Fix printing the size of GOLD's memory areana on Cygwin based systems.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
219d1afa 2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
296#define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298#define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300#define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 302
b49e97c9
TS
303/* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306struct mips_elf_hash_sort_data
307{
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
0f20cc35
DJ
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
55f8b9d2 313 bfd_size_type min_got_dynindx;
f4416af6
AO
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 316 with dynamic relocations pointing to it from non-primary GOTs). */
55f8b9d2 317 bfd_size_type max_unref_got_dynindx;
e17b0c35
MR
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
b49e97c9 322 symbol without a GOT entry. */
55f8b9d2 323 bfd_size_type max_non_got_dynindx;
b49e97c9
TS
324};
325
1bbce132
MR
326/* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331struct plt_entry
332{
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350};
351
b49e97c9
TS
352/* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355struct mips_elf_link_hash_entry
356{
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
861fb55a
DJ
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
b49e97c9
TS
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
b49e97c9
TS
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
b49e97c9
TS
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
7c5fcef7 380
634835ae
RS
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
6ccf4795
RS
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
71782a75
RS
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
861fb55a
DJ
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
71782a75
RS
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
861fb55a
DJ
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
1bbce132
MR
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
b49e97c9
TS
419};
420
421/* MIPS ELF linker hash table. */
422
423struct mips_elf_link_hash_table
424{
425 struct elf_link_hash_table root;
861fb55a 426
b49e97c9
TS
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
861fb55a 429
b49e97c9
TS
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
861fb55a 432
e6aea42d
MR
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 435 bfd_boolean use_rld_obj_head;
861fb55a 436
b4082c70
DD
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
861fb55a 439
b49e97c9 440 /* This is set if we see any mips16 stub sections. */
b34976b6 441 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
833794fc
MR
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
8b10b0b3
MR
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
0a44bf69
RS
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
861fb55a 454
0e53d9da
AN
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
861fb55a 457
0a44bf69
RS
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
0a44bf69 460 asection *srelplt2;
4e41d0d7 461 asection *sstubs;
861fb55a 462
a8028dd0
RS
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
861fb55a 465
d222d210
RS
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
861fb55a 470 /* The size of the PLT header in bytes. */
0a44bf69 471 bfd_vma plt_header_size;
861fb55a 472
1bbce132
MR
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
861fb55a 487
33bb52fb
RS
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
861fb55a 490
5108fc1b
RS
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
861fb55a
DJ
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
1bbce132
MR
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
519};
520
4dfe6ac6
NC
521/* Get the MIPS ELF linker hash table from a link_info structure. */
522
523#define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
861fb55a 527/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
528struct mips_htab_traverse_info
529{
861fb55a
DJ
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
b49e97c9
TS
536};
537
6ae68ba3
MR
538/* MIPS ELF private object data. */
539
540struct mips_elf_obj_tdata
541{
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
ee227692 547
b60bf9be
CF
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
351cdf24
MF
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
ee227692
RS
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
698600e4
AM
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
6ae68ba3
MR
573};
574
575/* Get MIPS ELF private object data from BFD's tdata. */
576
577#define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
0f20cc35
DJ
580#define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 593 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 608
b49e97c9
TS
609/* Structure used to pass information to mips_elf_output_extsym. */
610
611struct extsym_info
612{
9e4aeb93
RS
613 bfd *abfd;
614 struct bfd_link_info *info;
b49e97c9
TS
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
b34976b6 617 bfd_boolean failed;
b49e97c9
TS
618};
619
8dc1a139 620/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
621
622static const char * const mips_elf_dynsym_rtproc_names[] =
623{
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628};
629
630/* These structures are used to generate the .compact_rel section on
8dc1a139 631 IRIX5. */
b49e97c9
TS
632
633typedef struct
634{
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641} Elf32_compact_rel;
642
643typedef struct
644{
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651} Elf32_External_compact_rel;
652
653typedef struct
654{
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661} Elf32_crinfo;
662
663typedef struct
664{
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670} Elf32_crinfo2;
671
672typedef struct
673{
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677} Elf32_External_crinfo;
678
679typedef struct
680{
681 bfd_byte info[4];
682 bfd_byte konst[4];
683} Elf32_External_crinfo2;
684
685/* These are the constants used to swap the bitfields in a crinfo. */
686
687#define CRINFO_CTYPE (0x1)
688#define CRINFO_CTYPE_SH (31)
689#define CRINFO_RTYPE (0xf)
690#define CRINFO_RTYPE_SH (27)
691#define CRINFO_DIST2TO (0xff)
692#define CRINFO_DIST2TO_SH (19)
693#define CRINFO_RELVADDR (0x7ffff)
694#define CRINFO_RELVADDR_SH (0)
695
696/* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699#define CRF_MIPS_LONG 1
700#define CRF_MIPS_SHORT 0
701
702/* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712#define CRT_MIPS_REL32 0xa
713#define CRT_MIPS_WORD 0xb
714#define CRT_MIPS_GPHI_LO 0xc
715#define CRT_MIPS_JMPAD 0xd
716
717#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721\f
722/* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725typedef struct runtime_pdr {
ae9a127f
NC
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
b49e97c9 735 long reserved;
ae9a127f 736 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
737} RPDR, *pRPDR;
738#define cbRPDR sizeof (RPDR)
739#define rpdNil ((pRPDR) 0)
740\f
b15e6682 741static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
b34976b6 744static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 745 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
746static bfd_vma mips_elf_high
747 (bfd_vma);
b34976b6 748static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
f4416af6 752static bfd_vma mips_elf_adjust_gp
9719ad41 753 (bfd *, struct mips_got_info *, bfd *);
f4416af6 754
b49e97c9
TS
755/* This will be used when we sort the dynamic relocation records. */
756static bfd *reldyn_sorting_bfd;
757
6d30f5b2
NC
758/* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760#define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
cd8d5a82
CF
764/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767#define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773#define JALR_TO_BAL_P(abfd) 1
774
38a7df63
CF
775/* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778#define JR_TO_B_P(abfd) 1
779
861fb55a
DJ
780/* True if ABFD is a PIC object. */
781#define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
351cdf24
MF
784/* Nonzero if ABFD is using the O32 ABI. */
785#define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
b49e97c9 788/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
789#define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
4a14403c 792/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 793#define ABI_64_P(abfd) \
141ff970 794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 795
4a14403c
TS
796/* Nonzero if ABFD is using NewABI conventions. */
797#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
e8faf7d1
MR
799/* Nonzero if ABFD has microMIPS code. */
800#define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
7361da2c
AB
803/* Nonzero if ABFD is MIPS R6. */
804#define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
4a14403c 808/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
809#define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
b49e97c9
TS
812/* Whether we are trying to be compatible with IRIX at all. */
813#define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816/* The name of the options section. */
817#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 819
cc2e31b9
RS
820/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
351cdf24
MF
825/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
943284cc
DJ
829/* Whether the section is readonly. */
830#define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
b49e97c9 834/* The name of the stub section. */
ca07892d 835#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
836
837/* The size of an external REL relocation. */
838#define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
0a44bf69
RS
841/* The size of an external RELA relocation. */
842#define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
b49e97c9
TS
845/* The size of an external dynamic table entry. */
846#define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849/* The size of a GOT entry. */
850#define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
b4082c70
DD
853/* The size of the .rld_map section. */
854#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
b49e97c9
TS
857/* The size of a symbol-table entry. */
858#define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861/* The default alignment for sections, as a power of two. */
862#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 863 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
864
865/* Get word-sized data. */
866#define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869/* Put out word-sized data. */
870#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
07d6d2b8
AM
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
b49e97c9
TS
873 : bfd_put_32 (abfd, val, ptr))
874
861fb55a
DJ
875/* The opcode for word-sized loads (LW or LD). */
876#define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
b49e97c9 879/* Add a dynamic symbol table-entry. */
9719ad41 880#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 881 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
882
883#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
0aa13fee 884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
b49e97c9 885
0a44bf69
RS
886/* The name of the dynamic relocation section. */
887#define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
b49e97c9
TS
890/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 893#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 894
51e38d68
RS
895/* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
f4416af6 901/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
902#define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
904
905/* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
0a44bf69 907#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 908
6a691779 909/* Instructions which appear in a stub. */
3d6746ca
DD
910#define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
07d6d2b8 913 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 914#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 915#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 916#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
5108fc1b
RS
917#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
919#define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
1bbce132
MR
924/* Likewise for the microMIPS ASE. */
925#define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 930#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
931#define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 934#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
935#define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937#define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939#define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
5108fc1b
RS
944#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
946#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
948#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
950
951/* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
07d6d2b8
AM
954#define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
b49e97c9
TS
957 : "/usr/lib/libc.so.1")
958
959#ifdef BFD64
ee6423ed
AO
960#define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
962#define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964#define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966#define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968#else
ee6423ed 969#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
970#define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972#define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974#define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976#endif
977\f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012#define FN_STUB ".mips16.fn."
1013#define CALL_STUB ".mips16.call."
1014#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1015
1016#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1019\f
861fb55a 1020/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1021static const bfd_vma mips_o32_exec_plt0_entry[] =
1022{
861fb55a
DJ
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1027 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031};
1032
1033/* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1035static const bfd_vma mips_n32_exec_plt0_entry[] =
1036{
861fb55a
DJ
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1041 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045};
1046
1047/* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1049static const bfd_vma mips_n64_exec_plt0_entry[] =
1050{
861fb55a
DJ
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1055 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059};
1060
1bbce132
MR
1061/* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068{
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078};
1079
833794fc
MR
1080/* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083{
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1088 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092};
1093
1bbce132 1094/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1095static const bfd_vma mips_exec_plt_entry[] =
1096{
861fb55a
DJ
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101};
1102
7361da2c
AB
1103/* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106static const bfd_vma mipsr6_exec_plt_entry[] =
1107{
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112};
1113
1bbce132
MR
1114/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117static const bfd_vma mips16_o32_exec_plt_entry[] =
1118{
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126};
1127
1128/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130static const bfd_vma micromips_o32_exec_plt_entry[] =
1131{
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136};
1137
833794fc
MR
1138/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140{
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145};
1146
0a44bf69 1147/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1148static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149{
0a44bf69
RS
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156};
1157
1158/* The format of subsequent PLT entries. */
6d30f5b2
NC
1159static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160{
0a44bf69
RS
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169};
1170
1171/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1172static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173{
0a44bf69
RS
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180};
1181
1182/* The format of subsequent PLT entries. */
6d30f5b2
NC
1183static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184{
0a44bf69
RS
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187};
1188\f
d21911ea
MR
1189/* microMIPS 32-bit opcode helper installer. */
1190
1191static void
1192bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193{
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
07d6d2b8 1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
d21911ea
MR
1196}
1197
1198/* microMIPS 32-bit opcode helper retriever. */
1199
1200static bfd_vma
1201bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202{
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204}
1205\f
b49e97c9
TS
1206/* Look up an entry in a MIPS ELF linker hash table. */
1207
1208#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213/* Traverse a MIPS ELF linker hash table. */
1214
1215#define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
9719ad41 1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1219 (info)))
1220
0f20cc35
DJ
1221/* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224#define TP_OFFSET 0x7000
1225#define DTP_OFFSET 0x8000
1226
1227static bfd_vma
1228dtprel_base (struct bfd_link_info *info)
1229{
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234}
1235
1236static bfd_vma
1237tprel_base (struct bfd_link_info *info)
1238{
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243}
1244
b49e97c9
TS
1245/* Create an entry in a MIPS ELF linker hash table. */
1246
1247static struct bfd_hash_entry *
9719ad41
RS
1248mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1250{
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
9719ad41
RS
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
b49e97c9
TS
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
9719ad41 1265 if (ret != NULL)
b49e97c9
TS
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
861fb55a 1272 ret->la25_stub = 0;
b49e97c9 1273 ret->possibly_dynamic_relocs = 0;
b49e97c9 1274 ret->fn_stub = NULL;
b49e97c9
TS
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
634835ae 1277 ret->global_got_area = GGA_NONE;
6ccf4795 1278 ret->got_only_for_calls = TRUE;
71782a75 1279 ret->readonly_reloc = FALSE;
861fb55a 1280 ret->has_static_relocs = FALSE;
71782a75
RS
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
861fb55a 1283 ret->has_nonpic_branches = FALSE;
33bb52fb 1284 ret->needs_lazy_stub = FALSE;
1bbce132 1285 ret->use_plt_entry = FALSE;
b49e97c9
TS
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289}
f0abc2a1 1290
6ae68ba3
MR
1291/* Allocate MIPS ELF private object data. */
1292
1293bfd_boolean
1294_bfd_mips_elf_mkobject (bfd *abfd)
1295{
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298}
1299
f0abc2a1 1300bfd_boolean
9719ad41 1301_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1302{
f592407e
AM
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1307
f592407e
AM
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
f0abc2a1
AM
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315}
b49e97c9
TS
1316\f
1317/* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
b34976b6 1320bfd_boolean
9719ad41
RS
1321_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
b49e97c9
TS
1323{
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
9719ad41 1326 char *ext_hdr;
b49e97c9
TS
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
9719ad41 1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
9719ad41 1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1336 swap->external_hdr_size))
b49e97c9
TS
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344#define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1350 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
9719ad41 1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1370#undef READ
1371
1372 debug->fdr = NULL;
b49e97c9 1373
b34976b6 1374 return TRUE;
b49e97c9
TS
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
b34976b6 1401 return FALSE;
b49e97c9
TS
1402}
1403\f
1404/* Swap RPDR (runtime procedure table entry) for output. */
1405
1406static void
9719ad41 1407ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1408{
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1420}
1421
1422/* Create a runtime procedure table from the .mdebug section. */
1423
b34976b6 1424static bfd_boolean
9719ad41
RS
1425mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
b49e97c9
TS
1428{
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
9719ad41 1433 void *rtproc;
b49e97c9
TS
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
9719ad41 1460 epdr = bfd_malloc (size * count);
b49e97c9
TS
1461 if (epdr == NULL)
1462 goto error_return;
1463
9719ad41 1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
9719ad41 1468 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
9719ad41 1473 sv = bfd_malloc (size * count);
b49e97c9
TS
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
9719ad41 1479 esym = bfd_malloc (size * count);
b49e97c9
TS
1480 if (esym == NULL)
1481 goto error_return;
1482
9719ad41 1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1484 goto error_return;
1485
1486 count = hdr->issMax;
9719ad41 1487 ss = bfd_malloc (count);
b49e97c9
TS
1488 if (ss == NULL)
1489 goto error_return;
f075ee0c 1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
9719ad41
RS
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
9719ad41 1514 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
9719ad41 1523 erp = rtproc;
b49e97c9
TS
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
eea6121a 1538 s->size = size;
9719ad41 1539 s->contents = rtproc;
b49e97c9
TS
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
8423293d 1543 s->map_head.link_order = NULL;
b49e97c9
TS
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
b34976b6 1556 return TRUE;
b49e97c9
TS
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
b34976b6 1569 return FALSE;
b49e97c9 1570}
738e5348 1571\f
861fb55a
DJ
1572/* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575static bfd_boolean
1576mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580{
a848a227 1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1584 char *name;
1585 bfd_boolean res;
861fb55a 1586
a848a227 1587 if (micromips_p)
df58fc94
RS
1588 value |= 1;
1589
861fb55a 1590 /* Create a new symbol. */
e1fa0163 1591 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1592 bh = NULL;
e1fa0163
NC
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
861fb55a
DJ
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
a848a227
MR
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1607 return TRUE;
1608}
1609
738e5348
RS
1610/* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614static bfd_boolean
1615mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618{
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
e1fa0163 1621 char *name;
738e5348
RS
1622 asection *s;
1623 bfd_vma value;
e1fa0163 1624 bfd_boolean res;
738e5348
RS
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
e1fa0163 1633 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1634 bh = NULL;
e1fa0163
NC
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
738e5348
RS
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649}
1650
1651/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654static bfd_boolean
1655section_allows_mips16_refs_p (asection *section)
1656{
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664}
1665
1666/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670static unsigned long
cb4437b8
MR
1671mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
502e814e 1673 const Elf_Internal_Rela *relocs,
738e5348
RS
1674 const Elf_Internal_Rela *relend)
1675{
cb4437b8 1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1677 const Elf_Internal_Rela *rel;
1678
cb4437b8
MR
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691}
b49e97c9
TS
1692
1693/* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
861fb55a
DJ
1696static void
1697mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
b49e97c9 1699{
738e5348
RS
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
b49e97c9
TS
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
07d6d2b8
AM
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
eea6121a 1715 h->fn_stub->size = 0;
b49e97c9
TS
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1719 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1720 }
1721
1722 if (h->call_stub != NULL
30c09090 1723 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
eea6121a 1728 h->call_stub->size = 0;
b49e97c9
TS
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1732 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1733 }
1734
1735 if (h->call_fp_stub != NULL
30c09090 1736 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
eea6121a 1741 h->call_fp_stub->size = 0;
b49e97c9
TS
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1746 }
861fb55a
DJ
1747}
1748
1749/* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751static hashval_t
1752mips_elf_la25_stub_hash (const void *entry_)
1753{
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759}
1760
1761static int
1762mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763{
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772}
1773
1774/* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778bfd_boolean
1779_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782{
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1786 if (htab == NULL)
1787 return FALSE;
1788
861fb55a
DJ
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796}
1797
1798/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
861fb55a
DJ
1803
1804static bfd_boolean
1805mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806{
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1811 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816}
1817
8f0c309a
CLT
1818/* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821static bfd_vma
1822mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824{
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836}
1837
861fb55a
DJ
1838/* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842static bfd_boolean
1843mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845{
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1852 if (htab == NULL)
1853 return FALSE;
861fb55a
DJ
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
8f0c309a 1862 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883}
1884
1885/* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889static bfd_boolean
1890mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892{
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1897 if (htab == NULL)
1898 return FALSE;
861fb55a
DJ
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920}
1921
1922/* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925static bfd_boolean
1926mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928{
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
861fb55a
DJ
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1943 if (htab == NULL)
1944 return FALSE;
1945
861fb55a
DJ
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
8f0c309a
CLT
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
8f0c309a
CLT
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
861fb55a
DJ
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976}
1977
1978/* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981static bfd_boolean
1982mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983{
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 1987 if (!bfd_link_relocatable (hti->info))
861fb55a 1988 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1989
861fb55a
DJ
1990 if (mips_elf_local_pic_function_p (h))
1991 {
ba85c43e
NC
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
861fb55a
DJ
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
0e1862bb 2002 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
b34976b6 2013 return TRUE;
b49e97c9
TS
2014}
2015\f
d6f16593
MR
2016/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
07d6d2b8 2025 | Immediate 15:0 |
d6f16593
MR
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
07d6d2b8
AM
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
d6f16593
MR
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
07d6d2b8
AM
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
d6f16593
MR
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
738e5348
RS
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
d6f16593
MR
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
738e5348
RS
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
738e5348
RS
2104
2105static inline bfd_boolean
2106mips16_reloc_p (int r_type)
2107{
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
d0f13682
CLT
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2123 case R_MIPS16_PC16_S1:
738e5348
RS
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129}
2130
df58fc94
RS
2131/* Check if a microMIPS reloc. */
2132
2133static inline bfd_boolean
2134micromips_reloc_p (unsigned int r_type)
2135{
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137}
2138
2139/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143static inline bfd_boolean
2144micromips_reloc_shuffle_p (unsigned int r_type)
2145{
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149}
2150
738e5348
RS
2151static inline bfd_boolean
2152got16_reloc_p (int r_type)
2153{
df58fc94
RS
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2157}
2158
2159static inline bfd_boolean
2160call16_reloc_p (int r_type)
2161{
df58fc94
RS
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165}
2166
2167static inline bfd_boolean
2168got_disp_reloc_p (unsigned int r_type)
2169{
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171}
2172
2173static inline bfd_boolean
2174got_page_reloc_p (unsigned int r_type)
2175{
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177}
2178
df58fc94
RS
2179static inline bfd_boolean
2180got_lo16_reloc_p (unsigned int r_type)
2181{
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183}
2184
2185static inline bfd_boolean
2186call_hi16_reloc_p (unsigned int r_type)
2187{
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189}
2190
2191static inline bfd_boolean
2192call_lo16_reloc_p (unsigned int r_type)
2193{
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2195}
2196
2197static inline bfd_boolean
2198hi16_reloc_p (int r_type)
2199{
df58fc94
RS
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
7361da2c
AB
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
738e5348 2204}
d6f16593 2205
738e5348
RS
2206static inline bfd_boolean
2207lo16_reloc_p (int r_type)
2208{
df58fc94
RS
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
7361da2c
AB
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
738e5348
RS
2213}
2214
2215static inline bfd_boolean
2216mips16_call_reloc_p (int r_type)
2217{
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219}
d6f16593 2220
38a7df63
CF
2221static inline bfd_boolean
2222jal_reloc_p (int r_type)
2223{
df58fc94
RS
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227}
2228
99aefae6
MR
2229static inline bfd_boolean
2230b_reloc_p (int r_type)
2231{
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
c9775dde 2235 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2240}
2241
7361da2c
AB
2242static inline bfd_boolean
2243aligned_pcrel_reloc_p (int r_type)
2244{
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247}
2248
9d862524
MR
2249static inline bfd_boolean
2250branch_reloc_p (int r_type)
2251{
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257}
2258
c9775dde
MR
2259static inline bfd_boolean
2260mips16_branch_reloc_p (int r_type)
2261{
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264}
2265
df58fc94
RS
2266static inline bfd_boolean
2267micromips_branch_reloc_p (int r_type)
2268{
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273}
2274
2275static inline bfd_boolean
2276tls_gd_reloc_p (unsigned int r_type)
2277{
d0f13682
CLT
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2281}
2282
2283static inline bfd_boolean
2284tls_ldm_reloc_p (unsigned int r_type)
2285{
d0f13682
CLT
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2289}
2290
2291static inline bfd_boolean
2292tls_gottprel_reloc_p (unsigned int r_type)
2293{
d0f13682
CLT
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2297}
2298
d6f16593 2299void
df58fc94
RS
2300_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2302{
df58fc94 2303 bfd_vma first, second, val;
d6f16593 2304
df58fc94 2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2306 return;
2307
df58fc94
RS
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2316 else
df58fc94
RS
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2319 bfd_put_32 (abfd, val, data);
2320}
2321
2322void
df58fc94
RS
2323_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2325{
df58fc94 2326 bfd_vma first, second, val;
d6f16593 2327
df58fc94 2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
df58fc94 2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2333 {
df58fc94
RS
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2341 }
2342 else
2343 {
df58fc94
RS
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
d6f16593 2347 }
df58fc94
RS
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
d6f16593
MR
2350}
2351
b49e97c9 2352bfd_reloc_status_type
9719ad41
RS
2353_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2356{
2357 bfd_vma relocation;
a7ebbfdf 2358 bfd_signed_vma val;
30ac9238 2359 bfd_reloc_status_type status;
b49e97c9
TS
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
07515404 2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2370 return bfd_reloc_outofrange;
2371
b49e97c9 2372 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2373 val = reloc_entry->addend;
2374
30ac9238 2375 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2376
b49e97c9 2377 /* Adjust val for the final section location and GP value. If we
1049f94e 2378 are producing relocatable output, we don't want to do this for
b49e97c9 2379 an external symbol. */
1049f94e 2380 if (! relocatable
b49e97c9
TS
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
a7ebbfdf
TS
2384 if (reloc_entry->howto->partial_inplace)
2385 {
30ac9238
RS
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
a7ebbfdf
TS
2391 }
2392 else
2393 reloc_entry->addend = val;
b49e97c9 2394
1049f94e 2395 if (relocatable)
b49e97c9 2396 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2397
2398 return bfd_reloc_ok;
2399}
2400
2401/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406struct mips_hi16
2407{
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412};
2413
2414/* FIXME: This should not be a static variable. */
2415
2416static struct mips_hi16 *mips_hi16_list;
2417
2418/* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427bfd_reloc_status_type
2428_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432{
2433 struct mips_hi16 *n;
2434
07515404 2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452}
2453
738e5348 2454/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458bfd_reloc_status_type
2459_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462{
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473}
2474
2475/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479bfd_reloc_status_type
2480_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483{
2484 bfd_vma vallo;
d6f16593 2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2486
07515404 2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2488 return bfd_reloc_outofrange;
2489
df58fc94 2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2491 location);
df58fc94
RS
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
d6f16593 2495
30ac9238
RS
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
738e5348
RS
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
30ac9238
RS
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532}
2533
2534/* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538bfd_reloc_status_type
2539_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543{
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
07515404 2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
d6f16593
MR
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
30ac9238
RS
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
df58fc94
RS
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
30ac9238 2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2594 location);
df58fc94
RS
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
d6f16593 2597
30ac9238
RS
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2604
2605 return bfd_reloc_ok;
2606}
2607\f
2608/* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611static void
9719ad41
RS
2612bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
b49e97c9
TS
2614{
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617}
2618
2619static void
9719ad41
RS
2620bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
b49e97c9
TS
2622{
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625}
2626
2627static void
9719ad41
RS
2628bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
b49e97c9
TS
2630{
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637}
2638
2639static void
9719ad41
RS
2640bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
b49e97c9
TS
2642{
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652}
b49e97c9
TS
2653\f
2654/* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658void
9719ad41
RS
2659bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
b49e97c9
TS
2661{
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668}
2669
2670void
9719ad41
RS
2671bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
b49e97c9
TS
2673{
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680}
2681
2682/* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688void
9719ad41
RS
2689bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2691{
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699}
2700
2701void
9719ad41
RS
2702bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
b49e97c9
TS
2704{
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712}
2713
2714/* Swap in an options header. */
2715
2716void
9719ad41
RS
2717bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
b49e97c9
TS
2719{
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724}
2725
2726/* Swap out an options header. */
2727
2728void
9719ad41
RS
2729bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
b49e97c9
TS
2731{
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736}
351cdf24
MF
2737
2738/* Swap in an abiflags structure. */
2739
2740void
2741bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744{
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756}
2757
2758/* Swap out an abiflags structure. */
2759
2760void
2761bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764{
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776}
b49e97c9
TS
2777\f
2778/* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781static int
9719ad41 2782sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2783{
947216bf
AM
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
6870500c 2786 int diff;
b49e97c9 2787
947216bf
AM
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2790
6870500c
RS
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
b49e97c9
TS
2800}
2801
f4416af6
AO
2802/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804static int
7e3102a7
AM
2805sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2807{
7e3102a7 2808#ifdef BFD64
f4416af6
AO
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
6870500c
RS
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
7e3102a7
AM
2827#else
2828 abort ();
2829#endif
f4416af6
AO
2830}
2831
2832
b49e97c9
TS
2833/* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
b34976b6 2847static bfd_boolean
9719ad41 2848mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2849{
9719ad41 2850 struct extsym_info *einfo = data;
b34976b6 2851 bfd_boolean strip;
b49e97c9
TS
2852 asection *sec, *output_section;
2853
b49e97c9 2854 if (h->root.indx == -2)
b34976b6 2855 strip = FALSE;
f5385ebf 2856 else if ((h->root.def_dynamic
77cfaee6
AM
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
b34976b6 2861 strip = TRUE;
b49e97c9
TS
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
b34976b6
AM
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
b49e97c9 2868 else
b34976b6 2869 strip = FALSE;
b49e97c9
TS
2870
2871 if (strip)
b34976b6 2872 return TRUE;
b49e97c9
TS
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
07d6d2b8 2890 special symbols. */
b49e97c9
TS
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
b49e97c9
TS
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
33bb52fb 2972 else
b49e97c9
TS
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2978
33bb52fb 2979 if (hd->needs_lazy_stub)
b49e97c9 2980 {
1bbce132
MR
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
1bbce132 2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
b49e97c9
TS
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
b34976b6
AM
3005 einfo->failed = TRUE;
3006 return FALSE;
b49e97c9
TS
3007 }
3008
b34976b6 3009 return TRUE;
b49e97c9
TS
3010}
3011
3012/* A comparison routine used to sort .gptab entries. */
3013
3014static int
9719ad41 3015gptab_compare (const void *p1, const void *p2)
b49e97c9 3016{
9719ad41
RS
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021}
3022\f
b15e6682 3023/* Functions to manage the got entry hash table. */
f4416af6
AO
3024
3025/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028static INLINE hashval_t
9719ad41 3029mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3030{
3031#ifdef BFD64
3032 return addr + (addr >> 32);
3033#else
3034 return addr;
3035#endif
3036}
3037
f4416af6 3038static hashval_t
d9bf376d 3039mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3040{
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
e641e783 3043 return (entry->symndx
9ab066b4
RS
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
f4416af6
AO
3050}
3051
3052static int
3dff0dd1 3053mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3054{
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
e641e783 3058 return (e1->symndx == e2->symndx
9ab066b4
RS
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3065}
c224138d 3066
13db6b44
RS
3067static hashval_t
3068mips_got_page_ref_hash (const void *ref_)
3069{
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077}
3078
3079static int
3080mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081{
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091}
3092
c224138d
RS
3093static hashval_t
3094mips_got_page_entry_hash (const void *entry_)
3095{
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3099 return entry->sec->id;
c224138d
RS
3100}
3101
3102static int
3103mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104{
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3109 return entry1->sec == entry2->sec;
c224138d 3110}
b15e6682 3111\f
3dff0dd1 3112/* Create and return a new mips_got_info structure. */
5334aa52
RS
3113
3114static struct mips_got_info *
3dff0dd1 3115mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3116{
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3dff0dd1
RS
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
13db6b44
RS
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
5334aa52
RS
3131 return NULL;
3132
3133 return g;
3134}
3135
ee227692
RS
3136/* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139static struct mips_got_info *
3140mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141{
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3dff0dd1 3149 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3150 return tdata->got;
3151}
3152
d7206569
RS
3153/* Record that ABFD should use output GOT G. */
3154
3155static void
3156mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157{
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
13db6b44
RS
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3170 }
3171 tdata->got = g;
3172}
3173
0a44bf69
RS
3174/* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
f4416af6
AO
3177
3178static asection *
0a44bf69 3179mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3180{
0a44bf69 3181 const char *dname;
f4416af6 3182 asection *sreloc;
0a44bf69 3183 bfd *dynobj;
f4416af6 3184
0a44bf69
RS
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3187 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3188 if (sreloc == NULL && create_p)
3189 {
3d4d4302
AM
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
f4416af6 3197 if (sreloc == NULL
f4416af6 3198 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3200 return NULL;
3201 }
3202 return sreloc;
3203}
3204
e641e783
RS
3205/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207static int
3208mips_elf_reloc_tls_type (unsigned int r_type)
3209{
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
9ab066b4 3219 return GOT_TLS_NONE;
e641e783
RS
3220}
3221
3222/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224static int
3225mips_tls_got_entries (unsigned int type)
3226{
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
9ab066b4 3236 case GOT_TLS_NONE:
e641e783
RS
3237 return 0;
3238 }
3239 abort ();
3240}
3241
0f20cc35
DJ
3242/* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246static int
3247mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249{
3250 int indx = 0;
0f20cc35
DJ
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
0e1862bb
L
3254 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3255 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3256 indx = h->dynindx;
3257
0e1862bb 3258 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3259 && (h == NULL
3260 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3261 || h->root.type != bfd_link_hash_undefweak))
3262 need_relocs = TRUE;
3263
3264 if (!need_relocs)
e641e783 3265 return 0;
0f20cc35 3266
9ab066b4 3267 switch (tls_type)
0f20cc35 3268 {
e641e783
RS
3269 case GOT_TLS_GD:
3270 return indx != 0 ? 2 : 1;
0f20cc35 3271
e641e783
RS
3272 case GOT_TLS_IE:
3273 return 1;
0f20cc35 3274
e641e783 3275 case GOT_TLS_LDM:
0e1862bb 3276 return bfd_link_pic (info) ? 1 : 0;
0f20cc35 3277
e641e783
RS
3278 default:
3279 return 0;
3280 }
0f20cc35
DJ
3281}
3282
ab361d49
RS
3283/* Add the number of GOT entries and TLS relocations required by ENTRY
3284 to G. */
0f20cc35 3285
ab361d49
RS
3286static void
3287mips_elf_count_got_entry (struct bfd_link_info *info,
3288 struct mips_got_info *g,
3289 struct mips_got_entry *entry)
0f20cc35 3290{
9ab066b4 3291 if (entry->tls_type)
ab361d49 3292 {
9ab066b4
RS
3293 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3294 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3295 entry->symndx < 0
3296 ? &entry->d.h->root : NULL);
3297 }
3298 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3299 g->local_gotno += 1;
3300 else
3301 g->global_gotno += 1;
0f20cc35
DJ
3302}
3303
0f20cc35
DJ
3304/* Output a simple dynamic relocation into SRELOC. */
3305
3306static void
3307mips_elf_output_dynamic_relocation (bfd *output_bfd,
3308 asection *sreloc,
861fb55a 3309 unsigned long reloc_index,
0f20cc35
DJ
3310 unsigned long indx,
3311 int r_type,
3312 bfd_vma offset)
3313{
3314 Elf_Internal_Rela rel[3];
3315
3316 memset (rel, 0, sizeof (rel));
3317
3318 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3319 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3320
3321 if (ABI_64_P (output_bfd))
3322 {
3323 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3324 (output_bfd, &rel[0],
3325 (sreloc->contents
861fb55a 3326 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3327 }
3328 else
3329 bfd_elf32_swap_reloc_out
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
861fb55a 3332 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3333}
3334
3335/* Initialize a set of TLS GOT entries for one symbol. */
3336
3337static void
9ab066b4
RS
3338mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3339 struct mips_got_entry *entry,
0f20cc35
DJ
3340 struct mips_elf_link_hash_entry *h,
3341 bfd_vma value)
3342{
23cc69b6 3343 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3344 int indx;
3345 asection *sreloc, *sgot;
9ab066b4 3346 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3347 bfd_boolean need_relocs = FALSE;
3348
23cc69b6 3349 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3350 if (htab == NULL)
3351 return;
3352
ce558b89 3353 sgot = htab->root.sgot;
0f20cc35
DJ
3354
3355 indx = 0;
3356 if (h != NULL)
3357 {
3358 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3359
0e1862bb
L
3360 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3361 &h->root)
3362 && (!bfd_link_pic (info)
3363 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
0f20cc35
DJ
3364 indx = h->root.dynindx;
3365 }
3366
9ab066b4 3367 if (entry->tls_initialized)
0f20cc35
DJ
3368 return;
3369
0e1862bb 3370 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3371 && (h == NULL
3372 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3373 || h->root.type != bfd_link_hash_undefweak))
3374 need_relocs = TRUE;
3375
3376 /* MINUS_ONE means the symbol is not defined in this object. It may not
3377 be defined at all; assume that the value doesn't matter in that
3378 case. Otherwise complain if we would use the value. */
3379 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3380 || h->root.root.type == bfd_link_hash_undefweak);
3381
3382 /* Emit necessary relocations. */
0a44bf69 3383 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3384 got_offset = entry->gotidx;
0f20cc35 3385
9ab066b4 3386 switch (entry->tls_type)
0f20cc35 3387 {
e641e783
RS
3388 case GOT_TLS_GD:
3389 /* General Dynamic. */
3390 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3391
3392 if (need_relocs)
3393 {
3394 mips_elf_output_dynamic_relocation
861fb55a 3395 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3396 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3397 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3398
3399 if (indx)
3400 mips_elf_output_dynamic_relocation
861fb55a 3401 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3403 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3406 sgot->contents + got_offset2);
0f20cc35
DJ
3407 }
3408 else
3409 {
3410 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3411 sgot->contents + got_offset);
0f20cc35 3412 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3413 sgot->contents + got_offset2);
0f20cc35 3414 }
e641e783 3415 break;
0f20cc35 3416
e641e783
RS
3417 case GOT_TLS_IE:
3418 /* Initial Exec model. */
0f20cc35
DJ
3419 if (need_relocs)
3420 {
3421 if (indx == 0)
3422 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3423 sgot->contents + got_offset);
0f20cc35
DJ
3424 else
3425 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3426 sgot->contents + got_offset);
0f20cc35
DJ
3427
3428 mips_elf_output_dynamic_relocation
861fb55a 3429 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3430 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3431 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3432 }
3433 else
3434 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3435 sgot->contents + got_offset);
3436 break;
0f20cc35 3437
e641e783 3438 case GOT_TLS_LDM:
0f20cc35
DJ
3439 /* The initial offset is zero, and the LD offsets will include the
3440 bias by DTP_OFFSET. */
3441 MIPS_ELF_PUT_WORD (abfd, 0,
3442 sgot->contents + got_offset
3443 + MIPS_ELF_GOT_SIZE (abfd));
3444
0e1862bb 3445 if (!bfd_link_pic (info))
0f20cc35
DJ
3446 MIPS_ELF_PUT_WORD (abfd, 1,
3447 sgot->contents + got_offset);
3448 else
3449 mips_elf_output_dynamic_relocation
861fb55a 3450 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3451 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3452 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3453 break;
3454
3455 default:
3456 abort ();
0f20cc35
DJ
3457 }
3458
9ab066b4 3459 entry->tls_initialized = TRUE;
e641e783 3460}
0f20cc35 3461
0a44bf69
RS
3462/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3463 for global symbol H. .got.plt comes before the GOT, so the offset
3464 will be negative. */
3465
3466static bfd_vma
3467mips_elf_gotplt_index (struct bfd_link_info *info,
3468 struct elf_link_hash_entry *h)
3469{
1bbce132 3470 bfd_vma got_address, got_value;
0a44bf69
RS
3471 struct mips_elf_link_hash_table *htab;
3472
3473 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3474 BFD_ASSERT (htab != NULL);
3475
1bbce132
MR
3476 BFD_ASSERT (h->plt.plist != NULL);
3477 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3478
3479 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3480 got_address = (htab->root.sgotplt->output_section->vma
3481 + htab->root.sgotplt->output_offset
1bbce132
MR
3482 + (h->plt.plist->gotplt_index
3483 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3484
3485 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3486 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3487 + htab->root.hgot->root.u.def.section->output_offset
3488 + htab->root.hgot->root.u.def.value);
3489
3490 return got_address - got_value;
3491}
3492
5c18022e 3493/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3494 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3495 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3496 offset can be found. */
b49e97c9
TS
3497
3498static bfd_vma
9719ad41 3499mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3500 bfd_vma value, unsigned long r_symndx,
0f20cc35 3501 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3502{
a8028dd0 3503 struct mips_elf_link_hash_table *htab;
b15e6682 3504 struct mips_got_entry *entry;
b49e97c9 3505
a8028dd0 3506 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3507 BFD_ASSERT (htab != NULL);
3508
a8028dd0
RS
3509 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3510 r_symndx, h, r_type);
0f20cc35 3511 if (!entry)
b15e6682 3512 return MINUS_ONE;
0f20cc35 3513
e641e783 3514 if (entry->tls_type)
9ab066b4
RS
3515 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3516 return entry->gotidx;
b49e97c9
TS
3517}
3518
13fbec83 3519/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3520
3521static bfd_vma
13fbec83
RS
3522mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3523 struct elf_link_hash_entry *h)
3524{
3525 struct mips_elf_link_hash_table *htab;
3526 long global_got_dynindx;
3527 struct mips_got_info *g;
3528 bfd_vma got_index;
3529
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3532
3533 global_got_dynindx = 0;
3534 if (htab->global_gotsym != NULL)
3535 global_got_dynindx = htab->global_gotsym->dynindx;
3536
3537 /* Once we determine the global GOT entry with the lowest dynamic
3538 symbol table index, we must put all dynamic symbols with greater
3539 indices into the primary GOT. That makes it easy to calculate the
3540 GOT offset. */
3541 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3542 g = mips_elf_bfd_got (obfd, FALSE);
3543 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3544 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3545 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3546
3547 return got_index;
3548}
3549
3550/* Return the GOT index for the global symbol indicated by H, which is
3551 referenced by a relocation of type R_TYPE in IBFD. */
3552
3553static bfd_vma
3554mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3555 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3556{
a8028dd0 3557 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3558 struct mips_got_info *g;
3559 struct mips_got_entry lookup, *entry;
3560 bfd_vma gotidx;
b49e97c9 3561
a8028dd0 3562 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3563 BFD_ASSERT (htab != NULL);
3564
6c42ddb9
RS
3565 g = mips_elf_bfd_got (ibfd, FALSE);
3566 BFD_ASSERT (g);
f4416af6 3567
6c42ddb9
RS
3568 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3569 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3570 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3571
6c42ddb9
RS
3572 lookup.abfd = ibfd;
3573 lookup.symndx = -1;
3574 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3575 entry = htab_find (g->got_entries, &lookup);
3576 BFD_ASSERT (entry);
0f20cc35 3577
6c42ddb9 3578 gotidx = entry->gotidx;
ce558b89 3579 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3580
6c42ddb9 3581 if (lookup.tls_type)
0f20cc35 3582 {
0f20cc35
DJ
3583 bfd_vma value = MINUS_ONE;
3584
3585 if ((h->root.type == bfd_link_hash_defined
3586 || h->root.type == bfd_link_hash_defweak)
3587 && h->root.u.def.section->output_section)
3588 value = (h->root.u.def.value
3589 + h->root.u.def.section->output_offset
3590 + h->root.u.def.section->output_section->vma);
3591
9ab066b4 3592 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3593 }
6c42ddb9 3594 return gotidx;
b49e97c9
TS
3595}
3596
5c18022e
RS
3597/* Find a GOT page entry that points to within 32KB of VALUE. These
3598 entries are supposed to be placed at small offsets in the GOT, i.e.,
3599 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3600 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3601 offset of the GOT entry from VALUE. */
b49e97c9
TS
3602
3603static bfd_vma
9719ad41 3604mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3605 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3606{
91d6fa6a 3607 bfd_vma page, got_index;
b15e6682 3608 struct mips_got_entry *entry;
b49e97c9 3609
0a44bf69 3610 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3612 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3613
b15e6682
AO
3614 if (!entry)
3615 return MINUS_ONE;
143d77c5 3616
91d6fa6a 3617 got_index = entry->gotidx;
b49e97c9
TS
3618
3619 if (offsetp)
f4416af6 3620 *offsetp = value - entry->d.address;
b49e97c9 3621
91d6fa6a 3622 return got_index;
b49e97c9
TS
3623}
3624
738e5348 3625/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3626 EXTERNAL is true if the relocation was originally against a global
3627 symbol that binds locally. */
b49e97c9
TS
3628
3629static bfd_vma
9719ad41 3630mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3631 bfd_vma value, bfd_boolean external)
b49e97c9 3632{
b15e6682 3633 struct mips_got_entry *entry;
b49e97c9 3634
0a44bf69
RS
3635 /* GOT16 relocations against local symbols are followed by a LO16
3636 relocation; those against global symbols are not. Thus if the
3637 symbol was originally local, the GOT16 relocation should load the
3638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3639 if (! external)
0a44bf69 3640 value = mips_elf_high (value) << 16;
b49e97c9 3641
738e5348
RS
3642 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3643 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3644 same in all cases. */
a8028dd0
RS
3645 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3646 NULL, R_MIPS_GOT16);
b15e6682
AO
3647 if (entry)
3648 return entry->gotidx;
3649 else
3650 return MINUS_ONE;
b49e97c9
TS
3651}
3652
3653/* Returns the offset for the entry at the INDEXth position
3654 in the GOT. */
3655
3656static bfd_vma
a8028dd0 3657mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3658 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3659{
a8028dd0 3660 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3661 asection *sgot;
3662 bfd_vma gp;
3663
a8028dd0 3664 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3665 BFD_ASSERT (htab != NULL);
3666
ce558b89 3667 sgot = htab->root.sgot;
f4416af6 3668 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3669 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3670
91d6fa6a 3671 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3672}
3673
0a44bf69
RS
3674/* Create and return a local GOT entry for VALUE, which was calculated
3675 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3676 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3677 instead. */
b49e97c9 3678
b15e6682 3679static struct mips_got_entry *
0a44bf69 3680mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3681 bfd *ibfd, bfd_vma value,
5c18022e 3682 unsigned long r_symndx,
0f20cc35
DJ
3683 struct mips_elf_link_hash_entry *h,
3684 int r_type)
b49e97c9 3685{
ebc53538
RS
3686 struct mips_got_entry lookup, *entry;
3687 void **loc;
f4416af6 3688 struct mips_got_info *g;
0a44bf69 3689 struct mips_elf_link_hash_table *htab;
6c42ddb9 3690 bfd_vma gotidx;
0a44bf69
RS
3691
3692 htab = mips_elf_hash_table (info);
4dfe6ac6 3693 BFD_ASSERT (htab != NULL);
b15e6682 3694
d7206569 3695 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3696 if (g == NULL)
3697 {
d7206569 3698 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3699 BFD_ASSERT (g != NULL);
3700 }
b15e6682 3701
020d7251
RS
3702 /* This function shouldn't be called for symbols that live in the global
3703 area of the GOT. */
3704 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3705
ebc53538
RS
3706 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3707 if (lookup.tls_type)
3708 {
3709 lookup.abfd = ibfd;
df58fc94 3710 if (tls_ldm_reloc_p (r_type))
0f20cc35 3711 {
ebc53538
RS
3712 lookup.symndx = 0;
3713 lookup.d.addend = 0;
0f20cc35
DJ
3714 }
3715 else if (h == NULL)
3716 {
ebc53538
RS
3717 lookup.symndx = r_symndx;
3718 lookup.d.addend = 0;
0f20cc35
DJ
3719 }
3720 else
ebc53538
RS
3721 {
3722 lookup.symndx = -1;
3723 lookup.d.h = h;
3724 }
0f20cc35 3725
ebc53538
RS
3726 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3727 BFD_ASSERT (entry);
0f20cc35 3728
6c42ddb9 3729 gotidx = entry->gotidx;
ce558b89 3730 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3731
ebc53538 3732 return entry;
0f20cc35
DJ
3733 }
3734
ebc53538
RS
3735 lookup.abfd = NULL;
3736 lookup.symndx = -1;
3737 lookup.d.address = value;
3738 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3739 if (!loc)
b15e6682 3740 return NULL;
143d77c5 3741
ebc53538
RS
3742 entry = (struct mips_got_entry *) *loc;
3743 if (entry)
3744 return entry;
b15e6682 3745
cb22ccf4 3746 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3747 {
3748 /* We didn't allocate enough space in the GOT. */
4eca0228 3749 _bfd_error_handler
b49e97c9
TS
3750 (_("not enough GOT space for local GOT entries"));
3751 bfd_set_error (bfd_error_bad_value);
b15e6682 3752 return NULL;
b49e97c9
TS
3753 }
3754
ebc53538
RS
3755 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3756 if (!entry)
3757 return NULL;
3758
cb22ccf4
KCY
3759 if (got16_reloc_p (r_type)
3760 || call16_reloc_p (r_type)
3761 || got_page_reloc_p (r_type)
3762 || got_disp_reloc_p (r_type))
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3764 else
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3766
ebc53538
RS
3767 *entry = lookup;
3768 *loc = entry;
3769
ce558b89 3770 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3771
5c18022e 3772 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3773 if (htab->is_vxworks)
3774 {
3775 Elf_Internal_Rela outrel;
5c18022e 3776 asection *s;
91d6fa6a 3777 bfd_byte *rloc;
0a44bf69 3778 bfd_vma got_address;
0a44bf69
RS
3779
3780 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3781 got_address = (htab->root.sgot->output_section->vma
3782 + htab->root.sgot->output_offset
ebc53538 3783 + entry->gotidx);
0a44bf69 3784
91d6fa6a 3785 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3786 outrel.r_offset = got_address;
5c18022e
RS
3787 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3788 outrel.r_addend = value;
91d6fa6a 3789 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3790 }
3791
ebc53538 3792 return entry;
b49e97c9
TS
3793}
3794
d4596a51
RS
3795/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3796 The number might be exact or a worst-case estimate, depending on how
3797 much information is available to elf_backend_omit_section_dynsym at
3798 the current linking stage. */
3799
3800static bfd_size_type
3801count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3802{
3803 bfd_size_type count;
3804
3805 count = 0;
0e1862bb
L
3806 if (bfd_link_pic (info)
3807 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3808 {
3809 asection *p;
3810 const struct elf_backend_data *bed;
3811
3812 bed = get_elf_backend_data (output_bfd);
3813 for (p = output_bfd->sections; p ; p = p->next)
3814 if ((p->flags & SEC_EXCLUDE) == 0
3815 && (p->flags & SEC_ALLOC) != 0
7f923b7f 3816 && elf_hash_table (info)->dynamic_relocs
d4596a51
RS
3817 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3818 ++count;
3819 }
3820 return count;
3821}
3822
b49e97c9 3823/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3824 appear towards the end. */
b49e97c9 3825
b34976b6 3826static bfd_boolean
d4596a51 3827mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3828{
a8028dd0 3829 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3830 struct mips_elf_hash_sort_data hsd;
3831 struct mips_got_info *g;
b49e97c9 3832
a8028dd0 3833 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3834 BFD_ASSERT (htab != NULL);
3835
0f8c4b60 3836 if (htab->root.dynsymcount == 0)
17a80fa8
MR
3837 return TRUE;
3838
a8028dd0 3839 g = htab->got_info;
d4596a51
RS
3840 if (g == NULL)
3841 return TRUE;
f4416af6 3842
b49e97c9 3843 hsd.low = NULL;
23cc69b6
RS
3844 hsd.max_unref_got_dynindx
3845 = hsd.min_got_dynindx
0f8c4b60 3846 = (htab->root.dynsymcount - g->reloc_only_gotno);
e17b0c35
MR
3847 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3848 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3849 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3850 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
0f8c4b60 3851 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
b49e97c9
TS
3852
3853 /* There should have been enough room in the symbol table to
44c410de 3854 accommodate both the GOT and non-GOT symbols. */
e17b0c35 3855 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
b49e97c9 3856 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
55f8b9d2 3857 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
0f8c4b60 3858 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
b49e97c9
TS
3859
3860 /* Now we know which dynamic symbol has the lowest dynamic symbol
3861 table index in the GOT. */
d222d210 3862 htab->global_gotsym = hsd.low;
b49e97c9 3863
b34976b6 3864 return TRUE;
b49e97c9
TS
3865}
3866
3867/* If H needs a GOT entry, assign it the highest available dynamic
3868 index. Otherwise, assign it the lowest available dynamic
3869 index. */
3870
b34976b6 3871static bfd_boolean
9719ad41 3872mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3873{
9719ad41 3874 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3875
b49e97c9
TS
3876 /* Symbols without dynamic symbol table entries aren't interesting
3877 at all. */
3878 if (h->root.dynindx == -1)
b34976b6 3879 return TRUE;
b49e97c9 3880
634835ae 3881 switch (h->global_got_area)
f4416af6 3882 {
634835ae 3883 case GGA_NONE:
e17b0c35
MR
3884 if (h->root.forced_local)
3885 h->root.dynindx = hsd->max_local_dynindx++;
3886 else
3887 h->root.dynindx = hsd->max_non_got_dynindx++;
634835ae 3888 break;
0f20cc35 3889
634835ae 3890 case GGA_NORMAL:
b49e97c9
TS
3891 h->root.dynindx = --hsd->min_got_dynindx;
3892 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3893 break;
3894
3895 case GGA_RELOC_ONLY:
634835ae
RS
3896 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 h->root.dynindx = hsd->max_unref_got_dynindx++;
3899 break;
b49e97c9
TS
3900 }
3901
b34976b6 3902 return TRUE;
b49e97c9
TS
3903}
3904
ee227692
RS
3905/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3906 (which is owned by the caller and shouldn't be added to the
3907 hash table directly). */
3908
3909static bfd_boolean
3910mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3911 struct mips_got_entry *lookup)
3912{
3913 struct mips_elf_link_hash_table *htab;
3914 struct mips_got_entry *entry;
3915 struct mips_got_info *g;
3916 void **loc, **bfd_loc;
3917
3918 /* Make sure there's a slot for this entry in the master GOT. */
3919 htab = mips_elf_hash_table (info);
3920 g = htab->got_info;
3921 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3922 if (!loc)
3923 return FALSE;
3924
3925 /* Populate the entry if it isn't already. */
3926 entry = (struct mips_got_entry *) *loc;
3927 if (!entry)
3928 {
3929 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3930 if (!entry)
3931 return FALSE;
3932
9ab066b4 3933 lookup->tls_initialized = FALSE;
ee227692
RS
3934 lookup->gotidx = -1;
3935 *entry = *lookup;
3936 *loc = entry;
3937 }
3938
3939 /* Reuse the same GOT entry for the BFD's GOT. */
3940 g = mips_elf_bfd_got (abfd, TRUE);
3941 if (!g)
3942 return FALSE;
3943
3944 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3945 if (!bfd_loc)
3946 return FALSE;
3947
3948 if (!*bfd_loc)
3949 *bfd_loc = entry;
3950 return TRUE;
3951}
3952
e641e783
RS
3953/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3954 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3955 using the GOT entry for calls. */
b49e97c9 3956
b34976b6 3957static bfd_boolean
9719ad41
RS
3958mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3959 bfd *abfd, struct bfd_link_info *info,
e641e783 3960 bfd_boolean for_call, int r_type)
b49e97c9 3961{
a8028dd0 3962 struct mips_elf_link_hash_table *htab;
634835ae 3963 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3964 struct mips_got_entry entry;
3965 unsigned char tls_type;
a8028dd0
RS
3966
3967 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3968 BFD_ASSERT (htab != NULL);
3969
634835ae 3970 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3971 if (!for_call)
3972 hmips->got_only_for_calls = FALSE;
f4416af6 3973
b49e97c9
TS
3974 /* A global symbol in the GOT must also be in the dynamic symbol
3975 table. */
7c5fcef7
L
3976 if (h->dynindx == -1)
3977 {
3978 switch (ELF_ST_VISIBILITY (h->other))
3979 {
3980 case STV_INTERNAL:
3981 case STV_HIDDEN:
33bb52fb 3982 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3983 break;
3984 }
c152c796 3985 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3986 return FALSE;
7c5fcef7 3987 }
b49e97c9 3988
ee227692 3989 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3990 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3991 hmips->global_got_area = GGA_NORMAL;
86324f90 3992
f4416af6
AO
3993 entry.abfd = abfd;
3994 entry.symndx = -1;
3995 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
3996 entry.tls_type = tls_type;
3997 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 3998}
f4416af6 3999
e641e783
RS
4000/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4001 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4002
4003static bfd_boolean
9719ad41 4004mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4005 struct bfd_link_info *info, int r_type)
f4416af6 4006{
a8028dd0
RS
4007 struct mips_elf_link_hash_table *htab;
4008 struct mips_got_info *g;
ee227692 4009 struct mips_got_entry entry;
f4416af6 4010
a8028dd0 4011 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4012 BFD_ASSERT (htab != NULL);
4013
a8028dd0
RS
4014 g = htab->got_info;
4015 BFD_ASSERT (g != NULL);
4016
f4416af6
AO
4017 entry.abfd = abfd;
4018 entry.symndx = symndx;
4019 entry.d.addend = addend;
e641e783 4020 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4021 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4022}
c224138d 4023
13db6b44
RS
4024/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4025 H is the symbol's hash table entry, or null if SYMNDX is local
4026 to ABFD. */
c224138d
RS
4027
4028static bfd_boolean
13db6b44
RS
4029mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4030 long symndx, struct elf_link_hash_entry *h,
4031 bfd_signed_vma addend)
c224138d 4032{
a8028dd0 4033 struct mips_elf_link_hash_table *htab;
ee227692 4034 struct mips_got_info *g1, *g2;
13db6b44 4035 struct mips_got_page_ref lookup, *entry;
ee227692 4036 void **loc, **bfd_loc;
c224138d 4037
a8028dd0 4038 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4039 BFD_ASSERT (htab != NULL);
4040
ee227692
RS
4041 g1 = htab->got_info;
4042 BFD_ASSERT (g1 != NULL);
a8028dd0 4043
13db6b44
RS
4044 if (h)
4045 {
4046 lookup.symndx = -1;
4047 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4048 }
4049 else
4050 {
4051 lookup.symndx = symndx;
4052 lookup.u.abfd = abfd;
4053 }
4054 lookup.addend = addend;
4055 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4056 if (loc == NULL)
4057 return FALSE;
4058
13db6b44 4059 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4060 if (!entry)
4061 {
4062 entry = bfd_alloc (abfd, sizeof (*entry));
4063 if (!entry)
4064 return FALSE;
4065
13db6b44 4066 *entry = lookup;
c224138d
RS
4067 *loc = entry;
4068 }
4069
ee227692
RS
4070 /* Add the same entry to the BFD's GOT. */
4071 g2 = mips_elf_bfd_got (abfd, TRUE);
4072 if (!g2)
4073 return FALSE;
4074
13db6b44 4075 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4076 if (!bfd_loc)
4077 return FALSE;
4078
4079 if (!*bfd_loc)
4080 *bfd_loc = entry;
4081
c224138d
RS
4082 return TRUE;
4083}
33bb52fb
RS
4084
4085/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4086
4087static void
4088mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4089 unsigned int n)
4090{
4091 asection *s;
4092 struct mips_elf_link_hash_table *htab;
4093
4094 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4095 BFD_ASSERT (htab != NULL);
4096
33bb52fb
RS
4097 s = mips_elf_rel_dyn_section (info, FALSE);
4098 BFD_ASSERT (s != NULL);
4099
4100 if (htab->is_vxworks)
4101 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4102 else
4103 {
4104 if (s->size == 0)
4105 {
4106 /* Make room for a null element. */
4107 s->size += MIPS_ELF_REL_SIZE (abfd);
4108 ++s->reloc_count;
4109 }
4110 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4111 }
4112}
4113\f
476366af
RS
4114/* A htab_traverse callback for GOT entries, with DATA pointing to a
4115 mips_elf_traverse_got_arg structure. Count the number of GOT
4116 entries and TLS relocs. Set DATA->value to true if we need
4117 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4118
4119static int
4120mips_elf_check_recreate_got (void **entryp, void *data)
4121{
4122 struct mips_got_entry *entry;
476366af 4123 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4124
4125 entry = (struct mips_got_entry *) *entryp;
476366af 4126 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4127 if (entry->abfd != NULL && entry->symndx == -1)
4128 {
4129 struct mips_elf_link_hash_entry *h;
4130
4131 h = entry->d.h;
4132 if (h->root.root.type == bfd_link_hash_indirect
4133 || h->root.root.type == bfd_link_hash_warning)
4134 {
476366af 4135 arg->value = TRUE;
33bb52fb
RS
4136 return 0;
4137 }
4138 }
476366af 4139 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4140 return 1;
4141}
4142
476366af
RS
4143/* A htab_traverse callback for GOT entries, with DATA pointing to a
4144 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4145 converting entries for indirect and warning symbols into entries
4146 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4147
4148static int
4149mips_elf_recreate_got (void **entryp, void *data)
4150{
72e7511a 4151 struct mips_got_entry new_entry, *entry;
476366af 4152 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4153 void **slot;
4154
33bb52fb 4155 entry = (struct mips_got_entry *) *entryp;
476366af 4156 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4157 if (entry->abfd != NULL
4158 && entry->symndx == -1
4159 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4160 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4161 {
4162 struct mips_elf_link_hash_entry *h;
4163
72e7511a
RS
4164 new_entry = *entry;
4165 entry = &new_entry;
33bb52fb 4166 h = entry->d.h;
72e7511a 4167 do
634835ae
RS
4168 {
4169 BFD_ASSERT (h->global_got_area == GGA_NONE);
4170 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4171 }
72e7511a
RS
4172 while (h->root.root.type == bfd_link_hash_indirect
4173 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4174 entry->d.h = h;
4175 }
476366af 4176 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4177 if (slot == NULL)
4178 {
476366af 4179 arg->g = NULL;
33bb52fb
RS
4180 return 0;
4181 }
4182 if (*slot == NULL)
72e7511a
RS
4183 {
4184 if (entry == &new_entry)
4185 {
4186 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4187 if (!entry)
4188 {
476366af 4189 arg->g = NULL;
72e7511a
RS
4190 return 0;
4191 }
4192 *entry = new_entry;
4193 }
4194 *slot = entry;
476366af 4195 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4196 }
33bb52fb
RS
4197 return 1;
4198}
4199
13db6b44
RS
4200/* Return the maximum number of GOT page entries required for RANGE. */
4201
4202static bfd_vma
4203mips_elf_pages_for_range (const struct mips_got_page_range *range)
4204{
4205 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4206}
4207
4208/* Record that G requires a page entry that can reach SEC + ADDEND. */
4209
4210static bfd_boolean
b75d42bc 4211mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4212 asection *sec, bfd_signed_vma addend)
4213{
b75d42bc 4214 struct mips_got_info *g = arg->g;
13db6b44
RS
4215 struct mips_got_page_entry lookup, *entry;
4216 struct mips_got_page_range **range_ptr, *range;
4217 bfd_vma old_pages, new_pages;
4218 void **loc;
4219
4220 /* Find the mips_got_page_entry hash table entry for this section. */
4221 lookup.sec = sec;
4222 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4223 if (loc == NULL)
4224 return FALSE;
4225
4226 /* Create a mips_got_page_entry if this is the first time we've
4227 seen the section. */
4228 entry = (struct mips_got_page_entry *) *loc;
4229 if (!entry)
4230 {
b75d42bc 4231 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4232 if (!entry)
4233 return FALSE;
4234
4235 entry->sec = sec;
4236 *loc = entry;
4237 }
4238
4239 /* Skip over ranges whose maximum extent cannot share a page entry
4240 with ADDEND. */
4241 range_ptr = &entry->ranges;
4242 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4243 range_ptr = &(*range_ptr)->next;
4244
4245 /* If we scanned to the end of the list, or found a range whose
4246 minimum extent cannot share a page entry with ADDEND, create
4247 a new singleton range. */
4248 range = *range_ptr;
4249 if (!range || addend < range->min_addend - 0xffff)
4250 {
b75d42bc 4251 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4252 if (!range)
4253 return FALSE;
4254
4255 range->next = *range_ptr;
4256 range->min_addend = addend;
4257 range->max_addend = addend;
4258
4259 *range_ptr = range;
4260 entry->num_pages++;
4261 g->page_gotno++;
4262 return TRUE;
4263 }
4264
4265 /* Remember how many pages the old range contributed. */
4266 old_pages = mips_elf_pages_for_range (range);
4267
4268 /* Update the ranges. */
4269 if (addend < range->min_addend)
4270 range->min_addend = addend;
4271 else if (addend > range->max_addend)
4272 {
4273 if (range->next && addend >= range->next->min_addend - 0xffff)
4274 {
4275 old_pages += mips_elf_pages_for_range (range->next);
4276 range->max_addend = range->next->max_addend;
4277 range->next = range->next->next;
4278 }
4279 else
4280 range->max_addend = addend;
4281 }
4282
4283 /* Record any change in the total estimate. */
4284 new_pages = mips_elf_pages_for_range (range);
4285 if (old_pages != new_pages)
4286 {
4287 entry->num_pages += new_pages - old_pages;
4288 g->page_gotno += new_pages - old_pages;
4289 }
4290
4291 return TRUE;
4292}
4293
4294/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4295 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4296 whether the page reference described by *REFP needs a GOT page entry,
4297 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4298
4299static bfd_boolean
4300mips_elf_resolve_got_page_ref (void **refp, void *data)
4301{
4302 struct mips_got_page_ref *ref;
4303 struct mips_elf_traverse_got_arg *arg;
4304 struct mips_elf_link_hash_table *htab;
4305 asection *sec;
4306 bfd_vma addend;
4307
4308 ref = (struct mips_got_page_ref *) *refp;
4309 arg = (struct mips_elf_traverse_got_arg *) data;
4310 htab = mips_elf_hash_table (arg->info);
4311
4312 if (ref->symndx < 0)
4313 {
4314 struct mips_elf_link_hash_entry *h;
4315
4316 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4317 h = ref->u.h;
4318 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4319 return 1;
4320
4321 /* Ignore undefined symbols; we'll issue an error later if
4322 appropriate. */
4323 if (!((h->root.root.type == bfd_link_hash_defined
4324 || h->root.root.type == bfd_link_hash_defweak)
4325 && h->root.root.u.def.section))
4326 return 1;
4327
4328 sec = h->root.root.u.def.section;
4329 addend = h->root.root.u.def.value + ref->addend;
4330 }
4331 else
4332 {
4333 Elf_Internal_Sym *isym;
4334
4335 /* Read in the symbol. */
4336 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4337 ref->symndx);
4338 if (isym == NULL)
4339 {
4340 arg->g = NULL;
4341 return 0;
4342 }
4343
4344 /* Get the associated input section. */
4345 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4346 if (sec == NULL)
4347 {
4348 arg->g = NULL;
4349 return 0;
4350 }
4351
4352 /* If this is a mergable section, work out the section and offset
4353 of the merged data. For section symbols, the addend specifies
4354 of the offset _of_ the first byte in the data, otherwise it
4355 specifies the offset _from_ the first byte. */
4356 if (sec->flags & SEC_MERGE)
4357 {
4358 void *secinfo;
4359
4360 secinfo = elf_section_data (sec)->sec_info;
4361 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4362 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4363 isym->st_value + ref->addend);
4364 else
4365 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4366 isym->st_value) + ref->addend;
4367 }
4368 else
4369 addend = isym->st_value + ref->addend;
4370 }
b75d42bc 4371 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4372 {
4373 arg->g = NULL;
4374 return 0;
4375 }
4376 return 1;
4377}
4378
33bb52fb 4379/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4380 replace them with entries for the target symbol. Convert g->got_page_refs
4381 into got_page_entry structures and estimate the number of page entries
4382 that they require. */
33bb52fb
RS
4383
4384static bfd_boolean
476366af
RS
4385mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4386 struct mips_got_info *g)
33bb52fb 4387{
476366af
RS
4388 struct mips_elf_traverse_got_arg tga;
4389 struct mips_got_info oldg;
4390
4391 oldg = *g;
33bb52fb 4392
476366af
RS
4393 tga.info = info;
4394 tga.g = g;
4395 tga.value = FALSE;
4396 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4397 if (tga.value)
33bb52fb 4398 {
476366af
RS
4399 *g = oldg;
4400 g->got_entries = htab_create (htab_size (oldg.got_entries),
4401 mips_elf_got_entry_hash,
4402 mips_elf_got_entry_eq, NULL);
4403 if (!g->got_entries)
33bb52fb
RS
4404 return FALSE;
4405
476366af
RS
4406 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4407 if (!tga.g)
4408 return FALSE;
4409
4410 htab_delete (oldg.got_entries);
33bb52fb 4411 }
13db6b44
RS
4412
4413 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4414 mips_got_page_entry_eq, NULL);
4415 if (g->got_page_entries == NULL)
4416 return FALSE;
4417
4418 tga.info = info;
4419 tga.g = g;
4420 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4421
33bb52fb
RS
4422 return TRUE;
4423}
4424
c5d6fa44
RS
4425/* Return true if a GOT entry for H should live in the local rather than
4426 global GOT area. */
4427
4428static bfd_boolean
4429mips_use_local_got_p (struct bfd_link_info *info,
4430 struct mips_elf_link_hash_entry *h)
4431{
4432 /* Symbols that aren't in the dynamic symbol table must live in the
4433 local GOT. This includes symbols that are completely undefined
4434 and which therefore don't bind locally. We'll report undefined
4435 symbols later if appropriate. */
4436 if (h->root.dynindx == -1)
4437 return TRUE;
4438
4439 /* Symbols that bind locally can (and in the case of forced-local
4440 symbols, must) live in the local GOT. */
4441 if (h->got_only_for_calls
4442 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4443 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4444 return TRUE;
4445
4446 /* If this is an executable that must provide a definition of the symbol,
4447 either though PLTs or copy relocations, then that address should go in
4448 the local rather than global GOT. */
0e1862bb 4449 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4450 return TRUE;
4451
4452 return FALSE;
4453}
4454
6c42ddb9
RS
4455/* A mips_elf_link_hash_traverse callback for which DATA points to the
4456 link_info structure. Decide whether the hash entry needs an entry in
4457 the global part of the primary GOT, setting global_got_area accordingly.
4458 Count the number of global symbols that are in the primary GOT only
4459 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4460
4461static int
d4596a51 4462mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4463{
020d7251 4464 struct bfd_link_info *info;
6ccf4795 4465 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4466 struct mips_got_info *g;
4467
020d7251 4468 info = (struct bfd_link_info *) data;
6ccf4795
RS
4469 htab = mips_elf_hash_table (info);
4470 g = htab->got_info;
d4596a51 4471 if (h->global_got_area != GGA_NONE)
33bb52fb 4472 {
020d7251 4473 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4474 local or global GOT. */
4475 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4476 /* The symbol belongs in the local GOT. We no longer need this
4477 entry if it was only used for relocations; those relocations
4478 will be against the null or section symbol instead of H. */
4479 h->global_got_area = GGA_NONE;
6ccf4795
RS
4480 else if (htab->is_vxworks
4481 && h->got_only_for_calls
1bbce132 4482 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4483 /* On VxWorks, calls can refer directly to the .got.plt entry;
4484 they don't need entries in the regular GOT. .got.plt entries
4485 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4486 h->global_got_area = GGA_NONE;
6c42ddb9 4487 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4488 {
6c42ddb9 4489 g->reloc_only_gotno++;
23cc69b6 4490 g->global_gotno++;
23cc69b6 4491 }
33bb52fb
RS
4492 }
4493 return 1;
4494}
f4416af6 4495\f
d7206569
RS
4496/* A htab_traverse callback for GOT entries. Add each one to the GOT
4497 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4498
4499static int
d7206569 4500mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4501{
d7206569
RS
4502 struct mips_got_entry *entry;
4503 struct mips_elf_traverse_got_arg *arg;
4504 void **slot;
f4416af6 4505
d7206569
RS
4506 entry = (struct mips_got_entry *) *entryp;
4507 arg = (struct mips_elf_traverse_got_arg *) data;
4508 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4509 if (!slot)
f4416af6 4510 {
d7206569
RS
4511 arg->g = NULL;
4512 return 0;
f4416af6 4513 }
d7206569 4514 if (!*slot)
c224138d 4515 {
d7206569
RS
4516 *slot = entry;
4517 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4518 }
f4416af6
AO
4519 return 1;
4520}
4521
d7206569
RS
4522/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4523 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4524
4525static int
d7206569 4526mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4527{
d7206569
RS
4528 struct mips_got_page_entry *entry;
4529 struct mips_elf_traverse_got_arg *arg;
4530 void **slot;
c224138d 4531
d7206569
RS
4532 entry = (struct mips_got_page_entry *) *entryp;
4533 arg = (struct mips_elf_traverse_got_arg *) data;
4534 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4535 if (!slot)
c224138d 4536 {
d7206569 4537 arg->g = NULL;
c224138d
RS
4538 return 0;
4539 }
d7206569
RS
4540 if (!*slot)
4541 {
4542 *slot = entry;
4543 arg->g->page_gotno += entry->num_pages;
4544 }
c224138d
RS
4545 return 1;
4546}
4547
d7206569
RS
4548/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4549 this would lead to overflow, 1 if they were merged successfully,
4550 and 0 if a merge failed due to lack of memory. (These values are chosen
4551 so that nonnegative return values can be returned by a htab_traverse
4552 callback.) */
c224138d
RS
4553
4554static int
d7206569 4555mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4556 struct mips_got_info *to,
4557 struct mips_elf_got_per_bfd_arg *arg)
4558{
d7206569 4559 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4560 unsigned int estimate;
4561
4562 /* Work out how many page entries we would need for the combined GOT. */
4563 estimate = arg->max_pages;
4564 if (estimate >= from->page_gotno + to->page_gotno)
4565 estimate = from->page_gotno + to->page_gotno;
4566
e2ece73c 4567 /* And conservatively estimate how many local and TLS entries
c224138d 4568 would be needed. */
e2ece73c
RS
4569 estimate += from->local_gotno + to->local_gotno;
4570 estimate += from->tls_gotno + to->tls_gotno;
4571
17214937
RS
4572 /* If we're merging with the primary got, any TLS relocations will
4573 come after the full set of global entries. Otherwise estimate those
e2ece73c 4574 conservatively as well. */
17214937 4575 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4576 estimate += arg->global_count;
4577 else
4578 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4579
4580 /* Bail out if the combined GOT might be too big. */
4581 if (estimate > arg->max_count)
4582 return -1;
4583
c224138d 4584 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4585 tga.info = arg->info;
4586 tga.g = to;
4587 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4588 if (!tga.g)
c224138d
RS
4589 return 0;
4590
d7206569
RS
4591 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4592 if (!tga.g)
c224138d
RS
4593 return 0;
4594
d7206569 4595 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4596 return 1;
4597}
4598
d7206569 4599/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4600 as possible of the primary got, since it doesn't require explicit
4601 dynamic relocations, but don't use bfds that would reference global
4602 symbols out of the addressable range. Failing the primary got,
4603 attempt to merge with the current got, or finish the current got
4604 and then make make the new got current. */
4605
d7206569
RS
4606static bfd_boolean
4607mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4608 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4609{
c224138d
RS
4610 unsigned int estimate;
4611 int result;
4612
476366af 4613 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4614 return FALSE;
4615
c224138d
RS
4616 /* Work out the number of page, local and TLS entries. */
4617 estimate = arg->max_pages;
4618 if (estimate > g->page_gotno)
4619 estimate = g->page_gotno;
4620 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4621
4622 /* We place TLS GOT entries after both locals and globals. The globals
4623 for the primary GOT may overflow the normal GOT size limit, so be
4624 sure not to merge a GOT which requires TLS with the primary GOT in that
4625 case. This doesn't affect non-primary GOTs. */
c224138d 4626 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4627
c224138d 4628 if (estimate <= arg->max_count)
f4416af6 4629 {
c224138d
RS
4630 /* If we don't have a primary GOT, use it as
4631 a starting point for the primary GOT. */
4632 if (!arg->primary)
4633 {
d7206569
RS
4634 arg->primary = g;
4635 return TRUE;
c224138d 4636 }
f4416af6 4637
c224138d 4638 /* Try merging with the primary GOT. */
d7206569 4639 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4640 if (result >= 0)
4641 return result;
f4416af6 4642 }
c224138d 4643
f4416af6 4644 /* If we can merge with the last-created got, do it. */
c224138d 4645 if (arg->current)
f4416af6 4646 {
d7206569 4647 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4648 if (result >= 0)
4649 return result;
f4416af6 4650 }
c224138d 4651
f4416af6
AO
4652 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4653 fits; if it turns out that it doesn't, we'll get relocation
4654 overflows anyway. */
c224138d
RS
4655 g->next = arg->current;
4656 arg->current = g;
0f20cc35 4657
d7206569 4658 return TRUE;
0f20cc35
DJ
4659}
4660
72e7511a
RS
4661/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4662 to GOTIDX, duplicating the entry if it has already been assigned
4663 an index in a different GOT. */
4664
4665static bfd_boolean
4666mips_elf_set_gotidx (void **entryp, long gotidx)
4667{
4668 struct mips_got_entry *entry;
4669
4670 entry = (struct mips_got_entry *) *entryp;
4671 if (entry->gotidx > 0)
4672 {
4673 struct mips_got_entry *new_entry;
4674
4675 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4676 if (!new_entry)
4677 return FALSE;
4678
4679 *new_entry = *entry;
4680 *entryp = new_entry;
4681 entry = new_entry;
4682 }
4683 entry->gotidx = gotidx;
4684 return TRUE;
4685}
4686
4687/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4688 mips_elf_traverse_got_arg in which DATA->value is the size of one
4689 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4690
4691static int
72e7511a 4692mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4693{
72e7511a
RS
4694 struct mips_got_entry *entry;
4695 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4696
4697 /* We're only interested in TLS symbols. */
72e7511a 4698 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4699 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4700 return 1;
4701
72e7511a 4702 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4703 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4704 {
6c42ddb9
RS
4705 arg->g = NULL;
4706 return 0;
f4416af6
AO
4707 }
4708
ead49a57 4709 /* Account for the entries we've just allocated. */
9ab066b4 4710 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4711 return 1;
4712}
4713
ab361d49
RS
4714/* A htab_traverse callback for GOT entries, where DATA points to a
4715 mips_elf_traverse_got_arg. Set the global_got_area of each global
4716 symbol to DATA->value. */
f4416af6 4717
f4416af6 4718static int
ab361d49 4719mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4720{
ab361d49
RS
4721 struct mips_got_entry *entry;
4722 struct mips_elf_traverse_got_arg *arg;
f4416af6 4723
ab361d49
RS
4724 entry = (struct mips_got_entry *) *entryp;
4725 arg = (struct mips_elf_traverse_got_arg *) data;
4726 if (entry->abfd != NULL
4727 && entry->symndx == -1
4728 && entry->d.h->global_got_area != GGA_NONE)
4729 entry->d.h->global_got_area = arg->value;
4730 return 1;
4731}
4732
4733/* A htab_traverse callback for secondary GOT entries, where DATA points
4734 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4735 and record the number of relocations they require. DATA->value is
72e7511a 4736 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4737
4738static int
4739mips_elf_set_global_gotidx (void **entryp, void *data)
4740{
4741 struct mips_got_entry *entry;
4742 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4743
ab361d49
RS
4744 entry = (struct mips_got_entry *) *entryp;
4745 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4746 if (entry->abfd != NULL
4747 && entry->symndx == -1
4748 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4749 {
cb22ccf4 4750 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4751 {
4752 arg->g = NULL;
4753 return 0;
4754 }
cb22ccf4 4755 arg->g->assigned_low_gotno += 1;
72e7511a 4756
0e1862bb 4757 if (bfd_link_pic (arg->info)
ab361d49
RS
4758 || (elf_hash_table (arg->info)->dynamic_sections_created
4759 && entry->d.h->root.def_dynamic
4760 && !entry->d.h->root.def_regular))
4761 arg->g->relocs += 1;
f4416af6
AO
4762 }
4763
4764 return 1;
4765}
4766
33bb52fb
RS
4767/* A htab_traverse callback for GOT entries for which DATA is the
4768 bfd_link_info. Forbid any global symbols from having traditional
4769 lazy-binding stubs. */
4770
0626d451 4771static int
33bb52fb 4772mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4773{
33bb52fb
RS
4774 struct bfd_link_info *info;
4775 struct mips_elf_link_hash_table *htab;
4776 struct mips_got_entry *entry;
0626d451 4777
33bb52fb
RS
4778 entry = (struct mips_got_entry *) *entryp;
4779 info = (struct bfd_link_info *) data;
4780 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4781 BFD_ASSERT (htab != NULL);
4782
0626d451
RS
4783 if (entry->abfd != NULL
4784 && entry->symndx == -1
33bb52fb 4785 && entry->d.h->needs_lazy_stub)
f4416af6 4786 {
33bb52fb
RS
4787 entry->d.h->needs_lazy_stub = FALSE;
4788 htab->lazy_stub_count--;
f4416af6 4789 }
143d77c5 4790
f4416af6
AO
4791 return 1;
4792}
4793
f4416af6
AO
4794/* Return the offset of an input bfd IBFD's GOT from the beginning of
4795 the primary GOT. */
4796static bfd_vma
9719ad41 4797mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4798{
d7206569 4799 if (!g->next)
f4416af6
AO
4800 return 0;
4801
d7206569 4802 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4803 if (! g)
4804 return 0;
4805
4806 BFD_ASSERT (g->next);
4807
4808 g = g->next;
143d77c5 4809
0f20cc35
DJ
4810 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4811 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4812}
4813
4814/* Turn a single GOT that is too big for 16-bit addressing into
4815 a sequence of GOTs, each one 16-bit addressable. */
4816
4817static bfd_boolean
9719ad41 4818mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4819 asection *got, bfd_size_type pages)
f4416af6 4820{
a8028dd0 4821 struct mips_elf_link_hash_table *htab;
f4416af6 4822 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4823 struct mips_elf_traverse_got_arg tga;
a8028dd0 4824 struct mips_got_info *g, *gg;
33bb52fb 4825 unsigned int assign, needed_relocs;
d7206569 4826 bfd *dynobj, *ibfd;
f4416af6 4827
33bb52fb 4828 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4829 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4830 BFD_ASSERT (htab != NULL);
4831
a8028dd0 4832 g = htab->got_info;
f4416af6 4833
f4416af6
AO
4834 got_per_bfd_arg.obfd = abfd;
4835 got_per_bfd_arg.info = info;
f4416af6
AO
4836 got_per_bfd_arg.current = NULL;
4837 got_per_bfd_arg.primary = NULL;
0a44bf69 4838 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4839 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4840 - htab->reserved_gotno);
c224138d 4841 got_per_bfd_arg.max_pages = pages;
0f20cc35 4842 /* The number of globals that will be included in the primary GOT.
ab361d49 4843 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4844 information. */
4845 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4846
4847 /* Try to merge the GOTs of input bfds together, as long as they
4848 don't seem to exceed the maximum GOT size, choosing one of them
4849 to be the primary GOT. */
c72f2fb2 4850 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4851 {
4852 gg = mips_elf_bfd_got (ibfd, FALSE);
4853 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4854 return FALSE;
4855 }
f4416af6 4856
0f20cc35 4857 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4858 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4859 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4860 else
4861 g->next = got_per_bfd_arg.primary;
4862 g->next->next = got_per_bfd_arg.current;
4863
4864 /* GG is now the master GOT, and G is the primary GOT. */
4865 gg = g;
4866 g = g->next;
4867
4868 /* Map the output bfd to the primary got. That's what we're going
4869 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4870 didn't mark in check_relocs, and we want a quick way to find it.
4871 We can't just use gg->next because we're going to reverse the
4872 list. */
d7206569 4873 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4874
634835ae
RS
4875 /* Every symbol that is referenced in a dynamic relocation must be
4876 present in the primary GOT, so arrange for them to appear after
4877 those that are actually referenced. */
23cc69b6 4878 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4879 g->global_gotno = gg->global_gotno;
f4416af6 4880
ab361d49
RS
4881 tga.info = info;
4882 tga.value = GGA_RELOC_ONLY;
4883 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4884 tga.value = GGA_NORMAL;
4885 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4886
4887 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4888 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4889 entries in each GOT. We can then compute the end of a GOT by
4890 adding local_gotno to global_gotno. We reverse the list and make
4891 it circular since then we'll be able to quickly compute the
4892 beginning of a GOT, by computing the end of its predecessor. To
4893 avoid special cases for the primary GOT, while still preserving
4894 assertions that are valid for both single- and multi-got links,
4895 we arrange for the main got struct to have the right number of
4896 global entries, but set its local_gotno such that the initial
4897 offset of the primary GOT is zero. Remember that the primary GOT
4898 will become the last item in the circular linked list, so it
4899 points back to the master GOT. */
4900 gg->local_gotno = -g->global_gotno;
4901 gg->global_gotno = g->global_gotno;
0f20cc35 4902 gg->tls_gotno = 0;
f4416af6
AO
4903 assign = 0;
4904 gg->next = gg;
4905
4906 do
4907 {
4908 struct mips_got_info *gn;
4909
861fb55a 4910 assign += htab->reserved_gotno;
cb22ccf4 4911 g->assigned_low_gotno = assign;
c224138d
RS
4912 g->local_gotno += assign;
4913 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4914 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4915 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4916
ead49a57
RS
4917 /* Take g out of the direct list, and push it onto the reversed
4918 list that gg points to. g->next is guaranteed to be nonnull after
4919 this operation, as required by mips_elf_initialize_tls_index. */
4920 gn = g->next;
4921 g->next = gg->next;
4922 gg->next = g;
4923
0f20cc35
DJ
4924 /* Set up any TLS entries. We always place the TLS entries after
4925 all non-TLS entries. */
4926 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4927 tga.g = g;
4928 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4929 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4930 if (!tga.g)
4931 return FALSE;
1fd20d70 4932 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4933
ead49a57 4934 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4935 g = gn;
0626d451 4936
33bb52fb
RS
4937 /* Forbid global symbols in every non-primary GOT from having
4938 lazy-binding stubs. */
0626d451 4939 if (g)
33bb52fb 4940 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4941 }
4942 while (g);
4943
59b08994 4944 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4945
4946 needed_relocs = 0;
33bb52fb
RS
4947 for (g = gg->next; g && g->next != gg; g = g->next)
4948 {
4949 unsigned int save_assign;
4950
ab361d49
RS
4951 /* Assign offsets to global GOT entries and count how many
4952 relocations they need. */
cb22ccf4
KCY
4953 save_assign = g->assigned_low_gotno;
4954 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
4955 tga.info = info;
4956 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4957 tga.g = g;
4958 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4959 if (!tga.g)
4960 return FALSE;
cb22ccf4
KCY
4961 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4962 g->assigned_low_gotno = save_assign;
72e7511a 4963
0e1862bb 4964 if (bfd_link_pic (info))
33bb52fb 4965 {
cb22ccf4
KCY
4966 g->relocs += g->local_gotno - g->assigned_low_gotno;
4967 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
4968 + g->next->global_gotno
4969 + g->next->tls_gotno
861fb55a 4970 + htab->reserved_gotno);
33bb52fb 4971 }
ab361d49 4972 needed_relocs += g->relocs;
33bb52fb 4973 }
ab361d49 4974 needed_relocs += g->relocs;
33bb52fb
RS
4975
4976 if (needed_relocs)
4977 mips_elf_allocate_dynamic_relocations (dynobj, info,
4978 needed_relocs);
143d77c5 4979
f4416af6
AO
4980 return TRUE;
4981}
143d77c5 4982
b49e97c9
TS
4983\f
4984/* Returns the first relocation of type r_type found, beginning with
4985 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4986
4987static const Elf_Internal_Rela *
9719ad41
RS
4988mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4989 const Elf_Internal_Rela *relocation,
4990 const Elf_Internal_Rela *relend)
b49e97c9 4991{
c000e262
TS
4992 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4993
b49e97c9
TS
4994 while (relocation < relend)
4995 {
c000e262
TS
4996 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4997 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4998 return relocation;
4999
5000 ++relocation;
5001 }
5002
5003 /* We didn't find it. */
b49e97c9
TS
5004 return NULL;
5005}
5006
020d7251 5007/* Return whether an input relocation is against a local symbol. */
b49e97c9 5008
b34976b6 5009static bfd_boolean
9719ad41
RS
5010mips_elf_local_relocation_p (bfd *input_bfd,
5011 const Elf_Internal_Rela *relocation,
020d7251 5012 asection **local_sections)
b49e97c9
TS
5013{
5014 unsigned long r_symndx;
5015 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5016 size_t extsymoff;
5017
5018 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5019 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5020 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5021
5022 if (r_symndx < extsymoff)
b34976b6 5023 return TRUE;
b49e97c9 5024 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5025 return TRUE;
b49e97c9 5026
b34976b6 5027 return FALSE;
b49e97c9
TS
5028}
5029\f
5030/* Sign-extend VALUE, which has the indicated number of BITS. */
5031
a7ebbfdf 5032bfd_vma
9719ad41 5033_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5034{
5035 if (value & ((bfd_vma) 1 << (bits - 1)))
5036 /* VALUE is negative. */
5037 value |= ((bfd_vma) - 1) << bits;
5038
5039 return value;
5040}
5041
5042/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5043 range expressible by a signed number with the indicated number of
b49e97c9
TS
5044 BITS. */
5045
b34976b6 5046static bfd_boolean
9719ad41 5047mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5048{
5049 bfd_signed_vma svalue = (bfd_signed_vma) value;
5050
5051 if (svalue > (1 << (bits - 1)) - 1)
5052 /* The value is too big. */
b34976b6 5053 return TRUE;
b49e97c9
TS
5054 else if (svalue < -(1 << (bits - 1)))
5055 /* The value is too small. */
b34976b6 5056 return TRUE;
b49e97c9
TS
5057
5058 /* All is well. */
b34976b6 5059 return FALSE;
b49e97c9
TS
5060}
5061
5062/* Calculate the %high function. */
5063
5064static bfd_vma
9719ad41 5065mips_elf_high (bfd_vma value)
b49e97c9
TS
5066{
5067 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5068}
5069
5070/* Calculate the %higher function. */
5071
5072static bfd_vma
9719ad41 5073mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5074{
5075#ifdef BFD64
5076 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5077#else
5078 abort ();
c5ae1840 5079 return MINUS_ONE;
b49e97c9
TS
5080#endif
5081}
5082
5083/* Calculate the %highest function. */
5084
5085static bfd_vma
9719ad41 5086mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5087{
5088#ifdef BFD64
b15e6682 5089 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5090#else
5091 abort ();
c5ae1840 5092 return MINUS_ONE;
b49e97c9
TS
5093#endif
5094}
5095\f
5096/* Create the .compact_rel section. */
5097
b34976b6 5098static bfd_boolean
9719ad41
RS
5099mips_elf_create_compact_rel_section
5100 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5101{
5102 flagword flags;
5103 register asection *s;
5104
3d4d4302 5105 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5106 {
5107 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5108 | SEC_READONLY);
5109
3d4d4302 5110 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5111 if (s == NULL
b49e97c9
TS
5112 || ! bfd_set_section_alignment (abfd, s,
5113 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5114 return FALSE;
b49e97c9 5115
eea6121a 5116 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5117 }
5118
b34976b6 5119 return TRUE;
b49e97c9
TS
5120}
5121
5122/* Create the .got section to hold the global offset table. */
5123
b34976b6 5124static bfd_boolean
23cc69b6 5125mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5126{
5127 flagword flags;
5128 register asection *s;
5129 struct elf_link_hash_entry *h;
14a793b2 5130 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5131 struct mips_elf_link_hash_table *htab;
5132
5133 htab = mips_elf_hash_table (info);
4dfe6ac6 5134 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5135
5136 /* This function may be called more than once. */
ce558b89 5137 if (htab->root.sgot)
23cc69b6 5138 return TRUE;
b49e97c9
TS
5139
5140 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5141 | SEC_LINKER_CREATED);
5142
72b4917c
TS
5143 /* We have to use an alignment of 2**4 here because this is hardcoded
5144 in the function stub generation and in the linker script. */
87e0a731 5145 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5146 if (s == NULL
72b4917c 5147 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5148 return FALSE;
ce558b89 5149 htab->root.sgot = s;
b49e97c9
TS
5150
5151 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5152 linker script because we don't want to define the symbol if we
5153 are not creating a global offset table. */
14a793b2 5154 bh = NULL;
b49e97c9
TS
5155 if (! (_bfd_generic_link_add_one_symbol
5156 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5157 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5158 return FALSE;
14a793b2
AM
5159
5160 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5161 h->non_elf = 0;
5162 h->def_regular = 1;
b49e97c9 5163 h->type = STT_OBJECT;
2f9efdfc 5164 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5165 elf_hash_table (info)->hgot = h;
b49e97c9 5166
0e1862bb 5167 if (bfd_link_pic (info)
c152c796 5168 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5169 return FALSE;
b49e97c9 5170
3dff0dd1 5171 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5172 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5173 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5174
861fb55a 5175 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5176 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5177 SEC_ALLOC | SEC_LOAD
5178 | SEC_HAS_CONTENTS
5179 | SEC_IN_MEMORY
5180 | SEC_LINKER_CREATED);
861fb55a
DJ
5181 if (s == NULL)
5182 return FALSE;
ce558b89 5183 htab->root.sgotplt = s;
0a44bf69 5184
b34976b6 5185 return TRUE;
b49e97c9 5186}
b49e97c9 5187\f
0a44bf69
RS
5188/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5189 __GOTT_INDEX__ symbols. These symbols are only special for
5190 shared objects; they are not used in executables. */
5191
5192static bfd_boolean
5193is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5194{
5195 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5196 && bfd_link_pic (info)
0a44bf69
RS
5197 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5198 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5199}
861fb55a
DJ
5200
5201/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5202 require an la25 stub. See also mips_elf_local_pic_function_p,
5203 which determines whether the destination function ever requires a
5204 stub. */
5205
5206static bfd_boolean
8f0c309a
CLT
5207mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5208 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5209{
5210 /* We specifically ignore branches and jumps from EF_PIC objects,
5211 where the onus is on the compiler or programmer to perform any
5212 necessary initialization of $25. Sometimes such initialization
5213 is unnecessary; for example, -mno-shared functions do not use
5214 the incoming value of $25, and may therefore be called directly. */
5215 if (PIC_OBJECT_P (input_bfd))
5216 return FALSE;
5217
5218 switch (r_type)
5219 {
5220 case R_MIPS_26:
5221 case R_MIPS_PC16:
7361da2c
AB
5222 case R_MIPS_PC21_S2:
5223 case R_MIPS_PC26_S2:
df58fc94
RS
5224 case R_MICROMIPS_26_S1:
5225 case R_MICROMIPS_PC7_S1:
5226 case R_MICROMIPS_PC10_S1:
5227 case R_MICROMIPS_PC16_S1:
5228 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5229 return TRUE;
5230
8f0c309a
CLT
5231 case R_MIPS16_26:
5232 return !target_is_16_bit_code_p;
5233
861fb55a
DJ
5234 default:
5235 return FALSE;
5236 }
5237}
0a44bf69 5238\f
b49e97c9
TS
5239/* Calculate the value produced by the RELOCATION (which comes from
5240 the INPUT_BFD). The ADDEND is the addend to use for this
5241 RELOCATION; RELOCATION->R_ADDEND is ignored.
5242
5243 The result of the relocation calculation is stored in VALUEP.
38a7df63 5244 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5245 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5246
5247 This function returns bfd_reloc_continue if the caller need take no
5248 further action regarding this relocation, bfd_reloc_notsupported if
5249 something goes dramatically wrong, bfd_reloc_overflow if an
5250 overflow occurs, and bfd_reloc_ok to indicate success. */
5251
5252static bfd_reloc_status_type
9719ad41
RS
5253mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5254 asection *input_section,
5255 struct bfd_link_info *info,
5256 const Elf_Internal_Rela *relocation,
5257 bfd_vma addend, reloc_howto_type *howto,
5258 Elf_Internal_Sym *local_syms,
5259 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5260 const char **namep,
5261 bfd_boolean *cross_mode_jump_p,
9719ad41 5262 bfd_boolean save_addend)
b49e97c9
TS
5263{
5264 /* The eventual value we will return. */
5265 bfd_vma value;
5266 /* The address of the symbol against which the relocation is
5267 occurring. */
5268 bfd_vma symbol = 0;
5269 /* The final GP value to be used for the relocatable, executable, or
5270 shared object file being produced. */
0a61c8c2 5271 bfd_vma gp;
b49e97c9
TS
5272 /* The place (section offset or address) of the storage unit being
5273 relocated. */
5274 bfd_vma p;
5275 /* The value of GP used to create the relocatable object. */
0a61c8c2 5276 bfd_vma gp0;
b49e97c9
TS
5277 /* The offset into the global offset table at which the address of
5278 the relocation entry symbol, adjusted by the addend, resides
5279 during execution. */
5280 bfd_vma g = MINUS_ONE;
5281 /* The section in which the symbol referenced by the relocation is
5282 located. */
5283 asection *sec = NULL;
5284 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5285 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5286 symbol. */
b34976b6 5287 bfd_boolean local_p, was_local_p;
77434823
MR
5288 /* TRUE if the symbol referred to by this relocation is a section
5289 symbol. */
5290 bfd_boolean section_p = FALSE;
b34976b6
AM
5291 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5292 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5293 /* TRUE if the symbol referred to by this relocation is
5294 "__gnu_local_gp". */
5295 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5296 Elf_Internal_Shdr *symtab_hdr;
5297 size_t extsymoff;
5298 unsigned long r_symndx;
5299 int r_type;
b34976b6 5300 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5301 relocation value. */
b34976b6
AM
5302 bfd_boolean overflowed_p;
5303 /* TRUE if this relocation refers to a MIPS16 function. */
5304 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5305 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5306 struct mips_elf_link_hash_table *htab;
5307 bfd *dynobj;
ad951203 5308 bfd_boolean resolved_to_zero;
0a44bf69
RS
5309
5310 dynobj = elf_hash_table (info)->dynobj;
5311 htab = mips_elf_hash_table (info);
4dfe6ac6 5312 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5313
5314 /* Parse the relocation. */
5315 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5316 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5317 p = (input_section->output_section->vma
5318 + input_section->output_offset
5319 + relocation->r_offset);
5320
5321 /* Assume that there will be no overflow. */
b34976b6 5322 overflowed_p = FALSE;
b49e97c9
TS
5323
5324 /* Figure out whether or not the symbol is local, and get the offset
5325 used in the array of hash table entries. */
5326 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5327 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5328 local_sections);
bce03d3d 5329 was_local_p = local_p;
b49e97c9
TS
5330 if (! elf_bad_symtab (input_bfd))
5331 extsymoff = symtab_hdr->sh_info;
5332 else
5333 {
5334 /* The symbol table does not follow the rule that local symbols
5335 must come before globals. */
5336 extsymoff = 0;
5337 }
5338
5339 /* Figure out the value of the symbol. */
5340 if (local_p)
5341 {
9d862524 5342 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5343 Elf_Internal_Sym *sym;
5344
5345 sym = local_syms + r_symndx;
5346 sec = local_sections[r_symndx];
5347
77434823
MR
5348 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5349
b49e97c9 5350 symbol = sec->output_section->vma + sec->output_offset;
77434823 5351 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5352 symbol += sym->st_value;
77434823 5353 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5354 {
5355 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5356 addend -= symbol;
5357 addend += sec->output_section->vma + sec->output_offset;
5358 }
b49e97c9 5359
df58fc94
RS
5360 /* MIPS16/microMIPS text labels should be treated as odd. */
5361 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5362 ++symbol;
5363
5364 /* Record the name of this symbol, for our caller. */
5365 *namep = bfd_elf_string_from_elf_section (input_bfd,
5366 symtab_hdr->sh_link,
5367 sym->st_name);
ceab86af 5368 if (*namep == NULL || **namep == '\0')
b49e97c9
TS
5369 *namep = bfd_section_name (input_bfd, sec);
5370
9d862524 5371 /* For relocations against a section symbol and ones against no
07d6d2b8 5372 symbol (absolute relocations) infer the ISA mode from the addend. */
9d862524
MR
5373 if (section_p || r_symndx == STN_UNDEF)
5374 {
5375 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5376 target_is_micromips_code_p = (addend & 1) && micromips_p;
5377 }
5378 /* For relocations against an absolute symbol infer the ISA mode
07d6d2b8 5379 from the value of the symbol plus addend. */
9d862524
MR
5380 else if (bfd_is_abs_section (sec))
5381 {
5382 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5383 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5384 }
5385 /* Otherwise just use the regular symbol annotation available. */
5386 else
5387 {
5388 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5389 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5390 }
b49e97c9
TS
5391 }
5392 else
5393 {
560e09e9
NC
5394 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5395
b49e97c9
TS
5396 /* For global symbols we look up the symbol in the hash-table. */
5397 h = ((struct mips_elf_link_hash_entry *)
5398 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5399 /* Find the real hash-table entry for this symbol. */
5400 while (h->root.root.type == bfd_link_hash_indirect
5401 || h->root.root.type == bfd_link_hash_warning)
5402 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5403
5404 /* Record the name of this symbol, for our caller. */
5405 *namep = h->root.root.root.string;
5406
5407 /* See if this is the special _gp_disp symbol. Note that such a
5408 symbol must always be a global symbol. */
560e09e9 5409 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5410 && ! NEWABI_P (input_bfd))
5411 {
5412 /* Relocations against _gp_disp are permitted only with
5413 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5414 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5415 return bfd_reloc_notsupported;
5416
b34976b6 5417 gp_disp_p = TRUE;
b49e97c9 5418 }
bbe506e8
TS
5419 /* See if this is the special _gp symbol. Note that such a
5420 symbol must always be a global symbol. */
5421 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5422 gnu_local_gp_p = TRUE;
5423
5424
b49e97c9
TS
5425 /* If this symbol is defined, calculate its address. Note that
5426 _gp_disp is a magic symbol, always implicitly defined by the
5427 linker, so it's inappropriate to check to see whether or not
5428 its defined. */
5429 else if ((h->root.root.type == bfd_link_hash_defined
5430 || h->root.root.type == bfd_link_hash_defweak)
5431 && h->root.root.u.def.section)
5432 {
5433 sec = h->root.root.u.def.section;
5434 if (sec->output_section)
5435 symbol = (h->root.root.u.def.value
5436 + sec->output_section->vma
5437 + sec->output_offset);
5438 else
5439 symbol = h->root.root.u.def.value;
5440 }
5441 else if (h->root.root.type == bfd_link_hash_undefweak)
5442 /* We allow relocations against undefined weak symbols, giving
5443 it the value zero, so that you can undefined weak functions
5444 and check to see if they exist by looking at their
5445 addresses. */
5446 symbol = 0;
59c2e50f 5447 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5448 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5449 symbol = 0;
a4d0f181
TS
5450 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5451 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5452 {
5453 /* If this is a dynamic link, we should have created a
5454 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
de194d85 5455 in _bfd_mips_elf_create_dynamic_sections.
b49e97c9
TS
5456 Otherwise, we should define the symbol with a value of 0.
5457 FIXME: It should probably get into the symbol table
5458 somehow as well. */
0e1862bb 5459 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5460 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5461 symbol = 0;
5462 }
5e2b0d47
NC
5463 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5464 {
5465 /* This is an optional symbol - an Irix specific extension to the
5466 ELF spec. Ignore it for now.
5467 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5468 than simply ignoring them, but we do not handle this for now.
5469 For information see the "64-bit ELF Object File Specification"
5470 which is available from here:
5471 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5472 symbol = 0;
5473 }
b49e97c9
TS
5474 else
5475 {
dfb93f11
JC
5476 bfd_boolean reject_undefined
5477 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5478 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5479
1a72702b
AM
5480 (*info->callbacks->undefined_symbol)
5481 (info, h->root.root.root.string, input_bfd,
dfb93f11
JC
5482 input_section, relocation->r_offset, reject_undefined);
5483
5484 if (reject_undefined)
5485 return bfd_reloc_undefined;
5486
5487 symbol = 0;
b49e97c9
TS
5488 }
5489
30c09090 5490 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5491 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5492 }
5493
738e5348
RS
5494 /* If this is a reference to a 16-bit function with a stub, we need
5495 to redirect the relocation to the stub unless:
5496
5497 (a) the relocation is for a MIPS16 JAL;
5498
5499 (b) the relocation is for a MIPS16 PIC call, and there are no
5500 non-MIPS16 uses of the GOT slot; or
5501
5502 (c) the section allows direct references to MIPS16 functions. */
5503 if (r_type != R_MIPS16_26
0e1862bb 5504 && !bfd_link_relocatable (info)
738e5348
RS
5505 && ((h != NULL
5506 && h->fn_stub != NULL
5507 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5508 || (local_p
698600e4
AM
5509 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5510 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5511 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5512 {
5513 /* This is a 32- or 64-bit call to a 16-bit function. We should
5514 have already noticed that we were going to need the
5515 stub. */
5516 if (local_p)
8f0c309a 5517 {
698600e4 5518 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5519 value = 0;
5520 }
b49e97c9
TS
5521 else
5522 {
5523 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5524 if (h->la25_stub)
5525 {
5526 /* If a LA25 header for the stub itself exists, point to the
5527 prepended LUI/ADDIU sequence. */
5528 sec = h->la25_stub->stub_section;
5529 value = h->la25_stub->offset;
5530 }
5531 else
5532 {
5533 sec = h->fn_stub;
5534 value = 0;
5535 }
b49e97c9
TS
5536 }
5537
8f0c309a 5538 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5539 /* The target is 16-bit, but the stub isn't. */
5540 target_is_16_bit_code_p = FALSE;
b49e97c9 5541 }
1bbce132
MR
5542 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5543 to a standard MIPS function, we need to redirect the call to the stub.
5544 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5545 indirect calls should use an indirect stub instead. */
0e1862bb 5546 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5547 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5548 || (local_p
698600e4
AM
5549 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5550 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5551 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5552 {
b9d58d71 5553 if (local_p)
698600e4 5554 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5555 else
b49e97c9 5556 {
b9d58d71
TS
5557 /* If both call_stub and call_fp_stub are defined, we can figure
5558 out which one to use by checking which one appears in the input
5559 file. */
5560 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5561 {
b9d58d71 5562 asection *o;
68ffbac6 5563
b9d58d71
TS
5564 sec = NULL;
5565 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5566 {
b9d58d71
TS
5567 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5568 {
5569 sec = h->call_fp_stub;
5570 break;
5571 }
b49e97c9 5572 }
b9d58d71
TS
5573 if (sec == NULL)
5574 sec = h->call_stub;
b49e97c9 5575 }
b9d58d71 5576 else if (h->call_stub != NULL)
b49e97c9 5577 sec = h->call_stub;
b9d58d71
TS
5578 else
5579 sec = h->call_fp_stub;
07d6d2b8 5580 }
b49e97c9 5581
eea6121a 5582 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5583 symbol = sec->output_section->vma + sec->output_offset;
5584 }
861fb55a
DJ
5585 /* If this is a direct call to a PIC function, redirect to the
5586 non-PIC stub. */
5587 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5588 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5589 target_is_16_bit_code_p))
c7318def
MR
5590 {
5591 symbol = (h->la25_stub->stub_section->output_section->vma
5592 + h->la25_stub->stub_section->output_offset
5593 + h->la25_stub->offset);
5594 if (ELF_ST_IS_MICROMIPS (h->root.other))
5595 symbol |= 1;
5596 }
1bbce132
MR
5597 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5598 entry is used if a standard PLT entry has also been made. In this
5599 case the symbol will have been set by mips_elf_set_plt_sym_value
5600 to point to the standard PLT entry, so redirect to the compressed
5601 one. */
54806ffa
MR
5602 else if ((mips16_branch_reloc_p (r_type)
5603 || micromips_branch_reloc_p (r_type))
0e1862bb 5604 && !bfd_link_relocatable (info)
1bbce132
MR
5605 && h != NULL
5606 && h->use_plt_entry
5607 && h->root.plt.plist->comp_offset != MINUS_ONE
5608 && h->root.plt.plist->mips_offset != MINUS_ONE)
5609 {
5610 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5611
ce558b89 5612 sec = htab->root.splt;
1bbce132
MR
5613 symbol = (sec->output_section->vma
5614 + sec->output_offset
5615 + htab->plt_header_size
5616 + htab->plt_mips_offset
5617 + h->root.plt.plist->comp_offset
5618 + 1);
5619
5620 target_is_16_bit_code_p = !micromips_p;
5621 target_is_micromips_code_p = micromips_p;
5622 }
b49e97c9 5623
df58fc94 5624 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5625 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5626 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5627 {
4eca0228 5628 _bfd_error_handler
df58fc94
RS
5629 (_("MIPS16 and microMIPS functions cannot call each other"));
5630 return bfd_reloc_notsupported;
5631 }
5632
b49e97c9 5633 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5634 mode change. However, we can ignore calls to undefined weak symbols,
5635 which should never be executed at runtime. This exception is important
5636 because the assembly writer may have "known" that any definition of the
5637 symbol would be 16-bit code, and that direct jumps were therefore
5638 acceptable. */
0e1862bb 5639 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5640 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5641 && ((mips16_branch_reloc_p (r_type)
5642 && !target_is_16_bit_code_p)
5643 || (micromips_branch_reloc_p (r_type)
df58fc94 5644 && !target_is_micromips_code_p)
9d862524
MR
5645 || ((branch_reloc_p (r_type)
5646 || r_type == R_MIPS_JALR)
df58fc94
RS
5647 && (target_is_16_bit_code_p
5648 || target_is_micromips_code_p))));
b49e97c9 5649
c5d6fa44 5650 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5651
0a61c8c2
RS
5652 gp0 = _bfd_get_gp_value (input_bfd);
5653 gp = _bfd_get_gp_value (abfd);
23cc69b6 5654 if (htab->got_info)
a8028dd0 5655 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5656
5657 if (gnu_local_gp_p)
5658 symbol = gp;
5659
df58fc94
RS
5660 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5661 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5662 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5663 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5664 {
df58fc94
RS
5665 r_type = (micromips_reloc_p (r_type)
5666 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5667 addend = 0;
5668 }
5669
ad951203
L
5670 resolved_to_zero = (h != NULL
5671 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5672 &h->root));
5673
e77760d2 5674 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5675 to need it, get it now. */
b49e97c9
TS
5676 switch (r_type)
5677 {
738e5348
RS
5678 case R_MIPS16_CALL16:
5679 case R_MIPS16_GOT16:
b49e97c9
TS
5680 case R_MIPS_CALL16:
5681 case R_MIPS_GOT16:
5682 case R_MIPS_GOT_DISP:
5683 case R_MIPS_GOT_HI16:
5684 case R_MIPS_CALL_HI16:
5685 case R_MIPS_GOT_LO16:
5686 case R_MIPS_CALL_LO16:
df58fc94
RS
5687 case R_MICROMIPS_CALL16:
5688 case R_MICROMIPS_GOT16:
5689 case R_MICROMIPS_GOT_DISP:
5690 case R_MICROMIPS_GOT_HI16:
5691 case R_MICROMIPS_CALL_HI16:
5692 case R_MICROMIPS_GOT_LO16:
5693 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5694 case R_MIPS_TLS_GD:
5695 case R_MIPS_TLS_GOTTPREL:
5696 case R_MIPS_TLS_LDM:
d0f13682
CLT
5697 case R_MIPS16_TLS_GD:
5698 case R_MIPS16_TLS_GOTTPREL:
5699 case R_MIPS16_TLS_LDM:
df58fc94
RS
5700 case R_MICROMIPS_TLS_GD:
5701 case R_MICROMIPS_TLS_GOTTPREL:
5702 case R_MICROMIPS_TLS_LDM:
b49e97c9 5703 /* Find the index into the GOT where this value is located. */
df58fc94 5704 if (tls_ldm_reloc_p (r_type))
0f20cc35 5705 {
0a44bf69 5706 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5707 0, 0, NULL, r_type);
0f20cc35
DJ
5708 if (g == MINUS_ONE)
5709 return bfd_reloc_outofrange;
5710 }
5711 else if (!local_p)
b49e97c9 5712 {
0a44bf69
RS
5713 /* On VxWorks, CALL relocations should refer to the .got.plt
5714 entry, which is initialized to point at the PLT stub. */
5715 if (htab->is_vxworks
df58fc94
RS
5716 && (call_hi16_reloc_p (r_type)
5717 || call_lo16_reloc_p (r_type)
738e5348 5718 || call16_reloc_p (r_type)))
0a44bf69
RS
5719 {
5720 BFD_ASSERT (addend == 0);
5721 BFD_ASSERT (h->root.needs_plt);
5722 g = mips_elf_gotplt_index (info, &h->root);
5723 }
5724 else
b49e97c9 5725 {
020d7251 5726 BFD_ASSERT (addend == 0);
13fbec83
RS
5727 g = mips_elf_global_got_index (abfd, info, input_bfd,
5728 &h->root, r_type);
e641e783 5729 if (!TLS_RELOC_P (r_type)
020d7251
RS
5730 && !elf_hash_table (info)->dynamic_sections_created)
5731 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5732 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5733 }
5734 }
0a44bf69 5735 else if (!htab->is_vxworks
738e5348 5736 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5737 /* The calculation below does not involve "g". */
b49e97c9
TS
5738 break;
5739 else
5740 {
5c18022e 5741 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5742 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5743 if (g == MINUS_ONE)
5744 return bfd_reloc_outofrange;
5745 }
5746
5747 /* Convert GOT indices to actual offsets. */
a8028dd0 5748 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5749 break;
b49e97c9
TS
5750 }
5751
0a44bf69
RS
5752 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5753 symbols are resolved by the loader. Add them to .rela.dyn. */
5754 if (h != NULL && is_gott_symbol (info, &h->root))
5755 {
5756 Elf_Internal_Rela outrel;
5757 bfd_byte *loc;
5758 asection *s;
5759
5760 s = mips_elf_rel_dyn_section (info, FALSE);
5761 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5762
5763 outrel.r_offset = (input_section->output_section->vma
5764 + input_section->output_offset
5765 + relocation->r_offset);
5766 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5767 outrel.r_addend = addend;
5768 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5769
5770 /* If we've written this relocation for a readonly section,
5771 we need to set DF_TEXTREL again, so that we do not delete the
5772 DT_TEXTREL tag. */
5773 if (MIPS_ELF_READONLY_SECTION (input_section))
5774 info->flags |= DF_TEXTREL;
5775
0a44bf69
RS
5776 *valuep = 0;
5777 return bfd_reloc_ok;
5778 }
5779
b49e97c9
TS
5780 /* Figure out what kind of relocation is being performed. */
5781 switch (r_type)
5782 {
5783 case R_MIPS_NONE:
5784 return bfd_reloc_continue;
5785
5786 case R_MIPS_16:
c3eb94b4
MF
5787 if (howto->partial_inplace)
5788 addend = _bfd_mips_elf_sign_extend (addend, 16);
5789 value = symbol + addend;
b49e97c9
TS
5790 overflowed_p = mips_elf_overflow_p (value, 16);
5791 break;
5792
5793 case R_MIPS_32:
5794 case R_MIPS_REL32:
5795 case R_MIPS_64:
0e1862bb 5796 if ((bfd_link_pic (info)
861fb55a 5797 || (htab->root.dynamic_sections_created
b49e97c9 5798 && h != NULL
f5385ebf 5799 && h->root.def_dynamic
861fb55a
DJ
5800 && !h->root.def_regular
5801 && !h->has_static_relocs))
cf35638d 5802 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5803 && (h == NULL
5804 || h->root.root.type != bfd_link_hash_undefweak
ad951203
L
5805 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5806 && !resolved_to_zero))
b49e97c9
TS
5807 && (input_section->flags & SEC_ALLOC) != 0)
5808 {
861fb55a 5809 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5810 where the symbol will end up. So, we create a relocation
5811 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5812 linker. We must do the same for executable references to
5813 shared library symbols, unless we've decided to use copy
5814 relocs or PLTs instead. */
b49e97c9
TS
5815 value = addend;
5816 if (!mips_elf_create_dynamic_relocation (abfd,
5817 info,
5818 relocation,
5819 h,
5820 sec,
5821 symbol,
5822 &value,
5823 input_section))
5824 return bfd_reloc_undefined;
5825 }
5826 else
5827 {
5828 if (r_type != R_MIPS_REL32)
5829 value = symbol + addend;
5830 else
5831 value = addend;
5832 }
5833 value &= howto->dst_mask;
092dcd75
CD
5834 break;
5835
5836 case R_MIPS_PC32:
5837 value = symbol + addend - p;
5838 value &= howto->dst_mask;
b49e97c9
TS
5839 break;
5840
b49e97c9
TS
5841 case R_MIPS16_26:
5842 /* The calculation for R_MIPS16_26 is just the same as for an
5843 R_MIPS_26. It's only the storage of the relocated field into
5844 the output file that's different. That's handled in
5845 mips_elf_perform_relocation. So, we just fall through to the
5846 R_MIPS_26 case here. */
5847 case R_MIPS_26:
df58fc94
RS
5848 case R_MICROMIPS_26_S1:
5849 {
5850 unsigned int shift;
5851
df58fc94
RS
5852 /* Shift is 2, unusually, for microMIPS JALX. */
5853 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5854
77434823 5855 if (howto->partial_inplace && !section_p)
df58fc94 5856 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
5857 else
5858 value = addend;
bc27bb05
MR
5859 value += symbol;
5860
9d862524
MR
5861 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5862 be the correct ISA mode selector except for weak undefined
5863 symbols. */
5864 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5865 && (*cross_mode_jump_p
5866 ? (value & 3) != (r_type == R_MIPS_26)
07d6d2b8 5867 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
5868 return bfd_reloc_outofrange;
5869
5870 value >>= shift;
77434823 5871 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
5872 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5873 value &= howto->dst_mask;
5874 }
b49e97c9
TS
5875 break;
5876
0f20cc35 5877 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5878 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5879 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5880 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5881 & howto->dst_mask);
5882 break;
5883
5884 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5885 case R_MIPS_TLS_DTPREL32:
5886 case R_MIPS_TLS_DTPREL64:
d0f13682 5887 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5888 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5889 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5890 break;
5891
5892 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5893 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5894 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5895 value = (mips_elf_high (addend + symbol - tprel_base (info))
5896 & howto->dst_mask);
5897 break;
5898
5899 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5900 case R_MIPS_TLS_TPREL32:
5901 case R_MIPS_TLS_TPREL64:
5902 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5903 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5904 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5905 break;
5906
b49e97c9 5907 case R_MIPS_HI16:
d6f16593 5908 case R_MIPS16_HI16:
df58fc94 5909 case R_MICROMIPS_HI16:
b49e97c9
TS
5910 if (!gp_disp_p)
5911 {
5912 value = mips_elf_high (addend + symbol);
5913 value &= howto->dst_mask;
5914 }
5915 else
5916 {
d6f16593 5917 /* For MIPS16 ABI code we generate this sequence
07d6d2b8
AM
5918 0: li $v0,%hi(_gp_disp)
5919 4: addiupc $v1,%lo(_gp_disp)
5920 8: sll $v0,16
d6f16593
MR
5921 12: addu $v0,$v1
5922 14: move $gp,$v0
5923 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5924 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5925 ADDIUPC clears the low two bits of the instruction address,
5926 so the base is ($t9 + 4) & ~3. */
d6f16593 5927 if (r_type == R_MIPS16_HI16)
888b9c01 5928 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5929 /* The microMIPS .cpload sequence uses the same assembly
5930 instructions as the traditional psABI version, but the
5931 incoming $t9 has the low bit set. */
5932 else if (r_type == R_MICROMIPS_HI16)
5933 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5934 else
5935 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5936 }
5937 break;
5938
5939 case R_MIPS_LO16:
d6f16593 5940 case R_MIPS16_LO16:
df58fc94
RS
5941 case R_MICROMIPS_LO16:
5942 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5943 if (!gp_disp_p)
5944 value = (symbol + addend) & howto->dst_mask;
5945 else
5946 {
d6f16593
MR
5947 /* See the comment for R_MIPS16_HI16 above for the reason
5948 for this conditional. */
5949 if (r_type == R_MIPS16_LO16)
888b9c01 5950 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5951 else if (r_type == R_MICROMIPS_LO16
5952 || r_type == R_MICROMIPS_HI0_LO16)
5953 value = addend + gp - p + 3;
d6f16593
MR
5954 else
5955 value = addend + gp - p + 4;
b49e97c9 5956 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5957 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5958 _gp_disp are normally generated from the .cpload
5959 pseudo-op. It generates code that normally looks like
5960 this:
5961
5962 lui $gp,%hi(_gp_disp)
5963 addiu $gp,$gp,%lo(_gp_disp)
5964 addu $gp,$gp,$t9
5965
5966 Here $t9 holds the address of the function being called,
5967 as required by the MIPS ELF ABI. The R_MIPS_LO16
5968 relocation can easily overflow in this situation, but the
5969 R_MIPS_HI16 relocation will handle the overflow.
5970 Therefore, we consider this a bug in the MIPS ABI, and do
5971 not check for overflow here. */
5972 }
5973 break;
5974
5975 case R_MIPS_LITERAL:
df58fc94 5976 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5977 /* Because we don't merge literal sections, we can handle this
5978 just like R_MIPS_GPREL16. In the long run, we should merge
5979 shared literals, and then we will need to additional work
5980 here. */
5981
5982 /* Fall through. */
5983
5984 case R_MIPS16_GPREL:
5985 /* The R_MIPS16_GPREL performs the same calculation as
5986 R_MIPS_GPREL16, but stores the relocated bits in a different
5987 order. We don't need to do anything special here; the
5988 differences are handled in mips_elf_perform_relocation. */
5989 case R_MIPS_GPREL16:
df58fc94
RS
5990 case R_MICROMIPS_GPREL7_S2:
5991 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5992 /* Only sign-extend the addend if it was extracted from the
5993 instruction. If the addend was separate, leave it alone,
5994 otherwise we may lose significant bits. */
5995 if (howto->partial_inplace)
a7ebbfdf 5996 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5997 value = symbol + addend - gp;
5998 /* If the symbol was local, any earlier relocatable links will
5999 have adjusted its addend with the gp offset, so compensate
6000 for that now. Don't do it for symbols forced local in this
6001 link, though, since they won't have had the gp offset applied
6002 to them before. */
6003 if (was_local_p)
6004 value += gp0;
538baf8b
AB
6005 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6006 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
6007 break;
6008
738e5348
RS
6009 case R_MIPS16_GOT16:
6010 case R_MIPS16_CALL16:
b49e97c9
TS
6011 case R_MIPS_GOT16:
6012 case R_MIPS_CALL16:
df58fc94
RS
6013 case R_MICROMIPS_GOT16:
6014 case R_MICROMIPS_CALL16:
0a44bf69 6015 /* VxWorks does not have separate local and global semantics for
738e5348 6016 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6017 if (!htab->is_vxworks && local_p)
b49e97c9 6018 {
5c18022e 6019 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6020 symbol + addend, !was_local_p);
b49e97c9
TS
6021 if (value == MINUS_ONE)
6022 return bfd_reloc_outofrange;
6023 value
a8028dd0 6024 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6025 overflowed_p = mips_elf_overflow_p (value, 16);
6026 break;
6027 }
6028
6029 /* Fall through. */
6030
0f20cc35
DJ
6031 case R_MIPS_TLS_GD:
6032 case R_MIPS_TLS_GOTTPREL:
6033 case R_MIPS_TLS_LDM:
b49e97c9 6034 case R_MIPS_GOT_DISP:
d0f13682
CLT
6035 case R_MIPS16_TLS_GD:
6036 case R_MIPS16_TLS_GOTTPREL:
6037 case R_MIPS16_TLS_LDM:
df58fc94
RS
6038 case R_MICROMIPS_TLS_GD:
6039 case R_MICROMIPS_TLS_GOTTPREL:
6040 case R_MICROMIPS_TLS_LDM:
6041 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6042 value = g;
6043 overflowed_p = mips_elf_overflow_p (value, 16);
6044 break;
6045
6046 case R_MIPS_GPREL32:
bce03d3d
AO
6047 value = (addend + symbol + gp0 - gp);
6048 if (!save_addend)
6049 value &= howto->dst_mask;
b49e97c9
TS
6050 break;
6051
6052 case R_MIPS_PC16:
bad36eac 6053 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6054 if (howto->partial_inplace)
6055 addend = _bfd_mips_elf_sign_extend (addend, 18);
6056
9d862524 6057 /* No need to exclude weak undefined symbols here as they resolve
07d6d2b8
AM
6058 to 0 and never set `*cross_mode_jump_p', so this alignment check
6059 will never trigger for them. */
9d862524
MR
6060 if (*cross_mode_jump_p
6061 ? ((symbol + addend) & 3) != 1
6062 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6063 return bfd_reloc_outofrange;
6064
6065 value = symbol + addend - p;
538baf8b
AB
6066 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6067 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6068 value >>= howto->rightshift;
6069 value &= howto->dst_mask;
b49e97c9
TS
6070 break;
6071
c9775dde
MR
6072 case R_MIPS16_PC16_S1:
6073 if (howto->partial_inplace)
6074 addend = _bfd_mips_elf_sign_extend (addend, 17);
6075
6076 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6077 && (*cross_mode_jump_p
6078 ? ((symbol + addend) & 3) != 0
6079 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6080 return bfd_reloc_outofrange;
6081
6082 value = symbol + addend - p;
6083 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6084 overflowed_p = mips_elf_overflow_p (value, 17);
6085 value >>= howto->rightshift;
6086 value &= howto->dst_mask;
6087 break;
6088
7361da2c
AB
6089 case R_MIPS_PC21_S2:
6090 if (howto->partial_inplace)
6091 addend = _bfd_mips_elf_sign_extend (addend, 23);
6092
6093 if ((symbol + addend) & 3)
6094 return bfd_reloc_outofrange;
6095
6096 value = symbol + addend - p;
538baf8b
AB
6097 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6098 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6099 value >>= howto->rightshift;
6100 value &= howto->dst_mask;
6101 break;
6102
6103 case R_MIPS_PC26_S2:
6104 if (howto->partial_inplace)
6105 addend = _bfd_mips_elf_sign_extend (addend, 28);
6106
6107 if ((symbol + addend) & 3)
6108 return bfd_reloc_outofrange;
6109
6110 value = symbol + addend - p;
538baf8b
AB
6111 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6112 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6113 value >>= howto->rightshift;
6114 value &= howto->dst_mask;
6115 break;
6116
6117 case R_MIPS_PC18_S3:
6118 if (howto->partial_inplace)
6119 addend = _bfd_mips_elf_sign_extend (addend, 21);
6120
6121 if ((symbol + addend) & 7)
6122 return bfd_reloc_outofrange;
6123
6124 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6125 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6126 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6127 value >>= howto->rightshift;
6128 value &= howto->dst_mask;
6129 break;
6130
6131 case R_MIPS_PC19_S2:
6132 if (howto->partial_inplace)
6133 addend = _bfd_mips_elf_sign_extend (addend, 21);
6134
6135 if ((symbol + addend) & 3)
6136 return bfd_reloc_outofrange;
6137
6138 value = symbol + addend - p;
538baf8b
AB
6139 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6140 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6141 value >>= howto->rightshift;
6142 value &= howto->dst_mask;
6143 break;
6144
6145 case R_MIPS_PCHI16:
6146 value = mips_elf_high (symbol + addend - p);
538baf8b
AB
6147 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6148 overflowed_p = mips_elf_overflow_p (value, 16);
7361da2c
AB
6149 value &= howto->dst_mask;
6150 break;
6151
6152 case R_MIPS_PCLO16:
6153 if (howto->partial_inplace)
6154 addend = _bfd_mips_elf_sign_extend (addend, 16);
6155 value = symbol + addend - p;
6156 value &= howto->dst_mask;
6157 break;
6158
df58fc94 6159 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6160 if (howto->partial_inplace)
6161 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6162
6163 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6164 && (*cross_mode_jump_p
6165 ? ((symbol + addend + 2) & 3) != 0
6166 : ((symbol + addend + 2) & 1) == 0))
6167 return bfd_reloc_outofrange;
6168
c3eb94b4 6169 value = symbol + addend - p;
538baf8b
AB
6170 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6171 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6172 value >>= howto->rightshift;
6173 value &= howto->dst_mask;
6174 break;
6175
6176 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6177 if (howto->partial_inplace)
6178 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6179
6180 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6181 && (*cross_mode_jump_p
6182 ? ((symbol + addend + 2) & 3) != 0
6183 : ((symbol + addend + 2) & 1) == 0))
6184 return bfd_reloc_outofrange;
6185
c3eb94b4 6186 value = symbol + addend - p;
538baf8b
AB
6187 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6188 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6189 value >>= howto->rightshift;
6190 value &= howto->dst_mask;
6191 break;
6192
6193 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6194 if (howto->partial_inplace)
6195 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6196
6197 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6198 && (*cross_mode_jump_p
6199 ? ((symbol + addend) & 3) != 0
6200 : ((symbol + addend) & 1) == 0))
6201 return bfd_reloc_outofrange;
6202
c3eb94b4 6203 value = symbol + addend - p;
538baf8b
AB
6204 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6205 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6206 value >>= howto->rightshift;
6207 value &= howto->dst_mask;
6208 break;
6209
6210 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6211 if (howto->partial_inplace)
6212 addend = _bfd_mips_elf_sign_extend (addend, 25);
6213 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6214 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6215 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6216 value >>= howto->rightshift;
6217 value &= howto->dst_mask;
6218 break;
6219
b49e97c9
TS
6220 case R_MIPS_GOT_HI16:
6221 case R_MIPS_CALL_HI16:
df58fc94
RS
6222 case R_MICROMIPS_GOT_HI16:
6223 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6224 /* We're allowed to handle these two relocations identically.
6225 The dynamic linker is allowed to handle the CALL relocations
6226 differently by creating a lazy evaluation stub. */
6227 value = g;
6228 value = mips_elf_high (value);
6229 value &= howto->dst_mask;
6230 break;
6231
6232 case R_MIPS_GOT_LO16:
6233 case R_MIPS_CALL_LO16:
df58fc94
RS
6234 case R_MICROMIPS_GOT_LO16:
6235 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6236 value = g & howto->dst_mask;
6237 break;
6238
6239 case R_MIPS_GOT_PAGE:
df58fc94 6240 case R_MICROMIPS_GOT_PAGE:
5c18022e 6241 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6242 if (value == MINUS_ONE)
6243 return bfd_reloc_outofrange;
a8028dd0 6244 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6245 overflowed_p = mips_elf_overflow_p (value, 16);
6246 break;
6247
6248 case R_MIPS_GOT_OFST:
df58fc94 6249 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6250 if (local_p)
5c18022e 6251 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6252 else
6253 value = addend;
b49e97c9
TS
6254 overflowed_p = mips_elf_overflow_p (value, 16);
6255 break;
6256
6257 case R_MIPS_SUB:
df58fc94 6258 case R_MICROMIPS_SUB:
b49e97c9
TS
6259 value = symbol - addend;
6260 value &= howto->dst_mask;
6261 break;
6262
6263 case R_MIPS_HIGHER:
df58fc94 6264 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6265 value = mips_elf_higher (addend + symbol);
6266 value &= howto->dst_mask;
6267 break;
6268
6269 case R_MIPS_HIGHEST:
df58fc94 6270 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6271 value = mips_elf_highest (addend + symbol);
6272 value &= howto->dst_mask;
6273 break;
6274
6275 case R_MIPS_SCN_DISP:
df58fc94 6276 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6277 value = symbol + addend - sec->output_offset;
6278 value &= howto->dst_mask;
6279 break;
6280
b49e97c9 6281 case R_MIPS_JALR:
df58fc94 6282 case R_MICROMIPS_JALR:
1367d393
ILT
6283 /* This relocation is only a hint. In some cases, we optimize
6284 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6285 when the symbol does not resolve locally. */
6286 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393 6287 return bfd_reloc_continue;
c1556ecd
MR
6288 /* We can't optimize cross-mode jumps either. */
6289 if (*cross_mode_jump_p)
6290 return bfd_reloc_continue;
1367d393 6291 value = symbol + addend;
c1556ecd
MR
6292 /* Neither we can non-instruction-aligned targets. */
6293 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6294 return bfd_reloc_continue;
1367d393 6295 break;
b49e97c9 6296
1367d393 6297 case R_MIPS_PJUMP:
b49e97c9
TS
6298 case R_MIPS_GNU_VTINHERIT:
6299 case R_MIPS_GNU_VTENTRY:
6300 /* We don't do anything with these at present. */
6301 return bfd_reloc_continue;
6302
6303 default:
6304 /* An unrecognized relocation type. */
6305 return bfd_reloc_notsupported;
6306 }
6307
6308 /* Store the VALUE for our caller. */
6309 *valuep = value;
6310 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6311}
6312
6313/* Obtain the field relocated by RELOCATION. */
6314
6315static bfd_vma
9719ad41
RS
6316mips_elf_obtain_contents (reloc_howto_type *howto,
6317 const Elf_Internal_Rela *relocation,
6318 bfd *input_bfd, bfd_byte *contents)
b49e97c9 6319{
6346d5ca 6320 bfd_vma x = 0;
b49e97c9 6321 bfd_byte *location = contents + relocation->r_offset;
6346d5ca 6322 unsigned int size = bfd_get_reloc_size (howto);
b49e97c9
TS
6323
6324 /* Obtain the bytes. */
6346d5ca
AM
6325 if (size != 0)
6326 x = bfd_get (8 * size, input_bfd, location);
b49e97c9 6327
b49e97c9
TS
6328 return x;
6329}
6330
6331/* It has been determined that the result of the RELOCATION is the
6332 VALUE. Use HOWTO to place VALUE into the output file at the
6333 appropriate position. The SECTION is the section to which the
68ffbac6 6334 relocation applies.
38a7df63 6335 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6336 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6337
b34976b6 6338 Returns FALSE if anything goes wrong. */
b49e97c9 6339
b34976b6 6340static bfd_boolean
9719ad41
RS
6341mips_elf_perform_relocation (struct bfd_link_info *info,
6342 reloc_howto_type *howto,
6343 const Elf_Internal_Rela *relocation,
6344 bfd_vma value, bfd *input_bfd,
6345 asection *input_section, bfd_byte *contents,
38a7df63 6346 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6347{
6348 bfd_vma x;
6349 bfd_byte *location;
6350 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6346d5ca 6351 unsigned int size;
b49e97c9
TS
6352
6353 /* Figure out where the relocation is occurring. */
6354 location = contents + relocation->r_offset;
6355
df58fc94 6356 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6357
b49e97c9
TS
6358 /* Obtain the current value. */
6359 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6360
6361 /* Clear the field we are setting. */
6362 x &= ~howto->dst_mask;
6363
b49e97c9
TS
6364 /* Set the field. */
6365 x |= (value & howto->dst_mask);
6366
a6ebf616 6367 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6368 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6369 {
6370 bfd_vma opcode = x >> 26;
6371
6372 if (r_type == R_MIPS16_26 ? opcode == 0x7
6373 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6374 : opcode == 0x1d)
6375 {
6376 info->callbacks->einfo
2c1c9679 6377 (_("%X%H: unsupported JALX to the same ISA mode\n"),
9d862524
MR
6378 input_bfd, input_section, relocation->r_offset);
6379 return TRUE;
6380 }
6381 }
38a7df63 6382 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6383 {
b34976b6 6384 bfd_boolean ok;
b49e97c9
TS
6385 bfd_vma opcode = x >> 26;
6386 bfd_vma jalx_opcode;
6387
6388 /* Check to see if the opcode is already JAL or JALX. */
6389 if (r_type == R_MIPS16_26)
6390 {
6391 ok = ((opcode == 0x6) || (opcode == 0x7));
6392 jalx_opcode = 0x7;
6393 }
df58fc94
RS
6394 else if (r_type == R_MICROMIPS_26_S1)
6395 {
6396 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6397 jalx_opcode = 0x3c;
6398 }
b49e97c9
TS
6399 else
6400 {
6401 ok = ((opcode == 0x3) || (opcode == 0x1d));
6402 jalx_opcode = 0x1d;
6403 }
6404
3bdf9505 6405 /* If the opcode is not JAL or JALX, there's a problem. We cannot
07d6d2b8 6406 convert J or JALS to JALX. */
b49e97c9
TS
6407 if (!ok)
6408 {
5f68df25 6409 info->callbacks->einfo
2c1c9679 6410 (_("%X%H: unsupported jump between ISA modes; "
5f68df25
MR
6411 "consider recompiling with interlinking enabled\n"),
6412 input_bfd, input_section, relocation->r_offset);
6413 return TRUE;
b49e97c9
TS
6414 }
6415
6416 /* Make this the JALX opcode. */
6417 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6418 }
9d862524
MR
6419 else if (cross_mode_jump_p && b_reloc_p (r_type))
6420 {
a6ebf616
MR
6421 bfd_boolean ok = FALSE;
6422 bfd_vma opcode = x >> 16;
6423 bfd_vma jalx_opcode = 0;
70e65ca8 6424 bfd_vma sign_bit = 0;
a6ebf616
MR
6425 bfd_vma addr;
6426 bfd_vma dest;
6427
6428 if (r_type == R_MICROMIPS_PC16_S1)
6429 {
6430 ok = opcode == 0x4060;
6431 jalx_opcode = 0x3c;
70e65ca8 6432 sign_bit = 0x10000;
a6ebf616
MR
6433 value <<= 1;
6434 }
6435 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6436 {
6437 ok = opcode == 0x411;
6438 jalx_opcode = 0x1d;
70e65ca8 6439 sign_bit = 0x20000;
a6ebf616
MR
6440 value <<= 2;
6441 }
6442
8b10b0b3 6443 if (ok && !bfd_link_pic (info))
a6ebf616 6444 {
8b10b0b3
MR
6445 addr = (input_section->output_section->vma
6446 + input_section->output_offset
6447 + relocation->r_offset
6448 + 4);
70e65ca8
MR
6449 dest = (addr
6450 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
a6ebf616 6451
8b10b0b3
MR
6452 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6453 {
6454 info->callbacks->einfo
2c1c9679 6455 (_("%X%H: cannot convert branch between ISA modes "
8b10b0b3
MR
6456 "to JALX: relocation out of range\n"),
6457 input_bfd, input_section, relocation->r_offset);
6458 return TRUE;
6459 }
a6ebf616 6460
8b10b0b3
MR
6461 /* Make this the JALX opcode. */
6462 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6463 }
6464 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
a6ebf616
MR
6465 {
6466 info->callbacks->einfo
2c1c9679 6467 (_("%X%H: unsupported branch between ISA modes\n"),
a6ebf616
MR
6468 input_bfd, input_section, relocation->r_offset);
6469 return TRUE;
6470 }
9d862524 6471 }
b49e97c9 6472
38a7df63
CF
6473 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6474 range. */
0e1862bb 6475 if (!bfd_link_relocatable (info)
38a7df63 6476 && !cross_mode_jump_p
cd8d5a82
CF
6477 && ((JAL_TO_BAL_P (input_bfd)
6478 && r_type == R_MIPS_26
0e392101 6479 && (x >> 26) == 0x3) /* jal addr */
cd8d5a82
CF
6480 || (JALR_TO_BAL_P (input_bfd)
6481 && r_type == R_MIPS_JALR
0e392101 6482 && x == 0x0320f809) /* jalr t9 */
38a7df63
CF
6483 || (JR_TO_B_P (input_bfd)
6484 && r_type == R_MIPS_JALR
0e392101 6485 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
1367d393
ILT
6486 {
6487 bfd_vma addr;
6488 bfd_vma dest;
6489 bfd_signed_vma off;
6490
6491 addr = (input_section->output_section->vma
6492 + input_section->output_offset
6493 + relocation->r_offset
6494 + 4);
6495 if (r_type == R_MIPS_26)
6496 dest = (value << 2) | ((addr >> 28) << 28);
6497 else
6498 dest = value;
6499 off = dest - addr;
6500 if (off <= 0x1ffff && off >= -0x20000)
38a7df63 6501 {
0e392101 6502 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
38a7df63
CF
6503 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6504 else
6505 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6506 }
1367d393
ILT
6507 }
6508
b49e97c9 6509 /* Put the value into the output. */
6346d5ca
AM
6510 size = bfd_get_reloc_size (howto);
6511 if (size != 0)
6512 bfd_put (8 * size, input_bfd, x, location);
d6f16593 6513
0e1862bb 6514 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6515 location);
d6f16593 6516
b34976b6 6517 return TRUE;
b49e97c9 6518}
b49e97c9 6519\f
b49e97c9
TS
6520/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6521 is the original relocation, which is now being transformed into a
6522 dynamic relocation. The ADDENDP is adjusted if necessary; the
6523 caller should store the result in place of the original addend. */
6524
b34976b6 6525static bfd_boolean
9719ad41
RS
6526mips_elf_create_dynamic_relocation (bfd *output_bfd,
6527 struct bfd_link_info *info,
6528 const Elf_Internal_Rela *rel,
6529 struct mips_elf_link_hash_entry *h,
6530 asection *sec, bfd_vma symbol,
6531 bfd_vma *addendp, asection *input_section)
b49e97c9 6532{
947216bf 6533 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6534 asection *sreloc;
6535 bfd *dynobj;
6536 int r_type;
5d41f0b6
RS
6537 long indx;
6538 bfd_boolean defined_p;
0a44bf69 6539 struct mips_elf_link_hash_table *htab;
b49e97c9 6540
0a44bf69 6541 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6542 BFD_ASSERT (htab != NULL);
6543
b49e97c9
TS
6544 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6545 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6546 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6547 BFD_ASSERT (sreloc != NULL);
6548 BFD_ASSERT (sreloc->contents != NULL);
6549 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6550 < sreloc->size);
b49e97c9 6551
b49e97c9
TS
6552 outrel[0].r_offset =
6553 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6554 if (ABI_64_P (output_bfd))
6555 {
6556 outrel[1].r_offset =
6557 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6558 outrel[2].r_offset =
6559 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6560 }
b49e97c9 6561
c5ae1840 6562 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6563 /* The relocation field has been deleted. */
5d41f0b6
RS
6564 return TRUE;
6565
6566 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6567 {
6568 /* The relocation field has been converted into a relative value of
6569 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6570 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6571 *addendp += symbol;
5d41f0b6 6572 return TRUE;
0d591ff7 6573 }
b49e97c9 6574
5d41f0b6
RS
6575 /* We must now calculate the dynamic symbol table index to use
6576 in the relocation. */
d4a77f3f 6577 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6578 {
020d7251 6579 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6580 indx = h->root.dynindx;
6581 if (SGI_COMPAT (output_bfd))
6582 defined_p = h->root.def_regular;
6583 else
6584 /* ??? glibc's ld.so just adds the final GOT entry to the
6585 relocation field. It therefore treats relocs against
6586 defined symbols in the same way as relocs against
6587 undefined symbols. */
6588 defined_p = FALSE;
6589 }
b49e97c9
TS
6590 else
6591 {
5d41f0b6
RS
6592 if (sec != NULL && bfd_is_abs_section (sec))
6593 indx = 0;
6594 else if (sec == NULL || sec->owner == NULL)
fdd07405 6595 {
5d41f0b6
RS
6596 bfd_set_error (bfd_error_bad_value);
6597 return FALSE;
b49e97c9
TS
6598 }
6599 else
6600 {
5d41f0b6 6601 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6602 if (indx == 0)
6603 {
6604 asection *osec = htab->root.text_index_section;
6605 indx = elf_section_data (osec)->dynindx;
6606 }
5d41f0b6
RS
6607 if (indx == 0)
6608 abort ();
b49e97c9
TS
6609 }
6610
5d41f0b6
RS
6611 /* Instead of generating a relocation using the section
6612 symbol, we may as well make it a fully relative
6613 relocation. We want to avoid generating relocations to
6614 local symbols because we used to generate them
6615 incorrectly, without adding the original symbol value,
6616 which is mandated by the ABI for section symbols. In
6617 order to give dynamic loaders and applications time to
6618 phase out the incorrect use, we refrain from emitting
6619 section-relative relocations. It's not like they're
6620 useful, after all. This should be a bit more efficient
6621 as well. */
6622 /* ??? Although this behavior is compatible with glibc's ld.so,
6623 the ABI says that relocations against STN_UNDEF should have
6624 a symbol value of 0. Irix rld honors this, so relocations
6625 against STN_UNDEF have no effect. */
6626 if (!SGI_COMPAT (output_bfd))
6627 indx = 0;
6628 defined_p = TRUE;
b49e97c9
TS
6629 }
6630
5d41f0b6
RS
6631 /* If the relocation was previously an absolute relocation and
6632 this symbol will not be referred to by the relocation, we must
6633 adjust it by the value we give it in the dynamic symbol table.
6634 Otherwise leave the job up to the dynamic linker. */
6635 if (defined_p && r_type != R_MIPS_REL32)
6636 *addendp += symbol;
6637
0a44bf69
RS
6638 if (htab->is_vxworks)
6639 /* VxWorks uses non-relative relocations for this. */
6640 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6641 else
6642 /* The relocation is always an REL32 relocation because we don't
6643 know where the shared library will wind up at load-time. */
6644 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6645 R_MIPS_REL32);
6646
5d41f0b6
RS
6647 /* For strict adherence to the ABI specification, we should
6648 generate a R_MIPS_64 relocation record by itself before the
6649 _REL32/_64 record as well, such that the addend is read in as
6650 a 64-bit value (REL32 is a 32-bit relocation, after all).
6651 However, since none of the existing ELF64 MIPS dynamic
6652 loaders seems to care, we don't waste space with these
6653 artificial relocations. If this turns out to not be true,
6654 mips_elf_allocate_dynamic_relocation() should be tweaked so
6655 as to make room for a pair of dynamic relocations per
6656 invocation if ABI_64_P, and here we should generate an
6657 additional relocation record with R_MIPS_64 by itself for a
6658 NULL symbol before this relocation record. */
6659 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6660 ABI_64_P (output_bfd)
6661 ? R_MIPS_64
6662 : R_MIPS_NONE);
6663 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6664
6665 /* Adjust the output offset of the relocation to reference the
6666 correct location in the output file. */
6667 outrel[0].r_offset += (input_section->output_section->vma
6668 + input_section->output_offset);
6669 outrel[1].r_offset += (input_section->output_section->vma
6670 + input_section->output_offset);
6671 outrel[2].r_offset += (input_section->output_section->vma
6672 + input_section->output_offset);
6673
b49e97c9
TS
6674 /* Put the relocation back out. We have to use the special
6675 relocation outputter in the 64-bit case since the 64-bit
6676 relocation format is non-standard. */
6677 if (ABI_64_P (output_bfd))
6678 {
6679 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6680 (output_bfd, &outrel[0],
6681 (sreloc->contents
6682 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6683 }
0a44bf69
RS
6684 else if (htab->is_vxworks)
6685 {
6686 /* VxWorks uses RELA rather than REL dynamic relocations. */
6687 outrel[0].r_addend = *addendp;
6688 bfd_elf32_swap_reloca_out
6689 (output_bfd, &outrel[0],
6690 (sreloc->contents
6691 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6692 }
b49e97c9 6693 else
947216bf
AM
6694 bfd_elf32_swap_reloc_out
6695 (output_bfd, &outrel[0],
6696 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6697
b49e97c9
TS
6698 /* We've now added another relocation. */
6699 ++sreloc->reloc_count;
6700
6701 /* Make sure the output section is writable. The dynamic linker
6702 will be writing to it. */
6703 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6704 |= SHF_WRITE;
6705
6706 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6707 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6708 {
3d4d4302 6709 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6710 bfd_byte *cr;
6711
6712 if (scpt)
6713 {
6714 Elf32_crinfo cptrel;
6715
6716 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6717 cptrel.vaddr = (rel->r_offset
6718 + input_section->output_section->vma
6719 + input_section->output_offset);
6720 if (r_type == R_MIPS_REL32)
6721 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6722 else
6723 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6724 mips_elf_set_cr_dist2to (cptrel, 0);
6725 cptrel.konst = *addendp;
6726
6727 cr = (scpt->contents
6728 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6729 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6730 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6731 ((Elf32_External_crinfo *) cr
6732 + scpt->reloc_count));
6733 ++scpt->reloc_count;
6734 }
6735 }
6736
943284cc
DJ
6737 /* If we've written this relocation for a readonly section,
6738 we need to set DF_TEXTREL again, so that we do not delete the
6739 DT_TEXTREL tag. */
6740 if (MIPS_ELF_READONLY_SECTION (input_section))
6741 info->flags |= DF_TEXTREL;
6742
b34976b6 6743 return TRUE;
b49e97c9
TS
6744}
6745\f
b49e97c9
TS
6746/* Return the MACH for a MIPS e_flags value. */
6747
6748unsigned long
9719ad41 6749_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6750{
6751 switch (flags & EF_MIPS_MACH)
6752 {
6753 case E_MIPS_MACH_3900:
6754 return bfd_mach_mips3900;
6755
6756 case E_MIPS_MACH_4010:
6757 return bfd_mach_mips4010;
6758
6759 case E_MIPS_MACH_4100:
6760 return bfd_mach_mips4100;
6761
6762 case E_MIPS_MACH_4111:
6763 return bfd_mach_mips4111;
6764
00707a0e
RS
6765 case E_MIPS_MACH_4120:
6766 return bfd_mach_mips4120;
6767
b49e97c9
TS
6768 case E_MIPS_MACH_4650:
6769 return bfd_mach_mips4650;
6770
00707a0e
RS
6771 case E_MIPS_MACH_5400:
6772 return bfd_mach_mips5400;
6773
6774 case E_MIPS_MACH_5500:
6775 return bfd_mach_mips5500;
6776
e407c74b
NC
6777 case E_MIPS_MACH_5900:
6778 return bfd_mach_mips5900;
6779
0d2e43ed
ILT
6780 case E_MIPS_MACH_9000:
6781 return bfd_mach_mips9000;
6782
b49e97c9
TS
6783 case E_MIPS_MACH_SB1:
6784 return bfd_mach_mips_sb1;
6785
350cc38d
MS
6786 case E_MIPS_MACH_LS2E:
6787 return bfd_mach_mips_loongson_2e;
6788
6789 case E_MIPS_MACH_LS2F:
6790 return bfd_mach_mips_loongson_2f;
6791
fd503541
NC
6792 case E_MIPS_MACH_LS3A:
6793 return bfd_mach_mips_loongson_3a;
6794
2c629856
N
6795 case E_MIPS_MACH_OCTEON3:
6796 return bfd_mach_mips_octeon3;
6797
432233b3
AP
6798 case E_MIPS_MACH_OCTEON2:
6799 return bfd_mach_mips_octeon2;
6800
6f179bd0
AN
6801 case E_MIPS_MACH_OCTEON:
6802 return bfd_mach_mips_octeon;
6803
52b6b6b9
JM
6804 case E_MIPS_MACH_XLR:
6805 return bfd_mach_mips_xlr;
6806
38bf472a
MR
6807 case E_MIPS_MACH_IAMR2:
6808 return bfd_mach_mips_interaptiv_mr2;
6809
b49e97c9
TS
6810 default:
6811 switch (flags & EF_MIPS_ARCH)
6812 {
6813 default:
6814 case E_MIPS_ARCH_1:
6815 return bfd_mach_mips3000;
b49e97c9
TS
6816
6817 case E_MIPS_ARCH_2:
6818 return bfd_mach_mips6000;
b49e97c9
TS
6819
6820 case E_MIPS_ARCH_3:
6821 return bfd_mach_mips4000;
b49e97c9
TS
6822
6823 case E_MIPS_ARCH_4:
6824 return bfd_mach_mips8000;
b49e97c9
TS
6825
6826 case E_MIPS_ARCH_5:
6827 return bfd_mach_mips5;
b49e97c9
TS
6828
6829 case E_MIPS_ARCH_32:
6830 return bfd_mach_mipsisa32;
b49e97c9
TS
6831
6832 case E_MIPS_ARCH_64:
6833 return bfd_mach_mipsisa64;
af7ee8bf
CD
6834
6835 case E_MIPS_ARCH_32R2:
6836 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6837
6838 case E_MIPS_ARCH_64R2:
6839 return bfd_mach_mipsisa64r2;
7361da2c
AB
6840
6841 case E_MIPS_ARCH_32R6:
6842 return bfd_mach_mipsisa32r6;
6843
6844 case E_MIPS_ARCH_64R6:
6845 return bfd_mach_mipsisa64r6;
b49e97c9
TS
6846 }
6847 }
6848
6849 return 0;
6850}
6851
6852/* Return printable name for ABI. */
6853
6854static INLINE char *
9719ad41 6855elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6856{
6857 flagword flags;
6858
6859 flags = elf_elfheader (abfd)->e_flags;
6860 switch (flags & EF_MIPS_ABI)
6861 {
6862 case 0:
6863 if (ABI_N32_P (abfd))
6864 return "N32";
6865 else if (ABI_64_P (abfd))
6866 return "64";
6867 else
6868 return "none";
6869 case E_MIPS_ABI_O32:
6870 return "O32";
6871 case E_MIPS_ABI_O64:
6872 return "O64";
6873 case E_MIPS_ABI_EABI32:
6874 return "EABI32";
6875 case E_MIPS_ABI_EABI64:
6876 return "EABI64";
6877 default:
6878 return "unknown abi";
6879 }
6880}
6881\f
6882/* MIPS ELF uses two common sections. One is the usual one, and the
6883 other is for small objects. All the small objects are kept
6884 together, and then referenced via the gp pointer, which yields
6885 faster assembler code. This is what we use for the small common
6886 section. This approach is copied from ecoff.c. */
6887static asection mips_elf_scom_section;
6888static asymbol mips_elf_scom_symbol;
6889static asymbol *mips_elf_scom_symbol_ptr;
6890
6891/* MIPS ELF also uses an acommon section, which represents an
6892 allocated common symbol which may be overridden by a
6893 definition in a shared library. */
6894static asection mips_elf_acom_section;
6895static asymbol mips_elf_acom_symbol;
6896static asymbol *mips_elf_acom_symbol_ptr;
6897
738e5348 6898/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6899
6900void
9719ad41 6901_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6902{
6903 elf_symbol_type *elfsym;
6904
738e5348 6905 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6906 elfsym = (elf_symbol_type *) asym;
6907 switch (elfsym->internal_elf_sym.st_shndx)
6908 {
6909 case SHN_MIPS_ACOMMON:
6910 /* This section is used in a dynamically linked executable file.
6911 It is an allocated common section. The dynamic linker can
6912 either resolve these symbols to something in a shared
6913 library, or it can just leave them here. For our purposes,
6914 we can consider these symbols to be in a new section. */
6915 if (mips_elf_acom_section.name == NULL)
6916 {
6917 /* Initialize the acommon section. */
6918 mips_elf_acom_section.name = ".acommon";
6919 mips_elf_acom_section.flags = SEC_ALLOC;
6920 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6921 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6922 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6923 mips_elf_acom_symbol.name = ".acommon";
6924 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6925 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6926 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6927 }
6928 asym->section = &mips_elf_acom_section;
6929 break;
6930
6931 case SHN_COMMON:
6932 /* Common symbols less than the GP size are automatically
6933 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6934 if (asym->value > elf_gp_size (abfd)
b59eed79 6935 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6936 || IRIX_COMPAT (abfd) == ict_irix6)
6937 break;
6938 /* Fall through. */
6939 case SHN_MIPS_SCOMMON:
6940 if (mips_elf_scom_section.name == NULL)
6941 {
6942 /* Initialize the small common section. */
6943 mips_elf_scom_section.name = ".scommon";
6944 mips_elf_scom_section.flags = SEC_IS_COMMON;
6945 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6946 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6947 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6948 mips_elf_scom_symbol.name = ".scommon";
6949 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6950 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6951 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6952 }
6953 asym->section = &mips_elf_scom_section;
6954 asym->value = elfsym->internal_elf_sym.st_size;
6955 break;
6956
6957 case SHN_MIPS_SUNDEFINED:
6958 asym->section = bfd_und_section_ptr;
6959 break;
6960
b49e97c9 6961 case SHN_MIPS_TEXT:
00b4930b
TS
6962 {
6963 asection *section = bfd_get_section_by_name (abfd, ".text");
6964
00b4930b
TS
6965 if (section != NULL)
6966 {
6967 asym->section = section;
6968 /* MIPS_TEXT is a bit special, the address is not an offset
de194d85 6969 to the base of the .text section. So subtract the section
00b4930b
TS
6970 base address to make it an offset. */
6971 asym->value -= section->vma;
6972 }
6973 }
b49e97c9
TS
6974 break;
6975
6976 case SHN_MIPS_DATA:
00b4930b
TS
6977 {
6978 asection *section = bfd_get_section_by_name (abfd, ".data");
6979
00b4930b
TS
6980 if (section != NULL)
6981 {
6982 asym->section = section;
6983 /* MIPS_DATA is a bit special, the address is not an offset
de194d85 6984 to the base of the .data section. So subtract the section
00b4930b
TS
6985 base address to make it an offset. */
6986 asym->value -= section->vma;
6987 }
6988 }
b49e97c9 6989 break;
b49e97c9 6990 }
738e5348 6991
df58fc94
RS
6992 /* If this is an odd-valued function symbol, assume it's a MIPS16
6993 or microMIPS one. */
738e5348
RS
6994 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6995 && (asym->value & 1) != 0)
6996 {
6997 asym->value--;
e8faf7d1 6998 if (MICROMIPS_P (abfd))
df58fc94
RS
6999 elfsym->internal_elf_sym.st_other
7000 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7001 else
7002 elfsym->internal_elf_sym.st_other
7003 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 7004 }
b49e97c9
TS
7005}
7006\f
8c946ed5
RS
7007/* Implement elf_backend_eh_frame_address_size. This differs from
7008 the default in the way it handles EABI64.
7009
7010 EABI64 was originally specified as an LP64 ABI, and that is what
7011 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7012 historically accepted the combination of -mabi=eabi and -mlong32,
7013 and this ILP32 variation has become semi-official over time.
7014 Both forms use elf32 and have pointer-sized FDE addresses.
7015
7016 If an EABI object was generated by GCC 4.0 or above, it will have
7017 an empty .gcc_compiled_longXX section, where XX is the size of longs
7018 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7019 have no special marking to distinguish them from LP64 objects.
7020
7021 We don't want users of the official LP64 ABI to be punished for the
7022 existence of the ILP32 variant, but at the same time, we don't want
7023 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7024 We therefore take the following approach:
7025
7026 - If ABFD contains a .gcc_compiled_longXX section, use it to
07d6d2b8 7027 determine the pointer size.
8c946ed5
RS
7028
7029 - Otherwise check the type of the first relocation. Assume that
07d6d2b8 7030 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
8c946ed5
RS
7031
7032 - Otherwise punt.
7033
7034 The second check is enough to detect LP64 objects generated by pre-4.0
7035 compilers because, in the kind of output generated by those compilers,
7036 the first relocation will be associated with either a CIE personality
7037 routine or an FDE start address. Furthermore, the compilers never
7038 used a special (non-pointer) encoding for this ABI.
7039
7040 Checking the relocation type should also be safe because there is no
7041 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7042 did so. */
7043
7044unsigned int
76c20d54 7045_bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
8c946ed5
RS
7046{
7047 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7048 return 8;
7049 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7050 {
7051 bfd_boolean long32_p, long64_p;
7052
7053 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7054 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7055 if (long32_p && long64_p)
7056 return 0;
7057 if (long32_p)
7058 return 4;
7059 if (long64_p)
7060 return 8;
7061
7062 if (sec->reloc_count > 0
7063 && elf_section_data (sec)->relocs != NULL
7064 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7065 == R_MIPS_64))
7066 return 8;
7067
7068 return 0;
7069 }
7070 return 4;
7071}
7072\f
174fd7f9
RS
7073/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7074 relocations against two unnamed section symbols to resolve to the
7075 same address. For example, if we have code like:
7076
7077 lw $4,%got_disp(.data)($gp)
7078 lw $25,%got_disp(.text)($gp)
7079 jalr $25
7080
7081 then the linker will resolve both relocations to .data and the program
7082 will jump there rather than to .text.
7083
7084 We can work around this problem by giving names to local section symbols.
7085 This is also what the MIPSpro tools do. */
7086
7087bfd_boolean
7088_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7089{
7090 return SGI_COMPAT (abfd);
7091}
7092\f
b49e97c9
TS
7093/* Work over a section just before writing it out. This routine is
7094 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7095 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7096 a better way. */
7097
b34976b6 7098bfd_boolean
9719ad41 7099_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7100{
7101 if (hdr->sh_type == SHT_MIPS_REGINFO
7102 && hdr->sh_size > 0)
7103 {
7104 bfd_byte buf[4];
7105
b49e97c9
TS
7106 BFD_ASSERT (hdr->contents == NULL);
7107
2d6dda71
MR
7108 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7109 {
7110 _bfd_error_handler
2c1c9679 7111 (_("%pB: incorrect `.reginfo' section size; "
2dcf00ce
AM
7112 "expected %" PRIu64 ", got %" PRIu64),
7113 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7114 (uint64_t) hdr->sh_size);
2d6dda71
MR
7115 bfd_set_error (bfd_error_bad_value);
7116 return FALSE;
7117 }
7118
b49e97c9
TS
7119 if (bfd_seek (abfd,
7120 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7121 SEEK_SET) != 0)
b34976b6 7122 return FALSE;
b49e97c9 7123 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7124 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7125 return FALSE;
b49e97c9
TS
7126 }
7127
7128 if (hdr->sh_type == SHT_MIPS_OPTIONS
7129 && hdr->bfd_section != NULL
f0abc2a1
AM
7130 && mips_elf_section_data (hdr->bfd_section) != NULL
7131 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7132 {
7133 bfd_byte *contents, *l, *lend;
7134
f0abc2a1
AM
7135 /* We stored the section contents in the tdata field in the
7136 set_section_contents routine. We save the section contents
7137 so that we don't have to read them again.
b49e97c9
TS
7138 At this point we know that elf_gp is set, so we can look
7139 through the section contents to see if there is an
7140 ODK_REGINFO structure. */
7141
f0abc2a1 7142 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7143 l = contents;
7144 lend = contents + hdr->sh_size;
7145 while (l + sizeof (Elf_External_Options) <= lend)
7146 {
7147 Elf_Internal_Options intopt;
7148
7149 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7150 &intopt);
1bc8074d
MR
7151 if (intopt.size < sizeof (Elf_External_Options))
7152 {
4eca0228 7153 _bfd_error_handler
695344c0 7154 /* xgettext:c-format */
2c1c9679 7155 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7156 " its header"),
1bc8074d
MR
7157 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7158 break;
7159 }
b49e97c9
TS
7160 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7161 {
7162 bfd_byte buf[8];
7163
7164 if (bfd_seek (abfd,
7165 (hdr->sh_offset
7166 + (l - contents)
7167 + sizeof (Elf_External_Options)
7168 + (sizeof (Elf64_External_RegInfo) - 8)),
7169 SEEK_SET) != 0)
b34976b6 7170 return FALSE;
b49e97c9 7171 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7172 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7173 return FALSE;
b49e97c9
TS
7174 }
7175 else if (intopt.kind == ODK_REGINFO)
7176 {
7177 bfd_byte buf[4];
7178
7179 if (bfd_seek (abfd,
7180 (hdr->sh_offset
7181 + (l - contents)
7182 + sizeof (Elf_External_Options)
7183 + (sizeof (Elf32_External_RegInfo) - 4)),
7184 SEEK_SET) != 0)
b34976b6 7185 return FALSE;
b49e97c9 7186 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7187 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7188 return FALSE;
b49e97c9
TS
7189 }
7190 l += intopt.size;
7191 }
7192 }
7193
7194 if (hdr->bfd_section != NULL)
7195 {
7196 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7197
2d0f9ad9
JM
7198 /* .sbss is not handled specially here because the GNU/Linux
7199 prelinker can convert .sbss from NOBITS to PROGBITS and
7200 changing it back to NOBITS breaks the binary. The entry in
7201 _bfd_mips_elf_special_sections will ensure the correct flags
7202 are set on .sbss if BFD creates it without reading it from an
7203 input file, and without special handling here the flags set
7204 on it in an input file will be followed. */
b49e97c9
TS
7205 if (strcmp (name, ".sdata") == 0
7206 || strcmp (name, ".lit8") == 0
7207 || strcmp (name, ".lit4") == 0)
fd6f9d17 7208 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7209 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7210 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7211 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7212 hdr->sh_flags = 0;
b49e97c9
TS
7213 else if (strcmp (name, ".rtproc") == 0)
7214 {
7215 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7216 {
7217 unsigned int adjust;
7218
7219 adjust = hdr->sh_size % hdr->sh_addralign;
7220 if (adjust != 0)
7221 hdr->sh_size += hdr->sh_addralign - adjust;
7222 }
7223 }
7224 }
7225
b34976b6 7226 return TRUE;
b49e97c9
TS
7227}
7228
7229/* Handle a MIPS specific section when reading an object file. This
7230 is called when elfcode.h finds a section with an unknown type.
7231 This routine supports both the 32-bit and 64-bit ELF ABI.
7232
7233 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7234 how to. */
7235
b34976b6 7236bfd_boolean
6dc132d9
L
7237_bfd_mips_elf_section_from_shdr (bfd *abfd,
7238 Elf_Internal_Shdr *hdr,
7239 const char *name,
7240 int shindex)
b49e97c9
TS
7241{
7242 flagword flags = 0;
7243
7244 /* There ought to be a place to keep ELF backend specific flags, but
7245 at the moment there isn't one. We just keep track of the
7246 sections by their name, instead. Fortunately, the ABI gives
7247 suggested names for all the MIPS specific sections, so we will
7248 probably get away with this. */
7249 switch (hdr->sh_type)
7250 {
7251 case SHT_MIPS_LIBLIST:
7252 if (strcmp (name, ".liblist") != 0)
b34976b6 7253 return FALSE;
b49e97c9
TS
7254 break;
7255 case SHT_MIPS_MSYM:
7256 if (strcmp (name, ".msym") != 0)
b34976b6 7257 return FALSE;
b49e97c9
TS
7258 break;
7259 case SHT_MIPS_CONFLICT:
7260 if (strcmp (name, ".conflict") != 0)
b34976b6 7261 return FALSE;
b49e97c9
TS
7262 break;
7263 case SHT_MIPS_GPTAB:
0112cd26 7264 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7265 return FALSE;
b49e97c9
TS
7266 break;
7267 case SHT_MIPS_UCODE:
7268 if (strcmp (name, ".ucode") != 0)
b34976b6 7269 return FALSE;
b49e97c9
TS
7270 break;
7271 case SHT_MIPS_DEBUG:
7272 if (strcmp (name, ".mdebug") != 0)
b34976b6 7273 return FALSE;
b49e97c9
TS
7274 flags = SEC_DEBUGGING;
7275 break;
7276 case SHT_MIPS_REGINFO:
7277 if (strcmp (name, ".reginfo") != 0
7278 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7279 return FALSE;
b49e97c9
TS
7280 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7281 break;
7282 case SHT_MIPS_IFACE:
7283 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7284 return FALSE;
b49e97c9
TS
7285 break;
7286 case SHT_MIPS_CONTENT:
0112cd26 7287 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7288 return FALSE;
b49e97c9
TS
7289 break;
7290 case SHT_MIPS_OPTIONS:
cc2e31b9 7291 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7292 return FALSE;
b49e97c9 7293 break;
351cdf24
MF
7294 case SHT_MIPS_ABIFLAGS:
7295 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7296 return FALSE;
7297 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7298 break;
b49e97c9 7299 case SHT_MIPS_DWARF:
1b315056 7300 if (! CONST_STRNEQ (name, ".debug_")
07d6d2b8 7301 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7302 return FALSE;
b49e97c9
TS
7303 break;
7304 case SHT_MIPS_SYMBOL_LIB:
7305 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7306 return FALSE;
b49e97c9
TS
7307 break;
7308 case SHT_MIPS_EVENTS:
0112cd26
NC
7309 if (! CONST_STRNEQ (name, ".MIPS.events")
7310 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7311 return FALSE;
b49e97c9
TS
7312 break;
7313 default:
cc2e31b9 7314 break;
b49e97c9
TS
7315 }
7316
6dc132d9 7317 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7318 return FALSE;
b49e97c9
TS
7319
7320 if (flags)
7321 {
7322 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7323 (bfd_get_section_flags (abfd,
7324 hdr->bfd_section)
7325 | flags)))
b34976b6 7326 return FALSE;
b49e97c9
TS
7327 }
7328
351cdf24
MF
7329 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7330 {
7331 Elf_External_ABIFlags_v0 ext;
7332
7333 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7334 &ext, 0, sizeof ext))
7335 return FALSE;
7336 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7337 &mips_elf_tdata (abfd)->abiflags);
7338 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7339 return FALSE;
7340 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7341 }
7342
b49e97c9
TS
7343 /* FIXME: We should record sh_info for a .gptab section. */
7344
7345 /* For a .reginfo section, set the gp value in the tdata information
7346 from the contents of this section. We need the gp value while
7347 processing relocs, so we just get it now. The .reginfo section
7348 is not used in the 64-bit MIPS ELF ABI. */
7349 if (hdr->sh_type == SHT_MIPS_REGINFO)
7350 {
7351 Elf32_External_RegInfo ext;
7352 Elf32_RegInfo s;
7353
9719ad41
RS
7354 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7355 &ext, 0, sizeof ext))
b34976b6 7356 return FALSE;
b49e97c9
TS
7357 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7358 elf_gp (abfd) = s.ri_gp_value;
7359 }
7360
7361 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7362 set the gp value based on what we find. We may see both
7363 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7364 they should agree. */
7365 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7366 {
7367 bfd_byte *contents, *l, *lend;
7368
9719ad41 7369 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7370 if (contents == NULL)
b34976b6 7371 return FALSE;
b49e97c9 7372 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7373 0, hdr->sh_size))
b49e97c9
TS
7374 {
7375 free (contents);
b34976b6 7376 return FALSE;
b49e97c9
TS
7377 }
7378 l = contents;
7379 lend = contents + hdr->sh_size;
7380 while (l + sizeof (Elf_External_Options) <= lend)
7381 {
7382 Elf_Internal_Options intopt;
7383
7384 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7385 &intopt);
1bc8074d
MR
7386 if (intopt.size < sizeof (Elf_External_Options))
7387 {
4eca0228 7388 _bfd_error_handler
695344c0 7389 /* xgettext:c-format */
2c1c9679 7390 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7391 " its header"),
1bc8074d
MR
7392 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7393 break;
7394 }
b49e97c9
TS
7395 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7396 {
7397 Elf64_Internal_RegInfo intreg;
7398
7399 bfd_mips_elf64_swap_reginfo_in
7400 (abfd,
7401 ((Elf64_External_RegInfo *)
7402 (l + sizeof (Elf_External_Options))),
7403 &intreg);
7404 elf_gp (abfd) = intreg.ri_gp_value;
7405 }
7406 else if (intopt.kind == ODK_REGINFO)
7407 {
7408 Elf32_RegInfo intreg;
7409
7410 bfd_mips_elf32_swap_reginfo_in
7411 (abfd,
7412 ((Elf32_External_RegInfo *)
7413 (l + sizeof (Elf_External_Options))),
7414 &intreg);
7415 elf_gp (abfd) = intreg.ri_gp_value;
7416 }
7417 l += intopt.size;
7418 }
7419 free (contents);
7420 }
7421
b34976b6 7422 return TRUE;
b49e97c9
TS
7423}
7424
7425/* Set the correct type for a MIPS ELF section. We do this by the
7426 section name, which is a hack, but ought to work. This routine is
7427 used by both the 32-bit and the 64-bit ABI. */
7428
b34976b6 7429bfd_boolean
9719ad41 7430_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7431{
0414f35b 7432 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7433
7434 if (strcmp (name, ".liblist") == 0)
7435 {
7436 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7437 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7438 /* The sh_link field is set in final_write_processing. */
7439 }
7440 else if (strcmp (name, ".conflict") == 0)
7441 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7442 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7443 {
7444 hdr->sh_type = SHT_MIPS_GPTAB;
7445 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7446 /* The sh_info field is set in final_write_processing. */
7447 }
7448 else if (strcmp (name, ".ucode") == 0)
7449 hdr->sh_type = SHT_MIPS_UCODE;
7450 else if (strcmp (name, ".mdebug") == 0)
7451 {
7452 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7453 /* In a shared object on IRIX 5.3, the .mdebug section has an
07d6d2b8 7454 entsize of 0. FIXME: Does this matter? */
b49e97c9
TS
7455 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7456 hdr->sh_entsize = 0;
7457 else
7458 hdr->sh_entsize = 1;
7459 }
7460 else if (strcmp (name, ".reginfo") == 0)
7461 {
7462 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7463 /* In a shared object on IRIX 5.3, the .reginfo section has an
07d6d2b8 7464 entsize of 0x18. FIXME: Does this matter? */
b49e97c9
TS
7465 if (SGI_COMPAT (abfd))
7466 {
7467 if ((abfd->flags & DYNAMIC) != 0)
7468 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7469 else
7470 hdr->sh_entsize = 1;
7471 }
7472 else
7473 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7474 }
7475 else if (SGI_COMPAT (abfd)
7476 && (strcmp (name, ".hash") == 0
7477 || strcmp (name, ".dynamic") == 0
7478 || strcmp (name, ".dynstr") == 0))
7479 {
7480 if (SGI_COMPAT (abfd))
7481 hdr->sh_entsize = 0;
7482#if 0
8dc1a139 7483 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7484 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7485#endif
7486 }
7487 else if (strcmp (name, ".got") == 0
7488 || strcmp (name, ".srdata") == 0
7489 || strcmp (name, ".sdata") == 0
7490 || strcmp (name, ".sbss") == 0
7491 || strcmp (name, ".lit4") == 0
7492 || strcmp (name, ".lit8") == 0)
7493 hdr->sh_flags |= SHF_MIPS_GPREL;
7494 else if (strcmp (name, ".MIPS.interfaces") == 0)
7495 {
7496 hdr->sh_type = SHT_MIPS_IFACE;
7497 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7498 }
0112cd26 7499 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7500 {
7501 hdr->sh_type = SHT_MIPS_CONTENT;
7502 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7503 /* The sh_info field is set in final_write_processing. */
7504 }
cc2e31b9 7505 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7506 {
7507 hdr->sh_type = SHT_MIPS_OPTIONS;
7508 hdr->sh_entsize = 1;
7509 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7510 }
351cdf24
MF
7511 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7512 {
7513 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7514 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7515 }
1b315056 7516 else if (CONST_STRNEQ (name, ".debug_")
07d6d2b8 7517 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7518 {
7519 hdr->sh_type = SHT_MIPS_DWARF;
7520
7521 /* Irix facilities such as libexc expect a single .debug_frame
7522 per executable, the system ones have NOSTRIP set and the linker
7523 doesn't merge sections with different flags so ... */
7524 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7525 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7526 }
b49e97c9
TS
7527 else if (strcmp (name, ".MIPS.symlib") == 0)
7528 {
7529 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7530 /* The sh_link and sh_info fields are set in
07d6d2b8 7531 final_write_processing. */
b49e97c9 7532 }
0112cd26
NC
7533 else if (CONST_STRNEQ (name, ".MIPS.events")
7534 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7535 {
7536 hdr->sh_type = SHT_MIPS_EVENTS;
7537 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7538 /* The sh_link field is set in final_write_processing. */
7539 }
7540 else if (strcmp (name, ".msym") == 0)
7541 {
7542 hdr->sh_type = SHT_MIPS_MSYM;
7543 hdr->sh_flags |= SHF_ALLOC;
7544 hdr->sh_entsize = 8;
7545 }
7546
7a79a000
TS
7547 /* The generic elf_fake_sections will set up REL_HDR using the default
7548 kind of relocations. We used to set up a second header for the
7549 non-default kind of relocations here, but only NewABI would use
7550 these, and the IRIX ld doesn't like resulting empty RELA sections.
7551 Thus we create those header only on demand now. */
b49e97c9 7552
b34976b6 7553 return TRUE;
b49e97c9
TS
7554}
7555
7556/* Given a BFD section, try to locate the corresponding ELF section
7557 index. This is used by both the 32-bit and the 64-bit ABI.
7558 Actually, it's not clear to me that the 64-bit ABI supports these,
7559 but for non-PIC objects we will certainly want support for at least
7560 the .scommon section. */
7561
b34976b6 7562bfd_boolean
9719ad41
RS
7563_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7564 asection *sec, int *retval)
b49e97c9
TS
7565{
7566 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7567 {
7568 *retval = SHN_MIPS_SCOMMON;
b34976b6 7569 return TRUE;
b49e97c9
TS
7570 }
7571 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7572 {
7573 *retval = SHN_MIPS_ACOMMON;
b34976b6 7574 return TRUE;
b49e97c9 7575 }
b34976b6 7576 return FALSE;
b49e97c9
TS
7577}
7578\f
7579/* Hook called by the linker routine which adds symbols from an object
7580 file. We must handle the special MIPS section numbers here. */
7581
b34976b6 7582bfd_boolean
9719ad41 7583_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7584 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7585 flagword *flagsp ATTRIBUTE_UNUSED,
7586 asection **secp, bfd_vma *valp)
b49e97c9
TS
7587{
7588 if (SGI_COMPAT (abfd)
7589 && (abfd->flags & DYNAMIC) != 0
7590 && strcmp (*namep, "_rld_new_interface") == 0)
7591 {
8dc1a139 7592 /* Skip IRIX5 rld entry name. */
b49e97c9 7593 *namep = NULL;
b34976b6 7594 return TRUE;
b49e97c9
TS
7595 }
7596
eedecc07
DD
7597 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7598 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7599 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7600 a magic symbol resolved by the linker, we ignore this bogus definition
7601 of _gp_disp. New ABI objects do not suffer from this problem so this
7602 is not done for them. */
7603 if (!NEWABI_P(abfd)
7604 && (sym->st_shndx == SHN_ABS)
7605 && (strcmp (*namep, "_gp_disp") == 0))
7606 {
7607 *namep = NULL;
7608 return TRUE;
7609 }
7610
b49e97c9
TS
7611 switch (sym->st_shndx)
7612 {
7613 case SHN_COMMON:
7614 /* Common symbols less than the GP size are automatically
7615 treated as SHN_MIPS_SCOMMON symbols. */
7616 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7617 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7618 || IRIX_COMPAT (abfd) == ict_irix6)
7619 break;
7620 /* Fall through. */
7621 case SHN_MIPS_SCOMMON:
7622 *secp = bfd_make_section_old_way (abfd, ".scommon");
7623 (*secp)->flags |= SEC_IS_COMMON;
7624 *valp = sym->st_size;
7625 break;
7626
7627 case SHN_MIPS_TEXT:
7628 /* This section is used in a shared object. */
698600e4 7629 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7630 {
7631 asymbol *elf_text_symbol;
7632 asection *elf_text_section;
7633 bfd_size_type amt = sizeof (asection);
7634
7635 elf_text_section = bfd_zalloc (abfd, amt);
7636 if (elf_text_section == NULL)
b34976b6 7637 return FALSE;
b49e97c9
TS
7638
7639 amt = sizeof (asymbol);
7640 elf_text_symbol = bfd_zalloc (abfd, amt);
7641 if (elf_text_symbol == NULL)
b34976b6 7642 return FALSE;
b49e97c9
TS
7643
7644 /* Initialize the section. */
7645
698600e4
AM
7646 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7647 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7648
7649 elf_text_section->symbol = elf_text_symbol;
698600e4 7650 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7651
7652 elf_text_section->name = ".text";
7653 elf_text_section->flags = SEC_NO_FLAGS;
7654 elf_text_section->output_section = NULL;
7655 elf_text_section->owner = abfd;
7656 elf_text_symbol->name = ".text";
7657 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7658 elf_text_symbol->section = elf_text_section;
7659 }
7660 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7661 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7662 so I took it out. */
698600e4 7663 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7664 break;
7665
7666 case SHN_MIPS_ACOMMON:
7667 /* Fall through. XXX Can we treat this as allocated data? */
7668 case SHN_MIPS_DATA:
7669 /* This section is used in a shared object. */
698600e4 7670 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7671 {
7672 asymbol *elf_data_symbol;
7673 asection *elf_data_section;
7674 bfd_size_type amt = sizeof (asection);
7675
7676 elf_data_section = bfd_zalloc (abfd, amt);
7677 if (elf_data_section == NULL)
b34976b6 7678 return FALSE;
b49e97c9
TS
7679
7680 amt = sizeof (asymbol);
7681 elf_data_symbol = bfd_zalloc (abfd, amt);
7682 if (elf_data_symbol == NULL)
b34976b6 7683 return FALSE;
b49e97c9
TS
7684
7685 /* Initialize the section. */
7686
698600e4
AM
7687 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7688 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7689
7690 elf_data_section->symbol = elf_data_symbol;
698600e4 7691 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7692
7693 elf_data_section->name = ".data";
7694 elf_data_section->flags = SEC_NO_FLAGS;
7695 elf_data_section->output_section = NULL;
7696 elf_data_section->owner = abfd;
7697 elf_data_symbol->name = ".data";
7698 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7699 elf_data_symbol->section = elf_data_section;
7700 }
7701 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7702 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7703 so I took it out. */
698600e4 7704 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7705 break;
7706
7707 case SHN_MIPS_SUNDEFINED:
7708 *secp = bfd_und_section_ptr;
7709 break;
7710 }
7711
7712 if (SGI_COMPAT (abfd)
0e1862bb 7713 && ! bfd_link_pic (info)
f13a99db 7714 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7715 && strcmp (*namep, "__rld_obj_head") == 0)
7716 {
7717 struct elf_link_hash_entry *h;
14a793b2 7718 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7719
7720 /* Mark __rld_obj_head as dynamic. */
14a793b2 7721 bh = NULL;
b49e97c9 7722 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7723 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7724 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7725 return FALSE;
14a793b2
AM
7726
7727 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7728 h->non_elf = 0;
7729 h->def_regular = 1;
b49e97c9
TS
7730 h->type = STT_OBJECT;
7731
c152c796 7732 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7733 return FALSE;
b49e97c9 7734
b34976b6 7735 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7736 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7737 }
7738
7739 /* If this is a mips16 text symbol, add 1 to the value to make it
7740 odd. This will cause something like .word SYM to come up with
7741 the right value when it is loaded into the PC. */
df58fc94 7742 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7743 ++*valp;
7744
b34976b6 7745 return TRUE;
b49e97c9
TS
7746}
7747
7748/* This hook function is called before the linker writes out a global
7749 symbol. We mark symbols as small common if appropriate. This is
7750 also where we undo the increment of the value for a mips16 symbol. */
7751
6e0b88f1 7752int
9719ad41
RS
7753_bfd_mips_elf_link_output_symbol_hook
7754 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7755 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7756 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7757{
7758 /* If we see a common symbol, which implies a relocatable link, then
7759 if a symbol was small common in an input file, mark it as small
7760 common in the output file. */
7761 if (sym->st_shndx == SHN_COMMON
7762 && strcmp (input_sec->name, ".scommon") == 0)
7763 sym->st_shndx = SHN_MIPS_SCOMMON;
7764
df58fc94 7765 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7766 sym->st_value &= ~1;
b49e97c9 7767
6e0b88f1 7768 return 1;
b49e97c9
TS
7769}
7770\f
7771/* Functions for the dynamic linker. */
7772
7773/* Create dynamic sections when linking against a dynamic object. */
7774
b34976b6 7775bfd_boolean
9719ad41 7776_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7777{
7778 struct elf_link_hash_entry *h;
14a793b2 7779 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7780 flagword flags;
7781 register asection *s;
7782 const char * const *namep;
0a44bf69 7783 struct mips_elf_link_hash_table *htab;
b49e97c9 7784
0a44bf69 7785 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7786 BFD_ASSERT (htab != NULL);
7787
b49e97c9
TS
7788 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7789 | SEC_LINKER_CREATED | SEC_READONLY);
7790
0a44bf69
RS
7791 /* The psABI requires a read-only .dynamic section, but the VxWorks
7792 EABI doesn't. */
7793 if (!htab->is_vxworks)
b49e97c9 7794 {
3d4d4302 7795 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7796 if (s != NULL)
7797 {
7798 if (! bfd_set_section_flags (abfd, s, flags))
7799 return FALSE;
7800 }
b49e97c9
TS
7801 }
7802
7803 /* We need to create .got section. */
23cc69b6 7804 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7805 return FALSE;
7806
0a44bf69 7807 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7808 return FALSE;
b49e97c9 7809
b49e97c9 7810 /* Create .stub section. */
3d4d4302
AM
7811 s = bfd_make_section_anyway_with_flags (abfd,
7812 MIPS_ELF_STUB_SECTION_NAME (abfd),
7813 flags | SEC_CODE);
4e41d0d7
RS
7814 if (s == NULL
7815 || ! bfd_set_section_alignment (abfd, s,
7816 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7817 return FALSE;
7818 htab->sstubs = s;
b49e97c9 7819
e6aea42d 7820 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7821 && bfd_link_executable (info)
3d4d4302 7822 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7823 {
3d4d4302
AM
7824 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7825 flags &~ (flagword) SEC_READONLY);
b49e97c9 7826 if (s == NULL
b49e97c9
TS
7827 || ! bfd_set_section_alignment (abfd, s,
7828 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7829 return FALSE;
b49e97c9
TS
7830 }
7831
7832 /* On IRIX5, we adjust add some additional symbols and change the
7833 alignments of several sections. There is no ABI documentation
7834 indicating that this is necessary on IRIX6, nor any evidence that
7835 the linker takes such action. */
7836 if (IRIX_COMPAT (abfd) == ict_irix5)
7837 {
7838 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7839 {
14a793b2 7840 bh = NULL;
b49e97c9 7841 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7842 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7843 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7844 return FALSE;
14a793b2
AM
7845
7846 h = (struct elf_link_hash_entry *) bh;
12f09816 7847 h->mark = 1;
f5385ebf
AM
7848 h->non_elf = 0;
7849 h->def_regular = 1;
b49e97c9
TS
7850 h->type = STT_SECTION;
7851
c152c796 7852 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7853 return FALSE;
b49e97c9
TS
7854 }
7855
7856 /* We need to create a .compact_rel section. */
7857 if (SGI_COMPAT (abfd))
7858 {
7859 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7860 return FALSE;
b49e97c9
TS
7861 }
7862
44c410de 7863 /* Change alignments of some sections. */
3d4d4302 7864 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7865 if (s != NULL)
a253d456
NC
7866 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7867
3d4d4302 7868 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7869 if (s != NULL)
a253d456
NC
7870 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7871
3d4d4302 7872 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7873 if (s != NULL)
a253d456
NC
7874 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7875
3d4d4302 7876 /* ??? */
b49e97c9
TS
7877 s = bfd_get_section_by_name (abfd, ".reginfo");
7878 if (s != NULL)
a253d456
NC
7879 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7880
3d4d4302 7881 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7882 if (s != NULL)
a253d456 7883 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7884 }
7885
0e1862bb 7886 if (bfd_link_executable (info))
b49e97c9 7887 {
14a793b2
AM
7888 const char *name;
7889
7890 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7891 bh = NULL;
7892 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7893 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7894 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7895 return FALSE;
14a793b2
AM
7896
7897 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7898 h->non_elf = 0;
7899 h->def_regular = 1;
b49e97c9
TS
7900 h->type = STT_SECTION;
7901
c152c796 7902 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7903 return FALSE;
b49e97c9
TS
7904
7905 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7906 {
7907 /* __rld_map is a four byte word located in the .data section
7908 and is filled in by the rtld to contain a pointer to
7909 the _r_debug structure. Its symbol value will be set in
7910 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7911 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7912 BFD_ASSERT (s != NULL);
14a793b2 7913
0abfb97a
L
7914 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7915 bh = NULL;
7916 if (!(_bfd_generic_link_add_one_symbol
7917 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7918 get_elf_backend_data (abfd)->collect, &bh)))
7919 return FALSE;
b49e97c9 7920
0abfb97a
L
7921 h = (struct elf_link_hash_entry *) bh;
7922 h->non_elf = 0;
7923 h->def_regular = 1;
7924 h->type = STT_OBJECT;
7925
7926 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7927 return FALSE;
b4082c70 7928 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7929 }
7930 }
7931
861fb55a 7932 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7933 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7934 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7935 return FALSE;
7936
1bbce132
MR
7937 /* Do the usual VxWorks handling. */
7938 if (htab->is_vxworks
7939 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7940 return FALSE;
0a44bf69 7941
b34976b6 7942 return TRUE;
b49e97c9
TS
7943}
7944\f
c224138d
RS
7945/* Return true if relocation REL against section SEC is a REL rather than
7946 RELA relocation. RELOCS is the first relocation in the section and
7947 ABFD is the bfd that contains SEC. */
7948
7949static bfd_boolean
7950mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7951 const Elf_Internal_Rela *relocs,
7952 const Elf_Internal_Rela *rel)
7953{
7954 Elf_Internal_Shdr *rel_hdr;
7955 const struct elf_backend_data *bed;
7956
d4730f92
BS
7957 /* To determine which flavor of relocation this is, we depend on the
7958 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7959 rel_hdr = elf_section_data (sec)->rel.hdr;
7960 if (rel_hdr == NULL)
7961 return FALSE;
c224138d 7962 bed = get_elf_backend_data (abfd);
d4730f92
BS
7963 return ((size_t) (rel - relocs)
7964 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7965}
7966
7967/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7968 HOWTO is the relocation's howto and CONTENTS points to the contents
7969 of the section that REL is against. */
7970
7971static bfd_vma
7972mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7973 reloc_howto_type *howto, bfd_byte *contents)
7974{
7975 bfd_byte *location;
7976 unsigned int r_type;
7977 bfd_vma addend;
17c6c9d9 7978 bfd_vma bytes;
c224138d
RS
7979
7980 r_type = ELF_R_TYPE (abfd, rel->r_info);
7981 location = contents + rel->r_offset;
7982
7983 /* Get the addend, which is stored in the input file. */
df58fc94 7984 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 7985 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7986 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 7987
17c6c9d9
MR
7988 addend = bytes & howto->src_mask;
7989
7990 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7991 accordingly. */
7992 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7993 addend <<= 1;
7994
7995 return addend;
c224138d
RS
7996}
7997
7998/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7999 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8000 and update *ADDEND with the final addend. Return true on success
8001 or false if the LO16 could not be found. RELEND is the exclusive
8002 upper bound on the relocations for REL's section. */
8003
8004static bfd_boolean
8005mips_elf_add_lo16_rel_addend (bfd *abfd,
8006 const Elf_Internal_Rela *rel,
8007 const Elf_Internal_Rela *relend,
8008 bfd_byte *contents, bfd_vma *addend)
8009{
8010 unsigned int r_type, lo16_type;
8011 const Elf_Internal_Rela *lo16_relocation;
8012 reloc_howto_type *lo16_howto;
8013 bfd_vma l;
8014
8015 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 8016 if (mips16_reloc_p (r_type))
c224138d 8017 lo16_type = R_MIPS16_LO16;
df58fc94
RS
8018 else if (micromips_reloc_p (r_type))
8019 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
8020 else if (r_type == R_MIPS_PCHI16)
8021 lo16_type = R_MIPS_PCLO16;
c224138d
RS
8022 else
8023 lo16_type = R_MIPS_LO16;
8024
8025 /* The combined value is the sum of the HI16 addend, left-shifted by
8026 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8027 code does a `lui' of the HI16 value, and then an `addiu' of the
8028 LO16 value.)
8029
8030 Scan ahead to find a matching LO16 relocation.
8031
8032 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8033 be immediately following. However, for the IRIX6 ABI, the next
8034 relocation may be a composed relocation consisting of several
8035 relocations for the same address. In that case, the R_MIPS_LO16
8036 relocation may occur as one of these. We permit a similar
8037 extension in general, as that is useful for GCC.
8038
8039 In some cases GCC dead code elimination removes the LO16 but keeps
8040 the corresponding HI16. This is strictly speaking a violation of
8041 the ABI but not immediately harmful. */
8042 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8043 if (lo16_relocation == NULL)
8044 return FALSE;
8045
8046 /* Obtain the addend kept there. */
8047 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8048 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8049
8050 l <<= lo16_howto->rightshift;
8051 l = _bfd_mips_elf_sign_extend (l, 16);
8052
8053 *addend <<= 16;
8054 *addend += l;
8055 return TRUE;
8056}
8057
8058/* Try to read the contents of section SEC in bfd ABFD. Return true and
8059 store the contents in *CONTENTS on success. Assume that *CONTENTS
8060 already holds the contents if it is nonull on entry. */
8061
8062static bfd_boolean
8063mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8064{
8065 if (*contents)
8066 return TRUE;
8067
8068 /* Get cached copy if it exists. */
8069 if (elf_section_data (sec)->this_hdr.contents != NULL)
8070 {
8071 *contents = elf_section_data (sec)->this_hdr.contents;
8072 return TRUE;
8073 }
8074
8075 return bfd_malloc_and_get_section (abfd, sec, contents);
8076}
8077
1bbce132
MR
8078/* Make a new PLT record to keep internal data. */
8079
8080static struct plt_entry *
8081mips_elf_make_plt_record (bfd *abfd)
8082{
8083 struct plt_entry *entry;
8084
8085 entry = bfd_zalloc (abfd, sizeof (*entry));
8086 if (entry == NULL)
8087 return NULL;
8088
8089 entry->stub_offset = MINUS_ONE;
8090 entry->mips_offset = MINUS_ONE;
8091 entry->comp_offset = MINUS_ONE;
8092 entry->gotplt_index = MINUS_ONE;
8093 return entry;
8094}
8095
b49e97c9 8096/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8097 allocate space in the global offset table and record the need for
8098 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8099
b34976b6 8100bfd_boolean
9719ad41
RS
8101_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8102 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8103{
8104 const char *name;
8105 bfd *dynobj;
8106 Elf_Internal_Shdr *symtab_hdr;
8107 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8108 size_t extsymoff;
8109 const Elf_Internal_Rela *rel;
8110 const Elf_Internal_Rela *rel_end;
b49e97c9 8111 asection *sreloc;
9c5bfbb7 8112 const struct elf_backend_data *bed;
0a44bf69 8113 struct mips_elf_link_hash_table *htab;
c224138d
RS
8114 bfd_byte *contents;
8115 bfd_vma addend;
8116 reloc_howto_type *howto;
b49e97c9 8117
0e1862bb 8118 if (bfd_link_relocatable (info))
b34976b6 8119 return TRUE;
b49e97c9 8120
0a44bf69 8121 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8122 BFD_ASSERT (htab != NULL);
8123
b49e97c9
TS
8124 dynobj = elf_hash_table (info)->dynobj;
8125 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8126 sym_hashes = elf_sym_hashes (abfd);
8127 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8128
738e5348 8129 bed = get_elf_backend_data (abfd);
056bafd4 8130 rel_end = relocs + sec->reloc_count;
738e5348 8131
b49e97c9
TS
8132 /* Check for the mips16 stub sections. */
8133
8134 name = bfd_get_section_name (abfd, sec);
b9d58d71 8135 if (FN_STUB_P (name))
b49e97c9
TS
8136 {
8137 unsigned long r_symndx;
8138
8139 /* Look at the relocation information to figure out which symbol
07d6d2b8 8140 this is for. */
b49e97c9 8141
cb4437b8 8142 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8143 if (r_symndx == 0)
8144 {
4eca0228 8145 _bfd_error_handler
695344c0 8146 /* xgettext:c-format */
2c1c9679 8147 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8148 " stub section `%s'"),
8149 abfd, name);
8150 bfd_set_error (bfd_error_bad_value);
8151 return FALSE;
8152 }
b49e97c9
TS
8153
8154 if (r_symndx < extsymoff
8155 || sym_hashes[r_symndx - extsymoff] == NULL)
8156 {
8157 asection *o;
8158
8159 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8160 needed if there is some relocation in this BFD, other
8161 than a 16 bit function call, which refers to this symbol. */
b49e97c9
TS
8162 for (o = abfd->sections; o != NULL; o = o->next)
8163 {
8164 Elf_Internal_Rela *sec_relocs;
8165 const Elf_Internal_Rela *r, *rend;
8166
8167 /* We can ignore stub sections when looking for relocs. */
8168 if ((o->flags & SEC_RELOC) == 0
8169 || o->reloc_count == 0
738e5348 8170 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8171 continue;
8172
45d6a902 8173 sec_relocs
9719ad41 8174 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8175 info->keep_memory);
b49e97c9 8176 if (sec_relocs == NULL)
b34976b6 8177 return FALSE;
b49e97c9
TS
8178
8179 rend = sec_relocs + o->reloc_count;
8180 for (r = sec_relocs; r < rend; r++)
8181 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8182 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8183 break;
8184
6cdc0ccc 8185 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8186 free (sec_relocs);
8187
8188 if (r < rend)
8189 break;
8190 }
8191
8192 if (o == NULL)
8193 {
8194 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8195 not need it. Since this function is called before
8196 the linker maps input sections to output sections, we
8197 can easily discard it by setting the SEC_EXCLUDE
8198 flag. */
b49e97c9 8199 sec->flags |= SEC_EXCLUDE;
b34976b6 8200 return TRUE;
b49e97c9
TS
8201 }
8202
8203 /* Record this stub in an array of local symbol stubs for
07d6d2b8 8204 this BFD. */
698600e4 8205 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8206 {
8207 unsigned long symcount;
8208 asection **n;
8209 bfd_size_type amt;
8210
8211 if (elf_bad_symtab (abfd))
8212 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8213 else
8214 symcount = symtab_hdr->sh_info;
8215 amt = symcount * sizeof (asection *);
9719ad41 8216 n = bfd_zalloc (abfd, amt);
b49e97c9 8217 if (n == NULL)
b34976b6 8218 return FALSE;
698600e4 8219 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8220 }
8221
b9d58d71 8222 sec->flags |= SEC_KEEP;
698600e4 8223 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8224
8225 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8226 That flag is used to see whether we need to look through
8227 the global symbol table for stubs. We don't need to set
8228 it here, because we just have a local stub. */
b49e97c9
TS
8229 }
8230 else
8231 {
8232 struct mips_elf_link_hash_entry *h;
8233
8234 h = ((struct mips_elf_link_hash_entry *)
8235 sym_hashes[r_symndx - extsymoff]);
8236
973a3492
L
8237 while (h->root.root.type == bfd_link_hash_indirect
8238 || h->root.root.type == bfd_link_hash_warning)
8239 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8240
b49e97c9
TS
8241 /* H is the symbol this stub is for. */
8242
b9d58d71
TS
8243 /* If we already have an appropriate stub for this function, we
8244 don't need another one, so we can discard this one. Since
8245 this function is called before the linker maps input sections
8246 to output sections, we can easily discard it by setting the
8247 SEC_EXCLUDE flag. */
8248 if (h->fn_stub != NULL)
8249 {
8250 sec->flags |= SEC_EXCLUDE;
8251 return TRUE;
8252 }
8253
8254 sec->flags |= SEC_KEEP;
b49e97c9 8255 h->fn_stub = sec;
b34976b6 8256 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8257 }
8258 }
b9d58d71 8259 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8260 {
8261 unsigned long r_symndx;
8262 struct mips_elf_link_hash_entry *h;
8263 asection **loc;
8264
8265 /* Look at the relocation information to figure out which symbol
07d6d2b8 8266 this is for. */
b49e97c9 8267
cb4437b8 8268 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8269 if (r_symndx == 0)
8270 {
4eca0228 8271 _bfd_error_handler
695344c0 8272 /* xgettext:c-format */
2c1c9679 8273 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8274 " stub section `%s'"),
8275 abfd, name);
8276 bfd_set_error (bfd_error_bad_value);
8277 return FALSE;
8278 }
b49e97c9
TS
8279
8280 if (r_symndx < extsymoff
8281 || sym_hashes[r_symndx - extsymoff] == NULL)
8282 {
b9d58d71 8283 asection *o;
b49e97c9 8284
b9d58d71 8285 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8286 needed if there is some relocation (R_MIPS16_26) in this BFD
8287 that refers to this symbol. */
b9d58d71
TS
8288 for (o = abfd->sections; o != NULL; o = o->next)
8289 {
8290 Elf_Internal_Rela *sec_relocs;
8291 const Elf_Internal_Rela *r, *rend;
8292
8293 /* We can ignore stub sections when looking for relocs. */
8294 if ((o->flags & SEC_RELOC) == 0
8295 || o->reloc_count == 0
738e5348 8296 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8297 continue;
8298
8299 sec_relocs
8300 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8301 info->keep_memory);
8302 if (sec_relocs == NULL)
8303 return FALSE;
8304
8305 rend = sec_relocs + o->reloc_count;
8306 for (r = sec_relocs; r < rend; r++)
8307 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8308 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8309 break;
8310
8311 if (elf_section_data (o)->relocs != sec_relocs)
8312 free (sec_relocs);
8313
8314 if (r < rend)
8315 break;
8316 }
8317
8318 if (o == NULL)
8319 {
8320 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8321 not need it. Since this function is called before
8322 the linker maps input sections to output sections, we
8323 can easily discard it by setting the SEC_EXCLUDE
8324 flag. */
b9d58d71
TS
8325 sec->flags |= SEC_EXCLUDE;
8326 return TRUE;
8327 }
8328
8329 /* Record this stub in an array of local symbol call_stubs for
07d6d2b8 8330 this BFD. */
698600e4 8331 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8332 {
8333 unsigned long symcount;
8334 asection **n;
8335 bfd_size_type amt;
8336
8337 if (elf_bad_symtab (abfd))
8338 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8339 else
8340 symcount = symtab_hdr->sh_info;
8341 amt = symcount * sizeof (asection *);
8342 n = bfd_zalloc (abfd, amt);
8343 if (n == NULL)
8344 return FALSE;
698600e4 8345 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8346 }
b49e97c9 8347
b9d58d71 8348 sec->flags |= SEC_KEEP;
698600e4 8349 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8350
b9d58d71 8351 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8352 That flag is used to see whether we need to look through
8353 the global symbol table for stubs. We don't need to set
8354 it here, because we just have a local stub. */
b9d58d71 8355 }
b49e97c9 8356 else
b49e97c9 8357 {
b9d58d71
TS
8358 h = ((struct mips_elf_link_hash_entry *)
8359 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8360
b9d58d71 8361 /* H is the symbol this stub is for. */
68ffbac6 8362
b9d58d71
TS
8363 if (CALL_FP_STUB_P (name))
8364 loc = &h->call_fp_stub;
8365 else
8366 loc = &h->call_stub;
68ffbac6 8367
b9d58d71
TS
8368 /* If we already have an appropriate stub for this function, we
8369 don't need another one, so we can discard this one. Since
8370 this function is called before the linker maps input sections
8371 to output sections, we can easily discard it by setting the
8372 SEC_EXCLUDE flag. */
8373 if (*loc != NULL)
8374 {
8375 sec->flags |= SEC_EXCLUDE;
8376 return TRUE;
8377 }
b49e97c9 8378
b9d58d71
TS
8379 sec->flags |= SEC_KEEP;
8380 *loc = sec;
8381 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8382 }
b49e97c9
TS
8383 }
8384
b49e97c9 8385 sreloc = NULL;
c224138d 8386 contents = NULL;
b49e97c9
TS
8387 for (rel = relocs; rel < rel_end; ++rel)
8388 {
8389 unsigned long r_symndx;
8390 unsigned int r_type;
8391 struct elf_link_hash_entry *h;
861fb55a 8392 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8393 bfd_boolean call_reloc_p;
8394 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8395
8396 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8397 r_type = ELF_R_TYPE (abfd, rel->r_info);
8398
8399 if (r_symndx < extsymoff)
8400 h = NULL;
8401 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8402 {
4eca0228 8403 _bfd_error_handler
695344c0 8404 /* xgettext:c-format */
2c1c9679 8405 (_("%pB: malformed reloc detected for section %s"),
d003868e 8406 abfd, name);
b49e97c9 8407 bfd_set_error (bfd_error_bad_value);
b34976b6 8408 return FALSE;
b49e97c9
TS
8409 }
8410 else
8411 {
8412 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8413 if (h != NULL)
8414 {
8415 while (h->root.type == bfd_link_hash_indirect
8416 || h->root.type == bfd_link_hash_warning)
8417 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831 8418 }
861fb55a 8419 }
b49e97c9 8420
861fb55a
DJ
8421 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8422 relocation into a dynamic one. */
8423 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8424
8425 /* Set CALL_RELOC_P to true if the relocation is for a call,
8426 and if pointer equality therefore doesn't matter. */
8427 call_reloc_p = FALSE;
8428
8429 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8430 into account when deciding how to define the symbol.
8431 Relocations in nonallocatable sections such as .pdr and
8432 .debug* should have no effect. */
8433 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8434
861fb55a
DJ
8435 switch (r_type)
8436 {
861fb55a
DJ
8437 case R_MIPS_CALL16:
8438 case R_MIPS_CALL_HI16:
8439 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8440 case R_MIPS16_CALL16:
8441 case R_MICROMIPS_CALL16:
8442 case R_MICROMIPS_CALL_HI16:
8443 case R_MICROMIPS_CALL_LO16:
8444 call_reloc_p = TRUE;
8445 /* Fall through. */
8446
8447 case R_MIPS_GOT16:
861fb55a
DJ
8448 case R_MIPS_GOT_HI16:
8449 case R_MIPS_GOT_LO16:
8450 case R_MIPS_GOT_PAGE:
8451 case R_MIPS_GOT_OFST:
8452 case R_MIPS_GOT_DISP:
8453 case R_MIPS_TLS_GOTTPREL:
8454 case R_MIPS_TLS_GD:
8455 case R_MIPS_TLS_LDM:
d0f13682 8456 case R_MIPS16_GOT16:
d0f13682
CLT
8457 case R_MIPS16_TLS_GOTTPREL:
8458 case R_MIPS16_TLS_GD:
8459 case R_MIPS16_TLS_LDM:
df58fc94 8460 case R_MICROMIPS_GOT16:
df58fc94
RS
8461 case R_MICROMIPS_GOT_HI16:
8462 case R_MICROMIPS_GOT_LO16:
8463 case R_MICROMIPS_GOT_PAGE:
8464 case R_MICROMIPS_GOT_OFST:
8465 case R_MICROMIPS_GOT_DISP:
8466 case R_MICROMIPS_TLS_GOTTPREL:
8467 case R_MICROMIPS_TLS_GD:
8468 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8469 if (dynobj == NULL)
8470 elf_hash_table (info)->dynobj = dynobj = abfd;
8471 if (!mips_elf_create_got_section (dynobj, info))
8472 return FALSE;
0e1862bb 8473 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8474 {
4eca0228 8475 _bfd_error_handler
695344c0 8476 /* xgettext:c-format */
2dcf00ce
AM
8477 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8478 abfd, (uint64_t) rel->r_offset);
861fb55a
DJ
8479 bfd_set_error (bfd_error_bad_value);
8480 return FALSE;
b49e97c9 8481 }
c5d6fa44 8482 can_make_dynamic_p = TRUE;
861fb55a 8483 break;
b49e97c9 8484
c5d6fa44 8485 case R_MIPS_NONE:
99da6b5f 8486 case R_MIPS_JALR:
df58fc94 8487 case R_MICROMIPS_JALR:
c5d6fa44
RS
8488 /* These relocations have empty fields and are purely there to
8489 provide link information. The symbol value doesn't matter. */
8490 constrain_symbol_p = FALSE;
8491 break;
8492
8493 case R_MIPS_GPREL16:
8494 case R_MIPS_GPREL32:
8495 case R_MIPS16_GPREL:
8496 case R_MICROMIPS_GPREL16:
8497 /* GP-relative relocations always resolve to a definition in a
8498 regular input file, ignoring the one-definition rule. This is
8499 important for the GP setup sequence in NewABI code, which
8500 always resolves to a local function even if other relocations
8501 against the symbol wouldn't. */
8502 constrain_symbol_p = FALSE;
99da6b5f
AN
8503 break;
8504
861fb55a
DJ
8505 case R_MIPS_32:
8506 case R_MIPS_REL32:
8507 case R_MIPS_64:
8508 /* In VxWorks executables, references to external symbols
8509 must be handled using copy relocs or PLT entries; it is not
8510 possible to convert this relocation into a dynamic one.
8511
8512 For executables that use PLTs and copy-relocs, we have a
8513 choice between converting the relocation into a dynamic
8514 one or using copy relocations or PLT entries. It is
8515 usually better to do the former, unless the relocation is
8516 against a read-only section. */
0e1862bb 8517 if ((bfd_link_pic (info)
861fb55a
DJ
8518 || (h != NULL
8519 && !htab->is_vxworks
8520 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8521 && !(!info->nocopyreloc
8522 && !PIC_OBJECT_P (abfd)
8523 && MIPS_ELF_READONLY_SECTION (sec))))
8524 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8525 {
861fb55a 8526 can_make_dynamic_p = TRUE;
b49e97c9
TS
8527 if (dynobj == NULL)
8528 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8529 }
c5d6fa44 8530 break;
b49e97c9 8531
861fb55a
DJ
8532 case R_MIPS_26:
8533 case R_MIPS_PC16:
7361da2c
AB
8534 case R_MIPS_PC21_S2:
8535 case R_MIPS_PC26_S2:
861fb55a 8536 case R_MIPS16_26:
c9775dde 8537 case R_MIPS16_PC16_S1:
df58fc94
RS
8538 case R_MICROMIPS_26_S1:
8539 case R_MICROMIPS_PC7_S1:
8540 case R_MICROMIPS_PC10_S1:
8541 case R_MICROMIPS_PC16_S1:
8542 case R_MICROMIPS_PC23_S2:
c5d6fa44 8543 call_reloc_p = TRUE;
861fb55a 8544 break;
b49e97c9
TS
8545 }
8546
0a44bf69
RS
8547 if (h)
8548 {
c5d6fa44
RS
8549 if (constrain_symbol_p)
8550 {
8551 if (!can_make_dynamic_p)
8552 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8553
8554 if (!call_reloc_p)
8555 h->pointer_equality_needed = 1;
8556
8557 /* We must not create a stub for a symbol that has
8558 relocations related to taking the function's address.
8559 This doesn't apply to VxWorks, where CALL relocs refer
8560 to a .got.plt entry instead of a normal .got entry. */
8561 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8562 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8563 }
8564
0a44bf69
RS
8565 /* Relocations against the special VxWorks __GOTT_BASE__ and
8566 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8567 room for them in .rela.dyn. */
8568 if (is_gott_symbol (info, h))
8569 {
8570 if (sreloc == NULL)
8571 {
8572 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8573 if (sreloc == NULL)
8574 return FALSE;
8575 }
8576 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8577 if (MIPS_ELF_READONLY_SECTION (sec))
8578 /* We tell the dynamic linker that there are
8579 relocations against the text segment. */
8580 info->flags |= DF_TEXTREL;
0a44bf69
RS
8581 }
8582 }
df58fc94
RS
8583 else if (call_lo16_reloc_p (r_type)
8584 || got_lo16_reloc_p (r_type)
8585 || got_disp_reloc_p (r_type)
738e5348 8586 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8587 {
8588 /* We may need a local GOT entry for this relocation. We
8589 don't count R_MIPS_GOT_PAGE because we can estimate the
8590 maximum number of pages needed by looking at the size of
738e5348
RS
8591 the segment. Similar comments apply to R_MIPS*_GOT16 and
8592 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8593 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8594 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8595 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8596 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8597 rel->r_addend, info, r_type))
f4416af6 8598 return FALSE;
b49e97c9
TS
8599 }
8600
8f0c309a
CLT
8601 if (h != NULL
8602 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8603 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8604 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8605
b49e97c9
TS
8606 switch (r_type)
8607 {
8608 case R_MIPS_CALL16:
738e5348 8609 case R_MIPS16_CALL16:
df58fc94 8610 case R_MICROMIPS_CALL16:
b49e97c9
TS
8611 if (h == NULL)
8612 {
4eca0228 8613 _bfd_error_handler
695344c0 8614 /* xgettext:c-format */
2dcf00ce
AM
8615 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8616 abfd, (uint64_t) rel->r_offset);
b49e97c9 8617 bfd_set_error (bfd_error_bad_value);
b34976b6 8618 return FALSE;
b49e97c9
TS
8619 }
8620 /* Fall through. */
8621
8622 case R_MIPS_CALL_HI16:
8623 case R_MIPS_CALL_LO16:
df58fc94
RS
8624 case R_MICROMIPS_CALL_HI16:
8625 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8626 if (h != NULL)
8627 {
6ccf4795
RS
8628 /* Make sure there is room in the regular GOT to hold the
8629 function's address. We may eliminate it in favour of
8630 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8631 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8632 r_type))
b34976b6 8633 return FALSE;
b49e97c9
TS
8634
8635 /* We need a stub, not a plt entry for the undefined
8636 function. But we record it as if it needs plt. See
c152c796 8637 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8638 h->needs_plt = 1;
b49e97c9
TS
8639 h->type = STT_FUNC;
8640 }
8641 break;
8642
0fdc1bf1 8643 case R_MIPS_GOT_PAGE:
df58fc94 8644 case R_MICROMIPS_GOT_PAGE:
738e5348 8645 case R_MIPS16_GOT16:
b49e97c9
TS
8646 case R_MIPS_GOT16:
8647 case R_MIPS_GOT_HI16:
8648 case R_MIPS_GOT_LO16:
df58fc94
RS
8649 case R_MICROMIPS_GOT16:
8650 case R_MICROMIPS_GOT_HI16:
8651 case R_MICROMIPS_GOT_LO16:
8652 if (!h || got_page_reloc_p (r_type))
c224138d 8653 {
3a3b6725
DJ
8654 /* This relocation needs (or may need, if h != NULL) a
8655 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8656 know for sure until we know whether the symbol is
8657 preemptible. */
c224138d
RS
8658 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8659 {
8660 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8661 return FALSE;
8662 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8663 addend = mips_elf_read_rel_addend (abfd, rel,
8664 howto, contents);
9684f078 8665 if (got16_reloc_p (r_type))
c224138d
RS
8666 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8667 contents, &addend);
8668 else
8669 addend <<= howto->rightshift;
8670 }
8671 else
8672 addend = rel->r_addend;
13db6b44
RS
8673 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8674 h, addend))
c224138d 8675 return FALSE;
13db6b44
RS
8676
8677 if (h)
8678 {
8679 struct mips_elf_link_hash_entry *hmips =
8680 (struct mips_elf_link_hash_entry *) h;
8681
8682 /* This symbol is definitely not overridable. */
8683 if (hmips->root.def_regular
0e1862bb 8684 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8685 && ! hmips->root.forced_local))
8686 h = NULL;
8687 }
c224138d 8688 }
13db6b44
RS
8689 /* If this is a global, overridable symbol, GOT_PAGE will
8690 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8691 /* Fall through. */
8692
b49e97c9 8693 case R_MIPS_GOT_DISP:
df58fc94 8694 case R_MICROMIPS_GOT_DISP:
6ccf4795 8695 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8696 FALSE, r_type))
b34976b6 8697 return FALSE;
b49e97c9
TS
8698 break;
8699
0f20cc35 8700 case R_MIPS_TLS_GOTTPREL:
d0f13682 8701 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8702 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8703 if (bfd_link_pic (info))
0f20cc35
DJ
8704 info->flags |= DF_STATIC_TLS;
8705 /* Fall through */
8706
8707 case R_MIPS_TLS_LDM:
d0f13682 8708 case R_MIPS16_TLS_LDM:
df58fc94
RS
8709 case R_MICROMIPS_TLS_LDM:
8710 if (tls_ldm_reloc_p (r_type))
0f20cc35 8711 {
cf35638d 8712 r_symndx = STN_UNDEF;
0f20cc35
DJ
8713 h = NULL;
8714 }
8715 /* Fall through */
8716
8717 case R_MIPS_TLS_GD:
d0f13682 8718 case R_MIPS16_TLS_GD:
df58fc94 8719 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8720 /* This symbol requires a global offset table entry, or two
8721 for TLS GD relocations. */
e641e783
RS
8722 if (h != NULL)
8723 {
8724 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8725 FALSE, r_type))
8726 return FALSE;
8727 }
8728 else
8729 {
8730 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8731 rel->r_addend,
8732 info, r_type))
8733 return FALSE;
8734 }
0f20cc35
DJ
8735 break;
8736
b49e97c9
TS
8737 case R_MIPS_32:
8738 case R_MIPS_REL32:
8739 case R_MIPS_64:
0a44bf69
RS
8740 /* In VxWorks executables, references to external symbols
8741 are handled using copy relocs or PLT stubs, so there's
8742 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8743 if (can_make_dynamic_p)
b49e97c9
TS
8744 {
8745 if (sreloc == NULL)
8746 {
0a44bf69 8747 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8748 if (sreloc == NULL)
f4416af6 8749 return FALSE;
b49e97c9 8750 }
0e1862bb 8751 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8752 {
8753 /* When creating a shared object, we must copy these
8754 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8755 relocs. Make room for this reloc in .rel(a).dyn. */
8756 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8757 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8758 /* We tell the dynamic linker that there are
8759 relocations against the text segment. */
8760 info->flags |= DF_TEXTREL;
8761 }
b49e97c9
TS
8762 else
8763 {
8764 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8765
9a59ad6b
DJ
8766 /* For a shared object, we must copy this relocation
8767 unless the symbol turns out to be undefined and
8768 weak with non-default visibility, in which case
8769 it will be left as zero.
8770
8771 We could elide R_MIPS_REL32 for locally binding symbols
8772 in shared libraries, but do not yet do so.
8773
8774 For an executable, we only need to copy this
8775 reloc if the symbol is defined in a dynamic
8776 object. */
b49e97c9
TS
8777 hmips = (struct mips_elf_link_hash_entry *) h;
8778 ++hmips->possibly_dynamic_relocs;
943284cc 8779 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8780 /* We need it to tell the dynamic linker if there
8781 are relocations against the text segment. */
8782 hmips->readonly_reloc = TRUE;
b49e97c9 8783 }
b49e97c9
TS
8784 }
8785
8786 if (SGI_COMPAT (abfd))
8787 mips_elf_hash_table (info)->compact_rel_size +=
8788 sizeof (Elf32_External_crinfo);
8789 break;
8790
8791 case R_MIPS_26:
8792 case R_MIPS_GPREL16:
8793 case R_MIPS_LITERAL:
8794 case R_MIPS_GPREL32:
df58fc94
RS
8795 case R_MICROMIPS_26_S1:
8796 case R_MICROMIPS_GPREL16:
8797 case R_MICROMIPS_LITERAL:
8798 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8799 if (SGI_COMPAT (abfd))
8800 mips_elf_hash_table (info)->compact_rel_size +=
8801 sizeof (Elf32_External_crinfo);
8802 break;
8803
8804 /* This relocation describes the C++ object vtable hierarchy.
8805 Reconstruct it for later use during GC. */
8806 case R_MIPS_GNU_VTINHERIT:
c152c796 8807 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8808 return FALSE;
b49e97c9
TS
8809 break;
8810
8811 /* This relocation describes which C++ vtable entries are actually
8812 used. Record for later use during GC. */
8813 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8814 BFD_ASSERT (h != NULL);
8815 if (h != NULL
8816 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8817 return FALSE;
b49e97c9
TS
8818 break;
8819
8820 default:
8821 break;
8822 }
8823
1bbce132 8824 /* Record the need for a PLT entry. At this point we don't know
07d6d2b8
AM
8825 yet if we are going to create a PLT in the first place, but
8826 we only record whether the relocation requires a standard MIPS
8827 or a compressed code entry anyway. If we don't make a PLT after
8828 all, then we'll just ignore these arrangements. Likewise if
8829 a PLT entry is not created because the symbol is satisfied
8830 locally. */
1bbce132 8831 if (h != NULL
54806ffa
MR
8832 && (branch_reloc_p (r_type)
8833 || mips16_branch_reloc_p (r_type)
8834 || micromips_branch_reloc_p (r_type))
1bbce132
MR
8835 && !SYMBOL_CALLS_LOCAL (info, h))
8836 {
8837 if (h->plt.plist == NULL)
8838 h->plt.plist = mips_elf_make_plt_record (abfd);
8839 if (h->plt.plist == NULL)
8840 return FALSE;
8841
54806ffa 8842 if (branch_reloc_p (r_type))
1bbce132
MR
8843 h->plt.plist->need_mips = TRUE;
8844 else
8845 h->plt.plist->need_comp = TRUE;
8846 }
8847
738e5348
RS
8848 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8849 if there is one. We only need to handle global symbols here;
8850 we decide whether to keep or delete stubs for local symbols
8851 when processing the stub's relocations. */
b49e97c9 8852 if (h != NULL
738e5348
RS
8853 && !mips16_call_reloc_p (r_type)
8854 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8855 {
8856 struct mips_elf_link_hash_entry *mh;
8857
8858 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8859 mh->need_fn_stub = TRUE;
b49e97c9 8860 }
861fb55a
DJ
8861
8862 /* Refuse some position-dependent relocations when creating a
8863 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8864 not PIC, but we can create dynamic relocations and the result
8865 will be fine. Also do not refuse R_MIPS_LO16, which can be
8866 combined with R_MIPS_GOT16. */
0e1862bb 8867 if (bfd_link_pic (info))
861fb55a
DJ
8868 {
8869 switch (r_type)
8870 {
8871 case R_MIPS16_HI16:
8872 case R_MIPS_HI16:
8873 case R_MIPS_HIGHER:
8874 case R_MIPS_HIGHEST:
df58fc94
RS
8875 case R_MICROMIPS_HI16:
8876 case R_MICROMIPS_HIGHER:
8877 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8878 /* Don't refuse a high part relocation if it's against
8879 no symbol (e.g. part of a compound relocation). */
cf35638d 8880 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8881 break;
8882
8883 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8884 and has a special meaning. */
8885 if (!NEWABI_P (abfd) && h != NULL
8886 && strcmp (h->root.root.string, "_gp_disp") == 0)
8887 break;
8888
0fc1eb3c
RS
8889 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8890 if (is_gott_symbol (info, h))
8891 break;
8892
861fb55a
DJ
8893 /* FALLTHROUGH */
8894
8895 case R_MIPS16_26:
8896 case R_MIPS_26:
df58fc94 8897 case R_MICROMIPS_26_S1:
861fb55a 8898 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
4eca0228 8899 _bfd_error_handler
695344c0 8900 /* xgettext:c-format */
871b3ab2 8901 (_("%pB: relocation %s against `%s' can not be used"
63a5468a 8902 " when making a shared object; recompile with -fPIC"),
861fb55a
DJ
8903 abfd, howto->name,
8904 (h) ? h->root.root.string : "a local symbol");
8905 bfd_set_error (bfd_error_bad_value);
8906 return FALSE;
8907 default:
8908 break;
8909 }
8910 }
b49e97c9
TS
8911 }
8912
b34976b6 8913 return TRUE;
b49e97c9
TS
8914}
8915\f
9a59ad6b
DJ
8916/* Allocate space for global sym dynamic relocs. */
8917
8918static bfd_boolean
8919allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8920{
8921 struct bfd_link_info *info = inf;
8922 bfd *dynobj;
8923 struct mips_elf_link_hash_entry *hmips;
8924 struct mips_elf_link_hash_table *htab;
8925
8926 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8927 BFD_ASSERT (htab != NULL);
8928
9a59ad6b
DJ
8929 dynobj = elf_hash_table (info)->dynobj;
8930 hmips = (struct mips_elf_link_hash_entry *) h;
8931
8932 /* VxWorks executables are handled elsewhere; we only need to
8933 allocate relocations in shared objects. */
0e1862bb 8934 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
8935 return TRUE;
8936
7686d77d
AM
8937 /* Ignore indirect symbols. All relocations against such symbols
8938 will be redirected to the target symbol. */
8939 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8940 return TRUE;
8941
9a59ad6b
DJ
8942 /* If this symbol is defined in a dynamic object, or we are creating
8943 a shared library, we will need to copy any R_MIPS_32 or
8944 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 8945 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
8946 && hmips->possibly_dynamic_relocs != 0
8947 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8948 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 8949 || bfd_link_pic (info)))
9a59ad6b
DJ
8950 {
8951 bfd_boolean do_copy = TRUE;
8952
8953 if (h->root.type == bfd_link_hash_undefweak)
8954 {
262e07d0
MR
8955 /* Do not copy relocations for undefined weak symbols that
8956 we are not going to export. */
8957 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9a59ad6b
DJ
8958 do_copy = FALSE;
8959
8960 /* Make sure undefined weak symbols are output as a dynamic
8961 symbol in PIEs. */
8962 else if (h->dynindx == -1 && !h->forced_local)
8963 {
8964 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8965 return FALSE;
8966 }
8967 }
8968
8969 if (do_copy)
8970 {
aff469fa 8971 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8972 the SVR4 psABI requires it to have a dynamic symbol table
8973 index greater that DT_MIPS_GOTSYM if there are dynamic
8974 relocations against it.
8975
8976 VxWorks does not enforce the same mapping between the GOT
8977 and the symbol table, so the same requirement does not
8978 apply there. */
6ccf4795
RS
8979 if (!htab->is_vxworks)
8980 {
8981 if (hmips->global_got_area > GGA_RELOC_ONLY)
8982 hmips->global_got_area = GGA_RELOC_ONLY;
8983 hmips->got_only_for_calls = FALSE;
8984 }
aff469fa 8985
9a59ad6b
DJ
8986 mips_elf_allocate_dynamic_relocations
8987 (dynobj, info, hmips->possibly_dynamic_relocs);
8988 if (hmips->readonly_reloc)
8989 /* We tell the dynamic linker that there are relocations
8990 against the text segment. */
8991 info->flags |= DF_TEXTREL;
8992 }
8993 }
8994
8995 return TRUE;
8996}
8997
b49e97c9
TS
8998/* Adjust a symbol defined by a dynamic object and referenced by a
8999 regular object. The current definition is in some section of the
9000 dynamic object, but we're not including those sections. We have to
9001 change the definition to something the rest of the link can
9002 understand. */
9003
b34976b6 9004bfd_boolean
9719ad41
RS
9005_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9006 struct elf_link_hash_entry *h)
b49e97c9
TS
9007{
9008 bfd *dynobj;
9009 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9010 struct mips_elf_link_hash_table *htab;
5474d94f 9011 asection *s, *srel;
b49e97c9 9012
5108fc1b 9013 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9014 BFD_ASSERT (htab != NULL);
9015
b49e97c9 9016 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9017 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9018
9019 /* Make sure we know what is going on here. */
9020 BFD_ASSERT (dynobj != NULL
f5385ebf 9021 && (h->needs_plt
60d67dc8 9022 || h->is_weakalias
f5385ebf
AM
9023 || (h->def_dynamic
9024 && h->ref_regular
9025 && !h->def_regular)));
b49e97c9 9026
b49e97c9 9027 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9028
861fb55a
DJ
9029 /* If there are call relocations against an externally-defined symbol,
9030 see whether we can create a MIPS lazy-binding stub for it. We can
9031 only do this if all references to the function are through call
9032 relocations, and in that case, the traditional lazy-binding stubs
9033 are much more efficient than PLT entries.
9034
9035 Traditional stubs are only available on SVR4 psABI-based systems;
9036 VxWorks always uses PLTs instead. */
9037 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9038 {
9039 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9040 return TRUE;
b49e97c9
TS
9041
9042 /* If this symbol is not defined in a regular file, then set
9043 the symbol to the stub location. This is required to make
9044 function pointers compare as equal between the normal
9045 executable and the shared library. */
4b8377e7
MR
9046 if (!h->def_regular
9047 && !bfd_is_abs_section (htab->sstubs->output_section))
b49e97c9 9048 {
33bb52fb
RS
9049 hmips->needs_lazy_stub = TRUE;
9050 htab->lazy_stub_count++;
b34976b6 9051 return TRUE;
b49e97c9
TS
9052 }
9053 }
861fb55a
DJ
9054 /* As above, VxWorks requires PLT entries for externally-defined
9055 functions that are only accessed through call relocations.
b49e97c9 9056
861fb55a
DJ
9057 Both VxWorks and non-VxWorks targets also need PLT entries if there
9058 are static-only relocations against an externally-defined function.
9059 This can technically occur for shared libraries if there are
9060 branches to the symbol, although it is unlikely that this will be
9061 used in practice due to the short ranges involved. It can occur
9062 for any relative or absolute relocation in executables; in that
9063 case, the PLT entry becomes the function's canonical address. */
9064 else if (((h->needs_plt && !hmips->no_fn_stub)
9065 || (h->type == STT_FUNC && hmips->has_static_relocs))
9066 && htab->use_plts_and_copy_relocs
9067 && !SYMBOL_CALLS_LOCAL (info, h)
9068 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9069 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9070 {
1bbce132
MR
9071 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9072 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9073
9074 /* If this is the first symbol to need a PLT entry, then make some
07d6d2b8
AM
9075 basic setup. Also work out PLT entry sizes. We'll need them
9076 for PLT offset calculations. */
1bbce132 9077 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9078 {
ce558b89 9079 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9080 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9081
861fb55a
DJ
9082 /* If we're using the PLT additions to the psABI, each PLT
9083 entry is 16 bytes and the PLT0 entry is 32 bytes.
9084 Encourage better cache usage by aligning. We do this
9085 lazily to avoid pessimizing traditional objects. */
9086 if (!htab->is_vxworks
ce558b89 9087 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
861fb55a 9088 return FALSE;
0a44bf69 9089
861fb55a
DJ
9090 /* Make sure that .got.plt is word-aligned. We do this lazily
9091 for the same reason as above. */
ce558b89 9092 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
861fb55a
DJ
9093 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9094 return FALSE;
0a44bf69 9095
861fb55a
DJ
9096 /* On non-VxWorks targets, the first two entries in .got.plt
9097 are reserved. */
9098 if (!htab->is_vxworks)
1bbce132
MR
9099 htab->plt_got_index
9100 += (get_elf_backend_data (dynobj)->got_header_size
9101 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9102
861fb55a
DJ
9103 /* On VxWorks, also allocate room for the header's
9104 .rela.plt.unloaded entries. */
0e1862bb 9105 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9106 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9107
9108 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9109 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9110 htab->plt_mips_entry_size
9111 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9112 else if (htab->is_vxworks)
9113 htab->plt_mips_entry_size
9114 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9115 else if (newabi_p)
9116 htab->plt_mips_entry_size
9117 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9118 else if (!micromips_p)
1bbce132
MR
9119 {
9120 htab->plt_mips_entry_size
9121 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9122 htab->plt_comp_entry_size
833794fc
MR
9123 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9124 }
9125 else if (htab->insn32)
9126 {
9127 htab->plt_mips_entry_size
9128 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9129 htab->plt_comp_entry_size
9130 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9131 }
9132 else
9133 {
9134 htab->plt_mips_entry_size
9135 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9136 htab->plt_comp_entry_size
833794fc 9137 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9138 }
0a44bf69
RS
9139 }
9140
1bbce132
MR
9141 if (h->plt.plist == NULL)
9142 h->plt.plist = mips_elf_make_plt_record (dynobj);
9143 if (h->plt.plist == NULL)
9144 return FALSE;
9145
9146 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
07d6d2b8 9147 n32 or n64, so always use a standard entry there.
1bbce132 9148
07d6d2b8
AM
9149 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9150 all MIPS16 calls will go via that stub, and there is no benefit
9151 to having a MIPS16 entry. And in the case of call_stub a
9152 standard entry actually has to be used as the stub ends with a J
9153 instruction. */
1bbce132
MR
9154 if (newabi_p
9155 || htab->is_vxworks
9156 || hmips->call_stub
9157 || hmips->call_fp_stub)
9158 {
9159 h->plt.plist->need_mips = TRUE;
9160 h->plt.plist->need_comp = FALSE;
9161 }
9162
9163 /* Otherwise, if there are no direct calls to the function, we
07d6d2b8
AM
9164 have a free choice of whether to use standard or compressed
9165 entries. Prefer microMIPS entries if the object is known to
9166 contain microMIPS code, so that it becomes possible to create
9167 pure microMIPS binaries. Prefer standard entries otherwise,
9168 because MIPS16 ones are no smaller and are usually slower. */
1bbce132
MR
9169 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9170 {
9171 if (micromips_p)
9172 h->plt.plist->need_comp = TRUE;
9173 else
9174 h->plt.plist->need_mips = TRUE;
9175 }
9176
9177 if (h->plt.plist->need_mips)
9178 {
9179 h->plt.plist->mips_offset = htab->plt_mips_offset;
9180 htab->plt_mips_offset += htab->plt_mips_entry_size;
9181 }
9182 if (h->plt.plist->need_comp)
9183 {
9184 h->plt.plist->comp_offset = htab->plt_comp_offset;
9185 htab->plt_comp_offset += htab->plt_comp_entry_size;
9186 }
9187
9188 /* Reserve the corresponding .got.plt entry now too. */
9189 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9190
9191 /* If the output file has no definition of the symbol, set the
861fb55a 9192 symbol's value to the address of the stub. */
0e1862bb 9193 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9194 hmips->use_plt_entry = TRUE;
0a44bf69 9195
1bbce132 9196 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
ce558b89
AM
9197 htab->root.srelplt->size += (htab->is_vxworks
9198 ? MIPS_ELF_RELA_SIZE (dynobj)
9199 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9200
9201 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9202 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9203 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9204
861fb55a
DJ
9205 /* All relocations against this symbol that could have been made
9206 dynamic will now refer to the PLT entry instead. */
9207 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9208
0a44bf69
RS
9209 return TRUE;
9210 }
9211
9212 /* If this is a weak symbol, and there is a real definition, the
9213 processor independent code will have arranged for us to see the
9214 real definition first, and we can just use the same value. */
60d67dc8 9215 if (h->is_weakalias)
0a44bf69 9216 {
60d67dc8
AM
9217 struct elf_link_hash_entry *def = weakdef (h);
9218 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9219 h->root.u.def.section = def->root.u.def.section;
9220 h->root.u.def.value = def->root.u.def.value;
0a44bf69
RS
9221 return TRUE;
9222 }
9223
861fb55a
DJ
9224 /* Otherwise, there is nothing further to do for symbols defined
9225 in regular objects. */
9226 if (h->def_regular)
0a44bf69
RS
9227 return TRUE;
9228
861fb55a
DJ
9229 /* There's also nothing more to do if we'll convert all relocations
9230 against this symbol into dynamic relocations. */
9231 if (!hmips->has_static_relocs)
9232 return TRUE;
9233
9234 /* We're now relying on copy relocations. Complain if we have
9235 some that we can't convert. */
0e1862bb 9236 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9237 {
4eca0228
AM
9238 _bfd_error_handler (_("non-dynamic relocations refer to "
9239 "dynamic symbol %s"),
9240 h->root.root.string);
861fb55a
DJ
9241 bfd_set_error (bfd_error_bad_value);
9242 return FALSE;
9243 }
9244
0a44bf69
RS
9245 /* We must allocate the symbol in our .dynbss section, which will
9246 become part of the .bss section of the executable. There will be
9247 an entry for this symbol in the .dynsym section. The dynamic
9248 object will contain position independent code, so all references
9249 from the dynamic object to this symbol will go through the global
9250 offset table. The dynamic linker will use the .dynsym entry to
9251 determine the address it must put in the global offset table, so
9252 both the dynamic object and the regular object will refer to the
9253 same memory location for the variable. */
9254
5474d94f
AM
9255 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9256 {
9257 s = htab->root.sdynrelro;
9258 srel = htab->root.sreldynrelro;
9259 }
9260 else
9261 {
9262 s = htab->root.sdynbss;
9263 srel = htab->root.srelbss;
9264 }
0a44bf69
RS
9265 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9266 {
861fb55a 9267 if (htab->is_vxworks)
5474d94f 9268 srel->size += sizeof (Elf32_External_Rela);
861fb55a
DJ
9269 else
9270 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9271 h->needs_copy = 1;
9272 }
9273
861fb55a
DJ
9274 /* All relocations against this symbol that could have been made
9275 dynamic will now refer to the local copy instead. */
9276 hmips->possibly_dynamic_relocs = 0;
9277
5474d94f 9278 return _bfd_elf_adjust_dynamic_copy (info, h, s);
0a44bf69 9279}
b49e97c9
TS
9280\f
9281/* This function is called after all the input files have been read,
9282 and the input sections have been assigned to output sections. We
9283 check for any mips16 stub sections that we can discard. */
9284
b34976b6 9285bfd_boolean
9719ad41
RS
9286_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9287 struct bfd_link_info *info)
b49e97c9 9288{
351cdf24 9289 asection *sect;
0a44bf69 9290 struct mips_elf_link_hash_table *htab;
861fb55a 9291 struct mips_htab_traverse_info hti;
0a44bf69
RS
9292
9293 htab = mips_elf_hash_table (info);
4dfe6ac6 9294 BFD_ASSERT (htab != NULL);
f4416af6 9295
b49e97c9 9296 /* The .reginfo section has a fixed size. */
351cdf24
MF
9297 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9298 if (sect != NULL)
6798f8bf
MR
9299 {
9300 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9301 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9302 }
351cdf24
MF
9303
9304 /* The .MIPS.abiflags section has a fixed size. */
9305 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9306 if (sect != NULL)
6798f8bf
MR
9307 {
9308 bfd_set_section_size (output_bfd, sect,
9309 sizeof (Elf_External_ABIFlags_v0));
9310 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9311 }
b49e97c9 9312
861fb55a
DJ
9313 hti.info = info;
9314 hti.output_bfd = output_bfd;
9315 hti.error = FALSE;
9316 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9317 mips_elf_check_symbols, &hti);
9318 if (hti.error)
9319 return FALSE;
f4416af6 9320
33bb52fb
RS
9321 return TRUE;
9322}
9323
9324/* If the link uses a GOT, lay it out and work out its size. */
9325
9326static bfd_boolean
9327mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9328{
9329 bfd *dynobj;
9330 asection *s;
9331 struct mips_got_info *g;
33bb52fb
RS
9332 bfd_size_type loadable_size = 0;
9333 bfd_size_type page_gotno;
d7206569 9334 bfd *ibfd;
ab361d49 9335 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9336 struct mips_elf_link_hash_table *htab;
9337
9338 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9339 BFD_ASSERT (htab != NULL);
9340
ce558b89 9341 s = htab->root.sgot;
f4416af6 9342 if (s == NULL)
b34976b6 9343 return TRUE;
b49e97c9 9344
33bb52fb 9345 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9346 g = htab->got_info;
9347
861fb55a
DJ
9348 /* Allocate room for the reserved entries. VxWorks always reserves
9349 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9350 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9351 if (htab->is_vxworks)
9352 htab->reserved_gotno = 3;
9353 else
9354 htab->reserved_gotno = 2;
9355 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9356 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9357
6c42ddb9
RS
9358 /* Decide which symbols need to go in the global part of the GOT and
9359 count the number of reloc-only GOT symbols. */
020d7251 9360 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9361
13db6b44
RS
9362 if (!mips_elf_resolve_final_got_entries (info, g))
9363 return FALSE;
9364
33bb52fb
RS
9365 /* Calculate the total loadable size of the output. That
9366 will give us the maximum number of GOT_PAGE entries
9367 required. */
c72f2fb2 9368 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9369 {
9370 asection *subsection;
5108fc1b 9371
d7206569 9372 for (subsection = ibfd->sections;
33bb52fb
RS
9373 subsection;
9374 subsection = subsection->next)
9375 {
9376 if ((subsection->flags & SEC_ALLOC) == 0)
9377 continue;
9378 loadable_size += ((subsection->size + 0xf)
9379 &~ (bfd_size_type) 0xf);
9380 }
9381 }
f4416af6 9382
0a44bf69 9383 if (htab->is_vxworks)
738e5348 9384 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9385 relocations against local symbols evaluate to "G", and the EABI does
9386 not include R_MIPS_GOT_PAGE. */
c224138d 9387 page_gotno = 0;
0a44bf69
RS
9388 else
9389 /* Assume there are two loadable segments consisting of contiguous
9390 sections. Is 5 enough? */
c224138d
RS
9391 page_gotno = (loadable_size >> 16) + 5;
9392
13db6b44 9393 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9394 conservative. */
9395 if (page_gotno > g->page_gotno)
9396 page_gotno = g->page_gotno;
f4416af6 9397
c224138d 9398 g->local_gotno += page_gotno;
cb22ccf4 9399 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9400
ab361d49
RS
9401 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9402 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9403 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9404
0a44bf69
RS
9405 /* VxWorks does not support multiple GOTs. It initializes $gp to
9406 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9407 dynamic loader. */
57093f5e 9408 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9409 {
a8028dd0 9410 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9411 return FALSE;
9412 }
9413 else
9414 {
d7206569
RS
9415 /* Record that all bfds use G. This also has the effect of freeing
9416 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9417 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9418 if (mips_elf_bfd_got (ibfd, FALSE))
9419 mips_elf_replace_bfd_got (ibfd, g);
9420 mips_elf_replace_bfd_got (output_bfd, g);
9421
33bb52fb 9422 /* Set up TLS entries. */
0f20cc35 9423 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9424 tga.info = info;
9425 tga.g = g;
9426 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9427 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9428 if (!tga.g)
9429 return FALSE;
1fd20d70
RS
9430 BFD_ASSERT (g->tls_assigned_gotno
9431 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9432
57093f5e 9433 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9434 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9435 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9436
33bb52fb 9437 /* Allocate room for the TLS relocations. */
ab361d49
RS
9438 if (g->relocs)
9439 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9440 }
b49e97c9 9441
b34976b6 9442 return TRUE;
b49e97c9
TS
9443}
9444
33bb52fb
RS
9445/* Estimate the size of the .MIPS.stubs section. */
9446
9447static void
9448mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9449{
9450 struct mips_elf_link_hash_table *htab;
9451 bfd_size_type dynsymcount;
9452
9453 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9454 BFD_ASSERT (htab != NULL);
9455
33bb52fb
RS
9456 if (htab->lazy_stub_count == 0)
9457 return;
9458
9459 /* IRIX rld assumes that a function stub isn't at the end of the .text
9460 section, so add a dummy entry to the end. */
9461 htab->lazy_stub_count++;
9462
9463 /* Get a worst-case estimate of the number of dynamic symbols needed.
9464 At this point, dynsymcount does not account for section symbols
9465 and count_section_dynsyms may overestimate the number that will
9466 be needed. */
9467 dynsymcount = (elf_hash_table (info)->dynsymcount
9468 + count_section_dynsyms (output_bfd, info));
9469
1bbce132
MR
9470 /* Determine the size of one stub entry. There's no disadvantage
9471 from using microMIPS code here, so for the sake of pure-microMIPS
9472 binaries we prefer it whenever there's any microMIPS code in
9473 output produced at all. This has a benefit of stubs being
833794fc
MR
9474 shorter by 4 bytes each too, unless in the insn32 mode. */
9475 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9476 htab->function_stub_size = (dynsymcount > 0x10000
9477 ? MIPS_FUNCTION_STUB_BIG_SIZE
9478 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9479 else if (htab->insn32)
9480 htab->function_stub_size = (dynsymcount > 0x10000
9481 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9482 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9483 else
9484 htab->function_stub_size = (dynsymcount > 0x10000
9485 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9486 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9487
9488 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9489}
9490
1bbce132
MR
9491/* A mips_elf_link_hash_traverse callback for which DATA points to a
9492 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9493 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9494
9495static bfd_boolean
af924177 9496mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9497{
1bbce132 9498 struct mips_htab_traverse_info *hti = data;
33bb52fb 9499 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9500 struct bfd_link_info *info;
9501 bfd *output_bfd;
9502
9503 info = hti->info;
9504 output_bfd = hti->output_bfd;
9505 htab = mips_elf_hash_table (info);
9506 BFD_ASSERT (htab != NULL);
33bb52fb 9507
33bb52fb
RS
9508 if (h->needs_lazy_stub)
9509 {
1bbce132
MR
9510 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9511 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9512 bfd_vma isa_bit = micromips_p;
9513
9514 BFD_ASSERT (htab->root.dynobj != NULL);
9515 if (h->root.plt.plist == NULL)
9516 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9517 if (h->root.plt.plist == NULL)
9518 {
9519 hti->error = TRUE;
9520 return FALSE;
9521 }
33bb52fb 9522 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9523 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9524 h->root.plt.plist->stub_offset = htab->sstubs->size;
9525 h->root.other = other;
33bb52fb
RS
9526 htab->sstubs->size += htab->function_stub_size;
9527 }
9528 return TRUE;
9529}
9530
9531/* Allocate offsets in the stubs section to each symbol that needs one.
9532 Set the final size of the .MIPS.stub section. */
9533
1bbce132 9534static bfd_boolean
33bb52fb
RS
9535mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9536{
1bbce132
MR
9537 bfd *output_bfd = info->output_bfd;
9538 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9539 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9540 bfd_vma isa_bit = micromips_p;
33bb52fb 9541 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9542 struct mips_htab_traverse_info hti;
9543 struct elf_link_hash_entry *h;
9544 bfd *dynobj;
33bb52fb
RS
9545
9546 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9547 BFD_ASSERT (htab != NULL);
9548
33bb52fb 9549 if (htab->lazy_stub_count == 0)
1bbce132 9550 return TRUE;
33bb52fb
RS
9551
9552 htab->sstubs->size = 0;
1bbce132
MR
9553 hti.info = info;
9554 hti.output_bfd = output_bfd;
9555 hti.error = FALSE;
9556 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9557 if (hti.error)
9558 return FALSE;
33bb52fb
RS
9559 htab->sstubs->size += htab->function_stub_size;
9560 BFD_ASSERT (htab->sstubs->size
9561 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9562
9563 dynobj = elf_hash_table (info)->dynobj;
9564 BFD_ASSERT (dynobj != NULL);
9565 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9566 if (h == NULL)
9567 return FALSE;
9568 h->root.u.def.value = isa_bit;
9569 h->other = other;
9570 h->type = STT_FUNC;
9571
9572 return TRUE;
9573}
9574
9575/* A mips_elf_link_hash_traverse callback for which DATA points to a
9576 bfd_link_info. If H uses the address of a PLT entry as the value
9577 of the symbol, then set the entry in the symbol table now. Prefer
9578 a standard MIPS PLT entry. */
9579
9580static bfd_boolean
9581mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9582{
9583 struct bfd_link_info *info = data;
9584 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9585 struct mips_elf_link_hash_table *htab;
9586 unsigned int other;
9587 bfd_vma isa_bit;
9588 bfd_vma val;
9589
9590 htab = mips_elf_hash_table (info);
9591 BFD_ASSERT (htab != NULL);
9592
9593 if (h->use_plt_entry)
9594 {
9595 BFD_ASSERT (h->root.plt.plist != NULL);
9596 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9597 || h->root.plt.plist->comp_offset != MINUS_ONE);
9598
9599 val = htab->plt_header_size;
9600 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9601 {
9602 isa_bit = 0;
9603 val += h->root.plt.plist->mips_offset;
9604 other = 0;
9605 }
9606 else
9607 {
9608 isa_bit = 1;
9609 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9610 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9611 }
9612 val += isa_bit;
9613 /* For VxWorks, point at the PLT load stub rather than the lazy
07d6d2b8
AM
9614 resolution stub; this stub will become the canonical function
9615 address. */
1bbce132
MR
9616 if (htab->is_vxworks)
9617 val += 8;
9618
ce558b89 9619 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9620 h->root.root.u.def.value = val;
9621 h->root.other = other;
9622 }
9623
9624 return TRUE;
33bb52fb
RS
9625}
9626
b49e97c9
TS
9627/* Set the sizes of the dynamic sections. */
9628
b34976b6 9629bfd_boolean
9719ad41
RS
9630_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9631 struct bfd_link_info *info)
b49e97c9
TS
9632{
9633 bfd *dynobj;
861fb55a 9634 asection *s, *sreldyn;
b34976b6 9635 bfd_boolean reltext;
0a44bf69 9636 struct mips_elf_link_hash_table *htab;
b49e97c9 9637
0a44bf69 9638 htab = mips_elf_hash_table (info);
4dfe6ac6 9639 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9640 dynobj = elf_hash_table (info)->dynobj;
9641 BFD_ASSERT (dynobj != NULL);
9642
9643 if (elf_hash_table (info)->dynamic_sections_created)
9644 {
9645 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9646 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9647 {
3d4d4302 9648 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9649 BFD_ASSERT (s != NULL);
eea6121a 9650 s->size
b49e97c9
TS
9651 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9652 s->contents
9653 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9654 }
861fb55a 9655
1bbce132 9656 /* Figure out the size of the PLT header if we know that we
07d6d2b8
AM
9657 are using it. For the sake of cache alignment always use
9658 a standard header whenever any standard entries are present
9659 even if microMIPS entries are present as well. This also
9660 lets the microMIPS header rely on the value of $v0 only set
9661 by microMIPS entries, for a small size reduction.
1bbce132 9662
07d6d2b8
AM
9663 Set symbol table entry values for symbols that use the
9664 address of their PLT entry now that we can calculate it.
1bbce132 9665
07d6d2b8
AM
9666 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9667 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9668 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9669 {
1bbce132
MR
9670 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9671 && !htab->plt_mips_offset);
9672 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9673 bfd_vma isa_bit = micromips_p;
861fb55a 9674 struct elf_link_hash_entry *h;
1bbce132 9675 bfd_vma size;
861fb55a
DJ
9676
9677 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9678 BFD_ASSERT (htab->root.sgotplt->size == 0);
9679 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9680
0e1862bb 9681 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9682 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9683 else if (htab->is_vxworks)
9684 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9685 else if (ABI_64_P (output_bfd))
9686 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9687 else if (ABI_N32_P (output_bfd))
9688 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9689 else if (!micromips_p)
9690 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9691 else if (htab->insn32)
9692 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9693 else
9694 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9695
1bbce132
MR
9696 htab->plt_header_is_comp = micromips_p;
9697 htab->plt_header_size = size;
ce558b89
AM
9698 htab->root.splt->size = (size
9699 + htab->plt_mips_offset
9700 + htab->plt_comp_offset);
9701 htab->root.sgotplt->size = (htab->plt_got_index
9702 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9703
9704 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9705
9706 if (htab->root.hplt == NULL)
9707 {
ce558b89 9708 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9709 "_PROCEDURE_LINKAGE_TABLE_");
9710 htab->root.hplt = h;
9711 if (h == NULL)
9712 return FALSE;
9713 }
9714
9715 h = htab->root.hplt;
9716 h->root.u.def.value = isa_bit;
9717 h->other = other;
861fb55a
DJ
9718 h->type = STT_FUNC;
9719 }
9720 }
4e41d0d7 9721
9a59ad6b 9722 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9723 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9724
33bb52fb
RS
9725 mips_elf_estimate_stub_size (output_bfd, info);
9726
9727 if (!mips_elf_lay_out_got (output_bfd, info))
9728 return FALSE;
9729
9730 mips_elf_lay_out_lazy_stubs (info);
9731
b49e97c9
TS
9732 /* The check_relocs and adjust_dynamic_symbol entry points have
9733 determined the sizes of the various dynamic sections. Allocate
9734 memory for them. */
b34976b6 9735 reltext = FALSE;
b49e97c9
TS
9736 for (s = dynobj->sections; s != NULL; s = s->next)
9737 {
9738 const char *name;
b49e97c9
TS
9739
9740 /* It's OK to base decisions on the section name, because none
9741 of the dynobj section names depend upon the input files. */
9742 name = bfd_get_section_name (dynobj, s);
9743
9744 if ((s->flags & SEC_LINKER_CREATED) == 0)
9745 continue;
9746
0112cd26 9747 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9748 {
c456f082 9749 if (s->size != 0)
b49e97c9
TS
9750 {
9751 const char *outname;
9752 asection *target;
9753
9754 /* If this relocation section applies to a read only
07d6d2b8
AM
9755 section, then we probably need a DT_TEXTREL entry.
9756 If the relocation section is .rel(a).dyn, we always
9757 assert a DT_TEXTREL entry rather than testing whether
9758 there exists a relocation to a read only section or
9759 not. */
b49e97c9
TS
9760 outname = bfd_get_section_name (output_bfd,
9761 s->output_section);
9762 target = bfd_get_section_by_name (output_bfd, outname + 4);
9763 if ((target != NULL
9764 && (target->flags & SEC_READONLY) != 0
9765 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9766 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9767 reltext = TRUE;
b49e97c9
TS
9768
9769 /* We use the reloc_count field as a counter if we need
9770 to copy relocs into the output file. */
0a44bf69 9771 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9772 s->reloc_count = 0;
f4416af6
AO
9773
9774 /* If combreloc is enabled, elf_link_sort_relocs() will
9775 sort relocations, but in a different way than we do,
9776 and before we're done creating relocations. Also, it
9777 will move them around between input sections'
9778 relocation's contents, so our sorting would be
9779 broken, so don't let it run. */
9780 info->combreloc = 0;
b49e97c9
TS
9781 }
9782 }
0e1862bb 9783 else if (bfd_link_executable (info)
b49e97c9 9784 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9785 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9786 {
5108fc1b 9787 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9788 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9789 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9790 }
9791 else if (SGI_COMPAT (output_bfd)
0112cd26 9792 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9793 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 9794 else if (s == htab->root.splt)
861fb55a
DJ
9795 {
9796 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9797 room for an extra nop to fill the delay slot. This is
9798 for CPUs without load interlocking. */
9799 if (! LOAD_INTERLOCKS_P (output_bfd)
9800 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9801 s->size += 4;
9802 }
0112cd26 9803 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
9804 && s != htab->root.sgot
9805 && s != htab->root.sgotplt
861fb55a 9806 && s != htab->sstubs
5474d94f
AM
9807 && s != htab->root.sdynbss
9808 && s != htab->root.sdynrelro)
b49e97c9
TS
9809 {
9810 /* It's not one of our sections, so don't allocate space. */
9811 continue;
9812 }
9813
c456f082 9814 if (s->size == 0)
b49e97c9 9815 {
8423293d 9816 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9817 continue;
9818 }
9819
c456f082
AM
9820 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9821 continue;
9822
b49e97c9 9823 /* Allocate memory for the section contents. */
eea6121a 9824 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9825 if (s->contents == NULL)
b49e97c9
TS
9826 {
9827 bfd_set_error (bfd_error_no_memory);
b34976b6 9828 return FALSE;
b49e97c9
TS
9829 }
9830 }
9831
9832 if (elf_hash_table (info)->dynamic_sections_created)
9833 {
9834 /* Add some entries to the .dynamic section. We fill in the
9835 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9836 must add the entries now so that we get the correct size for
5750dcec 9837 the .dynamic section. */
af5978fb
RS
9838
9839 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9840 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9841 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9842 may only look at the first one they see. */
0e1862bb 9843 if (!bfd_link_pic (info)
af5978fb
RS
9844 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9845 return FALSE;
b49e97c9 9846
0e1862bb 9847 if (bfd_link_executable (info)
a5499fa4
MF
9848 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9849 return FALSE;
9850
5750dcec
DJ
9851 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9852 used by the debugger. */
0e1862bb 9853 if (bfd_link_executable (info)
5750dcec
DJ
9854 && !SGI_COMPAT (output_bfd)
9855 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9856 return FALSE;
9857
0a44bf69 9858 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9859 info->flags |= DF_TEXTREL;
9860
9861 if ((info->flags & DF_TEXTREL) != 0)
9862 {
9863 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9864 return FALSE;
943284cc
DJ
9865
9866 /* Clear the DF_TEXTREL flag. It will be set again if we
9867 write out an actual text relocation; we may not, because
9868 at this point we do not know whether e.g. any .eh_frame
9869 absolute relocations have been converted to PC-relative. */
9870 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9871 }
9872
9873 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9874 return FALSE;
b49e97c9 9875
861fb55a 9876 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9877 if (htab->is_vxworks)
b49e97c9 9878 {
0a44bf69
RS
9879 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9880 use any of the DT_MIPS_* tags. */
861fb55a 9881 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9882 {
9883 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9884 return FALSE;
b49e97c9 9885
0a44bf69
RS
9886 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9887 return FALSE;
b49e97c9 9888
0a44bf69
RS
9889 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9890 return FALSE;
9891 }
b49e97c9 9892 }
0a44bf69
RS
9893 else
9894 {
861fb55a 9895 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9896 {
9897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9898 return FALSE;
b49e97c9 9899
0a44bf69
RS
9900 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9901 return FALSE;
b49e97c9 9902
0a44bf69
RS
9903 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9904 return FALSE;
9905 }
b49e97c9 9906
0a44bf69
RS
9907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9908 return FALSE;
b49e97c9 9909
0a44bf69
RS
9910 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9911 return FALSE;
b49e97c9 9912
0a44bf69
RS
9913 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9914 return FALSE;
b49e97c9 9915
0a44bf69
RS
9916 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9917 return FALSE;
b49e97c9 9918
0a44bf69
RS
9919 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9920 return FALSE;
b49e97c9 9921
0a44bf69
RS
9922 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9923 return FALSE;
b49e97c9 9924
0a44bf69
RS
9925 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9926 return FALSE;
9927
9928 if (IRIX_COMPAT (dynobj) == ict_irix5
9929 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9930 return FALSE;
9931
9932 if (IRIX_COMPAT (dynobj) == ict_irix6
9933 && (bfd_get_section_by_name
af0edeb8 9934 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9935 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9936 return FALSE;
9937 }
ce558b89 9938 if (htab->root.splt->size > 0)
861fb55a
DJ
9939 {
9940 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9941 return FALSE;
9942
9943 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9944 return FALSE;
9945
9946 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9947 return FALSE;
9948
9949 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9950 return FALSE;
9951 }
7a2b07ff
NS
9952 if (htab->is_vxworks
9953 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9954 return FALSE;
b49e97c9
TS
9955 }
9956
b34976b6 9957 return TRUE;
b49e97c9
TS
9958}
9959\f
81d43bff
RS
9960/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9961 Adjust its R_ADDEND field so that it is correct for the output file.
9962 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9963 and sections respectively; both use symbol indexes. */
9964
9965static void
9966mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9967 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9968 asection **local_sections, Elf_Internal_Rela *rel)
9969{
9970 unsigned int r_type, r_symndx;
9971 Elf_Internal_Sym *sym;
9972 asection *sec;
9973
020d7251 9974 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9975 {
9976 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9977 if (gprel16_reloc_p (r_type)
81d43bff 9978 || r_type == R_MIPS_GPREL32
df58fc94 9979 || literal_reloc_p (r_type))
81d43bff
RS
9980 {
9981 rel->r_addend += _bfd_get_gp_value (input_bfd);
9982 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9983 }
9984
9985 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9986 sym = local_syms + r_symndx;
9987
9988 /* Adjust REL's addend to account for section merging. */
0e1862bb 9989 if (!bfd_link_relocatable (info))
81d43bff
RS
9990 {
9991 sec = local_sections[r_symndx];
9992 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9993 }
9994
9995 /* This would normally be done by the rela_normal code in elflink.c. */
9996 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9997 rel->r_addend += local_sections[r_symndx]->output_offset;
9998 }
9999}
10000
545fd46b
MR
10001/* Handle relocations against symbols from removed linkonce sections,
10002 or sections discarded by a linker script. We use this wrapper around
10003 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10004 on 64-bit ELF targets. In this case for any relocation handled, which
10005 always be the first in a triplet, the remaining two have to be processed
10006 together with the first, even if they are R_MIPS_NONE. It is the symbol
10007 index referred by the first reloc that applies to all the three and the
10008 remaining two never refer to an object symbol. And it is the final
10009 relocation (the last non-null one) that determines the output field of
10010 the whole relocation so retrieve the corresponding howto structure for
10011 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10012
10013 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10014 and therefore requires to be pasted in a loop. It also defines a block
10015 and does not protect any of its arguments, hence the extra brackets. */
10016
10017static void
10018mips_reloc_against_discarded_section (bfd *output_bfd,
10019 struct bfd_link_info *info,
10020 bfd *input_bfd, asection *input_section,
10021 Elf_Internal_Rela **rel,
10022 const Elf_Internal_Rela **relend,
10023 bfd_boolean rel_reloc,
10024 reloc_howto_type *howto,
10025 bfd_byte *contents)
10026{
10027 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10028 int count = bed->s->int_rels_per_ext_rel;
10029 unsigned int r_type;
10030 int i;
10031
10032 for (i = count - 1; i > 0; i--)
10033 {
10034 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10035 if (r_type != R_MIPS_NONE)
10036 {
10037 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10038 break;
10039 }
10040 }
10041 do
10042 {
10043 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10044 (*rel), count, (*relend),
10045 howto, i, contents);
10046 }
10047 while (0);
10048}
10049
b49e97c9
TS
10050/* Relocate a MIPS ELF section. */
10051
b34976b6 10052bfd_boolean
9719ad41
RS
10053_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10054 bfd *input_bfd, asection *input_section,
10055 bfd_byte *contents, Elf_Internal_Rela *relocs,
10056 Elf_Internal_Sym *local_syms,
10057 asection **local_sections)
b49e97c9
TS
10058{
10059 Elf_Internal_Rela *rel;
10060 const Elf_Internal_Rela *relend;
10061 bfd_vma addend = 0;
b34976b6 10062 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9 10063
056bafd4 10064 relend = relocs + input_section->reloc_count;
b49e97c9
TS
10065 for (rel = relocs; rel < relend; ++rel)
10066 {
10067 const char *name;
c9adbffe 10068 bfd_vma value = 0;
b49e97c9 10069 reloc_howto_type *howto;
ad3d9127 10070 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10071 /* TRUE if the relocation is a RELA relocation, rather than a
07d6d2b8 10072 REL relocation. */
b34976b6 10073 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10074 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10075 const char *msg;
ab96bf03
AM
10076 unsigned long r_symndx;
10077 asection *sec;
749b8d9d
L
10078 Elf_Internal_Shdr *symtab_hdr;
10079 struct elf_link_hash_entry *h;
d4730f92 10080 bfd_boolean rel_reloc;
b49e97c9 10081
d4730f92
BS
10082 rel_reloc = (NEWABI_P (input_bfd)
10083 && mips_elf_rel_relocation_p (input_bfd, input_section,
10084 relocs, rel));
b49e97c9 10085 /* Find the relocation howto for this relocation. */
d4730f92 10086 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10087
10088 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10089 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10090 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10091 {
10092 sec = local_sections[r_symndx];
10093 h = NULL;
10094 }
ab96bf03
AM
10095 else
10096 {
ab96bf03 10097 unsigned long extsymoff;
ab96bf03 10098
ab96bf03
AM
10099 extsymoff = 0;
10100 if (!elf_bad_symtab (input_bfd))
10101 extsymoff = symtab_hdr->sh_info;
10102 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10103 while (h->root.type == bfd_link_hash_indirect
10104 || h->root.type == bfd_link_hash_warning)
10105 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10106
10107 sec = NULL;
10108 if (h->root.type == bfd_link_hash_defined
10109 || h->root.type == bfd_link_hash_defweak)
10110 sec = h->root.u.def.section;
10111 }
10112
dbaa2011 10113 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10114 {
10115 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10116 input_section, &rel, &relend,
10117 rel_reloc, howto, contents);
10118 continue;
10119 }
ab96bf03 10120
4a14403c 10121 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10122 {
10123 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10124 64-bit code, but make sure all their addresses are in the
10125 lowermost or uppermost 32-bit section of the 64-bit address
10126 space. Thus, when they use an R_MIPS_64 they mean what is
10127 usually meant by R_MIPS_32, with the exception that the
10128 stored value is sign-extended to 64 bits. */
b34976b6 10129 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10130
10131 /* On big-endian systems, we need to lie about the position
10132 of the reloc. */
10133 if (bfd_big_endian (input_bfd))
10134 rel->r_offset += 4;
10135 }
b49e97c9
TS
10136
10137 if (!use_saved_addend_p)
10138 {
b49e97c9
TS
10139 /* If these relocations were originally of the REL variety,
10140 we must pull the addend out of the field that will be
10141 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10142 RELA relocation. */
10143 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10144 relocs, rel))
b49e97c9 10145 {
b34976b6 10146 rela_relocation_p = FALSE;
c224138d
RS
10147 addend = mips_elf_read_rel_addend (input_bfd, rel,
10148 howto, contents);
738e5348
RS
10149 if (hi16_reloc_p (r_type)
10150 || (got16_reloc_p (r_type)
b49e97c9 10151 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10152 local_sections)))
b49e97c9 10153 {
c224138d
RS
10154 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10155 contents, &addend))
749b8d9d 10156 {
749b8d9d
L
10157 if (h)
10158 name = h->root.root.string;
10159 else
10160 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10161 local_syms + r_symndx,
10162 sec);
4eca0228 10163 _bfd_error_handler
695344c0 10164 /* xgettext:c-format */
2c1c9679 10165 (_("%pB: can't find matching LO16 reloc against `%s'"
2dcf00ce 10166 " for %s at %#" PRIx64 " in section `%pA'"),
c08bb8dd 10167 input_bfd, name,
2dcf00ce 10168 howto->name, (uint64_t) rel->r_offset, input_section);
749b8d9d 10169 }
b49e97c9 10170 }
30ac9238
RS
10171 else
10172 addend <<= howto->rightshift;
b49e97c9
TS
10173 }
10174 else
10175 addend = rel->r_addend;
81d43bff
RS
10176 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10177 local_syms, local_sections, rel);
b49e97c9
TS
10178 }
10179
0e1862bb 10180 if (bfd_link_relocatable (info))
b49e97c9 10181 {
4a14403c 10182 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10183 && bfd_big_endian (input_bfd))
10184 rel->r_offset -= 4;
10185
81d43bff 10186 if (!rela_relocation_p && rel->r_addend)
5a659663 10187 {
81d43bff 10188 addend += rel->r_addend;
738e5348 10189 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10190 addend = mips_elf_high (addend);
10191 else if (r_type == R_MIPS_HIGHER)
10192 addend = mips_elf_higher (addend);
10193 else if (r_type == R_MIPS_HIGHEST)
10194 addend = mips_elf_highest (addend);
30ac9238
RS
10195 else
10196 addend >>= howto->rightshift;
b49e97c9 10197
30ac9238
RS
10198 /* We use the source mask, rather than the destination
10199 mask because the place to which we are writing will be
10200 source of the addend in the final link. */
b49e97c9
TS
10201 addend &= howto->src_mask;
10202
5a659663 10203 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10204 /* See the comment above about using R_MIPS_64 in the 32-bit
10205 ABI. Here, we need to update the addend. It would be
10206 possible to get away with just using the R_MIPS_32 reloc
10207 but for endianness. */
10208 {
10209 bfd_vma sign_bits;
10210 bfd_vma low_bits;
10211 bfd_vma high_bits;
10212
10213 if (addend & ((bfd_vma) 1 << 31))
10214#ifdef BFD64
10215 sign_bits = ((bfd_vma) 1 << 32) - 1;
10216#else
10217 sign_bits = -1;
10218#endif
10219 else
10220 sign_bits = 0;
10221
10222 /* If we don't know that we have a 64-bit type,
10223 do two separate stores. */
10224 if (bfd_big_endian (input_bfd))
10225 {
10226 /* Store the sign-bits (which are most significant)
10227 first. */
10228 low_bits = sign_bits;
10229 high_bits = addend;
10230 }
10231 else
10232 {
10233 low_bits = addend;
10234 high_bits = sign_bits;
10235 }
10236 bfd_put_32 (input_bfd, low_bits,
10237 contents + rel->r_offset);
10238 bfd_put_32 (input_bfd, high_bits,
10239 contents + rel->r_offset + 4);
10240 continue;
10241 }
10242
10243 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10244 input_bfd, input_section,
b34976b6
AM
10245 contents, FALSE))
10246 return FALSE;
b49e97c9
TS
10247 }
10248
10249 /* Go on to the next relocation. */
10250 continue;
10251 }
10252
10253 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10254 relocations for the same offset. In that case we are
10255 supposed to treat the output of each relocation as the addend
10256 for the next. */
10257 if (rel + 1 < relend
10258 && rel->r_offset == rel[1].r_offset
10259 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10260 use_saved_addend_p = TRUE;
b49e97c9 10261 else
b34976b6 10262 use_saved_addend_p = FALSE;
b49e97c9
TS
10263
10264 /* Figure out what value we are supposed to relocate. */
10265 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10266 input_section, info, rel,
10267 addend, howto, local_syms,
10268 local_sections, &value,
38a7df63 10269 &name, &cross_mode_jump_p,
bce03d3d 10270 use_saved_addend_p))
b49e97c9
TS
10271 {
10272 case bfd_reloc_continue:
10273 /* There's nothing to do. */
10274 continue;
10275
10276 case bfd_reloc_undefined:
10277 /* mips_elf_calculate_relocation already called the
10278 undefined_symbol callback. There's no real point in
10279 trying to perform the relocation at this point, so we
10280 just skip ahead to the next relocation. */
10281 continue;
10282
10283 case bfd_reloc_notsupported:
10284 msg = _("internal error: unsupported relocation error");
10285 info->callbacks->warning
10286 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10287 return FALSE;
b49e97c9
TS
10288
10289 case bfd_reloc_overflow:
10290 if (use_saved_addend_p)
10291 /* Ignore overflow until we reach the last relocation for
10292 a given location. */
10293 ;
10294 else
10295 {
0e53d9da
AN
10296 struct mips_elf_link_hash_table *htab;
10297
10298 htab = mips_elf_hash_table (info);
4dfe6ac6 10299 BFD_ASSERT (htab != NULL);
b49e97c9 10300 BFD_ASSERT (name != NULL);
0e53d9da 10301 if (!htab->small_data_overflow_reported
9684f078 10302 && (gprel16_reloc_p (howto->type)
df58fc94 10303 || literal_reloc_p (howto->type)))
0e53d9da 10304 {
91d6fa6a
NC
10305 msg = _("small-data section exceeds 64KB;"
10306 " lower small-data size limit (see option -G)");
0e53d9da
AN
10307
10308 htab->small_data_overflow_reported = TRUE;
10309 (*info->callbacks->einfo) ("%P: %s\n", msg);
10310 }
1a72702b
AM
10311 (*info->callbacks->reloc_overflow)
10312 (info, NULL, name, howto->name, (bfd_vma) 0,
10313 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10314 }
10315 break;
10316
10317 case bfd_reloc_ok:
10318 break;
10319
df58fc94 10320 case bfd_reloc_outofrange:
7db9a74e 10321 msg = NULL;
df58fc94 10322 if (jal_reloc_p (howto->type))
9d862524 10323 msg = (cross_mode_jump_p
2c1c9679 10324 ? _("cannot convert a jump to JALX "
9d862524
MR
10325 "for a non-word-aligned address")
10326 : (howto->type == R_MIPS16_26
2c1c9679
AM
10327 ? _("jump to a non-word-aligned address")
10328 : _("jump to a non-instruction-aligned address")));
99aefae6 10329 else if (b_reloc_p (howto->type))
a6ebf616 10330 msg = (cross_mode_jump_p
2c1c9679 10331 ? _("cannot convert a branch to JALX "
a6ebf616 10332 "for a non-word-aligned address")
2c1c9679 10333 : _("branch to a non-instruction-aligned address"));
7db9a74e
MR
10334 else if (aligned_pcrel_reloc_p (howto->type))
10335 msg = _("PC-relative load from unaligned address");
10336 if (msg)
df58fc94 10337 {
de341542 10338 info->callbacks->einfo
ed53407e
MR
10339 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10340 break;
7361da2c 10341 }
df58fc94
RS
10342 /* Fall through. */
10343
b49e97c9
TS
10344 default:
10345 abort ();
10346 break;
10347 }
10348
10349 /* If we've got another relocation for the address, keep going
10350 until we reach the last one. */
10351 if (use_saved_addend_p)
10352 {
10353 addend = value;
10354 continue;
10355 }
10356
4a14403c 10357 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10358 /* See the comment above about using R_MIPS_64 in the 32-bit
10359 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10360 that calculated the right value. Now, however, we
10361 sign-extend the 32-bit result to 64-bits, and store it as a
10362 64-bit value. We are especially generous here in that we
10363 go to extreme lengths to support this usage on systems with
10364 only a 32-bit VMA. */
10365 {
10366 bfd_vma sign_bits;
10367 bfd_vma low_bits;
10368 bfd_vma high_bits;
10369
10370 if (value & ((bfd_vma) 1 << 31))
10371#ifdef BFD64
10372 sign_bits = ((bfd_vma) 1 << 32) - 1;
10373#else
10374 sign_bits = -1;
10375#endif
10376 else
10377 sign_bits = 0;
10378
10379 /* If we don't know that we have a 64-bit type,
10380 do two separate stores. */
10381 if (bfd_big_endian (input_bfd))
10382 {
10383 /* Undo what we did above. */
10384 rel->r_offset -= 4;
10385 /* Store the sign-bits (which are most significant)
10386 first. */
10387 low_bits = sign_bits;
10388 high_bits = value;
10389 }
10390 else
10391 {
10392 low_bits = value;
10393 high_bits = sign_bits;
10394 }
10395 bfd_put_32 (input_bfd, low_bits,
10396 contents + rel->r_offset);
10397 bfd_put_32 (input_bfd, high_bits,
10398 contents + rel->r_offset + 4);
10399 continue;
10400 }
10401
10402 /* Actually perform the relocation. */
10403 if (! mips_elf_perform_relocation (info, howto, rel, value,
10404 input_bfd, input_section,
38a7df63 10405 contents, cross_mode_jump_p))
b34976b6 10406 return FALSE;
b49e97c9
TS
10407 }
10408
b34976b6 10409 return TRUE;
b49e97c9
TS
10410}
10411\f
861fb55a
DJ
10412/* A function that iterates over each entry in la25_stubs and fills
10413 in the code for each one. DATA points to a mips_htab_traverse_info. */
10414
10415static int
10416mips_elf_create_la25_stub (void **slot, void *data)
10417{
10418 struct mips_htab_traverse_info *hti;
10419 struct mips_elf_link_hash_table *htab;
10420 struct mips_elf_la25_stub *stub;
10421 asection *s;
10422 bfd_byte *loc;
10423 bfd_vma offset, target, target_high, target_low;
10424
10425 stub = (struct mips_elf_la25_stub *) *slot;
10426 hti = (struct mips_htab_traverse_info *) data;
10427 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10428 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10429
10430 /* Create the section contents, if we haven't already. */
10431 s = stub->stub_section;
10432 loc = s->contents;
10433 if (loc == NULL)
10434 {
10435 loc = bfd_malloc (s->size);
10436 if (loc == NULL)
10437 {
10438 hti->error = TRUE;
10439 return FALSE;
10440 }
10441 s->contents = loc;
10442 }
10443
10444 /* Work out where in the section this stub should go. */
10445 offset = stub->offset;
10446
10447 /* Work out the target address. */
8f0c309a
CLT
10448 target = mips_elf_get_la25_target (stub, &s);
10449 target += s->output_section->vma + s->output_offset;
10450
861fb55a
DJ
10451 target_high = ((target + 0x8000) >> 16) & 0xffff;
10452 target_low = (target & 0xffff);
10453
10454 if (stub->stub_section != htab->strampoline)
10455 {
df58fc94 10456 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10457 of the section and write the two instructions at the end. */
10458 memset (loc, 0, offset);
10459 loc += offset;
df58fc94
RS
10460 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10461 {
d21911ea
MR
10462 bfd_put_micromips_32 (hti->output_bfd,
10463 LA25_LUI_MICROMIPS (target_high),
10464 loc);
10465 bfd_put_micromips_32 (hti->output_bfd,
10466 LA25_ADDIU_MICROMIPS (target_low),
10467 loc + 4);
df58fc94
RS
10468 }
10469 else
10470 {
10471 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10472 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10473 }
861fb55a
DJ
10474 }
10475 else
10476 {
10477 /* This is trampoline. */
10478 loc += offset;
df58fc94
RS
10479 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10480 {
d21911ea
MR
10481 bfd_put_micromips_32 (hti->output_bfd,
10482 LA25_LUI_MICROMIPS (target_high), loc);
10483 bfd_put_micromips_32 (hti->output_bfd,
10484 LA25_J_MICROMIPS (target), loc + 4);
10485 bfd_put_micromips_32 (hti->output_bfd,
10486 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10487 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10488 }
10489 else
10490 {
10491 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10492 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10493 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10494 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10495 }
861fb55a
DJ
10496 }
10497 return TRUE;
10498}
10499
b49e97c9
TS
10500/* If NAME is one of the special IRIX6 symbols defined by the linker,
10501 adjust it appropriately now. */
10502
10503static void
9719ad41
RS
10504mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10505 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10506{
10507 /* The linker script takes care of providing names and values for
10508 these, but we must place them into the right sections. */
10509 static const char* const text_section_symbols[] = {
10510 "_ftext",
10511 "_etext",
10512 "__dso_displacement",
10513 "__elf_header",
10514 "__program_header_table",
10515 NULL
10516 };
10517
10518 static const char* const data_section_symbols[] = {
10519 "_fdata",
10520 "_edata",
10521 "_end",
10522 "_fbss",
10523 NULL
10524 };
10525
10526 const char* const *p;
10527 int i;
10528
10529 for (i = 0; i < 2; ++i)
10530 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10531 *p;
10532 ++p)
10533 if (strcmp (*p, name) == 0)
10534 {
10535 /* All of these symbols are given type STT_SECTION by the
10536 IRIX6 linker. */
10537 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10538 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10539
10540 /* The IRIX linker puts these symbols in special sections. */
10541 if (i == 0)
10542 sym->st_shndx = SHN_MIPS_TEXT;
10543 else
10544 sym->st_shndx = SHN_MIPS_DATA;
10545
10546 break;
10547 }
10548}
10549
10550/* Finish up dynamic symbol handling. We set the contents of various
10551 dynamic sections here. */
10552
b34976b6 10553bfd_boolean
9719ad41
RS
10554_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10555 struct bfd_link_info *info,
10556 struct elf_link_hash_entry *h,
10557 Elf_Internal_Sym *sym)
b49e97c9
TS
10558{
10559 bfd *dynobj;
b49e97c9 10560 asection *sgot;
f4416af6 10561 struct mips_got_info *g, *gg;
b49e97c9 10562 const char *name;
3d6746ca 10563 int idx;
5108fc1b 10564 struct mips_elf_link_hash_table *htab;
738e5348 10565 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10566
5108fc1b 10567 htab = mips_elf_hash_table (info);
4dfe6ac6 10568 BFD_ASSERT (htab != NULL);
b49e97c9 10569 dynobj = elf_hash_table (info)->dynobj;
738e5348 10570 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10571
861fb55a
DJ
10572 BFD_ASSERT (!htab->is_vxworks);
10573
1bbce132
MR
10574 if (h->plt.plist != NULL
10575 && (h->plt.plist->mips_offset != MINUS_ONE
10576 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10577 {
10578 /* We've decided to create a PLT entry for this symbol. */
10579 bfd_byte *loc;
1bbce132 10580 bfd_vma header_address, got_address;
861fb55a 10581 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10582 bfd_vma got_index;
10583 bfd_vma isa_bit;
10584
10585 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10586
10587 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10588 BFD_ASSERT (h->dynindx != -1);
ce558b89 10589 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10590 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10591 BFD_ASSERT (!h->def_regular);
10592
10593 /* Calculate the address of the PLT header. */
1bbce132 10594 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10595 header_address = (htab->root.splt->output_section->vma
10596 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10597
10598 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10599 got_address = (htab->root.sgotplt->output_section->vma
10600 + htab->root.sgotplt->output_offset
1bbce132
MR
10601 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10602
861fb55a
DJ
10603 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10604 got_address_low = got_address & 0xffff;
10605
789ff5b6
MR
10606 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10607 cannot be loaded in two instructions. */
10608 if (ABI_64_P (output_bfd)
10609 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10610 {
10611 _bfd_error_handler
10612 /* xgettext:c-format */
10613 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10614 "supported; consider using `-Ttext-segment=...'"),
10615 output_bfd,
10616 htab->root.sgotplt->output_section,
10617 (int64_t) got_address);
10618 bfd_set_error (bfd_error_no_error);
10619 return FALSE;
10620 }
10621
861fb55a 10622 /* Initially point the .got.plt entry at the PLT header. */
6a382bce
MR
10623 loc = (htab->root.sgotplt->contents
10624 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10625 if (ABI_64_P (output_bfd))
10626 bfd_put_64 (output_bfd, header_address, loc);
10627 else
10628 bfd_put_32 (output_bfd, header_address, loc);
10629
1bbce132 10630 /* Now handle the PLT itself. First the standard entry (the order
07d6d2b8 10631 does not matter, we just have to pick one). */
1bbce132
MR
10632 if (h->plt.plist->mips_offset != MINUS_ONE)
10633 {
10634 const bfd_vma *plt_entry;
10635 bfd_vma plt_offset;
861fb55a 10636
1bbce132 10637 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10638
ce558b89 10639 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10640
1bbce132 10641 /* Find out where the .plt entry should go. */
ce558b89 10642 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10643
10644 /* Pick the load opcode. */
10645 load = MIPS_ELF_LOAD_WORD (output_bfd);
10646
10647 /* Fill in the PLT entry itself. */
7361da2c
AB
10648
10649 if (MIPSR6_P (output_bfd))
10650 plt_entry = mipsr6_exec_plt_entry;
10651 else
10652 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10653 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10654 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10655 loc + 4);
10656
10657 if (! LOAD_INTERLOCKS_P (output_bfd))
10658 {
10659 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10660 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10661 }
10662 else
10663 {
10664 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10665 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10666 loc + 12);
10667 }
6d30f5b2 10668 }
1bbce132
MR
10669
10670 /* Now the compressed entry. They come after any standard ones. */
10671 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10672 {
1bbce132
MR
10673 bfd_vma plt_offset;
10674
10675 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10676 + h->plt.plist->comp_offset);
10677
ce558b89 10678 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10679
10680 /* Find out where the .plt entry should go. */
ce558b89 10681 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10682
10683 /* Fill in the PLT entry itself. */
833794fc
MR
10684 if (!MICROMIPS_P (output_bfd))
10685 {
10686 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10687
10688 bfd_put_16 (output_bfd, plt_entry[0], loc);
10689 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10690 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10691 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10692 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10693 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10694 bfd_put_32 (output_bfd, got_address, loc + 12);
10695 }
10696 else if (htab->insn32)
10697 {
10698 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10699
10700 bfd_put_16 (output_bfd, plt_entry[0], loc);
10701 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10702 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10703 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10704 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10705 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10706 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10707 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10708 }
10709 else
1bbce132
MR
10710 {
10711 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10712 bfd_signed_vma gotpc_offset;
10713 bfd_vma loc_address;
10714
10715 BFD_ASSERT (got_address % 4 == 0);
10716
ce558b89
AM
10717 loc_address = (htab->root.splt->output_section->vma
10718 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
10719 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10720
10721 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10722 if (gotpc_offset + 0x1000000 >= 0x2000000)
10723 {
4eca0228 10724 _bfd_error_handler
695344c0 10725 /* xgettext:c-format */
2dcf00ce 10726 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
1bbce132
MR
10727 "beyond the range of ADDIUPC"),
10728 output_bfd,
ce558b89 10729 htab->root.sgotplt->output_section,
2dcf00ce 10730 (int64_t) gotpc_offset,
c08bb8dd 10731 htab->root.splt->output_section);
1bbce132
MR
10732 bfd_set_error (bfd_error_no_error);
10733 return FALSE;
10734 }
10735 bfd_put_16 (output_bfd,
10736 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10737 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10738 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10739 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10740 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10741 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10742 }
6d30f5b2 10743 }
861fb55a
DJ
10744
10745 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 10746 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 10747 got_index - 2, h->dynindx,
861fb55a
DJ
10748 R_MIPS_JUMP_SLOT, got_address);
10749
10750 /* We distinguish between PLT entries and lazy-binding stubs by
10751 giving the former an st_other value of STO_MIPS_PLT. Set the
10752 flag and leave the value if there are any relocations in the
10753 binary where pointer equality matters. */
10754 sym->st_shndx = SHN_UNDEF;
10755 if (h->pointer_equality_needed)
1bbce132 10756 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 10757 else
1bbce132
MR
10758 {
10759 sym->st_value = 0;
10760 sym->st_other = 0;
10761 }
861fb55a 10762 }
1bbce132
MR
10763
10764 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 10765 {
861fb55a 10766 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
10767 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10768 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10769 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 10770 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
10771 bfd_vma isa_bit = micromips_p;
10772 bfd_vma stub_big_size;
10773
833794fc 10774 if (!micromips_p)
1bbce132 10775 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
10776 else if (htab->insn32)
10777 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10778 else
10779 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
10780
10781 /* This symbol has a stub. Set it up. */
10782
10783 BFD_ASSERT (h->dynindx != -1);
10784
1bbce132 10785 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
10786
10787 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10788 sign extension at runtime in the stub, resulting in a negative
10789 index value. */
10790 if (h->dynindx & ~0x7fffffff)
b34976b6 10791 return FALSE;
b49e97c9
TS
10792
10793 /* Fill the stub. */
1bbce132
MR
10794 if (micromips_p)
10795 {
10796 idx = 0;
10797 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10798 stub + idx);
10799 idx += 4;
833794fc
MR
10800 if (htab->insn32)
10801 {
10802 bfd_put_micromips_32 (output_bfd,
40fc1451 10803 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
10804 idx += 4;
10805 }
10806 else
10807 {
10808 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10809 idx += 2;
10810 }
1bbce132
MR
10811 if (stub_size == stub_big_size)
10812 {
10813 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10814
10815 bfd_put_micromips_32 (output_bfd,
10816 STUB_LUI_MICROMIPS (dynindx_hi),
10817 stub + idx);
10818 idx += 4;
10819 }
833794fc
MR
10820 if (htab->insn32)
10821 {
10822 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10823 stub + idx);
10824 idx += 4;
10825 }
10826 else
10827 {
10828 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10829 idx += 2;
10830 }
1bbce132
MR
10831
10832 /* If a large stub is not required and sign extension is not a
10833 problem, then use legacy code in the stub. */
10834 if (stub_size == stub_big_size)
10835 bfd_put_micromips_32 (output_bfd,
10836 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10837 stub + idx);
10838 else if (h->dynindx & ~0x7fff)
10839 bfd_put_micromips_32 (output_bfd,
10840 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10841 stub + idx);
10842 else
10843 bfd_put_micromips_32 (output_bfd,
10844 STUB_LI16S_MICROMIPS (output_bfd,
10845 h->dynindx),
10846 stub + idx);
10847 }
3d6746ca 10848 else
1bbce132
MR
10849 {
10850 idx = 0;
10851 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10852 idx += 4;
40fc1451 10853 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
10854 idx += 4;
10855 if (stub_size == stub_big_size)
10856 {
10857 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10858 stub + idx);
10859 idx += 4;
10860 }
10861 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10862 idx += 4;
10863
10864 /* If a large stub is not required and sign extension is not a
10865 problem, then use legacy code in the stub. */
10866 if (stub_size == stub_big_size)
10867 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10868 stub + idx);
10869 else if (h->dynindx & ~0x7fff)
10870 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10871 stub + idx);
10872 else
10873 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10874 stub + idx);
10875 }
5108fc1b 10876
1bbce132
MR
10877 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10878 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10879 stub, stub_size);
b49e97c9 10880
1bbce132 10881 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
10882 only for the referenced symbol. */
10883 sym->st_shndx = SHN_UNDEF;
10884
10885 /* The run-time linker uses the st_value field of the symbol
10886 to reset the global offset table entry for this external
10887 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10888 sym->st_value = (htab->sstubs->output_section->vma
10889 + htab->sstubs->output_offset
1bbce132
MR
10890 + h->plt.plist->stub_offset
10891 + isa_bit);
10892 sym->st_other = other;
b49e97c9
TS
10893 }
10894
738e5348
RS
10895 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10896 refer to the stub, since only the stub uses the standard calling
10897 conventions. */
10898 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10899 {
10900 BFD_ASSERT (hmips->need_fn_stub);
10901 sym->st_value = (hmips->fn_stub->output_section->vma
10902 + hmips->fn_stub->output_offset);
10903 sym->st_size = hmips->fn_stub->size;
10904 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10905 }
10906
b49e97c9 10907 BFD_ASSERT (h->dynindx != -1
f5385ebf 10908 || h->forced_local);
b49e97c9 10909
ce558b89 10910 sgot = htab->root.sgot;
a8028dd0 10911 g = htab->got_info;
b49e97c9
TS
10912 BFD_ASSERT (g != NULL);
10913
10914 /* Run through the global symbol table, creating GOT entries for all
10915 the symbols that need them. */
020d7251 10916 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
10917 {
10918 bfd_vma offset;
10919 bfd_vma value;
10920
6eaa6adc 10921 value = sym->st_value;
13fbec83 10922 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
10923 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10924 }
10925
e641e783 10926 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
10927 {
10928 struct mips_got_entry e, *p;
0626d451 10929 bfd_vma entry;
f4416af6 10930 bfd_vma offset;
f4416af6
AO
10931
10932 gg = g;
10933
10934 e.abfd = output_bfd;
10935 e.symndx = -1;
738e5348 10936 e.d.h = hmips;
9ab066b4 10937 e.tls_type = GOT_TLS_NONE;
143d77c5 10938
f4416af6
AO
10939 for (g = g->next; g->next != gg; g = g->next)
10940 {
10941 if (g->got_entries
10942 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10943 &e)))
10944 {
10945 offset = p->gotidx;
ce558b89 10946 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 10947 if (bfd_link_pic (info)
0626d451
RS
10948 || (elf_hash_table (info)->dynamic_sections_created
10949 && p->d.h != NULL
f5385ebf
AM
10950 && p->d.h->root.def_dynamic
10951 && !p->d.h->root.def_regular))
0626d451
RS
10952 {
10953 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10954 the various compatibility problems, it's easier to mock
10955 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10956 mips_elf_create_dynamic_relocation to calculate the
10957 appropriate addend. */
10958 Elf_Internal_Rela rel[3];
10959
10960 memset (rel, 0, sizeof (rel));
10961 if (ABI_64_P (output_bfd))
10962 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10963 else
10964 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10965 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10966
10967 entry = 0;
10968 if (! (mips_elf_create_dynamic_relocation
10969 (output_bfd, info, rel,
10970 e.d.h, NULL, sym->st_value, &entry, sgot)))
10971 return FALSE;
10972 }
10973 else
10974 entry = sym->st_value;
10975 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10976 }
10977 }
10978 }
10979
b49e97c9
TS
10980 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10981 name = h->root.root.string;
9637f6ef 10982 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10983 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10984 sym->st_shndx = SHN_ABS;
10985 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10986 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10987 {
10988 sym->st_shndx = SHN_ABS;
10989 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10990 sym->st_value = 1;
10991 }
b49e97c9
TS
10992 else if (SGI_COMPAT (output_bfd))
10993 {
10994 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10995 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10996 {
10997 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10998 sym->st_other = STO_PROTECTED;
10999 sym->st_value = 0;
11000 sym->st_shndx = SHN_MIPS_DATA;
11001 }
11002 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11003 {
11004 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11005 sym->st_other = STO_PROTECTED;
11006 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11007 sym->st_shndx = SHN_ABS;
11008 }
11009 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11010 {
11011 if (h->type == STT_FUNC)
11012 sym->st_shndx = SHN_MIPS_TEXT;
11013 else if (h->type == STT_OBJECT)
11014 sym->st_shndx = SHN_MIPS_DATA;
11015 }
11016 }
11017
861fb55a
DJ
11018 /* Emit a copy reloc, if needed. */
11019 if (h->needs_copy)
11020 {
11021 asection *s;
11022 bfd_vma symval;
11023
11024 BFD_ASSERT (h->dynindx != -1);
11025 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11026
11027 s = mips_elf_rel_dyn_section (info, FALSE);
11028 symval = (h->root.u.def.section->output_section->vma
11029 + h->root.u.def.section->output_offset
11030 + h->root.u.def.value);
11031 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11032 h->dynindx, R_MIPS_COPY, symval);
11033 }
11034
b49e97c9
TS
11035 /* Handle the IRIX6-specific symbols. */
11036 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11037 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11038
cbf8d970
MR
11039 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11040 to treat compressed symbols like any other. */
30c09090 11041 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11042 {
11043 BFD_ASSERT (sym->st_value & 1);
11044 sym->st_other -= STO_MIPS16;
11045 }
cbf8d970
MR
11046 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11047 {
11048 BFD_ASSERT (sym->st_value & 1);
11049 sym->st_other -= STO_MICROMIPS;
11050 }
b49e97c9 11051
b34976b6 11052 return TRUE;
b49e97c9
TS
11053}
11054
0a44bf69
RS
11055/* Likewise, for VxWorks. */
11056
11057bfd_boolean
11058_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11059 struct bfd_link_info *info,
11060 struct elf_link_hash_entry *h,
11061 Elf_Internal_Sym *sym)
11062{
11063 bfd *dynobj;
11064 asection *sgot;
11065 struct mips_got_info *g;
11066 struct mips_elf_link_hash_table *htab;
020d7251 11067 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11068
11069 htab = mips_elf_hash_table (info);
4dfe6ac6 11070 BFD_ASSERT (htab != NULL);
0a44bf69 11071 dynobj = elf_hash_table (info)->dynobj;
020d7251 11072 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11073
1bbce132 11074 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11075 {
6d79d2ed 11076 bfd_byte *loc;
1bbce132 11077 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11078 Elf_Internal_Rela rel;
11079 static const bfd_vma *plt_entry;
1bbce132
MR
11080 bfd_vma gotplt_index;
11081 bfd_vma plt_offset;
11082
11083 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11084 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11085
11086 BFD_ASSERT (h->dynindx != -1);
ce558b89 11087 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11088 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11089 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11090
11091 /* Calculate the address of the .plt entry. */
ce558b89
AM
11092 plt_address = (htab->root.splt->output_section->vma
11093 + htab->root.splt->output_offset
1bbce132 11094 + plt_offset);
0a44bf69
RS
11095
11096 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11097 got_address = (htab->root.sgotplt->output_section->vma
11098 + htab->root.sgotplt->output_offset
1bbce132 11099 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11100
11101 /* Calculate the offset of the .got.plt entry from
11102 _GLOBAL_OFFSET_TABLE_. */
11103 got_offset = mips_elf_gotplt_index (info, h);
11104
11105 /* Calculate the offset for the branch at the start of the PLT
11106 entry. The branch jumps to the beginning of .plt. */
1bbce132 11107 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11108
11109 /* Fill in the initial value of the .got.plt entry. */
11110 bfd_put_32 (output_bfd, plt_address,
ce558b89 11111 (htab->root.sgotplt->contents
1bbce132 11112 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11113
11114 /* Find out where the .plt entry should go. */
ce558b89 11115 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11116
0e1862bb 11117 if (bfd_link_pic (info))
0a44bf69
RS
11118 {
11119 plt_entry = mips_vxworks_shared_plt_entry;
11120 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11121 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11122 }
11123 else
11124 {
11125 bfd_vma got_address_high, got_address_low;
11126
11127 plt_entry = mips_vxworks_exec_plt_entry;
11128 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11129 got_address_low = got_address & 0xffff;
11130
11131 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11132 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11133 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11134 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11135 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11136 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11137 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11138 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11139
11140 loc = (htab->srelplt2->contents
1bbce132 11141 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11142
11143 /* Emit a relocation for the .got.plt entry. */
11144 rel.r_offset = got_address;
11145 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11146 rel.r_addend = plt_offset;
0a44bf69
RS
11147 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11148
11149 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11150 loc += sizeof (Elf32_External_Rela);
11151 rel.r_offset = plt_address + 8;
11152 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11153 rel.r_addend = got_offset;
11154 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11155
11156 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11157 loc += sizeof (Elf32_External_Rela);
11158 rel.r_offset += 4;
11159 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11160 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11161 }
11162
11163 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11164 loc = (htab->root.srelplt->contents
1bbce132 11165 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11166 rel.r_offset = got_address;
11167 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11168 rel.r_addend = 0;
11169 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11170
11171 if (!h->def_regular)
11172 sym->st_shndx = SHN_UNDEF;
11173 }
11174
11175 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11176
ce558b89 11177 sgot = htab->root.sgot;
a8028dd0 11178 g = htab->got_info;
0a44bf69
RS
11179 BFD_ASSERT (g != NULL);
11180
11181 /* See if this symbol has an entry in the GOT. */
020d7251 11182 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11183 {
11184 bfd_vma offset;
11185 Elf_Internal_Rela outrel;
11186 bfd_byte *loc;
11187 asection *s;
11188
11189 /* Install the symbol value in the GOT. */
13fbec83 11190 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11191 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11192
11193 /* Add a dynamic relocation for it. */
11194 s = mips_elf_rel_dyn_section (info, FALSE);
11195 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11196 outrel.r_offset = (sgot->output_section->vma
11197 + sgot->output_offset
11198 + offset);
11199 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11200 outrel.r_addend = 0;
11201 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11202 }
11203
11204 /* Emit a copy reloc, if needed. */
11205 if (h->needs_copy)
11206 {
11207 Elf_Internal_Rela rel;
5474d94f
AM
11208 asection *srel;
11209 bfd_byte *loc;
0a44bf69
RS
11210
11211 BFD_ASSERT (h->dynindx != -1);
11212
11213 rel.r_offset = (h->root.u.def.section->output_section->vma
11214 + h->root.u.def.section->output_offset
11215 + h->root.u.def.value);
11216 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11217 rel.r_addend = 0;
afbf7e8e 11218 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
11219 srel = htab->root.sreldynrelro;
11220 else
11221 srel = htab->root.srelbss;
11222 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11223 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11224 ++srel->reloc_count;
0a44bf69
RS
11225 }
11226
df58fc94
RS
11227 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11228 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11229 sym->st_value &= ~1;
11230
11231 return TRUE;
11232}
11233
861fb55a
DJ
11234/* Write out a plt0 entry to the beginning of .plt. */
11235
1bbce132 11236static bfd_boolean
861fb55a
DJ
11237mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11238{
11239 bfd_byte *loc;
11240 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11241 static const bfd_vma *plt_entry;
11242 struct mips_elf_link_hash_table *htab;
11243
11244 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11245 BFD_ASSERT (htab != NULL);
11246
861fb55a
DJ
11247 if (ABI_64_P (output_bfd))
11248 plt_entry = mips_n64_exec_plt0_entry;
11249 else if (ABI_N32_P (output_bfd))
11250 plt_entry = mips_n32_exec_plt0_entry;
833794fc 11251 else if (!htab->plt_header_is_comp)
861fb55a 11252 plt_entry = mips_o32_exec_plt0_entry;
833794fc
MR
11253 else if (htab->insn32)
11254 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11255 else
11256 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11257
11258 /* Calculate the value of .got.plt. */
ce558b89
AM
11259 gotplt_value = (htab->root.sgotplt->output_section->vma
11260 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11261 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11262 gotplt_value_low = gotplt_value & 0xffff;
11263
11264 /* The PLT sequence is not safe for N64 if .got.plt's address can
11265 not be loaded in two instructions. */
789ff5b6
MR
11266 if (ABI_64_P (output_bfd)
11267 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11268 {
11269 _bfd_error_handler
11270 /* xgettext:c-format */
11271 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11272 "supported; consider using `-Ttext-segment=...'"),
11273 output_bfd,
11274 htab->root.sgotplt->output_section,
11275 (int64_t) gotplt_value);
11276 bfd_set_error (bfd_error_no_error);
11277 return FALSE;
11278 }
861fb55a
DJ
11279
11280 /* Install the PLT header. */
ce558b89 11281 loc = htab->root.splt->contents;
1bbce132
MR
11282 if (plt_entry == micromips_o32_exec_plt0_entry)
11283 {
11284 bfd_vma gotpc_offset;
11285 bfd_vma loc_address;
11286 size_t i;
11287
11288 BFD_ASSERT (gotplt_value % 4 == 0);
11289
ce558b89
AM
11290 loc_address = (htab->root.splt->output_section->vma
11291 + htab->root.splt->output_offset);
1bbce132
MR
11292 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11293
11294 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11295 if (gotpc_offset + 0x1000000 >= 0x2000000)
11296 {
4eca0228 11297 _bfd_error_handler
695344c0 11298 /* xgettext:c-format */
2dcf00ce
AM
11299 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11300 "beyond the range of ADDIUPC"),
1bbce132 11301 output_bfd,
ce558b89 11302 htab->root.sgotplt->output_section,
2dcf00ce 11303 (int64_t) gotpc_offset,
c08bb8dd 11304 htab->root.splt->output_section);
1bbce132
MR
11305 bfd_set_error (bfd_error_no_error);
11306 return FALSE;
11307 }
11308 bfd_put_16 (output_bfd,
11309 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11310 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11311 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11312 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11313 }
833794fc
MR
11314 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11315 {
11316 size_t i;
11317
11318 bfd_put_16 (output_bfd, plt_entry[0], loc);
11319 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11320 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11321 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11322 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11323 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11324 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11325 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11326 }
1bbce132
MR
11327 else
11328 {
11329 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11330 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11331 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11332 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11333 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11334 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11335 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11336 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11337 }
11338
11339 return TRUE;
861fb55a
DJ
11340}
11341
0a44bf69
RS
11342/* Install the PLT header for a VxWorks executable and finalize the
11343 contents of .rela.plt.unloaded. */
11344
11345static void
11346mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11347{
11348 Elf_Internal_Rela rela;
11349 bfd_byte *loc;
11350 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11351 static const bfd_vma *plt_entry;
11352 struct mips_elf_link_hash_table *htab;
11353
11354 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11355 BFD_ASSERT (htab != NULL);
11356
0a44bf69
RS
11357 plt_entry = mips_vxworks_exec_plt0_entry;
11358
11359 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11360 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11361 + htab->root.hgot->root.u.def.section->output_offset
11362 + htab->root.hgot->root.u.def.value);
11363
11364 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11365 got_value_low = got_value & 0xffff;
11366
11367 /* Calculate the address of the PLT header. */
ce558b89
AM
11368 plt_address = (htab->root.splt->output_section->vma
11369 + htab->root.splt->output_offset);
0a44bf69
RS
11370
11371 /* Install the PLT header. */
ce558b89 11372 loc = htab->root.splt->contents;
0a44bf69
RS
11373 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11374 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11375 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11376 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11377 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11378 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11379
11380 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11381 loc = htab->srelplt2->contents;
11382 rela.r_offset = plt_address;
11383 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11384 rela.r_addend = 0;
11385 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11386 loc += sizeof (Elf32_External_Rela);
11387
11388 /* Output the relocation for the following addiu of
11389 %lo(_GLOBAL_OFFSET_TABLE_). */
11390 rela.r_offset += 4;
11391 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11392 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11393 loc += sizeof (Elf32_External_Rela);
11394
11395 /* Fix up the remaining relocations. They may have the wrong
11396 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11397 in which symbols were output. */
11398 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11399 {
11400 Elf_Internal_Rela rel;
11401
11402 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11403 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11404 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11405 loc += sizeof (Elf32_External_Rela);
11406
11407 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11408 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11409 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11410 loc += sizeof (Elf32_External_Rela);
11411
11412 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11413 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11414 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11415 loc += sizeof (Elf32_External_Rela);
11416 }
11417}
11418
11419/* Install the PLT header for a VxWorks shared library. */
11420
11421static void
11422mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11423{
11424 unsigned int i;
11425 struct mips_elf_link_hash_table *htab;
11426
11427 htab = mips_elf_hash_table (info);
4dfe6ac6 11428 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11429
11430 /* We just need to copy the entry byte-by-byte. */
11431 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11432 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11433 htab->root.splt->contents + i * 4);
0a44bf69
RS
11434}
11435
b49e97c9
TS
11436/* Finish up the dynamic sections. */
11437
b34976b6 11438bfd_boolean
9719ad41
RS
11439_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11440 struct bfd_link_info *info)
b49e97c9
TS
11441{
11442 bfd *dynobj;
11443 asection *sdyn;
11444 asection *sgot;
f4416af6 11445 struct mips_got_info *gg, *g;
0a44bf69 11446 struct mips_elf_link_hash_table *htab;
b49e97c9 11447
0a44bf69 11448 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11449 BFD_ASSERT (htab != NULL);
11450
b49e97c9
TS
11451 dynobj = elf_hash_table (info)->dynobj;
11452
3d4d4302 11453 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11454
ce558b89 11455 sgot = htab->root.sgot;
23cc69b6 11456 gg = htab->got_info;
b49e97c9
TS
11457
11458 if (elf_hash_table (info)->dynamic_sections_created)
11459 {
11460 bfd_byte *b;
943284cc 11461 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11462
11463 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11464 BFD_ASSERT (gg != NULL);
11465
d7206569 11466 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11467 BFD_ASSERT (g != NULL);
11468
11469 for (b = sdyn->contents;
eea6121a 11470 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11471 b += MIPS_ELF_DYN_SIZE (dynobj))
11472 {
11473 Elf_Internal_Dyn dyn;
11474 const char *name;
11475 size_t elemsize;
11476 asection *s;
b34976b6 11477 bfd_boolean swap_out_p;
b49e97c9
TS
11478
11479 /* Read in the current dynamic entry. */
11480 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11481
11482 /* Assume that we're going to modify it and write it out. */
b34976b6 11483 swap_out_p = TRUE;
b49e97c9
TS
11484
11485 switch (dyn.d_tag)
11486 {
11487 case DT_RELENT:
b49e97c9
TS
11488 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11489 break;
11490
0a44bf69
RS
11491 case DT_RELAENT:
11492 BFD_ASSERT (htab->is_vxworks);
11493 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11494 break;
11495
b49e97c9
TS
11496 case DT_STRSZ:
11497 /* Rewrite DT_STRSZ. */
11498 dyn.d_un.d_val =
11499 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11500 break;
11501
11502 case DT_PLTGOT:
ce558b89 11503 s = htab->root.sgot;
861fb55a
DJ
11504 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11505 break;
11506
11507 case DT_MIPS_PLTGOT:
ce558b89 11508 s = htab->root.sgotplt;
861fb55a 11509 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11510 break;
11511
11512 case DT_MIPS_RLD_VERSION:
11513 dyn.d_un.d_val = 1; /* XXX */
11514 break;
11515
11516 case DT_MIPS_FLAGS:
11517 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11518 break;
11519
b49e97c9 11520 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11521 {
11522 time_t t;
11523 time (&t);
11524 dyn.d_un.d_val = t;
11525 }
b49e97c9
TS
11526 break;
11527
11528 case DT_MIPS_ICHECKSUM:
11529 /* XXX FIXME: */
b34976b6 11530 swap_out_p = FALSE;
b49e97c9
TS
11531 break;
11532
11533 case DT_MIPS_IVERSION:
11534 /* XXX FIXME: */
b34976b6 11535 swap_out_p = FALSE;
b49e97c9
TS
11536 break;
11537
11538 case DT_MIPS_BASE_ADDRESS:
11539 s = output_bfd->sections;
11540 BFD_ASSERT (s != NULL);
11541 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11542 break;
11543
11544 case DT_MIPS_LOCAL_GOTNO:
11545 dyn.d_un.d_val = g->local_gotno;
11546 break;
11547
11548 case DT_MIPS_UNREFEXTNO:
11549 /* The index into the dynamic symbol table which is the
11550 entry of the first external symbol that is not
11551 referenced within the same object. */
11552 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11553 break;
11554
11555 case DT_MIPS_GOTSYM:
d222d210 11556 if (htab->global_gotsym)
b49e97c9 11557 {
d222d210 11558 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11559 break;
11560 }
11561 /* In case if we don't have global got symbols we default
11562 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11563 DT_MIPS_SYMTABNO. */
11564 /* Fall through. */
b49e97c9
TS
11565
11566 case DT_MIPS_SYMTABNO:
11567 name = ".dynsym";
11568 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11569 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11570
131e2f8e
MF
11571 if (s != NULL)
11572 dyn.d_un.d_val = s->size / elemsize;
11573 else
11574 dyn.d_un.d_val = 0;
b49e97c9
TS
11575 break;
11576
11577 case DT_MIPS_HIPAGENO:
861fb55a 11578 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11579 break;
11580
11581 case DT_MIPS_RLD_MAP:
b4082c70
DD
11582 {
11583 struct elf_link_hash_entry *h;
11584 h = mips_elf_hash_table (info)->rld_symbol;
11585 if (!h)
11586 {
11587 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11588 swap_out_p = FALSE;
11589 break;
11590 }
11591 s = h->root.u.def.section;
a5499fa4
MF
11592
11593 /* The MIPS_RLD_MAP tag stores the absolute address of the
11594 debug pointer. */
b4082c70
DD
11595 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11596 + h->root.u.def.value);
11597 }
b49e97c9
TS
11598 break;
11599
a5499fa4
MF
11600 case DT_MIPS_RLD_MAP_REL:
11601 {
11602 struct elf_link_hash_entry *h;
11603 bfd_vma dt_addr, rld_addr;
11604 h = mips_elf_hash_table (info)->rld_symbol;
11605 if (!h)
11606 {
11607 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11608 swap_out_p = FALSE;
11609 break;
11610 }
11611 s = h->root.u.def.section;
11612
11613 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11614 pointer, relative to the address of the tag. */
11615 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11616 + (b - sdyn->contents));
a5499fa4
MF
11617 rld_addr = (s->output_section->vma + s->output_offset
11618 + h->root.u.def.value);
11619 dyn.d_un.d_ptr = rld_addr - dt_addr;
11620 }
11621 break;
11622
b49e97c9
TS
11623 case DT_MIPS_OPTIONS:
11624 s = (bfd_get_section_by_name
11625 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11626 dyn.d_un.d_ptr = s->vma;
11627 break;
11628
0a44bf69 11629 case DT_PLTREL:
861fb55a
DJ
11630 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11631 if (htab->is_vxworks)
11632 dyn.d_un.d_val = DT_RELA;
11633 else
11634 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11635 break;
11636
11637 case DT_PLTRELSZ:
861fb55a 11638 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11639 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11640 break;
11641
11642 case DT_JMPREL:
861fb55a 11643 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11644 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11645 + htab->root.srelplt->output_offset);
0a44bf69
RS
11646 break;
11647
943284cc
DJ
11648 case DT_TEXTREL:
11649 /* If we didn't need any text relocations after all, delete
11650 the dynamic tag. */
11651 if (!(info->flags & DF_TEXTREL))
11652 {
11653 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11654 swap_out_p = FALSE;
11655 }
11656 break;
11657
11658 case DT_FLAGS:
11659 /* If we didn't need any text relocations after all, clear
11660 DF_TEXTREL from DT_FLAGS. */
11661 if (!(info->flags & DF_TEXTREL))
11662 dyn.d_un.d_val &= ~DF_TEXTREL;
11663 else
11664 swap_out_p = FALSE;
11665 break;
11666
b49e97c9 11667 default:
b34976b6 11668 swap_out_p = FALSE;
7a2b07ff
NS
11669 if (htab->is_vxworks
11670 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11671 swap_out_p = TRUE;
b49e97c9
TS
11672 break;
11673 }
11674
943284cc 11675 if (swap_out_p || dyn_skipped)
b49e97c9 11676 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11677 (dynobj, &dyn, b - dyn_skipped);
11678
11679 if (dyn_to_skip)
11680 {
11681 dyn_skipped += dyn_to_skip;
11682 dyn_to_skip = 0;
11683 }
b49e97c9 11684 }
943284cc
DJ
11685
11686 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11687 if (dyn_skipped > 0)
11688 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11689 }
11690
b55fd4d4
DJ
11691 if (sgot != NULL && sgot->size > 0
11692 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11693 {
0a44bf69
RS
11694 if (htab->is_vxworks)
11695 {
11696 /* The first entry of the global offset table points to the
11697 ".dynamic" section. The second is initialized by the
11698 loader and contains the shared library identifier.
11699 The third is also initialized by the loader and points
11700 to the lazy resolution stub. */
11701 MIPS_ELF_PUT_WORD (output_bfd,
11702 sdyn->output_offset + sdyn->output_section->vma,
11703 sgot->contents);
11704 MIPS_ELF_PUT_WORD (output_bfd, 0,
11705 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11706 MIPS_ELF_PUT_WORD (output_bfd, 0,
11707 sgot->contents
11708 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11709 }
11710 else
11711 {
11712 /* The first entry of the global offset table will be filled at
11713 runtime. The second entry will be used by some runtime loaders.
11714 This isn't the case of IRIX rld. */
11715 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 11716 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
11717 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11718 }
b49e97c9 11719
54938e2a
TS
11720 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11721 = MIPS_ELF_GOT_SIZE (output_bfd);
11722 }
b49e97c9 11723
f4416af6
AO
11724 /* Generate dynamic relocations for the non-primary gots. */
11725 if (gg != NULL && gg->next)
11726 {
11727 Elf_Internal_Rela rel[3];
11728 bfd_vma addend = 0;
11729
11730 memset (rel, 0, sizeof (rel));
11731 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11732
11733 for (g = gg->next; g->next != gg; g = g->next)
11734 {
91d6fa6a 11735 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 11736 + g->next->tls_gotno;
f4416af6 11737
9719ad41 11738 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 11739 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
11740 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11741 sgot->contents
91d6fa6a 11742 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 11743
0e1862bb 11744 if (! bfd_link_pic (info))
f4416af6
AO
11745 continue;
11746
cb22ccf4 11747 for (; got_index < g->local_gotno; got_index++)
f4416af6 11748 {
cb22ccf4
KCY
11749 if (got_index >= g->assigned_low_gotno
11750 && got_index <= g->assigned_high_gotno)
11751 continue;
11752
f4416af6 11753 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 11754 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
11755 if (!(mips_elf_create_dynamic_relocation
11756 (output_bfd, info, rel, NULL,
11757 bfd_abs_section_ptr,
11758 0, &addend, sgot)))
11759 return FALSE;
11760 BFD_ASSERT (addend == 0);
11761 }
11762 }
11763 }
11764
3133ddbf
DJ
11765 /* The generation of dynamic relocations for the non-primary gots
11766 adds more dynamic relocations. We cannot count them until
11767 here. */
11768
11769 if (elf_hash_table (info)->dynamic_sections_created)
11770 {
11771 bfd_byte *b;
11772 bfd_boolean swap_out_p;
11773
11774 BFD_ASSERT (sdyn != NULL);
11775
11776 for (b = sdyn->contents;
11777 b < sdyn->contents + sdyn->size;
11778 b += MIPS_ELF_DYN_SIZE (dynobj))
11779 {
11780 Elf_Internal_Dyn dyn;
11781 asection *s;
11782
11783 /* Read in the current dynamic entry. */
11784 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11785
11786 /* Assume that we're going to modify it and write it out. */
11787 swap_out_p = TRUE;
11788
11789 switch (dyn.d_tag)
11790 {
11791 case DT_RELSZ:
11792 /* Reduce DT_RELSZ to account for any relocations we
11793 decided not to make. This is for the n64 irix rld,
11794 which doesn't seem to apply any relocations if there
11795 are trailing null entries. */
0a44bf69 11796 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
11797 dyn.d_un.d_val = (s->reloc_count
11798 * (ABI_64_P (output_bfd)
11799 ? sizeof (Elf64_Mips_External_Rel)
11800 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
11801 /* Adjust the section size too. Tools like the prelinker
11802 can reasonably expect the values to the same. */
11803 elf_section_data (s->output_section)->this_hdr.sh_size
11804 = dyn.d_un.d_val;
3133ddbf
DJ
11805 break;
11806
11807 default:
11808 swap_out_p = FALSE;
11809 break;
11810 }
11811
11812 if (swap_out_p)
11813 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11814 (dynobj, &dyn, b);
11815 }
11816 }
11817
b49e97c9 11818 {
b49e97c9
TS
11819 asection *s;
11820 Elf32_compact_rel cpt;
11821
b49e97c9
TS
11822 if (SGI_COMPAT (output_bfd))
11823 {
11824 /* Write .compact_rel section out. */
3d4d4302 11825 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
11826 if (s != NULL)
11827 {
11828 cpt.id1 = 1;
11829 cpt.num = s->reloc_count;
11830 cpt.id2 = 2;
11831 cpt.offset = (s->output_section->filepos
11832 + sizeof (Elf32_External_compact_rel));
11833 cpt.reserved0 = 0;
11834 cpt.reserved1 = 0;
11835 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11836 ((Elf32_External_compact_rel *)
11837 s->contents));
11838
11839 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 11840 if (htab->sstubs != NULL)
b49e97c9
TS
11841 {
11842 file_ptr dummy_offset;
11843
4e41d0d7
RS
11844 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11845 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11846 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 11847 htab->function_stub_size);
b49e97c9
TS
11848 }
11849 }
11850 }
11851
0a44bf69
RS
11852 /* The psABI says that the dynamic relocations must be sorted in
11853 increasing order of r_symndx. The VxWorks EABI doesn't require
11854 this, and because the code below handles REL rather than RELA
11855 relocations, using it for VxWorks would be outright harmful. */
11856 if (!htab->is_vxworks)
b49e97c9 11857 {
0a44bf69
RS
11858 s = mips_elf_rel_dyn_section (info, FALSE);
11859 if (s != NULL
11860 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11861 {
11862 reldyn_sorting_bfd = output_bfd;
b49e97c9 11863
0a44bf69
RS
11864 if (ABI_64_P (output_bfd))
11865 qsort ((Elf64_External_Rel *) s->contents + 1,
11866 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11867 sort_dynamic_relocs_64);
11868 else
11869 qsort ((Elf32_External_Rel *) s->contents + 1,
11870 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11871 sort_dynamic_relocs);
11872 }
b49e97c9 11873 }
b49e97c9
TS
11874 }
11875
ce558b89 11876 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 11877 {
861fb55a
DJ
11878 if (htab->is_vxworks)
11879 {
0e1862bb 11880 if (bfd_link_pic (info))
861fb55a
DJ
11881 mips_vxworks_finish_shared_plt (output_bfd, info);
11882 else
11883 mips_vxworks_finish_exec_plt (output_bfd, info);
11884 }
0a44bf69 11885 else
861fb55a 11886 {
0e1862bb 11887 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
11888 if (!mips_finish_exec_plt (output_bfd, info))
11889 return FALSE;
861fb55a 11890 }
0a44bf69 11891 }
b34976b6 11892 return TRUE;
b49e97c9
TS
11893}
11894
b49e97c9 11895
64543e1a
RS
11896/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11897
11898static void
9719ad41 11899mips_set_isa_flags (bfd *abfd)
b49e97c9 11900{
64543e1a 11901 flagword val;
b49e97c9
TS
11902
11903 switch (bfd_get_mach (abfd))
11904 {
11905 default:
11906 case bfd_mach_mips3000:
11907 val = E_MIPS_ARCH_1;
11908 break;
11909
11910 case bfd_mach_mips3900:
11911 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11912 break;
11913
11914 case bfd_mach_mips6000:
11915 val = E_MIPS_ARCH_2;
11916 break;
11917
b417536f
MR
11918 case bfd_mach_mips4010:
11919 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11920 break;
11921
b49e97c9
TS
11922 case bfd_mach_mips4000:
11923 case bfd_mach_mips4300:
11924 case bfd_mach_mips4400:
11925 case bfd_mach_mips4600:
11926 val = E_MIPS_ARCH_3;
11927 break;
11928
b49e97c9
TS
11929 case bfd_mach_mips4100:
11930 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11931 break;
11932
11933 case bfd_mach_mips4111:
11934 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11935 break;
11936
00707a0e
RS
11937 case bfd_mach_mips4120:
11938 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11939 break;
11940
b49e97c9
TS
11941 case bfd_mach_mips4650:
11942 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11943 break;
11944
00707a0e
RS
11945 case bfd_mach_mips5400:
11946 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11947 break;
11948
11949 case bfd_mach_mips5500:
11950 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11951 break;
11952
e407c74b
NC
11953 case bfd_mach_mips5900:
11954 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11955 break;
11956
0d2e43ed
ILT
11957 case bfd_mach_mips9000:
11958 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11959 break;
11960
b49e97c9 11961 case bfd_mach_mips5000:
5a7ea749 11962 case bfd_mach_mips7000:
b49e97c9
TS
11963 case bfd_mach_mips8000:
11964 case bfd_mach_mips10000:
11965 case bfd_mach_mips12000:
3aa3176b
TS
11966 case bfd_mach_mips14000:
11967 case bfd_mach_mips16000:
b49e97c9
TS
11968 val = E_MIPS_ARCH_4;
11969 break;
11970
11971 case bfd_mach_mips5:
11972 val = E_MIPS_ARCH_5;
11973 break;
11974
350cc38d
MS
11975 case bfd_mach_mips_loongson_2e:
11976 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11977 break;
11978
11979 case bfd_mach_mips_loongson_2f:
11980 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11981 break;
11982
b49e97c9
TS
11983 case bfd_mach_mips_sb1:
11984 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11985 break;
11986
d051516a 11987 case bfd_mach_mips_loongson_3a:
4ba154f5 11988 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
d051516a
NC
11989 break;
11990
6f179bd0 11991 case bfd_mach_mips_octeon:
dd6a37e7 11992 case bfd_mach_mips_octeonp:
6f179bd0
AN
11993 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11994 break;
11995
2c629856
N
11996 case bfd_mach_mips_octeon3:
11997 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11998 break;
11999
52b6b6b9
JM
12000 case bfd_mach_mips_xlr:
12001 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12002 break;
12003
432233b3
AP
12004 case bfd_mach_mips_octeon2:
12005 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12006 break;
12007
b49e97c9
TS
12008 case bfd_mach_mipsisa32:
12009 val = E_MIPS_ARCH_32;
12010 break;
12011
12012 case bfd_mach_mipsisa64:
12013 val = E_MIPS_ARCH_64;
af7ee8bf
CD
12014 break;
12015
12016 case bfd_mach_mipsisa32r2:
ae52f483
AB
12017 case bfd_mach_mipsisa32r3:
12018 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
12019 val = E_MIPS_ARCH_32R2;
12020 break;
5f74bc13 12021
38bf472a
MR
12022 case bfd_mach_mips_interaptiv_mr2:
12023 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12024 break;
12025
5f74bc13 12026 case bfd_mach_mipsisa64r2:
ae52f483
AB
12027 case bfd_mach_mipsisa64r3:
12028 case bfd_mach_mipsisa64r5:
5f74bc13
CD
12029 val = E_MIPS_ARCH_64R2;
12030 break;
7361da2c
AB
12031
12032 case bfd_mach_mipsisa32r6:
12033 val = E_MIPS_ARCH_32R6;
12034 break;
12035
12036 case bfd_mach_mipsisa64r6:
12037 val = E_MIPS_ARCH_64R6;
12038 break;
b49e97c9 12039 }
b49e97c9
TS
12040 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12041 elf_elfheader (abfd)->e_flags |= val;
12042
64543e1a
RS
12043}
12044
12045
28dbcedc
AM
12046/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12047 Don't do so for code sections. We want to keep ordering of HI16/LO16
12048 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12049 relocs to be sorted. */
12050
12051bfd_boolean
12052_bfd_mips_elf_sort_relocs_p (asection *sec)
12053{
12054 return (sec->flags & SEC_CODE) == 0;
12055}
12056
12057
64543e1a
RS
12058/* The final processing done just before writing out a MIPS ELF object
12059 file. This gets the MIPS architecture right based on the machine
12060 number. This is used by both the 32-bit and the 64-bit ABI. */
12061
12062void
9719ad41
RS
12063_bfd_mips_elf_final_write_processing (bfd *abfd,
12064 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
12065{
12066 unsigned int i;
12067 Elf_Internal_Shdr **hdrpp;
12068 const char *name;
12069 asection *sec;
12070
12071 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12072 is nonzero. This is for compatibility with old objects, which used
12073 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12074 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12075 mips_set_isa_flags (abfd);
12076
b49e97c9
TS
12077 /* Set the sh_info field for .gptab sections and other appropriate
12078 info for each special section. */
12079 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12080 i < elf_numsections (abfd);
12081 i++, hdrpp++)
12082 {
12083 switch ((*hdrpp)->sh_type)
12084 {
12085 case SHT_MIPS_MSYM:
12086 case SHT_MIPS_LIBLIST:
12087 sec = bfd_get_section_by_name (abfd, ".dynstr");
12088 if (sec != NULL)
12089 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12090 break;
12091
12092 case SHT_MIPS_GPTAB:
12093 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12094 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12095 BFD_ASSERT (name != NULL
0112cd26 12096 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12097 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12098 BFD_ASSERT (sec != NULL);
12099 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12100 break;
12101
12102 case SHT_MIPS_CONTENT:
12103 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12104 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12105 BFD_ASSERT (name != NULL
0112cd26 12106 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12107 sec = bfd_get_section_by_name (abfd,
12108 name + sizeof ".MIPS.content" - 1);
12109 BFD_ASSERT (sec != NULL);
12110 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12111 break;
12112
12113 case SHT_MIPS_SYMBOL_LIB:
12114 sec = bfd_get_section_by_name (abfd, ".dynsym");
12115 if (sec != NULL)
12116 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12117 sec = bfd_get_section_by_name (abfd, ".liblist");
12118 if (sec != NULL)
12119 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12120 break;
12121
12122 case SHT_MIPS_EVENTS:
12123 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12124 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12125 BFD_ASSERT (name != NULL);
0112cd26 12126 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12127 sec = bfd_get_section_by_name (abfd,
12128 name + sizeof ".MIPS.events" - 1);
12129 else
12130 {
0112cd26 12131 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12132 sec = bfd_get_section_by_name (abfd,
12133 (name
12134 + sizeof ".MIPS.post_rel" - 1));
12135 }
12136 BFD_ASSERT (sec != NULL);
12137 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12138 break;
12139
12140 }
12141 }
12142}
12143\f
8dc1a139 12144/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12145 segments. */
12146
12147int
a6b96beb
AM
12148_bfd_mips_elf_additional_program_headers (bfd *abfd,
12149 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12150{
12151 asection *s;
12152 int ret = 0;
12153
12154 /* See if we need a PT_MIPS_REGINFO segment. */
12155 s = bfd_get_section_by_name (abfd, ".reginfo");
12156 if (s && (s->flags & SEC_LOAD))
12157 ++ret;
12158
351cdf24
MF
12159 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12160 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12161 ++ret;
12162
b49e97c9
TS
12163 /* See if we need a PT_MIPS_OPTIONS segment. */
12164 if (IRIX_COMPAT (abfd) == ict_irix6
12165 && bfd_get_section_by_name (abfd,
12166 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12167 ++ret;
12168
12169 /* See if we need a PT_MIPS_RTPROC segment. */
12170 if (IRIX_COMPAT (abfd) == ict_irix5
12171 && bfd_get_section_by_name (abfd, ".dynamic")
12172 && bfd_get_section_by_name (abfd, ".mdebug"))
12173 ++ret;
12174
98c904a8
RS
12175 /* Allocate a PT_NULL header in dynamic objects. See
12176 _bfd_mips_elf_modify_segment_map for details. */
12177 if (!SGI_COMPAT (abfd)
12178 && bfd_get_section_by_name (abfd, ".dynamic"))
12179 ++ret;
12180
b49e97c9
TS
12181 return ret;
12182}
12183
8dc1a139 12184/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12185
b34976b6 12186bfd_boolean
9719ad41 12187_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12188 struct bfd_link_info *info)
b49e97c9
TS
12189{
12190 asection *s;
12191 struct elf_segment_map *m, **pm;
12192 bfd_size_type amt;
12193
12194 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12195 segment. */
12196 s = bfd_get_section_by_name (abfd, ".reginfo");
12197 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12198 {
12bd6957 12199 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12200 if (m->p_type == PT_MIPS_REGINFO)
12201 break;
12202 if (m == NULL)
12203 {
12204 amt = sizeof *m;
9719ad41 12205 m = bfd_zalloc (abfd, amt);
b49e97c9 12206 if (m == NULL)
b34976b6 12207 return FALSE;
b49e97c9
TS
12208
12209 m->p_type = PT_MIPS_REGINFO;
12210 m->count = 1;
12211 m->sections[0] = s;
12212
12213 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12214 pm = &elf_seg_map (abfd);
b49e97c9
TS
12215 while (*pm != NULL
12216 && ((*pm)->p_type == PT_PHDR
12217 || (*pm)->p_type == PT_INTERP))
12218 pm = &(*pm)->next;
12219
12220 m->next = *pm;
12221 *pm = m;
12222 }
12223 }
12224
351cdf24
MF
12225 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12226 segment. */
12227 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12228 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12229 {
12230 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12231 if (m->p_type == PT_MIPS_ABIFLAGS)
12232 break;
12233 if (m == NULL)
12234 {
12235 amt = sizeof *m;
12236 m = bfd_zalloc (abfd, amt);
12237 if (m == NULL)
12238 return FALSE;
12239
12240 m->p_type = PT_MIPS_ABIFLAGS;
12241 m->count = 1;
12242 m->sections[0] = s;
12243
12244 /* We want to put it after the PHDR and INTERP segments. */
12245 pm = &elf_seg_map (abfd);
12246 while (*pm != NULL
12247 && ((*pm)->p_type == PT_PHDR
12248 || (*pm)->p_type == PT_INTERP))
12249 pm = &(*pm)->next;
12250
12251 m->next = *pm;
12252 *pm = m;
12253 }
12254 }
12255
b49e97c9
TS
12256 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12257 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12258 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12259 table. */
c1fd6598
AO
12260 if (NEWABI_P (abfd)
12261 /* On non-IRIX6 new abi, we'll have already created a segment
12262 for this section, so don't create another. I'm not sure this
12263 is not also the case for IRIX 6, but I can't test it right
12264 now. */
12265 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12266 {
12267 for (s = abfd->sections; s; s = s->next)
12268 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12269 break;
12270
12271 if (s)
12272 {
12273 struct elf_segment_map *options_segment;
12274
12bd6957 12275 pm = &elf_seg_map (abfd);
98a8deaf
RS
12276 while (*pm != NULL
12277 && ((*pm)->p_type == PT_PHDR
12278 || (*pm)->p_type == PT_INTERP))
12279 pm = &(*pm)->next;
b49e97c9 12280
8ded5a0f
AM
12281 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12282 {
12283 amt = sizeof (struct elf_segment_map);
12284 options_segment = bfd_zalloc (abfd, amt);
12285 options_segment->next = *pm;
12286 options_segment->p_type = PT_MIPS_OPTIONS;
12287 options_segment->p_flags = PF_R;
12288 options_segment->p_flags_valid = TRUE;
12289 options_segment->count = 1;
12290 options_segment->sections[0] = s;
12291 *pm = options_segment;
12292 }
b49e97c9
TS
12293 }
12294 }
12295 else
12296 {
12297 if (IRIX_COMPAT (abfd) == ict_irix5)
12298 {
12299 /* If there are .dynamic and .mdebug sections, we make a room
12300 for the RTPROC header. FIXME: Rewrite without section names. */
12301 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12302 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12303 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12304 {
12bd6957 12305 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12306 if (m->p_type == PT_MIPS_RTPROC)
12307 break;
12308 if (m == NULL)
12309 {
12310 amt = sizeof *m;
9719ad41 12311 m = bfd_zalloc (abfd, amt);
b49e97c9 12312 if (m == NULL)
b34976b6 12313 return FALSE;
b49e97c9
TS
12314
12315 m->p_type = PT_MIPS_RTPROC;
12316
12317 s = bfd_get_section_by_name (abfd, ".rtproc");
12318 if (s == NULL)
12319 {
12320 m->count = 0;
12321 m->p_flags = 0;
12322 m->p_flags_valid = 1;
12323 }
12324 else
12325 {
12326 m->count = 1;
12327 m->sections[0] = s;
12328 }
12329
12330 /* We want to put it after the DYNAMIC segment. */
12bd6957 12331 pm = &elf_seg_map (abfd);
b49e97c9
TS
12332 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12333 pm = &(*pm)->next;
12334 if (*pm != NULL)
12335 pm = &(*pm)->next;
12336
12337 m->next = *pm;
12338 *pm = m;
12339 }
12340 }
12341 }
8dc1a139 12342 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12343 .dynstr, .dynsym, and .hash sections, and everything in
12344 between. */
12bd6957 12345 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12346 pm = &(*pm)->next)
12347 if ((*pm)->p_type == PT_DYNAMIC)
12348 break;
12349 m = *pm;
f6f62d6f
RS
12350 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12351 glibc's dynamic linker has traditionally derived the number of
12352 tags from the p_filesz field, and sometimes allocates stack
12353 arrays of that size. An overly-big PT_DYNAMIC segment can
12354 be actively harmful in such cases. Making PT_DYNAMIC contain
12355 other sections can also make life hard for the prelinker,
12356 which might move one of the other sections to a different
12357 PT_LOAD segment. */
12358 if (SGI_COMPAT (abfd)
12359 && m != NULL
12360 && m->count == 1
12361 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12362 {
12363 static const char *sec_names[] =
12364 {
12365 ".dynamic", ".dynstr", ".dynsym", ".hash"
12366 };
12367 bfd_vma low, high;
12368 unsigned int i, c;
12369 struct elf_segment_map *n;
12370
792b4a53 12371 low = ~(bfd_vma) 0;
b49e97c9
TS
12372 high = 0;
12373 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12374 {
12375 s = bfd_get_section_by_name (abfd, sec_names[i]);
12376 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12377 {
12378 bfd_size_type sz;
12379
12380 if (low > s->vma)
12381 low = s->vma;
eea6121a 12382 sz = s->size;
b49e97c9
TS
12383 if (high < s->vma + sz)
12384 high = s->vma + sz;
12385 }
12386 }
12387
12388 c = 0;
12389 for (s = abfd->sections; s != NULL; s = s->next)
12390 if ((s->flags & SEC_LOAD) != 0
12391 && s->vma >= low
eea6121a 12392 && s->vma + s->size <= high)
b49e97c9
TS
12393 ++c;
12394
12395 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12396 n = bfd_zalloc (abfd, amt);
b49e97c9 12397 if (n == NULL)
b34976b6 12398 return FALSE;
b49e97c9
TS
12399 *n = *m;
12400 n->count = c;
12401
12402 i = 0;
12403 for (s = abfd->sections; s != NULL; s = s->next)
12404 {
12405 if ((s->flags & SEC_LOAD) != 0
12406 && s->vma >= low
eea6121a 12407 && s->vma + s->size <= high)
b49e97c9
TS
12408 {
12409 n->sections[i] = s;
12410 ++i;
12411 }
12412 }
12413
12414 *pm = n;
12415 }
12416 }
12417
98c904a8
RS
12418 /* Allocate a spare program header in dynamic objects so that tools
12419 like the prelinker can add an extra PT_LOAD entry.
12420
12421 If the prelinker needs to make room for a new PT_LOAD entry, its
12422 standard procedure is to move the first (read-only) sections into
12423 the new (writable) segment. However, the MIPS ABI requires
12424 .dynamic to be in a read-only segment, and the section will often
12425 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12426
12427 Although the prelinker could in principle move .dynamic to a
12428 writable segment, it seems better to allocate a spare program
12429 header instead, and avoid the need to move any sections.
12430 There is a long tradition of allocating spare dynamic tags,
12431 so allocating a spare program header seems like a natural
7c8b76cc
JM
12432 extension.
12433
12434 If INFO is NULL, we may be copying an already prelinked binary
12435 with objcopy or strip, so do not add this header. */
12436 if (info != NULL
12437 && !SGI_COMPAT (abfd)
98c904a8
RS
12438 && bfd_get_section_by_name (abfd, ".dynamic"))
12439 {
12bd6957 12440 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12441 if ((*pm)->p_type == PT_NULL)
12442 break;
12443 if (*pm == NULL)
12444 {
12445 m = bfd_zalloc (abfd, sizeof (*m));
12446 if (m == NULL)
12447 return FALSE;
12448
12449 m->p_type = PT_NULL;
12450 *pm = m;
12451 }
12452 }
12453
b34976b6 12454 return TRUE;
b49e97c9
TS
12455}
12456\f
12457/* Return the section that should be marked against GC for a given
12458 relocation. */
12459
12460asection *
9719ad41 12461_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12462 struct bfd_link_info *info,
9719ad41
RS
12463 Elf_Internal_Rela *rel,
12464 struct elf_link_hash_entry *h,
12465 Elf_Internal_Sym *sym)
b49e97c9
TS
12466{
12467 /* ??? Do mips16 stub sections need to be handled special? */
12468
12469 if (h != NULL)
07adf181
AM
12470 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12471 {
12472 case R_MIPS_GNU_VTINHERIT:
12473 case R_MIPS_GNU_VTENTRY:
12474 return NULL;
12475 }
b49e97c9 12476
07adf181 12477 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12478}
12479
351cdf24
MF
12480/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12481
12482bfd_boolean
12483_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12484 elf_gc_mark_hook_fn gc_mark_hook)
12485{
12486 bfd *sub;
12487
12488 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12489
12490 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12491 {
12492 asection *o;
12493
12494 if (! is_mips_elf (sub))
12495 continue;
12496
12497 for (o = sub->sections; o != NULL; o = o->next)
12498 if (!o->gc_mark
12499 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12500 (bfd_get_section_name (sub, o)))
12501 {
12502 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12503 return FALSE;
12504 }
12505 }
12506
12507 return TRUE;
12508}
b49e97c9
TS
12509\f
12510/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12511 hiding the old indirect symbol. Process additional relocation
12512 information. Also called for weakdefs, in which case we just let
12513 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12514
12515void
fcfa13d2 12516_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12517 struct elf_link_hash_entry *dir,
12518 struct elf_link_hash_entry *ind)
b49e97c9
TS
12519{
12520 struct mips_elf_link_hash_entry *dirmips, *indmips;
12521
fcfa13d2 12522 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12523
861fb55a
DJ
12524 dirmips = (struct mips_elf_link_hash_entry *) dir;
12525 indmips = (struct mips_elf_link_hash_entry *) ind;
12526 /* Any absolute non-dynamic relocations against an indirect or weak
12527 definition will be against the target symbol. */
12528 if (indmips->has_static_relocs)
12529 dirmips->has_static_relocs = TRUE;
12530
b49e97c9
TS
12531 if (ind->root.type != bfd_link_hash_indirect)
12532 return;
12533
b49e97c9
TS
12534 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12535 if (indmips->readonly_reloc)
b34976b6 12536 dirmips->readonly_reloc = TRUE;
b49e97c9 12537 if (indmips->no_fn_stub)
b34976b6 12538 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12539 if (indmips->fn_stub)
12540 {
12541 dirmips->fn_stub = indmips->fn_stub;
12542 indmips->fn_stub = NULL;
12543 }
12544 if (indmips->need_fn_stub)
12545 {
12546 dirmips->need_fn_stub = TRUE;
12547 indmips->need_fn_stub = FALSE;
12548 }
12549 if (indmips->call_stub)
12550 {
12551 dirmips->call_stub = indmips->call_stub;
12552 indmips->call_stub = NULL;
12553 }
12554 if (indmips->call_fp_stub)
12555 {
12556 dirmips->call_fp_stub = indmips->call_fp_stub;
12557 indmips->call_fp_stub = NULL;
12558 }
634835ae
RS
12559 if (indmips->global_got_area < dirmips->global_got_area)
12560 dirmips->global_got_area = indmips->global_got_area;
12561 if (indmips->global_got_area < GGA_NONE)
12562 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12563 if (indmips->has_nonpic_branches)
12564 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12565}
b49e97c9 12566\f
d01414a5
TS
12567#define PDR_SIZE 32
12568
b34976b6 12569bfd_boolean
9719ad41
RS
12570_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12571 struct bfd_link_info *info)
d01414a5
TS
12572{
12573 asection *o;
b34976b6 12574 bfd_boolean ret = FALSE;
d01414a5
TS
12575 unsigned char *tdata;
12576 size_t i, skip;
12577
12578 o = bfd_get_section_by_name (abfd, ".pdr");
12579 if (! o)
b34976b6 12580 return FALSE;
eea6121a 12581 if (o->size == 0)
b34976b6 12582 return FALSE;
eea6121a 12583 if (o->size % PDR_SIZE != 0)
b34976b6 12584 return FALSE;
d01414a5
TS
12585 if (o->output_section != NULL
12586 && bfd_is_abs_section (o->output_section))
b34976b6 12587 return FALSE;
d01414a5 12588
eea6121a 12589 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12590 if (! tdata)
b34976b6 12591 return FALSE;
d01414a5 12592
9719ad41 12593 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12594 info->keep_memory);
d01414a5
TS
12595 if (!cookie->rels)
12596 {
12597 free (tdata);
b34976b6 12598 return FALSE;
d01414a5
TS
12599 }
12600
12601 cookie->rel = cookie->rels;
12602 cookie->relend = cookie->rels + o->reloc_count;
12603
eea6121a 12604 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12605 {
c152c796 12606 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12607 {
12608 tdata[i] = 1;
12609 skip ++;
12610 }
12611 }
12612
12613 if (skip != 0)
12614 {
f0abc2a1 12615 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12616 if (o->rawsize == 0)
12617 o->rawsize = o->size;
eea6121a 12618 o->size -= skip * PDR_SIZE;
b34976b6 12619 ret = TRUE;
d01414a5
TS
12620 }
12621 else
12622 free (tdata);
12623
12624 if (! info->keep_memory)
12625 free (cookie->rels);
12626
12627 return ret;
12628}
12629
b34976b6 12630bfd_boolean
9719ad41 12631_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12632{
12633 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12634 return TRUE;
12635 return FALSE;
53bfd6b4 12636}
d01414a5 12637
b34976b6 12638bfd_boolean
c7b8f16e
JB
12639_bfd_mips_elf_write_section (bfd *output_bfd,
12640 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
07d6d2b8 12641 asection *sec, bfd_byte *contents)
d01414a5
TS
12642{
12643 bfd_byte *to, *from, *end;
12644 int i;
12645
12646 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12647 return FALSE;
d01414a5 12648
f0abc2a1 12649 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12650 return FALSE;
d01414a5
TS
12651
12652 to = contents;
eea6121a 12653 end = contents + sec->size;
d01414a5
TS
12654 for (from = contents, i = 0;
12655 from < end;
12656 from += PDR_SIZE, i++)
12657 {
f0abc2a1 12658 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12659 continue;
12660 if (to != from)
12661 memcpy (to, from, PDR_SIZE);
12662 to += PDR_SIZE;
12663 }
12664 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12665 sec->output_offset, sec->size);
b34976b6 12666 return TRUE;
d01414a5 12667}
53bfd6b4 12668\f
df58fc94
RS
12669/* microMIPS code retains local labels for linker relaxation. Omit them
12670 from output by default for clarity. */
12671
12672bfd_boolean
12673_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12674{
12675 return _bfd_elf_is_local_label_name (abfd, sym->name);
12676}
12677
b49e97c9
TS
12678/* MIPS ELF uses a special find_nearest_line routine in order the
12679 handle the ECOFF debugging information. */
12680
12681struct mips_elf_find_line
12682{
12683 struct ecoff_debug_info d;
12684 struct ecoff_find_line i;
12685};
12686
b34976b6 12687bfd_boolean
fb167eb2
AM
12688_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12689 asection *section, bfd_vma offset,
9719ad41
RS
12690 const char **filename_ptr,
12691 const char **functionname_ptr,
fb167eb2
AM
12692 unsigned int *line_ptr,
12693 unsigned int *discriminator_ptr)
b49e97c9
TS
12694{
12695 asection *msec;
12696
fb167eb2 12697 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 12698 filename_ptr, functionname_ptr,
fb167eb2
AM
12699 line_ptr, discriminator_ptr,
12700 dwarf_debug_sections,
12701 ABI_64_P (abfd) ? 8 : 0,
46d09186
NC
12702 &elf_tdata (abfd)->dwarf2_find_line_info)
12703 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12704 filename_ptr, functionname_ptr,
12705 line_ptr))
12706 {
12707 /* PR 22789: If the function name or filename was not found through
12708 the debug information, then try an ordinary lookup instead. */
12709 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12710 || (filename_ptr != NULL && *filename_ptr == NULL))
12711 {
12712 /* Do not override already discovered names. */
12713 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12714 functionname_ptr = NULL;
b49e97c9 12715
46d09186
NC
12716 if (filename_ptr != NULL && *filename_ptr != NULL)
12717 filename_ptr = NULL;
12718
12719 _bfd_elf_find_function (abfd, symbols, section, offset,
12720 filename_ptr, functionname_ptr);
12721 }
12722
12723 return TRUE;
12724 }
b49e97c9
TS
12725
12726 msec = bfd_get_section_by_name (abfd, ".mdebug");
12727 if (msec != NULL)
12728 {
12729 flagword origflags;
12730 struct mips_elf_find_line *fi;
12731 const struct ecoff_debug_swap * const swap =
12732 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12733
12734 /* If we are called during a link, mips_elf_final_link may have
12735 cleared the SEC_HAS_CONTENTS field. We force it back on here
12736 if appropriate (which it normally will be). */
12737 origflags = msec->flags;
12738 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12739 msec->flags |= SEC_HAS_CONTENTS;
12740
698600e4 12741 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
12742 if (fi == NULL)
12743 {
12744 bfd_size_type external_fdr_size;
12745 char *fraw_src;
12746 char *fraw_end;
12747 struct fdr *fdr_ptr;
12748 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12749
9719ad41 12750 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
12751 if (fi == NULL)
12752 {
12753 msec->flags = origflags;
b34976b6 12754 return FALSE;
b49e97c9
TS
12755 }
12756
12757 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12758 {
12759 msec->flags = origflags;
b34976b6 12760 return FALSE;
b49e97c9
TS
12761 }
12762
12763 /* Swap in the FDR information. */
12764 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 12765 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
12766 if (fi->d.fdr == NULL)
12767 {
12768 msec->flags = origflags;
b34976b6 12769 return FALSE;
b49e97c9
TS
12770 }
12771 external_fdr_size = swap->external_fdr_size;
12772 fdr_ptr = fi->d.fdr;
12773 fraw_src = (char *) fi->d.external_fdr;
12774 fraw_end = (fraw_src
12775 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12776 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 12777 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 12778
698600e4 12779 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
12780
12781 /* Note that we don't bother to ever free this information.
07d6d2b8
AM
12782 find_nearest_line is either called all the time, as in
12783 objdump -l, so the information should be saved, or it is
12784 rarely called, as in ld error messages, so the memory
12785 wasted is unimportant. Still, it would probably be a
12786 good idea for free_cached_info to throw it away. */
b49e97c9
TS
12787 }
12788
12789 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12790 &fi->i, filename_ptr, functionname_ptr,
12791 line_ptr))
12792 {
12793 msec->flags = origflags;
b34976b6 12794 return TRUE;
b49e97c9
TS
12795 }
12796
12797 msec->flags = origflags;
12798 }
12799
12800 /* Fall back on the generic ELF find_nearest_line routine. */
12801
fb167eb2 12802 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12803 filename_ptr, functionname_ptr,
fb167eb2 12804 line_ptr, discriminator_ptr);
b49e97c9 12805}
4ab527b0
FF
12806
12807bfd_boolean
12808_bfd_mips_elf_find_inliner_info (bfd *abfd,
12809 const char **filename_ptr,
12810 const char **functionname_ptr,
12811 unsigned int *line_ptr)
12812{
12813 bfd_boolean found;
12814 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12815 functionname_ptr, line_ptr,
12816 & elf_tdata (abfd)->dwarf2_find_line_info);
12817 return found;
12818}
12819
b49e97c9
TS
12820\f
12821/* When are writing out the .options or .MIPS.options section,
12822 remember the bytes we are writing out, so that we can install the
12823 GP value in the section_processing routine. */
12824
b34976b6 12825bfd_boolean
9719ad41
RS
12826_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12827 const void *location,
12828 file_ptr offset, bfd_size_type count)
b49e97c9 12829{
cc2e31b9 12830 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
12831 {
12832 bfd_byte *c;
12833
12834 if (elf_section_data (section) == NULL)
12835 {
12836 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 12837 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 12838 if (elf_section_data (section) == NULL)
b34976b6 12839 return FALSE;
b49e97c9 12840 }
f0abc2a1 12841 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
12842 if (c == NULL)
12843 {
eea6121a 12844 c = bfd_zalloc (abfd, section->size);
b49e97c9 12845 if (c == NULL)
b34976b6 12846 return FALSE;
f0abc2a1 12847 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
12848 }
12849
9719ad41 12850 memcpy (c + offset, location, count);
b49e97c9
TS
12851 }
12852
12853 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12854 count);
12855}
12856
12857/* This is almost identical to bfd_generic_get_... except that some
12858 MIPS relocations need to be handled specially. Sigh. */
12859
12860bfd_byte *
9719ad41
RS
12861_bfd_elf_mips_get_relocated_section_contents
12862 (bfd *abfd,
12863 struct bfd_link_info *link_info,
12864 struct bfd_link_order *link_order,
12865 bfd_byte *data,
12866 bfd_boolean relocatable,
12867 asymbol **symbols)
b49e97c9
TS
12868{
12869 /* Get enough memory to hold the stuff */
12870 bfd *input_bfd = link_order->u.indirect.section->owner;
12871 asection *input_section = link_order->u.indirect.section;
eea6121a 12872 bfd_size_type sz;
b49e97c9
TS
12873
12874 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12875 arelent **reloc_vector = NULL;
12876 long reloc_count;
12877
12878 if (reloc_size < 0)
12879 goto error_return;
12880
9719ad41 12881 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
12882 if (reloc_vector == NULL && reloc_size != 0)
12883 goto error_return;
12884
12885 /* read in the section */
eea6121a
AM
12886 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12887 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
12888 goto error_return;
12889
b49e97c9
TS
12890 reloc_count = bfd_canonicalize_reloc (input_bfd,
12891 input_section,
12892 reloc_vector,
12893 symbols);
12894 if (reloc_count < 0)
12895 goto error_return;
12896
12897 if (reloc_count > 0)
12898 {
12899 arelent **parent;
12900 /* for mips */
12901 int gp_found;
12902 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12903
12904 {
12905 struct bfd_hash_entry *h;
12906 struct bfd_link_hash_entry *lh;
12907 /* Skip all this stuff if we aren't mixing formats. */
12908 if (abfd && input_bfd
12909 && abfd->xvec == input_bfd->xvec)
12910 lh = 0;
12911 else
12912 {
b34976b6 12913 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
12914 lh = (struct bfd_link_hash_entry *) h;
12915 }
12916 lookup:
12917 if (lh)
12918 {
12919 switch (lh->type)
12920 {
12921 case bfd_link_hash_undefined:
12922 case bfd_link_hash_undefweak:
12923 case bfd_link_hash_common:
12924 gp_found = 0;
12925 break;
12926 case bfd_link_hash_defined:
12927 case bfd_link_hash_defweak:
12928 gp_found = 1;
12929 gp = lh->u.def.value;
12930 break;
12931 case bfd_link_hash_indirect:
12932 case bfd_link_hash_warning:
12933 lh = lh->u.i.link;
12934 /* @@FIXME ignoring warning for now */
12935 goto lookup;
12936 case bfd_link_hash_new:
12937 default:
12938 abort ();
12939 }
12940 }
12941 else
12942 gp_found = 0;
12943 }
12944 /* end mips */
9719ad41 12945 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 12946 {
9719ad41 12947 char *error_message = NULL;
b49e97c9
TS
12948 bfd_reloc_status_type r;
12949
12950 /* Specific to MIPS: Deal with relocation types that require
12951 knowing the gp of the output bfd. */
12952 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 12953
8236346f
EC
12954 /* If we've managed to find the gp and have a special
12955 function for the relocation then go ahead, else default
12956 to the generic handling. */
12957 if (gp_found
12958 && (*parent)->howto->special_function
12959 == _bfd_mips_elf32_gprel16_reloc)
12960 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12961 input_section, relocatable,
12962 data, gp);
12963 else
86324f90 12964 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
12965 input_section,
12966 relocatable ? abfd : NULL,
12967 &error_message);
b49e97c9 12968
1049f94e 12969 if (relocatable)
b49e97c9
TS
12970 {
12971 asection *os = input_section->output_section;
12972
12973 /* A partial link, so keep the relocs */
12974 os->orelocation[os->reloc_count] = *parent;
12975 os->reloc_count++;
12976 }
12977
12978 if (r != bfd_reloc_ok)
12979 {
12980 switch (r)
12981 {
12982 case bfd_reloc_undefined:
1a72702b
AM
12983 (*link_info->callbacks->undefined_symbol)
12984 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12985 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
12986 break;
12987 case bfd_reloc_dangerous:
9719ad41 12988 BFD_ASSERT (error_message != NULL);
1a72702b
AM
12989 (*link_info->callbacks->reloc_dangerous)
12990 (link_info, error_message,
12991 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
12992 break;
12993 case bfd_reloc_overflow:
1a72702b
AM
12994 (*link_info->callbacks->reloc_overflow)
12995 (link_info, NULL,
12996 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12997 (*parent)->howto->name, (*parent)->addend,
12998 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
12999 break;
13000 case bfd_reloc_outofrange:
13001 default:
13002 abort ();
13003 break;
13004 }
13005
13006 }
13007 }
13008 }
13009 if (reloc_vector != NULL)
13010 free (reloc_vector);
13011 return data;
13012
13013error_return:
13014 if (reloc_vector != NULL)
13015 free (reloc_vector);
13016 return NULL;
13017}
13018\f
df58fc94
RS
13019static bfd_boolean
13020mips_elf_relax_delete_bytes (bfd *abfd,
13021 asection *sec, bfd_vma addr, int count)
13022{
13023 Elf_Internal_Shdr *symtab_hdr;
13024 unsigned int sec_shndx;
13025 bfd_byte *contents;
13026 Elf_Internal_Rela *irel, *irelend;
13027 Elf_Internal_Sym *isym;
13028 Elf_Internal_Sym *isymend;
13029 struct elf_link_hash_entry **sym_hashes;
13030 struct elf_link_hash_entry **end_hashes;
13031 struct elf_link_hash_entry **start_hashes;
13032 unsigned int symcount;
13033
13034 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13035 contents = elf_section_data (sec)->this_hdr.contents;
13036
13037 irel = elf_section_data (sec)->relocs;
13038 irelend = irel + sec->reloc_count;
13039
13040 /* Actually delete the bytes. */
13041 memmove (contents + addr, contents + addr + count,
13042 (size_t) (sec->size - addr - count));
13043 sec->size -= count;
13044
13045 /* Adjust all the relocs. */
13046 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13047 {
13048 /* Get the new reloc address. */
13049 if (irel->r_offset > addr)
13050 irel->r_offset -= count;
13051 }
13052
13053 BFD_ASSERT (addr % 2 == 0);
13054 BFD_ASSERT (count % 2 == 0);
13055
13056 /* Adjust the local symbols defined in this section. */
13057 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13058 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13059 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13060 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13061 isym->st_value -= count;
13062
13063 /* Now adjust the global symbols defined in this section. */
13064 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13065 - symtab_hdr->sh_info);
13066 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13067 end_hashes = sym_hashes + symcount;
13068
13069 for (; sym_hashes < end_hashes; sym_hashes++)
13070 {
13071 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13072
13073 if ((sym_hash->root.type == bfd_link_hash_defined
13074 || sym_hash->root.type == bfd_link_hash_defweak)
13075 && sym_hash->root.u.def.section == sec)
13076 {
2309ddf2 13077 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13078
df58fc94
RS
13079 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13080 value &= MINUS_TWO;
13081 if (value > addr)
13082 sym_hash->root.u.def.value -= count;
13083 }
13084 }
13085
13086 return TRUE;
13087}
13088
13089
13090/* Opcodes needed for microMIPS relaxation as found in
13091 opcodes/micromips-opc.c. */
13092
13093struct opcode_descriptor {
13094 unsigned long match;
13095 unsigned long mask;
13096};
13097
13098/* The $ra register aka $31. */
13099
13100#define RA 31
13101
13102/* 32-bit instruction format register fields. */
13103
13104#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13105#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13106
13107/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13108
13109#define OP16_VALID_REG(r) \
13110 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13111
13112
13113/* 32-bit and 16-bit branches. */
13114
13115static const struct opcode_descriptor b_insns_32[] = {
13116 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13117 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13118 { 0, 0 } /* End marker for find_match(). */
13119};
13120
13121static const struct opcode_descriptor bc_insn_32 =
13122 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13123
13124static const struct opcode_descriptor bz_insn_32 =
13125 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13126
13127static const struct opcode_descriptor bzal_insn_32 =
13128 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13129
13130static const struct opcode_descriptor beq_insn_32 =
13131 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13132
13133static const struct opcode_descriptor b_insn_16 =
13134 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13135
13136static const struct opcode_descriptor bz_insn_16 =
c088dedf 13137 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13138
13139
13140/* 32-bit and 16-bit branch EQ and NE zero. */
13141
13142/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13143 eq and second the ne. This convention is used when replacing a
13144 32-bit BEQ/BNE with the 16-bit version. */
13145
13146#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13147
13148static const struct opcode_descriptor bz_rs_insns_32[] = {
13149 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13150 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13151 { 0, 0 } /* End marker for find_match(). */
13152};
13153
13154static const struct opcode_descriptor bz_rt_insns_32[] = {
13155 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13156 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13157 { 0, 0 } /* End marker for find_match(). */
13158};
13159
13160static const struct opcode_descriptor bzc_insns_32[] = {
13161 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13162 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13163 { 0, 0 } /* End marker for find_match(). */
13164};
13165
13166static const struct opcode_descriptor bz_insns_16[] = {
13167 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13168 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13169 { 0, 0 } /* End marker for find_match(). */
13170};
13171
13172/* Switch between a 5-bit register index and its 3-bit shorthand. */
13173
e67f83e5 13174#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13175#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13176
13177
13178/* 32-bit instructions with a delay slot. */
13179
13180static const struct opcode_descriptor jal_insn_32_bd16 =
13181 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13182
13183static const struct opcode_descriptor jal_insn_32_bd32 =
13184 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13185
13186static const struct opcode_descriptor jal_x_insn_32_bd32 =
13187 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13188
13189static const struct opcode_descriptor j_insn_32 =
13190 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13191
13192static const struct opcode_descriptor jalr_insn_32 =
13193 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13194
13195/* This table can be compacted, because no opcode replacement is made. */
13196
13197static const struct opcode_descriptor ds_insns_32_bd16[] = {
13198 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13199
13200 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13201 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13202
13203 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13204 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13205 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13206 { 0, 0 } /* End marker for find_match(). */
13207};
13208
13209/* This table can be compacted, because no opcode replacement is made. */
13210
13211static const struct opcode_descriptor ds_insns_32_bd32[] = {
13212 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13213
13214 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13215 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13216 { 0, 0 } /* End marker for find_match(). */
13217};
13218
13219
13220/* 16-bit instructions with a delay slot. */
13221
13222static const struct opcode_descriptor jalr_insn_16_bd16 =
13223 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13224
13225static const struct opcode_descriptor jalr_insn_16_bd32 =
13226 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13227
13228static const struct opcode_descriptor jr_insn_16 =
13229 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13230
13231#define JR16_REG(opcode) ((opcode) & 0x1f)
13232
13233/* This table can be compacted, because no opcode replacement is made. */
13234
13235static const struct opcode_descriptor ds_insns_16_bd16[] = {
13236 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13237
13238 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13239 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13240 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13241 { 0, 0 } /* End marker for find_match(). */
13242};
13243
13244
13245/* LUI instruction. */
13246
13247static const struct opcode_descriptor lui_insn =
13248 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13249
13250
13251/* ADDIU instruction. */
13252
13253static const struct opcode_descriptor addiu_insn =
13254 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13255
13256static const struct opcode_descriptor addiupc_insn =
13257 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13258
13259#define ADDIUPC_REG_FIELD(r) \
13260 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13261
13262
13263/* Relaxable instructions in a JAL delay slot: MOVE. */
13264
13265/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13266 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13267#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13268#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13269
13270#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13271#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13272
13273static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13274 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13275 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13276 { 0, 0 } /* End marker for find_match(). */
13277};
13278
13279static const struct opcode_descriptor move_insn_16 =
13280 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13281
13282
13283/* NOP instructions. */
13284
13285static const struct opcode_descriptor nop_insn_32 =
13286 { /* "nop", "", */ 0x00000000, 0xffffffff };
13287
13288static const struct opcode_descriptor nop_insn_16 =
13289 { /* "nop", "", */ 0x0c00, 0xffff };
13290
13291
13292/* Instruction match support. */
13293
13294#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13295
13296static int
13297find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13298{
13299 unsigned long indx;
13300
13301 for (indx = 0; insn[indx].mask != 0; indx++)
13302 if (MATCH (opcode, insn[indx]))
13303 return indx;
13304
13305 return -1;
13306}
13307
13308
13309/* Branch and delay slot decoding support. */
13310
13311/* If PTR points to what *might* be a 16-bit branch or jump, then
13312 return the minimum length of its delay slot, otherwise return 0.
13313 Non-zero results are not definitive as we might be checking against
13314 the second half of another instruction. */
13315
13316static int
13317check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13318{
13319 unsigned long opcode;
13320 int bdsize;
13321
13322 opcode = bfd_get_16 (abfd, ptr);
13323 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13324 /* 16-bit branch/jump with a 32-bit delay slot. */
13325 bdsize = 4;
13326 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13327 || find_match (opcode, ds_insns_16_bd16) >= 0)
13328 /* 16-bit branch/jump with a 16-bit delay slot. */
13329 bdsize = 2;
13330 else
13331 /* No delay slot. */
13332 bdsize = 0;
13333
13334 return bdsize;
13335}
13336
13337/* If PTR points to what *might* be a 32-bit branch or jump, then
13338 return the minimum length of its delay slot, otherwise return 0.
13339 Non-zero results are not definitive as we might be checking against
13340 the second half of another instruction. */
13341
13342static int
13343check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13344{
13345 unsigned long opcode;
13346 int bdsize;
13347
d21911ea 13348 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13349 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13350 /* 32-bit branch/jump with a 32-bit delay slot. */
13351 bdsize = 4;
13352 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13353 /* 32-bit branch/jump with a 16-bit delay slot. */
13354 bdsize = 2;
13355 else
13356 /* No delay slot. */
13357 bdsize = 0;
13358
13359 return bdsize;
13360}
13361
13362/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13363 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13364
13365static bfd_boolean
13366check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13367{
13368 unsigned long opcode;
13369
13370 opcode = bfd_get_16 (abfd, ptr);
13371 if (MATCH (opcode, b_insn_16)
13372 /* B16 */
13373 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13374 /* JR16 */
13375 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13376 /* BEQZ16, BNEZ16 */
13377 || (MATCH (opcode, jalr_insn_16_bd32)
13378 /* JALR16 */
13379 && reg != JR16_REG (opcode) && reg != RA))
13380 return TRUE;
13381
13382 return FALSE;
13383}
13384
13385/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13386 then return TRUE, otherwise FALSE. */
13387
f41e5fcc 13388static bfd_boolean
df58fc94
RS
13389check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13390{
13391 unsigned long opcode;
13392
d21911ea 13393 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13394 if (MATCH (opcode, j_insn_32)
13395 /* J */
13396 || MATCH (opcode, bc_insn_32)
13397 /* BC1F, BC1T, BC2F, BC2T */
13398 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13399 /* JAL, JALX */
13400 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13401 /* BGEZ, BGTZ, BLEZ, BLTZ */
13402 || (MATCH (opcode, bzal_insn_32)
13403 /* BGEZAL, BLTZAL */
13404 && reg != OP32_SREG (opcode) && reg != RA)
13405 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13406 /* JALR, JALR.HB, BEQ, BNE */
13407 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13408 return TRUE;
13409
13410 return FALSE;
13411}
13412
80cab405
MR
13413/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13414 IRELEND) at OFFSET indicate that there must be a compact branch there,
13415 then return TRUE, otherwise FALSE. */
df58fc94
RS
13416
13417static bfd_boolean
80cab405
MR
13418check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13419 const Elf_Internal_Rela *internal_relocs,
13420 const Elf_Internal_Rela *irelend)
df58fc94 13421{
80cab405
MR
13422 const Elf_Internal_Rela *irel;
13423 unsigned long opcode;
13424
d21911ea 13425 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13426 if (find_match (opcode, bzc_insns_32) < 0)
13427 return FALSE;
df58fc94
RS
13428
13429 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13430 if (irel->r_offset == offset
13431 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13432 return TRUE;
13433
df58fc94
RS
13434 return FALSE;
13435}
80cab405
MR
13436
13437/* Bitsize checking. */
13438#define IS_BITSIZE(val, N) \
13439 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13440 - (1ULL << ((N) - 1))) == (val))
13441
df58fc94
RS
13442\f
13443bfd_boolean
13444_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13445 struct bfd_link_info *link_info,
13446 bfd_boolean *again)
13447{
833794fc 13448 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13449 Elf_Internal_Shdr *symtab_hdr;
13450 Elf_Internal_Rela *internal_relocs;
13451 Elf_Internal_Rela *irel, *irelend;
13452 bfd_byte *contents = NULL;
13453 Elf_Internal_Sym *isymbuf = NULL;
13454
13455 /* Assume nothing changes. */
13456 *again = FALSE;
13457
13458 /* We don't have to do anything for a relocatable link, if
13459 this section does not have relocs, or if this is not a
13460 code section. */
13461
0e1862bb 13462 if (bfd_link_relocatable (link_info)
df58fc94
RS
13463 || (sec->flags & SEC_RELOC) == 0
13464 || sec->reloc_count == 0
13465 || (sec->flags & SEC_CODE) == 0)
13466 return TRUE;
13467
13468 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13469
13470 /* Get a copy of the native relocations. */
13471 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13472 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13473 link_info->keep_memory));
13474 if (internal_relocs == NULL)
13475 goto error_return;
13476
13477 /* Walk through them looking for relaxing opportunities. */
13478 irelend = internal_relocs + sec->reloc_count;
13479 for (irel = internal_relocs; irel < irelend; irel++)
13480 {
13481 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13482 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13483 bfd_boolean target_is_micromips_code_p;
13484 unsigned long opcode;
13485 bfd_vma symval;
13486 bfd_vma pcrval;
2309ddf2 13487 bfd_byte *ptr;
df58fc94
RS
13488 int fndopc;
13489
13490 /* The number of bytes to delete for relaxation and from where
07d6d2b8 13491 to delete these bytes starting at irel->r_offset. */
df58fc94
RS
13492 int delcnt = 0;
13493 int deloff = 0;
13494
13495 /* If this isn't something that can be relaxed, then ignore
07d6d2b8 13496 this reloc. */
df58fc94
RS
13497 if (r_type != R_MICROMIPS_HI16
13498 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13499 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13500 continue;
13501
13502 /* Get the section contents if we haven't done so already. */
13503 if (contents == NULL)
13504 {
13505 /* Get cached copy if it exists. */
13506 if (elf_section_data (sec)->this_hdr.contents != NULL)
13507 contents = elf_section_data (sec)->this_hdr.contents;
13508 /* Go get them off disk. */
13509 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13510 goto error_return;
13511 }
2309ddf2 13512 ptr = contents + irel->r_offset;
df58fc94
RS
13513
13514 /* Read this BFD's local symbols if we haven't done so already. */
13515 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13516 {
13517 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13518 if (isymbuf == NULL)
13519 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13520 symtab_hdr->sh_info, 0,
13521 NULL, NULL, NULL);
13522 if (isymbuf == NULL)
13523 goto error_return;
13524 }
13525
13526 /* Get the value of the symbol referred to by the reloc. */
13527 if (r_symndx < symtab_hdr->sh_info)
13528 {
13529 /* A local symbol. */
13530 Elf_Internal_Sym *isym;
13531 asection *sym_sec;
13532
13533 isym = isymbuf + r_symndx;
13534 if (isym->st_shndx == SHN_UNDEF)
13535 sym_sec = bfd_und_section_ptr;
13536 else if (isym->st_shndx == SHN_ABS)
13537 sym_sec = bfd_abs_section_ptr;
13538 else if (isym->st_shndx == SHN_COMMON)
13539 sym_sec = bfd_com_section_ptr;
13540 else
13541 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13542 symval = (isym->st_value
13543 + sym_sec->output_section->vma
13544 + sym_sec->output_offset);
13545 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13546 }
13547 else
13548 {
13549 unsigned long indx;
13550 struct elf_link_hash_entry *h;
13551
13552 /* An external symbol. */
13553 indx = r_symndx - symtab_hdr->sh_info;
13554 h = elf_sym_hashes (abfd)[indx];
13555 BFD_ASSERT (h != NULL);
13556
13557 if (h->root.type != bfd_link_hash_defined
13558 && h->root.type != bfd_link_hash_defweak)
13559 /* This appears to be a reference to an undefined
13560 symbol. Just ignore it -- it will be caught by the
13561 regular reloc processing. */
13562 continue;
13563
13564 symval = (h->root.u.def.value
13565 + h->root.u.def.section->output_section->vma
13566 + h->root.u.def.section->output_offset);
13567 target_is_micromips_code_p = (!h->needs_plt
13568 && ELF_ST_IS_MICROMIPS (h->other));
13569 }
13570
13571
13572 /* For simplicity of coding, we are going to modify the
07d6d2b8
AM
13573 section contents, the section relocs, and the BFD symbol
13574 table. We must tell the rest of the code not to free up this
13575 information. It would be possible to instead create a table
13576 of changes which have to be made, as is done in coff-mips.c;
13577 that would be more work, but would require less memory when
13578 the linker is run. */
df58fc94
RS
13579
13580 /* Only 32-bit instructions relaxed. */
13581 if (irel->r_offset + 4 > sec->size)
13582 continue;
13583
d21911ea 13584 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13585
13586 /* This is the pc-relative distance from the instruction the
07d6d2b8 13587 relocation is applied to, to the symbol referred. */
df58fc94
RS
13588 pcrval = (symval
13589 - (sec->output_section->vma + sec->output_offset)
13590 - irel->r_offset);
13591
13592 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
07d6d2b8
AM
13593 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13594 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
df58fc94 13595
07d6d2b8 13596 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
df58fc94 13597
07d6d2b8
AM
13598 where pcrval has first to be adjusted to apply against the LO16
13599 location (we make the adjustment later on, when we have figured
13600 out the offset). */
df58fc94
RS
13601 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13602 {
80cab405 13603 bfd_boolean bzc = FALSE;
df58fc94
RS
13604 unsigned long nextopc;
13605 unsigned long reg;
13606 bfd_vma offset;
13607
13608 /* Give up if the previous reloc was a HI16 against this symbol
13609 too. */
13610 if (irel > internal_relocs
13611 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13612 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13613 continue;
13614
13615 /* Or if the next reloc is not a LO16 against this symbol. */
13616 if (irel + 1 >= irelend
13617 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13618 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13619 continue;
13620
13621 /* Or if the second next reloc is a LO16 against this symbol too. */
13622 if (irel + 2 >= irelend
13623 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13624 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13625 continue;
13626
80cab405
MR
13627 /* See if the LUI instruction *might* be in a branch delay slot.
13628 We check whether what looks like a 16-bit branch or jump is
13629 actually an immediate argument to a compact branch, and let
13630 it through if so. */
df58fc94 13631 if (irel->r_offset >= 2
2309ddf2 13632 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13633 && !(irel->r_offset >= 4
80cab405
MR
13634 && (bzc = check_relocated_bzc (abfd,
13635 ptr - 4, irel->r_offset - 4,
13636 internal_relocs, irelend))))
df58fc94
RS
13637 continue;
13638 if (irel->r_offset >= 4
80cab405 13639 && !bzc
2309ddf2 13640 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13641 continue;
13642
13643 reg = OP32_SREG (opcode);
13644
13645 /* We only relax adjacent instructions or ones separated with
13646 a branch or jump that has a delay slot. The branch or jump
13647 must not fiddle with the register used to hold the address.
13648 Subtract 4 for the LUI itself. */
13649 offset = irel[1].r_offset - irel[0].r_offset;
13650 switch (offset - 4)
13651 {
13652 case 0:
13653 break;
13654 case 2:
2309ddf2 13655 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13656 break;
13657 continue;
13658 case 4:
2309ddf2 13659 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13660 break;
13661 continue;
13662 default:
13663 continue;
13664 }
13665
d21911ea 13666 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13667
13668 /* Give up unless the same register is used with both
13669 relocations. */
13670 if (OP32_SREG (nextopc) != reg)
13671 continue;
13672
13673 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13674 and rounding up to take masking of the two LSBs into account. */
13675 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13676
13677 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13678 if (IS_BITSIZE (symval, 16))
13679 {
13680 /* Fix the relocation's type. */
13681 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13682
13683 /* Instructions using R_MICROMIPS_LO16 have the base or
07d6d2b8
AM
13684 source register in bits 20:16. This register becomes $0
13685 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
df58fc94
RS
13686 nextopc &= ~0x001f0000;
13687 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13688 contents + irel[1].r_offset);
13689 }
13690
13691 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13692 We add 4 to take LUI deletion into account while checking
13693 the PC-relative distance. */
13694 else if (symval % 4 == 0
13695 && IS_BITSIZE (pcrval + 4, 25)
13696 && MATCH (nextopc, addiu_insn)
13697 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13698 && OP16_VALID_REG (OP32_TREG (nextopc)))
13699 {
13700 /* Fix the relocation's type. */
13701 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13702
13703 /* Replace ADDIU with the ADDIUPC version. */
13704 nextopc = (addiupc_insn.match
13705 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13706
d21911ea
MR
13707 bfd_put_micromips_32 (abfd, nextopc,
13708 contents + irel[1].r_offset);
df58fc94
RS
13709 }
13710
13711 /* Can't do anything, give up, sigh... */
13712 else
13713 continue;
13714
13715 /* Fix the relocation's type. */
13716 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13717
13718 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13719 delcnt = 4;
13720 deloff = 0;
13721 }
13722
13723 /* Compact branch relaxation -- due to the multitude of macros
07d6d2b8
AM
13724 employed by the compiler/assembler, compact branches are not
13725 always generated. Obviously, this can/will be fixed elsewhere,
13726 but there is no drawback in double checking it here. */
df58fc94
RS
13727 else if (r_type == R_MICROMIPS_PC16_S1
13728 && irel->r_offset + 5 < sec->size
13729 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13730 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
13731 && ((!insn32
13732 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13733 nop_insn_16) ? 2 : 0))
13734 || (irel->r_offset + 7 < sec->size
13735 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13736 ptr + 4),
13737 nop_insn_32) ? 4 : 0))))
df58fc94
RS
13738 {
13739 unsigned long reg;
13740
13741 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13742
13743 /* Replace BEQZ/BNEZ with the compact version. */
13744 opcode = (bzc_insns_32[fndopc].match
13745 | BZC32_REG_FIELD (reg)
13746 | (opcode & 0xffff)); /* Addend value. */
13747
d21911ea 13748 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 13749
833794fc
MR
13750 /* Delete the delay slot NOP: two or four bytes from
13751 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
13752 deloff = 4;
13753 }
13754
13755 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
07d6d2b8 13756 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13757 else if (!insn32
13758 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13759 && IS_BITSIZE (pcrval - 2, 11)
13760 && find_match (opcode, b_insns_32) >= 0)
13761 {
13762 /* Fix the relocation's type. */
13763 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13764
a8685210 13765 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13766 bfd_put_16 (abfd,
13767 (b_insn_16.match
13768 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 13769 ptr);
df58fc94
RS
13770
13771 /* Delete 2 bytes from irel->r_offset + 2. */
13772 delcnt = 2;
13773 deloff = 2;
13774 }
13775
13776 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
07d6d2b8 13777 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13778 else if (!insn32
13779 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13780 && IS_BITSIZE (pcrval - 2, 8)
13781 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13782 && OP16_VALID_REG (OP32_SREG (opcode)))
13783 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13784 && OP16_VALID_REG (OP32_TREG (opcode)))))
13785 {
13786 unsigned long reg;
13787
13788 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13789
13790 /* Fix the relocation's type. */
13791 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13792
a8685210 13793 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13794 bfd_put_16 (abfd,
13795 (bz_insns_16[fndopc].match
13796 | BZ16_REG_FIELD (reg)
13797 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 13798 ptr);
df58fc94
RS
13799
13800 /* Delete 2 bytes from irel->r_offset + 2. */
13801 delcnt = 2;
13802 deloff = 2;
13803 }
13804
13805 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
13806 else if (!insn32
13807 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
13808 && target_is_micromips_code_p
13809 && irel->r_offset + 7 < sec->size
13810 && MATCH (opcode, jal_insn_32_bd32))
13811 {
13812 unsigned long n32opc;
13813 bfd_boolean relaxed = FALSE;
13814
d21911ea 13815 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
13816
13817 if (MATCH (n32opc, nop_insn_32))
13818 {
13819 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 13820 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
13821
13822 relaxed = TRUE;
13823 }
13824 else if (find_match (n32opc, move_insns_32) >= 0)
13825 {
13826 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13827 bfd_put_16 (abfd,
13828 (move_insn_16.match
13829 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13830 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 13831 ptr + 4);
df58fc94
RS
13832
13833 relaxed = TRUE;
13834 }
13835 /* Other 32-bit instructions relaxable to 16-bit
13836 instructions will be handled here later. */
13837
13838 if (relaxed)
13839 {
13840 /* JAL with 32-bit delay slot that is changed to a JALS
07d6d2b8 13841 with 16-bit delay slot. */
d21911ea 13842 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
13843
13844 /* Delete 2 bytes from irel->r_offset + 6. */
13845 delcnt = 2;
13846 deloff = 6;
13847 }
13848 }
13849
13850 if (delcnt != 0)
13851 {
13852 /* Note that we've changed the relocs, section contents, etc. */
13853 elf_section_data (sec)->relocs = internal_relocs;
13854 elf_section_data (sec)->this_hdr.contents = contents;
13855 symtab_hdr->contents = (unsigned char *) isymbuf;
13856
13857 /* Delete bytes depending on the delcnt and deloff. */
13858 if (!mips_elf_relax_delete_bytes (abfd, sec,
13859 irel->r_offset + deloff, delcnt))
13860 goto error_return;
13861
13862 /* That will change things, so we should relax again.
13863 Note that this is not required, and it may be slow. */
13864 *again = TRUE;
13865 }
13866 }
13867
13868 if (isymbuf != NULL
13869 && symtab_hdr->contents != (unsigned char *) isymbuf)
13870 {
13871 if (! link_info->keep_memory)
13872 free (isymbuf);
13873 else
13874 {
13875 /* Cache the symbols for elf_link_input_bfd. */
13876 symtab_hdr->contents = (unsigned char *) isymbuf;
13877 }
13878 }
13879
13880 if (contents != NULL
13881 && elf_section_data (sec)->this_hdr.contents != contents)
13882 {
13883 if (! link_info->keep_memory)
13884 free (contents);
13885 else
13886 {
13887 /* Cache the section contents for elf_link_input_bfd. */
13888 elf_section_data (sec)->this_hdr.contents = contents;
13889 }
13890 }
13891
13892 if (internal_relocs != NULL
13893 && elf_section_data (sec)->relocs != internal_relocs)
13894 free (internal_relocs);
13895
13896 return TRUE;
13897
13898 error_return:
13899 if (isymbuf != NULL
13900 && symtab_hdr->contents != (unsigned char *) isymbuf)
13901 free (isymbuf);
13902 if (contents != NULL
13903 && elf_section_data (sec)->this_hdr.contents != contents)
13904 free (contents);
13905 if (internal_relocs != NULL
13906 && elf_section_data (sec)->relocs != internal_relocs)
13907 free (internal_relocs);
13908
13909 return FALSE;
13910}
13911\f
b49e97c9
TS
13912/* Create a MIPS ELF linker hash table. */
13913
13914struct bfd_link_hash_table *
9719ad41 13915_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
13916{
13917 struct mips_elf_link_hash_table *ret;
13918 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13919
7bf52ea2 13920 ret = bfd_zmalloc (amt);
9719ad41 13921 if (ret == NULL)
b49e97c9
TS
13922 return NULL;
13923
66eb6687
AM
13924 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13925 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
13926 sizeof (struct mips_elf_link_hash_entry),
13927 MIPS_ELF_DATA))
b49e97c9 13928 {
e2d34d7d 13929 free (ret);
b49e97c9
TS
13930 return NULL;
13931 }
1bbce132
MR
13932 ret->root.init_plt_refcount.plist = NULL;
13933 ret->root.init_plt_offset.plist = NULL;
b49e97c9 13934
b49e97c9
TS
13935 return &ret->root.root;
13936}
0a44bf69
RS
13937
13938/* Likewise, but indicate that the target is VxWorks. */
13939
13940struct bfd_link_hash_table *
13941_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13942{
13943 struct bfd_link_hash_table *ret;
13944
13945 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13946 if (ret)
13947 {
13948 struct mips_elf_link_hash_table *htab;
13949
13950 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
13951 htab->use_plts_and_copy_relocs = TRUE;
13952 htab->is_vxworks = TRUE;
0a44bf69
RS
13953 }
13954 return ret;
13955}
861fb55a
DJ
13956
13957/* A function that the linker calls if we are allowed to use PLTs
13958 and copy relocs. */
13959
13960void
13961_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13962{
13963 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13964}
833794fc
MR
13965
13966/* A function that the linker calls to select between all or only
8b10b0b3
MR
13967 32-bit microMIPS instructions, and between making or ignoring
13968 branch relocation checks for invalid transitions between ISA modes. */
833794fc
MR
13969
13970void
8b10b0b3
MR
13971_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13972 bfd_boolean ignore_branch_isa)
833794fc 13973{
8b10b0b3
MR
13974 mips_elf_hash_table (info)->insn32 = insn32;
13975 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
833794fc 13976}
b49e97c9 13977\f
c97c330b
MF
13978/* Structure for saying that BFD machine EXTENSION extends BASE. */
13979
13980struct mips_mach_extension
13981{
13982 unsigned long extension, base;
13983};
13984
13985
13986/* An array describing how BFD machines relate to one another. The entries
13987 are ordered topologically with MIPS I extensions listed last. */
13988
13989static const struct mips_mach_extension mips_mach_extensions[] =
13990{
13991 /* MIPS64r2 extensions. */
13992 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13993 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13994 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13995 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13996 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13997
13998 /* MIPS64 extensions. */
13999 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14000 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14001 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14002
14003 /* MIPS V extensions. */
14004 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14005
14006 /* R10000 extensions. */
14007 { bfd_mach_mips12000, bfd_mach_mips10000 },
14008 { bfd_mach_mips14000, bfd_mach_mips10000 },
14009 { bfd_mach_mips16000, bfd_mach_mips10000 },
14010
14011 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14012 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14013 better to allow vr5400 and vr5500 code to be merged anyway, since
14014 many libraries will just use the core ISA. Perhaps we could add
14015 some sort of ASE flag if this ever proves a problem. */
14016 { bfd_mach_mips5500, bfd_mach_mips5400 },
14017 { bfd_mach_mips5400, bfd_mach_mips5000 },
14018
14019 /* MIPS IV extensions. */
14020 { bfd_mach_mips5, bfd_mach_mips8000 },
14021 { bfd_mach_mips10000, bfd_mach_mips8000 },
14022 { bfd_mach_mips5000, bfd_mach_mips8000 },
14023 { bfd_mach_mips7000, bfd_mach_mips8000 },
14024 { bfd_mach_mips9000, bfd_mach_mips8000 },
14025
14026 /* VR4100 extensions. */
14027 { bfd_mach_mips4120, bfd_mach_mips4100 },
14028 { bfd_mach_mips4111, bfd_mach_mips4100 },
14029
14030 /* MIPS III extensions. */
14031 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14032 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14033 { bfd_mach_mips8000, bfd_mach_mips4000 },
14034 { bfd_mach_mips4650, bfd_mach_mips4000 },
14035 { bfd_mach_mips4600, bfd_mach_mips4000 },
14036 { bfd_mach_mips4400, bfd_mach_mips4000 },
14037 { bfd_mach_mips4300, bfd_mach_mips4000 },
14038 { bfd_mach_mips4100, bfd_mach_mips4000 },
c97c330b
MF
14039 { bfd_mach_mips5900, bfd_mach_mips4000 },
14040
38bf472a
MR
14041 /* MIPS32r3 extensions. */
14042 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14043
14044 /* MIPS32r2 extensions. */
14045 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14046
c97c330b
MF
14047 /* MIPS32 extensions. */
14048 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14049
14050 /* MIPS II extensions. */
14051 { bfd_mach_mips4000, bfd_mach_mips6000 },
14052 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
b417536f 14053 { bfd_mach_mips4010, bfd_mach_mips6000 },
c97c330b
MF
14054
14055 /* MIPS I extensions. */
14056 { bfd_mach_mips6000, bfd_mach_mips3000 },
14057 { bfd_mach_mips3900, bfd_mach_mips3000 }
14058};
14059
14060/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14061
14062static bfd_boolean
14063mips_mach_extends_p (unsigned long base, unsigned long extension)
14064{
14065 size_t i;
14066
14067 if (extension == base)
14068 return TRUE;
14069
14070 if (base == bfd_mach_mipsisa32
14071 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14072 return TRUE;
14073
14074 if (base == bfd_mach_mipsisa32r2
14075 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14076 return TRUE;
14077
14078 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14079 if (extension == mips_mach_extensions[i].extension)
14080 {
14081 extension = mips_mach_extensions[i].base;
14082 if (extension == base)
14083 return TRUE;
14084 }
14085
14086 return FALSE;
14087}
14088
14089/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14090
14091static unsigned long
14092bfd_mips_isa_ext_mach (unsigned int isa_ext)
14093{
14094 switch (isa_ext)
14095 {
07d6d2b8
AM
14096 case AFL_EXT_3900: return bfd_mach_mips3900;
14097 case AFL_EXT_4010: return bfd_mach_mips4010;
14098 case AFL_EXT_4100: return bfd_mach_mips4100;
14099 case AFL_EXT_4111: return bfd_mach_mips4111;
14100 case AFL_EXT_4120: return bfd_mach_mips4120;
14101 case AFL_EXT_4650: return bfd_mach_mips4650;
14102 case AFL_EXT_5400: return bfd_mach_mips5400;
14103 case AFL_EXT_5500: return bfd_mach_mips5500;
14104 case AFL_EXT_5900: return bfd_mach_mips5900;
14105 case AFL_EXT_10000: return bfd_mach_mips10000;
c97c330b
MF
14106 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14107 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14108 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
07d6d2b8 14109 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
c97c330b
MF
14110 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14111 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14112 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
07d6d2b8
AM
14113 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14114 default: return bfd_mach_mips3000;
c97c330b
MF
14115 }
14116}
14117
351cdf24
MF
14118/* Return the .MIPS.abiflags value representing each ISA Extension. */
14119
14120unsigned int
14121bfd_mips_isa_ext (bfd *abfd)
14122{
14123 switch (bfd_get_mach (abfd))
14124 {
07d6d2b8
AM
14125 case bfd_mach_mips3900: return AFL_EXT_3900;
14126 case bfd_mach_mips4010: return AFL_EXT_4010;
14127 case bfd_mach_mips4100: return AFL_EXT_4100;
14128 case bfd_mach_mips4111: return AFL_EXT_4111;
14129 case bfd_mach_mips4120: return AFL_EXT_4120;
14130 case bfd_mach_mips4650: return AFL_EXT_4650;
14131 case bfd_mach_mips5400: return AFL_EXT_5400;
14132 case bfd_mach_mips5500: return AFL_EXT_5500;
14133 case bfd_mach_mips5900: return AFL_EXT_5900;
14134 case bfd_mach_mips10000: return AFL_EXT_10000;
c97c330b
MF
14135 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14136 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14137 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
07d6d2b8
AM
14138 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14139 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14140 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14141 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14142 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14143 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
38bf472a
MR
14144 case bfd_mach_mips_interaptiv_mr2:
14145 return AFL_EXT_INTERAPTIV_MR2;
07d6d2b8 14146 default: return 0;
c97c330b
MF
14147 }
14148}
14149
14150/* Encode ISA level and revision as a single value. */
14151#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14152
14153/* Decode a single value into level and revision. */
14154#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14155#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14156
14157/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14158
14159static void
14160update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14161{
c97c330b 14162 int new_isa = 0;
351cdf24
MF
14163 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14164 {
c97c330b
MF
14165 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14166 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14167 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14168 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14169 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14170 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14171 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14172 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14173 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14174 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14175 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14176 default:
4eca0228 14177 _bfd_error_handler
695344c0 14178 /* xgettext:c-format */
2c1c9679 14179 (_("%pB: unknown architecture %s"),
351cdf24
MF
14180 abfd, bfd_printable_name (abfd));
14181 }
14182
c97c330b
MF
14183 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14184 {
14185 abiflags->isa_level = ISA_LEVEL (new_isa);
14186 abiflags->isa_rev = ISA_REV (new_isa);
14187 }
14188
14189 /* Update the isa_ext if ABFD describes a further extension. */
14190 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14191 bfd_get_mach (abfd)))
14192 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14193}
14194
14195/* Return true if the given ELF header flags describe a 32-bit binary. */
14196
14197static bfd_boolean
14198mips_32bit_flags_p (flagword flags)
14199{
14200 return ((flags & EF_MIPS_32BITMODE) != 0
14201 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14202 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14203 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14204 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14205 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14206 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14207 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14208}
14209
14210/* Infer the content of the ABI flags based on the elf header. */
14211
14212static void
14213infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14214{
14215 obj_attribute *in_attr;
14216
14217 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14218 update_mips_abiflags_isa (abfd, abiflags);
14219
14220 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14221 abiflags->gpr_size = AFL_REG_32;
14222 else
14223 abiflags->gpr_size = AFL_REG_64;
14224
14225 abiflags->cpr1_size = AFL_REG_NONE;
14226
14227 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14228 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14229
14230 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14231 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14232 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14233 && abiflags->gpr_size == AFL_REG_32))
14234 abiflags->cpr1_size = AFL_REG_32;
14235 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14236 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14237 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14238 abiflags->cpr1_size = AFL_REG_64;
14239
14240 abiflags->cpr2_size = AFL_REG_NONE;
14241
14242 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14243 abiflags->ases |= AFL_ASE_MDMX;
14244 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14245 abiflags->ases |= AFL_ASE_MIPS16;
14246 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14247 abiflags->ases |= AFL_ASE_MICROMIPS;
14248
14249 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14250 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14251 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14252 && abiflags->isa_level >= 32
14253 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14254 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14255}
14256
b49e97c9
TS
14257/* We need to use a special link routine to handle the .reginfo and
14258 the .mdebug sections. We need to merge all instances of these
14259 sections together, not write them all out sequentially. */
14260
b34976b6 14261bfd_boolean
9719ad41 14262_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14263{
b49e97c9
TS
14264 asection *o;
14265 struct bfd_link_order *p;
14266 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14267 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14268 Elf32_RegInfo reginfo;
14269 struct ecoff_debug_info debug;
861fb55a 14270 struct mips_htab_traverse_info hti;
7a2a6943
NC
14271 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14272 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14273 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14274 void *mdebug_handle = NULL;
b49e97c9
TS
14275 asection *s;
14276 EXTR esym;
14277 unsigned int i;
14278 bfd_size_type amt;
0a44bf69 14279 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14280
14281 static const char * const secname[] =
14282 {
14283 ".text", ".init", ".fini", ".data",
14284 ".rodata", ".sdata", ".sbss", ".bss"
14285 };
14286 static const int sc[] =
14287 {
14288 scText, scInit, scFini, scData,
14289 scRData, scSData, scSBss, scBss
14290 };
14291
0a44bf69 14292 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14293 BFD_ASSERT (htab != NULL);
14294
64575f78
MR
14295 /* Sort the dynamic symbols so that those with GOT entries come after
14296 those without. */
d4596a51
RS
14297 if (!mips_elf_sort_hash_table (abfd, info))
14298 return FALSE;
b49e97c9 14299
861fb55a
DJ
14300 /* Create any scheduled LA25 stubs. */
14301 hti.info = info;
14302 hti.output_bfd = abfd;
14303 hti.error = FALSE;
14304 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14305 if (hti.error)
14306 return FALSE;
14307
b49e97c9
TS
14308 /* Get a value for the GP register. */
14309 if (elf_gp (abfd) == 0)
14310 {
14311 struct bfd_link_hash_entry *h;
14312
b34976b6 14313 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14314 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14315 elf_gp (abfd) = (h->u.def.value
14316 + h->u.def.section->output_section->vma
14317 + h->u.def.section->output_offset);
0a44bf69
RS
14318 else if (htab->is_vxworks
14319 && (h = bfd_link_hash_lookup (info->hash,
14320 "_GLOBAL_OFFSET_TABLE_",
14321 FALSE, FALSE, TRUE))
14322 && h->type == bfd_link_hash_defined)
14323 elf_gp (abfd) = (h->u.def.section->output_section->vma
14324 + h->u.def.section->output_offset
14325 + h->u.def.value);
0e1862bb 14326 else if (bfd_link_relocatable (info))
b49e97c9
TS
14327 {
14328 bfd_vma lo = MINUS_ONE;
14329
14330 /* Find the GP-relative section with the lowest offset. */
9719ad41 14331 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14332 if (o->vma < lo
14333 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14334 lo = o->vma;
14335
14336 /* And calculate GP relative to that. */
0a44bf69 14337 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14338 }
14339 else
14340 {
14341 /* If the relocate_section function needs to do a reloc
14342 involving the GP value, it should make a reloc_dangerous
14343 callback to warn that GP is not defined. */
14344 }
14345 }
14346
14347 /* Go through the sections and collect the .reginfo and .mdebug
14348 information. */
351cdf24 14349 abiflags_sec = NULL;
b49e97c9
TS
14350 reginfo_sec = NULL;
14351 mdebug_sec = NULL;
14352 gptab_data_sec = NULL;
14353 gptab_bss_sec = NULL;
9719ad41 14354 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14355 {
351cdf24
MF
14356 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14357 {
14358 /* We have found the .MIPS.abiflags section in the output file.
14359 Look through all the link_orders comprising it and remove them.
14360 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14361 for (p = o->map_head.link_order; p != NULL; p = p->next)
14362 {
14363 asection *input_section;
14364
14365 if (p->type != bfd_indirect_link_order)
14366 {
14367 if (p->type == bfd_data_link_order)
14368 continue;
14369 abort ();
14370 }
14371
14372 input_section = p->u.indirect.section;
14373
14374 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14375 elf_link_input_bfd ignores this section. */
14376 input_section->flags &= ~SEC_HAS_CONTENTS;
14377 }
14378
14379 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14380 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14381
14382 /* Skip this section later on (I don't think this currently
14383 matters, but someday it might). */
14384 o->map_head.link_order = NULL;
14385
14386 abiflags_sec = o;
14387 }
14388
b49e97c9
TS
14389 if (strcmp (o->name, ".reginfo") == 0)
14390 {
14391 memset (&reginfo, 0, sizeof reginfo);
14392
14393 /* We have found the .reginfo section in the output file.
14394 Look through all the link_orders comprising it and merge
14395 the information together. */
8423293d 14396 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14397 {
14398 asection *input_section;
14399 bfd *input_bfd;
14400 Elf32_External_RegInfo ext;
14401 Elf32_RegInfo sub;
6798f8bf 14402 bfd_size_type sz;
b49e97c9
TS
14403
14404 if (p->type != bfd_indirect_link_order)
14405 {
14406 if (p->type == bfd_data_link_order)
14407 continue;
14408 abort ();
14409 }
14410
14411 input_section = p->u.indirect.section;
14412 input_bfd = input_section->owner;
14413
6798f8bf
MR
14414 sz = (input_section->size < sizeof (ext)
14415 ? input_section->size : sizeof (ext));
14416 memset (&ext, 0, sizeof (ext));
b49e97c9 14417 if (! bfd_get_section_contents (input_bfd, input_section,
6798f8bf 14418 &ext, 0, sz))
b34976b6 14419 return FALSE;
b49e97c9
TS
14420
14421 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14422
14423 reginfo.ri_gprmask |= sub.ri_gprmask;
14424 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14425 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14426 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14427 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14428
14429 /* ri_gp_value is set by the function
1c5e4ee9 14430 `_bfd_mips_elf_section_processing' when the section is
b49e97c9
TS
14431 finally written out. */
14432
14433 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14434 elf_link_input_bfd ignores this section. */
14435 input_section->flags &= ~SEC_HAS_CONTENTS;
14436 }
14437
14438 /* Size has been set in _bfd_mips_elf_always_size_sections. */
b248d650 14439 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14440
14441 /* Skip this section later on (I don't think this currently
14442 matters, but someday it might). */
8423293d 14443 o->map_head.link_order = NULL;
b49e97c9
TS
14444
14445 reginfo_sec = o;
14446 }
14447
14448 if (strcmp (o->name, ".mdebug") == 0)
14449 {
14450 struct extsym_info einfo;
14451 bfd_vma last;
14452
14453 /* We have found the .mdebug section in the output file.
14454 Look through all the link_orders comprising it and merge
14455 the information together. */
14456 symhdr->magic = swap->sym_magic;
14457 /* FIXME: What should the version stamp be? */
14458 symhdr->vstamp = 0;
14459 symhdr->ilineMax = 0;
14460 symhdr->cbLine = 0;
14461 symhdr->idnMax = 0;
14462 symhdr->ipdMax = 0;
14463 symhdr->isymMax = 0;
14464 symhdr->ioptMax = 0;
14465 symhdr->iauxMax = 0;
14466 symhdr->issMax = 0;
14467 symhdr->issExtMax = 0;
14468 symhdr->ifdMax = 0;
14469 symhdr->crfd = 0;
14470 symhdr->iextMax = 0;
14471
14472 /* We accumulate the debugging information itself in the
14473 debug_info structure. */
14474 debug.line = NULL;
14475 debug.external_dnr = NULL;
14476 debug.external_pdr = NULL;
14477 debug.external_sym = NULL;
14478 debug.external_opt = NULL;
14479 debug.external_aux = NULL;
14480 debug.ss = NULL;
14481 debug.ssext = debug.ssext_end = NULL;
14482 debug.external_fdr = NULL;
14483 debug.external_rfd = NULL;
14484 debug.external_ext = debug.external_ext_end = NULL;
14485
14486 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14487 if (mdebug_handle == NULL)
b34976b6 14488 return FALSE;
b49e97c9
TS
14489
14490 esym.jmptbl = 0;
14491 esym.cobol_main = 0;
14492 esym.weakext = 0;
14493 esym.reserved = 0;
14494 esym.ifd = ifdNil;
14495 esym.asym.iss = issNil;
14496 esym.asym.st = stLocal;
14497 esym.asym.reserved = 0;
14498 esym.asym.index = indexNil;
14499 last = 0;
14500 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14501 {
14502 esym.asym.sc = sc[i];
14503 s = bfd_get_section_by_name (abfd, secname[i]);
14504 if (s != NULL)
14505 {
14506 esym.asym.value = s->vma;
eea6121a 14507 last = s->vma + s->size;
b49e97c9
TS
14508 }
14509 else
14510 esym.asym.value = last;
14511 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14512 secname[i], &esym))
b34976b6 14513 return FALSE;
b49e97c9
TS
14514 }
14515
8423293d 14516 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14517 {
14518 asection *input_section;
14519 bfd *input_bfd;
14520 const struct ecoff_debug_swap *input_swap;
14521 struct ecoff_debug_info input_debug;
14522 char *eraw_src;
14523 char *eraw_end;
14524
14525 if (p->type != bfd_indirect_link_order)
14526 {
14527 if (p->type == bfd_data_link_order)
14528 continue;
14529 abort ();
14530 }
14531
14532 input_section = p->u.indirect.section;
14533 input_bfd = input_section->owner;
14534
d5eaccd7 14535 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14536 {
14537 /* I don't know what a non MIPS ELF bfd would be
14538 doing with a .mdebug section, but I don't really
14539 want to deal with it. */
14540 continue;
14541 }
14542
14543 input_swap = (get_elf_backend_data (input_bfd)
14544 ->elf_backend_ecoff_debug_swap);
14545
eea6121a 14546 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14547
14548 /* The ECOFF linking code expects that we have already
14549 read in the debugging information and set up an
14550 ecoff_debug_info structure, so we do that now. */
14551 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14552 &input_debug))
b34976b6 14553 return FALSE;
b49e97c9
TS
14554
14555 if (! (bfd_ecoff_debug_accumulate
14556 (mdebug_handle, abfd, &debug, swap, input_bfd,
14557 &input_debug, input_swap, info)))
b34976b6 14558 return FALSE;
b49e97c9
TS
14559
14560 /* Loop through the external symbols. For each one with
14561 interesting information, try to find the symbol in
14562 the linker global hash table and save the information
14563 for the output external symbols. */
14564 eraw_src = input_debug.external_ext;
14565 eraw_end = (eraw_src
14566 + (input_debug.symbolic_header.iextMax
14567 * input_swap->external_ext_size));
14568 for (;
14569 eraw_src < eraw_end;
14570 eraw_src += input_swap->external_ext_size)
14571 {
14572 EXTR ext;
14573 const char *name;
14574 struct mips_elf_link_hash_entry *h;
14575
9719ad41 14576 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14577 if (ext.asym.sc == scNil
14578 || ext.asym.sc == scUndefined
14579 || ext.asym.sc == scSUndefined)
14580 continue;
14581
14582 name = input_debug.ssext + ext.asym.iss;
14583 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14584 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14585 if (h == NULL || h->esym.ifd != -2)
14586 continue;
14587
14588 if (ext.ifd != -1)
14589 {
14590 BFD_ASSERT (ext.ifd
14591 < input_debug.symbolic_header.ifdMax);
14592 ext.ifd = input_debug.ifdmap[ext.ifd];
14593 }
14594
14595 h->esym = ext;
14596 }
14597
14598 /* Free up the information we just read. */
14599 free (input_debug.line);
14600 free (input_debug.external_dnr);
14601 free (input_debug.external_pdr);
14602 free (input_debug.external_sym);
14603 free (input_debug.external_opt);
14604 free (input_debug.external_aux);
14605 free (input_debug.ss);
14606 free (input_debug.ssext);
14607 free (input_debug.external_fdr);
14608 free (input_debug.external_rfd);
14609 free (input_debug.external_ext);
14610
14611 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14612 elf_link_input_bfd ignores this section. */
14613 input_section->flags &= ~SEC_HAS_CONTENTS;
14614 }
14615
0e1862bb 14616 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14617 {
14618 /* Create .rtproc section. */
87e0a731 14619 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14620 if (rtproc_sec == NULL)
14621 {
14622 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14623 | SEC_LINKER_CREATED | SEC_READONLY);
14624
87e0a731
AM
14625 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14626 ".rtproc",
14627 flags);
b49e97c9 14628 if (rtproc_sec == NULL
b49e97c9 14629 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14630 return FALSE;
b49e97c9
TS
14631 }
14632
14633 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14634 info, rtproc_sec,
14635 &debug))
b34976b6 14636 return FALSE;
b49e97c9
TS
14637 }
14638
14639 /* Build the external symbol information. */
14640 einfo.abfd = abfd;
14641 einfo.info = info;
14642 einfo.debug = &debug;
14643 einfo.swap = swap;
b34976b6 14644 einfo.failed = FALSE;
b49e97c9 14645 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14646 mips_elf_output_extsym, &einfo);
b49e97c9 14647 if (einfo.failed)
b34976b6 14648 return FALSE;
b49e97c9
TS
14649
14650 /* Set the size of the .mdebug section. */
eea6121a 14651 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14652
14653 /* Skip this section later on (I don't think this currently
14654 matters, but someday it might). */
8423293d 14655 o->map_head.link_order = NULL;
b49e97c9
TS
14656
14657 mdebug_sec = o;
14658 }
14659
0112cd26 14660 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
14661 {
14662 const char *subname;
14663 unsigned int c;
14664 Elf32_gptab *tab;
14665 Elf32_External_gptab *ext_tab;
14666 unsigned int j;
14667
14668 /* The .gptab.sdata and .gptab.sbss sections hold
14669 information describing how the small data area would
14670 change depending upon the -G switch. These sections
14671 not used in executables files. */
0e1862bb 14672 if (! bfd_link_relocatable (info))
b49e97c9 14673 {
8423293d 14674 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14675 {
14676 asection *input_section;
14677
14678 if (p->type != bfd_indirect_link_order)
14679 {
14680 if (p->type == bfd_data_link_order)
14681 continue;
14682 abort ();
14683 }
14684
14685 input_section = p->u.indirect.section;
14686
14687 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14688 elf_link_input_bfd ignores this section. */
14689 input_section->flags &= ~SEC_HAS_CONTENTS;
14690 }
14691
14692 /* Skip this section later on (I don't think this
14693 currently matters, but someday it might). */
8423293d 14694 o->map_head.link_order = NULL;
b49e97c9
TS
14695
14696 /* Really remove the section. */
5daa8fe7 14697 bfd_section_list_remove (abfd, o);
b49e97c9
TS
14698 --abfd->section_count;
14699
14700 continue;
14701 }
14702
14703 /* There is one gptab for initialized data, and one for
14704 uninitialized data. */
14705 if (strcmp (o->name, ".gptab.sdata") == 0)
14706 gptab_data_sec = o;
14707 else if (strcmp (o->name, ".gptab.sbss") == 0)
14708 gptab_bss_sec = o;
14709 else
14710 {
4eca0228 14711 _bfd_error_handler
695344c0 14712 /* xgettext:c-format */
871b3ab2 14713 (_("%pB: illegal section name `%pA'"), abfd, o);
b49e97c9 14714 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 14715 return FALSE;
b49e97c9
TS
14716 }
14717
14718 /* The linker script always combines .gptab.data and
14719 .gptab.sdata into .gptab.sdata, and likewise for
14720 .gptab.bss and .gptab.sbss. It is possible that there is
14721 no .sdata or .sbss section in the output file, in which
14722 case we must change the name of the output section. */
14723 subname = o->name + sizeof ".gptab" - 1;
14724 if (bfd_get_section_by_name (abfd, subname) == NULL)
14725 {
14726 if (o == gptab_data_sec)
14727 o->name = ".gptab.data";
14728 else
14729 o->name = ".gptab.bss";
14730 subname = o->name + sizeof ".gptab" - 1;
14731 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14732 }
14733
14734 /* Set up the first entry. */
14735 c = 1;
14736 amt = c * sizeof (Elf32_gptab);
9719ad41 14737 tab = bfd_malloc (amt);
b49e97c9 14738 if (tab == NULL)
b34976b6 14739 return FALSE;
b49e97c9
TS
14740 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14741 tab[0].gt_header.gt_unused = 0;
14742
14743 /* Combine the input sections. */
8423293d 14744 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14745 {
14746 asection *input_section;
14747 bfd *input_bfd;
14748 bfd_size_type size;
14749 unsigned long last;
14750 bfd_size_type gpentry;
14751
14752 if (p->type != bfd_indirect_link_order)
14753 {
14754 if (p->type == bfd_data_link_order)
14755 continue;
14756 abort ();
14757 }
14758
14759 input_section = p->u.indirect.section;
14760 input_bfd = input_section->owner;
14761
14762 /* Combine the gptab entries for this input section one
14763 by one. We know that the input gptab entries are
14764 sorted by ascending -G value. */
eea6121a 14765 size = input_section->size;
b49e97c9
TS
14766 last = 0;
14767 for (gpentry = sizeof (Elf32_External_gptab);
14768 gpentry < size;
14769 gpentry += sizeof (Elf32_External_gptab))
14770 {
14771 Elf32_External_gptab ext_gptab;
14772 Elf32_gptab int_gptab;
14773 unsigned long val;
14774 unsigned long add;
b34976b6 14775 bfd_boolean exact;
b49e97c9
TS
14776 unsigned int look;
14777
14778 if (! (bfd_get_section_contents
9719ad41
RS
14779 (input_bfd, input_section, &ext_gptab, gpentry,
14780 sizeof (Elf32_External_gptab))))
b49e97c9
TS
14781 {
14782 free (tab);
b34976b6 14783 return FALSE;
b49e97c9
TS
14784 }
14785
14786 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14787 &int_gptab);
14788 val = int_gptab.gt_entry.gt_g_value;
14789 add = int_gptab.gt_entry.gt_bytes - last;
14790
b34976b6 14791 exact = FALSE;
b49e97c9
TS
14792 for (look = 1; look < c; look++)
14793 {
14794 if (tab[look].gt_entry.gt_g_value >= val)
14795 tab[look].gt_entry.gt_bytes += add;
14796
14797 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 14798 exact = TRUE;
b49e97c9
TS
14799 }
14800
14801 if (! exact)
14802 {
14803 Elf32_gptab *new_tab;
14804 unsigned int max;
14805
14806 /* We need a new table entry. */
14807 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 14808 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
14809 if (new_tab == NULL)
14810 {
14811 free (tab);
b34976b6 14812 return FALSE;
b49e97c9
TS
14813 }
14814 tab = new_tab;
14815 tab[c].gt_entry.gt_g_value = val;
14816 tab[c].gt_entry.gt_bytes = add;
14817
14818 /* Merge in the size for the next smallest -G
14819 value, since that will be implied by this new
14820 value. */
14821 max = 0;
14822 for (look = 1; look < c; look++)
14823 {
14824 if (tab[look].gt_entry.gt_g_value < val
14825 && (max == 0
14826 || (tab[look].gt_entry.gt_g_value
14827 > tab[max].gt_entry.gt_g_value)))
14828 max = look;
14829 }
14830 if (max != 0)
14831 tab[c].gt_entry.gt_bytes +=
14832 tab[max].gt_entry.gt_bytes;
14833
14834 ++c;
14835 }
14836
14837 last = int_gptab.gt_entry.gt_bytes;
14838 }
14839
14840 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14841 elf_link_input_bfd ignores this section. */
14842 input_section->flags &= ~SEC_HAS_CONTENTS;
14843 }
14844
14845 /* The table must be sorted by -G value. */
14846 if (c > 2)
14847 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14848
14849 /* Swap out the table. */
14850 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 14851 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
14852 if (ext_tab == NULL)
14853 {
14854 free (tab);
b34976b6 14855 return FALSE;
b49e97c9
TS
14856 }
14857
14858 for (j = 0; j < c; j++)
14859 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14860 free (tab);
14861
eea6121a 14862 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
14863 o->contents = (bfd_byte *) ext_tab;
14864
14865 /* Skip this section later on (I don't think this currently
14866 matters, but someday it might). */
8423293d 14867 o->map_head.link_order = NULL;
b49e97c9
TS
14868 }
14869 }
14870
14871 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 14872 if (!bfd_elf_final_link (abfd, info))
b34976b6 14873 return FALSE;
b49e97c9
TS
14874
14875 /* Now write out the computed sections. */
14876
351cdf24
MF
14877 if (abiflags_sec != NULL)
14878 {
14879 Elf_External_ABIFlags_v0 ext;
14880 Elf_Internal_ABIFlags_v0 *abiflags;
14881
14882 abiflags = &mips_elf_tdata (abfd)->abiflags;
14883
14884 /* Set up the abiflags if no valid input sections were found. */
14885 if (!mips_elf_tdata (abfd)->abiflags_valid)
14886 {
14887 infer_mips_abiflags (abfd, abiflags);
14888 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14889 }
14890 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14891 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14892 return FALSE;
14893 }
14894
9719ad41 14895 if (reginfo_sec != NULL)
b49e97c9
TS
14896 {
14897 Elf32_External_RegInfo ext;
14898
14899 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 14900 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 14901 return FALSE;
b49e97c9
TS
14902 }
14903
9719ad41 14904 if (mdebug_sec != NULL)
b49e97c9
TS
14905 {
14906 BFD_ASSERT (abfd->output_has_begun);
14907 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14908 swap, info,
14909 mdebug_sec->filepos))
b34976b6 14910 return FALSE;
b49e97c9
TS
14911
14912 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14913 }
14914
9719ad41 14915 if (gptab_data_sec != NULL)
b49e97c9
TS
14916 {
14917 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14918 gptab_data_sec->contents,
eea6121a 14919 0, gptab_data_sec->size))
b34976b6 14920 return FALSE;
b49e97c9
TS
14921 }
14922
9719ad41 14923 if (gptab_bss_sec != NULL)
b49e97c9
TS
14924 {
14925 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14926 gptab_bss_sec->contents,
eea6121a 14927 0, gptab_bss_sec->size))
b34976b6 14928 return FALSE;
b49e97c9
TS
14929 }
14930
14931 if (SGI_COMPAT (abfd))
14932 {
14933 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14934 if (rtproc_sec != NULL)
14935 {
14936 if (! bfd_set_section_contents (abfd, rtproc_sec,
14937 rtproc_sec->contents,
eea6121a 14938 0, rtproc_sec->size))
b34976b6 14939 return FALSE;
b49e97c9
TS
14940 }
14941 }
14942
b34976b6 14943 return TRUE;
b49e97c9
TS
14944}
14945\f
b2e9744f
MR
14946/* Merge object file header flags from IBFD into OBFD. Raise an error
14947 if there are conflicting settings. */
14948
14949static bfd_boolean
50e03d47 14950mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 14951{
50e03d47 14952 bfd *obfd = info->output_bfd;
b2e9744f
MR
14953 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14954 flagword old_flags;
14955 flagword new_flags;
14956 bfd_boolean ok;
14957
14958 new_flags = elf_elfheader (ibfd)->e_flags;
14959 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14960 old_flags = elf_elfheader (obfd)->e_flags;
14961
14962 /* Check flag compatibility. */
14963
14964 new_flags &= ~EF_MIPS_NOREORDER;
14965 old_flags &= ~EF_MIPS_NOREORDER;
14966
14967 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14968 doesn't seem to matter. */
14969 new_flags &= ~EF_MIPS_XGOT;
14970 old_flags &= ~EF_MIPS_XGOT;
14971
14972 /* MIPSpro generates ucode info in n64 objects. Again, we should
14973 just be able to ignore this. */
14974 new_flags &= ~EF_MIPS_UCODE;
14975 old_flags &= ~EF_MIPS_UCODE;
14976
14977 /* DSOs should only be linked with CPIC code. */
14978 if ((ibfd->flags & DYNAMIC) != 0)
14979 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14980
14981 if (new_flags == old_flags)
14982 return TRUE;
14983
14984 ok = TRUE;
14985
14986 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14987 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14988 {
4eca0228 14989 _bfd_error_handler
871b3ab2 14990 (_("%pB: warning: linking abicalls files with non-abicalls files"),
b2e9744f
MR
14991 ibfd);
14992 ok = TRUE;
14993 }
14994
14995 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14996 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14997 if (! (new_flags & EF_MIPS_PIC))
14998 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14999
15000 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15001 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15002
15003 /* Compare the ISAs. */
15004 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15005 {
4eca0228 15006 _bfd_error_handler
871b3ab2 15007 (_("%pB: linking 32-bit code with 64-bit code"),
b2e9744f
MR
15008 ibfd);
15009 ok = FALSE;
15010 }
15011 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15012 {
15013 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15014 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15015 {
15016 /* Copy the architecture info from IBFD to OBFD. Also copy
15017 the 32-bit flag (if set) so that we continue to recognise
15018 OBFD as a 32-bit binary. */
15019 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15020 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15021 elf_elfheader (obfd)->e_flags
15022 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15023
15024 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15025 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15026
15027 /* Copy across the ABI flags if OBFD doesn't use them
15028 and if that was what caused us to treat IBFD as 32-bit. */
15029 if ((old_flags & EF_MIPS_ABI) == 0
15030 && mips_32bit_flags_p (new_flags)
15031 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15032 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15033 }
15034 else
15035 {
15036 /* The ISAs aren't compatible. */
4eca0228 15037 _bfd_error_handler
695344c0 15038 /* xgettext:c-format */
871b3ab2 15039 (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15040 ibfd,
15041 bfd_printable_name (ibfd),
15042 bfd_printable_name (obfd));
15043 ok = FALSE;
15044 }
15045 }
15046
15047 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15048 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15049
15050 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15051 does set EI_CLASS differently from any 32-bit ABI. */
15052 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15053 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15054 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15055 {
15056 /* Only error if both are set (to different values). */
15057 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15058 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15059 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15060 {
4eca0228 15061 _bfd_error_handler
695344c0 15062 /* xgettext:c-format */
871b3ab2 15063 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15064 ibfd,
15065 elf_mips_abi_name (ibfd),
15066 elf_mips_abi_name (obfd));
15067 ok = FALSE;
15068 }
15069 new_flags &= ~EF_MIPS_ABI;
15070 old_flags &= ~EF_MIPS_ABI;
15071 }
15072
15073 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15074 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15075 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15076 {
15077 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15078 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15079 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15080 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15081 int micro_mis = old_m16 && new_micro;
15082 int m16_mis = old_micro && new_m16;
15083
15084 if (m16_mis || micro_mis)
15085 {
4eca0228 15086 _bfd_error_handler
695344c0 15087 /* xgettext:c-format */
871b3ab2 15088 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15089 ibfd,
15090 m16_mis ? "MIPS16" : "microMIPS",
15091 m16_mis ? "microMIPS" : "MIPS16");
15092 ok = FALSE;
15093 }
15094
15095 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15096
15097 new_flags &= ~ EF_MIPS_ARCH_ASE;
15098 old_flags &= ~ EF_MIPS_ARCH_ASE;
15099 }
15100
15101 /* Compare NaN encodings. */
15102 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15103 {
695344c0 15104 /* xgettext:c-format */
871b3ab2 15105 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15106 ibfd,
15107 (new_flags & EF_MIPS_NAN2008
15108 ? "-mnan=2008" : "-mnan=legacy"),
15109 (old_flags & EF_MIPS_NAN2008
15110 ? "-mnan=2008" : "-mnan=legacy"));
15111 ok = FALSE;
15112 new_flags &= ~EF_MIPS_NAN2008;
15113 old_flags &= ~EF_MIPS_NAN2008;
15114 }
15115
15116 /* Compare FP64 state. */
15117 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15118 {
695344c0 15119 /* xgettext:c-format */
871b3ab2 15120 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15121 ibfd,
15122 (new_flags & EF_MIPS_FP64
15123 ? "-mfp64" : "-mfp32"),
15124 (old_flags & EF_MIPS_FP64
15125 ? "-mfp64" : "-mfp32"));
15126 ok = FALSE;
15127 new_flags &= ~EF_MIPS_FP64;
15128 old_flags &= ~EF_MIPS_FP64;
15129 }
15130
15131 /* Warn about any other mismatches */
15132 if (new_flags != old_flags)
15133 {
695344c0 15134 /* xgettext:c-format */
4eca0228 15135 _bfd_error_handler
871b3ab2 15136 (_("%pB: uses different e_flags (%#x) fields than previous modules "
d42c267e
AM
15137 "(%#x)"),
15138 ibfd, new_flags, old_flags);
b2e9744f
MR
15139 ok = FALSE;
15140 }
15141
15142 return ok;
15143}
15144
2cf19d5c
JM
15145/* Merge object attributes from IBFD into OBFD. Raise an error if
15146 there are conflicting attributes. */
15147static bfd_boolean
50e03d47 15148mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15149{
50e03d47 15150 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15151 obj_attribute *in_attr;
15152 obj_attribute *out_attr;
6ae68ba3 15153 bfd *abi_fp_bfd;
b60bf9be 15154 bfd *abi_msa_bfd;
6ae68ba3
MR
15155
15156 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15157 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15158 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15159 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15160
b60bf9be
CF
15161 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15162 if (!abi_msa_bfd
15163 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15164 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15165
2cf19d5c
JM
15166 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15167 {
15168 /* This is the first object. Copy the attributes. */
15169 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15170
15171 /* Use the Tag_null value to indicate the attributes have been
15172 initialized. */
15173 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15174
15175 return TRUE;
15176 }
15177
15178 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15179 non-conflicting ones. */
2cf19d5c
JM
15180 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15181 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15182 {
757a636f 15183 int out_fp, in_fp;
6ae68ba3 15184
757a636f
RS
15185 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15186 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15187 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15188 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15189 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15190 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15191 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15192 || in_fp == Val_GNU_MIPS_ABI_FP_64
15193 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15194 {
15195 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15196 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15197 }
15198 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15199 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15200 || out_fp == Val_GNU_MIPS_ABI_FP_64
15201 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15202 /* Keep the current setting. */;
15203 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15204 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15205 {
15206 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15207 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15208 }
15209 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15210 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15211 /* Keep the current setting. */;
757a636f
RS
15212 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15213 {
15214 const char *out_string, *in_string;
6ae68ba3 15215
757a636f
RS
15216 out_string = _bfd_mips_fp_abi_string (out_fp);
15217 in_string = _bfd_mips_fp_abi_string (in_fp);
15218 /* First warn about cases involving unrecognised ABIs. */
15219 if (!out_string && !in_string)
695344c0 15220 /* xgettext:c-format */
757a636f 15221 _bfd_error_handler
2c1c9679 15222 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15223 "(set by %pB), %pB uses unknown floating point ABI %d"),
c08bb8dd 15224 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15225 else if (!out_string)
15226 _bfd_error_handler
695344c0 15227 /* xgettext:c-format */
2c1c9679 15228 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15229 "(set by %pB), %pB uses %s"),
c08bb8dd 15230 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15231 else if (!in_string)
15232 _bfd_error_handler
695344c0 15233 /* xgettext:c-format */
2c1c9679 15234 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15235 "%pB uses unknown floating point ABI %d"),
c08bb8dd 15236 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15237 else
15238 {
15239 /* If one of the bfds is soft-float, the other must be
15240 hard-float. The exact choice of hard-float ABI isn't
15241 really relevant to the error message. */
15242 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15243 out_string = "-mhard-float";
15244 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15245 in_string = "-mhard-float";
15246 _bfd_error_handler
695344c0 15247 /* xgettext:c-format */
2c1c9679 15248 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
c08bb8dd 15249 obfd, out_string, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15250 }
15251 }
2cf19d5c
JM
15252 }
15253
b60bf9be
CF
15254 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15255 non-conflicting ones. */
15256 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15257 {
15258 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15259 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15260 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15261 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15262 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15263 {
15264 case Val_GNU_MIPS_ABI_MSA_128:
15265 _bfd_error_handler
695344c0 15266 /* xgettext:c-format */
2c1c9679 15267 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15268 "%pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15269 obfd, "-mmsa", abi_msa_bfd,
15270 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15271 break;
15272
15273 default:
15274 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15275 {
15276 case Val_GNU_MIPS_ABI_MSA_128:
15277 _bfd_error_handler
695344c0 15278 /* xgettext:c-format */
2c1c9679 15279 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15280 "(set by %pB), %pB uses %s"),
c08bb8dd
AM
15281 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15282 abi_msa_bfd, ibfd, "-mmsa");
b60bf9be
CF
15283 break;
15284
15285 default:
15286 _bfd_error_handler
695344c0 15287 /* xgettext:c-format */
2c1c9679 15288 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15289 "(set by %pB), %pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15290 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15291 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15292 break;
15293 }
15294 }
15295 }
15296
2cf19d5c 15297 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15298 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15299}
15300
a3dc0a7f
MR
15301/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15302 there are conflicting settings. */
15303
15304static bfd_boolean
15305mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15306{
15307 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15308 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15309 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15310
15311 /* Update the output abiflags fp_abi using the computed fp_abi. */
15312 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15313
15314#define max(a, b) ((a) > (b) ? (a) : (b))
15315 /* Merge abiflags. */
15316 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15317 in_tdata->abiflags.isa_level);
15318 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15319 in_tdata->abiflags.isa_rev);
15320 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15321 in_tdata->abiflags.gpr_size);
15322 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15323 in_tdata->abiflags.cpr1_size);
15324 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15325 in_tdata->abiflags.cpr2_size);
15326#undef max
15327 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15328 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15329
15330 return TRUE;
15331}
15332
b49e97c9
TS
15333/* Merge backend specific data from an object file to the output
15334 object file when linking. */
15335
b34976b6 15336bfd_boolean
50e03d47 15337_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15338{
50e03d47 15339 bfd *obfd = info->output_bfd;
cf8502c1
MR
15340 struct mips_elf_obj_tdata *out_tdata;
15341 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15342 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15343 asection *sec;
d537eeb5 15344 bfd_boolean ok;
b49e97c9 15345
58238693 15346 /* Check if we have the same endianness. */
50e03d47 15347 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15348 {
4eca0228 15349 _bfd_error_handler
871b3ab2 15350 (_("%pB: endianness incompatible with that of the selected emulation"),
d003868e 15351 ibfd);
aa701218
AO
15352 return FALSE;
15353 }
b49e97c9 15354
d5eaccd7 15355 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15356 return TRUE;
b49e97c9 15357
cf8502c1
MR
15358 in_tdata = mips_elf_tdata (ibfd);
15359 out_tdata = mips_elf_tdata (obfd);
15360
aa701218
AO
15361 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15362 {
4eca0228 15363 _bfd_error_handler
871b3ab2 15364 (_("%pB: ABI is incompatible with that of the selected emulation"),
d003868e 15365 ibfd);
aa701218
AO
15366 return FALSE;
15367 }
15368
23ba6f18
MR
15369 /* Check to see if the input BFD actually contains any sections. If not,
15370 then it has no attributes, and its flags may not have been initialized
15371 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15372 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15373 {
15374 /* Ignore synthetic sections and empty .text, .data and .bss sections
15375 which are automatically generated by gas. Also ignore fake
15376 (s)common sections, since merely defining a common symbol does
15377 not affect compatibility. */
15378 if ((sec->flags & SEC_IS_COMMON) == 0
15379 && strcmp (sec->name, ".reginfo")
15380 && strcmp (sec->name, ".mdebug")
15381 && (sec->size != 0
15382 || (strcmp (sec->name, ".text")
15383 && strcmp (sec->name, ".data")
15384 && strcmp (sec->name, ".bss"))))
15385 {
15386 null_input_bfd = FALSE;
15387 break;
15388 }
15389 }
15390 if (null_input_bfd)
15391 return TRUE;
15392
28d45e28 15393 /* Populate abiflags using existing information. */
23ba6f18
MR
15394 if (in_tdata->abiflags_valid)
15395 {
15396 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15397 Elf_Internal_ABIFlags_v0 in_abiflags;
15398 Elf_Internal_ABIFlags_v0 abiflags;
15399
15400 /* Set up the FP ABI attribute from the abiflags if it is not already
07d6d2b8 15401 set. */
23ba6f18 15402 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
07d6d2b8 15403 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15404
351cdf24 15405 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15406 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15407
15408 /* It is not possible to infer the correct ISA revision
07d6d2b8 15409 for R3 or R5 so drop down to R2 for the checks. */
351cdf24
MF
15410 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15411 in_abiflags.isa_rev = 2;
15412
c97c330b
MF
15413 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15414 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15415 _bfd_error_handler
2c1c9679 15416 (_("%pB: warning: inconsistent ISA between e_flags and "
351cdf24
MF
15417 ".MIPS.abiflags"), ibfd);
15418 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15419 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15420 _bfd_error_handler
2c1c9679 15421 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15422 ".MIPS.abiflags"), ibfd);
15423 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15424 _bfd_error_handler
2c1c9679 15425 (_("%pB: warning: inconsistent ASEs between e_flags and "
351cdf24 15426 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15427 /* The isa_ext is allowed to be an extension of what can be inferred
15428 from e_flags. */
15429 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15430 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15431 _bfd_error_handler
2c1c9679 15432 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
351cdf24
MF
15433 ".MIPS.abiflags"), ibfd);
15434 if (in_abiflags.flags2 != 0)
4eca0228 15435 _bfd_error_handler
2c1c9679 15436 (_("%pB: warning: unexpected flag in the flags2 field of "
351cdf24 15437 ".MIPS.abiflags (0x%lx)"), ibfd,
d42c267e 15438 in_abiflags.flags2);
351cdf24 15439 }
28d45e28
MR
15440 else
15441 {
15442 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15443 in_tdata->abiflags_valid = TRUE;
15444 }
15445
cf8502c1 15446 if (!out_tdata->abiflags_valid)
351cdf24
MF
15447 {
15448 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15449 out_tdata->abiflags = in_tdata->abiflags;
15450 out_tdata->abiflags_valid = TRUE;
351cdf24 15451 }
b49e97c9
TS
15452
15453 if (! elf_flags_init (obfd))
15454 {
b34976b6 15455 elf_flags_init (obfd) = TRUE;
351cdf24 15456 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15457 elf_elfheader (obfd)->e_ident[EI_CLASS]
15458 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15459
15460 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15461 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15462 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15463 bfd_get_mach (ibfd))))
b49e97c9
TS
15464 {
15465 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15466 bfd_get_mach (ibfd)))
b34976b6 15467 return FALSE;
351cdf24
MF
15468
15469 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15470 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15471 }
15472
d537eeb5 15473 ok = TRUE;
b49e97c9 15474 }
d537eeb5 15475 else
50e03d47 15476 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15477
50e03d47 15478 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15479
a3dc0a7f 15480 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15481
d537eeb5 15482 if (!ok)
b49e97c9
TS
15483 {
15484 bfd_set_error (bfd_error_bad_value);
b34976b6 15485 return FALSE;
b49e97c9
TS
15486 }
15487
b34976b6 15488 return TRUE;
b49e97c9
TS
15489}
15490
15491/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15492
b34976b6 15493bfd_boolean
9719ad41 15494_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15495{
15496 BFD_ASSERT (!elf_flags_init (abfd)
15497 || elf_elfheader (abfd)->e_flags == flags);
15498
15499 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15500 elf_flags_init (abfd) = TRUE;
15501 return TRUE;
b49e97c9
TS
15502}
15503
ad9563d6
CM
15504char *
15505_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15506{
15507 switch (dtag)
15508 {
15509 default: return "";
15510 case DT_MIPS_RLD_VERSION:
15511 return "MIPS_RLD_VERSION";
15512 case DT_MIPS_TIME_STAMP:
15513 return "MIPS_TIME_STAMP";
15514 case DT_MIPS_ICHECKSUM:
15515 return "MIPS_ICHECKSUM";
15516 case DT_MIPS_IVERSION:
15517 return "MIPS_IVERSION";
15518 case DT_MIPS_FLAGS:
15519 return "MIPS_FLAGS";
15520 case DT_MIPS_BASE_ADDRESS:
15521 return "MIPS_BASE_ADDRESS";
15522 case DT_MIPS_MSYM:
15523 return "MIPS_MSYM";
15524 case DT_MIPS_CONFLICT:
15525 return "MIPS_CONFLICT";
15526 case DT_MIPS_LIBLIST:
15527 return "MIPS_LIBLIST";
15528 case DT_MIPS_LOCAL_GOTNO:
15529 return "MIPS_LOCAL_GOTNO";
15530 case DT_MIPS_CONFLICTNO:
15531 return "MIPS_CONFLICTNO";
15532 case DT_MIPS_LIBLISTNO:
15533 return "MIPS_LIBLISTNO";
15534 case DT_MIPS_SYMTABNO:
15535 return "MIPS_SYMTABNO";
15536 case DT_MIPS_UNREFEXTNO:
15537 return "MIPS_UNREFEXTNO";
15538 case DT_MIPS_GOTSYM:
15539 return "MIPS_GOTSYM";
15540 case DT_MIPS_HIPAGENO:
15541 return "MIPS_HIPAGENO";
15542 case DT_MIPS_RLD_MAP:
15543 return "MIPS_RLD_MAP";
a5499fa4
MF
15544 case DT_MIPS_RLD_MAP_REL:
15545 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15546 case DT_MIPS_DELTA_CLASS:
15547 return "MIPS_DELTA_CLASS";
15548 case DT_MIPS_DELTA_CLASS_NO:
15549 return "MIPS_DELTA_CLASS_NO";
15550 case DT_MIPS_DELTA_INSTANCE:
15551 return "MIPS_DELTA_INSTANCE";
15552 case DT_MIPS_DELTA_INSTANCE_NO:
15553 return "MIPS_DELTA_INSTANCE_NO";
15554 case DT_MIPS_DELTA_RELOC:
15555 return "MIPS_DELTA_RELOC";
15556 case DT_MIPS_DELTA_RELOC_NO:
15557 return "MIPS_DELTA_RELOC_NO";
15558 case DT_MIPS_DELTA_SYM:
15559 return "MIPS_DELTA_SYM";
15560 case DT_MIPS_DELTA_SYM_NO:
15561 return "MIPS_DELTA_SYM_NO";
15562 case DT_MIPS_DELTA_CLASSSYM:
15563 return "MIPS_DELTA_CLASSSYM";
15564 case DT_MIPS_DELTA_CLASSSYM_NO:
15565 return "MIPS_DELTA_CLASSSYM_NO";
15566 case DT_MIPS_CXX_FLAGS:
15567 return "MIPS_CXX_FLAGS";
15568 case DT_MIPS_PIXIE_INIT:
15569 return "MIPS_PIXIE_INIT";
15570 case DT_MIPS_SYMBOL_LIB:
15571 return "MIPS_SYMBOL_LIB";
15572 case DT_MIPS_LOCALPAGE_GOTIDX:
15573 return "MIPS_LOCALPAGE_GOTIDX";
15574 case DT_MIPS_LOCAL_GOTIDX:
15575 return "MIPS_LOCAL_GOTIDX";
15576 case DT_MIPS_HIDDEN_GOTIDX:
15577 return "MIPS_HIDDEN_GOTIDX";
15578 case DT_MIPS_PROTECTED_GOTIDX:
15579 return "MIPS_PROTECTED_GOT_IDX";
15580 case DT_MIPS_OPTIONS:
15581 return "MIPS_OPTIONS";
15582 case DT_MIPS_INTERFACE:
15583 return "MIPS_INTERFACE";
15584 case DT_MIPS_DYNSTR_ALIGN:
15585 return "DT_MIPS_DYNSTR_ALIGN";
15586 case DT_MIPS_INTERFACE_SIZE:
15587 return "DT_MIPS_INTERFACE_SIZE";
15588 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15589 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15590 case DT_MIPS_PERF_SUFFIX:
15591 return "DT_MIPS_PERF_SUFFIX";
15592 case DT_MIPS_COMPACT_SIZE:
15593 return "DT_MIPS_COMPACT_SIZE";
15594 case DT_MIPS_GP_VALUE:
15595 return "DT_MIPS_GP_VALUE";
15596 case DT_MIPS_AUX_DYNAMIC:
15597 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15598 case DT_MIPS_PLTGOT:
15599 return "DT_MIPS_PLTGOT";
15600 case DT_MIPS_RWPLT:
15601 return "DT_MIPS_RWPLT";
ad9563d6
CM
15602 }
15603}
15604
757a636f
RS
15605/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15606 not known. */
15607
15608const char *
15609_bfd_mips_fp_abi_string (int fp)
15610{
15611 switch (fp)
15612 {
15613 /* These strings aren't translated because they're simply
15614 option lists. */
15615 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15616 return "-mdouble-float";
15617
15618 case Val_GNU_MIPS_ABI_FP_SINGLE:
15619 return "-msingle-float";
15620
15621 case Val_GNU_MIPS_ABI_FP_SOFT:
15622 return "-msoft-float";
15623
351cdf24
MF
15624 case Val_GNU_MIPS_ABI_FP_OLD_64:
15625 return _("-mips32r2 -mfp64 (12 callee-saved)");
15626
15627 case Val_GNU_MIPS_ABI_FP_XX:
15628 return "-mfpxx";
15629
757a636f 15630 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15631 return "-mgp32 -mfp64";
15632
15633 case Val_GNU_MIPS_ABI_FP_64A:
15634 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15635
15636 default:
15637 return 0;
15638 }
15639}
15640
351cdf24
MF
15641static void
15642print_mips_ases (FILE *file, unsigned int mask)
15643{
15644 if (mask & AFL_ASE_DSP)
15645 fputs ("\n\tDSP ASE", file);
15646 if (mask & AFL_ASE_DSPR2)
15647 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
15648 if (mask & AFL_ASE_DSPR3)
15649 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
15650 if (mask & AFL_ASE_EVA)
15651 fputs ("\n\tEnhanced VA Scheme", file);
15652 if (mask & AFL_ASE_MCU)
15653 fputs ("\n\tMCU (MicroController) ASE", file);
15654 if (mask & AFL_ASE_MDMX)
15655 fputs ("\n\tMDMX ASE", file);
15656 if (mask & AFL_ASE_MIPS3D)
15657 fputs ("\n\tMIPS-3D ASE", file);
15658 if (mask & AFL_ASE_MT)
15659 fputs ("\n\tMT ASE", file);
15660 if (mask & AFL_ASE_SMARTMIPS)
15661 fputs ("\n\tSmartMIPS ASE", file);
15662 if (mask & AFL_ASE_VIRT)
15663 fputs ("\n\tVZ ASE", file);
15664 if (mask & AFL_ASE_MSA)
15665 fputs ("\n\tMSA ASE", file);
15666 if (mask & AFL_ASE_MIPS16)
15667 fputs ("\n\tMIPS16 ASE", file);
15668 if (mask & AFL_ASE_MICROMIPS)
15669 fputs ("\n\tMICROMIPS ASE", file);
15670 if (mask & AFL_ASE_XPA)
15671 fputs ("\n\tXPA ASE", file);
25499ac7
MR
15672 if (mask & AFL_ASE_MIPS16E2)
15673 fputs ("\n\tMIPS16e2 ASE", file);
730c3174
SE
15674 if (mask & AFL_ASE_CRC)
15675 fputs ("\n\tCRC ASE", file);
6f20c942
FS
15676 if (mask & AFL_ASE_GINV)
15677 fputs ("\n\tGINV ASE", file);
351cdf24
MF
15678 if (mask == 0)
15679 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
15680 else if ((mask & ~AFL_ASE_MASK) != 0)
15681 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
15682}
15683
15684static void
15685print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15686{
15687 switch (isa_ext)
15688 {
15689 case 0:
15690 fputs (_("None"), file);
15691 break;
15692 case AFL_EXT_XLR:
15693 fputs ("RMI XLR", file);
15694 break;
2c629856
N
15695 case AFL_EXT_OCTEON3:
15696 fputs ("Cavium Networks Octeon3", file);
15697 break;
351cdf24
MF
15698 case AFL_EXT_OCTEON2:
15699 fputs ("Cavium Networks Octeon2", file);
15700 break;
15701 case AFL_EXT_OCTEONP:
15702 fputs ("Cavium Networks OcteonP", file);
15703 break;
15704 case AFL_EXT_LOONGSON_3A:
15705 fputs ("Loongson 3A", file);
15706 break;
15707 case AFL_EXT_OCTEON:
15708 fputs ("Cavium Networks Octeon", file);
15709 break;
15710 case AFL_EXT_5900:
15711 fputs ("Toshiba R5900", file);
15712 break;
15713 case AFL_EXT_4650:
15714 fputs ("MIPS R4650", file);
15715 break;
15716 case AFL_EXT_4010:
15717 fputs ("LSI R4010", file);
15718 break;
15719 case AFL_EXT_4100:
15720 fputs ("NEC VR4100", file);
15721 break;
15722 case AFL_EXT_3900:
15723 fputs ("Toshiba R3900", file);
15724 break;
15725 case AFL_EXT_10000:
15726 fputs ("MIPS R10000", file);
15727 break;
15728 case AFL_EXT_SB1:
15729 fputs ("Broadcom SB-1", file);
15730 break;
15731 case AFL_EXT_4111:
15732 fputs ("NEC VR4111/VR4181", file);
15733 break;
15734 case AFL_EXT_4120:
15735 fputs ("NEC VR4120", file);
15736 break;
15737 case AFL_EXT_5400:
15738 fputs ("NEC VR5400", file);
15739 break;
15740 case AFL_EXT_5500:
15741 fputs ("NEC VR5500", file);
15742 break;
15743 case AFL_EXT_LOONGSON_2E:
15744 fputs ("ST Microelectronics Loongson 2E", file);
15745 break;
15746 case AFL_EXT_LOONGSON_2F:
15747 fputs ("ST Microelectronics Loongson 2F", file);
15748 break;
38bf472a
MR
15749 case AFL_EXT_INTERAPTIV_MR2:
15750 fputs ("Imagination interAptiv MR2", file);
15751 break;
351cdf24 15752 default:
00ac7aa0 15753 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
15754 break;
15755 }
15756}
15757
15758static void
15759print_mips_fp_abi_value (FILE *file, int val)
15760{
15761 switch (val)
15762 {
15763 case Val_GNU_MIPS_ABI_FP_ANY:
15764 fprintf (file, _("Hard or soft float\n"));
15765 break;
15766 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15767 fprintf (file, _("Hard float (double precision)\n"));
15768 break;
15769 case Val_GNU_MIPS_ABI_FP_SINGLE:
15770 fprintf (file, _("Hard float (single precision)\n"));
15771 break;
15772 case Val_GNU_MIPS_ABI_FP_SOFT:
15773 fprintf (file, _("Soft float\n"));
15774 break;
15775 case Val_GNU_MIPS_ABI_FP_OLD_64:
15776 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15777 break;
15778 case Val_GNU_MIPS_ABI_FP_XX:
15779 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15780 break;
15781 case Val_GNU_MIPS_ABI_FP_64:
15782 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15783 break;
15784 case Val_GNU_MIPS_ABI_FP_64A:
15785 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15786 break;
15787 default:
15788 fprintf (file, "??? (%d)\n", val);
15789 break;
15790 }
15791}
15792
15793static int
15794get_mips_reg_size (int reg_size)
15795{
15796 return (reg_size == AFL_REG_NONE) ? 0
15797 : (reg_size == AFL_REG_32) ? 32
15798 : (reg_size == AFL_REG_64) ? 64
15799 : (reg_size == AFL_REG_128) ? 128
15800 : -1;
15801}
15802
b34976b6 15803bfd_boolean
9719ad41 15804_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 15805{
9719ad41 15806 FILE *file = ptr;
b49e97c9
TS
15807
15808 BFD_ASSERT (abfd != NULL && ptr != NULL);
15809
15810 /* Print normal ELF private data. */
15811 _bfd_elf_print_private_bfd_data (abfd, ptr);
15812
15813 /* xgettext:c-format */
15814 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15815
15816 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15817 fprintf (file, _(" [abi=O32]"));
15818 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15819 fprintf (file, _(" [abi=O64]"));
15820 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15821 fprintf (file, _(" [abi=EABI32]"));
15822 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15823 fprintf (file, _(" [abi=EABI64]"));
15824 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15825 fprintf (file, _(" [abi unknown]"));
15826 else if (ABI_N32_P (abfd))
15827 fprintf (file, _(" [abi=N32]"));
15828 else if (ABI_64_P (abfd))
15829 fprintf (file, _(" [abi=64]"));
15830 else
15831 fprintf (file, _(" [no abi set]"));
15832
15833 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 15834 fprintf (file, " [mips1]");
b49e97c9 15835 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 15836 fprintf (file, " [mips2]");
b49e97c9 15837 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 15838 fprintf (file, " [mips3]");
b49e97c9 15839 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 15840 fprintf (file, " [mips4]");
b49e97c9 15841 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 15842 fprintf (file, " [mips5]");
b49e97c9 15843 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 15844 fprintf (file, " [mips32]");
b49e97c9 15845 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 15846 fprintf (file, " [mips64]");
af7ee8bf 15847 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 15848 fprintf (file, " [mips32r2]");
5f74bc13 15849 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 15850 fprintf (file, " [mips64r2]");
7361da2c
AB
15851 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15852 fprintf (file, " [mips32r6]");
15853 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15854 fprintf (file, " [mips64r6]");
b49e97c9
TS
15855 else
15856 fprintf (file, _(" [unknown ISA]"));
15857
40d32fc6 15858 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 15859 fprintf (file, " [mdmx]");
40d32fc6
CD
15860
15861 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 15862 fprintf (file, " [mips16]");
40d32fc6 15863
df58fc94
RS
15864 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15865 fprintf (file, " [micromips]");
15866
ba92f887
MR
15867 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15868 fprintf (file, " [nan2008]");
15869
5baf5e34 15870 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 15871 fprintf (file, " [old fp64]");
5baf5e34 15872
b49e97c9 15873 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 15874 fprintf (file, " [32bitmode]");
b49e97c9
TS
15875 else
15876 fprintf (file, _(" [not 32bitmode]"));
15877
c0e3f241 15878 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 15879 fprintf (file, " [noreorder]");
c0e3f241
CD
15880
15881 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 15882 fprintf (file, " [PIC]");
c0e3f241
CD
15883
15884 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 15885 fprintf (file, " [CPIC]");
c0e3f241
CD
15886
15887 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 15888 fprintf (file, " [XGOT]");
c0e3f241
CD
15889
15890 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 15891 fprintf (file, " [UCODE]");
c0e3f241 15892
b49e97c9
TS
15893 fputc ('\n', file);
15894
351cdf24
MF
15895 if (mips_elf_tdata (abfd)->abiflags_valid)
15896 {
15897 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15898 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15899 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15900 if (abiflags->isa_rev > 1)
15901 fprintf (file, "r%d", abiflags->isa_rev);
15902 fprintf (file, "\nGPR size: %d",
15903 get_mips_reg_size (abiflags->gpr_size));
15904 fprintf (file, "\nCPR1 size: %d",
15905 get_mips_reg_size (abiflags->cpr1_size));
15906 fprintf (file, "\nCPR2 size: %d",
15907 get_mips_reg_size (abiflags->cpr2_size));
15908 fputs ("\nFP ABI: ", file);
15909 print_mips_fp_abi_value (file, abiflags->fp_abi);
15910 fputs ("ISA Extension: ", file);
15911 print_mips_isa_ext (file, abiflags->isa_ext);
15912 fputs ("\nASEs:", file);
15913 print_mips_ases (file, abiflags->ases);
15914 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15915 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15916 fputc ('\n', file);
15917 }
15918
b34976b6 15919 return TRUE;
b49e97c9 15920}
2f89ff8d 15921
b35d266b 15922const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 15923{
07d6d2b8
AM
15924 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15925 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26 15926 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
07d6d2b8 15927 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26
NC
15928 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15929 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
07d6d2b8 15930 { NULL, 0, 0, 0, 0 }
2f89ff8d 15931};
5e2b0d47 15932
8992f0d7
TS
15933/* Merge non visibility st_other attributes. Ensure that the
15934 STO_OPTIONAL flag is copied into h->other, even if this is not a
15935 definiton of the symbol. */
5e2b0d47
NC
15936void
15937_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15938 const Elf_Internal_Sym *isym,
15939 bfd_boolean definition,
15940 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15941{
8992f0d7
TS
15942 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15943 {
15944 unsigned char other;
15945
15946 other = (definition ? isym->st_other : h->other);
15947 other &= ~ELF_ST_VISIBILITY (-1);
15948 h->other = other | ELF_ST_VISIBILITY (h->other);
15949 }
15950
15951 if (!definition
5e2b0d47
NC
15952 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15953 h->other |= STO_OPTIONAL;
15954}
12ac1cf5
NC
15955
15956/* Decide whether an undefined symbol is special and can be ignored.
15957 This is the case for OPTIONAL symbols on IRIX. */
15958bfd_boolean
15959_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15960{
15961 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15962}
e0764319
NC
15963
15964bfd_boolean
15965_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15966{
15967 return (sym->st_shndx == SHN_COMMON
15968 || sym->st_shndx == SHN_MIPS_ACOMMON
15969 || sym->st_shndx == SHN_MIPS_SCOMMON);
15970}
861fb55a
DJ
15971
15972/* Return address for Ith PLT stub in section PLT, for relocation REL
15973 or (bfd_vma) -1 if it should not be included. */
15974
15975bfd_vma
15976_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15977 const arelent *rel ATTRIBUTE_UNUSED)
15978{
15979 return (plt->vma
15980 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15981 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15982}
15983
1bbce132
MR
15984/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15985 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15986 and .got.plt and also the slots may be of a different size each we walk
15987 the PLT manually fetching instructions and matching them against known
15988 patterns. To make things easier standard MIPS slots, if any, always come
15989 first. As we don't create proper ELF symbols we use the UDATA.I member
15990 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15991 with the ST_OTHER member of the ELF symbol. */
15992
15993long
15994_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15995 long symcount ATTRIBUTE_UNUSED,
15996 asymbol **syms ATTRIBUTE_UNUSED,
15997 long dynsymcount, asymbol **dynsyms,
15998 asymbol **ret)
15999{
16000 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16001 static const char microsuffix[] = "@micromipsplt";
16002 static const char m16suffix[] = "@mips16plt";
16003 static const char mipssuffix[] = "@plt";
16004
16005 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16006 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16007 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16008 Elf_Internal_Shdr *hdr;
16009 bfd_byte *plt_data;
16010 bfd_vma plt_offset;
16011 unsigned int other;
16012 bfd_vma entry_size;
16013 bfd_vma plt0_size;
16014 asection *relplt;
16015 bfd_vma opcode;
16016 asection *plt;
16017 asymbol *send;
16018 size_t size;
16019 char *names;
16020 long counti;
16021 arelent *p;
16022 asymbol *s;
16023 char *nend;
16024 long count;
16025 long pi;
16026 long i;
16027 long n;
16028
16029 *ret = NULL;
16030
16031 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16032 return 0;
16033
16034 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16035 if (relplt == NULL)
16036 return 0;
16037
16038 hdr = &elf_section_data (relplt)->this_hdr;
16039 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16040 return 0;
16041
16042 plt = bfd_get_section_by_name (abfd, ".plt");
16043 if (plt == NULL)
16044 return 0;
16045
16046 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16047 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16048 return -1;
16049 p = relplt->relocation;
16050
16051 /* Calculating the exact amount of space required for symbols would
16052 require two passes over the PLT, so just pessimise assuming two
16053 PLT slots per relocation. */
16054 count = relplt->size / hdr->sh_entsize;
16055 counti = count * bed->s->int_rels_per_ext_rel;
16056 size = 2 * count * sizeof (asymbol);
16057 size += count * (sizeof (mipssuffix) +
16058 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16059 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16060 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16061
16062 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16063 size += sizeof (asymbol) + sizeof (pltname);
16064
16065 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16066 return -1;
16067
16068 if (plt->size < 16)
16069 return -1;
16070
16071 s = *ret = bfd_malloc (size);
16072 if (s == NULL)
16073 return -1;
16074 send = s + 2 * count + 1;
16075
16076 names = (char *) send;
16077 nend = (char *) s + size;
16078 n = 0;
16079
16080 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16081 if (opcode == 0x3302fffe)
16082 {
16083 if (!micromips_p)
16084 return -1;
16085 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16086 other = STO_MICROMIPS;
16087 }
833794fc
MR
16088 else if (opcode == 0x0398c1d0)
16089 {
16090 if (!micromips_p)
16091 return -1;
16092 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16093 other = STO_MICROMIPS;
16094 }
1bbce132
MR
16095 else
16096 {
16097 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16098 other = 0;
16099 }
16100
16101 s->the_bfd = abfd;
16102 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16103 s->section = plt;
16104 s->value = 0;
16105 s->name = names;
16106 s->udata.i = other;
16107 memcpy (names, pltname, sizeof (pltname));
16108 names += sizeof (pltname);
16109 ++s, ++n;
16110
16111 pi = 0;
16112 for (plt_offset = plt0_size;
16113 plt_offset + 8 <= plt->size && s < send;
16114 plt_offset += entry_size)
16115 {
16116 bfd_vma gotplt_addr;
16117 const char *suffix;
16118 bfd_vma gotplt_hi;
16119 bfd_vma gotplt_lo;
16120 size_t suffixlen;
16121
16122 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16123
16124 /* Check if the second word matches the expected MIPS16 instruction. */
16125 if (opcode == 0x651aeb00)
16126 {
16127 if (micromips_p)
16128 return -1;
16129 /* Truncated table??? */
16130 if (plt_offset + 16 > plt->size)
16131 break;
16132 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16133 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16134 suffixlen = sizeof (m16suffix);
16135 suffix = m16suffix;
16136 other = STO_MIPS16;
16137 }
833794fc 16138 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16139 else if (opcode == 0xff220000)
16140 {
16141 if (!micromips_p)
16142 return -1;
16143 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16144 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16145 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16146 gotplt_lo <<= 2;
16147 gotplt_addr = gotplt_hi + gotplt_lo;
16148 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16149 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16150 suffixlen = sizeof (microsuffix);
16151 suffix = microsuffix;
16152 other = STO_MICROMIPS;
16153 }
833794fc
MR
16154 /* Likewise the expected microMIPS instruction (insn32 mode). */
16155 else if ((opcode & 0xffff0000) == 0xff2f0000)
16156 {
16157 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16158 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16159 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16160 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16161 gotplt_addr = gotplt_hi + gotplt_lo;
16162 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16163 suffixlen = sizeof (microsuffix);
16164 suffix = microsuffix;
16165 other = STO_MICROMIPS;
16166 }
1bbce132
MR
16167 /* Otherwise assume standard MIPS code. */
16168 else
16169 {
16170 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16171 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16172 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16173 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16174 gotplt_addr = gotplt_hi + gotplt_lo;
16175 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16176 suffixlen = sizeof (mipssuffix);
16177 suffix = mipssuffix;
16178 other = 0;
16179 }
16180 /* Truncated table??? */
16181 if (plt_offset + entry_size > plt->size)
16182 break;
16183
16184 for (i = 0;
16185 i < count && p[pi].address != gotplt_addr;
16186 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16187
16188 if (i < count)
16189 {
16190 size_t namelen;
16191 size_t len;
16192
16193 *s = **p[pi].sym_ptr_ptr;
16194 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16195 we are defining a symbol, ensure one of them is set. */
16196 if ((s->flags & BSF_LOCAL) == 0)
16197 s->flags |= BSF_GLOBAL;
16198 s->flags |= BSF_SYNTHETIC;
16199 s->section = plt;
16200 s->value = plt_offset;
16201 s->name = names;
16202 s->udata.i = other;
16203
16204 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16205 namelen = len + suffixlen;
16206 if (names + namelen > nend)
16207 break;
16208
16209 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16210 names += len;
16211 memcpy (names, suffix, suffixlen);
16212 names += suffixlen;
16213
16214 ++s, ++n;
16215 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16216 }
16217 }
16218
16219 free (plt_data);
16220
16221 return n;
16222}
16223
5e7fc731
MR
16224/* Return the ABI flags associated with ABFD if available. */
16225
16226Elf_Internal_ABIFlags_v0 *
16227bfd_mips_elf_get_abiflags (bfd *abfd)
16228{
16229 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16230
16231 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16232}
16233
bb29b84d
MR
16234/* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16235 field. Taken from `libc-abis.h' generated at GNU libc build time.
16236 Using a MIPS_ prefix as other libc targets use different values. */
16237enum
16238{
16239 MIPS_LIBC_ABI_DEFAULT = 0,
16240 MIPS_LIBC_ABI_MIPS_PLT,
16241 MIPS_LIBC_ABI_UNIQUE,
16242 MIPS_LIBC_ABI_MIPS_O32_FP64,
16243 MIPS_LIBC_ABI_MAX
16244};
16245
861fb55a
DJ
16246void
16247_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16248{
16249 struct mips_elf_link_hash_table *htab;
16250 Elf_Internal_Ehdr *i_ehdrp;
16251
16252 i_ehdrp = elf_elfheader (abfd);
16253 if (link_info)
16254 {
16255 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
16256 BFD_ASSERT (htab != NULL);
16257
861fb55a 16258 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
bb29b84d 16259 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
861fb55a 16260 }
0af03126 16261
351cdf24
MF
16262 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16263 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
bb29b84d 16264 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
334cd8a7
MR
16265
16266 _bfd_elf_post_process_headers (abfd, link_info);
861fb55a 16267}
2f0c68f2
CM
16268
16269int
1ced1a5f
MR
16270_bfd_mips_elf_compact_eh_encoding
16271 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16272{
16273 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16274}
16275
16276/* Return the opcode for can't unwind. */
16277
16278int
1ced1a5f
MR
16279_bfd_mips_elf_cant_unwind_opcode
16280 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16281{
16282 return COMPACT_EH_CANT_UNWIND_OPCODE;
16283}
This page took 3.238316 seconds and 4 git commands to generate.