Correct spelling of "relocatable".
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a
RS
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
b15e6682 67 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
b15e6682
AO
71};
72
f0abc2a1 73/* This structure is used to hold .got information when linking. */
b49e97c9
TS
74
75struct mips_got_info
76{
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
b15e6682
AO
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
f4416af6
AO
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94};
95
96/* Map an input bfd to a got in a multi-got link. */
97
98struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101};
102
103/* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106struct mips_elf_got_per_bfd_arg
107{
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128};
129
130/* Another structure used to pass arguments for got entries traversal. */
131
132struct mips_elf_set_global_got_offset_arg
133{
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
b49e97c9
TS
138};
139
f0abc2a1
AM
140struct _mips_elf_section_data
141{
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148};
149
150#define mips_elf_section_data(sec) \
68bfbfcc 151 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 152
b49e97c9
TS
153/* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156struct mips_elf_hash_sort_data
157{
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
f4416af6
AO
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 166 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 167 long max_unref_got_dynindx;
b49e97c9
TS
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171};
172
173/* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176struct mips_elf_link_hash_entry
177{
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
b34976b6 189 bfd_boolean readonly_reloc;
b49e97c9
TS
190
191 /* The index of the first dynamic relocation (in the .rel.dyn
192 section) against this symbol. */
193 unsigned int min_dyn_reloc_index;
194
195 /* We must not create a stub for a symbol that has relocations
196 related to taking the function's address, i.e. any but
197 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
198 p. 4-20. */
b34976b6 199 bfd_boolean no_fn_stub;
b49e97c9
TS
200
201 /* If there is a stub that 32 bit functions should use to call this
202 16 bit function, this points to the section containing the stub. */
203 asection *fn_stub;
204
205 /* Whether we need the fn_stub; this is set if this symbol appears
206 in any relocs other than a 16 bit call. */
b34976b6 207 bfd_boolean need_fn_stub;
b49e97c9
TS
208
209 /* If there is a stub that 16 bit functions should use to call this
210 32 bit function, this points to the section containing the stub. */
211 asection *call_stub;
212
213 /* This is like the call_stub field, but it is used if the function
214 being called returns a floating point value. */
215 asection *call_fp_stub;
7c5fcef7
L
216
217 /* Are we forced local? .*/
b34976b6 218 bfd_boolean forced_local;
b49e97c9
TS
219};
220
221/* MIPS ELF linker hash table. */
222
223struct mips_elf_link_hash_table
224{
225 struct elf_link_hash_table root;
226#if 0
227 /* We no longer use this. */
228 /* String section indices for the dynamic section symbols. */
229 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
230#endif
231 /* The number of .rtproc entries. */
232 bfd_size_type procedure_count;
233 /* The size of the .compact_rel section (if SGI_COMPAT). */
234 bfd_size_type compact_rel_size;
235 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 236 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 237 bfd_boolean use_rld_obj_head;
b49e97c9
TS
238 /* This is the value of the __rld_map or __rld_obj_head symbol. */
239 bfd_vma rld_value;
240 /* This is set if we see any mips16 stub sections. */
b34976b6 241 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
242};
243
244/* Structure used to pass information to mips_elf_output_extsym. */
245
246struct extsym_info
247{
9e4aeb93
RS
248 bfd *abfd;
249 struct bfd_link_info *info;
b49e97c9
TS
250 struct ecoff_debug_info *debug;
251 const struct ecoff_debug_swap *swap;
b34976b6 252 bfd_boolean failed;
b49e97c9
TS
253};
254
8dc1a139 255/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
256
257static const char * const mips_elf_dynsym_rtproc_names[] =
258{
259 "_procedure_table",
260 "_procedure_string_table",
261 "_procedure_table_size",
262 NULL
263};
264
265/* These structures are used to generate the .compact_rel section on
8dc1a139 266 IRIX5. */
b49e97c9
TS
267
268typedef struct
269{
270 unsigned long id1; /* Always one? */
271 unsigned long num; /* Number of compact relocation entries. */
272 unsigned long id2; /* Always two? */
273 unsigned long offset; /* The file offset of the first relocation. */
274 unsigned long reserved0; /* Zero? */
275 unsigned long reserved1; /* Zero? */
276} Elf32_compact_rel;
277
278typedef struct
279{
280 bfd_byte id1[4];
281 bfd_byte num[4];
282 bfd_byte id2[4];
283 bfd_byte offset[4];
284 bfd_byte reserved0[4];
285 bfd_byte reserved1[4];
286} Elf32_External_compact_rel;
287
288typedef struct
289{
290 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
291 unsigned int rtype : 4; /* Relocation types. See below. */
292 unsigned int dist2to : 8;
293 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
294 unsigned long konst; /* KONST field. See below. */
295 unsigned long vaddr; /* VADDR to be relocated. */
296} Elf32_crinfo;
297
298typedef struct
299{
300 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
301 unsigned int rtype : 4; /* Relocation types. See below. */
302 unsigned int dist2to : 8;
303 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
304 unsigned long konst; /* KONST field. See below. */
305} Elf32_crinfo2;
306
307typedef struct
308{
309 bfd_byte info[4];
310 bfd_byte konst[4];
311 bfd_byte vaddr[4];
312} Elf32_External_crinfo;
313
314typedef struct
315{
316 bfd_byte info[4];
317 bfd_byte konst[4];
318} Elf32_External_crinfo2;
319
320/* These are the constants used to swap the bitfields in a crinfo. */
321
322#define CRINFO_CTYPE (0x1)
323#define CRINFO_CTYPE_SH (31)
324#define CRINFO_RTYPE (0xf)
325#define CRINFO_RTYPE_SH (27)
326#define CRINFO_DIST2TO (0xff)
327#define CRINFO_DIST2TO_SH (19)
328#define CRINFO_RELVADDR (0x7ffff)
329#define CRINFO_RELVADDR_SH (0)
330
331/* A compact relocation info has long (3 words) or short (2 words)
332 formats. A short format doesn't have VADDR field and relvaddr
333 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
334#define CRF_MIPS_LONG 1
335#define CRF_MIPS_SHORT 0
336
337/* There are 4 types of compact relocation at least. The value KONST
338 has different meaning for each type:
339
340 (type) (konst)
341 CT_MIPS_REL32 Address in data
342 CT_MIPS_WORD Address in word (XXX)
343 CT_MIPS_GPHI_LO GP - vaddr
344 CT_MIPS_JMPAD Address to jump
345 */
346
347#define CRT_MIPS_REL32 0xa
348#define CRT_MIPS_WORD 0xb
349#define CRT_MIPS_GPHI_LO 0xc
350#define CRT_MIPS_JMPAD 0xd
351
352#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
353#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
354#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
355#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
356\f
357/* The structure of the runtime procedure descriptor created by the
358 loader for use by the static exception system. */
359
360typedef struct runtime_pdr {
ae9a127f
NC
361 bfd_vma adr; /* Memory address of start of procedure. */
362 long regmask; /* Save register mask. */
363 long regoffset; /* Save register offset. */
364 long fregmask; /* Save floating point register mask. */
365 long fregoffset; /* Save floating point register offset. */
366 long frameoffset; /* Frame size. */
367 short framereg; /* Frame pointer register. */
368 short pcreg; /* Offset or reg of return pc. */
369 long irpss; /* Index into the runtime string table. */
b49e97c9 370 long reserved;
ae9a127f 371 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
372} RPDR, *pRPDR;
373#define cbRPDR sizeof (RPDR)
374#define rpdNil ((pRPDR) 0)
375\f
376static struct bfd_hash_entry *mips_elf_link_hash_newfunc
377 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
378static void ecoff_swap_rpdr_out
379 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
b34976b6 380static bfd_boolean mips_elf_create_procedure_table
b49e97c9
TS
381 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
382 struct ecoff_debug_info *));
b34976b6 383static bfd_boolean mips_elf_check_mips16_stubs
b49e97c9
TS
384 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
385static void bfd_mips_elf32_swap_gptab_in
386 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
387static void bfd_mips_elf32_swap_gptab_out
388 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
389static void bfd_elf32_swap_compact_rel_out
390 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
391static void bfd_elf32_swap_crinfo_out
392 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
393#if 0
394static void bfd_mips_elf_swap_msym_in
395 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
396#endif
397static void bfd_mips_elf_swap_msym_out
398 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
399static int sort_dynamic_relocs
400 PARAMS ((const void *, const void *));
f4416af6
AO
401static int sort_dynamic_relocs_64
402 PARAMS ((const void *, const void *));
b34976b6 403static bfd_boolean mips_elf_output_extsym
b49e97c9
TS
404 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
405static int gptab_compare PARAMS ((const void *, const void *));
f4416af6
AO
406static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
407static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
b49e97c9
TS
408static struct mips_got_info *mips_elf_got_info
409 PARAMS ((bfd *, asection **));
0176c794 410static long mips_elf_get_global_gotsym_index PARAMS ((bfd *abfd));
b49e97c9 411static bfd_vma mips_elf_local_got_index
f4416af6 412 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
b49e97c9 413static bfd_vma mips_elf_global_got_index
f4416af6 414 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
b49e97c9 415static bfd_vma mips_elf_got_page
f4416af6 416 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
b49e97c9 417static bfd_vma mips_elf_got16_entry
f4416af6 418 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
b49e97c9 419static bfd_vma mips_elf_got_offset_from_index
f4416af6 420 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
b15e6682 421static struct mips_got_entry *mips_elf_create_local_got_entry
f4416af6 422 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
b34976b6 423static bfd_boolean mips_elf_sort_hash_table
b49e97c9 424 PARAMS ((struct bfd_link_info *, unsigned long));
b34976b6 425static bfd_boolean mips_elf_sort_hash_table_f
b49e97c9 426 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
f4416af6
AO
427static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
b34976b6 429static bfd_boolean mips_elf_record_global_got_symbol
f4416af6 430 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
b49e97c9
TS
431 struct mips_got_info *));
432static const Elf_Internal_Rela *mips_elf_next_relocation
433 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
434 const Elf_Internal_Rela *));
b34976b6
AM
435static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
b34976b6 437static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
b49e97c9
TS
438static bfd_vma mips_elf_high PARAMS ((bfd_vma));
439static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
440static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
b34976b6 441static bfd_boolean mips_elf_create_compact_rel_section
b49e97c9 442 PARAMS ((bfd *, struct bfd_link_info *));
b34976b6 443static bfd_boolean mips_elf_create_got_section
f4416af6 444 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
b49e97c9
TS
445static asection *mips_elf_create_msym_section
446 PARAMS ((bfd *));
447static bfd_reloc_status_type mips_elf_calculate_relocation
448 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
449 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
450 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
b34976b6 451 bfd_boolean *, bfd_boolean));
b49e97c9
TS
452static bfd_vma mips_elf_obtain_contents
453 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
b34976b6 454static bfd_boolean mips_elf_perform_relocation
b49e97c9
TS
455 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
456 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
b34976b6
AM
457 bfd_boolean));
458static bfd_boolean mips_elf_stub_section_p
b49e97c9
TS
459 PARAMS ((bfd *, asection *));
460static void mips_elf_allocate_dynamic_relocations
461 PARAMS ((bfd *, unsigned int));
b34976b6 462static bfd_boolean mips_elf_create_dynamic_relocation
b49e97c9
TS
463 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
464 struct mips_elf_link_hash_entry *, asection *,
465 bfd_vma, bfd_vma *, asection *));
64543e1a 466static void mips_set_isa_flags PARAMS ((bfd *));
b49e97c9
TS
467static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
468static void mips_elf_irix6_finish_dynamic_symbol
469 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
64543e1a
RS
470static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
471static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
f4416af6 472static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
b15e6682
AO
473static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
474static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
b49e97c9 475
f4416af6
AO
476static bfd_boolean mips_elf_multi_got
477 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
478 asection *, bfd_size_type));
479static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
480static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
481static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
482static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
483static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
484static int mips_elf_merge_gots PARAMS ((void **, void *));
485static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
486static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
487static void mips_elf_resolve_final_got_entries
488 PARAMS ((struct mips_got_info *));
489static bfd_vma mips_elf_adjust_gp
490 PARAMS ((bfd *, struct mips_got_info *, bfd *));
491static struct mips_got_info *mips_elf_got_for_ibfd
492 PARAMS ((struct mips_got_info *, bfd *));
493
b49e97c9
TS
494/* This will be used when we sort the dynamic relocation records. */
495static bfd *reldyn_sorting_bfd;
496
497/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 498
b49e97c9
TS
499#define ABI_N32_P(abfd) \
500 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
501
4a14403c 502/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 503#define ABI_64_P(abfd) \
141ff970 504 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 505
4a14403c
TS
506/* Nonzero if ABFD is using NewABI conventions. */
507#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
508
509/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
510#define IRIX_COMPAT(abfd) \
511 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
512
b49e97c9
TS
513/* Whether we are trying to be compatible with IRIX at all. */
514#define SGI_COMPAT(abfd) \
515 (IRIX_COMPAT (abfd) != ict_none)
516
517/* The name of the options section. */
518#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 519 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9
TS
520
521/* The name of the stub section. */
522#define MIPS_ELF_STUB_SECTION_NAME(abfd) \
d80dcc6a 523 (NEWABI_P (abfd) ? ".MIPS.stubs" : ".stub")
b49e97c9
TS
524
525/* The size of an external REL relocation. */
526#define MIPS_ELF_REL_SIZE(abfd) \
527 (get_elf_backend_data (abfd)->s->sizeof_rel)
528
529/* The size of an external dynamic table entry. */
530#define MIPS_ELF_DYN_SIZE(abfd) \
531 (get_elf_backend_data (abfd)->s->sizeof_dyn)
532
533/* The size of a GOT entry. */
534#define MIPS_ELF_GOT_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->arch_size / 8)
536
537/* The size of a symbol-table entry. */
538#define MIPS_ELF_SYM_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_sym)
540
541/* The default alignment for sections, as a power of two. */
542#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 543 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
544
545/* Get word-sized data. */
546#define MIPS_ELF_GET_WORD(abfd, ptr) \
547 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
548
549/* Put out word-sized data. */
550#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
551 (ABI_64_P (abfd) \
552 ? bfd_put_64 (abfd, val, ptr) \
553 : bfd_put_32 (abfd, val, ptr))
554
555/* Add a dynamic symbol table-entry. */
556#ifdef BFD64
557#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
558 (ABI_64_P (elf_hash_table (info)->dynobj) \
559 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
560 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
561#else
562#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
563 (ABI_64_P (elf_hash_table (info)->dynobj) \
b34976b6 564 ? (abort (), FALSE) \
b49e97c9
TS
565 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
566#endif
567
568#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
569 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
570
4ffba85c
AO
571/* Determine whether the internal relocation of index REL_IDX is REL
572 (zero) or RELA (non-zero). The assumption is that, if there are
573 two relocation sections for this section, one of them is REL and
574 the other is RELA. If the index of the relocation we're testing is
575 in range for the first relocation section, check that the external
576 relocation size is that for RELA. It is also assumed that, if
577 rel_idx is not in range for the first section, and this first
578 section contains REL relocs, then the relocation is in the second
579 section, that is RELA. */
580#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
581 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
582 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
583 > (bfd_vma)(rel_idx)) \
584 == (elf_section_data (sec)->rel_hdr.sh_entsize \
585 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
586 : sizeof (Elf32_External_Rela))))
587
b49e97c9
TS
588/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
589 from smaller values. Start with zero, widen, *then* decrement. */
590#define MINUS_ONE (((bfd_vma)0) - 1)
591
592/* The number of local .got entries we reserve. */
593#define MIPS_RESERVED_GOTNO (2)
594
f4416af6
AO
595/* The offset of $gp from the beginning of the .got section. */
596#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598/* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
b49e97c9
TS
602/* Instructions which appear in a stub. For some reason the stub is
603 slightly different on an SGI system. */
b49e97c9 604#define STUB_LW(abfd) \
f4416af6
AO
605 ((ABI_64_P (abfd) \
606 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
607 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9
TS
608#define STUB_MOVE(abfd) \
609 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
610#define STUB_JALR 0x0320f809 /* jal t9 */
611#define STUB_LI16(abfd) \
612 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
613#define MIPS_FUNCTION_STUB_SIZE (16)
614
615/* The name of the dynamic interpreter. This is put in the .interp
616 section. */
617
618#define ELF_DYNAMIC_INTERPRETER(abfd) \
619 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
620 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
621 : "/usr/lib/libc.so.1")
622
623#ifdef BFD64
ee6423ed
AO
624#define MNAME(bfd,pre,pos) \
625 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
626#define ELF_R_SYM(bfd, i) \
627 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
628#define ELF_R_TYPE(bfd, i) \
629 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
630#define ELF_R_INFO(bfd, s, t) \
631 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
632#else
ee6423ed 633#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
634#define ELF_R_SYM(bfd, i) \
635 (ELF32_R_SYM (i))
636#define ELF_R_TYPE(bfd, i) \
637 (ELF32_R_TYPE (i))
638#define ELF_R_INFO(bfd, s, t) \
639 (ELF32_R_INFO (s, t))
640#endif
641\f
642 /* The mips16 compiler uses a couple of special sections to handle
643 floating point arguments.
644
645 Section names that look like .mips16.fn.FNNAME contain stubs that
646 copy floating point arguments from the fp regs to the gp regs and
647 then jump to FNNAME. If any 32 bit function calls FNNAME, the
648 call should be redirected to the stub instead. If no 32 bit
649 function calls FNNAME, the stub should be discarded. We need to
650 consider any reference to the function, not just a call, because
651 if the address of the function is taken we will need the stub,
652 since the address might be passed to a 32 bit function.
653
654 Section names that look like .mips16.call.FNNAME contain stubs
655 that copy floating point arguments from the gp regs to the fp
656 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
657 then any 16 bit function that calls FNNAME should be redirected
658 to the stub instead. If FNNAME is not a 32 bit function, the
659 stub should be discarded.
660
661 .mips16.call.fp.FNNAME sections are similar, but contain stubs
662 which call FNNAME and then copy the return value from the fp regs
663 to the gp regs. These stubs store the return value in $18 while
664 calling FNNAME; any function which might call one of these stubs
665 must arrange to save $18 around the call. (This case is not
666 needed for 32 bit functions that call 16 bit functions, because
667 16 bit functions always return floating point values in both
668 $f0/$f1 and $2/$3.)
669
670 Note that in all cases FNNAME might be defined statically.
671 Therefore, FNNAME is not used literally. Instead, the relocation
672 information will indicate which symbol the section is for.
673
674 We record any stubs that we find in the symbol table. */
675
676#define FN_STUB ".mips16.fn."
677#define CALL_STUB ".mips16.call."
678#define CALL_FP_STUB ".mips16.call.fp."
679\f
680/* Look up an entry in a MIPS ELF linker hash table. */
681
682#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
683 ((struct mips_elf_link_hash_entry *) \
684 elf_link_hash_lookup (&(table)->root, (string), (create), \
685 (copy), (follow)))
686
687/* Traverse a MIPS ELF linker hash table. */
688
689#define mips_elf_link_hash_traverse(table, func, info) \
690 (elf_link_hash_traverse \
691 (&(table)->root, \
b34976b6 692 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
b49e97c9
TS
693 (info)))
694
695/* Get the MIPS ELF linker hash table from a link_info structure. */
696
697#define mips_elf_hash_table(p) \
698 ((struct mips_elf_link_hash_table *) ((p)->hash))
699
700/* Create an entry in a MIPS ELF linker hash table. */
701
702static struct bfd_hash_entry *
703mips_elf_link_hash_newfunc (entry, table, string)
704 struct bfd_hash_entry *entry;
705 struct bfd_hash_table *table;
706 const char *string;
707{
708 struct mips_elf_link_hash_entry *ret =
709 (struct mips_elf_link_hash_entry *) entry;
710
711 /* Allocate the structure if it has not already been allocated by a
712 subclass. */
713 if (ret == (struct mips_elf_link_hash_entry *) NULL)
714 ret = ((struct mips_elf_link_hash_entry *)
715 bfd_hash_allocate (table,
716 sizeof (struct mips_elf_link_hash_entry)));
717 if (ret == (struct mips_elf_link_hash_entry *) NULL)
718 return (struct bfd_hash_entry *) ret;
719
720 /* Call the allocation method of the superclass. */
721 ret = ((struct mips_elf_link_hash_entry *)
722 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
723 table, string));
724 if (ret != (struct mips_elf_link_hash_entry *) NULL)
725 {
726 /* Set local fields. */
727 memset (&ret->esym, 0, sizeof (EXTR));
728 /* We use -2 as a marker to indicate that the information has
729 not been set. -1 means there is no associated ifd. */
730 ret->esym.ifd = -2;
731 ret->possibly_dynamic_relocs = 0;
b34976b6 732 ret->readonly_reloc = FALSE;
b49e97c9 733 ret->min_dyn_reloc_index = 0;
b34976b6 734 ret->no_fn_stub = FALSE;
b49e97c9 735 ret->fn_stub = NULL;
b34976b6 736 ret->need_fn_stub = FALSE;
b49e97c9
TS
737 ret->call_stub = NULL;
738 ret->call_fp_stub = NULL;
b34976b6 739 ret->forced_local = FALSE;
b49e97c9
TS
740 }
741
742 return (struct bfd_hash_entry *) ret;
743}
f0abc2a1
AM
744
745bfd_boolean
746_bfd_mips_elf_new_section_hook (abfd, sec)
747 bfd *abfd;
748 asection *sec;
749{
750 struct _mips_elf_section_data *sdata;
751 bfd_size_type amt = sizeof (*sdata);
752
753 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
754 if (sdata == NULL)
755 return FALSE;
756 sec->used_by_bfd = (PTR) sdata;
757
758 return _bfd_elf_new_section_hook (abfd, sec);
759}
b49e97c9
TS
760\f
761/* Read ECOFF debugging information from a .mdebug section into a
762 ecoff_debug_info structure. */
763
b34976b6 764bfd_boolean
b49e97c9
TS
765_bfd_mips_elf_read_ecoff_info (abfd, section, debug)
766 bfd *abfd;
767 asection *section;
768 struct ecoff_debug_info *debug;
769{
770 HDRR *symhdr;
771 const struct ecoff_debug_swap *swap;
772 char *ext_hdr = NULL;
773
774 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
775 memset (debug, 0, sizeof (*debug));
776
777 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
778 if (ext_hdr == NULL && swap->external_hdr_size != 0)
779 goto error_return;
780
82e51918
AM
781 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
782 swap->external_hdr_size))
b49e97c9
TS
783 goto error_return;
784
785 symhdr = &debug->symbolic_header;
786 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
787
788 /* The symbolic header contains absolute file offsets and sizes to
789 read. */
790#define READ(ptr, offset, count, size, type) \
791 if (symhdr->count == 0) \
792 debug->ptr = NULL; \
793 else \
794 { \
795 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
796 debug->ptr = (type) bfd_malloc (amt); \
797 if (debug->ptr == NULL) \
798 goto error_return; \
799 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
800 || bfd_bread (debug->ptr, amt, abfd) != amt) \
801 goto error_return; \
802 }
803
804 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
805 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
806 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
807 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
808 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
809 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
810 union aux_ext *);
811 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
812 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
813 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
814 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
815 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
816#undef READ
817
818 debug->fdr = NULL;
819 debug->adjust = NULL;
820
b34976b6 821 return TRUE;
b49e97c9
TS
822
823 error_return:
824 if (ext_hdr != NULL)
825 free (ext_hdr);
826 if (debug->line != NULL)
827 free (debug->line);
828 if (debug->external_dnr != NULL)
829 free (debug->external_dnr);
830 if (debug->external_pdr != NULL)
831 free (debug->external_pdr);
832 if (debug->external_sym != NULL)
833 free (debug->external_sym);
834 if (debug->external_opt != NULL)
835 free (debug->external_opt);
836 if (debug->external_aux != NULL)
837 free (debug->external_aux);
838 if (debug->ss != NULL)
839 free (debug->ss);
840 if (debug->ssext != NULL)
841 free (debug->ssext);
842 if (debug->external_fdr != NULL)
843 free (debug->external_fdr);
844 if (debug->external_rfd != NULL)
845 free (debug->external_rfd);
846 if (debug->external_ext != NULL)
847 free (debug->external_ext);
b34976b6 848 return FALSE;
b49e97c9
TS
849}
850\f
851/* Swap RPDR (runtime procedure table entry) for output. */
852
853static void
854ecoff_swap_rpdr_out (abfd, in, ex)
855 bfd *abfd;
856 const RPDR *in;
857 struct rpdr_ext *ex;
858{
859 H_PUT_S32 (abfd, in->adr, ex->p_adr);
860 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
861 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
862 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
863 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
864 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
865
866 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
867 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
868
869 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
870#if 0 /* FIXME */
871 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
872#endif
873}
874
875/* Create a runtime procedure table from the .mdebug section. */
876
b34976b6 877static bfd_boolean
b49e97c9
TS
878mips_elf_create_procedure_table (handle, abfd, info, s, debug)
879 PTR handle;
880 bfd *abfd;
881 struct bfd_link_info *info;
882 asection *s;
883 struct ecoff_debug_info *debug;
884{
885 const struct ecoff_debug_swap *swap;
886 HDRR *hdr = &debug->symbolic_header;
887 RPDR *rpdr, *rp;
888 struct rpdr_ext *erp;
889 PTR rtproc;
890 struct pdr_ext *epdr;
891 struct sym_ext *esym;
892 char *ss, **sv;
893 char *str;
894 bfd_size_type size;
895 bfd_size_type count;
896 unsigned long sindex;
897 unsigned long i;
898 PDR pdr;
899 SYMR sym;
900 const char *no_name_func = _("static procedure (no name)");
901
902 epdr = NULL;
903 rpdr = NULL;
904 esym = NULL;
905 ss = NULL;
906 sv = NULL;
907
908 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
909
910 sindex = strlen (no_name_func) + 1;
911 count = hdr->ipdMax;
912 if (count > 0)
913 {
914 size = swap->external_pdr_size;
915
916 epdr = (struct pdr_ext *) bfd_malloc (size * count);
917 if (epdr == NULL)
918 goto error_return;
919
920 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
921 goto error_return;
922
923 size = sizeof (RPDR);
924 rp = rpdr = (RPDR *) bfd_malloc (size * count);
925 if (rpdr == NULL)
926 goto error_return;
927
928 size = sizeof (char *);
929 sv = (char **) bfd_malloc (size * count);
930 if (sv == NULL)
931 goto error_return;
932
933 count = hdr->isymMax;
934 size = swap->external_sym_size;
935 esym = (struct sym_ext *) bfd_malloc (size * count);
936 if (esym == NULL)
937 goto error_return;
938
939 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
940 goto error_return;
941
942 count = hdr->issMax;
943 ss = (char *) bfd_malloc (count);
944 if (ss == NULL)
945 goto error_return;
946 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
947 goto error_return;
948
949 count = hdr->ipdMax;
950 for (i = 0; i < (unsigned long) count; i++, rp++)
951 {
952 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
953 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
954 rp->adr = sym.value;
955 rp->regmask = pdr.regmask;
956 rp->regoffset = pdr.regoffset;
957 rp->fregmask = pdr.fregmask;
958 rp->fregoffset = pdr.fregoffset;
959 rp->frameoffset = pdr.frameoffset;
960 rp->framereg = pdr.framereg;
961 rp->pcreg = pdr.pcreg;
962 rp->irpss = sindex;
963 sv[i] = ss + sym.iss;
964 sindex += strlen (sv[i]) + 1;
965 }
966 }
967
968 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
969 size = BFD_ALIGN (size, 16);
970 rtproc = (PTR) bfd_alloc (abfd, size);
971 if (rtproc == NULL)
972 {
973 mips_elf_hash_table (info)->procedure_count = 0;
974 goto error_return;
975 }
976
977 mips_elf_hash_table (info)->procedure_count = count + 2;
978
979 erp = (struct rpdr_ext *) rtproc;
980 memset (erp, 0, sizeof (struct rpdr_ext));
981 erp++;
982 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
983 strcpy (str, no_name_func);
984 str += strlen (no_name_func) + 1;
985 for (i = 0; i < count; i++)
986 {
987 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
988 strcpy (str, sv[i]);
989 str += strlen (sv[i]) + 1;
990 }
991 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
992
993 /* Set the size and contents of .rtproc section. */
994 s->_raw_size = size;
995 s->contents = (bfd_byte *) rtproc;
996
997 /* Skip this section later on (I don't think this currently
998 matters, but someday it might). */
999 s->link_order_head = (struct bfd_link_order *) NULL;
1000
1001 if (epdr != NULL)
1002 free (epdr);
1003 if (rpdr != NULL)
1004 free (rpdr);
1005 if (esym != NULL)
1006 free (esym);
1007 if (ss != NULL)
1008 free (ss);
1009 if (sv != NULL)
1010 free (sv);
1011
b34976b6 1012 return TRUE;
b49e97c9
TS
1013
1014 error_return:
1015 if (epdr != NULL)
1016 free (epdr);
1017 if (rpdr != NULL)
1018 free (rpdr);
1019 if (esym != NULL)
1020 free (esym);
1021 if (ss != NULL)
1022 free (ss);
1023 if (sv != NULL)
1024 free (sv);
b34976b6 1025 return FALSE;
b49e97c9
TS
1026}
1027
1028/* Check the mips16 stubs for a particular symbol, and see if we can
1029 discard them. */
1030
b34976b6 1031static bfd_boolean
b49e97c9
TS
1032mips_elf_check_mips16_stubs (h, data)
1033 struct mips_elf_link_hash_entry *h;
1034 PTR data ATTRIBUTE_UNUSED;
1035{
1036 if (h->root.root.type == bfd_link_hash_warning)
1037 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1038
1039 if (h->fn_stub != NULL
1040 && ! h->need_fn_stub)
1041 {
1042 /* We don't need the fn_stub; the only references to this symbol
1043 are 16 bit calls. Clobber the size to 0 to prevent it from
1044 being included in the link. */
1045 h->fn_stub->_raw_size = 0;
1046 h->fn_stub->_cooked_size = 0;
1047 h->fn_stub->flags &= ~SEC_RELOC;
1048 h->fn_stub->reloc_count = 0;
1049 h->fn_stub->flags |= SEC_EXCLUDE;
1050 }
1051
1052 if (h->call_stub != NULL
1053 && h->root.other == STO_MIPS16)
1054 {
1055 /* We don't need the call_stub; this is a 16 bit function, so
1056 calls from other 16 bit functions are OK. Clobber the size
1057 to 0 to prevent it from being included in the link. */
1058 h->call_stub->_raw_size = 0;
1059 h->call_stub->_cooked_size = 0;
1060 h->call_stub->flags &= ~SEC_RELOC;
1061 h->call_stub->reloc_count = 0;
1062 h->call_stub->flags |= SEC_EXCLUDE;
1063 }
1064
1065 if (h->call_fp_stub != NULL
1066 && h->root.other == STO_MIPS16)
1067 {
1068 /* We don't need the call_stub; this is a 16 bit function, so
1069 calls from other 16 bit functions are OK. Clobber the size
1070 to 0 to prevent it from being included in the link. */
1071 h->call_fp_stub->_raw_size = 0;
1072 h->call_fp_stub->_cooked_size = 0;
1073 h->call_fp_stub->flags &= ~SEC_RELOC;
1074 h->call_fp_stub->reloc_count = 0;
1075 h->call_fp_stub->flags |= SEC_EXCLUDE;
1076 }
1077
b34976b6 1078 return TRUE;
b49e97c9
TS
1079}
1080\f
1081bfd_reloc_status_type
1082_bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1049f94e 1083 relocatable, data, gp)
b49e97c9
TS
1084 bfd *abfd;
1085 asymbol *symbol;
1086 arelent *reloc_entry;
1087 asection *input_section;
1049f94e 1088 bfd_boolean relocatable;
b49e97c9
TS
1089 PTR data;
1090 bfd_vma gp;
1091{
1092 bfd_vma relocation;
a7ebbfdf
TS
1093 unsigned long insn = 0;
1094 bfd_signed_vma val;
b49e97c9
TS
1095
1096 if (bfd_is_com_section (symbol->section))
1097 relocation = 0;
1098 else
1099 relocation = symbol->value;
1100
1101 relocation += symbol->section->output_section->vma;
1102 relocation += symbol->section->output_offset;
1103
1104 if (reloc_entry->address > input_section->_cooked_size)
1105 return bfd_reloc_outofrange;
1106
b49e97c9 1107 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1108 val = reloc_entry->addend;
1109
1110 if (reloc_entry->howto->partial_inplace)
b49e97c9 1111 {
a7ebbfdf
TS
1112 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1113 val += insn & 0xffff;
b49e97c9
TS
1114 }
1115
a7ebbfdf
TS
1116 _bfd_mips_elf_sign_extend(val, 16);
1117
b49e97c9 1118 /* Adjust val for the final section location and GP value. If we
1049f94e 1119 are producing relocatable output, we don't want to do this for
b49e97c9 1120 an external symbol. */
1049f94e 1121 if (! relocatable
b49e97c9
TS
1122 || (symbol->flags & BSF_SECTION_SYM) != 0)
1123 val += relocation - gp;
1124
a7ebbfdf
TS
1125 if (reloc_entry->howto->partial_inplace)
1126 {
1127 insn = (insn & ~0xffff) | (val & 0xffff);
1128 bfd_put_32 (abfd, (bfd_vma) insn,
1129 (bfd_byte *) data + reloc_entry->address);
1130 }
1131 else
1132 reloc_entry->addend = val;
b49e97c9 1133
1049f94e 1134 if (relocatable)
b49e97c9 1135 reloc_entry->address += input_section->output_offset;
a7ebbfdf 1136 else if (((val & ~0xffff) != ~0xffff) && ((val & ~0xffff) != 0))
b49e97c9
TS
1137 return bfd_reloc_overflow;
1138
1139 return bfd_reloc_ok;
1140}
1141\f
1142/* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1144
1145static void
1146bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1147 bfd *abfd;
1148 const Elf32_External_gptab *ex;
1149 Elf32_gptab *in;
1150{
1151 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1152 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1153}
1154
1155static void
1156bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1157 bfd *abfd;
1158 const Elf32_gptab *in;
1159 Elf32_External_gptab *ex;
1160{
1161 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1162 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1163}
1164
1165static void
1166bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1167 bfd *abfd;
1168 const Elf32_compact_rel *in;
1169 Elf32_External_compact_rel *ex;
1170{
1171 H_PUT_32 (abfd, in->id1, ex->id1);
1172 H_PUT_32 (abfd, in->num, ex->num);
1173 H_PUT_32 (abfd, in->id2, ex->id2);
1174 H_PUT_32 (abfd, in->offset, ex->offset);
1175 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1176 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1177}
1178
1179static void
1180bfd_elf32_swap_crinfo_out (abfd, in, ex)
1181 bfd *abfd;
1182 const Elf32_crinfo *in;
1183 Elf32_External_crinfo *ex;
1184{
1185 unsigned long l;
1186
1187 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1188 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1189 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1190 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1191 H_PUT_32 (abfd, l, ex->info);
1192 H_PUT_32 (abfd, in->konst, ex->konst);
1193 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1194}
1195
1196#if 0
1197/* Swap in an MSYM entry. */
1198
1199static void
1200bfd_mips_elf_swap_msym_in (abfd, ex, in)
1201 bfd *abfd;
1202 const Elf32_External_Msym *ex;
1203 Elf32_Internal_Msym *in;
1204{
1205 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1206 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1207}
1208#endif
1209/* Swap out an MSYM entry. */
1210
1211static void
1212bfd_mips_elf_swap_msym_out (abfd, in, ex)
1213 bfd *abfd;
1214 const Elf32_Internal_Msym *in;
1215 Elf32_External_Msym *ex;
1216{
1217 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1218 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1219}
1220\f
1221/* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1224
1225void
1226bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1227 bfd *abfd;
1228 const Elf32_External_RegInfo *ex;
1229 Elf32_RegInfo *in;
1230{
1231 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1232 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1233 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1234 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1235 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1236 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1237}
1238
1239void
1240bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1241 bfd *abfd;
1242 const Elf32_RegInfo *in;
1243 Elf32_External_RegInfo *ex;
1244{
1245 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1246 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1247 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1248 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1249 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1250 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1251}
1252
1253/* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1258
1259void
1260bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1261 bfd *abfd;
1262 const Elf64_External_RegInfo *ex;
1263 Elf64_Internal_RegInfo *in;
1264{
1265 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1266 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1267 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1268 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1269 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1270 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1271 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1272}
1273
1274void
1275bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1276 bfd *abfd;
1277 const Elf64_Internal_RegInfo *in;
1278 Elf64_External_RegInfo *ex;
1279{
1280 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1281 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1282 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1283 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1284 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1285 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1286 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1287}
1288
1289/* Swap in an options header. */
1290
1291void
1292bfd_mips_elf_swap_options_in (abfd, ex, in)
1293 bfd *abfd;
1294 const Elf_External_Options *ex;
1295 Elf_Internal_Options *in;
1296{
1297 in->kind = H_GET_8 (abfd, ex->kind);
1298 in->size = H_GET_8 (abfd, ex->size);
1299 in->section = H_GET_16 (abfd, ex->section);
1300 in->info = H_GET_32 (abfd, ex->info);
1301}
1302
1303/* Swap out an options header. */
1304
1305void
1306bfd_mips_elf_swap_options_out (abfd, in, ex)
1307 bfd *abfd;
1308 const Elf_Internal_Options *in;
1309 Elf_External_Options *ex;
1310{
1311 H_PUT_8 (abfd, in->kind, ex->kind);
1312 H_PUT_8 (abfd, in->size, ex->size);
1313 H_PUT_16 (abfd, in->section, ex->section);
1314 H_PUT_32 (abfd, in->info, ex->info);
1315}
1316\f
1317/* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1319
1320static int
1321sort_dynamic_relocs (arg1, arg2)
1322 const PTR arg1;
1323 const PTR arg2;
1324{
947216bf
AM
1325 Elf_Internal_Rela int_reloc1;
1326 Elf_Internal_Rela int_reloc2;
b49e97c9 1327
947216bf
AM
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1330
947216bf 1331 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1332}
1333
f4416af6
AO
1334/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1335
1336static int
1337sort_dynamic_relocs_64 (arg1, arg2)
1338 const PTR arg1;
1339 const PTR arg2;
1340{
1341 Elf_Internal_Rela int_reloc1[3];
1342 Elf_Internal_Rela int_reloc2[3];
1343
1344 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1345 (reldyn_sorting_bfd, arg1, int_reloc1);
1346 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1347 (reldyn_sorting_bfd, arg2, int_reloc2);
1348
1349 return (ELF64_R_SYM (int_reloc1[0].r_info)
1350 - ELF64_R_SYM (int_reloc2[0].r_info));
1351}
1352
1353
b49e97c9
TS
1354/* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1367
b34976b6 1368static bfd_boolean
b49e97c9
TS
1369mips_elf_output_extsym (h, data)
1370 struct mips_elf_link_hash_entry *h;
1371 PTR data;
1372{
1373 struct extsym_info *einfo = (struct extsym_info *) data;
b34976b6 1374 bfd_boolean strip;
b49e97c9
TS
1375 asection *sec, *output_section;
1376
1377 if (h->root.root.type == bfd_link_hash_warning)
1378 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1379
1380 if (h->root.indx == -2)
b34976b6 1381 strip = FALSE;
b49e97c9
TS
1382 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1385 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
b34976b6 1386 strip = TRUE;
b49e97c9
TS
1387 else if (einfo->info->strip == strip_all
1388 || (einfo->info->strip == strip_some
1389 && bfd_hash_lookup (einfo->info->keep_hash,
1390 h->root.root.root.string,
b34976b6
AM
1391 FALSE, FALSE) == NULL))
1392 strip = TRUE;
b49e97c9 1393 else
b34976b6 1394 strip = FALSE;
b49e97c9
TS
1395
1396 if (strip)
b34976b6 1397 return TRUE;
b49e97c9
TS
1398
1399 if (h->esym.ifd == -2)
1400 {
1401 h->esym.jmptbl = 0;
1402 h->esym.cobol_main = 0;
1403 h->esym.weakext = 0;
1404 h->esym.reserved = 0;
1405 h->esym.ifd = ifdNil;
1406 h->esym.asym.value = 0;
1407 h->esym.asym.st = stGlobal;
1408
1409 if (h->root.root.type == bfd_link_hash_undefined
1410 || h->root.root.type == bfd_link_hash_undefweak)
1411 {
1412 const char *name;
1413
1414 /* Use undefined class. Also, set class and type for some
1415 special symbols. */
1416 name = h->root.root.root.string;
1417 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1418 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1419 {
1420 h->esym.asym.sc = scData;
1421 h->esym.asym.st = stLabel;
1422 h->esym.asym.value = 0;
1423 }
1424 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1425 {
1426 h->esym.asym.sc = scAbs;
1427 h->esym.asym.st = stLabel;
1428 h->esym.asym.value =
1429 mips_elf_hash_table (einfo->info)->procedure_count;
1430 }
4a14403c 1431 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1432 {
1433 h->esym.asym.sc = scAbs;
1434 h->esym.asym.st = stLabel;
1435 h->esym.asym.value = elf_gp (einfo->abfd);
1436 }
1437 else
1438 h->esym.asym.sc = scUndefined;
1439 }
1440 else if (h->root.root.type != bfd_link_hash_defined
1441 && h->root.root.type != bfd_link_hash_defweak)
1442 h->esym.asym.sc = scAbs;
1443 else
1444 {
1445 const char *name;
1446
1447 sec = h->root.root.u.def.section;
1448 output_section = sec->output_section;
1449
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section == NULL)
1453 h->esym.asym.sc = scUndefined;
1454 else
1455 {
1456 name = bfd_section_name (output_section->owner, output_section);
1457
1458 if (strcmp (name, ".text") == 0)
1459 h->esym.asym.sc = scText;
1460 else if (strcmp (name, ".data") == 0)
1461 h->esym.asym.sc = scData;
1462 else if (strcmp (name, ".sdata") == 0)
1463 h->esym.asym.sc = scSData;
1464 else if (strcmp (name, ".rodata") == 0
1465 || strcmp (name, ".rdata") == 0)
1466 h->esym.asym.sc = scRData;
1467 else if (strcmp (name, ".bss") == 0)
1468 h->esym.asym.sc = scBss;
1469 else if (strcmp (name, ".sbss") == 0)
1470 h->esym.asym.sc = scSBss;
1471 else if (strcmp (name, ".init") == 0)
1472 h->esym.asym.sc = scInit;
1473 else if (strcmp (name, ".fini") == 0)
1474 h->esym.asym.sc = scFini;
1475 else
1476 h->esym.asym.sc = scAbs;
1477 }
1478 }
1479
1480 h->esym.asym.reserved = 0;
1481 h->esym.asym.index = indexNil;
1482 }
1483
1484 if (h->root.root.type == bfd_link_hash_common)
1485 h->esym.asym.value = h->root.root.u.c.size;
1486 else if (h->root.root.type == bfd_link_hash_defined
1487 || h->root.root.type == bfd_link_hash_defweak)
1488 {
1489 if (h->esym.asym.sc == scCommon)
1490 h->esym.asym.sc = scBss;
1491 else if (h->esym.asym.sc == scSCommon)
1492 h->esym.asym.sc = scSBss;
1493
1494 sec = h->root.root.u.def.section;
1495 output_section = sec->output_section;
1496 if (output_section != NULL)
1497 h->esym.asym.value = (h->root.root.u.def.value
1498 + sec->output_offset
1499 + output_section->vma);
1500 else
1501 h->esym.asym.value = 0;
1502 }
1503 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1504 {
1505 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1506 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1507
1508 while (hd->root.root.type == bfd_link_hash_indirect)
1509 {
1510 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1511 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1512 }
1513
1514 if (!no_fn_stub)
1515 {
1516 /* Set type and value for a symbol with a function stub. */
1517 h->esym.asym.st = stProc;
1518 sec = hd->root.root.u.def.section;
1519 if (sec == NULL)
1520 h->esym.asym.value = 0;
1521 else
1522 {
1523 output_section = sec->output_section;
1524 if (output_section != NULL)
1525 h->esym.asym.value = (hd->root.plt.offset
1526 + sec->output_offset
1527 + output_section->vma);
1528 else
1529 h->esym.asym.value = 0;
1530 }
1531#if 0 /* FIXME? */
1532 h->esym.ifd = 0;
1533#endif
1534 }
1535 }
1536
1537 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1538 h->root.root.root.string,
1539 &h->esym))
1540 {
b34976b6
AM
1541 einfo->failed = TRUE;
1542 return FALSE;
b49e97c9
TS
1543 }
1544
b34976b6 1545 return TRUE;
b49e97c9
TS
1546}
1547
1548/* A comparison routine used to sort .gptab entries. */
1549
1550static int
1551gptab_compare (p1, p2)
1552 const PTR p1;
1553 const PTR p2;
1554{
1555 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1556 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1557
1558 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1559}
1560\f
b15e6682 1561/* Functions to manage the got entry hash table. */
f4416af6
AO
1562
1563/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1564 hash number. */
1565
1566static INLINE hashval_t
1567mips_elf_hash_bfd_vma (addr)
1568 bfd_vma addr;
1569{
1570#ifdef BFD64
1571 return addr + (addr >> 32);
1572#else
1573 return addr;
1574#endif
1575}
1576
1577/* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1579 union members. */
1580
b15e6682
AO
1581static hashval_t
1582mips_elf_got_entry_hash (entry_)
1583 const PTR entry_;
1584{
1585 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1586
38985a1c 1587 return entry->symndx
f4416af6 1588 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1589 : entry->abfd->id
1590 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1591 : entry->d.h->root.root.root.hash));
b15e6682
AO
1592}
1593
1594static int
1595mips_elf_got_entry_eq (entry1, entry2)
1596 const PTR entry1;
1597 const PTR entry2;
1598{
1599 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1600 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1601
1602 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1603 && (! e1->abfd ? e1->d.address == e2->d.address
1604 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1605 : e1->d.h == e2->d.h);
1606}
1607
1608/* multi_got_entries are still a match in the case of global objects,
1609 even if the input bfd in which they're referenced differs, so the
1610 hash computation and compare functions are adjusted
1611 accordingly. */
1612
1613static hashval_t
1614mips_elf_multi_got_entry_hash (entry_)
1615 const PTR entry_;
1616{
1617 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1618
1619 return entry->symndx
1620 + (! entry->abfd
1621 ? mips_elf_hash_bfd_vma (entry->d.address)
1622 : entry->symndx >= 0
1623 ? (entry->abfd->id
1624 + mips_elf_hash_bfd_vma (entry->d.addend))
1625 : entry->d.h->root.root.root.hash);
1626}
1627
1628static int
1629mips_elf_multi_got_entry_eq (entry1, entry2)
1630 const PTR entry1;
1631 const PTR entry2;
1632{
1633 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1634 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1635
1636 return e1->symndx == e2->symndx
1637 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1638 : e1->abfd == NULL || e2->abfd == NULL
1639 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1640 : e1->d.h == e2->d.h);
b15e6682
AO
1641}
1642\f
f4416af6
AO
1643/* Returns the dynamic relocation section for DYNOBJ. */
1644
1645static asection *
1646mips_elf_rel_dyn_section (dynobj, create_p)
1647 bfd *dynobj;
1648 bfd_boolean create_p;
1649{
1650 static const char dname[] = ".rel.dyn";
1651 asection *sreloc;
1652
1653 sreloc = bfd_get_section_by_name (dynobj, dname);
1654 if (sreloc == NULL && create_p)
1655 {
1656 sreloc = bfd_make_section (dynobj, dname);
1657 if (sreloc == NULL
1658 || ! bfd_set_section_flags (dynobj, sreloc,
1659 (SEC_ALLOC
1660 | SEC_LOAD
1661 | SEC_HAS_CONTENTS
1662 | SEC_IN_MEMORY
1663 | SEC_LINKER_CREATED
1664 | SEC_READONLY))
1665 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1666 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1667 return NULL;
1668 }
1669 return sreloc;
1670}
1671
b49e97c9
TS
1672/* Returns the GOT section for ABFD. */
1673
1674static asection *
f4416af6 1675mips_elf_got_section (abfd, maybe_excluded)
b49e97c9 1676 bfd *abfd;
f4416af6 1677 bfd_boolean maybe_excluded;
b49e97c9 1678{
f4416af6
AO
1679 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1680 if (sgot == NULL
1681 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1682 return NULL;
1683 return sgot;
b49e97c9
TS
1684}
1685
1686/* Returns the GOT information associated with the link indicated by
1687 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1688 section. */
1689
1690static struct mips_got_info *
1691mips_elf_got_info (abfd, sgotp)
1692 bfd *abfd;
1693 asection **sgotp;
1694{
1695 asection *sgot;
1696 struct mips_got_info *g;
1697
f4416af6 1698 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1699 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1700 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1701 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1702 BFD_ASSERT (g != NULL);
1703
1704 if (sgotp)
f4416af6
AO
1705 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1706
b49e97c9
TS
1707 return g;
1708}
1709
0176c794
AO
1710/* Obtain the lowest dynamic index of a symbol that was assigned a
1711 global GOT entry. */
1712static long
1713mips_elf_get_global_gotsym_index (abfd)
1714 bfd *abfd;
1715{
1716 asection *sgot;
1717 struct mips_got_info *g;
1718
1719 if (abfd == NULL)
1720 return 0;
143d77c5 1721
0176c794
AO
1722 sgot = mips_elf_got_section (abfd, TRUE);
1723 if (sgot == NULL || mips_elf_section_data (sgot) == NULL)
1724 return 0;
143d77c5 1725
0176c794
AO
1726 g = mips_elf_section_data (sgot)->u.got_info;
1727 if (g == NULL || g->global_gotsym == NULL)
1728 return 0;
143d77c5 1729
0176c794
AO
1730 return g->global_gotsym->dynindx;
1731}
1732
b49e97c9
TS
1733/* Returns the GOT offset at which the indicated address can be found.
1734 If there is not yet a GOT entry for this value, create one. Returns
1735 -1 if no satisfactory GOT offset can be found. */
1736
1737static bfd_vma
f4416af6
AO
1738mips_elf_local_got_index (abfd, ibfd, info, value)
1739 bfd *abfd, *ibfd;
b49e97c9
TS
1740 struct bfd_link_info *info;
1741 bfd_vma value;
1742{
1743 asection *sgot;
1744 struct mips_got_info *g;
b15e6682 1745 struct mips_got_entry *entry;
b49e97c9
TS
1746
1747 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1748
f4416af6 1749 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1750 if (entry)
1751 return entry->gotidx;
1752 else
1753 return MINUS_ONE;
b49e97c9
TS
1754}
1755
1756/* Returns the GOT index for the global symbol indicated by H. */
1757
1758static bfd_vma
f4416af6
AO
1759mips_elf_global_got_index (abfd, ibfd, h)
1760 bfd *abfd, *ibfd;
b49e97c9
TS
1761 struct elf_link_hash_entry *h;
1762{
1763 bfd_vma index;
1764 asection *sgot;
f4416af6 1765 struct mips_got_info *g, *gg;
d0c7ff07 1766 long global_got_dynindx = 0;
b49e97c9 1767
f4416af6
AO
1768 gg = g = mips_elf_got_info (abfd, &sgot);
1769 if (g->bfd2got && ibfd)
1770 {
1771 struct mips_got_entry e, *p;
143d77c5 1772
f4416af6
AO
1773 BFD_ASSERT (h->dynindx >= 0);
1774
1775 g = mips_elf_got_for_ibfd (g, ibfd);
1776 if (g->next != gg)
1777 {
1778 e.abfd = ibfd;
1779 e.symndx = -1;
1780 e.d.h = (struct mips_elf_link_hash_entry *)h;
1781
1782 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1783
1784 BFD_ASSERT (p->gotidx > 0);
1785 return p->gotidx;
1786 }
1787 }
1788
1789 if (gg->global_gotsym != NULL)
1790 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9
TS
1791
1792 /* Once we determine the global GOT entry with the lowest dynamic
1793 symbol table index, we must put all dynamic symbols with greater
1794 indices into the GOT. That makes it easy to calculate the GOT
1795 offset. */
d0c7ff07
TS
1796 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1797 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
b49e97c9
TS
1798 * MIPS_ELF_GOT_SIZE (abfd));
1799 BFD_ASSERT (index < sgot->_raw_size);
1800
1801 return index;
1802}
1803
1804/* Find a GOT entry that is within 32KB of the VALUE. These entries
1805 are supposed to be placed at small offsets in the GOT, i.e.,
1806 within 32KB of GP. Return the index into the GOT for this page,
1807 and store the offset from this entry to the desired address in
1808 OFFSETP, if it is non-NULL. */
1809
1810static bfd_vma
f4416af6
AO
1811mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1812 bfd *abfd, *ibfd;
b49e97c9
TS
1813 struct bfd_link_info *info;
1814 bfd_vma value;
1815 bfd_vma *offsetp;
1816{
1817 asection *sgot;
1818 struct mips_got_info *g;
b15e6682
AO
1819 bfd_vma index;
1820 struct mips_got_entry *entry;
b49e97c9
TS
1821
1822 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1823
f4416af6 1824 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682
AO
1825 (value + 0x8000)
1826 & (~(bfd_vma)0xffff));
b49e97c9 1827
b15e6682
AO
1828 if (!entry)
1829 return MINUS_ONE;
143d77c5 1830
b15e6682 1831 index = entry->gotidx;
b49e97c9
TS
1832
1833 if (offsetp)
f4416af6 1834 *offsetp = value - entry->d.address;
b49e97c9
TS
1835
1836 return index;
1837}
1838
1839/* Find a GOT entry whose higher-order 16 bits are the same as those
1840 for value. Return the index into the GOT for this entry. */
1841
1842static bfd_vma
f4416af6
AO
1843mips_elf_got16_entry (abfd, ibfd, info, value, external)
1844 bfd *abfd, *ibfd;
b49e97c9
TS
1845 struct bfd_link_info *info;
1846 bfd_vma value;
b34976b6 1847 bfd_boolean external;
b49e97c9
TS
1848{
1849 asection *sgot;
1850 struct mips_got_info *g;
b15e6682 1851 struct mips_got_entry *entry;
b49e97c9
TS
1852
1853 if (! external)
1854 {
1855 /* Although the ABI says that it is "the high-order 16 bits" that we
1856 want, it is really the %high value. The complete value is
1857 calculated with a `addiu' of a LO16 relocation, just as with a
1858 HI16/LO16 pair. */
1859 value = mips_elf_high (value) << 16;
1860 }
1861
1862 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1863
f4416af6 1864 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1865 if (entry)
1866 return entry->gotidx;
1867 else
1868 return MINUS_ONE;
b49e97c9
TS
1869}
1870
1871/* Returns the offset for the entry at the INDEXth position
1872 in the GOT. */
1873
1874static bfd_vma
f4416af6 1875mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
b49e97c9
TS
1876 bfd *dynobj;
1877 bfd *output_bfd;
f4416af6 1878 bfd *input_bfd;
b49e97c9
TS
1879 bfd_vma index;
1880{
1881 asection *sgot;
1882 bfd_vma gp;
f4416af6 1883 struct mips_got_info *g;
b49e97c9 1884
f4416af6
AO
1885 g = mips_elf_got_info (dynobj, &sgot);
1886 gp = _bfd_get_gp_value (output_bfd)
1887 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 1888
f4416af6 1889 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
1890}
1891
1892/* Create a local GOT entry for VALUE. Return the index of the entry,
1893 or -1 if it could not be created. */
1894
b15e6682 1895static struct mips_got_entry *
f4416af6
AO
1896mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1897 bfd *abfd, *ibfd;
1898 struct mips_got_info *gg;
b49e97c9
TS
1899 asection *sgot;
1900 bfd_vma value;
1901{
b15e6682 1902 struct mips_got_entry entry, **loc;
f4416af6 1903 struct mips_got_info *g;
b15e6682 1904
f4416af6
AO
1905 entry.abfd = NULL;
1906 entry.symndx = -1;
1907 entry.d.address = value;
1908
1909 g = mips_elf_got_for_ibfd (gg, ibfd);
1910 if (g == NULL)
1911 {
1912 g = mips_elf_got_for_ibfd (gg, abfd);
1913 BFD_ASSERT (g != NULL);
1914 }
b15e6682
AO
1915
1916 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1917 INSERT);
1918 if (*loc)
1919 return *loc;
143d77c5 1920
b15e6682
AO
1921 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1922
1923 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1924
1925 if (! *loc)
1926 return NULL;
143d77c5 1927
b15e6682
AO
1928 memcpy (*loc, &entry, sizeof entry);
1929
b49e97c9
TS
1930 if (g->assigned_gotno >= g->local_gotno)
1931 {
f4416af6 1932 (*loc)->gotidx = -1;
b49e97c9
TS
1933 /* We didn't allocate enough space in the GOT. */
1934 (*_bfd_error_handler)
1935 (_("not enough GOT space for local GOT entries"));
1936 bfd_set_error (bfd_error_bad_value);
b15e6682 1937 return NULL;
b49e97c9
TS
1938 }
1939
1940 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
1941 (sgot->contents + entry.gotidx));
1942
1943 return *loc;
b49e97c9
TS
1944}
1945
1946/* Sort the dynamic symbol table so that symbols that need GOT entries
1947 appear towards the end. This reduces the amount of GOT space
1948 required. MAX_LOCAL is used to set the number of local symbols
1949 known to be in the dynamic symbol table. During
1950 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1951 section symbols are added and the count is higher. */
1952
b34976b6 1953static bfd_boolean
b49e97c9
TS
1954mips_elf_sort_hash_table (info, max_local)
1955 struct bfd_link_info *info;
1956 unsigned long max_local;
1957{
1958 struct mips_elf_hash_sort_data hsd;
1959 struct mips_got_info *g;
1960 bfd *dynobj;
1961
1962 dynobj = elf_hash_table (info)->dynobj;
1963
f4416af6
AO
1964 g = mips_elf_got_info (dynobj, NULL);
1965
b49e97c9 1966 hsd.low = NULL;
143d77c5 1967 hsd.max_unref_got_dynindx =
f4416af6
AO
1968 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1969 /* In the multi-got case, assigned_gotno of the master got_info
1970 indicate the number of entries that aren't referenced in the
1971 primary GOT, but that must have entries because there are
1972 dynamic relocations that reference it. Since they aren't
1973 referenced, we move them to the end of the GOT, so that they
1974 don't prevent other entries that are referenced from getting
1975 too large offsets. */
1976 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
1977 hsd.max_non_got_dynindx = max_local;
1978 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1979 elf_hash_table (info)),
1980 mips_elf_sort_hash_table_f,
1981 &hsd);
1982
1983 /* There should have been enough room in the symbol table to
44c410de 1984 accommodate both the GOT and non-GOT symbols. */
b49e97c9 1985 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
1986 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1987 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
1988
1989 /* Now we know which dynamic symbol has the lowest dynamic symbol
1990 table index in the GOT. */
b49e97c9
TS
1991 g->global_gotsym = hsd.low;
1992
b34976b6 1993 return TRUE;
b49e97c9
TS
1994}
1995
1996/* If H needs a GOT entry, assign it the highest available dynamic
1997 index. Otherwise, assign it the lowest available dynamic
1998 index. */
1999
b34976b6 2000static bfd_boolean
b49e97c9
TS
2001mips_elf_sort_hash_table_f (h, data)
2002 struct mips_elf_link_hash_entry *h;
2003 PTR data;
2004{
2005 struct mips_elf_hash_sort_data *hsd
2006 = (struct mips_elf_hash_sort_data *) data;
2007
2008 if (h->root.root.type == bfd_link_hash_warning)
2009 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2010
2011 /* Symbols without dynamic symbol table entries aren't interesting
2012 at all. */
2013 if (h->root.dynindx == -1)
b34976b6 2014 return TRUE;
b49e97c9 2015
f4416af6
AO
2016 /* Global symbols that need GOT entries that are not explicitly
2017 referenced are marked with got offset 2. Those that are
2018 referenced get a 1, and those that don't need GOT entries get
2019 -1. */
2020 if (h->root.got.offset == 2)
2021 {
2022 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2023 hsd->low = (struct elf_link_hash_entry *) h;
2024 h->root.dynindx = hsd->max_unref_got_dynindx++;
2025 }
2026 else if (h->root.got.offset != 1)
b49e97c9
TS
2027 h->root.dynindx = hsd->max_non_got_dynindx++;
2028 else
2029 {
2030 h->root.dynindx = --hsd->min_got_dynindx;
2031 hsd->low = (struct elf_link_hash_entry *) h;
2032 }
2033
b34976b6 2034 return TRUE;
b49e97c9
TS
2035}
2036
2037/* If H is a symbol that needs a global GOT entry, but has a dynamic
2038 symbol table index lower than any we've seen to date, record it for
2039 posterity. */
2040
b34976b6 2041static bfd_boolean
f4416af6 2042mips_elf_record_global_got_symbol (h, abfd, info, g)
b49e97c9 2043 struct elf_link_hash_entry *h;
f4416af6 2044 bfd *abfd;
b49e97c9 2045 struct bfd_link_info *info;
f4416af6 2046 struct mips_got_info *g;
b49e97c9 2047{
f4416af6
AO
2048 struct mips_got_entry entry, **loc;
2049
b49e97c9
TS
2050 /* A global symbol in the GOT must also be in the dynamic symbol
2051 table. */
7c5fcef7
L
2052 if (h->dynindx == -1)
2053 {
2054 switch (ELF_ST_VISIBILITY (h->other))
2055 {
2056 case STV_INTERNAL:
2057 case STV_HIDDEN:
b34976b6 2058 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2059 break;
2060 }
2061 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 2062 return FALSE;
7c5fcef7 2063 }
b49e97c9 2064
f4416af6
AO
2065 entry.abfd = abfd;
2066 entry.symndx = -1;
2067 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2068
2069 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2070 INSERT);
2071
b49e97c9
TS
2072 /* If we've already marked this entry as needing GOT space, we don't
2073 need to do it again. */
f4416af6
AO
2074 if (*loc)
2075 return TRUE;
2076
2077 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2078
2079 if (! *loc)
2080 return FALSE;
143d77c5 2081
f4416af6
AO
2082 entry.gotidx = -1;
2083 memcpy (*loc, &entry, sizeof entry);
2084
b49e97c9 2085 if (h->got.offset != MINUS_ONE)
b34976b6 2086 return TRUE;
b49e97c9
TS
2087
2088 /* By setting this to a value other than -1, we are indicating that
2089 there needs to be a GOT entry for H. Avoid using zero, as the
2090 generic ELF copy_indirect_symbol tests for <= 0. */
2091 h->got.offset = 1;
2092
b34976b6 2093 return TRUE;
b49e97c9 2094}
f4416af6
AO
2095
2096/* Reserve space in G for a GOT entry containing the value of symbol
2097 SYMNDX in input bfd ABDF, plus ADDEND. */
2098
2099static bfd_boolean
2100mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2101 bfd *abfd;
2102 long symndx;
2103 bfd_vma addend;
2104 struct mips_got_info *g;
2105{
2106 struct mips_got_entry entry, **loc;
2107
2108 entry.abfd = abfd;
2109 entry.symndx = symndx;
2110 entry.d.addend = addend;
2111 loc = (struct mips_got_entry **)
2112 htab_find_slot (g->got_entries, &entry, INSERT);
2113
2114 if (*loc)
2115 return TRUE;
2116
2117 entry.gotidx = g->local_gotno++;
2118
2119 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2120
2121 if (! *loc)
2122 return FALSE;
143d77c5 2123
f4416af6
AO
2124 memcpy (*loc, &entry, sizeof entry);
2125
2126 return TRUE;
2127}
2128\f
2129/* Compute the hash value of the bfd in a bfd2got hash entry. */
2130
2131static hashval_t
2132mips_elf_bfd2got_entry_hash (entry_)
2133 const PTR entry_;
2134{
2135 const struct mips_elf_bfd2got_hash *entry
2136 = (struct mips_elf_bfd2got_hash *)entry_;
2137
2138 return entry->bfd->id;
2139}
2140
2141/* Check whether two hash entries have the same bfd. */
2142
2143static int
2144mips_elf_bfd2got_entry_eq (entry1, entry2)
2145 const PTR entry1;
2146 const PTR entry2;
2147{
2148 const struct mips_elf_bfd2got_hash *e1
2149 = (const struct mips_elf_bfd2got_hash *)entry1;
2150 const struct mips_elf_bfd2got_hash *e2
2151 = (const struct mips_elf_bfd2got_hash *)entry2;
2152
2153 return e1->bfd == e2->bfd;
2154}
2155
0b25d3e6 2156/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2157 be the master GOT data. */
2158
2159static struct mips_got_info *
2160mips_elf_got_for_ibfd (g, ibfd)
2161 struct mips_got_info *g;
2162 bfd *ibfd;
2163{
2164 struct mips_elf_bfd2got_hash e, *p;
2165
2166 if (! g->bfd2got)
2167 return g;
2168
2169 e.bfd = ibfd;
2170 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2171 return p ? p->g : NULL;
2172}
2173
2174/* Create one separate got for each bfd that has entries in the global
2175 got, such that we can tell how many local and global entries each
2176 bfd requires. */
2177
2178static int
2179mips_elf_make_got_per_bfd (entryp, p)
2180 void **entryp;
2181 void *p;
2182{
2183 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2184 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2185 htab_t bfd2got = arg->bfd2got;
2186 struct mips_got_info *g;
2187 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2188 void **bfdgotp;
143d77c5 2189
f4416af6
AO
2190 /* Find the got_info for this GOT entry's input bfd. Create one if
2191 none exists. */
2192 bfdgot_entry.bfd = entry->abfd;
2193 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2194 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2195
2196 if (bfdgot != NULL)
2197 g = bfdgot->g;
2198 else
2199 {
2200 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2201 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2202
2203 if (bfdgot == NULL)
2204 {
2205 arg->obfd = 0;
2206 return 0;
2207 }
2208
2209 *bfdgotp = bfdgot;
2210
2211 bfdgot->bfd = entry->abfd;
2212 bfdgot->g = g = (struct mips_got_info *)
2213 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2214 if (g == NULL)
2215 {
2216 arg->obfd = 0;
2217 return 0;
2218 }
2219
2220 g->global_gotsym = NULL;
2221 g->global_gotno = 0;
2222 g->local_gotno = 0;
2223 g->assigned_gotno = -1;
2224 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2225 mips_elf_multi_got_entry_eq,
2226 (htab_del) NULL);
2227 if (g->got_entries == NULL)
2228 {
2229 arg->obfd = 0;
2230 return 0;
2231 }
2232
2233 g->bfd2got = NULL;
2234 g->next = NULL;
2235 }
2236
2237 /* Insert the GOT entry in the bfd's got entry hash table. */
2238 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2239 if (*entryp != NULL)
2240 return 1;
143d77c5 2241
f4416af6
AO
2242 *entryp = entry;
2243
2244 if (entry->symndx >= 0 || entry->d.h->forced_local)
2245 ++g->local_gotno;
2246 else
2247 ++g->global_gotno;
2248
2249 return 1;
2250}
2251
2252/* Attempt to merge gots of different input bfds. Try to use as much
2253 as possible of the primary got, since it doesn't require explicit
2254 dynamic relocations, but don't use bfds that would reference global
2255 symbols out of the addressable range. Failing the primary got,
2256 attempt to merge with the current got, or finish the current got
2257 and then make make the new got current. */
2258
2259static int
2260mips_elf_merge_gots (bfd2got_, p)
2261 void **bfd2got_;
2262 void *p;
2263{
2264 struct mips_elf_bfd2got_hash *bfd2got
2265 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2266 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2267 unsigned int lcount = bfd2got->g->local_gotno;
2268 unsigned int gcount = bfd2got->g->global_gotno;
2269 unsigned int maxcnt = arg->max_count;
143d77c5 2270
f4416af6
AO
2271 /* If we don't have a primary GOT and this is not too big, use it as
2272 a starting point for the primary GOT. */
2273 if (! arg->primary && lcount + gcount <= maxcnt)
2274 {
2275 arg->primary = bfd2got->g;
2276 arg->primary_count = lcount + gcount;
2277 }
2278 /* If it looks like we can merge this bfd's entries with those of
2279 the primary, merge them. The heuristics is conservative, but we
2280 don't have to squeeze it too hard. */
2281 else if (arg->primary
2282 && (arg->primary_count + lcount + gcount) <= maxcnt)
2283 {
2284 struct mips_got_info *g = bfd2got->g;
2285 int old_lcount = arg->primary->local_gotno;
2286 int old_gcount = arg->primary->global_gotno;
2287
2288 bfd2got->g = arg->primary;
2289
2290 htab_traverse (g->got_entries,
2291 mips_elf_make_got_per_bfd,
2292 arg);
2293 if (arg->obfd == NULL)
2294 return 0;
2295
2296 htab_delete (g->got_entries);
2297 /* We don't have to worry about releasing memory of the actual
2298 got entries, since they're all in the master got_entries hash
2299 table anyway. */
2300
2301 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2302 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2303
2304 arg->primary_count = arg->primary->local_gotno
2305 + arg->primary->global_gotno;
2306 }
2307 /* If we can merge with the last-created got, do it. */
2308 else if (arg->current
2309 && arg->current_count + lcount + gcount <= maxcnt)
2310 {
2311 struct mips_got_info *g = bfd2got->g;
2312 int old_lcount = arg->current->local_gotno;
2313 int old_gcount = arg->current->global_gotno;
2314
2315 bfd2got->g = arg->current;
2316
2317 htab_traverse (g->got_entries,
2318 mips_elf_make_got_per_bfd,
2319 arg);
2320 if (arg->obfd == NULL)
2321 return 0;
2322
2323 htab_delete (g->got_entries);
2324
2325 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2326 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2327
2328 arg->current_count = arg->current->local_gotno
2329 + arg->current->global_gotno;
2330 }
2331 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2332 fits; if it turns out that it doesn't, we'll get relocation
2333 overflows anyway. */
2334 else
2335 {
2336 bfd2got->g->next = arg->current;
2337 arg->current = bfd2got->g;
143d77c5 2338
f4416af6
AO
2339 arg->current_count = lcount + gcount;
2340 }
2341
2342 return 1;
2343}
2344
2345/* If passed a NULL mips_got_info in the argument, set the marker used
2346 to tell whether a global symbol needs a got entry (in the primary
2347 got) to the given VALUE.
2348
2349 If passed a pointer G to a mips_got_info in the argument (it must
2350 not be the primary GOT), compute the offset from the beginning of
2351 the (primary) GOT section to the entry in G corresponding to the
2352 global symbol. G's assigned_gotno must contain the index of the
2353 first available global GOT entry in G. VALUE must contain the size
2354 of a GOT entry in bytes. For each global GOT entry that requires a
2355 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2356 marked as not elligible for lazy resolution through a function
2357 stub. */
2358static int
2359mips_elf_set_global_got_offset (entryp, p)
2360 void **entryp;
2361 void *p;
2362{
2363 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2364 struct mips_elf_set_global_got_offset_arg *arg
2365 = (struct mips_elf_set_global_got_offset_arg *)p;
2366 struct mips_got_info *g = arg->g;
2367
2368 if (entry->abfd != NULL && entry->symndx == -1
2369 && entry->d.h->root.dynindx != -1)
2370 {
2371 if (g)
2372 {
2373 BFD_ASSERT (g->global_gotsym == NULL);
2374
2375 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2376 /* We can't do lazy update of GOT entries for
2377 non-primary GOTs since the PLT entries don't use the
2378 right offsets, so punt at it for now. */
2379 entry->d.h->no_fn_stub = TRUE;
2380 if (arg->info->shared
2381 || (elf_hash_table (arg->info)->dynamic_sections_created
2382 && ((entry->d.h->root.elf_link_hash_flags
2383 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2384 && ((entry->d.h->root.elf_link_hash_flags
2385 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2386 ++arg->needed_relocs;
2387 }
2388 else
2389 entry->d.h->root.got.offset = arg->value;
2390 }
2391
2392 return 1;
2393}
2394
2395/* Follow indirect and warning hash entries so that each got entry
2396 points to the final symbol definition. P must point to a pointer
2397 to the hash table we're traversing. Since this traversal may
2398 modify the hash table, we set this pointer to NULL to indicate
2399 we've made a potentially-destructive change to the hash table, so
2400 the traversal must be restarted. */
2401static int
2402mips_elf_resolve_final_got_entry (entryp, p)
2403 void **entryp;
2404 void *p;
2405{
2406 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2407 htab_t got_entries = *(htab_t *)p;
2408
2409 if (entry->abfd != NULL && entry->symndx == -1)
2410 {
2411 struct mips_elf_link_hash_entry *h = entry->d.h;
2412
2413 while (h->root.root.type == bfd_link_hash_indirect
2414 || h->root.root.type == bfd_link_hash_warning)
2415 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2416
2417 if (entry->d.h == h)
2418 return 1;
143d77c5 2419
f4416af6
AO
2420 entry->d.h = h;
2421
2422 /* If we can't find this entry with the new bfd hash, re-insert
2423 it, and get the traversal restarted. */
2424 if (! htab_find (got_entries, entry))
2425 {
2426 htab_clear_slot (got_entries, entryp);
2427 entryp = htab_find_slot (got_entries, entry, INSERT);
2428 if (! *entryp)
2429 *entryp = entry;
2430 /* Abort the traversal, since the whole table may have
2431 moved, and leave it up to the parent to restart the
2432 process. */
2433 *(htab_t *)p = NULL;
2434 return 0;
2435 }
2436 /* We might want to decrement the global_gotno count, but it's
2437 either too early or too late for that at this point. */
2438 }
143d77c5 2439
f4416af6
AO
2440 return 1;
2441}
2442
2443/* Turn indirect got entries in a got_entries table into their final
2444 locations. */
2445static void
2446mips_elf_resolve_final_got_entries (g)
2447 struct mips_got_info *g;
2448{
2449 htab_t got_entries;
2450
2451 do
2452 {
2453 got_entries = g->got_entries;
2454
2455 htab_traverse (got_entries,
2456 mips_elf_resolve_final_got_entry,
2457 &got_entries);
2458 }
2459 while (got_entries == NULL);
2460}
2461
2462/* Return the offset of an input bfd IBFD's GOT from the beginning of
2463 the primary GOT. */
2464static bfd_vma
2465mips_elf_adjust_gp (abfd, g, ibfd)
2466 bfd *abfd;
2467 struct mips_got_info *g;
2468 bfd *ibfd;
2469{
2470 if (g->bfd2got == NULL)
2471 return 0;
2472
2473 g = mips_elf_got_for_ibfd (g, ibfd);
2474 if (! g)
2475 return 0;
2476
2477 BFD_ASSERT (g->next);
2478
2479 g = g->next;
143d77c5 2480
f4416af6
AO
2481 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2482}
2483
2484/* Turn a single GOT that is too big for 16-bit addressing into
2485 a sequence of GOTs, each one 16-bit addressable. */
2486
2487static bfd_boolean
2488mips_elf_multi_got (abfd, info, g, got, pages)
2489 bfd *abfd;
2490 struct bfd_link_info *info;
2491 struct mips_got_info *g;
2492 asection *got;
2493 bfd_size_type pages;
2494{
2495 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2496 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2497 struct mips_got_info *gg;
2498 unsigned int assign;
2499
2500 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2501 mips_elf_bfd2got_entry_eq,
2502 (htab_del) NULL);
2503 if (g->bfd2got == NULL)
2504 return FALSE;
2505
2506 got_per_bfd_arg.bfd2got = g->bfd2got;
2507 got_per_bfd_arg.obfd = abfd;
2508 got_per_bfd_arg.info = info;
2509
2510 /* Count how many GOT entries each input bfd requires, creating a
2511 map from bfd to got info while at that. */
2512 mips_elf_resolve_final_got_entries (g);
2513 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2514 if (got_per_bfd_arg.obfd == NULL)
2515 return FALSE;
2516
2517 got_per_bfd_arg.current = NULL;
2518 got_per_bfd_arg.primary = NULL;
2519 /* Taking out PAGES entries is a worst-case estimate. We could
2520 compute the maximum number of pages that each separate input bfd
2521 uses, but it's probably not worth it. */
2522 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2523 / MIPS_ELF_GOT_SIZE (abfd))
2524 - MIPS_RESERVED_GOTNO - pages);
2525
2526 /* Try to merge the GOTs of input bfds together, as long as they
2527 don't seem to exceed the maximum GOT size, choosing one of them
2528 to be the primary GOT. */
2529 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2530 if (got_per_bfd_arg.obfd == NULL)
2531 return FALSE;
2532
2533 /* If we find any suitable primary GOT, create an empty one. */
2534 if (got_per_bfd_arg.primary == NULL)
2535 {
2536 g->next = (struct mips_got_info *)
2537 bfd_alloc (abfd, sizeof (struct mips_got_info));
2538 if (g->next == NULL)
2539 return FALSE;
2540
2541 g->next->global_gotsym = NULL;
2542 g->next->global_gotno = 0;
2543 g->next->local_gotno = 0;
2544 g->next->assigned_gotno = 0;
2545 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2546 mips_elf_multi_got_entry_eq,
2547 (htab_del) NULL);
2548 if (g->next->got_entries == NULL)
2549 return FALSE;
2550 g->next->bfd2got = NULL;
2551 }
2552 else
2553 g->next = got_per_bfd_arg.primary;
2554 g->next->next = got_per_bfd_arg.current;
2555
2556 /* GG is now the master GOT, and G is the primary GOT. */
2557 gg = g;
2558 g = g->next;
2559
2560 /* Map the output bfd to the primary got. That's what we're going
2561 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2562 didn't mark in check_relocs, and we want a quick way to find it.
2563 We can't just use gg->next because we're going to reverse the
2564 list. */
2565 {
2566 struct mips_elf_bfd2got_hash *bfdgot;
2567 void **bfdgotp;
143d77c5 2568
f4416af6
AO
2569 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2570 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2571
2572 if (bfdgot == NULL)
2573 return FALSE;
2574
2575 bfdgot->bfd = abfd;
2576 bfdgot->g = g;
2577 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2578
2579 BFD_ASSERT (*bfdgotp == NULL);
2580 *bfdgotp = bfdgot;
2581 }
2582
2583 /* The IRIX dynamic linker requires every symbol that is referenced
2584 in a dynamic relocation to be present in the primary GOT, so
2585 arrange for them to appear after those that are actually
2586 referenced.
2587
2588 GNU/Linux could very well do without it, but it would slow down
2589 the dynamic linker, since it would have to resolve every dynamic
2590 symbol referenced in other GOTs more than once, without help from
2591 the cache. Also, knowing that every external symbol has a GOT
2592 helps speed up the resolution of local symbols too, so GNU/Linux
2593 follows IRIX's practice.
143d77c5 2594
f4416af6
AO
2595 The number 2 is used by mips_elf_sort_hash_table_f to count
2596 global GOT symbols that are unreferenced in the primary GOT, with
2597 an initial dynamic index computed from gg->assigned_gotno, where
2598 the number of unreferenced global entries in the primary GOT is
2599 preserved. */
2600 if (1)
2601 {
2602 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2603 g->global_gotno = gg->global_gotno;
2604 set_got_offset_arg.value = 2;
2605 }
2606 else
2607 {
2608 /* This could be used for dynamic linkers that don't optimize
2609 symbol resolution while applying relocations so as to use
2610 primary GOT entries or assuming the symbol is locally-defined.
2611 With this code, we assign lower dynamic indices to global
2612 symbols that are not referenced in the primary GOT, so that
2613 their entries can be omitted. */
2614 gg->assigned_gotno = 0;
2615 set_got_offset_arg.value = -1;
2616 }
2617
2618 /* Reorder dynamic symbols as described above (which behavior
2619 depends on the setting of VALUE). */
2620 set_got_offset_arg.g = NULL;
2621 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2622 &set_got_offset_arg);
2623 set_got_offset_arg.value = 1;
2624 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2625 &set_got_offset_arg);
2626 if (! mips_elf_sort_hash_table (info, 1))
2627 return FALSE;
2628
2629 /* Now go through the GOTs assigning them offset ranges.
2630 [assigned_gotno, local_gotno[ will be set to the range of local
2631 entries in each GOT. We can then compute the end of a GOT by
2632 adding local_gotno to global_gotno. We reverse the list and make
2633 it circular since then we'll be able to quickly compute the
2634 beginning of a GOT, by computing the end of its predecessor. To
2635 avoid special cases for the primary GOT, while still preserving
2636 assertions that are valid for both single- and multi-got links,
2637 we arrange for the main got struct to have the right number of
2638 global entries, but set its local_gotno such that the initial
2639 offset of the primary GOT is zero. Remember that the primary GOT
2640 will become the last item in the circular linked list, so it
2641 points back to the master GOT. */
2642 gg->local_gotno = -g->global_gotno;
2643 gg->global_gotno = g->global_gotno;
2644 assign = 0;
2645 gg->next = gg;
2646
2647 do
2648 {
2649 struct mips_got_info *gn;
2650
2651 assign += MIPS_RESERVED_GOTNO;
2652 g->assigned_gotno = assign;
2653 g->local_gotno += assign + pages;
2654 assign = g->local_gotno + g->global_gotno;
2655
2656 /* Take g out of the direct list, and push it onto the reversed
2657 list that gg points to. */
2658 gn = g->next;
2659 g->next = gg->next;
2660 gg->next = g;
2661 g = gn;
2662 }
2663 while (g);
2664
2665 got->_raw_size = (gg->next->local_gotno
2666 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 2667
f4416af6
AO
2668 return TRUE;
2669}
143d77c5 2670
b49e97c9
TS
2671\f
2672/* Returns the first relocation of type r_type found, beginning with
2673 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2674
2675static const Elf_Internal_Rela *
2676mips_elf_next_relocation (abfd, r_type, relocation, relend)
2677 bfd *abfd ATTRIBUTE_UNUSED;
2678 unsigned int r_type;
2679 const Elf_Internal_Rela *relocation;
2680 const Elf_Internal_Rela *relend;
2681{
2682 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2683 immediately following. However, for the IRIX6 ABI, the next
2684 relocation may be a composed relocation consisting of several
2685 relocations for the same address. In that case, the R_MIPS_LO16
2686 relocation may occur as one of these. We permit a similar
2687 extension in general, as that is useful for GCC. */
2688 while (relocation < relend)
2689 {
2690 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2691 return relocation;
2692
2693 ++relocation;
2694 }
2695
2696 /* We didn't find it. */
2697 bfd_set_error (bfd_error_bad_value);
2698 return NULL;
2699}
2700
2701/* Return whether a relocation is against a local symbol. */
2702
b34976b6 2703static bfd_boolean
b49e97c9
TS
2704mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2705 check_forced)
2706 bfd *input_bfd;
2707 const Elf_Internal_Rela *relocation;
2708 asection **local_sections;
b34976b6 2709 bfd_boolean check_forced;
b49e97c9
TS
2710{
2711 unsigned long r_symndx;
2712 Elf_Internal_Shdr *symtab_hdr;
2713 struct mips_elf_link_hash_entry *h;
2714 size_t extsymoff;
2715
2716 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2717 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2718 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2719
2720 if (r_symndx < extsymoff)
b34976b6 2721 return TRUE;
b49e97c9 2722 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 2723 return TRUE;
b49e97c9
TS
2724
2725 if (check_forced)
2726 {
2727 /* Look up the hash table to check whether the symbol
2728 was forced local. */
2729 h = (struct mips_elf_link_hash_entry *)
2730 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2731 /* Find the real hash-table entry for this symbol. */
2732 while (h->root.root.type == bfd_link_hash_indirect
2733 || h->root.root.type == bfd_link_hash_warning)
2734 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2735 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
b34976b6 2736 return TRUE;
b49e97c9
TS
2737 }
2738
b34976b6 2739 return FALSE;
b49e97c9
TS
2740}
2741\f
2742/* Sign-extend VALUE, which has the indicated number of BITS. */
2743
a7ebbfdf
TS
2744bfd_vma
2745_bfd_mips_elf_sign_extend (value, bits)
b49e97c9
TS
2746 bfd_vma value;
2747 int bits;
2748{
2749 if (value & ((bfd_vma) 1 << (bits - 1)))
2750 /* VALUE is negative. */
2751 value |= ((bfd_vma) - 1) << bits;
2752
2753 return value;
2754}
2755
2756/* Return non-zero if the indicated VALUE has overflowed the maximum
2757 range expressable by a signed number with the indicated number of
2758 BITS. */
2759
b34976b6 2760static bfd_boolean
b49e97c9
TS
2761mips_elf_overflow_p (value, bits)
2762 bfd_vma value;
2763 int bits;
2764{
2765 bfd_signed_vma svalue = (bfd_signed_vma) value;
2766
2767 if (svalue > (1 << (bits - 1)) - 1)
2768 /* The value is too big. */
b34976b6 2769 return TRUE;
b49e97c9
TS
2770 else if (svalue < -(1 << (bits - 1)))
2771 /* The value is too small. */
b34976b6 2772 return TRUE;
b49e97c9
TS
2773
2774 /* All is well. */
b34976b6 2775 return FALSE;
b49e97c9
TS
2776}
2777
2778/* Calculate the %high function. */
2779
2780static bfd_vma
2781mips_elf_high (value)
2782 bfd_vma value;
2783{
2784 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2785}
2786
2787/* Calculate the %higher function. */
2788
2789static bfd_vma
2790mips_elf_higher (value)
2791 bfd_vma value ATTRIBUTE_UNUSED;
2792{
2793#ifdef BFD64
2794 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2795#else
2796 abort ();
2797 return (bfd_vma) -1;
2798#endif
2799}
2800
2801/* Calculate the %highest function. */
2802
2803static bfd_vma
2804mips_elf_highest (value)
2805 bfd_vma value ATTRIBUTE_UNUSED;
2806{
2807#ifdef BFD64
b15e6682 2808 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
2809#else
2810 abort ();
2811 return (bfd_vma) -1;
2812#endif
2813}
2814\f
2815/* Create the .compact_rel section. */
2816
b34976b6 2817static bfd_boolean
b49e97c9
TS
2818mips_elf_create_compact_rel_section (abfd, info)
2819 bfd *abfd;
2820 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2821{
2822 flagword flags;
2823 register asection *s;
2824
2825 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2826 {
2827 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2828 | SEC_READONLY);
2829
2830 s = bfd_make_section (abfd, ".compact_rel");
2831 if (s == NULL
2832 || ! bfd_set_section_flags (abfd, s, flags)
2833 || ! bfd_set_section_alignment (abfd, s,
2834 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 2835 return FALSE;
b49e97c9
TS
2836
2837 s->_raw_size = sizeof (Elf32_External_compact_rel);
2838 }
2839
b34976b6 2840 return TRUE;
b49e97c9
TS
2841}
2842
2843/* Create the .got section to hold the global offset table. */
2844
b34976b6 2845static bfd_boolean
f4416af6 2846mips_elf_create_got_section (abfd, info, maybe_exclude)
b49e97c9
TS
2847 bfd *abfd;
2848 struct bfd_link_info *info;
f4416af6 2849 bfd_boolean maybe_exclude;
b49e97c9
TS
2850{
2851 flagword flags;
2852 register asection *s;
2853 struct elf_link_hash_entry *h;
14a793b2 2854 struct bfd_link_hash_entry *bh;
b49e97c9
TS
2855 struct mips_got_info *g;
2856 bfd_size_type amt;
2857
2858 /* This function may be called more than once. */
f4416af6
AO
2859 s = mips_elf_got_section (abfd, TRUE);
2860 if (s)
2861 {
2862 if (! maybe_exclude)
2863 s->flags &= ~SEC_EXCLUDE;
2864 return TRUE;
2865 }
b49e97c9
TS
2866
2867 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2868 | SEC_LINKER_CREATED);
2869
f4416af6
AO
2870 if (maybe_exclude)
2871 flags |= SEC_EXCLUDE;
2872
b49e97c9
TS
2873 s = bfd_make_section (abfd, ".got");
2874 if (s == NULL
2875 || ! bfd_set_section_flags (abfd, s, flags)
d80dcc6a 2876 || ! bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 2877 return FALSE;
b49e97c9
TS
2878
2879 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2880 linker script because we don't want to define the symbol if we
2881 are not creating a global offset table. */
14a793b2 2882 bh = NULL;
b49e97c9
TS
2883 if (! (_bfd_generic_link_add_one_symbol
2884 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
b34976b6 2885 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 2886 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 2887 return FALSE;
14a793b2
AM
2888
2889 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
2890 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2891 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2892 h->type = STT_OBJECT;
2893
2894 if (info->shared
2895 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 2896 return FALSE;
b49e97c9 2897
b49e97c9
TS
2898 amt = sizeof (struct mips_got_info);
2899 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2900 if (g == NULL)
b34976b6 2901 return FALSE;
b49e97c9
TS
2902 g->global_gotsym = NULL;
2903 g->local_gotno = MIPS_RESERVED_GOTNO;
2904 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
2905 g->bfd2got = NULL;
2906 g->next = NULL;
b15e6682
AO
2907 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2908 mips_elf_got_entry_eq,
2909 (htab_del) NULL);
2910 if (g->got_entries == NULL)
2911 return FALSE;
f0abc2a1
AM
2912 mips_elf_section_data (s)->u.got_info = g;
2913 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
2914 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2915
b34976b6 2916 return TRUE;
b49e97c9
TS
2917}
2918
2919/* Returns the .msym section for ABFD, creating it if it does not
2920 already exist. Returns NULL to indicate error. */
2921
2922static asection *
2923mips_elf_create_msym_section (abfd)
2924 bfd *abfd;
2925{
2926 asection *s;
2927
2928 s = bfd_get_section_by_name (abfd, ".msym");
2929 if (!s)
2930 {
2931 s = bfd_make_section (abfd, ".msym");
2932 if (!s
2933 || !bfd_set_section_flags (abfd, s,
2934 SEC_ALLOC
2935 | SEC_LOAD
2936 | SEC_HAS_CONTENTS
2937 | SEC_LINKER_CREATED
2938 | SEC_READONLY)
2939 || !bfd_set_section_alignment (abfd, s,
2940 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2941 return NULL;
2942 }
2943
2944 return s;
2945}
2946\f
2947/* Calculate the value produced by the RELOCATION (which comes from
2948 the INPUT_BFD). The ADDEND is the addend to use for this
2949 RELOCATION; RELOCATION->R_ADDEND is ignored.
2950
2951 The result of the relocation calculation is stored in VALUEP.
2952 REQUIRE_JALXP indicates whether or not the opcode used with this
2953 relocation must be JALX.
2954
2955 This function returns bfd_reloc_continue if the caller need take no
2956 further action regarding this relocation, bfd_reloc_notsupported if
2957 something goes dramatically wrong, bfd_reloc_overflow if an
2958 overflow occurs, and bfd_reloc_ok to indicate success. */
2959
2960static bfd_reloc_status_type
2961mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2962 relocation, addend, howto, local_syms,
2963 local_sections, valuep, namep,
bce03d3d 2964 require_jalxp, save_addend)
b49e97c9
TS
2965 bfd *abfd;
2966 bfd *input_bfd;
2967 asection *input_section;
2968 struct bfd_link_info *info;
2969 const Elf_Internal_Rela *relocation;
2970 bfd_vma addend;
2971 reloc_howto_type *howto;
2972 Elf_Internal_Sym *local_syms;
2973 asection **local_sections;
2974 bfd_vma *valuep;
2975 const char **namep;
b34976b6
AM
2976 bfd_boolean *require_jalxp;
2977 bfd_boolean save_addend;
b49e97c9
TS
2978{
2979 /* The eventual value we will return. */
2980 bfd_vma value;
2981 /* The address of the symbol against which the relocation is
2982 occurring. */
2983 bfd_vma symbol = 0;
2984 /* The final GP value to be used for the relocatable, executable, or
2985 shared object file being produced. */
2986 bfd_vma gp = MINUS_ONE;
2987 /* The place (section offset or address) of the storage unit being
2988 relocated. */
2989 bfd_vma p;
2990 /* The value of GP used to create the relocatable object. */
2991 bfd_vma gp0 = MINUS_ONE;
2992 /* The offset into the global offset table at which the address of
2993 the relocation entry symbol, adjusted by the addend, resides
2994 during execution. */
2995 bfd_vma g = MINUS_ONE;
2996 /* The section in which the symbol referenced by the relocation is
2997 located. */
2998 asection *sec = NULL;
2999 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3000 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3001 symbol. */
b34976b6
AM
3002 bfd_boolean local_p, was_local_p;
3003 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3004 bfd_boolean gp_disp_p = FALSE;
b49e97c9
TS
3005 Elf_Internal_Shdr *symtab_hdr;
3006 size_t extsymoff;
3007 unsigned long r_symndx;
3008 int r_type;
b34976b6 3009 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3010 relocation value. */
b34976b6
AM
3011 bfd_boolean overflowed_p;
3012 /* TRUE if this relocation refers to a MIPS16 function. */
3013 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
3014
3015 /* Parse the relocation. */
3016 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3017 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3018 p = (input_section->output_section->vma
3019 + input_section->output_offset
3020 + relocation->r_offset);
3021
3022 /* Assume that there will be no overflow. */
b34976b6 3023 overflowed_p = FALSE;
b49e97c9
TS
3024
3025 /* Figure out whether or not the symbol is local, and get the offset
3026 used in the array of hash table entries. */
3027 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3028 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3029 local_sections, FALSE);
bce03d3d 3030 was_local_p = local_p;
b49e97c9
TS
3031 if (! elf_bad_symtab (input_bfd))
3032 extsymoff = symtab_hdr->sh_info;
3033 else
3034 {
3035 /* The symbol table does not follow the rule that local symbols
3036 must come before globals. */
3037 extsymoff = 0;
3038 }
3039
3040 /* Figure out the value of the symbol. */
3041 if (local_p)
3042 {
3043 Elf_Internal_Sym *sym;
3044
3045 sym = local_syms + r_symndx;
3046 sec = local_sections[r_symndx];
3047
3048 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3049 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3050 || (sec->flags & SEC_MERGE))
b49e97c9 3051 symbol += sym->st_value;
d4df96e6
L
3052 if ((sec->flags & SEC_MERGE)
3053 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3054 {
3055 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3056 addend -= symbol;
3057 addend += sec->output_section->vma + sec->output_offset;
3058 }
b49e97c9
TS
3059
3060 /* MIPS16 text labels should be treated as odd. */
3061 if (sym->st_other == STO_MIPS16)
3062 ++symbol;
3063
3064 /* Record the name of this symbol, for our caller. */
3065 *namep = bfd_elf_string_from_elf_section (input_bfd,
3066 symtab_hdr->sh_link,
3067 sym->st_name);
3068 if (*namep == '\0')
3069 *namep = bfd_section_name (input_bfd, sec);
3070
3071 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3072 }
3073 else
3074 {
3075 /* For global symbols we look up the symbol in the hash-table. */
3076 h = ((struct mips_elf_link_hash_entry *)
3077 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3078 /* Find the real hash-table entry for this symbol. */
3079 while (h->root.root.type == bfd_link_hash_indirect
3080 || h->root.root.type == bfd_link_hash_warning)
3081 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3082
3083 /* Record the name of this symbol, for our caller. */
3084 *namep = h->root.root.root.string;
3085
3086 /* See if this is the special _gp_disp symbol. Note that such a
3087 symbol must always be a global symbol. */
3088 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3089 && ! NEWABI_P (input_bfd))
3090 {
3091 /* Relocations against _gp_disp are permitted only with
3092 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3093 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3094 return bfd_reloc_notsupported;
3095
b34976b6 3096 gp_disp_p = TRUE;
b49e97c9
TS
3097 }
3098 /* If this symbol is defined, calculate its address. Note that
3099 _gp_disp is a magic symbol, always implicitly defined by the
3100 linker, so it's inappropriate to check to see whether or not
3101 its defined. */
3102 else if ((h->root.root.type == bfd_link_hash_defined
3103 || h->root.root.type == bfd_link_hash_defweak)
3104 && h->root.root.u.def.section)
3105 {
3106 sec = h->root.root.u.def.section;
3107 if (sec->output_section)
3108 symbol = (h->root.root.u.def.value
3109 + sec->output_section->vma
3110 + sec->output_offset);
3111 else
3112 symbol = h->root.root.u.def.value;
3113 }
3114 else if (h->root.root.type == bfd_link_hash_undefweak)
3115 /* We allow relocations against undefined weak symbols, giving
3116 it the value zero, so that you can undefined weak functions
3117 and check to see if they exist by looking at their
3118 addresses. */
3119 symbol = 0;
3120 else if (info->shared
b49e97c9
TS
3121 && !info->no_undefined
3122 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3123 symbol = 0;
3124 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3125 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3126 {
3127 /* If this is a dynamic link, we should have created a
3128 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3129 in in _bfd_mips_elf_create_dynamic_sections.
3130 Otherwise, we should define the symbol with a value of 0.
3131 FIXME: It should probably get into the symbol table
3132 somehow as well. */
3133 BFD_ASSERT (! info->shared);
3134 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3135 symbol = 0;
3136 }
3137 else
3138 {
3139 if (! ((*info->callbacks->undefined_symbol)
3140 (info, h->root.root.root.string, input_bfd,
3141 input_section, relocation->r_offset,
3142 (!info->shared || info->no_undefined
3143 || ELF_ST_VISIBILITY (h->root.other)))))
3144 return bfd_reloc_undefined;
3145 symbol = 0;
3146 }
3147
3148 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3149 }
3150
3151 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3152 need to redirect the call to the stub, unless we're already *in*
3153 a stub. */
1049f94e 3154 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3155 && ((h != NULL && h->fn_stub != NULL)
3156 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3157 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3158 && !mips_elf_stub_section_p (input_bfd, input_section))
3159 {
3160 /* This is a 32- or 64-bit call to a 16-bit function. We should
3161 have already noticed that we were going to need the
3162 stub. */
3163 if (local_p)
3164 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3165 else
3166 {
3167 BFD_ASSERT (h->need_fn_stub);
3168 sec = h->fn_stub;
3169 }
3170
3171 symbol = sec->output_section->vma + sec->output_offset;
3172 }
3173 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3174 need to redirect the call to the stub. */
1049f94e 3175 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3176 && h != NULL
3177 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3178 && !target_is_16_bit_code_p)
3179 {
3180 /* If both call_stub and call_fp_stub are defined, we can figure
3181 out which one to use by seeing which one appears in the input
3182 file. */
3183 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3184 {
3185 asection *o;
3186
3187 sec = NULL;
3188 for (o = input_bfd->sections; o != NULL; o = o->next)
3189 {
3190 if (strncmp (bfd_get_section_name (input_bfd, o),
3191 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3192 {
3193 sec = h->call_fp_stub;
3194 break;
3195 }
3196 }
3197 if (sec == NULL)
3198 sec = h->call_stub;
3199 }
3200 else if (h->call_stub != NULL)
3201 sec = h->call_stub;
3202 else
3203 sec = h->call_fp_stub;
3204
3205 BFD_ASSERT (sec->_raw_size > 0);
3206 symbol = sec->output_section->vma + sec->output_offset;
3207 }
3208
3209 /* Calls from 16-bit code to 32-bit code and vice versa require the
3210 special jalx instruction. */
1049f94e 3211 *require_jalxp = (!info->relocatable
b49e97c9
TS
3212 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3213 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3214
3215 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3216 local_sections, TRUE);
b49e97c9
TS
3217
3218 /* If we haven't already determined the GOT offset, or the GP value,
3219 and we're going to need it, get it now. */
3220 switch (r_type)
3221 {
0fdc1bf1 3222 case R_MIPS_GOT_PAGE:
93a2b7ae 3223 case R_MIPS_GOT_OFST:
0176c794
AO
3224 /* If this symbol got a global GOT entry, we have to decay
3225 GOT_PAGE/GOT_OFST to GOT_DISP/addend. */
93a2b7ae
AO
3226 local_p = local_p || ! h
3227 || (h->root.dynindx
3228 < mips_elf_get_global_gotsym_index (elf_hash_table (info)
3229 ->dynobj));
3230 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3231 break;
3232 /* Fall through. */
3233
b49e97c9
TS
3234 case R_MIPS_CALL16:
3235 case R_MIPS_GOT16:
3236 case R_MIPS_GOT_DISP:
3237 case R_MIPS_GOT_HI16:
3238 case R_MIPS_CALL_HI16:
3239 case R_MIPS_GOT_LO16:
3240 case R_MIPS_CALL_LO16:
3241 /* Find the index into the GOT where this value is located. */
3242 if (!local_p)
3243 {
0fdc1bf1
AO
3244 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3245 GOT_PAGE relocation that decays to GOT_DISP because the
3246 symbol turns out to be global. The addend is then added
3247 as GOT_OFST. */
3248 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3249 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3250 input_bfd,
b49e97c9
TS
3251 (struct elf_link_hash_entry *) h);
3252 if (! elf_hash_table(info)->dynamic_sections_created
3253 || (info->shared
3254 && (info->symbolic || h->root.dynindx == -1)
3255 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3256 {
3257 /* This is a static link or a -Bsymbolic link. The
3258 symbol is defined locally, or was forced to be local.
3259 We must initialize this entry in the GOT. */
3260 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3261 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3262 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3263 }
3264 }
3265 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3266 /* There's no need to create a local GOT entry here; the
3267 calculation for a local GOT16 entry does not involve G. */
3268 break;
3269 else
3270 {
f4416af6
AO
3271 g = mips_elf_local_got_index (abfd, input_bfd,
3272 info, symbol + addend);
b49e97c9
TS
3273 if (g == MINUS_ONE)
3274 return bfd_reloc_outofrange;
3275 }
3276
3277 /* Convert GOT indices to actual offsets. */
3278 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3279 abfd, input_bfd, g);
b49e97c9
TS
3280 break;
3281
3282 case R_MIPS_HI16:
3283 case R_MIPS_LO16:
3284 case R_MIPS16_GPREL:
3285 case R_MIPS_GPREL16:
3286 case R_MIPS_GPREL32:
3287 case R_MIPS_LITERAL:
3288 gp0 = _bfd_get_gp_value (input_bfd);
3289 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3290 if (elf_hash_table (info)->dynobj)
3291 gp += mips_elf_adjust_gp (abfd,
3292 mips_elf_got_info
3293 (elf_hash_table (info)->dynobj, NULL),
3294 input_bfd);
b49e97c9
TS
3295 break;
3296
3297 default:
3298 break;
3299 }
3300
3301 /* Figure out what kind of relocation is being performed. */
3302 switch (r_type)
3303 {
3304 case R_MIPS_NONE:
3305 return bfd_reloc_continue;
3306
3307 case R_MIPS_16:
a7ebbfdf 3308 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3309 overflowed_p = mips_elf_overflow_p (value, 16);
3310 break;
3311
3312 case R_MIPS_32:
3313 case R_MIPS_REL32:
3314 case R_MIPS_64:
3315 if ((info->shared
3316 || (elf_hash_table (info)->dynamic_sections_created
3317 && h != NULL
3318 && ((h->root.elf_link_hash_flags
3319 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3320 && ((h->root.elf_link_hash_flags
3321 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3322 && r_symndx != 0
3323 && (input_section->flags & SEC_ALLOC) != 0)
3324 {
3325 /* If we're creating a shared library, or this relocation is
3326 against a symbol in a shared library, then we can't know
3327 where the symbol will end up. So, we create a relocation
3328 record in the output, and leave the job up to the dynamic
3329 linker. */
3330 value = addend;
3331 if (!mips_elf_create_dynamic_relocation (abfd,
3332 info,
3333 relocation,
3334 h,
3335 sec,
3336 symbol,
3337 &value,
3338 input_section))
3339 return bfd_reloc_undefined;
3340 }
3341 else
3342 {
3343 if (r_type != R_MIPS_REL32)
3344 value = symbol + addend;
3345 else
3346 value = addend;
3347 }
3348 value &= howto->dst_mask;
3349 break;
3350
3351 case R_MIPS_PC32:
3352 case R_MIPS_PC64:
3353 case R_MIPS_GNU_REL_LO16:
3354 value = symbol + addend - p;
3355 value &= howto->dst_mask;
3356 break;
3357
0b25d3e6 3358 case R_MIPS_GNU_REL16_S2:
a7ebbfdf 3359 value = symbol + _bfd_mips_elf_sign_extend (addend << 2, 18) - p;
0b25d3e6
AO
3360 overflowed_p = mips_elf_overflow_p (value, 18);
3361 value = (value >> 2) & howto->dst_mask;
3362 break;
3363
b49e97c9
TS
3364 case R_MIPS_GNU_REL_HI16:
3365 /* Instead of subtracting 'p' here, we should be subtracting the
3366 equivalent value for the LO part of the reloc, since the value
3367 here is relative to that address. Because that's not easy to do,
3368 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3369 the comment there for more information. */
3370 value = mips_elf_high (addend + symbol - p);
3371 value &= howto->dst_mask;
3372 break;
3373
3374 case R_MIPS16_26:
3375 /* The calculation for R_MIPS16_26 is just the same as for an
3376 R_MIPS_26. It's only the storage of the relocated field into
3377 the output file that's different. That's handled in
3378 mips_elf_perform_relocation. So, we just fall through to the
3379 R_MIPS_26 case here. */
3380 case R_MIPS_26:
3381 if (local_p)
3382 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3383 else
a7ebbfdf 3384 value = (_bfd_mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
b49e97c9
TS
3385 value &= howto->dst_mask;
3386 break;
3387
3388 case R_MIPS_HI16:
3389 if (!gp_disp_p)
3390 {
3391 value = mips_elf_high (addend + symbol);
3392 value &= howto->dst_mask;
3393 }
3394 else
3395 {
3396 value = mips_elf_high (addend + gp - p);
3397 overflowed_p = mips_elf_overflow_p (value, 16);
3398 }
3399 break;
3400
3401 case R_MIPS_LO16:
3402 if (!gp_disp_p)
3403 value = (symbol + addend) & howto->dst_mask;
3404 else
3405 {
3406 value = addend + gp - p + 4;
3407 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 3408 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
3409 _gp_disp are normally generated from the .cpload
3410 pseudo-op. It generates code that normally looks like
3411 this:
3412
3413 lui $gp,%hi(_gp_disp)
3414 addiu $gp,$gp,%lo(_gp_disp)
3415 addu $gp,$gp,$t9
3416
3417 Here $t9 holds the address of the function being called,
3418 as required by the MIPS ELF ABI. The R_MIPS_LO16
3419 relocation can easily overflow in this situation, but the
3420 R_MIPS_HI16 relocation will handle the overflow.
3421 Therefore, we consider this a bug in the MIPS ABI, and do
3422 not check for overflow here. */
3423 }
3424 break;
3425
3426 case R_MIPS_LITERAL:
3427 /* Because we don't merge literal sections, we can handle this
3428 just like R_MIPS_GPREL16. In the long run, we should merge
3429 shared literals, and then we will need to additional work
3430 here. */
3431
3432 /* Fall through. */
3433
3434 case R_MIPS16_GPREL:
3435 /* The R_MIPS16_GPREL performs the same calculation as
3436 R_MIPS_GPREL16, but stores the relocated bits in a different
3437 order. We don't need to do anything special here; the
3438 differences are handled in mips_elf_perform_relocation. */
3439 case R_MIPS_GPREL16:
bce03d3d
AO
3440 /* Only sign-extend the addend if it was extracted from the
3441 instruction. If the addend was separate, leave it alone,
3442 otherwise we may lose significant bits. */
3443 if (howto->partial_inplace)
a7ebbfdf 3444 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
3445 value = symbol + addend - gp;
3446 /* If the symbol was local, any earlier relocatable links will
3447 have adjusted its addend with the gp offset, so compensate
3448 for that now. Don't do it for symbols forced local in this
3449 link, though, since they won't have had the gp offset applied
3450 to them before. */
3451 if (was_local_p)
3452 value += gp0;
b49e97c9
TS
3453 overflowed_p = mips_elf_overflow_p (value, 16);
3454 break;
3455
3456 case R_MIPS_GOT16:
3457 case R_MIPS_CALL16:
3458 if (local_p)
3459 {
b34976b6 3460 bfd_boolean forced;
b49e97c9
TS
3461
3462 /* The special case is when the symbol is forced to be local. We
3463 need the full address in the GOT since no R_MIPS_LO16 relocation
3464 follows. */
3465 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3466 local_sections, FALSE);
f4416af6
AO
3467 value = mips_elf_got16_entry (abfd, input_bfd, info,
3468 symbol + addend, forced);
b49e97c9
TS
3469 if (value == MINUS_ONE)
3470 return bfd_reloc_outofrange;
3471 value
3472 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3473 abfd, input_bfd, value);
b49e97c9
TS
3474 overflowed_p = mips_elf_overflow_p (value, 16);
3475 break;
3476 }
3477
3478 /* Fall through. */
3479
3480 case R_MIPS_GOT_DISP:
0fdc1bf1 3481 got_disp:
b49e97c9
TS
3482 value = g;
3483 overflowed_p = mips_elf_overflow_p (value, 16);
3484 break;
3485
3486 case R_MIPS_GPREL32:
bce03d3d
AO
3487 value = (addend + symbol + gp0 - gp);
3488 if (!save_addend)
3489 value &= howto->dst_mask;
b49e97c9
TS
3490 break;
3491
3492 case R_MIPS_PC16:
a7ebbfdf 3493 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
0b25d3e6 3494 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
3495 break;
3496
3497 case R_MIPS_GOT_HI16:
3498 case R_MIPS_CALL_HI16:
3499 /* We're allowed to handle these two relocations identically.
3500 The dynamic linker is allowed to handle the CALL relocations
3501 differently by creating a lazy evaluation stub. */
3502 value = g;
3503 value = mips_elf_high (value);
3504 value &= howto->dst_mask;
3505 break;
3506
3507 case R_MIPS_GOT_LO16:
3508 case R_MIPS_CALL_LO16:
3509 value = g & howto->dst_mask;
3510 break;
3511
3512 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
3513 /* GOT_PAGE relocations that reference non-local symbols decay
3514 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3515 0. */
93a2b7ae 3516 if (! local_p)
0fdc1bf1 3517 goto got_disp;
f4416af6 3518 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
3519 if (value == MINUS_ONE)
3520 return bfd_reloc_outofrange;
3521 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3522 abfd, input_bfd, value);
b49e97c9
TS
3523 overflowed_p = mips_elf_overflow_p (value, 16);
3524 break;
3525
3526 case R_MIPS_GOT_OFST:
93a2b7ae 3527 if (local_p)
0fdc1bf1
AO
3528 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3529 else
3530 value = addend;
b49e97c9
TS
3531 overflowed_p = mips_elf_overflow_p (value, 16);
3532 break;
3533
3534 case R_MIPS_SUB:
3535 value = symbol - addend;
3536 value &= howto->dst_mask;
3537 break;
3538
3539 case R_MIPS_HIGHER:
3540 value = mips_elf_higher (addend + symbol);
3541 value &= howto->dst_mask;
3542 break;
3543
3544 case R_MIPS_HIGHEST:
3545 value = mips_elf_highest (addend + symbol);
3546 value &= howto->dst_mask;
3547 break;
3548
3549 case R_MIPS_SCN_DISP:
3550 value = symbol + addend - sec->output_offset;
3551 value &= howto->dst_mask;
3552 break;
3553
3554 case R_MIPS_PJUMP:
3555 case R_MIPS_JALR:
3556 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3557 hint; we could improve performance by honoring that hint. */
3558 return bfd_reloc_continue;
3559
3560 case R_MIPS_GNU_VTINHERIT:
3561 case R_MIPS_GNU_VTENTRY:
3562 /* We don't do anything with these at present. */
3563 return bfd_reloc_continue;
3564
3565 default:
3566 /* An unrecognized relocation type. */
3567 return bfd_reloc_notsupported;
3568 }
3569
3570 /* Store the VALUE for our caller. */
3571 *valuep = value;
3572 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3573}
3574
3575/* Obtain the field relocated by RELOCATION. */
3576
3577static bfd_vma
3578mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3579 reloc_howto_type *howto;
3580 const Elf_Internal_Rela *relocation;
3581 bfd *input_bfd;
3582 bfd_byte *contents;
3583{
3584 bfd_vma x;
3585 bfd_byte *location = contents + relocation->r_offset;
3586
3587 /* Obtain the bytes. */
3588 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3589
3590 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3591 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3592 && bfd_little_endian (input_bfd))
3593 /* The two 16-bit words will be reversed on a little-endian system.
3594 See mips_elf_perform_relocation for more details. */
3595 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3596
3597 return x;
3598}
3599
3600/* It has been determined that the result of the RELOCATION is the
3601 VALUE. Use HOWTO to place VALUE into the output file at the
3602 appropriate position. The SECTION is the section to which the
b34976b6 3603 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
3604 for the relocation must be either JAL or JALX, and it is
3605 unconditionally converted to JALX.
3606
b34976b6 3607 Returns FALSE if anything goes wrong. */
b49e97c9 3608
b34976b6 3609static bfd_boolean
b49e97c9
TS
3610mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3611 input_section, contents, require_jalx)
3612 struct bfd_link_info *info;
3613 reloc_howto_type *howto;
3614 const Elf_Internal_Rela *relocation;
3615 bfd_vma value;
3616 bfd *input_bfd;
3617 asection *input_section;
3618 bfd_byte *contents;
b34976b6 3619 bfd_boolean require_jalx;
b49e97c9
TS
3620{
3621 bfd_vma x;
3622 bfd_byte *location;
3623 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3624
3625 /* Figure out where the relocation is occurring. */
3626 location = contents + relocation->r_offset;
3627
3628 /* Obtain the current value. */
3629 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3630
3631 /* Clear the field we are setting. */
3632 x &= ~howto->dst_mask;
3633
3634 /* If this is the R_MIPS16_26 relocation, we must store the
3635 value in a funny way. */
3636 if (r_type == R_MIPS16_26)
3637 {
3638 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3639 Most mips16 instructions are 16 bits, but these instructions
3640 are 32 bits.
3641
3642 The format of these instructions is:
3643
3644 +--------------+--------------------------------+
3645 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3646 +--------------+--------------------------------+
3647 ! Immediate 15:0 !
3648 +-----------------------------------------------+
3649
3650 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3651 Note that the immediate value in the first word is swapped.
3652
1049f94e 3653 When producing a relocatable object file, R_MIPS16_26 is
b49e97c9
TS
3654 handled mostly like R_MIPS_26. In particular, the addend is
3655 stored as a straight 26-bit value in a 32-bit instruction.
3656 (gas makes life simpler for itself by never adjusting a
3657 R_MIPS16_26 reloc to be against a section, so the addend is
3658 always zero). However, the 32 bit instruction is stored as 2
3659 16-bit values, rather than a single 32-bit value. In a
3660 big-endian file, the result is the same; in a little-endian
3661 file, the two 16-bit halves of the 32 bit value are swapped.
3662 This is so that a disassembler can recognize the jal
3663 instruction.
3664
3665 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3666 instruction stored as two 16-bit values. The addend A is the
3667 contents of the targ26 field. The calculation is the same as
3668 R_MIPS_26. When storing the calculated value, reorder the
3669 immediate value as shown above, and don't forget to store the
3670 value as two 16-bit values.
3671
3672 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3673 defined as
3674
3675 big-endian:
3676 +--------+----------------------+
3677 | | |
3678 | | targ26-16 |
3679 |31 26|25 0|
3680 +--------+----------------------+
3681
3682 little-endian:
3683 +----------+------+-------------+
3684 | | | |
3685 | sub1 | | sub2 |
3686 |0 9|10 15|16 31|
3687 +----------+--------------------+
3688 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3689 ((sub1 << 16) | sub2)).
3690
1049f94e 3691 When producing a relocatable object file, the calculation is
b49e97c9
TS
3692 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3693 When producing a fully linked file, the calculation is
3694 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3695 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3696
1049f94e 3697 if (!info->relocatable)
b49e97c9
TS
3698 /* Shuffle the bits according to the formula above. */
3699 value = (((value & 0x1f0000) << 5)
3700 | ((value & 0x3e00000) >> 5)
3701 | (value & 0xffff));
3702 }
3703 else if (r_type == R_MIPS16_GPREL)
3704 {
3705 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3706 mode. A typical instruction will have a format like this:
3707
3708 +--------------+--------------------------------+
3709 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3710 +--------------+--------------------------------+
3711 ! Major ! rx ! ry ! Imm 4:0 !
3712 +--------------+--------------------------------+
3713
3714 EXTEND is the five bit value 11110. Major is the instruction
3715 opcode.
3716
3717 This is handled exactly like R_MIPS_GPREL16, except that the
3718 addend is retrieved and stored as shown in this diagram; that
3719 is, the Imm fields above replace the V-rel16 field.
3720
3721 All we need to do here is shuffle the bits appropriately. As
3722 above, the two 16-bit halves must be swapped on a
3723 little-endian system. */
3724 value = (((value & 0x7e0) << 16)
3725 | ((value & 0xf800) << 5)
3726 | (value & 0x1f));
3727 }
3728
3729 /* Set the field. */
3730 x |= (value & howto->dst_mask);
3731
3732 /* If required, turn JAL into JALX. */
3733 if (require_jalx)
3734 {
b34976b6 3735 bfd_boolean ok;
b49e97c9
TS
3736 bfd_vma opcode = x >> 26;
3737 bfd_vma jalx_opcode;
3738
3739 /* Check to see if the opcode is already JAL or JALX. */
3740 if (r_type == R_MIPS16_26)
3741 {
3742 ok = ((opcode == 0x6) || (opcode == 0x7));
3743 jalx_opcode = 0x7;
3744 }
3745 else
3746 {
3747 ok = ((opcode == 0x3) || (opcode == 0x1d));
3748 jalx_opcode = 0x1d;
3749 }
3750
3751 /* If the opcode is not JAL or JALX, there's a problem. */
3752 if (!ok)
3753 {
3754 (*_bfd_error_handler)
3755 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3756 bfd_archive_filename (input_bfd),
3757 input_section->name,
3758 (unsigned long) relocation->r_offset);
3759 bfd_set_error (bfd_error_bad_value);
b34976b6 3760 return FALSE;
b49e97c9
TS
3761 }
3762
3763 /* Make this the JALX opcode. */
3764 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3765 }
3766
3767 /* Swap the high- and low-order 16 bits on little-endian systems
3768 when doing a MIPS16 relocation. */
3769 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3770 && bfd_little_endian (input_bfd))
3771 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3772
3773 /* Put the value into the output. */
3774 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
b34976b6 3775 return TRUE;
b49e97c9
TS
3776}
3777
b34976b6 3778/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 3779
b34976b6 3780static bfd_boolean
b49e97c9
TS
3781mips_elf_stub_section_p (abfd, section)
3782 bfd *abfd ATTRIBUTE_UNUSED;
3783 asection *section;
3784{
3785 const char *name = bfd_get_section_name (abfd, section);
3786
3787 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3788 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3789 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3790}
3791\f
3792/* Add room for N relocations to the .rel.dyn section in ABFD. */
3793
3794static void
3795mips_elf_allocate_dynamic_relocations (abfd, n)
3796 bfd *abfd;
3797 unsigned int n;
3798{
3799 asection *s;
3800
f4416af6 3801 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
3802 BFD_ASSERT (s != NULL);
3803
3804 if (s->_raw_size == 0)
3805 {
3806 /* Make room for a null element. */
3807 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3808 ++s->reloc_count;
3809 }
3810 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3811}
3812
3813/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3814 is the original relocation, which is now being transformed into a
3815 dynamic relocation. The ADDENDP is adjusted if necessary; the
3816 caller should store the result in place of the original addend. */
3817
b34976b6 3818static bfd_boolean
b49e97c9
TS
3819mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3820 symbol, addendp, input_section)
3821 bfd *output_bfd;
3822 struct bfd_link_info *info;
3823 const Elf_Internal_Rela *rel;
3824 struct mips_elf_link_hash_entry *h;
3825 asection *sec;
3826 bfd_vma symbol;
3827 bfd_vma *addendp;
3828 asection *input_section;
3829{
947216bf 3830 Elf_Internal_Rela outrel[3];
b34976b6 3831 bfd_boolean skip;
b49e97c9
TS
3832 asection *sreloc;
3833 bfd *dynobj;
3834 int r_type;
3835
3836 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3837 dynobj = elf_hash_table (info)->dynobj;
f4416af6 3838 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
3839 BFD_ASSERT (sreloc != NULL);
3840 BFD_ASSERT (sreloc->contents != NULL);
3841 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3842 < sreloc->_raw_size);
3843
b34976b6 3844 skip = FALSE;
b49e97c9
TS
3845 outrel[0].r_offset =
3846 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3847 outrel[1].r_offset =
3848 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3849 outrel[2].r_offset =
3850 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3851
3852#if 0
3853 /* We begin by assuming that the offset for the dynamic relocation
3854 is the same as for the original relocation. We'll adjust this
3855 later to reflect the correct output offsets. */
a7ebbfdf 3856 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
b49e97c9
TS
3857 {
3858 outrel[1].r_offset = rel[1].r_offset;
3859 outrel[2].r_offset = rel[2].r_offset;
3860 }
3861 else
3862 {
3863 /* Except that in a stab section things are more complex.
3864 Because we compress stab information, the offset given in the
3865 relocation may not be the one we want; we must let the stabs
3866 machinery tell us the offset. */
3867 outrel[1].r_offset = outrel[0].r_offset;
3868 outrel[2].r_offset = outrel[0].r_offset;
3869 /* If we didn't need the relocation at all, this value will be
3870 -1. */
3871 if (outrel[0].r_offset == (bfd_vma) -1)
b34976b6 3872 skip = TRUE;
b49e97c9
TS
3873 }
3874#endif
3875
4bb9a95f
AO
3876 if (outrel[0].r_offset == (bfd_vma) -1
3877 || outrel[0].r_offset == (bfd_vma) -2)
b34976b6 3878 skip = TRUE;
b49e97c9
TS
3879
3880 /* If we've decided to skip this relocation, just output an empty
3881 record. Note that R_MIPS_NONE == 0, so that this call to memset
3882 is a way of setting R_TYPE to R_MIPS_NONE. */
3883 if (skip)
947216bf 3884 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
b49e97c9
TS
3885 else
3886 {
3887 long indx;
b49e97c9
TS
3888
3889 /* We must now calculate the dynamic symbol table index to use
3890 in the relocation. */
3891 if (h != NULL
3892 && (! info->symbolic || (h->root.elf_link_hash_flags
3893 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3894 {
3895 indx = h->root.dynindx;
3896 /* h->root.dynindx may be -1 if this symbol was marked to
3897 become local. */
3898 if (indx == -1)
3899 indx = 0;
3900 }
3901 else
3902 {
3903 if (sec != NULL && bfd_is_abs_section (sec))
3904 indx = 0;
3905 else if (sec == NULL || sec->owner == NULL)
3906 {
3907 bfd_set_error (bfd_error_bad_value);
b34976b6 3908 return FALSE;
b49e97c9
TS
3909 }
3910 else
3911 {
3912 indx = elf_section_data (sec->output_section)->dynindx;
3913 if (indx == 0)
3914 abort ();
3915 }
3916
908488f1
AO
3917 /* Instead of generating a relocation using the section
3918 symbol, we may as well make it a fully relative
3919 relocation. We want to avoid generating relocations to
3920 local symbols because we used to generate them
3921 incorrectly, without adding the original symbol value,
3922 which is mandated by the ABI for section symbols. In
3923 order to give dynamic loaders and applications time to
3924 phase out the incorrect use, we refrain from emitting
3925 section-relative relocations. It's not like they're
3926 useful, after all. This should be a bit more efficient
3927 as well. */
3928 indx = 0;
b49e97c9
TS
3929 }
3930
3931 /* If the relocation was previously an absolute relocation and
3932 this symbol will not be referred to by the relocation, we must
3933 adjust it by the value we give it in the dynamic symbol table.
3934 Otherwise leave the job up to the dynamic linker. */
3935 if (!indx && r_type != R_MIPS_REL32)
3936 *addendp += symbol;
3937
3938 /* The relocation is always an REL32 relocation because we don't
3939 know where the shared library will wind up at load-time. */
34ea4a36
TS
3940 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3941 R_MIPS_REL32);
908488f1
AO
3942 /* For strict adherence to the ABI specification, we should
3943 generate a R_MIPS_64 relocation record by itself before the
3944 _REL32/_64 record as well, such that the addend is read in as
3945 a 64-bit value (REL32 is a 32-bit relocation, after all).
3946 However, since none of the existing ELF64 MIPS dynamic
3947 loaders seems to care, we don't waste space with these
3948 artificial relocations. If this turns out to not be true,
3949 mips_elf_allocate_dynamic_relocation() should be tweaked so
3950 as to make room for a pair of dynamic relocations per
3951 invocation if ABI_64_P, and here we should generate an
3952 additional relocation record with R_MIPS_64 by itself for a
3953 NULL symbol before this relocation record. */
7c4ca42d 3954 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
033fd5f9
AO
3955 ABI_64_P (output_bfd)
3956 ? R_MIPS_64
3957 : R_MIPS_NONE);
7c4ca42d
AO
3958 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3959 R_MIPS_NONE);
b49e97c9
TS
3960
3961 /* Adjust the output offset of the relocation to reference the
3962 correct location in the output file. */
3963 outrel[0].r_offset += (input_section->output_section->vma
3964 + input_section->output_offset);
3965 outrel[1].r_offset += (input_section->output_section->vma
3966 + input_section->output_offset);
3967 outrel[2].r_offset += (input_section->output_section->vma
3968 + input_section->output_offset);
3969 }
3970
3971 /* Put the relocation back out. We have to use the special
3972 relocation outputter in the 64-bit case since the 64-bit
3973 relocation format is non-standard. */
3974 if (ABI_64_P (output_bfd))
3975 {
3976 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3977 (output_bfd, &outrel[0],
3978 (sreloc->contents
3979 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3980 }
3981 else
947216bf
AM
3982 bfd_elf32_swap_reloc_out
3983 (output_bfd, &outrel[0],
3984 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9
TS
3985
3986 /* Record the index of the first relocation referencing H. This
3987 information is later emitted in the .msym section. */
3988 if (h != NULL
3989 && (h->min_dyn_reloc_index == 0
3990 || sreloc->reloc_count < h->min_dyn_reloc_index))
3991 h->min_dyn_reloc_index = sreloc->reloc_count;
3992
3993 /* We've now added another relocation. */
3994 ++sreloc->reloc_count;
3995
3996 /* Make sure the output section is writable. The dynamic linker
3997 will be writing to it. */
3998 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3999 |= SHF_WRITE;
4000
4001 /* On IRIX5, make an entry of compact relocation info. */
4002 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
4003 {
4004 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4005 bfd_byte *cr;
4006
4007 if (scpt)
4008 {
4009 Elf32_crinfo cptrel;
4010
4011 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4012 cptrel.vaddr = (rel->r_offset
4013 + input_section->output_section->vma
4014 + input_section->output_offset);
4015 if (r_type == R_MIPS_REL32)
4016 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4017 else
4018 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4019 mips_elf_set_cr_dist2to (cptrel, 0);
4020 cptrel.konst = *addendp;
4021
4022 cr = (scpt->contents
4023 + sizeof (Elf32_External_compact_rel));
4024 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4025 ((Elf32_External_crinfo *) cr
4026 + scpt->reloc_count));
4027 ++scpt->reloc_count;
4028 }
4029 }
4030
b34976b6 4031 return TRUE;
b49e97c9
TS
4032}
4033\f
b49e97c9
TS
4034/* Return the MACH for a MIPS e_flags value. */
4035
4036unsigned long
4037_bfd_elf_mips_mach (flags)
4038 flagword flags;
4039{
4040 switch (flags & EF_MIPS_MACH)
4041 {
4042 case E_MIPS_MACH_3900:
4043 return bfd_mach_mips3900;
4044
4045 case E_MIPS_MACH_4010:
4046 return bfd_mach_mips4010;
4047
4048 case E_MIPS_MACH_4100:
4049 return bfd_mach_mips4100;
4050
4051 case E_MIPS_MACH_4111:
4052 return bfd_mach_mips4111;
4053
00707a0e
RS
4054 case E_MIPS_MACH_4120:
4055 return bfd_mach_mips4120;
4056
b49e97c9
TS
4057 case E_MIPS_MACH_4650:
4058 return bfd_mach_mips4650;
4059
00707a0e
RS
4060 case E_MIPS_MACH_5400:
4061 return bfd_mach_mips5400;
4062
4063 case E_MIPS_MACH_5500:
4064 return bfd_mach_mips5500;
4065
b49e97c9
TS
4066 case E_MIPS_MACH_SB1:
4067 return bfd_mach_mips_sb1;
4068
4069 default:
4070 switch (flags & EF_MIPS_ARCH)
4071 {
4072 default:
4073 case E_MIPS_ARCH_1:
4074 return bfd_mach_mips3000;
4075 break;
4076
4077 case E_MIPS_ARCH_2:
4078 return bfd_mach_mips6000;
4079 break;
4080
4081 case E_MIPS_ARCH_3:
4082 return bfd_mach_mips4000;
4083 break;
4084
4085 case E_MIPS_ARCH_4:
4086 return bfd_mach_mips8000;
4087 break;
4088
4089 case E_MIPS_ARCH_5:
4090 return bfd_mach_mips5;
4091 break;
4092
4093 case E_MIPS_ARCH_32:
4094 return bfd_mach_mipsisa32;
4095 break;
4096
4097 case E_MIPS_ARCH_64:
4098 return bfd_mach_mipsisa64;
4099 break;
af7ee8bf
CD
4100
4101 case E_MIPS_ARCH_32R2:
4102 return bfd_mach_mipsisa32r2;
4103 break;
b49e97c9
TS
4104 }
4105 }
4106
4107 return 0;
4108}
4109
4110/* Return printable name for ABI. */
4111
4112static INLINE char *
4113elf_mips_abi_name (abfd)
4114 bfd *abfd;
4115{
4116 flagword flags;
4117
4118 flags = elf_elfheader (abfd)->e_flags;
4119 switch (flags & EF_MIPS_ABI)
4120 {
4121 case 0:
4122 if (ABI_N32_P (abfd))
4123 return "N32";
4124 else if (ABI_64_P (abfd))
4125 return "64";
4126 else
4127 return "none";
4128 case E_MIPS_ABI_O32:
4129 return "O32";
4130 case E_MIPS_ABI_O64:
4131 return "O64";
4132 case E_MIPS_ABI_EABI32:
4133 return "EABI32";
4134 case E_MIPS_ABI_EABI64:
4135 return "EABI64";
4136 default:
4137 return "unknown abi";
4138 }
4139}
4140\f
4141/* MIPS ELF uses two common sections. One is the usual one, and the
4142 other is for small objects. All the small objects are kept
4143 together, and then referenced via the gp pointer, which yields
4144 faster assembler code. This is what we use for the small common
4145 section. This approach is copied from ecoff.c. */
4146static asection mips_elf_scom_section;
4147static asymbol mips_elf_scom_symbol;
4148static asymbol *mips_elf_scom_symbol_ptr;
4149
4150/* MIPS ELF also uses an acommon section, which represents an
4151 allocated common symbol which may be overridden by a
4152 definition in a shared library. */
4153static asection mips_elf_acom_section;
4154static asymbol mips_elf_acom_symbol;
4155static asymbol *mips_elf_acom_symbol_ptr;
4156
4157/* Handle the special MIPS section numbers that a symbol may use.
4158 This is used for both the 32-bit and the 64-bit ABI. */
4159
4160void
4161_bfd_mips_elf_symbol_processing (abfd, asym)
4162 bfd *abfd;
4163 asymbol *asym;
4164{
4165 elf_symbol_type *elfsym;
4166
4167 elfsym = (elf_symbol_type *) asym;
4168 switch (elfsym->internal_elf_sym.st_shndx)
4169 {
4170 case SHN_MIPS_ACOMMON:
4171 /* This section is used in a dynamically linked executable file.
4172 It is an allocated common section. The dynamic linker can
4173 either resolve these symbols to something in a shared
4174 library, or it can just leave them here. For our purposes,
4175 we can consider these symbols to be in a new section. */
4176 if (mips_elf_acom_section.name == NULL)
4177 {
4178 /* Initialize the acommon section. */
4179 mips_elf_acom_section.name = ".acommon";
4180 mips_elf_acom_section.flags = SEC_ALLOC;
4181 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4182 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4183 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4184 mips_elf_acom_symbol.name = ".acommon";
4185 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4186 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4187 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4188 }
4189 asym->section = &mips_elf_acom_section;
4190 break;
4191
4192 case SHN_COMMON:
4193 /* Common symbols less than the GP size are automatically
4194 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4195 if (asym->value > elf_gp_size (abfd)
4196 || IRIX_COMPAT (abfd) == ict_irix6)
4197 break;
4198 /* Fall through. */
4199 case SHN_MIPS_SCOMMON:
4200 if (mips_elf_scom_section.name == NULL)
4201 {
4202 /* Initialize the small common section. */
4203 mips_elf_scom_section.name = ".scommon";
4204 mips_elf_scom_section.flags = SEC_IS_COMMON;
4205 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4206 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4207 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4208 mips_elf_scom_symbol.name = ".scommon";
4209 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4210 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4211 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4212 }
4213 asym->section = &mips_elf_scom_section;
4214 asym->value = elfsym->internal_elf_sym.st_size;
4215 break;
4216
4217 case SHN_MIPS_SUNDEFINED:
4218 asym->section = bfd_und_section_ptr;
4219 break;
4220
4221#if 0 /* for SGI_COMPAT */
4222 case SHN_MIPS_TEXT:
4223 asym->section = mips_elf_text_section_ptr;
4224 break;
4225
4226 case SHN_MIPS_DATA:
4227 asym->section = mips_elf_data_section_ptr;
4228 break;
4229#endif
4230 }
4231}
4232\f
4233/* Work over a section just before writing it out. This routine is
4234 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4235 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4236 a better way. */
4237
b34976b6 4238bfd_boolean
b49e97c9
TS
4239_bfd_mips_elf_section_processing (abfd, hdr)
4240 bfd *abfd;
4241 Elf_Internal_Shdr *hdr;
4242{
4243 if (hdr->sh_type == SHT_MIPS_REGINFO
4244 && hdr->sh_size > 0)
4245 {
4246 bfd_byte buf[4];
4247
4248 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4249 BFD_ASSERT (hdr->contents == NULL);
4250
4251 if (bfd_seek (abfd,
4252 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4253 SEEK_SET) != 0)
b34976b6 4254 return FALSE;
b49e97c9
TS
4255 H_PUT_32 (abfd, elf_gp (abfd), buf);
4256 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
b34976b6 4257 return FALSE;
b49e97c9
TS
4258 }
4259
4260 if (hdr->sh_type == SHT_MIPS_OPTIONS
4261 && hdr->bfd_section != NULL
f0abc2a1
AM
4262 && mips_elf_section_data (hdr->bfd_section) != NULL
4263 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4264 {
4265 bfd_byte *contents, *l, *lend;
4266
f0abc2a1
AM
4267 /* We stored the section contents in the tdata field in the
4268 set_section_contents routine. We save the section contents
4269 so that we don't have to read them again.
b49e97c9
TS
4270 At this point we know that elf_gp is set, so we can look
4271 through the section contents to see if there is an
4272 ODK_REGINFO structure. */
4273
f0abc2a1 4274 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4275 l = contents;
4276 lend = contents + hdr->sh_size;
4277 while (l + sizeof (Elf_External_Options) <= lend)
4278 {
4279 Elf_Internal_Options intopt;
4280
4281 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4282 &intopt);
4283 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4284 {
4285 bfd_byte buf[8];
4286
4287 if (bfd_seek (abfd,
4288 (hdr->sh_offset
4289 + (l - contents)
4290 + sizeof (Elf_External_Options)
4291 + (sizeof (Elf64_External_RegInfo) - 8)),
4292 SEEK_SET) != 0)
b34976b6 4293 return FALSE;
b49e97c9
TS
4294 H_PUT_64 (abfd, elf_gp (abfd), buf);
4295 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
b34976b6 4296 return FALSE;
b49e97c9
TS
4297 }
4298 else if (intopt.kind == ODK_REGINFO)
4299 {
4300 bfd_byte buf[4];
4301
4302 if (bfd_seek (abfd,
4303 (hdr->sh_offset
4304 + (l - contents)
4305 + sizeof (Elf_External_Options)
4306 + (sizeof (Elf32_External_RegInfo) - 4)),
4307 SEEK_SET) != 0)
b34976b6 4308 return FALSE;
b49e97c9
TS
4309 H_PUT_32 (abfd, elf_gp (abfd), buf);
4310 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
b34976b6 4311 return FALSE;
b49e97c9
TS
4312 }
4313 l += intopt.size;
4314 }
4315 }
4316
4317 if (hdr->bfd_section != NULL)
4318 {
4319 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4320
4321 if (strcmp (name, ".sdata") == 0
4322 || strcmp (name, ".lit8") == 0
4323 || strcmp (name, ".lit4") == 0)
4324 {
4325 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4326 hdr->sh_type = SHT_PROGBITS;
4327 }
4328 else if (strcmp (name, ".sbss") == 0)
4329 {
4330 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4331 hdr->sh_type = SHT_NOBITS;
4332 }
4333 else if (strcmp (name, ".srdata") == 0)
4334 {
4335 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4336 hdr->sh_type = SHT_PROGBITS;
4337 }
4338 else if (strcmp (name, ".compact_rel") == 0)
4339 {
4340 hdr->sh_flags = 0;
4341 hdr->sh_type = SHT_PROGBITS;
4342 }
4343 else if (strcmp (name, ".rtproc") == 0)
4344 {
4345 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4346 {
4347 unsigned int adjust;
4348
4349 adjust = hdr->sh_size % hdr->sh_addralign;
4350 if (adjust != 0)
4351 hdr->sh_size += hdr->sh_addralign - adjust;
4352 }
4353 }
4354 }
4355
b34976b6 4356 return TRUE;
b49e97c9
TS
4357}
4358
4359/* Handle a MIPS specific section when reading an object file. This
4360 is called when elfcode.h finds a section with an unknown type.
4361 This routine supports both the 32-bit and 64-bit ELF ABI.
4362
4363 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4364 how to. */
4365
b34976b6 4366bfd_boolean
b49e97c9
TS
4367_bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4368 bfd *abfd;
4369 Elf_Internal_Shdr *hdr;
90937f86 4370 const char *name;
b49e97c9
TS
4371{
4372 flagword flags = 0;
4373
4374 /* There ought to be a place to keep ELF backend specific flags, but
4375 at the moment there isn't one. We just keep track of the
4376 sections by their name, instead. Fortunately, the ABI gives
4377 suggested names for all the MIPS specific sections, so we will
4378 probably get away with this. */
4379 switch (hdr->sh_type)
4380 {
4381 case SHT_MIPS_LIBLIST:
4382 if (strcmp (name, ".liblist") != 0)
b34976b6 4383 return FALSE;
b49e97c9
TS
4384 break;
4385 case SHT_MIPS_MSYM:
4386 if (strcmp (name, ".msym") != 0)
b34976b6 4387 return FALSE;
b49e97c9
TS
4388 break;
4389 case SHT_MIPS_CONFLICT:
4390 if (strcmp (name, ".conflict") != 0)
b34976b6 4391 return FALSE;
b49e97c9
TS
4392 break;
4393 case SHT_MIPS_GPTAB:
4394 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 4395 return FALSE;
b49e97c9
TS
4396 break;
4397 case SHT_MIPS_UCODE:
4398 if (strcmp (name, ".ucode") != 0)
b34976b6 4399 return FALSE;
b49e97c9
TS
4400 break;
4401 case SHT_MIPS_DEBUG:
4402 if (strcmp (name, ".mdebug") != 0)
b34976b6 4403 return FALSE;
b49e97c9
TS
4404 flags = SEC_DEBUGGING;
4405 break;
4406 case SHT_MIPS_REGINFO:
4407 if (strcmp (name, ".reginfo") != 0
4408 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 4409 return FALSE;
b49e97c9
TS
4410 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4411 break;
4412 case SHT_MIPS_IFACE:
4413 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 4414 return FALSE;
b49e97c9
TS
4415 break;
4416 case SHT_MIPS_CONTENT:
4417 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 4418 return FALSE;
b49e97c9
TS
4419 break;
4420 case SHT_MIPS_OPTIONS:
4421 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
b34976b6 4422 return FALSE;
b49e97c9
TS
4423 break;
4424 case SHT_MIPS_DWARF:
4425 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 4426 return FALSE;
b49e97c9
TS
4427 break;
4428 case SHT_MIPS_SYMBOL_LIB:
4429 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 4430 return FALSE;
b49e97c9
TS
4431 break;
4432 case SHT_MIPS_EVENTS:
4433 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4434 && strncmp (name, ".MIPS.post_rel",
4435 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 4436 return FALSE;
b49e97c9
TS
4437 break;
4438 default:
b34976b6 4439 return FALSE;
b49e97c9
TS
4440 }
4441
4442 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
b34976b6 4443 return FALSE;
b49e97c9
TS
4444
4445 if (flags)
4446 {
4447 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4448 (bfd_get_section_flags (abfd,
4449 hdr->bfd_section)
4450 | flags)))
b34976b6 4451 return FALSE;
b49e97c9
TS
4452 }
4453
4454 /* FIXME: We should record sh_info for a .gptab section. */
4455
4456 /* For a .reginfo section, set the gp value in the tdata information
4457 from the contents of this section. We need the gp value while
4458 processing relocs, so we just get it now. The .reginfo section
4459 is not used in the 64-bit MIPS ELF ABI. */
4460 if (hdr->sh_type == SHT_MIPS_REGINFO)
4461 {
4462 Elf32_External_RegInfo ext;
4463 Elf32_RegInfo s;
4464
4465 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4466 (file_ptr) 0,
4467 (bfd_size_type) sizeof ext))
b34976b6 4468 return FALSE;
b49e97c9
TS
4469 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4470 elf_gp (abfd) = s.ri_gp_value;
4471 }
4472
4473 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4474 set the gp value based on what we find. We may see both
4475 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4476 they should agree. */
4477 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4478 {
4479 bfd_byte *contents, *l, *lend;
4480
4481 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4482 if (contents == NULL)
b34976b6 4483 return FALSE;
b49e97c9
TS
4484 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4485 (file_ptr) 0, hdr->sh_size))
4486 {
4487 free (contents);
b34976b6 4488 return FALSE;
b49e97c9
TS
4489 }
4490 l = contents;
4491 lend = contents + hdr->sh_size;
4492 while (l + sizeof (Elf_External_Options) <= lend)
4493 {
4494 Elf_Internal_Options intopt;
4495
4496 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4497 &intopt);
4498 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4499 {
4500 Elf64_Internal_RegInfo intreg;
4501
4502 bfd_mips_elf64_swap_reginfo_in
4503 (abfd,
4504 ((Elf64_External_RegInfo *)
4505 (l + sizeof (Elf_External_Options))),
4506 &intreg);
4507 elf_gp (abfd) = intreg.ri_gp_value;
4508 }
4509 else if (intopt.kind == ODK_REGINFO)
4510 {
4511 Elf32_RegInfo intreg;
4512
4513 bfd_mips_elf32_swap_reginfo_in
4514 (abfd,
4515 ((Elf32_External_RegInfo *)
4516 (l + sizeof (Elf_External_Options))),
4517 &intreg);
4518 elf_gp (abfd) = intreg.ri_gp_value;
4519 }
4520 l += intopt.size;
4521 }
4522 free (contents);
4523 }
4524
b34976b6 4525 return TRUE;
b49e97c9
TS
4526}
4527
4528/* Set the correct type for a MIPS ELF section. We do this by the
4529 section name, which is a hack, but ought to work. This routine is
4530 used by both the 32-bit and the 64-bit ABI. */
4531
b34976b6 4532bfd_boolean
b49e97c9
TS
4533_bfd_mips_elf_fake_sections (abfd, hdr, sec)
4534 bfd *abfd;
947216bf 4535 Elf_Internal_Shdr *hdr;
b49e97c9
TS
4536 asection *sec;
4537{
4538 register const char *name;
4539
4540 name = bfd_get_section_name (abfd, sec);
4541
4542 if (strcmp (name, ".liblist") == 0)
4543 {
4544 hdr->sh_type = SHT_MIPS_LIBLIST;
4545 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4546 /* The sh_link field is set in final_write_processing. */
4547 }
4548 else if (strcmp (name, ".conflict") == 0)
4549 hdr->sh_type = SHT_MIPS_CONFLICT;
4550 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4551 {
4552 hdr->sh_type = SHT_MIPS_GPTAB;
4553 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4554 /* The sh_info field is set in final_write_processing. */
4555 }
4556 else if (strcmp (name, ".ucode") == 0)
4557 hdr->sh_type = SHT_MIPS_UCODE;
4558 else if (strcmp (name, ".mdebug") == 0)
4559 {
4560 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 4561 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
4562 entsize of 0. FIXME: Does this matter? */
4563 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4564 hdr->sh_entsize = 0;
4565 else
4566 hdr->sh_entsize = 1;
4567 }
4568 else if (strcmp (name, ".reginfo") == 0)
4569 {
4570 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 4571 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
4572 entsize of 0x18. FIXME: Does this matter? */
4573 if (SGI_COMPAT (abfd))
4574 {
4575 if ((abfd->flags & DYNAMIC) != 0)
4576 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4577 else
4578 hdr->sh_entsize = 1;
4579 }
4580 else
4581 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4582 }
4583 else if (SGI_COMPAT (abfd)
4584 && (strcmp (name, ".hash") == 0
4585 || strcmp (name, ".dynamic") == 0
4586 || strcmp (name, ".dynstr") == 0))
4587 {
4588 if (SGI_COMPAT (abfd))
4589 hdr->sh_entsize = 0;
4590#if 0
8dc1a139 4591 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
4592 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4593#endif
4594 }
4595 else if (strcmp (name, ".got") == 0
4596 || strcmp (name, ".srdata") == 0
4597 || strcmp (name, ".sdata") == 0
4598 || strcmp (name, ".sbss") == 0
4599 || strcmp (name, ".lit4") == 0
4600 || strcmp (name, ".lit8") == 0)
4601 hdr->sh_flags |= SHF_MIPS_GPREL;
4602 else if (strcmp (name, ".MIPS.interfaces") == 0)
4603 {
4604 hdr->sh_type = SHT_MIPS_IFACE;
4605 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4606 }
4607 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4608 {
4609 hdr->sh_type = SHT_MIPS_CONTENT;
4610 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4611 /* The sh_info field is set in final_write_processing. */
4612 }
4613 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4614 {
4615 hdr->sh_type = SHT_MIPS_OPTIONS;
4616 hdr->sh_entsize = 1;
4617 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4618 }
4619 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4620 hdr->sh_type = SHT_MIPS_DWARF;
4621 else if (strcmp (name, ".MIPS.symlib") == 0)
4622 {
4623 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4624 /* The sh_link and sh_info fields are set in
4625 final_write_processing. */
4626 }
4627 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4628 || strncmp (name, ".MIPS.post_rel",
4629 sizeof ".MIPS.post_rel" - 1) == 0)
4630 {
4631 hdr->sh_type = SHT_MIPS_EVENTS;
4632 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4633 /* The sh_link field is set in final_write_processing. */
4634 }
4635 else if (strcmp (name, ".msym") == 0)
4636 {
4637 hdr->sh_type = SHT_MIPS_MSYM;
4638 hdr->sh_flags |= SHF_ALLOC;
4639 hdr->sh_entsize = 8;
4640 }
4641
4642 /* The generic elf_fake_sections will set up REL_HDR using the
4643 default kind of relocations. But, we may actually need both
4644 kinds of relocations, so we set up the second header here.
4645
4646 This is not necessary for the O32 ABI since that only uses Elf32_Rel
4647 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
4648 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
4649 of the resulting empty .rela.<section> sections starts with
4650 sh_offset == object size, and ld doesn't allow that. While the check
4651 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
4652 avoided by not emitting those useless sections in the first place. */
14366460 4653 if (! SGI_COMPAT (abfd) && ! NEWABI_P(abfd)
4a14403c 4654 && (sec->flags & SEC_RELOC) != 0)
b49e97c9
TS
4655 {
4656 struct bfd_elf_section_data *esd;
4657 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
4658
4659 esd = elf_section_data (sec);
4660 BFD_ASSERT (esd->rel_hdr2 == NULL);
4661 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
4662 if (!esd->rel_hdr2)
b34976b6 4663 return FALSE;
68bfbfcc 4664 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec, !sec->use_rela_p);
b49e97c9
TS
4665 }
4666
b34976b6 4667 return TRUE;
b49e97c9
TS
4668}
4669
4670/* Given a BFD section, try to locate the corresponding ELF section
4671 index. This is used by both the 32-bit and the 64-bit ABI.
4672 Actually, it's not clear to me that the 64-bit ABI supports these,
4673 but for non-PIC objects we will certainly want support for at least
4674 the .scommon section. */
4675
b34976b6 4676bfd_boolean
b49e97c9
TS
4677_bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4678 bfd *abfd ATTRIBUTE_UNUSED;
4679 asection *sec;
4680 int *retval;
4681{
4682 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4683 {
4684 *retval = SHN_MIPS_SCOMMON;
b34976b6 4685 return TRUE;
b49e97c9
TS
4686 }
4687 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4688 {
4689 *retval = SHN_MIPS_ACOMMON;
b34976b6 4690 return TRUE;
b49e97c9 4691 }
b34976b6 4692 return FALSE;
b49e97c9
TS
4693}
4694\f
4695/* Hook called by the linker routine which adds symbols from an object
4696 file. We must handle the special MIPS section numbers here. */
4697
b34976b6 4698bfd_boolean
b49e97c9
TS
4699_bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4700 bfd *abfd;
4701 struct bfd_link_info *info;
4702 const Elf_Internal_Sym *sym;
4703 const char **namep;
4704 flagword *flagsp ATTRIBUTE_UNUSED;
4705 asection **secp;
4706 bfd_vma *valp;
4707{
4708 if (SGI_COMPAT (abfd)
4709 && (abfd->flags & DYNAMIC) != 0
4710 && strcmp (*namep, "_rld_new_interface") == 0)
4711 {
8dc1a139 4712 /* Skip IRIX5 rld entry name. */
b49e97c9 4713 *namep = NULL;
b34976b6 4714 return TRUE;
b49e97c9
TS
4715 }
4716
4717 switch (sym->st_shndx)
4718 {
4719 case SHN_COMMON:
4720 /* Common symbols less than the GP size are automatically
4721 treated as SHN_MIPS_SCOMMON symbols. */
4722 if (sym->st_size > elf_gp_size (abfd)
4723 || IRIX_COMPAT (abfd) == ict_irix6)
4724 break;
4725 /* Fall through. */
4726 case SHN_MIPS_SCOMMON:
4727 *secp = bfd_make_section_old_way (abfd, ".scommon");
4728 (*secp)->flags |= SEC_IS_COMMON;
4729 *valp = sym->st_size;
4730 break;
4731
4732 case SHN_MIPS_TEXT:
4733 /* This section is used in a shared object. */
4734 if (elf_tdata (abfd)->elf_text_section == NULL)
4735 {
4736 asymbol *elf_text_symbol;
4737 asection *elf_text_section;
4738 bfd_size_type amt = sizeof (asection);
4739
4740 elf_text_section = bfd_zalloc (abfd, amt);
4741 if (elf_text_section == NULL)
b34976b6 4742 return FALSE;
b49e97c9
TS
4743
4744 amt = sizeof (asymbol);
4745 elf_text_symbol = bfd_zalloc (abfd, amt);
4746 if (elf_text_symbol == NULL)
b34976b6 4747 return FALSE;
b49e97c9
TS
4748
4749 /* Initialize the section. */
4750
4751 elf_tdata (abfd)->elf_text_section = elf_text_section;
4752 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4753
4754 elf_text_section->symbol = elf_text_symbol;
4755 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4756
4757 elf_text_section->name = ".text";
4758 elf_text_section->flags = SEC_NO_FLAGS;
4759 elf_text_section->output_section = NULL;
4760 elf_text_section->owner = abfd;
4761 elf_text_symbol->name = ".text";
4762 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4763 elf_text_symbol->section = elf_text_section;
4764 }
4765 /* This code used to do *secp = bfd_und_section_ptr if
4766 info->shared. I don't know why, and that doesn't make sense,
4767 so I took it out. */
4768 *secp = elf_tdata (abfd)->elf_text_section;
4769 break;
4770
4771 case SHN_MIPS_ACOMMON:
4772 /* Fall through. XXX Can we treat this as allocated data? */
4773 case SHN_MIPS_DATA:
4774 /* This section is used in a shared object. */
4775 if (elf_tdata (abfd)->elf_data_section == NULL)
4776 {
4777 asymbol *elf_data_symbol;
4778 asection *elf_data_section;
4779 bfd_size_type amt = sizeof (asection);
4780
4781 elf_data_section = bfd_zalloc (abfd, amt);
4782 if (elf_data_section == NULL)
b34976b6 4783 return FALSE;
b49e97c9
TS
4784
4785 amt = sizeof (asymbol);
4786 elf_data_symbol = bfd_zalloc (abfd, amt);
4787 if (elf_data_symbol == NULL)
b34976b6 4788 return FALSE;
b49e97c9
TS
4789
4790 /* Initialize the section. */
4791
4792 elf_tdata (abfd)->elf_data_section = elf_data_section;
4793 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4794
4795 elf_data_section->symbol = elf_data_symbol;
4796 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4797
4798 elf_data_section->name = ".data";
4799 elf_data_section->flags = SEC_NO_FLAGS;
4800 elf_data_section->output_section = NULL;
4801 elf_data_section->owner = abfd;
4802 elf_data_symbol->name = ".data";
4803 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4804 elf_data_symbol->section = elf_data_section;
4805 }
4806 /* This code used to do *secp = bfd_und_section_ptr if
4807 info->shared. I don't know why, and that doesn't make sense,
4808 so I took it out. */
4809 *secp = elf_tdata (abfd)->elf_data_section;
4810 break;
4811
4812 case SHN_MIPS_SUNDEFINED:
4813 *secp = bfd_und_section_ptr;
4814 break;
4815 }
4816
4817 if (SGI_COMPAT (abfd)
4818 && ! info->shared
4819 && info->hash->creator == abfd->xvec
4820 && strcmp (*namep, "__rld_obj_head") == 0)
4821 {
4822 struct elf_link_hash_entry *h;
14a793b2 4823 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4824
4825 /* Mark __rld_obj_head as dynamic. */
14a793b2 4826 bh = NULL;
b49e97c9
TS
4827 if (! (_bfd_generic_link_add_one_symbol
4828 (info, abfd, *namep, BSF_GLOBAL, *secp,
b34976b6 4829 (bfd_vma) *valp, (const char *) NULL, FALSE,
14a793b2 4830 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4831 return FALSE;
14a793b2
AM
4832
4833 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4834 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4835 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4836 h->type = STT_OBJECT;
4837
4838 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4839 return FALSE;
b49e97c9 4840
b34976b6 4841 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
4842 }
4843
4844 /* If this is a mips16 text symbol, add 1 to the value to make it
4845 odd. This will cause something like .word SYM to come up with
4846 the right value when it is loaded into the PC. */
4847 if (sym->st_other == STO_MIPS16)
4848 ++*valp;
4849
b34976b6 4850 return TRUE;
b49e97c9
TS
4851}
4852
4853/* This hook function is called before the linker writes out a global
4854 symbol. We mark symbols as small common if appropriate. This is
4855 also where we undo the increment of the value for a mips16 symbol. */
4856
b34976b6 4857bfd_boolean
b49e97c9
TS
4858_bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4859 bfd *abfd ATTRIBUTE_UNUSED;
4860 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4861 const char *name ATTRIBUTE_UNUSED;
4862 Elf_Internal_Sym *sym;
4863 asection *input_sec;
4864{
4865 /* If we see a common symbol, which implies a relocatable link, then
4866 if a symbol was small common in an input file, mark it as small
4867 common in the output file. */
4868 if (sym->st_shndx == SHN_COMMON
4869 && strcmp (input_sec->name, ".scommon") == 0)
4870 sym->st_shndx = SHN_MIPS_SCOMMON;
4871
4872 if (sym->st_other == STO_MIPS16
4873 && (sym->st_value & 1) != 0)
4874 --sym->st_value;
4875
b34976b6 4876 return TRUE;
b49e97c9
TS
4877}
4878\f
4879/* Functions for the dynamic linker. */
4880
4881/* Create dynamic sections when linking against a dynamic object. */
4882
b34976b6 4883bfd_boolean
b49e97c9
TS
4884_bfd_mips_elf_create_dynamic_sections (abfd, info)
4885 bfd *abfd;
4886 struct bfd_link_info *info;
4887{
4888 struct elf_link_hash_entry *h;
14a793b2 4889 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4890 flagword flags;
4891 register asection *s;
4892 const char * const *namep;
4893
4894 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4895 | SEC_LINKER_CREATED | SEC_READONLY);
4896
4897 /* Mips ABI requests the .dynamic section to be read only. */
4898 s = bfd_get_section_by_name (abfd, ".dynamic");
4899 if (s != NULL)
4900 {
4901 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 4902 return FALSE;
b49e97c9
TS
4903 }
4904
4905 /* We need to create .got section. */
f4416af6
AO
4906 if (! mips_elf_create_got_section (abfd, info, FALSE))
4907 return FALSE;
4908
4909 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 4910 return FALSE;
b49e97c9
TS
4911
4912 /* Create the .msym section on IRIX6. It is used by the dynamic
4913 linker to speed up dynamic relocations, and to avoid computing
4914 the ELF hash for symbols. */
4915 if (IRIX_COMPAT (abfd) == ict_irix6
4916 && !mips_elf_create_msym_section (abfd))
b34976b6 4917 return FALSE;
b49e97c9
TS
4918
4919 /* Create .stub section. */
4920 if (bfd_get_section_by_name (abfd,
4921 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4922 {
4923 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4924 if (s == NULL
4925 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4926 || ! bfd_set_section_alignment (abfd, s,
4927 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4928 return FALSE;
b49e97c9
TS
4929 }
4930
4931 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4932 && !info->shared
4933 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4934 {
4935 s = bfd_make_section (abfd, ".rld_map");
4936 if (s == NULL
4937 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4938 || ! bfd_set_section_alignment (abfd, s,
4939 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4940 return FALSE;
b49e97c9
TS
4941 }
4942
4943 /* On IRIX5, we adjust add some additional symbols and change the
4944 alignments of several sections. There is no ABI documentation
4945 indicating that this is necessary on IRIX6, nor any evidence that
4946 the linker takes such action. */
4947 if (IRIX_COMPAT (abfd) == ict_irix5)
4948 {
4949 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4950 {
14a793b2 4951 bh = NULL;
b49e97c9
TS
4952 if (! (_bfd_generic_link_add_one_symbol
4953 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
b34976b6 4954 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 4955 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4956 return FALSE;
14a793b2
AM
4957
4958 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4959 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4960 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4961 h->type = STT_SECTION;
4962
4963 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4964 return FALSE;
b49e97c9
TS
4965 }
4966
4967 /* We need to create a .compact_rel section. */
4968 if (SGI_COMPAT (abfd))
4969 {
4970 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 4971 return FALSE;
b49e97c9
TS
4972 }
4973
44c410de 4974 /* Change alignments of some sections. */
b49e97c9
TS
4975 s = bfd_get_section_by_name (abfd, ".hash");
4976 if (s != NULL)
d80dcc6a 4977 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4978 s = bfd_get_section_by_name (abfd, ".dynsym");
4979 if (s != NULL)
d80dcc6a 4980 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4981 s = bfd_get_section_by_name (abfd, ".dynstr");
4982 if (s != NULL)
d80dcc6a 4983 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4984 s = bfd_get_section_by_name (abfd, ".reginfo");
4985 if (s != NULL)
d80dcc6a 4986 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4987 s = bfd_get_section_by_name (abfd, ".dynamic");
4988 if (s != NULL)
d80dcc6a 4989 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4990 }
4991
4992 if (!info->shared)
4993 {
14a793b2
AM
4994 const char *name;
4995
4996 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4997 bh = NULL;
4998 if (!(_bfd_generic_link_add_one_symbol
4999 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
b34976b6 5000 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 5001 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5002 return FALSE;
14a793b2
AM
5003
5004 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
5005 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5006 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5007 h->type = STT_SECTION;
5008
5009 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 5010 return FALSE;
b49e97c9
TS
5011
5012 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5013 {
5014 /* __rld_map is a four byte word located in the .data section
5015 and is filled in by the rtld to contain a pointer to
5016 the _r_debug structure. Its symbol value will be set in
5017 _bfd_mips_elf_finish_dynamic_symbol. */
5018 s = bfd_get_section_by_name (abfd, ".rld_map");
5019 BFD_ASSERT (s != NULL);
5020
14a793b2
AM
5021 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5022 bh = NULL;
5023 if (!(_bfd_generic_link_add_one_symbol
5024 (info, abfd, name, BSF_GLOBAL, s,
b34976b6 5025 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 5026 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5027 return FALSE;
14a793b2
AM
5028
5029 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
5030 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5031 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5032 h->type = STT_OBJECT;
5033
5034 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 5035 return FALSE;
b49e97c9
TS
5036 }
5037 }
5038
b34976b6 5039 return TRUE;
b49e97c9
TS
5040}
5041\f
5042/* Look through the relocs for a section during the first phase, and
5043 allocate space in the global offset table. */
5044
b34976b6 5045bfd_boolean
b49e97c9
TS
5046_bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
5047 bfd *abfd;
5048 struct bfd_link_info *info;
5049 asection *sec;
5050 const Elf_Internal_Rela *relocs;
5051{
5052 const char *name;
5053 bfd *dynobj;
5054 Elf_Internal_Shdr *symtab_hdr;
5055 struct elf_link_hash_entry **sym_hashes;
5056 struct mips_got_info *g;
5057 size_t extsymoff;
5058 const Elf_Internal_Rela *rel;
5059 const Elf_Internal_Rela *rel_end;
5060 asection *sgot;
5061 asection *sreloc;
5062 struct elf_backend_data *bed;
5063
1049f94e 5064 if (info->relocatable)
b34976b6 5065 return TRUE;
b49e97c9
TS
5066
5067 dynobj = elf_hash_table (info)->dynobj;
5068 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5069 sym_hashes = elf_sym_hashes (abfd);
5070 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5071
5072 /* Check for the mips16 stub sections. */
5073
5074 name = bfd_get_section_name (abfd, sec);
5075 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5076 {
5077 unsigned long r_symndx;
5078
5079 /* Look at the relocation information to figure out which symbol
5080 this is for. */
5081
5082 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5083
5084 if (r_symndx < extsymoff
5085 || sym_hashes[r_symndx - extsymoff] == NULL)
5086 {
5087 asection *o;
5088
5089 /* This stub is for a local symbol. This stub will only be
5090 needed if there is some relocation in this BFD, other
5091 than a 16 bit function call, which refers to this symbol. */
5092 for (o = abfd->sections; o != NULL; o = o->next)
5093 {
5094 Elf_Internal_Rela *sec_relocs;
5095 const Elf_Internal_Rela *r, *rend;
5096
5097 /* We can ignore stub sections when looking for relocs. */
5098 if ((o->flags & SEC_RELOC) == 0
5099 || o->reloc_count == 0
5100 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5101 sizeof FN_STUB - 1) == 0
5102 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5103 sizeof CALL_STUB - 1) == 0
5104 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5105 sizeof CALL_FP_STUB - 1) == 0)
5106 continue;
5107
45d6a902
AM
5108 sec_relocs
5109 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
5110 (Elf_Internal_Rela *) NULL,
5111 info->keep_memory);
b49e97c9 5112 if (sec_relocs == NULL)
b34976b6 5113 return FALSE;
b49e97c9
TS
5114
5115 rend = sec_relocs + o->reloc_count;
5116 for (r = sec_relocs; r < rend; r++)
5117 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5118 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5119 break;
5120
6cdc0ccc 5121 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5122 free (sec_relocs);
5123
5124 if (r < rend)
5125 break;
5126 }
5127
5128 if (o == NULL)
5129 {
5130 /* There is no non-call reloc for this stub, so we do
5131 not need it. Since this function is called before
5132 the linker maps input sections to output sections, we
5133 can easily discard it by setting the SEC_EXCLUDE
5134 flag. */
5135 sec->flags |= SEC_EXCLUDE;
b34976b6 5136 return TRUE;
b49e97c9
TS
5137 }
5138
5139 /* Record this stub in an array of local symbol stubs for
5140 this BFD. */
5141 if (elf_tdata (abfd)->local_stubs == NULL)
5142 {
5143 unsigned long symcount;
5144 asection **n;
5145 bfd_size_type amt;
5146
5147 if (elf_bad_symtab (abfd))
5148 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5149 else
5150 symcount = symtab_hdr->sh_info;
5151 amt = symcount * sizeof (asection *);
5152 n = (asection **) bfd_zalloc (abfd, amt);
5153 if (n == NULL)
b34976b6 5154 return FALSE;
b49e97c9
TS
5155 elf_tdata (abfd)->local_stubs = n;
5156 }
5157
5158 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5159
5160 /* We don't need to set mips16_stubs_seen in this case.
5161 That flag is used to see whether we need to look through
5162 the global symbol table for stubs. We don't need to set
5163 it here, because we just have a local stub. */
5164 }
5165 else
5166 {
5167 struct mips_elf_link_hash_entry *h;
5168
5169 h = ((struct mips_elf_link_hash_entry *)
5170 sym_hashes[r_symndx - extsymoff]);
5171
5172 /* H is the symbol this stub is for. */
5173
5174 h->fn_stub = sec;
b34976b6 5175 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5176 }
5177 }
5178 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5179 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5180 {
5181 unsigned long r_symndx;
5182 struct mips_elf_link_hash_entry *h;
5183 asection **loc;
5184
5185 /* Look at the relocation information to figure out which symbol
5186 this is for. */
5187
5188 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5189
5190 if (r_symndx < extsymoff
5191 || sym_hashes[r_symndx - extsymoff] == NULL)
5192 {
5193 /* This stub was actually built for a static symbol defined
5194 in the same file. We assume that all static symbols in
5195 mips16 code are themselves mips16, so we can simply
5196 discard this stub. Since this function is called before
5197 the linker maps input sections to output sections, we can
5198 easily discard it by setting the SEC_EXCLUDE flag. */
5199 sec->flags |= SEC_EXCLUDE;
b34976b6 5200 return TRUE;
b49e97c9
TS
5201 }
5202
5203 h = ((struct mips_elf_link_hash_entry *)
5204 sym_hashes[r_symndx - extsymoff]);
5205
5206 /* H is the symbol this stub is for. */
5207
5208 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5209 loc = &h->call_fp_stub;
5210 else
5211 loc = &h->call_stub;
5212
5213 /* If we already have an appropriate stub for this function, we
5214 don't need another one, so we can discard this one. Since
5215 this function is called before the linker maps input sections
5216 to output sections, we can easily discard it by setting the
5217 SEC_EXCLUDE flag. We can also discard this section if we
5218 happen to already know that this is a mips16 function; it is
5219 not necessary to check this here, as it is checked later, but
5220 it is slightly faster to check now. */
5221 if (*loc != NULL || h->root.other == STO_MIPS16)
5222 {
5223 sec->flags |= SEC_EXCLUDE;
b34976b6 5224 return TRUE;
b49e97c9
TS
5225 }
5226
5227 *loc = sec;
b34976b6 5228 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5229 }
5230
5231 if (dynobj == NULL)
5232 {
5233 sgot = NULL;
5234 g = NULL;
5235 }
5236 else
5237 {
f4416af6 5238 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5239 if (sgot == NULL)
5240 g = NULL;
5241 else
5242 {
f0abc2a1
AM
5243 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5244 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5245 BFD_ASSERT (g != NULL);
5246 }
5247 }
5248
5249 sreloc = NULL;
5250 bed = get_elf_backend_data (abfd);
5251 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5252 for (rel = relocs; rel < rel_end; ++rel)
5253 {
5254 unsigned long r_symndx;
5255 unsigned int r_type;
5256 struct elf_link_hash_entry *h;
5257
5258 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5259 r_type = ELF_R_TYPE (abfd, rel->r_info);
5260
5261 if (r_symndx < extsymoff)
5262 h = NULL;
5263 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5264 {
5265 (*_bfd_error_handler)
5266 (_("%s: Malformed reloc detected for section %s"),
5267 bfd_archive_filename (abfd), name);
5268 bfd_set_error (bfd_error_bad_value);
b34976b6 5269 return FALSE;
b49e97c9
TS
5270 }
5271 else
5272 {
5273 h = sym_hashes[r_symndx - extsymoff];
5274
5275 /* This may be an indirect symbol created because of a version. */
5276 if (h != NULL)
5277 {
5278 while (h->root.type == bfd_link_hash_indirect)
5279 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5280 }
5281 }
5282
5283 /* Some relocs require a global offset table. */
5284 if (dynobj == NULL || sgot == NULL)
5285 {
5286 switch (r_type)
5287 {
5288 case R_MIPS_GOT16:
5289 case R_MIPS_CALL16:
5290 case R_MIPS_CALL_HI16:
5291 case R_MIPS_CALL_LO16:
5292 case R_MIPS_GOT_HI16:
5293 case R_MIPS_GOT_LO16:
5294 case R_MIPS_GOT_PAGE:
5295 case R_MIPS_GOT_OFST:
5296 case R_MIPS_GOT_DISP:
5297 if (dynobj == NULL)
5298 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5299 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5300 return FALSE;
b49e97c9
TS
5301 g = mips_elf_got_info (dynobj, &sgot);
5302 break;
5303
5304 case R_MIPS_32:
5305 case R_MIPS_REL32:
5306 case R_MIPS_64:
5307 if (dynobj == NULL
5308 && (info->shared || h != NULL)
5309 && (sec->flags & SEC_ALLOC) != 0)
5310 elf_hash_table (info)->dynobj = dynobj = abfd;
5311 break;
5312
5313 default:
5314 break;
5315 }
5316 }
5317
5318 if (!h && (r_type == R_MIPS_CALL_LO16
5319 || r_type == R_MIPS_GOT_LO16
5320 || r_type == R_MIPS_GOT_DISP))
5321 {
5322 /* We may need a local GOT entry for this relocation. We
5323 don't count R_MIPS_GOT_PAGE because we can estimate the
5324 maximum number of pages needed by looking at the size of
5325 the segment. Similar comments apply to R_MIPS_GOT16 and
5326 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5327 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 5328 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6
AO
5329 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5330 rel->r_addend, g))
5331 return FALSE;
b49e97c9
TS
5332 }
5333
5334 switch (r_type)
5335 {
5336 case R_MIPS_CALL16:
5337 if (h == NULL)
5338 {
5339 (*_bfd_error_handler)
5340 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5341 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5342 bfd_set_error (bfd_error_bad_value);
b34976b6 5343 return FALSE;
b49e97c9
TS
5344 }
5345 /* Fall through. */
5346
5347 case R_MIPS_CALL_HI16:
5348 case R_MIPS_CALL_LO16:
5349 if (h != NULL)
5350 {
5351 /* This symbol requires a global offset table entry. */
f4416af6 5352 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5353 return FALSE;
b49e97c9
TS
5354
5355 /* We need a stub, not a plt entry for the undefined
5356 function. But we record it as if it needs plt. See
5357 elf_adjust_dynamic_symbol in elflink.h. */
5358 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5359 h->type = STT_FUNC;
5360 }
5361 break;
5362
0fdc1bf1
AO
5363 case R_MIPS_GOT_PAGE:
5364 /* If this is a global, overridable symbol, GOT_PAGE will
5365 decay to GOT_DISP, so we'll need a GOT entry for it. */
5366 if (h == NULL)
5367 break;
5368 else
5369 {
5370 struct mips_elf_link_hash_entry *hmips =
5371 (struct mips_elf_link_hash_entry *) h;
143d77c5 5372
0fdc1bf1
AO
5373 while (hmips->root.root.type == bfd_link_hash_indirect
5374 || hmips->root.root.type == bfd_link_hash_warning)
5375 hmips = (struct mips_elf_link_hash_entry *)
5376 hmips->root.root.u.i.link;
143d77c5 5377
0fdc1bf1
AO
5378 if ((hmips->root.root.type == bfd_link_hash_defined
5379 || hmips->root.root.type == bfd_link_hash_defweak)
5380 && hmips->root.root.u.def.section
5381 && ! (info->shared && ! info->symbolic
5382 && ! (hmips->root.elf_link_hash_flags
5383 & ELF_LINK_FORCED_LOCAL))
5384 /* If we've encountered any other relocation
5385 referencing the symbol, we'll have marked it as
5386 dynamic, and, even though we might be able to get
5387 rid of the GOT entry should we know for sure all
5388 previous relocations were GOT_PAGE ones, at this
5389 point we can't tell, so just keep using the
5390 symbol as dynamic. This is very important in the
5391 multi-got case, since we don't decide whether to
5392 decay GOT_PAGE to GOT_DISP on a per-GOT basis: if
5393 the symbol is dynamic, we'll need a GOT entry for
5394 every GOT in which the symbol is referenced with
5395 a GOT_PAGE relocation. */
5396 && hmips->root.dynindx == -1)
5397 break;
5398 }
5399 /* Fall through. */
5400
b49e97c9
TS
5401 case R_MIPS_GOT16:
5402 case R_MIPS_GOT_HI16:
5403 case R_MIPS_GOT_LO16:
5404 case R_MIPS_GOT_DISP:
5405 /* This symbol requires a global offset table entry. */
f4416af6 5406 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5407 return FALSE;
b49e97c9
TS
5408 break;
5409
5410 case R_MIPS_32:
5411 case R_MIPS_REL32:
5412 case R_MIPS_64:
5413 if ((info->shared || h != NULL)
5414 && (sec->flags & SEC_ALLOC) != 0)
5415 {
5416 if (sreloc == NULL)
5417 {
f4416af6 5418 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 5419 if (sreloc == NULL)
f4416af6 5420 return FALSE;
b49e97c9
TS
5421 }
5422#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5423 if (info->shared)
5424 {
5425 /* When creating a shared object, we must copy these
5426 reloc types into the output file as R_MIPS_REL32
5427 relocs. We make room for this reloc in the
5428 .rel.dyn reloc section. */
5429 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5430 if ((sec->flags & MIPS_READONLY_SECTION)
5431 == MIPS_READONLY_SECTION)
5432 /* We tell the dynamic linker that there are
5433 relocations against the text segment. */
5434 info->flags |= DF_TEXTREL;
5435 }
5436 else
5437 {
5438 struct mips_elf_link_hash_entry *hmips;
5439
5440 /* We only need to copy this reloc if the symbol is
5441 defined in a dynamic object. */
5442 hmips = (struct mips_elf_link_hash_entry *) h;
5443 ++hmips->possibly_dynamic_relocs;
5444 if ((sec->flags & MIPS_READONLY_SECTION)
5445 == MIPS_READONLY_SECTION)
5446 /* We need it to tell the dynamic linker if there
5447 are relocations against the text segment. */
b34976b6 5448 hmips->readonly_reloc = TRUE;
b49e97c9
TS
5449 }
5450
5451 /* Even though we don't directly need a GOT entry for
5452 this symbol, a symbol must have a dynamic symbol
5453 table index greater that DT_MIPS_GOTSYM if there are
5454 dynamic relocations against it. */
f4416af6
AO
5455 if (h != NULL)
5456 {
5457 if (dynobj == NULL)
5458 elf_hash_table (info)->dynobj = dynobj = abfd;
5459 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5460 return FALSE;
5461 g = mips_elf_got_info (dynobj, &sgot);
5462 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5463 return FALSE;
5464 }
b49e97c9
TS
5465 }
5466
5467 if (SGI_COMPAT (abfd))
5468 mips_elf_hash_table (info)->compact_rel_size +=
5469 sizeof (Elf32_External_crinfo);
5470 break;
5471
5472 case R_MIPS_26:
5473 case R_MIPS_GPREL16:
5474 case R_MIPS_LITERAL:
5475 case R_MIPS_GPREL32:
5476 if (SGI_COMPAT (abfd))
5477 mips_elf_hash_table (info)->compact_rel_size +=
5478 sizeof (Elf32_External_crinfo);
5479 break;
5480
5481 /* This relocation describes the C++ object vtable hierarchy.
5482 Reconstruct it for later use during GC. */
5483 case R_MIPS_GNU_VTINHERIT:
5484 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 5485 return FALSE;
b49e97c9
TS
5486 break;
5487
5488 /* This relocation describes which C++ vtable entries are actually
5489 used. Record for later use during GC. */
5490 case R_MIPS_GNU_VTENTRY:
5491 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 5492 return FALSE;
b49e97c9
TS
5493 break;
5494
5495 default:
5496 break;
5497 }
5498
5499 /* We must not create a stub for a symbol that has relocations
5500 related to taking the function's address. */
5501 switch (r_type)
5502 {
5503 default:
5504 if (h != NULL)
5505 {
5506 struct mips_elf_link_hash_entry *mh;
5507
5508 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5509 mh->no_fn_stub = TRUE;
b49e97c9
TS
5510 }
5511 break;
5512 case R_MIPS_CALL16:
5513 case R_MIPS_CALL_HI16:
5514 case R_MIPS_CALL_LO16:
5515 break;
5516 }
5517
5518 /* If this reloc is not a 16 bit call, and it has a global
5519 symbol, then we will need the fn_stub if there is one.
5520 References from a stub section do not count. */
5521 if (h != NULL
5522 && r_type != R_MIPS16_26
5523 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5524 sizeof FN_STUB - 1) != 0
5525 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5526 sizeof CALL_STUB - 1) != 0
5527 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5528 sizeof CALL_FP_STUB - 1) != 0)
5529 {
5530 struct mips_elf_link_hash_entry *mh;
5531
5532 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5533 mh->need_fn_stub = TRUE;
b49e97c9
TS
5534 }
5535 }
5536
b34976b6 5537 return TRUE;
b49e97c9
TS
5538}
5539\f
d0647110
AO
5540bfd_boolean
5541_bfd_mips_relax_section (abfd, sec, link_info, again)
5542 bfd *abfd;
5543 asection *sec;
5544 struct bfd_link_info *link_info;
5545 bfd_boolean *again;
5546{
5547 Elf_Internal_Rela *internal_relocs;
5548 Elf_Internal_Rela *irel, *irelend;
5549 Elf_Internal_Shdr *symtab_hdr;
5550 bfd_byte *contents = NULL;
5551 bfd_byte *free_contents = NULL;
5552 size_t extsymoff;
5553 bfd_boolean changed_contents = FALSE;
5554 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5555 Elf_Internal_Sym *isymbuf = NULL;
5556
5557 /* We are not currently changing any sizes, so only one pass. */
5558 *again = FALSE;
5559
1049f94e 5560 if (link_info->relocatable)
d0647110
AO
5561 return TRUE;
5562
45d6a902
AM
5563 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
5564 (Elf_Internal_Rela *) NULL,
5565 link_info->keep_memory);
d0647110
AO
5566 if (internal_relocs == NULL)
5567 return TRUE;
5568
5569 irelend = internal_relocs + sec->reloc_count
5570 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5571 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5572 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5573
5574 for (irel = internal_relocs; irel < irelend; irel++)
5575 {
5576 bfd_vma symval;
5577 bfd_signed_vma sym_offset;
5578 unsigned int r_type;
5579 unsigned long r_symndx;
5580 asection *sym_sec;
5581 unsigned long instruction;
5582
5583 /* Turn jalr into bgezal, and jr into beq, if they're marked
5584 with a JALR relocation, that indicate where they jump to.
5585 This saves some pipeline bubbles. */
5586 r_type = ELF_R_TYPE (abfd, irel->r_info);
5587 if (r_type != R_MIPS_JALR)
5588 continue;
5589
5590 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5591 /* Compute the address of the jump target. */
5592 if (r_symndx >= extsymoff)
5593 {
5594 struct mips_elf_link_hash_entry *h
5595 = ((struct mips_elf_link_hash_entry *)
5596 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5597
5598 while (h->root.root.type == bfd_link_hash_indirect
5599 || h->root.root.type == bfd_link_hash_warning)
5600 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 5601
d0647110
AO
5602 /* If a symbol is undefined, or if it may be overridden,
5603 skip it. */
5604 if (! ((h->root.root.type == bfd_link_hash_defined
5605 || h->root.root.type == bfd_link_hash_defweak)
5606 && h->root.root.u.def.section)
5607 || (link_info->shared && ! link_info->symbolic
5608 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5609 continue;
5610
5611 sym_sec = h->root.root.u.def.section;
5612 if (sym_sec->output_section)
5613 symval = (h->root.root.u.def.value
5614 + sym_sec->output_section->vma
5615 + sym_sec->output_offset);
5616 else
5617 symval = h->root.root.u.def.value;
5618 }
5619 else
5620 {
5621 Elf_Internal_Sym *isym;
5622
5623 /* Read this BFD's symbols if we haven't done so already. */
5624 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5625 {
5626 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5627 if (isymbuf == NULL)
5628 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5629 symtab_hdr->sh_info, 0,
5630 NULL, NULL, NULL);
5631 if (isymbuf == NULL)
5632 goto relax_return;
5633 }
5634
5635 isym = isymbuf + r_symndx;
5636 if (isym->st_shndx == SHN_UNDEF)
5637 continue;
5638 else if (isym->st_shndx == SHN_ABS)
5639 sym_sec = bfd_abs_section_ptr;
5640 else if (isym->st_shndx == SHN_COMMON)
5641 sym_sec = bfd_com_section_ptr;
5642 else
5643 sym_sec
5644 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5645 symval = isym->st_value
5646 + sym_sec->output_section->vma
5647 + sym_sec->output_offset;
5648 }
5649
5650 /* Compute branch offset, from delay slot of the jump to the
5651 branch target. */
5652 sym_offset = (symval + irel->r_addend)
5653 - (sec_start + irel->r_offset + 4);
5654
5655 /* Branch offset must be properly aligned. */
5656 if ((sym_offset & 3) != 0)
5657 continue;
5658
5659 sym_offset >>= 2;
5660
5661 /* Check that it's in range. */
5662 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5663 continue;
143d77c5 5664
d0647110
AO
5665 /* Get the section contents if we haven't done so already. */
5666 if (contents == NULL)
5667 {
5668 /* Get cached copy if it exists. */
5669 if (elf_section_data (sec)->this_hdr.contents != NULL)
5670 contents = elf_section_data (sec)->this_hdr.contents;
5671 else
5672 {
5673 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
5674 if (contents == NULL)
5675 goto relax_return;
5676
5677 free_contents = contents;
5678 if (! bfd_get_section_contents (abfd, sec, contents,
5679 (file_ptr) 0, sec->_raw_size))
5680 goto relax_return;
5681 }
5682 }
5683
5684 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5685
5686 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5687 if ((instruction & 0xfc1fffff) == 0x0000f809)
5688 instruction = 0x04110000;
5689 /* If it was jr <reg>, turn it into b <target>. */
5690 else if ((instruction & 0xfc1fffff) == 0x00000008)
5691 instruction = 0x10000000;
5692 else
5693 continue;
5694
5695 instruction |= (sym_offset & 0xffff);
5696 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5697 changed_contents = TRUE;
5698 }
5699
5700 if (contents != NULL
5701 && elf_section_data (sec)->this_hdr.contents != contents)
5702 {
5703 if (!changed_contents && !link_info->keep_memory)
5704 free (contents);
5705 else
5706 {
5707 /* Cache the section contents for elf_link_input_bfd. */
5708 elf_section_data (sec)->this_hdr.contents = contents;
5709 }
5710 }
5711 return TRUE;
5712
143d77c5 5713 relax_return:
d0647110
AO
5714 if (free_contents != NULL)
5715 free (free_contents);
5716 return FALSE;
5717}
5718\f
b49e97c9
TS
5719/* Adjust a symbol defined by a dynamic object and referenced by a
5720 regular object. The current definition is in some section of the
5721 dynamic object, but we're not including those sections. We have to
5722 change the definition to something the rest of the link can
5723 understand. */
5724
b34976b6 5725bfd_boolean
b49e97c9
TS
5726_bfd_mips_elf_adjust_dynamic_symbol (info, h)
5727 struct bfd_link_info *info;
5728 struct elf_link_hash_entry *h;
5729{
5730 bfd *dynobj;
5731 struct mips_elf_link_hash_entry *hmips;
5732 asection *s;
5733
5734 dynobj = elf_hash_table (info)->dynobj;
5735
5736 /* Make sure we know what is going on here. */
5737 BFD_ASSERT (dynobj != NULL
5738 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5739 || h->weakdef != NULL
5740 || ((h->elf_link_hash_flags
5741 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5742 && (h->elf_link_hash_flags
5743 & ELF_LINK_HASH_REF_REGULAR) != 0
5744 && (h->elf_link_hash_flags
5745 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5746
5747 /* If this symbol is defined in a dynamic object, we need to copy
5748 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5749 file. */
5750 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 5751 if (! info->relocatable
b49e97c9
TS
5752 && hmips->possibly_dynamic_relocs != 0
5753 && (h->root.type == bfd_link_hash_defweak
5754 || (h->elf_link_hash_flags
5755 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5756 {
5757 mips_elf_allocate_dynamic_relocations (dynobj,
5758 hmips->possibly_dynamic_relocs);
5759 if (hmips->readonly_reloc)
5760 /* We tell the dynamic linker that there are relocations
5761 against the text segment. */
5762 info->flags |= DF_TEXTREL;
5763 }
5764
5765 /* For a function, create a stub, if allowed. */
5766 if (! hmips->no_fn_stub
5767 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5768 {
5769 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 5770 return TRUE;
b49e97c9
TS
5771
5772 /* If this symbol is not defined in a regular file, then set
5773 the symbol to the stub location. This is required to make
5774 function pointers compare as equal between the normal
5775 executable and the shared library. */
5776 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5777 {
5778 /* We need .stub section. */
5779 s = bfd_get_section_by_name (dynobj,
5780 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5781 BFD_ASSERT (s != NULL);
5782
5783 h->root.u.def.section = s;
5784 h->root.u.def.value = s->_raw_size;
5785
5786 /* XXX Write this stub address somewhere. */
5787 h->plt.offset = s->_raw_size;
5788
5789 /* Make room for this stub code. */
5790 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5791
5792 /* The last half word of the stub will be filled with the index
5793 of this symbol in .dynsym section. */
b34976b6 5794 return TRUE;
b49e97c9
TS
5795 }
5796 }
5797 else if ((h->type == STT_FUNC)
5798 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5799 {
5800 /* This will set the entry for this symbol in the GOT to 0, and
5801 the dynamic linker will take care of this. */
5802 h->root.u.def.value = 0;
b34976b6 5803 return TRUE;
b49e97c9
TS
5804 }
5805
5806 /* If this is a weak symbol, and there is a real definition, the
5807 processor independent code will have arranged for us to see the
5808 real definition first, and we can just use the same value. */
5809 if (h->weakdef != NULL)
5810 {
5811 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5812 || h->weakdef->root.type == bfd_link_hash_defweak);
5813 h->root.u.def.section = h->weakdef->root.u.def.section;
5814 h->root.u.def.value = h->weakdef->root.u.def.value;
b34976b6 5815 return TRUE;
b49e97c9
TS
5816 }
5817
5818 /* This is a reference to a symbol defined by a dynamic object which
5819 is not a function. */
5820
b34976b6 5821 return TRUE;
b49e97c9
TS
5822}
5823\f
5824/* This function is called after all the input files have been read,
5825 and the input sections have been assigned to output sections. We
5826 check for any mips16 stub sections that we can discard. */
5827
b34976b6 5828bfd_boolean
b49e97c9
TS
5829_bfd_mips_elf_always_size_sections (output_bfd, info)
5830 bfd *output_bfd;
5831 struct bfd_link_info *info;
5832{
5833 asection *ri;
5834
f4416af6
AO
5835 bfd *dynobj;
5836 asection *s;
5837 struct mips_got_info *g;
5838 int i;
5839 bfd_size_type loadable_size = 0;
5840 bfd_size_type local_gotno;
5841 bfd *sub;
5842
b49e97c9
TS
5843 /* The .reginfo section has a fixed size. */
5844 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5845 if (ri != NULL)
5846 bfd_set_section_size (output_bfd, ri,
5847 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5848
1049f94e 5849 if (! (info->relocatable
f4416af6
AO
5850 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5851 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5852 mips_elf_check_mips16_stubs,
5853 (PTR) NULL);
5854
5855 dynobj = elf_hash_table (info)->dynobj;
5856 if (dynobj == NULL)
5857 /* Relocatable links don't have it. */
5858 return TRUE;
143d77c5 5859
f4416af6
AO
5860 g = mips_elf_got_info (dynobj, &s);
5861 if (s == NULL)
b34976b6 5862 return TRUE;
b49e97c9 5863
f4416af6
AO
5864 /* Calculate the total loadable size of the output. That
5865 will give us the maximum number of GOT_PAGE entries
5866 required. */
5867 for (sub = info->input_bfds; sub; sub = sub->link_next)
5868 {
5869 asection *subsection;
5870
5871 for (subsection = sub->sections;
5872 subsection;
5873 subsection = subsection->next)
5874 {
5875 if ((subsection->flags & SEC_ALLOC) == 0)
5876 continue;
5877 loadable_size += ((subsection->_raw_size + 0xf)
5878 &~ (bfd_size_type) 0xf);
5879 }
5880 }
5881
5882 /* There has to be a global GOT entry for every symbol with
5883 a dynamic symbol table index of DT_MIPS_GOTSYM or
5884 higher. Therefore, it make sense to put those symbols
5885 that need GOT entries at the end of the symbol table. We
5886 do that here. */
5887 if (! mips_elf_sort_hash_table (info, 1))
5888 return FALSE;
5889
5890 if (g->global_gotsym != NULL)
5891 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5892 else
5893 /* If there are no global symbols, or none requiring
5894 relocations, then GLOBAL_GOTSYM will be NULL. */
5895 i = 0;
5896
5897 /* In the worst case, we'll get one stub per dynamic symbol, plus
5898 one to account for the dummy entry at the end required by IRIX
5899 rld. */
5900 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5901
5902 /* Assume there are two loadable segments consisting of
5903 contiguous sections. Is 5 enough? */
5904 local_gotno = (loadable_size >> 16) + 5;
5905
5906 g->local_gotno += local_gotno;
5907 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5908
5909 g->global_gotno = i;
5910 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5911
5912 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5913 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5914 return FALSE;
b49e97c9 5915
b34976b6 5916 return TRUE;
b49e97c9
TS
5917}
5918
5919/* Set the sizes of the dynamic sections. */
5920
b34976b6 5921bfd_boolean
b49e97c9
TS
5922_bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5923 bfd *output_bfd;
5924 struct bfd_link_info *info;
5925{
5926 bfd *dynobj;
5927 asection *s;
b34976b6 5928 bfd_boolean reltext;
b49e97c9
TS
5929
5930 dynobj = elf_hash_table (info)->dynobj;
5931 BFD_ASSERT (dynobj != NULL);
5932
5933 if (elf_hash_table (info)->dynamic_sections_created)
5934 {
5935 /* Set the contents of the .interp section to the interpreter. */
5936 if (! info->shared)
5937 {
5938 s = bfd_get_section_by_name (dynobj, ".interp");
5939 BFD_ASSERT (s != NULL);
5940 s->_raw_size
5941 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5942 s->contents
5943 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5944 }
5945 }
5946
5947 /* The check_relocs and adjust_dynamic_symbol entry points have
5948 determined the sizes of the various dynamic sections. Allocate
5949 memory for them. */
b34976b6 5950 reltext = FALSE;
b49e97c9
TS
5951 for (s = dynobj->sections; s != NULL; s = s->next)
5952 {
5953 const char *name;
b34976b6 5954 bfd_boolean strip;
b49e97c9
TS
5955
5956 /* It's OK to base decisions on the section name, because none
5957 of the dynobj section names depend upon the input files. */
5958 name = bfd_get_section_name (dynobj, s);
5959
5960 if ((s->flags & SEC_LINKER_CREATED) == 0)
5961 continue;
5962
b34976b6 5963 strip = FALSE;
b49e97c9
TS
5964
5965 if (strncmp (name, ".rel", 4) == 0)
5966 {
5967 if (s->_raw_size == 0)
5968 {
5969 /* We only strip the section if the output section name
5970 has the same name. Otherwise, there might be several
5971 input sections for this output section. FIXME: This
5972 code is probably not needed these days anyhow, since
5973 the linker now does not create empty output sections. */
5974 if (s->output_section != NULL
5975 && strcmp (name,
5976 bfd_get_section_name (s->output_section->owner,
5977 s->output_section)) == 0)
b34976b6 5978 strip = TRUE;
b49e97c9
TS
5979 }
5980 else
5981 {
5982 const char *outname;
5983 asection *target;
5984
5985 /* If this relocation section applies to a read only
5986 section, then we probably need a DT_TEXTREL entry.
5987 If the relocation section is .rel.dyn, we always
5988 assert a DT_TEXTREL entry rather than testing whether
5989 there exists a relocation to a read only section or
5990 not. */
5991 outname = bfd_get_section_name (output_bfd,
5992 s->output_section);
5993 target = bfd_get_section_by_name (output_bfd, outname + 4);
5994 if ((target != NULL
5995 && (target->flags & SEC_READONLY) != 0
5996 && (target->flags & SEC_ALLOC) != 0)
5997 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 5998 reltext = TRUE;
b49e97c9
TS
5999
6000 /* We use the reloc_count field as a counter if we need
6001 to copy relocs into the output file. */
6002 if (strcmp (name, ".rel.dyn") != 0)
6003 s->reloc_count = 0;
f4416af6
AO
6004
6005 /* If combreloc is enabled, elf_link_sort_relocs() will
6006 sort relocations, but in a different way than we do,
6007 and before we're done creating relocations. Also, it
6008 will move them around between input sections'
6009 relocation's contents, so our sorting would be
6010 broken, so don't let it run. */
6011 info->combreloc = 0;
b49e97c9
TS
6012 }
6013 }
6014 else if (strncmp (name, ".got", 4) == 0)
6015 {
f4416af6
AO
6016 /* _bfd_mips_elf_always_size_sections() has already done
6017 most of the work, but some symbols may have been mapped
6018 to versions that we must now resolve in the got_entries
6019 hash tables. */
6020 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6021 struct mips_got_info *g = gg;
6022 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6023 unsigned int needed_relocs = 0;
143d77c5 6024
f4416af6 6025 if (gg->next)
b49e97c9 6026 {
f4416af6
AO
6027 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6028 set_got_offset_arg.info = info;
b49e97c9 6029
f4416af6
AO
6030 mips_elf_resolve_final_got_entries (gg);
6031 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 6032 {
f4416af6
AO
6033 unsigned int save_assign;
6034
6035 mips_elf_resolve_final_got_entries (g);
6036
6037 /* Assign offsets to global GOT entries. */
6038 save_assign = g->assigned_gotno;
6039 g->assigned_gotno = g->local_gotno;
6040 set_got_offset_arg.g = g;
6041 set_got_offset_arg.needed_relocs = 0;
6042 htab_traverse (g->got_entries,
6043 mips_elf_set_global_got_offset,
6044 &set_got_offset_arg);
6045 needed_relocs += set_got_offset_arg.needed_relocs;
6046 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6047 <= g->global_gotno);
6048
6049 g->assigned_gotno = save_assign;
6050 if (info->shared)
6051 {
6052 needed_relocs += g->local_gotno - g->assigned_gotno;
6053 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6054 + g->next->global_gotno
6055 + MIPS_RESERVED_GOTNO);
6056 }
b49e97c9 6057 }
b49e97c9 6058
f4416af6
AO
6059 if (needed_relocs)
6060 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6061 }
b49e97c9
TS
6062 }
6063 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6064 {
8dc1a139 6065 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9
TS
6066 of .text section. So put a dummy. XXX */
6067 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
6068 }
6069 else if (! info->shared
6070 && ! mips_elf_hash_table (info)->use_rld_obj_head
6071 && strncmp (name, ".rld_map", 8) == 0)
6072 {
6073 /* We add a room for __rld_map. It will be filled in by the
6074 rtld to contain a pointer to the _r_debug structure. */
6075 s->_raw_size += 4;
6076 }
6077 else if (SGI_COMPAT (output_bfd)
6078 && strncmp (name, ".compact_rel", 12) == 0)
6079 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
6080 else if (strcmp (name, ".msym") == 0)
6081 s->_raw_size = (sizeof (Elf32_External_Msym)
6082 * (elf_hash_table (info)->dynsymcount
6083 + bfd_count_sections (output_bfd)));
6084 else if (strncmp (name, ".init", 5) != 0)
6085 {
6086 /* It's not one of our sections, so don't allocate space. */
6087 continue;
6088 }
6089
6090 if (strip)
6091 {
6092 _bfd_strip_section_from_output (info, s);
6093 continue;
6094 }
6095
6096 /* Allocate memory for the section contents. */
6097 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
6098 if (s->contents == NULL && s->_raw_size != 0)
6099 {
6100 bfd_set_error (bfd_error_no_memory);
b34976b6 6101 return FALSE;
b49e97c9
TS
6102 }
6103 }
6104
6105 if (elf_hash_table (info)->dynamic_sections_created)
6106 {
6107 /* Add some entries to the .dynamic section. We fill in the
6108 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6109 must add the entries now so that we get the correct size for
6110 the .dynamic section. The DT_DEBUG entry is filled in by the
6111 dynamic linker and used by the debugger. */
6112 if (! info->shared)
6113 {
6114 /* SGI object has the equivalence of DT_DEBUG in the
6115 DT_MIPS_RLD_MAP entry. */
6116 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6117 return FALSE;
b49e97c9
TS
6118 if (!SGI_COMPAT (output_bfd))
6119 {
6120 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6121 return FALSE;
b49e97c9
TS
6122 }
6123 }
6124 else
6125 {
6126 /* Shared libraries on traditional mips have DT_DEBUG. */
6127 if (!SGI_COMPAT (output_bfd))
6128 {
6129 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6130 return FALSE;
b49e97c9
TS
6131 }
6132 }
6133
6134 if (reltext && SGI_COMPAT (output_bfd))
6135 info->flags |= DF_TEXTREL;
6136
6137 if ((info->flags & DF_TEXTREL) != 0)
6138 {
6139 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6140 return FALSE;
b49e97c9
TS
6141 }
6142
6143 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6144 return FALSE;
b49e97c9 6145
f4416af6 6146 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6147 {
6148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6149 return FALSE;
b49e97c9
TS
6150
6151 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6152 return FALSE;
b49e97c9
TS
6153
6154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6155 return FALSE;
b49e97c9
TS
6156 }
6157
6158 if (SGI_COMPAT (output_bfd))
6159 {
6160 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
b34976b6 6161 return FALSE;
b49e97c9
TS
6162 }
6163
6164 if (SGI_COMPAT (output_bfd))
6165 {
6166 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
b34976b6 6167 return FALSE;
b49e97c9
TS
6168 }
6169
6170 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
6171 {
6172 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
b34976b6 6173 return FALSE;
b49e97c9
TS
6174
6175 s = bfd_get_section_by_name (dynobj, ".liblist");
6176 BFD_ASSERT (s != NULL);
6177
6178 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
b34976b6 6179 return FALSE;
b49e97c9
TS
6180 }
6181
6182 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6183 return FALSE;
b49e97c9
TS
6184
6185 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6186 return FALSE;
b49e97c9
TS
6187
6188#if 0
6189 /* Time stamps in executable files are a bad idea. */
6190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
b34976b6 6191 return FALSE;
b49e97c9
TS
6192#endif
6193
6194#if 0 /* FIXME */
6195 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
b34976b6 6196 return FALSE;
b49e97c9
TS
6197#endif
6198
6199#if 0 /* FIXME */
6200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
b34976b6 6201 return FALSE;
b49e97c9
TS
6202#endif
6203
6204 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6205 return FALSE;
b49e97c9
TS
6206
6207 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6208 return FALSE;
b49e97c9
TS
6209
6210 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6211 return FALSE;
b49e97c9
TS
6212
6213 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6214 return FALSE;
b49e97c9
TS
6215
6216 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6217 return FALSE;
b49e97c9
TS
6218
6219 if (IRIX_COMPAT (dynobj) == ict_irix5
6220 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6221 return FALSE;
b49e97c9
TS
6222
6223 if (IRIX_COMPAT (dynobj) == ict_irix6
6224 && (bfd_get_section_by_name
6225 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6226 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6227 return FALSE;
b49e97c9
TS
6228
6229 if (bfd_get_section_by_name (dynobj, ".msym")
6230 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
b34976b6 6231 return FALSE;
b49e97c9
TS
6232 }
6233
b34976b6 6234 return TRUE;
b49e97c9
TS
6235}
6236\f
6237/* Relocate a MIPS ELF section. */
6238
b34976b6 6239bfd_boolean
b49e97c9
TS
6240_bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6241 contents, relocs, local_syms, local_sections)
6242 bfd *output_bfd;
6243 struct bfd_link_info *info;
6244 bfd *input_bfd;
6245 asection *input_section;
6246 bfd_byte *contents;
6247 Elf_Internal_Rela *relocs;
6248 Elf_Internal_Sym *local_syms;
6249 asection **local_sections;
6250{
6251 Elf_Internal_Rela *rel;
6252 const Elf_Internal_Rela *relend;
6253 bfd_vma addend = 0;
b34976b6 6254 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9
TS
6255 struct elf_backend_data *bed;
6256
6257 bed = get_elf_backend_data (output_bfd);
6258 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6259 for (rel = relocs; rel < relend; ++rel)
6260 {
6261 const char *name;
6262 bfd_vma value;
6263 reloc_howto_type *howto;
b34976b6
AM
6264 bfd_boolean require_jalx;
6265 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6266 REL relocation. */
b34976b6 6267 bfd_boolean rela_relocation_p = TRUE;
b49e97c9
TS
6268 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6269 const char * msg = (const char *) NULL;
6270
6271 /* Find the relocation howto for this relocation. */
4a14403c 6272 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6273 {
6274 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6275 64-bit code, but make sure all their addresses are in the
6276 lowermost or uppermost 32-bit section of the 64-bit address
6277 space. Thus, when they use an R_MIPS_64 they mean what is
6278 usually meant by R_MIPS_32, with the exception that the
6279 stored value is sign-extended to 64 bits. */
b34976b6 6280 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6281
6282 /* On big-endian systems, we need to lie about the position
6283 of the reloc. */
6284 if (bfd_big_endian (input_bfd))
6285 rel->r_offset += 4;
6286 }
6287 else
6288 /* NewABI defaults to RELA relocations. */
6289 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6290 NEWABI_P (input_bfd)
6291 && (MIPS_RELOC_RELA_P
6292 (input_bfd, input_section,
6293 rel - relocs)));
b49e97c9
TS
6294
6295 if (!use_saved_addend_p)
6296 {
6297 Elf_Internal_Shdr *rel_hdr;
6298
6299 /* If these relocations were originally of the REL variety,
6300 we must pull the addend out of the field that will be
6301 relocated. Otherwise, we simply use the contents of the
6302 RELA relocation. To determine which flavor or relocation
6303 this is, we depend on the fact that the INPUT_SECTION's
6304 REL_HDR is read before its REL_HDR2. */
6305 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6306 if ((size_t) (rel - relocs)
6307 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6308 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6309 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6310 {
6311 /* Note that this is a REL relocation. */
b34976b6 6312 rela_relocation_p = FALSE;
b49e97c9
TS
6313
6314 /* Get the addend, which is stored in the input file. */
6315 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6316 contents);
6317 addend &= howto->src_mask;
5a659663 6318 addend <<= howto->rightshift;
b49e97c9
TS
6319
6320 /* For some kinds of relocations, the ADDEND is a
6321 combination of the addend stored in two different
6322 relocations. */
6323 if (r_type == R_MIPS_HI16
6324 || r_type == R_MIPS_GNU_REL_HI16
6325 || (r_type == R_MIPS_GOT16
6326 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 6327 local_sections, FALSE)))
b49e97c9
TS
6328 {
6329 bfd_vma l;
6330 const Elf_Internal_Rela *lo16_relocation;
6331 reloc_howto_type *lo16_howto;
6332 unsigned int lo;
6333
6334 /* The combined value is the sum of the HI16 addend,
6335 left-shifted by sixteen bits, and the LO16
6336 addend, sign extended. (Usually, the code does
6337 a `lui' of the HI16 value, and then an `addiu' of
6338 the LO16 value.)
6339
6340 Scan ahead to find a matching LO16 relocation. */
6341 if (r_type == R_MIPS_GNU_REL_HI16)
6342 lo = R_MIPS_GNU_REL_LO16;
6343 else
6344 lo = R_MIPS_LO16;
6345 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6346 rel, relend);
6347 if (lo16_relocation == NULL)
b34976b6 6348 return FALSE;
b49e97c9
TS
6349
6350 /* Obtain the addend kept there. */
b34976b6 6351 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
b49e97c9
TS
6352 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6353 input_bfd, contents);
6354 l &= lo16_howto->src_mask;
5a659663 6355 l <<= lo16_howto->rightshift;
a7ebbfdf 6356 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
6357
6358 addend <<= 16;
6359
6360 /* Compute the combined addend. */
6361 addend += l;
6362
6363 /* If PC-relative, subtract the difference between the
6364 address of the LO part of the reloc and the address of
6365 the HI part. The relocation is relative to the LO
6366 part, but mips_elf_calculate_relocation() doesn't
6367 know its address or the difference from the HI part, so
6368 we subtract that difference here. See also the
6369 comment in mips_elf_calculate_relocation(). */
6370 if (r_type == R_MIPS_GNU_REL_HI16)
6371 addend -= (lo16_relocation->r_offset - rel->r_offset);
6372 }
6373 else if (r_type == R_MIPS16_GPREL)
6374 {
6375 /* The addend is scrambled in the object file. See
6376 mips_elf_perform_relocation for details on the
6377 format. */
6378 addend = (((addend & 0x1f0000) >> 5)
6379 | ((addend & 0x7e00000) >> 16)
6380 | (addend & 0x1f));
6381 }
6382 }
6383 else
6384 addend = rel->r_addend;
6385 }
6386
1049f94e 6387 if (info->relocatable)
b49e97c9
TS
6388 {
6389 Elf_Internal_Sym *sym;
6390 unsigned long r_symndx;
6391
4a14403c 6392 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
6393 && bfd_big_endian (input_bfd))
6394 rel->r_offset -= 4;
6395
6396 /* Since we're just relocating, all we need to do is copy
6397 the relocations back out to the object file, unless
6398 they're against a section symbol, in which case we need
6399 to adjust by the section offset, or unless they're GP
6400 relative in which case we need to adjust by the amount
1049f94e 6401 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
6402
6403 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 6404 FALSE))
b49e97c9
TS
6405 /* There's nothing to do for non-local relocations. */
6406 continue;
6407
6408 if (r_type == R_MIPS16_GPREL
6409 || r_type == R_MIPS_GPREL16
6410 || r_type == R_MIPS_GPREL32
6411 || r_type == R_MIPS_LITERAL)
6412 addend -= (_bfd_get_gp_value (output_bfd)
6413 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
6414
6415 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6416 sym = local_syms + r_symndx;
6417 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6418 /* Adjust the addend appropriately. */
6419 addend += local_sections[r_symndx]->output_offset;
6420
5a659663
TS
6421 if (howto->partial_inplace)
6422 {
6423 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6424 then we only want to write out the high-order 16 bits.
6425 The subsequent R_MIPS_LO16 will handle the low-order bits.
6426 */
6427 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6428 || r_type == R_MIPS_GNU_REL_HI16)
6429 addend = mips_elf_high (addend);
6430 else if (r_type == R_MIPS_HIGHER)
6431 addend = mips_elf_higher (addend);
6432 else if (r_type == R_MIPS_HIGHEST)
6433 addend = mips_elf_highest (addend);
6434 }
b49e97c9
TS
6435
6436 if (rela_relocation_p)
6437 /* If this is a RELA relocation, just update the addend.
6438 We have to cast away constness for REL. */
6439 rel->r_addend = addend;
6440 else
6441 {
6442 /* Otherwise, we have to write the value back out. Note
6443 that we use the source mask, rather than the
6444 destination mask because the place to which we are
6445 writing will be source of the addend in the final
6446 link. */
5a659663 6447 addend >>= howto->rightshift;
b49e97c9
TS
6448 addend &= howto->src_mask;
6449
5a659663 6450 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6451 /* See the comment above about using R_MIPS_64 in the 32-bit
6452 ABI. Here, we need to update the addend. It would be
6453 possible to get away with just using the R_MIPS_32 reloc
6454 but for endianness. */
6455 {
6456 bfd_vma sign_bits;
6457 bfd_vma low_bits;
6458 bfd_vma high_bits;
6459
6460 if (addend & ((bfd_vma) 1 << 31))
6461#ifdef BFD64
6462 sign_bits = ((bfd_vma) 1 << 32) - 1;
6463#else
6464 sign_bits = -1;
6465#endif
6466 else
6467 sign_bits = 0;
6468
6469 /* If we don't know that we have a 64-bit type,
6470 do two separate stores. */
6471 if (bfd_big_endian (input_bfd))
6472 {
6473 /* Store the sign-bits (which are most significant)
6474 first. */
6475 low_bits = sign_bits;
6476 high_bits = addend;
6477 }
6478 else
6479 {
6480 low_bits = addend;
6481 high_bits = sign_bits;
6482 }
6483 bfd_put_32 (input_bfd, low_bits,
6484 contents + rel->r_offset);
6485 bfd_put_32 (input_bfd, high_bits,
6486 contents + rel->r_offset + 4);
6487 continue;
6488 }
6489
6490 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6491 input_bfd, input_section,
b34976b6
AM
6492 contents, FALSE))
6493 return FALSE;
b49e97c9
TS
6494 }
6495
6496 /* Go on to the next relocation. */
6497 continue;
6498 }
6499
6500 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6501 relocations for the same offset. In that case we are
6502 supposed to treat the output of each relocation as the addend
6503 for the next. */
6504 if (rel + 1 < relend
6505 && rel->r_offset == rel[1].r_offset
6506 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 6507 use_saved_addend_p = TRUE;
b49e97c9 6508 else
b34976b6 6509 use_saved_addend_p = FALSE;
b49e97c9 6510
5a659663
TS
6511 addend >>= howto->rightshift;
6512
b49e97c9
TS
6513 /* Figure out what value we are supposed to relocate. */
6514 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6515 input_section, info, rel,
6516 addend, howto, local_syms,
6517 local_sections, &value,
bce03d3d
AO
6518 &name, &require_jalx,
6519 use_saved_addend_p))
b49e97c9
TS
6520 {
6521 case bfd_reloc_continue:
6522 /* There's nothing to do. */
6523 continue;
6524
6525 case bfd_reloc_undefined:
6526 /* mips_elf_calculate_relocation already called the
6527 undefined_symbol callback. There's no real point in
6528 trying to perform the relocation at this point, so we
6529 just skip ahead to the next relocation. */
6530 continue;
6531
6532 case bfd_reloc_notsupported:
6533 msg = _("internal error: unsupported relocation error");
6534 info->callbacks->warning
6535 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 6536 return FALSE;
b49e97c9
TS
6537
6538 case bfd_reloc_overflow:
6539 if (use_saved_addend_p)
6540 /* Ignore overflow until we reach the last relocation for
6541 a given location. */
6542 ;
6543 else
6544 {
6545 BFD_ASSERT (name != NULL);
6546 if (! ((*info->callbacks->reloc_overflow)
6547 (info, name, howto->name, (bfd_vma) 0,
6548 input_bfd, input_section, rel->r_offset)))
b34976b6 6549 return FALSE;
b49e97c9
TS
6550 }
6551 break;
6552
6553 case bfd_reloc_ok:
6554 break;
6555
6556 default:
6557 abort ();
6558 break;
6559 }
6560
6561 /* If we've got another relocation for the address, keep going
6562 until we reach the last one. */
6563 if (use_saved_addend_p)
6564 {
6565 addend = value;
6566 continue;
6567 }
6568
4a14403c 6569 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6570 /* See the comment above about using R_MIPS_64 in the 32-bit
6571 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6572 that calculated the right value. Now, however, we
6573 sign-extend the 32-bit result to 64-bits, and store it as a
6574 64-bit value. We are especially generous here in that we
6575 go to extreme lengths to support this usage on systems with
6576 only a 32-bit VMA. */
6577 {
6578 bfd_vma sign_bits;
6579 bfd_vma low_bits;
6580 bfd_vma high_bits;
6581
6582 if (value & ((bfd_vma) 1 << 31))
6583#ifdef BFD64
6584 sign_bits = ((bfd_vma) 1 << 32) - 1;
6585#else
6586 sign_bits = -1;
6587#endif
6588 else
6589 sign_bits = 0;
6590
6591 /* If we don't know that we have a 64-bit type,
6592 do two separate stores. */
6593 if (bfd_big_endian (input_bfd))
6594 {
6595 /* Undo what we did above. */
6596 rel->r_offset -= 4;
6597 /* Store the sign-bits (which are most significant)
6598 first. */
6599 low_bits = sign_bits;
6600 high_bits = value;
6601 }
6602 else
6603 {
6604 low_bits = value;
6605 high_bits = sign_bits;
6606 }
6607 bfd_put_32 (input_bfd, low_bits,
6608 contents + rel->r_offset);
6609 bfd_put_32 (input_bfd, high_bits,
6610 contents + rel->r_offset + 4);
6611 continue;
6612 }
6613
6614 /* Actually perform the relocation. */
6615 if (! mips_elf_perform_relocation (info, howto, rel, value,
6616 input_bfd, input_section,
6617 contents, require_jalx))
b34976b6 6618 return FALSE;
b49e97c9
TS
6619 }
6620
b34976b6 6621 return TRUE;
b49e97c9
TS
6622}
6623\f
6624/* If NAME is one of the special IRIX6 symbols defined by the linker,
6625 adjust it appropriately now. */
6626
6627static void
6628mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6629 bfd *abfd ATTRIBUTE_UNUSED;
6630 const char *name;
6631 Elf_Internal_Sym *sym;
6632{
6633 /* The linker script takes care of providing names and values for
6634 these, but we must place them into the right sections. */
6635 static const char* const text_section_symbols[] = {
6636 "_ftext",
6637 "_etext",
6638 "__dso_displacement",
6639 "__elf_header",
6640 "__program_header_table",
6641 NULL
6642 };
6643
6644 static const char* const data_section_symbols[] = {
6645 "_fdata",
6646 "_edata",
6647 "_end",
6648 "_fbss",
6649 NULL
6650 };
6651
6652 const char* const *p;
6653 int i;
6654
6655 for (i = 0; i < 2; ++i)
6656 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6657 *p;
6658 ++p)
6659 if (strcmp (*p, name) == 0)
6660 {
6661 /* All of these symbols are given type STT_SECTION by the
6662 IRIX6 linker. */
6663 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6664
6665 /* The IRIX linker puts these symbols in special sections. */
6666 if (i == 0)
6667 sym->st_shndx = SHN_MIPS_TEXT;
6668 else
6669 sym->st_shndx = SHN_MIPS_DATA;
6670
6671 break;
6672 }
6673}
6674
6675/* Finish up dynamic symbol handling. We set the contents of various
6676 dynamic sections here. */
6677
b34976b6 6678bfd_boolean
b49e97c9
TS
6679_bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6680 bfd *output_bfd;
6681 struct bfd_link_info *info;
6682 struct elf_link_hash_entry *h;
6683 Elf_Internal_Sym *sym;
6684{
6685 bfd *dynobj;
6686 bfd_vma gval;
6687 asection *sgot;
6688 asection *smsym;
f4416af6 6689 struct mips_got_info *g, *gg;
b49e97c9
TS
6690 const char *name;
6691 struct mips_elf_link_hash_entry *mh;
6692
6693 dynobj = elf_hash_table (info)->dynobj;
6694 gval = sym->st_value;
6695 mh = (struct mips_elf_link_hash_entry *) h;
6696
6697 if (h->plt.offset != (bfd_vma) -1)
6698 {
6699 asection *s;
6700 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6701
6702 /* This symbol has a stub. Set it up. */
6703
6704 BFD_ASSERT (h->dynindx != -1);
6705
6706 s = bfd_get_section_by_name (dynobj,
6707 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6708 BFD_ASSERT (s != NULL);
6709
6710 /* FIXME: Can h->dynindex be more than 64K? */
6711 if (h->dynindx & 0xffff0000)
b34976b6 6712 return FALSE;
b49e97c9
TS
6713
6714 /* Fill the stub. */
6715 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6716 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6717 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6718 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6719
6720 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6721 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6722
6723 /* Mark the symbol as undefined. plt.offset != -1 occurs
6724 only for the referenced symbol. */
6725 sym->st_shndx = SHN_UNDEF;
6726
6727 /* The run-time linker uses the st_value field of the symbol
6728 to reset the global offset table entry for this external
6729 to its stub address when unlinking a shared object. */
6730 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6731 sym->st_value = gval;
6732 }
6733
6734 BFD_ASSERT (h->dynindx != -1
6735 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6736
f4416af6 6737 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6738 BFD_ASSERT (sgot != NULL);
f4416af6 6739 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 6740 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6741 BFD_ASSERT (g != NULL);
6742
6743 /* Run through the global symbol table, creating GOT entries for all
6744 the symbols that need them. */
6745 if (g->global_gotsym != NULL
6746 && h->dynindx >= g->global_gotsym->dynindx)
6747 {
6748 bfd_vma offset;
6749 bfd_vma value;
6750
6751 if (sym->st_value)
6752 value = sym->st_value;
6753 else
6754 {
6755 /* For an entity defined in a shared object, this will be
6756 NULL. (For functions in shared objects for
6757 which we have created stubs, ST_VALUE will be non-NULL.
6758 That's because such the functions are now no longer defined
6759 in a shared object.) */
6760
f4416af6
AO
6761 if ((info->shared && h->root.type == bfd_link_hash_undefined)
6762 || h->root.type == bfd_link_hash_undefweak)
b49e97c9
TS
6763 value = 0;
6764 else
6765 value = h->root.u.def.value;
6766 }
f4416af6 6767 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
b49e97c9
TS
6768 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6769 }
6770
f4416af6
AO
6771 if (g->next && h->dynindx != -1)
6772 {
6773 struct mips_got_entry e, *p;
6774 bfd_vma offset;
6775 bfd_vma value;
6776 Elf_Internal_Rela rel[3];
6777 bfd_vma addend = 0;
6778
6779 gg = g;
6780
6781 e.abfd = output_bfd;
6782 e.symndx = -1;
6783 e.d.h = (struct mips_elf_link_hash_entry *)h;
143d77c5 6784
f4416af6
AO
6785 if (info->shared
6786 || h->root.type == bfd_link_hash_undefined
6787 || h->root.type == bfd_link_hash_undefweak)
6788 value = 0;
6789 else if (sym->st_value)
6790 value = sym->st_value;
6791 else
6792 value = h->root.u.def.value;
6793
6794 memset (rel, 0, sizeof (rel));
6795 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6796
6797 for (g = g->next; g->next != gg; g = g->next)
6798 {
6799 if (g->got_entries
6800 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6801 &e)))
6802 {
6803 offset = p->gotidx;
6804 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6805
6806 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6807
6808 if ((info->shared
6809 || (elf_hash_table (info)->dynamic_sections_created
6810 && p->d.h != NULL
6811 && ((p->d.h->root.elf_link_hash_flags
6812 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6813 && ((p->d.h->root.elf_link_hash_flags
6814 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6815 && ! (mips_elf_create_dynamic_relocation
6816 (output_bfd, info, rel,
6817 e.d.h, NULL, value, &addend, sgot)))
6818 return FALSE;
6819 BFD_ASSERT (addend == 0);
6820 }
6821 }
6822 }
6823
b49e97c9
TS
6824 /* Create a .msym entry, if appropriate. */
6825 smsym = bfd_get_section_by_name (dynobj, ".msym");
6826 if (smsym)
6827 {
6828 Elf32_Internal_Msym msym;
6829
6830 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6831 /* It is undocumented what the `1' indicates, but IRIX6 uses
6832 this value. */
6833 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6834 bfd_mips_elf_swap_msym_out
6835 (dynobj, &msym,
6836 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6837 }
6838
6839 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6840 name = h->root.root.string;
6841 if (strcmp (name, "_DYNAMIC") == 0
6842 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6843 sym->st_shndx = SHN_ABS;
6844 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6845 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6846 {
6847 sym->st_shndx = SHN_ABS;
6848 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6849 sym->st_value = 1;
6850 }
4a14403c 6851 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6852 {
6853 sym->st_shndx = SHN_ABS;
6854 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6855 sym->st_value = elf_gp (output_bfd);
6856 }
6857 else if (SGI_COMPAT (output_bfd))
6858 {
6859 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6860 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6861 {
6862 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6863 sym->st_other = STO_PROTECTED;
6864 sym->st_value = 0;
6865 sym->st_shndx = SHN_MIPS_DATA;
6866 }
6867 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6868 {
6869 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6870 sym->st_other = STO_PROTECTED;
6871 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6872 sym->st_shndx = SHN_ABS;
6873 }
6874 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6875 {
6876 if (h->type == STT_FUNC)
6877 sym->st_shndx = SHN_MIPS_TEXT;
6878 else if (h->type == STT_OBJECT)
6879 sym->st_shndx = SHN_MIPS_DATA;
6880 }
6881 }
6882
6883 /* Handle the IRIX6-specific symbols. */
6884 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6885 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6886
6887 if (! info->shared)
6888 {
6889 if (! mips_elf_hash_table (info)->use_rld_obj_head
6890 && (strcmp (name, "__rld_map") == 0
6891 || strcmp (name, "__RLD_MAP") == 0))
6892 {
6893 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6894 BFD_ASSERT (s != NULL);
6895 sym->st_value = s->output_section->vma + s->output_offset;
6896 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6897 if (mips_elf_hash_table (info)->rld_value == 0)
6898 mips_elf_hash_table (info)->rld_value = sym->st_value;
6899 }
6900 else if (mips_elf_hash_table (info)->use_rld_obj_head
6901 && strcmp (name, "__rld_obj_head") == 0)
6902 {
6903 /* IRIX6 does not use a .rld_map section. */
6904 if (IRIX_COMPAT (output_bfd) == ict_irix5
6905 || IRIX_COMPAT (output_bfd) == ict_none)
6906 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6907 != NULL);
6908 mips_elf_hash_table (info)->rld_value = sym->st_value;
6909 }
6910 }
6911
6912 /* If this is a mips16 symbol, force the value to be even. */
6913 if (sym->st_other == STO_MIPS16
6914 && (sym->st_value & 1) != 0)
6915 --sym->st_value;
6916
b34976b6 6917 return TRUE;
b49e97c9
TS
6918}
6919
6920/* Finish up the dynamic sections. */
6921
b34976b6 6922bfd_boolean
b49e97c9
TS
6923_bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6924 bfd *output_bfd;
6925 struct bfd_link_info *info;
6926{
6927 bfd *dynobj;
6928 asection *sdyn;
6929 asection *sgot;
f4416af6 6930 struct mips_got_info *gg, *g;
b49e97c9
TS
6931
6932 dynobj = elf_hash_table (info)->dynobj;
6933
6934 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6935
f4416af6 6936 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6937 if (sgot == NULL)
f4416af6 6938 gg = g = NULL;
b49e97c9
TS
6939 else
6940 {
f4416af6
AO
6941 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6942 gg = mips_elf_section_data (sgot)->u.got_info;
6943 BFD_ASSERT (gg != NULL);
6944 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
6945 BFD_ASSERT (g != NULL);
6946 }
6947
6948 if (elf_hash_table (info)->dynamic_sections_created)
6949 {
6950 bfd_byte *b;
6951
6952 BFD_ASSERT (sdyn != NULL);
6953 BFD_ASSERT (g != NULL);
6954
6955 for (b = sdyn->contents;
6956 b < sdyn->contents + sdyn->_raw_size;
6957 b += MIPS_ELF_DYN_SIZE (dynobj))
6958 {
6959 Elf_Internal_Dyn dyn;
6960 const char *name;
6961 size_t elemsize;
6962 asection *s;
b34976b6 6963 bfd_boolean swap_out_p;
b49e97c9
TS
6964
6965 /* Read in the current dynamic entry. */
6966 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6967
6968 /* Assume that we're going to modify it and write it out. */
b34976b6 6969 swap_out_p = TRUE;
b49e97c9
TS
6970
6971 switch (dyn.d_tag)
6972 {
6973 case DT_RELENT:
f4416af6 6974 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
6975 BFD_ASSERT (s != NULL);
6976 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6977 break;
6978
6979 case DT_STRSZ:
6980 /* Rewrite DT_STRSZ. */
6981 dyn.d_un.d_val =
6982 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6983 break;
6984
6985 case DT_PLTGOT:
6986 name = ".got";
6987 goto get_vma;
6988 case DT_MIPS_CONFLICT:
6989 name = ".conflict";
6990 goto get_vma;
6991 case DT_MIPS_LIBLIST:
6992 name = ".liblist";
6993 get_vma:
6994 s = bfd_get_section_by_name (output_bfd, name);
6995 BFD_ASSERT (s != NULL);
6996 dyn.d_un.d_ptr = s->vma;
6997 break;
6998
6999 case DT_MIPS_RLD_VERSION:
7000 dyn.d_un.d_val = 1; /* XXX */
7001 break;
7002
7003 case DT_MIPS_FLAGS:
7004 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
7005 break;
7006
7007 case DT_MIPS_CONFLICTNO:
7008 name = ".conflict";
7009 elemsize = sizeof (Elf32_Conflict);
7010 goto set_elemno;
7011
7012 case DT_MIPS_LIBLISTNO:
7013 name = ".liblist";
7014 elemsize = sizeof (Elf32_Lib);
7015 set_elemno:
7016 s = bfd_get_section_by_name (output_bfd, name);
7017 if (s != NULL)
7018 {
7019 if (s->_cooked_size != 0)
7020 dyn.d_un.d_val = s->_cooked_size / elemsize;
7021 else
7022 dyn.d_un.d_val = s->_raw_size / elemsize;
7023 }
7024 else
7025 dyn.d_un.d_val = 0;
7026 break;
7027
7028 case DT_MIPS_TIME_STAMP:
7029 time ((time_t *) &dyn.d_un.d_val);
7030 break;
7031
7032 case DT_MIPS_ICHECKSUM:
7033 /* XXX FIXME: */
b34976b6 7034 swap_out_p = FALSE;
b49e97c9
TS
7035 break;
7036
7037 case DT_MIPS_IVERSION:
7038 /* XXX FIXME: */
b34976b6 7039 swap_out_p = FALSE;
b49e97c9
TS
7040 break;
7041
7042 case DT_MIPS_BASE_ADDRESS:
7043 s = output_bfd->sections;
7044 BFD_ASSERT (s != NULL);
7045 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7046 break;
7047
7048 case DT_MIPS_LOCAL_GOTNO:
7049 dyn.d_un.d_val = g->local_gotno;
7050 break;
7051
7052 case DT_MIPS_UNREFEXTNO:
7053 /* The index into the dynamic symbol table which is the
7054 entry of the first external symbol that is not
7055 referenced within the same object. */
7056 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7057 break;
7058
7059 case DT_MIPS_GOTSYM:
f4416af6 7060 if (gg->global_gotsym)
b49e97c9 7061 {
f4416af6 7062 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
7063 break;
7064 }
7065 /* In case if we don't have global got symbols we default
7066 to setting DT_MIPS_GOTSYM to the same value as
7067 DT_MIPS_SYMTABNO, so we just fall through. */
7068
7069 case DT_MIPS_SYMTABNO:
7070 name = ".dynsym";
7071 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7072 s = bfd_get_section_by_name (output_bfd, name);
7073 BFD_ASSERT (s != NULL);
7074
7075 if (s->_cooked_size != 0)
7076 dyn.d_un.d_val = s->_cooked_size / elemsize;
7077 else
7078 dyn.d_un.d_val = s->_raw_size / elemsize;
7079 break;
7080
7081 case DT_MIPS_HIPAGENO:
7082 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7083 break;
7084
7085 case DT_MIPS_RLD_MAP:
7086 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7087 break;
7088
7089 case DT_MIPS_OPTIONS:
7090 s = (bfd_get_section_by_name
7091 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7092 dyn.d_un.d_ptr = s->vma;
7093 break;
7094
7095 case DT_MIPS_MSYM:
7096 s = (bfd_get_section_by_name (output_bfd, ".msym"));
7097 dyn.d_un.d_ptr = s->vma;
7098 break;
7099
7100 default:
b34976b6 7101 swap_out_p = FALSE;
b49e97c9
TS
7102 break;
7103 }
7104
7105 if (swap_out_p)
7106 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7107 (dynobj, &dyn, b);
7108 }
7109 }
7110
7111 /* The first entry of the global offset table will be filled at
7112 runtime. The second entry will be used by some runtime loaders.
8dc1a139 7113 This isn't the case of IRIX rld. */
b49e97c9
TS
7114 if (sgot != NULL && sgot->_raw_size > 0)
7115 {
7116 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
7117 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
7118 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7119 }
7120
7121 if (sgot != NULL)
7122 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7123 = MIPS_ELF_GOT_SIZE (output_bfd);
7124
f4416af6
AO
7125 /* Generate dynamic relocations for the non-primary gots. */
7126 if (gg != NULL && gg->next)
7127 {
7128 Elf_Internal_Rela rel[3];
7129 bfd_vma addend = 0;
7130
7131 memset (rel, 0, sizeof (rel));
7132 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7133
7134 for (g = gg->next; g->next != gg; g = g->next)
7135 {
7136 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7137
7138 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
7139 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7140 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
7141 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7142
7143 if (! info->shared)
7144 continue;
7145
7146 while (index < g->assigned_gotno)
7147 {
7148 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7149 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7150 if (!(mips_elf_create_dynamic_relocation
7151 (output_bfd, info, rel, NULL,
7152 bfd_abs_section_ptr,
7153 0, &addend, sgot)))
7154 return FALSE;
7155 BFD_ASSERT (addend == 0);
7156 }
7157 }
7158 }
7159
b49e97c9
TS
7160 {
7161 asection *smsym;
7162 asection *s;
7163 Elf32_compact_rel cpt;
7164
7165 /* ??? The section symbols for the output sections were set up in
7166 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
7167 symbols. Should we do so? */
7168
7169 smsym = bfd_get_section_by_name (dynobj, ".msym");
7170 if (smsym != NULL)
7171 {
7172 Elf32_Internal_Msym msym;
7173
7174 msym.ms_hash_value = 0;
7175 msym.ms_info = ELF32_MS_INFO (0, 1);
7176
7177 for (s = output_bfd->sections; s != NULL; s = s->next)
7178 {
7179 long dynindx = elf_section_data (s)->dynindx;
7180
7181 bfd_mips_elf_swap_msym_out
7182 (output_bfd, &msym,
7183 (((Elf32_External_Msym *) smsym->contents)
7184 + dynindx));
7185 }
7186 }
7187
7188 if (SGI_COMPAT (output_bfd))
7189 {
7190 /* Write .compact_rel section out. */
7191 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7192 if (s != NULL)
7193 {
7194 cpt.id1 = 1;
7195 cpt.num = s->reloc_count;
7196 cpt.id2 = 2;
7197 cpt.offset = (s->output_section->filepos
7198 + sizeof (Elf32_External_compact_rel));
7199 cpt.reserved0 = 0;
7200 cpt.reserved1 = 0;
7201 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7202 ((Elf32_External_compact_rel *)
7203 s->contents));
7204
7205 /* Clean up a dummy stub function entry in .text. */
7206 s = bfd_get_section_by_name (dynobj,
7207 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7208 if (s != NULL)
7209 {
7210 file_ptr dummy_offset;
7211
7212 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
7213 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
7214 memset (s->contents + dummy_offset, 0,
7215 MIPS_FUNCTION_STUB_SIZE);
7216 }
7217 }
7218 }
7219
7220 /* We need to sort the entries of the dynamic relocation section. */
7221
f4416af6
AO
7222 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7223
7224 if (s != NULL
7225 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7226 {
f4416af6 7227 reldyn_sorting_bfd = output_bfd;
b49e97c9 7228
f4416af6
AO
7229 if (ABI_64_P (output_bfd))
7230 qsort ((Elf64_External_Rel *) s->contents + 1,
7231 (size_t) s->reloc_count - 1,
7232 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7233 else
7234 qsort ((Elf32_External_Rel *) s->contents + 1,
7235 (size_t) s->reloc_count - 1,
7236 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7237 }
b49e97c9
TS
7238 }
7239
b34976b6 7240 return TRUE;
b49e97c9
TS
7241}
7242
b49e97c9 7243
64543e1a
RS
7244/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7245
7246static void
7247mips_set_isa_flags (abfd)
b49e97c9 7248 bfd *abfd;
b49e97c9 7249{
64543e1a 7250 flagword val;
b49e97c9
TS
7251
7252 switch (bfd_get_mach (abfd))
7253 {
7254 default:
7255 case bfd_mach_mips3000:
7256 val = E_MIPS_ARCH_1;
7257 break;
7258
7259 case bfd_mach_mips3900:
7260 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7261 break;
7262
7263 case bfd_mach_mips6000:
7264 val = E_MIPS_ARCH_2;
7265 break;
7266
7267 case bfd_mach_mips4000:
7268 case bfd_mach_mips4300:
7269 case bfd_mach_mips4400:
7270 case bfd_mach_mips4600:
7271 val = E_MIPS_ARCH_3;
7272 break;
7273
7274 case bfd_mach_mips4010:
7275 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7276 break;
7277
7278 case bfd_mach_mips4100:
7279 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7280 break;
7281
7282 case bfd_mach_mips4111:
7283 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7284 break;
7285
00707a0e
RS
7286 case bfd_mach_mips4120:
7287 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7288 break;
7289
b49e97c9
TS
7290 case bfd_mach_mips4650:
7291 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7292 break;
7293
00707a0e
RS
7294 case bfd_mach_mips5400:
7295 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7296 break;
7297
7298 case bfd_mach_mips5500:
7299 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7300 break;
7301
b49e97c9
TS
7302 case bfd_mach_mips5000:
7303 case bfd_mach_mips8000:
7304 case bfd_mach_mips10000:
7305 case bfd_mach_mips12000:
7306 val = E_MIPS_ARCH_4;
7307 break;
7308
7309 case bfd_mach_mips5:
7310 val = E_MIPS_ARCH_5;
7311 break;
7312
7313 case bfd_mach_mips_sb1:
7314 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7315 break;
7316
7317 case bfd_mach_mipsisa32:
7318 val = E_MIPS_ARCH_32;
7319 break;
7320
7321 case bfd_mach_mipsisa64:
7322 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7323 break;
7324
7325 case bfd_mach_mipsisa32r2:
7326 val = E_MIPS_ARCH_32R2;
7327 break;
b49e97c9 7328 }
b49e97c9
TS
7329 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7330 elf_elfheader (abfd)->e_flags |= val;
7331
64543e1a
RS
7332}
7333
7334
7335/* The final processing done just before writing out a MIPS ELF object
7336 file. This gets the MIPS architecture right based on the machine
7337 number. This is used by both the 32-bit and the 64-bit ABI. */
7338
7339void
7340_bfd_mips_elf_final_write_processing (abfd, linker)
7341 bfd *abfd;
7342 bfd_boolean linker ATTRIBUTE_UNUSED;
7343{
7344 unsigned int i;
7345 Elf_Internal_Shdr **hdrpp;
7346 const char *name;
7347 asection *sec;
7348
7349 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7350 is nonzero. This is for compatibility with old objects, which used
7351 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7352 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7353 mips_set_isa_flags (abfd);
7354
b49e97c9
TS
7355 /* Set the sh_info field for .gptab sections and other appropriate
7356 info for each special section. */
7357 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7358 i < elf_numsections (abfd);
7359 i++, hdrpp++)
7360 {
7361 switch ((*hdrpp)->sh_type)
7362 {
7363 case SHT_MIPS_MSYM:
7364 case SHT_MIPS_LIBLIST:
7365 sec = bfd_get_section_by_name (abfd, ".dynstr");
7366 if (sec != NULL)
7367 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7368 break;
7369
7370 case SHT_MIPS_GPTAB:
7371 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7372 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7373 BFD_ASSERT (name != NULL
7374 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7375 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7376 BFD_ASSERT (sec != NULL);
7377 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7378 break;
7379
7380 case SHT_MIPS_CONTENT:
7381 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7382 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7383 BFD_ASSERT (name != NULL
7384 && strncmp (name, ".MIPS.content",
7385 sizeof ".MIPS.content" - 1) == 0);
7386 sec = bfd_get_section_by_name (abfd,
7387 name + sizeof ".MIPS.content" - 1);
7388 BFD_ASSERT (sec != NULL);
7389 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7390 break;
7391
7392 case SHT_MIPS_SYMBOL_LIB:
7393 sec = bfd_get_section_by_name (abfd, ".dynsym");
7394 if (sec != NULL)
7395 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7396 sec = bfd_get_section_by_name (abfd, ".liblist");
7397 if (sec != NULL)
7398 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7399 break;
7400
7401 case SHT_MIPS_EVENTS:
7402 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7403 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7404 BFD_ASSERT (name != NULL);
7405 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7406 sec = bfd_get_section_by_name (abfd,
7407 name + sizeof ".MIPS.events" - 1);
7408 else
7409 {
7410 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7411 sizeof ".MIPS.post_rel" - 1) == 0);
7412 sec = bfd_get_section_by_name (abfd,
7413 (name
7414 + sizeof ".MIPS.post_rel" - 1));
7415 }
7416 BFD_ASSERT (sec != NULL);
7417 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7418 break;
7419
7420 }
7421 }
7422}
7423\f
8dc1a139 7424/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
7425 segments. */
7426
7427int
7428_bfd_mips_elf_additional_program_headers (abfd)
7429 bfd *abfd;
7430{
7431 asection *s;
7432 int ret = 0;
7433
7434 /* See if we need a PT_MIPS_REGINFO segment. */
7435 s = bfd_get_section_by_name (abfd, ".reginfo");
7436 if (s && (s->flags & SEC_LOAD))
7437 ++ret;
7438
7439 /* See if we need a PT_MIPS_OPTIONS segment. */
7440 if (IRIX_COMPAT (abfd) == ict_irix6
7441 && bfd_get_section_by_name (abfd,
7442 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7443 ++ret;
7444
7445 /* See if we need a PT_MIPS_RTPROC segment. */
7446 if (IRIX_COMPAT (abfd) == ict_irix5
7447 && bfd_get_section_by_name (abfd, ".dynamic")
7448 && bfd_get_section_by_name (abfd, ".mdebug"))
7449 ++ret;
7450
7451 return ret;
7452}
7453
8dc1a139 7454/* Modify the segment map for an IRIX5 executable. */
b49e97c9 7455
b34976b6 7456bfd_boolean
b49e97c9
TS
7457_bfd_mips_elf_modify_segment_map (abfd)
7458 bfd *abfd;
7459{
7460 asection *s;
7461 struct elf_segment_map *m, **pm;
7462 bfd_size_type amt;
7463
7464 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7465 segment. */
7466 s = bfd_get_section_by_name (abfd, ".reginfo");
7467 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7468 {
7469 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7470 if (m->p_type == PT_MIPS_REGINFO)
7471 break;
7472 if (m == NULL)
7473 {
7474 amt = sizeof *m;
7475 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7476 if (m == NULL)
b34976b6 7477 return FALSE;
b49e97c9
TS
7478
7479 m->p_type = PT_MIPS_REGINFO;
7480 m->count = 1;
7481 m->sections[0] = s;
7482
7483 /* We want to put it after the PHDR and INTERP segments. */
7484 pm = &elf_tdata (abfd)->segment_map;
7485 while (*pm != NULL
7486 && ((*pm)->p_type == PT_PHDR
7487 || (*pm)->p_type == PT_INTERP))
7488 pm = &(*pm)->next;
7489
7490 m->next = *pm;
7491 *pm = m;
7492 }
7493 }
7494
7495 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7496 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
44c410de 7497 PT_OPTIONS segment immediately following the program header
b49e97c9 7498 table. */
c1fd6598
AO
7499 if (NEWABI_P (abfd)
7500 /* On non-IRIX6 new abi, we'll have already created a segment
7501 for this section, so don't create another. I'm not sure this
7502 is not also the case for IRIX 6, but I can't test it right
7503 now. */
7504 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
7505 {
7506 for (s = abfd->sections; s; s = s->next)
7507 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7508 break;
7509
7510 if (s)
7511 {
7512 struct elf_segment_map *options_segment;
7513
7514 /* Usually, there's a program header table. But, sometimes
7515 there's not (like when running the `ld' testsuite). So,
7516 if there's no program header table, we just put the
44c410de 7517 options segment at the end. */
b49e97c9
TS
7518 for (pm = &elf_tdata (abfd)->segment_map;
7519 *pm != NULL;
7520 pm = &(*pm)->next)
7521 if ((*pm)->p_type == PT_PHDR)
7522 break;
7523
7524 amt = sizeof (struct elf_segment_map);
7525 options_segment = bfd_zalloc (abfd, amt);
7526 options_segment->next = *pm;
7527 options_segment->p_type = PT_MIPS_OPTIONS;
7528 options_segment->p_flags = PF_R;
b34976b6 7529 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
7530 options_segment->count = 1;
7531 options_segment->sections[0] = s;
7532 *pm = options_segment;
7533 }
7534 }
7535 else
7536 {
7537 if (IRIX_COMPAT (abfd) == ict_irix5)
7538 {
7539 /* If there are .dynamic and .mdebug sections, we make a room
7540 for the RTPROC header. FIXME: Rewrite without section names. */
7541 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7542 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7543 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7544 {
7545 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7546 if (m->p_type == PT_MIPS_RTPROC)
7547 break;
7548 if (m == NULL)
7549 {
7550 amt = sizeof *m;
7551 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7552 if (m == NULL)
b34976b6 7553 return FALSE;
b49e97c9
TS
7554
7555 m->p_type = PT_MIPS_RTPROC;
7556
7557 s = bfd_get_section_by_name (abfd, ".rtproc");
7558 if (s == NULL)
7559 {
7560 m->count = 0;
7561 m->p_flags = 0;
7562 m->p_flags_valid = 1;
7563 }
7564 else
7565 {
7566 m->count = 1;
7567 m->sections[0] = s;
7568 }
7569
7570 /* We want to put it after the DYNAMIC segment. */
7571 pm = &elf_tdata (abfd)->segment_map;
7572 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7573 pm = &(*pm)->next;
7574 if (*pm != NULL)
7575 pm = &(*pm)->next;
7576
7577 m->next = *pm;
7578 *pm = m;
7579 }
7580 }
7581 }
8dc1a139 7582 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
7583 .dynstr, .dynsym, and .hash sections, and everything in
7584 between. */
7585 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7586 pm = &(*pm)->next)
7587 if ((*pm)->p_type == PT_DYNAMIC)
7588 break;
7589 m = *pm;
7590 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7591 {
7592 /* For a normal mips executable the permissions for the PT_DYNAMIC
7593 segment are read, write and execute. We do that here since
7594 the code in elf.c sets only the read permission. This matters
7595 sometimes for the dynamic linker. */
7596 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7597 {
7598 m->p_flags = PF_R | PF_W | PF_X;
7599 m->p_flags_valid = 1;
7600 }
7601 }
7602 if (m != NULL
7603 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7604 {
7605 static const char *sec_names[] =
7606 {
7607 ".dynamic", ".dynstr", ".dynsym", ".hash"
7608 };
7609 bfd_vma low, high;
7610 unsigned int i, c;
7611 struct elf_segment_map *n;
7612
7613 low = 0xffffffff;
7614 high = 0;
7615 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7616 {
7617 s = bfd_get_section_by_name (abfd, sec_names[i]);
7618 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7619 {
7620 bfd_size_type sz;
7621
7622 if (low > s->vma)
7623 low = s->vma;
7624 sz = s->_cooked_size;
7625 if (sz == 0)
7626 sz = s->_raw_size;
7627 if (high < s->vma + sz)
7628 high = s->vma + sz;
7629 }
7630 }
7631
7632 c = 0;
7633 for (s = abfd->sections; s != NULL; s = s->next)
7634 if ((s->flags & SEC_LOAD) != 0
7635 && s->vma >= low
7636 && ((s->vma
7637 + (s->_cooked_size !=
7638 0 ? s->_cooked_size : s->_raw_size)) <= high))
7639 ++c;
7640
7641 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7642 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7643 if (n == NULL)
b34976b6 7644 return FALSE;
b49e97c9
TS
7645 *n = *m;
7646 n->count = c;
7647
7648 i = 0;
7649 for (s = abfd->sections; s != NULL; s = s->next)
7650 {
7651 if ((s->flags & SEC_LOAD) != 0
7652 && s->vma >= low
7653 && ((s->vma
7654 + (s->_cooked_size != 0 ?
7655 s->_cooked_size : s->_raw_size)) <= high))
7656 {
7657 n->sections[i] = s;
7658 ++i;
7659 }
7660 }
7661
7662 *pm = n;
7663 }
7664 }
7665
b34976b6 7666 return TRUE;
b49e97c9
TS
7667}
7668\f
7669/* Return the section that should be marked against GC for a given
7670 relocation. */
7671
7672asection *
1e2f5b6e
AM
7673_bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7674 asection *sec;
b49e97c9
TS
7675 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7676 Elf_Internal_Rela *rel;
7677 struct elf_link_hash_entry *h;
7678 Elf_Internal_Sym *sym;
7679{
7680 /* ??? Do mips16 stub sections need to be handled special? */
7681
7682 if (h != NULL)
7683 {
1e2f5b6e 7684 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
7685 {
7686 case R_MIPS_GNU_VTINHERIT:
7687 case R_MIPS_GNU_VTENTRY:
7688 break;
7689
7690 default:
7691 switch (h->root.type)
7692 {
7693 case bfd_link_hash_defined:
7694 case bfd_link_hash_defweak:
7695 return h->root.u.def.section;
7696
7697 case bfd_link_hash_common:
7698 return h->root.u.c.p->section;
7699
7700 default:
7701 break;
7702 }
7703 }
7704 }
7705 else
1e2f5b6e 7706 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
7707
7708 return NULL;
7709}
7710
7711/* Update the got entry reference counts for the section being removed. */
7712
b34976b6 7713bfd_boolean
b49e97c9
TS
7714_bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7715 bfd *abfd ATTRIBUTE_UNUSED;
7716 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7717 asection *sec ATTRIBUTE_UNUSED;
7718 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7719{
7720#if 0
7721 Elf_Internal_Shdr *symtab_hdr;
7722 struct elf_link_hash_entry **sym_hashes;
7723 bfd_signed_vma *local_got_refcounts;
7724 const Elf_Internal_Rela *rel, *relend;
7725 unsigned long r_symndx;
7726 struct elf_link_hash_entry *h;
7727
7728 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7729 sym_hashes = elf_sym_hashes (abfd);
7730 local_got_refcounts = elf_local_got_refcounts (abfd);
7731
7732 relend = relocs + sec->reloc_count;
7733 for (rel = relocs; rel < relend; rel++)
7734 switch (ELF_R_TYPE (abfd, rel->r_info))
7735 {
7736 case R_MIPS_GOT16:
7737 case R_MIPS_CALL16:
7738 case R_MIPS_CALL_HI16:
7739 case R_MIPS_CALL_LO16:
7740 case R_MIPS_GOT_HI16:
7741 case R_MIPS_GOT_LO16:
4a14403c
TS
7742 case R_MIPS_GOT_DISP:
7743 case R_MIPS_GOT_PAGE:
7744 case R_MIPS_GOT_OFST:
b49e97c9
TS
7745 /* ??? It would seem that the existing MIPS code does no sort
7746 of reference counting or whatnot on its GOT and PLT entries,
7747 so it is not possible to garbage collect them at this time. */
7748 break;
7749
7750 default:
7751 break;
7752 }
7753#endif
7754
b34976b6 7755 return TRUE;
b49e97c9
TS
7756}
7757\f
7758/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7759 hiding the old indirect symbol. Process additional relocation
7760 information. Also called for weakdefs, in which case we just let
7761 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7762
7763void
b48fa14c
AM
7764_bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7765 struct elf_backend_data *bed;
b49e97c9
TS
7766 struct elf_link_hash_entry *dir, *ind;
7767{
7768 struct mips_elf_link_hash_entry *dirmips, *indmips;
7769
b48fa14c 7770 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
7771
7772 if (ind->root.type != bfd_link_hash_indirect)
7773 return;
7774
7775 dirmips = (struct mips_elf_link_hash_entry *) dir;
7776 indmips = (struct mips_elf_link_hash_entry *) ind;
7777 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7778 if (indmips->readonly_reloc)
b34976b6 7779 dirmips->readonly_reloc = TRUE;
b49e97c9
TS
7780 if (dirmips->min_dyn_reloc_index == 0
7781 || (indmips->min_dyn_reloc_index != 0
7782 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7783 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7784 if (indmips->no_fn_stub)
b34976b6 7785 dirmips->no_fn_stub = TRUE;
b49e97c9
TS
7786}
7787
7788void
7789_bfd_mips_elf_hide_symbol (info, entry, force_local)
7790 struct bfd_link_info *info;
7791 struct elf_link_hash_entry *entry;
b34976b6 7792 bfd_boolean force_local;
b49e97c9
TS
7793{
7794 bfd *dynobj;
7795 asection *got;
7796 struct mips_got_info *g;
7797 struct mips_elf_link_hash_entry *h;
7c5fcef7 7798
b49e97c9 7799 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
7800 if (h->forced_local)
7801 return;
4b555070 7802 h->forced_local = force_local;
7c5fcef7 7803
b49e97c9 7804 dynobj = elf_hash_table (info)->dynobj;
4b555070 7805 if (dynobj != NULL && force_local)
f4416af6 7806 {
c45a316a
AM
7807 got = mips_elf_got_section (dynobj, FALSE);
7808 g = mips_elf_section_data (got)->u.got_info;
f4416af6 7809
c45a316a
AM
7810 if (g->next)
7811 {
7812 struct mips_got_entry e;
7813 struct mips_got_info *gg = g;
7814
7815 /* Since we're turning what used to be a global symbol into a
7816 local one, bump up the number of local entries of each GOT
7817 that had an entry for it. This will automatically decrease
7818 the number of global entries, since global_gotno is actually
7819 the upper limit of global entries. */
7820 e.abfd = dynobj;
7821 e.symndx = -1;
7822 e.d.h = h;
7823
7824 for (g = g->next; g != gg; g = g->next)
7825 if (htab_find (g->got_entries, &e))
7826 {
7827 BFD_ASSERT (g->global_gotno > 0);
7828 g->local_gotno++;
7829 g->global_gotno--;
7830 }
b49e97c9 7831
c45a316a
AM
7832 /* If this was a global symbol forced into the primary GOT, we
7833 no longer need an entry for it. We can't release the entry
7834 at this point, but we must at least stop counting it as one
7835 of the symbols that required a forced got entry. */
7836 if (h->root.got.offset == 2)
7837 {
7838 BFD_ASSERT (gg->assigned_gotno > 0);
7839 gg->assigned_gotno--;
7840 }
7841 }
7842 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7843 /* If we haven't got through GOT allocation yet, just bump up the
7844 number of local entries, as this symbol won't be counted as
7845 global. */
7846 g->local_gotno++;
7847 else if (h->root.got.offset == 1)
f4416af6 7848 {
c45a316a
AM
7849 /* If we're past non-multi-GOT allocation and this symbol had
7850 been marked for a global got entry, give it a local entry
7851 instead. */
7852 BFD_ASSERT (g->global_gotno > 0);
7853 g->local_gotno++;
7854 g->global_gotno--;
f4416af6
AO
7855 }
7856 }
f4416af6
AO
7857
7858 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
7859}
7860\f
d01414a5
TS
7861#define PDR_SIZE 32
7862
b34976b6 7863bfd_boolean
d01414a5
TS
7864_bfd_mips_elf_discard_info (abfd, cookie, info)
7865 bfd *abfd;
7866 struct elf_reloc_cookie *cookie;
7867 struct bfd_link_info *info;
7868{
7869 asection *o;
b34976b6 7870 bfd_boolean ret = FALSE;
d01414a5
TS
7871 unsigned char *tdata;
7872 size_t i, skip;
7873
7874 o = bfd_get_section_by_name (abfd, ".pdr");
7875 if (! o)
b34976b6 7876 return FALSE;
d01414a5 7877 if (o->_raw_size == 0)
b34976b6 7878 return FALSE;
d01414a5 7879 if (o->_raw_size % PDR_SIZE != 0)
b34976b6 7880 return FALSE;
d01414a5
TS
7881 if (o->output_section != NULL
7882 && bfd_is_abs_section (o->output_section))
b34976b6 7883 return FALSE;
d01414a5
TS
7884
7885 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7886 if (! tdata)
b34976b6 7887 return FALSE;
d01414a5 7888
45d6a902
AM
7889 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
7890 (Elf_Internal_Rela *) NULL,
7891 info->keep_memory);
d01414a5
TS
7892 if (!cookie->rels)
7893 {
7894 free (tdata);
b34976b6 7895 return FALSE;
d01414a5
TS
7896 }
7897
7898 cookie->rel = cookie->rels;
7899 cookie->relend = cookie->rels + o->reloc_count;
7900
c9c27aad 7901 for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++)
d01414a5 7902 {
ee6423ed 7903 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
d01414a5
TS
7904 {
7905 tdata[i] = 1;
7906 skip ++;
7907 }
7908 }
7909
7910 if (skip != 0)
7911 {
f0abc2a1 7912 mips_elf_section_data (o)->u.tdata = tdata;
d01414a5 7913 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
b34976b6 7914 ret = TRUE;
d01414a5
TS
7915 }
7916 else
7917 free (tdata);
7918
7919 if (! info->keep_memory)
7920 free (cookie->rels);
7921
7922 return ret;
7923}
7924
b34976b6 7925bfd_boolean
53bfd6b4
MR
7926_bfd_mips_elf_ignore_discarded_relocs (sec)
7927 asection *sec;
7928{
7929 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
7930 return TRUE;
7931 return FALSE;
53bfd6b4 7932}
d01414a5 7933
b34976b6 7934bfd_boolean
d01414a5
TS
7935_bfd_mips_elf_write_section (output_bfd, sec, contents)
7936 bfd *output_bfd;
7937 asection *sec;
7938 bfd_byte *contents;
7939{
7940 bfd_byte *to, *from, *end;
7941 int i;
7942
7943 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 7944 return FALSE;
d01414a5 7945
f0abc2a1 7946 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 7947 return FALSE;
d01414a5
TS
7948
7949 to = contents;
7950 end = contents + sec->_raw_size;
7951 for (from = contents, i = 0;
7952 from < end;
7953 from += PDR_SIZE, i++)
7954 {
f0abc2a1 7955 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
7956 continue;
7957 if (to != from)
7958 memcpy (to, from, PDR_SIZE);
7959 to += PDR_SIZE;
7960 }
7961 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7962 (file_ptr) sec->output_offset,
7963 sec->_cooked_size);
b34976b6 7964 return TRUE;
d01414a5 7965}
53bfd6b4 7966\f
b49e97c9
TS
7967/* MIPS ELF uses a special find_nearest_line routine in order the
7968 handle the ECOFF debugging information. */
7969
7970struct mips_elf_find_line
7971{
7972 struct ecoff_debug_info d;
7973 struct ecoff_find_line i;
7974};
7975
b34976b6 7976bfd_boolean
b49e97c9
TS
7977_bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7978 functionname_ptr, line_ptr)
7979 bfd *abfd;
7980 asection *section;
7981 asymbol **symbols;
7982 bfd_vma offset;
7983 const char **filename_ptr;
7984 const char **functionname_ptr;
7985 unsigned int *line_ptr;
7986{
7987 asection *msec;
7988
7989 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7990 filename_ptr, functionname_ptr,
7991 line_ptr))
b34976b6 7992 return TRUE;
b49e97c9
TS
7993
7994 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7995 filename_ptr, functionname_ptr,
7996 line_ptr,
7997 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7998 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 7999 return TRUE;
b49e97c9
TS
8000
8001 msec = bfd_get_section_by_name (abfd, ".mdebug");
8002 if (msec != NULL)
8003 {
8004 flagword origflags;
8005 struct mips_elf_find_line *fi;
8006 const struct ecoff_debug_swap * const swap =
8007 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8008
8009 /* If we are called during a link, mips_elf_final_link may have
8010 cleared the SEC_HAS_CONTENTS field. We force it back on here
8011 if appropriate (which it normally will be). */
8012 origflags = msec->flags;
8013 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
8014 msec->flags |= SEC_HAS_CONTENTS;
8015
8016 fi = elf_tdata (abfd)->find_line_info;
8017 if (fi == NULL)
8018 {
8019 bfd_size_type external_fdr_size;
8020 char *fraw_src;
8021 char *fraw_end;
8022 struct fdr *fdr_ptr;
8023 bfd_size_type amt = sizeof (struct mips_elf_find_line);
8024
8025 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
8026 if (fi == NULL)
8027 {
8028 msec->flags = origflags;
b34976b6 8029 return FALSE;
b49e97c9
TS
8030 }
8031
8032 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8033 {
8034 msec->flags = origflags;
b34976b6 8035 return FALSE;
b49e97c9
TS
8036 }
8037
8038 /* Swap in the FDR information. */
8039 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
8040 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
8041 if (fi->d.fdr == NULL)
8042 {
8043 msec->flags = origflags;
b34976b6 8044 return FALSE;
b49e97c9
TS
8045 }
8046 external_fdr_size = swap->external_fdr_size;
8047 fdr_ptr = fi->d.fdr;
8048 fraw_src = (char *) fi->d.external_fdr;
8049 fraw_end = (fraw_src
8050 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8051 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
8052 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
8053
8054 elf_tdata (abfd)->find_line_info = fi;
8055
8056 /* Note that we don't bother to ever free this information.
8057 find_nearest_line is either called all the time, as in
8058 objdump -l, so the information should be saved, or it is
8059 rarely called, as in ld error messages, so the memory
8060 wasted is unimportant. Still, it would probably be a
8061 good idea for free_cached_info to throw it away. */
8062 }
8063
8064 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8065 &fi->i, filename_ptr, functionname_ptr,
8066 line_ptr))
8067 {
8068 msec->flags = origflags;
b34976b6 8069 return TRUE;
b49e97c9
TS
8070 }
8071
8072 msec->flags = origflags;
8073 }
8074
8075 /* Fall back on the generic ELF find_nearest_line routine. */
8076
8077 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8078 filename_ptr, functionname_ptr,
8079 line_ptr);
8080}
8081\f
8082/* When are writing out the .options or .MIPS.options section,
8083 remember the bytes we are writing out, so that we can install the
8084 GP value in the section_processing routine. */
8085
b34976b6 8086bfd_boolean
b49e97c9
TS
8087_bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
8088 bfd *abfd;
8089 sec_ptr section;
8090 PTR location;
8091 file_ptr offset;
8092 bfd_size_type count;
8093{
8094 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8095 {
8096 bfd_byte *c;
8097
8098 if (elf_section_data (section) == NULL)
8099 {
8100 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
8101 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
8102 if (elf_section_data (section) == NULL)
b34976b6 8103 return FALSE;
b49e97c9 8104 }
f0abc2a1 8105 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
8106 if (c == NULL)
8107 {
8108 bfd_size_type size;
8109
8110 if (section->_cooked_size != 0)
8111 size = section->_cooked_size;
8112 else
8113 size = section->_raw_size;
8114 c = (bfd_byte *) bfd_zalloc (abfd, size);
8115 if (c == NULL)
b34976b6 8116 return FALSE;
f0abc2a1 8117 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
8118 }
8119
8120 memcpy (c + offset, location, (size_t) count);
8121 }
8122
8123 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8124 count);
8125}
8126
8127/* This is almost identical to bfd_generic_get_... except that some
8128 MIPS relocations need to be handled specially. Sigh. */
8129
8130bfd_byte *
8131_bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
1049f94e 8132 data, relocatable, symbols)
b49e97c9
TS
8133 bfd *abfd;
8134 struct bfd_link_info *link_info;
8135 struct bfd_link_order *link_order;
8136 bfd_byte *data;
1049f94e 8137 bfd_boolean relocatable;
b49e97c9
TS
8138 asymbol **symbols;
8139{
8140 /* Get enough memory to hold the stuff */
8141 bfd *input_bfd = link_order->u.indirect.section->owner;
8142 asection *input_section = link_order->u.indirect.section;
8143
8144 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8145 arelent **reloc_vector = NULL;
8146 long reloc_count;
8147
8148 if (reloc_size < 0)
8149 goto error_return;
8150
8151 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
8152 if (reloc_vector == NULL && reloc_size != 0)
8153 goto error_return;
8154
8155 /* read in the section */
8156 if (!bfd_get_section_contents (input_bfd,
8157 input_section,
8158 (PTR) data,
8159 (file_ptr) 0,
8160 input_section->_raw_size))
8161 goto error_return;
8162
8163 /* We're not relaxing the section, so just copy the size info */
8164 input_section->_cooked_size = input_section->_raw_size;
b34976b6 8165 input_section->reloc_done = TRUE;
b49e97c9
TS
8166
8167 reloc_count = bfd_canonicalize_reloc (input_bfd,
8168 input_section,
8169 reloc_vector,
8170 symbols);
8171 if (reloc_count < 0)
8172 goto error_return;
8173
8174 if (reloc_count > 0)
8175 {
8176 arelent **parent;
8177 /* for mips */
8178 int gp_found;
8179 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8180
8181 {
8182 struct bfd_hash_entry *h;
8183 struct bfd_link_hash_entry *lh;
8184 /* Skip all this stuff if we aren't mixing formats. */
8185 if (abfd && input_bfd
8186 && abfd->xvec == input_bfd->xvec)
8187 lh = 0;
8188 else
8189 {
b34976b6 8190 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
8191 lh = (struct bfd_link_hash_entry *) h;
8192 }
8193 lookup:
8194 if (lh)
8195 {
8196 switch (lh->type)
8197 {
8198 case bfd_link_hash_undefined:
8199 case bfd_link_hash_undefweak:
8200 case bfd_link_hash_common:
8201 gp_found = 0;
8202 break;
8203 case bfd_link_hash_defined:
8204 case bfd_link_hash_defweak:
8205 gp_found = 1;
8206 gp = lh->u.def.value;
8207 break;
8208 case bfd_link_hash_indirect:
8209 case bfd_link_hash_warning:
8210 lh = lh->u.i.link;
8211 /* @@FIXME ignoring warning for now */
8212 goto lookup;
8213 case bfd_link_hash_new:
8214 default:
8215 abort ();
8216 }
8217 }
8218 else
8219 gp_found = 0;
8220 }
8221 /* end mips */
8222 for (parent = reloc_vector; *parent != (arelent *) NULL;
8223 parent++)
8224 {
8225 char *error_message = (char *) NULL;
8226 bfd_reloc_status_type r;
8227
8228 /* Specific to MIPS: Deal with relocation types that require
8229 knowing the gp of the output bfd. */
8230 asymbol *sym = *(*parent)->sym_ptr_ptr;
8231 if (bfd_is_abs_section (sym->section) && abfd)
8232 {
44c410de 8233 /* The special_function wouldn't get called anyway. */
b49e97c9
TS
8234 }
8235 else if (!gp_found)
8236 {
8237 /* The gp isn't there; let the special function code
8238 fall over on its own. */
8239 }
8240 else if ((*parent)->howto->special_function
8241 == _bfd_mips_elf32_gprel16_reloc)
8242 {
8243 /* bypass special_function call */
8244 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
1049f94e 8245 input_section, relocatable,
b49e97c9
TS
8246 (PTR) data, gp);
8247 goto skip_bfd_perform_relocation;
8248 }
8249 /* end mips specific stuff */
8250
8251 r = bfd_perform_relocation (input_bfd,
8252 *parent,
8253 (PTR) data,
8254 input_section,
1049f94e 8255 relocatable ? abfd : (bfd *) NULL,
b49e97c9
TS
8256 &error_message);
8257 skip_bfd_perform_relocation:
8258
1049f94e 8259 if (relocatable)
b49e97c9
TS
8260 {
8261 asection *os = input_section->output_section;
8262
8263 /* A partial link, so keep the relocs */
8264 os->orelocation[os->reloc_count] = *parent;
8265 os->reloc_count++;
8266 }
8267
8268 if (r != bfd_reloc_ok)
8269 {
8270 switch (r)
8271 {
8272 case bfd_reloc_undefined:
8273 if (!((*link_info->callbacks->undefined_symbol)
8274 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8275 input_bfd, input_section, (*parent)->address,
b34976b6 8276 TRUE)))
b49e97c9
TS
8277 goto error_return;
8278 break;
8279 case bfd_reloc_dangerous:
8280 BFD_ASSERT (error_message != (char *) NULL);
8281 if (!((*link_info->callbacks->reloc_dangerous)
8282 (link_info, error_message, input_bfd, input_section,
8283 (*parent)->address)))
8284 goto error_return;
8285 break;
8286 case bfd_reloc_overflow:
8287 if (!((*link_info->callbacks->reloc_overflow)
8288 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8289 (*parent)->howto->name, (*parent)->addend,
8290 input_bfd, input_section, (*parent)->address)))
8291 goto error_return;
8292 break;
8293 case bfd_reloc_outofrange:
8294 default:
8295 abort ();
8296 break;
8297 }
8298
8299 }
8300 }
8301 }
8302 if (reloc_vector != NULL)
8303 free (reloc_vector);
8304 return data;
8305
8306error_return:
8307 if (reloc_vector != NULL)
8308 free (reloc_vector);
8309 return NULL;
8310}
8311\f
8312/* Create a MIPS ELF linker hash table. */
8313
8314struct bfd_link_hash_table *
8315_bfd_mips_elf_link_hash_table_create (abfd)
8316 bfd *abfd;
8317{
8318 struct mips_elf_link_hash_table *ret;
8319 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8320
e2d34d7d 8321 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
b49e97c9
TS
8322 if (ret == (struct mips_elf_link_hash_table *) NULL)
8323 return NULL;
8324
8325 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8326 mips_elf_link_hash_newfunc))
8327 {
e2d34d7d 8328 free (ret);
b49e97c9
TS
8329 return NULL;
8330 }
8331
8332#if 0
8333 /* We no longer use this. */
8334 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8335 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8336#endif
8337 ret->procedure_count = 0;
8338 ret->compact_rel_size = 0;
b34976b6 8339 ret->use_rld_obj_head = FALSE;
b49e97c9 8340 ret->rld_value = 0;
b34976b6 8341 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8342
8343 return &ret->root.root;
8344}
8345\f
8346/* We need to use a special link routine to handle the .reginfo and
8347 the .mdebug sections. We need to merge all instances of these
8348 sections together, not write them all out sequentially. */
8349
b34976b6 8350bfd_boolean
b49e97c9
TS
8351_bfd_mips_elf_final_link (abfd, info)
8352 bfd *abfd;
8353 struct bfd_link_info *info;
8354{
8355 asection **secpp;
8356 asection *o;
8357 struct bfd_link_order *p;
8358 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8359 asection *rtproc_sec;
8360 Elf32_RegInfo reginfo;
8361 struct ecoff_debug_info debug;
8362 const struct ecoff_debug_swap *swap
8363 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8364 HDRR *symhdr = &debug.symbolic_header;
8365 PTR mdebug_handle = NULL;
8366 asection *s;
8367 EXTR esym;
8368 unsigned int i;
8369 bfd_size_type amt;
8370
8371 static const char * const secname[] =
8372 {
8373 ".text", ".init", ".fini", ".data",
8374 ".rodata", ".sdata", ".sbss", ".bss"
8375 };
8376 static const int sc[] =
8377 {
8378 scText, scInit, scFini, scData,
8379 scRData, scSData, scSBss, scBss
8380 };
8381
b49e97c9
TS
8382 /* We'd carefully arranged the dynamic symbol indices, and then the
8383 generic size_dynamic_sections renumbered them out from under us.
8384 Rather than trying somehow to prevent the renumbering, just do
8385 the sort again. */
8386 if (elf_hash_table (info)->dynamic_sections_created)
8387 {
8388 bfd *dynobj;
8389 asection *got;
8390 struct mips_got_info *g;
8391
8392 /* When we resort, we must tell mips_elf_sort_hash_table what
8393 the lowest index it may use is. That's the number of section
8394 symbols we're going to add. The generic ELF linker only
8395 adds these symbols when building a shared object. Note that
8396 we count the sections after (possibly) removing the .options
8397 section above. */
8398 if (! mips_elf_sort_hash_table (info, (info->shared
8399 ? bfd_count_sections (abfd) + 1
8400 : 1)))
b34976b6 8401 return FALSE;
b49e97c9
TS
8402
8403 /* Make sure we didn't grow the global .got region. */
8404 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8405 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8406 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8407
8408 if (g->global_gotsym != NULL)
8409 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8410 - g->global_gotsym->dynindx)
8411 <= g->global_gotno);
8412 }
8413
a902ee94
SC
8414#if 0
8415 /* We want to set the GP value for ld -r. */
b49e97c9
TS
8416 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8417 include it, even though we don't process it quite right. (Some
8418 entries are supposed to be merged.) Empirically, we seem to be
8419 better off including it then not. */
8420 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8421 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8422 {
8423 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8424 {
8425 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8426 if (p->type == bfd_indirect_link_order)
8427 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8428 (*secpp)->link_order_head = NULL;
8429 bfd_section_list_remove (abfd, secpp);
8430 --abfd->section_count;
8431
8432 break;
8433 }
8434 }
8435
8436 /* We include .MIPS.options, even though we don't process it quite right.
8437 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8438 to be better off including it than not. */
8439 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8440 {
8441 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8442 {
8443 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8444 if (p->type == bfd_indirect_link_order)
8445 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8446 (*secpp)->link_order_head = NULL;
8447 bfd_section_list_remove (abfd, secpp);
8448 --abfd->section_count;
b34976b6 8449
b49e97c9
TS
8450 break;
8451 }
8452 }
a902ee94 8453#endif
b49e97c9
TS
8454
8455 /* Get a value for the GP register. */
8456 if (elf_gp (abfd) == 0)
8457 {
8458 struct bfd_link_hash_entry *h;
8459
b34976b6 8460 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
b49e97c9
TS
8461 if (h != (struct bfd_link_hash_entry *) NULL
8462 && h->type == bfd_link_hash_defined)
8463 elf_gp (abfd) = (h->u.def.value
8464 + h->u.def.section->output_section->vma
8465 + h->u.def.section->output_offset);
1049f94e 8466 else if (info->relocatable)
b49e97c9
TS
8467 {
8468 bfd_vma lo = MINUS_ONE;
8469
8470 /* Find the GP-relative section with the lowest offset. */
8471 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8472 if (o->vma < lo
8473 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8474 lo = o->vma;
8475
8476 /* And calculate GP relative to that. */
8477 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8478 }
8479 else
8480 {
8481 /* If the relocate_section function needs to do a reloc
8482 involving the GP value, it should make a reloc_dangerous
8483 callback to warn that GP is not defined. */
8484 }
8485 }
8486
8487 /* Go through the sections and collect the .reginfo and .mdebug
8488 information. */
8489 reginfo_sec = NULL;
8490 mdebug_sec = NULL;
8491 gptab_data_sec = NULL;
8492 gptab_bss_sec = NULL;
8493 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8494 {
8495 if (strcmp (o->name, ".reginfo") == 0)
8496 {
8497 memset (&reginfo, 0, sizeof reginfo);
8498
8499 /* We have found the .reginfo section in the output file.
8500 Look through all the link_orders comprising it and merge
8501 the information together. */
8502 for (p = o->link_order_head;
8503 p != (struct bfd_link_order *) NULL;
8504 p = p->next)
8505 {
8506 asection *input_section;
8507 bfd *input_bfd;
8508 Elf32_External_RegInfo ext;
8509 Elf32_RegInfo sub;
8510
8511 if (p->type != bfd_indirect_link_order)
8512 {
8513 if (p->type == bfd_data_link_order)
8514 continue;
8515 abort ();
8516 }
8517
8518 input_section = p->u.indirect.section;
8519 input_bfd = input_section->owner;
8520
8521 /* The linker emulation code has probably clobbered the
8522 size to be zero bytes. */
8523 if (input_section->_raw_size == 0)
8524 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8525
8526 if (! bfd_get_section_contents (input_bfd, input_section,
8527 (PTR) &ext,
8528 (file_ptr) 0,
8529 (bfd_size_type) sizeof ext))
b34976b6 8530 return FALSE;
b49e97c9
TS
8531
8532 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8533
8534 reginfo.ri_gprmask |= sub.ri_gprmask;
8535 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8536 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8537 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8538 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8539
8540 /* ri_gp_value is set by the function
8541 mips_elf32_section_processing when the section is
8542 finally written out. */
8543
8544 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8545 elf_link_input_bfd ignores this section. */
8546 input_section->flags &= ~SEC_HAS_CONTENTS;
8547 }
8548
8549 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8550 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8551
8552 /* Skip this section later on (I don't think this currently
8553 matters, but someday it might). */
8554 o->link_order_head = (struct bfd_link_order *) NULL;
8555
8556 reginfo_sec = o;
8557 }
8558
8559 if (strcmp (o->name, ".mdebug") == 0)
8560 {
8561 struct extsym_info einfo;
8562 bfd_vma last;
8563
8564 /* We have found the .mdebug section in the output file.
8565 Look through all the link_orders comprising it and merge
8566 the information together. */
8567 symhdr->magic = swap->sym_magic;
8568 /* FIXME: What should the version stamp be? */
8569 symhdr->vstamp = 0;
8570 symhdr->ilineMax = 0;
8571 symhdr->cbLine = 0;
8572 symhdr->idnMax = 0;
8573 symhdr->ipdMax = 0;
8574 symhdr->isymMax = 0;
8575 symhdr->ioptMax = 0;
8576 symhdr->iauxMax = 0;
8577 symhdr->issMax = 0;
8578 symhdr->issExtMax = 0;
8579 symhdr->ifdMax = 0;
8580 symhdr->crfd = 0;
8581 symhdr->iextMax = 0;
8582
8583 /* We accumulate the debugging information itself in the
8584 debug_info structure. */
8585 debug.line = NULL;
8586 debug.external_dnr = NULL;
8587 debug.external_pdr = NULL;
8588 debug.external_sym = NULL;
8589 debug.external_opt = NULL;
8590 debug.external_aux = NULL;
8591 debug.ss = NULL;
8592 debug.ssext = debug.ssext_end = NULL;
8593 debug.external_fdr = NULL;
8594 debug.external_rfd = NULL;
8595 debug.external_ext = debug.external_ext_end = NULL;
8596
8597 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8598 if (mdebug_handle == (PTR) NULL)
b34976b6 8599 return FALSE;
b49e97c9
TS
8600
8601 esym.jmptbl = 0;
8602 esym.cobol_main = 0;
8603 esym.weakext = 0;
8604 esym.reserved = 0;
8605 esym.ifd = ifdNil;
8606 esym.asym.iss = issNil;
8607 esym.asym.st = stLocal;
8608 esym.asym.reserved = 0;
8609 esym.asym.index = indexNil;
8610 last = 0;
8611 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8612 {
8613 esym.asym.sc = sc[i];
8614 s = bfd_get_section_by_name (abfd, secname[i]);
8615 if (s != NULL)
8616 {
8617 esym.asym.value = s->vma;
8618 last = s->vma + s->_raw_size;
8619 }
8620 else
8621 esym.asym.value = last;
8622 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8623 secname[i], &esym))
b34976b6 8624 return FALSE;
b49e97c9
TS
8625 }
8626
8627 for (p = o->link_order_head;
8628 p != (struct bfd_link_order *) NULL;
8629 p = p->next)
8630 {
8631 asection *input_section;
8632 bfd *input_bfd;
8633 const struct ecoff_debug_swap *input_swap;
8634 struct ecoff_debug_info input_debug;
8635 char *eraw_src;
8636 char *eraw_end;
8637
8638 if (p->type != bfd_indirect_link_order)
8639 {
8640 if (p->type == bfd_data_link_order)
8641 continue;
8642 abort ();
8643 }
8644
8645 input_section = p->u.indirect.section;
8646 input_bfd = input_section->owner;
8647
8648 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8649 || (get_elf_backend_data (input_bfd)
8650 ->elf_backend_ecoff_debug_swap) == NULL)
8651 {
8652 /* I don't know what a non MIPS ELF bfd would be
8653 doing with a .mdebug section, but I don't really
8654 want to deal with it. */
8655 continue;
8656 }
8657
8658 input_swap = (get_elf_backend_data (input_bfd)
8659 ->elf_backend_ecoff_debug_swap);
8660
8661 BFD_ASSERT (p->size == input_section->_raw_size);
8662
8663 /* The ECOFF linking code expects that we have already
8664 read in the debugging information and set up an
8665 ecoff_debug_info structure, so we do that now. */
8666 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8667 &input_debug))
b34976b6 8668 return FALSE;
b49e97c9
TS
8669
8670 if (! (bfd_ecoff_debug_accumulate
8671 (mdebug_handle, abfd, &debug, swap, input_bfd,
8672 &input_debug, input_swap, info)))
b34976b6 8673 return FALSE;
b49e97c9
TS
8674
8675 /* Loop through the external symbols. For each one with
8676 interesting information, try to find the symbol in
8677 the linker global hash table and save the information
8678 for the output external symbols. */
8679 eraw_src = input_debug.external_ext;
8680 eraw_end = (eraw_src
8681 + (input_debug.symbolic_header.iextMax
8682 * input_swap->external_ext_size));
8683 for (;
8684 eraw_src < eraw_end;
8685 eraw_src += input_swap->external_ext_size)
8686 {
8687 EXTR ext;
8688 const char *name;
8689 struct mips_elf_link_hash_entry *h;
8690
8691 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8692 if (ext.asym.sc == scNil
8693 || ext.asym.sc == scUndefined
8694 || ext.asym.sc == scSUndefined)
8695 continue;
8696
8697 name = input_debug.ssext + ext.asym.iss;
8698 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 8699 name, FALSE, FALSE, TRUE);
b49e97c9
TS
8700 if (h == NULL || h->esym.ifd != -2)
8701 continue;
8702
8703 if (ext.ifd != -1)
8704 {
8705 BFD_ASSERT (ext.ifd
8706 < input_debug.symbolic_header.ifdMax);
8707 ext.ifd = input_debug.ifdmap[ext.ifd];
8708 }
8709
8710 h->esym = ext;
8711 }
8712
8713 /* Free up the information we just read. */
8714 free (input_debug.line);
8715 free (input_debug.external_dnr);
8716 free (input_debug.external_pdr);
8717 free (input_debug.external_sym);
8718 free (input_debug.external_opt);
8719 free (input_debug.external_aux);
8720 free (input_debug.ss);
8721 free (input_debug.ssext);
8722 free (input_debug.external_fdr);
8723 free (input_debug.external_rfd);
8724 free (input_debug.external_ext);
8725
8726 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8727 elf_link_input_bfd ignores this section. */
8728 input_section->flags &= ~SEC_HAS_CONTENTS;
8729 }
8730
8731 if (SGI_COMPAT (abfd) && info->shared)
8732 {
8733 /* Create .rtproc section. */
8734 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8735 if (rtproc_sec == NULL)
8736 {
8737 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8738 | SEC_LINKER_CREATED | SEC_READONLY);
8739
8740 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8741 if (rtproc_sec == NULL
8742 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8743 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 8744 return FALSE;
b49e97c9
TS
8745 }
8746
8747 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8748 info, rtproc_sec,
8749 &debug))
b34976b6 8750 return FALSE;
b49e97c9
TS
8751 }
8752
8753 /* Build the external symbol information. */
8754 einfo.abfd = abfd;
8755 einfo.info = info;
8756 einfo.debug = &debug;
8757 einfo.swap = swap;
b34976b6 8758 einfo.failed = FALSE;
b49e97c9
TS
8759 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8760 mips_elf_output_extsym,
8761 (PTR) &einfo);
8762 if (einfo.failed)
b34976b6 8763 return FALSE;
b49e97c9
TS
8764
8765 /* Set the size of the .mdebug section. */
8766 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8767
8768 /* Skip this section later on (I don't think this currently
8769 matters, but someday it might). */
8770 o->link_order_head = (struct bfd_link_order *) NULL;
8771
8772 mdebug_sec = o;
8773 }
8774
8775 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8776 {
8777 const char *subname;
8778 unsigned int c;
8779 Elf32_gptab *tab;
8780 Elf32_External_gptab *ext_tab;
8781 unsigned int j;
8782
8783 /* The .gptab.sdata and .gptab.sbss sections hold
8784 information describing how the small data area would
8785 change depending upon the -G switch. These sections
8786 not used in executables files. */
1049f94e 8787 if (! info->relocatable)
b49e97c9
TS
8788 {
8789 for (p = o->link_order_head;
8790 p != (struct bfd_link_order *) NULL;
8791 p = p->next)
8792 {
8793 asection *input_section;
8794
8795 if (p->type != bfd_indirect_link_order)
8796 {
8797 if (p->type == bfd_data_link_order)
8798 continue;
8799 abort ();
8800 }
8801
8802 input_section = p->u.indirect.section;
8803
8804 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8805 elf_link_input_bfd ignores this section. */
8806 input_section->flags &= ~SEC_HAS_CONTENTS;
8807 }
8808
8809 /* Skip this section later on (I don't think this
8810 currently matters, but someday it might). */
8811 o->link_order_head = (struct bfd_link_order *) NULL;
8812
8813 /* Really remove the section. */
8814 for (secpp = &abfd->sections;
8815 *secpp != o;
8816 secpp = &(*secpp)->next)
8817 ;
8818 bfd_section_list_remove (abfd, secpp);
8819 --abfd->section_count;
8820
8821 continue;
8822 }
8823
8824 /* There is one gptab for initialized data, and one for
8825 uninitialized data. */
8826 if (strcmp (o->name, ".gptab.sdata") == 0)
8827 gptab_data_sec = o;
8828 else if (strcmp (o->name, ".gptab.sbss") == 0)
8829 gptab_bss_sec = o;
8830 else
8831 {
8832 (*_bfd_error_handler)
8833 (_("%s: illegal section name `%s'"),
8834 bfd_get_filename (abfd), o->name);
8835 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 8836 return FALSE;
b49e97c9
TS
8837 }
8838
8839 /* The linker script always combines .gptab.data and
8840 .gptab.sdata into .gptab.sdata, and likewise for
8841 .gptab.bss and .gptab.sbss. It is possible that there is
8842 no .sdata or .sbss section in the output file, in which
8843 case we must change the name of the output section. */
8844 subname = o->name + sizeof ".gptab" - 1;
8845 if (bfd_get_section_by_name (abfd, subname) == NULL)
8846 {
8847 if (o == gptab_data_sec)
8848 o->name = ".gptab.data";
8849 else
8850 o->name = ".gptab.bss";
8851 subname = o->name + sizeof ".gptab" - 1;
8852 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8853 }
8854
8855 /* Set up the first entry. */
8856 c = 1;
8857 amt = c * sizeof (Elf32_gptab);
8858 tab = (Elf32_gptab *) bfd_malloc (amt);
8859 if (tab == NULL)
b34976b6 8860 return FALSE;
b49e97c9
TS
8861 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8862 tab[0].gt_header.gt_unused = 0;
8863
8864 /* Combine the input sections. */
8865 for (p = o->link_order_head;
8866 p != (struct bfd_link_order *) NULL;
8867 p = p->next)
8868 {
8869 asection *input_section;
8870 bfd *input_bfd;
8871 bfd_size_type size;
8872 unsigned long last;
8873 bfd_size_type gpentry;
8874
8875 if (p->type != bfd_indirect_link_order)
8876 {
8877 if (p->type == bfd_data_link_order)
8878 continue;
8879 abort ();
8880 }
8881
8882 input_section = p->u.indirect.section;
8883 input_bfd = input_section->owner;
8884
8885 /* Combine the gptab entries for this input section one
8886 by one. We know that the input gptab entries are
8887 sorted by ascending -G value. */
8888 size = bfd_section_size (input_bfd, input_section);
8889 last = 0;
8890 for (gpentry = sizeof (Elf32_External_gptab);
8891 gpentry < size;
8892 gpentry += sizeof (Elf32_External_gptab))
8893 {
8894 Elf32_External_gptab ext_gptab;
8895 Elf32_gptab int_gptab;
8896 unsigned long val;
8897 unsigned long add;
b34976b6 8898 bfd_boolean exact;
b49e97c9
TS
8899 unsigned int look;
8900
8901 if (! (bfd_get_section_contents
8902 (input_bfd, input_section, (PTR) &ext_gptab,
8903 (file_ptr) gpentry,
8904 (bfd_size_type) sizeof (Elf32_External_gptab))))
8905 {
8906 free (tab);
b34976b6 8907 return FALSE;
b49e97c9
TS
8908 }
8909
8910 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8911 &int_gptab);
8912 val = int_gptab.gt_entry.gt_g_value;
8913 add = int_gptab.gt_entry.gt_bytes - last;
8914
b34976b6 8915 exact = FALSE;
b49e97c9
TS
8916 for (look = 1; look < c; look++)
8917 {
8918 if (tab[look].gt_entry.gt_g_value >= val)
8919 tab[look].gt_entry.gt_bytes += add;
8920
8921 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 8922 exact = TRUE;
b49e97c9
TS
8923 }
8924
8925 if (! exact)
8926 {
8927 Elf32_gptab *new_tab;
8928 unsigned int max;
8929
8930 /* We need a new table entry. */
8931 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8932 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8933 if (new_tab == NULL)
8934 {
8935 free (tab);
b34976b6 8936 return FALSE;
b49e97c9
TS
8937 }
8938 tab = new_tab;
8939 tab[c].gt_entry.gt_g_value = val;
8940 tab[c].gt_entry.gt_bytes = add;
8941
8942 /* Merge in the size for the next smallest -G
8943 value, since that will be implied by this new
8944 value. */
8945 max = 0;
8946 for (look = 1; look < c; look++)
8947 {
8948 if (tab[look].gt_entry.gt_g_value < val
8949 && (max == 0
8950 || (tab[look].gt_entry.gt_g_value
8951 > tab[max].gt_entry.gt_g_value)))
8952 max = look;
8953 }
8954 if (max != 0)
8955 tab[c].gt_entry.gt_bytes +=
8956 tab[max].gt_entry.gt_bytes;
8957
8958 ++c;
8959 }
8960
8961 last = int_gptab.gt_entry.gt_bytes;
8962 }
8963
8964 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8965 elf_link_input_bfd ignores this section. */
8966 input_section->flags &= ~SEC_HAS_CONTENTS;
8967 }
8968
8969 /* The table must be sorted by -G value. */
8970 if (c > 2)
8971 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8972
8973 /* Swap out the table. */
8974 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8975 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8976 if (ext_tab == NULL)
8977 {
8978 free (tab);
b34976b6 8979 return FALSE;
b49e97c9
TS
8980 }
8981
8982 for (j = 0; j < c; j++)
8983 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8984 free (tab);
8985
8986 o->_raw_size = c * sizeof (Elf32_External_gptab);
8987 o->contents = (bfd_byte *) ext_tab;
8988
8989 /* Skip this section later on (I don't think this currently
8990 matters, but someday it might). */
8991 o->link_order_head = (struct bfd_link_order *) NULL;
8992 }
8993 }
8994
8995 /* Invoke the regular ELF backend linker to do all the work. */
ee6423ed 8996 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
b34976b6 8997 return FALSE;
b49e97c9
TS
8998
8999 /* Now write out the computed sections. */
9000
9001 if (reginfo_sec != (asection *) NULL)
9002 {
9003 Elf32_External_RegInfo ext;
9004
9005 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9006 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
9007 (file_ptr) 0,
9008 (bfd_size_type) sizeof ext))
b34976b6 9009 return FALSE;
b49e97c9
TS
9010 }
9011
9012 if (mdebug_sec != (asection *) NULL)
9013 {
9014 BFD_ASSERT (abfd->output_has_begun);
9015 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
9016 swap, info,
9017 mdebug_sec->filepos))
b34976b6 9018 return FALSE;
b49e97c9
TS
9019
9020 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9021 }
9022
9023 if (gptab_data_sec != (asection *) NULL)
9024 {
9025 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9026 gptab_data_sec->contents,
9027 (file_ptr) 0,
9028 gptab_data_sec->_raw_size))
b34976b6 9029 return FALSE;
b49e97c9
TS
9030 }
9031
9032 if (gptab_bss_sec != (asection *) NULL)
9033 {
9034 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9035 gptab_bss_sec->contents,
9036 (file_ptr) 0,
9037 gptab_bss_sec->_raw_size))
b34976b6 9038 return FALSE;
b49e97c9
TS
9039 }
9040
9041 if (SGI_COMPAT (abfd))
9042 {
9043 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9044 if (rtproc_sec != NULL)
9045 {
9046 if (! bfd_set_section_contents (abfd, rtproc_sec,
9047 rtproc_sec->contents,
9048 (file_ptr) 0,
9049 rtproc_sec->_raw_size))
b34976b6 9050 return FALSE;
b49e97c9
TS
9051 }
9052 }
9053
b34976b6 9054 return TRUE;
b49e97c9
TS
9055}
9056\f
64543e1a
RS
9057/* Structure for saying that BFD machine EXTENSION extends BASE. */
9058
9059struct mips_mach_extension {
9060 unsigned long extension, base;
9061};
9062
9063
9064/* An array describing how BFD machines relate to one another. The entries
9065 are ordered topologically with MIPS I extensions listed last. */
9066
9067static const struct mips_mach_extension mips_mach_extensions[] = {
9068 /* MIPS64 extensions. */
9069 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9070
9071 /* MIPS V extensions. */
9072 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9073
9074 /* R10000 extensions. */
9075 { bfd_mach_mips12000, bfd_mach_mips10000 },
9076
9077 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9078 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9079 better to allow vr5400 and vr5500 code to be merged anyway, since
9080 many libraries will just use the core ISA. Perhaps we could add
9081 some sort of ASE flag if this ever proves a problem. */
9082 { bfd_mach_mips5500, bfd_mach_mips5400 },
9083 { bfd_mach_mips5400, bfd_mach_mips5000 },
9084
9085 /* MIPS IV extensions. */
9086 { bfd_mach_mips5, bfd_mach_mips8000 },
9087 { bfd_mach_mips10000, bfd_mach_mips8000 },
9088 { bfd_mach_mips5000, bfd_mach_mips8000 },
9089
9090 /* VR4100 extensions. */
9091 { bfd_mach_mips4120, bfd_mach_mips4100 },
9092 { bfd_mach_mips4111, bfd_mach_mips4100 },
9093
9094 /* MIPS III extensions. */
9095 { bfd_mach_mips8000, bfd_mach_mips4000 },
9096 { bfd_mach_mips4650, bfd_mach_mips4000 },
9097 { bfd_mach_mips4600, bfd_mach_mips4000 },
9098 { bfd_mach_mips4400, bfd_mach_mips4000 },
9099 { bfd_mach_mips4300, bfd_mach_mips4000 },
9100 { bfd_mach_mips4100, bfd_mach_mips4000 },
9101 { bfd_mach_mips4010, bfd_mach_mips4000 },
9102
9103 /* MIPS32 extensions. */
9104 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9105
9106 /* MIPS II extensions. */
9107 { bfd_mach_mips4000, bfd_mach_mips6000 },
9108 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9109
9110 /* MIPS I extensions. */
9111 { bfd_mach_mips6000, bfd_mach_mips3000 },
9112 { bfd_mach_mips3900, bfd_mach_mips3000 }
9113};
9114
9115
9116/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9117
9118static bfd_boolean
9119mips_mach_extends_p (base, extension)
9120 unsigned long base, extension;
9121{
9122 size_t i;
9123
9124 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
9125 if (extension == mips_mach_extensions[i].extension)
9126 extension = mips_mach_extensions[i].base;
9127
9128 return extension == base;
9129}
9130
9131
9132/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 9133
b34976b6 9134static bfd_boolean
64543e1a
RS
9135mips_32bit_flags_p (flags)
9136 flagword flags;
00707a0e 9137{
64543e1a
RS
9138 return ((flags & EF_MIPS_32BITMODE) != 0
9139 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9140 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9141 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9142 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9143 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9144 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
9145}
9146
64543e1a 9147
b49e97c9
TS
9148/* Merge backend specific data from an object file to the output
9149 object file when linking. */
9150
b34976b6 9151bfd_boolean
b49e97c9
TS
9152_bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
9153 bfd *ibfd;
9154 bfd *obfd;
9155{
9156 flagword old_flags;
9157 flagword new_flags;
b34976b6
AM
9158 bfd_boolean ok;
9159 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
9160 asection *sec;
9161
9162 /* Check if we have the same endianess */
82e51918 9163 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
9164 {
9165 (*_bfd_error_handler)
9166 (_("%s: endianness incompatible with that of the selected emulation"),
9167 bfd_archive_filename (ibfd));
9168 return FALSE;
9169 }
b49e97c9
TS
9170
9171 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9172 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 9173 return TRUE;
b49e97c9 9174
aa701218
AO
9175 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9176 {
9177 (*_bfd_error_handler)
9178 (_("%s: ABI is incompatible with that of the selected emulation"),
9179 bfd_archive_filename (ibfd));
9180 return FALSE;
9181 }
9182
b49e97c9
TS
9183 new_flags = elf_elfheader (ibfd)->e_flags;
9184 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9185 old_flags = elf_elfheader (obfd)->e_flags;
9186
9187 if (! elf_flags_init (obfd))
9188 {
b34976b6 9189 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
9190 elf_elfheader (obfd)->e_flags = new_flags;
9191 elf_elfheader (obfd)->e_ident[EI_CLASS]
9192 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9193
9194 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9195 && bfd_get_arch_info (obfd)->the_default)
9196 {
9197 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9198 bfd_get_mach (ibfd)))
b34976b6 9199 return FALSE;
b49e97c9
TS
9200 }
9201
b34976b6 9202 return TRUE;
b49e97c9
TS
9203 }
9204
9205 /* Check flag compatibility. */
9206
9207 new_flags &= ~EF_MIPS_NOREORDER;
9208 old_flags &= ~EF_MIPS_NOREORDER;
9209
f4416af6
AO
9210 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9211 doesn't seem to matter. */
9212 new_flags &= ~EF_MIPS_XGOT;
9213 old_flags &= ~EF_MIPS_XGOT;
9214
b49e97c9 9215 if (new_flags == old_flags)
b34976b6 9216 return TRUE;
b49e97c9
TS
9217
9218 /* Check to see if the input BFD actually contains any sections.
9219 If not, its flags may not have been initialised either, but it cannot
9220 actually cause any incompatibility. */
9221 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9222 {
9223 /* Ignore synthetic sections and empty .text, .data and .bss sections
9224 which are automatically generated by gas. */
9225 if (strcmp (sec->name, ".reginfo")
9226 && strcmp (sec->name, ".mdebug")
9227 && ((!strcmp (sec->name, ".text")
9228 || !strcmp (sec->name, ".data")
9229 || !strcmp (sec->name, ".bss"))
9230 && sec->_raw_size != 0))
9231 {
b34976b6 9232 null_input_bfd = FALSE;
b49e97c9
TS
9233 break;
9234 }
9235 }
9236 if (null_input_bfd)
b34976b6 9237 return TRUE;
b49e97c9 9238
b34976b6 9239 ok = TRUE;
b49e97c9 9240
143d77c5
EC
9241 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9242 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 9243 {
b49e97c9 9244 (*_bfd_error_handler)
143d77c5 9245 (_("%s: warning: linking PIC files with non-PIC files"),
b49e97c9 9246 bfd_archive_filename (ibfd));
143d77c5 9247 ok = TRUE;
b49e97c9
TS
9248 }
9249
143d77c5
EC
9250 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9251 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9252 if (! (new_flags & EF_MIPS_PIC))
9253 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9254
9255 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9256 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 9257
64543e1a
RS
9258 /* Compare the ISAs. */
9259 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 9260 {
64543e1a
RS
9261 (*_bfd_error_handler)
9262 (_("%s: linking 32-bit code with 64-bit code"),
9263 bfd_archive_filename (ibfd));
9264 ok = FALSE;
9265 }
9266 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9267 {
9268 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9269 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 9270 {
64543e1a
RS
9271 /* Copy the architecture info from IBFD to OBFD. Also copy
9272 the 32-bit flag (if set) so that we continue to recognise
9273 OBFD as a 32-bit binary. */
9274 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9275 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9276 elf_elfheader (obfd)->e_flags
9277 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9278
9279 /* Copy across the ABI flags if OBFD doesn't use them
9280 and if that was what caused us to treat IBFD as 32-bit. */
9281 if ((old_flags & EF_MIPS_ABI) == 0
9282 && mips_32bit_flags_p (new_flags)
9283 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9284 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9285 }
9286 else
9287 {
64543e1a 9288 /* The ISAs aren't compatible. */
b49e97c9 9289 (*_bfd_error_handler)
64543e1a 9290 (_("%s: linking %s module with previous %s modules"),
b49e97c9 9291 bfd_archive_filename (ibfd),
64543e1a
RS
9292 bfd_printable_name (ibfd),
9293 bfd_printable_name (obfd));
b34976b6 9294 ok = FALSE;
b49e97c9 9295 }
b49e97c9
TS
9296 }
9297
64543e1a
RS
9298 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9299 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9300
9301 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9302 does set EI_CLASS differently from any 32-bit ABI. */
9303 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9304 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9305 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9306 {
9307 /* Only error if both are set (to different values). */
9308 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9309 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9310 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9311 {
9312 (*_bfd_error_handler)
9313 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9314 bfd_archive_filename (ibfd),
9315 elf_mips_abi_name (ibfd),
9316 elf_mips_abi_name (obfd));
b34976b6 9317 ok = FALSE;
b49e97c9
TS
9318 }
9319 new_flags &= ~EF_MIPS_ABI;
9320 old_flags &= ~EF_MIPS_ABI;
9321 }
9322
fb39dac1
RS
9323 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9324 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9325 {
9326 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9327
9328 new_flags &= ~ EF_MIPS_ARCH_ASE;
9329 old_flags &= ~ EF_MIPS_ARCH_ASE;
9330 }
9331
b49e97c9
TS
9332 /* Warn about any other mismatches */
9333 if (new_flags != old_flags)
9334 {
9335 (*_bfd_error_handler)
9336 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9337 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9338 (unsigned long) old_flags);
b34976b6 9339 ok = FALSE;
b49e97c9
TS
9340 }
9341
9342 if (! ok)
9343 {
9344 bfd_set_error (bfd_error_bad_value);
b34976b6 9345 return FALSE;
b49e97c9
TS
9346 }
9347
b34976b6 9348 return TRUE;
b49e97c9
TS
9349}
9350
9351/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9352
b34976b6 9353bfd_boolean
b49e97c9
TS
9354_bfd_mips_elf_set_private_flags (abfd, flags)
9355 bfd *abfd;
9356 flagword flags;
9357{
9358 BFD_ASSERT (!elf_flags_init (abfd)
9359 || elf_elfheader (abfd)->e_flags == flags);
9360
9361 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9362 elf_flags_init (abfd) = TRUE;
9363 return TRUE;
b49e97c9
TS
9364}
9365
b34976b6 9366bfd_boolean
b49e97c9
TS
9367_bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9368 bfd *abfd;
9369 PTR ptr;
9370{
9371 FILE *file = (FILE *) ptr;
9372
9373 BFD_ASSERT (abfd != NULL && ptr != NULL);
9374
9375 /* Print normal ELF private data. */
9376 _bfd_elf_print_private_bfd_data (abfd, ptr);
9377
9378 /* xgettext:c-format */
9379 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9380
9381 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9382 fprintf (file, _(" [abi=O32]"));
9383 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9384 fprintf (file, _(" [abi=O64]"));
9385 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9386 fprintf (file, _(" [abi=EABI32]"));
9387 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9388 fprintf (file, _(" [abi=EABI64]"));
9389 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9390 fprintf (file, _(" [abi unknown]"));
9391 else if (ABI_N32_P (abfd))
9392 fprintf (file, _(" [abi=N32]"));
9393 else if (ABI_64_P (abfd))
9394 fprintf (file, _(" [abi=64]"));
9395 else
9396 fprintf (file, _(" [no abi set]"));
9397
9398 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9399 fprintf (file, _(" [mips1]"));
9400 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9401 fprintf (file, _(" [mips2]"));
9402 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9403 fprintf (file, _(" [mips3]"));
9404 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9405 fprintf (file, _(" [mips4]"));
9406 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9407 fprintf (file, _(" [mips5]"));
9408 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9409 fprintf (file, _(" [mips32]"));
9410 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9411 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9412 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9413 fprintf (file, _(" [mips32r2]"));
b49e97c9
TS
9414 else
9415 fprintf (file, _(" [unknown ISA]"));
9416
40d32fc6
CD
9417 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9418 fprintf (file, _(" [mdmx]"));
9419
9420 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9421 fprintf (file, _(" [mips16]"));
9422
b49e97c9
TS
9423 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9424 fprintf (file, _(" [32bitmode]"));
9425 else
9426 fprintf (file, _(" [not 32bitmode]"));
9427
9428 fputc ('\n', file);
9429
b34976b6 9430 return TRUE;
b49e97c9 9431}
This page took 0.653411 seconds and 4 git commands to generate.