doc: fix PAC typo
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
82704155 2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
3734320d 295#define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
861fb55a 296#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
297#define LA25_LUI_MICROMIPS(VAL) \
298 (0x41b90000 | (VAL)) /* lui t9,VAL */
299#define LA25_J_MICROMIPS(VAL) \
300 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
301#define LA25_ADDIU_MICROMIPS(VAL) \
302 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 303
b49e97c9
TS
304/* This structure is passed to mips_elf_sort_hash_table_f when sorting
305 the dynamic symbols. */
306
307struct mips_elf_hash_sort_data
308{
309 /* The symbol in the global GOT with the lowest dynamic symbol table
310 index. */
311 struct elf_link_hash_entry *low;
0f20cc35
DJ
312 /* The least dynamic symbol table index corresponding to a non-TLS
313 symbol with a GOT entry. */
55f8b9d2 314 bfd_size_type min_got_dynindx;
f4416af6
AO
315 /* The greatest dynamic symbol table index corresponding to a symbol
316 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 317 with dynamic relocations pointing to it from non-primary GOTs). */
55f8b9d2 318 bfd_size_type max_unref_got_dynindx;
e17b0c35
MR
319 /* The greatest dynamic symbol table index corresponding to a local
320 symbol. */
321 bfd_size_type max_local_dynindx;
322 /* The greatest dynamic symbol table index corresponding to an external
b49e97c9 323 symbol without a GOT entry. */
55f8b9d2 324 bfd_size_type max_non_got_dynindx;
b49e97c9
TS
325};
326
1bbce132
MR
327/* We make up to two PLT entries if needed, one for standard MIPS code
328 and one for compressed code, either a MIPS16 or microMIPS one. We
329 keep a separate record of traditional lazy-binding stubs, for easier
330 processing. */
331
332struct plt_entry
333{
334 /* Traditional SVR4 stub offset, or -1 if none. */
335 bfd_vma stub_offset;
336
337 /* Standard PLT entry offset, or -1 if none. */
338 bfd_vma mips_offset;
339
340 /* Compressed PLT entry offset, or -1 if none. */
341 bfd_vma comp_offset;
342
343 /* The corresponding .got.plt index, or -1 if none. */
344 bfd_vma gotplt_index;
345
346 /* Whether we need a standard PLT entry. */
347 unsigned int need_mips : 1;
348
349 /* Whether we need a compressed PLT entry. */
350 unsigned int need_comp : 1;
351};
352
b49e97c9
TS
353/* The MIPS ELF linker needs additional information for each symbol in
354 the global hash table. */
355
356struct mips_elf_link_hash_entry
357{
358 struct elf_link_hash_entry root;
359
360 /* External symbol information. */
361 EXTR esym;
362
861fb55a
DJ
363 /* The la25 stub we have created for ths symbol, if any. */
364 struct mips_elf_la25_stub *la25_stub;
365
b49e97c9
TS
366 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
367 this symbol. */
368 unsigned int possibly_dynamic_relocs;
369
b49e97c9
TS
370 /* If there is a stub that 32 bit functions should use to call this
371 16 bit function, this points to the section containing the stub. */
372 asection *fn_stub;
373
b49e97c9
TS
374 /* If there is a stub that 16 bit functions should use to call this
375 32 bit function, this points to the section containing the stub. */
376 asection *call_stub;
377
378 /* This is like the call_stub field, but it is used if the function
379 being called returns a floating point value. */
380 asection *call_fp_stub;
7c5fcef7 381
634835ae
RS
382 /* The highest GGA_* value that satisfies all references to this symbol. */
383 unsigned int global_got_area : 2;
384
6ccf4795
RS
385 /* True if all GOT relocations against this symbol are for calls. This is
386 a looser condition than no_fn_stub below, because there may be other
387 non-call non-GOT relocations against the symbol. */
388 unsigned int got_only_for_calls : 1;
389
71782a75
RS
390 /* True if one of the relocations described by possibly_dynamic_relocs
391 is against a readonly section. */
392 unsigned int readonly_reloc : 1;
393
861fb55a
DJ
394 /* True if there is a relocation against this symbol that must be
395 resolved by the static linker (in other words, if the relocation
396 cannot possibly be made dynamic). */
397 unsigned int has_static_relocs : 1;
398
71782a75
RS
399 /* True if we must not create a .MIPS.stubs entry for this symbol.
400 This is set, for example, if there are relocations related to
401 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
402 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
403 unsigned int no_fn_stub : 1;
404
405 /* Whether we need the fn_stub; this is true if this symbol appears
406 in any relocs other than a 16 bit call. */
407 unsigned int need_fn_stub : 1;
408
861fb55a
DJ
409 /* True if this symbol is referenced by branch relocations from
410 any non-PIC input file. This is used to determine whether an
411 la25 stub is required. */
412 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
413
414 /* Does this symbol need a traditional MIPS lazy-binding stub
415 (as opposed to a PLT entry)? */
416 unsigned int needs_lazy_stub : 1;
1bbce132
MR
417
418 /* Does this symbol resolve to a PLT entry? */
419 unsigned int use_plt_entry : 1;
b49e97c9
TS
420};
421
422/* MIPS ELF linker hash table. */
423
424struct mips_elf_link_hash_table
425{
426 struct elf_link_hash_table root;
861fb55a 427
b49e97c9
TS
428 /* The number of .rtproc entries. */
429 bfd_size_type procedure_count;
861fb55a 430
b49e97c9
TS
431 /* The size of the .compact_rel section (if SGI_COMPAT). */
432 bfd_size_type compact_rel_size;
861fb55a 433
e6aea42d
MR
434 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
435 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 436 bfd_boolean use_rld_obj_head;
861fb55a 437
b4082c70
DD
438 /* The __rld_map or __rld_obj_head symbol. */
439 struct elf_link_hash_entry *rld_symbol;
861fb55a 440
b49e97c9 441 /* This is set if we see any mips16 stub sections. */
b34976b6 442 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
443
444 /* True if we can generate copy relocs and PLTs. */
445 bfd_boolean use_plts_and_copy_relocs;
446
833794fc
MR
447 /* True if we can only use 32-bit microMIPS instructions. */
448 bfd_boolean insn32;
449
8b10b0b3
MR
450 /* True if we suppress checks for invalid branches between ISA modes. */
451 bfd_boolean ignore_branch_isa;
452
3734320d
MF
453 /* True if we are targetting R6 compact branches. */
454 bfd_boolean compact_branches;
455
0a44bf69
RS
456 /* True if we're generating code for VxWorks. */
457 bfd_boolean is_vxworks;
861fb55a 458
0e53d9da
AN
459 /* True if we already reported the small-data section overflow. */
460 bfd_boolean small_data_overflow_reported;
861fb55a 461
47275900
MR
462 /* True if we use the special `__gnu_absolute_zero' symbol. */
463 bfd_boolean use_absolute_zero;
464
465 /* True if we have been configured for a GNU target. */
466 bfd_boolean gnu_target;
467
0a44bf69
RS
468 /* Shortcuts to some dynamic sections, or NULL if they are not
469 being used. */
0a44bf69 470 asection *srelplt2;
4e41d0d7 471 asection *sstubs;
861fb55a 472
a8028dd0
RS
473 /* The master GOT information. */
474 struct mips_got_info *got_info;
861fb55a 475
d222d210
RS
476 /* The global symbol in the GOT with the lowest index in the dynamic
477 symbol table. */
478 struct elf_link_hash_entry *global_gotsym;
479
861fb55a 480 /* The size of the PLT header in bytes. */
0a44bf69 481 bfd_vma plt_header_size;
861fb55a 482
1bbce132
MR
483 /* The size of a standard PLT entry in bytes. */
484 bfd_vma plt_mips_entry_size;
485
486 /* The size of a compressed PLT entry in bytes. */
487 bfd_vma plt_comp_entry_size;
488
489 /* The offset of the next standard PLT entry to create. */
490 bfd_vma plt_mips_offset;
491
492 /* The offset of the next compressed PLT entry to create. */
493 bfd_vma plt_comp_offset;
494
495 /* The index of the next .got.plt entry to create. */
496 bfd_vma plt_got_index;
861fb55a 497
33bb52fb
RS
498 /* The number of functions that need a lazy-binding stub. */
499 bfd_vma lazy_stub_count;
861fb55a 500
5108fc1b
RS
501 /* The size of a function stub entry in bytes. */
502 bfd_vma function_stub_size;
861fb55a
DJ
503
504 /* The number of reserved entries at the beginning of the GOT. */
505 unsigned int reserved_gotno;
506
507 /* The section used for mips_elf_la25_stub trampolines.
508 See the comment above that structure for details. */
509 asection *strampoline;
510
511 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
512 pairs. */
513 htab_t la25_stubs;
514
515 /* A function FN (NAME, IS, OS) that creates a new input section
516 called NAME and links it to output section OS. If IS is nonnull,
517 the new section should go immediately before it, otherwise it
518 should go at the (current) beginning of OS.
519
520 The function returns the new section on success, otherwise it
521 returns null. */
522 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
523
524 /* Small local sym cache. */
525 struct sym_cache sym_cache;
1bbce132
MR
526
527 /* Is the PLT header compressed? */
528 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
529};
530
4dfe6ac6
NC
531/* Get the MIPS ELF linker hash table from a link_info structure. */
532
533#define mips_elf_hash_table(p) \
534 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
535 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
536
861fb55a 537/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
538struct mips_htab_traverse_info
539{
861fb55a
DJ
540 /* The usual link-wide information. */
541 struct bfd_link_info *info;
542 bfd *output_bfd;
543
544 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
545 bfd_boolean error;
b49e97c9
TS
546};
547
6ae68ba3
MR
548/* MIPS ELF private object data. */
549
550struct mips_elf_obj_tdata
551{
552 /* Generic ELF private object data. */
553 struct elf_obj_tdata root;
554
555 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
556 bfd *abi_fp_bfd;
ee227692 557
b60bf9be
CF
558 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
559 bfd *abi_msa_bfd;
560
351cdf24
MF
561 /* The abiflags for this object. */
562 Elf_Internal_ABIFlags_v0 abiflags;
563 bfd_boolean abiflags_valid;
564
ee227692
RS
565 /* The GOT requirements of input bfds. */
566 struct mips_got_info *got;
698600e4
AM
567
568 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
569 included directly in this one, but there's no point to wasting
570 the memory just for the infrequently called find_nearest_line. */
571 struct mips_elf_find_line *find_line_info;
572
573 /* An array of stub sections indexed by symbol number. */
574 asection **local_stubs;
575 asection **local_call_stubs;
576
577 /* The Irix 5 support uses two virtual sections, which represent
578 text/data symbols defined in dynamic objects. */
579 asymbol *elf_data_symbol;
580 asymbol *elf_text_symbol;
581 asection *elf_data_section;
582 asection *elf_text_section;
6ae68ba3
MR
583};
584
585/* Get MIPS ELF private object data from BFD's tdata. */
586
587#define mips_elf_tdata(bfd) \
588 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
589
0f20cc35
DJ
590#define TLS_RELOC_P(r_type) \
591 (r_type == R_MIPS_TLS_DTPMOD32 \
592 || r_type == R_MIPS_TLS_DTPMOD64 \
593 || r_type == R_MIPS_TLS_DTPREL32 \
594 || r_type == R_MIPS_TLS_DTPREL64 \
595 || r_type == R_MIPS_TLS_GD \
596 || r_type == R_MIPS_TLS_LDM \
597 || r_type == R_MIPS_TLS_DTPREL_HI16 \
598 || r_type == R_MIPS_TLS_DTPREL_LO16 \
599 || r_type == R_MIPS_TLS_GOTTPREL \
600 || r_type == R_MIPS_TLS_TPREL32 \
601 || r_type == R_MIPS_TLS_TPREL64 \
602 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 603 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
604 || r_type == R_MIPS16_TLS_GD \
605 || r_type == R_MIPS16_TLS_LDM \
606 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
607 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GOTTPREL \
609 || r_type == R_MIPS16_TLS_TPREL_HI16 \
610 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
611 || r_type == R_MICROMIPS_TLS_GD \
612 || r_type == R_MICROMIPS_TLS_LDM \
613 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
614 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GOTTPREL \
616 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
617 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 618
b49e97c9
TS
619/* Structure used to pass information to mips_elf_output_extsym. */
620
621struct extsym_info
622{
9e4aeb93
RS
623 bfd *abfd;
624 struct bfd_link_info *info;
b49e97c9
TS
625 struct ecoff_debug_info *debug;
626 const struct ecoff_debug_swap *swap;
b34976b6 627 bfd_boolean failed;
b49e97c9
TS
628};
629
8dc1a139 630/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
631
632static const char * const mips_elf_dynsym_rtproc_names[] =
633{
634 "_procedure_table",
635 "_procedure_string_table",
636 "_procedure_table_size",
637 NULL
638};
639
640/* These structures are used to generate the .compact_rel section on
8dc1a139 641 IRIX5. */
b49e97c9
TS
642
643typedef struct
644{
645 unsigned long id1; /* Always one? */
646 unsigned long num; /* Number of compact relocation entries. */
647 unsigned long id2; /* Always two? */
648 unsigned long offset; /* The file offset of the first relocation. */
649 unsigned long reserved0; /* Zero? */
650 unsigned long reserved1; /* Zero? */
651} Elf32_compact_rel;
652
653typedef struct
654{
655 bfd_byte id1[4];
656 bfd_byte num[4];
657 bfd_byte id2[4];
658 bfd_byte offset[4];
659 bfd_byte reserved0[4];
660 bfd_byte reserved1[4];
661} Elf32_External_compact_rel;
662
663typedef struct
664{
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 unsigned long vaddr; /* VADDR to be relocated. */
671} Elf32_crinfo;
672
673typedef struct
674{
675 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
676 unsigned int rtype : 4; /* Relocation types. See below. */
677 unsigned int dist2to : 8;
678 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
679 unsigned long konst; /* KONST field. See below. */
680} Elf32_crinfo2;
681
682typedef struct
683{
684 bfd_byte info[4];
685 bfd_byte konst[4];
686 bfd_byte vaddr[4];
687} Elf32_External_crinfo;
688
689typedef struct
690{
691 bfd_byte info[4];
692 bfd_byte konst[4];
693} Elf32_External_crinfo2;
694
695/* These are the constants used to swap the bitfields in a crinfo. */
696
697#define CRINFO_CTYPE (0x1)
698#define CRINFO_CTYPE_SH (31)
699#define CRINFO_RTYPE (0xf)
700#define CRINFO_RTYPE_SH (27)
701#define CRINFO_DIST2TO (0xff)
702#define CRINFO_DIST2TO_SH (19)
703#define CRINFO_RELVADDR (0x7ffff)
704#define CRINFO_RELVADDR_SH (0)
705
706/* A compact relocation info has long (3 words) or short (2 words)
707 formats. A short format doesn't have VADDR field and relvaddr
708 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
709#define CRF_MIPS_LONG 1
710#define CRF_MIPS_SHORT 0
711
712/* There are 4 types of compact relocation at least. The value KONST
713 has different meaning for each type:
714
715 (type) (konst)
716 CT_MIPS_REL32 Address in data
717 CT_MIPS_WORD Address in word (XXX)
718 CT_MIPS_GPHI_LO GP - vaddr
719 CT_MIPS_JMPAD Address to jump
720 */
721
722#define CRT_MIPS_REL32 0xa
723#define CRT_MIPS_WORD 0xb
724#define CRT_MIPS_GPHI_LO 0xc
725#define CRT_MIPS_JMPAD 0xd
726
727#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
728#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
729#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
730#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
731\f
732/* The structure of the runtime procedure descriptor created by the
733 loader for use by the static exception system. */
734
735typedef struct runtime_pdr {
ae9a127f
NC
736 bfd_vma adr; /* Memory address of start of procedure. */
737 long regmask; /* Save register mask. */
738 long regoffset; /* Save register offset. */
739 long fregmask; /* Save floating point register mask. */
740 long fregoffset; /* Save floating point register offset. */
741 long frameoffset; /* Frame size. */
742 short framereg; /* Frame pointer register. */
743 short pcreg; /* Offset or reg of return pc. */
744 long irpss; /* Index into the runtime string table. */
b49e97c9 745 long reserved;
ae9a127f 746 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
747} RPDR, *pRPDR;
748#define cbRPDR sizeof (RPDR)
749#define rpdNil ((pRPDR) 0)
750\f
b15e6682 751static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
752 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
753 struct mips_elf_link_hash_entry *, int);
b34976b6 754static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 755 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
756static bfd_vma mips_elf_high
757 (bfd_vma);
b34976b6 758static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
759 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
760 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
761 bfd_vma *, asection *);
f4416af6 762static bfd_vma mips_elf_adjust_gp
9719ad41 763 (bfd *, struct mips_got_info *, bfd *);
f4416af6 764
b49e97c9
TS
765/* This will be used when we sort the dynamic relocation records. */
766static bfd *reldyn_sorting_bfd;
767
6d30f5b2
NC
768/* True if ABFD is for CPUs with load interlocking that include
769 non-MIPS1 CPUs and R3900. */
770#define LOAD_INTERLOCKS_P(abfd) \
771 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
772 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
773
cd8d5a82
CF
774/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
775 This should be safe for all architectures. We enable this predicate
776 for RM9000 for now. */
777#define JAL_TO_BAL_P(abfd) \
778 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
779
780/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
781 This should be safe for all architectures. We enable this predicate for
782 all CPUs. */
783#define JALR_TO_BAL_P(abfd) 1
784
38a7df63
CF
785/* True if ABFD is for CPUs that are faster if JR is converted to B.
786 This should be safe for all architectures. We enable this predicate for
787 all CPUs. */
788#define JR_TO_B_P(abfd) 1
789
861fb55a
DJ
790/* True if ABFD is a PIC object. */
791#define PIC_OBJECT_P(abfd) \
792 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
793
351cdf24
MF
794/* Nonzero if ABFD is using the O32 ABI. */
795#define ABI_O32_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
797
b49e97c9 798/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
799#define ABI_N32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
801
4a14403c 802/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 803#define ABI_64_P(abfd) \
141ff970 804 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 805
4a14403c
TS
806/* Nonzero if ABFD is using NewABI conventions. */
807#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
808
e8faf7d1
MR
809/* Nonzero if ABFD has microMIPS code. */
810#define MICROMIPS_P(abfd) \
811 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
812
7361da2c
AB
813/* Nonzero if ABFD is MIPS R6. */
814#define MIPSR6_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
816 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
817
4a14403c 818/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
819#define IRIX_COMPAT(abfd) \
820 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
821
b49e97c9
TS
822/* Whether we are trying to be compatible with IRIX at all. */
823#define SGI_COMPAT(abfd) \
824 (IRIX_COMPAT (abfd) != ict_none)
825
826/* The name of the options section. */
827#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 828 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 829
cc2e31b9
RS
830/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
831 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
832#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
833 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
834
351cdf24
MF
835/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
836#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.abiflags") == 0)
838
943284cc
DJ
839/* Whether the section is readonly. */
840#define MIPS_ELF_READONLY_SECTION(sec) \
841 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
842 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
843
b49e97c9 844/* The name of the stub section. */
ca07892d 845#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
846
847/* The size of an external REL relocation. */
848#define MIPS_ELF_REL_SIZE(abfd) \
849 (get_elf_backend_data (abfd)->s->sizeof_rel)
850
0a44bf69
RS
851/* The size of an external RELA relocation. */
852#define MIPS_ELF_RELA_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rela)
854
b49e97c9
TS
855/* The size of an external dynamic table entry. */
856#define MIPS_ELF_DYN_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_dyn)
858
859/* The size of a GOT entry. */
860#define MIPS_ELF_GOT_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->arch_size / 8)
862
b4082c70
DD
863/* The size of the .rld_map section. */
864#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
866
b49e97c9
TS
867/* The size of a symbol-table entry. */
868#define MIPS_ELF_SYM_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->sizeof_sym)
870
871/* The default alignment for sections, as a power of two. */
872#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 873 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
874
875/* Get word-sized data. */
876#define MIPS_ELF_GET_WORD(abfd, ptr) \
877 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
878
879/* Put out word-sized data. */
880#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
07d6d2b8
AM
881 (ABI_64_P (abfd) \
882 ? bfd_put_64 (abfd, val, ptr) \
b49e97c9
TS
883 : bfd_put_32 (abfd, val, ptr))
884
861fb55a
DJ
885/* The opcode for word-sized loads (LW or LD). */
886#define MIPS_ELF_LOAD_WORD(abfd) \
887 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
888
b49e97c9 889/* Add a dynamic symbol table-entry. */
9719ad41 890#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 891 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
892
893#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
0aa13fee 894 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
b49e97c9 895
0a44bf69
RS
896/* The name of the dynamic relocation section. */
897#define MIPS_ELF_REL_DYN_NAME(INFO) \
898 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
899
b49e97c9
TS
900/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
901 from smaller values. Start with zero, widen, *then* decrement. */
902#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 903#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 904
51e38d68
RS
905/* The value to write into got[1] for SVR4 targets, to identify it is
906 a GNU object. The dynamic linker can then use got[1] to store the
907 module pointer. */
908#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
909 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
910
f4416af6 911/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
912#define ELF_MIPS_GP_OFFSET(INFO) \
913 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
914
915/* The maximum size of the GOT for it to be addressable using 16-bit
916 offsets from $gp. */
0a44bf69 917#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 918
6a691779 919/* Instructions which appear in a stub. */
3d6746ca
DD
920#define STUB_LW(abfd) \
921 ((ABI_64_P (abfd) \
922 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
07d6d2b8 923 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 924#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 925#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 926#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
3734320d 927#define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
5108fc1b
RS
928#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
929#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
930#define STUB_LI16S(abfd, VAL) \
931 ((ABI_64_P (abfd) \
932 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
933 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
934
1bbce132
MR
935/* Likewise for the microMIPS ASE. */
936#define STUB_LW_MICROMIPS(abfd) \
937 (ABI_64_P (abfd) \
938 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
939 : 0xff3c8010) /* lw t9,0x8010(gp) */
940#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 941#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
942#define STUB_LUI_MICROMIPS(VAL) \
943 (0x41b80000 + (VAL)) /* lui t8,VAL */
944#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 945#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
946#define STUB_ORI_MICROMIPS(VAL) \
947 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
948#define STUB_LI16U_MICROMIPS(VAL) \
949 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
950#define STUB_LI16S_MICROMIPS(abfd, VAL) \
951 (ABI_64_P (abfd) \
952 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
953 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
954
5108fc1b
RS
955#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
956#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
957#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
958#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
959#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
960#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
961
962/* The name of the dynamic interpreter. This is put in the .interp
963 section. */
964
07d6d2b8
AM
965#define ELF_DYNAMIC_INTERPRETER(abfd) \
966 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
967 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
b49e97c9
TS
968 : "/usr/lib/libc.so.1")
969
970#ifdef BFD64
ee6423ed
AO
971#define MNAME(bfd,pre,pos) \
972 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
973#define ELF_R_SYM(bfd, i) \
974 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
975#define ELF_R_TYPE(bfd, i) \
976 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
977#define ELF_R_INFO(bfd, s, t) \
978 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
979#else
ee6423ed 980#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
981#define ELF_R_SYM(bfd, i) \
982 (ELF32_R_SYM (i))
983#define ELF_R_TYPE(bfd, i) \
984 (ELF32_R_TYPE (i))
985#define ELF_R_INFO(bfd, s, t) \
986 (ELF32_R_INFO (s, t))
987#endif
988\f
989 /* The mips16 compiler uses a couple of special sections to handle
990 floating point arguments.
991
992 Section names that look like .mips16.fn.FNNAME contain stubs that
993 copy floating point arguments from the fp regs to the gp regs and
994 then jump to FNNAME. If any 32 bit function calls FNNAME, the
995 call should be redirected to the stub instead. If no 32 bit
996 function calls FNNAME, the stub should be discarded. We need to
997 consider any reference to the function, not just a call, because
998 if the address of the function is taken we will need the stub,
999 since the address might be passed to a 32 bit function.
1000
1001 Section names that look like .mips16.call.FNNAME contain stubs
1002 that copy floating point arguments from the gp regs to the fp
1003 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1004 then any 16 bit function that calls FNNAME should be redirected
1005 to the stub instead. If FNNAME is not a 32 bit function, the
1006 stub should be discarded.
1007
1008 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1009 which call FNNAME and then copy the return value from the fp regs
1010 to the gp regs. These stubs store the return value in $18 while
1011 calling FNNAME; any function which might call one of these stubs
1012 must arrange to save $18 around the call. (This case is not
1013 needed for 32 bit functions that call 16 bit functions, because
1014 16 bit functions always return floating point values in both
1015 $f0/$f1 and $2/$3.)
1016
1017 Note that in all cases FNNAME might be defined statically.
1018 Therefore, FNNAME is not used literally. Instead, the relocation
1019 information will indicate which symbol the section is for.
1020
1021 We record any stubs that we find in the symbol table. */
1022
1023#define FN_STUB ".mips16.fn."
1024#define CALL_STUB ".mips16.call."
1025#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1026
1027#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1028#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1029#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1030\f
861fb55a 1031/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1032static const bfd_vma mips_o32_exec_plt0_entry[] =
1033{
861fb55a
DJ
1034 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1035 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1036 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1037 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1038 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1039 0x0018c082, /* srl $24, $24, 2 */
1040 0x0320f809, /* jalr $25 */
1041 0x2718fffe /* subu $24, $24, 2 */
1042};
1043
3734320d
MF
1044/* The format of the first PLT entry in an O32 executable using compact
1045 jumps. */
1046static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1047{
1048 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1049 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1050 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1051 0x031cc023, /* subu $24, $24, $28 */
1052 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1053 0x0018c082, /* srl $24, $24, 2 */
1054 0x2718fffe, /* subu $24, $24, 2 */
1055 0xf8190000 /* jalrc $25 */
1056};
1057
861fb55a
DJ
1058/* The format of the first PLT entry in an N32 executable. Different
1059 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1060static const bfd_vma mips_n32_exec_plt0_entry[] =
1061{
861fb55a
DJ
1062 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1063 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1064 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1065 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1066 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1067 0x0018c082, /* srl $24, $24, 2 */
1068 0x0320f809, /* jalr $25 */
1069 0x2718fffe /* subu $24, $24, 2 */
1070};
1071
3734320d
MF
1072/* The format of the first PLT entry in an N32 executable using compact
1073 jumps. Different because gp ($28) is not available; we use t2 ($14)
1074 instead. */
1075static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1076{
1077 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1078 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1079 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1080 0x030ec023, /* subu $24, $24, $14 */
1081 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1082 0x0018c082, /* srl $24, $24, 2 */
1083 0x2718fffe, /* subu $24, $24, 2 */
1084 0xf8190000 /* jalrc $25 */
1085};
1086
861fb55a
DJ
1087/* The format of the first PLT entry in an N64 executable. Different
1088 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1089static const bfd_vma mips_n64_exec_plt0_entry[] =
1090{
861fb55a
DJ
1091 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1092 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1093 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1094 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1095 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1096 0x0018c0c2, /* srl $24, $24, 3 */
1097 0x0320f809, /* jalr $25 */
1098 0x2718fffe /* subu $24, $24, 2 */
1099};
1100
3734320d
MF
1101/* The format of the first PLT entry in an N64 executable using compact
1102 jumps. Different from N32 because of the increased size of GOT
1103 entries. */
1104static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1105{
1106 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1107 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1108 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1109 0x030ec023, /* subu $24, $24, $14 */
1110 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1111 0x0018c0c2, /* srl $24, $24, 3 */
1112 0x2718fffe, /* subu $24, $24, 2 */
1113 0xf8190000 /* jalrc $25 */
1114};
1115
1116
1bbce132
MR
1117/* The format of the microMIPS first PLT entry in an O32 executable.
1118 We rely on v0 ($2) rather than t8 ($24) to contain the address
1119 of the GOTPLT entry handled, so this stub may only be used when
1120 all the subsequent PLT entries are microMIPS code too.
1121
1122 The trailing NOP is for alignment and correct disassembly only. */
1123static const bfd_vma micromips_o32_exec_plt0_entry[] =
1124{
1125 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1126 0xff23, 0x0000, /* lw $25, 0($3) */
1127 0x0535, /* subu $2, $2, $3 */
1128 0x2525, /* srl $2, $2, 2 */
1129 0x3302, 0xfffe, /* subu $24, $2, 2 */
1130 0x0dff, /* move $15, $31 */
1131 0x45f9, /* jalrs $25 */
1132 0x0f83, /* move $28, $3 */
1133 0x0c00 /* nop */
1134};
1135
833794fc
MR
1136/* The format of the microMIPS first PLT entry in an O32 executable
1137 in the insn32 mode. */
1138static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1139{
1140 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1141 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1142 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1143 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1144 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1145 0x0318, 0x1040, /* srl $24, $24, 2 */
1146 0x03f9, 0x0f3c, /* jalr $25 */
1147 0x3318, 0xfffe /* subu $24, $24, 2 */
1148};
1149
1bbce132 1150/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1151static const bfd_vma mips_exec_plt_entry[] =
1152{
861fb55a
DJ
1153 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1154 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1155 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1156 0x03200008 /* jr $25 */
1157};
1158
7361da2c
AB
1159static const bfd_vma mipsr6_exec_plt_entry[] =
1160{
1161 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1162 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1163 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1164 0x03200009 /* jr $25 */
1165};
1166
3734320d
MF
1167static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1168{
1169 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1170 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1171 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1172 0xd8190000 /* jic $25, 0 */
1173};
1174
1bbce132
MR
1175/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1176 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1177 directly addressable. */
1178static const bfd_vma mips16_o32_exec_plt_entry[] =
1179{
1180 0xb203, /* lw $2, 12($pc) */
1181 0x9a60, /* lw $3, 0($2) */
1182 0x651a, /* move $24, $2 */
1183 0xeb00, /* jr $3 */
1184 0x653b, /* move $25, $3 */
1185 0x6500, /* nop */
1186 0x0000, 0x0000 /* .word (.got.plt entry) */
1187};
1188
1189/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1190 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1191static const bfd_vma micromips_o32_exec_plt_entry[] =
1192{
1193 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1194 0xff22, 0x0000, /* lw $25, 0($2) */
1195 0x4599, /* jr $25 */
1196 0x0f02 /* move $24, $2 */
1197};
1198
833794fc
MR
1199/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1200static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1201{
1202 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1203 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1204 0x0019, 0x0f3c, /* jr $25 */
1205 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1206};
1207
0a44bf69 1208/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1209static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1210{
0a44bf69
RS
1211 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1212 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1213 0x8f390008, /* lw t9, 8(t9) */
1214 0x00000000, /* nop */
1215 0x03200008, /* jr t9 */
1216 0x00000000 /* nop */
1217};
1218
1219/* The format of subsequent PLT entries. */
6d30f5b2
NC
1220static const bfd_vma mips_vxworks_exec_plt_entry[] =
1221{
0a44bf69
RS
1222 0x10000000, /* b .PLT_resolver */
1223 0x24180000, /* li t8, <pltindex> */
1224 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1225 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1226 0x8f390000, /* lw t9, 0(t9) */
1227 0x00000000, /* nop */
1228 0x03200008, /* jr t9 */
1229 0x00000000 /* nop */
1230};
1231
1232/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1233static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1234{
0a44bf69
RS
1235 0x8f990008, /* lw t9, 8(gp) */
1236 0x00000000, /* nop */
1237 0x03200008, /* jr t9 */
1238 0x00000000, /* nop */
1239 0x00000000, /* nop */
1240 0x00000000 /* nop */
1241};
1242
1243/* The format of subsequent PLT entries. */
6d30f5b2
NC
1244static const bfd_vma mips_vxworks_shared_plt_entry[] =
1245{
0a44bf69
RS
1246 0x10000000, /* b .PLT_resolver */
1247 0x24180000 /* li t8, <pltindex> */
1248};
1249\f
d21911ea
MR
1250/* microMIPS 32-bit opcode helper installer. */
1251
1252static void
1253bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1254{
1255 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
07d6d2b8 1256 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
d21911ea
MR
1257}
1258
1259/* microMIPS 32-bit opcode helper retriever. */
1260
1261static bfd_vma
1262bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1263{
1264 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1265}
1266\f
b49e97c9
TS
1267/* Look up an entry in a MIPS ELF linker hash table. */
1268
1269#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1270 ((struct mips_elf_link_hash_entry *) \
1271 elf_link_hash_lookup (&(table)->root, (string), (create), \
1272 (copy), (follow)))
1273
1274/* Traverse a MIPS ELF linker hash table. */
1275
1276#define mips_elf_link_hash_traverse(table, func, info) \
1277 (elf_link_hash_traverse \
1278 (&(table)->root, \
9719ad41 1279 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1280 (info)))
1281
0f20cc35
DJ
1282/* Find the base offsets for thread-local storage in this object,
1283 for GD/LD and IE/LE respectively. */
1284
1285#define TP_OFFSET 0x7000
1286#define DTP_OFFSET 0x8000
1287
1288static bfd_vma
1289dtprel_base (struct bfd_link_info *info)
1290{
1291 /* If tls_sec is NULL, we should have signalled an error already. */
1292 if (elf_hash_table (info)->tls_sec == NULL)
1293 return 0;
1294 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1295}
1296
1297static bfd_vma
1298tprel_base (struct bfd_link_info *info)
1299{
1300 /* If tls_sec is NULL, we should have signalled an error already. */
1301 if (elf_hash_table (info)->tls_sec == NULL)
1302 return 0;
1303 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1304}
1305
b49e97c9
TS
1306/* Create an entry in a MIPS ELF linker hash table. */
1307
1308static struct bfd_hash_entry *
9719ad41
RS
1309mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1310 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1311{
1312 struct mips_elf_link_hash_entry *ret =
1313 (struct mips_elf_link_hash_entry *) entry;
1314
1315 /* Allocate the structure if it has not already been allocated by a
1316 subclass. */
9719ad41
RS
1317 if (ret == NULL)
1318 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1319 if (ret == NULL)
b49e97c9
TS
1320 return (struct bfd_hash_entry *) ret;
1321
1322 /* Call the allocation method of the superclass. */
1323 ret = ((struct mips_elf_link_hash_entry *)
1324 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1325 table, string));
9719ad41 1326 if (ret != NULL)
b49e97c9
TS
1327 {
1328 /* Set local fields. */
1329 memset (&ret->esym, 0, sizeof (EXTR));
1330 /* We use -2 as a marker to indicate that the information has
1331 not been set. -1 means there is no associated ifd. */
1332 ret->esym.ifd = -2;
861fb55a 1333 ret->la25_stub = 0;
b49e97c9 1334 ret->possibly_dynamic_relocs = 0;
b49e97c9 1335 ret->fn_stub = NULL;
b49e97c9
TS
1336 ret->call_stub = NULL;
1337 ret->call_fp_stub = NULL;
634835ae 1338 ret->global_got_area = GGA_NONE;
6ccf4795 1339 ret->got_only_for_calls = TRUE;
71782a75 1340 ret->readonly_reloc = FALSE;
861fb55a 1341 ret->has_static_relocs = FALSE;
71782a75
RS
1342 ret->no_fn_stub = FALSE;
1343 ret->need_fn_stub = FALSE;
861fb55a 1344 ret->has_nonpic_branches = FALSE;
33bb52fb 1345 ret->needs_lazy_stub = FALSE;
1bbce132 1346 ret->use_plt_entry = FALSE;
b49e97c9
TS
1347 }
1348
1349 return (struct bfd_hash_entry *) ret;
1350}
f0abc2a1 1351
6ae68ba3
MR
1352/* Allocate MIPS ELF private object data. */
1353
1354bfd_boolean
1355_bfd_mips_elf_mkobject (bfd *abfd)
1356{
1357 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1358 MIPS_ELF_DATA);
1359}
1360
f0abc2a1 1361bfd_boolean
9719ad41 1362_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1363{
f592407e
AM
1364 if (!sec->used_by_bfd)
1365 {
1366 struct _mips_elf_section_data *sdata;
1367 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1368
f592407e
AM
1369 sdata = bfd_zalloc (abfd, amt);
1370 if (sdata == NULL)
1371 return FALSE;
1372 sec->used_by_bfd = sdata;
1373 }
f0abc2a1
AM
1374
1375 return _bfd_elf_new_section_hook (abfd, sec);
1376}
b49e97c9
TS
1377\f
1378/* Read ECOFF debugging information from a .mdebug section into a
1379 ecoff_debug_info structure. */
1380
b34976b6 1381bfd_boolean
9719ad41
RS
1382_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1383 struct ecoff_debug_info *debug)
b49e97c9
TS
1384{
1385 HDRR *symhdr;
1386 const struct ecoff_debug_swap *swap;
9719ad41 1387 char *ext_hdr;
b49e97c9
TS
1388
1389 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1390 memset (debug, 0, sizeof (*debug));
1391
9719ad41 1392 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1393 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1394 goto error_return;
1395
9719ad41 1396 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1397 swap->external_hdr_size))
b49e97c9
TS
1398 goto error_return;
1399
1400 symhdr = &debug->symbolic_header;
1401 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1402
1403 /* The symbolic header contains absolute file offsets and sizes to
1404 read. */
1405#define READ(ptr, offset, count, size, type) \
1406 if (symhdr->count == 0) \
1407 debug->ptr = NULL; \
1408 else \
1409 { \
1410 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1411 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1412 if (debug->ptr == NULL) \
1413 goto error_return; \
9719ad41 1414 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1415 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1416 goto error_return; \
1417 }
1418
1419 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1420 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1421 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1422 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1423 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1424 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1425 union aux_ext *);
1426 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1427 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1428 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1429 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1430 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1431#undef READ
1432
1433 debug->fdr = NULL;
b49e97c9 1434
b34976b6 1435 return TRUE;
b49e97c9
TS
1436
1437 error_return:
1438 if (ext_hdr != NULL)
1439 free (ext_hdr);
1440 if (debug->line != NULL)
1441 free (debug->line);
1442 if (debug->external_dnr != NULL)
1443 free (debug->external_dnr);
1444 if (debug->external_pdr != NULL)
1445 free (debug->external_pdr);
1446 if (debug->external_sym != NULL)
1447 free (debug->external_sym);
1448 if (debug->external_opt != NULL)
1449 free (debug->external_opt);
1450 if (debug->external_aux != NULL)
1451 free (debug->external_aux);
1452 if (debug->ss != NULL)
1453 free (debug->ss);
1454 if (debug->ssext != NULL)
1455 free (debug->ssext);
1456 if (debug->external_fdr != NULL)
1457 free (debug->external_fdr);
1458 if (debug->external_rfd != NULL)
1459 free (debug->external_rfd);
1460 if (debug->external_ext != NULL)
1461 free (debug->external_ext);
b34976b6 1462 return FALSE;
b49e97c9
TS
1463}
1464\f
1465/* Swap RPDR (runtime procedure table entry) for output. */
1466
1467static void
9719ad41 1468ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1469{
1470 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1476
1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1479
1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1481}
1482
1483/* Create a runtime procedure table from the .mdebug section. */
1484
b34976b6 1485static bfd_boolean
9719ad41
RS
1486mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 struct bfd_link_info *info, asection *s,
1488 struct ecoff_debug_info *debug)
b49e97c9
TS
1489{
1490 const struct ecoff_debug_swap *swap;
1491 HDRR *hdr = &debug->symbolic_header;
1492 RPDR *rpdr, *rp;
1493 struct rpdr_ext *erp;
9719ad41 1494 void *rtproc;
b49e97c9
TS
1495 struct pdr_ext *epdr;
1496 struct sym_ext *esym;
1497 char *ss, **sv;
1498 char *str;
1499 bfd_size_type size;
1500 bfd_size_type count;
1501 unsigned long sindex;
1502 unsigned long i;
1503 PDR pdr;
1504 SYMR sym;
1505 const char *no_name_func = _("static procedure (no name)");
1506
1507 epdr = NULL;
1508 rpdr = NULL;
1509 esym = NULL;
1510 ss = NULL;
1511 sv = NULL;
1512
1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1514
1515 sindex = strlen (no_name_func) + 1;
1516 count = hdr->ipdMax;
1517 if (count > 0)
1518 {
1519 size = swap->external_pdr_size;
1520
9719ad41 1521 epdr = bfd_malloc (size * count);
b49e97c9
TS
1522 if (epdr == NULL)
1523 goto error_return;
1524
9719ad41 1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1526 goto error_return;
1527
1528 size = sizeof (RPDR);
9719ad41 1529 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1530 if (rpdr == NULL)
1531 goto error_return;
1532
1533 size = sizeof (char *);
9719ad41 1534 sv = bfd_malloc (size * count);
b49e97c9
TS
1535 if (sv == NULL)
1536 goto error_return;
1537
1538 count = hdr->isymMax;
1539 size = swap->external_sym_size;
9719ad41 1540 esym = bfd_malloc (size * count);
b49e97c9
TS
1541 if (esym == NULL)
1542 goto error_return;
1543
9719ad41 1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1545 goto error_return;
1546
1547 count = hdr->issMax;
9719ad41 1548 ss = bfd_malloc (count);
b49e97c9
TS
1549 if (ss == NULL)
1550 goto error_return;
f075ee0c 1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1552 goto error_return;
1553
1554 count = hdr->ipdMax;
1555 for (i = 0; i < (unsigned long) count; i++, rp++)
1556 {
9719ad41
RS
1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1559 rp->adr = sym.value;
1560 rp->regmask = pdr.regmask;
1561 rp->regoffset = pdr.regoffset;
1562 rp->fregmask = pdr.fregmask;
1563 rp->fregoffset = pdr.fregoffset;
1564 rp->frameoffset = pdr.frameoffset;
1565 rp->framereg = pdr.framereg;
1566 rp->pcreg = pdr.pcreg;
1567 rp->irpss = sindex;
1568 sv[i] = ss + sym.iss;
1569 sindex += strlen (sv[i]) + 1;
1570 }
1571 }
1572
1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574 size = BFD_ALIGN (size, 16);
9719ad41 1575 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1576 if (rtproc == NULL)
1577 {
1578 mips_elf_hash_table (info)->procedure_count = 0;
1579 goto error_return;
1580 }
1581
1582 mips_elf_hash_table (info)->procedure_count = count + 2;
1583
9719ad41 1584 erp = rtproc;
b49e97c9
TS
1585 memset (erp, 0, sizeof (struct rpdr_ext));
1586 erp++;
1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588 strcpy (str, no_name_func);
1589 str += strlen (no_name_func) + 1;
1590 for (i = 0; i < count; i++)
1591 {
1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593 strcpy (str, sv[i]);
1594 str += strlen (sv[i]) + 1;
1595 }
1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1597
1598 /* Set the size and contents of .rtproc section. */
eea6121a 1599 s->size = size;
9719ad41 1600 s->contents = rtproc;
b49e97c9
TS
1601
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
8423293d 1604 s->map_head.link_order = NULL;
b49e97c9
TS
1605
1606 if (epdr != NULL)
1607 free (epdr);
1608 if (rpdr != NULL)
1609 free (rpdr);
1610 if (esym != NULL)
1611 free (esym);
1612 if (ss != NULL)
1613 free (ss);
1614 if (sv != NULL)
1615 free (sv);
1616
b34976b6 1617 return TRUE;
b49e97c9
TS
1618
1619 error_return:
1620 if (epdr != NULL)
1621 free (epdr);
1622 if (rpdr != NULL)
1623 free (rpdr);
1624 if (esym != NULL)
1625 free (esym);
1626 if (ss != NULL)
1627 free (ss);
1628 if (sv != NULL)
1629 free (sv);
b34976b6 1630 return FALSE;
b49e97c9 1631}
738e5348 1632\f
861fb55a
DJ
1633/* We're going to create a stub for H. Create a symbol for the stub's
1634 value and size, to help make the disassembly easier to read. */
1635
1636static bfd_boolean
1637mips_elf_create_stub_symbol (struct bfd_link_info *info,
1638 struct mips_elf_link_hash_entry *h,
1639 const char *prefix, asection *s, bfd_vma value,
1640 bfd_vma size)
1641{
a848a227 1642 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1643 struct bfd_link_hash_entry *bh;
1644 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1645 char *name;
1646 bfd_boolean res;
861fb55a 1647
a848a227 1648 if (micromips_p)
df58fc94
RS
1649 value |= 1;
1650
861fb55a 1651 /* Create a new symbol. */
e1fa0163 1652 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1653 bh = NULL;
e1fa0163
NC
1654 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1655 BSF_LOCAL, s, value, NULL,
1656 TRUE, FALSE, &bh);
1657 free (name);
1658 if (! res)
861fb55a
DJ
1659 return FALSE;
1660
1661 /* Make it a local function. */
1662 elfh = (struct elf_link_hash_entry *) bh;
1663 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1664 elfh->size = size;
1665 elfh->forced_local = 1;
a848a227
MR
1666 if (micromips_p)
1667 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1668 return TRUE;
1669}
1670
738e5348
RS
1671/* We're about to redefine H. Create a symbol to represent H's
1672 current value and size, to help make the disassembly easier
1673 to read. */
1674
1675static bfd_boolean
1676mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1677 struct mips_elf_link_hash_entry *h,
1678 const char *prefix)
1679{
1680 struct bfd_link_hash_entry *bh;
1681 struct elf_link_hash_entry *elfh;
e1fa0163 1682 char *name;
738e5348
RS
1683 asection *s;
1684 bfd_vma value;
e1fa0163 1685 bfd_boolean res;
738e5348
RS
1686
1687 /* Read the symbol's value. */
1688 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1689 || h->root.root.type == bfd_link_hash_defweak);
1690 s = h->root.root.u.def.section;
1691 value = h->root.root.u.def.value;
1692
1693 /* Create a new symbol. */
e1fa0163 1694 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1695 bh = NULL;
e1fa0163
NC
1696 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1697 BSF_LOCAL, s, value, NULL,
1698 TRUE, FALSE, &bh);
1699 free (name);
1700 if (! res)
738e5348
RS
1701 return FALSE;
1702
1703 /* Make it local and copy the other attributes from H. */
1704 elfh = (struct elf_link_hash_entry *) bh;
1705 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1706 elfh->other = h->root.other;
1707 elfh->size = h->root.size;
1708 elfh->forced_local = 1;
1709 return TRUE;
1710}
1711
1712/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1713 function rather than to a hard-float stub. */
1714
1715static bfd_boolean
1716section_allows_mips16_refs_p (asection *section)
1717{
1718 const char *name;
1719
1720 name = bfd_get_section_name (section->owner, section);
1721 return (FN_STUB_P (name)
1722 || CALL_STUB_P (name)
1723 || CALL_FP_STUB_P (name)
1724 || strcmp (name, ".pdr") == 0);
1725}
1726
1727/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1728 stub section of some kind. Return the R_SYMNDX of the target
1729 function, or 0 if we can't decide which function that is. */
1730
1731static unsigned long
cb4437b8
MR
1732mips16_stub_symndx (const struct elf_backend_data *bed,
1733 asection *sec ATTRIBUTE_UNUSED,
502e814e 1734 const Elf_Internal_Rela *relocs,
738e5348
RS
1735 const Elf_Internal_Rela *relend)
1736{
cb4437b8 1737 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1738 const Elf_Internal_Rela *rel;
1739
cb4437b8
MR
1740 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1741 one in a compound relocation. */
1742 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1743 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1744 return ELF_R_SYM (sec->owner, rel->r_info);
1745
1746 /* Otherwise trust the first relocation, whatever its kind. This is
1747 the traditional behavior. */
1748 if (relocs < relend)
1749 return ELF_R_SYM (sec->owner, relocs->r_info);
1750
1751 return 0;
1752}
b49e97c9
TS
1753
1754/* Check the mips16 stubs for a particular symbol, and see if we can
1755 discard them. */
1756
861fb55a
DJ
1757static void
1758mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1759 struct mips_elf_link_hash_entry *h)
b49e97c9 1760{
738e5348
RS
1761 /* Dynamic symbols must use the standard call interface, in case other
1762 objects try to call them. */
1763 if (h->fn_stub != NULL
1764 && h->root.dynindx != -1)
1765 {
1766 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1767 h->need_fn_stub = TRUE;
1768 }
1769
b49e97c9
TS
1770 if (h->fn_stub != NULL
1771 && ! h->need_fn_stub)
1772 {
1773 /* We don't need the fn_stub; the only references to this symbol
07d6d2b8
AM
1774 are 16 bit calls. Clobber the size to 0 to prevent it from
1775 being included in the link. */
eea6121a 1776 h->fn_stub->size = 0;
b49e97c9
TS
1777 h->fn_stub->flags &= ~SEC_RELOC;
1778 h->fn_stub->reloc_count = 0;
1779 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1780 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1781 }
1782
1783 if (h->call_stub != NULL
30c09090 1784 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1785 {
1786 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1787 calls from other 16 bit functions are OK. Clobber the size
1788 to 0 to prevent it from being included in the link. */
eea6121a 1789 h->call_stub->size = 0;
b49e97c9
TS
1790 h->call_stub->flags &= ~SEC_RELOC;
1791 h->call_stub->reloc_count = 0;
1792 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1793 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1794 }
1795
1796 if (h->call_fp_stub != NULL
30c09090 1797 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1798 {
1799 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1800 calls from other 16 bit functions are OK. Clobber the size
1801 to 0 to prevent it from being included in the link. */
eea6121a 1802 h->call_fp_stub->size = 0;
b49e97c9
TS
1803 h->call_fp_stub->flags &= ~SEC_RELOC;
1804 h->call_fp_stub->reloc_count = 0;
1805 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1806 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1807 }
861fb55a
DJ
1808}
1809
1810/* Hashtable callbacks for mips_elf_la25_stubs. */
1811
1812static hashval_t
1813mips_elf_la25_stub_hash (const void *entry_)
1814{
1815 const struct mips_elf_la25_stub *entry;
1816
1817 entry = (struct mips_elf_la25_stub *) entry_;
1818 return entry->h->root.root.u.def.section->id
1819 + entry->h->root.root.u.def.value;
1820}
1821
1822static int
1823mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1824{
1825 const struct mips_elf_la25_stub *entry1, *entry2;
1826
1827 entry1 = (struct mips_elf_la25_stub *) entry1_;
1828 entry2 = (struct mips_elf_la25_stub *) entry2_;
1829 return ((entry1->h->root.root.u.def.section
1830 == entry2->h->root.root.u.def.section)
1831 && (entry1->h->root.root.u.def.value
1832 == entry2->h->root.root.u.def.value));
1833}
1834
1835/* Called by the linker to set up the la25 stub-creation code. FN is
1836 the linker's implementation of add_stub_function. Return true on
1837 success. */
1838
1839bfd_boolean
1840_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1841 asection *(*fn) (const char *, asection *,
1842 asection *))
1843{
1844 struct mips_elf_link_hash_table *htab;
1845
1846 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1847 if (htab == NULL)
1848 return FALSE;
1849
861fb55a
DJ
1850 htab->add_stub_section = fn;
1851 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1852 mips_elf_la25_stub_eq, NULL);
1853 if (htab->la25_stubs == NULL)
1854 return FALSE;
1855
1856 return TRUE;
1857}
1858
1859/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1860 that it or its fn_stub might need $25 to be valid on entry.
1861 Note that MIPS16 functions set up $gp using PC-relative instructions,
1862 so they themselves never need $25 to be valid. Only non-MIPS16
1863 entry points are of interest here. */
861fb55a
DJ
1864
1865static bfd_boolean
1866mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1867{
1868 return ((h->root.root.type == bfd_link_hash_defined
1869 || h->root.root.type == bfd_link_hash_defweak)
1870 && h->root.def_regular
1871 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1872 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1873 && (!ELF_ST_IS_MIPS16 (h->root.other)
1874 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1875 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1876 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1877}
1878
8f0c309a
CLT
1879/* Set *SEC to the input section that contains the target of STUB.
1880 Return the offset of the target from the start of that section. */
1881
1882static bfd_vma
1883mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1884 asection **sec)
1885{
1886 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1887 {
1888 BFD_ASSERT (stub->h->need_fn_stub);
1889 *sec = stub->h->fn_stub;
1890 return 0;
1891 }
1892 else
1893 {
1894 *sec = stub->h->root.root.u.def.section;
1895 return stub->h->root.root.u.def.value;
1896 }
1897}
1898
861fb55a
DJ
1899/* STUB describes an la25 stub that we have decided to implement
1900 by inserting an LUI/ADDIU pair before the target function.
1901 Create the section and redirect the function symbol to it. */
1902
1903static bfd_boolean
1904mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1905 struct bfd_link_info *info)
1906{
1907 struct mips_elf_link_hash_table *htab;
1908 char *name;
1909 asection *s, *input_section;
1910 unsigned int align;
1911
1912 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1913 if (htab == NULL)
1914 return FALSE;
861fb55a
DJ
1915
1916 /* Create a unique name for the new section. */
1917 name = bfd_malloc (11 + sizeof (".text.stub."));
1918 if (name == NULL)
1919 return FALSE;
1920 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1921
1922 /* Create the section. */
8f0c309a 1923 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1924 s = htab->add_stub_section (name, input_section,
1925 input_section->output_section);
1926 if (s == NULL)
1927 return FALSE;
1928
1929 /* Make sure that any padding goes before the stub. */
1930 align = input_section->alignment_power;
1931 if (!bfd_set_section_alignment (s->owner, s, align))
1932 return FALSE;
1933 if (align > 3)
1934 s->size = (1 << align) - 8;
1935
1936 /* Create a symbol for the stub. */
1937 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1938 stub->stub_section = s;
1939 stub->offset = s->size;
1940
1941 /* Allocate room for it. */
1942 s->size += 8;
1943 return TRUE;
1944}
1945
1946/* STUB describes an la25 stub that we have decided to implement
1947 with a separate trampoline. Allocate room for it and redirect
1948 the function symbol to it. */
1949
1950static bfd_boolean
1951mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1952 struct bfd_link_info *info)
1953{
1954 struct mips_elf_link_hash_table *htab;
1955 asection *s;
1956
1957 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1958 if (htab == NULL)
1959 return FALSE;
861fb55a
DJ
1960
1961 /* Create a trampoline section, if we haven't already. */
1962 s = htab->strampoline;
1963 if (s == NULL)
1964 {
1965 asection *input_section = stub->h->root.root.u.def.section;
1966 s = htab->add_stub_section (".text", NULL,
1967 input_section->output_section);
1968 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1969 return FALSE;
1970 htab->strampoline = s;
1971 }
1972
1973 /* Create a symbol for the stub. */
1974 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1975 stub->stub_section = s;
1976 stub->offset = s->size;
1977
1978 /* Allocate room for it. */
1979 s->size += 16;
1980 return TRUE;
1981}
1982
1983/* H describes a symbol that needs an la25 stub. Make sure that an
1984 appropriate stub exists and point H at it. */
1985
1986static bfd_boolean
1987mips_elf_add_la25_stub (struct bfd_link_info *info,
1988 struct mips_elf_link_hash_entry *h)
1989{
1990 struct mips_elf_link_hash_table *htab;
1991 struct mips_elf_la25_stub search, *stub;
1992 bfd_boolean use_trampoline_p;
1993 asection *s;
1994 bfd_vma value;
1995 void **slot;
1996
861fb55a
DJ
1997 /* Describe the stub we want. */
1998 search.stub_section = NULL;
1999 search.offset = 0;
2000 search.h = h;
2001
2002 /* See if we've already created an equivalent stub. */
2003 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
2004 if (htab == NULL)
2005 return FALSE;
2006
861fb55a
DJ
2007 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
2008 if (slot == NULL)
2009 return FALSE;
2010
2011 stub = (struct mips_elf_la25_stub *) *slot;
2012 if (stub != NULL)
2013 {
2014 /* We can reuse the existing stub. */
2015 h->la25_stub = stub;
2016 return TRUE;
2017 }
2018
2019 /* Create a permanent copy of ENTRY and add it to the hash table. */
2020 stub = bfd_malloc (sizeof (search));
2021 if (stub == NULL)
2022 return FALSE;
2023 *stub = search;
2024 *slot = stub;
2025
8f0c309a
CLT
2026 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2027 of the section and if we would need no more than 2 nops. */
2028 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
2029 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2030 value &= ~1;
8f0c309a
CLT
2031 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2032
861fb55a
DJ
2033 h->la25_stub = stub;
2034 return (use_trampoline_p
2035 ? mips_elf_add_la25_trampoline (stub, info)
2036 : mips_elf_add_la25_intro (stub, info));
2037}
2038
2039/* A mips_elf_link_hash_traverse callback that is called before sizing
2040 sections. DATA points to a mips_htab_traverse_info structure. */
2041
2042static bfd_boolean
2043mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2044{
2045 struct mips_htab_traverse_info *hti;
2046
2047 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 2048 if (!bfd_link_relocatable (hti->info))
861fb55a 2049 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 2050
861fb55a
DJ
2051 if (mips_elf_local_pic_function_p (h))
2052 {
ba85c43e
NC
2053 /* PR 12845: If H is in a section that has been garbage
2054 collected it will have its output section set to *ABS*. */
2055 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2056 return TRUE;
2057
861fb55a
DJ
2058 /* H is a function that might need $25 to be valid on entry.
2059 If we're creating a non-PIC relocatable object, mark H as
2060 being PIC. If we're creating a non-relocatable object with
2061 non-PIC branches and jumps to H, make sure that H has an la25
2062 stub. */
0e1862bb 2063 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
2064 {
2065 if (!PIC_OBJECT_P (hti->output_bfd))
2066 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2067 }
2068 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2069 {
2070 hti->error = TRUE;
2071 return FALSE;
2072 }
2073 }
b34976b6 2074 return TRUE;
b49e97c9
TS
2075}
2076\f
d6f16593
MR
2077/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2078 Most mips16 instructions are 16 bits, but these instructions
2079 are 32 bits.
2080
2081 The format of these instructions is:
2082
2083 +--------------+--------------------------------+
2084 | JALX | X| Imm 20:16 | Imm 25:21 |
2085 +--------------+--------------------------------+
07d6d2b8 2086 | Immediate 15:0 |
d6f16593
MR
2087 +-----------------------------------------------+
2088
2089 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2090 Note that the immediate value in the first word is swapped.
2091
2092 When producing a relocatable object file, R_MIPS16_26 is
2093 handled mostly like R_MIPS_26. In particular, the addend is
2094 stored as a straight 26-bit value in a 32-bit instruction.
2095 (gas makes life simpler for itself by never adjusting a
2096 R_MIPS16_26 reloc to be against a section, so the addend is
2097 always zero). However, the 32 bit instruction is stored as 2
2098 16-bit values, rather than a single 32-bit value. In a
2099 big-endian file, the result is the same; in a little-endian
2100 file, the two 16-bit halves of the 32 bit value are swapped.
2101 This is so that a disassembler can recognize the jal
2102 instruction.
2103
2104 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2105 instruction stored as two 16-bit values. The addend A is the
2106 contents of the targ26 field. The calculation is the same as
2107 R_MIPS_26. When storing the calculated value, reorder the
2108 immediate value as shown above, and don't forget to store the
2109 value as two 16-bit values.
2110
2111 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2112 defined as
2113
2114 big-endian:
2115 +--------+----------------------+
07d6d2b8
AM
2116 | | |
2117 | | targ26-16 |
2118 |31 26|25 0|
d6f16593
MR
2119 +--------+----------------------+
2120
2121 little-endian:
2122 +----------+------+-------------+
07d6d2b8
AM
2123 | | | |
2124 | sub1 | | sub2 |
2125 |0 9|10 15|16 31|
d6f16593
MR
2126 +----------+--------------------+
2127 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2128 ((sub1 << 16) | sub2)).
2129
2130 When producing a relocatable object file, the calculation is
2131 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2132 When producing a fully linked file, the calculation is
2133 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2134 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2135
738e5348
RS
2136 The table below lists the other MIPS16 instruction relocations.
2137 Each one is calculated in the same way as the non-MIPS16 relocation
2138 given on the right, but using the extended MIPS16 layout of 16-bit
2139 immediate fields:
2140
2141 R_MIPS16_GPREL R_MIPS_GPREL16
2142 R_MIPS16_GOT16 R_MIPS_GOT16
2143 R_MIPS16_CALL16 R_MIPS_CALL16
2144 R_MIPS16_HI16 R_MIPS_HI16
2145 R_MIPS16_LO16 R_MIPS_LO16
2146
2147 A typical instruction will have a format like this:
d6f16593
MR
2148
2149 +--------------+--------------------------------+
2150 | EXTEND | Imm 10:5 | Imm 15:11 |
2151 +--------------+--------------------------------+
2152 | Major | rx | ry | Imm 4:0 |
2153 +--------------+--------------------------------+
2154
2155 EXTEND is the five bit value 11110. Major is the instruction
2156 opcode.
2157
738e5348
RS
2158 All we need to do here is shuffle the bits appropriately.
2159 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2160 little-endian system.
2161
2162 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2163 relocatable field is shifted by 1 rather than 2 and the same bit
2164 shuffling is done as with the relocations above. */
738e5348
RS
2165
2166static inline bfd_boolean
2167mips16_reloc_p (int r_type)
2168{
2169 switch (r_type)
2170 {
2171 case R_MIPS16_26:
2172 case R_MIPS16_GPREL:
2173 case R_MIPS16_GOT16:
2174 case R_MIPS16_CALL16:
2175 case R_MIPS16_HI16:
2176 case R_MIPS16_LO16:
d0f13682
CLT
2177 case R_MIPS16_TLS_GD:
2178 case R_MIPS16_TLS_LDM:
2179 case R_MIPS16_TLS_DTPREL_HI16:
2180 case R_MIPS16_TLS_DTPREL_LO16:
2181 case R_MIPS16_TLS_GOTTPREL:
2182 case R_MIPS16_TLS_TPREL_HI16:
2183 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2184 case R_MIPS16_PC16_S1:
738e5348
RS
2185 return TRUE;
2186
2187 default:
2188 return FALSE;
2189 }
2190}
2191
df58fc94
RS
2192/* Check if a microMIPS reloc. */
2193
2194static inline bfd_boolean
2195micromips_reloc_p (unsigned int r_type)
2196{
2197 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2198}
2199
2200/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2201 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2202 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2203
2204static inline bfd_boolean
2205micromips_reloc_shuffle_p (unsigned int r_type)
2206{
2207 return (micromips_reloc_p (r_type)
2208 && r_type != R_MICROMIPS_PC7_S1
2209 && r_type != R_MICROMIPS_PC10_S1);
2210}
2211
738e5348
RS
2212static inline bfd_boolean
2213got16_reloc_p (int r_type)
2214{
df58fc94
RS
2215 return (r_type == R_MIPS_GOT16
2216 || r_type == R_MIPS16_GOT16
2217 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2218}
2219
2220static inline bfd_boolean
2221call16_reloc_p (int r_type)
2222{
df58fc94
RS
2223 return (r_type == R_MIPS_CALL16
2224 || r_type == R_MIPS16_CALL16
2225 || r_type == R_MICROMIPS_CALL16);
2226}
2227
2228static inline bfd_boolean
2229got_disp_reloc_p (unsigned int r_type)
2230{
2231 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2232}
2233
2234static inline bfd_boolean
2235got_page_reloc_p (unsigned int r_type)
2236{
2237 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2238}
2239
df58fc94
RS
2240static inline bfd_boolean
2241got_lo16_reloc_p (unsigned int r_type)
2242{
2243 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2244}
2245
2246static inline bfd_boolean
2247call_hi16_reloc_p (unsigned int r_type)
2248{
2249 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2250}
2251
2252static inline bfd_boolean
2253call_lo16_reloc_p (unsigned int r_type)
2254{
2255 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2256}
2257
2258static inline bfd_boolean
2259hi16_reloc_p (int r_type)
2260{
df58fc94
RS
2261 return (r_type == R_MIPS_HI16
2262 || r_type == R_MIPS16_HI16
7361da2c
AB
2263 || r_type == R_MICROMIPS_HI16
2264 || r_type == R_MIPS_PCHI16);
738e5348 2265}
d6f16593 2266
738e5348
RS
2267static inline bfd_boolean
2268lo16_reloc_p (int r_type)
2269{
df58fc94
RS
2270 return (r_type == R_MIPS_LO16
2271 || r_type == R_MIPS16_LO16
7361da2c
AB
2272 || r_type == R_MICROMIPS_LO16
2273 || r_type == R_MIPS_PCLO16);
738e5348
RS
2274}
2275
2276static inline bfd_boolean
2277mips16_call_reloc_p (int r_type)
2278{
2279 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2280}
d6f16593 2281
38a7df63
CF
2282static inline bfd_boolean
2283jal_reloc_p (int r_type)
2284{
df58fc94
RS
2285 return (r_type == R_MIPS_26
2286 || r_type == R_MIPS16_26
2287 || r_type == R_MICROMIPS_26_S1);
2288}
2289
99aefae6
MR
2290static inline bfd_boolean
2291b_reloc_p (int r_type)
2292{
2293 return (r_type == R_MIPS_PC26_S2
2294 || r_type == R_MIPS_PC21_S2
2295 || r_type == R_MIPS_PC16
c9775dde 2296 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2297 || r_type == R_MIPS16_PC16_S1
2298 || r_type == R_MICROMIPS_PC16_S1
2299 || r_type == R_MICROMIPS_PC10_S1
2300 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2301}
2302
7361da2c
AB
2303static inline bfd_boolean
2304aligned_pcrel_reloc_p (int r_type)
2305{
2306 return (r_type == R_MIPS_PC18_S3
2307 || r_type == R_MIPS_PC19_S2);
2308}
2309
9d862524
MR
2310static inline bfd_boolean
2311branch_reloc_p (int r_type)
2312{
2313 return (r_type == R_MIPS_26
2314 || r_type == R_MIPS_PC26_S2
2315 || r_type == R_MIPS_PC21_S2
2316 || r_type == R_MIPS_PC16
2317 || r_type == R_MIPS_GNU_REL16_S2);
2318}
2319
c9775dde
MR
2320static inline bfd_boolean
2321mips16_branch_reloc_p (int r_type)
2322{
2323 return (r_type == R_MIPS16_26
2324 || r_type == R_MIPS16_PC16_S1);
2325}
2326
df58fc94
RS
2327static inline bfd_boolean
2328micromips_branch_reloc_p (int r_type)
2329{
2330 return (r_type == R_MICROMIPS_26_S1
2331 || r_type == R_MICROMIPS_PC16_S1
2332 || r_type == R_MICROMIPS_PC10_S1
2333 || r_type == R_MICROMIPS_PC7_S1);
2334}
2335
2336static inline bfd_boolean
2337tls_gd_reloc_p (unsigned int r_type)
2338{
d0f13682
CLT
2339 return (r_type == R_MIPS_TLS_GD
2340 || r_type == R_MIPS16_TLS_GD
2341 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2342}
2343
2344static inline bfd_boolean
2345tls_ldm_reloc_p (unsigned int r_type)
2346{
d0f13682
CLT
2347 return (r_type == R_MIPS_TLS_LDM
2348 || r_type == R_MIPS16_TLS_LDM
2349 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2350}
2351
2352static inline bfd_boolean
2353tls_gottprel_reloc_p (unsigned int r_type)
2354{
d0f13682
CLT
2355 return (r_type == R_MIPS_TLS_GOTTPREL
2356 || r_type == R_MIPS16_TLS_GOTTPREL
2357 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2358}
2359
d6f16593 2360void
df58fc94
RS
2361_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2362 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2363{
df58fc94 2364 bfd_vma first, second, val;
d6f16593 2365
df58fc94 2366 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2367 return;
2368
df58fc94
RS
2369 /* Pick up the first and second halfwords of the instruction. */
2370 first = bfd_get_16 (abfd, data);
2371 second = bfd_get_16 (abfd, data + 2);
2372 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2373 val = first << 16 | second;
2374 else if (r_type != R_MIPS16_26)
2375 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2376 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2377 else
df58fc94
RS
2378 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2379 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2380 bfd_put_32 (abfd, val, data);
2381}
2382
2383void
df58fc94
RS
2384_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2385 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2386{
df58fc94 2387 bfd_vma first, second, val;
d6f16593 2388
df58fc94 2389 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2390 return;
2391
2392 val = bfd_get_32 (abfd, data);
df58fc94 2393 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2394 {
df58fc94
RS
2395 second = val & 0xffff;
2396 first = val >> 16;
2397 }
2398 else if (r_type != R_MIPS16_26)
2399 {
2400 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2401 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2402 }
2403 else
2404 {
df58fc94
RS
2405 second = val & 0xffff;
2406 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2407 | ((val >> 21) & 0x1f);
d6f16593 2408 }
df58fc94
RS
2409 bfd_put_16 (abfd, second, data + 2);
2410 bfd_put_16 (abfd, first, data);
d6f16593
MR
2411}
2412
b49e97c9 2413bfd_reloc_status_type
9719ad41
RS
2414_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2415 arelent *reloc_entry, asection *input_section,
2416 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2417{
2418 bfd_vma relocation;
a7ebbfdf 2419 bfd_signed_vma val;
30ac9238 2420 bfd_reloc_status_type status;
b49e97c9
TS
2421
2422 if (bfd_is_com_section (symbol->section))
2423 relocation = 0;
2424 else
2425 relocation = symbol->value;
2426
2427 relocation += symbol->section->output_section->vma;
2428 relocation += symbol->section->output_offset;
2429
07515404 2430 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2431 return bfd_reloc_outofrange;
2432
b49e97c9 2433 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2434 val = reloc_entry->addend;
2435
30ac9238 2436 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2437
b49e97c9 2438 /* Adjust val for the final section location and GP value. If we
1049f94e 2439 are producing relocatable output, we don't want to do this for
b49e97c9 2440 an external symbol. */
1049f94e 2441 if (! relocatable
b49e97c9
TS
2442 || (symbol->flags & BSF_SECTION_SYM) != 0)
2443 val += relocation - gp;
2444
a7ebbfdf
TS
2445 if (reloc_entry->howto->partial_inplace)
2446 {
30ac9238
RS
2447 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2448 (bfd_byte *) data
2449 + reloc_entry->address);
2450 if (status != bfd_reloc_ok)
2451 return status;
a7ebbfdf
TS
2452 }
2453 else
2454 reloc_entry->addend = val;
b49e97c9 2455
1049f94e 2456 if (relocatable)
b49e97c9 2457 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2458
2459 return bfd_reloc_ok;
2460}
2461
2462/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2463 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2464 that contains the relocation field and DATA points to the start of
2465 INPUT_SECTION. */
2466
2467struct mips_hi16
2468{
2469 struct mips_hi16 *next;
2470 bfd_byte *data;
2471 asection *input_section;
2472 arelent rel;
2473};
2474
2475/* FIXME: This should not be a static variable. */
2476
2477static struct mips_hi16 *mips_hi16_list;
2478
2479/* A howto special_function for REL *HI16 relocations. We can only
2480 calculate the correct value once we've seen the partnering
2481 *LO16 relocation, so just save the information for later.
2482
2483 The ABI requires that the *LO16 immediately follow the *HI16.
2484 However, as a GNU extension, we permit an arbitrary number of
2485 *HI16s to be associated with a single *LO16. This significantly
2486 simplies the relocation handling in gcc. */
2487
2488bfd_reloc_status_type
2489_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2490 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2491 asection *input_section, bfd *output_bfd,
2492 char **error_message ATTRIBUTE_UNUSED)
2493{
2494 struct mips_hi16 *n;
2495
07515404 2496 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2497 return bfd_reloc_outofrange;
2498
2499 n = bfd_malloc (sizeof *n);
2500 if (n == NULL)
2501 return bfd_reloc_outofrange;
2502
2503 n->next = mips_hi16_list;
2504 n->data = data;
2505 n->input_section = input_section;
2506 n->rel = *reloc_entry;
2507 mips_hi16_list = n;
2508
2509 if (output_bfd != NULL)
2510 reloc_entry->address += input_section->output_offset;
2511
2512 return bfd_reloc_ok;
2513}
2514
738e5348 2515/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2516 like any other 16-bit relocation when applied to global symbols, but is
2517 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2518
2519bfd_reloc_status_type
2520_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2521 void *data, asection *input_section,
2522 bfd *output_bfd, char **error_message)
2523{
2524 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2525 || bfd_is_und_section (bfd_get_section (symbol))
2526 || bfd_is_com_section (bfd_get_section (symbol)))
2527 /* The relocation is against a global symbol. */
2528 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2529 input_section, output_bfd,
2530 error_message);
2531
2532 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2533 input_section, output_bfd, error_message);
2534}
2535
2536/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2537 is a straightforward 16 bit inplace relocation, but we must deal with
2538 any partnering high-part relocations as well. */
2539
2540bfd_reloc_status_type
2541_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2542 void *data, asection *input_section,
2543 bfd *output_bfd, char **error_message)
2544{
2545 bfd_vma vallo;
d6f16593 2546 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2547
07515404 2548 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2549 return bfd_reloc_outofrange;
2550
df58fc94 2551 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2552 location);
df58fc94
RS
2553 vallo = bfd_get_32 (abfd, location);
2554 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2555 location);
d6f16593 2556
30ac9238
RS
2557 while (mips_hi16_list != NULL)
2558 {
2559 bfd_reloc_status_type ret;
2560 struct mips_hi16 *hi;
2561
2562 hi = mips_hi16_list;
2563
738e5348
RS
2564 /* R_MIPS*_GOT16 relocations are something of a special case. We
2565 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2566 relocation (with a rightshift of 16). However, since GOT16
2567 relocations can also be used with global symbols, their howto
2568 has a rightshift of 0. */
2569 if (hi->rel.howto->type == R_MIPS_GOT16)
2570 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2571 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2572 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2573 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2574 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2575
2576 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2577 carry or borrow will induce a change of +1 or -1 in the high part. */
2578 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2579
30ac9238
RS
2580 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2581 hi->input_section, output_bfd,
2582 error_message);
2583 if (ret != bfd_reloc_ok)
2584 return ret;
2585
2586 mips_hi16_list = hi->next;
2587 free (hi);
2588 }
2589
2590 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2591 input_section, output_bfd,
2592 error_message);
2593}
2594
2595/* A generic howto special_function. This calculates and installs the
2596 relocation itself, thus avoiding the oft-discussed problems in
2597 bfd_perform_relocation and bfd_install_relocation. */
2598
2599bfd_reloc_status_type
2600_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2601 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2602 asection *input_section, bfd *output_bfd,
2603 char **error_message ATTRIBUTE_UNUSED)
2604{
2605 bfd_signed_vma val;
2606 bfd_reloc_status_type status;
2607 bfd_boolean relocatable;
2608
2609 relocatable = (output_bfd != NULL);
2610
07515404 2611 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2612 return bfd_reloc_outofrange;
2613
2614 /* Build up the field adjustment in VAL. */
2615 val = 0;
2616 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2617 {
2618 /* Either we're calculating the final field value or we have a
2619 relocation against a section symbol. Add in the section's
2620 offset or address. */
2621 val += symbol->section->output_section->vma;
2622 val += symbol->section->output_offset;
2623 }
2624
2625 if (!relocatable)
2626 {
2627 /* We're calculating the final field value. Add in the symbol's value
2628 and, if pc-relative, subtract the address of the field itself. */
2629 val += symbol->value;
2630 if (reloc_entry->howto->pc_relative)
2631 {
2632 val -= input_section->output_section->vma;
2633 val -= input_section->output_offset;
2634 val -= reloc_entry->address;
2635 }
2636 }
2637
2638 /* VAL is now the final adjustment. If we're keeping this relocation
2639 in the output file, and if the relocation uses a separate addend,
2640 we just need to add VAL to that addend. Otherwise we need to add
2641 VAL to the relocation field itself. */
2642 if (relocatable && !reloc_entry->howto->partial_inplace)
2643 reloc_entry->addend += val;
2644 else
2645 {
d6f16593
MR
2646 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2647
30ac9238
RS
2648 /* Add in the separate addend, if any. */
2649 val += reloc_entry->addend;
2650
2651 /* Add VAL to the relocation field. */
df58fc94
RS
2652 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2653 location);
30ac9238 2654 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2655 location);
df58fc94
RS
2656 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2657 location);
d6f16593 2658
30ac9238
RS
2659 if (status != bfd_reloc_ok)
2660 return status;
2661 }
2662
2663 if (relocatable)
2664 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2665
2666 return bfd_reloc_ok;
2667}
2668\f
2669/* Swap an entry in a .gptab section. Note that these routines rely
2670 on the equivalence of the two elements of the union. */
2671
2672static void
9719ad41
RS
2673bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2674 Elf32_gptab *in)
b49e97c9
TS
2675{
2676 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2677 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2678}
2679
2680static void
9719ad41
RS
2681bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2682 Elf32_External_gptab *ex)
b49e97c9
TS
2683{
2684 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2685 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2686}
2687
2688static void
9719ad41
RS
2689bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2690 Elf32_External_compact_rel *ex)
b49e97c9
TS
2691{
2692 H_PUT_32 (abfd, in->id1, ex->id1);
2693 H_PUT_32 (abfd, in->num, ex->num);
2694 H_PUT_32 (abfd, in->id2, ex->id2);
2695 H_PUT_32 (abfd, in->offset, ex->offset);
2696 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2697 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2698}
2699
2700static void
9719ad41
RS
2701bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2702 Elf32_External_crinfo *ex)
b49e97c9
TS
2703{
2704 unsigned long l;
2705
2706 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2707 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2708 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2709 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2710 H_PUT_32 (abfd, l, ex->info);
2711 H_PUT_32 (abfd, in->konst, ex->konst);
2712 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2713}
b49e97c9
TS
2714\f
2715/* A .reginfo section holds a single Elf32_RegInfo structure. These
2716 routines swap this structure in and out. They are used outside of
2717 BFD, so they are globally visible. */
2718
2719void
9719ad41
RS
2720bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2721 Elf32_RegInfo *in)
b49e97c9
TS
2722{
2723 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2724 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2725 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2726 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2727 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2728 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2729}
2730
2731void
9719ad41
RS
2732bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2733 Elf32_External_RegInfo *ex)
b49e97c9
TS
2734{
2735 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2736 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2737 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2738 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2739 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2740 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2741}
2742
2743/* In the 64 bit ABI, the .MIPS.options section holds register
2744 information in an Elf64_Reginfo structure. These routines swap
2745 them in and out. They are globally visible because they are used
2746 outside of BFD. These routines are here so that gas can call them
2747 without worrying about whether the 64 bit ABI has been included. */
2748
2749void
9719ad41
RS
2750bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2751 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2752{
2753 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2754 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2755 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2756 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2757 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2758 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2759 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2760}
2761
2762void
9719ad41
RS
2763bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2764 Elf64_External_RegInfo *ex)
b49e97c9
TS
2765{
2766 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2767 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2768 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2769 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2770 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2771 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2772 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2773}
2774
2775/* Swap in an options header. */
2776
2777void
9719ad41
RS
2778bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2779 Elf_Internal_Options *in)
b49e97c9
TS
2780{
2781 in->kind = H_GET_8 (abfd, ex->kind);
2782 in->size = H_GET_8 (abfd, ex->size);
2783 in->section = H_GET_16 (abfd, ex->section);
2784 in->info = H_GET_32 (abfd, ex->info);
2785}
2786
2787/* Swap out an options header. */
2788
2789void
9719ad41
RS
2790bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2791 Elf_External_Options *ex)
b49e97c9
TS
2792{
2793 H_PUT_8 (abfd, in->kind, ex->kind);
2794 H_PUT_8 (abfd, in->size, ex->size);
2795 H_PUT_16 (abfd, in->section, ex->section);
2796 H_PUT_32 (abfd, in->info, ex->info);
2797}
351cdf24
MF
2798
2799/* Swap in an abiflags structure. */
2800
2801void
2802bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2803 const Elf_External_ABIFlags_v0 *ex,
2804 Elf_Internal_ABIFlags_v0 *in)
2805{
2806 in->version = H_GET_16 (abfd, ex->version);
2807 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2808 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2809 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2810 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2811 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2812 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2813 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2814 in->ases = H_GET_32 (abfd, ex->ases);
2815 in->flags1 = H_GET_32 (abfd, ex->flags1);
2816 in->flags2 = H_GET_32 (abfd, ex->flags2);
2817}
2818
2819/* Swap out an abiflags structure. */
2820
2821void
2822bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2823 const Elf_Internal_ABIFlags_v0 *in,
2824 Elf_External_ABIFlags_v0 *ex)
2825{
2826 H_PUT_16 (abfd, in->version, ex->version);
2827 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2828 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2829 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2830 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2831 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2832 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2833 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2834 H_PUT_32 (abfd, in->ases, ex->ases);
2835 H_PUT_32 (abfd, in->flags1, ex->flags1);
2836 H_PUT_32 (abfd, in->flags2, ex->flags2);
2837}
b49e97c9
TS
2838\f
2839/* This function is called via qsort() to sort the dynamic relocation
2840 entries by increasing r_symndx value. */
2841
2842static int
9719ad41 2843sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2844{
947216bf
AM
2845 Elf_Internal_Rela int_reloc1;
2846 Elf_Internal_Rela int_reloc2;
6870500c 2847 int diff;
b49e97c9 2848
947216bf
AM
2849 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2850 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2851
6870500c
RS
2852 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2853 if (diff != 0)
2854 return diff;
2855
2856 if (int_reloc1.r_offset < int_reloc2.r_offset)
2857 return -1;
2858 if (int_reloc1.r_offset > int_reloc2.r_offset)
2859 return 1;
2860 return 0;
b49e97c9
TS
2861}
2862
f4416af6
AO
2863/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2864
2865static int
7e3102a7
AM
2866sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2867 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2868{
7e3102a7 2869#ifdef BFD64
f4416af6
AO
2870 Elf_Internal_Rela int_reloc1[3];
2871 Elf_Internal_Rela int_reloc2[3];
2872
2873 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2874 (reldyn_sorting_bfd, arg1, int_reloc1);
2875 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2876 (reldyn_sorting_bfd, arg2, int_reloc2);
2877
6870500c
RS
2878 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2879 return -1;
2880 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2881 return 1;
2882
2883 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2884 return -1;
2885 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2886 return 1;
2887 return 0;
7e3102a7
AM
2888#else
2889 abort ();
2890#endif
f4416af6
AO
2891}
2892
2893
b49e97c9
TS
2894/* This routine is used to write out ECOFF debugging external symbol
2895 information. It is called via mips_elf_link_hash_traverse. The
2896 ECOFF external symbol information must match the ELF external
2897 symbol information. Unfortunately, at this point we don't know
2898 whether a symbol is required by reloc information, so the two
2899 tables may wind up being different. We must sort out the external
2900 symbol information before we can set the final size of the .mdebug
2901 section, and we must set the size of the .mdebug section before we
2902 can relocate any sections, and we can't know which symbols are
2903 required by relocation until we relocate the sections.
2904 Fortunately, it is relatively unlikely that any symbol will be
2905 stripped but required by a reloc. In particular, it can not happen
2906 when generating a final executable. */
2907
b34976b6 2908static bfd_boolean
9719ad41 2909mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2910{
9719ad41 2911 struct extsym_info *einfo = data;
b34976b6 2912 bfd_boolean strip;
b49e97c9
TS
2913 asection *sec, *output_section;
2914
b49e97c9 2915 if (h->root.indx == -2)
b34976b6 2916 strip = FALSE;
f5385ebf 2917 else if ((h->root.def_dynamic
77cfaee6
AM
2918 || h->root.ref_dynamic
2919 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2920 && !h->root.def_regular
2921 && !h->root.ref_regular)
b34976b6 2922 strip = TRUE;
b49e97c9
TS
2923 else if (einfo->info->strip == strip_all
2924 || (einfo->info->strip == strip_some
2925 && bfd_hash_lookup (einfo->info->keep_hash,
2926 h->root.root.root.string,
b34976b6
AM
2927 FALSE, FALSE) == NULL))
2928 strip = TRUE;
b49e97c9 2929 else
b34976b6 2930 strip = FALSE;
b49e97c9
TS
2931
2932 if (strip)
b34976b6 2933 return TRUE;
b49e97c9
TS
2934
2935 if (h->esym.ifd == -2)
2936 {
2937 h->esym.jmptbl = 0;
2938 h->esym.cobol_main = 0;
2939 h->esym.weakext = 0;
2940 h->esym.reserved = 0;
2941 h->esym.ifd = ifdNil;
2942 h->esym.asym.value = 0;
2943 h->esym.asym.st = stGlobal;
2944
2945 if (h->root.root.type == bfd_link_hash_undefined
2946 || h->root.root.type == bfd_link_hash_undefweak)
2947 {
2948 const char *name;
2949
2950 /* Use undefined class. Also, set class and type for some
07d6d2b8 2951 special symbols. */
b49e97c9
TS
2952 name = h->root.root.root.string;
2953 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2954 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2955 {
2956 h->esym.asym.sc = scData;
2957 h->esym.asym.st = stLabel;
2958 h->esym.asym.value = 0;
2959 }
2960 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2961 {
2962 h->esym.asym.sc = scAbs;
2963 h->esym.asym.st = stLabel;
2964 h->esym.asym.value =
2965 mips_elf_hash_table (einfo->info)->procedure_count;
2966 }
b49e97c9
TS
2967 else
2968 h->esym.asym.sc = scUndefined;
2969 }
2970 else if (h->root.root.type != bfd_link_hash_defined
2971 && h->root.root.type != bfd_link_hash_defweak)
2972 h->esym.asym.sc = scAbs;
2973 else
2974 {
2975 const char *name;
2976
2977 sec = h->root.root.u.def.section;
2978 output_section = sec->output_section;
2979
2980 /* When making a shared library and symbol h is the one from
2981 the another shared library, OUTPUT_SECTION may be null. */
2982 if (output_section == NULL)
2983 h->esym.asym.sc = scUndefined;
2984 else
2985 {
2986 name = bfd_section_name (output_section->owner, output_section);
2987
2988 if (strcmp (name, ".text") == 0)
2989 h->esym.asym.sc = scText;
2990 else if (strcmp (name, ".data") == 0)
2991 h->esym.asym.sc = scData;
2992 else if (strcmp (name, ".sdata") == 0)
2993 h->esym.asym.sc = scSData;
2994 else if (strcmp (name, ".rodata") == 0
2995 || strcmp (name, ".rdata") == 0)
2996 h->esym.asym.sc = scRData;
2997 else if (strcmp (name, ".bss") == 0)
2998 h->esym.asym.sc = scBss;
2999 else if (strcmp (name, ".sbss") == 0)
3000 h->esym.asym.sc = scSBss;
3001 else if (strcmp (name, ".init") == 0)
3002 h->esym.asym.sc = scInit;
3003 else if (strcmp (name, ".fini") == 0)
3004 h->esym.asym.sc = scFini;
3005 else
3006 h->esym.asym.sc = scAbs;
3007 }
3008 }
3009
3010 h->esym.asym.reserved = 0;
3011 h->esym.asym.index = indexNil;
3012 }
3013
3014 if (h->root.root.type == bfd_link_hash_common)
3015 h->esym.asym.value = h->root.root.u.c.size;
3016 else if (h->root.root.type == bfd_link_hash_defined
3017 || h->root.root.type == bfd_link_hash_defweak)
3018 {
3019 if (h->esym.asym.sc == scCommon)
3020 h->esym.asym.sc = scBss;
3021 else if (h->esym.asym.sc == scSCommon)
3022 h->esym.asym.sc = scSBss;
3023
3024 sec = h->root.root.u.def.section;
3025 output_section = sec->output_section;
3026 if (output_section != NULL)
3027 h->esym.asym.value = (h->root.root.u.def.value
3028 + sec->output_offset
3029 + output_section->vma);
3030 else
3031 h->esym.asym.value = 0;
3032 }
33bb52fb 3033 else
b49e97c9
TS
3034 {
3035 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
3036
3037 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 3038 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 3039
33bb52fb 3040 if (hd->needs_lazy_stub)
b49e97c9 3041 {
1bbce132
MR
3042 BFD_ASSERT (hd->root.plt.plist != NULL);
3043 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
3044 /* Set type and value for a symbol with a function stub. */
3045 h->esym.asym.st = stProc;
3046 sec = hd->root.root.u.def.section;
3047 if (sec == NULL)
3048 h->esym.asym.value = 0;
3049 else
3050 {
3051 output_section = sec->output_section;
3052 if (output_section != NULL)
1bbce132 3053 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
3054 + sec->output_offset
3055 + output_section->vma);
3056 else
3057 h->esym.asym.value = 0;
3058 }
b49e97c9
TS
3059 }
3060 }
3061
3062 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3063 h->root.root.root.string,
3064 &h->esym))
3065 {
b34976b6
AM
3066 einfo->failed = TRUE;
3067 return FALSE;
b49e97c9
TS
3068 }
3069
b34976b6 3070 return TRUE;
b49e97c9
TS
3071}
3072
3073/* A comparison routine used to sort .gptab entries. */
3074
3075static int
9719ad41 3076gptab_compare (const void *p1, const void *p2)
b49e97c9 3077{
9719ad41
RS
3078 const Elf32_gptab *a1 = p1;
3079 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3080
3081 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3082}
3083\f
b15e6682 3084/* Functions to manage the got entry hash table. */
f4416af6
AO
3085
3086/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3087 hash number. */
3088
3089static INLINE hashval_t
9719ad41 3090mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3091{
3092#ifdef BFD64
3093 return addr + (addr >> 32);
3094#else
3095 return addr;
3096#endif
3097}
3098
f4416af6 3099static hashval_t
d9bf376d 3100mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3101{
3102 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3103
e641e783 3104 return (entry->symndx
9ab066b4
RS
3105 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3106 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3107 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3108 : entry->symndx >= 0 ? (entry->abfd->id
3109 + mips_elf_hash_bfd_vma (entry->d.addend))
3110 : entry->d.h->root.root.root.hash));
f4416af6
AO
3111}
3112
3113static int
3dff0dd1 3114mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3115{
3116 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3117 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3118
e641e783 3119 return (e1->symndx == e2->symndx
9ab066b4
RS
3120 && e1->tls_type == e2->tls_type
3121 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3122 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3123 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3124 && e1->d.addend == e2->d.addend)
3125 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3126}
c224138d 3127
13db6b44
RS
3128static hashval_t
3129mips_got_page_ref_hash (const void *ref_)
3130{
3131 const struct mips_got_page_ref *ref;
3132
3133 ref = (const struct mips_got_page_ref *) ref_;
3134 return ((ref->symndx >= 0
3135 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3136 : ref->u.h->root.root.root.hash)
3137 + mips_elf_hash_bfd_vma (ref->addend));
3138}
3139
3140static int
3141mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3142{
3143 const struct mips_got_page_ref *ref1, *ref2;
3144
3145 ref1 = (const struct mips_got_page_ref *) ref1_;
3146 ref2 = (const struct mips_got_page_ref *) ref2_;
3147 return (ref1->symndx == ref2->symndx
3148 && (ref1->symndx < 0
3149 ? ref1->u.h == ref2->u.h
3150 : ref1->u.abfd == ref2->u.abfd)
3151 && ref1->addend == ref2->addend);
3152}
3153
c224138d
RS
3154static hashval_t
3155mips_got_page_entry_hash (const void *entry_)
3156{
3157 const struct mips_got_page_entry *entry;
3158
3159 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3160 return entry->sec->id;
c224138d
RS
3161}
3162
3163static int
3164mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3165{
3166 const struct mips_got_page_entry *entry1, *entry2;
3167
3168 entry1 = (const struct mips_got_page_entry *) entry1_;
3169 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3170 return entry1->sec == entry2->sec;
c224138d 3171}
b15e6682 3172\f
3dff0dd1 3173/* Create and return a new mips_got_info structure. */
5334aa52
RS
3174
3175static struct mips_got_info *
3dff0dd1 3176mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3177{
3178 struct mips_got_info *g;
3179
3180 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3181 if (g == NULL)
3182 return NULL;
3183
3dff0dd1
RS
3184 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3185 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3186 if (g->got_entries == NULL)
3187 return NULL;
3188
13db6b44
RS
3189 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3190 mips_got_page_ref_eq, NULL);
3191 if (g->got_page_refs == NULL)
5334aa52
RS
3192 return NULL;
3193
3194 return g;
3195}
3196
ee227692
RS
3197/* Return the GOT info for input bfd ABFD, trying to create a new one if
3198 CREATE_P and if ABFD doesn't already have a GOT. */
3199
3200static struct mips_got_info *
3201mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3202{
3203 struct mips_elf_obj_tdata *tdata;
3204
3205 if (!is_mips_elf (abfd))
3206 return NULL;
3207
3208 tdata = mips_elf_tdata (abfd);
3209 if (!tdata->got && create_p)
3dff0dd1 3210 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3211 return tdata->got;
3212}
3213
d7206569
RS
3214/* Record that ABFD should use output GOT G. */
3215
3216static void
3217mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3218{
3219 struct mips_elf_obj_tdata *tdata;
3220
3221 BFD_ASSERT (is_mips_elf (abfd));
3222 tdata = mips_elf_tdata (abfd);
3223 if (tdata->got)
3224 {
3225 /* The GOT structure itself and the hash table entries are
3226 allocated to a bfd, but the hash tables aren't. */
3227 htab_delete (tdata->got->got_entries);
13db6b44
RS
3228 htab_delete (tdata->got->got_page_refs);
3229 if (tdata->got->got_page_entries)
3230 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3231 }
3232 tdata->got = g;
3233}
3234
0a44bf69
RS
3235/* Return the dynamic relocation section. If it doesn't exist, try to
3236 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3237 if creation fails. */
f4416af6
AO
3238
3239static asection *
0a44bf69 3240mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3241{
0a44bf69 3242 const char *dname;
f4416af6 3243 asection *sreloc;
0a44bf69 3244 bfd *dynobj;
f4416af6 3245
0a44bf69
RS
3246 dname = MIPS_ELF_REL_DYN_NAME (info);
3247 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3248 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3249 if (sreloc == NULL && create_p)
3250 {
3d4d4302
AM
3251 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3252 (SEC_ALLOC
3253 | SEC_LOAD
3254 | SEC_HAS_CONTENTS
3255 | SEC_IN_MEMORY
3256 | SEC_LINKER_CREATED
3257 | SEC_READONLY));
f4416af6 3258 if (sreloc == NULL
f4416af6 3259 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3260 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3261 return NULL;
3262 }
3263 return sreloc;
3264}
3265
e641e783
RS
3266/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3267
3268static int
3269mips_elf_reloc_tls_type (unsigned int r_type)
3270{
3271 if (tls_gd_reloc_p (r_type))
3272 return GOT_TLS_GD;
3273
3274 if (tls_ldm_reloc_p (r_type))
3275 return GOT_TLS_LDM;
3276
3277 if (tls_gottprel_reloc_p (r_type))
3278 return GOT_TLS_IE;
3279
9ab066b4 3280 return GOT_TLS_NONE;
e641e783
RS
3281}
3282
3283/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3284
3285static int
3286mips_tls_got_entries (unsigned int type)
3287{
3288 switch (type)
3289 {
3290 case GOT_TLS_GD:
3291 case GOT_TLS_LDM:
3292 return 2;
3293
3294 case GOT_TLS_IE:
3295 return 1;
3296
9ab066b4 3297 case GOT_TLS_NONE:
e641e783
RS
3298 return 0;
3299 }
3300 abort ();
3301}
3302
0f20cc35
DJ
3303/* Count the number of relocations needed for a TLS GOT entry, with
3304 access types from TLS_TYPE, and symbol H (or a local symbol if H
3305 is NULL). */
3306
3307static int
3308mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3309 struct elf_link_hash_entry *h)
3310{
3311 int indx = 0;
0f20cc35
DJ
3312 bfd_boolean need_relocs = FALSE;
3313 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3314
1cb83cac
MR
3315 if (h != NULL
3316 && h->dynindx != -1
3317 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3318 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3319 indx = h->dynindx;
3320
9143e72c 3321 if ((bfd_link_dll (info) || indx != 0)
0f20cc35
DJ
3322 && (h == NULL
3323 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3324 || h->root.type != bfd_link_hash_undefweak))
3325 need_relocs = TRUE;
3326
3327 if (!need_relocs)
e641e783 3328 return 0;
0f20cc35 3329
9ab066b4 3330 switch (tls_type)
0f20cc35 3331 {
e641e783
RS
3332 case GOT_TLS_GD:
3333 return indx != 0 ? 2 : 1;
0f20cc35 3334
e641e783
RS
3335 case GOT_TLS_IE:
3336 return 1;
0f20cc35 3337
e641e783 3338 case GOT_TLS_LDM:
9143e72c 3339 return bfd_link_dll (info) ? 1 : 0;
0f20cc35 3340
e641e783
RS
3341 default:
3342 return 0;
3343 }
0f20cc35
DJ
3344}
3345
ab361d49
RS
3346/* Add the number of GOT entries and TLS relocations required by ENTRY
3347 to G. */
0f20cc35 3348
ab361d49
RS
3349static void
3350mips_elf_count_got_entry (struct bfd_link_info *info,
3351 struct mips_got_info *g,
3352 struct mips_got_entry *entry)
0f20cc35 3353{
9ab066b4 3354 if (entry->tls_type)
ab361d49 3355 {
9ab066b4
RS
3356 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3357 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3358 entry->symndx < 0
3359 ? &entry->d.h->root : NULL);
3360 }
3361 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3362 g->local_gotno += 1;
3363 else
3364 g->global_gotno += 1;
0f20cc35
DJ
3365}
3366
0f20cc35
DJ
3367/* Output a simple dynamic relocation into SRELOC. */
3368
3369static void
3370mips_elf_output_dynamic_relocation (bfd *output_bfd,
3371 asection *sreloc,
861fb55a 3372 unsigned long reloc_index,
0f20cc35
DJ
3373 unsigned long indx,
3374 int r_type,
3375 bfd_vma offset)
3376{
3377 Elf_Internal_Rela rel[3];
3378
3379 memset (rel, 0, sizeof (rel));
3380
3381 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3382 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3383
3384 if (ABI_64_P (output_bfd))
3385 {
3386 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3387 (output_bfd, &rel[0],
3388 (sreloc->contents
861fb55a 3389 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3390 }
3391 else
3392 bfd_elf32_swap_reloc_out
3393 (output_bfd, &rel[0],
3394 (sreloc->contents
861fb55a 3395 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3396}
3397
3398/* Initialize a set of TLS GOT entries for one symbol. */
3399
3400static void
9ab066b4
RS
3401mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3402 struct mips_got_entry *entry,
0f20cc35
DJ
3403 struct mips_elf_link_hash_entry *h,
3404 bfd_vma value)
3405{
1cb83cac 3406 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
23cc69b6 3407 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3408 int indx;
3409 asection *sreloc, *sgot;
9ab066b4 3410 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3411 bfd_boolean need_relocs = FALSE;
3412
23cc69b6 3413 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3414 if (htab == NULL)
3415 return;
3416
ce558b89 3417 sgot = htab->root.sgot;
0f20cc35
DJ
3418
3419 indx = 0;
1cb83cac
MR
3420 if (h != NULL
3421 && h->root.dynindx != -1
3422 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3423 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3424 indx = h->root.dynindx;
0f20cc35 3425
9ab066b4 3426 if (entry->tls_initialized)
0f20cc35
DJ
3427 return;
3428
9143e72c 3429 if ((bfd_link_dll (info) || indx != 0)
0f20cc35
DJ
3430 && (h == NULL
3431 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3432 || h->root.type != bfd_link_hash_undefweak))
3433 need_relocs = TRUE;
3434
3435 /* MINUS_ONE means the symbol is not defined in this object. It may not
3436 be defined at all; assume that the value doesn't matter in that
3437 case. Otherwise complain if we would use the value. */
3438 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3439 || h->root.root.type == bfd_link_hash_undefweak);
3440
3441 /* Emit necessary relocations. */
0a44bf69 3442 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3443 got_offset = entry->gotidx;
0f20cc35 3444
9ab066b4 3445 switch (entry->tls_type)
0f20cc35 3446 {
e641e783
RS
3447 case GOT_TLS_GD:
3448 /* General Dynamic. */
3449 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3450
3451 if (need_relocs)
3452 {
3453 mips_elf_output_dynamic_relocation
861fb55a 3454 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3455 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3456 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3457
3458 if (indx)
3459 mips_elf_output_dynamic_relocation
861fb55a 3460 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3461 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3462 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3463 else
3464 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3465 sgot->contents + got_offset2);
0f20cc35
DJ
3466 }
3467 else
3468 {
3469 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3470 sgot->contents + got_offset);
0f20cc35 3471 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3472 sgot->contents + got_offset2);
0f20cc35 3473 }
e641e783 3474 break;
0f20cc35 3475
e641e783
RS
3476 case GOT_TLS_IE:
3477 /* Initial Exec model. */
0f20cc35
DJ
3478 if (need_relocs)
3479 {
3480 if (indx == 0)
3481 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3482 sgot->contents + got_offset);
0f20cc35
DJ
3483 else
3484 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3485 sgot->contents + got_offset);
0f20cc35
DJ
3486
3487 mips_elf_output_dynamic_relocation
861fb55a 3488 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3489 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3490 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3491 }
3492 else
3493 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3494 sgot->contents + got_offset);
3495 break;
0f20cc35 3496
e641e783 3497 case GOT_TLS_LDM:
0f20cc35
DJ
3498 /* The initial offset is zero, and the LD offsets will include the
3499 bias by DTP_OFFSET. */
3500 MIPS_ELF_PUT_WORD (abfd, 0,
3501 sgot->contents + got_offset
3502 + MIPS_ELF_GOT_SIZE (abfd));
3503
9143e72c 3504 if (!bfd_link_dll (info))
0f20cc35
DJ
3505 MIPS_ELF_PUT_WORD (abfd, 1,
3506 sgot->contents + got_offset);
3507 else
3508 mips_elf_output_dynamic_relocation
861fb55a 3509 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3510 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3511 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3512 break;
3513
3514 default:
3515 abort ();
0f20cc35
DJ
3516 }
3517
9ab066b4 3518 entry->tls_initialized = TRUE;
e641e783 3519}
0f20cc35 3520
0a44bf69
RS
3521/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3522 for global symbol H. .got.plt comes before the GOT, so the offset
3523 will be negative. */
3524
3525static bfd_vma
3526mips_elf_gotplt_index (struct bfd_link_info *info,
3527 struct elf_link_hash_entry *h)
3528{
1bbce132 3529 bfd_vma got_address, got_value;
0a44bf69
RS
3530 struct mips_elf_link_hash_table *htab;
3531
3532 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3533 BFD_ASSERT (htab != NULL);
3534
1bbce132
MR
3535 BFD_ASSERT (h->plt.plist != NULL);
3536 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3537
3538 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3539 got_address = (htab->root.sgotplt->output_section->vma
3540 + htab->root.sgotplt->output_offset
1bbce132
MR
3541 + (h->plt.plist->gotplt_index
3542 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3543
3544 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3545 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3546 + htab->root.hgot->root.u.def.section->output_offset
3547 + htab->root.hgot->root.u.def.value);
3548
3549 return got_address - got_value;
3550}
3551
5c18022e 3552/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3553 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3554 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3555 offset can be found. */
b49e97c9
TS
3556
3557static bfd_vma
9719ad41 3558mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3559 bfd_vma value, unsigned long r_symndx,
0f20cc35 3560 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3561{
a8028dd0 3562 struct mips_elf_link_hash_table *htab;
b15e6682 3563 struct mips_got_entry *entry;
b49e97c9 3564
a8028dd0 3565 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3566 BFD_ASSERT (htab != NULL);
3567
a8028dd0
RS
3568 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3569 r_symndx, h, r_type);
0f20cc35 3570 if (!entry)
b15e6682 3571 return MINUS_ONE;
0f20cc35 3572
e641e783 3573 if (entry->tls_type)
9ab066b4
RS
3574 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3575 return entry->gotidx;
b49e97c9
TS
3576}
3577
13fbec83 3578/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3579
3580static bfd_vma
13fbec83
RS
3581mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3582 struct elf_link_hash_entry *h)
3583{
3584 struct mips_elf_link_hash_table *htab;
3585 long global_got_dynindx;
3586 struct mips_got_info *g;
3587 bfd_vma got_index;
3588
3589 htab = mips_elf_hash_table (info);
3590 BFD_ASSERT (htab != NULL);
3591
3592 global_got_dynindx = 0;
3593 if (htab->global_gotsym != NULL)
3594 global_got_dynindx = htab->global_gotsym->dynindx;
3595
3596 /* Once we determine the global GOT entry with the lowest dynamic
3597 symbol table index, we must put all dynamic symbols with greater
3598 indices into the primary GOT. That makes it easy to calculate the
3599 GOT offset. */
3600 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3601 g = mips_elf_bfd_got (obfd, FALSE);
3602 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3603 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3604 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3605
3606 return got_index;
3607}
3608
3609/* Return the GOT index for the global symbol indicated by H, which is
3610 referenced by a relocation of type R_TYPE in IBFD. */
3611
3612static bfd_vma
3613mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3614 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3615{
a8028dd0 3616 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3617 struct mips_got_info *g;
3618 struct mips_got_entry lookup, *entry;
3619 bfd_vma gotidx;
b49e97c9 3620
a8028dd0 3621 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3622 BFD_ASSERT (htab != NULL);
3623
6c42ddb9
RS
3624 g = mips_elf_bfd_got (ibfd, FALSE);
3625 BFD_ASSERT (g);
f4416af6 3626
6c42ddb9
RS
3627 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3628 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3629 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3630
6c42ddb9
RS
3631 lookup.abfd = ibfd;
3632 lookup.symndx = -1;
3633 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3634 entry = htab_find (g->got_entries, &lookup);
3635 BFD_ASSERT (entry);
0f20cc35 3636
6c42ddb9 3637 gotidx = entry->gotidx;
ce558b89 3638 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3639
6c42ddb9 3640 if (lookup.tls_type)
0f20cc35 3641 {
0f20cc35
DJ
3642 bfd_vma value = MINUS_ONE;
3643
3644 if ((h->root.type == bfd_link_hash_defined
3645 || h->root.type == bfd_link_hash_defweak)
3646 && h->root.u.def.section->output_section)
3647 value = (h->root.u.def.value
3648 + h->root.u.def.section->output_offset
3649 + h->root.u.def.section->output_section->vma);
3650
9ab066b4 3651 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3652 }
6c42ddb9 3653 return gotidx;
b49e97c9
TS
3654}
3655
5c18022e
RS
3656/* Find a GOT page entry that points to within 32KB of VALUE. These
3657 entries are supposed to be placed at small offsets in the GOT, i.e.,
3658 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3659 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3660 offset of the GOT entry from VALUE. */
b49e97c9
TS
3661
3662static bfd_vma
9719ad41 3663mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3664 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3665{
91d6fa6a 3666 bfd_vma page, got_index;
b15e6682 3667 struct mips_got_entry *entry;
b49e97c9 3668
0a44bf69 3669 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3670 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3671 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3672
b15e6682
AO
3673 if (!entry)
3674 return MINUS_ONE;
143d77c5 3675
91d6fa6a 3676 got_index = entry->gotidx;
b49e97c9
TS
3677
3678 if (offsetp)
f4416af6 3679 *offsetp = value - entry->d.address;
b49e97c9 3680
91d6fa6a 3681 return got_index;
b49e97c9
TS
3682}
3683
738e5348 3684/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3685 EXTERNAL is true if the relocation was originally against a global
3686 symbol that binds locally. */
b49e97c9
TS
3687
3688static bfd_vma
9719ad41 3689mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3690 bfd_vma value, bfd_boolean external)
b49e97c9 3691{
b15e6682 3692 struct mips_got_entry *entry;
b49e97c9 3693
0a44bf69
RS
3694 /* GOT16 relocations against local symbols are followed by a LO16
3695 relocation; those against global symbols are not. Thus if the
3696 symbol was originally local, the GOT16 relocation should load the
3697 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3698 if (! external)
0a44bf69 3699 value = mips_elf_high (value) << 16;
b49e97c9 3700
738e5348
RS
3701 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3702 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3703 same in all cases. */
a8028dd0
RS
3704 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3705 NULL, R_MIPS_GOT16);
b15e6682
AO
3706 if (entry)
3707 return entry->gotidx;
3708 else
3709 return MINUS_ONE;
b49e97c9
TS
3710}
3711
3712/* Returns the offset for the entry at the INDEXth position
3713 in the GOT. */
3714
3715static bfd_vma
a8028dd0 3716mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3717 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3718{
a8028dd0 3719 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3720 asection *sgot;
3721 bfd_vma gp;
3722
a8028dd0 3723 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3724 BFD_ASSERT (htab != NULL);
3725
ce558b89 3726 sgot = htab->root.sgot;
f4416af6 3727 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3728 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3729
91d6fa6a 3730 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3731}
3732
0a44bf69
RS
3733/* Create and return a local GOT entry for VALUE, which was calculated
3734 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3735 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3736 instead. */
b49e97c9 3737
b15e6682 3738static struct mips_got_entry *
0a44bf69 3739mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3740 bfd *ibfd, bfd_vma value,
5c18022e 3741 unsigned long r_symndx,
0f20cc35
DJ
3742 struct mips_elf_link_hash_entry *h,
3743 int r_type)
b49e97c9 3744{
ebc53538
RS
3745 struct mips_got_entry lookup, *entry;
3746 void **loc;
f4416af6 3747 struct mips_got_info *g;
0a44bf69 3748 struct mips_elf_link_hash_table *htab;
6c42ddb9 3749 bfd_vma gotidx;
0a44bf69
RS
3750
3751 htab = mips_elf_hash_table (info);
4dfe6ac6 3752 BFD_ASSERT (htab != NULL);
b15e6682 3753
d7206569 3754 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3755 if (g == NULL)
3756 {
d7206569 3757 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3758 BFD_ASSERT (g != NULL);
3759 }
b15e6682 3760
020d7251
RS
3761 /* This function shouldn't be called for symbols that live in the global
3762 area of the GOT. */
3763 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3764
ebc53538
RS
3765 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3766 if (lookup.tls_type)
3767 {
3768 lookup.abfd = ibfd;
df58fc94 3769 if (tls_ldm_reloc_p (r_type))
0f20cc35 3770 {
ebc53538
RS
3771 lookup.symndx = 0;
3772 lookup.d.addend = 0;
0f20cc35
DJ
3773 }
3774 else if (h == NULL)
3775 {
ebc53538
RS
3776 lookup.symndx = r_symndx;
3777 lookup.d.addend = 0;
0f20cc35
DJ
3778 }
3779 else
ebc53538
RS
3780 {
3781 lookup.symndx = -1;
3782 lookup.d.h = h;
3783 }
0f20cc35 3784
ebc53538
RS
3785 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3786 BFD_ASSERT (entry);
0f20cc35 3787
6c42ddb9 3788 gotidx = entry->gotidx;
ce558b89 3789 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3790
ebc53538 3791 return entry;
0f20cc35
DJ
3792 }
3793
ebc53538
RS
3794 lookup.abfd = NULL;
3795 lookup.symndx = -1;
3796 lookup.d.address = value;
3797 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3798 if (!loc)
b15e6682 3799 return NULL;
143d77c5 3800
ebc53538
RS
3801 entry = (struct mips_got_entry *) *loc;
3802 if (entry)
3803 return entry;
b15e6682 3804
cb22ccf4 3805 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3806 {
3807 /* We didn't allocate enough space in the GOT. */
4eca0228 3808 _bfd_error_handler
b49e97c9
TS
3809 (_("not enough GOT space for local GOT entries"));
3810 bfd_set_error (bfd_error_bad_value);
b15e6682 3811 return NULL;
b49e97c9
TS
3812 }
3813
ebc53538
RS
3814 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3815 if (!entry)
3816 return NULL;
3817
cb22ccf4
KCY
3818 if (got16_reloc_p (r_type)
3819 || call16_reloc_p (r_type)
3820 || got_page_reloc_p (r_type)
3821 || got_disp_reloc_p (r_type))
3822 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3823 else
3824 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3825
ebc53538
RS
3826 *entry = lookup;
3827 *loc = entry;
3828
ce558b89 3829 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3830
5c18022e 3831 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3832 if (htab->is_vxworks)
3833 {
3834 Elf_Internal_Rela outrel;
5c18022e 3835 asection *s;
91d6fa6a 3836 bfd_byte *rloc;
0a44bf69 3837 bfd_vma got_address;
0a44bf69
RS
3838
3839 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3840 got_address = (htab->root.sgot->output_section->vma
3841 + htab->root.sgot->output_offset
ebc53538 3842 + entry->gotidx);
0a44bf69 3843
91d6fa6a 3844 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3845 outrel.r_offset = got_address;
5c18022e
RS
3846 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3847 outrel.r_addend = value;
91d6fa6a 3848 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3849 }
3850
ebc53538 3851 return entry;
b49e97c9
TS
3852}
3853
d4596a51
RS
3854/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3855 The number might be exact or a worst-case estimate, depending on how
3856 much information is available to elf_backend_omit_section_dynsym at
3857 the current linking stage. */
3858
3859static bfd_size_type
3860count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3861{
3862 bfd_size_type count;
3863
3864 count = 0;
0e1862bb
L
3865 if (bfd_link_pic (info)
3866 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3867 {
3868 asection *p;
3869 const struct elf_backend_data *bed;
3870
3871 bed = get_elf_backend_data (output_bfd);
3872 for (p = output_bfd->sections; p ; p = p->next)
3873 if ((p->flags & SEC_EXCLUDE) == 0
3874 && (p->flags & SEC_ALLOC) != 0
7f923b7f 3875 && elf_hash_table (info)->dynamic_relocs
d4596a51
RS
3876 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3877 ++count;
3878 }
3879 return count;
3880}
3881
b49e97c9 3882/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3883 appear towards the end. */
b49e97c9 3884
b34976b6 3885static bfd_boolean
d4596a51 3886mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3887{
a8028dd0 3888 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3889 struct mips_elf_hash_sort_data hsd;
3890 struct mips_got_info *g;
b49e97c9 3891
a8028dd0 3892 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3893 BFD_ASSERT (htab != NULL);
3894
0f8c4b60 3895 if (htab->root.dynsymcount == 0)
17a80fa8
MR
3896 return TRUE;
3897
a8028dd0 3898 g = htab->got_info;
d4596a51
RS
3899 if (g == NULL)
3900 return TRUE;
f4416af6 3901
b49e97c9 3902 hsd.low = NULL;
23cc69b6
RS
3903 hsd.max_unref_got_dynindx
3904 = hsd.min_got_dynindx
0f8c4b60 3905 = (htab->root.dynsymcount - g->reloc_only_gotno);
e17b0c35
MR
3906 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3907 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3908 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3909 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
0f8c4b60 3910 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
b49e97c9
TS
3911
3912 /* There should have been enough room in the symbol table to
44c410de 3913 accommodate both the GOT and non-GOT symbols. */
e17b0c35 3914 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
b49e97c9 3915 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
55f8b9d2 3916 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
0f8c4b60 3917 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
b49e97c9
TS
3918
3919 /* Now we know which dynamic symbol has the lowest dynamic symbol
3920 table index in the GOT. */
d222d210 3921 htab->global_gotsym = hsd.low;
b49e97c9 3922
b34976b6 3923 return TRUE;
b49e97c9
TS
3924}
3925
3926/* If H needs a GOT entry, assign it the highest available dynamic
3927 index. Otherwise, assign it the lowest available dynamic
3928 index. */
3929
b34976b6 3930static bfd_boolean
9719ad41 3931mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3932{
9719ad41 3933 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3934
b49e97c9
TS
3935 /* Symbols without dynamic symbol table entries aren't interesting
3936 at all. */
3937 if (h->root.dynindx == -1)
b34976b6 3938 return TRUE;
b49e97c9 3939
634835ae 3940 switch (h->global_got_area)
f4416af6 3941 {
634835ae 3942 case GGA_NONE:
e17b0c35
MR
3943 if (h->root.forced_local)
3944 h->root.dynindx = hsd->max_local_dynindx++;
3945 else
3946 h->root.dynindx = hsd->max_non_got_dynindx++;
634835ae 3947 break;
0f20cc35 3948
634835ae 3949 case GGA_NORMAL:
b49e97c9
TS
3950 h->root.dynindx = --hsd->min_got_dynindx;
3951 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3952 break;
3953
3954 case GGA_RELOC_ONLY:
634835ae
RS
3955 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3956 hsd->low = (struct elf_link_hash_entry *) h;
3957 h->root.dynindx = hsd->max_unref_got_dynindx++;
3958 break;
b49e97c9
TS
3959 }
3960
b34976b6 3961 return TRUE;
b49e97c9
TS
3962}
3963
ee227692
RS
3964/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3965 (which is owned by the caller and shouldn't be added to the
3966 hash table directly). */
3967
3968static bfd_boolean
3969mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3970 struct mips_got_entry *lookup)
3971{
3972 struct mips_elf_link_hash_table *htab;
3973 struct mips_got_entry *entry;
3974 struct mips_got_info *g;
3975 void **loc, **bfd_loc;
3976
3977 /* Make sure there's a slot for this entry in the master GOT. */
3978 htab = mips_elf_hash_table (info);
3979 g = htab->got_info;
3980 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3981 if (!loc)
3982 return FALSE;
3983
3984 /* Populate the entry if it isn't already. */
3985 entry = (struct mips_got_entry *) *loc;
3986 if (!entry)
3987 {
3988 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3989 if (!entry)
3990 return FALSE;
3991
9ab066b4 3992 lookup->tls_initialized = FALSE;
ee227692
RS
3993 lookup->gotidx = -1;
3994 *entry = *lookup;
3995 *loc = entry;
3996 }
3997
3998 /* Reuse the same GOT entry for the BFD's GOT. */
3999 g = mips_elf_bfd_got (abfd, TRUE);
4000 if (!g)
4001 return FALSE;
4002
4003 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4004 if (!bfd_loc)
4005 return FALSE;
4006
4007 if (!*bfd_loc)
4008 *bfd_loc = entry;
4009 return TRUE;
4010}
4011
e641e783
RS
4012/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4013 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 4014 using the GOT entry for calls. */
b49e97c9 4015
b34976b6 4016static bfd_boolean
9719ad41
RS
4017mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4018 bfd *abfd, struct bfd_link_info *info,
e641e783 4019 bfd_boolean for_call, int r_type)
b49e97c9 4020{
a8028dd0 4021 struct mips_elf_link_hash_table *htab;
634835ae 4022 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
4023 struct mips_got_entry entry;
4024 unsigned char tls_type;
a8028dd0
RS
4025
4026 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4027 BFD_ASSERT (htab != NULL);
4028
634835ae 4029 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
4030 if (!for_call)
4031 hmips->got_only_for_calls = FALSE;
f4416af6 4032
b49e97c9
TS
4033 /* A global symbol in the GOT must also be in the dynamic symbol
4034 table. */
7c5fcef7
L
4035 if (h->dynindx == -1)
4036 {
4037 switch (ELF_ST_VISIBILITY (h->other))
4038 {
4039 case STV_INTERNAL:
4040 case STV_HIDDEN:
47275900 4041 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
4042 break;
4043 }
c152c796 4044 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4045 return FALSE;
7c5fcef7 4046 }
b49e97c9 4047
ee227692 4048 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 4049 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 4050 hmips->global_got_area = GGA_NORMAL;
86324f90 4051
f4416af6
AO
4052 entry.abfd = abfd;
4053 entry.symndx = -1;
4054 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
4055 entry.tls_type = tls_type;
4056 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 4057}
f4416af6 4058
e641e783
RS
4059/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4060 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4061
4062static bfd_boolean
9719ad41 4063mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4064 struct bfd_link_info *info, int r_type)
f4416af6 4065{
a8028dd0
RS
4066 struct mips_elf_link_hash_table *htab;
4067 struct mips_got_info *g;
ee227692 4068 struct mips_got_entry entry;
f4416af6 4069
a8028dd0 4070 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4071 BFD_ASSERT (htab != NULL);
4072
a8028dd0
RS
4073 g = htab->got_info;
4074 BFD_ASSERT (g != NULL);
4075
f4416af6
AO
4076 entry.abfd = abfd;
4077 entry.symndx = symndx;
4078 entry.d.addend = addend;
e641e783 4079 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4080 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4081}
c224138d 4082
13db6b44
RS
4083/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4084 H is the symbol's hash table entry, or null if SYMNDX is local
4085 to ABFD. */
c224138d
RS
4086
4087static bfd_boolean
13db6b44
RS
4088mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4089 long symndx, struct elf_link_hash_entry *h,
4090 bfd_signed_vma addend)
c224138d 4091{
a8028dd0 4092 struct mips_elf_link_hash_table *htab;
ee227692 4093 struct mips_got_info *g1, *g2;
13db6b44 4094 struct mips_got_page_ref lookup, *entry;
ee227692 4095 void **loc, **bfd_loc;
c224138d 4096
a8028dd0 4097 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4098 BFD_ASSERT (htab != NULL);
4099
ee227692
RS
4100 g1 = htab->got_info;
4101 BFD_ASSERT (g1 != NULL);
a8028dd0 4102
13db6b44
RS
4103 if (h)
4104 {
4105 lookup.symndx = -1;
4106 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4107 }
4108 else
4109 {
4110 lookup.symndx = symndx;
4111 lookup.u.abfd = abfd;
4112 }
4113 lookup.addend = addend;
4114 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4115 if (loc == NULL)
4116 return FALSE;
4117
13db6b44 4118 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4119 if (!entry)
4120 {
4121 entry = bfd_alloc (abfd, sizeof (*entry));
4122 if (!entry)
4123 return FALSE;
4124
13db6b44 4125 *entry = lookup;
c224138d
RS
4126 *loc = entry;
4127 }
4128
ee227692
RS
4129 /* Add the same entry to the BFD's GOT. */
4130 g2 = mips_elf_bfd_got (abfd, TRUE);
4131 if (!g2)
4132 return FALSE;
4133
13db6b44 4134 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4135 if (!bfd_loc)
4136 return FALSE;
4137
4138 if (!*bfd_loc)
4139 *bfd_loc = entry;
4140
c224138d
RS
4141 return TRUE;
4142}
33bb52fb
RS
4143
4144/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4145
4146static void
4147mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4148 unsigned int n)
4149{
4150 asection *s;
4151 struct mips_elf_link_hash_table *htab;
4152
4153 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4154 BFD_ASSERT (htab != NULL);
4155
33bb52fb
RS
4156 s = mips_elf_rel_dyn_section (info, FALSE);
4157 BFD_ASSERT (s != NULL);
4158
4159 if (htab->is_vxworks)
4160 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4161 else
4162 {
4163 if (s->size == 0)
4164 {
4165 /* Make room for a null element. */
4166 s->size += MIPS_ELF_REL_SIZE (abfd);
4167 ++s->reloc_count;
4168 }
4169 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4170 }
4171}
4172\f
476366af
RS
4173/* A htab_traverse callback for GOT entries, with DATA pointing to a
4174 mips_elf_traverse_got_arg structure. Count the number of GOT
4175 entries and TLS relocs. Set DATA->value to true if we need
4176 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4177
4178static int
4179mips_elf_check_recreate_got (void **entryp, void *data)
4180{
4181 struct mips_got_entry *entry;
476366af 4182 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4183
4184 entry = (struct mips_got_entry *) *entryp;
476366af 4185 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4186 if (entry->abfd != NULL && entry->symndx == -1)
4187 {
4188 struct mips_elf_link_hash_entry *h;
4189
4190 h = entry->d.h;
4191 if (h->root.root.type == bfd_link_hash_indirect
4192 || h->root.root.type == bfd_link_hash_warning)
4193 {
476366af 4194 arg->value = TRUE;
33bb52fb
RS
4195 return 0;
4196 }
4197 }
476366af 4198 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4199 return 1;
4200}
4201
476366af
RS
4202/* A htab_traverse callback for GOT entries, with DATA pointing to a
4203 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4204 converting entries for indirect and warning symbols into entries
4205 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4206
4207static int
4208mips_elf_recreate_got (void **entryp, void *data)
4209{
72e7511a 4210 struct mips_got_entry new_entry, *entry;
476366af 4211 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4212 void **slot;
4213
33bb52fb 4214 entry = (struct mips_got_entry *) *entryp;
476366af 4215 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4216 if (entry->abfd != NULL
4217 && entry->symndx == -1
4218 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4219 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4220 {
4221 struct mips_elf_link_hash_entry *h;
4222
72e7511a
RS
4223 new_entry = *entry;
4224 entry = &new_entry;
33bb52fb 4225 h = entry->d.h;
72e7511a 4226 do
634835ae
RS
4227 {
4228 BFD_ASSERT (h->global_got_area == GGA_NONE);
4229 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4230 }
72e7511a
RS
4231 while (h->root.root.type == bfd_link_hash_indirect
4232 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4233 entry->d.h = h;
4234 }
476366af 4235 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4236 if (slot == NULL)
4237 {
476366af 4238 arg->g = NULL;
33bb52fb
RS
4239 return 0;
4240 }
4241 if (*slot == NULL)
72e7511a
RS
4242 {
4243 if (entry == &new_entry)
4244 {
4245 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4246 if (!entry)
4247 {
476366af 4248 arg->g = NULL;
72e7511a
RS
4249 return 0;
4250 }
4251 *entry = new_entry;
4252 }
4253 *slot = entry;
476366af 4254 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4255 }
33bb52fb
RS
4256 return 1;
4257}
4258
13db6b44
RS
4259/* Return the maximum number of GOT page entries required for RANGE. */
4260
4261static bfd_vma
4262mips_elf_pages_for_range (const struct mips_got_page_range *range)
4263{
4264 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4265}
4266
4267/* Record that G requires a page entry that can reach SEC + ADDEND. */
4268
4269static bfd_boolean
b75d42bc 4270mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4271 asection *sec, bfd_signed_vma addend)
4272{
b75d42bc 4273 struct mips_got_info *g = arg->g;
13db6b44
RS
4274 struct mips_got_page_entry lookup, *entry;
4275 struct mips_got_page_range **range_ptr, *range;
4276 bfd_vma old_pages, new_pages;
4277 void **loc;
4278
4279 /* Find the mips_got_page_entry hash table entry for this section. */
4280 lookup.sec = sec;
4281 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4282 if (loc == NULL)
4283 return FALSE;
4284
4285 /* Create a mips_got_page_entry if this is the first time we've
4286 seen the section. */
4287 entry = (struct mips_got_page_entry *) *loc;
4288 if (!entry)
4289 {
b75d42bc 4290 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4291 if (!entry)
4292 return FALSE;
4293
4294 entry->sec = sec;
4295 *loc = entry;
4296 }
4297
4298 /* Skip over ranges whose maximum extent cannot share a page entry
4299 with ADDEND. */
4300 range_ptr = &entry->ranges;
4301 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4302 range_ptr = &(*range_ptr)->next;
4303
4304 /* If we scanned to the end of the list, or found a range whose
4305 minimum extent cannot share a page entry with ADDEND, create
4306 a new singleton range. */
4307 range = *range_ptr;
4308 if (!range || addend < range->min_addend - 0xffff)
4309 {
b75d42bc 4310 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4311 if (!range)
4312 return FALSE;
4313
4314 range->next = *range_ptr;
4315 range->min_addend = addend;
4316 range->max_addend = addend;
4317
4318 *range_ptr = range;
4319 entry->num_pages++;
4320 g->page_gotno++;
4321 return TRUE;
4322 }
4323
4324 /* Remember how many pages the old range contributed. */
4325 old_pages = mips_elf_pages_for_range (range);
4326
4327 /* Update the ranges. */
4328 if (addend < range->min_addend)
4329 range->min_addend = addend;
4330 else if (addend > range->max_addend)
4331 {
4332 if (range->next && addend >= range->next->min_addend - 0xffff)
4333 {
4334 old_pages += mips_elf_pages_for_range (range->next);
4335 range->max_addend = range->next->max_addend;
4336 range->next = range->next->next;
4337 }
4338 else
4339 range->max_addend = addend;
4340 }
4341
4342 /* Record any change in the total estimate. */
4343 new_pages = mips_elf_pages_for_range (range);
4344 if (old_pages != new_pages)
4345 {
4346 entry->num_pages += new_pages - old_pages;
4347 g->page_gotno += new_pages - old_pages;
4348 }
4349
4350 return TRUE;
4351}
4352
4353/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4354 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4355 whether the page reference described by *REFP needs a GOT page entry,
4356 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4357
4358static bfd_boolean
4359mips_elf_resolve_got_page_ref (void **refp, void *data)
4360{
4361 struct mips_got_page_ref *ref;
4362 struct mips_elf_traverse_got_arg *arg;
4363 struct mips_elf_link_hash_table *htab;
4364 asection *sec;
4365 bfd_vma addend;
4366
4367 ref = (struct mips_got_page_ref *) *refp;
4368 arg = (struct mips_elf_traverse_got_arg *) data;
4369 htab = mips_elf_hash_table (arg->info);
4370
4371 if (ref->symndx < 0)
4372 {
4373 struct mips_elf_link_hash_entry *h;
4374
4375 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4376 h = ref->u.h;
4377 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4378 return 1;
4379
4380 /* Ignore undefined symbols; we'll issue an error later if
4381 appropriate. */
4382 if (!((h->root.root.type == bfd_link_hash_defined
4383 || h->root.root.type == bfd_link_hash_defweak)
4384 && h->root.root.u.def.section))
4385 return 1;
4386
4387 sec = h->root.root.u.def.section;
4388 addend = h->root.root.u.def.value + ref->addend;
4389 }
4390 else
4391 {
4392 Elf_Internal_Sym *isym;
4393
4394 /* Read in the symbol. */
4395 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4396 ref->symndx);
4397 if (isym == NULL)
4398 {
4399 arg->g = NULL;
4400 return 0;
4401 }
4402
4403 /* Get the associated input section. */
4404 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4405 if (sec == NULL)
4406 {
4407 arg->g = NULL;
4408 return 0;
4409 }
4410
4411 /* If this is a mergable section, work out the section and offset
4412 of the merged data. For section symbols, the addend specifies
4413 of the offset _of_ the first byte in the data, otherwise it
4414 specifies the offset _from_ the first byte. */
4415 if (sec->flags & SEC_MERGE)
4416 {
4417 void *secinfo;
4418
4419 secinfo = elf_section_data (sec)->sec_info;
4420 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4421 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4422 isym->st_value + ref->addend);
4423 else
4424 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4425 isym->st_value) + ref->addend;
4426 }
4427 else
4428 addend = isym->st_value + ref->addend;
4429 }
b75d42bc 4430 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4431 {
4432 arg->g = NULL;
4433 return 0;
4434 }
4435 return 1;
4436}
4437
33bb52fb 4438/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4439 replace them with entries for the target symbol. Convert g->got_page_refs
4440 into got_page_entry structures and estimate the number of page entries
4441 that they require. */
33bb52fb
RS
4442
4443static bfd_boolean
476366af
RS
4444mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4445 struct mips_got_info *g)
33bb52fb 4446{
476366af
RS
4447 struct mips_elf_traverse_got_arg tga;
4448 struct mips_got_info oldg;
4449
4450 oldg = *g;
33bb52fb 4451
476366af
RS
4452 tga.info = info;
4453 tga.g = g;
4454 tga.value = FALSE;
4455 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4456 if (tga.value)
33bb52fb 4457 {
476366af
RS
4458 *g = oldg;
4459 g->got_entries = htab_create (htab_size (oldg.got_entries),
4460 mips_elf_got_entry_hash,
4461 mips_elf_got_entry_eq, NULL);
4462 if (!g->got_entries)
33bb52fb
RS
4463 return FALSE;
4464
476366af
RS
4465 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4466 if (!tga.g)
4467 return FALSE;
4468
4469 htab_delete (oldg.got_entries);
33bb52fb 4470 }
13db6b44
RS
4471
4472 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4473 mips_got_page_entry_eq, NULL);
4474 if (g->got_page_entries == NULL)
4475 return FALSE;
4476
4477 tga.info = info;
4478 tga.g = g;
4479 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4480
33bb52fb
RS
4481 return TRUE;
4482}
4483
c5d6fa44
RS
4484/* Return true if a GOT entry for H should live in the local rather than
4485 global GOT area. */
4486
4487static bfd_boolean
4488mips_use_local_got_p (struct bfd_link_info *info,
4489 struct mips_elf_link_hash_entry *h)
4490{
4491 /* Symbols that aren't in the dynamic symbol table must live in the
4492 local GOT. This includes symbols that are completely undefined
4493 and which therefore don't bind locally. We'll report undefined
4494 symbols later if appropriate. */
4495 if (h->root.dynindx == -1)
4496 return TRUE;
4497
47275900
MR
4498 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4499 to the local GOT, as they would be implicitly relocated by the
4500 base address by the dynamic loader. */
4501 if (bfd_is_abs_symbol (&h->root.root))
4502 return FALSE;
4503
c5d6fa44
RS
4504 /* Symbols that bind locally can (and in the case of forced-local
4505 symbols, must) live in the local GOT. */
4506 if (h->got_only_for_calls
4507 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4508 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4509 return TRUE;
4510
4511 /* If this is an executable that must provide a definition of the symbol,
4512 either though PLTs or copy relocations, then that address should go in
4513 the local rather than global GOT. */
0e1862bb 4514 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4515 return TRUE;
4516
4517 return FALSE;
4518}
4519
6c42ddb9
RS
4520/* A mips_elf_link_hash_traverse callback for which DATA points to the
4521 link_info structure. Decide whether the hash entry needs an entry in
4522 the global part of the primary GOT, setting global_got_area accordingly.
4523 Count the number of global symbols that are in the primary GOT only
4524 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4525
4526static int
d4596a51 4527mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4528{
020d7251 4529 struct bfd_link_info *info;
6ccf4795 4530 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4531 struct mips_got_info *g;
4532
020d7251 4533 info = (struct bfd_link_info *) data;
6ccf4795
RS
4534 htab = mips_elf_hash_table (info);
4535 g = htab->got_info;
d4596a51 4536 if (h->global_got_area != GGA_NONE)
33bb52fb 4537 {
020d7251 4538 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4539 local or global GOT. */
4540 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4541 /* The symbol belongs in the local GOT. We no longer need this
4542 entry if it was only used for relocations; those relocations
4543 will be against the null or section symbol instead of H. */
4544 h->global_got_area = GGA_NONE;
6ccf4795
RS
4545 else if (htab->is_vxworks
4546 && h->got_only_for_calls
1bbce132 4547 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4548 /* On VxWorks, calls can refer directly to the .got.plt entry;
4549 they don't need entries in the regular GOT. .got.plt entries
4550 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4551 h->global_got_area = GGA_NONE;
6c42ddb9 4552 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4553 {
6c42ddb9 4554 g->reloc_only_gotno++;
23cc69b6 4555 g->global_gotno++;
23cc69b6 4556 }
33bb52fb
RS
4557 }
4558 return 1;
4559}
f4416af6 4560\f
d7206569
RS
4561/* A htab_traverse callback for GOT entries. Add each one to the GOT
4562 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4563
4564static int
d7206569 4565mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4566{
d7206569
RS
4567 struct mips_got_entry *entry;
4568 struct mips_elf_traverse_got_arg *arg;
4569 void **slot;
f4416af6 4570
d7206569
RS
4571 entry = (struct mips_got_entry *) *entryp;
4572 arg = (struct mips_elf_traverse_got_arg *) data;
4573 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4574 if (!slot)
f4416af6 4575 {
d7206569
RS
4576 arg->g = NULL;
4577 return 0;
f4416af6 4578 }
d7206569 4579 if (!*slot)
c224138d 4580 {
d7206569
RS
4581 *slot = entry;
4582 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4583 }
f4416af6
AO
4584 return 1;
4585}
4586
d7206569
RS
4587/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4588 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4589
4590static int
d7206569 4591mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4592{
d7206569
RS
4593 struct mips_got_page_entry *entry;
4594 struct mips_elf_traverse_got_arg *arg;
4595 void **slot;
c224138d 4596
d7206569
RS
4597 entry = (struct mips_got_page_entry *) *entryp;
4598 arg = (struct mips_elf_traverse_got_arg *) data;
4599 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4600 if (!slot)
c224138d 4601 {
d7206569 4602 arg->g = NULL;
c224138d
RS
4603 return 0;
4604 }
d7206569
RS
4605 if (!*slot)
4606 {
4607 *slot = entry;
4608 arg->g->page_gotno += entry->num_pages;
4609 }
c224138d
RS
4610 return 1;
4611}
4612
d7206569
RS
4613/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4614 this would lead to overflow, 1 if they were merged successfully,
4615 and 0 if a merge failed due to lack of memory. (These values are chosen
4616 so that nonnegative return values can be returned by a htab_traverse
4617 callback.) */
c224138d
RS
4618
4619static int
d7206569 4620mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4621 struct mips_got_info *to,
4622 struct mips_elf_got_per_bfd_arg *arg)
4623{
d7206569 4624 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4625 unsigned int estimate;
4626
4627 /* Work out how many page entries we would need for the combined GOT. */
4628 estimate = arg->max_pages;
4629 if (estimate >= from->page_gotno + to->page_gotno)
4630 estimate = from->page_gotno + to->page_gotno;
4631
e2ece73c 4632 /* And conservatively estimate how many local and TLS entries
c224138d 4633 would be needed. */
e2ece73c
RS
4634 estimate += from->local_gotno + to->local_gotno;
4635 estimate += from->tls_gotno + to->tls_gotno;
4636
17214937
RS
4637 /* If we're merging with the primary got, any TLS relocations will
4638 come after the full set of global entries. Otherwise estimate those
e2ece73c 4639 conservatively as well. */
17214937 4640 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4641 estimate += arg->global_count;
4642 else
4643 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4644
4645 /* Bail out if the combined GOT might be too big. */
4646 if (estimate > arg->max_count)
4647 return -1;
4648
c224138d 4649 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4650 tga.info = arg->info;
4651 tga.g = to;
4652 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4653 if (!tga.g)
c224138d
RS
4654 return 0;
4655
d7206569
RS
4656 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4657 if (!tga.g)
c224138d
RS
4658 return 0;
4659
d7206569 4660 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4661 return 1;
4662}
4663
d7206569 4664/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4665 as possible of the primary got, since it doesn't require explicit
4666 dynamic relocations, but don't use bfds that would reference global
4667 symbols out of the addressable range. Failing the primary got,
4668 attempt to merge with the current got, or finish the current got
4669 and then make make the new got current. */
4670
d7206569
RS
4671static bfd_boolean
4672mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4673 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4674{
c224138d
RS
4675 unsigned int estimate;
4676 int result;
4677
476366af 4678 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4679 return FALSE;
4680
c224138d
RS
4681 /* Work out the number of page, local and TLS entries. */
4682 estimate = arg->max_pages;
4683 if (estimate > g->page_gotno)
4684 estimate = g->page_gotno;
4685 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4686
4687 /* We place TLS GOT entries after both locals and globals. The globals
4688 for the primary GOT may overflow the normal GOT size limit, so be
4689 sure not to merge a GOT which requires TLS with the primary GOT in that
4690 case. This doesn't affect non-primary GOTs. */
c224138d 4691 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4692
c224138d 4693 if (estimate <= arg->max_count)
f4416af6 4694 {
c224138d
RS
4695 /* If we don't have a primary GOT, use it as
4696 a starting point for the primary GOT. */
4697 if (!arg->primary)
4698 {
d7206569
RS
4699 arg->primary = g;
4700 return TRUE;
c224138d 4701 }
f4416af6 4702
c224138d 4703 /* Try merging with the primary GOT. */
d7206569 4704 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4705 if (result >= 0)
4706 return result;
f4416af6 4707 }
c224138d 4708
f4416af6 4709 /* If we can merge with the last-created got, do it. */
c224138d 4710 if (arg->current)
f4416af6 4711 {
d7206569 4712 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4713 if (result >= 0)
4714 return result;
f4416af6 4715 }
c224138d 4716
f4416af6
AO
4717 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4718 fits; if it turns out that it doesn't, we'll get relocation
4719 overflows anyway. */
c224138d
RS
4720 g->next = arg->current;
4721 arg->current = g;
0f20cc35 4722
d7206569 4723 return TRUE;
0f20cc35
DJ
4724}
4725
72e7511a
RS
4726/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4727 to GOTIDX, duplicating the entry if it has already been assigned
4728 an index in a different GOT. */
4729
4730static bfd_boolean
4731mips_elf_set_gotidx (void **entryp, long gotidx)
4732{
4733 struct mips_got_entry *entry;
4734
4735 entry = (struct mips_got_entry *) *entryp;
4736 if (entry->gotidx > 0)
4737 {
4738 struct mips_got_entry *new_entry;
4739
4740 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4741 if (!new_entry)
4742 return FALSE;
4743
4744 *new_entry = *entry;
4745 *entryp = new_entry;
4746 entry = new_entry;
4747 }
4748 entry->gotidx = gotidx;
4749 return TRUE;
4750}
4751
4752/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4753 mips_elf_traverse_got_arg in which DATA->value is the size of one
4754 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4755
4756static int
72e7511a 4757mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4758{
72e7511a
RS
4759 struct mips_got_entry *entry;
4760 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4761
4762 /* We're only interested in TLS symbols. */
72e7511a 4763 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4764 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4765 return 1;
4766
72e7511a 4767 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4768 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4769 {
6c42ddb9
RS
4770 arg->g = NULL;
4771 return 0;
f4416af6
AO
4772 }
4773
ead49a57 4774 /* Account for the entries we've just allocated. */
9ab066b4 4775 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4776 return 1;
4777}
4778
ab361d49
RS
4779/* A htab_traverse callback for GOT entries, where DATA points to a
4780 mips_elf_traverse_got_arg. Set the global_got_area of each global
4781 symbol to DATA->value. */
f4416af6 4782
f4416af6 4783static int
ab361d49 4784mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4785{
ab361d49
RS
4786 struct mips_got_entry *entry;
4787 struct mips_elf_traverse_got_arg *arg;
f4416af6 4788
ab361d49
RS
4789 entry = (struct mips_got_entry *) *entryp;
4790 arg = (struct mips_elf_traverse_got_arg *) data;
4791 if (entry->abfd != NULL
4792 && entry->symndx == -1
4793 && entry->d.h->global_got_area != GGA_NONE)
4794 entry->d.h->global_got_area = arg->value;
4795 return 1;
4796}
4797
4798/* A htab_traverse callback for secondary GOT entries, where DATA points
4799 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4800 and record the number of relocations they require. DATA->value is
72e7511a 4801 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4802
4803static int
4804mips_elf_set_global_gotidx (void **entryp, void *data)
4805{
4806 struct mips_got_entry *entry;
4807 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4808
ab361d49
RS
4809 entry = (struct mips_got_entry *) *entryp;
4810 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4811 if (entry->abfd != NULL
4812 && entry->symndx == -1
4813 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4814 {
cb22ccf4 4815 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4816 {
4817 arg->g = NULL;
4818 return 0;
4819 }
cb22ccf4 4820 arg->g->assigned_low_gotno += 1;
72e7511a 4821
0e1862bb 4822 if (bfd_link_pic (arg->info)
ab361d49
RS
4823 || (elf_hash_table (arg->info)->dynamic_sections_created
4824 && entry->d.h->root.def_dynamic
4825 && !entry->d.h->root.def_regular))
4826 arg->g->relocs += 1;
f4416af6
AO
4827 }
4828
4829 return 1;
4830}
4831
33bb52fb
RS
4832/* A htab_traverse callback for GOT entries for which DATA is the
4833 bfd_link_info. Forbid any global symbols from having traditional
4834 lazy-binding stubs. */
4835
0626d451 4836static int
33bb52fb 4837mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4838{
33bb52fb
RS
4839 struct bfd_link_info *info;
4840 struct mips_elf_link_hash_table *htab;
4841 struct mips_got_entry *entry;
0626d451 4842
33bb52fb
RS
4843 entry = (struct mips_got_entry *) *entryp;
4844 info = (struct bfd_link_info *) data;
4845 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4846 BFD_ASSERT (htab != NULL);
4847
0626d451
RS
4848 if (entry->abfd != NULL
4849 && entry->symndx == -1
33bb52fb 4850 && entry->d.h->needs_lazy_stub)
f4416af6 4851 {
33bb52fb
RS
4852 entry->d.h->needs_lazy_stub = FALSE;
4853 htab->lazy_stub_count--;
f4416af6 4854 }
143d77c5 4855
f4416af6
AO
4856 return 1;
4857}
4858
f4416af6
AO
4859/* Return the offset of an input bfd IBFD's GOT from the beginning of
4860 the primary GOT. */
4861static bfd_vma
9719ad41 4862mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4863{
d7206569 4864 if (!g->next)
f4416af6
AO
4865 return 0;
4866
d7206569 4867 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4868 if (! g)
4869 return 0;
4870
4871 BFD_ASSERT (g->next);
4872
4873 g = g->next;
143d77c5 4874
0f20cc35
DJ
4875 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4876 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4877}
4878
4879/* Turn a single GOT that is too big for 16-bit addressing into
4880 a sequence of GOTs, each one 16-bit addressable. */
4881
4882static bfd_boolean
9719ad41 4883mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4884 asection *got, bfd_size_type pages)
f4416af6 4885{
a8028dd0 4886 struct mips_elf_link_hash_table *htab;
f4416af6 4887 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4888 struct mips_elf_traverse_got_arg tga;
a8028dd0 4889 struct mips_got_info *g, *gg;
33bb52fb 4890 unsigned int assign, needed_relocs;
d7206569 4891 bfd *dynobj, *ibfd;
f4416af6 4892
33bb52fb 4893 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4894 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4895 BFD_ASSERT (htab != NULL);
4896
a8028dd0 4897 g = htab->got_info;
f4416af6 4898
f4416af6
AO
4899 got_per_bfd_arg.obfd = abfd;
4900 got_per_bfd_arg.info = info;
f4416af6
AO
4901 got_per_bfd_arg.current = NULL;
4902 got_per_bfd_arg.primary = NULL;
0a44bf69 4903 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4904 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4905 - htab->reserved_gotno);
c224138d 4906 got_per_bfd_arg.max_pages = pages;
0f20cc35 4907 /* The number of globals that will be included in the primary GOT.
ab361d49 4908 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4909 information. */
4910 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4911
4912 /* Try to merge the GOTs of input bfds together, as long as they
4913 don't seem to exceed the maximum GOT size, choosing one of them
4914 to be the primary GOT. */
c72f2fb2 4915 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4916 {
4917 gg = mips_elf_bfd_got (ibfd, FALSE);
4918 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4919 return FALSE;
4920 }
f4416af6 4921
0f20cc35 4922 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4923 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4924 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4925 else
4926 g->next = got_per_bfd_arg.primary;
4927 g->next->next = got_per_bfd_arg.current;
4928
4929 /* GG is now the master GOT, and G is the primary GOT. */
4930 gg = g;
4931 g = g->next;
4932
4933 /* Map the output bfd to the primary got. That's what we're going
4934 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4935 didn't mark in check_relocs, and we want a quick way to find it.
4936 We can't just use gg->next because we're going to reverse the
4937 list. */
d7206569 4938 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4939
634835ae
RS
4940 /* Every symbol that is referenced in a dynamic relocation must be
4941 present in the primary GOT, so arrange for them to appear after
4942 those that are actually referenced. */
23cc69b6 4943 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4944 g->global_gotno = gg->global_gotno;
f4416af6 4945
ab361d49
RS
4946 tga.info = info;
4947 tga.value = GGA_RELOC_ONLY;
4948 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4949 tga.value = GGA_NORMAL;
4950 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4951
4952 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4953 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4954 entries in each GOT. We can then compute the end of a GOT by
4955 adding local_gotno to global_gotno. We reverse the list and make
4956 it circular since then we'll be able to quickly compute the
4957 beginning of a GOT, by computing the end of its predecessor. To
4958 avoid special cases for the primary GOT, while still preserving
4959 assertions that are valid for both single- and multi-got links,
4960 we arrange for the main got struct to have the right number of
4961 global entries, but set its local_gotno such that the initial
4962 offset of the primary GOT is zero. Remember that the primary GOT
4963 will become the last item in the circular linked list, so it
4964 points back to the master GOT. */
4965 gg->local_gotno = -g->global_gotno;
4966 gg->global_gotno = g->global_gotno;
0f20cc35 4967 gg->tls_gotno = 0;
f4416af6
AO
4968 assign = 0;
4969 gg->next = gg;
4970
4971 do
4972 {
4973 struct mips_got_info *gn;
4974
861fb55a 4975 assign += htab->reserved_gotno;
cb22ccf4 4976 g->assigned_low_gotno = assign;
c224138d
RS
4977 g->local_gotno += assign;
4978 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4979 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4980 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4981
ead49a57
RS
4982 /* Take g out of the direct list, and push it onto the reversed
4983 list that gg points to. g->next is guaranteed to be nonnull after
4984 this operation, as required by mips_elf_initialize_tls_index. */
4985 gn = g->next;
4986 g->next = gg->next;
4987 gg->next = g;
4988
0f20cc35
DJ
4989 /* Set up any TLS entries. We always place the TLS entries after
4990 all non-TLS entries. */
4991 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4992 tga.g = g;
4993 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4994 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4995 if (!tga.g)
4996 return FALSE;
1fd20d70 4997 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4998
ead49a57 4999 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 5000 g = gn;
0626d451 5001
33bb52fb
RS
5002 /* Forbid global symbols in every non-primary GOT from having
5003 lazy-binding stubs. */
0626d451 5004 if (g)
33bb52fb 5005 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
5006 }
5007 while (g);
5008
59b08994 5009 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
5010
5011 needed_relocs = 0;
33bb52fb
RS
5012 for (g = gg->next; g && g->next != gg; g = g->next)
5013 {
5014 unsigned int save_assign;
5015
ab361d49
RS
5016 /* Assign offsets to global GOT entries and count how many
5017 relocations they need. */
cb22ccf4
KCY
5018 save_assign = g->assigned_low_gotno;
5019 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
5020 tga.info = info;
5021 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5022 tga.g = g;
5023 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
5024 if (!tga.g)
5025 return FALSE;
cb22ccf4
KCY
5026 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5027 g->assigned_low_gotno = save_assign;
72e7511a 5028
0e1862bb 5029 if (bfd_link_pic (info))
33bb52fb 5030 {
cb22ccf4
KCY
5031 g->relocs += g->local_gotno - g->assigned_low_gotno;
5032 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
5033 + g->next->global_gotno
5034 + g->next->tls_gotno
861fb55a 5035 + htab->reserved_gotno);
33bb52fb 5036 }
ab361d49 5037 needed_relocs += g->relocs;
33bb52fb 5038 }
ab361d49 5039 needed_relocs += g->relocs;
33bb52fb
RS
5040
5041 if (needed_relocs)
5042 mips_elf_allocate_dynamic_relocations (dynobj, info,
5043 needed_relocs);
143d77c5 5044
f4416af6
AO
5045 return TRUE;
5046}
143d77c5 5047
b49e97c9
TS
5048\f
5049/* Returns the first relocation of type r_type found, beginning with
5050 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5051
5052static const Elf_Internal_Rela *
9719ad41
RS
5053mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5054 const Elf_Internal_Rela *relocation,
5055 const Elf_Internal_Rela *relend)
b49e97c9 5056{
c000e262
TS
5057 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5058
b49e97c9
TS
5059 while (relocation < relend)
5060 {
c000e262
TS
5061 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5062 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
5063 return relocation;
5064
5065 ++relocation;
5066 }
5067
5068 /* We didn't find it. */
b49e97c9
TS
5069 return NULL;
5070}
5071
020d7251 5072/* Return whether an input relocation is against a local symbol. */
b49e97c9 5073
b34976b6 5074static bfd_boolean
9719ad41
RS
5075mips_elf_local_relocation_p (bfd *input_bfd,
5076 const Elf_Internal_Rela *relocation,
020d7251 5077 asection **local_sections)
b49e97c9
TS
5078{
5079 unsigned long r_symndx;
5080 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5081 size_t extsymoff;
5082
5083 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5084 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5085 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5086
5087 if (r_symndx < extsymoff)
b34976b6 5088 return TRUE;
b49e97c9 5089 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5090 return TRUE;
b49e97c9 5091
b34976b6 5092 return FALSE;
b49e97c9
TS
5093}
5094\f
5095/* Sign-extend VALUE, which has the indicated number of BITS. */
5096
a7ebbfdf 5097bfd_vma
9719ad41 5098_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5099{
5100 if (value & ((bfd_vma) 1 << (bits - 1)))
5101 /* VALUE is negative. */
5102 value |= ((bfd_vma) - 1) << bits;
5103
5104 return value;
5105}
5106
5107/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5108 range expressible by a signed number with the indicated number of
b49e97c9
TS
5109 BITS. */
5110
b34976b6 5111static bfd_boolean
9719ad41 5112mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5113{
5114 bfd_signed_vma svalue = (bfd_signed_vma) value;
5115
5116 if (svalue > (1 << (bits - 1)) - 1)
5117 /* The value is too big. */
b34976b6 5118 return TRUE;
b49e97c9
TS
5119 else if (svalue < -(1 << (bits - 1)))
5120 /* The value is too small. */
b34976b6 5121 return TRUE;
b49e97c9
TS
5122
5123 /* All is well. */
b34976b6 5124 return FALSE;
b49e97c9
TS
5125}
5126
5127/* Calculate the %high function. */
5128
5129static bfd_vma
9719ad41 5130mips_elf_high (bfd_vma value)
b49e97c9
TS
5131{
5132 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5133}
5134
5135/* Calculate the %higher function. */
5136
5137static bfd_vma
9719ad41 5138mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5139{
5140#ifdef BFD64
5141 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5142#else
5143 abort ();
c5ae1840 5144 return MINUS_ONE;
b49e97c9
TS
5145#endif
5146}
5147
5148/* Calculate the %highest function. */
5149
5150static bfd_vma
9719ad41 5151mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5152{
5153#ifdef BFD64
b15e6682 5154 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5155#else
5156 abort ();
c5ae1840 5157 return MINUS_ONE;
b49e97c9
TS
5158#endif
5159}
5160\f
5161/* Create the .compact_rel section. */
5162
b34976b6 5163static bfd_boolean
9719ad41
RS
5164mips_elf_create_compact_rel_section
5165 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5166{
5167 flagword flags;
5168 register asection *s;
5169
3d4d4302 5170 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5171 {
5172 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5173 | SEC_READONLY);
5174
3d4d4302 5175 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5176 if (s == NULL
b49e97c9
TS
5177 || ! bfd_set_section_alignment (abfd, s,
5178 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5179 return FALSE;
b49e97c9 5180
eea6121a 5181 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5182 }
5183
b34976b6 5184 return TRUE;
b49e97c9
TS
5185}
5186
5187/* Create the .got section to hold the global offset table. */
5188
b34976b6 5189static bfd_boolean
23cc69b6 5190mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5191{
5192 flagword flags;
5193 register asection *s;
5194 struct elf_link_hash_entry *h;
14a793b2 5195 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5196 struct mips_elf_link_hash_table *htab;
5197
5198 htab = mips_elf_hash_table (info);
4dfe6ac6 5199 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5200
5201 /* This function may be called more than once. */
ce558b89 5202 if (htab->root.sgot)
23cc69b6 5203 return TRUE;
b49e97c9
TS
5204
5205 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5206 | SEC_LINKER_CREATED);
5207
72b4917c
TS
5208 /* We have to use an alignment of 2**4 here because this is hardcoded
5209 in the function stub generation and in the linker script. */
87e0a731 5210 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5211 if (s == NULL
72b4917c 5212 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5213 return FALSE;
ce558b89 5214 htab->root.sgot = s;
b49e97c9
TS
5215
5216 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5217 linker script because we don't want to define the symbol if we
5218 are not creating a global offset table. */
14a793b2 5219 bh = NULL;
b49e97c9
TS
5220 if (! (_bfd_generic_link_add_one_symbol
5221 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5222 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5223 return FALSE;
14a793b2
AM
5224
5225 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5226 h->non_elf = 0;
5227 h->def_regular = 1;
b49e97c9 5228 h->type = STT_OBJECT;
2f9efdfc 5229 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5230 elf_hash_table (info)->hgot = h;
b49e97c9 5231
0e1862bb 5232 if (bfd_link_pic (info)
c152c796 5233 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5234 return FALSE;
b49e97c9 5235
3dff0dd1 5236 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5237 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5238 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5239
861fb55a 5240 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5241 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5242 SEC_ALLOC | SEC_LOAD
5243 | SEC_HAS_CONTENTS
5244 | SEC_IN_MEMORY
5245 | SEC_LINKER_CREATED);
861fb55a
DJ
5246 if (s == NULL)
5247 return FALSE;
ce558b89 5248 htab->root.sgotplt = s;
0a44bf69 5249
b34976b6 5250 return TRUE;
b49e97c9 5251}
b49e97c9 5252\f
0a44bf69
RS
5253/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5254 __GOTT_INDEX__ symbols. These symbols are only special for
5255 shared objects; they are not used in executables. */
5256
5257static bfd_boolean
5258is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5259{
5260 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5261 && bfd_link_pic (info)
0a44bf69
RS
5262 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5263 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5264}
861fb55a
DJ
5265
5266/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5267 require an la25 stub. See also mips_elf_local_pic_function_p,
5268 which determines whether the destination function ever requires a
5269 stub. */
5270
5271static bfd_boolean
8f0c309a
CLT
5272mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5273 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5274{
5275 /* We specifically ignore branches and jumps from EF_PIC objects,
5276 where the onus is on the compiler or programmer to perform any
5277 necessary initialization of $25. Sometimes such initialization
5278 is unnecessary; for example, -mno-shared functions do not use
5279 the incoming value of $25, and may therefore be called directly. */
5280 if (PIC_OBJECT_P (input_bfd))
5281 return FALSE;
5282
5283 switch (r_type)
5284 {
5285 case R_MIPS_26:
5286 case R_MIPS_PC16:
7361da2c
AB
5287 case R_MIPS_PC21_S2:
5288 case R_MIPS_PC26_S2:
df58fc94
RS
5289 case R_MICROMIPS_26_S1:
5290 case R_MICROMIPS_PC7_S1:
5291 case R_MICROMIPS_PC10_S1:
5292 case R_MICROMIPS_PC16_S1:
5293 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5294 return TRUE;
5295
8f0c309a
CLT
5296 case R_MIPS16_26:
5297 return !target_is_16_bit_code_p;
5298
861fb55a
DJ
5299 default:
5300 return FALSE;
5301 }
5302}
0a44bf69 5303\f
47275900
MR
5304/* Obtain the field relocated by RELOCATION. */
5305
5306static bfd_vma
5307mips_elf_obtain_contents (reloc_howto_type *howto,
5308 const Elf_Internal_Rela *relocation,
5309 bfd *input_bfd, bfd_byte *contents)
5310{
5311 bfd_vma x = 0;
5312 bfd_byte *location = contents + relocation->r_offset;
5313 unsigned int size = bfd_get_reloc_size (howto);
5314
5315 /* Obtain the bytes. */
5316 if (size != 0)
5317 x = bfd_get (8 * size, input_bfd, location);
5318
5319 return x;
5320}
5321
98e10ffa
MR
5322/* Store the field relocated by RELOCATION. */
5323
5324static void
5325mips_elf_store_contents (reloc_howto_type *howto,
5326 const Elf_Internal_Rela *relocation,
5327 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5328{
5329 bfd_byte *location = contents + relocation->r_offset;
5330 unsigned int size = bfd_get_reloc_size (howto);
5331
5332 /* Put the value into the output. */
5333 if (size != 0)
5334 bfd_put (8 * size, input_bfd, x, location);
5335}
5336
47275900
MR
5337/* Try to patch a load from GOT instruction in CONTENTS pointed to by
5338 RELOCATION described by HOWTO, with a move of 0 to the load target
5339 register, returning TRUE if that is successful and FALSE otherwise.
5340 If DOIT is FALSE, then only determine it patching is possible and
5341 return status without actually changing CONTENTS.
5342*/
5343
5344static bfd_boolean
5345mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5346 const Elf_Internal_Rela *relocation,
5347 reloc_howto_type *howto, bfd_boolean doit)
5348{
5349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5350 bfd_byte *location = contents + relocation->r_offset;
5351 bfd_boolean nullified = TRUE;
5352 bfd_vma x;
5353
5354 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5355
5356 /* Obtain the current value. */
5357 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5358
5359 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5360 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5361 if (mips16_reloc_p (r_type)
5362 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5363 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5364 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5365 else if (micromips_reloc_p (r_type)
5366 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5367 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5368 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5369 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5370 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5371 else
5372 nullified = FALSE;
5373
5374 /* Put the value into the output. */
5375 if (doit && nullified)
5376 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5377
5378 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5379
5380 return nullified;
5381}
5382
b49e97c9
TS
5383/* Calculate the value produced by the RELOCATION (which comes from
5384 the INPUT_BFD). The ADDEND is the addend to use for this
5385 RELOCATION; RELOCATION->R_ADDEND is ignored.
5386
5387 The result of the relocation calculation is stored in VALUEP.
38a7df63 5388 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5389 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5390
5391 This function returns bfd_reloc_continue if the caller need take no
5392 further action regarding this relocation, bfd_reloc_notsupported if
5393 something goes dramatically wrong, bfd_reloc_overflow if an
5394 overflow occurs, and bfd_reloc_ok to indicate success. */
5395
5396static bfd_reloc_status_type
9719ad41 5397mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
47275900 5398 asection *input_section, bfd_byte *contents,
9719ad41
RS
5399 struct bfd_link_info *info,
5400 const Elf_Internal_Rela *relocation,
5401 bfd_vma addend, reloc_howto_type *howto,
5402 Elf_Internal_Sym *local_syms,
5403 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5404 const char **namep,
5405 bfd_boolean *cross_mode_jump_p,
9719ad41 5406 bfd_boolean save_addend)
b49e97c9
TS
5407{
5408 /* The eventual value we will return. */
5409 bfd_vma value;
5410 /* The address of the symbol against which the relocation is
5411 occurring. */
5412 bfd_vma symbol = 0;
5413 /* The final GP value to be used for the relocatable, executable, or
5414 shared object file being produced. */
0a61c8c2 5415 bfd_vma gp;
b49e97c9
TS
5416 /* The place (section offset or address) of the storage unit being
5417 relocated. */
5418 bfd_vma p;
5419 /* The value of GP used to create the relocatable object. */
0a61c8c2 5420 bfd_vma gp0;
b49e97c9
TS
5421 /* The offset into the global offset table at which the address of
5422 the relocation entry symbol, adjusted by the addend, resides
5423 during execution. */
5424 bfd_vma g = MINUS_ONE;
5425 /* The section in which the symbol referenced by the relocation is
5426 located. */
5427 asection *sec = NULL;
5428 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5429 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5430 symbol. */
b34976b6 5431 bfd_boolean local_p, was_local_p;
77434823
MR
5432 /* TRUE if the symbol referred to by this relocation is a section
5433 symbol. */
5434 bfd_boolean section_p = FALSE;
b34976b6
AM
5435 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5436 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5437 /* TRUE if the symbol referred to by this relocation is
5438 "__gnu_local_gp". */
5439 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5440 Elf_Internal_Shdr *symtab_hdr;
5441 size_t extsymoff;
5442 unsigned long r_symndx;
5443 int r_type;
b34976b6 5444 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5445 relocation value. */
b34976b6
AM
5446 bfd_boolean overflowed_p;
5447 /* TRUE if this relocation refers to a MIPS16 function. */
5448 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5449 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5450 struct mips_elf_link_hash_table *htab;
5451 bfd *dynobj;
ad951203 5452 bfd_boolean resolved_to_zero;
0a44bf69
RS
5453
5454 dynobj = elf_hash_table (info)->dynobj;
5455 htab = mips_elf_hash_table (info);
4dfe6ac6 5456 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5457
5458 /* Parse the relocation. */
5459 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5460 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5461 p = (input_section->output_section->vma
5462 + input_section->output_offset
5463 + relocation->r_offset);
5464
5465 /* Assume that there will be no overflow. */
b34976b6 5466 overflowed_p = FALSE;
b49e97c9
TS
5467
5468 /* Figure out whether or not the symbol is local, and get the offset
5469 used in the array of hash table entries. */
5470 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5471 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5472 local_sections);
bce03d3d 5473 was_local_p = local_p;
b49e97c9
TS
5474 if (! elf_bad_symtab (input_bfd))
5475 extsymoff = symtab_hdr->sh_info;
5476 else
5477 {
5478 /* The symbol table does not follow the rule that local symbols
5479 must come before globals. */
5480 extsymoff = 0;
5481 }
5482
5483 /* Figure out the value of the symbol. */
5484 if (local_p)
5485 {
9d862524 5486 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5487 Elf_Internal_Sym *sym;
5488
5489 sym = local_syms + r_symndx;
5490 sec = local_sections[r_symndx];
5491
77434823
MR
5492 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5493
b49e97c9 5494 symbol = sec->output_section->vma + sec->output_offset;
77434823 5495 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5496 symbol += sym->st_value;
77434823 5497 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5498 {
5499 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5500 addend -= symbol;
5501 addend += sec->output_section->vma + sec->output_offset;
5502 }
b49e97c9 5503
df58fc94
RS
5504 /* MIPS16/microMIPS text labels should be treated as odd. */
5505 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5506 ++symbol;
5507
5508 /* Record the name of this symbol, for our caller. */
5509 *namep = bfd_elf_string_from_elf_section (input_bfd,
5510 symtab_hdr->sh_link,
5511 sym->st_name);
ceab86af 5512 if (*namep == NULL || **namep == '\0')
b49e97c9
TS
5513 *namep = bfd_section_name (input_bfd, sec);
5514
9d862524 5515 /* For relocations against a section symbol and ones against no
07d6d2b8 5516 symbol (absolute relocations) infer the ISA mode from the addend. */
9d862524
MR
5517 if (section_p || r_symndx == STN_UNDEF)
5518 {
5519 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5520 target_is_micromips_code_p = (addend & 1) && micromips_p;
5521 }
5522 /* For relocations against an absolute symbol infer the ISA mode
07d6d2b8 5523 from the value of the symbol plus addend. */
9d862524
MR
5524 else if (bfd_is_abs_section (sec))
5525 {
5526 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5527 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5528 }
5529 /* Otherwise just use the regular symbol annotation available. */
5530 else
5531 {
5532 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5533 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5534 }
b49e97c9
TS
5535 }
5536 else
5537 {
560e09e9
NC
5538 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5539
b49e97c9
TS
5540 /* For global symbols we look up the symbol in the hash-table. */
5541 h = ((struct mips_elf_link_hash_entry *)
5542 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5543 /* Find the real hash-table entry for this symbol. */
5544 while (h->root.root.type == bfd_link_hash_indirect
5545 || h->root.root.type == bfd_link_hash_warning)
5546 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5547
5548 /* Record the name of this symbol, for our caller. */
5549 *namep = h->root.root.root.string;
5550
5551 /* See if this is the special _gp_disp symbol. Note that such a
5552 symbol must always be a global symbol. */
560e09e9 5553 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5554 && ! NEWABI_P (input_bfd))
5555 {
5556 /* Relocations against _gp_disp are permitted only with
5557 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5558 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5559 return bfd_reloc_notsupported;
5560
b34976b6 5561 gp_disp_p = TRUE;
b49e97c9 5562 }
bbe506e8
TS
5563 /* See if this is the special _gp symbol. Note that such a
5564 symbol must always be a global symbol. */
5565 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5566 gnu_local_gp_p = TRUE;
5567
5568
b49e97c9
TS
5569 /* If this symbol is defined, calculate its address. Note that
5570 _gp_disp is a magic symbol, always implicitly defined by the
5571 linker, so it's inappropriate to check to see whether or not
5572 its defined. */
5573 else if ((h->root.root.type == bfd_link_hash_defined
5574 || h->root.root.type == bfd_link_hash_defweak)
5575 && h->root.root.u.def.section)
5576 {
5577 sec = h->root.root.u.def.section;
5578 if (sec->output_section)
5579 symbol = (h->root.root.u.def.value
5580 + sec->output_section->vma
5581 + sec->output_offset);
5582 else
5583 symbol = h->root.root.u.def.value;
5584 }
5585 else if (h->root.root.type == bfd_link_hash_undefweak)
5586 /* We allow relocations against undefined weak symbols, giving
5587 it the value zero, so that you can undefined weak functions
5588 and check to see if they exist by looking at their
5589 addresses. */
5590 symbol = 0;
59c2e50f 5591 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5592 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5593 symbol = 0;
a4d0f181
TS
5594 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5595 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5596 {
5597 /* If this is a dynamic link, we should have created a
5598 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
de194d85 5599 in _bfd_mips_elf_create_dynamic_sections.
b49e97c9
TS
5600 Otherwise, we should define the symbol with a value of 0.
5601 FIXME: It should probably get into the symbol table
5602 somehow as well. */
0e1862bb 5603 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5604 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5605 symbol = 0;
5606 }
5e2b0d47
NC
5607 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5608 {
5609 /* This is an optional symbol - an Irix specific extension to the
5610 ELF spec. Ignore it for now.
5611 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5612 than simply ignoring them, but we do not handle this for now.
5613 For information see the "64-bit ELF Object File Specification"
5614 which is available from here:
5615 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5616 symbol = 0;
5617 }
b49e97c9
TS
5618 else
5619 {
dfb93f11
JC
5620 bfd_boolean reject_undefined
5621 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5622 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5623
1a72702b
AM
5624 (*info->callbacks->undefined_symbol)
5625 (info, h->root.root.root.string, input_bfd,
dfb93f11
JC
5626 input_section, relocation->r_offset, reject_undefined);
5627
5628 if (reject_undefined)
5629 return bfd_reloc_undefined;
5630
5631 symbol = 0;
b49e97c9
TS
5632 }
5633
30c09090 5634 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5635 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5636 }
5637
738e5348
RS
5638 /* If this is a reference to a 16-bit function with a stub, we need
5639 to redirect the relocation to the stub unless:
5640
5641 (a) the relocation is for a MIPS16 JAL;
5642
5643 (b) the relocation is for a MIPS16 PIC call, and there are no
5644 non-MIPS16 uses of the GOT slot; or
5645
5646 (c) the section allows direct references to MIPS16 functions. */
5647 if (r_type != R_MIPS16_26
0e1862bb 5648 && !bfd_link_relocatable (info)
738e5348
RS
5649 && ((h != NULL
5650 && h->fn_stub != NULL
5651 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5652 || (local_p
698600e4
AM
5653 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5654 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5655 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5656 {
5657 /* This is a 32- or 64-bit call to a 16-bit function. We should
5658 have already noticed that we were going to need the
5659 stub. */
5660 if (local_p)
8f0c309a 5661 {
698600e4 5662 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5663 value = 0;
5664 }
b49e97c9
TS
5665 else
5666 {
5667 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5668 if (h->la25_stub)
5669 {
5670 /* If a LA25 header for the stub itself exists, point to the
5671 prepended LUI/ADDIU sequence. */
5672 sec = h->la25_stub->stub_section;
5673 value = h->la25_stub->offset;
5674 }
5675 else
5676 {
5677 sec = h->fn_stub;
5678 value = 0;
5679 }
b49e97c9
TS
5680 }
5681
8f0c309a 5682 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5683 /* The target is 16-bit, but the stub isn't. */
5684 target_is_16_bit_code_p = FALSE;
b49e97c9 5685 }
1bbce132
MR
5686 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5687 to a standard MIPS function, we need to redirect the call to the stub.
5688 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5689 indirect calls should use an indirect stub instead. */
0e1862bb 5690 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5691 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5692 || (local_p
698600e4
AM
5693 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5694 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5695 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5696 {
b9d58d71 5697 if (local_p)
698600e4 5698 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5699 else
b49e97c9 5700 {
b9d58d71
TS
5701 /* If both call_stub and call_fp_stub are defined, we can figure
5702 out which one to use by checking which one appears in the input
5703 file. */
5704 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5705 {
b9d58d71 5706 asection *o;
68ffbac6 5707
b9d58d71
TS
5708 sec = NULL;
5709 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5710 {
b9d58d71
TS
5711 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5712 {
5713 sec = h->call_fp_stub;
5714 break;
5715 }
b49e97c9 5716 }
b9d58d71
TS
5717 if (sec == NULL)
5718 sec = h->call_stub;
b49e97c9 5719 }
b9d58d71 5720 else if (h->call_stub != NULL)
b49e97c9 5721 sec = h->call_stub;
b9d58d71
TS
5722 else
5723 sec = h->call_fp_stub;
07d6d2b8 5724 }
b49e97c9 5725
eea6121a 5726 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5727 symbol = sec->output_section->vma + sec->output_offset;
5728 }
861fb55a
DJ
5729 /* If this is a direct call to a PIC function, redirect to the
5730 non-PIC stub. */
5731 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5732 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5733 target_is_16_bit_code_p))
c7318def
MR
5734 {
5735 symbol = (h->la25_stub->stub_section->output_section->vma
5736 + h->la25_stub->stub_section->output_offset
5737 + h->la25_stub->offset);
5738 if (ELF_ST_IS_MICROMIPS (h->root.other))
5739 symbol |= 1;
5740 }
1bbce132
MR
5741 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5742 entry is used if a standard PLT entry has also been made. In this
5743 case the symbol will have been set by mips_elf_set_plt_sym_value
5744 to point to the standard PLT entry, so redirect to the compressed
5745 one. */
54806ffa
MR
5746 else if ((mips16_branch_reloc_p (r_type)
5747 || micromips_branch_reloc_p (r_type))
0e1862bb 5748 && !bfd_link_relocatable (info)
1bbce132
MR
5749 && h != NULL
5750 && h->use_plt_entry
5751 && h->root.plt.plist->comp_offset != MINUS_ONE
5752 && h->root.plt.plist->mips_offset != MINUS_ONE)
5753 {
5754 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5755
ce558b89 5756 sec = htab->root.splt;
1bbce132
MR
5757 symbol = (sec->output_section->vma
5758 + sec->output_offset
5759 + htab->plt_header_size
5760 + htab->plt_mips_offset
5761 + h->root.plt.plist->comp_offset
5762 + 1);
5763
5764 target_is_16_bit_code_p = !micromips_p;
5765 target_is_micromips_code_p = micromips_p;
5766 }
b49e97c9 5767
df58fc94 5768 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5769 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5770 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5771 {
4eca0228 5772 _bfd_error_handler
df58fc94
RS
5773 (_("MIPS16 and microMIPS functions cannot call each other"));
5774 return bfd_reloc_notsupported;
5775 }
5776
b49e97c9 5777 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5778 mode change. However, we can ignore calls to undefined weak symbols,
5779 which should never be executed at runtime. This exception is important
5780 because the assembly writer may have "known" that any definition of the
5781 symbol would be 16-bit code, and that direct jumps were therefore
5782 acceptable. */
0e1862bb 5783 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5784 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5785 && ((mips16_branch_reloc_p (r_type)
5786 && !target_is_16_bit_code_p)
5787 || (micromips_branch_reloc_p (r_type)
df58fc94 5788 && !target_is_micromips_code_p)
9d862524
MR
5789 || ((branch_reloc_p (r_type)
5790 || r_type == R_MIPS_JALR)
df58fc94
RS
5791 && (target_is_16_bit_code_p
5792 || target_is_micromips_code_p))));
b49e97c9 5793
47275900
MR
5794 resolved_to_zero = (h != NULL
5795 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5796
5797 switch (r_type)
5798 {
5799 case R_MIPS16_CALL16:
5800 case R_MIPS16_GOT16:
5801 case R_MIPS_CALL16:
5802 case R_MIPS_GOT16:
5803 case R_MIPS_GOT_PAGE:
5804 case R_MIPS_GOT_DISP:
5805 case R_MIPS_GOT_LO16:
5806 case R_MIPS_CALL_LO16:
5807 case R_MICROMIPS_CALL16:
5808 case R_MICROMIPS_GOT16:
5809 case R_MICROMIPS_GOT_PAGE:
5810 case R_MICROMIPS_GOT_DISP:
5811 case R_MICROMIPS_GOT_LO16:
5812 case R_MICROMIPS_CALL_LO16:
5813 if (resolved_to_zero
5814 && !bfd_link_relocatable (info)
5815 && mips_elf_nullify_got_load (input_bfd, contents,
5816 relocation, howto, TRUE))
5817 return bfd_reloc_continue;
5818
5819 /* Fall through. */
5820 case R_MIPS_GOT_HI16:
5821 case R_MIPS_CALL_HI16:
5822 case R_MICROMIPS_GOT_HI16:
5823 case R_MICROMIPS_CALL_HI16:
5824 if (resolved_to_zero
5825 && htab->use_absolute_zero
5826 && bfd_link_pic (info))
5827 {
5828 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5829 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5830 FALSE, FALSE, FALSE);
5831 BFD_ASSERT (h != NULL);
5832 }
5833 break;
5834 }
5835
c5d6fa44 5836 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5837
0a61c8c2
RS
5838 gp0 = _bfd_get_gp_value (input_bfd);
5839 gp = _bfd_get_gp_value (abfd);
23cc69b6 5840 if (htab->got_info)
a8028dd0 5841 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5842
5843 if (gnu_local_gp_p)
5844 symbol = gp;
5845
df58fc94
RS
5846 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5847 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5848 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5849 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5850 {
df58fc94
RS
5851 r_type = (micromips_reloc_p (r_type)
5852 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5853 addend = 0;
5854 }
5855
e77760d2 5856 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5857 to need it, get it now. */
b49e97c9
TS
5858 switch (r_type)
5859 {
738e5348
RS
5860 case R_MIPS16_CALL16:
5861 case R_MIPS16_GOT16:
b49e97c9
TS
5862 case R_MIPS_CALL16:
5863 case R_MIPS_GOT16:
5864 case R_MIPS_GOT_DISP:
5865 case R_MIPS_GOT_HI16:
5866 case R_MIPS_CALL_HI16:
5867 case R_MIPS_GOT_LO16:
5868 case R_MIPS_CALL_LO16:
df58fc94
RS
5869 case R_MICROMIPS_CALL16:
5870 case R_MICROMIPS_GOT16:
5871 case R_MICROMIPS_GOT_DISP:
5872 case R_MICROMIPS_GOT_HI16:
5873 case R_MICROMIPS_CALL_HI16:
5874 case R_MICROMIPS_GOT_LO16:
5875 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5876 case R_MIPS_TLS_GD:
5877 case R_MIPS_TLS_GOTTPREL:
5878 case R_MIPS_TLS_LDM:
d0f13682
CLT
5879 case R_MIPS16_TLS_GD:
5880 case R_MIPS16_TLS_GOTTPREL:
5881 case R_MIPS16_TLS_LDM:
df58fc94
RS
5882 case R_MICROMIPS_TLS_GD:
5883 case R_MICROMIPS_TLS_GOTTPREL:
5884 case R_MICROMIPS_TLS_LDM:
b49e97c9 5885 /* Find the index into the GOT where this value is located. */
df58fc94 5886 if (tls_ldm_reloc_p (r_type))
0f20cc35 5887 {
0a44bf69 5888 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5889 0, 0, NULL, r_type);
0f20cc35
DJ
5890 if (g == MINUS_ONE)
5891 return bfd_reloc_outofrange;
5892 }
5893 else if (!local_p)
b49e97c9 5894 {
0a44bf69
RS
5895 /* On VxWorks, CALL relocations should refer to the .got.plt
5896 entry, which is initialized to point at the PLT stub. */
5897 if (htab->is_vxworks
df58fc94
RS
5898 && (call_hi16_reloc_p (r_type)
5899 || call_lo16_reloc_p (r_type)
738e5348 5900 || call16_reloc_p (r_type)))
0a44bf69
RS
5901 {
5902 BFD_ASSERT (addend == 0);
5903 BFD_ASSERT (h->root.needs_plt);
5904 g = mips_elf_gotplt_index (info, &h->root);
5905 }
5906 else
b49e97c9 5907 {
020d7251 5908 BFD_ASSERT (addend == 0);
13fbec83
RS
5909 g = mips_elf_global_got_index (abfd, info, input_bfd,
5910 &h->root, r_type);
e641e783 5911 if (!TLS_RELOC_P (r_type)
020d7251
RS
5912 && !elf_hash_table (info)->dynamic_sections_created)
5913 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5914 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5915 }
5916 }
0a44bf69 5917 else if (!htab->is_vxworks
738e5348 5918 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5919 /* The calculation below does not involve "g". */
b49e97c9
TS
5920 break;
5921 else
5922 {
5c18022e 5923 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5924 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5925 if (g == MINUS_ONE)
5926 return bfd_reloc_outofrange;
5927 }
5928
5929 /* Convert GOT indices to actual offsets. */
a8028dd0 5930 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5931 break;
b49e97c9
TS
5932 }
5933
0a44bf69
RS
5934 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5935 symbols are resolved by the loader. Add them to .rela.dyn. */
5936 if (h != NULL && is_gott_symbol (info, &h->root))
5937 {
5938 Elf_Internal_Rela outrel;
5939 bfd_byte *loc;
5940 asection *s;
5941
5942 s = mips_elf_rel_dyn_section (info, FALSE);
5943 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5944
5945 outrel.r_offset = (input_section->output_section->vma
5946 + input_section->output_offset
5947 + relocation->r_offset);
5948 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5949 outrel.r_addend = addend;
5950 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5951
5952 /* If we've written this relocation for a readonly section,
5953 we need to set DF_TEXTREL again, so that we do not delete the
5954 DT_TEXTREL tag. */
5955 if (MIPS_ELF_READONLY_SECTION (input_section))
5956 info->flags |= DF_TEXTREL;
5957
0a44bf69
RS
5958 *valuep = 0;
5959 return bfd_reloc_ok;
5960 }
5961
b49e97c9
TS
5962 /* Figure out what kind of relocation is being performed. */
5963 switch (r_type)
5964 {
5965 case R_MIPS_NONE:
5966 return bfd_reloc_continue;
5967
5968 case R_MIPS_16:
c3eb94b4
MF
5969 if (howto->partial_inplace)
5970 addend = _bfd_mips_elf_sign_extend (addend, 16);
5971 value = symbol + addend;
b49e97c9
TS
5972 overflowed_p = mips_elf_overflow_p (value, 16);
5973 break;
5974
5975 case R_MIPS_32:
5976 case R_MIPS_REL32:
5977 case R_MIPS_64:
0e1862bb 5978 if ((bfd_link_pic (info)
861fb55a 5979 || (htab->root.dynamic_sections_created
b49e97c9 5980 && h != NULL
f5385ebf 5981 && h->root.def_dynamic
861fb55a
DJ
5982 && !h->root.def_regular
5983 && !h->has_static_relocs))
cf35638d 5984 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5985 && (h == NULL
5986 || h->root.root.type != bfd_link_hash_undefweak
ad951203
L
5987 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5988 && !resolved_to_zero))
b49e97c9
TS
5989 && (input_section->flags & SEC_ALLOC) != 0)
5990 {
861fb55a 5991 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5992 where the symbol will end up. So, we create a relocation
5993 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5994 linker. We must do the same for executable references to
5995 shared library symbols, unless we've decided to use copy
5996 relocs or PLTs instead. */
b49e97c9
TS
5997 value = addend;
5998 if (!mips_elf_create_dynamic_relocation (abfd,
5999 info,
6000 relocation,
6001 h,
6002 sec,
6003 symbol,
6004 &value,
6005 input_section))
6006 return bfd_reloc_undefined;
6007 }
6008 else
6009 {
6010 if (r_type != R_MIPS_REL32)
6011 value = symbol + addend;
6012 else
6013 value = addend;
6014 }
6015 value &= howto->dst_mask;
092dcd75
CD
6016 break;
6017
6018 case R_MIPS_PC32:
6019 value = symbol + addend - p;
6020 value &= howto->dst_mask;
b49e97c9
TS
6021 break;
6022
b49e97c9
TS
6023 case R_MIPS16_26:
6024 /* The calculation for R_MIPS16_26 is just the same as for an
6025 R_MIPS_26. It's only the storage of the relocated field into
6026 the output file that's different. That's handled in
6027 mips_elf_perform_relocation. So, we just fall through to the
6028 R_MIPS_26 case here. */
6029 case R_MIPS_26:
df58fc94
RS
6030 case R_MICROMIPS_26_S1:
6031 {
6032 unsigned int shift;
6033
df58fc94
RS
6034 /* Shift is 2, unusually, for microMIPS JALX. */
6035 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6036
77434823 6037 if (howto->partial_inplace && !section_p)
df58fc94 6038 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
6039 else
6040 value = addend;
bc27bb05
MR
6041 value += symbol;
6042
9d862524
MR
6043 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6044 be the correct ISA mode selector except for weak undefined
6045 symbols. */
6046 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6047 && (*cross_mode_jump_p
6048 ? (value & 3) != (r_type == R_MIPS_26)
07d6d2b8 6049 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
6050 return bfd_reloc_outofrange;
6051
6052 value >>= shift;
77434823 6053 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
6054 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6055 value &= howto->dst_mask;
6056 }
b49e97c9
TS
6057 break;
6058
0f20cc35 6059 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 6060 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 6061 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
6062 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6063 & howto->dst_mask);
6064 break;
6065
6066 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
6067 case R_MIPS_TLS_DTPREL32:
6068 case R_MIPS_TLS_DTPREL64:
d0f13682 6069 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 6070 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
6071 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6072 break;
6073
6074 case R_MIPS_TLS_TPREL_HI16:
d0f13682 6075 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 6076 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
6077 value = (mips_elf_high (addend + symbol - tprel_base (info))
6078 & howto->dst_mask);
6079 break;
6080
6081 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
6082 case R_MIPS_TLS_TPREL32:
6083 case R_MIPS_TLS_TPREL64:
6084 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 6085 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
6086 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6087 break;
6088
b49e97c9 6089 case R_MIPS_HI16:
d6f16593 6090 case R_MIPS16_HI16:
df58fc94 6091 case R_MICROMIPS_HI16:
b49e97c9
TS
6092 if (!gp_disp_p)
6093 {
6094 value = mips_elf_high (addend + symbol);
6095 value &= howto->dst_mask;
6096 }
6097 else
6098 {
d6f16593 6099 /* For MIPS16 ABI code we generate this sequence
07d6d2b8
AM
6100 0: li $v0,%hi(_gp_disp)
6101 4: addiupc $v1,%lo(_gp_disp)
6102 8: sll $v0,16
d6f16593
MR
6103 12: addu $v0,$v1
6104 14: move $gp,$v0
6105 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
6106 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6107 ADDIUPC clears the low two bits of the instruction address,
6108 so the base is ($t9 + 4) & ~3. */
d6f16593 6109 if (r_type == R_MIPS16_HI16)
888b9c01 6110 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
6111 /* The microMIPS .cpload sequence uses the same assembly
6112 instructions as the traditional psABI version, but the
6113 incoming $t9 has the low bit set. */
6114 else if (r_type == R_MICROMIPS_HI16)
6115 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
6116 else
6117 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
6118 }
6119 break;
6120
6121 case R_MIPS_LO16:
d6f16593 6122 case R_MIPS16_LO16:
df58fc94
RS
6123 case R_MICROMIPS_LO16:
6124 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
6125 if (!gp_disp_p)
6126 value = (symbol + addend) & howto->dst_mask;
6127 else
6128 {
d6f16593
MR
6129 /* See the comment for R_MIPS16_HI16 above for the reason
6130 for this conditional. */
6131 if (r_type == R_MIPS16_LO16)
888b9c01 6132 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
6133 else if (r_type == R_MICROMIPS_LO16
6134 || r_type == R_MICROMIPS_HI0_LO16)
6135 value = addend + gp - p + 3;
d6f16593
MR
6136 else
6137 value = addend + gp - p + 4;
b49e97c9 6138 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 6139 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
6140 _gp_disp are normally generated from the .cpload
6141 pseudo-op. It generates code that normally looks like
6142 this:
6143
6144 lui $gp,%hi(_gp_disp)
6145 addiu $gp,$gp,%lo(_gp_disp)
6146 addu $gp,$gp,$t9
6147
6148 Here $t9 holds the address of the function being called,
6149 as required by the MIPS ELF ABI. The R_MIPS_LO16
6150 relocation can easily overflow in this situation, but the
6151 R_MIPS_HI16 relocation will handle the overflow.
6152 Therefore, we consider this a bug in the MIPS ABI, and do
6153 not check for overflow here. */
6154 }
6155 break;
6156
6157 case R_MIPS_LITERAL:
df58fc94 6158 case R_MICROMIPS_LITERAL:
b49e97c9
TS
6159 /* Because we don't merge literal sections, we can handle this
6160 just like R_MIPS_GPREL16. In the long run, we should merge
6161 shared literals, and then we will need to additional work
6162 here. */
6163
6164 /* Fall through. */
6165
6166 case R_MIPS16_GPREL:
6167 /* The R_MIPS16_GPREL performs the same calculation as
6168 R_MIPS_GPREL16, but stores the relocated bits in a different
6169 order. We don't need to do anything special here; the
6170 differences are handled in mips_elf_perform_relocation. */
6171 case R_MIPS_GPREL16:
df58fc94
RS
6172 case R_MICROMIPS_GPREL7_S2:
6173 case R_MICROMIPS_GPREL16:
bce03d3d
AO
6174 /* Only sign-extend the addend if it was extracted from the
6175 instruction. If the addend was separate, leave it alone,
6176 otherwise we may lose significant bits. */
6177 if (howto->partial_inplace)
a7ebbfdf 6178 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
6179 value = symbol + addend - gp;
6180 /* If the symbol was local, any earlier relocatable links will
6181 have adjusted its addend with the gp offset, so compensate
6182 for that now. Don't do it for symbols forced local in this
6183 link, though, since they won't have had the gp offset applied
6184 to them before. */
6185 if (was_local_p)
6186 value += gp0;
538baf8b
AB
6187 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6188 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
6189 break;
6190
738e5348
RS
6191 case R_MIPS16_GOT16:
6192 case R_MIPS16_CALL16:
b49e97c9
TS
6193 case R_MIPS_GOT16:
6194 case R_MIPS_CALL16:
df58fc94
RS
6195 case R_MICROMIPS_GOT16:
6196 case R_MICROMIPS_CALL16:
0a44bf69 6197 /* VxWorks does not have separate local and global semantics for
738e5348 6198 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6199 if (!htab->is_vxworks && local_p)
b49e97c9 6200 {
5c18022e 6201 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6202 symbol + addend, !was_local_p);
b49e97c9
TS
6203 if (value == MINUS_ONE)
6204 return bfd_reloc_outofrange;
6205 value
a8028dd0 6206 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6207 overflowed_p = mips_elf_overflow_p (value, 16);
6208 break;
6209 }
6210
6211 /* Fall through. */
6212
0f20cc35
DJ
6213 case R_MIPS_TLS_GD:
6214 case R_MIPS_TLS_GOTTPREL:
6215 case R_MIPS_TLS_LDM:
b49e97c9 6216 case R_MIPS_GOT_DISP:
d0f13682
CLT
6217 case R_MIPS16_TLS_GD:
6218 case R_MIPS16_TLS_GOTTPREL:
6219 case R_MIPS16_TLS_LDM:
df58fc94
RS
6220 case R_MICROMIPS_TLS_GD:
6221 case R_MICROMIPS_TLS_GOTTPREL:
6222 case R_MICROMIPS_TLS_LDM:
6223 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6224 value = g;
6225 overflowed_p = mips_elf_overflow_p (value, 16);
6226 break;
6227
6228 case R_MIPS_GPREL32:
bce03d3d
AO
6229 value = (addend + symbol + gp0 - gp);
6230 if (!save_addend)
6231 value &= howto->dst_mask;
b49e97c9
TS
6232 break;
6233
6234 case R_MIPS_PC16:
bad36eac 6235 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6236 if (howto->partial_inplace)
6237 addend = _bfd_mips_elf_sign_extend (addend, 18);
6238
9d862524 6239 /* No need to exclude weak undefined symbols here as they resolve
07d6d2b8
AM
6240 to 0 and never set `*cross_mode_jump_p', so this alignment check
6241 will never trigger for them. */
9d862524
MR
6242 if (*cross_mode_jump_p
6243 ? ((symbol + addend) & 3) != 1
6244 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6245 return bfd_reloc_outofrange;
6246
6247 value = symbol + addend - p;
538baf8b
AB
6248 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6249 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6250 value >>= howto->rightshift;
6251 value &= howto->dst_mask;
b49e97c9
TS
6252 break;
6253
c9775dde
MR
6254 case R_MIPS16_PC16_S1:
6255 if (howto->partial_inplace)
6256 addend = _bfd_mips_elf_sign_extend (addend, 17);
6257
6258 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6259 && (*cross_mode_jump_p
6260 ? ((symbol + addend) & 3) != 0
6261 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6262 return bfd_reloc_outofrange;
6263
6264 value = symbol + addend - p;
6265 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 overflowed_p = mips_elf_overflow_p (value, 17);
6267 value >>= howto->rightshift;
6268 value &= howto->dst_mask;
6269 break;
6270
7361da2c
AB
6271 case R_MIPS_PC21_S2:
6272 if (howto->partial_inplace)
6273 addend = _bfd_mips_elf_sign_extend (addend, 23);
6274
6275 if ((symbol + addend) & 3)
6276 return bfd_reloc_outofrange;
6277
6278 value = symbol + addend - p;
538baf8b
AB
6279 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6280 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6281 value >>= howto->rightshift;
6282 value &= howto->dst_mask;
6283 break;
6284
6285 case R_MIPS_PC26_S2:
6286 if (howto->partial_inplace)
6287 addend = _bfd_mips_elf_sign_extend (addend, 28);
6288
6289 if ((symbol + addend) & 3)
6290 return bfd_reloc_outofrange;
6291
6292 value = symbol + addend - p;
538baf8b
AB
6293 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6294 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6295 value >>= howto->rightshift;
6296 value &= howto->dst_mask;
6297 break;
6298
6299 case R_MIPS_PC18_S3:
6300 if (howto->partial_inplace)
6301 addend = _bfd_mips_elf_sign_extend (addend, 21);
6302
6303 if ((symbol + addend) & 7)
6304 return bfd_reloc_outofrange;
6305
6306 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6307 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6308 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6309 value >>= howto->rightshift;
6310 value &= howto->dst_mask;
6311 break;
6312
6313 case R_MIPS_PC19_S2:
6314 if (howto->partial_inplace)
6315 addend = _bfd_mips_elf_sign_extend (addend, 21);
6316
6317 if ((symbol + addend) & 3)
6318 return bfd_reloc_outofrange;
6319
6320 value = symbol + addend - p;
538baf8b
AB
6321 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6322 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6323 value >>= howto->rightshift;
6324 value &= howto->dst_mask;
6325 break;
6326
6327 case R_MIPS_PCHI16:
6328 value = mips_elf_high (symbol + addend - p);
7361da2c
AB
6329 value &= howto->dst_mask;
6330 break;
6331
6332 case R_MIPS_PCLO16:
6333 if (howto->partial_inplace)
6334 addend = _bfd_mips_elf_sign_extend (addend, 16);
6335 value = symbol + addend - p;
6336 value &= howto->dst_mask;
6337 break;
6338
df58fc94 6339 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6340 if (howto->partial_inplace)
6341 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6342
6343 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6344 && (*cross_mode_jump_p
6345 ? ((symbol + addend + 2) & 3) != 0
6346 : ((symbol + addend + 2) & 1) == 0))
6347 return bfd_reloc_outofrange;
6348
c3eb94b4 6349 value = symbol + addend - p;
538baf8b
AB
6350 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6351 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6352 value >>= howto->rightshift;
6353 value &= howto->dst_mask;
6354 break;
6355
6356 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6357 if (howto->partial_inplace)
6358 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6359
6360 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6361 && (*cross_mode_jump_p
6362 ? ((symbol + addend + 2) & 3) != 0
6363 : ((symbol + addend + 2) & 1) == 0))
6364 return bfd_reloc_outofrange;
6365
c3eb94b4 6366 value = symbol + addend - p;
538baf8b
AB
6367 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6368 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6369 value >>= howto->rightshift;
6370 value &= howto->dst_mask;
6371 break;
6372
6373 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6374 if (howto->partial_inplace)
6375 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6376
6377 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6378 && (*cross_mode_jump_p
6379 ? ((symbol + addend) & 3) != 0
6380 : ((symbol + addend) & 1) == 0))
6381 return bfd_reloc_outofrange;
6382
c3eb94b4 6383 value = symbol + addend - p;
538baf8b
AB
6384 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6385 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6386 value >>= howto->rightshift;
6387 value &= howto->dst_mask;
6388 break;
6389
6390 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6391 if (howto->partial_inplace)
6392 addend = _bfd_mips_elf_sign_extend (addend, 25);
6393 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6394 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6395 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6396 value >>= howto->rightshift;
6397 value &= howto->dst_mask;
6398 break;
6399
b49e97c9
TS
6400 case R_MIPS_GOT_HI16:
6401 case R_MIPS_CALL_HI16:
df58fc94
RS
6402 case R_MICROMIPS_GOT_HI16:
6403 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6404 /* We're allowed to handle these two relocations identically.
6405 The dynamic linker is allowed to handle the CALL relocations
6406 differently by creating a lazy evaluation stub. */
6407 value = g;
6408 value = mips_elf_high (value);
6409 value &= howto->dst_mask;
6410 break;
6411
6412 case R_MIPS_GOT_LO16:
6413 case R_MIPS_CALL_LO16:
df58fc94
RS
6414 case R_MICROMIPS_GOT_LO16:
6415 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6416 value = g & howto->dst_mask;
6417 break;
6418
6419 case R_MIPS_GOT_PAGE:
df58fc94 6420 case R_MICROMIPS_GOT_PAGE:
5c18022e 6421 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6422 if (value == MINUS_ONE)
6423 return bfd_reloc_outofrange;
a8028dd0 6424 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6425 overflowed_p = mips_elf_overflow_p (value, 16);
6426 break;
6427
6428 case R_MIPS_GOT_OFST:
df58fc94 6429 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6430 if (local_p)
5c18022e 6431 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6432 else
6433 value = addend;
b49e97c9
TS
6434 overflowed_p = mips_elf_overflow_p (value, 16);
6435 break;
6436
6437 case R_MIPS_SUB:
df58fc94 6438 case R_MICROMIPS_SUB:
b49e97c9
TS
6439 value = symbol - addend;
6440 value &= howto->dst_mask;
6441 break;
6442
6443 case R_MIPS_HIGHER:
df58fc94 6444 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6445 value = mips_elf_higher (addend + symbol);
6446 value &= howto->dst_mask;
6447 break;
6448
6449 case R_MIPS_HIGHEST:
df58fc94 6450 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6451 value = mips_elf_highest (addend + symbol);
6452 value &= howto->dst_mask;
6453 break;
6454
6455 case R_MIPS_SCN_DISP:
df58fc94 6456 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6457 value = symbol + addend - sec->output_offset;
6458 value &= howto->dst_mask;
6459 break;
6460
b49e97c9 6461 case R_MIPS_JALR:
df58fc94 6462 case R_MICROMIPS_JALR:
1367d393
ILT
6463 /* This relocation is only a hint. In some cases, we optimize
6464 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6465 when the symbol does not resolve locally. */
6466 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393 6467 return bfd_reloc_continue;
c1556ecd
MR
6468 /* We can't optimize cross-mode jumps either. */
6469 if (*cross_mode_jump_p)
6470 return bfd_reloc_continue;
1367d393 6471 value = symbol + addend;
c1556ecd
MR
6472 /* Neither we can non-instruction-aligned targets. */
6473 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6474 return bfd_reloc_continue;
1367d393 6475 break;
b49e97c9 6476
1367d393 6477 case R_MIPS_PJUMP:
b49e97c9
TS
6478 case R_MIPS_GNU_VTINHERIT:
6479 case R_MIPS_GNU_VTENTRY:
6480 /* We don't do anything with these at present. */
6481 return bfd_reloc_continue;
6482
6483 default:
6484 /* An unrecognized relocation type. */
6485 return bfd_reloc_notsupported;
6486 }
6487
6488 /* Store the VALUE for our caller. */
6489 *valuep = value;
6490 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6491}
6492
b49e97c9
TS
6493/* It has been determined that the result of the RELOCATION is the
6494 VALUE. Use HOWTO to place VALUE into the output file at the
6495 appropriate position. The SECTION is the section to which the
68ffbac6 6496 relocation applies.
38a7df63 6497 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6498 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6499
b34976b6 6500 Returns FALSE if anything goes wrong. */
b49e97c9 6501
b34976b6 6502static bfd_boolean
9719ad41
RS
6503mips_elf_perform_relocation (struct bfd_link_info *info,
6504 reloc_howto_type *howto,
6505 const Elf_Internal_Rela *relocation,
6506 bfd_vma value, bfd *input_bfd,
6507 asection *input_section, bfd_byte *contents,
38a7df63 6508 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6509{
6510 bfd_vma x;
6511 bfd_byte *location;
6512 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6513
6514 /* Figure out where the relocation is occurring. */
6515 location = contents + relocation->r_offset;
6516
df58fc94 6517 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6518
b49e97c9
TS
6519 /* Obtain the current value. */
6520 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6521
6522 /* Clear the field we are setting. */
6523 x &= ~howto->dst_mask;
6524
b49e97c9
TS
6525 /* Set the field. */
6526 x |= (value & howto->dst_mask);
6527
a6ebf616 6528 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6529 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6530 {
6531 bfd_vma opcode = x >> 26;
6532
6533 if (r_type == R_MIPS16_26 ? opcode == 0x7
6534 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6535 : opcode == 0x1d)
6536 {
6537 info->callbacks->einfo
2c1c9679 6538 (_("%X%H: unsupported JALX to the same ISA mode\n"),
9d862524
MR
6539 input_bfd, input_section, relocation->r_offset);
6540 return TRUE;
6541 }
6542 }
38a7df63 6543 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6544 {
b34976b6 6545 bfd_boolean ok;
b49e97c9
TS
6546 bfd_vma opcode = x >> 26;
6547 bfd_vma jalx_opcode;
6548
6549 /* Check to see if the opcode is already JAL or JALX. */
6550 if (r_type == R_MIPS16_26)
6551 {
6552 ok = ((opcode == 0x6) || (opcode == 0x7));
6553 jalx_opcode = 0x7;
6554 }
df58fc94
RS
6555 else if (r_type == R_MICROMIPS_26_S1)
6556 {
6557 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6558 jalx_opcode = 0x3c;
6559 }
b49e97c9
TS
6560 else
6561 {
6562 ok = ((opcode == 0x3) || (opcode == 0x1d));
6563 jalx_opcode = 0x1d;
6564 }
6565
3bdf9505 6566 /* If the opcode is not JAL or JALX, there's a problem. We cannot
07d6d2b8 6567 convert J or JALS to JALX. */
b49e97c9
TS
6568 if (!ok)
6569 {
5f68df25 6570 info->callbacks->einfo
2c1c9679 6571 (_("%X%H: unsupported jump between ISA modes; "
5f68df25
MR
6572 "consider recompiling with interlinking enabled\n"),
6573 input_bfd, input_section, relocation->r_offset);
6574 return TRUE;
b49e97c9
TS
6575 }
6576
6577 /* Make this the JALX opcode. */
6578 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6579 }
9d862524
MR
6580 else if (cross_mode_jump_p && b_reloc_p (r_type))
6581 {
a6ebf616
MR
6582 bfd_boolean ok = FALSE;
6583 bfd_vma opcode = x >> 16;
6584 bfd_vma jalx_opcode = 0;
70e65ca8 6585 bfd_vma sign_bit = 0;
a6ebf616
MR
6586 bfd_vma addr;
6587 bfd_vma dest;
6588
6589 if (r_type == R_MICROMIPS_PC16_S1)
6590 {
6591 ok = opcode == 0x4060;
6592 jalx_opcode = 0x3c;
70e65ca8 6593 sign_bit = 0x10000;
a6ebf616
MR
6594 value <<= 1;
6595 }
6596 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6597 {
6598 ok = opcode == 0x411;
6599 jalx_opcode = 0x1d;
70e65ca8 6600 sign_bit = 0x20000;
a6ebf616
MR
6601 value <<= 2;
6602 }
6603
8b10b0b3 6604 if (ok && !bfd_link_pic (info))
a6ebf616 6605 {
8b10b0b3
MR
6606 addr = (input_section->output_section->vma
6607 + input_section->output_offset
6608 + relocation->r_offset
6609 + 4);
70e65ca8
MR
6610 dest = (addr
6611 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
a6ebf616 6612
8b10b0b3
MR
6613 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6614 {
6615 info->callbacks->einfo
2c1c9679 6616 (_("%X%H: cannot convert branch between ISA modes "
8b10b0b3
MR
6617 "to JALX: relocation out of range\n"),
6618 input_bfd, input_section, relocation->r_offset);
6619 return TRUE;
6620 }
a6ebf616 6621
8b10b0b3
MR
6622 /* Make this the JALX opcode. */
6623 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6624 }
6625 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
a6ebf616
MR
6626 {
6627 info->callbacks->einfo
2c1c9679 6628 (_("%X%H: unsupported branch between ISA modes\n"),
a6ebf616
MR
6629 input_bfd, input_section, relocation->r_offset);
6630 return TRUE;
6631 }
9d862524 6632 }
b49e97c9 6633
38a7df63
CF
6634 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6635 range. */
0e1862bb 6636 if (!bfd_link_relocatable (info)
38a7df63 6637 && !cross_mode_jump_p
cd8d5a82
CF
6638 && ((JAL_TO_BAL_P (input_bfd)
6639 && r_type == R_MIPS_26
0e392101 6640 && (x >> 26) == 0x3) /* jal addr */
cd8d5a82
CF
6641 || (JALR_TO_BAL_P (input_bfd)
6642 && r_type == R_MIPS_JALR
0e392101 6643 && x == 0x0320f809) /* jalr t9 */
38a7df63
CF
6644 || (JR_TO_B_P (input_bfd)
6645 && r_type == R_MIPS_JALR
0e392101 6646 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
1367d393
ILT
6647 {
6648 bfd_vma addr;
6649 bfd_vma dest;
6650 bfd_signed_vma off;
6651
6652 addr = (input_section->output_section->vma
6653 + input_section->output_offset
6654 + relocation->r_offset
6655 + 4);
6656 if (r_type == R_MIPS_26)
6657 dest = (value << 2) | ((addr >> 28) << 28);
6658 else
6659 dest = value;
6660 off = dest - addr;
6661 if (off <= 0x1ffff && off >= -0x20000)
38a7df63 6662 {
0e392101 6663 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
38a7df63
CF
6664 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6665 else
6666 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6667 }
1367d393
ILT
6668 }
6669
b49e97c9 6670 /* Put the value into the output. */
98e10ffa 6671 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
d6f16593 6672
0e1862bb 6673 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6674 location);
d6f16593 6675
b34976b6 6676 return TRUE;
b49e97c9 6677}
b49e97c9 6678\f
b49e97c9
TS
6679/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6680 is the original relocation, which is now being transformed into a
6681 dynamic relocation. The ADDENDP is adjusted if necessary; the
6682 caller should store the result in place of the original addend. */
6683
b34976b6 6684static bfd_boolean
9719ad41
RS
6685mips_elf_create_dynamic_relocation (bfd *output_bfd,
6686 struct bfd_link_info *info,
6687 const Elf_Internal_Rela *rel,
6688 struct mips_elf_link_hash_entry *h,
6689 asection *sec, bfd_vma symbol,
6690 bfd_vma *addendp, asection *input_section)
b49e97c9 6691{
947216bf 6692 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6693 asection *sreloc;
6694 bfd *dynobj;
6695 int r_type;
5d41f0b6
RS
6696 long indx;
6697 bfd_boolean defined_p;
0a44bf69 6698 struct mips_elf_link_hash_table *htab;
b49e97c9 6699
0a44bf69 6700 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6701 BFD_ASSERT (htab != NULL);
6702
b49e97c9
TS
6703 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6704 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6705 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6706 BFD_ASSERT (sreloc != NULL);
6707 BFD_ASSERT (sreloc->contents != NULL);
6708 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6709 < sreloc->size);
b49e97c9 6710
b49e97c9
TS
6711 outrel[0].r_offset =
6712 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6713 if (ABI_64_P (output_bfd))
6714 {
6715 outrel[1].r_offset =
6716 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6717 outrel[2].r_offset =
6718 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6719 }
b49e97c9 6720
c5ae1840 6721 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6722 /* The relocation field has been deleted. */
5d41f0b6
RS
6723 return TRUE;
6724
6725 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6726 {
6727 /* The relocation field has been converted into a relative value of
6728 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6729 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6730 *addendp += symbol;
5d41f0b6 6731 return TRUE;
0d591ff7 6732 }
b49e97c9 6733
5d41f0b6
RS
6734 /* We must now calculate the dynamic symbol table index to use
6735 in the relocation. */
d4a77f3f 6736 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6737 {
020d7251 6738 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6739 indx = h->root.dynindx;
6740 if (SGI_COMPAT (output_bfd))
6741 defined_p = h->root.def_regular;
6742 else
6743 /* ??? glibc's ld.so just adds the final GOT entry to the
6744 relocation field. It therefore treats relocs against
6745 defined symbols in the same way as relocs against
6746 undefined symbols. */
6747 defined_p = FALSE;
6748 }
b49e97c9
TS
6749 else
6750 {
5d41f0b6
RS
6751 if (sec != NULL && bfd_is_abs_section (sec))
6752 indx = 0;
6753 else if (sec == NULL || sec->owner == NULL)
fdd07405 6754 {
5d41f0b6
RS
6755 bfd_set_error (bfd_error_bad_value);
6756 return FALSE;
b49e97c9
TS
6757 }
6758 else
6759 {
5d41f0b6 6760 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6761 if (indx == 0)
6762 {
6763 asection *osec = htab->root.text_index_section;
6764 indx = elf_section_data (osec)->dynindx;
6765 }
5d41f0b6
RS
6766 if (indx == 0)
6767 abort ();
b49e97c9
TS
6768 }
6769
5d41f0b6
RS
6770 /* Instead of generating a relocation using the section
6771 symbol, we may as well make it a fully relative
6772 relocation. We want to avoid generating relocations to
6773 local symbols because we used to generate them
6774 incorrectly, without adding the original symbol value,
6775 which is mandated by the ABI for section symbols. In
6776 order to give dynamic loaders and applications time to
6777 phase out the incorrect use, we refrain from emitting
6778 section-relative relocations. It's not like they're
6779 useful, after all. This should be a bit more efficient
6780 as well. */
6781 /* ??? Although this behavior is compatible with glibc's ld.so,
6782 the ABI says that relocations against STN_UNDEF should have
6783 a symbol value of 0. Irix rld honors this, so relocations
6784 against STN_UNDEF have no effect. */
6785 if (!SGI_COMPAT (output_bfd))
6786 indx = 0;
6787 defined_p = TRUE;
b49e97c9
TS
6788 }
6789
5d41f0b6
RS
6790 /* If the relocation was previously an absolute relocation and
6791 this symbol will not be referred to by the relocation, we must
6792 adjust it by the value we give it in the dynamic symbol table.
6793 Otherwise leave the job up to the dynamic linker. */
6794 if (defined_p && r_type != R_MIPS_REL32)
6795 *addendp += symbol;
6796
0a44bf69
RS
6797 if (htab->is_vxworks)
6798 /* VxWorks uses non-relative relocations for this. */
6799 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6800 else
6801 /* The relocation is always an REL32 relocation because we don't
6802 know where the shared library will wind up at load-time. */
6803 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6804 R_MIPS_REL32);
6805
5d41f0b6
RS
6806 /* For strict adherence to the ABI specification, we should
6807 generate a R_MIPS_64 relocation record by itself before the
6808 _REL32/_64 record as well, such that the addend is read in as
6809 a 64-bit value (REL32 is a 32-bit relocation, after all).
6810 However, since none of the existing ELF64 MIPS dynamic
6811 loaders seems to care, we don't waste space with these
6812 artificial relocations. If this turns out to not be true,
6813 mips_elf_allocate_dynamic_relocation() should be tweaked so
6814 as to make room for a pair of dynamic relocations per
6815 invocation if ABI_64_P, and here we should generate an
6816 additional relocation record with R_MIPS_64 by itself for a
6817 NULL symbol before this relocation record. */
6818 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6819 ABI_64_P (output_bfd)
6820 ? R_MIPS_64
6821 : R_MIPS_NONE);
6822 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6823
6824 /* Adjust the output offset of the relocation to reference the
6825 correct location in the output file. */
6826 outrel[0].r_offset += (input_section->output_section->vma
6827 + input_section->output_offset);
6828 outrel[1].r_offset += (input_section->output_section->vma
6829 + input_section->output_offset);
6830 outrel[2].r_offset += (input_section->output_section->vma
6831 + input_section->output_offset);
6832
b49e97c9
TS
6833 /* Put the relocation back out. We have to use the special
6834 relocation outputter in the 64-bit case since the 64-bit
6835 relocation format is non-standard. */
6836 if (ABI_64_P (output_bfd))
6837 {
6838 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6839 (output_bfd, &outrel[0],
6840 (sreloc->contents
6841 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6842 }
0a44bf69
RS
6843 else if (htab->is_vxworks)
6844 {
6845 /* VxWorks uses RELA rather than REL dynamic relocations. */
6846 outrel[0].r_addend = *addendp;
6847 bfd_elf32_swap_reloca_out
6848 (output_bfd, &outrel[0],
6849 (sreloc->contents
6850 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6851 }
b49e97c9 6852 else
947216bf
AM
6853 bfd_elf32_swap_reloc_out
6854 (output_bfd, &outrel[0],
6855 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6856
b49e97c9
TS
6857 /* We've now added another relocation. */
6858 ++sreloc->reloc_count;
6859
6860 /* Make sure the output section is writable. The dynamic linker
6861 will be writing to it. */
6862 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6863 |= SHF_WRITE;
6864
6865 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6866 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6867 {
3d4d4302 6868 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6869 bfd_byte *cr;
6870
6871 if (scpt)
6872 {
6873 Elf32_crinfo cptrel;
6874
6875 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6876 cptrel.vaddr = (rel->r_offset
6877 + input_section->output_section->vma
6878 + input_section->output_offset);
6879 if (r_type == R_MIPS_REL32)
6880 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6881 else
6882 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6883 mips_elf_set_cr_dist2to (cptrel, 0);
6884 cptrel.konst = *addendp;
6885
6886 cr = (scpt->contents
6887 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6888 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6889 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6890 ((Elf32_External_crinfo *) cr
6891 + scpt->reloc_count));
6892 ++scpt->reloc_count;
6893 }
6894 }
6895
943284cc
DJ
6896 /* If we've written this relocation for a readonly section,
6897 we need to set DF_TEXTREL again, so that we do not delete the
6898 DT_TEXTREL tag. */
6899 if (MIPS_ELF_READONLY_SECTION (input_section))
6900 info->flags |= DF_TEXTREL;
6901
b34976b6 6902 return TRUE;
b49e97c9
TS
6903}
6904\f
b49e97c9
TS
6905/* Return the MACH for a MIPS e_flags value. */
6906
6907unsigned long
9719ad41 6908_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6909{
6910 switch (flags & EF_MIPS_MACH)
6911 {
6912 case E_MIPS_MACH_3900:
6913 return bfd_mach_mips3900;
6914
6915 case E_MIPS_MACH_4010:
6916 return bfd_mach_mips4010;
6917
6918 case E_MIPS_MACH_4100:
6919 return bfd_mach_mips4100;
6920
6921 case E_MIPS_MACH_4111:
6922 return bfd_mach_mips4111;
6923
00707a0e
RS
6924 case E_MIPS_MACH_4120:
6925 return bfd_mach_mips4120;
6926
b49e97c9
TS
6927 case E_MIPS_MACH_4650:
6928 return bfd_mach_mips4650;
6929
00707a0e
RS
6930 case E_MIPS_MACH_5400:
6931 return bfd_mach_mips5400;
6932
6933 case E_MIPS_MACH_5500:
6934 return bfd_mach_mips5500;
6935
e407c74b
NC
6936 case E_MIPS_MACH_5900:
6937 return bfd_mach_mips5900;
6938
0d2e43ed
ILT
6939 case E_MIPS_MACH_9000:
6940 return bfd_mach_mips9000;
6941
b49e97c9
TS
6942 case E_MIPS_MACH_SB1:
6943 return bfd_mach_mips_sb1;
6944
350cc38d
MS
6945 case E_MIPS_MACH_LS2E:
6946 return bfd_mach_mips_loongson_2e;
6947
6948 case E_MIPS_MACH_LS2F:
6949 return bfd_mach_mips_loongson_2f;
6950
ac8cb70f
CX
6951 case E_MIPS_MACH_GS464:
6952 return bfd_mach_mips_gs464;
fd503541 6953
bd782c07
CX
6954 case E_MIPS_MACH_GS464E:
6955 return bfd_mach_mips_gs464e;
6956
9108bc33
CX
6957 case E_MIPS_MACH_GS264E:
6958 return bfd_mach_mips_gs264e;
6959
2c629856
N
6960 case E_MIPS_MACH_OCTEON3:
6961 return bfd_mach_mips_octeon3;
6962
432233b3
AP
6963 case E_MIPS_MACH_OCTEON2:
6964 return bfd_mach_mips_octeon2;
6965
6f179bd0
AN
6966 case E_MIPS_MACH_OCTEON:
6967 return bfd_mach_mips_octeon;
6968
52b6b6b9
JM
6969 case E_MIPS_MACH_XLR:
6970 return bfd_mach_mips_xlr;
6971
38bf472a
MR
6972 case E_MIPS_MACH_IAMR2:
6973 return bfd_mach_mips_interaptiv_mr2;
6974
b49e97c9
TS
6975 default:
6976 switch (flags & EF_MIPS_ARCH)
6977 {
6978 default:
6979 case E_MIPS_ARCH_1:
6980 return bfd_mach_mips3000;
b49e97c9
TS
6981
6982 case E_MIPS_ARCH_2:
6983 return bfd_mach_mips6000;
b49e97c9
TS
6984
6985 case E_MIPS_ARCH_3:
6986 return bfd_mach_mips4000;
b49e97c9
TS
6987
6988 case E_MIPS_ARCH_4:
6989 return bfd_mach_mips8000;
b49e97c9
TS
6990
6991 case E_MIPS_ARCH_5:
6992 return bfd_mach_mips5;
b49e97c9
TS
6993
6994 case E_MIPS_ARCH_32:
6995 return bfd_mach_mipsisa32;
b49e97c9
TS
6996
6997 case E_MIPS_ARCH_64:
6998 return bfd_mach_mipsisa64;
af7ee8bf
CD
6999
7000 case E_MIPS_ARCH_32R2:
7001 return bfd_mach_mipsisa32r2;
5f74bc13
CD
7002
7003 case E_MIPS_ARCH_64R2:
7004 return bfd_mach_mipsisa64r2;
7361da2c
AB
7005
7006 case E_MIPS_ARCH_32R6:
7007 return bfd_mach_mipsisa32r6;
7008
7009 case E_MIPS_ARCH_64R6:
7010 return bfd_mach_mipsisa64r6;
b49e97c9
TS
7011 }
7012 }
7013
7014 return 0;
7015}
7016
7017/* Return printable name for ABI. */
7018
7019static INLINE char *
9719ad41 7020elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
7021{
7022 flagword flags;
7023
7024 flags = elf_elfheader (abfd)->e_flags;
7025 switch (flags & EF_MIPS_ABI)
7026 {
7027 case 0:
7028 if (ABI_N32_P (abfd))
7029 return "N32";
7030 else if (ABI_64_P (abfd))
7031 return "64";
7032 else
7033 return "none";
7034 case E_MIPS_ABI_O32:
7035 return "O32";
7036 case E_MIPS_ABI_O64:
7037 return "O64";
7038 case E_MIPS_ABI_EABI32:
7039 return "EABI32";
7040 case E_MIPS_ABI_EABI64:
7041 return "EABI64";
7042 default:
7043 return "unknown abi";
7044 }
7045}
7046\f
7047/* MIPS ELF uses two common sections. One is the usual one, and the
7048 other is for small objects. All the small objects are kept
7049 together, and then referenced via the gp pointer, which yields
7050 faster assembler code. This is what we use for the small common
7051 section. This approach is copied from ecoff.c. */
7052static asection mips_elf_scom_section;
7053static asymbol mips_elf_scom_symbol;
7054static asymbol *mips_elf_scom_symbol_ptr;
7055
7056/* MIPS ELF also uses an acommon section, which represents an
7057 allocated common symbol which may be overridden by a
7058 definition in a shared library. */
7059static asection mips_elf_acom_section;
7060static asymbol mips_elf_acom_symbol;
7061static asymbol *mips_elf_acom_symbol_ptr;
7062
738e5348 7063/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
7064
7065void
9719ad41 7066_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
7067{
7068 elf_symbol_type *elfsym;
7069
738e5348 7070 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
7071 elfsym = (elf_symbol_type *) asym;
7072 switch (elfsym->internal_elf_sym.st_shndx)
7073 {
7074 case SHN_MIPS_ACOMMON:
7075 /* This section is used in a dynamically linked executable file.
7076 It is an allocated common section. The dynamic linker can
7077 either resolve these symbols to something in a shared
7078 library, or it can just leave them here. For our purposes,
7079 we can consider these symbols to be in a new section. */
7080 if (mips_elf_acom_section.name == NULL)
7081 {
7082 /* Initialize the acommon section. */
7083 mips_elf_acom_section.name = ".acommon";
7084 mips_elf_acom_section.flags = SEC_ALLOC;
7085 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7086 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7087 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7088 mips_elf_acom_symbol.name = ".acommon";
7089 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7090 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7091 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7092 }
7093 asym->section = &mips_elf_acom_section;
7094 break;
7095
7096 case SHN_COMMON:
7097 /* Common symbols less than the GP size are automatically
7098 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7099 if (asym->value > elf_gp_size (abfd)
b59eed79 7100 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
7101 || IRIX_COMPAT (abfd) == ict_irix6)
7102 break;
7103 /* Fall through. */
7104 case SHN_MIPS_SCOMMON:
7105 if (mips_elf_scom_section.name == NULL)
7106 {
7107 /* Initialize the small common section. */
7108 mips_elf_scom_section.name = ".scommon";
7109 mips_elf_scom_section.flags = SEC_IS_COMMON;
7110 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7111 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7112 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7113 mips_elf_scom_symbol.name = ".scommon";
7114 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7115 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7116 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7117 }
7118 asym->section = &mips_elf_scom_section;
7119 asym->value = elfsym->internal_elf_sym.st_size;
7120 break;
7121
7122 case SHN_MIPS_SUNDEFINED:
7123 asym->section = bfd_und_section_ptr;
7124 break;
7125
b49e97c9 7126 case SHN_MIPS_TEXT:
00b4930b
TS
7127 {
7128 asection *section = bfd_get_section_by_name (abfd, ".text");
7129
00b4930b
TS
7130 if (section != NULL)
7131 {
7132 asym->section = section;
7133 /* MIPS_TEXT is a bit special, the address is not an offset
de194d85 7134 to the base of the .text section. So subtract the section
00b4930b
TS
7135 base address to make it an offset. */
7136 asym->value -= section->vma;
7137 }
7138 }
b49e97c9
TS
7139 break;
7140
7141 case SHN_MIPS_DATA:
00b4930b
TS
7142 {
7143 asection *section = bfd_get_section_by_name (abfd, ".data");
7144
00b4930b
TS
7145 if (section != NULL)
7146 {
7147 asym->section = section;
7148 /* MIPS_DATA is a bit special, the address is not an offset
de194d85 7149 to the base of the .data section. So subtract the section
00b4930b
TS
7150 base address to make it an offset. */
7151 asym->value -= section->vma;
7152 }
7153 }
b49e97c9 7154 break;
b49e97c9 7155 }
738e5348 7156
df58fc94
RS
7157 /* If this is an odd-valued function symbol, assume it's a MIPS16
7158 or microMIPS one. */
738e5348
RS
7159 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7160 && (asym->value & 1) != 0)
7161 {
7162 asym->value--;
e8faf7d1 7163 if (MICROMIPS_P (abfd))
df58fc94
RS
7164 elfsym->internal_elf_sym.st_other
7165 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7166 else
7167 elfsym->internal_elf_sym.st_other
7168 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 7169 }
b49e97c9
TS
7170}
7171\f
8c946ed5
RS
7172/* Implement elf_backend_eh_frame_address_size. This differs from
7173 the default in the way it handles EABI64.
7174
7175 EABI64 was originally specified as an LP64 ABI, and that is what
7176 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7177 historically accepted the combination of -mabi=eabi and -mlong32,
7178 and this ILP32 variation has become semi-official over time.
7179 Both forms use elf32 and have pointer-sized FDE addresses.
7180
7181 If an EABI object was generated by GCC 4.0 or above, it will have
7182 an empty .gcc_compiled_longXX section, where XX is the size of longs
7183 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7184 have no special marking to distinguish them from LP64 objects.
7185
7186 We don't want users of the official LP64 ABI to be punished for the
7187 existence of the ILP32 variant, but at the same time, we don't want
7188 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7189 We therefore take the following approach:
7190
7191 - If ABFD contains a .gcc_compiled_longXX section, use it to
07d6d2b8 7192 determine the pointer size.
8c946ed5
RS
7193
7194 - Otherwise check the type of the first relocation. Assume that
07d6d2b8 7195 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
8c946ed5
RS
7196
7197 - Otherwise punt.
7198
7199 The second check is enough to detect LP64 objects generated by pre-4.0
7200 compilers because, in the kind of output generated by those compilers,
7201 the first relocation will be associated with either a CIE personality
7202 routine or an FDE start address. Furthermore, the compilers never
7203 used a special (non-pointer) encoding for this ABI.
7204
7205 Checking the relocation type should also be safe because there is no
7206 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7207 did so. */
7208
7209unsigned int
76c20d54 7210_bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
8c946ed5
RS
7211{
7212 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7213 return 8;
7214 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7215 {
7216 bfd_boolean long32_p, long64_p;
7217
7218 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7219 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7220 if (long32_p && long64_p)
7221 return 0;
7222 if (long32_p)
7223 return 4;
7224 if (long64_p)
7225 return 8;
7226
7227 if (sec->reloc_count > 0
7228 && elf_section_data (sec)->relocs != NULL
7229 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7230 == R_MIPS_64))
7231 return 8;
7232
7233 return 0;
7234 }
7235 return 4;
7236}
7237\f
174fd7f9
RS
7238/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7239 relocations against two unnamed section symbols to resolve to the
7240 same address. For example, if we have code like:
7241
7242 lw $4,%got_disp(.data)($gp)
7243 lw $25,%got_disp(.text)($gp)
7244 jalr $25
7245
7246 then the linker will resolve both relocations to .data and the program
7247 will jump there rather than to .text.
7248
7249 We can work around this problem by giving names to local section symbols.
7250 This is also what the MIPSpro tools do. */
7251
7252bfd_boolean
7253_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7254{
7255 return SGI_COMPAT (abfd);
7256}
7257\f
b49e97c9
TS
7258/* Work over a section just before writing it out. This routine is
7259 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7260 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7261 a better way. */
7262
b34976b6 7263bfd_boolean
9719ad41 7264_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7265{
7266 if (hdr->sh_type == SHT_MIPS_REGINFO
7267 && hdr->sh_size > 0)
7268 {
7269 bfd_byte buf[4];
7270
b49e97c9
TS
7271 BFD_ASSERT (hdr->contents == NULL);
7272
2d6dda71
MR
7273 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7274 {
7275 _bfd_error_handler
2c1c9679 7276 (_("%pB: incorrect `.reginfo' section size; "
2dcf00ce
AM
7277 "expected %" PRIu64 ", got %" PRIu64),
7278 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7279 (uint64_t) hdr->sh_size);
2d6dda71
MR
7280 bfd_set_error (bfd_error_bad_value);
7281 return FALSE;
7282 }
7283
b49e97c9
TS
7284 if (bfd_seek (abfd,
7285 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7286 SEEK_SET) != 0)
b34976b6 7287 return FALSE;
b49e97c9 7288 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7289 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7290 return FALSE;
b49e97c9
TS
7291 }
7292
7293 if (hdr->sh_type == SHT_MIPS_OPTIONS
7294 && hdr->bfd_section != NULL
f0abc2a1
AM
7295 && mips_elf_section_data (hdr->bfd_section) != NULL
7296 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7297 {
7298 bfd_byte *contents, *l, *lend;
7299
f0abc2a1
AM
7300 /* We stored the section contents in the tdata field in the
7301 set_section_contents routine. We save the section contents
7302 so that we don't have to read them again.
b49e97c9
TS
7303 At this point we know that elf_gp is set, so we can look
7304 through the section contents to see if there is an
7305 ODK_REGINFO structure. */
7306
f0abc2a1 7307 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7308 l = contents;
7309 lend = contents + hdr->sh_size;
7310 while (l + sizeof (Elf_External_Options) <= lend)
7311 {
7312 Elf_Internal_Options intopt;
7313
7314 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7315 &intopt);
1bc8074d
MR
7316 if (intopt.size < sizeof (Elf_External_Options))
7317 {
4eca0228 7318 _bfd_error_handler
695344c0 7319 /* xgettext:c-format */
2c1c9679 7320 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7321 " its header"),
1bc8074d
MR
7322 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7323 break;
7324 }
b49e97c9
TS
7325 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7326 {
7327 bfd_byte buf[8];
7328
7329 if (bfd_seek (abfd,
7330 (hdr->sh_offset
7331 + (l - contents)
7332 + sizeof (Elf_External_Options)
7333 + (sizeof (Elf64_External_RegInfo) - 8)),
7334 SEEK_SET) != 0)
b34976b6 7335 return FALSE;
b49e97c9 7336 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7337 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7338 return FALSE;
b49e97c9
TS
7339 }
7340 else if (intopt.kind == ODK_REGINFO)
7341 {
7342 bfd_byte buf[4];
7343
7344 if (bfd_seek (abfd,
7345 (hdr->sh_offset
7346 + (l - contents)
7347 + sizeof (Elf_External_Options)
7348 + (sizeof (Elf32_External_RegInfo) - 4)),
7349 SEEK_SET) != 0)
b34976b6 7350 return FALSE;
b49e97c9 7351 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7352 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7353 return FALSE;
b49e97c9
TS
7354 }
7355 l += intopt.size;
7356 }
7357 }
7358
7359 if (hdr->bfd_section != NULL)
7360 {
7361 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7362
2d0f9ad9
JM
7363 /* .sbss is not handled specially here because the GNU/Linux
7364 prelinker can convert .sbss from NOBITS to PROGBITS and
7365 changing it back to NOBITS breaks the binary. The entry in
7366 _bfd_mips_elf_special_sections will ensure the correct flags
7367 are set on .sbss if BFD creates it without reading it from an
7368 input file, and without special handling here the flags set
7369 on it in an input file will be followed. */
b49e97c9
TS
7370 if (strcmp (name, ".sdata") == 0
7371 || strcmp (name, ".lit8") == 0
7372 || strcmp (name, ".lit4") == 0)
fd6f9d17 7373 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7374 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7375 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7376 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7377 hdr->sh_flags = 0;
b49e97c9
TS
7378 else if (strcmp (name, ".rtproc") == 0)
7379 {
7380 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7381 {
7382 unsigned int adjust;
7383
7384 adjust = hdr->sh_size % hdr->sh_addralign;
7385 if (adjust != 0)
7386 hdr->sh_size += hdr->sh_addralign - adjust;
7387 }
7388 }
7389 }
7390
b34976b6 7391 return TRUE;
b49e97c9
TS
7392}
7393
7394/* Handle a MIPS specific section when reading an object file. This
7395 is called when elfcode.h finds a section with an unknown type.
7396 This routine supports both the 32-bit and 64-bit ELF ABI.
7397
7398 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7399 how to. */
7400
b34976b6 7401bfd_boolean
6dc132d9
L
7402_bfd_mips_elf_section_from_shdr (bfd *abfd,
7403 Elf_Internal_Shdr *hdr,
7404 const char *name,
7405 int shindex)
b49e97c9
TS
7406{
7407 flagword flags = 0;
7408
7409 /* There ought to be a place to keep ELF backend specific flags, but
7410 at the moment there isn't one. We just keep track of the
7411 sections by their name, instead. Fortunately, the ABI gives
7412 suggested names for all the MIPS specific sections, so we will
7413 probably get away with this. */
7414 switch (hdr->sh_type)
7415 {
7416 case SHT_MIPS_LIBLIST:
7417 if (strcmp (name, ".liblist") != 0)
b34976b6 7418 return FALSE;
b49e97c9
TS
7419 break;
7420 case SHT_MIPS_MSYM:
7421 if (strcmp (name, ".msym") != 0)
b34976b6 7422 return FALSE;
b49e97c9
TS
7423 break;
7424 case SHT_MIPS_CONFLICT:
7425 if (strcmp (name, ".conflict") != 0)
b34976b6 7426 return FALSE;
b49e97c9
TS
7427 break;
7428 case SHT_MIPS_GPTAB:
0112cd26 7429 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7430 return FALSE;
b49e97c9
TS
7431 break;
7432 case SHT_MIPS_UCODE:
7433 if (strcmp (name, ".ucode") != 0)
b34976b6 7434 return FALSE;
b49e97c9
TS
7435 break;
7436 case SHT_MIPS_DEBUG:
7437 if (strcmp (name, ".mdebug") != 0)
b34976b6 7438 return FALSE;
b49e97c9
TS
7439 flags = SEC_DEBUGGING;
7440 break;
7441 case SHT_MIPS_REGINFO:
7442 if (strcmp (name, ".reginfo") != 0
7443 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7444 return FALSE;
b49e97c9
TS
7445 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7446 break;
7447 case SHT_MIPS_IFACE:
7448 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7449 return FALSE;
b49e97c9
TS
7450 break;
7451 case SHT_MIPS_CONTENT:
0112cd26 7452 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7453 return FALSE;
b49e97c9
TS
7454 break;
7455 case SHT_MIPS_OPTIONS:
cc2e31b9 7456 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7457 return FALSE;
b49e97c9 7458 break;
351cdf24
MF
7459 case SHT_MIPS_ABIFLAGS:
7460 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7461 return FALSE;
7462 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7463 break;
b49e97c9 7464 case SHT_MIPS_DWARF:
1b315056 7465 if (! CONST_STRNEQ (name, ".debug_")
07d6d2b8 7466 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7467 return FALSE;
b49e97c9
TS
7468 break;
7469 case SHT_MIPS_SYMBOL_LIB:
7470 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7471 return FALSE;
b49e97c9
TS
7472 break;
7473 case SHT_MIPS_EVENTS:
0112cd26
NC
7474 if (! CONST_STRNEQ (name, ".MIPS.events")
7475 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7476 return FALSE;
b49e97c9
TS
7477 break;
7478 default:
cc2e31b9 7479 break;
b49e97c9
TS
7480 }
7481
6dc132d9 7482 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7483 return FALSE;
b49e97c9
TS
7484
7485 if (flags)
7486 {
7487 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7488 (bfd_get_section_flags (abfd,
7489 hdr->bfd_section)
7490 | flags)))
b34976b6 7491 return FALSE;
b49e97c9
TS
7492 }
7493
351cdf24
MF
7494 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7495 {
7496 Elf_External_ABIFlags_v0 ext;
7497
7498 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7499 &ext, 0, sizeof ext))
7500 return FALSE;
7501 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7502 &mips_elf_tdata (abfd)->abiflags);
7503 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7504 return FALSE;
7505 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7506 }
7507
b49e97c9
TS
7508 /* FIXME: We should record sh_info for a .gptab section. */
7509
7510 /* For a .reginfo section, set the gp value in the tdata information
7511 from the contents of this section. We need the gp value while
7512 processing relocs, so we just get it now. The .reginfo section
7513 is not used in the 64-bit MIPS ELF ABI. */
7514 if (hdr->sh_type == SHT_MIPS_REGINFO)
7515 {
7516 Elf32_External_RegInfo ext;
7517 Elf32_RegInfo s;
7518
9719ad41
RS
7519 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7520 &ext, 0, sizeof ext))
b34976b6 7521 return FALSE;
b49e97c9
TS
7522 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7523 elf_gp (abfd) = s.ri_gp_value;
7524 }
7525
7526 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7527 set the gp value based on what we find. We may see both
7528 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7529 they should agree. */
7530 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7531 {
7532 bfd_byte *contents, *l, *lend;
7533
9719ad41 7534 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7535 if (contents == NULL)
b34976b6 7536 return FALSE;
b49e97c9 7537 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7538 0, hdr->sh_size))
b49e97c9
TS
7539 {
7540 free (contents);
b34976b6 7541 return FALSE;
b49e97c9
TS
7542 }
7543 l = contents;
7544 lend = contents + hdr->sh_size;
7545 while (l + sizeof (Elf_External_Options) <= lend)
7546 {
7547 Elf_Internal_Options intopt;
7548
7549 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7550 &intopt);
1bc8074d
MR
7551 if (intopt.size < sizeof (Elf_External_Options))
7552 {
4eca0228 7553 _bfd_error_handler
695344c0 7554 /* xgettext:c-format */
2c1c9679 7555 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7556 " its header"),
1bc8074d
MR
7557 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7558 break;
7559 }
b49e97c9
TS
7560 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7561 {
7562 Elf64_Internal_RegInfo intreg;
7563
7564 bfd_mips_elf64_swap_reginfo_in
7565 (abfd,
7566 ((Elf64_External_RegInfo *)
7567 (l + sizeof (Elf_External_Options))),
7568 &intreg);
7569 elf_gp (abfd) = intreg.ri_gp_value;
7570 }
7571 else if (intopt.kind == ODK_REGINFO)
7572 {
7573 Elf32_RegInfo intreg;
7574
7575 bfd_mips_elf32_swap_reginfo_in
7576 (abfd,
7577 ((Elf32_External_RegInfo *)
7578 (l + sizeof (Elf_External_Options))),
7579 &intreg);
7580 elf_gp (abfd) = intreg.ri_gp_value;
7581 }
7582 l += intopt.size;
7583 }
7584 free (contents);
7585 }
7586
b34976b6 7587 return TRUE;
b49e97c9
TS
7588}
7589
7590/* Set the correct type for a MIPS ELF section. We do this by the
7591 section name, which is a hack, but ought to work. This routine is
7592 used by both the 32-bit and the 64-bit ABI. */
7593
b34976b6 7594bfd_boolean
9719ad41 7595_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7596{
0414f35b 7597 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7598
7599 if (strcmp (name, ".liblist") == 0)
7600 {
7601 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7602 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7603 /* The sh_link field is set in final_write_processing. */
7604 }
7605 else if (strcmp (name, ".conflict") == 0)
7606 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7607 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7608 {
7609 hdr->sh_type = SHT_MIPS_GPTAB;
7610 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7611 /* The sh_info field is set in final_write_processing. */
7612 }
7613 else if (strcmp (name, ".ucode") == 0)
7614 hdr->sh_type = SHT_MIPS_UCODE;
7615 else if (strcmp (name, ".mdebug") == 0)
7616 {
7617 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7618 /* In a shared object on IRIX 5.3, the .mdebug section has an
07d6d2b8 7619 entsize of 0. FIXME: Does this matter? */
b49e97c9
TS
7620 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7621 hdr->sh_entsize = 0;
7622 else
7623 hdr->sh_entsize = 1;
7624 }
7625 else if (strcmp (name, ".reginfo") == 0)
7626 {
7627 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7628 /* In a shared object on IRIX 5.3, the .reginfo section has an
07d6d2b8 7629 entsize of 0x18. FIXME: Does this matter? */
b49e97c9
TS
7630 if (SGI_COMPAT (abfd))
7631 {
7632 if ((abfd->flags & DYNAMIC) != 0)
7633 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7634 else
7635 hdr->sh_entsize = 1;
7636 }
7637 else
7638 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7639 }
7640 else if (SGI_COMPAT (abfd)
7641 && (strcmp (name, ".hash") == 0
7642 || strcmp (name, ".dynamic") == 0
7643 || strcmp (name, ".dynstr") == 0))
7644 {
7645 if (SGI_COMPAT (abfd))
7646 hdr->sh_entsize = 0;
7647#if 0
8dc1a139 7648 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7649 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7650#endif
7651 }
7652 else if (strcmp (name, ".got") == 0
7653 || strcmp (name, ".srdata") == 0
7654 || strcmp (name, ".sdata") == 0
7655 || strcmp (name, ".sbss") == 0
7656 || strcmp (name, ".lit4") == 0
7657 || strcmp (name, ".lit8") == 0)
7658 hdr->sh_flags |= SHF_MIPS_GPREL;
7659 else if (strcmp (name, ".MIPS.interfaces") == 0)
7660 {
7661 hdr->sh_type = SHT_MIPS_IFACE;
7662 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7663 }
0112cd26 7664 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7665 {
7666 hdr->sh_type = SHT_MIPS_CONTENT;
7667 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7668 /* The sh_info field is set in final_write_processing. */
7669 }
cc2e31b9 7670 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7671 {
7672 hdr->sh_type = SHT_MIPS_OPTIONS;
7673 hdr->sh_entsize = 1;
7674 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7675 }
351cdf24
MF
7676 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7677 {
7678 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7679 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7680 }
1b315056 7681 else if (CONST_STRNEQ (name, ".debug_")
07d6d2b8 7682 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7683 {
7684 hdr->sh_type = SHT_MIPS_DWARF;
7685
7686 /* Irix facilities such as libexc expect a single .debug_frame
7687 per executable, the system ones have NOSTRIP set and the linker
7688 doesn't merge sections with different flags so ... */
7689 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7690 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7691 }
b49e97c9
TS
7692 else if (strcmp (name, ".MIPS.symlib") == 0)
7693 {
7694 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7695 /* The sh_link and sh_info fields are set in
07d6d2b8 7696 final_write_processing. */
b49e97c9 7697 }
0112cd26
NC
7698 else if (CONST_STRNEQ (name, ".MIPS.events")
7699 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7700 {
7701 hdr->sh_type = SHT_MIPS_EVENTS;
7702 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7703 /* The sh_link field is set in final_write_processing. */
7704 }
7705 else if (strcmp (name, ".msym") == 0)
7706 {
7707 hdr->sh_type = SHT_MIPS_MSYM;
7708 hdr->sh_flags |= SHF_ALLOC;
7709 hdr->sh_entsize = 8;
7710 }
7711
7a79a000
TS
7712 /* The generic elf_fake_sections will set up REL_HDR using the default
7713 kind of relocations. We used to set up a second header for the
7714 non-default kind of relocations here, but only NewABI would use
7715 these, and the IRIX ld doesn't like resulting empty RELA sections.
7716 Thus we create those header only on demand now. */
b49e97c9 7717
b34976b6 7718 return TRUE;
b49e97c9
TS
7719}
7720
7721/* Given a BFD section, try to locate the corresponding ELF section
7722 index. This is used by both the 32-bit and the 64-bit ABI.
7723 Actually, it's not clear to me that the 64-bit ABI supports these,
7724 but for non-PIC objects we will certainly want support for at least
7725 the .scommon section. */
7726
b34976b6 7727bfd_boolean
9719ad41
RS
7728_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7729 asection *sec, int *retval)
b49e97c9
TS
7730{
7731 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7732 {
7733 *retval = SHN_MIPS_SCOMMON;
b34976b6 7734 return TRUE;
b49e97c9
TS
7735 }
7736 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7737 {
7738 *retval = SHN_MIPS_ACOMMON;
b34976b6 7739 return TRUE;
b49e97c9 7740 }
b34976b6 7741 return FALSE;
b49e97c9
TS
7742}
7743\f
7744/* Hook called by the linker routine which adds symbols from an object
7745 file. We must handle the special MIPS section numbers here. */
7746
b34976b6 7747bfd_boolean
9719ad41 7748_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7749 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7750 flagword *flagsp ATTRIBUTE_UNUSED,
7751 asection **secp, bfd_vma *valp)
b49e97c9
TS
7752{
7753 if (SGI_COMPAT (abfd)
7754 && (abfd->flags & DYNAMIC) != 0
7755 && strcmp (*namep, "_rld_new_interface") == 0)
7756 {
8dc1a139 7757 /* Skip IRIX5 rld entry name. */
b49e97c9 7758 *namep = NULL;
b34976b6 7759 return TRUE;
b49e97c9
TS
7760 }
7761
eedecc07
DD
7762 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7763 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7764 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7765 a magic symbol resolved by the linker, we ignore this bogus definition
7766 of _gp_disp. New ABI objects do not suffer from this problem so this
7767 is not done for them. */
7768 if (!NEWABI_P(abfd)
7769 && (sym->st_shndx == SHN_ABS)
7770 && (strcmp (*namep, "_gp_disp") == 0))
7771 {
7772 *namep = NULL;
7773 return TRUE;
7774 }
7775
b49e97c9
TS
7776 switch (sym->st_shndx)
7777 {
7778 case SHN_COMMON:
7779 /* Common symbols less than the GP size are automatically
7780 treated as SHN_MIPS_SCOMMON symbols. */
7781 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7782 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7783 || IRIX_COMPAT (abfd) == ict_irix6)
7784 break;
7785 /* Fall through. */
7786 case SHN_MIPS_SCOMMON:
7787 *secp = bfd_make_section_old_way (abfd, ".scommon");
7788 (*secp)->flags |= SEC_IS_COMMON;
7789 *valp = sym->st_size;
7790 break;
7791
7792 case SHN_MIPS_TEXT:
7793 /* This section is used in a shared object. */
698600e4 7794 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7795 {
7796 asymbol *elf_text_symbol;
7797 asection *elf_text_section;
7798 bfd_size_type amt = sizeof (asection);
7799
7800 elf_text_section = bfd_zalloc (abfd, amt);
7801 if (elf_text_section == NULL)
b34976b6 7802 return FALSE;
b49e97c9
TS
7803
7804 amt = sizeof (asymbol);
7805 elf_text_symbol = bfd_zalloc (abfd, amt);
7806 if (elf_text_symbol == NULL)
b34976b6 7807 return FALSE;
b49e97c9
TS
7808
7809 /* Initialize the section. */
7810
698600e4
AM
7811 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7812 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7813
7814 elf_text_section->symbol = elf_text_symbol;
698600e4 7815 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7816
7817 elf_text_section->name = ".text";
7818 elf_text_section->flags = SEC_NO_FLAGS;
7819 elf_text_section->output_section = NULL;
7820 elf_text_section->owner = abfd;
7821 elf_text_symbol->name = ".text";
7822 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7823 elf_text_symbol->section = elf_text_section;
7824 }
7825 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7826 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7827 so I took it out. */
698600e4 7828 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7829 break;
7830
7831 case SHN_MIPS_ACOMMON:
7832 /* Fall through. XXX Can we treat this as allocated data? */
7833 case SHN_MIPS_DATA:
7834 /* This section is used in a shared object. */
698600e4 7835 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7836 {
7837 asymbol *elf_data_symbol;
7838 asection *elf_data_section;
7839 bfd_size_type amt = sizeof (asection);
7840
7841 elf_data_section = bfd_zalloc (abfd, amt);
7842 if (elf_data_section == NULL)
b34976b6 7843 return FALSE;
b49e97c9
TS
7844
7845 amt = sizeof (asymbol);
7846 elf_data_symbol = bfd_zalloc (abfd, amt);
7847 if (elf_data_symbol == NULL)
b34976b6 7848 return FALSE;
b49e97c9
TS
7849
7850 /* Initialize the section. */
7851
698600e4
AM
7852 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7853 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7854
7855 elf_data_section->symbol = elf_data_symbol;
698600e4 7856 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7857
7858 elf_data_section->name = ".data";
7859 elf_data_section->flags = SEC_NO_FLAGS;
7860 elf_data_section->output_section = NULL;
7861 elf_data_section->owner = abfd;
7862 elf_data_symbol->name = ".data";
7863 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7864 elf_data_symbol->section = elf_data_section;
7865 }
7866 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7867 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7868 so I took it out. */
698600e4 7869 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7870 break;
7871
7872 case SHN_MIPS_SUNDEFINED:
7873 *secp = bfd_und_section_ptr;
7874 break;
7875 }
7876
7877 if (SGI_COMPAT (abfd)
0e1862bb 7878 && ! bfd_link_pic (info)
f13a99db 7879 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7880 && strcmp (*namep, "__rld_obj_head") == 0)
7881 {
7882 struct elf_link_hash_entry *h;
14a793b2 7883 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7884
7885 /* Mark __rld_obj_head as dynamic. */
14a793b2 7886 bh = NULL;
b49e97c9 7887 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7888 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7889 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7890 return FALSE;
14a793b2
AM
7891
7892 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7893 h->non_elf = 0;
7894 h->def_regular = 1;
b49e97c9
TS
7895 h->type = STT_OBJECT;
7896
c152c796 7897 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7898 return FALSE;
b49e97c9 7899
b34976b6 7900 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7901 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7902 }
7903
7904 /* If this is a mips16 text symbol, add 1 to the value to make it
7905 odd. This will cause something like .word SYM to come up with
7906 the right value when it is loaded into the PC. */
df58fc94 7907 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7908 ++*valp;
7909
b34976b6 7910 return TRUE;
b49e97c9
TS
7911}
7912
7913/* This hook function is called before the linker writes out a global
7914 symbol. We mark symbols as small common if appropriate. This is
7915 also where we undo the increment of the value for a mips16 symbol. */
7916
6e0b88f1 7917int
9719ad41
RS
7918_bfd_mips_elf_link_output_symbol_hook
7919 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7920 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7921 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7922{
7923 /* If we see a common symbol, which implies a relocatable link, then
7924 if a symbol was small common in an input file, mark it as small
7925 common in the output file. */
7926 if (sym->st_shndx == SHN_COMMON
7927 && strcmp (input_sec->name, ".scommon") == 0)
7928 sym->st_shndx = SHN_MIPS_SCOMMON;
7929
df58fc94 7930 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7931 sym->st_value &= ~1;
b49e97c9 7932
6e0b88f1 7933 return 1;
b49e97c9
TS
7934}
7935\f
7936/* Functions for the dynamic linker. */
7937
7938/* Create dynamic sections when linking against a dynamic object. */
7939
b34976b6 7940bfd_boolean
9719ad41 7941_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7942{
7943 struct elf_link_hash_entry *h;
14a793b2 7944 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7945 flagword flags;
7946 register asection *s;
7947 const char * const *namep;
0a44bf69 7948 struct mips_elf_link_hash_table *htab;
b49e97c9 7949
0a44bf69 7950 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7951 BFD_ASSERT (htab != NULL);
7952
b49e97c9
TS
7953 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7954 | SEC_LINKER_CREATED | SEC_READONLY);
7955
0a44bf69
RS
7956 /* The psABI requires a read-only .dynamic section, but the VxWorks
7957 EABI doesn't. */
7958 if (!htab->is_vxworks)
b49e97c9 7959 {
3d4d4302 7960 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7961 if (s != NULL)
7962 {
7963 if (! bfd_set_section_flags (abfd, s, flags))
7964 return FALSE;
7965 }
b49e97c9
TS
7966 }
7967
7968 /* We need to create .got section. */
23cc69b6 7969 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7970 return FALSE;
7971
0a44bf69 7972 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7973 return FALSE;
b49e97c9 7974
b49e97c9 7975 /* Create .stub section. */
3d4d4302
AM
7976 s = bfd_make_section_anyway_with_flags (abfd,
7977 MIPS_ELF_STUB_SECTION_NAME (abfd),
7978 flags | SEC_CODE);
4e41d0d7
RS
7979 if (s == NULL
7980 || ! bfd_set_section_alignment (abfd, s,
7981 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7982 return FALSE;
7983 htab->sstubs = s;
b49e97c9 7984
e6aea42d 7985 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7986 && bfd_link_executable (info)
3d4d4302 7987 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7988 {
3d4d4302
AM
7989 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7990 flags &~ (flagword) SEC_READONLY);
b49e97c9 7991 if (s == NULL
b49e97c9
TS
7992 || ! bfd_set_section_alignment (abfd, s,
7993 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7994 return FALSE;
b49e97c9
TS
7995 }
7996
7997 /* On IRIX5, we adjust add some additional symbols and change the
7998 alignments of several sections. There is no ABI documentation
7999 indicating that this is necessary on IRIX6, nor any evidence that
8000 the linker takes such action. */
8001 if (IRIX_COMPAT (abfd) == ict_irix5)
8002 {
8003 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8004 {
14a793b2 8005 bh = NULL;
b49e97c9 8006 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
8007 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8008 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 8009 return FALSE;
14a793b2
AM
8010
8011 h = (struct elf_link_hash_entry *) bh;
12f09816 8012 h->mark = 1;
f5385ebf
AM
8013 h->non_elf = 0;
8014 h->def_regular = 1;
b49e97c9
TS
8015 h->type = STT_SECTION;
8016
c152c796 8017 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 8018 return FALSE;
b49e97c9
TS
8019 }
8020
8021 /* We need to create a .compact_rel section. */
8022 if (SGI_COMPAT (abfd))
8023 {
8024 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 8025 return FALSE;
b49e97c9
TS
8026 }
8027
44c410de 8028 /* Change alignments of some sections. */
3d4d4302 8029 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 8030 if (s != NULL)
a253d456
NC
8031 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8032
3d4d4302 8033 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 8034 if (s != NULL)
a253d456
NC
8035 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8036
3d4d4302 8037 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 8038 if (s != NULL)
a253d456
NC
8039 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8040
3d4d4302 8041 /* ??? */
b49e97c9
TS
8042 s = bfd_get_section_by_name (abfd, ".reginfo");
8043 if (s != NULL)
a253d456
NC
8044 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8045
3d4d4302 8046 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 8047 if (s != NULL)
a253d456 8048 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
8049 }
8050
0e1862bb 8051 if (bfd_link_executable (info))
b49e97c9 8052 {
14a793b2
AM
8053 const char *name;
8054
8055 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8056 bh = NULL;
8057 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
8058 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8059 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 8060 return FALSE;
14a793b2
AM
8061
8062 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
8063 h->non_elf = 0;
8064 h->def_regular = 1;
b49e97c9
TS
8065 h->type = STT_SECTION;
8066
c152c796 8067 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 8068 return FALSE;
b49e97c9
TS
8069
8070 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8071 {
8072 /* __rld_map is a four byte word located in the .data section
8073 and is filled in by the rtld to contain a pointer to
8074 the _r_debug structure. Its symbol value will be set in
8075 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 8076 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 8077 BFD_ASSERT (s != NULL);
14a793b2 8078
0abfb97a
L
8079 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8080 bh = NULL;
8081 if (!(_bfd_generic_link_add_one_symbol
8082 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8083 get_elf_backend_data (abfd)->collect, &bh)))
8084 return FALSE;
b49e97c9 8085
0abfb97a
L
8086 h = (struct elf_link_hash_entry *) bh;
8087 h->non_elf = 0;
8088 h->def_regular = 1;
8089 h->type = STT_OBJECT;
8090
8091 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8092 return FALSE;
b4082c70 8093 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
8094 }
8095 }
8096
861fb55a 8097 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 8098 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
8099 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8100 return FALSE;
8101
1bbce132
MR
8102 /* Do the usual VxWorks handling. */
8103 if (htab->is_vxworks
8104 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8105 return FALSE;
0a44bf69 8106
b34976b6 8107 return TRUE;
b49e97c9
TS
8108}
8109\f
c224138d
RS
8110/* Return true if relocation REL against section SEC is a REL rather than
8111 RELA relocation. RELOCS is the first relocation in the section and
8112 ABFD is the bfd that contains SEC. */
8113
8114static bfd_boolean
8115mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8116 const Elf_Internal_Rela *relocs,
8117 const Elf_Internal_Rela *rel)
8118{
8119 Elf_Internal_Shdr *rel_hdr;
8120 const struct elf_backend_data *bed;
8121
d4730f92
BS
8122 /* To determine which flavor of relocation this is, we depend on the
8123 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8124 rel_hdr = elf_section_data (sec)->rel.hdr;
8125 if (rel_hdr == NULL)
8126 return FALSE;
c224138d 8127 bed = get_elf_backend_data (abfd);
d4730f92
BS
8128 return ((size_t) (rel - relocs)
8129 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
8130}
8131
8132/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8133 HOWTO is the relocation's howto and CONTENTS points to the contents
8134 of the section that REL is against. */
8135
8136static bfd_vma
8137mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8138 reloc_howto_type *howto, bfd_byte *contents)
8139{
8140 bfd_byte *location;
8141 unsigned int r_type;
8142 bfd_vma addend;
17c6c9d9 8143 bfd_vma bytes;
c224138d
RS
8144
8145 r_type = ELF_R_TYPE (abfd, rel->r_info);
8146 location = contents + rel->r_offset;
8147
8148 /* Get the addend, which is stored in the input file. */
df58fc94 8149 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 8150 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 8151 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 8152
17c6c9d9
MR
8153 addend = bytes & howto->src_mask;
8154
8155 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8156 accordingly. */
8157 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8158 addend <<= 1;
8159
8160 return addend;
c224138d
RS
8161}
8162
8163/* REL is a relocation in ABFD that needs a partnering LO16 relocation
8164 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8165 and update *ADDEND with the final addend. Return true on success
8166 or false if the LO16 could not be found. RELEND is the exclusive
8167 upper bound on the relocations for REL's section. */
8168
8169static bfd_boolean
8170mips_elf_add_lo16_rel_addend (bfd *abfd,
8171 const Elf_Internal_Rela *rel,
8172 const Elf_Internal_Rela *relend,
8173 bfd_byte *contents, bfd_vma *addend)
8174{
8175 unsigned int r_type, lo16_type;
8176 const Elf_Internal_Rela *lo16_relocation;
8177 reloc_howto_type *lo16_howto;
8178 bfd_vma l;
8179
8180 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 8181 if (mips16_reloc_p (r_type))
c224138d 8182 lo16_type = R_MIPS16_LO16;
df58fc94
RS
8183 else if (micromips_reloc_p (r_type))
8184 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
8185 else if (r_type == R_MIPS_PCHI16)
8186 lo16_type = R_MIPS_PCLO16;
c224138d
RS
8187 else
8188 lo16_type = R_MIPS_LO16;
8189
8190 /* The combined value is the sum of the HI16 addend, left-shifted by
8191 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8192 code does a `lui' of the HI16 value, and then an `addiu' of the
8193 LO16 value.)
8194
8195 Scan ahead to find a matching LO16 relocation.
8196
8197 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8198 be immediately following. However, for the IRIX6 ABI, the next
8199 relocation may be a composed relocation consisting of several
8200 relocations for the same address. In that case, the R_MIPS_LO16
8201 relocation may occur as one of these. We permit a similar
8202 extension in general, as that is useful for GCC.
8203
8204 In some cases GCC dead code elimination removes the LO16 but keeps
8205 the corresponding HI16. This is strictly speaking a violation of
8206 the ABI but not immediately harmful. */
8207 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8208 if (lo16_relocation == NULL)
8209 return FALSE;
8210
8211 /* Obtain the addend kept there. */
8212 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8213 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8214
8215 l <<= lo16_howto->rightshift;
8216 l = _bfd_mips_elf_sign_extend (l, 16);
8217
8218 *addend <<= 16;
8219 *addend += l;
8220 return TRUE;
8221}
8222
8223/* Try to read the contents of section SEC in bfd ABFD. Return true and
8224 store the contents in *CONTENTS on success. Assume that *CONTENTS
8225 already holds the contents if it is nonull on entry. */
8226
8227static bfd_boolean
8228mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8229{
8230 if (*contents)
8231 return TRUE;
8232
8233 /* Get cached copy if it exists. */
8234 if (elf_section_data (sec)->this_hdr.contents != NULL)
8235 {
8236 *contents = elf_section_data (sec)->this_hdr.contents;
8237 return TRUE;
8238 }
8239
8240 return bfd_malloc_and_get_section (abfd, sec, contents);
8241}
8242
1bbce132
MR
8243/* Make a new PLT record to keep internal data. */
8244
8245static struct plt_entry *
8246mips_elf_make_plt_record (bfd *abfd)
8247{
8248 struct plt_entry *entry;
8249
8250 entry = bfd_zalloc (abfd, sizeof (*entry));
8251 if (entry == NULL)
8252 return NULL;
8253
8254 entry->stub_offset = MINUS_ONE;
8255 entry->mips_offset = MINUS_ONE;
8256 entry->comp_offset = MINUS_ONE;
8257 entry->gotplt_index = MINUS_ONE;
8258 return entry;
8259}
8260
47275900
MR
8261/* Define the special `__gnu_absolute_zero' symbol. We only need this
8262 for PIC code, as otherwise there is no load-time relocation involved
8263 and local GOT entries whose value is zero at static link time will
8264 retain their value at load time. */
8265
8266static bfd_boolean
8267mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8268 struct mips_elf_link_hash_table *htab,
8269 unsigned int r_type)
8270{
8271 union
8272 {
8273 struct elf_link_hash_entry *eh;
8274 struct bfd_link_hash_entry *bh;
8275 }
8276 hzero;
8277
8278 BFD_ASSERT (!htab->use_absolute_zero);
8279 BFD_ASSERT (bfd_link_pic (info));
8280
8281 hzero.bh = NULL;
8282 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8283 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8284 NULL, FALSE, FALSE, &hzero.bh))
8285 return FALSE;
8286
8287 BFD_ASSERT (hzero.bh != NULL);
8288 hzero.eh->size = 0;
8289 hzero.eh->type = STT_NOTYPE;
8290 hzero.eh->other = STV_PROTECTED;
8291 hzero.eh->def_regular = 1;
8292 hzero.eh->non_elf = 0;
8293
8294 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8295 return FALSE;
8296
8297 htab->use_absolute_zero = TRUE;
8298
8299 return TRUE;
8300}
8301
b49e97c9 8302/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8303 allocate space in the global offset table and record the need for
8304 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8305
b34976b6 8306bfd_boolean
9719ad41
RS
8307_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8308 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8309{
8310 const char *name;
8311 bfd *dynobj;
8312 Elf_Internal_Shdr *symtab_hdr;
8313 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8314 size_t extsymoff;
8315 const Elf_Internal_Rela *rel;
8316 const Elf_Internal_Rela *rel_end;
b49e97c9 8317 asection *sreloc;
9c5bfbb7 8318 const struct elf_backend_data *bed;
0a44bf69 8319 struct mips_elf_link_hash_table *htab;
c224138d
RS
8320 bfd_byte *contents;
8321 bfd_vma addend;
8322 reloc_howto_type *howto;
b49e97c9 8323
0e1862bb 8324 if (bfd_link_relocatable (info))
b34976b6 8325 return TRUE;
b49e97c9 8326
0a44bf69 8327 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8328 BFD_ASSERT (htab != NULL);
8329
b49e97c9
TS
8330 dynobj = elf_hash_table (info)->dynobj;
8331 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8332 sym_hashes = elf_sym_hashes (abfd);
8333 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8334
738e5348 8335 bed = get_elf_backend_data (abfd);
056bafd4 8336 rel_end = relocs + sec->reloc_count;
738e5348 8337
b49e97c9
TS
8338 /* Check for the mips16 stub sections. */
8339
8340 name = bfd_get_section_name (abfd, sec);
b9d58d71 8341 if (FN_STUB_P (name))
b49e97c9
TS
8342 {
8343 unsigned long r_symndx;
8344
8345 /* Look at the relocation information to figure out which symbol
07d6d2b8 8346 this is for. */
b49e97c9 8347
cb4437b8 8348 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8349 if (r_symndx == 0)
8350 {
4eca0228 8351 _bfd_error_handler
695344c0 8352 /* xgettext:c-format */
2c1c9679 8353 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8354 " stub section `%s'"),
8355 abfd, name);
8356 bfd_set_error (bfd_error_bad_value);
8357 return FALSE;
8358 }
b49e97c9
TS
8359
8360 if (r_symndx < extsymoff
8361 || sym_hashes[r_symndx - extsymoff] == NULL)
8362 {
8363 asection *o;
8364
8365 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8366 needed if there is some relocation in this BFD, other
8367 than a 16 bit function call, which refers to this symbol. */
b49e97c9
TS
8368 for (o = abfd->sections; o != NULL; o = o->next)
8369 {
8370 Elf_Internal_Rela *sec_relocs;
8371 const Elf_Internal_Rela *r, *rend;
8372
8373 /* We can ignore stub sections when looking for relocs. */
8374 if ((o->flags & SEC_RELOC) == 0
8375 || o->reloc_count == 0
738e5348 8376 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8377 continue;
8378
45d6a902 8379 sec_relocs
9719ad41 8380 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8381 info->keep_memory);
b49e97c9 8382 if (sec_relocs == NULL)
b34976b6 8383 return FALSE;
b49e97c9
TS
8384
8385 rend = sec_relocs + o->reloc_count;
8386 for (r = sec_relocs; r < rend; r++)
8387 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8388 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8389 break;
8390
6cdc0ccc 8391 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8392 free (sec_relocs);
8393
8394 if (r < rend)
8395 break;
8396 }
8397
8398 if (o == NULL)
8399 {
8400 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8401 not need it. Since this function is called before
8402 the linker maps input sections to output sections, we
8403 can easily discard it by setting the SEC_EXCLUDE
8404 flag. */
b49e97c9 8405 sec->flags |= SEC_EXCLUDE;
b34976b6 8406 return TRUE;
b49e97c9
TS
8407 }
8408
8409 /* Record this stub in an array of local symbol stubs for
07d6d2b8 8410 this BFD. */
698600e4 8411 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8412 {
8413 unsigned long symcount;
8414 asection **n;
8415 bfd_size_type amt;
8416
8417 if (elf_bad_symtab (abfd))
8418 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8419 else
8420 symcount = symtab_hdr->sh_info;
8421 amt = symcount * sizeof (asection *);
9719ad41 8422 n = bfd_zalloc (abfd, amt);
b49e97c9 8423 if (n == NULL)
b34976b6 8424 return FALSE;
698600e4 8425 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8426 }
8427
b9d58d71 8428 sec->flags |= SEC_KEEP;
698600e4 8429 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8430
8431 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8432 That flag is used to see whether we need to look through
8433 the global symbol table for stubs. We don't need to set
8434 it here, because we just have a local stub. */
b49e97c9
TS
8435 }
8436 else
8437 {
8438 struct mips_elf_link_hash_entry *h;
8439
8440 h = ((struct mips_elf_link_hash_entry *)
8441 sym_hashes[r_symndx - extsymoff]);
8442
973a3492
L
8443 while (h->root.root.type == bfd_link_hash_indirect
8444 || h->root.root.type == bfd_link_hash_warning)
8445 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8446
b49e97c9
TS
8447 /* H is the symbol this stub is for. */
8448
b9d58d71
TS
8449 /* If we already have an appropriate stub for this function, we
8450 don't need another one, so we can discard this one. Since
8451 this function is called before the linker maps input sections
8452 to output sections, we can easily discard it by setting the
8453 SEC_EXCLUDE flag. */
8454 if (h->fn_stub != NULL)
8455 {
8456 sec->flags |= SEC_EXCLUDE;
8457 return TRUE;
8458 }
8459
8460 sec->flags |= SEC_KEEP;
b49e97c9 8461 h->fn_stub = sec;
b34976b6 8462 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8463 }
8464 }
b9d58d71 8465 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8466 {
8467 unsigned long r_symndx;
8468 struct mips_elf_link_hash_entry *h;
8469 asection **loc;
8470
8471 /* Look at the relocation information to figure out which symbol
07d6d2b8 8472 this is for. */
b49e97c9 8473
cb4437b8 8474 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8475 if (r_symndx == 0)
8476 {
4eca0228 8477 _bfd_error_handler
695344c0 8478 /* xgettext:c-format */
2c1c9679 8479 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8480 " stub section `%s'"),
8481 abfd, name);
8482 bfd_set_error (bfd_error_bad_value);
8483 return FALSE;
8484 }
b49e97c9
TS
8485
8486 if (r_symndx < extsymoff
8487 || sym_hashes[r_symndx - extsymoff] == NULL)
8488 {
b9d58d71 8489 asection *o;
b49e97c9 8490
b9d58d71 8491 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8492 needed if there is some relocation (R_MIPS16_26) in this BFD
8493 that refers to this symbol. */
b9d58d71
TS
8494 for (o = abfd->sections; o != NULL; o = o->next)
8495 {
8496 Elf_Internal_Rela *sec_relocs;
8497 const Elf_Internal_Rela *r, *rend;
8498
8499 /* We can ignore stub sections when looking for relocs. */
8500 if ((o->flags & SEC_RELOC) == 0
8501 || o->reloc_count == 0
738e5348 8502 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8503 continue;
8504
8505 sec_relocs
8506 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8507 info->keep_memory);
8508 if (sec_relocs == NULL)
8509 return FALSE;
8510
8511 rend = sec_relocs + o->reloc_count;
8512 for (r = sec_relocs; r < rend; r++)
8513 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8514 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8515 break;
8516
8517 if (elf_section_data (o)->relocs != sec_relocs)
8518 free (sec_relocs);
8519
8520 if (r < rend)
8521 break;
8522 }
8523
8524 if (o == NULL)
8525 {
8526 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8527 not need it. Since this function is called before
8528 the linker maps input sections to output sections, we
8529 can easily discard it by setting the SEC_EXCLUDE
8530 flag. */
b9d58d71
TS
8531 sec->flags |= SEC_EXCLUDE;
8532 return TRUE;
8533 }
8534
8535 /* Record this stub in an array of local symbol call_stubs for
07d6d2b8 8536 this BFD. */
698600e4 8537 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8538 {
8539 unsigned long symcount;
8540 asection **n;
8541 bfd_size_type amt;
8542
8543 if (elf_bad_symtab (abfd))
8544 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8545 else
8546 symcount = symtab_hdr->sh_info;
8547 amt = symcount * sizeof (asection *);
8548 n = bfd_zalloc (abfd, amt);
8549 if (n == NULL)
8550 return FALSE;
698600e4 8551 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8552 }
b49e97c9 8553
b9d58d71 8554 sec->flags |= SEC_KEEP;
698600e4 8555 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8556
b9d58d71 8557 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8558 That flag is used to see whether we need to look through
8559 the global symbol table for stubs. We don't need to set
8560 it here, because we just have a local stub. */
b9d58d71 8561 }
b49e97c9 8562 else
b49e97c9 8563 {
b9d58d71
TS
8564 h = ((struct mips_elf_link_hash_entry *)
8565 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8566
b9d58d71 8567 /* H is the symbol this stub is for. */
68ffbac6 8568
b9d58d71
TS
8569 if (CALL_FP_STUB_P (name))
8570 loc = &h->call_fp_stub;
8571 else
8572 loc = &h->call_stub;
68ffbac6 8573
b9d58d71
TS
8574 /* If we already have an appropriate stub for this function, we
8575 don't need another one, so we can discard this one. Since
8576 this function is called before the linker maps input sections
8577 to output sections, we can easily discard it by setting the
8578 SEC_EXCLUDE flag. */
8579 if (*loc != NULL)
8580 {
8581 sec->flags |= SEC_EXCLUDE;
8582 return TRUE;
8583 }
b49e97c9 8584
b9d58d71
TS
8585 sec->flags |= SEC_KEEP;
8586 *loc = sec;
8587 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8588 }
b49e97c9
TS
8589 }
8590
b49e97c9 8591 sreloc = NULL;
c224138d 8592 contents = NULL;
b49e97c9
TS
8593 for (rel = relocs; rel < rel_end; ++rel)
8594 {
8595 unsigned long r_symndx;
8596 unsigned int r_type;
8597 struct elf_link_hash_entry *h;
861fb55a 8598 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8599 bfd_boolean call_reloc_p;
8600 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8601
8602 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8603 r_type = ELF_R_TYPE (abfd, rel->r_info);
8604
8605 if (r_symndx < extsymoff)
8606 h = NULL;
8607 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8608 {
4eca0228 8609 _bfd_error_handler
695344c0 8610 /* xgettext:c-format */
2c1c9679 8611 (_("%pB: malformed reloc detected for section %s"),
d003868e 8612 abfd, name);
b49e97c9 8613 bfd_set_error (bfd_error_bad_value);
b34976b6 8614 return FALSE;
b49e97c9
TS
8615 }
8616 else
8617 {
8618 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8619 if (h != NULL)
8620 {
8621 while (h->root.type == bfd_link_hash_indirect
8622 || h->root.type == bfd_link_hash_warning)
8623 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831 8624 }
861fb55a 8625 }
b49e97c9 8626
861fb55a
DJ
8627 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8628 relocation into a dynamic one. */
8629 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8630
8631 /* Set CALL_RELOC_P to true if the relocation is for a call,
8632 and if pointer equality therefore doesn't matter. */
8633 call_reloc_p = FALSE;
8634
8635 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8636 into account when deciding how to define the symbol.
8637 Relocations in nonallocatable sections such as .pdr and
8638 .debug* should have no effect. */
8639 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8640
861fb55a
DJ
8641 switch (r_type)
8642 {
861fb55a
DJ
8643 case R_MIPS_CALL16:
8644 case R_MIPS_CALL_HI16:
8645 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8646 case R_MIPS16_CALL16:
8647 case R_MICROMIPS_CALL16:
8648 case R_MICROMIPS_CALL_HI16:
8649 case R_MICROMIPS_CALL_LO16:
8650 call_reloc_p = TRUE;
8651 /* Fall through. */
8652
8653 case R_MIPS_GOT16:
861fb55a
DJ
8654 case R_MIPS_GOT_LO16:
8655 case R_MIPS_GOT_PAGE:
861fb55a 8656 case R_MIPS_GOT_DISP:
47275900
MR
8657 case R_MIPS16_GOT16:
8658 case R_MICROMIPS_GOT16:
8659 case R_MICROMIPS_GOT_LO16:
8660 case R_MICROMIPS_GOT_PAGE:
8661 case R_MICROMIPS_GOT_DISP:
8662 /* If we have a symbol that will resolve to zero at static link
8663 time and it is used by a GOT relocation applied to code we
8664 cannot relax to an immediate zero load, then we will be using
8665 the special `__gnu_absolute_zero' symbol whose value is zero
8666 at dynamic load time. We ignore HI16-type GOT relocations at
8667 this stage, because their handling will depend entirely on
8668 the corresponding LO16-type GOT relocation. */
8669 if (!call_hi16_reloc_p (r_type)
8670 && h != NULL
8671 && bfd_link_pic (info)
8672 && !htab->use_absolute_zero
8673 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8674 {
8675 bfd_boolean rel_reloc;
8676
8677 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8678 return FALSE;
8679
8680 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8681 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8682
8683 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8684 FALSE))
8685 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8686 return FALSE;
8687 }
8688
8689 /* Fall through. */
8690 case R_MIPS_GOT_HI16:
8691 case R_MIPS_GOT_OFST:
861fb55a
DJ
8692 case R_MIPS_TLS_GOTTPREL:
8693 case R_MIPS_TLS_GD:
8694 case R_MIPS_TLS_LDM:
d0f13682
CLT
8695 case R_MIPS16_TLS_GOTTPREL:
8696 case R_MIPS16_TLS_GD:
8697 case R_MIPS16_TLS_LDM:
df58fc94 8698 case R_MICROMIPS_GOT_HI16:
df58fc94 8699 case R_MICROMIPS_GOT_OFST:
df58fc94
RS
8700 case R_MICROMIPS_TLS_GOTTPREL:
8701 case R_MICROMIPS_TLS_GD:
8702 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8703 if (dynobj == NULL)
8704 elf_hash_table (info)->dynobj = dynobj = abfd;
8705 if (!mips_elf_create_got_section (dynobj, info))
8706 return FALSE;
0e1862bb 8707 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8708 {
4eca0228 8709 _bfd_error_handler
695344c0 8710 /* xgettext:c-format */
2dcf00ce
AM
8711 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8712 abfd, (uint64_t) rel->r_offset);
861fb55a
DJ
8713 bfd_set_error (bfd_error_bad_value);
8714 return FALSE;
b49e97c9 8715 }
c5d6fa44 8716 can_make_dynamic_p = TRUE;
861fb55a 8717 break;
b49e97c9 8718
c5d6fa44 8719 case R_MIPS_NONE:
99da6b5f 8720 case R_MIPS_JALR:
df58fc94 8721 case R_MICROMIPS_JALR:
c5d6fa44
RS
8722 /* These relocations have empty fields and are purely there to
8723 provide link information. The symbol value doesn't matter. */
8724 constrain_symbol_p = FALSE;
8725 break;
8726
8727 case R_MIPS_GPREL16:
8728 case R_MIPS_GPREL32:
8729 case R_MIPS16_GPREL:
8730 case R_MICROMIPS_GPREL16:
8731 /* GP-relative relocations always resolve to a definition in a
8732 regular input file, ignoring the one-definition rule. This is
8733 important for the GP setup sequence in NewABI code, which
8734 always resolves to a local function even if other relocations
8735 against the symbol wouldn't. */
8736 constrain_symbol_p = FALSE;
99da6b5f
AN
8737 break;
8738
861fb55a
DJ
8739 case R_MIPS_32:
8740 case R_MIPS_REL32:
8741 case R_MIPS_64:
8742 /* In VxWorks executables, references to external symbols
8743 must be handled using copy relocs or PLT entries; it is not
8744 possible to convert this relocation into a dynamic one.
8745
8746 For executables that use PLTs and copy-relocs, we have a
8747 choice between converting the relocation into a dynamic
8748 one or using copy relocations or PLT entries. It is
8749 usually better to do the former, unless the relocation is
8750 against a read-only section. */
0e1862bb 8751 if ((bfd_link_pic (info)
861fb55a
DJ
8752 || (h != NULL
8753 && !htab->is_vxworks
8754 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8755 && !(!info->nocopyreloc
8756 && !PIC_OBJECT_P (abfd)
8757 && MIPS_ELF_READONLY_SECTION (sec))))
8758 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8759 {
861fb55a 8760 can_make_dynamic_p = TRUE;
b49e97c9
TS
8761 if (dynobj == NULL)
8762 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8763 }
c5d6fa44 8764 break;
b49e97c9 8765
861fb55a
DJ
8766 case R_MIPS_26:
8767 case R_MIPS_PC16:
7361da2c
AB
8768 case R_MIPS_PC21_S2:
8769 case R_MIPS_PC26_S2:
861fb55a 8770 case R_MIPS16_26:
c9775dde 8771 case R_MIPS16_PC16_S1:
df58fc94
RS
8772 case R_MICROMIPS_26_S1:
8773 case R_MICROMIPS_PC7_S1:
8774 case R_MICROMIPS_PC10_S1:
8775 case R_MICROMIPS_PC16_S1:
8776 case R_MICROMIPS_PC23_S2:
c5d6fa44 8777 call_reloc_p = TRUE;
861fb55a 8778 break;
b49e97c9
TS
8779 }
8780
0a44bf69
RS
8781 if (h)
8782 {
c5d6fa44
RS
8783 if (constrain_symbol_p)
8784 {
8785 if (!can_make_dynamic_p)
8786 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8787
8788 if (!call_reloc_p)
8789 h->pointer_equality_needed = 1;
8790
8791 /* We must not create a stub for a symbol that has
8792 relocations related to taking the function's address.
8793 This doesn't apply to VxWorks, where CALL relocs refer
8794 to a .got.plt entry instead of a normal .got entry. */
8795 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8796 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8797 }
8798
0a44bf69
RS
8799 /* Relocations against the special VxWorks __GOTT_BASE__ and
8800 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8801 room for them in .rela.dyn. */
8802 if (is_gott_symbol (info, h))
8803 {
8804 if (sreloc == NULL)
8805 {
8806 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8807 if (sreloc == NULL)
8808 return FALSE;
8809 }
8810 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8811 if (MIPS_ELF_READONLY_SECTION (sec))
8812 /* We tell the dynamic linker that there are
8813 relocations against the text segment. */
8814 info->flags |= DF_TEXTREL;
0a44bf69
RS
8815 }
8816 }
df58fc94
RS
8817 else if (call_lo16_reloc_p (r_type)
8818 || got_lo16_reloc_p (r_type)
8819 || got_disp_reloc_p (r_type)
738e5348 8820 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8821 {
8822 /* We may need a local GOT entry for this relocation. We
8823 don't count R_MIPS_GOT_PAGE because we can estimate the
8824 maximum number of pages needed by looking at the size of
738e5348
RS
8825 the segment. Similar comments apply to R_MIPS*_GOT16 and
8826 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8827 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8828 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8829 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8830 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8831 rel->r_addend, info, r_type))
f4416af6 8832 return FALSE;
b49e97c9
TS
8833 }
8834
8f0c309a
CLT
8835 if (h != NULL
8836 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8837 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8838 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8839
b49e97c9
TS
8840 switch (r_type)
8841 {
8842 case R_MIPS_CALL16:
738e5348 8843 case R_MIPS16_CALL16:
df58fc94 8844 case R_MICROMIPS_CALL16:
b49e97c9
TS
8845 if (h == NULL)
8846 {
4eca0228 8847 _bfd_error_handler
695344c0 8848 /* xgettext:c-format */
2dcf00ce
AM
8849 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8850 abfd, (uint64_t) rel->r_offset);
b49e97c9 8851 bfd_set_error (bfd_error_bad_value);
b34976b6 8852 return FALSE;
b49e97c9
TS
8853 }
8854 /* Fall through. */
8855
8856 case R_MIPS_CALL_HI16:
8857 case R_MIPS_CALL_LO16:
df58fc94
RS
8858 case R_MICROMIPS_CALL_HI16:
8859 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8860 if (h != NULL)
8861 {
6ccf4795
RS
8862 /* Make sure there is room in the regular GOT to hold the
8863 function's address. We may eliminate it in favour of
8864 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8865 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8866 r_type))
b34976b6 8867 return FALSE;
b49e97c9
TS
8868
8869 /* We need a stub, not a plt entry for the undefined
8870 function. But we record it as if it needs plt. See
c152c796 8871 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8872 h->needs_plt = 1;
b49e97c9
TS
8873 h->type = STT_FUNC;
8874 }
8875 break;
8876
0fdc1bf1 8877 case R_MIPS_GOT_PAGE:
df58fc94 8878 case R_MICROMIPS_GOT_PAGE:
738e5348 8879 case R_MIPS16_GOT16:
b49e97c9
TS
8880 case R_MIPS_GOT16:
8881 case R_MIPS_GOT_HI16:
8882 case R_MIPS_GOT_LO16:
df58fc94
RS
8883 case R_MICROMIPS_GOT16:
8884 case R_MICROMIPS_GOT_HI16:
8885 case R_MICROMIPS_GOT_LO16:
8886 if (!h || got_page_reloc_p (r_type))
c224138d 8887 {
3a3b6725
DJ
8888 /* This relocation needs (or may need, if h != NULL) a
8889 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8890 know for sure until we know whether the symbol is
8891 preemptible. */
c224138d
RS
8892 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8893 {
8894 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8895 return FALSE;
8896 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8897 addend = mips_elf_read_rel_addend (abfd, rel,
8898 howto, contents);
9684f078 8899 if (got16_reloc_p (r_type))
c224138d
RS
8900 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8901 contents, &addend);
8902 else
8903 addend <<= howto->rightshift;
8904 }
8905 else
8906 addend = rel->r_addend;
13db6b44
RS
8907 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8908 h, addend))
c224138d 8909 return FALSE;
13db6b44
RS
8910
8911 if (h)
8912 {
8913 struct mips_elf_link_hash_entry *hmips =
8914 (struct mips_elf_link_hash_entry *) h;
8915
8916 /* This symbol is definitely not overridable. */
8917 if (hmips->root.def_regular
0e1862bb 8918 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8919 && ! hmips->root.forced_local))
8920 h = NULL;
8921 }
c224138d 8922 }
13db6b44
RS
8923 /* If this is a global, overridable symbol, GOT_PAGE will
8924 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8925 /* Fall through. */
8926
b49e97c9 8927 case R_MIPS_GOT_DISP:
df58fc94 8928 case R_MICROMIPS_GOT_DISP:
6ccf4795 8929 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8930 FALSE, r_type))
b34976b6 8931 return FALSE;
b49e97c9
TS
8932 break;
8933
0f20cc35 8934 case R_MIPS_TLS_GOTTPREL:
d0f13682 8935 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8936 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8937 if (bfd_link_pic (info))
0f20cc35
DJ
8938 info->flags |= DF_STATIC_TLS;
8939 /* Fall through */
8940
8941 case R_MIPS_TLS_LDM:
d0f13682 8942 case R_MIPS16_TLS_LDM:
df58fc94
RS
8943 case R_MICROMIPS_TLS_LDM:
8944 if (tls_ldm_reloc_p (r_type))
0f20cc35 8945 {
cf35638d 8946 r_symndx = STN_UNDEF;
0f20cc35
DJ
8947 h = NULL;
8948 }
8949 /* Fall through */
8950
8951 case R_MIPS_TLS_GD:
d0f13682 8952 case R_MIPS16_TLS_GD:
df58fc94 8953 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8954 /* This symbol requires a global offset table entry, or two
8955 for TLS GD relocations. */
e641e783
RS
8956 if (h != NULL)
8957 {
8958 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8959 FALSE, r_type))
8960 return FALSE;
8961 }
8962 else
8963 {
8964 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8965 rel->r_addend,
8966 info, r_type))
8967 return FALSE;
8968 }
0f20cc35
DJ
8969 break;
8970
b49e97c9
TS
8971 case R_MIPS_32:
8972 case R_MIPS_REL32:
8973 case R_MIPS_64:
0a44bf69
RS
8974 /* In VxWorks executables, references to external symbols
8975 are handled using copy relocs or PLT stubs, so there's
8976 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8977 if (can_make_dynamic_p)
b49e97c9
TS
8978 {
8979 if (sreloc == NULL)
8980 {
0a44bf69 8981 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8982 if (sreloc == NULL)
f4416af6 8983 return FALSE;
b49e97c9 8984 }
0e1862bb 8985 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8986 {
8987 /* When creating a shared object, we must copy these
8988 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8989 relocs. Make room for this reloc in .rel(a).dyn. */
8990 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8991 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8992 /* We tell the dynamic linker that there are
8993 relocations against the text segment. */
8994 info->flags |= DF_TEXTREL;
8995 }
b49e97c9
TS
8996 else
8997 {
8998 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8999
9a59ad6b
DJ
9000 /* For a shared object, we must copy this relocation
9001 unless the symbol turns out to be undefined and
9002 weak with non-default visibility, in which case
9003 it will be left as zero.
9004
9005 We could elide R_MIPS_REL32 for locally binding symbols
9006 in shared libraries, but do not yet do so.
9007
9008 For an executable, we only need to copy this
9009 reloc if the symbol is defined in a dynamic
9010 object. */
b49e97c9
TS
9011 hmips = (struct mips_elf_link_hash_entry *) h;
9012 ++hmips->possibly_dynamic_relocs;
943284cc 9013 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
9014 /* We need it to tell the dynamic linker if there
9015 are relocations against the text segment. */
9016 hmips->readonly_reloc = TRUE;
b49e97c9 9017 }
b49e97c9
TS
9018 }
9019
9020 if (SGI_COMPAT (abfd))
9021 mips_elf_hash_table (info)->compact_rel_size +=
9022 sizeof (Elf32_External_crinfo);
9023 break;
9024
9025 case R_MIPS_26:
9026 case R_MIPS_GPREL16:
9027 case R_MIPS_LITERAL:
9028 case R_MIPS_GPREL32:
df58fc94
RS
9029 case R_MICROMIPS_26_S1:
9030 case R_MICROMIPS_GPREL16:
9031 case R_MICROMIPS_LITERAL:
9032 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
9033 if (SGI_COMPAT (abfd))
9034 mips_elf_hash_table (info)->compact_rel_size +=
9035 sizeof (Elf32_External_crinfo);
9036 break;
9037
9038 /* This relocation describes the C++ object vtable hierarchy.
9039 Reconstruct it for later use during GC. */
9040 case R_MIPS_GNU_VTINHERIT:
c152c796 9041 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 9042 return FALSE;
b49e97c9
TS
9043 break;
9044
9045 /* This relocation describes which C++ vtable entries are actually
9046 used. Record for later use during GC. */
9047 case R_MIPS_GNU_VTENTRY:
a0ea3a14 9048 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 9049 return FALSE;
b49e97c9
TS
9050 break;
9051
9052 default:
9053 break;
9054 }
9055
1bbce132 9056 /* Record the need for a PLT entry. At this point we don't know
07d6d2b8
AM
9057 yet if we are going to create a PLT in the first place, but
9058 we only record whether the relocation requires a standard MIPS
9059 or a compressed code entry anyway. If we don't make a PLT after
9060 all, then we'll just ignore these arrangements. Likewise if
9061 a PLT entry is not created because the symbol is satisfied
9062 locally. */
1bbce132 9063 if (h != NULL
54806ffa
MR
9064 && (branch_reloc_p (r_type)
9065 || mips16_branch_reloc_p (r_type)
9066 || micromips_branch_reloc_p (r_type))
1bbce132
MR
9067 && !SYMBOL_CALLS_LOCAL (info, h))
9068 {
9069 if (h->plt.plist == NULL)
9070 h->plt.plist = mips_elf_make_plt_record (abfd);
9071 if (h->plt.plist == NULL)
9072 return FALSE;
9073
54806ffa 9074 if (branch_reloc_p (r_type))
1bbce132
MR
9075 h->plt.plist->need_mips = TRUE;
9076 else
9077 h->plt.plist->need_comp = TRUE;
9078 }
9079
738e5348
RS
9080 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9081 if there is one. We only need to handle global symbols here;
9082 we decide whether to keep or delete stubs for local symbols
9083 when processing the stub's relocations. */
b49e97c9 9084 if (h != NULL
738e5348
RS
9085 && !mips16_call_reloc_p (r_type)
9086 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
9087 {
9088 struct mips_elf_link_hash_entry *mh;
9089
9090 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 9091 mh->need_fn_stub = TRUE;
b49e97c9 9092 }
861fb55a
DJ
9093
9094 /* Refuse some position-dependent relocations when creating a
9095 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9096 not PIC, but we can create dynamic relocations and the result
9097 will be fine. Also do not refuse R_MIPS_LO16, which can be
9098 combined with R_MIPS_GOT16. */
0e1862bb 9099 if (bfd_link_pic (info))
861fb55a
DJ
9100 {
9101 switch (r_type)
9102 {
b474a202
FS
9103 case R_MIPS_TLS_TPREL_HI16:
9104 case R_MIPS16_TLS_TPREL_HI16:
9105 case R_MICROMIPS_TLS_TPREL_HI16:
9106 case R_MIPS_TLS_TPREL_LO16:
9107 case R_MIPS16_TLS_TPREL_LO16:
9108 case R_MICROMIPS_TLS_TPREL_LO16:
9109 /* These are okay in PIE, but not in a shared library. */
9110 if (bfd_link_executable (info))
9111 break;
9112
9113 /* FALLTHROUGH */
9114
861fb55a
DJ
9115 case R_MIPS16_HI16:
9116 case R_MIPS_HI16:
9117 case R_MIPS_HIGHER:
9118 case R_MIPS_HIGHEST:
df58fc94
RS
9119 case R_MICROMIPS_HI16:
9120 case R_MICROMIPS_HIGHER:
9121 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
9122 /* Don't refuse a high part relocation if it's against
9123 no symbol (e.g. part of a compound relocation). */
cf35638d 9124 if (r_symndx == STN_UNDEF)
861fb55a
DJ
9125 break;
9126
3c7687b9 9127 /* Likewise an absolute symbol. */
304f09d0 9128 if (h != NULL && bfd_is_abs_symbol (&h->root))
3c7687b9
MR
9129 break;
9130
861fb55a
DJ
9131 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9132 and has a special meaning. */
9133 if (!NEWABI_P (abfd) && h != NULL
9134 && strcmp (h->root.root.string, "_gp_disp") == 0)
9135 break;
9136
0fc1eb3c
RS
9137 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9138 if (is_gott_symbol (info, h))
9139 break;
9140
861fb55a
DJ
9141 /* FALLTHROUGH */
9142
9143 case R_MIPS16_26:
9144 case R_MIPS_26:
df58fc94 9145 case R_MICROMIPS_26_S1:
304f09d0
FS
9146 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9147 /* An error for unsupported relocations is raised as part
9148 of the above search, so we can skip the following. */
9149 if (howto != NULL)
9150 info->callbacks->einfo
9151 /* xgettext:c-format */
9152 (_("%X%H: relocation %s against `%s' cannot be used"
9153 " when making a shared object; recompile with -fPIC\n"),
9154 abfd, sec, rel->r_offset, howto->name,
9155 (h) ? h->root.root.string : "a local symbol");
aff68bd0 9156 break;
861fb55a
DJ
9157 default:
9158 break;
9159 }
9160 }
b49e97c9
TS
9161 }
9162
b34976b6 9163 return TRUE;
b49e97c9
TS
9164}
9165\f
9a59ad6b
DJ
9166/* Allocate space for global sym dynamic relocs. */
9167
9168static bfd_boolean
9169allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9170{
9171 struct bfd_link_info *info = inf;
9172 bfd *dynobj;
9173 struct mips_elf_link_hash_entry *hmips;
9174 struct mips_elf_link_hash_table *htab;
9175
9176 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9177 BFD_ASSERT (htab != NULL);
9178
9a59ad6b
DJ
9179 dynobj = elf_hash_table (info)->dynobj;
9180 hmips = (struct mips_elf_link_hash_entry *) h;
9181
9182 /* VxWorks executables are handled elsewhere; we only need to
9183 allocate relocations in shared objects. */
0e1862bb 9184 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
9185 return TRUE;
9186
7686d77d
AM
9187 /* Ignore indirect symbols. All relocations against such symbols
9188 will be redirected to the target symbol. */
9189 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
9190 return TRUE;
9191
9a59ad6b
DJ
9192 /* If this symbol is defined in a dynamic object, or we are creating
9193 a shared library, we will need to copy any R_MIPS_32 or
9194 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 9195 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
9196 && hmips->possibly_dynamic_relocs != 0
9197 && (h->root.type == bfd_link_hash_defweak
625ef6dc 9198 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 9199 || bfd_link_pic (info)))
9a59ad6b
DJ
9200 {
9201 bfd_boolean do_copy = TRUE;
9202
9203 if (h->root.type == bfd_link_hash_undefweak)
9204 {
262e07d0
MR
9205 /* Do not copy relocations for undefined weak symbols that
9206 we are not going to export. */
9207 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9a59ad6b
DJ
9208 do_copy = FALSE;
9209
9210 /* Make sure undefined weak symbols are output as a dynamic
9211 symbol in PIEs. */
9212 else if (h->dynindx == -1 && !h->forced_local)
9213 {
9214 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9215 return FALSE;
9216 }
9217 }
9218
9219 if (do_copy)
9220 {
aff469fa 9221 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
9222 the SVR4 psABI requires it to have a dynamic symbol table
9223 index greater that DT_MIPS_GOTSYM if there are dynamic
9224 relocations against it.
9225
9226 VxWorks does not enforce the same mapping between the GOT
9227 and the symbol table, so the same requirement does not
9228 apply there. */
6ccf4795
RS
9229 if (!htab->is_vxworks)
9230 {
9231 if (hmips->global_got_area > GGA_RELOC_ONLY)
9232 hmips->global_got_area = GGA_RELOC_ONLY;
9233 hmips->got_only_for_calls = FALSE;
9234 }
aff469fa 9235
9a59ad6b
DJ
9236 mips_elf_allocate_dynamic_relocations
9237 (dynobj, info, hmips->possibly_dynamic_relocs);
9238 if (hmips->readonly_reloc)
9239 /* We tell the dynamic linker that there are relocations
9240 against the text segment. */
9241 info->flags |= DF_TEXTREL;
9242 }
9243 }
9244
9245 return TRUE;
9246}
9247
b49e97c9
TS
9248/* Adjust a symbol defined by a dynamic object and referenced by a
9249 regular object. The current definition is in some section of the
9250 dynamic object, but we're not including those sections. We have to
9251 change the definition to something the rest of the link can
9252 understand. */
9253
b34976b6 9254bfd_boolean
9719ad41
RS
9255_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9256 struct elf_link_hash_entry *h)
b49e97c9
TS
9257{
9258 bfd *dynobj;
9259 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9260 struct mips_elf_link_hash_table *htab;
5474d94f 9261 asection *s, *srel;
b49e97c9 9262
5108fc1b 9263 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9264 BFD_ASSERT (htab != NULL);
9265
b49e97c9 9266 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9267 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9268
9269 /* Make sure we know what is going on here. */
9270 BFD_ASSERT (dynobj != NULL
f5385ebf 9271 && (h->needs_plt
60d67dc8 9272 || h->is_weakalias
f5385ebf
AM
9273 || (h->def_dynamic
9274 && h->ref_regular
9275 && !h->def_regular)));
b49e97c9 9276
b49e97c9 9277 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9278
861fb55a
DJ
9279 /* If there are call relocations against an externally-defined symbol,
9280 see whether we can create a MIPS lazy-binding stub for it. We can
9281 only do this if all references to the function are through call
9282 relocations, and in that case, the traditional lazy-binding stubs
9283 are much more efficient than PLT entries.
9284
9285 Traditional stubs are only available on SVR4 psABI-based systems;
9286 VxWorks always uses PLTs instead. */
9287 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9288 {
9289 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9290 return TRUE;
b49e97c9
TS
9291
9292 /* If this symbol is not defined in a regular file, then set
9293 the symbol to the stub location. This is required to make
9294 function pointers compare as equal between the normal
9295 executable and the shared library. */
4b8377e7
MR
9296 if (!h->def_regular
9297 && !bfd_is_abs_section (htab->sstubs->output_section))
b49e97c9 9298 {
33bb52fb
RS
9299 hmips->needs_lazy_stub = TRUE;
9300 htab->lazy_stub_count++;
b34976b6 9301 return TRUE;
b49e97c9
TS
9302 }
9303 }
861fb55a
DJ
9304 /* As above, VxWorks requires PLT entries for externally-defined
9305 functions that are only accessed through call relocations.
b49e97c9 9306
861fb55a
DJ
9307 Both VxWorks and non-VxWorks targets also need PLT entries if there
9308 are static-only relocations against an externally-defined function.
9309 This can technically occur for shared libraries if there are
9310 branches to the symbol, although it is unlikely that this will be
9311 used in practice due to the short ranges involved. It can occur
9312 for any relative or absolute relocation in executables; in that
9313 case, the PLT entry becomes the function's canonical address. */
9314 else if (((h->needs_plt && !hmips->no_fn_stub)
9315 || (h->type == STT_FUNC && hmips->has_static_relocs))
9316 && htab->use_plts_and_copy_relocs
9317 && !SYMBOL_CALLS_LOCAL (info, h)
9318 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9319 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9320 {
1bbce132
MR
9321 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9322 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9323
9324 /* If this is the first symbol to need a PLT entry, then make some
07d6d2b8
AM
9325 basic setup. Also work out PLT entry sizes. We'll need them
9326 for PLT offset calculations. */
1bbce132 9327 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9328 {
ce558b89 9329 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9330 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9331
861fb55a
DJ
9332 /* If we're using the PLT additions to the psABI, each PLT
9333 entry is 16 bytes and the PLT0 entry is 32 bytes.
9334 Encourage better cache usage by aligning. We do this
9335 lazily to avoid pessimizing traditional objects. */
9336 if (!htab->is_vxworks
ce558b89 9337 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
861fb55a 9338 return FALSE;
0a44bf69 9339
861fb55a
DJ
9340 /* Make sure that .got.plt is word-aligned. We do this lazily
9341 for the same reason as above. */
ce558b89 9342 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
861fb55a
DJ
9343 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9344 return FALSE;
0a44bf69 9345
861fb55a
DJ
9346 /* On non-VxWorks targets, the first two entries in .got.plt
9347 are reserved. */
9348 if (!htab->is_vxworks)
1bbce132
MR
9349 htab->plt_got_index
9350 += (get_elf_backend_data (dynobj)->got_header_size
9351 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9352
861fb55a
DJ
9353 /* On VxWorks, also allocate room for the header's
9354 .rela.plt.unloaded entries. */
0e1862bb 9355 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9356 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9357
9358 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9359 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9360 htab->plt_mips_entry_size
9361 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9362 else if (htab->is_vxworks)
9363 htab->plt_mips_entry_size
9364 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9365 else if (newabi_p)
9366 htab->plt_mips_entry_size
9367 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9368 else if (!micromips_p)
1bbce132
MR
9369 {
9370 htab->plt_mips_entry_size
9371 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9372 htab->plt_comp_entry_size
833794fc
MR
9373 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9374 }
9375 else if (htab->insn32)
9376 {
9377 htab->plt_mips_entry_size
9378 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9379 htab->plt_comp_entry_size
9380 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9381 }
9382 else
9383 {
9384 htab->plt_mips_entry_size
9385 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9386 htab->plt_comp_entry_size
833794fc 9387 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9388 }
0a44bf69
RS
9389 }
9390
1bbce132
MR
9391 if (h->plt.plist == NULL)
9392 h->plt.plist = mips_elf_make_plt_record (dynobj);
9393 if (h->plt.plist == NULL)
9394 return FALSE;
9395
9396 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
07d6d2b8 9397 n32 or n64, so always use a standard entry there.
1bbce132 9398
07d6d2b8
AM
9399 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9400 all MIPS16 calls will go via that stub, and there is no benefit
9401 to having a MIPS16 entry. And in the case of call_stub a
9402 standard entry actually has to be used as the stub ends with a J
9403 instruction. */
1bbce132
MR
9404 if (newabi_p
9405 || htab->is_vxworks
9406 || hmips->call_stub
9407 || hmips->call_fp_stub)
9408 {
9409 h->plt.plist->need_mips = TRUE;
9410 h->plt.plist->need_comp = FALSE;
9411 }
9412
9413 /* Otherwise, if there are no direct calls to the function, we
07d6d2b8
AM
9414 have a free choice of whether to use standard or compressed
9415 entries. Prefer microMIPS entries if the object is known to
9416 contain microMIPS code, so that it becomes possible to create
9417 pure microMIPS binaries. Prefer standard entries otherwise,
9418 because MIPS16 ones are no smaller and are usually slower. */
1bbce132
MR
9419 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9420 {
9421 if (micromips_p)
9422 h->plt.plist->need_comp = TRUE;
9423 else
9424 h->plt.plist->need_mips = TRUE;
9425 }
9426
9427 if (h->plt.plist->need_mips)
9428 {
9429 h->plt.plist->mips_offset = htab->plt_mips_offset;
9430 htab->plt_mips_offset += htab->plt_mips_entry_size;
9431 }
9432 if (h->plt.plist->need_comp)
9433 {
9434 h->plt.plist->comp_offset = htab->plt_comp_offset;
9435 htab->plt_comp_offset += htab->plt_comp_entry_size;
9436 }
9437
9438 /* Reserve the corresponding .got.plt entry now too. */
9439 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9440
9441 /* If the output file has no definition of the symbol, set the
861fb55a 9442 symbol's value to the address of the stub. */
0e1862bb 9443 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9444 hmips->use_plt_entry = TRUE;
0a44bf69 9445
1bbce132 9446 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
ce558b89
AM
9447 htab->root.srelplt->size += (htab->is_vxworks
9448 ? MIPS_ELF_RELA_SIZE (dynobj)
9449 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9450
9451 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9452 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9453 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9454
861fb55a
DJ
9455 /* All relocations against this symbol that could have been made
9456 dynamic will now refer to the PLT entry instead. */
9457 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9458
0a44bf69
RS
9459 return TRUE;
9460 }
9461
9462 /* If this is a weak symbol, and there is a real definition, the
9463 processor independent code will have arranged for us to see the
9464 real definition first, and we can just use the same value. */
60d67dc8 9465 if (h->is_weakalias)
0a44bf69 9466 {
60d67dc8
AM
9467 struct elf_link_hash_entry *def = weakdef (h);
9468 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9469 h->root.u.def.section = def->root.u.def.section;
9470 h->root.u.def.value = def->root.u.def.value;
0a44bf69
RS
9471 return TRUE;
9472 }
9473
861fb55a
DJ
9474 /* Otherwise, there is nothing further to do for symbols defined
9475 in regular objects. */
9476 if (h->def_regular)
0a44bf69
RS
9477 return TRUE;
9478
861fb55a
DJ
9479 /* There's also nothing more to do if we'll convert all relocations
9480 against this symbol into dynamic relocations. */
9481 if (!hmips->has_static_relocs)
9482 return TRUE;
9483
9484 /* We're now relying on copy relocations. Complain if we have
9485 some that we can't convert. */
0e1862bb 9486 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9487 {
4eca0228
AM
9488 _bfd_error_handler (_("non-dynamic relocations refer to "
9489 "dynamic symbol %s"),
9490 h->root.root.string);
861fb55a
DJ
9491 bfd_set_error (bfd_error_bad_value);
9492 return FALSE;
9493 }
9494
0a44bf69
RS
9495 /* We must allocate the symbol in our .dynbss section, which will
9496 become part of the .bss section of the executable. There will be
9497 an entry for this symbol in the .dynsym section. The dynamic
9498 object will contain position independent code, so all references
9499 from the dynamic object to this symbol will go through the global
9500 offset table. The dynamic linker will use the .dynsym entry to
9501 determine the address it must put in the global offset table, so
9502 both the dynamic object and the regular object will refer to the
9503 same memory location for the variable. */
9504
5474d94f
AM
9505 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9506 {
9507 s = htab->root.sdynrelro;
9508 srel = htab->root.sreldynrelro;
9509 }
9510 else
9511 {
9512 s = htab->root.sdynbss;
9513 srel = htab->root.srelbss;
9514 }
0a44bf69
RS
9515 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9516 {
861fb55a 9517 if (htab->is_vxworks)
5474d94f 9518 srel->size += sizeof (Elf32_External_Rela);
861fb55a
DJ
9519 else
9520 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9521 h->needs_copy = 1;
9522 }
9523
861fb55a
DJ
9524 /* All relocations against this symbol that could have been made
9525 dynamic will now refer to the local copy instead. */
9526 hmips->possibly_dynamic_relocs = 0;
9527
5474d94f 9528 return _bfd_elf_adjust_dynamic_copy (info, h, s);
0a44bf69 9529}
b49e97c9
TS
9530\f
9531/* This function is called after all the input files have been read,
9532 and the input sections have been assigned to output sections. We
9533 check for any mips16 stub sections that we can discard. */
9534
b34976b6 9535bfd_boolean
9719ad41
RS
9536_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9537 struct bfd_link_info *info)
b49e97c9 9538{
351cdf24 9539 asection *sect;
0a44bf69 9540 struct mips_elf_link_hash_table *htab;
861fb55a 9541 struct mips_htab_traverse_info hti;
0a44bf69
RS
9542
9543 htab = mips_elf_hash_table (info);
4dfe6ac6 9544 BFD_ASSERT (htab != NULL);
f4416af6 9545
b49e97c9 9546 /* The .reginfo section has a fixed size. */
351cdf24
MF
9547 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9548 if (sect != NULL)
6798f8bf
MR
9549 {
9550 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9551 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9552 }
351cdf24
MF
9553
9554 /* The .MIPS.abiflags section has a fixed size. */
9555 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9556 if (sect != NULL)
6798f8bf
MR
9557 {
9558 bfd_set_section_size (output_bfd, sect,
9559 sizeof (Elf_External_ABIFlags_v0));
9560 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9561 }
b49e97c9 9562
861fb55a
DJ
9563 hti.info = info;
9564 hti.output_bfd = output_bfd;
9565 hti.error = FALSE;
9566 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9567 mips_elf_check_symbols, &hti);
9568 if (hti.error)
9569 return FALSE;
f4416af6 9570
33bb52fb
RS
9571 return TRUE;
9572}
9573
9574/* If the link uses a GOT, lay it out and work out its size. */
9575
9576static bfd_boolean
9577mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9578{
9579 bfd *dynobj;
9580 asection *s;
9581 struct mips_got_info *g;
33bb52fb
RS
9582 bfd_size_type loadable_size = 0;
9583 bfd_size_type page_gotno;
d7206569 9584 bfd *ibfd;
ab361d49 9585 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9586 struct mips_elf_link_hash_table *htab;
9587
9588 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9589 BFD_ASSERT (htab != NULL);
9590
ce558b89 9591 s = htab->root.sgot;
f4416af6 9592 if (s == NULL)
b34976b6 9593 return TRUE;
b49e97c9 9594
33bb52fb 9595 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9596 g = htab->got_info;
9597
861fb55a
DJ
9598 /* Allocate room for the reserved entries. VxWorks always reserves
9599 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9600 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9601 if (htab->is_vxworks)
9602 htab->reserved_gotno = 3;
9603 else
9604 htab->reserved_gotno = 2;
9605 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9606 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9607
6c42ddb9
RS
9608 /* Decide which symbols need to go in the global part of the GOT and
9609 count the number of reloc-only GOT symbols. */
020d7251 9610 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9611
13db6b44
RS
9612 if (!mips_elf_resolve_final_got_entries (info, g))
9613 return FALSE;
9614
33bb52fb
RS
9615 /* Calculate the total loadable size of the output. That
9616 will give us the maximum number of GOT_PAGE entries
9617 required. */
c72f2fb2 9618 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9619 {
9620 asection *subsection;
5108fc1b 9621
d7206569 9622 for (subsection = ibfd->sections;
33bb52fb
RS
9623 subsection;
9624 subsection = subsection->next)
9625 {
9626 if ((subsection->flags & SEC_ALLOC) == 0)
9627 continue;
9628 loadable_size += ((subsection->size + 0xf)
9629 &~ (bfd_size_type) 0xf);
9630 }
9631 }
f4416af6 9632
0a44bf69 9633 if (htab->is_vxworks)
738e5348 9634 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9635 relocations against local symbols evaluate to "G", and the EABI does
9636 not include R_MIPS_GOT_PAGE. */
c224138d 9637 page_gotno = 0;
0a44bf69
RS
9638 else
9639 /* Assume there are two loadable segments consisting of contiguous
9640 sections. Is 5 enough? */
c224138d
RS
9641 page_gotno = (loadable_size >> 16) + 5;
9642
13db6b44 9643 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9644 conservative. */
9645 if (page_gotno > g->page_gotno)
9646 page_gotno = g->page_gotno;
f4416af6 9647
c224138d 9648 g->local_gotno += page_gotno;
cb22ccf4 9649 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9650
ab361d49
RS
9651 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9652 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9653 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9654
0a44bf69
RS
9655 /* VxWorks does not support multiple GOTs. It initializes $gp to
9656 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9657 dynamic loader. */
57093f5e 9658 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9659 {
a8028dd0 9660 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9661 return FALSE;
9662 }
9663 else
9664 {
d7206569
RS
9665 /* Record that all bfds use G. This also has the effect of freeing
9666 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9667 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9668 if (mips_elf_bfd_got (ibfd, FALSE))
9669 mips_elf_replace_bfd_got (ibfd, g);
9670 mips_elf_replace_bfd_got (output_bfd, g);
9671
33bb52fb 9672 /* Set up TLS entries. */
0f20cc35 9673 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9674 tga.info = info;
9675 tga.g = g;
9676 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9677 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9678 if (!tga.g)
9679 return FALSE;
1fd20d70
RS
9680 BFD_ASSERT (g->tls_assigned_gotno
9681 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9682
57093f5e 9683 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9684 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9685 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9686
33bb52fb 9687 /* Allocate room for the TLS relocations. */
ab361d49
RS
9688 if (g->relocs)
9689 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9690 }
b49e97c9 9691
b34976b6 9692 return TRUE;
b49e97c9
TS
9693}
9694
33bb52fb
RS
9695/* Estimate the size of the .MIPS.stubs section. */
9696
9697static void
9698mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9699{
9700 struct mips_elf_link_hash_table *htab;
9701 bfd_size_type dynsymcount;
9702
9703 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9704 BFD_ASSERT (htab != NULL);
9705
33bb52fb
RS
9706 if (htab->lazy_stub_count == 0)
9707 return;
9708
9709 /* IRIX rld assumes that a function stub isn't at the end of the .text
9710 section, so add a dummy entry to the end. */
9711 htab->lazy_stub_count++;
9712
9713 /* Get a worst-case estimate of the number of dynamic symbols needed.
9714 At this point, dynsymcount does not account for section symbols
9715 and count_section_dynsyms may overestimate the number that will
9716 be needed. */
9717 dynsymcount = (elf_hash_table (info)->dynsymcount
9718 + count_section_dynsyms (output_bfd, info));
9719
1bbce132
MR
9720 /* Determine the size of one stub entry. There's no disadvantage
9721 from using microMIPS code here, so for the sake of pure-microMIPS
9722 binaries we prefer it whenever there's any microMIPS code in
9723 output produced at all. This has a benefit of stubs being
833794fc
MR
9724 shorter by 4 bytes each too, unless in the insn32 mode. */
9725 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9726 htab->function_stub_size = (dynsymcount > 0x10000
9727 ? MIPS_FUNCTION_STUB_BIG_SIZE
9728 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9729 else if (htab->insn32)
9730 htab->function_stub_size = (dynsymcount > 0x10000
9731 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9732 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9733 else
9734 htab->function_stub_size = (dynsymcount > 0x10000
9735 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9736 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9737
9738 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9739}
9740
1bbce132
MR
9741/* A mips_elf_link_hash_traverse callback for which DATA points to a
9742 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9743 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9744
9745static bfd_boolean
af924177 9746mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9747{
1bbce132 9748 struct mips_htab_traverse_info *hti = data;
33bb52fb 9749 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9750 struct bfd_link_info *info;
9751 bfd *output_bfd;
9752
9753 info = hti->info;
9754 output_bfd = hti->output_bfd;
9755 htab = mips_elf_hash_table (info);
9756 BFD_ASSERT (htab != NULL);
33bb52fb 9757
33bb52fb
RS
9758 if (h->needs_lazy_stub)
9759 {
1bbce132
MR
9760 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9761 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9762 bfd_vma isa_bit = micromips_p;
9763
9764 BFD_ASSERT (htab->root.dynobj != NULL);
9765 if (h->root.plt.plist == NULL)
9766 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9767 if (h->root.plt.plist == NULL)
9768 {
9769 hti->error = TRUE;
9770 return FALSE;
9771 }
33bb52fb 9772 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9773 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9774 h->root.plt.plist->stub_offset = htab->sstubs->size;
9775 h->root.other = other;
33bb52fb
RS
9776 htab->sstubs->size += htab->function_stub_size;
9777 }
9778 return TRUE;
9779}
9780
9781/* Allocate offsets in the stubs section to each symbol that needs one.
9782 Set the final size of the .MIPS.stub section. */
9783
1bbce132 9784static bfd_boolean
33bb52fb
RS
9785mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9786{
1bbce132
MR
9787 bfd *output_bfd = info->output_bfd;
9788 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9789 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9790 bfd_vma isa_bit = micromips_p;
33bb52fb 9791 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9792 struct mips_htab_traverse_info hti;
9793 struct elf_link_hash_entry *h;
9794 bfd *dynobj;
33bb52fb
RS
9795
9796 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9797 BFD_ASSERT (htab != NULL);
9798
33bb52fb 9799 if (htab->lazy_stub_count == 0)
1bbce132 9800 return TRUE;
33bb52fb
RS
9801
9802 htab->sstubs->size = 0;
1bbce132
MR
9803 hti.info = info;
9804 hti.output_bfd = output_bfd;
9805 hti.error = FALSE;
9806 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9807 if (hti.error)
9808 return FALSE;
33bb52fb
RS
9809 htab->sstubs->size += htab->function_stub_size;
9810 BFD_ASSERT (htab->sstubs->size
9811 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9812
9813 dynobj = elf_hash_table (info)->dynobj;
9814 BFD_ASSERT (dynobj != NULL);
9815 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9816 if (h == NULL)
9817 return FALSE;
9818 h->root.u.def.value = isa_bit;
9819 h->other = other;
9820 h->type = STT_FUNC;
9821
9822 return TRUE;
9823}
9824
9825/* A mips_elf_link_hash_traverse callback for which DATA points to a
9826 bfd_link_info. If H uses the address of a PLT entry as the value
9827 of the symbol, then set the entry in the symbol table now. Prefer
9828 a standard MIPS PLT entry. */
9829
9830static bfd_boolean
9831mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9832{
9833 struct bfd_link_info *info = data;
9834 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9835 struct mips_elf_link_hash_table *htab;
9836 unsigned int other;
9837 bfd_vma isa_bit;
9838 bfd_vma val;
9839
9840 htab = mips_elf_hash_table (info);
9841 BFD_ASSERT (htab != NULL);
9842
9843 if (h->use_plt_entry)
9844 {
9845 BFD_ASSERT (h->root.plt.plist != NULL);
9846 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9847 || h->root.plt.plist->comp_offset != MINUS_ONE);
9848
9849 val = htab->plt_header_size;
9850 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9851 {
9852 isa_bit = 0;
9853 val += h->root.plt.plist->mips_offset;
9854 other = 0;
9855 }
9856 else
9857 {
9858 isa_bit = 1;
9859 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9860 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9861 }
9862 val += isa_bit;
9863 /* For VxWorks, point at the PLT load stub rather than the lazy
07d6d2b8
AM
9864 resolution stub; this stub will become the canonical function
9865 address. */
1bbce132
MR
9866 if (htab->is_vxworks)
9867 val += 8;
9868
ce558b89 9869 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9870 h->root.root.u.def.value = val;
9871 h->root.other = other;
9872 }
9873
9874 return TRUE;
33bb52fb
RS
9875}
9876
b49e97c9
TS
9877/* Set the sizes of the dynamic sections. */
9878
b34976b6 9879bfd_boolean
9719ad41
RS
9880_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9881 struct bfd_link_info *info)
b49e97c9
TS
9882{
9883 bfd *dynobj;
861fb55a 9884 asection *s, *sreldyn;
b34976b6 9885 bfd_boolean reltext;
0a44bf69 9886 struct mips_elf_link_hash_table *htab;
b49e97c9 9887
0a44bf69 9888 htab = mips_elf_hash_table (info);
4dfe6ac6 9889 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9890 dynobj = elf_hash_table (info)->dynobj;
9891 BFD_ASSERT (dynobj != NULL);
9892
9893 if (elf_hash_table (info)->dynamic_sections_created)
9894 {
9895 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9896 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9897 {
3d4d4302 9898 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9899 BFD_ASSERT (s != NULL);
eea6121a 9900 s->size
b49e97c9
TS
9901 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9902 s->contents
9903 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9904 }
861fb55a 9905
1bbce132 9906 /* Figure out the size of the PLT header if we know that we
07d6d2b8
AM
9907 are using it. For the sake of cache alignment always use
9908 a standard header whenever any standard entries are present
9909 even if microMIPS entries are present as well. This also
9910 lets the microMIPS header rely on the value of $v0 only set
9911 by microMIPS entries, for a small size reduction.
1bbce132 9912
07d6d2b8
AM
9913 Set symbol table entry values for symbols that use the
9914 address of their PLT entry now that we can calculate it.
1bbce132 9915
07d6d2b8
AM
9916 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9917 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9918 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9919 {
1bbce132
MR
9920 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9921 && !htab->plt_mips_offset);
9922 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9923 bfd_vma isa_bit = micromips_p;
861fb55a 9924 struct elf_link_hash_entry *h;
1bbce132 9925 bfd_vma size;
861fb55a
DJ
9926
9927 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9928 BFD_ASSERT (htab->root.sgotplt->size == 0);
9929 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9930
0e1862bb 9931 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9932 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9933 else if (htab->is_vxworks)
9934 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9935 else if (ABI_64_P (output_bfd))
9936 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9937 else if (ABI_N32_P (output_bfd))
9938 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9939 else if (!micromips_p)
9940 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9941 else if (htab->insn32)
9942 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9943 else
9944 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9945
1bbce132
MR
9946 htab->plt_header_is_comp = micromips_p;
9947 htab->plt_header_size = size;
ce558b89
AM
9948 htab->root.splt->size = (size
9949 + htab->plt_mips_offset
9950 + htab->plt_comp_offset);
9951 htab->root.sgotplt->size = (htab->plt_got_index
9952 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9953
9954 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9955
9956 if (htab->root.hplt == NULL)
9957 {
ce558b89 9958 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9959 "_PROCEDURE_LINKAGE_TABLE_");
9960 htab->root.hplt = h;
9961 if (h == NULL)
9962 return FALSE;
9963 }
9964
9965 h = htab->root.hplt;
9966 h->root.u.def.value = isa_bit;
9967 h->other = other;
861fb55a
DJ
9968 h->type = STT_FUNC;
9969 }
9970 }
4e41d0d7 9971
9a59ad6b 9972 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9973 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9974
33bb52fb
RS
9975 mips_elf_estimate_stub_size (output_bfd, info);
9976
9977 if (!mips_elf_lay_out_got (output_bfd, info))
9978 return FALSE;
9979
9980 mips_elf_lay_out_lazy_stubs (info);
9981
b49e97c9
TS
9982 /* The check_relocs and adjust_dynamic_symbol entry points have
9983 determined the sizes of the various dynamic sections. Allocate
9984 memory for them. */
b34976b6 9985 reltext = FALSE;
b49e97c9
TS
9986 for (s = dynobj->sections; s != NULL; s = s->next)
9987 {
9988 const char *name;
b49e97c9
TS
9989
9990 /* It's OK to base decisions on the section name, because none
9991 of the dynobj section names depend upon the input files. */
9992 name = bfd_get_section_name (dynobj, s);
9993
9994 if ((s->flags & SEC_LINKER_CREATED) == 0)
9995 continue;
9996
0112cd26 9997 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9998 {
c456f082 9999 if (s->size != 0)
b49e97c9
TS
10000 {
10001 const char *outname;
10002 asection *target;
10003
10004 /* If this relocation section applies to a read only
07d6d2b8
AM
10005 section, then we probably need a DT_TEXTREL entry.
10006 If the relocation section is .rel(a).dyn, we always
10007 assert a DT_TEXTREL entry rather than testing whether
10008 there exists a relocation to a read only section or
10009 not. */
b49e97c9
TS
10010 outname = bfd_get_section_name (output_bfd,
10011 s->output_section);
10012 target = bfd_get_section_by_name (output_bfd, outname + 4);
10013 if ((target != NULL
10014 && (target->flags & SEC_READONLY) != 0
10015 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 10016 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 10017 reltext = TRUE;
b49e97c9
TS
10018
10019 /* We use the reloc_count field as a counter if we need
10020 to copy relocs into the output file. */
0a44bf69 10021 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 10022 s->reloc_count = 0;
f4416af6
AO
10023
10024 /* If combreloc is enabled, elf_link_sort_relocs() will
10025 sort relocations, but in a different way than we do,
10026 and before we're done creating relocations. Also, it
10027 will move them around between input sections'
10028 relocation's contents, so our sorting would be
10029 broken, so don't let it run. */
10030 info->combreloc = 0;
b49e97c9
TS
10031 }
10032 }
0e1862bb 10033 else if (bfd_link_executable (info)
b49e97c9 10034 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 10035 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 10036 {
5108fc1b 10037 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 10038 rtld to contain a pointer to the _r_debug structure. */
b4082c70 10039 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
10040 }
10041 else if (SGI_COMPAT (output_bfd)
0112cd26 10042 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 10043 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 10044 else if (s == htab->root.splt)
861fb55a
DJ
10045 {
10046 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
10047 room for an extra nop to fill the delay slot. This is
10048 for CPUs without load interlocking. */
10049 if (! LOAD_INTERLOCKS_P (output_bfd)
10050 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
10051 s->size += 4;
10052 }
0112cd26 10053 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
10054 && s != htab->root.sgot
10055 && s != htab->root.sgotplt
861fb55a 10056 && s != htab->sstubs
5474d94f
AM
10057 && s != htab->root.sdynbss
10058 && s != htab->root.sdynrelro)
b49e97c9
TS
10059 {
10060 /* It's not one of our sections, so don't allocate space. */
10061 continue;
10062 }
10063
c456f082 10064 if (s->size == 0)
b49e97c9 10065 {
8423293d 10066 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
10067 continue;
10068 }
10069
c456f082
AM
10070 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10071 continue;
10072
b49e97c9 10073 /* Allocate memory for the section contents. */
eea6121a 10074 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 10075 if (s->contents == NULL)
b49e97c9
TS
10076 {
10077 bfd_set_error (bfd_error_no_memory);
b34976b6 10078 return FALSE;
b49e97c9
TS
10079 }
10080 }
10081
10082 if (elf_hash_table (info)->dynamic_sections_created)
10083 {
10084 /* Add some entries to the .dynamic section. We fill in the
10085 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10086 must add the entries now so that we get the correct size for
5750dcec 10087 the .dynamic section. */
af5978fb
RS
10088
10089 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 10090 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
10091 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10092 may only look at the first one they see. */
0e1862bb 10093 if (!bfd_link_pic (info)
af5978fb
RS
10094 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10095 return FALSE;
b49e97c9 10096
0e1862bb 10097 if (bfd_link_executable (info)
a5499fa4
MF
10098 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10099 return FALSE;
10100
5750dcec
DJ
10101 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10102 used by the debugger. */
0e1862bb 10103 if (bfd_link_executable (info)
5750dcec
DJ
10104 && !SGI_COMPAT (output_bfd)
10105 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10106 return FALSE;
10107
0a44bf69 10108 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
10109 info->flags |= DF_TEXTREL;
10110
10111 if ((info->flags & DF_TEXTREL) != 0)
10112 {
10113 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 10114 return FALSE;
943284cc
DJ
10115
10116 /* Clear the DF_TEXTREL flag. It will be set again if we
10117 write out an actual text relocation; we may not, because
10118 at this point we do not know whether e.g. any .eh_frame
10119 absolute relocations have been converted to PC-relative. */
10120 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
10121 }
10122
10123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 10124 return FALSE;
b49e97c9 10125
861fb55a 10126 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 10127 if (htab->is_vxworks)
b49e97c9 10128 {
0a44bf69
RS
10129 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10130 use any of the DT_MIPS_* tags. */
861fb55a 10131 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
10132 {
10133 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10134 return FALSE;
b49e97c9 10135
0a44bf69
RS
10136 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10137 return FALSE;
b49e97c9 10138
0a44bf69
RS
10139 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10140 return FALSE;
10141 }
b49e97c9 10142 }
0a44bf69
RS
10143 else
10144 {
db841b6f
MR
10145 if (sreldyn && sreldyn->size > 0
10146 && !bfd_is_abs_section (sreldyn->output_section))
0a44bf69
RS
10147 {
10148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10149 return FALSE;
b49e97c9 10150
0a44bf69
RS
10151 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10152 return FALSE;
b49e97c9 10153
0a44bf69
RS
10154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10155 return FALSE;
10156 }
b49e97c9 10157
0a44bf69
RS
10158 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10159 return FALSE;
b49e97c9 10160
0a44bf69
RS
10161 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10162 return FALSE;
b49e97c9 10163
0a44bf69
RS
10164 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10165 return FALSE;
b49e97c9 10166
0a44bf69
RS
10167 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10168 return FALSE;
b49e97c9 10169
0a44bf69
RS
10170 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10171 return FALSE;
b49e97c9 10172
0a44bf69
RS
10173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10174 return FALSE;
b49e97c9 10175
0a44bf69
RS
10176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10177 return FALSE;
10178
10179 if (IRIX_COMPAT (dynobj) == ict_irix5
10180 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10181 return FALSE;
10182
10183 if (IRIX_COMPAT (dynobj) == ict_irix6
10184 && (bfd_get_section_by_name
af0edeb8 10185 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
10186 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10187 return FALSE;
10188 }
ce558b89 10189 if (htab->root.splt->size > 0)
861fb55a
DJ
10190 {
10191 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10192 return FALSE;
10193
10194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10195 return FALSE;
10196
10197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10198 return FALSE;
10199
10200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10201 return FALSE;
10202 }
7a2b07ff
NS
10203 if (htab->is_vxworks
10204 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10205 return FALSE;
b49e97c9
TS
10206 }
10207
b34976b6 10208 return TRUE;
b49e97c9
TS
10209}
10210\f
81d43bff
RS
10211/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10212 Adjust its R_ADDEND field so that it is correct for the output file.
10213 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10214 and sections respectively; both use symbol indexes. */
10215
10216static void
10217mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10218 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10219 asection **local_sections, Elf_Internal_Rela *rel)
10220{
10221 unsigned int r_type, r_symndx;
10222 Elf_Internal_Sym *sym;
10223 asection *sec;
10224
020d7251 10225 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
10226 {
10227 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 10228 if (gprel16_reloc_p (r_type)
81d43bff 10229 || r_type == R_MIPS_GPREL32
df58fc94 10230 || literal_reloc_p (r_type))
81d43bff
RS
10231 {
10232 rel->r_addend += _bfd_get_gp_value (input_bfd);
10233 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10234 }
10235
10236 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10237 sym = local_syms + r_symndx;
10238
10239 /* Adjust REL's addend to account for section merging. */
0e1862bb 10240 if (!bfd_link_relocatable (info))
81d43bff
RS
10241 {
10242 sec = local_sections[r_symndx];
10243 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10244 }
10245
10246 /* This would normally be done by the rela_normal code in elflink.c. */
10247 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10248 rel->r_addend += local_sections[r_symndx]->output_offset;
10249 }
10250}
10251
545fd46b
MR
10252/* Handle relocations against symbols from removed linkonce sections,
10253 or sections discarded by a linker script. We use this wrapper around
10254 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10255 on 64-bit ELF targets. In this case for any relocation handled, which
10256 always be the first in a triplet, the remaining two have to be processed
10257 together with the first, even if they are R_MIPS_NONE. It is the symbol
10258 index referred by the first reloc that applies to all the three and the
10259 remaining two never refer to an object symbol. And it is the final
10260 relocation (the last non-null one) that determines the output field of
10261 the whole relocation so retrieve the corresponding howto structure for
10262 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10263
10264 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10265 and therefore requires to be pasted in a loop. It also defines a block
10266 and does not protect any of its arguments, hence the extra brackets. */
10267
10268static void
10269mips_reloc_against_discarded_section (bfd *output_bfd,
10270 struct bfd_link_info *info,
10271 bfd *input_bfd, asection *input_section,
10272 Elf_Internal_Rela **rel,
10273 const Elf_Internal_Rela **relend,
10274 bfd_boolean rel_reloc,
10275 reloc_howto_type *howto,
10276 bfd_byte *contents)
10277{
10278 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10279 int count = bed->s->int_rels_per_ext_rel;
10280 unsigned int r_type;
10281 int i;
10282
10283 for (i = count - 1; i > 0; i--)
10284 {
10285 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10286 if (r_type != R_MIPS_NONE)
10287 {
10288 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10289 break;
10290 }
10291 }
10292 do
10293 {
10294 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10295 (*rel), count, (*relend),
10296 howto, i, contents);
10297 }
10298 while (0);
10299}
10300
b49e97c9
TS
10301/* Relocate a MIPS ELF section. */
10302
b34976b6 10303bfd_boolean
9719ad41
RS
10304_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10305 bfd *input_bfd, asection *input_section,
10306 bfd_byte *contents, Elf_Internal_Rela *relocs,
10307 Elf_Internal_Sym *local_syms,
10308 asection **local_sections)
b49e97c9
TS
10309{
10310 Elf_Internal_Rela *rel;
10311 const Elf_Internal_Rela *relend;
10312 bfd_vma addend = 0;
b34976b6 10313 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9 10314
056bafd4 10315 relend = relocs + input_section->reloc_count;
b49e97c9
TS
10316 for (rel = relocs; rel < relend; ++rel)
10317 {
10318 const char *name;
c9adbffe 10319 bfd_vma value = 0;
b49e97c9 10320 reloc_howto_type *howto;
ad3d9127 10321 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10322 /* TRUE if the relocation is a RELA relocation, rather than a
07d6d2b8 10323 REL relocation. */
b34976b6 10324 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10325 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10326 const char *msg;
ab96bf03
AM
10327 unsigned long r_symndx;
10328 asection *sec;
749b8d9d
L
10329 Elf_Internal_Shdr *symtab_hdr;
10330 struct elf_link_hash_entry *h;
d4730f92 10331 bfd_boolean rel_reloc;
b49e97c9 10332
d4730f92
BS
10333 rel_reloc = (NEWABI_P (input_bfd)
10334 && mips_elf_rel_relocation_p (input_bfd, input_section,
10335 relocs, rel));
b49e97c9 10336 /* Find the relocation howto for this relocation. */
d4730f92 10337 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10338
10339 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10340 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10341 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10342 {
10343 sec = local_sections[r_symndx];
10344 h = NULL;
10345 }
ab96bf03
AM
10346 else
10347 {
ab96bf03 10348 unsigned long extsymoff;
ab96bf03 10349
ab96bf03
AM
10350 extsymoff = 0;
10351 if (!elf_bad_symtab (input_bfd))
10352 extsymoff = symtab_hdr->sh_info;
10353 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10354 while (h->root.type == bfd_link_hash_indirect
10355 || h->root.type == bfd_link_hash_warning)
10356 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10357
10358 sec = NULL;
10359 if (h->root.type == bfd_link_hash_defined
10360 || h->root.type == bfd_link_hash_defweak)
10361 sec = h->root.u.def.section;
10362 }
10363
dbaa2011 10364 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10365 {
10366 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10367 input_section, &rel, &relend,
10368 rel_reloc, howto, contents);
10369 continue;
10370 }
ab96bf03 10371
4a14403c 10372 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10373 {
10374 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10375 64-bit code, but make sure all their addresses are in the
10376 lowermost or uppermost 32-bit section of the 64-bit address
10377 space. Thus, when they use an R_MIPS_64 they mean what is
10378 usually meant by R_MIPS_32, with the exception that the
10379 stored value is sign-extended to 64 bits. */
b34976b6 10380 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10381
10382 /* On big-endian systems, we need to lie about the position
10383 of the reloc. */
10384 if (bfd_big_endian (input_bfd))
10385 rel->r_offset += 4;
10386 }
b49e97c9
TS
10387
10388 if (!use_saved_addend_p)
10389 {
b49e97c9
TS
10390 /* If these relocations were originally of the REL variety,
10391 we must pull the addend out of the field that will be
10392 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10393 RELA relocation. */
10394 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10395 relocs, rel))
b49e97c9 10396 {
b34976b6 10397 rela_relocation_p = FALSE;
c224138d
RS
10398 addend = mips_elf_read_rel_addend (input_bfd, rel,
10399 howto, contents);
738e5348
RS
10400 if (hi16_reloc_p (r_type)
10401 || (got16_reloc_p (r_type)
b49e97c9 10402 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10403 local_sections)))
b49e97c9 10404 {
c224138d
RS
10405 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10406 contents, &addend))
749b8d9d 10407 {
749b8d9d
L
10408 if (h)
10409 name = h->root.root.string;
10410 else
10411 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10412 local_syms + r_symndx,
10413 sec);
4eca0228 10414 _bfd_error_handler
695344c0 10415 /* xgettext:c-format */
2c1c9679 10416 (_("%pB: can't find matching LO16 reloc against `%s'"
2dcf00ce 10417 " for %s at %#" PRIx64 " in section `%pA'"),
c08bb8dd 10418 input_bfd, name,
2dcf00ce 10419 howto->name, (uint64_t) rel->r_offset, input_section);
749b8d9d 10420 }
b49e97c9 10421 }
30ac9238
RS
10422 else
10423 addend <<= howto->rightshift;
b49e97c9
TS
10424 }
10425 else
10426 addend = rel->r_addend;
81d43bff
RS
10427 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10428 local_syms, local_sections, rel);
b49e97c9
TS
10429 }
10430
0e1862bb 10431 if (bfd_link_relocatable (info))
b49e97c9 10432 {
4a14403c 10433 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10434 && bfd_big_endian (input_bfd))
10435 rel->r_offset -= 4;
10436
81d43bff 10437 if (!rela_relocation_p && rel->r_addend)
5a659663 10438 {
81d43bff 10439 addend += rel->r_addend;
738e5348 10440 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10441 addend = mips_elf_high (addend);
10442 else if (r_type == R_MIPS_HIGHER)
10443 addend = mips_elf_higher (addend);
10444 else if (r_type == R_MIPS_HIGHEST)
10445 addend = mips_elf_highest (addend);
30ac9238
RS
10446 else
10447 addend >>= howto->rightshift;
b49e97c9 10448
30ac9238
RS
10449 /* We use the source mask, rather than the destination
10450 mask because the place to which we are writing will be
10451 source of the addend in the final link. */
b49e97c9
TS
10452 addend &= howto->src_mask;
10453
5a659663 10454 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10455 /* See the comment above about using R_MIPS_64 in the 32-bit
10456 ABI. Here, we need to update the addend. It would be
10457 possible to get away with just using the R_MIPS_32 reloc
10458 but for endianness. */
10459 {
10460 bfd_vma sign_bits;
10461 bfd_vma low_bits;
10462 bfd_vma high_bits;
10463
10464 if (addend & ((bfd_vma) 1 << 31))
10465#ifdef BFD64
10466 sign_bits = ((bfd_vma) 1 << 32) - 1;
10467#else
10468 sign_bits = -1;
10469#endif
10470 else
10471 sign_bits = 0;
10472
10473 /* If we don't know that we have a 64-bit type,
10474 do two separate stores. */
10475 if (bfd_big_endian (input_bfd))
10476 {
10477 /* Store the sign-bits (which are most significant)
10478 first. */
10479 low_bits = sign_bits;
10480 high_bits = addend;
10481 }
10482 else
10483 {
10484 low_bits = addend;
10485 high_bits = sign_bits;
10486 }
10487 bfd_put_32 (input_bfd, low_bits,
10488 contents + rel->r_offset);
10489 bfd_put_32 (input_bfd, high_bits,
10490 contents + rel->r_offset + 4);
10491 continue;
10492 }
10493
10494 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10495 input_bfd, input_section,
b34976b6
AM
10496 contents, FALSE))
10497 return FALSE;
b49e97c9
TS
10498 }
10499
10500 /* Go on to the next relocation. */
10501 continue;
10502 }
10503
10504 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10505 relocations for the same offset. In that case we are
10506 supposed to treat the output of each relocation as the addend
10507 for the next. */
10508 if (rel + 1 < relend
10509 && rel->r_offset == rel[1].r_offset
10510 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10511 use_saved_addend_p = TRUE;
b49e97c9 10512 else
b34976b6 10513 use_saved_addend_p = FALSE;
b49e97c9
TS
10514
10515 /* Figure out what value we are supposed to relocate. */
10516 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
47275900
MR
10517 input_section, contents,
10518 info, rel, addend, howto,
10519 local_syms, local_sections,
10520 &value, &name, &cross_mode_jump_p,
bce03d3d 10521 use_saved_addend_p))
b49e97c9
TS
10522 {
10523 case bfd_reloc_continue:
10524 /* There's nothing to do. */
10525 continue;
10526
10527 case bfd_reloc_undefined:
10528 /* mips_elf_calculate_relocation already called the
10529 undefined_symbol callback. There's no real point in
10530 trying to perform the relocation at this point, so we
10531 just skip ahead to the next relocation. */
10532 continue;
10533
10534 case bfd_reloc_notsupported:
10535 msg = _("internal error: unsupported relocation error");
10536 info->callbacks->warning
10537 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10538 return FALSE;
b49e97c9
TS
10539
10540 case bfd_reloc_overflow:
10541 if (use_saved_addend_p)
10542 /* Ignore overflow until we reach the last relocation for
10543 a given location. */
10544 ;
10545 else
10546 {
0e53d9da
AN
10547 struct mips_elf_link_hash_table *htab;
10548
10549 htab = mips_elf_hash_table (info);
4dfe6ac6 10550 BFD_ASSERT (htab != NULL);
b49e97c9 10551 BFD_ASSERT (name != NULL);
0e53d9da 10552 if (!htab->small_data_overflow_reported
9684f078 10553 && (gprel16_reloc_p (howto->type)
df58fc94 10554 || literal_reloc_p (howto->type)))
0e53d9da 10555 {
91d6fa6a
NC
10556 msg = _("small-data section exceeds 64KB;"
10557 " lower small-data size limit (see option -G)");
0e53d9da
AN
10558
10559 htab->small_data_overflow_reported = TRUE;
10560 (*info->callbacks->einfo) ("%P: %s\n", msg);
10561 }
1a72702b
AM
10562 (*info->callbacks->reloc_overflow)
10563 (info, NULL, name, howto->name, (bfd_vma) 0,
10564 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10565 }
10566 break;
10567
10568 case bfd_reloc_ok:
10569 break;
10570
df58fc94 10571 case bfd_reloc_outofrange:
7db9a74e 10572 msg = NULL;
df58fc94 10573 if (jal_reloc_p (howto->type))
9d862524 10574 msg = (cross_mode_jump_p
2c1c9679 10575 ? _("cannot convert a jump to JALX "
9d862524
MR
10576 "for a non-word-aligned address")
10577 : (howto->type == R_MIPS16_26
2c1c9679
AM
10578 ? _("jump to a non-word-aligned address")
10579 : _("jump to a non-instruction-aligned address")));
99aefae6 10580 else if (b_reloc_p (howto->type))
a6ebf616 10581 msg = (cross_mode_jump_p
2c1c9679 10582 ? _("cannot convert a branch to JALX "
a6ebf616 10583 "for a non-word-aligned address")
2c1c9679 10584 : _("branch to a non-instruction-aligned address"));
7db9a74e
MR
10585 else if (aligned_pcrel_reloc_p (howto->type))
10586 msg = _("PC-relative load from unaligned address");
10587 if (msg)
df58fc94 10588 {
de341542 10589 info->callbacks->einfo
ed53407e
MR
10590 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10591 break;
7361da2c 10592 }
df58fc94
RS
10593 /* Fall through. */
10594
b49e97c9
TS
10595 default:
10596 abort ();
10597 break;
10598 }
10599
10600 /* If we've got another relocation for the address, keep going
10601 until we reach the last one. */
10602 if (use_saved_addend_p)
10603 {
10604 addend = value;
10605 continue;
10606 }
10607
4a14403c 10608 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10609 /* See the comment above about using R_MIPS_64 in the 32-bit
10610 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10611 that calculated the right value. Now, however, we
10612 sign-extend the 32-bit result to 64-bits, and store it as a
10613 64-bit value. We are especially generous here in that we
10614 go to extreme lengths to support this usage on systems with
10615 only a 32-bit VMA. */
10616 {
10617 bfd_vma sign_bits;
10618 bfd_vma low_bits;
10619 bfd_vma high_bits;
10620
10621 if (value & ((bfd_vma) 1 << 31))
10622#ifdef BFD64
10623 sign_bits = ((bfd_vma) 1 << 32) - 1;
10624#else
10625 sign_bits = -1;
10626#endif
10627 else
10628 sign_bits = 0;
10629
10630 /* If we don't know that we have a 64-bit type,
10631 do two separate stores. */
10632 if (bfd_big_endian (input_bfd))
10633 {
10634 /* Undo what we did above. */
10635 rel->r_offset -= 4;
10636 /* Store the sign-bits (which are most significant)
10637 first. */
10638 low_bits = sign_bits;
10639 high_bits = value;
10640 }
10641 else
10642 {
10643 low_bits = value;
10644 high_bits = sign_bits;
10645 }
10646 bfd_put_32 (input_bfd, low_bits,
10647 contents + rel->r_offset);
10648 bfd_put_32 (input_bfd, high_bits,
10649 contents + rel->r_offset + 4);
10650 continue;
10651 }
10652
10653 /* Actually perform the relocation. */
10654 if (! mips_elf_perform_relocation (info, howto, rel, value,
10655 input_bfd, input_section,
38a7df63 10656 contents, cross_mode_jump_p))
b34976b6 10657 return FALSE;
b49e97c9
TS
10658 }
10659
b34976b6 10660 return TRUE;
b49e97c9
TS
10661}
10662\f
861fb55a
DJ
10663/* A function that iterates over each entry in la25_stubs and fills
10664 in the code for each one. DATA points to a mips_htab_traverse_info. */
10665
10666static int
10667mips_elf_create_la25_stub (void **slot, void *data)
10668{
10669 struct mips_htab_traverse_info *hti;
10670 struct mips_elf_link_hash_table *htab;
10671 struct mips_elf_la25_stub *stub;
10672 asection *s;
10673 bfd_byte *loc;
10674 bfd_vma offset, target, target_high, target_low;
3734320d
MF
10675 bfd_vma branch_pc;
10676 bfd_signed_vma pcrel_offset = 0;
861fb55a
DJ
10677
10678 stub = (struct mips_elf_la25_stub *) *slot;
10679 hti = (struct mips_htab_traverse_info *) data;
10680 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10681 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10682
10683 /* Create the section contents, if we haven't already. */
10684 s = stub->stub_section;
10685 loc = s->contents;
10686 if (loc == NULL)
10687 {
10688 loc = bfd_malloc (s->size);
10689 if (loc == NULL)
10690 {
10691 hti->error = TRUE;
10692 return FALSE;
10693 }
10694 s->contents = loc;
10695 }
10696
10697 /* Work out where in the section this stub should go. */
10698 offset = stub->offset;
10699
3734320d
MF
10700 /* We add 8 here to account for the LUI/ADDIU instructions
10701 before the branch instruction. This cannot be moved down to
10702 where pcrel_offset is calculated as 's' is updated in
10703 mips_elf_get_la25_target. */
10704 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10705
861fb55a 10706 /* Work out the target address. */
8f0c309a
CLT
10707 target = mips_elf_get_la25_target (stub, &s);
10708 target += s->output_section->vma + s->output_offset;
10709
861fb55a
DJ
10710 target_high = ((target + 0x8000) >> 16) & 0xffff;
10711 target_low = (target & 0xffff);
10712
3734320d
MF
10713 /* Calculate the PC of the compact branch instruction (for the case where
10714 compact branches are used for either microMIPSR6 or MIPSR6 with
10715 compact branches. Add 4-bytes to account for BC using the PC of the
10716 next instruction as the base. */
10717 pcrel_offset = target - (branch_pc + 4);
10718
861fb55a
DJ
10719 if (stub->stub_section != htab->strampoline)
10720 {
df58fc94 10721 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10722 of the section and write the two instructions at the end. */
10723 memset (loc, 0, offset);
10724 loc += offset;
df58fc94
RS
10725 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10726 {
d21911ea
MR
10727 bfd_put_micromips_32 (hti->output_bfd,
10728 LA25_LUI_MICROMIPS (target_high),
10729 loc);
10730 bfd_put_micromips_32 (hti->output_bfd,
10731 LA25_ADDIU_MICROMIPS (target_low),
10732 loc + 4);
df58fc94
RS
10733 }
10734 else
10735 {
10736 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10737 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10738 }
861fb55a
DJ
10739 }
10740 else
10741 {
10742 /* This is trampoline. */
10743 loc += offset;
df58fc94
RS
10744 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10745 {
d21911ea
MR
10746 bfd_put_micromips_32 (hti->output_bfd,
10747 LA25_LUI_MICROMIPS (target_high), loc);
10748 bfd_put_micromips_32 (hti->output_bfd,
10749 LA25_J_MICROMIPS (target), loc + 4);
10750 bfd_put_micromips_32 (hti->output_bfd,
10751 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10752 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10753 }
10754 else
10755 {
10756 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
3734320d
MF
10757 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10758 {
10759 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10760 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10761 }
10762 else
10763 {
10764 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10765 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10766 }
df58fc94
RS
10767 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10768 }
861fb55a
DJ
10769 }
10770 return TRUE;
10771}
10772
b49e97c9
TS
10773/* If NAME is one of the special IRIX6 symbols defined by the linker,
10774 adjust it appropriately now. */
10775
10776static void
9719ad41
RS
10777mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10778 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10779{
10780 /* The linker script takes care of providing names and values for
10781 these, but we must place them into the right sections. */
10782 static const char* const text_section_symbols[] = {
10783 "_ftext",
10784 "_etext",
10785 "__dso_displacement",
10786 "__elf_header",
10787 "__program_header_table",
10788 NULL
10789 };
10790
10791 static const char* const data_section_symbols[] = {
10792 "_fdata",
10793 "_edata",
10794 "_end",
10795 "_fbss",
10796 NULL
10797 };
10798
10799 const char* const *p;
10800 int i;
10801
10802 for (i = 0; i < 2; ++i)
10803 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10804 *p;
10805 ++p)
10806 if (strcmp (*p, name) == 0)
10807 {
10808 /* All of these symbols are given type STT_SECTION by the
10809 IRIX6 linker. */
10810 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10811 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10812
10813 /* The IRIX linker puts these symbols in special sections. */
10814 if (i == 0)
10815 sym->st_shndx = SHN_MIPS_TEXT;
10816 else
10817 sym->st_shndx = SHN_MIPS_DATA;
10818
10819 break;
10820 }
10821}
10822
10823/* Finish up dynamic symbol handling. We set the contents of various
10824 dynamic sections here. */
10825
b34976b6 10826bfd_boolean
9719ad41
RS
10827_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10828 struct bfd_link_info *info,
10829 struct elf_link_hash_entry *h,
10830 Elf_Internal_Sym *sym)
b49e97c9
TS
10831{
10832 bfd *dynobj;
b49e97c9 10833 asection *sgot;
f4416af6 10834 struct mips_got_info *g, *gg;
b49e97c9 10835 const char *name;
3d6746ca 10836 int idx;
5108fc1b 10837 struct mips_elf_link_hash_table *htab;
738e5348 10838 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10839
5108fc1b 10840 htab = mips_elf_hash_table (info);
4dfe6ac6 10841 BFD_ASSERT (htab != NULL);
b49e97c9 10842 dynobj = elf_hash_table (info)->dynobj;
738e5348 10843 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10844
861fb55a
DJ
10845 BFD_ASSERT (!htab->is_vxworks);
10846
1bbce132
MR
10847 if (h->plt.plist != NULL
10848 && (h->plt.plist->mips_offset != MINUS_ONE
10849 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10850 {
10851 /* We've decided to create a PLT entry for this symbol. */
10852 bfd_byte *loc;
1bbce132 10853 bfd_vma header_address, got_address;
861fb55a 10854 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10855 bfd_vma got_index;
10856 bfd_vma isa_bit;
10857
10858 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10859
10860 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10861 BFD_ASSERT (h->dynindx != -1);
ce558b89 10862 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10863 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10864 BFD_ASSERT (!h->def_regular);
10865
10866 /* Calculate the address of the PLT header. */
1bbce132 10867 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10868 header_address = (htab->root.splt->output_section->vma
10869 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10870
10871 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10872 got_address = (htab->root.sgotplt->output_section->vma
10873 + htab->root.sgotplt->output_offset
1bbce132
MR
10874 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10875
861fb55a
DJ
10876 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10877 got_address_low = got_address & 0xffff;
10878
789ff5b6
MR
10879 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10880 cannot be loaded in two instructions. */
10881 if (ABI_64_P (output_bfd)
10882 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10883 {
10884 _bfd_error_handler
10885 /* xgettext:c-format */
10886 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10887 "supported; consider using `-Ttext-segment=...'"),
10888 output_bfd,
10889 htab->root.sgotplt->output_section,
10890 (int64_t) got_address);
10891 bfd_set_error (bfd_error_no_error);
10892 return FALSE;
10893 }
10894
861fb55a 10895 /* Initially point the .got.plt entry at the PLT header. */
6a382bce
MR
10896 loc = (htab->root.sgotplt->contents
10897 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10898 if (ABI_64_P (output_bfd))
10899 bfd_put_64 (output_bfd, header_address, loc);
10900 else
10901 bfd_put_32 (output_bfd, header_address, loc);
10902
1bbce132 10903 /* Now handle the PLT itself. First the standard entry (the order
07d6d2b8 10904 does not matter, we just have to pick one). */
1bbce132
MR
10905 if (h->plt.plist->mips_offset != MINUS_ONE)
10906 {
10907 const bfd_vma *plt_entry;
10908 bfd_vma plt_offset;
861fb55a 10909
1bbce132 10910 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10911
ce558b89 10912 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10913
1bbce132 10914 /* Find out where the .plt entry should go. */
ce558b89 10915 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10916
10917 /* Pick the load opcode. */
10918 load = MIPS_ELF_LOAD_WORD (output_bfd);
10919
10920 /* Fill in the PLT entry itself. */
7361da2c
AB
10921
10922 if (MIPSR6_P (output_bfd))
3734320d
MF
10923 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10924 : mipsr6_exec_plt_entry;
7361da2c
AB
10925 else
10926 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10927 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10928 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10929 loc + 4);
10930
3734320d
MF
10931 if (! LOAD_INTERLOCKS_P (output_bfd)
10932 || (MIPSR6_P (output_bfd) && htab->compact_branches))
1bbce132
MR
10933 {
10934 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10935 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10936 }
10937 else
10938 {
10939 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10940 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10941 loc + 12);
10942 }
6d30f5b2 10943 }
1bbce132
MR
10944
10945 /* Now the compressed entry. They come after any standard ones. */
10946 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10947 {
1bbce132
MR
10948 bfd_vma plt_offset;
10949
10950 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10951 + h->plt.plist->comp_offset);
10952
ce558b89 10953 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10954
10955 /* Find out where the .plt entry should go. */
ce558b89 10956 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10957
10958 /* Fill in the PLT entry itself. */
833794fc
MR
10959 if (!MICROMIPS_P (output_bfd))
10960 {
10961 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10962
10963 bfd_put_16 (output_bfd, plt_entry[0], loc);
10964 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10965 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10966 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10967 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10968 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10969 bfd_put_32 (output_bfd, got_address, loc + 12);
10970 }
10971 else if (htab->insn32)
10972 {
10973 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10974
10975 bfd_put_16 (output_bfd, plt_entry[0], loc);
10976 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10977 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10978 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10979 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10980 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10981 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10982 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10983 }
10984 else
1bbce132
MR
10985 {
10986 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10987 bfd_signed_vma gotpc_offset;
10988 bfd_vma loc_address;
10989
10990 BFD_ASSERT (got_address % 4 == 0);
10991
ce558b89
AM
10992 loc_address = (htab->root.splt->output_section->vma
10993 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
10994 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10995
10996 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10997 if (gotpc_offset + 0x1000000 >= 0x2000000)
10998 {
4eca0228 10999 _bfd_error_handler
695344c0 11000 /* xgettext:c-format */
2dcf00ce 11001 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
1bbce132
MR
11002 "beyond the range of ADDIUPC"),
11003 output_bfd,
ce558b89 11004 htab->root.sgotplt->output_section,
2dcf00ce 11005 (int64_t) gotpc_offset,
c08bb8dd 11006 htab->root.splt->output_section);
1bbce132
MR
11007 bfd_set_error (bfd_error_no_error);
11008 return FALSE;
11009 }
11010 bfd_put_16 (output_bfd,
11011 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11012 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11013 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11014 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11015 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11016 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11017 }
6d30f5b2 11018 }
861fb55a
DJ
11019
11020 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11021 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 11022 got_index - 2, h->dynindx,
861fb55a
DJ
11023 R_MIPS_JUMP_SLOT, got_address);
11024
11025 /* We distinguish between PLT entries and lazy-binding stubs by
11026 giving the former an st_other value of STO_MIPS_PLT. Set the
11027 flag and leave the value if there are any relocations in the
11028 binary where pointer equality matters. */
11029 sym->st_shndx = SHN_UNDEF;
11030 if (h->pointer_equality_needed)
1bbce132 11031 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 11032 else
1bbce132
MR
11033 {
11034 sym->st_value = 0;
11035 sym->st_other = 0;
11036 }
861fb55a 11037 }
1bbce132
MR
11038
11039 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 11040 {
861fb55a 11041 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
11042 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11043 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11044 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 11045 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
11046 bfd_vma isa_bit = micromips_p;
11047 bfd_vma stub_big_size;
11048
833794fc 11049 if (!micromips_p)
1bbce132 11050 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
11051 else if (htab->insn32)
11052 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11053 else
11054 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
11055
11056 /* This symbol has a stub. Set it up. */
11057
11058 BFD_ASSERT (h->dynindx != -1);
11059
1bbce132 11060 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
11061
11062 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
11063 sign extension at runtime in the stub, resulting in a negative
11064 index value. */
11065 if (h->dynindx & ~0x7fffffff)
b34976b6 11066 return FALSE;
b49e97c9
TS
11067
11068 /* Fill the stub. */
1bbce132
MR
11069 if (micromips_p)
11070 {
11071 idx = 0;
11072 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11073 stub + idx);
11074 idx += 4;
833794fc
MR
11075 if (htab->insn32)
11076 {
11077 bfd_put_micromips_32 (output_bfd,
40fc1451 11078 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
11079 idx += 4;
11080 }
11081 else
11082 {
11083 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11084 idx += 2;
11085 }
1bbce132
MR
11086 if (stub_size == stub_big_size)
11087 {
11088 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11089
11090 bfd_put_micromips_32 (output_bfd,
11091 STUB_LUI_MICROMIPS (dynindx_hi),
11092 stub + idx);
11093 idx += 4;
11094 }
833794fc
MR
11095 if (htab->insn32)
11096 {
11097 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11098 stub + idx);
11099 idx += 4;
11100 }
11101 else
11102 {
11103 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11104 idx += 2;
11105 }
1bbce132
MR
11106
11107 /* If a large stub is not required and sign extension is not a
11108 problem, then use legacy code in the stub. */
11109 if (stub_size == stub_big_size)
11110 bfd_put_micromips_32 (output_bfd,
11111 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11112 stub + idx);
11113 else if (h->dynindx & ~0x7fff)
11114 bfd_put_micromips_32 (output_bfd,
11115 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11116 stub + idx);
11117 else
11118 bfd_put_micromips_32 (output_bfd,
11119 STUB_LI16S_MICROMIPS (output_bfd,
11120 h->dynindx),
11121 stub + idx);
11122 }
3d6746ca 11123 else
1bbce132
MR
11124 {
11125 idx = 0;
11126 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11127 idx += 4;
40fc1451 11128 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
11129 idx += 4;
11130 if (stub_size == stub_big_size)
11131 {
11132 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11133 stub + idx);
11134 idx += 4;
11135 }
3734320d
MF
11136
11137 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11138 {
11139 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11140 idx += 4;
11141 }
1bbce132
MR
11142
11143 /* If a large stub is not required and sign extension is not a
11144 problem, then use legacy code in the stub. */
11145 if (stub_size == stub_big_size)
11146 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11147 stub + idx);
11148 else if (h->dynindx & ~0x7fff)
11149 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11150 stub + idx);
11151 else
11152 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11153 stub + idx);
3734320d
MF
11154 idx += 4;
11155
11156 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11157 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
1bbce132 11158 }
5108fc1b 11159
1bbce132
MR
11160 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11161 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11162 stub, stub_size);
b49e97c9 11163
1bbce132 11164 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
11165 only for the referenced symbol. */
11166 sym->st_shndx = SHN_UNDEF;
11167
11168 /* The run-time linker uses the st_value field of the symbol
11169 to reset the global offset table entry for this external
11170 to its stub address when unlinking a shared object. */
4e41d0d7
RS
11171 sym->st_value = (htab->sstubs->output_section->vma
11172 + htab->sstubs->output_offset
1bbce132
MR
11173 + h->plt.plist->stub_offset
11174 + isa_bit);
11175 sym->st_other = other;
b49e97c9
TS
11176 }
11177
738e5348
RS
11178 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11179 refer to the stub, since only the stub uses the standard calling
11180 conventions. */
11181 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11182 {
11183 BFD_ASSERT (hmips->need_fn_stub);
11184 sym->st_value = (hmips->fn_stub->output_section->vma
11185 + hmips->fn_stub->output_offset);
11186 sym->st_size = hmips->fn_stub->size;
11187 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11188 }
11189
b49e97c9 11190 BFD_ASSERT (h->dynindx != -1
f5385ebf 11191 || h->forced_local);
b49e97c9 11192
ce558b89 11193 sgot = htab->root.sgot;
a8028dd0 11194 g = htab->got_info;
b49e97c9
TS
11195 BFD_ASSERT (g != NULL);
11196
11197 /* Run through the global symbol table, creating GOT entries for all
11198 the symbols that need them. */
020d7251 11199 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
11200 {
11201 bfd_vma offset;
11202 bfd_vma value;
11203
6eaa6adc 11204 value = sym->st_value;
13fbec83 11205 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
11206 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11207 }
11208
e641e783 11209 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
11210 {
11211 struct mips_got_entry e, *p;
0626d451 11212 bfd_vma entry;
f4416af6 11213 bfd_vma offset;
f4416af6
AO
11214
11215 gg = g;
11216
11217 e.abfd = output_bfd;
11218 e.symndx = -1;
738e5348 11219 e.d.h = hmips;
9ab066b4 11220 e.tls_type = GOT_TLS_NONE;
143d77c5 11221
f4416af6
AO
11222 for (g = g->next; g->next != gg; g = g->next)
11223 {
11224 if (g->got_entries
11225 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11226 &e)))
11227 {
11228 offset = p->gotidx;
ce558b89 11229 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 11230 if (bfd_link_pic (info)
0626d451
RS
11231 || (elf_hash_table (info)->dynamic_sections_created
11232 && p->d.h != NULL
f5385ebf
AM
11233 && p->d.h->root.def_dynamic
11234 && !p->d.h->root.def_regular))
0626d451
RS
11235 {
11236 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11237 the various compatibility problems, it's easier to mock
11238 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11239 mips_elf_create_dynamic_relocation to calculate the
11240 appropriate addend. */
11241 Elf_Internal_Rela rel[3];
11242
11243 memset (rel, 0, sizeof (rel));
11244 if (ABI_64_P (output_bfd))
11245 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11246 else
11247 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11248 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11249
11250 entry = 0;
11251 if (! (mips_elf_create_dynamic_relocation
11252 (output_bfd, info, rel,
11253 e.d.h, NULL, sym->st_value, &entry, sgot)))
11254 return FALSE;
11255 }
11256 else
11257 entry = sym->st_value;
11258 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
11259 }
11260 }
11261 }
11262
b49e97c9
TS
11263 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11264 name = h->root.root.string;
9637f6ef 11265 if (h == elf_hash_table (info)->hdynamic
22edb2f1 11266 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
11267 sym->st_shndx = SHN_ABS;
11268 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11269 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11270 {
11271 sym->st_shndx = SHN_ABS;
11272 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11273 sym->st_value = 1;
11274 }
b49e97c9
TS
11275 else if (SGI_COMPAT (output_bfd))
11276 {
11277 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11278 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11279 {
11280 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11281 sym->st_other = STO_PROTECTED;
11282 sym->st_value = 0;
11283 sym->st_shndx = SHN_MIPS_DATA;
11284 }
11285 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11286 {
11287 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11288 sym->st_other = STO_PROTECTED;
11289 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11290 sym->st_shndx = SHN_ABS;
11291 }
11292 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11293 {
11294 if (h->type == STT_FUNC)
11295 sym->st_shndx = SHN_MIPS_TEXT;
11296 else if (h->type == STT_OBJECT)
11297 sym->st_shndx = SHN_MIPS_DATA;
11298 }
11299 }
11300
861fb55a
DJ
11301 /* Emit a copy reloc, if needed. */
11302 if (h->needs_copy)
11303 {
11304 asection *s;
11305 bfd_vma symval;
11306
11307 BFD_ASSERT (h->dynindx != -1);
11308 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11309
11310 s = mips_elf_rel_dyn_section (info, FALSE);
11311 symval = (h->root.u.def.section->output_section->vma
11312 + h->root.u.def.section->output_offset
11313 + h->root.u.def.value);
11314 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11315 h->dynindx, R_MIPS_COPY, symval);
11316 }
11317
b49e97c9
TS
11318 /* Handle the IRIX6-specific symbols. */
11319 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11320 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11321
cbf8d970
MR
11322 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11323 to treat compressed symbols like any other. */
30c09090 11324 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11325 {
11326 BFD_ASSERT (sym->st_value & 1);
11327 sym->st_other -= STO_MIPS16;
11328 }
cbf8d970
MR
11329 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11330 {
11331 BFD_ASSERT (sym->st_value & 1);
11332 sym->st_other -= STO_MICROMIPS;
11333 }
b49e97c9 11334
b34976b6 11335 return TRUE;
b49e97c9
TS
11336}
11337
0a44bf69
RS
11338/* Likewise, for VxWorks. */
11339
11340bfd_boolean
11341_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11342 struct bfd_link_info *info,
11343 struct elf_link_hash_entry *h,
11344 Elf_Internal_Sym *sym)
11345{
11346 bfd *dynobj;
11347 asection *sgot;
11348 struct mips_got_info *g;
11349 struct mips_elf_link_hash_table *htab;
020d7251 11350 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11351
11352 htab = mips_elf_hash_table (info);
4dfe6ac6 11353 BFD_ASSERT (htab != NULL);
0a44bf69 11354 dynobj = elf_hash_table (info)->dynobj;
020d7251 11355 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11356
1bbce132 11357 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11358 {
6d79d2ed 11359 bfd_byte *loc;
1bbce132 11360 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11361 Elf_Internal_Rela rel;
11362 static const bfd_vma *plt_entry;
1bbce132
MR
11363 bfd_vma gotplt_index;
11364 bfd_vma plt_offset;
11365
11366 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11367 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11368
11369 BFD_ASSERT (h->dynindx != -1);
ce558b89 11370 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11371 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11372 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11373
11374 /* Calculate the address of the .plt entry. */
ce558b89
AM
11375 plt_address = (htab->root.splt->output_section->vma
11376 + htab->root.splt->output_offset
1bbce132 11377 + plt_offset);
0a44bf69
RS
11378
11379 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11380 got_address = (htab->root.sgotplt->output_section->vma
11381 + htab->root.sgotplt->output_offset
1bbce132 11382 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11383
11384 /* Calculate the offset of the .got.plt entry from
11385 _GLOBAL_OFFSET_TABLE_. */
11386 got_offset = mips_elf_gotplt_index (info, h);
11387
11388 /* Calculate the offset for the branch at the start of the PLT
11389 entry. The branch jumps to the beginning of .plt. */
1bbce132 11390 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11391
11392 /* Fill in the initial value of the .got.plt entry. */
11393 bfd_put_32 (output_bfd, plt_address,
ce558b89 11394 (htab->root.sgotplt->contents
1bbce132 11395 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11396
11397 /* Find out where the .plt entry should go. */
ce558b89 11398 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11399
0e1862bb 11400 if (bfd_link_pic (info))
0a44bf69
RS
11401 {
11402 plt_entry = mips_vxworks_shared_plt_entry;
11403 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11404 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11405 }
11406 else
11407 {
11408 bfd_vma got_address_high, got_address_low;
11409
11410 plt_entry = mips_vxworks_exec_plt_entry;
11411 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11412 got_address_low = got_address & 0xffff;
11413
11414 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11415 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11416 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11417 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11418 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11419 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11420 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11421 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11422
11423 loc = (htab->srelplt2->contents
1bbce132 11424 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11425
11426 /* Emit a relocation for the .got.plt entry. */
11427 rel.r_offset = got_address;
11428 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11429 rel.r_addend = plt_offset;
0a44bf69
RS
11430 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11431
11432 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11433 loc += sizeof (Elf32_External_Rela);
11434 rel.r_offset = plt_address + 8;
11435 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11436 rel.r_addend = got_offset;
11437 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11438
11439 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11440 loc += sizeof (Elf32_External_Rela);
11441 rel.r_offset += 4;
11442 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11443 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11444 }
11445
11446 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11447 loc = (htab->root.srelplt->contents
1bbce132 11448 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11449 rel.r_offset = got_address;
11450 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11451 rel.r_addend = 0;
11452 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11453
11454 if (!h->def_regular)
11455 sym->st_shndx = SHN_UNDEF;
11456 }
11457
11458 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11459
ce558b89 11460 sgot = htab->root.sgot;
a8028dd0 11461 g = htab->got_info;
0a44bf69
RS
11462 BFD_ASSERT (g != NULL);
11463
11464 /* See if this symbol has an entry in the GOT. */
020d7251 11465 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11466 {
11467 bfd_vma offset;
11468 Elf_Internal_Rela outrel;
11469 bfd_byte *loc;
11470 asection *s;
11471
11472 /* Install the symbol value in the GOT. */
13fbec83 11473 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11474 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11475
11476 /* Add a dynamic relocation for it. */
11477 s = mips_elf_rel_dyn_section (info, FALSE);
11478 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11479 outrel.r_offset = (sgot->output_section->vma
11480 + sgot->output_offset
11481 + offset);
11482 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11483 outrel.r_addend = 0;
11484 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11485 }
11486
11487 /* Emit a copy reloc, if needed. */
11488 if (h->needs_copy)
11489 {
11490 Elf_Internal_Rela rel;
5474d94f
AM
11491 asection *srel;
11492 bfd_byte *loc;
0a44bf69
RS
11493
11494 BFD_ASSERT (h->dynindx != -1);
11495
11496 rel.r_offset = (h->root.u.def.section->output_section->vma
11497 + h->root.u.def.section->output_offset
11498 + h->root.u.def.value);
11499 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11500 rel.r_addend = 0;
afbf7e8e 11501 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
11502 srel = htab->root.sreldynrelro;
11503 else
11504 srel = htab->root.srelbss;
11505 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11506 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11507 ++srel->reloc_count;
0a44bf69
RS
11508 }
11509
df58fc94
RS
11510 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11511 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11512 sym->st_value &= ~1;
11513
11514 return TRUE;
11515}
11516
861fb55a
DJ
11517/* Write out a plt0 entry to the beginning of .plt. */
11518
1bbce132 11519static bfd_boolean
861fb55a
DJ
11520mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11521{
11522 bfd_byte *loc;
11523 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11524 static const bfd_vma *plt_entry;
11525 struct mips_elf_link_hash_table *htab;
11526
11527 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11528 BFD_ASSERT (htab != NULL);
11529
861fb55a 11530 if (ABI_64_P (output_bfd))
3734320d
MF
11531 plt_entry = (htab->compact_branches
11532 ? mipsr6_n64_exec_plt0_entry_compact
11533 : mips_n64_exec_plt0_entry);
861fb55a 11534 else if (ABI_N32_P (output_bfd))
3734320d
MF
11535 plt_entry = (htab->compact_branches
11536 ? mipsr6_n32_exec_plt0_entry_compact
11537 : mips_n32_exec_plt0_entry);
833794fc 11538 else if (!htab->plt_header_is_comp)
3734320d
MF
11539 plt_entry = (htab->compact_branches
11540 ? mipsr6_o32_exec_plt0_entry_compact
11541 : mips_o32_exec_plt0_entry);
833794fc
MR
11542 else if (htab->insn32)
11543 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11544 else
11545 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11546
11547 /* Calculate the value of .got.plt. */
ce558b89
AM
11548 gotplt_value = (htab->root.sgotplt->output_section->vma
11549 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11550 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11551 gotplt_value_low = gotplt_value & 0xffff;
11552
11553 /* The PLT sequence is not safe for N64 if .got.plt's address can
11554 not be loaded in two instructions. */
789ff5b6
MR
11555 if (ABI_64_P (output_bfd)
11556 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11557 {
11558 _bfd_error_handler
11559 /* xgettext:c-format */
11560 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11561 "supported; consider using `-Ttext-segment=...'"),
11562 output_bfd,
11563 htab->root.sgotplt->output_section,
11564 (int64_t) gotplt_value);
11565 bfd_set_error (bfd_error_no_error);
11566 return FALSE;
11567 }
861fb55a
DJ
11568
11569 /* Install the PLT header. */
ce558b89 11570 loc = htab->root.splt->contents;
1bbce132
MR
11571 if (plt_entry == micromips_o32_exec_plt0_entry)
11572 {
11573 bfd_vma gotpc_offset;
11574 bfd_vma loc_address;
11575 size_t i;
11576
11577 BFD_ASSERT (gotplt_value % 4 == 0);
11578
ce558b89
AM
11579 loc_address = (htab->root.splt->output_section->vma
11580 + htab->root.splt->output_offset);
1bbce132
MR
11581 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11582
11583 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11584 if (gotpc_offset + 0x1000000 >= 0x2000000)
11585 {
4eca0228 11586 _bfd_error_handler
695344c0 11587 /* xgettext:c-format */
2dcf00ce
AM
11588 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11589 "beyond the range of ADDIUPC"),
1bbce132 11590 output_bfd,
ce558b89 11591 htab->root.sgotplt->output_section,
2dcf00ce 11592 (int64_t) gotpc_offset,
c08bb8dd 11593 htab->root.splt->output_section);
1bbce132
MR
11594 bfd_set_error (bfd_error_no_error);
11595 return FALSE;
11596 }
11597 bfd_put_16 (output_bfd,
11598 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11599 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11600 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11601 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11602 }
833794fc
MR
11603 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11604 {
11605 size_t i;
11606
11607 bfd_put_16 (output_bfd, plt_entry[0], loc);
11608 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11609 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11610 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11611 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11612 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11613 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11614 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11615 }
1bbce132
MR
11616 else
11617 {
11618 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11619 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11620 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11621 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11622 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11623 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11624 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11625 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11626 }
11627
11628 return TRUE;
861fb55a
DJ
11629}
11630
0a44bf69
RS
11631/* Install the PLT header for a VxWorks executable and finalize the
11632 contents of .rela.plt.unloaded. */
11633
11634static void
11635mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11636{
11637 Elf_Internal_Rela rela;
11638 bfd_byte *loc;
11639 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11640 static const bfd_vma *plt_entry;
11641 struct mips_elf_link_hash_table *htab;
11642
11643 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11644 BFD_ASSERT (htab != NULL);
11645
0a44bf69
RS
11646 plt_entry = mips_vxworks_exec_plt0_entry;
11647
11648 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11649 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11650 + htab->root.hgot->root.u.def.section->output_offset
11651 + htab->root.hgot->root.u.def.value);
11652
11653 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11654 got_value_low = got_value & 0xffff;
11655
11656 /* Calculate the address of the PLT header. */
ce558b89
AM
11657 plt_address = (htab->root.splt->output_section->vma
11658 + htab->root.splt->output_offset);
0a44bf69
RS
11659
11660 /* Install the PLT header. */
ce558b89 11661 loc = htab->root.splt->contents;
0a44bf69
RS
11662 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11663 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11664 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11665 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11666 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11667 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11668
11669 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11670 loc = htab->srelplt2->contents;
11671 rela.r_offset = plt_address;
11672 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11673 rela.r_addend = 0;
11674 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11675 loc += sizeof (Elf32_External_Rela);
11676
11677 /* Output the relocation for the following addiu of
11678 %lo(_GLOBAL_OFFSET_TABLE_). */
11679 rela.r_offset += 4;
11680 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11681 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11682 loc += sizeof (Elf32_External_Rela);
11683
11684 /* Fix up the remaining relocations. They may have the wrong
11685 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11686 in which symbols were output. */
11687 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11688 {
11689 Elf_Internal_Rela rel;
11690
11691 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11692 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11693 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11694 loc += sizeof (Elf32_External_Rela);
11695
11696 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11697 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11698 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11699 loc += sizeof (Elf32_External_Rela);
11700
11701 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11702 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11703 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11704 loc += sizeof (Elf32_External_Rela);
11705 }
11706}
11707
11708/* Install the PLT header for a VxWorks shared library. */
11709
11710static void
11711mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11712{
11713 unsigned int i;
11714 struct mips_elf_link_hash_table *htab;
11715
11716 htab = mips_elf_hash_table (info);
4dfe6ac6 11717 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11718
11719 /* We just need to copy the entry byte-by-byte. */
11720 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11721 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11722 htab->root.splt->contents + i * 4);
0a44bf69
RS
11723}
11724
b49e97c9
TS
11725/* Finish up the dynamic sections. */
11726
b34976b6 11727bfd_boolean
9719ad41
RS
11728_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11729 struct bfd_link_info *info)
b49e97c9
TS
11730{
11731 bfd *dynobj;
11732 asection *sdyn;
11733 asection *sgot;
f4416af6 11734 struct mips_got_info *gg, *g;
0a44bf69 11735 struct mips_elf_link_hash_table *htab;
b49e97c9 11736
0a44bf69 11737 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11738 BFD_ASSERT (htab != NULL);
11739
b49e97c9
TS
11740 dynobj = elf_hash_table (info)->dynobj;
11741
3d4d4302 11742 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11743
ce558b89 11744 sgot = htab->root.sgot;
23cc69b6 11745 gg = htab->got_info;
b49e97c9
TS
11746
11747 if (elf_hash_table (info)->dynamic_sections_created)
11748 {
11749 bfd_byte *b;
943284cc 11750 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11751
11752 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11753 BFD_ASSERT (gg != NULL);
11754
d7206569 11755 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11756 BFD_ASSERT (g != NULL);
11757
11758 for (b = sdyn->contents;
eea6121a 11759 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11760 b += MIPS_ELF_DYN_SIZE (dynobj))
11761 {
11762 Elf_Internal_Dyn dyn;
11763 const char *name;
11764 size_t elemsize;
11765 asection *s;
b34976b6 11766 bfd_boolean swap_out_p;
b49e97c9
TS
11767
11768 /* Read in the current dynamic entry. */
11769 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11770
11771 /* Assume that we're going to modify it and write it out. */
b34976b6 11772 swap_out_p = TRUE;
b49e97c9
TS
11773
11774 switch (dyn.d_tag)
11775 {
11776 case DT_RELENT:
b49e97c9
TS
11777 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11778 break;
11779
0a44bf69
RS
11780 case DT_RELAENT:
11781 BFD_ASSERT (htab->is_vxworks);
11782 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11783 break;
11784
b49e97c9
TS
11785 case DT_STRSZ:
11786 /* Rewrite DT_STRSZ. */
11787 dyn.d_un.d_val =
11788 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11789 break;
11790
11791 case DT_PLTGOT:
ce558b89 11792 s = htab->root.sgot;
861fb55a
DJ
11793 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11794 break;
11795
11796 case DT_MIPS_PLTGOT:
ce558b89 11797 s = htab->root.sgotplt;
861fb55a 11798 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11799 break;
11800
11801 case DT_MIPS_RLD_VERSION:
11802 dyn.d_un.d_val = 1; /* XXX */
11803 break;
11804
11805 case DT_MIPS_FLAGS:
11806 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11807 break;
11808
b49e97c9 11809 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11810 {
11811 time_t t;
11812 time (&t);
11813 dyn.d_un.d_val = t;
11814 }
b49e97c9
TS
11815 break;
11816
11817 case DT_MIPS_ICHECKSUM:
11818 /* XXX FIXME: */
b34976b6 11819 swap_out_p = FALSE;
b49e97c9
TS
11820 break;
11821
11822 case DT_MIPS_IVERSION:
11823 /* XXX FIXME: */
b34976b6 11824 swap_out_p = FALSE;
b49e97c9
TS
11825 break;
11826
11827 case DT_MIPS_BASE_ADDRESS:
11828 s = output_bfd->sections;
11829 BFD_ASSERT (s != NULL);
11830 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11831 break;
11832
11833 case DT_MIPS_LOCAL_GOTNO:
11834 dyn.d_un.d_val = g->local_gotno;
11835 break;
11836
11837 case DT_MIPS_UNREFEXTNO:
11838 /* The index into the dynamic symbol table which is the
11839 entry of the first external symbol that is not
11840 referenced within the same object. */
11841 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11842 break;
11843
11844 case DT_MIPS_GOTSYM:
d222d210 11845 if (htab->global_gotsym)
b49e97c9 11846 {
d222d210 11847 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11848 break;
11849 }
11850 /* In case if we don't have global got symbols we default
11851 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11852 DT_MIPS_SYMTABNO. */
11853 /* Fall through. */
b49e97c9
TS
11854
11855 case DT_MIPS_SYMTABNO:
11856 name = ".dynsym";
11857 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11858 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11859
131e2f8e
MF
11860 if (s != NULL)
11861 dyn.d_un.d_val = s->size / elemsize;
11862 else
11863 dyn.d_un.d_val = 0;
b49e97c9
TS
11864 break;
11865
11866 case DT_MIPS_HIPAGENO:
861fb55a 11867 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11868 break;
11869
11870 case DT_MIPS_RLD_MAP:
b4082c70
DD
11871 {
11872 struct elf_link_hash_entry *h;
11873 h = mips_elf_hash_table (info)->rld_symbol;
11874 if (!h)
11875 {
11876 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11877 swap_out_p = FALSE;
11878 break;
11879 }
11880 s = h->root.u.def.section;
a5499fa4
MF
11881
11882 /* The MIPS_RLD_MAP tag stores the absolute address of the
11883 debug pointer. */
b4082c70
DD
11884 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11885 + h->root.u.def.value);
11886 }
b49e97c9
TS
11887 break;
11888
a5499fa4
MF
11889 case DT_MIPS_RLD_MAP_REL:
11890 {
11891 struct elf_link_hash_entry *h;
11892 bfd_vma dt_addr, rld_addr;
11893 h = mips_elf_hash_table (info)->rld_symbol;
11894 if (!h)
11895 {
11896 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11897 swap_out_p = FALSE;
11898 break;
11899 }
11900 s = h->root.u.def.section;
11901
11902 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11903 pointer, relative to the address of the tag. */
11904 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11905 + (b - sdyn->contents));
a5499fa4
MF
11906 rld_addr = (s->output_section->vma + s->output_offset
11907 + h->root.u.def.value);
11908 dyn.d_un.d_ptr = rld_addr - dt_addr;
11909 }
11910 break;
11911
b49e97c9
TS
11912 case DT_MIPS_OPTIONS:
11913 s = (bfd_get_section_by_name
11914 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11915 dyn.d_un.d_ptr = s->vma;
11916 break;
11917
0a44bf69 11918 case DT_PLTREL:
861fb55a
DJ
11919 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11920 if (htab->is_vxworks)
11921 dyn.d_un.d_val = DT_RELA;
11922 else
11923 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11924 break;
11925
11926 case DT_PLTRELSZ:
861fb55a 11927 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11928 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11929 break;
11930
11931 case DT_JMPREL:
861fb55a 11932 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11933 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11934 + htab->root.srelplt->output_offset);
0a44bf69
RS
11935 break;
11936
943284cc
DJ
11937 case DT_TEXTREL:
11938 /* If we didn't need any text relocations after all, delete
11939 the dynamic tag. */
11940 if (!(info->flags & DF_TEXTREL))
11941 {
11942 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11943 swap_out_p = FALSE;
11944 }
11945 break;
11946
11947 case DT_FLAGS:
11948 /* If we didn't need any text relocations after all, clear
11949 DF_TEXTREL from DT_FLAGS. */
11950 if (!(info->flags & DF_TEXTREL))
11951 dyn.d_un.d_val &= ~DF_TEXTREL;
11952 else
11953 swap_out_p = FALSE;
11954 break;
11955
b49e97c9 11956 default:
b34976b6 11957 swap_out_p = FALSE;
7a2b07ff
NS
11958 if (htab->is_vxworks
11959 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11960 swap_out_p = TRUE;
b49e97c9
TS
11961 break;
11962 }
11963
943284cc 11964 if (swap_out_p || dyn_skipped)
b49e97c9 11965 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11966 (dynobj, &dyn, b - dyn_skipped);
11967
11968 if (dyn_to_skip)
11969 {
11970 dyn_skipped += dyn_to_skip;
11971 dyn_to_skip = 0;
11972 }
b49e97c9 11973 }
943284cc
DJ
11974
11975 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11976 if (dyn_skipped > 0)
11977 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11978 }
11979
b55fd4d4
DJ
11980 if (sgot != NULL && sgot->size > 0
11981 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11982 {
0a44bf69
RS
11983 if (htab->is_vxworks)
11984 {
11985 /* The first entry of the global offset table points to the
11986 ".dynamic" section. The second is initialized by the
11987 loader and contains the shared library identifier.
11988 The third is also initialized by the loader and points
11989 to the lazy resolution stub. */
11990 MIPS_ELF_PUT_WORD (output_bfd,
11991 sdyn->output_offset + sdyn->output_section->vma,
11992 sgot->contents);
11993 MIPS_ELF_PUT_WORD (output_bfd, 0,
11994 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11995 MIPS_ELF_PUT_WORD (output_bfd, 0,
11996 sgot->contents
11997 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11998 }
11999 else
12000 {
12001 /* The first entry of the global offset table will be filled at
12002 runtime. The second entry will be used by some runtime loaders.
12003 This isn't the case of IRIX rld. */
12004 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 12005 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
12006 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12007 }
b49e97c9 12008
54938e2a
TS
12009 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12010 = MIPS_ELF_GOT_SIZE (output_bfd);
12011 }
b49e97c9 12012
f4416af6
AO
12013 /* Generate dynamic relocations for the non-primary gots. */
12014 if (gg != NULL && gg->next)
12015 {
12016 Elf_Internal_Rela rel[3];
12017 bfd_vma addend = 0;
12018
12019 memset (rel, 0, sizeof (rel));
12020 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12021
12022 for (g = gg->next; g->next != gg; g = g->next)
12023 {
91d6fa6a 12024 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 12025 + g->next->tls_gotno;
f4416af6 12026
9719ad41 12027 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 12028 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
12029 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12030 sgot->contents
91d6fa6a 12031 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 12032
0e1862bb 12033 if (! bfd_link_pic (info))
f4416af6
AO
12034 continue;
12035
cb22ccf4 12036 for (; got_index < g->local_gotno; got_index++)
f4416af6 12037 {
cb22ccf4
KCY
12038 if (got_index >= g->assigned_low_gotno
12039 && got_index <= g->assigned_high_gotno)
12040 continue;
12041
f4416af6 12042 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 12043 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
12044 if (!(mips_elf_create_dynamic_relocation
12045 (output_bfd, info, rel, NULL,
12046 bfd_abs_section_ptr,
12047 0, &addend, sgot)))
12048 return FALSE;
12049 BFD_ASSERT (addend == 0);
12050 }
12051 }
12052 }
12053
3133ddbf
DJ
12054 /* The generation of dynamic relocations for the non-primary gots
12055 adds more dynamic relocations. We cannot count them until
12056 here. */
12057
12058 if (elf_hash_table (info)->dynamic_sections_created)
12059 {
12060 bfd_byte *b;
12061 bfd_boolean swap_out_p;
12062
12063 BFD_ASSERT (sdyn != NULL);
12064
12065 for (b = sdyn->contents;
12066 b < sdyn->contents + sdyn->size;
12067 b += MIPS_ELF_DYN_SIZE (dynobj))
12068 {
12069 Elf_Internal_Dyn dyn;
12070 asection *s;
12071
12072 /* Read in the current dynamic entry. */
12073 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12074
12075 /* Assume that we're going to modify it and write it out. */
12076 swap_out_p = TRUE;
12077
12078 switch (dyn.d_tag)
12079 {
12080 case DT_RELSZ:
12081 /* Reduce DT_RELSZ to account for any relocations we
12082 decided not to make. This is for the n64 irix rld,
12083 which doesn't seem to apply any relocations if there
12084 are trailing null entries. */
0a44bf69 12085 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
12086 dyn.d_un.d_val = (s->reloc_count
12087 * (ABI_64_P (output_bfd)
12088 ? sizeof (Elf64_Mips_External_Rel)
12089 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
12090 /* Adjust the section size too. Tools like the prelinker
12091 can reasonably expect the values to the same. */
db841b6f 12092 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
bcfdf036
RS
12093 elf_section_data (s->output_section)->this_hdr.sh_size
12094 = dyn.d_un.d_val;
3133ddbf
DJ
12095 break;
12096
12097 default:
12098 swap_out_p = FALSE;
12099 break;
12100 }
12101
12102 if (swap_out_p)
12103 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12104 (dynobj, &dyn, b);
12105 }
12106 }
12107
b49e97c9 12108 {
b49e97c9
TS
12109 asection *s;
12110 Elf32_compact_rel cpt;
12111
b49e97c9
TS
12112 if (SGI_COMPAT (output_bfd))
12113 {
12114 /* Write .compact_rel section out. */
3d4d4302 12115 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
12116 if (s != NULL)
12117 {
12118 cpt.id1 = 1;
12119 cpt.num = s->reloc_count;
12120 cpt.id2 = 2;
12121 cpt.offset = (s->output_section->filepos
12122 + sizeof (Elf32_External_compact_rel));
12123 cpt.reserved0 = 0;
12124 cpt.reserved1 = 0;
12125 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12126 ((Elf32_External_compact_rel *)
12127 s->contents));
12128
12129 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 12130 if (htab->sstubs != NULL)
b49e97c9
TS
12131 {
12132 file_ptr dummy_offset;
12133
4e41d0d7
RS
12134 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12135 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12136 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 12137 htab->function_stub_size);
b49e97c9
TS
12138 }
12139 }
12140 }
12141
0a44bf69
RS
12142 /* The psABI says that the dynamic relocations must be sorted in
12143 increasing order of r_symndx. The VxWorks EABI doesn't require
12144 this, and because the code below handles REL rather than RELA
12145 relocations, using it for VxWorks would be outright harmful. */
12146 if (!htab->is_vxworks)
b49e97c9 12147 {
0a44bf69
RS
12148 s = mips_elf_rel_dyn_section (info, FALSE);
12149 if (s != NULL
12150 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12151 {
12152 reldyn_sorting_bfd = output_bfd;
b49e97c9 12153
0a44bf69
RS
12154 if (ABI_64_P (output_bfd))
12155 qsort ((Elf64_External_Rel *) s->contents + 1,
12156 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12157 sort_dynamic_relocs_64);
12158 else
12159 qsort ((Elf32_External_Rel *) s->contents + 1,
12160 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12161 sort_dynamic_relocs);
12162 }
b49e97c9 12163 }
b49e97c9
TS
12164 }
12165
ce558b89 12166 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 12167 {
861fb55a
DJ
12168 if (htab->is_vxworks)
12169 {
0e1862bb 12170 if (bfd_link_pic (info))
861fb55a
DJ
12171 mips_vxworks_finish_shared_plt (output_bfd, info);
12172 else
12173 mips_vxworks_finish_exec_plt (output_bfd, info);
12174 }
0a44bf69 12175 else
861fb55a 12176 {
0e1862bb 12177 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
12178 if (!mips_finish_exec_plt (output_bfd, info))
12179 return FALSE;
861fb55a 12180 }
0a44bf69 12181 }
b34976b6 12182 return TRUE;
b49e97c9
TS
12183}
12184
b49e97c9 12185
64543e1a
RS
12186/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12187
12188static void
9719ad41 12189mips_set_isa_flags (bfd *abfd)
b49e97c9 12190{
64543e1a 12191 flagword val;
b49e97c9
TS
12192
12193 switch (bfd_get_mach (abfd))
12194 {
12195 default:
c7c860d2
YS
12196 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12197 val = E_MIPS_ARCH_3;
12198 else
12199 val = E_MIPS_ARCH_1;
12200 break;
12201
b49e97c9
TS
12202 case bfd_mach_mips3000:
12203 val = E_MIPS_ARCH_1;
12204 break;
12205
12206 case bfd_mach_mips3900:
12207 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12208 break;
12209
12210 case bfd_mach_mips6000:
12211 val = E_MIPS_ARCH_2;
12212 break;
12213
b417536f
MR
12214 case bfd_mach_mips4010:
12215 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12216 break;
12217
b49e97c9
TS
12218 case bfd_mach_mips4000:
12219 case bfd_mach_mips4300:
12220 case bfd_mach_mips4400:
12221 case bfd_mach_mips4600:
12222 val = E_MIPS_ARCH_3;
12223 break;
12224
b49e97c9
TS
12225 case bfd_mach_mips4100:
12226 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12227 break;
12228
12229 case bfd_mach_mips4111:
12230 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12231 break;
12232
00707a0e
RS
12233 case bfd_mach_mips4120:
12234 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12235 break;
12236
b49e97c9
TS
12237 case bfd_mach_mips4650:
12238 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12239 break;
12240
00707a0e
RS
12241 case bfd_mach_mips5400:
12242 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12243 break;
12244
12245 case bfd_mach_mips5500:
12246 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12247 break;
12248
e407c74b
NC
12249 case bfd_mach_mips5900:
12250 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12251 break;
12252
0d2e43ed
ILT
12253 case bfd_mach_mips9000:
12254 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12255 break;
12256
b49e97c9 12257 case bfd_mach_mips5000:
5a7ea749 12258 case bfd_mach_mips7000:
b49e97c9
TS
12259 case bfd_mach_mips8000:
12260 case bfd_mach_mips10000:
12261 case bfd_mach_mips12000:
3aa3176b
TS
12262 case bfd_mach_mips14000:
12263 case bfd_mach_mips16000:
b49e97c9
TS
12264 val = E_MIPS_ARCH_4;
12265 break;
12266
12267 case bfd_mach_mips5:
12268 val = E_MIPS_ARCH_5;
12269 break;
12270
350cc38d
MS
12271 case bfd_mach_mips_loongson_2e:
12272 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12273 break;
12274
12275 case bfd_mach_mips_loongson_2f:
12276 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12277 break;
12278
b49e97c9
TS
12279 case bfd_mach_mips_sb1:
12280 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12281 break;
12282
ac8cb70f
CX
12283 case bfd_mach_mips_gs464:
12284 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
d051516a
NC
12285 break;
12286
bd782c07
CX
12287 case bfd_mach_mips_gs464e:
12288 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12289 break;
12290
9108bc33
CX
12291 case bfd_mach_mips_gs264e:
12292 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12293 break;
12294
6f179bd0 12295 case bfd_mach_mips_octeon:
dd6a37e7 12296 case bfd_mach_mips_octeonp:
6f179bd0
AN
12297 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12298 break;
12299
2c629856
N
12300 case bfd_mach_mips_octeon3:
12301 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12302 break;
12303
52b6b6b9
JM
12304 case bfd_mach_mips_xlr:
12305 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12306 break;
12307
432233b3
AP
12308 case bfd_mach_mips_octeon2:
12309 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12310 break;
12311
b49e97c9
TS
12312 case bfd_mach_mipsisa32:
12313 val = E_MIPS_ARCH_32;
12314 break;
12315
12316 case bfd_mach_mipsisa64:
12317 val = E_MIPS_ARCH_64;
af7ee8bf
CD
12318 break;
12319
12320 case bfd_mach_mipsisa32r2:
ae52f483
AB
12321 case bfd_mach_mipsisa32r3:
12322 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
12323 val = E_MIPS_ARCH_32R2;
12324 break;
5f74bc13 12325
38bf472a
MR
12326 case bfd_mach_mips_interaptiv_mr2:
12327 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12328 break;
12329
5f74bc13 12330 case bfd_mach_mipsisa64r2:
ae52f483
AB
12331 case bfd_mach_mipsisa64r3:
12332 case bfd_mach_mipsisa64r5:
5f74bc13
CD
12333 val = E_MIPS_ARCH_64R2;
12334 break;
7361da2c
AB
12335
12336 case bfd_mach_mipsisa32r6:
12337 val = E_MIPS_ARCH_32R6;
12338 break;
12339
12340 case bfd_mach_mipsisa64r6:
12341 val = E_MIPS_ARCH_64R6;
12342 break;
b49e97c9 12343 }
b49e97c9
TS
12344 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12345 elf_elfheader (abfd)->e_flags |= val;
12346
64543e1a
RS
12347}
12348
12349
28dbcedc
AM
12350/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12351 Don't do so for code sections. We want to keep ordering of HI16/LO16
12352 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12353 relocs to be sorted. */
12354
12355bfd_boolean
12356_bfd_mips_elf_sort_relocs_p (asection *sec)
12357{
12358 return (sec->flags & SEC_CODE) == 0;
12359}
12360
12361
64543e1a
RS
12362/* The final processing done just before writing out a MIPS ELF object
12363 file. This gets the MIPS architecture right based on the machine
12364 number. This is used by both the 32-bit and the 64-bit ABI. */
12365
12366void
cc364be6 12367_bfd_mips_final_write_processing (bfd *abfd)
64543e1a
RS
12368{
12369 unsigned int i;
12370 Elf_Internal_Shdr **hdrpp;
12371 const char *name;
12372 asection *sec;
12373
12374 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12375 is nonzero. This is for compatibility with old objects, which used
12376 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12377 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12378 mips_set_isa_flags (abfd);
12379
b49e97c9
TS
12380 /* Set the sh_info field for .gptab sections and other appropriate
12381 info for each special section. */
12382 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12383 i < elf_numsections (abfd);
12384 i++, hdrpp++)
12385 {
12386 switch ((*hdrpp)->sh_type)
12387 {
12388 case SHT_MIPS_MSYM:
12389 case SHT_MIPS_LIBLIST:
12390 sec = bfd_get_section_by_name (abfd, ".dynstr");
12391 if (sec != NULL)
12392 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12393 break;
12394
12395 case SHT_MIPS_GPTAB:
12396 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12397 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12398 BFD_ASSERT (name != NULL
0112cd26 12399 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12400 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12401 BFD_ASSERT (sec != NULL);
12402 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12403 break;
12404
12405 case SHT_MIPS_CONTENT:
12406 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12407 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12408 BFD_ASSERT (name != NULL
0112cd26 12409 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12410 sec = bfd_get_section_by_name (abfd,
12411 name + sizeof ".MIPS.content" - 1);
12412 BFD_ASSERT (sec != NULL);
12413 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12414 break;
12415
12416 case SHT_MIPS_SYMBOL_LIB:
12417 sec = bfd_get_section_by_name (abfd, ".dynsym");
12418 if (sec != NULL)
12419 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12420 sec = bfd_get_section_by_name (abfd, ".liblist");
12421 if (sec != NULL)
12422 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12423 break;
12424
12425 case SHT_MIPS_EVENTS:
12426 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12427 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12428 BFD_ASSERT (name != NULL);
0112cd26 12429 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12430 sec = bfd_get_section_by_name (abfd,
12431 name + sizeof ".MIPS.events" - 1);
12432 else
12433 {
0112cd26 12434 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12435 sec = bfd_get_section_by_name (abfd,
12436 (name
12437 + sizeof ".MIPS.post_rel" - 1));
12438 }
12439 BFD_ASSERT (sec != NULL);
12440 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12441 break;
12442
12443 }
12444 }
12445}
06f44071 12446
cc364be6
AM
12447bfd_boolean
12448_bfd_mips_elf_final_write_processing (bfd *abfd)
06f44071 12449{
cc364be6
AM
12450 _bfd_mips_final_write_processing (abfd);
12451 return _bfd_elf_final_write_processing (abfd);
06f44071 12452}
b49e97c9 12453\f
8dc1a139 12454/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12455 segments. */
12456
12457int
a6b96beb
AM
12458_bfd_mips_elf_additional_program_headers (bfd *abfd,
12459 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12460{
12461 asection *s;
12462 int ret = 0;
12463
12464 /* See if we need a PT_MIPS_REGINFO segment. */
12465 s = bfd_get_section_by_name (abfd, ".reginfo");
12466 if (s && (s->flags & SEC_LOAD))
12467 ++ret;
12468
351cdf24
MF
12469 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12470 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12471 ++ret;
12472
b49e97c9
TS
12473 /* See if we need a PT_MIPS_OPTIONS segment. */
12474 if (IRIX_COMPAT (abfd) == ict_irix6
12475 && bfd_get_section_by_name (abfd,
12476 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12477 ++ret;
12478
12479 /* See if we need a PT_MIPS_RTPROC segment. */
12480 if (IRIX_COMPAT (abfd) == ict_irix5
12481 && bfd_get_section_by_name (abfd, ".dynamic")
12482 && bfd_get_section_by_name (abfd, ".mdebug"))
12483 ++ret;
12484
98c904a8
RS
12485 /* Allocate a PT_NULL header in dynamic objects. See
12486 _bfd_mips_elf_modify_segment_map for details. */
12487 if (!SGI_COMPAT (abfd)
12488 && bfd_get_section_by_name (abfd, ".dynamic"))
12489 ++ret;
12490
b49e97c9
TS
12491 return ret;
12492}
12493
8dc1a139 12494/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12495
b34976b6 12496bfd_boolean
9719ad41 12497_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12498 struct bfd_link_info *info)
b49e97c9
TS
12499{
12500 asection *s;
12501 struct elf_segment_map *m, **pm;
12502 bfd_size_type amt;
12503
12504 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12505 segment. */
12506 s = bfd_get_section_by_name (abfd, ".reginfo");
12507 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12508 {
12bd6957 12509 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12510 if (m->p_type == PT_MIPS_REGINFO)
12511 break;
12512 if (m == NULL)
12513 {
12514 amt = sizeof *m;
9719ad41 12515 m = bfd_zalloc (abfd, amt);
b49e97c9 12516 if (m == NULL)
b34976b6 12517 return FALSE;
b49e97c9
TS
12518
12519 m->p_type = PT_MIPS_REGINFO;
12520 m->count = 1;
12521 m->sections[0] = s;
12522
12523 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12524 pm = &elf_seg_map (abfd);
b49e97c9
TS
12525 while (*pm != NULL
12526 && ((*pm)->p_type == PT_PHDR
12527 || (*pm)->p_type == PT_INTERP))
12528 pm = &(*pm)->next;
12529
12530 m->next = *pm;
12531 *pm = m;
12532 }
12533 }
12534
351cdf24
MF
12535 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12536 segment. */
12537 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12538 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12539 {
12540 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12541 if (m->p_type == PT_MIPS_ABIFLAGS)
12542 break;
12543 if (m == NULL)
12544 {
12545 amt = sizeof *m;
12546 m = bfd_zalloc (abfd, amt);
12547 if (m == NULL)
12548 return FALSE;
12549
12550 m->p_type = PT_MIPS_ABIFLAGS;
12551 m->count = 1;
12552 m->sections[0] = s;
12553
12554 /* We want to put it after the PHDR and INTERP segments. */
12555 pm = &elf_seg_map (abfd);
12556 while (*pm != NULL
12557 && ((*pm)->p_type == PT_PHDR
12558 || (*pm)->p_type == PT_INTERP))
12559 pm = &(*pm)->next;
12560
12561 m->next = *pm;
12562 *pm = m;
12563 }
12564 }
12565
b49e97c9
TS
12566 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12567 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12568 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12569 table. */
c1fd6598
AO
12570 if (NEWABI_P (abfd)
12571 /* On non-IRIX6 new abi, we'll have already created a segment
12572 for this section, so don't create another. I'm not sure this
12573 is not also the case for IRIX 6, but I can't test it right
12574 now. */
12575 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12576 {
12577 for (s = abfd->sections; s; s = s->next)
12578 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12579 break;
12580
12581 if (s)
12582 {
12583 struct elf_segment_map *options_segment;
12584
12bd6957 12585 pm = &elf_seg_map (abfd);
98a8deaf
RS
12586 while (*pm != NULL
12587 && ((*pm)->p_type == PT_PHDR
12588 || (*pm)->p_type == PT_INTERP))
12589 pm = &(*pm)->next;
b49e97c9 12590
8ded5a0f
AM
12591 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12592 {
12593 amt = sizeof (struct elf_segment_map);
12594 options_segment = bfd_zalloc (abfd, amt);
12595 options_segment->next = *pm;
12596 options_segment->p_type = PT_MIPS_OPTIONS;
12597 options_segment->p_flags = PF_R;
12598 options_segment->p_flags_valid = TRUE;
12599 options_segment->count = 1;
12600 options_segment->sections[0] = s;
12601 *pm = options_segment;
12602 }
b49e97c9
TS
12603 }
12604 }
12605 else
12606 {
12607 if (IRIX_COMPAT (abfd) == ict_irix5)
12608 {
12609 /* If there are .dynamic and .mdebug sections, we make a room
12610 for the RTPROC header. FIXME: Rewrite without section names. */
12611 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12612 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12613 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12614 {
12bd6957 12615 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12616 if (m->p_type == PT_MIPS_RTPROC)
12617 break;
12618 if (m == NULL)
12619 {
12620 amt = sizeof *m;
9719ad41 12621 m = bfd_zalloc (abfd, amt);
b49e97c9 12622 if (m == NULL)
b34976b6 12623 return FALSE;
b49e97c9
TS
12624
12625 m->p_type = PT_MIPS_RTPROC;
12626
12627 s = bfd_get_section_by_name (abfd, ".rtproc");
12628 if (s == NULL)
12629 {
12630 m->count = 0;
12631 m->p_flags = 0;
12632 m->p_flags_valid = 1;
12633 }
12634 else
12635 {
12636 m->count = 1;
12637 m->sections[0] = s;
12638 }
12639
12640 /* We want to put it after the DYNAMIC segment. */
12bd6957 12641 pm = &elf_seg_map (abfd);
b49e97c9
TS
12642 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12643 pm = &(*pm)->next;
12644 if (*pm != NULL)
12645 pm = &(*pm)->next;
12646
12647 m->next = *pm;
12648 *pm = m;
12649 }
12650 }
12651 }
8dc1a139 12652 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12653 .dynstr, .dynsym, and .hash sections, and everything in
12654 between. */
12bd6957 12655 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12656 pm = &(*pm)->next)
12657 if ((*pm)->p_type == PT_DYNAMIC)
12658 break;
12659 m = *pm;
f6f62d6f
RS
12660 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12661 glibc's dynamic linker has traditionally derived the number of
12662 tags from the p_filesz field, and sometimes allocates stack
12663 arrays of that size. An overly-big PT_DYNAMIC segment can
12664 be actively harmful in such cases. Making PT_DYNAMIC contain
12665 other sections can also make life hard for the prelinker,
12666 which might move one of the other sections to a different
12667 PT_LOAD segment. */
12668 if (SGI_COMPAT (abfd)
12669 && m != NULL
12670 && m->count == 1
12671 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12672 {
12673 static const char *sec_names[] =
12674 {
12675 ".dynamic", ".dynstr", ".dynsym", ".hash"
12676 };
12677 bfd_vma low, high;
12678 unsigned int i, c;
12679 struct elf_segment_map *n;
12680
792b4a53 12681 low = ~(bfd_vma) 0;
b49e97c9
TS
12682 high = 0;
12683 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12684 {
12685 s = bfd_get_section_by_name (abfd, sec_names[i]);
12686 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12687 {
12688 bfd_size_type sz;
12689
12690 if (low > s->vma)
12691 low = s->vma;
eea6121a 12692 sz = s->size;
b49e97c9
TS
12693 if (high < s->vma + sz)
12694 high = s->vma + sz;
12695 }
12696 }
12697
12698 c = 0;
12699 for (s = abfd->sections; s != NULL; s = s->next)
12700 if ((s->flags & SEC_LOAD) != 0
12701 && s->vma >= low
eea6121a 12702 && s->vma + s->size <= high)
b49e97c9
TS
12703 ++c;
12704
12705 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12706 n = bfd_zalloc (abfd, amt);
b49e97c9 12707 if (n == NULL)
b34976b6 12708 return FALSE;
b49e97c9
TS
12709 *n = *m;
12710 n->count = c;
12711
12712 i = 0;
12713 for (s = abfd->sections; s != NULL; s = s->next)
12714 {
12715 if ((s->flags & SEC_LOAD) != 0
12716 && s->vma >= low
eea6121a 12717 && s->vma + s->size <= high)
b49e97c9
TS
12718 {
12719 n->sections[i] = s;
12720 ++i;
12721 }
12722 }
12723
12724 *pm = n;
12725 }
12726 }
12727
98c904a8
RS
12728 /* Allocate a spare program header in dynamic objects so that tools
12729 like the prelinker can add an extra PT_LOAD entry.
12730
12731 If the prelinker needs to make room for a new PT_LOAD entry, its
12732 standard procedure is to move the first (read-only) sections into
12733 the new (writable) segment. However, the MIPS ABI requires
12734 .dynamic to be in a read-only segment, and the section will often
12735 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12736
12737 Although the prelinker could in principle move .dynamic to a
12738 writable segment, it seems better to allocate a spare program
12739 header instead, and avoid the need to move any sections.
12740 There is a long tradition of allocating spare dynamic tags,
12741 so allocating a spare program header seems like a natural
7c8b76cc
JM
12742 extension.
12743
12744 If INFO is NULL, we may be copying an already prelinked binary
12745 with objcopy or strip, so do not add this header. */
12746 if (info != NULL
12747 && !SGI_COMPAT (abfd)
98c904a8
RS
12748 && bfd_get_section_by_name (abfd, ".dynamic"))
12749 {
12bd6957 12750 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12751 if ((*pm)->p_type == PT_NULL)
12752 break;
12753 if (*pm == NULL)
12754 {
12755 m = bfd_zalloc (abfd, sizeof (*m));
12756 if (m == NULL)
12757 return FALSE;
12758
12759 m->p_type = PT_NULL;
12760 *pm = m;
12761 }
12762 }
12763
b34976b6 12764 return TRUE;
b49e97c9
TS
12765}
12766\f
12767/* Return the section that should be marked against GC for a given
12768 relocation. */
12769
12770asection *
9719ad41 12771_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12772 struct bfd_link_info *info,
9719ad41
RS
12773 Elf_Internal_Rela *rel,
12774 struct elf_link_hash_entry *h,
12775 Elf_Internal_Sym *sym)
b49e97c9
TS
12776{
12777 /* ??? Do mips16 stub sections need to be handled special? */
12778
12779 if (h != NULL)
07adf181
AM
12780 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12781 {
12782 case R_MIPS_GNU_VTINHERIT:
12783 case R_MIPS_GNU_VTENTRY:
12784 return NULL;
12785 }
b49e97c9 12786
07adf181 12787 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12788}
12789
351cdf24
MF
12790/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12791
12792bfd_boolean
12793_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12794 elf_gc_mark_hook_fn gc_mark_hook)
12795{
12796 bfd *sub;
12797
12798 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12799
12800 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12801 {
12802 asection *o;
12803
12804 if (! is_mips_elf (sub))
12805 continue;
12806
12807 for (o = sub->sections; o != NULL; o = o->next)
12808 if (!o->gc_mark
12809 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12810 (bfd_get_section_name (sub, o)))
12811 {
12812 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12813 return FALSE;
12814 }
12815 }
12816
12817 return TRUE;
12818}
b49e97c9
TS
12819\f
12820/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12821 hiding the old indirect symbol. Process additional relocation
12822 information. Also called for weakdefs, in which case we just let
12823 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12824
12825void
fcfa13d2 12826_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12827 struct elf_link_hash_entry *dir,
12828 struct elf_link_hash_entry *ind)
b49e97c9
TS
12829{
12830 struct mips_elf_link_hash_entry *dirmips, *indmips;
12831
fcfa13d2 12832 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12833
861fb55a
DJ
12834 dirmips = (struct mips_elf_link_hash_entry *) dir;
12835 indmips = (struct mips_elf_link_hash_entry *) ind;
12836 /* Any absolute non-dynamic relocations against an indirect or weak
12837 definition will be against the target symbol. */
12838 if (indmips->has_static_relocs)
12839 dirmips->has_static_relocs = TRUE;
12840
b49e97c9
TS
12841 if (ind->root.type != bfd_link_hash_indirect)
12842 return;
12843
b49e97c9
TS
12844 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12845 if (indmips->readonly_reloc)
b34976b6 12846 dirmips->readonly_reloc = TRUE;
b49e97c9 12847 if (indmips->no_fn_stub)
b34976b6 12848 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12849 if (indmips->fn_stub)
12850 {
12851 dirmips->fn_stub = indmips->fn_stub;
12852 indmips->fn_stub = NULL;
12853 }
12854 if (indmips->need_fn_stub)
12855 {
12856 dirmips->need_fn_stub = TRUE;
12857 indmips->need_fn_stub = FALSE;
12858 }
12859 if (indmips->call_stub)
12860 {
12861 dirmips->call_stub = indmips->call_stub;
12862 indmips->call_stub = NULL;
12863 }
12864 if (indmips->call_fp_stub)
12865 {
12866 dirmips->call_fp_stub = indmips->call_fp_stub;
12867 indmips->call_fp_stub = NULL;
12868 }
634835ae
RS
12869 if (indmips->global_got_area < dirmips->global_got_area)
12870 dirmips->global_got_area = indmips->global_got_area;
12871 if (indmips->global_got_area < GGA_NONE)
12872 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12873 if (indmips->has_nonpic_branches)
12874 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12875}
47275900
MR
12876
12877/* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12878 to hide it. It has to remain global (it will also be protected) so as to
12879 be assigned a global GOT entry, which will then remain unchanged at load
12880 time. */
12881
12882void
12883_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12884 struct elf_link_hash_entry *entry,
12885 bfd_boolean force_local)
12886{
12887 struct mips_elf_link_hash_table *htab;
12888
12889 htab = mips_elf_hash_table (info);
12890 BFD_ASSERT (htab != NULL);
12891 if (htab->use_absolute_zero
12892 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12893 return;
12894
12895 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12896}
b49e97c9 12897\f
d01414a5
TS
12898#define PDR_SIZE 32
12899
b34976b6 12900bfd_boolean
9719ad41
RS
12901_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12902 struct bfd_link_info *info)
d01414a5
TS
12903{
12904 asection *o;
b34976b6 12905 bfd_boolean ret = FALSE;
d01414a5
TS
12906 unsigned char *tdata;
12907 size_t i, skip;
12908
12909 o = bfd_get_section_by_name (abfd, ".pdr");
12910 if (! o)
b34976b6 12911 return FALSE;
eea6121a 12912 if (o->size == 0)
b34976b6 12913 return FALSE;
eea6121a 12914 if (o->size % PDR_SIZE != 0)
b34976b6 12915 return FALSE;
d01414a5
TS
12916 if (o->output_section != NULL
12917 && bfd_is_abs_section (o->output_section))
b34976b6 12918 return FALSE;
d01414a5 12919
eea6121a 12920 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12921 if (! tdata)
b34976b6 12922 return FALSE;
d01414a5 12923
9719ad41 12924 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12925 info->keep_memory);
d01414a5
TS
12926 if (!cookie->rels)
12927 {
12928 free (tdata);
b34976b6 12929 return FALSE;
d01414a5
TS
12930 }
12931
12932 cookie->rel = cookie->rels;
12933 cookie->relend = cookie->rels + o->reloc_count;
12934
eea6121a 12935 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12936 {
c152c796 12937 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12938 {
12939 tdata[i] = 1;
12940 skip ++;
12941 }
12942 }
12943
12944 if (skip != 0)
12945 {
f0abc2a1 12946 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12947 if (o->rawsize == 0)
12948 o->rawsize = o->size;
eea6121a 12949 o->size -= skip * PDR_SIZE;
b34976b6 12950 ret = TRUE;
d01414a5
TS
12951 }
12952 else
12953 free (tdata);
12954
12955 if (! info->keep_memory)
12956 free (cookie->rels);
12957
12958 return ret;
12959}
12960
b34976b6 12961bfd_boolean
9719ad41 12962_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12963{
12964 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12965 return TRUE;
12966 return FALSE;
53bfd6b4 12967}
d01414a5 12968
b34976b6 12969bfd_boolean
c7b8f16e
JB
12970_bfd_mips_elf_write_section (bfd *output_bfd,
12971 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
07d6d2b8 12972 asection *sec, bfd_byte *contents)
d01414a5
TS
12973{
12974 bfd_byte *to, *from, *end;
12975 int i;
12976
12977 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12978 return FALSE;
d01414a5 12979
f0abc2a1 12980 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12981 return FALSE;
d01414a5
TS
12982
12983 to = contents;
eea6121a 12984 end = contents + sec->size;
d01414a5
TS
12985 for (from = contents, i = 0;
12986 from < end;
12987 from += PDR_SIZE, i++)
12988 {
f0abc2a1 12989 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12990 continue;
12991 if (to != from)
12992 memcpy (to, from, PDR_SIZE);
12993 to += PDR_SIZE;
12994 }
12995 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12996 sec->output_offset, sec->size);
b34976b6 12997 return TRUE;
d01414a5 12998}
53bfd6b4 12999\f
df58fc94
RS
13000/* microMIPS code retains local labels for linker relaxation. Omit them
13001 from output by default for clarity. */
13002
13003bfd_boolean
13004_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13005{
13006 return _bfd_elf_is_local_label_name (abfd, sym->name);
13007}
13008
b49e97c9
TS
13009/* MIPS ELF uses a special find_nearest_line routine in order the
13010 handle the ECOFF debugging information. */
13011
13012struct mips_elf_find_line
13013{
13014 struct ecoff_debug_info d;
13015 struct ecoff_find_line i;
13016};
13017
b34976b6 13018bfd_boolean
fb167eb2
AM
13019_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13020 asection *section, bfd_vma offset,
9719ad41
RS
13021 const char **filename_ptr,
13022 const char **functionname_ptr,
fb167eb2
AM
13023 unsigned int *line_ptr,
13024 unsigned int *discriminator_ptr)
b49e97c9
TS
13025{
13026 asection *msec;
13027
fb167eb2 13028 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 13029 filename_ptr, functionname_ptr,
fb167eb2
AM
13030 line_ptr, discriminator_ptr,
13031 dwarf_debug_sections,
13032 ABI_64_P (abfd) ? 8 : 0,
46d09186
NC
13033 &elf_tdata (abfd)->dwarf2_find_line_info)
13034 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13035 filename_ptr, functionname_ptr,
13036 line_ptr))
13037 {
13038 /* PR 22789: If the function name or filename was not found through
13039 the debug information, then try an ordinary lookup instead. */
13040 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
13041 || (filename_ptr != NULL && *filename_ptr == NULL))
13042 {
13043 /* Do not override already discovered names. */
13044 if (functionname_ptr != NULL && *functionname_ptr != NULL)
13045 functionname_ptr = NULL;
b49e97c9 13046
46d09186
NC
13047 if (filename_ptr != NULL && *filename_ptr != NULL)
13048 filename_ptr = NULL;
13049
13050 _bfd_elf_find_function (abfd, symbols, section, offset,
13051 filename_ptr, functionname_ptr);
13052 }
13053
13054 return TRUE;
13055 }
b49e97c9
TS
13056
13057 msec = bfd_get_section_by_name (abfd, ".mdebug");
13058 if (msec != NULL)
13059 {
13060 flagword origflags;
13061 struct mips_elf_find_line *fi;
13062 const struct ecoff_debug_swap * const swap =
13063 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13064
13065 /* If we are called during a link, mips_elf_final_link may have
13066 cleared the SEC_HAS_CONTENTS field. We force it back on here
13067 if appropriate (which it normally will be). */
13068 origflags = msec->flags;
13069 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13070 msec->flags |= SEC_HAS_CONTENTS;
13071
698600e4 13072 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
13073 if (fi == NULL)
13074 {
13075 bfd_size_type external_fdr_size;
13076 char *fraw_src;
13077 char *fraw_end;
13078 struct fdr *fdr_ptr;
13079 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13080
9719ad41 13081 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
13082 if (fi == NULL)
13083 {
13084 msec->flags = origflags;
b34976b6 13085 return FALSE;
b49e97c9
TS
13086 }
13087
13088 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13089 {
13090 msec->flags = origflags;
b34976b6 13091 return FALSE;
b49e97c9
TS
13092 }
13093
13094 /* Swap in the FDR information. */
13095 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 13096 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
13097 if (fi->d.fdr == NULL)
13098 {
13099 msec->flags = origflags;
b34976b6 13100 return FALSE;
b49e97c9
TS
13101 }
13102 external_fdr_size = swap->external_fdr_size;
13103 fdr_ptr = fi->d.fdr;
13104 fraw_src = (char *) fi->d.external_fdr;
13105 fraw_end = (fraw_src
13106 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13107 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 13108 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 13109
698600e4 13110 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
13111
13112 /* Note that we don't bother to ever free this information.
07d6d2b8
AM
13113 find_nearest_line is either called all the time, as in
13114 objdump -l, so the information should be saved, or it is
13115 rarely called, as in ld error messages, so the memory
13116 wasted is unimportant. Still, it would probably be a
13117 good idea for free_cached_info to throw it away. */
b49e97c9
TS
13118 }
13119
13120 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13121 &fi->i, filename_ptr, functionname_ptr,
13122 line_ptr))
13123 {
13124 msec->flags = origflags;
b34976b6 13125 return TRUE;
b49e97c9
TS
13126 }
13127
13128 msec->flags = origflags;
13129 }
13130
13131 /* Fall back on the generic ELF find_nearest_line routine. */
13132
fb167eb2 13133 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 13134 filename_ptr, functionname_ptr,
fb167eb2 13135 line_ptr, discriminator_ptr);
b49e97c9 13136}
4ab527b0
FF
13137
13138bfd_boolean
13139_bfd_mips_elf_find_inliner_info (bfd *abfd,
13140 const char **filename_ptr,
13141 const char **functionname_ptr,
13142 unsigned int *line_ptr)
13143{
13144 bfd_boolean found;
13145 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13146 functionname_ptr, line_ptr,
13147 & elf_tdata (abfd)->dwarf2_find_line_info);
13148 return found;
13149}
13150
b49e97c9
TS
13151\f
13152/* When are writing out the .options or .MIPS.options section,
13153 remember the bytes we are writing out, so that we can install the
13154 GP value in the section_processing routine. */
13155
b34976b6 13156bfd_boolean
9719ad41
RS
13157_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13158 const void *location,
13159 file_ptr offset, bfd_size_type count)
b49e97c9 13160{
cc2e31b9 13161 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
13162 {
13163 bfd_byte *c;
13164
13165 if (elf_section_data (section) == NULL)
13166 {
13167 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 13168 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 13169 if (elf_section_data (section) == NULL)
b34976b6 13170 return FALSE;
b49e97c9 13171 }
f0abc2a1 13172 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
13173 if (c == NULL)
13174 {
eea6121a 13175 c = bfd_zalloc (abfd, section->size);
b49e97c9 13176 if (c == NULL)
b34976b6 13177 return FALSE;
f0abc2a1 13178 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
13179 }
13180
9719ad41 13181 memcpy (c + offset, location, count);
b49e97c9
TS
13182 }
13183
13184 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13185 count);
13186}
13187
13188/* This is almost identical to bfd_generic_get_... except that some
13189 MIPS relocations need to be handled specially. Sigh. */
13190
13191bfd_byte *
9719ad41
RS
13192_bfd_elf_mips_get_relocated_section_contents
13193 (bfd *abfd,
13194 struct bfd_link_info *link_info,
13195 struct bfd_link_order *link_order,
13196 bfd_byte *data,
13197 bfd_boolean relocatable,
13198 asymbol **symbols)
b49e97c9
TS
13199{
13200 /* Get enough memory to hold the stuff */
13201 bfd *input_bfd = link_order->u.indirect.section->owner;
13202 asection *input_section = link_order->u.indirect.section;
eea6121a 13203 bfd_size_type sz;
b49e97c9
TS
13204
13205 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13206 arelent **reloc_vector = NULL;
13207 long reloc_count;
13208
13209 if (reloc_size < 0)
13210 goto error_return;
13211
9719ad41 13212 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
13213 if (reloc_vector == NULL && reloc_size != 0)
13214 goto error_return;
13215
13216 /* read in the section */
eea6121a
AM
13217 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13218 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
13219 goto error_return;
13220
b49e97c9
TS
13221 reloc_count = bfd_canonicalize_reloc (input_bfd,
13222 input_section,
13223 reloc_vector,
13224 symbols);
13225 if (reloc_count < 0)
13226 goto error_return;
13227
13228 if (reloc_count > 0)
13229 {
13230 arelent **parent;
13231 /* for mips */
13232 int gp_found;
13233 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13234
13235 {
13236 struct bfd_hash_entry *h;
13237 struct bfd_link_hash_entry *lh;
13238 /* Skip all this stuff if we aren't mixing formats. */
13239 if (abfd && input_bfd
13240 && abfd->xvec == input_bfd->xvec)
13241 lh = 0;
13242 else
13243 {
b34976b6 13244 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
13245 lh = (struct bfd_link_hash_entry *) h;
13246 }
13247 lookup:
13248 if (lh)
13249 {
13250 switch (lh->type)
13251 {
13252 case bfd_link_hash_undefined:
13253 case bfd_link_hash_undefweak:
13254 case bfd_link_hash_common:
13255 gp_found = 0;
13256 break;
13257 case bfd_link_hash_defined:
13258 case bfd_link_hash_defweak:
13259 gp_found = 1;
13260 gp = lh->u.def.value;
13261 break;
13262 case bfd_link_hash_indirect:
13263 case bfd_link_hash_warning:
13264 lh = lh->u.i.link;
13265 /* @@FIXME ignoring warning for now */
13266 goto lookup;
13267 case bfd_link_hash_new:
13268 default:
13269 abort ();
13270 }
13271 }
13272 else
13273 gp_found = 0;
13274 }
13275 /* end mips */
9719ad41 13276 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 13277 {
9719ad41 13278 char *error_message = NULL;
b49e97c9
TS
13279 bfd_reloc_status_type r;
13280
13281 /* Specific to MIPS: Deal with relocation types that require
13282 knowing the gp of the output bfd. */
13283 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 13284
8236346f
EC
13285 /* If we've managed to find the gp and have a special
13286 function for the relocation then go ahead, else default
13287 to the generic handling. */
13288 if (gp_found
13289 && (*parent)->howto->special_function
13290 == _bfd_mips_elf32_gprel16_reloc)
13291 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13292 input_section, relocatable,
13293 data, gp);
13294 else
86324f90 13295 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
13296 input_section,
13297 relocatable ? abfd : NULL,
13298 &error_message);
b49e97c9 13299
1049f94e 13300 if (relocatable)
b49e97c9
TS
13301 {
13302 asection *os = input_section->output_section;
13303
13304 /* A partial link, so keep the relocs */
13305 os->orelocation[os->reloc_count] = *parent;
13306 os->reloc_count++;
13307 }
13308
13309 if (r != bfd_reloc_ok)
13310 {
13311 switch (r)
13312 {
13313 case bfd_reloc_undefined:
1a72702b
AM
13314 (*link_info->callbacks->undefined_symbol)
13315 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13316 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
13317 break;
13318 case bfd_reloc_dangerous:
9719ad41 13319 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13320 (*link_info->callbacks->reloc_dangerous)
13321 (link_info, error_message,
13322 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13323 break;
13324 case bfd_reloc_overflow:
1a72702b
AM
13325 (*link_info->callbacks->reloc_overflow)
13326 (link_info, NULL,
13327 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13328 (*parent)->howto->name, (*parent)->addend,
13329 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13330 break;
13331 case bfd_reloc_outofrange:
13332 default:
13333 abort ();
13334 break;
13335 }
13336
13337 }
13338 }
13339 }
13340 if (reloc_vector != NULL)
13341 free (reloc_vector);
13342 return data;
13343
13344error_return:
13345 if (reloc_vector != NULL)
13346 free (reloc_vector);
13347 return NULL;
13348}
13349\f
df58fc94
RS
13350static bfd_boolean
13351mips_elf_relax_delete_bytes (bfd *abfd,
13352 asection *sec, bfd_vma addr, int count)
13353{
13354 Elf_Internal_Shdr *symtab_hdr;
13355 unsigned int sec_shndx;
13356 bfd_byte *contents;
13357 Elf_Internal_Rela *irel, *irelend;
13358 Elf_Internal_Sym *isym;
13359 Elf_Internal_Sym *isymend;
13360 struct elf_link_hash_entry **sym_hashes;
13361 struct elf_link_hash_entry **end_hashes;
13362 struct elf_link_hash_entry **start_hashes;
13363 unsigned int symcount;
13364
13365 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13366 contents = elf_section_data (sec)->this_hdr.contents;
13367
13368 irel = elf_section_data (sec)->relocs;
13369 irelend = irel + sec->reloc_count;
13370
13371 /* Actually delete the bytes. */
13372 memmove (contents + addr, contents + addr + count,
13373 (size_t) (sec->size - addr - count));
13374 sec->size -= count;
13375
13376 /* Adjust all the relocs. */
13377 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13378 {
13379 /* Get the new reloc address. */
13380 if (irel->r_offset > addr)
13381 irel->r_offset -= count;
13382 }
13383
13384 BFD_ASSERT (addr % 2 == 0);
13385 BFD_ASSERT (count % 2 == 0);
13386
13387 /* Adjust the local symbols defined in this section. */
13388 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13389 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13390 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13391 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13392 isym->st_value -= count;
13393
13394 /* Now adjust the global symbols defined in this section. */
13395 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13396 - symtab_hdr->sh_info);
13397 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13398 end_hashes = sym_hashes + symcount;
13399
13400 for (; sym_hashes < end_hashes; sym_hashes++)
13401 {
13402 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13403
13404 if ((sym_hash->root.type == bfd_link_hash_defined
13405 || sym_hash->root.type == bfd_link_hash_defweak)
13406 && sym_hash->root.u.def.section == sec)
13407 {
2309ddf2 13408 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13409
df58fc94
RS
13410 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13411 value &= MINUS_TWO;
13412 if (value > addr)
13413 sym_hash->root.u.def.value -= count;
13414 }
13415 }
13416
13417 return TRUE;
13418}
13419
13420
13421/* Opcodes needed for microMIPS relaxation as found in
13422 opcodes/micromips-opc.c. */
13423
13424struct opcode_descriptor {
13425 unsigned long match;
13426 unsigned long mask;
13427};
13428
13429/* The $ra register aka $31. */
13430
13431#define RA 31
13432
13433/* 32-bit instruction format register fields. */
13434
13435#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13436#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13437
13438/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13439
13440#define OP16_VALID_REG(r) \
13441 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13442
13443
13444/* 32-bit and 16-bit branches. */
13445
13446static const struct opcode_descriptor b_insns_32[] = {
13447 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13448 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13449 { 0, 0 } /* End marker for find_match(). */
13450};
13451
13452static const struct opcode_descriptor bc_insn_32 =
13453 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13454
13455static const struct opcode_descriptor bz_insn_32 =
13456 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13457
13458static const struct opcode_descriptor bzal_insn_32 =
13459 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13460
13461static const struct opcode_descriptor beq_insn_32 =
13462 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13463
13464static const struct opcode_descriptor b_insn_16 =
13465 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13466
13467static const struct opcode_descriptor bz_insn_16 =
c088dedf 13468 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13469
13470
13471/* 32-bit and 16-bit branch EQ and NE zero. */
13472
13473/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13474 eq and second the ne. This convention is used when replacing a
13475 32-bit BEQ/BNE with the 16-bit version. */
13476
13477#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13478
13479static const struct opcode_descriptor bz_rs_insns_32[] = {
13480 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13481 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13482 { 0, 0 } /* End marker for find_match(). */
13483};
13484
13485static const struct opcode_descriptor bz_rt_insns_32[] = {
13486 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13487 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13488 { 0, 0 } /* End marker for find_match(). */
13489};
13490
13491static const struct opcode_descriptor bzc_insns_32[] = {
13492 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13493 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13494 { 0, 0 } /* End marker for find_match(). */
13495};
13496
13497static const struct opcode_descriptor bz_insns_16[] = {
13498 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13499 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13500 { 0, 0 } /* End marker for find_match(). */
13501};
13502
13503/* Switch between a 5-bit register index and its 3-bit shorthand. */
13504
e67f83e5 13505#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13506#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13507
13508
13509/* 32-bit instructions with a delay slot. */
13510
13511static const struct opcode_descriptor jal_insn_32_bd16 =
13512 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13513
13514static const struct opcode_descriptor jal_insn_32_bd32 =
13515 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13516
13517static const struct opcode_descriptor jal_x_insn_32_bd32 =
13518 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13519
13520static const struct opcode_descriptor j_insn_32 =
13521 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13522
13523static const struct opcode_descriptor jalr_insn_32 =
13524 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13525
13526/* This table can be compacted, because no opcode replacement is made. */
13527
13528static const struct opcode_descriptor ds_insns_32_bd16[] = {
13529 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13530
13531 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13532 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13533
13534 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13535 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13536 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13537 { 0, 0 } /* End marker for find_match(). */
13538};
13539
13540/* This table can be compacted, because no opcode replacement is made. */
13541
13542static const struct opcode_descriptor ds_insns_32_bd32[] = {
13543 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13544
13545 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13546 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13547 { 0, 0 } /* End marker for find_match(). */
13548};
13549
13550
13551/* 16-bit instructions with a delay slot. */
13552
13553static const struct opcode_descriptor jalr_insn_16_bd16 =
13554 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13555
13556static const struct opcode_descriptor jalr_insn_16_bd32 =
13557 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13558
13559static const struct opcode_descriptor jr_insn_16 =
13560 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13561
13562#define JR16_REG(opcode) ((opcode) & 0x1f)
13563
13564/* This table can be compacted, because no opcode replacement is made. */
13565
13566static const struct opcode_descriptor ds_insns_16_bd16[] = {
13567 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13568
13569 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13570 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13571 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13572 { 0, 0 } /* End marker for find_match(). */
13573};
13574
13575
13576/* LUI instruction. */
13577
13578static const struct opcode_descriptor lui_insn =
13579 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13580
13581
13582/* ADDIU instruction. */
13583
13584static const struct opcode_descriptor addiu_insn =
13585 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13586
13587static const struct opcode_descriptor addiupc_insn =
13588 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13589
13590#define ADDIUPC_REG_FIELD(r) \
13591 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13592
13593
13594/* Relaxable instructions in a JAL delay slot: MOVE. */
13595
13596/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13597 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13598#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13599#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13600
13601#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13602#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13603
13604static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13605 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13606 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13607 { 0, 0 } /* End marker for find_match(). */
13608};
13609
13610static const struct opcode_descriptor move_insn_16 =
13611 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13612
13613
13614/* NOP instructions. */
13615
13616static const struct opcode_descriptor nop_insn_32 =
13617 { /* "nop", "", */ 0x00000000, 0xffffffff };
13618
13619static const struct opcode_descriptor nop_insn_16 =
13620 { /* "nop", "", */ 0x0c00, 0xffff };
13621
13622
13623/* Instruction match support. */
13624
13625#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13626
13627static int
13628find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13629{
13630 unsigned long indx;
13631
13632 for (indx = 0; insn[indx].mask != 0; indx++)
13633 if (MATCH (opcode, insn[indx]))
13634 return indx;
13635
13636 return -1;
13637}
13638
13639
13640/* Branch and delay slot decoding support. */
13641
13642/* If PTR points to what *might* be a 16-bit branch or jump, then
13643 return the minimum length of its delay slot, otherwise return 0.
13644 Non-zero results are not definitive as we might be checking against
13645 the second half of another instruction. */
13646
13647static int
13648check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13649{
13650 unsigned long opcode;
13651 int bdsize;
13652
13653 opcode = bfd_get_16 (abfd, ptr);
13654 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13655 /* 16-bit branch/jump with a 32-bit delay slot. */
13656 bdsize = 4;
13657 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13658 || find_match (opcode, ds_insns_16_bd16) >= 0)
13659 /* 16-bit branch/jump with a 16-bit delay slot. */
13660 bdsize = 2;
13661 else
13662 /* No delay slot. */
13663 bdsize = 0;
13664
13665 return bdsize;
13666}
13667
13668/* If PTR points to what *might* be a 32-bit branch or jump, then
13669 return the minimum length of its delay slot, otherwise return 0.
13670 Non-zero results are not definitive as we might be checking against
13671 the second half of another instruction. */
13672
13673static int
13674check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13675{
13676 unsigned long opcode;
13677 int bdsize;
13678
d21911ea 13679 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13680 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13681 /* 32-bit branch/jump with a 32-bit delay slot. */
13682 bdsize = 4;
13683 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13684 /* 32-bit branch/jump with a 16-bit delay slot. */
13685 bdsize = 2;
13686 else
13687 /* No delay slot. */
13688 bdsize = 0;
13689
13690 return bdsize;
13691}
13692
13693/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13694 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13695
13696static bfd_boolean
13697check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13698{
13699 unsigned long opcode;
13700
13701 opcode = bfd_get_16 (abfd, ptr);
13702 if (MATCH (opcode, b_insn_16)
13703 /* B16 */
13704 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13705 /* JR16 */
13706 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13707 /* BEQZ16, BNEZ16 */
13708 || (MATCH (opcode, jalr_insn_16_bd32)
13709 /* JALR16 */
13710 && reg != JR16_REG (opcode) && reg != RA))
13711 return TRUE;
13712
13713 return FALSE;
13714}
13715
13716/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13717 then return TRUE, otherwise FALSE. */
13718
f41e5fcc 13719static bfd_boolean
df58fc94
RS
13720check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13721{
13722 unsigned long opcode;
13723
d21911ea 13724 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13725 if (MATCH (opcode, j_insn_32)
13726 /* J */
13727 || MATCH (opcode, bc_insn_32)
13728 /* BC1F, BC1T, BC2F, BC2T */
13729 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13730 /* JAL, JALX */
13731 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13732 /* BGEZ, BGTZ, BLEZ, BLTZ */
13733 || (MATCH (opcode, bzal_insn_32)
13734 /* BGEZAL, BLTZAL */
13735 && reg != OP32_SREG (opcode) && reg != RA)
13736 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13737 /* JALR, JALR.HB, BEQ, BNE */
13738 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13739 return TRUE;
13740
13741 return FALSE;
13742}
13743
80cab405
MR
13744/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13745 IRELEND) at OFFSET indicate that there must be a compact branch there,
13746 then return TRUE, otherwise FALSE. */
df58fc94
RS
13747
13748static bfd_boolean
80cab405
MR
13749check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13750 const Elf_Internal_Rela *internal_relocs,
13751 const Elf_Internal_Rela *irelend)
df58fc94 13752{
80cab405
MR
13753 const Elf_Internal_Rela *irel;
13754 unsigned long opcode;
13755
d21911ea 13756 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13757 if (find_match (opcode, bzc_insns_32) < 0)
13758 return FALSE;
df58fc94
RS
13759
13760 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13761 if (irel->r_offset == offset
13762 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13763 return TRUE;
13764
df58fc94
RS
13765 return FALSE;
13766}
80cab405
MR
13767
13768/* Bitsize checking. */
13769#define IS_BITSIZE(val, N) \
13770 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13771 - (1ULL << ((N) - 1))) == (val))
13772
df58fc94
RS
13773\f
13774bfd_boolean
13775_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13776 struct bfd_link_info *link_info,
13777 bfd_boolean *again)
13778{
833794fc 13779 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13780 Elf_Internal_Shdr *symtab_hdr;
13781 Elf_Internal_Rela *internal_relocs;
13782 Elf_Internal_Rela *irel, *irelend;
13783 bfd_byte *contents = NULL;
13784 Elf_Internal_Sym *isymbuf = NULL;
13785
13786 /* Assume nothing changes. */
13787 *again = FALSE;
13788
13789 /* We don't have to do anything for a relocatable link, if
13790 this section does not have relocs, or if this is not a
13791 code section. */
13792
0e1862bb 13793 if (bfd_link_relocatable (link_info)
df58fc94
RS
13794 || (sec->flags & SEC_RELOC) == 0
13795 || sec->reloc_count == 0
13796 || (sec->flags & SEC_CODE) == 0)
13797 return TRUE;
13798
13799 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13800
13801 /* Get a copy of the native relocations. */
13802 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13803 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13804 link_info->keep_memory));
13805 if (internal_relocs == NULL)
13806 goto error_return;
13807
13808 /* Walk through them looking for relaxing opportunities. */
13809 irelend = internal_relocs + sec->reloc_count;
13810 for (irel = internal_relocs; irel < irelend; irel++)
13811 {
13812 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13813 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13814 bfd_boolean target_is_micromips_code_p;
13815 unsigned long opcode;
13816 bfd_vma symval;
13817 bfd_vma pcrval;
2309ddf2 13818 bfd_byte *ptr;
df58fc94
RS
13819 int fndopc;
13820
13821 /* The number of bytes to delete for relaxation and from where
07d6d2b8 13822 to delete these bytes starting at irel->r_offset. */
df58fc94
RS
13823 int delcnt = 0;
13824 int deloff = 0;
13825
13826 /* If this isn't something that can be relaxed, then ignore
07d6d2b8 13827 this reloc. */
df58fc94
RS
13828 if (r_type != R_MICROMIPS_HI16
13829 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13830 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13831 continue;
13832
13833 /* Get the section contents if we haven't done so already. */
13834 if (contents == NULL)
13835 {
13836 /* Get cached copy if it exists. */
13837 if (elf_section_data (sec)->this_hdr.contents != NULL)
13838 contents = elf_section_data (sec)->this_hdr.contents;
13839 /* Go get them off disk. */
13840 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13841 goto error_return;
13842 }
2309ddf2 13843 ptr = contents + irel->r_offset;
df58fc94
RS
13844
13845 /* Read this BFD's local symbols if we haven't done so already. */
13846 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13847 {
13848 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13849 if (isymbuf == NULL)
13850 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13851 symtab_hdr->sh_info, 0,
13852 NULL, NULL, NULL);
13853 if (isymbuf == NULL)
13854 goto error_return;
13855 }
13856
13857 /* Get the value of the symbol referred to by the reloc. */
13858 if (r_symndx < symtab_hdr->sh_info)
13859 {
13860 /* A local symbol. */
13861 Elf_Internal_Sym *isym;
13862 asection *sym_sec;
13863
13864 isym = isymbuf + r_symndx;
13865 if (isym->st_shndx == SHN_UNDEF)
13866 sym_sec = bfd_und_section_ptr;
13867 else if (isym->st_shndx == SHN_ABS)
13868 sym_sec = bfd_abs_section_ptr;
13869 else if (isym->st_shndx == SHN_COMMON)
13870 sym_sec = bfd_com_section_ptr;
13871 else
13872 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13873 symval = (isym->st_value
13874 + sym_sec->output_section->vma
13875 + sym_sec->output_offset);
13876 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13877 }
13878 else
13879 {
13880 unsigned long indx;
13881 struct elf_link_hash_entry *h;
13882
13883 /* An external symbol. */
13884 indx = r_symndx - symtab_hdr->sh_info;
13885 h = elf_sym_hashes (abfd)[indx];
13886 BFD_ASSERT (h != NULL);
13887
13888 if (h->root.type != bfd_link_hash_defined
13889 && h->root.type != bfd_link_hash_defweak)
13890 /* This appears to be a reference to an undefined
13891 symbol. Just ignore it -- it will be caught by the
13892 regular reloc processing. */
13893 continue;
13894
13895 symval = (h->root.u.def.value
13896 + h->root.u.def.section->output_section->vma
13897 + h->root.u.def.section->output_offset);
13898 target_is_micromips_code_p = (!h->needs_plt
13899 && ELF_ST_IS_MICROMIPS (h->other));
13900 }
13901
13902
13903 /* For simplicity of coding, we are going to modify the
07d6d2b8
AM
13904 section contents, the section relocs, and the BFD symbol
13905 table. We must tell the rest of the code not to free up this
13906 information. It would be possible to instead create a table
13907 of changes which have to be made, as is done in coff-mips.c;
13908 that would be more work, but would require less memory when
13909 the linker is run. */
df58fc94
RS
13910
13911 /* Only 32-bit instructions relaxed. */
13912 if (irel->r_offset + 4 > sec->size)
13913 continue;
13914
d21911ea 13915 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13916
13917 /* This is the pc-relative distance from the instruction the
07d6d2b8 13918 relocation is applied to, to the symbol referred. */
df58fc94
RS
13919 pcrval = (symval
13920 - (sec->output_section->vma + sec->output_offset)
13921 - irel->r_offset);
13922
13923 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
07d6d2b8
AM
13924 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13925 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
df58fc94 13926
07d6d2b8 13927 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
df58fc94 13928
07d6d2b8
AM
13929 where pcrval has first to be adjusted to apply against the LO16
13930 location (we make the adjustment later on, when we have figured
13931 out the offset). */
df58fc94
RS
13932 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13933 {
80cab405 13934 bfd_boolean bzc = FALSE;
df58fc94
RS
13935 unsigned long nextopc;
13936 unsigned long reg;
13937 bfd_vma offset;
13938
13939 /* Give up if the previous reloc was a HI16 against this symbol
13940 too. */
13941 if (irel > internal_relocs
13942 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13943 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13944 continue;
13945
13946 /* Or if the next reloc is not a LO16 against this symbol. */
13947 if (irel + 1 >= irelend
13948 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13949 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13950 continue;
13951
13952 /* Or if the second next reloc is a LO16 against this symbol too. */
13953 if (irel + 2 >= irelend
13954 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13955 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13956 continue;
13957
80cab405
MR
13958 /* See if the LUI instruction *might* be in a branch delay slot.
13959 We check whether what looks like a 16-bit branch or jump is
13960 actually an immediate argument to a compact branch, and let
13961 it through if so. */
df58fc94 13962 if (irel->r_offset >= 2
2309ddf2 13963 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13964 && !(irel->r_offset >= 4
80cab405
MR
13965 && (bzc = check_relocated_bzc (abfd,
13966 ptr - 4, irel->r_offset - 4,
13967 internal_relocs, irelend))))
df58fc94
RS
13968 continue;
13969 if (irel->r_offset >= 4
80cab405 13970 && !bzc
2309ddf2 13971 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13972 continue;
13973
13974 reg = OP32_SREG (opcode);
13975
13976 /* We only relax adjacent instructions or ones separated with
13977 a branch or jump that has a delay slot. The branch or jump
13978 must not fiddle with the register used to hold the address.
13979 Subtract 4 for the LUI itself. */
13980 offset = irel[1].r_offset - irel[0].r_offset;
13981 switch (offset - 4)
13982 {
13983 case 0:
13984 break;
13985 case 2:
2309ddf2 13986 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13987 break;
13988 continue;
13989 case 4:
2309ddf2 13990 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13991 break;
13992 continue;
13993 default:
13994 continue;
13995 }
13996
d21911ea 13997 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13998
13999 /* Give up unless the same register is used with both
14000 relocations. */
14001 if (OP32_SREG (nextopc) != reg)
14002 continue;
14003
14004 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14005 and rounding up to take masking of the two LSBs into account. */
14006 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14007
14008 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14009 if (IS_BITSIZE (symval, 16))
14010 {
14011 /* Fix the relocation's type. */
14012 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14013
14014 /* Instructions using R_MICROMIPS_LO16 have the base or
07d6d2b8
AM
14015 source register in bits 20:16. This register becomes $0
14016 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
df58fc94
RS
14017 nextopc &= ~0x001f0000;
14018 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14019 contents + irel[1].r_offset);
14020 }
14021
14022 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14023 We add 4 to take LUI deletion into account while checking
14024 the PC-relative distance. */
14025 else if (symval % 4 == 0
14026 && IS_BITSIZE (pcrval + 4, 25)
14027 && MATCH (nextopc, addiu_insn)
14028 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14029 && OP16_VALID_REG (OP32_TREG (nextopc)))
14030 {
14031 /* Fix the relocation's type. */
14032 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14033
14034 /* Replace ADDIU with the ADDIUPC version. */
14035 nextopc = (addiupc_insn.match
14036 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14037
d21911ea
MR
14038 bfd_put_micromips_32 (abfd, nextopc,
14039 contents + irel[1].r_offset);
df58fc94
RS
14040 }
14041
14042 /* Can't do anything, give up, sigh... */
14043 else
14044 continue;
14045
14046 /* Fix the relocation's type. */
14047 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14048
14049 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14050 delcnt = 4;
14051 deloff = 0;
14052 }
14053
14054 /* Compact branch relaxation -- due to the multitude of macros
07d6d2b8
AM
14055 employed by the compiler/assembler, compact branches are not
14056 always generated. Obviously, this can/will be fixed elsewhere,
14057 but there is no drawback in double checking it here. */
df58fc94
RS
14058 else if (r_type == R_MICROMIPS_PC16_S1
14059 && irel->r_offset + 5 < sec->size
14060 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14061 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
14062 && ((!insn32
14063 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14064 nop_insn_16) ? 2 : 0))
14065 || (irel->r_offset + 7 < sec->size
14066 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14067 ptr + 4),
14068 nop_insn_32) ? 4 : 0))))
df58fc94
RS
14069 {
14070 unsigned long reg;
14071
14072 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14073
14074 /* Replace BEQZ/BNEZ with the compact version. */
14075 opcode = (bzc_insns_32[fndopc].match
14076 | BZC32_REG_FIELD (reg)
14077 | (opcode & 0xffff)); /* Addend value. */
14078
d21911ea 14079 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 14080
833794fc
MR
14081 /* Delete the delay slot NOP: two or four bytes from
14082 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
14083 deloff = 4;
14084 }
14085
14086 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
07d6d2b8 14087 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
14088 else if (!insn32
14089 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
14090 && IS_BITSIZE (pcrval - 2, 11)
14091 && find_match (opcode, b_insns_32) >= 0)
14092 {
14093 /* Fix the relocation's type. */
14094 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14095
a8685210 14096 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
14097 bfd_put_16 (abfd,
14098 (b_insn_16.match
14099 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 14100 ptr);
df58fc94
RS
14101
14102 /* Delete 2 bytes from irel->r_offset + 2. */
14103 delcnt = 2;
14104 deloff = 2;
14105 }
14106
14107 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
07d6d2b8 14108 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
14109 else if (!insn32
14110 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
14111 && IS_BITSIZE (pcrval - 2, 8)
14112 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14113 && OP16_VALID_REG (OP32_SREG (opcode)))
14114 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14115 && OP16_VALID_REG (OP32_TREG (opcode)))))
14116 {
14117 unsigned long reg;
14118
14119 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14120
14121 /* Fix the relocation's type. */
14122 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14123
a8685210 14124 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
14125 bfd_put_16 (abfd,
14126 (bz_insns_16[fndopc].match
14127 | BZ16_REG_FIELD (reg)
14128 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 14129 ptr);
df58fc94
RS
14130
14131 /* Delete 2 bytes from irel->r_offset + 2. */
14132 delcnt = 2;
14133 deloff = 2;
14134 }
14135
14136 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
14137 else if (!insn32
14138 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
14139 && target_is_micromips_code_p
14140 && irel->r_offset + 7 < sec->size
14141 && MATCH (opcode, jal_insn_32_bd32))
14142 {
14143 unsigned long n32opc;
14144 bfd_boolean relaxed = FALSE;
14145
d21911ea 14146 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
14147
14148 if (MATCH (n32opc, nop_insn_32))
14149 {
14150 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 14151 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
14152
14153 relaxed = TRUE;
14154 }
14155 else if (find_match (n32opc, move_insns_32) >= 0)
14156 {
14157 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14158 bfd_put_16 (abfd,
14159 (move_insn_16.match
14160 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14161 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 14162 ptr + 4);
df58fc94
RS
14163
14164 relaxed = TRUE;
14165 }
14166 /* Other 32-bit instructions relaxable to 16-bit
14167 instructions will be handled here later. */
14168
14169 if (relaxed)
14170 {
14171 /* JAL with 32-bit delay slot that is changed to a JALS
07d6d2b8 14172 with 16-bit delay slot. */
d21911ea 14173 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
14174
14175 /* Delete 2 bytes from irel->r_offset + 6. */
14176 delcnt = 2;
14177 deloff = 6;
14178 }
14179 }
14180
14181 if (delcnt != 0)
14182 {
14183 /* Note that we've changed the relocs, section contents, etc. */
14184 elf_section_data (sec)->relocs = internal_relocs;
14185 elf_section_data (sec)->this_hdr.contents = contents;
14186 symtab_hdr->contents = (unsigned char *) isymbuf;
14187
14188 /* Delete bytes depending on the delcnt and deloff. */
14189 if (!mips_elf_relax_delete_bytes (abfd, sec,
14190 irel->r_offset + deloff, delcnt))
14191 goto error_return;
14192
14193 /* That will change things, so we should relax again.
14194 Note that this is not required, and it may be slow. */
14195 *again = TRUE;
14196 }
14197 }
14198
14199 if (isymbuf != NULL
14200 && symtab_hdr->contents != (unsigned char *) isymbuf)
14201 {
14202 if (! link_info->keep_memory)
14203 free (isymbuf);
14204 else
14205 {
14206 /* Cache the symbols for elf_link_input_bfd. */
14207 symtab_hdr->contents = (unsigned char *) isymbuf;
14208 }
14209 }
14210
14211 if (contents != NULL
14212 && elf_section_data (sec)->this_hdr.contents != contents)
14213 {
14214 if (! link_info->keep_memory)
14215 free (contents);
14216 else
14217 {
14218 /* Cache the section contents for elf_link_input_bfd. */
14219 elf_section_data (sec)->this_hdr.contents = contents;
14220 }
14221 }
14222
14223 if (internal_relocs != NULL
14224 && elf_section_data (sec)->relocs != internal_relocs)
14225 free (internal_relocs);
14226
14227 return TRUE;
14228
14229 error_return:
14230 if (isymbuf != NULL
14231 && symtab_hdr->contents != (unsigned char *) isymbuf)
14232 free (isymbuf);
14233 if (contents != NULL
14234 && elf_section_data (sec)->this_hdr.contents != contents)
14235 free (contents);
14236 if (internal_relocs != NULL
14237 && elf_section_data (sec)->relocs != internal_relocs)
14238 free (internal_relocs);
14239
14240 return FALSE;
14241}
14242\f
b49e97c9
TS
14243/* Create a MIPS ELF linker hash table. */
14244
14245struct bfd_link_hash_table *
9719ad41 14246_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
14247{
14248 struct mips_elf_link_hash_table *ret;
14249 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14250
7bf52ea2 14251 ret = bfd_zmalloc (amt);
9719ad41 14252 if (ret == NULL)
b49e97c9
TS
14253 return NULL;
14254
66eb6687
AM
14255 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14256 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
14257 sizeof (struct mips_elf_link_hash_entry),
14258 MIPS_ELF_DATA))
b49e97c9 14259 {
e2d34d7d 14260 free (ret);
b49e97c9
TS
14261 return NULL;
14262 }
1bbce132
MR
14263 ret->root.init_plt_refcount.plist = NULL;
14264 ret->root.init_plt_offset.plist = NULL;
b49e97c9 14265
b49e97c9
TS
14266 return &ret->root.root;
14267}
0a44bf69
RS
14268
14269/* Likewise, but indicate that the target is VxWorks. */
14270
14271struct bfd_link_hash_table *
14272_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14273{
14274 struct bfd_link_hash_table *ret;
14275
14276 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14277 if (ret)
14278 {
14279 struct mips_elf_link_hash_table *htab;
14280
14281 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
14282 htab->use_plts_and_copy_relocs = TRUE;
14283 htab->is_vxworks = TRUE;
0a44bf69
RS
14284 }
14285 return ret;
14286}
861fb55a
DJ
14287
14288/* A function that the linker calls if we are allowed to use PLTs
14289 and copy relocs. */
14290
14291void
14292_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14293{
14294 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14295}
833794fc
MR
14296
14297/* A function that the linker calls to select between all or only
8b10b0b3 14298 32-bit microMIPS instructions, and between making or ignoring
47275900
MR
14299 branch relocation checks for invalid transitions between ISA modes.
14300 Also record whether we have been configured for a GNU target. */
833794fc
MR
14301
14302void
8b10b0b3 14303_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
47275900
MR
14304 bfd_boolean ignore_branch_isa,
14305 bfd_boolean gnu_target)
833794fc 14306{
8b10b0b3
MR
14307 mips_elf_hash_table (info)->insn32 = insn32;
14308 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
47275900 14309 mips_elf_hash_table (info)->gnu_target = gnu_target;
833794fc 14310}
3734320d
MF
14311
14312/* A function that the linker calls to enable use of compact branches in
14313 linker generated code for MIPSR6. */
14314
14315void
14316_bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14317{
14318 mips_elf_hash_table (info)->compact_branches = on;
14319}
14320
b49e97c9 14321\f
c97c330b
MF
14322/* Structure for saying that BFD machine EXTENSION extends BASE. */
14323
14324struct mips_mach_extension
14325{
14326 unsigned long extension, base;
14327};
14328
14329
14330/* An array describing how BFD machines relate to one another. The entries
14331 are ordered topologically with MIPS I extensions listed last. */
14332
14333static const struct mips_mach_extension mips_mach_extensions[] =
14334{
14335 /* MIPS64r2 extensions. */
14336 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14337 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14338 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14339 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
9108bc33 14340 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
bd782c07 14341 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
ac8cb70f 14342 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
c97c330b
MF
14343
14344 /* MIPS64 extensions. */
14345 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14346 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14347 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14348
14349 /* MIPS V extensions. */
14350 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14351
14352 /* R10000 extensions. */
14353 { bfd_mach_mips12000, bfd_mach_mips10000 },
14354 { bfd_mach_mips14000, bfd_mach_mips10000 },
14355 { bfd_mach_mips16000, bfd_mach_mips10000 },
14356
14357 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14358 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14359 better to allow vr5400 and vr5500 code to be merged anyway, since
14360 many libraries will just use the core ISA. Perhaps we could add
14361 some sort of ASE flag if this ever proves a problem. */
14362 { bfd_mach_mips5500, bfd_mach_mips5400 },
14363 { bfd_mach_mips5400, bfd_mach_mips5000 },
14364
14365 /* MIPS IV extensions. */
14366 { bfd_mach_mips5, bfd_mach_mips8000 },
14367 { bfd_mach_mips10000, bfd_mach_mips8000 },
14368 { bfd_mach_mips5000, bfd_mach_mips8000 },
14369 { bfd_mach_mips7000, bfd_mach_mips8000 },
14370 { bfd_mach_mips9000, bfd_mach_mips8000 },
14371
14372 /* VR4100 extensions. */
14373 { bfd_mach_mips4120, bfd_mach_mips4100 },
14374 { bfd_mach_mips4111, bfd_mach_mips4100 },
14375
14376 /* MIPS III extensions. */
14377 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14378 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14379 { bfd_mach_mips8000, bfd_mach_mips4000 },
14380 { bfd_mach_mips4650, bfd_mach_mips4000 },
14381 { bfd_mach_mips4600, bfd_mach_mips4000 },
14382 { bfd_mach_mips4400, bfd_mach_mips4000 },
14383 { bfd_mach_mips4300, bfd_mach_mips4000 },
14384 { bfd_mach_mips4100, bfd_mach_mips4000 },
c97c330b
MF
14385 { bfd_mach_mips5900, bfd_mach_mips4000 },
14386
38bf472a
MR
14387 /* MIPS32r3 extensions. */
14388 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14389
14390 /* MIPS32r2 extensions. */
14391 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14392
c97c330b
MF
14393 /* MIPS32 extensions. */
14394 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14395
14396 /* MIPS II extensions. */
14397 { bfd_mach_mips4000, bfd_mach_mips6000 },
14398 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
b417536f 14399 { bfd_mach_mips4010, bfd_mach_mips6000 },
c97c330b
MF
14400
14401 /* MIPS I extensions. */
14402 { bfd_mach_mips6000, bfd_mach_mips3000 },
14403 { bfd_mach_mips3900, bfd_mach_mips3000 }
14404};
14405
14406/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14407
14408static bfd_boolean
14409mips_mach_extends_p (unsigned long base, unsigned long extension)
14410{
14411 size_t i;
14412
14413 if (extension == base)
14414 return TRUE;
14415
14416 if (base == bfd_mach_mipsisa32
14417 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14418 return TRUE;
14419
14420 if (base == bfd_mach_mipsisa32r2
14421 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14422 return TRUE;
14423
14424 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14425 if (extension == mips_mach_extensions[i].extension)
14426 {
14427 extension = mips_mach_extensions[i].base;
14428 if (extension == base)
14429 return TRUE;
14430 }
14431
14432 return FALSE;
14433}
14434
14435/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14436
14437static unsigned long
14438bfd_mips_isa_ext_mach (unsigned int isa_ext)
14439{
14440 switch (isa_ext)
14441 {
07d6d2b8
AM
14442 case AFL_EXT_3900: return bfd_mach_mips3900;
14443 case AFL_EXT_4010: return bfd_mach_mips4010;
14444 case AFL_EXT_4100: return bfd_mach_mips4100;
14445 case AFL_EXT_4111: return bfd_mach_mips4111;
14446 case AFL_EXT_4120: return bfd_mach_mips4120;
14447 case AFL_EXT_4650: return bfd_mach_mips4650;
14448 case AFL_EXT_5400: return bfd_mach_mips5400;
14449 case AFL_EXT_5500: return bfd_mach_mips5500;
14450 case AFL_EXT_5900: return bfd_mach_mips5900;
14451 case AFL_EXT_10000: return bfd_mach_mips10000;
c97c330b
MF
14452 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14453 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
07d6d2b8 14454 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
c97c330b
MF
14455 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14456 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14457 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
07d6d2b8
AM
14458 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14459 default: return bfd_mach_mips3000;
c97c330b
MF
14460 }
14461}
14462
351cdf24
MF
14463/* Return the .MIPS.abiflags value representing each ISA Extension. */
14464
14465unsigned int
14466bfd_mips_isa_ext (bfd *abfd)
14467{
14468 switch (bfd_get_mach (abfd))
14469 {
07d6d2b8
AM
14470 case bfd_mach_mips3900: return AFL_EXT_3900;
14471 case bfd_mach_mips4010: return AFL_EXT_4010;
14472 case bfd_mach_mips4100: return AFL_EXT_4100;
14473 case bfd_mach_mips4111: return AFL_EXT_4111;
14474 case bfd_mach_mips4120: return AFL_EXT_4120;
14475 case bfd_mach_mips4650: return AFL_EXT_4650;
14476 case bfd_mach_mips5400: return AFL_EXT_5400;
14477 case bfd_mach_mips5500: return AFL_EXT_5500;
14478 case bfd_mach_mips5900: return AFL_EXT_5900;
14479 case bfd_mach_mips10000: return AFL_EXT_10000;
c97c330b
MF
14480 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14481 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
07d6d2b8
AM
14482 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14483 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14484 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14485 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14486 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14487 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
38bf472a
MR
14488 case bfd_mach_mips_interaptiv_mr2:
14489 return AFL_EXT_INTERAPTIV_MR2;
07d6d2b8 14490 default: return 0;
c97c330b
MF
14491 }
14492}
14493
14494/* Encode ISA level and revision as a single value. */
14495#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14496
14497/* Decode a single value into level and revision. */
14498#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14499#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14500
14501/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14502
14503static void
14504update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14505{
c97c330b 14506 int new_isa = 0;
351cdf24
MF
14507 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14508 {
c97c330b
MF
14509 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14510 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14511 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14512 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14513 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14514 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14515 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14516 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14517 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14518 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14519 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14520 default:
4eca0228 14521 _bfd_error_handler
695344c0 14522 /* xgettext:c-format */
2c1c9679 14523 (_("%pB: unknown architecture %s"),
351cdf24
MF
14524 abfd, bfd_printable_name (abfd));
14525 }
14526
c97c330b
MF
14527 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14528 {
14529 abiflags->isa_level = ISA_LEVEL (new_isa);
14530 abiflags->isa_rev = ISA_REV (new_isa);
14531 }
14532
14533 /* Update the isa_ext if ABFD describes a further extension. */
14534 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14535 bfd_get_mach (abfd)))
14536 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14537}
14538
14539/* Return true if the given ELF header flags describe a 32-bit binary. */
14540
14541static bfd_boolean
14542mips_32bit_flags_p (flagword flags)
14543{
14544 return ((flags & EF_MIPS_32BITMODE) != 0
14545 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14546 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14547 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14548 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14549 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14550 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14551 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14552}
14553
14554/* Infer the content of the ABI flags based on the elf header. */
14555
14556static void
14557infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14558{
14559 obj_attribute *in_attr;
14560
14561 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14562 update_mips_abiflags_isa (abfd, abiflags);
14563
14564 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14565 abiflags->gpr_size = AFL_REG_32;
14566 else
14567 abiflags->gpr_size = AFL_REG_64;
14568
14569 abiflags->cpr1_size = AFL_REG_NONE;
14570
14571 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14572 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14573
14574 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14575 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14576 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14577 && abiflags->gpr_size == AFL_REG_32))
14578 abiflags->cpr1_size = AFL_REG_32;
14579 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14580 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14581 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14582 abiflags->cpr1_size = AFL_REG_64;
14583
14584 abiflags->cpr2_size = AFL_REG_NONE;
14585
14586 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14587 abiflags->ases |= AFL_ASE_MDMX;
14588 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14589 abiflags->ases |= AFL_ASE_MIPS16;
14590 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14591 abiflags->ases |= AFL_ASE_MICROMIPS;
14592
14593 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14594 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14595 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14596 && abiflags->isa_level >= 32
bdc6c06e 14597 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
351cdf24
MF
14598 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14599}
14600
b49e97c9
TS
14601/* We need to use a special link routine to handle the .reginfo and
14602 the .mdebug sections. We need to merge all instances of these
14603 sections together, not write them all out sequentially. */
14604
b34976b6 14605bfd_boolean
9719ad41 14606_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14607{
b49e97c9
TS
14608 asection *o;
14609 struct bfd_link_order *p;
14610 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14611 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14612 Elf32_RegInfo reginfo;
14613 struct ecoff_debug_info debug;
861fb55a 14614 struct mips_htab_traverse_info hti;
7a2a6943
NC
14615 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14616 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14617 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14618 void *mdebug_handle = NULL;
b49e97c9
TS
14619 asection *s;
14620 EXTR esym;
14621 unsigned int i;
14622 bfd_size_type amt;
0a44bf69 14623 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14624
14625 static const char * const secname[] =
14626 {
14627 ".text", ".init", ".fini", ".data",
14628 ".rodata", ".sdata", ".sbss", ".bss"
14629 };
14630 static const int sc[] =
14631 {
14632 scText, scInit, scFini, scData,
14633 scRData, scSData, scSBss, scBss
14634 };
14635
0a44bf69 14636 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14637 BFD_ASSERT (htab != NULL);
14638
64575f78
MR
14639 /* Sort the dynamic symbols so that those with GOT entries come after
14640 those without. */
d4596a51
RS
14641 if (!mips_elf_sort_hash_table (abfd, info))
14642 return FALSE;
b49e97c9 14643
861fb55a
DJ
14644 /* Create any scheduled LA25 stubs. */
14645 hti.info = info;
14646 hti.output_bfd = abfd;
14647 hti.error = FALSE;
14648 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14649 if (hti.error)
14650 return FALSE;
14651
b49e97c9
TS
14652 /* Get a value for the GP register. */
14653 if (elf_gp (abfd) == 0)
14654 {
14655 struct bfd_link_hash_entry *h;
14656
b34976b6 14657 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14658 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14659 elf_gp (abfd) = (h->u.def.value
14660 + h->u.def.section->output_section->vma
14661 + h->u.def.section->output_offset);
0a44bf69
RS
14662 else if (htab->is_vxworks
14663 && (h = bfd_link_hash_lookup (info->hash,
14664 "_GLOBAL_OFFSET_TABLE_",
14665 FALSE, FALSE, TRUE))
14666 && h->type == bfd_link_hash_defined)
14667 elf_gp (abfd) = (h->u.def.section->output_section->vma
14668 + h->u.def.section->output_offset
14669 + h->u.def.value);
0e1862bb 14670 else if (bfd_link_relocatable (info))
b49e97c9
TS
14671 {
14672 bfd_vma lo = MINUS_ONE;
14673
14674 /* Find the GP-relative section with the lowest offset. */
9719ad41 14675 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14676 if (o->vma < lo
14677 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14678 lo = o->vma;
14679
14680 /* And calculate GP relative to that. */
0a44bf69 14681 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14682 }
14683 else
14684 {
14685 /* If the relocate_section function needs to do a reloc
14686 involving the GP value, it should make a reloc_dangerous
14687 callback to warn that GP is not defined. */
14688 }
14689 }
14690
14691 /* Go through the sections and collect the .reginfo and .mdebug
14692 information. */
351cdf24 14693 abiflags_sec = NULL;
b49e97c9
TS
14694 reginfo_sec = NULL;
14695 mdebug_sec = NULL;
14696 gptab_data_sec = NULL;
14697 gptab_bss_sec = NULL;
9719ad41 14698 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14699 {
351cdf24
MF
14700 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14701 {
14702 /* We have found the .MIPS.abiflags section in the output file.
14703 Look through all the link_orders comprising it and remove them.
14704 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14705 for (p = o->map_head.link_order; p != NULL; p = p->next)
14706 {
14707 asection *input_section;
14708
14709 if (p->type != bfd_indirect_link_order)
14710 {
14711 if (p->type == bfd_data_link_order)
14712 continue;
14713 abort ();
14714 }
14715
14716 input_section = p->u.indirect.section;
14717
14718 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14719 elf_link_input_bfd ignores this section. */
14720 input_section->flags &= ~SEC_HAS_CONTENTS;
14721 }
14722
14723 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14724 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14725
14726 /* Skip this section later on (I don't think this currently
14727 matters, but someday it might). */
14728 o->map_head.link_order = NULL;
14729
14730 abiflags_sec = o;
14731 }
14732
b49e97c9
TS
14733 if (strcmp (o->name, ".reginfo") == 0)
14734 {
14735 memset (&reginfo, 0, sizeof reginfo);
14736
14737 /* We have found the .reginfo section in the output file.
14738 Look through all the link_orders comprising it and merge
14739 the information together. */
8423293d 14740 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14741 {
14742 asection *input_section;
14743 bfd *input_bfd;
14744 Elf32_External_RegInfo ext;
14745 Elf32_RegInfo sub;
6798f8bf 14746 bfd_size_type sz;
b49e97c9
TS
14747
14748 if (p->type != bfd_indirect_link_order)
14749 {
14750 if (p->type == bfd_data_link_order)
14751 continue;
14752 abort ();
14753 }
14754
14755 input_section = p->u.indirect.section;
14756 input_bfd = input_section->owner;
14757
6798f8bf
MR
14758 sz = (input_section->size < sizeof (ext)
14759 ? input_section->size : sizeof (ext));
14760 memset (&ext, 0, sizeof (ext));
b49e97c9 14761 if (! bfd_get_section_contents (input_bfd, input_section,
6798f8bf 14762 &ext, 0, sz))
b34976b6 14763 return FALSE;
b49e97c9
TS
14764
14765 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14766
14767 reginfo.ri_gprmask |= sub.ri_gprmask;
14768 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14769 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14770 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14771 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14772
14773 /* ri_gp_value is set by the function
1c5e4ee9 14774 `_bfd_mips_elf_section_processing' when the section is
b49e97c9
TS
14775 finally written out. */
14776
14777 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14778 elf_link_input_bfd ignores this section. */
14779 input_section->flags &= ~SEC_HAS_CONTENTS;
14780 }
14781
14782 /* Size has been set in _bfd_mips_elf_always_size_sections. */
b248d650 14783 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14784
14785 /* Skip this section later on (I don't think this currently
14786 matters, but someday it might). */
8423293d 14787 o->map_head.link_order = NULL;
b49e97c9
TS
14788
14789 reginfo_sec = o;
14790 }
14791
14792 if (strcmp (o->name, ".mdebug") == 0)
14793 {
14794 struct extsym_info einfo;
14795 bfd_vma last;
14796
14797 /* We have found the .mdebug section in the output file.
14798 Look through all the link_orders comprising it and merge
14799 the information together. */
14800 symhdr->magic = swap->sym_magic;
14801 /* FIXME: What should the version stamp be? */
14802 symhdr->vstamp = 0;
14803 symhdr->ilineMax = 0;
14804 symhdr->cbLine = 0;
14805 symhdr->idnMax = 0;
14806 symhdr->ipdMax = 0;
14807 symhdr->isymMax = 0;
14808 symhdr->ioptMax = 0;
14809 symhdr->iauxMax = 0;
14810 symhdr->issMax = 0;
14811 symhdr->issExtMax = 0;
14812 symhdr->ifdMax = 0;
14813 symhdr->crfd = 0;
14814 symhdr->iextMax = 0;
14815
14816 /* We accumulate the debugging information itself in the
14817 debug_info structure. */
14818 debug.line = NULL;
14819 debug.external_dnr = NULL;
14820 debug.external_pdr = NULL;
14821 debug.external_sym = NULL;
14822 debug.external_opt = NULL;
14823 debug.external_aux = NULL;
14824 debug.ss = NULL;
14825 debug.ssext = debug.ssext_end = NULL;
14826 debug.external_fdr = NULL;
14827 debug.external_rfd = NULL;
14828 debug.external_ext = debug.external_ext_end = NULL;
14829
14830 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14831 if (mdebug_handle == NULL)
b34976b6 14832 return FALSE;
b49e97c9
TS
14833
14834 esym.jmptbl = 0;
14835 esym.cobol_main = 0;
14836 esym.weakext = 0;
14837 esym.reserved = 0;
14838 esym.ifd = ifdNil;
14839 esym.asym.iss = issNil;
14840 esym.asym.st = stLocal;
14841 esym.asym.reserved = 0;
14842 esym.asym.index = indexNil;
14843 last = 0;
14844 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14845 {
14846 esym.asym.sc = sc[i];
14847 s = bfd_get_section_by_name (abfd, secname[i]);
14848 if (s != NULL)
14849 {
14850 esym.asym.value = s->vma;
eea6121a 14851 last = s->vma + s->size;
b49e97c9
TS
14852 }
14853 else
14854 esym.asym.value = last;
14855 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14856 secname[i], &esym))
b34976b6 14857 return FALSE;
b49e97c9
TS
14858 }
14859
8423293d 14860 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14861 {
14862 asection *input_section;
14863 bfd *input_bfd;
14864 const struct ecoff_debug_swap *input_swap;
14865 struct ecoff_debug_info input_debug;
14866 char *eraw_src;
14867 char *eraw_end;
14868
14869 if (p->type != bfd_indirect_link_order)
14870 {
14871 if (p->type == bfd_data_link_order)
14872 continue;
14873 abort ();
14874 }
14875
14876 input_section = p->u.indirect.section;
14877 input_bfd = input_section->owner;
14878
d5eaccd7 14879 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14880 {
14881 /* I don't know what a non MIPS ELF bfd would be
14882 doing with a .mdebug section, but I don't really
14883 want to deal with it. */
14884 continue;
14885 }
14886
14887 input_swap = (get_elf_backend_data (input_bfd)
14888 ->elf_backend_ecoff_debug_swap);
14889
eea6121a 14890 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14891
14892 /* The ECOFF linking code expects that we have already
14893 read in the debugging information and set up an
14894 ecoff_debug_info structure, so we do that now. */
14895 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14896 &input_debug))
b34976b6 14897 return FALSE;
b49e97c9
TS
14898
14899 if (! (bfd_ecoff_debug_accumulate
14900 (mdebug_handle, abfd, &debug, swap, input_bfd,
14901 &input_debug, input_swap, info)))
b34976b6 14902 return FALSE;
b49e97c9
TS
14903
14904 /* Loop through the external symbols. For each one with
14905 interesting information, try to find the symbol in
14906 the linker global hash table and save the information
14907 for the output external symbols. */
14908 eraw_src = input_debug.external_ext;
14909 eraw_end = (eraw_src
14910 + (input_debug.symbolic_header.iextMax
14911 * input_swap->external_ext_size));
14912 for (;
14913 eraw_src < eraw_end;
14914 eraw_src += input_swap->external_ext_size)
14915 {
14916 EXTR ext;
14917 const char *name;
14918 struct mips_elf_link_hash_entry *h;
14919
9719ad41 14920 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14921 if (ext.asym.sc == scNil
14922 || ext.asym.sc == scUndefined
14923 || ext.asym.sc == scSUndefined)
14924 continue;
14925
14926 name = input_debug.ssext + ext.asym.iss;
14927 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14928 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14929 if (h == NULL || h->esym.ifd != -2)
14930 continue;
14931
14932 if (ext.ifd != -1)
14933 {
14934 BFD_ASSERT (ext.ifd
14935 < input_debug.symbolic_header.ifdMax);
14936 ext.ifd = input_debug.ifdmap[ext.ifd];
14937 }
14938
14939 h->esym = ext;
14940 }
14941
14942 /* Free up the information we just read. */
14943 free (input_debug.line);
14944 free (input_debug.external_dnr);
14945 free (input_debug.external_pdr);
14946 free (input_debug.external_sym);
14947 free (input_debug.external_opt);
14948 free (input_debug.external_aux);
14949 free (input_debug.ss);
14950 free (input_debug.ssext);
14951 free (input_debug.external_fdr);
14952 free (input_debug.external_rfd);
14953 free (input_debug.external_ext);
14954
14955 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14956 elf_link_input_bfd ignores this section. */
14957 input_section->flags &= ~SEC_HAS_CONTENTS;
14958 }
14959
0e1862bb 14960 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14961 {
14962 /* Create .rtproc section. */
87e0a731 14963 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14964 if (rtproc_sec == NULL)
14965 {
14966 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14967 | SEC_LINKER_CREATED | SEC_READONLY);
14968
87e0a731
AM
14969 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14970 ".rtproc",
14971 flags);
b49e97c9 14972 if (rtproc_sec == NULL
b49e97c9 14973 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14974 return FALSE;
b49e97c9
TS
14975 }
14976
14977 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14978 info, rtproc_sec,
14979 &debug))
b34976b6 14980 return FALSE;
b49e97c9
TS
14981 }
14982
14983 /* Build the external symbol information. */
14984 einfo.abfd = abfd;
14985 einfo.info = info;
14986 einfo.debug = &debug;
14987 einfo.swap = swap;
b34976b6 14988 einfo.failed = FALSE;
b49e97c9 14989 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14990 mips_elf_output_extsym, &einfo);
b49e97c9 14991 if (einfo.failed)
b34976b6 14992 return FALSE;
b49e97c9
TS
14993
14994 /* Set the size of the .mdebug section. */
eea6121a 14995 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14996
14997 /* Skip this section later on (I don't think this currently
14998 matters, but someday it might). */
8423293d 14999 o->map_head.link_order = NULL;
b49e97c9
TS
15000
15001 mdebug_sec = o;
15002 }
15003
0112cd26 15004 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
15005 {
15006 const char *subname;
15007 unsigned int c;
15008 Elf32_gptab *tab;
15009 Elf32_External_gptab *ext_tab;
15010 unsigned int j;
15011
15012 /* The .gptab.sdata and .gptab.sbss sections hold
15013 information describing how the small data area would
15014 change depending upon the -G switch. These sections
15015 not used in executables files. */
0e1862bb 15016 if (! bfd_link_relocatable (info))
b49e97c9 15017 {
8423293d 15018 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
15019 {
15020 asection *input_section;
15021
15022 if (p->type != bfd_indirect_link_order)
15023 {
15024 if (p->type == bfd_data_link_order)
15025 continue;
15026 abort ();
15027 }
15028
15029 input_section = p->u.indirect.section;
15030
15031 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15032 elf_link_input_bfd ignores this section. */
15033 input_section->flags &= ~SEC_HAS_CONTENTS;
15034 }
15035
15036 /* Skip this section later on (I don't think this
15037 currently matters, but someday it might). */
8423293d 15038 o->map_head.link_order = NULL;
b49e97c9
TS
15039
15040 /* Really remove the section. */
5daa8fe7 15041 bfd_section_list_remove (abfd, o);
b49e97c9
TS
15042 --abfd->section_count;
15043
15044 continue;
15045 }
15046
15047 /* There is one gptab for initialized data, and one for
15048 uninitialized data. */
15049 if (strcmp (o->name, ".gptab.sdata") == 0)
15050 gptab_data_sec = o;
15051 else if (strcmp (o->name, ".gptab.sbss") == 0)
15052 gptab_bss_sec = o;
15053 else
15054 {
4eca0228 15055 _bfd_error_handler
695344c0 15056 /* xgettext:c-format */
871b3ab2 15057 (_("%pB: illegal section name `%pA'"), abfd, o);
b49e97c9 15058 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 15059 return FALSE;
b49e97c9
TS
15060 }
15061
15062 /* The linker script always combines .gptab.data and
15063 .gptab.sdata into .gptab.sdata, and likewise for
15064 .gptab.bss and .gptab.sbss. It is possible that there is
15065 no .sdata or .sbss section in the output file, in which
15066 case we must change the name of the output section. */
15067 subname = o->name + sizeof ".gptab" - 1;
15068 if (bfd_get_section_by_name (abfd, subname) == NULL)
15069 {
15070 if (o == gptab_data_sec)
15071 o->name = ".gptab.data";
15072 else
15073 o->name = ".gptab.bss";
15074 subname = o->name + sizeof ".gptab" - 1;
15075 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15076 }
15077
15078 /* Set up the first entry. */
15079 c = 1;
15080 amt = c * sizeof (Elf32_gptab);
9719ad41 15081 tab = bfd_malloc (amt);
b49e97c9 15082 if (tab == NULL)
b34976b6 15083 return FALSE;
b49e97c9
TS
15084 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15085 tab[0].gt_header.gt_unused = 0;
15086
15087 /* Combine the input sections. */
8423293d 15088 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
15089 {
15090 asection *input_section;
15091 bfd *input_bfd;
15092 bfd_size_type size;
15093 unsigned long last;
15094 bfd_size_type gpentry;
15095
15096 if (p->type != bfd_indirect_link_order)
15097 {
15098 if (p->type == bfd_data_link_order)
15099 continue;
15100 abort ();
15101 }
15102
15103 input_section = p->u.indirect.section;
15104 input_bfd = input_section->owner;
15105
15106 /* Combine the gptab entries for this input section one
15107 by one. We know that the input gptab entries are
15108 sorted by ascending -G value. */
eea6121a 15109 size = input_section->size;
b49e97c9
TS
15110 last = 0;
15111 for (gpentry = sizeof (Elf32_External_gptab);
15112 gpentry < size;
15113 gpentry += sizeof (Elf32_External_gptab))
15114 {
15115 Elf32_External_gptab ext_gptab;
15116 Elf32_gptab int_gptab;
15117 unsigned long val;
15118 unsigned long add;
b34976b6 15119 bfd_boolean exact;
b49e97c9
TS
15120 unsigned int look;
15121
15122 if (! (bfd_get_section_contents
9719ad41
RS
15123 (input_bfd, input_section, &ext_gptab, gpentry,
15124 sizeof (Elf32_External_gptab))))
b49e97c9
TS
15125 {
15126 free (tab);
b34976b6 15127 return FALSE;
b49e97c9
TS
15128 }
15129
15130 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15131 &int_gptab);
15132 val = int_gptab.gt_entry.gt_g_value;
15133 add = int_gptab.gt_entry.gt_bytes - last;
15134
b34976b6 15135 exact = FALSE;
b49e97c9
TS
15136 for (look = 1; look < c; look++)
15137 {
15138 if (tab[look].gt_entry.gt_g_value >= val)
15139 tab[look].gt_entry.gt_bytes += add;
15140
15141 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 15142 exact = TRUE;
b49e97c9
TS
15143 }
15144
15145 if (! exact)
15146 {
15147 Elf32_gptab *new_tab;
15148 unsigned int max;
15149
15150 /* We need a new table entry. */
15151 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 15152 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
15153 if (new_tab == NULL)
15154 {
15155 free (tab);
b34976b6 15156 return FALSE;
b49e97c9
TS
15157 }
15158 tab = new_tab;
15159 tab[c].gt_entry.gt_g_value = val;
15160 tab[c].gt_entry.gt_bytes = add;
15161
15162 /* Merge in the size for the next smallest -G
15163 value, since that will be implied by this new
15164 value. */
15165 max = 0;
15166 for (look = 1; look < c; look++)
15167 {
15168 if (tab[look].gt_entry.gt_g_value < val
15169 && (max == 0
15170 || (tab[look].gt_entry.gt_g_value
15171 > tab[max].gt_entry.gt_g_value)))
15172 max = look;
15173 }
15174 if (max != 0)
15175 tab[c].gt_entry.gt_bytes +=
15176 tab[max].gt_entry.gt_bytes;
15177
15178 ++c;
15179 }
15180
15181 last = int_gptab.gt_entry.gt_bytes;
15182 }
15183
15184 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15185 elf_link_input_bfd ignores this section. */
15186 input_section->flags &= ~SEC_HAS_CONTENTS;
15187 }
15188
15189 /* The table must be sorted by -G value. */
15190 if (c > 2)
15191 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15192
15193 /* Swap out the table. */
15194 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 15195 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
15196 if (ext_tab == NULL)
15197 {
15198 free (tab);
b34976b6 15199 return FALSE;
b49e97c9
TS
15200 }
15201
15202 for (j = 0; j < c; j++)
15203 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15204 free (tab);
15205
eea6121a 15206 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
15207 o->contents = (bfd_byte *) ext_tab;
15208
15209 /* Skip this section later on (I don't think this currently
15210 matters, but someday it might). */
8423293d 15211 o->map_head.link_order = NULL;
b49e97c9
TS
15212 }
15213 }
15214
15215 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 15216 if (!bfd_elf_final_link (abfd, info))
b34976b6 15217 return FALSE;
b49e97c9
TS
15218
15219 /* Now write out the computed sections. */
15220
351cdf24
MF
15221 if (abiflags_sec != NULL)
15222 {
15223 Elf_External_ABIFlags_v0 ext;
15224 Elf_Internal_ABIFlags_v0 *abiflags;
15225
15226 abiflags = &mips_elf_tdata (abfd)->abiflags;
15227
15228 /* Set up the abiflags if no valid input sections were found. */
15229 if (!mips_elf_tdata (abfd)->abiflags_valid)
15230 {
15231 infer_mips_abiflags (abfd, abiflags);
15232 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15233 }
15234 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15235 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15236 return FALSE;
15237 }
15238
9719ad41 15239 if (reginfo_sec != NULL)
b49e97c9
TS
15240 {
15241 Elf32_External_RegInfo ext;
15242
15243 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 15244 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 15245 return FALSE;
b49e97c9
TS
15246 }
15247
9719ad41 15248 if (mdebug_sec != NULL)
b49e97c9
TS
15249 {
15250 BFD_ASSERT (abfd->output_has_begun);
15251 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15252 swap, info,
15253 mdebug_sec->filepos))
b34976b6 15254 return FALSE;
b49e97c9
TS
15255
15256 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15257 }
15258
9719ad41 15259 if (gptab_data_sec != NULL)
b49e97c9
TS
15260 {
15261 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15262 gptab_data_sec->contents,
eea6121a 15263 0, gptab_data_sec->size))
b34976b6 15264 return FALSE;
b49e97c9
TS
15265 }
15266
9719ad41 15267 if (gptab_bss_sec != NULL)
b49e97c9
TS
15268 {
15269 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15270 gptab_bss_sec->contents,
eea6121a 15271 0, gptab_bss_sec->size))
b34976b6 15272 return FALSE;
b49e97c9
TS
15273 }
15274
15275 if (SGI_COMPAT (abfd))
15276 {
15277 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15278 if (rtproc_sec != NULL)
15279 {
15280 if (! bfd_set_section_contents (abfd, rtproc_sec,
15281 rtproc_sec->contents,
eea6121a 15282 0, rtproc_sec->size))
b34976b6 15283 return FALSE;
b49e97c9
TS
15284 }
15285 }
15286
b34976b6 15287 return TRUE;
b49e97c9
TS
15288}
15289\f
b2e9744f
MR
15290/* Merge object file header flags from IBFD into OBFD. Raise an error
15291 if there are conflicting settings. */
15292
15293static bfd_boolean
50e03d47 15294mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 15295{
50e03d47 15296 bfd *obfd = info->output_bfd;
b2e9744f
MR
15297 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15298 flagword old_flags;
15299 flagword new_flags;
15300 bfd_boolean ok;
15301
15302 new_flags = elf_elfheader (ibfd)->e_flags;
15303 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15304 old_flags = elf_elfheader (obfd)->e_flags;
15305
15306 /* Check flag compatibility. */
15307
15308 new_flags &= ~EF_MIPS_NOREORDER;
15309 old_flags &= ~EF_MIPS_NOREORDER;
15310
15311 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15312 doesn't seem to matter. */
15313 new_flags &= ~EF_MIPS_XGOT;
15314 old_flags &= ~EF_MIPS_XGOT;
15315
15316 /* MIPSpro generates ucode info in n64 objects. Again, we should
15317 just be able to ignore this. */
15318 new_flags &= ~EF_MIPS_UCODE;
15319 old_flags &= ~EF_MIPS_UCODE;
15320
15321 /* DSOs should only be linked with CPIC code. */
15322 if ((ibfd->flags & DYNAMIC) != 0)
15323 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15324
15325 if (new_flags == old_flags)
15326 return TRUE;
15327
15328 ok = TRUE;
15329
15330 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15331 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15332 {
4eca0228 15333 _bfd_error_handler
871b3ab2 15334 (_("%pB: warning: linking abicalls files with non-abicalls files"),
b2e9744f
MR
15335 ibfd);
15336 ok = TRUE;
15337 }
15338
15339 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15340 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15341 if (! (new_flags & EF_MIPS_PIC))
15342 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15343
15344 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15345 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15346
15347 /* Compare the ISAs. */
15348 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15349 {
4eca0228 15350 _bfd_error_handler
871b3ab2 15351 (_("%pB: linking 32-bit code with 64-bit code"),
b2e9744f
MR
15352 ibfd);
15353 ok = FALSE;
15354 }
15355 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15356 {
15357 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15358 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15359 {
15360 /* Copy the architecture info from IBFD to OBFD. Also copy
15361 the 32-bit flag (if set) so that we continue to recognise
15362 OBFD as a 32-bit binary. */
15363 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15364 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15365 elf_elfheader (obfd)->e_flags
15366 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15367
15368 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15369 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15370
15371 /* Copy across the ABI flags if OBFD doesn't use them
15372 and if that was what caused us to treat IBFD as 32-bit. */
15373 if ((old_flags & EF_MIPS_ABI) == 0
15374 && mips_32bit_flags_p (new_flags)
15375 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15376 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15377 }
15378 else
15379 {
15380 /* The ISAs aren't compatible. */
4eca0228 15381 _bfd_error_handler
695344c0 15382 /* xgettext:c-format */
871b3ab2 15383 (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15384 ibfd,
15385 bfd_printable_name (ibfd),
15386 bfd_printable_name (obfd));
15387 ok = FALSE;
15388 }
15389 }
15390
15391 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15392 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15393
15394 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15395 does set EI_CLASS differently from any 32-bit ABI. */
15396 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15397 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15398 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15399 {
15400 /* Only error if both are set (to different values). */
15401 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15402 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15403 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15404 {
4eca0228 15405 _bfd_error_handler
695344c0 15406 /* xgettext:c-format */
871b3ab2 15407 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15408 ibfd,
15409 elf_mips_abi_name (ibfd),
15410 elf_mips_abi_name (obfd));
15411 ok = FALSE;
15412 }
15413 new_flags &= ~EF_MIPS_ABI;
15414 old_flags &= ~EF_MIPS_ABI;
15415 }
15416
15417 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15418 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15419 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15420 {
15421 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15422 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15423 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15424 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15425 int micro_mis = old_m16 && new_micro;
15426 int m16_mis = old_micro && new_m16;
15427
15428 if (m16_mis || micro_mis)
15429 {
4eca0228 15430 _bfd_error_handler
695344c0 15431 /* xgettext:c-format */
871b3ab2 15432 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15433 ibfd,
15434 m16_mis ? "MIPS16" : "microMIPS",
15435 m16_mis ? "microMIPS" : "MIPS16");
15436 ok = FALSE;
15437 }
15438
15439 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15440
15441 new_flags &= ~ EF_MIPS_ARCH_ASE;
15442 old_flags &= ~ EF_MIPS_ARCH_ASE;
15443 }
15444
15445 /* Compare NaN encodings. */
15446 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15447 {
695344c0 15448 /* xgettext:c-format */
871b3ab2 15449 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15450 ibfd,
15451 (new_flags & EF_MIPS_NAN2008
15452 ? "-mnan=2008" : "-mnan=legacy"),
15453 (old_flags & EF_MIPS_NAN2008
15454 ? "-mnan=2008" : "-mnan=legacy"));
15455 ok = FALSE;
15456 new_flags &= ~EF_MIPS_NAN2008;
15457 old_flags &= ~EF_MIPS_NAN2008;
15458 }
15459
15460 /* Compare FP64 state. */
15461 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15462 {
695344c0 15463 /* xgettext:c-format */
871b3ab2 15464 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15465 ibfd,
15466 (new_flags & EF_MIPS_FP64
15467 ? "-mfp64" : "-mfp32"),
15468 (old_flags & EF_MIPS_FP64
15469 ? "-mfp64" : "-mfp32"));
15470 ok = FALSE;
15471 new_flags &= ~EF_MIPS_FP64;
15472 old_flags &= ~EF_MIPS_FP64;
15473 }
15474
15475 /* Warn about any other mismatches */
15476 if (new_flags != old_flags)
15477 {
695344c0 15478 /* xgettext:c-format */
4eca0228 15479 _bfd_error_handler
871b3ab2 15480 (_("%pB: uses different e_flags (%#x) fields than previous modules "
d42c267e
AM
15481 "(%#x)"),
15482 ibfd, new_flags, old_flags);
b2e9744f
MR
15483 ok = FALSE;
15484 }
15485
15486 return ok;
15487}
15488
2cf19d5c
JM
15489/* Merge object attributes from IBFD into OBFD. Raise an error if
15490 there are conflicting attributes. */
15491static bfd_boolean
50e03d47 15492mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15493{
50e03d47 15494 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15495 obj_attribute *in_attr;
15496 obj_attribute *out_attr;
6ae68ba3 15497 bfd *abi_fp_bfd;
b60bf9be 15498 bfd *abi_msa_bfd;
6ae68ba3
MR
15499
15500 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15501 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15502 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15503 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15504
b60bf9be
CF
15505 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15506 if (!abi_msa_bfd
15507 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15508 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15509
2cf19d5c
JM
15510 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15511 {
15512 /* This is the first object. Copy the attributes. */
15513 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15514
15515 /* Use the Tag_null value to indicate the attributes have been
15516 initialized. */
15517 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15518
15519 return TRUE;
15520 }
15521
15522 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15523 non-conflicting ones. */
2cf19d5c
JM
15524 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15525 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15526 {
757a636f 15527 int out_fp, in_fp;
6ae68ba3 15528
757a636f
RS
15529 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15530 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15531 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15532 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15533 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15534 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15535 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15536 || in_fp == Val_GNU_MIPS_ABI_FP_64
15537 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15538 {
15539 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15540 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15541 }
15542 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15543 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15544 || out_fp == Val_GNU_MIPS_ABI_FP_64
15545 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15546 /* Keep the current setting. */;
15547 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15548 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15549 {
15550 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15551 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15552 }
15553 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15554 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15555 /* Keep the current setting. */;
757a636f
RS
15556 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15557 {
15558 const char *out_string, *in_string;
6ae68ba3 15559
757a636f
RS
15560 out_string = _bfd_mips_fp_abi_string (out_fp);
15561 in_string = _bfd_mips_fp_abi_string (in_fp);
15562 /* First warn about cases involving unrecognised ABIs. */
15563 if (!out_string && !in_string)
695344c0 15564 /* xgettext:c-format */
757a636f 15565 _bfd_error_handler
2c1c9679 15566 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15567 "(set by %pB), %pB uses unknown floating point ABI %d"),
c08bb8dd 15568 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15569 else if (!out_string)
15570 _bfd_error_handler
695344c0 15571 /* xgettext:c-format */
2c1c9679 15572 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15573 "(set by %pB), %pB uses %s"),
c08bb8dd 15574 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15575 else if (!in_string)
15576 _bfd_error_handler
695344c0 15577 /* xgettext:c-format */
2c1c9679 15578 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15579 "%pB uses unknown floating point ABI %d"),
c08bb8dd 15580 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15581 else
15582 {
15583 /* If one of the bfds is soft-float, the other must be
15584 hard-float. The exact choice of hard-float ABI isn't
15585 really relevant to the error message. */
15586 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15587 out_string = "-mhard-float";
15588 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15589 in_string = "-mhard-float";
15590 _bfd_error_handler
695344c0 15591 /* xgettext:c-format */
2c1c9679 15592 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
c08bb8dd 15593 obfd, out_string, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15594 }
15595 }
2cf19d5c
JM
15596 }
15597
b60bf9be
CF
15598 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15599 non-conflicting ones. */
15600 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15601 {
15602 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15603 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15604 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15605 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15606 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15607 {
15608 case Val_GNU_MIPS_ABI_MSA_128:
15609 _bfd_error_handler
695344c0 15610 /* xgettext:c-format */
2c1c9679 15611 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15612 "%pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15613 obfd, "-mmsa", abi_msa_bfd,
15614 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15615 break;
15616
15617 default:
15618 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15619 {
15620 case Val_GNU_MIPS_ABI_MSA_128:
15621 _bfd_error_handler
695344c0 15622 /* xgettext:c-format */
2c1c9679 15623 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15624 "(set by %pB), %pB uses %s"),
c08bb8dd
AM
15625 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15626 abi_msa_bfd, ibfd, "-mmsa");
b60bf9be
CF
15627 break;
15628
15629 default:
15630 _bfd_error_handler
695344c0 15631 /* xgettext:c-format */
2c1c9679 15632 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15633 "(set by %pB), %pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15634 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15635 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15636 break;
15637 }
15638 }
15639 }
15640
2cf19d5c 15641 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15642 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15643}
15644
a3dc0a7f
MR
15645/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15646 there are conflicting settings. */
15647
15648static bfd_boolean
15649mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15650{
15651 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15652 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15653 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15654
15655 /* Update the output abiflags fp_abi using the computed fp_abi. */
15656 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15657
15658#define max(a, b) ((a) > (b) ? (a) : (b))
15659 /* Merge abiflags. */
15660 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15661 in_tdata->abiflags.isa_level);
15662 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15663 in_tdata->abiflags.isa_rev);
15664 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15665 in_tdata->abiflags.gpr_size);
15666 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15667 in_tdata->abiflags.cpr1_size);
15668 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15669 in_tdata->abiflags.cpr2_size);
15670#undef max
15671 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15672 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15673
15674 return TRUE;
15675}
15676
b49e97c9
TS
15677/* Merge backend specific data from an object file to the output
15678 object file when linking. */
15679
b34976b6 15680bfd_boolean
50e03d47 15681_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15682{
50e03d47 15683 bfd *obfd = info->output_bfd;
cf8502c1
MR
15684 struct mips_elf_obj_tdata *out_tdata;
15685 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15686 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15687 asection *sec;
d537eeb5 15688 bfd_boolean ok;
b49e97c9 15689
58238693 15690 /* Check if we have the same endianness. */
50e03d47 15691 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15692 {
4eca0228 15693 _bfd_error_handler
871b3ab2 15694 (_("%pB: endianness incompatible with that of the selected emulation"),
d003868e 15695 ibfd);
aa701218
AO
15696 return FALSE;
15697 }
b49e97c9 15698
d5eaccd7 15699 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15700 return TRUE;
b49e97c9 15701
cf8502c1
MR
15702 in_tdata = mips_elf_tdata (ibfd);
15703 out_tdata = mips_elf_tdata (obfd);
15704
aa701218
AO
15705 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15706 {
4eca0228 15707 _bfd_error_handler
871b3ab2 15708 (_("%pB: ABI is incompatible with that of the selected emulation"),
d003868e 15709 ibfd);
aa701218
AO
15710 return FALSE;
15711 }
15712
23ba6f18
MR
15713 /* Check to see if the input BFD actually contains any sections. If not,
15714 then it has no attributes, and its flags may not have been initialized
15715 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15716 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15717 {
15718 /* Ignore synthetic sections and empty .text, .data and .bss sections
15719 which are automatically generated by gas. Also ignore fake
15720 (s)common sections, since merely defining a common symbol does
15721 not affect compatibility. */
15722 if ((sec->flags & SEC_IS_COMMON) == 0
15723 && strcmp (sec->name, ".reginfo")
15724 && strcmp (sec->name, ".mdebug")
15725 && (sec->size != 0
15726 || (strcmp (sec->name, ".text")
15727 && strcmp (sec->name, ".data")
15728 && strcmp (sec->name, ".bss"))))
15729 {
15730 null_input_bfd = FALSE;
15731 break;
15732 }
15733 }
15734 if (null_input_bfd)
15735 return TRUE;
15736
28d45e28 15737 /* Populate abiflags using existing information. */
23ba6f18
MR
15738 if (in_tdata->abiflags_valid)
15739 {
15740 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15741 Elf_Internal_ABIFlags_v0 in_abiflags;
15742 Elf_Internal_ABIFlags_v0 abiflags;
15743
15744 /* Set up the FP ABI attribute from the abiflags if it is not already
07d6d2b8 15745 set. */
23ba6f18 15746 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
07d6d2b8 15747 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15748
351cdf24 15749 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15750 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15751
15752 /* It is not possible to infer the correct ISA revision
07d6d2b8 15753 for R3 or R5 so drop down to R2 for the checks. */
351cdf24
MF
15754 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15755 in_abiflags.isa_rev = 2;
15756
c97c330b
MF
15757 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15758 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15759 _bfd_error_handler
2c1c9679 15760 (_("%pB: warning: inconsistent ISA between e_flags and "
351cdf24
MF
15761 ".MIPS.abiflags"), ibfd);
15762 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15763 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15764 _bfd_error_handler
2c1c9679 15765 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15766 ".MIPS.abiflags"), ibfd);
15767 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15768 _bfd_error_handler
2c1c9679 15769 (_("%pB: warning: inconsistent ASEs between e_flags and "
351cdf24 15770 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15771 /* The isa_ext is allowed to be an extension of what can be inferred
15772 from e_flags. */
15773 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15774 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15775 _bfd_error_handler
2c1c9679 15776 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
351cdf24
MF
15777 ".MIPS.abiflags"), ibfd);
15778 if (in_abiflags.flags2 != 0)
4eca0228 15779 _bfd_error_handler
2c1c9679 15780 (_("%pB: warning: unexpected flag in the flags2 field of "
351cdf24 15781 ".MIPS.abiflags (0x%lx)"), ibfd,
d42c267e 15782 in_abiflags.flags2);
351cdf24 15783 }
28d45e28
MR
15784 else
15785 {
15786 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15787 in_tdata->abiflags_valid = TRUE;
15788 }
15789
cf8502c1 15790 if (!out_tdata->abiflags_valid)
351cdf24
MF
15791 {
15792 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15793 out_tdata->abiflags = in_tdata->abiflags;
15794 out_tdata->abiflags_valid = TRUE;
351cdf24 15795 }
b49e97c9
TS
15796
15797 if (! elf_flags_init (obfd))
15798 {
b34976b6 15799 elf_flags_init (obfd) = TRUE;
351cdf24 15800 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15801 elf_elfheader (obfd)->e_ident[EI_CLASS]
15802 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15803
15804 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15805 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15806 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15807 bfd_get_mach (ibfd))))
b49e97c9
TS
15808 {
15809 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15810 bfd_get_mach (ibfd)))
b34976b6 15811 return FALSE;
351cdf24
MF
15812
15813 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15814 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15815 }
15816
d537eeb5 15817 ok = TRUE;
b49e97c9 15818 }
d537eeb5 15819 else
50e03d47 15820 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15821
50e03d47 15822 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15823
a3dc0a7f 15824 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15825
d537eeb5 15826 if (!ok)
b49e97c9
TS
15827 {
15828 bfd_set_error (bfd_error_bad_value);
b34976b6 15829 return FALSE;
b49e97c9
TS
15830 }
15831
b34976b6 15832 return TRUE;
b49e97c9
TS
15833}
15834
15835/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15836
b34976b6 15837bfd_boolean
9719ad41 15838_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15839{
15840 BFD_ASSERT (!elf_flags_init (abfd)
15841 || elf_elfheader (abfd)->e_flags == flags);
15842
15843 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15844 elf_flags_init (abfd) = TRUE;
15845 return TRUE;
b49e97c9
TS
15846}
15847
ad9563d6
CM
15848char *
15849_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15850{
15851 switch (dtag)
15852 {
15853 default: return "";
15854 case DT_MIPS_RLD_VERSION:
15855 return "MIPS_RLD_VERSION";
15856 case DT_MIPS_TIME_STAMP:
15857 return "MIPS_TIME_STAMP";
15858 case DT_MIPS_ICHECKSUM:
15859 return "MIPS_ICHECKSUM";
15860 case DT_MIPS_IVERSION:
15861 return "MIPS_IVERSION";
15862 case DT_MIPS_FLAGS:
15863 return "MIPS_FLAGS";
15864 case DT_MIPS_BASE_ADDRESS:
15865 return "MIPS_BASE_ADDRESS";
15866 case DT_MIPS_MSYM:
15867 return "MIPS_MSYM";
15868 case DT_MIPS_CONFLICT:
15869 return "MIPS_CONFLICT";
15870 case DT_MIPS_LIBLIST:
15871 return "MIPS_LIBLIST";
15872 case DT_MIPS_LOCAL_GOTNO:
15873 return "MIPS_LOCAL_GOTNO";
15874 case DT_MIPS_CONFLICTNO:
15875 return "MIPS_CONFLICTNO";
15876 case DT_MIPS_LIBLISTNO:
15877 return "MIPS_LIBLISTNO";
15878 case DT_MIPS_SYMTABNO:
15879 return "MIPS_SYMTABNO";
15880 case DT_MIPS_UNREFEXTNO:
15881 return "MIPS_UNREFEXTNO";
15882 case DT_MIPS_GOTSYM:
15883 return "MIPS_GOTSYM";
15884 case DT_MIPS_HIPAGENO:
15885 return "MIPS_HIPAGENO";
15886 case DT_MIPS_RLD_MAP:
15887 return "MIPS_RLD_MAP";
a5499fa4
MF
15888 case DT_MIPS_RLD_MAP_REL:
15889 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15890 case DT_MIPS_DELTA_CLASS:
15891 return "MIPS_DELTA_CLASS";
15892 case DT_MIPS_DELTA_CLASS_NO:
15893 return "MIPS_DELTA_CLASS_NO";
15894 case DT_MIPS_DELTA_INSTANCE:
15895 return "MIPS_DELTA_INSTANCE";
15896 case DT_MIPS_DELTA_INSTANCE_NO:
15897 return "MIPS_DELTA_INSTANCE_NO";
15898 case DT_MIPS_DELTA_RELOC:
15899 return "MIPS_DELTA_RELOC";
15900 case DT_MIPS_DELTA_RELOC_NO:
15901 return "MIPS_DELTA_RELOC_NO";
15902 case DT_MIPS_DELTA_SYM:
15903 return "MIPS_DELTA_SYM";
15904 case DT_MIPS_DELTA_SYM_NO:
15905 return "MIPS_DELTA_SYM_NO";
15906 case DT_MIPS_DELTA_CLASSSYM:
15907 return "MIPS_DELTA_CLASSSYM";
15908 case DT_MIPS_DELTA_CLASSSYM_NO:
15909 return "MIPS_DELTA_CLASSSYM_NO";
15910 case DT_MIPS_CXX_FLAGS:
15911 return "MIPS_CXX_FLAGS";
15912 case DT_MIPS_PIXIE_INIT:
15913 return "MIPS_PIXIE_INIT";
15914 case DT_MIPS_SYMBOL_LIB:
15915 return "MIPS_SYMBOL_LIB";
15916 case DT_MIPS_LOCALPAGE_GOTIDX:
15917 return "MIPS_LOCALPAGE_GOTIDX";
15918 case DT_MIPS_LOCAL_GOTIDX:
15919 return "MIPS_LOCAL_GOTIDX";
15920 case DT_MIPS_HIDDEN_GOTIDX:
15921 return "MIPS_HIDDEN_GOTIDX";
15922 case DT_MIPS_PROTECTED_GOTIDX:
15923 return "MIPS_PROTECTED_GOT_IDX";
15924 case DT_MIPS_OPTIONS:
15925 return "MIPS_OPTIONS";
15926 case DT_MIPS_INTERFACE:
15927 return "MIPS_INTERFACE";
15928 case DT_MIPS_DYNSTR_ALIGN:
15929 return "DT_MIPS_DYNSTR_ALIGN";
15930 case DT_MIPS_INTERFACE_SIZE:
15931 return "DT_MIPS_INTERFACE_SIZE";
15932 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15933 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15934 case DT_MIPS_PERF_SUFFIX:
15935 return "DT_MIPS_PERF_SUFFIX";
15936 case DT_MIPS_COMPACT_SIZE:
15937 return "DT_MIPS_COMPACT_SIZE";
15938 case DT_MIPS_GP_VALUE:
15939 return "DT_MIPS_GP_VALUE";
15940 case DT_MIPS_AUX_DYNAMIC:
15941 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15942 case DT_MIPS_PLTGOT:
15943 return "DT_MIPS_PLTGOT";
15944 case DT_MIPS_RWPLT:
15945 return "DT_MIPS_RWPLT";
ad9563d6
CM
15946 }
15947}
15948
757a636f
RS
15949/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15950 not known. */
15951
15952const char *
15953_bfd_mips_fp_abi_string (int fp)
15954{
15955 switch (fp)
15956 {
15957 /* These strings aren't translated because they're simply
15958 option lists. */
15959 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15960 return "-mdouble-float";
15961
15962 case Val_GNU_MIPS_ABI_FP_SINGLE:
15963 return "-msingle-float";
15964
15965 case Val_GNU_MIPS_ABI_FP_SOFT:
15966 return "-msoft-float";
15967
351cdf24
MF
15968 case Val_GNU_MIPS_ABI_FP_OLD_64:
15969 return _("-mips32r2 -mfp64 (12 callee-saved)");
15970
15971 case Val_GNU_MIPS_ABI_FP_XX:
15972 return "-mfpxx";
15973
757a636f 15974 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15975 return "-mgp32 -mfp64";
15976
15977 case Val_GNU_MIPS_ABI_FP_64A:
15978 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15979
15980 default:
15981 return 0;
15982 }
15983}
15984
351cdf24
MF
15985static void
15986print_mips_ases (FILE *file, unsigned int mask)
15987{
15988 if (mask & AFL_ASE_DSP)
15989 fputs ("\n\tDSP ASE", file);
15990 if (mask & AFL_ASE_DSPR2)
15991 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
15992 if (mask & AFL_ASE_DSPR3)
15993 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
15994 if (mask & AFL_ASE_EVA)
15995 fputs ("\n\tEnhanced VA Scheme", file);
15996 if (mask & AFL_ASE_MCU)
15997 fputs ("\n\tMCU (MicroController) ASE", file);
15998 if (mask & AFL_ASE_MDMX)
15999 fputs ("\n\tMDMX ASE", file);
16000 if (mask & AFL_ASE_MIPS3D)
16001 fputs ("\n\tMIPS-3D ASE", file);
16002 if (mask & AFL_ASE_MT)
16003 fputs ("\n\tMT ASE", file);
16004 if (mask & AFL_ASE_SMARTMIPS)
16005 fputs ("\n\tSmartMIPS ASE", file);
16006 if (mask & AFL_ASE_VIRT)
16007 fputs ("\n\tVZ ASE", file);
16008 if (mask & AFL_ASE_MSA)
16009 fputs ("\n\tMSA ASE", file);
16010 if (mask & AFL_ASE_MIPS16)
16011 fputs ("\n\tMIPS16 ASE", file);
16012 if (mask & AFL_ASE_MICROMIPS)
16013 fputs ("\n\tMICROMIPS ASE", file);
16014 if (mask & AFL_ASE_XPA)
16015 fputs ("\n\tXPA ASE", file);
25499ac7
MR
16016 if (mask & AFL_ASE_MIPS16E2)
16017 fputs ("\n\tMIPS16e2 ASE", file);
730c3174
SE
16018 if (mask & AFL_ASE_CRC)
16019 fputs ("\n\tCRC ASE", file);
6f20c942
FS
16020 if (mask & AFL_ASE_GINV)
16021 fputs ("\n\tGINV ASE", file);
8095d2f7
CX
16022 if (mask & AFL_ASE_LOONGSON_MMI)
16023 fputs ("\n\tLoongson MMI ASE", file);
716c08de
CX
16024 if (mask & AFL_ASE_LOONGSON_CAM)
16025 fputs ("\n\tLoongson CAM ASE", file);
bdc6c06e
CX
16026 if (mask & AFL_ASE_LOONGSON_EXT)
16027 fputs ("\n\tLoongson EXT ASE", file);
a693765e
CX
16028 if (mask & AFL_ASE_LOONGSON_EXT2)
16029 fputs ("\n\tLoongson EXT2 ASE", file);
351cdf24
MF
16030 if (mask == 0)
16031 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
16032 else if ((mask & ~AFL_ASE_MASK) != 0)
16033 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
16034}
16035
16036static void
16037print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16038{
16039 switch (isa_ext)
16040 {
16041 case 0:
16042 fputs (_("None"), file);
16043 break;
16044 case AFL_EXT_XLR:
16045 fputs ("RMI XLR", file);
16046 break;
2c629856
N
16047 case AFL_EXT_OCTEON3:
16048 fputs ("Cavium Networks Octeon3", file);
16049 break;
351cdf24
MF
16050 case AFL_EXT_OCTEON2:
16051 fputs ("Cavium Networks Octeon2", file);
16052 break;
16053 case AFL_EXT_OCTEONP:
16054 fputs ("Cavium Networks OcteonP", file);
16055 break;
351cdf24
MF
16056 case AFL_EXT_OCTEON:
16057 fputs ("Cavium Networks Octeon", file);
16058 break;
16059 case AFL_EXT_5900:
16060 fputs ("Toshiba R5900", file);
16061 break;
16062 case AFL_EXT_4650:
16063 fputs ("MIPS R4650", file);
16064 break;
16065 case AFL_EXT_4010:
16066 fputs ("LSI R4010", file);
16067 break;
16068 case AFL_EXT_4100:
16069 fputs ("NEC VR4100", file);
16070 break;
16071 case AFL_EXT_3900:
16072 fputs ("Toshiba R3900", file);
16073 break;
16074 case AFL_EXT_10000:
16075 fputs ("MIPS R10000", file);
16076 break;
16077 case AFL_EXT_SB1:
16078 fputs ("Broadcom SB-1", file);
16079 break;
16080 case AFL_EXT_4111:
16081 fputs ("NEC VR4111/VR4181", file);
16082 break;
16083 case AFL_EXT_4120:
16084 fputs ("NEC VR4120", file);
16085 break;
16086 case AFL_EXT_5400:
16087 fputs ("NEC VR5400", file);
16088 break;
16089 case AFL_EXT_5500:
16090 fputs ("NEC VR5500", file);
16091 break;
16092 case AFL_EXT_LOONGSON_2E:
16093 fputs ("ST Microelectronics Loongson 2E", file);
16094 break;
16095 case AFL_EXT_LOONGSON_2F:
16096 fputs ("ST Microelectronics Loongson 2F", file);
16097 break;
38bf472a
MR
16098 case AFL_EXT_INTERAPTIV_MR2:
16099 fputs ("Imagination interAptiv MR2", file);
16100 break;
351cdf24 16101 default:
00ac7aa0 16102 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
16103 break;
16104 }
16105}
16106
16107static void
16108print_mips_fp_abi_value (FILE *file, int val)
16109{
16110 switch (val)
16111 {
16112 case Val_GNU_MIPS_ABI_FP_ANY:
16113 fprintf (file, _("Hard or soft float\n"));
16114 break;
16115 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16116 fprintf (file, _("Hard float (double precision)\n"));
16117 break;
16118 case Val_GNU_MIPS_ABI_FP_SINGLE:
16119 fprintf (file, _("Hard float (single precision)\n"));
16120 break;
16121 case Val_GNU_MIPS_ABI_FP_SOFT:
16122 fprintf (file, _("Soft float\n"));
16123 break;
16124 case Val_GNU_MIPS_ABI_FP_OLD_64:
16125 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16126 break;
16127 case Val_GNU_MIPS_ABI_FP_XX:
16128 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16129 break;
16130 case Val_GNU_MIPS_ABI_FP_64:
16131 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16132 break;
16133 case Val_GNU_MIPS_ABI_FP_64A:
16134 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16135 break;
16136 default:
16137 fprintf (file, "??? (%d)\n", val);
16138 break;
16139 }
16140}
16141
16142static int
16143get_mips_reg_size (int reg_size)
16144{
16145 return (reg_size == AFL_REG_NONE) ? 0
16146 : (reg_size == AFL_REG_32) ? 32
16147 : (reg_size == AFL_REG_64) ? 64
16148 : (reg_size == AFL_REG_128) ? 128
16149 : -1;
16150}
16151
b34976b6 16152bfd_boolean
9719ad41 16153_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 16154{
9719ad41 16155 FILE *file = ptr;
b49e97c9
TS
16156
16157 BFD_ASSERT (abfd != NULL && ptr != NULL);
16158
16159 /* Print normal ELF private data. */
16160 _bfd_elf_print_private_bfd_data (abfd, ptr);
16161
16162 /* xgettext:c-format */
16163 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16164
16165 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16166 fprintf (file, _(" [abi=O32]"));
16167 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16168 fprintf (file, _(" [abi=O64]"));
16169 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16170 fprintf (file, _(" [abi=EABI32]"));
16171 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16172 fprintf (file, _(" [abi=EABI64]"));
16173 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16174 fprintf (file, _(" [abi unknown]"));
16175 else if (ABI_N32_P (abfd))
16176 fprintf (file, _(" [abi=N32]"));
16177 else if (ABI_64_P (abfd))
16178 fprintf (file, _(" [abi=64]"));
16179 else
16180 fprintf (file, _(" [no abi set]"));
16181
16182 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 16183 fprintf (file, " [mips1]");
b49e97c9 16184 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 16185 fprintf (file, " [mips2]");
b49e97c9 16186 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 16187 fprintf (file, " [mips3]");
b49e97c9 16188 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 16189 fprintf (file, " [mips4]");
b49e97c9 16190 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 16191 fprintf (file, " [mips5]");
b49e97c9 16192 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 16193 fprintf (file, " [mips32]");
b49e97c9 16194 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 16195 fprintf (file, " [mips64]");
af7ee8bf 16196 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 16197 fprintf (file, " [mips32r2]");
5f74bc13 16198 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 16199 fprintf (file, " [mips64r2]");
7361da2c
AB
16200 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16201 fprintf (file, " [mips32r6]");
16202 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16203 fprintf (file, " [mips64r6]");
b49e97c9
TS
16204 else
16205 fprintf (file, _(" [unknown ISA]"));
16206
40d32fc6 16207 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 16208 fprintf (file, " [mdmx]");
40d32fc6
CD
16209
16210 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 16211 fprintf (file, " [mips16]");
40d32fc6 16212
df58fc94
RS
16213 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16214 fprintf (file, " [micromips]");
16215
ba92f887
MR
16216 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16217 fprintf (file, " [nan2008]");
16218
5baf5e34 16219 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 16220 fprintf (file, " [old fp64]");
5baf5e34 16221
b49e97c9 16222 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 16223 fprintf (file, " [32bitmode]");
b49e97c9
TS
16224 else
16225 fprintf (file, _(" [not 32bitmode]"));
16226
c0e3f241 16227 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 16228 fprintf (file, " [noreorder]");
c0e3f241
CD
16229
16230 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 16231 fprintf (file, " [PIC]");
c0e3f241
CD
16232
16233 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 16234 fprintf (file, " [CPIC]");
c0e3f241
CD
16235
16236 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 16237 fprintf (file, " [XGOT]");
c0e3f241
CD
16238
16239 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 16240 fprintf (file, " [UCODE]");
c0e3f241 16241
b49e97c9
TS
16242 fputc ('\n', file);
16243
351cdf24
MF
16244 if (mips_elf_tdata (abfd)->abiflags_valid)
16245 {
16246 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16247 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16248 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16249 if (abiflags->isa_rev > 1)
16250 fprintf (file, "r%d", abiflags->isa_rev);
16251 fprintf (file, "\nGPR size: %d",
16252 get_mips_reg_size (abiflags->gpr_size));
16253 fprintf (file, "\nCPR1 size: %d",
16254 get_mips_reg_size (abiflags->cpr1_size));
16255 fprintf (file, "\nCPR2 size: %d",
16256 get_mips_reg_size (abiflags->cpr2_size));
16257 fputs ("\nFP ABI: ", file);
16258 print_mips_fp_abi_value (file, abiflags->fp_abi);
16259 fputs ("ISA Extension: ", file);
16260 print_mips_isa_ext (file, abiflags->isa_ext);
16261 fputs ("\nASEs:", file);
16262 print_mips_ases (file, abiflags->ases);
16263 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16264 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16265 fputc ('\n', file);
16266 }
16267
b34976b6 16268 return TRUE;
b49e97c9 16269}
2f89ff8d 16270
b35d266b 16271const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 16272{
07d6d2b8
AM
16273 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16274 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26 16275 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
07d6d2b8 16276 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26
NC
16277 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16278 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
07d6d2b8 16279 { NULL, 0, 0, 0, 0 }
2f89ff8d 16280};
5e2b0d47 16281
8992f0d7
TS
16282/* Merge non visibility st_other attributes. Ensure that the
16283 STO_OPTIONAL flag is copied into h->other, even if this is not a
16284 definiton of the symbol. */
5e2b0d47
NC
16285void
16286_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16287 const Elf_Internal_Sym *isym,
16288 bfd_boolean definition,
16289 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16290{
8992f0d7
TS
16291 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16292 {
16293 unsigned char other;
16294
16295 other = (definition ? isym->st_other : h->other);
16296 other &= ~ELF_ST_VISIBILITY (-1);
16297 h->other = other | ELF_ST_VISIBILITY (h->other);
16298 }
16299
16300 if (!definition
5e2b0d47
NC
16301 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16302 h->other |= STO_OPTIONAL;
16303}
12ac1cf5
NC
16304
16305/* Decide whether an undefined symbol is special and can be ignored.
16306 This is the case for OPTIONAL symbols on IRIX. */
16307bfd_boolean
16308_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16309{
16310 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16311}
e0764319
NC
16312
16313bfd_boolean
16314_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16315{
16316 return (sym->st_shndx == SHN_COMMON
16317 || sym->st_shndx == SHN_MIPS_ACOMMON
16318 || sym->st_shndx == SHN_MIPS_SCOMMON);
16319}
861fb55a
DJ
16320
16321/* Return address for Ith PLT stub in section PLT, for relocation REL
16322 or (bfd_vma) -1 if it should not be included. */
16323
16324bfd_vma
16325_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16326 const arelent *rel ATTRIBUTE_UNUSED)
16327{
16328 return (plt->vma
16329 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16330 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16331}
16332
1bbce132
MR
16333/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16334 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16335 and .got.plt and also the slots may be of a different size each we walk
16336 the PLT manually fetching instructions and matching them against known
16337 patterns. To make things easier standard MIPS slots, if any, always come
16338 first. As we don't create proper ELF symbols we use the UDATA.I member
16339 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16340 with the ST_OTHER member of the ELF symbol. */
16341
16342long
16343_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16344 long symcount ATTRIBUTE_UNUSED,
16345 asymbol **syms ATTRIBUTE_UNUSED,
16346 long dynsymcount, asymbol **dynsyms,
16347 asymbol **ret)
16348{
16349 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16350 static const char microsuffix[] = "@micromipsplt";
16351 static const char m16suffix[] = "@mips16plt";
16352 static const char mipssuffix[] = "@plt";
16353
16354 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16355 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16356 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16357 Elf_Internal_Shdr *hdr;
16358 bfd_byte *plt_data;
16359 bfd_vma plt_offset;
16360 unsigned int other;
16361 bfd_vma entry_size;
16362 bfd_vma plt0_size;
16363 asection *relplt;
16364 bfd_vma opcode;
16365 asection *plt;
16366 asymbol *send;
16367 size_t size;
16368 char *names;
16369 long counti;
16370 arelent *p;
16371 asymbol *s;
16372 char *nend;
16373 long count;
16374 long pi;
16375 long i;
16376 long n;
16377
16378 *ret = NULL;
16379
16380 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16381 return 0;
16382
16383 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16384 if (relplt == NULL)
16385 return 0;
16386
16387 hdr = &elf_section_data (relplt)->this_hdr;
16388 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16389 return 0;
16390
16391 plt = bfd_get_section_by_name (abfd, ".plt");
16392 if (plt == NULL)
16393 return 0;
16394
16395 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16396 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16397 return -1;
16398 p = relplt->relocation;
16399
16400 /* Calculating the exact amount of space required for symbols would
16401 require two passes over the PLT, so just pessimise assuming two
16402 PLT slots per relocation. */
16403 count = relplt->size / hdr->sh_entsize;
16404 counti = count * bed->s->int_rels_per_ext_rel;
16405 size = 2 * count * sizeof (asymbol);
16406 size += count * (sizeof (mipssuffix) +
16407 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16408 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16409 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16410
16411 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16412 size += sizeof (asymbol) + sizeof (pltname);
16413
16414 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16415 return -1;
16416
16417 if (plt->size < 16)
16418 return -1;
16419
16420 s = *ret = bfd_malloc (size);
16421 if (s == NULL)
16422 return -1;
16423 send = s + 2 * count + 1;
16424
16425 names = (char *) send;
16426 nend = (char *) s + size;
16427 n = 0;
16428
16429 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16430 if (opcode == 0x3302fffe)
16431 {
16432 if (!micromips_p)
16433 return -1;
16434 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16435 other = STO_MICROMIPS;
16436 }
833794fc
MR
16437 else if (opcode == 0x0398c1d0)
16438 {
16439 if (!micromips_p)
16440 return -1;
16441 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16442 other = STO_MICROMIPS;
16443 }
1bbce132
MR
16444 else
16445 {
16446 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16447 other = 0;
16448 }
16449
16450 s->the_bfd = abfd;
16451 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16452 s->section = plt;
16453 s->value = 0;
16454 s->name = names;
16455 s->udata.i = other;
16456 memcpy (names, pltname, sizeof (pltname));
16457 names += sizeof (pltname);
16458 ++s, ++n;
16459
16460 pi = 0;
16461 for (plt_offset = plt0_size;
16462 plt_offset + 8 <= plt->size && s < send;
16463 plt_offset += entry_size)
16464 {
16465 bfd_vma gotplt_addr;
16466 const char *suffix;
16467 bfd_vma gotplt_hi;
16468 bfd_vma gotplt_lo;
16469 size_t suffixlen;
16470
16471 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16472
16473 /* Check if the second word matches the expected MIPS16 instruction. */
16474 if (opcode == 0x651aeb00)
16475 {
16476 if (micromips_p)
16477 return -1;
16478 /* Truncated table??? */
16479 if (plt_offset + 16 > plt->size)
16480 break;
16481 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16482 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16483 suffixlen = sizeof (m16suffix);
16484 suffix = m16suffix;
16485 other = STO_MIPS16;
16486 }
833794fc 16487 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16488 else if (opcode == 0xff220000)
16489 {
16490 if (!micromips_p)
16491 return -1;
16492 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16493 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16494 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16495 gotplt_lo <<= 2;
16496 gotplt_addr = gotplt_hi + gotplt_lo;
16497 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16498 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16499 suffixlen = sizeof (microsuffix);
16500 suffix = microsuffix;
16501 other = STO_MICROMIPS;
16502 }
833794fc
MR
16503 /* Likewise the expected microMIPS instruction (insn32 mode). */
16504 else if ((opcode & 0xffff0000) == 0xff2f0000)
16505 {
16506 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16507 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16508 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16509 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16510 gotplt_addr = gotplt_hi + gotplt_lo;
16511 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16512 suffixlen = sizeof (microsuffix);
16513 suffix = microsuffix;
16514 other = STO_MICROMIPS;
16515 }
1bbce132
MR
16516 /* Otherwise assume standard MIPS code. */
16517 else
16518 {
16519 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16520 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16521 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16522 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16523 gotplt_addr = gotplt_hi + gotplt_lo;
16524 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16525 suffixlen = sizeof (mipssuffix);
16526 suffix = mipssuffix;
16527 other = 0;
16528 }
16529 /* Truncated table??? */
16530 if (plt_offset + entry_size > plt->size)
16531 break;
16532
16533 for (i = 0;
16534 i < count && p[pi].address != gotplt_addr;
16535 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16536
16537 if (i < count)
16538 {
16539 size_t namelen;
16540 size_t len;
16541
16542 *s = **p[pi].sym_ptr_ptr;
16543 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16544 we are defining a symbol, ensure one of them is set. */
16545 if ((s->flags & BSF_LOCAL) == 0)
16546 s->flags |= BSF_GLOBAL;
16547 s->flags |= BSF_SYNTHETIC;
16548 s->section = plt;
16549 s->value = plt_offset;
16550 s->name = names;
16551 s->udata.i = other;
16552
16553 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16554 namelen = len + suffixlen;
16555 if (names + namelen > nend)
16556 break;
16557
16558 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16559 names += len;
16560 memcpy (names, suffix, suffixlen);
16561 names += suffixlen;
16562
16563 ++s, ++n;
16564 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16565 }
16566 }
16567
16568 free (plt_data);
16569
16570 return n;
16571}
16572
5e7fc731
MR
16573/* Return the ABI flags associated with ABFD if available. */
16574
16575Elf_Internal_ABIFlags_v0 *
16576bfd_mips_elf_get_abiflags (bfd *abfd)
16577{
16578 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16579
16580 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16581}
16582
bb29b84d
MR
16583/* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16584 field. Taken from `libc-abis.h' generated at GNU libc build time.
16585 Using a MIPS_ prefix as other libc targets use different values. */
16586enum
16587{
16588 MIPS_LIBC_ABI_DEFAULT = 0,
16589 MIPS_LIBC_ABI_MIPS_PLT,
16590 MIPS_LIBC_ABI_UNIQUE,
16591 MIPS_LIBC_ABI_MIPS_O32_FP64,
47275900 16592 MIPS_LIBC_ABI_ABSOLUTE,
bb29b84d
MR
16593 MIPS_LIBC_ABI_MAX
16594};
16595
861fb55a
DJ
16596void
16597_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16598{
47275900 16599 struct mips_elf_link_hash_table *htab = NULL;
861fb55a
DJ
16600 Elf_Internal_Ehdr *i_ehdrp;
16601
16602 i_ehdrp = elf_elfheader (abfd);
16603 if (link_info)
16604 {
16605 htab = mips_elf_hash_table (link_info);
4dfe6ac6 16606 BFD_ASSERT (htab != NULL);
861fb55a 16607 }
0af03126 16608
47275900
MR
16609 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16610 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16611
351cdf24
MF
16612 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16613 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
bb29b84d 16614 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
334cd8a7 16615
47275900
MR
16616 /* Mark that we need support for absolute symbols in the dynamic loader. */
16617 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16618 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16619
334cd8a7 16620 _bfd_elf_post_process_headers (abfd, link_info);
861fb55a 16621}
2f0c68f2
CM
16622
16623int
1ced1a5f
MR
16624_bfd_mips_elf_compact_eh_encoding
16625 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16626{
16627 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16628}
16629
16630/* Return the opcode for can't unwind. */
16631
16632int
1ced1a5f
MR
16633_bfd_mips_elf_cant_unwind_opcode
16634 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16635{
16636 return COMPACT_EH_CANT_UNWIND_OPCODE;
16637}
This page took 3.257134 seconds and 4 git commands to generate.