RISC-V: Support ELF attribute for gas and readelf.
[deliverable/binutils-gdb.git] / bfd / elfnn-riscv.c
CommitLineData
e23eba97 1/* RISC-V-specific support for NN-bit ELF.
82704155 2 Copyright (C) 2011-2019 Free Software Foundation, Inc.
e23eba97
NC
3
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
22
23/* This file handles RISC-V ELF targets. */
24
25#include "sysdep.h"
26#include "bfd.h"
27#include "libbfd.h"
28#include "bfdlink.h"
29#include "genlink.h"
30#include "elf-bfd.h"
31#include "elfxx-riscv.h"
32#include "elf/riscv.h"
33#include "opcode/riscv.h"
34
ff6f4d9b
PD
35/* Internal relocations used exclusively by the relaxation pass. */
36#define R_RISCV_DELETE (R_RISCV_max + 1)
37
e23eba97
NC
38#define ARCH_SIZE NN
39
40#define MINUS_ONE ((bfd_vma)0 - 1)
41
42#define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
43
44#define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
45
46/* The name of the dynamic interpreter. This is put in the .interp
47 section. */
48
49#define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50#define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
51
52#define ELF_ARCH bfd_arch_riscv
53#define ELF_TARGET_ID RISCV_ELF_DATA
54#define ELF_MACHINE_CODE EM_RISCV
55#define ELF_MAXPAGESIZE 0x1000
56#define ELF_COMMONPAGESIZE 0x1000
57
e23eba97
NC
58/* RISC-V ELF linker hash entry. */
59
60struct riscv_elf_link_hash_entry
61{
62 struct elf_link_hash_entry elf;
63
64 /* Track dynamic relocs copied for this symbol. */
3bf083ed 65 struct elf_dyn_relocs *dyn_relocs;
e23eba97
NC
66
67#define GOT_UNKNOWN 0
68#define GOT_NORMAL 1
69#define GOT_TLS_GD 2
70#define GOT_TLS_IE 4
71#define GOT_TLS_LE 8
72 char tls_type;
73};
74
75#define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
77
78struct _bfd_riscv_elf_obj_tdata
79{
80 struct elf_obj_tdata root;
81
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type;
84};
85
86#define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
88
89#define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
91
92#define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
95
96#define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
100
101#include "elf/common.h"
102#include "elf/internal.h"
103
104struct riscv_elf_link_hash_table
105{
106 struct elf_link_hash_table elf;
107
108 /* Short-cuts to get to dynamic linker sections. */
e23eba97
NC
109 asection *sdyntdata;
110
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache;
fc3c5343
L
113
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment;
e23eba97
NC
116};
117
118
119/* Get the RISC-V ELF linker hash table from a link_info structure. */
120#define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
123
f3185997 124static bfd_boolean
0aa13fee 125riscv_info_to_howto_rela (bfd *abfd,
e23eba97
NC
126 arelent *cache_ptr,
127 Elf_Internal_Rela *dst)
128{
0aa13fee 129 cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info));
f3185997 130 return cache_ptr->howto != NULL;
e23eba97
NC
131}
132
133static void
134riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
135{
136 const struct elf_backend_data *bed;
137 bfd_byte *loc;
138
139 bed = get_elf_backend_data (abfd);
140 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
141 bed->s->swap_reloca_out (abfd, rel, loc);
142}
143
144/* PLT/GOT stuff. */
145
146#define PLT_HEADER_INSNS 8
147#define PLT_ENTRY_INSNS 4
148#define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
149#define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
150
151#define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
152
153#define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
154
155#define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
156
157static bfd_vma
158riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
159{
160 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
161 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
162}
163
164#if ARCH_SIZE == 32
165# define MATCH_LREG MATCH_LW
166#else
167# define MATCH_LREG MATCH_LD
168#endif
169
170/* Generate a PLT header. */
171
5ef23793
JW
172static bfd_boolean
173riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr,
174 uint32_t *entry)
e23eba97
NC
175{
176 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
177 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
178
5ef23793
JW
179 /* RVE has no t3 register, so this won't work, and is not supported. */
180 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
181 {
182 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
183 output_bfd);
184 return FALSE;
185 }
186
e23eba97 187 /* auipc t2, %hi(.got.plt)
07d6d2b8 188 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
e23eba97
NC
189 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
190 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
191 addi t0, t2, %lo(.got.plt) # &.got.plt
192 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
07d6d2b8
AM
193 l[w|d] t0, PTRSIZE(t0) # link map
194 jr t3 */
e23eba97
NC
195
196 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
197 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
198 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
199 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
200 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
201 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
202 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
203 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
5ef23793
JW
204
205 return TRUE;
e23eba97
NC
206}
207
208/* Generate a PLT entry. */
209
5ef23793
JW
210static bfd_boolean
211riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr,
212 uint32_t *entry)
e23eba97 213{
5ef23793
JW
214 /* RVE has no t3 register, so this won't work, and is not supported. */
215 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
216 {
217 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
218 output_bfd);
219 return FALSE;
220 }
221
e23eba97
NC
222 /* auipc t3, %hi(.got.plt entry)
223 l[w|d] t3, %lo(.got.plt entry)(t3)
224 jalr t1, t3
225 nop */
226
227 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
1d65abb5 228 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
e23eba97
NC
229 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
230 entry[3] = RISCV_NOP;
5ef23793
JW
231
232 return TRUE;
e23eba97
NC
233}
234
235/* Create an entry in an RISC-V ELF linker hash table. */
236
237static struct bfd_hash_entry *
238link_hash_newfunc (struct bfd_hash_entry *entry,
239 struct bfd_hash_table *table, const char *string)
240{
241 /* Allocate the structure if it has not already been allocated by a
242 subclass. */
243 if (entry == NULL)
244 {
245 entry =
246 bfd_hash_allocate (table,
247 sizeof (struct riscv_elf_link_hash_entry));
248 if (entry == NULL)
249 return entry;
250 }
251
252 /* Call the allocation method of the superclass. */
253 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
254 if (entry != NULL)
255 {
256 struct riscv_elf_link_hash_entry *eh;
257
258 eh = (struct riscv_elf_link_hash_entry *) entry;
259 eh->dyn_relocs = NULL;
260 eh->tls_type = GOT_UNKNOWN;
261 }
262
263 return entry;
264}
265
266/* Create a RISC-V ELF linker hash table. */
267
268static struct bfd_link_hash_table *
269riscv_elf_link_hash_table_create (bfd *abfd)
270{
271 struct riscv_elf_link_hash_table *ret;
272 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
273
274 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
275 if (ret == NULL)
276 return NULL;
277
278 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
279 sizeof (struct riscv_elf_link_hash_entry),
280 RISCV_ELF_DATA))
281 {
282 free (ret);
283 return NULL;
284 }
285
fc3c5343 286 ret->max_alignment = (bfd_vma) -1;
e23eba97
NC
287 return &ret->elf.root;
288}
289
290/* Create the .got section. */
291
292static bfd_boolean
293riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
294{
295 flagword flags;
296 asection *s, *s_got;
297 struct elf_link_hash_entry *h;
298 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
299 struct elf_link_hash_table *htab = elf_hash_table (info);
300
301 /* This function may be called more than once. */
ce558b89 302 if (htab->sgot != NULL)
e23eba97
NC
303 return TRUE;
304
305 flags = bed->dynamic_sec_flags;
306
307 s = bfd_make_section_anyway_with_flags (abfd,
308 (bed->rela_plts_and_copies_p
309 ? ".rela.got" : ".rel.got"),
310 (bed->dynamic_sec_flags
311 | SEC_READONLY));
312 if (s == NULL
313 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
314 return FALSE;
315 htab->srelgot = s;
316
317 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
318 if (s == NULL
319 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
320 return FALSE;
321 htab->sgot = s;
322
323 /* The first bit of the global offset table is the header. */
324 s->size += bed->got_header_size;
325
326 if (bed->want_got_plt)
327 {
328 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
329 if (s == NULL
330 || !bfd_set_section_alignment (abfd, s,
331 bed->s->log_file_align))
332 return FALSE;
333 htab->sgotplt = s;
334
335 /* Reserve room for the header. */
336 s->size += GOTPLT_HEADER_SIZE;
337 }
338
339 if (bed->want_got_sym)
340 {
341 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
342 section. We don't do this in the linker script because we don't want
343 to define the symbol if we are not creating a global offset
344 table. */
345 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
346 "_GLOBAL_OFFSET_TABLE_");
347 elf_hash_table (info)->hgot = h;
348 if (h == NULL)
349 return FALSE;
350 }
351
352 return TRUE;
353}
354
355/* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
356 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
357 hash table. */
358
359static bfd_boolean
360riscv_elf_create_dynamic_sections (bfd *dynobj,
361 struct bfd_link_info *info)
362{
363 struct riscv_elf_link_hash_table *htab;
364
365 htab = riscv_elf_hash_table (info);
366 BFD_ASSERT (htab != NULL);
367
368 if (!riscv_elf_create_got_section (dynobj, info))
369 return FALSE;
370
371 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
372 return FALSE;
373
e23eba97
NC
374 if (!bfd_link_pic (info))
375 {
e23eba97
NC
376 htab->sdyntdata =
377 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
13755f40
JW
378 (SEC_ALLOC | SEC_THREAD_LOCAL
379 | SEC_LINKER_CREATED));
e23eba97
NC
380 }
381
9d19e4fd
AM
382 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
383 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
e23eba97
NC
384 abort ();
385
386 return TRUE;
387}
388
389/* Copy the extra info we tack onto an elf_link_hash_entry. */
390
391static void
392riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
393 struct elf_link_hash_entry *dir,
394 struct elf_link_hash_entry *ind)
395{
396 struct riscv_elf_link_hash_entry *edir, *eind;
397
398 edir = (struct riscv_elf_link_hash_entry *) dir;
399 eind = (struct riscv_elf_link_hash_entry *) ind;
400
401 if (eind->dyn_relocs != NULL)
402 {
403 if (edir->dyn_relocs != NULL)
404 {
3bf083ed
AM
405 struct elf_dyn_relocs **pp;
406 struct elf_dyn_relocs *p;
e23eba97
NC
407
408 /* Add reloc counts against the indirect sym to the direct sym
409 list. Merge any entries against the same section. */
410 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
411 {
3bf083ed 412 struct elf_dyn_relocs *q;
e23eba97
NC
413
414 for (q = edir->dyn_relocs; q != NULL; q = q->next)
415 if (q->sec == p->sec)
416 {
417 q->pc_count += p->pc_count;
418 q->count += p->count;
419 *pp = p->next;
420 break;
421 }
422 if (q == NULL)
423 pp = &p->next;
424 }
425 *pp = edir->dyn_relocs;
426 }
427
428 edir->dyn_relocs = eind->dyn_relocs;
429 eind->dyn_relocs = NULL;
430 }
431
432 if (ind->root.type == bfd_link_hash_indirect
433 && dir->got.refcount <= 0)
434 {
435 edir->tls_type = eind->tls_type;
436 eind->tls_type = GOT_UNKNOWN;
437 }
438 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
439}
440
441static bfd_boolean
442riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
443 unsigned long symndx, char tls_type)
444{
445 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
446
447 *new_tls_type |= tls_type;
448 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
449 {
450 (*_bfd_error_handler)
871b3ab2 451 (_("%pB: `%s' accessed both as normal and thread local symbol"),
e23eba97
NC
452 abfd, h ? h->root.root.string : "<local>");
453 return FALSE;
454 }
455 return TRUE;
456}
457
458static bfd_boolean
459riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
460 struct elf_link_hash_entry *h, long symndx)
461{
462 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
463 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
464
465 if (htab->elf.sgot == NULL)
466 {
467 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
468 return FALSE;
469 }
470
471 if (h != NULL)
472 {
473 h->got.refcount += 1;
474 return TRUE;
475 }
476
477 /* This is a global offset table entry for a local symbol. */
478 if (elf_local_got_refcounts (abfd) == NULL)
479 {
480 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
481 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
482 return FALSE;
483 _bfd_riscv_elf_local_got_tls_type (abfd)
484 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
485 }
486 elf_local_got_refcounts (abfd) [symndx] += 1;
487
488 return TRUE;
489}
490
491static bfd_boolean
492bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
493{
f3185997
NC
494 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
495
e23eba97 496 (*_bfd_error_handler)
871b3ab2 497 (_("%pB: relocation %s against `%s' can not be used when making a shared "
e23eba97 498 "object; recompile with -fPIC"),
f3185997
NC
499 abfd, r ? r->name : _("<unknown>"),
500 h != NULL ? h->root.root.string : "a local symbol");
e23eba97
NC
501 bfd_set_error (bfd_error_bad_value);
502 return FALSE;
503}
504/* Look through the relocs for a section during the first phase, and
505 allocate space in the global offset table or procedure linkage
506 table. */
507
508static bfd_boolean
509riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
510 asection *sec, const Elf_Internal_Rela *relocs)
511{
512 struct riscv_elf_link_hash_table *htab;
513 Elf_Internal_Shdr *symtab_hdr;
514 struct elf_link_hash_entry **sym_hashes;
515 const Elf_Internal_Rela *rel;
516 asection *sreloc = NULL;
517
518 if (bfd_link_relocatable (info))
519 return TRUE;
520
521 htab = riscv_elf_hash_table (info);
522 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
523 sym_hashes = elf_sym_hashes (abfd);
524
525 if (htab->elf.dynobj == NULL)
526 htab->elf.dynobj = abfd;
527
528 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
529 {
530 unsigned int r_type;
d42c267e 531 unsigned int r_symndx;
e23eba97
NC
532 struct elf_link_hash_entry *h;
533
534 r_symndx = ELFNN_R_SYM (rel->r_info);
535 r_type = ELFNN_R_TYPE (rel->r_info);
536
537 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
538 {
871b3ab2 539 (*_bfd_error_handler) (_("%pB: bad symbol index: %d"),
e23eba97
NC
540 abfd, r_symndx);
541 return FALSE;
542 }
543
544 if (r_symndx < symtab_hdr->sh_info)
545 h = NULL;
546 else
547 {
548 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
549 while (h->root.type == bfd_link_hash_indirect
550 || h->root.type == bfd_link_hash_warning)
551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
e23eba97
NC
552 }
553
554 switch (r_type)
555 {
556 case R_RISCV_TLS_GD_HI20:
557 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
558 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
559 return FALSE;
560 break;
561
562 case R_RISCV_TLS_GOT_HI20:
563 if (bfd_link_pic (info))
564 info->flags |= DF_STATIC_TLS;
565 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
566 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
567 return FALSE;
568 break;
569
570 case R_RISCV_GOT_HI20:
571 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
572 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
573 return FALSE;
574 break;
575
576 case R_RISCV_CALL_PLT:
577 /* This symbol requires a procedure linkage table entry. We
578 actually build the entry in adjust_dynamic_symbol,
579 because this might be a case of linking PIC code without
580 linking in any dynamic objects, in which case we don't
581 need to generate a procedure linkage table after all. */
582
583 if (h != NULL)
584 {
585 h->needs_plt = 1;
586 h->plt.refcount += 1;
587 }
588 break;
589
590 case R_RISCV_CALL:
591 case R_RISCV_JAL:
592 case R_RISCV_BRANCH:
593 case R_RISCV_RVC_BRANCH:
594 case R_RISCV_RVC_JUMP:
595 case R_RISCV_PCREL_HI20:
596 /* In shared libraries, these relocs are known to bind locally. */
597 if (bfd_link_pic (info))
598 break;
599 goto static_reloc;
600
601 case R_RISCV_TPREL_HI20:
602 if (!bfd_link_executable (info))
603 return bad_static_reloc (abfd, r_type, h);
604 if (h != NULL)
605 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
606 goto static_reloc;
607
608 case R_RISCV_HI20:
609 if (bfd_link_pic (info))
610 return bad_static_reloc (abfd, r_type, h);
611 /* Fall through. */
612
613 case R_RISCV_COPY:
614 case R_RISCV_JUMP_SLOT:
615 case R_RISCV_RELATIVE:
616 case R_RISCV_64:
617 case R_RISCV_32:
618 /* Fall through. */
619
620 static_reloc:
621 /* This reloc might not bind locally. */
622 if (h != NULL)
623 h->non_got_ref = 1;
624
625 if (h != NULL && !bfd_link_pic (info))
626 {
627 /* We may need a .plt entry if the function this reloc
628 refers to is in a shared lib. */
629 h->plt.refcount += 1;
630 }
631
632 /* If we are creating a shared library, and this is a reloc
633 against a global symbol, or a non PC relative reloc
634 against a local symbol, then we need to copy the reloc
635 into the shared library. However, if we are linking with
636 -Bsymbolic, we do not need to copy a reloc against a
637 global symbol which is defined in an object we are
638 including in the link (i.e., DEF_REGULAR is set). At
639 this point we have not seen all the input files, so it is
640 possible that DEF_REGULAR is not set now but will be set
641 later (it is never cleared). In case of a weak definition,
642 DEF_REGULAR may be cleared later by a strong definition in
643 a shared library. We account for that possibility below by
644 storing information in the relocs_copied field of the hash
645 table entry. A similar situation occurs when creating
646 shared libraries and symbol visibility changes render the
647 symbol local.
648
649 If on the other hand, we are creating an executable, we
650 may need to keep relocations for symbols satisfied by a
651 dynamic library if we manage to avoid copy relocs for the
652 symbol. */
f3185997
NC
653 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
654
e23eba97
NC
655 if ((bfd_link_pic (info)
656 && (sec->flags & SEC_ALLOC) != 0
f3185997 657 && ((r != NULL && ! r->pc_relative)
e23eba97
NC
658 || (h != NULL
659 && (! info->symbolic
660 || h->root.type == bfd_link_hash_defweak
661 || !h->def_regular))))
662 || (!bfd_link_pic (info)
663 && (sec->flags & SEC_ALLOC) != 0
664 && h != NULL
665 && (h->root.type == bfd_link_hash_defweak
666 || !h->def_regular)))
667 {
3bf083ed
AM
668 struct elf_dyn_relocs *p;
669 struct elf_dyn_relocs **head;
e23eba97
NC
670
671 /* When creating a shared object, we must copy these
672 relocs into the output file. We create a reloc
673 section in dynobj and make room for the reloc. */
674 if (sreloc == NULL)
675 {
676 sreloc = _bfd_elf_make_dynamic_reloc_section
677 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
678 abfd, /*rela?*/ TRUE);
679
680 if (sreloc == NULL)
681 return FALSE;
682 }
683
684 /* If this is a global symbol, we count the number of
685 relocations we need for this symbol. */
686 if (h != NULL)
687 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
688 else
689 {
690 /* Track dynamic relocs needed for local syms too.
691 We really need local syms available to do this
692 easily. Oh well. */
693
694 asection *s;
695 void *vpp;
696 Elf_Internal_Sym *isym;
697
698 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
699 abfd, r_symndx);
700 if (isym == NULL)
701 return FALSE;
702
703 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
704 if (s == NULL)
705 s = sec;
706
707 vpp = &elf_section_data (s)->local_dynrel;
3bf083ed 708 head = (struct elf_dyn_relocs **) vpp;
e23eba97
NC
709 }
710
711 p = *head;
712 if (p == NULL || p->sec != sec)
713 {
714 bfd_size_type amt = sizeof *p;
3bf083ed 715 p = ((struct elf_dyn_relocs *)
e23eba97
NC
716 bfd_alloc (htab->elf.dynobj, amt));
717 if (p == NULL)
718 return FALSE;
719 p->next = *head;
720 *head = p;
721 p->sec = sec;
722 p->count = 0;
723 p->pc_count = 0;
724 }
725
726 p->count += 1;
f3185997 727 p->pc_count += r == NULL ? 0 : r->pc_relative;
e23eba97
NC
728 }
729
730 break;
731
732 case R_RISCV_GNU_VTINHERIT:
733 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
734 return FALSE;
735 break;
736
737 case R_RISCV_GNU_VTENTRY:
738 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
739 return FALSE;
740 break;
741
742 default:
743 break;
744 }
745 }
746
747 return TRUE;
748}
749
750static asection *
751riscv_elf_gc_mark_hook (asection *sec,
752 struct bfd_link_info *info,
753 Elf_Internal_Rela *rel,
754 struct elf_link_hash_entry *h,
755 Elf_Internal_Sym *sym)
756{
757 if (h != NULL)
758 switch (ELFNN_R_TYPE (rel->r_info))
759 {
760 case R_RISCV_GNU_VTINHERIT:
761 case R_RISCV_GNU_VTENTRY:
762 return NULL;
763 }
764
765 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
766}
767
63c1f59d
AM
768/* Find dynamic relocs for H that apply to read-only sections. */
769
770static asection *
771readonly_dynrelocs (struct elf_link_hash_entry *h)
772{
3bf083ed 773 struct elf_dyn_relocs *p;
63c1f59d
AM
774
775 for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
776 {
777 asection *s = p->sec->output_section;
778
779 if (s != NULL && (s->flags & SEC_READONLY) != 0)
780 return p->sec;
781 }
782 return NULL;
783}
784
e23eba97
NC
785/* Adjust a symbol defined by a dynamic object and referenced by a
786 regular object. The current definition is in some section of the
787 dynamic object, but we're not including those sections. We have to
788 change the definition to something the rest of the link can
789 understand. */
790
791static bfd_boolean
792riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
793 struct elf_link_hash_entry *h)
794{
795 struct riscv_elf_link_hash_table *htab;
796 struct riscv_elf_link_hash_entry * eh;
e23eba97 797 bfd *dynobj;
5474d94f 798 asection *s, *srel;
e23eba97
NC
799
800 htab = riscv_elf_hash_table (info);
801 BFD_ASSERT (htab != NULL);
802
803 dynobj = htab->elf.dynobj;
804
805 /* Make sure we know what is going on here. */
806 BFD_ASSERT (dynobj != NULL
807 && (h->needs_plt
808 || h->type == STT_GNU_IFUNC
60d67dc8 809 || h->is_weakalias
e23eba97
NC
810 || (h->def_dynamic
811 && h->ref_regular
812 && !h->def_regular)));
813
814 /* If this is a function, put it in the procedure linkage table. We
815 will fill in the contents of the procedure linkage table later
816 (although we could actually do it here). */
817 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
818 {
819 if (h->plt.refcount <= 0
820 || SYMBOL_CALLS_LOCAL (info, h)
821 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
822 && h->root.type == bfd_link_hash_undefweak))
823 {
824 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
825 input file, but the symbol was never referred to by a dynamic
826 object, or if all references were garbage collected. In such
827 a case, we don't actually need to build a PLT entry. */
828 h->plt.offset = (bfd_vma) -1;
829 h->needs_plt = 0;
830 }
831
832 return TRUE;
833 }
834 else
835 h->plt.offset = (bfd_vma) -1;
836
837 /* If this is a weak symbol, and there is a real definition, the
838 processor independent code will have arranged for us to see the
839 real definition first, and we can just use the same value. */
60d67dc8 840 if (h->is_weakalias)
e23eba97 841 {
60d67dc8
AM
842 struct elf_link_hash_entry *def = weakdef (h);
843 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
844 h->root.u.def.section = def->root.u.def.section;
845 h->root.u.def.value = def->root.u.def.value;
e23eba97
NC
846 return TRUE;
847 }
848
849 /* This is a reference to a symbol defined by a dynamic object which
850 is not a function. */
851
852 /* If we are creating a shared library, we must presume that the
853 only references to the symbol are via the global offset table.
854 For such cases we need not do anything here; the relocations will
855 be handled correctly by relocate_section. */
856 if (bfd_link_pic (info))
857 return TRUE;
858
859 /* If there are no references to this symbol that do not use the
860 GOT, we don't need to generate a copy reloc. */
861 if (!h->non_got_ref)
862 return TRUE;
863
864 /* If -z nocopyreloc was given, we won't generate them either. */
865 if (info->nocopyreloc)
866 {
867 h->non_got_ref = 0;
868 return TRUE;
869 }
870
3bf083ed 871 /* If we don't find any dynamic relocs in read-only sections, then
e23eba97 872 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
3bf083ed 873 if (!readonly_dynrelocs (h))
e23eba97
NC
874 {
875 h->non_got_ref = 0;
876 return TRUE;
877 }
878
879 /* We must allocate the symbol in our .dynbss section, which will
880 become part of the .bss section of the executable. There will be
881 an entry for this symbol in the .dynsym section. The dynamic
882 object will contain position independent code, so all references
883 from the dynamic object to this symbol will go through the global
884 offset table. The dynamic linker will use the .dynsym entry to
885 determine the address it must put in the global offset table, so
886 both the dynamic object and the regular object will refer to the
887 same memory location for the variable. */
888
889 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
890 to copy the initial value out of the dynamic object and into the
891 runtime process image. We need to remember the offset into the
892 .rel.bss section we are going to use. */
3bf083ed 893 eh = (struct riscv_elf_link_hash_entry *) h;
3df5cd13
AW
894 if (eh->tls_type & ~GOT_NORMAL)
895 {
896 s = htab->sdyntdata;
897 srel = htab->elf.srelbss;
898 }
899 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
5474d94f
AM
900 {
901 s = htab->elf.sdynrelro;
902 srel = htab->elf.sreldynrelro;
903 }
904 else
905 {
906 s = htab->elf.sdynbss;
907 srel = htab->elf.srelbss;
908 }
e23eba97
NC
909 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
910 {
5474d94f 911 srel->size += sizeof (ElfNN_External_Rela);
e23eba97
NC
912 h->needs_copy = 1;
913 }
914
5474d94f 915 return _bfd_elf_adjust_dynamic_copy (info, h, s);
e23eba97
NC
916}
917
918/* Allocate space in .plt, .got and associated reloc sections for
919 dynamic relocs. */
920
921static bfd_boolean
922allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
923{
924 struct bfd_link_info *info;
925 struct riscv_elf_link_hash_table *htab;
926 struct riscv_elf_link_hash_entry *eh;
3bf083ed 927 struct elf_dyn_relocs *p;
e23eba97
NC
928
929 if (h->root.type == bfd_link_hash_indirect)
930 return TRUE;
931
932 info = (struct bfd_link_info *) inf;
933 htab = riscv_elf_hash_table (info);
934 BFD_ASSERT (htab != NULL);
935
936 if (htab->elf.dynamic_sections_created
937 && h->plt.refcount > 0)
938 {
939 /* Make sure this symbol is output as a dynamic symbol.
940 Undefined weak syms won't yet be marked as dynamic. */
941 if (h->dynindx == -1
942 && !h->forced_local)
943 {
944 if (! bfd_elf_link_record_dynamic_symbol (info, h))
945 return FALSE;
946 }
947
948 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
949 {
950 asection *s = htab->elf.splt;
951
952 if (s->size == 0)
953 s->size = PLT_HEADER_SIZE;
954
955 h->plt.offset = s->size;
956
957 /* Make room for this entry. */
958 s->size += PLT_ENTRY_SIZE;
959
960 /* We also need to make an entry in the .got.plt section. */
961 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
962
963 /* We also need to make an entry in the .rela.plt section. */
964 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
965
966 /* If this symbol is not defined in a regular file, and we are
967 not generating a shared library, then set the symbol to this
968 location in the .plt. This is required to make function
969 pointers compare as equal between the normal executable and
970 the shared library. */
971 if (! bfd_link_pic (info)
972 && !h->def_regular)
973 {
974 h->root.u.def.section = s;
975 h->root.u.def.value = h->plt.offset;
976 }
977 }
978 else
979 {
980 h->plt.offset = (bfd_vma) -1;
981 h->needs_plt = 0;
982 }
983 }
984 else
985 {
986 h->plt.offset = (bfd_vma) -1;
987 h->needs_plt = 0;
988 }
989
990 if (h->got.refcount > 0)
991 {
992 asection *s;
993 bfd_boolean dyn;
994 int tls_type = riscv_elf_hash_entry (h)->tls_type;
995
996 /* Make sure this symbol is output as a dynamic symbol.
997 Undefined weak syms won't yet be marked as dynamic. */
998 if (h->dynindx == -1
999 && !h->forced_local)
1000 {
1001 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1002 return FALSE;
1003 }
1004
1005 s = htab->elf.sgot;
1006 h->got.offset = s->size;
1007 dyn = htab->elf.dynamic_sections_created;
1008 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
1009 {
1010 /* TLS_GD needs two dynamic relocs and two GOT slots. */
1011 if (tls_type & GOT_TLS_GD)
1012 {
1013 s->size += 2 * RISCV_ELF_WORD_BYTES;
1014 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
1015 }
1016
1017 /* TLS_IE needs one dynamic reloc and one GOT slot. */
1018 if (tls_type & GOT_TLS_IE)
1019 {
1020 s->size += RISCV_ELF_WORD_BYTES;
1021 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1022 }
1023 }
1024 else
1025 {
1026 s->size += RISCV_ELF_WORD_BYTES;
6487709f
JW
1027 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
1028 && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
e23eba97
NC
1029 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1030 }
1031 }
1032 else
1033 h->got.offset = (bfd_vma) -1;
1034
1035 eh = (struct riscv_elf_link_hash_entry *) h;
1036 if (eh->dyn_relocs == NULL)
1037 return TRUE;
1038
1039 /* In the shared -Bsymbolic case, discard space allocated for
1040 dynamic pc-relative relocs against symbols which turn out to be
1041 defined in regular objects. For the normal shared case, discard
1042 space for pc-relative relocs that have become local due to symbol
1043 visibility changes. */
1044
1045 if (bfd_link_pic (info))
1046 {
1047 if (SYMBOL_CALLS_LOCAL (info, h))
1048 {
3bf083ed 1049 struct elf_dyn_relocs **pp;
e23eba97
NC
1050
1051 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1052 {
1053 p->count -= p->pc_count;
1054 p->pc_count = 0;
1055 if (p->count == 0)
1056 *pp = p->next;
1057 else
1058 pp = &p->next;
1059 }
1060 }
1061
1062 /* Also discard relocs on undefined weak syms with non-default
1063 visibility. */
1064 if (eh->dyn_relocs != NULL
1065 && h->root.type == bfd_link_hash_undefweak)
1066 {
6487709f
JW
1067 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1068 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
e23eba97
NC
1069 eh->dyn_relocs = NULL;
1070
1071 /* Make sure undefined weak symbols are output as a dynamic
1072 symbol in PIEs. */
1073 else if (h->dynindx == -1
1074 && !h->forced_local)
1075 {
1076 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1077 return FALSE;
1078 }
1079 }
1080 }
1081 else
1082 {
1083 /* For the non-shared case, discard space for relocs against
1084 symbols which turn out to need copy relocs or are not
1085 dynamic. */
1086
1087 if (!h->non_got_ref
1088 && ((h->def_dynamic
1089 && !h->def_regular)
1090 || (htab->elf.dynamic_sections_created
1091 && (h->root.type == bfd_link_hash_undefweak
1092 || h->root.type == bfd_link_hash_undefined))))
1093 {
1094 /* Make sure this symbol is output as a dynamic symbol.
1095 Undefined weak syms won't yet be marked as dynamic. */
1096 if (h->dynindx == -1
1097 && !h->forced_local)
1098 {
1099 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1100 return FALSE;
1101 }
1102
1103 /* If that succeeded, we know we'll be keeping all the
1104 relocs. */
1105 if (h->dynindx != -1)
1106 goto keep;
1107 }
1108
1109 eh->dyn_relocs = NULL;
1110
1111 keep: ;
1112 }
1113
1114 /* Finally, allocate space. */
1115 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1116 {
1117 asection *sreloc = elf_section_data (p->sec)->sreloc;
1118 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1119 }
1120
1121 return TRUE;
1122}
1123
63c1f59d
AM
1124/* Set DF_TEXTREL if we find any dynamic relocs that apply to
1125 read-only sections. */
e23eba97
NC
1126
1127static bfd_boolean
63c1f59d 1128maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
e23eba97 1129{
63c1f59d 1130 asection *sec;
e23eba97 1131
63c1f59d
AM
1132 if (h->root.type == bfd_link_hash_indirect)
1133 return TRUE;
1134
1135 sec = readonly_dynrelocs (h);
1136 if (sec != NULL)
e23eba97 1137 {
63c1f59d 1138 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
e23eba97 1139
63c1f59d
AM
1140 info->flags |= DF_TEXTREL;
1141 info->callbacks->minfo
c1c8c1ef 1142 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
63c1f59d
AM
1143 sec->owner, h->root.root.string, sec);
1144
1145 /* Not an error, just cut short the traversal. */
1146 return FALSE;
e23eba97
NC
1147 }
1148 return TRUE;
1149}
1150
1151static bfd_boolean
1152riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1153{
1154 struct riscv_elf_link_hash_table *htab;
1155 bfd *dynobj;
1156 asection *s;
1157 bfd *ibfd;
1158
1159 htab = riscv_elf_hash_table (info);
1160 BFD_ASSERT (htab != NULL);
1161 dynobj = htab->elf.dynobj;
1162 BFD_ASSERT (dynobj != NULL);
1163
1164 if (elf_hash_table (info)->dynamic_sections_created)
1165 {
1166 /* Set the contents of the .interp section to the interpreter. */
1167 if (bfd_link_executable (info) && !info->nointerp)
1168 {
1169 s = bfd_get_linker_section (dynobj, ".interp");
1170 BFD_ASSERT (s != NULL);
1171 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1172 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1173 }
1174 }
1175
1176 /* Set up .got offsets for local syms, and space for local dynamic
1177 relocs. */
1178 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1179 {
1180 bfd_signed_vma *local_got;
1181 bfd_signed_vma *end_local_got;
1182 char *local_tls_type;
1183 bfd_size_type locsymcount;
1184 Elf_Internal_Shdr *symtab_hdr;
1185 asection *srel;
1186
1187 if (! is_riscv_elf (ibfd))
1188 continue;
1189
1190 for (s = ibfd->sections; s != NULL; s = s->next)
1191 {
3bf083ed 1192 struct elf_dyn_relocs *p;
e23eba97
NC
1193
1194 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1195 {
1196 if (!bfd_is_abs_section (p->sec)
1197 && bfd_is_abs_section (p->sec->output_section))
1198 {
1199 /* Input section has been discarded, either because
1200 it is a copy of a linkonce section or due to
1201 linker script /DISCARD/, so we'll be discarding
1202 the relocs too. */
1203 }
1204 else if (p->count != 0)
1205 {
1206 srel = elf_section_data (p->sec)->sreloc;
1207 srel->size += p->count * sizeof (ElfNN_External_Rela);
1208 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1209 info->flags |= DF_TEXTREL;
1210 }
1211 }
1212 }
1213
1214 local_got = elf_local_got_refcounts (ibfd);
1215 if (!local_got)
1216 continue;
1217
1218 symtab_hdr = &elf_symtab_hdr (ibfd);
1219 locsymcount = symtab_hdr->sh_info;
1220 end_local_got = local_got + locsymcount;
1221 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1222 s = htab->elf.sgot;
1223 srel = htab->elf.srelgot;
1224 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1225 {
1226 if (*local_got > 0)
1227 {
1228 *local_got = s->size;
1229 s->size += RISCV_ELF_WORD_BYTES;
1230 if (*local_tls_type & GOT_TLS_GD)
1231 s->size += RISCV_ELF_WORD_BYTES;
1232 if (bfd_link_pic (info)
1233 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1234 srel->size += sizeof (ElfNN_External_Rela);
1235 }
1236 else
1237 *local_got = (bfd_vma) -1;
1238 }
1239 }
1240
1241 /* Allocate global sym .plt and .got entries, and space for global
1242 sym dynamic relocs. */
1243 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1244
1245 if (htab->elf.sgotplt)
1246 {
1247 struct elf_link_hash_entry *got;
1248 got = elf_link_hash_lookup (elf_hash_table (info),
1249 "_GLOBAL_OFFSET_TABLE_",
1250 FALSE, FALSE, FALSE);
1251
1252 /* Don't allocate .got.plt section if there are no GOT nor PLT
1253 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1254 if ((got == NULL
1255 || !got->ref_regular_nonweak)
1256 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1257 && (htab->elf.splt == NULL
1258 || htab->elf.splt->size == 0)
1259 && (htab->elf.sgot == NULL
1260 || (htab->elf.sgot->size
1261 == get_elf_backend_data (output_bfd)->got_header_size)))
1262 htab->elf.sgotplt->size = 0;
1263 }
1264
1265 /* The check_relocs and adjust_dynamic_symbol entry points have
1266 determined the sizes of the various dynamic sections. Allocate
1267 memory for them. */
1268 for (s = dynobj->sections; s != NULL; s = s->next)
1269 {
1270 if ((s->flags & SEC_LINKER_CREATED) == 0)
1271 continue;
1272
1273 if (s == htab->elf.splt
1274 || s == htab->elf.sgot
1275 || s == htab->elf.sgotplt
5474d94f 1276 || s == htab->elf.sdynbss
3e1b4df8
JW
1277 || s == htab->elf.sdynrelro
1278 || s == htab->sdyntdata)
e23eba97
NC
1279 {
1280 /* Strip this section if we don't need it; see the
1281 comment below. */
1282 }
1283 else if (strncmp (s->name, ".rela", 5) == 0)
1284 {
1285 if (s->size != 0)
1286 {
1287 /* We use the reloc_count field as a counter if we need
1288 to copy relocs into the output file. */
1289 s->reloc_count = 0;
1290 }
1291 }
1292 else
1293 {
1294 /* It's not one of our sections. */
1295 continue;
1296 }
1297
1298 if (s->size == 0)
1299 {
1300 /* If we don't need this section, strip it from the
1301 output file. This is mostly to handle .rela.bss and
1302 .rela.plt. We must create both sections in
1303 create_dynamic_sections, because they must be created
1304 before the linker maps input sections to output
1305 sections. The linker does that before
1306 adjust_dynamic_symbol is called, and it is that
1307 function which decides whether anything needs to go
1308 into these sections. */
1309 s->flags |= SEC_EXCLUDE;
1310 continue;
1311 }
1312
1313 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1314 continue;
1315
1316 /* Allocate memory for the section contents. Zero the memory
1317 for the benefit of .rela.plt, which has 4 unused entries
1318 at the beginning, and we don't want garbage. */
1319 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1320 if (s->contents == NULL)
1321 return FALSE;
1322 }
1323
1324 if (elf_hash_table (info)->dynamic_sections_created)
1325 {
1326 /* Add some entries to the .dynamic section. We fill in the
1327 values later, in riscv_elf_finish_dynamic_sections, but we
1328 must add the entries now so that we get the correct size for
1329 the .dynamic section. The DT_DEBUG entry is filled in by the
1330 dynamic linker and used by the debugger. */
1331#define add_dynamic_entry(TAG, VAL) \
1332 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1333
1334 if (bfd_link_executable (info))
1335 {
1336 if (!add_dynamic_entry (DT_DEBUG, 0))
1337 return FALSE;
1338 }
1339
1340 if (htab->elf.srelplt->size != 0)
1341 {
1342 if (!add_dynamic_entry (DT_PLTGOT, 0)
1343 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1344 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1345 || !add_dynamic_entry (DT_JMPREL, 0))
1346 return FALSE;
1347 }
1348
1349 if (!add_dynamic_entry (DT_RELA, 0)
1350 || !add_dynamic_entry (DT_RELASZ, 0)
1351 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1352 return FALSE;
1353
1354 /* If any dynamic relocs apply to a read-only section,
1355 then we need a DT_TEXTREL entry. */
1356 if ((info->flags & DF_TEXTREL) == 0)
63c1f59d 1357 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
e23eba97
NC
1358
1359 if (info->flags & DF_TEXTREL)
1360 {
1361 if (!add_dynamic_entry (DT_TEXTREL, 0))
1362 return FALSE;
1363 }
1364 }
1365#undef add_dynamic_entry
1366
1367 return TRUE;
1368}
1369
1370#define TP_OFFSET 0
1371#define DTP_OFFSET 0x800
1372
1373/* Return the relocation value for a TLS dtp-relative reloc. */
1374
1375static bfd_vma
1376dtpoff (struct bfd_link_info *info, bfd_vma address)
1377{
1378 /* If tls_sec is NULL, we should have signalled an error already. */
1379 if (elf_hash_table (info)->tls_sec == NULL)
1380 return 0;
1381 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1382}
1383
1384/* Return the relocation value for a static TLS tp-relative relocation. */
1385
1386static bfd_vma
1387tpoff (struct bfd_link_info *info, bfd_vma address)
1388{
1389 /* If tls_sec is NULL, we should have signalled an error already. */
1390 if (elf_hash_table (info)->tls_sec == NULL)
1391 return 0;
1392 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1393}
1394
1395/* Return the global pointer's value, or 0 if it is not in use. */
1396
1397static bfd_vma
1398riscv_global_pointer_value (struct bfd_link_info *info)
1399{
1400 struct bfd_link_hash_entry *h;
1401
b5292032 1402 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
e23eba97
NC
1403 if (h == NULL || h->type != bfd_link_hash_defined)
1404 return 0;
1405
1406 return h->u.def.value + sec_addr (h->u.def.section);
1407}
1408
1409/* Emplace a static relocation. */
1410
1411static bfd_reloc_status_type
1412perform_relocation (const reloc_howto_type *howto,
1413 const Elf_Internal_Rela *rel,
1414 bfd_vma value,
1415 asection *input_section,
1416 bfd *input_bfd,
1417 bfd_byte *contents)
1418{
1419 if (howto->pc_relative)
1420 value -= sec_addr (input_section) + rel->r_offset;
1421 value += rel->r_addend;
1422
1423 switch (ELFNN_R_TYPE (rel->r_info))
1424 {
1425 case R_RISCV_HI20:
1426 case R_RISCV_TPREL_HI20:
1427 case R_RISCV_PCREL_HI20:
1428 case R_RISCV_GOT_HI20:
1429 case R_RISCV_TLS_GOT_HI20:
1430 case R_RISCV_TLS_GD_HI20:
1431 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1432 return bfd_reloc_overflow;
1433 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1434 break;
1435
1436 case R_RISCV_LO12_I:
1437 case R_RISCV_GPREL_I:
1438 case R_RISCV_TPREL_LO12_I:
45f76423 1439 case R_RISCV_TPREL_I:
e23eba97
NC
1440 case R_RISCV_PCREL_LO12_I:
1441 value = ENCODE_ITYPE_IMM (value);
1442 break;
1443
1444 case R_RISCV_LO12_S:
1445 case R_RISCV_GPREL_S:
1446 case R_RISCV_TPREL_LO12_S:
45f76423 1447 case R_RISCV_TPREL_S:
e23eba97
NC
1448 case R_RISCV_PCREL_LO12_S:
1449 value = ENCODE_STYPE_IMM (value);
1450 break;
1451
1452 case R_RISCV_CALL:
1453 case R_RISCV_CALL_PLT:
1454 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1455 return bfd_reloc_overflow;
1456 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1457 | (ENCODE_ITYPE_IMM (value) << 32);
1458 break;
1459
1460 case R_RISCV_JAL:
1461 if (!VALID_UJTYPE_IMM (value))
1462 return bfd_reloc_overflow;
1463 value = ENCODE_UJTYPE_IMM (value);
1464 break;
1465
1466 case R_RISCV_BRANCH:
1467 if (!VALID_SBTYPE_IMM (value))
1468 return bfd_reloc_overflow;
1469 value = ENCODE_SBTYPE_IMM (value);
1470 break;
1471
1472 case R_RISCV_RVC_BRANCH:
1473 if (!VALID_RVC_B_IMM (value))
1474 return bfd_reloc_overflow;
1475 value = ENCODE_RVC_B_IMM (value);
1476 break;
1477
1478 case R_RISCV_RVC_JUMP:
1479 if (!VALID_RVC_J_IMM (value))
1480 return bfd_reloc_overflow;
1481 value = ENCODE_RVC_J_IMM (value);
1482 break;
1483
1484 case R_RISCV_RVC_LUI:
1485 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1486 return bfd_reloc_overflow;
1487 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1488 break;
1489
1490 case R_RISCV_32:
1491 case R_RISCV_64:
1492 case R_RISCV_ADD8:
1493 case R_RISCV_ADD16:
1494 case R_RISCV_ADD32:
1495 case R_RISCV_ADD64:
45f76423 1496 case R_RISCV_SUB6:
e23eba97
NC
1497 case R_RISCV_SUB8:
1498 case R_RISCV_SUB16:
1499 case R_RISCV_SUB32:
1500 case R_RISCV_SUB64:
45f76423
AW
1501 case R_RISCV_SET6:
1502 case R_RISCV_SET8:
1503 case R_RISCV_SET16:
1504 case R_RISCV_SET32:
a6cbf936 1505 case R_RISCV_32_PCREL:
e23eba97
NC
1506 case R_RISCV_TLS_DTPREL32:
1507 case R_RISCV_TLS_DTPREL64:
1508 break;
1509
ff6f4d9b
PD
1510 case R_RISCV_DELETE:
1511 return bfd_reloc_ok;
1512
e23eba97
NC
1513 default:
1514 return bfd_reloc_notsupported;
1515 }
1516
1517 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1518 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1519 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1520
1521 return bfd_reloc_ok;
1522}
1523
1524/* Remember all PC-relative high-part relocs we've encountered to help us
1525 later resolve the corresponding low-part relocs. */
1526
1527typedef struct
1528{
1529 bfd_vma address;
1530 bfd_vma value;
1531} riscv_pcrel_hi_reloc;
1532
1533typedef struct riscv_pcrel_lo_reloc
1534{
07d6d2b8
AM
1535 asection * input_section;
1536 struct bfd_link_info * info;
1537 reloc_howto_type * howto;
1538 const Elf_Internal_Rela * reloc;
1539 bfd_vma addr;
1540 const char * name;
1541 bfd_byte * contents;
1542 struct riscv_pcrel_lo_reloc * next;
e23eba97
NC
1543} riscv_pcrel_lo_reloc;
1544
1545typedef struct
1546{
1547 htab_t hi_relocs;
1548 riscv_pcrel_lo_reloc *lo_relocs;
1549} riscv_pcrel_relocs;
1550
1551static hashval_t
1552riscv_pcrel_reloc_hash (const void *entry)
1553{
1554 const riscv_pcrel_hi_reloc *e = entry;
1555 return (hashval_t)(e->address >> 2);
1556}
1557
1558static bfd_boolean
1559riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1560{
1561 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1562 return e1->address == e2->address;
1563}
1564
1565static bfd_boolean
1566riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1567{
1568
1569 p->lo_relocs = NULL;
1570 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1571 riscv_pcrel_reloc_eq, free);
1572 return p->hi_relocs != NULL;
1573}
1574
1575static void
1576riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1577{
1578 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1579
1580 while (cur != NULL)
1581 {
1582 riscv_pcrel_lo_reloc *next = cur->next;
1583 free (cur);
1584 cur = next;
1585 }
1586
1587 htab_delete (p->hi_relocs);
1588}
1589
1590static bfd_boolean
b1308d2c
PD
1591riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1592 struct bfd_link_info *info,
1593 bfd_vma pc,
1594 bfd_vma addr,
1595 bfd_byte *contents,
1596 const reloc_howto_type *howto,
1597 bfd *input_bfd)
e23eba97 1598{
b1308d2c
PD
1599 /* We may need to reference low addreses in PC-relative modes even when the
1600 * PC is far away from these addresses. For example, undefweak references
1601 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1602 * addresses that we can link PC-relative programs at, the linker can't
1603 * actually relocate references to those symbols. In order to allow these
1604 * programs to work we simply convert the PC-relative auipc sequences to
1605 * 0-relative lui sequences. */
1606 if (bfd_link_pic (info))
1607 return FALSE;
1608
1609 /* If it's possible to reference the symbol using auipc we do so, as that's
1610 * more in the spirit of the PC-relative relocations we're processing. */
1611 bfd_vma offset = addr - pc;
1612 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1613 return FALSE;
1614
1615 /* If it's impossible to reference this with a LUI-based offset then don't
1616 * bother to convert it at all so users still see the PC-relative relocation
1617 * in the truncation message. */
1618 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1619 return FALSE;
1620
1621 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20);
1622
1623 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset);
1624 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1625 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1626 return TRUE;
1627}
1628
1629static bfd_boolean
1630riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1631 bfd_vma value, bfd_boolean absolute)
1632{
1633 bfd_vma offset = absolute ? value : value - addr;
1634 riscv_pcrel_hi_reloc entry = {addr, offset};
e23eba97
NC
1635 riscv_pcrel_hi_reloc **slot =
1636 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1637
1638 BFD_ASSERT (*slot == NULL);
1639 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1640 if (*slot == NULL)
1641 return FALSE;
1642 **slot = entry;
1643 return TRUE;
1644}
1645
1646static bfd_boolean
1647riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1648 asection *input_section,
1649 struct bfd_link_info *info,
1650 reloc_howto_type *howto,
1651 const Elf_Internal_Rela *reloc,
1652 bfd_vma addr,
1653 const char *name,
1654 bfd_byte *contents)
1655{
1656 riscv_pcrel_lo_reloc *entry;
1657 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1658 if (entry == NULL)
1659 return FALSE;
1660 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1661 name, contents, p->lo_relocs};
1662 p->lo_relocs = entry;
1663 return TRUE;
1664}
1665
1666static bfd_boolean
1667riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1668{
1669 riscv_pcrel_lo_reloc *r;
1670
1671 for (r = p->lo_relocs; r != NULL; r = r->next)
1672 {
1673 bfd *input_bfd = r->input_section->owner;
1674
1675 riscv_pcrel_hi_reloc search = {r->addr, 0};
1676 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
551703cf
JW
1677 if (entry == NULL
1678 /* Check for overflow into bit 11 when adding reloc addend. */
1679 || (! (entry->value & 0x800)
1680 && ((entry->value + r->reloc->r_addend) & 0x800)))
07d6d2b8 1681 {
551703cf
JW
1682 char *string = (entry == NULL
1683 ? "%pcrel_lo missing matching %pcrel_hi"
1684 : "%pcrel_lo overflow with an addend");
1685 (*r->info->callbacks->reloc_dangerous)
1686 (r->info, string, input_bfd, r->input_section, r->reloc->r_offset);
e23eba97 1687 return TRUE;
07d6d2b8 1688 }
e23eba97
NC
1689
1690 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1691 input_bfd, r->contents);
1692 }
1693
1694 return TRUE;
1695}
1696
1697/* Relocate a RISC-V ELF section.
1698
1699 The RELOCATE_SECTION function is called by the new ELF backend linker
1700 to handle the relocations for a section.
1701
1702 The relocs are always passed as Rela structures.
1703
1704 This function is responsible for adjusting the section contents as
1705 necessary, and (if generating a relocatable output file) adjusting
1706 the reloc addend as necessary.
1707
1708 This function does not have to worry about setting the reloc
1709 address or the reloc symbol index.
1710
1711 LOCAL_SYMS is a pointer to the swapped in local symbols.
1712
1713 LOCAL_SECTIONS is an array giving the section in the input file
1714 corresponding to the st_shndx field of each local symbol.
1715
1716 The global hash table entry for the global symbols can be found
1717 via elf_sym_hashes (input_bfd).
1718
1719 When generating relocatable output, this function must handle
1720 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1721 going to be the section symbol corresponding to the output
1722 section, which means that the addend must be adjusted
1723 accordingly. */
1724
1725static bfd_boolean
1726riscv_elf_relocate_section (bfd *output_bfd,
1727 struct bfd_link_info *info,
1728 bfd *input_bfd,
1729 asection *input_section,
1730 bfd_byte *contents,
1731 Elf_Internal_Rela *relocs,
1732 Elf_Internal_Sym *local_syms,
1733 asection **local_sections)
1734{
1735 Elf_Internal_Rela *rel;
1736 Elf_Internal_Rela *relend;
1737 riscv_pcrel_relocs pcrel_relocs;
1738 bfd_boolean ret = FALSE;
1739 asection *sreloc = elf_section_data (input_section)->sreloc;
1740 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1741 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1742 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1743 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
b1308d2c 1744 bfd_boolean absolute;
e23eba97
NC
1745
1746 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1747 return FALSE;
1748
1749 relend = relocs + input_section->reloc_count;
1750 for (rel = relocs; rel < relend; rel++)
1751 {
1752 unsigned long r_symndx;
1753 struct elf_link_hash_entry *h;
1754 Elf_Internal_Sym *sym;
1755 asection *sec;
1756 bfd_vma relocation;
1757 bfd_reloc_status_type r = bfd_reloc_ok;
1758 const char *name;
1759 bfd_vma off, ie_off;
1760 bfd_boolean unresolved_reloc, is_ie = FALSE;
1761 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1762 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
0aa13fee 1763 reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
e23eba97 1764 const char *msg = NULL;
6487709f 1765 bfd_boolean resolved_to_zero;
e23eba97 1766
f3185997
NC
1767 if (howto == NULL
1768 || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
e23eba97
NC
1769 continue;
1770
1771 /* This is a final link. */
1772 r_symndx = ELFNN_R_SYM (rel->r_info);
1773 h = NULL;
1774 sym = NULL;
1775 sec = NULL;
1776 unresolved_reloc = FALSE;
1777 if (r_symndx < symtab_hdr->sh_info)
1778 {
1779 sym = local_syms + r_symndx;
1780 sec = local_sections[r_symndx];
1781 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1782 }
1783 else
1784 {
1785 bfd_boolean warned, ignored;
1786
1787 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1788 r_symndx, symtab_hdr, sym_hashes,
1789 h, sec, relocation,
1790 unresolved_reloc, warned, ignored);
1791 if (warned)
1792 {
1793 /* To avoid generating warning messages about truncated
1794 relocations, set the relocation's address to be the same as
1795 the start of this section. */
1796 if (input_section->output_section != NULL)
1797 relocation = input_section->output_section->vma;
1798 else
1799 relocation = 0;
1800 }
1801 }
1802
1803 if (sec != NULL && discarded_section (sec))
1804 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1805 rel, 1, relend, howto, 0, contents);
1806
1807 if (bfd_link_relocatable (info))
1808 continue;
1809
1810 if (h != NULL)
1811 name = h->root.root.string;
1812 else
1813 {
1814 name = (bfd_elf_string_from_elf_section
1815 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1816 if (name == NULL || *name == '\0')
1817 name = bfd_section_name (input_bfd, sec);
1818 }
1819
6487709f
JW
1820 resolved_to_zero = (h != NULL
1821 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
1822
e23eba97
NC
1823 switch (r_type)
1824 {
1825 case R_RISCV_NONE:
45f76423 1826 case R_RISCV_RELAX:
e23eba97
NC
1827 case R_RISCV_TPREL_ADD:
1828 case R_RISCV_COPY:
1829 case R_RISCV_JUMP_SLOT:
1830 case R_RISCV_RELATIVE:
1831 /* These require nothing of us at all. */
1832 continue;
1833
1834 case R_RISCV_HI20:
1835 case R_RISCV_BRANCH:
1836 case R_RISCV_RVC_BRANCH:
1837 case R_RISCV_RVC_LUI:
1838 case R_RISCV_LO12_I:
1839 case R_RISCV_LO12_S:
45f76423
AW
1840 case R_RISCV_SET6:
1841 case R_RISCV_SET8:
1842 case R_RISCV_SET16:
1843 case R_RISCV_SET32:
a6cbf936 1844 case R_RISCV_32_PCREL:
ff6f4d9b 1845 case R_RISCV_DELETE:
e23eba97
NC
1846 /* These require no special handling beyond perform_relocation. */
1847 break;
1848
1849 case R_RISCV_GOT_HI20:
1850 if (h != NULL)
1851 {
1852 bfd_boolean dyn, pic;
1853
1854 off = h->got.offset;
1855 BFD_ASSERT (off != (bfd_vma) -1);
1856 dyn = elf_hash_table (info)->dynamic_sections_created;
1857 pic = bfd_link_pic (info);
1858
1859 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1860 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1861 {
1862 /* This is actually a static link, or it is a
1863 -Bsymbolic link and the symbol is defined
1864 locally, or the symbol was forced to be local
1865 because of a version file. We must initialize
1866 this entry in the global offset table. Since the
1867 offset must always be a multiple of the word size,
1868 we use the least significant bit to record whether
1869 we have initialized it already.
1870
1871 When doing a dynamic link, we create a .rela.got
1872 relocation entry to initialize the value. This
1873 is done in the finish_dynamic_symbol routine. */
1874 if ((off & 1) != 0)
1875 off &= ~1;
1876 else
1877 {
1878 bfd_put_NN (output_bfd, relocation,
1879 htab->elf.sgot->contents + off);
1880 h->got.offset |= 1;
1881 }
1882 }
1883 else
1884 unresolved_reloc = FALSE;
1885 }
1886 else
1887 {
1888 BFD_ASSERT (local_got_offsets != NULL
1889 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1890
1891 off = local_got_offsets[r_symndx];
1892
1893 /* The offset must always be a multiple of the word size.
1894 So, we can use the least significant bit to record
1895 whether we have already processed this entry. */
1896 if ((off & 1) != 0)
1897 off &= ~1;
1898 else
1899 {
1900 if (bfd_link_pic (info))
1901 {
1902 asection *s;
1903 Elf_Internal_Rela outrel;
1904
1905 /* We need to generate a R_RISCV_RELATIVE reloc
1906 for the dynamic linker. */
1907 s = htab->elf.srelgot;
1908 BFD_ASSERT (s != NULL);
1909
1910 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1911 outrel.r_info =
1912 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1913 outrel.r_addend = relocation;
1914 relocation = 0;
1915 riscv_elf_append_rela (output_bfd, s, &outrel);
1916 }
1917
1918 bfd_put_NN (output_bfd, relocation,
1919 htab->elf.sgot->contents + off);
1920 local_got_offsets[r_symndx] |= 1;
1921 }
1922 }
1923 relocation = sec_addr (htab->elf.sgot) + off;
b1308d2c
PD
1924 absolute = riscv_zero_pcrel_hi_reloc (rel,
1925 info,
1926 pc,
1927 relocation,
1928 contents,
1929 howto,
1930 input_bfd);
1931 r_type = ELFNN_R_TYPE (rel->r_info);
0aa13fee 1932 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
f3185997
NC
1933 if (howto == NULL)
1934 r = bfd_reloc_notsupported;
1935 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1936 relocation, absolute))
e23eba97
NC
1937 r = bfd_reloc_overflow;
1938 break;
1939
1940 case R_RISCV_ADD8:
1941 case R_RISCV_ADD16:
1942 case R_RISCV_ADD32:
1943 case R_RISCV_ADD64:
1944 {
1945 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1946 contents + rel->r_offset);
1947 relocation = old_value + relocation;
1948 }
1949 break;
1950
45f76423 1951 case R_RISCV_SUB6:
e23eba97
NC
1952 case R_RISCV_SUB8:
1953 case R_RISCV_SUB16:
1954 case R_RISCV_SUB32:
1955 case R_RISCV_SUB64:
1956 {
1957 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1958 contents + rel->r_offset);
1959 relocation = old_value - relocation;
1960 }
1961 break;
1962
e23eba97 1963 case R_RISCV_CALL:
cf7a5066
JW
1964 /* Handle a call to an undefined weak function. This won't be
1965 relaxed, so we have to handle it here. */
1966 if (h != NULL && h->root.type == bfd_link_hash_undefweak
1967 && h->plt.offset == MINUS_ONE)
1968 {
1969 /* We can use x0 as the base register. */
1970 bfd_vma insn = bfd_get_32 (input_bfd,
1971 contents + rel->r_offset + 4);
1972 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1973 bfd_put_32 (input_bfd, insn, contents + rel->r_offset + 4);
1974 /* Set the relocation value so that we get 0 after the pc
1975 relative adjustment. */
1976 relocation = sec_addr (input_section) + rel->r_offset;
1977 }
1978 /* Fall through. */
1979
1980 case R_RISCV_CALL_PLT:
e23eba97
NC
1981 case R_RISCV_JAL:
1982 case R_RISCV_RVC_JUMP:
1983 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
1984 {
1985 /* Refer to the PLT entry. */
1986 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
1987 unresolved_reloc = FALSE;
1988 }
1989 break;
1990
1991 case R_RISCV_TPREL_HI20:
1992 relocation = tpoff (info, relocation);
1993 break;
1994
1995 case R_RISCV_TPREL_LO12_I:
1996 case R_RISCV_TPREL_LO12_S:
45f76423
AW
1997 relocation = tpoff (info, relocation);
1998 break;
1999
2000 case R_RISCV_TPREL_I:
2001 case R_RISCV_TPREL_S:
e23eba97
NC
2002 relocation = tpoff (info, relocation);
2003 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
2004 {
2005 /* We can use tp as the base register. */
2006 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2007 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2008 insn |= X_TP << OP_SH_RS1;
2009 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2010 }
45f76423
AW
2011 else
2012 r = bfd_reloc_overflow;
e23eba97
NC
2013 break;
2014
2015 case R_RISCV_GPREL_I:
2016 case R_RISCV_GPREL_S:
2017 {
2018 bfd_vma gp = riscv_global_pointer_value (info);
2019 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
2020 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
2021 {
2022 /* We can use x0 or gp as the base register. */
2023 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2024 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2025 if (!x0_base)
2026 {
2027 rel->r_addend -= gp;
2028 insn |= X_GP << OP_SH_RS1;
2029 }
2030 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2031 }
2032 else
2033 r = bfd_reloc_overflow;
2034 break;
2035 }
2036
2037 case R_RISCV_PCREL_HI20:
b1308d2c
PD
2038 absolute = riscv_zero_pcrel_hi_reloc (rel,
2039 info,
2040 pc,
2041 relocation,
2042 contents,
2043 howto,
2044 input_bfd);
2045 r_type = ELFNN_R_TYPE (rel->r_info);
0aa13fee 2046 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
f3185997
NC
2047 if (howto == NULL)
2048 r = bfd_reloc_notsupported;
2049 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2050 relocation + rel->r_addend,
2051 absolute))
e23eba97
NC
2052 r = bfd_reloc_overflow;
2053 break;
2054
2055 case R_RISCV_PCREL_LO12_I:
2056 case R_RISCV_PCREL_LO12_S:
551703cf
JW
2057 /* We don't allow section symbols plus addends as the auipc address,
2058 because then riscv_relax_delete_bytes would have to search through
2059 all relocs to update these addends. This is also ambiguous, as
2060 we do allow offsets to be added to the target address, which are
2061 not to be used to find the auipc address. */
2062 if ((ELF_ST_TYPE (sym->st_info) == STT_SECTION) && rel->r_addend)
2a0d9853
JW
2063 {
2064 r = bfd_reloc_dangerous;
2065 break;
2066 }
2067
e23eba97
NC
2068 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
2069 howto, rel, relocation, name,
2070 contents))
2071 continue;
2072 r = bfd_reloc_overflow;
2073 break;
2074
2075 case R_RISCV_TLS_DTPREL32:
2076 case R_RISCV_TLS_DTPREL64:
2077 relocation = dtpoff (info, relocation);
2078 break;
2079
2080 case R_RISCV_32:
2081 case R_RISCV_64:
2082 if ((input_section->flags & SEC_ALLOC) == 0)
2083 break;
2084
2085 if ((bfd_link_pic (info)
2086 && (h == NULL
6487709f
JW
2087 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2088 && !resolved_to_zero)
e23eba97
NC
2089 || h->root.type != bfd_link_hash_undefweak)
2090 && (! howto->pc_relative
2091 || !SYMBOL_CALLS_LOCAL (info, h)))
2092 || (!bfd_link_pic (info)
2093 && h != NULL
2094 && h->dynindx != -1
2095 && !h->non_got_ref
2096 && ((h->def_dynamic
2097 && !h->def_regular)
2098 || h->root.type == bfd_link_hash_undefweak
2099 || h->root.type == bfd_link_hash_undefined)))
2100 {
2101 Elf_Internal_Rela outrel;
2102 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2103
2104 /* When generating a shared object, these relocations
2105 are copied into the output file to be resolved at run
2106 time. */
2107
2108 outrel.r_offset =
2109 _bfd_elf_section_offset (output_bfd, info, input_section,
2110 rel->r_offset);
2111 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2112 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2113 outrel.r_offset += sec_addr (input_section);
2114
2115 if (skip_dynamic_relocation)
2116 memset (&outrel, 0, sizeof outrel);
2117 else if (h != NULL && h->dynindx != -1
2118 && !(bfd_link_pic (info)
2119 && SYMBOLIC_BIND (info, h)
2120 && h->def_regular))
2121 {
2122 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2123 outrel.r_addend = rel->r_addend;
2124 }
2125 else
2126 {
2127 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2128 outrel.r_addend = relocation + rel->r_addend;
2129 }
2130
2131 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2132 if (skip_static_relocation)
2133 continue;
2134 }
2135 break;
2136
2137 case R_RISCV_TLS_GOT_HI20:
2138 is_ie = TRUE;
2139 /* Fall through. */
2140
2141 case R_RISCV_TLS_GD_HI20:
2142 if (h != NULL)
2143 {
2144 off = h->got.offset;
2145 h->got.offset |= 1;
2146 }
2147 else
2148 {
2149 off = local_got_offsets[r_symndx];
2150 local_got_offsets[r_symndx] |= 1;
2151 }
2152
2153 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2154 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2155 /* If this symbol is referenced by both GD and IE TLS, the IE
2156 reference's GOT slot follows the GD reference's slots. */
2157 ie_off = 0;
2158 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2159 ie_off = 2 * GOT_ENTRY_SIZE;
2160
2161 if ((off & 1) != 0)
2162 off &= ~1;
2163 else
2164 {
2165 Elf_Internal_Rela outrel;
2166 int indx = 0;
2167 bfd_boolean need_relocs = FALSE;
2168
2169 if (htab->elf.srelgot == NULL)
2170 abort ();
2171
2172 if (h != NULL)
2173 {
2174 bfd_boolean dyn, pic;
2175 dyn = htab->elf.dynamic_sections_created;
2176 pic = bfd_link_pic (info);
2177
2178 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2179 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2180 indx = h->dynindx;
2181 }
2182
2183 /* The GOT entries have not been initialized yet. Do it
07d6d2b8 2184 now, and emit any relocations. */
e23eba97
NC
2185 if ((bfd_link_pic (info) || indx != 0)
2186 && (h == NULL
2187 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2188 || h->root.type != bfd_link_hash_undefweak))
2189 need_relocs = TRUE;
2190
2191 if (tls_type & GOT_TLS_GD)
2192 {
2193 if (need_relocs)
2194 {
2195 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2196 outrel.r_addend = 0;
2197 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2198 bfd_put_NN (output_bfd, 0,
2199 htab->elf.sgot->contents + off);
2200 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2201 if (indx == 0)
2202 {
2203 BFD_ASSERT (! unresolved_reloc);
2204 bfd_put_NN (output_bfd,
2205 dtpoff (info, relocation),
2206 (htab->elf.sgot->contents + off +
2207 RISCV_ELF_WORD_BYTES));
2208 }
2209 else
2210 {
2211 bfd_put_NN (output_bfd, 0,
2212 (htab->elf.sgot->contents + off +
2213 RISCV_ELF_WORD_BYTES));
2214 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2215 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2216 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2217 }
2218 }
2219 else
2220 {
2221 /* If we are not emitting relocations for a
2222 general dynamic reference, then we must be in a
2223 static link or an executable link with the
2224 symbol binding locally. Mark it as belonging
2225 to module 1, the executable. */
2226 bfd_put_NN (output_bfd, 1,
2227 htab->elf.sgot->contents + off);
2228 bfd_put_NN (output_bfd,
2229 dtpoff (info, relocation),
2230 (htab->elf.sgot->contents + off +
2231 RISCV_ELF_WORD_BYTES));
2232 }
2233 }
2234
2235 if (tls_type & GOT_TLS_IE)
2236 {
2237 if (need_relocs)
2238 {
2239 bfd_put_NN (output_bfd, 0,
2240 htab->elf.sgot->contents + off + ie_off);
2241 outrel.r_offset = sec_addr (htab->elf.sgot)
2242 + off + ie_off;
2243 outrel.r_addend = 0;
2244 if (indx == 0)
2245 outrel.r_addend = tpoff (info, relocation);
2246 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2247 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2248 }
2249 else
2250 {
2251 bfd_put_NN (output_bfd, tpoff (info, relocation),
2252 htab->elf.sgot->contents + off + ie_off);
2253 }
2254 }
2255 }
2256
2257 BFD_ASSERT (off < (bfd_vma) -2);
2258 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
b1308d2c
PD
2259 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2260 relocation, FALSE))
e23eba97
NC
2261 r = bfd_reloc_overflow;
2262 unresolved_reloc = FALSE;
2263 break;
2264
2265 default:
2266 r = bfd_reloc_notsupported;
2267 }
2268
2269 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2270 because such sections are not SEC_ALLOC and thus ld.so will
2271 not process them. */
2272 if (unresolved_reloc
2273 && !((input_section->flags & SEC_DEBUGGING) != 0
2274 && h->def_dynamic)
2275 && _bfd_elf_section_offset (output_bfd, info, input_section,
2276 rel->r_offset) != (bfd_vma) -1)
2277 {
2278 (*_bfd_error_handler)
2dcf00ce
AM
2279 (_("%pB(%pA+%#" PRIx64 "): "
2280 "unresolvable %s relocation against symbol `%s'"),
e23eba97
NC
2281 input_bfd,
2282 input_section,
2dcf00ce 2283 (uint64_t) rel->r_offset,
e23eba97
NC
2284 howto->name,
2285 h->root.root.string);
2286 continue;
2287 }
2288
2289 if (r == bfd_reloc_ok)
2290 r = perform_relocation (howto, rel, relocation, input_section,
2291 input_bfd, contents);
2292
2293 switch (r)
2294 {
2295 case bfd_reloc_ok:
2296 continue;
2297
2298 case bfd_reloc_overflow:
2299 info->callbacks->reloc_overflow
2300 (info, (h ? &h->root : NULL), name, howto->name,
2301 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2302 break;
2303
2304 case bfd_reloc_undefined:
2305 info->callbacks->undefined_symbol
2306 (info, name, input_bfd, input_section, rel->r_offset,
2307 TRUE);
2308 break;
2309
2310 case bfd_reloc_outofrange:
2a0d9853 2311 msg = _("%X%P: internal error: out of range error\n");
e23eba97
NC
2312 break;
2313
2314 case bfd_reloc_notsupported:
2a0d9853 2315 msg = _("%X%P: internal error: unsupported relocation error\n");
e23eba97
NC
2316 break;
2317
2318 case bfd_reloc_dangerous:
2a0d9853 2319 info->callbacks->reloc_dangerous
551703cf
JW
2320 (info, "%pcrel_lo section symbol with an addend", input_bfd,
2321 input_section, rel->r_offset);
e23eba97
NC
2322 break;
2323
2324 default:
2a0d9853 2325 msg = _("%X%P: internal error: unknown error\n");
e23eba97
NC
2326 break;
2327 }
2328
2329 if (msg)
2a0d9853
JW
2330 info->callbacks->einfo (msg);
2331
3f48fe4a
JW
2332 /* We already reported the error via a callback, so don't try to report
2333 it again by returning false. That leads to spurious errors. */
ed01220c 2334 ret = TRUE;
e23eba97
NC
2335 goto out;
2336 }
2337
2338 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2339out:
2340 riscv_free_pcrel_relocs (&pcrel_relocs);
2341 return ret;
2342}
2343
2344/* Finish up dynamic symbol handling. We set the contents of various
2345 dynamic sections here. */
2346
2347static bfd_boolean
2348riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2349 struct bfd_link_info *info,
2350 struct elf_link_hash_entry *h,
2351 Elf_Internal_Sym *sym)
2352{
2353 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2354 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2355
2356 if (h->plt.offset != (bfd_vma) -1)
2357 {
2358 /* We've decided to create a PLT entry for this symbol. */
2359 bfd_byte *loc;
2360 bfd_vma i, header_address, plt_idx, got_address;
2361 uint32_t plt_entry[PLT_ENTRY_INSNS];
2362 Elf_Internal_Rela rela;
2363
2364 BFD_ASSERT (h->dynindx != -1);
2365
2366 /* Calculate the address of the PLT header. */
2367 header_address = sec_addr (htab->elf.splt);
2368
2369 /* Calculate the index of the entry. */
2370 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2371
2372 /* Calculate the address of the .got.plt entry. */
2373 got_address = riscv_elf_got_plt_val (plt_idx, info);
2374
2375 /* Find out where the .plt entry should go. */
2376 loc = htab->elf.splt->contents + h->plt.offset;
2377
2378 /* Fill in the PLT entry itself. */
5ef23793
JW
2379 if (! riscv_make_plt_entry (output_bfd, got_address,
2380 header_address + h->plt.offset,
2381 plt_entry))
2382 return FALSE;
2383
e23eba97
NC
2384 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2385 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2386
2387 /* Fill in the initial value of the .got.plt entry. */
2388 loc = htab->elf.sgotplt->contents
2389 + (got_address - sec_addr (htab->elf.sgotplt));
2390 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2391
2392 /* Fill in the entry in the .rela.plt section. */
2393 rela.r_offset = got_address;
2394 rela.r_addend = 0;
2395 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2396
2397 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2398 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2399
2400 if (!h->def_regular)
2401 {
2402 /* Mark the symbol as undefined, rather than as defined in
2403 the .plt section. Leave the value alone. */
2404 sym->st_shndx = SHN_UNDEF;
2405 /* If the symbol is weak, we do need to clear the value.
2406 Otherwise, the PLT entry would provide a definition for
2407 the symbol even if the symbol wasn't defined anywhere,
2408 and so the symbol would never be NULL. */
2409 if (!h->ref_regular_nonweak)
2410 sym->st_value = 0;
2411 }
2412 }
2413
2414 if (h->got.offset != (bfd_vma) -1
6487709f
JW
2415 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE))
2416 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
e23eba97
NC
2417 {
2418 asection *sgot;
2419 asection *srela;
2420 Elf_Internal_Rela rela;
2421
2422 /* This symbol has an entry in the GOT. Set it up. */
2423
2424 sgot = htab->elf.sgot;
2425 srela = htab->elf.srelgot;
2426 BFD_ASSERT (sgot != NULL && srela != NULL);
2427
2428 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2429
25eb8346
JW
2430 /* If this is a local symbol reference, we just want to emit a RELATIVE
2431 reloc. This can happen if it is a -Bsymbolic link, or a pie link, or
e23eba97
NC
2432 the symbol was forced to be local because of a version file.
2433 The entry in the global offset table will already have been
2434 initialized in the relocate_section function. */
2435 if (bfd_link_pic (info)
25eb8346 2436 && SYMBOL_REFERENCES_LOCAL (info, h))
e23eba97 2437 {
25eb8346 2438 BFD_ASSERT((h->got.offset & 1) != 0);
e23eba97
NC
2439 asection *sec = h->root.u.def.section;
2440 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2441 rela.r_addend = (h->root.u.def.value
2442 + sec->output_section->vma
2443 + sec->output_offset);
2444 }
2445 else
2446 {
25eb8346 2447 BFD_ASSERT((h->got.offset & 1) == 0);
e23eba97
NC
2448 BFD_ASSERT (h->dynindx != -1);
2449 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2450 rela.r_addend = 0;
2451 }
2452
2453 bfd_put_NN (output_bfd, 0,
2454 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2455 riscv_elf_append_rela (output_bfd, srela, &rela);
2456 }
2457
2458 if (h->needs_copy)
2459 {
2460 Elf_Internal_Rela rela;
5474d94f 2461 asection *s;
e23eba97
NC
2462
2463 /* This symbols needs a copy reloc. Set it up. */
2464 BFD_ASSERT (h->dynindx != -1);
2465
2466 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2467 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2468 rela.r_addend = 0;
afbf7e8e 2469 if (h->root.u.def.section == htab->elf.sdynrelro)
5474d94f
AM
2470 s = htab->elf.sreldynrelro;
2471 else
2472 s = htab->elf.srelbss;
2473 riscv_elf_append_rela (output_bfd, s, &rela);
e23eba97
NC
2474 }
2475
2476 /* Mark some specially defined symbols as absolute. */
2477 if (h == htab->elf.hdynamic
2478 || (h == htab->elf.hgot || h == htab->elf.hplt))
2479 sym->st_shndx = SHN_ABS;
2480
2481 return TRUE;
2482}
2483
2484/* Finish up the dynamic sections. */
2485
2486static bfd_boolean
2487riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2488 bfd *dynobj, asection *sdyn)
2489{
2490 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2491 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2492 size_t dynsize = bed->s->sizeof_dyn;
2493 bfd_byte *dyncon, *dynconend;
2494
2495 dynconend = sdyn->contents + sdyn->size;
2496 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2497 {
2498 Elf_Internal_Dyn dyn;
2499 asection *s;
2500
2501 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2502
2503 switch (dyn.d_tag)
2504 {
2505 case DT_PLTGOT:
2506 s = htab->elf.sgotplt;
2507 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2508 break;
2509 case DT_JMPREL:
2510 s = htab->elf.srelplt;
2511 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2512 break;
2513 case DT_PLTRELSZ:
2514 s = htab->elf.srelplt;
2515 dyn.d_un.d_val = s->size;
2516 break;
2517 default:
2518 continue;
2519 }
2520
2521 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2522 }
2523 return TRUE;
2524}
2525
2526static bfd_boolean
2527riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2528 struct bfd_link_info *info)
2529{
2530 bfd *dynobj;
2531 asection *sdyn;
2532 struct riscv_elf_link_hash_table *htab;
2533
2534 htab = riscv_elf_hash_table (info);
2535 BFD_ASSERT (htab != NULL);
2536 dynobj = htab->elf.dynobj;
2537
2538 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2539
2540 if (elf_hash_table (info)->dynamic_sections_created)
2541 {
2542 asection *splt;
2543 bfd_boolean ret;
2544
2545 splt = htab->elf.splt;
2546 BFD_ASSERT (splt != NULL && sdyn != NULL);
2547
2548 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2549
535b785f 2550 if (!ret)
e23eba97
NC
2551 return ret;
2552
2553 /* Fill in the head and tail entries in the procedure linkage table. */
2554 if (splt->size > 0)
2555 {
2556 int i;
2557 uint32_t plt_header[PLT_HEADER_INSNS];
5ef23793
JW
2558 ret = riscv_make_plt_header (output_bfd,
2559 sec_addr (htab->elf.sgotplt),
2560 sec_addr (splt), plt_header);
2561 if (!ret)
2562 return ret;
e23eba97
NC
2563
2564 for (i = 0; i < PLT_HEADER_INSNS; i++)
2565 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
e23eba97 2566
cc162427
AW
2567 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2568 = PLT_ENTRY_SIZE;
2569 }
e23eba97
NC
2570 }
2571
2572 if (htab->elf.sgotplt)
2573 {
2574 asection *output_section = htab->elf.sgotplt->output_section;
2575
2576 if (bfd_is_abs_section (output_section))
2577 {
2578 (*_bfd_error_handler)
871b3ab2 2579 (_("discarded output section: `%pA'"), htab->elf.sgotplt);
e23eba97
NC
2580 return FALSE;
2581 }
2582
2583 if (htab->elf.sgotplt->size > 0)
2584 {
2585 /* Write the first two entries in .got.plt, needed for the dynamic
2586 linker. */
2587 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2588 bfd_put_NN (output_bfd, (bfd_vma) 0,
2589 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2590 }
2591
2592 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2593 }
2594
2595 if (htab->elf.sgot)
2596 {
2597 asection *output_section = htab->elf.sgot->output_section;
2598
2599 if (htab->elf.sgot->size > 0)
2600 {
2601 /* Set the first entry in the global offset table to the address of
2602 the dynamic section. */
2603 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2604 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2605 }
2606
2607 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2608 }
2609
2610 return TRUE;
2611}
2612
2613/* Return address for Ith PLT stub in section PLT, for relocation REL
2614 or (bfd_vma) -1 if it should not be included. */
2615
2616static bfd_vma
2617riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2618 const arelent *rel ATTRIBUTE_UNUSED)
2619{
2620 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2621}
2622
2623static enum elf_reloc_type_class
2624riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2625 const asection *rel_sec ATTRIBUTE_UNUSED,
2626 const Elf_Internal_Rela *rela)
2627{
2628 switch (ELFNN_R_TYPE (rela->r_info))
2629 {
2630 case R_RISCV_RELATIVE:
2631 return reloc_class_relative;
2632 case R_RISCV_JUMP_SLOT:
2633 return reloc_class_plt;
2634 case R_RISCV_COPY:
2635 return reloc_class_copy;
2636 default:
2637 return reloc_class_normal;
2638 }
2639}
2640
0242af40
JW
2641/* Given the ELF header flags in FLAGS, it returns a string that describes the
2642 float ABI. */
2643
2644static const char *
2645riscv_float_abi_string (flagword flags)
2646{
2647 switch (flags & EF_RISCV_FLOAT_ABI)
2648 {
2649 case EF_RISCV_FLOAT_ABI_SOFT:
2650 return "soft-float";
2651 break;
2652 case EF_RISCV_FLOAT_ABI_SINGLE:
2653 return "single-float";
2654 break;
2655 case EF_RISCV_FLOAT_ABI_DOUBLE:
2656 return "double-float";
2657 break;
2658 case EF_RISCV_FLOAT_ABI_QUAD:
2659 return "quad-float";
2660 break;
2661 default:
2662 abort ();
2663 }
2664}
2665
e23eba97
NC
2666/* Merge backend specific data from an object file to the output
2667 object file when linking. */
2668
2669static bfd_boolean
2670_bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
2671{
2672 bfd *obfd = info->output_bfd;
2673 flagword new_flags = elf_elfheader (ibfd)->e_flags;
2674 flagword old_flags = elf_elfheader (obfd)->e_flags;
2675
2676 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
2677 return TRUE;
2678
2679 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
2680 {
2681 (*_bfd_error_handler)
871b3ab2 2682 (_("%pB: ABI is incompatible with that of the selected emulation:\n"
96b0927d
PD
2683 " target emulation `%s' does not match `%s'"),
2684 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
e23eba97
NC
2685 return FALSE;
2686 }
2687
2688 if (!_bfd_elf_merge_object_attributes (ibfd, info))
2689 return FALSE;
2690
2691 if (! elf_flags_init (obfd))
2692 {
2693 elf_flags_init (obfd) = TRUE;
2694 elf_elfheader (obfd)->e_flags = new_flags;
2695 return TRUE;
2696 }
2697
2922d21d
AW
2698 /* Disallow linking different float ABIs. */
2699 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
e23eba97
NC
2700 {
2701 (*_bfd_error_handler)
0242af40
JW
2702 (_("%pB: can't link %s modules with %s modules"), ibfd,
2703 riscv_float_abi_string (new_flags),
2704 riscv_float_abi_string (old_flags));
e23eba97
NC
2705 goto fail;
2706 }
2707
7f999549
JW
2708 /* Disallow linking RVE and non-RVE. */
2709 if ((old_flags ^ new_flags) & EF_RISCV_RVE)
2710 {
2711 (*_bfd_error_handler)
2712 (_("%pB: can't link RVE with other target"), ibfd);
2713 goto fail;
2714 }
2715
e23eba97
NC
2716 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
2717 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
2718
2719 return TRUE;
2720
2721fail:
2722 bfd_set_error (bfd_error_bad_value);
2723 return FALSE;
2724}
2725
2726/* Delete some bytes from a section while relaxing. */
2727
2728static bfd_boolean
7f02625e
JW
2729riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count,
2730 struct bfd_link_info *link_info)
e23eba97
NC
2731{
2732 unsigned int i, symcount;
2733 bfd_vma toaddr = sec->size;
2734 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
2735 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2736 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2737 struct bfd_elf_section_data *data = elf_section_data (sec);
2738 bfd_byte *contents = data->this_hdr.contents;
2739
2740 /* Actually delete the bytes. */
2741 sec->size -= count;
2742 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
2743
2744 /* Adjust the location of all of the relocs. Note that we need not
2745 adjust the addends, since all PC-relative references must be against
2746 symbols, which we will adjust below. */
2747 for (i = 0; i < sec->reloc_count; i++)
2748 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
2749 data->relocs[i].r_offset -= count;
2750
2751 /* Adjust the local symbols defined in this section. */
2752 for (i = 0; i < symtab_hdr->sh_info; i++)
2753 {
2754 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
2755 if (sym->st_shndx == sec_shndx)
2756 {
2757 /* If the symbol is in the range of memory we just moved, we
2758 have to adjust its value. */
2759 if (sym->st_value > addr && sym->st_value <= toaddr)
2760 sym->st_value -= count;
2761
2762 /* If the symbol *spans* the bytes we just deleted (i.e. its
2763 *end* is in the moved bytes but its *start* isn't), then we
788af978
JW
2764 must adjust its size.
2765
2766 This test needs to use the original value of st_value, otherwise
2767 we might accidentally decrease size when deleting bytes right
2768 before the symbol. But since deleted relocs can't span across
2769 symbols, we can't have both a st_value and a st_size decrease,
2770 so it is simpler to just use an else. */
2771 else if (sym->st_value <= addr
2772 && sym->st_value + sym->st_size > addr
2773 && sym->st_value + sym->st_size <= toaddr)
e23eba97
NC
2774 sym->st_size -= count;
2775 }
2776 }
2777
2778 /* Now adjust the global symbols defined in this section. */
2779 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
2780 - symtab_hdr->sh_info);
2781
2782 for (i = 0; i < symcount; i++)
2783 {
2784 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
2785
7f02625e
JW
2786 /* The '--wrap SYMBOL' option is causing a pain when the object file,
2787 containing the definition of __wrap_SYMBOL, includes a direct
2788 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
2789 the same symbol (which is __wrap_SYMBOL), but still exist as two
2790 different symbols in 'sym_hashes', we don't want to adjust
137b5cbd
JW
2791 the global symbol __wrap_SYMBOL twice. */
2792 /* The same problem occurs with symbols that are versioned_hidden, as
2793 foo becomes an alias for foo@BAR, and hence they need the same
2794 treatment. */
2795 if (link_info->wrap_hash != NULL
2796 || sym_hash->versioned == versioned_hidden)
7f02625e
JW
2797 {
2798 struct elf_link_hash_entry **cur_sym_hashes;
2799
2800 /* Loop only over the symbols which have already been checked. */
2801 for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i];
2802 cur_sym_hashes++)
2803 {
2804 /* If the current symbol is identical to 'sym_hash', that means
2805 the symbol was already adjusted (or at least checked). */
2806 if (*cur_sym_hashes == sym_hash)
2807 break;
2808 }
2809 /* Don't adjust the symbol again. */
2810 if (cur_sym_hashes < &sym_hashes[i])
2811 continue;
2812 }
2813
e23eba97
NC
2814 if ((sym_hash->root.type == bfd_link_hash_defined
2815 || sym_hash->root.type == bfd_link_hash_defweak)
2816 && sym_hash->root.u.def.section == sec)
2817 {
2818 /* As above, adjust the value if needed. */
2819 if (sym_hash->root.u.def.value > addr
2820 && sym_hash->root.u.def.value <= toaddr)
2821 sym_hash->root.u.def.value -= count;
2822
2823 /* As above, adjust the size if needed. */
788af978
JW
2824 else if (sym_hash->root.u.def.value <= addr
2825 && sym_hash->root.u.def.value + sym_hash->size > addr
2826 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
e23eba97
NC
2827 sym_hash->size -= count;
2828 }
2829 }
2830
2831 return TRUE;
2832}
2833
9d06997a
PD
2834/* A second format for recording PC-relative hi relocations. This stores the
2835 information required to relax them to GP-relative addresses. */
2836
2837typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
2838struct riscv_pcgp_hi_reloc
2839{
2840 bfd_vma hi_sec_off;
2841 bfd_vma hi_addend;
2842 bfd_vma hi_addr;
2843 unsigned hi_sym;
2844 asection *sym_sec;
2845 riscv_pcgp_hi_reloc *next;
2846};
2847
2848typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
2849struct riscv_pcgp_lo_reloc
2850{
2851 bfd_vma hi_sec_off;
2852 riscv_pcgp_lo_reloc *next;
2853};
2854
2855typedef struct
2856{
2857 riscv_pcgp_hi_reloc *hi;
2858 riscv_pcgp_lo_reloc *lo;
2859} riscv_pcgp_relocs;
2860
5f9aecea
JW
2861/* Initialize the pcgp reloc info in P. */
2862
9d06997a
PD
2863static bfd_boolean
2864riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
2865{
2866 p->hi = NULL;
2867 p->lo = NULL;
2868 return TRUE;
2869}
2870
5f9aecea
JW
2871/* Free the pcgp reloc info in P. */
2872
9d06997a
PD
2873static void
2874riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
2875 bfd *abfd ATTRIBUTE_UNUSED,
2876 asection *sec ATTRIBUTE_UNUSED)
2877{
2878 riscv_pcgp_hi_reloc *c;
2879 riscv_pcgp_lo_reloc *l;
2880
2881 for (c = p->hi; c != NULL;)
2882 {
2883 riscv_pcgp_hi_reloc *next = c->next;
2884 free (c);
2885 c = next;
2886 }
2887
2888 for (l = p->lo; l != NULL;)
2889 {
2890 riscv_pcgp_lo_reloc *next = l->next;
2891 free (l);
2892 l = next;
2893 }
2894}
2895
5f9aecea
JW
2896/* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index.
2897 The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to
2898 relax the corresponding lo part reloc. */
2899
9d06997a
PD
2900static bfd_boolean
2901riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
2902 bfd_vma hi_addend, bfd_vma hi_addr,
2903 unsigned hi_sym, asection *sym_sec)
2904{
2905 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new));
2906 if (!new)
2907 return FALSE;
2908 new->hi_sec_off = hi_sec_off;
2909 new->hi_addend = hi_addend;
2910 new->hi_addr = hi_addr;
2911 new->hi_sym = hi_sym;
2912 new->sym_sec = sym_sec;
2913 new->next = p->hi;
2914 p->hi = new;
2915 return TRUE;
2916}
2917
5f9aecea
JW
2918/* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
2919 This is used by a lo part reloc to find the corresponding hi part reloc. */
2920
9d06997a
PD
2921static riscv_pcgp_hi_reloc *
2922riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2923{
2924 riscv_pcgp_hi_reloc *c;
2925
2926 for (c = p->hi; c != NULL; c = c->next)
2927 if (c->hi_sec_off == hi_sec_off)
2928 return c;
2929 return NULL;
2930}
2931
5f9aecea
JW
2932/* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info.
2933 This is used to record relocs that can't be relaxed. */
9d06997a
PD
2934
2935static bfd_boolean
2936riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2937{
2938 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new));
2939 if (!new)
2940 return FALSE;
2941 new->hi_sec_off = hi_sec_off;
2942 new->next = p->lo;
2943 p->lo = new;
2944 return TRUE;
2945}
2946
5f9aecea
JW
2947/* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
2948 This is used by a hi part reloc to find the corresponding lo part reloc. */
2949
9d06997a
PD
2950static bfd_boolean
2951riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2952{
2953 riscv_pcgp_lo_reloc *c;
2954
2955 for (c = p->lo; c != NULL; c = c->next)
2956 if (c->hi_sec_off == hi_sec_off)
2957 return TRUE;
2958 return FALSE;
2959}
2960
45f76423
AW
2961typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
2962 struct bfd_link_info *,
2963 Elf_Internal_Rela *,
9d06997a
PD
2964 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *,
2965 riscv_pcgp_relocs *);
45f76423 2966
e23eba97
NC
2967/* Relax AUIPC + JALR into JAL. */
2968
2969static bfd_boolean
2970_bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
2971 struct bfd_link_info *link_info,
2972 Elf_Internal_Rela *rel,
2973 bfd_vma symval,
45f76423
AW
2974 bfd_vma max_alignment,
2975 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
2976 bfd_boolean *again,
2977 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
2978{
2979 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2980 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
2981 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
2982 bfd_vma auipc, jalr;
2983 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2984
2985 /* If the call crosses section boundaries, an alignment directive could
2986 cause the PC-relative offset to later increase. */
2987 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section)
2988 foff += (foff < 0 ? -max_alignment : max_alignment);
2989
2990 /* See if this function call can be shortened. */
2991 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
2992 return TRUE;
2993
2994 /* Shorten the function call. */
2995 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
2996
2997 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
2998 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
2999 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
3000 rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32;
3001
3002 if (rvc && (rd == 0 || rd == X_RA))
3003 {
3004 /* Relax to C.J[AL] rd, addr. */
3005 r_type = R_RISCV_RVC_JUMP;
3006 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
3007 len = 2;
3008 }
3009 else if (VALID_UJTYPE_IMM (foff))
3010 {
3011 /* Relax to JAL rd, addr. */
3012 r_type = R_RISCV_JAL;
3013 auipc = MATCH_JAL | (rd << OP_SH_RD);
3014 }
3015 else /* near_zero */
3016 {
3017 /* Relax to JALR rd, x0, addr. */
3018 r_type = R_RISCV_LO12_I;
3019 auipc = MATCH_JALR | (rd << OP_SH_RD);
3020 }
3021
3022 /* Replace the R_RISCV_CALL reloc. */
3023 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
3024 /* Replace the AUIPC. */
3025 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
3026
3027 /* Delete unnecessary JALR. */
3028 *again = TRUE;
7f02625e
JW
3029 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len,
3030 link_info);
e23eba97
NC
3031}
3032
3033/* Traverse all output sections and return the max alignment. */
3034
1d61f794 3035static bfd_vma
e23eba97
NC
3036_bfd_riscv_get_max_alignment (asection *sec)
3037{
3038 unsigned int max_alignment_power = 0;
3039 asection *o;
3040
3041 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
3042 {
3043 if (o->alignment_power > max_alignment_power)
3044 max_alignment_power = o->alignment_power;
3045 }
3046
1d61f794 3047 return (bfd_vma) 1 << max_alignment_power;
e23eba97
NC
3048}
3049
3050/* Relax non-PIC global variable references. */
3051
3052static bfd_boolean
3053_bfd_riscv_relax_lui (bfd *abfd,
3054 asection *sec,
3055 asection *sym_sec,
3056 struct bfd_link_info *link_info,
3057 Elf_Internal_Rela *rel,
3058 bfd_vma symval,
45f76423
AW
3059 bfd_vma max_alignment,
3060 bfd_vma reserve_size,
9d06997a
PD
3061 bfd_boolean *again,
3062 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
3063{
3064 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3065 bfd_vma gp = riscv_global_pointer_value (link_info);
3066 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
3067
3068 /* Mergeable symbols and code might later move out of range. */
3069 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3070 return TRUE;
3071
3072 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3073
d0f744f9
AW
3074 if (gp)
3075 {
3076 /* If gp and the symbol are in the same output section, then
3077 consider only that section's alignment. */
3078 struct bfd_link_hash_entry *h =
b5292032
PD
3079 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
3080 TRUE);
d0f744f9
AW
3081 if (h->u.def.section->output_section == sym_sec->output_section)
3082 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3083 }
3084
e23eba97
NC
3085 /* Is the reference in range of x0 or gp?
3086 Valid gp range conservatively because of alignment issue. */
3087 if (VALID_ITYPE_IMM (symval)
45f76423
AW
3088 || (symval >= gp
3089 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3090 || (symval < gp
3091 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
e23eba97
NC
3092 {
3093 unsigned sym = ELFNN_R_SYM (rel->r_info);
3094 switch (ELFNN_R_TYPE (rel->r_info))
3095 {
3096 case R_RISCV_LO12_I:
3097 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3098 return TRUE;
3099
3100 case R_RISCV_LO12_S:
3101 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3102 return TRUE;
3103
3104 case R_RISCV_HI20:
3105 /* We can delete the unnecessary LUI and reloc. */
3106 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3107 *again = TRUE;
7f02625e
JW
3108 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4,
3109 link_info);
e23eba97
NC
3110
3111 default:
3112 abort ();
3113 }
3114 }
3115
3116 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
3117 account for this assuming page alignment at worst. */
3118 if (use_rvc
3119 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
3120 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
3121 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE)))
3122 {
3342be5d 3123 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
e23eba97 3124 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
3342be5d
AW
3125 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
3126 if (rd == 0 || rd == X_SP)
e23eba97
NC
3127 return TRUE;
3128
3129 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
3130 bfd_put_32 (abfd, lui, contents + rel->r_offset);
3131
3132 /* Replace the R_RISCV_HI20 reloc. */
3133 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
3134
3135 *again = TRUE;
7f02625e
JW
3136 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2,
3137 link_info);
e23eba97
NC
3138 }
3139
3140 return TRUE;
3141}
3142
3143/* Relax non-PIC TLS references. */
3144
3145static bfd_boolean
3146_bfd_riscv_relax_tls_le (bfd *abfd,
3147 asection *sec,
3148 asection *sym_sec ATTRIBUTE_UNUSED,
3149 struct bfd_link_info *link_info,
3150 Elf_Internal_Rela *rel,
3151 bfd_vma symval,
45f76423
AW
3152 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3153 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3154 bfd_boolean *again,
3155 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
3156{
3157 /* See if this symbol is in range of tp. */
3158 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
3159 return TRUE;
3160
e23eba97 3161 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
45f76423
AW
3162 switch (ELFNN_R_TYPE (rel->r_info))
3163 {
3164 case R_RISCV_TPREL_LO12_I:
3165 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
3166 return TRUE;
e23eba97 3167
45f76423
AW
3168 case R_RISCV_TPREL_LO12_S:
3169 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
3170 return TRUE;
3171
3172 case R_RISCV_TPREL_HI20:
3173 case R_RISCV_TPREL_ADD:
3174 /* We can delete the unnecessary instruction and reloc. */
3175 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3176 *again = TRUE;
7f02625e 3177 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info);
45f76423
AW
3178
3179 default:
3180 abort ();
3181 }
e23eba97
NC
3182}
3183
3184/* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3185
3186static bfd_boolean
3187_bfd_riscv_relax_align (bfd *abfd, asection *sec,
9eb7b0ac 3188 asection *sym_sec,
7f02625e 3189 struct bfd_link_info *link_info,
e23eba97
NC
3190 Elf_Internal_Rela *rel,
3191 bfd_vma symval,
45f76423
AW
3192 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3193 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3194 bfd_boolean *again ATTRIBUTE_UNUSED,
3195 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
3196{
3197 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3198 bfd_vma alignment = 1, pos;
3199 while (alignment <= rel->r_addend)
3200 alignment *= 2;
3201
3202 symval -= rel->r_addend;
3203 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
3204 bfd_vma nop_bytes = aligned_addr - symval;
3205
3206 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3207 sec->sec_flg0 = TRUE;
3208
3209 /* Make sure there are enough NOPs to actually achieve the alignment. */
3210 if (rel->r_addend < nop_bytes)
9eb7b0ac 3211 {
f2b740ac
AM
3212 _bfd_error_handler
3213 (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment "
3214 "to %" PRId64 "-byte boundary, but only %" PRId64 " present"),
3215 abfd, sym_sec, (uint64_t) rel->r_offset,
3216 (int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend);
9eb7b0ac
PD
3217 bfd_set_error (bfd_error_bad_value);
3218 return FALSE;
3219 }
e23eba97
NC
3220
3221 /* Delete the reloc. */
3222 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3223
3224 /* If the number of NOPs is already correct, there's nothing to do. */
3225 if (nop_bytes == rel->r_addend)
3226 return TRUE;
3227
3228 /* Write as many RISC-V NOPs as we need. */
3229 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
3230 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
3231
3232 /* Write a final RVC NOP if need be. */
3233 if (nop_bytes % 4 != 0)
3234 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
3235
3236 /* Delete the excess bytes. */
3237 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
7f02625e 3238 rel->r_addend - nop_bytes, link_info);
e23eba97
NC
3239}
3240
ff6f4d9b
PD
3241/* Relax PC-relative references to GP-relative references. */
3242
9d06997a 3243static bfd_boolean
5f9aecea 3244_bfd_riscv_relax_pc (bfd *abfd ATTRIBUTE_UNUSED,
9d06997a
PD
3245 asection *sec,
3246 asection *sym_sec,
3247 struct bfd_link_info *link_info,
3248 Elf_Internal_Rela *rel,
3249 bfd_vma symval,
3250 bfd_vma max_alignment,
3251 bfd_vma reserve_size,
3252 bfd_boolean *again ATTRIBUTE_UNUSED,
3253 riscv_pcgp_relocs *pcgp_relocs)
3254{
3255 bfd_vma gp = riscv_global_pointer_value (link_info);
3256
3257 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3258
3259 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3260 * actual target address. */
e65b1a78
MR
3261 riscv_pcgp_hi_reloc hi_reloc;
3262 memset (&hi_reloc, 0, sizeof (hi_reloc));
9d06997a
PD
3263 switch (ELFNN_R_TYPE (rel->r_info))
3264 {
3265 case R_RISCV_PCREL_LO12_I:
3266 case R_RISCV_PCREL_LO12_S:
3267 {
a05f27b6
JW
3268 /* If the %lo has an addend, it isn't for the label pointing at the
3269 hi part instruction, but rather for the symbol pointed at by the
3270 hi part instruction. So we must subtract it here for the lookup.
3271 It is still used below in the final symbol address. */
3272 bfd_vma hi_sec_off = symval - sec_addr (sym_sec) - rel->r_addend;
9d06997a 3273 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
a05f27b6 3274 hi_sec_off);
9d06997a
PD
3275 if (hi == NULL)
3276 {
a05f27b6 3277 riscv_record_pcgp_lo_reloc (pcgp_relocs, hi_sec_off);
9d06997a
PD
3278 return TRUE;
3279 }
3280
3281 hi_reloc = *hi;
3282 symval = hi_reloc.hi_addr;
3283 sym_sec = hi_reloc.sym_sec;
9d06997a
PD
3284 }
3285 break;
3286
3287 case R_RISCV_PCREL_HI20:
3288 /* Mergeable symbols and code might later move out of range. */
3289 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3290 return TRUE;
3291
3292 /* If the cooresponding lo relocation has already been seen then it's not
3293 * safe to relax this relocation. */
3294 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
07d6d2b8 3295 return TRUE;
9d06997a
PD
3296
3297 break;
3298
3299 default:
3300 abort ();
3301 }
3302
3303 if (gp)
3304 {
3305 /* If gp and the symbol are in the same output section, then
3306 consider only that section's alignment. */
3307 struct bfd_link_hash_entry *h =
3308 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
3309 if (h->u.def.section->output_section == sym_sec->output_section)
3310 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3311 }
3312
3313 /* Is the reference in range of x0 or gp?
3314 Valid gp range conservatively because of alignment issue. */
3315 if (VALID_ITYPE_IMM (symval)
3316 || (symval >= gp
3317 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3318 || (symval < gp
3319 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
3320 {
3321 unsigned sym = hi_reloc.hi_sym;
3322 switch (ELFNN_R_TYPE (rel->r_info))
3323 {
3324 case R_RISCV_PCREL_LO12_I:
3325 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3326 rel->r_addend += hi_reloc.hi_addend;
5f9aecea 3327 return TRUE;
9d06997a
PD
3328
3329 case R_RISCV_PCREL_LO12_S:
3330 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3331 rel->r_addend += hi_reloc.hi_addend;
5f9aecea 3332 return TRUE;
9d06997a
PD
3333
3334 case R_RISCV_PCREL_HI20:
07d6d2b8 3335 riscv_record_pcgp_hi_reloc (pcgp_relocs,
9d06997a
PD
3336 rel->r_offset,
3337 rel->r_addend,
3338 symval,
3339 ELFNN_R_SYM(rel->r_info),
3340 sym_sec);
3341 /* We can delete the unnecessary AUIPC and reloc. */
3342 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
3343 rel->r_addend = 4;
5f9aecea 3344 return TRUE;
9d06997a
PD
3345
3346 default:
3347 abort ();
3348 }
3349 }
3350
3351 return TRUE;
3352}
3353
3354/* Relax PC-relative references to GP-relative references. */
3355
ff6f4d9b
PD
3356static bfd_boolean
3357_bfd_riscv_relax_delete (bfd *abfd,
3358 asection *sec,
3359 asection *sym_sec ATTRIBUTE_UNUSED,
7f02625e 3360 struct bfd_link_info *link_info,
ff6f4d9b
PD
3361 Elf_Internal_Rela *rel,
3362 bfd_vma symval ATTRIBUTE_UNUSED,
3363 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3364 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3365 bfd_boolean *again ATTRIBUTE_UNUSED,
3366 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
ff6f4d9b 3367{
7f02625e
JW
3368 if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend,
3369 link_info))
ff6f4d9b
PD
3370 return FALSE;
3371 rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE);
3372 return TRUE;
3373}
3374
3375/* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3376 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3377 disabled, handles code alignment directives. */
e23eba97
NC
3378
3379static bfd_boolean
3380_bfd_riscv_relax_section (bfd *abfd, asection *sec,
3381 struct bfd_link_info *info,
3382 bfd_boolean *again)
3383{
3384 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
3385 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3386 struct bfd_elf_section_data *data = elf_section_data (sec);
3387 Elf_Internal_Rela *relocs;
3388 bfd_boolean ret = FALSE;
3389 unsigned int i;
45f76423 3390 bfd_vma max_alignment, reserve_size = 0;
9d06997a 3391 riscv_pcgp_relocs pcgp_relocs;
e23eba97
NC
3392
3393 *again = FALSE;
3394
3395 if (bfd_link_relocatable (info)
3396 || sec->sec_flg0
3397 || (sec->flags & SEC_RELOC) == 0
3398 || sec->reloc_count == 0
3399 || (info->disable_target_specific_optimizations
3400 && info->relax_pass == 0))
3401 return TRUE;
3402
9d06997a
PD
3403 riscv_init_pcgp_relocs (&pcgp_relocs);
3404
e23eba97
NC
3405 /* Read this BFD's relocs if we haven't done so already. */
3406 if (data->relocs)
3407 relocs = data->relocs;
3408 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3409 info->keep_memory)))
3410 goto fail;
3411
fc3c5343
L
3412 if (htab)
3413 {
3414 max_alignment = htab->max_alignment;
3415 if (max_alignment == (bfd_vma) -1)
3416 {
3417 max_alignment = _bfd_riscv_get_max_alignment (sec);
3418 htab->max_alignment = max_alignment;
3419 }
3420 }
3421 else
3422 max_alignment = _bfd_riscv_get_max_alignment (sec);
e23eba97
NC
3423
3424 /* Examine and consider relaxing each reloc. */
3425 for (i = 0; i < sec->reloc_count; i++)
3426 {
3427 asection *sym_sec;
3428 Elf_Internal_Rela *rel = relocs + i;
45f76423 3429 relax_func_t relax_func;
e23eba97
NC
3430 int type = ELFNN_R_TYPE (rel->r_info);
3431 bfd_vma symval;
3432
ff6f4d9b 3433 relax_func = NULL;
e23eba97
NC
3434 if (info->relax_pass == 0)
3435 {
3436 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
3437 relax_func = _bfd_riscv_relax_call;
3438 else if (type == R_RISCV_HI20
3439 || type == R_RISCV_LO12_I
3440 || type == R_RISCV_LO12_S)
3441 relax_func = _bfd_riscv_relax_lui;
9d06997a
PD
3442 else if (!bfd_link_pic(info)
3443 && (type == R_RISCV_PCREL_HI20
3444 || type == R_RISCV_PCREL_LO12_I
3445 || type == R_RISCV_PCREL_LO12_S))
3446 relax_func = _bfd_riscv_relax_pc;
45f76423
AW
3447 else if (type == R_RISCV_TPREL_HI20
3448 || type == R_RISCV_TPREL_ADD
3449 || type == R_RISCV_TPREL_LO12_I
3450 || type == R_RISCV_TPREL_LO12_S)
e23eba97 3451 relax_func = _bfd_riscv_relax_tls_le;
45f76423
AW
3452 else
3453 continue;
3454
3455 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
3456 if (i == sec->reloc_count - 1
3457 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
3458 || rel->r_offset != (rel + 1)->r_offset)
3459 continue;
3460
3461 /* Skip over the R_RISCV_RELAX. */
3462 i++;
e23eba97 3463 }
ff6f4d9b 3464 else if (info->relax_pass == 1 && type == R_RISCV_DELETE)
07d6d2b8 3465 relax_func = _bfd_riscv_relax_delete;
ff6f4d9b 3466 else if (info->relax_pass == 2 && type == R_RISCV_ALIGN)
e23eba97 3467 relax_func = _bfd_riscv_relax_align;
45f76423 3468 else
e23eba97
NC
3469 continue;
3470
3471 data->relocs = relocs;
3472
3473 /* Read this BFD's contents if we haven't done so already. */
3474 if (!data->this_hdr.contents
3475 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
3476 goto fail;
3477
3478 /* Read this BFD's symbols if we haven't done so already. */
3479 if (symtab_hdr->sh_info != 0
3480 && !symtab_hdr->contents
3481 && !(symtab_hdr->contents =
3482 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
3483 symtab_hdr->sh_info,
3484 0, NULL, NULL, NULL)))
3485 goto fail;
3486
3487 /* Get the value of the symbol referred to by the reloc. */
3488 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
3489 {
3490 /* A local symbol. */
3491 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
3492 + ELFNN_R_SYM (rel->r_info));
45f76423
AW
3493 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
3494 ? 0 : isym->st_size - rel->r_addend;
e23eba97
NC
3495
3496 if (isym->st_shndx == SHN_UNDEF)
3497 sym_sec = sec, symval = sec_addr (sec) + rel->r_offset;
3498 else
3499 {
3500 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
3501 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
09ca4b9d
JW
3502#if 0
3503 /* The purpose of this code is unknown. It breaks linker scripts
3504 for embedded development that place sections at address zero.
3505 This code is believed to be unnecessary. Disabling it but not
3506 yet removing it, in case something breaks. */
e23eba97
NC
3507 if (sec_addr (sym_sec) == 0)
3508 continue;
09ca4b9d 3509#endif
e23eba97
NC
3510 symval = sec_addr (sym_sec) + isym->st_value;
3511 }
3512 }
3513 else
3514 {
3515 unsigned long indx;
3516 struct elf_link_hash_entry *h;
3517
3518 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
3519 h = elf_sym_hashes (abfd)[indx];
3520
3521 while (h->root.type == bfd_link_hash_indirect
3522 || h->root.type == bfd_link_hash_warning)
3523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3524
3525 if (h->plt.offset != MINUS_ONE)
3526 symval = sec_addr (htab->elf.splt) + h->plt.offset;
3527 else if (h->root.u.def.section->output_section == NULL
3528 || (h->root.type != bfd_link_hash_defined
3529 && h->root.type != bfd_link_hash_defweak))
3530 continue;
3531 else
3532 symval = sec_addr (h->root.u.def.section) + h->root.u.def.value;
3533
45f76423
AW
3534 if (h->type != STT_FUNC)
3535 reserve_size =
3536 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
e23eba97
NC
3537 sym_sec = h->root.u.def.section;
3538 }
3539
3540 symval += rel->r_addend;
3541
3542 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
9d06997a
PD
3543 max_alignment, reserve_size, again,
3544 &pcgp_relocs))
e23eba97
NC
3545 goto fail;
3546 }
3547
3548 ret = TRUE;
3549
3550fail:
3551 if (relocs != data->relocs)
3552 free (relocs);
9d06997a 3553 riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec);
e23eba97
NC
3554
3555 return ret;
3556}
3557
3558#if ARCH_SIZE == 32
3559# define PRSTATUS_SIZE 0 /* FIXME */
3560# define PRSTATUS_OFFSET_PR_CURSIG 12
3561# define PRSTATUS_OFFSET_PR_PID 24
3562# define PRSTATUS_OFFSET_PR_REG 72
3563# define ELF_GREGSET_T_SIZE 128
3564# define PRPSINFO_SIZE 128
3565# define PRPSINFO_OFFSET_PR_PID 16
3566# define PRPSINFO_OFFSET_PR_FNAME 32
3567# define PRPSINFO_OFFSET_PR_PSARGS 48
3568#else
3569# define PRSTATUS_SIZE 376
3570# define PRSTATUS_OFFSET_PR_CURSIG 12
3571# define PRSTATUS_OFFSET_PR_PID 32
3572# define PRSTATUS_OFFSET_PR_REG 112
3573# define ELF_GREGSET_T_SIZE 256
3574# define PRPSINFO_SIZE 136
3575# define PRPSINFO_OFFSET_PR_PID 24
3576# define PRPSINFO_OFFSET_PR_FNAME 40
3577# define PRPSINFO_OFFSET_PR_PSARGS 56
3578#endif
3579
3580/* Support for core dump NOTE sections. */
3581
3582static bfd_boolean
3583riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3584{
3585 switch (note->descsz)
3586 {
3587 default:
3588 return FALSE;
3589
3590 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
3591 /* pr_cursig */
3592 elf_tdata (abfd)->core->signal
3593 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
3594
3595 /* pr_pid */
3596 elf_tdata (abfd)->core->lwpid
3597 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
3598 break;
3599 }
3600
3601 /* Make a ".reg/999" section. */
3602 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
3603 note->descpos + PRSTATUS_OFFSET_PR_REG);
3604}
3605
3606static bfd_boolean
3607riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3608{
3609 switch (note->descsz)
3610 {
3611 default:
3612 return FALSE;
3613
3614 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
3615 /* pr_pid */
3616 elf_tdata (abfd)->core->pid
3617 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
3618
3619 /* pr_fname */
3620 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
3621 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
3622
3623 /* pr_psargs */
3624 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
3625 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
3626 break;
3627 }
3628
3629 /* Note that for some reason, a spurious space is tacked
3630 onto the end of the args in some (at least one anyway)
3631 implementations, so strip it off if it exists. */
3632
3633 {
3634 char *command = elf_tdata (abfd)->core->command;
3635 int n = strlen (command);
3636
3637 if (0 < n && command[n - 1] == ' ')
3638 command[n - 1] = '\0';
3639 }
3640
3641 return TRUE;
3642}
3643
640d6bfd
KLC
3644/* Set the right mach type. */
3645static bfd_boolean
3646riscv_elf_object_p (bfd *abfd)
3647{
3648 /* There are only two mach types in RISCV currently. */
3649 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
3650 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
3651 else
3652 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
3653
3654 return TRUE;
3655}
3656
2dc8dd17
JW
3657/* Determine whether an object attribute tag takes an integer, a
3658 string or both. */
3659
3660static int
3661riscv_elf_obj_attrs_arg_type (int tag)
3662{
3663 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
3664}
e23eba97
NC
3665
3666#define TARGET_LITTLE_SYM riscv_elfNN_vec
3667#define TARGET_LITTLE_NAME "elfNN-littleriscv"
3668
3669#define elf_backend_reloc_type_class riscv_reloc_type_class
3670
3671#define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
3672#define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
3673#define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
3674#define bfd_elfNN_bfd_merge_private_bfd_data \
3675 _bfd_riscv_elf_merge_private_bfd_data
3676
3677#define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
3678#define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
3679#define elf_backend_check_relocs riscv_elf_check_relocs
3680#define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
3681#define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
3682#define elf_backend_relocate_section riscv_elf_relocate_section
3683#define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
3684#define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
3685#define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
e23eba97 3686#define elf_backend_plt_sym_val riscv_elf_plt_sym_val
07d6d2b8
AM
3687#define elf_backend_grok_prstatus riscv_elf_grok_prstatus
3688#define elf_backend_grok_psinfo riscv_elf_grok_psinfo
3689#define elf_backend_object_p riscv_elf_object_p
e23eba97
NC
3690#define elf_info_to_howto_rel NULL
3691#define elf_info_to_howto riscv_info_to_howto_rela
3692#define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
3693
3694#define elf_backend_init_index_section _bfd_elf_init_1_index_section
3695
3696#define elf_backend_can_gc_sections 1
3697#define elf_backend_can_refcount 1
3698#define elf_backend_want_got_plt 1
3699#define elf_backend_plt_readonly 1
3700#define elf_backend_plt_alignment 4
3701#define elf_backend_want_plt_sym 1
3702#define elf_backend_got_header_size (ARCH_SIZE / 8)
5474d94f 3703#define elf_backend_want_dynrelro 1
e23eba97
NC
3704#define elf_backend_rela_normal 1
3705#define elf_backend_default_execstack 0
3706
2dc8dd17
JW
3707#undef elf_backend_obj_attrs_vendor
3708#define elf_backend_obj_attrs_vendor "riscv"
3709#undef elf_backend_obj_attrs_arg_type
3710#define elf_backend_obj_attrs_arg_type riscv_elf_obj_attrs_arg_type
3711#undef elf_backend_obj_attrs_section_type
3712#define elf_backend_obj_attrs_section_type SHT_RISCV_ATTRIBUTES
3713#undef elf_backend_obj_attrs_section
3714#define elf_backend_obj_attrs_section ".riscv.attributes"
3715
e23eba97 3716#include "elfNN-target.h"
This page took 0.405633 seconds and 4 git commands to generate.