Commit | Line | Data |
---|---|---|
e23eba97 | 1 | /* RISC-V-specific support for NN-bit ELF. |
82704155 | 2 | Copyright (C) 2011-2019 Free Software Foundation, Inc. |
e23eba97 NC |
3 | |
4 | Contributed by Andrew Waterman (andrew@sifive.com). | |
5 | Based on TILE-Gx and MIPS targets. | |
6 | ||
7 | This file is part of BFD, the Binary File Descriptor library. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 3 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program; see the file COPYING3. If not, | |
21 | see <http://www.gnu.org/licenses/>. */ | |
22 | ||
23 | /* This file handles RISC-V ELF targets. */ | |
24 | ||
25 | #include "sysdep.h" | |
26 | #include "bfd.h" | |
27 | #include "libbfd.h" | |
28 | #include "bfdlink.h" | |
29 | #include "genlink.h" | |
30 | #include "elf-bfd.h" | |
31 | #include "elfxx-riscv.h" | |
32 | #include "elf/riscv.h" | |
33 | #include "opcode/riscv.h" | |
34 | ||
ff6f4d9b PD |
35 | /* Internal relocations used exclusively by the relaxation pass. */ |
36 | #define R_RISCV_DELETE (R_RISCV_max + 1) | |
37 | ||
e23eba97 NC |
38 | #define ARCH_SIZE NN |
39 | ||
40 | #define MINUS_ONE ((bfd_vma)0 - 1) | |
41 | ||
42 | #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3) | |
43 | ||
44 | #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES) | |
45 | ||
46 | /* The name of the dynamic interpreter. This is put in the .interp | |
47 | section. */ | |
48 | ||
49 | #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1" | |
50 | #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1" | |
51 | ||
52 | #define ELF_ARCH bfd_arch_riscv | |
53 | #define ELF_TARGET_ID RISCV_ELF_DATA | |
54 | #define ELF_MACHINE_CODE EM_RISCV | |
55 | #define ELF_MAXPAGESIZE 0x1000 | |
56 | #define ELF_COMMONPAGESIZE 0x1000 | |
57 | ||
e23eba97 NC |
58 | /* RISC-V ELF linker hash entry. */ |
59 | ||
60 | struct riscv_elf_link_hash_entry | |
61 | { | |
62 | struct elf_link_hash_entry elf; | |
63 | ||
64 | /* Track dynamic relocs copied for this symbol. */ | |
3bf083ed | 65 | struct elf_dyn_relocs *dyn_relocs; |
e23eba97 NC |
66 | |
67 | #define GOT_UNKNOWN 0 | |
68 | #define GOT_NORMAL 1 | |
69 | #define GOT_TLS_GD 2 | |
70 | #define GOT_TLS_IE 4 | |
71 | #define GOT_TLS_LE 8 | |
72 | char tls_type; | |
73 | }; | |
74 | ||
75 | #define riscv_elf_hash_entry(ent) \ | |
76 | ((struct riscv_elf_link_hash_entry *)(ent)) | |
77 | ||
78 | struct _bfd_riscv_elf_obj_tdata | |
79 | { | |
80 | struct elf_obj_tdata root; | |
81 | ||
82 | /* tls_type for each local got entry. */ | |
83 | char *local_got_tls_type; | |
84 | }; | |
85 | ||
86 | #define _bfd_riscv_elf_tdata(abfd) \ | |
87 | ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any) | |
88 | ||
89 | #define _bfd_riscv_elf_local_got_tls_type(abfd) \ | |
90 | (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type) | |
91 | ||
92 | #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \ | |
93 | (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \ | |
94 | : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx])) | |
95 | ||
96 | #define is_riscv_elf(bfd) \ | |
97 | (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ | |
98 | && elf_tdata (bfd) != NULL \ | |
99 | && elf_object_id (bfd) == RISCV_ELF_DATA) | |
100 | ||
101 | #include "elf/common.h" | |
102 | #include "elf/internal.h" | |
103 | ||
104 | struct riscv_elf_link_hash_table | |
105 | { | |
106 | struct elf_link_hash_table elf; | |
107 | ||
108 | /* Short-cuts to get to dynamic linker sections. */ | |
e23eba97 NC |
109 | asection *sdyntdata; |
110 | ||
111 | /* Small local sym to section mapping cache. */ | |
112 | struct sym_cache sym_cache; | |
fc3c5343 L |
113 | |
114 | /* The max alignment of output sections. */ | |
115 | bfd_vma max_alignment; | |
e23eba97 NC |
116 | }; |
117 | ||
118 | ||
119 | /* Get the RISC-V ELF linker hash table from a link_info structure. */ | |
120 | #define riscv_elf_hash_table(p) \ | |
121 | (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ | |
122 | == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL) | |
123 | ||
f3185997 | 124 | static bfd_boolean |
0aa13fee | 125 | riscv_info_to_howto_rela (bfd *abfd, |
e23eba97 NC |
126 | arelent *cache_ptr, |
127 | Elf_Internal_Rela *dst) | |
128 | { | |
0aa13fee | 129 | cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info)); |
f3185997 | 130 | return cache_ptr->howto != NULL; |
e23eba97 NC |
131 | } |
132 | ||
133 | static void | |
134 | riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) | |
135 | { | |
136 | const struct elf_backend_data *bed; | |
137 | bfd_byte *loc; | |
138 | ||
139 | bed = get_elf_backend_data (abfd); | |
140 | loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); | |
141 | bed->s->swap_reloca_out (abfd, rel, loc); | |
142 | } | |
143 | ||
144 | /* PLT/GOT stuff. */ | |
145 | ||
146 | #define PLT_HEADER_INSNS 8 | |
147 | #define PLT_ENTRY_INSNS 4 | |
148 | #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4) | |
149 | #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4) | |
150 | ||
151 | #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES | |
152 | ||
153 | #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE) | |
154 | ||
155 | #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset) | |
156 | ||
157 | static bfd_vma | |
158 | riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info) | |
159 | { | |
160 | return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt) | |
161 | + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE); | |
162 | } | |
163 | ||
164 | #if ARCH_SIZE == 32 | |
165 | # define MATCH_LREG MATCH_LW | |
166 | #else | |
167 | # define MATCH_LREG MATCH_LD | |
168 | #endif | |
169 | ||
170 | /* Generate a PLT header. */ | |
171 | ||
5ef23793 JW |
172 | static bfd_boolean |
173 | riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr, | |
174 | uint32_t *entry) | |
e23eba97 NC |
175 | { |
176 | bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr); | |
177 | bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr); | |
178 | ||
5ef23793 JW |
179 | /* RVE has no t3 register, so this won't work, and is not supported. */ |
180 | if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE) | |
181 | { | |
182 | _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"), | |
183 | output_bfd); | |
184 | return FALSE; | |
185 | } | |
186 | ||
e23eba97 | 187 | /* auipc t2, %hi(.got.plt) |
07d6d2b8 | 188 | sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12 |
e23eba97 NC |
189 | l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve |
190 | addi t1, t1, -(hdr size + 12) # shifted .got.plt offset | |
191 | addi t0, t2, %lo(.got.plt) # &.got.plt | |
192 | srli t1, t1, log2(16/PTRSIZE) # .got.plt offset | |
07d6d2b8 AM |
193 | l[w|d] t0, PTRSIZE(t0) # link map |
194 | jr t3 */ | |
e23eba97 NC |
195 | |
196 | entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high); | |
197 | entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3); | |
198 | entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low); | |
199 | entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12)); | |
200 | entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low); | |
201 | entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES); | |
202 | entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES); | |
203 | entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0); | |
5ef23793 JW |
204 | |
205 | return TRUE; | |
e23eba97 NC |
206 | } |
207 | ||
208 | /* Generate a PLT entry. */ | |
209 | ||
5ef23793 JW |
210 | static bfd_boolean |
211 | riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr, | |
212 | uint32_t *entry) | |
e23eba97 | 213 | { |
5ef23793 JW |
214 | /* RVE has no t3 register, so this won't work, and is not supported. */ |
215 | if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE) | |
216 | { | |
217 | _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"), | |
218 | output_bfd); | |
219 | return FALSE; | |
220 | } | |
221 | ||
e23eba97 NC |
222 | /* auipc t3, %hi(.got.plt entry) |
223 | l[w|d] t3, %lo(.got.plt entry)(t3) | |
224 | jalr t1, t3 | |
225 | nop */ | |
226 | ||
227 | entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr)); | |
1d65abb5 | 228 | entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr)); |
e23eba97 NC |
229 | entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0); |
230 | entry[3] = RISCV_NOP; | |
5ef23793 JW |
231 | |
232 | return TRUE; | |
e23eba97 NC |
233 | } |
234 | ||
235 | /* Create an entry in an RISC-V ELF linker hash table. */ | |
236 | ||
237 | static struct bfd_hash_entry * | |
238 | link_hash_newfunc (struct bfd_hash_entry *entry, | |
239 | struct bfd_hash_table *table, const char *string) | |
240 | { | |
241 | /* Allocate the structure if it has not already been allocated by a | |
242 | subclass. */ | |
243 | if (entry == NULL) | |
244 | { | |
245 | entry = | |
246 | bfd_hash_allocate (table, | |
247 | sizeof (struct riscv_elf_link_hash_entry)); | |
248 | if (entry == NULL) | |
249 | return entry; | |
250 | } | |
251 | ||
252 | /* Call the allocation method of the superclass. */ | |
253 | entry = _bfd_elf_link_hash_newfunc (entry, table, string); | |
254 | if (entry != NULL) | |
255 | { | |
256 | struct riscv_elf_link_hash_entry *eh; | |
257 | ||
258 | eh = (struct riscv_elf_link_hash_entry *) entry; | |
259 | eh->dyn_relocs = NULL; | |
260 | eh->tls_type = GOT_UNKNOWN; | |
261 | } | |
262 | ||
263 | return entry; | |
264 | } | |
265 | ||
266 | /* Create a RISC-V ELF linker hash table. */ | |
267 | ||
268 | static struct bfd_link_hash_table * | |
269 | riscv_elf_link_hash_table_create (bfd *abfd) | |
270 | { | |
271 | struct riscv_elf_link_hash_table *ret; | |
272 | bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table); | |
273 | ||
274 | ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt); | |
275 | if (ret == NULL) | |
276 | return NULL; | |
277 | ||
278 | if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc, | |
279 | sizeof (struct riscv_elf_link_hash_entry), | |
280 | RISCV_ELF_DATA)) | |
281 | { | |
282 | free (ret); | |
283 | return NULL; | |
284 | } | |
285 | ||
fc3c5343 | 286 | ret->max_alignment = (bfd_vma) -1; |
e23eba97 NC |
287 | return &ret->elf.root; |
288 | } | |
289 | ||
290 | /* Create the .got section. */ | |
291 | ||
292 | static bfd_boolean | |
293 | riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) | |
294 | { | |
295 | flagword flags; | |
296 | asection *s, *s_got; | |
297 | struct elf_link_hash_entry *h; | |
298 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
299 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
300 | ||
301 | /* This function may be called more than once. */ | |
ce558b89 | 302 | if (htab->sgot != NULL) |
e23eba97 NC |
303 | return TRUE; |
304 | ||
305 | flags = bed->dynamic_sec_flags; | |
306 | ||
307 | s = bfd_make_section_anyway_with_flags (abfd, | |
308 | (bed->rela_plts_and_copies_p | |
309 | ? ".rela.got" : ".rel.got"), | |
310 | (bed->dynamic_sec_flags | |
311 | | SEC_READONLY)); | |
312 | if (s == NULL | |
313 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
314 | return FALSE; | |
315 | htab->srelgot = s; | |
316 | ||
317 | s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags); | |
318 | if (s == NULL | |
319 | || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
320 | return FALSE; | |
321 | htab->sgot = s; | |
322 | ||
323 | /* The first bit of the global offset table is the header. */ | |
324 | s->size += bed->got_header_size; | |
325 | ||
326 | if (bed->want_got_plt) | |
327 | { | |
328 | s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); | |
329 | if (s == NULL | |
330 | || !bfd_set_section_alignment (abfd, s, | |
331 | bed->s->log_file_align)) | |
332 | return FALSE; | |
333 | htab->sgotplt = s; | |
334 | ||
335 | /* Reserve room for the header. */ | |
336 | s->size += GOTPLT_HEADER_SIZE; | |
337 | } | |
338 | ||
339 | if (bed->want_got_sym) | |
340 | { | |
341 | /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got | |
342 | section. We don't do this in the linker script because we don't want | |
343 | to define the symbol if we are not creating a global offset | |
344 | table. */ | |
345 | h = _bfd_elf_define_linkage_sym (abfd, info, s_got, | |
346 | "_GLOBAL_OFFSET_TABLE_"); | |
347 | elf_hash_table (info)->hgot = h; | |
348 | if (h == NULL) | |
349 | return FALSE; | |
350 | } | |
351 | ||
352 | return TRUE; | |
353 | } | |
354 | ||
355 | /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and | |
356 | .rela.bss sections in DYNOBJ, and set up shortcuts to them in our | |
357 | hash table. */ | |
358 | ||
359 | static bfd_boolean | |
360 | riscv_elf_create_dynamic_sections (bfd *dynobj, | |
361 | struct bfd_link_info *info) | |
362 | { | |
363 | struct riscv_elf_link_hash_table *htab; | |
364 | ||
365 | htab = riscv_elf_hash_table (info); | |
366 | BFD_ASSERT (htab != NULL); | |
367 | ||
368 | if (!riscv_elf_create_got_section (dynobj, info)) | |
369 | return FALSE; | |
370 | ||
371 | if (!_bfd_elf_create_dynamic_sections (dynobj, info)) | |
372 | return FALSE; | |
373 | ||
e23eba97 NC |
374 | if (!bfd_link_pic (info)) |
375 | { | |
e23eba97 NC |
376 | htab->sdyntdata = |
377 | bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn", | |
13755f40 JW |
378 | (SEC_ALLOC | SEC_THREAD_LOCAL |
379 | | SEC_LINKER_CREATED)); | |
e23eba97 NC |
380 | } |
381 | ||
9d19e4fd AM |
382 | if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss |
383 | || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata))) | |
e23eba97 NC |
384 | abort (); |
385 | ||
386 | return TRUE; | |
387 | } | |
388 | ||
389 | /* Copy the extra info we tack onto an elf_link_hash_entry. */ | |
390 | ||
391 | static void | |
392 | riscv_elf_copy_indirect_symbol (struct bfd_link_info *info, | |
393 | struct elf_link_hash_entry *dir, | |
394 | struct elf_link_hash_entry *ind) | |
395 | { | |
396 | struct riscv_elf_link_hash_entry *edir, *eind; | |
397 | ||
398 | edir = (struct riscv_elf_link_hash_entry *) dir; | |
399 | eind = (struct riscv_elf_link_hash_entry *) ind; | |
400 | ||
401 | if (eind->dyn_relocs != NULL) | |
402 | { | |
403 | if (edir->dyn_relocs != NULL) | |
404 | { | |
3bf083ed AM |
405 | struct elf_dyn_relocs **pp; |
406 | struct elf_dyn_relocs *p; | |
e23eba97 NC |
407 | |
408 | /* Add reloc counts against the indirect sym to the direct sym | |
409 | list. Merge any entries against the same section. */ | |
410 | for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) | |
411 | { | |
3bf083ed | 412 | struct elf_dyn_relocs *q; |
e23eba97 NC |
413 | |
414 | for (q = edir->dyn_relocs; q != NULL; q = q->next) | |
415 | if (q->sec == p->sec) | |
416 | { | |
417 | q->pc_count += p->pc_count; | |
418 | q->count += p->count; | |
419 | *pp = p->next; | |
420 | break; | |
421 | } | |
422 | if (q == NULL) | |
423 | pp = &p->next; | |
424 | } | |
425 | *pp = edir->dyn_relocs; | |
426 | } | |
427 | ||
428 | edir->dyn_relocs = eind->dyn_relocs; | |
429 | eind->dyn_relocs = NULL; | |
430 | } | |
431 | ||
432 | if (ind->root.type == bfd_link_hash_indirect | |
433 | && dir->got.refcount <= 0) | |
434 | { | |
435 | edir->tls_type = eind->tls_type; | |
436 | eind->tls_type = GOT_UNKNOWN; | |
437 | } | |
438 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); | |
439 | } | |
440 | ||
441 | static bfd_boolean | |
442 | riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h, | |
443 | unsigned long symndx, char tls_type) | |
444 | { | |
445 | char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx); | |
446 | ||
447 | *new_tls_type |= tls_type; | |
448 | if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL)) | |
449 | { | |
450 | (*_bfd_error_handler) | |
871b3ab2 | 451 | (_("%pB: `%s' accessed both as normal and thread local symbol"), |
e23eba97 NC |
452 | abfd, h ? h->root.root.string : "<local>"); |
453 | return FALSE; | |
454 | } | |
455 | return TRUE; | |
456 | } | |
457 | ||
458 | static bfd_boolean | |
459 | riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info, | |
460 | struct elf_link_hash_entry *h, long symndx) | |
461 | { | |
462 | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | |
463 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
464 | ||
465 | if (htab->elf.sgot == NULL) | |
466 | { | |
467 | if (!riscv_elf_create_got_section (htab->elf.dynobj, info)) | |
468 | return FALSE; | |
469 | } | |
470 | ||
471 | if (h != NULL) | |
472 | { | |
473 | h->got.refcount += 1; | |
474 | return TRUE; | |
475 | } | |
476 | ||
477 | /* This is a global offset table entry for a local symbol. */ | |
478 | if (elf_local_got_refcounts (abfd) == NULL) | |
479 | { | |
480 | bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1); | |
481 | if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size))) | |
482 | return FALSE; | |
483 | _bfd_riscv_elf_local_got_tls_type (abfd) | |
484 | = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info); | |
485 | } | |
486 | elf_local_got_refcounts (abfd) [symndx] += 1; | |
487 | ||
488 | return TRUE; | |
489 | } | |
490 | ||
491 | static bfd_boolean | |
492 | bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h) | |
493 | { | |
f3185997 NC |
494 | reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type); |
495 | ||
e23eba97 | 496 | (*_bfd_error_handler) |
871b3ab2 | 497 | (_("%pB: relocation %s against `%s' can not be used when making a shared " |
e23eba97 | 498 | "object; recompile with -fPIC"), |
f3185997 NC |
499 | abfd, r ? r->name : _("<unknown>"), |
500 | h != NULL ? h->root.root.string : "a local symbol"); | |
e23eba97 NC |
501 | bfd_set_error (bfd_error_bad_value); |
502 | return FALSE; | |
503 | } | |
504 | /* Look through the relocs for a section during the first phase, and | |
505 | allocate space in the global offset table or procedure linkage | |
506 | table. */ | |
507 | ||
508 | static bfd_boolean | |
509 | riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, | |
510 | asection *sec, const Elf_Internal_Rela *relocs) | |
511 | { | |
512 | struct riscv_elf_link_hash_table *htab; | |
513 | Elf_Internal_Shdr *symtab_hdr; | |
514 | struct elf_link_hash_entry **sym_hashes; | |
515 | const Elf_Internal_Rela *rel; | |
516 | asection *sreloc = NULL; | |
517 | ||
518 | if (bfd_link_relocatable (info)) | |
519 | return TRUE; | |
520 | ||
521 | htab = riscv_elf_hash_table (info); | |
522 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
523 | sym_hashes = elf_sym_hashes (abfd); | |
524 | ||
525 | if (htab->elf.dynobj == NULL) | |
526 | htab->elf.dynobj = abfd; | |
527 | ||
528 | for (rel = relocs; rel < relocs + sec->reloc_count; rel++) | |
529 | { | |
530 | unsigned int r_type; | |
d42c267e | 531 | unsigned int r_symndx; |
e23eba97 NC |
532 | struct elf_link_hash_entry *h; |
533 | ||
534 | r_symndx = ELFNN_R_SYM (rel->r_info); | |
535 | r_type = ELFNN_R_TYPE (rel->r_info); | |
536 | ||
537 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | |
538 | { | |
871b3ab2 | 539 | (*_bfd_error_handler) (_("%pB: bad symbol index: %d"), |
e23eba97 NC |
540 | abfd, r_symndx); |
541 | return FALSE; | |
542 | } | |
543 | ||
544 | if (r_symndx < symtab_hdr->sh_info) | |
545 | h = NULL; | |
546 | else | |
547 | { | |
548 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
549 | while (h->root.type == bfd_link_hash_indirect | |
550 | || h->root.type == bfd_link_hash_warning) | |
551 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
e23eba97 NC |
552 | } |
553 | ||
554 | switch (r_type) | |
555 | { | |
556 | case R_RISCV_TLS_GD_HI20: | |
557 | if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) | |
558 | || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD)) | |
559 | return FALSE; | |
560 | break; | |
561 | ||
562 | case R_RISCV_TLS_GOT_HI20: | |
563 | if (bfd_link_pic (info)) | |
564 | info->flags |= DF_STATIC_TLS; | |
565 | if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) | |
566 | || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE)) | |
567 | return FALSE; | |
568 | break; | |
569 | ||
570 | case R_RISCV_GOT_HI20: | |
571 | if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) | |
572 | || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL)) | |
573 | return FALSE; | |
574 | break; | |
575 | ||
576 | case R_RISCV_CALL_PLT: | |
577 | /* This symbol requires a procedure linkage table entry. We | |
578 | actually build the entry in adjust_dynamic_symbol, | |
579 | because this might be a case of linking PIC code without | |
580 | linking in any dynamic objects, in which case we don't | |
581 | need to generate a procedure linkage table after all. */ | |
582 | ||
583 | if (h != NULL) | |
584 | { | |
585 | h->needs_plt = 1; | |
586 | h->plt.refcount += 1; | |
587 | } | |
588 | break; | |
589 | ||
590 | case R_RISCV_CALL: | |
591 | case R_RISCV_JAL: | |
592 | case R_RISCV_BRANCH: | |
593 | case R_RISCV_RVC_BRANCH: | |
594 | case R_RISCV_RVC_JUMP: | |
595 | case R_RISCV_PCREL_HI20: | |
596 | /* In shared libraries, these relocs are known to bind locally. */ | |
597 | if (bfd_link_pic (info)) | |
598 | break; | |
599 | goto static_reloc; | |
600 | ||
601 | case R_RISCV_TPREL_HI20: | |
602 | if (!bfd_link_executable (info)) | |
603 | return bad_static_reloc (abfd, r_type, h); | |
604 | if (h != NULL) | |
605 | riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE); | |
606 | goto static_reloc; | |
607 | ||
608 | case R_RISCV_HI20: | |
609 | if (bfd_link_pic (info)) | |
610 | return bad_static_reloc (abfd, r_type, h); | |
611 | /* Fall through. */ | |
612 | ||
613 | case R_RISCV_COPY: | |
614 | case R_RISCV_JUMP_SLOT: | |
615 | case R_RISCV_RELATIVE: | |
616 | case R_RISCV_64: | |
617 | case R_RISCV_32: | |
618 | /* Fall through. */ | |
619 | ||
620 | static_reloc: | |
621 | /* This reloc might not bind locally. */ | |
622 | if (h != NULL) | |
623 | h->non_got_ref = 1; | |
624 | ||
625 | if (h != NULL && !bfd_link_pic (info)) | |
626 | { | |
627 | /* We may need a .plt entry if the function this reloc | |
628 | refers to is in a shared lib. */ | |
629 | h->plt.refcount += 1; | |
630 | } | |
631 | ||
632 | /* If we are creating a shared library, and this is a reloc | |
633 | against a global symbol, or a non PC relative reloc | |
634 | against a local symbol, then we need to copy the reloc | |
635 | into the shared library. However, if we are linking with | |
636 | -Bsymbolic, we do not need to copy a reloc against a | |
637 | global symbol which is defined in an object we are | |
638 | including in the link (i.e., DEF_REGULAR is set). At | |
639 | this point we have not seen all the input files, so it is | |
640 | possible that DEF_REGULAR is not set now but will be set | |
641 | later (it is never cleared). In case of a weak definition, | |
642 | DEF_REGULAR may be cleared later by a strong definition in | |
643 | a shared library. We account for that possibility below by | |
644 | storing information in the relocs_copied field of the hash | |
645 | table entry. A similar situation occurs when creating | |
646 | shared libraries and symbol visibility changes render the | |
647 | symbol local. | |
648 | ||
649 | If on the other hand, we are creating an executable, we | |
650 | may need to keep relocations for symbols satisfied by a | |
651 | dynamic library if we manage to avoid copy relocs for the | |
652 | symbol. */ | |
f3185997 NC |
653 | reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type); |
654 | ||
e23eba97 NC |
655 | if ((bfd_link_pic (info) |
656 | && (sec->flags & SEC_ALLOC) != 0 | |
f3185997 | 657 | && ((r != NULL && ! r->pc_relative) |
e23eba97 NC |
658 | || (h != NULL |
659 | && (! info->symbolic | |
660 | || h->root.type == bfd_link_hash_defweak | |
661 | || !h->def_regular)))) | |
662 | || (!bfd_link_pic (info) | |
663 | && (sec->flags & SEC_ALLOC) != 0 | |
664 | && h != NULL | |
665 | && (h->root.type == bfd_link_hash_defweak | |
666 | || !h->def_regular))) | |
667 | { | |
3bf083ed AM |
668 | struct elf_dyn_relocs *p; |
669 | struct elf_dyn_relocs **head; | |
e23eba97 NC |
670 | |
671 | /* When creating a shared object, we must copy these | |
672 | relocs into the output file. We create a reloc | |
673 | section in dynobj and make room for the reloc. */ | |
674 | if (sreloc == NULL) | |
675 | { | |
676 | sreloc = _bfd_elf_make_dynamic_reloc_section | |
677 | (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES, | |
678 | abfd, /*rela?*/ TRUE); | |
679 | ||
680 | if (sreloc == NULL) | |
681 | return FALSE; | |
682 | } | |
683 | ||
684 | /* If this is a global symbol, we count the number of | |
685 | relocations we need for this symbol. */ | |
686 | if (h != NULL) | |
687 | head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs; | |
688 | else | |
689 | { | |
690 | /* Track dynamic relocs needed for local syms too. | |
691 | We really need local syms available to do this | |
692 | easily. Oh well. */ | |
693 | ||
694 | asection *s; | |
695 | void *vpp; | |
696 | Elf_Internal_Sym *isym; | |
697 | ||
698 | isym = bfd_sym_from_r_symndx (&htab->sym_cache, | |
699 | abfd, r_symndx); | |
700 | if (isym == NULL) | |
701 | return FALSE; | |
702 | ||
703 | s = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
704 | if (s == NULL) | |
705 | s = sec; | |
706 | ||
707 | vpp = &elf_section_data (s)->local_dynrel; | |
3bf083ed | 708 | head = (struct elf_dyn_relocs **) vpp; |
e23eba97 NC |
709 | } |
710 | ||
711 | p = *head; | |
712 | if (p == NULL || p->sec != sec) | |
713 | { | |
714 | bfd_size_type amt = sizeof *p; | |
3bf083ed | 715 | p = ((struct elf_dyn_relocs *) |
e23eba97 NC |
716 | bfd_alloc (htab->elf.dynobj, amt)); |
717 | if (p == NULL) | |
718 | return FALSE; | |
719 | p->next = *head; | |
720 | *head = p; | |
721 | p->sec = sec; | |
722 | p->count = 0; | |
723 | p->pc_count = 0; | |
724 | } | |
725 | ||
726 | p->count += 1; | |
f3185997 | 727 | p->pc_count += r == NULL ? 0 : r->pc_relative; |
e23eba97 NC |
728 | } |
729 | ||
730 | break; | |
731 | ||
732 | case R_RISCV_GNU_VTINHERIT: | |
733 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | |
734 | return FALSE; | |
735 | break; | |
736 | ||
737 | case R_RISCV_GNU_VTENTRY: | |
738 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | |
739 | return FALSE; | |
740 | break; | |
741 | ||
742 | default: | |
743 | break; | |
744 | } | |
745 | } | |
746 | ||
747 | return TRUE; | |
748 | } | |
749 | ||
750 | static asection * | |
751 | riscv_elf_gc_mark_hook (asection *sec, | |
752 | struct bfd_link_info *info, | |
753 | Elf_Internal_Rela *rel, | |
754 | struct elf_link_hash_entry *h, | |
755 | Elf_Internal_Sym *sym) | |
756 | { | |
757 | if (h != NULL) | |
758 | switch (ELFNN_R_TYPE (rel->r_info)) | |
759 | { | |
760 | case R_RISCV_GNU_VTINHERIT: | |
761 | case R_RISCV_GNU_VTENTRY: | |
762 | return NULL; | |
763 | } | |
764 | ||
765 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); | |
766 | } | |
767 | ||
63c1f59d AM |
768 | /* Find dynamic relocs for H that apply to read-only sections. */ |
769 | ||
770 | static asection * | |
771 | readonly_dynrelocs (struct elf_link_hash_entry *h) | |
772 | { | |
3bf083ed | 773 | struct elf_dyn_relocs *p; |
63c1f59d AM |
774 | |
775 | for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next) | |
776 | { | |
777 | asection *s = p->sec->output_section; | |
778 | ||
779 | if (s != NULL && (s->flags & SEC_READONLY) != 0) | |
780 | return p->sec; | |
781 | } | |
782 | return NULL; | |
783 | } | |
784 | ||
e23eba97 NC |
785 | /* Adjust a symbol defined by a dynamic object and referenced by a |
786 | regular object. The current definition is in some section of the | |
787 | dynamic object, but we're not including those sections. We have to | |
788 | change the definition to something the rest of the link can | |
789 | understand. */ | |
790 | ||
791 | static bfd_boolean | |
792 | riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info, | |
793 | struct elf_link_hash_entry *h) | |
794 | { | |
795 | struct riscv_elf_link_hash_table *htab; | |
796 | struct riscv_elf_link_hash_entry * eh; | |
e23eba97 | 797 | bfd *dynobj; |
5474d94f | 798 | asection *s, *srel; |
e23eba97 NC |
799 | |
800 | htab = riscv_elf_hash_table (info); | |
801 | BFD_ASSERT (htab != NULL); | |
802 | ||
803 | dynobj = htab->elf.dynobj; | |
804 | ||
805 | /* Make sure we know what is going on here. */ | |
806 | BFD_ASSERT (dynobj != NULL | |
807 | && (h->needs_plt | |
808 | || h->type == STT_GNU_IFUNC | |
60d67dc8 | 809 | || h->is_weakalias |
e23eba97 NC |
810 | || (h->def_dynamic |
811 | && h->ref_regular | |
812 | && !h->def_regular))); | |
813 | ||
814 | /* If this is a function, put it in the procedure linkage table. We | |
815 | will fill in the contents of the procedure linkage table later | |
816 | (although we could actually do it here). */ | |
817 | if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) | |
818 | { | |
819 | if (h->plt.refcount <= 0 | |
820 | || SYMBOL_CALLS_LOCAL (info, h) | |
821 | || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | |
822 | && h->root.type == bfd_link_hash_undefweak)) | |
823 | { | |
824 | /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an | |
825 | input file, but the symbol was never referred to by a dynamic | |
826 | object, or if all references were garbage collected. In such | |
827 | a case, we don't actually need to build a PLT entry. */ | |
828 | h->plt.offset = (bfd_vma) -1; | |
829 | h->needs_plt = 0; | |
830 | } | |
831 | ||
832 | return TRUE; | |
833 | } | |
834 | else | |
835 | h->plt.offset = (bfd_vma) -1; | |
836 | ||
837 | /* If this is a weak symbol, and there is a real definition, the | |
838 | processor independent code will have arranged for us to see the | |
839 | real definition first, and we can just use the same value. */ | |
60d67dc8 | 840 | if (h->is_weakalias) |
e23eba97 | 841 | { |
60d67dc8 AM |
842 | struct elf_link_hash_entry *def = weakdef (h); |
843 | BFD_ASSERT (def->root.type == bfd_link_hash_defined); | |
844 | h->root.u.def.section = def->root.u.def.section; | |
845 | h->root.u.def.value = def->root.u.def.value; | |
e23eba97 NC |
846 | return TRUE; |
847 | } | |
848 | ||
849 | /* This is a reference to a symbol defined by a dynamic object which | |
850 | is not a function. */ | |
851 | ||
852 | /* If we are creating a shared library, we must presume that the | |
853 | only references to the symbol are via the global offset table. | |
854 | For such cases we need not do anything here; the relocations will | |
855 | be handled correctly by relocate_section. */ | |
856 | if (bfd_link_pic (info)) | |
857 | return TRUE; | |
858 | ||
859 | /* If there are no references to this symbol that do not use the | |
860 | GOT, we don't need to generate a copy reloc. */ | |
861 | if (!h->non_got_ref) | |
862 | return TRUE; | |
863 | ||
864 | /* If -z nocopyreloc was given, we won't generate them either. */ | |
865 | if (info->nocopyreloc) | |
866 | { | |
867 | h->non_got_ref = 0; | |
868 | return TRUE; | |
869 | } | |
870 | ||
3bf083ed | 871 | /* If we don't find any dynamic relocs in read-only sections, then |
e23eba97 | 872 | we'll be keeping the dynamic relocs and avoiding the copy reloc. */ |
3bf083ed | 873 | if (!readonly_dynrelocs (h)) |
e23eba97 NC |
874 | { |
875 | h->non_got_ref = 0; | |
876 | return TRUE; | |
877 | } | |
878 | ||
879 | /* We must allocate the symbol in our .dynbss section, which will | |
880 | become part of the .bss section of the executable. There will be | |
881 | an entry for this symbol in the .dynsym section. The dynamic | |
882 | object will contain position independent code, so all references | |
883 | from the dynamic object to this symbol will go through the global | |
884 | offset table. The dynamic linker will use the .dynsym entry to | |
885 | determine the address it must put in the global offset table, so | |
886 | both the dynamic object and the regular object will refer to the | |
887 | same memory location for the variable. */ | |
888 | ||
889 | /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker | |
890 | to copy the initial value out of the dynamic object and into the | |
891 | runtime process image. We need to remember the offset into the | |
892 | .rel.bss section we are going to use. */ | |
3bf083ed | 893 | eh = (struct riscv_elf_link_hash_entry *) h; |
3df5cd13 AW |
894 | if (eh->tls_type & ~GOT_NORMAL) |
895 | { | |
896 | s = htab->sdyntdata; | |
897 | srel = htab->elf.srelbss; | |
898 | } | |
899 | else if ((h->root.u.def.section->flags & SEC_READONLY) != 0) | |
5474d94f AM |
900 | { |
901 | s = htab->elf.sdynrelro; | |
902 | srel = htab->elf.sreldynrelro; | |
903 | } | |
904 | else | |
905 | { | |
906 | s = htab->elf.sdynbss; | |
907 | srel = htab->elf.srelbss; | |
908 | } | |
e23eba97 NC |
909 | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) |
910 | { | |
5474d94f | 911 | srel->size += sizeof (ElfNN_External_Rela); |
e23eba97 NC |
912 | h->needs_copy = 1; |
913 | } | |
914 | ||
5474d94f | 915 | return _bfd_elf_adjust_dynamic_copy (info, h, s); |
e23eba97 NC |
916 | } |
917 | ||
918 | /* Allocate space in .plt, .got and associated reloc sections for | |
919 | dynamic relocs. */ | |
920 | ||
921 | static bfd_boolean | |
922 | allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) | |
923 | { | |
924 | struct bfd_link_info *info; | |
925 | struct riscv_elf_link_hash_table *htab; | |
926 | struct riscv_elf_link_hash_entry *eh; | |
3bf083ed | 927 | struct elf_dyn_relocs *p; |
e23eba97 NC |
928 | |
929 | if (h->root.type == bfd_link_hash_indirect) | |
930 | return TRUE; | |
931 | ||
932 | info = (struct bfd_link_info *) inf; | |
933 | htab = riscv_elf_hash_table (info); | |
934 | BFD_ASSERT (htab != NULL); | |
935 | ||
936 | if (htab->elf.dynamic_sections_created | |
937 | && h->plt.refcount > 0) | |
938 | { | |
939 | /* Make sure this symbol is output as a dynamic symbol. | |
940 | Undefined weak syms won't yet be marked as dynamic. */ | |
941 | if (h->dynindx == -1 | |
942 | && !h->forced_local) | |
943 | { | |
944 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
945 | return FALSE; | |
946 | } | |
947 | ||
948 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h)) | |
949 | { | |
950 | asection *s = htab->elf.splt; | |
951 | ||
952 | if (s->size == 0) | |
953 | s->size = PLT_HEADER_SIZE; | |
954 | ||
955 | h->plt.offset = s->size; | |
956 | ||
957 | /* Make room for this entry. */ | |
958 | s->size += PLT_ENTRY_SIZE; | |
959 | ||
960 | /* We also need to make an entry in the .got.plt section. */ | |
961 | htab->elf.sgotplt->size += GOT_ENTRY_SIZE; | |
962 | ||
963 | /* We also need to make an entry in the .rela.plt section. */ | |
964 | htab->elf.srelplt->size += sizeof (ElfNN_External_Rela); | |
965 | ||
966 | /* If this symbol is not defined in a regular file, and we are | |
967 | not generating a shared library, then set the symbol to this | |
968 | location in the .plt. This is required to make function | |
969 | pointers compare as equal between the normal executable and | |
970 | the shared library. */ | |
971 | if (! bfd_link_pic (info) | |
972 | && !h->def_regular) | |
973 | { | |
974 | h->root.u.def.section = s; | |
975 | h->root.u.def.value = h->plt.offset; | |
976 | } | |
977 | } | |
978 | else | |
979 | { | |
980 | h->plt.offset = (bfd_vma) -1; | |
981 | h->needs_plt = 0; | |
982 | } | |
983 | } | |
984 | else | |
985 | { | |
986 | h->plt.offset = (bfd_vma) -1; | |
987 | h->needs_plt = 0; | |
988 | } | |
989 | ||
990 | if (h->got.refcount > 0) | |
991 | { | |
992 | asection *s; | |
993 | bfd_boolean dyn; | |
994 | int tls_type = riscv_elf_hash_entry (h)->tls_type; | |
995 | ||
996 | /* Make sure this symbol is output as a dynamic symbol. | |
997 | Undefined weak syms won't yet be marked as dynamic. */ | |
998 | if (h->dynindx == -1 | |
999 | && !h->forced_local) | |
1000 | { | |
1001 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
1002 | return FALSE; | |
1003 | } | |
1004 | ||
1005 | s = htab->elf.sgot; | |
1006 | h->got.offset = s->size; | |
1007 | dyn = htab->elf.dynamic_sections_created; | |
1008 | if (tls_type & (GOT_TLS_GD | GOT_TLS_IE)) | |
1009 | { | |
1010 | /* TLS_GD needs two dynamic relocs and two GOT slots. */ | |
1011 | if (tls_type & GOT_TLS_GD) | |
1012 | { | |
1013 | s->size += 2 * RISCV_ELF_WORD_BYTES; | |
1014 | htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela); | |
1015 | } | |
1016 | ||
1017 | /* TLS_IE needs one dynamic reloc and one GOT slot. */ | |
1018 | if (tls_type & GOT_TLS_IE) | |
1019 | { | |
1020 | s->size += RISCV_ELF_WORD_BYTES; | |
1021 | htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); | |
1022 | } | |
1023 | } | |
1024 | else | |
1025 | { | |
1026 | s->size += RISCV_ELF_WORD_BYTES; | |
6487709f JW |
1027 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) |
1028 | && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) | |
e23eba97 NC |
1029 | htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); |
1030 | } | |
1031 | } | |
1032 | else | |
1033 | h->got.offset = (bfd_vma) -1; | |
1034 | ||
1035 | eh = (struct riscv_elf_link_hash_entry *) h; | |
1036 | if (eh->dyn_relocs == NULL) | |
1037 | return TRUE; | |
1038 | ||
1039 | /* In the shared -Bsymbolic case, discard space allocated for | |
1040 | dynamic pc-relative relocs against symbols which turn out to be | |
1041 | defined in regular objects. For the normal shared case, discard | |
1042 | space for pc-relative relocs that have become local due to symbol | |
1043 | visibility changes. */ | |
1044 | ||
1045 | if (bfd_link_pic (info)) | |
1046 | { | |
1047 | if (SYMBOL_CALLS_LOCAL (info, h)) | |
1048 | { | |
3bf083ed | 1049 | struct elf_dyn_relocs **pp; |
e23eba97 NC |
1050 | |
1051 | for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) | |
1052 | { | |
1053 | p->count -= p->pc_count; | |
1054 | p->pc_count = 0; | |
1055 | if (p->count == 0) | |
1056 | *pp = p->next; | |
1057 | else | |
1058 | pp = &p->next; | |
1059 | } | |
1060 | } | |
1061 | ||
1062 | /* Also discard relocs on undefined weak syms with non-default | |
1063 | visibility. */ | |
1064 | if (eh->dyn_relocs != NULL | |
1065 | && h->root.type == bfd_link_hash_undefweak) | |
1066 | { | |
6487709f JW |
1067 | if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
1068 | || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) | |
e23eba97 NC |
1069 | eh->dyn_relocs = NULL; |
1070 | ||
1071 | /* Make sure undefined weak symbols are output as a dynamic | |
1072 | symbol in PIEs. */ | |
1073 | else if (h->dynindx == -1 | |
1074 | && !h->forced_local) | |
1075 | { | |
1076 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
1077 | return FALSE; | |
1078 | } | |
1079 | } | |
1080 | } | |
1081 | else | |
1082 | { | |
1083 | /* For the non-shared case, discard space for relocs against | |
1084 | symbols which turn out to need copy relocs or are not | |
1085 | dynamic. */ | |
1086 | ||
1087 | if (!h->non_got_ref | |
1088 | && ((h->def_dynamic | |
1089 | && !h->def_regular) | |
1090 | || (htab->elf.dynamic_sections_created | |
1091 | && (h->root.type == bfd_link_hash_undefweak | |
1092 | || h->root.type == bfd_link_hash_undefined)))) | |
1093 | { | |
1094 | /* Make sure this symbol is output as a dynamic symbol. | |
1095 | Undefined weak syms won't yet be marked as dynamic. */ | |
1096 | if (h->dynindx == -1 | |
1097 | && !h->forced_local) | |
1098 | { | |
1099 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
1100 | return FALSE; | |
1101 | } | |
1102 | ||
1103 | /* If that succeeded, we know we'll be keeping all the | |
1104 | relocs. */ | |
1105 | if (h->dynindx != -1) | |
1106 | goto keep; | |
1107 | } | |
1108 | ||
1109 | eh->dyn_relocs = NULL; | |
1110 | ||
1111 | keep: ; | |
1112 | } | |
1113 | ||
1114 | /* Finally, allocate space. */ | |
1115 | for (p = eh->dyn_relocs; p != NULL; p = p->next) | |
1116 | { | |
1117 | asection *sreloc = elf_section_data (p->sec)->sreloc; | |
1118 | sreloc->size += p->count * sizeof (ElfNN_External_Rela); | |
1119 | } | |
1120 | ||
1121 | return TRUE; | |
1122 | } | |
1123 | ||
63c1f59d AM |
1124 | /* Set DF_TEXTREL if we find any dynamic relocs that apply to |
1125 | read-only sections. */ | |
e23eba97 NC |
1126 | |
1127 | static bfd_boolean | |
63c1f59d | 1128 | maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p) |
e23eba97 | 1129 | { |
63c1f59d | 1130 | asection *sec; |
e23eba97 | 1131 | |
63c1f59d AM |
1132 | if (h->root.type == bfd_link_hash_indirect) |
1133 | return TRUE; | |
1134 | ||
1135 | sec = readonly_dynrelocs (h); | |
1136 | if (sec != NULL) | |
e23eba97 | 1137 | { |
63c1f59d | 1138 | struct bfd_link_info *info = (struct bfd_link_info *) info_p; |
e23eba97 | 1139 | |
63c1f59d AM |
1140 | info->flags |= DF_TEXTREL; |
1141 | info->callbacks->minfo | |
c1c8c1ef | 1142 | (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"), |
63c1f59d AM |
1143 | sec->owner, h->root.root.string, sec); |
1144 | ||
1145 | /* Not an error, just cut short the traversal. */ | |
1146 | return FALSE; | |
e23eba97 NC |
1147 | } |
1148 | return TRUE; | |
1149 | } | |
1150 | ||
1151 | static bfd_boolean | |
1152 | riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) | |
1153 | { | |
1154 | struct riscv_elf_link_hash_table *htab; | |
1155 | bfd *dynobj; | |
1156 | asection *s; | |
1157 | bfd *ibfd; | |
1158 | ||
1159 | htab = riscv_elf_hash_table (info); | |
1160 | BFD_ASSERT (htab != NULL); | |
1161 | dynobj = htab->elf.dynobj; | |
1162 | BFD_ASSERT (dynobj != NULL); | |
1163 | ||
1164 | if (elf_hash_table (info)->dynamic_sections_created) | |
1165 | { | |
1166 | /* Set the contents of the .interp section to the interpreter. */ | |
1167 | if (bfd_link_executable (info) && !info->nointerp) | |
1168 | { | |
1169 | s = bfd_get_linker_section (dynobj, ".interp"); | |
1170 | BFD_ASSERT (s != NULL); | |
1171 | s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1; | |
1172 | s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER; | |
1173 | } | |
1174 | } | |
1175 | ||
1176 | /* Set up .got offsets for local syms, and space for local dynamic | |
1177 | relocs. */ | |
1178 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) | |
1179 | { | |
1180 | bfd_signed_vma *local_got; | |
1181 | bfd_signed_vma *end_local_got; | |
1182 | char *local_tls_type; | |
1183 | bfd_size_type locsymcount; | |
1184 | Elf_Internal_Shdr *symtab_hdr; | |
1185 | asection *srel; | |
1186 | ||
1187 | if (! is_riscv_elf (ibfd)) | |
1188 | continue; | |
1189 | ||
1190 | for (s = ibfd->sections; s != NULL; s = s->next) | |
1191 | { | |
3bf083ed | 1192 | struct elf_dyn_relocs *p; |
e23eba97 NC |
1193 | |
1194 | for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next) | |
1195 | { | |
1196 | if (!bfd_is_abs_section (p->sec) | |
1197 | && bfd_is_abs_section (p->sec->output_section)) | |
1198 | { | |
1199 | /* Input section has been discarded, either because | |
1200 | it is a copy of a linkonce section or due to | |
1201 | linker script /DISCARD/, so we'll be discarding | |
1202 | the relocs too. */ | |
1203 | } | |
1204 | else if (p->count != 0) | |
1205 | { | |
1206 | srel = elf_section_data (p->sec)->sreloc; | |
1207 | srel->size += p->count * sizeof (ElfNN_External_Rela); | |
1208 | if ((p->sec->output_section->flags & SEC_READONLY) != 0) | |
1209 | info->flags |= DF_TEXTREL; | |
1210 | } | |
1211 | } | |
1212 | } | |
1213 | ||
1214 | local_got = elf_local_got_refcounts (ibfd); | |
1215 | if (!local_got) | |
1216 | continue; | |
1217 | ||
1218 | symtab_hdr = &elf_symtab_hdr (ibfd); | |
1219 | locsymcount = symtab_hdr->sh_info; | |
1220 | end_local_got = local_got + locsymcount; | |
1221 | local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd); | |
1222 | s = htab->elf.sgot; | |
1223 | srel = htab->elf.srelgot; | |
1224 | for (; local_got < end_local_got; ++local_got, ++local_tls_type) | |
1225 | { | |
1226 | if (*local_got > 0) | |
1227 | { | |
1228 | *local_got = s->size; | |
1229 | s->size += RISCV_ELF_WORD_BYTES; | |
1230 | if (*local_tls_type & GOT_TLS_GD) | |
1231 | s->size += RISCV_ELF_WORD_BYTES; | |
1232 | if (bfd_link_pic (info) | |
1233 | || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE))) | |
1234 | srel->size += sizeof (ElfNN_External_Rela); | |
1235 | } | |
1236 | else | |
1237 | *local_got = (bfd_vma) -1; | |
1238 | } | |
1239 | } | |
1240 | ||
1241 | /* Allocate global sym .plt and .got entries, and space for global | |
1242 | sym dynamic relocs. */ | |
1243 | elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info); | |
1244 | ||
1245 | if (htab->elf.sgotplt) | |
1246 | { | |
1247 | struct elf_link_hash_entry *got; | |
1248 | got = elf_link_hash_lookup (elf_hash_table (info), | |
1249 | "_GLOBAL_OFFSET_TABLE_", | |
1250 | FALSE, FALSE, FALSE); | |
1251 | ||
1252 | /* Don't allocate .got.plt section if there are no GOT nor PLT | |
1253 | entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */ | |
1254 | if ((got == NULL | |
1255 | || !got->ref_regular_nonweak) | |
1256 | && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE) | |
1257 | && (htab->elf.splt == NULL | |
1258 | || htab->elf.splt->size == 0) | |
1259 | && (htab->elf.sgot == NULL | |
1260 | || (htab->elf.sgot->size | |
1261 | == get_elf_backend_data (output_bfd)->got_header_size))) | |
1262 | htab->elf.sgotplt->size = 0; | |
1263 | } | |
1264 | ||
1265 | /* The check_relocs and adjust_dynamic_symbol entry points have | |
1266 | determined the sizes of the various dynamic sections. Allocate | |
1267 | memory for them. */ | |
1268 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1269 | { | |
1270 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1271 | continue; | |
1272 | ||
1273 | if (s == htab->elf.splt | |
1274 | || s == htab->elf.sgot | |
1275 | || s == htab->elf.sgotplt | |
5474d94f | 1276 | || s == htab->elf.sdynbss |
3e1b4df8 JW |
1277 | || s == htab->elf.sdynrelro |
1278 | || s == htab->sdyntdata) | |
e23eba97 NC |
1279 | { |
1280 | /* Strip this section if we don't need it; see the | |
1281 | comment below. */ | |
1282 | } | |
1283 | else if (strncmp (s->name, ".rela", 5) == 0) | |
1284 | { | |
1285 | if (s->size != 0) | |
1286 | { | |
1287 | /* We use the reloc_count field as a counter if we need | |
1288 | to copy relocs into the output file. */ | |
1289 | s->reloc_count = 0; | |
1290 | } | |
1291 | } | |
1292 | else | |
1293 | { | |
1294 | /* It's not one of our sections. */ | |
1295 | continue; | |
1296 | } | |
1297 | ||
1298 | if (s->size == 0) | |
1299 | { | |
1300 | /* If we don't need this section, strip it from the | |
1301 | output file. This is mostly to handle .rela.bss and | |
1302 | .rela.plt. We must create both sections in | |
1303 | create_dynamic_sections, because they must be created | |
1304 | before the linker maps input sections to output | |
1305 | sections. The linker does that before | |
1306 | adjust_dynamic_symbol is called, and it is that | |
1307 | function which decides whether anything needs to go | |
1308 | into these sections. */ | |
1309 | s->flags |= SEC_EXCLUDE; | |
1310 | continue; | |
1311 | } | |
1312 | ||
1313 | if ((s->flags & SEC_HAS_CONTENTS) == 0) | |
1314 | continue; | |
1315 | ||
1316 | /* Allocate memory for the section contents. Zero the memory | |
1317 | for the benefit of .rela.plt, which has 4 unused entries | |
1318 | at the beginning, and we don't want garbage. */ | |
1319 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); | |
1320 | if (s->contents == NULL) | |
1321 | return FALSE; | |
1322 | } | |
1323 | ||
1324 | if (elf_hash_table (info)->dynamic_sections_created) | |
1325 | { | |
1326 | /* Add some entries to the .dynamic section. We fill in the | |
1327 | values later, in riscv_elf_finish_dynamic_sections, but we | |
1328 | must add the entries now so that we get the correct size for | |
1329 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1330 | dynamic linker and used by the debugger. */ | |
1331 | #define add_dynamic_entry(TAG, VAL) \ | |
1332 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) | |
1333 | ||
1334 | if (bfd_link_executable (info)) | |
1335 | { | |
1336 | if (!add_dynamic_entry (DT_DEBUG, 0)) | |
1337 | return FALSE; | |
1338 | } | |
1339 | ||
1340 | if (htab->elf.srelplt->size != 0) | |
1341 | { | |
1342 | if (!add_dynamic_entry (DT_PLTGOT, 0) | |
1343 | || !add_dynamic_entry (DT_PLTRELSZ, 0) | |
1344 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) | |
1345 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
1346 | return FALSE; | |
1347 | } | |
1348 | ||
1349 | if (!add_dynamic_entry (DT_RELA, 0) | |
1350 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1351 | || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela))) | |
1352 | return FALSE; | |
1353 | ||
1354 | /* If any dynamic relocs apply to a read-only section, | |
1355 | then we need a DT_TEXTREL entry. */ | |
1356 | if ((info->flags & DF_TEXTREL) == 0) | |
63c1f59d | 1357 | elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info); |
e23eba97 NC |
1358 | |
1359 | if (info->flags & DF_TEXTREL) | |
1360 | { | |
1361 | if (!add_dynamic_entry (DT_TEXTREL, 0)) | |
1362 | return FALSE; | |
1363 | } | |
1364 | } | |
1365 | #undef add_dynamic_entry | |
1366 | ||
1367 | return TRUE; | |
1368 | } | |
1369 | ||
1370 | #define TP_OFFSET 0 | |
1371 | #define DTP_OFFSET 0x800 | |
1372 | ||
1373 | /* Return the relocation value for a TLS dtp-relative reloc. */ | |
1374 | ||
1375 | static bfd_vma | |
1376 | dtpoff (struct bfd_link_info *info, bfd_vma address) | |
1377 | { | |
1378 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1379 | if (elf_hash_table (info)->tls_sec == NULL) | |
1380 | return 0; | |
1381 | return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET; | |
1382 | } | |
1383 | ||
1384 | /* Return the relocation value for a static TLS tp-relative relocation. */ | |
1385 | ||
1386 | static bfd_vma | |
1387 | tpoff (struct bfd_link_info *info, bfd_vma address) | |
1388 | { | |
1389 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1390 | if (elf_hash_table (info)->tls_sec == NULL) | |
1391 | return 0; | |
1392 | return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET; | |
1393 | } | |
1394 | ||
1395 | /* Return the global pointer's value, or 0 if it is not in use. */ | |
1396 | ||
1397 | static bfd_vma | |
1398 | riscv_global_pointer_value (struct bfd_link_info *info) | |
1399 | { | |
1400 | struct bfd_link_hash_entry *h; | |
1401 | ||
b5292032 | 1402 | h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE); |
e23eba97 NC |
1403 | if (h == NULL || h->type != bfd_link_hash_defined) |
1404 | return 0; | |
1405 | ||
1406 | return h->u.def.value + sec_addr (h->u.def.section); | |
1407 | } | |
1408 | ||
1409 | /* Emplace a static relocation. */ | |
1410 | ||
1411 | static bfd_reloc_status_type | |
1412 | perform_relocation (const reloc_howto_type *howto, | |
1413 | const Elf_Internal_Rela *rel, | |
1414 | bfd_vma value, | |
1415 | asection *input_section, | |
1416 | bfd *input_bfd, | |
1417 | bfd_byte *contents) | |
1418 | { | |
1419 | if (howto->pc_relative) | |
1420 | value -= sec_addr (input_section) + rel->r_offset; | |
1421 | value += rel->r_addend; | |
1422 | ||
1423 | switch (ELFNN_R_TYPE (rel->r_info)) | |
1424 | { | |
1425 | case R_RISCV_HI20: | |
1426 | case R_RISCV_TPREL_HI20: | |
1427 | case R_RISCV_PCREL_HI20: | |
1428 | case R_RISCV_GOT_HI20: | |
1429 | case R_RISCV_TLS_GOT_HI20: | |
1430 | case R_RISCV_TLS_GD_HI20: | |
1431 | if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))) | |
1432 | return bfd_reloc_overflow; | |
1433 | value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)); | |
1434 | break; | |
1435 | ||
1436 | case R_RISCV_LO12_I: | |
1437 | case R_RISCV_GPREL_I: | |
1438 | case R_RISCV_TPREL_LO12_I: | |
45f76423 | 1439 | case R_RISCV_TPREL_I: |
e23eba97 NC |
1440 | case R_RISCV_PCREL_LO12_I: |
1441 | value = ENCODE_ITYPE_IMM (value); | |
1442 | break; | |
1443 | ||
1444 | case R_RISCV_LO12_S: | |
1445 | case R_RISCV_GPREL_S: | |
1446 | case R_RISCV_TPREL_LO12_S: | |
45f76423 | 1447 | case R_RISCV_TPREL_S: |
e23eba97 NC |
1448 | case R_RISCV_PCREL_LO12_S: |
1449 | value = ENCODE_STYPE_IMM (value); | |
1450 | break; | |
1451 | ||
1452 | case R_RISCV_CALL: | |
1453 | case R_RISCV_CALL_PLT: | |
1454 | if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))) | |
1455 | return bfd_reloc_overflow; | |
1456 | value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)) | |
1457 | | (ENCODE_ITYPE_IMM (value) << 32); | |
1458 | break; | |
1459 | ||
1460 | case R_RISCV_JAL: | |
1461 | if (!VALID_UJTYPE_IMM (value)) | |
1462 | return bfd_reloc_overflow; | |
1463 | value = ENCODE_UJTYPE_IMM (value); | |
1464 | break; | |
1465 | ||
1466 | case R_RISCV_BRANCH: | |
1467 | if (!VALID_SBTYPE_IMM (value)) | |
1468 | return bfd_reloc_overflow; | |
1469 | value = ENCODE_SBTYPE_IMM (value); | |
1470 | break; | |
1471 | ||
1472 | case R_RISCV_RVC_BRANCH: | |
1473 | if (!VALID_RVC_B_IMM (value)) | |
1474 | return bfd_reloc_overflow; | |
1475 | value = ENCODE_RVC_B_IMM (value); | |
1476 | break; | |
1477 | ||
1478 | case R_RISCV_RVC_JUMP: | |
1479 | if (!VALID_RVC_J_IMM (value)) | |
1480 | return bfd_reloc_overflow; | |
1481 | value = ENCODE_RVC_J_IMM (value); | |
1482 | break; | |
1483 | ||
1484 | case R_RISCV_RVC_LUI: | |
1485 | if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value))) | |
1486 | return bfd_reloc_overflow; | |
1487 | value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)); | |
1488 | break; | |
1489 | ||
1490 | case R_RISCV_32: | |
1491 | case R_RISCV_64: | |
1492 | case R_RISCV_ADD8: | |
1493 | case R_RISCV_ADD16: | |
1494 | case R_RISCV_ADD32: | |
1495 | case R_RISCV_ADD64: | |
45f76423 | 1496 | case R_RISCV_SUB6: |
e23eba97 NC |
1497 | case R_RISCV_SUB8: |
1498 | case R_RISCV_SUB16: | |
1499 | case R_RISCV_SUB32: | |
1500 | case R_RISCV_SUB64: | |
45f76423 AW |
1501 | case R_RISCV_SET6: |
1502 | case R_RISCV_SET8: | |
1503 | case R_RISCV_SET16: | |
1504 | case R_RISCV_SET32: | |
a6cbf936 | 1505 | case R_RISCV_32_PCREL: |
e23eba97 NC |
1506 | case R_RISCV_TLS_DTPREL32: |
1507 | case R_RISCV_TLS_DTPREL64: | |
1508 | break; | |
1509 | ||
ff6f4d9b PD |
1510 | case R_RISCV_DELETE: |
1511 | return bfd_reloc_ok; | |
1512 | ||
e23eba97 NC |
1513 | default: |
1514 | return bfd_reloc_notsupported; | |
1515 | } | |
1516 | ||
1517 | bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset); | |
1518 | word = (word & ~howto->dst_mask) | (value & howto->dst_mask); | |
1519 | bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset); | |
1520 | ||
1521 | return bfd_reloc_ok; | |
1522 | } | |
1523 | ||
1524 | /* Remember all PC-relative high-part relocs we've encountered to help us | |
1525 | later resolve the corresponding low-part relocs. */ | |
1526 | ||
1527 | typedef struct | |
1528 | { | |
1529 | bfd_vma address; | |
1530 | bfd_vma value; | |
1531 | } riscv_pcrel_hi_reloc; | |
1532 | ||
1533 | typedef struct riscv_pcrel_lo_reloc | |
1534 | { | |
07d6d2b8 AM |
1535 | asection * input_section; |
1536 | struct bfd_link_info * info; | |
1537 | reloc_howto_type * howto; | |
1538 | const Elf_Internal_Rela * reloc; | |
1539 | bfd_vma addr; | |
1540 | const char * name; | |
1541 | bfd_byte * contents; | |
1542 | struct riscv_pcrel_lo_reloc * next; | |
e23eba97 NC |
1543 | } riscv_pcrel_lo_reloc; |
1544 | ||
1545 | typedef struct | |
1546 | { | |
1547 | htab_t hi_relocs; | |
1548 | riscv_pcrel_lo_reloc *lo_relocs; | |
1549 | } riscv_pcrel_relocs; | |
1550 | ||
1551 | static hashval_t | |
1552 | riscv_pcrel_reloc_hash (const void *entry) | |
1553 | { | |
1554 | const riscv_pcrel_hi_reloc *e = entry; | |
1555 | return (hashval_t)(e->address >> 2); | |
1556 | } | |
1557 | ||
1558 | static bfd_boolean | |
1559 | riscv_pcrel_reloc_eq (const void *entry1, const void *entry2) | |
1560 | { | |
1561 | const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2; | |
1562 | return e1->address == e2->address; | |
1563 | } | |
1564 | ||
1565 | static bfd_boolean | |
1566 | riscv_init_pcrel_relocs (riscv_pcrel_relocs *p) | |
1567 | { | |
1568 | ||
1569 | p->lo_relocs = NULL; | |
1570 | p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash, | |
1571 | riscv_pcrel_reloc_eq, free); | |
1572 | return p->hi_relocs != NULL; | |
1573 | } | |
1574 | ||
1575 | static void | |
1576 | riscv_free_pcrel_relocs (riscv_pcrel_relocs *p) | |
1577 | { | |
1578 | riscv_pcrel_lo_reloc *cur = p->lo_relocs; | |
1579 | ||
1580 | while (cur != NULL) | |
1581 | { | |
1582 | riscv_pcrel_lo_reloc *next = cur->next; | |
1583 | free (cur); | |
1584 | cur = next; | |
1585 | } | |
1586 | ||
1587 | htab_delete (p->hi_relocs); | |
1588 | } | |
1589 | ||
1590 | static bfd_boolean | |
b1308d2c PD |
1591 | riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel, |
1592 | struct bfd_link_info *info, | |
1593 | bfd_vma pc, | |
1594 | bfd_vma addr, | |
1595 | bfd_byte *contents, | |
1596 | const reloc_howto_type *howto, | |
1597 | bfd *input_bfd) | |
e23eba97 | 1598 | { |
b1308d2c PD |
1599 | /* We may need to reference low addreses in PC-relative modes even when the |
1600 | * PC is far away from these addresses. For example, undefweak references | |
1601 | * need to produce the address 0 when linked. As 0 is far from the arbitrary | |
1602 | * addresses that we can link PC-relative programs at, the linker can't | |
1603 | * actually relocate references to those symbols. In order to allow these | |
1604 | * programs to work we simply convert the PC-relative auipc sequences to | |
1605 | * 0-relative lui sequences. */ | |
1606 | if (bfd_link_pic (info)) | |
1607 | return FALSE; | |
1608 | ||
1609 | /* If it's possible to reference the symbol using auipc we do so, as that's | |
1610 | * more in the spirit of the PC-relative relocations we're processing. */ | |
1611 | bfd_vma offset = addr - pc; | |
1612 | if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset))) | |
1613 | return FALSE; | |
1614 | ||
1615 | /* If it's impossible to reference this with a LUI-based offset then don't | |
1616 | * bother to convert it at all so users still see the PC-relative relocation | |
1617 | * in the truncation message. */ | |
1618 | if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr))) | |
1619 | return FALSE; | |
1620 | ||
1621 | rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20); | |
1622 | ||
1623 | bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset); | |
1624 | insn = (insn & ~MASK_AUIPC) | MATCH_LUI; | |
1625 | bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset); | |
1626 | return TRUE; | |
1627 | } | |
1628 | ||
1629 | static bfd_boolean | |
1630 | riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr, | |
1631 | bfd_vma value, bfd_boolean absolute) | |
1632 | { | |
1633 | bfd_vma offset = absolute ? value : value - addr; | |
1634 | riscv_pcrel_hi_reloc entry = {addr, offset}; | |
e23eba97 NC |
1635 | riscv_pcrel_hi_reloc **slot = |
1636 | (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT); | |
1637 | ||
1638 | BFD_ASSERT (*slot == NULL); | |
1639 | *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc)); | |
1640 | if (*slot == NULL) | |
1641 | return FALSE; | |
1642 | **slot = entry; | |
1643 | return TRUE; | |
1644 | } | |
1645 | ||
1646 | static bfd_boolean | |
1647 | riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p, | |
1648 | asection *input_section, | |
1649 | struct bfd_link_info *info, | |
1650 | reloc_howto_type *howto, | |
1651 | const Elf_Internal_Rela *reloc, | |
1652 | bfd_vma addr, | |
1653 | const char *name, | |
1654 | bfd_byte *contents) | |
1655 | { | |
1656 | riscv_pcrel_lo_reloc *entry; | |
1657 | entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc)); | |
1658 | if (entry == NULL) | |
1659 | return FALSE; | |
1660 | *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr, | |
1661 | name, contents, p->lo_relocs}; | |
1662 | p->lo_relocs = entry; | |
1663 | return TRUE; | |
1664 | } | |
1665 | ||
1666 | static bfd_boolean | |
1667 | riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p) | |
1668 | { | |
1669 | riscv_pcrel_lo_reloc *r; | |
1670 | ||
1671 | for (r = p->lo_relocs; r != NULL; r = r->next) | |
1672 | { | |
1673 | bfd *input_bfd = r->input_section->owner; | |
1674 | ||
1675 | riscv_pcrel_hi_reloc search = {r->addr, 0}; | |
1676 | riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search); | |
551703cf JW |
1677 | if (entry == NULL |
1678 | /* Check for overflow into bit 11 when adding reloc addend. */ | |
1679 | || (! (entry->value & 0x800) | |
1680 | && ((entry->value + r->reloc->r_addend) & 0x800))) | |
07d6d2b8 | 1681 | { |
551703cf JW |
1682 | char *string = (entry == NULL |
1683 | ? "%pcrel_lo missing matching %pcrel_hi" | |
1684 | : "%pcrel_lo overflow with an addend"); | |
1685 | (*r->info->callbacks->reloc_dangerous) | |
1686 | (r->info, string, input_bfd, r->input_section, r->reloc->r_offset); | |
e23eba97 | 1687 | return TRUE; |
07d6d2b8 | 1688 | } |
e23eba97 NC |
1689 | |
1690 | perform_relocation (r->howto, r->reloc, entry->value, r->input_section, | |
1691 | input_bfd, r->contents); | |
1692 | } | |
1693 | ||
1694 | return TRUE; | |
1695 | } | |
1696 | ||
1697 | /* Relocate a RISC-V ELF section. | |
1698 | ||
1699 | The RELOCATE_SECTION function is called by the new ELF backend linker | |
1700 | to handle the relocations for a section. | |
1701 | ||
1702 | The relocs are always passed as Rela structures. | |
1703 | ||
1704 | This function is responsible for adjusting the section contents as | |
1705 | necessary, and (if generating a relocatable output file) adjusting | |
1706 | the reloc addend as necessary. | |
1707 | ||
1708 | This function does not have to worry about setting the reloc | |
1709 | address or the reloc symbol index. | |
1710 | ||
1711 | LOCAL_SYMS is a pointer to the swapped in local symbols. | |
1712 | ||
1713 | LOCAL_SECTIONS is an array giving the section in the input file | |
1714 | corresponding to the st_shndx field of each local symbol. | |
1715 | ||
1716 | The global hash table entry for the global symbols can be found | |
1717 | via elf_sym_hashes (input_bfd). | |
1718 | ||
1719 | When generating relocatable output, this function must handle | |
1720 | STB_LOCAL/STT_SECTION symbols specially. The output symbol is | |
1721 | going to be the section symbol corresponding to the output | |
1722 | section, which means that the addend must be adjusted | |
1723 | accordingly. */ | |
1724 | ||
1725 | static bfd_boolean | |
1726 | riscv_elf_relocate_section (bfd *output_bfd, | |
1727 | struct bfd_link_info *info, | |
1728 | bfd *input_bfd, | |
1729 | asection *input_section, | |
1730 | bfd_byte *contents, | |
1731 | Elf_Internal_Rela *relocs, | |
1732 | Elf_Internal_Sym *local_syms, | |
1733 | asection **local_sections) | |
1734 | { | |
1735 | Elf_Internal_Rela *rel; | |
1736 | Elf_Internal_Rela *relend; | |
1737 | riscv_pcrel_relocs pcrel_relocs; | |
1738 | bfd_boolean ret = FALSE; | |
1739 | asection *sreloc = elf_section_data (input_section)->sreloc; | |
1740 | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | |
1741 | Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd); | |
1742 | struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); | |
1743 | bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd); | |
b1308d2c | 1744 | bfd_boolean absolute; |
e23eba97 NC |
1745 | |
1746 | if (!riscv_init_pcrel_relocs (&pcrel_relocs)) | |
1747 | return FALSE; | |
1748 | ||
1749 | relend = relocs + input_section->reloc_count; | |
1750 | for (rel = relocs; rel < relend; rel++) | |
1751 | { | |
1752 | unsigned long r_symndx; | |
1753 | struct elf_link_hash_entry *h; | |
1754 | Elf_Internal_Sym *sym; | |
1755 | asection *sec; | |
1756 | bfd_vma relocation; | |
1757 | bfd_reloc_status_type r = bfd_reloc_ok; | |
1758 | const char *name; | |
1759 | bfd_vma off, ie_off; | |
1760 | bfd_boolean unresolved_reloc, is_ie = FALSE; | |
1761 | bfd_vma pc = sec_addr (input_section) + rel->r_offset; | |
1762 | int r_type = ELFNN_R_TYPE (rel->r_info), tls_type; | |
0aa13fee | 1763 | reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type); |
e23eba97 | 1764 | const char *msg = NULL; |
6487709f | 1765 | bfd_boolean resolved_to_zero; |
e23eba97 | 1766 | |
f3185997 NC |
1767 | if (howto == NULL |
1768 | || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY) | |
e23eba97 NC |
1769 | continue; |
1770 | ||
1771 | /* This is a final link. */ | |
1772 | r_symndx = ELFNN_R_SYM (rel->r_info); | |
1773 | h = NULL; | |
1774 | sym = NULL; | |
1775 | sec = NULL; | |
1776 | unresolved_reloc = FALSE; | |
1777 | if (r_symndx < symtab_hdr->sh_info) | |
1778 | { | |
1779 | sym = local_syms + r_symndx; | |
1780 | sec = local_sections[r_symndx]; | |
1781 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
1782 | } | |
1783 | else | |
1784 | { | |
1785 | bfd_boolean warned, ignored; | |
1786 | ||
1787 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, | |
1788 | r_symndx, symtab_hdr, sym_hashes, | |
1789 | h, sec, relocation, | |
1790 | unresolved_reloc, warned, ignored); | |
1791 | if (warned) | |
1792 | { | |
1793 | /* To avoid generating warning messages about truncated | |
1794 | relocations, set the relocation's address to be the same as | |
1795 | the start of this section. */ | |
1796 | if (input_section->output_section != NULL) | |
1797 | relocation = input_section->output_section->vma; | |
1798 | else | |
1799 | relocation = 0; | |
1800 | } | |
1801 | } | |
1802 | ||
1803 | if (sec != NULL && discarded_section (sec)) | |
1804 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, | |
1805 | rel, 1, relend, howto, 0, contents); | |
1806 | ||
1807 | if (bfd_link_relocatable (info)) | |
1808 | continue; | |
1809 | ||
1810 | if (h != NULL) | |
1811 | name = h->root.root.string; | |
1812 | else | |
1813 | { | |
1814 | name = (bfd_elf_string_from_elf_section | |
1815 | (input_bfd, symtab_hdr->sh_link, sym->st_name)); | |
1816 | if (name == NULL || *name == '\0') | |
1817 | name = bfd_section_name (input_bfd, sec); | |
1818 | } | |
1819 | ||
6487709f JW |
1820 | resolved_to_zero = (h != NULL |
1821 | && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)); | |
1822 | ||
e23eba97 NC |
1823 | switch (r_type) |
1824 | { | |
1825 | case R_RISCV_NONE: | |
45f76423 | 1826 | case R_RISCV_RELAX: |
e23eba97 NC |
1827 | case R_RISCV_TPREL_ADD: |
1828 | case R_RISCV_COPY: | |
1829 | case R_RISCV_JUMP_SLOT: | |
1830 | case R_RISCV_RELATIVE: | |
1831 | /* These require nothing of us at all. */ | |
1832 | continue; | |
1833 | ||
1834 | case R_RISCV_HI20: | |
1835 | case R_RISCV_BRANCH: | |
1836 | case R_RISCV_RVC_BRANCH: | |
1837 | case R_RISCV_RVC_LUI: | |
1838 | case R_RISCV_LO12_I: | |
1839 | case R_RISCV_LO12_S: | |
45f76423 AW |
1840 | case R_RISCV_SET6: |
1841 | case R_RISCV_SET8: | |
1842 | case R_RISCV_SET16: | |
1843 | case R_RISCV_SET32: | |
a6cbf936 | 1844 | case R_RISCV_32_PCREL: |
ff6f4d9b | 1845 | case R_RISCV_DELETE: |
e23eba97 NC |
1846 | /* These require no special handling beyond perform_relocation. */ |
1847 | break; | |
1848 | ||
1849 | case R_RISCV_GOT_HI20: | |
1850 | if (h != NULL) | |
1851 | { | |
1852 | bfd_boolean dyn, pic; | |
1853 | ||
1854 | off = h->got.offset; | |
1855 | BFD_ASSERT (off != (bfd_vma) -1); | |
1856 | dyn = elf_hash_table (info)->dynamic_sections_created; | |
1857 | pic = bfd_link_pic (info); | |
1858 | ||
1859 | if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h) | |
1860 | || (pic && SYMBOL_REFERENCES_LOCAL (info, h))) | |
1861 | { | |
1862 | /* This is actually a static link, or it is a | |
1863 | -Bsymbolic link and the symbol is defined | |
1864 | locally, or the symbol was forced to be local | |
1865 | because of a version file. We must initialize | |
1866 | this entry in the global offset table. Since the | |
1867 | offset must always be a multiple of the word size, | |
1868 | we use the least significant bit to record whether | |
1869 | we have initialized it already. | |
1870 | ||
1871 | When doing a dynamic link, we create a .rela.got | |
1872 | relocation entry to initialize the value. This | |
1873 | is done in the finish_dynamic_symbol routine. */ | |
1874 | if ((off & 1) != 0) | |
1875 | off &= ~1; | |
1876 | else | |
1877 | { | |
1878 | bfd_put_NN (output_bfd, relocation, | |
1879 | htab->elf.sgot->contents + off); | |
1880 | h->got.offset |= 1; | |
1881 | } | |
1882 | } | |
1883 | else | |
1884 | unresolved_reloc = FALSE; | |
1885 | } | |
1886 | else | |
1887 | { | |
1888 | BFD_ASSERT (local_got_offsets != NULL | |
1889 | && local_got_offsets[r_symndx] != (bfd_vma) -1); | |
1890 | ||
1891 | off = local_got_offsets[r_symndx]; | |
1892 | ||
1893 | /* The offset must always be a multiple of the word size. | |
1894 | So, we can use the least significant bit to record | |
1895 | whether we have already processed this entry. */ | |
1896 | if ((off & 1) != 0) | |
1897 | off &= ~1; | |
1898 | else | |
1899 | { | |
1900 | if (bfd_link_pic (info)) | |
1901 | { | |
1902 | asection *s; | |
1903 | Elf_Internal_Rela outrel; | |
1904 | ||
1905 | /* We need to generate a R_RISCV_RELATIVE reloc | |
1906 | for the dynamic linker. */ | |
1907 | s = htab->elf.srelgot; | |
1908 | BFD_ASSERT (s != NULL); | |
1909 | ||
1910 | outrel.r_offset = sec_addr (htab->elf.sgot) + off; | |
1911 | outrel.r_info = | |
1912 | ELFNN_R_INFO (0, R_RISCV_RELATIVE); | |
1913 | outrel.r_addend = relocation; | |
1914 | relocation = 0; | |
1915 | riscv_elf_append_rela (output_bfd, s, &outrel); | |
1916 | } | |
1917 | ||
1918 | bfd_put_NN (output_bfd, relocation, | |
1919 | htab->elf.sgot->contents + off); | |
1920 | local_got_offsets[r_symndx] |= 1; | |
1921 | } | |
1922 | } | |
1923 | relocation = sec_addr (htab->elf.sgot) + off; | |
b1308d2c PD |
1924 | absolute = riscv_zero_pcrel_hi_reloc (rel, |
1925 | info, | |
1926 | pc, | |
1927 | relocation, | |
1928 | contents, | |
1929 | howto, | |
1930 | input_bfd); | |
1931 | r_type = ELFNN_R_TYPE (rel->r_info); | |
0aa13fee | 1932 | howto = riscv_elf_rtype_to_howto (input_bfd, r_type); |
f3185997 NC |
1933 | if (howto == NULL) |
1934 | r = bfd_reloc_notsupported; | |
1935 | else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, | |
1936 | relocation, absolute)) | |
e23eba97 NC |
1937 | r = bfd_reloc_overflow; |
1938 | break; | |
1939 | ||
1940 | case R_RISCV_ADD8: | |
1941 | case R_RISCV_ADD16: | |
1942 | case R_RISCV_ADD32: | |
1943 | case R_RISCV_ADD64: | |
1944 | { | |
1945 | bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, | |
1946 | contents + rel->r_offset); | |
1947 | relocation = old_value + relocation; | |
1948 | } | |
1949 | break; | |
1950 | ||
45f76423 | 1951 | case R_RISCV_SUB6: |
e23eba97 NC |
1952 | case R_RISCV_SUB8: |
1953 | case R_RISCV_SUB16: | |
1954 | case R_RISCV_SUB32: | |
1955 | case R_RISCV_SUB64: | |
1956 | { | |
1957 | bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, | |
1958 | contents + rel->r_offset); | |
1959 | relocation = old_value - relocation; | |
1960 | } | |
1961 | break; | |
1962 | ||
e23eba97 | 1963 | case R_RISCV_CALL: |
cf7a5066 JW |
1964 | /* Handle a call to an undefined weak function. This won't be |
1965 | relaxed, so we have to handle it here. */ | |
1966 | if (h != NULL && h->root.type == bfd_link_hash_undefweak | |
1967 | && h->plt.offset == MINUS_ONE) | |
1968 | { | |
1969 | /* We can use x0 as the base register. */ | |
1970 | bfd_vma insn = bfd_get_32 (input_bfd, | |
1971 | contents + rel->r_offset + 4); | |
1972 | insn &= ~(OP_MASK_RS1 << OP_SH_RS1); | |
1973 | bfd_put_32 (input_bfd, insn, contents + rel->r_offset + 4); | |
1974 | /* Set the relocation value so that we get 0 after the pc | |
1975 | relative adjustment. */ | |
1976 | relocation = sec_addr (input_section) + rel->r_offset; | |
1977 | } | |
1978 | /* Fall through. */ | |
1979 | ||
1980 | case R_RISCV_CALL_PLT: | |
e23eba97 NC |
1981 | case R_RISCV_JAL: |
1982 | case R_RISCV_RVC_JUMP: | |
1983 | if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE) | |
1984 | { | |
1985 | /* Refer to the PLT entry. */ | |
1986 | relocation = sec_addr (htab->elf.splt) + h->plt.offset; | |
1987 | unresolved_reloc = FALSE; | |
1988 | } | |
1989 | break; | |
1990 | ||
1991 | case R_RISCV_TPREL_HI20: | |
1992 | relocation = tpoff (info, relocation); | |
1993 | break; | |
1994 | ||
1995 | case R_RISCV_TPREL_LO12_I: | |
1996 | case R_RISCV_TPREL_LO12_S: | |
45f76423 AW |
1997 | relocation = tpoff (info, relocation); |
1998 | break; | |
1999 | ||
2000 | case R_RISCV_TPREL_I: | |
2001 | case R_RISCV_TPREL_S: | |
e23eba97 NC |
2002 | relocation = tpoff (info, relocation); |
2003 | if (VALID_ITYPE_IMM (relocation + rel->r_addend)) | |
2004 | { | |
2005 | /* We can use tp as the base register. */ | |
2006 | bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset); | |
2007 | insn &= ~(OP_MASK_RS1 << OP_SH_RS1); | |
2008 | insn |= X_TP << OP_SH_RS1; | |
2009 | bfd_put_32 (input_bfd, insn, contents + rel->r_offset); | |
2010 | } | |
45f76423 AW |
2011 | else |
2012 | r = bfd_reloc_overflow; | |
e23eba97 NC |
2013 | break; |
2014 | ||
2015 | case R_RISCV_GPREL_I: | |
2016 | case R_RISCV_GPREL_S: | |
2017 | { | |
2018 | bfd_vma gp = riscv_global_pointer_value (info); | |
2019 | bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend); | |
2020 | if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp)) | |
2021 | { | |
2022 | /* We can use x0 or gp as the base register. */ | |
2023 | bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset); | |
2024 | insn &= ~(OP_MASK_RS1 << OP_SH_RS1); | |
2025 | if (!x0_base) | |
2026 | { | |
2027 | rel->r_addend -= gp; | |
2028 | insn |= X_GP << OP_SH_RS1; | |
2029 | } | |
2030 | bfd_put_32 (input_bfd, insn, contents + rel->r_offset); | |
2031 | } | |
2032 | else | |
2033 | r = bfd_reloc_overflow; | |
2034 | break; | |
2035 | } | |
2036 | ||
2037 | case R_RISCV_PCREL_HI20: | |
b1308d2c PD |
2038 | absolute = riscv_zero_pcrel_hi_reloc (rel, |
2039 | info, | |
2040 | pc, | |
2041 | relocation, | |
2042 | contents, | |
2043 | howto, | |
2044 | input_bfd); | |
2045 | r_type = ELFNN_R_TYPE (rel->r_info); | |
0aa13fee | 2046 | howto = riscv_elf_rtype_to_howto (input_bfd, r_type); |
f3185997 NC |
2047 | if (howto == NULL) |
2048 | r = bfd_reloc_notsupported; | |
2049 | else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, | |
2050 | relocation + rel->r_addend, | |
2051 | absolute)) | |
e23eba97 NC |
2052 | r = bfd_reloc_overflow; |
2053 | break; | |
2054 | ||
2055 | case R_RISCV_PCREL_LO12_I: | |
2056 | case R_RISCV_PCREL_LO12_S: | |
551703cf JW |
2057 | /* We don't allow section symbols plus addends as the auipc address, |
2058 | because then riscv_relax_delete_bytes would have to search through | |
2059 | all relocs to update these addends. This is also ambiguous, as | |
2060 | we do allow offsets to be added to the target address, which are | |
2061 | not to be used to find the auipc address. */ | |
2062 | if ((ELF_ST_TYPE (sym->st_info) == STT_SECTION) && rel->r_addend) | |
2a0d9853 JW |
2063 | { |
2064 | r = bfd_reloc_dangerous; | |
2065 | break; | |
2066 | } | |
2067 | ||
e23eba97 NC |
2068 | if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info, |
2069 | howto, rel, relocation, name, | |
2070 | contents)) | |
2071 | continue; | |
2072 | r = bfd_reloc_overflow; | |
2073 | break; | |
2074 | ||
2075 | case R_RISCV_TLS_DTPREL32: | |
2076 | case R_RISCV_TLS_DTPREL64: | |
2077 | relocation = dtpoff (info, relocation); | |
2078 | break; | |
2079 | ||
2080 | case R_RISCV_32: | |
2081 | case R_RISCV_64: | |
2082 | if ((input_section->flags & SEC_ALLOC) == 0) | |
2083 | break; | |
2084 | ||
2085 | if ((bfd_link_pic (info) | |
2086 | && (h == NULL | |
6487709f JW |
2087 | || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
2088 | && !resolved_to_zero) | |
e23eba97 NC |
2089 | || h->root.type != bfd_link_hash_undefweak) |
2090 | && (! howto->pc_relative | |
2091 | || !SYMBOL_CALLS_LOCAL (info, h))) | |
2092 | || (!bfd_link_pic (info) | |
2093 | && h != NULL | |
2094 | && h->dynindx != -1 | |
2095 | && !h->non_got_ref | |
2096 | && ((h->def_dynamic | |
2097 | && !h->def_regular) | |
2098 | || h->root.type == bfd_link_hash_undefweak | |
2099 | || h->root.type == bfd_link_hash_undefined))) | |
2100 | { | |
2101 | Elf_Internal_Rela outrel; | |
2102 | bfd_boolean skip_static_relocation, skip_dynamic_relocation; | |
2103 | ||
2104 | /* When generating a shared object, these relocations | |
2105 | are copied into the output file to be resolved at run | |
2106 | time. */ | |
2107 | ||
2108 | outrel.r_offset = | |
2109 | _bfd_elf_section_offset (output_bfd, info, input_section, | |
2110 | rel->r_offset); | |
2111 | skip_static_relocation = outrel.r_offset != (bfd_vma) -2; | |
2112 | skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2; | |
2113 | outrel.r_offset += sec_addr (input_section); | |
2114 | ||
2115 | if (skip_dynamic_relocation) | |
2116 | memset (&outrel, 0, sizeof outrel); | |
2117 | else if (h != NULL && h->dynindx != -1 | |
2118 | && !(bfd_link_pic (info) | |
2119 | && SYMBOLIC_BIND (info, h) | |
2120 | && h->def_regular)) | |
2121 | { | |
2122 | outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); | |
2123 | outrel.r_addend = rel->r_addend; | |
2124 | } | |
2125 | else | |
2126 | { | |
2127 | outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE); | |
2128 | outrel.r_addend = relocation + rel->r_addend; | |
2129 | } | |
2130 | ||
2131 | riscv_elf_append_rela (output_bfd, sreloc, &outrel); | |
2132 | if (skip_static_relocation) | |
2133 | continue; | |
2134 | } | |
2135 | break; | |
2136 | ||
2137 | case R_RISCV_TLS_GOT_HI20: | |
2138 | is_ie = TRUE; | |
2139 | /* Fall through. */ | |
2140 | ||
2141 | case R_RISCV_TLS_GD_HI20: | |
2142 | if (h != NULL) | |
2143 | { | |
2144 | off = h->got.offset; | |
2145 | h->got.offset |= 1; | |
2146 | } | |
2147 | else | |
2148 | { | |
2149 | off = local_got_offsets[r_symndx]; | |
2150 | local_got_offsets[r_symndx] |= 1; | |
2151 | } | |
2152 | ||
2153 | tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx); | |
2154 | BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD)); | |
2155 | /* If this symbol is referenced by both GD and IE TLS, the IE | |
2156 | reference's GOT slot follows the GD reference's slots. */ | |
2157 | ie_off = 0; | |
2158 | if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE)) | |
2159 | ie_off = 2 * GOT_ENTRY_SIZE; | |
2160 | ||
2161 | if ((off & 1) != 0) | |
2162 | off &= ~1; | |
2163 | else | |
2164 | { | |
2165 | Elf_Internal_Rela outrel; | |
2166 | int indx = 0; | |
2167 | bfd_boolean need_relocs = FALSE; | |
2168 | ||
2169 | if (htab->elf.srelgot == NULL) | |
2170 | abort (); | |
2171 | ||
2172 | if (h != NULL) | |
2173 | { | |
2174 | bfd_boolean dyn, pic; | |
2175 | dyn = htab->elf.dynamic_sections_created; | |
2176 | pic = bfd_link_pic (info); | |
2177 | ||
2178 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h) | |
2179 | && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h))) | |
2180 | indx = h->dynindx; | |
2181 | } | |
2182 | ||
2183 | /* The GOT entries have not been initialized yet. Do it | |
07d6d2b8 | 2184 | now, and emit any relocations. */ |
e23eba97 NC |
2185 | if ((bfd_link_pic (info) || indx != 0) |
2186 | && (h == NULL | |
2187 | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | |
2188 | || h->root.type != bfd_link_hash_undefweak)) | |
2189 | need_relocs = TRUE; | |
2190 | ||
2191 | if (tls_type & GOT_TLS_GD) | |
2192 | { | |
2193 | if (need_relocs) | |
2194 | { | |
2195 | outrel.r_offset = sec_addr (htab->elf.sgot) + off; | |
2196 | outrel.r_addend = 0; | |
2197 | outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN); | |
2198 | bfd_put_NN (output_bfd, 0, | |
2199 | htab->elf.sgot->contents + off); | |
2200 | riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); | |
2201 | if (indx == 0) | |
2202 | { | |
2203 | BFD_ASSERT (! unresolved_reloc); | |
2204 | bfd_put_NN (output_bfd, | |
2205 | dtpoff (info, relocation), | |
2206 | (htab->elf.sgot->contents + off + | |
2207 | RISCV_ELF_WORD_BYTES)); | |
2208 | } | |
2209 | else | |
2210 | { | |
2211 | bfd_put_NN (output_bfd, 0, | |
2212 | (htab->elf.sgot->contents + off + | |
2213 | RISCV_ELF_WORD_BYTES)); | |
2214 | outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN); | |
2215 | outrel.r_offset += RISCV_ELF_WORD_BYTES; | |
2216 | riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); | |
2217 | } | |
2218 | } | |
2219 | else | |
2220 | { | |
2221 | /* If we are not emitting relocations for a | |
2222 | general dynamic reference, then we must be in a | |
2223 | static link or an executable link with the | |
2224 | symbol binding locally. Mark it as belonging | |
2225 | to module 1, the executable. */ | |
2226 | bfd_put_NN (output_bfd, 1, | |
2227 | htab->elf.sgot->contents + off); | |
2228 | bfd_put_NN (output_bfd, | |
2229 | dtpoff (info, relocation), | |
2230 | (htab->elf.sgot->contents + off + | |
2231 | RISCV_ELF_WORD_BYTES)); | |
2232 | } | |
2233 | } | |
2234 | ||
2235 | if (tls_type & GOT_TLS_IE) | |
2236 | { | |
2237 | if (need_relocs) | |
2238 | { | |
2239 | bfd_put_NN (output_bfd, 0, | |
2240 | htab->elf.sgot->contents + off + ie_off); | |
2241 | outrel.r_offset = sec_addr (htab->elf.sgot) | |
2242 | + off + ie_off; | |
2243 | outrel.r_addend = 0; | |
2244 | if (indx == 0) | |
2245 | outrel.r_addend = tpoff (info, relocation); | |
2246 | outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN); | |
2247 | riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); | |
2248 | } | |
2249 | else | |
2250 | { | |
2251 | bfd_put_NN (output_bfd, tpoff (info, relocation), | |
2252 | htab->elf.sgot->contents + off + ie_off); | |
2253 | } | |
2254 | } | |
2255 | } | |
2256 | ||
2257 | BFD_ASSERT (off < (bfd_vma) -2); | |
2258 | relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0); | |
b1308d2c PD |
2259 | if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, |
2260 | relocation, FALSE)) | |
e23eba97 NC |
2261 | r = bfd_reloc_overflow; |
2262 | unresolved_reloc = FALSE; | |
2263 | break; | |
2264 | ||
2265 | default: | |
2266 | r = bfd_reloc_notsupported; | |
2267 | } | |
2268 | ||
2269 | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections | |
2270 | because such sections are not SEC_ALLOC and thus ld.so will | |
2271 | not process them. */ | |
2272 | if (unresolved_reloc | |
2273 | && !((input_section->flags & SEC_DEBUGGING) != 0 | |
2274 | && h->def_dynamic) | |
2275 | && _bfd_elf_section_offset (output_bfd, info, input_section, | |
2276 | rel->r_offset) != (bfd_vma) -1) | |
2277 | { | |
2278 | (*_bfd_error_handler) | |
2dcf00ce AM |
2279 | (_("%pB(%pA+%#" PRIx64 "): " |
2280 | "unresolvable %s relocation against symbol `%s'"), | |
e23eba97 NC |
2281 | input_bfd, |
2282 | input_section, | |
2dcf00ce | 2283 | (uint64_t) rel->r_offset, |
e23eba97 NC |
2284 | howto->name, |
2285 | h->root.root.string); | |
2286 | continue; | |
2287 | } | |
2288 | ||
2289 | if (r == bfd_reloc_ok) | |
2290 | r = perform_relocation (howto, rel, relocation, input_section, | |
2291 | input_bfd, contents); | |
2292 | ||
2293 | switch (r) | |
2294 | { | |
2295 | case bfd_reloc_ok: | |
2296 | continue; | |
2297 | ||
2298 | case bfd_reloc_overflow: | |
2299 | info->callbacks->reloc_overflow | |
2300 | (info, (h ? &h->root : NULL), name, howto->name, | |
2301 | (bfd_vma) 0, input_bfd, input_section, rel->r_offset); | |
2302 | break; | |
2303 | ||
2304 | case bfd_reloc_undefined: | |
2305 | info->callbacks->undefined_symbol | |
2306 | (info, name, input_bfd, input_section, rel->r_offset, | |
2307 | TRUE); | |
2308 | break; | |
2309 | ||
2310 | case bfd_reloc_outofrange: | |
2a0d9853 | 2311 | msg = _("%X%P: internal error: out of range error\n"); |
e23eba97 NC |
2312 | break; |
2313 | ||
2314 | case bfd_reloc_notsupported: | |
2a0d9853 | 2315 | msg = _("%X%P: internal error: unsupported relocation error\n"); |
e23eba97 NC |
2316 | break; |
2317 | ||
2318 | case bfd_reloc_dangerous: | |
2a0d9853 | 2319 | info->callbacks->reloc_dangerous |
551703cf JW |
2320 | (info, "%pcrel_lo section symbol with an addend", input_bfd, |
2321 | input_section, rel->r_offset); | |
e23eba97 NC |
2322 | break; |
2323 | ||
2324 | default: | |
2a0d9853 | 2325 | msg = _("%X%P: internal error: unknown error\n"); |
e23eba97 NC |
2326 | break; |
2327 | } | |
2328 | ||
2329 | if (msg) | |
2a0d9853 JW |
2330 | info->callbacks->einfo (msg); |
2331 | ||
3f48fe4a JW |
2332 | /* We already reported the error via a callback, so don't try to report |
2333 | it again by returning false. That leads to spurious errors. */ | |
ed01220c | 2334 | ret = TRUE; |
e23eba97 NC |
2335 | goto out; |
2336 | } | |
2337 | ||
2338 | ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs); | |
2339 | out: | |
2340 | riscv_free_pcrel_relocs (&pcrel_relocs); | |
2341 | return ret; | |
2342 | } | |
2343 | ||
2344 | /* Finish up dynamic symbol handling. We set the contents of various | |
2345 | dynamic sections here. */ | |
2346 | ||
2347 | static bfd_boolean | |
2348 | riscv_elf_finish_dynamic_symbol (bfd *output_bfd, | |
2349 | struct bfd_link_info *info, | |
2350 | struct elf_link_hash_entry *h, | |
2351 | Elf_Internal_Sym *sym) | |
2352 | { | |
2353 | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | |
2354 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
2355 | ||
2356 | if (h->plt.offset != (bfd_vma) -1) | |
2357 | { | |
2358 | /* We've decided to create a PLT entry for this symbol. */ | |
2359 | bfd_byte *loc; | |
2360 | bfd_vma i, header_address, plt_idx, got_address; | |
2361 | uint32_t plt_entry[PLT_ENTRY_INSNS]; | |
2362 | Elf_Internal_Rela rela; | |
2363 | ||
2364 | BFD_ASSERT (h->dynindx != -1); | |
2365 | ||
2366 | /* Calculate the address of the PLT header. */ | |
2367 | header_address = sec_addr (htab->elf.splt); | |
2368 | ||
2369 | /* Calculate the index of the entry. */ | |
2370 | plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE; | |
2371 | ||
2372 | /* Calculate the address of the .got.plt entry. */ | |
2373 | got_address = riscv_elf_got_plt_val (plt_idx, info); | |
2374 | ||
2375 | /* Find out where the .plt entry should go. */ | |
2376 | loc = htab->elf.splt->contents + h->plt.offset; | |
2377 | ||
2378 | /* Fill in the PLT entry itself. */ | |
5ef23793 JW |
2379 | if (! riscv_make_plt_entry (output_bfd, got_address, |
2380 | header_address + h->plt.offset, | |
2381 | plt_entry)) | |
2382 | return FALSE; | |
2383 | ||
e23eba97 NC |
2384 | for (i = 0; i < PLT_ENTRY_INSNS; i++) |
2385 | bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i); | |
2386 | ||
2387 | /* Fill in the initial value of the .got.plt entry. */ | |
2388 | loc = htab->elf.sgotplt->contents | |
2389 | + (got_address - sec_addr (htab->elf.sgotplt)); | |
2390 | bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc); | |
2391 | ||
2392 | /* Fill in the entry in the .rela.plt section. */ | |
2393 | rela.r_offset = got_address; | |
2394 | rela.r_addend = 0; | |
2395 | rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT); | |
2396 | ||
2397 | loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela); | |
2398 | bed->s->swap_reloca_out (output_bfd, &rela, loc); | |
2399 | ||
2400 | if (!h->def_regular) | |
2401 | { | |
2402 | /* Mark the symbol as undefined, rather than as defined in | |
2403 | the .plt section. Leave the value alone. */ | |
2404 | sym->st_shndx = SHN_UNDEF; | |
2405 | /* If the symbol is weak, we do need to clear the value. | |
2406 | Otherwise, the PLT entry would provide a definition for | |
2407 | the symbol even if the symbol wasn't defined anywhere, | |
2408 | and so the symbol would never be NULL. */ | |
2409 | if (!h->ref_regular_nonweak) | |
2410 | sym->st_value = 0; | |
2411 | } | |
2412 | } | |
2413 | ||
2414 | if (h->got.offset != (bfd_vma) -1 | |
6487709f JW |
2415 | && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) |
2416 | && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) | |
e23eba97 NC |
2417 | { |
2418 | asection *sgot; | |
2419 | asection *srela; | |
2420 | Elf_Internal_Rela rela; | |
2421 | ||
2422 | /* This symbol has an entry in the GOT. Set it up. */ | |
2423 | ||
2424 | sgot = htab->elf.sgot; | |
2425 | srela = htab->elf.srelgot; | |
2426 | BFD_ASSERT (sgot != NULL && srela != NULL); | |
2427 | ||
2428 | rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1); | |
2429 | ||
25eb8346 JW |
2430 | /* If this is a local symbol reference, we just want to emit a RELATIVE |
2431 | reloc. This can happen if it is a -Bsymbolic link, or a pie link, or | |
e23eba97 NC |
2432 | the symbol was forced to be local because of a version file. |
2433 | The entry in the global offset table will already have been | |
2434 | initialized in the relocate_section function. */ | |
2435 | if (bfd_link_pic (info) | |
25eb8346 | 2436 | && SYMBOL_REFERENCES_LOCAL (info, h)) |
e23eba97 | 2437 | { |
25eb8346 | 2438 | BFD_ASSERT((h->got.offset & 1) != 0); |
e23eba97 NC |
2439 | asection *sec = h->root.u.def.section; |
2440 | rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE); | |
2441 | rela.r_addend = (h->root.u.def.value | |
2442 | + sec->output_section->vma | |
2443 | + sec->output_offset); | |
2444 | } | |
2445 | else | |
2446 | { | |
25eb8346 | 2447 | BFD_ASSERT((h->got.offset & 1) == 0); |
e23eba97 NC |
2448 | BFD_ASSERT (h->dynindx != -1); |
2449 | rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN); | |
2450 | rela.r_addend = 0; | |
2451 | } | |
2452 | ||
2453 | bfd_put_NN (output_bfd, 0, | |
2454 | sgot->contents + (h->got.offset & ~(bfd_vma) 1)); | |
2455 | riscv_elf_append_rela (output_bfd, srela, &rela); | |
2456 | } | |
2457 | ||
2458 | if (h->needs_copy) | |
2459 | { | |
2460 | Elf_Internal_Rela rela; | |
5474d94f | 2461 | asection *s; |
e23eba97 NC |
2462 | |
2463 | /* This symbols needs a copy reloc. Set it up. */ | |
2464 | BFD_ASSERT (h->dynindx != -1); | |
2465 | ||
2466 | rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value; | |
2467 | rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY); | |
2468 | rela.r_addend = 0; | |
afbf7e8e | 2469 | if (h->root.u.def.section == htab->elf.sdynrelro) |
5474d94f AM |
2470 | s = htab->elf.sreldynrelro; |
2471 | else | |
2472 | s = htab->elf.srelbss; | |
2473 | riscv_elf_append_rela (output_bfd, s, &rela); | |
e23eba97 NC |
2474 | } |
2475 | ||
2476 | /* Mark some specially defined symbols as absolute. */ | |
2477 | if (h == htab->elf.hdynamic | |
2478 | || (h == htab->elf.hgot || h == htab->elf.hplt)) | |
2479 | sym->st_shndx = SHN_ABS; | |
2480 | ||
2481 | return TRUE; | |
2482 | } | |
2483 | ||
2484 | /* Finish up the dynamic sections. */ | |
2485 | ||
2486 | static bfd_boolean | |
2487 | riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info, | |
2488 | bfd *dynobj, asection *sdyn) | |
2489 | { | |
2490 | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | |
2491 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
2492 | size_t dynsize = bed->s->sizeof_dyn; | |
2493 | bfd_byte *dyncon, *dynconend; | |
2494 | ||
2495 | dynconend = sdyn->contents + sdyn->size; | |
2496 | for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize) | |
2497 | { | |
2498 | Elf_Internal_Dyn dyn; | |
2499 | asection *s; | |
2500 | ||
2501 | bed->s->swap_dyn_in (dynobj, dyncon, &dyn); | |
2502 | ||
2503 | switch (dyn.d_tag) | |
2504 | { | |
2505 | case DT_PLTGOT: | |
2506 | s = htab->elf.sgotplt; | |
2507 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
2508 | break; | |
2509 | case DT_JMPREL: | |
2510 | s = htab->elf.srelplt; | |
2511 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
2512 | break; | |
2513 | case DT_PLTRELSZ: | |
2514 | s = htab->elf.srelplt; | |
2515 | dyn.d_un.d_val = s->size; | |
2516 | break; | |
2517 | default: | |
2518 | continue; | |
2519 | } | |
2520 | ||
2521 | bed->s->swap_dyn_out (output_bfd, &dyn, dyncon); | |
2522 | } | |
2523 | return TRUE; | |
2524 | } | |
2525 | ||
2526 | static bfd_boolean | |
2527 | riscv_elf_finish_dynamic_sections (bfd *output_bfd, | |
2528 | struct bfd_link_info *info) | |
2529 | { | |
2530 | bfd *dynobj; | |
2531 | asection *sdyn; | |
2532 | struct riscv_elf_link_hash_table *htab; | |
2533 | ||
2534 | htab = riscv_elf_hash_table (info); | |
2535 | BFD_ASSERT (htab != NULL); | |
2536 | dynobj = htab->elf.dynobj; | |
2537 | ||
2538 | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); | |
2539 | ||
2540 | if (elf_hash_table (info)->dynamic_sections_created) | |
2541 | { | |
2542 | asection *splt; | |
2543 | bfd_boolean ret; | |
2544 | ||
2545 | splt = htab->elf.splt; | |
2546 | BFD_ASSERT (splt != NULL && sdyn != NULL); | |
2547 | ||
2548 | ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn); | |
2549 | ||
535b785f | 2550 | if (!ret) |
e23eba97 NC |
2551 | return ret; |
2552 | ||
2553 | /* Fill in the head and tail entries in the procedure linkage table. */ | |
2554 | if (splt->size > 0) | |
2555 | { | |
2556 | int i; | |
2557 | uint32_t plt_header[PLT_HEADER_INSNS]; | |
5ef23793 JW |
2558 | ret = riscv_make_plt_header (output_bfd, |
2559 | sec_addr (htab->elf.sgotplt), | |
2560 | sec_addr (splt), plt_header); | |
2561 | if (!ret) | |
2562 | return ret; | |
e23eba97 NC |
2563 | |
2564 | for (i = 0; i < PLT_HEADER_INSNS; i++) | |
2565 | bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i); | |
e23eba97 | 2566 | |
cc162427 AW |
2567 | elf_section_data (splt->output_section)->this_hdr.sh_entsize |
2568 | = PLT_ENTRY_SIZE; | |
2569 | } | |
e23eba97 NC |
2570 | } |
2571 | ||
2572 | if (htab->elf.sgotplt) | |
2573 | { | |
2574 | asection *output_section = htab->elf.sgotplt->output_section; | |
2575 | ||
2576 | if (bfd_is_abs_section (output_section)) | |
2577 | { | |
2578 | (*_bfd_error_handler) | |
871b3ab2 | 2579 | (_("discarded output section: `%pA'"), htab->elf.sgotplt); |
e23eba97 NC |
2580 | return FALSE; |
2581 | } | |
2582 | ||
2583 | if (htab->elf.sgotplt->size > 0) | |
2584 | { | |
2585 | /* Write the first two entries in .got.plt, needed for the dynamic | |
2586 | linker. */ | |
2587 | bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents); | |
2588 | bfd_put_NN (output_bfd, (bfd_vma) 0, | |
2589 | htab->elf.sgotplt->contents + GOT_ENTRY_SIZE); | |
2590 | } | |
2591 | ||
2592 | elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; | |
2593 | } | |
2594 | ||
2595 | if (htab->elf.sgot) | |
2596 | { | |
2597 | asection *output_section = htab->elf.sgot->output_section; | |
2598 | ||
2599 | if (htab->elf.sgot->size > 0) | |
2600 | { | |
2601 | /* Set the first entry in the global offset table to the address of | |
2602 | the dynamic section. */ | |
2603 | bfd_vma val = sdyn ? sec_addr (sdyn) : 0; | |
2604 | bfd_put_NN (output_bfd, val, htab->elf.sgot->contents); | |
2605 | } | |
2606 | ||
2607 | elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; | |
2608 | } | |
2609 | ||
2610 | return TRUE; | |
2611 | } | |
2612 | ||
2613 | /* Return address for Ith PLT stub in section PLT, for relocation REL | |
2614 | or (bfd_vma) -1 if it should not be included. */ | |
2615 | ||
2616 | static bfd_vma | |
2617 | riscv_elf_plt_sym_val (bfd_vma i, const asection *plt, | |
2618 | const arelent *rel ATTRIBUTE_UNUSED) | |
2619 | { | |
2620 | return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE; | |
2621 | } | |
2622 | ||
2623 | static enum elf_reloc_type_class | |
2624 | riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
2625 | const asection *rel_sec ATTRIBUTE_UNUSED, | |
2626 | const Elf_Internal_Rela *rela) | |
2627 | { | |
2628 | switch (ELFNN_R_TYPE (rela->r_info)) | |
2629 | { | |
2630 | case R_RISCV_RELATIVE: | |
2631 | return reloc_class_relative; | |
2632 | case R_RISCV_JUMP_SLOT: | |
2633 | return reloc_class_plt; | |
2634 | case R_RISCV_COPY: | |
2635 | return reloc_class_copy; | |
2636 | default: | |
2637 | return reloc_class_normal; | |
2638 | } | |
2639 | } | |
2640 | ||
0242af40 JW |
2641 | /* Given the ELF header flags in FLAGS, it returns a string that describes the |
2642 | float ABI. */ | |
2643 | ||
2644 | static const char * | |
2645 | riscv_float_abi_string (flagword flags) | |
2646 | { | |
2647 | switch (flags & EF_RISCV_FLOAT_ABI) | |
2648 | { | |
2649 | case EF_RISCV_FLOAT_ABI_SOFT: | |
2650 | return "soft-float"; | |
2651 | break; | |
2652 | case EF_RISCV_FLOAT_ABI_SINGLE: | |
2653 | return "single-float"; | |
2654 | break; | |
2655 | case EF_RISCV_FLOAT_ABI_DOUBLE: | |
2656 | return "double-float"; | |
2657 | break; | |
2658 | case EF_RISCV_FLOAT_ABI_QUAD: | |
2659 | return "quad-float"; | |
2660 | break; | |
2661 | default: | |
2662 | abort (); | |
2663 | } | |
2664 | } | |
2665 | ||
e23eba97 NC |
2666 | /* Merge backend specific data from an object file to the output |
2667 | object file when linking. */ | |
2668 | ||
2669 | static bfd_boolean | |
2670 | _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) | |
2671 | { | |
2672 | bfd *obfd = info->output_bfd; | |
2673 | flagword new_flags = elf_elfheader (ibfd)->e_flags; | |
2674 | flagword old_flags = elf_elfheader (obfd)->e_flags; | |
2675 | ||
2676 | if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd)) | |
2677 | return TRUE; | |
2678 | ||
2679 | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) | |
2680 | { | |
2681 | (*_bfd_error_handler) | |
871b3ab2 | 2682 | (_("%pB: ABI is incompatible with that of the selected emulation:\n" |
96b0927d PD |
2683 | " target emulation `%s' does not match `%s'"), |
2684 | ibfd, bfd_get_target (ibfd), bfd_get_target (obfd)); | |
e23eba97 NC |
2685 | return FALSE; |
2686 | } | |
2687 | ||
2688 | if (!_bfd_elf_merge_object_attributes (ibfd, info)) | |
2689 | return FALSE; | |
2690 | ||
2691 | if (! elf_flags_init (obfd)) | |
2692 | { | |
2693 | elf_flags_init (obfd) = TRUE; | |
2694 | elf_elfheader (obfd)->e_flags = new_flags; | |
2695 | return TRUE; | |
2696 | } | |
2697 | ||
2922d21d AW |
2698 | /* Disallow linking different float ABIs. */ |
2699 | if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI) | |
e23eba97 NC |
2700 | { |
2701 | (*_bfd_error_handler) | |
0242af40 JW |
2702 | (_("%pB: can't link %s modules with %s modules"), ibfd, |
2703 | riscv_float_abi_string (new_flags), | |
2704 | riscv_float_abi_string (old_flags)); | |
e23eba97 NC |
2705 | goto fail; |
2706 | } | |
2707 | ||
7f999549 JW |
2708 | /* Disallow linking RVE and non-RVE. */ |
2709 | if ((old_flags ^ new_flags) & EF_RISCV_RVE) | |
2710 | { | |
2711 | (*_bfd_error_handler) | |
2712 | (_("%pB: can't link RVE with other target"), ibfd); | |
2713 | goto fail; | |
2714 | } | |
2715 | ||
e23eba97 NC |
2716 | /* Allow linking RVC and non-RVC, and keep the RVC flag. */ |
2717 | elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC; | |
2718 | ||
2719 | return TRUE; | |
2720 | ||
2721 | fail: | |
2722 | bfd_set_error (bfd_error_bad_value); | |
2723 | return FALSE; | |
2724 | } | |
2725 | ||
2726 | /* Delete some bytes from a section while relaxing. */ | |
2727 | ||
2728 | static bfd_boolean | |
7f02625e JW |
2729 | riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count, |
2730 | struct bfd_link_info *link_info) | |
e23eba97 NC |
2731 | { |
2732 | unsigned int i, symcount; | |
2733 | bfd_vma toaddr = sec->size; | |
2734 | struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd); | |
2735 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
2736 | unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
2737 | struct bfd_elf_section_data *data = elf_section_data (sec); | |
2738 | bfd_byte *contents = data->this_hdr.contents; | |
2739 | ||
2740 | /* Actually delete the bytes. */ | |
2741 | sec->size -= count; | |
2742 | memmove (contents + addr, contents + addr + count, toaddr - addr - count); | |
2743 | ||
2744 | /* Adjust the location of all of the relocs. Note that we need not | |
2745 | adjust the addends, since all PC-relative references must be against | |
2746 | symbols, which we will adjust below. */ | |
2747 | for (i = 0; i < sec->reloc_count; i++) | |
2748 | if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr) | |
2749 | data->relocs[i].r_offset -= count; | |
2750 | ||
2751 | /* Adjust the local symbols defined in this section. */ | |
2752 | for (i = 0; i < symtab_hdr->sh_info; i++) | |
2753 | { | |
2754 | Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i; | |
2755 | if (sym->st_shndx == sec_shndx) | |
2756 | { | |
2757 | /* If the symbol is in the range of memory we just moved, we | |
2758 | have to adjust its value. */ | |
2759 | if (sym->st_value > addr && sym->st_value <= toaddr) | |
2760 | sym->st_value -= count; | |
2761 | ||
2762 | /* If the symbol *spans* the bytes we just deleted (i.e. its | |
2763 | *end* is in the moved bytes but its *start* isn't), then we | |
788af978 JW |
2764 | must adjust its size. |
2765 | ||
2766 | This test needs to use the original value of st_value, otherwise | |
2767 | we might accidentally decrease size when deleting bytes right | |
2768 | before the symbol. But since deleted relocs can't span across | |
2769 | symbols, we can't have both a st_value and a st_size decrease, | |
2770 | so it is simpler to just use an else. */ | |
2771 | else if (sym->st_value <= addr | |
2772 | && sym->st_value + sym->st_size > addr | |
2773 | && sym->st_value + sym->st_size <= toaddr) | |
e23eba97 NC |
2774 | sym->st_size -= count; |
2775 | } | |
2776 | } | |
2777 | ||
2778 | /* Now adjust the global symbols defined in this section. */ | |
2779 | symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym)) | |
2780 | - symtab_hdr->sh_info); | |
2781 | ||
2782 | for (i = 0; i < symcount; i++) | |
2783 | { | |
2784 | struct elf_link_hash_entry *sym_hash = sym_hashes[i]; | |
2785 | ||
7f02625e JW |
2786 | /* The '--wrap SYMBOL' option is causing a pain when the object file, |
2787 | containing the definition of __wrap_SYMBOL, includes a direct | |
2788 | call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference | |
2789 | the same symbol (which is __wrap_SYMBOL), but still exist as two | |
2790 | different symbols in 'sym_hashes', we don't want to adjust | |
137b5cbd JW |
2791 | the global symbol __wrap_SYMBOL twice. */ |
2792 | /* The same problem occurs with symbols that are versioned_hidden, as | |
2793 | foo becomes an alias for foo@BAR, and hence they need the same | |
2794 | treatment. */ | |
2795 | if (link_info->wrap_hash != NULL | |
2796 | || sym_hash->versioned == versioned_hidden) | |
7f02625e JW |
2797 | { |
2798 | struct elf_link_hash_entry **cur_sym_hashes; | |
2799 | ||
2800 | /* Loop only over the symbols which have already been checked. */ | |
2801 | for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i]; | |
2802 | cur_sym_hashes++) | |
2803 | { | |
2804 | /* If the current symbol is identical to 'sym_hash', that means | |
2805 | the symbol was already adjusted (or at least checked). */ | |
2806 | if (*cur_sym_hashes == sym_hash) | |
2807 | break; | |
2808 | } | |
2809 | /* Don't adjust the symbol again. */ | |
2810 | if (cur_sym_hashes < &sym_hashes[i]) | |
2811 | continue; | |
2812 | } | |
2813 | ||
e23eba97 NC |
2814 | if ((sym_hash->root.type == bfd_link_hash_defined |
2815 | || sym_hash->root.type == bfd_link_hash_defweak) | |
2816 | && sym_hash->root.u.def.section == sec) | |
2817 | { | |
2818 | /* As above, adjust the value if needed. */ | |
2819 | if (sym_hash->root.u.def.value > addr | |
2820 | && sym_hash->root.u.def.value <= toaddr) | |
2821 | sym_hash->root.u.def.value -= count; | |
2822 | ||
2823 | /* As above, adjust the size if needed. */ | |
788af978 JW |
2824 | else if (sym_hash->root.u.def.value <= addr |
2825 | && sym_hash->root.u.def.value + sym_hash->size > addr | |
2826 | && sym_hash->root.u.def.value + sym_hash->size <= toaddr) | |
e23eba97 NC |
2827 | sym_hash->size -= count; |
2828 | } | |
2829 | } | |
2830 | ||
2831 | return TRUE; | |
2832 | } | |
2833 | ||
9d06997a PD |
2834 | /* A second format for recording PC-relative hi relocations. This stores the |
2835 | information required to relax them to GP-relative addresses. */ | |
2836 | ||
2837 | typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc; | |
2838 | struct riscv_pcgp_hi_reloc | |
2839 | { | |
2840 | bfd_vma hi_sec_off; | |
2841 | bfd_vma hi_addend; | |
2842 | bfd_vma hi_addr; | |
2843 | unsigned hi_sym; | |
2844 | asection *sym_sec; | |
2845 | riscv_pcgp_hi_reloc *next; | |
2846 | }; | |
2847 | ||
2848 | typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc; | |
2849 | struct riscv_pcgp_lo_reloc | |
2850 | { | |
2851 | bfd_vma hi_sec_off; | |
2852 | riscv_pcgp_lo_reloc *next; | |
2853 | }; | |
2854 | ||
2855 | typedef struct | |
2856 | { | |
2857 | riscv_pcgp_hi_reloc *hi; | |
2858 | riscv_pcgp_lo_reloc *lo; | |
2859 | } riscv_pcgp_relocs; | |
2860 | ||
5f9aecea JW |
2861 | /* Initialize the pcgp reloc info in P. */ |
2862 | ||
9d06997a PD |
2863 | static bfd_boolean |
2864 | riscv_init_pcgp_relocs (riscv_pcgp_relocs *p) | |
2865 | { | |
2866 | p->hi = NULL; | |
2867 | p->lo = NULL; | |
2868 | return TRUE; | |
2869 | } | |
2870 | ||
5f9aecea JW |
2871 | /* Free the pcgp reloc info in P. */ |
2872 | ||
9d06997a PD |
2873 | static void |
2874 | riscv_free_pcgp_relocs (riscv_pcgp_relocs *p, | |
2875 | bfd *abfd ATTRIBUTE_UNUSED, | |
2876 | asection *sec ATTRIBUTE_UNUSED) | |
2877 | { | |
2878 | riscv_pcgp_hi_reloc *c; | |
2879 | riscv_pcgp_lo_reloc *l; | |
2880 | ||
2881 | for (c = p->hi; c != NULL;) | |
2882 | { | |
2883 | riscv_pcgp_hi_reloc *next = c->next; | |
2884 | free (c); | |
2885 | c = next; | |
2886 | } | |
2887 | ||
2888 | for (l = p->lo; l != NULL;) | |
2889 | { | |
2890 | riscv_pcgp_lo_reloc *next = l->next; | |
2891 | free (l); | |
2892 | l = next; | |
2893 | } | |
2894 | } | |
2895 | ||
5f9aecea JW |
2896 | /* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index. |
2897 | The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to | |
2898 | relax the corresponding lo part reloc. */ | |
2899 | ||
9d06997a PD |
2900 | static bfd_boolean |
2901 | riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off, | |
2902 | bfd_vma hi_addend, bfd_vma hi_addr, | |
2903 | unsigned hi_sym, asection *sym_sec) | |
2904 | { | |
2905 | riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new)); | |
2906 | if (!new) | |
2907 | return FALSE; | |
2908 | new->hi_sec_off = hi_sec_off; | |
2909 | new->hi_addend = hi_addend; | |
2910 | new->hi_addr = hi_addr; | |
2911 | new->hi_sym = hi_sym; | |
2912 | new->sym_sec = sym_sec; | |
2913 | new->next = p->hi; | |
2914 | p->hi = new; | |
2915 | return TRUE; | |
2916 | } | |
2917 | ||
5f9aecea JW |
2918 | /* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index. |
2919 | This is used by a lo part reloc to find the corresponding hi part reloc. */ | |
2920 | ||
9d06997a PD |
2921 | static riscv_pcgp_hi_reloc * |
2922 | riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off) | |
2923 | { | |
2924 | riscv_pcgp_hi_reloc *c; | |
2925 | ||
2926 | for (c = p->hi; c != NULL; c = c->next) | |
2927 | if (c->hi_sec_off == hi_sec_off) | |
2928 | return c; | |
2929 | return NULL; | |
2930 | } | |
2931 | ||
5f9aecea JW |
2932 | /* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info. |
2933 | This is used to record relocs that can't be relaxed. */ | |
9d06997a PD |
2934 | |
2935 | static bfd_boolean | |
2936 | riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off) | |
2937 | { | |
2938 | riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new)); | |
2939 | if (!new) | |
2940 | return FALSE; | |
2941 | new->hi_sec_off = hi_sec_off; | |
2942 | new->next = p->lo; | |
2943 | p->lo = new; | |
2944 | return TRUE; | |
2945 | } | |
2946 | ||
5f9aecea JW |
2947 | /* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index. |
2948 | This is used by a hi part reloc to find the corresponding lo part reloc. */ | |
2949 | ||
9d06997a PD |
2950 | static bfd_boolean |
2951 | riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off) | |
2952 | { | |
2953 | riscv_pcgp_lo_reloc *c; | |
2954 | ||
2955 | for (c = p->lo; c != NULL; c = c->next) | |
2956 | if (c->hi_sec_off == hi_sec_off) | |
2957 | return TRUE; | |
2958 | return FALSE; | |
2959 | } | |
2960 | ||
45f76423 AW |
2961 | typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *, |
2962 | struct bfd_link_info *, | |
2963 | Elf_Internal_Rela *, | |
9d06997a PD |
2964 | bfd_vma, bfd_vma, bfd_vma, bfd_boolean *, |
2965 | riscv_pcgp_relocs *); | |
45f76423 | 2966 | |
e23eba97 NC |
2967 | /* Relax AUIPC + JALR into JAL. */ |
2968 | ||
2969 | static bfd_boolean | |
2970 | _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec, | |
2971 | struct bfd_link_info *link_info, | |
2972 | Elf_Internal_Rela *rel, | |
2973 | bfd_vma symval, | |
45f76423 AW |
2974 | bfd_vma max_alignment, |
2975 | bfd_vma reserve_size ATTRIBUTE_UNUSED, | |
9d06997a PD |
2976 | bfd_boolean *again, |
2977 | riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED) | |
e23eba97 NC |
2978 | { |
2979 | bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; | |
2980 | bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset); | |
2981 | bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH; | |
2982 | bfd_vma auipc, jalr; | |
2983 | int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC; | |
2984 | ||
2985 | /* If the call crosses section boundaries, an alignment directive could | |
2986 | cause the PC-relative offset to later increase. */ | |
2987 | if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section) | |
2988 | foff += (foff < 0 ? -max_alignment : max_alignment); | |
2989 | ||
2990 | /* See if this function call can be shortened. */ | |
2991 | if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero)) | |
2992 | return TRUE; | |
2993 | ||
2994 | /* Shorten the function call. */ | |
2995 | BFD_ASSERT (rel->r_offset + 8 <= sec->size); | |
2996 | ||
2997 | auipc = bfd_get_32 (abfd, contents + rel->r_offset); | |
2998 | jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4); | |
2999 | rd = (jalr >> OP_SH_RD) & OP_MASK_RD; | |
3000 | rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32; | |
3001 | ||
3002 | if (rvc && (rd == 0 || rd == X_RA)) | |
3003 | { | |
3004 | /* Relax to C.J[AL] rd, addr. */ | |
3005 | r_type = R_RISCV_RVC_JUMP; | |
3006 | auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL; | |
3007 | len = 2; | |
3008 | } | |
3009 | else if (VALID_UJTYPE_IMM (foff)) | |
3010 | { | |
3011 | /* Relax to JAL rd, addr. */ | |
3012 | r_type = R_RISCV_JAL; | |
3013 | auipc = MATCH_JAL | (rd << OP_SH_RD); | |
3014 | } | |
3015 | else /* near_zero */ | |
3016 | { | |
3017 | /* Relax to JALR rd, x0, addr. */ | |
3018 | r_type = R_RISCV_LO12_I; | |
3019 | auipc = MATCH_JALR | (rd << OP_SH_RD); | |
3020 | } | |
3021 | ||
3022 | /* Replace the R_RISCV_CALL reloc. */ | |
3023 | rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type); | |
3024 | /* Replace the AUIPC. */ | |
3025 | bfd_put (8 * len, abfd, auipc, contents + rel->r_offset); | |
3026 | ||
3027 | /* Delete unnecessary JALR. */ | |
3028 | *again = TRUE; | |
7f02625e JW |
3029 | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len, |
3030 | link_info); | |
e23eba97 NC |
3031 | } |
3032 | ||
3033 | /* Traverse all output sections and return the max alignment. */ | |
3034 | ||
1d61f794 | 3035 | static bfd_vma |
e23eba97 NC |
3036 | _bfd_riscv_get_max_alignment (asection *sec) |
3037 | { | |
3038 | unsigned int max_alignment_power = 0; | |
3039 | asection *o; | |
3040 | ||
3041 | for (o = sec->output_section->owner->sections; o != NULL; o = o->next) | |
3042 | { | |
3043 | if (o->alignment_power > max_alignment_power) | |
3044 | max_alignment_power = o->alignment_power; | |
3045 | } | |
3046 | ||
1d61f794 | 3047 | return (bfd_vma) 1 << max_alignment_power; |
e23eba97 NC |
3048 | } |
3049 | ||
3050 | /* Relax non-PIC global variable references. */ | |
3051 | ||
3052 | static bfd_boolean | |
3053 | _bfd_riscv_relax_lui (bfd *abfd, | |
3054 | asection *sec, | |
3055 | asection *sym_sec, | |
3056 | struct bfd_link_info *link_info, | |
3057 | Elf_Internal_Rela *rel, | |
3058 | bfd_vma symval, | |
45f76423 AW |
3059 | bfd_vma max_alignment, |
3060 | bfd_vma reserve_size, | |
9d06997a PD |
3061 | bfd_boolean *again, |
3062 | riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED) | |
e23eba97 NC |
3063 | { |
3064 | bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; | |
3065 | bfd_vma gp = riscv_global_pointer_value (link_info); | |
3066 | int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC; | |
3067 | ||
3068 | /* Mergeable symbols and code might later move out of range. */ | |
3069 | if (sym_sec->flags & (SEC_MERGE | SEC_CODE)) | |
3070 | return TRUE; | |
3071 | ||
3072 | BFD_ASSERT (rel->r_offset + 4 <= sec->size); | |
3073 | ||
d0f744f9 AW |
3074 | if (gp) |
3075 | { | |
3076 | /* If gp and the symbol are in the same output section, then | |
3077 | consider only that section's alignment. */ | |
3078 | struct bfd_link_hash_entry *h = | |
b5292032 PD |
3079 | bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, |
3080 | TRUE); | |
d0f744f9 AW |
3081 | if (h->u.def.section->output_section == sym_sec->output_section) |
3082 | max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power; | |
3083 | } | |
3084 | ||
e23eba97 NC |
3085 | /* Is the reference in range of x0 or gp? |
3086 | Valid gp range conservatively because of alignment issue. */ | |
3087 | if (VALID_ITYPE_IMM (symval) | |
45f76423 AW |
3088 | || (symval >= gp |
3089 | && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size)) | |
3090 | || (symval < gp | |
3091 | && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size))) | |
e23eba97 NC |
3092 | { |
3093 | unsigned sym = ELFNN_R_SYM (rel->r_info); | |
3094 | switch (ELFNN_R_TYPE (rel->r_info)) | |
3095 | { | |
3096 | case R_RISCV_LO12_I: | |
3097 | rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I); | |
3098 | return TRUE; | |
3099 | ||
3100 | case R_RISCV_LO12_S: | |
3101 | rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S); | |
3102 | return TRUE; | |
3103 | ||
3104 | case R_RISCV_HI20: | |
3105 | /* We can delete the unnecessary LUI and reloc. */ | |
3106 | rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); | |
3107 | *again = TRUE; | |
7f02625e JW |
3108 | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, |
3109 | link_info); | |
e23eba97 NC |
3110 | |
3111 | default: | |
3112 | abort (); | |
3113 | } | |
3114 | } | |
3115 | ||
3116 | /* Can we relax LUI to C.LUI? Alignment might move the section forward; | |
3117 | account for this assuming page alignment at worst. */ | |
3118 | if (use_rvc | |
3119 | && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20 | |
3120 | && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval)) | |
3121 | && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE))) | |
3122 | { | |
3342be5d | 3123 | /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */ |
e23eba97 | 3124 | bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset); |
3342be5d AW |
3125 | unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD; |
3126 | if (rd == 0 || rd == X_SP) | |
e23eba97 NC |
3127 | return TRUE; |
3128 | ||
3129 | lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI; | |
3130 | bfd_put_32 (abfd, lui, contents + rel->r_offset); | |
3131 | ||
3132 | /* Replace the R_RISCV_HI20 reloc. */ | |
3133 | rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI); | |
3134 | ||
3135 | *again = TRUE; | |
7f02625e JW |
3136 | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2, |
3137 | link_info); | |
e23eba97 NC |
3138 | } |
3139 | ||
3140 | return TRUE; | |
3141 | } | |
3142 | ||
3143 | /* Relax non-PIC TLS references. */ | |
3144 | ||
3145 | static bfd_boolean | |
3146 | _bfd_riscv_relax_tls_le (bfd *abfd, | |
3147 | asection *sec, | |
3148 | asection *sym_sec ATTRIBUTE_UNUSED, | |
3149 | struct bfd_link_info *link_info, | |
3150 | Elf_Internal_Rela *rel, | |
3151 | bfd_vma symval, | |
45f76423 AW |
3152 | bfd_vma max_alignment ATTRIBUTE_UNUSED, |
3153 | bfd_vma reserve_size ATTRIBUTE_UNUSED, | |
9d06997a PD |
3154 | bfd_boolean *again, |
3155 | riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED) | |
e23eba97 NC |
3156 | { |
3157 | /* See if this symbol is in range of tp. */ | |
3158 | if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0) | |
3159 | return TRUE; | |
3160 | ||
e23eba97 | 3161 | BFD_ASSERT (rel->r_offset + 4 <= sec->size); |
45f76423 AW |
3162 | switch (ELFNN_R_TYPE (rel->r_info)) |
3163 | { | |
3164 | case R_RISCV_TPREL_LO12_I: | |
3165 | rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I); | |
3166 | return TRUE; | |
e23eba97 | 3167 | |
45f76423 AW |
3168 | case R_RISCV_TPREL_LO12_S: |
3169 | rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S); | |
3170 | return TRUE; | |
3171 | ||
3172 | case R_RISCV_TPREL_HI20: | |
3173 | case R_RISCV_TPREL_ADD: | |
3174 | /* We can delete the unnecessary instruction and reloc. */ | |
3175 | rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); | |
3176 | *again = TRUE; | |
7f02625e | 3177 | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info); |
45f76423 AW |
3178 | |
3179 | default: | |
3180 | abort (); | |
3181 | } | |
e23eba97 NC |
3182 | } |
3183 | ||
3184 | /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */ | |
3185 | ||
3186 | static bfd_boolean | |
3187 | _bfd_riscv_relax_align (bfd *abfd, asection *sec, | |
9eb7b0ac | 3188 | asection *sym_sec, |
7f02625e | 3189 | struct bfd_link_info *link_info, |
e23eba97 NC |
3190 | Elf_Internal_Rela *rel, |
3191 | bfd_vma symval, | |
45f76423 AW |
3192 | bfd_vma max_alignment ATTRIBUTE_UNUSED, |
3193 | bfd_vma reserve_size ATTRIBUTE_UNUSED, | |
9d06997a PD |
3194 | bfd_boolean *again ATTRIBUTE_UNUSED, |
3195 | riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED) | |
e23eba97 NC |
3196 | { |
3197 | bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; | |
3198 | bfd_vma alignment = 1, pos; | |
3199 | while (alignment <= rel->r_addend) | |
3200 | alignment *= 2; | |
3201 | ||
3202 | symval -= rel->r_addend; | |
3203 | bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment; | |
3204 | bfd_vma nop_bytes = aligned_addr - symval; | |
3205 | ||
3206 | /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */ | |
3207 | sec->sec_flg0 = TRUE; | |
3208 | ||
3209 | /* Make sure there are enough NOPs to actually achieve the alignment. */ | |
3210 | if (rel->r_addend < nop_bytes) | |
9eb7b0ac | 3211 | { |
f2b740ac AM |
3212 | _bfd_error_handler |
3213 | (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment " | |
3214 | "to %" PRId64 "-byte boundary, but only %" PRId64 " present"), | |
3215 | abfd, sym_sec, (uint64_t) rel->r_offset, | |
3216 | (int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend); | |
9eb7b0ac PD |
3217 | bfd_set_error (bfd_error_bad_value); |
3218 | return FALSE; | |
3219 | } | |
e23eba97 NC |
3220 | |
3221 | /* Delete the reloc. */ | |
3222 | rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); | |
3223 | ||
3224 | /* If the number of NOPs is already correct, there's nothing to do. */ | |
3225 | if (nop_bytes == rel->r_addend) | |
3226 | return TRUE; | |
3227 | ||
3228 | /* Write as many RISC-V NOPs as we need. */ | |
3229 | for (pos = 0; pos < (nop_bytes & -4); pos += 4) | |
3230 | bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos); | |
3231 | ||
3232 | /* Write a final RVC NOP if need be. */ | |
3233 | if (nop_bytes % 4 != 0) | |
3234 | bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos); | |
3235 | ||
3236 | /* Delete the excess bytes. */ | |
3237 | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes, | |
7f02625e | 3238 | rel->r_addend - nop_bytes, link_info); |
e23eba97 NC |
3239 | } |
3240 | ||
ff6f4d9b PD |
3241 | /* Relax PC-relative references to GP-relative references. */ |
3242 | ||
9d06997a | 3243 | static bfd_boolean |
5f9aecea | 3244 | _bfd_riscv_relax_pc (bfd *abfd ATTRIBUTE_UNUSED, |
9d06997a PD |
3245 | asection *sec, |
3246 | asection *sym_sec, | |
3247 | struct bfd_link_info *link_info, | |
3248 | Elf_Internal_Rela *rel, | |
3249 | bfd_vma symval, | |
3250 | bfd_vma max_alignment, | |
3251 | bfd_vma reserve_size, | |
3252 | bfd_boolean *again ATTRIBUTE_UNUSED, | |
3253 | riscv_pcgp_relocs *pcgp_relocs) | |
3254 | { | |
3255 | bfd_vma gp = riscv_global_pointer_value (link_info); | |
3256 | ||
3257 | BFD_ASSERT (rel->r_offset + 4 <= sec->size); | |
3258 | ||
3259 | /* Chain the _LO relocs to their cooresponding _HI reloc to compute the | |
3260 | * actual target address. */ | |
e65b1a78 MR |
3261 | riscv_pcgp_hi_reloc hi_reloc; |
3262 | memset (&hi_reloc, 0, sizeof (hi_reloc)); | |
9d06997a PD |
3263 | switch (ELFNN_R_TYPE (rel->r_info)) |
3264 | { | |
3265 | case R_RISCV_PCREL_LO12_I: | |
3266 | case R_RISCV_PCREL_LO12_S: | |
3267 | { | |
a05f27b6 JW |
3268 | /* If the %lo has an addend, it isn't for the label pointing at the |
3269 | hi part instruction, but rather for the symbol pointed at by the | |
3270 | hi part instruction. So we must subtract it here for the lookup. | |
3271 | It is still used below in the final symbol address. */ | |
3272 | bfd_vma hi_sec_off = symval - sec_addr (sym_sec) - rel->r_addend; | |
9d06997a | 3273 | riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs, |
a05f27b6 | 3274 | hi_sec_off); |
9d06997a PD |
3275 | if (hi == NULL) |
3276 | { | |
a05f27b6 | 3277 | riscv_record_pcgp_lo_reloc (pcgp_relocs, hi_sec_off); |
9d06997a PD |
3278 | return TRUE; |
3279 | } | |
3280 | ||
3281 | hi_reloc = *hi; | |
3282 | symval = hi_reloc.hi_addr; | |
3283 | sym_sec = hi_reloc.sym_sec; | |
9d06997a PD |
3284 | } |
3285 | break; | |
3286 | ||
3287 | case R_RISCV_PCREL_HI20: | |
3288 | /* Mergeable symbols and code might later move out of range. */ | |
3289 | if (sym_sec->flags & (SEC_MERGE | SEC_CODE)) | |
3290 | return TRUE; | |
3291 | ||
3292 | /* If the cooresponding lo relocation has already been seen then it's not | |
3293 | * safe to relax this relocation. */ | |
3294 | if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset)) | |
07d6d2b8 | 3295 | return TRUE; |
9d06997a PD |
3296 | |
3297 | break; | |
3298 | ||
3299 | default: | |
3300 | abort (); | |
3301 | } | |
3302 | ||
3303 | if (gp) | |
3304 | { | |
3305 | /* If gp and the symbol are in the same output section, then | |
3306 | consider only that section's alignment. */ | |
3307 | struct bfd_link_hash_entry *h = | |
3308 | bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE); | |
3309 | if (h->u.def.section->output_section == sym_sec->output_section) | |
3310 | max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power; | |
3311 | } | |
3312 | ||
3313 | /* Is the reference in range of x0 or gp? | |
3314 | Valid gp range conservatively because of alignment issue. */ | |
3315 | if (VALID_ITYPE_IMM (symval) | |
3316 | || (symval >= gp | |
3317 | && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size)) | |
3318 | || (symval < gp | |
3319 | && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size))) | |
3320 | { | |
3321 | unsigned sym = hi_reloc.hi_sym; | |
3322 | switch (ELFNN_R_TYPE (rel->r_info)) | |
3323 | { | |
3324 | case R_RISCV_PCREL_LO12_I: | |
3325 | rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I); | |
3326 | rel->r_addend += hi_reloc.hi_addend; | |
5f9aecea | 3327 | return TRUE; |
9d06997a PD |
3328 | |
3329 | case R_RISCV_PCREL_LO12_S: | |
3330 | rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S); | |
3331 | rel->r_addend += hi_reloc.hi_addend; | |
5f9aecea | 3332 | return TRUE; |
9d06997a PD |
3333 | |
3334 | case R_RISCV_PCREL_HI20: | |
07d6d2b8 | 3335 | riscv_record_pcgp_hi_reloc (pcgp_relocs, |
9d06997a PD |
3336 | rel->r_offset, |
3337 | rel->r_addend, | |
3338 | symval, | |
3339 | ELFNN_R_SYM(rel->r_info), | |
3340 | sym_sec); | |
3341 | /* We can delete the unnecessary AUIPC and reloc. */ | |
3342 | rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE); | |
3343 | rel->r_addend = 4; | |
5f9aecea | 3344 | return TRUE; |
9d06997a PD |
3345 | |
3346 | default: | |
3347 | abort (); | |
3348 | } | |
3349 | } | |
3350 | ||
3351 | return TRUE; | |
3352 | } | |
3353 | ||
3354 | /* Relax PC-relative references to GP-relative references. */ | |
3355 | ||
ff6f4d9b PD |
3356 | static bfd_boolean |
3357 | _bfd_riscv_relax_delete (bfd *abfd, | |
3358 | asection *sec, | |
3359 | asection *sym_sec ATTRIBUTE_UNUSED, | |
7f02625e | 3360 | struct bfd_link_info *link_info, |
ff6f4d9b PD |
3361 | Elf_Internal_Rela *rel, |
3362 | bfd_vma symval ATTRIBUTE_UNUSED, | |
3363 | bfd_vma max_alignment ATTRIBUTE_UNUSED, | |
3364 | bfd_vma reserve_size ATTRIBUTE_UNUSED, | |
9d06997a PD |
3365 | bfd_boolean *again ATTRIBUTE_UNUSED, |
3366 | riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED) | |
ff6f4d9b | 3367 | { |
7f02625e JW |
3368 | if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend, |
3369 | link_info)) | |
ff6f4d9b PD |
3370 | return FALSE; |
3371 | rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE); | |
3372 | return TRUE; | |
3373 | } | |
3374 | ||
3375 | /* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1 | |
3376 | deletes the bytes that pass 0 made obselete. Pass 2, which cannot be | |
3377 | disabled, handles code alignment directives. */ | |
e23eba97 NC |
3378 | |
3379 | static bfd_boolean | |
3380 | _bfd_riscv_relax_section (bfd *abfd, asection *sec, | |
3381 | struct bfd_link_info *info, | |
3382 | bfd_boolean *again) | |
3383 | { | |
3384 | Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd); | |
3385 | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | |
3386 | struct bfd_elf_section_data *data = elf_section_data (sec); | |
3387 | Elf_Internal_Rela *relocs; | |
3388 | bfd_boolean ret = FALSE; | |
3389 | unsigned int i; | |
45f76423 | 3390 | bfd_vma max_alignment, reserve_size = 0; |
9d06997a | 3391 | riscv_pcgp_relocs pcgp_relocs; |
e23eba97 NC |
3392 | |
3393 | *again = FALSE; | |
3394 | ||
3395 | if (bfd_link_relocatable (info) | |
3396 | || sec->sec_flg0 | |
3397 | || (sec->flags & SEC_RELOC) == 0 | |
3398 | || sec->reloc_count == 0 | |
3399 | || (info->disable_target_specific_optimizations | |
3400 | && info->relax_pass == 0)) | |
3401 | return TRUE; | |
3402 | ||
9d06997a PD |
3403 | riscv_init_pcgp_relocs (&pcgp_relocs); |
3404 | ||
e23eba97 NC |
3405 | /* Read this BFD's relocs if we haven't done so already. */ |
3406 | if (data->relocs) | |
3407 | relocs = data->relocs; | |
3408 | else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, | |
3409 | info->keep_memory))) | |
3410 | goto fail; | |
3411 | ||
fc3c5343 L |
3412 | if (htab) |
3413 | { | |
3414 | max_alignment = htab->max_alignment; | |
3415 | if (max_alignment == (bfd_vma) -1) | |
3416 | { | |
3417 | max_alignment = _bfd_riscv_get_max_alignment (sec); | |
3418 | htab->max_alignment = max_alignment; | |
3419 | } | |
3420 | } | |
3421 | else | |
3422 | max_alignment = _bfd_riscv_get_max_alignment (sec); | |
e23eba97 NC |
3423 | |
3424 | /* Examine and consider relaxing each reloc. */ | |
3425 | for (i = 0; i < sec->reloc_count; i++) | |
3426 | { | |
3427 | asection *sym_sec; | |
3428 | Elf_Internal_Rela *rel = relocs + i; | |
45f76423 | 3429 | relax_func_t relax_func; |
e23eba97 NC |
3430 | int type = ELFNN_R_TYPE (rel->r_info); |
3431 | bfd_vma symval; | |
3432 | ||
ff6f4d9b | 3433 | relax_func = NULL; |
e23eba97 NC |
3434 | if (info->relax_pass == 0) |
3435 | { | |
3436 | if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT) | |
3437 | relax_func = _bfd_riscv_relax_call; | |
3438 | else if (type == R_RISCV_HI20 | |
3439 | || type == R_RISCV_LO12_I | |
3440 | || type == R_RISCV_LO12_S) | |
3441 | relax_func = _bfd_riscv_relax_lui; | |
9d06997a PD |
3442 | else if (!bfd_link_pic(info) |
3443 | && (type == R_RISCV_PCREL_HI20 | |
3444 | || type == R_RISCV_PCREL_LO12_I | |
3445 | || type == R_RISCV_PCREL_LO12_S)) | |
3446 | relax_func = _bfd_riscv_relax_pc; | |
45f76423 AW |
3447 | else if (type == R_RISCV_TPREL_HI20 |
3448 | || type == R_RISCV_TPREL_ADD | |
3449 | || type == R_RISCV_TPREL_LO12_I | |
3450 | || type == R_RISCV_TPREL_LO12_S) | |
e23eba97 | 3451 | relax_func = _bfd_riscv_relax_tls_le; |
45f76423 AW |
3452 | else |
3453 | continue; | |
3454 | ||
3455 | /* Only relax this reloc if it is paired with R_RISCV_RELAX. */ | |
3456 | if (i == sec->reloc_count - 1 | |
3457 | || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX | |
3458 | || rel->r_offset != (rel + 1)->r_offset) | |
3459 | continue; | |
3460 | ||
3461 | /* Skip over the R_RISCV_RELAX. */ | |
3462 | i++; | |
e23eba97 | 3463 | } |
ff6f4d9b | 3464 | else if (info->relax_pass == 1 && type == R_RISCV_DELETE) |
07d6d2b8 | 3465 | relax_func = _bfd_riscv_relax_delete; |
ff6f4d9b | 3466 | else if (info->relax_pass == 2 && type == R_RISCV_ALIGN) |
e23eba97 | 3467 | relax_func = _bfd_riscv_relax_align; |
45f76423 | 3468 | else |
e23eba97 NC |
3469 | continue; |
3470 | ||
3471 | data->relocs = relocs; | |
3472 | ||
3473 | /* Read this BFD's contents if we haven't done so already. */ | |
3474 | if (!data->this_hdr.contents | |
3475 | && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents)) | |
3476 | goto fail; | |
3477 | ||
3478 | /* Read this BFD's symbols if we haven't done so already. */ | |
3479 | if (symtab_hdr->sh_info != 0 | |
3480 | && !symtab_hdr->contents | |
3481 | && !(symtab_hdr->contents = | |
3482 | (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
3483 | symtab_hdr->sh_info, | |
3484 | 0, NULL, NULL, NULL))) | |
3485 | goto fail; | |
3486 | ||
3487 | /* Get the value of the symbol referred to by the reloc. */ | |
3488 | if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info) | |
3489 | { | |
3490 | /* A local symbol. */ | |
3491 | Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents | |
3492 | + ELFNN_R_SYM (rel->r_info)); | |
45f76423 AW |
3493 | reserve_size = (isym->st_size - rel->r_addend) > isym->st_size |
3494 | ? 0 : isym->st_size - rel->r_addend; | |
e23eba97 NC |
3495 | |
3496 | if (isym->st_shndx == SHN_UNDEF) | |
3497 | sym_sec = sec, symval = sec_addr (sec) + rel->r_offset; | |
3498 | else | |
3499 | { | |
3500 | BFD_ASSERT (isym->st_shndx < elf_numsections (abfd)); | |
3501 | sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section; | |
09ca4b9d JW |
3502 | #if 0 |
3503 | /* The purpose of this code is unknown. It breaks linker scripts | |
3504 | for embedded development that place sections at address zero. | |
3505 | This code is believed to be unnecessary. Disabling it but not | |
3506 | yet removing it, in case something breaks. */ | |
e23eba97 NC |
3507 | if (sec_addr (sym_sec) == 0) |
3508 | continue; | |
09ca4b9d | 3509 | #endif |
e23eba97 NC |
3510 | symval = sec_addr (sym_sec) + isym->st_value; |
3511 | } | |
3512 | } | |
3513 | else | |
3514 | { | |
3515 | unsigned long indx; | |
3516 | struct elf_link_hash_entry *h; | |
3517 | ||
3518 | indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info; | |
3519 | h = elf_sym_hashes (abfd)[indx]; | |
3520 | ||
3521 | while (h->root.type == bfd_link_hash_indirect | |
3522 | || h->root.type == bfd_link_hash_warning) | |
3523 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
3524 | ||
3525 | if (h->plt.offset != MINUS_ONE) | |
3526 | symval = sec_addr (htab->elf.splt) + h->plt.offset; | |
3527 | else if (h->root.u.def.section->output_section == NULL | |
3528 | || (h->root.type != bfd_link_hash_defined | |
3529 | && h->root.type != bfd_link_hash_defweak)) | |
3530 | continue; | |
3531 | else | |
3532 | symval = sec_addr (h->root.u.def.section) + h->root.u.def.value; | |
3533 | ||
45f76423 AW |
3534 | if (h->type != STT_FUNC) |
3535 | reserve_size = | |
3536 | (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend; | |
e23eba97 NC |
3537 | sym_sec = h->root.u.def.section; |
3538 | } | |
3539 | ||
3540 | symval += rel->r_addend; | |
3541 | ||
3542 | if (!relax_func (abfd, sec, sym_sec, info, rel, symval, | |
9d06997a PD |
3543 | max_alignment, reserve_size, again, |
3544 | &pcgp_relocs)) | |
e23eba97 NC |
3545 | goto fail; |
3546 | } | |
3547 | ||
3548 | ret = TRUE; | |
3549 | ||
3550 | fail: | |
3551 | if (relocs != data->relocs) | |
3552 | free (relocs); | |
9d06997a | 3553 | riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec); |
e23eba97 NC |
3554 | |
3555 | return ret; | |
3556 | } | |
3557 | ||
3558 | #if ARCH_SIZE == 32 | |
3559 | # define PRSTATUS_SIZE 0 /* FIXME */ | |
3560 | # define PRSTATUS_OFFSET_PR_CURSIG 12 | |
3561 | # define PRSTATUS_OFFSET_PR_PID 24 | |
3562 | # define PRSTATUS_OFFSET_PR_REG 72 | |
3563 | # define ELF_GREGSET_T_SIZE 128 | |
3564 | # define PRPSINFO_SIZE 128 | |
3565 | # define PRPSINFO_OFFSET_PR_PID 16 | |
3566 | # define PRPSINFO_OFFSET_PR_FNAME 32 | |
3567 | # define PRPSINFO_OFFSET_PR_PSARGS 48 | |
3568 | #else | |
3569 | # define PRSTATUS_SIZE 376 | |
3570 | # define PRSTATUS_OFFSET_PR_CURSIG 12 | |
3571 | # define PRSTATUS_OFFSET_PR_PID 32 | |
3572 | # define PRSTATUS_OFFSET_PR_REG 112 | |
3573 | # define ELF_GREGSET_T_SIZE 256 | |
3574 | # define PRPSINFO_SIZE 136 | |
3575 | # define PRPSINFO_OFFSET_PR_PID 24 | |
3576 | # define PRPSINFO_OFFSET_PR_FNAME 40 | |
3577 | # define PRPSINFO_OFFSET_PR_PSARGS 56 | |
3578 | #endif | |
3579 | ||
3580 | /* Support for core dump NOTE sections. */ | |
3581 | ||
3582 | static bfd_boolean | |
3583 | riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) | |
3584 | { | |
3585 | switch (note->descsz) | |
3586 | { | |
3587 | default: | |
3588 | return FALSE; | |
3589 | ||
3590 | case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */ | |
3591 | /* pr_cursig */ | |
3592 | elf_tdata (abfd)->core->signal | |
3593 | = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG); | |
3594 | ||
3595 | /* pr_pid */ | |
3596 | elf_tdata (abfd)->core->lwpid | |
3597 | = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID); | |
3598 | break; | |
3599 | } | |
3600 | ||
3601 | /* Make a ".reg/999" section. */ | |
3602 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE, | |
3603 | note->descpos + PRSTATUS_OFFSET_PR_REG); | |
3604 | } | |
3605 | ||
3606 | static bfd_boolean | |
3607 | riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) | |
3608 | { | |
3609 | switch (note->descsz) | |
3610 | { | |
3611 | default: | |
3612 | return FALSE; | |
3613 | ||
3614 | case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */ | |
3615 | /* pr_pid */ | |
3616 | elf_tdata (abfd)->core->pid | |
3617 | = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID); | |
3618 | ||
3619 | /* pr_fname */ | |
3620 | elf_tdata (abfd)->core->program = _bfd_elfcore_strndup | |
3621 | (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16); | |
3622 | ||
3623 | /* pr_psargs */ | |
3624 | elf_tdata (abfd)->core->command = _bfd_elfcore_strndup | |
3625 | (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80); | |
3626 | break; | |
3627 | } | |
3628 | ||
3629 | /* Note that for some reason, a spurious space is tacked | |
3630 | onto the end of the args in some (at least one anyway) | |
3631 | implementations, so strip it off if it exists. */ | |
3632 | ||
3633 | { | |
3634 | char *command = elf_tdata (abfd)->core->command; | |
3635 | int n = strlen (command); | |
3636 | ||
3637 | if (0 < n && command[n - 1] == ' ') | |
3638 | command[n - 1] = '\0'; | |
3639 | } | |
3640 | ||
3641 | return TRUE; | |
3642 | } | |
3643 | ||
640d6bfd KLC |
3644 | /* Set the right mach type. */ |
3645 | static bfd_boolean | |
3646 | riscv_elf_object_p (bfd *abfd) | |
3647 | { | |
3648 | /* There are only two mach types in RISCV currently. */ | |
3649 | if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0) | |
3650 | bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32); | |
3651 | else | |
3652 | bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64); | |
3653 | ||
3654 | return TRUE; | |
3655 | } | |
3656 | ||
2dc8dd17 JW |
3657 | /* Determine whether an object attribute tag takes an integer, a |
3658 | string or both. */ | |
3659 | ||
3660 | static int | |
3661 | riscv_elf_obj_attrs_arg_type (int tag) | |
3662 | { | |
3663 | return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL; | |
3664 | } | |
e23eba97 NC |
3665 | |
3666 | #define TARGET_LITTLE_SYM riscv_elfNN_vec | |
3667 | #define TARGET_LITTLE_NAME "elfNN-littleriscv" | |
3668 | ||
3669 | #define elf_backend_reloc_type_class riscv_reloc_type_class | |
3670 | ||
3671 | #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup | |
3672 | #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create | |
3673 | #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup | |
3674 | #define bfd_elfNN_bfd_merge_private_bfd_data \ | |
3675 | _bfd_riscv_elf_merge_private_bfd_data | |
3676 | ||
3677 | #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol | |
3678 | #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections | |
3679 | #define elf_backend_check_relocs riscv_elf_check_relocs | |
3680 | #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol | |
3681 | #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections | |
3682 | #define elf_backend_relocate_section riscv_elf_relocate_section | |
3683 | #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol | |
3684 | #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections | |
3685 | #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook | |
e23eba97 | 3686 | #define elf_backend_plt_sym_val riscv_elf_plt_sym_val |
07d6d2b8 AM |
3687 | #define elf_backend_grok_prstatus riscv_elf_grok_prstatus |
3688 | #define elf_backend_grok_psinfo riscv_elf_grok_psinfo | |
3689 | #define elf_backend_object_p riscv_elf_object_p | |
e23eba97 NC |
3690 | #define elf_info_to_howto_rel NULL |
3691 | #define elf_info_to_howto riscv_info_to_howto_rela | |
3692 | #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section | |
3693 | ||
3694 | #define elf_backend_init_index_section _bfd_elf_init_1_index_section | |
3695 | ||
3696 | #define elf_backend_can_gc_sections 1 | |
3697 | #define elf_backend_can_refcount 1 | |
3698 | #define elf_backend_want_got_plt 1 | |
3699 | #define elf_backend_plt_readonly 1 | |
3700 | #define elf_backend_plt_alignment 4 | |
3701 | #define elf_backend_want_plt_sym 1 | |
3702 | #define elf_backend_got_header_size (ARCH_SIZE / 8) | |
5474d94f | 3703 | #define elf_backend_want_dynrelro 1 |
e23eba97 NC |
3704 | #define elf_backend_rela_normal 1 |
3705 | #define elf_backend_default_execstack 0 | |
3706 | ||
2dc8dd17 JW |
3707 | #undef elf_backend_obj_attrs_vendor |
3708 | #define elf_backend_obj_attrs_vendor "riscv" | |
3709 | #undef elf_backend_obj_attrs_arg_type | |
3710 | #define elf_backend_obj_attrs_arg_type riscv_elf_obj_attrs_arg_type | |
3711 | #undef elf_backend_obj_attrs_section_type | |
3712 | #define elf_backend_obj_attrs_section_type SHT_RISCV_ATTRIBUTES | |
3713 | #undef elf_backend_obj_attrs_section | |
3714 | #define elf_backend_obj_attrs_section ".riscv.attributes" | |
3715 | ||
e23eba97 | 3716 | #include "elfNN-target.h" |