Allocate dwp_file with new
[deliverable/binutils-gdb.git] / bfd / elfnn-riscv.c
CommitLineData
e23eba97 1/* RISC-V-specific support for NN-bit ELF.
219d1afa 2 Copyright (C) 2011-2018 Free Software Foundation, Inc.
e23eba97
NC
3
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
22
23/* This file handles RISC-V ELF targets. */
24
25#include "sysdep.h"
26#include "bfd.h"
27#include "libbfd.h"
28#include "bfdlink.h"
29#include "genlink.h"
30#include "elf-bfd.h"
31#include "elfxx-riscv.h"
32#include "elf/riscv.h"
33#include "opcode/riscv.h"
34
ff6f4d9b
PD
35/* Internal relocations used exclusively by the relaxation pass. */
36#define R_RISCV_DELETE (R_RISCV_max + 1)
37
e23eba97
NC
38#define ARCH_SIZE NN
39
40#define MINUS_ONE ((bfd_vma)0 - 1)
41
42#define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
43
44#define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
45
46/* The name of the dynamic interpreter. This is put in the .interp
47 section. */
48
49#define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50#define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
51
52#define ELF_ARCH bfd_arch_riscv
53#define ELF_TARGET_ID RISCV_ELF_DATA
54#define ELF_MACHINE_CODE EM_RISCV
55#define ELF_MAXPAGESIZE 0x1000
56#define ELF_COMMONPAGESIZE 0x1000
57
e23eba97
NC
58/* RISC-V ELF linker hash entry. */
59
60struct riscv_elf_link_hash_entry
61{
62 struct elf_link_hash_entry elf;
63
64 /* Track dynamic relocs copied for this symbol. */
3bf083ed 65 struct elf_dyn_relocs *dyn_relocs;
e23eba97
NC
66
67#define GOT_UNKNOWN 0
68#define GOT_NORMAL 1
69#define GOT_TLS_GD 2
70#define GOT_TLS_IE 4
71#define GOT_TLS_LE 8
72 char tls_type;
73};
74
75#define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
77
78struct _bfd_riscv_elf_obj_tdata
79{
80 struct elf_obj_tdata root;
81
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type;
84};
85
86#define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
88
89#define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
91
92#define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
95
96#define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
100
101#include "elf/common.h"
102#include "elf/internal.h"
103
104struct riscv_elf_link_hash_table
105{
106 struct elf_link_hash_table elf;
107
108 /* Short-cuts to get to dynamic linker sections. */
e23eba97
NC
109 asection *sdyntdata;
110
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache;
fc3c5343
L
113
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment;
e23eba97
NC
116};
117
118
119/* Get the RISC-V ELF linker hash table from a link_info structure. */
120#define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
123
f3185997 124static bfd_boolean
0aa13fee 125riscv_info_to_howto_rela (bfd *abfd,
e23eba97
NC
126 arelent *cache_ptr,
127 Elf_Internal_Rela *dst)
128{
0aa13fee 129 cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info));
f3185997 130 return cache_ptr->howto != NULL;
e23eba97
NC
131}
132
133static void
134riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
135{
136 const struct elf_backend_data *bed;
137 bfd_byte *loc;
138
139 bed = get_elf_backend_data (abfd);
140 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
141 bed->s->swap_reloca_out (abfd, rel, loc);
142}
143
144/* PLT/GOT stuff. */
145
146#define PLT_HEADER_INSNS 8
147#define PLT_ENTRY_INSNS 4
148#define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
149#define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
150
151#define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
152
153#define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
154
155#define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
156
157static bfd_vma
158riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
159{
160 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
161 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
162}
163
164#if ARCH_SIZE == 32
165# define MATCH_LREG MATCH_LW
166#else
167# define MATCH_LREG MATCH_LD
168#endif
169
170/* Generate a PLT header. */
171
172static void
173riscv_make_plt_header (bfd_vma gotplt_addr, bfd_vma addr, uint32_t *entry)
174{
175 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
176 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
177
178 /* auipc t2, %hi(.got.plt)
07d6d2b8 179 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
e23eba97
NC
180 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
181 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
182 addi t0, t2, %lo(.got.plt) # &.got.plt
183 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
07d6d2b8
AM
184 l[w|d] t0, PTRSIZE(t0) # link map
185 jr t3 */
e23eba97
NC
186
187 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
188 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
189 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
190 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
191 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
192 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
193 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
194 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
195}
196
197/* Generate a PLT entry. */
198
199static void
200riscv_make_plt_entry (bfd_vma got, bfd_vma addr, uint32_t *entry)
201{
202 /* auipc t3, %hi(.got.plt entry)
203 l[w|d] t3, %lo(.got.plt entry)(t3)
204 jalr t1, t3
205 nop */
206
207 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
1d65abb5 208 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
e23eba97
NC
209 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
210 entry[3] = RISCV_NOP;
211}
212
213/* Create an entry in an RISC-V ELF linker hash table. */
214
215static struct bfd_hash_entry *
216link_hash_newfunc (struct bfd_hash_entry *entry,
217 struct bfd_hash_table *table, const char *string)
218{
219 /* Allocate the structure if it has not already been allocated by a
220 subclass. */
221 if (entry == NULL)
222 {
223 entry =
224 bfd_hash_allocate (table,
225 sizeof (struct riscv_elf_link_hash_entry));
226 if (entry == NULL)
227 return entry;
228 }
229
230 /* Call the allocation method of the superclass. */
231 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
232 if (entry != NULL)
233 {
234 struct riscv_elf_link_hash_entry *eh;
235
236 eh = (struct riscv_elf_link_hash_entry *) entry;
237 eh->dyn_relocs = NULL;
238 eh->tls_type = GOT_UNKNOWN;
239 }
240
241 return entry;
242}
243
244/* Create a RISC-V ELF linker hash table. */
245
246static struct bfd_link_hash_table *
247riscv_elf_link_hash_table_create (bfd *abfd)
248{
249 struct riscv_elf_link_hash_table *ret;
250 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
251
252 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
253 if (ret == NULL)
254 return NULL;
255
256 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
257 sizeof (struct riscv_elf_link_hash_entry),
258 RISCV_ELF_DATA))
259 {
260 free (ret);
261 return NULL;
262 }
263
fc3c5343 264 ret->max_alignment = (bfd_vma) -1;
e23eba97
NC
265 return &ret->elf.root;
266}
267
268/* Create the .got section. */
269
270static bfd_boolean
271riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
272{
273 flagword flags;
274 asection *s, *s_got;
275 struct elf_link_hash_entry *h;
276 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
277 struct elf_link_hash_table *htab = elf_hash_table (info);
278
279 /* This function may be called more than once. */
ce558b89 280 if (htab->sgot != NULL)
e23eba97
NC
281 return TRUE;
282
283 flags = bed->dynamic_sec_flags;
284
285 s = bfd_make_section_anyway_with_flags (abfd,
286 (bed->rela_plts_and_copies_p
287 ? ".rela.got" : ".rel.got"),
288 (bed->dynamic_sec_flags
289 | SEC_READONLY));
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 return FALSE;
293 htab->srelgot = s;
294
295 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
296 if (s == NULL
297 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 return FALSE;
299 htab->sgot = s;
300
301 /* The first bit of the global offset table is the header. */
302 s->size += bed->got_header_size;
303
304 if (bed->want_got_plt)
305 {
306 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
307 if (s == NULL
308 || !bfd_set_section_alignment (abfd, s,
309 bed->s->log_file_align))
310 return FALSE;
311 htab->sgotplt = s;
312
313 /* Reserve room for the header. */
314 s->size += GOTPLT_HEADER_SIZE;
315 }
316
317 if (bed->want_got_sym)
318 {
319 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
320 section. We don't do this in the linker script because we don't want
321 to define the symbol if we are not creating a global offset
322 table. */
323 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
324 "_GLOBAL_OFFSET_TABLE_");
325 elf_hash_table (info)->hgot = h;
326 if (h == NULL)
327 return FALSE;
328 }
329
330 return TRUE;
331}
332
333/* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
334 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
335 hash table. */
336
337static bfd_boolean
338riscv_elf_create_dynamic_sections (bfd *dynobj,
339 struct bfd_link_info *info)
340{
341 struct riscv_elf_link_hash_table *htab;
342
343 htab = riscv_elf_hash_table (info);
344 BFD_ASSERT (htab != NULL);
345
346 if (!riscv_elf_create_got_section (dynobj, info))
347 return FALSE;
348
349 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
350 return FALSE;
351
e23eba97
NC
352 if (!bfd_link_pic (info))
353 {
e23eba97
NC
354 htab->sdyntdata =
355 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
356 SEC_ALLOC | SEC_THREAD_LOCAL);
357 }
358
9d19e4fd
AM
359 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
360 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
e23eba97
NC
361 abort ();
362
363 return TRUE;
364}
365
366/* Copy the extra info we tack onto an elf_link_hash_entry. */
367
368static void
369riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
370 struct elf_link_hash_entry *dir,
371 struct elf_link_hash_entry *ind)
372{
373 struct riscv_elf_link_hash_entry *edir, *eind;
374
375 edir = (struct riscv_elf_link_hash_entry *) dir;
376 eind = (struct riscv_elf_link_hash_entry *) ind;
377
378 if (eind->dyn_relocs != NULL)
379 {
380 if (edir->dyn_relocs != NULL)
381 {
3bf083ed
AM
382 struct elf_dyn_relocs **pp;
383 struct elf_dyn_relocs *p;
e23eba97
NC
384
385 /* Add reloc counts against the indirect sym to the direct sym
386 list. Merge any entries against the same section. */
387 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
388 {
3bf083ed 389 struct elf_dyn_relocs *q;
e23eba97
NC
390
391 for (q = edir->dyn_relocs; q != NULL; q = q->next)
392 if (q->sec == p->sec)
393 {
394 q->pc_count += p->pc_count;
395 q->count += p->count;
396 *pp = p->next;
397 break;
398 }
399 if (q == NULL)
400 pp = &p->next;
401 }
402 *pp = edir->dyn_relocs;
403 }
404
405 edir->dyn_relocs = eind->dyn_relocs;
406 eind->dyn_relocs = NULL;
407 }
408
409 if (ind->root.type == bfd_link_hash_indirect
410 && dir->got.refcount <= 0)
411 {
412 edir->tls_type = eind->tls_type;
413 eind->tls_type = GOT_UNKNOWN;
414 }
415 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
416}
417
418static bfd_boolean
419riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
420 unsigned long symndx, char tls_type)
421{
422 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
423
424 *new_tls_type |= tls_type;
425 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
426 {
427 (*_bfd_error_handler)
871b3ab2 428 (_("%pB: `%s' accessed both as normal and thread local symbol"),
e23eba97
NC
429 abfd, h ? h->root.root.string : "<local>");
430 return FALSE;
431 }
432 return TRUE;
433}
434
435static bfd_boolean
436riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
437 struct elf_link_hash_entry *h, long symndx)
438{
439 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
440 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
441
442 if (htab->elf.sgot == NULL)
443 {
444 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
445 return FALSE;
446 }
447
448 if (h != NULL)
449 {
450 h->got.refcount += 1;
451 return TRUE;
452 }
453
454 /* This is a global offset table entry for a local symbol. */
455 if (elf_local_got_refcounts (abfd) == NULL)
456 {
457 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
458 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
459 return FALSE;
460 _bfd_riscv_elf_local_got_tls_type (abfd)
461 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
462 }
463 elf_local_got_refcounts (abfd) [symndx] += 1;
464
465 return TRUE;
466}
467
468static bfd_boolean
469bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
470{
f3185997
NC
471 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
472
e23eba97 473 (*_bfd_error_handler)
871b3ab2 474 (_("%pB: relocation %s against `%s' can not be used when making a shared "
e23eba97 475 "object; recompile with -fPIC"),
f3185997
NC
476 abfd, r ? r->name : _("<unknown>"),
477 h != NULL ? h->root.root.string : "a local symbol");
e23eba97
NC
478 bfd_set_error (bfd_error_bad_value);
479 return FALSE;
480}
481/* Look through the relocs for a section during the first phase, and
482 allocate space in the global offset table or procedure linkage
483 table. */
484
485static bfd_boolean
486riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
487 asection *sec, const Elf_Internal_Rela *relocs)
488{
489 struct riscv_elf_link_hash_table *htab;
490 Elf_Internal_Shdr *symtab_hdr;
491 struct elf_link_hash_entry **sym_hashes;
492 const Elf_Internal_Rela *rel;
493 asection *sreloc = NULL;
494
495 if (bfd_link_relocatable (info))
496 return TRUE;
497
498 htab = riscv_elf_hash_table (info);
499 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
500 sym_hashes = elf_sym_hashes (abfd);
501
502 if (htab->elf.dynobj == NULL)
503 htab->elf.dynobj = abfd;
504
505 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
506 {
507 unsigned int r_type;
d42c267e 508 unsigned int r_symndx;
e23eba97
NC
509 struct elf_link_hash_entry *h;
510
511 r_symndx = ELFNN_R_SYM (rel->r_info);
512 r_type = ELFNN_R_TYPE (rel->r_info);
513
514 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
515 {
871b3ab2 516 (*_bfd_error_handler) (_("%pB: bad symbol index: %d"),
e23eba97
NC
517 abfd, r_symndx);
518 return FALSE;
519 }
520
521 if (r_symndx < symtab_hdr->sh_info)
522 h = NULL;
523 else
524 {
525 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
526 while (h->root.type == bfd_link_hash_indirect
527 || h->root.type == bfd_link_hash_warning)
528 h = (struct elf_link_hash_entry *) h->root.u.i.link;
e23eba97
NC
529 }
530
531 switch (r_type)
532 {
533 case R_RISCV_TLS_GD_HI20:
534 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
535 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
536 return FALSE;
537 break;
538
539 case R_RISCV_TLS_GOT_HI20:
540 if (bfd_link_pic (info))
541 info->flags |= DF_STATIC_TLS;
542 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
543 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
544 return FALSE;
545 break;
546
547 case R_RISCV_GOT_HI20:
548 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
549 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
550 return FALSE;
551 break;
552
553 case R_RISCV_CALL_PLT:
554 /* This symbol requires a procedure linkage table entry. We
555 actually build the entry in adjust_dynamic_symbol,
556 because this might be a case of linking PIC code without
557 linking in any dynamic objects, in which case we don't
558 need to generate a procedure linkage table after all. */
559
560 if (h != NULL)
561 {
562 h->needs_plt = 1;
563 h->plt.refcount += 1;
564 }
565 break;
566
567 case R_RISCV_CALL:
568 case R_RISCV_JAL:
569 case R_RISCV_BRANCH:
570 case R_RISCV_RVC_BRANCH:
571 case R_RISCV_RVC_JUMP:
572 case R_RISCV_PCREL_HI20:
573 /* In shared libraries, these relocs are known to bind locally. */
574 if (bfd_link_pic (info))
575 break;
576 goto static_reloc;
577
578 case R_RISCV_TPREL_HI20:
579 if (!bfd_link_executable (info))
580 return bad_static_reloc (abfd, r_type, h);
581 if (h != NULL)
582 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
583 goto static_reloc;
584
585 case R_RISCV_HI20:
586 if (bfd_link_pic (info))
587 return bad_static_reloc (abfd, r_type, h);
588 /* Fall through. */
589
590 case R_RISCV_COPY:
591 case R_RISCV_JUMP_SLOT:
592 case R_RISCV_RELATIVE:
593 case R_RISCV_64:
594 case R_RISCV_32:
595 /* Fall through. */
596
597 static_reloc:
598 /* This reloc might not bind locally. */
599 if (h != NULL)
600 h->non_got_ref = 1;
601
602 if (h != NULL && !bfd_link_pic (info))
603 {
604 /* We may need a .plt entry if the function this reloc
605 refers to is in a shared lib. */
606 h->plt.refcount += 1;
607 }
608
609 /* If we are creating a shared library, and this is a reloc
610 against a global symbol, or a non PC relative reloc
611 against a local symbol, then we need to copy the reloc
612 into the shared library. However, if we are linking with
613 -Bsymbolic, we do not need to copy a reloc against a
614 global symbol which is defined in an object we are
615 including in the link (i.e., DEF_REGULAR is set). At
616 this point we have not seen all the input files, so it is
617 possible that DEF_REGULAR is not set now but will be set
618 later (it is never cleared). In case of a weak definition,
619 DEF_REGULAR may be cleared later by a strong definition in
620 a shared library. We account for that possibility below by
621 storing information in the relocs_copied field of the hash
622 table entry. A similar situation occurs when creating
623 shared libraries and symbol visibility changes render the
624 symbol local.
625
626 If on the other hand, we are creating an executable, we
627 may need to keep relocations for symbols satisfied by a
628 dynamic library if we manage to avoid copy relocs for the
629 symbol. */
f3185997
NC
630 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
631
e23eba97
NC
632 if ((bfd_link_pic (info)
633 && (sec->flags & SEC_ALLOC) != 0
f3185997 634 && ((r != NULL && ! r->pc_relative)
e23eba97
NC
635 || (h != NULL
636 && (! info->symbolic
637 || h->root.type == bfd_link_hash_defweak
638 || !h->def_regular))))
639 || (!bfd_link_pic (info)
640 && (sec->flags & SEC_ALLOC) != 0
641 && h != NULL
642 && (h->root.type == bfd_link_hash_defweak
643 || !h->def_regular)))
644 {
3bf083ed
AM
645 struct elf_dyn_relocs *p;
646 struct elf_dyn_relocs **head;
e23eba97
NC
647
648 /* When creating a shared object, we must copy these
649 relocs into the output file. We create a reloc
650 section in dynobj and make room for the reloc. */
651 if (sreloc == NULL)
652 {
653 sreloc = _bfd_elf_make_dynamic_reloc_section
654 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
655 abfd, /*rela?*/ TRUE);
656
657 if (sreloc == NULL)
658 return FALSE;
659 }
660
661 /* If this is a global symbol, we count the number of
662 relocations we need for this symbol. */
663 if (h != NULL)
664 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
665 else
666 {
667 /* Track dynamic relocs needed for local syms too.
668 We really need local syms available to do this
669 easily. Oh well. */
670
671 asection *s;
672 void *vpp;
673 Elf_Internal_Sym *isym;
674
675 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
676 abfd, r_symndx);
677 if (isym == NULL)
678 return FALSE;
679
680 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
681 if (s == NULL)
682 s = sec;
683
684 vpp = &elf_section_data (s)->local_dynrel;
3bf083ed 685 head = (struct elf_dyn_relocs **) vpp;
e23eba97
NC
686 }
687
688 p = *head;
689 if (p == NULL || p->sec != sec)
690 {
691 bfd_size_type amt = sizeof *p;
3bf083ed 692 p = ((struct elf_dyn_relocs *)
e23eba97
NC
693 bfd_alloc (htab->elf.dynobj, amt));
694 if (p == NULL)
695 return FALSE;
696 p->next = *head;
697 *head = p;
698 p->sec = sec;
699 p->count = 0;
700 p->pc_count = 0;
701 }
702
703 p->count += 1;
f3185997 704 p->pc_count += r == NULL ? 0 : r->pc_relative;
e23eba97
NC
705 }
706
707 break;
708
709 case R_RISCV_GNU_VTINHERIT:
710 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
711 return FALSE;
712 break;
713
714 case R_RISCV_GNU_VTENTRY:
715 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
716 return FALSE;
717 break;
718
719 default:
720 break;
721 }
722 }
723
724 return TRUE;
725}
726
727static asection *
728riscv_elf_gc_mark_hook (asection *sec,
729 struct bfd_link_info *info,
730 Elf_Internal_Rela *rel,
731 struct elf_link_hash_entry *h,
732 Elf_Internal_Sym *sym)
733{
734 if (h != NULL)
735 switch (ELFNN_R_TYPE (rel->r_info))
736 {
737 case R_RISCV_GNU_VTINHERIT:
738 case R_RISCV_GNU_VTENTRY:
739 return NULL;
740 }
741
742 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
743}
744
63c1f59d
AM
745/* Find dynamic relocs for H that apply to read-only sections. */
746
747static asection *
748readonly_dynrelocs (struct elf_link_hash_entry *h)
749{
3bf083ed 750 struct elf_dyn_relocs *p;
63c1f59d
AM
751
752 for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
753 {
754 asection *s = p->sec->output_section;
755
756 if (s != NULL && (s->flags & SEC_READONLY) != 0)
757 return p->sec;
758 }
759 return NULL;
760}
761
e23eba97
NC
762/* Adjust a symbol defined by a dynamic object and referenced by a
763 regular object. The current definition is in some section of the
764 dynamic object, but we're not including those sections. We have to
765 change the definition to something the rest of the link can
766 understand. */
767
768static bfd_boolean
769riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
770 struct elf_link_hash_entry *h)
771{
772 struct riscv_elf_link_hash_table *htab;
773 struct riscv_elf_link_hash_entry * eh;
e23eba97 774 bfd *dynobj;
5474d94f 775 asection *s, *srel;
e23eba97
NC
776
777 htab = riscv_elf_hash_table (info);
778 BFD_ASSERT (htab != NULL);
779
780 dynobj = htab->elf.dynobj;
781
782 /* Make sure we know what is going on here. */
783 BFD_ASSERT (dynobj != NULL
784 && (h->needs_plt
785 || h->type == STT_GNU_IFUNC
60d67dc8 786 || h->is_weakalias
e23eba97
NC
787 || (h->def_dynamic
788 && h->ref_regular
789 && !h->def_regular)));
790
791 /* If this is a function, put it in the procedure linkage table. We
792 will fill in the contents of the procedure linkage table later
793 (although we could actually do it here). */
794 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
795 {
796 if (h->plt.refcount <= 0
797 || SYMBOL_CALLS_LOCAL (info, h)
798 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
799 && h->root.type == bfd_link_hash_undefweak))
800 {
801 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
802 input file, but the symbol was never referred to by a dynamic
803 object, or if all references were garbage collected. In such
804 a case, we don't actually need to build a PLT entry. */
805 h->plt.offset = (bfd_vma) -1;
806 h->needs_plt = 0;
807 }
808
809 return TRUE;
810 }
811 else
812 h->plt.offset = (bfd_vma) -1;
813
814 /* If this is a weak symbol, and there is a real definition, the
815 processor independent code will have arranged for us to see the
816 real definition first, and we can just use the same value. */
60d67dc8 817 if (h->is_weakalias)
e23eba97 818 {
60d67dc8
AM
819 struct elf_link_hash_entry *def = weakdef (h);
820 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
821 h->root.u.def.section = def->root.u.def.section;
822 h->root.u.def.value = def->root.u.def.value;
e23eba97
NC
823 return TRUE;
824 }
825
826 /* This is a reference to a symbol defined by a dynamic object which
827 is not a function. */
828
829 /* If we are creating a shared library, we must presume that the
830 only references to the symbol are via the global offset table.
831 For such cases we need not do anything here; the relocations will
832 be handled correctly by relocate_section. */
833 if (bfd_link_pic (info))
834 return TRUE;
835
836 /* If there are no references to this symbol that do not use the
837 GOT, we don't need to generate a copy reloc. */
838 if (!h->non_got_ref)
839 return TRUE;
840
841 /* If -z nocopyreloc was given, we won't generate them either. */
842 if (info->nocopyreloc)
843 {
844 h->non_got_ref = 0;
845 return TRUE;
846 }
847
3bf083ed 848 /* If we don't find any dynamic relocs in read-only sections, then
e23eba97 849 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
3bf083ed 850 if (!readonly_dynrelocs (h))
e23eba97
NC
851 {
852 h->non_got_ref = 0;
853 return TRUE;
854 }
855
856 /* We must allocate the symbol in our .dynbss section, which will
857 become part of the .bss section of the executable. There will be
858 an entry for this symbol in the .dynsym section. The dynamic
859 object will contain position independent code, so all references
860 from the dynamic object to this symbol will go through the global
861 offset table. The dynamic linker will use the .dynsym entry to
862 determine the address it must put in the global offset table, so
863 both the dynamic object and the regular object will refer to the
864 same memory location for the variable. */
865
866 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
867 to copy the initial value out of the dynamic object and into the
868 runtime process image. We need to remember the offset into the
869 .rel.bss section we are going to use. */
3bf083ed 870 eh = (struct riscv_elf_link_hash_entry *) h;
3df5cd13
AW
871 if (eh->tls_type & ~GOT_NORMAL)
872 {
873 s = htab->sdyntdata;
874 srel = htab->elf.srelbss;
875 }
876 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
5474d94f
AM
877 {
878 s = htab->elf.sdynrelro;
879 srel = htab->elf.sreldynrelro;
880 }
881 else
882 {
883 s = htab->elf.sdynbss;
884 srel = htab->elf.srelbss;
885 }
e23eba97
NC
886 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
887 {
5474d94f 888 srel->size += sizeof (ElfNN_External_Rela);
e23eba97
NC
889 h->needs_copy = 1;
890 }
891
5474d94f 892 return _bfd_elf_adjust_dynamic_copy (info, h, s);
e23eba97
NC
893}
894
895/* Allocate space in .plt, .got and associated reloc sections for
896 dynamic relocs. */
897
898static bfd_boolean
899allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
900{
901 struct bfd_link_info *info;
902 struct riscv_elf_link_hash_table *htab;
903 struct riscv_elf_link_hash_entry *eh;
3bf083ed 904 struct elf_dyn_relocs *p;
e23eba97
NC
905
906 if (h->root.type == bfd_link_hash_indirect)
907 return TRUE;
908
909 info = (struct bfd_link_info *) inf;
910 htab = riscv_elf_hash_table (info);
911 BFD_ASSERT (htab != NULL);
912
913 if (htab->elf.dynamic_sections_created
914 && h->plt.refcount > 0)
915 {
916 /* Make sure this symbol is output as a dynamic symbol.
917 Undefined weak syms won't yet be marked as dynamic. */
918 if (h->dynindx == -1
919 && !h->forced_local)
920 {
921 if (! bfd_elf_link_record_dynamic_symbol (info, h))
922 return FALSE;
923 }
924
925 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
926 {
927 asection *s = htab->elf.splt;
928
929 if (s->size == 0)
930 s->size = PLT_HEADER_SIZE;
931
932 h->plt.offset = s->size;
933
934 /* Make room for this entry. */
935 s->size += PLT_ENTRY_SIZE;
936
937 /* We also need to make an entry in the .got.plt section. */
938 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
939
940 /* We also need to make an entry in the .rela.plt section. */
941 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
942
943 /* If this symbol is not defined in a regular file, and we are
944 not generating a shared library, then set the symbol to this
945 location in the .plt. This is required to make function
946 pointers compare as equal between the normal executable and
947 the shared library. */
948 if (! bfd_link_pic (info)
949 && !h->def_regular)
950 {
951 h->root.u.def.section = s;
952 h->root.u.def.value = h->plt.offset;
953 }
954 }
955 else
956 {
957 h->plt.offset = (bfd_vma) -1;
958 h->needs_plt = 0;
959 }
960 }
961 else
962 {
963 h->plt.offset = (bfd_vma) -1;
964 h->needs_plt = 0;
965 }
966
967 if (h->got.refcount > 0)
968 {
969 asection *s;
970 bfd_boolean dyn;
971 int tls_type = riscv_elf_hash_entry (h)->tls_type;
972
973 /* Make sure this symbol is output as a dynamic symbol.
974 Undefined weak syms won't yet be marked as dynamic. */
975 if (h->dynindx == -1
976 && !h->forced_local)
977 {
978 if (! bfd_elf_link_record_dynamic_symbol (info, h))
979 return FALSE;
980 }
981
982 s = htab->elf.sgot;
983 h->got.offset = s->size;
984 dyn = htab->elf.dynamic_sections_created;
985 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
986 {
987 /* TLS_GD needs two dynamic relocs and two GOT slots. */
988 if (tls_type & GOT_TLS_GD)
989 {
990 s->size += 2 * RISCV_ELF_WORD_BYTES;
991 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
992 }
993
994 /* TLS_IE needs one dynamic reloc and one GOT slot. */
995 if (tls_type & GOT_TLS_IE)
996 {
997 s->size += RISCV_ELF_WORD_BYTES;
998 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
999 }
1000 }
1001 else
1002 {
1003 s->size += RISCV_ELF_WORD_BYTES;
6487709f
JW
1004 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
1005 && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
e23eba97
NC
1006 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1007 }
1008 }
1009 else
1010 h->got.offset = (bfd_vma) -1;
1011
1012 eh = (struct riscv_elf_link_hash_entry *) h;
1013 if (eh->dyn_relocs == NULL)
1014 return TRUE;
1015
1016 /* In the shared -Bsymbolic case, discard space allocated for
1017 dynamic pc-relative relocs against symbols which turn out to be
1018 defined in regular objects. For the normal shared case, discard
1019 space for pc-relative relocs that have become local due to symbol
1020 visibility changes. */
1021
1022 if (bfd_link_pic (info))
1023 {
1024 if (SYMBOL_CALLS_LOCAL (info, h))
1025 {
3bf083ed 1026 struct elf_dyn_relocs **pp;
e23eba97
NC
1027
1028 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1029 {
1030 p->count -= p->pc_count;
1031 p->pc_count = 0;
1032 if (p->count == 0)
1033 *pp = p->next;
1034 else
1035 pp = &p->next;
1036 }
1037 }
1038
1039 /* Also discard relocs on undefined weak syms with non-default
1040 visibility. */
1041 if (eh->dyn_relocs != NULL
1042 && h->root.type == bfd_link_hash_undefweak)
1043 {
6487709f
JW
1044 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1045 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
e23eba97
NC
1046 eh->dyn_relocs = NULL;
1047
1048 /* Make sure undefined weak symbols are output as a dynamic
1049 symbol in PIEs. */
1050 else if (h->dynindx == -1
1051 && !h->forced_local)
1052 {
1053 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1054 return FALSE;
1055 }
1056 }
1057 }
1058 else
1059 {
1060 /* For the non-shared case, discard space for relocs against
1061 symbols which turn out to need copy relocs or are not
1062 dynamic. */
1063
1064 if (!h->non_got_ref
1065 && ((h->def_dynamic
1066 && !h->def_regular)
1067 || (htab->elf.dynamic_sections_created
1068 && (h->root.type == bfd_link_hash_undefweak
1069 || h->root.type == bfd_link_hash_undefined))))
1070 {
1071 /* Make sure this symbol is output as a dynamic symbol.
1072 Undefined weak syms won't yet be marked as dynamic. */
1073 if (h->dynindx == -1
1074 && !h->forced_local)
1075 {
1076 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1077 return FALSE;
1078 }
1079
1080 /* If that succeeded, we know we'll be keeping all the
1081 relocs. */
1082 if (h->dynindx != -1)
1083 goto keep;
1084 }
1085
1086 eh->dyn_relocs = NULL;
1087
1088 keep: ;
1089 }
1090
1091 /* Finally, allocate space. */
1092 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1093 {
1094 asection *sreloc = elf_section_data (p->sec)->sreloc;
1095 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1096 }
1097
1098 return TRUE;
1099}
1100
63c1f59d
AM
1101/* Set DF_TEXTREL if we find any dynamic relocs that apply to
1102 read-only sections. */
e23eba97
NC
1103
1104static bfd_boolean
63c1f59d 1105maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
e23eba97 1106{
63c1f59d 1107 asection *sec;
e23eba97 1108
63c1f59d
AM
1109 if (h->root.type == bfd_link_hash_indirect)
1110 return TRUE;
1111
1112 sec = readonly_dynrelocs (h);
1113 if (sec != NULL)
e23eba97 1114 {
63c1f59d 1115 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
e23eba97 1116
63c1f59d
AM
1117 info->flags |= DF_TEXTREL;
1118 info->callbacks->minfo
c1c8c1ef 1119 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
63c1f59d
AM
1120 sec->owner, h->root.root.string, sec);
1121
1122 /* Not an error, just cut short the traversal. */
1123 return FALSE;
e23eba97
NC
1124 }
1125 return TRUE;
1126}
1127
1128static bfd_boolean
1129riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1130{
1131 struct riscv_elf_link_hash_table *htab;
1132 bfd *dynobj;
1133 asection *s;
1134 bfd *ibfd;
1135
1136 htab = riscv_elf_hash_table (info);
1137 BFD_ASSERT (htab != NULL);
1138 dynobj = htab->elf.dynobj;
1139 BFD_ASSERT (dynobj != NULL);
1140
1141 if (elf_hash_table (info)->dynamic_sections_created)
1142 {
1143 /* Set the contents of the .interp section to the interpreter. */
1144 if (bfd_link_executable (info) && !info->nointerp)
1145 {
1146 s = bfd_get_linker_section (dynobj, ".interp");
1147 BFD_ASSERT (s != NULL);
1148 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1149 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1150 }
1151 }
1152
1153 /* Set up .got offsets for local syms, and space for local dynamic
1154 relocs. */
1155 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1156 {
1157 bfd_signed_vma *local_got;
1158 bfd_signed_vma *end_local_got;
1159 char *local_tls_type;
1160 bfd_size_type locsymcount;
1161 Elf_Internal_Shdr *symtab_hdr;
1162 asection *srel;
1163
1164 if (! is_riscv_elf (ibfd))
1165 continue;
1166
1167 for (s = ibfd->sections; s != NULL; s = s->next)
1168 {
3bf083ed 1169 struct elf_dyn_relocs *p;
e23eba97
NC
1170
1171 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1172 {
1173 if (!bfd_is_abs_section (p->sec)
1174 && bfd_is_abs_section (p->sec->output_section))
1175 {
1176 /* Input section has been discarded, either because
1177 it is a copy of a linkonce section or due to
1178 linker script /DISCARD/, so we'll be discarding
1179 the relocs too. */
1180 }
1181 else if (p->count != 0)
1182 {
1183 srel = elf_section_data (p->sec)->sreloc;
1184 srel->size += p->count * sizeof (ElfNN_External_Rela);
1185 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1186 info->flags |= DF_TEXTREL;
1187 }
1188 }
1189 }
1190
1191 local_got = elf_local_got_refcounts (ibfd);
1192 if (!local_got)
1193 continue;
1194
1195 symtab_hdr = &elf_symtab_hdr (ibfd);
1196 locsymcount = symtab_hdr->sh_info;
1197 end_local_got = local_got + locsymcount;
1198 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1199 s = htab->elf.sgot;
1200 srel = htab->elf.srelgot;
1201 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1202 {
1203 if (*local_got > 0)
1204 {
1205 *local_got = s->size;
1206 s->size += RISCV_ELF_WORD_BYTES;
1207 if (*local_tls_type & GOT_TLS_GD)
1208 s->size += RISCV_ELF_WORD_BYTES;
1209 if (bfd_link_pic (info)
1210 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1211 srel->size += sizeof (ElfNN_External_Rela);
1212 }
1213 else
1214 *local_got = (bfd_vma) -1;
1215 }
1216 }
1217
1218 /* Allocate global sym .plt and .got entries, and space for global
1219 sym dynamic relocs. */
1220 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1221
1222 if (htab->elf.sgotplt)
1223 {
1224 struct elf_link_hash_entry *got;
1225 got = elf_link_hash_lookup (elf_hash_table (info),
1226 "_GLOBAL_OFFSET_TABLE_",
1227 FALSE, FALSE, FALSE);
1228
1229 /* Don't allocate .got.plt section if there are no GOT nor PLT
1230 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1231 if ((got == NULL
1232 || !got->ref_regular_nonweak)
1233 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1234 && (htab->elf.splt == NULL
1235 || htab->elf.splt->size == 0)
1236 && (htab->elf.sgot == NULL
1237 || (htab->elf.sgot->size
1238 == get_elf_backend_data (output_bfd)->got_header_size)))
1239 htab->elf.sgotplt->size = 0;
1240 }
1241
1242 /* The check_relocs and adjust_dynamic_symbol entry points have
1243 determined the sizes of the various dynamic sections. Allocate
1244 memory for them. */
1245 for (s = dynobj->sections; s != NULL; s = s->next)
1246 {
1247 if ((s->flags & SEC_LINKER_CREATED) == 0)
1248 continue;
1249
1250 if (s == htab->elf.splt
1251 || s == htab->elf.sgot
1252 || s == htab->elf.sgotplt
5474d94f
AM
1253 || s == htab->elf.sdynbss
1254 || s == htab->elf.sdynrelro)
e23eba97
NC
1255 {
1256 /* Strip this section if we don't need it; see the
1257 comment below. */
1258 }
1259 else if (strncmp (s->name, ".rela", 5) == 0)
1260 {
1261 if (s->size != 0)
1262 {
1263 /* We use the reloc_count field as a counter if we need
1264 to copy relocs into the output file. */
1265 s->reloc_count = 0;
1266 }
1267 }
1268 else
1269 {
1270 /* It's not one of our sections. */
1271 continue;
1272 }
1273
1274 if (s->size == 0)
1275 {
1276 /* If we don't need this section, strip it from the
1277 output file. This is mostly to handle .rela.bss and
1278 .rela.plt. We must create both sections in
1279 create_dynamic_sections, because they must be created
1280 before the linker maps input sections to output
1281 sections. The linker does that before
1282 adjust_dynamic_symbol is called, and it is that
1283 function which decides whether anything needs to go
1284 into these sections. */
1285 s->flags |= SEC_EXCLUDE;
1286 continue;
1287 }
1288
1289 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1290 continue;
1291
1292 /* Allocate memory for the section contents. Zero the memory
1293 for the benefit of .rela.plt, which has 4 unused entries
1294 at the beginning, and we don't want garbage. */
1295 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1296 if (s->contents == NULL)
1297 return FALSE;
1298 }
1299
1300 if (elf_hash_table (info)->dynamic_sections_created)
1301 {
1302 /* Add some entries to the .dynamic section. We fill in the
1303 values later, in riscv_elf_finish_dynamic_sections, but we
1304 must add the entries now so that we get the correct size for
1305 the .dynamic section. The DT_DEBUG entry is filled in by the
1306 dynamic linker and used by the debugger. */
1307#define add_dynamic_entry(TAG, VAL) \
1308 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1309
1310 if (bfd_link_executable (info))
1311 {
1312 if (!add_dynamic_entry (DT_DEBUG, 0))
1313 return FALSE;
1314 }
1315
1316 if (htab->elf.srelplt->size != 0)
1317 {
1318 if (!add_dynamic_entry (DT_PLTGOT, 0)
1319 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1320 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1321 || !add_dynamic_entry (DT_JMPREL, 0))
1322 return FALSE;
1323 }
1324
1325 if (!add_dynamic_entry (DT_RELA, 0)
1326 || !add_dynamic_entry (DT_RELASZ, 0)
1327 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1328 return FALSE;
1329
1330 /* If any dynamic relocs apply to a read-only section,
1331 then we need a DT_TEXTREL entry. */
1332 if ((info->flags & DF_TEXTREL) == 0)
63c1f59d 1333 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
e23eba97
NC
1334
1335 if (info->flags & DF_TEXTREL)
1336 {
1337 if (!add_dynamic_entry (DT_TEXTREL, 0))
1338 return FALSE;
1339 }
1340 }
1341#undef add_dynamic_entry
1342
1343 return TRUE;
1344}
1345
1346#define TP_OFFSET 0
1347#define DTP_OFFSET 0x800
1348
1349/* Return the relocation value for a TLS dtp-relative reloc. */
1350
1351static bfd_vma
1352dtpoff (struct bfd_link_info *info, bfd_vma address)
1353{
1354 /* If tls_sec is NULL, we should have signalled an error already. */
1355 if (elf_hash_table (info)->tls_sec == NULL)
1356 return 0;
1357 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1358}
1359
1360/* Return the relocation value for a static TLS tp-relative relocation. */
1361
1362static bfd_vma
1363tpoff (struct bfd_link_info *info, bfd_vma address)
1364{
1365 /* If tls_sec is NULL, we should have signalled an error already. */
1366 if (elf_hash_table (info)->tls_sec == NULL)
1367 return 0;
1368 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1369}
1370
1371/* Return the global pointer's value, or 0 if it is not in use. */
1372
1373static bfd_vma
1374riscv_global_pointer_value (struct bfd_link_info *info)
1375{
1376 struct bfd_link_hash_entry *h;
1377
b5292032 1378 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
e23eba97
NC
1379 if (h == NULL || h->type != bfd_link_hash_defined)
1380 return 0;
1381
1382 return h->u.def.value + sec_addr (h->u.def.section);
1383}
1384
1385/* Emplace a static relocation. */
1386
1387static bfd_reloc_status_type
1388perform_relocation (const reloc_howto_type *howto,
1389 const Elf_Internal_Rela *rel,
1390 bfd_vma value,
1391 asection *input_section,
1392 bfd *input_bfd,
1393 bfd_byte *contents)
1394{
1395 if (howto->pc_relative)
1396 value -= sec_addr (input_section) + rel->r_offset;
1397 value += rel->r_addend;
1398
1399 switch (ELFNN_R_TYPE (rel->r_info))
1400 {
1401 case R_RISCV_HI20:
1402 case R_RISCV_TPREL_HI20:
1403 case R_RISCV_PCREL_HI20:
1404 case R_RISCV_GOT_HI20:
1405 case R_RISCV_TLS_GOT_HI20:
1406 case R_RISCV_TLS_GD_HI20:
1407 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1408 return bfd_reloc_overflow;
1409 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1410 break;
1411
1412 case R_RISCV_LO12_I:
1413 case R_RISCV_GPREL_I:
1414 case R_RISCV_TPREL_LO12_I:
45f76423 1415 case R_RISCV_TPREL_I:
e23eba97
NC
1416 case R_RISCV_PCREL_LO12_I:
1417 value = ENCODE_ITYPE_IMM (value);
1418 break;
1419
1420 case R_RISCV_LO12_S:
1421 case R_RISCV_GPREL_S:
1422 case R_RISCV_TPREL_LO12_S:
45f76423 1423 case R_RISCV_TPREL_S:
e23eba97
NC
1424 case R_RISCV_PCREL_LO12_S:
1425 value = ENCODE_STYPE_IMM (value);
1426 break;
1427
1428 case R_RISCV_CALL:
1429 case R_RISCV_CALL_PLT:
1430 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1431 return bfd_reloc_overflow;
1432 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1433 | (ENCODE_ITYPE_IMM (value) << 32);
1434 break;
1435
1436 case R_RISCV_JAL:
1437 if (!VALID_UJTYPE_IMM (value))
1438 return bfd_reloc_overflow;
1439 value = ENCODE_UJTYPE_IMM (value);
1440 break;
1441
1442 case R_RISCV_BRANCH:
1443 if (!VALID_SBTYPE_IMM (value))
1444 return bfd_reloc_overflow;
1445 value = ENCODE_SBTYPE_IMM (value);
1446 break;
1447
1448 case R_RISCV_RVC_BRANCH:
1449 if (!VALID_RVC_B_IMM (value))
1450 return bfd_reloc_overflow;
1451 value = ENCODE_RVC_B_IMM (value);
1452 break;
1453
1454 case R_RISCV_RVC_JUMP:
1455 if (!VALID_RVC_J_IMM (value))
1456 return bfd_reloc_overflow;
1457 value = ENCODE_RVC_J_IMM (value);
1458 break;
1459
1460 case R_RISCV_RVC_LUI:
1461 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1462 return bfd_reloc_overflow;
1463 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1464 break;
1465
1466 case R_RISCV_32:
1467 case R_RISCV_64:
1468 case R_RISCV_ADD8:
1469 case R_RISCV_ADD16:
1470 case R_RISCV_ADD32:
1471 case R_RISCV_ADD64:
45f76423 1472 case R_RISCV_SUB6:
e23eba97
NC
1473 case R_RISCV_SUB8:
1474 case R_RISCV_SUB16:
1475 case R_RISCV_SUB32:
1476 case R_RISCV_SUB64:
45f76423
AW
1477 case R_RISCV_SET6:
1478 case R_RISCV_SET8:
1479 case R_RISCV_SET16:
1480 case R_RISCV_SET32:
a6cbf936 1481 case R_RISCV_32_PCREL:
e23eba97
NC
1482 case R_RISCV_TLS_DTPREL32:
1483 case R_RISCV_TLS_DTPREL64:
1484 break;
1485
ff6f4d9b
PD
1486 case R_RISCV_DELETE:
1487 return bfd_reloc_ok;
1488
e23eba97
NC
1489 default:
1490 return bfd_reloc_notsupported;
1491 }
1492
1493 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1494 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1495 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1496
1497 return bfd_reloc_ok;
1498}
1499
1500/* Remember all PC-relative high-part relocs we've encountered to help us
1501 later resolve the corresponding low-part relocs. */
1502
1503typedef struct
1504{
1505 bfd_vma address;
1506 bfd_vma value;
1507} riscv_pcrel_hi_reloc;
1508
1509typedef struct riscv_pcrel_lo_reloc
1510{
07d6d2b8
AM
1511 asection * input_section;
1512 struct bfd_link_info * info;
1513 reloc_howto_type * howto;
1514 const Elf_Internal_Rela * reloc;
1515 bfd_vma addr;
1516 const char * name;
1517 bfd_byte * contents;
1518 struct riscv_pcrel_lo_reloc * next;
e23eba97
NC
1519} riscv_pcrel_lo_reloc;
1520
1521typedef struct
1522{
1523 htab_t hi_relocs;
1524 riscv_pcrel_lo_reloc *lo_relocs;
1525} riscv_pcrel_relocs;
1526
1527static hashval_t
1528riscv_pcrel_reloc_hash (const void *entry)
1529{
1530 const riscv_pcrel_hi_reloc *e = entry;
1531 return (hashval_t)(e->address >> 2);
1532}
1533
1534static bfd_boolean
1535riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1536{
1537 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1538 return e1->address == e2->address;
1539}
1540
1541static bfd_boolean
1542riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1543{
1544
1545 p->lo_relocs = NULL;
1546 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1547 riscv_pcrel_reloc_eq, free);
1548 return p->hi_relocs != NULL;
1549}
1550
1551static void
1552riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1553{
1554 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1555
1556 while (cur != NULL)
1557 {
1558 riscv_pcrel_lo_reloc *next = cur->next;
1559 free (cur);
1560 cur = next;
1561 }
1562
1563 htab_delete (p->hi_relocs);
1564}
1565
1566static bfd_boolean
b1308d2c
PD
1567riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1568 struct bfd_link_info *info,
1569 bfd_vma pc,
1570 bfd_vma addr,
1571 bfd_byte *contents,
1572 const reloc_howto_type *howto,
1573 bfd *input_bfd)
e23eba97 1574{
b1308d2c
PD
1575 /* We may need to reference low addreses in PC-relative modes even when the
1576 * PC is far away from these addresses. For example, undefweak references
1577 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1578 * addresses that we can link PC-relative programs at, the linker can't
1579 * actually relocate references to those symbols. In order to allow these
1580 * programs to work we simply convert the PC-relative auipc sequences to
1581 * 0-relative lui sequences. */
1582 if (bfd_link_pic (info))
1583 return FALSE;
1584
1585 /* If it's possible to reference the symbol using auipc we do so, as that's
1586 * more in the spirit of the PC-relative relocations we're processing. */
1587 bfd_vma offset = addr - pc;
1588 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1589 return FALSE;
1590
1591 /* If it's impossible to reference this with a LUI-based offset then don't
1592 * bother to convert it at all so users still see the PC-relative relocation
1593 * in the truncation message. */
1594 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1595 return FALSE;
1596
1597 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20);
1598
1599 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset);
1600 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1601 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1602 return TRUE;
1603}
1604
1605static bfd_boolean
1606riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1607 bfd_vma value, bfd_boolean absolute)
1608{
1609 bfd_vma offset = absolute ? value : value - addr;
1610 riscv_pcrel_hi_reloc entry = {addr, offset};
e23eba97
NC
1611 riscv_pcrel_hi_reloc **slot =
1612 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1613
1614 BFD_ASSERT (*slot == NULL);
1615 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1616 if (*slot == NULL)
1617 return FALSE;
1618 **slot = entry;
1619 return TRUE;
1620}
1621
1622static bfd_boolean
1623riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1624 asection *input_section,
1625 struct bfd_link_info *info,
1626 reloc_howto_type *howto,
1627 const Elf_Internal_Rela *reloc,
1628 bfd_vma addr,
1629 const char *name,
1630 bfd_byte *contents)
1631{
1632 riscv_pcrel_lo_reloc *entry;
1633 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1634 if (entry == NULL)
1635 return FALSE;
1636 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1637 name, contents, p->lo_relocs};
1638 p->lo_relocs = entry;
1639 return TRUE;
1640}
1641
1642static bfd_boolean
1643riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1644{
1645 riscv_pcrel_lo_reloc *r;
1646
1647 for (r = p->lo_relocs; r != NULL; r = r->next)
1648 {
1649 bfd *input_bfd = r->input_section->owner;
1650
1651 riscv_pcrel_hi_reloc search = {r->addr, 0};
1652 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
1653 if (entry == NULL)
07d6d2b8 1654 {
e23eba97
NC
1655 ((*r->info->callbacks->reloc_overflow)
1656 (r->info, NULL, r->name, r->howto->name, (bfd_vma) 0,
1657 input_bfd, r->input_section, r->reloc->r_offset));
1658 return TRUE;
07d6d2b8 1659 }
e23eba97
NC
1660
1661 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1662 input_bfd, r->contents);
1663 }
1664
1665 return TRUE;
1666}
1667
1668/* Relocate a RISC-V ELF section.
1669
1670 The RELOCATE_SECTION function is called by the new ELF backend linker
1671 to handle the relocations for a section.
1672
1673 The relocs are always passed as Rela structures.
1674
1675 This function is responsible for adjusting the section contents as
1676 necessary, and (if generating a relocatable output file) adjusting
1677 the reloc addend as necessary.
1678
1679 This function does not have to worry about setting the reloc
1680 address or the reloc symbol index.
1681
1682 LOCAL_SYMS is a pointer to the swapped in local symbols.
1683
1684 LOCAL_SECTIONS is an array giving the section in the input file
1685 corresponding to the st_shndx field of each local symbol.
1686
1687 The global hash table entry for the global symbols can be found
1688 via elf_sym_hashes (input_bfd).
1689
1690 When generating relocatable output, this function must handle
1691 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1692 going to be the section symbol corresponding to the output
1693 section, which means that the addend must be adjusted
1694 accordingly. */
1695
1696static bfd_boolean
1697riscv_elf_relocate_section (bfd *output_bfd,
1698 struct bfd_link_info *info,
1699 bfd *input_bfd,
1700 asection *input_section,
1701 bfd_byte *contents,
1702 Elf_Internal_Rela *relocs,
1703 Elf_Internal_Sym *local_syms,
1704 asection **local_sections)
1705{
1706 Elf_Internal_Rela *rel;
1707 Elf_Internal_Rela *relend;
1708 riscv_pcrel_relocs pcrel_relocs;
1709 bfd_boolean ret = FALSE;
1710 asection *sreloc = elf_section_data (input_section)->sreloc;
1711 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1712 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1713 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1714 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
b1308d2c 1715 bfd_boolean absolute;
e23eba97
NC
1716
1717 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1718 return FALSE;
1719
1720 relend = relocs + input_section->reloc_count;
1721 for (rel = relocs; rel < relend; rel++)
1722 {
1723 unsigned long r_symndx;
1724 struct elf_link_hash_entry *h;
1725 Elf_Internal_Sym *sym;
1726 asection *sec;
1727 bfd_vma relocation;
1728 bfd_reloc_status_type r = bfd_reloc_ok;
1729 const char *name;
1730 bfd_vma off, ie_off;
1731 bfd_boolean unresolved_reloc, is_ie = FALSE;
1732 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1733 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
0aa13fee 1734 reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
e23eba97 1735 const char *msg = NULL;
6487709f 1736 bfd_boolean resolved_to_zero;
e23eba97 1737
f3185997
NC
1738 if (howto == NULL
1739 || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
e23eba97
NC
1740 continue;
1741
1742 /* This is a final link. */
1743 r_symndx = ELFNN_R_SYM (rel->r_info);
1744 h = NULL;
1745 sym = NULL;
1746 sec = NULL;
1747 unresolved_reloc = FALSE;
1748 if (r_symndx < symtab_hdr->sh_info)
1749 {
1750 sym = local_syms + r_symndx;
1751 sec = local_sections[r_symndx];
1752 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1753 }
1754 else
1755 {
1756 bfd_boolean warned, ignored;
1757
1758 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1759 r_symndx, symtab_hdr, sym_hashes,
1760 h, sec, relocation,
1761 unresolved_reloc, warned, ignored);
1762 if (warned)
1763 {
1764 /* To avoid generating warning messages about truncated
1765 relocations, set the relocation's address to be the same as
1766 the start of this section. */
1767 if (input_section->output_section != NULL)
1768 relocation = input_section->output_section->vma;
1769 else
1770 relocation = 0;
1771 }
1772 }
1773
1774 if (sec != NULL && discarded_section (sec))
1775 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1776 rel, 1, relend, howto, 0, contents);
1777
1778 if (bfd_link_relocatable (info))
1779 continue;
1780
1781 if (h != NULL)
1782 name = h->root.root.string;
1783 else
1784 {
1785 name = (bfd_elf_string_from_elf_section
1786 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1787 if (name == NULL || *name == '\0')
1788 name = bfd_section_name (input_bfd, sec);
1789 }
1790
6487709f
JW
1791 resolved_to_zero = (h != NULL
1792 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
1793
e23eba97
NC
1794 switch (r_type)
1795 {
1796 case R_RISCV_NONE:
45f76423 1797 case R_RISCV_RELAX:
e23eba97
NC
1798 case R_RISCV_TPREL_ADD:
1799 case R_RISCV_COPY:
1800 case R_RISCV_JUMP_SLOT:
1801 case R_RISCV_RELATIVE:
1802 /* These require nothing of us at all. */
1803 continue;
1804
1805 case R_RISCV_HI20:
1806 case R_RISCV_BRANCH:
1807 case R_RISCV_RVC_BRANCH:
1808 case R_RISCV_RVC_LUI:
1809 case R_RISCV_LO12_I:
1810 case R_RISCV_LO12_S:
45f76423
AW
1811 case R_RISCV_SET6:
1812 case R_RISCV_SET8:
1813 case R_RISCV_SET16:
1814 case R_RISCV_SET32:
a6cbf936 1815 case R_RISCV_32_PCREL:
ff6f4d9b 1816 case R_RISCV_DELETE:
e23eba97
NC
1817 /* These require no special handling beyond perform_relocation. */
1818 break;
1819
1820 case R_RISCV_GOT_HI20:
1821 if (h != NULL)
1822 {
1823 bfd_boolean dyn, pic;
1824
1825 off = h->got.offset;
1826 BFD_ASSERT (off != (bfd_vma) -1);
1827 dyn = elf_hash_table (info)->dynamic_sections_created;
1828 pic = bfd_link_pic (info);
1829
1830 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1831 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1832 {
1833 /* This is actually a static link, or it is a
1834 -Bsymbolic link and the symbol is defined
1835 locally, or the symbol was forced to be local
1836 because of a version file. We must initialize
1837 this entry in the global offset table. Since the
1838 offset must always be a multiple of the word size,
1839 we use the least significant bit to record whether
1840 we have initialized it already.
1841
1842 When doing a dynamic link, we create a .rela.got
1843 relocation entry to initialize the value. This
1844 is done in the finish_dynamic_symbol routine. */
1845 if ((off & 1) != 0)
1846 off &= ~1;
1847 else
1848 {
1849 bfd_put_NN (output_bfd, relocation,
1850 htab->elf.sgot->contents + off);
1851 h->got.offset |= 1;
1852 }
1853 }
1854 else
1855 unresolved_reloc = FALSE;
1856 }
1857 else
1858 {
1859 BFD_ASSERT (local_got_offsets != NULL
1860 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1861
1862 off = local_got_offsets[r_symndx];
1863
1864 /* The offset must always be a multiple of the word size.
1865 So, we can use the least significant bit to record
1866 whether we have already processed this entry. */
1867 if ((off & 1) != 0)
1868 off &= ~1;
1869 else
1870 {
1871 if (bfd_link_pic (info))
1872 {
1873 asection *s;
1874 Elf_Internal_Rela outrel;
1875
1876 /* We need to generate a R_RISCV_RELATIVE reloc
1877 for the dynamic linker. */
1878 s = htab->elf.srelgot;
1879 BFD_ASSERT (s != NULL);
1880
1881 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1882 outrel.r_info =
1883 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1884 outrel.r_addend = relocation;
1885 relocation = 0;
1886 riscv_elf_append_rela (output_bfd, s, &outrel);
1887 }
1888
1889 bfd_put_NN (output_bfd, relocation,
1890 htab->elf.sgot->contents + off);
1891 local_got_offsets[r_symndx] |= 1;
1892 }
1893 }
1894 relocation = sec_addr (htab->elf.sgot) + off;
b1308d2c
PD
1895 absolute = riscv_zero_pcrel_hi_reloc (rel,
1896 info,
1897 pc,
1898 relocation,
1899 contents,
1900 howto,
1901 input_bfd);
1902 r_type = ELFNN_R_TYPE (rel->r_info);
0aa13fee 1903 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
f3185997
NC
1904 if (howto == NULL)
1905 r = bfd_reloc_notsupported;
1906 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1907 relocation, absolute))
e23eba97
NC
1908 r = bfd_reloc_overflow;
1909 break;
1910
1911 case R_RISCV_ADD8:
1912 case R_RISCV_ADD16:
1913 case R_RISCV_ADD32:
1914 case R_RISCV_ADD64:
1915 {
1916 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1917 contents + rel->r_offset);
1918 relocation = old_value + relocation;
1919 }
1920 break;
1921
45f76423 1922 case R_RISCV_SUB6:
e23eba97
NC
1923 case R_RISCV_SUB8:
1924 case R_RISCV_SUB16:
1925 case R_RISCV_SUB32:
1926 case R_RISCV_SUB64:
1927 {
1928 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1929 contents + rel->r_offset);
1930 relocation = old_value - relocation;
1931 }
1932 break;
1933
1934 case R_RISCV_CALL_PLT:
1935 case R_RISCV_CALL:
1936 case R_RISCV_JAL:
1937 case R_RISCV_RVC_JUMP:
1938 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
1939 {
1940 /* Refer to the PLT entry. */
1941 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
1942 unresolved_reloc = FALSE;
1943 }
1944 break;
1945
1946 case R_RISCV_TPREL_HI20:
1947 relocation = tpoff (info, relocation);
1948 break;
1949
1950 case R_RISCV_TPREL_LO12_I:
1951 case R_RISCV_TPREL_LO12_S:
45f76423
AW
1952 relocation = tpoff (info, relocation);
1953 break;
1954
1955 case R_RISCV_TPREL_I:
1956 case R_RISCV_TPREL_S:
e23eba97
NC
1957 relocation = tpoff (info, relocation);
1958 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
1959 {
1960 /* We can use tp as the base register. */
1961 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
1962 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1963 insn |= X_TP << OP_SH_RS1;
1964 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
1965 }
45f76423
AW
1966 else
1967 r = bfd_reloc_overflow;
e23eba97
NC
1968 break;
1969
1970 case R_RISCV_GPREL_I:
1971 case R_RISCV_GPREL_S:
1972 {
1973 bfd_vma gp = riscv_global_pointer_value (info);
1974 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
1975 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
1976 {
1977 /* We can use x0 or gp as the base register. */
1978 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
1979 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1980 if (!x0_base)
1981 {
1982 rel->r_addend -= gp;
1983 insn |= X_GP << OP_SH_RS1;
1984 }
1985 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
1986 }
1987 else
1988 r = bfd_reloc_overflow;
1989 break;
1990 }
1991
1992 case R_RISCV_PCREL_HI20:
b1308d2c
PD
1993 absolute = riscv_zero_pcrel_hi_reloc (rel,
1994 info,
1995 pc,
1996 relocation,
1997 contents,
1998 howto,
1999 input_bfd);
2000 r_type = ELFNN_R_TYPE (rel->r_info);
0aa13fee 2001 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
f3185997
NC
2002 if (howto == NULL)
2003 r = bfd_reloc_notsupported;
2004 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2005 relocation + rel->r_addend,
2006 absolute))
e23eba97
NC
2007 r = bfd_reloc_overflow;
2008 break;
2009
2010 case R_RISCV_PCREL_LO12_I:
2011 case R_RISCV_PCREL_LO12_S:
2a0d9853
JW
2012 /* Addends are not allowed, because then riscv_relax_delete_bytes
2013 would have to search through all relocs to update the addends.
2014 Also, riscv_resolve_pcrel_lo_relocs does not support addends
2015 when searching for a matching hi reloc. */
2016 if (rel->r_addend)
2017 {
2018 r = bfd_reloc_dangerous;
2019 break;
2020 }
2021
e23eba97
NC
2022 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
2023 howto, rel, relocation, name,
2024 contents))
2025 continue;
2026 r = bfd_reloc_overflow;
2027 break;
2028
2029 case R_RISCV_TLS_DTPREL32:
2030 case R_RISCV_TLS_DTPREL64:
2031 relocation = dtpoff (info, relocation);
2032 break;
2033
2034 case R_RISCV_32:
2035 case R_RISCV_64:
2036 if ((input_section->flags & SEC_ALLOC) == 0)
2037 break;
2038
2039 if ((bfd_link_pic (info)
2040 && (h == NULL
6487709f
JW
2041 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2042 && !resolved_to_zero)
e23eba97
NC
2043 || h->root.type != bfd_link_hash_undefweak)
2044 && (! howto->pc_relative
2045 || !SYMBOL_CALLS_LOCAL (info, h)))
2046 || (!bfd_link_pic (info)
2047 && h != NULL
2048 && h->dynindx != -1
2049 && !h->non_got_ref
2050 && ((h->def_dynamic
2051 && !h->def_regular)
2052 || h->root.type == bfd_link_hash_undefweak
2053 || h->root.type == bfd_link_hash_undefined)))
2054 {
2055 Elf_Internal_Rela outrel;
2056 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2057
2058 /* When generating a shared object, these relocations
2059 are copied into the output file to be resolved at run
2060 time. */
2061
2062 outrel.r_offset =
2063 _bfd_elf_section_offset (output_bfd, info, input_section,
2064 rel->r_offset);
2065 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2066 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2067 outrel.r_offset += sec_addr (input_section);
2068
2069 if (skip_dynamic_relocation)
2070 memset (&outrel, 0, sizeof outrel);
2071 else if (h != NULL && h->dynindx != -1
2072 && !(bfd_link_pic (info)
2073 && SYMBOLIC_BIND (info, h)
2074 && h->def_regular))
2075 {
2076 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2077 outrel.r_addend = rel->r_addend;
2078 }
2079 else
2080 {
2081 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2082 outrel.r_addend = relocation + rel->r_addend;
2083 }
2084
2085 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2086 if (skip_static_relocation)
2087 continue;
2088 }
2089 break;
2090
2091 case R_RISCV_TLS_GOT_HI20:
2092 is_ie = TRUE;
2093 /* Fall through. */
2094
2095 case R_RISCV_TLS_GD_HI20:
2096 if (h != NULL)
2097 {
2098 off = h->got.offset;
2099 h->got.offset |= 1;
2100 }
2101 else
2102 {
2103 off = local_got_offsets[r_symndx];
2104 local_got_offsets[r_symndx] |= 1;
2105 }
2106
2107 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2108 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2109 /* If this symbol is referenced by both GD and IE TLS, the IE
2110 reference's GOT slot follows the GD reference's slots. */
2111 ie_off = 0;
2112 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2113 ie_off = 2 * GOT_ENTRY_SIZE;
2114
2115 if ((off & 1) != 0)
2116 off &= ~1;
2117 else
2118 {
2119 Elf_Internal_Rela outrel;
2120 int indx = 0;
2121 bfd_boolean need_relocs = FALSE;
2122
2123 if (htab->elf.srelgot == NULL)
2124 abort ();
2125
2126 if (h != NULL)
2127 {
2128 bfd_boolean dyn, pic;
2129 dyn = htab->elf.dynamic_sections_created;
2130 pic = bfd_link_pic (info);
2131
2132 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2133 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2134 indx = h->dynindx;
2135 }
2136
2137 /* The GOT entries have not been initialized yet. Do it
07d6d2b8 2138 now, and emit any relocations. */
e23eba97
NC
2139 if ((bfd_link_pic (info) || indx != 0)
2140 && (h == NULL
2141 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2142 || h->root.type != bfd_link_hash_undefweak))
2143 need_relocs = TRUE;
2144
2145 if (tls_type & GOT_TLS_GD)
2146 {
2147 if (need_relocs)
2148 {
2149 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2150 outrel.r_addend = 0;
2151 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2152 bfd_put_NN (output_bfd, 0,
2153 htab->elf.sgot->contents + off);
2154 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2155 if (indx == 0)
2156 {
2157 BFD_ASSERT (! unresolved_reloc);
2158 bfd_put_NN (output_bfd,
2159 dtpoff (info, relocation),
2160 (htab->elf.sgot->contents + off +
2161 RISCV_ELF_WORD_BYTES));
2162 }
2163 else
2164 {
2165 bfd_put_NN (output_bfd, 0,
2166 (htab->elf.sgot->contents + off +
2167 RISCV_ELF_WORD_BYTES));
2168 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2169 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2170 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2171 }
2172 }
2173 else
2174 {
2175 /* If we are not emitting relocations for a
2176 general dynamic reference, then we must be in a
2177 static link or an executable link with the
2178 symbol binding locally. Mark it as belonging
2179 to module 1, the executable. */
2180 bfd_put_NN (output_bfd, 1,
2181 htab->elf.sgot->contents + off);
2182 bfd_put_NN (output_bfd,
2183 dtpoff (info, relocation),
2184 (htab->elf.sgot->contents + off +
2185 RISCV_ELF_WORD_BYTES));
2186 }
2187 }
2188
2189 if (tls_type & GOT_TLS_IE)
2190 {
2191 if (need_relocs)
2192 {
2193 bfd_put_NN (output_bfd, 0,
2194 htab->elf.sgot->contents + off + ie_off);
2195 outrel.r_offset = sec_addr (htab->elf.sgot)
2196 + off + ie_off;
2197 outrel.r_addend = 0;
2198 if (indx == 0)
2199 outrel.r_addend = tpoff (info, relocation);
2200 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2201 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2202 }
2203 else
2204 {
2205 bfd_put_NN (output_bfd, tpoff (info, relocation),
2206 htab->elf.sgot->contents + off + ie_off);
2207 }
2208 }
2209 }
2210
2211 BFD_ASSERT (off < (bfd_vma) -2);
2212 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
b1308d2c
PD
2213 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2214 relocation, FALSE))
e23eba97
NC
2215 r = bfd_reloc_overflow;
2216 unresolved_reloc = FALSE;
2217 break;
2218
2219 default:
2220 r = bfd_reloc_notsupported;
2221 }
2222
2223 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2224 because such sections are not SEC_ALLOC and thus ld.so will
2225 not process them. */
2226 if (unresolved_reloc
2227 && !((input_section->flags & SEC_DEBUGGING) != 0
2228 && h->def_dynamic)
2229 && _bfd_elf_section_offset (output_bfd, info, input_section,
2230 rel->r_offset) != (bfd_vma) -1)
2231 {
2232 (*_bfd_error_handler)
2dcf00ce
AM
2233 (_("%pB(%pA+%#" PRIx64 "): "
2234 "unresolvable %s relocation against symbol `%s'"),
e23eba97
NC
2235 input_bfd,
2236 input_section,
2dcf00ce 2237 (uint64_t) rel->r_offset,
e23eba97
NC
2238 howto->name,
2239 h->root.root.string);
2240 continue;
2241 }
2242
2243 if (r == bfd_reloc_ok)
2244 r = perform_relocation (howto, rel, relocation, input_section,
2245 input_bfd, contents);
2246
2247 switch (r)
2248 {
2249 case bfd_reloc_ok:
2250 continue;
2251
2252 case bfd_reloc_overflow:
2253 info->callbacks->reloc_overflow
2254 (info, (h ? &h->root : NULL), name, howto->name,
2255 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2256 break;
2257
2258 case bfd_reloc_undefined:
2259 info->callbacks->undefined_symbol
2260 (info, name, input_bfd, input_section, rel->r_offset,
2261 TRUE);
2262 break;
2263
2264 case bfd_reloc_outofrange:
2a0d9853 2265 msg = _("%X%P: internal error: out of range error\n");
e23eba97
NC
2266 break;
2267
2268 case bfd_reloc_notsupported:
2a0d9853 2269 msg = _("%X%P: internal error: unsupported relocation error\n");
e23eba97
NC
2270 break;
2271
2272 case bfd_reloc_dangerous:
2a0d9853
JW
2273 info->callbacks->reloc_dangerous
2274 (info, "%pcrel_lo with addend", input_bfd, input_section,
2275 rel->r_offset);
e23eba97
NC
2276 break;
2277
2278 default:
2a0d9853 2279 msg = _("%X%P: internal error: unknown error\n");
e23eba97
NC
2280 break;
2281 }
2282
2283 if (msg)
2a0d9853
JW
2284 info->callbacks->einfo (msg);
2285
3f48fe4a
JW
2286 /* We already reported the error via a callback, so don't try to report
2287 it again by returning false. That leads to spurious errors. */
ed01220c 2288 ret = TRUE;
e23eba97
NC
2289 goto out;
2290 }
2291
2292 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2293out:
2294 riscv_free_pcrel_relocs (&pcrel_relocs);
2295 return ret;
2296}
2297
2298/* Finish up dynamic symbol handling. We set the contents of various
2299 dynamic sections here. */
2300
2301static bfd_boolean
2302riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2303 struct bfd_link_info *info,
2304 struct elf_link_hash_entry *h,
2305 Elf_Internal_Sym *sym)
2306{
2307 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2308 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2309
2310 if (h->plt.offset != (bfd_vma) -1)
2311 {
2312 /* We've decided to create a PLT entry for this symbol. */
2313 bfd_byte *loc;
2314 bfd_vma i, header_address, plt_idx, got_address;
2315 uint32_t plt_entry[PLT_ENTRY_INSNS];
2316 Elf_Internal_Rela rela;
2317
2318 BFD_ASSERT (h->dynindx != -1);
2319
2320 /* Calculate the address of the PLT header. */
2321 header_address = sec_addr (htab->elf.splt);
2322
2323 /* Calculate the index of the entry. */
2324 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2325
2326 /* Calculate the address of the .got.plt entry. */
2327 got_address = riscv_elf_got_plt_val (plt_idx, info);
2328
2329 /* Find out where the .plt entry should go. */
2330 loc = htab->elf.splt->contents + h->plt.offset;
2331
2332 /* Fill in the PLT entry itself. */
2333 riscv_make_plt_entry (got_address, header_address + h->plt.offset,
2334 plt_entry);
2335 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2336 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2337
2338 /* Fill in the initial value of the .got.plt entry. */
2339 loc = htab->elf.sgotplt->contents
2340 + (got_address - sec_addr (htab->elf.sgotplt));
2341 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2342
2343 /* Fill in the entry in the .rela.plt section. */
2344 rela.r_offset = got_address;
2345 rela.r_addend = 0;
2346 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2347
2348 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2349 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2350
2351 if (!h->def_regular)
2352 {
2353 /* Mark the symbol as undefined, rather than as defined in
2354 the .plt section. Leave the value alone. */
2355 sym->st_shndx = SHN_UNDEF;
2356 /* If the symbol is weak, we do need to clear the value.
2357 Otherwise, the PLT entry would provide a definition for
2358 the symbol even if the symbol wasn't defined anywhere,
2359 and so the symbol would never be NULL. */
2360 if (!h->ref_regular_nonweak)
2361 sym->st_value = 0;
2362 }
2363 }
2364
2365 if (h->got.offset != (bfd_vma) -1
6487709f
JW
2366 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE))
2367 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
e23eba97
NC
2368 {
2369 asection *sgot;
2370 asection *srela;
2371 Elf_Internal_Rela rela;
2372
2373 /* This symbol has an entry in the GOT. Set it up. */
2374
2375 sgot = htab->elf.sgot;
2376 srela = htab->elf.srelgot;
2377 BFD_ASSERT (sgot != NULL && srela != NULL);
2378
2379 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2380
2381 /* If this is a -Bsymbolic link, and the symbol is defined
2382 locally, we just want to emit a RELATIVE reloc. Likewise if
2383 the symbol was forced to be local because of a version file.
2384 The entry in the global offset table will already have been
2385 initialized in the relocate_section function. */
2386 if (bfd_link_pic (info)
2387 && (info->symbolic || h->dynindx == -1)
2388 && h->def_regular)
2389 {
2390 asection *sec = h->root.u.def.section;
2391 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2392 rela.r_addend = (h->root.u.def.value
2393 + sec->output_section->vma
2394 + sec->output_offset);
2395 }
2396 else
2397 {
2398 BFD_ASSERT (h->dynindx != -1);
2399 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2400 rela.r_addend = 0;
2401 }
2402
2403 bfd_put_NN (output_bfd, 0,
2404 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2405 riscv_elf_append_rela (output_bfd, srela, &rela);
2406 }
2407
2408 if (h->needs_copy)
2409 {
2410 Elf_Internal_Rela rela;
5474d94f 2411 asection *s;
e23eba97
NC
2412
2413 /* This symbols needs a copy reloc. Set it up. */
2414 BFD_ASSERT (h->dynindx != -1);
2415
2416 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2417 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2418 rela.r_addend = 0;
afbf7e8e 2419 if (h->root.u.def.section == htab->elf.sdynrelro)
5474d94f
AM
2420 s = htab->elf.sreldynrelro;
2421 else
2422 s = htab->elf.srelbss;
2423 riscv_elf_append_rela (output_bfd, s, &rela);
e23eba97
NC
2424 }
2425
2426 /* Mark some specially defined symbols as absolute. */
2427 if (h == htab->elf.hdynamic
2428 || (h == htab->elf.hgot || h == htab->elf.hplt))
2429 sym->st_shndx = SHN_ABS;
2430
2431 return TRUE;
2432}
2433
2434/* Finish up the dynamic sections. */
2435
2436static bfd_boolean
2437riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2438 bfd *dynobj, asection *sdyn)
2439{
2440 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2441 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2442 size_t dynsize = bed->s->sizeof_dyn;
2443 bfd_byte *dyncon, *dynconend;
2444
2445 dynconend = sdyn->contents + sdyn->size;
2446 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2447 {
2448 Elf_Internal_Dyn dyn;
2449 asection *s;
2450
2451 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2452
2453 switch (dyn.d_tag)
2454 {
2455 case DT_PLTGOT:
2456 s = htab->elf.sgotplt;
2457 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2458 break;
2459 case DT_JMPREL:
2460 s = htab->elf.srelplt;
2461 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2462 break;
2463 case DT_PLTRELSZ:
2464 s = htab->elf.srelplt;
2465 dyn.d_un.d_val = s->size;
2466 break;
2467 default:
2468 continue;
2469 }
2470
2471 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2472 }
2473 return TRUE;
2474}
2475
2476static bfd_boolean
2477riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2478 struct bfd_link_info *info)
2479{
2480 bfd *dynobj;
2481 asection *sdyn;
2482 struct riscv_elf_link_hash_table *htab;
2483
2484 htab = riscv_elf_hash_table (info);
2485 BFD_ASSERT (htab != NULL);
2486 dynobj = htab->elf.dynobj;
2487
2488 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2489
2490 if (elf_hash_table (info)->dynamic_sections_created)
2491 {
2492 asection *splt;
2493 bfd_boolean ret;
2494
2495 splt = htab->elf.splt;
2496 BFD_ASSERT (splt != NULL && sdyn != NULL);
2497
2498 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2499
535b785f 2500 if (!ret)
e23eba97
NC
2501 return ret;
2502
2503 /* Fill in the head and tail entries in the procedure linkage table. */
2504 if (splt->size > 0)
2505 {
2506 int i;
2507 uint32_t plt_header[PLT_HEADER_INSNS];
2508 riscv_make_plt_header (sec_addr (htab->elf.sgotplt),
2509 sec_addr (splt), plt_header);
2510
2511 for (i = 0; i < PLT_HEADER_INSNS; i++)
2512 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
e23eba97 2513
cc162427
AW
2514 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2515 = PLT_ENTRY_SIZE;
2516 }
e23eba97
NC
2517 }
2518
2519 if (htab->elf.sgotplt)
2520 {
2521 asection *output_section = htab->elf.sgotplt->output_section;
2522
2523 if (bfd_is_abs_section (output_section))
2524 {
2525 (*_bfd_error_handler)
871b3ab2 2526 (_("discarded output section: `%pA'"), htab->elf.sgotplt);
e23eba97
NC
2527 return FALSE;
2528 }
2529
2530 if (htab->elf.sgotplt->size > 0)
2531 {
2532 /* Write the first two entries in .got.plt, needed for the dynamic
2533 linker. */
2534 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2535 bfd_put_NN (output_bfd, (bfd_vma) 0,
2536 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2537 }
2538
2539 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2540 }
2541
2542 if (htab->elf.sgot)
2543 {
2544 asection *output_section = htab->elf.sgot->output_section;
2545
2546 if (htab->elf.sgot->size > 0)
2547 {
2548 /* Set the first entry in the global offset table to the address of
2549 the dynamic section. */
2550 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2551 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2552 }
2553
2554 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2555 }
2556
2557 return TRUE;
2558}
2559
2560/* Return address for Ith PLT stub in section PLT, for relocation REL
2561 or (bfd_vma) -1 if it should not be included. */
2562
2563static bfd_vma
2564riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2565 const arelent *rel ATTRIBUTE_UNUSED)
2566{
2567 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2568}
2569
2570static enum elf_reloc_type_class
2571riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2572 const asection *rel_sec ATTRIBUTE_UNUSED,
2573 const Elf_Internal_Rela *rela)
2574{
2575 switch (ELFNN_R_TYPE (rela->r_info))
2576 {
2577 case R_RISCV_RELATIVE:
2578 return reloc_class_relative;
2579 case R_RISCV_JUMP_SLOT:
2580 return reloc_class_plt;
2581 case R_RISCV_COPY:
2582 return reloc_class_copy;
2583 default:
2584 return reloc_class_normal;
2585 }
2586}
2587
2588/* Merge backend specific data from an object file to the output
2589 object file when linking. */
2590
2591static bfd_boolean
2592_bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
2593{
2594 bfd *obfd = info->output_bfd;
2595 flagword new_flags = elf_elfheader (ibfd)->e_flags;
2596 flagword old_flags = elf_elfheader (obfd)->e_flags;
2597
2598 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
2599 return TRUE;
2600
2601 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
2602 {
2603 (*_bfd_error_handler)
871b3ab2 2604 (_("%pB: ABI is incompatible with that of the selected emulation:\n"
96b0927d
PD
2605 " target emulation `%s' does not match `%s'"),
2606 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
e23eba97
NC
2607 return FALSE;
2608 }
2609
2610 if (!_bfd_elf_merge_object_attributes (ibfd, info))
2611 return FALSE;
2612
2613 if (! elf_flags_init (obfd))
2614 {
2615 elf_flags_init (obfd) = TRUE;
2616 elf_elfheader (obfd)->e_flags = new_flags;
2617 return TRUE;
2618 }
2619
2922d21d
AW
2620 /* Disallow linking different float ABIs. */
2621 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
e23eba97
NC
2622 {
2623 (*_bfd_error_handler)
871b3ab2 2624 (_("%pB: can't link hard-float modules with soft-float modules"), ibfd);
e23eba97
NC
2625 goto fail;
2626 }
2627
2628 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
2629 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
2630
2631 return TRUE;
2632
2633fail:
2634 bfd_set_error (bfd_error_bad_value);
2635 return FALSE;
2636}
2637
2638/* Delete some bytes from a section while relaxing. */
2639
2640static bfd_boolean
7f02625e
JW
2641riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count,
2642 struct bfd_link_info *link_info)
e23eba97
NC
2643{
2644 unsigned int i, symcount;
2645 bfd_vma toaddr = sec->size;
2646 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
2647 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2648 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2649 struct bfd_elf_section_data *data = elf_section_data (sec);
2650 bfd_byte *contents = data->this_hdr.contents;
2651
2652 /* Actually delete the bytes. */
2653 sec->size -= count;
2654 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
2655
2656 /* Adjust the location of all of the relocs. Note that we need not
2657 adjust the addends, since all PC-relative references must be against
2658 symbols, which we will adjust below. */
2659 for (i = 0; i < sec->reloc_count; i++)
2660 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
2661 data->relocs[i].r_offset -= count;
2662
2663 /* Adjust the local symbols defined in this section. */
2664 for (i = 0; i < symtab_hdr->sh_info; i++)
2665 {
2666 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
2667 if (sym->st_shndx == sec_shndx)
2668 {
2669 /* If the symbol is in the range of memory we just moved, we
2670 have to adjust its value. */
2671 if (sym->st_value > addr && sym->st_value <= toaddr)
2672 sym->st_value -= count;
2673
2674 /* If the symbol *spans* the bytes we just deleted (i.e. its
2675 *end* is in the moved bytes but its *start* isn't), then we
788af978
JW
2676 must adjust its size.
2677
2678 This test needs to use the original value of st_value, otherwise
2679 we might accidentally decrease size when deleting bytes right
2680 before the symbol. But since deleted relocs can't span across
2681 symbols, we can't have both a st_value and a st_size decrease,
2682 so it is simpler to just use an else. */
2683 else if (sym->st_value <= addr
2684 && sym->st_value + sym->st_size > addr
2685 && sym->st_value + sym->st_size <= toaddr)
e23eba97
NC
2686 sym->st_size -= count;
2687 }
2688 }
2689
2690 /* Now adjust the global symbols defined in this section. */
2691 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
2692 - symtab_hdr->sh_info);
2693
2694 for (i = 0; i < symcount; i++)
2695 {
2696 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
2697
7f02625e
JW
2698 /* The '--wrap SYMBOL' option is causing a pain when the object file,
2699 containing the definition of __wrap_SYMBOL, includes a direct
2700 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
2701 the same symbol (which is __wrap_SYMBOL), but still exist as two
2702 different symbols in 'sym_hashes', we don't want to adjust
2703 the global symbol __wrap_SYMBOL twice.
2704 This check is only relevant when symbols are being wrapped. */
2705 if (link_info->wrap_hash != NULL)
2706 {
2707 struct elf_link_hash_entry **cur_sym_hashes;
2708
2709 /* Loop only over the symbols which have already been checked. */
2710 for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i];
2711 cur_sym_hashes++)
2712 {
2713 /* If the current symbol is identical to 'sym_hash', that means
2714 the symbol was already adjusted (or at least checked). */
2715 if (*cur_sym_hashes == sym_hash)
2716 break;
2717 }
2718 /* Don't adjust the symbol again. */
2719 if (cur_sym_hashes < &sym_hashes[i])
2720 continue;
2721 }
2722
e23eba97
NC
2723 if ((sym_hash->root.type == bfd_link_hash_defined
2724 || sym_hash->root.type == bfd_link_hash_defweak)
2725 && sym_hash->root.u.def.section == sec)
2726 {
2727 /* As above, adjust the value if needed. */
2728 if (sym_hash->root.u.def.value > addr
2729 && sym_hash->root.u.def.value <= toaddr)
2730 sym_hash->root.u.def.value -= count;
2731
2732 /* As above, adjust the size if needed. */
788af978
JW
2733 else if (sym_hash->root.u.def.value <= addr
2734 && sym_hash->root.u.def.value + sym_hash->size > addr
2735 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
e23eba97
NC
2736 sym_hash->size -= count;
2737 }
2738 }
2739
2740 return TRUE;
2741}
2742
9d06997a
PD
2743/* A second format for recording PC-relative hi relocations. This stores the
2744 information required to relax them to GP-relative addresses. */
2745
2746typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
2747struct riscv_pcgp_hi_reloc
2748{
2749 bfd_vma hi_sec_off;
2750 bfd_vma hi_addend;
2751 bfd_vma hi_addr;
2752 unsigned hi_sym;
2753 asection *sym_sec;
2754 riscv_pcgp_hi_reloc *next;
2755};
2756
2757typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
2758struct riscv_pcgp_lo_reloc
2759{
2760 bfd_vma hi_sec_off;
2761 riscv_pcgp_lo_reloc *next;
2762};
2763
2764typedef struct
2765{
2766 riscv_pcgp_hi_reloc *hi;
2767 riscv_pcgp_lo_reloc *lo;
2768} riscv_pcgp_relocs;
2769
2770static bfd_boolean
2771riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
2772{
2773 p->hi = NULL;
2774 p->lo = NULL;
2775 return TRUE;
2776}
2777
2778static void
2779riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
2780 bfd *abfd ATTRIBUTE_UNUSED,
2781 asection *sec ATTRIBUTE_UNUSED)
2782{
2783 riscv_pcgp_hi_reloc *c;
2784 riscv_pcgp_lo_reloc *l;
2785
2786 for (c = p->hi; c != NULL;)
2787 {
2788 riscv_pcgp_hi_reloc *next = c->next;
2789 free (c);
2790 c = next;
2791 }
2792
2793 for (l = p->lo; l != NULL;)
2794 {
2795 riscv_pcgp_lo_reloc *next = l->next;
2796 free (l);
2797 l = next;
2798 }
2799}
2800
2801static bfd_boolean
2802riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
2803 bfd_vma hi_addend, bfd_vma hi_addr,
2804 unsigned hi_sym, asection *sym_sec)
2805{
2806 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new));
2807 if (!new)
2808 return FALSE;
2809 new->hi_sec_off = hi_sec_off;
2810 new->hi_addend = hi_addend;
2811 new->hi_addr = hi_addr;
2812 new->hi_sym = hi_sym;
2813 new->sym_sec = sym_sec;
2814 new->next = p->hi;
2815 p->hi = new;
2816 return TRUE;
2817}
2818
2819static riscv_pcgp_hi_reloc *
2820riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2821{
2822 riscv_pcgp_hi_reloc *c;
2823
2824 for (c = p->hi; c != NULL; c = c->next)
2825 if (c->hi_sec_off == hi_sec_off)
2826 return c;
2827 return NULL;
2828}
2829
2830static bfd_boolean
2831riscv_delete_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2832{
2833 bfd_boolean out = FALSE;
2834 riscv_pcgp_hi_reloc *c;
2835
2836 for (c = p->hi; c != NULL; c = c->next)
2837 if (c->hi_sec_off == hi_sec_off)
2838 out = TRUE;
2839
2840 return out;
2841}
2842
2843static bfd_boolean
2844riscv_use_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2845{
2846 bfd_boolean out = FALSE;
2847 riscv_pcgp_hi_reloc *c;
2848
2849 for (c = p->hi; c != NULL; c = c->next)
2850 if (c->hi_sec_off == hi_sec_off)
2851 out = TRUE;
2852
2853 return out;
2854}
2855
2856static bfd_boolean
2857riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2858{
2859 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new));
2860 if (!new)
2861 return FALSE;
2862 new->hi_sec_off = hi_sec_off;
2863 new->next = p->lo;
2864 p->lo = new;
2865 return TRUE;
2866}
2867
2868static bfd_boolean
2869riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2870{
2871 riscv_pcgp_lo_reloc *c;
2872
2873 for (c = p->lo; c != NULL; c = c->next)
2874 if (c->hi_sec_off == hi_sec_off)
2875 return TRUE;
2876 return FALSE;
2877}
2878
2879static bfd_boolean
2880riscv_delete_pcgp_lo_reloc (riscv_pcgp_relocs *p ATTRIBUTE_UNUSED,
2881 bfd_vma lo_sec_off ATTRIBUTE_UNUSED,
2882 size_t bytes ATTRIBUTE_UNUSED)
2883{
2884 return TRUE;
2885}
2886
45f76423
AW
2887typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
2888 struct bfd_link_info *,
2889 Elf_Internal_Rela *,
9d06997a
PD
2890 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *,
2891 riscv_pcgp_relocs *);
45f76423 2892
e23eba97
NC
2893/* Relax AUIPC + JALR into JAL. */
2894
2895static bfd_boolean
2896_bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
2897 struct bfd_link_info *link_info,
2898 Elf_Internal_Rela *rel,
2899 bfd_vma symval,
45f76423
AW
2900 bfd_vma max_alignment,
2901 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
2902 bfd_boolean *again,
2903 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
2904{
2905 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2906 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
2907 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
2908 bfd_vma auipc, jalr;
2909 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2910
2911 /* If the call crosses section boundaries, an alignment directive could
2912 cause the PC-relative offset to later increase. */
2913 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section)
2914 foff += (foff < 0 ? -max_alignment : max_alignment);
2915
2916 /* See if this function call can be shortened. */
2917 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
2918 return TRUE;
2919
2920 /* Shorten the function call. */
2921 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
2922
2923 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
2924 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
2925 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
2926 rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32;
2927
2928 if (rvc && (rd == 0 || rd == X_RA))
2929 {
2930 /* Relax to C.J[AL] rd, addr. */
2931 r_type = R_RISCV_RVC_JUMP;
2932 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
2933 len = 2;
2934 }
2935 else if (VALID_UJTYPE_IMM (foff))
2936 {
2937 /* Relax to JAL rd, addr. */
2938 r_type = R_RISCV_JAL;
2939 auipc = MATCH_JAL | (rd << OP_SH_RD);
2940 }
2941 else /* near_zero */
2942 {
2943 /* Relax to JALR rd, x0, addr. */
2944 r_type = R_RISCV_LO12_I;
2945 auipc = MATCH_JALR | (rd << OP_SH_RD);
2946 }
2947
2948 /* Replace the R_RISCV_CALL reloc. */
2949 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
2950 /* Replace the AUIPC. */
2951 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
2952
2953 /* Delete unnecessary JALR. */
2954 *again = TRUE;
7f02625e
JW
2955 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len,
2956 link_info);
e23eba97
NC
2957}
2958
2959/* Traverse all output sections and return the max alignment. */
2960
1d61f794 2961static bfd_vma
e23eba97
NC
2962_bfd_riscv_get_max_alignment (asection *sec)
2963{
2964 unsigned int max_alignment_power = 0;
2965 asection *o;
2966
2967 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
2968 {
2969 if (o->alignment_power > max_alignment_power)
2970 max_alignment_power = o->alignment_power;
2971 }
2972
1d61f794 2973 return (bfd_vma) 1 << max_alignment_power;
e23eba97
NC
2974}
2975
2976/* Relax non-PIC global variable references. */
2977
2978static bfd_boolean
2979_bfd_riscv_relax_lui (bfd *abfd,
2980 asection *sec,
2981 asection *sym_sec,
2982 struct bfd_link_info *link_info,
2983 Elf_Internal_Rela *rel,
2984 bfd_vma symval,
45f76423
AW
2985 bfd_vma max_alignment,
2986 bfd_vma reserve_size,
9d06997a
PD
2987 bfd_boolean *again,
2988 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
2989{
2990 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2991 bfd_vma gp = riscv_global_pointer_value (link_info);
2992 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2993
2994 /* Mergeable symbols and code might later move out of range. */
2995 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
2996 return TRUE;
2997
2998 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
2999
d0f744f9
AW
3000 if (gp)
3001 {
3002 /* If gp and the symbol are in the same output section, then
3003 consider only that section's alignment. */
3004 struct bfd_link_hash_entry *h =
b5292032
PD
3005 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
3006 TRUE);
d0f744f9
AW
3007 if (h->u.def.section->output_section == sym_sec->output_section)
3008 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3009 }
3010
e23eba97
NC
3011 /* Is the reference in range of x0 or gp?
3012 Valid gp range conservatively because of alignment issue. */
3013 if (VALID_ITYPE_IMM (symval)
45f76423
AW
3014 || (symval >= gp
3015 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3016 || (symval < gp
3017 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
e23eba97
NC
3018 {
3019 unsigned sym = ELFNN_R_SYM (rel->r_info);
3020 switch (ELFNN_R_TYPE (rel->r_info))
3021 {
3022 case R_RISCV_LO12_I:
3023 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3024 return TRUE;
3025
3026 case R_RISCV_LO12_S:
3027 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3028 return TRUE;
3029
3030 case R_RISCV_HI20:
3031 /* We can delete the unnecessary LUI and reloc. */
3032 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3033 *again = TRUE;
7f02625e
JW
3034 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4,
3035 link_info);
e23eba97
NC
3036
3037 default:
3038 abort ();
3039 }
3040 }
3041
3042 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
3043 account for this assuming page alignment at worst. */
3044 if (use_rvc
3045 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
3046 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
3047 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE)))
3048 {
3342be5d 3049 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
e23eba97 3050 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
3342be5d
AW
3051 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
3052 if (rd == 0 || rd == X_SP)
e23eba97
NC
3053 return TRUE;
3054
3055 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
3056 bfd_put_32 (abfd, lui, contents + rel->r_offset);
3057
3058 /* Replace the R_RISCV_HI20 reloc. */
3059 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
3060
3061 *again = TRUE;
7f02625e
JW
3062 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2,
3063 link_info);
e23eba97
NC
3064 }
3065
3066 return TRUE;
3067}
3068
3069/* Relax non-PIC TLS references. */
3070
3071static bfd_boolean
3072_bfd_riscv_relax_tls_le (bfd *abfd,
3073 asection *sec,
3074 asection *sym_sec ATTRIBUTE_UNUSED,
3075 struct bfd_link_info *link_info,
3076 Elf_Internal_Rela *rel,
3077 bfd_vma symval,
45f76423
AW
3078 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3079 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3080 bfd_boolean *again,
3081 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
3082{
3083 /* See if this symbol is in range of tp. */
3084 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
3085 return TRUE;
3086
e23eba97 3087 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
45f76423
AW
3088 switch (ELFNN_R_TYPE (rel->r_info))
3089 {
3090 case R_RISCV_TPREL_LO12_I:
3091 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
3092 return TRUE;
e23eba97 3093
45f76423
AW
3094 case R_RISCV_TPREL_LO12_S:
3095 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
3096 return TRUE;
3097
3098 case R_RISCV_TPREL_HI20:
3099 case R_RISCV_TPREL_ADD:
3100 /* We can delete the unnecessary instruction and reloc. */
3101 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3102 *again = TRUE;
7f02625e 3103 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info);
45f76423
AW
3104
3105 default:
3106 abort ();
3107 }
e23eba97
NC
3108}
3109
3110/* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3111
3112static bfd_boolean
3113_bfd_riscv_relax_align (bfd *abfd, asection *sec,
9eb7b0ac 3114 asection *sym_sec,
7f02625e 3115 struct bfd_link_info *link_info,
e23eba97
NC
3116 Elf_Internal_Rela *rel,
3117 bfd_vma symval,
45f76423
AW
3118 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3119 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3120 bfd_boolean *again ATTRIBUTE_UNUSED,
3121 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED)
e23eba97
NC
3122{
3123 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3124 bfd_vma alignment = 1, pos;
3125 while (alignment <= rel->r_addend)
3126 alignment *= 2;
3127
3128 symval -= rel->r_addend;
3129 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
3130 bfd_vma nop_bytes = aligned_addr - symval;
3131
3132 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3133 sec->sec_flg0 = TRUE;
3134
3135 /* Make sure there are enough NOPs to actually achieve the alignment. */
3136 if (rel->r_addend < nop_bytes)
9eb7b0ac 3137 {
f2b740ac
AM
3138 _bfd_error_handler
3139 (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment "
3140 "to %" PRId64 "-byte boundary, but only %" PRId64 " present"),
3141 abfd, sym_sec, (uint64_t) rel->r_offset,
3142 (int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend);
9eb7b0ac
PD
3143 bfd_set_error (bfd_error_bad_value);
3144 return FALSE;
3145 }
e23eba97
NC
3146
3147 /* Delete the reloc. */
3148 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3149
3150 /* If the number of NOPs is already correct, there's nothing to do. */
3151 if (nop_bytes == rel->r_addend)
3152 return TRUE;
3153
3154 /* Write as many RISC-V NOPs as we need. */
3155 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
3156 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
3157
3158 /* Write a final RVC NOP if need be. */
3159 if (nop_bytes % 4 != 0)
3160 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
3161
3162 /* Delete the excess bytes. */
3163 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
7f02625e 3164 rel->r_addend - nop_bytes, link_info);
e23eba97
NC
3165}
3166
ff6f4d9b
PD
3167/* Relax PC-relative references to GP-relative references. */
3168
9d06997a
PD
3169static bfd_boolean
3170_bfd_riscv_relax_pc (bfd *abfd,
3171 asection *sec,
3172 asection *sym_sec,
3173 struct bfd_link_info *link_info,
3174 Elf_Internal_Rela *rel,
3175 bfd_vma symval,
3176 bfd_vma max_alignment,
3177 bfd_vma reserve_size,
3178 bfd_boolean *again ATTRIBUTE_UNUSED,
3179 riscv_pcgp_relocs *pcgp_relocs)
3180{
3181 bfd_vma gp = riscv_global_pointer_value (link_info);
3182
3183 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3184
3185 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3186 * actual target address. */
e65b1a78
MR
3187 riscv_pcgp_hi_reloc hi_reloc;
3188 memset (&hi_reloc, 0, sizeof (hi_reloc));
9d06997a
PD
3189 switch (ELFNN_R_TYPE (rel->r_info))
3190 {
3191 case R_RISCV_PCREL_LO12_I:
3192 case R_RISCV_PCREL_LO12_S:
3193 {
3194 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
3195 symval - sec_addr(sym_sec));
3196 if (hi == NULL)
3197 {
3198 riscv_record_pcgp_lo_reloc (pcgp_relocs, symval - sec_addr(sym_sec));
3199 return TRUE;
3200 }
3201
3202 hi_reloc = *hi;
3203 symval = hi_reloc.hi_addr;
3204 sym_sec = hi_reloc.sym_sec;
3205 if (!riscv_use_pcgp_hi_reloc(pcgp_relocs, hi->hi_sec_off))
f2b740ac
AM
3206 _bfd_error_handler
3207 (_("%pB(%pA+%#" PRIx64 "): Unable to clear RISCV_PCREL_HI20 reloc "
3208 "for corresponding RISCV_PCREL_LO12 reloc"),
3209 abfd, sec, (uint64_t) rel->r_offset);
9d06997a
PD
3210 }
3211 break;
3212
3213 case R_RISCV_PCREL_HI20:
3214 /* Mergeable symbols and code might later move out of range. */
3215 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3216 return TRUE;
3217
3218 /* If the cooresponding lo relocation has already been seen then it's not
3219 * safe to relax this relocation. */
3220 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
07d6d2b8 3221 return TRUE;
9d06997a
PD
3222
3223 break;
3224
3225 default:
3226 abort ();
3227 }
3228
3229 if (gp)
3230 {
3231 /* If gp and the symbol are in the same output section, then
3232 consider only that section's alignment. */
3233 struct bfd_link_hash_entry *h =
3234 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
3235 if (h->u.def.section->output_section == sym_sec->output_section)
3236 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3237 }
3238
3239 /* Is the reference in range of x0 or gp?
3240 Valid gp range conservatively because of alignment issue. */
3241 if (VALID_ITYPE_IMM (symval)
3242 || (symval >= gp
3243 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3244 || (symval < gp
3245 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
3246 {
3247 unsigned sym = hi_reloc.hi_sym;
3248 switch (ELFNN_R_TYPE (rel->r_info))
3249 {
3250 case R_RISCV_PCREL_LO12_I:
3251 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3252 rel->r_addend += hi_reloc.hi_addend;
3253 return riscv_delete_pcgp_lo_reloc (pcgp_relocs, rel->r_offset, 4);
3254
3255 case R_RISCV_PCREL_LO12_S:
3256 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3257 rel->r_addend += hi_reloc.hi_addend;
3258 return riscv_delete_pcgp_lo_reloc (pcgp_relocs, rel->r_offset, 4);
3259
3260 case R_RISCV_PCREL_HI20:
07d6d2b8 3261 riscv_record_pcgp_hi_reloc (pcgp_relocs,
9d06997a
PD
3262 rel->r_offset,
3263 rel->r_addend,
3264 symval,
3265 ELFNN_R_SYM(rel->r_info),
3266 sym_sec);
3267 /* We can delete the unnecessary AUIPC and reloc. */
3268 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
3269 rel->r_addend = 4;
3270 return riscv_delete_pcgp_hi_reloc (pcgp_relocs, rel->r_offset);
3271
3272 default:
3273 abort ();
3274 }
3275 }
3276
3277 return TRUE;
3278}
3279
3280/* Relax PC-relative references to GP-relative references. */
3281
ff6f4d9b
PD
3282static bfd_boolean
3283_bfd_riscv_relax_delete (bfd *abfd,
3284 asection *sec,
3285 asection *sym_sec ATTRIBUTE_UNUSED,
7f02625e 3286 struct bfd_link_info *link_info,
ff6f4d9b
PD
3287 Elf_Internal_Rela *rel,
3288 bfd_vma symval ATTRIBUTE_UNUSED,
3289 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3290 bfd_vma reserve_size ATTRIBUTE_UNUSED,
9d06997a
PD
3291 bfd_boolean *again ATTRIBUTE_UNUSED,
3292 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
ff6f4d9b 3293{
7f02625e
JW
3294 if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend,
3295 link_info))
ff6f4d9b
PD
3296 return FALSE;
3297 rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE);
3298 return TRUE;
3299}
3300
3301/* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3302 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3303 disabled, handles code alignment directives. */
e23eba97
NC
3304
3305static bfd_boolean
3306_bfd_riscv_relax_section (bfd *abfd, asection *sec,
3307 struct bfd_link_info *info,
3308 bfd_boolean *again)
3309{
3310 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
3311 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3312 struct bfd_elf_section_data *data = elf_section_data (sec);
3313 Elf_Internal_Rela *relocs;
3314 bfd_boolean ret = FALSE;
3315 unsigned int i;
45f76423 3316 bfd_vma max_alignment, reserve_size = 0;
9d06997a 3317 riscv_pcgp_relocs pcgp_relocs;
e23eba97
NC
3318
3319 *again = FALSE;
3320
3321 if (bfd_link_relocatable (info)
3322 || sec->sec_flg0
3323 || (sec->flags & SEC_RELOC) == 0
3324 || sec->reloc_count == 0
3325 || (info->disable_target_specific_optimizations
3326 && info->relax_pass == 0))
3327 return TRUE;
3328
9d06997a
PD
3329 riscv_init_pcgp_relocs (&pcgp_relocs);
3330
e23eba97
NC
3331 /* Read this BFD's relocs if we haven't done so already. */
3332 if (data->relocs)
3333 relocs = data->relocs;
3334 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3335 info->keep_memory)))
3336 goto fail;
3337
fc3c5343
L
3338 if (htab)
3339 {
3340 max_alignment = htab->max_alignment;
3341 if (max_alignment == (bfd_vma) -1)
3342 {
3343 max_alignment = _bfd_riscv_get_max_alignment (sec);
3344 htab->max_alignment = max_alignment;
3345 }
3346 }
3347 else
3348 max_alignment = _bfd_riscv_get_max_alignment (sec);
e23eba97
NC
3349
3350 /* Examine and consider relaxing each reloc. */
3351 for (i = 0; i < sec->reloc_count; i++)
3352 {
3353 asection *sym_sec;
3354 Elf_Internal_Rela *rel = relocs + i;
45f76423 3355 relax_func_t relax_func;
e23eba97
NC
3356 int type = ELFNN_R_TYPE (rel->r_info);
3357 bfd_vma symval;
3358
ff6f4d9b 3359 relax_func = NULL;
e23eba97
NC
3360 if (info->relax_pass == 0)
3361 {
3362 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
3363 relax_func = _bfd_riscv_relax_call;
3364 else if (type == R_RISCV_HI20
3365 || type == R_RISCV_LO12_I
3366 || type == R_RISCV_LO12_S)
3367 relax_func = _bfd_riscv_relax_lui;
9d06997a
PD
3368 else if (!bfd_link_pic(info)
3369 && (type == R_RISCV_PCREL_HI20
3370 || type == R_RISCV_PCREL_LO12_I
3371 || type == R_RISCV_PCREL_LO12_S))
3372 relax_func = _bfd_riscv_relax_pc;
45f76423
AW
3373 else if (type == R_RISCV_TPREL_HI20
3374 || type == R_RISCV_TPREL_ADD
3375 || type == R_RISCV_TPREL_LO12_I
3376 || type == R_RISCV_TPREL_LO12_S)
e23eba97 3377 relax_func = _bfd_riscv_relax_tls_le;
45f76423
AW
3378 else
3379 continue;
3380
3381 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
3382 if (i == sec->reloc_count - 1
3383 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
3384 || rel->r_offset != (rel + 1)->r_offset)
3385 continue;
3386
3387 /* Skip over the R_RISCV_RELAX. */
3388 i++;
e23eba97 3389 }
ff6f4d9b 3390 else if (info->relax_pass == 1 && type == R_RISCV_DELETE)
07d6d2b8 3391 relax_func = _bfd_riscv_relax_delete;
ff6f4d9b 3392 else if (info->relax_pass == 2 && type == R_RISCV_ALIGN)
e23eba97 3393 relax_func = _bfd_riscv_relax_align;
45f76423 3394 else
e23eba97
NC
3395 continue;
3396
3397 data->relocs = relocs;
3398
3399 /* Read this BFD's contents if we haven't done so already. */
3400 if (!data->this_hdr.contents
3401 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
3402 goto fail;
3403
3404 /* Read this BFD's symbols if we haven't done so already. */
3405 if (symtab_hdr->sh_info != 0
3406 && !symtab_hdr->contents
3407 && !(symtab_hdr->contents =
3408 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
3409 symtab_hdr->sh_info,
3410 0, NULL, NULL, NULL)))
3411 goto fail;
3412
3413 /* Get the value of the symbol referred to by the reloc. */
3414 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
3415 {
3416 /* A local symbol. */
3417 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
3418 + ELFNN_R_SYM (rel->r_info));
45f76423
AW
3419 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
3420 ? 0 : isym->st_size - rel->r_addend;
e23eba97
NC
3421
3422 if (isym->st_shndx == SHN_UNDEF)
3423 sym_sec = sec, symval = sec_addr (sec) + rel->r_offset;
3424 else
3425 {
3426 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
3427 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
09ca4b9d
JW
3428#if 0
3429 /* The purpose of this code is unknown. It breaks linker scripts
3430 for embedded development that place sections at address zero.
3431 This code is believed to be unnecessary. Disabling it but not
3432 yet removing it, in case something breaks. */
e23eba97
NC
3433 if (sec_addr (sym_sec) == 0)
3434 continue;
09ca4b9d 3435#endif
e23eba97
NC
3436 symval = sec_addr (sym_sec) + isym->st_value;
3437 }
3438 }
3439 else
3440 {
3441 unsigned long indx;
3442 struct elf_link_hash_entry *h;
3443
3444 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
3445 h = elf_sym_hashes (abfd)[indx];
3446
3447 while (h->root.type == bfd_link_hash_indirect
3448 || h->root.type == bfd_link_hash_warning)
3449 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3450
3451 if (h->plt.offset != MINUS_ONE)
3452 symval = sec_addr (htab->elf.splt) + h->plt.offset;
3453 else if (h->root.u.def.section->output_section == NULL
3454 || (h->root.type != bfd_link_hash_defined
3455 && h->root.type != bfd_link_hash_defweak))
3456 continue;
3457 else
3458 symval = sec_addr (h->root.u.def.section) + h->root.u.def.value;
3459
45f76423
AW
3460 if (h->type != STT_FUNC)
3461 reserve_size =
3462 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
e23eba97
NC
3463 sym_sec = h->root.u.def.section;
3464 }
3465
3466 symval += rel->r_addend;
3467
3468 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
9d06997a
PD
3469 max_alignment, reserve_size, again,
3470 &pcgp_relocs))
e23eba97
NC
3471 goto fail;
3472 }
3473
3474 ret = TRUE;
3475
3476fail:
3477 if (relocs != data->relocs)
3478 free (relocs);
9d06997a 3479 riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec);
e23eba97
NC
3480
3481 return ret;
3482}
3483
3484#if ARCH_SIZE == 32
3485# define PRSTATUS_SIZE 0 /* FIXME */
3486# define PRSTATUS_OFFSET_PR_CURSIG 12
3487# define PRSTATUS_OFFSET_PR_PID 24
3488# define PRSTATUS_OFFSET_PR_REG 72
3489# define ELF_GREGSET_T_SIZE 128
3490# define PRPSINFO_SIZE 128
3491# define PRPSINFO_OFFSET_PR_PID 16
3492# define PRPSINFO_OFFSET_PR_FNAME 32
3493# define PRPSINFO_OFFSET_PR_PSARGS 48
3494#else
3495# define PRSTATUS_SIZE 376
3496# define PRSTATUS_OFFSET_PR_CURSIG 12
3497# define PRSTATUS_OFFSET_PR_PID 32
3498# define PRSTATUS_OFFSET_PR_REG 112
3499# define ELF_GREGSET_T_SIZE 256
3500# define PRPSINFO_SIZE 136
3501# define PRPSINFO_OFFSET_PR_PID 24
3502# define PRPSINFO_OFFSET_PR_FNAME 40
3503# define PRPSINFO_OFFSET_PR_PSARGS 56
3504#endif
3505
3506/* Support for core dump NOTE sections. */
3507
3508static bfd_boolean
3509riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3510{
3511 switch (note->descsz)
3512 {
3513 default:
3514 return FALSE;
3515
3516 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
3517 /* pr_cursig */
3518 elf_tdata (abfd)->core->signal
3519 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
3520
3521 /* pr_pid */
3522 elf_tdata (abfd)->core->lwpid
3523 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
3524 break;
3525 }
3526
3527 /* Make a ".reg/999" section. */
3528 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
3529 note->descpos + PRSTATUS_OFFSET_PR_REG);
3530}
3531
3532static bfd_boolean
3533riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3534{
3535 switch (note->descsz)
3536 {
3537 default:
3538 return FALSE;
3539
3540 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
3541 /* pr_pid */
3542 elf_tdata (abfd)->core->pid
3543 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
3544
3545 /* pr_fname */
3546 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
3547 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
3548
3549 /* pr_psargs */
3550 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
3551 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
3552 break;
3553 }
3554
3555 /* Note that for some reason, a spurious space is tacked
3556 onto the end of the args in some (at least one anyway)
3557 implementations, so strip it off if it exists. */
3558
3559 {
3560 char *command = elf_tdata (abfd)->core->command;
3561 int n = strlen (command);
3562
3563 if (0 < n && command[n - 1] == ' ')
3564 command[n - 1] = '\0';
3565 }
3566
3567 return TRUE;
3568}
3569
640d6bfd
KLC
3570/* Set the right mach type. */
3571static bfd_boolean
3572riscv_elf_object_p (bfd *abfd)
3573{
3574 /* There are only two mach types in RISCV currently. */
3575 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
3576 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
3577 else
3578 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
3579
3580 return TRUE;
3581}
3582
e23eba97
NC
3583
3584#define TARGET_LITTLE_SYM riscv_elfNN_vec
3585#define TARGET_LITTLE_NAME "elfNN-littleriscv"
3586
3587#define elf_backend_reloc_type_class riscv_reloc_type_class
3588
3589#define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
3590#define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
3591#define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
3592#define bfd_elfNN_bfd_merge_private_bfd_data \
3593 _bfd_riscv_elf_merge_private_bfd_data
3594
3595#define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
3596#define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
3597#define elf_backend_check_relocs riscv_elf_check_relocs
3598#define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
3599#define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
3600#define elf_backend_relocate_section riscv_elf_relocate_section
3601#define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
3602#define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
3603#define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
e23eba97 3604#define elf_backend_plt_sym_val riscv_elf_plt_sym_val
07d6d2b8
AM
3605#define elf_backend_grok_prstatus riscv_elf_grok_prstatus
3606#define elf_backend_grok_psinfo riscv_elf_grok_psinfo
3607#define elf_backend_object_p riscv_elf_object_p
e23eba97
NC
3608#define elf_info_to_howto_rel NULL
3609#define elf_info_to_howto riscv_info_to_howto_rela
3610#define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
3611
3612#define elf_backend_init_index_section _bfd_elf_init_1_index_section
3613
3614#define elf_backend_can_gc_sections 1
3615#define elf_backend_can_refcount 1
3616#define elf_backend_want_got_plt 1
3617#define elf_backend_plt_readonly 1
3618#define elf_backend_plt_alignment 4
3619#define elf_backend_want_plt_sym 1
3620#define elf_backend_got_header_size (ARCH_SIZE / 8)
5474d94f 3621#define elf_backend_want_dynrelro 1
e23eba97
NC
3622#define elf_backend_rela_normal 1
3623#define elf_backend_default_execstack 0
3624
3625#include "elfNN-target.h"
This page took 0.419569 seconds and 4 git commands to generate.