* Makefile.tpl: Generate normal dependencies if the LHS module is
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
79cda7cf 3 2003, 2004 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
b15e6682 67 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
b15e6682
AO
71};
72
f0abc2a1 73/* This structure is used to hold .got information when linking. */
b49e97c9
TS
74
75struct mips_got_info
76{
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
b15e6682
AO
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
f4416af6
AO
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94};
95
96/* Map an input bfd to a got in a multi-got link. */
97
98struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101};
102
103/* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106struct mips_elf_got_per_bfd_arg
107{
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128};
129
130/* Another structure used to pass arguments for got entries traversal. */
131
132struct mips_elf_set_global_got_offset_arg
133{
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
b49e97c9
TS
138};
139
f0abc2a1
AM
140struct _mips_elf_section_data
141{
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148};
149
150#define mips_elf_section_data(sec) \
68bfbfcc 151 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 152
b49e97c9
TS
153/* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156struct mips_elf_hash_sort_data
157{
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
f4416af6
AO
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 166 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 167 long max_unref_got_dynindx;
b49e97c9
TS
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171};
172
173/* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176struct mips_elf_link_hash_entry
177{
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
b34976b6 189 bfd_boolean readonly_reloc;
b49e97c9 190
b49e97c9
TS
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
b34976b6 195 bfd_boolean no_fn_stub;
b49e97c9
TS
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
b34976b6 203 bfd_boolean need_fn_stub;
b49e97c9
TS
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
7c5fcef7
L
212
213 /* Are we forced local? .*/
b34976b6 214 bfd_boolean forced_local;
b49e97c9
TS
215};
216
217/* MIPS ELF linker hash table. */
218
219struct mips_elf_link_hash_table
220{
221 struct elf_link_hash_table root;
222#if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226#endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 232 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 233 bfd_boolean use_rld_obj_head;
b49e97c9
TS
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
b34976b6 237 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
238};
239
240/* Structure used to pass information to mips_elf_output_extsym. */
241
242struct extsym_info
243{
9e4aeb93
RS
244 bfd *abfd;
245 struct bfd_link_info *info;
b49e97c9
TS
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
b34976b6 248 bfd_boolean failed;
b49e97c9
TS
249};
250
8dc1a139 251/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
252
253static const char * const mips_elf_dynsym_rtproc_names[] =
254{
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259};
260
261/* These structures are used to generate the .compact_rel section on
8dc1a139 262 IRIX5. */
b49e97c9
TS
263
264typedef struct
265{
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272} Elf32_compact_rel;
273
274typedef struct
275{
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282} Elf32_External_compact_rel;
283
284typedef struct
285{
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292} Elf32_crinfo;
293
294typedef struct
295{
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301} Elf32_crinfo2;
302
303typedef struct
304{
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308} Elf32_External_crinfo;
309
310typedef struct
311{
312 bfd_byte info[4];
313 bfd_byte konst[4];
314} Elf32_External_crinfo2;
315
316/* These are the constants used to swap the bitfields in a crinfo. */
317
318#define CRINFO_CTYPE (0x1)
319#define CRINFO_CTYPE_SH (31)
320#define CRINFO_RTYPE (0xf)
321#define CRINFO_RTYPE_SH (27)
322#define CRINFO_DIST2TO (0xff)
323#define CRINFO_DIST2TO_SH (19)
324#define CRINFO_RELVADDR (0x7ffff)
325#define CRINFO_RELVADDR_SH (0)
326
327/* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330#define CRF_MIPS_LONG 1
331#define CRF_MIPS_SHORT 0
332
333/* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343#define CRT_MIPS_REL32 0xa
344#define CRT_MIPS_WORD 0xb
345#define CRT_MIPS_GPHI_LO 0xc
346#define CRT_MIPS_JMPAD 0xd
347
348#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352\f
353/* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356typedef struct runtime_pdr {
ae9a127f
NC
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
b49e97c9 366 long reserved;
ae9a127f 367 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
368} RPDR, *pRPDR;
369#define cbRPDR sizeof (RPDR)
370#define rpdNil ((pRPDR) 0)
371\f
372static struct bfd_hash_entry *mips_elf_link_hash_newfunc
9719ad41 373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
b49e97c9 374static void ecoff_swap_rpdr_out
9719ad41 375 (bfd *, const RPDR *, struct rpdr_ext *);
b34976b6 376static bfd_boolean mips_elf_create_procedure_table
9719ad41
RS
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
b34976b6 379static bfd_boolean mips_elf_check_mips16_stubs
9719ad41 380 (struct mips_elf_link_hash_entry *, void *);
b49e97c9 381static void bfd_mips_elf32_swap_gptab_in
9719ad41 382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
b49e97c9 383static void bfd_mips_elf32_swap_gptab_out
9719ad41 384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
b49e97c9 385static void bfd_elf32_swap_compact_rel_out
9719ad41 386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
b49e97c9 387static void bfd_elf32_swap_crinfo_out
9719ad41 388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
b49e97c9 389static int sort_dynamic_relocs
9719ad41 390 (const void *, const void *);
f4416af6 391static int sort_dynamic_relocs_64
9719ad41 392 (const void *, const void *);
b34976b6 393static bfd_boolean mips_elf_output_extsym
9719ad41
RS
394 (struct mips_elf_link_hash_entry *, void *);
395static int gptab_compare
396 (const void *, const void *);
397static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
b49e97c9 401static struct mips_got_info *mips_elf_got_info
9719ad41 402 (bfd *, asection **);
b49e97c9 403static bfd_vma mips_elf_local_got_index
9719ad41 404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
b49e97c9 405static bfd_vma mips_elf_global_got_index
9719ad41 406 (bfd *, bfd *, struct elf_link_hash_entry *);
b49e97c9 407static bfd_vma mips_elf_got_page
9719ad41 408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
b49e97c9 409static bfd_vma mips_elf_got16_entry
9719ad41 410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
b49e97c9 411static bfd_vma mips_elf_got_offset_from_index
9719ad41 412 (bfd *, bfd *, bfd *, bfd_vma);
b15e6682 413static struct mips_got_entry *mips_elf_create_local_got_entry
9719ad41 414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
b34976b6 415static bfd_boolean mips_elf_sort_hash_table
9719ad41 416 (struct bfd_link_info *, unsigned long);
b34976b6 417static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 418 (struct mips_elf_link_hash_entry *, void *);
f4416af6 419static bfd_boolean mips_elf_record_local_got_symbol
9719ad41 420 (bfd *, long, bfd_vma, struct mips_got_info *);
b34976b6 421static bfd_boolean mips_elf_record_global_got_symbol
9719ad41
RS
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
b49e97c9 424static const Elf_Internal_Rela *mips_elf_next_relocation
9719ad41 425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
b34976b6 426static bfd_boolean mips_elf_local_relocation_p
9719ad41
RS
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430static bfd_vma mips_elf_high
431 (bfd_vma);
432static bfd_vma mips_elf_higher
433 (bfd_vma);
434static bfd_vma mips_elf_highest
435 (bfd_vma);
b34976b6 436static bfd_boolean mips_elf_create_compact_rel_section
9719ad41 437 (bfd *, struct bfd_link_info *);
b34976b6 438static bfd_boolean mips_elf_create_got_section
9719ad41 439 (bfd *, struct bfd_link_info *, bfd_boolean);
b49e97c9 440static bfd_reloc_status_type mips_elf_calculate_relocation
9719ad41
RS
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
b49e97c9 445static bfd_vma mips_elf_obtain_contents
9719ad41 446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
b34976b6 447static bfd_boolean mips_elf_perform_relocation
9719ad41
RS
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
b34976b6 450static bfd_boolean mips_elf_stub_section_p
9719ad41 451 (bfd *, asection *);
b49e97c9 452static void mips_elf_allocate_dynamic_relocations
9719ad41 453 (bfd *, unsigned int);
b34976b6 454static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458static void mips_set_isa_flags
459 (bfd *);
460static INLINE char *elf_mips_abi_name
461 (bfd *);
b49e97c9 462static void mips_elf_irix6_finish_dynamic_symbol
9719ad41
RS
463 (bfd *, const char *, Elf_Internal_Sym *);
464static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466static bfd_boolean mips_32bit_flags_p
467 (flagword);
468static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470static hashval_t mips_elf_got_entry_hash
471 (const void *);
472static int mips_elf_got_entry_eq
473 (const void *, const void *);
b49e97c9 474
f4416af6 475static bfd_boolean mips_elf_multi_got
9719ad41
RS
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486static int mips_elf_make_got_per_bfd
487 (void **, void *);
488static int mips_elf_merge_gots
489 (void **, void *);
490static int mips_elf_set_global_got_offset
491 (void **, void *);
492static int mips_elf_set_no_stub
493 (void **, void *);
494static int mips_elf_resolve_final_got_entry
495 (void **, void *);
f4416af6 496static void mips_elf_resolve_final_got_entries
9719ad41 497 (struct mips_got_info *);
f4416af6 498static bfd_vma mips_elf_adjust_gp
9719ad41 499 (bfd *, struct mips_got_info *, bfd *);
f4416af6 500static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 501 (struct mips_got_info *, bfd *);
f4416af6 502
b49e97c9
TS
503/* This will be used when we sort the dynamic relocation records. */
504static bfd *reldyn_sorting_bfd;
505
506/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 507
b49e97c9
TS
508#define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
4a14403c 511/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 512#define ABI_64_P(abfd) \
141ff970 513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 514
4a14403c
TS
515/* Nonzero if ABFD is using NewABI conventions. */
516#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
519#define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
b49e97c9
TS
522/* Whether we are trying to be compatible with IRIX at all. */
523#define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526/* The name of the options section. */
527#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9
TS
529
530/* The name of the stub section. */
ca07892d 531#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
532
533/* The size of an external REL relocation. */
534#define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537/* The size of an external dynamic table entry. */
538#define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541/* The size of a GOT entry. */
542#define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545/* The size of a symbol-table entry. */
546#define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549/* The default alignment for sections, as a power of two. */
550#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 551 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
552
553/* Get word-sized data. */
554#define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557/* Put out word-sized data. */
558#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563/* Add a dynamic symbol table-entry. */
9719ad41 564#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 565 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
566
567#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
4ffba85c
AO
570/* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
b49e97c9
TS
587/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 590#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
591
592/* The number of local .got entries we reserve. */
593#define MIPS_RESERVED_GOTNO (2)
594
f4416af6
AO
595/* The offset of $gp from the beginning of the .got section. */
596#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598/* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
6a691779 602/* Instructions which appear in a stub. */
b49e97c9 603#define STUB_LW(abfd) \
f4416af6
AO
604 ((ABI_64_P (abfd) \
605 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
606 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9 607#define STUB_MOVE(abfd) \
6a691779
TS
608 ((ABI_64_P (abfd) \
609 ? 0x03e0782d /* daddu t7,ra */ \
610 : 0x03e07821)) /* addu t7,ra */
611#define STUB_JALR 0x0320f809 /* jalr t9,ra */
b49e97c9 612#define STUB_LI16(abfd) \
6a691779
TS
613 ((ABI_64_P (abfd) \
614 ? 0x64180000 /* daddiu t8,zero,0 */ \
615 : 0x24180000)) /* addiu t8,zero,0 */
b49e97c9
TS
616#define MIPS_FUNCTION_STUB_SIZE (16)
617
618/* The name of the dynamic interpreter. This is put in the .interp
619 section. */
620
621#define ELF_DYNAMIC_INTERPRETER(abfd) \
622 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
623 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
624 : "/usr/lib/libc.so.1")
625
626#ifdef BFD64
ee6423ed
AO
627#define MNAME(bfd,pre,pos) \
628 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
629#define ELF_R_SYM(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
631#define ELF_R_TYPE(bfd, i) \
632 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
633#define ELF_R_INFO(bfd, s, t) \
634 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
635#else
ee6423ed 636#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
637#define ELF_R_SYM(bfd, i) \
638 (ELF32_R_SYM (i))
639#define ELF_R_TYPE(bfd, i) \
640 (ELF32_R_TYPE (i))
641#define ELF_R_INFO(bfd, s, t) \
642 (ELF32_R_INFO (s, t))
643#endif
644\f
645 /* The mips16 compiler uses a couple of special sections to handle
646 floating point arguments.
647
648 Section names that look like .mips16.fn.FNNAME contain stubs that
649 copy floating point arguments from the fp regs to the gp regs and
650 then jump to FNNAME. If any 32 bit function calls FNNAME, the
651 call should be redirected to the stub instead. If no 32 bit
652 function calls FNNAME, the stub should be discarded. We need to
653 consider any reference to the function, not just a call, because
654 if the address of the function is taken we will need the stub,
655 since the address might be passed to a 32 bit function.
656
657 Section names that look like .mips16.call.FNNAME contain stubs
658 that copy floating point arguments from the gp regs to the fp
659 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
660 then any 16 bit function that calls FNNAME should be redirected
661 to the stub instead. If FNNAME is not a 32 bit function, the
662 stub should be discarded.
663
664 .mips16.call.fp.FNNAME sections are similar, but contain stubs
665 which call FNNAME and then copy the return value from the fp regs
666 to the gp regs. These stubs store the return value in $18 while
667 calling FNNAME; any function which might call one of these stubs
668 must arrange to save $18 around the call. (This case is not
669 needed for 32 bit functions that call 16 bit functions, because
670 16 bit functions always return floating point values in both
671 $f0/$f1 and $2/$3.)
672
673 Note that in all cases FNNAME might be defined statically.
674 Therefore, FNNAME is not used literally. Instead, the relocation
675 information will indicate which symbol the section is for.
676
677 We record any stubs that we find in the symbol table. */
678
679#define FN_STUB ".mips16.fn."
680#define CALL_STUB ".mips16.call."
681#define CALL_FP_STUB ".mips16.call.fp."
682\f
683/* Look up an entry in a MIPS ELF linker hash table. */
684
685#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
686 ((struct mips_elf_link_hash_entry *) \
687 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 (copy), (follow)))
689
690/* Traverse a MIPS ELF linker hash table. */
691
692#define mips_elf_link_hash_traverse(table, func, info) \
693 (elf_link_hash_traverse \
694 (&(table)->root, \
9719ad41 695 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
696 (info)))
697
698/* Get the MIPS ELF linker hash table from a link_info structure. */
699
700#define mips_elf_hash_table(p) \
701 ((struct mips_elf_link_hash_table *) ((p)->hash))
702
703/* Create an entry in a MIPS ELF linker hash table. */
704
705static struct bfd_hash_entry *
9719ad41
RS
706mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
707 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
708{
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
9719ad41
RS
714 if (ret == NULL)
715 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
716 if (ret == NULL)
b49e97c9
TS
717 return (struct bfd_hash_entry *) ret;
718
719 /* Call the allocation method of the superclass. */
720 ret = ((struct mips_elf_link_hash_entry *)
721 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
722 table, string));
9719ad41 723 if (ret != NULL)
b49e97c9
TS
724 {
725 /* Set local fields. */
726 memset (&ret->esym, 0, sizeof (EXTR));
727 /* We use -2 as a marker to indicate that the information has
728 not been set. -1 means there is no associated ifd. */
729 ret->esym.ifd = -2;
730 ret->possibly_dynamic_relocs = 0;
b34976b6 731 ret->readonly_reloc = FALSE;
b34976b6 732 ret->no_fn_stub = FALSE;
b49e97c9 733 ret->fn_stub = NULL;
b34976b6 734 ret->need_fn_stub = FALSE;
b49e97c9
TS
735 ret->call_stub = NULL;
736 ret->call_fp_stub = NULL;
b34976b6 737 ret->forced_local = FALSE;
b49e97c9
TS
738 }
739
740 return (struct bfd_hash_entry *) ret;
741}
f0abc2a1
AM
742
743bfd_boolean
9719ad41 744_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1
AM
745{
746 struct _mips_elf_section_data *sdata;
747 bfd_size_type amt = sizeof (*sdata);
748
9719ad41 749 sdata = bfd_zalloc (abfd, amt);
f0abc2a1
AM
750 if (sdata == NULL)
751 return FALSE;
9719ad41 752 sec->used_by_bfd = sdata;
f0abc2a1
AM
753
754 return _bfd_elf_new_section_hook (abfd, sec);
755}
b49e97c9
TS
756\f
757/* Read ECOFF debugging information from a .mdebug section into a
758 ecoff_debug_info structure. */
759
b34976b6 760bfd_boolean
9719ad41
RS
761_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
762 struct ecoff_debug_info *debug)
b49e97c9
TS
763{
764 HDRR *symhdr;
765 const struct ecoff_debug_swap *swap;
9719ad41 766 char *ext_hdr;
b49e97c9
TS
767
768 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
769 memset (debug, 0, sizeof (*debug));
770
9719ad41 771 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
772 if (ext_hdr == NULL && swap->external_hdr_size != 0)
773 goto error_return;
774
9719ad41 775 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 776 swap->external_hdr_size))
b49e97c9
TS
777 goto error_return;
778
779 symhdr = &debug->symbolic_header;
780 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
781
782 /* The symbolic header contains absolute file offsets and sizes to
783 read. */
784#define READ(ptr, offset, count, size, type) \
785 if (symhdr->count == 0) \
786 debug->ptr = NULL; \
787 else \
788 { \
789 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 790 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
791 if (debug->ptr == NULL) \
792 goto error_return; \
9719ad41 793 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
794 || bfd_bread (debug->ptr, amt, abfd) != amt) \
795 goto error_return; \
796 }
797
798 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
799 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
800 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
801 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
802 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
803 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
804 union aux_ext *);
805 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
806 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
807 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
808 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
809 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
810#undef READ
811
812 debug->fdr = NULL;
b49e97c9 813
b34976b6 814 return TRUE;
b49e97c9
TS
815
816 error_return:
817 if (ext_hdr != NULL)
818 free (ext_hdr);
819 if (debug->line != NULL)
820 free (debug->line);
821 if (debug->external_dnr != NULL)
822 free (debug->external_dnr);
823 if (debug->external_pdr != NULL)
824 free (debug->external_pdr);
825 if (debug->external_sym != NULL)
826 free (debug->external_sym);
827 if (debug->external_opt != NULL)
828 free (debug->external_opt);
829 if (debug->external_aux != NULL)
830 free (debug->external_aux);
831 if (debug->ss != NULL)
832 free (debug->ss);
833 if (debug->ssext != NULL)
834 free (debug->ssext);
835 if (debug->external_fdr != NULL)
836 free (debug->external_fdr);
837 if (debug->external_rfd != NULL)
838 free (debug->external_rfd);
839 if (debug->external_ext != NULL)
840 free (debug->external_ext);
b34976b6 841 return FALSE;
b49e97c9
TS
842}
843\f
844/* Swap RPDR (runtime procedure table entry) for output. */
845
846static void
9719ad41 847ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
848{
849 H_PUT_S32 (abfd, in->adr, ex->p_adr);
850 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
851 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
852 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
853 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
854 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
855
856 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
857 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
858
859 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
860#if 0 /* FIXME */
861 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
862#endif
863}
864
865/* Create a runtime procedure table from the .mdebug section. */
866
b34976b6 867static bfd_boolean
9719ad41
RS
868mips_elf_create_procedure_table (void *handle, bfd *abfd,
869 struct bfd_link_info *info, asection *s,
870 struct ecoff_debug_info *debug)
b49e97c9
TS
871{
872 const struct ecoff_debug_swap *swap;
873 HDRR *hdr = &debug->symbolic_header;
874 RPDR *rpdr, *rp;
875 struct rpdr_ext *erp;
9719ad41 876 void *rtproc;
b49e97c9
TS
877 struct pdr_ext *epdr;
878 struct sym_ext *esym;
879 char *ss, **sv;
880 char *str;
881 bfd_size_type size;
882 bfd_size_type count;
883 unsigned long sindex;
884 unsigned long i;
885 PDR pdr;
886 SYMR sym;
887 const char *no_name_func = _("static procedure (no name)");
888
889 epdr = NULL;
890 rpdr = NULL;
891 esym = NULL;
892 ss = NULL;
893 sv = NULL;
894
895 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
896
897 sindex = strlen (no_name_func) + 1;
898 count = hdr->ipdMax;
899 if (count > 0)
900 {
901 size = swap->external_pdr_size;
902
9719ad41 903 epdr = bfd_malloc (size * count);
b49e97c9
TS
904 if (epdr == NULL)
905 goto error_return;
906
9719ad41 907 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
908 goto error_return;
909
910 size = sizeof (RPDR);
9719ad41 911 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
912 if (rpdr == NULL)
913 goto error_return;
914
915 size = sizeof (char *);
9719ad41 916 sv = bfd_malloc (size * count);
b49e97c9
TS
917 if (sv == NULL)
918 goto error_return;
919
920 count = hdr->isymMax;
921 size = swap->external_sym_size;
9719ad41 922 esym = bfd_malloc (size * count);
b49e97c9
TS
923 if (esym == NULL)
924 goto error_return;
925
9719ad41 926 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
927 goto error_return;
928
929 count = hdr->issMax;
9719ad41 930 ss = bfd_malloc (count);
b49e97c9
TS
931 if (ss == NULL)
932 goto error_return;
9719ad41 933 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
b49e97c9
TS
934 goto error_return;
935
936 count = hdr->ipdMax;
937 for (i = 0; i < (unsigned long) count; i++, rp++)
938 {
9719ad41
RS
939 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
940 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
941 rp->adr = sym.value;
942 rp->regmask = pdr.regmask;
943 rp->regoffset = pdr.regoffset;
944 rp->fregmask = pdr.fregmask;
945 rp->fregoffset = pdr.fregoffset;
946 rp->frameoffset = pdr.frameoffset;
947 rp->framereg = pdr.framereg;
948 rp->pcreg = pdr.pcreg;
949 rp->irpss = sindex;
950 sv[i] = ss + sym.iss;
951 sindex += strlen (sv[i]) + 1;
952 }
953 }
954
955 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
956 size = BFD_ALIGN (size, 16);
9719ad41 957 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
958 if (rtproc == NULL)
959 {
960 mips_elf_hash_table (info)->procedure_count = 0;
961 goto error_return;
962 }
963
964 mips_elf_hash_table (info)->procedure_count = count + 2;
965
9719ad41 966 erp = rtproc;
b49e97c9
TS
967 memset (erp, 0, sizeof (struct rpdr_ext));
968 erp++;
969 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
970 strcpy (str, no_name_func);
971 str += strlen (no_name_func) + 1;
972 for (i = 0; i < count; i++)
973 {
974 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
975 strcpy (str, sv[i]);
976 str += strlen (sv[i]) + 1;
977 }
978 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
979
980 /* Set the size and contents of .rtproc section. */
eea6121a 981 s->size = size;
9719ad41 982 s->contents = rtproc;
b49e97c9
TS
983
984 /* Skip this section later on (I don't think this currently
985 matters, but someday it might). */
9719ad41 986 s->link_order_head = NULL;
b49e97c9
TS
987
988 if (epdr != NULL)
989 free (epdr);
990 if (rpdr != NULL)
991 free (rpdr);
992 if (esym != NULL)
993 free (esym);
994 if (ss != NULL)
995 free (ss);
996 if (sv != NULL)
997 free (sv);
998
b34976b6 999 return TRUE;
b49e97c9
TS
1000
1001 error_return:
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
b34976b6 1012 return FALSE;
b49e97c9
TS
1013}
1014
1015/* Check the mips16 stubs for a particular symbol, and see if we can
1016 discard them. */
1017
b34976b6 1018static bfd_boolean
9719ad41
RS
1019mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1020 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1021{
1022 if (h->root.root.type == bfd_link_hash_warning)
1023 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1024
1025 if (h->fn_stub != NULL
1026 && ! h->need_fn_stub)
1027 {
1028 /* We don't need the fn_stub; the only references to this symbol
1029 are 16 bit calls. Clobber the size to 0 to prevent it from
1030 being included in the link. */
eea6121a 1031 h->fn_stub->size = 0;
b49e97c9
TS
1032 h->fn_stub->flags &= ~SEC_RELOC;
1033 h->fn_stub->reloc_count = 0;
1034 h->fn_stub->flags |= SEC_EXCLUDE;
1035 }
1036
1037 if (h->call_stub != NULL
1038 && h->root.other == STO_MIPS16)
1039 {
1040 /* We don't need the call_stub; this is a 16 bit function, so
1041 calls from other 16 bit functions are OK. Clobber the size
1042 to 0 to prevent it from being included in the link. */
eea6121a 1043 h->call_stub->size = 0;
b49e97c9
TS
1044 h->call_stub->flags &= ~SEC_RELOC;
1045 h->call_stub->reloc_count = 0;
1046 h->call_stub->flags |= SEC_EXCLUDE;
1047 }
1048
1049 if (h->call_fp_stub != NULL
1050 && h->root.other == STO_MIPS16)
1051 {
1052 /* We don't need the call_stub; this is a 16 bit function, so
1053 calls from other 16 bit functions are OK. Clobber the size
1054 to 0 to prevent it from being included in the link. */
eea6121a 1055 h->call_fp_stub->size = 0;
b49e97c9
TS
1056 h->call_fp_stub->flags &= ~SEC_RELOC;
1057 h->call_fp_stub->reloc_count = 0;
1058 h->call_fp_stub->flags |= SEC_EXCLUDE;
1059 }
1060
b34976b6 1061 return TRUE;
b49e97c9
TS
1062}
1063\f
1064bfd_reloc_status_type
9719ad41
RS
1065_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1066 arelent *reloc_entry, asection *input_section,
1067 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1068{
1069 bfd_vma relocation;
a7ebbfdf 1070 bfd_signed_vma val;
30ac9238 1071 bfd_reloc_status_type status;
b49e97c9
TS
1072
1073 if (bfd_is_com_section (symbol->section))
1074 relocation = 0;
1075 else
1076 relocation = symbol->value;
1077
1078 relocation += symbol->section->output_section->vma;
1079 relocation += symbol->section->output_offset;
1080
07515404 1081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1082 return bfd_reloc_outofrange;
1083
b49e97c9 1084 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1085 val = reloc_entry->addend;
1086
30ac9238 1087 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1088
b49e97c9 1089 /* Adjust val for the final section location and GP value. If we
1049f94e 1090 are producing relocatable output, we don't want to do this for
b49e97c9 1091 an external symbol. */
1049f94e 1092 if (! relocatable
b49e97c9
TS
1093 || (symbol->flags & BSF_SECTION_SYM) != 0)
1094 val += relocation - gp;
1095
a7ebbfdf
TS
1096 if (reloc_entry->howto->partial_inplace)
1097 {
30ac9238
RS
1098 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1099 (bfd_byte *) data
1100 + reloc_entry->address);
1101 if (status != bfd_reloc_ok)
1102 return status;
a7ebbfdf
TS
1103 }
1104 else
1105 reloc_entry->addend = val;
b49e97c9 1106
1049f94e 1107 if (relocatable)
b49e97c9 1108 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1109
1110 return bfd_reloc_ok;
1111}
1112
1113/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1114 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1115 that contains the relocation field and DATA points to the start of
1116 INPUT_SECTION. */
1117
1118struct mips_hi16
1119{
1120 struct mips_hi16 *next;
1121 bfd_byte *data;
1122 asection *input_section;
1123 arelent rel;
1124};
1125
1126/* FIXME: This should not be a static variable. */
1127
1128static struct mips_hi16 *mips_hi16_list;
1129
1130/* A howto special_function for REL *HI16 relocations. We can only
1131 calculate the correct value once we've seen the partnering
1132 *LO16 relocation, so just save the information for later.
1133
1134 The ABI requires that the *LO16 immediately follow the *HI16.
1135 However, as a GNU extension, we permit an arbitrary number of
1136 *HI16s to be associated with a single *LO16. This significantly
1137 simplies the relocation handling in gcc. */
1138
1139bfd_reloc_status_type
1140_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1141 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1142 asection *input_section, bfd *output_bfd,
1143 char **error_message ATTRIBUTE_UNUSED)
1144{
1145 struct mips_hi16 *n;
1146
07515404 1147 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1148 return bfd_reloc_outofrange;
1149
1150 n = bfd_malloc (sizeof *n);
1151 if (n == NULL)
1152 return bfd_reloc_outofrange;
1153
1154 n->next = mips_hi16_list;
1155 n->data = data;
1156 n->input_section = input_section;
1157 n->rel = *reloc_entry;
1158 mips_hi16_list = n;
1159
1160 if (output_bfd != NULL)
1161 reloc_entry->address += input_section->output_offset;
1162
1163 return bfd_reloc_ok;
1164}
1165
1166/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1167 like any other 16-bit relocation when applied to global symbols, but is
1168 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1169
1170bfd_reloc_status_type
1171_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1172 void *data, asection *input_section,
1173 bfd *output_bfd, char **error_message)
1174{
1175 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1176 || bfd_is_und_section (bfd_get_section (symbol))
1177 || bfd_is_com_section (bfd_get_section (symbol)))
1178 /* The relocation is against a global symbol. */
1179 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1180 input_section, output_bfd,
1181 error_message);
1182
1183 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1184 input_section, output_bfd, error_message);
1185}
1186
1187/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1188 is a straightforward 16 bit inplace relocation, but we must deal with
1189 any partnering high-part relocations as well. */
1190
1191bfd_reloc_status_type
1192_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1193 void *data, asection *input_section,
1194 bfd *output_bfd, char **error_message)
1195{
1196 bfd_vma vallo;
1197
07515404 1198 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1199 return bfd_reloc_outofrange;
1200
1201 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1202 while (mips_hi16_list != NULL)
1203 {
1204 bfd_reloc_status_type ret;
1205 struct mips_hi16 *hi;
1206
1207 hi = mips_hi16_list;
1208
1209 /* R_MIPS_GOT16 relocations are something of a special case. We
1210 want to install the addend in the same way as for a R_MIPS_HI16
1211 relocation (with a rightshift of 16). However, since GOT16
1212 relocations can also be used with global symbols, their howto
1213 has a rightshift of 0. */
1214 if (hi->rel.howto->type == R_MIPS_GOT16)
1215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1216
1217 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1218 carry or borrow will induce a change of +1 or -1 in the high part. */
1219 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1220
30ac9238
RS
1221 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1222 hi->input_section, output_bfd,
1223 error_message);
1224 if (ret != bfd_reloc_ok)
1225 return ret;
1226
1227 mips_hi16_list = hi->next;
1228 free (hi);
1229 }
1230
1231 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1232 input_section, output_bfd,
1233 error_message);
1234}
1235
1236/* A generic howto special_function. This calculates and installs the
1237 relocation itself, thus avoiding the oft-discussed problems in
1238 bfd_perform_relocation and bfd_install_relocation. */
1239
1240bfd_reloc_status_type
1241_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1242 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1243 asection *input_section, bfd *output_bfd,
1244 char **error_message ATTRIBUTE_UNUSED)
1245{
1246 bfd_signed_vma val;
1247 bfd_reloc_status_type status;
1248 bfd_boolean relocatable;
1249
1250 relocatable = (output_bfd != NULL);
1251
07515404 1252 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1253 return bfd_reloc_outofrange;
1254
1255 /* Build up the field adjustment in VAL. */
1256 val = 0;
1257 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1258 {
1259 /* Either we're calculating the final field value or we have a
1260 relocation against a section symbol. Add in the section's
1261 offset or address. */
1262 val += symbol->section->output_section->vma;
1263 val += symbol->section->output_offset;
1264 }
1265
1266 if (!relocatable)
1267 {
1268 /* We're calculating the final field value. Add in the symbol's value
1269 and, if pc-relative, subtract the address of the field itself. */
1270 val += symbol->value;
1271 if (reloc_entry->howto->pc_relative)
1272 {
1273 val -= input_section->output_section->vma;
1274 val -= input_section->output_offset;
1275 val -= reloc_entry->address;
1276 }
1277 }
1278
1279 /* VAL is now the final adjustment. If we're keeping this relocation
1280 in the output file, and if the relocation uses a separate addend,
1281 we just need to add VAL to that addend. Otherwise we need to add
1282 VAL to the relocation field itself. */
1283 if (relocatable && !reloc_entry->howto->partial_inplace)
1284 reloc_entry->addend += val;
1285 else
1286 {
1287 /* Add in the separate addend, if any. */
1288 val += reloc_entry->addend;
1289
1290 /* Add VAL to the relocation field. */
1291 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1292 (bfd_byte *) data
1293 + reloc_entry->address);
1294 if (status != bfd_reloc_ok)
1295 return status;
1296 }
1297
1298 if (relocatable)
1299 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1300
1301 return bfd_reloc_ok;
1302}
1303\f
1304/* Swap an entry in a .gptab section. Note that these routines rely
1305 on the equivalence of the two elements of the union. */
1306
1307static void
9719ad41
RS
1308bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1309 Elf32_gptab *in)
b49e97c9
TS
1310{
1311 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1312 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1313}
1314
1315static void
9719ad41
RS
1316bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1317 Elf32_External_gptab *ex)
b49e97c9
TS
1318{
1319 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1320 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1321}
1322
1323static void
9719ad41
RS
1324bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1325 Elf32_External_compact_rel *ex)
b49e97c9
TS
1326{
1327 H_PUT_32 (abfd, in->id1, ex->id1);
1328 H_PUT_32 (abfd, in->num, ex->num);
1329 H_PUT_32 (abfd, in->id2, ex->id2);
1330 H_PUT_32 (abfd, in->offset, ex->offset);
1331 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1332 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1333}
1334
1335static void
9719ad41
RS
1336bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1337 Elf32_External_crinfo *ex)
b49e97c9
TS
1338{
1339 unsigned long l;
1340
1341 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1342 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1343 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1344 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1345 H_PUT_32 (abfd, l, ex->info);
1346 H_PUT_32 (abfd, in->konst, ex->konst);
1347 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1348}
b49e97c9
TS
1349\f
1350/* A .reginfo section holds a single Elf32_RegInfo structure. These
1351 routines swap this structure in and out. They are used outside of
1352 BFD, so they are globally visible. */
1353
1354void
9719ad41
RS
1355bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1356 Elf32_RegInfo *in)
b49e97c9
TS
1357{
1358 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1359 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1360 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1361 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1362 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1363 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1364}
1365
1366void
9719ad41
RS
1367bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1368 Elf32_External_RegInfo *ex)
b49e97c9
TS
1369{
1370 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1371 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1372 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1373 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1374 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1375 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1376}
1377
1378/* In the 64 bit ABI, the .MIPS.options section holds register
1379 information in an Elf64_Reginfo structure. These routines swap
1380 them in and out. They are globally visible because they are used
1381 outside of BFD. These routines are here so that gas can call them
1382 without worrying about whether the 64 bit ABI has been included. */
1383
1384void
9719ad41
RS
1385bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1386 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1387{
1388 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1389 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1390 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1391 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1392 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1393 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1394 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1395}
1396
1397void
9719ad41
RS
1398bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1399 Elf64_External_RegInfo *ex)
b49e97c9
TS
1400{
1401 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1402 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1403 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1404 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1405 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1406 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1407 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1408}
1409
1410/* Swap in an options header. */
1411
1412void
9719ad41
RS
1413bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1414 Elf_Internal_Options *in)
b49e97c9
TS
1415{
1416 in->kind = H_GET_8 (abfd, ex->kind);
1417 in->size = H_GET_8 (abfd, ex->size);
1418 in->section = H_GET_16 (abfd, ex->section);
1419 in->info = H_GET_32 (abfd, ex->info);
1420}
1421
1422/* Swap out an options header. */
1423
1424void
9719ad41
RS
1425bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1426 Elf_External_Options *ex)
b49e97c9
TS
1427{
1428 H_PUT_8 (abfd, in->kind, ex->kind);
1429 H_PUT_8 (abfd, in->size, ex->size);
1430 H_PUT_16 (abfd, in->section, ex->section);
1431 H_PUT_32 (abfd, in->info, ex->info);
1432}
1433\f
1434/* This function is called via qsort() to sort the dynamic relocation
1435 entries by increasing r_symndx value. */
1436
1437static int
9719ad41 1438sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1439{
947216bf
AM
1440 Elf_Internal_Rela int_reloc1;
1441 Elf_Internal_Rela int_reloc2;
b49e97c9 1442
947216bf
AM
1443 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1444 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1445
947216bf 1446 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1447}
1448
f4416af6
AO
1449/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1450
1451static int
9719ad41 1452sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
f4416af6
AO
1453{
1454 Elf_Internal_Rela int_reloc1[3];
1455 Elf_Internal_Rela int_reloc2[3];
1456
1457 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1458 (reldyn_sorting_bfd, arg1, int_reloc1);
1459 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1460 (reldyn_sorting_bfd, arg2, int_reloc2);
1461
1462 return (ELF64_R_SYM (int_reloc1[0].r_info)
1463 - ELF64_R_SYM (int_reloc2[0].r_info));
1464}
1465
1466
b49e97c9
TS
1467/* This routine is used to write out ECOFF debugging external symbol
1468 information. It is called via mips_elf_link_hash_traverse. The
1469 ECOFF external symbol information must match the ELF external
1470 symbol information. Unfortunately, at this point we don't know
1471 whether a symbol is required by reloc information, so the two
1472 tables may wind up being different. We must sort out the external
1473 symbol information before we can set the final size of the .mdebug
1474 section, and we must set the size of the .mdebug section before we
1475 can relocate any sections, and we can't know which symbols are
1476 required by relocation until we relocate the sections.
1477 Fortunately, it is relatively unlikely that any symbol will be
1478 stripped but required by a reloc. In particular, it can not happen
1479 when generating a final executable. */
1480
b34976b6 1481static bfd_boolean
9719ad41 1482mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1483{
9719ad41 1484 struct extsym_info *einfo = data;
b34976b6 1485 bfd_boolean strip;
b49e97c9
TS
1486 asection *sec, *output_section;
1487
1488 if (h->root.root.type == bfd_link_hash_warning)
1489 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1490
1491 if (h->root.indx == -2)
b34976b6 1492 strip = FALSE;
f5385ebf
AM
1493 else if ((h->root.def_dynamic
1494 || h->root.ref_dynamic)
1495 && !h->root.def_regular
1496 && !h->root.ref_regular)
b34976b6 1497 strip = TRUE;
b49e97c9
TS
1498 else if (einfo->info->strip == strip_all
1499 || (einfo->info->strip == strip_some
1500 && bfd_hash_lookup (einfo->info->keep_hash,
1501 h->root.root.root.string,
b34976b6
AM
1502 FALSE, FALSE) == NULL))
1503 strip = TRUE;
b49e97c9 1504 else
b34976b6 1505 strip = FALSE;
b49e97c9
TS
1506
1507 if (strip)
b34976b6 1508 return TRUE;
b49e97c9
TS
1509
1510 if (h->esym.ifd == -2)
1511 {
1512 h->esym.jmptbl = 0;
1513 h->esym.cobol_main = 0;
1514 h->esym.weakext = 0;
1515 h->esym.reserved = 0;
1516 h->esym.ifd = ifdNil;
1517 h->esym.asym.value = 0;
1518 h->esym.asym.st = stGlobal;
1519
1520 if (h->root.root.type == bfd_link_hash_undefined
1521 || h->root.root.type == bfd_link_hash_undefweak)
1522 {
1523 const char *name;
1524
1525 /* Use undefined class. Also, set class and type for some
1526 special symbols. */
1527 name = h->root.root.root.string;
1528 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1529 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1530 {
1531 h->esym.asym.sc = scData;
1532 h->esym.asym.st = stLabel;
1533 h->esym.asym.value = 0;
1534 }
1535 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1536 {
1537 h->esym.asym.sc = scAbs;
1538 h->esym.asym.st = stLabel;
1539 h->esym.asym.value =
1540 mips_elf_hash_table (einfo->info)->procedure_count;
1541 }
4a14403c 1542 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1543 {
1544 h->esym.asym.sc = scAbs;
1545 h->esym.asym.st = stLabel;
1546 h->esym.asym.value = elf_gp (einfo->abfd);
1547 }
1548 else
1549 h->esym.asym.sc = scUndefined;
1550 }
1551 else if (h->root.root.type != bfd_link_hash_defined
1552 && h->root.root.type != bfd_link_hash_defweak)
1553 h->esym.asym.sc = scAbs;
1554 else
1555 {
1556 const char *name;
1557
1558 sec = h->root.root.u.def.section;
1559 output_section = sec->output_section;
1560
1561 /* When making a shared library and symbol h is the one from
1562 the another shared library, OUTPUT_SECTION may be null. */
1563 if (output_section == NULL)
1564 h->esym.asym.sc = scUndefined;
1565 else
1566 {
1567 name = bfd_section_name (output_section->owner, output_section);
1568
1569 if (strcmp (name, ".text") == 0)
1570 h->esym.asym.sc = scText;
1571 else if (strcmp (name, ".data") == 0)
1572 h->esym.asym.sc = scData;
1573 else if (strcmp (name, ".sdata") == 0)
1574 h->esym.asym.sc = scSData;
1575 else if (strcmp (name, ".rodata") == 0
1576 || strcmp (name, ".rdata") == 0)
1577 h->esym.asym.sc = scRData;
1578 else if (strcmp (name, ".bss") == 0)
1579 h->esym.asym.sc = scBss;
1580 else if (strcmp (name, ".sbss") == 0)
1581 h->esym.asym.sc = scSBss;
1582 else if (strcmp (name, ".init") == 0)
1583 h->esym.asym.sc = scInit;
1584 else if (strcmp (name, ".fini") == 0)
1585 h->esym.asym.sc = scFini;
1586 else
1587 h->esym.asym.sc = scAbs;
1588 }
1589 }
1590
1591 h->esym.asym.reserved = 0;
1592 h->esym.asym.index = indexNil;
1593 }
1594
1595 if (h->root.root.type == bfd_link_hash_common)
1596 h->esym.asym.value = h->root.root.u.c.size;
1597 else if (h->root.root.type == bfd_link_hash_defined
1598 || h->root.root.type == bfd_link_hash_defweak)
1599 {
1600 if (h->esym.asym.sc == scCommon)
1601 h->esym.asym.sc = scBss;
1602 else if (h->esym.asym.sc == scSCommon)
1603 h->esym.asym.sc = scSBss;
1604
1605 sec = h->root.root.u.def.section;
1606 output_section = sec->output_section;
1607 if (output_section != NULL)
1608 h->esym.asym.value = (h->root.root.u.def.value
1609 + sec->output_offset
1610 + output_section->vma);
1611 else
1612 h->esym.asym.value = 0;
1613 }
f5385ebf 1614 else if (h->root.needs_plt)
b49e97c9
TS
1615 {
1616 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1617 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1618
1619 while (hd->root.root.type == bfd_link_hash_indirect)
1620 {
1621 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1622 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1623 }
1624
1625 if (!no_fn_stub)
1626 {
1627 /* Set type and value for a symbol with a function stub. */
1628 h->esym.asym.st = stProc;
1629 sec = hd->root.root.u.def.section;
1630 if (sec == NULL)
1631 h->esym.asym.value = 0;
1632 else
1633 {
1634 output_section = sec->output_section;
1635 if (output_section != NULL)
1636 h->esym.asym.value = (hd->root.plt.offset
1637 + sec->output_offset
1638 + output_section->vma);
1639 else
1640 h->esym.asym.value = 0;
1641 }
1642#if 0 /* FIXME? */
1643 h->esym.ifd = 0;
1644#endif
1645 }
1646 }
1647
1648 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1649 h->root.root.root.string,
1650 &h->esym))
1651 {
b34976b6
AM
1652 einfo->failed = TRUE;
1653 return FALSE;
b49e97c9
TS
1654 }
1655
b34976b6 1656 return TRUE;
b49e97c9
TS
1657}
1658
1659/* A comparison routine used to sort .gptab entries. */
1660
1661static int
9719ad41 1662gptab_compare (const void *p1, const void *p2)
b49e97c9 1663{
9719ad41
RS
1664 const Elf32_gptab *a1 = p1;
1665 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1666
1667 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1668}
1669\f
b15e6682 1670/* Functions to manage the got entry hash table. */
f4416af6
AO
1671
1672/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1673 hash number. */
1674
1675static INLINE hashval_t
9719ad41 1676mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1677{
1678#ifdef BFD64
1679 return addr + (addr >> 32);
1680#else
1681 return addr;
1682#endif
1683}
1684
1685/* got_entries only match if they're identical, except for gotidx, so
1686 use all fields to compute the hash, and compare the appropriate
1687 union members. */
1688
b15e6682 1689static hashval_t
9719ad41 1690mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1691{
1692 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1693
38985a1c 1694 return entry->symndx
f4416af6 1695 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1696 : entry->abfd->id
1697 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1698 : entry->d.h->root.root.root.hash));
b15e6682
AO
1699}
1700
1701static int
9719ad41 1702mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1703{
1704 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1705 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1706
1707 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1708 && (! e1->abfd ? e1->d.address == e2->d.address
1709 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1710 : e1->d.h == e2->d.h);
1711}
1712
1713/* multi_got_entries are still a match in the case of global objects,
1714 even if the input bfd in which they're referenced differs, so the
1715 hash computation and compare functions are adjusted
1716 accordingly. */
1717
1718static hashval_t
9719ad41 1719mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1720{
1721 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1722
1723 return entry->symndx
1724 + (! entry->abfd
1725 ? mips_elf_hash_bfd_vma (entry->d.address)
1726 : entry->symndx >= 0
1727 ? (entry->abfd->id
1728 + mips_elf_hash_bfd_vma (entry->d.addend))
1729 : entry->d.h->root.root.root.hash);
1730}
1731
1732static int
9719ad41 1733mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1734{
1735 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1736 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1737
1738 return e1->symndx == e2->symndx
1739 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1740 : e1->abfd == NULL || e2->abfd == NULL
1741 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1742 : e1->d.h == e2->d.h);
b15e6682
AO
1743}
1744\f
f4416af6
AO
1745/* Returns the dynamic relocation section for DYNOBJ. */
1746
1747static asection *
9719ad41 1748mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
f4416af6
AO
1749{
1750 static const char dname[] = ".rel.dyn";
1751 asection *sreloc;
1752
1753 sreloc = bfd_get_section_by_name (dynobj, dname);
1754 if (sreloc == NULL && create_p)
1755 {
1756 sreloc = bfd_make_section (dynobj, dname);
1757 if (sreloc == NULL
1758 || ! bfd_set_section_flags (dynobj, sreloc,
1759 (SEC_ALLOC
1760 | SEC_LOAD
1761 | SEC_HAS_CONTENTS
1762 | SEC_IN_MEMORY
1763 | SEC_LINKER_CREATED
1764 | SEC_READONLY))
1765 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1766 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1767 return NULL;
1768 }
1769 return sreloc;
1770}
1771
b49e97c9
TS
1772/* Returns the GOT section for ABFD. */
1773
1774static asection *
9719ad41 1775mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 1776{
f4416af6
AO
1777 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1778 if (sgot == NULL
1779 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1780 return NULL;
1781 return sgot;
b49e97c9
TS
1782}
1783
1784/* Returns the GOT information associated with the link indicated by
1785 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1786 section. */
1787
1788static struct mips_got_info *
9719ad41 1789mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
1790{
1791 asection *sgot;
1792 struct mips_got_info *g;
1793
f4416af6 1794 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1795 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1796 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1797 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1798 BFD_ASSERT (g != NULL);
1799
1800 if (sgotp)
f4416af6
AO
1801 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1802
b49e97c9
TS
1803 return g;
1804}
1805
1806/* Returns the GOT offset at which the indicated address can be found.
1807 If there is not yet a GOT entry for this value, create one. Returns
1808 -1 if no satisfactory GOT offset can be found. */
1809
1810static bfd_vma
9719ad41
RS
1811mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1812 bfd_vma value)
b49e97c9
TS
1813{
1814 asection *sgot;
1815 struct mips_got_info *g;
b15e6682 1816 struct mips_got_entry *entry;
b49e97c9
TS
1817
1818 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1819
f4416af6 1820 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1821 if (entry)
1822 return entry->gotidx;
1823 else
1824 return MINUS_ONE;
b49e97c9
TS
1825}
1826
1827/* Returns the GOT index for the global symbol indicated by H. */
1828
1829static bfd_vma
9719ad41 1830mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
b49e97c9
TS
1831{
1832 bfd_vma index;
1833 asection *sgot;
f4416af6 1834 struct mips_got_info *g, *gg;
d0c7ff07 1835 long global_got_dynindx = 0;
b49e97c9 1836
f4416af6
AO
1837 gg = g = mips_elf_got_info (abfd, &sgot);
1838 if (g->bfd2got && ibfd)
1839 {
1840 struct mips_got_entry e, *p;
143d77c5 1841
f4416af6
AO
1842 BFD_ASSERT (h->dynindx >= 0);
1843
1844 g = mips_elf_got_for_ibfd (g, ibfd);
1845 if (g->next != gg)
1846 {
1847 e.abfd = ibfd;
1848 e.symndx = -1;
1849 e.d.h = (struct mips_elf_link_hash_entry *)h;
1850
9719ad41 1851 p = htab_find (g->got_entries, &e);
f4416af6
AO
1852
1853 BFD_ASSERT (p->gotidx > 0);
1854 return p->gotidx;
1855 }
1856 }
1857
1858 if (gg->global_gotsym != NULL)
1859 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9
TS
1860
1861 /* Once we determine the global GOT entry with the lowest dynamic
1862 symbol table index, we must put all dynamic symbols with greater
1863 indices into the GOT. That makes it easy to calculate the GOT
1864 offset. */
d0c7ff07
TS
1865 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1866 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
b49e97c9 1867 * MIPS_ELF_GOT_SIZE (abfd));
eea6121a 1868 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
1869
1870 return index;
1871}
1872
1873/* Find a GOT entry that is within 32KB of the VALUE. These entries
1874 are supposed to be placed at small offsets in the GOT, i.e.,
1875 within 32KB of GP. Return the index into the GOT for this page,
1876 and store the offset from this entry to the desired address in
1877 OFFSETP, if it is non-NULL. */
1878
1879static bfd_vma
9719ad41
RS
1880mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1881 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
1882{
1883 asection *sgot;
1884 struct mips_got_info *g;
b15e6682
AO
1885 bfd_vma index;
1886 struct mips_got_entry *entry;
b49e97c9
TS
1887
1888 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1889
f4416af6 1890 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682
AO
1891 (value + 0x8000)
1892 & (~(bfd_vma)0xffff));
b49e97c9 1893
b15e6682
AO
1894 if (!entry)
1895 return MINUS_ONE;
143d77c5 1896
b15e6682 1897 index = entry->gotidx;
b49e97c9
TS
1898
1899 if (offsetp)
f4416af6 1900 *offsetp = value - entry->d.address;
b49e97c9
TS
1901
1902 return index;
1903}
1904
1905/* Find a GOT entry whose higher-order 16 bits are the same as those
1906 for value. Return the index into the GOT for this entry. */
1907
1908static bfd_vma
9719ad41
RS
1909mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1910 bfd_vma value, bfd_boolean external)
b49e97c9
TS
1911{
1912 asection *sgot;
1913 struct mips_got_info *g;
b15e6682 1914 struct mips_got_entry *entry;
b49e97c9
TS
1915
1916 if (! external)
1917 {
1918 /* Although the ABI says that it is "the high-order 16 bits" that we
1919 want, it is really the %high value. The complete value is
1920 calculated with a `addiu' of a LO16 relocation, just as with a
1921 HI16/LO16 pair. */
1922 value = mips_elf_high (value) << 16;
1923 }
1924
1925 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1926
f4416af6 1927 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1928 if (entry)
1929 return entry->gotidx;
1930 else
1931 return MINUS_ONE;
b49e97c9
TS
1932}
1933
1934/* Returns the offset for the entry at the INDEXth position
1935 in the GOT. */
1936
1937static bfd_vma
9719ad41
RS
1938mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1939 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
1940{
1941 asection *sgot;
1942 bfd_vma gp;
f4416af6 1943 struct mips_got_info *g;
b49e97c9 1944
f4416af6
AO
1945 g = mips_elf_got_info (dynobj, &sgot);
1946 gp = _bfd_get_gp_value (output_bfd)
1947 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 1948
f4416af6 1949 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
1950}
1951
1952/* Create a local GOT entry for VALUE. Return the index of the entry,
1953 or -1 if it could not be created. */
1954
b15e6682 1955static struct mips_got_entry *
9719ad41
RS
1956mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1957 struct mips_got_info *gg,
1958 asection *sgot, bfd_vma value)
b49e97c9 1959{
b15e6682 1960 struct mips_got_entry entry, **loc;
f4416af6 1961 struct mips_got_info *g;
b15e6682 1962
f4416af6
AO
1963 entry.abfd = NULL;
1964 entry.symndx = -1;
1965 entry.d.address = value;
1966
1967 g = mips_elf_got_for_ibfd (gg, ibfd);
1968 if (g == NULL)
1969 {
1970 g = mips_elf_got_for_ibfd (gg, abfd);
1971 BFD_ASSERT (g != NULL);
1972 }
b15e6682
AO
1973
1974 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1975 INSERT);
1976 if (*loc)
1977 return *loc;
143d77c5 1978
b15e6682
AO
1979 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1980
1981 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1982
1983 if (! *loc)
1984 return NULL;
143d77c5 1985
b15e6682
AO
1986 memcpy (*loc, &entry, sizeof entry);
1987
b49e97c9
TS
1988 if (g->assigned_gotno >= g->local_gotno)
1989 {
f4416af6 1990 (*loc)->gotidx = -1;
b49e97c9
TS
1991 /* We didn't allocate enough space in the GOT. */
1992 (*_bfd_error_handler)
1993 (_("not enough GOT space for local GOT entries"));
1994 bfd_set_error (bfd_error_bad_value);
b15e6682 1995 return NULL;
b49e97c9
TS
1996 }
1997
1998 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
1999 (sgot->contents + entry.gotidx));
2000
2001 return *loc;
b49e97c9
TS
2002}
2003
2004/* Sort the dynamic symbol table so that symbols that need GOT entries
2005 appear towards the end. This reduces the amount of GOT space
2006 required. MAX_LOCAL is used to set the number of local symbols
2007 known to be in the dynamic symbol table. During
2008 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2009 section symbols are added and the count is higher. */
2010
b34976b6 2011static bfd_boolean
9719ad41 2012mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2013{
2014 struct mips_elf_hash_sort_data hsd;
2015 struct mips_got_info *g;
2016 bfd *dynobj;
2017
2018 dynobj = elf_hash_table (info)->dynobj;
2019
f4416af6
AO
2020 g = mips_elf_got_info (dynobj, NULL);
2021
b49e97c9 2022 hsd.low = NULL;
143d77c5 2023 hsd.max_unref_got_dynindx =
f4416af6
AO
2024 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2025 /* In the multi-got case, assigned_gotno of the master got_info
2026 indicate the number of entries that aren't referenced in the
2027 primary GOT, but that must have entries because there are
2028 dynamic relocations that reference it. Since they aren't
2029 referenced, we move them to the end of the GOT, so that they
2030 don't prevent other entries that are referenced from getting
2031 too large offsets. */
2032 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2033 hsd.max_non_got_dynindx = max_local;
2034 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2035 elf_hash_table (info)),
2036 mips_elf_sort_hash_table_f,
2037 &hsd);
2038
2039 /* There should have been enough room in the symbol table to
44c410de 2040 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2041 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2042 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2043 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2044
2045 /* Now we know which dynamic symbol has the lowest dynamic symbol
2046 table index in the GOT. */
b49e97c9
TS
2047 g->global_gotsym = hsd.low;
2048
b34976b6 2049 return TRUE;
b49e97c9
TS
2050}
2051
2052/* If H needs a GOT entry, assign it the highest available dynamic
2053 index. Otherwise, assign it the lowest available dynamic
2054 index. */
2055
b34976b6 2056static bfd_boolean
9719ad41 2057mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2058{
9719ad41 2059 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2060
2061 if (h->root.root.type == bfd_link_hash_warning)
2062 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2063
2064 /* Symbols without dynamic symbol table entries aren't interesting
2065 at all. */
2066 if (h->root.dynindx == -1)
b34976b6 2067 return TRUE;
b49e97c9 2068
f4416af6
AO
2069 /* Global symbols that need GOT entries that are not explicitly
2070 referenced are marked with got offset 2. Those that are
2071 referenced get a 1, and those that don't need GOT entries get
2072 -1. */
2073 if (h->root.got.offset == 2)
2074 {
2075 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2076 hsd->low = (struct elf_link_hash_entry *) h;
2077 h->root.dynindx = hsd->max_unref_got_dynindx++;
2078 }
2079 else if (h->root.got.offset != 1)
b49e97c9
TS
2080 h->root.dynindx = hsd->max_non_got_dynindx++;
2081 else
2082 {
2083 h->root.dynindx = --hsd->min_got_dynindx;
2084 hsd->low = (struct elf_link_hash_entry *) h;
2085 }
2086
b34976b6 2087 return TRUE;
b49e97c9
TS
2088}
2089
2090/* If H is a symbol that needs a global GOT entry, but has a dynamic
2091 symbol table index lower than any we've seen to date, record it for
2092 posterity. */
2093
b34976b6 2094static bfd_boolean
9719ad41
RS
2095mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2096 bfd *abfd, struct bfd_link_info *info,
2097 struct mips_got_info *g)
b49e97c9 2098{
f4416af6
AO
2099 struct mips_got_entry entry, **loc;
2100
b49e97c9
TS
2101 /* A global symbol in the GOT must also be in the dynamic symbol
2102 table. */
7c5fcef7
L
2103 if (h->dynindx == -1)
2104 {
2105 switch (ELF_ST_VISIBILITY (h->other))
2106 {
2107 case STV_INTERNAL:
2108 case STV_HIDDEN:
b34976b6 2109 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2110 break;
2111 }
c152c796 2112 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2113 return FALSE;
7c5fcef7 2114 }
b49e97c9 2115
f4416af6
AO
2116 entry.abfd = abfd;
2117 entry.symndx = -1;
2118 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2119
2120 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2121 INSERT);
2122
b49e97c9
TS
2123 /* If we've already marked this entry as needing GOT space, we don't
2124 need to do it again. */
f4416af6
AO
2125 if (*loc)
2126 return TRUE;
2127
2128 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2129
2130 if (! *loc)
2131 return FALSE;
143d77c5 2132
f4416af6
AO
2133 entry.gotidx = -1;
2134 memcpy (*loc, &entry, sizeof entry);
2135
b49e97c9 2136 if (h->got.offset != MINUS_ONE)
b34976b6 2137 return TRUE;
b49e97c9
TS
2138
2139 /* By setting this to a value other than -1, we are indicating that
2140 there needs to be a GOT entry for H. Avoid using zero, as the
2141 generic ELF copy_indirect_symbol tests for <= 0. */
2142 h->got.offset = 1;
2143
b34976b6 2144 return TRUE;
b49e97c9 2145}
f4416af6
AO
2146
2147/* Reserve space in G for a GOT entry containing the value of symbol
2148 SYMNDX in input bfd ABDF, plus ADDEND. */
2149
2150static bfd_boolean
9719ad41
RS
2151mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2152 struct mips_got_info *g)
f4416af6
AO
2153{
2154 struct mips_got_entry entry, **loc;
2155
2156 entry.abfd = abfd;
2157 entry.symndx = symndx;
2158 entry.d.addend = addend;
2159 loc = (struct mips_got_entry **)
2160 htab_find_slot (g->got_entries, &entry, INSERT);
2161
2162 if (*loc)
2163 return TRUE;
2164
2165 entry.gotidx = g->local_gotno++;
2166
2167 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2168
2169 if (! *loc)
2170 return FALSE;
143d77c5 2171
f4416af6
AO
2172 memcpy (*loc, &entry, sizeof entry);
2173
2174 return TRUE;
2175}
2176\f
2177/* Compute the hash value of the bfd in a bfd2got hash entry. */
2178
2179static hashval_t
9719ad41 2180mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2181{
2182 const struct mips_elf_bfd2got_hash *entry
2183 = (struct mips_elf_bfd2got_hash *)entry_;
2184
2185 return entry->bfd->id;
2186}
2187
2188/* Check whether two hash entries have the same bfd. */
2189
2190static int
9719ad41 2191mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2192{
2193 const struct mips_elf_bfd2got_hash *e1
2194 = (const struct mips_elf_bfd2got_hash *)entry1;
2195 const struct mips_elf_bfd2got_hash *e2
2196 = (const struct mips_elf_bfd2got_hash *)entry2;
2197
2198 return e1->bfd == e2->bfd;
2199}
2200
0b25d3e6 2201/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2202 be the master GOT data. */
2203
2204static struct mips_got_info *
9719ad41 2205mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2206{
2207 struct mips_elf_bfd2got_hash e, *p;
2208
2209 if (! g->bfd2got)
2210 return g;
2211
2212 e.bfd = ibfd;
9719ad41 2213 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2214 return p ? p->g : NULL;
2215}
2216
2217/* Create one separate got for each bfd that has entries in the global
2218 got, such that we can tell how many local and global entries each
2219 bfd requires. */
2220
2221static int
9719ad41 2222mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2223{
2224 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2225 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2226 htab_t bfd2got = arg->bfd2got;
2227 struct mips_got_info *g;
2228 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2229 void **bfdgotp;
143d77c5 2230
f4416af6
AO
2231 /* Find the got_info for this GOT entry's input bfd. Create one if
2232 none exists. */
2233 bfdgot_entry.bfd = entry->abfd;
2234 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2235 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2236
2237 if (bfdgot != NULL)
2238 g = bfdgot->g;
2239 else
2240 {
2241 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2242 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2243
2244 if (bfdgot == NULL)
2245 {
2246 arg->obfd = 0;
2247 return 0;
2248 }
2249
2250 *bfdgotp = bfdgot;
2251
2252 bfdgot->bfd = entry->abfd;
2253 bfdgot->g = g = (struct mips_got_info *)
2254 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2255 if (g == NULL)
2256 {
2257 arg->obfd = 0;
2258 return 0;
2259 }
2260
2261 g->global_gotsym = NULL;
2262 g->global_gotno = 0;
2263 g->local_gotno = 0;
2264 g->assigned_gotno = -1;
2265 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 2266 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
2267 if (g->got_entries == NULL)
2268 {
2269 arg->obfd = 0;
2270 return 0;
2271 }
2272
2273 g->bfd2got = NULL;
2274 g->next = NULL;
2275 }
2276
2277 /* Insert the GOT entry in the bfd's got entry hash table. */
2278 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2279 if (*entryp != NULL)
2280 return 1;
143d77c5 2281
f4416af6
AO
2282 *entryp = entry;
2283
2284 if (entry->symndx >= 0 || entry->d.h->forced_local)
2285 ++g->local_gotno;
2286 else
2287 ++g->global_gotno;
2288
2289 return 1;
2290}
2291
2292/* Attempt to merge gots of different input bfds. Try to use as much
2293 as possible of the primary got, since it doesn't require explicit
2294 dynamic relocations, but don't use bfds that would reference global
2295 symbols out of the addressable range. Failing the primary got,
2296 attempt to merge with the current got, or finish the current got
2297 and then make make the new got current. */
2298
2299static int
9719ad41 2300mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
2301{
2302 struct mips_elf_bfd2got_hash *bfd2got
2303 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2304 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2305 unsigned int lcount = bfd2got->g->local_gotno;
2306 unsigned int gcount = bfd2got->g->global_gotno;
2307 unsigned int maxcnt = arg->max_count;
143d77c5 2308
f4416af6
AO
2309 /* If we don't have a primary GOT and this is not too big, use it as
2310 a starting point for the primary GOT. */
2311 if (! arg->primary && lcount + gcount <= maxcnt)
2312 {
2313 arg->primary = bfd2got->g;
2314 arg->primary_count = lcount + gcount;
2315 }
2316 /* If it looks like we can merge this bfd's entries with those of
2317 the primary, merge them. The heuristics is conservative, but we
2318 don't have to squeeze it too hard. */
2319 else if (arg->primary
2320 && (arg->primary_count + lcount + gcount) <= maxcnt)
2321 {
2322 struct mips_got_info *g = bfd2got->g;
2323 int old_lcount = arg->primary->local_gotno;
2324 int old_gcount = arg->primary->global_gotno;
2325
2326 bfd2got->g = arg->primary;
2327
2328 htab_traverse (g->got_entries,
2329 mips_elf_make_got_per_bfd,
2330 arg);
2331 if (arg->obfd == NULL)
2332 return 0;
2333
2334 htab_delete (g->got_entries);
2335 /* We don't have to worry about releasing memory of the actual
2336 got entries, since they're all in the master got_entries hash
2337 table anyway. */
2338
caec41ff 2339 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6
AO
2340 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2341
2342 arg->primary_count = arg->primary->local_gotno
2343 + arg->primary->global_gotno;
2344 }
2345 /* If we can merge with the last-created got, do it. */
2346 else if (arg->current
2347 && arg->current_count + lcount + gcount <= maxcnt)
2348 {
2349 struct mips_got_info *g = bfd2got->g;
2350 int old_lcount = arg->current->local_gotno;
2351 int old_gcount = arg->current->global_gotno;
2352
2353 bfd2got->g = arg->current;
2354
2355 htab_traverse (g->got_entries,
2356 mips_elf_make_got_per_bfd,
2357 arg);
2358 if (arg->obfd == NULL)
2359 return 0;
2360
2361 htab_delete (g->got_entries);
2362
caec41ff 2363 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6
AO
2364 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2365
2366 arg->current_count = arg->current->local_gotno
2367 + arg->current->global_gotno;
2368 }
2369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2370 fits; if it turns out that it doesn't, we'll get relocation
2371 overflows anyway. */
2372 else
2373 {
2374 bfd2got->g->next = arg->current;
2375 arg->current = bfd2got->g;
143d77c5 2376
f4416af6
AO
2377 arg->current_count = lcount + gcount;
2378 }
2379
2380 return 1;
2381}
2382
2383/* If passed a NULL mips_got_info in the argument, set the marker used
2384 to tell whether a global symbol needs a got entry (in the primary
2385 got) to the given VALUE.
2386
2387 If passed a pointer G to a mips_got_info in the argument (it must
2388 not be the primary GOT), compute the offset from the beginning of
2389 the (primary) GOT section to the entry in G corresponding to the
2390 global symbol. G's assigned_gotno must contain the index of the
2391 first available global GOT entry in G. VALUE must contain the size
2392 of a GOT entry in bytes. For each global GOT entry that requires a
2393 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 2394 marked as not eligible for lazy resolution through a function
f4416af6
AO
2395 stub. */
2396static int
9719ad41 2397mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
2398{
2399 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2400 struct mips_elf_set_global_got_offset_arg *arg
2401 = (struct mips_elf_set_global_got_offset_arg *)p;
2402 struct mips_got_info *g = arg->g;
2403
2404 if (entry->abfd != NULL && entry->symndx == -1
2405 && entry->d.h->root.dynindx != -1)
2406 {
2407 if (g)
2408 {
2409 BFD_ASSERT (g->global_gotsym == NULL);
2410
2411 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
2412 if (arg->info->shared
2413 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
2414 && entry->d.h->root.def_dynamic
2415 && !entry->d.h->root.def_regular))
f4416af6
AO
2416 ++arg->needed_relocs;
2417 }
2418 else
2419 entry->d.h->root.got.offset = arg->value;
2420 }
2421
2422 return 1;
2423}
2424
0626d451
RS
2425/* Mark any global symbols referenced in the GOT we are iterating over
2426 as inelligible for lazy resolution stubs. */
2427static int
9719ad41 2428mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
2429{
2430 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2431
2432 if (entry->abfd != NULL
2433 && entry->symndx == -1
2434 && entry->d.h->root.dynindx != -1)
2435 entry->d.h->no_fn_stub = TRUE;
2436
2437 return 1;
2438}
2439
f4416af6
AO
2440/* Follow indirect and warning hash entries so that each got entry
2441 points to the final symbol definition. P must point to a pointer
2442 to the hash table we're traversing. Since this traversal may
2443 modify the hash table, we set this pointer to NULL to indicate
2444 we've made a potentially-destructive change to the hash table, so
2445 the traversal must be restarted. */
2446static int
9719ad41 2447mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
2448{
2449 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2450 htab_t got_entries = *(htab_t *)p;
2451
2452 if (entry->abfd != NULL && entry->symndx == -1)
2453 {
2454 struct mips_elf_link_hash_entry *h = entry->d.h;
2455
2456 while (h->root.root.type == bfd_link_hash_indirect
2457 || h->root.root.type == bfd_link_hash_warning)
2458 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2459
2460 if (entry->d.h == h)
2461 return 1;
143d77c5 2462
f4416af6
AO
2463 entry->d.h = h;
2464
2465 /* If we can't find this entry with the new bfd hash, re-insert
2466 it, and get the traversal restarted. */
2467 if (! htab_find (got_entries, entry))
2468 {
2469 htab_clear_slot (got_entries, entryp);
2470 entryp = htab_find_slot (got_entries, entry, INSERT);
2471 if (! *entryp)
2472 *entryp = entry;
2473 /* Abort the traversal, since the whole table may have
2474 moved, and leave it up to the parent to restart the
2475 process. */
2476 *(htab_t *)p = NULL;
2477 return 0;
2478 }
2479 /* We might want to decrement the global_gotno count, but it's
2480 either too early or too late for that at this point. */
2481 }
143d77c5 2482
f4416af6
AO
2483 return 1;
2484}
2485
2486/* Turn indirect got entries in a got_entries table into their final
2487 locations. */
2488static void
9719ad41 2489mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
2490{
2491 htab_t got_entries;
2492
2493 do
2494 {
2495 got_entries = g->got_entries;
2496
2497 htab_traverse (got_entries,
2498 mips_elf_resolve_final_got_entry,
2499 &got_entries);
2500 }
2501 while (got_entries == NULL);
2502}
2503
2504/* Return the offset of an input bfd IBFD's GOT from the beginning of
2505 the primary GOT. */
2506static bfd_vma
9719ad41 2507mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2508{
2509 if (g->bfd2got == NULL)
2510 return 0;
2511
2512 g = mips_elf_got_for_ibfd (g, ibfd);
2513 if (! g)
2514 return 0;
2515
2516 BFD_ASSERT (g->next);
2517
2518 g = g->next;
143d77c5 2519
f4416af6
AO
2520 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2521}
2522
2523/* Turn a single GOT that is too big for 16-bit addressing into
2524 a sequence of GOTs, each one 16-bit addressable. */
2525
2526static bfd_boolean
9719ad41
RS
2527mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2528 struct mips_got_info *g, asection *got,
2529 bfd_size_type pages)
f4416af6
AO
2530{
2531 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2532 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2533 struct mips_got_info *gg;
2534 unsigned int assign;
2535
2536 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 2537 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
2538 if (g->bfd2got == NULL)
2539 return FALSE;
2540
2541 got_per_bfd_arg.bfd2got = g->bfd2got;
2542 got_per_bfd_arg.obfd = abfd;
2543 got_per_bfd_arg.info = info;
2544
2545 /* Count how many GOT entries each input bfd requires, creating a
2546 map from bfd to got info while at that. */
2547 mips_elf_resolve_final_got_entries (g);
2548 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2549 if (got_per_bfd_arg.obfd == NULL)
2550 return FALSE;
2551
2552 got_per_bfd_arg.current = NULL;
2553 got_per_bfd_arg.primary = NULL;
2554 /* Taking out PAGES entries is a worst-case estimate. We could
2555 compute the maximum number of pages that each separate input bfd
2556 uses, but it's probably not worth it. */
2557 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2558 / MIPS_ELF_GOT_SIZE (abfd))
2559 - MIPS_RESERVED_GOTNO - pages);
2560
2561 /* Try to merge the GOTs of input bfds together, as long as they
2562 don't seem to exceed the maximum GOT size, choosing one of them
2563 to be the primary GOT. */
2564 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2565 if (got_per_bfd_arg.obfd == NULL)
2566 return FALSE;
2567
2568 /* If we find any suitable primary GOT, create an empty one. */
2569 if (got_per_bfd_arg.primary == NULL)
2570 {
2571 g->next = (struct mips_got_info *)
2572 bfd_alloc (abfd, sizeof (struct mips_got_info));
2573 if (g->next == NULL)
2574 return FALSE;
2575
2576 g->next->global_gotsym = NULL;
2577 g->next->global_gotno = 0;
2578 g->next->local_gotno = 0;
2579 g->next->assigned_gotno = 0;
2580 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2581 mips_elf_multi_got_entry_eq,
9719ad41 2582 NULL);
f4416af6
AO
2583 if (g->next->got_entries == NULL)
2584 return FALSE;
2585 g->next->bfd2got = NULL;
2586 }
2587 else
2588 g->next = got_per_bfd_arg.primary;
2589 g->next->next = got_per_bfd_arg.current;
2590
2591 /* GG is now the master GOT, and G is the primary GOT. */
2592 gg = g;
2593 g = g->next;
2594
2595 /* Map the output bfd to the primary got. That's what we're going
2596 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2597 didn't mark in check_relocs, and we want a quick way to find it.
2598 We can't just use gg->next because we're going to reverse the
2599 list. */
2600 {
2601 struct mips_elf_bfd2got_hash *bfdgot;
2602 void **bfdgotp;
143d77c5 2603
f4416af6
AO
2604 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2605 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2606
2607 if (bfdgot == NULL)
2608 return FALSE;
2609
2610 bfdgot->bfd = abfd;
2611 bfdgot->g = g;
2612 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2613
2614 BFD_ASSERT (*bfdgotp == NULL);
2615 *bfdgotp = bfdgot;
2616 }
2617
2618 /* The IRIX dynamic linker requires every symbol that is referenced
2619 in a dynamic relocation to be present in the primary GOT, so
2620 arrange for them to appear after those that are actually
2621 referenced.
2622
2623 GNU/Linux could very well do without it, but it would slow down
2624 the dynamic linker, since it would have to resolve every dynamic
2625 symbol referenced in other GOTs more than once, without help from
2626 the cache. Also, knowing that every external symbol has a GOT
2627 helps speed up the resolution of local symbols too, so GNU/Linux
2628 follows IRIX's practice.
143d77c5 2629
f4416af6
AO
2630 The number 2 is used by mips_elf_sort_hash_table_f to count
2631 global GOT symbols that are unreferenced in the primary GOT, with
2632 an initial dynamic index computed from gg->assigned_gotno, where
2633 the number of unreferenced global entries in the primary GOT is
2634 preserved. */
2635 if (1)
2636 {
2637 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2638 g->global_gotno = gg->global_gotno;
2639 set_got_offset_arg.value = 2;
2640 }
2641 else
2642 {
2643 /* This could be used for dynamic linkers that don't optimize
2644 symbol resolution while applying relocations so as to use
2645 primary GOT entries or assuming the symbol is locally-defined.
2646 With this code, we assign lower dynamic indices to global
2647 symbols that are not referenced in the primary GOT, so that
2648 their entries can be omitted. */
2649 gg->assigned_gotno = 0;
2650 set_got_offset_arg.value = -1;
2651 }
2652
2653 /* Reorder dynamic symbols as described above (which behavior
2654 depends on the setting of VALUE). */
2655 set_got_offset_arg.g = NULL;
2656 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2657 &set_got_offset_arg);
2658 set_got_offset_arg.value = 1;
2659 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2660 &set_got_offset_arg);
2661 if (! mips_elf_sort_hash_table (info, 1))
2662 return FALSE;
2663
2664 /* Now go through the GOTs assigning them offset ranges.
2665 [assigned_gotno, local_gotno[ will be set to the range of local
2666 entries in each GOT. We can then compute the end of a GOT by
2667 adding local_gotno to global_gotno. We reverse the list and make
2668 it circular since then we'll be able to quickly compute the
2669 beginning of a GOT, by computing the end of its predecessor. To
2670 avoid special cases for the primary GOT, while still preserving
2671 assertions that are valid for both single- and multi-got links,
2672 we arrange for the main got struct to have the right number of
2673 global entries, but set its local_gotno such that the initial
2674 offset of the primary GOT is zero. Remember that the primary GOT
2675 will become the last item in the circular linked list, so it
2676 points back to the master GOT. */
2677 gg->local_gotno = -g->global_gotno;
2678 gg->global_gotno = g->global_gotno;
2679 assign = 0;
2680 gg->next = gg;
2681
2682 do
2683 {
2684 struct mips_got_info *gn;
2685
2686 assign += MIPS_RESERVED_GOTNO;
2687 g->assigned_gotno = assign;
2688 g->local_gotno += assign + pages;
2689 assign = g->local_gotno + g->global_gotno;
2690
2691 /* Take g out of the direct list, and push it onto the reversed
2692 list that gg points to. */
2693 gn = g->next;
2694 g->next = gg->next;
2695 gg->next = g;
2696 g = gn;
0626d451
RS
2697
2698 /* Mark global symbols in every non-primary GOT as ineligible for
2699 stubs. */
2700 if (g)
2701 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
2702 }
2703 while (g);
2704
eea6121a 2705 got->size = (gg->next->local_gotno
f4416af6 2706 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 2707
f4416af6
AO
2708 return TRUE;
2709}
143d77c5 2710
b49e97c9
TS
2711\f
2712/* Returns the first relocation of type r_type found, beginning with
2713 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2714
2715static const Elf_Internal_Rela *
9719ad41
RS
2716mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2717 const Elf_Internal_Rela *relocation,
2718 const Elf_Internal_Rela *relend)
b49e97c9 2719{
b49e97c9
TS
2720 while (relocation < relend)
2721 {
2722 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2723 return relocation;
2724
2725 ++relocation;
2726 }
2727
2728 /* We didn't find it. */
2729 bfd_set_error (bfd_error_bad_value);
2730 return NULL;
2731}
2732
2733/* Return whether a relocation is against a local symbol. */
2734
b34976b6 2735static bfd_boolean
9719ad41
RS
2736mips_elf_local_relocation_p (bfd *input_bfd,
2737 const Elf_Internal_Rela *relocation,
2738 asection **local_sections,
2739 bfd_boolean check_forced)
b49e97c9
TS
2740{
2741 unsigned long r_symndx;
2742 Elf_Internal_Shdr *symtab_hdr;
2743 struct mips_elf_link_hash_entry *h;
2744 size_t extsymoff;
2745
2746 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2747 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2748 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2749
2750 if (r_symndx < extsymoff)
b34976b6 2751 return TRUE;
b49e97c9 2752 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 2753 return TRUE;
b49e97c9
TS
2754
2755 if (check_forced)
2756 {
2757 /* Look up the hash table to check whether the symbol
2758 was forced local. */
2759 h = (struct mips_elf_link_hash_entry *)
2760 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2761 /* Find the real hash-table entry for this symbol. */
2762 while (h->root.root.type == bfd_link_hash_indirect
2763 || h->root.root.type == bfd_link_hash_warning)
2764 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 2765 if (h->root.forced_local)
b34976b6 2766 return TRUE;
b49e97c9
TS
2767 }
2768
b34976b6 2769 return FALSE;
b49e97c9
TS
2770}
2771\f
2772/* Sign-extend VALUE, which has the indicated number of BITS. */
2773
a7ebbfdf 2774bfd_vma
9719ad41 2775_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
2776{
2777 if (value & ((bfd_vma) 1 << (bits - 1)))
2778 /* VALUE is negative. */
2779 value |= ((bfd_vma) - 1) << bits;
2780
2781 return value;
2782}
2783
2784/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 2785 range expressible by a signed number with the indicated number of
b49e97c9
TS
2786 BITS. */
2787
b34976b6 2788static bfd_boolean
9719ad41 2789mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
2790{
2791 bfd_signed_vma svalue = (bfd_signed_vma) value;
2792
2793 if (svalue > (1 << (bits - 1)) - 1)
2794 /* The value is too big. */
b34976b6 2795 return TRUE;
b49e97c9
TS
2796 else if (svalue < -(1 << (bits - 1)))
2797 /* The value is too small. */
b34976b6 2798 return TRUE;
b49e97c9
TS
2799
2800 /* All is well. */
b34976b6 2801 return FALSE;
b49e97c9
TS
2802}
2803
2804/* Calculate the %high function. */
2805
2806static bfd_vma
9719ad41 2807mips_elf_high (bfd_vma value)
b49e97c9
TS
2808{
2809 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2810}
2811
2812/* Calculate the %higher function. */
2813
2814static bfd_vma
9719ad41 2815mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2816{
2817#ifdef BFD64
2818 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2819#else
2820 abort ();
c5ae1840 2821 return MINUS_ONE;
b49e97c9
TS
2822#endif
2823}
2824
2825/* Calculate the %highest function. */
2826
2827static bfd_vma
9719ad41 2828mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2829{
2830#ifdef BFD64
b15e6682 2831 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
2832#else
2833 abort ();
c5ae1840 2834 return MINUS_ONE;
b49e97c9
TS
2835#endif
2836}
2837\f
2838/* Create the .compact_rel section. */
2839
b34976b6 2840static bfd_boolean
9719ad41
RS
2841mips_elf_create_compact_rel_section
2842 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
2843{
2844 flagword flags;
2845 register asection *s;
2846
2847 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2848 {
2849 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2850 | SEC_READONLY);
2851
2852 s = bfd_make_section (abfd, ".compact_rel");
2853 if (s == NULL
2854 || ! bfd_set_section_flags (abfd, s, flags)
2855 || ! bfd_set_section_alignment (abfd, s,
2856 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 2857 return FALSE;
b49e97c9 2858
eea6121a 2859 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
2860 }
2861
b34976b6 2862 return TRUE;
b49e97c9
TS
2863}
2864
2865/* Create the .got section to hold the global offset table. */
2866
b34976b6 2867static bfd_boolean
9719ad41
RS
2868mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2869 bfd_boolean maybe_exclude)
b49e97c9
TS
2870{
2871 flagword flags;
2872 register asection *s;
2873 struct elf_link_hash_entry *h;
14a793b2 2874 struct bfd_link_hash_entry *bh;
b49e97c9
TS
2875 struct mips_got_info *g;
2876 bfd_size_type amt;
2877
2878 /* This function may be called more than once. */
f4416af6
AO
2879 s = mips_elf_got_section (abfd, TRUE);
2880 if (s)
2881 {
2882 if (! maybe_exclude)
2883 s->flags &= ~SEC_EXCLUDE;
2884 return TRUE;
2885 }
b49e97c9
TS
2886
2887 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2888 | SEC_LINKER_CREATED);
2889
f4416af6
AO
2890 if (maybe_exclude)
2891 flags |= SEC_EXCLUDE;
2892
72b4917c
TS
2893 /* We have to use an alignment of 2**4 here because this is hardcoded
2894 in the function stub generation and in the linker script. */
b49e97c9
TS
2895 s = bfd_make_section (abfd, ".got");
2896 if (s == NULL
2897 || ! bfd_set_section_flags (abfd, s, flags)
72b4917c 2898 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 2899 return FALSE;
b49e97c9
TS
2900
2901 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2902 linker script because we don't want to define the symbol if we
2903 are not creating a global offset table. */
14a793b2 2904 bh = NULL;
b49e97c9
TS
2905 if (! (_bfd_generic_link_add_one_symbol
2906 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 2907 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 2908 return FALSE;
14a793b2
AM
2909
2910 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
2911 h->non_elf = 0;
2912 h->def_regular = 1;
b49e97c9
TS
2913 h->type = STT_OBJECT;
2914
2915 if (info->shared
c152c796 2916 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2917 return FALSE;
b49e97c9 2918
b49e97c9 2919 amt = sizeof (struct mips_got_info);
9719ad41 2920 g = bfd_alloc (abfd, amt);
b49e97c9 2921 if (g == NULL)
b34976b6 2922 return FALSE;
b49e97c9 2923 g->global_gotsym = NULL;
e3d54347 2924 g->global_gotno = 0;
b49e97c9
TS
2925 g->local_gotno = MIPS_RESERVED_GOTNO;
2926 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
2927 g->bfd2got = NULL;
2928 g->next = NULL;
b15e6682 2929 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 2930 mips_elf_got_entry_eq, NULL);
b15e6682
AO
2931 if (g->got_entries == NULL)
2932 return FALSE;
f0abc2a1
AM
2933 mips_elf_section_data (s)->u.got_info = g;
2934 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
2935 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2936
b34976b6 2937 return TRUE;
b49e97c9 2938}
b49e97c9
TS
2939\f
2940/* Calculate the value produced by the RELOCATION (which comes from
2941 the INPUT_BFD). The ADDEND is the addend to use for this
2942 RELOCATION; RELOCATION->R_ADDEND is ignored.
2943
2944 The result of the relocation calculation is stored in VALUEP.
2945 REQUIRE_JALXP indicates whether or not the opcode used with this
2946 relocation must be JALX.
2947
2948 This function returns bfd_reloc_continue if the caller need take no
2949 further action regarding this relocation, bfd_reloc_notsupported if
2950 something goes dramatically wrong, bfd_reloc_overflow if an
2951 overflow occurs, and bfd_reloc_ok to indicate success. */
2952
2953static bfd_reloc_status_type
9719ad41
RS
2954mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2955 asection *input_section,
2956 struct bfd_link_info *info,
2957 const Elf_Internal_Rela *relocation,
2958 bfd_vma addend, reloc_howto_type *howto,
2959 Elf_Internal_Sym *local_syms,
2960 asection **local_sections, bfd_vma *valuep,
2961 const char **namep, bfd_boolean *require_jalxp,
2962 bfd_boolean save_addend)
b49e97c9
TS
2963{
2964 /* The eventual value we will return. */
2965 bfd_vma value;
2966 /* The address of the symbol against which the relocation is
2967 occurring. */
2968 bfd_vma symbol = 0;
2969 /* The final GP value to be used for the relocatable, executable, or
2970 shared object file being produced. */
2971 bfd_vma gp = MINUS_ONE;
2972 /* The place (section offset or address) of the storage unit being
2973 relocated. */
2974 bfd_vma p;
2975 /* The value of GP used to create the relocatable object. */
2976 bfd_vma gp0 = MINUS_ONE;
2977 /* The offset into the global offset table at which the address of
2978 the relocation entry symbol, adjusted by the addend, resides
2979 during execution. */
2980 bfd_vma g = MINUS_ONE;
2981 /* The section in which the symbol referenced by the relocation is
2982 located. */
2983 asection *sec = NULL;
2984 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 2985 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 2986 symbol. */
b34976b6
AM
2987 bfd_boolean local_p, was_local_p;
2988 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2989 bfd_boolean gp_disp_p = FALSE;
b49e97c9
TS
2990 Elf_Internal_Shdr *symtab_hdr;
2991 size_t extsymoff;
2992 unsigned long r_symndx;
2993 int r_type;
b34976b6 2994 /* TRUE if overflow occurred during the calculation of the
b49e97c9 2995 relocation value. */
b34976b6
AM
2996 bfd_boolean overflowed_p;
2997 /* TRUE if this relocation refers to a MIPS16 function. */
2998 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
2999
3000 /* Parse the relocation. */
3001 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3002 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3003 p = (input_section->output_section->vma
3004 + input_section->output_offset
3005 + relocation->r_offset);
3006
3007 /* Assume that there will be no overflow. */
b34976b6 3008 overflowed_p = FALSE;
b49e97c9
TS
3009
3010 /* Figure out whether or not the symbol is local, and get the offset
3011 used in the array of hash table entries. */
3012 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3013 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3014 local_sections, FALSE);
bce03d3d 3015 was_local_p = local_p;
b49e97c9
TS
3016 if (! elf_bad_symtab (input_bfd))
3017 extsymoff = symtab_hdr->sh_info;
3018 else
3019 {
3020 /* The symbol table does not follow the rule that local symbols
3021 must come before globals. */
3022 extsymoff = 0;
3023 }
3024
3025 /* Figure out the value of the symbol. */
3026 if (local_p)
3027 {
3028 Elf_Internal_Sym *sym;
3029
3030 sym = local_syms + r_symndx;
3031 sec = local_sections[r_symndx];
3032
3033 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3034 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3035 || (sec->flags & SEC_MERGE))
b49e97c9 3036 symbol += sym->st_value;
d4df96e6
L
3037 if ((sec->flags & SEC_MERGE)
3038 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3039 {
3040 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3041 addend -= symbol;
3042 addend += sec->output_section->vma + sec->output_offset;
3043 }
b49e97c9
TS
3044
3045 /* MIPS16 text labels should be treated as odd. */
3046 if (sym->st_other == STO_MIPS16)
3047 ++symbol;
3048
3049 /* Record the name of this symbol, for our caller. */
3050 *namep = bfd_elf_string_from_elf_section (input_bfd,
3051 symtab_hdr->sh_link,
3052 sym->st_name);
3053 if (*namep == '\0')
3054 *namep = bfd_section_name (input_bfd, sec);
3055
3056 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3057 }
3058 else
3059 {
560e09e9
NC
3060 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3061
b49e97c9
TS
3062 /* For global symbols we look up the symbol in the hash-table. */
3063 h = ((struct mips_elf_link_hash_entry *)
3064 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3065 /* Find the real hash-table entry for this symbol. */
3066 while (h->root.root.type == bfd_link_hash_indirect
3067 || h->root.root.type == bfd_link_hash_warning)
3068 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3069
3070 /* Record the name of this symbol, for our caller. */
3071 *namep = h->root.root.root.string;
3072
3073 /* See if this is the special _gp_disp symbol. Note that such a
3074 symbol must always be a global symbol. */
560e09e9 3075 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3076 && ! NEWABI_P (input_bfd))
3077 {
3078 /* Relocations against _gp_disp are permitted only with
3079 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3080 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3081 return bfd_reloc_notsupported;
3082
b34976b6 3083 gp_disp_p = TRUE;
b49e97c9
TS
3084 }
3085 /* If this symbol is defined, calculate its address. Note that
3086 _gp_disp is a magic symbol, always implicitly defined by the
3087 linker, so it's inappropriate to check to see whether or not
3088 its defined. */
3089 else if ((h->root.root.type == bfd_link_hash_defined
3090 || h->root.root.type == bfd_link_hash_defweak)
3091 && h->root.root.u.def.section)
3092 {
3093 sec = h->root.root.u.def.section;
3094 if (sec->output_section)
3095 symbol = (h->root.root.u.def.value
3096 + sec->output_section->vma
3097 + sec->output_offset);
3098 else
3099 symbol = h->root.root.u.def.value;
3100 }
3101 else if (h->root.root.type == bfd_link_hash_undefweak)
3102 /* We allow relocations against undefined weak symbols, giving
3103 it the value zero, so that you can undefined weak functions
3104 and check to see if they exist by looking at their
3105 addresses. */
3106 symbol = 0;
59c2e50f 3107 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
3108 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3109 symbol = 0;
a4d0f181
TS
3110 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3111 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
3112 {
3113 /* If this is a dynamic link, we should have created a
3114 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3115 in in _bfd_mips_elf_create_dynamic_sections.
3116 Otherwise, we should define the symbol with a value of 0.
3117 FIXME: It should probably get into the symbol table
3118 somehow as well. */
3119 BFD_ASSERT (! info->shared);
3120 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3121 symbol = 0;
3122 }
3123 else
3124 {
3125 if (! ((*info->callbacks->undefined_symbol)
3126 (info, h->root.root.root.string, input_bfd,
3127 input_section, relocation->r_offset,
59c2e50f
L
3128 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3129 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
3130 return bfd_reloc_undefined;
3131 symbol = 0;
3132 }
3133
3134 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3135 }
3136
3137 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3138 need to redirect the call to the stub, unless we're already *in*
3139 a stub. */
1049f94e 3140 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3141 && ((h != NULL && h->fn_stub != NULL)
3142 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3143 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3144 && !mips_elf_stub_section_p (input_bfd, input_section))
3145 {
3146 /* This is a 32- or 64-bit call to a 16-bit function. We should
3147 have already noticed that we were going to need the
3148 stub. */
3149 if (local_p)
3150 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3151 else
3152 {
3153 BFD_ASSERT (h->need_fn_stub);
3154 sec = h->fn_stub;
3155 }
3156
3157 symbol = sec->output_section->vma + sec->output_offset;
3158 }
3159 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3160 need to redirect the call to the stub. */
1049f94e 3161 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3162 && h != NULL
3163 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3164 && !target_is_16_bit_code_p)
3165 {
3166 /* If both call_stub and call_fp_stub are defined, we can figure
3167 out which one to use by seeing which one appears in the input
3168 file. */
3169 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3170 {
3171 asection *o;
3172
3173 sec = NULL;
3174 for (o = input_bfd->sections; o != NULL; o = o->next)
3175 {
3176 if (strncmp (bfd_get_section_name (input_bfd, o),
3177 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3178 {
3179 sec = h->call_fp_stub;
3180 break;
3181 }
3182 }
3183 if (sec == NULL)
3184 sec = h->call_stub;
3185 }
3186 else if (h->call_stub != NULL)
3187 sec = h->call_stub;
3188 else
3189 sec = h->call_fp_stub;
3190
eea6121a 3191 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
3192 symbol = sec->output_section->vma + sec->output_offset;
3193 }
3194
3195 /* Calls from 16-bit code to 32-bit code and vice versa require the
3196 special jalx instruction. */
1049f94e 3197 *require_jalxp = (!info->relocatable
b49e97c9
TS
3198 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3199 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3200
3201 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3202 local_sections, TRUE);
b49e97c9
TS
3203
3204 /* If we haven't already determined the GOT offset, or the GP value,
3205 and we're going to need it, get it now. */
3206 switch (r_type)
3207 {
0fdc1bf1 3208 case R_MIPS_GOT_PAGE:
93a2b7ae 3209 case R_MIPS_GOT_OFST:
d25aed71
RS
3210 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3211 bind locally. */
3212 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 3213 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3214 break;
3215 /* Fall through. */
3216
b49e97c9
TS
3217 case R_MIPS_CALL16:
3218 case R_MIPS_GOT16:
3219 case R_MIPS_GOT_DISP:
3220 case R_MIPS_GOT_HI16:
3221 case R_MIPS_CALL_HI16:
3222 case R_MIPS_GOT_LO16:
3223 case R_MIPS_CALL_LO16:
3224 /* Find the index into the GOT where this value is located. */
3225 if (!local_p)
3226 {
0fdc1bf1
AO
3227 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3228 GOT_PAGE relocation that decays to GOT_DISP because the
3229 symbol turns out to be global. The addend is then added
3230 as GOT_OFST. */
3231 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3232 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3233 input_bfd,
b49e97c9
TS
3234 (struct elf_link_hash_entry *) h);
3235 if (! elf_hash_table(info)->dynamic_sections_created
3236 || (info->shared
3237 && (info->symbolic || h->root.dynindx == -1)
f5385ebf 3238 && h->root.def_regular))
b49e97c9
TS
3239 {
3240 /* This is a static link or a -Bsymbolic link. The
3241 symbol is defined locally, or was forced to be local.
3242 We must initialize this entry in the GOT. */
3243 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3244 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3245 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3246 }
3247 }
3248 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3249 /* There's no need to create a local GOT entry here; the
3250 calculation for a local GOT16 entry does not involve G. */
3251 break;
3252 else
3253 {
f4416af6
AO
3254 g = mips_elf_local_got_index (abfd, input_bfd,
3255 info, symbol + addend);
b49e97c9
TS
3256 if (g == MINUS_ONE)
3257 return bfd_reloc_outofrange;
3258 }
3259
3260 /* Convert GOT indices to actual offsets. */
3261 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3262 abfd, input_bfd, g);
b49e97c9
TS
3263 break;
3264
3265 case R_MIPS_HI16:
3266 case R_MIPS_LO16:
3267 case R_MIPS16_GPREL:
3268 case R_MIPS_GPREL16:
3269 case R_MIPS_GPREL32:
3270 case R_MIPS_LITERAL:
3271 gp0 = _bfd_get_gp_value (input_bfd);
3272 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3273 if (elf_hash_table (info)->dynobj)
3274 gp += mips_elf_adjust_gp (abfd,
3275 mips_elf_got_info
3276 (elf_hash_table (info)->dynobj, NULL),
3277 input_bfd);
b49e97c9
TS
3278 break;
3279
3280 default:
3281 break;
3282 }
3283
3284 /* Figure out what kind of relocation is being performed. */
3285 switch (r_type)
3286 {
3287 case R_MIPS_NONE:
3288 return bfd_reloc_continue;
3289
3290 case R_MIPS_16:
a7ebbfdf 3291 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3292 overflowed_p = mips_elf_overflow_p (value, 16);
3293 break;
3294
3295 case R_MIPS_32:
3296 case R_MIPS_REL32:
3297 case R_MIPS_64:
3298 if ((info->shared
3299 || (elf_hash_table (info)->dynamic_sections_created
3300 && h != NULL
f5385ebf
AM
3301 && h->root.def_dynamic
3302 && !h->root.def_regular))
b49e97c9
TS
3303 && r_symndx != 0
3304 && (input_section->flags & SEC_ALLOC) != 0)
3305 {
3306 /* If we're creating a shared library, or this relocation is
3307 against a symbol in a shared library, then we can't know
3308 where the symbol will end up. So, we create a relocation
3309 record in the output, and leave the job up to the dynamic
3310 linker. */
3311 value = addend;
3312 if (!mips_elf_create_dynamic_relocation (abfd,
3313 info,
3314 relocation,
3315 h,
3316 sec,
3317 symbol,
3318 &value,
3319 input_section))
3320 return bfd_reloc_undefined;
3321 }
3322 else
3323 {
3324 if (r_type != R_MIPS_REL32)
3325 value = symbol + addend;
3326 else
3327 value = addend;
3328 }
3329 value &= howto->dst_mask;
092dcd75
CD
3330 break;
3331
3332 case R_MIPS_PC32:
3333 value = symbol + addend - p;
3334 value &= howto->dst_mask;
b49e97c9
TS
3335 break;
3336
0b25d3e6 3337 case R_MIPS_GNU_REL16_S2:
30ac9238 3338 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
0b25d3e6
AO
3339 overflowed_p = mips_elf_overflow_p (value, 18);
3340 value = (value >> 2) & howto->dst_mask;
3341 break;
3342
b49e97c9
TS
3343 case R_MIPS16_26:
3344 /* The calculation for R_MIPS16_26 is just the same as for an
3345 R_MIPS_26. It's only the storage of the relocated field into
3346 the output file that's different. That's handled in
3347 mips_elf_perform_relocation. So, we just fall through to the
3348 R_MIPS_26 case here. */
3349 case R_MIPS_26:
3350 if (local_p)
30ac9238 3351 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 3352 else
30ac9238 3353 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
b49e97c9
TS
3354 value &= howto->dst_mask;
3355 break;
3356
3357 case R_MIPS_HI16:
3358 if (!gp_disp_p)
3359 {
3360 value = mips_elf_high (addend + symbol);
3361 value &= howto->dst_mask;
3362 }
3363 else
3364 {
3365 value = mips_elf_high (addend + gp - p);
3366 overflowed_p = mips_elf_overflow_p (value, 16);
3367 }
3368 break;
3369
3370 case R_MIPS_LO16:
3371 if (!gp_disp_p)
3372 value = (symbol + addend) & howto->dst_mask;
3373 else
3374 {
3375 value = addend + gp - p + 4;
3376 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 3377 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
3378 _gp_disp are normally generated from the .cpload
3379 pseudo-op. It generates code that normally looks like
3380 this:
3381
3382 lui $gp,%hi(_gp_disp)
3383 addiu $gp,$gp,%lo(_gp_disp)
3384 addu $gp,$gp,$t9
3385
3386 Here $t9 holds the address of the function being called,
3387 as required by the MIPS ELF ABI. The R_MIPS_LO16
3388 relocation can easily overflow in this situation, but the
3389 R_MIPS_HI16 relocation will handle the overflow.
3390 Therefore, we consider this a bug in the MIPS ABI, and do
3391 not check for overflow here. */
3392 }
3393 break;
3394
3395 case R_MIPS_LITERAL:
3396 /* Because we don't merge literal sections, we can handle this
3397 just like R_MIPS_GPREL16. In the long run, we should merge
3398 shared literals, and then we will need to additional work
3399 here. */
3400
3401 /* Fall through. */
3402
3403 case R_MIPS16_GPREL:
3404 /* The R_MIPS16_GPREL performs the same calculation as
3405 R_MIPS_GPREL16, but stores the relocated bits in a different
3406 order. We don't need to do anything special here; the
3407 differences are handled in mips_elf_perform_relocation. */
3408 case R_MIPS_GPREL16:
bce03d3d
AO
3409 /* Only sign-extend the addend if it was extracted from the
3410 instruction. If the addend was separate, leave it alone,
3411 otherwise we may lose significant bits. */
3412 if (howto->partial_inplace)
a7ebbfdf 3413 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
3414 value = symbol + addend - gp;
3415 /* If the symbol was local, any earlier relocatable links will
3416 have adjusted its addend with the gp offset, so compensate
3417 for that now. Don't do it for symbols forced local in this
3418 link, though, since they won't have had the gp offset applied
3419 to them before. */
3420 if (was_local_p)
3421 value += gp0;
b49e97c9
TS
3422 overflowed_p = mips_elf_overflow_p (value, 16);
3423 break;
3424
3425 case R_MIPS_GOT16:
3426 case R_MIPS_CALL16:
3427 if (local_p)
3428 {
b34976b6 3429 bfd_boolean forced;
b49e97c9
TS
3430
3431 /* The special case is when the symbol is forced to be local. We
3432 need the full address in the GOT since no R_MIPS_LO16 relocation
3433 follows. */
3434 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3435 local_sections, FALSE);
f4416af6
AO
3436 value = mips_elf_got16_entry (abfd, input_bfd, info,
3437 symbol + addend, forced);
b49e97c9
TS
3438 if (value == MINUS_ONE)
3439 return bfd_reloc_outofrange;
3440 value
3441 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3442 abfd, input_bfd, value);
b49e97c9
TS
3443 overflowed_p = mips_elf_overflow_p (value, 16);
3444 break;
3445 }
3446
3447 /* Fall through. */
3448
3449 case R_MIPS_GOT_DISP:
0fdc1bf1 3450 got_disp:
b49e97c9
TS
3451 value = g;
3452 overflowed_p = mips_elf_overflow_p (value, 16);
3453 break;
3454
3455 case R_MIPS_GPREL32:
bce03d3d
AO
3456 value = (addend + symbol + gp0 - gp);
3457 if (!save_addend)
3458 value &= howto->dst_mask;
b49e97c9
TS
3459 break;
3460
3461 case R_MIPS_PC16:
a7ebbfdf 3462 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
0b25d3e6 3463 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
3464 break;
3465
3466 case R_MIPS_GOT_HI16:
3467 case R_MIPS_CALL_HI16:
3468 /* We're allowed to handle these two relocations identically.
3469 The dynamic linker is allowed to handle the CALL relocations
3470 differently by creating a lazy evaluation stub. */
3471 value = g;
3472 value = mips_elf_high (value);
3473 value &= howto->dst_mask;
3474 break;
3475
3476 case R_MIPS_GOT_LO16:
3477 case R_MIPS_CALL_LO16:
3478 value = g & howto->dst_mask;
3479 break;
3480
3481 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
3482 /* GOT_PAGE relocations that reference non-local symbols decay
3483 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3484 0. */
93a2b7ae 3485 if (! local_p)
0fdc1bf1 3486 goto got_disp;
f4416af6 3487 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
3488 if (value == MINUS_ONE)
3489 return bfd_reloc_outofrange;
3490 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3491 abfd, input_bfd, value);
b49e97c9
TS
3492 overflowed_p = mips_elf_overflow_p (value, 16);
3493 break;
3494
3495 case R_MIPS_GOT_OFST:
93a2b7ae 3496 if (local_p)
0fdc1bf1
AO
3497 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3498 else
3499 value = addend;
b49e97c9
TS
3500 overflowed_p = mips_elf_overflow_p (value, 16);
3501 break;
3502
3503 case R_MIPS_SUB:
3504 value = symbol - addend;
3505 value &= howto->dst_mask;
3506 break;
3507
3508 case R_MIPS_HIGHER:
3509 value = mips_elf_higher (addend + symbol);
3510 value &= howto->dst_mask;
3511 break;
3512
3513 case R_MIPS_HIGHEST:
3514 value = mips_elf_highest (addend + symbol);
3515 value &= howto->dst_mask;
3516 break;
3517
3518 case R_MIPS_SCN_DISP:
3519 value = symbol + addend - sec->output_offset;
3520 value &= howto->dst_mask;
3521 break;
3522
3523 case R_MIPS_PJUMP:
3524 case R_MIPS_JALR:
3525 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3526 hint; we could improve performance by honoring that hint. */
3527 return bfd_reloc_continue;
3528
3529 case R_MIPS_GNU_VTINHERIT:
3530 case R_MIPS_GNU_VTENTRY:
3531 /* We don't do anything with these at present. */
3532 return bfd_reloc_continue;
3533
3534 default:
3535 /* An unrecognized relocation type. */
3536 return bfd_reloc_notsupported;
3537 }
3538
3539 /* Store the VALUE for our caller. */
3540 *valuep = value;
3541 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3542}
3543
3544/* Obtain the field relocated by RELOCATION. */
3545
3546static bfd_vma
9719ad41
RS
3547mips_elf_obtain_contents (reloc_howto_type *howto,
3548 const Elf_Internal_Rela *relocation,
3549 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
3550{
3551 bfd_vma x;
3552 bfd_byte *location = contents + relocation->r_offset;
3553
3554 /* Obtain the bytes. */
3555 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3556
3557 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3558 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3559 && bfd_little_endian (input_bfd))
3560 /* The two 16-bit words will be reversed on a little-endian system.
3561 See mips_elf_perform_relocation for more details. */
3562 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3563
3564 return x;
3565}
3566
3567/* It has been determined that the result of the RELOCATION is the
3568 VALUE. Use HOWTO to place VALUE into the output file at the
3569 appropriate position. The SECTION is the section to which the
b34976b6 3570 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
3571 for the relocation must be either JAL or JALX, and it is
3572 unconditionally converted to JALX.
3573
b34976b6 3574 Returns FALSE if anything goes wrong. */
b49e97c9 3575
b34976b6 3576static bfd_boolean
9719ad41
RS
3577mips_elf_perform_relocation (struct bfd_link_info *info,
3578 reloc_howto_type *howto,
3579 const Elf_Internal_Rela *relocation,
3580 bfd_vma value, bfd *input_bfd,
3581 asection *input_section, bfd_byte *contents,
3582 bfd_boolean require_jalx)
b49e97c9
TS
3583{
3584 bfd_vma x;
3585 bfd_byte *location;
3586 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3587
3588 /* Figure out where the relocation is occurring. */
3589 location = contents + relocation->r_offset;
3590
3591 /* Obtain the current value. */
3592 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3593
3594 /* Clear the field we are setting. */
3595 x &= ~howto->dst_mask;
3596
3597 /* If this is the R_MIPS16_26 relocation, we must store the
3598 value in a funny way. */
3599 if (r_type == R_MIPS16_26)
3600 {
3601 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3602 Most mips16 instructions are 16 bits, but these instructions
3603 are 32 bits.
3604
3605 The format of these instructions is:
3606
3607 +--------------+--------------------------------+
3608 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3609 +--------------+--------------------------------+
3610 ! Immediate 15:0 !
3611 +-----------------------------------------------+
3612
3613 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3614 Note that the immediate value in the first word is swapped.
3615
1049f94e 3616 When producing a relocatable object file, R_MIPS16_26 is
b49e97c9
TS
3617 handled mostly like R_MIPS_26. In particular, the addend is
3618 stored as a straight 26-bit value in a 32-bit instruction.
3619 (gas makes life simpler for itself by never adjusting a
3620 R_MIPS16_26 reloc to be against a section, so the addend is
3621 always zero). However, the 32 bit instruction is stored as 2
3622 16-bit values, rather than a single 32-bit value. In a
3623 big-endian file, the result is the same; in a little-endian
3624 file, the two 16-bit halves of the 32 bit value are swapped.
3625 This is so that a disassembler can recognize the jal
3626 instruction.
3627
3628 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3629 instruction stored as two 16-bit values. The addend A is the
3630 contents of the targ26 field. The calculation is the same as
3631 R_MIPS_26. When storing the calculated value, reorder the
3632 immediate value as shown above, and don't forget to store the
3633 value as two 16-bit values.
3634
3635 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3636 defined as
3637
3638 big-endian:
3639 +--------+----------------------+
3640 | | |
3641 | | targ26-16 |
3642 |31 26|25 0|
3643 +--------+----------------------+
3644
3645 little-endian:
3646 +----------+------+-------------+
3647 | | | |
3648 | sub1 | | sub2 |
3649 |0 9|10 15|16 31|
3650 +----------+--------------------+
3651 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3652 ((sub1 << 16) | sub2)).
3653
1049f94e 3654 When producing a relocatable object file, the calculation is
b49e97c9
TS
3655 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3656 When producing a fully linked file, the calculation is
3657 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3658 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3659
1049f94e 3660 if (!info->relocatable)
b49e97c9
TS
3661 /* Shuffle the bits according to the formula above. */
3662 value = (((value & 0x1f0000) << 5)
3663 | ((value & 0x3e00000) >> 5)
3664 | (value & 0xffff));
3665 }
3666 else if (r_type == R_MIPS16_GPREL)
3667 {
3668 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3669 mode. A typical instruction will have a format like this:
3670
3671 +--------------+--------------------------------+
3672 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3673 +--------------+--------------------------------+
3674 ! Major ! rx ! ry ! Imm 4:0 !
3675 +--------------+--------------------------------+
3676
3677 EXTEND is the five bit value 11110. Major is the instruction
3678 opcode.
3679
3680 This is handled exactly like R_MIPS_GPREL16, except that the
3681 addend is retrieved and stored as shown in this diagram; that
3682 is, the Imm fields above replace the V-rel16 field.
3683
3684 All we need to do here is shuffle the bits appropriately. As
3685 above, the two 16-bit halves must be swapped on a
3686 little-endian system. */
3687 value = (((value & 0x7e0) << 16)
3688 | ((value & 0xf800) << 5)
3689 | (value & 0x1f));
3690 }
3691
3692 /* Set the field. */
3693 x |= (value & howto->dst_mask);
3694
3695 /* If required, turn JAL into JALX. */
3696 if (require_jalx)
3697 {
b34976b6 3698 bfd_boolean ok;
b49e97c9
TS
3699 bfd_vma opcode = x >> 26;
3700 bfd_vma jalx_opcode;
3701
3702 /* Check to see if the opcode is already JAL or JALX. */
3703 if (r_type == R_MIPS16_26)
3704 {
3705 ok = ((opcode == 0x6) || (opcode == 0x7));
3706 jalx_opcode = 0x7;
3707 }
3708 else
3709 {
3710 ok = ((opcode == 0x3) || (opcode == 0x1d));
3711 jalx_opcode = 0x1d;
3712 }
3713
3714 /* If the opcode is not JAL or JALX, there's a problem. */
3715 if (!ok)
3716 {
3717 (*_bfd_error_handler)
d003868e
AM
3718 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
3719 input_bfd,
3720 input_section,
b49e97c9
TS
3721 (unsigned long) relocation->r_offset);
3722 bfd_set_error (bfd_error_bad_value);
b34976b6 3723 return FALSE;
b49e97c9
TS
3724 }
3725
3726 /* Make this the JALX opcode. */
3727 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3728 }
3729
3730 /* Swap the high- and low-order 16 bits on little-endian systems
3731 when doing a MIPS16 relocation. */
3732 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3733 && bfd_little_endian (input_bfd))
3734 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3735
3736 /* Put the value into the output. */
3737 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
b34976b6 3738 return TRUE;
b49e97c9
TS
3739}
3740
b34976b6 3741/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 3742
b34976b6 3743static bfd_boolean
9719ad41 3744mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
3745{
3746 const char *name = bfd_get_section_name (abfd, section);
3747
3748 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3749 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3750 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3751}
3752\f
3753/* Add room for N relocations to the .rel.dyn section in ABFD. */
3754
3755static void
9719ad41 3756mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
b49e97c9
TS
3757{
3758 asection *s;
3759
f4416af6 3760 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
3761 BFD_ASSERT (s != NULL);
3762
eea6121a 3763 if (s->size == 0)
b49e97c9
TS
3764 {
3765 /* Make room for a null element. */
eea6121a 3766 s->size += MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
3767 ++s->reloc_count;
3768 }
eea6121a 3769 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
3770}
3771
3772/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3773 is the original relocation, which is now being transformed into a
3774 dynamic relocation. The ADDENDP is adjusted if necessary; the
3775 caller should store the result in place of the original addend. */
3776
b34976b6 3777static bfd_boolean
9719ad41
RS
3778mips_elf_create_dynamic_relocation (bfd *output_bfd,
3779 struct bfd_link_info *info,
3780 const Elf_Internal_Rela *rel,
3781 struct mips_elf_link_hash_entry *h,
3782 asection *sec, bfd_vma symbol,
3783 bfd_vma *addendp, asection *input_section)
b49e97c9 3784{
947216bf 3785 Elf_Internal_Rela outrel[3];
b49e97c9
TS
3786 asection *sreloc;
3787 bfd *dynobj;
3788 int r_type;
5d41f0b6
RS
3789 long indx;
3790 bfd_boolean defined_p;
b49e97c9
TS
3791
3792 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3793 dynobj = elf_hash_table (info)->dynobj;
f4416af6 3794 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
3795 BFD_ASSERT (sreloc != NULL);
3796 BFD_ASSERT (sreloc->contents != NULL);
3797 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 3798 < sreloc->size);
b49e97c9 3799
b49e97c9
TS
3800 outrel[0].r_offset =
3801 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3802 outrel[1].r_offset =
3803 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3804 outrel[2].r_offset =
3805 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3806
3807#if 0
3808 /* We begin by assuming that the offset for the dynamic relocation
3809 is the same as for the original relocation. We'll adjust this
3810 later to reflect the correct output offsets. */
a7ebbfdf 3811 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
b49e97c9
TS
3812 {
3813 outrel[1].r_offset = rel[1].r_offset;
3814 outrel[2].r_offset = rel[2].r_offset;
3815 }
3816 else
3817 {
3818 /* Except that in a stab section things are more complex.
3819 Because we compress stab information, the offset given in the
3820 relocation may not be the one we want; we must let the stabs
3821 machinery tell us the offset. */
3822 outrel[1].r_offset = outrel[0].r_offset;
3823 outrel[2].r_offset = outrel[0].r_offset;
3824 /* If we didn't need the relocation at all, this value will be
3825 -1. */
c5ae1840 3826 if (outrel[0].r_offset == MINUS_ONE)
b34976b6 3827 skip = TRUE;
b49e97c9
TS
3828 }
3829#endif
3830
c5ae1840 3831 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 3832 /* The relocation field has been deleted. */
5d41f0b6
RS
3833 return TRUE;
3834
3835 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
3836 {
3837 /* The relocation field has been converted into a relative value of
3838 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3839 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 3840 *addendp += symbol;
5d41f0b6 3841 return TRUE;
0d591ff7 3842 }
b49e97c9 3843
5d41f0b6
RS
3844 /* We must now calculate the dynamic symbol table index to use
3845 in the relocation. */
3846 if (h != NULL
3847 && (! info->symbolic || !h->root.def_regular)
3848 /* h->root.dynindx may be -1 if this symbol was marked to
3849 become local. */
3850 && h->root.dynindx != -1)
3851 {
3852 indx = h->root.dynindx;
3853 if (SGI_COMPAT (output_bfd))
3854 defined_p = h->root.def_regular;
3855 else
3856 /* ??? glibc's ld.so just adds the final GOT entry to the
3857 relocation field. It therefore treats relocs against
3858 defined symbols in the same way as relocs against
3859 undefined symbols. */
3860 defined_p = FALSE;
3861 }
b49e97c9
TS
3862 else
3863 {
5d41f0b6
RS
3864 if (sec != NULL && bfd_is_abs_section (sec))
3865 indx = 0;
3866 else if (sec == NULL || sec->owner == NULL)
fdd07405 3867 {
5d41f0b6
RS
3868 bfd_set_error (bfd_error_bad_value);
3869 return FALSE;
b49e97c9
TS
3870 }
3871 else
3872 {
5d41f0b6
RS
3873 indx = elf_section_data (sec->output_section)->dynindx;
3874 if (indx == 0)
3875 abort ();
b49e97c9
TS
3876 }
3877
5d41f0b6
RS
3878 /* Instead of generating a relocation using the section
3879 symbol, we may as well make it a fully relative
3880 relocation. We want to avoid generating relocations to
3881 local symbols because we used to generate them
3882 incorrectly, without adding the original symbol value,
3883 which is mandated by the ABI for section symbols. In
3884 order to give dynamic loaders and applications time to
3885 phase out the incorrect use, we refrain from emitting
3886 section-relative relocations. It's not like they're
3887 useful, after all. This should be a bit more efficient
3888 as well. */
3889 /* ??? Although this behavior is compatible with glibc's ld.so,
3890 the ABI says that relocations against STN_UNDEF should have
3891 a symbol value of 0. Irix rld honors this, so relocations
3892 against STN_UNDEF have no effect. */
3893 if (!SGI_COMPAT (output_bfd))
3894 indx = 0;
3895 defined_p = TRUE;
b49e97c9
TS
3896 }
3897
5d41f0b6
RS
3898 /* If the relocation was previously an absolute relocation and
3899 this symbol will not be referred to by the relocation, we must
3900 adjust it by the value we give it in the dynamic symbol table.
3901 Otherwise leave the job up to the dynamic linker. */
3902 if (defined_p && r_type != R_MIPS_REL32)
3903 *addendp += symbol;
3904
3905 /* The relocation is always an REL32 relocation because we don't
3906 know where the shared library will wind up at load-time. */
3907 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3908 R_MIPS_REL32);
3909 /* For strict adherence to the ABI specification, we should
3910 generate a R_MIPS_64 relocation record by itself before the
3911 _REL32/_64 record as well, such that the addend is read in as
3912 a 64-bit value (REL32 is a 32-bit relocation, after all).
3913 However, since none of the existing ELF64 MIPS dynamic
3914 loaders seems to care, we don't waste space with these
3915 artificial relocations. If this turns out to not be true,
3916 mips_elf_allocate_dynamic_relocation() should be tweaked so
3917 as to make room for a pair of dynamic relocations per
3918 invocation if ABI_64_P, and here we should generate an
3919 additional relocation record with R_MIPS_64 by itself for a
3920 NULL symbol before this relocation record. */
3921 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3922 ABI_64_P (output_bfd)
3923 ? R_MIPS_64
3924 : R_MIPS_NONE);
3925 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3926
3927 /* Adjust the output offset of the relocation to reference the
3928 correct location in the output file. */
3929 outrel[0].r_offset += (input_section->output_section->vma
3930 + input_section->output_offset);
3931 outrel[1].r_offset += (input_section->output_section->vma
3932 + input_section->output_offset);
3933 outrel[2].r_offset += (input_section->output_section->vma
3934 + input_section->output_offset);
3935
b49e97c9
TS
3936 /* Put the relocation back out. We have to use the special
3937 relocation outputter in the 64-bit case since the 64-bit
3938 relocation format is non-standard. */
3939 if (ABI_64_P (output_bfd))
3940 {
3941 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3942 (output_bfd, &outrel[0],
3943 (sreloc->contents
3944 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3945 }
3946 else
947216bf
AM
3947 bfd_elf32_swap_reloc_out
3948 (output_bfd, &outrel[0],
3949 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 3950
b49e97c9
TS
3951 /* We've now added another relocation. */
3952 ++sreloc->reloc_count;
3953
3954 /* Make sure the output section is writable. The dynamic linker
3955 will be writing to it. */
3956 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3957 |= SHF_WRITE;
3958
3959 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 3960 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
3961 {
3962 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3963 bfd_byte *cr;
3964
3965 if (scpt)
3966 {
3967 Elf32_crinfo cptrel;
3968
3969 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3970 cptrel.vaddr = (rel->r_offset
3971 + input_section->output_section->vma
3972 + input_section->output_offset);
3973 if (r_type == R_MIPS_REL32)
3974 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3975 else
3976 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3977 mips_elf_set_cr_dist2to (cptrel, 0);
3978 cptrel.konst = *addendp;
3979
3980 cr = (scpt->contents
3981 + sizeof (Elf32_External_compact_rel));
3982 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3983 ((Elf32_External_crinfo *) cr
3984 + scpt->reloc_count));
3985 ++scpt->reloc_count;
3986 }
3987 }
3988
b34976b6 3989 return TRUE;
b49e97c9
TS
3990}
3991\f
b49e97c9
TS
3992/* Return the MACH for a MIPS e_flags value. */
3993
3994unsigned long
9719ad41 3995_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
3996{
3997 switch (flags & EF_MIPS_MACH)
3998 {
3999 case E_MIPS_MACH_3900:
4000 return bfd_mach_mips3900;
4001
4002 case E_MIPS_MACH_4010:
4003 return bfd_mach_mips4010;
4004
4005 case E_MIPS_MACH_4100:
4006 return bfd_mach_mips4100;
4007
4008 case E_MIPS_MACH_4111:
4009 return bfd_mach_mips4111;
4010
00707a0e
RS
4011 case E_MIPS_MACH_4120:
4012 return bfd_mach_mips4120;
4013
b49e97c9
TS
4014 case E_MIPS_MACH_4650:
4015 return bfd_mach_mips4650;
4016
00707a0e
RS
4017 case E_MIPS_MACH_5400:
4018 return bfd_mach_mips5400;
4019
4020 case E_MIPS_MACH_5500:
4021 return bfd_mach_mips5500;
4022
b49e97c9
TS
4023 case E_MIPS_MACH_SB1:
4024 return bfd_mach_mips_sb1;
4025
4026 default:
4027 switch (flags & EF_MIPS_ARCH)
4028 {
4029 default:
4030 case E_MIPS_ARCH_1:
4031 return bfd_mach_mips3000;
4032 break;
4033
4034 case E_MIPS_ARCH_2:
4035 return bfd_mach_mips6000;
4036 break;
4037
4038 case E_MIPS_ARCH_3:
4039 return bfd_mach_mips4000;
4040 break;
4041
4042 case E_MIPS_ARCH_4:
4043 return bfd_mach_mips8000;
4044 break;
4045
4046 case E_MIPS_ARCH_5:
4047 return bfd_mach_mips5;
4048 break;
4049
4050 case E_MIPS_ARCH_32:
4051 return bfd_mach_mipsisa32;
4052 break;
4053
4054 case E_MIPS_ARCH_64:
4055 return bfd_mach_mipsisa64;
4056 break;
af7ee8bf
CD
4057
4058 case E_MIPS_ARCH_32R2:
4059 return bfd_mach_mipsisa32r2;
4060 break;
5f74bc13
CD
4061
4062 case E_MIPS_ARCH_64R2:
4063 return bfd_mach_mipsisa64r2;
4064 break;
b49e97c9
TS
4065 }
4066 }
4067
4068 return 0;
4069}
4070
4071/* Return printable name for ABI. */
4072
4073static INLINE char *
9719ad41 4074elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
4075{
4076 flagword flags;
4077
4078 flags = elf_elfheader (abfd)->e_flags;
4079 switch (flags & EF_MIPS_ABI)
4080 {
4081 case 0:
4082 if (ABI_N32_P (abfd))
4083 return "N32";
4084 else if (ABI_64_P (abfd))
4085 return "64";
4086 else
4087 return "none";
4088 case E_MIPS_ABI_O32:
4089 return "O32";
4090 case E_MIPS_ABI_O64:
4091 return "O64";
4092 case E_MIPS_ABI_EABI32:
4093 return "EABI32";
4094 case E_MIPS_ABI_EABI64:
4095 return "EABI64";
4096 default:
4097 return "unknown abi";
4098 }
4099}
4100\f
4101/* MIPS ELF uses two common sections. One is the usual one, and the
4102 other is for small objects. All the small objects are kept
4103 together, and then referenced via the gp pointer, which yields
4104 faster assembler code. This is what we use for the small common
4105 section. This approach is copied from ecoff.c. */
4106static asection mips_elf_scom_section;
4107static asymbol mips_elf_scom_symbol;
4108static asymbol *mips_elf_scom_symbol_ptr;
4109
4110/* MIPS ELF also uses an acommon section, which represents an
4111 allocated common symbol which may be overridden by a
4112 definition in a shared library. */
4113static asection mips_elf_acom_section;
4114static asymbol mips_elf_acom_symbol;
4115static asymbol *mips_elf_acom_symbol_ptr;
4116
4117/* Handle the special MIPS section numbers that a symbol may use.
4118 This is used for both the 32-bit and the 64-bit ABI. */
4119
4120void
9719ad41 4121_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
4122{
4123 elf_symbol_type *elfsym;
4124
4125 elfsym = (elf_symbol_type *) asym;
4126 switch (elfsym->internal_elf_sym.st_shndx)
4127 {
4128 case SHN_MIPS_ACOMMON:
4129 /* This section is used in a dynamically linked executable file.
4130 It is an allocated common section. The dynamic linker can
4131 either resolve these symbols to something in a shared
4132 library, or it can just leave them here. For our purposes,
4133 we can consider these symbols to be in a new section. */
4134 if (mips_elf_acom_section.name == NULL)
4135 {
4136 /* Initialize the acommon section. */
4137 mips_elf_acom_section.name = ".acommon";
4138 mips_elf_acom_section.flags = SEC_ALLOC;
4139 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4140 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4141 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4142 mips_elf_acom_symbol.name = ".acommon";
4143 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4144 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4145 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4146 }
4147 asym->section = &mips_elf_acom_section;
4148 break;
4149
4150 case SHN_COMMON:
4151 /* Common symbols less than the GP size are automatically
4152 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4153 if (asym->value > elf_gp_size (abfd)
4154 || IRIX_COMPAT (abfd) == ict_irix6)
4155 break;
4156 /* Fall through. */
4157 case SHN_MIPS_SCOMMON:
4158 if (mips_elf_scom_section.name == NULL)
4159 {
4160 /* Initialize the small common section. */
4161 mips_elf_scom_section.name = ".scommon";
4162 mips_elf_scom_section.flags = SEC_IS_COMMON;
4163 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4164 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4165 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4166 mips_elf_scom_symbol.name = ".scommon";
4167 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4168 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4169 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4170 }
4171 asym->section = &mips_elf_scom_section;
4172 asym->value = elfsym->internal_elf_sym.st_size;
4173 break;
4174
4175 case SHN_MIPS_SUNDEFINED:
4176 asym->section = bfd_und_section_ptr;
4177 break;
4178
b49e97c9 4179 case SHN_MIPS_TEXT:
00b4930b
TS
4180 {
4181 asection *section = bfd_get_section_by_name (abfd, ".text");
4182
4183 BFD_ASSERT (SGI_COMPAT (abfd));
4184 if (section != NULL)
4185 {
4186 asym->section = section;
4187 /* MIPS_TEXT is a bit special, the address is not an offset
4188 to the base of the .text section. So substract the section
4189 base address to make it an offset. */
4190 asym->value -= section->vma;
4191 }
4192 }
b49e97c9
TS
4193 break;
4194
4195 case SHN_MIPS_DATA:
00b4930b
TS
4196 {
4197 asection *section = bfd_get_section_by_name (abfd, ".data");
4198
4199 BFD_ASSERT (SGI_COMPAT (abfd));
4200 if (section != NULL)
4201 {
4202 asym->section = section;
4203 /* MIPS_DATA is a bit special, the address is not an offset
4204 to the base of the .data section. So substract the section
4205 base address to make it an offset. */
4206 asym->value -= section->vma;
4207 }
4208 }
b49e97c9 4209 break;
b49e97c9
TS
4210 }
4211}
4212\f
174fd7f9
RS
4213/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4214 relocations against two unnamed section symbols to resolve to the
4215 same address. For example, if we have code like:
4216
4217 lw $4,%got_disp(.data)($gp)
4218 lw $25,%got_disp(.text)($gp)
4219 jalr $25
4220
4221 then the linker will resolve both relocations to .data and the program
4222 will jump there rather than to .text.
4223
4224 We can work around this problem by giving names to local section symbols.
4225 This is also what the MIPSpro tools do. */
4226
4227bfd_boolean
4228_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4229{
4230 return SGI_COMPAT (abfd);
4231}
4232\f
b49e97c9
TS
4233/* Work over a section just before writing it out. This routine is
4234 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4235 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4236 a better way. */
4237
b34976b6 4238bfd_boolean
9719ad41 4239_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
4240{
4241 if (hdr->sh_type == SHT_MIPS_REGINFO
4242 && hdr->sh_size > 0)
4243 {
4244 bfd_byte buf[4];
4245
4246 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4247 BFD_ASSERT (hdr->contents == NULL);
4248
4249 if (bfd_seek (abfd,
4250 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4251 SEEK_SET) != 0)
b34976b6 4252 return FALSE;
b49e97c9 4253 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4254 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4255 return FALSE;
b49e97c9
TS
4256 }
4257
4258 if (hdr->sh_type == SHT_MIPS_OPTIONS
4259 && hdr->bfd_section != NULL
f0abc2a1
AM
4260 && mips_elf_section_data (hdr->bfd_section) != NULL
4261 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4262 {
4263 bfd_byte *contents, *l, *lend;
4264
f0abc2a1
AM
4265 /* We stored the section contents in the tdata field in the
4266 set_section_contents routine. We save the section contents
4267 so that we don't have to read them again.
b49e97c9
TS
4268 At this point we know that elf_gp is set, so we can look
4269 through the section contents to see if there is an
4270 ODK_REGINFO structure. */
4271
f0abc2a1 4272 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4273 l = contents;
4274 lend = contents + hdr->sh_size;
4275 while (l + sizeof (Elf_External_Options) <= lend)
4276 {
4277 Elf_Internal_Options intopt;
4278
4279 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4280 &intopt);
4281 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4282 {
4283 bfd_byte buf[8];
4284
4285 if (bfd_seek (abfd,
4286 (hdr->sh_offset
4287 + (l - contents)
4288 + sizeof (Elf_External_Options)
4289 + (sizeof (Elf64_External_RegInfo) - 8)),
4290 SEEK_SET) != 0)
b34976b6 4291 return FALSE;
b49e97c9 4292 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 4293 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 4294 return FALSE;
b49e97c9
TS
4295 }
4296 else if (intopt.kind == ODK_REGINFO)
4297 {
4298 bfd_byte buf[4];
4299
4300 if (bfd_seek (abfd,
4301 (hdr->sh_offset
4302 + (l - contents)
4303 + sizeof (Elf_External_Options)
4304 + (sizeof (Elf32_External_RegInfo) - 4)),
4305 SEEK_SET) != 0)
b34976b6 4306 return FALSE;
b49e97c9 4307 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4308 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4309 return FALSE;
b49e97c9
TS
4310 }
4311 l += intopt.size;
4312 }
4313 }
4314
4315 if (hdr->bfd_section != NULL)
4316 {
4317 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4318
4319 if (strcmp (name, ".sdata") == 0
4320 || strcmp (name, ".lit8") == 0
4321 || strcmp (name, ".lit4") == 0)
4322 {
4323 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4324 hdr->sh_type = SHT_PROGBITS;
4325 }
4326 else if (strcmp (name, ".sbss") == 0)
4327 {
4328 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4329 hdr->sh_type = SHT_NOBITS;
4330 }
4331 else if (strcmp (name, ".srdata") == 0)
4332 {
4333 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4334 hdr->sh_type = SHT_PROGBITS;
4335 }
4336 else if (strcmp (name, ".compact_rel") == 0)
4337 {
4338 hdr->sh_flags = 0;
4339 hdr->sh_type = SHT_PROGBITS;
4340 }
4341 else if (strcmp (name, ".rtproc") == 0)
4342 {
4343 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4344 {
4345 unsigned int adjust;
4346
4347 adjust = hdr->sh_size % hdr->sh_addralign;
4348 if (adjust != 0)
4349 hdr->sh_size += hdr->sh_addralign - adjust;
4350 }
4351 }
4352 }
4353
b34976b6 4354 return TRUE;
b49e97c9
TS
4355}
4356
4357/* Handle a MIPS specific section when reading an object file. This
4358 is called when elfcode.h finds a section with an unknown type.
4359 This routine supports both the 32-bit and 64-bit ELF ABI.
4360
4361 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4362 how to. */
4363
b34976b6 4364bfd_boolean
9719ad41
RS
4365_bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4366 const char *name)
b49e97c9
TS
4367{
4368 flagword flags = 0;
4369
4370 /* There ought to be a place to keep ELF backend specific flags, but
4371 at the moment there isn't one. We just keep track of the
4372 sections by their name, instead. Fortunately, the ABI gives
4373 suggested names for all the MIPS specific sections, so we will
4374 probably get away with this. */
4375 switch (hdr->sh_type)
4376 {
4377 case SHT_MIPS_LIBLIST:
4378 if (strcmp (name, ".liblist") != 0)
b34976b6 4379 return FALSE;
b49e97c9
TS
4380 break;
4381 case SHT_MIPS_MSYM:
4382 if (strcmp (name, ".msym") != 0)
b34976b6 4383 return FALSE;
b49e97c9
TS
4384 break;
4385 case SHT_MIPS_CONFLICT:
4386 if (strcmp (name, ".conflict") != 0)
b34976b6 4387 return FALSE;
b49e97c9
TS
4388 break;
4389 case SHT_MIPS_GPTAB:
4390 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 4391 return FALSE;
b49e97c9
TS
4392 break;
4393 case SHT_MIPS_UCODE:
4394 if (strcmp (name, ".ucode") != 0)
b34976b6 4395 return FALSE;
b49e97c9
TS
4396 break;
4397 case SHT_MIPS_DEBUG:
4398 if (strcmp (name, ".mdebug") != 0)
b34976b6 4399 return FALSE;
b49e97c9
TS
4400 flags = SEC_DEBUGGING;
4401 break;
4402 case SHT_MIPS_REGINFO:
4403 if (strcmp (name, ".reginfo") != 0
4404 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 4405 return FALSE;
b49e97c9
TS
4406 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4407 break;
4408 case SHT_MIPS_IFACE:
4409 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 4410 return FALSE;
b49e97c9
TS
4411 break;
4412 case SHT_MIPS_CONTENT:
4413 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 4414 return FALSE;
b49e97c9
TS
4415 break;
4416 case SHT_MIPS_OPTIONS:
4417 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
b34976b6 4418 return FALSE;
b49e97c9
TS
4419 break;
4420 case SHT_MIPS_DWARF:
4421 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 4422 return FALSE;
b49e97c9
TS
4423 break;
4424 case SHT_MIPS_SYMBOL_LIB:
4425 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 4426 return FALSE;
b49e97c9
TS
4427 break;
4428 case SHT_MIPS_EVENTS:
4429 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4430 && strncmp (name, ".MIPS.post_rel",
4431 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 4432 return FALSE;
b49e97c9
TS
4433 break;
4434 default:
b34976b6 4435 return FALSE;
b49e97c9
TS
4436 }
4437
4438 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
b34976b6 4439 return FALSE;
b49e97c9
TS
4440
4441 if (flags)
4442 {
4443 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4444 (bfd_get_section_flags (abfd,
4445 hdr->bfd_section)
4446 | flags)))
b34976b6 4447 return FALSE;
b49e97c9
TS
4448 }
4449
4450 /* FIXME: We should record sh_info for a .gptab section. */
4451
4452 /* For a .reginfo section, set the gp value in the tdata information
4453 from the contents of this section. We need the gp value while
4454 processing relocs, so we just get it now. The .reginfo section
4455 is not used in the 64-bit MIPS ELF ABI. */
4456 if (hdr->sh_type == SHT_MIPS_REGINFO)
4457 {
4458 Elf32_External_RegInfo ext;
4459 Elf32_RegInfo s;
4460
9719ad41
RS
4461 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4462 &ext, 0, sizeof ext))
b34976b6 4463 return FALSE;
b49e97c9
TS
4464 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4465 elf_gp (abfd) = s.ri_gp_value;
4466 }
4467
4468 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4469 set the gp value based on what we find. We may see both
4470 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4471 they should agree. */
4472 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4473 {
4474 bfd_byte *contents, *l, *lend;
4475
9719ad41 4476 contents = bfd_malloc (hdr->sh_size);
b49e97c9 4477 if (contents == NULL)
b34976b6 4478 return FALSE;
b49e97c9 4479 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 4480 0, hdr->sh_size))
b49e97c9
TS
4481 {
4482 free (contents);
b34976b6 4483 return FALSE;
b49e97c9
TS
4484 }
4485 l = contents;
4486 lend = contents + hdr->sh_size;
4487 while (l + sizeof (Elf_External_Options) <= lend)
4488 {
4489 Elf_Internal_Options intopt;
4490
4491 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4492 &intopt);
4493 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4494 {
4495 Elf64_Internal_RegInfo intreg;
4496
4497 bfd_mips_elf64_swap_reginfo_in
4498 (abfd,
4499 ((Elf64_External_RegInfo *)
4500 (l + sizeof (Elf_External_Options))),
4501 &intreg);
4502 elf_gp (abfd) = intreg.ri_gp_value;
4503 }
4504 else if (intopt.kind == ODK_REGINFO)
4505 {
4506 Elf32_RegInfo intreg;
4507
4508 bfd_mips_elf32_swap_reginfo_in
4509 (abfd,
4510 ((Elf32_External_RegInfo *)
4511 (l + sizeof (Elf_External_Options))),
4512 &intreg);
4513 elf_gp (abfd) = intreg.ri_gp_value;
4514 }
4515 l += intopt.size;
4516 }
4517 free (contents);
4518 }
4519
b34976b6 4520 return TRUE;
b49e97c9
TS
4521}
4522
4523/* Set the correct type for a MIPS ELF section. We do this by the
4524 section name, which is a hack, but ought to work. This routine is
4525 used by both the 32-bit and the 64-bit ABI. */
4526
b34976b6 4527bfd_boolean
9719ad41 4528_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
4529{
4530 register const char *name;
4531
4532 name = bfd_get_section_name (abfd, sec);
4533
4534 if (strcmp (name, ".liblist") == 0)
4535 {
4536 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 4537 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
4538 /* The sh_link field is set in final_write_processing. */
4539 }
4540 else if (strcmp (name, ".conflict") == 0)
4541 hdr->sh_type = SHT_MIPS_CONFLICT;
4542 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4543 {
4544 hdr->sh_type = SHT_MIPS_GPTAB;
4545 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4546 /* The sh_info field is set in final_write_processing. */
4547 }
4548 else if (strcmp (name, ".ucode") == 0)
4549 hdr->sh_type = SHT_MIPS_UCODE;
4550 else if (strcmp (name, ".mdebug") == 0)
4551 {
4552 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 4553 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
4554 entsize of 0. FIXME: Does this matter? */
4555 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4556 hdr->sh_entsize = 0;
4557 else
4558 hdr->sh_entsize = 1;
4559 }
4560 else if (strcmp (name, ".reginfo") == 0)
4561 {
4562 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 4563 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
4564 entsize of 0x18. FIXME: Does this matter? */
4565 if (SGI_COMPAT (abfd))
4566 {
4567 if ((abfd->flags & DYNAMIC) != 0)
4568 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4569 else
4570 hdr->sh_entsize = 1;
4571 }
4572 else
4573 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4574 }
4575 else if (SGI_COMPAT (abfd)
4576 && (strcmp (name, ".hash") == 0
4577 || strcmp (name, ".dynamic") == 0
4578 || strcmp (name, ".dynstr") == 0))
4579 {
4580 if (SGI_COMPAT (abfd))
4581 hdr->sh_entsize = 0;
4582#if 0
8dc1a139 4583 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
4584 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4585#endif
4586 }
4587 else if (strcmp (name, ".got") == 0
4588 || strcmp (name, ".srdata") == 0
4589 || strcmp (name, ".sdata") == 0
4590 || strcmp (name, ".sbss") == 0
4591 || strcmp (name, ".lit4") == 0
4592 || strcmp (name, ".lit8") == 0)
4593 hdr->sh_flags |= SHF_MIPS_GPREL;
4594 else if (strcmp (name, ".MIPS.interfaces") == 0)
4595 {
4596 hdr->sh_type = SHT_MIPS_IFACE;
4597 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4598 }
4599 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4600 {
4601 hdr->sh_type = SHT_MIPS_CONTENT;
4602 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4603 /* The sh_info field is set in final_write_processing. */
4604 }
4605 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4606 {
4607 hdr->sh_type = SHT_MIPS_OPTIONS;
4608 hdr->sh_entsize = 1;
4609 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4610 }
4611 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4612 hdr->sh_type = SHT_MIPS_DWARF;
4613 else if (strcmp (name, ".MIPS.symlib") == 0)
4614 {
4615 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4616 /* The sh_link and sh_info fields are set in
4617 final_write_processing. */
4618 }
4619 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4620 || strncmp (name, ".MIPS.post_rel",
4621 sizeof ".MIPS.post_rel" - 1) == 0)
4622 {
4623 hdr->sh_type = SHT_MIPS_EVENTS;
4624 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4625 /* The sh_link field is set in final_write_processing. */
4626 }
4627 else if (strcmp (name, ".msym") == 0)
4628 {
4629 hdr->sh_type = SHT_MIPS_MSYM;
4630 hdr->sh_flags |= SHF_ALLOC;
4631 hdr->sh_entsize = 8;
4632 }
4633
7a79a000
TS
4634 /* The generic elf_fake_sections will set up REL_HDR using the default
4635 kind of relocations. We used to set up a second header for the
4636 non-default kind of relocations here, but only NewABI would use
4637 these, and the IRIX ld doesn't like resulting empty RELA sections.
4638 Thus we create those header only on demand now. */
b49e97c9 4639
b34976b6 4640 return TRUE;
b49e97c9
TS
4641}
4642
4643/* Given a BFD section, try to locate the corresponding ELF section
4644 index. This is used by both the 32-bit and the 64-bit ABI.
4645 Actually, it's not clear to me that the 64-bit ABI supports these,
4646 but for non-PIC objects we will certainly want support for at least
4647 the .scommon section. */
4648
b34976b6 4649bfd_boolean
9719ad41
RS
4650_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4651 asection *sec, int *retval)
b49e97c9
TS
4652{
4653 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4654 {
4655 *retval = SHN_MIPS_SCOMMON;
b34976b6 4656 return TRUE;
b49e97c9
TS
4657 }
4658 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4659 {
4660 *retval = SHN_MIPS_ACOMMON;
b34976b6 4661 return TRUE;
b49e97c9 4662 }
b34976b6 4663 return FALSE;
b49e97c9
TS
4664}
4665\f
4666/* Hook called by the linker routine which adds symbols from an object
4667 file. We must handle the special MIPS section numbers here. */
4668
b34976b6 4669bfd_boolean
9719ad41 4670_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 4671 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
4672 flagword *flagsp ATTRIBUTE_UNUSED,
4673 asection **secp, bfd_vma *valp)
b49e97c9
TS
4674{
4675 if (SGI_COMPAT (abfd)
4676 && (abfd->flags & DYNAMIC) != 0
4677 && strcmp (*namep, "_rld_new_interface") == 0)
4678 {
8dc1a139 4679 /* Skip IRIX5 rld entry name. */
b49e97c9 4680 *namep = NULL;
b34976b6 4681 return TRUE;
b49e97c9
TS
4682 }
4683
4684 switch (sym->st_shndx)
4685 {
4686 case SHN_COMMON:
4687 /* Common symbols less than the GP size are automatically
4688 treated as SHN_MIPS_SCOMMON symbols. */
4689 if (sym->st_size > elf_gp_size (abfd)
4690 || IRIX_COMPAT (abfd) == ict_irix6)
4691 break;
4692 /* Fall through. */
4693 case SHN_MIPS_SCOMMON:
4694 *secp = bfd_make_section_old_way (abfd, ".scommon");
4695 (*secp)->flags |= SEC_IS_COMMON;
4696 *valp = sym->st_size;
4697 break;
4698
4699 case SHN_MIPS_TEXT:
4700 /* This section is used in a shared object. */
4701 if (elf_tdata (abfd)->elf_text_section == NULL)
4702 {
4703 asymbol *elf_text_symbol;
4704 asection *elf_text_section;
4705 bfd_size_type amt = sizeof (asection);
4706
4707 elf_text_section = bfd_zalloc (abfd, amt);
4708 if (elf_text_section == NULL)
b34976b6 4709 return FALSE;
b49e97c9
TS
4710
4711 amt = sizeof (asymbol);
4712 elf_text_symbol = bfd_zalloc (abfd, amt);
4713 if (elf_text_symbol == NULL)
b34976b6 4714 return FALSE;
b49e97c9
TS
4715
4716 /* Initialize the section. */
4717
4718 elf_tdata (abfd)->elf_text_section = elf_text_section;
4719 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4720
4721 elf_text_section->symbol = elf_text_symbol;
4722 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4723
4724 elf_text_section->name = ".text";
4725 elf_text_section->flags = SEC_NO_FLAGS;
4726 elf_text_section->output_section = NULL;
4727 elf_text_section->owner = abfd;
4728 elf_text_symbol->name = ".text";
4729 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4730 elf_text_symbol->section = elf_text_section;
4731 }
4732 /* This code used to do *secp = bfd_und_section_ptr if
4733 info->shared. I don't know why, and that doesn't make sense,
4734 so I took it out. */
4735 *secp = elf_tdata (abfd)->elf_text_section;
4736 break;
4737
4738 case SHN_MIPS_ACOMMON:
4739 /* Fall through. XXX Can we treat this as allocated data? */
4740 case SHN_MIPS_DATA:
4741 /* This section is used in a shared object. */
4742 if (elf_tdata (abfd)->elf_data_section == NULL)
4743 {
4744 asymbol *elf_data_symbol;
4745 asection *elf_data_section;
4746 bfd_size_type amt = sizeof (asection);
4747
4748 elf_data_section = bfd_zalloc (abfd, amt);
4749 if (elf_data_section == NULL)
b34976b6 4750 return FALSE;
b49e97c9
TS
4751
4752 amt = sizeof (asymbol);
4753 elf_data_symbol = bfd_zalloc (abfd, amt);
4754 if (elf_data_symbol == NULL)
b34976b6 4755 return FALSE;
b49e97c9
TS
4756
4757 /* Initialize the section. */
4758
4759 elf_tdata (abfd)->elf_data_section = elf_data_section;
4760 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4761
4762 elf_data_section->symbol = elf_data_symbol;
4763 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4764
4765 elf_data_section->name = ".data";
4766 elf_data_section->flags = SEC_NO_FLAGS;
4767 elf_data_section->output_section = NULL;
4768 elf_data_section->owner = abfd;
4769 elf_data_symbol->name = ".data";
4770 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4771 elf_data_symbol->section = elf_data_section;
4772 }
4773 /* This code used to do *secp = bfd_und_section_ptr if
4774 info->shared. I don't know why, and that doesn't make sense,
4775 so I took it out. */
4776 *secp = elf_tdata (abfd)->elf_data_section;
4777 break;
4778
4779 case SHN_MIPS_SUNDEFINED:
4780 *secp = bfd_und_section_ptr;
4781 break;
4782 }
4783
4784 if (SGI_COMPAT (abfd)
4785 && ! info->shared
4786 && info->hash->creator == abfd->xvec
4787 && strcmp (*namep, "__rld_obj_head") == 0)
4788 {
4789 struct elf_link_hash_entry *h;
14a793b2 4790 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4791
4792 /* Mark __rld_obj_head as dynamic. */
14a793b2 4793 bh = NULL;
b49e97c9 4794 if (! (_bfd_generic_link_add_one_symbol
9719ad41 4795 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 4796 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4797 return FALSE;
14a793b2
AM
4798
4799 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4800 h->non_elf = 0;
4801 h->def_regular = 1;
b49e97c9
TS
4802 h->type = STT_OBJECT;
4803
c152c796 4804 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4805 return FALSE;
b49e97c9 4806
b34976b6 4807 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
4808 }
4809
4810 /* If this is a mips16 text symbol, add 1 to the value to make it
4811 odd. This will cause something like .word SYM to come up with
4812 the right value when it is loaded into the PC. */
4813 if (sym->st_other == STO_MIPS16)
4814 ++*valp;
4815
b34976b6 4816 return TRUE;
b49e97c9
TS
4817}
4818
4819/* This hook function is called before the linker writes out a global
4820 symbol. We mark symbols as small common if appropriate. This is
4821 also where we undo the increment of the value for a mips16 symbol. */
4822
b34976b6 4823bfd_boolean
9719ad41
RS
4824_bfd_mips_elf_link_output_symbol_hook
4825 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4826 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4827 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
4828{
4829 /* If we see a common symbol, which implies a relocatable link, then
4830 if a symbol was small common in an input file, mark it as small
4831 common in the output file. */
4832 if (sym->st_shndx == SHN_COMMON
4833 && strcmp (input_sec->name, ".scommon") == 0)
4834 sym->st_shndx = SHN_MIPS_SCOMMON;
4835
79cda7cf
FF
4836 if (sym->st_other == STO_MIPS16)
4837 sym->st_value &= ~1;
b49e97c9 4838
b34976b6 4839 return TRUE;
b49e97c9
TS
4840}
4841\f
4842/* Functions for the dynamic linker. */
4843
4844/* Create dynamic sections when linking against a dynamic object. */
4845
b34976b6 4846bfd_boolean
9719ad41 4847_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4848{
4849 struct elf_link_hash_entry *h;
14a793b2 4850 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4851 flagword flags;
4852 register asection *s;
4853 const char * const *namep;
4854
4855 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4856 | SEC_LINKER_CREATED | SEC_READONLY);
4857
4858 /* Mips ABI requests the .dynamic section to be read only. */
4859 s = bfd_get_section_by_name (abfd, ".dynamic");
4860 if (s != NULL)
4861 {
4862 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 4863 return FALSE;
b49e97c9
TS
4864 }
4865
4866 /* We need to create .got section. */
f4416af6
AO
4867 if (! mips_elf_create_got_section (abfd, info, FALSE))
4868 return FALSE;
4869
4870 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 4871 return FALSE;
b49e97c9 4872
b49e97c9
TS
4873 /* Create .stub section. */
4874 if (bfd_get_section_by_name (abfd,
4875 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4876 {
4877 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4878 if (s == NULL
4879 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4880 || ! bfd_set_section_alignment (abfd, s,
4881 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4882 return FALSE;
b49e97c9
TS
4883 }
4884
4885 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4886 && !info->shared
4887 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4888 {
4889 s = bfd_make_section (abfd, ".rld_map");
4890 if (s == NULL
4891 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4892 || ! bfd_set_section_alignment (abfd, s,
4893 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4894 return FALSE;
b49e97c9
TS
4895 }
4896
4897 /* On IRIX5, we adjust add some additional symbols and change the
4898 alignments of several sections. There is no ABI documentation
4899 indicating that this is necessary on IRIX6, nor any evidence that
4900 the linker takes such action. */
4901 if (IRIX_COMPAT (abfd) == ict_irix5)
4902 {
4903 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4904 {
14a793b2 4905 bh = NULL;
b49e97c9 4906 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
4907 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4908 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4909 return FALSE;
14a793b2
AM
4910
4911 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4912 h->non_elf = 0;
4913 h->def_regular = 1;
b49e97c9
TS
4914 h->type = STT_SECTION;
4915
c152c796 4916 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4917 return FALSE;
b49e97c9
TS
4918 }
4919
4920 /* We need to create a .compact_rel section. */
4921 if (SGI_COMPAT (abfd))
4922 {
4923 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 4924 return FALSE;
b49e97c9
TS
4925 }
4926
44c410de 4927 /* Change alignments of some sections. */
b49e97c9
TS
4928 s = bfd_get_section_by_name (abfd, ".hash");
4929 if (s != NULL)
d80dcc6a 4930 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4931 s = bfd_get_section_by_name (abfd, ".dynsym");
4932 if (s != NULL)
d80dcc6a 4933 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4934 s = bfd_get_section_by_name (abfd, ".dynstr");
4935 if (s != NULL)
d80dcc6a 4936 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4937 s = bfd_get_section_by_name (abfd, ".reginfo");
4938 if (s != NULL)
d80dcc6a 4939 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4940 s = bfd_get_section_by_name (abfd, ".dynamic");
4941 if (s != NULL)
d80dcc6a 4942 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4943 }
4944
4945 if (!info->shared)
4946 {
14a793b2
AM
4947 const char *name;
4948
4949 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4950 bh = NULL;
4951 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
4952 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4953 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4954 return FALSE;
14a793b2
AM
4955
4956 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4957 h->non_elf = 0;
4958 h->def_regular = 1;
b49e97c9
TS
4959 h->type = STT_SECTION;
4960
c152c796 4961 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4962 return FALSE;
b49e97c9
TS
4963
4964 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4965 {
4966 /* __rld_map is a four byte word located in the .data section
4967 and is filled in by the rtld to contain a pointer to
4968 the _r_debug structure. Its symbol value will be set in
4969 _bfd_mips_elf_finish_dynamic_symbol. */
4970 s = bfd_get_section_by_name (abfd, ".rld_map");
4971 BFD_ASSERT (s != NULL);
4972
14a793b2
AM
4973 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4974 bh = NULL;
4975 if (!(_bfd_generic_link_add_one_symbol
9719ad41 4976 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 4977 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4978 return FALSE;
14a793b2
AM
4979
4980 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4981 h->non_elf = 0;
4982 h->def_regular = 1;
b49e97c9
TS
4983 h->type = STT_OBJECT;
4984
c152c796 4985 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4986 return FALSE;
b49e97c9
TS
4987 }
4988 }
4989
b34976b6 4990 return TRUE;
b49e97c9
TS
4991}
4992\f
4993/* Look through the relocs for a section during the first phase, and
4994 allocate space in the global offset table. */
4995
b34976b6 4996bfd_boolean
9719ad41
RS
4997_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4998 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
4999{
5000 const char *name;
5001 bfd *dynobj;
5002 Elf_Internal_Shdr *symtab_hdr;
5003 struct elf_link_hash_entry **sym_hashes;
5004 struct mips_got_info *g;
5005 size_t extsymoff;
5006 const Elf_Internal_Rela *rel;
5007 const Elf_Internal_Rela *rel_end;
5008 asection *sgot;
5009 asection *sreloc;
9c5bfbb7 5010 const struct elf_backend_data *bed;
b49e97c9 5011
1049f94e 5012 if (info->relocatable)
b34976b6 5013 return TRUE;
b49e97c9
TS
5014
5015 dynobj = elf_hash_table (info)->dynobj;
5016 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5017 sym_hashes = elf_sym_hashes (abfd);
5018 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5019
5020 /* Check for the mips16 stub sections. */
5021
5022 name = bfd_get_section_name (abfd, sec);
5023 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5024 {
5025 unsigned long r_symndx;
5026
5027 /* Look at the relocation information to figure out which symbol
5028 this is for. */
5029
5030 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5031
5032 if (r_symndx < extsymoff
5033 || sym_hashes[r_symndx - extsymoff] == NULL)
5034 {
5035 asection *o;
5036
5037 /* This stub is for a local symbol. This stub will only be
5038 needed if there is some relocation in this BFD, other
5039 than a 16 bit function call, which refers to this symbol. */
5040 for (o = abfd->sections; o != NULL; o = o->next)
5041 {
5042 Elf_Internal_Rela *sec_relocs;
5043 const Elf_Internal_Rela *r, *rend;
5044
5045 /* We can ignore stub sections when looking for relocs. */
5046 if ((o->flags & SEC_RELOC) == 0
5047 || o->reloc_count == 0
5048 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5049 sizeof FN_STUB - 1) == 0
5050 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5051 sizeof CALL_STUB - 1) == 0
5052 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5053 sizeof CALL_FP_STUB - 1) == 0)
5054 continue;
5055
45d6a902 5056 sec_relocs
9719ad41 5057 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 5058 info->keep_memory);
b49e97c9 5059 if (sec_relocs == NULL)
b34976b6 5060 return FALSE;
b49e97c9
TS
5061
5062 rend = sec_relocs + o->reloc_count;
5063 for (r = sec_relocs; r < rend; r++)
5064 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5065 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5066 break;
5067
6cdc0ccc 5068 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5069 free (sec_relocs);
5070
5071 if (r < rend)
5072 break;
5073 }
5074
5075 if (o == NULL)
5076 {
5077 /* There is no non-call reloc for this stub, so we do
5078 not need it. Since this function is called before
5079 the linker maps input sections to output sections, we
5080 can easily discard it by setting the SEC_EXCLUDE
5081 flag. */
5082 sec->flags |= SEC_EXCLUDE;
b34976b6 5083 return TRUE;
b49e97c9
TS
5084 }
5085
5086 /* Record this stub in an array of local symbol stubs for
5087 this BFD. */
5088 if (elf_tdata (abfd)->local_stubs == NULL)
5089 {
5090 unsigned long symcount;
5091 asection **n;
5092 bfd_size_type amt;
5093
5094 if (elf_bad_symtab (abfd))
5095 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5096 else
5097 symcount = symtab_hdr->sh_info;
5098 amt = symcount * sizeof (asection *);
9719ad41 5099 n = bfd_zalloc (abfd, amt);
b49e97c9 5100 if (n == NULL)
b34976b6 5101 return FALSE;
b49e97c9
TS
5102 elf_tdata (abfd)->local_stubs = n;
5103 }
5104
5105 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5106
5107 /* We don't need to set mips16_stubs_seen in this case.
5108 That flag is used to see whether we need to look through
5109 the global symbol table for stubs. We don't need to set
5110 it here, because we just have a local stub. */
5111 }
5112 else
5113 {
5114 struct mips_elf_link_hash_entry *h;
5115
5116 h = ((struct mips_elf_link_hash_entry *)
5117 sym_hashes[r_symndx - extsymoff]);
5118
5119 /* H is the symbol this stub is for. */
5120
5121 h->fn_stub = sec;
b34976b6 5122 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5123 }
5124 }
5125 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5126 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5127 {
5128 unsigned long r_symndx;
5129 struct mips_elf_link_hash_entry *h;
5130 asection **loc;
5131
5132 /* Look at the relocation information to figure out which symbol
5133 this is for. */
5134
5135 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5136
5137 if (r_symndx < extsymoff
5138 || sym_hashes[r_symndx - extsymoff] == NULL)
5139 {
5140 /* This stub was actually built for a static symbol defined
5141 in the same file. We assume that all static symbols in
5142 mips16 code are themselves mips16, so we can simply
5143 discard this stub. Since this function is called before
5144 the linker maps input sections to output sections, we can
5145 easily discard it by setting the SEC_EXCLUDE flag. */
5146 sec->flags |= SEC_EXCLUDE;
b34976b6 5147 return TRUE;
b49e97c9
TS
5148 }
5149
5150 h = ((struct mips_elf_link_hash_entry *)
5151 sym_hashes[r_symndx - extsymoff]);
5152
5153 /* H is the symbol this stub is for. */
5154
5155 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5156 loc = &h->call_fp_stub;
5157 else
5158 loc = &h->call_stub;
5159
5160 /* If we already have an appropriate stub for this function, we
5161 don't need another one, so we can discard this one. Since
5162 this function is called before the linker maps input sections
5163 to output sections, we can easily discard it by setting the
5164 SEC_EXCLUDE flag. We can also discard this section if we
5165 happen to already know that this is a mips16 function; it is
5166 not necessary to check this here, as it is checked later, but
5167 it is slightly faster to check now. */
5168 if (*loc != NULL || h->root.other == STO_MIPS16)
5169 {
5170 sec->flags |= SEC_EXCLUDE;
b34976b6 5171 return TRUE;
b49e97c9
TS
5172 }
5173
5174 *loc = sec;
b34976b6 5175 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5176 }
5177
5178 if (dynobj == NULL)
5179 {
5180 sgot = NULL;
5181 g = NULL;
5182 }
5183 else
5184 {
f4416af6 5185 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5186 if (sgot == NULL)
5187 g = NULL;
5188 else
5189 {
f0abc2a1
AM
5190 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5191 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5192 BFD_ASSERT (g != NULL);
5193 }
5194 }
5195
5196 sreloc = NULL;
5197 bed = get_elf_backend_data (abfd);
5198 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5199 for (rel = relocs; rel < rel_end; ++rel)
5200 {
5201 unsigned long r_symndx;
5202 unsigned int r_type;
5203 struct elf_link_hash_entry *h;
5204
5205 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5206 r_type = ELF_R_TYPE (abfd, rel->r_info);
5207
5208 if (r_symndx < extsymoff)
5209 h = NULL;
5210 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5211 {
5212 (*_bfd_error_handler)
d003868e
AM
5213 (_("%B: Malformed reloc detected for section %s"),
5214 abfd, name);
b49e97c9 5215 bfd_set_error (bfd_error_bad_value);
b34976b6 5216 return FALSE;
b49e97c9
TS
5217 }
5218 else
5219 {
5220 h = sym_hashes[r_symndx - extsymoff];
5221
5222 /* This may be an indirect symbol created because of a version. */
5223 if (h != NULL)
5224 {
5225 while (h->root.type == bfd_link_hash_indirect)
5226 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5227 }
5228 }
5229
5230 /* Some relocs require a global offset table. */
5231 if (dynobj == NULL || sgot == NULL)
5232 {
5233 switch (r_type)
5234 {
5235 case R_MIPS_GOT16:
5236 case R_MIPS_CALL16:
5237 case R_MIPS_CALL_HI16:
5238 case R_MIPS_CALL_LO16:
5239 case R_MIPS_GOT_HI16:
5240 case R_MIPS_GOT_LO16:
5241 case R_MIPS_GOT_PAGE:
5242 case R_MIPS_GOT_OFST:
5243 case R_MIPS_GOT_DISP:
5244 if (dynobj == NULL)
5245 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5246 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5247 return FALSE;
b49e97c9
TS
5248 g = mips_elf_got_info (dynobj, &sgot);
5249 break;
5250
5251 case R_MIPS_32:
5252 case R_MIPS_REL32:
5253 case R_MIPS_64:
5254 if (dynobj == NULL
5255 && (info->shared || h != NULL)
5256 && (sec->flags & SEC_ALLOC) != 0)
5257 elf_hash_table (info)->dynobj = dynobj = abfd;
5258 break;
5259
5260 default:
5261 break;
5262 }
5263 }
5264
5265 if (!h && (r_type == R_MIPS_CALL_LO16
5266 || r_type == R_MIPS_GOT_LO16
5267 || r_type == R_MIPS_GOT_DISP))
5268 {
5269 /* We may need a local GOT entry for this relocation. We
5270 don't count R_MIPS_GOT_PAGE because we can estimate the
5271 maximum number of pages needed by looking at the size of
5272 the segment. Similar comments apply to R_MIPS_GOT16 and
5273 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5274 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 5275 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6
AO
5276 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5277 rel->r_addend, g))
5278 return FALSE;
b49e97c9
TS
5279 }
5280
5281 switch (r_type)
5282 {
5283 case R_MIPS_CALL16:
5284 if (h == NULL)
5285 {
5286 (*_bfd_error_handler)
d003868e
AM
5287 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
5288 abfd, (unsigned long) rel->r_offset);
b49e97c9 5289 bfd_set_error (bfd_error_bad_value);
b34976b6 5290 return FALSE;
b49e97c9
TS
5291 }
5292 /* Fall through. */
5293
5294 case R_MIPS_CALL_HI16:
5295 case R_MIPS_CALL_LO16:
5296 if (h != NULL)
5297 {
5298 /* This symbol requires a global offset table entry. */
f4416af6 5299 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5300 return FALSE;
b49e97c9
TS
5301
5302 /* We need a stub, not a plt entry for the undefined
5303 function. But we record it as if it needs plt. See
c152c796 5304 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 5305 h->needs_plt = 1;
b49e97c9
TS
5306 h->type = STT_FUNC;
5307 }
5308 break;
5309
0fdc1bf1
AO
5310 case R_MIPS_GOT_PAGE:
5311 /* If this is a global, overridable symbol, GOT_PAGE will
5312 decay to GOT_DISP, so we'll need a GOT entry for it. */
5313 if (h == NULL)
5314 break;
5315 else
5316 {
5317 struct mips_elf_link_hash_entry *hmips =
5318 (struct mips_elf_link_hash_entry *) h;
143d77c5 5319
0fdc1bf1
AO
5320 while (hmips->root.root.type == bfd_link_hash_indirect
5321 || hmips->root.root.type == bfd_link_hash_warning)
5322 hmips = (struct mips_elf_link_hash_entry *)
5323 hmips->root.root.u.i.link;
143d77c5 5324
f5385ebf 5325 if (hmips->root.def_regular
0fdc1bf1 5326 && ! (info->shared && ! info->symbolic
f5385ebf 5327 && ! hmips->root.forced_local))
0fdc1bf1
AO
5328 break;
5329 }
5330 /* Fall through. */
5331
b49e97c9
TS
5332 case R_MIPS_GOT16:
5333 case R_MIPS_GOT_HI16:
5334 case R_MIPS_GOT_LO16:
5335 case R_MIPS_GOT_DISP:
5336 /* This symbol requires a global offset table entry. */
f4416af6 5337 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5338 return FALSE;
b49e97c9
TS
5339 break;
5340
5341 case R_MIPS_32:
5342 case R_MIPS_REL32:
5343 case R_MIPS_64:
5344 if ((info->shared || h != NULL)
5345 && (sec->flags & SEC_ALLOC) != 0)
5346 {
5347 if (sreloc == NULL)
5348 {
f4416af6 5349 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 5350 if (sreloc == NULL)
f4416af6 5351 return FALSE;
b49e97c9
TS
5352 }
5353#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5354 if (info->shared)
5355 {
5356 /* When creating a shared object, we must copy these
5357 reloc types into the output file as R_MIPS_REL32
5358 relocs. We make room for this reloc in the
5359 .rel.dyn reloc section. */
5360 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5361 if ((sec->flags & MIPS_READONLY_SECTION)
5362 == MIPS_READONLY_SECTION)
5363 /* We tell the dynamic linker that there are
5364 relocations against the text segment. */
5365 info->flags |= DF_TEXTREL;
5366 }
5367 else
5368 {
5369 struct mips_elf_link_hash_entry *hmips;
5370
5371 /* We only need to copy this reloc if the symbol is
5372 defined in a dynamic object. */
5373 hmips = (struct mips_elf_link_hash_entry *) h;
5374 ++hmips->possibly_dynamic_relocs;
5375 if ((sec->flags & MIPS_READONLY_SECTION)
5376 == MIPS_READONLY_SECTION)
5377 /* We need it to tell the dynamic linker if there
5378 are relocations against the text segment. */
b34976b6 5379 hmips->readonly_reloc = TRUE;
b49e97c9
TS
5380 }
5381
5382 /* Even though we don't directly need a GOT entry for
5383 this symbol, a symbol must have a dynamic symbol
5384 table index greater that DT_MIPS_GOTSYM if there are
5385 dynamic relocations against it. */
f4416af6
AO
5386 if (h != NULL)
5387 {
5388 if (dynobj == NULL)
5389 elf_hash_table (info)->dynobj = dynobj = abfd;
5390 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5391 return FALSE;
5392 g = mips_elf_got_info (dynobj, &sgot);
5393 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5394 return FALSE;
5395 }
b49e97c9
TS
5396 }
5397
5398 if (SGI_COMPAT (abfd))
5399 mips_elf_hash_table (info)->compact_rel_size +=
5400 sizeof (Elf32_External_crinfo);
5401 break;
5402
5403 case R_MIPS_26:
5404 case R_MIPS_GPREL16:
5405 case R_MIPS_LITERAL:
5406 case R_MIPS_GPREL32:
5407 if (SGI_COMPAT (abfd))
5408 mips_elf_hash_table (info)->compact_rel_size +=
5409 sizeof (Elf32_External_crinfo);
5410 break;
5411
5412 /* This relocation describes the C++ object vtable hierarchy.
5413 Reconstruct it for later use during GC. */
5414 case R_MIPS_GNU_VTINHERIT:
c152c796 5415 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 5416 return FALSE;
b49e97c9
TS
5417 break;
5418
5419 /* This relocation describes which C++ vtable entries are actually
5420 used. Record for later use during GC. */
5421 case R_MIPS_GNU_VTENTRY:
c152c796 5422 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 5423 return FALSE;
b49e97c9
TS
5424 break;
5425
5426 default:
5427 break;
5428 }
5429
5430 /* We must not create a stub for a symbol that has relocations
5431 related to taking the function's address. */
5432 switch (r_type)
5433 {
5434 default:
5435 if (h != NULL)
5436 {
5437 struct mips_elf_link_hash_entry *mh;
5438
5439 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5440 mh->no_fn_stub = TRUE;
b49e97c9
TS
5441 }
5442 break;
5443 case R_MIPS_CALL16:
5444 case R_MIPS_CALL_HI16:
5445 case R_MIPS_CALL_LO16:
2b86c02e 5446 case R_MIPS_JALR:
b49e97c9
TS
5447 break;
5448 }
5449
5450 /* If this reloc is not a 16 bit call, and it has a global
5451 symbol, then we will need the fn_stub if there is one.
5452 References from a stub section do not count. */
5453 if (h != NULL
5454 && r_type != R_MIPS16_26
5455 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5456 sizeof FN_STUB - 1) != 0
5457 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5458 sizeof CALL_STUB - 1) != 0
5459 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5460 sizeof CALL_FP_STUB - 1) != 0)
5461 {
5462 struct mips_elf_link_hash_entry *mh;
5463
5464 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5465 mh->need_fn_stub = TRUE;
b49e97c9
TS
5466 }
5467 }
5468
b34976b6 5469 return TRUE;
b49e97c9
TS
5470}
5471\f
d0647110 5472bfd_boolean
9719ad41
RS
5473_bfd_mips_relax_section (bfd *abfd, asection *sec,
5474 struct bfd_link_info *link_info,
5475 bfd_boolean *again)
d0647110
AO
5476{
5477 Elf_Internal_Rela *internal_relocs;
5478 Elf_Internal_Rela *irel, *irelend;
5479 Elf_Internal_Shdr *symtab_hdr;
5480 bfd_byte *contents = NULL;
d0647110
AO
5481 size_t extsymoff;
5482 bfd_boolean changed_contents = FALSE;
5483 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5484 Elf_Internal_Sym *isymbuf = NULL;
5485
5486 /* We are not currently changing any sizes, so only one pass. */
5487 *again = FALSE;
5488
1049f94e 5489 if (link_info->relocatable)
d0647110
AO
5490 return TRUE;
5491
9719ad41 5492 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 5493 link_info->keep_memory);
d0647110
AO
5494 if (internal_relocs == NULL)
5495 return TRUE;
5496
5497 irelend = internal_relocs + sec->reloc_count
5498 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5499 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5500 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5501
5502 for (irel = internal_relocs; irel < irelend; irel++)
5503 {
5504 bfd_vma symval;
5505 bfd_signed_vma sym_offset;
5506 unsigned int r_type;
5507 unsigned long r_symndx;
5508 asection *sym_sec;
5509 unsigned long instruction;
5510
5511 /* Turn jalr into bgezal, and jr into beq, if they're marked
5512 with a JALR relocation, that indicate where they jump to.
5513 This saves some pipeline bubbles. */
5514 r_type = ELF_R_TYPE (abfd, irel->r_info);
5515 if (r_type != R_MIPS_JALR)
5516 continue;
5517
5518 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5519 /* Compute the address of the jump target. */
5520 if (r_symndx >= extsymoff)
5521 {
5522 struct mips_elf_link_hash_entry *h
5523 = ((struct mips_elf_link_hash_entry *)
5524 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5525
5526 while (h->root.root.type == bfd_link_hash_indirect
5527 || h->root.root.type == bfd_link_hash_warning)
5528 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 5529
d0647110
AO
5530 /* If a symbol is undefined, or if it may be overridden,
5531 skip it. */
5532 if (! ((h->root.root.type == bfd_link_hash_defined
5533 || h->root.root.type == bfd_link_hash_defweak)
5534 && h->root.root.u.def.section)
5535 || (link_info->shared && ! link_info->symbolic
f5385ebf 5536 && !h->root.forced_local))
d0647110
AO
5537 continue;
5538
5539 sym_sec = h->root.root.u.def.section;
5540 if (sym_sec->output_section)
5541 symval = (h->root.root.u.def.value
5542 + sym_sec->output_section->vma
5543 + sym_sec->output_offset);
5544 else
5545 symval = h->root.root.u.def.value;
5546 }
5547 else
5548 {
5549 Elf_Internal_Sym *isym;
5550
5551 /* Read this BFD's symbols if we haven't done so already. */
5552 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5553 {
5554 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5555 if (isymbuf == NULL)
5556 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5557 symtab_hdr->sh_info, 0,
5558 NULL, NULL, NULL);
5559 if (isymbuf == NULL)
5560 goto relax_return;
5561 }
5562
5563 isym = isymbuf + r_symndx;
5564 if (isym->st_shndx == SHN_UNDEF)
5565 continue;
5566 else if (isym->st_shndx == SHN_ABS)
5567 sym_sec = bfd_abs_section_ptr;
5568 else if (isym->st_shndx == SHN_COMMON)
5569 sym_sec = bfd_com_section_ptr;
5570 else
5571 sym_sec
5572 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5573 symval = isym->st_value
5574 + sym_sec->output_section->vma
5575 + sym_sec->output_offset;
5576 }
5577
5578 /* Compute branch offset, from delay slot of the jump to the
5579 branch target. */
5580 sym_offset = (symval + irel->r_addend)
5581 - (sec_start + irel->r_offset + 4);
5582
5583 /* Branch offset must be properly aligned. */
5584 if ((sym_offset & 3) != 0)
5585 continue;
5586
5587 sym_offset >>= 2;
5588
5589 /* Check that it's in range. */
5590 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5591 continue;
143d77c5 5592
d0647110
AO
5593 /* Get the section contents if we haven't done so already. */
5594 if (contents == NULL)
5595 {
5596 /* Get cached copy if it exists. */
5597 if (elf_section_data (sec)->this_hdr.contents != NULL)
5598 contents = elf_section_data (sec)->this_hdr.contents;
5599 else
5600 {
eea6121a 5601 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
5602 goto relax_return;
5603 }
5604 }
5605
5606 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5607
5608 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5609 if ((instruction & 0xfc1fffff) == 0x0000f809)
5610 instruction = 0x04110000;
5611 /* If it was jr <reg>, turn it into b <target>. */
5612 else if ((instruction & 0xfc1fffff) == 0x00000008)
5613 instruction = 0x10000000;
5614 else
5615 continue;
5616
5617 instruction |= (sym_offset & 0xffff);
5618 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5619 changed_contents = TRUE;
5620 }
5621
5622 if (contents != NULL
5623 && elf_section_data (sec)->this_hdr.contents != contents)
5624 {
5625 if (!changed_contents && !link_info->keep_memory)
5626 free (contents);
5627 else
5628 {
5629 /* Cache the section contents for elf_link_input_bfd. */
5630 elf_section_data (sec)->this_hdr.contents = contents;
5631 }
5632 }
5633 return TRUE;
5634
143d77c5 5635 relax_return:
eea6121a
AM
5636 if (contents != NULL
5637 && elf_section_data (sec)->this_hdr.contents != contents)
5638 free (contents);
d0647110
AO
5639 return FALSE;
5640}
5641\f
b49e97c9
TS
5642/* Adjust a symbol defined by a dynamic object and referenced by a
5643 regular object. The current definition is in some section of the
5644 dynamic object, but we're not including those sections. We have to
5645 change the definition to something the rest of the link can
5646 understand. */
5647
b34976b6 5648bfd_boolean
9719ad41
RS
5649_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5650 struct elf_link_hash_entry *h)
b49e97c9
TS
5651{
5652 bfd *dynobj;
5653 struct mips_elf_link_hash_entry *hmips;
5654 asection *s;
5655
5656 dynobj = elf_hash_table (info)->dynobj;
5657
5658 /* Make sure we know what is going on here. */
5659 BFD_ASSERT (dynobj != NULL
f5385ebf 5660 && (h->needs_plt
f6e332e6 5661 || h->u.weakdef != NULL
f5385ebf
AM
5662 || (h->def_dynamic
5663 && h->ref_regular
5664 && !h->def_regular)));
b49e97c9
TS
5665
5666 /* If this symbol is defined in a dynamic object, we need to copy
5667 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5668 file. */
5669 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 5670 if (! info->relocatable
b49e97c9
TS
5671 && hmips->possibly_dynamic_relocs != 0
5672 && (h->root.type == bfd_link_hash_defweak
f5385ebf 5673 || !h->def_regular))
b49e97c9
TS
5674 {
5675 mips_elf_allocate_dynamic_relocations (dynobj,
5676 hmips->possibly_dynamic_relocs);
5677 if (hmips->readonly_reloc)
5678 /* We tell the dynamic linker that there are relocations
5679 against the text segment. */
5680 info->flags |= DF_TEXTREL;
5681 }
5682
5683 /* For a function, create a stub, if allowed. */
5684 if (! hmips->no_fn_stub
f5385ebf 5685 && h->needs_plt)
b49e97c9
TS
5686 {
5687 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 5688 return TRUE;
b49e97c9
TS
5689
5690 /* If this symbol is not defined in a regular file, then set
5691 the symbol to the stub location. This is required to make
5692 function pointers compare as equal between the normal
5693 executable and the shared library. */
f5385ebf 5694 if (!h->def_regular)
b49e97c9
TS
5695 {
5696 /* We need .stub section. */
5697 s = bfd_get_section_by_name (dynobj,
5698 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5699 BFD_ASSERT (s != NULL);
5700
5701 h->root.u.def.section = s;
eea6121a 5702 h->root.u.def.value = s->size;
b49e97c9
TS
5703
5704 /* XXX Write this stub address somewhere. */
eea6121a 5705 h->plt.offset = s->size;
b49e97c9
TS
5706
5707 /* Make room for this stub code. */
eea6121a 5708 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
5709
5710 /* The last half word of the stub will be filled with the index
5711 of this symbol in .dynsym section. */
b34976b6 5712 return TRUE;
b49e97c9
TS
5713 }
5714 }
5715 else if ((h->type == STT_FUNC)
f5385ebf 5716 && !h->needs_plt)
b49e97c9
TS
5717 {
5718 /* This will set the entry for this symbol in the GOT to 0, and
5719 the dynamic linker will take care of this. */
5720 h->root.u.def.value = 0;
b34976b6 5721 return TRUE;
b49e97c9
TS
5722 }
5723
5724 /* If this is a weak symbol, and there is a real definition, the
5725 processor independent code will have arranged for us to see the
5726 real definition first, and we can just use the same value. */
f6e332e6 5727 if (h->u.weakdef != NULL)
b49e97c9 5728 {
f6e332e6
AM
5729 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5730 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5731 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5732 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 5733 return TRUE;
b49e97c9
TS
5734 }
5735
5736 /* This is a reference to a symbol defined by a dynamic object which
5737 is not a function. */
5738
b34976b6 5739 return TRUE;
b49e97c9
TS
5740}
5741\f
5742/* This function is called after all the input files have been read,
5743 and the input sections have been assigned to output sections. We
5744 check for any mips16 stub sections that we can discard. */
5745
b34976b6 5746bfd_boolean
9719ad41
RS
5747_bfd_mips_elf_always_size_sections (bfd *output_bfd,
5748 struct bfd_link_info *info)
b49e97c9
TS
5749{
5750 asection *ri;
5751
f4416af6
AO
5752 bfd *dynobj;
5753 asection *s;
5754 struct mips_got_info *g;
5755 int i;
5756 bfd_size_type loadable_size = 0;
5757 bfd_size_type local_gotno;
5758 bfd *sub;
5759
b49e97c9
TS
5760 /* The .reginfo section has a fixed size. */
5761 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5762 if (ri != NULL)
9719ad41 5763 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 5764
1049f94e 5765 if (! (info->relocatable
f4416af6
AO
5766 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5767 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 5768 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
5769
5770 dynobj = elf_hash_table (info)->dynobj;
5771 if (dynobj == NULL)
5772 /* Relocatable links don't have it. */
5773 return TRUE;
143d77c5 5774
f4416af6
AO
5775 g = mips_elf_got_info (dynobj, &s);
5776 if (s == NULL)
b34976b6 5777 return TRUE;
b49e97c9 5778
f4416af6
AO
5779 /* Calculate the total loadable size of the output. That
5780 will give us the maximum number of GOT_PAGE entries
5781 required. */
5782 for (sub = info->input_bfds; sub; sub = sub->link_next)
5783 {
5784 asection *subsection;
5785
5786 for (subsection = sub->sections;
5787 subsection;
5788 subsection = subsection->next)
5789 {
5790 if ((subsection->flags & SEC_ALLOC) == 0)
5791 continue;
eea6121a 5792 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
5793 &~ (bfd_size_type) 0xf);
5794 }
5795 }
5796
5797 /* There has to be a global GOT entry for every symbol with
5798 a dynamic symbol table index of DT_MIPS_GOTSYM or
5799 higher. Therefore, it make sense to put those symbols
5800 that need GOT entries at the end of the symbol table. We
5801 do that here. */
5802 if (! mips_elf_sort_hash_table (info, 1))
5803 return FALSE;
5804
5805 if (g->global_gotsym != NULL)
5806 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5807 else
5808 /* If there are no global symbols, or none requiring
5809 relocations, then GLOBAL_GOTSYM will be NULL. */
5810 i = 0;
5811
5812 /* In the worst case, we'll get one stub per dynamic symbol, plus
5813 one to account for the dummy entry at the end required by IRIX
5814 rld. */
5815 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5816
5817 /* Assume there are two loadable segments consisting of
5818 contiguous sections. Is 5 enough? */
5819 local_gotno = (loadable_size >> 16) + 5;
5820
5821 g->local_gotno += local_gotno;
eea6121a 5822 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
5823
5824 g->global_gotno = i;
eea6121a 5825 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 5826
eea6121a 5827 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
f4416af6
AO
5828 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5829 return FALSE;
b49e97c9 5830
b34976b6 5831 return TRUE;
b49e97c9
TS
5832}
5833
5834/* Set the sizes of the dynamic sections. */
5835
b34976b6 5836bfd_boolean
9719ad41
RS
5837_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5838 struct bfd_link_info *info)
b49e97c9
TS
5839{
5840 bfd *dynobj;
5841 asection *s;
b34976b6 5842 bfd_boolean reltext;
b49e97c9
TS
5843
5844 dynobj = elf_hash_table (info)->dynobj;
5845 BFD_ASSERT (dynobj != NULL);
5846
5847 if (elf_hash_table (info)->dynamic_sections_created)
5848 {
5849 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 5850 if (info->executable)
b49e97c9
TS
5851 {
5852 s = bfd_get_section_by_name (dynobj, ".interp");
5853 BFD_ASSERT (s != NULL);
eea6121a 5854 s->size
b49e97c9
TS
5855 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5856 s->contents
5857 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5858 }
5859 }
5860
5861 /* The check_relocs and adjust_dynamic_symbol entry points have
5862 determined the sizes of the various dynamic sections. Allocate
5863 memory for them. */
b34976b6 5864 reltext = FALSE;
b49e97c9
TS
5865 for (s = dynobj->sections; s != NULL; s = s->next)
5866 {
5867 const char *name;
b34976b6 5868 bfd_boolean strip;
b49e97c9
TS
5869
5870 /* It's OK to base decisions on the section name, because none
5871 of the dynobj section names depend upon the input files. */
5872 name = bfd_get_section_name (dynobj, s);
5873
5874 if ((s->flags & SEC_LINKER_CREATED) == 0)
5875 continue;
5876
b34976b6 5877 strip = FALSE;
b49e97c9
TS
5878
5879 if (strncmp (name, ".rel", 4) == 0)
5880 {
eea6121a 5881 if (s->size == 0)
b49e97c9
TS
5882 {
5883 /* We only strip the section if the output section name
5884 has the same name. Otherwise, there might be several
5885 input sections for this output section. FIXME: This
5886 code is probably not needed these days anyhow, since
5887 the linker now does not create empty output sections. */
5888 if (s->output_section != NULL
5889 && strcmp (name,
5890 bfd_get_section_name (s->output_section->owner,
5891 s->output_section)) == 0)
b34976b6 5892 strip = TRUE;
b49e97c9
TS
5893 }
5894 else
5895 {
5896 const char *outname;
5897 asection *target;
5898
5899 /* If this relocation section applies to a read only
5900 section, then we probably need a DT_TEXTREL entry.
5901 If the relocation section is .rel.dyn, we always
5902 assert a DT_TEXTREL entry rather than testing whether
5903 there exists a relocation to a read only section or
5904 not. */
5905 outname = bfd_get_section_name (output_bfd,
5906 s->output_section);
5907 target = bfd_get_section_by_name (output_bfd, outname + 4);
5908 if ((target != NULL
5909 && (target->flags & SEC_READONLY) != 0
5910 && (target->flags & SEC_ALLOC) != 0)
5911 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 5912 reltext = TRUE;
b49e97c9
TS
5913
5914 /* We use the reloc_count field as a counter if we need
5915 to copy relocs into the output file. */
5916 if (strcmp (name, ".rel.dyn") != 0)
5917 s->reloc_count = 0;
f4416af6
AO
5918
5919 /* If combreloc is enabled, elf_link_sort_relocs() will
5920 sort relocations, but in a different way than we do,
5921 and before we're done creating relocations. Also, it
5922 will move them around between input sections'
5923 relocation's contents, so our sorting would be
5924 broken, so don't let it run. */
5925 info->combreloc = 0;
b49e97c9
TS
5926 }
5927 }
5928 else if (strncmp (name, ".got", 4) == 0)
5929 {
f4416af6
AO
5930 /* _bfd_mips_elf_always_size_sections() has already done
5931 most of the work, but some symbols may have been mapped
5932 to versions that we must now resolve in the got_entries
5933 hash tables. */
5934 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5935 struct mips_got_info *g = gg;
5936 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5937 unsigned int needed_relocs = 0;
143d77c5 5938
f4416af6 5939 if (gg->next)
b49e97c9 5940 {
f4416af6
AO
5941 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5942 set_got_offset_arg.info = info;
b49e97c9 5943
f4416af6
AO
5944 mips_elf_resolve_final_got_entries (gg);
5945 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 5946 {
f4416af6
AO
5947 unsigned int save_assign;
5948
5949 mips_elf_resolve_final_got_entries (g);
5950
5951 /* Assign offsets to global GOT entries. */
5952 save_assign = g->assigned_gotno;
5953 g->assigned_gotno = g->local_gotno;
5954 set_got_offset_arg.g = g;
5955 set_got_offset_arg.needed_relocs = 0;
5956 htab_traverse (g->got_entries,
5957 mips_elf_set_global_got_offset,
5958 &set_got_offset_arg);
5959 needed_relocs += set_got_offset_arg.needed_relocs;
5960 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5961 <= g->global_gotno);
5962
5963 g->assigned_gotno = save_assign;
5964 if (info->shared)
5965 {
5966 needed_relocs += g->local_gotno - g->assigned_gotno;
5967 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5968 + g->next->global_gotno
5969 + MIPS_RESERVED_GOTNO);
5970 }
b49e97c9 5971 }
b49e97c9 5972
f4416af6
AO
5973 if (needed_relocs)
5974 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5975 }
b49e97c9
TS
5976 }
5977 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5978 {
8dc1a139 5979 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9 5980 of .text section. So put a dummy. XXX */
eea6121a 5981 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
5982 }
5983 else if (! info->shared
5984 && ! mips_elf_hash_table (info)->use_rld_obj_head
5985 && strncmp (name, ".rld_map", 8) == 0)
5986 {
5987 /* We add a room for __rld_map. It will be filled in by the
5988 rtld to contain a pointer to the _r_debug structure. */
eea6121a 5989 s->size += 4;
b49e97c9
TS
5990 }
5991 else if (SGI_COMPAT (output_bfd)
5992 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 5993 s->size += mips_elf_hash_table (info)->compact_rel_size;
b49e97c9
TS
5994 else if (strncmp (name, ".init", 5) != 0)
5995 {
5996 /* It's not one of our sections, so don't allocate space. */
5997 continue;
5998 }
5999
6000 if (strip)
6001 {
6002 _bfd_strip_section_from_output (info, s);
6003 continue;
6004 }
6005
6006 /* Allocate memory for the section contents. */
eea6121a
AM
6007 s->contents = bfd_zalloc (dynobj, s->size);
6008 if (s->contents == NULL && s->size != 0)
b49e97c9
TS
6009 {
6010 bfd_set_error (bfd_error_no_memory);
b34976b6 6011 return FALSE;
b49e97c9
TS
6012 }
6013 }
6014
6015 if (elf_hash_table (info)->dynamic_sections_created)
6016 {
6017 /* Add some entries to the .dynamic section. We fill in the
6018 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6019 must add the entries now so that we get the correct size for
6020 the .dynamic section. The DT_DEBUG entry is filled in by the
6021 dynamic linker and used by the debugger. */
6022 if (! info->shared)
6023 {
6024 /* SGI object has the equivalence of DT_DEBUG in the
6025 DT_MIPS_RLD_MAP entry. */
6026 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6027 return FALSE;
b49e97c9
TS
6028 if (!SGI_COMPAT (output_bfd))
6029 {
6030 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6031 return FALSE;
b49e97c9
TS
6032 }
6033 }
6034 else
6035 {
6036 /* Shared libraries on traditional mips have DT_DEBUG. */
6037 if (!SGI_COMPAT (output_bfd))
6038 {
6039 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6040 return FALSE;
b49e97c9
TS
6041 }
6042 }
6043
6044 if (reltext && SGI_COMPAT (output_bfd))
6045 info->flags |= DF_TEXTREL;
6046
6047 if ((info->flags & DF_TEXTREL) != 0)
6048 {
6049 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6050 return FALSE;
b49e97c9
TS
6051 }
6052
6053 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6054 return FALSE;
b49e97c9 6055
f4416af6 6056 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6057 {
6058 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6059 return FALSE;
b49e97c9
TS
6060
6061 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6062 return FALSE;
b49e97c9
TS
6063
6064 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6065 return FALSE;
b49e97c9
TS
6066 }
6067
b49e97c9 6068 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6069 return FALSE;
b49e97c9
TS
6070
6071 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6072 return FALSE;
b49e97c9
TS
6073
6074#if 0
6075 /* Time stamps in executable files are a bad idea. */
6076 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
b34976b6 6077 return FALSE;
b49e97c9
TS
6078#endif
6079
6080#if 0 /* FIXME */
6081 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
b34976b6 6082 return FALSE;
b49e97c9
TS
6083#endif
6084
6085#if 0 /* FIXME */
6086 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
b34976b6 6087 return FALSE;
b49e97c9
TS
6088#endif
6089
6090 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6091 return FALSE;
b49e97c9
TS
6092
6093 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6094 return FALSE;
b49e97c9
TS
6095
6096 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6097 return FALSE;
b49e97c9
TS
6098
6099 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6100 return FALSE;
b49e97c9
TS
6101
6102 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6103 return FALSE;
b49e97c9
TS
6104
6105 if (IRIX_COMPAT (dynobj) == ict_irix5
6106 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6107 return FALSE;
b49e97c9
TS
6108
6109 if (IRIX_COMPAT (dynobj) == ict_irix6
6110 && (bfd_get_section_by_name
6111 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6112 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6113 return FALSE;
b49e97c9
TS
6114 }
6115
b34976b6 6116 return TRUE;
b49e97c9
TS
6117}
6118\f
6119/* Relocate a MIPS ELF section. */
6120
b34976b6 6121bfd_boolean
9719ad41
RS
6122_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6123 bfd *input_bfd, asection *input_section,
6124 bfd_byte *contents, Elf_Internal_Rela *relocs,
6125 Elf_Internal_Sym *local_syms,
6126 asection **local_sections)
b49e97c9
TS
6127{
6128 Elf_Internal_Rela *rel;
6129 const Elf_Internal_Rela *relend;
6130 bfd_vma addend = 0;
b34976b6 6131 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 6132 const struct elf_backend_data *bed;
b49e97c9
TS
6133
6134 bed = get_elf_backend_data (output_bfd);
6135 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6136 for (rel = relocs; rel < relend; ++rel)
6137 {
6138 const char *name;
6139 bfd_vma value;
6140 reloc_howto_type *howto;
b34976b6
AM
6141 bfd_boolean require_jalx;
6142 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6143 REL relocation. */
b34976b6 6144 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 6145 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 6146 const char *msg;
b49e97c9
TS
6147
6148 /* Find the relocation howto for this relocation. */
4a14403c 6149 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6150 {
6151 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6152 64-bit code, but make sure all their addresses are in the
6153 lowermost or uppermost 32-bit section of the 64-bit address
6154 space. Thus, when they use an R_MIPS_64 they mean what is
6155 usually meant by R_MIPS_32, with the exception that the
6156 stored value is sign-extended to 64 bits. */
b34976b6 6157 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6158
6159 /* On big-endian systems, we need to lie about the position
6160 of the reloc. */
6161 if (bfd_big_endian (input_bfd))
6162 rel->r_offset += 4;
6163 }
6164 else
6165 /* NewABI defaults to RELA relocations. */
6166 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6167 NEWABI_P (input_bfd)
6168 && (MIPS_RELOC_RELA_P
6169 (input_bfd, input_section,
6170 rel - relocs)));
b49e97c9
TS
6171
6172 if (!use_saved_addend_p)
6173 {
6174 Elf_Internal_Shdr *rel_hdr;
6175
6176 /* If these relocations were originally of the REL variety,
6177 we must pull the addend out of the field that will be
6178 relocated. Otherwise, we simply use the contents of the
6179 RELA relocation. To determine which flavor or relocation
6180 this is, we depend on the fact that the INPUT_SECTION's
6181 REL_HDR is read before its REL_HDR2. */
6182 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6183 if ((size_t) (rel - relocs)
6184 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6185 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6186 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6187 {
6188 /* Note that this is a REL relocation. */
b34976b6 6189 rela_relocation_p = FALSE;
b49e97c9
TS
6190
6191 /* Get the addend, which is stored in the input file. */
6192 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6193 contents);
6194 addend &= howto->src_mask;
6195
6196 /* For some kinds of relocations, the ADDEND is a
6197 combination of the addend stored in two different
6198 relocations. */
6199 if (r_type == R_MIPS_HI16
b49e97c9
TS
6200 || (r_type == R_MIPS_GOT16
6201 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 6202 local_sections, FALSE)))
b49e97c9
TS
6203 {
6204 bfd_vma l;
6205 const Elf_Internal_Rela *lo16_relocation;
6206 reloc_howto_type *lo16_howto;
b49e97c9
TS
6207
6208 /* The combined value is the sum of the HI16 addend,
6209 left-shifted by sixteen bits, and the LO16
6210 addend, sign extended. (Usually, the code does
6211 a `lui' of the HI16 value, and then an `addiu' of
6212 the LO16 value.)
6213
4030e8f6
CD
6214 Scan ahead to find a matching LO16 relocation.
6215
6216 According to the MIPS ELF ABI, the R_MIPS_LO16
6217 relocation must be immediately following.
6218 However, for the IRIX6 ABI, the next relocation
6219 may be a composed relocation consisting of
6220 several relocations for the same address. In
6221 that case, the R_MIPS_LO16 relocation may occur
6222 as one of these. We permit a similar extension
6223 in general, as that is useful for GCC. */
6224 lo16_relocation = mips_elf_next_relocation (input_bfd,
6225 R_MIPS_LO16,
b49e97c9
TS
6226 rel, relend);
6227 if (lo16_relocation == NULL)
b34976b6 6228 return FALSE;
b49e97c9
TS
6229
6230 /* Obtain the addend kept there. */
4030e8f6
CD
6231 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6232 R_MIPS_LO16, FALSE);
b49e97c9
TS
6233 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6234 input_bfd, contents);
6235 l &= lo16_howto->src_mask;
5a659663 6236 l <<= lo16_howto->rightshift;
a7ebbfdf 6237 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
6238
6239 addend <<= 16;
6240
6241 /* Compute the combined addend. */
6242 addend += l;
b49e97c9
TS
6243 }
6244 else if (r_type == R_MIPS16_GPREL)
6245 {
6246 /* The addend is scrambled in the object file. See
6247 mips_elf_perform_relocation for details on the
6248 format. */
6249 addend = (((addend & 0x1f0000) >> 5)
6250 | ((addend & 0x7e00000) >> 16)
6251 | (addend & 0x1f));
6252 }
30ac9238
RS
6253 else
6254 addend <<= howto->rightshift;
b49e97c9
TS
6255 }
6256 else
6257 addend = rel->r_addend;
6258 }
6259
1049f94e 6260 if (info->relocatable)
b49e97c9
TS
6261 {
6262 Elf_Internal_Sym *sym;
6263 unsigned long r_symndx;
6264
4a14403c 6265 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
6266 && bfd_big_endian (input_bfd))
6267 rel->r_offset -= 4;
6268
6269 /* Since we're just relocating, all we need to do is copy
6270 the relocations back out to the object file, unless
6271 they're against a section symbol, in which case we need
6272 to adjust by the section offset, or unless they're GP
6273 relative in which case we need to adjust by the amount
1049f94e 6274 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
6275
6276 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 6277 FALSE))
b49e97c9
TS
6278 /* There's nothing to do for non-local relocations. */
6279 continue;
6280
6281 if (r_type == R_MIPS16_GPREL
6282 || r_type == R_MIPS_GPREL16
6283 || r_type == R_MIPS_GPREL32
6284 || r_type == R_MIPS_LITERAL)
6285 addend -= (_bfd_get_gp_value (output_bfd)
6286 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
6287
6288 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6289 sym = local_syms + r_symndx;
6290 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6291 /* Adjust the addend appropriately. */
6292 addend += local_sections[r_symndx]->output_offset;
6293
30ac9238
RS
6294 if (rela_relocation_p)
6295 /* If this is a RELA relocation, just update the addend. */
6296 rel->r_addend = addend;
6297 else
5a659663 6298 {
30ac9238 6299 if (r_type == R_MIPS_HI16
4030e8f6 6300 || r_type == R_MIPS_GOT16)
5a659663
TS
6301 addend = mips_elf_high (addend);
6302 else if (r_type == R_MIPS_HIGHER)
6303 addend = mips_elf_higher (addend);
6304 else if (r_type == R_MIPS_HIGHEST)
6305 addend = mips_elf_highest (addend);
30ac9238
RS
6306 else
6307 addend >>= howto->rightshift;
b49e97c9 6308
30ac9238
RS
6309 /* We use the source mask, rather than the destination
6310 mask because the place to which we are writing will be
6311 source of the addend in the final link. */
b49e97c9
TS
6312 addend &= howto->src_mask;
6313
5a659663 6314 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6315 /* See the comment above about using R_MIPS_64 in the 32-bit
6316 ABI. Here, we need to update the addend. It would be
6317 possible to get away with just using the R_MIPS_32 reloc
6318 but for endianness. */
6319 {
6320 bfd_vma sign_bits;
6321 bfd_vma low_bits;
6322 bfd_vma high_bits;
6323
6324 if (addend & ((bfd_vma) 1 << 31))
6325#ifdef BFD64
6326 sign_bits = ((bfd_vma) 1 << 32) - 1;
6327#else
6328 sign_bits = -1;
6329#endif
6330 else
6331 sign_bits = 0;
6332
6333 /* If we don't know that we have a 64-bit type,
6334 do two separate stores. */
6335 if (bfd_big_endian (input_bfd))
6336 {
6337 /* Store the sign-bits (which are most significant)
6338 first. */
6339 low_bits = sign_bits;
6340 high_bits = addend;
6341 }
6342 else
6343 {
6344 low_bits = addend;
6345 high_bits = sign_bits;
6346 }
6347 bfd_put_32 (input_bfd, low_bits,
6348 contents + rel->r_offset);
6349 bfd_put_32 (input_bfd, high_bits,
6350 contents + rel->r_offset + 4);
6351 continue;
6352 }
6353
6354 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6355 input_bfd, input_section,
b34976b6
AM
6356 contents, FALSE))
6357 return FALSE;
b49e97c9
TS
6358 }
6359
6360 /* Go on to the next relocation. */
6361 continue;
6362 }
6363
6364 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6365 relocations for the same offset. In that case we are
6366 supposed to treat the output of each relocation as the addend
6367 for the next. */
6368 if (rel + 1 < relend
6369 && rel->r_offset == rel[1].r_offset
6370 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 6371 use_saved_addend_p = TRUE;
b49e97c9 6372 else
b34976b6 6373 use_saved_addend_p = FALSE;
b49e97c9
TS
6374
6375 /* Figure out what value we are supposed to relocate. */
6376 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6377 input_section, info, rel,
6378 addend, howto, local_syms,
6379 local_sections, &value,
bce03d3d
AO
6380 &name, &require_jalx,
6381 use_saved_addend_p))
b49e97c9
TS
6382 {
6383 case bfd_reloc_continue:
6384 /* There's nothing to do. */
6385 continue;
6386
6387 case bfd_reloc_undefined:
6388 /* mips_elf_calculate_relocation already called the
6389 undefined_symbol callback. There's no real point in
6390 trying to perform the relocation at this point, so we
6391 just skip ahead to the next relocation. */
6392 continue;
6393
6394 case bfd_reloc_notsupported:
6395 msg = _("internal error: unsupported relocation error");
6396 info->callbacks->warning
6397 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 6398 return FALSE;
b49e97c9
TS
6399
6400 case bfd_reloc_overflow:
6401 if (use_saved_addend_p)
6402 /* Ignore overflow until we reach the last relocation for
6403 a given location. */
6404 ;
6405 else
6406 {
6407 BFD_ASSERT (name != NULL);
6408 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 6409 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 6410 input_bfd, input_section, rel->r_offset)))
b34976b6 6411 return FALSE;
b49e97c9
TS
6412 }
6413 break;
6414
6415 case bfd_reloc_ok:
6416 break;
6417
6418 default:
6419 abort ();
6420 break;
6421 }
6422
6423 /* If we've got another relocation for the address, keep going
6424 until we reach the last one. */
6425 if (use_saved_addend_p)
6426 {
6427 addend = value;
6428 continue;
6429 }
6430
4a14403c 6431 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6432 /* See the comment above about using R_MIPS_64 in the 32-bit
6433 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6434 that calculated the right value. Now, however, we
6435 sign-extend the 32-bit result to 64-bits, and store it as a
6436 64-bit value. We are especially generous here in that we
6437 go to extreme lengths to support this usage on systems with
6438 only a 32-bit VMA. */
6439 {
6440 bfd_vma sign_bits;
6441 bfd_vma low_bits;
6442 bfd_vma high_bits;
6443
6444 if (value & ((bfd_vma) 1 << 31))
6445#ifdef BFD64
6446 sign_bits = ((bfd_vma) 1 << 32) - 1;
6447#else
6448 sign_bits = -1;
6449#endif
6450 else
6451 sign_bits = 0;
6452
6453 /* If we don't know that we have a 64-bit type,
6454 do two separate stores. */
6455 if (bfd_big_endian (input_bfd))
6456 {
6457 /* Undo what we did above. */
6458 rel->r_offset -= 4;
6459 /* Store the sign-bits (which are most significant)
6460 first. */
6461 low_bits = sign_bits;
6462 high_bits = value;
6463 }
6464 else
6465 {
6466 low_bits = value;
6467 high_bits = sign_bits;
6468 }
6469 bfd_put_32 (input_bfd, low_bits,
6470 contents + rel->r_offset);
6471 bfd_put_32 (input_bfd, high_bits,
6472 contents + rel->r_offset + 4);
6473 continue;
6474 }
6475
6476 /* Actually perform the relocation. */
6477 if (! mips_elf_perform_relocation (info, howto, rel, value,
6478 input_bfd, input_section,
6479 contents, require_jalx))
b34976b6 6480 return FALSE;
b49e97c9
TS
6481 }
6482
b34976b6 6483 return TRUE;
b49e97c9
TS
6484}
6485\f
6486/* If NAME is one of the special IRIX6 symbols defined by the linker,
6487 adjust it appropriately now. */
6488
6489static void
9719ad41
RS
6490mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6491 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
6492{
6493 /* The linker script takes care of providing names and values for
6494 these, but we must place them into the right sections. */
6495 static const char* const text_section_symbols[] = {
6496 "_ftext",
6497 "_etext",
6498 "__dso_displacement",
6499 "__elf_header",
6500 "__program_header_table",
6501 NULL
6502 };
6503
6504 static const char* const data_section_symbols[] = {
6505 "_fdata",
6506 "_edata",
6507 "_end",
6508 "_fbss",
6509 NULL
6510 };
6511
6512 const char* const *p;
6513 int i;
6514
6515 for (i = 0; i < 2; ++i)
6516 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6517 *p;
6518 ++p)
6519 if (strcmp (*p, name) == 0)
6520 {
6521 /* All of these symbols are given type STT_SECTION by the
6522 IRIX6 linker. */
6523 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 6524 sym->st_other = STO_PROTECTED;
b49e97c9
TS
6525
6526 /* The IRIX linker puts these symbols in special sections. */
6527 if (i == 0)
6528 sym->st_shndx = SHN_MIPS_TEXT;
6529 else
6530 sym->st_shndx = SHN_MIPS_DATA;
6531
6532 break;
6533 }
6534}
6535
6536/* Finish up dynamic symbol handling. We set the contents of various
6537 dynamic sections here. */
6538
b34976b6 6539bfd_boolean
9719ad41
RS
6540_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6541 struct bfd_link_info *info,
6542 struct elf_link_hash_entry *h,
6543 Elf_Internal_Sym *sym)
b49e97c9
TS
6544{
6545 bfd *dynobj;
b49e97c9 6546 asection *sgot;
f4416af6 6547 struct mips_got_info *g, *gg;
b49e97c9 6548 const char *name;
b49e97c9
TS
6549
6550 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 6551
c5ae1840 6552 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
6553 {
6554 asection *s;
6555 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6556
6557 /* This symbol has a stub. Set it up. */
6558
6559 BFD_ASSERT (h->dynindx != -1);
6560
6561 s = bfd_get_section_by_name (dynobj,
6562 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6563 BFD_ASSERT (s != NULL);
6564
6565 /* FIXME: Can h->dynindex be more than 64K? */
6566 if (h->dynindx & 0xffff0000)
b34976b6 6567 return FALSE;
b49e97c9
TS
6568
6569 /* Fill the stub. */
6570 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6571 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6572 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6573 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6574
eea6121a 6575 BFD_ASSERT (h->plt.offset <= s->size);
b49e97c9
TS
6576 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6577
6578 /* Mark the symbol as undefined. plt.offset != -1 occurs
6579 only for the referenced symbol. */
6580 sym->st_shndx = SHN_UNDEF;
6581
6582 /* The run-time linker uses the st_value field of the symbol
6583 to reset the global offset table entry for this external
6584 to its stub address when unlinking a shared object. */
c5ae1840
TS
6585 sym->st_value = (s->output_section->vma + s->output_offset
6586 + h->plt.offset);
b49e97c9
TS
6587 }
6588
6589 BFD_ASSERT (h->dynindx != -1
f5385ebf 6590 || h->forced_local);
b49e97c9 6591
f4416af6 6592 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6593 BFD_ASSERT (sgot != NULL);
f4416af6 6594 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 6595 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6596 BFD_ASSERT (g != NULL);
6597
6598 /* Run through the global symbol table, creating GOT entries for all
6599 the symbols that need them. */
6600 if (g->global_gotsym != NULL
6601 && h->dynindx >= g->global_gotsym->dynindx)
6602 {
6603 bfd_vma offset;
6604 bfd_vma value;
6605
6eaa6adc 6606 value = sym->st_value;
f4416af6 6607 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
b49e97c9
TS
6608 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6609 }
6610
f4416af6
AO
6611 if (g->next && h->dynindx != -1)
6612 {
6613 struct mips_got_entry e, *p;
0626d451 6614 bfd_vma entry;
f4416af6 6615 bfd_vma offset;
f4416af6
AO
6616
6617 gg = g;
6618
6619 e.abfd = output_bfd;
6620 e.symndx = -1;
6621 e.d.h = (struct mips_elf_link_hash_entry *)h;
143d77c5 6622
f4416af6
AO
6623 for (g = g->next; g->next != gg; g = g->next)
6624 {
6625 if (g->got_entries
6626 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6627 &e)))
6628 {
6629 offset = p->gotidx;
0626d451
RS
6630 if (info->shared
6631 || (elf_hash_table (info)->dynamic_sections_created
6632 && p->d.h != NULL
f5385ebf
AM
6633 && p->d.h->root.def_dynamic
6634 && !p->d.h->root.def_regular))
0626d451
RS
6635 {
6636 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6637 the various compatibility problems, it's easier to mock
6638 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6639 mips_elf_create_dynamic_relocation to calculate the
6640 appropriate addend. */
6641 Elf_Internal_Rela rel[3];
6642
6643 memset (rel, 0, sizeof (rel));
6644 if (ABI_64_P (output_bfd))
6645 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6646 else
6647 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6648 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6649
6650 entry = 0;
6651 if (! (mips_elf_create_dynamic_relocation
6652 (output_bfd, info, rel,
6653 e.d.h, NULL, sym->st_value, &entry, sgot)))
6654 return FALSE;
6655 }
6656 else
6657 entry = sym->st_value;
6658 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
6659 }
6660 }
6661 }
6662
b49e97c9
TS
6663 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6664 name = h->root.root.string;
6665 if (strcmp (name, "_DYNAMIC") == 0
6666 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6667 sym->st_shndx = SHN_ABS;
6668 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6669 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6670 {
6671 sym->st_shndx = SHN_ABS;
6672 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6673 sym->st_value = 1;
6674 }
4a14403c 6675 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6676 {
6677 sym->st_shndx = SHN_ABS;
6678 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6679 sym->st_value = elf_gp (output_bfd);
6680 }
6681 else if (SGI_COMPAT (output_bfd))
6682 {
6683 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6684 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6685 {
6686 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6687 sym->st_other = STO_PROTECTED;
6688 sym->st_value = 0;
6689 sym->st_shndx = SHN_MIPS_DATA;
6690 }
6691 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6692 {
6693 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6694 sym->st_other = STO_PROTECTED;
6695 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6696 sym->st_shndx = SHN_ABS;
6697 }
6698 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6699 {
6700 if (h->type == STT_FUNC)
6701 sym->st_shndx = SHN_MIPS_TEXT;
6702 else if (h->type == STT_OBJECT)
6703 sym->st_shndx = SHN_MIPS_DATA;
6704 }
6705 }
6706
6707 /* Handle the IRIX6-specific symbols. */
6708 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6709 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6710
6711 if (! info->shared)
6712 {
6713 if (! mips_elf_hash_table (info)->use_rld_obj_head
6714 && (strcmp (name, "__rld_map") == 0
6715 || strcmp (name, "__RLD_MAP") == 0))
6716 {
6717 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6718 BFD_ASSERT (s != NULL);
6719 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 6720 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
6721 if (mips_elf_hash_table (info)->rld_value == 0)
6722 mips_elf_hash_table (info)->rld_value = sym->st_value;
6723 }
6724 else if (mips_elf_hash_table (info)->use_rld_obj_head
6725 && strcmp (name, "__rld_obj_head") == 0)
6726 {
6727 /* IRIX6 does not use a .rld_map section. */
6728 if (IRIX_COMPAT (output_bfd) == ict_irix5
6729 || IRIX_COMPAT (output_bfd) == ict_none)
6730 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6731 != NULL);
6732 mips_elf_hash_table (info)->rld_value = sym->st_value;
6733 }
6734 }
6735
6736 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
6737 if (sym->st_other == STO_MIPS16)
6738 sym->st_value &= ~1;
b49e97c9 6739
b34976b6 6740 return TRUE;
b49e97c9
TS
6741}
6742
6743/* Finish up the dynamic sections. */
6744
b34976b6 6745bfd_boolean
9719ad41
RS
6746_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6747 struct bfd_link_info *info)
b49e97c9
TS
6748{
6749 bfd *dynobj;
6750 asection *sdyn;
6751 asection *sgot;
f4416af6 6752 struct mips_got_info *gg, *g;
b49e97c9
TS
6753
6754 dynobj = elf_hash_table (info)->dynobj;
6755
6756 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6757
f4416af6 6758 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6759 if (sgot == NULL)
f4416af6 6760 gg = g = NULL;
b49e97c9
TS
6761 else
6762 {
f4416af6
AO
6763 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6764 gg = mips_elf_section_data (sgot)->u.got_info;
6765 BFD_ASSERT (gg != NULL);
6766 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
6767 BFD_ASSERT (g != NULL);
6768 }
6769
6770 if (elf_hash_table (info)->dynamic_sections_created)
6771 {
6772 bfd_byte *b;
6773
6774 BFD_ASSERT (sdyn != NULL);
6775 BFD_ASSERT (g != NULL);
6776
6777 for (b = sdyn->contents;
eea6121a 6778 b < sdyn->contents + sdyn->size;
b49e97c9
TS
6779 b += MIPS_ELF_DYN_SIZE (dynobj))
6780 {
6781 Elf_Internal_Dyn dyn;
6782 const char *name;
6783 size_t elemsize;
6784 asection *s;
b34976b6 6785 bfd_boolean swap_out_p;
b49e97c9
TS
6786
6787 /* Read in the current dynamic entry. */
6788 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6789
6790 /* Assume that we're going to modify it and write it out. */
b34976b6 6791 swap_out_p = TRUE;
b49e97c9
TS
6792
6793 switch (dyn.d_tag)
6794 {
6795 case DT_RELENT:
f4416af6 6796 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
6797 BFD_ASSERT (s != NULL);
6798 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6799 break;
6800
6801 case DT_STRSZ:
6802 /* Rewrite DT_STRSZ. */
6803 dyn.d_un.d_val =
6804 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6805 break;
6806
6807 case DT_PLTGOT:
6808 name = ".got";
b49e97c9
TS
6809 s = bfd_get_section_by_name (output_bfd, name);
6810 BFD_ASSERT (s != NULL);
6811 dyn.d_un.d_ptr = s->vma;
6812 break;
6813
6814 case DT_MIPS_RLD_VERSION:
6815 dyn.d_un.d_val = 1; /* XXX */
6816 break;
6817
6818 case DT_MIPS_FLAGS:
6819 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6820 break;
6821
b49e97c9
TS
6822 case DT_MIPS_TIME_STAMP:
6823 time ((time_t *) &dyn.d_un.d_val);
6824 break;
6825
6826 case DT_MIPS_ICHECKSUM:
6827 /* XXX FIXME: */
b34976b6 6828 swap_out_p = FALSE;
b49e97c9
TS
6829 break;
6830
6831 case DT_MIPS_IVERSION:
6832 /* XXX FIXME: */
b34976b6 6833 swap_out_p = FALSE;
b49e97c9
TS
6834 break;
6835
6836 case DT_MIPS_BASE_ADDRESS:
6837 s = output_bfd->sections;
6838 BFD_ASSERT (s != NULL);
6839 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6840 break;
6841
6842 case DT_MIPS_LOCAL_GOTNO:
6843 dyn.d_un.d_val = g->local_gotno;
6844 break;
6845
6846 case DT_MIPS_UNREFEXTNO:
6847 /* The index into the dynamic symbol table which is the
6848 entry of the first external symbol that is not
6849 referenced within the same object. */
6850 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6851 break;
6852
6853 case DT_MIPS_GOTSYM:
f4416af6 6854 if (gg->global_gotsym)
b49e97c9 6855 {
f4416af6 6856 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
6857 break;
6858 }
6859 /* In case if we don't have global got symbols we default
6860 to setting DT_MIPS_GOTSYM to the same value as
6861 DT_MIPS_SYMTABNO, so we just fall through. */
6862
6863 case DT_MIPS_SYMTABNO:
6864 name = ".dynsym";
6865 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6866 s = bfd_get_section_by_name (output_bfd, name);
6867 BFD_ASSERT (s != NULL);
6868
eea6121a 6869 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
6870 break;
6871
6872 case DT_MIPS_HIPAGENO:
6873 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6874 break;
6875
6876 case DT_MIPS_RLD_MAP:
6877 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6878 break;
6879
6880 case DT_MIPS_OPTIONS:
6881 s = (bfd_get_section_by_name
6882 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6883 dyn.d_un.d_ptr = s->vma;
6884 break;
6885
98a8deaf
RS
6886 case DT_RELSZ:
6887 /* Reduce DT_RELSZ to account for any relocations we
6888 decided not to make. This is for the n64 irix rld,
6889 which doesn't seem to apply any relocations if there
6890 are trailing null entries. */
6891 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6892 dyn.d_un.d_val = (s->reloc_count
6893 * (ABI_64_P (output_bfd)
6894 ? sizeof (Elf64_Mips_External_Rel)
6895 : sizeof (Elf32_External_Rel)));
b49e97c9
TS
6896 break;
6897
6898 default:
b34976b6 6899 swap_out_p = FALSE;
b49e97c9
TS
6900 break;
6901 }
6902
6903 if (swap_out_p)
6904 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6905 (dynobj, &dyn, b);
6906 }
6907 }
6908
6909 /* The first entry of the global offset table will be filled at
6910 runtime. The second entry will be used by some runtime loaders.
8dc1a139 6911 This isn't the case of IRIX rld. */
eea6121a 6912 if (sgot != NULL && sgot->size > 0)
b49e97c9 6913 {
9719ad41
RS
6914 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6915 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
b49e97c9
TS
6916 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6917 }
6918
6919 if (sgot != NULL)
6920 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6921 = MIPS_ELF_GOT_SIZE (output_bfd);
6922
f4416af6
AO
6923 /* Generate dynamic relocations for the non-primary gots. */
6924 if (gg != NULL && gg->next)
6925 {
6926 Elf_Internal_Rela rel[3];
6927 bfd_vma addend = 0;
6928
6929 memset (rel, 0, sizeof (rel));
6930 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6931
6932 for (g = gg->next; g->next != gg; g = g->next)
6933 {
6934 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6935
9719ad41 6936 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 6937 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 6938 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
6939 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6940
6941 if (! info->shared)
6942 continue;
6943
6944 while (index < g->assigned_gotno)
6945 {
6946 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6947 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6948 if (!(mips_elf_create_dynamic_relocation
6949 (output_bfd, info, rel, NULL,
6950 bfd_abs_section_ptr,
6951 0, &addend, sgot)))
6952 return FALSE;
6953 BFD_ASSERT (addend == 0);
6954 }
6955 }
6956 }
6957
b49e97c9 6958 {
b49e97c9
TS
6959 asection *s;
6960 Elf32_compact_rel cpt;
6961
b49e97c9
TS
6962 if (SGI_COMPAT (output_bfd))
6963 {
6964 /* Write .compact_rel section out. */
6965 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6966 if (s != NULL)
6967 {
6968 cpt.id1 = 1;
6969 cpt.num = s->reloc_count;
6970 cpt.id2 = 2;
6971 cpt.offset = (s->output_section->filepos
6972 + sizeof (Elf32_External_compact_rel));
6973 cpt.reserved0 = 0;
6974 cpt.reserved1 = 0;
6975 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6976 ((Elf32_External_compact_rel *)
6977 s->contents));
6978
6979 /* Clean up a dummy stub function entry in .text. */
6980 s = bfd_get_section_by_name (dynobj,
6981 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6982 if (s != NULL)
6983 {
6984 file_ptr dummy_offset;
6985
eea6121a
AM
6986 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
6987 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6988 memset (s->contents + dummy_offset, 0,
6989 MIPS_FUNCTION_STUB_SIZE);
6990 }
6991 }
6992 }
6993
6994 /* We need to sort the entries of the dynamic relocation section. */
6995
f4416af6
AO
6996 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6997
6998 if (s != NULL
eea6121a 6999 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7000 {
f4416af6 7001 reldyn_sorting_bfd = output_bfd;
b49e97c9 7002
f4416af6 7003 if (ABI_64_P (output_bfd))
9719ad41 7004 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6
AO
7005 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7006 else
9719ad41 7007 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6 7008 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7009 }
b49e97c9
TS
7010 }
7011
b34976b6 7012 return TRUE;
b49e97c9
TS
7013}
7014
b49e97c9 7015
64543e1a
RS
7016/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7017
7018static void
9719ad41 7019mips_set_isa_flags (bfd *abfd)
b49e97c9 7020{
64543e1a 7021 flagword val;
b49e97c9
TS
7022
7023 switch (bfd_get_mach (abfd))
7024 {
7025 default:
7026 case bfd_mach_mips3000:
7027 val = E_MIPS_ARCH_1;
7028 break;
7029
7030 case bfd_mach_mips3900:
7031 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7032 break;
7033
7034 case bfd_mach_mips6000:
7035 val = E_MIPS_ARCH_2;
7036 break;
7037
7038 case bfd_mach_mips4000:
7039 case bfd_mach_mips4300:
7040 case bfd_mach_mips4400:
7041 case bfd_mach_mips4600:
7042 val = E_MIPS_ARCH_3;
7043 break;
7044
7045 case bfd_mach_mips4010:
7046 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7047 break;
7048
7049 case bfd_mach_mips4100:
7050 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7051 break;
7052
7053 case bfd_mach_mips4111:
7054 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7055 break;
7056
00707a0e
RS
7057 case bfd_mach_mips4120:
7058 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7059 break;
7060
b49e97c9
TS
7061 case bfd_mach_mips4650:
7062 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7063 break;
7064
00707a0e
RS
7065 case bfd_mach_mips5400:
7066 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7067 break;
7068
7069 case bfd_mach_mips5500:
7070 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7071 break;
7072
b49e97c9 7073 case bfd_mach_mips5000:
5a7ea749 7074 case bfd_mach_mips7000:
b49e97c9
TS
7075 case bfd_mach_mips8000:
7076 case bfd_mach_mips10000:
7077 case bfd_mach_mips12000:
7078 val = E_MIPS_ARCH_4;
7079 break;
7080
7081 case bfd_mach_mips5:
7082 val = E_MIPS_ARCH_5;
7083 break;
7084
7085 case bfd_mach_mips_sb1:
7086 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7087 break;
7088
7089 case bfd_mach_mipsisa32:
7090 val = E_MIPS_ARCH_32;
7091 break;
7092
7093 case bfd_mach_mipsisa64:
7094 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7095 break;
7096
7097 case bfd_mach_mipsisa32r2:
7098 val = E_MIPS_ARCH_32R2;
7099 break;
5f74bc13
CD
7100
7101 case bfd_mach_mipsisa64r2:
7102 val = E_MIPS_ARCH_64R2;
7103 break;
b49e97c9 7104 }
b49e97c9
TS
7105 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7106 elf_elfheader (abfd)->e_flags |= val;
7107
64543e1a
RS
7108}
7109
7110
7111/* The final processing done just before writing out a MIPS ELF object
7112 file. This gets the MIPS architecture right based on the machine
7113 number. This is used by both the 32-bit and the 64-bit ABI. */
7114
7115void
9719ad41
RS
7116_bfd_mips_elf_final_write_processing (bfd *abfd,
7117 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
7118{
7119 unsigned int i;
7120 Elf_Internal_Shdr **hdrpp;
7121 const char *name;
7122 asection *sec;
7123
7124 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7125 is nonzero. This is for compatibility with old objects, which used
7126 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7127 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7128 mips_set_isa_flags (abfd);
7129
b49e97c9
TS
7130 /* Set the sh_info field for .gptab sections and other appropriate
7131 info for each special section. */
7132 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7133 i < elf_numsections (abfd);
7134 i++, hdrpp++)
7135 {
7136 switch ((*hdrpp)->sh_type)
7137 {
7138 case SHT_MIPS_MSYM:
7139 case SHT_MIPS_LIBLIST:
7140 sec = bfd_get_section_by_name (abfd, ".dynstr");
7141 if (sec != NULL)
7142 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7143 break;
7144
7145 case SHT_MIPS_GPTAB:
7146 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7147 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7148 BFD_ASSERT (name != NULL
7149 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7150 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7151 BFD_ASSERT (sec != NULL);
7152 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7153 break;
7154
7155 case SHT_MIPS_CONTENT:
7156 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7157 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7158 BFD_ASSERT (name != NULL
7159 && strncmp (name, ".MIPS.content",
7160 sizeof ".MIPS.content" - 1) == 0);
7161 sec = bfd_get_section_by_name (abfd,
7162 name + sizeof ".MIPS.content" - 1);
7163 BFD_ASSERT (sec != NULL);
7164 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7165 break;
7166
7167 case SHT_MIPS_SYMBOL_LIB:
7168 sec = bfd_get_section_by_name (abfd, ".dynsym");
7169 if (sec != NULL)
7170 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7171 sec = bfd_get_section_by_name (abfd, ".liblist");
7172 if (sec != NULL)
7173 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7174 break;
7175
7176 case SHT_MIPS_EVENTS:
7177 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7178 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7179 BFD_ASSERT (name != NULL);
7180 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7181 sec = bfd_get_section_by_name (abfd,
7182 name + sizeof ".MIPS.events" - 1);
7183 else
7184 {
7185 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7186 sizeof ".MIPS.post_rel" - 1) == 0);
7187 sec = bfd_get_section_by_name (abfd,
7188 (name
7189 + sizeof ".MIPS.post_rel" - 1));
7190 }
7191 BFD_ASSERT (sec != NULL);
7192 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7193 break;
7194
7195 }
7196 }
7197}
7198\f
8dc1a139 7199/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
7200 segments. */
7201
7202int
9719ad41 7203_bfd_mips_elf_additional_program_headers (bfd *abfd)
b49e97c9
TS
7204{
7205 asection *s;
7206 int ret = 0;
7207
7208 /* See if we need a PT_MIPS_REGINFO segment. */
7209 s = bfd_get_section_by_name (abfd, ".reginfo");
7210 if (s && (s->flags & SEC_LOAD))
7211 ++ret;
7212
7213 /* See if we need a PT_MIPS_OPTIONS segment. */
7214 if (IRIX_COMPAT (abfd) == ict_irix6
7215 && bfd_get_section_by_name (abfd,
7216 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7217 ++ret;
7218
7219 /* See if we need a PT_MIPS_RTPROC segment. */
7220 if (IRIX_COMPAT (abfd) == ict_irix5
7221 && bfd_get_section_by_name (abfd, ".dynamic")
7222 && bfd_get_section_by_name (abfd, ".mdebug"))
7223 ++ret;
7224
7225 return ret;
7226}
7227
8dc1a139 7228/* Modify the segment map for an IRIX5 executable. */
b49e97c9 7229
b34976b6 7230bfd_boolean
9719ad41
RS
7231_bfd_mips_elf_modify_segment_map (bfd *abfd,
7232 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
7233{
7234 asection *s;
7235 struct elf_segment_map *m, **pm;
7236 bfd_size_type amt;
7237
7238 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7239 segment. */
7240 s = bfd_get_section_by_name (abfd, ".reginfo");
7241 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7242 {
7243 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7244 if (m->p_type == PT_MIPS_REGINFO)
7245 break;
7246 if (m == NULL)
7247 {
7248 amt = sizeof *m;
9719ad41 7249 m = bfd_zalloc (abfd, amt);
b49e97c9 7250 if (m == NULL)
b34976b6 7251 return FALSE;
b49e97c9
TS
7252
7253 m->p_type = PT_MIPS_REGINFO;
7254 m->count = 1;
7255 m->sections[0] = s;
7256
7257 /* We want to put it after the PHDR and INTERP segments. */
7258 pm = &elf_tdata (abfd)->segment_map;
7259 while (*pm != NULL
7260 && ((*pm)->p_type == PT_PHDR
7261 || (*pm)->p_type == PT_INTERP))
7262 pm = &(*pm)->next;
7263
7264 m->next = *pm;
7265 *pm = m;
7266 }
7267 }
7268
7269 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7270 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 7271 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 7272 table. */
c1fd6598
AO
7273 if (NEWABI_P (abfd)
7274 /* On non-IRIX6 new abi, we'll have already created a segment
7275 for this section, so don't create another. I'm not sure this
7276 is not also the case for IRIX 6, but I can't test it right
7277 now. */
7278 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
7279 {
7280 for (s = abfd->sections; s; s = s->next)
7281 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7282 break;
7283
7284 if (s)
7285 {
7286 struct elf_segment_map *options_segment;
7287
98a8deaf
RS
7288 pm = &elf_tdata (abfd)->segment_map;
7289 while (*pm != NULL
7290 && ((*pm)->p_type == PT_PHDR
7291 || (*pm)->p_type == PT_INTERP))
7292 pm = &(*pm)->next;
b49e97c9
TS
7293
7294 amt = sizeof (struct elf_segment_map);
7295 options_segment = bfd_zalloc (abfd, amt);
7296 options_segment->next = *pm;
7297 options_segment->p_type = PT_MIPS_OPTIONS;
7298 options_segment->p_flags = PF_R;
b34976b6 7299 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
7300 options_segment->count = 1;
7301 options_segment->sections[0] = s;
7302 *pm = options_segment;
7303 }
7304 }
7305 else
7306 {
7307 if (IRIX_COMPAT (abfd) == ict_irix5)
7308 {
7309 /* If there are .dynamic and .mdebug sections, we make a room
7310 for the RTPROC header. FIXME: Rewrite without section names. */
7311 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7312 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7313 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7314 {
7315 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7316 if (m->p_type == PT_MIPS_RTPROC)
7317 break;
7318 if (m == NULL)
7319 {
7320 amt = sizeof *m;
9719ad41 7321 m = bfd_zalloc (abfd, amt);
b49e97c9 7322 if (m == NULL)
b34976b6 7323 return FALSE;
b49e97c9
TS
7324
7325 m->p_type = PT_MIPS_RTPROC;
7326
7327 s = bfd_get_section_by_name (abfd, ".rtproc");
7328 if (s == NULL)
7329 {
7330 m->count = 0;
7331 m->p_flags = 0;
7332 m->p_flags_valid = 1;
7333 }
7334 else
7335 {
7336 m->count = 1;
7337 m->sections[0] = s;
7338 }
7339
7340 /* We want to put it after the DYNAMIC segment. */
7341 pm = &elf_tdata (abfd)->segment_map;
7342 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7343 pm = &(*pm)->next;
7344 if (*pm != NULL)
7345 pm = &(*pm)->next;
7346
7347 m->next = *pm;
7348 *pm = m;
7349 }
7350 }
7351 }
8dc1a139 7352 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
7353 .dynstr, .dynsym, and .hash sections, and everything in
7354 between. */
7355 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7356 pm = &(*pm)->next)
7357 if ((*pm)->p_type == PT_DYNAMIC)
7358 break;
7359 m = *pm;
7360 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7361 {
7362 /* For a normal mips executable the permissions for the PT_DYNAMIC
7363 segment are read, write and execute. We do that here since
7364 the code in elf.c sets only the read permission. This matters
7365 sometimes for the dynamic linker. */
7366 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7367 {
7368 m->p_flags = PF_R | PF_W | PF_X;
7369 m->p_flags_valid = 1;
7370 }
7371 }
7372 if (m != NULL
7373 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7374 {
7375 static const char *sec_names[] =
7376 {
7377 ".dynamic", ".dynstr", ".dynsym", ".hash"
7378 };
7379 bfd_vma low, high;
7380 unsigned int i, c;
7381 struct elf_segment_map *n;
7382
792b4a53 7383 low = ~(bfd_vma) 0;
b49e97c9
TS
7384 high = 0;
7385 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7386 {
7387 s = bfd_get_section_by_name (abfd, sec_names[i]);
7388 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7389 {
7390 bfd_size_type sz;
7391
7392 if (low > s->vma)
7393 low = s->vma;
eea6121a 7394 sz = s->size;
b49e97c9
TS
7395 if (high < s->vma + sz)
7396 high = s->vma + sz;
7397 }
7398 }
7399
7400 c = 0;
7401 for (s = abfd->sections; s != NULL; s = s->next)
7402 if ((s->flags & SEC_LOAD) != 0
7403 && s->vma >= low
eea6121a 7404 && s->vma + s->size <= high)
b49e97c9
TS
7405 ++c;
7406
7407 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 7408 n = bfd_zalloc (abfd, amt);
b49e97c9 7409 if (n == NULL)
b34976b6 7410 return FALSE;
b49e97c9
TS
7411 *n = *m;
7412 n->count = c;
7413
7414 i = 0;
7415 for (s = abfd->sections; s != NULL; s = s->next)
7416 {
7417 if ((s->flags & SEC_LOAD) != 0
7418 && s->vma >= low
eea6121a 7419 && s->vma + s->size <= high)
b49e97c9
TS
7420 {
7421 n->sections[i] = s;
7422 ++i;
7423 }
7424 }
7425
7426 *pm = n;
7427 }
7428 }
7429
b34976b6 7430 return TRUE;
b49e97c9
TS
7431}
7432\f
7433/* Return the section that should be marked against GC for a given
7434 relocation. */
7435
7436asection *
9719ad41
RS
7437_bfd_mips_elf_gc_mark_hook (asection *sec,
7438 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7439 Elf_Internal_Rela *rel,
7440 struct elf_link_hash_entry *h,
7441 Elf_Internal_Sym *sym)
b49e97c9
TS
7442{
7443 /* ??? Do mips16 stub sections need to be handled special? */
7444
7445 if (h != NULL)
7446 {
1e2f5b6e 7447 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
7448 {
7449 case R_MIPS_GNU_VTINHERIT:
7450 case R_MIPS_GNU_VTENTRY:
7451 break;
7452
7453 default:
7454 switch (h->root.type)
7455 {
7456 case bfd_link_hash_defined:
7457 case bfd_link_hash_defweak:
7458 return h->root.u.def.section;
7459
7460 case bfd_link_hash_common:
7461 return h->root.u.c.p->section;
7462
7463 default:
7464 break;
7465 }
7466 }
7467 }
7468 else
1e2f5b6e 7469 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
7470
7471 return NULL;
7472}
7473
7474/* Update the got entry reference counts for the section being removed. */
7475
b34976b6 7476bfd_boolean
9719ad41
RS
7477_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7478 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7479 asection *sec ATTRIBUTE_UNUSED,
7480 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
7481{
7482#if 0
7483 Elf_Internal_Shdr *symtab_hdr;
7484 struct elf_link_hash_entry **sym_hashes;
7485 bfd_signed_vma *local_got_refcounts;
7486 const Elf_Internal_Rela *rel, *relend;
7487 unsigned long r_symndx;
7488 struct elf_link_hash_entry *h;
7489
7490 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7491 sym_hashes = elf_sym_hashes (abfd);
7492 local_got_refcounts = elf_local_got_refcounts (abfd);
7493
7494 relend = relocs + sec->reloc_count;
7495 for (rel = relocs; rel < relend; rel++)
7496 switch (ELF_R_TYPE (abfd, rel->r_info))
7497 {
7498 case R_MIPS_GOT16:
7499 case R_MIPS_CALL16:
7500 case R_MIPS_CALL_HI16:
7501 case R_MIPS_CALL_LO16:
7502 case R_MIPS_GOT_HI16:
7503 case R_MIPS_GOT_LO16:
4a14403c
TS
7504 case R_MIPS_GOT_DISP:
7505 case R_MIPS_GOT_PAGE:
7506 case R_MIPS_GOT_OFST:
b49e97c9
TS
7507 /* ??? It would seem that the existing MIPS code does no sort
7508 of reference counting or whatnot on its GOT and PLT entries,
7509 so it is not possible to garbage collect them at this time. */
7510 break;
7511
7512 default:
7513 break;
7514 }
7515#endif
7516
b34976b6 7517 return TRUE;
b49e97c9
TS
7518}
7519\f
7520/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7521 hiding the old indirect symbol. Process additional relocation
7522 information. Also called for weakdefs, in which case we just let
7523 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7524
7525void
9719ad41
RS
7526_bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7527 struct elf_link_hash_entry *dir,
7528 struct elf_link_hash_entry *ind)
b49e97c9
TS
7529{
7530 struct mips_elf_link_hash_entry *dirmips, *indmips;
7531
b48fa14c 7532 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
7533
7534 if (ind->root.type != bfd_link_hash_indirect)
7535 return;
7536
7537 dirmips = (struct mips_elf_link_hash_entry *) dir;
7538 indmips = (struct mips_elf_link_hash_entry *) ind;
7539 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7540 if (indmips->readonly_reloc)
b34976b6 7541 dirmips->readonly_reloc = TRUE;
b49e97c9 7542 if (indmips->no_fn_stub)
b34976b6 7543 dirmips->no_fn_stub = TRUE;
b49e97c9
TS
7544}
7545
7546void
9719ad41
RS
7547_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7548 struct elf_link_hash_entry *entry,
7549 bfd_boolean force_local)
b49e97c9
TS
7550{
7551 bfd *dynobj;
7552 asection *got;
7553 struct mips_got_info *g;
7554 struct mips_elf_link_hash_entry *h;
7c5fcef7 7555
b49e97c9 7556 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
7557 if (h->forced_local)
7558 return;
4b555070 7559 h->forced_local = force_local;
7c5fcef7 7560
b49e97c9 7561 dynobj = elf_hash_table (info)->dynobj;
4b555070 7562 if (dynobj != NULL && force_local)
f4416af6 7563 {
c45a316a
AM
7564 got = mips_elf_got_section (dynobj, FALSE);
7565 g = mips_elf_section_data (got)->u.got_info;
f4416af6 7566
c45a316a
AM
7567 if (g->next)
7568 {
7569 struct mips_got_entry e;
7570 struct mips_got_info *gg = g;
7571
7572 /* Since we're turning what used to be a global symbol into a
7573 local one, bump up the number of local entries of each GOT
7574 that had an entry for it. This will automatically decrease
7575 the number of global entries, since global_gotno is actually
7576 the upper limit of global entries. */
7577 e.abfd = dynobj;
7578 e.symndx = -1;
7579 e.d.h = h;
7580
7581 for (g = g->next; g != gg; g = g->next)
7582 if (htab_find (g->got_entries, &e))
7583 {
7584 BFD_ASSERT (g->global_gotno > 0);
7585 g->local_gotno++;
7586 g->global_gotno--;
7587 }
b49e97c9 7588
c45a316a
AM
7589 /* If this was a global symbol forced into the primary GOT, we
7590 no longer need an entry for it. We can't release the entry
7591 at this point, but we must at least stop counting it as one
7592 of the symbols that required a forced got entry. */
7593 if (h->root.got.offset == 2)
7594 {
7595 BFD_ASSERT (gg->assigned_gotno > 0);
7596 gg->assigned_gotno--;
7597 }
7598 }
7599 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7600 /* If we haven't got through GOT allocation yet, just bump up the
7601 number of local entries, as this symbol won't be counted as
7602 global. */
7603 g->local_gotno++;
7604 else if (h->root.got.offset == 1)
f4416af6 7605 {
c45a316a
AM
7606 /* If we're past non-multi-GOT allocation and this symbol had
7607 been marked for a global got entry, give it a local entry
7608 instead. */
7609 BFD_ASSERT (g->global_gotno > 0);
7610 g->local_gotno++;
7611 g->global_gotno--;
f4416af6
AO
7612 }
7613 }
f4416af6
AO
7614
7615 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
7616}
7617\f
d01414a5
TS
7618#define PDR_SIZE 32
7619
b34976b6 7620bfd_boolean
9719ad41
RS
7621_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7622 struct bfd_link_info *info)
d01414a5
TS
7623{
7624 asection *o;
b34976b6 7625 bfd_boolean ret = FALSE;
d01414a5
TS
7626 unsigned char *tdata;
7627 size_t i, skip;
7628
7629 o = bfd_get_section_by_name (abfd, ".pdr");
7630 if (! o)
b34976b6 7631 return FALSE;
eea6121a 7632 if (o->size == 0)
b34976b6 7633 return FALSE;
eea6121a 7634 if (o->size % PDR_SIZE != 0)
b34976b6 7635 return FALSE;
d01414a5
TS
7636 if (o->output_section != NULL
7637 && bfd_is_abs_section (o->output_section))
b34976b6 7638 return FALSE;
d01414a5 7639
eea6121a 7640 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 7641 if (! tdata)
b34976b6 7642 return FALSE;
d01414a5 7643
9719ad41 7644 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7645 info->keep_memory);
d01414a5
TS
7646 if (!cookie->rels)
7647 {
7648 free (tdata);
b34976b6 7649 return FALSE;
d01414a5
TS
7650 }
7651
7652 cookie->rel = cookie->rels;
7653 cookie->relend = cookie->rels + o->reloc_count;
7654
eea6121a 7655 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 7656 {
c152c796 7657 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
7658 {
7659 tdata[i] = 1;
7660 skip ++;
7661 }
7662 }
7663
7664 if (skip != 0)
7665 {
f0abc2a1 7666 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 7667 o->size -= skip * PDR_SIZE;
b34976b6 7668 ret = TRUE;
d01414a5
TS
7669 }
7670 else
7671 free (tdata);
7672
7673 if (! info->keep_memory)
7674 free (cookie->rels);
7675
7676 return ret;
7677}
7678
b34976b6 7679bfd_boolean
9719ad41 7680_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
7681{
7682 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
7683 return TRUE;
7684 return FALSE;
53bfd6b4 7685}
d01414a5 7686
b34976b6 7687bfd_boolean
9719ad41
RS
7688_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7689 bfd_byte *contents)
d01414a5
TS
7690{
7691 bfd_byte *to, *from, *end;
7692 int i;
7693
7694 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 7695 return FALSE;
d01414a5 7696
f0abc2a1 7697 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 7698 return FALSE;
d01414a5
TS
7699
7700 to = contents;
eea6121a 7701 end = contents + sec->size;
d01414a5
TS
7702 for (from = contents, i = 0;
7703 from < end;
7704 from += PDR_SIZE, i++)
7705 {
f0abc2a1 7706 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
7707 continue;
7708 if (to != from)
7709 memcpy (to, from, PDR_SIZE);
7710 to += PDR_SIZE;
7711 }
7712 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 7713 sec->output_offset, sec->size);
b34976b6 7714 return TRUE;
d01414a5 7715}
53bfd6b4 7716\f
b49e97c9
TS
7717/* MIPS ELF uses a special find_nearest_line routine in order the
7718 handle the ECOFF debugging information. */
7719
7720struct mips_elf_find_line
7721{
7722 struct ecoff_debug_info d;
7723 struct ecoff_find_line i;
7724};
7725
b34976b6 7726bfd_boolean
9719ad41
RS
7727_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7728 asymbol **symbols, bfd_vma offset,
7729 const char **filename_ptr,
7730 const char **functionname_ptr,
7731 unsigned int *line_ptr)
b49e97c9
TS
7732{
7733 asection *msec;
7734
7735 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7736 filename_ptr, functionname_ptr,
7737 line_ptr))
b34976b6 7738 return TRUE;
b49e97c9
TS
7739
7740 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7741 filename_ptr, functionname_ptr,
9719ad41 7742 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 7743 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 7744 return TRUE;
b49e97c9
TS
7745
7746 msec = bfd_get_section_by_name (abfd, ".mdebug");
7747 if (msec != NULL)
7748 {
7749 flagword origflags;
7750 struct mips_elf_find_line *fi;
7751 const struct ecoff_debug_swap * const swap =
7752 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7753
7754 /* If we are called during a link, mips_elf_final_link may have
7755 cleared the SEC_HAS_CONTENTS field. We force it back on here
7756 if appropriate (which it normally will be). */
7757 origflags = msec->flags;
7758 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7759 msec->flags |= SEC_HAS_CONTENTS;
7760
7761 fi = elf_tdata (abfd)->find_line_info;
7762 if (fi == NULL)
7763 {
7764 bfd_size_type external_fdr_size;
7765 char *fraw_src;
7766 char *fraw_end;
7767 struct fdr *fdr_ptr;
7768 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7769
9719ad41 7770 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
7771 if (fi == NULL)
7772 {
7773 msec->flags = origflags;
b34976b6 7774 return FALSE;
b49e97c9
TS
7775 }
7776
7777 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7778 {
7779 msec->flags = origflags;
b34976b6 7780 return FALSE;
b49e97c9
TS
7781 }
7782
7783 /* Swap in the FDR information. */
7784 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 7785 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
7786 if (fi->d.fdr == NULL)
7787 {
7788 msec->flags = origflags;
b34976b6 7789 return FALSE;
b49e97c9
TS
7790 }
7791 external_fdr_size = swap->external_fdr_size;
7792 fdr_ptr = fi->d.fdr;
7793 fraw_src = (char *) fi->d.external_fdr;
7794 fraw_end = (fraw_src
7795 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7796 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 7797 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
7798
7799 elf_tdata (abfd)->find_line_info = fi;
7800
7801 /* Note that we don't bother to ever free this information.
7802 find_nearest_line is either called all the time, as in
7803 objdump -l, so the information should be saved, or it is
7804 rarely called, as in ld error messages, so the memory
7805 wasted is unimportant. Still, it would probably be a
7806 good idea for free_cached_info to throw it away. */
7807 }
7808
7809 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7810 &fi->i, filename_ptr, functionname_ptr,
7811 line_ptr))
7812 {
7813 msec->flags = origflags;
b34976b6 7814 return TRUE;
b49e97c9
TS
7815 }
7816
7817 msec->flags = origflags;
7818 }
7819
7820 /* Fall back on the generic ELF find_nearest_line routine. */
7821
7822 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7823 filename_ptr, functionname_ptr,
7824 line_ptr);
7825}
7826\f
7827/* When are writing out the .options or .MIPS.options section,
7828 remember the bytes we are writing out, so that we can install the
7829 GP value in the section_processing routine. */
7830
b34976b6 7831bfd_boolean
9719ad41
RS
7832_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7833 const void *location,
7834 file_ptr offset, bfd_size_type count)
b49e97c9
TS
7835{
7836 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7837 {
7838 bfd_byte *c;
7839
7840 if (elf_section_data (section) == NULL)
7841 {
7842 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 7843 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 7844 if (elf_section_data (section) == NULL)
b34976b6 7845 return FALSE;
b49e97c9 7846 }
f0abc2a1 7847 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
7848 if (c == NULL)
7849 {
eea6121a 7850 c = bfd_zalloc (abfd, section->size);
b49e97c9 7851 if (c == NULL)
b34976b6 7852 return FALSE;
f0abc2a1 7853 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
7854 }
7855
9719ad41 7856 memcpy (c + offset, location, count);
b49e97c9
TS
7857 }
7858
7859 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7860 count);
7861}
7862
7863/* This is almost identical to bfd_generic_get_... except that some
7864 MIPS relocations need to be handled specially. Sigh. */
7865
7866bfd_byte *
9719ad41
RS
7867_bfd_elf_mips_get_relocated_section_contents
7868 (bfd *abfd,
7869 struct bfd_link_info *link_info,
7870 struct bfd_link_order *link_order,
7871 bfd_byte *data,
7872 bfd_boolean relocatable,
7873 asymbol **symbols)
b49e97c9
TS
7874{
7875 /* Get enough memory to hold the stuff */
7876 bfd *input_bfd = link_order->u.indirect.section->owner;
7877 asection *input_section = link_order->u.indirect.section;
eea6121a 7878 bfd_size_type sz;
b49e97c9
TS
7879
7880 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7881 arelent **reloc_vector = NULL;
7882 long reloc_count;
7883
7884 if (reloc_size < 0)
7885 goto error_return;
7886
9719ad41 7887 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
7888 if (reloc_vector == NULL && reloc_size != 0)
7889 goto error_return;
7890
7891 /* read in the section */
eea6121a
AM
7892 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
7893 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
7894 goto error_return;
7895
b49e97c9
TS
7896 reloc_count = bfd_canonicalize_reloc (input_bfd,
7897 input_section,
7898 reloc_vector,
7899 symbols);
7900 if (reloc_count < 0)
7901 goto error_return;
7902
7903 if (reloc_count > 0)
7904 {
7905 arelent **parent;
7906 /* for mips */
7907 int gp_found;
7908 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7909
7910 {
7911 struct bfd_hash_entry *h;
7912 struct bfd_link_hash_entry *lh;
7913 /* Skip all this stuff if we aren't mixing formats. */
7914 if (abfd && input_bfd
7915 && abfd->xvec == input_bfd->xvec)
7916 lh = 0;
7917 else
7918 {
b34976b6 7919 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
7920 lh = (struct bfd_link_hash_entry *) h;
7921 }
7922 lookup:
7923 if (lh)
7924 {
7925 switch (lh->type)
7926 {
7927 case bfd_link_hash_undefined:
7928 case bfd_link_hash_undefweak:
7929 case bfd_link_hash_common:
7930 gp_found = 0;
7931 break;
7932 case bfd_link_hash_defined:
7933 case bfd_link_hash_defweak:
7934 gp_found = 1;
7935 gp = lh->u.def.value;
7936 break;
7937 case bfd_link_hash_indirect:
7938 case bfd_link_hash_warning:
7939 lh = lh->u.i.link;
7940 /* @@FIXME ignoring warning for now */
7941 goto lookup;
7942 case bfd_link_hash_new:
7943 default:
7944 abort ();
7945 }
7946 }
7947 else
7948 gp_found = 0;
7949 }
7950 /* end mips */
9719ad41 7951 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 7952 {
9719ad41 7953 char *error_message = NULL;
b49e97c9
TS
7954 bfd_reloc_status_type r;
7955
7956 /* Specific to MIPS: Deal with relocation types that require
7957 knowing the gp of the output bfd. */
7958 asymbol *sym = *(*parent)->sym_ptr_ptr;
7959 if (bfd_is_abs_section (sym->section) && abfd)
7960 {
44c410de 7961 /* The special_function wouldn't get called anyway. */
b49e97c9
TS
7962 }
7963 else if (!gp_found)
7964 {
7965 /* The gp isn't there; let the special function code
7966 fall over on its own. */
7967 }
7968 else if ((*parent)->howto->special_function
7969 == _bfd_mips_elf32_gprel16_reloc)
7970 {
7971 /* bypass special_function call */
7972 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
1049f94e 7973 input_section, relocatable,
9719ad41 7974 data, gp);
b49e97c9
TS
7975 goto skip_bfd_perform_relocation;
7976 }
7977 /* end mips specific stuff */
7978
9719ad41
RS
7979 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
7980 relocatable ? abfd : NULL,
b49e97c9
TS
7981 &error_message);
7982 skip_bfd_perform_relocation:
7983
1049f94e 7984 if (relocatable)
b49e97c9
TS
7985 {
7986 asection *os = input_section->output_section;
7987
7988 /* A partial link, so keep the relocs */
7989 os->orelocation[os->reloc_count] = *parent;
7990 os->reloc_count++;
7991 }
7992
7993 if (r != bfd_reloc_ok)
7994 {
7995 switch (r)
7996 {
7997 case bfd_reloc_undefined:
7998 if (!((*link_info->callbacks->undefined_symbol)
7999 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8000 input_bfd, input_section, (*parent)->address,
b34976b6 8001 TRUE)))
b49e97c9
TS
8002 goto error_return;
8003 break;
8004 case bfd_reloc_dangerous:
9719ad41 8005 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
8006 if (!((*link_info->callbacks->reloc_dangerous)
8007 (link_info, error_message, input_bfd, input_section,
8008 (*parent)->address)))
8009 goto error_return;
8010 break;
8011 case bfd_reloc_overflow:
8012 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
8013 (link_info, NULL,
8014 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
8015 (*parent)->howto->name, (*parent)->addend,
8016 input_bfd, input_section, (*parent)->address)))
8017 goto error_return;
8018 break;
8019 case bfd_reloc_outofrange:
8020 default:
8021 abort ();
8022 break;
8023 }
8024
8025 }
8026 }
8027 }
8028 if (reloc_vector != NULL)
8029 free (reloc_vector);
8030 return data;
8031
8032error_return:
8033 if (reloc_vector != NULL)
8034 free (reloc_vector);
8035 return NULL;
8036}
8037\f
8038/* Create a MIPS ELF linker hash table. */
8039
8040struct bfd_link_hash_table *
9719ad41 8041_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
8042{
8043 struct mips_elf_link_hash_table *ret;
8044 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8045
9719ad41
RS
8046 ret = bfd_malloc (amt);
8047 if (ret == NULL)
b49e97c9
TS
8048 return NULL;
8049
8050 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8051 mips_elf_link_hash_newfunc))
8052 {
e2d34d7d 8053 free (ret);
b49e97c9
TS
8054 return NULL;
8055 }
8056
8057#if 0
8058 /* We no longer use this. */
8059 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8060 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8061#endif
8062 ret->procedure_count = 0;
8063 ret->compact_rel_size = 0;
b34976b6 8064 ret->use_rld_obj_head = FALSE;
b49e97c9 8065 ret->rld_value = 0;
b34976b6 8066 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8067
8068 return &ret->root.root;
8069}
8070\f
8071/* We need to use a special link routine to handle the .reginfo and
8072 the .mdebug sections. We need to merge all instances of these
8073 sections together, not write them all out sequentially. */
8074
b34976b6 8075bfd_boolean
9719ad41 8076_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
8077{
8078 asection **secpp;
8079 asection *o;
8080 struct bfd_link_order *p;
8081 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8082 asection *rtproc_sec;
8083 Elf32_RegInfo reginfo;
8084 struct ecoff_debug_info debug;
7a2a6943
NC
8085 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8086 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 8087 HDRR *symhdr = &debug.symbolic_header;
9719ad41 8088 void *mdebug_handle = NULL;
b49e97c9
TS
8089 asection *s;
8090 EXTR esym;
8091 unsigned int i;
8092 bfd_size_type amt;
8093
8094 static const char * const secname[] =
8095 {
8096 ".text", ".init", ".fini", ".data",
8097 ".rodata", ".sdata", ".sbss", ".bss"
8098 };
8099 static const int sc[] =
8100 {
8101 scText, scInit, scFini, scData,
8102 scRData, scSData, scSBss, scBss
8103 };
8104
b49e97c9
TS
8105 /* We'd carefully arranged the dynamic symbol indices, and then the
8106 generic size_dynamic_sections renumbered them out from under us.
8107 Rather than trying somehow to prevent the renumbering, just do
8108 the sort again. */
8109 if (elf_hash_table (info)->dynamic_sections_created)
8110 {
8111 bfd *dynobj;
8112 asection *got;
8113 struct mips_got_info *g;
7a2a6943 8114 bfd_size_type dynsecsymcount;
b49e97c9
TS
8115
8116 /* When we resort, we must tell mips_elf_sort_hash_table what
8117 the lowest index it may use is. That's the number of section
8118 symbols we're going to add. The generic ELF linker only
8119 adds these symbols when building a shared object. Note that
8120 we count the sections after (possibly) removing the .options
8121 section above. */
7a2a6943
NC
8122
8123 dynsecsymcount = 0;
8124 if (info->shared)
8125 {
8126 asection * p;
8127
8128 for (p = abfd->sections; p ; p = p->next)
8129 if ((p->flags & SEC_EXCLUDE) == 0
8130 && (p->flags & SEC_ALLOC) != 0
8131 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8132 ++ dynsecsymcount;
8133 }
8134
8135 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 8136 return FALSE;
b49e97c9
TS
8137
8138 /* Make sure we didn't grow the global .got region. */
8139 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8140 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8141 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8142
8143 if (g->global_gotsym != NULL)
8144 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8145 - g->global_gotsym->dynindx)
8146 <= g->global_gotno);
8147 }
8148
a902ee94
SC
8149#if 0
8150 /* We want to set the GP value for ld -r. */
b49e97c9
TS
8151 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8152 include it, even though we don't process it quite right. (Some
8153 entries are supposed to be merged.) Empirically, we seem to be
8154 better off including it then not. */
8155 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8156 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8157 {
8158 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8159 {
8160 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8161 if (p->type == bfd_indirect_link_order)
8162 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8163 (*secpp)->link_order_head = NULL;
8164 bfd_section_list_remove (abfd, secpp);
8165 --abfd->section_count;
8166
8167 break;
8168 }
8169 }
8170
8171 /* We include .MIPS.options, even though we don't process it quite right.
8172 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8173 to be better off including it than not. */
8174 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8175 {
8176 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8177 {
8178 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8179 if (p->type == bfd_indirect_link_order)
8180 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8181 (*secpp)->link_order_head = NULL;
8182 bfd_section_list_remove (abfd, secpp);
8183 --abfd->section_count;
b34976b6 8184
b49e97c9
TS
8185 break;
8186 }
8187 }
a902ee94 8188#endif
b49e97c9
TS
8189
8190 /* Get a value for the GP register. */
8191 if (elf_gp (abfd) == 0)
8192 {
8193 struct bfd_link_hash_entry *h;
8194
b34976b6 8195 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 8196 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
8197 elf_gp (abfd) = (h->u.def.value
8198 + h->u.def.section->output_section->vma
8199 + h->u.def.section->output_offset);
1049f94e 8200 else if (info->relocatable)
b49e97c9
TS
8201 {
8202 bfd_vma lo = MINUS_ONE;
8203
8204 /* Find the GP-relative section with the lowest offset. */
9719ad41 8205 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8206 if (o->vma < lo
8207 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8208 lo = o->vma;
8209
8210 /* And calculate GP relative to that. */
8211 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8212 }
8213 else
8214 {
8215 /* If the relocate_section function needs to do a reloc
8216 involving the GP value, it should make a reloc_dangerous
8217 callback to warn that GP is not defined. */
8218 }
8219 }
8220
8221 /* Go through the sections and collect the .reginfo and .mdebug
8222 information. */
8223 reginfo_sec = NULL;
8224 mdebug_sec = NULL;
8225 gptab_data_sec = NULL;
8226 gptab_bss_sec = NULL;
9719ad41 8227 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8228 {
8229 if (strcmp (o->name, ".reginfo") == 0)
8230 {
8231 memset (&reginfo, 0, sizeof reginfo);
8232
8233 /* We have found the .reginfo section in the output file.
8234 Look through all the link_orders comprising it and merge
8235 the information together. */
9719ad41 8236 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8237 {
8238 asection *input_section;
8239 bfd *input_bfd;
8240 Elf32_External_RegInfo ext;
8241 Elf32_RegInfo sub;
8242
8243 if (p->type != bfd_indirect_link_order)
8244 {
8245 if (p->type == bfd_data_link_order)
8246 continue;
8247 abort ();
8248 }
8249
8250 input_section = p->u.indirect.section;
8251 input_bfd = input_section->owner;
8252
b49e97c9 8253 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 8254 &ext, 0, sizeof ext))
b34976b6 8255 return FALSE;
b49e97c9
TS
8256
8257 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8258
8259 reginfo.ri_gprmask |= sub.ri_gprmask;
8260 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8261 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8262 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8263 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8264
8265 /* ri_gp_value is set by the function
8266 mips_elf32_section_processing when the section is
8267 finally written out. */
8268
8269 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8270 elf_link_input_bfd ignores this section. */
8271 input_section->flags &= ~SEC_HAS_CONTENTS;
8272 }
8273
8274 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 8275 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
8276
8277 /* Skip this section later on (I don't think this currently
8278 matters, but someday it might). */
9719ad41 8279 o->link_order_head = NULL;
b49e97c9
TS
8280
8281 reginfo_sec = o;
8282 }
8283
8284 if (strcmp (o->name, ".mdebug") == 0)
8285 {
8286 struct extsym_info einfo;
8287 bfd_vma last;
8288
8289 /* We have found the .mdebug section in the output file.
8290 Look through all the link_orders comprising it and merge
8291 the information together. */
8292 symhdr->magic = swap->sym_magic;
8293 /* FIXME: What should the version stamp be? */
8294 symhdr->vstamp = 0;
8295 symhdr->ilineMax = 0;
8296 symhdr->cbLine = 0;
8297 symhdr->idnMax = 0;
8298 symhdr->ipdMax = 0;
8299 symhdr->isymMax = 0;
8300 symhdr->ioptMax = 0;
8301 symhdr->iauxMax = 0;
8302 symhdr->issMax = 0;
8303 symhdr->issExtMax = 0;
8304 symhdr->ifdMax = 0;
8305 symhdr->crfd = 0;
8306 symhdr->iextMax = 0;
8307
8308 /* We accumulate the debugging information itself in the
8309 debug_info structure. */
8310 debug.line = NULL;
8311 debug.external_dnr = NULL;
8312 debug.external_pdr = NULL;
8313 debug.external_sym = NULL;
8314 debug.external_opt = NULL;
8315 debug.external_aux = NULL;
8316 debug.ss = NULL;
8317 debug.ssext = debug.ssext_end = NULL;
8318 debug.external_fdr = NULL;
8319 debug.external_rfd = NULL;
8320 debug.external_ext = debug.external_ext_end = NULL;
8321
8322 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 8323 if (mdebug_handle == NULL)
b34976b6 8324 return FALSE;
b49e97c9
TS
8325
8326 esym.jmptbl = 0;
8327 esym.cobol_main = 0;
8328 esym.weakext = 0;
8329 esym.reserved = 0;
8330 esym.ifd = ifdNil;
8331 esym.asym.iss = issNil;
8332 esym.asym.st = stLocal;
8333 esym.asym.reserved = 0;
8334 esym.asym.index = indexNil;
8335 last = 0;
8336 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8337 {
8338 esym.asym.sc = sc[i];
8339 s = bfd_get_section_by_name (abfd, secname[i]);
8340 if (s != NULL)
8341 {
8342 esym.asym.value = s->vma;
eea6121a 8343 last = s->vma + s->size;
b49e97c9
TS
8344 }
8345 else
8346 esym.asym.value = last;
8347 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8348 secname[i], &esym))
b34976b6 8349 return FALSE;
b49e97c9
TS
8350 }
8351
9719ad41 8352 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8353 {
8354 asection *input_section;
8355 bfd *input_bfd;
8356 const struct ecoff_debug_swap *input_swap;
8357 struct ecoff_debug_info input_debug;
8358 char *eraw_src;
8359 char *eraw_end;
8360
8361 if (p->type != bfd_indirect_link_order)
8362 {
8363 if (p->type == bfd_data_link_order)
8364 continue;
8365 abort ();
8366 }
8367
8368 input_section = p->u.indirect.section;
8369 input_bfd = input_section->owner;
8370
8371 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8372 || (get_elf_backend_data (input_bfd)
8373 ->elf_backend_ecoff_debug_swap) == NULL)
8374 {
8375 /* I don't know what a non MIPS ELF bfd would be
8376 doing with a .mdebug section, but I don't really
8377 want to deal with it. */
8378 continue;
8379 }
8380
8381 input_swap = (get_elf_backend_data (input_bfd)
8382 ->elf_backend_ecoff_debug_swap);
8383
eea6121a 8384 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
8385
8386 /* The ECOFF linking code expects that we have already
8387 read in the debugging information and set up an
8388 ecoff_debug_info structure, so we do that now. */
8389 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8390 &input_debug))
b34976b6 8391 return FALSE;
b49e97c9
TS
8392
8393 if (! (bfd_ecoff_debug_accumulate
8394 (mdebug_handle, abfd, &debug, swap, input_bfd,
8395 &input_debug, input_swap, info)))
b34976b6 8396 return FALSE;
b49e97c9
TS
8397
8398 /* Loop through the external symbols. For each one with
8399 interesting information, try to find the symbol in
8400 the linker global hash table and save the information
8401 for the output external symbols. */
8402 eraw_src = input_debug.external_ext;
8403 eraw_end = (eraw_src
8404 + (input_debug.symbolic_header.iextMax
8405 * input_swap->external_ext_size));
8406 for (;
8407 eraw_src < eraw_end;
8408 eraw_src += input_swap->external_ext_size)
8409 {
8410 EXTR ext;
8411 const char *name;
8412 struct mips_elf_link_hash_entry *h;
8413
9719ad41 8414 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
8415 if (ext.asym.sc == scNil
8416 || ext.asym.sc == scUndefined
8417 || ext.asym.sc == scSUndefined)
8418 continue;
8419
8420 name = input_debug.ssext + ext.asym.iss;
8421 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 8422 name, FALSE, FALSE, TRUE);
b49e97c9
TS
8423 if (h == NULL || h->esym.ifd != -2)
8424 continue;
8425
8426 if (ext.ifd != -1)
8427 {
8428 BFD_ASSERT (ext.ifd
8429 < input_debug.symbolic_header.ifdMax);
8430 ext.ifd = input_debug.ifdmap[ext.ifd];
8431 }
8432
8433 h->esym = ext;
8434 }
8435
8436 /* Free up the information we just read. */
8437 free (input_debug.line);
8438 free (input_debug.external_dnr);
8439 free (input_debug.external_pdr);
8440 free (input_debug.external_sym);
8441 free (input_debug.external_opt);
8442 free (input_debug.external_aux);
8443 free (input_debug.ss);
8444 free (input_debug.ssext);
8445 free (input_debug.external_fdr);
8446 free (input_debug.external_rfd);
8447 free (input_debug.external_ext);
8448
8449 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8450 elf_link_input_bfd ignores this section. */
8451 input_section->flags &= ~SEC_HAS_CONTENTS;
8452 }
8453
8454 if (SGI_COMPAT (abfd) && info->shared)
8455 {
8456 /* Create .rtproc section. */
8457 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8458 if (rtproc_sec == NULL)
8459 {
8460 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8461 | SEC_LINKER_CREATED | SEC_READONLY);
8462
8463 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8464 if (rtproc_sec == NULL
8465 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8466 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 8467 return FALSE;
b49e97c9
TS
8468 }
8469
8470 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8471 info, rtproc_sec,
8472 &debug))
b34976b6 8473 return FALSE;
b49e97c9
TS
8474 }
8475
8476 /* Build the external symbol information. */
8477 einfo.abfd = abfd;
8478 einfo.info = info;
8479 einfo.debug = &debug;
8480 einfo.swap = swap;
b34976b6 8481 einfo.failed = FALSE;
b49e97c9 8482 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 8483 mips_elf_output_extsym, &einfo);
b49e97c9 8484 if (einfo.failed)
b34976b6 8485 return FALSE;
b49e97c9
TS
8486
8487 /* Set the size of the .mdebug section. */
eea6121a 8488 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
8489
8490 /* Skip this section later on (I don't think this currently
8491 matters, but someday it might). */
9719ad41 8492 o->link_order_head = NULL;
b49e97c9
TS
8493
8494 mdebug_sec = o;
8495 }
8496
8497 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8498 {
8499 const char *subname;
8500 unsigned int c;
8501 Elf32_gptab *tab;
8502 Elf32_External_gptab *ext_tab;
8503 unsigned int j;
8504
8505 /* The .gptab.sdata and .gptab.sbss sections hold
8506 information describing how the small data area would
8507 change depending upon the -G switch. These sections
8508 not used in executables files. */
1049f94e 8509 if (! info->relocatable)
b49e97c9 8510 {
9719ad41 8511 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8512 {
8513 asection *input_section;
8514
8515 if (p->type != bfd_indirect_link_order)
8516 {
8517 if (p->type == bfd_data_link_order)
8518 continue;
8519 abort ();
8520 }
8521
8522 input_section = p->u.indirect.section;
8523
8524 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8525 elf_link_input_bfd ignores this section. */
8526 input_section->flags &= ~SEC_HAS_CONTENTS;
8527 }
8528
8529 /* Skip this section later on (I don't think this
8530 currently matters, but someday it might). */
9719ad41 8531 o->link_order_head = NULL;
b49e97c9
TS
8532
8533 /* Really remove the section. */
8534 for (secpp = &abfd->sections;
8535 *secpp != o;
8536 secpp = &(*secpp)->next)
8537 ;
8538 bfd_section_list_remove (abfd, secpp);
8539 --abfd->section_count;
8540
8541 continue;
8542 }
8543
8544 /* There is one gptab for initialized data, and one for
8545 uninitialized data. */
8546 if (strcmp (o->name, ".gptab.sdata") == 0)
8547 gptab_data_sec = o;
8548 else if (strcmp (o->name, ".gptab.sbss") == 0)
8549 gptab_bss_sec = o;
8550 else
8551 {
8552 (*_bfd_error_handler)
8553 (_("%s: illegal section name `%s'"),
8554 bfd_get_filename (abfd), o->name);
8555 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 8556 return FALSE;
b49e97c9
TS
8557 }
8558
8559 /* The linker script always combines .gptab.data and
8560 .gptab.sdata into .gptab.sdata, and likewise for
8561 .gptab.bss and .gptab.sbss. It is possible that there is
8562 no .sdata or .sbss section in the output file, in which
8563 case we must change the name of the output section. */
8564 subname = o->name + sizeof ".gptab" - 1;
8565 if (bfd_get_section_by_name (abfd, subname) == NULL)
8566 {
8567 if (o == gptab_data_sec)
8568 o->name = ".gptab.data";
8569 else
8570 o->name = ".gptab.bss";
8571 subname = o->name + sizeof ".gptab" - 1;
8572 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8573 }
8574
8575 /* Set up the first entry. */
8576 c = 1;
8577 amt = c * sizeof (Elf32_gptab);
9719ad41 8578 tab = bfd_malloc (amt);
b49e97c9 8579 if (tab == NULL)
b34976b6 8580 return FALSE;
b49e97c9
TS
8581 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8582 tab[0].gt_header.gt_unused = 0;
8583
8584 /* Combine the input sections. */
9719ad41 8585 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8586 {
8587 asection *input_section;
8588 bfd *input_bfd;
8589 bfd_size_type size;
8590 unsigned long last;
8591 bfd_size_type gpentry;
8592
8593 if (p->type != bfd_indirect_link_order)
8594 {
8595 if (p->type == bfd_data_link_order)
8596 continue;
8597 abort ();
8598 }
8599
8600 input_section = p->u.indirect.section;
8601 input_bfd = input_section->owner;
8602
8603 /* Combine the gptab entries for this input section one
8604 by one. We know that the input gptab entries are
8605 sorted by ascending -G value. */
eea6121a 8606 size = input_section->size;
b49e97c9
TS
8607 last = 0;
8608 for (gpentry = sizeof (Elf32_External_gptab);
8609 gpentry < size;
8610 gpentry += sizeof (Elf32_External_gptab))
8611 {
8612 Elf32_External_gptab ext_gptab;
8613 Elf32_gptab int_gptab;
8614 unsigned long val;
8615 unsigned long add;
b34976b6 8616 bfd_boolean exact;
b49e97c9
TS
8617 unsigned int look;
8618
8619 if (! (bfd_get_section_contents
9719ad41
RS
8620 (input_bfd, input_section, &ext_gptab, gpentry,
8621 sizeof (Elf32_External_gptab))))
b49e97c9
TS
8622 {
8623 free (tab);
b34976b6 8624 return FALSE;
b49e97c9
TS
8625 }
8626
8627 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8628 &int_gptab);
8629 val = int_gptab.gt_entry.gt_g_value;
8630 add = int_gptab.gt_entry.gt_bytes - last;
8631
b34976b6 8632 exact = FALSE;
b49e97c9
TS
8633 for (look = 1; look < c; look++)
8634 {
8635 if (tab[look].gt_entry.gt_g_value >= val)
8636 tab[look].gt_entry.gt_bytes += add;
8637
8638 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 8639 exact = TRUE;
b49e97c9
TS
8640 }
8641
8642 if (! exact)
8643 {
8644 Elf32_gptab *new_tab;
8645 unsigned int max;
8646
8647 /* We need a new table entry. */
8648 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 8649 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
8650 if (new_tab == NULL)
8651 {
8652 free (tab);
b34976b6 8653 return FALSE;
b49e97c9
TS
8654 }
8655 tab = new_tab;
8656 tab[c].gt_entry.gt_g_value = val;
8657 tab[c].gt_entry.gt_bytes = add;
8658
8659 /* Merge in the size for the next smallest -G
8660 value, since that will be implied by this new
8661 value. */
8662 max = 0;
8663 for (look = 1; look < c; look++)
8664 {
8665 if (tab[look].gt_entry.gt_g_value < val
8666 && (max == 0
8667 || (tab[look].gt_entry.gt_g_value
8668 > tab[max].gt_entry.gt_g_value)))
8669 max = look;
8670 }
8671 if (max != 0)
8672 tab[c].gt_entry.gt_bytes +=
8673 tab[max].gt_entry.gt_bytes;
8674
8675 ++c;
8676 }
8677
8678 last = int_gptab.gt_entry.gt_bytes;
8679 }
8680
8681 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8682 elf_link_input_bfd ignores this section. */
8683 input_section->flags &= ~SEC_HAS_CONTENTS;
8684 }
8685
8686 /* The table must be sorted by -G value. */
8687 if (c > 2)
8688 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8689
8690 /* Swap out the table. */
8691 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 8692 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
8693 if (ext_tab == NULL)
8694 {
8695 free (tab);
b34976b6 8696 return FALSE;
b49e97c9
TS
8697 }
8698
8699 for (j = 0; j < c; j++)
8700 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8701 free (tab);
8702
eea6121a 8703 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
8704 o->contents = (bfd_byte *) ext_tab;
8705
8706 /* Skip this section later on (I don't think this currently
8707 matters, but someday it might). */
9719ad41 8708 o->link_order_head = NULL;
b49e97c9
TS
8709 }
8710 }
8711
8712 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 8713 if (!bfd_elf_final_link (abfd, info))
b34976b6 8714 return FALSE;
b49e97c9
TS
8715
8716 /* Now write out the computed sections. */
8717
9719ad41 8718 if (reginfo_sec != NULL)
b49e97c9
TS
8719 {
8720 Elf32_External_RegInfo ext;
8721
8722 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 8723 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 8724 return FALSE;
b49e97c9
TS
8725 }
8726
9719ad41 8727 if (mdebug_sec != NULL)
b49e97c9
TS
8728 {
8729 BFD_ASSERT (abfd->output_has_begun);
8730 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8731 swap, info,
8732 mdebug_sec->filepos))
b34976b6 8733 return FALSE;
b49e97c9
TS
8734
8735 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8736 }
8737
9719ad41 8738 if (gptab_data_sec != NULL)
b49e97c9
TS
8739 {
8740 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8741 gptab_data_sec->contents,
eea6121a 8742 0, gptab_data_sec->size))
b34976b6 8743 return FALSE;
b49e97c9
TS
8744 }
8745
9719ad41 8746 if (gptab_bss_sec != NULL)
b49e97c9
TS
8747 {
8748 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8749 gptab_bss_sec->contents,
eea6121a 8750 0, gptab_bss_sec->size))
b34976b6 8751 return FALSE;
b49e97c9
TS
8752 }
8753
8754 if (SGI_COMPAT (abfd))
8755 {
8756 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8757 if (rtproc_sec != NULL)
8758 {
8759 if (! bfd_set_section_contents (abfd, rtproc_sec,
8760 rtproc_sec->contents,
eea6121a 8761 0, rtproc_sec->size))
b34976b6 8762 return FALSE;
b49e97c9
TS
8763 }
8764 }
8765
b34976b6 8766 return TRUE;
b49e97c9
TS
8767}
8768\f
64543e1a
RS
8769/* Structure for saying that BFD machine EXTENSION extends BASE. */
8770
8771struct mips_mach_extension {
8772 unsigned long extension, base;
8773};
8774
8775
8776/* An array describing how BFD machines relate to one another. The entries
8777 are ordered topologically with MIPS I extensions listed last. */
8778
8779static const struct mips_mach_extension mips_mach_extensions[] = {
8780 /* MIPS64 extensions. */
5f74bc13 8781 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
8782 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8783
8784 /* MIPS V extensions. */
8785 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8786
8787 /* R10000 extensions. */
8788 { bfd_mach_mips12000, bfd_mach_mips10000 },
8789
8790 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8791 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8792 better to allow vr5400 and vr5500 code to be merged anyway, since
8793 many libraries will just use the core ISA. Perhaps we could add
8794 some sort of ASE flag if this ever proves a problem. */
8795 { bfd_mach_mips5500, bfd_mach_mips5400 },
8796 { bfd_mach_mips5400, bfd_mach_mips5000 },
8797
8798 /* MIPS IV extensions. */
8799 { bfd_mach_mips5, bfd_mach_mips8000 },
8800 { bfd_mach_mips10000, bfd_mach_mips8000 },
8801 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 8802 { bfd_mach_mips7000, bfd_mach_mips8000 },
64543e1a
RS
8803
8804 /* VR4100 extensions. */
8805 { bfd_mach_mips4120, bfd_mach_mips4100 },
8806 { bfd_mach_mips4111, bfd_mach_mips4100 },
8807
8808 /* MIPS III extensions. */
8809 { bfd_mach_mips8000, bfd_mach_mips4000 },
8810 { bfd_mach_mips4650, bfd_mach_mips4000 },
8811 { bfd_mach_mips4600, bfd_mach_mips4000 },
8812 { bfd_mach_mips4400, bfd_mach_mips4000 },
8813 { bfd_mach_mips4300, bfd_mach_mips4000 },
8814 { bfd_mach_mips4100, bfd_mach_mips4000 },
8815 { bfd_mach_mips4010, bfd_mach_mips4000 },
8816
8817 /* MIPS32 extensions. */
8818 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8819
8820 /* MIPS II extensions. */
8821 { bfd_mach_mips4000, bfd_mach_mips6000 },
8822 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8823
8824 /* MIPS I extensions. */
8825 { bfd_mach_mips6000, bfd_mach_mips3000 },
8826 { bfd_mach_mips3900, bfd_mach_mips3000 }
8827};
8828
8829
8830/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8831
8832static bfd_boolean
9719ad41 8833mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
8834{
8835 size_t i;
8836
8837 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8838 if (extension == mips_mach_extensions[i].extension)
8839 extension = mips_mach_extensions[i].base;
8840
8841 return extension == base;
8842}
8843
8844
8845/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 8846
b34976b6 8847static bfd_boolean
9719ad41 8848mips_32bit_flags_p (flagword flags)
00707a0e 8849{
64543e1a
RS
8850 return ((flags & EF_MIPS_32BITMODE) != 0
8851 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8852 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8853 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8854 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8855 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8856 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
8857}
8858
64543e1a 8859
b49e97c9
TS
8860/* Merge backend specific data from an object file to the output
8861 object file when linking. */
8862
b34976b6 8863bfd_boolean
9719ad41 8864_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
8865{
8866 flagword old_flags;
8867 flagword new_flags;
b34976b6
AM
8868 bfd_boolean ok;
8869 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
8870 asection *sec;
8871
8872 /* Check if we have the same endianess */
82e51918 8873 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
8874 {
8875 (*_bfd_error_handler)
d003868e
AM
8876 (_("%B: endianness incompatible with that of the selected emulation"),
8877 ibfd);
aa701218
AO
8878 return FALSE;
8879 }
b49e97c9
TS
8880
8881 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8882 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 8883 return TRUE;
b49e97c9 8884
aa701218
AO
8885 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8886 {
8887 (*_bfd_error_handler)
d003868e
AM
8888 (_("%B: ABI is incompatible with that of the selected emulation"),
8889 ibfd);
aa701218
AO
8890 return FALSE;
8891 }
8892
b49e97c9
TS
8893 new_flags = elf_elfheader (ibfd)->e_flags;
8894 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8895 old_flags = elf_elfheader (obfd)->e_flags;
8896
8897 if (! elf_flags_init (obfd))
8898 {
b34976b6 8899 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
8900 elf_elfheader (obfd)->e_flags = new_flags;
8901 elf_elfheader (obfd)->e_ident[EI_CLASS]
8902 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8903
8904 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8905 && bfd_get_arch_info (obfd)->the_default)
8906 {
8907 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8908 bfd_get_mach (ibfd)))
b34976b6 8909 return FALSE;
b49e97c9
TS
8910 }
8911
b34976b6 8912 return TRUE;
b49e97c9
TS
8913 }
8914
8915 /* Check flag compatibility. */
8916
8917 new_flags &= ~EF_MIPS_NOREORDER;
8918 old_flags &= ~EF_MIPS_NOREORDER;
8919
f4416af6
AO
8920 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8921 doesn't seem to matter. */
8922 new_flags &= ~EF_MIPS_XGOT;
8923 old_flags &= ~EF_MIPS_XGOT;
8924
98a8deaf
RS
8925 /* MIPSpro generates ucode info in n64 objects. Again, we should
8926 just be able to ignore this. */
8927 new_flags &= ~EF_MIPS_UCODE;
8928 old_flags &= ~EF_MIPS_UCODE;
8929
b49e97c9 8930 if (new_flags == old_flags)
b34976b6 8931 return TRUE;
b49e97c9
TS
8932
8933 /* Check to see if the input BFD actually contains any sections.
8934 If not, its flags may not have been initialised either, but it cannot
8935 actually cause any incompatibility. */
8936 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8937 {
8938 /* Ignore synthetic sections and empty .text, .data and .bss sections
8939 which are automatically generated by gas. */
8940 if (strcmp (sec->name, ".reginfo")
8941 && strcmp (sec->name, ".mdebug")
eea6121a 8942 && (sec->size != 0
d13d89fa
NS
8943 || (strcmp (sec->name, ".text")
8944 && strcmp (sec->name, ".data")
8945 && strcmp (sec->name, ".bss"))))
b49e97c9 8946 {
b34976b6 8947 null_input_bfd = FALSE;
b49e97c9
TS
8948 break;
8949 }
8950 }
8951 if (null_input_bfd)
b34976b6 8952 return TRUE;
b49e97c9 8953
b34976b6 8954 ok = TRUE;
b49e97c9 8955
143d77c5
EC
8956 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
8957 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 8958 {
b49e97c9 8959 (*_bfd_error_handler)
d003868e
AM
8960 (_("%B: warning: linking PIC files with non-PIC files"),
8961 ibfd);
143d77c5 8962 ok = TRUE;
b49e97c9
TS
8963 }
8964
143d77c5
EC
8965 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
8966 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
8967 if (! (new_flags & EF_MIPS_PIC))
8968 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
8969
8970 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8971 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 8972
64543e1a
RS
8973 /* Compare the ISAs. */
8974 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 8975 {
64543e1a 8976 (*_bfd_error_handler)
d003868e
AM
8977 (_("%B: linking 32-bit code with 64-bit code"),
8978 ibfd);
64543e1a
RS
8979 ok = FALSE;
8980 }
8981 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8982 {
8983 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8984 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 8985 {
64543e1a
RS
8986 /* Copy the architecture info from IBFD to OBFD. Also copy
8987 the 32-bit flag (if set) so that we continue to recognise
8988 OBFD as a 32-bit binary. */
8989 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
8990 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
8991 elf_elfheader (obfd)->e_flags
8992 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
8993
8994 /* Copy across the ABI flags if OBFD doesn't use them
8995 and if that was what caused us to treat IBFD as 32-bit. */
8996 if ((old_flags & EF_MIPS_ABI) == 0
8997 && mips_32bit_flags_p (new_flags)
8998 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
8999 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9000 }
9001 else
9002 {
64543e1a 9003 /* The ISAs aren't compatible. */
b49e97c9 9004 (*_bfd_error_handler)
d003868e
AM
9005 (_("%B: linking %s module with previous %s modules"),
9006 ibfd,
64543e1a
RS
9007 bfd_printable_name (ibfd),
9008 bfd_printable_name (obfd));
b34976b6 9009 ok = FALSE;
b49e97c9 9010 }
b49e97c9
TS
9011 }
9012
64543e1a
RS
9013 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9014 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9015
9016 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9017 does set EI_CLASS differently from any 32-bit ABI. */
9018 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9019 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9020 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9021 {
9022 /* Only error if both are set (to different values). */
9023 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9024 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9025 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9026 {
9027 (*_bfd_error_handler)
d003868e
AM
9028 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9029 ibfd,
b49e97c9
TS
9030 elf_mips_abi_name (ibfd),
9031 elf_mips_abi_name (obfd));
b34976b6 9032 ok = FALSE;
b49e97c9
TS
9033 }
9034 new_flags &= ~EF_MIPS_ABI;
9035 old_flags &= ~EF_MIPS_ABI;
9036 }
9037
fb39dac1
RS
9038 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9039 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9040 {
9041 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9042
9043 new_flags &= ~ EF_MIPS_ARCH_ASE;
9044 old_flags &= ~ EF_MIPS_ARCH_ASE;
9045 }
9046
b49e97c9
TS
9047 /* Warn about any other mismatches */
9048 if (new_flags != old_flags)
9049 {
9050 (*_bfd_error_handler)
d003868e
AM
9051 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9052 ibfd, (unsigned long) new_flags,
b49e97c9 9053 (unsigned long) old_flags);
b34976b6 9054 ok = FALSE;
b49e97c9
TS
9055 }
9056
9057 if (! ok)
9058 {
9059 bfd_set_error (bfd_error_bad_value);
b34976b6 9060 return FALSE;
b49e97c9
TS
9061 }
9062
b34976b6 9063 return TRUE;
b49e97c9
TS
9064}
9065
9066/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9067
b34976b6 9068bfd_boolean
9719ad41 9069_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
9070{
9071 BFD_ASSERT (!elf_flags_init (abfd)
9072 || elf_elfheader (abfd)->e_flags == flags);
9073
9074 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9075 elf_flags_init (abfd) = TRUE;
9076 return TRUE;
b49e97c9
TS
9077}
9078
b34976b6 9079bfd_boolean
9719ad41 9080_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 9081{
9719ad41 9082 FILE *file = ptr;
b49e97c9
TS
9083
9084 BFD_ASSERT (abfd != NULL && ptr != NULL);
9085
9086 /* Print normal ELF private data. */
9087 _bfd_elf_print_private_bfd_data (abfd, ptr);
9088
9089 /* xgettext:c-format */
9090 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9091
9092 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9093 fprintf (file, _(" [abi=O32]"));
9094 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9095 fprintf (file, _(" [abi=O64]"));
9096 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9097 fprintf (file, _(" [abi=EABI32]"));
9098 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9099 fprintf (file, _(" [abi=EABI64]"));
9100 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9101 fprintf (file, _(" [abi unknown]"));
9102 else if (ABI_N32_P (abfd))
9103 fprintf (file, _(" [abi=N32]"));
9104 else if (ABI_64_P (abfd))
9105 fprintf (file, _(" [abi=64]"));
9106 else
9107 fprintf (file, _(" [no abi set]"));
9108
9109 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9110 fprintf (file, _(" [mips1]"));
9111 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9112 fprintf (file, _(" [mips2]"));
9113 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9114 fprintf (file, _(" [mips3]"));
9115 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9116 fprintf (file, _(" [mips4]"));
9117 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9118 fprintf (file, _(" [mips5]"));
9119 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9120 fprintf (file, _(" [mips32]"));
9121 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9122 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9123 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9124 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
9125 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9126 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
9127 else
9128 fprintf (file, _(" [unknown ISA]"));
9129
40d32fc6
CD
9130 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9131 fprintf (file, _(" [mdmx]"));
9132
9133 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9134 fprintf (file, _(" [mips16]"));
9135
b49e97c9
TS
9136 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9137 fprintf (file, _(" [32bitmode]"));
9138 else
9139 fprintf (file, _(" [not 32bitmode]"));
9140
9141 fputc ('\n', file);
9142
b34976b6 9143 return TRUE;
b49e97c9 9144}
2f89ff8d
L
9145
9146struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9147{
7dcb9820
AM
9148 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9149 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9150 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9151 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9152 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9153 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9154 { NULL, 0, 0, 0, 0 }
2f89ff8d 9155};
This page took 0.76558 seconds and 4 git commands to generate.