*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a
RS
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12This file is part of BFD, the Binary File Descriptor library.
13
14This program is free software; you can redistribute it and/or modify
15it under the terms of the GNU General Public License as published by
16the Free Software Foundation; either version 2 of the License, or
17(at your option) any later version.
18
19This program is distributed in the hope that it will be useful,
20but WITHOUT ANY WARRANTY; without even the implied warranty of
21MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22GNU General Public License for more details.
23
24You should have received a copy of the GNU General Public License
25along with this program; if not, write to the Free Software
26Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
b15e6682 67 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
b15e6682
AO
71};
72
f0abc2a1 73/* This structure is used to hold .got information when linking. */
b49e97c9
TS
74
75struct mips_got_info
76{
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
b15e6682
AO
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
f4416af6
AO
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94};
95
96/* Map an input bfd to a got in a multi-got link. */
97
98struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101};
102
103/* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106struct mips_elf_got_per_bfd_arg
107{
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128};
129
130/* Another structure used to pass arguments for got entries traversal. */
131
132struct mips_elf_set_global_got_offset_arg
133{
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
b49e97c9
TS
138};
139
f0abc2a1
AM
140struct _mips_elf_section_data
141{
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148};
149
150#define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) (sec)->used_by_bfd)
152
b49e97c9
TS
153/* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156struct mips_elf_hash_sort_data
157{
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
f4416af6
AO
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary
167 GOTs). */
168 long max_unref_got_dynindx;
b49e97c9
TS
169 /* The greatest dynamic symbol table index not corresponding to a
170 symbol without a GOT entry. */
171 long max_non_got_dynindx;
172};
173
174/* The MIPS ELF linker needs additional information for each symbol in
175 the global hash table. */
176
177struct mips_elf_link_hash_entry
178{
179 struct elf_link_hash_entry root;
180
181 /* External symbol information. */
182 EXTR esym;
183
184 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
185 this symbol. */
186 unsigned int possibly_dynamic_relocs;
187
188 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
189 a readonly section. */
b34976b6 190 bfd_boolean readonly_reloc;
b49e97c9
TS
191
192 /* The index of the first dynamic relocation (in the .rel.dyn
193 section) against this symbol. */
194 unsigned int min_dyn_reloc_index;
195
196 /* We must not create a stub for a symbol that has relocations
197 related to taking the function's address, i.e. any but
198 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
199 p. 4-20. */
b34976b6 200 bfd_boolean no_fn_stub;
b49e97c9
TS
201
202 /* If there is a stub that 32 bit functions should use to call this
203 16 bit function, this points to the section containing the stub. */
204 asection *fn_stub;
205
206 /* Whether we need the fn_stub; this is set if this symbol appears
207 in any relocs other than a 16 bit call. */
b34976b6 208 bfd_boolean need_fn_stub;
b49e97c9
TS
209
210 /* If there is a stub that 16 bit functions should use to call this
211 32 bit function, this points to the section containing the stub. */
212 asection *call_stub;
213
214 /* This is like the call_stub field, but it is used if the function
215 being called returns a floating point value. */
216 asection *call_fp_stub;
7c5fcef7
L
217
218 /* Are we forced local? .*/
b34976b6 219 bfd_boolean forced_local;
b49e97c9
TS
220};
221
222/* MIPS ELF linker hash table. */
223
224struct mips_elf_link_hash_table
225{
226 struct elf_link_hash_table root;
227#if 0
228 /* We no longer use this. */
229 /* String section indices for the dynamic section symbols. */
230 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
231#endif
232 /* The number of .rtproc entries. */
233 bfd_size_type procedure_count;
234 /* The size of the .compact_rel section (if SGI_COMPAT). */
235 bfd_size_type compact_rel_size;
236 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 237 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 238 bfd_boolean use_rld_obj_head;
b49e97c9
TS
239 /* This is the value of the __rld_map or __rld_obj_head symbol. */
240 bfd_vma rld_value;
241 /* This is set if we see any mips16 stub sections. */
b34976b6 242 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
243};
244
245/* Structure used to pass information to mips_elf_output_extsym. */
246
247struct extsym_info
248{
249 bfd *abfd;
250 struct bfd_link_info *info;
251 struct ecoff_debug_info *debug;
252 const struct ecoff_debug_swap *swap;
b34976b6 253 bfd_boolean failed;
b49e97c9
TS
254};
255
8dc1a139 256/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
257
258static const char * const mips_elf_dynsym_rtproc_names[] =
259{
260 "_procedure_table",
261 "_procedure_string_table",
262 "_procedure_table_size",
263 NULL
264};
265
266/* These structures are used to generate the .compact_rel section on
8dc1a139 267 IRIX5. */
b49e97c9
TS
268
269typedef struct
270{
271 unsigned long id1; /* Always one? */
272 unsigned long num; /* Number of compact relocation entries. */
273 unsigned long id2; /* Always two? */
274 unsigned long offset; /* The file offset of the first relocation. */
275 unsigned long reserved0; /* Zero? */
276 unsigned long reserved1; /* Zero? */
277} Elf32_compact_rel;
278
279typedef struct
280{
281 bfd_byte id1[4];
282 bfd_byte num[4];
283 bfd_byte id2[4];
284 bfd_byte offset[4];
285 bfd_byte reserved0[4];
286 bfd_byte reserved1[4];
287} Elf32_External_compact_rel;
288
289typedef struct
290{
291 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
292 unsigned int rtype : 4; /* Relocation types. See below. */
293 unsigned int dist2to : 8;
294 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
295 unsigned long konst; /* KONST field. See below. */
296 unsigned long vaddr; /* VADDR to be relocated. */
297} Elf32_crinfo;
298
299typedef struct
300{
301 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
302 unsigned int rtype : 4; /* Relocation types. See below. */
303 unsigned int dist2to : 8;
304 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
305 unsigned long konst; /* KONST field. See below. */
306} Elf32_crinfo2;
307
308typedef struct
309{
310 bfd_byte info[4];
311 bfd_byte konst[4];
312 bfd_byte vaddr[4];
313} Elf32_External_crinfo;
314
315typedef struct
316{
317 bfd_byte info[4];
318 bfd_byte konst[4];
319} Elf32_External_crinfo2;
320
321/* These are the constants used to swap the bitfields in a crinfo. */
322
323#define CRINFO_CTYPE (0x1)
324#define CRINFO_CTYPE_SH (31)
325#define CRINFO_RTYPE (0xf)
326#define CRINFO_RTYPE_SH (27)
327#define CRINFO_DIST2TO (0xff)
328#define CRINFO_DIST2TO_SH (19)
329#define CRINFO_RELVADDR (0x7ffff)
330#define CRINFO_RELVADDR_SH (0)
331
332/* A compact relocation info has long (3 words) or short (2 words)
333 formats. A short format doesn't have VADDR field and relvaddr
334 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
335#define CRF_MIPS_LONG 1
336#define CRF_MIPS_SHORT 0
337
338/* There are 4 types of compact relocation at least. The value KONST
339 has different meaning for each type:
340
341 (type) (konst)
342 CT_MIPS_REL32 Address in data
343 CT_MIPS_WORD Address in word (XXX)
344 CT_MIPS_GPHI_LO GP - vaddr
345 CT_MIPS_JMPAD Address to jump
346 */
347
348#define CRT_MIPS_REL32 0xa
349#define CRT_MIPS_WORD 0xb
350#define CRT_MIPS_GPHI_LO 0xc
351#define CRT_MIPS_JMPAD 0xd
352
353#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
354#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
355#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
356#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
357\f
358/* The structure of the runtime procedure descriptor created by the
359 loader for use by the static exception system. */
360
361typedef struct runtime_pdr {
362 bfd_vma adr; /* memory address of start of procedure */
363 long regmask; /* save register mask */
364 long regoffset; /* save register offset */
365 long fregmask; /* save floating point register mask */
366 long fregoffset; /* save floating point register offset */
367 long frameoffset; /* frame size */
368 short framereg; /* frame pointer register */
369 short pcreg; /* offset or reg of return pc */
370 long irpss; /* index into the runtime string table */
371 long reserved;
372 struct exception_info *exception_info;/* pointer to exception array */
373} RPDR, *pRPDR;
374#define cbRPDR sizeof (RPDR)
375#define rpdNil ((pRPDR) 0)
376\f
377static struct bfd_hash_entry *mips_elf_link_hash_newfunc
378 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
379static void ecoff_swap_rpdr_out
380 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
b34976b6 381static bfd_boolean mips_elf_create_procedure_table
b49e97c9
TS
382 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
383 struct ecoff_debug_info *));
b34976b6 384static bfd_boolean mips_elf_check_mips16_stubs
b49e97c9
TS
385 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
386static void bfd_mips_elf32_swap_gptab_in
387 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
388static void bfd_mips_elf32_swap_gptab_out
389 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
390static void bfd_elf32_swap_compact_rel_out
391 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
392static void bfd_elf32_swap_crinfo_out
393 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
394#if 0
395static void bfd_mips_elf_swap_msym_in
396 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
397#endif
398static void bfd_mips_elf_swap_msym_out
399 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
400static int sort_dynamic_relocs
401 PARAMS ((const void *, const void *));
f4416af6
AO
402static int sort_dynamic_relocs_64
403 PARAMS ((const void *, const void *));
b34976b6 404static bfd_boolean mips_elf_output_extsym
b49e97c9
TS
405 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
406static int gptab_compare PARAMS ((const void *, const void *));
f4416af6
AO
407static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
408static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
b49e97c9
TS
409static struct mips_got_info *mips_elf_got_info
410 PARAMS ((bfd *, asection **));
411static bfd_vma mips_elf_local_got_index
f4416af6 412 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
b49e97c9 413static bfd_vma mips_elf_global_got_index
f4416af6 414 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
b49e97c9 415static bfd_vma mips_elf_got_page
f4416af6 416 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
b49e97c9 417static bfd_vma mips_elf_got16_entry
f4416af6 418 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
b49e97c9 419static bfd_vma mips_elf_got_offset_from_index
f4416af6 420 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
b15e6682 421static struct mips_got_entry *mips_elf_create_local_got_entry
f4416af6 422 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
b34976b6 423static bfd_boolean mips_elf_sort_hash_table
b49e97c9 424 PARAMS ((struct bfd_link_info *, unsigned long));
b34976b6 425static bfd_boolean mips_elf_sort_hash_table_f
b49e97c9 426 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
f4416af6
AO
427static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
b34976b6 429static bfd_boolean mips_elf_record_global_got_symbol
f4416af6 430 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
b49e97c9
TS
431 struct mips_got_info *));
432static const Elf_Internal_Rela *mips_elf_next_relocation
433 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
434 const Elf_Internal_Rela *));
b34976b6
AM
435static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
b49e97c9 437static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
b34976b6 438static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
b49e97c9
TS
439static bfd_vma mips_elf_high PARAMS ((bfd_vma));
440static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
441static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
b34976b6 442static bfd_boolean mips_elf_create_compact_rel_section
b49e97c9 443 PARAMS ((bfd *, struct bfd_link_info *));
b34976b6 444static bfd_boolean mips_elf_create_got_section
f4416af6 445 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
b49e97c9
TS
446static asection *mips_elf_create_msym_section
447 PARAMS ((bfd *));
448static bfd_reloc_status_type mips_elf_calculate_relocation
449 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
450 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
451 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
b34976b6 452 bfd_boolean *, bfd_boolean));
b49e97c9
TS
453static bfd_vma mips_elf_obtain_contents
454 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
b34976b6 455static bfd_boolean mips_elf_perform_relocation
b49e97c9
TS
456 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
457 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
b34976b6
AM
458 bfd_boolean));
459static bfd_boolean mips_elf_stub_section_p
b49e97c9
TS
460 PARAMS ((bfd *, asection *));
461static void mips_elf_allocate_dynamic_relocations
462 PARAMS ((bfd *, unsigned int));
b34976b6 463static bfd_boolean mips_elf_create_dynamic_relocation
b49e97c9
TS
464 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
465 struct mips_elf_link_hash_entry *, asection *,
466 bfd_vma, bfd_vma *, asection *));
64543e1a 467static void mips_set_isa_flags PARAMS ((bfd *));
b49e97c9
TS
468static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
469static void mips_elf_irix6_finish_dynamic_symbol
470 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
64543e1a
RS
471static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
472static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
f4416af6 473static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
b15e6682
AO
474static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
475static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
b49e97c9 476
f4416af6
AO
477static bfd_boolean mips_elf_multi_got
478 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
479 asection *, bfd_size_type));
480static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
481static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
482static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
483static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
484static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
485static int mips_elf_merge_gots PARAMS ((void **, void *));
486static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
487static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
488static void mips_elf_resolve_final_got_entries
489 PARAMS ((struct mips_got_info *));
490static bfd_vma mips_elf_adjust_gp
491 PARAMS ((bfd *, struct mips_got_info *, bfd *));
492static struct mips_got_info *mips_elf_got_for_ibfd
493 PARAMS ((struct mips_got_info *, bfd *));
494
b49e97c9
TS
495/* This will be used when we sort the dynamic relocation records. */
496static bfd *reldyn_sorting_bfd;
497
498/* Nonzero if ABFD is using the N32 ABI. */
499
500#define ABI_N32_P(abfd) \
501 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
502
4a14403c 503/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 504#define ABI_64_P(abfd) \
141ff970 505 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 506
4a14403c
TS
507/* Nonzero if ABFD is using NewABI conventions. */
508#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
509
510/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
511#define IRIX_COMPAT(abfd) \
512 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
513
b49e97c9
TS
514/* Whether we are trying to be compatible with IRIX at all. */
515#define SGI_COMPAT(abfd) \
516 (IRIX_COMPAT (abfd) != ict_none)
517
518/* The name of the options section. */
519#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
4a14403c 520 (ABI_64_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9
TS
521
522/* The name of the stub section. */
523#define MIPS_ELF_STUB_SECTION_NAME(abfd) \
4a14403c 524 (ABI_64_P (abfd) ? ".MIPS.stubs" : ".stub")
b49e97c9
TS
525
526/* The size of an external REL relocation. */
527#define MIPS_ELF_REL_SIZE(abfd) \
528 (get_elf_backend_data (abfd)->s->sizeof_rel)
529
530/* The size of an external dynamic table entry. */
531#define MIPS_ELF_DYN_SIZE(abfd) \
532 (get_elf_backend_data (abfd)->s->sizeof_dyn)
533
534/* The size of a GOT entry. */
535#define MIPS_ELF_GOT_SIZE(abfd) \
536 (get_elf_backend_data (abfd)->s->arch_size / 8)
537
538/* The size of a symbol-table entry. */
539#define MIPS_ELF_SYM_SIZE(abfd) \
540 (get_elf_backend_data (abfd)->s->sizeof_sym)
541
542/* The default alignment for sections, as a power of two. */
543#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
544 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
545
546/* Get word-sized data. */
547#define MIPS_ELF_GET_WORD(abfd, ptr) \
548 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
549
550/* Put out word-sized data. */
551#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
552 (ABI_64_P (abfd) \
553 ? bfd_put_64 (abfd, val, ptr) \
554 : bfd_put_32 (abfd, val, ptr))
555
556/* Add a dynamic symbol table-entry. */
557#ifdef BFD64
558#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
559 (ABI_64_P (elf_hash_table (info)->dynobj) \
560 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
561 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
562#else
563#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
564 (ABI_64_P (elf_hash_table (info)->dynobj) \
b34976b6 565 ? (abort (), FALSE) \
b49e97c9
TS
566 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
567#endif
568
569#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
570 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
571
4ffba85c
AO
572/* Determine whether the internal relocation of index REL_IDX is REL
573 (zero) or RELA (non-zero). The assumption is that, if there are
574 two relocation sections for this section, one of them is REL and
575 the other is RELA. If the index of the relocation we're testing is
576 in range for the first relocation section, check that the external
577 relocation size is that for RELA. It is also assumed that, if
578 rel_idx is not in range for the first section, and this first
579 section contains REL relocs, then the relocation is in the second
580 section, that is RELA. */
581#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
582 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
583 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
584 > (bfd_vma)(rel_idx)) \
585 == (elf_section_data (sec)->rel_hdr.sh_entsize \
586 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
587 : sizeof (Elf32_External_Rela))))
588
b49e97c9
TS
589/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
590 from smaller values. Start with zero, widen, *then* decrement. */
591#define MINUS_ONE (((bfd_vma)0) - 1)
592
593/* The number of local .got entries we reserve. */
594#define MIPS_RESERVED_GOTNO (2)
595
f4416af6
AO
596/* The offset of $gp from the beginning of the .got section. */
597#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
598
599/* The maximum size of the GOT for it to be addressable using 16-bit
600 offsets from $gp. */
601#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
602
b49e97c9
TS
603/* Instructions which appear in a stub. For some reason the stub is
604 slightly different on an SGI system. */
b49e97c9 605#define STUB_LW(abfd) \
f4416af6
AO
606 ((ABI_64_P (abfd) \
607 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
608 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9
TS
609#define STUB_MOVE(abfd) \
610 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
611#define STUB_JALR 0x0320f809 /* jal t9 */
612#define STUB_LI16(abfd) \
613 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
614#define MIPS_FUNCTION_STUB_SIZE (16)
615
616/* The name of the dynamic interpreter. This is put in the .interp
617 section. */
618
619#define ELF_DYNAMIC_INTERPRETER(abfd) \
620 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
621 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
622 : "/usr/lib/libc.so.1")
623
624#ifdef BFD64
ee6423ed
AO
625#define MNAME(bfd,pre,pos) \
626 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
627#define ELF_R_SYM(bfd, i) \
628 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
629#define ELF_R_TYPE(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
631#define ELF_R_INFO(bfd, s, t) \
632 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
633#else
ee6423ed 634#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
635#define ELF_R_SYM(bfd, i) \
636 (ELF32_R_SYM (i))
637#define ELF_R_TYPE(bfd, i) \
638 (ELF32_R_TYPE (i))
639#define ELF_R_INFO(bfd, s, t) \
640 (ELF32_R_INFO (s, t))
641#endif
642\f
643 /* The mips16 compiler uses a couple of special sections to handle
644 floating point arguments.
645
646 Section names that look like .mips16.fn.FNNAME contain stubs that
647 copy floating point arguments from the fp regs to the gp regs and
648 then jump to FNNAME. If any 32 bit function calls FNNAME, the
649 call should be redirected to the stub instead. If no 32 bit
650 function calls FNNAME, the stub should be discarded. We need to
651 consider any reference to the function, not just a call, because
652 if the address of the function is taken we will need the stub,
653 since the address might be passed to a 32 bit function.
654
655 Section names that look like .mips16.call.FNNAME contain stubs
656 that copy floating point arguments from the gp regs to the fp
657 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
658 then any 16 bit function that calls FNNAME should be redirected
659 to the stub instead. If FNNAME is not a 32 bit function, the
660 stub should be discarded.
661
662 .mips16.call.fp.FNNAME sections are similar, but contain stubs
663 which call FNNAME and then copy the return value from the fp regs
664 to the gp regs. These stubs store the return value in $18 while
665 calling FNNAME; any function which might call one of these stubs
666 must arrange to save $18 around the call. (This case is not
667 needed for 32 bit functions that call 16 bit functions, because
668 16 bit functions always return floating point values in both
669 $f0/$f1 and $2/$3.)
670
671 Note that in all cases FNNAME might be defined statically.
672 Therefore, FNNAME is not used literally. Instead, the relocation
673 information will indicate which symbol the section is for.
674
675 We record any stubs that we find in the symbol table. */
676
677#define FN_STUB ".mips16.fn."
678#define CALL_STUB ".mips16.call."
679#define CALL_FP_STUB ".mips16.call.fp."
680\f
681/* Look up an entry in a MIPS ELF linker hash table. */
682
683#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
684 ((struct mips_elf_link_hash_entry *) \
685 elf_link_hash_lookup (&(table)->root, (string), (create), \
686 (copy), (follow)))
687
688/* Traverse a MIPS ELF linker hash table. */
689
690#define mips_elf_link_hash_traverse(table, func, info) \
691 (elf_link_hash_traverse \
692 (&(table)->root, \
b34976b6 693 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
b49e97c9
TS
694 (info)))
695
696/* Get the MIPS ELF linker hash table from a link_info structure. */
697
698#define mips_elf_hash_table(p) \
699 ((struct mips_elf_link_hash_table *) ((p)->hash))
700
701/* Create an entry in a MIPS ELF linker hash table. */
702
703static struct bfd_hash_entry *
704mips_elf_link_hash_newfunc (entry, table, string)
705 struct bfd_hash_entry *entry;
706 struct bfd_hash_table *table;
707 const char *string;
708{
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == (struct mips_elf_link_hash_entry *) NULL)
715 ret = ((struct mips_elf_link_hash_entry *)
716 bfd_hash_allocate (table,
717 sizeof (struct mips_elf_link_hash_entry)));
718 if (ret == (struct mips_elf_link_hash_entry *) NULL)
719 return (struct bfd_hash_entry *) ret;
720
721 /* Call the allocation method of the superclass. */
722 ret = ((struct mips_elf_link_hash_entry *)
723 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
724 table, string));
725 if (ret != (struct mips_elf_link_hash_entry *) NULL)
726 {
727 /* Set local fields. */
728 memset (&ret->esym, 0, sizeof (EXTR));
729 /* We use -2 as a marker to indicate that the information has
730 not been set. -1 means there is no associated ifd. */
731 ret->esym.ifd = -2;
732 ret->possibly_dynamic_relocs = 0;
b34976b6 733 ret->readonly_reloc = FALSE;
b49e97c9 734 ret->min_dyn_reloc_index = 0;
b34976b6 735 ret->no_fn_stub = FALSE;
b49e97c9 736 ret->fn_stub = NULL;
b34976b6 737 ret->need_fn_stub = FALSE;
b49e97c9
TS
738 ret->call_stub = NULL;
739 ret->call_fp_stub = NULL;
b34976b6 740 ret->forced_local = FALSE;
b49e97c9
TS
741 }
742
743 return (struct bfd_hash_entry *) ret;
744}
f0abc2a1
AM
745
746bfd_boolean
747_bfd_mips_elf_new_section_hook (abfd, sec)
748 bfd *abfd;
749 asection *sec;
750{
751 struct _mips_elf_section_data *sdata;
752 bfd_size_type amt = sizeof (*sdata);
753
754 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
755 if (sdata == NULL)
756 return FALSE;
757 sec->used_by_bfd = (PTR) sdata;
758
759 return _bfd_elf_new_section_hook (abfd, sec);
760}
b49e97c9
TS
761\f
762/* Read ECOFF debugging information from a .mdebug section into a
763 ecoff_debug_info structure. */
764
b34976b6 765bfd_boolean
b49e97c9
TS
766_bfd_mips_elf_read_ecoff_info (abfd, section, debug)
767 bfd *abfd;
768 asection *section;
769 struct ecoff_debug_info *debug;
770{
771 HDRR *symhdr;
772 const struct ecoff_debug_swap *swap;
773 char *ext_hdr = NULL;
774
775 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
776 memset (debug, 0, sizeof (*debug));
777
778 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
779 if (ext_hdr == NULL && swap->external_hdr_size != 0)
780 goto error_return;
781
82e51918
AM
782 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
783 swap->external_hdr_size))
b49e97c9
TS
784 goto error_return;
785
786 symhdr = &debug->symbolic_header;
787 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
788
789 /* The symbolic header contains absolute file offsets and sizes to
790 read. */
791#define READ(ptr, offset, count, size, type) \
792 if (symhdr->count == 0) \
793 debug->ptr = NULL; \
794 else \
795 { \
796 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
797 debug->ptr = (type) bfd_malloc (amt); \
798 if (debug->ptr == NULL) \
799 goto error_return; \
800 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
801 || bfd_bread (debug->ptr, amt, abfd) != amt) \
802 goto error_return; \
803 }
804
805 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
806 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
807 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
808 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
809 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
810 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
811 union aux_ext *);
812 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
813 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
814 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
815 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
816 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
817#undef READ
818
819 debug->fdr = NULL;
820 debug->adjust = NULL;
821
b34976b6 822 return TRUE;
b49e97c9
TS
823
824 error_return:
825 if (ext_hdr != NULL)
826 free (ext_hdr);
827 if (debug->line != NULL)
828 free (debug->line);
829 if (debug->external_dnr != NULL)
830 free (debug->external_dnr);
831 if (debug->external_pdr != NULL)
832 free (debug->external_pdr);
833 if (debug->external_sym != NULL)
834 free (debug->external_sym);
835 if (debug->external_opt != NULL)
836 free (debug->external_opt);
837 if (debug->external_aux != NULL)
838 free (debug->external_aux);
839 if (debug->ss != NULL)
840 free (debug->ss);
841 if (debug->ssext != NULL)
842 free (debug->ssext);
843 if (debug->external_fdr != NULL)
844 free (debug->external_fdr);
845 if (debug->external_rfd != NULL)
846 free (debug->external_rfd);
847 if (debug->external_ext != NULL)
848 free (debug->external_ext);
b34976b6 849 return FALSE;
b49e97c9
TS
850}
851\f
852/* Swap RPDR (runtime procedure table entry) for output. */
853
854static void
855ecoff_swap_rpdr_out (abfd, in, ex)
856 bfd *abfd;
857 const RPDR *in;
858 struct rpdr_ext *ex;
859{
860 H_PUT_S32 (abfd, in->adr, ex->p_adr);
861 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
862 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
863 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
864 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
865 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
866
867 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
868 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
869
870 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
871#if 0 /* FIXME */
872 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
873#endif
874}
875
876/* Create a runtime procedure table from the .mdebug section. */
877
b34976b6 878static bfd_boolean
b49e97c9
TS
879mips_elf_create_procedure_table (handle, abfd, info, s, debug)
880 PTR handle;
881 bfd *abfd;
882 struct bfd_link_info *info;
883 asection *s;
884 struct ecoff_debug_info *debug;
885{
886 const struct ecoff_debug_swap *swap;
887 HDRR *hdr = &debug->symbolic_header;
888 RPDR *rpdr, *rp;
889 struct rpdr_ext *erp;
890 PTR rtproc;
891 struct pdr_ext *epdr;
892 struct sym_ext *esym;
893 char *ss, **sv;
894 char *str;
895 bfd_size_type size;
896 bfd_size_type count;
897 unsigned long sindex;
898 unsigned long i;
899 PDR pdr;
900 SYMR sym;
901 const char *no_name_func = _("static procedure (no name)");
902
903 epdr = NULL;
904 rpdr = NULL;
905 esym = NULL;
906 ss = NULL;
907 sv = NULL;
908
909 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
910
911 sindex = strlen (no_name_func) + 1;
912 count = hdr->ipdMax;
913 if (count > 0)
914 {
915 size = swap->external_pdr_size;
916
917 epdr = (struct pdr_ext *) bfd_malloc (size * count);
918 if (epdr == NULL)
919 goto error_return;
920
921 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
922 goto error_return;
923
924 size = sizeof (RPDR);
925 rp = rpdr = (RPDR *) bfd_malloc (size * count);
926 if (rpdr == NULL)
927 goto error_return;
928
929 size = sizeof (char *);
930 sv = (char **) bfd_malloc (size * count);
931 if (sv == NULL)
932 goto error_return;
933
934 count = hdr->isymMax;
935 size = swap->external_sym_size;
936 esym = (struct sym_ext *) bfd_malloc (size * count);
937 if (esym == NULL)
938 goto error_return;
939
940 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
941 goto error_return;
942
943 count = hdr->issMax;
944 ss = (char *) bfd_malloc (count);
945 if (ss == NULL)
946 goto error_return;
947 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
948 goto error_return;
949
950 count = hdr->ipdMax;
951 for (i = 0; i < (unsigned long) count; i++, rp++)
952 {
953 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
954 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
955 rp->adr = sym.value;
956 rp->regmask = pdr.regmask;
957 rp->regoffset = pdr.regoffset;
958 rp->fregmask = pdr.fregmask;
959 rp->fregoffset = pdr.fregoffset;
960 rp->frameoffset = pdr.frameoffset;
961 rp->framereg = pdr.framereg;
962 rp->pcreg = pdr.pcreg;
963 rp->irpss = sindex;
964 sv[i] = ss + sym.iss;
965 sindex += strlen (sv[i]) + 1;
966 }
967 }
968
969 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
970 size = BFD_ALIGN (size, 16);
971 rtproc = (PTR) bfd_alloc (abfd, size);
972 if (rtproc == NULL)
973 {
974 mips_elf_hash_table (info)->procedure_count = 0;
975 goto error_return;
976 }
977
978 mips_elf_hash_table (info)->procedure_count = count + 2;
979
980 erp = (struct rpdr_ext *) rtproc;
981 memset (erp, 0, sizeof (struct rpdr_ext));
982 erp++;
983 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
984 strcpy (str, no_name_func);
985 str += strlen (no_name_func) + 1;
986 for (i = 0; i < count; i++)
987 {
988 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
989 strcpy (str, sv[i]);
990 str += strlen (sv[i]) + 1;
991 }
992 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
993
994 /* Set the size and contents of .rtproc section. */
995 s->_raw_size = size;
996 s->contents = (bfd_byte *) rtproc;
997
998 /* Skip this section later on (I don't think this currently
999 matters, but someday it might). */
1000 s->link_order_head = (struct bfd_link_order *) NULL;
1001
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012
b34976b6 1013 return TRUE;
b49e97c9
TS
1014
1015 error_return:
1016 if (epdr != NULL)
1017 free (epdr);
1018 if (rpdr != NULL)
1019 free (rpdr);
1020 if (esym != NULL)
1021 free (esym);
1022 if (ss != NULL)
1023 free (ss);
1024 if (sv != NULL)
1025 free (sv);
b34976b6 1026 return FALSE;
b49e97c9
TS
1027}
1028
1029/* Check the mips16 stubs for a particular symbol, and see if we can
1030 discard them. */
1031
b34976b6 1032static bfd_boolean
b49e97c9
TS
1033mips_elf_check_mips16_stubs (h, data)
1034 struct mips_elf_link_hash_entry *h;
1035 PTR data ATTRIBUTE_UNUSED;
1036{
1037 if (h->root.root.type == bfd_link_hash_warning)
1038 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1039
1040 if (h->fn_stub != NULL
1041 && ! h->need_fn_stub)
1042 {
1043 /* We don't need the fn_stub; the only references to this symbol
1044 are 16 bit calls. Clobber the size to 0 to prevent it from
1045 being included in the link. */
1046 h->fn_stub->_raw_size = 0;
1047 h->fn_stub->_cooked_size = 0;
1048 h->fn_stub->flags &= ~SEC_RELOC;
1049 h->fn_stub->reloc_count = 0;
1050 h->fn_stub->flags |= SEC_EXCLUDE;
1051 }
1052
1053 if (h->call_stub != NULL
1054 && h->root.other == STO_MIPS16)
1055 {
1056 /* We don't need the call_stub; this is a 16 bit function, so
1057 calls from other 16 bit functions are OK. Clobber the size
1058 to 0 to prevent it from being included in the link. */
1059 h->call_stub->_raw_size = 0;
1060 h->call_stub->_cooked_size = 0;
1061 h->call_stub->flags &= ~SEC_RELOC;
1062 h->call_stub->reloc_count = 0;
1063 h->call_stub->flags |= SEC_EXCLUDE;
1064 }
1065
1066 if (h->call_fp_stub != NULL
1067 && h->root.other == STO_MIPS16)
1068 {
1069 /* We don't need the call_stub; this is a 16 bit function, so
1070 calls from other 16 bit functions are OK. Clobber the size
1071 to 0 to prevent it from being included in the link. */
1072 h->call_fp_stub->_raw_size = 0;
1073 h->call_fp_stub->_cooked_size = 0;
1074 h->call_fp_stub->flags &= ~SEC_RELOC;
1075 h->call_fp_stub->reloc_count = 0;
1076 h->call_fp_stub->flags |= SEC_EXCLUDE;
1077 }
1078
b34976b6 1079 return TRUE;
b49e97c9
TS
1080}
1081\f
1082bfd_reloc_status_type
1083_bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1084 relocateable, data, gp)
1085 bfd *abfd;
1086 asymbol *symbol;
1087 arelent *reloc_entry;
1088 asection *input_section;
b34976b6 1089 bfd_boolean relocateable;
b49e97c9
TS
1090 PTR data;
1091 bfd_vma gp;
1092{
1093 bfd_vma relocation;
1094 unsigned long insn;
1095 unsigned long val;
1096
1097 if (bfd_is_com_section (symbol->section))
1098 relocation = 0;
1099 else
1100 relocation = symbol->value;
1101
1102 relocation += symbol->section->output_section->vma;
1103 relocation += symbol->section->output_offset;
1104
1105 if (reloc_entry->address > input_section->_cooked_size)
1106 return bfd_reloc_outofrange;
1107
1108 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1109
1110 /* Set val to the offset into the section or symbol. */
1111 if (reloc_entry->howto->src_mask == 0)
1112 {
1113 /* This case occurs with the 64-bit MIPS ELF ABI. */
1114 val = reloc_entry->addend;
1115 }
1116 else
1117 {
1118 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1119 if (val & 0x8000)
1120 val -= 0x10000;
1121 }
1122
1123 /* Adjust val for the final section location and GP value. If we
1124 are producing relocateable output, we don't want to do this for
1125 an external symbol. */
1126 if (! relocateable
1127 || (symbol->flags & BSF_SECTION_SYM) != 0)
1128 val += relocation - gp;
1129
1130 insn = (insn & ~0xffff) | (val & 0xffff);
1131 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1132
1133 if (relocateable)
1134 reloc_entry->address += input_section->output_offset;
1135
1136 else if ((long) val >= 0x8000 || (long) val < -0x8000)
1137 return bfd_reloc_overflow;
1138
1139 return bfd_reloc_ok;
1140}
1141\f
1142/* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1144
1145static void
1146bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1147 bfd *abfd;
1148 const Elf32_External_gptab *ex;
1149 Elf32_gptab *in;
1150{
1151 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1152 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1153}
1154
1155static void
1156bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1157 bfd *abfd;
1158 const Elf32_gptab *in;
1159 Elf32_External_gptab *ex;
1160{
1161 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1162 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1163}
1164
1165static void
1166bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1167 bfd *abfd;
1168 const Elf32_compact_rel *in;
1169 Elf32_External_compact_rel *ex;
1170{
1171 H_PUT_32 (abfd, in->id1, ex->id1);
1172 H_PUT_32 (abfd, in->num, ex->num);
1173 H_PUT_32 (abfd, in->id2, ex->id2);
1174 H_PUT_32 (abfd, in->offset, ex->offset);
1175 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1176 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1177}
1178
1179static void
1180bfd_elf32_swap_crinfo_out (abfd, in, ex)
1181 bfd *abfd;
1182 const Elf32_crinfo *in;
1183 Elf32_External_crinfo *ex;
1184{
1185 unsigned long l;
1186
1187 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1188 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1189 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1190 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1191 H_PUT_32 (abfd, l, ex->info);
1192 H_PUT_32 (abfd, in->konst, ex->konst);
1193 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1194}
1195
1196#if 0
1197/* Swap in an MSYM entry. */
1198
1199static void
1200bfd_mips_elf_swap_msym_in (abfd, ex, in)
1201 bfd *abfd;
1202 const Elf32_External_Msym *ex;
1203 Elf32_Internal_Msym *in;
1204{
1205 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1206 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1207}
1208#endif
1209/* Swap out an MSYM entry. */
1210
1211static void
1212bfd_mips_elf_swap_msym_out (abfd, in, ex)
1213 bfd *abfd;
1214 const Elf32_Internal_Msym *in;
1215 Elf32_External_Msym *ex;
1216{
1217 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1218 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1219}
1220\f
1221/* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1224
1225void
1226bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1227 bfd *abfd;
1228 const Elf32_External_RegInfo *ex;
1229 Elf32_RegInfo *in;
1230{
1231 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1232 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1233 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1234 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1235 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1236 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1237}
1238
1239void
1240bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1241 bfd *abfd;
1242 const Elf32_RegInfo *in;
1243 Elf32_External_RegInfo *ex;
1244{
1245 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1246 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1247 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1248 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1249 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1250 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1251}
1252
1253/* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1258
1259void
1260bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1261 bfd *abfd;
1262 const Elf64_External_RegInfo *ex;
1263 Elf64_Internal_RegInfo *in;
1264{
1265 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1266 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1267 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1268 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1269 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1270 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1271 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1272}
1273
1274void
1275bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1276 bfd *abfd;
1277 const Elf64_Internal_RegInfo *in;
1278 Elf64_External_RegInfo *ex;
1279{
1280 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1281 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1282 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1283 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1284 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1285 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1286 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1287}
1288
1289/* Swap in an options header. */
1290
1291void
1292bfd_mips_elf_swap_options_in (abfd, ex, in)
1293 bfd *abfd;
1294 const Elf_External_Options *ex;
1295 Elf_Internal_Options *in;
1296{
1297 in->kind = H_GET_8 (abfd, ex->kind);
1298 in->size = H_GET_8 (abfd, ex->size);
1299 in->section = H_GET_16 (abfd, ex->section);
1300 in->info = H_GET_32 (abfd, ex->info);
1301}
1302
1303/* Swap out an options header. */
1304
1305void
1306bfd_mips_elf_swap_options_out (abfd, in, ex)
1307 bfd *abfd;
1308 const Elf_Internal_Options *in;
1309 Elf_External_Options *ex;
1310{
1311 H_PUT_8 (abfd, in->kind, ex->kind);
1312 H_PUT_8 (abfd, in->size, ex->size);
1313 H_PUT_16 (abfd, in->section, ex->section);
1314 H_PUT_32 (abfd, in->info, ex->info);
1315}
1316\f
1317/* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1319
1320static int
1321sort_dynamic_relocs (arg1, arg2)
1322 const PTR arg1;
1323 const PTR arg2;
1324{
947216bf
AM
1325 Elf_Internal_Rela int_reloc1;
1326 Elf_Internal_Rela int_reloc2;
b49e97c9 1327
947216bf
AM
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1330
947216bf 1331 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1332}
1333
f4416af6
AO
1334/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1335
1336static int
1337sort_dynamic_relocs_64 (arg1, arg2)
1338 const PTR arg1;
1339 const PTR arg2;
1340{
1341 Elf_Internal_Rela int_reloc1[3];
1342 Elf_Internal_Rela int_reloc2[3];
1343
1344 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1345 (reldyn_sorting_bfd, arg1, int_reloc1);
1346 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1347 (reldyn_sorting_bfd, arg2, int_reloc2);
1348
1349 return (ELF64_R_SYM (int_reloc1[0].r_info)
1350 - ELF64_R_SYM (int_reloc2[0].r_info));
1351}
1352
1353
b49e97c9
TS
1354/* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1367
b34976b6 1368static bfd_boolean
b49e97c9
TS
1369mips_elf_output_extsym (h, data)
1370 struct mips_elf_link_hash_entry *h;
1371 PTR data;
1372{
1373 struct extsym_info *einfo = (struct extsym_info *) data;
b34976b6 1374 bfd_boolean strip;
b49e97c9
TS
1375 asection *sec, *output_section;
1376
1377 if (h->root.root.type == bfd_link_hash_warning)
1378 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1379
1380 if (h->root.indx == -2)
b34976b6 1381 strip = FALSE;
b49e97c9
TS
1382 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1385 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
b34976b6 1386 strip = TRUE;
b49e97c9
TS
1387 else if (einfo->info->strip == strip_all
1388 || (einfo->info->strip == strip_some
1389 && bfd_hash_lookup (einfo->info->keep_hash,
1390 h->root.root.root.string,
b34976b6
AM
1391 FALSE, FALSE) == NULL))
1392 strip = TRUE;
b49e97c9 1393 else
b34976b6 1394 strip = FALSE;
b49e97c9
TS
1395
1396 if (strip)
b34976b6 1397 return TRUE;
b49e97c9
TS
1398
1399 if (h->esym.ifd == -2)
1400 {
1401 h->esym.jmptbl = 0;
1402 h->esym.cobol_main = 0;
1403 h->esym.weakext = 0;
1404 h->esym.reserved = 0;
1405 h->esym.ifd = ifdNil;
1406 h->esym.asym.value = 0;
1407 h->esym.asym.st = stGlobal;
1408
1409 if (h->root.root.type == bfd_link_hash_undefined
1410 || h->root.root.type == bfd_link_hash_undefweak)
1411 {
1412 const char *name;
1413
1414 /* Use undefined class. Also, set class and type for some
1415 special symbols. */
1416 name = h->root.root.root.string;
1417 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1418 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1419 {
1420 h->esym.asym.sc = scData;
1421 h->esym.asym.st = stLabel;
1422 h->esym.asym.value = 0;
1423 }
1424 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1425 {
1426 h->esym.asym.sc = scAbs;
1427 h->esym.asym.st = stLabel;
1428 h->esym.asym.value =
1429 mips_elf_hash_table (einfo->info)->procedure_count;
1430 }
4a14403c 1431 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1432 {
1433 h->esym.asym.sc = scAbs;
1434 h->esym.asym.st = stLabel;
1435 h->esym.asym.value = elf_gp (einfo->abfd);
1436 }
1437 else
1438 h->esym.asym.sc = scUndefined;
1439 }
1440 else if (h->root.root.type != bfd_link_hash_defined
1441 && h->root.root.type != bfd_link_hash_defweak)
1442 h->esym.asym.sc = scAbs;
1443 else
1444 {
1445 const char *name;
1446
1447 sec = h->root.root.u.def.section;
1448 output_section = sec->output_section;
1449
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section == NULL)
1453 h->esym.asym.sc = scUndefined;
1454 else
1455 {
1456 name = bfd_section_name (output_section->owner, output_section);
1457
1458 if (strcmp (name, ".text") == 0)
1459 h->esym.asym.sc = scText;
1460 else if (strcmp (name, ".data") == 0)
1461 h->esym.asym.sc = scData;
1462 else if (strcmp (name, ".sdata") == 0)
1463 h->esym.asym.sc = scSData;
1464 else if (strcmp (name, ".rodata") == 0
1465 || strcmp (name, ".rdata") == 0)
1466 h->esym.asym.sc = scRData;
1467 else if (strcmp (name, ".bss") == 0)
1468 h->esym.asym.sc = scBss;
1469 else if (strcmp (name, ".sbss") == 0)
1470 h->esym.asym.sc = scSBss;
1471 else if (strcmp (name, ".init") == 0)
1472 h->esym.asym.sc = scInit;
1473 else if (strcmp (name, ".fini") == 0)
1474 h->esym.asym.sc = scFini;
1475 else
1476 h->esym.asym.sc = scAbs;
1477 }
1478 }
1479
1480 h->esym.asym.reserved = 0;
1481 h->esym.asym.index = indexNil;
1482 }
1483
1484 if (h->root.root.type == bfd_link_hash_common)
1485 h->esym.asym.value = h->root.root.u.c.size;
1486 else if (h->root.root.type == bfd_link_hash_defined
1487 || h->root.root.type == bfd_link_hash_defweak)
1488 {
1489 if (h->esym.asym.sc == scCommon)
1490 h->esym.asym.sc = scBss;
1491 else if (h->esym.asym.sc == scSCommon)
1492 h->esym.asym.sc = scSBss;
1493
1494 sec = h->root.root.u.def.section;
1495 output_section = sec->output_section;
1496 if (output_section != NULL)
1497 h->esym.asym.value = (h->root.root.u.def.value
1498 + sec->output_offset
1499 + output_section->vma);
1500 else
1501 h->esym.asym.value = 0;
1502 }
1503 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1504 {
1505 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1506 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1507
1508 while (hd->root.root.type == bfd_link_hash_indirect)
1509 {
1510 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1511 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1512 }
1513
1514 if (!no_fn_stub)
1515 {
1516 /* Set type and value for a symbol with a function stub. */
1517 h->esym.asym.st = stProc;
1518 sec = hd->root.root.u.def.section;
1519 if (sec == NULL)
1520 h->esym.asym.value = 0;
1521 else
1522 {
1523 output_section = sec->output_section;
1524 if (output_section != NULL)
1525 h->esym.asym.value = (hd->root.plt.offset
1526 + sec->output_offset
1527 + output_section->vma);
1528 else
1529 h->esym.asym.value = 0;
1530 }
1531#if 0 /* FIXME? */
1532 h->esym.ifd = 0;
1533#endif
1534 }
1535 }
1536
1537 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1538 h->root.root.root.string,
1539 &h->esym))
1540 {
b34976b6
AM
1541 einfo->failed = TRUE;
1542 return FALSE;
b49e97c9
TS
1543 }
1544
b34976b6 1545 return TRUE;
b49e97c9
TS
1546}
1547
1548/* A comparison routine used to sort .gptab entries. */
1549
1550static int
1551gptab_compare (p1, p2)
1552 const PTR p1;
1553 const PTR p2;
1554{
1555 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1556 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1557
1558 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1559}
1560\f
b15e6682 1561/* Functions to manage the got entry hash table. */
f4416af6
AO
1562
1563/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1564 hash number. */
1565
1566static INLINE hashval_t
1567mips_elf_hash_bfd_vma (addr)
1568 bfd_vma addr;
1569{
1570#ifdef BFD64
1571 return addr + (addr >> 32);
1572#else
1573 return addr;
1574#endif
1575}
1576
1577/* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1579 union members. */
1580
b15e6682
AO
1581static hashval_t
1582mips_elf_got_entry_hash (entry_)
1583 const PTR entry_;
1584{
1585 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1586
f4416af6
AO
1587 return entry->abfd->id + entry->symndx
1588 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1589 : entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1590 : entry->d.h->root.root.root.hash);
b15e6682
AO
1591}
1592
1593static int
1594mips_elf_got_entry_eq (entry1, entry2)
1595 const PTR entry1;
1596 const PTR entry2;
1597{
1598 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1599 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1600
1601 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1602 && (! e1->abfd ? e1->d.address == e2->d.address
1603 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1604 : e1->d.h == e2->d.h);
1605}
1606
1607/* multi_got_entries are still a match in the case of global objects,
1608 even if the input bfd in which they're referenced differs, so the
1609 hash computation and compare functions are adjusted
1610 accordingly. */
1611
1612static hashval_t
1613mips_elf_multi_got_entry_hash (entry_)
1614 const PTR entry_;
1615{
1616 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1617
1618 return entry->symndx
1619 + (! entry->abfd
1620 ? mips_elf_hash_bfd_vma (entry->d.address)
1621 : entry->symndx >= 0
1622 ? (entry->abfd->id
1623 + mips_elf_hash_bfd_vma (entry->d.addend))
1624 : entry->d.h->root.root.root.hash);
1625}
1626
1627static int
1628mips_elf_multi_got_entry_eq (entry1, entry2)
1629 const PTR entry1;
1630 const PTR entry2;
1631{
1632 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1633 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1634
1635 return e1->symndx == e2->symndx
1636 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1637 : e1->abfd == NULL || e2->abfd == NULL
1638 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1639 : e1->d.h == e2->d.h);
b15e6682
AO
1640}
1641\f
f4416af6
AO
1642/* Returns the dynamic relocation section for DYNOBJ. */
1643
1644static asection *
1645mips_elf_rel_dyn_section (dynobj, create_p)
1646 bfd *dynobj;
1647 bfd_boolean create_p;
1648{
1649 static const char dname[] = ".rel.dyn";
1650 asection *sreloc;
1651
1652 sreloc = bfd_get_section_by_name (dynobj, dname);
1653 if (sreloc == NULL && create_p)
1654 {
1655 sreloc = bfd_make_section (dynobj, dname);
1656 if (sreloc == NULL
1657 || ! bfd_set_section_flags (dynobj, sreloc,
1658 (SEC_ALLOC
1659 | SEC_LOAD
1660 | SEC_HAS_CONTENTS
1661 | SEC_IN_MEMORY
1662 | SEC_LINKER_CREATED
1663 | SEC_READONLY))
1664 || ! bfd_set_section_alignment (dynobj, sreloc,
1665 4))
1666 return NULL;
1667 }
1668 return sreloc;
1669}
1670
b49e97c9
TS
1671/* Returns the GOT section for ABFD. */
1672
1673static asection *
f4416af6 1674mips_elf_got_section (abfd, maybe_excluded)
b49e97c9 1675 bfd *abfd;
f4416af6 1676 bfd_boolean maybe_excluded;
b49e97c9 1677{
f4416af6
AO
1678 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1679 if (sgot == NULL
1680 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1681 return NULL;
1682 return sgot;
b49e97c9
TS
1683}
1684
1685/* Returns the GOT information associated with the link indicated by
1686 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1687 section. */
1688
1689static struct mips_got_info *
1690mips_elf_got_info (abfd, sgotp)
1691 bfd *abfd;
1692 asection **sgotp;
1693{
1694 asection *sgot;
1695 struct mips_got_info *g;
1696
f4416af6 1697 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1698 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1699 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1700 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1701 BFD_ASSERT (g != NULL);
1702
1703 if (sgotp)
f4416af6
AO
1704 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1705
b49e97c9
TS
1706 return g;
1707}
1708
1709/* Returns the GOT offset at which the indicated address can be found.
1710 If there is not yet a GOT entry for this value, create one. Returns
1711 -1 if no satisfactory GOT offset can be found. */
1712
1713static bfd_vma
f4416af6
AO
1714mips_elf_local_got_index (abfd, ibfd, info, value)
1715 bfd *abfd, *ibfd;
b49e97c9
TS
1716 struct bfd_link_info *info;
1717 bfd_vma value;
1718{
1719 asection *sgot;
1720 struct mips_got_info *g;
b15e6682 1721 struct mips_got_entry *entry;
b49e97c9
TS
1722
1723 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1724
f4416af6 1725 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1726 if (entry)
1727 return entry->gotidx;
1728 else
1729 return MINUS_ONE;
b49e97c9
TS
1730}
1731
1732/* Returns the GOT index for the global symbol indicated by H. */
1733
1734static bfd_vma
f4416af6
AO
1735mips_elf_global_got_index (abfd, ibfd, h)
1736 bfd *abfd, *ibfd;
b49e97c9
TS
1737 struct elf_link_hash_entry *h;
1738{
1739 bfd_vma index;
1740 asection *sgot;
f4416af6 1741 struct mips_got_info *g, *gg;
d0c7ff07 1742 long global_got_dynindx = 0;
b49e97c9 1743
f4416af6
AO
1744 gg = g = mips_elf_got_info (abfd, &sgot);
1745 if (g->bfd2got && ibfd)
1746 {
1747 struct mips_got_entry e, *p;
1748
1749 BFD_ASSERT (h->dynindx >= 0);
1750
1751 g = mips_elf_got_for_ibfd (g, ibfd);
1752 if (g->next != gg)
1753 {
1754 e.abfd = ibfd;
1755 e.symndx = -1;
1756 e.d.h = (struct mips_elf_link_hash_entry *)h;
1757
1758 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1759
1760 BFD_ASSERT (p->gotidx > 0);
1761 return p->gotidx;
1762 }
1763 }
1764
1765 if (gg->global_gotsym != NULL)
1766 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9
TS
1767
1768 /* Once we determine the global GOT entry with the lowest dynamic
1769 symbol table index, we must put all dynamic symbols with greater
1770 indices into the GOT. That makes it easy to calculate the GOT
1771 offset. */
d0c7ff07
TS
1772 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1773 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
b49e97c9
TS
1774 * MIPS_ELF_GOT_SIZE (abfd));
1775 BFD_ASSERT (index < sgot->_raw_size);
1776
1777 return index;
1778}
1779
1780/* Find a GOT entry that is within 32KB of the VALUE. These entries
1781 are supposed to be placed at small offsets in the GOT, i.e.,
1782 within 32KB of GP. Return the index into the GOT for this page,
1783 and store the offset from this entry to the desired address in
1784 OFFSETP, if it is non-NULL. */
1785
1786static bfd_vma
f4416af6
AO
1787mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1788 bfd *abfd, *ibfd;
b49e97c9
TS
1789 struct bfd_link_info *info;
1790 bfd_vma value;
1791 bfd_vma *offsetp;
1792{
1793 asection *sgot;
1794 struct mips_got_info *g;
b15e6682
AO
1795 bfd_vma index;
1796 struct mips_got_entry *entry;
b49e97c9
TS
1797
1798 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1799
f4416af6 1800 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682
AO
1801 (value + 0x8000)
1802 & (~(bfd_vma)0xffff));
b49e97c9 1803
b15e6682
AO
1804 if (!entry)
1805 return MINUS_ONE;
1806
1807 index = entry->gotidx;
b49e97c9
TS
1808
1809 if (offsetp)
f4416af6 1810 *offsetp = value - entry->d.address;
b49e97c9
TS
1811
1812 return index;
1813}
1814
1815/* Find a GOT entry whose higher-order 16 bits are the same as those
1816 for value. Return the index into the GOT for this entry. */
1817
1818static bfd_vma
f4416af6
AO
1819mips_elf_got16_entry (abfd, ibfd, info, value, external)
1820 bfd *abfd, *ibfd;
b49e97c9
TS
1821 struct bfd_link_info *info;
1822 bfd_vma value;
b34976b6 1823 bfd_boolean external;
b49e97c9
TS
1824{
1825 asection *sgot;
1826 struct mips_got_info *g;
b15e6682 1827 struct mips_got_entry *entry;
b49e97c9
TS
1828
1829 if (! external)
1830 {
1831 /* Although the ABI says that it is "the high-order 16 bits" that we
1832 want, it is really the %high value. The complete value is
1833 calculated with a `addiu' of a LO16 relocation, just as with a
1834 HI16/LO16 pair. */
1835 value = mips_elf_high (value) << 16;
1836 }
1837
1838 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1839
f4416af6 1840 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1841 if (entry)
1842 return entry->gotidx;
1843 else
1844 return MINUS_ONE;
b49e97c9
TS
1845}
1846
1847/* Returns the offset for the entry at the INDEXth position
1848 in the GOT. */
1849
1850static bfd_vma
f4416af6 1851mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
b49e97c9
TS
1852 bfd *dynobj;
1853 bfd *output_bfd;
f4416af6 1854 bfd *input_bfd;
b49e97c9
TS
1855 bfd_vma index;
1856{
1857 asection *sgot;
1858 bfd_vma gp;
f4416af6 1859 struct mips_got_info *g;
b49e97c9 1860
f4416af6
AO
1861 g = mips_elf_got_info (dynobj, &sgot);
1862 gp = _bfd_get_gp_value (output_bfd)
1863 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1864
1865 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
1866}
1867
1868/* Create a local GOT entry for VALUE. Return the index of the entry,
1869 or -1 if it could not be created. */
1870
b15e6682 1871static struct mips_got_entry *
f4416af6
AO
1872mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1873 bfd *abfd, *ibfd;
1874 struct mips_got_info *gg;
b49e97c9
TS
1875 asection *sgot;
1876 bfd_vma value;
1877{
b15e6682 1878 struct mips_got_entry entry, **loc;
f4416af6 1879 struct mips_got_info *g;
b15e6682 1880
f4416af6
AO
1881 entry.abfd = NULL;
1882 entry.symndx = -1;
1883 entry.d.address = value;
1884
1885 g = mips_elf_got_for_ibfd (gg, ibfd);
1886 if (g == NULL)
1887 {
1888 g = mips_elf_got_for_ibfd (gg, abfd);
1889 BFD_ASSERT (g != NULL);
1890 }
b15e6682
AO
1891
1892 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1893 INSERT);
1894 if (*loc)
1895 return *loc;
1896
1897 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1898
1899 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1900
1901 if (! *loc)
1902 return NULL;
1903
1904 memcpy (*loc, &entry, sizeof entry);
1905
b49e97c9
TS
1906 if (g->assigned_gotno >= g->local_gotno)
1907 {
f4416af6 1908 (*loc)->gotidx = -1;
b49e97c9
TS
1909 /* We didn't allocate enough space in the GOT. */
1910 (*_bfd_error_handler)
1911 (_("not enough GOT space for local GOT entries"));
1912 bfd_set_error (bfd_error_bad_value);
b15e6682 1913 return NULL;
b49e97c9
TS
1914 }
1915
1916 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
1917 (sgot->contents + entry.gotidx));
1918
1919 return *loc;
b49e97c9
TS
1920}
1921
1922/* Sort the dynamic symbol table so that symbols that need GOT entries
1923 appear towards the end. This reduces the amount of GOT space
1924 required. MAX_LOCAL is used to set the number of local symbols
1925 known to be in the dynamic symbol table. During
1926 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1927 section symbols are added and the count is higher. */
1928
b34976b6 1929static bfd_boolean
b49e97c9
TS
1930mips_elf_sort_hash_table (info, max_local)
1931 struct bfd_link_info *info;
1932 unsigned long max_local;
1933{
1934 struct mips_elf_hash_sort_data hsd;
1935 struct mips_got_info *g;
1936 bfd *dynobj;
1937
1938 dynobj = elf_hash_table (info)->dynobj;
1939
f4416af6
AO
1940 g = mips_elf_got_info (dynobj, NULL);
1941
b49e97c9 1942 hsd.low = NULL;
f4416af6
AO
1943 hsd.max_unref_got_dynindx =
1944 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1945 /* In the multi-got case, assigned_gotno of the master got_info
1946 indicate the number of entries that aren't referenced in the
1947 primary GOT, but that must have entries because there are
1948 dynamic relocations that reference it. Since they aren't
1949 referenced, we move them to the end of the GOT, so that they
1950 don't prevent other entries that are referenced from getting
1951 too large offsets. */
1952 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
1953 hsd.max_non_got_dynindx = max_local;
1954 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1955 elf_hash_table (info)),
1956 mips_elf_sort_hash_table_f,
1957 &hsd);
1958
1959 /* There should have been enough room in the symbol table to
44c410de 1960 accommodate both the GOT and non-GOT symbols. */
b49e97c9 1961 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
1962 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1963 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
1964
1965 /* Now we know which dynamic symbol has the lowest dynamic symbol
1966 table index in the GOT. */
b49e97c9
TS
1967 g->global_gotsym = hsd.low;
1968
b34976b6 1969 return TRUE;
b49e97c9
TS
1970}
1971
1972/* If H needs a GOT entry, assign it the highest available dynamic
1973 index. Otherwise, assign it the lowest available dynamic
1974 index. */
1975
b34976b6 1976static bfd_boolean
b49e97c9
TS
1977mips_elf_sort_hash_table_f (h, data)
1978 struct mips_elf_link_hash_entry *h;
1979 PTR data;
1980{
1981 struct mips_elf_hash_sort_data *hsd
1982 = (struct mips_elf_hash_sort_data *) data;
1983
1984 if (h->root.root.type == bfd_link_hash_warning)
1985 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1986
1987 /* Symbols without dynamic symbol table entries aren't interesting
1988 at all. */
1989 if (h->root.dynindx == -1)
b34976b6 1990 return TRUE;
b49e97c9 1991
f4416af6
AO
1992 /* Global symbols that need GOT entries that are not explicitly
1993 referenced are marked with got offset 2. Those that are
1994 referenced get a 1, and those that don't need GOT entries get
1995 -1. */
1996 if (h->root.got.offset == 2)
1997 {
1998 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
1999 hsd->low = (struct elf_link_hash_entry *) h;
2000 h->root.dynindx = hsd->max_unref_got_dynindx++;
2001 }
2002 else if (h->root.got.offset != 1)
b49e97c9
TS
2003 h->root.dynindx = hsd->max_non_got_dynindx++;
2004 else
2005 {
2006 h->root.dynindx = --hsd->min_got_dynindx;
2007 hsd->low = (struct elf_link_hash_entry *) h;
2008 }
2009
b34976b6 2010 return TRUE;
b49e97c9
TS
2011}
2012
2013/* If H is a symbol that needs a global GOT entry, but has a dynamic
2014 symbol table index lower than any we've seen to date, record it for
2015 posterity. */
2016
b34976b6 2017static bfd_boolean
f4416af6 2018mips_elf_record_global_got_symbol (h, abfd, info, g)
b49e97c9 2019 struct elf_link_hash_entry *h;
f4416af6 2020 bfd *abfd;
b49e97c9 2021 struct bfd_link_info *info;
f4416af6 2022 struct mips_got_info *g;
b49e97c9 2023{
f4416af6
AO
2024 struct mips_got_entry entry, **loc;
2025
b49e97c9
TS
2026 /* A global symbol in the GOT must also be in the dynamic symbol
2027 table. */
7c5fcef7
L
2028 if (h->dynindx == -1)
2029 {
2030 switch (ELF_ST_VISIBILITY (h->other))
2031 {
2032 case STV_INTERNAL:
2033 case STV_HIDDEN:
b34976b6 2034 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2035 break;
2036 }
2037 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 2038 return FALSE;
7c5fcef7 2039 }
b49e97c9 2040
f4416af6
AO
2041 entry.abfd = abfd;
2042 entry.symndx = -1;
2043 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2044
2045 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2046 INSERT);
2047
b49e97c9
TS
2048 /* If we've already marked this entry as needing GOT space, we don't
2049 need to do it again. */
f4416af6
AO
2050 if (*loc)
2051 return TRUE;
2052
2053 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2054
2055 if (! *loc)
2056 return FALSE;
2057
2058 entry.gotidx = -1;
2059 memcpy (*loc, &entry, sizeof entry);
2060
b49e97c9 2061 if (h->got.offset != MINUS_ONE)
b34976b6 2062 return TRUE;
b49e97c9
TS
2063
2064 /* By setting this to a value other than -1, we are indicating that
2065 there needs to be a GOT entry for H. Avoid using zero, as the
2066 generic ELF copy_indirect_symbol tests for <= 0. */
2067 h->got.offset = 1;
2068
b34976b6 2069 return TRUE;
b49e97c9 2070}
f4416af6
AO
2071
2072/* Reserve space in G for a GOT entry containing the value of symbol
2073 SYMNDX in input bfd ABDF, plus ADDEND. */
2074
2075static bfd_boolean
2076mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2077 bfd *abfd;
2078 long symndx;
2079 bfd_vma addend;
2080 struct mips_got_info *g;
2081{
2082 struct mips_got_entry entry, **loc;
2083
2084 entry.abfd = abfd;
2085 entry.symndx = symndx;
2086 entry.d.addend = addend;
2087 loc = (struct mips_got_entry **)
2088 htab_find_slot (g->got_entries, &entry, INSERT);
2089
2090 if (*loc)
2091 return TRUE;
2092
2093 entry.gotidx = g->local_gotno++;
2094
2095 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2096
2097 if (! *loc)
2098 return FALSE;
2099
2100 memcpy (*loc, &entry, sizeof entry);
2101
2102 return TRUE;
2103}
2104\f
2105/* Compute the hash value of the bfd in a bfd2got hash entry. */
2106
2107static hashval_t
2108mips_elf_bfd2got_entry_hash (entry_)
2109 const PTR entry_;
2110{
2111 const struct mips_elf_bfd2got_hash *entry
2112 = (struct mips_elf_bfd2got_hash *)entry_;
2113
2114 return entry->bfd->id;
2115}
2116
2117/* Check whether two hash entries have the same bfd. */
2118
2119static int
2120mips_elf_bfd2got_entry_eq (entry1, entry2)
2121 const PTR entry1;
2122 const PTR entry2;
2123{
2124 const struct mips_elf_bfd2got_hash *e1
2125 = (const struct mips_elf_bfd2got_hash *)entry1;
2126 const struct mips_elf_bfd2got_hash *e2
2127 = (const struct mips_elf_bfd2got_hash *)entry2;
2128
2129 return e1->bfd == e2->bfd;
2130}
2131
2132/* In a multi-got link, determine the GOT to be used for IBDF. G must
2133 be the master GOT data. */
2134
2135static struct mips_got_info *
2136mips_elf_got_for_ibfd (g, ibfd)
2137 struct mips_got_info *g;
2138 bfd *ibfd;
2139{
2140 struct mips_elf_bfd2got_hash e, *p;
2141
2142 if (! g->bfd2got)
2143 return g;
2144
2145 e.bfd = ibfd;
2146 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2147 return p ? p->g : NULL;
2148}
2149
2150/* Create one separate got for each bfd that has entries in the global
2151 got, such that we can tell how many local and global entries each
2152 bfd requires. */
2153
2154static int
2155mips_elf_make_got_per_bfd (entryp, p)
2156 void **entryp;
2157 void *p;
2158{
2159 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2160 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2161 htab_t bfd2got = arg->bfd2got;
2162 struct mips_got_info *g;
2163 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2164 void **bfdgotp;
2165
2166 /* Find the got_info for this GOT entry's input bfd. Create one if
2167 none exists. */
2168 bfdgot_entry.bfd = entry->abfd;
2169 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2170 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2171
2172 if (bfdgot != NULL)
2173 g = bfdgot->g;
2174 else
2175 {
2176 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2177 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2178
2179 if (bfdgot == NULL)
2180 {
2181 arg->obfd = 0;
2182 return 0;
2183 }
2184
2185 *bfdgotp = bfdgot;
2186
2187 bfdgot->bfd = entry->abfd;
2188 bfdgot->g = g = (struct mips_got_info *)
2189 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2190 if (g == NULL)
2191 {
2192 arg->obfd = 0;
2193 return 0;
2194 }
2195
2196 g->global_gotsym = NULL;
2197 g->global_gotno = 0;
2198 g->local_gotno = 0;
2199 g->assigned_gotno = -1;
2200 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2201 mips_elf_multi_got_entry_eq,
2202 (htab_del) NULL);
2203 if (g->got_entries == NULL)
2204 {
2205 arg->obfd = 0;
2206 return 0;
2207 }
2208
2209 g->bfd2got = NULL;
2210 g->next = NULL;
2211 }
2212
2213 /* Insert the GOT entry in the bfd's got entry hash table. */
2214 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2215 if (*entryp != NULL)
2216 return 1;
2217
2218 *entryp = entry;
2219
2220 if (entry->symndx >= 0 || entry->d.h->forced_local)
2221 ++g->local_gotno;
2222 else
2223 ++g->global_gotno;
2224
2225 return 1;
2226}
2227
2228/* Attempt to merge gots of different input bfds. Try to use as much
2229 as possible of the primary got, since it doesn't require explicit
2230 dynamic relocations, but don't use bfds that would reference global
2231 symbols out of the addressable range. Failing the primary got,
2232 attempt to merge with the current got, or finish the current got
2233 and then make make the new got current. */
2234
2235static int
2236mips_elf_merge_gots (bfd2got_, p)
2237 void **bfd2got_;
2238 void *p;
2239{
2240 struct mips_elf_bfd2got_hash *bfd2got
2241 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2242 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2243 unsigned int lcount = bfd2got->g->local_gotno;
2244 unsigned int gcount = bfd2got->g->global_gotno;
2245 unsigned int maxcnt = arg->max_count;
2246
2247 /* If we don't have a primary GOT and this is not too big, use it as
2248 a starting point for the primary GOT. */
2249 if (! arg->primary && lcount + gcount <= maxcnt)
2250 {
2251 arg->primary = bfd2got->g;
2252 arg->primary_count = lcount + gcount;
2253 }
2254 /* If it looks like we can merge this bfd's entries with those of
2255 the primary, merge them. The heuristics is conservative, but we
2256 don't have to squeeze it too hard. */
2257 else if (arg->primary
2258 && (arg->primary_count + lcount + gcount) <= maxcnt)
2259 {
2260 struct mips_got_info *g = bfd2got->g;
2261 int old_lcount = arg->primary->local_gotno;
2262 int old_gcount = arg->primary->global_gotno;
2263
2264 bfd2got->g = arg->primary;
2265
2266 htab_traverse (g->got_entries,
2267 mips_elf_make_got_per_bfd,
2268 arg);
2269 if (arg->obfd == NULL)
2270 return 0;
2271
2272 htab_delete (g->got_entries);
2273 /* We don't have to worry about releasing memory of the actual
2274 got entries, since they're all in the master got_entries hash
2275 table anyway. */
2276
2277 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2278 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2279
2280 arg->primary_count = arg->primary->local_gotno
2281 + arg->primary->global_gotno;
2282 }
2283 /* If we can merge with the last-created got, do it. */
2284 else if (arg->current
2285 && arg->current_count + lcount + gcount <= maxcnt)
2286 {
2287 struct mips_got_info *g = bfd2got->g;
2288 int old_lcount = arg->current->local_gotno;
2289 int old_gcount = arg->current->global_gotno;
2290
2291 bfd2got->g = arg->current;
2292
2293 htab_traverse (g->got_entries,
2294 mips_elf_make_got_per_bfd,
2295 arg);
2296 if (arg->obfd == NULL)
2297 return 0;
2298
2299 htab_delete (g->got_entries);
2300
2301 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2302 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2303
2304 arg->current_count = arg->current->local_gotno
2305 + arg->current->global_gotno;
2306 }
2307 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2308 fits; if it turns out that it doesn't, we'll get relocation
2309 overflows anyway. */
2310 else
2311 {
2312 bfd2got->g->next = arg->current;
2313 arg->current = bfd2got->g;
2314
2315 arg->current_count = lcount + gcount;
2316 }
2317
2318 return 1;
2319}
2320
2321/* If passed a NULL mips_got_info in the argument, set the marker used
2322 to tell whether a global symbol needs a got entry (in the primary
2323 got) to the given VALUE.
2324
2325 If passed a pointer G to a mips_got_info in the argument (it must
2326 not be the primary GOT), compute the offset from the beginning of
2327 the (primary) GOT section to the entry in G corresponding to the
2328 global symbol. G's assigned_gotno must contain the index of the
2329 first available global GOT entry in G. VALUE must contain the size
2330 of a GOT entry in bytes. For each global GOT entry that requires a
2331 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2332 marked as not elligible for lazy resolution through a function
2333 stub. */
2334static int
2335mips_elf_set_global_got_offset (entryp, p)
2336 void **entryp;
2337 void *p;
2338{
2339 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2340 struct mips_elf_set_global_got_offset_arg *arg
2341 = (struct mips_elf_set_global_got_offset_arg *)p;
2342 struct mips_got_info *g = arg->g;
2343
2344 if (entry->abfd != NULL && entry->symndx == -1
2345 && entry->d.h->root.dynindx != -1)
2346 {
2347 if (g)
2348 {
2349 BFD_ASSERT (g->global_gotsym == NULL);
2350
2351 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2352 /* We can't do lazy update of GOT entries for
2353 non-primary GOTs since the PLT entries don't use the
2354 right offsets, so punt at it for now. */
2355 entry->d.h->no_fn_stub = TRUE;
2356 if (arg->info->shared
2357 || (elf_hash_table (arg->info)->dynamic_sections_created
2358 && ((entry->d.h->root.elf_link_hash_flags
2359 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2360 && ((entry->d.h->root.elf_link_hash_flags
2361 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2362 ++arg->needed_relocs;
2363 }
2364 else
2365 entry->d.h->root.got.offset = arg->value;
2366 }
2367
2368 return 1;
2369}
2370
2371/* Follow indirect and warning hash entries so that each got entry
2372 points to the final symbol definition. P must point to a pointer
2373 to the hash table we're traversing. Since this traversal may
2374 modify the hash table, we set this pointer to NULL to indicate
2375 we've made a potentially-destructive change to the hash table, so
2376 the traversal must be restarted. */
2377static int
2378mips_elf_resolve_final_got_entry (entryp, p)
2379 void **entryp;
2380 void *p;
2381{
2382 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2383 htab_t got_entries = *(htab_t *)p;
2384
2385 if (entry->abfd != NULL && entry->symndx == -1)
2386 {
2387 struct mips_elf_link_hash_entry *h = entry->d.h;
2388
2389 while (h->root.root.type == bfd_link_hash_indirect
2390 || h->root.root.type == bfd_link_hash_warning)
2391 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2392
2393 if (entry->d.h == h)
2394 return 1;
2395
2396 entry->d.h = h;
2397
2398 /* If we can't find this entry with the new bfd hash, re-insert
2399 it, and get the traversal restarted. */
2400 if (! htab_find (got_entries, entry))
2401 {
2402 htab_clear_slot (got_entries, entryp);
2403 entryp = htab_find_slot (got_entries, entry, INSERT);
2404 if (! *entryp)
2405 *entryp = entry;
2406 /* Abort the traversal, since the whole table may have
2407 moved, and leave it up to the parent to restart the
2408 process. */
2409 *(htab_t *)p = NULL;
2410 return 0;
2411 }
2412 /* We might want to decrement the global_gotno count, but it's
2413 either too early or too late for that at this point. */
2414 }
2415
2416 return 1;
2417}
2418
2419/* Turn indirect got entries in a got_entries table into their final
2420 locations. */
2421static void
2422mips_elf_resolve_final_got_entries (g)
2423 struct mips_got_info *g;
2424{
2425 htab_t got_entries;
2426
2427 do
2428 {
2429 got_entries = g->got_entries;
2430
2431 htab_traverse (got_entries,
2432 mips_elf_resolve_final_got_entry,
2433 &got_entries);
2434 }
2435 while (got_entries == NULL);
2436}
2437
2438/* Return the offset of an input bfd IBFD's GOT from the beginning of
2439 the primary GOT. */
2440static bfd_vma
2441mips_elf_adjust_gp (abfd, g, ibfd)
2442 bfd *abfd;
2443 struct mips_got_info *g;
2444 bfd *ibfd;
2445{
2446 if (g->bfd2got == NULL)
2447 return 0;
2448
2449 g = mips_elf_got_for_ibfd (g, ibfd);
2450 if (! g)
2451 return 0;
2452
2453 BFD_ASSERT (g->next);
2454
2455 g = g->next;
2456
2457 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2458}
2459
2460/* Turn a single GOT that is too big for 16-bit addressing into
2461 a sequence of GOTs, each one 16-bit addressable. */
2462
2463static bfd_boolean
2464mips_elf_multi_got (abfd, info, g, got, pages)
2465 bfd *abfd;
2466 struct bfd_link_info *info;
2467 struct mips_got_info *g;
2468 asection *got;
2469 bfd_size_type pages;
2470{
2471 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2472 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2473 struct mips_got_info *gg;
2474 unsigned int assign;
2475
2476 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2477 mips_elf_bfd2got_entry_eq,
2478 (htab_del) NULL);
2479 if (g->bfd2got == NULL)
2480 return FALSE;
2481
2482 got_per_bfd_arg.bfd2got = g->bfd2got;
2483 got_per_bfd_arg.obfd = abfd;
2484 got_per_bfd_arg.info = info;
2485
2486 /* Count how many GOT entries each input bfd requires, creating a
2487 map from bfd to got info while at that. */
2488 mips_elf_resolve_final_got_entries (g);
2489 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2490 if (got_per_bfd_arg.obfd == NULL)
2491 return FALSE;
2492
2493 got_per_bfd_arg.current = NULL;
2494 got_per_bfd_arg.primary = NULL;
2495 /* Taking out PAGES entries is a worst-case estimate. We could
2496 compute the maximum number of pages that each separate input bfd
2497 uses, but it's probably not worth it. */
2498 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2499 / MIPS_ELF_GOT_SIZE (abfd))
2500 - MIPS_RESERVED_GOTNO - pages);
2501
2502 /* Try to merge the GOTs of input bfds together, as long as they
2503 don't seem to exceed the maximum GOT size, choosing one of them
2504 to be the primary GOT. */
2505 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2506 if (got_per_bfd_arg.obfd == NULL)
2507 return FALSE;
2508
2509 /* If we find any suitable primary GOT, create an empty one. */
2510 if (got_per_bfd_arg.primary == NULL)
2511 {
2512 g->next = (struct mips_got_info *)
2513 bfd_alloc (abfd, sizeof (struct mips_got_info));
2514 if (g->next == NULL)
2515 return FALSE;
2516
2517 g->next->global_gotsym = NULL;
2518 g->next->global_gotno = 0;
2519 g->next->local_gotno = 0;
2520 g->next->assigned_gotno = 0;
2521 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2522 mips_elf_multi_got_entry_eq,
2523 (htab_del) NULL);
2524 if (g->next->got_entries == NULL)
2525 return FALSE;
2526 g->next->bfd2got = NULL;
2527 }
2528 else
2529 g->next = got_per_bfd_arg.primary;
2530 g->next->next = got_per_bfd_arg.current;
2531
2532 /* GG is now the master GOT, and G is the primary GOT. */
2533 gg = g;
2534 g = g->next;
2535
2536 /* Map the output bfd to the primary got. That's what we're going
2537 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2538 didn't mark in check_relocs, and we want a quick way to find it.
2539 We can't just use gg->next because we're going to reverse the
2540 list. */
2541 {
2542 struct mips_elf_bfd2got_hash *bfdgot;
2543 void **bfdgotp;
2544
2545 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2546 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2547
2548 if (bfdgot == NULL)
2549 return FALSE;
2550
2551 bfdgot->bfd = abfd;
2552 bfdgot->g = g;
2553 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2554
2555 BFD_ASSERT (*bfdgotp == NULL);
2556 *bfdgotp = bfdgot;
2557 }
2558
2559 /* The IRIX dynamic linker requires every symbol that is referenced
2560 in a dynamic relocation to be present in the primary GOT, so
2561 arrange for them to appear after those that are actually
2562 referenced.
2563
2564 GNU/Linux could very well do without it, but it would slow down
2565 the dynamic linker, since it would have to resolve every dynamic
2566 symbol referenced in other GOTs more than once, without help from
2567 the cache. Also, knowing that every external symbol has a GOT
2568 helps speed up the resolution of local symbols too, so GNU/Linux
2569 follows IRIX's practice.
2570
2571 The number 2 is used by mips_elf_sort_hash_table_f to count
2572 global GOT symbols that are unreferenced in the primary GOT, with
2573 an initial dynamic index computed from gg->assigned_gotno, where
2574 the number of unreferenced global entries in the primary GOT is
2575 preserved. */
2576 if (1)
2577 {
2578 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2579 g->global_gotno = gg->global_gotno;
2580 set_got_offset_arg.value = 2;
2581 }
2582 else
2583 {
2584 /* This could be used for dynamic linkers that don't optimize
2585 symbol resolution while applying relocations so as to use
2586 primary GOT entries or assuming the symbol is locally-defined.
2587 With this code, we assign lower dynamic indices to global
2588 symbols that are not referenced in the primary GOT, so that
2589 their entries can be omitted. */
2590 gg->assigned_gotno = 0;
2591 set_got_offset_arg.value = -1;
2592 }
2593
2594 /* Reorder dynamic symbols as described above (which behavior
2595 depends on the setting of VALUE). */
2596 set_got_offset_arg.g = NULL;
2597 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2598 &set_got_offset_arg);
2599 set_got_offset_arg.value = 1;
2600 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2601 &set_got_offset_arg);
2602 if (! mips_elf_sort_hash_table (info, 1))
2603 return FALSE;
2604
2605 /* Now go through the GOTs assigning them offset ranges.
2606 [assigned_gotno, local_gotno[ will be set to the range of local
2607 entries in each GOT. We can then compute the end of a GOT by
2608 adding local_gotno to global_gotno. We reverse the list and make
2609 it circular since then we'll be able to quickly compute the
2610 beginning of a GOT, by computing the end of its predecessor. To
2611 avoid special cases for the primary GOT, while still preserving
2612 assertions that are valid for both single- and multi-got links,
2613 we arrange for the main got struct to have the right number of
2614 global entries, but set its local_gotno such that the initial
2615 offset of the primary GOT is zero. Remember that the primary GOT
2616 will become the last item in the circular linked list, so it
2617 points back to the master GOT. */
2618 gg->local_gotno = -g->global_gotno;
2619 gg->global_gotno = g->global_gotno;
2620 assign = 0;
2621 gg->next = gg;
2622
2623 do
2624 {
2625 struct mips_got_info *gn;
2626
2627 assign += MIPS_RESERVED_GOTNO;
2628 g->assigned_gotno = assign;
2629 g->local_gotno += assign + pages;
2630 assign = g->local_gotno + g->global_gotno;
2631
2632 /* Take g out of the direct list, and push it onto the reversed
2633 list that gg points to. */
2634 gn = g->next;
2635 g->next = gg->next;
2636 gg->next = g;
2637 g = gn;
2638 }
2639 while (g);
2640
2641 got->_raw_size = (gg->next->local_gotno
2642 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2643
2644 return TRUE;
2645}
2646
b49e97c9
TS
2647\f
2648/* Returns the first relocation of type r_type found, beginning with
2649 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2650
2651static const Elf_Internal_Rela *
2652mips_elf_next_relocation (abfd, r_type, relocation, relend)
2653 bfd *abfd ATTRIBUTE_UNUSED;
2654 unsigned int r_type;
2655 const Elf_Internal_Rela *relocation;
2656 const Elf_Internal_Rela *relend;
2657{
2658 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2659 immediately following. However, for the IRIX6 ABI, the next
2660 relocation may be a composed relocation consisting of several
2661 relocations for the same address. In that case, the R_MIPS_LO16
2662 relocation may occur as one of these. We permit a similar
2663 extension in general, as that is useful for GCC. */
2664 while (relocation < relend)
2665 {
2666 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2667 return relocation;
2668
2669 ++relocation;
2670 }
2671
2672 /* We didn't find it. */
2673 bfd_set_error (bfd_error_bad_value);
2674 return NULL;
2675}
2676
2677/* Return whether a relocation is against a local symbol. */
2678
b34976b6 2679static bfd_boolean
b49e97c9
TS
2680mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2681 check_forced)
2682 bfd *input_bfd;
2683 const Elf_Internal_Rela *relocation;
2684 asection **local_sections;
b34976b6 2685 bfd_boolean check_forced;
b49e97c9
TS
2686{
2687 unsigned long r_symndx;
2688 Elf_Internal_Shdr *symtab_hdr;
2689 struct mips_elf_link_hash_entry *h;
2690 size_t extsymoff;
2691
2692 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2693 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2694 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2695
2696 if (r_symndx < extsymoff)
b34976b6 2697 return TRUE;
b49e97c9 2698 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 2699 return TRUE;
b49e97c9
TS
2700
2701 if (check_forced)
2702 {
2703 /* Look up the hash table to check whether the symbol
2704 was forced local. */
2705 h = (struct mips_elf_link_hash_entry *)
2706 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2707 /* Find the real hash-table entry for this symbol. */
2708 while (h->root.root.type == bfd_link_hash_indirect
2709 || h->root.root.type == bfd_link_hash_warning)
2710 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2711 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
b34976b6 2712 return TRUE;
b49e97c9
TS
2713 }
2714
b34976b6 2715 return FALSE;
b49e97c9
TS
2716}
2717\f
2718/* Sign-extend VALUE, which has the indicated number of BITS. */
2719
2720static bfd_vma
2721mips_elf_sign_extend (value, bits)
2722 bfd_vma value;
2723 int bits;
2724{
2725 if (value & ((bfd_vma) 1 << (bits - 1)))
2726 /* VALUE is negative. */
2727 value |= ((bfd_vma) - 1) << bits;
2728
2729 return value;
2730}
2731
2732/* Return non-zero if the indicated VALUE has overflowed the maximum
2733 range expressable by a signed number with the indicated number of
2734 BITS. */
2735
b34976b6 2736static bfd_boolean
b49e97c9
TS
2737mips_elf_overflow_p (value, bits)
2738 bfd_vma value;
2739 int bits;
2740{
2741 bfd_signed_vma svalue = (bfd_signed_vma) value;
2742
2743 if (svalue > (1 << (bits - 1)) - 1)
2744 /* The value is too big. */
b34976b6 2745 return TRUE;
b49e97c9
TS
2746 else if (svalue < -(1 << (bits - 1)))
2747 /* The value is too small. */
b34976b6 2748 return TRUE;
b49e97c9
TS
2749
2750 /* All is well. */
b34976b6 2751 return FALSE;
b49e97c9
TS
2752}
2753
2754/* Calculate the %high function. */
2755
2756static bfd_vma
2757mips_elf_high (value)
2758 bfd_vma value;
2759{
2760 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2761}
2762
2763/* Calculate the %higher function. */
2764
2765static bfd_vma
2766mips_elf_higher (value)
2767 bfd_vma value ATTRIBUTE_UNUSED;
2768{
2769#ifdef BFD64
2770 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2771#else
2772 abort ();
2773 return (bfd_vma) -1;
2774#endif
2775}
2776
2777/* Calculate the %highest function. */
2778
2779static bfd_vma
2780mips_elf_highest (value)
2781 bfd_vma value ATTRIBUTE_UNUSED;
2782{
2783#ifdef BFD64
b15e6682 2784 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
2785#else
2786 abort ();
2787 return (bfd_vma) -1;
2788#endif
2789}
2790\f
2791/* Create the .compact_rel section. */
2792
b34976b6 2793static bfd_boolean
b49e97c9
TS
2794mips_elf_create_compact_rel_section (abfd, info)
2795 bfd *abfd;
2796 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2797{
2798 flagword flags;
2799 register asection *s;
2800
2801 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2802 {
2803 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2804 | SEC_READONLY);
2805
2806 s = bfd_make_section (abfd, ".compact_rel");
2807 if (s == NULL
2808 || ! bfd_set_section_flags (abfd, s, flags)
2809 || ! bfd_set_section_alignment (abfd, s,
2810 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 2811 return FALSE;
b49e97c9
TS
2812
2813 s->_raw_size = sizeof (Elf32_External_compact_rel);
2814 }
2815
b34976b6 2816 return TRUE;
b49e97c9
TS
2817}
2818
2819/* Create the .got section to hold the global offset table. */
2820
b34976b6 2821static bfd_boolean
f4416af6 2822mips_elf_create_got_section (abfd, info, maybe_exclude)
b49e97c9
TS
2823 bfd *abfd;
2824 struct bfd_link_info *info;
f4416af6 2825 bfd_boolean maybe_exclude;
b49e97c9
TS
2826{
2827 flagword flags;
2828 register asection *s;
2829 struct elf_link_hash_entry *h;
14a793b2 2830 struct bfd_link_hash_entry *bh;
b49e97c9
TS
2831 struct mips_got_info *g;
2832 bfd_size_type amt;
2833
2834 /* This function may be called more than once. */
f4416af6
AO
2835 s = mips_elf_got_section (abfd, TRUE);
2836 if (s)
2837 {
2838 if (! maybe_exclude)
2839 s->flags &= ~SEC_EXCLUDE;
2840 return TRUE;
2841 }
b49e97c9
TS
2842
2843 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2844 | SEC_LINKER_CREATED);
2845
f4416af6
AO
2846 if (maybe_exclude)
2847 flags |= SEC_EXCLUDE;
2848
b49e97c9
TS
2849 s = bfd_make_section (abfd, ".got");
2850 if (s == NULL
2851 || ! bfd_set_section_flags (abfd, s, flags)
2852 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 2853 return FALSE;
b49e97c9
TS
2854
2855 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2856 linker script because we don't want to define the symbol if we
2857 are not creating a global offset table. */
14a793b2 2858 bh = NULL;
b49e97c9
TS
2859 if (! (_bfd_generic_link_add_one_symbol
2860 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
b34976b6 2861 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 2862 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 2863 return FALSE;
14a793b2
AM
2864
2865 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
2866 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2867 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2868 h->type = STT_OBJECT;
2869
2870 if (info->shared
2871 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 2872 return FALSE;
b49e97c9 2873
b49e97c9
TS
2874 amt = sizeof (struct mips_got_info);
2875 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2876 if (g == NULL)
b34976b6 2877 return FALSE;
b49e97c9
TS
2878 g->global_gotsym = NULL;
2879 g->local_gotno = MIPS_RESERVED_GOTNO;
2880 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
2881 g->bfd2got = NULL;
2882 g->next = NULL;
b15e6682
AO
2883 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2884 mips_elf_got_entry_eq,
2885 (htab_del) NULL);
2886 if (g->got_entries == NULL)
2887 return FALSE;
f0abc2a1
AM
2888 mips_elf_section_data (s)->u.got_info = g;
2889 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
2890 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2891
b34976b6 2892 return TRUE;
b49e97c9
TS
2893}
2894
2895/* Returns the .msym section for ABFD, creating it if it does not
2896 already exist. Returns NULL to indicate error. */
2897
2898static asection *
2899mips_elf_create_msym_section (abfd)
2900 bfd *abfd;
2901{
2902 asection *s;
2903
2904 s = bfd_get_section_by_name (abfd, ".msym");
2905 if (!s)
2906 {
2907 s = bfd_make_section (abfd, ".msym");
2908 if (!s
2909 || !bfd_set_section_flags (abfd, s,
2910 SEC_ALLOC
2911 | SEC_LOAD
2912 | SEC_HAS_CONTENTS
2913 | SEC_LINKER_CREATED
2914 | SEC_READONLY)
2915 || !bfd_set_section_alignment (abfd, s,
2916 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2917 return NULL;
2918 }
2919
2920 return s;
2921}
2922\f
2923/* Calculate the value produced by the RELOCATION (which comes from
2924 the INPUT_BFD). The ADDEND is the addend to use for this
2925 RELOCATION; RELOCATION->R_ADDEND is ignored.
2926
2927 The result of the relocation calculation is stored in VALUEP.
2928 REQUIRE_JALXP indicates whether or not the opcode used with this
2929 relocation must be JALX.
2930
2931 This function returns bfd_reloc_continue if the caller need take no
2932 further action regarding this relocation, bfd_reloc_notsupported if
2933 something goes dramatically wrong, bfd_reloc_overflow if an
2934 overflow occurs, and bfd_reloc_ok to indicate success. */
2935
2936static bfd_reloc_status_type
2937mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2938 relocation, addend, howto, local_syms,
2939 local_sections, valuep, namep,
bce03d3d 2940 require_jalxp, save_addend)
b49e97c9
TS
2941 bfd *abfd;
2942 bfd *input_bfd;
2943 asection *input_section;
2944 struct bfd_link_info *info;
2945 const Elf_Internal_Rela *relocation;
2946 bfd_vma addend;
2947 reloc_howto_type *howto;
2948 Elf_Internal_Sym *local_syms;
2949 asection **local_sections;
2950 bfd_vma *valuep;
2951 const char **namep;
b34976b6
AM
2952 bfd_boolean *require_jalxp;
2953 bfd_boolean save_addend;
b49e97c9
TS
2954{
2955 /* The eventual value we will return. */
2956 bfd_vma value;
2957 /* The address of the symbol against which the relocation is
2958 occurring. */
2959 bfd_vma symbol = 0;
2960 /* The final GP value to be used for the relocatable, executable, or
2961 shared object file being produced. */
2962 bfd_vma gp = MINUS_ONE;
2963 /* The place (section offset or address) of the storage unit being
2964 relocated. */
2965 bfd_vma p;
2966 /* The value of GP used to create the relocatable object. */
2967 bfd_vma gp0 = MINUS_ONE;
2968 /* The offset into the global offset table at which the address of
2969 the relocation entry symbol, adjusted by the addend, resides
2970 during execution. */
2971 bfd_vma g = MINUS_ONE;
2972 /* The section in which the symbol referenced by the relocation is
2973 located. */
2974 asection *sec = NULL;
2975 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 2976 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 2977 symbol. */
b34976b6
AM
2978 bfd_boolean local_p, was_local_p;
2979 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2980 bfd_boolean gp_disp_p = FALSE;
b49e97c9
TS
2981 Elf_Internal_Shdr *symtab_hdr;
2982 size_t extsymoff;
2983 unsigned long r_symndx;
2984 int r_type;
b34976b6 2985 /* TRUE if overflow occurred during the calculation of the
b49e97c9 2986 relocation value. */
b34976b6
AM
2987 bfd_boolean overflowed_p;
2988 /* TRUE if this relocation refers to a MIPS16 function. */
2989 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
2990
2991 /* Parse the relocation. */
2992 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2993 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
2994 p = (input_section->output_section->vma
2995 + input_section->output_offset
2996 + relocation->r_offset);
2997
2998 /* Assume that there will be no overflow. */
b34976b6 2999 overflowed_p = FALSE;
b49e97c9
TS
3000
3001 /* Figure out whether or not the symbol is local, and get the offset
3002 used in the array of hash table entries. */
3003 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3004 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3005 local_sections, FALSE);
bce03d3d 3006 was_local_p = local_p;
b49e97c9
TS
3007 if (! elf_bad_symtab (input_bfd))
3008 extsymoff = symtab_hdr->sh_info;
3009 else
3010 {
3011 /* The symbol table does not follow the rule that local symbols
3012 must come before globals. */
3013 extsymoff = 0;
3014 }
3015
3016 /* Figure out the value of the symbol. */
3017 if (local_p)
3018 {
3019 Elf_Internal_Sym *sym;
3020
3021 sym = local_syms + r_symndx;
3022 sec = local_sections[r_symndx];
3023
3024 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3025 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3026 || (sec->flags & SEC_MERGE))
b49e97c9 3027 symbol += sym->st_value;
d4df96e6
L
3028 if ((sec->flags & SEC_MERGE)
3029 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3030 {
3031 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3032 addend -= symbol;
3033 addend += sec->output_section->vma + sec->output_offset;
3034 }
b49e97c9
TS
3035
3036 /* MIPS16 text labels should be treated as odd. */
3037 if (sym->st_other == STO_MIPS16)
3038 ++symbol;
3039
3040 /* Record the name of this symbol, for our caller. */
3041 *namep = bfd_elf_string_from_elf_section (input_bfd,
3042 symtab_hdr->sh_link,
3043 sym->st_name);
3044 if (*namep == '\0')
3045 *namep = bfd_section_name (input_bfd, sec);
3046
3047 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3048 }
3049 else
3050 {
3051 /* For global symbols we look up the symbol in the hash-table. */
3052 h = ((struct mips_elf_link_hash_entry *)
3053 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3054 /* Find the real hash-table entry for this symbol. */
3055 while (h->root.root.type == bfd_link_hash_indirect
3056 || h->root.root.type == bfd_link_hash_warning)
3057 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3058
3059 /* Record the name of this symbol, for our caller. */
3060 *namep = h->root.root.root.string;
3061
3062 /* See if this is the special _gp_disp symbol. Note that such a
3063 symbol must always be a global symbol. */
3064 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3065 && ! NEWABI_P (input_bfd))
3066 {
3067 /* Relocations against _gp_disp are permitted only with
3068 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3069 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3070 return bfd_reloc_notsupported;
3071
b34976b6 3072 gp_disp_p = TRUE;
b49e97c9
TS
3073 }
3074 /* If this symbol is defined, calculate its address. Note that
3075 _gp_disp is a magic symbol, always implicitly defined by the
3076 linker, so it's inappropriate to check to see whether or not
3077 its defined. */
3078 else if ((h->root.root.type == bfd_link_hash_defined
3079 || h->root.root.type == bfd_link_hash_defweak)
3080 && h->root.root.u.def.section)
3081 {
3082 sec = h->root.root.u.def.section;
3083 if (sec->output_section)
3084 symbol = (h->root.root.u.def.value
3085 + sec->output_section->vma
3086 + sec->output_offset);
3087 else
3088 symbol = h->root.root.u.def.value;
3089 }
3090 else if (h->root.root.type == bfd_link_hash_undefweak)
3091 /* We allow relocations against undefined weak symbols, giving
3092 it the value zero, so that you can undefined weak functions
3093 and check to see if they exist by looking at their
3094 addresses. */
3095 symbol = 0;
3096 else if (info->shared
3097 && (!info->symbolic || info->allow_shlib_undefined)
3098 && !info->no_undefined
3099 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3100 symbol = 0;
3101 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3102 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3103 {
3104 /* If this is a dynamic link, we should have created a
3105 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3106 in in _bfd_mips_elf_create_dynamic_sections.
3107 Otherwise, we should define the symbol with a value of 0.
3108 FIXME: It should probably get into the symbol table
3109 somehow as well. */
3110 BFD_ASSERT (! info->shared);
3111 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3112 symbol = 0;
3113 }
3114 else
3115 {
3116 if (! ((*info->callbacks->undefined_symbol)
3117 (info, h->root.root.root.string, input_bfd,
3118 input_section, relocation->r_offset,
3119 (!info->shared || info->no_undefined
3120 || ELF_ST_VISIBILITY (h->root.other)))))
3121 return bfd_reloc_undefined;
3122 symbol = 0;
3123 }
3124
3125 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3126 }
3127
3128 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3129 need to redirect the call to the stub, unless we're already *in*
3130 a stub. */
3131 if (r_type != R_MIPS16_26 && !info->relocateable
3132 && ((h != NULL && h->fn_stub != NULL)
3133 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3134 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3135 && !mips_elf_stub_section_p (input_bfd, input_section))
3136 {
3137 /* This is a 32- or 64-bit call to a 16-bit function. We should
3138 have already noticed that we were going to need the
3139 stub. */
3140 if (local_p)
3141 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3142 else
3143 {
3144 BFD_ASSERT (h->need_fn_stub);
3145 sec = h->fn_stub;
3146 }
3147
3148 symbol = sec->output_section->vma + sec->output_offset;
3149 }
3150 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3151 need to redirect the call to the stub. */
3152 else if (r_type == R_MIPS16_26 && !info->relocateable
3153 && h != NULL
3154 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3155 && !target_is_16_bit_code_p)
3156 {
3157 /* If both call_stub and call_fp_stub are defined, we can figure
3158 out which one to use by seeing which one appears in the input
3159 file. */
3160 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3161 {
3162 asection *o;
3163
3164 sec = NULL;
3165 for (o = input_bfd->sections; o != NULL; o = o->next)
3166 {
3167 if (strncmp (bfd_get_section_name (input_bfd, o),
3168 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3169 {
3170 sec = h->call_fp_stub;
3171 break;
3172 }
3173 }
3174 if (sec == NULL)
3175 sec = h->call_stub;
3176 }
3177 else if (h->call_stub != NULL)
3178 sec = h->call_stub;
3179 else
3180 sec = h->call_fp_stub;
3181
3182 BFD_ASSERT (sec->_raw_size > 0);
3183 symbol = sec->output_section->vma + sec->output_offset;
3184 }
3185
3186 /* Calls from 16-bit code to 32-bit code and vice versa require the
3187 special jalx instruction. */
3188 *require_jalxp = (!info->relocateable
3189 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3190 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3191
3192 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3193 local_sections, TRUE);
b49e97c9
TS
3194
3195 /* If we haven't already determined the GOT offset, or the GP value,
3196 and we're going to need it, get it now. */
3197 switch (r_type)
3198 {
3199 case R_MIPS_CALL16:
3200 case R_MIPS_GOT16:
3201 case R_MIPS_GOT_DISP:
3202 case R_MIPS_GOT_HI16:
3203 case R_MIPS_CALL_HI16:
3204 case R_MIPS_GOT_LO16:
3205 case R_MIPS_CALL_LO16:
3206 /* Find the index into the GOT where this value is located. */
3207 if (!local_p)
3208 {
3209 BFD_ASSERT (addend == 0);
3210 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3211 input_bfd,
b49e97c9
TS
3212 (struct elf_link_hash_entry *) h);
3213 if (! elf_hash_table(info)->dynamic_sections_created
3214 || (info->shared
3215 && (info->symbolic || h->root.dynindx == -1)
3216 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3217 {
3218 /* This is a static link or a -Bsymbolic link. The
3219 symbol is defined locally, or was forced to be local.
3220 We must initialize this entry in the GOT. */
3221 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3222 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
b49e97c9
TS
3223 MIPS_ELF_PUT_WORD (tmpbfd, symbol + addend, sgot->contents + g);
3224 }
3225 }
3226 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3227 /* There's no need to create a local GOT entry here; the
3228 calculation for a local GOT16 entry does not involve G. */
3229 break;
3230 else
3231 {
f4416af6
AO
3232 g = mips_elf_local_got_index (abfd, input_bfd,
3233 info, symbol + addend);
b49e97c9
TS
3234 if (g == MINUS_ONE)
3235 return bfd_reloc_outofrange;
3236 }
3237
3238 /* Convert GOT indices to actual offsets. */
3239 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3240 abfd, input_bfd, g);
b49e97c9
TS
3241 break;
3242
3243 case R_MIPS_HI16:
3244 case R_MIPS_LO16:
3245 case R_MIPS16_GPREL:
3246 case R_MIPS_GPREL16:
3247 case R_MIPS_GPREL32:
3248 case R_MIPS_LITERAL:
3249 gp0 = _bfd_get_gp_value (input_bfd);
3250 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3251 if (elf_hash_table (info)->dynobj)
3252 gp += mips_elf_adjust_gp (abfd,
3253 mips_elf_got_info
3254 (elf_hash_table (info)->dynobj, NULL),
3255 input_bfd);
b49e97c9
TS
3256 break;
3257
3258 default:
3259 break;
3260 }
3261
3262 /* Figure out what kind of relocation is being performed. */
3263 switch (r_type)
3264 {
3265 case R_MIPS_NONE:
3266 return bfd_reloc_continue;
3267
3268 case R_MIPS_16:
3269 value = symbol + mips_elf_sign_extend (addend, 16);
3270 overflowed_p = mips_elf_overflow_p (value, 16);
3271 break;
3272
3273 case R_MIPS_32:
3274 case R_MIPS_REL32:
3275 case R_MIPS_64:
3276 if ((info->shared
3277 || (elf_hash_table (info)->dynamic_sections_created
3278 && h != NULL
3279 && ((h->root.elf_link_hash_flags
3280 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3281 && ((h->root.elf_link_hash_flags
3282 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3283 && r_symndx != 0
3284 && (input_section->flags & SEC_ALLOC) != 0)
3285 {
3286 /* If we're creating a shared library, or this relocation is
3287 against a symbol in a shared library, then we can't know
3288 where the symbol will end up. So, we create a relocation
3289 record in the output, and leave the job up to the dynamic
3290 linker. */
3291 value = addend;
3292 if (!mips_elf_create_dynamic_relocation (abfd,
3293 info,
3294 relocation,
3295 h,
3296 sec,
3297 symbol,
3298 &value,
3299 input_section))
3300 return bfd_reloc_undefined;
3301 }
3302 else
3303 {
3304 if (r_type != R_MIPS_REL32)
3305 value = symbol + addend;
3306 else
3307 value = addend;
3308 }
3309 value &= howto->dst_mask;
3310 break;
3311
3312 case R_MIPS_PC32:
3313 case R_MIPS_PC64:
3314 case R_MIPS_GNU_REL_LO16:
3315 value = symbol + addend - p;
3316 value &= howto->dst_mask;
3317 break;
3318
3319 case R_MIPS_GNU_REL16_S2:
3320 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
3321 overflowed_p = mips_elf_overflow_p (value, 18);
3322 value = (value >> 2) & howto->dst_mask;
3323 break;
3324
3325 case R_MIPS_GNU_REL_HI16:
3326 /* Instead of subtracting 'p' here, we should be subtracting the
3327 equivalent value for the LO part of the reloc, since the value
3328 here is relative to that address. Because that's not easy to do,
3329 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3330 the comment there for more information. */
3331 value = mips_elf_high (addend + symbol - p);
3332 value &= howto->dst_mask;
3333 break;
3334
3335 case R_MIPS16_26:
3336 /* The calculation for R_MIPS16_26 is just the same as for an
3337 R_MIPS_26. It's only the storage of the relocated field into
3338 the output file that's different. That's handled in
3339 mips_elf_perform_relocation. So, we just fall through to the
3340 R_MIPS_26 case here. */
3341 case R_MIPS_26:
3342 if (local_p)
3343 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3344 else
3345 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
3346 value &= howto->dst_mask;
3347 break;
3348
3349 case R_MIPS_HI16:
3350 if (!gp_disp_p)
3351 {
3352 value = mips_elf_high (addend + symbol);
3353 value &= howto->dst_mask;
3354 }
3355 else
3356 {
3357 value = mips_elf_high (addend + gp - p);
3358 overflowed_p = mips_elf_overflow_p (value, 16);
3359 }
3360 break;
3361
3362 case R_MIPS_LO16:
3363 if (!gp_disp_p)
3364 value = (symbol + addend) & howto->dst_mask;
3365 else
3366 {
3367 value = addend + gp - p + 4;
3368 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 3369 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
3370 _gp_disp are normally generated from the .cpload
3371 pseudo-op. It generates code that normally looks like
3372 this:
3373
3374 lui $gp,%hi(_gp_disp)
3375 addiu $gp,$gp,%lo(_gp_disp)
3376 addu $gp,$gp,$t9
3377
3378 Here $t9 holds the address of the function being called,
3379 as required by the MIPS ELF ABI. The R_MIPS_LO16
3380 relocation can easily overflow in this situation, but the
3381 R_MIPS_HI16 relocation will handle the overflow.
3382 Therefore, we consider this a bug in the MIPS ABI, and do
3383 not check for overflow here. */
3384 }
3385 break;
3386
3387 case R_MIPS_LITERAL:
3388 /* Because we don't merge literal sections, we can handle this
3389 just like R_MIPS_GPREL16. In the long run, we should merge
3390 shared literals, and then we will need to additional work
3391 here. */
3392
3393 /* Fall through. */
3394
3395 case R_MIPS16_GPREL:
3396 /* The R_MIPS16_GPREL performs the same calculation as
3397 R_MIPS_GPREL16, but stores the relocated bits in a different
3398 order. We don't need to do anything special here; the
3399 differences are handled in mips_elf_perform_relocation. */
3400 case R_MIPS_GPREL16:
bce03d3d
AO
3401 /* Only sign-extend the addend if it was extracted from the
3402 instruction. If the addend was separate, leave it alone,
3403 otherwise we may lose significant bits. */
3404 if (howto->partial_inplace)
3405 addend = mips_elf_sign_extend (addend, 16);
3406 value = symbol + addend - gp;
3407 /* If the symbol was local, any earlier relocatable links will
3408 have adjusted its addend with the gp offset, so compensate
3409 for that now. Don't do it for symbols forced local in this
3410 link, though, since they won't have had the gp offset applied
3411 to them before. */
3412 if (was_local_p)
3413 value += gp0;
b49e97c9
TS
3414 overflowed_p = mips_elf_overflow_p (value, 16);
3415 break;
3416
3417 case R_MIPS_GOT16:
3418 case R_MIPS_CALL16:
3419 if (local_p)
3420 {
b34976b6 3421 bfd_boolean forced;
b49e97c9
TS
3422
3423 /* The special case is when the symbol is forced to be local. We
3424 need the full address in the GOT since no R_MIPS_LO16 relocation
3425 follows. */
3426 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3427 local_sections, FALSE);
f4416af6
AO
3428 value = mips_elf_got16_entry (abfd, input_bfd, info,
3429 symbol + addend, forced);
b49e97c9
TS
3430 if (value == MINUS_ONE)
3431 return bfd_reloc_outofrange;
3432 value
3433 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3434 abfd, input_bfd, value);
b49e97c9
TS
3435 overflowed_p = mips_elf_overflow_p (value, 16);
3436 break;
3437 }
3438
3439 /* Fall through. */
3440
3441 case R_MIPS_GOT_DISP:
3442 value = g;
3443 overflowed_p = mips_elf_overflow_p (value, 16);
3444 break;
3445
3446 case R_MIPS_GPREL32:
bce03d3d
AO
3447 value = (addend + symbol + gp0 - gp);
3448 if (!save_addend)
3449 value &= howto->dst_mask;
b49e97c9
TS
3450 break;
3451
3452 case R_MIPS_PC16:
3453 value = mips_elf_sign_extend (addend, 16) + symbol - p;
3454 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
3455 break;
3456
3457 case R_MIPS_GOT_HI16:
3458 case R_MIPS_CALL_HI16:
3459 /* We're allowed to handle these two relocations identically.
3460 The dynamic linker is allowed to handle the CALL relocations
3461 differently by creating a lazy evaluation stub. */
3462 value = g;
3463 value = mips_elf_high (value);
3464 value &= howto->dst_mask;
3465 break;
3466
3467 case R_MIPS_GOT_LO16:
3468 case R_MIPS_CALL_LO16:
3469 value = g & howto->dst_mask;
3470 break;
3471
3472 case R_MIPS_GOT_PAGE:
f4416af6 3473 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
3474 if (value == MINUS_ONE)
3475 return bfd_reloc_outofrange;
3476 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3477 abfd, input_bfd, value);
b49e97c9
TS
3478 overflowed_p = mips_elf_overflow_p (value, 16);
3479 break;
3480
3481 case R_MIPS_GOT_OFST:
f4416af6 3482 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
b49e97c9
TS
3483 overflowed_p = mips_elf_overflow_p (value, 16);
3484 break;
3485
3486 case R_MIPS_SUB:
3487 value = symbol - addend;
3488 value &= howto->dst_mask;
3489 break;
3490
3491 case R_MIPS_HIGHER:
3492 value = mips_elf_higher (addend + symbol);
3493 value &= howto->dst_mask;
3494 break;
3495
3496 case R_MIPS_HIGHEST:
3497 value = mips_elf_highest (addend + symbol);
3498 value &= howto->dst_mask;
3499 break;
3500
3501 case R_MIPS_SCN_DISP:
3502 value = symbol + addend - sec->output_offset;
3503 value &= howto->dst_mask;
3504 break;
3505
3506 case R_MIPS_PJUMP:
3507 case R_MIPS_JALR:
3508 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3509 hint; we could improve performance by honoring that hint. */
3510 return bfd_reloc_continue;
3511
3512 case R_MIPS_GNU_VTINHERIT:
3513 case R_MIPS_GNU_VTENTRY:
3514 /* We don't do anything with these at present. */
3515 return bfd_reloc_continue;
3516
3517 default:
3518 /* An unrecognized relocation type. */
3519 return bfd_reloc_notsupported;
3520 }
3521
3522 /* Store the VALUE for our caller. */
3523 *valuep = value;
3524 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3525}
3526
3527/* Obtain the field relocated by RELOCATION. */
3528
3529static bfd_vma
3530mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3531 reloc_howto_type *howto;
3532 const Elf_Internal_Rela *relocation;
3533 bfd *input_bfd;
3534 bfd_byte *contents;
3535{
3536 bfd_vma x;
3537 bfd_byte *location = contents + relocation->r_offset;
3538
3539 /* Obtain the bytes. */
3540 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3541
3542 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3543 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3544 && bfd_little_endian (input_bfd))
3545 /* The two 16-bit words will be reversed on a little-endian system.
3546 See mips_elf_perform_relocation for more details. */
3547 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3548
3549 return x;
3550}
3551
3552/* It has been determined that the result of the RELOCATION is the
3553 VALUE. Use HOWTO to place VALUE into the output file at the
3554 appropriate position. The SECTION is the section to which the
b34976b6 3555 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
3556 for the relocation must be either JAL or JALX, and it is
3557 unconditionally converted to JALX.
3558
b34976b6 3559 Returns FALSE if anything goes wrong. */
b49e97c9 3560
b34976b6 3561static bfd_boolean
b49e97c9
TS
3562mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3563 input_section, contents, require_jalx)
3564 struct bfd_link_info *info;
3565 reloc_howto_type *howto;
3566 const Elf_Internal_Rela *relocation;
3567 bfd_vma value;
3568 bfd *input_bfd;
3569 asection *input_section;
3570 bfd_byte *contents;
b34976b6 3571 bfd_boolean require_jalx;
b49e97c9
TS
3572{
3573 bfd_vma x;
3574 bfd_byte *location;
3575 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3576
3577 /* Figure out where the relocation is occurring. */
3578 location = contents + relocation->r_offset;
3579
3580 /* Obtain the current value. */
3581 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3582
3583 /* Clear the field we are setting. */
3584 x &= ~howto->dst_mask;
3585
3586 /* If this is the R_MIPS16_26 relocation, we must store the
3587 value in a funny way. */
3588 if (r_type == R_MIPS16_26)
3589 {
3590 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3591 Most mips16 instructions are 16 bits, but these instructions
3592 are 32 bits.
3593
3594 The format of these instructions is:
3595
3596 +--------------+--------------------------------+
3597 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3598 +--------------+--------------------------------+
3599 ! Immediate 15:0 !
3600 +-----------------------------------------------+
3601
3602 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3603 Note that the immediate value in the first word is swapped.
3604
3605 When producing a relocateable object file, R_MIPS16_26 is
3606 handled mostly like R_MIPS_26. In particular, the addend is
3607 stored as a straight 26-bit value in a 32-bit instruction.
3608 (gas makes life simpler for itself by never adjusting a
3609 R_MIPS16_26 reloc to be against a section, so the addend is
3610 always zero). However, the 32 bit instruction is stored as 2
3611 16-bit values, rather than a single 32-bit value. In a
3612 big-endian file, the result is the same; in a little-endian
3613 file, the two 16-bit halves of the 32 bit value are swapped.
3614 This is so that a disassembler can recognize the jal
3615 instruction.
3616
3617 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3618 instruction stored as two 16-bit values. The addend A is the
3619 contents of the targ26 field. The calculation is the same as
3620 R_MIPS_26. When storing the calculated value, reorder the
3621 immediate value as shown above, and don't forget to store the
3622 value as two 16-bit values.
3623
3624 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3625 defined as
3626
3627 big-endian:
3628 +--------+----------------------+
3629 | | |
3630 | | targ26-16 |
3631 |31 26|25 0|
3632 +--------+----------------------+
3633
3634 little-endian:
3635 +----------+------+-------------+
3636 | | | |
3637 | sub1 | | sub2 |
3638 |0 9|10 15|16 31|
3639 +----------+--------------------+
3640 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3641 ((sub1 << 16) | sub2)).
3642
3643 When producing a relocateable object file, the calculation is
3644 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3645 When producing a fully linked file, the calculation is
3646 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3647 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3648
3649 if (!info->relocateable)
3650 /* Shuffle the bits according to the formula above. */
3651 value = (((value & 0x1f0000) << 5)
3652 | ((value & 0x3e00000) >> 5)
3653 | (value & 0xffff));
3654 }
3655 else if (r_type == R_MIPS16_GPREL)
3656 {
3657 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3658 mode. A typical instruction will have a format like this:
3659
3660 +--------------+--------------------------------+
3661 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3662 +--------------+--------------------------------+
3663 ! Major ! rx ! ry ! Imm 4:0 !
3664 +--------------+--------------------------------+
3665
3666 EXTEND is the five bit value 11110. Major is the instruction
3667 opcode.
3668
3669 This is handled exactly like R_MIPS_GPREL16, except that the
3670 addend is retrieved and stored as shown in this diagram; that
3671 is, the Imm fields above replace the V-rel16 field.
3672
3673 All we need to do here is shuffle the bits appropriately. As
3674 above, the two 16-bit halves must be swapped on a
3675 little-endian system. */
3676 value = (((value & 0x7e0) << 16)
3677 | ((value & 0xf800) << 5)
3678 | (value & 0x1f));
3679 }
3680
3681 /* Set the field. */
3682 x |= (value & howto->dst_mask);
3683
3684 /* If required, turn JAL into JALX. */
3685 if (require_jalx)
3686 {
b34976b6 3687 bfd_boolean ok;
b49e97c9
TS
3688 bfd_vma opcode = x >> 26;
3689 bfd_vma jalx_opcode;
3690
3691 /* Check to see if the opcode is already JAL or JALX. */
3692 if (r_type == R_MIPS16_26)
3693 {
3694 ok = ((opcode == 0x6) || (opcode == 0x7));
3695 jalx_opcode = 0x7;
3696 }
3697 else
3698 {
3699 ok = ((opcode == 0x3) || (opcode == 0x1d));
3700 jalx_opcode = 0x1d;
3701 }
3702
3703 /* If the opcode is not JAL or JALX, there's a problem. */
3704 if (!ok)
3705 {
3706 (*_bfd_error_handler)
3707 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3708 bfd_archive_filename (input_bfd),
3709 input_section->name,
3710 (unsigned long) relocation->r_offset);
3711 bfd_set_error (bfd_error_bad_value);
b34976b6 3712 return FALSE;
b49e97c9
TS
3713 }
3714
3715 /* Make this the JALX opcode. */
3716 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3717 }
3718
3719 /* Swap the high- and low-order 16 bits on little-endian systems
3720 when doing a MIPS16 relocation. */
3721 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3722 && bfd_little_endian (input_bfd))
3723 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3724
3725 /* Put the value into the output. */
3726 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
b34976b6 3727 return TRUE;
b49e97c9
TS
3728}
3729
b34976b6 3730/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 3731
b34976b6 3732static bfd_boolean
b49e97c9
TS
3733mips_elf_stub_section_p (abfd, section)
3734 bfd *abfd ATTRIBUTE_UNUSED;
3735 asection *section;
3736{
3737 const char *name = bfd_get_section_name (abfd, section);
3738
3739 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3740 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3741 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3742}
3743\f
3744/* Add room for N relocations to the .rel.dyn section in ABFD. */
3745
3746static void
3747mips_elf_allocate_dynamic_relocations (abfd, n)
3748 bfd *abfd;
3749 unsigned int n;
3750{
3751 asection *s;
3752
f4416af6 3753 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
3754 BFD_ASSERT (s != NULL);
3755
3756 if (s->_raw_size == 0)
3757 {
3758 /* Make room for a null element. */
3759 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3760 ++s->reloc_count;
3761 }
3762 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3763}
3764
3765/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3766 is the original relocation, which is now being transformed into a
3767 dynamic relocation. The ADDENDP is adjusted if necessary; the
3768 caller should store the result in place of the original addend. */
3769
b34976b6 3770static bfd_boolean
b49e97c9
TS
3771mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3772 symbol, addendp, input_section)
3773 bfd *output_bfd;
3774 struct bfd_link_info *info;
3775 const Elf_Internal_Rela *rel;
3776 struct mips_elf_link_hash_entry *h;
3777 asection *sec;
3778 bfd_vma symbol;
3779 bfd_vma *addendp;
3780 asection *input_section;
3781{
947216bf 3782 Elf_Internal_Rela outrel[3];
b34976b6 3783 bfd_boolean skip;
b49e97c9
TS
3784 asection *sreloc;
3785 bfd *dynobj;
3786 int r_type;
3787
3788 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3789 dynobj = elf_hash_table (info)->dynobj;
f4416af6 3790 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
3791 BFD_ASSERT (sreloc != NULL);
3792 BFD_ASSERT (sreloc->contents != NULL);
3793 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3794 < sreloc->_raw_size);
3795
b34976b6 3796 skip = FALSE;
b49e97c9
TS
3797 outrel[0].r_offset =
3798 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3799 outrel[1].r_offset =
3800 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3801 outrel[2].r_offset =
3802 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3803
3804#if 0
3805 /* We begin by assuming that the offset for the dynamic relocation
3806 is the same as for the original relocation. We'll adjust this
3807 later to reflect the correct output offsets. */
3808 if (elf_section_data (input_section)->sec_info_type != ELF_INFO_TYPE_STABS)
3809 {
3810 outrel[1].r_offset = rel[1].r_offset;
3811 outrel[2].r_offset = rel[2].r_offset;
3812 }
3813 else
3814 {
3815 /* Except that in a stab section things are more complex.
3816 Because we compress stab information, the offset given in the
3817 relocation may not be the one we want; we must let the stabs
3818 machinery tell us the offset. */
3819 outrel[1].r_offset = outrel[0].r_offset;
3820 outrel[2].r_offset = outrel[0].r_offset;
3821 /* If we didn't need the relocation at all, this value will be
3822 -1. */
3823 if (outrel[0].r_offset == (bfd_vma) -1)
b34976b6 3824 skip = TRUE;
b49e97c9
TS
3825 }
3826#endif
3827
4bb9a95f
AO
3828 if (outrel[0].r_offset == (bfd_vma) -1
3829 || outrel[0].r_offset == (bfd_vma) -2)
b34976b6 3830 skip = TRUE;
b49e97c9
TS
3831
3832 /* If we've decided to skip this relocation, just output an empty
3833 record. Note that R_MIPS_NONE == 0, so that this call to memset
3834 is a way of setting R_TYPE to R_MIPS_NONE. */
3835 if (skip)
947216bf 3836 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
b49e97c9
TS
3837 else
3838 {
3839 long indx;
3840 bfd_vma section_offset;
3841
3842 /* We must now calculate the dynamic symbol table index to use
3843 in the relocation. */
3844 if (h != NULL
3845 && (! info->symbolic || (h->root.elf_link_hash_flags
3846 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3847 {
3848 indx = h->root.dynindx;
3849 /* h->root.dynindx may be -1 if this symbol was marked to
3850 become local. */
3851 if (indx == -1)
3852 indx = 0;
3853 }
3854 else
3855 {
3856 if (sec != NULL && bfd_is_abs_section (sec))
3857 indx = 0;
3858 else if (sec == NULL || sec->owner == NULL)
3859 {
3860 bfd_set_error (bfd_error_bad_value);
b34976b6 3861 return FALSE;
b49e97c9
TS
3862 }
3863 else
3864 {
3865 indx = elf_section_data (sec->output_section)->dynindx;
3866 if (indx == 0)
3867 abort ();
3868 }
3869
3870 /* Figure out how far the target of the relocation is from
3871 the beginning of its section. */
3872 section_offset = symbol - sec->output_section->vma;
3873 /* The relocation we're building is section-relative.
3874 Therefore, the original addend must be adjusted by the
3875 section offset. */
3876 *addendp += section_offset;
3877 /* Now, the relocation is just against the section. */
3878 symbol = sec->output_section->vma;
3879 }
3880
3881 /* If the relocation was previously an absolute relocation and
3882 this symbol will not be referred to by the relocation, we must
3883 adjust it by the value we give it in the dynamic symbol table.
3884 Otherwise leave the job up to the dynamic linker. */
3885 if (!indx && r_type != R_MIPS_REL32)
3886 *addendp += symbol;
3887
3888 /* The relocation is always an REL32 relocation because we don't
3889 know where the shared library will wind up at load-time. */
34ea4a36
TS
3890 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3891 R_MIPS_REL32);
7c4ca42d 3892 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
033fd5f9
AO
3893 ABI_64_P (output_bfd)
3894 ? R_MIPS_64
3895 : R_MIPS_NONE);
7c4ca42d
AO
3896 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3897 R_MIPS_NONE);
b49e97c9
TS
3898
3899 /* Adjust the output offset of the relocation to reference the
3900 correct location in the output file. */
3901 outrel[0].r_offset += (input_section->output_section->vma
3902 + input_section->output_offset);
3903 outrel[1].r_offset += (input_section->output_section->vma
3904 + input_section->output_offset);
3905 outrel[2].r_offset += (input_section->output_section->vma
3906 + input_section->output_offset);
3907 }
3908
3909 /* Put the relocation back out. We have to use the special
3910 relocation outputter in the 64-bit case since the 64-bit
3911 relocation format is non-standard. */
3912 if (ABI_64_P (output_bfd))
3913 {
3914 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3915 (output_bfd, &outrel[0],
3916 (sreloc->contents
3917 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3918 }
3919 else
947216bf
AM
3920 bfd_elf32_swap_reloc_out
3921 (output_bfd, &outrel[0],
3922 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9
TS
3923
3924 /* Record the index of the first relocation referencing H. This
3925 information is later emitted in the .msym section. */
3926 if (h != NULL
3927 && (h->min_dyn_reloc_index == 0
3928 || sreloc->reloc_count < h->min_dyn_reloc_index))
3929 h->min_dyn_reloc_index = sreloc->reloc_count;
3930
3931 /* We've now added another relocation. */
3932 ++sreloc->reloc_count;
3933
3934 /* Make sure the output section is writable. The dynamic linker
3935 will be writing to it. */
3936 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3937 |= SHF_WRITE;
3938
3939 /* On IRIX5, make an entry of compact relocation info. */
3940 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
3941 {
3942 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3943 bfd_byte *cr;
3944
3945 if (scpt)
3946 {
3947 Elf32_crinfo cptrel;
3948
3949 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3950 cptrel.vaddr = (rel->r_offset
3951 + input_section->output_section->vma
3952 + input_section->output_offset);
3953 if (r_type == R_MIPS_REL32)
3954 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3955 else
3956 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3957 mips_elf_set_cr_dist2to (cptrel, 0);
3958 cptrel.konst = *addendp;
3959
3960 cr = (scpt->contents
3961 + sizeof (Elf32_External_compact_rel));
3962 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3963 ((Elf32_External_crinfo *) cr
3964 + scpt->reloc_count));
3965 ++scpt->reloc_count;
3966 }
3967 }
3968
b34976b6 3969 return TRUE;
b49e97c9
TS
3970}
3971\f
b49e97c9
TS
3972/* Return the MACH for a MIPS e_flags value. */
3973
3974unsigned long
3975_bfd_elf_mips_mach (flags)
3976 flagword flags;
3977{
3978 switch (flags & EF_MIPS_MACH)
3979 {
3980 case E_MIPS_MACH_3900:
3981 return bfd_mach_mips3900;
3982
3983 case E_MIPS_MACH_4010:
3984 return bfd_mach_mips4010;
3985
3986 case E_MIPS_MACH_4100:
3987 return bfd_mach_mips4100;
3988
3989 case E_MIPS_MACH_4111:
3990 return bfd_mach_mips4111;
3991
00707a0e
RS
3992 case E_MIPS_MACH_4120:
3993 return bfd_mach_mips4120;
3994
b49e97c9
TS
3995 case E_MIPS_MACH_4650:
3996 return bfd_mach_mips4650;
3997
00707a0e
RS
3998 case E_MIPS_MACH_5400:
3999 return bfd_mach_mips5400;
4000
4001 case E_MIPS_MACH_5500:
4002 return bfd_mach_mips5500;
4003
b49e97c9
TS
4004 case E_MIPS_MACH_SB1:
4005 return bfd_mach_mips_sb1;
4006
4007 default:
4008 switch (flags & EF_MIPS_ARCH)
4009 {
4010 default:
4011 case E_MIPS_ARCH_1:
4012 return bfd_mach_mips3000;
4013 break;
4014
4015 case E_MIPS_ARCH_2:
4016 return bfd_mach_mips6000;
4017 break;
4018
4019 case E_MIPS_ARCH_3:
4020 return bfd_mach_mips4000;
4021 break;
4022
4023 case E_MIPS_ARCH_4:
4024 return bfd_mach_mips8000;
4025 break;
4026
4027 case E_MIPS_ARCH_5:
4028 return bfd_mach_mips5;
4029 break;
4030
4031 case E_MIPS_ARCH_32:
4032 return bfd_mach_mipsisa32;
4033 break;
4034
4035 case E_MIPS_ARCH_64:
4036 return bfd_mach_mipsisa64;
4037 break;
af7ee8bf
CD
4038
4039 case E_MIPS_ARCH_32R2:
4040 return bfd_mach_mipsisa32r2;
4041 break;
b49e97c9
TS
4042 }
4043 }
4044
4045 return 0;
4046}
4047
4048/* Return printable name for ABI. */
4049
4050static INLINE char *
4051elf_mips_abi_name (abfd)
4052 bfd *abfd;
4053{
4054 flagword flags;
4055
4056 flags = elf_elfheader (abfd)->e_flags;
4057 switch (flags & EF_MIPS_ABI)
4058 {
4059 case 0:
4060 if (ABI_N32_P (abfd))
4061 return "N32";
4062 else if (ABI_64_P (abfd))
4063 return "64";
4064 else
4065 return "none";
4066 case E_MIPS_ABI_O32:
4067 return "O32";
4068 case E_MIPS_ABI_O64:
4069 return "O64";
4070 case E_MIPS_ABI_EABI32:
4071 return "EABI32";
4072 case E_MIPS_ABI_EABI64:
4073 return "EABI64";
4074 default:
4075 return "unknown abi";
4076 }
4077}
4078\f
4079/* MIPS ELF uses two common sections. One is the usual one, and the
4080 other is for small objects. All the small objects are kept
4081 together, and then referenced via the gp pointer, which yields
4082 faster assembler code. This is what we use for the small common
4083 section. This approach is copied from ecoff.c. */
4084static asection mips_elf_scom_section;
4085static asymbol mips_elf_scom_symbol;
4086static asymbol *mips_elf_scom_symbol_ptr;
4087
4088/* MIPS ELF also uses an acommon section, which represents an
4089 allocated common symbol which may be overridden by a
4090 definition in a shared library. */
4091static asection mips_elf_acom_section;
4092static asymbol mips_elf_acom_symbol;
4093static asymbol *mips_elf_acom_symbol_ptr;
4094
4095/* Handle the special MIPS section numbers that a symbol may use.
4096 This is used for both the 32-bit and the 64-bit ABI. */
4097
4098void
4099_bfd_mips_elf_symbol_processing (abfd, asym)
4100 bfd *abfd;
4101 asymbol *asym;
4102{
4103 elf_symbol_type *elfsym;
4104
4105 elfsym = (elf_symbol_type *) asym;
4106 switch (elfsym->internal_elf_sym.st_shndx)
4107 {
4108 case SHN_MIPS_ACOMMON:
4109 /* This section is used in a dynamically linked executable file.
4110 It is an allocated common section. The dynamic linker can
4111 either resolve these symbols to something in a shared
4112 library, or it can just leave them here. For our purposes,
4113 we can consider these symbols to be in a new section. */
4114 if (mips_elf_acom_section.name == NULL)
4115 {
4116 /* Initialize the acommon section. */
4117 mips_elf_acom_section.name = ".acommon";
4118 mips_elf_acom_section.flags = SEC_ALLOC;
4119 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4120 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4121 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4122 mips_elf_acom_symbol.name = ".acommon";
4123 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4124 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4125 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4126 }
4127 asym->section = &mips_elf_acom_section;
4128 break;
4129
4130 case SHN_COMMON:
4131 /* Common symbols less than the GP size are automatically
4132 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4133 if (asym->value > elf_gp_size (abfd)
4134 || IRIX_COMPAT (abfd) == ict_irix6)
4135 break;
4136 /* Fall through. */
4137 case SHN_MIPS_SCOMMON:
4138 if (mips_elf_scom_section.name == NULL)
4139 {
4140 /* Initialize the small common section. */
4141 mips_elf_scom_section.name = ".scommon";
4142 mips_elf_scom_section.flags = SEC_IS_COMMON;
4143 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4144 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4145 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4146 mips_elf_scom_symbol.name = ".scommon";
4147 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4148 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4149 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4150 }
4151 asym->section = &mips_elf_scom_section;
4152 asym->value = elfsym->internal_elf_sym.st_size;
4153 break;
4154
4155 case SHN_MIPS_SUNDEFINED:
4156 asym->section = bfd_und_section_ptr;
4157 break;
4158
4159#if 0 /* for SGI_COMPAT */
4160 case SHN_MIPS_TEXT:
4161 asym->section = mips_elf_text_section_ptr;
4162 break;
4163
4164 case SHN_MIPS_DATA:
4165 asym->section = mips_elf_data_section_ptr;
4166 break;
4167#endif
4168 }
4169}
4170\f
4171/* Work over a section just before writing it out. This routine is
4172 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4173 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4174 a better way. */
4175
b34976b6 4176bfd_boolean
b49e97c9
TS
4177_bfd_mips_elf_section_processing (abfd, hdr)
4178 bfd *abfd;
4179 Elf_Internal_Shdr *hdr;
4180{
4181 if (hdr->sh_type == SHT_MIPS_REGINFO
4182 && hdr->sh_size > 0)
4183 {
4184 bfd_byte buf[4];
4185
4186 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4187 BFD_ASSERT (hdr->contents == NULL);
4188
4189 if (bfd_seek (abfd,
4190 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4191 SEEK_SET) != 0)
b34976b6 4192 return FALSE;
b49e97c9
TS
4193 H_PUT_32 (abfd, elf_gp (abfd), buf);
4194 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
b34976b6 4195 return FALSE;
b49e97c9
TS
4196 }
4197
4198 if (hdr->sh_type == SHT_MIPS_OPTIONS
4199 && hdr->bfd_section != NULL
f0abc2a1
AM
4200 && mips_elf_section_data (hdr->bfd_section) != NULL
4201 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4202 {
4203 bfd_byte *contents, *l, *lend;
4204
f0abc2a1
AM
4205 /* We stored the section contents in the tdata field in the
4206 set_section_contents routine. We save the section contents
4207 so that we don't have to read them again.
b49e97c9
TS
4208 At this point we know that elf_gp is set, so we can look
4209 through the section contents to see if there is an
4210 ODK_REGINFO structure. */
4211
f0abc2a1 4212 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4213 l = contents;
4214 lend = contents + hdr->sh_size;
4215 while (l + sizeof (Elf_External_Options) <= lend)
4216 {
4217 Elf_Internal_Options intopt;
4218
4219 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4220 &intopt);
4221 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4222 {
4223 bfd_byte buf[8];
4224
4225 if (bfd_seek (abfd,
4226 (hdr->sh_offset
4227 + (l - contents)
4228 + sizeof (Elf_External_Options)
4229 + (sizeof (Elf64_External_RegInfo) - 8)),
4230 SEEK_SET) != 0)
b34976b6 4231 return FALSE;
b49e97c9
TS
4232 H_PUT_64 (abfd, elf_gp (abfd), buf);
4233 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
b34976b6 4234 return FALSE;
b49e97c9
TS
4235 }
4236 else if (intopt.kind == ODK_REGINFO)
4237 {
4238 bfd_byte buf[4];
4239
4240 if (bfd_seek (abfd,
4241 (hdr->sh_offset
4242 + (l - contents)
4243 + sizeof (Elf_External_Options)
4244 + (sizeof (Elf32_External_RegInfo) - 4)),
4245 SEEK_SET) != 0)
b34976b6 4246 return FALSE;
b49e97c9
TS
4247 H_PUT_32 (abfd, elf_gp (abfd), buf);
4248 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
b34976b6 4249 return FALSE;
b49e97c9
TS
4250 }
4251 l += intopt.size;
4252 }
4253 }
4254
4255 if (hdr->bfd_section != NULL)
4256 {
4257 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4258
4259 if (strcmp (name, ".sdata") == 0
4260 || strcmp (name, ".lit8") == 0
4261 || strcmp (name, ".lit4") == 0)
4262 {
4263 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4264 hdr->sh_type = SHT_PROGBITS;
4265 }
4266 else if (strcmp (name, ".sbss") == 0)
4267 {
4268 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4269 hdr->sh_type = SHT_NOBITS;
4270 }
4271 else if (strcmp (name, ".srdata") == 0)
4272 {
4273 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4274 hdr->sh_type = SHT_PROGBITS;
4275 }
4276 else if (strcmp (name, ".compact_rel") == 0)
4277 {
4278 hdr->sh_flags = 0;
4279 hdr->sh_type = SHT_PROGBITS;
4280 }
4281 else if (strcmp (name, ".rtproc") == 0)
4282 {
4283 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4284 {
4285 unsigned int adjust;
4286
4287 adjust = hdr->sh_size % hdr->sh_addralign;
4288 if (adjust != 0)
4289 hdr->sh_size += hdr->sh_addralign - adjust;
4290 }
4291 }
4292 }
4293
b34976b6 4294 return TRUE;
b49e97c9
TS
4295}
4296
4297/* Handle a MIPS specific section when reading an object file. This
4298 is called when elfcode.h finds a section with an unknown type.
4299 This routine supports both the 32-bit and 64-bit ELF ABI.
4300
4301 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4302 how to. */
4303
b34976b6 4304bfd_boolean
b49e97c9
TS
4305_bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4306 bfd *abfd;
4307 Elf_Internal_Shdr *hdr;
90937f86 4308 const char *name;
b49e97c9
TS
4309{
4310 flagword flags = 0;
4311
4312 /* There ought to be a place to keep ELF backend specific flags, but
4313 at the moment there isn't one. We just keep track of the
4314 sections by their name, instead. Fortunately, the ABI gives
4315 suggested names for all the MIPS specific sections, so we will
4316 probably get away with this. */
4317 switch (hdr->sh_type)
4318 {
4319 case SHT_MIPS_LIBLIST:
4320 if (strcmp (name, ".liblist") != 0)
b34976b6 4321 return FALSE;
b49e97c9
TS
4322 break;
4323 case SHT_MIPS_MSYM:
4324 if (strcmp (name, ".msym") != 0)
b34976b6 4325 return FALSE;
b49e97c9
TS
4326 break;
4327 case SHT_MIPS_CONFLICT:
4328 if (strcmp (name, ".conflict") != 0)
b34976b6 4329 return FALSE;
b49e97c9
TS
4330 break;
4331 case SHT_MIPS_GPTAB:
4332 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 4333 return FALSE;
b49e97c9
TS
4334 break;
4335 case SHT_MIPS_UCODE:
4336 if (strcmp (name, ".ucode") != 0)
b34976b6 4337 return FALSE;
b49e97c9
TS
4338 break;
4339 case SHT_MIPS_DEBUG:
4340 if (strcmp (name, ".mdebug") != 0)
b34976b6 4341 return FALSE;
b49e97c9
TS
4342 flags = SEC_DEBUGGING;
4343 break;
4344 case SHT_MIPS_REGINFO:
4345 if (strcmp (name, ".reginfo") != 0
4346 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 4347 return FALSE;
b49e97c9
TS
4348 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4349 break;
4350 case SHT_MIPS_IFACE:
4351 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 4352 return FALSE;
b49e97c9
TS
4353 break;
4354 case SHT_MIPS_CONTENT:
4355 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 4356 return FALSE;
b49e97c9
TS
4357 break;
4358 case SHT_MIPS_OPTIONS:
4359 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
b34976b6 4360 return FALSE;
b49e97c9
TS
4361 break;
4362 case SHT_MIPS_DWARF:
4363 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 4364 return FALSE;
b49e97c9
TS
4365 break;
4366 case SHT_MIPS_SYMBOL_LIB:
4367 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 4368 return FALSE;
b49e97c9
TS
4369 break;
4370 case SHT_MIPS_EVENTS:
4371 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4372 && strncmp (name, ".MIPS.post_rel",
4373 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 4374 return FALSE;
b49e97c9
TS
4375 break;
4376 default:
b34976b6 4377 return FALSE;
b49e97c9
TS
4378 }
4379
4380 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
b34976b6 4381 return FALSE;
b49e97c9
TS
4382
4383 if (flags)
4384 {
4385 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4386 (bfd_get_section_flags (abfd,
4387 hdr->bfd_section)
4388 | flags)))
b34976b6 4389 return FALSE;
b49e97c9
TS
4390 }
4391
4392 /* FIXME: We should record sh_info for a .gptab section. */
4393
4394 /* For a .reginfo section, set the gp value in the tdata information
4395 from the contents of this section. We need the gp value while
4396 processing relocs, so we just get it now. The .reginfo section
4397 is not used in the 64-bit MIPS ELF ABI. */
4398 if (hdr->sh_type == SHT_MIPS_REGINFO)
4399 {
4400 Elf32_External_RegInfo ext;
4401 Elf32_RegInfo s;
4402
4403 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4404 (file_ptr) 0,
4405 (bfd_size_type) sizeof ext))
b34976b6 4406 return FALSE;
b49e97c9
TS
4407 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4408 elf_gp (abfd) = s.ri_gp_value;
4409 }
4410
4411 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4412 set the gp value based on what we find. We may see both
4413 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4414 they should agree. */
4415 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4416 {
4417 bfd_byte *contents, *l, *lend;
4418
4419 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4420 if (contents == NULL)
b34976b6 4421 return FALSE;
b49e97c9
TS
4422 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4423 (file_ptr) 0, hdr->sh_size))
4424 {
4425 free (contents);
b34976b6 4426 return FALSE;
b49e97c9
TS
4427 }
4428 l = contents;
4429 lend = contents + hdr->sh_size;
4430 while (l + sizeof (Elf_External_Options) <= lend)
4431 {
4432 Elf_Internal_Options intopt;
4433
4434 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4435 &intopt);
4436 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4437 {
4438 Elf64_Internal_RegInfo intreg;
4439
4440 bfd_mips_elf64_swap_reginfo_in
4441 (abfd,
4442 ((Elf64_External_RegInfo *)
4443 (l + sizeof (Elf_External_Options))),
4444 &intreg);
4445 elf_gp (abfd) = intreg.ri_gp_value;
4446 }
4447 else if (intopt.kind == ODK_REGINFO)
4448 {
4449 Elf32_RegInfo intreg;
4450
4451 bfd_mips_elf32_swap_reginfo_in
4452 (abfd,
4453 ((Elf32_External_RegInfo *)
4454 (l + sizeof (Elf_External_Options))),
4455 &intreg);
4456 elf_gp (abfd) = intreg.ri_gp_value;
4457 }
4458 l += intopt.size;
4459 }
4460 free (contents);
4461 }
4462
b34976b6 4463 return TRUE;
b49e97c9
TS
4464}
4465
4466/* Set the correct type for a MIPS ELF section. We do this by the
4467 section name, which is a hack, but ought to work. This routine is
4468 used by both the 32-bit and the 64-bit ABI. */
4469
b34976b6 4470bfd_boolean
b49e97c9
TS
4471_bfd_mips_elf_fake_sections (abfd, hdr, sec)
4472 bfd *abfd;
947216bf 4473 Elf_Internal_Shdr *hdr;
b49e97c9
TS
4474 asection *sec;
4475{
4476 register const char *name;
4477
4478 name = bfd_get_section_name (abfd, sec);
4479
4480 if (strcmp (name, ".liblist") == 0)
4481 {
4482 hdr->sh_type = SHT_MIPS_LIBLIST;
4483 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4484 /* The sh_link field is set in final_write_processing. */
4485 }
4486 else if (strcmp (name, ".conflict") == 0)
4487 hdr->sh_type = SHT_MIPS_CONFLICT;
4488 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4489 {
4490 hdr->sh_type = SHT_MIPS_GPTAB;
4491 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4492 /* The sh_info field is set in final_write_processing. */
4493 }
4494 else if (strcmp (name, ".ucode") == 0)
4495 hdr->sh_type = SHT_MIPS_UCODE;
4496 else if (strcmp (name, ".mdebug") == 0)
4497 {
4498 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 4499 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
4500 entsize of 0. FIXME: Does this matter? */
4501 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4502 hdr->sh_entsize = 0;
4503 else
4504 hdr->sh_entsize = 1;
4505 }
4506 else if (strcmp (name, ".reginfo") == 0)
4507 {
4508 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 4509 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
4510 entsize of 0x18. FIXME: Does this matter? */
4511 if (SGI_COMPAT (abfd))
4512 {
4513 if ((abfd->flags & DYNAMIC) != 0)
4514 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4515 else
4516 hdr->sh_entsize = 1;
4517 }
4518 else
4519 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4520 }
4521 else if (SGI_COMPAT (abfd)
4522 && (strcmp (name, ".hash") == 0
4523 || strcmp (name, ".dynamic") == 0
4524 || strcmp (name, ".dynstr") == 0))
4525 {
4526 if (SGI_COMPAT (abfd))
4527 hdr->sh_entsize = 0;
4528#if 0
8dc1a139 4529 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
4530 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4531#endif
4532 }
4533 else if (strcmp (name, ".got") == 0
4534 || strcmp (name, ".srdata") == 0
4535 || strcmp (name, ".sdata") == 0
4536 || strcmp (name, ".sbss") == 0
4537 || strcmp (name, ".lit4") == 0
4538 || strcmp (name, ".lit8") == 0)
4539 hdr->sh_flags |= SHF_MIPS_GPREL;
4540 else if (strcmp (name, ".MIPS.interfaces") == 0)
4541 {
4542 hdr->sh_type = SHT_MIPS_IFACE;
4543 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4544 }
4545 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4546 {
4547 hdr->sh_type = SHT_MIPS_CONTENT;
4548 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4549 /* The sh_info field is set in final_write_processing. */
4550 }
4551 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4552 {
4553 hdr->sh_type = SHT_MIPS_OPTIONS;
4554 hdr->sh_entsize = 1;
4555 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4556 }
4557 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4558 hdr->sh_type = SHT_MIPS_DWARF;
4559 else if (strcmp (name, ".MIPS.symlib") == 0)
4560 {
4561 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4562 /* The sh_link and sh_info fields are set in
4563 final_write_processing. */
4564 }
4565 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4566 || strncmp (name, ".MIPS.post_rel",
4567 sizeof ".MIPS.post_rel" - 1) == 0)
4568 {
4569 hdr->sh_type = SHT_MIPS_EVENTS;
4570 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4571 /* The sh_link field is set in final_write_processing. */
4572 }
4573 else if (strcmp (name, ".msym") == 0)
4574 {
4575 hdr->sh_type = SHT_MIPS_MSYM;
4576 hdr->sh_flags |= SHF_ALLOC;
4577 hdr->sh_entsize = 8;
4578 }
4579
4580 /* The generic elf_fake_sections will set up REL_HDR using the
4581 default kind of relocations. But, we may actually need both
4582 kinds of relocations, so we set up the second header here.
4583
4584 This is not necessary for the O32 ABI since that only uses Elf32_Rel
4585 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
4586 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
4587 of the resulting empty .rela.<section> sections starts with
4588 sh_offset == object size, and ld doesn't allow that. While the check
4589 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
4590 avoided by not emitting those useless sections in the first place. */
14366460 4591 if (! SGI_COMPAT (abfd) && ! NEWABI_P(abfd)
4a14403c 4592 && (sec->flags & SEC_RELOC) != 0)
b49e97c9
TS
4593 {
4594 struct bfd_elf_section_data *esd;
4595 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
4596
4597 esd = elf_section_data (sec);
4598 BFD_ASSERT (esd->rel_hdr2 == NULL);
4599 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
4600 if (!esd->rel_hdr2)
b34976b6 4601 return FALSE;
b49e97c9
TS
4602 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
4603 !elf_section_data (sec)->use_rela_p);
4604 }
4605
b34976b6 4606 return TRUE;
b49e97c9
TS
4607}
4608
4609/* Given a BFD section, try to locate the corresponding ELF section
4610 index. This is used by both the 32-bit and the 64-bit ABI.
4611 Actually, it's not clear to me that the 64-bit ABI supports these,
4612 but for non-PIC objects we will certainly want support for at least
4613 the .scommon section. */
4614
b34976b6 4615bfd_boolean
b49e97c9
TS
4616_bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4617 bfd *abfd ATTRIBUTE_UNUSED;
4618 asection *sec;
4619 int *retval;
4620{
4621 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4622 {
4623 *retval = SHN_MIPS_SCOMMON;
b34976b6 4624 return TRUE;
b49e97c9
TS
4625 }
4626 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4627 {
4628 *retval = SHN_MIPS_ACOMMON;
b34976b6 4629 return TRUE;
b49e97c9 4630 }
b34976b6 4631 return FALSE;
b49e97c9
TS
4632}
4633\f
4634/* Hook called by the linker routine which adds symbols from an object
4635 file. We must handle the special MIPS section numbers here. */
4636
b34976b6 4637bfd_boolean
b49e97c9
TS
4638_bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4639 bfd *abfd;
4640 struct bfd_link_info *info;
4641 const Elf_Internal_Sym *sym;
4642 const char **namep;
4643 flagword *flagsp ATTRIBUTE_UNUSED;
4644 asection **secp;
4645 bfd_vma *valp;
4646{
4647 if (SGI_COMPAT (abfd)
4648 && (abfd->flags & DYNAMIC) != 0
4649 && strcmp (*namep, "_rld_new_interface") == 0)
4650 {
8dc1a139 4651 /* Skip IRIX5 rld entry name. */
b49e97c9 4652 *namep = NULL;
b34976b6 4653 return TRUE;
b49e97c9
TS
4654 }
4655
4656 switch (sym->st_shndx)
4657 {
4658 case SHN_COMMON:
4659 /* Common symbols less than the GP size are automatically
4660 treated as SHN_MIPS_SCOMMON symbols. */
4661 if (sym->st_size > elf_gp_size (abfd)
4662 || IRIX_COMPAT (abfd) == ict_irix6)
4663 break;
4664 /* Fall through. */
4665 case SHN_MIPS_SCOMMON:
4666 *secp = bfd_make_section_old_way (abfd, ".scommon");
4667 (*secp)->flags |= SEC_IS_COMMON;
4668 *valp = sym->st_size;
4669 break;
4670
4671 case SHN_MIPS_TEXT:
4672 /* This section is used in a shared object. */
4673 if (elf_tdata (abfd)->elf_text_section == NULL)
4674 {
4675 asymbol *elf_text_symbol;
4676 asection *elf_text_section;
4677 bfd_size_type amt = sizeof (asection);
4678
4679 elf_text_section = bfd_zalloc (abfd, amt);
4680 if (elf_text_section == NULL)
b34976b6 4681 return FALSE;
b49e97c9
TS
4682
4683 amt = sizeof (asymbol);
4684 elf_text_symbol = bfd_zalloc (abfd, amt);
4685 if (elf_text_symbol == NULL)
b34976b6 4686 return FALSE;
b49e97c9
TS
4687
4688 /* Initialize the section. */
4689
4690 elf_tdata (abfd)->elf_text_section = elf_text_section;
4691 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4692
4693 elf_text_section->symbol = elf_text_symbol;
4694 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4695
4696 elf_text_section->name = ".text";
4697 elf_text_section->flags = SEC_NO_FLAGS;
4698 elf_text_section->output_section = NULL;
4699 elf_text_section->owner = abfd;
4700 elf_text_symbol->name = ".text";
4701 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4702 elf_text_symbol->section = elf_text_section;
4703 }
4704 /* This code used to do *secp = bfd_und_section_ptr if
4705 info->shared. I don't know why, and that doesn't make sense,
4706 so I took it out. */
4707 *secp = elf_tdata (abfd)->elf_text_section;
4708 break;
4709
4710 case SHN_MIPS_ACOMMON:
4711 /* Fall through. XXX Can we treat this as allocated data? */
4712 case SHN_MIPS_DATA:
4713 /* This section is used in a shared object. */
4714 if (elf_tdata (abfd)->elf_data_section == NULL)
4715 {
4716 asymbol *elf_data_symbol;
4717 asection *elf_data_section;
4718 bfd_size_type amt = sizeof (asection);
4719
4720 elf_data_section = bfd_zalloc (abfd, amt);
4721 if (elf_data_section == NULL)
b34976b6 4722 return FALSE;
b49e97c9
TS
4723
4724 amt = sizeof (asymbol);
4725 elf_data_symbol = bfd_zalloc (abfd, amt);
4726 if (elf_data_symbol == NULL)
b34976b6 4727 return FALSE;
b49e97c9
TS
4728
4729 /* Initialize the section. */
4730
4731 elf_tdata (abfd)->elf_data_section = elf_data_section;
4732 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4733
4734 elf_data_section->symbol = elf_data_symbol;
4735 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4736
4737 elf_data_section->name = ".data";
4738 elf_data_section->flags = SEC_NO_FLAGS;
4739 elf_data_section->output_section = NULL;
4740 elf_data_section->owner = abfd;
4741 elf_data_symbol->name = ".data";
4742 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4743 elf_data_symbol->section = elf_data_section;
4744 }
4745 /* This code used to do *secp = bfd_und_section_ptr if
4746 info->shared. I don't know why, and that doesn't make sense,
4747 so I took it out. */
4748 *secp = elf_tdata (abfd)->elf_data_section;
4749 break;
4750
4751 case SHN_MIPS_SUNDEFINED:
4752 *secp = bfd_und_section_ptr;
4753 break;
4754 }
4755
4756 if (SGI_COMPAT (abfd)
4757 && ! info->shared
4758 && info->hash->creator == abfd->xvec
4759 && strcmp (*namep, "__rld_obj_head") == 0)
4760 {
4761 struct elf_link_hash_entry *h;
14a793b2 4762 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4763
4764 /* Mark __rld_obj_head as dynamic. */
14a793b2 4765 bh = NULL;
b49e97c9
TS
4766 if (! (_bfd_generic_link_add_one_symbol
4767 (info, abfd, *namep, BSF_GLOBAL, *secp,
b34976b6 4768 (bfd_vma) *valp, (const char *) NULL, FALSE,
14a793b2 4769 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4770 return FALSE;
14a793b2
AM
4771
4772 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4773 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4774 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4775 h->type = STT_OBJECT;
4776
4777 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4778 return FALSE;
b49e97c9 4779
b34976b6 4780 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
4781 }
4782
4783 /* If this is a mips16 text symbol, add 1 to the value to make it
4784 odd. This will cause something like .word SYM to come up with
4785 the right value when it is loaded into the PC. */
4786 if (sym->st_other == STO_MIPS16)
4787 ++*valp;
4788
b34976b6 4789 return TRUE;
b49e97c9
TS
4790}
4791
4792/* This hook function is called before the linker writes out a global
4793 symbol. We mark symbols as small common if appropriate. This is
4794 also where we undo the increment of the value for a mips16 symbol. */
4795
b34976b6 4796bfd_boolean
b49e97c9
TS
4797_bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4798 bfd *abfd ATTRIBUTE_UNUSED;
4799 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4800 const char *name ATTRIBUTE_UNUSED;
4801 Elf_Internal_Sym *sym;
4802 asection *input_sec;
4803{
4804 /* If we see a common symbol, which implies a relocatable link, then
4805 if a symbol was small common in an input file, mark it as small
4806 common in the output file. */
4807 if (sym->st_shndx == SHN_COMMON
4808 && strcmp (input_sec->name, ".scommon") == 0)
4809 sym->st_shndx = SHN_MIPS_SCOMMON;
4810
4811 if (sym->st_other == STO_MIPS16
4812 && (sym->st_value & 1) != 0)
4813 --sym->st_value;
4814
b34976b6 4815 return TRUE;
b49e97c9
TS
4816}
4817\f
4818/* Functions for the dynamic linker. */
4819
4820/* Create dynamic sections when linking against a dynamic object. */
4821
b34976b6 4822bfd_boolean
b49e97c9
TS
4823_bfd_mips_elf_create_dynamic_sections (abfd, info)
4824 bfd *abfd;
4825 struct bfd_link_info *info;
4826{
4827 struct elf_link_hash_entry *h;
14a793b2 4828 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4829 flagword flags;
4830 register asection *s;
4831 const char * const *namep;
4832
4833 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4834 | SEC_LINKER_CREATED | SEC_READONLY);
4835
4836 /* Mips ABI requests the .dynamic section to be read only. */
4837 s = bfd_get_section_by_name (abfd, ".dynamic");
4838 if (s != NULL)
4839 {
4840 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 4841 return FALSE;
b49e97c9
TS
4842 }
4843
4844 /* We need to create .got section. */
f4416af6
AO
4845 if (! mips_elf_create_got_section (abfd, info, FALSE))
4846 return FALSE;
4847
4848 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 4849 return FALSE;
b49e97c9
TS
4850
4851 /* Create the .msym section on IRIX6. It is used by the dynamic
4852 linker to speed up dynamic relocations, and to avoid computing
4853 the ELF hash for symbols. */
4854 if (IRIX_COMPAT (abfd) == ict_irix6
4855 && !mips_elf_create_msym_section (abfd))
b34976b6 4856 return FALSE;
b49e97c9
TS
4857
4858 /* Create .stub section. */
4859 if (bfd_get_section_by_name (abfd,
4860 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4861 {
4862 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4863 if (s == NULL
4864 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4865 || ! bfd_set_section_alignment (abfd, s,
4866 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4867 return FALSE;
b49e97c9
TS
4868 }
4869
4870 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4871 && !info->shared
4872 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4873 {
4874 s = bfd_make_section (abfd, ".rld_map");
4875 if (s == NULL
4876 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4877 || ! bfd_set_section_alignment (abfd, s,
4878 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4879 return FALSE;
b49e97c9
TS
4880 }
4881
4882 /* On IRIX5, we adjust add some additional symbols and change the
4883 alignments of several sections. There is no ABI documentation
4884 indicating that this is necessary on IRIX6, nor any evidence that
4885 the linker takes such action. */
4886 if (IRIX_COMPAT (abfd) == ict_irix5)
4887 {
4888 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4889 {
14a793b2 4890 bh = NULL;
b49e97c9
TS
4891 if (! (_bfd_generic_link_add_one_symbol
4892 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
b34976b6 4893 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 4894 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4895 return FALSE;
14a793b2
AM
4896
4897 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4898 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4899 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4900 h->type = STT_SECTION;
4901
4902 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4903 return FALSE;
b49e97c9
TS
4904 }
4905
4906 /* We need to create a .compact_rel section. */
4907 if (SGI_COMPAT (abfd))
4908 {
4909 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 4910 return FALSE;
b49e97c9
TS
4911 }
4912
44c410de 4913 /* Change alignments of some sections. */
b49e97c9
TS
4914 s = bfd_get_section_by_name (abfd, ".hash");
4915 if (s != NULL)
4916 bfd_set_section_alignment (abfd, s, 4);
4917 s = bfd_get_section_by_name (abfd, ".dynsym");
4918 if (s != NULL)
4919 bfd_set_section_alignment (abfd, s, 4);
4920 s = bfd_get_section_by_name (abfd, ".dynstr");
4921 if (s != NULL)
4922 bfd_set_section_alignment (abfd, s, 4);
4923 s = bfd_get_section_by_name (abfd, ".reginfo");
4924 if (s != NULL)
4925 bfd_set_section_alignment (abfd, s, 4);
4926 s = bfd_get_section_by_name (abfd, ".dynamic");
4927 if (s != NULL)
4928 bfd_set_section_alignment (abfd, s, 4);
4929 }
4930
4931 if (!info->shared)
4932 {
14a793b2
AM
4933 const char *name;
4934
4935 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4936 bh = NULL;
4937 if (!(_bfd_generic_link_add_one_symbol
4938 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
b34976b6 4939 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 4940 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4941 return FALSE;
14a793b2
AM
4942
4943 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4944 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4945 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4946 h->type = STT_SECTION;
4947
4948 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4949 return FALSE;
b49e97c9
TS
4950
4951 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4952 {
4953 /* __rld_map is a four byte word located in the .data section
4954 and is filled in by the rtld to contain a pointer to
4955 the _r_debug structure. Its symbol value will be set in
4956 _bfd_mips_elf_finish_dynamic_symbol. */
4957 s = bfd_get_section_by_name (abfd, ".rld_map");
4958 BFD_ASSERT (s != NULL);
4959
14a793b2
AM
4960 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4961 bh = NULL;
4962 if (!(_bfd_generic_link_add_one_symbol
4963 (info, abfd, name, BSF_GLOBAL, s,
b34976b6 4964 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 4965 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4966 return FALSE;
14a793b2
AM
4967
4968 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4969 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4970 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4971 h->type = STT_OBJECT;
4972
4973 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4974 return FALSE;
b49e97c9
TS
4975 }
4976 }
4977
b34976b6 4978 return TRUE;
b49e97c9
TS
4979}
4980\f
4981/* Look through the relocs for a section during the first phase, and
4982 allocate space in the global offset table. */
4983
b34976b6 4984bfd_boolean
b49e97c9
TS
4985_bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
4986 bfd *abfd;
4987 struct bfd_link_info *info;
4988 asection *sec;
4989 const Elf_Internal_Rela *relocs;
4990{
4991 const char *name;
4992 bfd *dynobj;
4993 Elf_Internal_Shdr *symtab_hdr;
4994 struct elf_link_hash_entry **sym_hashes;
4995 struct mips_got_info *g;
4996 size_t extsymoff;
4997 const Elf_Internal_Rela *rel;
4998 const Elf_Internal_Rela *rel_end;
4999 asection *sgot;
5000 asection *sreloc;
5001 struct elf_backend_data *bed;
5002
5003 if (info->relocateable)
b34976b6 5004 return TRUE;
b49e97c9
TS
5005
5006 dynobj = elf_hash_table (info)->dynobj;
5007 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5008 sym_hashes = elf_sym_hashes (abfd);
5009 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5010
5011 /* Check for the mips16 stub sections. */
5012
5013 name = bfd_get_section_name (abfd, sec);
5014 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5015 {
5016 unsigned long r_symndx;
5017
5018 /* Look at the relocation information to figure out which symbol
5019 this is for. */
5020
5021 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5022
5023 if (r_symndx < extsymoff
5024 || sym_hashes[r_symndx - extsymoff] == NULL)
5025 {
5026 asection *o;
5027
5028 /* This stub is for a local symbol. This stub will only be
5029 needed if there is some relocation in this BFD, other
5030 than a 16 bit function call, which refers to this symbol. */
5031 for (o = abfd->sections; o != NULL; o = o->next)
5032 {
5033 Elf_Internal_Rela *sec_relocs;
5034 const Elf_Internal_Rela *r, *rend;
5035
5036 /* We can ignore stub sections when looking for relocs. */
5037 if ((o->flags & SEC_RELOC) == 0
5038 || o->reloc_count == 0
5039 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5040 sizeof FN_STUB - 1) == 0
5041 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5042 sizeof CALL_STUB - 1) == 0
5043 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5044 sizeof CALL_FP_STUB - 1) == 0)
5045 continue;
5046
ee6423ed 5047 sec_relocs = (MNAME(abfd,_bfd_elf,link_read_relocs)
b49e97c9
TS
5048 (abfd, o, (PTR) NULL,
5049 (Elf_Internal_Rela *) NULL,
5050 info->keep_memory));
5051 if (sec_relocs == NULL)
b34976b6 5052 return FALSE;
b49e97c9
TS
5053
5054 rend = sec_relocs + o->reloc_count;
5055 for (r = sec_relocs; r < rend; r++)
5056 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5057 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5058 break;
5059
6cdc0ccc 5060 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5061 free (sec_relocs);
5062
5063 if (r < rend)
5064 break;
5065 }
5066
5067 if (o == NULL)
5068 {
5069 /* There is no non-call reloc for this stub, so we do
5070 not need it. Since this function is called before
5071 the linker maps input sections to output sections, we
5072 can easily discard it by setting the SEC_EXCLUDE
5073 flag. */
5074 sec->flags |= SEC_EXCLUDE;
b34976b6 5075 return TRUE;
b49e97c9
TS
5076 }
5077
5078 /* Record this stub in an array of local symbol stubs for
5079 this BFD. */
5080 if (elf_tdata (abfd)->local_stubs == NULL)
5081 {
5082 unsigned long symcount;
5083 asection **n;
5084 bfd_size_type amt;
5085
5086 if (elf_bad_symtab (abfd))
5087 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5088 else
5089 symcount = symtab_hdr->sh_info;
5090 amt = symcount * sizeof (asection *);
5091 n = (asection **) bfd_zalloc (abfd, amt);
5092 if (n == NULL)
b34976b6 5093 return FALSE;
b49e97c9
TS
5094 elf_tdata (abfd)->local_stubs = n;
5095 }
5096
5097 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5098
5099 /* We don't need to set mips16_stubs_seen in this case.
5100 That flag is used to see whether we need to look through
5101 the global symbol table for stubs. We don't need to set
5102 it here, because we just have a local stub. */
5103 }
5104 else
5105 {
5106 struct mips_elf_link_hash_entry *h;
5107
5108 h = ((struct mips_elf_link_hash_entry *)
5109 sym_hashes[r_symndx - extsymoff]);
5110
5111 /* H is the symbol this stub is for. */
5112
5113 h->fn_stub = sec;
b34976b6 5114 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5115 }
5116 }
5117 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5118 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5119 {
5120 unsigned long r_symndx;
5121 struct mips_elf_link_hash_entry *h;
5122 asection **loc;
5123
5124 /* Look at the relocation information to figure out which symbol
5125 this is for. */
5126
5127 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5128
5129 if (r_symndx < extsymoff
5130 || sym_hashes[r_symndx - extsymoff] == NULL)
5131 {
5132 /* This stub was actually built for a static symbol defined
5133 in the same file. We assume that all static symbols in
5134 mips16 code are themselves mips16, so we can simply
5135 discard this stub. Since this function is called before
5136 the linker maps input sections to output sections, we can
5137 easily discard it by setting the SEC_EXCLUDE flag. */
5138 sec->flags |= SEC_EXCLUDE;
b34976b6 5139 return TRUE;
b49e97c9
TS
5140 }
5141
5142 h = ((struct mips_elf_link_hash_entry *)
5143 sym_hashes[r_symndx - extsymoff]);
5144
5145 /* H is the symbol this stub is for. */
5146
5147 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5148 loc = &h->call_fp_stub;
5149 else
5150 loc = &h->call_stub;
5151
5152 /* If we already have an appropriate stub for this function, we
5153 don't need another one, so we can discard this one. Since
5154 this function is called before the linker maps input sections
5155 to output sections, we can easily discard it by setting the
5156 SEC_EXCLUDE flag. We can also discard this section if we
5157 happen to already know that this is a mips16 function; it is
5158 not necessary to check this here, as it is checked later, but
5159 it is slightly faster to check now. */
5160 if (*loc != NULL || h->root.other == STO_MIPS16)
5161 {
5162 sec->flags |= SEC_EXCLUDE;
b34976b6 5163 return TRUE;
b49e97c9
TS
5164 }
5165
5166 *loc = sec;
b34976b6 5167 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5168 }
5169
5170 if (dynobj == NULL)
5171 {
5172 sgot = NULL;
5173 g = NULL;
5174 }
5175 else
5176 {
f4416af6 5177 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5178 if (sgot == NULL)
5179 g = NULL;
5180 else
5181 {
f0abc2a1
AM
5182 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5183 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5184 BFD_ASSERT (g != NULL);
5185 }
5186 }
5187
5188 sreloc = NULL;
5189 bed = get_elf_backend_data (abfd);
5190 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5191 for (rel = relocs; rel < rel_end; ++rel)
5192 {
5193 unsigned long r_symndx;
5194 unsigned int r_type;
5195 struct elf_link_hash_entry *h;
5196
5197 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5198 r_type = ELF_R_TYPE (abfd, rel->r_info);
5199
5200 if (r_symndx < extsymoff)
5201 h = NULL;
5202 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5203 {
5204 (*_bfd_error_handler)
5205 (_("%s: Malformed reloc detected for section %s"),
5206 bfd_archive_filename (abfd), name);
5207 bfd_set_error (bfd_error_bad_value);
b34976b6 5208 return FALSE;
b49e97c9
TS
5209 }
5210 else
5211 {
5212 h = sym_hashes[r_symndx - extsymoff];
5213
5214 /* This may be an indirect symbol created because of a version. */
5215 if (h != NULL)
5216 {
5217 while (h->root.type == bfd_link_hash_indirect)
5218 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5219 }
5220 }
5221
5222 /* Some relocs require a global offset table. */
5223 if (dynobj == NULL || sgot == NULL)
5224 {
5225 switch (r_type)
5226 {
5227 case R_MIPS_GOT16:
5228 case R_MIPS_CALL16:
5229 case R_MIPS_CALL_HI16:
5230 case R_MIPS_CALL_LO16:
5231 case R_MIPS_GOT_HI16:
5232 case R_MIPS_GOT_LO16:
5233 case R_MIPS_GOT_PAGE:
5234 case R_MIPS_GOT_OFST:
5235 case R_MIPS_GOT_DISP:
5236 if (dynobj == NULL)
5237 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5238 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5239 return FALSE;
b49e97c9
TS
5240 g = mips_elf_got_info (dynobj, &sgot);
5241 break;
5242
5243 case R_MIPS_32:
5244 case R_MIPS_REL32:
5245 case R_MIPS_64:
5246 if (dynobj == NULL
5247 && (info->shared || h != NULL)
5248 && (sec->flags & SEC_ALLOC) != 0)
5249 elf_hash_table (info)->dynobj = dynobj = abfd;
5250 break;
5251
5252 default:
5253 break;
5254 }
5255 }
5256
5257 if (!h && (r_type == R_MIPS_CALL_LO16
5258 || r_type == R_MIPS_GOT_LO16
5259 || r_type == R_MIPS_GOT_DISP))
5260 {
5261 /* We may need a local GOT entry for this relocation. We
5262 don't count R_MIPS_GOT_PAGE because we can estimate the
5263 maximum number of pages needed by looking at the size of
5264 the segment. Similar comments apply to R_MIPS_GOT16 and
5265 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5266 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 5267 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6
AO
5268 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5269 rel->r_addend, g))
5270 return FALSE;
b49e97c9
TS
5271 }
5272
5273 switch (r_type)
5274 {
5275 case R_MIPS_CALL16:
5276 if (h == NULL)
5277 {
5278 (*_bfd_error_handler)
5279 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5280 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5281 bfd_set_error (bfd_error_bad_value);
b34976b6 5282 return FALSE;
b49e97c9
TS
5283 }
5284 /* Fall through. */
5285
5286 case R_MIPS_CALL_HI16:
5287 case R_MIPS_CALL_LO16:
5288 if (h != NULL)
5289 {
5290 /* This symbol requires a global offset table entry. */
f4416af6 5291 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5292 return FALSE;
b49e97c9
TS
5293
5294 /* We need a stub, not a plt entry for the undefined
5295 function. But we record it as if it needs plt. See
5296 elf_adjust_dynamic_symbol in elflink.h. */
5297 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5298 h->type = STT_FUNC;
5299 }
5300 break;
5301
5302 case R_MIPS_GOT16:
5303 case R_MIPS_GOT_HI16:
5304 case R_MIPS_GOT_LO16:
5305 case R_MIPS_GOT_DISP:
5306 /* This symbol requires a global offset table entry. */
f4416af6 5307 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5308 return FALSE;
b49e97c9
TS
5309 break;
5310
5311 case R_MIPS_32:
5312 case R_MIPS_REL32:
5313 case R_MIPS_64:
5314 if ((info->shared || h != NULL)
5315 && (sec->flags & SEC_ALLOC) != 0)
5316 {
5317 if (sreloc == NULL)
5318 {
f4416af6 5319 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 5320 if (sreloc == NULL)
f4416af6 5321 return FALSE;
b49e97c9
TS
5322 }
5323#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5324 if (info->shared)
5325 {
5326 /* When creating a shared object, we must copy these
5327 reloc types into the output file as R_MIPS_REL32
5328 relocs. We make room for this reloc in the
5329 .rel.dyn reloc section. */
5330 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5331 if ((sec->flags & MIPS_READONLY_SECTION)
5332 == MIPS_READONLY_SECTION)
5333 /* We tell the dynamic linker that there are
5334 relocations against the text segment. */
5335 info->flags |= DF_TEXTREL;
5336 }
5337 else
5338 {
5339 struct mips_elf_link_hash_entry *hmips;
5340
5341 /* We only need to copy this reloc if the symbol is
5342 defined in a dynamic object. */
5343 hmips = (struct mips_elf_link_hash_entry *) h;
5344 ++hmips->possibly_dynamic_relocs;
5345 if ((sec->flags & MIPS_READONLY_SECTION)
5346 == MIPS_READONLY_SECTION)
5347 /* We need it to tell the dynamic linker if there
5348 are relocations against the text segment. */
b34976b6 5349 hmips->readonly_reloc = TRUE;
b49e97c9
TS
5350 }
5351
5352 /* Even though we don't directly need a GOT entry for
5353 this symbol, a symbol must have a dynamic symbol
5354 table index greater that DT_MIPS_GOTSYM if there are
5355 dynamic relocations against it. */
f4416af6
AO
5356 if (h != NULL)
5357 {
5358 if (dynobj == NULL)
5359 elf_hash_table (info)->dynobj = dynobj = abfd;
5360 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5361 return FALSE;
5362 g = mips_elf_got_info (dynobj, &sgot);
5363 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5364 return FALSE;
5365 }
b49e97c9
TS
5366 }
5367
5368 if (SGI_COMPAT (abfd))
5369 mips_elf_hash_table (info)->compact_rel_size +=
5370 sizeof (Elf32_External_crinfo);
5371 break;
5372
5373 case R_MIPS_26:
5374 case R_MIPS_GPREL16:
5375 case R_MIPS_LITERAL:
5376 case R_MIPS_GPREL32:
5377 if (SGI_COMPAT (abfd))
5378 mips_elf_hash_table (info)->compact_rel_size +=
5379 sizeof (Elf32_External_crinfo);
5380 break;
5381
5382 /* This relocation describes the C++ object vtable hierarchy.
5383 Reconstruct it for later use during GC. */
5384 case R_MIPS_GNU_VTINHERIT:
5385 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 5386 return FALSE;
b49e97c9
TS
5387 break;
5388
5389 /* This relocation describes which C++ vtable entries are actually
5390 used. Record for later use during GC. */
5391 case R_MIPS_GNU_VTENTRY:
5392 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 5393 return FALSE;
b49e97c9
TS
5394 break;
5395
5396 default:
5397 break;
5398 }
5399
5400 /* We must not create a stub for a symbol that has relocations
5401 related to taking the function's address. */
5402 switch (r_type)
5403 {
5404 default:
5405 if (h != NULL)
5406 {
5407 struct mips_elf_link_hash_entry *mh;
5408
5409 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5410 mh->no_fn_stub = TRUE;
b49e97c9
TS
5411 }
5412 break;
5413 case R_MIPS_CALL16:
5414 case R_MIPS_CALL_HI16:
5415 case R_MIPS_CALL_LO16:
5416 break;
5417 }
5418
5419 /* If this reloc is not a 16 bit call, and it has a global
5420 symbol, then we will need the fn_stub if there is one.
5421 References from a stub section do not count. */
5422 if (h != NULL
5423 && r_type != R_MIPS16_26
5424 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5425 sizeof FN_STUB - 1) != 0
5426 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5427 sizeof CALL_STUB - 1) != 0
5428 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5429 sizeof CALL_FP_STUB - 1) != 0)
5430 {
5431 struct mips_elf_link_hash_entry *mh;
5432
5433 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5434 mh->need_fn_stub = TRUE;
b49e97c9
TS
5435 }
5436 }
5437
b34976b6 5438 return TRUE;
b49e97c9
TS
5439}
5440\f
5441/* Adjust a symbol defined by a dynamic object and referenced by a
5442 regular object. The current definition is in some section of the
5443 dynamic object, but we're not including those sections. We have to
5444 change the definition to something the rest of the link can
5445 understand. */
5446
b34976b6 5447bfd_boolean
b49e97c9
TS
5448_bfd_mips_elf_adjust_dynamic_symbol (info, h)
5449 struct bfd_link_info *info;
5450 struct elf_link_hash_entry *h;
5451{
5452 bfd *dynobj;
5453 struct mips_elf_link_hash_entry *hmips;
5454 asection *s;
5455
5456 dynobj = elf_hash_table (info)->dynobj;
5457
5458 /* Make sure we know what is going on here. */
5459 BFD_ASSERT (dynobj != NULL
5460 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5461 || h->weakdef != NULL
5462 || ((h->elf_link_hash_flags
5463 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5464 && (h->elf_link_hash_flags
5465 & ELF_LINK_HASH_REF_REGULAR) != 0
5466 && (h->elf_link_hash_flags
5467 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5468
5469 /* If this symbol is defined in a dynamic object, we need to copy
5470 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5471 file. */
5472 hmips = (struct mips_elf_link_hash_entry *) h;
5473 if (! info->relocateable
5474 && hmips->possibly_dynamic_relocs != 0
5475 && (h->root.type == bfd_link_hash_defweak
5476 || (h->elf_link_hash_flags
5477 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5478 {
5479 mips_elf_allocate_dynamic_relocations (dynobj,
5480 hmips->possibly_dynamic_relocs);
5481 if (hmips->readonly_reloc)
5482 /* We tell the dynamic linker that there are relocations
5483 against the text segment. */
5484 info->flags |= DF_TEXTREL;
5485 }
5486
5487 /* For a function, create a stub, if allowed. */
5488 if (! hmips->no_fn_stub
5489 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5490 {
5491 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 5492 return TRUE;
b49e97c9
TS
5493
5494 /* If this symbol is not defined in a regular file, then set
5495 the symbol to the stub location. This is required to make
5496 function pointers compare as equal between the normal
5497 executable and the shared library. */
5498 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5499 {
5500 /* We need .stub section. */
5501 s = bfd_get_section_by_name (dynobj,
5502 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5503 BFD_ASSERT (s != NULL);
5504
5505 h->root.u.def.section = s;
5506 h->root.u.def.value = s->_raw_size;
5507
5508 /* XXX Write this stub address somewhere. */
5509 h->plt.offset = s->_raw_size;
5510
5511 /* Make room for this stub code. */
5512 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5513
5514 /* The last half word of the stub will be filled with the index
5515 of this symbol in .dynsym section. */
b34976b6 5516 return TRUE;
b49e97c9
TS
5517 }
5518 }
5519 else if ((h->type == STT_FUNC)
5520 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5521 {
5522 /* This will set the entry for this symbol in the GOT to 0, and
5523 the dynamic linker will take care of this. */
5524 h->root.u.def.value = 0;
b34976b6 5525 return TRUE;
b49e97c9
TS
5526 }
5527
5528 /* If this is a weak symbol, and there is a real definition, the
5529 processor independent code will have arranged for us to see the
5530 real definition first, and we can just use the same value. */
5531 if (h->weakdef != NULL)
5532 {
5533 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5534 || h->weakdef->root.type == bfd_link_hash_defweak);
5535 h->root.u.def.section = h->weakdef->root.u.def.section;
5536 h->root.u.def.value = h->weakdef->root.u.def.value;
b34976b6 5537 return TRUE;
b49e97c9
TS
5538 }
5539
5540 /* This is a reference to a symbol defined by a dynamic object which
5541 is not a function. */
5542
b34976b6 5543 return TRUE;
b49e97c9
TS
5544}
5545\f
5546/* This function is called after all the input files have been read,
5547 and the input sections have been assigned to output sections. We
5548 check for any mips16 stub sections that we can discard. */
5549
b34976b6 5550bfd_boolean
b49e97c9
TS
5551_bfd_mips_elf_always_size_sections (output_bfd, info)
5552 bfd *output_bfd;
5553 struct bfd_link_info *info;
5554{
5555 asection *ri;
5556
f4416af6
AO
5557 bfd *dynobj;
5558 asection *s;
5559 struct mips_got_info *g;
5560 int i;
5561 bfd_size_type loadable_size = 0;
5562 bfd_size_type local_gotno;
5563 bfd *sub;
5564
b49e97c9
TS
5565 /* The .reginfo section has a fixed size. */
5566 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5567 if (ri != NULL)
5568 bfd_set_section_size (output_bfd, ri,
5569 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5570
f4416af6
AO
5571 if (! (info->relocateable
5572 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5573 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5574 mips_elf_check_mips16_stubs,
5575 (PTR) NULL);
5576
5577 dynobj = elf_hash_table (info)->dynobj;
5578 if (dynobj == NULL)
5579 /* Relocatable links don't have it. */
5580 return TRUE;
5581
5582 g = mips_elf_got_info (dynobj, &s);
5583 if (s == NULL)
b34976b6 5584 return TRUE;
b49e97c9 5585
f4416af6
AO
5586 /* Calculate the total loadable size of the output. That
5587 will give us the maximum number of GOT_PAGE entries
5588 required. */
5589 for (sub = info->input_bfds; sub; sub = sub->link_next)
5590 {
5591 asection *subsection;
5592
5593 for (subsection = sub->sections;
5594 subsection;
5595 subsection = subsection->next)
5596 {
5597 if ((subsection->flags & SEC_ALLOC) == 0)
5598 continue;
5599 loadable_size += ((subsection->_raw_size + 0xf)
5600 &~ (bfd_size_type) 0xf);
5601 }
5602 }
5603
5604 /* There has to be a global GOT entry for every symbol with
5605 a dynamic symbol table index of DT_MIPS_GOTSYM or
5606 higher. Therefore, it make sense to put those symbols
5607 that need GOT entries at the end of the symbol table. We
5608 do that here. */
5609 if (! mips_elf_sort_hash_table (info, 1))
5610 return FALSE;
5611
5612 if (g->global_gotsym != NULL)
5613 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5614 else
5615 /* If there are no global symbols, or none requiring
5616 relocations, then GLOBAL_GOTSYM will be NULL. */
5617 i = 0;
5618
5619 /* In the worst case, we'll get one stub per dynamic symbol, plus
5620 one to account for the dummy entry at the end required by IRIX
5621 rld. */
5622 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5623
5624 /* Assume there are two loadable segments consisting of
5625 contiguous sections. Is 5 enough? */
5626 local_gotno = (loadable_size >> 16) + 5;
5627
5628 g->local_gotno += local_gotno;
5629 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5630
5631 g->global_gotno = i;
5632 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5633
5634 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5635 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5636 return FALSE;
b49e97c9 5637
b34976b6 5638 return TRUE;
b49e97c9
TS
5639}
5640
5641/* Set the sizes of the dynamic sections. */
5642
b34976b6 5643bfd_boolean
b49e97c9
TS
5644_bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5645 bfd *output_bfd;
5646 struct bfd_link_info *info;
5647{
5648 bfd *dynobj;
5649 asection *s;
b34976b6 5650 bfd_boolean reltext;
b49e97c9
TS
5651
5652 dynobj = elf_hash_table (info)->dynobj;
5653 BFD_ASSERT (dynobj != NULL);
5654
5655 if (elf_hash_table (info)->dynamic_sections_created)
5656 {
5657 /* Set the contents of the .interp section to the interpreter. */
5658 if (! info->shared)
5659 {
5660 s = bfd_get_section_by_name (dynobj, ".interp");
5661 BFD_ASSERT (s != NULL);
5662 s->_raw_size
5663 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5664 s->contents
5665 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5666 }
5667 }
5668
5669 /* The check_relocs and adjust_dynamic_symbol entry points have
5670 determined the sizes of the various dynamic sections. Allocate
5671 memory for them. */
b34976b6 5672 reltext = FALSE;
b49e97c9
TS
5673 for (s = dynobj->sections; s != NULL; s = s->next)
5674 {
5675 const char *name;
b34976b6 5676 bfd_boolean strip;
b49e97c9
TS
5677
5678 /* It's OK to base decisions on the section name, because none
5679 of the dynobj section names depend upon the input files. */
5680 name = bfd_get_section_name (dynobj, s);
5681
5682 if ((s->flags & SEC_LINKER_CREATED) == 0)
5683 continue;
5684
b34976b6 5685 strip = FALSE;
b49e97c9
TS
5686
5687 if (strncmp (name, ".rel", 4) == 0)
5688 {
5689 if (s->_raw_size == 0)
5690 {
5691 /* We only strip the section if the output section name
5692 has the same name. Otherwise, there might be several
5693 input sections for this output section. FIXME: This
5694 code is probably not needed these days anyhow, since
5695 the linker now does not create empty output sections. */
5696 if (s->output_section != NULL
5697 && strcmp (name,
5698 bfd_get_section_name (s->output_section->owner,
5699 s->output_section)) == 0)
b34976b6 5700 strip = TRUE;
b49e97c9
TS
5701 }
5702 else
5703 {
5704 const char *outname;
5705 asection *target;
5706
5707 /* If this relocation section applies to a read only
5708 section, then we probably need a DT_TEXTREL entry.
5709 If the relocation section is .rel.dyn, we always
5710 assert a DT_TEXTREL entry rather than testing whether
5711 there exists a relocation to a read only section or
5712 not. */
5713 outname = bfd_get_section_name (output_bfd,
5714 s->output_section);
5715 target = bfd_get_section_by_name (output_bfd, outname + 4);
5716 if ((target != NULL
5717 && (target->flags & SEC_READONLY) != 0
5718 && (target->flags & SEC_ALLOC) != 0)
5719 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 5720 reltext = TRUE;
b49e97c9
TS
5721
5722 /* We use the reloc_count field as a counter if we need
5723 to copy relocs into the output file. */
5724 if (strcmp (name, ".rel.dyn") != 0)
5725 s->reloc_count = 0;
f4416af6
AO
5726
5727 /* If combreloc is enabled, elf_link_sort_relocs() will
5728 sort relocations, but in a different way than we do,
5729 and before we're done creating relocations. Also, it
5730 will move them around between input sections'
5731 relocation's contents, so our sorting would be
5732 broken, so don't let it run. */
5733 info->combreloc = 0;
b49e97c9
TS
5734 }
5735 }
5736 else if (strncmp (name, ".got", 4) == 0)
5737 {
f4416af6
AO
5738 /* _bfd_mips_elf_always_size_sections() has already done
5739 most of the work, but some symbols may have been mapped
5740 to versions that we must now resolve in the got_entries
5741 hash tables. */
5742 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5743 struct mips_got_info *g = gg;
5744 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5745 unsigned int needed_relocs = 0;
5746
5747 if (gg->next)
b49e97c9 5748 {
f4416af6
AO
5749 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5750 set_got_offset_arg.info = info;
b49e97c9 5751
f4416af6
AO
5752 mips_elf_resolve_final_got_entries (gg);
5753 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 5754 {
f4416af6
AO
5755 unsigned int save_assign;
5756
5757 mips_elf_resolve_final_got_entries (g);
5758
5759 /* Assign offsets to global GOT entries. */
5760 save_assign = g->assigned_gotno;
5761 g->assigned_gotno = g->local_gotno;
5762 set_got_offset_arg.g = g;
5763 set_got_offset_arg.needed_relocs = 0;
5764 htab_traverse (g->got_entries,
5765 mips_elf_set_global_got_offset,
5766 &set_got_offset_arg);
5767 needed_relocs += set_got_offset_arg.needed_relocs;
5768 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5769 <= g->global_gotno);
5770
5771 g->assigned_gotno = save_assign;
5772 if (info->shared)
5773 {
5774 needed_relocs += g->local_gotno - g->assigned_gotno;
5775 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5776 + g->next->global_gotno
5777 + MIPS_RESERVED_GOTNO);
5778 }
b49e97c9 5779 }
b49e97c9 5780
f4416af6
AO
5781 if (needed_relocs)
5782 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5783 }
b49e97c9
TS
5784 }
5785 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5786 {
8dc1a139 5787 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9
TS
5788 of .text section. So put a dummy. XXX */
5789 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5790 }
5791 else if (! info->shared
5792 && ! mips_elf_hash_table (info)->use_rld_obj_head
5793 && strncmp (name, ".rld_map", 8) == 0)
5794 {
5795 /* We add a room for __rld_map. It will be filled in by the
5796 rtld to contain a pointer to the _r_debug structure. */
5797 s->_raw_size += 4;
5798 }
5799 else if (SGI_COMPAT (output_bfd)
5800 && strncmp (name, ".compact_rel", 12) == 0)
5801 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
5802 else if (strcmp (name, ".msym") == 0)
5803 s->_raw_size = (sizeof (Elf32_External_Msym)
5804 * (elf_hash_table (info)->dynsymcount
5805 + bfd_count_sections (output_bfd)));
5806 else if (strncmp (name, ".init", 5) != 0)
5807 {
5808 /* It's not one of our sections, so don't allocate space. */
5809 continue;
5810 }
5811
5812 if (strip)
5813 {
5814 _bfd_strip_section_from_output (info, s);
5815 continue;
5816 }
5817
5818 /* Allocate memory for the section contents. */
5819 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
5820 if (s->contents == NULL && s->_raw_size != 0)
5821 {
5822 bfd_set_error (bfd_error_no_memory);
b34976b6 5823 return FALSE;
b49e97c9
TS
5824 }
5825 }
5826
5827 if (elf_hash_table (info)->dynamic_sections_created)
5828 {
5829 /* Add some entries to the .dynamic section. We fill in the
5830 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
5831 must add the entries now so that we get the correct size for
5832 the .dynamic section. The DT_DEBUG entry is filled in by the
5833 dynamic linker and used by the debugger. */
5834 if (! info->shared)
5835 {
5836 /* SGI object has the equivalence of DT_DEBUG in the
5837 DT_MIPS_RLD_MAP entry. */
5838 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 5839 return FALSE;
b49e97c9
TS
5840 if (!SGI_COMPAT (output_bfd))
5841 {
5842 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 5843 return FALSE;
b49e97c9
TS
5844 }
5845 }
5846 else
5847 {
5848 /* Shared libraries on traditional mips have DT_DEBUG. */
5849 if (!SGI_COMPAT (output_bfd))
5850 {
5851 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 5852 return FALSE;
b49e97c9
TS
5853 }
5854 }
5855
5856 if (reltext && SGI_COMPAT (output_bfd))
5857 info->flags |= DF_TEXTREL;
5858
5859 if ((info->flags & DF_TEXTREL) != 0)
5860 {
5861 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 5862 return FALSE;
b49e97c9
TS
5863 }
5864
5865 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 5866 return FALSE;
b49e97c9 5867
f4416af6 5868 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
5869 {
5870 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 5871 return FALSE;
b49e97c9
TS
5872
5873 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 5874 return FALSE;
b49e97c9
TS
5875
5876 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 5877 return FALSE;
b49e97c9
TS
5878 }
5879
5880 if (SGI_COMPAT (output_bfd))
5881 {
5882 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
b34976b6 5883 return FALSE;
b49e97c9
TS
5884 }
5885
5886 if (SGI_COMPAT (output_bfd))
5887 {
5888 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
b34976b6 5889 return FALSE;
b49e97c9
TS
5890 }
5891
5892 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
5893 {
5894 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
b34976b6 5895 return FALSE;
b49e97c9
TS
5896
5897 s = bfd_get_section_by_name (dynobj, ".liblist");
5898 BFD_ASSERT (s != NULL);
5899
5900 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
b34976b6 5901 return FALSE;
b49e97c9
TS
5902 }
5903
5904 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 5905 return FALSE;
b49e97c9
TS
5906
5907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 5908 return FALSE;
b49e97c9
TS
5909
5910#if 0
5911 /* Time stamps in executable files are a bad idea. */
5912 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
b34976b6 5913 return FALSE;
b49e97c9
TS
5914#endif
5915
5916#if 0 /* FIXME */
5917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
b34976b6 5918 return FALSE;
b49e97c9
TS
5919#endif
5920
5921#if 0 /* FIXME */
5922 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
b34976b6 5923 return FALSE;
b49e97c9
TS
5924#endif
5925
5926 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 5927 return FALSE;
b49e97c9
TS
5928
5929 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 5930 return FALSE;
b49e97c9
TS
5931
5932 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 5933 return FALSE;
b49e97c9
TS
5934
5935 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 5936 return FALSE;
b49e97c9
TS
5937
5938 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 5939 return FALSE;
b49e97c9
TS
5940
5941 if (IRIX_COMPAT (dynobj) == ict_irix5
5942 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 5943 return FALSE;
b49e97c9
TS
5944
5945 if (IRIX_COMPAT (dynobj) == ict_irix6
5946 && (bfd_get_section_by_name
5947 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
5948 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 5949 return FALSE;
b49e97c9
TS
5950
5951 if (bfd_get_section_by_name (dynobj, ".msym")
5952 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
b34976b6 5953 return FALSE;
b49e97c9
TS
5954 }
5955
b34976b6 5956 return TRUE;
b49e97c9
TS
5957}
5958\f
5959/* Relocate a MIPS ELF section. */
5960
b34976b6 5961bfd_boolean
b49e97c9
TS
5962_bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
5963 contents, relocs, local_syms, local_sections)
5964 bfd *output_bfd;
5965 struct bfd_link_info *info;
5966 bfd *input_bfd;
5967 asection *input_section;
5968 bfd_byte *contents;
5969 Elf_Internal_Rela *relocs;
5970 Elf_Internal_Sym *local_syms;
5971 asection **local_sections;
5972{
5973 Elf_Internal_Rela *rel;
5974 const Elf_Internal_Rela *relend;
5975 bfd_vma addend = 0;
b34976b6 5976 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9
TS
5977 struct elf_backend_data *bed;
5978
5979 bed = get_elf_backend_data (output_bfd);
5980 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
5981 for (rel = relocs; rel < relend; ++rel)
5982 {
5983 const char *name;
5984 bfd_vma value;
5985 reloc_howto_type *howto;
b34976b6
AM
5986 bfd_boolean require_jalx;
5987 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 5988 REL relocation. */
b34976b6 5989 bfd_boolean rela_relocation_p = TRUE;
b49e97c9
TS
5990 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5991 const char * msg = (const char *) NULL;
5992
5993 /* Find the relocation howto for this relocation. */
4a14403c 5994 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
5995 {
5996 /* Some 32-bit code uses R_MIPS_64. In particular, people use
5997 64-bit code, but make sure all their addresses are in the
5998 lowermost or uppermost 32-bit section of the 64-bit address
5999 space. Thus, when they use an R_MIPS_64 they mean what is
6000 usually meant by R_MIPS_32, with the exception that the
6001 stored value is sign-extended to 64 bits. */
b34976b6 6002 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6003
6004 /* On big-endian systems, we need to lie about the position
6005 of the reloc. */
6006 if (bfd_big_endian (input_bfd))
6007 rel->r_offset += 4;
6008 }
6009 else
6010 /* NewABI defaults to RELA relocations. */
6011 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6012 NEWABI_P (input_bfd)
6013 && (MIPS_RELOC_RELA_P
6014 (input_bfd, input_section,
6015 rel - relocs)));
b49e97c9
TS
6016
6017 if (!use_saved_addend_p)
6018 {
6019 Elf_Internal_Shdr *rel_hdr;
6020
6021 /* If these relocations were originally of the REL variety,
6022 we must pull the addend out of the field that will be
6023 relocated. Otherwise, we simply use the contents of the
6024 RELA relocation. To determine which flavor or relocation
6025 this is, we depend on the fact that the INPUT_SECTION's
6026 REL_HDR is read before its REL_HDR2. */
6027 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6028 if ((size_t) (rel - relocs)
6029 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6030 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6031 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6032 {
6033 /* Note that this is a REL relocation. */
b34976b6 6034 rela_relocation_p = FALSE;
b49e97c9
TS
6035
6036 /* Get the addend, which is stored in the input file. */
6037 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6038 contents);
6039 addend &= howto->src_mask;
5a659663 6040 addend <<= howto->rightshift;
b49e97c9
TS
6041
6042 /* For some kinds of relocations, the ADDEND is a
6043 combination of the addend stored in two different
6044 relocations. */
6045 if (r_type == R_MIPS_HI16
6046 || r_type == R_MIPS_GNU_REL_HI16
6047 || (r_type == R_MIPS_GOT16
6048 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 6049 local_sections, FALSE)))
b49e97c9
TS
6050 {
6051 bfd_vma l;
6052 const Elf_Internal_Rela *lo16_relocation;
6053 reloc_howto_type *lo16_howto;
6054 unsigned int lo;
6055
6056 /* The combined value is the sum of the HI16 addend,
6057 left-shifted by sixteen bits, and the LO16
6058 addend, sign extended. (Usually, the code does
6059 a `lui' of the HI16 value, and then an `addiu' of
6060 the LO16 value.)
6061
6062 Scan ahead to find a matching LO16 relocation. */
6063 if (r_type == R_MIPS_GNU_REL_HI16)
6064 lo = R_MIPS_GNU_REL_LO16;
6065 else
6066 lo = R_MIPS_LO16;
6067 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6068 rel, relend);
6069 if (lo16_relocation == NULL)
b34976b6 6070 return FALSE;
b49e97c9
TS
6071
6072 /* Obtain the addend kept there. */
b34976b6 6073 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
b49e97c9
TS
6074 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6075 input_bfd, contents);
6076 l &= lo16_howto->src_mask;
5a659663 6077 l <<= lo16_howto->rightshift;
b49e97c9
TS
6078 l = mips_elf_sign_extend (l, 16);
6079
6080 addend <<= 16;
6081
6082 /* Compute the combined addend. */
6083 addend += l;
6084
6085 /* If PC-relative, subtract the difference between the
6086 address of the LO part of the reloc and the address of
6087 the HI part. The relocation is relative to the LO
6088 part, but mips_elf_calculate_relocation() doesn't
6089 know its address or the difference from the HI part, so
6090 we subtract that difference here. See also the
6091 comment in mips_elf_calculate_relocation(). */
6092 if (r_type == R_MIPS_GNU_REL_HI16)
6093 addend -= (lo16_relocation->r_offset - rel->r_offset);
6094 }
6095 else if (r_type == R_MIPS16_GPREL)
6096 {
6097 /* The addend is scrambled in the object file. See
6098 mips_elf_perform_relocation for details on the
6099 format. */
6100 addend = (((addend & 0x1f0000) >> 5)
6101 | ((addend & 0x7e00000) >> 16)
6102 | (addend & 0x1f));
6103 }
6104 }
6105 else
6106 addend = rel->r_addend;
6107 }
6108
6109 if (info->relocateable)
6110 {
6111 Elf_Internal_Sym *sym;
6112 unsigned long r_symndx;
6113
4a14403c 6114 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
6115 && bfd_big_endian (input_bfd))
6116 rel->r_offset -= 4;
6117
6118 /* Since we're just relocating, all we need to do is copy
6119 the relocations back out to the object file, unless
6120 they're against a section symbol, in which case we need
6121 to adjust by the section offset, or unless they're GP
6122 relative in which case we need to adjust by the amount
6123 that we're adjusting GP in this relocateable object. */
6124
6125 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 6126 FALSE))
b49e97c9
TS
6127 /* There's nothing to do for non-local relocations. */
6128 continue;
6129
6130 if (r_type == R_MIPS16_GPREL
6131 || r_type == R_MIPS_GPREL16
6132 || r_type == R_MIPS_GPREL32
6133 || r_type == R_MIPS_LITERAL)
6134 addend -= (_bfd_get_gp_value (output_bfd)
6135 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
6136
6137 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6138 sym = local_syms + r_symndx;
6139 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6140 /* Adjust the addend appropriately. */
6141 addend += local_sections[r_symndx]->output_offset;
6142
5a659663
TS
6143 if (howto->partial_inplace)
6144 {
6145 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6146 then we only want to write out the high-order 16 bits.
6147 The subsequent R_MIPS_LO16 will handle the low-order bits.
6148 */
6149 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6150 || r_type == R_MIPS_GNU_REL_HI16)
6151 addend = mips_elf_high (addend);
6152 else if (r_type == R_MIPS_HIGHER)
6153 addend = mips_elf_higher (addend);
6154 else if (r_type == R_MIPS_HIGHEST)
6155 addend = mips_elf_highest (addend);
6156 }
b49e97c9
TS
6157
6158 if (rela_relocation_p)
6159 /* If this is a RELA relocation, just update the addend.
6160 We have to cast away constness for REL. */
6161 rel->r_addend = addend;
6162 else
6163 {
6164 /* Otherwise, we have to write the value back out. Note
6165 that we use the source mask, rather than the
6166 destination mask because the place to which we are
6167 writing will be source of the addend in the final
6168 link. */
5a659663 6169 addend >>= howto->rightshift;
b49e97c9
TS
6170 addend &= howto->src_mask;
6171
5a659663 6172 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6173 /* See the comment above about using R_MIPS_64 in the 32-bit
6174 ABI. Here, we need to update the addend. It would be
6175 possible to get away with just using the R_MIPS_32 reloc
6176 but for endianness. */
6177 {
6178 bfd_vma sign_bits;
6179 bfd_vma low_bits;
6180 bfd_vma high_bits;
6181
6182 if (addend & ((bfd_vma) 1 << 31))
6183#ifdef BFD64
6184 sign_bits = ((bfd_vma) 1 << 32) - 1;
6185#else
6186 sign_bits = -1;
6187#endif
6188 else
6189 sign_bits = 0;
6190
6191 /* If we don't know that we have a 64-bit type,
6192 do two separate stores. */
6193 if (bfd_big_endian (input_bfd))
6194 {
6195 /* Store the sign-bits (which are most significant)
6196 first. */
6197 low_bits = sign_bits;
6198 high_bits = addend;
6199 }
6200 else
6201 {
6202 low_bits = addend;
6203 high_bits = sign_bits;
6204 }
6205 bfd_put_32 (input_bfd, low_bits,
6206 contents + rel->r_offset);
6207 bfd_put_32 (input_bfd, high_bits,
6208 contents + rel->r_offset + 4);
6209 continue;
6210 }
6211
6212 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6213 input_bfd, input_section,
b34976b6
AM
6214 contents, FALSE))
6215 return FALSE;
b49e97c9
TS
6216 }
6217
6218 /* Go on to the next relocation. */
6219 continue;
6220 }
6221
6222 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6223 relocations for the same offset. In that case we are
6224 supposed to treat the output of each relocation as the addend
6225 for the next. */
6226 if (rel + 1 < relend
6227 && rel->r_offset == rel[1].r_offset
6228 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 6229 use_saved_addend_p = TRUE;
b49e97c9 6230 else
b34976b6 6231 use_saved_addend_p = FALSE;
b49e97c9 6232
5a659663
TS
6233 addend >>= howto->rightshift;
6234
b49e97c9
TS
6235 /* Figure out what value we are supposed to relocate. */
6236 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6237 input_section, info, rel,
6238 addend, howto, local_syms,
6239 local_sections, &value,
bce03d3d
AO
6240 &name, &require_jalx,
6241 use_saved_addend_p))
b49e97c9
TS
6242 {
6243 case bfd_reloc_continue:
6244 /* There's nothing to do. */
6245 continue;
6246
6247 case bfd_reloc_undefined:
6248 /* mips_elf_calculate_relocation already called the
6249 undefined_symbol callback. There's no real point in
6250 trying to perform the relocation at this point, so we
6251 just skip ahead to the next relocation. */
6252 continue;
6253
6254 case bfd_reloc_notsupported:
6255 msg = _("internal error: unsupported relocation error");
6256 info->callbacks->warning
6257 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 6258 return FALSE;
b49e97c9
TS
6259
6260 case bfd_reloc_overflow:
6261 if (use_saved_addend_p)
6262 /* Ignore overflow until we reach the last relocation for
6263 a given location. */
6264 ;
6265 else
6266 {
6267 BFD_ASSERT (name != NULL);
6268 if (! ((*info->callbacks->reloc_overflow)
6269 (info, name, howto->name, (bfd_vma) 0,
6270 input_bfd, input_section, rel->r_offset)))
b34976b6 6271 return FALSE;
b49e97c9
TS
6272 }
6273 break;
6274
6275 case bfd_reloc_ok:
6276 break;
6277
6278 default:
6279 abort ();
6280 break;
6281 }
6282
6283 /* If we've got another relocation for the address, keep going
6284 until we reach the last one. */
6285 if (use_saved_addend_p)
6286 {
6287 addend = value;
6288 continue;
6289 }
6290
4a14403c 6291 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6292 /* See the comment above about using R_MIPS_64 in the 32-bit
6293 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6294 that calculated the right value. Now, however, we
6295 sign-extend the 32-bit result to 64-bits, and store it as a
6296 64-bit value. We are especially generous here in that we
6297 go to extreme lengths to support this usage on systems with
6298 only a 32-bit VMA. */
6299 {
6300 bfd_vma sign_bits;
6301 bfd_vma low_bits;
6302 bfd_vma high_bits;
6303
6304 if (value & ((bfd_vma) 1 << 31))
6305#ifdef BFD64
6306 sign_bits = ((bfd_vma) 1 << 32) - 1;
6307#else
6308 sign_bits = -1;
6309#endif
6310 else
6311 sign_bits = 0;
6312
6313 /* If we don't know that we have a 64-bit type,
6314 do two separate stores. */
6315 if (bfd_big_endian (input_bfd))
6316 {
6317 /* Undo what we did above. */
6318 rel->r_offset -= 4;
6319 /* Store the sign-bits (which are most significant)
6320 first. */
6321 low_bits = sign_bits;
6322 high_bits = value;
6323 }
6324 else
6325 {
6326 low_bits = value;
6327 high_bits = sign_bits;
6328 }
6329 bfd_put_32 (input_bfd, low_bits,
6330 contents + rel->r_offset);
6331 bfd_put_32 (input_bfd, high_bits,
6332 contents + rel->r_offset + 4);
6333 continue;
6334 }
6335
6336 /* Actually perform the relocation. */
6337 if (! mips_elf_perform_relocation (info, howto, rel, value,
6338 input_bfd, input_section,
6339 contents, require_jalx))
b34976b6 6340 return FALSE;
b49e97c9
TS
6341 }
6342
b34976b6 6343 return TRUE;
b49e97c9
TS
6344}
6345\f
6346/* If NAME is one of the special IRIX6 symbols defined by the linker,
6347 adjust it appropriately now. */
6348
6349static void
6350mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6351 bfd *abfd ATTRIBUTE_UNUSED;
6352 const char *name;
6353 Elf_Internal_Sym *sym;
6354{
6355 /* The linker script takes care of providing names and values for
6356 these, but we must place them into the right sections. */
6357 static const char* const text_section_symbols[] = {
6358 "_ftext",
6359 "_etext",
6360 "__dso_displacement",
6361 "__elf_header",
6362 "__program_header_table",
6363 NULL
6364 };
6365
6366 static const char* const data_section_symbols[] = {
6367 "_fdata",
6368 "_edata",
6369 "_end",
6370 "_fbss",
6371 NULL
6372 };
6373
6374 const char* const *p;
6375 int i;
6376
6377 for (i = 0; i < 2; ++i)
6378 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6379 *p;
6380 ++p)
6381 if (strcmp (*p, name) == 0)
6382 {
6383 /* All of these symbols are given type STT_SECTION by the
6384 IRIX6 linker. */
6385 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6386
6387 /* The IRIX linker puts these symbols in special sections. */
6388 if (i == 0)
6389 sym->st_shndx = SHN_MIPS_TEXT;
6390 else
6391 sym->st_shndx = SHN_MIPS_DATA;
6392
6393 break;
6394 }
6395}
6396
6397/* Finish up dynamic symbol handling. We set the contents of various
6398 dynamic sections here. */
6399
b34976b6 6400bfd_boolean
b49e97c9
TS
6401_bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6402 bfd *output_bfd;
6403 struct bfd_link_info *info;
6404 struct elf_link_hash_entry *h;
6405 Elf_Internal_Sym *sym;
6406{
6407 bfd *dynobj;
6408 bfd_vma gval;
6409 asection *sgot;
6410 asection *smsym;
f4416af6 6411 struct mips_got_info *g, *gg;
b49e97c9
TS
6412 const char *name;
6413 struct mips_elf_link_hash_entry *mh;
6414
6415 dynobj = elf_hash_table (info)->dynobj;
6416 gval = sym->st_value;
6417 mh = (struct mips_elf_link_hash_entry *) h;
6418
6419 if (h->plt.offset != (bfd_vma) -1)
6420 {
6421 asection *s;
6422 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6423
6424 /* This symbol has a stub. Set it up. */
6425
6426 BFD_ASSERT (h->dynindx != -1);
6427
6428 s = bfd_get_section_by_name (dynobj,
6429 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6430 BFD_ASSERT (s != NULL);
6431
6432 /* FIXME: Can h->dynindex be more than 64K? */
6433 if (h->dynindx & 0xffff0000)
b34976b6 6434 return FALSE;
b49e97c9
TS
6435
6436 /* Fill the stub. */
6437 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6438 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6439 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6440 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6441
6442 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6443 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6444
6445 /* Mark the symbol as undefined. plt.offset != -1 occurs
6446 only for the referenced symbol. */
6447 sym->st_shndx = SHN_UNDEF;
6448
6449 /* The run-time linker uses the st_value field of the symbol
6450 to reset the global offset table entry for this external
6451 to its stub address when unlinking a shared object. */
6452 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6453 sym->st_value = gval;
6454 }
6455
6456 BFD_ASSERT (h->dynindx != -1
6457 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6458
f4416af6 6459 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6460 BFD_ASSERT (sgot != NULL);
f4416af6 6461 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 6462 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6463 BFD_ASSERT (g != NULL);
6464
6465 /* Run through the global symbol table, creating GOT entries for all
6466 the symbols that need them. */
6467 if (g->global_gotsym != NULL
6468 && h->dynindx >= g->global_gotsym->dynindx)
6469 {
6470 bfd_vma offset;
6471 bfd_vma value;
6472
6473 if (sym->st_value)
6474 value = sym->st_value;
6475 else
6476 {
6477 /* For an entity defined in a shared object, this will be
6478 NULL. (For functions in shared objects for
6479 which we have created stubs, ST_VALUE will be non-NULL.
6480 That's because such the functions are now no longer defined
6481 in a shared object.) */
6482
f4416af6
AO
6483 if ((info->shared && h->root.type == bfd_link_hash_undefined)
6484 || h->root.type == bfd_link_hash_undefweak)
b49e97c9
TS
6485 value = 0;
6486 else
6487 value = h->root.u.def.value;
6488 }
f4416af6 6489 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
b49e97c9
TS
6490 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6491 }
6492
f4416af6
AO
6493 if (g->next && h->dynindx != -1)
6494 {
6495 struct mips_got_entry e, *p;
6496 bfd_vma offset;
6497 bfd_vma value;
6498 Elf_Internal_Rela rel[3];
6499 bfd_vma addend = 0;
6500
6501 gg = g;
6502
6503 e.abfd = output_bfd;
6504 e.symndx = -1;
6505 e.d.h = (struct mips_elf_link_hash_entry *)h;
6506
6507 if (info->shared
6508 || h->root.type == bfd_link_hash_undefined
6509 || h->root.type == bfd_link_hash_undefweak)
6510 value = 0;
6511 else if (sym->st_value)
6512 value = sym->st_value;
6513 else
6514 value = h->root.u.def.value;
6515
6516 memset (rel, 0, sizeof (rel));
6517 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6518
6519 for (g = g->next; g->next != gg; g = g->next)
6520 {
6521 if (g->got_entries
6522 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6523 &e)))
6524 {
6525 offset = p->gotidx;
6526 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6527
6528 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6529
6530 if ((info->shared
6531 || (elf_hash_table (info)->dynamic_sections_created
6532 && p->d.h != NULL
6533 && ((p->d.h->root.elf_link_hash_flags
6534 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6535 && ((p->d.h->root.elf_link_hash_flags
6536 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6537 && ! (mips_elf_create_dynamic_relocation
6538 (output_bfd, info, rel,
6539 e.d.h, NULL, value, &addend, sgot)))
6540 return FALSE;
6541 BFD_ASSERT (addend == 0);
6542 }
6543 }
6544 }
6545
b49e97c9
TS
6546 /* Create a .msym entry, if appropriate. */
6547 smsym = bfd_get_section_by_name (dynobj, ".msym");
6548 if (smsym)
6549 {
6550 Elf32_Internal_Msym msym;
6551
6552 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6553 /* It is undocumented what the `1' indicates, but IRIX6 uses
6554 this value. */
6555 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6556 bfd_mips_elf_swap_msym_out
6557 (dynobj, &msym,
6558 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6559 }
6560
6561 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6562 name = h->root.root.string;
6563 if (strcmp (name, "_DYNAMIC") == 0
6564 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6565 sym->st_shndx = SHN_ABS;
6566 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6567 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6568 {
6569 sym->st_shndx = SHN_ABS;
6570 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6571 sym->st_value = 1;
6572 }
4a14403c 6573 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6574 {
6575 sym->st_shndx = SHN_ABS;
6576 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6577 sym->st_value = elf_gp (output_bfd);
6578 }
6579 else if (SGI_COMPAT (output_bfd))
6580 {
6581 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6582 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6583 {
6584 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6585 sym->st_other = STO_PROTECTED;
6586 sym->st_value = 0;
6587 sym->st_shndx = SHN_MIPS_DATA;
6588 }
6589 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6590 {
6591 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6592 sym->st_other = STO_PROTECTED;
6593 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6594 sym->st_shndx = SHN_ABS;
6595 }
6596 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6597 {
6598 if (h->type == STT_FUNC)
6599 sym->st_shndx = SHN_MIPS_TEXT;
6600 else if (h->type == STT_OBJECT)
6601 sym->st_shndx = SHN_MIPS_DATA;
6602 }
6603 }
6604
6605 /* Handle the IRIX6-specific symbols. */
6606 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6607 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6608
6609 if (! info->shared)
6610 {
6611 if (! mips_elf_hash_table (info)->use_rld_obj_head
6612 && (strcmp (name, "__rld_map") == 0
6613 || strcmp (name, "__RLD_MAP") == 0))
6614 {
6615 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6616 BFD_ASSERT (s != NULL);
6617 sym->st_value = s->output_section->vma + s->output_offset;
6618 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6619 if (mips_elf_hash_table (info)->rld_value == 0)
6620 mips_elf_hash_table (info)->rld_value = sym->st_value;
6621 }
6622 else if (mips_elf_hash_table (info)->use_rld_obj_head
6623 && strcmp (name, "__rld_obj_head") == 0)
6624 {
6625 /* IRIX6 does not use a .rld_map section. */
6626 if (IRIX_COMPAT (output_bfd) == ict_irix5
6627 || IRIX_COMPAT (output_bfd) == ict_none)
6628 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6629 != NULL);
6630 mips_elf_hash_table (info)->rld_value = sym->st_value;
6631 }
6632 }
6633
6634 /* If this is a mips16 symbol, force the value to be even. */
6635 if (sym->st_other == STO_MIPS16
6636 && (sym->st_value & 1) != 0)
6637 --sym->st_value;
6638
b34976b6 6639 return TRUE;
b49e97c9
TS
6640}
6641
6642/* Finish up the dynamic sections. */
6643
b34976b6 6644bfd_boolean
b49e97c9
TS
6645_bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6646 bfd *output_bfd;
6647 struct bfd_link_info *info;
6648{
6649 bfd *dynobj;
6650 asection *sdyn;
6651 asection *sgot;
f4416af6 6652 struct mips_got_info *gg, *g;
b49e97c9
TS
6653
6654 dynobj = elf_hash_table (info)->dynobj;
6655
6656 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6657
f4416af6 6658 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6659 if (sgot == NULL)
f4416af6 6660 gg = g = NULL;
b49e97c9
TS
6661 else
6662 {
f4416af6
AO
6663 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6664 gg = mips_elf_section_data (sgot)->u.got_info;
6665 BFD_ASSERT (gg != NULL);
6666 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
6667 BFD_ASSERT (g != NULL);
6668 }
6669
6670 if (elf_hash_table (info)->dynamic_sections_created)
6671 {
6672 bfd_byte *b;
6673
6674 BFD_ASSERT (sdyn != NULL);
6675 BFD_ASSERT (g != NULL);
6676
6677 for (b = sdyn->contents;
6678 b < sdyn->contents + sdyn->_raw_size;
6679 b += MIPS_ELF_DYN_SIZE (dynobj))
6680 {
6681 Elf_Internal_Dyn dyn;
6682 const char *name;
6683 size_t elemsize;
6684 asection *s;
b34976b6 6685 bfd_boolean swap_out_p;
b49e97c9
TS
6686
6687 /* Read in the current dynamic entry. */
6688 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6689
6690 /* Assume that we're going to modify it and write it out. */
b34976b6 6691 swap_out_p = TRUE;
b49e97c9
TS
6692
6693 switch (dyn.d_tag)
6694 {
6695 case DT_RELENT:
f4416af6 6696 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
6697 BFD_ASSERT (s != NULL);
6698 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6699 break;
6700
6701 case DT_STRSZ:
6702 /* Rewrite DT_STRSZ. */
6703 dyn.d_un.d_val =
6704 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6705 break;
6706
6707 case DT_PLTGOT:
6708 name = ".got";
6709 goto get_vma;
6710 case DT_MIPS_CONFLICT:
6711 name = ".conflict";
6712 goto get_vma;
6713 case DT_MIPS_LIBLIST:
6714 name = ".liblist";
6715 get_vma:
6716 s = bfd_get_section_by_name (output_bfd, name);
6717 BFD_ASSERT (s != NULL);
6718 dyn.d_un.d_ptr = s->vma;
6719 break;
6720
6721 case DT_MIPS_RLD_VERSION:
6722 dyn.d_un.d_val = 1; /* XXX */
6723 break;
6724
6725 case DT_MIPS_FLAGS:
6726 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6727 break;
6728
6729 case DT_MIPS_CONFLICTNO:
6730 name = ".conflict";
6731 elemsize = sizeof (Elf32_Conflict);
6732 goto set_elemno;
6733
6734 case DT_MIPS_LIBLISTNO:
6735 name = ".liblist";
6736 elemsize = sizeof (Elf32_Lib);
6737 set_elemno:
6738 s = bfd_get_section_by_name (output_bfd, name);
6739 if (s != NULL)
6740 {
6741 if (s->_cooked_size != 0)
6742 dyn.d_un.d_val = s->_cooked_size / elemsize;
6743 else
6744 dyn.d_un.d_val = s->_raw_size / elemsize;
6745 }
6746 else
6747 dyn.d_un.d_val = 0;
6748 break;
6749
6750 case DT_MIPS_TIME_STAMP:
6751 time ((time_t *) &dyn.d_un.d_val);
6752 break;
6753
6754 case DT_MIPS_ICHECKSUM:
6755 /* XXX FIXME: */
b34976b6 6756 swap_out_p = FALSE;
b49e97c9
TS
6757 break;
6758
6759 case DT_MIPS_IVERSION:
6760 /* XXX FIXME: */
b34976b6 6761 swap_out_p = FALSE;
b49e97c9
TS
6762 break;
6763
6764 case DT_MIPS_BASE_ADDRESS:
6765 s = output_bfd->sections;
6766 BFD_ASSERT (s != NULL);
6767 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6768 break;
6769
6770 case DT_MIPS_LOCAL_GOTNO:
6771 dyn.d_un.d_val = g->local_gotno;
6772 break;
6773
6774 case DT_MIPS_UNREFEXTNO:
6775 /* The index into the dynamic symbol table which is the
6776 entry of the first external symbol that is not
6777 referenced within the same object. */
6778 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6779 break;
6780
6781 case DT_MIPS_GOTSYM:
f4416af6 6782 if (gg->global_gotsym)
b49e97c9 6783 {
f4416af6 6784 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
6785 break;
6786 }
6787 /* In case if we don't have global got symbols we default
6788 to setting DT_MIPS_GOTSYM to the same value as
6789 DT_MIPS_SYMTABNO, so we just fall through. */
6790
6791 case DT_MIPS_SYMTABNO:
6792 name = ".dynsym";
6793 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6794 s = bfd_get_section_by_name (output_bfd, name);
6795 BFD_ASSERT (s != NULL);
6796
6797 if (s->_cooked_size != 0)
6798 dyn.d_un.d_val = s->_cooked_size / elemsize;
6799 else
6800 dyn.d_un.d_val = s->_raw_size / elemsize;
6801 break;
6802
6803 case DT_MIPS_HIPAGENO:
6804 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6805 break;
6806
6807 case DT_MIPS_RLD_MAP:
6808 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6809 break;
6810
6811 case DT_MIPS_OPTIONS:
6812 s = (bfd_get_section_by_name
6813 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6814 dyn.d_un.d_ptr = s->vma;
6815 break;
6816
6817 case DT_MIPS_MSYM:
6818 s = (bfd_get_section_by_name (output_bfd, ".msym"));
6819 dyn.d_un.d_ptr = s->vma;
6820 break;
6821
6822 default:
b34976b6 6823 swap_out_p = FALSE;
b49e97c9
TS
6824 break;
6825 }
6826
6827 if (swap_out_p)
6828 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6829 (dynobj, &dyn, b);
6830 }
6831 }
6832
6833 /* The first entry of the global offset table will be filled at
6834 runtime. The second entry will be used by some runtime loaders.
8dc1a139 6835 This isn't the case of IRIX rld. */
b49e97c9
TS
6836 if (sgot != NULL && sgot->_raw_size > 0)
6837 {
6838 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
6839 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
6840 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6841 }
6842
6843 if (sgot != NULL)
6844 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6845 = MIPS_ELF_GOT_SIZE (output_bfd);
6846
f4416af6
AO
6847 /* Generate dynamic relocations for the non-primary gots. */
6848 if (gg != NULL && gg->next)
6849 {
6850 Elf_Internal_Rela rel[3];
6851 bfd_vma addend = 0;
6852
6853 memset (rel, 0, sizeof (rel));
6854 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6855
6856 for (g = gg->next; g->next != gg; g = g->next)
6857 {
6858 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6859
6860 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
6861 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6862 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
6863 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6864
6865 if (! info->shared)
6866 continue;
6867
6868 while (index < g->assigned_gotno)
6869 {
6870 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6871 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6872 if (!(mips_elf_create_dynamic_relocation
6873 (output_bfd, info, rel, NULL,
6874 bfd_abs_section_ptr,
6875 0, &addend, sgot)))
6876 return FALSE;
6877 BFD_ASSERT (addend == 0);
6878 }
6879 }
6880 }
6881
b49e97c9
TS
6882 {
6883 asection *smsym;
6884 asection *s;
6885 Elf32_compact_rel cpt;
6886
6887 /* ??? The section symbols for the output sections were set up in
6888 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
6889 symbols. Should we do so? */
6890
6891 smsym = bfd_get_section_by_name (dynobj, ".msym");
6892 if (smsym != NULL)
6893 {
6894 Elf32_Internal_Msym msym;
6895
6896 msym.ms_hash_value = 0;
6897 msym.ms_info = ELF32_MS_INFO (0, 1);
6898
6899 for (s = output_bfd->sections; s != NULL; s = s->next)
6900 {
6901 long dynindx = elf_section_data (s)->dynindx;
6902
6903 bfd_mips_elf_swap_msym_out
6904 (output_bfd, &msym,
6905 (((Elf32_External_Msym *) smsym->contents)
6906 + dynindx));
6907 }
6908 }
6909
6910 if (SGI_COMPAT (output_bfd))
6911 {
6912 /* Write .compact_rel section out. */
6913 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6914 if (s != NULL)
6915 {
6916 cpt.id1 = 1;
6917 cpt.num = s->reloc_count;
6918 cpt.id2 = 2;
6919 cpt.offset = (s->output_section->filepos
6920 + sizeof (Elf32_External_compact_rel));
6921 cpt.reserved0 = 0;
6922 cpt.reserved1 = 0;
6923 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6924 ((Elf32_External_compact_rel *)
6925 s->contents));
6926
6927 /* Clean up a dummy stub function entry in .text. */
6928 s = bfd_get_section_by_name (dynobj,
6929 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6930 if (s != NULL)
6931 {
6932 file_ptr dummy_offset;
6933
6934 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
6935 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
6936 memset (s->contents + dummy_offset, 0,
6937 MIPS_FUNCTION_STUB_SIZE);
6938 }
6939 }
6940 }
6941
6942 /* We need to sort the entries of the dynamic relocation section. */
6943
f4416af6
AO
6944 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6945
6946 if (s != NULL
6947 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 6948 {
f4416af6 6949 reldyn_sorting_bfd = output_bfd;
b49e97c9 6950
f4416af6
AO
6951 if (ABI_64_P (output_bfd))
6952 qsort ((Elf64_External_Rel *) s->contents + 1,
6953 (size_t) s->reloc_count - 1,
6954 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
6955 else
6956 qsort ((Elf32_External_Rel *) s->contents + 1,
6957 (size_t) s->reloc_count - 1,
6958 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 6959 }
b49e97c9
TS
6960 }
6961
b34976b6 6962 return TRUE;
b49e97c9
TS
6963}
6964
b49e97c9 6965
64543e1a
RS
6966/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
6967
6968static void
6969mips_set_isa_flags (abfd)
b49e97c9 6970 bfd *abfd;
b49e97c9 6971{
64543e1a 6972 flagword val;
b49e97c9
TS
6973
6974 switch (bfd_get_mach (abfd))
6975 {
6976 default:
6977 case bfd_mach_mips3000:
6978 val = E_MIPS_ARCH_1;
6979 break;
6980
6981 case bfd_mach_mips3900:
6982 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
6983 break;
6984
6985 case bfd_mach_mips6000:
6986 val = E_MIPS_ARCH_2;
6987 break;
6988
6989 case bfd_mach_mips4000:
6990 case bfd_mach_mips4300:
6991 case bfd_mach_mips4400:
6992 case bfd_mach_mips4600:
6993 val = E_MIPS_ARCH_3;
6994 break;
6995
6996 case bfd_mach_mips4010:
6997 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
6998 break;
6999
7000 case bfd_mach_mips4100:
7001 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7002 break;
7003
7004 case bfd_mach_mips4111:
7005 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7006 break;
7007
00707a0e
RS
7008 case bfd_mach_mips4120:
7009 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7010 break;
7011
b49e97c9
TS
7012 case bfd_mach_mips4650:
7013 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7014 break;
7015
00707a0e
RS
7016 case bfd_mach_mips5400:
7017 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7018 break;
7019
7020 case bfd_mach_mips5500:
7021 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7022 break;
7023
b49e97c9
TS
7024 case bfd_mach_mips5000:
7025 case bfd_mach_mips8000:
7026 case bfd_mach_mips10000:
7027 case bfd_mach_mips12000:
7028 val = E_MIPS_ARCH_4;
7029 break;
7030
7031 case bfd_mach_mips5:
7032 val = E_MIPS_ARCH_5;
7033 break;
7034
7035 case bfd_mach_mips_sb1:
7036 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7037 break;
7038
7039 case bfd_mach_mipsisa32:
7040 val = E_MIPS_ARCH_32;
7041 break;
7042
7043 case bfd_mach_mipsisa64:
7044 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7045 break;
7046
7047 case bfd_mach_mipsisa32r2:
7048 val = E_MIPS_ARCH_32R2;
7049 break;
b49e97c9 7050 }
b49e97c9
TS
7051 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7052 elf_elfheader (abfd)->e_flags |= val;
7053
64543e1a
RS
7054}
7055
7056
7057/* The final processing done just before writing out a MIPS ELF object
7058 file. This gets the MIPS architecture right based on the machine
7059 number. This is used by both the 32-bit and the 64-bit ABI. */
7060
7061void
7062_bfd_mips_elf_final_write_processing (abfd, linker)
7063 bfd *abfd;
7064 bfd_boolean linker ATTRIBUTE_UNUSED;
7065{
7066 unsigned int i;
7067 Elf_Internal_Shdr **hdrpp;
7068 const char *name;
7069 asection *sec;
7070
7071 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7072 is nonzero. This is for compatibility with old objects, which used
7073 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7074 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7075 mips_set_isa_flags (abfd);
7076
b49e97c9
TS
7077 /* Set the sh_info field for .gptab sections and other appropriate
7078 info for each special section. */
7079 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7080 i < elf_numsections (abfd);
7081 i++, hdrpp++)
7082 {
7083 switch ((*hdrpp)->sh_type)
7084 {
7085 case SHT_MIPS_MSYM:
7086 case SHT_MIPS_LIBLIST:
7087 sec = bfd_get_section_by_name (abfd, ".dynstr");
7088 if (sec != NULL)
7089 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7090 break;
7091
7092 case SHT_MIPS_GPTAB:
7093 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7094 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7095 BFD_ASSERT (name != NULL
7096 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7097 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7098 BFD_ASSERT (sec != NULL);
7099 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7100 break;
7101
7102 case SHT_MIPS_CONTENT:
7103 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7104 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7105 BFD_ASSERT (name != NULL
7106 && strncmp (name, ".MIPS.content",
7107 sizeof ".MIPS.content" - 1) == 0);
7108 sec = bfd_get_section_by_name (abfd,
7109 name + sizeof ".MIPS.content" - 1);
7110 BFD_ASSERT (sec != NULL);
7111 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7112 break;
7113
7114 case SHT_MIPS_SYMBOL_LIB:
7115 sec = bfd_get_section_by_name (abfd, ".dynsym");
7116 if (sec != NULL)
7117 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7118 sec = bfd_get_section_by_name (abfd, ".liblist");
7119 if (sec != NULL)
7120 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7121 break;
7122
7123 case SHT_MIPS_EVENTS:
7124 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7125 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7126 BFD_ASSERT (name != NULL);
7127 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7128 sec = bfd_get_section_by_name (abfd,
7129 name + sizeof ".MIPS.events" - 1);
7130 else
7131 {
7132 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7133 sizeof ".MIPS.post_rel" - 1) == 0);
7134 sec = bfd_get_section_by_name (abfd,
7135 (name
7136 + sizeof ".MIPS.post_rel" - 1));
7137 }
7138 BFD_ASSERT (sec != NULL);
7139 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7140 break;
7141
7142 }
7143 }
7144}
7145\f
8dc1a139 7146/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
7147 segments. */
7148
7149int
7150_bfd_mips_elf_additional_program_headers (abfd)
7151 bfd *abfd;
7152{
7153 asection *s;
7154 int ret = 0;
7155
7156 /* See if we need a PT_MIPS_REGINFO segment. */
7157 s = bfd_get_section_by_name (abfd, ".reginfo");
7158 if (s && (s->flags & SEC_LOAD))
7159 ++ret;
7160
7161 /* See if we need a PT_MIPS_OPTIONS segment. */
7162 if (IRIX_COMPAT (abfd) == ict_irix6
7163 && bfd_get_section_by_name (abfd,
7164 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7165 ++ret;
7166
7167 /* See if we need a PT_MIPS_RTPROC segment. */
7168 if (IRIX_COMPAT (abfd) == ict_irix5
7169 && bfd_get_section_by_name (abfd, ".dynamic")
7170 && bfd_get_section_by_name (abfd, ".mdebug"))
7171 ++ret;
7172
7173 return ret;
7174}
7175
8dc1a139 7176/* Modify the segment map for an IRIX5 executable. */
b49e97c9 7177
b34976b6 7178bfd_boolean
b49e97c9
TS
7179_bfd_mips_elf_modify_segment_map (abfd)
7180 bfd *abfd;
7181{
7182 asection *s;
7183 struct elf_segment_map *m, **pm;
7184 bfd_size_type amt;
7185
7186 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7187 segment. */
7188 s = bfd_get_section_by_name (abfd, ".reginfo");
7189 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7190 {
7191 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7192 if (m->p_type == PT_MIPS_REGINFO)
7193 break;
7194 if (m == NULL)
7195 {
7196 amt = sizeof *m;
7197 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7198 if (m == NULL)
b34976b6 7199 return FALSE;
b49e97c9
TS
7200
7201 m->p_type = PT_MIPS_REGINFO;
7202 m->count = 1;
7203 m->sections[0] = s;
7204
7205 /* We want to put it after the PHDR and INTERP segments. */
7206 pm = &elf_tdata (abfd)->segment_map;
7207 while (*pm != NULL
7208 && ((*pm)->p_type == PT_PHDR
7209 || (*pm)->p_type == PT_INTERP))
7210 pm = &(*pm)->next;
7211
7212 m->next = *pm;
7213 *pm = m;
7214 }
7215 }
7216
7217 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7218 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
44c410de 7219 PT_OPTIONS segment immediately following the program header
b49e97c9 7220 table. */
c1fd6598
AO
7221 if (NEWABI_P (abfd)
7222 /* On non-IRIX6 new abi, we'll have already created a segment
7223 for this section, so don't create another. I'm not sure this
7224 is not also the case for IRIX 6, but I can't test it right
7225 now. */
7226 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
7227 {
7228 for (s = abfd->sections; s; s = s->next)
7229 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7230 break;
7231
7232 if (s)
7233 {
7234 struct elf_segment_map *options_segment;
7235
7236 /* Usually, there's a program header table. But, sometimes
7237 there's not (like when running the `ld' testsuite). So,
7238 if there's no program header table, we just put the
44c410de 7239 options segment at the end. */
b49e97c9
TS
7240 for (pm = &elf_tdata (abfd)->segment_map;
7241 *pm != NULL;
7242 pm = &(*pm)->next)
7243 if ((*pm)->p_type == PT_PHDR)
7244 break;
7245
7246 amt = sizeof (struct elf_segment_map);
7247 options_segment = bfd_zalloc (abfd, amt);
7248 options_segment->next = *pm;
7249 options_segment->p_type = PT_MIPS_OPTIONS;
7250 options_segment->p_flags = PF_R;
b34976b6 7251 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
7252 options_segment->count = 1;
7253 options_segment->sections[0] = s;
7254 *pm = options_segment;
7255 }
7256 }
7257 else
7258 {
7259 if (IRIX_COMPAT (abfd) == ict_irix5)
7260 {
7261 /* If there are .dynamic and .mdebug sections, we make a room
7262 for the RTPROC header. FIXME: Rewrite without section names. */
7263 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7264 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7265 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7266 {
7267 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7268 if (m->p_type == PT_MIPS_RTPROC)
7269 break;
7270 if (m == NULL)
7271 {
7272 amt = sizeof *m;
7273 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7274 if (m == NULL)
b34976b6 7275 return FALSE;
b49e97c9
TS
7276
7277 m->p_type = PT_MIPS_RTPROC;
7278
7279 s = bfd_get_section_by_name (abfd, ".rtproc");
7280 if (s == NULL)
7281 {
7282 m->count = 0;
7283 m->p_flags = 0;
7284 m->p_flags_valid = 1;
7285 }
7286 else
7287 {
7288 m->count = 1;
7289 m->sections[0] = s;
7290 }
7291
7292 /* We want to put it after the DYNAMIC segment. */
7293 pm = &elf_tdata (abfd)->segment_map;
7294 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7295 pm = &(*pm)->next;
7296 if (*pm != NULL)
7297 pm = &(*pm)->next;
7298
7299 m->next = *pm;
7300 *pm = m;
7301 }
7302 }
7303 }
8dc1a139 7304 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
7305 .dynstr, .dynsym, and .hash sections, and everything in
7306 between. */
7307 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7308 pm = &(*pm)->next)
7309 if ((*pm)->p_type == PT_DYNAMIC)
7310 break;
7311 m = *pm;
7312 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7313 {
7314 /* For a normal mips executable the permissions for the PT_DYNAMIC
7315 segment are read, write and execute. We do that here since
7316 the code in elf.c sets only the read permission. This matters
7317 sometimes for the dynamic linker. */
7318 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7319 {
7320 m->p_flags = PF_R | PF_W | PF_X;
7321 m->p_flags_valid = 1;
7322 }
7323 }
7324 if (m != NULL
7325 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7326 {
7327 static const char *sec_names[] =
7328 {
7329 ".dynamic", ".dynstr", ".dynsym", ".hash"
7330 };
7331 bfd_vma low, high;
7332 unsigned int i, c;
7333 struct elf_segment_map *n;
7334
7335 low = 0xffffffff;
7336 high = 0;
7337 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7338 {
7339 s = bfd_get_section_by_name (abfd, sec_names[i]);
7340 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7341 {
7342 bfd_size_type sz;
7343
7344 if (low > s->vma)
7345 low = s->vma;
7346 sz = s->_cooked_size;
7347 if (sz == 0)
7348 sz = s->_raw_size;
7349 if (high < s->vma + sz)
7350 high = s->vma + sz;
7351 }
7352 }
7353
7354 c = 0;
7355 for (s = abfd->sections; s != NULL; s = s->next)
7356 if ((s->flags & SEC_LOAD) != 0
7357 && s->vma >= low
7358 && ((s->vma
7359 + (s->_cooked_size !=
7360 0 ? s->_cooked_size : s->_raw_size)) <= high))
7361 ++c;
7362
7363 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7364 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7365 if (n == NULL)
b34976b6 7366 return FALSE;
b49e97c9
TS
7367 *n = *m;
7368 n->count = c;
7369
7370 i = 0;
7371 for (s = abfd->sections; s != NULL; s = s->next)
7372 {
7373 if ((s->flags & SEC_LOAD) != 0
7374 && s->vma >= low
7375 && ((s->vma
7376 + (s->_cooked_size != 0 ?
7377 s->_cooked_size : s->_raw_size)) <= high))
7378 {
7379 n->sections[i] = s;
7380 ++i;
7381 }
7382 }
7383
7384 *pm = n;
7385 }
7386 }
7387
b34976b6 7388 return TRUE;
b49e97c9
TS
7389}
7390\f
7391/* Return the section that should be marked against GC for a given
7392 relocation. */
7393
7394asection *
1e2f5b6e
AM
7395_bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7396 asection *sec;
b49e97c9
TS
7397 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7398 Elf_Internal_Rela *rel;
7399 struct elf_link_hash_entry *h;
7400 Elf_Internal_Sym *sym;
7401{
7402 /* ??? Do mips16 stub sections need to be handled special? */
7403
7404 if (h != NULL)
7405 {
1e2f5b6e 7406 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
7407 {
7408 case R_MIPS_GNU_VTINHERIT:
7409 case R_MIPS_GNU_VTENTRY:
7410 break;
7411
7412 default:
7413 switch (h->root.type)
7414 {
7415 case bfd_link_hash_defined:
7416 case bfd_link_hash_defweak:
7417 return h->root.u.def.section;
7418
7419 case bfd_link_hash_common:
7420 return h->root.u.c.p->section;
7421
7422 default:
7423 break;
7424 }
7425 }
7426 }
7427 else
1e2f5b6e 7428 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
7429
7430 return NULL;
7431}
7432
7433/* Update the got entry reference counts for the section being removed. */
7434
b34976b6 7435bfd_boolean
b49e97c9
TS
7436_bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7437 bfd *abfd ATTRIBUTE_UNUSED;
7438 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7439 asection *sec ATTRIBUTE_UNUSED;
7440 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7441{
7442#if 0
7443 Elf_Internal_Shdr *symtab_hdr;
7444 struct elf_link_hash_entry **sym_hashes;
7445 bfd_signed_vma *local_got_refcounts;
7446 const Elf_Internal_Rela *rel, *relend;
7447 unsigned long r_symndx;
7448 struct elf_link_hash_entry *h;
7449
7450 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7451 sym_hashes = elf_sym_hashes (abfd);
7452 local_got_refcounts = elf_local_got_refcounts (abfd);
7453
7454 relend = relocs + sec->reloc_count;
7455 for (rel = relocs; rel < relend; rel++)
7456 switch (ELF_R_TYPE (abfd, rel->r_info))
7457 {
7458 case R_MIPS_GOT16:
7459 case R_MIPS_CALL16:
7460 case R_MIPS_CALL_HI16:
7461 case R_MIPS_CALL_LO16:
7462 case R_MIPS_GOT_HI16:
7463 case R_MIPS_GOT_LO16:
4a14403c
TS
7464 case R_MIPS_GOT_DISP:
7465 case R_MIPS_GOT_PAGE:
7466 case R_MIPS_GOT_OFST:
b49e97c9
TS
7467 /* ??? It would seem that the existing MIPS code does no sort
7468 of reference counting or whatnot on its GOT and PLT entries,
7469 so it is not possible to garbage collect them at this time. */
7470 break;
7471
7472 default:
7473 break;
7474 }
7475#endif
7476
b34976b6 7477 return TRUE;
b49e97c9
TS
7478}
7479\f
7480/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7481 hiding the old indirect symbol. Process additional relocation
7482 information. Also called for weakdefs, in which case we just let
7483 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7484
7485void
b48fa14c
AM
7486_bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7487 struct elf_backend_data *bed;
b49e97c9
TS
7488 struct elf_link_hash_entry *dir, *ind;
7489{
7490 struct mips_elf_link_hash_entry *dirmips, *indmips;
7491
b48fa14c 7492 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
7493
7494 if (ind->root.type != bfd_link_hash_indirect)
7495 return;
7496
7497 dirmips = (struct mips_elf_link_hash_entry *) dir;
7498 indmips = (struct mips_elf_link_hash_entry *) ind;
7499 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7500 if (indmips->readonly_reloc)
b34976b6 7501 dirmips->readonly_reloc = TRUE;
b49e97c9
TS
7502 if (dirmips->min_dyn_reloc_index == 0
7503 || (indmips->min_dyn_reloc_index != 0
7504 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7505 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7506 if (indmips->no_fn_stub)
b34976b6 7507 dirmips->no_fn_stub = TRUE;
b49e97c9
TS
7508}
7509
7510void
7511_bfd_mips_elf_hide_symbol (info, entry, force_local)
7512 struct bfd_link_info *info;
7513 struct elf_link_hash_entry *entry;
b34976b6 7514 bfd_boolean force_local;
b49e97c9
TS
7515{
7516 bfd *dynobj;
7517 asection *got;
7518 struct mips_got_info *g;
7519 struct mips_elf_link_hash_entry *h;
7c5fcef7 7520
b49e97c9 7521 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
7522 if (h->forced_local)
7523 return;
b34976b6 7524 h->forced_local = TRUE;
7c5fcef7 7525
b49e97c9 7526 dynobj = elf_hash_table (info)->dynobj;
f4416af6 7527 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 7528 g = mips_elf_section_data (got)->u.got_info;
b49e97c9 7529
f4416af6
AO
7530 if (g->next)
7531 {
7532 struct mips_got_entry e;
7533 struct mips_got_info *gg = g;
7534
7535 /* Since we're turning what used to be a global symbol into a
7536 local one, bump up the number of local entries of each GOT
7537 that had an entry for it. This will automatically decrease
7538 the number of global entries, since global_gotno is actually
7539 the upper limit of global entries. */
7540 e.abfd = dynobj;
7541 e.symndx = -1;
7542 e.d.h = h;
7543
7544 for (g = g->next; g != gg; g = g->next)
7545 if (htab_find (g->got_entries, &e))
7546 {
7547 BFD_ASSERT (g->global_gotno > 0);
7548 g->local_gotno++;
7549 g->global_gotno--;
7550 }
b49e97c9 7551
f4416af6
AO
7552 /* If this was a global symbol forced into the primary GOT, we
7553 no longer need an entry for it. We can't release the entry
7554 at this point, but we must at least stop counting it as one
7555 of the symbols that required a forced got entry. */
7556 if (h->root.got.offset == 2)
7557 {
7558 BFD_ASSERT (gg->assigned_gotno > 0);
7559 gg->assigned_gotno--;
7560 }
7561 }
7562 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7563 /* If we haven't got through GOT allocation yet, just bump up the
7564 number of local entries, as this symbol won't be counted as
7565 global. */
7566 g->local_gotno++;
7567 else if (h->root.got.offset == 1)
7568 {
7569 /* If we're past non-multi-GOT allocation and this symbol had
7570 been marked for a global got entry, give it a local entry
7571 instead. */
7572 BFD_ASSERT (g->global_gotno > 0);
7573 g->local_gotno++;
7574 g->global_gotno--;
7575 }
7576
7577 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
7578}
7579\f
d01414a5
TS
7580#define PDR_SIZE 32
7581
b34976b6 7582bfd_boolean
d01414a5
TS
7583_bfd_mips_elf_discard_info (abfd, cookie, info)
7584 bfd *abfd;
7585 struct elf_reloc_cookie *cookie;
7586 struct bfd_link_info *info;
7587{
7588 asection *o;
b34976b6 7589 bfd_boolean ret = FALSE;
d01414a5
TS
7590 unsigned char *tdata;
7591 size_t i, skip;
7592
7593 o = bfd_get_section_by_name (abfd, ".pdr");
7594 if (! o)
b34976b6 7595 return FALSE;
d01414a5 7596 if (o->_raw_size == 0)
b34976b6 7597 return FALSE;
d01414a5 7598 if (o->_raw_size % PDR_SIZE != 0)
b34976b6 7599 return FALSE;
d01414a5
TS
7600 if (o->output_section != NULL
7601 && bfd_is_abs_section (o->output_section))
b34976b6 7602 return FALSE;
d01414a5
TS
7603
7604 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7605 if (! tdata)
b34976b6 7606 return FALSE;
d01414a5 7607
ee6423ed
AO
7608 cookie->rels = (MNAME(abfd,_bfd_elf,link_read_relocs)
7609 (abfd, o, (PTR) NULL,
7610 (Elf_Internal_Rela *) NULL,
7611 info->keep_memory));
d01414a5
TS
7612 if (!cookie->rels)
7613 {
7614 free (tdata);
b34976b6 7615 return FALSE;
d01414a5
TS
7616 }
7617
7618 cookie->rel = cookie->rels;
7619 cookie->relend = cookie->rels + o->reloc_count;
7620
7621 for (i = 0, skip = 0; i < o->_raw_size; i ++)
7622 {
ee6423ed 7623 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
d01414a5
TS
7624 {
7625 tdata[i] = 1;
7626 skip ++;
7627 }
7628 }
7629
7630 if (skip != 0)
7631 {
f0abc2a1 7632 mips_elf_section_data (o)->u.tdata = tdata;
d01414a5 7633 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
b34976b6 7634 ret = TRUE;
d01414a5
TS
7635 }
7636 else
7637 free (tdata);
7638
7639 if (! info->keep_memory)
7640 free (cookie->rels);
7641
7642 return ret;
7643}
7644
b34976b6 7645bfd_boolean
53bfd6b4
MR
7646_bfd_mips_elf_ignore_discarded_relocs (sec)
7647 asection *sec;
7648{
7649 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
7650 return TRUE;
7651 return FALSE;
53bfd6b4 7652}
d01414a5 7653
b34976b6 7654bfd_boolean
d01414a5
TS
7655_bfd_mips_elf_write_section (output_bfd, sec, contents)
7656 bfd *output_bfd;
7657 asection *sec;
7658 bfd_byte *contents;
7659{
7660 bfd_byte *to, *from, *end;
7661 int i;
7662
7663 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 7664 return FALSE;
d01414a5 7665
f0abc2a1 7666 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 7667 return FALSE;
d01414a5
TS
7668
7669 to = contents;
7670 end = contents + sec->_raw_size;
7671 for (from = contents, i = 0;
7672 from < end;
7673 from += PDR_SIZE, i++)
7674 {
f0abc2a1 7675 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
7676 continue;
7677 if (to != from)
7678 memcpy (to, from, PDR_SIZE);
7679 to += PDR_SIZE;
7680 }
7681 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7682 (file_ptr) sec->output_offset,
7683 sec->_cooked_size);
b34976b6 7684 return TRUE;
d01414a5 7685}
53bfd6b4 7686\f
b49e97c9
TS
7687/* MIPS ELF uses a special find_nearest_line routine in order the
7688 handle the ECOFF debugging information. */
7689
7690struct mips_elf_find_line
7691{
7692 struct ecoff_debug_info d;
7693 struct ecoff_find_line i;
7694};
7695
b34976b6 7696bfd_boolean
b49e97c9
TS
7697_bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7698 functionname_ptr, line_ptr)
7699 bfd *abfd;
7700 asection *section;
7701 asymbol **symbols;
7702 bfd_vma offset;
7703 const char **filename_ptr;
7704 const char **functionname_ptr;
7705 unsigned int *line_ptr;
7706{
7707 asection *msec;
7708
7709 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7710 filename_ptr, functionname_ptr,
7711 line_ptr))
b34976b6 7712 return TRUE;
b49e97c9
TS
7713
7714 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7715 filename_ptr, functionname_ptr,
7716 line_ptr,
7717 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7718 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 7719 return TRUE;
b49e97c9
TS
7720
7721 msec = bfd_get_section_by_name (abfd, ".mdebug");
7722 if (msec != NULL)
7723 {
7724 flagword origflags;
7725 struct mips_elf_find_line *fi;
7726 const struct ecoff_debug_swap * const swap =
7727 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7728
7729 /* If we are called during a link, mips_elf_final_link may have
7730 cleared the SEC_HAS_CONTENTS field. We force it back on here
7731 if appropriate (which it normally will be). */
7732 origflags = msec->flags;
7733 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7734 msec->flags |= SEC_HAS_CONTENTS;
7735
7736 fi = elf_tdata (abfd)->find_line_info;
7737 if (fi == NULL)
7738 {
7739 bfd_size_type external_fdr_size;
7740 char *fraw_src;
7741 char *fraw_end;
7742 struct fdr *fdr_ptr;
7743 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7744
7745 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
7746 if (fi == NULL)
7747 {
7748 msec->flags = origflags;
b34976b6 7749 return FALSE;
b49e97c9
TS
7750 }
7751
7752 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7753 {
7754 msec->flags = origflags;
b34976b6 7755 return FALSE;
b49e97c9
TS
7756 }
7757
7758 /* Swap in the FDR information. */
7759 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7760 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
7761 if (fi->d.fdr == NULL)
7762 {
7763 msec->flags = origflags;
b34976b6 7764 return FALSE;
b49e97c9
TS
7765 }
7766 external_fdr_size = swap->external_fdr_size;
7767 fdr_ptr = fi->d.fdr;
7768 fraw_src = (char *) fi->d.external_fdr;
7769 fraw_end = (fraw_src
7770 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7771 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7772 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
7773
7774 elf_tdata (abfd)->find_line_info = fi;
7775
7776 /* Note that we don't bother to ever free this information.
7777 find_nearest_line is either called all the time, as in
7778 objdump -l, so the information should be saved, or it is
7779 rarely called, as in ld error messages, so the memory
7780 wasted is unimportant. Still, it would probably be a
7781 good idea for free_cached_info to throw it away. */
7782 }
7783
7784 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7785 &fi->i, filename_ptr, functionname_ptr,
7786 line_ptr))
7787 {
7788 msec->flags = origflags;
b34976b6 7789 return TRUE;
b49e97c9
TS
7790 }
7791
7792 msec->flags = origflags;
7793 }
7794
7795 /* Fall back on the generic ELF find_nearest_line routine. */
7796
7797 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7798 filename_ptr, functionname_ptr,
7799 line_ptr);
7800}
7801\f
7802/* When are writing out the .options or .MIPS.options section,
7803 remember the bytes we are writing out, so that we can install the
7804 GP value in the section_processing routine. */
7805
b34976b6 7806bfd_boolean
b49e97c9
TS
7807_bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
7808 bfd *abfd;
7809 sec_ptr section;
7810 PTR location;
7811 file_ptr offset;
7812 bfd_size_type count;
7813{
7814 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7815 {
7816 bfd_byte *c;
7817
7818 if (elf_section_data (section) == NULL)
7819 {
7820 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7821 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
7822 if (elf_section_data (section) == NULL)
b34976b6 7823 return FALSE;
b49e97c9 7824 }
f0abc2a1 7825 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
7826 if (c == NULL)
7827 {
7828 bfd_size_type size;
7829
7830 if (section->_cooked_size != 0)
7831 size = section->_cooked_size;
7832 else
7833 size = section->_raw_size;
7834 c = (bfd_byte *) bfd_zalloc (abfd, size);
7835 if (c == NULL)
b34976b6 7836 return FALSE;
f0abc2a1 7837 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
7838 }
7839
7840 memcpy (c + offset, location, (size_t) count);
7841 }
7842
7843 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7844 count);
7845}
7846
7847/* This is almost identical to bfd_generic_get_... except that some
7848 MIPS relocations need to be handled specially. Sigh. */
7849
7850bfd_byte *
7851_bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
7852 data, relocateable, symbols)
7853 bfd *abfd;
7854 struct bfd_link_info *link_info;
7855 struct bfd_link_order *link_order;
7856 bfd_byte *data;
b34976b6 7857 bfd_boolean relocateable;
b49e97c9
TS
7858 asymbol **symbols;
7859{
7860 /* Get enough memory to hold the stuff */
7861 bfd *input_bfd = link_order->u.indirect.section->owner;
7862 asection *input_section = link_order->u.indirect.section;
7863
7864 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7865 arelent **reloc_vector = NULL;
7866 long reloc_count;
7867
7868 if (reloc_size < 0)
7869 goto error_return;
7870
7871 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
7872 if (reloc_vector == NULL && reloc_size != 0)
7873 goto error_return;
7874
7875 /* read in the section */
7876 if (!bfd_get_section_contents (input_bfd,
7877 input_section,
7878 (PTR) data,
7879 (file_ptr) 0,
7880 input_section->_raw_size))
7881 goto error_return;
7882
7883 /* We're not relaxing the section, so just copy the size info */
7884 input_section->_cooked_size = input_section->_raw_size;
b34976b6 7885 input_section->reloc_done = TRUE;
b49e97c9
TS
7886
7887 reloc_count = bfd_canonicalize_reloc (input_bfd,
7888 input_section,
7889 reloc_vector,
7890 symbols);
7891 if (reloc_count < 0)
7892 goto error_return;
7893
7894 if (reloc_count > 0)
7895 {
7896 arelent **parent;
7897 /* for mips */
7898 int gp_found;
7899 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7900
7901 {
7902 struct bfd_hash_entry *h;
7903 struct bfd_link_hash_entry *lh;
7904 /* Skip all this stuff if we aren't mixing formats. */
7905 if (abfd && input_bfd
7906 && abfd->xvec == input_bfd->xvec)
7907 lh = 0;
7908 else
7909 {
b34976b6 7910 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
7911 lh = (struct bfd_link_hash_entry *) h;
7912 }
7913 lookup:
7914 if (lh)
7915 {
7916 switch (lh->type)
7917 {
7918 case bfd_link_hash_undefined:
7919 case bfd_link_hash_undefweak:
7920 case bfd_link_hash_common:
7921 gp_found = 0;
7922 break;
7923 case bfd_link_hash_defined:
7924 case bfd_link_hash_defweak:
7925 gp_found = 1;
7926 gp = lh->u.def.value;
7927 break;
7928 case bfd_link_hash_indirect:
7929 case bfd_link_hash_warning:
7930 lh = lh->u.i.link;
7931 /* @@FIXME ignoring warning for now */
7932 goto lookup;
7933 case bfd_link_hash_new:
7934 default:
7935 abort ();
7936 }
7937 }
7938 else
7939 gp_found = 0;
7940 }
7941 /* end mips */
7942 for (parent = reloc_vector; *parent != (arelent *) NULL;
7943 parent++)
7944 {
7945 char *error_message = (char *) NULL;
7946 bfd_reloc_status_type r;
7947
7948 /* Specific to MIPS: Deal with relocation types that require
7949 knowing the gp of the output bfd. */
7950 asymbol *sym = *(*parent)->sym_ptr_ptr;
7951 if (bfd_is_abs_section (sym->section) && abfd)
7952 {
44c410de 7953 /* The special_function wouldn't get called anyway. */
b49e97c9
TS
7954 }
7955 else if (!gp_found)
7956 {
7957 /* The gp isn't there; let the special function code
7958 fall over on its own. */
7959 }
7960 else if ((*parent)->howto->special_function
7961 == _bfd_mips_elf32_gprel16_reloc)
7962 {
7963 /* bypass special_function call */
7964 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
7965 input_section, relocateable,
7966 (PTR) data, gp);
7967 goto skip_bfd_perform_relocation;
7968 }
7969 /* end mips specific stuff */
7970
7971 r = bfd_perform_relocation (input_bfd,
7972 *parent,
7973 (PTR) data,
7974 input_section,
7975 relocateable ? abfd : (bfd *) NULL,
7976 &error_message);
7977 skip_bfd_perform_relocation:
7978
7979 if (relocateable)
7980 {
7981 asection *os = input_section->output_section;
7982
7983 /* A partial link, so keep the relocs */
7984 os->orelocation[os->reloc_count] = *parent;
7985 os->reloc_count++;
7986 }
7987
7988 if (r != bfd_reloc_ok)
7989 {
7990 switch (r)
7991 {
7992 case bfd_reloc_undefined:
7993 if (!((*link_info->callbacks->undefined_symbol)
7994 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
7995 input_bfd, input_section, (*parent)->address,
b34976b6 7996 TRUE)))
b49e97c9
TS
7997 goto error_return;
7998 break;
7999 case bfd_reloc_dangerous:
8000 BFD_ASSERT (error_message != (char *) NULL);
8001 if (!((*link_info->callbacks->reloc_dangerous)
8002 (link_info, error_message, input_bfd, input_section,
8003 (*parent)->address)))
8004 goto error_return;
8005 break;
8006 case bfd_reloc_overflow:
8007 if (!((*link_info->callbacks->reloc_overflow)
8008 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8009 (*parent)->howto->name, (*parent)->addend,
8010 input_bfd, input_section, (*parent)->address)))
8011 goto error_return;
8012 break;
8013 case bfd_reloc_outofrange:
8014 default:
8015 abort ();
8016 break;
8017 }
8018
8019 }
8020 }
8021 }
8022 if (reloc_vector != NULL)
8023 free (reloc_vector);
8024 return data;
8025
8026error_return:
8027 if (reloc_vector != NULL)
8028 free (reloc_vector);
8029 return NULL;
8030}
8031\f
8032/* Create a MIPS ELF linker hash table. */
8033
8034struct bfd_link_hash_table *
8035_bfd_mips_elf_link_hash_table_create (abfd)
8036 bfd *abfd;
8037{
8038 struct mips_elf_link_hash_table *ret;
8039 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8040
e2d34d7d 8041 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
b49e97c9
TS
8042 if (ret == (struct mips_elf_link_hash_table *) NULL)
8043 return NULL;
8044
8045 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8046 mips_elf_link_hash_newfunc))
8047 {
e2d34d7d 8048 free (ret);
b49e97c9
TS
8049 return NULL;
8050 }
8051
8052#if 0
8053 /* We no longer use this. */
8054 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8055 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8056#endif
8057 ret->procedure_count = 0;
8058 ret->compact_rel_size = 0;
b34976b6 8059 ret->use_rld_obj_head = FALSE;
b49e97c9 8060 ret->rld_value = 0;
b34976b6 8061 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8062
8063 return &ret->root.root;
8064}
8065\f
8066/* We need to use a special link routine to handle the .reginfo and
8067 the .mdebug sections. We need to merge all instances of these
8068 sections together, not write them all out sequentially. */
8069
b34976b6 8070bfd_boolean
b49e97c9
TS
8071_bfd_mips_elf_final_link (abfd, info)
8072 bfd *abfd;
8073 struct bfd_link_info *info;
8074{
8075 asection **secpp;
8076 asection *o;
8077 struct bfd_link_order *p;
8078 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8079 asection *rtproc_sec;
8080 Elf32_RegInfo reginfo;
8081 struct ecoff_debug_info debug;
8082 const struct ecoff_debug_swap *swap
8083 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8084 HDRR *symhdr = &debug.symbolic_header;
8085 PTR mdebug_handle = NULL;
8086 asection *s;
8087 EXTR esym;
8088 unsigned int i;
8089 bfd_size_type amt;
8090
8091 static const char * const secname[] =
8092 {
8093 ".text", ".init", ".fini", ".data",
8094 ".rodata", ".sdata", ".sbss", ".bss"
8095 };
8096 static const int sc[] =
8097 {
8098 scText, scInit, scFini, scData,
8099 scRData, scSData, scSBss, scBss
8100 };
8101
8102 /* If all the things we linked together were PIC, but we're
8103 producing an executable (rather than a shared object), then the
8104 resulting file is CPIC (i.e., it calls PIC code.) */
8105 if (!info->shared
8106 && !info->relocateable
8107 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
8108 {
8109 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
8110 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
8111 }
8112
8113 /* We'd carefully arranged the dynamic symbol indices, and then the
8114 generic size_dynamic_sections renumbered them out from under us.
8115 Rather than trying somehow to prevent the renumbering, just do
8116 the sort again. */
8117 if (elf_hash_table (info)->dynamic_sections_created)
8118 {
8119 bfd *dynobj;
8120 asection *got;
8121 struct mips_got_info *g;
8122
8123 /* When we resort, we must tell mips_elf_sort_hash_table what
8124 the lowest index it may use is. That's the number of section
8125 symbols we're going to add. The generic ELF linker only
8126 adds these symbols when building a shared object. Note that
8127 we count the sections after (possibly) removing the .options
8128 section above. */
8129 if (! mips_elf_sort_hash_table (info, (info->shared
8130 ? bfd_count_sections (abfd) + 1
8131 : 1)))
b34976b6 8132 return FALSE;
b49e97c9
TS
8133
8134 /* Make sure we didn't grow the global .got region. */
8135 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8136 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8137 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8138
8139 if (g->global_gotsym != NULL)
8140 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8141 - g->global_gotsym->dynindx)
8142 <= g->global_gotno);
8143 }
8144
a902ee94
SC
8145#if 0
8146 /* We want to set the GP value for ld -r. */
b49e97c9
TS
8147 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8148 include it, even though we don't process it quite right. (Some
8149 entries are supposed to be merged.) Empirically, we seem to be
8150 better off including it then not. */
8151 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8152 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8153 {
8154 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8155 {
8156 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8157 if (p->type == bfd_indirect_link_order)
8158 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8159 (*secpp)->link_order_head = NULL;
8160 bfd_section_list_remove (abfd, secpp);
8161 --abfd->section_count;
8162
8163 break;
8164 }
8165 }
8166
8167 /* We include .MIPS.options, even though we don't process it quite right.
8168 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8169 to be better off including it than not. */
8170 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8171 {
8172 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8173 {
8174 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8175 if (p->type == bfd_indirect_link_order)
8176 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8177 (*secpp)->link_order_head = NULL;
8178 bfd_section_list_remove (abfd, secpp);
8179 --abfd->section_count;
b34976b6 8180
b49e97c9
TS
8181 break;
8182 }
8183 }
a902ee94 8184#endif
b49e97c9
TS
8185
8186 /* Get a value for the GP register. */
8187 if (elf_gp (abfd) == 0)
8188 {
8189 struct bfd_link_hash_entry *h;
8190
b34976b6 8191 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
b49e97c9
TS
8192 if (h != (struct bfd_link_hash_entry *) NULL
8193 && h->type == bfd_link_hash_defined)
8194 elf_gp (abfd) = (h->u.def.value
8195 + h->u.def.section->output_section->vma
8196 + h->u.def.section->output_offset);
8197 else if (info->relocateable)
8198 {
8199 bfd_vma lo = MINUS_ONE;
8200
8201 /* Find the GP-relative section with the lowest offset. */
8202 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8203 if (o->vma < lo
8204 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8205 lo = o->vma;
8206
8207 /* And calculate GP relative to that. */
8208 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8209 }
8210 else
8211 {
8212 /* If the relocate_section function needs to do a reloc
8213 involving the GP value, it should make a reloc_dangerous
8214 callback to warn that GP is not defined. */
8215 }
8216 }
8217
8218 /* Go through the sections and collect the .reginfo and .mdebug
8219 information. */
8220 reginfo_sec = NULL;
8221 mdebug_sec = NULL;
8222 gptab_data_sec = NULL;
8223 gptab_bss_sec = NULL;
8224 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8225 {
8226 if (strcmp (o->name, ".reginfo") == 0)
8227 {
8228 memset (&reginfo, 0, sizeof reginfo);
8229
8230 /* We have found the .reginfo section in the output file.
8231 Look through all the link_orders comprising it and merge
8232 the information together. */
8233 for (p = o->link_order_head;
8234 p != (struct bfd_link_order *) NULL;
8235 p = p->next)
8236 {
8237 asection *input_section;
8238 bfd *input_bfd;
8239 Elf32_External_RegInfo ext;
8240 Elf32_RegInfo sub;
8241
8242 if (p->type != bfd_indirect_link_order)
8243 {
8244 if (p->type == bfd_data_link_order)
8245 continue;
8246 abort ();
8247 }
8248
8249 input_section = p->u.indirect.section;
8250 input_bfd = input_section->owner;
8251
8252 /* The linker emulation code has probably clobbered the
8253 size to be zero bytes. */
8254 if (input_section->_raw_size == 0)
8255 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8256
8257 if (! bfd_get_section_contents (input_bfd, input_section,
8258 (PTR) &ext,
8259 (file_ptr) 0,
8260 (bfd_size_type) sizeof ext))
b34976b6 8261 return FALSE;
b49e97c9
TS
8262
8263 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8264
8265 reginfo.ri_gprmask |= sub.ri_gprmask;
8266 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8267 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8268 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8269 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8270
8271 /* ri_gp_value is set by the function
8272 mips_elf32_section_processing when the section is
8273 finally written out. */
8274
8275 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8276 elf_link_input_bfd ignores this section. */
8277 input_section->flags &= ~SEC_HAS_CONTENTS;
8278 }
8279
8280 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8281 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8282
8283 /* Skip this section later on (I don't think this currently
8284 matters, but someday it might). */
8285 o->link_order_head = (struct bfd_link_order *) NULL;
8286
8287 reginfo_sec = o;
8288 }
8289
8290 if (strcmp (o->name, ".mdebug") == 0)
8291 {
8292 struct extsym_info einfo;
8293 bfd_vma last;
8294
8295 /* We have found the .mdebug section in the output file.
8296 Look through all the link_orders comprising it and merge
8297 the information together. */
8298 symhdr->magic = swap->sym_magic;
8299 /* FIXME: What should the version stamp be? */
8300 symhdr->vstamp = 0;
8301 symhdr->ilineMax = 0;
8302 symhdr->cbLine = 0;
8303 symhdr->idnMax = 0;
8304 symhdr->ipdMax = 0;
8305 symhdr->isymMax = 0;
8306 symhdr->ioptMax = 0;
8307 symhdr->iauxMax = 0;
8308 symhdr->issMax = 0;
8309 symhdr->issExtMax = 0;
8310 symhdr->ifdMax = 0;
8311 symhdr->crfd = 0;
8312 symhdr->iextMax = 0;
8313
8314 /* We accumulate the debugging information itself in the
8315 debug_info structure. */
8316 debug.line = NULL;
8317 debug.external_dnr = NULL;
8318 debug.external_pdr = NULL;
8319 debug.external_sym = NULL;
8320 debug.external_opt = NULL;
8321 debug.external_aux = NULL;
8322 debug.ss = NULL;
8323 debug.ssext = debug.ssext_end = NULL;
8324 debug.external_fdr = NULL;
8325 debug.external_rfd = NULL;
8326 debug.external_ext = debug.external_ext_end = NULL;
8327
8328 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8329 if (mdebug_handle == (PTR) NULL)
b34976b6 8330 return FALSE;
b49e97c9
TS
8331
8332 esym.jmptbl = 0;
8333 esym.cobol_main = 0;
8334 esym.weakext = 0;
8335 esym.reserved = 0;
8336 esym.ifd = ifdNil;
8337 esym.asym.iss = issNil;
8338 esym.asym.st = stLocal;
8339 esym.asym.reserved = 0;
8340 esym.asym.index = indexNil;
8341 last = 0;
8342 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8343 {
8344 esym.asym.sc = sc[i];
8345 s = bfd_get_section_by_name (abfd, secname[i]);
8346 if (s != NULL)
8347 {
8348 esym.asym.value = s->vma;
8349 last = s->vma + s->_raw_size;
8350 }
8351 else
8352 esym.asym.value = last;
8353 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8354 secname[i], &esym))
b34976b6 8355 return FALSE;
b49e97c9
TS
8356 }
8357
8358 for (p = o->link_order_head;
8359 p != (struct bfd_link_order *) NULL;
8360 p = p->next)
8361 {
8362 asection *input_section;
8363 bfd *input_bfd;
8364 const struct ecoff_debug_swap *input_swap;
8365 struct ecoff_debug_info input_debug;
8366 char *eraw_src;
8367 char *eraw_end;
8368
8369 if (p->type != bfd_indirect_link_order)
8370 {
8371 if (p->type == bfd_data_link_order)
8372 continue;
8373 abort ();
8374 }
8375
8376 input_section = p->u.indirect.section;
8377 input_bfd = input_section->owner;
8378
8379 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8380 || (get_elf_backend_data (input_bfd)
8381 ->elf_backend_ecoff_debug_swap) == NULL)
8382 {
8383 /* I don't know what a non MIPS ELF bfd would be
8384 doing with a .mdebug section, but I don't really
8385 want to deal with it. */
8386 continue;
8387 }
8388
8389 input_swap = (get_elf_backend_data (input_bfd)
8390 ->elf_backend_ecoff_debug_swap);
8391
8392 BFD_ASSERT (p->size == input_section->_raw_size);
8393
8394 /* The ECOFF linking code expects that we have already
8395 read in the debugging information and set up an
8396 ecoff_debug_info structure, so we do that now. */
8397 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8398 &input_debug))
b34976b6 8399 return FALSE;
b49e97c9
TS
8400
8401 if (! (bfd_ecoff_debug_accumulate
8402 (mdebug_handle, abfd, &debug, swap, input_bfd,
8403 &input_debug, input_swap, info)))
b34976b6 8404 return FALSE;
b49e97c9
TS
8405
8406 /* Loop through the external symbols. For each one with
8407 interesting information, try to find the symbol in
8408 the linker global hash table and save the information
8409 for the output external symbols. */
8410 eraw_src = input_debug.external_ext;
8411 eraw_end = (eraw_src
8412 + (input_debug.symbolic_header.iextMax
8413 * input_swap->external_ext_size));
8414 for (;
8415 eraw_src < eraw_end;
8416 eraw_src += input_swap->external_ext_size)
8417 {
8418 EXTR ext;
8419 const char *name;
8420 struct mips_elf_link_hash_entry *h;
8421
8422 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8423 if (ext.asym.sc == scNil
8424 || ext.asym.sc == scUndefined
8425 || ext.asym.sc == scSUndefined)
8426 continue;
8427
8428 name = input_debug.ssext + ext.asym.iss;
8429 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 8430 name, FALSE, FALSE, TRUE);
b49e97c9
TS
8431 if (h == NULL || h->esym.ifd != -2)
8432 continue;
8433
8434 if (ext.ifd != -1)
8435 {
8436 BFD_ASSERT (ext.ifd
8437 < input_debug.symbolic_header.ifdMax);
8438 ext.ifd = input_debug.ifdmap[ext.ifd];
8439 }
8440
8441 h->esym = ext;
8442 }
8443
8444 /* Free up the information we just read. */
8445 free (input_debug.line);
8446 free (input_debug.external_dnr);
8447 free (input_debug.external_pdr);
8448 free (input_debug.external_sym);
8449 free (input_debug.external_opt);
8450 free (input_debug.external_aux);
8451 free (input_debug.ss);
8452 free (input_debug.ssext);
8453 free (input_debug.external_fdr);
8454 free (input_debug.external_rfd);
8455 free (input_debug.external_ext);
8456
8457 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8458 elf_link_input_bfd ignores this section. */
8459 input_section->flags &= ~SEC_HAS_CONTENTS;
8460 }
8461
8462 if (SGI_COMPAT (abfd) && info->shared)
8463 {
8464 /* Create .rtproc section. */
8465 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8466 if (rtproc_sec == NULL)
8467 {
8468 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8469 | SEC_LINKER_CREATED | SEC_READONLY);
8470
8471 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8472 if (rtproc_sec == NULL
8473 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8474 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 8475 return FALSE;
b49e97c9
TS
8476 }
8477
8478 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8479 info, rtproc_sec,
8480 &debug))
b34976b6 8481 return FALSE;
b49e97c9
TS
8482 }
8483
8484 /* Build the external symbol information. */
8485 einfo.abfd = abfd;
8486 einfo.info = info;
8487 einfo.debug = &debug;
8488 einfo.swap = swap;
b34976b6 8489 einfo.failed = FALSE;
b49e97c9
TS
8490 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8491 mips_elf_output_extsym,
8492 (PTR) &einfo);
8493 if (einfo.failed)
b34976b6 8494 return FALSE;
b49e97c9
TS
8495
8496 /* Set the size of the .mdebug section. */
8497 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8498
8499 /* Skip this section later on (I don't think this currently
8500 matters, but someday it might). */
8501 o->link_order_head = (struct bfd_link_order *) NULL;
8502
8503 mdebug_sec = o;
8504 }
8505
8506 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8507 {
8508 const char *subname;
8509 unsigned int c;
8510 Elf32_gptab *tab;
8511 Elf32_External_gptab *ext_tab;
8512 unsigned int j;
8513
8514 /* The .gptab.sdata and .gptab.sbss sections hold
8515 information describing how the small data area would
8516 change depending upon the -G switch. These sections
8517 not used in executables files. */
8518 if (! info->relocateable)
8519 {
8520 for (p = o->link_order_head;
8521 p != (struct bfd_link_order *) NULL;
8522 p = p->next)
8523 {
8524 asection *input_section;
8525
8526 if (p->type != bfd_indirect_link_order)
8527 {
8528 if (p->type == bfd_data_link_order)
8529 continue;
8530 abort ();
8531 }
8532
8533 input_section = p->u.indirect.section;
8534
8535 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8536 elf_link_input_bfd ignores this section. */
8537 input_section->flags &= ~SEC_HAS_CONTENTS;
8538 }
8539
8540 /* Skip this section later on (I don't think this
8541 currently matters, but someday it might). */
8542 o->link_order_head = (struct bfd_link_order *) NULL;
8543
8544 /* Really remove the section. */
8545 for (secpp = &abfd->sections;
8546 *secpp != o;
8547 secpp = &(*secpp)->next)
8548 ;
8549 bfd_section_list_remove (abfd, secpp);
8550 --abfd->section_count;
8551
8552 continue;
8553 }
8554
8555 /* There is one gptab for initialized data, and one for
8556 uninitialized data. */
8557 if (strcmp (o->name, ".gptab.sdata") == 0)
8558 gptab_data_sec = o;
8559 else if (strcmp (o->name, ".gptab.sbss") == 0)
8560 gptab_bss_sec = o;
8561 else
8562 {
8563 (*_bfd_error_handler)
8564 (_("%s: illegal section name `%s'"),
8565 bfd_get_filename (abfd), o->name);
8566 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 8567 return FALSE;
b49e97c9
TS
8568 }
8569
8570 /* The linker script always combines .gptab.data and
8571 .gptab.sdata into .gptab.sdata, and likewise for
8572 .gptab.bss and .gptab.sbss. It is possible that there is
8573 no .sdata or .sbss section in the output file, in which
8574 case we must change the name of the output section. */
8575 subname = o->name + sizeof ".gptab" - 1;
8576 if (bfd_get_section_by_name (abfd, subname) == NULL)
8577 {
8578 if (o == gptab_data_sec)
8579 o->name = ".gptab.data";
8580 else
8581 o->name = ".gptab.bss";
8582 subname = o->name + sizeof ".gptab" - 1;
8583 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8584 }
8585
8586 /* Set up the first entry. */
8587 c = 1;
8588 amt = c * sizeof (Elf32_gptab);
8589 tab = (Elf32_gptab *) bfd_malloc (amt);
8590 if (tab == NULL)
b34976b6 8591 return FALSE;
b49e97c9
TS
8592 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8593 tab[0].gt_header.gt_unused = 0;
8594
8595 /* Combine the input sections. */
8596 for (p = o->link_order_head;
8597 p != (struct bfd_link_order *) NULL;
8598 p = p->next)
8599 {
8600 asection *input_section;
8601 bfd *input_bfd;
8602 bfd_size_type size;
8603 unsigned long last;
8604 bfd_size_type gpentry;
8605
8606 if (p->type != bfd_indirect_link_order)
8607 {
8608 if (p->type == bfd_data_link_order)
8609 continue;
8610 abort ();
8611 }
8612
8613 input_section = p->u.indirect.section;
8614 input_bfd = input_section->owner;
8615
8616 /* Combine the gptab entries for this input section one
8617 by one. We know that the input gptab entries are
8618 sorted by ascending -G value. */
8619 size = bfd_section_size (input_bfd, input_section);
8620 last = 0;
8621 for (gpentry = sizeof (Elf32_External_gptab);
8622 gpentry < size;
8623 gpentry += sizeof (Elf32_External_gptab))
8624 {
8625 Elf32_External_gptab ext_gptab;
8626 Elf32_gptab int_gptab;
8627 unsigned long val;
8628 unsigned long add;
b34976b6 8629 bfd_boolean exact;
b49e97c9
TS
8630 unsigned int look;
8631
8632 if (! (bfd_get_section_contents
8633 (input_bfd, input_section, (PTR) &ext_gptab,
8634 (file_ptr) gpentry,
8635 (bfd_size_type) sizeof (Elf32_External_gptab))))
8636 {
8637 free (tab);
b34976b6 8638 return FALSE;
b49e97c9
TS
8639 }
8640
8641 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8642 &int_gptab);
8643 val = int_gptab.gt_entry.gt_g_value;
8644 add = int_gptab.gt_entry.gt_bytes - last;
8645
b34976b6 8646 exact = FALSE;
b49e97c9
TS
8647 for (look = 1; look < c; look++)
8648 {
8649 if (tab[look].gt_entry.gt_g_value >= val)
8650 tab[look].gt_entry.gt_bytes += add;
8651
8652 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 8653 exact = TRUE;
b49e97c9
TS
8654 }
8655
8656 if (! exact)
8657 {
8658 Elf32_gptab *new_tab;
8659 unsigned int max;
8660
8661 /* We need a new table entry. */
8662 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8663 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8664 if (new_tab == NULL)
8665 {
8666 free (tab);
b34976b6 8667 return FALSE;
b49e97c9
TS
8668 }
8669 tab = new_tab;
8670 tab[c].gt_entry.gt_g_value = val;
8671 tab[c].gt_entry.gt_bytes = add;
8672
8673 /* Merge in the size for the next smallest -G
8674 value, since that will be implied by this new
8675 value. */
8676 max = 0;
8677 for (look = 1; look < c; look++)
8678 {
8679 if (tab[look].gt_entry.gt_g_value < val
8680 && (max == 0
8681 || (tab[look].gt_entry.gt_g_value
8682 > tab[max].gt_entry.gt_g_value)))
8683 max = look;
8684 }
8685 if (max != 0)
8686 tab[c].gt_entry.gt_bytes +=
8687 tab[max].gt_entry.gt_bytes;
8688
8689 ++c;
8690 }
8691
8692 last = int_gptab.gt_entry.gt_bytes;
8693 }
8694
8695 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8696 elf_link_input_bfd ignores this section. */
8697 input_section->flags &= ~SEC_HAS_CONTENTS;
8698 }
8699
8700 /* The table must be sorted by -G value. */
8701 if (c > 2)
8702 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8703
8704 /* Swap out the table. */
8705 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8706 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8707 if (ext_tab == NULL)
8708 {
8709 free (tab);
b34976b6 8710 return FALSE;
b49e97c9
TS
8711 }
8712
8713 for (j = 0; j < c; j++)
8714 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8715 free (tab);
8716
8717 o->_raw_size = c * sizeof (Elf32_External_gptab);
8718 o->contents = (bfd_byte *) ext_tab;
8719
8720 /* Skip this section later on (I don't think this currently
8721 matters, but someday it might). */
8722 o->link_order_head = (struct bfd_link_order *) NULL;
8723 }
8724 }
8725
8726 /* Invoke the regular ELF backend linker to do all the work. */
ee6423ed 8727 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
b34976b6 8728 return FALSE;
b49e97c9
TS
8729
8730 /* Now write out the computed sections. */
8731
8732 if (reginfo_sec != (asection *) NULL)
8733 {
8734 Elf32_External_RegInfo ext;
8735
8736 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8737 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
8738 (file_ptr) 0,
8739 (bfd_size_type) sizeof ext))
b34976b6 8740 return FALSE;
b49e97c9
TS
8741 }
8742
8743 if (mdebug_sec != (asection *) NULL)
8744 {
8745 BFD_ASSERT (abfd->output_has_begun);
8746 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8747 swap, info,
8748 mdebug_sec->filepos))
b34976b6 8749 return FALSE;
b49e97c9
TS
8750
8751 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8752 }
8753
8754 if (gptab_data_sec != (asection *) NULL)
8755 {
8756 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8757 gptab_data_sec->contents,
8758 (file_ptr) 0,
8759 gptab_data_sec->_raw_size))
b34976b6 8760 return FALSE;
b49e97c9
TS
8761 }
8762
8763 if (gptab_bss_sec != (asection *) NULL)
8764 {
8765 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8766 gptab_bss_sec->contents,
8767 (file_ptr) 0,
8768 gptab_bss_sec->_raw_size))
b34976b6 8769 return FALSE;
b49e97c9
TS
8770 }
8771
8772 if (SGI_COMPAT (abfd))
8773 {
8774 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8775 if (rtproc_sec != NULL)
8776 {
8777 if (! bfd_set_section_contents (abfd, rtproc_sec,
8778 rtproc_sec->contents,
8779 (file_ptr) 0,
8780 rtproc_sec->_raw_size))
b34976b6 8781 return FALSE;
b49e97c9
TS
8782 }
8783 }
8784
b34976b6 8785 return TRUE;
b49e97c9
TS
8786}
8787\f
64543e1a
RS
8788/* Structure for saying that BFD machine EXTENSION extends BASE. */
8789
8790struct mips_mach_extension {
8791 unsigned long extension, base;
8792};
8793
8794
8795/* An array describing how BFD machines relate to one another. The entries
8796 are ordered topologically with MIPS I extensions listed last. */
8797
8798static const struct mips_mach_extension mips_mach_extensions[] = {
8799 /* MIPS64 extensions. */
8800 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8801
8802 /* MIPS V extensions. */
8803 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8804
8805 /* R10000 extensions. */
8806 { bfd_mach_mips12000, bfd_mach_mips10000 },
8807
8808 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8809 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8810 better to allow vr5400 and vr5500 code to be merged anyway, since
8811 many libraries will just use the core ISA. Perhaps we could add
8812 some sort of ASE flag if this ever proves a problem. */
8813 { bfd_mach_mips5500, bfd_mach_mips5400 },
8814 { bfd_mach_mips5400, bfd_mach_mips5000 },
8815
8816 /* MIPS IV extensions. */
8817 { bfd_mach_mips5, bfd_mach_mips8000 },
8818 { bfd_mach_mips10000, bfd_mach_mips8000 },
8819 { bfd_mach_mips5000, bfd_mach_mips8000 },
8820
8821 /* VR4100 extensions. */
8822 { bfd_mach_mips4120, bfd_mach_mips4100 },
8823 { bfd_mach_mips4111, bfd_mach_mips4100 },
8824
8825 /* MIPS III extensions. */
8826 { bfd_mach_mips8000, bfd_mach_mips4000 },
8827 { bfd_mach_mips4650, bfd_mach_mips4000 },
8828 { bfd_mach_mips4600, bfd_mach_mips4000 },
8829 { bfd_mach_mips4400, bfd_mach_mips4000 },
8830 { bfd_mach_mips4300, bfd_mach_mips4000 },
8831 { bfd_mach_mips4100, bfd_mach_mips4000 },
8832 { bfd_mach_mips4010, bfd_mach_mips4000 },
8833
8834 /* MIPS32 extensions. */
8835 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8836
8837 /* MIPS II extensions. */
8838 { bfd_mach_mips4000, bfd_mach_mips6000 },
8839 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8840
8841 /* MIPS I extensions. */
8842 { bfd_mach_mips6000, bfd_mach_mips3000 },
8843 { bfd_mach_mips3900, bfd_mach_mips3000 }
8844};
8845
8846
8847/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8848
8849static bfd_boolean
8850mips_mach_extends_p (base, extension)
8851 unsigned long base, extension;
8852{
8853 size_t i;
8854
8855 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8856 if (extension == mips_mach_extensions[i].extension)
8857 extension = mips_mach_extensions[i].base;
8858
8859 return extension == base;
8860}
8861
8862
8863/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 8864
b34976b6 8865static bfd_boolean
64543e1a
RS
8866mips_32bit_flags_p (flags)
8867 flagword flags;
00707a0e 8868{
64543e1a
RS
8869 return ((flags & EF_MIPS_32BITMODE) != 0
8870 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8871 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8872 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8873 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8874 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8875 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
8876}
8877
64543e1a 8878
b49e97c9
TS
8879/* Merge backend specific data from an object file to the output
8880 object file when linking. */
8881
b34976b6 8882bfd_boolean
b49e97c9
TS
8883_bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
8884 bfd *ibfd;
8885 bfd *obfd;
8886{
8887 flagword old_flags;
8888 flagword new_flags;
b34976b6
AM
8889 bfd_boolean ok;
8890 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
8891 asection *sec;
8892
8893 /* Check if we have the same endianess */
82e51918 8894 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
b34976b6 8895 return FALSE;
b49e97c9
TS
8896
8897 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8898 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 8899 return TRUE;
b49e97c9
TS
8900
8901 new_flags = elf_elfheader (ibfd)->e_flags;
8902 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8903 old_flags = elf_elfheader (obfd)->e_flags;
8904
8905 if (! elf_flags_init (obfd))
8906 {
b34976b6 8907 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
8908 elf_elfheader (obfd)->e_flags = new_flags;
8909 elf_elfheader (obfd)->e_ident[EI_CLASS]
8910 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8911
8912 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8913 && bfd_get_arch_info (obfd)->the_default)
8914 {
8915 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8916 bfd_get_mach (ibfd)))
b34976b6 8917 return FALSE;
b49e97c9
TS
8918 }
8919
b34976b6 8920 return TRUE;
b49e97c9
TS
8921 }
8922
8923 /* Check flag compatibility. */
8924
8925 new_flags &= ~EF_MIPS_NOREORDER;
8926 old_flags &= ~EF_MIPS_NOREORDER;
8927
f4416af6
AO
8928 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8929 doesn't seem to matter. */
8930 new_flags &= ~EF_MIPS_XGOT;
8931 old_flags &= ~EF_MIPS_XGOT;
8932
b49e97c9 8933 if (new_flags == old_flags)
b34976b6 8934 return TRUE;
b49e97c9
TS
8935
8936 /* Check to see if the input BFD actually contains any sections.
8937 If not, its flags may not have been initialised either, but it cannot
8938 actually cause any incompatibility. */
8939 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8940 {
8941 /* Ignore synthetic sections and empty .text, .data and .bss sections
8942 which are automatically generated by gas. */
8943 if (strcmp (sec->name, ".reginfo")
8944 && strcmp (sec->name, ".mdebug")
8945 && ((!strcmp (sec->name, ".text")
8946 || !strcmp (sec->name, ".data")
8947 || !strcmp (sec->name, ".bss"))
8948 && sec->_raw_size != 0))
8949 {
b34976b6 8950 null_input_bfd = FALSE;
b49e97c9
TS
8951 break;
8952 }
8953 }
8954 if (null_input_bfd)
b34976b6 8955 return TRUE;
b49e97c9 8956
b34976b6 8957 ok = TRUE;
b49e97c9
TS
8958
8959 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
8960 {
8961 new_flags &= ~EF_MIPS_PIC;
8962 old_flags &= ~EF_MIPS_PIC;
8963 (*_bfd_error_handler)
8964 (_("%s: linking PIC files with non-PIC files"),
8965 bfd_archive_filename (ibfd));
b34976b6 8966 ok = FALSE;
b49e97c9
TS
8967 }
8968
8969 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
8970 {
8971 new_flags &= ~EF_MIPS_CPIC;
8972 old_flags &= ~EF_MIPS_CPIC;
8973 (*_bfd_error_handler)
8974 (_("%s: linking abicalls files with non-abicalls files"),
8975 bfd_archive_filename (ibfd));
b34976b6 8976 ok = FALSE;
b49e97c9
TS
8977 }
8978
64543e1a
RS
8979 /* Compare the ISAs. */
8980 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 8981 {
64543e1a
RS
8982 (*_bfd_error_handler)
8983 (_("%s: linking 32-bit code with 64-bit code"),
8984 bfd_archive_filename (ibfd));
8985 ok = FALSE;
8986 }
8987 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8988 {
8989 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8990 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 8991 {
64543e1a
RS
8992 /* Copy the architecture info from IBFD to OBFD. Also copy
8993 the 32-bit flag (if set) so that we continue to recognise
8994 OBFD as a 32-bit binary. */
8995 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
8996 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
8997 elf_elfheader (obfd)->e_flags
8998 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
8999
9000 /* Copy across the ABI flags if OBFD doesn't use them
9001 and if that was what caused us to treat IBFD as 32-bit. */
9002 if ((old_flags & EF_MIPS_ABI) == 0
9003 && mips_32bit_flags_p (new_flags)
9004 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9005 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9006 }
9007 else
9008 {
64543e1a 9009 /* The ISAs aren't compatible. */
b49e97c9 9010 (*_bfd_error_handler)
64543e1a 9011 (_("%s: linking %s module with previous %s modules"),
b49e97c9 9012 bfd_archive_filename (ibfd),
64543e1a
RS
9013 bfd_printable_name (ibfd),
9014 bfd_printable_name (obfd));
b34976b6 9015 ok = FALSE;
b49e97c9 9016 }
b49e97c9
TS
9017 }
9018
64543e1a
RS
9019 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9020 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9021
9022 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9023 does set EI_CLASS differently from any 32-bit ABI. */
9024 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9025 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9026 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9027 {
9028 /* Only error if both are set (to different values). */
9029 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9030 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9031 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9032 {
9033 (*_bfd_error_handler)
9034 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9035 bfd_archive_filename (ibfd),
9036 elf_mips_abi_name (ibfd),
9037 elf_mips_abi_name (obfd));
b34976b6 9038 ok = FALSE;
b49e97c9
TS
9039 }
9040 new_flags &= ~EF_MIPS_ABI;
9041 old_flags &= ~EF_MIPS_ABI;
9042 }
9043
fb39dac1
RS
9044 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9045 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9046 {
9047 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9048
9049 new_flags &= ~ EF_MIPS_ARCH_ASE;
9050 old_flags &= ~ EF_MIPS_ARCH_ASE;
9051 }
9052
b49e97c9
TS
9053 /* Warn about any other mismatches */
9054 if (new_flags != old_flags)
9055 {
9056 (*_bfd_error_handler)
9057 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9058 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9059 (unsigned long) old_flags);
b34976b6 9060 ok = FALSE;
b49e97c9
TS
9061 }
9062
9063 if (! ok)
9064 {
9065 bfd_set_error (bfd_error_bad_value);
b34976b6 9066 return FALSE;
b49e97c9
TS
9067 }
9068
b34976b6 9069 return TRUE;
b49e97c9
TS
9070}
9071
9072/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9073
b34976b6 9074bfd_boolean
b49e97c9
TS
9075_bfd_mips_elf_set_private_flags (abfd, flags)
9076 bfd *abfd;
9077 flagword flags;
9078{
9079 BFD_ASSERT (!elf_flags_init (abfd)
9080 || elf_elfheader (abfd)->e_flags == flags);
9081
9082 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9083 elf_flags_init (abfd) = TRUE;
9084 return TRUE;
b49e97c9
TS
9085}
9086
b34976b6 9087bfd_boolean
b49e97c9
TS
9088_bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9089 bfd *abfd;
9090 PTR ptr;
9091{
9092 FILE *file = (FILE *) ptr;
9093
9094 BFD_ASSERT (abfd != NULL && ptr != NULL);
9095
9096 /* Print normal ELF private data. */
9097 _bfd_elf_print_private_bfd_data (abfd, ptr);
9098
9099 /* xgettext:c-format */
9100 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9101
9102 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9103 fprintf (file, _(" [abi=O32]"));
9104 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9105 fprintf (file, _(" [abi=O64]"));
9106 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9107 fprintf (file, _(" [abi=EABI32]"));
9108 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9109 fprintf (file, _(" [abi=EABI64]"));
9110 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9111 fprintf (file, _(" [abi unknown]"));
9112 else if (ABI_N32_P (abfd))
9113 fprintf (file, _(" [abi=N32]"));
9114 else if (ABI_64_P (abfd))
9115 fprintf (file, _(" [abi=64]"));
9116 else
9117 fprintf (file, _(" [no abi set]"));
9118
9119 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9120 fprintf (file, _(" [mips1]"));
9121 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9122 fprintf (file, _(" [mips2]"));
9123 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9124 fprintf (file, _(" [mips3]"));
9125 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9126 fprintf (file, _(" [mips4]"));
9127 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9128 fprintf (file, _(" [mips5]"));
9129 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9130 fprintf (file, _(" [mips32]"));
9131 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9132 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9133 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9134 fprintf (file, _(" [mips32r2]"));
b49e97c9
TS
9135 else
9136 fprintf (file, _(" [unknown ISA]"));
9137
40d32fc6
CD
9138 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9139 fprintf (file, _(" [mdmx]"));
9140
9141 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9142 fprintf (file, _(" [mips16]"));
9143
b49e97c9
TS
9144 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9145 fprintf (file, _(" [32bitmode]"));
9146 else
9147 fprintf (file, _(" [not 32bitmode]"));
9148
9149 fputc ('\n', file);
9150
b34976b6 9151 return TRUE;
b49e97c9 9152}
This page took 0.545825 seconds and 4 git commands to generate.