279 0, /* rightshift */
1280 2, /* size (0 = byte, 1 = short, 2 = long) */
1281 64, /* bitsize */
1282 FALSE, /* pc_relative */
1283 0, /* bitpos */
1284 complain_overflow_bitfield, /* complain_on_overflow */
1285 bfd_elf_generic_reloc, /* special_function */
1286 AARCH64_R_STR (RELATIVE), /* name */
1287 TRUE, /* partial_inplace */
1288 ALL_ONES, /* src_mask */
1289 ALL_ONES, /* dst_mask */
1290 FALSE), /* pcrel_offset */
1291
1292 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1293 0, /* rightshift */
1294 2, /* size (0 = byte, 1 = short, 2 = long) */
1295 64, /* bitsize */
1296 FALSE, /* pc_relative */
1297 0, /* bitpos */
1298 complain_overflow_dont, /* complain_on_overflow */
1299 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1300#if ARCH_SIZE == 64
1301 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1302#else
a6bb11b2 1303 AARCH64_R_STR (TLS_DTPMOD), /* name */
da0781dc 1304#endif
a6bb11b2
YZ
1305 FALSE, /* partial_inplace */
1306 0, /* src_mask */
1307 ALL_ONES, /* dst_mask */
1308 FALSE), /* pc_reloffset */
1309
1310 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 64, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1318#if ARCH_SIZE == 64
1319 AARCH64_R_STR (TLS_DTPREL64), /* name */
1320#else
a6bb11b2 1321 AARCH64_R_STR (TLS_DTPREL), /* name */
da0781dc 1322#endif
a6bb11b2
YZ
1323 FALSE, /* partial_inplace */
1324 0, /* src_mask */
1325 ALL_ONES, /* dst_mask */
1326 FALSE), /* pcrel_offset */
1327
1328 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1329 0, /* rightshift */
1330 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 64, /* bitsize */
1332 FALSE, /* pc_relative */
1333 0, /* bitpos */
1334 complain_overflow_dont, /* complain_on_overflow */
1335 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1336#if ARCH_SIZE == 64
1337 AARCH64_R_STR (TLS_TPREL64), /* name */
1338#else
a6bb11b2 1339 AARCH64_R_STR (TLS_TPREL), /* name */
da0781dc 1340#endif
a6bb11b2
YZ
1341 FALSE, /* partial_inplace */
1342 0, /* src_mask */
1343 ALL_ONES, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (AARCH64_R (TLSDESC), /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 64, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont, /* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 AARCH64_R_STR (TLSDESC), /* name */
1355 FALSE, /* partial_inplace */
1356 0, /* src_mask */
1357 ALL_ONES, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
1360 HOWTO (AARCH64_R (IRELATIVE), /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 64, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield, /* complain_on_overflow */
1367 bfd_elf_generic_reloc, /* special_function */
1368 AARCH64_R_STR (IRELATIVE), /* name */
1369 FALSE, /* partial_inplace */
1370 0, /* src_mask */
1371 ALL_ONES, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 EMPTY_HOWTO (0),
a06ea964
NC
1375};
1376
a6bb11b2
YZ
1377static reloc_howto_type elfNN_aarch64_howto_none =
1378 HOWTO (R_AARCH64_NONE, /* type */
1379 0, /* rightshift */
1380 0, /* size (0 = byte, 1 = short, 2 = long) */
1381 0, /* bitsize */
1382 FALSE, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont,/* complain_on_overflow */
1385 bfd_elf_generic_reloc, /* special_function */
1386 "R_AARCH64_NONE", /* name */
1387 FALSE, /* partial_inplace */
1388 0, /* src_mask */
1389 0, /* dst_mask */
1390 FALSE); /* pcrel_offset */
1391
1392/* Given HOWTO, return the bfd internal relocation enumerator. */
1393
1394static bfd_reloc_code_real_type
1395elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1396{
1397 const int size
1398 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1399 const ptrdiff_t offset
1400 = howto - elfNN_aarch64_howto_table;
1401
1402 if (offset > 0 && offset < size - 1)
1403 return BFD_RELOC_AARCH64_RELOC_START + offset;
1404
1405 if (howto == &elfNN_aarch64_howto_none)
1406 return BFD_RELOC_AARCH64_NONE;
1407
1408 return BFD_RELOC_AARCH64_RELOC_START;
1409}
1410
1411/* Given R_TYPE, return the bfd internal relocation enumerator. */
1412
1413static bfd_reloc_code_real_type
1414elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1415{
1416 static bfd_boolean initialized_p = FALSE;
1417 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1418 static unsigned int offsets[R_AARCH64_end];
1419
1420 if (initialized_p == FALSE)
1421 {
1422 unsigned int i;
1423
1424 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1425 if (elfNN_aarch64_howto_table[i].type != 0)
1426 offsets[elfNN_aarch64_howto_table[i].type] = i;
1427
1428 initialized_p = TRUE;
1429 }
1430
1431 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1432 return BFD_RELOC_AARCH64_NONE;
1433
1434 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1435}
1436
1437struct elf_aarch64_reloc_map
1438{
1439 bfd_reloc_code_real_type from;
1440 bfd_reloc_code_real_type to;
1441};
1442
1443/* Map bfd generic reloc to AArch64-specific reloc. */
1444static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1445{
1446 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1447
1448 /* Basic data relocations. */
1449 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1450 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1451 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1452 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1453 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1454 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1455 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1456};
1457
1458/* Given the bfd internal relocation enumerator in CODE, return the
1459 corresponding howto entry. */
1460
1461static reloc_howto_type *
1462elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1463{
1464 unsigned int i;
1465
1466 /* Convert bfd generic reloc to AArch64-specific reloc. */
1467 if (code < BFD_RELOC_AARCH64_RELOC_START
1468 || code > BFD_RELOC_AARCH64_RELOC_END)
1469 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1470 if (elf_aarch64_reloc_map[i].from == code)
1471 {
1472 code = elf_aarch64_reloc_map[i].to;
1473 break;
1474 }
1475
1476 if (code > BFD_RELOC_AARCH64_RELOC_START
1477 && code < BFD_RELOC_AARCH64_RELOC_END)
1478 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1479 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1480
54757ed1
AP
1481 if (code == BFD_RELOC_AARCH64_NONE)
1482 return &elfNN_aarch64_howto_none;
1483
a6bb11b2
YZ
1484 return NULL;
1485}
1486
a06ea964 1487static reloc_howto_type *
cec5225b 1488elfNN_aarch64_howto_from_type (unsigned int r_type)
a06ea964 1489{
a6bb11b2
YZ
1490 bfd_reloc_code_real_type val;
1491 reloc_howto_type *howto;
1492
cec5225b
YZ
1493#if ARCH_SIZE == 32
1494 if (r_type > 256)
1495 {
1496 bfd_set_error (bfd_error_bad_value);
1497 return NULL;
1498 }
1499#endif
1500
a6bb11b2
YZ
1501 if (r_type == R_AARCH64_NONE)
1502 return &elfNN_aarch64_howto_none;
a06ea964 1503
a6bb11b2
YZ
1504 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1505 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
a06ea964 1506
a6bb11b2
YZ
1507 if (howto != NULL)
1508 return howto;
a06ea964 1509
a06ea964
NC
1510 bfd_set_error (bfd_error_bad_value);
1511 return NULL;
1512}
1513
1514static void
cec5225b 1515elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
a06ea964
NC
1516 Elf_Internal_Rela *elf_reloc)
1517{
1518 unsigned int r_type;
1519
cec5225b
YZ
1520 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1521 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
1522}
1523
a06ea964 1524static reloc_howto_type *
cec5225b 1525elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1526 bfd_reloc_code_real_type code)
1527{
a6bb11b2 1528 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
a06ea964 1529
a6bb11b2
YZ
1530 if (howto != NULL)
1531 return howto;
a06ea964
NC
1532
1533 bfd_set_error (bfd_error_bad_value);
1534 return NULL;
1535}
1536
1537static reloc_howto_type *
cec5225b 1538elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1539 const char *r_name)
1540{
1541 unsigned int i;
1542
a6bb11b2
YZ
1543 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1544 if (elfNN_aarch64_howto_table[i].name != NULL
1545 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
1546 return &elfNN_aarch64_howto_table[i];
a06ea964
NC
1547
1548 return NULL;
1549}
1550
6d00b590 1551#define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
cec5225b 1552#define TARGET_LITTLE_NAME "elfNN-littleaarch64"
6d00b590 1553#define TARGET_BIG_SYM aarch64_elfNN_be_vec
cec5225b 1554#define TARGET_BIG_NAME "elfNN-bigaarch64"
a06ea964 1555
a06ea964
NC
1556/* The linker script knows the section names for placement.
1557 The entry_names are used to do simple name mangling on the stubs.
1558 Given a function name, and its type, the stub can be found. The
1559 name can be changed. The only requirement is the %s be present. */
1560#define STUB_ENTRY_NAME "__%s_veneer"
1561
1562/* The name of the dynamic interpreter. This is put in the .interp
1563 section. */
1564#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1565
1566#define AARCH64_MAX_FWD_BRANCH_OFFSET \
1567 (((1 << 25) - 1) << 2)
1568#define AARCH64_MAX_BWD_BRANCH_OFFSET \
1569 (-((1 << 25) << 2))
1570
1571#define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1572#define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1573
1574static int
1575aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
1576{
1577 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
1578 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
1579}
1580
1581static int
1582aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
1583{
1584 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
1585 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
1586 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
1587}
1588
1589static const uint32_t aarch64_adrp_branch_stub [] =
1590{
1591 0x90000010, /* adrp ip0, X */
1592 /* R_AARCH64_ADR_HI21_PCREL(X) */
1593 0x91000210, /* add ip0, ip0, :lo12:X */
1594 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
1595 0xd61f0200, /* br ip0 */
1596};
1597
1598static const uint32_t aarch64_long_branch_stub[] =
1599{
cec5225b 1600#if ARCH_SIZE == 64
a06ea964 1601 0x58000090, /* ldr ip0, 1f */
cec5225b
YZ
1602#else
1603 0x18000090, /* ldr wip0, 1f */
1604#endif
a06ea964
NC
1605 0x10000011, /* adr ip1, #0 */
1606 0x8b110210, /* add ip0, ip0, ip1 */
1607 0xd61f0200, /* br ip0 */
cec5225b
YZ
1608 0x00000000, /* 1: .xword or .word
1609 R_AARCH64_PRELNN(X) + 12
a06ea964
NC
1610 */
1611 0x00000000,
1612};
1613
1614/* Section name for stubs is the associated section name plus this
1615 string. */
1616#define STUB_SUFFIX ".stub"
1617
cec5225b 1618enum elf_aarch64_stub_type
a06ea964
NC
1619{
1620 aarch64_stub_none,
1621 aarch64_stub_adrp_branch,
1622 aarch64_stub_long_branch,
1623};
1624
cec5225b 1625struct elf_aarch64_stub_hash_entry
a06ea964
NC
1626{
1627 /* Base hash table entry structure. */
1628 struct bfd_hash_entry root;
1629
1630 /* The stub section. */
1631 asection *stub_sec;
1632
1633 /* Offset within stub_sec of the beginning of this stub. */
1634 bfd_vma stub_offset;
1635
1636 /* Given the symbol's value and its section we can determine its final
1637 value when building the stubs (so the stub knows where to jump). */
1638 bfd_vma target_value;
1639 asection *target_section;
1640
cec5225b 1641 enum elf_aarch64_stub_type stub_type;
a06ea964
NC
1642
1643 /* The symbol table entry, if any, that this was derived from. */
cec5225b 1644 struct elf_aarch64_link_hash_entry *h;
a06ea964
NC
1645
1646 /* Destination symbol type */
1647 unsigned char st_type;
1648
1649 /* Where this stub is being called from, or, in the case of combined
1650 stub sections, the first input section in the group. */
1651 asection *id_sec;
1652
1653 /* The name for the local symbol at the start of this stub. The
1654 stub name in the hash table has to be unique; this does not, so
1655 it can be friendlier. */
1656 char *output_name;
1657};
1658
1659/* Used to build a map of a section. This is required for mixed-endian
1660 code/data. */
1661
cec5225b 1662typedef struct elf_elf_section_map
a06ea964
NC
1663{
1664 bfd_vma vma;
1665 char type;
1666}
cec5225b 1667elf_aarch64_section_map;
a06ea964
NC
1668
1669
1670typedef struct _aarch64_elf_section_data
1671{
1672 struct bfd_elf_section_data elf;
1673 unsigned int mapcount;
1674 unsigned int mapsize;
cec5225b 1675 elf_aarch64_section_map *map;
a06ea964
NC
1676}
1677_aarch64_elf_section_data;
1678
cec5225b 1679#define elf_aarch64_section_data(sec) \
a06ea964
NC
1680 ((_aarch64_elf_section_data *) elf_section_data (sec))
1681
4e8516b2
AP
1682/* The size of the thread control block which is defined to be two pointers. */
1683#define TCB_SIZE (ARCH_SIZE/8)*2
a06ea964
NC
1684
1685struct elf_aarch64_local_symbol
1686{
1687 unsigned int got_type;
1688 bfd_signed_vma got_refcount;
1689 bfd_vma got_offset;
1690
1691 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
1692 offset is from the end of the jump table and reserved entries
1693 within the PLTGOT.
1694
1695 The magic value (bfd_vma) -1 indicates that an offset has not be
1696 allocated. */
1697 bfd_vma tlsdesc_got_jump_table_offset;
1698};
1699
1700struct elf_aarch64_obj_tdata
1701{
1702 struct elf_obj_tdata root;
1703
1704 /* local symbol descriptors */
1705 struct elf_aarch64_local_symbol *locals;
1706
1707 /* Zero to warn when linking objects with incompatible enum sizes. */
1708 int no_enum_size_warning;
1709
1710 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
1711 int no_wchar_size_warning;
1712};
1713
1714#define elf_aarch64_tdata(bfd) \
1715 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
1716
cec5225b 1717#define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
a06ea964
NC
1718
1719#define is_aarch64_elf(bfd) \
1720 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1721 && elf_tdata (bfd) != NULL \
1722 && elf_object_id (bfd) == AARCH64_ELF_DATA)
1723
1724static bfd_boolean
cec5225b 1725elfNN_aarch64_mkobject (bfd *abfd)
a06ea964
NC
1726{
1727 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
1728 AARCH64_ELF_DATA);
1729}
1730
cec5225b
YZ
1731#define elf_aarch64_hash_entry(ent) \
1732 ((struct elf_aarch64_link_hash_entry *)(ent))
a06ea964
NC
1733
1734#define GOT_UNKNOWN 0
1735#define GOT_NORMAL 1
1736#define GOT_TLS_GD 2
1737#define GOT_TLS_IE 4
1738#define GOT_TLSDESC_GD 8
1739
1740#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
1741
1742/* AArch64 ELF linker hash entry. */
cec5225b 1743struct elf_aarch64_link_hash_entry
a06ea964
NC
1744{
1745 struct elf_link_hash_entry root;
1746
1747 /* Track dynamic relocs copied for this symbol. */
1748 struct elf_dyn_relocs *dyn_relocs;
1749
a06ea964
NC
1750 /* Since PLT entries have variable size, we need to record the
1751 index into .got.plt instead of recomputing it from the PLT
1752 offset. */
1753 bfd_signed_vma plt_got_offset;
1754
1755 /* Bit mask representing the type of GOT entry(s) if any required by
1756 this symbol. */
1757 unsigned int got_type;
1758
1759 /* A pointer to the most recently used stub hash entry against this
1760 symbol. */
cec5225b 1761 struct elf_aarch64_stub_hash_entry *stub_cache;
a06ea964
NC
1762
1763 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
1764 is from the end of the jump table and reserved entries within the PLTGOT.
1765
1766 The magic value (bfd_vma) -1 indicates that an offset has not
1767 be allocated. */
1768 bfd_vma tlsdesc_got_jump_table_offset;
1769};
1770
1771static unsigned int
cec5225b 1772elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
a06ea964
NC
1773 bfd *abfd,
1774 unsigned long r_symndx)
1775{
1776 if (h)
cec5225b 1777 return elf_aarch64_hash_entry (h)->got_type;
a06ea964 1778
cec5225b 1779 if (! elf_aarch64_locals (abfd))
a06ea964
NC
1780 return GOT_UNKNOWN;
1781
cec5225b 1782 return elf_aarch64_locals (abfd)[r_symndx].got_type;
a06ea964
NC
1783}
1784
a06ea964 1785/* Get the AArch64 elf linker hash table from a link_info structure. */
cec5225b
YZ
1786#define elf_aarch64_hash_table(info) \
1787 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
a06ea964
NC
1788
1789#define aarch64_stub_hash_lookup(table, string, create, copy) \
cec5225b 1790 ((struct elf_aarch64_stub_hash_entry *) \
a06ea964
NC
1791 bfd_hash_lookup ((table), (string), (create), (copy)))
1792
1793/* AArch64 ELF linker hash table. */
cec5225b 1794struct elf_aarch64_link_hash_table
a06ea964
NC
1795{
1796 /* The main hash table. */
1797 struct elf_link_hash_table root;
1798
1799 /* Nonzero to force PIC branch veneers. */
1800 int pic_veneer;
1801
1802 /* The number of bytes in the initial entry in the PLT. */
1803 bfd_size_type plt_header_size;
1804
1805 /* The number of bytes in the subsequent PLT etries. */
1806 bfd_size_type plt_entry_size;
1807
1808 /* Short-cuts to get to dynamic linker sections. */
1809 asection *sdynbss;
1810 asection *srelbss;
1811
1812 /* Small local sym cache. */
1813 struct sym_cache sym_cache;
1814
1815 /* For convenience in allocate_dynrelocs. */
1816 bfd *obfd;
1817
1818 /* The amount of space used by the reserved portion of the sgotplt
1819 section, plus whatever space is used by the jump slots. */
1820 bfd_vma sgotplt_jump_table_size;
1821
1822 /* The stub hash table. */
1823 struct bfd_hash_table stub_hash_table;
1824
1825 /* Linker stub bfd. */
1826 bfd *stub_bfd;
1827
1828 /* Linker call-backs. */
1829 asection *(*add_stub_section) (const char *, asection *);
1830 void (*layout_sections_again) (void);
1831
1832 /* Array to keep track of which stub sections have been created, and
1833 information on stub grouping. */
1834 struct map_stub
1835 {
1836 /* This is the section to which stubs in the group will be
1837 attached. */
1838 asection *link_sec;
1839 /* The stub section. */
1840 asection *stub_sec;
1841 } *stub_group;
1842
cec5225b 1843 /* Assorted information used by elfNN_aarch64_size_stubs. */
a06ea964
NC
1844 unsigned int bfd_count;
1845 int top_index;
1846 asection **input_list;
1847
1848 /* The offset into splt of the PLT entry for the TLS descriptor
1849 resolver. Special values are 0, if not necessary (or not found
1850 to be necessary yet), and -1 if needed but not determined
1851 yet. */
1852 bfd_vma tlsdesc_plt;
1853
1854 /* The GOT offset for the lazy trampoline. Communicated to the
1855 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
1856 indicates an offset is not allocated. */
1857 bfd_vma dt_tlsdesc_got;
1419bbe5
WN
1858
1859 /* Used by local STT_GNU_IFUNC symbols. */
1860 htab_t loc_hash_table;
1861 void * loc_hash_memory;
a06ea964
NC
1862};
1863
a06ea964
NC
1864/* Create an entry in an AArch64 ELF linker hash table. */
1865
1866static struct bfd_hash_entry *
cec5225b 1867elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
a06ea964
NC
1868 struct bfd_hash_table *table,
1869 const char *string)
1870{
cec5225b
YZ
1871 struct elf_aarch64_link_hash_entry *ret =
1872 (struct elf_aarch64_link_hash_entry *) entry;
a06ea964
NC
1873
1874 /* Allocate the structure if it has not already been allocated by a
1875 subclass. */
1876 if (ret == NULL)
1877 ret = bfd_hash_allocate (table,
cec5225b 1878 sizeof (struct elf_aarch64_link_hash_entry));
a06ea964
NC
1879 if (ret == NULL)
1880 return (struct bfd_hash_entry *) ret;
1881
1882 /* Call the allocation method of the superclass. */
cec5225b 1883 ret = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
1884 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1885 table, string));
1886 if (ret != NULL)
1887 {
1888 ret->dyn_relocs = NULL;
a06ea964
NC
1889 ret->got_type = GOT_UNKNOWN;
1890 ret->plt_got_offset = (bfd_vma) - 1;
1891 ret->stub_cache = NULL;
1892 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
1893 }
1894
1895 return (struct bfd_hash_entry *) ret;
1896}
1897
1898/* Initialize an entry in the stub hash table. */
1899
1900static struct bfd_hash_entry *
1901stub_hash_newfunc (struct bfd_hash_entry *entry,
1902 struct bfd_hash_table *table, const char *string)
1903{
1904 /* Allocate the structure if it has not already been allocated by a
1905 subclass. */
1906 if (entry == NULL)
1907 {
1908 entry = bfd_hash_allocate (table,
1909 sizeof (struct
cec5225b 1910 elf_aarch64_stub_hash_entry));
a06ea964
NC
1911 if (entry == NULL)
1912 return entry;
1913 }
1914
1915 /* Call the allocation method of the superclass. */
1916 entry = bfd_hash_newfunc (entry, table, string);
1917 if (entry != NULL)
1918 {
cec5225b 1919 struct elf_aarch64_stub_hash_entry *eh;
a06ea964
NC
1920
1921 /* Initialize the local fields. */
cec5225b 1922 eh = (struct elf_aarch64_stub_hash_entry *) entry;
a06ea964
NC
1923 eh->stub_sec = NULL;
1924 eh->stub_offset = 0;
1925 eh->target_value = 0;
1926 eh->target_section = NULL;
1927 eh->stub_type = aarch64_stub_none;
1928 eh->h = NULL;
1929 eh->id_sec = NULL;
1930 }
1931
1932 return entry;
1933}
1934
1419bbe5
WN
1935/* Compute a hash of a local hash entry. We use elf_link_hash_entry
1936 for local symbol so that we can handle local STT_GNU_IFUNC symbols
1937 as global symbol. We reuse indx and dynstr_index for local symbol
1938 hash since they aren't used by global symbols in this backend. */
1939
1940static hashval_t
1941elfNN_aarch64_local_htab_hash (const void *ptr)
1942{
1943 struct elf_link_hash_entry *h
1944 = (struct elf_link_hash_entry *) ptr;
1945 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
1946}
1947
1948/* Compare local hash entries. */
1949
1950static int
1951elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
1952{
1953 struct elf_link_hash_entry *h1
1954 = (struct elf_link_hash_entry *) ptr1;
1955 struct elf_link_hash_entry *h2
1956 = (struct elf_link_hash_entry *) ptr2;
1957
1958 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
1959}
1960
1961/* Find and/or create a hash entry for local symbol. */
1962
1963static struct elf_link_hash_entry *
1964elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
1965 bfd *abfd, const Elf_Internal_Rela *rel,
1966 bfd_boolean create)
1967{
1968 struct elf_aarch64_link_hash_entry e, *ret;
1969 asection *sec = abfd->sections;
1970 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
1971 ELFNN_R_SYM (rel->r_info));
1972 void **slot;
1973
1974 e.root.indx = sec->id;
1975 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1976 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
1977 create ? INSERT : NO_INSERT);
1978
1979 if (!slot)
1980 return NULL;
1981
1982 if (*slot)
1983 {
1984 ret = (struct elf_aarch64_link_hash_entry *) *slot;
1985 return &ret->root;
1986 }
1987
1988 ret = (struct elf_aarch64_link_hash_entry *)
1989 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
1990 sizeof (struct elf_aarch64_link_hash_entry));
1991 if (ret)
1992 {
1993 memset (ret, 0, sizeof (*ret));
1994 ret->root.indx = sec->id;
1995 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1996 ret->root.dynindx = -1;
1997 *slot = ret;
1998 }
1999 return &ret->root;
2000}
a06ea964
NC
2001
2002/* Copy the extra info we tack onto an elf_link_hash_entry. */
2003
2004static void
cec5225b 2005elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
a06ea964
NC
2006 struct elf_link_hash_entry *dir,
2007 struct elf_link_hash_entry *ind)
2008{
cec5225b 2009 struct elf_aarch64_link_hash_entry *edir, *eind;
a06ea964 2010
cec5225b
YZ
2011 edir = (struct elf_aarch64_link_hash_entry *) dir;
2012 eind = (struct elf_aarch64_link_hash_entry *) ind;
a06ea964
NC
2013
2014 if (eind->dyn_relocs != NULL)
2015 {
2016 if (edir->dyn_relocs != NULL)
2017 {
2018 struct elf_dyn_relocs **pp;
2019 struct elf_dyn_relocs *p;
2020
2021 /* Add reloc counts against the indirect sym to the direct sym
2022 list. Merge any entries against the same section. */
2023 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2024 {
2025 struct elf_dyn_relocs *q;
2026
2027 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2028 if (q->sec == p->sec)
2029 {
2030 q->pc_count += p->pc_count;
2031 q->count += p->count;
2032 *pp = p->next;
2033 break;
2034 }
2035 if (q == NULL)
2036 pp = &p->next;
2037 }
2038 *pp = edir->dyn_relocs;
2039 }
2040
2041 edir->dyn_relocs = eind->dyn_relocs;
2042 eind->dyn_relocs = NULL;
2043 }
2044
a06ea964
NC
2045 if (ind->root.type == bfd_link_hash_indirect)
2046 {
2047 /* Copy over PLT info. */
2048 if (dir->got.refcount <= 0)
2049 {
2050 edir->got_type = eind->got_type;
2051 eind->got_type = GOT_UNKNOWN;
2052 }
2053 }
2054
2055 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2056}
2057
68faa637
AM
2058/* Destroy an AArch64 elf linker hash table. */
2059
2060static void
d495ab0d 2061elfNN_aarch64_link_hash_table_free (bfd *obfd)
68faa637
AM
2062{
2063 struct elf_aarch64_link_hash_table *ret
d495ab0d 2064 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
68faa637
AM
2065
2066 if (ret->loc_hash_table)
2067 htab_delete (ret->loc_hash_table);
2068 if (ret->loc_hash_memory)
2069 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2070
2071 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 2072 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
2073}
2074
a06ea964
NC
2075/* Create an AArch64 elf linker hash table. */
2076
2077static struct bfd_link_hash_table *
cec5225b 2078elfNN_aarch64_link_hash_table_create (bfd *abfd)
a06ea964 2079{
cec5225b
YZ
2080 struct elf_aarch64_link_hash_table *ret;
2081 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
a06ea964 2082
7bf52ea2 2083 ret = bfd_zmalloc (amt);
a06ea964
NC
2084 if (ret == NULL)
2085 return NULL;
2086
2087 if (!_bfd_elf_link_hash_table_init
cec5225b
YZ
2088 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2089 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
a06ea964
NC
2090 {
2091 free (ret);
2092 return NULL;
2093 }
2094
a06ea964
NC
2095 ret->plt_header_size = PLT_ENTRY_SIZE;
2096 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
a06ea964 2097 ret->obfd = abfd;
a06ea964
NC
2098 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2099
2100 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
cec5225b 2101 sizeof (struct elf_aarch64_stub_hash_entry)))
a06ea964 2102 {
d495ab0d 2103 _bfd_elf_link_hash_table_free (abfd);
a06ea964
NC
2104 return NULL;
2105 }
2106
1419bbe5
WN
2107 ret->loc_hash_table = htab_try_create (1024,
2108 elfNN_aarch64_local_htab_hash,
2109 elfNN_aarch64_local_htab_eq,
2110 NULL);
2111 ret->loc_hash_memory = objalloc_create ();
2112 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2113 {
d495ab0d 2114 elfNN_aarch64_link_hash_table_free (abfd);
1419bbe5
WN
2115 return NULL;
2116 }
d495ab0d 2117 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
1419bbe5 2118
a06ea964
NC
2119 return &ret->root.root;
2120}
2121
a06ea964
NC
2122static bfd_boolean
2123aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2124 bfd_vma offset, bfd_vma value)
2125{
2126 reloc_howto_type *howto;
2127 bfd_vma place;
2128
cec5225b 2129 howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
2130 place = (input_section->output_section->vma + input_section->output_offset
2131 + offset);
caed7120
YZ
2132
2133 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2134 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2135 return _bfd_aarch64_elf_put_addend (input_bfd,
2136 input_section->contents + offset, r_type,
2137 howto, value);
a06ea964
NC
2138}
2139
cec5225b 2140static enum elf_aarch64_stub_type
a06ea964
NC
2141aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2142{
2143 if (aarch64_valid_for_adrp_p (value, place))
2144 return aarch64_stub_adrp_branch;
2145 return aarch64_stub_long_branch;
2146}
2147
2148/* Determine the type of stub needed, if any, for a call. */
2149
cec5225b 2150static enum elf_aarch64_stub_type
a06ea964
NC
2151aarch64_type_of_stub (struct bfd_link_info *info,
2152 asection *input_sec,
2153 const Elf_Internal_Rela *rel,
2154 unsigned char st_type,
cec5225b 2155 struct elf_aarch64_link_hash_entry *hash,
a06ea964
NC
2156 bfd_vma destination)
2157{
2158 bfd_vma location;
2159 bfd_signed_vma branch_offset;
2160 unsigned int r_type;
cec5225b
YZ
2161 struct elf_aarch64_link_hash_table *globals;
2162 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
a06ea964
NC
2163 bfd_boolean via_plt_p;
2164
2165 if (st_type != STT_FUNC)
2166 return stub_type;
2167
cec5225b 2168 globals = elf_aarch64_hash_table (info);
a06ea964
NC
2169 via_plt_p = (globals->root.splt != NULL && hash != NULL
2170 && hash->root.plt.offset != (bfd_vma) - 1);
2171
2172 if (via_plt_p)
2173 return stub_type;
2174
2175 /* Determine where the call point is. */
2176 location = (input_sec->output_offset
2177 + input_sec->output_section->vma + rel->r_offset);
2178
2179 branch_offset = (bfd_signed_vma) (destination - location);
2180
cec5225b 2181 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
2182
2183 /* We don't want to redirect any old unconditional jump in this way,
2184 only one which is being used for a sibcall, where it is
2185 acceptable for the IP0 and IP1 registers to be clobbered. */
a6bb11b2 2186 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
a06ea964
NC
2187 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2188 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2189 {
2190 stub_type = aarch64_stub_long_branch;
2191 }
2192
2193 return stub_type;
2194}
2195
2196/* Build a name for an entry in the stub hash table. */
2197
2198static char *
cec5225b 2199elfNN_aarch64_stub_name (const asection *input_section,
a06ea964 2200 const asection *sym_sec,
cec5225b 2201 const struct elf_aarch64_link_hash_entry *hash,
a06ea964
NC
2202 const Elf_Internal_Rela *rel)
2203{
2204 char *stub_name;
2205 bfd_size_type len;
2206
2207 if (hash)
2208 {
2209 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2210 stub_name = bfd_malloc (len);
2211 if (stub_name != NULL)
2212 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2213 (unsigned int) input_section->id,
2214 hash->root.root.root.string,
2215 rel->r_addend);
2216 }
2217 else
2218 {
2219 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2220 stub_name = bfd_malloc (len);
2221 if (stub_name != NULL)
2222 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2223 (unsigned int) input_section->id,
2224 (unsigned int) sym_sec->id,
cec5225b 2225 (unsigned int) ELFNN_R_SYM (rel->r_info),
a06ea964
NC
2226 rel->r_addend);
2227 }
2228
2229 return stub_name;
2230}
2231
2232/* Look up an entry in the stub hash. Stub entries are cached because
2233 creating the stub name takes a bit of time. */
2234
cec5225b
YZ
2235static struct elf_aarch64_stub_hash_entry *
2236elfNN_aarch64_get_stub_entry (const asection *input_section,
a06ea964
NC
2237 const asection *sym_sec,
2238 struct elf_link_hash_entry *hash,
2239 const Elf_Internal_Rela *rel,
cec5225b 2240 struct elf_aarch64_link_hash_table *htab)
a06ea964 2241{
cec5225b
YZ
2242 struct elf_aarch64_stub_hash_entry *stub_entry;
2243 struct elf_aarch64_link_hash_entry *h =
2244 (struct elf_aarch64_link_hash_entry *) hash;
a06ea964
NC
2245 const asection *id_sec;
2246
2247 if ((input_section->flags & SEC_CODE) == 0)
2248 return NULL;
2249
2250 /* If this input section is part of a group of sections sharing one
2251 stub section, then use the id of the first section in the group.
2252 Stub names need to include a section id, as there may well be
2253 more than one stub used to reach say, printf, and we need to
2254 distinguish between them. */
2255 id_sec = htab->stub_group[input_section->id].link_sec;
2256
2257 if (h != NULL && h->stub_cache != NULL
2258 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2259 {
2260 stub_entry = h->stub_cache;
2261 }
2262 else
2263 {
2264 char *stub_name;
2265
cec5225b 2266 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
a06ea964
NC
2267 if (stub_name == NULL)
2268 return NULL;
2269
2270 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2271 stub_name, FALSE, FALSE);
2272 if (h != NULL)
2273 h->stub_cache = stub_entry;
2274
2275 free (stub_name);
2276 }
2277
2278 return stub_entry;
2279}
2280
2281/* Add a new stub entry to the stub hash. Not all fields of the new
2282 stub entry are initialised. */
2283
cec5225b
YZ
2284static struct elf_aarch64_stub_hash_entry *
2285elfNN_aarch64_add_stub (const char *stub_name,
a06ea964 2286 asection *section,
cec5225b 2287 struct elf_aarch64_link_hash_table *htab)
a06ea964
NC
2288{
2289 asection *link_sec;
2290 asection *stub_sec;
cec5225b 2291 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2292
2293 link_sec = htab->stub_group[section->id].link_sec;
2294 stub_sec = htab->stub_group[section->id].stub_sec;
2295 if (stub_sec == NULL)
2296 {
2297 stub_sec = htab->stub_group[link_sec->id].stub_sec;
2298 if (stub_sec == NULL)
2299 {
2300 size_t namelen;
2301 bfd_size_type len;
2302 char *s_name;
2303
2304 namelen = strlen (link_sec->name);
2305 len = namelen + sizeof (STUB_SUFFIX);
2306 s_name = bfd_alloc (htab->stub_bfd, len);
2307 if (s_name == NULL)
2308 return NULL;
2309
2310 memcpy (s_name, link_sec->name, namelen);
2311 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2312 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
2313 if (stub_sec == NULL)
2314 return NULL;
2315 htab->stub_group[link_sec->id].stub_sec = stub_sec;
2316 }
2317 htab->stub_group[section->id].stub_sec = stub_sec;
2318 }
2319
2320 /* Enter this entry into the linker stub hash table. */
2321 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2322 TRUE, FALSE);
2323 if (stub_entry == NULL)
2324 {
2325 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2326 section->owner, stub_name);
2327 return NULL;
2328 }
2329
2330 stub_entry->stub_sec = stub_sec;
2331 stub_entry->stub_offset = 0;
2332 stub_entry->id_sec = link_sec;
2333
2334 return stub_entry;
2335}
2336
2337static bfd_boolean
2338aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2339 void *in_arg ATTRIBUTE_UNUSED)
2340{
cec5225b 2341 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2342 asection *stub_sec;
2343 bfd *stub_bfd;
2344 bfd_byte *loc;
2345 bfd_vma sym_value;
2346 unsigned int template_size;
2347 const uint32_t *template;
2348 unsigned int i;
2349
2350 /* Massage our args to the form they really have. */
cec5225b 2351 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
2352
2353 stub_sec = stub_entry->stub_sec;
2354
2355 /* Make a note of the offset within the stubs for this entry. */
2356 stub_entry->stub_offset = stub_sec->size;
2357 loc = stub_sec->contents + stub_entry->stub_offset;
2358
2359 stub_bfd = stub_sec->owner;
2360
2361 /* This is the address of the stub destination. */
2362 sym_value = (stub_entry->target_value
2363 + stub_entry->target_section->output_offset
2364 + stub_entry->target_section->output_section->vma);
2365
2366 if (stub_entry->stub_type == aarch64_stub_long_branch)
2367 {
2368 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2369 + stub_sec->output_offset);
2370
2371 /* See if we can relax the stub. */
2372 if (aarch64_valid_for_adrp_p (sym_value, place))
2373 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2374 }
2375
2376 switch (stub_entry->stub_type)
2377 {
2378 case aarch64_stub_adrp_branch:
2379 template = aarch64_adrp_branch_stub;
2380 template_size = sizeof (aarch64_adrp_branch_stub);
2381 break;
2382 case aarch64_stub_long_branch:
2383 template = aarch64_long_branch_stub;
2384 template_size = sizeof (aarch64_long_branch_stub);
2385 break;
2386 default:
2387 BFD_FAIL ();
2388 return FALSE;
2389 }
2390
2391 for (i = 0; i < (template_size / sizeof template[0]); i++)
2392 {
2393 bfd_putl32 (template[i], loc);
2394 loc += 4;
2395 }
2396
2397 template_size = (template_size + 7) & ~7;
2398 stub_sec->size += template_size;
2399
2400 switch (stub_entry->stub_type)
2401 {
2402 case aarch64_stub_adrp_branch:
a6bb11b2 2403 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
a06ea964
NC
2404 stub_entry->stub_offset, sym_value))
2405 /* The stub would not have been relaxed if the offset was out
2406 of range. */
2407 BFD_FAIL ();
2408
2409 _bfd_final_link_relocate
a6bb11b2 2410 (elfNN_aarch64_howto_from_type (AARCH64_R (ADD_ABS_LO12_NC)),
a06ea964
NC
2411 stub_bfd,
2412 stub_sec,
2413 stub_sec->contents,
2414 stub_entry->stub_offset + 4,
2415 sym_value,
2416 0);
2417 break;
2418
2419 case aarch64_stub_long_branch:
2420 /* We want the value relative to the address 12 bytes back from the
2421 value itself. */
cec5225b 2422 _bfd_final_link_relocate (elfNN_aarch64_howto_from_type
a6bb11b2 2423 (AARCH64_R (PRELNN)), stub_bfd, stub_sec,
a06ea964
NC
2424 stub_sec->contents,
2425 stub_entry->stub_offset + 16,
2426 sym_value + 12, 0);
2427 break;
2428 default:
2429 break;
2430 }
2431
2432 return TRUE;
2433}
2434
2435/* As above, but don't actually build the stub. Just bump offset so
2436 we know stub section sizes. */
2437
2438static bfd_boolean
2439aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
2440 void *in_arg ATTRIBUTE_UNUSED)
2441{
cec5225b 2442 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2443 int size;
2444
2445 /* Massage our args to the form they really have. */
cec5225b 2446 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
2447
2448 switch (stub_entry->stub_type)
2449 {
2450 case aarch64_stub_adrp_branch:
2451 size = sizeof (aarch64_adrp_branch_stub);
2452 break;
2453 case aarch64_stub_long_branch:
2454 size = sizeof (aarch64_long_branch_stub);
2455 break;
2456 default:
2457 BFD_FAIL ();
2458 return FALSE;
2459 break;
2460 }
2461
2462 size = (size + 7) & ~7;
2463 stub_entry->stub_sec->size += size;
2464 return TRUE;
2465}
2466
2467/* External entry points for sizing and building linker stubs. */
2468
2469/* Set up various things so that we can make a list of input sections
2470 for each output section included in the link. Returns -1 on error,
2471 0 when no stubs will be needed, and 1 on success. */
2472
2473int
cec5225b 2474elfNN_aarch64_setup_section_lists (bfd *output_bfd,
a06ea964
NC
2475 struct bfd_link_info *info)
2476{
2477 bfd *input_bfd;
2478 unsigned int bfd_count;
2479 int top_id, top_index;
2480 asection *section;
2481 asection **input_list, **list;
2482 bfd_size_type amt;
cec5225b
YZ
2483 struct elf_aarch64_link_hash_table *htab =
2484 elf_aarch64_hash_table (info);
a06ea964
NC
2485
2486 if (!is_elf_hash_table (htab))
2487 return 0;
2488
2489 /* Count the number of input BFDs and find the top input section id. */
2490 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
c72f2fb2 2491 input_bfd != NULL; input_bfd = input_bfd->link.next)
a06ea964
NC
2492 {
2493 bfd_count += 1;
2494 for (section = input_bfd->sections;
2495 section != NULL; section = section->next)
2496 {
2497 if (top_id < section->id)
2498 top_id = section->id;
2499 }
2500 }
2501 htab->bfd_count = bfd_count;
2502
2503 amt = sizeof (struct map_stub) * (top_id + 1);
2504 htab->stub_group = bfd_zmalloc (amt);
2505 if (htab->stub_group == NULL)
2506 return -1;
2507
2508 /* We can't use output_bfd->section_count here to find the top output
2509 section index as some sections may have been removed, and
2510 _bfd_strip_section_from_output doesn't renumber the indices. */
2511 for (section = output_bfd->sections, top_index = 0;
2512 section != NULL; section = section->next)
2513 {
2514 if (top_index < section->index)
2515 top_index = section->index;
2516 }
2517
2518 htab->top_index = top_index;
2519 amt = sizeof (asection *) * (top_index + 1);
2520 input_list = bfd_malloc (amt);
2521 htab->input_list = input_list;
2522 if (input_list == NULL)
2523 return -1;
2524
2525 /* For sections we aren't interested in, mark their entries with a
2526 value we can check later. */
2527 list = input_list + top_index;
2528 do
2529 *list = bfd_abs_section_ptr;
2530 while (list-- != input_list);
2531
2532 for (section = output_bfd->sections;
2533 section != NULL; section = section->next)
2534 {
2535 if ((section->flags & SEC_CODE) != 0)
2536 input_list[section->index] = NULL;
2537 }
2538
2539 return 1;
2540}
2541
cec5225b 2542/* Used by elfNN_aarch64_next_input_section and group_sections. */
a06ea964
NC
2543#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2544
2545/* The linker repeatedly calls this function for each input section,
2546 in the order that input sections are linked into output sections.
2547 Build lists of input sections to determine groupings between which
2548 we may insert linker stubs. */
2549
2550void
cec5225b 2551elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
a06ea964 2552{
cec5225b
YZ
2553 struct elf_aarch64_link_hash_table *htab =
2554 elf_aarch64_hash_table (info);
a06ea964
NC
2555
2556 if (isec->output_section->index <= htab->top_index)
2557 {
2558 asection **list = htab->input_list + isec->output_section->index;
2559
2560 if (*list != bfd_abs_section_ptr)
2561 {
2562 /* Steal the link_sec pointer for our list. */
2563 /* This happens to make the list in reverse order,
2564 which is what we want. */
2565 PREV_SEC (isec) = *list;
2566 *list = isec;
2567 }
2568 }
2569}
2570
2571/* See whether we can group stub sections together. Grouping stub
2572 sections may result in fewer stubs. More importantly, we need to
2573 put all .init* and .fini* stubs at the beginning of the .init or
2574 .fini output sections respectively, because glibc splits the
2575 _init and _fini functions into multiple parts. Putting a stub in
2576 the middle of a function is not a good idea. */
2577
2578static void
cec5225b 2579group_sections (struct elf_aarch64_link_hash_table *htab,
a06ea964
NC
2580 bfd_size_type stub_group_size,
2581 bfd_boolean stubs_always_before_branch)
2582{
2583 asection **list = htab->input_list + htab->top_index;
2584
2585 do
2586 {
2587 asection *tail = *list;
2588
2589 if (tail == bfd_abs_section_ptr)
2590 continue;
2591
2592 while (tail != NULL)
2593 {
2594 asection *curr;
2595 asection *prev;
2596 bfd_size_type total;
2597
2598 curr = tail;
2599 total = tail->size;
2600 while ((prev = PREV_SEC (curr)) != NULL
2601 && ((total += curr->output_offset - prev->output_offset)
2602 < stub_group_size))
2603 curr = prev;
2604
2605 /* OK, the size from the start of CURR to the end is less
2606 than stub_group_size and thus can be handled by one stub
2607 section. (Or the tail section is itself larger than
2608 stub_group_size, in which case we may be toast.)
2609 We should really be keeping track of the total size of
2610 stubs added here, as stubs contribute to the final output
2611 section size. */
2612 do
2613 {
2614 prev = PREV_SEC (tail);
2615 /* Set up this stub group. */
2616 htab->stub_group[tail->id].link_sec = curr;
2617 }
2618 while (tail != curr && (tail = prev) != NULL);
2619
2620 /* But wait, there's more! Input sections up to stub_group_size
2621 bytes before the stub section can be handled by it too. */
2622 if (!stubs_always_before_branch)
2623 {
2624 total = 0;
2625 while (prev != NULL
2626 && ((total += tail->output_offset - prev->output_offset)
2627 < stub_group_size))
2628 {
2629 tail = prev;
2630 prev = PREV_SEC (tail);
2631 htab->stub_group[tail->id].link_sec = curr;
2632 }
2633 }
2634 tail = prev;
2635 }
2636 }
2637 while (list-- != htab->input_list);
2638
2639 free (htab->input_list);
2640}
2641
2642#undef PREV_SEC
2643
2644/* Determine and set the size of the stub section for a final link.
2645
2646 The basic idea here is to examine all the relocations looking for
2647 PC-relative calls to a target that is unreachable with a "bl"
2648 instruction. */
2649
2650bfd_boolean
cec5225b 2651elfNN_aarch64_size_stubs (bfd *output_bfd,
a06ea964
NC
2652 bfd *stub_bfd,
2653 struct bfd_link_info *info,
2654 bfd_signed_vma group_size,
2655 asection * (*add_stub_section) (const char *,
2656 asection *),
2657 void (*layout_sections_again) (void))
2658{
2659 bfd_size_type stub_group_size;
2660 bfd_boolean stubs_always_before_branch;
2661 bfd_boolean stub_changed = 0;
cec5225b 2662 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
a06ea964
NC
2663
2664 /* Propagate mach to stub bfd, because it may not have been
2665 finalized when we created stub_bfd. */
2666 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
2667 bfd_get_mach (output_bfd));
2668
2669 /* Stash our params away. */
2670 htab->stub_bfd = stub_bfd;
2671 htab->add_stub_section = add_stub_section;
2672 htab->layout_sections_again = layout_sections_again;
2673 stubs_always_before_branch = group_size < 0;
2674 if (group_size < 0)
2675 stub_group_size = -group_size;
2676 else
2677 stub_group_size = group_size;
2678
2679 if (stub_group_size == 1)
2680 {
2681 /* Default values. */
b9eead84 2682 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
a06ea964
NC
2683 stub_group_size = 127 * 1024 * 1024;
2684 }
2685
2686 group_sections (htab, stub_group_size, stubs_always_before_branch);
2687
2688 while (1)
2689 {
2690 bfd *input_bfd;
2691 unsigned int bfd_indx;
2692 asection *stub_sec;
2693
2694 for (input_bfd = info->input_bfds, bfd_indx = 0;
c72f2fb2 2695 input_bfd != NULL; input_bfd = input_bfd->link.next, bfd_indx++)
a06ea964
NC
2696 {
2697 Elf_Internal_Shdr *symtab_hdr;
2698 asection *section;
2699 Elf_Internal_Sym *local_syms = NULL;
2700
2701 /* We'll need the symbol table in a second. */
2702 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2703 if (symtab_hdr->sh_info == 0)
2704 continue;
2705
2706 /* Walk over each section attached to the input bfd. */
2707 for (section = input_bfd->sections;
2708 section != NULL; section = section->next)
2709 {
2710 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2711
2712 /* If there aren't any relocs, then there's nothing more
2713 to do. */
2714 if ((section->flags & SEC_RELOC) == 0
2715 || section->reloc_count == 0
2716 || (section->flags & SEC_CODE) == 0)
2717 continue;
2718
2719 /* If this section is a link-once section that will be
2720 discarded, then don't create any stubs. */
2721 if (section->output_section == NULL
2722 || section->output_section->owner != output_bfd)
2723 continue;
2724
2725 /* Get the relocs. */
2726 internal_relocs
2727 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
2728 NULL, info->keep_memory);
2729 if (internal_relocs == NULL)
2730 goto error_ret_free_local;
2731
2732 /* Now examine each relocation. */
2733 irela = internal_relocs;
2734 irelaend = irela + section->reloc_count;
2735 for (; irela < irelaend; irela++)
2736 {
2737 unsigned int r_type, r_indx;
cec5225b
YZ
2738 enum elf_aarch64_stub_type stub_type;
2739 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2740 asection *sym_sec;
2741 bfd_vma sym_value;
2742 bfd_vma destination;
cec5225b 2743 struct elf_aarch64_link_hash_entry *hash;
a06ea964
NC
2744 const char *sym_name;
2745 char *stub_name;
2746 const asection *id_sec;
2747 unsigned char st_type;
2748 bfd_size_type len;
2749
cec5225b
YZ
2750 r_type = ELFNN_R_TYPE (irela->r_info);
2751 r_indx = ELFNN_R_SYM (irela->r_info);
a06ea964
NC
2752
2753 if (r_type >= (unsigned int) R_AARCH64_end)
2754 {
2755 bfd_set_error (bfd_error_bad_value);
2756 error_ret_free_internal:
2757 if (elf_section_data (section)->relocs == NULL)
2758 free (internal_relocs);
2759 goto error_ret_free_local;
2760 }
2761
2762 /* Only look for stubs on unconditional branch and
2763 branch and link instructions. */
a6bb11b2
YZ
2764 if (r_type != (unsigned int) AARCH64_R (CALL26)
2765 && r_type != (unsigned int) AARCH64_R (JUMP26))
a06ea964
NC
2766 continue;
2767
2768 /* Now determine the call target, its name, value,
2769 section. */
2770 sym_sec = NULL;
2771 sym_value = 0;
2772 destination = 0;
2773 hash = NULL;
2774 sym_name = NULL;
2775 if (r_indx < symtab_hdr->sh_info)
2776 {
2777 /* It's a local symbol. */
2778 Elf_Internal_Sym *sym;
2779 Elf_Internal_Shdr *hdr;
2780
2781 if (local_syms == NULL)
2782 {
2783 local_syms
2784 = (Elf_Internal_Sym *) symtab_hdr->contents;
2785 if (local_syms == NULL)
2786 local_syms
2787 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2788 symtab_hdr->sh_info, 0,
2789 NULL, NULL, NULL);
2790 if (local_syms == NULL)
2791 goto error_ret_free_internal;
2792 }
2793
2794 sym = local_syms + r_indx;
2795 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2796 sym_sec = hdr->bfd_section;
2797 if (!sym_sec)
2798 /* This is an undefined symbol. It can never
2799 be resolved. */
2800 continue;
2801
2802 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2803 sym_value = sym->st_value;
2804 destination = (sym_value + irela->r_addend
2805 + sym_sec->output_offset
2806 + sym_sec->output_section->vma);
2807 st_type = ELF_ST_TYPE (sym->st_info);
2808 sym_name
2809 = bfd_elf_string_from_elf_section (input_bfd,
2810 symtab_hdr->sh_link,
2811 sym->st_name);
2812 }
2813 else
2814 {
2815 int e_indx;
2816
2817 e_indx = r_indx - symtab_hdr->sh_info;
cec5225b 2818 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
2819 elf_sym_hashes (input_bfd)[e_indx]);
2820
2821 while (hash->root.root.type == bfd_link_hash_indirect
2822 || hash->root.root.type == bfd_link_hash_warning)
cec5225b 2823 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
2824 hash->root.root.u.i.link);
2825
2826 if (hash->root.root.type == bfd_link_hash_defined
2827 || hash->root.root.type == bfd_link_hash_defweak)
2828 {
cec5225b
YZ
2829 struct elf_aarch64_link_hash_table *globals =
2830 elf_aarch64_hash_table (info);
a06ea964
NC
2831 sym_sec = hash->root.root.u.def.section;
2832 sym_value = hash->root.root.u.def.value;
2833 /* For a destination in a shared library,
2834 use the PLT stub as target address to
2835 decide whether a branch stub is
2836 needed. */
2837 if (globals->root.splt != NULL && hash != NULL
2838 && hash->root.plt.offset != (bfd_vma) - 1)
2839 {
2840 sym_sec = globals->root.splt;
2841 sym_value = hash->root.plt.offset;
2842 if (sym_sec->output_section != NULL)
2843 destination = (sym_value
2844 + sym_sec->output_offset
2845 +
2846 sym_sec->output_section->vma);
2847 }
2848 else if (sym_sec->output_section != NULL)
2849 destination = (sym_value + irela->r_addend
2850 + sym_sec->output_offset
2851 + sym_sec->output_section->vma);
2852 }
2853 else if (hash->root.root.type == bfd_link_hash_undefined
2854 || (hash->root.root.type
2855 == bfd_link_hash_undefweak))
2856 {
2857 /* For a shared library, use the PLT stub as
2858 target address to decide whether a long
2859 branch stub is needed.
2860 For absolute code, they cannot be handled. */
cec5225b
YZ
2861 struct elf_aarch64_link_hash_table *globals =
2862 elf_aarch64_hash_table (info);
a06ea964
NC
2863
2864 if (globals->root.splt != NULL && hash != NULL
2865 && hash->root.plt.offset != (bfd_vma) - 1)
2866 {
2867 sym_sec = globals->root.splt;
2868 sym_value = hash->root.plt.offset;
2869 if (sym_sec->output_section != NULL)
2870 destination = (sym_value
2871 + sym_sec->output_offset
2872 +
2873 sym_sec->output_section->vma);
2874 }
2875 else
2876 continue;
2877 }
2878 else
2879 {
2880 bfd_set_error (bfd_error_bad_value);
2881 goto error_ret_free_internal;
2882 }
2883 st_type = ELF_ST_TYPE (hash->root.type);
2884 sym_name = hash->root.root.root.string;
2885 }
2886
2887 /* Determine what (if any) linker stub is needed. */
2888 stub_type = aarch64_type_of_stub
2889 (info, section, irela, st_type, hash, destination);
2890 if (stub_type == aarch64_stub_none)
2891 continue;
2892
2893 /* Support for grouping stub sections. */
2894 id_sec = htab->stub_group[section->id].link_sec;
2895
2896 /* Get the name of this stub. */
cec5225b 2897 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
a06ea964
NC
2898 irela);
2899 if (!stub_name)
2900 goto error_ret_free_internal;
2901
2902 stub_entry =
2903 aarch64_stub_hash_lookup (&htab->stub_hash_table,
2904 stub_name, FALSE, FALSE);
2905 if (stub_entry != NULL)
2906 {
2907 /* The proper stub has already been created. */
2908 free (stub_name);
2909 continue;
2910 }
2911
cec5225b 2912 stub_entry = elfNN_aarch64_add_stub (stub_name, section,
a06ea964
NC
2913 htab);
2914 if (stub_entry == NULL)
2915 {
2916 free (stub_name);
2917 goto error_ret_free_internal;
2918 }
2919
2920 stub_entry->target_value = sym_value;
2921 stub_entry->target_section = sym_sec;
2922 stub_entry->stub_type = stub_type;
2923 stub_entry->h = hash;
2924 stub_entry->st_type = st_type;
2925
2926 if (sym_name == NULL)
2927 sym_name = "unnamed";
2928 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
2929 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
2930 if (stub_entry->output_name == NULL)
2931 {
2932 free (stub_name);
2933 goto error_ret_free_internal;
2934 }
2935
2936 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
2937 sym_name);
2938
2939 stub_changed = TRUE;
2940 }
2941
2942 /* We're done with the internal relocs, free them. */
2943 if (elf_section_data (section)->relocs == NULL)
2944 free (internal_relocs);
2945 }
2946 }
2947
2948 if (!stub_changed)
2949 break;
2950
2951 /* OK, we've added some stubs. Find out the new size of the
2952 stub sections. */
2953 for (stub_sec = htab->stub_bfd->sections;
2954 stub_sec != NULL; stub_sec = stub_sec->next)
2955 stub_sec->size = 0;
2956
2957 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
2958
2959 /* Ask the linker to do its stuff. */
2960 (*htab->layout_sections_again) ();
2961 stub_changed = FALSE;
2962 }
2963
2964 return TRUE;
2965
2966error_ret_free_local:
2967 return FALSE;
2968}
2969
2970/* Build all the stubs associated with the current output file. The
2971 stubs are kept in a hash table attached to the main linker hash
2972 table. We also set up the .plt entries for statically linked PIC
2973 functions here. This function is called via aarch64_elf_finish in the
2974 linker. */
2975
2976bfd_boolean
cec5225b 2977elfNN_aarch64_build_stubs (struct bfd_link_info *info)
a06ea964
NC
2978{
2979 asection *stub_sec;
2980 struct bfd_hash_table *table;
cec5225b 2981 struct elf_aarch64_link_hash_table *htab;
a06ea964 2982
cec5225b 2983 htab = elf_aarch64_hash_table (info);
a06ea964
NC
2984
2985 for (stub_sec = htab->stub_bfd->sections;
2986 stub_sec != NULL; stub_sec = stub_sec->next)
2987 {
2988 bfd_size_type size;
2989
2990 /* Ignore non-stub sections. */
2991 if (!strstr (stub_sec->name, STUB_SUFFIX))
2992 continue;
2993
2994 /* Allocate memory to hold the linker stubs. */
2995 size = stub_sec->size;
2996 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2997 if (stub_sec->contents == NULL && size != 0)
2998 return FALSE;
2999 stub_sec->size = 0;
3000 }
3001
3002 /* Build the stubs as directed by the stub hash table. */
3003 table = &htab->stub_hash_table;
3004 bfd_hash_traverse (table, aarch64_build_one_stub, info);
3005
3006 return TRUE;
3007}
3008
3009
3010/* Add an entry to the code/data map for section SEC. */
3011
3012static void
cec5225b 3013elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
a06ea964
NC
3014{
3015 struct _aarch64_elf_section_data *sec_data =
cec5225b 3016 elf_aarch64_section_data (sec);
a06ea964
NC
3017 unsigned int newidx;
3018
3019 if (sec_data->map == NULL)
3020 {
cec5225b 3021 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
a06ea964
NC
3022 sec_data->mapcount = 0;
3023 sec_data->mapsize = 1;
3024 }
3025
3026 newidx = sec_data->mapcount++;
3027
3028 if (sec_data->mapcount > sec_data->mapsize)
3029 {
3030 sec_data->mapsize *= 2;
3031 sec_data->map = bfd_realloc_or_free
cec5225b 3032 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
a06ea964
NC
3033 }
3034
3035 if (sec_data->map)
3036 {
3037 sec_data->map[newidx].vma = vma;
3038 sec_data->map[newidx].type = type;
3039 }
3040}
3041
3042
3043/* Initialise maps of insn/data for input BFDs. */
3044void
cec5225b 3045bfd_elfNN_aarch64_init_maps (bfd *abfd)
a06ea964
NC
3046{
3047 Elf_Internal_Sym *isymbuf;
3048 Elf_Internal_Shdr *hdr;
3049 unsigned int i, localsyms;
3050
3051 /* Make sure that we are dealing with an AArch64 elf binary. */
3052 if (!is_aarch64_elf (abfd))
3053 return;
3054
3055 if ((abfd->flags & DYNAMIC) != 0)
3056 return;
3057
3058 hdr = &elf_symtab_hdr (abfd);
3059 localsyms = hdr->sh_info;
3060
3061 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3062 should contain the number of local symbols, which should come before any
3063 global symbols. Mapping symbols are always local. */
3064 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
3065
3066 /* No internal symbols read? Skip this BFD. */
3067 if (isymbuf == NULL)
3068 return;
3069
3070 for (i = 0; i < localsyms; i++)
3071 {
3072 Elf_Internal_Sym *isym = &isymbuf[i];
3073 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3074 const char *name;
3075
3076 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
3077 {
3078 name = bfd_elf_string_from_elf_section (abfd,
3079 hdr->sh_link,
3080 isym->st_name);
3081
3082 if (bfd_is_aarch64_special_symbol_name
3083 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
cec5225b 3084 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
a06ea964
NC
3085 }
3086 }
3087}
3088
3089/* Set option values needed during linking. */
3090void
cec5225b 3091bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
a06ea964
NC
3092 struct bfd_link_info *link_info,
3093 int no_enum_warn,
3094 int no_wchar_warn, int pic_veneer)
3095{
cec5225b 3096 struct elf_aarch64_link_hash_table *globals;
a06ea964 3097
cec5225b 3098 globals = elf_aarch64_hash_table (link_info);
a06ea964
NC
3099 globals->pic_veneer = pic_veneer;
3100
3101 BFD_ASSERT (is_aarch64_elf (output_bfd));
3102 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
3103 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
3104}
3105
a06ea964
NC
3106static bfd_vma
3107aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
cec5225b 3108 struct elf_aarch64_link_hash_table
a06ea964
NC
3109 *globals, struct bfd_link_info *info,
3110 bfd_vma value, bfd *output_bfd,
3111 bfd_boolean *unresolved_reloc_p)
3112{
3113 bfd_vma off = (bfd_vma) - 1;
3114 asection *basegot = globals->root.sgot;
3115 bfd_boolean dyn = globals->root.dynamic_sections_created;
3116
3117 if (h != NULL)
3118 {
a6bb11b2 3119 BFD_ASSERT (basegot != NULL);
a06ea964
NC
3120 off = h->got.offset;
3121 BFD_ASSERT (off != (bfd_vma) - 1);
3122 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3123 || (info->shared
3124 && SYMBOL_REFERENCES_LOCAL (info, h))
3125 || (ELF_ST_VISIBILITY (h->other)
3126 && h->root.type == bfd_link_hash_undefweak))
3127 {
3128 /* This is actually a static link, or it is a -Bsymbolic link
3129 and the symbol is defined locally. We must initialize this
3130 entry in the global offset table. Since the offset must
a6bb11b2
YZ
3131 always be a multiple of 8 (4 in the case of ILP32), we use
3132 the least significant bit to record whether we have
3133 initialized it already.
a06ea964
NC
3134 When doing a dynamic link, we create a .rel(a).got relocation
3135 entry to initialize the value. This is done in the
3136 finish_dynamic_symbol routine. */
3137 if ((off & 1) != 0)
3138 off &= ~1;
3139 else
3140 {
cec5225b 3141 bfd_put_NN (output_bfd, value, basegot->contents + off);
a06ea964
NC
3142 h->got.offset |= 1;
3143 }
3144 }
3145 else
3146 *unresolved_reloc_p = FALSE;
3147
3148 off = off + basegot->output_section->vma + basegot->output_offset;
3149 }
3150
3151 return off;
3152}
3153
3154/* Change R_TYPE to a more efficient access model where possible,
3155 return the new reloc type. */
3156
a6bb11b2
YZ
3157static bfd_reloc_code_real_type
3158aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
a06ea964
NC
3159 struct elf_link_hash_entry *h)
3160{
3161 bfd_boolean is_local = h == NULL;
a6bb11b2 3162
a06ea964
NC
3163 switch (r_type)
3164 {
a6bb11b2
YZ
3165 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3166 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3167 return (is_local
3168 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
3169 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
3170
3171 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3172 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
3173 return (is_local
3174 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
3175 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
3176
3177 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3178 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
3179
3180 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
3181 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
3182
3183 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3184 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964 3185 /* Instructions with these relocations will become NOPs. */
a6bb11b2
YZ
3186 return BFD_RELOC_AARCH64_NONE;
3187
3188 default:
3189 break;
a06ea964
NC
3190 }
3191
3192 return r_type;
3193}
3194
3195static unsigned int
a6bb11b2 3196aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
a06ea964
NC
3197{
3198 switch (r_type)
3199 {
a6bb11b2
YZ
3200 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3201 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3202 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3203 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
a06ea964
NC
3204 return GOT_NORMAL;
3205
a6bb11b2
YZ
3206 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3207 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
3208 return GOT_TLS_GD;
3209
a6bb11b2
YZ
3210 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3211 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3212 case BFD_RELOC_AARCH64_TLSDESC_CALL:
3213 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
3214 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
a06ea964
NC
3215 return GOT_TLSDESC_GD;
3216
a6bb11b2
YZ
3217 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3218 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3219 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
a06ea964
NC
3220 return GOT_TLS_IE;
3221
a6bb11b2
YZ
3222 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3224 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3225 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3229 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964 3230 return GOT_UNKNOWN;
a6bb11b2
YZ
3231
3232 default:
3233 break;
a06ea964
NC
3234 }
3235 return GOT_UNKNOWN;
3236}
3237
3238static bfd_boolean
3239aarch64_can_relax_tls (bfd *input_bfd,
3240 struct bfd_link_info *info,
a6bb11b2 3241 bfd_reloc_code_real_type r_type,
a06ea964
NC
3242 struct elf_link_hash_entry *h,
3243 unsigned long r_symndx)
3244{
3245 unsigned int symbol_got_type;
3246 unsigned int reloc_got_type;
3247
3248 if (! IS_AARCH64_TLS_RELOC (r_type))
3249 return FALSE;
3250
cec5225b 3251 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
a06ea964
NC
3252 reloc_got_type = aarch64_reloc_got_type (r_type);
3253
3254 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
3255 return TRUE;
3256
3257 if (info->shared)
3258 return FALSE;
3259
3260 if (h && h->root.type == bfd_link_hash_undefweak)
3261 return FALSE;
3262
3263 return TRUE;
3264}
3265
a6bb11b2
YZ
3266/* Given the relocation code R_TYPE, return the relaxed bfd reloc
3267 enumerator. */
3268
3269static bfd_reloc_code_real_type
a06ea964
NC
3270aarch64_tls_transition (bfd *input_bfd,
3271 struct bfd_link_info *info,
3272 unsigned int r_type,
3273 struct elf_link_hash_entry *h,
3274 unsigned long r_symndx)
3275{
a6bb11b2
YZ
3276 bfd_reloc_code_real_type bfd_r_type
3277 = elfNN_aarch64_bfd_reloc_from_type (r_type);
a06ea964 3278
a6bb11b2
YZ
3279 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
3280 return bfd_r_type;
3281
3282 return aarch64_tls_transition_without_check (bfd_r_type, h);
a06ea964
NC
3283}
3284
3285/* Return the base VMA address which should be subtracted from real addresses
a6bb11b2 3286 when resolving R_AARCH64_TLS_DTPREL relocation. */
a06ea964
NC
3287
3288static bfd_vma
3289dtpoff_base (struct bfd_link_info *info)
3290{
3291 /* If tls_sec is NULL, we should have signalled an error already. */
3292 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
3293 return elf_hash_table (info)->tls_sec->vma;
3294}
3295
a06ea964
NC
3296/* Return the base VMA address which should be subtracted from real addresses
3297 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
3298
3299static bfd_vma
3300tpoff_base (struct bfd_link_info *info)
3301{
3302 struct elf_link_hash_table *htab = elf_hash_table (info);
3303
3304 /* If tls_sec is NULL, we should have signalled an error already. */
ac21917f 3305 BFD_ASSERT (htab->tls_sec != NULL);
a06ea964
NC
3306
3307 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
3308 htab->tls_sec->alignment_power);
3309 return htab->tls_sec->vma - base;
3310}
3311
3312static bfd_vma *
3313symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3314 unsigned long r_symndx)
3315{
3316 /* Calculate the address of the GOT entry for symbol
3317 referred to in h. */
3318 if (h != NULL)
3319 return &h->got.offset;
3320 else
3321 {
3322 /* local symbol */
3323 struct elf_aarch64_local_symbol *l;
3324
cec5225b 3325 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
3326 return &l[r_symndx].got_offset;
3327 }
3328}
3329
3330static void
3331symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3332 unsigned long r_symndx)
3333{
3334 bfd_vma *p;
3335 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
3336 *p |= 1;
3337}
3338
3339static int
3340symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
3341 unsigned long r_symndx)
3342{
3343 bfd_vma value;
3344 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3345 return value & 1;
3346}
3347
3348static bfd_vma
3349symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3350 unsigned long r_symndx)
3351{
3352 bfd_vma value;
3353 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3354 value &= ~1;
3355 return value;
3356}
3357
3358static bfd_vma *
3359symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3360 unsigned long r_symndx)
3361{
3362 /* Calculate the address of the GOT entry for symbol
3363 referred to in h. */
3364 if (h != NULL)
3365 {
cec5225b
YZ
3366 struct elf_aarch64_link_hash_entry *eh;
3367 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
3368 return &eh->tlsdesc_got_jump_table_offset;
3369 }
3370 else
3371 {
3372 /* local symbol */
3373 struct elf_aarch64_local_symbol *l;
3374
cec5225b 3375 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
3376 return &l[r_symndx].tlsdesc_got_jump_table_offset;
3377 }
3378}
3379
3380static void
3381symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3382 unsigned long r_symndx)
3383{
3384 bfd_vma *p;
3385 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3386 *p |= 1;
3387}
3388
3389static int
3390symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
3391 struct elf_link_hash_entry *h,
3392 unsigned long r_symndx)
3393{
3394 bfd_vma value;
3395 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3396 return value & 1;
3397}
3398
3399static bfd_vma
3400symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3401 unsigned long r_symndx)
3402{
3403 bfd_vma value;
3404 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3405 value &= ~1;
3406 return value;
3407}
3408
3409/* Perform a relocation as part of a final link. */
3410static bfd_reloc_status_type
cec5225b 3411elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
a06ea964
NC
3412 bfd *input_bfd,
3413 bfd *output_bfd,
3414 asection *input_section,
3415 bfd_byte *contents,
3416 Elf_Internal_Rela *rel,
3417 bfd_vma value,
3418 struct bfd_link_info *info,
3419 asection *sym_sec,
3420 struct elf_link_hash_entry *h,
3421 bfd_boolean *unresolved_reloc_p,
3422 bfd_boolean save_addend,
1419bbe5
WN
3423 bfd_vma *saved_addend,
3424 Elf_Internal_Sym *sym)
a06ea964 3425{
1419bbe5 3426 Elf_Internal_Shdr *symtab_hdr;
a06ea964 3427 unsigned int r_type = howto->type;
a6bb11b2
YZ
3428 bfd_reloc_code_real_type bfd_r_type
3429 = elfNN_aarch64_bfd_reloc_from_howto (howto);
3430 bfd_reloc_code_real_type new_bfd_r_type;
a06ea964
NC
3431 unsigned long r_symndx;
3432 bfd_byte *hit_data = contents + rel->r_offset;
3433 bfd_vma place;
3434 bfd_signed_vma signed_addend;
cec5225b 3435 struct elf_aarch64_link_hash_table *globals;
a06ea964
NC
3436 bfd_boolean weak_undef_p;
3437
cec5225b 3438 globals = elf_aarch64_hash_table (info);
a06ea964 3439
1419bbe5
WN
3440 symtab_hdr = &elf_symtab_hdr (input_bfd);
3441
a06ea964
NC
3442 BFD_ASSERT (is_aarch64_elf (input_bfd));
3443
cec5225b 3444 r_symndx = ELFNN_R_SYM (rel->r_info);
a06ea964
NC
3445
3446 /* It is possible to have linker relaxations on some TLS access
3447 models. Update our information here. */
a6bb11b2
YZ
3448 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
3449 if (new_bfd_r_type != bfd_r_type)
3450 {
3451 bfd_r_type = new_bfd_r_type;
3452 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
3453 BFD_ASSERT (howto != NULL);
3454 r_type = howto->type;
3455 }
a06ea964
NC
3456
3457 place = input_section->output_section->vma
3458 + input_section->output_offset + rel->r_offset;
3459
3460 /* Get addend, accumulating the addend for consecutive relocs
3461 which refer to the same offset. */
3462 signed_addend = saved_addend ? *saved_addend : 0;
3463 signed_addend += rel->r_addend;
3464
3465 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
3466 : bfd_is_und_section (sym_sec));
a6bb11b2 3467
1419bbe5
WN
3468 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3469 it here if it is defined in a non-shared object. */
3470 if (h != NULL
3471 && h->type == STT_GNU_IFUNC
3472 && h->def_regular)
3473 {
3474 asection *plt;
3475 const char *name;
3476 asection *base_got;
3477 bfd_vma off;
3478
3479 if ((input_section->flags & SEC_ALLOC) == 0
3480 || h->plt.offset == (bfd_vma) -1)
3481 abort ();
3482
3483 /* STT_GNU_IFUNC symbol must go through PLT. */
3484 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
3485 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
3486
3487 switch (bfd_r_type)
3488 {
3489 default:
3490 if (h->root.root.string)
3491 name = h->root.root.string;
3492 else
3493 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3494 NULL);
3495 (*_bfd_error_handler)
3496 (_("%B: relocation %s against STT_GNU_IFUNC "
3497 "symbol `%s' isn't handled by %s"), input_bfd,
3498 howto->name, name, __FUNCTION__);
3499 bfd_set_error (bfd_error_bad_value);
3500 return FALSE;
3501
3502 case BFD_RELOC_AARCH64_NN:
3503 if (rel->r_addend != 0)
3504 {
3505 if (h->root.root.string)
3506 name = h->root.root.string;
3507 else
3508 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3509 sym, NULL);
3510 (*_bfd_error_handler)
3511 (_("%B: relocation %s against STT_GNU_IFUNC "
3512 "symbol `%s' has non-zero addend: %d"),
3513 input_bfd, howto->name, name, rel->r_addend);
3514 bfd_set_error (bfd_error_bad_value);
3515 return FALSE;
3516 }
3517
3518 /* Generate dynamic relocation only when there is a
3519 non-GOT reference in a shared object. */
3520 if (info->shared && h->non_got_ref)
3521 {
3522 Elf_Internal_Rela outrel;
3523 asection *sreloc;
3524
3525 /* Need a dynamic relocation to get the real function
3526 address. */
3527 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3528 info,
3529 input_section,
3530 rel->r_offset);
3531 if (outrel.r_offset == (bfd_vma) -1
3532 || outrel.r_offset == (bfd_vma) -2)
3533 abort ();
3534
3535 outrel.r_offset += (input_section->output_section->vma
3536 + input_section->output_offset);
3537
3538 if (h->dynindx == -1
3539 || h->forced_local
3540 || info->executable)
3541 {
3542 /* This symbol is resolved locally. */
3543 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
3544 outrel.r_addend = (h->root.u.def.value
3545 + h->root.u.def.section->output_section->vma
3546 + h->root.u.def.section->output_offset);
3547 }
3548 else
3549 {
3550 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
3551 outrel.r_addend = 0;
3552 }
3553
3554 sreloc = globals->root.irelifunc;
3555 elf_append_rela (output_bfd, sreloc, &outrel);
3556
3557 /* If this reloc is against an external symbol, we
3558 do not want to fiddle with the addend. Otherwise,
3559 we need to include the symbol value so that it
3560 becomes an addend for the dynamic reloc. For an
3561 internal symbol, we have updated addend. */
3562 return bfd_reloc_ok;
3563 }
3564 /* FALLTHROUGH */
3565 case BFD_RELOC_AARCH64_JUMP26:
3566 case BFD_RELOC_AARCH64_CALL26:
3567 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3568 signed_addend,
3569 weak_undef_p);
3570 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3571 howto, value);
3572 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3573 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3574 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3575 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3576 base_got = globals->root.sgot;
3577 off = h->got.offset;
3578
3579 if (base_got == NULL)
3580 abort ();
3581
3582 if (off == (bfd_vma) -1)
3583 {
3584 bfd_vma plt_index;
3585
3586 /* We can't use h->got.offset here to save state, or
3587 even just remember the offset, as finish_dynamic_symbol
3588 would use that as offset into .got. */
3589
3590 if (globals->root.splt != NULL)
3591 {
b1ee0cc4
WN
3592 plt_index = ((h->plt.offset - globals->plt_header_size) /
3593 globals->plt_entry_size);
1419bbe5
WN
3594 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3595 base_got = globals->root.sgotplt;
3596 }
3597 else
3598 {
3599 plt_index = h->plt.offset / globals->plt_entry_size;
3600 off = plt_index * GOT_ENTRY_SIZE;
3601 base_got = globals->root.igotplt;
3602 }
3603
3604 if (h->dynindx == -1
3605 || h->forced_local
3606 || info->symbolic)
3607 {
3608 /* This references the local definition. We must
3609 initialize this entry in the global offset table.
3610 Since the offset must always be a multiple of 8,
3611 we use the least significant bit to record
3612 whether we have initialized it already.
3613
3614 When doing a dynamic link, we create a .rela.got
3615 relocation entry to initialize the value. This
3616 is done in the finish_dynamic_symbol routine. */
3617 if ((off & 1) != 0)
3618 off &= ~1;
3619 else
3620 {
3621 bfd_put_NN (output_bfd, value,
3622 base_got->contents + off);
3623 /* Note that this is harmless as -1 | 1 still is -1. */
3624 h->got.offset |= 1;
3625 }
3626 }
3627 value = (base_got->output_section->vma
3628 + base_got->output_offset + off);
3629 }
3630 else
3631 value = aarch64_calculate_got_entry_vma (h, globals, info,
3632 value, output_bfd,
3633 unresolved_reloc_p);
3634 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3635 0, weak_undef_p);
3636 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
3637 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3638 case BFD_RELOC_AARCH64_ADD_LO12:
3639 break;
3640 }
3641 }
3642
a6bb11b2 3643 switch (bfd_r_type)
a06ea964 3644 {
a6bb11b2
YZ
3645 case BFD_RELOC_AARCH64_NONE:
3646 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964
NC
3647 *unresolved_reloc_p = FALSE;
3648 return bfd_reloc_ok;
3649
a6bb11b2 3650 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
3651
3652 /* When generating a shared object or relocatable executable, these
3653 relocations are copied into the output file to be resolved at
3654 run time. */
3655 if (((info->shared == TRUE) || globals->root.is_relocatable_executable)
3656 && (input_section->flags & SEC_ALLOC)
3657 && (h == NULL
3658 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3659 || h->root.type != bfd_link_hash_undefweak))
3660 {
3661 Elf_Internal_Rela outrel;
3662 bfd_byte *loc;
3663 bfd_boolean skip, relocate;
3664 asection *sreloc;
3665
3666 *unresolved_reloc_p = FALSE;
3667
a06ea964
NC
3668 skip = FALSE;
3669 relocate = FALSE;
3670
3671 outrel.r_addend = signed_addend;
3672 outrel.r_offset =
3673 _bfd_elf_section_offset (output_bfd, info, input_section,
3674 rel->r_offset);
3675 if (outrel.r_offset == (bfd_vma) - 1)
3676 skip = TRUE;
3677 else if (outrel.r_offset == (bfd_vma) - 2)
3678 {
3679 skip = TRUE;
3680 relocate = TRUE;
3681 }
3682
3683 outrel.r_offset += (input_section->output_section->vma
3684 + input_section->output_offset);
3685
3686 if (skip)
3687 memset (&outrel, 0, sizeof outrel);
3688 else if (h != NULL
3689 && h->dynindx != -1
3690 && (!info->shared || !info->symbolic || !h->def_regular))
cec5225b 3691 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
a06ea964
NC
3692 else
3693 {
3694 int symbol;
3695
3696 /* On SVR4-ish systems, the dynamic loader cannot
3697 relocate the text and data segments independently,
3698 so the symbol does not matter. */
3699 symbol = 0;
a6bb11b2 3700 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
a06ea964
NC
3701 outrel.r_addend += value;
3702 }
3703
1419bbe5
WN
3704 sreloc = elf_section_data (input_section)->sreloc;
3705 if (sreloc == NULL || sreloc->contents == NULL)
3706 return bfd_reloc_notsupported;
3707
3708 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
cec5225b 3709 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
a06ea964 3710
1419bbe5 3711 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
a06ea964
NC
3712 {
3713 /* Sanity to check that we have previously allocated
3714 sufficient space in the relocation section for the
3715 number of relocations we actually want to emit. */
3716 abort ();
3717 }
3718
3719 /* If this reloc is against an external symbol, we do not want to
3720 fiddle with the addend. Otherwise, we need to include the symbol
3721 value so that it becomes an addend for the dynamic reloc. */
3722 if (!relocate)
3723 return bfd_reloc_ok;
3724
3725 return _bfd_final_link_relocate (howto, input_bfd, input_section,
3726 contents, rel->r_offset, value,
3727 signed_addend);
3728 }
3729 else
3730 value += signed_addend;
3731 break;
3732
a6bb11b2
YZ
3733 case BFD_RELOC_AARCH64_JUMP26:
3734 case BFD_RELOC_AARCH64_CALL26:
a06ea964
NC
3735 {
3736 asection *splt = globals->root.splt;
3737 bfd_boolean via_plt_p =
3738 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
3739
3740 /* A call to an undefined weak symbol is converted to a jump to
3741 the next instruction unless a PLT entry will be created.
3742 The jump to the next instruction is optimized as a NOP.
3743 Do the same for local undefined symbols. */
3744 if (weak_undef_p && ! via_plt_p)
3745 {
3746 bfd_putl32 (INSN_NOP, hit_data);
3747 return bfd_reloc_ok;
3748 }
3749
3750 /* If the call goes through a PLT entry, make sure to
3751 check distance to the right destination address. */
3752 if (via_plt_p)
3753 {
3754 value = (splt->output_section->vma
3755 + splt->output_offset + h->plt.offset);
3756 *unresolved_reloc_p = FALSE;
3757 }
3758
3759 /* If the target symbol is global and marked as a function the
3760 relocation applies a function call or a tail call. In this
3761 situation we can veneer out of range branches. The veneers
3762 use IP0 and IP1 hence cannot be used arbitrary out of range
3763 branches that occur within the body of a function. */
3764 if (h && h->type == STT_FUNC)
3765 {
3766 /* Check if a stub has to be inserted because the destination
3767 is too far away. */
3768 if (! aarch64_valid_branch_p (value, place))
3769 {
3770 /* The target is out of reach, so redirect the branch to
3771 the local stub for this function. */
cec5225b
YZ
3772 struct elf_aarch64_stub_hash_entry *stub_entry;
3773 stub_entry = elfNN_aarch64_get_stub_entry (input_section,
a06ea964
NC
3774 sym_sec, h,
3775 rel, globals);
3776 if (stub_entry != NULL)
3777 value = (stub_entry->stub_offset
3778 + stub_entry->stub_sec->output_offset
3779 + stub_entry->stub_sec->output_section->vma);
3780 }
3781 }
3782 }
caed7120
YZ
3783 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3784 signed_addend, weak_undef_p);
a06ea964
NC
3785 break;
3786
a6bb11b2
YZ
3787 case BFD_RELOC_AARCH64_16:
3788#if ARCH_SIZE == 64
3789 case BFD_RELOC_AARCH64_32:
3790#endif
3791 case BFD_RELOC_AARCH64_ADD_LO12:
3792 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
3793 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3794 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
3795 case BFD_RELOC_AARCH64_BRANCH19:
3796 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
3797 case BFD_RELOC_AARCH64_LDST8_LO12:
3798 case BFD_RELOC_AARCH64_LDST16_LO12:
3799 case BFD_RELOC_AARCH64_LDST32_LO12:
3800 case BFD_RELOC_AARCH64_LDST64_LO12:
3801 case BFD_RELOC_AARCH64_LDST128_LO12:
3802 case BFD_RELOC_AARCH64_MOVW_G0_S:
3803 case BFD_RELOC_AARCH64_MOVW_G1_S:
3804 case BFD_RELOC_AARCH64_MOVW_G2_S:
3805 case BFD_RELOC_AARCH64_MOVW_G0:
3806 case BFD_RELOC_AARCH64_MOVW_G0_NC:
3807 case BFD_RELOC_AARCH64_MOVW_G1:
3808 case BFD_RELOC_AARCH64_MOVW_G1_NC:
3809 case BFD_RELOC_AARCH64_MOVW_G2:
3810 case BFD_RELOC_AARCH64_MOVW_G2_NC:
3811 case BFD_RELOC_AARCH64_MOVW_G3:
3812 case BFD_RELOC_AARCH64_16_PCREL:
3813 case BFD_RELOC_AARCH64_32_PCREL:
3814 case BFD_RELOC_AARCH64_64_PCREL:
3815 case BFD_RELOC_AARCH64_TSTBR14:
caed7120
YZ
3816 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3817 signed_addend, weak_undef_p);
a06ea964
NC
3818 break;
3819
a6bb11b2
YZ
3820 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3821 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3822 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3823 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
a06ea964
NC
3824 if (globals->root.sgot == NULL)
3825 BFD_ASSERT (h != NULL);
3826
3827 if (h != NULL)
3828 {
3829 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
3830 output_bfd,
3831 unresolved_reloc_p);
caed7120
YZ
3832 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3833 0, weak_undef_p);
a06ea964
NC
3834 }
3835 break;
3836
a6bb11b2
YZ
3837 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3838 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3839 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3840 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3841 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
a06ea964
NC
3842 if (globals->root.sgot == NULL)
3843 return bfd_reloc_notsupported;
3844
3845 value = (symbol_got_offset (input_bfd, h, r_symndx)
3846 + globals->root.sgot->output_section->vma
f44a1f8e 3847 + globals->root.sgot->output_offset);
a06ea964 3848
caed7120
YZ
3849 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3850 0, weak_undef_p);
a06ea964
NC
3851 *unresolved_reloc_p = FALSE;
3852 break;
3853
a6bb11b2
YZ
3854 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3855 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3856 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3857 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3858 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3859 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3860 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3861 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
caed7120
YZ
3862 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3863 signed_addend - tpoff_base (info),
3864 weak_undef_p);
a06ea964
NC
3865 *unresolved_reloc_p = FALSE;
3866 break;
3867
7bcccb57
MS
3868 case BFD_RELOC_AARCH64_TLSDESC_ADD:
3869 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
a6bb11b2 3870 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
a6bb11b2 3871 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7bcccb57 3872 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 3873 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
3874 if (globals->root.sgot == NULL)
3875 return bfd_reloc_notsupported;
a06ea964
NC
3876 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
3877 + globals->root.sgotplt->output_section->vma
f44a1f8e 3878 + globals->root.sgotplt->output_offset
a06ea964
NC
3879 + globals->sgotplt_jump_table_size);
3880
caed7120
YZ
3881 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3882 0, weak_undef_p);
a06ea964
NC
3883 *unresolved_reloc_p = FALSE;
3884 break;
3885
3886 default:
3887 return bfd_reloc_notsupported;
3888 }
3889
3890 if (saved_addend)
3891 *saved_addend = value;
3892
3893 /* Only apply the final relocation in a sequence. */
3894 if (save_addend)
3895 return bfd_reloc_continue;
3896
caed7120
YZ
3897 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3898 howto, value);
a06ea964
NC
3899}
3900
3901/* Handle TLS relaxations. Relaxing is possible for symbols that use
3902 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
3903 link.
3904
3905 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
3906 is to then call final_link_relocate. Return other values in the
3907 case of error. */
3908
3909static bfd_reloc_status_type
cec5225b 3910elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
a06ea964
NC
3911 bfd *input_bfd, bfd_byte *contents,
3912 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
3913{
3914 bfd_boolean is_local = h == NULL;
cec5225b 3915 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
3916 unsigned long insn;
3917
3918 BFD_ASSERT (globals && input_bfd && contents && rel);
3919
a6bb11b2 3920 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 3921 {
a6bb11b2
YZ
3922 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3923 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
a06ea964
NC
3924 if (is_local)
3925 {
3926 /* GD->LE relaxation:
3927 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
3928 or
3929 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
3930 */
3931 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
3932 return bfd_reloc_continue;
3933 }
3934 else
3935 {
3936 /* GD->IE relaxation:
3937 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
3938 or
3939 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
3940 */
a06ea964
NC
3941 return bfd_reloc_continue;
3942 }
3943
a6bb11b2 3944 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
a06ea964
NC
3945 if (is_local)
3946 {
3947 /* GD->LE relaxation:
3948 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
3949 */
3950 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3951 return bfd_reloc_continue;
3952 }
3953 else
3954 {
3955 /* GD->IE relaxation:
3956 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
3957 */
3958 insn = bfd_getl32 (contents + rel->r_offset);
fa85fb9a 3959 insn &= 0xffffffe0;
a06ea964
NC
3960 bfd_putl32 (insn, contents + rel->r_offset);
3961 return bfd_reloc_continue;
3962 }
3963
a6bb11b2 3964 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
3965 if (is_local)
3966 {
3967 /* GD->LE relaxation
3968 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
3969 bl __tls_get_addr => mrs x1, tpidr_el0
3970 nop => add x0, x1, x0
3971 */
3972
3973 /* First kill the tls_get_addr reloc on the bl instruction. */
3974 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
cec5225b 3975 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964
NC
3976
3977 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3978 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
3979 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
3980 return bfd_reloc_continue;
3981 }
3982 else
3983 {
3984 /* GD->IE relaxation
3985 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
3986 BL __tls_get_addr => mrs x1, tpidr_el0
3987 R_AARCH64_CALL26
3988 NOP => add x0, x1, x0
3989 */
3990
a6bb11b2 3991 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
a06ea964
NC
3992
3993 /* Remove the relocation on the BL instruction. */
cec5225b 3994 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964
NC
3995
3996 bfd_putl32 (0xf9400000, contents + rel->r_offset);
3997
3998 /* We choose to fixup the BL and NOP instructions using the
3999 offset from the second relocation to allow flexibility in
4000 scheduling instructions between the ADD and BL. */
4001 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
4002 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
4003 return bfd_reloc_continue;
4004 }
4005
a6bb11b2
YZ
4006 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4007 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964
NC
4008 /* GD->IE/LE relaxation:
4009 add x0, x0, #:tlsdesc_lo12:var => nop
4010 blr xd => nop
4011 */
4012 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
4013 return bfd_reloc_ok;
4014
a6bb11b2 4015 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a06ea964
NC
4016 /* IE->LE relaxation:
4017 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
4018 */
4019 if (is_local)
4020 {
4021 insn = bfd_getl32 (contents + rel->r_offset);
4022 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
4023 }
4024 return bfd_reloc_continue;
4025
a6bb11b2 4026 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
a06ea964
NC
4027 /* IE->LE relaxation:
4028 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
4029 */
4030 if (is_local)
4031 {
4032 insn = bfd_getl32 (contents + rel->r_offset);
4033 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
4034 }
4035 return bfd_reloc_continue;
4036
4037 default:
4038 return bfd_reloc_continue;
4039 }
4040
4041 return bfd_reloc_ok;
4042}
4043
4044/* Relocate an AArch64 ELF section. */
4045
4046static bfd_boolean
cec5225b 4047elfNN_aarch64_relocate_section (bfd *output_bfd,
a06ea964
NC
4048 struct bfd_link_info *info,
4049 bfd *input_bfd,
4050 asection *input_section,
4051 bfd_byte *contents,
4052 Elf_Internal_Rela *relocs,
4053 Elf_Internal_Sym *local_syms,
4054 asection **local_sections)
4055{
4056 Elf_Internal_Shdr *symtab_hdr;
4057 struct elf_link_hash_entry **sym_hashes;
4058 Elf_Internal_Rela *rel;
4059 Elf_Internal_Rela *relend;
4060 const char *name;
cec5225b 4061 struct elf_aarch64_link_hash_table *globals;
a06ea964
NC
4062 bfd_boolean save_addend = FALSE;
4063 bfd_vma addend = 0;
4064
cec5225b 4065 globals = elf_aarch64_hash_table (info);
a06ea964
NC
4066
4067 symtab_hdr = &elf_symtab_hdr (input_bfd);
4068 sym_hashes = elf_sym_hashes (input_bfd);
4069
4070 rel = relocs;
4071 relend = relocs + input_section->reloc_count;
4072 for (; rel < relend; rel++)
4073 {
4074 unsigned int r_type;
a6bb11b2
YZ
4075 bfd_reloc_code_real_type bfd_r_type;
4076 bfd_reloc_code_real_type relaxed_bfd_r_type;
a06ea964
NC
4077 reloc_howto_type *howto;
4078 unsigned long r_symndx;
4079 Elf_Internal_Sym *sym;
4080 asection *sec;
4081 struct elf_link_hash_entry *h;
4082 bfd_vma relocation;
4083 bfd_reloc_status_type r;
4084 arelent bfd_reloc;
4085 char sym_type;
4086 bfd_boolean unresolved_reloc = FALSE;
4087 char *error_message = NULL;
4088
cec5225b
YZ
4089 r_symndx = ELFNN_R_SYM (rel->r_info);
4090 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964 4091
cec5225b 4092 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
4093 howto = bfd_reloc.howto;
4094
7fcfd62d
NC
4095 if (howto == NULL)
4096 {
4097 (*_bfd_error_handler)
4098 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
4099 input_bfd, input_section, r_type);
4100 return FALSE;
4101 }
a6bb11b2 4102 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
7fcfd62d 4103
a06ea964
NC
4104 h = NULL;
4105 sym = NULL;
4106 sec = NULL;
4107
4108 if (r_symndx < symtab_hdr->sh_info)
4109 {
4110 sym = local_syms + r_symndx;
cec5225b 4111 sym_type = ELFNN_ST_TYPE (sym->st_info);
a06ea964
NC
4112 sec = local_sections[r_symndx];
4113
4114 /* An object file might have a reference to a local
4115 undefined symbol. This is a daft object file, but we
4116 should at least do something about it. */
4117 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
4118 && bfd_is_und_section (sec)
4119 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
4120 {
4121 if (!info->callbacks->undefined_symbol
4122 (info, bfd_elf_string_from_elf_section
4123 (input_bfd, symtab_hdr->sh_link, sym->st_name),
4124 input_bfd, input_section, rel->r_offset, TRUE))
4125 return FALSE;
4126 }
4127
a06ea964 4128 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1419bbe5
WN
4129
4130 /* Relocate against local STT_GNU_IFUNC symbol. */
4131 if (!info->relocatable
4132 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4133 {
4134 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
4135 rel, FALSE);
4136 if (h == NULL)
4137 abort ();
4138
4139 /* Set STT_GNU_IFUNC symbol value. */
4140 h->root.u.def.value = sym->st_value;
4141 h->root.u.def.section = sec;
4142 }
a06ea964
NC
4143 }
4144 else
4145 {
62d887d4 4146 bfd_boolean warned, ignored;
a06ea964
NC
4147
4148 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4149 r_symndx, symtab_hdr, sym_hashes,
4150 h, sec, relocation,
62d887d4 4151 unresolved_reloc, warned, ignored);
a06ea964
NC
4152
4153 sym_type = h->type;
4154 }
4155
4156 if (sec != NULL && discarded_section (sec))
4157 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4158 rel, 1, relend, howto, 0, contents);
4159
4160 if (info->relocatable)
2e0488d3 4161 continue;
a06ea964
NC
4162
4163 if (h != NULL)
4164 name = h->root.root.string;
4165 else
4166 {
4167 name = (bfd_elf_string_from_elf_section
4168 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4169 if (name == NULL || *name == '\0')
4170 name = bfd_section_name (input_bfd, sec);
4171 }
4172
4173 if (r_symndx != 0
4174 && r_type != R_AARCH64_NONE
4175 && r_type != R_AARCH64_NULL
4176 && (h == NULL
4177 || h->root.type == bfd_link_hash_defined
4178 || h->root.type == bfd_link_hash_defweak)
a6bb11b2 4179 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
a06ea964
NC
4180 {
4181 (*_bfd_error_handler)
4182 ((sym_type == STT_TLS
4183 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4184 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4185 input_bfd,
4186 input_section, (long) rel->r_offset, howto->name, name);
4187 }
4188
a06ea964
NC
4189 /* We relax only if we can see that there can be a valid transition
4190 from a reloc type to another.
cec5225b 4191 We call elfNN_aarch64_final_link_relocate unless we're completely
a06ea964
NC
4192 done, i.e., the relaxation produced the final output we want. */
4193
a6bb11b2
YZ
4194 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
4195 h, r_symndx);
4196 if (relaxed_bfd_r_type != bfd_r_type)
a06ea964 4197 {
a6bb11b2
YZ
4198 bfd_r_type = relaxed_bfd_r_type;
4199 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4200 BFD_ASSERT (howto != NULL);
4201 r_type = howto->type;
cec5225b 4202 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
a06ea964
NC
4203 unresolved_reloc = 0;
4204 }
4205 else
4206 r = bfd_reloc_continue;
4207
4208 /* There may be multiple consecutive relocations for the
4209 same offset. In that case we are supposed to treat the
4210 output of each relocation as the addend for the next. */
4211 if (rel + 1 < relend
4212 && rel->r_offset == rel[1].r_offset
cec5225b
YZ
4213 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
4214 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
a06ea964
NC
4215 save_addend = TRUE;
4216 else
4217 save_addend = FALSE;
4218
4219 if (r == bfd_reloc_continue)
cec5225b 4220 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
a06ea964
NC
4221 input_section, contents, rel,
4222 relocation, info, sec,
4223 h, &unresolved_reloc,
1419bbe5 4224 save_addend, &addend, sym);
a06ea964 4225
a6bb11b2 4226 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 4227 {
a6bb11b2
YZ
4228 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4229 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
4230 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4231 {
4232 bfd_boolean need_relocs = FALSE;
4233 bfd_byte *loc;
4234 int indx;
4235 bfd_vma off;
4236
4237 off = symbol_got_offset (input_bfd, h, r_symndx);
4238 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4239
4240 need_relocs =
4241 (info->shared || indx != 0) &&
4242 (h == NULL
4243 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4244 || h->root.type != bfd_link_hash_undefweak);
4245
4246 BFD_ASSERT (globals->root.srelgot != NULL);
4247
4248 if (need_relocs)
4249 {
4250 Elf_Internal_Rela rela;
a6bb11b2 4251 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
a06ea964
NC
4252 rela.r_addend = 0;
4253 rela.r_offset = globals->root.sgot->output_section->vma +
4254 globals->root.sgot->output_offset + off;
4255
4256
4257 loc = globals->root.srelgot->contents;
4258 loc += globals->root.srelgot->reloc_count++
4259 * RELOC_SIZE (htab);
cec5225b 4260 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
4261
4262 if (indx == 0)
4263 {
cec5225b 4264 bfd_put_NN (output_bfd,
a06ea964
NC
4265 relocation - dtpoff_base (info),
4266 globals->root.sgot->contents + off
4267 + GOT_ENTRY_SIZE);
4268 }
4269 else
4270 {
4271 /* This TLS symbol is global. We emit a
4272 relocation to fixup the tls offset at load
4273 time. */
4274 rela.r_info =
a6bb11b2 4275 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
a06ea964
NC
4276 rela.r_addend = 0;
4277 rela.r_offset =
4278 (globals->root.sgot->output_section->vma
4279 + globals->root.sgot->output_offset + off
4280 + GOT_ENTRY_SIZE);
4281
4282 loc = globals->root.srelgot->contents;
4283 loc += globals->root.srelgot->reloc_count++
4284 * RELOC_SIZE (globals);
cec5225b
YZ
4285 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4286 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4287 globals->root.sgot->contents + off
4288 + GOT_ENTRY_SIZE);
4289 }
4290 }
4291 else
4292 {
cec5225b 4293 bfd_put_NN (output_bfd, (bfd_vma) 1,
a06ea964 4294 globals->root.sgot->contents + off);
cec5225b 4295 bfd_put_NN (output_bfd,
a06ea964
NC
4296 relocation - dtpoff_base (info),
4297 globals->root.sgot->contents + off
4298 + GOT_ENTRY_SIZE);
4299 }
4300
4301 symbol_got_offset_mark (input_bfd, h, r_symndx);
4302 }
4303 break;
4304
a6bb11b2
YZ
4305 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4306 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
a06ea964
NC
4307 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4308 {
4309 bfd_boolean need_relocs = FALSE;
4310 bfd_byte *loc;
4311 int indx;
4312 bfd_vma off;
4313
4314 off = symbol_got_offset (input_bfd, h, r_symndx);
4315
4316 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4317
4318 need_relocs =
4319 (info->shared || indx != 0) &&
4320 (h == NULL
4321 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4322 || h->root.type != bfd_link_hash_undefweak);
4323
4324 BFD_ASSERT (globals->root.srelgot != NULL);
4325
4326 if (need_relocs)
4327 {
4328 Elf_Internal_Rela rela;
4329
4330 if (indx == 0)
4331 rela.r_addend = relocation - dtpoff_base (info);
4332 else
4333 rela.r_addend = 0;
4334
a6bb11b2 4335 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
a06ea964
NC
4336 rela.r_offset = globals->root.sgot->output_section->vma +
4337 globals->root.sgot->output_offset + off;
4338
4339 loc = globals->root.srelgot->contents;
4340 loc += globals->root.srelgot->reloc_count++
4341 * RELOC_SIZE (htab);
4342
cec5225b 4343 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 4344
cec5225b 4345 bfd_put_NN (output_bfd, rela.r_addend,
a06ea964
NC
4346 globals->root.sgot->contents + off);
4347 }
4348 else
cec5225b 4349 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
a06ea964
NC
4350 globals->root.sgot->contents + off);
4351
4352 symbol_got_offset_mark (input_bfd, h, r_symndx);
4353 }
4354 break;
4355
a6bb11b2
YZ
4356 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
4357 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
4358 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4359 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4360 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4361 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4362 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4363 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
a06ea964
NC
4364 break;
4365
7bcccb57 4366 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
a6bb11b2
YZ
4367 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4368 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
a06ea964
NC
4369 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
4370 {
4371 bfd_boolean need_relocs = FALSE;
4372 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
4373 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
4374
4375 need_relocs = (h == NULL
4376 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4377 || h->root.type != bfd_link_hash_undefweak);
4378
4379 BFD_ASSERT (globals->root.srelgot != NULL);
4380 BFD_ASSERT (globals->root.sgot != NULL);
4381
4382 if (need_relocs)
4383 {
4384 bfd_byte *loc;
4385 Elf_Internal_Rela rela;
a6bb11b2
YZ
4386 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
4387
a06ea964
NC
4388 rela.r_addend = 0;
4389 rela.r_offset = (globals->root.sgotplt->output_section->vma
4390 + globals->root.sgotplt->output_offset
4391 + off + globals->sgotplt_jump_table_size);
4392
4393 if (indx == 0)
4394 rela.r_addend = relocation - dtpoff_base (info);
4395
4396 /* Allocate the next available slot in the PLT reloc
4397 section to hold our R_AARCH64_TLSDESC, the next
4398 available slot is determined from reloc_count,
4399 which we step. But note, reloc_count was
4400 artifically moved down while allocating slots for
4401 real PLT relocs such that all of the PLT relocs
4402 will fit above the initial reloc_count and the
4403 extra stuff will fit below. */
4404 loc = globals->root.srelplt->contents;
4405 loc += globals->root.srelplt->reloc_count++
4406 * RELOC_SIZE (globals);
4407
cec5225b 4408 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 4409
cec5225b 4410 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4411 globals->root.sgotplt->contents + off +
4412 globals->sgotplt_jump_table_size);
cec5225b 4413 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4414 globals->root.sgotplt->contents + off +
4415 globals->sgotplt_jump_table_size +
4416 GOT_ENTRY_SIZE);
4417 }
4418
4419 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
4420 }
4421 break;
a6bb11b2
YZ
4422 default:
4423 break;
a06ea964
NC
4424 }
4425
4426 if (!save_addend)
4427 addend = 0;
4428
4429
4430 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4431 because such sections are not SEC_ALLOC and thus ld.so will
4432 not process them. */
4433 if (unresolved_reloc
4434 && !((input_section->flags & SEC_DEBUGGING) != 0
4435 && h->def_dynamic)
4436 && _bfd_elf_section_offset (output_bfd, info, input_section,
4437 +rel->r_offset) != (bfd_vma) - 1)
4438 {
4439 (*_bfd_error_handler)
4440 (_
4441 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4442 input_bfd, input_section, (long) rel->r_offset, howto->name,
4443 h->root.root.string);
4444 return FALSE;
4445 }
4446
4447 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
4448 {
4449 switch (r)
4450 {
4451 case bfd_reloc_overflow:
4452 /* If the overflowing reloc was to an undefined symbol,
4453 we have already printed one error message and there
4454 is no point complaining again. */
4455 if ((!h ||
4456 h->root.type != bfd_link_hash_undefined)
4457 && (!((*info->callbacks->reloc_overflow)
4458 (info, (h ? &h->root : NULL), name, howto->name,
4459 (bfd_vma) 0, input_bfd, input_section,
4460 rel->r_offset))))
4461 return FALSE;
4462 break;
4463
4464 case bfd_reloc_undefined:
4465 if (!((*info->callbacks->undefined_symbol)
4466 (info, name, input_bfd, input_section,
4467 rel->r_offset, TRUE)))
4468 return FALSE;
4469 break;
4470
4471 case bfd_reloc_outofrange:
4472 error_message = _("out of range");
4473 goto common_error;
4474
4475 case bfd_reloc_notsupported:
4476 error_message = _("unsupported relocation");
4477 goto common_error;
4478
4479 case bfd_reloc_dangerous:
4480 /* error_message should already be set. */
4481 goto common_error;
4482
4483 default:
4484 error_message = _("unknown error");
4485 /* Fall through. */
4486
4487 common_error:
4488 BFD_ASSERT (error_message != NULL);
4489 if (!((*info->callbacks->reloc_dangerous)
4490 (info, error_message, input_bfd, input_section,
4491 rel->r_offset)))
4492 return FALSE;
4493 break;
4494 }
4495 }
4496 }
4497
4498 return TRUE;
4499}
4500
4501/* Set the right machine number. */
4502
4503static bfd_boolean
cec5225b 4504elfNN_aarch64_object_p (bfd *abfd)
a06ea964 4505{
cec5225b
YZ
4506#if ARCH_SIZE == 32
4507 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
4508#else
a06ea964 4509 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
cec5225b 4510#endif
a06ea964
NC
4511 return TRUE;
4512}
4513
4514/* Function to keep AArch64 specific flags in the ELF header. */
4515
4516static bfd_boolean
cec5225b 4517elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
a06ea964
NC
4518{
4519 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
4520 {
4521 }
4522 else
4523 {
4524 elf_elfheader (abfd)->e_flags = flags;
4525 elf_flags_init (abfd) = TRUE;
4526 }
4527
4528 return TRUE;
4529}
4530
a06ea964
NC
4531/* Merge backend specific data from an object file to the output
4532 object file when linking. */
4533
4534static bfd_boolean
cec5225b 4535elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
a06ea964
NC
4536{
4537 flagword out_flags;
4538 flagword in_flags;
4539 bfd_boolean flags_compatible = TRUE;
4540 asection *sec;
4541
4542 /* Check if we have the same endianess. */
4543 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
4544 return FALSE;
4545
4546 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
4547 return TRUE;
4548
4549 /* The input BFD must have had its flags initialised. */
4550 /* The following seems bogus to me -- The flags are initialized in
4551 the assembler but I don't think an elf_flags_init field is
4552 written into the object. */
4553 /* BFD_ASSERT (elf_flags_init (ibfd)); */
4554
4555 in_flags = elf_elfheader (ibfd)->e_flags;
4556 out_flags = elf_elfheader (obfd)->e_flags;
4557
4558 if (!elf_flags_init (obfd))
4559 {
4560 /* If the input is the default architecture and had the default
4561 flags then do not bother setting the flags for the output
4562 architecture, instead allow future merges to do this. If no
4563 future merges ever set these flags then they will retain their
4564 uninitialised values, which surprise surprise, correspond
4565 to the default values. */
4566 if (bfd_get_arch_info (ibfd)->the_default
4567 && elf_elfheader (ibfd)->e_flags == 0)
4568 return TRUE;
4569
4570 elf_flags_init (obfd) = TRUE;
4571 elf_elfheader (obfd)->e_flags = in_flags;
4572
4573 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4574 && bfd_get_arch_info (obfd)->the_default)
4575 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4576 bfd_get_mach (ibfd));
4577
4578 return TRUE;
4579 }
4580
4581 /* Identical flags must be compatible. */
4582 if (in_flags == out_flags)
4583 return TRUE;
4584
4585 /* Check to see if the input BFD actually contains any sections. If
4586 not, its flags may not have been initialised either, but it
4587 cannot actually cause any incompatiblity. Do not short-circuit
4588 dynamic objects; their section list may be emptied by
4589 elf_link_add_object_symbols.
4590
4591 Also check to see if there are no code sections in the input.
4592 In this case there is no need to check for code specific flags.
4593 XXX - do we need to worry about floating-point format compatability
4594 in data sections ? */
4595 if (!(ibfd->flags & DYNAMIC))
4596 {
4597 bfd_boolean null_input_bfd = TRUE;
4598 bfd_boolean only_data_sections = TRUE;
4599
4600 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
4601 {
4602 if ((bfd_get_section_flags (ibfd, sec)
4603 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4604 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4605 only_data_sections = FALSE;
4606
4607 null_input_bfd = FALSE;
4608 break;
4609 }
4610
4611 if (null_input_bfd || only_data_sections)
4612 return TRUE;
4613 }
4614
4615 return flags_compatible;
4616}
4617
4618/* Display the flags field. */
4619
4620static bfd_boolean
cec5225b 4621elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
a06ea964
NC
4622{
4623 FILE *file = (FILE *) ptr;
4624 unsigned long flags;
4625
4626 BFD_ASSERT (abfd != NULL && ptr != NULL);
4627
4628 /* Print normal ELF private data. */
4629 _bfd_elf_print_private_bfd_data (abfd, ptr);
4630
4631 flags = elf_elfheader (abfd)->e_flags;
4632 /* Ignore init flag - it may not be set, despite the flags field
4633 containing valid data. */
4634
4635 /* xgettext:c-format */
4636 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
4637
4638 if (flags)
4639 fprintf (file, _("<Unrecognised flag bits set>"));
4640
4641 fputc ('\n', file);
4642
4643 return TRUE;
4644}
4645
4646/* Update the got entry reference counts for the section being removed. */
4647
4648static bfd_boolean
cec5225b 4649elfNN_aarch64_gc_sweep_hook (bfd *abfd,
cb8af559
NC
4650 struct bfd_link_info *info,
4651 asection *sec,
4652 const Elf_Internal_Rela * relocs)
a06ea964 4653{
cec5225b 4654 struct elf_aarch64_link_hash_table *htab;
59c108f7
NC
4655 Elf_Internal_Shdr *symtab_hdr;
4656 struct elf_link_hash_entry **sym_hashes;
cb8af559 4657 struct elf_aarch64_local_symbol *locals;
59c108f7
NC
4658 const Elf_Internal_Rela *rel, *relend;
4659
4660 if (info->relocatable)
4661 return TRUE;
4662
cec5225b 4663 htab = elf_aarch64_hash_table (info);
59c108f7
NC
4664
4665 if (htab == NULL)
4666 return FALSE;
4667
4668 elf_section_data (sec)->local_dynrel = NULL;
4669
4670 symtab_hdr = &elf_symtab_hdr (abfd);
4671 sym_hashes = elf_sym_hashes (abfd);
4672
cec5225b 4673 locals = elf_aarch64_locals (abfd);
59c108f7
NC
4674
4675 relend = relocs + sec->reloc_count;
4676 for (rel = relocs; rel < relend; rel++)
4677 {
4678 unsigned long r_symndx;
4679 unsigned int r_type;
4680 struct elf_link_hash_entry *h = NULL;
4681
cec5225b 4682 r_symndx = ELFNN_R_SYM (rel->r_info);
8847944f 4683
59c108f7
NC
4684 if (r_symndx >= symtab_hdr->sh_info)
4685 {
8847944f 4686
59c108f7
NC
4687 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4688 while (h->root.type == bfd_link_hash_indirect
4689 || h->root.type == bfd_link_hash_warning)
4690 h = (struct elf_link_hash_entry *) h->root.u.i.link;
59c108f7
NC
4691 }
4692 else
4693 {
4694 Elf_Internal_Sym *isym;
4695
8847944f 4696 /* A local symbol. */
59c108f7
NC
4697 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4698 abfd, r_symndx);
1419bbe5
WN
4699
4700 /* Check relocation against local STT_GNU_IFUNC symbol. */
4701 if (isym != NULL
4702 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4703 {
4704 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
4705 if (h == NULL)
4706 abort ();
4707 }
4708 }
4709
4710 if (h)
4711 {
4712 struct elf_aarch64_link_hash_entry *eh;
4713 struct elf_dyn_relocs **pp;
4714 struct elf_dyn_relocs *p;
4715
4716 eh = (struct elf_aarch64_link_hash_entry *) h;
4717
4718 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4719 if (p->sec == sec)
4720 {
4721 /* Everything must go for SEC. */
4722 *pp = p->next;
4723 break;
4724 }
59c108f7
NC
4725 }
4726
cec5225b 4727 r_type = ELFNN_R_TYPE (rel->r_info);
a6bb11b2 4728 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
59c108f7 4729 {
a6bb11b2 4730 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57
MS
4731 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4732 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4733 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4734 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4735 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4736 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4737 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 4738 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 4739 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a6bb11b2 4740 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 4741 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 4742 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
a6bb11b2 4743 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7bcccb57 4744 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a6bb11b2 4745 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a6bb11b2
YZ
4746 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4747 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7bcccb57
MS
4748 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4749 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4750 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a6bb11b2 4751 if (h != NULL)
59c108f7
NC
4752 {
4753 if (h->got.refcount > 0)
4754 h->got.refcount -= 1;
1419bbe5
WN
4755
4756 if (h->type == STT_GNU_IFUNC)
4757 {
4758 if (h->plt.refcount > 0)
4759 h->plt.refcount -= 1;
4760 }
59c108f7 4761 }
cb8af559 4762 else if (locals != NULL)
59c108f7 4763 {
cb8af559
NC
4764 if (locals[r_symndx].got_refcount > 0)
4765 locals[r_symndx].got_refcount -= 1;
59c108f7
NC
4766 }
4767 break;
4768
a6bb11b2
YZ
4769 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
4770 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
4771 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
59c108f7
NC
4772 if (h != NULL && info->executable)
4773 {
4774 if (h->plt.refcount > 0)
4775 h->plt.refcount -= 1;
4776 }
4777 break;
4778
a6bb11b2
YZ
4779 case BFD_RELOC_AARCH64_CALL26:
4780 case BFD_RELOC_AARCH64_JUMP26:
4781 /* If this is a local symbol then we resolve it
4782 directly without creating a PLT entry. */
59c108f7
NC
4783 if (h == NULL)
4784 continue;
4785
4786 if (h->plt.refcount > 0)
4787 h->plt.refcount -= 1;
4788 break;
4789
a6bb11b2 4790 case BFD_RELOC_AARCH64_NN:
8847944f 4791 if (h != NULL && info->executable)
59c108f7
NC
4792 {
4793 if (h->plt.refcount > 0)
4794 h->plt.refcount -= 1;
4795 }
4796 break;
cec5225b 4797
59c108f7
NC
4798 default:
4799 break;
4800 }
4801 }
4802
a06ea964
NC
4803 return TRUE;
4804}
4805
4806/* Adjust a symbol defined by a dynamic object and referenced by a
4807 regular object. The current definition is in some section of the
4808 dynamic object, but we're not including those sections. We have to
4809 change the definition to something the rest of the link can
4810 understand. */
4811
4812static bfd_boolean
cec5225b 4813elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
a06ea964
NC
4814 struct elf_link_hash_entry *h)
4815{
cec5225b 4816 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
4817 asection *s;
4818
4819 /* If this is a function, put it in the procedure linkage table. We
4820 will fill in the contents of the procedure linkage table later,
4821 when we know the address of the .got section. */
1419bbe5 4822 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
a06ea964
NC
4823 {
4824 if (h->plt.refcount <= 0
1419bbe5
WN
4825 || (h->type != STT_GNU_IFUNC
4826 && (SYMBOL_CALLS_LOCAL (info, h)
4827 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
4828 && h->root.type == bfd_link_hash_undefweak))))
a06ea964
NC
4829 {
4830 /* This case can occur if we saw a CALL26 reloc in
4831 an input file, but the symbol wasn't referred to
4832 by a dynamic object or all references were
4833 garbage collected. In which case we can end up
4834 resolving. */
4835 h->plt.offset = (bfd_vma) - 1;
4836 h->needs_plt = 0;
4837 }
4838
4839 return TRUE;
4840 }
4841 else
4842 /* It's possible that we incorrectly decided a .plt reloc was
4843 needed for an R_X86_64_PC32 reloc to a non-function sym in
4844 check_relocs. We can't decide accurately between function and
4845 non-function syms in check-relocs; Objects loaded later in
4846 the link may change h->type. So fix it now. */
4847 h->plt.offset = (bfd_vma) - 1;
4848
4849
4850 /* If this is a weak symbol, and there is a real definition, the
4851 processor independent code will have arranged for us to see the
4852 real definition first, and we can just use the same value. */
4853 if (h->u.weakdef != NULL)
4854 {
4855 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
4856 || h->u.weakdef->root.type == bfd_link_hash_defweak);
4857 h->root.u.def.section = h->u.weakdef->root.u.def.section;
4858 h->root.u.def.value = h->u.weakdef->root.u.def.value;
4859 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
4860 h->non_got_ref = h->u.weakdef->non_got_ref;
4861 return TRUE;
4862 }
4863
4864 /* If we are creating a shared library, we must presume that the
4865 only references to the symbol are via the global offset table.
4866 For such cases we need not do anything here; the relocations will
4867 be handled correctly by relocate_section. */
4868 if (info->shared)
4869 return TRUE;
4870
4871 /* If there are no references to this symbol that do not use the
4872 GOT, we don't need to generate a copy reloc. */
4873 if (!h->non_got_ref)
4874 return TRUE;
4875
4876 /* If -z nocopyreloc was given, we won't generate them either. */
4877 if (info->nocopyreloc)
4878 {
4879 h->non_got_ref = 0;
4880 return TRUE;
4881 }
4882
4883 /* We must allocate the symbol in our .dynbss section, which will
4884 become part of the .bss section of the executable. There will be
4885 an entry for this symbol in the .dynsym section. The dynamic
4886 object will contain position independent code, so all references
4887 from the dynamic object to this symbol will go through the global
4888 offset table. The dynamic linker will use the .dynsym entry to
4889 determine the address it must put in the global offset table, so
4890 both the dynamic object and the regular object will refer to the
4891 same memory location for the variable. */
4892
cec5225b 4893 htab = elf_aarch64_hash_table (info);
a06ea964
NC
4894
4895 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
4896 to copy the initial value out of the dynamic object and into the
4897 runtime process image. */
4898 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
4899 {
4900 htab->srelbss->size += RELOC_SIZE (htab);
4901 h->needs_copy = 1;
4902 }
4903
4904 s = htab->sdynbss;
4905
4906 return _bfd_elf_adjust_dynamic_copy (h, s);
4907
4908}
4909
4910static bfd_boolean
cec5225b 4911elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
a06ea964
NC
4912{
4913 struct elf_aarch64_local_symbol *locals;
cec5225b 4914 locals = elf_aarch64_locals (abfd);
a06ea964
NC
4915 if (locals == NULL)
4916 {
4917 locals = (struct elf_aarch64_local_symbol *)
4918 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
4919 if (locals == NULL)
4920 return FALSE;
cec5225b 4921 elf_aarch64_locals (abfd) = locals;
a06ea964
NC
4922 }
4923 return TRUE;
4924}
4925
cc0efaa8
MS
4926/* Create the .got section to hold the global offset table. */
4927
4928static bfd_boolean
4929aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4930{
4931 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4932 flagword flags;
4933 asection *s;
4934 struct elf_link_hash_entry *h;
4935 struct elf_link_hash_table *htab = elf_hash_table (info);
4936
4937 /* This function may be called more than once. */
4938 s = bfd_get_linker_section (abfd, ".got");
4939 if (s != NULL)
4940 return TRUE;
4941
4942 flags = bed->dynamic_sec_flags;
4943
4944 s = bfd_make_section_anyway_with_flags (abfd,
4945 (bed->rela_plts_and_copies_p
4946 ? ".rela.got" : ".rel.got"),
4947 (bed->dynamic_sec_flags
4948 | SEC_READONLY));
4949 if (s == NULL
4950 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4951 return FALSE;
4952 htab->srelgot = s;
4953
4954 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4955 if (s == NULL
4956 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4957 return FALSE;
4958 htab->sgot = s;
4959 htab->sgot->size += GOT_ENTRY_SIZE;
4960
4961 if (bed->want_got_sym)
4962 {
4963 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
4964 (or .got.plt) section. We don't do this in the linker script
4965 because we don't want to define the symbol if we are not creating
4966 a global offset table. */
4967 h = _bfd_elf_define_linkage_sym (abfd, info, s,
4968 "_GLOBAL_OFFSET_TABLE_");
4969 elf_hash_table (info)->hgot = h;
4970 if (h == NULL)
4971 return FALSE;
4972 }
4973
4974 if (bed->want_got_plt)
4975 {
4976 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
4977 if (s == NULL
4978 || !bfd_set_section_alignment (abfd, s,
4979 bed->s->log_file_align))
4980 return FALSE;
4981 htab->sgotplt = s;
4982 }
4983
4984 /* The first bit of the global offset table is the header. */
4985 s->size += bed->got_header_size;
4986
4987 return TRUE;
4988}
4989
a06ea964
NC
4990/* Look through the relocs for a section during the first phase. */
4991
4992static bfd_boolean
cec5225b 4993elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
a06ea964
NC
4994 asection *sec, const Elf_Internal_Rela *relocs)
4995{
4996 Elf_Internal_Shdr *symtab_hdr;
4997 struct elf_link_hash_entry **sym_hashes;
4998 const Elf_Internal_Rela *rel;
4999 const Elf_Internal_Rela *rel_end;
5000 asection *sreloc;
5001
cec5225b 5002 struct elf_aarch64_link_hash_table *htab;
a06ea964 5003
a06ea964
NC
5004 if (info->relocatable)
5005 return TRUE;
5006
5007 BFD_ASSERT (is_aarch64_elf (abfd));
5008
cec5225b 5009 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5010 sreloc = NULL;
5011
5012 symtab_hdr = &elf_symtab_hdr (abfd);
5013 sym_hashes = elf_sym_hashes (abfd);
a06ea964
NC
5014
5015 rel_end = relocs + sec->reloc_count;
5016 for (rel = relocs; rel < rel_end; rel++)
5017 {
5018 struct elf_link_hash_entry *h;
5019 unsigned long r_symndx;
5020 unsigned int r_type;
a6bb11b2 5021 bfd_reloc_code_real_type bfd_r_type;
1419bbe5 5022 Elf_Internal_Sym *isym;
a06ea964 5023
cec5225b
YZ
5024 r_symndx = ELFNN_R_SYM (rel->r_info);
5025 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
5026
5027 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
5028 {
5029 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
5030 r_symndx);
5031 return FALSE;
5032 }
5033
ed5acf27 5034 if (r_symndx < symtab_hdr->sh_info)
1419bbe5
WN
5035 {
5036 /* A local symbol. */
5037 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5038 abfd, r_symndx);
5039 if (isym == NULL)
5040 return FALSE;
5041
5042 /* Check relocation against local STT_GNU_IFUNC symbol. */
5043 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5044 {
5045 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
5046 TRUE);
5047 if (h == NULL)
5048 return FALSE;
5049
5050 /* Fake a STT_GNU_IFUNC symbol. */
5051 h->type = STT_GNU_IFUNC;
5052 h->def_regular = 1;
5053 h->ref_regular = 1;
5054 h->forced_local = 1;
5055 h->root.type = bfd_link_hash_defined;
5056 }
5057 else
5058 h = NULL;
5059 }
a06ea964
NC
5060 else
5061 {
5062 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5063 while (h->root.type == bfd_link_hash_indirect
5064 || h->root.type == bfd_link_hash_warning)
5065 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
5066
5067 /* PR15323, ref flags aren't set for references in the same
5068 object. */
5069 h->root.non_ir_ref = 1;
a06ea964
NC
5070 }
5071
5072 /* Could be done earlier, if h were already available. */
a6bb11b2 5073 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
a06ea964 5074
1419bbe5
WN
5075 if (h != NULL)
5076 {
5077 /* Create the ifunc sections for static executables. If we
5078 never see an indirect function symbol nor we are building
5079 a static executable, those sections will be empty and
5080 won't appear in output. */
5081 switch (bfd_r_type)
5082 {
5083 default:
5084 break;
5085
5086 case BFD_RELOC_AARCH64_NN:
5087 case BFD_RELOC_AARCH64_CALL26:
5088 case BFD_RELOC_AARCH64_JUMP26:
5089 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5090 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5091 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5092 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5093 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5094 case BFD_RELOC_AARCH64_ADD_LO12:
5095 if (htab->root.dynobj == NULL)
5096 htab->root.dynobj = abfd;
5097 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
5098 return FALSE;
5099 break;
5100 }
5101
5102 /* It is referenced by a non-shared object. */
5103 h->ref_regular = 1;
5104 h->root.non_ir_ref = 1;
5105 }
5106
a6bb11b2 5107 switch (bfd_r_type)
a06ea964 5108 {
a6bb11b2 5109 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
5110
5111 /* We don't need to handle relocs into sections not going into
5112 the "real" output. */
5113 if ((sec->flags & SEC_ALLOC) == 0)
5114 break;
5115
5116 if (h != NULL)
5117 {
5118 if (!info->shared)
5119 h->non_got_ref = 1;
5120
5121 h->plt.refcount += 1;
5122 h->pointer_equality_needed = 1;
5123 }
5124
5125 /* No need to do anything if we're not creating a shared
5126 object. */
5127 if (! info->shared)
5128 break;
5129
5130 {
5131 struct elf_dyn_relocs *p;
5132 struct elf_dyn_relocs **head;
5133
5134 /* We must copy these reloc types into the output file.
5135 Create a reloc section in dynobj and make room for
5136 this reloc. */
5137 if (sreloc == NULL)
5138 {
5139 if (htab->root.dynobj == NULL)
5140 htab->root.dynobj = abfd;
5141
5142 sreloc = _bfd_elf_make_dynamic_reloc_section
0608afa7 5143 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
a06ea964
NC
5144
5145 if (sreloc == NULL)
5146 return FALSE;
5147 }
5148
5149 /* If this is a global symbol, we count the number of
5150 relocations we need for this symbol. */
5151 if (h != NULL)
5152 {
cec5225b
YZ
5153 struct elf_aarch64_link_hash_entry *eh;
5154 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
5155 head = &eh->dyn_relocs;
5156 }
5157 else
5158 {
5159 /* Track dynamic relocs needed for local syms too.
5160 We really need local syms available to do this
5161 easily. Oh well. */
5162
5163 asection *s;
5164 void **vpp;
a06ea964
NC
5165
5166 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5167 abfd, r_symndx);
5168 if (isym == NULL)
5169 return FALSE;
5170
5171 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5172 if (s == NULL)
5173 s = sec;
5174
5175 /* Beware of type punned pointers vs strict aliasing
5176 rules. */
5177 vpp = &(elf_section_data (s)->local_dynrel);
5178 head = (struct elf_dyn_relocs **) vpp;
5179 }
5180
5181 p = *head;
5182 if (p == NULL || p->sec != sec)
5183 {
5184 bfd_size_type amt = sizeof *p;
5185 p = ((struct elf_dyn_relocs *)
5186 bfd_zalloc (htab->root.dynobj, amt));
5187 if (p == NULL)
5188 return FALSE;
5189 p->next = *head;
5190 *head = p;
5191 p->sec = sec;
5192 }
5193
5194 p->count += 1;
5195
5196 }
5197 break;
5198
5199 /* RR: We probably want to keep a consistency check that
5200 there are no dangling GOT_PAGE relocs. */
a6bb11b2 5201 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57
MS
5202 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5203 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5204 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5205 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5206 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5207 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5208 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 5209 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 5210 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a6bb11b2 5211 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 5212 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 5213 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
a6bb11b2 5214 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7bcccb57 5215 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a6bb11b2 5216 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a6bb11b2
YZ
5217 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5218 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7bcccb57
MS
5219 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5220 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5221 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
5222 {
5223 unsigned got_type;
5224 unsigned old_got_type;
5225
a6bb11b2 5226 got_type = aarch64_reloc_got_type (bfd_r_type);
a06ea964
NC
5227
5228 if (h)
5229 {
5230 h->got.refcount += 1;
cec5225b 5231 old_got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
5232 }
5233 else
5234 {
5235 struct elf_aarch64_local_symbol *locals;
5236
cec5225b 5237 if (!elfNN_aarch64_allocate_local_symbols
a06ea964
NC
5238 (abfd, symtab_hdr->sh_info))
5239 return FALSE;
5240
cec5225b 5241 locals = elf_aarch64_locals (abfd);
a06ea964
NC
5242 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5243 locals[r_symndx].got_refcount += 1;
5244 old_got_type = locals[r_symndx].got_type;
5245 }
5246
5247 /* If a variable is accessed with both general dynamic TLS
5248 methods, two slots may be created. */
5249 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
5250 got_type |= old_got_type;
5251
5252 /* We will already have issued an error message if there
5253 is a TLS/non-TLS mismatch, based on the symbol type.
5254 So just combine any TLS types needed. */
5255 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
5256 && got_type != GOT_NORMAL)
5257 got_type |= old_got_type;
5258
5259 /* If the symbol is accessed by both IE and GD methods, we
5260 are able to relax. Turn off the GD flag, without
5261 messing up with any other kind of TLS types that may be
5262 involved. */
5263 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
5264 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
5265
5266 if (old_got_type != got_type)
5267 {
5268 if (h != NULL)
cec5225b 5269 elf_aarch64_hash_entry (h)->got_type = got_type;
a06ea964
NC
5270 else
5271 {
5272 struct elf_aarch64_local_symbol *locals;
cec5225b 5273 locals = elf_aarch64_locals (abfd);
a06ea964
NC
5274 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5275 locals[r_symndx].got_type = got_type;
5276 }
5277 }
5278
cc0efaa8
MS
5279 if (htab->root.dynobj == NULL)
5280 htab->root.dynobj = abfd;
5281 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
5282 return FALSE;
a06ea964
NC
5283 break;
5284 }
5285
a6bb11b2
YZ
5286 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5287 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5288 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
5289 if (h != NULL && info->executable)
5290 {
5291 /* If this reloc is in a read-only section, we might
5292 need a copy reloc. We can't check reliably at this
5293 stage whether the section is read-only, as input
5294 sections have not yet been mapped to output sections.
5295 Tentatively set the flag for now, and correct in
5296 adjust_dynamic_symbol. */
5297 h->non_got_ref = 1;
5298 h->plt.refcount += 1;
5299 h->pointer_equality_needed = 1;
5300 }
5301 /* FIXME:: RR need to handle these in shared libraries
5302 and essentially bomb out as these being non-PIC
5303 relocations in shared libraries. */
5304 break;
5305
a6bb11b2
YZ
5306 case BFD_RELOC_AARCH64_CALL26:
5307 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
5308 /* If this is a local symbol then we resolve it
5309 directly without creating a PLT entry. */
5310 if (h == NULL)
5311 continue;
5312
5313 h->needs_plt = 1;
1419bbe5
WN
5314 if (h->plt.refcount <= 0)
5315 h->plt.refcount = 1;
5316 else
5317 h->plt.refcount += 1;
a06ea964 5318 break;
a6bb11b2
YZ
5319
5320 default:
5321 break;
a06ea964
NC
5322 }
5323 }
a6bb11b2 5324
a06ea964
NC
5325 return TRUE;
5326}
5327
5328/* Treat mapping symbols as special target symbols. */
5329
5330static bfd_boolean
cec5225b 5331elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
5332 asymbol *sym)
5333{
5334 return bfd_is_aarch64_special_symbol_name (sym->name,
5335 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
5336}
5337
5338/* This is a copy of elf_find_function () from elf.c except that
5339 AArch64 mapping symbols are ignored when looking for function names. */
5340
5341static bfd_boolean
5342aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
5343 asection *section,
5344 asymbol **symbols,
5345 bfd_vma offset,
5346 const char **filename_ptr,
5347 const char **functionname_ptr)
5348{
5349 const char *filename = NULL;
5350 asymbol *func = NULL;
5351 bfd_vma low_func = 0;
5352 asymbol **p;
5353
5354 for (p = symbols; *p != NULL; p++)
5355 {
5356 elf_symbol_type *q;
5357
5358 q = (elf_symbol_type *) * p;
5359
5360 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5361 {
5362 default:
5363 break;
5364 case STT_FILE:
5365 filename = bfd_asymbol_name (&q->symbol);
5366 break;
5367 case STT_FUNC:
5368 case STT_NOTYPE:
5369 /* Skip mapping symbols. */
5370 if ((q->symbol.flags & BSF_LOCAL)
5371 && (bfd_is_aarch64_special_symbol_name
5372 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
5373 continue;
5374 /* Fall through. */
5375 if (bfd_get_section (&q->symbol) == section
5376 && q->symbol.value >= low_func && q->symbol.value <= offset)
5377 {
5378 func = (asymbol *) q;
5379 low_func = q->symbol.value;
5380 }
5381 break;
5382 }
5383 }
5384
5385 if (func == NULL)
5386 return FALSE;
5387
5388 if (filename_ptr)
5389 *filename_ptr = filename;
5390 if (functionname_ptr)
5391 *functionname_ptr = bfd_asymbol_name (func);
5392
5393 return TRUE;
5394}
5395
5396
5397/* Find the nearest line to a particular section and offset, for error
5398 reporting. This code is a duplicate of the code in elf.c, except
5399 that it uses aarch64_elf_find_function. */
5400
5401static bfd_boolean
cec5225b 5402elfNN_aarch64_find_nearest_line (bfd *abfd,
a06ea964
NC
5403 asection *section,
5404 asymbol **symbols,
5405 bfd_vma offset,
5406 const char **filename_ptr,
5407 const char **functionname_ptr,
5408 unsigned int *line_ptr)
5409{
5410 bfd_boolean found = FALSE;
5411
5412 /* We skip _bfd_dwarf1_find_nearest_line since no known AArch64
5413 toolchain uses it. */
5414
5415 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
5416 section, symbols, offset,
5417 filename_ptr, functionname_ptr,
5418 line_ptr, NULL, 0,
5419 &elf_tdata (abfd)->dwarf2_find_line_info))
5420 {
5421 if (!*functionname_ptr)
5422 aarch64_elf_find_function (abfd, section, symbols, offset,
5423 *filename_ptr ? NULL : filename_ptr,
5424 functionname_ptr);
5425
5426 return TRUE;
5427 }
5428
5429 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
5430 &found, filename_ptr,
5431 functionname_ptr, line_ptr,
5432 &elf_tdata (abfd)->line_info))
5433 return FALSE;
5434
5435 if (found && (*functionname_ptr || *line_ptr))
5436 return TRUE;
5437
5438 if (symbols == NULL)
5439 return FALSE;
5440
5441 if (!aarch64_elf_find_function (abfd, section, symbols, offset,
5442 filename_ptr, functionname_ptr))
5443 return FALSE;
5444
5445 *line_ptr = 0;
5446 return TRUE;
5447}
5448
5449static bfd_boolean
cec5225b 5450elfNN_aarch64_find_inliner_info (bfd *abfd,
a06ea964
NC
5451 const char **filename_ptr,
5452 const char **functionname_ptr,
5453 unsigned int *line_ptr)
5454{
5455 bfd_boolean found;
5456 found = _bfd_dwarf2_find_inliner_info
5457 (abfd, filename_ptr,
5458 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
5459 return found;
5460}
5461
5462
5463static void
cec5225b 5464elfNN_aarch64_post_process_headers (bfd *abfd,
1419bbe5 5465 struct bfd_link_info *link_info)
a06ea964
NC
5466{
5467 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
5468
5469 i_ehdrp = elf_elfheader (abfd);
a06ea964 5470 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
1419bbe5 5471
78245035 5472 _bfd_elf_post_process_headers (abfd, link_info);
a06ea964
NC
5473}
5474
5475static enum elf_reloc_type_class
cec5225b 5476elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7e612e98
AM
5477 const asection *rel_sec ATTRIBUTE_UNUSED,
5478 const Elf_Internal_Rela *rela)
a06ea964 5479{
cec5225b 5480 switch ((int) ELFNN_R_TYPE (rela->r_info))
a06ea964 5481 {
a6bb11b2 5482 case AARCH64_R (RELATIVE):
a06ea964 5483 return reloc_class_relative;
a6bb11b2 5484 case AARCH64_R (JUMP_SLOT):
a06ea964 5485 return reloc_class_plt;
a6bb11b2 5486 case AARCH64_R (COPY):
a06ea964
NC
5487 return reloc_class_copy;
5488 default:
5489 return reloc_class_normal;
5490 }
5491}
5492
a06ea964
NC
5493/* Handle an AArch64 specific section when reading an object file. This is
5494 called when bfd_section_from_shdr finds a section with an unknown
5495 type. */
5496
5497static bfd_boolean
cec5225b 5498elfNN_aarch64_section_from_shdr (bfd *abfd,
a06ea964
NC
5499 Elf_Internal_Shdr *hdr,
5500 const char *name, int shindex)
5501{
5502 /* There ought to be a place to keep ELF backend specific flags, but
5503 at the moment there isn't one. We just keep track of the
5504 sections by their name, instead. Fortunately, the ABI gives
5505 names for all the AArch64 specific sections, so we will probably get
5506 away with this. */
5507 switch (hdr->sh_type)
5508 {
5509 case SHT_AARCH64_ATTRIBUTES:
5510 break;
5511
5512 default:
5513 return FALSE;
5514 }
5515
5516 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5517 return FALSE;
5518
5519 return TRUE;
5520}
5521
5522/* A structure used to record a list of sections, independently
5523 of the next and prev fields in the asection structure. */
5524typedef struct section_list
5525{
5526 asection *sec;
5527 struct section_list *next;
5528 struct section_list *prev;
5529}
5530section_list;
5531
5532/* Unfortunately we need to keep a list of sections for which
5533 an _aarch64_elf_section_data structure has been allocated. This
cec5225b 5534 is because it is possible for functions like elfNN_aarch64_write_section
a06ea964
NC
5535 to be called on a section which has had an elf_data_structure
5536 allocated for it (and so the used_by_bfd field is valid) but
5537 for which the AArch64 extended version of this structure - the
5538 _aarch64_elf_section_data structure - has not been allocated. */
5539static section_list *sections_with_aarch64_elf_section_data = NULL;
5540
5541static void
5542record_section_with_aarch64_elf_section_data (asection *sec)
5543{
5544 struct section_list *entry;
5545
5546 entry = bfd_malloc (sizeof (*entry));
5547 if (entry == NULL)
5548 return;
5549 entry->sec = sec;
5550 entry->next = sections_with_aarch64_elf_section_data;
5551 entry->prev = NULL;
5552 if (entry->next != NULL)
5553 entry->next->prev = entry;
5554 sections_with_aarch64_elf_section_data = entry;
5555}
5556
5557static struct section_list *
5558find_aarch64_elf_section_entry (asection *sec)
5559{
5560 struct section_list *entry;
5561 static struct section_list *last_entry = NULL;
5562
5563 /* This is a short cut for the typical case where the sections are added
5564 to the sections_with_aarch64_elf_section_data list in forward order and
5565 then looked up here in backwards order. This makes a real difference
5566 to the ld-srec/sec64k.exp linker test. */
5567 entry = sections_with_aarch64_elf_section_data;
5568 if (last_entry != NULL)
5569 {
5570 if (last_entry->sec == sec)
5571 entry = last_entry;
5572 else if (last_entry->next != NULL && last_entry->next->sec == sec)
5573 entry = last_entry->next;
5574 }
5575
5576 for (; entry; entry = entry->next)
5577 if (entry->sec == sec)
5578 break;
5579
5580 if (entry)
5581 /* Record the entry prior to this one - it is the entry we are
5582 most likely to want to locate next time. Also this way if we
5583 have been called from
5584 unrecord_section_with_aarch64_elf_section_data () we will not
5585 be caching a pointer that is about to be freed. */
5586 last_entry = entry->prev;
5587
5588 return entry;
5589}
5590
5591static void
5592unrecord_section_with_aarch64_elf_section_data (asection *sec)
5593{
5594 struct section_list *entry;
5595
5596 entry = find_aarch64_elf_section_entry (sec);
5597
5598 if (entry)
5599 {
5600 if (entry->prev != NULL)
5601 entry->prev->next = entry->next;
5602 if (entry->next != NULL)
5603 entry->next->prev = entry->prev;
5604 if (entry == sections_with_aarch64_elf_section_data)
5605 sections_with_aarch64_elf_section_data = entry->next;
5606 free (entry);
5607 }
5608}
5609
5610
5611typedef struct
5612{
5613 void *finfo;
5614 struct bfd_link_info *info;
5615 asection *sec;
5616 int sec_shndx;
5617 int (*func) (void *, const char *, Elf_Internal_Sym *,
5618 asection *, struct elf_link_hash_entry *);
5619} output_arch_syminfo;
5620
5621enum map_symbol_type
5622{
5623 AARCH64_MAP_INSN,
5624 AARCH64_MAP_DATA
5625};
5626
5627
5628/* Output a single mapping symbol. */
5629
5630static bfd_boolean
cec5225b 5631elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
a06ea964
NC
5632 enum map_symbol_type type, bfd_vma offset)
5633{
5634 static const char *names[2] = { "$x", "$d" };
5635 Elf_Internal_Sym sym;
5636
5637 sym.st_value = (osi->sec->output_section->vma
5638 + osi->sec->output_offset + offset);
5639 sym.st_size = 0;
5640 sym.st_other = 0;
5641 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5642 sym.st_shndx = osi->sec_shndx;
5643 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
5644}
5645
5646
5647
5648/* Output mapping symbols for PLT entries associated with H. */
5649
5650static bfd_boolean
cec5225b 5651elfNN_aarch64_output_plt_map (struct elf_link_hash_entry *h, void *inf)
a06ea964
NC
5652{
5653 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
5654 bfd_vma addr;
5655
5656 if (h->root.type == bfd_link_hash_indirect)
5657 return TRUE;
5658
5659 if (h->root.type == bfd_link_hash_warning)
5660 /* When warning symbols are created, they **replace** the "real"
5661 entry in the hash table, thus we never get to see the real
5662 symbol in a hash traversal. So look at it now. */
5663 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5664
5665 if (h->plt.offset == (bfd_vma) - 1)
5666 return TRUE;
5667
5668 addr = h->plt.offset;
5669 if (addr == 32)
5670 {
cec5225b 5671 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964
NC
5672 return FALSE;
5673 }
5674 return TRUE;
5675}
5676
5677
5678/* Output a single local symbol for a generated stub. */
5679
5680static bfd_boolean
cec5225b 5681elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
a06ea964
NC
5682 bfd_vma offset, bfd_vma size)
5683{
5684 Elf_Internal_Sym sym;
5685
5686 sym.st_value = (osi->sec->output_section->vma
5687 + osi->sec->output_offset + offset);
5688 sym.st_size = size;
5689 sym.st_other = 0;
5690 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5691 sym.st_shndx = osi->sec_shndx;
5692 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
5693}
5694
5695static bfd_boolean
5696aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
5697{
cec5225b 5698 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
5699 asection *stub_sec;
5700 bfd_vma addr;
5701 char *stub_name;
5702 output_arch_syminfo *osi;
5703
5704 /* Massage our args to the form they really have. */
cec5225b 5705 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
5706 osi = (output_arch_syminfo *) in_arg;
5707
5708 stub_sec = stub_entry->stub_sec;
5709
5710 /* Ensure this stub is attached to the current section being
5711 processed. */
5712 if (stub_sec != osi->sec)
5713 return TRUE;
5714
5715 addr = (bfd_vma) stub_entry->stub_offset;
5716
5717 stub_name = stub_entry->output_name;
5718
5719 switch (stub_entry->stub_type)
5720 {
5721 case aarch64_stub_adrp_branch:
cec5225b 5722 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
a06ea964
NC
5723 sizeof (aarch64_adrp_branch_stub)))
5724 return FALSE;
cec5225b 5725 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964
NC
5726 return FALSE;
5727 break;
5728 case aarch64_stub_long_branch:
cec5225b 5729 if (!elfNN_aarch64_output_stub_sym
a06ea964
NC
5730 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
5731 return FALSE;
cec5225b 5732 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964 5733 return FALSE;
cec5225b 5734 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
a06ea964
NC
5735 return FALSE;
5736 break;
5737 default:
5738 BFD_FAIL ();
5739 }
5740
5741 return TRUE;
5742}
5743
5744/* Output mapping symbols for linker generated sections. */
5745
5746static bfd_boolean
cec5225b 5747elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
a06ea964
NC
5748 struct bfd_link_info *info,
5749 void *finfo,
5750 int (*func) (void *, const char *,
5751 Elf_Internal_Sym *,
5752 asection *,
5753 struct elf_link_hash_entry
5754 *))
5755{
5756 output_arch_syminfo osi;
cec5225b 5757 struct elf_aarch64_link_hash_table *htab;
a06ea964 5758
cec5225b 5759 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5760
5761 osi.finfo = finfo;
5762 osi.info = info;
5763 osi.func = func;
5764
5765 /* Long calls stubs. */
5766 if (htab->stub_bfd && htab->stub_bfd->sections)
5767 {
5768 asection *stub_sec;
5769
5770 for (stub_sec = htab->stub_bfd->sections;
5771 stub_sec != NULL; stub_sec = stub_sec->next)
5772 {
5773 /* Ignore non-stub sections. */
5774 if (!strstr (stub_sec->name, STUB_SUFFIX))
5775 continue;
5776
5777 osi.sec = stub_sec;
5778
5779 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5780 (output_bfd, osi.sec->output_section);
5781
5782 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
5783 &osi);
5784 }
5785 }
5786
5787 /* Finally, output mapping symbols for the PLT. */
5788 if (!htab->root.splt || htab->root.splt->size == 0)
5789 return TRUE;
5790
5791 /* For now live without mapping symbols for the plt. */
5792 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5793 (output_bfd, htab->root.splt->output_section);
5794 osi.sec = htab->root.splt;
5795
cec5225b 5796 elf_link_hash_traverse (&htab->root, elfNN_aarch64_output_plt_map,
a06ea964
NC
5797 (void *) &osi);
5798
5799 return TRUE;
5800
5801}
5802
5803/* Allocate target specific section data. */
5804
5805static bfd_boolean
cec5225b 5806elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
a06ea964
NC
5807{
5808 if (!sec->used_by_bfd)
5809 {
5810 _aarch64_elf_section_data *sdata;
5811 bfd_size_type amt = sizeof (*sdata);
5812
5813 sdata = bfd_zalloc (abfd, amt);
5814 if (sdata == NULL)
5815 return FALSE;
5816 sec->used_by_bfd = sdata;
5817 }
5818
5819 record_section_with_aarch64_elf_section_data (sec);
5820
5821 return _bfd_elf_new_section_hook (abfd, sec);
5822}
5823
5824
5825static void
5826unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
5827 asection *sec,
5828 void *ignore ATTRIBUTE_UNUSED)
5829{
5830 unrecord_section_with_aarch64_elf_section_data (sec);
5831}
5832
5833static bfd_boolean
cec5225b 5834elfNN_aarch64_close_and_cleanup (bfd *abfd)
a06ea964
NC
5835{
5836 if (abfd->sections)
5837 bfd_map_over_sections (abfd,
5838 unrecord_section_via_map_over_sections, NULL);
5839
5840 return _bfd_elf_close_and_cleanup (abfd);
5841}
5842
5843static bfd_boolean
cec5225b 5844elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
a06ea964
NC
5845{
5846 if (abfd->sections)
5847 bfd_map_over_sections (abfd,
5848 unrecord_section_via_map_over_sections, NULL);
5849
5850 return _bfd_free_cached_info (abfd);
5851}
5852
a06ea964
NC
5853/* Create dynamic sections. This is different from the ARM backend in that
5854 the got, plt, gotplt and their relocation sections are all created in the
5855 standard part of the bfd elf backend. */
5856
5857static bfd_boolean
cec5225b 5858elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
a06ea964
NC
5859 struct bfd_link_info *info)
5860{
cec5225b 5861 struct elf_aarch64_link_hash_table *htab;
cc0efaa8
MS
5862
5863 /* We need to create .got section. */
5864 if (!aarch64_elf_create_got_section (dynobj, info))
5865 return FALSE;
a06ea964
NC
5866
5867 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
5868 return FALSE;
5869
cec5225b 5870 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5871 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
5872 if (!info->shared)
5873 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
5874
5875 if (!htab->sdynbss || (!info->shared && !htab->srelbss))
5876 abort ();
5877
a06ea964
NC
5878 return TRUE;
5879}
5880
5881
5882/* Allocate space in .plt, .got and associated reloc sections for
5883 dynamic relocs. */
5884
5885static bfd_boolean
cec5225b 5886elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
a06ea964
NC
5887{
5888 struct bfd_link_info *info;
cec5225b
YZ
5889 struct elf_aarch64_link_hash_table *htab;
5890 struct elf_aarch64_link_hash_entry *eh;
a06ea964
NC
5891 struct elf_dyn_relocs *p;
5892
5893 /* An example of a bfd_link_hash_indirect symbol is versioned
5894 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
5895 -> __gxx_personality_v0(bfd_link_hash_defined)
5896
5897 There is no need to process bfd_link_hash_indirect symbols here
5898 because we will also be presented with the concrete instance of
cec5225b 5899 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
a06ea964
NC
5900 called to copy all relevant data from the generic to the concrete
5901 symbol instance.
5902 */
5903 if (h->root.type == bfd_link_hash_indirect)
5904 return TRUE;
5905
5906 if (h->root.type == bfd_link_hash_warning)
5907 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5908
5909 info = (struct bfd_link_info *) inf;
cec5225b 5910 htab = elf_aarch64_hash_table (info);
a06ea964 5911
1419bbe5
WN
5912 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
5913 here if it is defined and referenced in a non-shared object. */
5914 if (h->type == STT_GNU_IFUNC
5915 && h->def_regular)
5916 return TRUE;
5917 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
a06ea964
NC
5918 {
5919 /* Make sure this symbol is output as a dynamic symbol.
5920 Undefined weak syms won't yet be marked as dynamic. */
5921 if (h->dynindx == -1 && !h->forced_local)
5922 {
5923 if (!bfd_elf_link_record_dynamic_symbol (info, h))
5924 return FALSE;
5925 }
5926
5927 if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5928 {
5929 asection *s = htab->root.splt;
5930
5931 /* If this is the first .plt entry, make room for the special
5932 first entry. */
5933 if (s->size == 0)
5934 s->size += htab->plt_header_size;
5935
5936 h->plt.offset = s->size;
5937
5938 /* If this symbol is not defined in a regular file, and we are
5939 not generating a shared library, then set the symbol to this
5940 location in the .plt. This is required to make function
5941 pointers compare as equal between the normal executable and
5942 the shared library. */
5943 if (!info->shared && !h->def_regular)
5944 {
5945 h->root.u.def.section = s;
5946 h->root.u.def.value = h->plt.offset;
5947 }
5948
5949 /* Make room for this entry. For now we only create the
5950 small model PLT entries. We later need to find a way
5951 of relaxing into these from the large model PLT entries. */
5952 s->size += PLT_SMALL_ENTRY_SIZE;
5953
5954 /* We also need to make an entry in the .got.plt section, which
5955 will be placed in the .got section by the linker script. */
5956 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
5957
5958 /* We also need to make an entry in the .rela.plt section. */
5959 htab->root.srelplt->size += RELOC_SIZE (htab);
5960
5961 /* We need to ensure that all GOT entries that serve the PLT
5962 are consecutive with the special GOT slots [0] [1] and
5963 [2]. Any addtional relocations, such as
5964 R_AARCH64_TLSDESC, must be placed after the PLT related
5965 entries. We abuse the reloc_count such that during
5966 sizing we adjust reloc_count to indicate the number of
5967 PLT related reserved entries. In subsequent phases when
5968 filling in the contents of the reloc entries, PLT related
5969 entries are placed by computing their PLT index (0
5970 .. reloc_count). While other none PLT relocs are placed
5971 at the slot indicated by reloc_count and reloc_count is
5972 updated. */
5973
5974 htab->root.srelplt->reloc_count++;
5975 }
5976 else
5977 {
5978 h->plt.offset = (bfd_vma) - 1;
5979 h->needs_plt = 0;
5980 }
5981 }
5982 else
5983 {
5984 h->plt.offset = (bfd_vma) - 1;
5985 h->needs_plt = 0;
5986 }
5987
cec5225b 5988 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
5989 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
5990
5991 if (h->got.refcount > 0)
5992 {
5993 bfd_boolean dyn;
cec5225b 5994 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
5995
5996 h->got.offset = (bfd_vma) - 1;
5997
5998 dyn = htab->root.dynamic_sections_created;
5999
6000 /* Make sure this symbol is output as a dynamic symbol.
6001 Undefined weak syms won't yet be marked as dynamic. */
6002 if (dyn && h->dynindx == -1 && !h->forced_local)
6003 {
6004 if (!bfd_elf_link_record_dynamic_symbol (info, h))
6005 return FALSE;
6006 }
6007
6008 if (got_type == GOT_UNKNOWN)
6009 {
6010 }
6011 else if (got_type == GOT_NORMAL)
6012 {
6013 h->got.offset = htab->root.sgot->size;
6014 htab->root.sgot->size += GOT_ENTRY_SIZE;
6015 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6016 || h->root.type != bfd_link_hash_undefweak)
6017 && (info->shared
6018 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6019 {
6020 htab->root.srelgot->size += RELOC_SIZE (htab);
6021 }
6022 }
6023 else
6024 {
6025 int indx;
6026 if (got_type & GOT_TLSDESC_GD)
6027 {
6028 eh->tlsdesc_got_jump_table_offset =
6029 (htab->root.sgotplt->size
6030 - aarch64_compute_jump_table_size (htab));
6031 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6032 h->got.offset = (bfd_vma) - 2;
6033 }
6034
6035 if (got_type & GOT_TLS_GD)
6036 {
6037 h->got.offset = htab->root.sgot->size;
6038 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6039 }
6040
6041 if (got_type & GOT_TLS_IE)
6042 {
6043 h->got.offset = htab->root.sgot->size;
6044 htab->root.sgot->size += GOT_ENTRY_SIZE;
6045 }
6046
6047 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6048 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6049 || h->root.type != bfd_link_hash_undefweak)
6050 && (info->shared
6051 || indx != 0
6052 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6053 {
6054 if (got_type & GOT_TLSDESC_GD)
6055 {
6056 htab->root.srelplt->size += RELOC_SIZE (htab);
6057 /* Note reloc_count not incremented here! We have
6058 already adjusted reloc_count for this relocation
6059 type. */
6060
6061 /* TLSDESC PLT is now needed, but not yet determined. */
6062 htab->tlsdesc_plt = (bfd_vma) - 1;
6063 }
6064
6065 if (got_type & GOT_TLS_GD)
6066 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6067
6068 if (got_type & GOT_TLS_IE)
6069 htab->root.srelgot->size += RELOC_SIZE (htab);
6070 }
6071 }
6072 }
6073 else
6074 {
6075 h->got.offset = (bfd_vma) - 1;
6076 }
6077
6078 if (eh->dyn_relocs == NULL)
6079 return TRUE;
6080
6081 /* In the shared -Bsymbolic case, discard space allocated for
6082 dynamic pc-relative relocs against symbols which turn out to be
6083 defined in regular objects. For the normal shared case, discard
6084 space for pc-relative relocs that have become local due to symbol
6085 visibility changes. */
6086
6087 if (info->shared)
6088 {
6089 /* Relocs that use pc_count are those that appear on a call
6090 insn, or certain REL relocs that can generated via assembly.
6091 We want calls to protected symbols to resolve directly to the
6092 function rather than going via the plt. If people want
6093 function pointer comparisons to work as expected then they
6094 should avoid writing weird assembly. */
6095 if (SYMBOL_CALLS_LOCAL (info, h))
6096 {
6097 struct elf_dyn_relocs **pp;
6098
6099 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
6100 {
6101 p->count -= p->pc_count;
6102 p->pc_count = 0;
6103 if (p->count == 0)
6104 *pp = p->next;
6105 else
6106 pp = &p->next;
6107 }
6108 }
6109
6110 /* Also discard relocs on undefined weak syms with non-default
6111 visibility. */
6112 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
6113 {
6114 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6115 eh->dyn_relocs = NULL;
6116
6117 /* Make sure undefined weak symbols are output as a dynamic
6118 symbol in PIEs. */
6119 else if (h->dynindx == -1
6120 && !h->forced_local
6121 && !bfd_elf_link_record_dynamic_symbol (info, h))
6122 return FALSE;
6123 }
6124
6125 }
6126 else if (ELIMINATE_COPY_RELOCS)
6127 {
6128 /* For the non-shared case, discard space for relocs against
6129 symbols which turn out to need copy relocs or are not
6130 dynamic. */
6131
6132 if (!h->non_got_ref
6133 && ((h->def_dynamic
6134 && !h->def_regular)
6135 || (htab->root.dynamic_sections_created
6136 && (h->root.type == bfd_link_hash_undefweak
6137 || h->root.type == bfd_link_hash_undefined))))
6138 {
6139 /* Make sure this symbol is output as a dynamic symbol.
6140 Undefined weak syms won't yet be marked as dynamic. */
6141 if (h->dynindx == -1
6142 && !h->forced_local
6143 && !bfd_elf_link_record_dynamic_symbol (info, h))
6144 return FALSE;
6145
6146 /* If that succeeded, we know we'll be keeping all the
6147 relocs. */
6148 if (h->dynindx != -1)
6149 goto keep;
6150 }
6151
6152 eh->dyn_relocs = NULL;
6153
6154 keep:;
6155 }
6156
6157 /* Finally, allocate space. */
6158 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6159 {
6160 asection *sreloc;
6161
6162 sreloc = elf_section_data (p->sec)->sreloc;
6163
6164 BFD_ASSERT (sreloc != NULL);
6165
6166 sreloc->size += p->count * RELOC_SIZE (htab);
6167 }
6168
6169 return TRUE;
6170}
6171
1419bbe5
WN
6172/* Allocate space in .plt, .got and associated reloc sections for
6173 ifunc dynamic relocs. */
6174
6175static bfd_boolean
6176elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
6177 void *inf)
6178{
6179 struct bfd_link_info *info;
6180 struct elf_aarch64_link_hash_table *htab;
6181 struct elf_aarch64_link_hash_entry *eh;
6182
6183 /* An example of a bfd_link_hash_indirect symbol is versioned
6184 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
6185 -> __gxx_personality_v0(bfd_link_hash_defined)
6186
6187 There is no need to process bfd_link_hash_indirect symbols here
6188 because we will also be presented with the concrete instance of
6189 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
6190 called to copy all relevant data from the generic to the concrete
6191 symbol instance.
6192 */
6193 if (h->root.type == bfd_link_hash_indirect)
6194 return TRUE;
6195
6196 if (h->root.type == bfd_link_hash_warning)
6197 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6198
6199 info = (struct bfd_link_info *) inf;
6200 htab = elf_aarch64_hash_table (info);
6201
6202 eh = (struct elf_aarch64_link_hash_entry *) h;
6203
6204 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
6205 here if it is defined and referenced in a non-shared object. */
6206 if (h->type == STT_GNU_IFUNC
6207 && h->def_regular)
6208 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
6209 &eh->dyn_relocs,
6210 htab->plt_entry_size,
6211 htab->plt_header_size,
6212 GOT_ENTRY_SIZE);
6213 return TRUE;
6214}
6215
6216/* Allocate space in .plt, .got and associated reloc sections for
6217 local dynamic relocs. */
6218
6219static bfd_boolean
6220elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
6221{
6222 struct elf_link_hash_entry *h
6223 = (struct elf_link_hash_entry *) *slot;
6224
6225 if (h->type != STT_GNU_IFUNC
6226 || !h->def_regular
6227 || !h->ref_regular
6228 || !h->forced_local
6229 || h->root.type != bfd_link_hash_defined)
6230 abort ();
6231
6232 return elfNN_aarch64_allocate_dynrelocs (h, inf);
6233}
6234
6235/* Allocate space in .plt, .got and associated reloc sections for
6236 local ifunc dynamic relocs. */
6237
6238static bfd_boolean
6239elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
6240{
6241 struct elf_link_hash_entry *h
6242 = (struct elf_link_hash_entry *) *slot;
6243
6244 if (h->type != STT_GNU_IFUNC
6245 || !h->def_regular
6246 || !h->ref_regular
6247 || !h->forced_local
6248 || h->root.type != bfd_link_hash_defined)
6249 abort ();
6250
6251 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
6252}
a06ea964 6253
a06ea964
NC
6254/* This is the most important function of all . Innocuosly named
6255 though ! */
6256static bfd_boolean
cec5225b 6257elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
a06ea964
NC
6258 struct bfd_link_info *info)
6259{
cec5225b 6260 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
6261 bfd *dynobj;
6262 asection *s;
6263 bfd_boolean relocs;
6264 bfd *ibfd;
6265
cec5225b 6266 htab = elf_aarch64_hash_table ((info));
a06ea964
NC
6267 dynobj = htab->root.dynobj;
6268
6269 BFD_ASSERT (dynobj != NULL);
6270
6271 if (htab->root.dynamic_sections_created)
6272 {
6273 if (info->executable)
6274 {
6275 s = bfd_get_linker_section (dynobj, ".interp");
6276 if (s == NULL)
6277 abort ();
6278 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
6279 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
6280 }
6281 }
6282
6283 /* Set up .got offsets for local syms, and space for local dynamic
6284 relocs. */
c72f2fb2 6285 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
a06ea964
NC
6286 {
6287 struct elf_aarch64_local_symbol *locals = NULL;
6288 Elf_Internal_Shdr *symtab_hdr;
6289 asection *srel;
6290 unsigned int i;
6291
6292 if (!is_aarch64_elf (ibfd))
6293 continue;
6294
6295 for (s = ibfd->sections; s != NULL; s = s->next)
6296 {
6297 struct elf_dyn_relocs *p;
6298
6299 for (p = (struct elf_dyn_relocs *)
6300 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
6301 {
6302 if (!bfd_is_abs_section (p->sec)
6303 && bfd_is_abs_section (p->sec->output_section))
6304 {
6305 /* Input section has been discarded, either because
6306 it is a copy of a linkonce section or due to
6307 linker script /DISCARD/, so we'll be discarding
6308 the relocs too. */
6309 }
6310 else if (p->count != 0)
6311 {
6312 srel = elf_section_data (p->sec)->sreloc;
6313 srel->size += p->count * RELOC_SIZE (htab);
6314 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
6315 info->flags |= DF_TEXTREL;
6316 }
6317 }
6318 }
6319
cec5225b 6320 locals = elf_aarch64_locals (ibfd);
a06ea964
NC
6321 if (!locals)
6322 continue;
6323
6324 symtab_hdr = &elf_symtab_hdr (ibfd);
6325 srel = htab->root.srelgot;
6326 for (i = 0; i < symtab_hdr->sh_info; i++)
6327 {
6328 locals[i].got_offset = (bfd_vma) - 1;
6329 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
6330 if (locals[i].got_refcount > 0)
6331 {
6332 unsigned got_type = locals[i].got_type;
6333 if (got_type & GOT_TLSDESC_GD)
6334 {
6335 locals[i].tlsdesc_got_jump_table_offset =
6336 (htab->root.sgotplt->size
6337 - aarch64_compute_jump_table_size (htab));
6338 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6339 locals[i].got_offset = (bfd_vma) - 2;
6340 }
6341
6342 if (got_type & GOT_TLS_GD)
6343 {
6344 locals[i].got_offset = htab->root.sgot->size;
6345 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6346 }
6347
6348 if (got_type & GOT_TLS_IE)
6349 {
6350 locals[i].got_offset = htab->root.sgot->size;
6351 htab->root.sgot->size += GOT_ENTRY_SIZE;
6352 }
6353
6354 if (got_type == GOT_UNKNOWN)
6355 {
6356 }
6357
6358 if (got_type == GOT_NORMAL)
6359 {
6360 }
6361
6362 if (info->shared)
6363 {
6364 if (got_type & GOT_TLSDESC_GD)
6365 {
6366 htab->root.srelplt->size += RELOC_SIZE (htab);
6367 /* Note RELOC_COUNT not incremented here! */
6368 htab->tlsdesc_plt = (bfd_vma) - 1;
6369 }
6370
6371 if (got_type & GOT_TLS_GD)
6372 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6373
6374 if (got_type & GOT_TLS_IE)
6375 htab->root.srelgot->size += RELOC_SIZE (htab);
6376 }
6377 }
6378 else
6379 {
6380 locals[i].got_refcount = (bfd_vma) - 1;
6381 }
6382 }
6383 }
6384
6385
6386 /* Allocate global sym .plt and .got entries, and space for global
6387 sym dynamic relocs. */
cec5225b 6388 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
a06ea964
NC
6389 info);
6390
1419bbe5
WN
6391 /* Allocate global ifunc sym .plt and .got entries, and space for global
6392 ifunc sym dynamic relocs. */
6393 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
6394 info);
6395
6396 /* Allocate .plt and .got entries, and space for local symbols. */
6397 htab_traverse (htab->loc_hash_table,
6398 elfNN_aarch64_allocate_local_dynrelocs,
6399 info);
6400
6401 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
6402 htab_traverse (htab->loc_hash_table,
6403 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
6404 info);
a06ea964
NC
6405
6406 /* For every jump slot reserved in the sgotplt, reloc_count is
6407 incremented. However, when we reserve space for TLS descriptors,
6408 it's not incremented, so in order to compute the space reserved
6409 for them, it suffices to multiply the reloc count by the jump
6410 slot size. */
6411
6412 if (htab->root.srelplt)
8847944f 6413 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
a06ea964
NC
6414
6415 if (htab->tlsdesc_plt)
6416 {
6417 if (htab->root.splt->size == 0)
6418 htab->root.splt->size += PLT_ENTRY_SIZE;
6419
6420 htab->tlsdesc_plt = htab->root.splt->size;
6421 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
6422
6423 /* If we're not using lazy TLS relocations, don't generate the
6424 GOT entry required. */
6425 if (!(info->flags & DF_BIND_NOW))
6426 {
6427 htab->dt_tlsdesc_got = htab->root.sgot->size;
6428 htab->root.sgot->size += GOT_ENTRY_SIZE;
6429 }
6430 }
6431
6432 /* We now have determined the sizes of the various dynamic sections.
6433 Allocate memory for them. */
6434 relocs = FALSE;
6435 for (s = dynobj->sections; s != NULL; s = s->next)
6436 {
6437 if ((s->flags & SEC_LINKER_CREATED) == 0)
6438 continue;
6439
6440 if (s == htab->root.splt
6441 || s == htab->root.sgot
6442 || s == htab->root.sgotplt
6443 || s == htab->root.iplt
6444 || s == htab->root.igotplt || s == htab->sdynbss)
6445 {
6446 /* Strip this section if we don't need it; see the
6447 comment below. */
6448 }
6449 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
6450 {
6451 if (s->size != 0 && s != htab->root.srelplt)
6452 relocs = TRUE;
6453
6454 /* We use the reloc_count field as a counter if we need
6455 to copy relocs into the output file. */
6456 if (s != htab->root.srelplt)
6457 s->reloc_count = 0;
6458 }
6459 else
6460 {
6461 /* It's not one of our sections, so don't allocate space. */
6462 continue;
6463 }
6464
6465 if (s->size == 0)
6466 {
6467 /* If we don't need this section, strip it from the
6468 output file. This is mostly to handle .rela.bss and
6469 .rela.plt. We must create both sections in
6470 create_dynamic_sections, because they must be created
6471 before the linker maps input sections to output
6472 sections. The linker does that before
6473 adjust_dynamic_symbol is called, and it is that
6474 function which decides whether anything needs to go
6475 into these sections. */
6476
6477 s->flags |= SEC_EXCLUDE;
6478 continue;
6479 }
6480
6481 if ((s->flags & SEC_HAS_CONTENTS) == 0)
6482 continue;
6483
6484 /* Allocate memory for the section contents. We use bfd_zalloc
6485 here in case unused entries are not reclaimed before the
6486 section's contents are written out. This should not happen,
6487 but this way if it does, we get a R_AARCH64_NONE reloc instead
6488 of garbage. */
6489 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
6490 if (s->contents == NULL)
6491 return FALSE;
6492 }
6493
6494 if (htab->root.dynamic_sections_created)
6495 {
6496 /* Add some entries to the .dynamic section. We fill in the
cec5225b 6497 values later, in elfNN_aarch64_finish_dynamic_sections, but we
a06ea964
NC
6498 must add the entries now so that we get the correct size for
6499 the .dynamic section. The DT_DEBUG entry is filled in by the
6500 dynamic linker and used by the debugger. */
6501#define add_dynamic_entry(TAG, VAL) \
6502 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
6503
6504 if (info->executable)
6505 {
6506 if (!add_dynamic_entry (DT_DEBUG, 0))
6507 return FALSE;
6508 }
6509
6510 if (htab->root.splt->size != 0)
6511 {
6512 if (!add_dynamic_entry (DT_PLTGOT, 0)
6513 || !add_dynamic_entry (DT_PLTRELSZ, 0)
6514 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
6515 || !add_dynamic_entry (DT_JMPREL, 0))
6516 return FALSE;
6517
6518 if (htab->tlsdesc_plt
6519 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
6520 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
6521 return FALSE;
6522 }
6523
6524 if (relocs)
6525 {
6526 if (!add_dynamic_entry (DT_RELA, 0)
6527 || !add_dynamic_entry (DT_RELASZ, 0)
6528 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
6529 return FALSE;
6530
6531 /* If any dynamic relocs apply to a read-only section,
6532 then we need a DT_TEXTREL entry. */
6533 if ((info->flags & DF_TEXTREL) != 0)
6534 {
6535 if (!add_dynamic_entry (DT_TEXTREL, 0))
6536 return FALSE;
6537 }
6538 }
6539 }
6540#undef add_dynamic_entry
6541
6542 return TRUE;
a06ea964
NC
6543}
6544
6545static inline void
caed7120
YZ
6546elf_aarch64_update_plt_entry (bfd *output_bfd,
6547 bfd_reloc_code_real_type r_type,
6548 bfd_byte *plt_entry, bfd_vma value)
a06ea964 6549{
caed7120
YZ
6550 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
6551
6552 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
a06ea964
NC
6553}
6554
6555static void
cec5225b
YZ
6556elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
6557 struct elf_aarch64_link_hash_table
1419bbe5
WN
6558 *htab, bfd *output_bfd,
6559 struct bfd_link_info *info)
a06ea964
NC
6560{
6561 bfd_byte *plt_entry;
6562 bfd_vma plt_index;
6563 bfd_vma got_offset;
6564 bfd_vma gotplt_entry_address;
6565 bfd_vma plt_entry_address;
6566 Elf_Internal_Rela rela;
6567 bfd_byte *loc;
1419bbe5
WN
6568 asection *plt, *gotplt, *relplt;
6569
6570 /* When building a static executable, use .iplt, .igot.plt and
6571 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6572 if (htab->root.splt != NULL)
6573 {
6574 plt = htab->root.splt;
6575 gotplt = htab->root.sgotplt;
6576 relplt = htab->root.srelplt;
6577 }
6578 else
6579 {
6580 plt = htab->root.iplt;
6581 gotplt = htab->root.igotplt;
6582 relplt = htab->root.irelplt;
6583 }
6584
6585 /* Get the index in the procedure linkage table which
6586 corresponds to this symbol. This is the index of this symbol
6587 in all the symbols for which we are making plt entries. The
6588 first entry in the procedure linkage table is reserved.
a06ea964 6589
1419bbe5
WN
6590 Get the offset into the .got table of the entry that
6591 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
6592 bytes. The first three are reserved for the dynamic linker.
692e2b8b 6593
1419bbe5
WN
6594 For static executables, we don't reserve anything. */
6595
6596 if (plt == htab->root.splt)
6597 {
6598 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
6599 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
6600 }
6601 else
6602 {
6603 plt_index = h->plt.offset / htab->plt_entry_size;
6604 got_offset = plt_index * GOT_ENTRY_SIZE;
6605 }
6606
6607 plt_entry = plt->contents + h->plt.offset;
6608 plt_entry_address = plt->output_section->vma
f44a1f8e 6609 + plt->output_offset + h->plt.offset;
1419bbe5
WN
6610 gotplt_entry_address = gotplt->output_section->vma +
6611 gotplt->output_offset + got_offset;
a06ea964
NC
6612
6613 /* Copy in the boiler-plate for the PLTn entry. */
cec5225b 6614 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
a06ea964
NC
6615
6616 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6617 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
6618 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6619 plt_entry,
6620 PG (gotplt_entry_address) -
6621 PG (plt_entry_address));
a06ea964
NC
6622
6623 /* Fill in the lo12 bits for the load from the pltgot. */
caed7120
YZ
6624 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6625 plt_entry + 4,
6626 PG_OFFSET (gotplt_entry_address));
a06ea964 6627
9aff4b7a 6628 /* Fill in the lo12 bits for the add from the pltgot entry. */
caed7120
YZ
6629 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6630 plt_entry + 8,
6631 PG_OFFSET (gotplt_entry_address));
a06ea964
NC
6632
6633 /* All the GOTPLT Entries are essentially initialized to PLT0. */
cec5225b 6634 bfd_put_NN (output_bfd,
1419bbe5
WN
6635 plt->output_section->vma + plt->output_offset,
6636 gotplt->contents + got_offset);
a06ea964 6637
a06ea964 6638 rela.r_offset = gotplt_entry_address;
1419bbe5
WN
6639
6640 if (h->dynindx == -1
6641 || ((info->executable
6642 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6643 && h->def_regular
6644 && h->type == STT_GNU_IFUNC))
6645 {
6646 /* If an STT_GNU_IFUNC symbol is locally defined, generate
6647 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
6648 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
6649 rela.r_addend = (h->root.u.def.value
6650 + h->root.u.def.section->output_section->vma
6651 + h->root.u.def.section->output_offset);
6652 }
6653 else
6654 {
6655 /* Fill in the entry in the .rela.plt section. */
6656 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
6657 rela.r_addend = 0;
6658 }
a06ea964
NC
6659
6660 /* Compute the relocation entry to used based on PLT index and do
6661 not adjust reloc_count. The reloc_count has already been adjusted
6662 to account for this entry. */
1419bbe5 6663 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
cec5225b 6664 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6665}
6666
6667/* Size sections even though they're not dynamic. We use it to setup
6668 _TLS_MODULE_BASE_, if needed. */
6669
6670static bfd_boolean
cec5225b 6671elfNN_aarch64_always_size_sections (bfd *output_bfd,
a06ea964
NC
6672 struct bfd_link_info *info)
6673{
6674 asection *tls_sec;
6675
6676 if (info->relocatable)
6677 return TRUE;
6678
6679 tls_sec = elf_hash_table (info)->tls_sec;
6680
6681 if (tls_sec)
6682 {
6683 struct elf_link_hash_entry *tlsbase;
6684
6685 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
6686 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
6687
6688 if (tlsbase)
6689 {
6690 struct bfd_link_hash_entry *h = NULL;
6691 const struct elf_backend_data *bed =
6692 get_elf_backend_data (output_bfd);
6693
6694 if (!(_bfd_generic_link_add_one_symbol
6695 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
6696 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
6697 return FALSE;
6698
6699 tlsbase->type = STT_TLS;
6700 tlsbase = (struct elf_link_hash_entry *) h;
6701 tlsbase->def_regular = 1;
6702 tlsbase->other = STV_HIDDEN;
6703 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
6704 }
6705 }
6706
6707 return TRUE;
6708}
6709
6710/* Finish up dynamic symbol handling. We set the contents of various
6711 dynamic sections here. */
6712static bfd_boolean
cec5225b 6713elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
a06ea964
NC
6714 struct bfd_link_info *info,
6715 struct elf_link_hash_entry *h,
6716 Elf_Internal_Sym *sym)
6717{
cec5225b
YZ
6718 struct elf_aarch64_link_hash_table *htab;
6719 htab = elf_aarch64_hash_table (info);
a06ea964
NC
6720
6721 if (h->plt.offset != (bfd_vma) - 1)
6722 {
1419bbe5
WN
6723 asection *plt, *gotplt, *relplt;
6724
a06ea964
NC
6725 /* This symbol has an entry in the procedure linkage table. Set
6726 it up. */
6727
1419bbe5
WN
6728 /* When building a static executable, use .iplt, .igot.plt and
6729 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6730 if (htab->root.splt != NULL)
6731 {
6732 plt = htab->root.splt;
6733 gotplt = htab->root.sgotplt;
6734 relplt = htab->root.srelplt;
6735 }
6736 else
6737 {
6738 plt = htab->root.iplt;
6739 gotplt = htab->root.igotplt;
6740 relplt = htab->root.irelplt;
6741 }
6742
6743 /* This symbol has an entry in the procedure linkage table. Set
6744 it up. */
6745 if ((h->dynindx == -1
6746 && !((h->forced_local || info->executable)
6747 && h->def_regular
6748 && h->type == STT_GNU_IFUNC))
6749 || plt == NULL
6750 || gotplt == NULL
6751 || relplt == NULL)
a06ea964
NC
6752 abort ();
6753
1419bbe5 6754 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
a06ea964
NC
6755 if (!h->def_regular)
6756 {
6757 /* Mark the symbol as undefined, rather than as defined in
6758 the .plt section. Leave the value alone. This is a clue
6759 for the dynamic linker, to make function pointer
6760 comparisons work between an application and shared
6761 library. */
6762 sym->st_shndx = SHN_UNDEF;
6763 }
6764 }
6765
6766 if (h->got.offset != (bfd_vma) - 1
cec5225b 6767 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
a06ea964
NC
6768 {
6769 Elf_Internal_Rela rela;
6770 bfd_byte *loc;
6771
6772 /* This symbol has an entry in the global offset table. Set it
6773 up. */
6774 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
6775 abort ();
6776
6777 rela.r_offset = (htab->root.sgot->output_section->vma
6778 + htab->root.sgot->output_offset
6779 + (h->got.offset & ~(bfd_vma) 1));
6780
49206388
WN
6781 if (h->def_regular
6782 && h->type == STT_GNU_IFUNC)
6783 {
6784 if (info->shared)
6785 {
6786 /* Generate R_AARCH64_GLOB_DAT. */
6787 goto do_glob_dat;
6788 }
6789 else
6790 {
6791 asection *plt;
6792
6793 if (!h->pointer_equality_needed)
6794 abort ();
6795
6796 /* For non-shared object, we can't use .got.plt, which
6797 contains the real function address if we need pointer
6798 equality. We load the GOT entry with the PLT entry. */
6799 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
6800 bfd_put_NN (output_bfd, (plt->output_section->vma
6801 + plt->output_offset
6802 + h->plt.offset),
6803 htab->root.sgot->contents
6804 + (h->got.offset & ~(bfd_vma) 1));
6805 return TRUE;
6806 }
6807 }
6808 else if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h))
a06ea964
NC
6809 {
6810 if (!h->def_regular)
6811 return FALSE;
6812
6813 BFD_ASSERT ((h->got.offset & 1) != 0);
a6bb11b2 6814 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
a06ea964
NC
6815 rela.r_addend = (h->root.u.def.value
6816 + h->root.u.def.section->output_section->vma
6817 + h->root.u.def.section->output_offset);
6818 }
6819 else
6820 {
49206388 6821do_glob_dat:
a06ea964 6822 BFD_ASSERT ((h->got.offset & 1) == 0);
cec5225b 6823 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964 6824 htab->root.sgot->contents + h->got.offset);
a6bb11b2 6825 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
a06ea964
NC
6826 rela.r_addend = 0;
6827 }
6828
6829 loc = htab->root.srelgot->contents;
6830 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
cec5225b 6831 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6832 }
6833
6834 if (h->needs_copy)
6835 {
6836 Elf_Internal_Rela rela;
6837 bfd_byte *loc;
6838
6839 /* This symbol needs a copy reloc. Set it up. */
6840
6841 if (h->dynindx == -1
6842 || (h->root.type != bfd_link_hash_defined
6843 && h->root.type != bfd_link_hash_defweak)
6844 || htab->srelbss == NULL)
6845 abort ();
6846
6847 rela.r_offset = (h->root.u.def.value
6848 + h->root.u.def.section->output_section->vma
6849 + h->root.u.def.section->output_offset);
a6bb11b2 6850 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
a06ea964
NC
6851 rela.r_addend = 0;
6852 loc = htab->srelbss->contents;
6853 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
cec5225b 6854 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6855 }
6856
6857 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
6858 be NULL for local symbols. */
6859 if (sym != NULL
9637f6ef 6860 && (h == elf_hash_table (info)->hdynamic
a06ea964
NC
6861 || h == elf_hash_table (info)->hgot))
6862 sym->st_shndx = SHN_ABS;
6863
6864 return TRUE;
6865}
6866
1419bbe5
WN
6867/* Finish up local dynamic symbol handling. We set the contents of
6868 various dynamic sections here. */
6869
6870static bfd_boolean
6871elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
6872{
6873 struct elf_link_hash_entry *h
6874 = (struct elf_link_hash_entry *) *slot;
6875 struct bfd_link_info *info
6876 = (struct bfd_link_info *) inf;
6877
6878 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
6879 info, h, NULL);
6880}
6881
a06ea964 6882static void
cec5225b
YZ
6883elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
6884 struct elf_aarch64_link_hash_table
a06ea964
NC
6885 *htab)
6886{
6887 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
6888 small and large plts and at the minute just generates
6889 the small PLT. */
6890
cec5225b 6891 /* PLT0 of the small PLT looks like this in ELF64 -
a06ea964
NC
6892 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
6893 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
6894 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
6895 // symbol resolver
6896 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
6897 // GOTPLT entry for this.
6898 br x17
cec5225b
YZ
6899 PLT0 will be slightly different in ELF32 due to different got entry
6900 size.
a06ea964 6901 */
caed7120 6902 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
a06ea964
NC
6903 bfd_vma plt_base;
6904
6905
cec5225b 6906 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
a06ea964
NC
6907 PLT_ENTRY_SIZE);
6908 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
6909 PLT_ENTRY_SIZE;
6910
caed7120
YZ
6911 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
6912 + htab->root.sgotplt->output_offset
6913 + GOT_ENTRY_SIZE * 2);
a06ea964
NC
6914
6915 plt_base = htab->root.splt->output_section->vma +
f44a1f8e 6916 htab->root.splt->output_offset;
a06ea964
NC
6917
6918 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6919 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
6920 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6921 htab->root.splt->contents + 4,
6922 PG (plt_got_2nd_ent) - PG (plt_base + 4));
a06ea964 6923
caed7120
YZ
6924 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6925 htab->root.splt->contents + 8,
6926 PG_OFFSET (plt_got_2nd_ent));
a06ea964 6927
caed7120
YZ
6928 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6929 htab->root.splt->contents + 12,
6930 PG_OFFSET (plt_got_2nd_ent));
a06ea964
NC
6931}
6932
6933static bfd_boolean
cec5225b 6934elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
a06ea964
NC
6935 struct bfd_link_info *info)
6936{
cec5225b 6937 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
6938 bfd *dynobj;
6939 asection *sdyn;
6940
cec5225b 6941 htab = elf_aarch64_hash_table (info);
a06ea964
NC
6942 dynobj = htab->root.dynobj;
6943 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
6944
6945 if (htab->root.dynamic_sections_created)
6946 {
cec5225b 6947 ElfNN_External_Dyn *dyncon, *dynconend;
a06ea964
NC
6948
6949 if (sdyn == NULL || htab->root.sgot == NULL)
6950 abort ();
6951
cec5225b
YZ
6952 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
6953 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
a06ea964
NC
6954 for (; dyncon < dynconend; dyncon++)
6955 {
6956 Elf_Internal_Dyn dyn;
6957 asection *s;
6958
cec5225b 6959 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
a06ea964
NC
6960
6961 switch (dyn.d_tag)
6962 {
6963 default:
6964 continue;
6965
6966 case DT_PLTGOT:
6967 s = htab->root.sgotplt;
6968 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
6969 break;
6970
6971 case DT_JMPREL:
6972 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
6973 break;
6974
6975 case DT_PLTRELSZ:
c955de36 6976 s = htab->root.srelplt;
a06ea964
NC
6977 dyn.d_un.d_val = s->size;
6978 break;
6979
6980 case DT_RELASZ:
6981 /* The procedure linkage table relocs (DT_JMPREL) should
6982 not be included in the overall relocs (DT_RELA).
6983 Therefore, we override the DT_RELASZ entry here to
6984 make it not include the JMPREL relocs. Since the
6985 linker script arranges for .rela.plt to follow all
6986 other relocation sections, we don't have to worry
6987 about changing the DT_RELA entry. */
6988 if (htab->root.srelplt != NULL)
6989 {
c955de36 6990 s = htab->root.srelplt;
a06ea964
NC
6991 dyn.d_un.d_val -= s->size;
6992 }
6993 break;
6994
6995 case DT_TLSDESC_PLT:
6996 s = htab->root.splt;
6997 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
6998 + htab->tlsdesc_plt;
6999 break;
7000
7001 case DT_TLSDESC_GOT:
7002 s = htab->root.sgot;
7003 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7004 + htab->dt_tlsdesc_got;
7005 break;
7006 }
7007
cec5225b 7008 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
a06ea964
NC
7009 }
7010
7011 }
7012
7013 /* Fill in the special first entry in the procedure linkage table. */
7014 if (htab->root.splt && htab->root.splt->size > 0)
7015 {
cec5225b 7016 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
a06ea964
NC
7017
7018 elf_section_data (htab->root.splt->output_section)->
7019 this_hdr.sh_entsize = htab->plt_entry_size;
7020
7021
7022 if (htab->tlsdesc_plt)
7023 {
cec5225b 7024 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
7025 htab->root.sgot->contents + htab->dt_tlsdesc_got);
7026
7027 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
cec5225b
YZ
7028 elfNN_aarch64_tlsdesc_small_plt_entry,
7029 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
a06ea964
NC
7030
7031 {
7032 bfd_vma adrp1_addr =
7033 htab->root.splt->output_section->vma
7034 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
7035
caed7120 7036 bfd_vma adrp2_addr = adrp1_addr + 4;
a06ea964
NC
7037
7038 bfd_vma got_addr =
7039 htab->root.sgot->output_section->vma
7040 + htab->root.sgot->output_offset;
7041
7042 bfd_vma pltgot_addr =
7043 htab->root.sgotplt->output_section->vma
7044 + htab->root.sgotplt->output_offset;
7045
7046 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
caed7120
YZ
7047
7048 bfd_byte *plt_entry =
7049 htab->root.splt->contents + htab->tlsdesc_plt;
a06ea964
NC
7050
7051 /* adrp x2, DT_TLSDESC_GOT */
caed7120
YZ
7052 elf_aarch64_update_plt_entry (output_bfd,
7053 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7054 plt_entry + 4,
7055 (PG (dt_tlsdesc_got)
7056 - PG (adrp1_addr)));
a06ea964
NC
7057
7058 /* adrp x3, 0 */
caed7120
YZ
7059 elf_aarch64_update_plt_entry (output_bfd,
7060 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7061 plt_entry + 8,
7062 (PG (pltgot_addr)
7063 - PG (adrp2_addr)));
a06ea964
NC
7064
7065 /* ldr x2, [x2, #0] */
caed7120
YZ
7066 elf_aarch64_update_plt_entry (output_bfd,
7067 BFD_RELOC_AARCH64_LDSTNN_LO12,
7068 plt_entry + 12,
7069 PG_OFFSET (dt_tlsdesc_got));
a06ea964
NC
7070
7071 /* add x3, x3, 0 */
caed7120
YZ
7072 elf_aarch64_update_plt_entry (output_bfd,
7073 BFD_RELOC_AARCH64_ADD_LO12,
7074 plt_entry + 16,
7075 PG_OFFSET (pltgot_addr));
a06ea964
NC
7076 }
7077 }
7078 }
7079
7080 if (htab->root.sgotplt)
7081 {
7082 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
7083 {
7084 (*_bfd_error_handler)
7085 (_("discarded output section: `%A'"), htab->root.sgotplt);
7086 return FALSE;
7087 }
7088
7089 /* Fill in the first three entries in the global offset table. */
7090 if (htab->root.sgotplt->size > 0)
7091 {
8db339a6
MS
7092 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
7093
a06ea964 7094 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
cec5225b 7095 bfd_put_NN (output_bfd,
a06ea964
NC
7096 (bfd_vma) 0,
7097 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
cec5225b 7098 bfd_put_NN (output_bfd,
a06ea964
NC
7099 (bfd_vma) 0,
7100 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
7101 }
7102
8db339a6
MS
7103 if (htab->root.sgot)
7104 {
7105 if (htab->root.sgot->size > 0)
7106 {
7107 bfd_vma addr =
7108 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
7109 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
7110 }
7111 }
7112
a06ea964
NC
7113 elf_section_data (htab->root.sgotplt->output_section)->
7114 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
7115 }
7116
7117 if (htab->root.sgot && htab->root.sgot->size > 0)
7118 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
7119 = GOT_ENTRY_SIZE;
7120
1419bbe5
WN
7121 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
7122 htab_traverse (htab->loc_hash_table,
7123 elfNN_aarch64_finish_local_dynamic_symbol,
7124 info);
7125
a06ea964
NC
7126 return TRUE;
7127}
7128
7129/* Return address for Ith PLT stub in section PLT, for relocation REL
7130 or (bfd_vma) -1 if it should not be included. */
7131
7132static bfd_vma
cec5225b 7133elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
a06ea964
NC
7134 const arelent *rel ATTRIBUTE_UNUSED)
7135{
7136 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
7137}
7138
7139
7140/* We use this so we can override certain functions
7141 (though currently we don't). */
7142
cec5225b 7143const struct elf_size_info elfNN_aarch64_size_info =
a06ea964 7144{
cec5225b
YZ
7145 sizeof (ElfNN_External_Ehdr),
7146 sizeof (ElfNN_External_Phdr),
7147 sizeof (ElfNN_External_Shdr),
7148 sizeof (ElfNN_External_Rel),
7149 sizeof (ElfNN_External_Rela),
7150 sizeof (ElfNN_External_Sym),
7151 sizeof (ElfNN_External_Dyn),
a06ea964
NC
7152 sizeof (Elf_External_Note),
7153 4, /* Hash table entry size. */
7154 1, /* Internal relocs per external relocs. */
cec5225b
YZ
7155 ARCH_SIZE, /* Arch size. */
7156 LOG_FILE_ALIGN, /* Log_file_align. */
7157 ELFCLASSNN, EV_CURRENT,
7158 bfd_elfNN_write_out_phdrs,
7159 bfd_elfNN_write_shdrs_and_ehdr,
7160 bfd_elfNN_checksum_contents,
7161 bfd_elfNN_write_relocs,
7162 bfd_elfNN_swap_symbol_in,
7163 bfd_elfNN_swap_symbol_out,
7164 bfd_elfNN_slurp_reloc_table,
7165 bfd_elfNN_slurp_symbol_table,
7166 bfd_elfNN_swap_dyn_in,
7167 bfd_elfNN_swap_dyn_out,
7168 bfd_elfNN_swap_reloc_in,
7169 bfd_elfNN_swap_reloc_out,
7170 bfd_elfNN_swap_reloca_in,
7171 bfd_elfNN_swap_reloca_out
a06ea964
NC
7172};
7173
7174#define ELF_ARCH bfd_arch_aarch64
7175#define ELF_MACHINE_CODE EM_AARCH64
7176#define ELF_MAXPAGESIZE 0x10000
7177#define ELF_MINPAGESIZE 0x1000
7178#define ELF_COMMONPAGESIZE 0x1000
7179
cec5225b
YZ
7180#define bfd_elfNN_close_and_cleanup \
7181 elfNN_aarch64_close_and_cleanup
a06ea964 7182
cec5225b
YZ
7183#define bfd_elfNN_bfd_free_cached_info \
7184 elfNN_aarch64_bfd_free_cached_info
a06ea964 7185
cec5225b
YZ
7186#define bfd_elfNN_bfd_is_target_special_symbol \
7187 elfNN_aarch64_is_target_special_symbol
a06ea964 7188
cec5225b
YZ
7189#define bfd_elfNN_bfd_link_hash_table_create \
7190 elfNN_aarch64_link_hash_table_create
a06ea964 7191
cec5225b
YZ
7192#define bfd_elfNN_bfd_merge_private_bfd_data \
7193 elfNN_aarch64_merge_private_bfd_data
a06ea964 7194
cec5225b
YZ
7195#define bfd_elfNN_bfd_print_private_bfd_data \
7196 elfNN_aarch64_print_private_bfd_data
a06ea964 7197
cec5225b
YZ
7198#define bfd_elfNN_bfd_reloc_type_lookup \
7199 elfNN_aarch64_reloc_type_lookup
a06ea964 7200
cec5225b
YZ
7201#define bfd_elfNN_bfd_reloc_name_lookup \
7202 elfNN_aarch64_reloc_name_lookup
a06ea964 7203
cec5225b
YZ
7204#define bfd_elfNN_bfd_set_private_flags \
7205 elfNN_aarch64_set_private_flags
a06ea964 7206
cec5225b
YZ
7207#define bfd_elfNN_find_inliner_info \
7208 elfNN_aarch64_find_inliner_info
a06ea964 7209
cec5225b
YZ
7210#define bfd_elfNN_find_nearest_line \
7211 elfNN_aarch64_find_nearest_line
a06ea964 7212
cec5225b
YZ
7213#define bfd_elfNN_mkobject \
7214 elfNN_aarch64_mkobject
a06ea964 7215
cec5225b
YZ
7216#define bfd_elfNN_new_section_hook \
7217 elfNN_aarch64_new_section_hook
a06ea964
NC
7218
7219#define elf_backend_adjust_dynamic_symbol \
cec5225b 7220 elfNN_aarch64_adjust_dynamic_symbol
a06ea964
NC
7221
7222#define elf_backend_always_size_sections \
cec5225b 7223 elfNN_aarch64_always_size_sections
a06ea964
NC
7224
7225#define elf_backend_check_relocs \
cec5225b 7226 elfNN_aarch64_check_relocs
a06ea964
NC
7227
7228#define elf_backend_copy_indirect_symbol \
cec5225b 7229 elfNN_aarch64_copy_indirect_symbol
a06ea964
NC
7230
7231/* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
7232 to them in our hash. */
7233#define elf_backend_create_dynamic_sections \
cec5225b 7234 elfNN_aarch64_create_dynamic_sections
a06ea964
NC
7235
7236#define elf_backend_init_index_section \
7237 _bfd_elf_init_2_index_sections
7238
a06ea964 7239#define elf_backend_finish_dynamic_sections \
cec5225b 7240 elfNN_aarch64_finish_dynamic_sections
a06ea964
NC
7241
7242#define elf_backend_finish_dynamic_symbol \
cec5225b 7243 elfNN_aarch64_finish_dynamic_symbol
a06ea964
NC
7244
7245#define elf_backend_gc_sweep_hook \
cec5225b 7246 elfNN_aarch64_gc_sweep_hook
a06ea964
NC
7247
7248#define elf_backend_object_p \
cec5225b 7249 elfNN_aarch64_object_p
a06ea964
NC
7250
7251#define elf_backend_output_arch_local_syms \
cec5225b 7252 elfNN_aarch64_output_arch_local_syms
a06ea964
NC
7253
7254#define elf_backend_plt_sym_val \
cec5225b 7255 elfNN_aarch64_plt_sym_val
a06ea964
NC
7256
7257#define elf_backend_post_process_headers \
cec5225b 7258 elfNN_aarch64_post_process_headers
a06ea964
NC
7259
7260#define elf_backend_relocate_section \
cec5225b 7261 elfNN_aarch64_relocate_section
a06ea964
NC
7262
7263#define elf_backend_reloc_type_class \
cec5225b 7264 elfNN_aarch64_reloc_type_class
a06ea964 7265
a06ea964 7266#define elf_backend_section_from_shdr \
cec5225b 7267 elfNN_aarch64_section_from_shdr
a06ea964
NC
7268
7269#define elf_backend_size_dynamic_sections \
cec5225b 7270 elfNN_aarch64_size_dynamic_sections
a06ea964
NC
7271
7272#define elf_backend_size_info \
cec5225b 7273 elfNN_aarch64_size_info
a06ea964
NC
7274
7275#define elf_backend_can_refcount 1
59c108f7 7276#define elf_backend_can_gc_sections 1
a06ea964
NC
7277#define elf_backend_plt_readonly 1
7278#define elf_backend_want_got_plt 1
7279#define elf_backend_want_plt_sym 0
7280#define elf_backend_may_use_rel_p 0
7281#define elf_backend_may_use_rela_p 1
7282#define elf_backend_default_use_rela_p 1
2e0488d3 7283#define elf_backend_rela_normal 1
a06ea964 7284#define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
c495064d 7285#define elf_backend_default_execstack 0
a06ea964
NC
7286
7287#undef elf_backend_obj_attrs_section
7288#define elf_backend_obj_attrs_section ".ARM.attributes"
7289
cec5225b 7290#include "elfNN-target.h"
This page took 0.491613 seconds and 4 git commands to generate.