Formatting changes for RISC-V
[deliverable/binutils-gdb.git] / bfd / elfnn-riscv.c
CommitLineData
e23eba97
NC
1/* RISC-V-specific support for NN-bit ELF.
2 Copyright 2011-2016 Free Software Foundation, Inc.
3
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
22
23/* This file handles RISC-V ELF targets. */
24
25#include "sysdep.h"
26#include "bfd.h"
27#include "libbfd.h"
28#include "bfdlink.h"
29#include "genlink.h"
30#include "elf-bfd.h"
31#include "elfxx-riscv.h"
32#include "elf/riscv.h"
33#include "opcode/riscv.h"
34
35#define ARCH_SIZE NN
36
37#define MINUS_ONE ((bfd_vma)0 - 1)
38
39#define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
40
41#define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
42
43/* The name of the dynamic interpreter. This is put in the .interp
44 section. */
45
46#define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
47#define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
48
49#define ELF_ARCH bfd_arch_riscv
50#define ELF_TARGET_ID RISCV_ELF_DATA
51#define ELF_MACHINE_CODE EM_RISCV
52#define ELF_MAXPAGESIZE 0x1000
53#define ELF_COMMONPAGESIZE 0x1000
54
55/* The RISC-V linker needs to keep track of the number of relocs that it
56 decides to copy as dynamic relocs in check_relocs for each symbol.
57 This is so that it can later discard them if they are found to be
58 unnecessary. We store the information in a field extending the
59 regular ELF linker hash table. */
60
61struct riscv_elf_dyn_relocs
62{
63 struct riscv_elf_dyn_relocs *next;
64
65 /* The input section of the reloc. */
66 asection *sec;
67
68 /* Total number of relocs copied for the input section. */
69 bfd_size_type count;
70
71 /* Number of pc-relative relocs copied for the input section. */
72 bfd_size_type pc_count;
73};
74
75/* RISC-V ELF linker hash entry. */
76
77struct riscv_elf_link_hash_entry
78{
79 struct elf_link_hash_entry elf;
80
81 /* Track dynamic relocs copied for this symbol. */
82 struct riscv_elf_dyn_relocs *dyn_relocs;
83
84#define GOT_UNKNOWN 0
85#define GOT_NORMAL 1
86#define GOT_TLS_GD 2
87#define GOT_TLS_IE 4
88#define GOT_TLS_LE 8
89 char tls_type;
90};
91
92#define riscv_elf_hash_entry(ent) \
93 ((struct riscv_elf_link_hash_entry *)(ent))
94
95struct _bfd_riscv_elf_obj_tdata
96{
97 struct elf_obj_tdata root;
98
99 /* tls_type for each local got entry. */
100 char *local_got_tls_type;
101};
102
103#define _bfd_riscv_elf_tdata(abfd) \
104 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
105
106#define _bfd_riscv_elf_local_got_tls_type(abfd) \
107 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
108
109#define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
110 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
111 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
112
113#define is_riscv_elf(bfd) \
114 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
115 && elf_tdata (bfd) != NULL \
116 && elf_object_id (bfd) == RISCV_ELF_DATA)
117
118#include "elf/common.h"
119#include "elf/internal.h"
120
121struct riscv_elf_link_hash_table
122{
123 struct elf_link_hash_table elf;
124
125 /* Short-cuts to get to dynamic linker sections. */
126 asection *sdynbss;
127 asection *srelbss;
128 asection *sdyntdata;
129
130 /* Small local sym to section mapping cache. */
131 struct sym_cache sym_cache;
132};
133
134
135/* Get the RISC-V ELF linker hash table from a link_info structure. */
136#define riscv_elf_hash_table(p) \
137 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
138 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
139
140static void
141riscv_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
142 arelent *cache_ptr,
143 Elf_Internal_Rela *dst)
144{
145 cache_ptr->howto = riscv_elf_rtype_to_howto (ELFNN_R_TYPE (dst->r_info));
146}
147
148static void
149riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
150{
151 const struct elf_backend_data *bed;
152 bfd_byte *loc;
153
154 bed = get_elf_backend_data (abfd);
155 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
156 bed->s->swap_reloca_out (abfd, rel, loc);
157}
158
159/* PLT/GOT stuff. */
160
161#define PLT_HEADER_INSNS 8
162#define PLT_ENTRY_INSNS 4
163#define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
164#define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
165
166#define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
167
168#define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
169
170#define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
171
172static bfd_vma
173riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
174{
175 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
176 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
177}
178
179#if ARCH_SIZE == 32
180# define MATCH_LREG MATCH_LW
181#else
182# define MATCH_LREG MATCH_LD
183#endif
184
185/* Generate a PLT header. */
186
187static void
188riscv_make_plt_header (bfd_vma gotplt_addr, bfd_vma addr, uint32_t *entry)
189{
190 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
191 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
192
193 /* auipc t2, %hi(.got.plt)
194 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
195 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
196 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
197 addi t0, t2, %lo(.got.plt) # &.got.plt
198 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
199 l[w|d] t0, PTRSIZE(t0) # link map
200 jr t3 */
201
202 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
203 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
204 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
205 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
206 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
207 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
208 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
209 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
210}
211
212/* Generate a PLT entry. */
213
214static void
215riscv_make_plt_entry (bfd_vma got, bfd_vma addr, uint32_t *entry)
216{
217 /* auipc t3, %hi(.got.plt entry)
218 l[w|d] t3, %lo(.got.plt entry)(t3)
219 jalr t1, t3
220 nop */
221
222 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
1d65abb5 223 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
e23eba97
NC
224 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
225 entry[3] = RISCV_NOP;
226}
227
228/* Create an entry in an RISC-V ELF linker hash table. */
229
230static struct bfd_hash_entry *
231link_hash_newfunc (struct bfd_hash_entry *entry,
232 struct bfd_hash_table *table, const char *string)
233{
234 /* Allocate the structure if it has not already been allocated by a
235 subclass. */
236 if (entry == NULL)
237 {
238 entry =
239 bfd_hash_allocate (table,
240 sizeof (struct riscv_elf_link_hash_entry));
241 if (entry == NULL)
242 return entry;
243 }
244
245 /* Call the allocation method of the superclass. */
246 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
247 if (entry != NULL)
248 {
249 struct riscv_elf_link_hash_entry *eh;
250
251 eh = (struct riscv_elf_link_hash_entry *) entry;
252 eh->dyn_relocs = NULL;
253 eh->tls_type = GOT_UNKNOWN;
254 }
255
256 return entry;
257}
258
259/* Create a RISC-V ELF linker hash table. */
260
261static struct bfd_link_hash_table *
262riscv_elf_link_hash_table_create (bfd *abfd)
263{
264 struct riscv_elf_link_hash_table *ret;
265 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
266
267 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
268 if (ret == NULL)
269 return NULL;
270
271 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
272 sizeof (struct riscv_elf_link_hash_entry),
273 RISCV_ELF_DATA))
274 {
275 free (ret);
276 return NULL;
277 }
278
279 return &ret->elf.root;
280}
281
282/* Create the .got section. */
283
284static bfd_boolean
285riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
286{
287 flagword flags;
288 asection *s, *s_got;
289 struct elf_link_hash_entry *h;
290 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
291 struct elf_link_hash_table *htab = elf_hash_table (info);
292
293 /* This function may be called more than once. */
ce558b89 294 if (htab->sgot != NULL)
e23eba97
NC
295 return TRUE;
296
297 flags = bed->dynamic_sec_flags;
298
299 s = bfd_make_section_anyway_with_flags (abfd,
300 (bed->rela_plts_and_copies_p
301 ? ".rela.got" : ".rel.got"),
302 (bed->dynamic_sec_flags
303 | SEC_READONLY));
304 if (s == NULL
305 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
306 return FALSE;
307 htab->srelgot = s;
308
309 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
310 if (s == NULL
311 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
312 return FALSE;
313 htab->sgot = s;
314
315 /* The first bit of the global offset table is the header. */
316 s->size += bed->got_header_size;
317
318 if (bed->want_got_plt)
319 {
320 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
321 if (s == NULL
322 || !bfd_set_section_alignment (abfd, s,
323 bed->s->log_file_align))
324 return FALSE;
325 htab->sgotplt = s;
326
327 /* Reserve room for the header. */
328 s->size += GOTPLT_HEADER_SIZE;
329 }
330
331 if (bed->want_got_sym)
332 {
333 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
334 section. We don't do this in the linker script because we don't want
335 to define the symbol if we are not creating a global offset
336 table. */
337 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
338 "_GLOBAL_OFFSET_TABLE_");
339 elf_hash_table (info)->hgot = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 return TRUE;
345}
346
347/* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
348 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
349 hash table. */
350
351static bfd_boolean
352riscv_elf_create_dynamic_sections (bfd *dynobj,
353 struct bfd_link_info *info)
354{
355 struct riscv_elf_link_hash_table *htab;
356
357 htab = riscv_elf_hash_table (info);
358 BFD_ASSERT (htab != NULL);
359
360 if (!riscv_elf_create_got_section (dynobj, info))
361 return FALSE;
362
363 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
364 return FALSE;
365
366 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
367 if (!bfd_link_pic (info))
368 {
369 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
370 htab->sdyntdata =
371 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
372 SEC_ALLOC | SEC_THREAD_LOCAL);
373 }
374
375 if (!htab->elf.splt || !htab->elf.srelplt || !htab->sdynbss
376 || (!bfd_link_pic (info) && (!htab->srelbss || !htab->sdyntdata)))
377 abort ();
378
379 return TRUE;
380}
381
382/* Copy the extra info we tack onto an elf_link_hash_entry. */
383
384static void
385riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
386 struct elf_link_hash_entry *dir,
387 struct elf_link_hash_entry *ind)
388{
389 struct riscv_elf_link_hash_entry *edir, *eind;
390
391 edir = (struct riscv_elf_link_hash_entry *) dir;
392 eind = (struct riscv_elf_link_hash_entry *) ind;
393
394 if (eind->dyn_relocs != NULL)
395 {
396 if (edir->dyn_relocs != NULL)
397 {
398 struct riscv_elf_dyn_relocs **pp;
399 struct riscv_elf_dyn_relocs *p;
400
401 /* Add reloc counts against the indirect sym to the direct sym
402 list. Merge any entries against the same section. */
403 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
404 {
405 struct riscv_elf_dyn_relocs *q;
406
407 for (q = edir->dyn_relocs; q != NULL; q = q->next)
408 if (q->sec == p->sec)
409 {
410 q->pc_count += p->pc_count;
411 q->count += p->count;
412 *pp = p->next;
413 break;
414 }
415 if (q == NULL)
416 pp = &p->next;
417 }
418 *pp = edir->dyn_relocs;
419 }
420
421 edir->dyn_relocs = eind->dyn_relocs;
422 eind->dyn_relocs = NULL;
423 }
424
425 if (ind->root.type == bfd_link_hash_indirect
426 && dir->got.refcount <= 0)
427 {
428 edir->tls_type = eind->tls_type;
429 eind->tls_type = GOT_UNKNOWN;
430 }
431 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
432}
433
434static bfd_boolean
435riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
436 unsigned long symndx, char tls_type)
437{
438 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
439
440 *new_tls_type |= tls_type;
441 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
442 {
443 (*_bfd_error_handler)
444 (_("%B: `%s' accessed both as normal and thread local symbol"),
445 abfd, h ? h->root.root.string : "<local>");
446 return FALSE;
447 }
448 return TRUE;
449}
450
451static bfd_boolean
452riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
453 struct elf_link_hash_entry *h, long symndx)
454{
455 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
456 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
457
458 if (htab->elf.sgot == NULL)
459 {
460 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
461 return FALSE;
462 }
463
464 if (h != NULL)
465 {
466 h->got.refcount += 1;
467 return TRUE;
468 }
469
470 /* This is a global offset table entry for a local symbol. */
471 if (elf_local_got_refcounts (abfd) == NULL)
472 {
473 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
474 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
475 return FALSE;
476 _bfd_riscv_elf_local_got_tls_type (abfd)
477 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
478 }
479 elf_local_got_refcounts (abfd) [symndx] += 1;
480
481 return TRUE;
482}
483
484static bfd_boolean
485bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
486{
487 (*_bfd_error_handler)
488 (_("%B: relocation %s against `%s' can not be used when making a shared "
489 "object; recompile with -fPIC"),
490 abfd, riscv_elf_rtype_to_howto (r_type)->name,
491 h != NULL ? h->root.root.string : "a local symbol");
492 bfd_set_error (bfd_error_bad_value);
493 return FALSE;
494}
495/* Look through the relocs for a section during the first phase, and
496 allocate space in the global offset table or procedure linkage
497 table. */
498
499static bfd_boolean
500riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
501 asection *sec, const Elf_Internal_Rela *relocs)
502{
503 struct riscv_elf_link_hash_table *htab;
504 Elf_Internal_Shdr *symtab_hdr;
505 struct elf_link_hash_entry **sym_hashes;
506 const Elf_Internal_Rela *rel;
507 asection *sreloc = NULL;
508
509 if (bfd_link_relocatable (info))
510 return TRUE;
511
512 htab = riscv_elf_hash_table (info);
513 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
514 sym_hashes = elf_sym_hashes (abfd);
515
516 if (htab->elf.dynobj == NULL)
517 htab->elf.dynobj = abfd;
518
519 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
520 {
521 unsigned int r_type;
522 unsigned long r_symndx;
523 struct elf_link_hash_entry *h;
524
525 r_symndx = ELFNN_R_SYM (rel->r_info);
526 r_type = ELFNN_R_TYPE (rel->r_info);
527
528 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
529 {
530 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
531 abfd, r_symndx);
532 return FALSE;
533 }
534
535 if (r_symndx < symtab_hdr->sh_info)
536 h = NULL;
537 else
538 {
539 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
540 while (h->root.type == bfd_link_hash_indirect
541 || h->root.type == bfd_link_hash_warning)
542 h = (struct elf_link_hash_entry *) h->root.u.i.link;
543
544 /* PR15323, ref flags aren't set for references in the same
545 object. */
546 h->root.non_ir_ref = 1;
547 }
548
549 switch (r_type)
550 {
551 case R_RISCV_TLS_GD_HI20:
552 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
553 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
554 return FALSE;
555 break;
556
557 case R_RISCV_TLS_GOT_HI20:
558 if (bfd_link_pic (info))
559 info->flags |= DF_STATIC_TLS;
560 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
561 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
562 return FALSE;
563 break;
564
565 case R_RISCV_GOT_HI20:
566 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
567 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
568 return FALSE;
569 break;
570
571 case R_RISCV_CALL_PLT:
572 /* This symbol requires a procedure linkage table entry. We
573 actually build the entry in adjust_dynamic_symbol,
574 because this might be a case of linking PIC code without
575 linking in any dynamic objects, in which case we don't
576 need to generate a procedure linkage table after all. */
577
578 if (h != NULL)
579 {
580 h->needs_plt = 1;
581 h->plt.refcount += 1;
582 }
583 break;
584
585 case R_RISCV_CALL:
586 case R_RISCV_JAL:
587 case R_RISCV_BRANCH:
588 case R_RISCV_RVC_BRANCH:
589 case R_RISCV_RVC_JUMP:
590 case R_RISCV_PCREL_HI20:
591 /* In shared libraries, these relocs are known to bind locally. */
592 if (bfd_link_pic (info))
593 break;
594 goto static_reloc;
595
596 case R_RISCV_TPREL_HI20:
597 if (!bfd_link_executable (info))
598 return bad_static_reloc (abfd, r_type, h);
599 if (h != NULL)
600 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
601 goto static_reloc;
602
603 case R_RISCV_HI20:
604 if (bfd_link_pic (info))
605 return bad_static_reloc (abfd, r_type, h);
606 /* Fall through. */
607
608 case R_RISCV_COPY:
609 case R_RISCV_JUMP_SLOT:
610 case R_RISCV_RELATIVE:
611 case R_RISCV_64:
612 case R_RISCV_32:
613 /* Fall through. */
614
615 static_reloc:
616 /* This reloc might not bind locally. */
617 if (h != NULL)
618 h->non_got_ref = 1;
619
620 if (h != NULL && !bfd_link_pic (info))
621 {
622 /* We may need a .plt entry if the function this reloc
623 refers to is in a shared lib. */
624 h->plt.refcount += 1;
625 }
626
627 /* If we are creating a shared library, and this is a reloc
628 against a global symbol, or a non PC relative reloc
629 against a local symbol, then we need to copy the reloc
630 into the shared library. However, if we are linking with
631 -Bsymbolic, we do not need to copy a reloc against a
632 global symbol which is defined in an object we are
633 including in the link (i.e., DEF_REGULAR is set). At
634 this point we have not seen all the input files, so it is
635 possible that DEF_REGULAR is not set now but will be set
636 later (it is never cleared). In case of a weak definition,
637 DEF_REGULAR may be cleared later by a strong definition in
638 a shared library. We account for that possibility below by
639 storing information in the relocs_copied field of the hash
640 table entry. A similar situation occurs when creating
641 shared libraries and symbol visibility changes render the
642 symbol local.
643
644 If on the other hand, we are creating an executable, we
645 may need to keep relocations for symbols satisfied by a
646 dynamic library if we manage to avoid copy relocs for the
647 symbol. */
648 if ((bfd_link_pic (info)
649 && (sec->flags & SEC_ALLOC) != 0
650 && (! riscv_elf_rtype_to_howto (r_type)->pc_relative
651 || (h != NULL
652 && (! info->symbolic
653 || h->root.type == bfd_link_hash_defweak
654 || !h->def_regular))))
655 || (!bfd_link_pic (info)
656 && (sec->flags & SEC_ALLOC) != 0
657 && h != NULL
658 && (h->root.type == bfd_link_hash_defweak
659 || !h->def_regular)))
660 {
661 struct riscv_elf_dyn_relocs *p;
662 struct riscv_elf_dyn_relocs **head;
663
664 /* When creating a shared object, we must copy these
665 relocs into the output file. We create a reloc
666 section in dynobj and make room for the reloc. */
667 if (sreloc == NULL)
668 {
669 sreloc = _bfd_elf_make_dynamic_reloc_section
670 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
671 abfd, /*rela?*/ TRUE);
672
673 if (sreloc == NULL)
674 return FALSE;
675 }
676
677 /* If this is a global symbol, we count the number of
678 relocations we need for this symbol. */
679 if (h != NULL)
680 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
681 else
682 {
683 /* Track dynamic relocs needed for local syms too.
684 We really need local syms available to do this
685 easily. Oh well. */
686
687 asection *s;
688 void *vpp;
689 Elf_Internal_Sym *isym;
690
691 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
692 abfd, r_symndx);
693 if (isym == NULL)
694 return FALSE;
695
696 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
697 if (s == NULL)
698 s = sec;
699
700 vpp = &elf_section_data (s)->local_dynrel;
701 head = (struct riscv_elf_dyn_relocs **) vpp;
702 }
703
704 p = *head;
705 if (p == NULL || p->sec != sec)
706 {
707 bfd_size_type amt = sizeof *p;
708 p = ((struct riscv_elf_dyn_relocs *)
709 bfd_alloc (htab->elf.dynobj, amt));
710 if (p == NULL)
711 return FALSE;
712 p->next = *head;
713 *head = p;
714 p->sec = sec;
715 p->count = 0;
716 p->pc_count = 0;
717 }
718
719 p->count += 1;
720 p->pc_count += riscv_elf_rtype_to_howto (r_type)->pc_relative;
721 }
722
723 break;
724
725 case R_RISCV_GNU_VTINHERIT:
726 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
727 return FALSE;
728 break;
729
730 case R_RISCV_GNU_VTENTRY:
731 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
732 return FALSE;
733 break;
734
735 default:
736 break;
737 }
738 }
739
740 return TRUE;
741}
742
743static asection *
744riscv_elf_gc_mark_hook (asection *sec,
745 struct bfd_link_info *info,
746 Elf_Internal_Rela *rel,
747 struct elf_link_hash_entry *h,
748 Elf_Internal_Sym *sym)
749{
750 if (h != NULL)
751 switch (ELFNN_R_TYPE (rel->r_info))
752 {
753 case R_RISCV_GNU_VTINHERIT:
754 case R_RISCV_GNU_VTENTRY:
755 return NULL;
756 }
757
758 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
759}
760
761/* Update the got entry reference counts for the section being removed. */
762
763static bfd_boolean
764riscv_elf_gc_sweep_hook (bfd *abfd,
765 struct bfd_link_info *info,
766 asection *sec,
767 const Elf_Internal_Rela *relocs)
768{
769 const Elf_Internal_Rela *rel, *relend;
770 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
771 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
772 bfd_signed_vma *local_got_refcounts = elf_local_got_refcounts (abfd);
773
774 if (bfd_link_relocatable (info))
775 return TRUE;
776
777 elf_section_data (sec)->local_dynrel = NULL;
778
779 for (rel = relocs, relend = relocs + sec->reloc_count; rel < relend; rel++)
780 {
781 unsigned long r_symndx;
782 struct elf_link_hash_entry *h = NULL;
783
784 r_symndx = ELFNN_R_SYM (rel->r_info);
785 if (r_symndx >= symtab_hdr->sh_info)
786 {
787 struct riscv_elf_link_hash_entry *eh;
788 struct riscv_elf_dyn_relocs **pp;
789 struct riscv_elf_dyn_relocs *p;
790
791 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
792 while (h->root.type == bfd_link_hash_indirect
793 || h->root.type == bfd_link_hash_warning)
794 h = (struct elf_link_hash_entry *) h->root.u.i.link;
795 eh = (struct riscv_elf_link_hash_entry *) h;
796 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
797 if (p->sec == sec)
798 {
799 /* Everything must go for SEC. */
800 *pp = p->next;
801 break;
802 }
803 }
804
805 switch (ELFNN_R_TYPE (rel->r_info))
806 {
807 case R_RISCV_GOT_HI20:
808 case R_RISCV_TLS_GOT_HI20:
809 case R_RISCV_TLS_GD_HI20:
810 if (h != NULL)
811 {
812 if (h->got.refcount > 0)
813 h->got.refcount--;
814 }
815 else
816 {
817 if (local_got_refcounts &&
818 local_got_refcounts[r_symndx] > 0)
819 local_got_refcounts[r_symndx]--;
820 }
821 break;
822
823 case R_RISCV_HI20:
824 case R_RISCV_PCREL_HI20:
825 case R_RISCV_COPY:
826 case R_RISCV_JUMP_SLOT:
827 case R_RISCV_RELATIVE:
828 case R_RISCV_64:
829 case R_RISCV_32:
830 case R_RISCV_BRANCH:
831 case R_RISCV_CALL:
832 case R_RISCV_JAL:
833 case R_RISCV_RVC_BRANCH:
834 case R_RISCV_RVC_JUMP:
835 if (bfd_link_pic (info))
836 break;
837 /* Fall through. */
838
839 case R_RISCV_CALL_PLT:
840 if (h != NULL)
841 {
842 if (h->plt.refcount > 0)
843 h->plt.refcount--;
844 }
845 break;
846
847 default:
848 break;
849 }
850 }
851
852 return TRUE;
853}
854
855/* Adjust a symbol defined by a dynamic object and referenced by a
856 regular object. The current definition is in some section of the
857 dynamic object, but we're not including those sections. We have to
858 change the definition to something the rest of the link can
859 understand. */
860
861static bfd_boolean
862riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
863 struct elf_link_hash_entry *h)
864{
865 struct riscv_elf_link_hash_table *htab;
866 struct riscv_elf_link_hash_entry * eh;
867 struct riscv_elf_dyn_relocs *p;
868 bfd *dynobj;
869 asection *s;
870
871 htab = riscv_elf_hash_table (info);
872 BFD_ASSERT (htab != NULL);
873
874 dynobj = htab->elf.dynobj;
875
876 /* Make sure we know what is going on here. */
877 BFD_ASSERT (dynobj != NULL
878 && (h->needs_plt
879 || h->type == STT_GNU_IFUNC
880 || h->u.weakdef != NULL
881 || (h->def_dynamic
882 && h->ref_regular
883 && !h->def_regular)));
884
885 /* If this is a function, put it in the procedure linkage table. We
886 will fill in the contents of the procedure linkage table later
887 (although we could actually do it here). */
888 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
889 {
890 if (h->plt.refcount <= 0
891 || SYMBOL_CALLS_LOCAL (info, h)
892 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
893 && h->root.type == bfd_link_hash_undefweak))
894 {
895 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
896 input file, but the symbol was never referred to by a dynamic
897 object, or if all references were garbage collected. In such
898 a case, we don't actually need to build a PLT entry. */
899 h->plt.offset = (bfd_vma) -1;
900 h->needs_plt = 0;
901 }
902
903 return TRUE;
904 }
905 else
906 h->plt.offset = (bfd_vma) -1;
907
908 /* If this is a weak symbol, and there is a real definition, the
909 processor independent code will have arranged for us to see the
910 real definition first, and we can just use the same value. */
911 if (h->u.weakdef != NULL)
912 {
913 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
914 || h->u.weakdef->root.type == bfd_link_hash_defweak);
915 h->root.u.def.section = h->u.weakdef->root.u.def.section;
916 h->root.u.def.value = h->u.weakdef->root.u.def.value;
917 return TRUE;
918 }
919
920 /* This is a reference to a symbol defined by a dynamic object which
921 is not a function. */
922
923 /* If we are creating a shared library, we must presume that the
924 only references to the symbol are via the global offset table.
925 For such cases we need not do anything here; the relocations will
926 be handled correctly by relocate_section. */
927 if (bfd_link_pic (info))
928 return TRUE;
929
930 /* If there are no references to this symbol that do not use the
931 GOT, we don't need to generate a copy reloc. */
932 if (!h->non_got_ref)
933 return TRUE;
934
935 /* If -z nocopyreloc was given, we won't generate them either. */
936 if (info->nocopyreloc)
937 {
938 h->non_got_ref = 0;
939 return TRUE;
940 }
941
942 eh = (struct riscv_elf_link_hash_entry *) h;
943 for (p = eh->dyn_relocs; p != NULL; p = p->next)
944 {
945 s = p->sec->output_section;
946 if (s != NULL && (s->flags & SEC_READONLY) != 0)
947 break;
948 }
949
950 /* If we didn't find any dynamic relocs in read-only sections, then
951 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
952 if (p == NULL)
953 {
954 h->non_got_ref = 0;
955 return TRUE;
956 }
957
958 /* We must allocate the symbol in our .dynbss section, which will
959 become part of the .bss section of the executable. There will be
960 an entry for this symbol in the .dynsym section. The dynamic
961 object will contain position independent code, so all references
962 from the dynamic object to this symbol will go through the global
963 offset table. The dynamic linker will use the .dynsym entry to
964 determine the address it must put in the global offset table, so
965 both the dynamic object and the regular object will refer to the
966 same memory location for the variable. */
967
968 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
969 to copy the initial value out of the dynamic object and into the
970 runtime process image. We need to remember the offset into the
971 .rel.bss section we are going to use. */
972 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
973 {
974 htab->srelbss->size += sizeof (ElfNN_External_Rela);
975 h->needs_copy = 1;
976 }
977
978 if (eh->tls_type & ~GOT_NORMAL)
979 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdyntdata);
980
981 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
982}
983
984/* Allocate space in .plt, .got and associated reloc sections for
985 dynamic relocs. */
986
987static bfd_boolean
988allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
989{
990 struct bfd_link_info *info;
991 struct riscv_elf_link_hash_table *htab;
992 struct riscv_elf_link_hash_entry *eh;
993 struct riscv_elf_dyn_relocs *p;
994
995 if (h->root.type == bfd_link_hash_indirect)
996 return TRUE;
997
998 info = (struct bfd_link_info *) inf;
999 htab = riscv_elf_hash_table (info);
1000 BFD_ASSERT (htab != NULL);
1001
1002 if (htab->elf.dynamic_sections_created
1003 && h->plt.refcount > 0)
1004 {
1005 /* Make sure this symbol is output as a dynamic symbol.
1006 Undefined weak syms won't yet be marked as dynamic. */
1007 if (h->dynindx == -1
1008 && !h->forced_local)
1009 {
1010 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1011 return FALSE;
1012 }
1013
1014 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
1015 {
1016 asection *s = htab->elf.splt;
1017
1018 if (s->size == 0)
1019 s->size = PLT_HEADER_SIZE;
1020
1021 h->plt.offset = s->size;
1022
1023 /* Make room for this entry. */
1024 s->size += PLT_ENTRY_SIZE;
1025
1026 /* We also need to make an entry in the .got.plt section. */
1027 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
1028
1029 /* We also need to make an entry in the .rela.plt section. */
1030 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
1031
1032 /* If this symbol is not defined in a regular file, and we are
1033 not generating a shared library, then set the symbol to this
1034 location in the .plt. This is required to make function
1035 pointers compare as equal between the normal executable and
1036 the shared library. */
1037 if (! bfd_link_pic (info)
1038 && !h->def_regular)
1039 {
1040 h->root.u.def.section = s;
1041 h->root.u.def.value = h->plt.offset;
1042 }
1043 }
1044 else
1045 {
1046 h->plt.offset = (bfd_vma) -1;
1047 h->needs_plt = 0;
1048 }
1049 }
1050 else
1051 {
1052 h->plt.offset = (bfd_vma) -1;
1053 h->needs_plt = 0;
1054 }
1055
1056 if (h->got.refcount > 0)
1057 {
1058 asection *s;
1059 bfd_boolean dyn;
1060 int tls_type = riscv_elf_hash_entry (h)->tls_type;
1061
1062 /* Make sure this symbol is output as a dynamic symbol.
1063 Undefined weak syms won't yet be marked as dynamic. */
1064 if (h->dynindx == -1
1065 && !h->forced_local)
1066 {
1067 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1068 return FALSE;
1069 }
1070
1071 s = htab->elf.sgot;
1072 h->got.offset = s->size;
1073 dyn = htab->elf.dynamic_sections_created;
1074 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
1075 {
1076 /* TLS_GD needs two dynamic relocs and two GOT slots. */
1077 if (tls_type & GOT_TLS_GD)
1078 {
1079 s->size += 2 * RISCV_ELF_WORD_BYTES;
1080 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
1081 }
1082
1083 /* TLS_IE needs one dynamic reloc and one GOT slot. */
1084 if (tls_type & GOT_TLS_IE)
1085 {
1086 s->size += RISCV_ELF_WORD_BYTES;
1087 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1088 }
1089 }
1090 else
1091 {
1092 s->size += RISCV_ELF_WORD_BYTES;
1093 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h))
1094 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1095 }
1096 }
1097 else
1098 h->got.offset = (bfd_vma) -1;
1099
1100 eh = (struct riscv_elf_link_hash_entry *) h;
1101 if (eh->dyn_relocs == NULL)
1102 return TRUE;
1103
1104 /* In the shared -Bsymbolic case, discard space allocated for
1105 dynamic pc-relative relocs against symbols which turn out to be
1106 defined in regular objects. For the normal shared case, discard
1107 space for pc-relative relocs that have become local due to symbol
1108 visibility changes. */
1109
1110 if (bfd_link_pic (info))
1111 {
1112 if (SYMBOL_CALLS_LOCAL (info, h))
1113 {
1114 struct riscv_elf_dyn_relocs **pp;
1115
1116 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1117 {
1118 p->count -= p->pc_count;
1119 p->pc_count = 0;
1120 if (p->count == 0)
1121 *pp = p->next;
1122 else
1123 pp = &p->next;
1124 }
1125 }
1126
1127 /* Also discard relocs on undefined weak syms with non-default
1128 visibility. */
1129 if (eh->dyn_relocs != NULL
1130 && h->root.type == bfd_link_hash_undefweak)
1131 {
1132 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1133 eh->dyn_relocs = NULL;
1134
1135 /* Make sure undefined weak symbols are output as a dynamic
1136 symbol in PIEs. */
1137 else if (h->dynindx == -1
1138 && !h->forced_local)
1139 {
1140 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1141 return FALSE;
1142 }
1143 }
1144 }
1145 else
1146 {
1147 /* For the non-shared case, discard space for relocs against
1148 symbols which turn out to need copy relocs or are not
1149 dynamic. */
1150
1151 if (!h->non_got_ref
1152 && ((h->def_dynamic
1153 && !h->def_regular)
1154 || (htab->elf.dynamic_sections_created
1155 && (h->root.type == bfd_link_hash_undefweak
1156 || h->root.type == bfd_link_hash_undefined))))
1157 {
1158 /* Make sure this symbol is output as a dynamic symbol.
1159 Undefined weak syms won't yet be marked as dynamic. */
1160 if (h->dynindx == -1
1161 && !h->forced_local)
1162 {
1163 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1164 return FALSE;
1165 }
1166
1167 /* If that succeeded, we know we'll be keeping all the
1168 relocs. */
1169 if (h->dynindx != -1)
1170 goto keep;
1171 }
1172
1173 eh->dyn_relocs = NULL;
1174
1175 keep: ;
1176 }
1177
1178 /* Finally, allocate space. */
1179 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1180 {
1181 asection *sreloc = elf_section_data (p->sec)->sreloc;
1182 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1183 }
1184
1185 return TRUE;
1186}
1187
1188/* Find any dynamic relocs that apply to read-only sections. */
1189
1190static bfd_boolean
1191readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1192{
1193 struct riscv_elf_link_hash_entry *eh;
1194 struct riscv_elf_dyn_relocs *p;
1195
1196 eh = (struct riscv_elf_link_hash_entry *) h;
1197 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1198 {
1199 asection *s = p->sec->output_section;
1200
1201 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1202 {
1203 ((struct bfd_link_info *) inf)->flags |= DF_TEXTREL;
1204 return FALSE;
1205 }
1206 }
1207 return TRUE;
1208}
1209
1210static bfd_boolean
1211riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1212{
1213 struct riscv_elf_link_hash_table *htab;
1214 bfd *dynobj;
1215 asection *s;
1216 bfd *ibfd;
1217
1218 htab = riscv_elf_hash_table (info);
1219 BFD_ASSERT (htab != NULL);
1220 dynobj = htab->elf.dynobj;
1221 BFD_ASSERT (dynobj != NULL);
1222
1223 if (elf_hash_table (info)->dynamic_sections_created)
1224 {
1225 /* Set the contents of the .interp section to the interpreter. */
1226 if (bfd_link_executable (info) && !info->nointerp)
1227 {
1228 s = bfd_get_linker_section (dynobj, ".interp");
1229 BFD_ASSERT (s != NULL);
1230 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1231 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1232 }
1233 }
1234
1235 /* Set up .got offsets for local syms, and space for local dynamic
1236 relocs. */
1237 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1238 {
1239 bfd_signed_vma *local_got;
1240 bfd_signed_vma *end_local_got;
1241 char *local_tls_type;
1242 bfd_size_type locsymcount;
1243 Elf_Internal_Shdr *symtab_hdr;
1244 asection *srel;
1245
1246 if (! is_riscv_elf (ibfd))
1247 continue;
1248
1249 for (s = ibfd->sections; s != NULL; s = s->next)
1250 {
1251 struct riscv_elf_dyn_relocs *p;
1252
1253 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1254 {
1255 if (!bfd_is_abs_section (p->sec)
1256 && bfd_is_abs_section (p->sec->output_section))
1257 {
1258 /* Input section has been discarded, either because
1259 it is a copy of a linkonce section or due to
1260 linker script /DISCARD/, so we'll be discarding
1261 the relocs too. */
1262 }
1263 else if (p->count != 0)
1264 {
1265 srel = elf_section_data (p->sec)->sreloc;
1266 srel->size += p->count * sizeof (ElfNN_External_Rela);
1267 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1268 info->flags |= DF_TEXTREL;
1269 }
1270 }
1271 }
1272
1273 local_got = elf_local_got_refcounts (ibfd);
1274 if (!local_got)
1275 continue;
1276
1277 symtab_hdr = &elf_symtab_hdr (ibfd);
1278 locsymcount = symtab_hdr->sh_info;
1279 end_local_got = local_got + locsymcount;
1280 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1281 s = htab->elf.sgot;
1282 srel = htab->elf.srelgot;
1283 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1284 {
1285 if (*local_got > 0)
1286 {
1287 *local_got = s->size;
1288 s->size += RISCV_ELF_WORD_BYTES;
1289 if (*local_tls_type & GOT_TLS_GD)
1290 s->size += RISCV_ELF_WORD_BYTES;
1291 if (bfd_link_pic (info)
1292 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1293 srel->size += sizeof (ElfNN_External_Rela);
1294 }
1295 else
1296 *local_got = (bfd_vma) -1;
1297 }
1298 }
1299
1300 /* Allocate global sym .plt and .got entries, and space for global
1301 sym dynamic relocs. */
1302 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1303
1304 if (htab->elf.sgotplt)
1305 {
1306 struct elf_link_hash_entry *got;
1307 got = elf_link_hash_lookup (elf_hash_table (info),
1308 "_GLOBAL_OFFSET_TABLE_",
1309 FALSE, FALSE, FALSE);
1310
1311 /* Don't allocate .got.plt section if there are no GOT nor PLT
1312 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1313 if ((got == NULL
1314 || !got->ref_regular_nonweak)
1315 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1316 && (htab->elf.splt == NULL
1317 || htab->elf.splt->size == 0)
1318 && (htab->elf.sgot == NULL
1319 || (htab->elf.sgot->size
1320 == get_elf_backend_data (output_bfd)->got_header_size)))
1321 htab->elf.sgotplt->size = 0;
1322 }
1323
1324 /* The check_relocs and adjust_dynamic_symbol entry points have
1325 determined the sizes of the various dynamic sections. Allocate
1326 memory for them. */
1327 for (s = dynobj->sections; s != NULL; s = s->next)
1328 {
1329 if ((s->flags & SEC_LINKER_CREATED) == 0)
1330 continue;
1331
1332 if (s == htab->elf.splt
1333 || s == htab->elf.sgot
1334 || s == htab->elf.sgotplt
1335 || s == htab->sdynbss)
1336 {
1337 /* Strip this section if we don't need it; see the
1338 comment below. */
1339 }
1340 else if (strncmp (s->name, ".rela", 5) == 0)
1341 {
1342 if (s->size != 0)
1343 {
1344 /* We use the reloc_count field as a counter if we need
1345 to copy relocs into the output file. */
1346 s->reloc_count = 0;
1347 }
1348 }
1349 else
1350 {
1351 /* It's not one of our sections. */
1352 continue;
1353 }
1354
1355 if (s->size == 0)
1356 {
1357 /* If we don't need this section, strip it from the
1358 output file. This is mostly to handle .rela.bss and
1359 .rela.plt. We must create both sections in
1360 create_dynamic_sections, because they must be created
1361 before the linker maps input sections to output
1362 sections. The linker does that before
1363 adjust_dynamic_symbol is called, and it is that
1364 function which decides whether anything needs to go
1365 into these sections. */
1366 s->flags |= SEC_EXCLUDE;
1367 continue;
1368 }
1369
1370 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1371 continue;
1372
1373 /* Allocate memory for the section contents. Zero the memory
1374 for the benefit of .rela.plt, which has 4 unused entries
1375 at the beginning, and we don't want garbage. */
1376 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1377 if (s->contents == NULL)
1378 return FALSE;
1379 }
1380
1381 if (elf_hash_table (info)->dynamic_sections_created)
1382 {
1383 /* Add some entries to the .dynamic section. We fill in the
1384 values later, in riscv_elf_finish_dynamic_sections, but we
1385 must add the entries now so that we get the correct size for
1386 the .dynamic section. The DT_DEBUG entry is filled in by the
1387 dynamic linker and used by the debugger. */
1388#define add_dynamic_entry(TAG, VAL) \
1389 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1390
1391 if (bfd_link_executable (info))
1392 {
1393 if (!add_dynamic_entry (DT_DEBUG, 0))
1394 return FALSE;
1395 }
1396
1397 if (htab->elf.srelplt->size != 0)
1398 {
1399 if (!add_dynamic_entry (DT_PLTGOT, 0)
1400 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1401 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1402 || !add_dynamic_entry (DT_JMPREL, 0))
1403 return FALSE;
1404 }
1405
1406 if (!add_dynamic_entry (DT_RELA, 0)
1407 || !add_dynamic_entry (DT_RELASZ, 0)
1408 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1409 return FALSE;
1410
1411 /* If any dynamic relocs apply to a read-only section,
1412 then we need a DT_TEXTREL entry. */
1413 if ((info->flags & DF_TEXTREL) == 0)
1414 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
1415
1416 if (info->flags & DF_TEXTREL)
1417 {
1418 if (!add_dynamic_entry (DT_TEXTREL, 0))
1419 return FALSE;
1420 }
1421 }
1422#undef add_dynamic_entry
1423
1424 return TRUE;
1425}
1426
1427#define TP_OFFSET 0
1428#define DTP_OFFSET 0x800
1429
1430/* Return the relocation value for a TLS dtp-relative reloc. */
1431
1432static bfd_vma
1433dtpoff (struct bfd_link_info *info, bfd_vma address)
1434{
1435 /* If tls_sec is NULL, we should have signalled an error already. */
1436 if (elf_hash_table (info)->tls_sec == NULL)
1437 return 0;
1438 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1439}
1440
1441/* Return the relocation value for a static TLS tp-relative relocation. */
1442
1443static bfd_vma
1444tpoff (struct bfd_link_info *info, bfd_vma address)
1445{
1446 /* If tls_sec is NULL, we should have signalled an error already. */
1447 if (elf_hash_table (info)->tls_sec == NULL)
1448 return 0;
1449 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1450}
1451
1452/* Return the global pointer's value, or 0 if it is not in use. */
1453
1454static bfd_vma
1455riscv_global_pointer_value (struct bfd_link_info *info)
1456{
1457 struct bfd_link_hash_entry *h;
1458
1459 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
1460 if (h == NULL || h->type != bfd_link_hash_defined)
1461 return 0;
1462
1463 return h->u.def.value + sec_addr (h->u.def.section);
1464}
1465
1466/* Emplace a static relocation. */
1467
1468static bfd_reloc_status_type
1469perform_relocation (const reloc_howto_type *howto,
1470 const Elf_Internal_Rela *rel,
1471 bfd_vma value,
1472 asection *input_section,
1473 bfd *input_bfd,
1474 bfd_byte *contents)
1475{
1476 if (howto->pc_relative)
1477 value -= sec_addr (input_section) + rel->r_offset;
1478 value += rel->r_addend;
1479
1480 switch (ELFNN_R_TYPE (rel->r_info))
1481 {
1482 case R_RISCV_HI20:
1483 case R_RISCV_TPREL_HI20:
1484 case R_RISCV_PCREL_HI20:
1485 case R_RISCV_GOT_HI20:
1486 case R_RISCV_TLS_GOT_HI20:
1487 case R_RISCV_TLS_GD_HI20:
1488 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1489 return bfd_reloc_overflow;
1490 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1491 break;
1492
1493 case R_RISCV_LO12_I:
1494 case R_RISCV_GPREL_I:
1495 case R_RISCV_TPREL_LO12_I:
1496 case R_RISCV_PCREL_LO12_I:
1497 value = ENCODE_ITYPE_IMM (value);
1498 break;
1499
1500 case R_RISCV_LO12_S:
1501 case R_RISCV_GPREL_S:
1502 case R_RISCV_TPREL_LO12_S:
1503 case R_RISCV_PCREL_LO12_S:
1504 value = ENCODE_STYPE_IMM (value);
1505 break;
1506
1507 case R_RISCV_CALL:
1508 case R_RISCV_CALL_PLT:
1509 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1510 return bfd_reloc_overflow;
1511 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1512 | (ENCODE_ITYPE_IMM (value) << 32);
1513 break;
1514
1515 case R_RISCV_JAL:
1516 if (!VALID_UJTYPE_IMM (value))
1517 return bfd_reloc_overflow;
1518 value = ENCODE_UJTYPE_IMM (value);
1519 break;
1520
1521 case R_RISCV_BRANCH:
1522 if (!VALID_SBTYPE_IMM (value))
1523 return bfd_reloc_overflow;
1524 value = ENCODE_SBTYPE_IMM (value);
1525 break;
1526
1527 case R_RISCV_RVC_BRANCH:
1528 if (!VALID_RVC_B_IMM (value))
1529 return bfd_reloc_overflow;
1530 value = ENCODE_RVC_B_IMM (value);
1531 break;
1532
1533 case R_RISCV_RVC_JUMP:
1534 if (!VALID_RVC_J_IMM (value))
1535 return bfd_reloc_overflow;
1536 value = ENCODE_RVC_J_IMM (value);
1537 break;
1538
1539 case R_RISCV_RVC_LUI:
1540 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1541 return bfd_reloc_overflow;
1542 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1543 break;
1544
1545 case R_RISCV_32:
1546 case R_RISCV_64:
1547 case R_RISCV_ADD8:
1548 case R_RISCV_ADD16:
1549 case R_RISCV_ADD32:
1550 case R_RISCV_ADD64:
1551 case R_RISCV_SUB8:
1552 case R_RISCV_SUB16:
1553 case R_RISCV_SUB32:
1554 case R_RISCV_SUB64:
1555 case R_RISCV_TLS_DTPREL32:
1556 case R_RISCV_TLS_DTPREL64:
1557 break;
1558
1559 default:
1560 return bfd_reloc_notsupported;
1561 }
1562
1563 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1564 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1565 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1566
1567 return bfd_reloc_ok;
1568}
1569
1570/* Remember all PC-relative high-part relocs we've encountered to help us
1571 later resolve the corresponding low-part relocs. */
1572
1573typedef struct
1574{
1575 bfd_vma address;
1576 bfd_vma value;
1577} riscv_pcrel_hi_reloc;
1578
1579typedef struct riscv_pcrel_lo_reloc
1580{
1581 asection * input_section;
1582 struct bfd_link_info * info;
1583 reloc_howto_type * howto;
1584 const Elf_Internal_Rela * reloc;
1585 bfd_vma addr;
1586 const char * name;
1587 bfd_byte * contents;
1588 struct riscv_pcrel_lo_reloc * next;
1589} riscv_pcrel_lo_reloc;
1590
1591typedef struct
1592{
1593 htab_t hi_relocs;
1594 riscv_pcrel_lo_reloc *lo_relocs;
1595} riscv_pcrel_relocs;
1596
1597static hashval_t
1598riscv_pcrel_reloc_hash (const void *entry)
1599{
1600 const riscv_pcrel_hi_reloc *e = entry;
1601 return (hashval_t)(e->address >> 2);
1602}
1603
1604static bfd_boolean
1605riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1606{
1607 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1608 return e1->address == e2->address;
1609}
1610
1611static bfd_boolean
1612riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1613{
1614
1615 p->lo_relocs = NULL;
1616 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1617 riscv_pcrel_reloc_eq, free);
1618 return p->hi_relocs != NULL;
1619}
1620
1621static void
1622riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1623{
1624 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1625
1626 while (cur != NULL)
1627 {
1628 riscv_pcrel_lo_reloc *next = cur->next;
1629 free (cur);
1630 cur = next;
1631 }
1632
1633 htab_delete (p->hi_relocs);
1634}
1635
1636static bfd_boolean
1637riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr, bfd_vma value)
1638{
1639 riscv_pcrel_hi_reloc entry = {addr, value - addr};
1640 riscv_pcrel_hi_reloc **slot =
1641 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1642
1643 BFD_ASSERT (*slot == NULL);
1644 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1645 if (*slot == NULL)
1646 return FALSE;
1647 **slot = entry;
1648 return TRUE;
1649}
1650
1651static bfd_boolean
1652riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1653 asection *input_section,
1654 struct bfd_link_info *info,
1655 reloc_howto_type *howto,
1656 const Elf_Internal_Rela *reloc,
1657 bfd_vma addr,
1658 const char *name,
1659 bfd_byte *contents)
1660{
1661 riscv_pcrel_lo_reloc *entry;
1662 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1663 if (entry == NULL)
1664 return FALSE;
1665 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1666 name, contents, p->lo_relocs};
1667 p->lo_relocs = entry;
1668 return TRUE;
1669}
1670
1671static bfd_boolean
1672riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1673{
1674 riscv_pcrel_lo_reloc *r;
1675
1676 for (r = p->lo_relocs; r != NULL; r = r->next)
1677 {
1678 bfd *input_bfd = r->input_section->owner;
1679
1680 riscv_pcrel_hi_reloc search = {r->addr, 0};
1681 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
1682 if (entry == NULL)
1683 {
1684 ((*r->info->callbacks->reloc_overflow)
1685 (r->info, NULL, r->name, r->howto->name, (bfd_vma) 0,
1686 input_bfd, r->input_section, r->reloc->r_offset));
1687 return TRUE;
1688 }
1689
1690 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1691 input_bfd, r->contents);
1692 }
1693
1694 return TRUE;
1695}
1696
1697/* Relocate a RISC-V ELF section.
1698
1699 The RELOCATE_SECTION function is called by the new ELF backend linker
1700 to handle the relocations for a section.
1701
1702 The relocs are always passed as Rela structures.
1703
1704 This function is responsible for adjusting the section contents as
1705 necessary, and (if generating a relocatable output file) adjusting
1706 the reloc addend as necessary.
1707
1708 This function does not have to worry about setting the reloc
1709 address or the reloc symbol index.
1710
1711 LOCAL_SYMS is a pointer to the swapped in local symbols.
1712
1713 LOCAL_SECTIONS is an array giving the section in the input file
1714 corresponding to the st_shndx field of each local symbol.
1715
1716 The global hash table entry for the global symbols can be found
1717 via elf_sym_hashes (input_bfd).
1718
1719 When generating relocatable output, this function must handle
1720 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1721 going to be the section symbol corresponding to the output
1722 section, which means that the addend must be adjusted
1723 accordingly. */
1724
1725static bfd_boolean
1726riscv_elf_relocate_section (bfd *output_bfd,
1727 struct bfd_link_info *info,
1728 bfd *input_bfd,
1729 asection *input_section,
1730 bfd_byte *contents,
1731 Elf_Internal_Rela *relocs,
1732 Elf_Internal_Sym *local_syms,
1733 asection **local_sections)
1734{
1735 Elf_Internal_Rela *rel;
1736 Elf_Internal_Rela *relend;
1737 riscv_pcrel_relocs pcrel_relocs;
1738 bfd_boolean ret = FALSE;
1739 asection *sreloc = elf_section_data (input_section)->sreloc;
1740 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1741 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1742 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1743 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
1744
1745 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1746 return FALSE;
1747
1748 relend = relocs + input_section->reloc_count;
1749 for (rel = relocs; rel < relend; rel++)
1750 {
1751 unsigned long r_symndx;
1752 struct elf_link_hash_entry *h;
1753 Elf_Internal_Sym *sym;
1754 asection *sec;
1755 bfd_vma relocation;
1756 bfd_reloc_status_type r = bfd_reloc_ok;
1757 const char *name;
1758 bfd_vma off, ie_off;
1759 bfd_boolean unresolved_reloc, is_ie = FALSE;
1760 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1761 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
1762 reloc_howto_type *howto = riscv_elf_rtype_to_howto (r_type);
1763 const char *msg = NULL;
1764
1765 if (r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
1766 continue;
1767
1768 /* This is a final link. */
1769 r_symndx = ELFNN_R_SYM (rel->r_info);
1770 h = NULL;
1771 sym = NULL;
1772 sec = NULL;
1773 unresolved_reloc = FALSE;
1774 if (r_symndx < symtab_hdr->sh_info)
1775 {
1776 sym = local_syms + r_symndx;
1777 sec = local_sections[r_symndx];
1778 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1779 }
1780 else
1781 {
1782 bfd_boolean warned, ignored;
1783
1784 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1785 r_symndx, symtab_hdr, sym_hashes,
1786 h, sec, relocation,
1787 unresolved_reloc, warned, ignored);
1788 if (warned)
1789 {
1790 /* To avoid generating warning messages about truncated
1791 relocations, set the relocation's address to be the same as
1792 the start of this section. */
1793 if (input_section->output_section != NULL)
1794 relocation = input_section->output_section->vma;
1795 else
1796 relocation = 0;
1797 }
1798 }
1799
1800 if (sec != NULL && discarded_section (sec))
1801 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1802 rel, 1, relend, howto, 0, contents);
1803
1804 if (bfd_link_relocatable (info))
1805 continue;
1806
1807 if (h != NULL)
1808 name = h->root.root.string;
1809 else
1810 {
1811 name = (bfd_elf_string_from_elf_section
1812 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1813 if (name == NULL || *name == '\0')
1814 name = bfd_section_name (input_bfd, sec);
1815 }
1816
1817 switch (r_type)
1818 {
1819 case R_RISCV_NONE:
1820 case R_RISCV_TPREL_ADD:
1821 case R_RISCV_COPY:
1822 case R_RISCV_JUMP_SLOT:
1823 case R_RISCV_RELATIVE:
1824 /* These require nothing of us at all. */
1825 continue;
1826
1827 case R_RISCV_HI20:
1828 case R_RISCV_BRANCH:
1829 case R_RISCV_RVC_BRANCH:
1830 case R_RISCV_RVC_LUI:
1831 case R_RISCV_LO12_I:
1832 case R_RISCV_LO12_S:
1833 /* These require no special handling beyond perform_relocation. */
1834 break;
1835
1836 case R_RISCV_GOT_HI20:
1837 if (h != NULL)
1838 {
1839 bfd_boolean dyn, pic;
1840
1841 off = h->got.offset;
1842 BFD_ASSERT (off != (bfd_vma) -1);
1843 dyn = elf_hash_table (info)->dynamic_sections_created;
1844 pic = bfd_link_pic (info);
1845
1846 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1847 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1848 {
1849 /* This is actually a static link, or it is a
1850 -Bsymbolic link and the symbol is defined
1851 locally, or the symbol was forced to be local
1852 because of a version file. We must initialize
1853 this entry in the global offset table. Since the
1854 offset must always be a multiple of the word size,
1855 we use the least significant bit to record whether
1856 we have initialized it already.
1857
1858 When doing a dynamic link, we create a .rela.got
1859 relocation entry to initialize the value. This
1860 is done in the finish_dynamic_symbol routine. */
1861 if ((off & 1) != 0)
1862 off &= ~1;
1863 else
1864 {
1865 bfd_put_NN (output_bfd, relocation,
1866 htab->elf.sgot->contents + off);
1867 h->got.offset |= 1;
1868 }
1869 }
1870 else
1871 unresolved_reloc = FALSE;
1872 }
1873 else
1874 {
1875 BFD_ASSERT (local_got_offsets != NULL
1876 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1877
1878 off = local_got_offsets[r_symndx];
1879
1880 /* The offset must always be a multiple of the word size.
1881 So, we can use the least significant bit to record
1882 whether we have already processed this entry. */
1883 if ((off & 1) != 0)
1884 off &= ~1;
1885 else
1886 {
1887 if (bfd_link_pic (info))
1888 {
1889 asection *s;
1890 Elf_Internal_Rela outrel;
1891
1892 /* We need to generate a R_RISCV_RELATIVE reloc
1893 for the dynamic linker. */
1894 s = htab->elf.srelgot;
1895 BFD_ASSERT (s != NULL);
1896
1897 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1898 outrel.r_info =
1899 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1900 outrel.r_addend = relocation;
1901 relocation = 0;
1902 riscv_elf_append_rela (output_bfd, s, &outrel);
1903 }
1904
1905 bfd_put_NN (output_bfd, relocation,
1906 htab->elf.sgot->contents + off);
1907 local_got_offsets[r_symndx] |= 1;
1908 }
1909 }
1910 relocation = sec_addr (htab->elf.sgot) + off;
1911 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, relocation))
1912 r = bfd_reloc_overflow;
1913 break;
1914
1915 case R_RISCV_ADD8:
1916 case R_RISCV_ADD16:
1917 case R_RISCV_ADD32:
1918 case R_RISCV_ADD64:
1919 {
1920 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1921 contents + rel->r_offset);
1922 relocation = old_value + relocation;
1923 }
1924 break;
1925
1926 case R_RISCV_SUB8:
1927 case R_RISCV_SUB16:
1928 case R_RISCV_SUB32:
1929 case R_RISCV_SUB64:
1930 {
1931 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1932 contents + rel->r_offset);
1933 relocation = old_value - relocation;
1934 }
1935 break;
1936
1937 case R_RISCV_CALL_PLT:
1938 case R_RISCV_CALL:
1939 case R_RISCV_JAL:
1940 case R_RISCV_RVC_JUMP:
1941 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
1942 {
1943 /* Refer to the PLT entry. */
1944 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
1945 unresolved_reloc = FALSE;
1946 }
1947 break;
1948
1949 case R_RISCV_TPREL_HI20:
1950 relocation = tpoff (info, relocation);
1951 break;
1952
1953 case R_RISCV_TPREL_LO12_I:
1954 case R_RISCV_TPREL_LO12_S:
1955 relocation = tpoff (info, relocation);
1956 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
1957 {
1958 /* We can use tp as the base register. */
1959 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
1960 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1961 insn |= X_TP << OP_SH_RS1;
1962 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
1963 }
1964 break;
1965
1966 case R_RISCV_GPREL_I:
1967 case R_RISCV_GPREL_S:
1968 {
1969 bfd_vma gp = riscv_global_pointer_value (info);
1970 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
1971 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
1972 {
1973 /* We can use x0 or gp as the base register. */
1974 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
1975 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1976 if (!x0_base)
1977 {
1978 rel->r_addend -= gp;
1979 insn |= X_GP << OP_SH_RS1;
1980 }
1981 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
1982 }
1983 else
1984 r = bfd_reloc_overflow;
1985 break;
1986 }
1987
1988 case R_RISCV_PCREL_HI20:
1989 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1990 relocation + rel->r_addend))
1991 r = bfd_reloc_overflow;
1992 break;
1993
1994 case R_RISCV_PCREL_LO12_I:
1995 case R_RISCV_PCREL_LO12_S:
1996 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
1997 howto, rel, relocation, name,
1998 contents))
1999 continue;
2000 r = bfd_reloc_overflow;
2001 break;
2002
2003 case R_RISCV_TLS_DTPREL32:
2004 case R_RISCV_TLS_DTPREL64:
2005 relocation = dtpoff (info, relocation);
2006 break;
2007
2008 case R_RISCV_32:
2009 case R_RISCV_64:
2010 if ((input_section->flags & SEC_ALLOC) == 0)
2011 break;
2012
2013 if ((bfd_link_pic (info)
2014 && (h == NULL
2015 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2016 || h->root.type != bfd_link_hash_undefweak)
2017 && (! howto->pc_relative
2018 || !SYMBOL_CALLS_LOCAL (info, h)))
2019 || (!bfd_link_pic (info)
2020 && h != NULL
2021 && h->dynindx != -1
2022 && !h->non_got_ref
2023 && ((h->def_dynamic
2024 && !h->def_regular)
2025 || h->root.type == bfd_link_hash_undefweak
2026 || h->root.type == bfd_link_hash_undefined)))
2027 {
2028 Elf_Internal_Rela outrel;
2029 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2030
2031 /* When generating a shared object, these relocations
2032 are copied into the output file to be resolved at run
2033 time. */
2034
2035 outrel.r_offset =
2036 _bfd_elf_section_offset (output_bfd, info, input_section,
2037 rel->r_offset);
2038 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2039 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2040 outrel.r_offset += sec_addr (input_section);
2041
2042 if (skip_dynamic_relocation)
2043 memset (&outrel, 0, sizeof outrel);
2044 else if (h != NULL && h->dynindx != -1
2045 && !(bfd_link_pic (info)
2046 && SYMBOLIC_BIND (info, h)
2047 && h->def_regular))
2048 {
2049 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2050 outrel.r_addend = rel->r_addend;
2051 }
2052 else
2053 {
2054 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2055 outrel.r_addend = relocation + rel->r_addend;
2056 }
2057
2058 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2059 if (skip_static_relocation)
2060 continue;
2061 }
2062 break;
2063
2064 case R_RISCV_TLS_GOT_HI20:
2065 is_ie = TRUE;
2066 /* Fall through. */
2067
2068 case R_RISCV_TLS_GD_HI20:
2069 if (h != NULL)
2070 {
2071 off = h->got.offset;
2072 h->got.offset |= 1;
2073 }
2074 else
2075 {
2076 off = local_got_offsets[r_symndx];
2077 local_got_offsets[r_symndx] |= 1;
2078 }
2079
2080 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2081 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2082 /* If this symbol is referenced by both GD and IE TLS, the IE
2083 reference's GOT slot follows the GD reference's slots. */
2084 ie_off = 0;
2085 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2086 ie_off = 2 * GOT_ENTRY_SIZE;
2087
2088 if ((off & 1) != 0)
2089 off &= ~1;
2090 else
2091 {
2092 Elf_Internal_Rela outrel;
2093 int indx = 0;
2094 bfd_boolean need_relocs = FALSE;
2095
2096 if (htab->elf.srelgot == NULL)
2097 abort ();
2098
2099 if (h != NULL)
2100 {
2101 bfd_boolean dyn, pic;
2102 dyn = htab->elf.dynamic_sections_created;
2103 pic = bfd_link_pic (info);
2104
2105 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2106 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2107 indx = h->dynindx;
2108 }
2109
2110 /* The GOT entries have not been initialized yet. Do it
2111 now, and emit any relocations. */
2112 if ((bfd_link_pic (info) || indx != 0)
2113 && (h == NULL
2114 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2115 || h->root.type != bfd_link_hash_undefweak))
2116 need_relocs = TRUE;
2117
2118 if (tls_type & GOT_TLS_GD)
2119 {
2120 if (need_relocs)
2121 {
2122 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2123 outrel.r_addend = 0;
2124 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2125 bfd_put_NN (output_bfd, 0,
2126 htab->elf.sgot->contents + off);
2127 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2128 if (indx == 0)
2129 {
2130 BFD_ASSERT (! unresolved_reloc);
2131 bfd_put_NN (output_bfd,
2132 dtpoff (info, relocation),
2133 (htab->elf.sgot->contents + off +
2134 RISCV_ELF_WORD_BYTES));
2135 }
2136 else
2137 {
2138 bfd_put_NN (output_bfd, 0,
2139 (htab->elf.sgot->contents + off +
2140 RISCV_ELF_WORD_BYTES));
2141 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2142 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2143 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2144 }
2145 }
2146 else
2147 {
2148 /* If we are not emitting relocations for a
2149 general dynamic reference, then we must be in a
2150 static link or an executable link with the
2151 symbol binding locally. Mark it as belonging
2152 to module 1, the executable. */
2153 bfd_put_NN (output_bfd, 1,
2154 htab->elf.sgot->contents + off);
2155 bfd_put_NN (output_bfd,
2156 dtpoff (info, relocation),
2157 (htab->elf.sgot->contents + off +
2158 RISCV_ELF_WORD_BYTES));
2159 }
2160 }
2161
2162 if (tls_type & GOT_TLS_IE)
2163 {
2164 if (need_relocs)
2165 {
2166 bfd_put_NN (output_bfd, 0,
2167 htab->elf.sgot->contents + off + ie_off);
2168 outrel.r_offset = sec_addr (htab->elf.sgot)
2169 + off + ie_off;
2170 outrel.r_addend = 0;
2171 if (indx == 0)
2172 outrel.r_addend = tpoff (info, relocation);
2173 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2174 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2175 }
2176 else
2177 {
2178 bfd_put_NN (output_bfd, tpoff (info, relocation),
2179 htab->elf.sgot->contents + off + ie_off);
2180 }
2181 }
2182 }
2183
2184 BFD_ASSERT (off < (bfd_vma) -2);
2185 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
2186 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, relocation))
2187 r = bfd_reloc_overflow;
2188 unresolved_reloc = FALSE;
2189 break;
2190
2191 default:
2192 r = bfd_reloc_notsupported;
2193 }
2194
2195 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2196 because such sections are not SEC_ALLOC and thus ld.so will
2197 not process them. */
2198 if (unresolved_reloc
2199 && !((input_section->flags & SEC_DEBUGGING) != 0
2200 && h->def_dynamic)
2201 && _bfd_elf_section_offset (output_bfd, info, input_section,
2202 rel->r_offset) != (bfd_vma) -1)
2203 {
2204 (*_bfd_error_handler)
2205 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2206 input_bfd,
2207 input_section,
2208 (long) rel->r_offset,
2209 howto->name,
2210 h->root.root.string);
2211 continue;
2212 }
2213
2214 if (r == bfd_reloc_ok)
2215 r = perform_relocation (howto, rel, relocation, input_section,
2216 input_bfd, contents);
2217
2218 switch (r)
2219 {
2220 case bfd_reloc_ok:
2221 continue;
2222
2223 case bfd_reloc_overflow:
2224 info->callbacks->reloc_overflow
2225 (info, (h ? &h->root : NULL), name, howto->name,
2226 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2227 break;
2228
2229 case bfd_reloc_undefined:
2230 info->callbacks->undefined_symbol
2231 (info, name, input_bfd, input_section, rel->r_offset,
2232 TRUE);
2233 break;
2234
2235 case bfd_reloc_outofrange:
2236 msg = _("internal error: out of range error");
2237 break;
2238
2239 case bfd_reloc_notsupported:
2240 msg = _("internal error: unsupported relocation error");
2241 break;
2242
2243 case bfd_reloc_dangerous:
2244 msg = _("internal error: dangerous relocation");
2245 break;
2246
2247 default:
2248 msg = _("internal error: unknown error");
2249 break;
2250 }
2251
2252 if (msg)
2253 info->callbacks->warning
2254 (info, msg, name, input_bfd, input_section, rel->r_offset);
2255 goto out;
2256 }
2257
2258 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2259out:
2260 riscv_free_pcrel_relocs (&pcrel_relocs);
2261 return ret;
2262}
2263
2264/* Finish up dynamic symbol handling. We set the contents of various
2265 dynamic sections here. */
2266
2267static bfd_boolean
2268riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2269 struct bfd_link_info *info,
2270 struct elf_link_hash_entry *h,
2271 Elf_Internal_Sym *sym)
2272{
2273 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2274 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2275
2276 if (h->plt.offset != (bfd_vma) -1)
2277 {
2278 /* We've decided to create a PLT entry for this symbol. */
2279 bfd_byte *loc;
2280 bfd_vma i, header_address, plt_idx, got_address;
2281 uint32_t plt_entry[PLT_ENTRY_INSNS];
2282 Elf_Internal_Rela rela;
2283
2284 BFD_ASSERT (h->dynindx != -1);
2285
2286 /* Calculate the address of the PLT header. */
2287 header_address = sec_addr (htab->elf.splt);
2288
2289 /* Calculate the index of the entry. */
2290 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2291
2292 /* Calculate the address of the .got.plt entry. */
2293 got_address = riscv_elf_got_plt_val (plt_idx, info);
2294
2295 /* Find out where the .plt entry should go. */
2296 loc = htab->elf.splt->contents + h->plt.offset;
2297
2298 /* Fill in the PLT entry itself. */
2299 riscv_make_plt_entry (got_address, header_address + h->plt.offset,
2300 plt_entry);
2301 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2302 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2303
2304 /* Fill in the initial value of the .got.plt entry. */
2305 loc = htab->elf.sgotplt->contents
2306 + (got_address - sec_addr (htab->elf.sgotplt));
2307 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2308
2309 /* Fill in the entry in the .rela.plt section. */
2310 rela.r_offset = got_address;
2311 rela.r_addend = 0;
2312 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2313
2314 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2315 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2316
2317 if (!h->def_regular)
2318 {
2319 /* Mark the symbol as undefined, rather than as defined in
2320 the .plt section. Leave the value alone. */
2321 sym->st_shndx = SHN_UNDEF;
2322 /* If the symbol is weak, we do need to clear the value.
2323 Otherwise, the PLT entry would provide a definition for
2324 the symbol even if the symbol wasn't defined anywhere,
2325 and so the symbol would never be NULL. */
2326 if (!h->ref_regular_nonweak)
2327 sym->st_value = 0;
2328 }
2329 }
2330
2331 if (h->got.offset != (bfd_vma) -1
1d65abb5 2332 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
e23eba97
NC
2333 {
2334 asection *sgot;
2335 asection *srela;
2336 Elf_Internal_Rela rela;
2337
2338 /* This symbol has an entry in the GOT. Set it up. */
2339
2340 sgot = htab->elf.sgot;
2341 srela = htab->elf.srelgot;
2342 BFD_ASSERT (sgot != NULL && srela != NULL);
2343
2344 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2345
2346 /* If this is a -Bsymbolic link, and the symbol is defined
2347 locally, we just want to emit a RELATIVE reloc. Likewise if
2348 the symbol was forced to be local because of a version file.
2349 The entry in the global offset table will already have been
2350 initialized in the relocate_section function. */
2351 if (bfd_link_pic (info)
2352 && (info->symbolic || h->dynindx == -1)
2353 && h->def_regular)
2354 {
2355 asection *sec = h->root.u.def.section;
2356 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2357 rela.r_addend = (h->root.u.def.value
2358 + sec->output_section->vma
2359 + sec->output_offset);
2360 }
2361 else
2362 {
2363 BFD_ASSERT (h->dynindx != -1);
2364 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2365 rela.r_addend = 0;
2366 }
2367
2368 bfd_put_NN (output_bfd, 0,
2369 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2370 riscv_elf_append_rela (output_bfd, srela, &rela);
2371 }
2372
2373 if (h->needs_copy)
2374 {
2375 Elf_Internal_Rela rela;
2376
2377 /* This symbols needs a copy reloc. Set it up. */
2378 BFD_ASSERT (h->dynindx != -1);
2379
2380 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2381 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2382 rela.r_addend = 0;
2383 riscv_elf_append_rela (output_bfd, htab->srelbss, &rela);
2384 }
2385
2386 /* Mark some specially defined symbols as absolute. */
2387 if (h == htab->elf.hdynamic
2388 || (h == htab->elf.hgot || h == htab->elf.hplt))
2389 sym->st_shndx = SHN_ABS;
2390
2391 return TRUE;
2392}
2393
2394/* Finish up the dynamic sections. */
2395
2396static bfd_boolean
2397riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2398 bfd *dynobj, asection *sdyn)
2399{
2400 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2401 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2402 size_t dynsize = bed->s->sizeof_dyn;
2403 bfd_byte *dyncon, *dynconend;
2404
2405 dynconend = sdyn->contents + sdyn->size;
2406 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2407 {
2408 Elf_Internal_Dyn dyn;
2409 asection *s;
2410
2411 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2412
2413 switch (dyn.d_tag)
2414 {
2415 case DT_PLTGOT:
2416 s = htab->elf.sgotplt;
2417 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2418 break;
2419 case DT_JMPREL:
2420 s = htab->elf.srelplt;
2421 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2422 break;
2423 case DT_PLTRELSZ:
2424 s = htab->elf.srelplt;
2425 dyn.d_un.d_val = s->size;
2426 break;
2427 default:
2428 continue;
2429 }
2430
2431 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2432 }
2433 return TRUE;
2434}
2435
2436static bfd_boolean
2437riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2438 struct bfd_link_info *info)
2439{
2440 bfd *dynobj;
2441 asection *sdyn;
2442 struct riscv_elf_link_hash_table *htab;
2443
2444 htab = riscv_elf_hash_table (info);
2445 BFD_ASSERT (htab != NULL);
2446 dynobj = htab->elf.dynobj;
2447
2448 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2449
2450 if (elf_hash_table (info)->dynamic_sections_created)
2451 {
2452 asection *splt;
2453 bfd_boolean ret;
2454
2455 splt = htab->elf.splt;
2456 BFD_ASSERT (splt != NULL && sdyn != NULL);
2457
2458 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2459
2460 if (ret != TRUE)
2461 return ret;
2462
2463 /* Fill in the head and tail entries in the procedure linkage table. */
2464 if (splt->size > 0)
2465 {
2466 int i;
2467 uint32_t plt_header[PLT_HEADER_INSNS];
2468 riscv_make_plt_header (sec_addr (htab->elf.sgotplt),
2469 sec_addr (splt), plt_header);
2470
2471 for (i = 0; i < PLT_HEADER_INSNS; i++)
2472 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
2473 }
2474
2475 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2476 = PLT_ENTRY_SIZE;
2477 }
2478
2479 if (htab->elf.sgotplt)
2480 {
2481 asection *output_section = htab->elf.sgotplt->output_section;
2482
2483 if (bfd_is_abs_section (output_section))
2484 {
2485 (*_bfd_error_handler)
2486 (_("discarded output section: `%A'"), htab->elf.sgotplt);
2487 return FALSE;
2488 }
2489
2490 if (htab->elf.sgotplt->size > 0)
2491 {
2492 /* Write the first two entries in .got.plt, needed for the dynamic
2493 linker. */
2494 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2495 bfd_put_NN (output_bfd, (bfd_vma) 0,
2496 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2497 }
2498
2499 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2500 }
2501
2502 if (htab->elf.sgot)
2503 {
2504 asection *output_section = htab->elf.sgot->output_section;
2505
2506 if (htab->elf.sgot->size > 0)
2507 {
2508 /* Set the first entry in the global offset table to the address of
2509 the dynamic section. */
2510 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2511 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2512 }
2513
2514 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2515 }
2516
2517 return TRUE;
2518}
2519
2520/* Return address for Ith PLT stub in section PLT, for relocation REL
2521 or (bfd_vma) -1 if it should not be included. */
2522
2523static bfd_vma
2524riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2525 const arelent *rel ATTRIBUTE_UNUSED)
2526{
2527 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2528}
2529
2530static enum elf_reloc_type_class
2531riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2532 const asection *rel_sec ATTRIBUTE_UNUSED,
2533 const Elf_Internal_Rela *rela)
2534{
2535 switch (ELFNN_R_TYPE (rela->r_info))
2536 {
2537 case R_RISCV_RELATIVE:
2538 return reloc_class_relative;
2539 case R_RISCV_JUMP_SLOT:
2540 return reloc_class_plt;
2541 case R_RISCV_COPY:
2542 return reloc_class_copy;
2543 default:
2544 return reloc_class_normal;
2545 }
2546}
2547
2548/* Merge backend specific data from an object file to the output
2549 object file when linking. */
2550
2551static bfd_boolean
2552_bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
2553{
2554 bfd *obfd = info->output_bfd;
2555 flagword new_flags = elf_elfheader (ibfd)->e_flags;
2556 flagword old_flags = elf_elfheader (obfd)->e_flags;
2557
2558 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
2559 return TRUE;
2560
2561 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
2562 {
2563 (*_bfd_error_handler)
96b0927d
PD
2564 (_("%B: ABI is incompatible with that of the selected emulation:\n"
2565 " target emulation `%s' does not match `%s'"),
2566 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
e23eba97
NC
2567 return FALSE;
2568 }
2569
2570 if (!_bfd_elf_merge_object_attributes (ibfd, info))
2571 return FALSE;
2572
2573 if (! elf_flags_init (obfd))
2574 {
2575 elf_flags_init (obfd) = TRUE;
2576 elf_elfheader (obfd)->e_flags = new_flags;
2577 return TRUE;
2578 }
2579
2580 /* Disallow linking soft-float and hard-float. */
2581 if ((old_flags ^ new_flags) & EF_RISCV_SOFT_FLOAT)
2582 {
2583 (*_bfd_error_handler)
2584 (_("%B: can't link hard-float modules with soft-float modules"), ibfd);
2585 goto fail;
2586 }
2587
2588 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
2589 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
2590
2591 return TRUE;
2592
2593fail:
2594 bfd_set_error (bfd_error_bad_value);
2595 return FALSE;
2596}
2597
2598/* Delete some bytes from a section while relaxing. */
2599
2600static bfd_boolean
2601riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count)
2602{
2603 unsigned int i, symcount;
2604 bfd_vma toaddr = sec->size;
2605 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
2606 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2607 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2608 struct bfd_elf_section_data *data = elf_section_data (sec);
2609 bfd_byte *contents = data->this_hdr.contents;
2610
2611 /* Actually delete the bytes. */
2612 sec->size -= count;
2613 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
2614
2615 /* Adjust the location of all of the relocs. Note that we need not
2616 adjust the addends, since all PC-relative references must be against
2617 symbols, which we will adjust below. */
2618 for (i = 0; i < sec->reloc_count; i++)
2619 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
2620 data->relocs[i].r_offset -= count;
2621
2622 /* Adjust the local symbols defined in this section. */
2623 for (i = 0; i < symtab_hdr->sh_info; i++)
2624 {
2625 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
2626 if (sym->st_shndx == sec_shndx)
2627 {
2628 /* If the symbol is in the range of memory we just moved, we
2629 have to adjust its value. */
2630 if (sym->st_value > addr && sym->st_value <= toaddr)
2631 sym->st_value -= count;
2632
2633 /* If the symbol *spans* the bytes we just deleted (i.e. its
2634 *end* is in the moved bytes but its *start* isn't), then we
2635 must adjust its size. */
2636 if (sym->st_value <= addr
2637 && sym->st_value + sym->st_size > addr
2638 && sym->st_value + sym->st_size <= toaddr)
2639 sym->st_size -= count;
2640 }
2641 }
2642
2643 /* Now adjust the global symbols defined in this section. */
2644 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
2645 - symtab_hdr->sh_info);
2646
2647 for (i = 0; i < symcount; i++)
2648 {
2649 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
2650
2651 if ((sym_hash->root.type == bfd_link_hash_defined
2652 || sym_hash->root.type == bfd_link_hash_defweak)
2653 && sym_hash->root.u.def.section == sec)
2654 {
2655 /* As above, adjust the value if needed. */
2656 if (sym_hash->root.u.def.value > addr
2657 && sym_hash->root.u.def.value <= toaddr)
2658 sym_hash->root.u.def.value -= count;
2659
2660 /* As above, adjust the size if needed. */
2661 if (sym_hash->root.u.def.value <= addr
2662 && sym_hash->root.u.def.value + sym_hash->size > addr
2663 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
2664 sym_hash->size -= count;
2665 }
2666 }
2667
2668 return TRUE;
2669}
2670
2671/* Relax AUIPC + JALR into JAL. */
2672
2673static bfd_boolean
2674_bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
2675 struct bfd_link_info *link_info,
2676 Elf_Internal_Rela *rel,
2677 bfd_vma symval,
2678 unsigned int max_alignment,
2679 bfd_boolean *again)
2680{
2681 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2682 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
2683 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
2684 bfd_vma auipc, jalr;
2685 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2686
2687 /* If the call crosses section boundaries, an alignment directive could
2688 cause the PC-relative offset to later increase. */
2689 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section)
2690 foff += (foff < 0 ? -max_alignment : max_alignment);
2691
2692 /* See if this function call can be shortened. */
2693 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
2694 return TRUE;
2695
2696 /* Shorten the function call. */
2697 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
2698
2699 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
2700 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
2701 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
2702 rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32;
2703
2704 if (rvc && (rd == 0 || rd == X_RA))
2705 {
2706 /* Relax to C.J[AL] rd, addr. */
2707 r_type = R_RISCV_RVC_JUMP;
2708 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
2709 len = 2;
2710 }
2711 else if (VALID_UJTYPE_IMM (foff))
2712 {
2713 /* Relax to JAL rd, addr. */
2714 r_type = R_RISCV_JAL;
2715 auipc = MATCH_JAL | (rd << OP_SH_RD);
2716 }
2717 else /* near_zero */
2718 {
2719 /* Relax to JALR rd, x0, addr. */
2720 r_type = R_RISCV_LO12_I;
2721 auipc = MATCH_JALR | (rd << OP_SH_RD);
2722 }
2723
2724 /* Replace the R_RISCV_CALL reloc. */
2725 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
2726 /* Replace the AUIPC. */
2727 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
2728
2729 /* Delete unnecessary JALR. */
2730 *again = TRUE;
2731 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len);
2732}
2733
2734/* Traverse all output sections and return the max alignment. */
2735
2736static unsigned int
2737_bfd_riscv_get_max_alignment (asection *sec)
2738{
2739 unsigned int max_alignment_power = 0;
2740 asection *o;
2741
2742 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
2743 {
2744 if (o->alignment_power > max_alignment_power)
2745 max_alignment_power = o->alignment_power;
2746 }
2747
2748 return 1 << max_alignment_power;
2749}
2750
2751/* Relax non-PIC global variable references. */
2752
2753static bfd_boolean
2754_bfd_riscv_relax_lui (bfd *abfd,
2755 asection *sec,
2756 asection *sym_sec,
2757 struct bfd_link_info *link_info,
2758 Elf_Internal_Rela *rel,
2759 bfd_vma symval,
2760 unsigned int max_alignment,
2761 bfd_boolean *again)
2762{
2763 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2764 bfd_vma gp = riscv_global_pointer_value (link_info);
2765 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2766
2767 /* Mergeable symbols and code might later move out of range. */
2768 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
2769 return TRUE;
2770
2771 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
2772
2773 /* Is the reference in range of x0 or gp?
2774 Valid gp range conservatively because of alignment issue. */
2775 if (VALID_ITYPE_IMM (symval)
2776 || (symval >= gp && VALID_ITYPE_IMM (symval - gp + max_alignment))
2777 || (symval < gp && VALID_ITYPE_IMM (symval - gp - max_alignment)))
2778 {
2779 unsigned sym = ELFNN_R_SYM (rel->r_info);
2780 switch (ELFNN_R_TYPE (rel->r_info))
2781 {
2782 case R_RISCV_LO12_I:
2783 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
2784 return TRUE;
2785
2786 case R_RISCV_LO12_S:
2787 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
2788 return TRUE;
2789
2790 case R_RISCV_HI20:
2791 /* We can delete the unnecessary LUI and reloc. */
2792 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
2793 *again = TRUE;
2794 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4);
2795
2796 default:
2797 abort ();
2798 }
2799 }
2800
2801 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
2802 account for this assuming page alignment at worst. */
2803 if (use_rvc
2804 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
2805 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
2806 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE)))
2807 {
2808 /* Replace LUI with C.LUI if legal (i.e., rd != x2/sp). */
2809 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
2810 if (((lui >> OP_SH_RD) & OP_MASK_RD) == X_SP)
2811 return TRUE;
2812
2813 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
2814 bfd_put_32 (abfd, lui, contents + rel->r_offset);
2815
2816 /* Replace the R_RISCV_HI20 reloc. */
2817 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
2818
2819 *again = TRUE;
2820 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2);
2821 }
2822
2823 return TRUE;
2824}
2825
2826/* Relax non-PIC TLS references. */
2827
2828static bfd_boolean
2829_bfd_riscv_relax_tls_le (bfd *abfd,
2830 asection *sec,
2831 asection *sym_sec ATTRIBUTE_UNUSED,
2832 struct bfd_link_info *link_info,
2833 Elf_Internal_Rela *rel,
2834 bfd_vma symval,
2835 unsigned int max_alignment ATTRIBUTE_UNUSED,
2836 bfd_boolean *again)
2837{
2838 /* See if this symbol is in range of tp. */
2839 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
2840 return TRUE;
2841
2842 /* We can delete the unnecessary LUI and tp add. The LO12 reloc will be
2843 made directly tp-relative. */
2844 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
2845 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
2846
2847 *again = TRUE;
2848 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4);
2849}
2850
2851/* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
2852
2853static bfd_boolean
2854_bfd_riscv_relax_align (bfd *abfd, asection *sec,
2855 asection *sym_sec ATTRIBUTE_UNUSED,
2856 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
2857 Elf_Internal_Rela *rel,
2858 bfd_vma symval,
2859 unsigned int max_alignment ATTRIBUTE_UNUSED,
2860 bfd_boolean *again ATTRIBUTE_UNUSED)
2861{
2862 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2863 bfd_vma alignment = 1, pos;
2864 while (alignment <= rel->r_addend)
2865 alignment *= 2;
2866
2867 symval -= rel->r_addend;
2868 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
2869 bfd_vma nop_bytes = aligned_addr - symval;
2870
2871 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
2872 sec->sec_flg0 = TRUE;
2873
2874 /* Make sure there are enough NOPs to actually achieve the alignment. */
2875 if (rel->r_addend < nop_bytes)
2876 return FALSE;
2877
2878 /* Delete the reloc. */
2879 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
2880
2881 /* If the number of NOPs is already correct, there's nothing to do. */
2882 if (nop_bytes == rel->r_addend)
2883 return TRUE;
2884
2885 /* Write as many RISC-V NOPs as we need. */
2886 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
2887 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
2888
2889 /* Write a final RVC NOP if need be. */
2890 if (nop_bytes % 4 != 0)
2891 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
2892
2893 /* Delete the excess bytes. */
2894 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
2895 rel->r_addend - nop_bytes);
2896}
2897
2898/* Relax a section. Pass 0 shortens code sequences unless disabled.
2899 Pass 1, which cannot be disabled, handles code alignment directives. */
2900
2901static bfd_boolean
2902_bfd_riscv_relax_section (bfd *abfd, asection *sec,
2903 struct bfd_link_info *info,
2904 bfd_boolean *again)
2905{
2906 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
2907 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2908 struct bfd_elf_section_data *data = elf_section_data (sec);
2909 Elf_Internal_Rela *relocs;
2910 bfd_boolean ret = FALSE;
2911 unsigned int i;
2912 unsigned int max_alignment;
2913
2914 *again = FALSE;
2915
2916 if (bfd_link_relocatable (info)
2917 || sec->sec_flg0
2918 || (sec->flags & SEC_RELOC) == 0
2919 || sec->reloc_count == 0
2920 || (info->disable_target_specific_optimizations
2921 && info->relax_pass == 0))
2922 return TRUE;
2923
2924 /* Read this BFD's relocs if we haven't done so already. */
2925 if (data->relocs)
2926 relocs = data->relocs;
2927 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
2928 info->keep_memory)))
2929 goto fail;
2930
2931 max_alignment = _bfd_riscv_get_max_alignment (sec);
2932
2933 /* Examine and consider relaxing each reloc. */
2934 for (i = 0; i < sec->reloc_count; i++)
2935 {
2936 asection *sym_sec;
2937 Elf_Internal_Rela *rel = relocs + i;
2938 typeof (&_bfd_riscv_relax_call) relax_func = NULL;
2939 int type = ELFNN_R_TYPE (rel->r_info);
2940 bfd_vma symval;
2941
2942 if (info->relax_pass == 0)
2943 {
2944 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
2945 relax_func = _bfd_riscv_relax_call;
2946 else if (type == R_RISCV_HI20
2947 || type == R_RISCV_LO12_I
2948 || type == R_RISCV_LO12_S)
2949 relax_func = _bfd_riscv_relax_lui;
2950 else if (type == R_RISCV_TPREL_HI20 || type == R_RISCV_TPREL_ADD)
2951 relax_func = _bfd_riscv_relax_tls_le;
2952 }
2953 else if (type == R_RISCV_ALIGN)
2954 relax_func = _bfd_riscv_relax_align;
2955
2956 if (!relax_func)
2957 continue;
2958
2959 data->relocs = relocs;
2960
2961 /* Read this BFD's contents if we haven't done so already. */
2962 if (!data->this_hdr.contents
2963 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
2964 goto fail;
2965
2966 /* Read this BFD's symbols if we haven't done so already. */
2967 if (symtab_hdr->sh_info != 0
2968 && !symtab_hdr->contents
2969 && !(symtab_hdr->contents =
2970 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
2971 symtab_hdr->sh_info,
2972 0, NULL, NULL, NULL)))
2973 goto fail;
2974
2975 /* Get the value of the symbol referred to by the reloc. */
2976 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
2977 {
2978 /* A local symbol. */
2979 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
2980 + ELFNN_R_SYM (rel->r_info));
2981
2982 if (isym->st_shndx == SHN_UNDEF)
2983 sym_sec = sec, symval = sec_addr (sec) + rel->r_offset;
2984 else
2985 {
2986 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
2987 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
2988 if (sec_addr (sym_sec) == 0)
2989 continue;
2990 symval = sec_addr (sym_sec) + isym->st_value;
2991 }
2992 }
2993 else
2994 {
2995 unsigned long indx;
2996 struct elf_link_hash_entry *h;
2997
2998 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
2999 h = elf_sym_hashes (abfd)[indx];
3000
3001 while (h->root.type == bfd_link_hash_indirect
3002 || h->root.type == bfd_link_hash_warning)
3003 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3004
3005 if (h->plt.offset != MINUS_ONE)
3006 symval = sec_addr (htab->elf.splt) + h->plt.offset;
3007 else if (h->root.u.def.section->output_section == NULL
3008 || (h->root.type != bfd_link_hash_defined
3009 && h->root.type != bfd_link_hash_defweak))
3010 continue;
3011 else
3012 symval = sec_addr (h->root.u.def.section) + h->root.u.def.value;
3013
3014 sym_sec = h->root.u.def.section;
3015 }
3016
3017 symval += rel->r_addend;
3018
3019 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
3020 max_alignment, again))
3021 goto fail;
3022 }
3023
3024 ret = TRUE;
3025
3026fail:
3027 if (relocs != data->relocs)
3028 free (relocs);
3029
3030 return ret;
3031}
3032
3033#if ARCH_SIZE == 32
3034# define PRSTATUS_SIZE 0 /* FIXME */
3035# define PRSTATUS_OFFSET_PR_CURSIG 12
3036# define PRSTATUS_OFFSET_PR_PID 24
3037# define PRSTATUS_OFFSET_PR_REG 72
3038# define ELF_GREGSET_T_SIZE 128
3039# define PRPSINFO_SIZE 128
3040# define PRPSINFO_OFFSET_PR_PID 16
3041# define PRPSINFO_OFFSET_PR_FNAME 32
3042# define PRPSINFO_OFFSET_PR_PSARGS 48
3043#else
3044# define PRSTATUS_SIZE 376
3045# define PRSTATUS_OFFSET_PR_CURSIG 12
3046# define PRSTATUS_OFFSET_PR_PID 32
3047# define PRSTATUS_OFFSET_PR_REG 112
3048# define ELF_GREGSET_T_SIZE 256
3049# define PRPSINFO_SIZE 136
3050# define PRPSINFO_OFFSET_PR_PID 24
3051# define PRPSINFO_OFFSET_PR_FNAME 40
3052# define PRPSINFO_OFFSET_PR_PSARGS 56
3053#endif
3054
3055/* Support for core dump NOTE sections. */
3056
3057static bfd_boolean
3058riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3059{
3060 switch (note->descsz)
3061 {
3062 default:
3063 return FALSE;
3064
3065 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
3066 /* pr_cursig */
3067 elf_tdata (abfd)->core->signal
3068 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
3069
3070 /* pr_pid */
3071 elf_tdata (abfd)->core->lwpid
3072 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
3073 break;
3074 }
3075
3076 /* Make a ".reg/999" section. */
3077 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
3078 note->descpos + PRSTATUS_OFFSET_PR_REG);
3079}
3080
3081static bfd_boolean
3082riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3083{
3084 switch (note->descsz)
3085 {
3086 default:
3087 return FALSE;
3088
3089 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
3090 /* pr_pid */
3091 elf_tdata (abfd)->core->pid
3092 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
3093
3094 /* pr_fname */
3095 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
3096 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
3097
3098 /* pr_psargs */
3099 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
3100 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
3101 break;
3102 }
3103
3104 /* Note that for some reason, a spurious space is tacked
3105 onto the end of the args in some (at least one anyway)
3106 implementations, so strip it off if it exists. */
3107
3108 {
3109 char *command = elf_tdata (abfd)->core->command;
3110 int n = strlen (command);
3111
3112 if (0 < n && command[n - 1] == ' ')
3113 command[n - 1] = '\0';
3114 }
3115
3116 return TRUE;
3117}
3118
3119
3120#define TARGET_LITTLE_SYM riscv_elfNN_vec
3121#define TARGET_LITTLE_NAME "elfNN-littleriscv"
3122
3123#define elf_backend_reloc_type_class riscv_reloc_type_class
3124
3125#define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
3126#define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
3127#define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
3128#define bfd_elfNN_bfd_merge_private_bfd_data \
3129 _bfd_riscv_elf_merge_private_bfd_data
3130
3131#define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
3132#define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
3133#define elf_backend_check_relocs riscv_elf_check_relocs
3134#define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
3135#define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
3136#define elf_backend_relocate_section riscv_elf_relocate_section
3137#define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
3138#define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
3139#define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
3140#define elf_backend_gc_sweep_hook riscv_elf_gc_sweep_hook
3141#define elf_backend_plt_sym_val riscv_elf_plt_sym_val
3142#define elf_backend_grok_prstatus riscv_elf_grok_prstatus
3143#define elf_backend_grok_psinfo riscv_elf_grok_psinfo
3144#define elf_info_to_howto_rel NULL
3145#define elf_info_to_howto riscv_info_to_howto_rela
3146#define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
3147
3148#define elf_backend_init_index_section _bfd_elf_init_1_index_section
3149
3150#define elf_backend_can_gc_sections 1
3151#define elf_backend_can_refcount 1
3152#define elf_backend_want_got_plt 1
3153#define elf_backend_plt_readonly 1
3154#define elf_backend_plt_alignment 4
3155#define elf_backend_want_plt_sym 1
3156#define elf_backend_got_header_size (ARCH_SIZE / 8)
3157#define elf_backend_rela_normal 1
3158#define elf_backend_default_execstack 0
3159
3160#include "elfNN-target.h"
This page took 0.141785 seconds and 4 git commands to generate.