gdb.base/sym-file.exp, hide guts of the custom loader.
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
CommitLineData
cec5225b 1/* AArch64-specific support for NN-bit ELF.
4b95cf5c 2 Copyright (C) 2009-2014 Free Software Foundation, Inc.
a06ea964
NC
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21/* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
418009c2 43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
a06ea964
NC
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
a6bb11b2 53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
a06ea964
NC
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
a6bb11b2 67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
a06ea964
NC
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
a6bb11b2 72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
a06ea964
NC
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
cec5225b 95 elfNN_aarch64_check_relocs()
a06ea964
NC
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
a6bb11b2 100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
a06ea964
NC
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
cec5225b 107 elfNN_aarch64_allocate_dynrelocs ()
a06ea964
NC
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
cec5225b 115 elfNN_aarch64_size_dynamic_sections ()
a06ea964
NC
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
cec5225b 122 elfNN_aarch64_relocate_section ()
a06ea964 123
cec5225b 124 Calls elfNN_aarch64_final_link_relocate ()
a06ea964
NC
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
cec5225b 134 elfNN_aarch64_final_link_relocate ()
a06ea964
NC
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138#include "sysdep.h"
139#include "bfd.h"
140#include "libiberty.h"
141#include "libbfd.h"
142#include "bfd_stdint.h"
143#include "elf-bfd.h"
144#include "bfdlink.h"
1419bbe5 145#include "objalloc.h"
a06ea964 146#include "elf/aarch64.h"
caed7120 147#include "elfxx-aarch64.h"
a06ea964 148
cec5225b
YZ
149#define ARCH_SIZE NN
150
151#if ARCH_SIZE == 64
152#define AARCH64_R(NAME) R_AARCH64_ ## NAME
153#define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
a6bb11b2
YZ
154#define HOWTO64(...) HOWTO (__VA_ARGS__)
155#define HOWTO32(...) EMPTY_HOWTO (0)
cec5225b
YZ
156#define LOG_FILE_ALIGN 3
157#endif
158
159#if ARCH_SIZE == 32
160#define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161#define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
a6bb11b2
YZ
162#define HOWTO64(...) EMPTY_HOWTO (0)
163#define HOWTO32(...) HOWTO (__VA_ARGS__)
cec5225b
YZ
164#define LOG_FILE_ALIGN 2
165#endif
166
a6bb11b2
YZ
167#define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
a06ea964
NC
187 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
188
a6bb11b2
YZ
189#define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
190 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC)
a06ea964
NC
202
203#define ELIMINATE_COPY_RELOCS 0
204
a06ea964 205/* Return size of a relocation entry. HTAB is the bfd's
cec5225b
YZ
206 elf_aarch64_link_hash_entry. */
207#define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
a06ea964 208
cec5225b
YZ
209/* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
210#define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
a06ea964
NC
211#define PLT_ENTRY_SIZE (32)
212#define PLT_SMALL_ENTRY_SIZE (16)
213#define PLT_TLSDESC_ENTRY_SIZE (32)
214
a06ea964
NC
215/* Encoding of the nop instruction */
216#define INSN_NOP 0xd503201f
217
218#define aarch64_compute_jump_table_size(htab) \
219 (((htab)->root.srelplt == NULL) ? 0 \
220 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
221
222/* The first entry in a procedure linkage table looks like this
223 if the distance between the PLTGOT and the PLT is < 4GB use
224 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
225 in x16 and needs to work out PLTGOT[1] by using an address of
cec5225b
YZ
226 [x16,#-GOT_ENTRY_SIZE]. */
227static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
a06ea964
NC
228{
229 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
230 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
caed7120 231#if ARCH_SIZE == 64
a06ea964
NC
232 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
233 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
caed7120
YZ
234#else
235 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
236 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
237#endif
a06ea964
NC
238 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
239 0x1f, 0x20, 0x03, 0xd5, /* nop */
240 0x1f, 0x20, 0x03, 0xd5, /* nop */
241 0x1f, 0x20, 0x03, 0xd5, /* nop */
242};
243
244/* Per function entry in a procedure linkage table looks like this
245 if the distance between the PLTGOT and the PLT is < 4GB use
246 these PLT entries. */
cec5225b 247static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
a06ea964
NC
248{
249 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
caed7120 250#if ARCH_SIZE == 64
a06ea964
NC
251 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
252 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
caed7120
YZ
253#else
254 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
255 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
256#endif
a06ea964
NC
257 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
258};
259
260static const bfd_byte
cec5225b 261elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
a06ea964
NC
262{
263 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
264 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
265 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
caed7120
YZ
266#if ARCH_SIZE == 64
267 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
a06ea964 268 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
caed7120
YZ
269#else
270 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
271 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
272#endif
273 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
a06ea964
NC
274 0x1f, 0x20, 0x03, 0xd5, /* nop */
275 0x1f, 0x20, 0x03, 0xd5, /* nop */
276};
277
cec5225b
YZ
278#define elf_info_to_howto elfNN_aarch64_info_to_howto
279#define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
a06ea964
NC
280
281#define AARCH64_ELF_ABI_VERSION 0
a06ea964
NC
282
283/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
284#define ALL_ONES (~ (bfd_vma) 0)
285
a6bb11b2
YZ
286/* Indexed by the bfd interal reloc enumerators.
287 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
288 in reloc.c. */
a06ea964 289
a6bb11b2 290static reloc_howto_type elfNN_aarch64_howto_table[] =
a06ea964 291{
a6bb11b2 292 EMPTY_HOWTO (0),
a06ea964 293
a6bb11b2 294 /* Basic data relocations. */
a06ea964 295
a6bb11b2
YZ
296#if ARCH_SIZE == 64
297 HOWTO (R_AARCH64_NULL, /* type */
a06ea964 298 0, /* rightshift */
a6bb11b2
YZ
299 0, /* size (0 = byte, 1 = short, 2 = long) */
300 0, /* bitsize */
a06ea964
NC
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 305 "R_AARCH64_NULL", /* name */
a06ea964
NC
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
a6bb11b2 308 0, /* dst_mask */
a06ea964 309 FALSE), /* pcrel_offset */
a6bb11b2
YZ
310#else
311 HOWTO (R_AARCH64_NONE, /* type */
a06ea964
NC
312 0, /* rightshift */
313 0, /* size (0 = byte, 1 = short, 2 = long) */
314 0, /* bitsize */
315 FALSE, /* pc_relative */
316 0, /* bitpos */
317 complain_overflow_dont, /* complain_on_overflow */
318 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 319 "R_AARCH64_NONE", /* name */
a06ea964
NC
320 FALSE, /* partial_inplace */
321 0, /* src_mask */
322 0, /* dst_mask */
323 FALSE), /* pcrel_offset */
a6bb11b2 324#endif
a06ea964
NC
325
326 /* .xword: (S+A) */
a6bb11b2 327 HOWTO64 (AARCH64_R (ABS64), /* type */
a06ea964
NC
328 0, /* rightshift */
329 4, /* size (4 = long long) */
330 64, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_unsigned, /* complain_on_overflow */
334 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 335 AARCH64_R_STR (ABS64), /* name */
a06ea964
NC
336 FALSE, /* partial_inplace */
337 ALL_ONES, /* src_mask */
338 ALL_ONES, /* dst_mask */
339 FALSE), /* pcrel_offset */
340
341 /* .word: (S+A) */
a6bb11b2 342 HOWTO (AARCH64_R (ABS32), /* type */
a06ea964
NC
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_unsigned, /* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 350 AARCH64_R_STR (ABS32), /* name */
a06ea964
NC
351 FALSE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 /* .half: (S+A) */
a6bb11b2 357 HOWTO (AARCH64_R (ABS16), /* type */
a06ea964
NC
358 0, /* rightshift */
359 1, /* size (0 = byte, 1 = short, 2 = long) */
360 16, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
363 complain_overflow_unsigned, /* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 365 AARCH64_R_STR (ABS16), /* name */
a06ea964
NC
366 FALSE, /* partial_inplace */
367 0xffff, /* src_mask */
368 0xffff, /* dst_mask */
369 FALSE), /* pcrel_offset */
370
371 /* .xword: (S+A-P) */
a6bb11b2 372 HOWTO64 (AARCH64_R (PREL64), /* type */
a06ea964
NC
373 0, /* rightshift */
374 4, /* size (4 = long long) */
375 64, /* bitsize */
376 TRUE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_signed, /* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 380 AARCH64_R_STR (PREL64), /* name */
a06ea964
NC
381 FALSE, /* partial_inplace */
382 ALL_ONES, /* src_mask */
383 ALL_ONES, /* dst_mask */
384 TRUE), /* pcrel_offset */
385
386 /* .word: (S+A-P) */
a6bb11b2 387 HOWTO (AARCH64_R (PREL32), /* type */
a06ea964
NC
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 395 AARCH64_R_STR (PREL32), /* name */
a06ea964
NC
396 FALSE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* .half: (S+A-P) */
a6bb11b2 402 HOWTO (AARCH64_R (PREL16), /* type */
a06ea964
NC
403 0, /* rightshift */
404 1, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 410 AARCH64_R_STR (PREL16), /* name */
a06ea964
NC
411 FALSE, /* partial_inplace */
412 0xffff, /* src_mask */
413 0xffff, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* Group relocations to create a 16, 32, 48 or 64 bit
417 unsigned data or abs address inline. */
418
419 /* MOVZ: ((S+A) >> 0) & 0xffff */
a6bb11b2 420 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
a06ea964
NC
421 0, /* rightshift */
422 2, /* size (0 = byte, 1 = short, 2 = long) */
423 16, /* bitsize */
424 FALSE, /* pc_relative */
425 0, /* bitpos */
426 complain_overflow_unsigned, /* complain_on_overflow */
427 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 428 AARCH64_R_STR (MOVW_UABS_G0), /* name */
a06ea964
NC
429 FALSE, /* partial_inplace */
430 0xffff, /* src_mask */
431 0xffff, /* dst_mask */
432 FALSE), /* pcrel_offset */
433
434 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
a6bb11b2 435 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
a06ea964
NC
436 0, /* rightshift */
437 2, /* size (0 = byte, 1 = short, 2 = long) */
438 16, /* bitsize */
439 FALSE, /* pc_relative */
440 0, /* bitpos */
441 complain_overflow_dont, /* complain_on_overflow */
442 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 443 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
a06ea964
NC
444 FALSE, /* partial_inplace */
445 0xffff, /* src_mask */
446 0xffff, /* dst_mask */
447 FALSE), /* pcrel_offset */
448
449 /* MOVZ: ((S+A) >> 16) & 0xffff */
a6bb11b2 450 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
a06ea964
NC
451 16, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 16, /* bitsize */
454 FALSE, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_unsigned, /* complain_on_overflow */
457 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 458 AARCH64_R_STR (MOVW_UABS_G1), /* name */
a06ea964
NC
459 FALSE, /* partial_inplace */
460 0xffff, /* src_mask */
461 0xffff, /* dst_mask */
462 FALSE), /* pcrel_offset */
463
464 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
a6bb11b2 465 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
a06ea964
NC
466 16, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 FALSE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_dont, /* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 473 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
a06ea964
NC
474 FALSE, /* partial_inplace */
475 0xffff, /* src_mask */
476 0xffff, /* dst_mask */
477 FALSE), /* pcrel_offset */
478
479 /* MOVZ: ((S+A) >> 32) & 0xffff */
a6bb11b2 480 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
a06ea964
NC
481 32, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 16, /* bitsize */
484 FALSE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_unsigned, /* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 488 AARCH64_R_STR (MOVW_UABS_G2), /* name */
a06ea964
NC
489 FALSE, /* partial_inplace */
490 0xffff, /* src_mask */
491 0xffff, /* dst_mask */
492 FALSE), /* pcrel_offset */
493
494 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
a6bb11b2 495 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
a06ea964
NC
496 32, /* rightshift */
497 2, /* size (0 = byte, 1 = short, 2 = long) */
498 16, /* bitsize */
499 FALSE, /* pc_relative */
500 0, /* bitpos */
501 complain_overflow_dont, /* complain_on_overflow */
502 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 503 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
a06ea964
NC
504 FALSE, /* partial_inplace */
505 0xffff, /* src_mask */
506 0xffff, /* dst_mask */
507 FALSE), /* pcrel_offset */
508
509 /* MOVZ: ((S+A) >> 48) & 0xffff */
a6bb11b2 510 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
a06ea964
NC
511 48, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 16, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_unsigned, /* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 518 AARCH64_R_STR (MOVW_UABS_G3), /* name */
a06ea964
NC
519 FALSE, /* partial_inplace */
520 0xffff, /* src_mask */
521 0xffff, /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
525 signed data or abs address inline. Will change instruction
526 to MOVN or MOVZ depending on sign of calculated value. */
527
528 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
a6bb11b2 529 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
a06ea964
NC
530 0, /* rightshift */
531 2, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed, /* complain_on_overflow */
536 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 537 AARCH64_R_STR (MOVW_SABS_G0), /* name */
a06ea964
NC
538 FALSE, /* partial_inplace */
539 0xffff, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
a6bb11b2 544 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
a06ea964
NC
545 16, /* rightshift */
546 2, /* size (0 = byte, 1 = short, 2 = long) */
547 16, /* bitsize */
548 FALSE, /* pc_relative */
549 0, /* bitpos */
550 complain_overflow_signed, /* complain_on_overflow */
551 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 552 AARCH64_R_STR (MOVW_SABS_G1), /* name */
a06ea964
NC
553 FALSE, /* partial_inplace */
554 0xffff, /* src_mask */
555 0xffff, /* dst_mask */
556 FALSE), /* pcrel_offset */
557
558 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
a6bb11b2 559 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
a06ea964
NC
560 32, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 16, /* bitsize */
563 FALSE, /* pc_relative */
564 0, /* bitpos */
565 complain_overflow_signed, /* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 567 AARCH64_R_STR (MOVW_SABS_G2), /* name */
a06ea964
NC
568 FALSE, /* partial_inplace */
569 0xffff, /* src_mask */
570 0xffff, /* dst_mask */
571 FALSE), /* pcrel_offset */
572
573/* Relocations to generate 19, 21 and 33 bit PC-relative load/store
574 addresses: PG(x) is (x & ~0xfff). */
575
576 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 577 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
a06ea964
NC
578 2, /* rightshift */
579 2, /* size (0 = byte, 1 = short, 2 = long) */
580 19, /* bitsize */
581 TRUE, /* pc_relative */
582 0, /* bitpos */
583 complain_overflow_signed, /* complain_on_overflow */
584 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 585 AARCH64_R_STR (LD_PREL_LO19), /* name */
a06ea964
NC
586 FALSE, /* partial_inplace */
587 0x7ffff, /* src_mask */
588 0x7ffff, /* dst_mask */
589 TRUE), /* pcrel_offset */
590
591 /* ADR: (S+A-P) & 0x1fffff */
a6bb11b2 592 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
a06ea964
NC
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 21, /* bitsize */
596 TRUE, /* pc_relative */
597 0, /* bitpos */
598 complain_overflow_signed, /* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 600 AARCH64_R_STR (ADR_PREL_LO21), /* name */
a06ea964
NC
601 FALSE, /* partial_inplace */
602 0x1fffff, /* src_mask */
603 0x1fffff, /* dst_mask */
604 TRUE), /* pcrel_offset */
605
606 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
a6bb11b2 607 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
a06ea964
NC
608 12, /* rightshift */
609 2, /* size (0 = byte, 1 = short, 2 = long) */
610 21, /* bitsize */
611 TRUE, /* pc_relative */
612 0, /* bitpos */
613 complain_overflow_signed, /* complain_on_overflow */
614 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 615 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
a06ea964
NC
616 FALSE, /* partial_inplace */
617 0x1fffff, /* src_mask */
618 0x1fffff, /* dst_mask */
619 TRUE), /* pcrel_offset */
620
621 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
a6bb11b2 622 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
a06ea964
NC
623 12, /* rightshift */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
625 21, /* bitsize */
626 TRUE, /* pc_relative */
627 0, /* bitpos */
628 complain_overflow_dont, /* complain_on_overflow */
629 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 630 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
a06ea964
NC
631 FALSE, /* partial_inplace */
632 0x1fffff, /* src_mask */
633 0x1fffff, /* dst_mask */
634 TRUE), /* pcrel_offset */
635
636 /* ADD: (S+A) & 0xfff [no overflow check] */
a6bb11b2 637 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
a06ea964
NC
638 0, /* rightshift */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
640 12, /* bitsize */
641 FALSE, /* pc_relative */
642 10, /* bitpos */
643 complain_overflow_dont, /* complain_on_overflow */
644 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 645 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
a06ea964
NC
646 FALSE, /* partial_inplace */
647 0x3ffc00, /* src_mask */
648 0x3ffc00, /* dst_mask */
649 FALSE), /* pcrel_offset */
650
651 /* LD/ST8: (S+A) & 0xfff */
a6bb11b2 652 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
a06ea964
NC
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 12, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 660 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
a06ea964
NC
661 FALSE, /* partial_inplace */
662 0xfff, /* src_mask */
663 0xfff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Relocations for control-flow instructions. */
667
668 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
a6bb11b2 669 HOWTO (AARCH64_R (TSTBR14), /* type */
a06ea964
NC
670 2, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 14, /* bitsize */
673 TRUE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_signed, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 677 AARCH64_R_STR (TSTBR14), /* name */
a06ea964
NC
678 FALSE, /* partial_inplace */
679 0x3fff, /* src_mask */
680 0x3fff, /* dst_mask */
681 TRUE), /* pcrel_offset */
682
683 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 684 HOWTO (AARCH64_R (CONDBR19), /* type */
a06ea964
NC
685 2, /* rightshift */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
687 19, /* bitsize */
688 TRUE, /* pc_relative */
689 0, /* bitpos */
690 complain_overflow_signed, /* complain_on_overflow */
691 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 692 AARCH64_R_STR (CONDBR19), /* name */
a06ea964
NC
693 FALSE, /* partial_inplace */
694 0x7ffff, /* src_mask */
695 0x7ffff, /* dst_mask */
696 TRUE), /* pcrel_offset */
697
a06ea964 698 /* B: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 699 HOWTO (AARCH64_R (JUMP26), /* type */
a06ea964
NC
700 2, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 26, /* bitsize */
703 TRUE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_signed, /* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 707 AARCH64_R_STR (JUMP26), /* name */
a06ea964
NC
708 FALSE, /* partial_inplace */
709 0x3ffffff, /* src_mask */
710 0x3ffffff, /* dst_mask */
711 TRUE), /* pcrel_offset */
712
713 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 714 HOWTO (AARCH64_R (CALL26), /* type */
a06ea964
NC
715 2, /* rightshift */
716 2, /* size (0 = byte, 1 = short, 2 = long) */
717 26, /* bitsize */
718 TRUE, /* pc_relative */
719 0, /* bitpos */
720 complain_overflow_signed, /* complain_on_overflow */
721 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 722 AARCH64_R_STR (CALL26), /* name */
a06ea964
NC
723 FALSE, /* partial_inplace */
724 0x3ffffff, /* src_mask */
725 0x3ffffff, /* dst_mask */
726 TRUE), /* pcrel_offset */
727
728 /* LD/ST16: (S+A) & 0xffe */
a6bb11b2 729 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
a06ea964
NC
730 1, /* rightshift */
731 2, /* size (0 = byte, 1 = short, 2 = long) */
732 12, /* bitsize */
733 FALSE, /* pc_relative */
734 0, /* bitpos */
735 complain_overflow_dont, /* complain_on_overflow */
736 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 737 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
a06ea964
NC
738 FALSE, /* partial_inplace */
739 0xffe, /* src_mask */
740 0xffe, /* dst_mask */
741 FALSE), /* pcrel_offset */
742
743 /* LD/ST32: (S+A) & 0xffc */
a6bb11b2 744 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
a06ea964
NC
745 2, /* rightshift */
746 2, /* size (0 = byte, 1 = short, 2 = long) */
747 12, /* bitsize */
748 FALSE, /* pc_relative */
749 0, /* bitpos */
750 complain_overflow_dont, /* complain_on_overflow */
751 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 752 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
a06ea964
NC
753 FALSE, /* partial_inplace */
754 0xffc, /* src_mask */
755 0xffc, /* dst_mask */
756 FALSE), /* pcrel_offset */
757
758 /* LD/ST64: (S+A) & 0xff8 */
a6bb11b2 759 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
a06ea964
NC
760 3, /* rightshift */
761 2, /* size (0 = byte, 1 = short, 2 = long) */
762 12, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_dont, /* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 767 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
a06ea964
NC
768 FALSE, /* partial_inplace */
769 0xff8, /* src_mask */
770 0xff8, /* dst_mask */
771 FALSE), /* pcrel_offset */
772
a06ea964 773 /* LD/ST128: (S+A) & 0xff0 */
a6bb11b2 774 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
a06ea964
NC
775 4, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 12, /* bitsize */
778 FALSE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont, /* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 782 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
a06ea964
NC
783 FALSE, /* partial_inplace */
784 0xff0, /* src_mask */
785 0xff0, /* dst_mask */
786 FALSE), /* pcrel_offset */
787
f41aef5f
RE
788 /* Set a load-literal immediate field to bits
789 0x1FFFFC of G(S)-P */
a6bb11b2 790 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
f41aef5f
RE
791 2, /* rightshift */
792 2, /* size (0 = byte,1 = short,2 = long) */
793 19, /* bitsize */
794 TRUE, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_signed, /* complain_on_overflow */
797 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 798 AARCH64_R_STR (GOT_LD_PREL19), /* name */
f41aef5f
RE
799 FALSE, /* partial_inplace */
800 0xffffe0, /* src_mask */
801 0xffffe0, /* dst_mask */
802 TRUE), /* pcrel_offset */
803
a06ea964
NC
804 /* Get to the page for the GOT entry for the symbol
805 (G(S) - P) using an ADRP instruction. */
a6bb11b2 806 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
a06ea964
NC
807 12, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 21, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 814 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
a06ea964
NC
815 FALSE, /* partial_inplace */
816 0x1fffff, /* src_mask */
817 0x1fffff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
a6bb11b2
YZ
820 /* LD64: GOT offset G(S) & 0xff8 */
821 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
a06ea964
NC
822 3, /* rightshift */
823 2, /* size (0 = byte, 1 = short, 2 = long) */
824 12, /* bitsize */
825 FALSE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_dont, /* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 829 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
a06ea964
NC
830 FALSE, /* partial_inplace */
831 0xff8, /* src_mask */
832 0xff8, /* dst_mask */
a6bb11b2 833 FALSE), /* pcrel_offset */
a06ea964 834
a6bb11b2
YZ
835 /* LD32: GOT offset G(S) & 0xffc */
836 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
837 2, /* rightshift */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
839 12, /* bitsize */
840 FALSE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont, /* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
845 FALSE, /* partial_inplace */
846 0xffc, /* src_mask */
847 0xffc, /* dst_mask */
848 FALSE), /* pcrel_offset */
a06ea964
NC
849
850 /* Get to the page for the GOT entry for the symbol
851 (G(S) - P) using an ADRP instruction. */
a6bb11b2 852 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
a06ea964
NC
853 12, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 21, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 860 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
a06ea964
NC
861 FALSE, /* partial_inplace */
862 0x1fffff, /* src_mask */
863 0x1fffff, /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
a6bb11b2 867 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
a06ea964
NC
868 0, /* rightshift */
869 2, /* size (0 = byte, 1 = short, 2 = long) */
870 12, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 875 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
a06ea964
NC
876 FALSE, /* partial_inplace */
877 0xfff, /* src_mask */
878 0xfff, /* dst_mask */
879 FALSE), /* pcrel_offset */
880
a6bb11b2 881 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
a06ea964
NC
882 16, /* rightshift */
883 2, /* size (0 = byte, 1 = short, 2 = long) */
884 16, /* bitsize */
885 FALSE, /* pc_relative */
886 0, /* bitpos */
887 complain_overflow_dont, /* complain_on_overflow */
888 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 889 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
a06ea964
NC
890 FALSE, /* partial_inplace */
891 0xffff, /* src_mask */
892 0xffff, /* dst_mask */
893 FALSE), /* pcrel_offset */
894
a6bb11b2 895 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
a06ea964
NC
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 FALSE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 903 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
a06ea964
NC
904 FALSE, /* partial_inplace */
905 0xffff, /* src_mask */
906 0xffff, /* dst_mask */
907 FALSE), /* pcrel_offset */
908
a6bb11b2 909 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
a06ea964
NC
910 12, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 21, /* bitsize */
913 FALSE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 917 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
a06ea964
NC
918 FALSE, /* partial_inplace */
919 0x1fffff, /* src_mask */
920 0x1fffff, /* dst_mask */
921 FALSE), /* pcrel_offset */
922
a6bb11b2 923 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
a06ea964
NC
924 3, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 12, /* bitsize */
927 FALSE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont, /* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 931 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
a06ea964
NC
932 FALSE, /* partial_inplace */
933 0xff8, /* src_mask */
934 0xff8, /* dst_mask */
935 FALSE), /* pcrel_offset */
936
a6bb11b2
YZ
937 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
938 2, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 12, /* bitsize */
941 FALSE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
946 FALSE, /* partial_inplace */
947 0xffc, /* src_mask */
948 0xffc, /* dst_mask */
949 FALSE), /* pcrel_offset */
950
951 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
bb3f9ed8 952 2, /* rightshift */
a06ea964
NC
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 21, /* bitsize */
955 FALSE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 959 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
a06ea964
NC
960 FALSE, /* partial_inplace */
961 0x1ffffc, /* src_mask */
962 0x1ffffc, /* dst_mask */
963 FALSE), /* pcrel_offset */
964
a6bb11b2 965 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
bb3f9ed8 966 32, /* rightshift */
a06ea964
NC
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 12, /* bitsize */
969 FALSE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 973 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
a06ea964
NC
974 FALSE, /* partial_inplace */
975 0xffff, /* src_mask */
976 0xffff, /* dst_mask */
977 FALSE), /* pcrel_offset */
978
a6bb11b2 979 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
bb3f9ed8 980 16, /* rightshift */
a06ea964
NC
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 12, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 987 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
a06ea964
NC
988 FALSE, /* partial_inplace */
989 0xffff, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
a6bb11b2 993 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
bb3f9ed8 994 16, /* rightshift */
a06ea964
NC
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 12, /* bitsize */
997 FALSE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont, /* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1001 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
a06ea964
NC
1002 FALSE, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE), /* pcrel_offset */
1006
a6bb11b2 1007 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
a06ea964
NC
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 12, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont, /* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1015 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
a06ea964
NC
1016 FALSE, /* partial_inplace */
1017 0xffff, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
a6bb11b2 1021 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
a06ea964
NC
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 12, /* bitsize */
1025 FALSE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont, /* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1029 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
a06ea964
NC
1030 FALSE, /* partial_inplace */
1031 0xffff, /* src_mask */
1032 0xffff, /* dst_mask */
1033 FALSE), /* pcrel_offset */
1034
a6bb11b2 1035 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
bb3f9ed8 1036 12, /* rightshift */
a06ea964
NC
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 12, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1043 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
a06ea964
NC
1044 FALSE, /* partial_inplace */
1045 0xfff, /* src_mask */
1046 0xfff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
a6bb11b2 1049 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
a06ea964
NC
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 12, /* bitsize */
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1057 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
a06ea964
NC
1058 FALSE, /* partial_inplace */
1059 0xfff, /* src_mask */
1060 0xfff, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
a6bb11b2 1063 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
a06ea964
NC
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 12, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1071 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
a06ea964
NC
1072 FALSE, /* partial_inplace */
1073 0xfff, /* src_mask */
1074 0xfff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
a06ea964 1076
a6bb11b2 1077 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
bb3f9ed8 1078 2, /* rightshift */
a06ea964
NC
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 21, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont, /* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1085 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
a06ea964
NC
1086 FALSE, /* partial_inplace */
1087 0x1ffffc, /* src_mask */
1088 0x1ffffc, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
a6bb11b2 1091 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
a06ea964
NC
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 21, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1099 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
a06ea964
NC
1100 FALSE, /* partial_inplace */
1101 0x1fffff, /* src_mask */
1102 0x1fffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 /* Get to the page for the GOT entry for the symbol
1106 (G(S) - P) using an ADRP instruction. */
a6bb11b2 1107 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
a06ea964
NC
1108 12, /* rightshift */
1109 2, /* size (0 = byte, 1 = short, 2 = long) */
1110 21, /* bitsize */
1111 TRUE, /* pc_relative */
1112 0, /* bitpos */
1113 complain_overflow_dont, /* complain_on_overflow */
1114 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1115 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
a06ea964
NC
1116 FALSE, /* partial_inplace */
1117 0x1fffff, /* src_mask */
1118 0x1fffff, /* dst_mask */
1119 TRUE), /* pcrel_offset */
1120
a6bb11b2
YZ
1121 /* LD64: GOT offset G(S) & 0xff8. */
1122 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
a06ea964
NC
1123 3, /* rightshift */
1124 2, /* size (0 = byte, 1 = short, 2 = long) */
1125 12, /* bitsize */
1126 FALSE, /* pc_relative */
1127 0, /* bitpos */
1128 complain_overflow_dont, /* complain_on_overflow */
1129 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1130 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
a06ea964 1131 FALSE, /* partial_inplace */
a6bb11b2
YZ
1132 0xff8, /* src_mask */
1133 0xff8, /* dst_mask */
1134 FALSE), /* pcrel_offset */
1135
1136 /* LD32: GOT offset G(S) & 0xffc. */
1137 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1138 2, /* rightshift */
1139 2, /* size (0 = byte, 1 = short, 2 = long) */
1140 12, /* bitsize */
1141 FALSE, /* pc_relative */
1142 0, /* bitpos */
1143 complain_overflow_dont, /* complain_on_overflow */
1144 bfd_elf_generic_reloc, /* special_function */
1145 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1146 FALSE, /* partial_inplace */
1147 0xffc, /* src_mask */
1148 0xffc, /* dst_mask */
a06ea964
NC
1149 FALSE), /* pcrel_offset */
1150
1151 /* ADD: GOT offset G(S) & 0xfff. */
a6bb11b2 1152 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
a06ea964
NC
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 12, /* bitsize */
1156 FALSE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont, /* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1160 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
a06ea964
NC
1161 FALSE, /* partial_inplace */
1162 0xfff, /* src_mask */
1163 0xfff, /* dst_mask */
1164 FALSE), /* pcrel_offset */
1165
a6bb11b2 1166 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
bb3f9ed8 1167 16, /* rightshift */
a06ea964
NC
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 12, /* bitsize */
1170 FALSE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont, /* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1174 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
a06ea964
NC
1175 FALSE, /* partial_inplace */
1176 0xffff, /* src_mask */
1177 0xffff, /* dst_mask */
1178 FALSE), /* pcrel_offset */
1179
a6bb11b2 1180 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
a06ea964
NC
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 12, /* bitsize */
1184 FALSE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont, /* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1188 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
a06ea964
NC
1189 FALSE, /* partial_inplace */
1190 0xffff, /* src_mask */
1191 0xffff, /* dst_mask */
1192 FALSE), /* pcrel_offset */
1193
a6bb11b2 1194 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
a06ea964
NC
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 12, /* bitsize */
1198 FALSE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont, /* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1202 AARCH64_R_STR (TLSDESC_LDR), /* name */
a06ea964
NC
1203 FALSE, /* partial_inplace */
1204 0x0, /* src_mask */
1205 0x0, /* dst_mask */
1206 FALSE), /* pcrel_offset */
1207
a6bb11b2 1208 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
a06ea964
NC
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 12, /* bitsize */
1212 FALSE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont, /* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1216 AARCH64_R_STR (TLSDESC_ADD), /* name */
a06ea964
NC
1217 FALSE, /* partial_inplace */
1218 0x0, /* src_mask */
1219 0x0, /* dst_mask */
1220 FALSE), /* pcrel_offset */
1221
a6bb11b2 1222 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
a06ea964
NC
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 12, /* bitsize */
1226 FALSE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont, /* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1230 AARCH64_R_STR (TLSDESC_CALL), /* name */
a06ea964
NC
1231 FALSE, /* partial_inplace */
1232 0x0, /* src_mask */
1233 0x0, /* dst_mask */
1234 FALSE), /* pcrel_offset */
a6bb11b2
YZ
1235
1236 HOWTO (AARCH64_R (COPY), /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 64, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_bitfield, /* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 AARCH64_R_STR (COPY), /* name */
1245 TRUE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 64, /* bitsize */
1254 FALSE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_bitfield, /* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 AARCH64_R_STR (GLOB_DAT), /* name */
1259 TRUE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 FALSE), /* pcrel_offset */
1263
1264 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1265 0, /* rightshift */
1266 2, /* size (0 = byte, 1 = short, 2 = long) */
1267 64, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_bitfield, /* complain_on_overflow */
1271 bfd_elf_generic_reloc, /* special_function */
1272 AARCH64_R_STR (JUMP_SLOT), /* name */
1273 TRUE, /* partial_inplace */
1274 0xffffffff, /* src_mask */
1275 0xffffffff, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 HOWTO (AARCH64_R (RELATIVE), /* type */
1279 0, /* rightshift */
1280 2, /* size (0 = byte, 1 = short, 2 = long) */
1281 64, /* bitsize */
1282 FALSE, /* pc_relative */
1283 0, /* bitpos */
1284 complain_overflow_bitfield, /* complain_on_overflow */
1285 bfd_elf_generic_reloc, /* special_function */
1286 AARCH64_R_STR (RELATIVE), /* name */
1287 TRUE, /* partial_inplace */
1288 ALL_ONES, /* src_mask */
1289 ALL_ONES, /* dst_mask */
1290 FALSE), /* pcrel_offset */
1291
1292 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1293 0, /* rightshift */
1294 2, /* size (0 = byte, 1 = short, 2 = long) */
1295 64, /* bitsize */
1296 FALSE, /* pc_relative */
1297 0, /* bitpos */
1298 complain_overflow_dont, /* complain_on_overflow */
1299 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1300#if ARCH_SIZE == 64
1301 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1302#else
a6bb11b2 1303 AARCH64_R_STR (TLS_DTPMOD), /* name */
da0781dc 1304#endif
a6bb11b2
YZ
1305 FALSE, /* partial_inplace */
1306 0, /* src_mask */
1307 ALL_ONES, /* dst_mask */
1308 FALSE), /* pc_reloffset */
1309
1310 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 64, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1318#if ARCH_SIZE == 64
1319 AARCH64_R_STR (TLS_DTPREL64), /* name */
1320#else
a6bb11b2 1321 AARCH64_R_STR (TLS_DTPREL), /* name */
da0781dc 1322#endif
a6bb11b2
YZ
1323 FALSE, /* partial_inplace */
1324 0, /* src_mask */
1325 ALL_ONES, /* dst_mask */
1326 FALSE), /* pcrel_offset */
1327
1328 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1329 0, /* rightshift */
1330 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 64, /* bitsize */
1332 FALSE, /* pc_relative */
1333 0, /* bitpos */
1334 complain_overflow_dont, /* complain_on_overflow */
1335 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1336#if ARCH_SIZE == 64
1337 AARCH64_R_STR (TLS_TPREL64), /* name */
1338#else
a6bb11b2 1339 AARCH64_R_STR (TLS_TPREL), /* name */
da0781dc 1340#endif
a6bb11b2
YZ
1341 FALSE, /* partial_inplace */
1342 0, /* src_mask */
1343 ALL_ONES, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (AARCH64_R (TLSDESC), /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 64, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont, /* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 AARCH64_R_STR (TLSDESC), /* name */
1355 FALSE, /* partial_inplace */
1356 0, /* src_mask */
1357 ALL_ONES, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
1360 HOWTO (AARCH64_R (IRELATIVE), /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 64, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield, /* complain_on_overflow */
1367 bfd_elf_generic_reloc, /* special_function */
1368 AARCH64_R_STR (IRELATIVE), /* name */
1369 FALSE, /* partial_inplace */
1370 0, /* src_mask */
1371 ALL_ONES, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 EMPTY_HOWTO (0),
a06ea964
NC
1375};
1376
a6bb11b2
YZ
1377static reloc_howto_type elfNN_aarch64_howto_none =
1378 HOWTO (R_AARCH64_NONE, /* type */
1379 0, /* rightshift */
1380 0, /* size (0 = byte, 1 = short, 2 = long) */
1381 0, /* bitsize */
1382 FALSE, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont,/* complain_on_overflow */
1385 bfd_elf_generic_reloc, /* special_function */
1386 "R_AARCH64_NONE", /* name */
1387 FALSE, /* partial_inplace */
1388 0, /* src_mask */
1389 0, /* dst_mask */
1390 FALSE); /* pcrel_offset */
1391
1392/* Given HOWTO, return the bfd internal relocation enumerator. */
1393
1394static bfd_reloc_code_real_type
1395elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1396{
1397 const int size
1398 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1399 const ptrdiff_t offset
1400 = howto - elfNN_aarch64_howto_table;
1401
1402 if (offset > 0 && offset < size - 1)
1403 return BFD_RELOC_AARCH64_RELOC_START + offset;
1404
1405 if (howto == &elfNN_aarch64_howto_none)
1406 return BFD_RELOC_AARCH64_NONE;
1407
1408 return BFD_RELOC_AARCH64_RELOC_START;
1409}
1410
1411/* Given R_TYPE, return the bfd internal relocation enumerator. */
1412
1413static bfd_reloc_code_real_type
1414elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1415{
1416 static bfd_boolean initialized_p = FALSE;
1417 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1418 static unsigned int offsets[R_AARCH64_end];
1419
1420 if (initialized_p == FALSE)
1421 {
1422 unsigned int i;
1423
1424 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1425 if (elfNN_aarch64_howto_table[i].type != 0)
1426 offsets[elfNN_aarch64_howto_table[i].type] = i;
1427
1428 initialized_p = TRUE;
1429 }
1430
1431 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1432 return BFD_RELOC_AARCH64_NONE;
1433
1434 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1435}
1436
1437struct elf_aarch64_reloc_map
1438{
1439 bfd_reloc_code_real_type from;
1440 bfd_reloc_code_real_type to;
1441};
1442
1443/* Map bfd generic reloc to AArch64-specific reloc. */
1444static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1445{
1446 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1447
1448 /* Basic data relocations. */
1449 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1450 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1451 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1452 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1453 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1454 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1455 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1456};
1457
1458/* Given the bfd internal relocation enumerator in CODE, return the
1459 corresponding howto entry. */
1460
1461static reloc_howto_type *
1462elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1463{
1464 unsigned int i;
1465
1466 /* Convert bfd generic reloc to AArch64-specific reloc. */
1467 if (code < BFD_RELOC_AARCH64_RELOC_START
1468 || code > BFD_RELOC_AARCH64_RELOC_END)
1469 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1470 if (elf_aarch64_reloc_map[i].from == code)
1471 {
1472 code = elf_aarch64_reloc_map[i].to;
1473 break;
1474 }
1475
1476 if (code > BFD_RELOC_AARCH64_RELOC_START
1477 && code < BFD_RELOC_AARCH64_RELOC_END)
1478 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1479 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1480
54757ed1
AP
1481 if (code == BFD_RELOC_AARCH64_NONE)
1482 return &elfNN_aarch64_howto_none;
1483
a6bb11b2
YZ
1484 return NULL;
1485}
1486
a06ea964 1487static reloc_howto_type *
cec5225b 1488elfNN_aarch64_howto_from_type (unsigned int r_type)
a06ea964 1489{
a6bb11b2
YZ
1490 bfd_reloc_code_real_type val;
1491 reloc_howto_type *howto;
1492
cec5225b
YZ
1493#if ARCH_SIZE == 32
1494 if (r_type > 256)
1495 {
1496 bfd_set_error (bfd_error_bad_value);
1497 return NULL;
1498 }
1499#endif
1500
a6bb11b2
YZ
1501 if (r_type == R_AARCH64_NONE)
1502 return &elfNN_aarch64_howto_none;
a06ea964 1503
a6bb11b2
YZ
1504 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1505 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
a06ea964 1506
a6bb11b2
YZ
1507 if (howto != NULL)
1508 return howto;
a06ea964 1509
a06ea964
NC
1510 bfd_set_error (bfd_error_bad_value);
1511 return NULL;
1512}
1513
1514static void
cec5225b 1515elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
a06ea964
NC
1516 Elf_Internal_Rela *elf_reloc)
1517{
1518 unsigned int r_type;
1519
cec5225b
YZ
1520 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1521 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
1522}
1523
a06ea964 1524static reloc_howto_type *
cec5225b 1525elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1526 bfd_reloc_code_real_type code)
1527{
a6bb11b2 1528 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
a06ea964 1529
a6bb11b2
YZ
1530 if (howto != NULL)
1531 return howto;
a06ea964
NC
1532
1533 bfd_set_error (bfd_error_bad_value);
1534 return NULL;
1535}
1536
1537static reloc_howto_type *
cec5225b 1538elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1539 const char *r_name)
1540{
1541 unsigned int i;
1542
a6bb11b2
YZ
1543 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1544 if (elfNN_aarch64_howto_table[i].name != NULL
1545 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
1546 return &elfNN_aarch64_howto_table[i];
a06ea964
NC
1547
1548 return NULL;
1549}
1550
cec5225b
YZ
1551#define TARGET_LITTLE_SYM bfd_elfNN_littleaarch64_vec
1552#define TARGET_LITTLE_NAME "elfNN-littleaarch64"
1553#define TARGET_BIG_SYM bfd_elfNN_bigaarch64_vec
1554#define TARGET_BIG_NAME "elfNN-bigaarch64"
a06ea964 1555
a06ea964
NC
1556/* The linker script knows the section names for placement.
1557 The entry_names are used to do simple name mangling on the stubs.
1558 Given a function name, and its type, the stub can be found. The
1559 name can be changed. The only requirement is the %s be present. */
1560#define STUB_ENTRY_NAME "__%s_veneer"
1561
1562/* The name of the dynamic interpreter. This is put in the .interp
1563 section. */
1564#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1565
1566#define AARCH64_MAX_FWD_BRANCH_OFFSET \
1567 (((1 << 25) - 1) << 2)
1568#define AARCH64_MAX_BWD_BRANCH_OFFSET \
1569 (-((1 << 25) << 2))
1570
1571#define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1572#define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1573
1574static int
1575aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
1576{
1577 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
1578 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
1579}
1580
1581static int
1582aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
1583{
1584 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
1585 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
1586 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
1587}
1588
1589static const uint32_t aarch64_adrp_branch_stub [] =
1590{
1591 0x90000010, /* adrp ip0, X */
1592 /* R_AARCH64_ADR_HI21_PCREL(X) */
1593 0x91000210, /* add ip0, ip0, :lo12:X */
1594 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
1595 0xd61f0200, /* br ip0 */
1596};
1597
1598static const uint32_t aarch64_long_branch_stub[] =
1599{
cec5225b 1600#if ARCH_SIZE == 64
a06ea964 1601 0x58000090, /* ldr ip0, 1f */
cec5225b
YZ
1602#else
1603 0x18000090, /* ldr wip0, 1f */
1604#endif
a06ea964
NC
1605 0x10000011, /* adr ip1, #0 */
1606 0x8b110210, /* add ip0, ip0, ip1 */
1607 0xd61f0200, /* br ip0 */
cec5225b
YZ
1608 0x00000000, /* 1: .xword or .word
1609 R_AARCH64_PRELNN(X) + 12
a06ea964
NC
1610 */
1611 0x00000000,
1612};
1613
1614/* Section name for stubs is the associated section name plus this
1615 string. */
1616#define STUB_SUFFIX ".stub"
1617
cec5225b 1618enum elf_aarch64_stub_type
a06ea964
NC
1619{
1620 aarch64_stub_none,
1621 aarch64_stub_adrp_branch,
1622 aarch64_stub_long_branch,
1623};
1624
cec5225b 1625struct elf_aarch64_stub_hash_entry
a06ea964
NC
1626{
1627 /* Base hash table entry structure. */
1628 struct bfd_hash_entry root;
1629
1630 /* The stub section. */
1631 asection *stub_sec;
1632
1633 /* Offset within stub_sec of the beginning of this stub. */
1634 bfd_vma stub_offset;
1635
1636 /* Given the symbol's value and its section we can determine its final
1637 value when building the stubs (so the stub knows where to jump). */
1638 bfd_vma target_value;
1639 asection *target_section;
1640
cec5225b 1641 enum elf_aarch64_stub_type stub_type;
a06ea964
NC
1642
1643 /* The symbol table entry, if any, that this was derived from. */
cec5225b 1644 struct elf_aarch64_link_hash_entry *h;
a06ea964
NC
1645
1646 /* Destination symbol type */
1647 unsigned char st_type;
1648
1649 /* Where this stub is being called from, or, in the case of combined
1650 stub sections, the first input section in the group. */
1651 asection *id_sec;
1652
1653 /* The name for the local symbol at the start of this stub. The
1654 stub name in the hash table has to be unique; this does not, so
1655 it can be friendlier. */
1656 char *output_name;
1657};
1658
1659/* Used to build a map of a section. This is required for mixed-endian
1660 code/data. */
1661
cec5225b 1662typedef struct elf_elf_section_map
a06ea964
NC
1663{
1664 bfd_vma vma;
1665 char type;
1666}
cec5225b 1667elf_aarch64_section_map;
a06ea964
NC
1668
1669
1670typedef struct _aarch64_elf_section_data
1671{
1672 struct bfd_elf_section_data elf;
1673 unsigned int mapcount;
1674 unsigned int mapsize;
cec5225b 1675 elf_aarch64_section_map *map;
a06ea964
NC
1676}
1677_aarch64_elf_section_data;
1678
cec5225b 1679#define elf_aarch64_section_data(sec) \
a06ea964
NC
1680 ((_aarch64_elf_section_data *) elf_section_data (sec))
1681
4e8516b2
AP
1682/* The size of the thread control block which is defined to be two pointers. */
1683#define TCB_SIZE (ARCH_SIZE/8)*2
a06ea964
NC
1684
1685struct elf_aarch64_local_symbol
1686{
1687 unsigned int got_type;
1688 bfd_signed_vma got_refcount;
1689 bfd_vma got_offset;
1690
1691 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
1692 offset is from the end of the jump table and reserved entries
1693 within the PLTGOT.
1694
1695 The magic value (bfd_vma) -1 indicates that an offset has not be
1696 allocated. */
1697 bfd_vma tlsdesc_got_jump_table_offset;
1698};
1699
1700struct elf_aarch64_obj_tdata
1701{
1702 struct elf_obj_tdata root;
1703
1704 /* local symbol descriptors */
1705 struct elf_aarch64_local_symbol *locals;
1706
1707 /* Zero to warn when linking objects with incompatible enum sizes. */
1708 int no_enum_size_warning;
1709
1710 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
1711 int no_wchar_size_warning;
1712};
1713
1714#define elf_aarch64_tdata(bfd) \
1715 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
1716
cec5225b 1717#define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
a06ea964
NC
1718
1719#define is_aarch64_elf(bfd) \
1720 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1721 && elf_tdata (bfd) != NULL \
1722 && elf_object_id (bfd) == AARCH64_ELF_DATA)
1723
1724static bfd_boolean
cec5225b 1725elfNN_aarch64_mkobject (bfd *abfd)
a06ea964
NC
1726{
1727 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
1728 AARCH64_ELF_DATA);
1729}
1730
cec5225b
YZ
1731#define elf_aarch64_hash_entry(ent) \
1732 ((struct elf_aarch64_link_hash_entry *)(ent))
a06ea964
NC
1733
1734#define GOT_UNKNOWN 0
1735#define GOT_NORMAL 1
1736#define GOT_TLS_GD 2
1737#define GOT_TLS_IE 4
1738#define GOT_TLSDESC_GD 8
1739
1740#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
1741
1742/* AArch64 ELF linker hash entry. */
cec5225b 1743struct elf_aarch64_link_hash_entry
a06ea964
NC
1744{
1745 struct elf_link_hash_entry root;
1746
1747 /* Track dynamic relocs copied for this symbol. */
1748 struct elf_dyn_relocs *dyn_relocs;
1749
a06ea964
NC
1750 /* Since PLT entries have variable size, we need to record the
1751 index into .got.plt instead of recomputing it from the PLT
1752 offset. */
1753 bfd_signed_vma plt_got_offset;
1754
1755 /* Bit mask representing the type of GOT entry(s) if any required by
1756 this symbol. */
1757 unsigned int got_type;
1758
1759 /* A pointer to the most recently used stub hash entry against this
1760 symbol. */
cec5225b 1761 struct elf_aarch64_stub_hash_entry *stub_cache;
a06ea964
NC
1762
1763 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
1764 is from the end of the jump table and reserved entries within the PLTGOT.
1765
1766 The magic value (bfd_vma) -1 indicates that an offset has not
1767 be allocated. */
1768 bfd_vma tlsdesc_got_jump_table_offset;
1769};
1770
1771static unsigned int
cec5225b 1772elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
a06ea964
NC
1773 bfd *abfd,
1774 unsigned long r_symndx)
1775{
1776 if (h)
cec5225b 1777 return elf_aarch64_hash_entry (h)->got_type;
a06ea964 1778
cec5225b 1779 if (! elf_aarch64_locals (abfd))
a06ea964
NC
1780 return GOT_UNKNOWN;
1781
cec5225b 1782 return elf_aarch64_locals (abfd)[r_symndx].got_type;
a06ea964
NC
1783}
1784
a06ea964 1785/* Get the AArch64 elf linker hash table from a link_info structure. */
cec5225b
YZ
1786#define elf_aarch64_hash_table(info) \
1787 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
a06ea964
NC
1788
1789#define aarch64_stub_hash_lookup(table, string, create, copy) \
cec5225b 1790 ((struct elf_aarch64_stub_hash_entry *) \
a06ea964
NC
1791 bfd_hash_lookup ((table), (string), (create), (copy)))
1792
1793/* AArch64 ELF linker hash table. */
cec5225b 1794struct elf_aarch64_link_hash_table
a06ea964
NC
1795{
1796 /* The main hash table. */
1797 struct elf_link_hash_table root;
1798
1799 /* Nonzero to force PIC branch veneers. */
1800 int pic_veneer;
1801
1802 /* The number of bytes in the initial entry in the PLT. */
1803 bfd_size_type plt_header_size;
1804
1805 /* The number of bytes in the subsequent PLT etries. */
1806 bfd_size_type plt_entry_size;
1807
1808 /* Short-cuts to get to dynamic linker sections. */
1809 asection *sdynbss;
1810 asection *srelbss;
1811
1812 /* Small local sym cache. */
1813 struct sym_cache sym_cache;
1814
1815 /* For convenience in allocate_dynrelocs. */
1816 bfd *obfd;
1817
1818 /* The amount of space used by the reserved portion of the sgotplt
1819 section, plus whatever space is used by the jump slots. */
1820 bfd_vma sgotplt_jump_table_size;
1821
1822 /* The stub hash table. */
1823 struct bfd_hash_table stub_hash_table;
1824
1825 /* Linker stub bfd. */
1826 bfd *stub_bfd;
1827
1828 /* Linker call-backs. */
1829 asection *(*add_stub_section) (const char *, asection *);
1830 void (*layout_sections_again) (void);
1831
1832 /* Array to keep track of which stub sections have been created, and
1833 information on stub grouping. */
1834 struct map_stub
1835 {
1836 /* This is the section to which stubs in the group will be
1837 attached. */
1838 asection *link_sec;
1839 /* The stub section. */
1840 asection *stub_sec;
1841 } *stub_group;
1842
cec5225b 1843 /* Assorted information used by elfNN_aarch64_size_stubs. */
a06ea964
NC
1844 unsigned int bfd_count;
1845 int top_index;
1846 asection **input_list;
1847
1848 /* The offset into splt of the PLT entry for the TLS descriptor
1849 resolver. Special values are 0, if not necessary (or not found
1850 to be necessary yet), and -1 if needed but not determined
1851 yet. */
1852 bfd_vma tlsdesc_plt;
1853
1854 /* The GOT offset for the lazy trampoline. Communicated to the
1855 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
1856 indicates an offset is not allocated. */
1857 bfd_vma dt_tlsdesc_got;
1419bbe5
WN
1858
1859 /* Used by local STT_GNU_IFUNC symbols. */
1860 htab_t loc_hash_table;
1861 void * loc_hash_memory;
a06ea964
NC
1862};
1863
a06ea964
NC
1864/* Create an entry in an AArch64 ELF linker hash table. */
1865
1866static struct bfd_hash_entry *
cec5225b 1867elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
a06ea964
NC
1868 struct bfd_hash_table *table,
1869 const char *string)
1870{
cec5225b
YZ
1871 struct elf_aarch64_link_hash_entry *ret =
1872 (struct elf_aarch64_link_hash_entry *) entry;
a06ea964
NC
1873
1874 /* Allocate the structure if it has not already been allocated by a
1875 subclass. */
1876 if (ret == NULL)
1877 ret = bfd_hash_allocate (table,
cec5225b 1878 sizeof (struct elf_aarch64_link_hash_entry));
a06ea964
NC
1879 if (ret == NULL)
1880 return (struct bfd_hash_entry *) ret;
1881
1882 /* Call the allocation method of the superclass. */
cec5225b 1883 ret = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
1884 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1885 table, string));
1886 if (ret != NULL)
1887 {
1888 ret->dyn_relocs = NULL;
a06ea964
NC
1889 ret->got_type = GOT_UNKNOWN;
1890 ret->plt_got_offset = (bfd_vma) - 1;
1891 ret->stub_cache = NULL;
1892 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
1893 }
1894
1895 return (struct bfd_hash_entry *) ret;
1896}
1897
1898/* Initialize an entry in the stub hash table. */
1899
1900static struct bfd_hash_entry *
1901stub_hash_newfunc (struct bfd_hash_entry *entry,
1902 struct bfd_hash_table *table, const char *string)
1903{
1904 /* Allocate the structure if it has not already been allocated by a
1905 subclass. */
1906 if (entry == NULL)
1907 {
1908 entry = bfd_hash_allocate (table,
1909 sizeof (struct
cec5225b 1910 elf_aarch64_stub_hash_entry));
a06ea964
NC
1911 if (entry == NULL)
1912 return entry;
1913 }
1914
1915 /* Call the allocation method of the superclass. */
1916 entry = bfd_hash_newfunc (entry, table, string);
1917 if (entry != NULL)
1918 {
cec5225b 1919 struct elf_aarch64_stub_hash_entry *eh;
a06ea964
NC
1920
1921 /* Initialize the local fields. */
cec5225b 1922 eh = (struct elf_aarch64_stub_hash_entry *) entry;
a06ea964
NC
1923 eh->stub_sec = NULL;
1924 eh->stub_offset = 0;
1925 eh->target_value = 0;
1926 eh->target_section = NULL;
1927 eh->stub_type = aarch64_stub_none;
1928 eh->h = NULL;
1929 eh->id_sec = NULL;
1930 }
1931
1932 return entry;
1933}
1934
1419bbe5
WN
1935/* Compute a hash of a local hash entry. We use elf_link_hash_entry
1936 for local symbol so that we can handle local STT_GNU_IFUNC symbols
1937 as global symbol. We reuse indx and dynstr_index for local symbol
1938 hash since they aren't used by global symbols in this backend. */
1939
1940static hashval_t
1941elfNN_aarch64_local_htab_hash (const void *ptr)
1942{
1943 struct elf_link_hash_entry *h
1944 = (struct elf_link_hash_entry *) ptr;
1945 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
1946}
1947
1948/* Compare local hash entries. */
1949
1950static int
1951elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
1952{
1953 struct elf_link_hash_entry *h1
1954 = (struct elf_link_hash_entry *) ptr1;
1955 struct elf_link_hash_entry *h2
1956 = (struct elf_link_hash_entry *) ptr2;
1957
1958 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
1959}
1960
1961/* Find and/or create a hash entry for local symbol. */
1962
1963static struct elf_link_hash_entry *
1964elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
1965 bfd *abfd, const Elf_Internal_Rela *rel,
1966 bfd_boolean create)
1967{
1968 struct elf_aarch64_link_hash_entry e, *ret;
1969 asection *sec = abfd->sections;
1970 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
1971 ELFNN_R_SYM (rel->r_info));
1972 void **slot;
1973
1974 e.root.indx = sec->id;
1975 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1976 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
1977 create ? INSERT : NO_INSERT);
1978
1979 if (!slot)
1980 return NULL;
1981
1982 if (*slot)
1983 {
1984 ret = (struct elf_aarch64_link_hash_entry *) *slot;
1985 return &ret->root;
1986 }
1987
1988 ret = (struct elf_aarch64_link_hash_entry *)
1989 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
1990 sizeof (struct elf_aarch64_link_hash_entry));
1991 if (ret)
1992 {
1993 memset (ret, 0, sizeof (*ret));
1994 ret->root.indx = sec->id;
1995 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1996 ret->root.dynindx = -1;
1997 *slot = ret;
1998 }
1999 return &ret->root;
2000}
a06ea964
NC
2001
2002/* Copy the extra info we tack onto an elf_link_hash_entry. */
2003
2004static void
cec5225b 2005elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
a06ea964
NC
2006 struct elf_link_hash_entry *dir,
2007 struct elf_link_hash_entry *ind)
2008{
cec5225b 2009 struct elf_aarch64_link_hash_entry *edir, *eind;
a06ea964 2010
cec5225b
YZ
2011 edir = (struct elf_aarch64_link_hash_entry *) dir;
2012 eind = (struct elf_aarch64_link_hash_entry *) ind;
a06ea964
NC
2013
2014 if (eind->dyn_relocs != NULL)
2015 {
2016 if (edir->dyn_relocs != NULL)
2017 {
2018 struct elf_dyn_relocs **pp;
2019 struct elf_dyn_relocs *p;
2020
2021 /* Add reloc counts against the indirect sym to the direct sym
2022 list. Merge any entries against the same section. */
2023 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2024 {
2025 struct elf_dyn_relocs *q;
2026
2027 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2028 if (q->sec == p->sec)
2029 {
2030 q->pc_count += p->pc_count;
2031 q->count += p->count;
2032 *pp = p->next;
2033 break;
2034 }
2035 if (q == NULL)
2036 pp = &p->next;
2037 }
2038 *pp = edir->dyn_relocs;
2039 }
2040
2041 edir->dyn_relocs = eind->dyn_relocs;
2042 eind->dyn_relocs = NULL;
2043 }
2044
a06ea964
NC
2045 if (ind->root.type == bfd_link_hash_indirect)
2046 {
2047 /* Copy over PLT info. */
2048 if (dir->got.refcount <= 0)
2049 {
2050 edir->got_type = eind->got_type;
2051 eind->got_type = GOT_UNKNOWN;
2052 }
2053 }
2054
2055 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2056}
2057
2058/* Create an AArch64 elf linker hash table. */
2059
2060static struct bfd_link_hash_table *
cec5225b 2061elfNN_aarch64_link_hash_table_create (bfd *abfd)
a06ea964 2062{
cec5225b
YZ
2063 struct elf_aarch64_link_hash_table *ret;
2064 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
a06ea964 2065
7bf52ea2 2066 ret = bfd_zmalloc (amt);
a06ea964
NC
2067 if (ret == NULL)
2068 return NULL;
2069
2070 if (!_bfd_elf_link_hash_table_init
cec5225b
YZ
2071 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2072 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
a06ea964
NC
2073 {
2074 free (ret);
2075 return NULL;
2076 }
2077
a06ea964
NC
2078 ret->plt_header_size = PLT_ENTRY_SIZE;
2079 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
a06ea964 2080 ret->obfd = abfd;
a06ea964
NC
2081 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2082
2083 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
cec5225b 2084 sizeof (struct elf_aarch64_stub_hash_entry)))
a06ea964
NC
2085 {
2086 free (ret);
2087 return NULL;
2088 }
2089
1419bbe5
WN
2090 ret->loc_hash_table = htab_try_create (1024,
2091 elfNN_aarch64_local_htab_hash,
2092 elfNN_aarch64_local_htab_eq,
2093 NULL);
2094 ret->loc_hash_memory = objalloc_create ();
2095 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2096 {
2097 free (ret);
2098 return NULL;
2099 }
2100
a06ea964
NC
2101 return &ret->root.root;
2102}
2103
2104/* Free the derived linker hash table. */
2105
2106static void
cec5225b 2107elfNN_aarch64_hash_table_free (struct bfd_link_hash_table *hash)
a06ea964 2108{
cec5225b
YZ
2109 struct elf_aarch64_link_hash_table *ret
2110 = (struct elf_aarch64_link_hash_table *) hash;
a06ea964 2111
1419bbe5
WN
2112 if (ret->loc_hash_table)
2113 htab_delete (ret->loc_hash_table);
2114 if (ret->loc_hash_memory)
2115 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2116
a06ea964 2117 bfd_hash_table_free (&ret->stub_hash_table);
9f7c3e5e 2118 _bfd_elf_link_hash_table_free (hash);
a06ea964
NC
2119}
2120
a06ea964
NC
2121static bfd_boolean
2122aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2123 bfd_vma offset, bfd_vma value)
2124{
2125 reloc_howto_type *howto;
2126 bfd_vma place;
2127
cec5225b 2128 howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
2129 place = (input_section->output_section->vma + input_section->output_offset
2130 + offset);
caed7120
YZ
2131
2132 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2133 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2134 return _bfd_aarch64_elf_put_addend (input_bfd,
2135 input_section->contents + offset, r_type,
2136 howto, value);
a06ea964
NC
2137}
2138
cec5225b 2139static enum elf_aarch64_stub_type
a06ea964
NC
2140aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2141{
2142 if (aarch64_valid_for_adrp_p (value, place))
2143 return aarch64_stub_adrp_branch;
2144 return aarch64_stub_long_branch;
2145}
2146
2147/* Determine the type of stub needed, if any, for a call. */
2148
cec5225b 2149static enum elf_aarch64_stub_type
a06ea964
NC
2150aarch64_type_of_stub (struct bfd_link_info *info,
2151 asection *input_sec,
2152 const Elf_Internal_Rela *rel,
2153 unsigned char st_type,
cec5225b 2154 struct elf_aarch64_link_hash_entry *hash,
a06ea964
NC
2155 bfd_vma destination)
2156{
2157 bfd_vma location;
2158 bfd_signed_vma branch_offset;
2159 unsigned int r_type;
cec5225b
YZ
2160 struct elf_aarch64_link_hash_table *globals;
2161 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
a06ea964
NC
2162 bfd_boolean via_plt_p;
2163
2164 if (st_type != STT_FUNC)
2165 return stub_type;
2166
cec5225b 2167 globals = elf_aarch64_hash_table (info);
a06ea964
NC
2168 via_plt_p = (globals->root.splt != NULL && hash != NULL
2169 && hash->root.plt.offset != (bfd_vma) - 1);
2170
2171 if (via_plt_p)
2172 return stub_type;
2173
2174 /* Determine where the call point is. */
2175 location = (input_sec->output_offset
2176 + input_sec->output_section->vma + rel->r_offset);
2177
2178 branch_offset = (bfd_signed_vma) (destination - location);
2179
cec5225b 2180 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
2181
2182 /* We don't want to redirect any old unconditional jump in this way,
2183 only one which is being used for a sibcall, where it is
2184 acceptable for the IP0 and IP1 registers to be clobbered. */
a6bb11b2 2185 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
a06ea964
NC
2186 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2187 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2188 {
2189 stub_type = aarch64_stub_long_branch;
2190 }
2191
2192 return stub_type;
2193}
2194
2195/* Build a name for an entry in the stub hash table. */
2196
2197static char *
cec5225b 2198elfNN_aarch64_stub_name (const asection *input_section,
a06ea964 2199 const asection *sym_sec,
cec5225b 2200 const struct elf_aarch64_link_hash_entry *hash,
a06ea964
NC
2201 const Elf_Internal_Rela *rel)
2202{
2203 char *stub_name;
2204 bfd_size_type len;
2205
2206 if (hash)
2207 {
2208 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2209 stub_name = bfd_malloc (len);
2210 if (stub_name != NULL)
2211 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2212 (unsigned int) input_section->id,
2213 hash->root.root.root.string,
2214 rel->r_addend);
2215 }
2216 else
2217 {
2218 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2219 stub_name = bfd_malloc (len);
2220 if (stub_name != NULL)
2221 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2222 (unsigned int) input_section->id,
2223 (unsigned int) sym_sec->id,
cec5225b 2224 (unsigned int) ELFNN_R_SYM (rel->r_info),
a06ea964
NC
2225 rel->r_addend);
2226 }
2227
2228 return stub_name;
2229}
2230
2231/* Look up an entry in the stub hash. Stub entries are cached because
2232 creating the stub name takes a bit of time. */
2233
cec5225b
YZ
2234static struct elf_aarch64_stub_hash_entry *
2235elfNN_aarch64_get_stub_entry (const asection *input_section,
a06ea964
NC
2236 const asection *sym_sec,
2237 struct elf_link_hash_entry *hash,
2238 const Elf_Internal_Rela *rel,
cec5225b 2239 struct elf_aarch64_link_hash_table *htab)
a06ea964 2240{
cec5225b
YZ
2241 struct elf_aarch64_stub_hash_entry *stub_entry;
2242 struct elf_aarch64_link_hash_entry *h =
2243 (struct elf_aarch64_link_hash_entry *) hash;
a06ea964
NC
2244 const asection *id_sec;
2245
2246 if ((input_section->flags & SEC_CODE) == 0)
2247 return NULL;
2248
2249 /* If this input section is part of a group of sections sharing one
2250 stub section, then use the id of the first section in the group.
2251 Stub names need to include a section id, as there may well be
2252 more than one stub used to reach say, printf, and we need to
2253 distinguish between them. */
2254 id_sec = htab->stub_group[input_section->id].link_sec;
2255
2256 if (h != NULL && h->stub_cache != NULL
2257 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2258 {
2259 stub_entry = h->stub_cache;
2260 }
2261 else
2262 {
2263 char *stub_name;
2264
cec5225b 2265 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
a06ea964
NC
2266 if (stub_name == NULL)
2267 return NULL;
2268
2269 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2270 stub_name, FALSE, FALSE);
2271 if (h != NULL)
2272 h->stub_cache = stub_entry;
2273
2274 free (stub_name);
2275 }
2276
2277 return stub_entry;
2278}
2279
2280/* Add a new stub entry to the stub hash. Not all fields of the new
2281 stub entry are initialised. */
2282
cec5225b
YZ
2283static struct elf_aarch64_stub_hash_entry *
2284elfNN_aarch64_add_stub (const char *stub_name,
a06ea964 2285 asection *section,
cec5225b 2286 struct elf_aarch64_link_hash_table *htab)
a06ea964
NC
2287{
2288 asection *link_sec;
2289 asection *stub_sec;
cec5225b 2290 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2291
2292 link_sec = htab->stub_group[section->id].link_sec;
2293 stub_sec = htab->stub_group[section->id].stub_sec;
2294 if (stub_sec == NULL)
2295 {
2296 stub_sec = htab->stub_group[link_sec->id].stub_sec;
2297 if (stub_sec == NULL)
2298 {
2299 size_t namelen;
2300 bfd_size_type len;
2301 char *s_name;
2302
2303 namelen = strlen (link_sec->name);
2304 len = namelen + sizeof (STUB_SUFFIX);
2305 s_name = bfd_alloc (htab->stub_bfd, len);
2306 if (s_name == NULL)
2307 return NULL;
2308
2309 memcpy (s_name, link_sec->name, namelen);
2310 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2311 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
2312 if (stub_sec == NULL)
2313 return NULL;
2314 htab->stub_group[link_sec->id].stub_sec = stub_sec;
2315 }
2316 htab->stub_group[section->id].stub_sec = stub_sec;
2317 }
2318
2319 /* Enter this entry into the linker stub hash table. */
2320 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2321 TRUE, FALSE);
2322 if (stub_entry == NULL)
2323 {
2324 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2325 section->owner, stub_name);
2326 return NULL;
2327 }
2328
2329 stub_entry->stub_sec = stub_sec;
2330 stub_entry->stub_offset = 0;
2331 stub_entry->id_sec = link_sec;
2332
2333 return stub_entry;
2334}
2335
2336static bfd_boolean
2337aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2338 void *in_arg ATTRIBUTE_UNUSED)
2339{
cec5225b 2340 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2341 asection *stub_sec;
2342 bfd *stub_bfd;
2343 bfd_byte *loc;
2344 bfd_vma sym_value;
2345 unsigned int template_size;
2346 const uint32_t *template;
2347 unsigned int i;
2348
2349 /* Massage our args to the form they really have. */
cec5225b 2350 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
2351
2352 stub_sec = stub_entry->stub_sec;
2353
2354 /* Make a note of the offset within the stubs for this entry. */
2355 stub_entry->stub_offset = stub_sec->size;
2356 loc = stub_sec->contents + stub_entry->stub_offset;
2357
2358 stub_bfd = stub_sec->owner;
2359
2360 /* This is the address of the stub destination. */
2361 sym_value = (stub_entry->target_value
2362 + stub_entry->target_section->output_offset
2363 + stub_entry->target_section->output_section->vma);
2364
2365 if (stub_entry->stub_type == aarch64_stub_long_branch)
2366 {
2367 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2368 + stub_sec->output_offset);
2369
2370 /* See if we can relax the stub. */
2371 if (aarch64_valid_for_adrp_p (sym_value, place))
2372 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2373 }
2374
2375 switch (stub_entry->stub_type)
2376 {
2377 case aarch64_stub_adrp_branch:
2378 template = aarch64_adrp_branch_stub;
2379 template_size = sizeof (aarch64_adrp_branch_stub);
2380 break;
2381 case aarch64_stub_long_branch:
2382 template = aarch64_long_branch_stub;
2383 template_size = sizeof (aarch64_long_branch_stub);
2384 break;
2385 default:
2386 BFD_FAIL ();
2387 return FALSE;
2388 }
2389
2390 for (i = 0; i < (template_size / sizeof template[0]); i++)
2391 {
2392 bfd_putl32 (template[i], loc);
2393 loc += 4;
2394 }
2395
2396 template_size = (template_size + 7) & ~7;
2397 stub_sec->size += template_size;
2398
2399 switch (stub_entry->stub_type)
2400 {
2401 case aarch64_stub_adrp_branch:
a6bb11b2 2402 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
a06ea964
NC
2403 stub_entry->stub_offset, sym_value))
2404 /* The stub would not have been relaxed if the offset was out
2405 of range. */
2406 BFD_FAIL ();
2407
2408 _bfd_final_link_relocate
a6bb11b2 2409 (elfNN_aarch64_howto_from_type (AARCH64_R (ADD_ABS_LO12_NC)),
a06ea964
NC
2410 stub_bfd,
2411 stub_sec,
2412 stub_sec->contents,
2413 stub_entry->stub_offset + 4,
2414 sym_value,
2415 0);
2416 break;
2417
2418 case aarch64_stub_long_branch:
2419 /* We want the value relative to the address 12 bytes back from the
2420 value itself. */
cec5225b 2421 _bfd_final_link_relocate (elfNN_aarch64_howto_from_type
a6bb11b2 2422 (AARCH64_R (PRELNN)), stub_bfd, stub_sec,
a06ea964
NC
2423 stub_sec->contents,
2424 stub_entry->stub_offset + 16,
2425 sym_value + 12, 0);
2426 break;
2427 default:
2428 break;
2429 }
2430
2431 return TRUE;
2432}
2433
2434/* As above, but don't actually build the stub. Just bump offset so
2435 we know stub section sizes. */
2436
2437static bfd_boolean
2438aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
2439 void *in_arg ATTRIBUTE_UNUSED)
2440{
cec5225b 2441 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2442 int size;
2443
2444 /* Massage our args to the form they really have. */
cec5225b 2445 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
2446
2447 switch (stub_entry->stub_type)
2448 {
2449 case aarch64_stub_adrp_branch:
2450 size = sizeof (aarch64_adrp_branch_stub);
2451 break;
2452 case aarch64_stub_long_branch:
2453 size = sizeof (aarch64_long_branch_stub);
2454 break;
2455 default:
2456 BFD_FAIL ();
2457 return FALSE;
2458 break;
2459 }
2460
2461 size = (size + 7) & ~7;
2462 stub_entry->stub_sec->size += size;
2463 return TRUE;
2464}
2465
2466/* External entry points for sizing and building linker stubs. */
2467
2468/* Set up various things so that we can make a list of input sections
2469 for each output section included in the link. Returns -1 on error,
2470 0 when no stubs will be needed, and 1 on success. */
2471
2472int
cec5225b 2473elfNN_aarch64_setup_section_lists (bfd *output_bfd,
a06ea964
NC
2474 struct bfd_link_info *info)
2475{
2476 bfd *input_bfd;
2477 unsigned int bfd_count;
2478 int top_id, top_index;
2479 asection *section;
2480 asection **input_list, **list;
2481 bfd_size_type amt;
cec5225b
YZ
2482 struct elf_aarch64_link_hash_table *htab =
2483 elf_aarch64_hash_table (info);
a06ea964
NC
2484
2485 if (!is_elf_hash_table (htab))
2486 return 0;
2487
2488 /* Count the number of input BFDs and find the top input section id. */
2489 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2490 input_bfd != NULL; input_bfd = input_bfd->link_next)
2491 {
2492 bfd_count += 1;
2493 for (section = input_bfd->sections;
2494 section != NULL; section = section->next)
2495 {
2496 if (top_id < section->id)
2497 top_id = section->id;
2498 }
2499 }
2500 htab->bfd_count = bfd_count;
2501
2502 amt = sizeof (struct map_stub) * (top_id + 1);
2503 htab->stub_group = bfd_zmalloc (amt);
2504 if (htab->stub_group == NULL)
2505 return -1;
2506
2507 /* We can't use output_bfd->section_count here to find the top output
2508 section index as some sections may have been removed, and
2509 _bfd_strip_section_from_output doesn't renumber the indices. */
2510 for (section = output_bfd->sections, top_index = 0;
2511 section != NULL; section = section->next)
2512 {
2513 if (top_index < section->index)
2514 top_index = section->index;
2515 }
2516
2517 htab->top_index = top_index;
2518 amt = sizeof (asection *) * (top_index + 1);
2519 input_list = bfd_malloc (amt);
2520 htab->input_list = input_list;
2521 if (input_list == NULL)
2522 return -1;
2523
2524 /* For sections we aren't interested in, mark their entries with a
2525 value we can check later. */
2526 list = input_list + top_index;
2527 do
2528 *list = bfd_abs_section_ptr;
2529 while (list-- != input_list);
2530
2531 for (section = output_bfd->sections;
2532 section != NULL; section = section->next)
2533 {
2534 if ((section->flags & SEC_CODE) != 0)
2535 input_list[section->index] = NULL;
2536 }
2537
2538 return 1;
2539}
2540
cec5225b 2541/* Used by elfNN_aarch64_next_input_section and group_sections. */
a06ea964
NC
2542#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2543
2544/* The linker repeatedly calls this function for each input section,
2545 in the order that input sections are linked into output sections.
2546 Build lists of input sections to determine groupings between which
2547 we may insert linker stubs. */
2548
2549void
cec5225b 2550elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
a06ea964 2551{
cec5225b
YZ
2552 struct elf_aarch64_link_hash_table *htab =
2553 elf_aarch64_hash_table (info);
a06ea964
NC
2554
2555 if (isec->output_section->index <= htab->top_index)
2556 {
2557 asection **list = htab->input_list + isec->output_section->index;
2558
2559 if (*list != bfd_abs_section_ptr)
2560 {
2561 /* Steal the link_sec pointer for our list. */
2562 /* This happens to make the list in reverse order,
2563 which is what we want. */
2564 PREV_SEC (isec) = *list;
2565 *list = isec;
2566 }
2567 }
2568}
2569
2570/* See whether we can group stub sections together. Grouping stub
2571 sections may result in fewer stubs. More importantly, we need to
2572 put all .init* and .fini* stubs at the beginning of the .init or
2573 .fini output sections respectively, because glibc splits the
2574 _init and _fini functions into multiple parts. Putting a stub in
2575 the middle of a function is not a good idea. */
2576
2577static void
cec5225b 2578group_sections (struct elf_aarch64_link_hash_table *htab,
a06ea964
NC
2579 bfd_size_type stub_group_size,
2580 bfd_boolean stubs_always_before_branch)
2581{
2582 asection **list = htab->input_list + htab->top_index;
2583
2584 do
2585 {
2586 asection *tail = *list;
2587
2588 if (tail == bfd_abs_section_ptr)
2589 continue;
2590
2591 while (tail != NULL)
2592 {
2593 asection *curr;
2594 asection *prev;
2595 bfd_size_type total;
2596
2597 curr = tail;
2598 total = tail->size;
2599 while ((prev = PREV_SEC (curr)) != NULL
2600 && ((total += curr->output_offset - prev->output_offset)
2601 < stub_group_size))
2602 curr = prev;
2603
2604 /* OK, the size from the start of CURR to the end is less
2605 than stub_group_size and thus can be handled by one stub
2606 section. (Or the tail section is itself larger than
2607 stub_group_size, in which case we may be toast.)
2608 We should really be keeping track of the total size of
2609 stubs added here, as stubs contribute to the final output
2610 section size. */
2611 do
2612 {
2613 prev = PREV_SEC (tail);
2614 /* Set up this stub group. */
2615 htab->stub_group[tail->id].link_sec = curr;
2616 }
2617 while (tail != curr && (tail = prev) != NULL);
2618
2619 /* But wait, there's more! Input sections up to stub_group_size
2620 bytes before the stub section can be handled by it too. */
2621 if (!stubs_always_before_branch)
2622 {
2623 total = 0;
2624 while (prev != NULL
2625 && ((total += tail->output_offset - prev->output_offset)
2626 < stub_group_size))
2627 {
2628 tail = prev;
2629 prev = PREV_SEC (tail);
2630 htab->stub_group[tail->id].link_sec = curr;
2631 }
2632 }
2633 tail = prev;
2634 }
2635 }
2636 while (list-- != htab->input_list);
2637
2638 free (htab->input_list);
2639}
2640
2641#undef PREV_SEC
2642
2643/* Determine and set the size of the stub section for a final link.
2644
2645 The basic idea here is to examine all the relocations looking for
2646 PC-relative calls to a target that is unreachable with a "bl"
2647 instruction. */
2648
2649bfd_boolean
cec5225b 2650elfNN_aarch64_size_stubs (bfd *output_bfd,
a06ea964
NC
2651 bfd *stub_bfd,
2652 struct bfd_link_info *info,
2653 bfd_signed_vma group_size,
2654 asection * (*add_stub_section) (const char *,
2655 asection *),
2656 void (*layout_sections_again) (void))
2657{
2658 bfd_size_type stub_group_size;
2659 bfd_boolean stubs_always_before_branch;
2660 bfd_boolean stub_changed = 0;
cec5225b 2661 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
a06ea964
NC
2662
2663 /* Propagate mach to stub bfd, because it may not have been
2664 finalized when we created stub_bfd. */
2665 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
2666 bfd_get_mach (output_bfd));
2667
2668 /* Stash our params away. */
2669 htab->stub_bfd = stub_bfd;
2670 htab->add_stub_section = add_stub_section;
2671 htab->layout_sections_again = layout_sections_again;
2672 stubs_always_before_branch = group_size < 0;
2673 if (group_size < 0)
2674 stub_group_size = -group_size;
2675 else
2676 stub_group_size = group_size;
2677
2678 if (stub_group_size == 1)
2679 {
2680 /* Default values. */
b9eead84 2681 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
a06ea964
NC
2682 stub_group_size = 127 * 1024 * 1024;
2683 }
2684
2685 group_sections (htab, stub_group_size, stubs_always_before_branch);
2686
2687 while (1)
2688 {
2689 bfd *input_bfd;
2690 unsigned int bfd_indx;
2691 asection *stub_sec;
2692
2693 for (input_bfd = info->input_bfds, bfd_indx = 0;
2694 input_bfd != NULL; input_bfd = input_bfd->link_next, bfd_indx++)
2695 {
2696 Elf_Internal_Shdr *symtab_hdr;
2697 asection *section;
2698 Elf_Internal_Sym *local_syms = NULL;
2699
2700 /* We'll need the symbol table in a second. */
2701 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2702 if (symtab_hdr->sh_info == 0)
2703 continue;
2704
2705 /* Walk over each section attached to the input bfd. */
2706 for (section = input_bfd->sections;
2707 section != NULL; section = section->next)
2708 {
2709 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2710
2711 /* If there aren't any relocs, then there's nothing more
2712 to do. */
2713 if ((section->flags & SEC_RELOC) == 0
2714 || section->reloc_count == 0
2715 || (section->flags & SEC_CODE) == 0)
2716 continue;
2717
2718 /* If this section is a link-once section that will be
2719 discarded, then don't create any stubs. */
2720 if (section->output_section == NULL
2721 || section->output_section->owner != output_bfd)
2722 continue;
2723
2724 /* Get the relocs. */
2725 internal_relocs
2726 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
2727 NULL, info->keep_memory);
2728 if (internal_relocs == NULL)
2729 goto error_ret_free_local;
2730
2731 /* Now examine each relocation. */
2732 irela = internal_relocs;
2733 irelaend = irela + section->reloc_count;
2734 for (; irela < irelaend; irela++)
2735 {
2736 unsigned int r_type, r_indx;
cec5225b
YZ
2737 enum elf_aarch64_stub_type stub_type;
2738 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2739 asection *sym_sec;
2740 bfd_vma sym_value;
2741 bfd_vma destination;
cec5225b 2742 struct elf_aarch64_link_hash_entry *hash;
a06ea964
NC
2743 const char *sym_name;
2744 char *stub_name;
2745 const asection *id_sec;
2746 unsigned char st_type;
2747 bfd_size_type len;
2748
cec5225b
YZ
2749 r_type = ELFNN_R_TYPE (irela->r_info);
2750 r_indx = ELFNN_R_SYM (irela->r_info);
a06ea964
NC
2751
2752 if (r_type >= (unsigned int) R_AARCH64_end)
2753 {
2754 bfd_set_error (bfd_error_bad_value);
2755 error_ret_free_internal:
2756 if (elf_section_data (section)->relocs == NULL)
2757 free (internal_relocs);
2758 goto error_ret_free_local;
2759 }
2760
2761 /* Only look for stubs on unconditional branch and
2762 branch and link instructions. */
a6bb11b2
YZ
2763 if (r_type != (unsigned int) AARCH64_R (CALL26)
2764 && r_type != (unsigned int) AARCH64_R (JUMP26))
a06ea964
NC
2765 continue;
2766
2767 /* Now determine the call target, its name, value,
2768 section. */
2769 sym_sec = NULL;
2770 sym_value = 0;
2771 destination = 0;
2772 hash = NULL;
2773 sym_name = NULL;
2774 if (r_indx < symtab_hdr->sh_info)
2775 {
2776 /* It's a local symbol. */
2777 Elf_Internal_Sym *sym;
2778 Elf_Internal_Shdr *hdr;
2779
2780 if (local_syms == NULL)
2781 {
2782 local_syms
2783 = (Elf_Internal_Sym *) symtab_hdr->contents;
2784 if (local_syms == NULL)
2785 local_syms
2786 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2787 symtab_hdr->sh_info, 0,
2788 NULL, NULL, NULL);
2789 if (local_syms == NULL)
2790 goto error_ret_free_internal;
2791 }
2792
2793 sym = local_syms + r_indx;
2794 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2795 sym_sec = hdr->bfd_section;
2796 if (!sym_sec)
2797 /* This is an undefined symbol. It can never
2798 be resolved. */
2799 continue;
2800
2801 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2802 sym_value = sym->st_value;
2803 destination = (sym_value + irela->r_addend
2804 + sym_sec->output_offset
2805 + sym_sec->output_section->vma);
2806 st_type = ELF_ST_TYPE (sym->st_info);
2807 sym_name
2808 = bfd_elf_string_from_elf_section (input_bfd,
2809 symtab_hdr->sh_link,
2810 sym->st_name);
2811 }
2812 else
2813 {
2814 int e_indx;
2815
2816 e_indx = r_indx - symtab_hdr->sh_info;
cec5225b 2817 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
2818 elf_sym_hashes (input_bfd)[e_indx]);
2819
2820 while (hash->root.root.type == bfd_link_hash_indirect
2821 || hash->root.root.type == bfd_link_hash_warning)
cec5225b 2822 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
2823 hash->root.root.u.i.link);
2824
2825 if (hash->root.root.type == bfd_link_hash_defined
2826 || hash->root.root.type == bfd_link_hash_defweak)
2827 {
cec5225b
YZ
2828 struct elf_aarch64_link_hash_table *globals =
2829 elf_aarch64_hash_table (info);
a06ea964
NC
2830 sym_sec = hash->root.root.u.def.section;
2831 sym_value = hash->root.root.u.def.value;
2832 /* For a destination in a shared library,
2833 use the PLT stub as target address to
2834 decide whether a branch stub is
2835 needed. */
2836 if (globals->root.splt != NULL && hash != NULL
2837 && hash->root.plt.offset != (bfd_vma) - 1)
2838 {
2839 sym_sec = globals->root.splt;
2840 sym_value = hash->root.plt.offset;
2841 if (sym_sec->output_section != NULL)
2842 destination = (sym_value
2843 + sym_sec->output_offset
2844 +
2845 sym_sec->output_section->vma);
2846 }
2847 else if (sym_sec->output_section != NULL)
2848 destination = (sym_value + irela->r_addend
2849 + sym_sec->output_offset
2850 + sym_sec->output_section->vma);
2851 }
2852 else if (hash->root.root.type == bfd_link_hash_undefined
2853 || (hash->root.root.type
2854 == bfd_link_hash_undefweak))
2855 {
2856 /* For a shared library, use the PLT stub as
2857 target address to decide whether a long
2858 branch stub is needed.
2859 For absolute code, they cannot be handled. */
cec5225b
YZ
2860 struct elf_aarch64_link_hash_table *globals =
2861 elf_aarch64_hash_table (info);
a06ea964
NC
2862
2863 if (globals->root.splt != NULL && hash != NULL
2864 && hash->root.plt.offset != (bfd_vma) - 1)
2865 {
2866 sym_sec = globals->root.splt;
2867 sym_value = hash->root.plt.offset;
2868 if (sym_sec->output_section != NULL)
2869 destination = (sym_value
2870 + sym_sec->output_offset
2871 +
2872 sym_sec->output_section->vma);
2873 }
2874 else
2875 continue;
2876 }
2877 else
2878 {
2879 bfd_set_error (bfd_error_bad_value);
2880 goto error_ret_free_internal;
2881 }
2882 st_type = ELF_ST_TYPE (hash->root.type);
2883 sym_name = hash->root.root.root.string;
2884 }
2885
2886 /* Determine what (if any) linker stub is needed. */
2887 stub_type = aarch64_type_of_stub
2888 (info, section, irela, st_type, hash, destination);
2889 if (stub_type == aarch64_stub_none)
2890 continue;
2891
2892 /* Support for grouping stub sections. */
2893 id_sec = htab->stub_group[section->id].link_sec;
2894
2895 /* Get the name of this stub. */
cec5225b 2896 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
a06ea964
NC
2897 irela);
2898 if (!stub_name)
2899 goto error_ret_free_internal;
2900
2901 stub_entry =
2902 aarch64_stub_hash_lookup (&htab->stub_hash_table,
2903 stub_name, FALSE, FALSE);
2904 if (stub_entry != NULL)
2905 {
2906 /* The proper stub has already been created. */
2907 free (stub_name);
2908 continue;
2909 }
2910
cec5225b 2911 stub_entry = elfNN_aarch64_add_stub (stub_name, section,
a06ea964
NC
2912 htab);
2913 if (stub_entry == NULL)
2914 {
2915 free (stub_name);
2916 goto error_ret_free_internal;
2917 }
2918
2919 stub_entry->target_value = sym_value;
2920 stub_entry->target_section = sym_sec;
2921 stub_entry->stub_type = stub_type;
2922 stub_entry->h = hash;
2923 stub_entry->st_type = st_type;
2924
2925 if (sym_name == NULL)
2926 sym_name = "unnamed";
2927 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
2928 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
2929 if (stub_entry->output_name == NULL)
2930 {
2931 free (stub_name);
2932 goto error_ret_free_internal;
2933 }
2934
2935 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
2936 sym_name);
2937
2938 stub_changed = TRUE;
2939 }
2940
2941 /* We're done with the internal relocs, free them. */
2942 if (elf_section_data (section)->relocs == NULL)
2943 free (internal_relocs);
2944 }
2945 }
2946
2947 if (!stub_changed)
2948 break;
2949
2950 /* OK, we've added some stubs. Find out the new size of the
2951 stub sections. */
2952 for (stub_sec = htab->stub_bfd->sections;
2953 stub_sec != NULL; stub_sec = stub_sec->next)
2954 stub_sec->size = 0;
2955
2956 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
2957
2958 /* Ask the linker to do its stuff. */
2959 (*htab->layout_sections_again) ();
2960 stub_changed = FALSE;
2961 }
2962
2963 return TRUE;
2964
2965error_ret_free_local:
2966 return FALSE;
2967}
2968
2969/* Build all the stubs associated with the current output file. The
2970 stubs are kept in a hash table attached to the main linker hash
2971 table. We also set up the .plt entries for statically linked PIC
2972 functions here. This function is called via aarch64_elf_finish in the
2973 linker. */
2974
2975bfd_boolean
cec5225b 2976elfNN_aarch64_build_stubs (struct bfd_link_info *info)
a06ea964
NC
2977{
2978 asection *stub_sec;
2979 struct bfd_hash_table *table;
cec5225b 2980 struct elf_aarch64_link_hash_table *htab;
a06ea964 2981
cec5225b 2982 htab = elf_aarch64_hash_table (info);
a06ea964
NC
2983
2984 for (stub_sec = htab->stub_bfd->sections;
2985 stub_sec != NULL; stub_sec = stub_sec->next)
2986 {
2987 bfd_size_type size;
2988
2989 /* Ignore non-stub sections. */
2990 if (!strstr (stub_sec->name, STUB_SUFFIX))
2991 continue;
2992
2993 /* Allocate memory to hold the linker stubs. */
2994 size = stub_sec->size;
2995 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2996 if (stub_sec->contents == NULL && size != 0)
2997 return FALSE;
2998 stub_sec->size = 0;
2999 }
3000
3001 /* Build the stubs as directed by the stub hash table. */
3002 table = &htab->stub_hash_table;
3003 bfd_hash_traverse (table, aarch64_build_one_stub, info);
3004
3005 return TRUE;
3006}
3007
3008
3009/* Add an entry to the code/data map for section SEC. */
3010
3011static void
cec5225b 3012elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
a06ea964
NC
3013{
3014 struct _aarch64_elf_section_data *sec_data =
cec5225b 3015 elf_aarch64_section_data (sec);
a06ea964
NC
3016 unsigned int newidx;
3017
3018 if (sec_data->map == NULL)
3019 {
cec5225b 3020 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
a06ea964
NC
3021 sec_data->mapcount = 0;
3022 sec_data->mapsize = 1;
3023 }
3024
3025 newidx = sec_data->mapcount++;
3026
3027 if (sec_data->mapcount > sec_data->mapsize)
3028 {
3029 sec_data->mapsize *= 2;
3030 sec_data->map = bfd_realloc_or_free
cec5225b 3031 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
a06ea964
NC
3032 }
3033
3034 if (sec_data->map)
3035 {
3036 sec_data->map[newidx].vma = vma;
3037 sec_data->map[newidx].type = type;
3038 }
3039}
3040
3041
3042/* Initialise maps of insn/data for input BFDs. */
3043void
cec5225b 3044bfd_elfNN_aarch64_init_maps (bfd *abfd)
a06ea964
NC
3045{
3046 Elf_Internal_Sym *isymbuf;
3047 Elf_Internal_Shdr *hdr;
3048 unsigned int i, localsyms;
3049
3050 /* Make sure that we are dealing with an AArch64 elf binary. */
3051 if (!is_aarch64_elf (abfd))
3052 return;
3053
3054 if ((abfd->flags & DYNAMIC) != 0)
3055 return;
3056
3057 hdr = &elf_symtab_hdr (abfd);
3058 localsyms = hdr->sh_info;
3059
3060 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3061 should contain the number of local symbols, which should come before any
3062 global symbols. Mapping symbols are always local. */
3063 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
3064
3065 /* No internal symbols read? Skip this BFD. */
3066 if (isymbuf == NULL)
3067 return;
3068
3069 for (i = 0; i < localsyms; i++)
3070 {
3071 Elf_Internal_Sym *isym = &isymbuf[i];
3072 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3073 const char *name;
3074
3075 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
3076 {
3077 name = bfd_elf_string_from_elf_section (abfd,
3078 hdr->sh_link,
3079 isym->st_name);
3080
3081 if (bfd_is_aarch64_special_symbol_name
3082 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
cec5225b 3083 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
a06ea964
NC
3084 }
3085 }
3086}
3087
3088/* Set option values needed during linking. */
3089void
cec5225b 3090bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
a06ea964
NC
3091 struct bfd_link_info *link_info,
3092 int no_enum_warn,
3093 int no_wchar_warn, int pic_veneer)
3094{
cec5225b 3095 struct elf_aarch64_link_hash_table *globals;
a06ea964 3096
cec5225b 3097 globals = elf_aarch64_hash_table (link_info);
a06ea964
NC
3098 globals->pic_veneer = pic_veneer;
3099
3100 BFD_ASSERT (is_aarch64_elf (output_bfd));
3101 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
3102 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
3103}
3104
a06ea964
NC
3105static bfd_vma
3106aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
cec5225b 3107 struct elf_aarch64_link_hash_table
a06ea964
NC
3108 *globals, struct bfd_link_info *info,
3109 bfd_vma value, bfd *output_bfd,
3110 bfd_boolean *unresolved_reloc_p)
3111{
3112 bfd_vma off = (bfd_vma) - 1;
3113 asection *basegot = globals->root.sgot;
3114 bfd_boolean dyn = globals->root.dynamic_sections_created;
3115
3116 if (h != NULL)
3117 {
a6bb11b2 3118 BFD_ASSERT (basegot != NULL);
a06ea964
NC
3119 off = h->got.offset;
3120 BFD_ASSERT (off != (bfd_vma) - 1);
3121 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3122 || (info->shared
3123 && SYMBOL_REFERENCES_LOCAL (info, h))
3124 || (ELF_ST_VISIBILITY (h->other)
3125 && h->root.type == bfd_link_hash_undefweak))
3126 {
3127 /* This is actually a static link, or it is a -Bsymbolic link
3128 and the symbol is defined locally. We must initialize this
3129 entry in the global offset table. Since the offset must
a6bb11b2
YZ
3130 always be a multiple of 8 (4 in the case of ILP32), we use
3131 the least significant bit to record whether we have
3132 initialized it already.
a06ea964
NC
3133 When doing a dynamic link, we create a .rel(a).got relocation
3134 entry to initialize the value. This is done in the
3135 finish_dynamic_symbol routine. */
3136 if ((off & 1) != 0)
3137 off &= ~1;
3138 else
3139 {
cec5225b 3140 bfd_put_NN (output_bfd, value, basegot->contents + off);
a06ea964
NC
3141 h->got.offset |= 1;
3142 }
3143 }
3144 else
3145 *unresolved_reloc_p = FALSE;
3146
3147 off = off + basegot->output_section->vma + basegot->output_offset;
3148 }
3149
3150 return off;
3151}
3152
3153/* Change R_TYPE to a more efficient access model where possible,
3154 return the new reloc type. */
3155
a6bb11b2
YZ
3156static bfd_reloc_code_real_type
3157aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
a06ea964
NC
3158 struct elf_link_hash_entry *h)
3159{
3160 bfd_boolean is_local = h == NULL;
a6bb11b2 3161
a06ea964
NC
3162 switch (r_type)
3163 {
a6bb11b2
YZ
3164 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3165 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3166 return (is_local
3167 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
3168 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
3169
3170 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3171 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
3172 return (is_local
3173 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
3174 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
3175
3176 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3177 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
3178
3179 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
3180 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
3181
3182 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3183 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964 3184 /* Instructions with these relocations will become NOPs. */
a6bb11b2
YZ
3185 return BFD_RELOC_AARCH64_NONE;
3186
3187 default:
3188 break;
a06ea964
NC
3189 }
3190
3191 return r_type;
3192}
3193
3194static unsigned int
a6bb11b2 3195aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
a06ea964
NC
3196{
3197 switch (r_type)
3198 {
a6bb11b2
YZ
3199 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3200 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3201 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3202 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
a06ea964
NC
3203 return GOT_NORMAL;
3204
a6bb11b2
YZ
3205 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3206 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
3207 return GOT_TLS_GD;
3208
a6bb11b2
YZ
3209 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3210 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3211 case BFD_RELOC_AARCH64_TLSDESC_CALL:
3212 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
3213 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
a06ea964
NC
3214 return GOT_TLSDESC_GD;
3215
a6bb11b2
YZ
3216 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3217 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3218 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
a06ea964
NC
3219 return GOT_TLS_IE;
3220
a6bb11b2
YZ
3221 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3222 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3224 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3225 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964 3229 return GOT_UNKNOWN;
a6bb11b2
YZ
3230
3231 default:
3232 break;
a06ea964
NC
3233 }
3234 return GOT_UNKNOWN;
3235}
3236
3237static bfd_boolean
3238aarch64_can_relax_tls (bfd *input_bfd,
3239 struct bfd_link_info *info,
a6bb11b2 3240 bfd_reloc_code_real_type r_type,
a06ea964
NC
3241 struct elf_link_hash_entry *h,
3242 unsigned long r_symndx)
3243{
3244 unsigned int symbol_got_type;
3245 unsigned int reloc_got_type;
3246
3247 if (! IS_AARCH64_TLS_RELOC (r_type))
3248 return FALSE;
3249
cec5225b 3250 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
a06ea964
NC
3251 reloc_got_type = aarch64_reloc_got_type (r_type);
3252
3253 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
3254 return TRUE;
3255
3256 if (info->shared)
3257 return FALSE;
3258
3259 if (h && h->root.type == bfd_link_hash_undefweak)
3260 return FALSE;
3261
3262 return TRUE;
3263}
3264
a6bb11b2
YZ
3265/* Given the relocation code R_TYPE, return the relaxed bfd reloc
3266 enumerator. */
3267
3268static bfd_reloc_code_real_type
a06ea964
NC
3269aarch64_tls_transition (bfd *input_bfd,
3270 struct bfd_link_info *info,
3271 unsigned int r_type,
3272 struct elf_link_hash_entry *h,
3273 unsigned long r_symndx)
3274{
a6bb11b2
YZ
3275 bfd_reloc_code_real_type bfd_r_type
3276 = elfNN_aarch64_bfd_reloc_from_type (r_type);
a06ea964 3277
a6bb11b2
YZ
3278 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
3279 return bfd_r_type;
3280
3281 return aarch64_tls_transition_without_check (bfd_r_type, h);
a06ea964
NC
3282}
3283
3284/* Return the base VMA address which should be subtracted from real addresses
a6bb11b2 3285 when resolving R_AARCH64_TLS_DTPREL relocation. */
a06ea964
NC
3286
3287static bfd_vma
3288dtpoff_base (struct bfd_link_info *info)
3289{
3290 /* If tls_sec is NULL, we should have signalled an error already. */
3291 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
3292 return elf_hash_table (info)->tls_sec->vma;
3293}
3294
a06ea964
NC
3295/* Return the base VMA address which should be subtracted from real addresses
3296 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
3297
3298static bfd_vma
3299tpoff_base (struct bfd_link_info *info)
3300{
3301 struct elf_link_hash_table *htab = elf_hash_table (info);
3302
3303 /* If tls_sec is NULL, we should have signalled an error already. */
3304 if (htab->tls_sec == NULL)
3305 return 0;
3306
3307 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
3308 htab->tls_sec->alignment_power);
3309 return htab->tls_sec->vma - base;
3310}
3311
3312static bfd_vma *
3313symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3314 unsigned long r_symndx)
3315{
3316 /* Calculate the address of the GOT entry for symbol
3317 referred to in h. */
3318 if (h != NULL)
3319 return &h->got.offset;
3320 else
3321 {
3322 /* local symbol */
3323 struct elf_aarch64_local_symbol *l;
3324
cec5225b 3325 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
3326 return &l[r_symndx].got_offset;
3327 }
3328}
3329
3330static void
3331symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3332 unsigned long r_symndx)
3333{
3334 bfd_vma *p;
3335 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
3336 *p |= 1;
3337}
3338
3339static int
3340symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
3341 unsigned long r_symndx)
3342{
3343 bfd_vma value;
3344 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3345 return value & 1;
3346}
3347
3348static bfd_vma
3349symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3350 unsigned long r_symndx)
3351{
3352 bfd_vma value;
3353 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3354 value &= ~1;
3355 return value;
3356}
3357
3358static bfd_vma *
3359symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3360 unsigned long r_symndx)
3361{
3362 /* Calculate the address of the GOT entry for symbol
3363 referred to in h. */
3364 if (h != NULL)
3365 {
cec5225b
YZ
3366 struct elf_aarch64_link_hash_entry *eh;
3367 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
3368 return &eh->tlsdesc_got_jump_table_offset;
3369 }
3370 else
3371 {
3372 /* local symbol */
3373 struct elf_aarch64_local_symbol *l;
3374
cec5225b 3375 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
3376 return &l[r_symndx].tlsdesc_got_jump_table_offset;
3377 }
3378}
3379
3380static void
3381symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3382 unsigned long r_symndx)
3383{
3384 bfd_vma *p;
3385 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3386 *p |= 1;
3387}
3388
3389static int
3390symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
3391 struct elf_link_hash_entry *h,
3392 unsigned long r_symndx)
3393{
3394 bfd_vma value;
3395 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3396 return value & 1;
3397}
3398
3399static bfd_vma
3400symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3401 unsigned long r_symndx)
3402{
3403 bfd_vma value;
3404 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3405 value &= ~1;
3406 return value;
3407}
3408
3409/* Perform a relocation as part of a final link. */
3410static bfd_reloc_status_type
cec5225b 3411elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
a06ea964
NC
3412 bfd *input_bfd,
3413 bfd *output_bfd,
3414 asection *input_section,
3415 bfd_byte *contents,
3416 Elf_Internal_Rela *rel,
3417 bfd_vma value,
3418 struct bfd_link_info *info,
3419 asection *sym_sec,
3420 struct elf_link_hash_entry *h,
3421 bfd_boolean *unresolved_reloc_p,
3422 bfd_boolean save_addend,
1419bbe5
WN
3423 bfd_vma *saved_addend,
3424 Elf_Internal_Sym *sym)
a06ea964 3425{
1419bbe5 3426 Elf_Internal_Shdr *symtab_hdr;
a06ea964 3427 unsigned int r_type = howto->type;
a6bb11b2
YZ
3428 bfd_reloc_code_real_type bfd_r_type
3429 = elfNN_aarch64_bfd_reloc_from_howto (howto);
3430 bfd_reloc_code_real_type new_bfd_r_type;
a06ea964
NC
3431 unsigned long r_symndx;
3432 bfd_byte *hit_data = contents + rel->r_offset;
3433 bfd_vma place;
3434 bfd_signed_vma signed_addend;
cec5225b 3435 struct elf_aarch64_link_hash_table *globals;
a06ea964
NC
3436 bfd_boolean weak_undef_p;
3437
cec5225b 3438 globals = elf_aarch64_hash_table (info);
a06ea964 3439
1419bbe5
WN
3440 symtab_hdr = &elf_symtab_hdr (input_bfd);
3441
a06ea964
NC
3442 BFD_ASSERT (is_aarch64_elf (input_bfd));
3443
cec5225b 3444 r_symndx = ELFNN_R_SYM (rel->r_info);
a06ea964
NC
3445
3446 /* It is possible to have linker relaxations on some TLS access
3447 models. Update our information here. */
a6bb11b2
YZ
3448 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
3449 if (new_bfd_r_type != bfd_r_type)
3450 {
3451 bfd_r_type = new_bfd_r_type;
3452 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
3453 BFD_ASSERT (howto != NULL);
3454 r_type = howto->type;
3455 }
a06ea964
NC
3456
3457 place = input_section->output_section->vma
3458 + input_section->output_offset + rel->r_offset;
3459
3460 /* Get addend, accumulating the addend for consecutive relocs
3461 which refer to the same offset. */
3462 signed_addend = saved_addend ? *saved_addend : 0;
3463 signed_addend += rel->r_addend;
3464
3465 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
3466 : bfd_is_und_section (sym_sec));
a6bb11b2 3467
1419bbe5
WN
3468 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3469 it here if it is defined in a non-shared object. */
3470 if (h != NULL
3471 && h->type == STT_GNU_IFUNC
3472 && h->def_regular)
3473 {
3474 asection *plt;
3475 const char *name;
3476 asection *base_got;
3477 bfd_vma off;
3478
3479 if ((input_section->flags & SEC_ALLOC) == 0
3480 || h->plt.offset == (bfd_vma) -1)
3481 abort ();
3482
3483 /* STT_GNU_IFUNC symbol must go through PLT. */
3484 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
3485 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
3486
3487 switch (bfd_r_type)
3488 {
3489 default:
3490 if (h->root.root.string)
3491 name = h->root.root.string;
3492 else
3493 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3494 NULL);
3495 (*_bfd_error_handler)
3496 (_("%B: relocation %s against STT_GNU_IFUNC "
3497 "symbol `%s' isn't handled by %s"), input_bfd,
3498 howto->name, name, __FUNCTION__);
3499 bfd_set_error (bfd_error_bad_value);
3500 return FALSE;
3501
3502 case BFD_RELOC_AARCH64_NN:
3503 if (rel->r_addend != 0)
3504 {
3505 if (h->root.root.string)
3506 name = h->root.root.string;
3507 else
3508 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3509 sym, NULL);
3510 (*_bfd_error_handler)
3511 (_("%B: relocation %s against STT_GNU_IFUNC "
3512 "symbol `%s' has non-zero addend: %d"),
3513 input_bfd, howto->name, name, rel->r_addend);
3514 bfd_set_error (bfd_error_bad_value);
3515 return FALSE;
3516 }
3517
3518 /* Generate dynamic relocation only when there is a
3519 non-GOT reference in a shared object. */
3520 if (info->shared && h->non_got_ref)
3521 {
3522 Elf_Internal_Rela outrel;
3523 asection *sreloc;
3524
3525 /* Need a dynamic relocation to get the real function
3526 address. */
3527 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3528 info,
3529 input_section,
3530 rel->r_offset);
3531 if (outrel.r_offset == (bfd_vma) -1
3532 || outrel.r_offset == (bfd_vma) -2)
3533 abort ();
3534
3535 outrel.r_offset += (input_section->output_section->vma
3536 + input_section->output_offset);
3537
3538 if (h->dynindx == -1
3539 || h->forced_local
3540 || info->executable)
3541 {
3542 /* This symbol is resolved locally. */
3543 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
3544 outrel.r_addend = (h->root.u.def.value
3545 + h->root.u.def.section->output_section->vma
3546 + h->root.u.def.section->output_offset);
3547 }
3548 else
3549 {
3550 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
3551 outrel.r_addend = 0;
3552 }
3553
3554 sreloc = globals->root.irelifunc;
3555 elf_append_rela (output_bfd, sreloc, &outrel);
3556
3557 /* If this reloc is against an external symbol, we
3558 do not want to fiddle with the addend. Otherwise,
3559 we need to include the symbol value so that it
3560 becomes an addend for the dynamic reloc. For an
3561 internal symbol, we have updated addend. */
3562 return bfd_reloc_ok;
3563 }
3564 /* FALLTHROUGH */
3565 case BFD_RELOC_AARCH64_JUMP26:
3566 case BFD_RELOC_AARCH64_CALL26:
3567 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3568 signed_addend,
3569 weak_undef_p);
3570 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3571 howto, value);
3572 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3573 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3574 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3575 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3576 base_got = globals->root.sgot;
3577 off = h->got.offset;
3578
3579 if (base_got == NULL)
3580 abort ();
3581
3582 if (off == (bfd_vma) -1)
3583 {
3584 bfd_vma plt_index;
3585
3586 /* We can't use h->got.offset here to save state, or
3587 even just remember the offset, as finish_dynamic_symbol
3588 would use that as offset into .got. */
3589
3590 if (globals->root.splt != NULL)
3591 {
b1ee0cc4
WN
3592 plt_index = ((h->plt.offset - globals->plt_header_size) /
3593 globals->plt_entry_size);
1419bbe5
WN
3594 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3595 base_got = globals->root.sgotplt;
3596 }
3597 else
3598 {
3599 plt_index = h->plt.offset / globals->plt_entry_size;
3600 off = plt_index * GOT_ENTRY_SIZE;
3601 base_got = globals->root.igotplt;
3602 }
3603
3604 if (h->dynindx == -1
3605 || h->forced_local
3606 || info->symbolic)
3607 {
3608 /* This references the local definition. We must
3609 initialize this entry in the global offset table.
3610 Since the offset must always be a multiple of 8,
3611 we use the least significant bit to record
3612 whether we have initialized it already.
3613
3614 When doing a dynamic link, we create a .rela.got
3615 relocation entry to initialize the value. This
3616 is done in the finish_dynamic_symbol routine. */
3617 if ((off & 1) != 0)
3618 off &= ~1;
3619 else
3620 {
3621 bfd_put_NN (output_bfd, value,
3622 base_got->contents + off);
3623 /* Note that this is harmless as -1 | 1 still is -1. */
3624 h->got.offset |= 1;
3625 }
3626 }
3627 value = (base_got->output_section->vma
3628 + base_got->output_offset + off);
3629 }
3630 else
3631 value = aarch64_calculate_got_entry_vma (h, globals, info,
3632 value, output_bfd,
3633 unresolved_reloc_p);
3634 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3635 0, weak_undef_p);
3636 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
3637 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3638 case BFD_RELOC_AARCH64_ADD_LO12:
3639 break;
3640 }
3641 }
3642
a6bb11b2 3643 switch (bfd_r_type)
a06ea964 3644 {
a6bb11b2
YZ
3645 case BFD_RELOC_AARCH64_NONE:
3646 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964
NC
3647 *unresolved_reloc_p = FALSE;
3648 return bfd_reloc_ok;
3649
a6bb11b2 3650 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
3651
3652 /* When generating a shared object or relocatable executable, these
3653 relocations are copied into the output file to be resolved at
3654 run time. */
3655 if (((info->shared == TRUE) || globals->root.is_relocatable_executable)
3656 && (input_section->flags & SEC_ALLOC)
3657 && (h == NULL
3658 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3659 || h->root.type != bfd_link_hash_undefweak))
3660 {
3661 Elf_Internal_Rela outrel;
3662 bfd_byte *loc;
3663 bfd_boolean skip, relocate;
3664 asection *sreloc;
3665
3666 *unresolved_reloc_p = FALSE;
3667
a06ea964
NC
3668 skip = FALSE;
3669 relocate = FALSE;
3670
3671 outrel.r_addend = signed_addend;
3672 outrel.r_offset =
3673 _bfd_elf_section_offset (output_bfd, info, input_section,
3674 rel->r_offset);
3675 if (outrel.r_offset == (bfd_vma) - 1)
3676 skip = TRUE;
3677 else if (outrel.r_offset == (bfd_vma) - 2)
3678 {
3679 skip = TRUE;
3680 relocate = TRUE;
3681 }
3682
3683 outrel.r_offset += (input_section->output_section->vma
3684 + input_section->output_offset);
3685
3686 if (skip)
3687 memset (&outrel, 0, sizeof outrel);
3688 else if (h != NULL
3689 && h->dynindx != -1
3690 && (!info->shared || !info->symbolic || !h->def_regular))
cec5225b 3691 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
a06ea964
NC
3692 else
3693 {
3694 int symbol;
3695
3696 /* On SVR4-ish systems, the dynamic loader cannot
3697 relocate the text and data segments independently,
3698 so the symbol does not matter. */
3699 symbol = 0;
a6bb11b2 3700 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
a06ea964
NC
3701 outrel.r_addend += value;
3702 }
3703
1419bbe5
WN
3704 sreloc = elf_section_data (input_section)->sreloc;
3705 if (sreloc == NULL || sreloc->contents == NULL)
3706 return bfd_reloc_notsupported;
3707
3708 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
cec5225b 3709 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
a06ea964 3710
1419bbe5 3711 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
a06ea964
NC
3712 {
3713 /* Sanity to check that we have previously allocated
3714 sufficient space in the relocation section for the
3715 number of relocations we actually want to emit. */
3716 abort ();
3717 }
3718
3719 /* If this reloc is against an external symbol, we do not want to
3720 fiddle with the addend. Otherwise, we need to include the symbol
3721 value so that it becomes an addend for the dynamic reloc. */
3722 if (!relocate)
3723 return bfd_reloc_ok;
3724
3725 return _bfd_final_link_relocate (howto, input_bfd, input_section,
3726 contents, rel->r_offset, value,
3727 signed_addend);
3728 }
3729 else
3730 value += signed_addend;
3731 break;
3732
a6bb11b2
YZ
3733 case BFD_RELOC_AARCH64_JUMP26:
3734 case BFD_RELOC_AARCH64_CALL26:
a06ea964
NC
3735 {
3736 asection *splt = globals->root.splt;
3737 bfd_boolean via_plt_p =
3738 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
3739
3740 /* A call to an undefined weak symbol is converted to a jump to
3741 the next instruction unless a PLT entry will be created.
3742 The jump to the next instruction is optimized as a NOP.
3743 Do the same for local undefined symbols. */
3744 if (weak_undef_p && ! via_plt_p)
3745 {
3746 bfd_putl32 (INSN_NOP, hit_data);
3747 return bfd_reloc_ok;
3748 }
3749
3750 /* If the call goes through a PLT entry, make sure to
3751 check distance to the right destination address. */
3752 if (via_plt_p)
3753 {
3754 value = (splt->output_section->vma
3755 + splt->output_offset + h->plt.offset);
3756 *unresolved_reloc_p = FALSE;
3757 }
3758
3759 /* If the target symbol is global and marked as a function the
3760 relocation applies a function call or a tail call. In this
3761 situation we can veneer out of range branches. The veneers
3762 use IP0 and IP1 hence cannot be used arbitrary out of range
3763 branches that occur within the body of a function. */
3764 if (h && h->type == STT_FUNC)
3765 {
3766 /* Check if a stub has to be inserted because the destination
3767 is too far away. */
3768 if (! aarch64_valid_branch_p (value, place))
3769 {
3770 /* The target is out of reach, so redirect the branch to
3771 the local stub for this function. */
cec5225b
YZ
3772 struct elf_aarch64_stub_hash_entry *stub_entry;
3773 stub_entry = elfNN_aarch64_get_stub_entry (input_section,
a06ea964
NC
3774 sym_sec, h,
3775 rel, globals);
3776 if (stub_entry != NULL)
3777 value = (stub_entry->stub_offset
3778 + stub_entry->stub_sec->output_offset
3779 + stub_entry->stub_sec->output_section->vma);
3780 }
3781 }
3782 }
caed7120
YZ
3783 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3784 signed_addend, weak_undef_p);
a06ea964
NC
3785 break;
3786
a6bb11b2
YZ
3787 case BFD_RELOC_AARCH64_16:
3788#if ARCH_SIZE == 64
3789 case BFD_RELOC_AARCH64_32:
3790#endif
3791 case BFD_RELOC_AARCH64_ADD_LO12:
3792 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
3793 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3794 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
3795 case BFD_RELOC_AARCH64_BRANCH19:
3796 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
3797 case BFD_RELOC_AARCH64_LDST8_LO12:
3798 case BFD_RELOC_AARCH64_LDST16_LO12:
3799 case BFD_RELOC_AARCH64_LDST32_LO12:
3800 case BFD_RELOC_AARCH64_LDST64_LO12:
3801 case BFD_RELOC_AARCH64_LDST128_LO12:
3802 case BFD_RELOC_AARCH64_MOVW_G0_S:
3803 case BFD_RELOC_AARCH64_MOVW_G1_S:
3804 case BFD_RELOC_AARCH64_MOVW_G2_S:
3805 case BFD_RELOC_AARCH64_MOVW_G0:
3806 case BFD_RELOC_AARCH64_MOVW_G0_NC:
3807 case BFD_RELOC_AARCH64_MOVW_G1:
3808 case BFD_RELOC_AARCH64_MOVW_G1_NC:
3809 case BFD_RELOC_AARCH64_MOVW_G2:
3810 case BFD_RELOC_AARCH64_MOVW_G2_NC:
3811 case BFD_RELOC_AARCH64_MOVW_G3:
3812 case BFD_RELOC_AARCH64_16_PCREL:
3813 case BFD_RELOC_AARCH64_32_PCREL:
3814 case BFD_RELOC_AARCH64_64_PCREL:
3815 case BFD_RELOC_AARCH64_TSTBR14:
caed7120
YZ
3816 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3817 signed_addend, weak_undef_p);
a06ea964
NC
3818 break;
3819
a6bb11b2
YZ
3820 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3821 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3822 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3823 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
a06ea964
NC
3824 if (globals->root.sgot == NULL)
3825 BFD_ASSERT (h != NULL);
3826
3827 if (h != NULL)
3828 {
3829 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
3830 output_bfd,
3831 unresolved_reloc_p);
caed7120
YZ
3832 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3833 0, weak_undef_p);
a06ea964
NC
3834 }
3835 break;
3836
a6bb11b2
YZ
3837 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3838 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3839 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3840 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3841 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
a06ea964
NC
3842 if (globals->root.sgot == NULL)
3843 return bfd_reloc_notsupported;
3844
3845 value = (symbol_got_offset (input_bfd, h, r_symndx)
3846 + globals->root.sgot->output_section->vma
f44a1f8e 3847 + globals->root.sgot->output_offset);
a06ea964 3848
caed7120
YZ
3849 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3850 0, weak_undef_p);
a06ea964
NC
3851 *unresolved_reloc_p = FALSE;
3852 break;
3853
a6bb11b2
YZ
3854 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3855 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3856 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3857 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3858 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3859 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3860 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3861 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
caed7120
YZ
3862 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3863 signed_addend - tpoff_base (info),
3864 weak_undef_p);
a06ea964
NC
3865 *unresolved_reloc_p = FALSE;
3866 break;
3867
7bcccb57
MS
3868 case BFD_RELOC_AARCH64_TLSDESC_ADD:
3869 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
a6bb11b2 3870 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
a6bb11b2 3871 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7bcccb57 3872 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 3873 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
3874 if (globals->root.sgot == NULL)
3875 return bfd_reloc_notsupported;
a06ea964
NC
3876 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
3877 + globals->root.sgotplt->output_section->vma
f44a1f8e 3878 + globals->root.sgotplt->output_offset
a06ea964
NC
3879 + globals->sgotplt_jump_table_size);
3880
caed7120
YZ
3881 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3882 0, weak_undef_p);
a06ea964
NC
3883 *unresolved_reloc_p = FALSE;
3884 break;
3885
3886 default:
3887 return bfd_reloc_notsupported;
3888 }
3889
3890 if (saved_addend)
3891 *saved_addend = value;
3892
3893 /* Only apply the final relocation in a sequence. */
3894 if (save_addend)
3895 return bfd_reloc_continue;
3896
caed7120
YZ
3897 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3898 howto, value);
a06ea964
NC
3899}
3900
3901/* Handle TLS relaxations. Relaxing is possible for symbols that use
3902 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
3903 link.
3904
3905 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
3906 is to then call final_link_relocate. Return other values in the
3907 case of error. */
3908
3909static bfd_reloc_status_type
cec5225b 3910elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
a06ea964
NC
3911 bfd *input_bfd, bfd_byte *contents,
3912 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
3913{
3914 bfd_boolean is_local = h == NULL;
cec5225b 3915 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
3916 unsigned long insn;
3917
3918 BFD_ASSERT (globals && input_bfd && contents && rel);
3919
a6bb11b2 3920 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 3921 {
a6bb11b2
YZ
3922 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3923 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
a06ea964
NC
3924 if (is_local)
3925 {
3926 /* GD->LE relaxation:
3927 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
3928 or
3929 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
3930 */
3931 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
3932 return bfd_reloc_continue;
3933 }
3934 else
3935 {
3936 /* GD->IE relaxation:
3937 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
3938 or
3939 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
3940 */
3941 insn = bfd_getl32 (contents + rel->r_offset);
3942 return bfd_reloc_continue;
3943 }
3944
a6bb11b2 3945 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
a06ea964
NC
3946 if (is_local)
3947 {
3948 /* GD->LE relaxation:
3949 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
3950 */
3951 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3952 return bfd_reloc_continue;
3953 }
3954 else
3955 {
3956 /* GD->IE relaxation:
3957 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
3958 */
3959 insn = bfd_getl32 (contents + rel->r_offset);
3960 insn &= 0xfffffff0;
3961 bfd_putl32 (insn, contents + rel->r_offset);
3962 return bfd_reloc_continue;
3963 }
3964
a6bb11b2 3965 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
3966 if (is_local)
3967 {
3968 /* GD->LE relaxation
3969 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
3970 bl __tls_get_addr => mrs x1, tpidr_el0
3971 nop => add x0, x1, x0
3972 */
3973
3974 /* First kill the tls_get_addr reloc on the bl instruction. */
3975 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
cec5225b 3976 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964
NC
3977
3978 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3979 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
3980 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
3981 return bfd_reloc_continue;
3982 }
3983 else
3984 {
3985 /* GD->IE relaxation
3986 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
3987 BL __tls_get_addr => mrs x1, tpidr_el0
3988 R_AARCH64_CALL26
3989 NOP => add x0, x1, x0
3990 */
3991
a6bb11b2 3992 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
a06ea964
NC
3993
3994 /* Remove the relocation on the BL instruction. */
cec5225b 3995 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964
NC
3996
3997 bfd_putl32 (0xf9400000, contents + rel->r_offset);
3998
3999 /* We choose to fixup the BL and NOP instructions using the
4000 offset from the second relocation to allow flexibility in
4001 scheduling instructions between the ADD and BL. */
4002 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
4003 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
4004 return bfd_reloc_continue;
4005 }
4006
a6bb11b2
YZ
4007 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4008 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964
NC
4009 /* GD->IE/LE relaxation:
4010 add x0, x0, #:tlsdesc_lo12:var => nop
4011 blr xd => nop
4012 */
4013 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
4014 return bfd_reloc_ok;
4015
a6bb11b2 4016 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a06ea964
NC
4017 /* IE->LE relaxation:
4018 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
4019 */
4020 if (is_local)
4021 {
4022 insn = bfd_getl32 (contents + rel->r_offset);
4023 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
4024 }
4025 return bfd_reloc_continue;
4026
a6bb11b2 4027 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
a06ea964
NC
4028 /* IE->LE relaxation:
4029 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
4030 */
4031 if (is_local)
4032 {
4033 insn = bfd_getl32 (contents + rel->r_offset);
4034 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
4035 }
4036 return bfd_reloc_continue;
4037
4038 default:
4039 return bfd_reloc_continue;
4040 }
4041
4042 return bfd_reloc_ok;
4043}
4044
4045/* Relocate an AArch64 ELF section. */
4046
4047static bfd_boolean
cec5225b 4048elfNN_aarch64_relocate_section (bfd *output_bfd,
a06ea964
NC
4049 struct bfd_link_info *info,
4050 bfd *input_bfd,
4051 asection *input_section,
4052 bfd_byte *contents,
4053 Elf_Internal_Rela *relocs,
4054 Elf_Internal_Sym *local_syms,
4055 asection **local_sections)
4056{
4057 Elf_Internal_Shdr *symtab_hdr;
4058 struct elf_link_hash_entry **sym_hashes;
4059 Elf_Internal_Rela *rel;
4060 Elf_Internal_Rela *relend;
4061 const char *name;
cec5225b 4062 struct elf_aarch64_link_hash_table *globals;
a06ea964
NC
4063 bfd_boolean save_addend = FALSE;
4064 bfd_vma addend = 0;
4065
cec5225b 4066 globals = elf_aarch64_hash_table (info);
a06ea964
NC
4067
4068 symtab_hdr = &elf_symtab_hdr (input_bfd);
4069 sym_hashes = elf_sym_hashes (input_bfd);
4070
4071 rel = relocs;
4072 relend = relocs + input_section->reloc_count;
4073 for (; rel < relend; rel++)
4074 {
4075 unsigned int r_type;
a6bb11b2
YZ
4076 bfd_reloc_code_real_type bfd_r_type;
4077 bfd_reloc_code_real_type relaxed_bfd_r_type;
a06ea964
NC
4078 reloc_howto_type *howto;
4079 unsigned long r_symndx;
4080 Elf_Internal_Sym *sym;
4081 asection *sec;
4082 struct elf_link_hash_entry *h;
4083 bfd_vma relocation;
4084 bfd_reloc_status_type r;
4085 arelent bfd_reloc;
4086 char sym_type;
4087 bfd_boolean unresolved_reloc = FALSE;
4088 char *error_message = NULL;
4089
cec5225b
YZ
4090 r_symndx = ELFNN_R_SYM (rel->r_info);
4091 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964 4092
cec5225b 4093 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
4094 howto = bfd_reloc.howto;
4095
7fcfd62d
NC
4096 if (howto == NULL)
4097 {
4098 (*_bfd_error_handler)
4099 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
4100 input_bfd, input_section, r_type);
4101 return FALSE;
4102 }
a6bb11b2 4103 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
7fcfd62d 4104
a06ea964
NC
4105 h = NULL;
4106 sym = NULL;
4107 sec = NULL;
4108
4109 if (r_symndx < symtab_hdr->sh_info)
4110 {
4111 sym = local_syms + r_symndx;
cec5225b 4112 sym_type = ELFNN_ST_TYPE (sym->st_info);
a06ea964
NC
4113 sec = local_sections[r_symndx];
4114
4115 /* An object file might have a reference to a local
4116 undefined symbol. This is a daft object file, but we
4117 should at least do something about it. */
4118 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
4119 && bfd_is_und_section (sec)
4120 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
4121 {
4122 if (!info->callbacks->undefined_symbol
4123 (info, bfd_elf_string_from_elf_section
4124 (input_bfd, symtab_hdr->sh_link, sym->st_name),
4125 input_bfd, input_section, rel->r_offset, TRUE))
4126 return FALSE;
4127 }
4128
a06ea964 4129 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1419bbe5
WN
4130
4131 /* Relocate against local STT_GNU_IFUNC symbol. */
4132 if (!info->relocatable
4133 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4134 {
4135 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
4136 rel, FALSE);
4137 if (h == NULL)
4138 abort ();
4139
4140 /* Set STT_GNU_IFUNC symbol value. */
4141 h->root.u.def.value = sym->st_value;
4142 h->root.u.def.section = sec;
4143 }
a06ea964
NC
4144 }
4145 else
4146 {
62d887d4 4147 bfd_boolean warned, ignored;
a06ea964
NC
4148
4149 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4150 r_symndx, symtab_hdr, sym_hashes,
4151 h, sec, relocation,
62d887d4 4152 unresolved_reloc, warned, ignored);
a06ea964
NC
4153
4154 sym_type = h->type;
4155 }
4156
4157 if (sec != NULL && discarded_section (sec))
4158 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4159 rel, 1, relend, howto, 0, contents);
4160
4161 if (info->relocatable)
4162 {
4163 /* This is a relocatable link. We don't have to change
4164 anything, unless the reloc is against a section symbol,
4165 in which case we have to adjust according to where the
4166 section symbol winds up in the output section. */
4167 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4168 rel->r_addend += sec->output_offset;
4169 continue;
4170 }
4171
4172 if (h != NULL)
4173 name = h->root.root.string;
4174 else
4175 {
4176 name = (bfd_elf_string_from_elf_section
4177 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4178 if (name == NULL || *name == '\0')
4179 name = bfd_section_name (input_bfd, sec);
4180 }
4181
4182 if (r_symndx != 0
4183 && r_type != R_AARCH64_NONE
4184 && r_type != R_AARCH64_NULL
4185 && (h == NULL
4186 || h->root.type == bfd_link_hash_defined
4187 || h->root.type == bfd_link_hash_defweak)
a6bb11b2 4188 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
a06ea964
NC
4189 {
4190 (*_bfd_error_handler)
4191 ((sym_type == STT_TLS
4192 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4193 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4194 input_bfd,
4195 input_section, (long) rel->r_offset, howto->name, name);
4196 }
4197
a06ea964
NC
4198 /* We relax only if we can see that there can be a valid transition
4199 from a reloc type to another.
cec5225b 4200 We call elfNN_aarch64_final_link_relocate unless we're completely
a06ea964
NC
4201 done, i.e., the relaxation produced the final output we want. */
4202
a6bb11b2
YZ
4203 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
4204 h, r_symndx);
4205 if (relaxed_bfd_r_type != bfd_r_type)
a06ea964 4206 {
a6bb11b2
YZ
4207 bfd_r_type = relaxed_bfd_r_type;
4208 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4209 BFD_ASSERT (howto != NULL);
4210 r_type = howto->type;
cec5225b 4211 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
a06ea964
NC
4212 unresolved_reloc = 0;
4213 }
4214 else
4215 r = bfd_reloc_continue;
4216
4217 /* There may be multiple consecutive relocations for the
4218 same offset. In that case we are supposed to treat the
4219 output of each relocation as the addend for the next. */
4220 if (rel + 1 < relend
4221 && rel->r_offset == rel[1].r_offset
cec5225b
YZ
4222 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
4223 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
a06ea964
NC
4224 save_addend = TRUE;
4225 else
4226 save_addend = FALSE;
4227
4228 if (r == bfd_reloc_continue)
cec5225b 4229 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
a06ea964
NC
4230 input_section, contents, rel,
4231 relocation, info, sec,
4232 h, &unresolved_reloc,
1419bbe5 4233 save_addend, &addend, sym);
a06ea964 4234
a6bb11b2 4235 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 4236 {
a6bb11b2
YZ
4237 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4238 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
4239 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4240 {
4241 bfd_boolean need_relocs = FALSE;
4242 bfd_byte *loc;
4243 int indx;
4244 bfd_vma off;
4245
4246 off = symbol_got_offset (input_bfd, h, r_symndx);
4247 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4248
4249 need_relocs =
4250 (info->shared || indx != 0) &&
4251 (h == NULL
4252 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4253 || h->root.type != bfd_link_hash_undefweak);
4254
4255 BFD_ASSERT (globals->root.srelgot != NULL);
4256
4257 if (need_relocs)
4258 {
4259 Elf_Internal_Rela rela;
a6bb11b2 4260 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
a06ea964
NC
4261 rela.r_addend = 0;
4262 rela.r_offset = globals->root.sgot->output_section->vma +
4263 globals->root.sgot->output_offset + off;
4264
4265
4266 loc = globals->root.srelgot->contents;
4267 loc += globals->root.srelgot->reloc_count++
4268 * RELOC_SIZE (htab);
cec5225b 4269 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
4270
4271 if (indx == 0)
4272 {
cec5225b 4273 bfd_put_NN (output_bfd,
a06ea964
NC
4274 relocation - dtpoff_base (info),
4275 globals->root.sgot->contents + off
4276 + GOT_ENTRY_SIZE);
4277 }
4278 else
4279 {
4280 /* This TLS symbol is global. We emit a
4281 relocation to fixup the tls offset at load
4282 time. */
4283 rela.r_info =
a6bb11b2 4284 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
a06ea964
NC
4285 rela.r_addend = 0;
4286 rela.r_offset =
4287 (globals->root.sgot->output_section->vma
4288 + globals->root.sgot->output_offset + off
4289 + GOT_ENTRY_SIZE);
4290
4291 loc = globals->root.srelgot->contents;
4292 loc += globals->root.srelgot->reloc_count++
4293 * RELOC_SIZE (globals);
cec5225b
YZ
4294 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4295 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4296 globals->root.sgot->contents + off
4297 + GOT_ENTRY_SIZE);
4298 }
4299 }
4300 else
4301 {
cec5225b 4302 bfd_put_NN (output_bfd, (bfd_vma) 1,
a06ea964 4303 globals->root.sgot->contents + off);
cec5225b 4304 bfd_put_NN (output_bfd,
a06ea964
NC
4305 relocation - dtpoff_base (info),
4306 globals->root.sgot->contents + off
4307 + GOT_ENTRY_SIZE);
4308 }
4309
4310 symbol_got_offset_mark (input_bfd, h, r_symndx);
4311 }
4312 break;
4313
a6bb11b2
YZ
4314 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4315 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
a06ea964
NC
4316 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4317 {
4318 bfd_boolean need_relocs = FALSE;
4319 bfd_byte *loc;
4320 int indx;
4321 bfd_vma off;
4322
4323 off = symbol_got_offset (input_bfd, h, r_symndx);
4324
4325 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4326
4327 need_relocs =
4328 (info->shared || indx != 0) &&
4329 (h == NULL
4330 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4331 || h->root.type != bfd_link_hash_undefweak);
4332
4333 BFD_ASSERT (globals->root.srelgot != NULL);
4334
4335 if (need_relocs)
4336 {
4337 Elf_Internal_Rela rela;
4338
4339 if (indx == 0)
4340 rela.r_addend = relocation - dtpoff_base (info);
4341 else
4342 rela.r_addend = 0;
4343
a6bb11b2 4344 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
a06ea964
NC
4345 rela.r_offset = globals->root.sgot->output_section->vma +
4346 globals->root.sgot->output_offset + off;
4347
4348 loc = globals->root.srelgot->contents;
4349 loc += globals->root.srelgot->reloc_count++
4350 * RELOC_SIZE (htab);
4351
cec5225b 4352 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 4353
cec5225b 4354 bfd_put_NN (output_bfd, rela.r_addend,
a06ea964
NC
4355 globals->root.sgot->contents + off);
4356 }
4357 else
cec5225b 4358 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
a06ea964
NC
4359 globals->root.sgot->contents + off);
4360
4361 symbol_got_offset_mark (input_bfd, h, r_symndx);
4362 }
4363 break;
4364
a6bb11b2
YZ
4365 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
4366 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
4367 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4368 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4369 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4370 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4371 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4372 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
a06ea964
NC
4373 break;
4374
7bcccb57 4375 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
a6bb11b2
YZ
4376 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4377 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
a06ea964
NC
4378 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
4379 {
4380 bfd_boolean need_relocs = FALSE;
4381 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
4382 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
4383
4384 need_relocs = (h == NULL
4385 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4386 || h->root.type != bfd_link_hash_undefweak);
4387
4388 BFD_ASSERT (globals->root.srelgot != NULL);
4389 BFD_ASSERT (globals->root.sgot != NULL);
4390
4391 if (need_relocs)
4392 {
4393 bfd_byte *loc;
4394 Elf_Internal_Rela rela;
a6bb11b2
YZ
4395 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
4396
a06ea964
NC
4397 rela.r_addend = 0;
4398 rela.r_offset = (globals->root.sgotplt->output_section->vma
4399 + globals->root.sgotplt->output_offset
4400 + off + globals->sgotplt_jump_table_size);
4401
4402 if (indx == 0)
4403 rela.r_addend = relocation - dtpoff_base (info);
4404
4405 /* Allocate the next available slot in the PLT reloc
4406 section to hold our R_AARCH64_TLSDESC, the next
4407 available slot is determined from reloc_count,
4408 which we step. But note, reloc_count was
4409 artifically moved down while allocating slots for
4410 real PLT relocs such that all of the PLT relocs
4411 will fit above the initial reloc_count and the
4412 extra stuff will fit below. */
4413 loc = globals->root.srelplt->contents;
4414 loc += globals->root.srelplt->reloc_count++
4415 * RELOC_SIZE (globals);
4416
cec5225b 4417 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 4418
cec5225b 4419 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4420 globals->root.sgotplt->contents + off +
4421 globals->sgotplt_jump_table_size);
cec5225b 4422 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4423 globals->root.sgotplt->contents + off +
4424 globals->sgotplt_jump_table_size +
4425 GOT_ENTRY_SIZE);
4426 }
4427
4428 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
4429 }
4430 break;
a6bb11b2
YZ
4431 default:
4432 break;
a06ea964
NC
4433 }
4434
4435 if (!save_addend)
4436 addend = 0;
4437
4438
4439 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4440 because such sections are not SEC_ALLOC and thus ld.so will
4441 not process them. */
4442 if (unresolved_reloc
4443 && !((input_section->flags & SEC_DEBUGGING) != 0
4444 && h->def_dynamic)
4445 && _bfd_elf_section_offset (output_bfd, info, input_section,
4446 +rel->r_offset) != (bfd_vma) - 1)
4447 {
4448 (*_bfd_error_handler)
4449 (_
4450 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4451 input_bfd, input_section, (long) rel->r_offset, howto->name,
4452 h->root.root.string);
4453 return FALSE;
4454 }
4455
4456 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
4457 {
4458 switch (r)
4459 {
4460 case bfd_reloc_overflow:
4461 /* If the overflowing reloc was to an undefined symbol,
4462 we have already printed one error message and there
4463 is no point complaining again. */
4464 if ((!h ||
4465 h->root.type != bfd_link_hash_undefined)
4466 && (!((*info->callbacks->reloc_overflow)
4467 (info, (h ? &h->root : NULL), name, howto->name,
4468 (bfd_vma) 0, input_bfd, input_section,
4469 rel->r_offset))))
4470 return FALSE;
4471 break;
4472
4473 case bfd_reloc_undefined:
4474 if (!((*info->callbacks->undefined_symbol)
4475 (info, name, input_bfd, input_section,
4476 rel->r_offset, TRUE)))
4477 return FALSE;
4478 break;
4479
4480 case bfd_reloc_outofrange:
4481 error_message = _("out of range");
4482 goto common_error;
4483
4484 case bfd_reloc_notsupported:
4485 error_message = _("unsupported relocation");
4486 goto common_error;
4487
4488 case bfd_reloc_dangerous:
4489 /* error_message should already be set. */
4490 goto common_error;
4491
4492 default:
4493 error_message = _("unknown error");
4494 /* Fall through. */
4495
4496 common_error:
4497 BFD_ASSERT (error_message != NULL);
4498 if (!((*info->callbacks->reloc_dangerous)
4499 (info, error_message, input_bfd, input_section,
4500 rel->r_offset)))
4501 return FALSE;
4502 break;
4503 }
4504 }
4505 }
4506
4507 return TRUE;
4508}
4509
4510/* Set the right machine number. */
4511
4512static bfd_boolean
cec5225b 4513elfNN_aarch64_object_p (bfd *abfd)
a06ea964 4514{
cec5225b
YZ
4515#if ARCH_SIZE == 32
4516 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
4517#else
a06ea964 4518 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
cec5225b 4519#endif
a06ea964
NC
4520 return TRUE;
4521}
4522
4523/* Function to keep AArch64 specific flags in the ELF header. */
4524
4525static bfd_boolean
cec5225b 4526elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
a06ea964
NC
4527{
4528 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
4529 {
4530 }
4531 else
4532 {
4533 elf_elfheader (abfd)->e_flags = flags;
4534 elf_flags_init (abfd) = TRUE;
4535 }
4536
4537 return TRUE;
4538}
4539
a06ea964
NC
4540/* Merge backend specific data from an object file to the output
4541 object file when linking. */
4542
4543static bfd_boolean
cec5225b 4544elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
a06ea964
NC
4545{
4546 flagword out_flags;
4547 flagword in_flags;
4548 bfd_boolean flags_compatible = TRUE;
4549 asection *sec;
4550
4551 /* Check if we have the same endianess. */
4552 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
4553 return FALSE;
4554
4555 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
4556 return TRUE;
4557
4558 /* The input BFD must have had its flags initialised. */
4559 /* The following seems bogus to me -- The flags are initialized in
4560 the assembler but I don't think an elf_flags_init field is
4561 written into the object. */
4562 /* BFD_ASSERT (elf_flags_init (ibfd)); */
4563
4564 in_flags = elf_elfheader (ibfd)->e_flags;
4565 out_flags = elf_elfheader (obfd)->e_flags;
4566
4567 if (!elf_flags_init (obfd))
4568 {
4569 /* If the input is the default architecture and had the default
4570 flags then do not bother setting the flags for the output
4571 architecture, instead allow future merges to do this. If no
4572 future merges ever set these flags then they will retain their
4573 uninitialised values, which surprise surprise, correspond
4574 to the default values. */
4575 if (bfd_get_arch_info (ibfd)->the_default
4576 && elf_elfheader (ibfd)->e_flags == 0)
4577 return TRUE;
4578
4579 elf_flags_init (obfd) = TRUE;
4580 elf_elfheader (obfd)->e_flags = in_flags;
4581
4582 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4583 && bfd_get_arch_info (obfd)->the_default)
4584 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4585 bfd_get_mach (ibfd));
4586
4587 return TRUE;
4588 }
4589
4590 /* Identical flags must be compatible. */
4591 if (in_flags == out_flags)
4592 return TRUE;
4593
4594 /* Check to see if the input BFD actually contains any sections. If
4595 not, its flags may not have been initialised either, but it
4596 cannot actually cause any incompatiblity. Do not short-circuit
4597 dynamic objects; their section list may be emptied by
4598 elf_link_add_object_symbols.
4599
4600 Also check to see if there are no code sections in the input.
4601 In this case there is no need to check for code specific flags.
4602 XXX - do we need to worry about floating-point format compatability
4603 in data sections ? */
4604 if (!(ibfd->flags & DYNAMIC))
4605 {
4606 bfd_boolean null_input_bfd = TRUE;
4607 bfd_boolean only_data_sections = TRUE;
4608
4609 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
4610 {
4611 if ((bfd_get_section_flags (ibfd, sec)
4612 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4613 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4614 only_data_sections = FALSE;
4615
4616 null_input_bfd = FALSE;
4617 break;
4618 }
4619
4620 if (null_input_bfd || only_data_sections)
4621 return TRUE;
4622 }
4623
4624 return flags_compatible;
4625}
4626
4627/* Display the flags field. */
4628
4629static bfd_boolean
cec5225b 4630elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
a06ea964
NC
4631{
4632 FILE *file = (FILE *) ptr;
4633 unsigned long flags;
4634
4635 BFD_ASSERT (abfd != NULL && ptr != NULL);
4636
4637 /* Print normal ELF private data. */
4638 _bfd_elf_print_private_bfd_data (abfd, ptr);
4639
4640 flags = elf_elfheader (abfd)->e_flags;
4641 /* Ignore init flag - it may not be set, despite the flags field
4642 containing valid data. */
4643
4644 /* xgettext:c-format */
4645 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
4646
4647 if (flags)
4648 fprintf (file, _("<Unrecognised flag bits set>"));
4649
4650 fputc ('\n', file);
4651
4652 return TRUE;
4653}
4654
4655/* Update the got entry reference counts for the section being removed. */
4656
4657static bfd_boolean
cec5225b 4658elfNN_aarch64_gc_sweep_hook (bfd *abfd,
cb8af559
NC
4659 struct bfd_link_info *info,
4660 asection *sec,
4661 const Elf_Internal_Rela * relocs)
a06ea964 4662{
cec5225b 4663 struct elf_aarch64_link_hash_table *htab;
59c108f7
NC
4664 Elf_Internal_Shdr *symtab_hdr;
4665 struct elf_link_hash_entry **sym_hashes;
cb8af559 4666 struct elf_aarch64_local_symbol *locals;
59c108f7
NC
4667 const Elf_Internal_Rela *rel, *relend;
4668
4669 if (info->relocatable)
4670 return TRUE;
4671
cec5225b 4672 htab = elf_aarch64_hash_table (info);
59c108f7
NC
4673
4674 if (htab == NULL)
4675 return FALSE;
4676
4677 elf_section_data (sec)->local_dynrel = NULL;
4678
4679 symtab_hdr = &elf_symtab_hdr (abfd);
4680 sym_hashes = elf_sym_hashes (abfd);
4681
cec5225b 4682 locals = elf_aarch64_locals (abfd);
59c108f7
NC
4683
4684 relend = relocs + sec->reloc_count;
4685 for (rel = relocs; rel < relend; rel++)
4686 {
4687 unsigned long r_symndx;
4688 unsigned int r_type;
4689 struct elf_link_hash_entry *h = NULL;
4690
cec5225b 4691 r_symndx = ELFNN_R_SYM (rel->r_info);
8847944f 4692
59c108f7
NC
4693 if (r_symndx >= symtab_hdr->sh_info)
4694 {
8847944f 4695
59c108f7
NC
4696 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4697 while (h->root.type == bfd_link_hash_indirect
4698 || h->root.type == bfd_link_hash_warning)
4699 h = (struct elf_link_hash_entry *) h->root.u.i.link;
59c108f7
NC
4700 }
4701 else
4702 {
4703 Elf_Internal_Sym *isym;
4704
8847944f 4705 /* A local symbol. */
59c108f7
NC
4706 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4707 abfd, r_symndx);
1419bbe5
WN
4708
4709 /* Check relocation against local STT_GNU_IFUNC symbol. */
4710 if (isym != NULL
4711 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4712 {
4713 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
4714 if (h == NULL)
4715 abort ();
4716 }
4717 }
4718
4719 if (h)
4720 {
4721 struct elf_aarch64_link_hash_entry *eh;
4722 struct elf_dyn_relocs **pp;
4723 struct elf_dyn_relocs *p;
4724
4725 eh = (struct elf_aarch64_link_hash_entry *) h;
4726
4727 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4728 if (p->sec == sec)
4729 {
4730 /* Everything must go for SEC. */
4731 *pp = p->next;
4732 break;
4733 }
59c108f7
NC
4734 }
4735
cec5225b 4736 r_type = ELFNN_R_TYPE (rel->r_info);
a6bb11b2 4737 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
59c108f7 4738 {
a6bb11b2 4739 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57
MS
4740 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4741 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4742 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4743 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4744 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4745 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4746 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 4747 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 4748 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a6bb11b2 4749 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 4750 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 4751 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
a6bb11b2 4752 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7bcccb57 4753 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a6bb11b2 4754 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a6bb11b2
YZ
4755 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4756 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7bcccb57
MS
4757 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4758 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4759 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a6bb11b2 4760 if (h != NULL)
59c108f7
NC
4761 {
4762 if (h->got.refcount > 0)
4763 h->got.refcount -= 1;
1419bbe5
WN
4764
4765 if (h->type == STT_GNU_IFUNC)
4766 {
4767 if (h->plt.refcount > 0)
4768 h->plt.refcount -= 1;
4769 }
59c108f7 4770 }
cb8af559 4771 else if (locals != NULL)
59c108f7 4772 {
cb8af559
NC
4773 if (locals[r_symndx].got_refcount > 0)
4774 locals[r_symndx].got_refcount -= 1;
59c108f7
NC
4775 }
4776 break;
4777
a6bb11b2
YZ
4778 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
4779 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
4780 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
59c108f7
NC
4781 if (h != NULL && info->executable)
4782 {
4783 if (h->plt.refcount > 0)
4784 h->plt.refcount -= 1;
4785 }
4786 break;
4787
a6bb11b2
YZ
4788 case BFD_RELOC_AARCH64_CALL26:
4789 case BFD_RELOC_AARCH64_JUMP26:
4790 /* If this is a local symbol then we resolve it
4791 directly without creating a PLT entry. */
59c108f7
NC
4792 if (h == NULL)
4793 continue;
4794
4795 if (h->plt.refcount > 0)
4796 h->plt.refcount -= 1;
4797 break;
4798
a6bb11b2 4799 case BFD_RELOC_AARCH64_NN:
8847944f 4800 if (h != NULL && info->executable)
59c108f7
NC
4801 {
4802 if (h->plt.refcount > 0)
4803 h->plt.refcount -= 1;
4804 }
4805 break;
cec5225b 4806
59c108f7
NC
4807 default:
4808 break;
4809 }
4810 }
4811
a06ea964
NC
4812 return TRUE;
4813}
4814
4815/* Adjust a symbol defined by a dynamic object and referenced by a
4816 regular object. The current definition is in some section of the
4817 dynamic object, but we're not including those sections. We have to
4818 change the definition to something the rest of the link can
4819 understand. */
4820
4821static bfd_boolean
cec5225b 4822elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
a06ea964
NC
4823 struct elf_link_hash_entry *h)
4824{
cec5225b 4825 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
4826 asection *s;
4827
4828 /* If this is a function, put it in the procedure linkage table. We
4829 will fill in the contents of the procedure linkage table later,
4830 when we know the address of the .got section. */
1419bbe5 4831 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
a06ea964
NC
4832 {
4833 if (h->plt.refcount <= 0
1419bbe5
WN
4834 || (h->type != STT_GNU_IFUNC
4835 && (SYMBOL_CALLS_LOCAL (info, h)
4836 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
4837 && h->root.type == bfd_link_hash_undefweak))))
a06ea964
NC
4838 {
4839 /* This case can occur if we saw a CALL26 reloc in
4840 an input file, but the symbol wasn't referred to
4841 by a dynamic object or all references were
4842 garbage collected. In which case we can end up
4843 resolving. */
4844 h->plt.offset = (bfd_vma) - 1;
4845 h->needs_plt = 0;
4846 }
4847
4848 return TRUE;
4849 }
4850 else
4851 /* It's possible that we incorrectly decided a .plt reloc was
4852 needed for an R_X86_64_PC32 reloc to a non-function sym in
4853 check_relocs. We can't decide accurately between function and
4854 non-function syms in check-relocs; Objects loaded later in
4855 the link may change h->type. So fix it now. */
4856 h->plt.offset = (bfd_vma) - 1;
4857
4858
4859 /* If this is a weak symbol, and there is a real definition, the
4860 processor independent code will have arranged for us to see the
4861 real definition first, and we can just use the same value. */
4862 if (h->u.weakdef != NULL)
4863 {
4864 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
4865 || h->u.weakdef->root.type == bfd_link_hash_defweak);
4866 h->root.u.def.section = h->u.weakdef->root.u.def.section;
4867 h->root.u.def.value = h->u.weakdef->root.u.def.value;
4868 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
4869 h->non_got_ref = h->u.weakdef->non_got_ref;
4870 return TRUE;
4871 }
4872
4873 /* If we are creating a shared library, we must presume that the
4874 only references to the symbol are via the global offset table.
4875 For such cases we need not do anything here; the relocations will
4876 be handled correctly by relocate_section. */
4877 if (info->shared)
4878 return TRUE;
4879
4880 /* If there are no references to this symbol that do not use the
4881 GOT, we don't need to generate a copy reloc. */
4882 if (!h->non_got_ref)
4883 return TRUE;
4884
4885 /* If -z nocopyreloc was given, we won't generate them either. */
4886 if (info->nocopyreloc)
4887 {
4888 h->non_got_ref = 0;
4889 return TRUE;
4890 }
4891
4892 /* We must allocate the symbol in our .dynbss section, which will
4893 become part of the .bss section of the executable. There will be
4894 an entry for this symbol in the .dynsym section. The dynamic
4895 object will contain position independent code, so all references
4896 from the dynamic object to this symbol will go through the global
4897 offset table. The dynamic linker will use the .dynsym entry to
4898 determine the address it must put in the global offset table, so
4899 both the dynamic object and the regular object will refer to the
4900 same memory location for the variable. */
4901
cec5225b 4902 htab = elf_aarch64_hash_table (info);
a06ea964
NC
4903
4904 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
4905 to copy the initial value out of the dynamic object and into the
4906 runtime process image. */
4907 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
4908 {
4909 htab->srelbss->size += RELOC_SIZE (htab);
4910 h->needs_copy = 1;
4911 }
4912
4913 s = htab->sdynbss;
4914
4915 return _bfd_elf_adjust_dynamic_copy (h, s);
4916
4917}
4918
4919static bfd_boolean
cec5225b 4920elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
a06ea964
NC
4921{
4922 struct elf_aarch64_local_symbol *locals;
cec5225b 4923 locals = elf_aarch64_locals (abfd);
a06ea964
NC
4924 if (locals == NULL)
4925 {
4926 locals = (struct elf_aarch64_local_symbol *)
4927 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
4928 if (locals == NULL)
4929 return FALSE;
cec5225b 4930 elf_aarch64_locals (abfd) = locals;
a06ea964
NC
4931 }
4932 return TRUE;
4933}
4934
cc0efaa8
MS
4935/* Create the .got section to hold the global offset table. */
4936
4937static bfd_boolean
4938aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4939{
4940 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4941 flagword flags;
4942 asection *s;
4943 struct elf_link_hash_entry *h;
4944 struct elf_link_hash_table *htab = elf_hash_table (info);
4945
4946 /* This function may be called more than once. */
4947 s = bfd_get_linker_section (abfd, ".got");
4948 if (s != NULL)
4949 return TRUE;
4950
4951 flags = bed->dynamic_sec_flags;
4952
4953 s = bfd_make_section_anyway_with_flags (abfd,
4954 (bed->rela_plts_and_copies_p
4955 ? ".rela.got" : ".rel.got"),
4956 (bed->dynamic_sec_flags
4957 | SEC_READONLY));
4958 if (s == NULL
4959 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4960 return FALSE;
4961 htab->srelgot = s;
4962
4963 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4964 if (s == NULL
4965 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4966 return FALSE;
4967 htab->sgot = s;
4968 htab->sgot->size += GOT_ENTRY_SIZE;
4969
4970 if (bed->want_got_sym)
4971 {
4972 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
4973 (or .got.plt) section. We don't do this in the linker script
4974 because we don't want to define the symbol if we are not creating
4975 a global offset table. */
4976 h = _bfd_elf_define_linkage_sym (abfd, info, s,
4977 "_GLOBAL_OFFSET_TABLE_");
4978 elf_hash_table (info)->hgot = h;
4979 if (h == NULL)
4980 return FALSE;
4981 }
4982
4983 if (bed->want_got_plt)
4984 {
4985 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
4986 if (s == NULL
4987 || !bfd_set_section_alignment (abfd, s,
4988 bed->s->log_file_align))
4989 return FALSE;
4990 htab->sgotplt = s;
4991 }
4992
4993 /* The first bit of the global offset table is the header. */
4994 s->size += bed->got_header_size;
4995
4996 return TRUE;
4997}
4998
a06ea964
NC
4999/* Look through the relocs for a section during the first phase. */
5000
5001static bfd_boolean
cec5225b 5002elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
a06ea964
NC
5003 asection *sec, const Elf_Internal_Rela *relocs)
5004{
5005 Elf_Internal_Shdr *symtab_hdr;
5006 struct elf_link_hash_entry **sym_hashes;
5007 const Elf_Internal_Rela *rel;
5008 const Elf_Internal_Rela *rel_end;
5009 asection *sreloc;
5010
cec5225b 5011 struct elf_aarch64_link_hash_table *htab;
a06ea964 5012
a06ea964
NC
5013 if (info->relocatable)
5014 return TRUE;
5015
5016 BFD_ASSERT (is_aarch64_elf (abfd));
5017
cec5225b 5018 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5019 sreloc = NULL;
5020
5021 symtab_hdr = &elf_symtab_hdr (abfd);
5022 sym_hashes = elf_sym_hashes (abfd);
a06ea964
NC
5023
5024 rel_end = relocs + sec->reloc_count;
5025 for (rel = relocs; rel < rel_end; rel++)
5026 {
5027 struct elf_link_hash_entry *h;
5028 unsigned long r_symndx;
5029 unsigned int r_type;
a6bb11b2 5030 bfd_reloc_code_real_type bfd_r_type;
1419bbe5 5031 Elf_Internal_Sym *isym;
a06ea964 5032
cec5225b
YZ
5033 r_symndx = ELFNN_R_SYM (rel->r_info);
5034 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
5035
5036 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
5037 {
5038 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
5039 r_symndx);
5040 return FALSE;
5041 }
5042
ed5acf27 5043 if (r_symndx < symtab_hdr->sh_info)
1419bbe5
WN
5044 {
5045 /* A local symbol. */
5046 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5047 abfd, r_symndx);
5048 if (isym == NULL)
5049 return FALSE;
5050
5051 /* Check relocation against local STT_GNU_IFUNC symbol. */
5052 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5053 {
5054 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
5055 TRUE);
5056 if (h == NULL)
5057 return FALSE;
5058
5059 /* Fake a STT_GNU_IFUNC symbol. */
5060 h->type = STT_GNU_IFUNC;
5061 h->def_regular = 1;
5062 h->ref_regular = 1;
5063 h->forced_local = 1;
5064 h->root.type = bfd_link_hash_defined;
5065 }
5066 else
5067 h = NULL;
5068 }
a06ea964
NC
5069 else
5070 {
5071 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5072 while (h->root.type == bfd_link_hash_indirect
5073 || h->root.type == bfd_link_hash_warning)
5074 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
5075
5076 /* PR15323, ref flags aren't set for references in the same
5077 object. */
5078 h->root.non_ir_ref = 1;
a06ea964
NC
5079 }
5080
5081 /* Could be done earlier, if h were already available. */
a6bb11b2 5082 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
a06ea964 5083
1419bbe5
WN
5084 if (h != NULL)
5085 {
5086 /* Create the ifunc sections for static executables. If we
5087 never see an indirect function symbol nor we are building
5088 a static executable, those sections will be empty and
5089 won't appear in output. */
5090 switch (bfd_r_type)
5091 {
5092 default:
5093 break;
5094
5095 case BFD_RELOC_AARCH64_NN:
5096 case BFD_RELOC_AARCH64_CALL26:
5097 case BFD_RELOC_AARCH64_JUMP26:
5098 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5099 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5100 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5101 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5102 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5103 case BFD_RELOC_AARCH64_ADD_LO12:
5104 if (htab->root.dynobj == NULL)
5105 htab->root.dynobj = abfd;
5106 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
5107 return FALSE;
5108 break;
5109 }
5110
5111 /* It is referenced by a non-shared object. */
5112 h->ref_regular = 1;
5113 h->root.non_ir_ref = 1;
5114 }
5115
a6bb11b2 5116 switch (bfd_r_type)
a06ea964 5117 {
a6bb11b2 5118 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
5119
5120 /* We don't need to handle relocs into sections not going into
5121 the "real" output. */
5122 if ((sec->flags & SEC_ALLOC) == 0)
5123 break;
5124
5125 if (h != NULL)
5126 {
5127 if (!info->shared)
5128 h->non_got_ref = 1;
5129
5130 h->plt.refcount += 1;
5131 h->pointer_equality_needed = 1;
5132 }
5133
5134 /* No need to do anything if we're not creating a shared
5135 object. */
5136 if (! info->shared)
5137 break;
5138
5139 {
5140 struct elf_dyn_relocs *p;
5141 struct elf_dyn_relocs **head;
5142
5143 /* We must copy these reloc types into the output file.
5144 Create a reloc section in dynobj and make room for
5145 this reloc. */
5146 if (sreloc == NULL)
5147 {
5148 if (htab->root.dynobj == NULL)
5149 htab->root.dynobj = abfd;
5150
5151 sreloc = _bfd_elf_make_dynamic_reloc_section
0608afa7 5152 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
a06ea964
NC
5153
5154 if (sreloc == NULL)
5155 return FALSE;
5156 }
5157
5158 /* If this is a global symbol, we count the number of
5159 relocations we need for this symbol. */
5160 if (h != NULL)
5161 {
cec5225b
YZ
5162 struct elf_aarch64_link_hash_entry *eh;
5163 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
5164 head = &eh->dyn_relocs;
5165 }
5166 else
5167 {
5168 /* Track dynamic relocs needed for local syms too.
5169 We really need local syms available to do this
5170 easily. Oh well. */
5171
5172 asection *s;
5173 void **vpp;
a06ea964
NC
5174
5175 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5176 abfd, r_symndx);
5177 if (isym == NULL)
5178 return FALSE;
5179
5180 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5181 if (s == NULL)
5182 s = sec;
5183
5184 /* Beware of type punned pointers vs strict aliasing
5185 rules. */
5186 vpp = &(elf_section_data (s)->local_dynrel);
5187 head = (struct elf_dyn_relocs **) vpp;
5188 }
5189
5190 p = *head;
5191 if (p == NULL || p->sec != sec)
5192 {
5193 bfd_size_type amt = sizeof *p;
5194 p = ((struct elf_dyn_relocs *)
5195 bfd_zalloc (htab->root.dynobj, amt));
5196 if (p == NULL)
5197 return FALSE;
5198 p->next = *head;
5199 *head = p;
5200 p->sec = sec;
5201 }
5202
5203 p->count += 1;
5204
5205 }
5206 break;
5207
5208 /* RR: We probably want to keep a consistency check that
5209 there are no dangling GOT_PAGE relocs. */
a6bb11b2 5210 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57
MS
5211 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5212 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5213 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5214 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5215 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5216 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5217 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 5218 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 5219 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a6bb11b2 5220 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 5221 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 5222 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
a6bb11b2 5223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7bcccb57 5224 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a6bb11b2 5225 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a6bb11b2
YZ
5226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7bcccb57
MS
5228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5229 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5230 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
5231 {
5232 unsigned got_type;
5233 unsigned old_got_type;
5234
a6bb11b2 5235 got_type = aarch64_reloc_got_type (bfd_r_type);
a06ea964
NC
5236
5237 if (h)
5238 {
5239 h->got.refcount += 1;
cec5225b 5240 old_got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
5241 }
5242 else
5243 {
5244 struct elf_aarch64_local_symbol *locals;
5245
cec5225b 5246 if (!elfNN_aarch64_allocate_local_symbols
a06ea964
NC
5247 (abfd, symtab_hdr->sh_info))
5248 return FALSE;
5249
cec5225b 5250 locals = elf_aarch64_locals (abfd);
a06ea964
NC
5251 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5252 locals[r_symndx].got_refcount += 1;
5253 old_got_type = locals[r_symndx].got_type;
5254 }
5255
5256 /* If a variable is accessed with both general dynamic TLS
5257 methods, two slots may be created. */
5258 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
5259 got_type |= old_got_type;
5260
5261 /* We will already have issued an error message if there
5262 is a TLS/non-TLS mismatch, based on the symbol type.
5263 So just combine any TLS types needed. */
5264 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
5265 && got_type != GOT_NORMAL)
5266 got_type |= old_got_type;
5267
5268 /* If the symbol is accessed by both IE and GD methods, we
5269 are able to relax. Turn off the GD flag, without
5270 messing up with any other kind of TLS types that may be
5271 involved. */
5272 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
5273 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
5274
5275 if (old_got_type != got_type)
5276 {
5277 if (h != NULL)
cec5225b 5278 elf_aarch64_hash_entry (h)->got_type = got_type;
a06ea964
NC
5279 else
5280 {
5281 struct elf_aarch64_local_symbol *locals;
cec5225b 5282 locals = elf_aarch64_locals (abfd);
a06ea964
NC
5283 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5284 locals[r_symndx].got_type = got_type;
5285 }
5286 }
5287
cc0efaa8
MS
5288 if (htab->root.dynobj == NULL)
5289 htab->root.dynobj = abfd;
5290 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
5291 return FALSE;
a06ea964
NC
5292 break;
5293 }
5294
a6bb11b2
YZ
5295 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5296 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5297 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
5298 if (h != NULL && info->executable)
5299 {
5300 /* If this reloc is in a read-only section, we might
5301 need a copy reloc. We can't check reliably at this
5302 stage whether the section is read-only, as input
5303 sections have not yet been mapped to output sections.
5304 Tentatively set the flag for now, and correct in
5305 adjust_dynamic_symbol. */
5306 h->non_got_ref = 1;
5307 h->plt.refcount += 1;
5308 h->pointer_equality_needed = 1;
5309 }
5310 /* FIXME:: RR need to handle these in shared libraries
5311 and essentially bomb out as these being non-PIC
5312 relocations in shared libraries. */
5313 break;
5314
a6bb11b2
YZ
5315 case BFD_RELOC_AARCH64_CALL26:
5316 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
5317 /* If this is a local symbol then we resolve it
5318 directly without creating a PLT entry. */
5319 if (h == NULL)
5320 continue;
5321
5322 h->needs_plt = 1;
1419bbe5
WN
5323 if (h->plt.refcount <= 0)
5324 h->plt.refcount = 1;
5325 else
5326 h->plt.refcount += 1;
a06ea964 5327 break;
a6bb11b2
YZ
5328
5329 default:
5330 break;
a06ea964
NC
5331 }
5332 }
a6bb11b2 5333
a06ea964
NC
5334 return TRUE;
5335}
5336
5337/* Treat mapping symbols as special target symbols. */
5338
5339static bfd_boolean
cec5225b 5340elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
5341 asymbol *sym)
5342{
5343 return bfd_is_aarch64_special_symbol_name (sym->name,
5344 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
5345}
5346
5347/* This is a copy of elf_find_function () from elf.c except that
5348 AArch64 mapping symbols are ignored when looking for function names. */
5349
5350static bfd_boolean
5351aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
5352 asection *section,
5353 asymbol **symbols,
5354 bfd_vma offset,
5355 const char **filename_ptr,
5356 const char **functionname_ptr)
5357{
5358 const char *filename = NULL;
5359 asymbol *func = NULL;
5360 bfd_vma low_func = 0;
5361 asymbol **p;
5362
5363 for (p = symbols; *p != NULL; p++)
5364 {
5365 elf_symbol_type *q;
5366
5367 q = (elf_symbol_type *) * p;
5368
5369 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5370 {
5371 default:
5372 break;
5373 case STT_FILE:
5374 filename = bfd_asymbol_name (&q->symbol);
5375 break;
5376 case STT_FUNC:
5377 case STT_NOTYPE:
5378 /* Skip mapping symbols. */
5379 if ((q->symbol.flags & BSF_LOCAL)
5380 && (bfd_is_aarch64_special_symbol_name
5381 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
5382 continue;
5383 /* Fall through. */
5384 if (bfd_get_section (&q->symbol) == section
5385 && q->symbol.value >= low_func && q->symbol.value <= offset)
5386 {
5387 func = (asymbol *) q;
5388 low_func = q->symbol.value;
5389 }
5390 break;
5391 }
5392 }
5393
5394 if (func == NULL)
5395 return FALSE;
5396
5397 if (filename_ptr)
5398 *filename_ptr = filename;
5399 if (functionname_ptr)
5400 *functionname_ptr = bfd_asymbol_name (func);
5401
5402 return TRUE;
5403}
5404
5405
5406/* Find the nearest line to a particular section and offset, for error
5407 reporting. This code is a duplicate of the code in elf.c, except
5408 that it uses aarch64_elf_find_function. */
5409
5410static bfd_boolean
cec5225b 5411elfNN_aarch64_find_nearest_line (bfd *abfd,
a06ea964
NC
5412 asection *section,
5413 asymbol **symbols,
5414 bfd_vma offset,
5415 const char **filename_ptr,
5416 const char **functionname_ptr,
5417 unsigned int *line_ptr)
5418{
5419 bfd_boolean found = FALSE;
5420
5421 /* We skip _bfd_dwarf1_find_nearest_line since no known AArch64
5422 toolchain uses it. */
5423
5424 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
5425 section, symbols, offset,
5426 filename_ptr, functionname_ptr,
5427 line_ptr, NULL, 0,
5428 &elf_tdata (abfd)->dwarf2_find_line_info))
5429 {
5430 if (!*functionname_ptr)
5431 aarch64_elf_find_function (abfd, section, symbols, offset,
5432 *filename_ptr ? NULL : filename_ptr,
5433 functionname_ptr);
5434
5435 return TRUE;
5436 }
5437
5438 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
5439 &found, filename_ptr,
5440 functionname_ptr, line_ptr,
5441 &elf_tdata (abfd)->line_info))
5442 return FALSE;
5443
5444 if (found && (*functionname_ptr || *line_ptr))
5445 return TRUE;
5446
5447 if (symbols == NULL)
5448 return FALSE;
5449
5450 if (!aarch64_elf_find_function (abfd, section, symbols, offset,
5451 filename_ptr, functionname_ptr))
5452 return FALSE;
5453
5454 *line_ptr = 0;
5455 return TRUE;
5456}
5457
5458static bfd_boolean
cec5225b 5459elfNN_aarch64_find_inliner_info (bfd *abfd,
a06ea964
NC
5460 const char **filename_ptr,
5461 const char **functionname_ptr,
5462 unsigned int *line_ptr)
5463{
5464 bfd_boolean found;
5465 found = _bfd_dwarf2_find_inliner_info
5466 (abfd, filename_ptr,
5467 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
5468 return found;
5469}
5470
5471
5472static void
cec5225b 5473elfNN_aarch64_post_process_headers (bfd *abfd,
1419bbe5 5474 struct bfd_link_info *link_info)
a06ea964
NC
5475{
5476 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
5477
5478 i_ehdrp = elf_elfheader (abfd);
a06ea964 5479 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
1419bbe5 5480
78245035 5481 _bfd_elf_post_process_headers (abfd, link_info);
a06ea964
NC
5482}
5483
5484static enum elf_reloc_type_class
cec5225b 5485elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7e612e98
AM
5486 const asection *rel_sec ATTRIBUTE_UNUSED,
5487 const Elf_Internal_Rela *rela)
a06ea964 5488{
cec5225b 5489 switch ((int) ELFNN_R_TYPE (rela->r_info))
a06ea964 5490 {
a6bb11b2 5491 case AARCH64_R (RELATIVE):
a06ea964 5492 return reloc_class_relative;
a6bb11b2 5493 case AARCH64_R (JUMP_SLOT):
a06ea964 5494 return reloc_class_plt;
a6bb11b2 5495 case AARCH64_R (COPY):
a06ea964
NC
5496 return reloc_class_copy;
5497 default:
5498 return reloc_class_normal;
5499 }
5500}
5501
5502/* Set the right machine number for an AArch64 ELF file. */
5503
5504static bfd_boolean
cec5225b 5505elfNN_aarch64_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
a06ea964
NC
5506{
5507 if (hdr->sh_type == SHT_NOTE)
5508 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
5509
5510 return TRUE;
5511}
5512
5513/* Handle an AArch64 specific section when reading an object file. This is
5514 called when bfd_section_from_shdr finds a section with an unknown
5515 type. */
5516
5517static bfd_boolean
cec5225b 5518elfNN_aarch64_section_from_shdr (bfd *abfd,
a06ea964
NC
5519 Elf_Internal_Shdr *hdr,
5520 const char *name, int shindex)
5521{
5522 /* There ought to be a place to keep ELF backend specific flags, but
5523 at the moment there isn't one. We just keep track of the
5524 sections by their name, instead. Fortunately, the ABI gives
5525 names for all the AArch64 specific sections, so we will probably get
5526 away with this. */
5527 switch (hdr->sh_type)
5528 {
5529 case SHT_AARCH64_ATTRIBUTES:
5530 break;
5531
5532 default:
5533 return FALSE;
5534 }
5535
5536 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5537 return FALSE;
5538
5539 return TRUE;
5540}
5541
5542/* A structure used to record a list of sections, independently
5543 of the next and prev fields in the asection structure. */
5544typedef struct section_list
5545{
5546 asection *sec;
5547 struct section_list *next;
5548 struct section_list *prev;
5549}
5550section_list;
5551
5552/* Unfortunately we need to keep a list of sections for which
5553 an _aarch64_elf_section_data structure has been allocated. This
cec5225b 5554 is because it is possible for functions like elfNN_aarch64_write_section
a06ea964
NC
5555 to be called on a section which has had an elf_data_structure
5556 allocated for it (and so the used_by_bfd field is valid) but
5557 for which the AArch64 extended version of this structure - the
5558 _aarch64_elf_section_data structure - has not been allocated. */
5559static section_list *sections_with_aarch64_elf_section_data = NULL;
5560
5561static void
5562record_section_with_aarch64_elf_section_data (asection *sec)
5563{
5564 struct section_list *entry;
5565
5566 entry = bfd_malloc (sizeof (*entry));
5567 if (entry == NULL)
5568 return;
5569 entry->sec = sec;
5570 entry->next = sections_with_aarch64_elf_section_data;
5571 entry->prev = NULL;
5572 if (entry->next != NULL)
5573 entry->next->prev = entry;
5574 sections_with_aarch64_elf_section_data = entry;
5575}
5576
5577static struct section_list *
5578find_aarch64_elf_section_entry (asection *sec)
5579{
5580 struct section_list *entry;
5581 static struct section_list *last_entry = NULL;
5582
5583 /* This is a short cut for the typical case where the sections are added
5584 to the sections_with_aarch64_elf_section_data list in forward order and
5585 then looked up here in backwards order. This makes a real difference
5586 to the ld-srec/sec64k.exp linker test. */
5587 entry = sections_with_aarch64_elf_section_data;
5588 if (last_entry != NULL)
5589 {
5590 if (last_entry->sec == sec)
5591 entry = last_entry;
5592 else if (last_entry->next != NULL && last_entry->next->sec == sec)
5593 entry = last_entry->next;
5594 }
5595
5596 for (; entry; entry = entry->next)
5597 if (entry->sec == sec)
5598 break;
5599
5600 if (entry)
5601 /* Record the entry prior to this one - it is the entry we are
5602 most likely to want to locate next time. Also this way if we
5603 have been called from
5604 unrecord_section_with_aarch64_elf_section_data () we will not
5605 be caching a pointer that is about to be freed. */
5606 last_entry = entry->prev;
5607
5608 return entry;
5609}
5610
5611static void
5612unrecord_section_with_aarch64_elf_section_data (asection *sec)
5613{
5614 struct section_list *entry;
5615
5616 entry = find_aarch64_elf_section_entry (sec);
5617
5618 if (entry)
5619 {
5620 if (entry->prev != NULL)
5621 entry->prev->next = entry->next;
5622 if (entry->next != NULL)
5623 entry->next->prev = entry->prev;
5624 if (entry == sections_with_aarch64_elf_section_data)
5625 sections_with_aarch64_elf_section_data = entry->next;
5626 free (entry);
5627 }
5628}
5629
5630
5631typedef struct
5632{
5633 void *finfo;
5634 struct bfd_link_info *info;
5635 asection *sec;
5636 int sec_shndx;
5637 int (*func) (void *, const char *, Elf_Internal_Sym *,
5638 asection *, struct elf_link_hash_entry *);
5639} output_arch_syminfo;
5640
5641enum map_symbol_type
5642{
5643 AARCH64_MAP_INSN,
5644 AARCH64_MAP_DATA
5645};
5646
5647
5648/* Output a single mapping symbol. */
5649
5650static bfd_boolean
cec5225b 5651elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
a06ea964
NC
5652 enum map_symbol_type type, bfd_vma offset)
5653{
5654 static const char *names[2] = { "$x", "$d" };
5655 Elf_Internal_Sym sym;
5656
5657 sym.st_value = (osi->sec->output_section->vma
5658 + osi->sec->output_offset + offset);
5659 sym.st_size = 0;
5660 sym.st_other = 0;
5661 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5662 sym.st_shndx = osi->sec_shndx;
5663 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
5664}
5665
5666
5667
5668/* Output mapping symbols for PLT entries associated with H. */
5669
5670static bfd_boolean
cec5225b 5671elfNN_aarch64_output_plt_map (struct elf_link_hash_entry *h, void *inf)
a06ea964
NC
5672{
5673 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
5674 bfd_vma addr;
5675
5676 if (h->root.type == bfd_link_hash_indirect)
5677 return TRUE;
5678
5679 if (h->root.type == bfd_link_hash_warning)
5680 /* When warning symbols are created, they **replace** the "real"
5681 entry in the hash table, thus we never get to see the real
5682 symbol in a hash traversal. So look at it now. */
5683 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5684
5685 if (h->plt.offset == (bfd_vma) - 1)
5686 return TRUE;
5687
5688 addr = h->plt.offset;
5689 if (addr == 32)
5690 {
cec5225b 5691 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964
NC
5692 return FALSE;
5693 }
5694 return TRUE;
5695}
5696
5697
5698/* Output a single local symbol for a generated stub. */
5699
5700static bfd_boolean
cec5225b 5701elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
a06ea964
NC
5702 bfd_vma offset, bfd_vma size)
5703{
5704 Elf_Internal_Sym sym;
5705
5706 sym.st_value = (osi->sec->output_section->vma
5707 + osi->sec->output_offset + offset);
5708 sym.st_size = size;
5709 sym.st_other = 0;
5710 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5711 sym.st_shndx = osi->sec_shndx;
5712 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
5713}
5714
5715static bfd_boolean
5716aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
5717{
cec5225b 5718 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
5719 asection *stub_sec;
5720 bfd_vma addr;
5721 char *stub_name;
5722 output_arch_syminfo *osi;
5723
5724 /* Massage our args to the form they really have. */
cec5225b 5725 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
5726 osi = (output_arch_syminfo *) in_arg;
5727
5728 stub_sec = stub_entry->stub_sec;
5729
5730 /* Ensure this stub is attached to the current section being
5731 processed. */
5732 if (stub_sec != osi->sec)
5733 return TRUE;
5734
5735 addr = (bfd_vma) stub_entry->stub_offset;
5736
5737 stub_name = stub_entry->output_name;
5738
5739 switch (stub_entry->stub_type)
5740 {
5741 case aarch64_stub_adrp_branch:
cec5225b 5742 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
a06ea964
NC
5743 sizeof (aarch64_adrp_branch_stub)))
5744 return FALSE;
cec5225b 5745 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964
NC
5746 return FALSE;
5747 break;
5748 case aarch64_stub_long_branch:
cec5225b 5749 if (!elfNN_aarch64_output_stub_sym
a06ea964
NC
5750 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
5751 return FALSE;
cec5225b 5752 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964 5753 return FALSE;
cec5225b 5754 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
a06ea964
NC
5755 return FALSE;
5756 break;
5757 default:
5758 BFD_FAIL ();
5759 }
5760
5761 return TRUE;
5762}
5763
5764/* Output mapping symbols for linker generated sections. */
5765
5766static bfd_boolean
cec5225b 5767elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
a06ea964
NC
5768 struct bfd_link_info *info,
5769 void *finfo,
5770 int (*func) (void *, const char *,
5771 Elf_Internal_Sym *,
5772 asection *,
5773 struct elf_link_hash_entry
5774 *))
5775{
5776 output_arch_syminfo osi;
cec5225b 5777 struct elf_aarch64_link_hash_table *htab;
a06ea964 5778
cec5225b 5779 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5780
5781 osi.finfo = finfo;
5782 osi.info = info;
5783 osi.func = func;
5784
5785 /* Long calls stubs. */
5786 if (htab->stub_bfd && htab->stub_bfd->sections)
5787 {
5788 asection *stub_sec;
5789
5790 for (stub_sec = htab->stub_bfd->sections;
5791 stub_sec != NULL; stub_sec = stub_sec->next)
5792 {
5793 /* Ignore non-stub sections. */
5794 if (!strstr (stub_sec->name, STUB_SUFFIX))
5795 continue;
5796
5797 osi.sec = stub_sec;
5798
5799 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5800 (output_bfd, osi.sec->output_section);
5801
5802 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
5803 &osi);
5804 }
5805 }
5806
5807 /* Finally, output mapping symbols for the PLT. */
5808 if (!htab->root.splt || htab->root.splt->size == 0)
5809 return TRUE;
5810
5811 /* For now live without mapping symbols for the plt. */
5812 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5813 (output_bfd, htab->root.splt->output_section);
5814 osi.sec = htab->root.splt;
5815
cec5225b 5816 elf_link_hash_traverse (&htab->root, elfNN_aarch64_output_plt_map,
a06ea964
NC
5817 (void *) &osi);
5818
5819 return TRUE;
5820
5821}
5822
5823/* Allocate target specific section data. */
5824
5825static bfd_boolean
cec5225b 5826elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
a06ea964
NC
5827{
5828 if (!sec->used_by_bfd)
5829 {
5830 _aarch64_elf_section_data *sdata;
5831 bfd_size_type amt = sizeof (*sdata);
5832
5833 sdata = bfd_zalloc (abfd, amt);
5834 if (sdata == NULL)
5835 return FALSE;
5836 sec->used_by_bfd = sdata;
5837 }
5838
5839 record_section_with_aarch64_elf_section_data (sec);
5840
5841 return _bfd_elf_new_section_hook (abfd, sec);
5842}
5843
5844
5845static void
5846unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
5847 asection *sec,
5848 void *ignore ATTRIBUTE_UNUSED)
5849{
5850 unrecord_section_with_aarch64_elf_section_data (sec);
5851}
5852
5853static bfd_boolean
cec5225b 5854elfNN_aarch64_close_and_cleanup (bfd *abfd)
a06ea964
NC
5855{
5856 if (abfd->sections)
5857 bfd_map_over_sections (abfd,
5858 unrecord_section_via_map_over_sections, NULL);
5859
5860 return _bfd_elf_close_and_cleanup (abfd);
5861}
5862
5863static bfd_boolean
cec5225b 5864elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
a06ea964
NC
5865{
5866 if (abfd->sections)
5867 bfd_map_over_sections (abfd,
5868 unrecord_section_via_map_over_sections, NULL);
5869
5870 return _bfd_free_cached_info (abfd);
5871}
5872
a06ea964
NC
5873/* Create dynamic sections. This is different from the ARM backend in that
5874 the got, plt, gotplt and their relocation sections are all created in the
5875 standard part of the bfd elf backend. */
5876
5877static bfd_boolean
cec5225b 5878elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
a06ea964
NC
5879 struct bfd_link_info *info)
5880{
cec5225b 5881 struct elf_aarch64_link_hash_table *htab;
cc0efaa8
MS
5882
5883 /* We need to create .got section. */
5884 if (!aarch64_elf_create_got_section (dynobj, info))
5885 return FALSE;
a06ea964
NC
5886
5887 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
5888 return FALSE;
5889
cec5225b 5890 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5891 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
5892 if (!info->shared)
5893 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
5894
5895 if (!htab->sdynbss || (!info->shared && !htab->srelbss))
5896 abort ();
5897
a06ea964
NC
5898 return TRUE;
5899}
5900
5901
5902/* Allocate space in .plt, .got and associated reloc sections for
5903 dynamic relocs. */
5904
5905static bfd_boolean
cec5225b 5906elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
a06ea964
NC
5907{
5908 struct bfd_link_info *info;
cec5225b
YZ
5909 struct elf_aarch64_link_hash_table *htab;
5910 struct elf_aarch64_link_hash_entry *eh;
a06ea964
NC
5911 struct elf_dyn_relocs *p;
5912
5913 /* An example of a bfd_link_hash_indirect symbol is versioned
5914 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
5915 -> __gxx_personality_v0(bfd_link_hash_defined)
5916
5917 There is no need to process bfd_link_hash_indirect symbols here
5918 because we will also be presented with the concrete instance of
cec5225b 5919 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
a06ea964
NC
5920 called to copy all relevant data from the generic to the concrete
5921 symbol instance.
5922 */
5923 if (h->root.type == bfd_link_hash_indirect)
5924 return TRUE;
5925
5926 if (h->root.type == bfd_link_hash_warning)
5927 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5928
5929 info = (struct bfd_link_info *) inf;
cec5225b 5930 htab = elf_aarch64_hash_table (info);
a06ea964 5931
1419bbe5
WN
5932 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
5933 here if it is defined and referenced in a non-shared object. */
5934 if (h->type == STT_GNU_IFUNC
5935 && h->def_regular)
5936 return TRUE;
5937 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
a06ea964
NC
5938 {
5939 /* Make sure this symbol is output as a dynamic symbol.
5940 Undefined weak syms won't yet be marked as dynamic. */
5941 if (h->dynindx == -1 && !h->forced_local)
5942 {
5943 if (!bfd_elf_link_record_dynamic_symbol (info, h))
5944 return FALSE;
5945 }
5946
5947 if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5948 {
5949 asection *s = htab->root.splt;
5950
5951 /* If this is the first .plt entry, make room for the special
5952 first entry. */
5953 if (s->size == 0)
5954 s->size += htab->plt_header_size;
5955
5956 h->plt.offset = s->size;
5957
5958 /* If this symbol is not defined in a regular file, and we are
5959 not generating a shared library, then set the symbol to this
5960 location in the .plt. This is required to make function
5961 pointers compare as equal between the normal executable and
5962 the shared library. */
5963 if (!info->shared && !h->def_regular)
5964 {
5965 h->root.u.def.section = s;
5966 h->root.u.def.value = h->plt.offset;
5967 }
5968
5969 /* Make room for this entry. For now we only create the
5970 small model PLT entries. We later need to find a way
5971 of relaxing into these from the large model PLT entries. */
5972 s->size += PLT_SMALL_ENTRY_SIZE;
5973
5974 /* We also need to make an entry in the .got.plt section, which
5975 will be placed in the .got section by the linker script. */
5976 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
5977
5978 /* We also need to make an entry in the .rela.plt section. */
5979 htab->root.srelplt->size += RELOC_SIZE (htab);
5980
5981 /* We need to ensure that all GOT entries that serve the PLT
5982 are consecutive with the special GOT slots [0] [1] and
5983 [2]. Any addtional relocations, such as
5984 R_AARCH64_TLSDESC, must be placed after the PLT related
5985 entries. We abuse the reloc_count such that during
5986 sizing we adjust reloc_count to indicate the number of
5987 PLT related reserved entries. In subsequent phases when
5988 filling in the contents of the reloc entries, PLT related
5989 entries are placed by computing their PLT index (0
5990 .. reloc_count). While other none PLT relocs are placed
5991 at the slot indicated by reloc_count and reloc_count is
5992 updated. */
5993
5994 htab->root.srelplt->reloc_count++;
5995 }
5996 else
5997 {
5998 h->plt.offset = (bfd_vma) - 1;
5999 h->needs_plt = 0;
6000 }
6001 }
6002 else
6003 {
6004 h->plt.offset = (bfd_vma) - 1;
6005 h->needs_plt = 0;
6006 }
6007
cec5225b 6008 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
6009 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
6010
6011 if (h->got.refcount > 0)
6012 {
6013 bfd_boolean dyn;
cec5225b 6014 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
6015
6016 h->got.offset = (bfd_vma) - 1;
6017
6018 dyn = htab->root.dynamic_sections_created;
6019
6020 /* Make sure this symbol is output as a dynamic symbol.
6021 Undefined weak syms won't yet be marked as dynamic. */
6022 if (dyn && h->dynindx == -1 && !h->forced_local)
6023 {
6024 if (!bfd_elf_link_record_dynamic_symbol (info, h))
6025 return FALSE;
6026 }
6027
6028 if (got_type == GOT_UNKNOWN)
6029 {
6030 }
6031 else if (got_type == GOT_NORMAL)
6032 {
6033 h->got.offset = htab->root.sgot->size;
6034 htab->root.sgot->size += GOT_ENTRY_SIZE;
6035 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6036 || h->root.type != bfd_link_hash_undefweak)
6037 && (info->shared
6038 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6039 {
6040 htab->root.srelgot->size += RELOC_SIZE (htab);
6041 }
6042 }
6043 else
6044 {
6045 int indx;
6046 if (got_type & GOT_TLSDESC_GD)
6047 {
6048 eh->tlsdesc_got_jump_table_offset =
6049 (htab->root.sgotplt->size
6050 - aarch64_compute_jump_table_size (htab));
6051 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6052 h->got.offset = (bfd_vma) - 2;
6053 }
6054
6055 if (got_type & GOT_TLS_GD)
6056 {
6057 h->got.offset = htab->root.sgot->size;
6058 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6059 }
6060
6061 if (got_type & GOT_TLS_IE)
6062 {
6063 h->got.offset = htab->root.sgot->size;
6064 htab->root.sgot->size += GOT_ENTRY_SIZE;
6065 }
6066
6067 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6068 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6069 || h->root.type != bfd_link_hash_undefweak)
6070 && (info->shared
6071 || indx != 0
6072 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6073 {
6074 if (got_type & GOT_TLSDESC_GD)
6075 {
6076 htab->root.srelplt->size += RELOC_SIZE (htab);
6077 /* Note reloc_count not incremented here! We have
6078 already adjusted reloc_count for this relocation
6079 type. */
6080
6081 /* TLSDESC PLT is now needed, but not yet determined. */
6082 htab->tlsdesc_plt = (bfd_vma) - 1;
6083 }
6084
6085 if (got_type & GOT_TLS_GD)
6086 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6087
6088 if (got_type & GOT_TLS_IE)
6089 htab->root.srelgot->size += RELOC_SIZE (htab);
6090 }
6091 }
6092 }
6093 else
6094 {
6095 h->got.offset = (bfd_vma) - 1;
6096 }
6097
6098 if (eh->dyn_relocs == NULL)
6099 return TRUE;
6100
6101 /* In the shared -Bsymbolic case, discard space allocated for
6102 dynamic pc-relative relocs against symbols which turn out to be
6103 defined in regular objects. For the normal shared case, discard
6104 space for pc-relative relocs that have become local due to symbol
6105 visibility changes. */
6106
6107 if (info->shared)
6108 {
6109 /* Relocs that use pc_count are those that appear on a call
6110 insn, or certain REL relocs that can generated via assembly.
6111 We want calls to protected symbols to resolve directly to the
6112 function rather than going via the plt. If people want
6113 function pointer comparisons to work as expected then they
6114 should avoid writing weird assembly. */
6115 if (SYMBOL_CALLS_LOCAL (info, h))
6116 {
6117 struct elf_dyn_relocs **pp;
6118
6119 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
6120 {
6121 p->count -= p->pc_count;
6122 p->pc_count = 0;
6123 if (p->count == 0)
6124 *pp = p->next;
6125 else
6126 pp = &p->next;
6127 }
6128 }
6129
6130 /* Also discard relocs on undefined weak syms with non-default
6131 visibility. */
6132 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
6133 {
6134 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6135 eh->dyn_relocs = NULL;
6136
6137 /* Make sure undefined weak symbols are output as a dynamic
6138 symbol in PIEs. */
6139 else if (h->dynindx == -1
6140 && !h->forced_local
6141 && !bfd_elf_link_record_dynamic_symbol (info, h))
6142 return FALSE;
6143 }
6144
6145 }
6146 else if (ELIMINATE_COPY_RELOCS)
6147 {
6148 /* For the non-shared case, discard space for relocs against
6149 symbols which turn out to need copy relocs or are not
6150 dynamic. */
6151
6152 if (!h->non_got_ref
6153 && ((h->def_dynamic
6154 && !h->def_regular)
6155 || (htab->root.dynamic_sections_created
6156 && (h->root.type == bfd_link_hash_undefweak
6157 || h->root.type == bfd_link_hash_undefined))))
6158 {
6159 /* Make sure this symbol is output as a dynamic symbol.
6160 Undefined weak syms won't yet be marked as dynamic. */
6161 if (h->dynindx == -1
6162 && !h->forced_local
6163 && !bfd_elf_link_record_dynamic_symbol (info, h))
6164 return FALSE;
6165
6166 /* If that succeeded, we know we'll be keeping all the
6167 relocs. */
6168 if (h->dynindx != -1)
6169 goto keep;
6170 }
6171
6172 eh->dyn_relocs = NULL;
6173
6174 keep:;
6175 }
6176
6177 /* Finally, allocate space. */
6178 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6179 {
6180 asection *sreloc;
6181
6182 sreloc = elf_section_data (p->sec)->sreloc;
6183
6184 BFD_ASSERT (sreloc != NULL);
6185
6186 sreloc->size += p->count * RELOC_SIZE (htab);
6187 }
6188
6189 return TRUE;
6190}
6191
1419bbe5
WN
6192/* Allocate space in .plt, .got and associated reloc sections for
6193 ifunc dynamic relocs. */
6194
6195static bfd_boolean
6196elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
6197 void *inf)
6198{
6199 struct bfd_link_info *info;
6200 struct elf_aarch64_link_hash_table *htab;
6201 struct elf_aarch64_link_hash_entry *eh;
6202
6203 /* An example of a bfd_link_hash_indirect symbol is versioned
6204 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
6205 -> __gxx_personality_v0(bfd_link_hash_defined)
6206
6207 There is no need to process bfd_link_hash_indirect symbols here
6208 because we will also be presented with the concrete instance of
6209 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
6210 called to copy all relevant data from the generic to the concrete
6211 symbol instance.
6212 */
6213 if (h->root.type == bfd_link_hash_indirect)
6214 return TRUE;
6215
6216 if (h->root.type == bfd_link_hash_warning)
6217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6218
6219 info = (struct bfd_link_info *) inf;
6220 htab = elf_aarch64_hash_table (info);
6221
6222 eh = (struct elf_aarch64_link_hash_entry *) h;
6223
6224 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
6225 here if it is defined and referenced in a non-shared object. */
6226 if (h->type == STT_GNU_IFUNC
6227 && h->def_regular)
6228 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
6229 &eh->dyn_relocs,
6230 htab->plt_entry_size,
6231 htab->plt_header_size,
6232 GOT_ENTRY_SIZE);
6233 return TRUE;
6234}
6235
6236/* Allocate space in .plt, .got and associated reloc sections for
6237 local dynamic relocs. */
6238
6239static bfd_boolean
6240elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
6241{
6242 struct elf_link_hash_entry *h
6243 = (struct elf_link_hash_entry *) *slot;
6244
6245 if (h->type != STT_GNU_IFUNC
6246 || !h->def_regular
6247 || !h->ref_regular
6248 || !h->forced_local
6249 || h->root.type != bfd_link_hash_defined)
6250 abort ();
6251
6252 return elfNN_aarch64_allocate_dynrelocs (h, inf);
6253}
6254
6255/* Allocate space in .plt, .got and associated reloc sections for
6256 local ifunc dynamic relocs. */
6257
6258static bfd_boolean
6259elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
6260{
6261 struct elf_link_hash_entry *h
6262 = (struct elf_link_hash_entry *) *slot;
6263
6264 if (h->type != STT_GNU_IFUNC
6265 || !h->def_regular
6266 || !h->ref_regular
6267 || !h->forced_local
6268 || h->root.type != bfd_link_hash_defined)
6269 abort ();
6270
6271 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
6272}
a06ea964 6273
a06ea964
NC
6274/* This is the most important function of all . Innocuosly named
6275 though ! */
6276static bfd_boolean
cec5225b 6277elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
a06ea964
NC
6278 struct bfd_link_info *info)
6279{
cec5225b 6280 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
6281 bfd *dynobj;
6282 asection *s;
6283 bfd_boolean relocs;
6284 bfd *ibfd;
6285
cec5225b 6286 htab = elf_aarch64_hash_table ((info));
a06ea964
NC
6287 dynobj = htab->root.dynobj;
6288
6289 BFD_ASSERT (dynobj != NULL);
6290
6291 if (htab->root.dynamic_sections_created)
6292 {
6293 if (info->executable)
6294 {
6295 s = bfd_get_linker_section (dynobj, ".interp");
6296 if (s == NULL)
6297 abort ();
6298 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
6299 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
6300 }
6301 }
6302
6303 /* Set up .got offsets for local syms, and space for local dynamic
6304 relocs. */
6305 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6306 {
6307 struct elf_aarch64_local_symbol *locals = NULL;
6308 Elf_Internal_Shdr *symtab_hdr;
6309 asection *srel;
6310 unsigned int i;
6311
6312 if (!is_aarch64_elf (ibfd))
6313 continue;
6314
6315 for (s = ibfd->sections; s != NULL; s = s->next)
6316 {
6317 struct elf_dyn_relocs *p;
6318
6319 for (p = (struct elf_dyn_relocs *)
6320 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
6321 {
6322 if (!bfd_is_abs_section (p->sec)
6323 && bfd_is_abs_section (p->sec->output_section))
6324 {
6325 /* Input section has been discarded, either because
6326 it is a copy of a linkonce section or due to
6327 linker script /DISCARD/, so we'll be discarding
6328 the relocs too. */
6329 }
6330 else if (p->count != 0)
6331 {
6332 srel = elf_section_data (p->sec)->sreloc;
6333 srel->size += p->count * RELOC_SIZE (htab);
6334 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
6335 info->flags |= DF_TEXTREL;
6336 }
6337 }
6338 }
6339
cec5225b 6340 locals = elf_aarch64_locals (ibfd);
a06ea964
NC
6341 if (!locals)
6342 continue;
6343
6344 symtab_hdr = &elf_symtab_hdr (ibfd);
6345 srel = htab->root.srelgot;
6346 for (i = 0; i < symtab_hdr->sh_info; i++)
6347 {
6348 locals[i].got_offset = (bfd_vma) - 1;
6349 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
6350 if (locals[i].got_refcount > 0)
6351 {
6352 unsigned got_type = locals[i].got_type;
6353 if (got_type & GOT_TLSDESC_GD)
6354 {
6355 locals[i].tlsdesc_got_jump_table_offset =
6356 (htab->root.sgotplt->size
6357 - aarch64_compute_jump_table_size (htab));
6358 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6359 locals[i].got_offset = (bfd_vma) - 2;
6360 }
6361
6362 if (got_type & GOT_TLS_GD)
6363 {
6364 locals[i].got_offset = htab->root.sgot->size;
6365 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6366 }
6367
6368 if (got_type & GOT_TLS_IE)
6369 {
6370 locals[i].got_offset = htab->root.sgot->size;
6371 htab->root.sgot->size += GOT_ENTRY_SIZE;
6372 }
6373
6374 if (got_type == GOT_UNKNOWN)
6375 {
6376 }
6377
6378 if (got_type == GOT_NORMAL)
6379 {
6380 }
6381
6382 if (info->shared)
6383 {
6384 if (got_type & GOT_TLSDESC_GD)
6385 {
6386 htab->root.srelplt->size += RELOC_SIZE (htab);
6387 /* Note RELOC_COUNT not incremented here! */
6388 htab->tlsdesc_plt = (bfd_vma) - 1;
6389 }
6390
6391 if (got_type & GOT_TLS_GD)
6392 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6393
6394 if (got_type & GOT_TLS_IE)
6395 htab->root.srelgot->size += RELOC_SIZE (htab);
6396 }
6397 }
6398 else
6399 {
6400 locals[i].got_refcount = (bfd_vma) - 1;
6401 }
6402 }
6403 }
6404
6405
6406 /* Allocate global sym .plt and .got entries, and space for global
6407 sym dynamic relocs. */
cec5225b 6408 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
a06ea964
NC
6409 info);
6410
1419bbe5
WN
6411 /* Allocate global ifunc sym .plt and .got entries, and space for global
6412 ifunc sym dynamic relocs. */
6413 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
6414 info);
6415
6416 /* Allocate .plt and .got entries, and space for local symbols. */
6417 htab_traverse (htab->loc_hash_table,
6418 elfNN_aarch64_allocate_local_dynrelocs,
6419 info);
6420
6421 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
6422 htab_traverse (htab->loc_hash_table,
6423 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
6424 info);
a06ea964
NC
6425
6426 /* For every jump slot reserved in the sgotplt, reloc_count is
6427 incremented. However, when we reserve space for TLS descriptors,
6428 it's not incremented, so in order to compute the space reserved
6429 for them, it suffices to multiply the reloc count by the jump
6430 slot size. */
6431
6432 if (htab->root.srelplt)
8847944f 6433 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
a06ea964
NC
6434
6435 if (htab->tlsdesc_plt)
6436 {
6437 if (htab->root.splt->size == 0)
6438 htab->root.splt->size += PLT_ENTRY_SIZE;
6439
6440 htab->tlsdesc_plt = htab->root.splt->size;
6441 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
6442
6443 /* If we're not using lazy TLS relocations, don't generate the
6444 GOT entry required. */
6445 if (!(info->flags & DF_BIND_NOW))
6446 {
6447 htab->dt_tlsdesc_got = htab->root.sgot->size;
6448 htab->root.sgot->size += GOT_ENTRY_SIZE;
6449 }
6450 }
6451
6452 /* We now have determined the sizes of the various dynamic sections.
6453 Allocate memory for them. */
6454 relocs = FALSE;
6455 for (s = dynobj->sections; s != NULL; s = s->next)
6456 {
6457 if ((s->flags & SEC_LINKER_CREATED) == 0)
6458 continue;
6459
6460 if (s == htab->root.splt
6461 || s == htab->root.sgot
6462 || s == htab->root.sgotplt
6463 || s == htab->root.iplt
6464 || s == htab->root.igotplt || s == htab->sdynbss)
6465 {
6466 /* Strip this section if we don't need it; see the
6467 comment below. */
6468 }
6469 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
6470 {
6471 if (s->size != 0 && s != htab->root.srelplt)
6472 relocs = TRUE;
6473
6474 /* We use the reloc_count field as a counter if we need
6475 to copy relocs into the output file. */
6476 if (s != htab->root.srelplt)
6477 s->reloc_count = 0;
6478 }
6479 else
6480 {
6481 /* It's not one of our sections, so don't allocate space. */
6482 continue;
6483 }
6484
6485 if (s->size == 0)
6486 {
6487 /* If we don't need this section, strip it from the
6488 output file. This is mostly to handle .rela.bss and
6489 .rela.plt. We must create both sections in
6490 create_dynamic_sections, because they must be created
6491 before the linker maps input sections to output
6492 sections. The linker does that before
6493 adjust_dynamic_symbol is called, and it is that
6494 function which decides whether anything needs to go
6495 into these sections. */
6496
6497 s->flags |= SEC_EXCLUDE;
6498 continue;
6499 }
6500
6501 if ((s->flags & SEC_HAS_CONTENTS) == 0)
6502 continue;
6503
6504 /* Allocate memory for the section contents. We use bfd_zalloc
6505 here in case unused entries are not reclaimed before the
6506 section's contents are written out. This should not happen,
6507 but this way if it does, we get a R_AARCH64_NONE reloc instead
6508 of garbage. */
6509 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
6510 if (s->contents == NULL)
6511 return FALSE;
6512 }
6513
6514 if (htab->root.dynamic_sections_created)
6515 {
6516 /* Add some entries to the .dynamic section. We fill in the
cec5225b 6517 values later, in elfNN_aarch64_finish_dynamic_sections, but we
a06ea964
NC
6518 must add the entries now so that we get the correct size for
6519 the .dynamic section. The DT_DEBUG entry is filled in by the
6520 dynamic linker and used by the debugger. */
6521#define add_dynamic_entry(TAG, VAL) \
6522 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
6523
6524 if (info->executable)
6525 {
6526 if (!add_dynamic_entry (DT_DEBUG, 0))
6527 return FALSE;
6528 }
6529
6530 if (htab->root.splt->size != 0)
6531 {
6532 if (!add_dynamic_entry (DT_PLTGOT, 0)
6533 || !add_dynamic_entry (DT_PLTRELSZ, 0)
6534 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
6535 || !add_dynamic_entry (DT_JMPREL, 0))
6536 return FALSE;
6537
6538 if (htab->tlsdesc_plt
6539 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
6540 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
6541 return FALSE;
6542 }
6543
6544 if (relocs)
6545 {
6546 if (!add_dynamic_entry (DT_RELA, 0)
6547 || !add_dynamic_entry (DT_RELASZ, 0)
6548 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
6549 return FALSE;
6550
6551 /* If any dynamic relocs apply to a read-only section,
6552 then we need a DT_TEXTREL entry. */
6553 if ((info->flags & DF_TEXTREL) != 0)
6554 {
6555 if (!add_dynamic_entry (DT_TEXTREL, 0))
6556 return FALSE;
6557 }
6558 }
6559 }
6560#undef add_dynamic_entry
6561
6562 return TRUE;
a06ea964
NC
6563}
6564
6565static inline void
caed7120
YZ
6566elf_aarch64_update_plt_entry (bfd *output_bfd,
6567 bfd_reloc_code_real_type r_type,
6568 bfd_byte *plt_entry, bfd_vma value)
a06ea964 6569{
caed7120
YZ
6570 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
6571
6572 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
a06ea964
NC
6573}
6574
6575static void
cec5225b
YZ
6576elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
6577 struct elf_aarch64_link_hash_table
1419bbe5
WN
6578 *htab, bfd *output_bfd,
6579 struct bfd_link_info *info)
a06ea964
NC
6580{
6581 bfd_byte *plt_entry;
6582 bfd_vma plt_index;
6583 bfd_vma got_offset;
6584 bfd_vma gotplt_entry_address;
6585 bfd_vma plt_entry_address;
6586 Elf_Internal_Rela rela;
6587 bfd_byte *loc;
1419bbe5
WN
6588 asection *plt, *gotplt, *relplt;
6589
6590 /* When building a static executable, use .iplt, .igot.plt and
6591 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6592 if (htab->root.splt != NULL)
6593 {
6594 plt = htab->root.splt;
6595 gotplt = htab->root.sgotplt;
6596 relplt = htab->root.srelplt;
6597 }
6598 else
6599 {
6600 plt = htab->root.iplt;
6601 gotplt = htab->root.igotplt;
6602 relplt = htab->root.irelplt;
6603 }
6604
6605 /* Get the index in the procedure linkage table which
6606 corresponds to this symbol. This is the index of this symbol
6607 in all the symbols for which we are making plt entries. The
6608 first entry in the procedure linkage table is reserved.
a06ea964 6609
1419bbe5
WN
6610 Get the offset into the .got table of the entry that
6611 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
6612 bytes. The first three are reserved for the dynamic linker.
692e2b8b 6613
1419bbe5
WN
6614 For static executables, we don't reserve anything. */
6615
6616 if (plt == htab->root.splt)
6617 {
6618 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
6619 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
6620 }
6621 else
6622 {
6623 plt_index = h->plt.offset / htab->plt_entry_size;
6624 got_offset = plt_index * GOT_ENTRY_SIZE;
6625 }
6626
6627 plt_entry = plt->contents + h->plt.offset;
6628 plt_entry_address = plt->output_section->vma
f44a1f8e 6629 + plt->output_offset + h->plt.offset;
1419bbe5
WN
6630 gotplt_entry_address = gotplt->output_section->vma +
6631 gotplt->output_offset + got_offset;
a06ea964
NC
6632
6633 /* Copy in the boiler-plate for the PLTn entry. */
cec5225b 6634 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
a06ea964
NC
6635
6636 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6637 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
6638 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6639 plt_entry,
6640 PG (gotplt_entry_address) -
6641 PG (plt_entry_address));
a06ea964
NC
6642
6643 /* Fill in the lo12 bits for the load from the pltgot. */
caed7120
YZ
6644 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6645 plt_entry + 4,
6646 PG_OFFSET (gotplt_entry_address));
a06ea964 6647
9aff4b7a 6648 /* Fill in the lo12 bits for the add from the pltgot entry. */
caed7120
YZ
6649 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6650 plt_entry + 8,
6651 PG_OFFSET (gotplt_entry_address));
a06ea964
NC
6652
6653 /* All the GOTPLT Entries are essentially initialized to PLT0. */
cec5225b 6654 bfd_put_NN (output_bfd,
1419bbe5
WN
6655 plt->output_section->vma + plt->output_offset,
6656 gotplt->contents + got_offset);
a06ea964 6657
a06ea964 6658 rela.r_offset = gotplt_entry_address;
1419bbe5
WN
6659
6660 if (h->dynindx == -1
6661 || ((info->executable
6662 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6663 && h->def_regular
6664 && h->type == STT_GNU_IFUNC))
6665 {
6666 /* If an STT_GNU_IFUNC symbol is locally defined, generate
6667 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
6668 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
6669 rela.r_addend = (h->root.u.def.value
6670 + h->root.u.def.section->output_section->vma
6671 + h->root.u.def.section->output_offset);
6672 }
6673 else
6674 {
6675 /* Fill in the entry in the .rela.plt section. */
6676 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
6677 rela.r_addend = 0;
6678 }
a06ea964
NC
6679
6680 /* Compute the relocation entry to used based on PLT index and do
6681 not adjust reloc_count. The reloc_count has already been adjusted
6682 to account for this entry. */
1419bbe5 6683 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
cec5225b 6684 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6685}
6686
6687/* Size sections even though they're not dynamic. We use it to setup
6688 _TLS_MODULE_BASE_, if needed. */
6689
6690static bfd_boolean
cec5225b 6691elfNN_aarch64_always_size_sections (bfd *output_bfd,
a06ea964
NC
6692 struct bfd_link_info *info)
6693{
6694 asection *tls_sec;
6695
6696 if (info->relocatable)
6697 return TRUE;
6698
6699 tls_sec = elf_hash_table (info)->tls_sec;
6700
6701 if (tls_sec)
6702 {
6703 struct elf_link_hash_entry *tlsbase;
6704
6705 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
6706 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
6707
6708 if (tlsbase)
6709 {
6710 struct bfd_link_hash_entry *h = NULL;
6711 const struct elf_backend_data *bed =
6712 get_elf_backend_data (output_bfd);
6713
6714 if (!(_bfd_generic_link_add_one_symbol
6715 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
6716 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
6717 return FALSE;
6718
6719 tlsbase->type = STT_TLS;
6720 tlsbase = (struct elf_link_hash_entry *) h;
6721 tlsbase->def_regular = 1;
6722 tlsbase->other = STV_HIDDEN;
6723 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
6724 }
6725 }
6726
6727 return TRUE;
6728}
6729
6730/* Finish up dynamic symbol handling. We set the contents of various
6731 dynamic sections here. */
6732static bfd_boolean
cec5225b 6733elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
a06ea964
NC
6734 struct bfd_link_info *info,
6735 struct elf_link_hash_entry *h,
6736 Elf_Internal_Sym *sym)
6737{
cec5225b
YZ
6738 struct elf_aarch64_link_hash_table *htab;
6739 htab = elf_aarch64_hash_table (info);
a06ea964
NC
6740
6741 if (h->plt.offset != (bfd_vma) - 1)
6742 {
1419bbe5
WN
6743 asection *plt, *gotplt, *relplt;
6744
a06ea964
NC
6745 /* This symbol has an entry in the procedure linkage table. Set
6746 it up. */
6747
1419bbe5
WN
6748 /* When building a static executable, use .iplt, .igot.plt and
6749 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6750 if (htab->root.splt != NULL)
6751 {
6752 plt = htab->root.splt;
6753 gotplt = htab->root.sgotplt;
6754 relplt = htab->root.srelplt;
6755 }
6756 else
6757 {
6758 plt = htab->root.iplt;
6759 gotplt = htab->root.igotplt;
6760 relplt = htab->root.irelplt;
6761 }
6762
6763 /* This symbol has an entry in the procedure linkage table. Set
6764 it up. */
6765 if ((h->dynindx == -1
6766 && !((h->forced_local || info->executable)
6767 && h->def_regular
6768 && h->type == STT_GNU_IFUNC))
6769 || plt == NULL
6770 || gotplt == NULL
6771 || relplt == NULL)
a06ea964
NC
6772 abort ();
6773
1419bbe5 6774 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
a06ea964
NC
6775 if (!h->def_regular)
6776 {
6777 /* Mark the symbol as undefined, rather than as defined in
6778 the .plt section. Leave the value alone. This is a clue
6779 for the dynamic linker, to make function pointer
6780 comparisons work between an application and shared
6781 library. */
6782 sym->st_shndx = SHN_UNDEF;
6783 }
6784 }
6785
6786 if (h->got.offset != (bfd_vma) - 1
cec5225b 6787 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
a06ea964
NC
6788 {
6789 Elf_Internal_Rela rela;
6790 bfd_byte *loc;
6791
6792 /* This symbol has an entry in the global offset table. Set it
6793 up. */
6794 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
6795 abort ();
6796
6797 rela.r_offset = (htab->root.sgot->output_section->vma
6798 + htab->root.sgot->output_offset
6799 + (h->got.offset & ~(bfd_vma) 1));
6800
49206388
WN
6801 if (h->def_regular
6802 && h->type == STT_GNU_IFUNC)
6803 {
6804 if (info->shared)
6805 {
6806 /* Generate R_AARCH64_GLOB_DAT. */
6807 goto do_glob_dat;
6808 }
6809 else
6810 {
6811 asection *plt;
6812
6813 if (!h->pointer_equality_needed)
6814 abort ();
6815
6816 /* For non-shared object, we can't use .got.plt, which
6817 contains the real function address if we need pointer
6818 equality. We load the GOT entry with the PLT entry. */
6819 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
6820 bfd_put_NN (output_bfd, (plt->output_section->vma
6821 + plt->output_offset
6822 + h->plt.offset),
6823 htab->root.sgot->contents
6824 + (h->got.offset & ~(bfd_vma) 1));
6825 return TRUE;
6826 }
6827 }
6828 else if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h))
a06ea964
NC
6829 {
6830 if (!h->def_regular)
6831 return FALSE;
6832
6833 BFD_ASSERT ((h->got.offset & 1) != 0);
a6bb11b2 6834 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
a06ea964
NC
6835 rela.r_addend = (h->root.u.def.value
6836 + h->root.u.def.section->output_section->vma
6837 + h->root.u.def.section->output_offset);
6838 }
6839 else
6840 {
49206388 6841do_glob_dat:
a06ea964 6842 BFD_ASSERT ((h->got.offset & 1) == 0);
cec5225b 6843 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964 6844 htab->root.sgot->contents + h->got.offset);
a6bb11b2 6845 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
a06ea964
NC
6846 rela.r_addend = 0;
6847 }
6848
6849 loc = htab->root.srelgot->contents;
6850 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
cec5225b 6851 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6852 }
6853
6854 if (h->needs_copy)
6855 {
6856 Elf_Internal_Rela rela;
6857 bfd_byte *loc;
6858
6859 /* This symbol needs a copy reloc. Set it up. */
6860
6861 if (h->dynindx == -1
6862 || (h->root.type != bfd_link_hash_defined
6863 && h->root.type != bfd_link_hash_defweak)
6864 || htab->srelbss == NULL)
6865 abort ();
6866
6867 rela.r_offset = (h->root.u.def.value
6868 + h->root.u.def.section->output_section->vma
6869 + h->root.u.def.section->output_offset);
a6bb11b2 6870 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
a06ea964
NC
6871 rela.r_addend = 0;
6872 loc = htab->srelbss->contents;
6873 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
cec5225b 6874 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6875 }
6876
6877 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
6878 be NULL for local symbols. */
6879 if (sym != NULL
9637f6ef 6880 && (h == elf_hash_table (info)->hdynamic
a06ea964
NC
6881 || h == elf_hash_table (info)->hgot))
6882 sym->st_shndx = SHN_ABS;
6883
6884 return TRUE;
6885}
6886
1419bbe5
WN
6887/* Finish up local dynamic symbol handling. We set the contents of
6888 various dynamic sections here. */
6889
6890static bfd_boolean
6891elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
6892{
6893 struct elf_link_hash_entry *h
6894 = (struct elf_link_hash_entry *) *slot;
6895 struct bfd_link_info *info
6896 = (struct bfd_link_info *) inf;
6897
6898 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
6899 info, h, NULL);
6900}
6901
a06ea964 6902static void
cec5225b
YZ
6903elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
6904 struct elf_aarch64_link_hash_table
a06ea964
NC
6905 *htab)
6906{
6907 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
6908 small and large plts and at the minute just generates
6909 the small PLT. */
6910
cec5225b 6911 /* PLT0 of the small PLT looks like this in ELF64 -
a06ea964
NC
6912 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
6913 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
6914 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
6915 // symbol resolver
6916 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
6917 // GOTPLT entry for this.
6918 br x17
cec5225b
YZ
6919 PLT0 will be slightly different in ELF32 due to different got entry
6920 size.
a06ea964 6921 */
caed7120 6922 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
a06ea964
NC
6923 bfd_vma plt_base;
6924
6925
cec5225b 6926 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
a06ea964
NC
6927 PLT_ENTRY_SIZE);
6928 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
6929 PLT_ENTRY_SIZE;
6930
caed7120
YZ
6931 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
6932 + htab->root.sgotplt->output_offset
6933 + GOT_ENTRY_SIZE * 2);
a06ea964
NC
6934
6935 plt_base = htab->root.splt->output_section->vma +
f44a1f8e 6936 htab->root.splt->output_offset;
a06ea964
NC
6937
6938 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6939 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
6940 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6941 htab->root.splt->contents + 4,
6942 PG (plt_got_2nd_ent) - PG (plt_base + 4));
a06ea964 6943
caed7120
YZ
6944 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6945 htab->root.splt->contents + 8,
6946 PG_OFFSET (plt_got_2nd_ent));
a06ea964 6947
caed7120
YZ
6948 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6949 htab->root.splt->contents + 12,
6950 PG_OFFSET (plt_got_2nd_ent));
a06ea964
NC
6951}
6952
6953static bfd_boolean
cec5225b 6954elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
a06ea964
NC
6955 struct bfd_link_info *info)
6956{
cec5225b 6957 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
6958 bfd *dynobj;
6959 asection *sdyn;
6960
cec5225b 6961 htab = elf_aarch64_hash_table (info);
a06ea964
NC
6962 dynobj = htab->root.dynobj;
6963 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
6964
6965 if (htab->root.dynamic_sections_created)
6966 {
cec5225b 6967 ElfNN_External_Dyn *dyncon, *dynconend;
a06ea964
NC
6968
6969 if (sdyn == NULL || htab->root.sgot == NULL)
6970 abort ();
6971
cec5225b
YZ
6972 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
6973 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
a06ea964
NC
6974 for (; dyncon < dynconend; dyncon++)
6975 {
6976 Elf_Internal_Dyn dyn;
6977 asection *s;
6978
cec5225b 6979 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
a06ea964
NC
6980
6981 switch (dyn.d_tag)
6982 {
6983 default:
6984 continue;
6985
6986 case DT_PLTGOT:
6987 s = htab->root.sgotplt;
6988 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
6989 break;
6990
6991 case DT_JMPREL:
6992 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
6993 break;
6994
6995 case DT_PLTRELSZ:
c955de36 6996 s = htab->root.srelplt;
a06ea964
NC
6997 dyn.d_un.d_val = s->size;
6998 break;
6999
7000 case DT_RELASZ:
7001 /* The procedure linkage table relocs (DT_JMPREL) should
7002 not be included in the overall relocs (DT_RELA).
7003 Therefore, we override the DT_RELASZ entry here to
7004 make it not include the JMPREL relocs. Since the
7005 linker script arranges for .rela.plt to follow all
7006 other relocation sections, we don't have to worry
7007 about changing the DT_RELA entry. */
7008 if (htab->root.srelplt != NULL)
7009 {
c955de36 7010 s = htab->root.srelplt;
a06ea964
NC
7011 dyn.d_un.d_val -= s->size;
7012 }
7013 break;
7014
7015 case DT_TLSDESC_PLT:
7016 s = htab->root.splt;
7017 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7018 + htab->tlsdesc_plt;
7019 break;
7020
7021 case DT_TLSDESC_GOT:
7022 s = htab->root.sgot;
7023 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7024 + htab->dt_tlsdesc_got;
7025 break;
7026 }
7027
cec5225b 7028 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
a06ea964
NC
7029 }
7030
7031 }
7032
7033 /* Fill in the special first entry in the procedure linkage table. */
7034 if (htab->root.splt && htab->root.splt->size > 0)
7035 {
cec5225b 7036 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
a06ea964
NC
7037
7038 elf_section_data (htab->root.splt->output_section)->
7039 this_hdr.sh_entsize = htab->plt_entry_size;
7040
7041
7042 if (htab->tlsdesc_plt)
7043 {
cec5225b 7044 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
7045 htab->root.sgot->contents + htab->dt_tlsdesc_got);
7046
7047 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
cec5225b
YZ
7048 elfNN_aarch64_tlsdesc_small_plt_entry,
7049 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
a06ea964
NC
7050
7051 {
7052 bfd_vma adrp1_addr =
7053 htab->root.splt->output_section->vma
7054 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
7055
caed7120 7056 bfd_vma adrp2_addr = adrp1_addr + 4;
a06ea964
NC
7057
7058 bfd_vma got_addr =
7059 htab->root.sgot->output_section->vma
7060 + htab->root.sgot->output_offset;
7061
7062 bfd_vma pltgot_addr =
7063 htab->root.sgotplt->output_section->vma
7064 + htab->root.sgotplt->output_offset;
7065
7066 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
caed7120
YZ
7067
7068 bfd_byte *plt_entry =
7069 htab->root.splt->contents + htab->tlsdesc_plt;
a06ea964
NC
7070
7071 /* adrp x2, DT_TLSDESC_GOT */
caed7120
YZ
7072 elf_aarch64_update_plt_entry (output_bfd,
7073 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7074 plt_entry + 4,
7075 (PG (dt_tlsdesc_got)
7076 - PG (adrp1_addr)));
a06ea964
NC
7077
7078 /* adrp x3, 0 */
caed7120
YZ
7079 elf_aarch64_update_plt_entry (output_bfd,
7080 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7081 plt_entry + 8,
7082 (PG (pltgot_addr)
7083 - PG (adrp2_addr)));
a06ea964
NC
7084
7085 /* ldr x2, [x2, #0] */
caed7120
YZ
7086 elf_aarch64_update_plt_entry (output_bfd,
7087 BFD_RELOC_AARCH64_LDSTNN_LO12,
7088 plt_entry + 12,
7089 PG_OFFSET (dt_tlsdesc_got));
a06ea964
NC
7090
7091 /* add x3, x3, 0 */
caed7120
YZ
7092 elf_aarch64_update_plt_entry (output_bfd,
7093 BFD_RELOC_AARCH64_ADD_LO12,
7094 plt_entry + 16,
7095 PG_OFFSET (pltgot_addr));
a06ea964
NC
7096 }
7097 }
7098 }
7099
7100 if (htab->root.sgotplt)
7101 {
7102 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
7103 {
7104 (*_bfd_error_handler)
7105 (_("discarded output section: `%A'"), htab->root.sgotplt);
7106 return FALSE;
7107 }
7108
7109 /* Fill in the first three entries in the global offset table. */
7110 if (htab->root.sgotplt->size > 0)
7111 {
8db339a6
MS
7112 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
7113
a06ea964 7114 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
cec5225b 7115 bfd_put_NN (output_bfd,
a06ea964
NC
7116 (bfd_vma) 0,
7117 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
cec5225b 7118 bfd_put_NN (output_bfd,
a06ea964
NC
7119 (bfd_vma) 0,
7120 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
7121 }
7122
8db339a6
MS
7123 if (htab->root.sgot)
7124 {
7125 if (htab->root.sgot->size > 0)
7126 {
7127 bfd_vma addr =
7128 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
7129 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
7130 }
7131 }
7132
a06ea964
NC
7133 elf_section_data (htab->root.sgotplt->output_section)->
7134 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
7135 }
7136
7137 if (htab->root.sgot && htab->root.sgot->size > 0)
7138 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
7139 = GOT_ENTRY_SIZE;
7140
1419bbe5
WN
7141 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
7142 htab_traverse (htab->loc_hash_table,
7143 elfNN_aarch64_finish_local_dynamic_symbol,
7144 info);
7145
a06ea964
NC
7146 return TRUE;
7147}
7148
7149/* Return address for Ith PLT stub in section PLT, for relocation REL
7150 or (bfd_vma) -1 if it should not be included. */
7151
7152static bfd_vma
cec5225b 7153elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
a06ea964
NC
7154 const arelent *rel ATTRIBUTE_UNUSED)
7155{
7156 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
7157}
7158
7159
7160/* We use this so we can override certain functions
7161 (though currently we don't). */
7162
cec5225b 7163const struct elf_size_info elfNN_aarch64_size_info =
a06ea964 7164{
cec5225b
YZ
7165 sizeof (ElfNN_External_Ehdr),
7166 sizeof (ElfNN_External_Phdr),
7167 sizeof (ElfNN_External_Shdr),
7168 sizeof (ElfNN_External_Rel),
7169 sizeof (ElfNN_External_Rela),
7170 sizeof (ElfNN_External_Sym),
7171 sizeof (ElfNN_External_Dyn),
a06ea964
NC
7172 sizeof (Elf_External_Note),
7173 4, /* Hash table entry size. */
7174 1, /* Internal relocs per external relocs. */
cec5225b
YZ
7175 ARCH_SIZE, /* Arch size. */
7176 LOG_FILE_ALIGN, /* Log_file_align. */
7177 ELFCLASSNN, EV_CURRENT,
7178 bfd_elfNN_write_out_phdrs,
7179 bfd_elfNN_write_shdrs_and_ehdr,
7180 bfd_elfNN_checksum_contents,
7181 bfd_elfNN_write_relocs,
7182 bfd_elfNN_swap_symbol_in,
7183 bfd_elfNN_swap_symbol_out,
7184 bfd_elfNN_slurp_reloc_table,
7185 bfd_elfNN_slurp_symbol_table,
7186 bfd_elfNN_swap_dyn_in,
7187 bfd_elfNN_swap_dyn_out,
7188 bfd_elfNN_swap_reloc_in,
7189 bfd_elfNN_swap_reloc_out,
7190 bfd_elfNN_swap_reloca_in,
7191 bfd_elfNN_swap_reloca_out
a06ea964
NC
7192};
7193
7194#define ELF_ARCH bfd_arch_aarch64
7195#define ELF_MACHINE_CODE EM_AARCH64
7196#define ELF_MAXPAGESIZE 0x10000
7197#define ELF_MINPAGESIZE 0x1000
7198#define ELF_COMMONPAGESIZE 0x1000
7199
cec5225b
YZ
7200#define bfd_elfNN_close_and_cleanup \
7201 elfNN_aarch64_close_and_cleanup
a06ea964 7202
cec5225b
YZ
7203#define bfd_elfNN_bfd_free_cached_info \
7204 elfNN_aarch64_bfd_free_cached_info
a06ea964 7205
cec5225b
YZ
7206#define bfd_elfNN_bfd_is_target_special_symbol \
7207 elfNN_aarch64_is_target_special_symbol
a06ea964 7208
cec5225b
YZ
7209#define bfd_elfNN_bfd_link_hash_table_create \
7210 elfNN_aarch64_link_hash_table_create
a06ea964 7211
cec5225b
YZ
7212#define bfd_elfNN_bfd_link_hash_table_free \
7213 elfNN_aarch64_hash_table_free
a06ea964 7214
cec5225b
YZ
7215#define bfd_elfNN_bfd_merge_private_bfd_data \
7216 elfNN_aarch64_merge_private_bfd_data
a06ea964 7217
cec5225b
YZ
7218#define bfd_elfNN_bfd_print_private_bfd_data \
7219 elfNN_aarch64_print_private_bfd_data
a06ea964 7220
cec5225b
YZ
7221#define bfd_elfNN_bfd_reloc_type_lookup \
7222 elfNN_aarch64_reloc_type_lookup
a06ea964 7223
cec5225b
YZ
7224#define bfd_elfNN_bfd_reloc_name_lookup \
7225 elfNN_aarch64_reloc_name_lookup
a06ea964 7226
cec5225b
YZ
7227#define bfd_elfNN_bfd_set_private_flags \
7228 elfNN_aarch64_set_private_flags
a06ea964 7229
cec5225b
YZ
7230#define bfd_elfNN_find_inliner_info \
7231 elfNN_aarch64_find_inliner_info
a06ea964 7232
cec5225b
YZ
7233#define bfd_elfNN_find_nearest_line \
7234 elfNN_aarch64_find_nearest_line
a06ea964 7235
cec5225b
YZ
7236#define bfd_elfNN_mkobject \
7237 elfNN_aarch64_mkobject
a06ea964 7238
cec5225b
YZ
7239#define bfd_elfNN_new_section_hook \
7240 elfNN_aarch64_new_section_hook
a06ea964
NC
7241
7242#define elf_backend_adjust_dynamic_symbol \
cec5225b 7243 elfNN_aarch64_adjust_dynamic_symbol
a06ea964
NC
7244
7245#define elf_backend_always_size_sections \
cec5225b 7246 elfNN_aarch64_always_size_sections
a06ea964
NC
7247
7248#define elf_backend_check_relocs \
cec5225b 7249 elfNN_aarch64_check_relocs
a06ea964
NC
7250
7251#define elf_backend_copy_indirect_symbol \
cec5225b 7252 elfNN_aarch64_copy_indirect_symbol
a06ea964
NC
7253
7254/* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
7255 to them in our hash. */
7256#define elf_backend_create_dynamic_sections \
cec5225b 7257 elfNN_aarch64_create_dynamic_sections
a06ea964
NC
7258
7259#define elf_backend_init_index_section \
7260 _bfd_elf_init_2_index_sections
7261
a06ea964 7262#define elf_backend_finish_dynamic_sections \
cec5225b 7263 elfNN_aarch64_finish_dynamic_sections
a06ea964
NC
7264
7265#define elf_backend_finish_dynamic_symbol \
cec5225b 7266 elfNN_aarch64_finish_dynamic_symbol
a06ea964
NC
7267
7268#define elf_backend_gc_sweep_hook \
cec5225b 7269 elfNN_aarch64_gc_sweep_hook
a06ea964
NC
7270
7271#define elf_backend_object_p \
cec5225b 7272 elfNN_aarch64_object_p
a06ea964
NC
7273
7274#define elf_backend_output_arch_local_syms \
cec5225b 7275 elfNN_aarch64_output_arch_local_syms
a06ea964
NC
7276
7277#define elf_backend_plt_sym_val \
cec5225b 7278 elfNN_aarch64_plt_sym_val
a06ea964
NC
7279
7280#define elf_backend_post_process_headers \
cec5225b 7281 elfNN_aarch64_post_process_headers
a06ea964
NC
7282
7283#define elf_backend_relocate_section \
cec5225b 7284 elfNN_aarch64_relocate_section
a06ea964
NC
7285
7286#define elf_backend_reloc_type_class \
cec5225b 7287 elfNN_aarch64_reloc_type_class
a06ea964
NC
7288
7289#define elf_backend_section_flags \
cec5225b 7290 elfNN_aarch64_section_flags
a06ea964
NC
7291
7292#define elf_backend_section_from_shdr \
cec5225b 7293 elfNN_aarch64_section_from_shdr
a06ea964
NC
7294
7295#define elf_backend_size_dynamic_sections \
cec5225b 7296 elfNN_aarch64_size_dynamic_sections
a06ea964
NC
7297
7298#define elf_backend_size_info \
cec5225b 7299 elfNN_aarch64_size_info
a06ea964
NC
7300
7301#define elf_backend_can_refcount 1
59c108f7 7302#define elf_backend_can_gc_sections 1
a06ea964
NC
7303#define elf_backend_plt_readonly 1
7304#define elf_backend_want_got_plt 1
7305#define elf_backend_want_plt_sym 0
7306#define elf_backend_may_use_rel_p 0
7307#define elf_backend_may_use_rela_p 1
7308#define elf_backend_default_use_rela_p 1
7309#define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
c495064d 7310#define elf_backend_default_execstack 0
a06ea964
NC
7311
7312#undef elf_backend_obj_attrs_section
7313#define elf_backend_obj_attrs_section ".ARM.attributes"
7314
cec5225b 7315#include "elfNN-target.h"
This page took 0.514833 seconds and 4 git commands to generate.