* windres.c (usage): Report -r option.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a
RS
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
b15e6682 67 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
b15e6682
AO
71};
72
f0abc2a1 73/* This structure is used to hold .got information when linking. */
b49e97c9
TS
74
75struct mips_got_info
76{
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
b15e6682
AO
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
f4416af6
AO
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94};
95
96/* Map an input bfd to a got in a multi-got link. */
97
98struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101};
102
103/* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106struct mips_elf_got_per_bfd_arg
107{
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128};
129
130/* Another structure used to pass arguments for got entries traversal. */
131
132struct mips_elf_set_global_got_offset_arg
133{
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
b49e97c9
TS
138};
139
f0abc2a1
AM
140struct _mips_elf_section_data
141{
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148};
149
150#define mips_elf_section_data(sec) \
68bfbfcc 151 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 152
b49e97c9
TS
153/* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156struct mips_elf_hash_sort_data
157{
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
f4416af6
AO
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary
167 GOTs). */
168 long max_unref_got_dynindx;
b49e97c9
TS
169 /* The greatest dynamic symbol table index not corresponding to a
170 symbol without a GOT entry. */
171 long max_non_got_dynindx;
172};
173
174/* The MIPS ELF linker needs additional information for each symbol in
175 the global hash table. */
176
177struct mips_elf_link_hash_entry
178{
179 struct elf_link_hash_entry root;
180
181 /* External symbol information. */
182 EXTR esym;
183
184 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
185 this symbol. */
186 unsigned int possibly_dynamic_relocs;
187
188 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
189 a readonly section. */
b34976b6 190 bfd_boolean readonly_reloc;
b49e97c9
TS
191
192 /* The index of the first dynamic relocation (in the .rel.dyn
193 section) against this symbol. */
194 unsigned int min_dyn_reloc_index;
195
196 /* We must not create a stub for a symbol that has relocations
197 related to taking the function's address, i.e. any but
198 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
199 p. 4-20. */
b34976b6 200 bfd_boolean no_fn_stub;
b49e97c9
TS
201
202 /* If there is a stub that 32 bit functions should use to call this
203 16 bit function, this points to the section containing the stub. */
204 asection *fn_stub;
205
206 /* Whether we need the fn_stub; this is set if this symbol appears
207 in any relocs other than a 16 bit call. */
b34976b6 208 bfd_boolean need_fn_stub;
b49e97c9
TS
209
210 /* If there is a stub that 16 bit functions should use to call this
211 32 bit function, this points to the section containing the stub. */
212 asection *call_stub;
213
214 /* This is like the call_stub field, but it is used if the function
215 being called returns a floating point value. */
216 asection *call_fp_stub;
7c5fcef7
L
217
218 /* Are we forced local? .*/
b34976b6 219 bfd_boolean forced_local;
b49e97c9
TS
220};
221
222/* MIPS ELF linker hash table. */
223
224struct mips_elf_link_hash_table
225{
226 struct elf_link_hash_table root;
227#if 0
228 /* We no longer use this. */
229 /* String section indices for the dynamic section symbols. */
230 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
231#endif
232 /* The number of .rtproc entries. */
233 bfd_size_type procedure_count;
234 /* The size of the .compact_rel section (if SGI_COMPAT). */
235 bfd_size_type compact_rel_size;
236 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 237 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 238 bfd_boolean use_rld_obj_head;
b49e97c9
TS
239 /* This is the value of the __rld_map or __rld_obj_head symbol. */
240 bfd_vma rld_value;
241 /* This is set if we see any mips16 stub sections. */
b34976b6 242 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
243};
244
245/* Structure used to pass information to mips_elf_output_extsym. */
246
247struct extsym_info
248{
249 bfd *abfd;
250 struct bfd_link_info *info;
251 struct ecoff_debug_info *debug;
252 const struct ecoff_debug_swap *swap;
b34976b6 253 bfd_boolean failed;
b49e97c9
TS
254};
255
8dc1a139 256/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
257
258static const char * const mips_elf_dynsym_rtproc_names[] =
259{
260 "_procedure_table",
261 "_procedure_string_table",
262 "_procedure_table_size",
263 NULL
264};
265
266/* These structures are used to generate the .compact_rel section on
8dc1a139 267 IRIX5. */
b49e97c9
TS
268
269typedef struct
270{
271 unsigned long id1; /* Always one? */
272 unsigned long num; /* Number of compact relocation entries. */
273 unsigned long id2; /* Always two? */
274 unsigned long offset; /* The file offset of the first relocation. */
275 unsigned long reserved0; /* Zero? */
276 unsigned long reserved1; /* Zero? */
277} Elf32_compact_rel;
278
279typedef struct
280{
281 bfd_byte id1[4];
282 bfd_byte num[4];
283 bfd_byte id2[4];
284 bfd_byte offset[4];
285 bfd_byte reserved0[4];
286 bfd_byte reserved1[4];
287} Elf32_External_compact_rel;
288
289typedef struct
290{
291 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
292 unsigned int rtype : 4; /* Relocation types. See below. */
293 unsigned int dist2to : 8;
294 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
295 unsigned long konst; /* KONST field. See below. */
296 unsigned long vaddr; /* VADDR to be relocated. */
297} Elf32_crinfo;
298
299typedef struct
300{
301 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
302 unsigned int rtype : 4; /* Relocation types. See below. */
303 unsigned int dist2to : 8;
304 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
305 unsigned long konst; /* KONST field. See below. */
306} Elf32_crinfo2;
307
308typedef struct
309{
310 bfd_byte info[4];
311 bfd_byte konst[4];
312 bfd_byte vaddr[4];
313} Elf32_External_crinfo;
314
315typedef struct
316{
317 bfd_byte info[4];
318 bfd_byte konst[4];
319} Elf32_External_crinfo2;
320
321/* These are the constants used to swap the bitfields in a crinfo. */
322
323#define CRINFO_CTYPE (0x1)
324#define CRINFO_CTYPE_SH (31)
325#define CRINFO_RTYPE (0xf)
326#define CRINFO_RTYPE_SH (27)
327#define CRINFO_DIST2TO (0xff)
328#define CRINFO_DIST2TO_SH (19)
329#define CRINFO_RELVADDR (0x7ffff)
330#define CRINFO_RELVADDR_SH (0)
331
332/* A compact relocation info has long (3 words) or short (2 words)
333 formats. A short format doesn't have VADDR field and relvaddr
334 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
335#define CRF_MIPS_LONG 1
336#define CRF_MIPS_SHORT 0
337
338/* There are 4 types of compact relocation at least. The value KONST
339 has different meaning for each type:
340
341 (type) (konst)
342 CT_MIPS_REL32 Address in data
343 CT_MIPS_WORD Address in word (XXX)
344 CT_MIPS_GPHI_LO GP - vaddr
345 CT_MIPS_JMPAD Address to jump
346 */
347
348#define CRT_MIPS_REL32 0xa
349#define CRT_MIPS_WORD 0xb
350#define CRT_MIPS_GPHI_LO 0xc
351#define CRT_MIPS_JMPAD 0xd
352
353#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
354#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
355#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
356#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
357\f
358/* The structure of the runtime procedure descriptor created by the
359 loader for use by the static exception system. */
360
361typedef struct runtime_pdr {
ae9a127f
NC
362 bfd_vma adr; /* Memory address of start of procedure. */
363 long regmask; /* Save register mask. */
364 long regoffset; /* Save register offset. */
365 long fregmask; /* Save floating point register mask. */
366 long fregoffset; /* Save floating point register offset. */
367 long frameoffset; /* Frame size. */
368 short framereg; /* Frame pointer register. */
369 short pcreg; /* Offset or reg of return pc. */
370 long irpss; /* Index into the runtime string table. */
b49e97c9 371 long reserved;
ae9a127f 372 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
373} RPDR, *pRPDR;
374#define cbRPDR sizeof (RPDR)
375#define rpdNil ((pRPDR) 0)
376\f
377static struct bfd_hash_entry *mips_elf_link_hash_newfunc
378 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
379static void ecoff_swap_rpdr_out
380 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
b34976b6 381static bfd_boolean mips_elf_create_procedure_table
b49e97c9
TS
382 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
383 struct ecoff_debug_info *));
b34976b6 384static bfd_boolean mips_elf_check_mips16_stubs
b49e97c9
TS
385 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
386static void bfd_mips_elf32_swap_gptab_in
387 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
388static void bfd_mips_elf32_swap_gptab_out
389 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
390static void bfd_elf32_swap_compact_rel_out
391 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
392static void bfd_elf32_swap_crinfo_out
393 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
394#if 0
395static void bfd_mips_elf_swap_msym_in
396 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
397#endif
398static void bfd_mips_elf_swap_msym_out
399 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
400static int sort_dynamic_relocs
401 PARAMS ((const void *, const void *));
f4416af6
AO
402static int sort_dynamic_relocs_64
403 PARAMS ((const void *, const void *));
b34976b6 404static bfd_boolean mips_elf_output_extsym
b49e97c9
TS
405 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
406static int gptab_compare PARAMS ((const void *, const void *));
f4416af6
AO
407static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
408static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
b49e97c9
TS
409static struct mips_got_info *mips_elf_got_info
410 PARAMS ((bfd *, asection **));
411static bfd_vma mips_elf_local_got_index
f4416af6 412 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
b49e97c9 413static bfd_vma mips_elf_global_got_index
f4416af6 414 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
b49e97c9 415static bfd_vma mips_elf_got_page
f4416af6 416 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
b49e97c9 417static bfd_vma mips_elf_got16_entry
f4416af6 418 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
b49e97c9 419static bfd_vma mips_elf_got_offset_from_index
f4416af6 420 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
b15e6682 421static struct mips_got_entry *mips_elf_create_local_got_entry
f4416af6 422 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
b34976b6 423static bfd_boolean mips_elf_sort_hash_table
b49e97c9 424 PARAMS ((struct bfd_link_info *, unsigned long));
b34976b6 425static bfd_boolean mips_elf_sort_hash_table_f
b49e97c9 426 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
f4416af6
AO
427static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
b34976b6 429static bfd_boolean mips_elf_record_global_got_symbol
f4416af6 430 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
b49e97c9
TS
431 struct mips_got_info *));
432static const Elf_Internal_Rela *mips_elf_next_relocation
433 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
434 const Elf_Internal_Rela *));
b34976b6
AM
435static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
b49e97c9 437static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
b34976b6 438static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
b49e97c9
TS
439static bfd_vma mips_elf_high PARAMS ((bfd_vma));
440static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
441static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
b34976b6 442static bfd_boolean mips_elf_create_compact_rel_section
b49e97c9 443 PARAMS ((bfd *, struct bfd_link_info *));
b34976b6 444static bfd_boolean mips_elf_create_got_section
f4416af6 445 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
b49e97c9
TS
446static asection *mips_elf_create_msym_section
447 PARAMS ((bfd *));
448static bfd_reloc_status_type mips_elf_calculate_relocation
449 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
450 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
451 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
b34976b6 452 bfd_boolean *, bfd_boolean));
b49e97c9
TS
453static bfd_vma mips_elf_obtain_contents
454 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
b34976b6 455static bfd_boolean mips_elf_perform_relocation
b49e97c9
TS
456 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
457 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
b34976b6
AM
458 bfd_boolean));
459static bfd_boolean mips_elf_stub_section_p
b49e97c9
TS
460 PARAMS ((bfd *, asection *));
461static void mips_elf_allocate_dynamic_relocations
462 PARAMS ((bfd *, unsigned int));
b34976b6 463static bfd_boolean mips_elf_create_dynamic_relocation
b49e97c9
TS
464 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
465 struct mips_elf_link_hash_entry *, asection *,
466 bfd_vma, bfd_vma *, asection *));
64543e1a 467static void mips_set_isa_flags PARAMS ((bfd *));
b49e97c9
TS
468static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
469static void mips_elf_irix6_finish_dynamic_symbol
470 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
64543e1a
RS
471static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
472static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
f4416af6 473static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
b15e6682
AO
474static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
475static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
b49e97c9 476
f4416af6
AO
477static bfd_boolean mips_elf_multi_got
478 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
479 asection *, bfd_size_type));
480static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
481static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
482static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
483static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
484static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
485static int mips_elf_merge_gots PARAMS ((void **, void *));
486static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
487static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
488static void mips_elf_resolve_final_got_entries
489 PARAMS ((struct mips_got_info *));
490static bfd_vma mips_elf_adjust_gp
491 PARAMS ((bfd *, struct mips_got_info *, bfd *));
492static struct mips_got_info *mips_elf_got_for_ibfd
493 PARAMS ((struct mips_got_info *, bfd *));
494
b49e97c9
TS
495/* This will be used when we sort the dynamic relocation records. */
496static bfd *reldyn_sorting_bfd;
497
498/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 499
b49e97c9
TS
500#define ABI_N32_P(abfd) \
501 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
502
4a14403c 503/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 504#define ABI_64_P(abfd) \
141ff970 505 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 506
4a14403c
TS
507/* Nonzero if ABFD is using NewABI conventions. */
508#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
509
510/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
511#define IRIX_COMPAT(abfd) \
512 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
513
b49e97c9
TS
514/* Whether we are trying to be compatible with IRIX at all. */
515#define SGI_COMPAT(abfd) \
516 (IRIX_COMPAT (abfd) != ict_none)
517
518/* The name of the options section. */
519#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
4a14403c 520 (ABI_64_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9
TS
521
522/* The name of the stub section. */
523#define MIPS_ELF_STUB_SECTION_NAME(abfd) \
4a14403c 524 (ABI_64_P (abfd) ? ".MIPS.stubs" : ".stub")
b49e97c9
TS
525
526/* The size of an external REL relocation. */
527#define MIPS_ELF_REL_SIZE(abfd) \
528 (get_elf_backend_data (abfd)->s->sizeof_rel)
529
530/* The size of an external dynamic table entry. */
531#define MIPS_ELF_DYN_SIZE(abfd) \
532 (get_elf_backend_data (abfd)->s->sizeof_dyn)
533
534/* The size of a GOT entry. */
535#define MIPS_ELF_GOT_SIZE(abfd) \
536 (get_elf_backend_data (abfd)->s->arch_size / 8)
537
538/* The size of a symbol-table entry. */
539#define MIPS_ELF_SYM_SIZE(abfd) \
540 (get_elf_backend_data (abfd)->s->sizeof_sym)
541
542/* The default alignment for sections, as a power of two. */
543#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
544 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
545
546/* Get word-sized data. */
547#define MIPS_ELF_GET_WORD(abfd, ptr) \
548 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
549
550/* Put out word-sized data. */
551#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
552 (ABI_64_P (abfd) \
553 ? bfd_put_64 (abfd, val, ptr) \
554 : bfd_put_32 (abfd, val, ptr))
555
556/* Add a dynamic symbol table-entry. */
557#ifdef BFD64
558#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
559 (ABI_64_P (elf_hash_table (info)->dynobj) \
560 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
561 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
562#else
563#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
564 (ABI_64_P (elf_hash_table (info)->dynobj) \
b34976b6 565 ? (abort (), FALSE) \
b49e97c9
TS
566 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
567#endif
568
569#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
570 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
571
4ffba85c
AO
572/* Determine whether the internal relocation of index REL_IDX is REL
573 (zero) or RELA (non-zero). The assumption is that, if there are
574 two relocation sections for this section, one of them is REL and
575 the other is RELA. If the index of the relocation we're testing is
576 in range for the first relocation section, check that the external
577 relocation size is that for RELA. It is also assumed that, if
578 rel_idx is not in range for the first section, and this first
579 section contains REL relocs, then the relocation is in the second
580 section, that is RELA. */
581#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
582 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
583 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
584 > (bfd_vma)(rel_idx)) \
585 == (elf_section_data (sec)->rel_hdr.sh_entsize \
586 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
587 : sizeof (Elf32_External_Rela))))
588
b49e97c9
TS
589/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
590 from smaller values. Start with zero, widen, *then* decrement. */
591#define MINUS_ONE (((bfd_vma)0) - 1)
592
593/* The number of local .got entries we reserve. */
594#define MIPS_RESERVED_GOTNO (2)
595
f4416af6
AO
596/* The offset of $gp from the beginning of the .got section. */
597#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
598
599/* The maximum size of the GOT for it to be addressable using 16-bit
600 offsets from $gp. */
601#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
602
b49e97c9
TS
603/* Instructions which appear in a stub. For some reason the stub is
604 slightly different on an SGI system. */
b49e97c9 605#define STUB_LW(abfd) \
f4416af6
AO
606 ((ABI_64_P (abfd) \
607 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
608 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9
TS
609#define STUB_MOVE(abfd) \
610 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
611#define STUB_JALR 0x0320f809 /* jal t9 */
612#define STUB_LI16(abfd) \
613 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
614#define MIPS_FUNCTION_STUB_SIZE (16)
615
616/* The name of the dynamic interpreter. This is put in the .interp
617 section. */
618
619#define ELF_DYNAMIC_INTERPRETER(abfd) \
620 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
621 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
622 : "/usr/lib/libc.so.1")
623
624#ifdef BFD64
ee6423ed
AO
625#define MNAME(bfd,pre,pos) \
626 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
627#define ELF_R_SYM(bfd, i) \
628 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
629#define ELF_R_TYPE(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
631#define ELF_R_INFO(bfd, s, t) \
632 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
633#else
ee6423ed 634#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
635#define ELF_R_SYM(bfd, i) \
636 (ELF32_R_SYM (i))
637#define ELF_R_TYPE(bfd, i) \
638 (ELF32_R_TYPE (i))
639#define ELF_R_INFO(bfd, s, t) \
640 (ELF32_R_INFO (s, t))
641#endif
642\f
643 /* The mips16 compiler uses a couple of special sections to handle
644 floating point arguments.
645
646 Section names that look like .mips16.fn.FNNAME contain stubs that
647 copy floating point arguments from the fp regs to the gp regs and
648 then jump to FNNAME. If any 32 bit function calls FNNAME, the
649 call should be redirected to the stub instead. If no 32 bit
650 function calls FNNAME, the stub should be discarded. We need to
651 consider any reference to the function, not just a call, because
652 if the address of the function is taken we will need the stub,
653 since the address might be passed to a 32 bit function.
654
655 Section names that look like .mips16.call.FNNAME contain stubs
656 that copy floating point arguments from the gp regs to the fp
657 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
658 then any 16 bit function that calls FNNAME should be redirected
659 to the stub instead. If FNNAME is not a 32 bit function, the
660 stub should be discarded.
661
662 .mips16.call.fp.FNNAME sections are similar, but contain stubs
663 which call FNNAME and then copy the return value from the fp regs
664 to the gp regs. These stubs store the return value in $18 while
665 calling FNNAME; any function which might call one of these stubs
666 must arrange to save $18 around the call. (This case is not
667 needed for 32 bit functions that call 16 bit functions, because
668 16 bit functions always return floating point values in both
669 $f0/$f1 and $2/$3.)
670
671 Note that in all cases FNNAME might be defined statically.
672 Therefore, FNNAME is not used literally. Instead, the relocation
673 information will indicate which symbol the section is for.
674
675 We record any stubs that we find in the symbol table. */
676
677#define FN_STUB ".mips16.fn."
678#define CALL_STUB ".mips16.call."
679#define CALL_FP_STUB ".mips16.call.fp."
680\f
681/* Look up an entry in a MIPS ELF linker hash table. */
682
683#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
684 ((struct mips_elf_link_hash_entry *) \
685 elf_link_hash_lookup (&(table)->root, (string), (create), \
686 (copy), (follow)))
687
688/* Traverse a MIPS ELF linker hash table. */
689
690#define mips_elf_link_hash_traverse(table, func, info) \
691 (elf_link_hash_traverse \
692 (&(table)->root, \
b34976b6 693 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
b49e97c9
TS
694 (info)))
695
696/* Get the MIPS ELF linker hash table from a link_info structure. */
697
698#define mips_elf_hash_table(p) \
699 ((struct mips_elf_link_hash_table *) ((p)->hash))
700
701/* Create an entry in a MIPS ELF linker hash table. */
702
703static struct bfd_hash_entry *
704mips_elf_link_hash_newfunc (entry, table, string)
705 struct bfd_hash_entry *entry;
706 struct bfd_hash_table *table;
707 const char *string;
708{
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == (struct mips_elf_link_hash_entry *) NULL)
715 ret = ((struct mips_elf_link_hash_entry *)
716 bfd_hash_allocate (table,
717 sizeof (struct mips_elf_link_hash_entry)));
718 if (ret == (struct mips_elf_link_hash_entry *) NULL)
719 return (struct bfd_hash_entry *) ret;
720
721 /* Call the allocation method of the superclass. */
722 ret = ((struct mips_elf_link_hash_entry *)
723 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
724 table, string));
725 if (ret != (struct mips_elf_link_hash_entry *) NULL)
726 {
727 /* Set local fields. */
728 memset (&ret->esym, 0, sizeof (EXTR));
729 /* We use -2 as a marker to indicate that the information has
730 not been set. -1 means there is no associated ifd. */
731 ret->esym.ifd = -2;
732 ret->possibly_dynamic_relocs = 0;
b34976b6 733 ret->readonly_reloc = FALSE;
b49e97c9 734 ret->min_dyn_reloc_index = 0;
b34976b6 735 ret->no_fn_stub = FALSE;
b49e97c9 736 ret->fn_stub = NULL;
b34976b6 737 ret->need_fn_stub = FALSE;
b49e97c9
TS
738 ret->call_stub = NULL;
739 ret->call_fp_stub = NULL;
b34976b6 740 ret->forced_local = FALSE;
b49e97c9
TS
741 }
742
743 return (struct bfd_hash_entry *) ret;
744}
f0abc2a1
AM
745
746bfd_boolean
747_bfd_mips_elf_new_section_hook (abfd, sec)
748 bfd *abfd;
749 asection *sec;
750{
751 struct _mips_elf_section_data *sdata;
752 bfd_size_type amt = sizeof (*sdata);
753
754 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
755 if (sdata == NULL)
756 return FALSE;
757 sec->used_by_bfd = (PTR) sdata;
758
759 return _bfd_elf_new_section_hook (abfd, sec);
760}
b49e97c9
TS
761\f
762/* Read ECOFF debugging information from a .mdebug section into a
763 ecoff_debug_info structure. */
764
b34976b6 765bfd_boolean
b49e97c9
TS
766_bfd_mips_elf_read_ecoff_info (abfd, section, debug)
767 bfd *abfd;
768 asection *section;
769 struct ecoff_debug_info *debug;
770{
771 HDRR *symhdr;
772 const struct ecoff_debug_swap *swap;
773 char *ext_hdr = NULL;
774
775 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
776 memset (debug, 0, sizeof (*debug));
777
778 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
779 if (ext_hdr == NULL && swap->external_hdr_size != 0)
780 goto error_return;
781
82e51918
AM
782 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
783 swap->external_hdr_size))
b49e97c9
TS
784 goto error_return;
785
786 symhdr = &debug->symbolic_header;
787 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
788
789 /* The symbolic header contains absolute file offsets and sizes to
790 read. */
791#define READ(ptr, offset, count, size, type) \
792 if (symhdr->count == 0) \
793 debug->ptr = NULL; \
794 else \
795 { \
796 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
797 debug->ptr = (type) bfd_malloc (amt); \
798 if (debug->ptr == NULL) \
799 goto error_return; \
800 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
801 || bfd_bread (debug->ptr, amt, abfd) != amt) \
802 goto error_return; \
803 }
804
805 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
806 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
807 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
808 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
809 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
810 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
811 union aux_ext *);
812 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
813 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
814 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
815 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
816 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
817#undef READ
818
819 debug->fdr = NULL;
820 debug->adjust = NULL;
821
b34976b6 822 return TRUE;
b49e97c9
TS
823
824 error_return:
825 if (ext_hdr != NULL)
826 free (ext_hdr);
827 if (debug->line != NULL)
828 free (debug->line);
829 if (debug->external_dnr != NULL)
830 free (debug->external_dnr);
831 if (debug->external_pdr != NULL)
832 free (debug->external_pdr);
833 if (debug->external_sym != NULL)
834 free (debug->external_sym);
835 if (debug->external_opt != NULL)
836 free (debug->external_opt);
837 if (debug->external_aux != NULL)
838 free (debug->external_aux);
839 if (debug->ss != NULL)
840 free (debug->ss);
841 if (debug->ssext != NULL)
842 free (debug->ssext);
843 if (debug->external_fdr != NULL)
844 free (debug->external_fdr);
845 if (debug->external_rfd != NULL)
846 free (debug->external_rfd);
847 if (debug->external_ext != NULL)
848 free (debug->external_ext);
b34976b6 849 return FALSE;
b49e97c9
TS
850}
851\f
852/* Swap RPDR (runtime procedure table entry) for output. */
853
854static void
855ecoff_swap_rpdr_out (abfd, in, ex)
856 bfd *abfd;
857 const RPDR *in;
858 struct rpdr_ext *ex;
859{
860 H_PUT_S32 (abfd, in->adr, ex->p_adr);
861 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
862 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
863 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
864 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
865 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
866
867 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
868 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
869
870 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
871#if 0 /* FIXME */
872 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
873#endif
874}
875
876/* Create a runtime procedure table from the .mdebug section. */
877
b34976b6 878static bfd_boolean
b49e97c9
TS
879mips_elf_create_procedure_table (handle, abfd, info, s, debug)
880 PTR handle;
881 bfd *abfd;
882 struct bfd_link_info *info;
883 asection *s;
884 struct ecoff_debug_info *debug;
885{
886 const struct ecoff_debug_swap *swap;
887 HDRR *hdr = &debug->symbolic_header;
888 RPDR *rpdr, *rp;
889 struct rpdr_ext *erp;
890 PTR rtproc;
891 struct pdr_ext *epdr;
892 struct sym_ext *esym;
893 char *ss, **sv;
894 char *str;
895 bfd_size_type size;
896 bfd_size_type count;
897 unsigned long sindex;
898 unsigned long i;
899 PDR pdr;
900 SYMR sym;
901 const char *no_name_func = _("static procedure (no name)");
902
903 epdr = NULL;
904 rpdr = NULL;
905 esym = NULL;
906 ss = NULL;
907 sv = NULL;
908
909 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
910
911 sindex = strlen (no_name_func) + 1;
912 count = hdr->ipdMax;
913 if (count > 0)
914 {
915 size = swap->external_pdr_size;
916
917 epdr = (struct pdr_ext *) bfd_malloc (size * count);
918 if (epdr == NULL)
919 goto error_return;
920
921 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
922 goto error_return;
923
924 size = sizeof (RPDR);
925 rp = rpdr = (RPDR *) bfd_malloc (size * count);
926 if (rpdr == NULL)
927 goto error_return;
928
929 size = sizeof (char *);
930 sv = (char **) bfd_malloc (size * count);
931 if (sv == NULL)
932 goto error_return;
933
934 count = hdr->isymMax;
935 size = swap->external_sym_size;
936 esym = (struct sym_ext *) bfd_malloc (size * count);
937 if (esym == NULL)
938 goto error_return;
939
940 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
941 goto error_return;
942
943 count = hdr->issMax;
944 ss = (char *) bfd_malloc (count);
945 if (ss == NULL)
946 goto error_return;
947 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
948 goto error_return;
949
950 count = hdr->ipdMax;
951 for (i = 0; i < (unsigned long) count; i++, rp++)
952 {
953 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
954 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
955 rp->adr = sym.value;
956 rp->regmask = pdr.regmask;
957 rp->regoffset = pdr.regoffset;
958 rp->fregmask = pdr.fregmask;
959 rp->fregoffset = pdr.fregoffset;
960 rp->frameoffset = pdr.frameoffset;
961 rp->framereg = pdr.framereg;
962 rp->pcreg = pdr.pcreg;
963 rp->irpss = sindex;
964 sv[i] = ss + sym.iss;
965 sindex += strlen (sv[i]) + 1;
966 }
967 }
968
969 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
970 size = BFD_ALIGN (size, 16);
971 rtproc = (PTR) bfd_alloc (abfd, size);
972 if (rtproc == NULL)
973 {
974 mips_elf_hash_table (info)->procedure_count = 0;
975 goto error_return;
976 }
977
978 mips_elf_hash_table (info)->procedure_count = count + 2;
979
980 erp = (struct rpdr_ext *) rtproc;
981 memset (erp, 0, sizeof (struct rpdr_ext));
982 erp++;
983 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
984 strcpy (str, no_name_func);
985 str += strlen (no_name_func) + 1;
986 for (i = 0; i < count; i++)
987 {
988 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
989 strcpy (str, sv[i]);
990 str += strlen (sv[i]) + 1;
991 }
992 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
993
994 /* Set the size and contents of .rtproc section. */
995 s->_raw_size = size;
996 s->contents = (bfd_byte *) rtproc;
997
998 /* Skip this section later on (I don't think this currently
999 matters, but someday it might). */
1000 s->link_order_head = (struct bfd_link_order *) NULL;
1001
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012
b34976b6 1013 return TRUE;
b49e97c9
TS
1014
1015 error_return:
1016 if (epdr != NULL)
1017 free (epdr);
1018 if (rpdr != NULL)
1019 free (rpdr);
1020 if (esym != NULL)
1021 free (esym);
1022 if (ss != NULL)
1023 free (ss);
1024 if (sv != NULL)
1025 free (sv);
b34976b6 1026 return FALSE;
b49e97c9
TS
1027}
1028
1029/* Check the mips16 stubs for a particular symbol, and see if we can
1030 discard them. */
1031
b34976b6 1032static bfd_boolean
b49e97c9
TS
1033mips_elf_check_mips16_stubs (h, data)
1034 struct mips_elf_link_hash_entry *h;
1035 PTR data ATTRIBUTE_UNUSED;
1036{
1037 if (h->root.root.type == bfd_link_hash_warning)
1038 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1039
1040 if (h->fn_stub != NULL
1041 && ! h->need_fn_stub)
1042 {
1043 /* We don't need the fn_stub; the only references to this symbol
1044 are 16 bit calls. Clobber the size to 0 to prevent it from
1045 being included in the link. */
1046 h->fn_stub->_raw_size = 0;
1047 h->fn_stub->_cooked_size = 0;
1048 h->fn_stub->flags &= ~SEC_RELOC;
1049 h->fn_stub->reloc_count = 0;
1050 h->fn_stub->flags |= SEC_EXCLUDE;
1051 }
1052
1053 if (h->call_stub != NULL
1054 && h->root.other == STO_MIPS16)
1055 {
1056 /* We don't need the call_stub; this is a 16 bit function, so
1057 calls from other 16 bit functions are OK. Clobber the size
1058 to 0 to prevent it from being included in the link. */
1059 h->call_stub->_raw_size = 0;
1060 h->call_stub->_cooked_size = 0;
1061 h->call_stub->flags &= ~SEC_RELOC;
1062 h->call_stub->reloc_count = 0;
1063 h->call_stub->flags |= SEC_EXCLUDE;
1064 }
1065
1066 if (h->call_fp_stub != NULL
1067 && h->root.other == STO_MIPS16)
1068 {
1069 /* We don't need the call_stub; this is a 16 bit function, so
1070 calls from other 16 bit functions are OK. Clobber the size
1071 to 0 to prevent it from being included in the link. */
1072 h->call_fp_stub->_raw_size = 0;
1073 h->call_fp_stub->_cooked_size = 0;
1074 h->call_fp_stub->flags &= ~SEC_RELOC;
1075 h->call_fp_stub->reloc_count = 0;
1076 h->call_fp_stub->flags |= SEC_EXCLUDE;
1077 }
1078
b34976b6 1079 return TRUE;
b49e97c9
TS
1080}
1081\f
1082bfd_reloc_status_type
1083_bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1084 relocateable, data, gp)
1085 bfd *abfd;
1086 asymbol *symbol;
1087 arelent *reloc_entry;
1088 asection *input_section;
b34976b6 1089 bfd_boolean relocateable;
b49e97c9
TS
1090 PTR data;
1091 bfd_vma gp;
1092{
1093 bfd_vma relocation;
1094 unsigned long insn;
1095 unsigned long val;
1096
1097 if (bfd_is_com_section (symbol->section))
1098 relocation = 0;
1099 else
1100 relocation = symbol->value;
1101
1102 relocation += symbol->section->output_section->vma;
1103 relocation += symbol->section->output_offset;
1104
1105 if (reloc_entry->address > input_section->_cooked_size)
1106 return bfd_reloc_outofrange;
1107
1108 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1109
1110 /* Set val to the offset into the section or symbol. */
1111 if (reloc_entry->howto->src_mask == 0)
1112 {
1113 /* This case occurs with the 64-bit MIPS ELF ABI. */
1114 val = reloc_entry->addend;
1115 }
1116 else
1117 {
1118 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1119 if (val & 0x8000)
1120 val -= 0x10000;
1121 }
1122
1123 /* Adjust val for the final section location and GP value. If we
1124 are producing relocateable output, we don't want to do this for
1125 an external symbol. */
1126 if (! relocateable
1127 || (symbol->flags & BSF_SECTION_SYM) != 0)
1128 val += relocation - gp;
1129
1130 insn = (insn & ~0xffff) | (val & 0xffff);
1131 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1132
1133 if (relocateable)
1134 reloc_entry->address += input_section->output_offset;
1135
1136 else if ((long) val >= 0x8000 || (long) val < -0x8000)
1137 return bfd_reloc_overflow;
1138
1139 return bfd_reloc_ok;
1140}
1141\f
1142/* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1144
1145static void
1146bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1147 bfd *abfd;
1148 const Elf32_External_gptab *ex;
1149 Elf32_gptab *in;
1150{
1151 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1152 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1153}
1154
1155static void
1156bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1157 bfd *abfd;
1158 const Elf32_gptab *in;
1159 Elf32_External_gptab *ex;
1160{
1161 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1162 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1163}
1164
1165static void
1166bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1167 bfd *abfd;
1168 const Elf32_compact_rel *in;
1169 Elf32_External_compact_rel *ex;
1170{
1171 H_PUT_32 (abfd, in->id1, ex->id1);
1172 H_PUT_32 (abfd, in->num, ex->num);
1173 H_PUT_32 (abfd, in->id2, ex->id2);
1174 H_PUT_32 (abfd, in->offset, ex->offset);
1175 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1176 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1177}
1178
1179static void
1180bfd_elf32_swap_crinfo_out (abfd, in, ex)
1181 bfd *abfd;
1182 const Elf32_crinfo *in;
1183 Elf32_External_crinfo *ex;
1184{
1185 unsigned long l;
1186
1187 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1188 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1189 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1190 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1191 H_PUT_32 (abfd, l, ex->info);
1192 H_PUT_32 (abfd, in->konst, ex->konst);
1193 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1194}
1195
1196#if 0
1197/* Swap in an MSYM entry. */
1198
1199static void
1200bfd_mips_elf_swap_msym_in (abfd, ex, in)
1201 bfd *abfd;
1202 const Elf32_External_Msym *ex;
1203 Elf32_Internal_Msym *in;
1204{
1205 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1206 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1207}
1208#endif
1209/* Swap out an MSYM entry. */
1210
1211static void
1212bfd_mips_elf_swap_msym_out (abfd, in, ex)
1213 bfd *abfd;
1214 const Elf32_Internal_Msym *in;
1215 Elf32_External_Msym *ex;
1216{
1217 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1218 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1219}
1220\f
1221/* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1224
1225void
1226bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1227 bfd *abfd;
1228 const Elf32_External_RegInfo *ex;
1229 Elf32_RegInfo *in;
1230{
1231 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1232 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1233 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1234 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1235 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1236 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1237}
1238
1239void
1240bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1241 bfd *abfd;
1242 const Elf32_RegInfo *in;
1243 Elf32_External_RegInfo *ex;
1244{
1245 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1246 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1247 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1248 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1249 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1250 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1251}
1252
1253/* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1258
1259void
1260bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1261 bfd *abfd;
1262 const Elf64_External_RegInfo *ex;
1263 Elf64_Internal_RegInfo *in;
1264{
1265 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1266 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1267 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1268 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1269 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1270 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1271 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1272}
1273
1274void
1275bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1276 bfd *abfd;
1277 const Elf64_Internal_RegInfo *in;
1278 Elf64_External_RegInfo *ex;
1279{
1280 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1281 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1282 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1283 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1284 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1285 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1286 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1287}
1288
1289/* Swap in an options header. */
1290
1291void
1292bfd_mips_elf_swap_options_in (abfd, ex, in)
1293 bfd *abfd;
1294 const Elf_External_Options *ex;
1295 Elf_Internal_Options *in;
1296{
1297 in->kind = H_GET_8 (abfd, ex->kind);
1298 in->size = H_GET_8 (abfd, ex->size);
1299 in->section = H_GET_16 (abfd, ex->section);
1300 in->info = H_GET_32 (abfd, ex->info);
1301}
1302
1303/* Swap out an options header. */
1304
1305void
1306bfd_mips_elf_swap_options_out (abfd, in, ex)
1307 bfd *abfd;
1308 const Elf_Internal_Options *in;
1309 Elf_External_Options *ex;
1310{
1311 H_PUT_8 (abfd, in->kind, ex->kind);
1312 H_PUT_8 (abfd, in->size, ex->size);
1313 H_PUT_16 (abfd, in->section, ex->section);
1314 H_PUT_32 (abfd, in->info, ex->info);
1315}
1316\f
1317/* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1319
1320static int
1321sort_dynamic_relocs (arg1, arg2)
1322 const PTR arg1;
1323 const PTR arg2;
1324{
947216bf
AM
1325 Elf_Internal_Rela int_reloc1;
1326 Elf_Internal_Rela int_reloc2;
b49e97c9 1327
947216bf
AM
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1330
947216bf 1331 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1332}
1333
f4416af6
AO
1334/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1335
1336static int
1337sort_dynamic_relocs_64 (arg1, arg2)
1338 const PTR arg1;
1339 const PTR arg2;
1340{
1341 Elf_Internal_Rela int_reloc1[3];
1342 Elf_Internal_Rela int_reloc2[3];
1343
1344 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1345 (reldyn_sorting_bfd, arg1, int_reloc1);
1346 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1347 (reldyn_sorting_bfd, arg2, int_reloc2);
1348
1349 return (ELF64_R_SYM (int_reloc1[0].r_info)
1350 - ELF64_R_SYM (int_reloc2[0].r_info));
1351}
1352
1353
b49e97c9
TS
1354/* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1367
b34976b6 1368static bfd_boolean
b49e97c9
TS
1369mips_elf_output_extsym (h, data)
1370 struct mips_elf_link_hash_entry *h;
1371 PTR data;
1372{
1373 struct extsym_info *einfo = (struct extsym_info *) data;
b34976b6 1374 bfd_boolean strip;
b49e97c9
TS
1375 asection *sec, *output_section;
1376
1377 if (h->root.root.type == bfd_link_hash_warning)
1378 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1379
1380 if (h->root.indx == -2)
b34976b6 1381 strip = FALSE;
b49e97c9
TS
1382 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1385 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
b34976b6 1386 strip = TRUE;
b49e97c9
TS
1387 else if (einfo->info->strip == strip_all
1388 || (einfo->info->strip == strip_some
1389 && bfd_hash_lookup (einfo->info->keep_hash,
1390 h->root.root.root.string,
b34976b6
AM
1391 FALSE, FALSE) == NULL))
1392 strip = TRUE;
b49e97c9 1393 else
b34976b6 1394 strip = FALSE;
b49e97c9
TS
1395
1396 if (strip)
b34976b6 1397 return TRUE;
b49e97c9
TS
1398
1399 if (h->esym.ifd == -2)
1400 {
1401 h->esym.jmptbl = 0;
1402 h->esym.cobol_main = 0;
1403 h->esym.weakext = 0;
1404 h->esym.reserved = 0;
1405 h->esym.ifd = ifdNil;
1406 h->esym.asym.value = 0;
1407 h->esym.asym.st = stGlobal;
1408
1409 if (h->root.root.type == bfd_link_hash_undefined
1410 || h->root.root.type == bfd_link_hash_undefweak)
1411 {
1412 const char *name;
1413
1414 /* Use undefined class. Also, set class and type for some
1415 special symbols. */
1416 name = h->root.root.root.string;
1417 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1418 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1419 {
1420 h->esym.asym.sc = scData;
1421 h->esym.asym.st = stLabel;
1422 h->esym.asym.value = 0;
1423 }
1424 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1425 {
1426 h->esym.asym.sc = scAbs;
1427 h->esym.asym.st = stLabel;
1428 h->esym.asym.value =
1429 mips_elf_hash_table (einfo->info)->procedure_count;
1430 }
4a14403c 1431 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1432 {
1433 h->esym.asym.sc = scAbs;
1434 h->esym.asym.st = stLabel;
1435 h->esym.asym.value = elf_gp (einfo->abfd);
1436 }
1437 else
1438 h->esym.asym.sc = scUndefined;
1439 }
1440 else if (h->root.root.type != bfd_link_hash_defined
1441 && h->root.root.type != bfd_link_hash_defweak)
1442 h->esym.asym.sc = scAbs;
1443 else
1444 {
1445 const char *name;
1446
1447 sec = h->root.root.u.def.section;
1448 output_section = sec->output_section;
1449
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section == NULL)
1453 h->esym.asym.sc = scUndefined;
1454 else
1455 {
1456 name = bfd_section_name (output_section->owner, output_section);
1457
1458 if (strcmp (name, ".text") == 0)
1459 h->esym.asym.sc = scText;
1460 else if (strcmp (name, ".data") == 0)
1461 h->esym.asym.sc = scData;
1462 else if (strcmp (name, ".sdata") == 0)
1463 h->esym.asym.sc = scSData;
1464 else if (strcmp (name, ".rodata") == 0
1465 || strcmp (name, ".rdata") == 0)
1466 h->esym.asym.sc = scRData;
1467 else if (strcmp (name, ".bss") == 0)
1468 h->esym.asym.sc = scBss;
1469 else if (strcmp (name, ".sbss") == 0)
1470 h->esym.asym.sc = scSBss;
1471 else if (strcmp (name, ".init") == 0)
1472 h->esym.asym.sc = scInit;
1473 else if (strcmp (name, ".fini") == 0)
1474 h->esym.asym.sc = scFini;
1475 else
1476 h->esym.asym.sc = scAbs;
1477 }
1478 }
1479
1480 h->esym.asym.reserved = 0;
1481 h->esym.asym.index = indexNil;
1482 }
1483
1484 if (h->root.root.type == bfd_link_hash_common)
1485 h->esym.asym.value = h->root.root.u.c.size;
1486 else if (h->root.root.type == bfd_link_hash_defined
1487 || h->root.root.type == bfd_link_hash_defweak)
1488 {
1489 if (h->esym.asym.sc == scCommon)
1490 h->esym.asym.sc = scBss;
1491 else if (h->esym.asym.sc == scSCommon)
1492 h->esym.asym.sc = scSBss;
1493
1494 sec = h->root.root.u.def.section;
1495 output_section = sec->output_section;
1496 if (output_section != NULL)
1497 h->esym.asym.value = (h->root.root.u.def.value
1498 + sec->output_offset
1499 + output_section->vma);
1500 else
1501 h->esym.asym.value = 0;
1502 }
1503 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1504 {
1505 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1506 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1507
1508 while (hd->root.root.type == bfd_link_hash_indirect)
1509 {
1510 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1511 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1512 }
1513
1514 if (!no_fn_stub)
1515 {
1516 /* Set type and value for a symbol with a function stub. */
1517 h->esym.asym.st = stProc;
1518 sec = hd->root.root.u.def.section;
1519 if (sec == NULL)
1520 h->esym.asym.value = 0;
1521 else
1522 {
1523 output_section = sec->output_section;
1524 if (output_section != NULL)
1525 h->esym.asym.value = (hd->root.plt.offset
1526 + sec->output_offset
1527 + output_section->vma);
1528 else
1529 h->esym.asym.value = 0;
1530 }
1531#if 0 /* FIXME? */
1532 h->esym.ifd = 0;
1533#endif
1534 }
1535 }
1536
1537 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1538 h->root.root.root.string,
1539 &h->esym))
1540 {
b34976b6
AM
1541 einfo->failed = TRUE;
1542 return FALSE;
b49e97c9
TS
1543 }
1544
b34976b6 1545 return TRUE;
b49e97c9
TS
1546}
1547
1548/* A comparison routine used to sort .gptab entries. */
1549
1550static int
1551gptab_compare (p1, p2)
1552 const PTR p1;
1553 const PTR p2;
1554{
1555 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1556 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1557
1558 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1559}
1560\f
b15e6682 1561/* Functions to manage the got entry hash table. */
f4416af6
AO
1562
1563/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1564 hash number. */
1565
1566static INLINE hashval_t
1567mips_elf_hash_bfd_vma (addr)
1568 bfd_vma addr;
1569{
1570#ifdef BFD64
1571 return addr + (addr >> 32);
1572#else
1573 return addr;
1574#endif
1575}
1576
1577/* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1579 union members. */
1580
b15e6682
AO
1581static hashval_t
1582mips_elf_got_entry_hash (entry_)
1583 const PTR entry_;
1584{
1585 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1586
38985a1c 1587 return entry->symndx
f4416af6 1588 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1589 : entry->abfd->id
1590 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1591 : entry->d.h->root.root.root.hash));
b15e6682
AO
1592}
1593
1594static int
1595mips_elf_got_entry_eq (entry1, entry2)
1596 const PTR entry1;
1597 const PTR entry2;
1598{
1599 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1600 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1601
1602 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1603 && (! e1->abfd ? e1->d.address == e2->d.address
1604 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1605 : e1->d.h == e2->d.h);
1606}
1607
1608/* multi_got_entries are still a match in the case of global objects,
1609 even if the input bfd in which they're referenced differs, so the
1610 hash computation and compare functions are adjusted
1611 accordingly. */
1612
1613static hashval_t
1614mips_elf_multi_got_entry_hash (entry_)
1615 const PTR entry_;
1616{
1617 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1618
1619 return entry->symndx
1620 + (! entry->abfd
1621 ? mips_elf_hash_bfd_vma (entry->d.address)
1622 : entry->symndx >= 0
1623 ? (entry->abfd->id
1624 + mips_elf_hash_bfd_vma (entry->d.addend))
1625 : entry->d.h->root.root.root.hash);
1626}
1627
1628static int
1629mips_elf_multi_got_entry_eq (entry1, entry2)
1630 const PTR entry1;
1631 const PTR entry2;
1632{
1633 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1634 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1635
1636 return e1->symndx == e2->symndx
1637 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1638 : e1->abfd == NULL || e2->abfd == NULL
1639 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1640 : e1->d.h == e2->d.h);
b15e6682
AO
1641}
1642\f
f4416af6
AO
1643/* Returns the dynamic relocation section for DYNOBJ. */
1644
1645static asection *
1646mips_elf_rel_dyn_section (dynobj, create_p)
1647 bfd *dynobj;
1648 bfd_boolean create_p;
1649{
1650 static const char dname[] = ".rel.dyn";
1651 asection *sreloc;
1652
1653 sreloc = bfd_get_section_by_name (dynobj, dname);
1654 if (sreloc == NULL && create_p)
1655 {
1656 sreloc = bfd_make_section (dynobj, dname);
1657 if (sreloc == NULL
1658 || ! bfd_set_section_flags (dynobj, sreloc,
1659 (SEC_ALLOC
1660 | SEC_LOAD
1661 | SEC_HAS_CONTENTS
1662 | SEC_IN_MEMORY
1663 | SEC_LINKER_CREATED
1664 | SEC_READONLY))
1665 || ! bfd_set_section_alignment (dynobj, sreloc,
1666 4))
1667 return NULL;
1668 }
1669 return sreloc;
1670}
1671
b49e97c9
TS
1672/* Returns the GOT section for ABFD. */
1673
1674static asection *
f4416af6 1675mips_elf_got_section (abfd, maybe_excluded)
b49e97c9 1676 bfd *abfd;
f4416af6 1677 bfd_boolean maybe_excluded;
b49e97c9 1678{
f4416af6
AO
1679 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1680 if (sgot == NULL
1681 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1682 return NULL;
1683 return sgot;
b49e97c9
TS
1684}
1685
1686/* Returns the GOT information associated with the link indicated by
1687 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1688 section. */
1689
1690static struct mips_got_info *
1691mips_elf_got_info (abfd, sgotp)
1692 bfd *abfd;
1693 asection **sgotp;
1694{
1695 asection *sgot;
1696 struct mips_got_info *g;
1697
f4416af6 1698 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1699 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1700 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1701 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1702 BFD_ASSERT (g != NULL);
1703
1704 if (sgotp)
f4416af6
AO
1705 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1706
b49e97c9
TS
1707 return g;
1708}
1709
1710/* Returns the GOT offset at which the indicated address can be found.
1711 If there is not yet a GOT entry for this value, create one. Returns
1712 -1 if no satisfactory GOT offset can be found. */
1713
1714static bfd_vma
f4416af6
AO
1715mips_elf_local_got_index (abfd, ibfd, info, value)
1716 bfd *abfd, *ibfd;
b49e97c9
TS
1717 struct bfd_link_info *info;
1718 bfd_vma value;
1719{
1720 asection *sgot;
1721 struct mips_got_info *g;
b15e6682 1722 struct mips_got_entry *entry;
b49e97c9
TS
1723
1724 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1725
f4416af6 1726 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1727 if (entry)
1728 return entry->gotidx;
1729 else
1730 return MINUS_ONE;
b49e97c9
TS
1731}
1732
1733/* Returns the GOT index for the global symbol indicated by H. */
1734
1735static bfd_vma
f4416af6
AO
1736mips_elf_global_got_index (abfd, ibfd, h)
1737 bfd *abfd, *ibfd;
b49e97c9
TS
1738 struct elf_link_hash_entry *h;
1739{
1740 bfd_vma index;
1741 asection *sgot;
f4416af6 1742 struct mips_got_info *g, *gg;
d0c7ff07 1743 long global_got_dynindx = 0;
b49e97c9 1744
f4416af6
AO
1745 gg = g = mips_elf_got_info (abfd, &sgot);
1746 if (g->bfd2got && ibfd)
1747 {
1748 struct mips_got_entry e, *p;
1749
1750 BFD_ASSERT (h->dynindx >= 0);
1751
1752 g = mips_elf_got_for_ibfd (g, ibfd);
1753 if (g->next != gg)
1754 {
1755 e.abfd = ibfd;
1756 e.symndx = -1;
1757 e.d.h = (struct mips_elf_link_hash_entry *)h;
1758
1759 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1760
1761 BFD_ASSERT (p->gotidx > 0);
1762 return p->gotidx;
1763 }
1764 }
1765
1766 if (gg->global_gotsym != NULL)
1767 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9
TS
1768
1769 /* Once we determine the global GOT entry with the lowest dynamic
1770 symbol table index, we must put all dynamic symbols with greater
1771 indices into the GOT. That makes it easy to calculate the GOT
1772 offset. */
d0c7ff07
TS
1773 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1774 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
b49e97c9
TS
1775 * MIPS_ELF_GOT_SIZE (abfd));
1776 BFD_ASSERT (index < sgot->_raw_size);
1777
1778 return index;
1779}
1780
1781/* Find a GOT entry that is within 32KB of the VALUE. These entries
1782 are supposed to be placed at small offsets in the GOT, i.e.,
1783 within 32KB of GP. Return the index into the GOT for this page,
1784 and store the offset from this entry to the desired address in
1785 OFFSETP, if it is non-NULL. */
1786
1787static bfd_vma
f4416af6
AO
1788mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1789 bfd *abfd, *ibfd;
b49e97c9
TS
1790 struct bfd_link_info *info;
1791 bfd_vma value;
1792 bfd_vma *offsetp;
1793{
1794 asection *sgot;
1795 struct mips_got_info *g;
b15e6682
AO
1796 bfd_vma index;
1797 struct mips_got_entry *entry;
b49e97c9
TS
1798
1799 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1800
f4416af6 1801 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682
AO
1802 (value + 0x8000)
1803 & (~(bfd_vma)0xffff));
b49e97c9 1804
b15e6682
AO
1805 if (!entry)
1806 return MINUS_ONE;
1807
1808 index = entry->gotidx;
b49e97c9
TS
1809
1810 if (offsetp)
f4416af6 1811 *offsetp = value - entry->d.address;
b49e97c9
TS
1812
1813 return index;
1814}
1815
1816/* Find a GOT entry whose higher-order 16 bits are the same as those
1817 for value. Return the index into the GOT for this entry. */
1818
1819static bfd_vma
f4416af6
AO
1820mips_elf_got16_entry (abfd, ibfd, info, value, external)
1821 bfd *abfd, *ibfd;
b49e97c9
TS
1822 struct bfd_link_info *info;
1823 bfd_vma value;
b34976b6 1824 bfd_boolean external;
b49e97c9
TS
1825{
1826 asection *sgot;
1827 struct mips_got_info *g;
b15e6682 1828 struct mips_got_entry *entry;
b49e97c9
TS
1829
1830 if (! external)
1831 {
1832 /* Although the ABI says that it is "the high-order 16 bits" that we
1833 want, it is really the %high value. The complete value is
1834 calculated with a `addiu' of a LO16 relocation, just as with a
1835 HI16/LO16 pair. */
1836 value = mips_elf_high (value) << 16;
1837 }
1838
1839 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1840
f4416af6 1841 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1842 if (entry)
1843 return entry->gotidx;
1844 else
1845 return MINUS_ONE;
b49e97c9
TS
1846}
1847
1848/* Returns the offset for the entry at the INDEXth position
1849 in the GOT. */
1850
1851static bfd_vma
f4416af6 1852mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
b49e97c9
TS
1853 bfd *dynobj;
1854 bfd *output_bfd;
f4416af6 1855 bfd *input_bfd;
b49e97c9
TS
1856 bfd_vma index;
1857{
1858 asection *sgot;
1859 bfd_vma gp;
f4416af6 1860 struct mips_got_info *g;
b49e97c9 1861
f4416af6
AO
1862 g = mips_elf_got_info (dynobj, &sgot);
1863 gp = _bfd_get_gp_value (output_bfd)
1864 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1865
1866 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
1867}
1868
1869/* Create a local GOT entry for VALUE. Return the index of the entry,
1870 or -1 if it could not be created. */
1871
b15e6682 1872static struct mips_got_entry *
f4416af6
AO
1873mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1874 bfd *abfd, *ibfd;
1875 struct mips_got_info *gg;
b49e97c9
TS
1876 asection *sgot;
1877 bfd_vma value;
1878{
b15e6682 1879 struct mips_got_entry entry, **loc;
f4416af6 1880 struct mips_got_info *g;
b15e6682 1881
f4416af6
AO
1882 entry.abfd = NULL;
1883 entry.symndx = -1;
1884 entry.d.address = value;
1885
1886 g = mips_elf_got_for_ibfd (gg, ibfd);
1887 if (g == NULL)
1888 {
1889 g = mips_elf_got_for_ibfd (gg, abfd);
1890 BFD_ASSERT (g != NULL);
1891 }
b15e6682
AO
1892
1893 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1894 INSERT);
1895 if (*loc)
1896 return *loc;
1897
1898 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1899
1900 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1901
1902 if (! *loc)
1903 return NULL;
1904
1905 memcpy (*loc, &entry, sizeof entry);
1906
b49e97c9
TS
1907 if (g->assigned_gotno >= g->local_gotno)
1908 {
f4416af6 1909 (*loc)->gotidx = -1;
b49e97c9
TS
1910 /* We didn't allocate enough space in the GOT. */
1911 (*_bfd_error_handler)
1912 (_("not enough GOT space for local GOT entries"));
1913 bfd_set_error (bfd_error_bad_value);
b15e6682 1914 return NULL;
b49e97c9
TS
1915 }
1916
1917 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
1918 (sgot->contents + entry.gotidx));
1919
1920 return *loc;
b49e97c9
TS
1921}
1922
1923/* Sort the dynamic symbol table so that symbols that need GOT entries
1924 appear towards the end. This reduces the amount of GOT space
1925 required. MAX_LOCAL is used to set the number of local symbols
1926 known to be in the dynamic symbol table. During
1927 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1928 section symbols are added and the count is higher. */
1929
b34976b6 1930static bfd_boolean
b49e97c9
TS
1931mips_elf_sort_hash_table (info, max_local)
1932 struct bfd_link_info *info;
1933 unsigned long max_local;
1934{
1935 struct mips_elf_hash_sort_data hsd;
1936 struct mips_got_info *g;
1937 bfd *dynobj;
1938
1939 dynobj = elf_hash_table (info)->dynobj;
1940
f4416af6
AO
1941 g = mips_elf_got_info (dynobj, NULL);
1942
b49e97c9 1943 hsd.low = NULL;
f4416af6
AO
1944 hsd.max_unref_got_dynindx =
1945 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1946 /* In the multi-got case, assigned_gotno of the master got_info
1947 indicate the number of entries that aren't referenced in the
1948 primary GOT, but that must have entries because there are
1949 dynamic relocations that reference it. Since they aren't
1950 referenced, we move them to the end of the GOT, so that they
1951 don't prevent other entries that are referenced from getting
1952 too large offsets. */
1953 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
1954 hsd.max_non_got_dynindx = max_local;
1955 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1956 elf_hash_table (info)),
1957 mips_elf_sort_hash_table_f,
1958 &hsd);
1959
1960 /* There should have been enough room in the symbol table to
44c410de 1961 accommodate both the GOT and non-GOT symbols. */
b49e97c9 1962 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
1963 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1964 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
1965
1966 /* Now we know which dynamic symbol has the lowest dynamic symbol
1967 table index in the GOT. */
b49e97c9
TS
1968 g->global_gotsym = hsd.low;
1969
b34976b6 1970 return TRUE;
b49e97c9
TS
1971}
1972
1973/* If H needs a GOT entry, assign it the highest available dynamic
1974 index. Otherwise, assign it the lowest available dynamic
1975 index. */
1976
b34976b6 1977static bfd_boolean
b49e97c9
TS
1978mips_elf_sort_hash_table_f (h, data)
1979 struct mips_elf_link_hash_entry *h;
1980 PTR data;
1981{
1982 struct mips_elf_hash_sort_data *hsd
1983 = (struct mips_elf_hash_sort_data *) data;
1984
1985 if (h->root.root.type == bfd_link_hash_warning)
1986 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1987
1988 /* Symbols without dynamic symbol table entries aren't interesting
1989 at all. */
1990 if (h->root.dynindx == -1)
b34976b6 1991 return TRUE;
b49e97c9 1992
f4416af6
AO
1993 /* Global symbols that need GOT entries that are not explicitly
1994 referenced are marked with got offset 2. Those that are
1995 referenced get a 1, and those that don't need GOT entries get
1996 -1. */
1997 if (h->root.got.offset == 2)
1998 {
1999 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2000 hsd->low = (struct elf_link_hash_entry *) h;
2001 h->root.dynindx = hsd->max_unref_got_dynindx++;
2002 }
2003 else if (h->root.got.offset != 1)
b49e97c9
TS
2004 h->root.dynindx = hsd->max_non_got_dynindx++;
2005 else
2006 {
2007 h->root.dynindx = --hsd->min_got_dynindx;
2008 hsd->low = (struct elf_link_hash_entry *) h;
2009 }
2010
b34976b6 2011 return TRUE;
b49e97c9
TS
2012}
2013
2014/* If H is a symbol that needs a global GOT entry, but has a dynamic
2015 symbol table index lower than any we've seen to date, record it for
2016 posterity. */
2017
b34976b6 2018static bfd_boolean
f4416af6 2019mips_elf_record_global_got_symbol (h, abfd, info, g)
b49e97c9 2020 struct elf_link_hash_entry *h;
f4416af6 2021 bfd *abfd;
b49e97c9 2022 struct bfd_link_info *info;
f4416af6 2023 struct mips_got_info *g;
b49e97c9 2024{
f4416af6
AO
2025 struct mips_got_entry entry, **loc;
2026
b49e97c9
TS
2027 /* A global symbol in the GOT must also be in the dynamic symbol
2028 table. */
7c5fcef7
L
2029 if (h->dynindx == -1)
2030 {
2031 switch (ELF_ST_VISIBILITY (h->other))
2032 {
2033 case STV_INTERNAL:
2034 case STV_HIDDEN:
b34976b6 2035 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2036 break;
2037 }
2038 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 2039 return FALSE;
7c5fcef7 2040 }
b49e97c9 2041
f4416af6
AO
2042 entry.abfd = abfd;
2043 entry.symndx = -1;
2044 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2045
2046 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2047 INSERT);
2048
b49e97c9
TS
2049 /* If we've already marked this entry as needing GOT space, we don't
2050 need to do it again. */
f4416af6
AO
2051 if (*loc)
2052 return TRUE;
2053
2054 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2055
2056 if (! *loc)
2057 return FALSE;
2058
2059 entry.gotidx = -1;
2060 memcpy (*loc, &entry, sizeof entry);
2061
b49e97c9 2062 if (h->got.offset != MINUS_ONE)
b34976b6 2063 return TRUE;
b49e97c9
TS
2064
2065 /* By setting this to a value other than -1, we are indicating that
2066 there needs to be a GOT entry for H. Avoid using zero, as the
2067 generic ELF copy_indirect_symbol tests for <= 0. */
2068 h->got.offset = 1;
2069
b34976b6 2070 return TRUE;
b49e97c9 2071}
f4416af6
AO
2072
2073/* Reserve space in G for a GOT entry containing the value of symbol
2074 SYMNDX in input bfd ABDF, plus ADDEND. */
2075
2076static bfd_boolean
2077mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2078 bfd *abfd;
2079 long symndx;
2080 bfd_vma addend;
2081 struct mips_got_info *g;
2082{
2083 struct mips_got_entry entry, **loc;
2084
2085 entry.abfd = abfd;
2086 entry.symndx = symndx;
2087 entry.d.addend = addend;
2088 loc = (struct mips_got_entry **)
2089 htab_find_slot (g->got_entries, &entry, INSERT);
2090
2091 if (*loc)
2092 return TRUE;
2093
2094 entry.gotidx = g->local_gotno++;
2095
2096 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2097
2098 if (! *loc)
2099 return FALSE;
2100
2101 memcpy (*loc, &entry, sizeof entry);
2102
2103 return TRUE;
2104}
2105\f
2106/* Compute the hash value of the bfd in a bfd2got hash entry. */
2107
2108static hashval_t
2109mips_elf_bfd2got_entry_hash (entry_)
2110 const PTR entry_;
2111{
2112 const struct mips_elf_bfd2got_hash *entry
2113 = (struct mips_elf_bfd2got_hash *)entry_;
2114
2115 return entry->bfd->id;
2116}
2117
2118/* Check whether two hash entries have the same bfd. */
2119
2120static int
2121mips_elf_bfd2got_entry_eq (entry1, entry2)
2122 const PTR entry1;
2123 const PTR entry2;
2124{
2125 const struct mips_elf_bfd2got_hash *e1
2126 = (const struct mips_elf_bfd2got_hash *)entry1;
2127 const struct mips_elf_bfd2got_hash *e2
2128 = (const struct mips_elf_bfd2got_hash *)entry2;
2129
2130 return e1->bfd == e2->bfd;
2131}
2132
0b25d3e6 2133/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2134 be the master GOT data. */
2135
2136static struct mips_got_info *
2137mips_elf_got_for_ibfd (g, ibfd)
2138 struct mips_got_info *g;
2139 bfd *ibfd;
2140{
2141 struct mips_elf_bfd2got_hash e, *p;
2142
2143 if (! g->bfd2got)
2144 return g;
2145
2146 e.bfd = ibfd;
2147 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2148 return p ? p->g : NULL;
2149}
2150
2151/* Create one separate got for each bfd that has entries in the global
2152 got, such that we can tell how many local and global entries each
2153 bfd requires. */
2154
2155static int
2156mips_elf_make_got_per_bfd (entryp, p)
2157 void **entryp;
2158 void *p;
2159{
2160 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2161 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2162 htab_t bfd2got = arg->bfd2got;
2163 struct mips_got_info *g;
2164 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2165 void **bfdgotp;
2166
2167 /* Find the got_info for this GOT entry's input bfd. Create one if
2168 none exists. */
2169 bfdgot_entry.bfd = entry->abfd;
2170 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2171 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2172
2173 if (bfdgot != NULL)
2174 g = bfdgot->g;
2175 else
2176 {
2177 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2178 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2179
2180 if (bfdgot == NULL)
2181 {
2182 arg->obfd = 0;
2183 return 0;
2184 }
2185
2186 *bfdgotp = bfdgot;
2187
2188 bfdgot->bfd = entry->abfd;
2189 bfdgot->g = g = (struct mips_got_info *)
2190 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2191 if (g == NULL)
2192 {
2193 arg->obfd = 0;
2194 return 0;
2195 }
2196
2197 g->global_gotsym = NULL;
2198 g->global_gotno = 0;
2199 g->local_gotno = 0;
2200 g->assigned_gotno = -1;
2201 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2202 mips_elf_multi_got_entry_eq,
2203 (htab_del) NULL);
2204 if (g->got_entries == NULL)
2205 {
2206 arg->obfd = 0;
2207 return 0;
2208 }
2209
2210 g->bfd2got = NULL;
2211 g->next = NULL;
2212 }
2213
2214 /* Insert the GOT entry in the bfd's got entry hash table. */
2215 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2216 if (*entryp != NULL)
2217 return 1;
2218
2219 *entryp = entry;
2220
2221 if (entry->symndx >= 0 || entry->d.h->forced_local)
2222 ++g->local_gotno;
2223 else
2224 ++g->global_gotno;
2225
2226 return 1;
2227}
2228
2229/* Attempt to merge gots of different input bfds. Try to use as much
2230 as possible of the primary got, since it doesn't require explicit
2231 dynamic relocations, but don't use bfds that would reference global
2232 symbols out of the addressable range. Failing the primary got,
2233 attempt to merge with the current got, or finish the current got
2234 and then make make the new got current. */
2235
2236static int
2237mips_elf_merge_gots (bfd2got_, p)
2238 void **bfd2got_;
2239 void *p;
2240{
2241 struct mips_elf_bfd2got_hash *bfd2got
2242 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2243 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2244 unsigned int lcount = bfd2got->g->local_gotno;
2245 unsigned int gcount = bfd2got->g->global_gotno;
2246 unsigned int maxcnt = arg->max_count;
2247
2248 /* If we don't have a primary GOT and this is not too big, use it as
2249 a starting point for the primary GOT. */
2250 if (! arg->primary && lcount + gcount <= maxcnt)
2251 {
2252 arg->primary = bfd2got->g;
2253 arg->primary_count = lcount + gcount;
2254 }
2255 /* If it looks like we can merge this bfd's entries with those of
2256 the primary, merge them. The heuristics is conservative, but we
2257 don't have to squeeze it too hard. */
2258 else if (arg->primary
2259 && (arg->primary_count + lcount + gcount) <= maxcnt)
2260 {
2261 struct mips_got_info *g = bfd2got->g;
2262 int old_lcount = arg->primary->local_gotno;
2263 int old_gcount = arg->primary->global_gotno;
2264
2265 bfd2got->g = arg->primary;
2266
2267 htab_traverse (g->got_entries,
2268 mips_elf_make_got_per_bfd,
2269 arg);
2270 if (arg->obfd == NULL)
2271 return 0;
2272
2273 htab_delete (g->got_entries);
2274 /* We don't have to worry about releasing memory of the actual
2275 got entries, since they're all in the master got_entries hash
2276 table anyway. */
2277
2278 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2279 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2280
2281 arg->primary_count = arg->primary->local_gotno
2282 + arg->primary->global_gotno;
2283 }
2284 /* If we can merge with the last-created got, do it. */
2285 else if (arg->current
2286 && arg->current_count + lcount + gcount <= maxcnt)
2287 {
2288 struct mips_got_info *g = bfd2got->g;
2289 int old_lcount = arg->current->local_gotno;
2290 int old_gcount = arg->current->global_gotno;
2291
2292 bfd2got->g = arg->current;
2293
2294 htab_traverse (g->got_entries,
2295 mips_elf_make_got_per_bfd,
2296 arg);
2297 if (arg->obfd == NULL)
2298 return 0;
2299
2300 htab_delete (g->got_entries);
2301
2302 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2303 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2304
2305 arg->current_count = arg->current->local_gotno
2306 + arg->current->global_gotno;
2307 }
2308 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2309 fits; if it turns out that it doesn't, we'll get relocation
2310 overflows anyway. */
2311 else
2312 {
2313 bfd2got->g->next = arg->current;
2314 arg->current = bfd2got->g;
2315
2316 arg->current_count = lcount + gcount;
2317 }
2318
2319 return 1;
2320}
2321
2322/* If passed a NULL mips_got_info in the argument, set the marker used
2323 to tell whether a global symbol needs a got entry (in the primary
2324 got) to the given VALUE.
2325
2326 If passed a pointer G to a mips_got_info in the argument (it must
2327 not be the primary GOT), compute the offset from the beginning of
2328 the (primary) GOT section to the entry in G corresponding to the
2329 global symbol. G's assigned_gotno must contain the index of the
2330 first available global GOT entry in G. VALUE must contain the size
2331 of a GOT entry in bytes. For each global GOT entry that requires a
2332 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2333 marked as not elligible for lazy resolution through a function
2334 stub. */
2335static int
2336mips_elf_set_global_got_offset (entryp, p)
2337 void **entryp;
2338 void *p;
2339{
2340 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2341 struct mips_elf_set_global_got_offset_arg *arg
2342 = (struct mips_elf_set_global_got_offset_arg *)p;
2343 struct mips_got_info *g = arg->g;
2344
2345 if (entry->abfd != NULL && entry->symndx == -1
2346 && entry->d.h->root.dynindx != -1)
2347 {
2348 if (g)
2349 {
2350 BFD_ASSERT (g->global_gotsym == NULL);
2351
2352 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2353 /* We can't do lazy update of GOT entries for
2354 non-primary GOTs since the PLT entries don't use the
2355 right offsets, so punt at it for now. */
2356 entry->d.h->no_fn_stub = TRUE;
2357 if (arg->info->shared
2358 || (elf_hash_table (arg->info)->dynamic_sections_created
2359 && ((entry->d.h->root.elf_link_hash_flags
2360 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2361 && ((entry->d.h->root.elf_link_hash_flags
2362 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2363 ++arg->needed_relocs;
2364 }
2365 else
2366 entry->d.h->root.got.offset = arg->value;
2367 }
2368
2369 return 1;
2370}
2371
2372/* Follow indirect and warning hash entries so that each got entry
2373 points to the final symbol definition. P must point to a pointer
2374 to the hash table we're traversing. Since this traversal may
2375 modify the hash table, we set this pointer to NULL to indicate
2376 we've made a potentially-destructive change to the hash table, so
2377 the traversal must be restarted. */
2378static int
2379mips_elf_resolve_final_got_entry (entryp, p)
2380 void **entryp;
2381 void *p;
2382{
2383 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2384 htab_t got_entries = *(htab_t *)p;
2385
2386 if (entry->abfd != NULL && entry->symndx == -1)
2387 {
2388 struct mips_elf_link_hash_entry *h = entry->d.h;
2389
2390 while (h->root.root.type == bfd_link_hash_indirect
2391 || h->root.root.type == bfd_link_hash_warning)
2392 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2393
2394 if (entry->d.h == h)
2395 return 1;
2396
2397 entry->d.h = h;
2398
2399 /* If we can't find this entry with the new bfd hash, re-insert
2400 it, and get the traversal restarted. */
2401 if (! htab_find (got_entries, entry))
2402 {
2403 htab_clear_slot (got_entries, entryp);
2404 entryp = htab_find_slot (got_entries, entry, INSERT);
2405 if (! *entryp)
2406 *entryp = entry;
2407 /* Abort the traversal, since the whole table may have
2408 moved, and leave it up to the parent to restart the
2409 process. */
2410 *(htab_t *)p = NULL;
2411 return 0;
2412 }
2413 /* We might want to decrement the global_gotno count, but it's
2414 either too early or too late for that at this point. */
2415 }
2416
2417 return 1;
2418}
2419
2420/* Turn indirect got entries in a got_entries table into their final
2421 locations. */
2422static void
2423mips_elf_resolve_final_got_entries (g)
2424 struct mips_got_info *g;
2425{
2426 htab_t got_entries;
2427
2428 do
2429 {
2430 got_entries = g->got_entries;
2431
2432 htab_traverse (got_entries,
2433 mips_elf_resolve_final_got_entry,
2434 &got_entries);
2435 }
2436 while (got_entries == NULL);
2437}
2438
2439/* Return the offset of an input bfd IBFD's GOT from the beginning of
2440 the primary GOT. */
2441static bfd_vma
2442mips_elf_adjust_gp (abfd, g, ibfd)
2443 bfd *abfd;
2444 struct mips_got_info *g;
2445 bfd *ibfd;
2446{
2447 if (g->bfd2got == NULL)
2448 return 0;
2449
2450 g = mips_elf_got_for_ibfd (g, ibfd);
2451 if (! g)
2452 return 0;
2453
2454 BFD_ASSERT (g->next);
2455
2456 g = g->next;
2457
2458 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2459}
2460
2461/* Turn a single GOT that is too big for 16-bit addressing into
2462 a sequence of GOTs, each one 16-bit addressable. */
2463
2464static bfd_boolean
2465mips_elf_multi_got (abfd, info, g, got, pages)
2466 bfd *abfd;
2467 struct bfd_link_info *info;
2468 struct mips_got_info *g;
2469 asection *got;
2470 bfd_size_type pages;
2471{
2472 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2473 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2474 struct mips_got_info *gg;
2475 unsigned int assign;
2476
2477 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2478 mips_elf_bfd2got_entry_eq,
2479 (htab_del) NULL);
2480 if (g->bfd2got == NULL)
2481 return FALSE;
2482
2483 got_per_bfd_arg.bfd2got = g->bfd2got;
2484 got_per_bfd_arg.obfd = abfd;
2485 got_per_bfd_arg.info = info;
2486
2487 /* Count how many GOT entries each input bfd requires, creating a
2488 map from bfd to got info while at that. */
2489 mips_elf_resolve_final_got_entries (g);
2490 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2491 if (got_per_bfd_arg.obfd == NULL)
2492 return FALSE;
2493
2494 got_per_bfd_arg.current = NULL;
2495 got_per_bfd_arg.primary = NULL;
2496 /* Taking out PAGES entries is a worst-case estimate. We could
2497 compute the maximum number of pages that each separate input bfd
2498 uses, but it's probably not worth it. */
2499 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2500 / MIPS_ELF_GOT_SIZE (abfd))
2501 - MIPS_RESERVED_GOTNO - pages);
2502
2503 /* Try to merge the GOTs of input bfds together, as long as they
2504 don't seem to exceed the maximum GOT size, choosing one of them
2505 to be the primary GOT. */
2506 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2507 if (got_per_bfd_arg.obfd == NULL)
2508 return FALSE;
2509
2510 /* If we find any suitable primary GOT, create an empty one. */
2511 if (got_per_bfd_arg.primary == NULL)
2512 {
2513 g->next = (struct mips_got_info *)
2514 bfd_alloc (abfd, sizeof (struct mips_got_info));
2515 if (g->next == NULL)
2516 return FALSE;
2517
2518 g->next->global_gotsym = NULL;
2519 g->next->global_gotno = 0;
2520 g->next->local_gotno = 0;
2521 g->next->assigned_gotno = 0;
2522 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2523 mips_elf_multi_got_entry_eq,
2524 (htab_del) NULL);
2525 if (g->next->got_entries == NULL)
2526 return FALSE;
2527 g->next->bfd2got = NULL;
2528 }
2529 else
2530 g->next = got_per_bfd_arg.primary;
2531 g->next->next = got_per_bfd_arg.current;
2532
2533 /* GG is now the master GOT, and G is the primary GOT. */
2534 gg = g;
2535 g = g->next;
2536
2537 /* Map the output bfd to the primary got. That's what we're going
2538 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2539 didn't mark in check_relocs, and we want a quick way to find it.
2540 We can't just use gg->next because we're going to reverse the
2541 list. */
2542 {
2543 struct mips_elf_bfd2got_hash *bfdgot;
2544 void **bfdgotp;
2545
2546 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2547 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2548
2549 if (bfdgot == NULL)
2550 return FALSE;
2551
2552 bfdgot->bfd = abfd;
2553 bfdgot->g = g;
2554 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2555
2556 BFD_ASSERT (*bfdgotp == NULL);
2557 *bfdgotp = bfdgot;
2558 }
2559
2560 /* The IRIX dynamic linker requires every symbol that is referenced
2561 in a dynamic relocation to be present in the primary GOT, so
2562 arrange for them to appear after those that are actually
2563 referenced.
2564
2565 GNU/Linux could very well do without it, but it would slow down
2566 the dynamic linker, since it would have to resolve every dynamic
2567 symbol referenced in other GOTs more than once, without help from
2568 the cache. Also, knowing that every external symbol has a GOT
2569 helps speed up the resolution of local symbols too, so GNU/Linux
2570 follows IRIX's practice.
2571
2572 The number 2 is used by mips_elf_sort_hash_table_f to count
2573 global GOT symbols that are unreferenced in the primary GOT, with
2574 an initial dynamic index computed from gg->assigned_gotno, where
2575 the number of unreferenced global entries in the primary GOT is
2576 preserved. */
2577 if (1)
2578 {
2579 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2580 g->global_gotno = gg->global_gotno;
2581 set_got_offset_arg.value = 2;
2582 }
2583 else
2584 {
2585 /* This could be used for dynamic linkers that don't optimize
2586 symbol resolution while applying relocations so as to use
2587 primary GOT entries or assuming the symbol is locally-defined.
2588 With this code, we assign lower dynamic indices to global
2589 symbols that are not referenced in the primary GOT, so that
2590 their entries can be omitted. */
2591 gg->assigned_gotno = 0;
2592 set_got_offset_arg.value = -1;
2593 }
2594
2595 /* Reorder dynamic symbols as described above (which behavior
2596 depends on the setting of VALUE). */
2597 set_got_offset_arg.g = NULL;
2598 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2599 &set_got_offset_arg);
2600 set_got_offset_arg.value = 1;
2601 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2602 &set_got_offset_arg);
2603 if (! mips_elf_sort_hash_table (info, 1))
2604 return FALSE;
2605
2606 /* Now go through the GOTs assigning them offset ranges.
2607 [assigned_gotno, local_gotno[ will be set to the range of local
2608 entries in each GOT. We can then compute the end of a GOT by
2609 adding local_gotno to global_gotno. We reverse the list and make
2610 it circular since then we'll be able to quickly compute the
2611 beginning of a GOT, by computing the end of its predecessor. To
2612 avoid special cases for the primary GOT, while still preserving
2613 assertions that are valid for both single- and multi-got links,
2614 we arrange for the main got struct to have the right number of
2615 global entries, but set its local_gotno such that the initial
2616 offset of the primary GOT is zero. Remember that the primary GOT
2617 will become the last item in the circular linked list, so it
2618 points back to the master GOT. */
2619 gg->local_gotno = -g->global_gotno;
2620 gg->global_gotno = g->global_gotno;
2621 assign = 0;
2622 gg->next = gg;
2623
2624 do
2625 {
2626 struct mips_got_info *gn;
2627
2628 assign += MIPS_RESERVED_GOTNO;
2629 g->assigned_gotno = assign;
2630 g->local_gotno += assign + pages;
2631 assign = g->local_gotno + g->global_gotno;
2632
2633 /* Take g out of the direct list, and push it onto the reversed
2634 list that gg points to. */
2635 gn = g->next;
2636 g->next = gg->next;
2637 gg->next = g;
2638 g = gn;
2639 }
2640 while (g);
2641
2642 got->_raw_size = (gg->next->local_gotno
2643 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2644
2645 return TRUE;
2646}
2647
b49e97c9
TS
2648\f
2649/* Returns the first relocation of type r_type found, beginning with
2650 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2651
2652static const Elf_Internal_Rela *
2653mips_elf_next_relocation (abfd, r_type, relocation, relend)
2654 bfd *abfd ATTRIBUTE_UNUSED;
2655 unsigned int r_type;
2656 const Elf_Internal_Rela *relocation;
2657 const Elf_Internal_Rela *relend;
2658{
2659 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2660 immediately following. However, for the IRIX6 ABI, the next
2661 relocation may be a composed relocation consisting of several
2662 relocations for the same address. In that case, the R_MIPS_LO16
2663 relocation may occur as one of these. We permit a similar
2664 extension in general, as that is useful for GCC. */
2665 while (relocation < relend)
2666 {
2667 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2668 return relocation;
2669
2670 ++relocation;
2671 }
2672
2673 /* We didn't find it. */
2674 bfd_set_error (bfd_error_bad_value);
2675 return NULL;
2676}
2677
2678/* Return whether a relocation is against a local symbol. */
2679
b34976b6 2680static bfd_boolean
b49e97c9
TS
2681mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2682 check_forced)
2683 bfd *input_bfd;
2684 const Elf_Internal_Rela *relocation;
2685 asection **local_sections;
b34976b6 2686 bfd_boolean check_forced;
b49e97c9
TS
2687{
2688 unsigned long r_symndx;
2689 Elf_Internal_Shdr *symtab_hdr;
2690 struct mips_elf_link_hash_entry *h;
2691 size_t extsymoff;
2692
2693 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2694 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2695 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2696
2697 if (r_symndx < extsymoff)
b34976b6 2698 return TRUE;
b49e97c9 2699 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 2700 return TRUE;
b49e97c9
TS
2701
2702 if (check_forced)
2703 {
2704 /* Look up the hash table to check whether the symbol
2705 was forced local. */
2706 h = (struct mips_elf_link_hash_entry *)
2707 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2708 /* Find the real hash-table entry for this symbol. */
2709 while (h->root.root.type == bfd_link_hash_indirect
2710 || h->root.root.type == bfd_link_hash_warning)
2711 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2712 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
b34976b6 2713 return TRUE;
b49e97c9
TS
2714 }
2715
b34976b6 2716 return FALSE;
b49e97c9
TS
2717}
2718\f
2719/* Sign-extend VALUE, which has the indicated number of BITS. */
2720
2721static bfd_vma
2722mips_elf_sign_extend (value, bits)
2723 bfd_vma value;
2724 int bits;
2725{
2726 if (value & ((bfd_vma) 1 << (bits - 1)))
2727 /* VALUE is negative. */
2728 value |= ((bfd_vma) - 1) << bits;
2729
2730 return value;
2731}
2732
2733/* Return non-zero if the indicated VALUE has overflowed the maximum
2734 range expressable by a signed number with the indicated number of
2735 BITS. */
2736
b34976b6 2737static bfd_boolean
b49e97c9
TS
2738mips_elf_overflow_p (value, bits)
2739 bfd_vma value;
2740 int bits;
2741{
2742 bfd_signed_vma svalue = (bfd_signed_vma) value;
2743
2744 if (svalue > (1 << (bits - 1)) - 1)
2745 /* The value is too big. */
b34976b6 2746 return TRUE;
b49e97c9
TS
2747 else if (svalue < -(1 << (bits - 1)))
2748 /* The value is too small. */
b34976b6 2749 return TRUE;
b49e97c9
TS
2750
2751 /* All is well. */
b34976b6 2752 return FALSE;
b49e97c9
TS
2753}
2754
2755/* Calculate the %high function. */
2756
2757static bfd_vma
2758mips_elf_high (value)
2759 bfd_vma value;
2760{
2761 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2762}
2763
2764/* Calculate the %higher function. */
2765
2766static bfd_vma
2767mips_elf_higher (value)
2768 bfd_vma value ATTRIBUTE_UNUSED;
2769{
2770#ifdef BFD64
2771 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2772#else
2773 abort ();
2774 return (bfd_vma) -1;
2775#endif
2776}
2777
2778/* Calculate the %highest function. */
2779
2780static bfd_vma
2781mips_elf_highest (value)
2782 bfd_vma value ATTRIBUTE_UNUSED;
2783{
2784#ifdef BFD64
b15e6682 2785 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
2786#else
2787 abort ();
2788 return (bfd_vma) -1;
2789#endif
2790}
2791\f
2792/* Create the .compact_rel section. */
2793
b34976b6 2794static bfd_boolean
b49e97c9
TS
2795mips_elf_create_compact_rel_section (abfd, info)
2796 bfd *abfd;
2797 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2798{
2799 flagword flags;
2800 register asection *s;
2801
2802 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2803 {
2804 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2805 | SEC_READONLY);
2806
2807 s = bfd_make_section (abfd, ".compact_rel");
2808 if (s == NULL
2809 || ! bfd_set_section_flags (abfd, s, flags)
2810 || ! bfd_set_section_alignment (abfd, s,
2811 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 2812 return FALSE;
b49e97c9
TS
2813
2814 s->_raw_size = sizeof (Elf32_External_compact_rel);
2815 }
2816
b34976b6 2817 return TRUE;
b49e97c9
TS
2818}
2819
2820/* Create the .got section to hold the global offset table. */
2821
b34976b6 2822static bfd_boolean
f4416af6 2823mips_elf_create_got_section (abfd, info, maybe_exclude)
b49e97c9
TS
2824 bfd *abfd;
2825 struct bfd_link_info *info;
f4416af6 2826 bfd_boolean maybe_exclude;
b49e97c9
TS
2827{
2828 flagword flags;
2829 register asection *s;
2830 struct elf_link_hash_entry *h;
14a793b2 2831 struct bfd_link_hash_entry *bh;
b49e97c9
TS
2832 struct mips_got_info *g;
2833 bfd_size_type amt;
2834
2835 /* This function may be called more than once. */
f4416af6
AO
2836 s = mips_elf_got_section (abfd, TRUE);
2837 if (s)
2838 {
2839 if (! maybe_exclude)
2840 s->flags &= ~SEC_EXCLUDE;
2841 return TRUE;
2842 }
b49e97c9
TS
2843
2844 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2845 | SEC_LINKER_CREATED);
2846
f4416af6
AO
2847 if (maybe_exclude)
2848 flags |= SEC_EXCLUDE;
2849
b49e97c9
TS
2850 s = bfd_make_section (abfd, ".got");
2851 if (s == NULL
2852 || ! bfd_set_section_flags (abfd, s, flags)
2853 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 2854 return FALSE;
b49e97c9
TS
2855
2856 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2857 linker script because we don't want to define the symbol if we
2858 are not creating a global offset table. */
14a793b2 2859 bh = NULL;
b49e97c9
TS
2860 if (! (_bfd_generic_link_add_one_symbol
2861 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
b34976b6 2862 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 2863 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 2864 return FALSE;
14a793b2
AM
2865
2866 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
2867 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2868 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2869 h->type = STT_OBJECT;
2870
2871 if (info->shared
2872 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 2873 return FALSE;
b49e97c9 2874
b49e97c9
TS
2875 amt = sizeof (struct mips_got_info);
2876 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2877 if (g == NULL)
b34976b6 2878 return FALSE;
b49e97c9
TS
2879 g->global_gotsym = NULL;
2880 g->local_gotno = MIPS_RESERVED_GOTNO;
2881 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
2882 g->bfd2got = NULL;
2883 g->next = NULL;
b15e6682
AO
2884 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2885 mips_elf_got_entry_eq,
2886 (htab_del) NULL);
2887 if (g->got_entries == NULL)
2888 return FALSE;
f0abc2a1
AM
2889 mips_elf_section_data (s)->u.got_info = g;
2890 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
2891 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2892
b34976b6 2893 return TRUE;
b49e97c9
TS
2894}
2895
2896/* Returns the .msym section for ABFD, creating it if it does not
2897 already exist. Returns NULL to indicate error. */
2898
2899static asection *
2900mips_elf_create_msym_section (abfd)
2901 bfd *abfd;
2902{
2903 asection *s;
2904
2905 s = bfd_get_section_by_name (abfd, ".msym");
2906 if (!s)
2907 {
2908 s = bfd_make_section (abfd, ".msym");
2909 if (!s
2910 || !bfd_set_section_flags (abfd, s,
2911 SEC_ALLOC
2912 | SEC_LOAD
2913 | SEC_HAS_CONTENTS
2914 | SEC_LINKER_CREATED
2915 | SEC_READONLY)
2916 || !bfd_set_section_alignment (abfd, s,
2917 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2918 return NULL;
2919 }
2920
2921 return s;
2922}
2923\f
2924/* Calculate the value produced by the RELOCATION (which comes from
2925 the INPUT_BFD). The ADDEND is the addend to use for this
2926 RELOCATION; RELOCATION->R_ADDEND is ignored.
2927
2928 The result of the relocation calculation is stored in VALUEP.
2929 REQUIRE_JALXP indicates whether or not the opcode used with this
2930 relocation must be JALX.
2931
2932 This function returns bfd_reloc_continue if the caller need take no
2933 further action regarding this relocation, bfd_reloc_notsupported if
2934 something goes dramatically wrong, bfd_reloc_overflow if an
2935 overflow occurs, and bfd_reloc_ok to indicate success. */
2936
2937static bfd_reloc_status_type
2938mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2939 relocation, addend, howto, local_syms,
2940 local_sections, valuep, namep,
bce03d3d 2941 require_jalxp, save_addend)
b49e97c9
TS
2942 bfd *abfd;
2943 bfd *input_bfd;
2944 asection *input_section;
2945 struct bfd_link_info *info;
2946 const Elf_Internal_Rela *relocation;
2947 bfd_vma addend;
2948 reloc_howto_type *howto;
2949 Elf_Internal_Sym *local_syms;
2950 asection **local_sections;
2951 bfd_vma *valuep;
2952 const char **namep;
b34976b6
AM
2953 bfd_boolean *require_jalxp;
2954 bfd_boolean save_addend;
b49e97c9
TS
2955{
2956 /* The eventual value we will return. */
2957 bfd_vma value;
2958 /* The address of the symbol against which the relocation is
2959 occurring. */
2960 bfd_vma symbol = 0;
2961 /* The final GP value to be used for the relocatable, executable, or
2962 shared object file being produced. */
2963 bfd_vma gp = MINUS_ONE;
2964 /* The place (section offset or address) of the storage unit being
2965 relocated. */
2966 bfd_vma p;
2967 /* The value of GP used to create the relocatable object. */
2968 bfd_vma gp0 = MINUS_ONE;
2969 /* The offset into the global offset table at which the address of
2970 the relocation entry symbol, adjusted by the addend, resides
2971 during execution. */
2972 bfd_vma g = MINUS_ONE;
2973 /* The section in which the symbol referenced by the relocation is
2974 located. */
2975 asection *sec = NULL;
2976 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 2977 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 2978 symbol. */
b34976b6
AM
2979 bfd_boolean local_p, was_local_p;
2980 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2981 bfd_boolean gp_disp_p = FALSE;
b49e97c9
TS
2982 Elf_Internal_Shdr *symtab_hdr;
2983 size_t extsymoff;
2984 unsigned long r_symndx;
2985 int r_type;
b34976b6 2986 /* TRUE if overflow occurred during the calculation of the
b49e97c9 2987 relocation value. */
b34976b6
AM
2988 bfd_boolean overflowed_p;
2989 /* TRUE if this relocation refers to a MIPS16 function. */
2990 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
2991
2992 /* Parse the relocation. */
2993 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2994 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
2995 p = (input_section->output_section->vma
2996 + input_section->output_offset
2997 + relocation->r_offset);
2998
2999 /* Assume that there will be no overflow. */
b34976b6 3000 overflowed_p = FALSE;
b49e97c9
TS
3001
3002 /* Figure out whether or not the symbol is local, and get the offset
3003 used in the array of hash table entries. */
3004 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3005 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3006 local_sections, FALSE);
bce03d3d 3007 was_local_p = local_p;
b49e97c9
TS
3008 if (! elf_bad_symtab (input_bfd))
3009 extsymoff = symtab_hdr->sh_info;
3010 else
3011 {
3012 /* The symbol table does not follow the rule that local symbols
3013 must come before globals. */
3014 extsymoff = 0;
3015 }
3016
3017 /* Figure out the value of the symbol. */
3018 if (local_p)
3019 {
3020 Elf_Internal_Sym *sym;
3021
3022 sym = local_syms + r_symndx;
3023 sec = local_sections[r_symndx];
3024
3025 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3026 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3027 || (sec->flags & SEC_MERGE))
b49e97c9 3028 symbol += sym->st_value;
d4df96e6
L
3029 if ((sec->flags & SEC_MERGE)
3030 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3031 {
3032 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3033 addend -= symbol;
3034 addend += sec->output_section->vma + sec->output_offset;
3035 }
b49e97c9
TS
3036
3037 /* MIPS16 text labels should be treated as odd. */
3038 if (sym->st_other == STO_MIPS16)
3039 ++symbol;
3040
3041 /* Record the name of this symbol, for our caller. */
3042 *namep = bfd_elf_string_from_elf_section (input_bfd,
3043 symtab_hdr->sh_link,
3044 sym->st_name);
3045 if (*namep == '\0')
3046 *namep = bfd_section_name (input_bfd, sec);
3047
3048 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3049 }
3050 else
3051 {
3052 /* For global symbols we look up the symbol in the hash-table. */
3053 h = ((struct mips_elf_link_hash_entry *)
3054 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3055 /* Find the real hash-table entry for this symbol. */
3056 while (h->root.root.type == bfd_link_hash_indirect
3057 || h->root.root.type == bfd_link_hash_warning)
3058 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3059
3060 /* Record the name of this symbol, for our caller. */
3061 *namep = h->root.root.root.string;
3062
3063 /* See if this is the special _gp_disp symbol. Note that such a
3064 symbol must always be a global symbol. */
3065 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3066 && ! NEWABI_P (input_bfd))
3067 {
3068 /* Relocations against _gp_disp are permitted only with
3069 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3070 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3071 return bfd_reloc_notsupported;
3072
b34976b6 3073 gp_disp_p = TRUE;
b49e97c9
TS
3074 }
3075 /* If this symbol is defined, calculate its address. Note that
3076 _gp_disp is a magic symbol, always implicitly defined by the
3077 linker, so it's inappropriate to check to see whether or not
3078 its defined. */
3079 else if ((h->root.root.type == bfd_link_hash_defined
3080 || h->root.root.type == bfd_link_hash_defweak)
3081 && h->root.root.u.def.section)
3082 {
3083 sec = h->root.root.u.def.section;
3084 if (sec->output_section)
3085 symbol = (h->root.root.u.def.value
3086 + sec->output_section->vma
3087 + sec->output_offset);
3088 else
3089 symbol = h->root.root.u.def.value;
3090 }
3091 else if (h->root.root.type == bfd_link_hash_undefweak)
3092 /* We allow relocations against undefined weak symbols, giving
3093 it the value zero, so that you can undefined weak functions
3094 and check to see if they exist by looking at their
3095 addresses. */
3096 symbol = 0;
3097 else if (info->shared
b49e97c9
TS
3098 && !info->no_undefined
3099 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3100 symbol = 0;
3101 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3102 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3103 {
3104 /* If this is a dynamic link, we should have created a
3105 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3106 in in _bfd_mips_elf_create_dynamic_sections.
3107 Otherwise, we should define the symbol with a value of 0.
3108 FIXME: It should probably get into the symbol table
3109 somehow as well. */
3110 BFD_ASSERT (! info->shared);
3111 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3112 symbol = 0;
3113 }
3114 else
3115 {
3116 if (! ((*info->callbacks->undefined_symbol)
3117 (info, h->root.root.root.string, input_bfd,
3118 input_section, relocation->r_offset,
3119 (!info->shared || info->no_undefined
3120 || ELF_ST_VISIBILITY (h->root.other)))))
3121 return bfd_reloc_undefined;
3122 symbol = 0;
3123 }
3124
3125 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3126 }
3127
3128 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3129 need to redirect the call to the stub, unless we're already *in*
3130 a stub. */
3131 if (r_type != R_MIPS16_26 && !info->relocateable
3132 && ((h != NULL && h->fn_stub != NULL)
3133 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3134 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3135 && !mips_elf_stub_section_p (input_bfd, input_section))
3136 {
3137 /* This is a 32- or 64-bit call to a 16-bit function. We should
3138 have already noticed that we were going to need the
3139 stub. */
3140 if (local_p)
3141 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3142 else
3143 {
3144 BFD_ASSERT (h->need_fn_stub);
3145 sec = h->fn_stub;
3146 }
3147
3148 symbol = sec->output_section->vma + sec->output_offset;
3149 }
3150 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3151 need to redirect the call to the stub. */
3152 else if (r_type == R_MIPS16_26 && !info->relocateable
3153 && h != NULL
3154 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3155 && !target_is_16_bit_code_p)
3156 {
3157 /* If both call_stub and call_fp_stub are defined, we can figure
3158 out which one to use by seeing which one appears in the input
3159 file. */
3160 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3161 {
3162 asection *o;
3163
3164 sec = NULL;
3165 for (o = input_bfd->sections; o != NULL; o = o->next)
3166 {
3167 if (strncmp (bfd_get_section_name (input_bfd, o),
3168 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3169 {
3170 sec = h->call_fp_stub;
3171 break;
3172 }
3173 }
3174 if (sec == NULL)
3175 sec = h->call_stub;
3176 }
3177 else if (h->call_stub != NULL)
3178 sec = h->call_stub;
3179 else
3180 sec = h->call_fp_stub;
3181
3182 BFD_ASSERT (sec->_raw_size > 0);
3183 symbol = sec->output_section->vma + sec->output_offset;
3184 }
3185
3186 /* Calls from 16-bit code to 32-bit code and vice versa require the
3187 special jalx instruction. */
3188 *require_jalxp = (!info->relocateable
3189 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3190 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3191
3192 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3193 local_sections, TRUE);
b49e97c9
TS
3194
3195 /* If we haven't already determined the GOT offset, or the GP value,
3196 and we're going to need it, get it now. */
3197 switch (r_type)
3198 {
3199 case R_MIPS_CALL16:
3200 case R_MIPS_GOT16:
3201 case R_MIPS_GOT_DISP:
3202 case R_MIPS_GOT_HI16:
3203 case R_MIPS_CALL_HI16:
3204 case R_MIPS_GOT_LO16:
3205 case R_MIPS_CALL_LO16:
3206 /* Find the index into the GOT where this value is located. */
3207 if (!local_p)
3208 {
3209 BFD_ASSERT (addend == 0);
3210 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3211 input_bfd,
b49e97c9
TS
3212 (struct elf_link_hash_entry *) h);
3213 if (! elf_hash_table(info)->dynamic_sections_created
3214 || (info->shared
3215 && (info->symbolic || h->root.dynindx == -1)
3216 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3217 {
3218 /* This is a static link or a -Bsymbolic link. The
3219 symbol is defined locally, or was forced to be local.
3220 We must initialize this entry in the GOT. */
3221 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3222 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
b49e97c9
TS
3223 MIPS_ELF_PUT_WORD (tmpbfd, symbol + addend, sgot->contents + g);
3224 }
3225 }
3226 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3227 /* There's no need to create a local GOT entry here; the
3228 calculation for a local GOT16 entry does not involve G. */
3229 break;
3230 else
3231 {
f4416af6
AO
3232 g = mips_elf_local_got_index (abfd, input_bfd,
3233 info, symbol + addend);
b49e97c9
TS
3234 if (g == MINUS_ONE)
3235 return bfd_reloc_outofrange;
3236 }
3237
3238 /* Convert GOT indices to actual offsets. */
3239 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3240 abfd, input_bfd, g);
b49e97c9
TS
3241 break;
3242
3243 case R_MIPS_HI16:
3244 case R_MIPS_LO16:
3245 case R_MIPS16_GPREL:
3246 case R_MIPS_GPREL16:
3247 case R_MIPS_GPREL32:
3248 case R_MIPS_LITERAL:
3249 gp0 = _bfd_get_gp_value (input_bfd);
3250 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3251 if (elf_hash_table (info)->dynobj)
3252 gp += mips_elf_adjust_gp (abfd,
3253 mips_elf_got_info
3254 (elf_hash_table (info)->dynobj, NULL),
3255 input_bfd);
b49e97c9
TS
3256 break;
3257
3258 default:
3259 break;
3260 }
3261
3262 /* Figure out what kind of relocation is being performed. */
3263 switch (r_type)
3264 {
3265 case R_MIPS_NONE:
3266 return bfd_reloc_continue;
3267
3268 case R_MIPS_16:
3269 value = symbol + mips_elf_sign_extend (addend, 16);
3270 overflowed_p = mips_elf_overflow_p (value, 16);
3271 break;
3272
3273 case R_MIPS_32:
3274 case R_MIPS_REL32:
3275 case R_MIPS_64:
3276 if ((info->shared
3277 || (elf_hash_table (info)->dynamic_sections_created
3278 && h != NULL
3279 && ((h->root.elf_link_hash_flags
3280 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3281 && ((h->root.elf_link_hash_flags
3282 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3283 && r_symndx != 0
3284 && (input_section->flags & SEC_ALLOC) != 0)
3285 {
3286 /* If we're creating a shared library, or this relocation is
3287 against a symbol in a shared library, then we can't know
3288 where the symbol will end up. So, we create a relocation
3289 record in the output, and leave the job up to the dynamic
3290 linker. */
3291 value = addend;
3292 if (!mips_elf_create_dynamic_relocation (abfd,
3293 info,
3294 relocation,
3295 h,
3296 sec,
3297 symbol,
3298 &value,
3299 input_section))
3300 return bfd_reloc_undefined;
3301 }
3302 else
3303 {
3304 if (r_type != R_MIPS_REL32)
3305 value = symbol + addend;
3306 else
3307 value = addend;
3308 }
3309 value &= howto->dst_mask;
3310 break;
3311
3312 case R_MIPS_PC32:
3313 case R_MIPS_PC64:
3314 case R_MIPS_GNU_REL_LO16:
3315 value = symbol + addend - p;
3316 value &= howto->dst_mask;
3317 break;
3318
0b25d3e6
AO
3319 case R_MIPS_GNU_REL16_S2:
3320 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
3321 overflowed_p = mips_elf_overflow_p (value, 18);
3322 value = (value >> 2) & howto->dst_mask;
3323 break;
3324
b49e97c9
TS
3325 case R_MIPS_GNU_REL_HI16:
3326 /* Instead of subtracting 'p' here, we should be subtracting the
3327 equivalent value for the LO part of the reloc, since the value
3328 here is relative to that address. Because that's not easy to do,
3329 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3330 the comment there for more information. */
3331 value = mips_elf_high (addend + symbol - p);
3332 value &= howto->dst_mask;
3333 break;
3334
3335 case R_MIPS16_26:
3336 /* The calculation for R_MIPS16_26 is just the same as for an
3337 R_MIPS_26. It's only the storage of the relocated field into
3338 the output file that's different. That's handled in
3339 mips_elf_perform_relocation. So, we just fall through to the
3340 R_MIPS_26 case here. */
3341 case R_MIPS_26:
3342 if (local_p)
3343 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3344 else
3345 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
3346 value &= howto->dst_mask;
3347 break;
3348
3349 case R_MIPS_HI16:
3350 if (!gp_disp_p)
3351 {
3352 value = mips_elf_high (addend + symbol);
3353 value &= howto->dst_mask;
3354 }
3355 else
3356 {
3357 value = mips_elf_high (addend + gp - p);
3358 overflowed_p = mips_elf_overflow_p (value, 16);
3359 }
3360 break;
3361
3362 case R_MIPS_LO16:
3363 if (!gp_disp_p)
3364 value = (symbol + addend) & howto->dst_mask;
3365 else
3366 {
3367 value = addend + gp - p + 4;
3368 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 3369 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
3370 _gp_disp are normally generated from the .cpload
3371 pseudo-op. It generates code that normally looks like
3372 this:
3373
3374 lui $gp,%hi(_gp_disp)
3375 addiu $gp,$gp,%lo(_gp_disp)
3376 addu $gp,$gp,$t9
3377
3378 Here $t9 holds the address of the function being called,
3379 as required by the MIPS ELF ABI. The R_MIPS_LO16
3380 relocation can easily overflow in this situation, but the
3381 R_MIPS_HI16 relocation will handle the overflow.
3382 Therefore, we consider this a bug in the MIPS ABI, and do
3383 not check for overflow here. */
3384 }
3385 break;
3386
3387 case R_MIPS_LITERAL:
3388 /* Because we don't merge literal sections, we can handle this
3389 just like R_MIPS_GPREL16. In the long run, we should merge
3390 shared literals, and then we will need to additional work
3391 here. */
3392
3393 /* Fall through. */
3394
3395 case R_MIPS16_GPREL:
3396 /* The R_MIPS16_GPREL performs the same calculation as
3397 R_MIPS_GPREL16, but stores the relocated bits in a different
3398 order. We don't need to do anything special here; the
3399 differences are handled in mips_elf_perform_relocation. */
3400 case R_MIPS_GPREL16:
bce03d3d
AO
3401 /* Only sign-extend the addend if it was extracted from the
3402 instruction. If the addend was separate, leave it alone,
3403 otherwise we may lose significant bits. */
3404 if (howto->partial_inplace)
3405 addend = mips_elf_sign_extend (addend, 16);
3406 value = symbol + addend - gp;
3407 /* If the symbol was local, any earlier relocatable links will
3408 have adjusted its addend with the gp offset, so compensate
3409 for that now. Don't do it for symbols forced local in this
3410 link, though, since they won't have had the gp offset applied
3411 to them before. */
3412 if (was_local_p)
3413 value += gp0;
b49e97c9
TS
3414 overflowed_p = mips_elf_overflow_p (value, 16);
3415 break;
3416
3417 case R_MIPS_GOT16:
3418 case R_MIPS_CALL16:
3419 if (local_p)
3420 {
b34976b6 3421 bfd_boolean forced;
b49e97c9
TS
3422
3423 /* The special case is when the symbol is forced to be local. We
3424 need the full address in the GOT since no R_MIPS_LO16 relocation
3425 follows. */
3426 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3427 local_sections, FALSE);
f4416af6
AO
3428 value = mips_elf_got16_entry (abfd, input_bfd, info,
3429 symbol + addend, forced);
b49e97c9
TS
3430 if (value == MINUS_ONE)
3431 return bfd_reloc_outofrange;
3432 value
3433 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3434 abfd, input_bfd, value);
b49e97c9
TS
3435 overflowed_p = mips_elf_overflow_p (value, 16);
3436 break;
3437 }
3438
3439 /* Fall through. */
3440
3441 case R_MIPS_GOT_DISP:
3442 value = g;
3443 overflowed_p = mips_elf_overflow_p (value, 16);
3444 break;
3445
3446 case R_MIPS_GPREL32:
bce03d3d
AO
3447 value = (addend + symbol + gp0 - gp);
3448 if (!save_addend)
3449 value &= howto->dst_mask;
b49e97c9
TS
3450 break;
3451
3452 case R_MIPS_PC16:
0b25d3e6
AO
3453 value = mips_elf_sign_extend (addend, 16) + symbol - p;
3454 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
3455 break;
3456
3457 case R_MIPS_GOT_HI16:
3458 case R_MIPS_CALL_HI16:
3459 /* We're allowed to handle these two relocations identically.
3460 The dynamic linker is allowed to handle the CALL relocations
3461 differently by creating a lazy evaluation stub. */
3462 value = g;
3463 value = mips_elf_high (value);
3464 value &= howto->dst_mask;
3465 break;
3466
3467 case R_MIPS_GOT_LO16:
3468 case R_MIPS_CALL_LO16:
3469 value = g & howto->dst_mask;
3470 break;
3471
3472 case R_MIPS_GOT_PAGE:
f4416af6 3473 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
3474 if (value == MINUS_ONE)
3475 return bfd_reloc_outofrange;
3476 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3477 abfd, input_bfd, value);
b49e97c9
TS
3478 overflowed_p = mips_elf_overflow_p (value, 16);
3479 break;
3480
3481 case R_MIPS_GOT_OFST:
f4416af6 3482 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
b49e97c9
TS
3483 overflowed_p = mips_elf_overflow_p (value, 16);
3484 break;
3485
3486 case R_MIPS_SUB:
3487 value = symbol - addend;
3488 value &= howto->dst_mask;
3489 break;
3490
3491 case R_MIPS_HIGHER:
3492 value = mips_elf_higher (addend + symbol);
3493 value &= howto->dst_mask;
3494 break;
3495
3496 case R_MIPS_HIGHEST:
3497 value = mips_elf_highest (addend + symbol);
3498 value &= howto->dst_mask;
3499 break;
3500
3501 case R_MIPS_SCN_DISP:
3502 value = symbol + addend - sec->output_offset;
3503 value &= howto->dst_mask;
3504 break;
3505
3506 case R_MIPS_PJUMP:
3507 case R_MIPS_JALR:
3508 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3509 hint; we could improve performance by honoring that hint. */
3510 return bfd_reloc_continue;
3511
3512 case R_MIPS_GNU_VTINHERIT:
3513 case R_MIPS_GNU_VTENTRY:
3514 /* We don't do anything with these at present. */
3515 return bfd_reloc_continue;
3516
3517 default:
3518 /* An unrecognized relocation type. */
3519 return bfd_reloc_notsupported;
3520 }
3521
3522 /* Store the VALUE for our caller. */
3523 *valuep = value;
3524 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3525}
3526
3527/* Obtain the field relocated by RELOCATION. */
3528
3529static bfd_vma
3530mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3531 reloc_howto_type *howto;
3532 const Elf_Internal_Rela *relocation;
3533 bfd *input_bfd;
3534 bfd_byte *contents;
3535{
3536 bfd_vma x;
3537 bfd_byte *location = contents + relocation->r_offset;
3538
3539 /* Obtain the bytes. */
3540 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3541
3542 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3543 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3544 && bfd_little_endian (input_bfd))
3545 /* The two 16-bit words will be reversed on a little-endian system.
3546 See mips_elf_perform_relocation for more details. */
3547 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3548
3549 return x;
3550}
3551
3552/* It has been determined that the result of the RELOCATION is the
3553 VALUE. Use HOWTO to place VALUE into the output file at the
3554 appropriate position. The SECTION is the section to which the
b34976b6 3555 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
3556 for the relocation must be either JAL or JALX, and it is
3557 unconditionally converted to JALX.
3558
b34976b6 3559 Returns FALSE if anything goes wrong. */
b49e97c9 3560
b34976b6 3561static bfd_boolean
b49e97c9
TS
3562mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3563 input_section, contents, require_jalx)
3564 struct bfd_link_info *info;
3565 reloc_howto_type *howto;
3566 const Elf_Internal_Rela *relocation;
3567 bfd_vma value;
3568 bfd *input_bfd;
3569 asection *input_section;
3570 bfd_byte *contents;
b34976b6 3571 bfd_boolean require_jalx;
b49e97c9
TS
3572{
3573 bfd_vma x;
3574 bfd_byte *location;
3575 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3576
3577 /* Figure out where the relocation is occurring. */
3578 location = contents + relocation->r_offset;
3579
3580 /* Obtain the current value. */
3581 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3582
3583 /* Clear the field we are setting. */
3584 x &= ~howto->dst_mask;
3585
3586 /* If this is the R_MIPS16_26 relocation, we must store the
3587 value in a funny way. */
3588 if (r_type == R_MIPS16_26)
3589 {
3590 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3591 Most mips16 instructions are 16 bits, but these instructions
3592 are 32 bits.
3593
3594 The format of these instructions is:
3595
3596 +--------------+--------------------------------+
3597 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3598 +--------------+--------------------------------+
3599 ! Immediate 15:0 !
3600 +-----------------------------------------------+
3601
3602 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3603 Note that the immediate value in the first word is swapped.
3604
3605 When producing a relocateable object file, R_MIPS16_26 is
3606 handled mostly like R_MIPS_26. In particular, the addend is
3607 stored as a straight 26-bit value in a 32-bit instruction.
3608 (gas makes life simpler for itself by never adjusting a
3609 R_MIPS16_26 reloc to be against a section, so the addend is
3610 always zero). However, the 32 bit instruction is stored as 2
3611 16-bit values, rather than a single 32-bit value. In a
3612 big-endian file, the result is the same; in a little-endian
3613 file, the two 16-bit halves of the 32 bit value are swapped.
3614 This is so that a disassembler can recognize the jal
3615 instruction.
3616
3617 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3618 instruction stored as two 16-bit values. The addend A is the
3619 contents of the targ26 field. The calculation is the same as
3620 R_MIPS_26. When storing the calculated value, reorder the
3621 immediate value as shown above, and don't forget to store the
3622 value as two 16-bit values.
3623
3624 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3625 defined as
3626
3627 big-endian:
3628 +--------+----------------------+
3629 | | |
3630 | | targ26-16 |
3631 |31 26|25 0|
3632 +--------+----------------------+
3633
3634 little-endian:
3635 +----------+------+-------------+
3636 | | | |
3637 | sub1 | | sub2 |
3638 |0 9|10 15|16 31|
3639 +----------+--------------------+
3640 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3641 ((sub1 << 16) | sub2)).
3642
3643 When producing a relocateable object file, the calculation is
3644 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3645 When producing a fully linked file, the calculation is
3646 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3647 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3648
3649 if (!info->relocateable)
3650 /* Shuffle the bits according to the formula above. */
3651 value = (((value & 0x1f0000) << 5)
3652 | ((value & 0x3e00000) >> 5)
3653 | (value & 0xffff));
3654 }
3655 else if (r_type == R_MIPS16_GPREL)
3656 {
3657 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3658 mode. A typical instruction will have a format like this:
3659
3660 +--------------+--------------------------------+
3661 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3662 +--------------+--------------------------------+
3663 ! Major ! rx ! ry ! Imm 4:0 !
3664 +--------------+--------------------------------+
3665
3666 EXTEND is the five bit value 11110. Major is the instruction
3667 opcode.
3668
3669 This is handled exactly like R_MIPS_GPREL16, except that the
3670 addend is retrieved and stored as shown in this diagram; that
3671 is, the Imm fields above replace the V-rel16 field.
3672
3673 All we need to do here is shuffle the bits appropriately. As
3674 above, the two 16-bit halves must be swapped on a
3675 little-endian system. */
3676 value = (((value & 0x7e0) << 16)
3677 | ((value & 0xf800) << 5)
3678 | (value & 0x1f));
3679 }
3680
3681 /* Set the field. */
3682 x |= (value & howto->dst_mask);
3683
3684 /* If required, turn JAL into JALX. */
3685 if (require_jalx)
3686 {
b34976b6 3687 bfd_boolean ok;
b49e97c9
TS
3688 bfd_vma opcode = x >> 26;
3689 bfd_vma jalx_opcode;
3690
3691 /* Check to see if the opcode is already JAL or JALX. */
3692 if (r_type == R_MIPS16_26)
3693 {
3694 ok = ((opcode == 0x6) || (opcode == 0x7));
3695 jalx_opcode = 0x7;
3696 }
3697 else
3698 {
3699 ok = ((opcode == 0x3) || (opcode == 0x1d));
3700 jalx_opcode = 0x1d;
3701 }
3702
3703 /* If the opcode is not JAL or JALX, there's a problem. */
3704 if (!ok)
3705 {
3706 (*_bfd_error_handler)
3707 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3708 bfd_archive_filename (input_bfd),
3709 input_section->name,
3710 (unsigned long) relocation->r_offset);
3711 bfd_set_error (bfd_error_bad_value);
b34976b6 3712 return FALSE;
b49e97c9
TS
3713 }
3714
3715 /* Make this the JALX opcode. */
3716 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3717 }
3718
3719 /* Swap the high- and low-order 16 bits on little-endian systems
3720 when doing a MIPS16 relocation. */
3721 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3722 && bfd_little_endian (input_bfd))
3723 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3724
3725 /* Put the value into the output. */
3726 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
b34976b6 3727 return TRUE;
b49e97c9
TS
3728}
3729
b34976b6 3730/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 3731
b34976b6 3732static bfd_boolean
b49e97c9
TS
3733mips_elf_stub_section_p (abfd, section)
3734 bfd *abfd ATTRIBUTE_UNUSED;
3735 asection *section;
3736{
3737 const char *name = bfd_get_section_name (abfd, section);
3738
3739 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3740 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3741 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3742}
3743\f
3744/* Add room for N relocations to the .rel.dyn section in ABFD. */
3745
3746static void
3747mips_elf_allocate_dynamic_relocations (abfd, n)
3748 bfd *abfd;
3749 unsigned int n;
3750{
3751 asection *s;
3752
f4416af6 3753 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
3754 BFD_ASSERT (s != NULL);
3755
3756 if (s->_raw_size == 0)
3757 {
3758 /* Make room for a null element. */
3759 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3760 ++s->reloc_count;
3761 }
3762 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3763}
3764
3765/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3766 is the original relocation, which is now being transformed into a
3767 dynamic relocation. The ADDENDP is adjusted if necessary; the
3768 caller should store the result in place of the original addend. */
3769
b34976b6 3770static bfd_boolean
b49e97c9
TS
3771mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3772 symbol, addendp, input_section)
3773 bfd *output_bfd;
3774 struct bfd_link_info *info;
3775 const Elf_Internal_Rela *rel;
3776 struct mips_elf_link_hash_entry *h;
3777 asection *sec;
3778 bfd_vma symbol;
3779 bfd_vma *addendp;
3780 asection *input_section;
3781{
947216bf 3782 Elf_Internal_Rela outrel[3];
b34976b6 3783 bfd_boolean skip;
b49e97c9
TS
3784 asection *sreloc;
3785 bfd *dynobj;
3786 int r_type;
3787
3788 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3789 dynobj = elf_hash_table (info)->dynobj;
f4416af6 3790 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
3791 BFD_ASSERT (sreloc != NULL);
3792 BFD_ASSERT (sreloc->contents != NULL);
3793 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3794 < sreloc->_raw_size);
3795
b34976b6 3796 skip = FALSE;
b49e97c9
TS
3797 outrel[0].r_offset =
3798 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3799 outrel[1].r_offset =
3800 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3801 outrel[2].r_offset =
3802 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3803
3804#if 0
3805 /* We begin by assuming that the offset for the dynamic relocation
3806 is the same as for the original relocation. We'll adjust this
3807 later to reflect the correct output offsets. */
3808 if (elf_section_data (input_section)->sec_info_type != ELF_INFO_TYPE_STABS)
3809 {
3810 outrel[1].r_offset = rel[1].r_offset;
3811 outrel[2].r_offset = rel[2].r_offset;
3812 }
3813 else
3814 {
3815 /* Except that in a stab section things are more complex.
3816 Because we compress stab information, the offset given in the
3817 relocation may not be the one we want; we must let the stabs
3818 machinery tell us the offset. */
3819 outrel[1].r_offset = outrel[0].r_offset;
3820 outrel[2].r_offset = outrel[0].r_offset;
3821 /* If we didn't need the relocation at all, this value will be
3822 -1. */
3823 if (outrel[0].r_offset == (bfd_vma) -1)
b34976b6 3824 skip = TRUE;
b49e97c9
TS
3825 }
3826#endif
3827
4bb9a95f
AO
3828 if (outrel[0].r_offset == (bfd_vma) -1
3829 || outrel[0].r_offset == (bfd_vma) -2)
b34976b6 3830 skip = TRUE;
b49e97c9
TS
3831
3832 /* If we've decided to skip this relocation, just output an empty
3833 record. Note that R_MIPS_NONE == 0, so that this call to memset
3834 is a way of setting R_TYPE to R_MIPS_NONE. */
3835 if (skip)
947216bf 3836 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
b49e97c9
TS
3837 else
3838 {
3839 long indx;
b49e97c9
TS
3840
3841 /* We must now calculate the dynamic symbol table index to use
3842 in the relocation. */
3843 if (h != NULL
3844 && (! info->symbolic || (h->root.elf_link_hash_flags
3845 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3846 {
3847 indx = h->root.dynindx;
3848 /* h->root.dynindx may be -1 if this symbol was marked to
3849 become local. */
3850 if (indx == -1)
3851 indx = 0;
3852 }
3853 else
3854 {
3855 if (sec != NULL && bfd_is_abs_section (sec))
3856 indx = 0;
3857 else if (sec == NULL || sec->owner == NULL)
3858 {
3859 bfd_set_error (bfd_error_bad_value);
b34976b6 3860 return FALSE;
b49e97c9
TS
3861 }
3862 else
3863 {
3864 indx = elf_section_data (sec->output_section)->dynindx;
3865 if (indx == 0)
3866 abort ();
3867 }
3868
908488f1
AO
3869 /* Instead of generating a relocation using the section
3870 symbol, we may as well make it a fully relative
3871 relocation. We want to avoid generating relocations to
3872 local symbols because we used to generate them
3873 incorrectly, without adding the original symbol value,
3874 which is mandated by the ABI for section symbols. In
3875 order to give dynamic loaders and applications time to
3876 phase out the incorrect use, we refrain from emitting
3877 section-relative relocations. It's not like they're
3878 useful, after all. This should be a bit more efficient
3879 as well. */
3880 indx = 0;
b49e97c9
TS
3881 }
3882
3883 /* If the relocation was previously an absolute relocation and
3884 this symbol will not be referred to by the relocation, we must
3885 adjust it by the value we give it in the dynamic symbol table.
3886 Otherwise leave the job up to the dynamic linker. */
3887 if (!indx && r_type != R_MIPS_REL32)
3888 *addendp += symbol;
3889
3890 /* The relocation is always an REL32 relocation because we don't
3891 know where the shared library will wind up at load-time. */
34ea4a36
TS
3892 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3893 R_MIPS_REL32);
908488f1
AO
3894 /* For strict adherence to the ABI specification, we should
3895 generate a R_MIPS_64 relocation record by itself before the
3896 _REL32/_64 record as well, such that the addend is read in as
3897 a 64-bit value (REL32 is a 32-bit relocation, after all).
3898 However, since none of the existing ELF64 MIPS dynamic
3899 loaders seems to care, we don't waste space with these
3900 artificial relocations. If this turns out to not be true,
3901 mips_elf_allocate_dynamic_relocation() should be tweaked so
3902 as to make room for a pair of dynamic relocations per
3903 invocation if ABI_64_P, and here we should generate an
3904 additional relocation record with R_MIPS_64 by itself for a
3905 NULL symbol before this relocation record. */
7c4ca42d 3906 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
033fd5f9
AO
3907 ABI_64_P (output_bfd)
3908 ? R_MIPS_64
3909 : R_MIPS_NONE);
7c4ca42d
AO
3910 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3911 R_MIPS_NONE);
b49e97c9
TS
3912
3913 /* Adjust the output offset of the relocation to reference the
3914 correct location in the output file. */
3915 outrel[0].r_offset += (input_section->output_section->vma
3916 + input_section->output_offset);
3917 outrel[1].r_offset += (input_section->output_section->vma
3918 + input_section->output_offset);
3919 outrel[2].r_offset += (input_section->output_section->vma
3920 + input_section->output_offset);
3921 }
3922
3923 /* Put the relocation back out. We have to use the special
3924 relocation outputter in the 64-bit case since the 64-bit
3925 relocation format is non-standard. */
3926 if (ABI_64_P (output_bfd))
3927 {
3928 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3929 (output_bfd, &outrel[0],
3930 (sreloc->contents
3931 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3932 }
3933 else
947216bf
AM
3934 bfd_elf32_swap_reloc_out
3935 (output_bfd, &outrel[0],
3936 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9
TS
3937
3938 /* Record the index of the first relocation referencing H. This
3939 information is later emitted in the .msym section. */
3940 if (h != NULL
3941 && (h->min_dyn_reloc_index == 0
3942 || sreloc->reloc_count < h->min_dyn_reloc_index))
3943 h->min_dyn_reloc_index = sreloc->reloc_count;
3944
3945 /* We've now added another relocation. */
3946 ++sreloc->reloc_count;
3947
3948 /* Make sure the output section is writable. The dynamic linker
3949 will be writing to it. */
3950 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3951 |= SHF_WRITE;
3952
3953 /* On IRIX5, make an entry of compact relocation info. */
3954 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
3955 {
3956 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3957 bfd_byte *cr;
3958
3959 if (scpt)
3960 {
3961 Elf32_crinfo cptrel;
3962
3963 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3964 cptrel.vaddr = (rel->r_offset
3965 + input_section->output_section->vma
3966 + input_section->output_offset);
3967 if (r_type == R_MIPS_REL32)
3968 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3969 else
3970 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3971 mips_elf_set_cr_dist2to (cptrel, 0);
3972 cptrel.konst = *addendp;
3973
3974 cr = (scpt->contents
3975 + sizeof (Elf32_External_compact_rel));
3976 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3977 ((Elf32_External_crinfo *) cr
3978 + scpt->reloc_count));
3979 ++scpt->reloc_count;
3980 }
3981 }
3982
b34976b6 3983 return TRUE;
b49e97c9
TS
3984}
3985\f
b49e97c9
TS
3986/* Return the MACH for a MIPS e_flags value. */
3987
3988unsigned long
3989_bfd_elf_mips_mach (flags)
3990 flagword flags;
3991{
3992 switch (flags & EF_MIPS_MACH)
3993 {
3994 case E_MIPS_MACH_3900:
3995 return bfd_mach_mips3900;
3996
3997 case E_MIPS_MACH_4010:
3998 return bfd_mach_mips4010;
3999
4000 case E_MIPS_MACH_4100:
4001 return bfd_mach_mips4100;
4002
4003 case E_MIPS_MACH_4111:
4004 return bfd_mach_mips4111;
4005
00707a0e
RS
4006 case E_MIPS_MACH_4120:
4007 return bfd_mach_mips4120;
4008
b49e97c9
TS
4009 case E_MIPS_MACH_4650:
4010 return bfd_mach_mips4650;
4011
00707a0e
RS
4012 case E_MIPS_MACH_5400:
4013 return bfd_mach_mips5400;
4014
4015 case E_MIPS_MACH_5500:
4016 return bfd_mach_mips5500;
4017
b49e97c9
TS
4018 case E_MIPS_MACH_SB1:
4019 return bfd_mach_mips_sb1;
4020
4021 default:
4022 switch (flags & EF_MIPS_ARCH)
4023 {
4024 default:
4025 case E_MIPS_ARCH_1:
4026 return bfd_mach_mips3000;
4027 break;
4028
4029 case E_MIPS_ARCH_2:
4030 return bfd_mach_mips6000;
4031 break;
4032
4033 case E_MIPS_ARCH_3:
4034 return bfd_mach_mips4000;
4035 break;
4036
4037 case E_MIPS_ARCH_4:
4038 return bfd_mach_mips8000;
4039 break;
4040
4041 case E_MIPS_ARCH_5:
4042 return bfd_mach_mips5;
4043 break;
4044
4045 case E_MIPS_ARCH_32:
4046 return bfd_mach_mipsisa32;
4047 break;
4048
4049 case E_MIPS_ARCH_64:
4050 return bfd_mach_mipsisa64;
4051 break;
af7ee8bf
CD
4052
4053 case E_MIPS_ARCH_32R2:
4054 return bfd_mach_mipsisa32r2;
4055 break;
b49e97c9
TS
4056 }
4057 }
4058
4059 return 0;
4060}
4061
4062/* Return printable name for ABI. */
4063
4064static INLINE char *
4065elf_mips_abi_name (abfd)
4066 bfd *abfd;
4067{
4068 flagword flags;
4069
4070 flags = elf_elfheader (abfd)->e_flags;
4071 switch (flags & EF_MIPS_ABI)
4072 {
4073 case 0:
4074 if (ABI_N32_P (abfd))
4075 return "N32";
4076 else if (ABI_64_P (abfd))
4077 return "64";
4078 else
4079 return "none";
4080 case E_MIPS_ABI_O32:
4081 return "O32";
4082 case E_MIPS_ABI_O64:
4083 return "O64";
4084 case E_MIPS_ABI_EABI32:
4085 return "EABI32";
4086 case E_MIPS_ABI_EABI64:
4087 return "EABI64";
4088 default:
4089 return "unknown abi";
4090 }
4091}
4092\f
4093/* MIPS ELF uses two common sections. One is the usual one, and the
4094 other is for small objects. All the small objects are kept
4095 together, and then referenced via the gp pointer, which yields
4096 faster assembler code. This is what we use for the small common
4097 section. This approach is copied from ecoff.c. */
4098static asection mips_elf_scom_section;
4099static asymbol mips_elf_scom_symbol;
4100static asymbol *mips_elf_scom_symbol_ptr;
4101
4102/* MIPS ELF also uses an acommon section, which represents an
4103 allocated common symbol which may be overridden by a
4104 definition in a shared library. */
4105static asection mips_elf_acom_section;
4106static asymbol mips_elf_acom_symbol;
4107static asymbol *mips_elf_acom_symbol_ptr;
4108
4109/* Handle the special MIPS section numbers that a symbol may use.
4110 This is used for both the 32-bit and the 64-bit ABI. */
4111
4112void
4113_bfd_mips_elf_symbol_processing (abfd, asym)
4114 bfd *abfd;
4115 asymbol *asym;
4116{
4117 elf_symbol_type *elfsym;
4118
4119 elfsym = (elf_symbol_type *) asym;
4120 switch (elfsym->internal_elf_sym.st_shndx)
4121 {
4122 case SHN_MIPS_ACOMMON:
4123 /* This section is used in a dynamically linked executable file.
4124 It is an allocated common section. The dynamic linker can
4125 either resolve these symbols to something in a shared
4126 library, or it can just leave them here. For our purposes,
4127 we can consider these symbols to be in a new section. */
4128 if (mips_elf_acom_section.name == NULL)
4129 {
4130 /* Initialize the acommon section. */
4131 mips_elf_acom_section.name = ".acommon";
4132 mips_elf_acom_section.flags = SEC_ALLOC;
4133 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4134 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4135 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4136 mips_elf_acom_symbol.name = ".acommon";
4137 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4138 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4139 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4140 }
4141 asym->section = &mips_elf_acom_section;
4142 break;
4143
4144 case SHN_COMMON:
4145 /* Common symbols less than the GP size are automatically
4146 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4147 if (asym->value > elf_gp_size (abfd)
4148 || IRIX_COMPAT (abfd) == ict_irix6)
4149 break;
4150 /* Fall through. */
4151 case SHN_MIPS_SCOMMON:
4152 if (mips_elf_scom_section.name == NULL)
4153 {
4154 /* Initialize the small common section. */
4155 mips_elf_scom_section.name = ".scommon";
4156 mips_elf_scom_section.flags = SEC_IS_COMMON;
4157 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4158 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4159 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4160 mips_elf_scom_symbol.name = ".scommon";
4161 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4162 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4163 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4164 }
4165 asym->section = &mips_elf_scom_section;
4166 asym->value = elfsym->internal_elf_sym.st_size;
4167 break;
4168
4169 case SHN_MIPS_SUNDEFINED:
4170 asym->section = bfd_und_section_ptr;
4171 break;
4172
4173#if 0 /* for SGI_COMPAT */
4174 case SHN_MIPS_TEXT:
4175 asym->section = mips_elf_text_section_ptr;
4176 break;
4177
4178 case SHN_MIPS_DATA:
4179 asym->section = mips_elf_data_section_ptr;
4180 break;
4181#endif
4182 }
4183}
4184\f
4185/* Work over a section just before writing it out. This routine is
4186 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4187 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4188 a better way. */
4189
b34976b6 4190bfd_boolean
b49e97c9
TS
4191_bfd_mips_elf_section_processing (abfd, hdr)
4192 bfd *abfd;
4193 Elf_Internal_Shdr *hdr;
4194{
4195 if (hdr->sh_type == SHT_MIPS_REGINFO
4196 && hdr->sh_size > 0)
4197 {
4198 bfd_byte buf[4];
4199
4200 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4201 BFD_ASSERT (hdr->contents == NULL);
4202
4203 if (bfd_seek (abfd,
4204 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4205 SEEK_SET) != 0)
b34976b6 4206 return FALSE;
b49e97c9
TS
4207 H_PUT_32 (abfd, elf_gp (abfd), buf);
4208 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
b34976b6 4209 return FALSE;
b49e97c9
TS
4210 }
4211
4212 if (hdr->sh_type == SHT_MIPS_OPTIONS
4213 && hdr->bfd_section != NULL
f0abc2a1
AM
4214 && mips_elf_section_data (hdr->bfd_section) != NULL
4215 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4216 {
4217 bfd_byte *contents, *l, *lend;
4218
f0abc2a1
AM
4219 /* We stored the section contents in the tdata field in the
4220 set_section_contents routine. We save the section contents
4221 so that we don't have to read them again.
b49e97c9
TS
4222 At this point we know that elf_gp is set, so we can look
4223 through the section contents to see if there is an
4224 ODK_REGINFO structure. */
4225
f0abc2a1 4226 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4227 l = contents;
4228 lend = contents + hdr->sh_size;
4229 while (l + sizeof (Elf_External_Options) <= lend)
4230 {
4231 Elf_Internal_Options intopt;
4232
4233 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4234 &intopt);
4235 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4236 {
4237 bfd_byte buf[8];
4238
4239 if (bfd_seek (abfd,
4240 (hdr->sh_offset
4241 + (l - contents)
4242 + sizeof (Elf_External_Options)
4243 + (sizeof (Elf64_External_RegInfo) - 8)),
4244 SEEK_SET) != 0)
b34976b6 4245 return FALSE;
b49e97c9
TS
4246 H_PUT_64 (abfd, elf_gp (abfd), buf);
4247 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
b34976b6 4248 return FALSE;
b49e97c9
TS
4249 }
4250 else if (intopt.kind == ODK_REGINFO)
4251 {
4252 bfd_byte buf[4];
4253
4254 if (bfd_seek (abfd,
4255 (hdr->sh_offset
4256 + (l - contents)
4257 + sizeof (Elf_External_Options)
4258 + (sizeof (Elf32_External_RegInfo) - 4)),
4259 SEEK_SET) != 0)
b34976b6 4260 return FALSE;
b49e97c9
TS
4261 H_PUT_32 (abfd, elf_gp (abfd), buf);
4262 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
b34976b6 4263 return FALSE;
b49e97c9
TS
4264 }
4265 l += intopt.size;
4266 }
4267 }
4268
4269 if (hdr->bfd_section != NULL)
4270 {
4271 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4272
4273 if (strcmp (name, ".sdata") == 0
4274 || strcmp (name, ".lit8") == 0
4275 || strcmp (name, ".lit4") == 0)
4276 {
4277 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4278 hdr->sh_type = SHT_PROGBITS;
4279 }
4280 else if (strcmp (name, ".sbss") == 0)
4281 {
4282 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4283 hdr->sh_type = SHT_NOBITS;
4284 }
4285 else if (strcmp (name, ".srdata") == 0)
4286 {
4287 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4288 hdr->sh_type = SHT_PROGBITS;
4289 }
4290 else if (strcmp (name, ".compact_rel") == 0)
4291 {
4292 hdr->sh_flags = 0;
4293 hdr->sh_type = SHT_PROGBITS;
4294 }
4295 else if (strcmp (name, ".rtproc") == 0)
4296 {
4297 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4298 {
4299 unsigned int adjust;
4300
4301 adjust = hdr->sh_size % hdr->sh_addralign;
4302 if (adjust != 0)
4303 hdr->sh_size += hdr->sh_addralign - adjust;
4304 }
4305 }
4306 }
4307
b34976b6 4308 return TRUE;
b49e97c9
TS
4309}
4310
4311/* Handle a MIPS specific section when reading an object file. This
4312 is called when elfcode.h finds a section with an unknown type.
4313 This routine supports both the 32-bit and 64-bit ELF ABI.
4314
4315 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4316 how to. */
4317
b34976b6 4318bfd_boolean
b49e97c9
TS
4319_bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4320 bfd *abfd;
4321 Elf_Internal_Shdr *hdr;
90937f86 4322 const char *name;
b49e97c9
TS
4323{
4324 flagword flags = 0;
4325
4326 /* There ought to be a place to keep ELF backend specific flags, but
4327 at the moment there isn't one. We just keep track of the
4328 sections by their name, instead. Fortunately, the ABI gives
4329 suggested names for all the MIPS specific sections, so we will
4330 probably get away with this. */
4331 switch (hdr->sh_type)
4332 {
4333 case SHT_MIPS_LIBLIST:
4334 if (strcmp (name, ".liblist") != 0)
b34976b6 4335 return FALSE;
b49e97c9
TS
4336 break;
4337 case SHT_MIPS_MSYM:
4338 if (strcmp (name, ".msym") != 0)
b34976b6 4339 return FALSE;
b49e97c9
TS
4340 break;
4341 case SHT_MIPS_CONFLICT:
4342 if (strcmp (name, ".conflict") != 0)
b34976b6 4343 return FALSE;
b49e97c9
TS
4344 break;
4345 case SHT_MIPS_GPTAB:
4346 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 4347 return FALSE;
b49e97c9
TS
4348 break;
4349 case SHT_MIPS_UCODE:
4350 if (strcmp (name, ".ucode") != 0)
b34976b6 4351 return FALSE;
b49e97c9
TS
4352 break;
4353 case SHT_MIPS_DEBUG:
4354 if (strcmp (name, ".mdebug") != 0)
b34976b6 4355 return FALSE;
b49e97c9
TS
4356 flags = SEC_DEBUGGING;
4357 break;
4358 case SHT_MIPS_REGINFO:
4359 if (strcmp (name, ".reginfo") != 0
4360 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 4361 return FALSE;
b49e97c9
TS
4362 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4363 break;
4364 case SHT_MIPS_IFACE:
4365 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 4366 return FALSE;
b49e97c9
TS
4367 break;
4368 case SHT_MIPS_CONTENT:
4369 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 4370 return FALSE;
b49e97c9
TS
4371 break;
4372 case SHT_MIPS_OPTIONS:
4373 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
b34976b6 4374 return FALSE;
b49e97c9
TS
4375 break;
4376 case SHT_MIPS_DWARF:
4377 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 4378 return FALSE;
b49e97c9
TS
4379 break;
4380 case SHT_MIPS_SYMBOL_LIB:
4381 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 4382 return FALSE;
b49e97c9
TS
4383 break;
4384 case SHT_MIPS_EVENTS:
4385 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4386 && strncmp (name, ".MIPS.post_rel",
4387 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 4388 return FALSE;
b49e97c9
TS
4389 break;
4390 default:
b34976b6 4391 return FALSE;
b49e97c9
TS
4392 }
4393
4394 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
b34976b6 4395 return FALSE;
b49e97c9
TS
4396
4397 if (flags)
4398 {
4399 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4400 (bfd_get_section_flags (abfd,
4401 hdr->bfd_section)
4402 | flags)))
b34976b6 4403 return FALSE;
b49e97c9
TS
4404 }
4405
4406 /* FIXME: We should record sh_info for a .gptab section. */
4407
4408 /* For a .reginfo section, set the gp value in the tdata information
4409 from the contents of this section. We need the gp value while
4410 processing relocs, so we just get it now. The .reginfo section
4411 is not used in the 64-bit MIPS ELF ABI. */
4412 if (hdr->sh_type == SHT_MIPS_REGINFO)
4413 {
4414 Elf32_External_RegInfo ext;
4415 Elf32_RegInfo s;
4416
4417 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4418 (file_ptr) 0,
4419 (bfd_size_type) sizeof ext))
b34976b6 4420 return FALSE;
b49e97c9
TS
4421 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4422 elf_gp (abfd) = s.ri_gp_value;
4423 }
4424
4425 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4426 set the gp value based on what we find. We may see both
4427 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4428 they should agree. */
4429 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4430 {
4431 bfd_byte *contents, *l, *lend;
4432
4433 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4434 if (contents == NULL)
b34976b6 4435 return FALSE;
b49e97c9
TS
4436 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4437 (file_ptr) 0, hdr->sh_size))
4438 {
4439 free (contents);
b34976b6 4440 return FALSE;
b49e97c9
TS
4441 }
4442 l = contents;
4443 lend = contents + hdr->sh_size;
4444 while (l + sizeof (Elf_External_Options) <= lend)
4445 {
4446 Elf_Internal_Options intopt;
4447
4448 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4449 &intopt);
4450 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4451 {
4452 Elf64_Internal_RegInfo intreg;
4453
4454 bfd_mips_elf64_swap_reginfo_in
4455 (abfd,
4456 ((Elf64_External_RegInfo *)
4457 (l + sizeof (Elf_External_Options))),
4458 &intreg);
4459 elf_gp (abfd) = intreg.ri_gp_value;
4460 }
4461 else if (intopt.kind == ODK_REGINFO)
4462 {
4463 Elf32_RegInfo intreg;
4464
4465 bfd_mips_elf32_swap_reginfo_in
4466 (abfd,
4467 ((Elf32_External_RegInfo *)
4468 (l + sizeof (Elf_External_Options))),
4469 &intreg);
4470 elf_gp (abfd) = intreg.ri_gp_value;
4471 }
4472 l += intopt.size;
4473 }
4474 free (contents);
4475 }
4476
b34976b6 4477 return TRUE;
b49e97c9
TS
4478}
4479
4480/* Set the correct type for a MIPS ELF section. We do this by the
4481 section name, which is a hack, but ought to work. This routine is
4482 used by both the 32-bit and the 64-bit ABI. */
4483
b34976b6 4484bfd_boolean
b49e97c9
TS
4485_bfd_mips_elf_fake_sections (abfd, hdr, sec)
4486 bfd *abfd;
947216bf 4487 Elf_Internal_Shdr *hdr;
b49e97c9
TS
4488 asection *sec;
4489{
4490 register const char *name;
4491
4492 name = bfd_get_section_name (abfd, sec);
4493
4494 if (strcmp (name, ".liblist") == 0)
4495 {
4496 hdr->sh_type = SHT_MIPS_LIBLIST;
4497 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4498 /* The sh_link field is set in final_write_processing. */
4499 }
4500 else if (strcmp (name, ".conflict") == 0)
4501 hdr->sh_type = SHT_MIPS_CONFLICT;
4502 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4503 {
4504 hdr->sh_type = SHT_MIPS_GPTAB;
4505 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4506 /* The sh_info field is set in final_write_processing. */
4507 }
4508 else if (strcmp (name, ".ucode") == 0)
4509 hdr->sh_type = SHT_MIPS_UCODE;
4510 else if (strcmp (name, ".mdebug") == 0)
4511 {
4512 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 4513 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
4514 entsize of 0. FIXME: Does this matter? */
4515 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4516 hdr->sh_entsize = 0;
4517 else
4518 hdr->sh_entsize = 1;
4519 }
4520 else if (strcmp (name, ".reginfo") == 0)
4521 {
4522 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 4523 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
4524 entsize of 0x18. FIXME: Does this matter? */
4525 if (SGI_COMPAT (abfd))
4526 {
4527 if ((abfd->flags & DYNAMIC) != 0)
4528 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4529 else
4530 hdr->sh_entsize = 1;
4531 }
4532 else
4533 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4534 }
4535 else if (SGI_COMPAT (abfd)
4536 && (strcmp (name, ".hash") == 0
4537 || strcmp (name, ".dynamic") == 0
4538 || strcmp (name, ".dynstr") == 0))
4539 {
4540 if (SGI_COMPAT (abfd))
4541 hdr->sh_entsize = 0;
4542#if 0
8dc1a139 4543 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
4544 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4545#endif
4546 }
4547 else if (strcmp (name, ".got") == 0
4548 || strcmp (name, ".srdata") == 0
4549 || strcmp (name, ".sdata") == 0
4550 || strcmp (name, ".sbss") == 0
4551 || strcmp (name, ".lit4") == 0
4552 || strcmp (name, ".lit8") == 0)
4553 hdr->sh_flags |= SHF_MIPS_GPREL;
4554 else if (strcmp (name, ".MIPS.interfaces") == 0)
4555 {
4556 hdr->sh_type = SHT_MIPS_IFACE;
4557 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4558 }
4559 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4560 {
4561 hdr->sh_type = SHT_MIPS_CONTENT;
4562 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4563 /* The sh_info field is set in final_write_processing. */
4564 }
4565 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4566 {
4567 hdr->sh_type = SHT_MIPS_OPTIONS;
4568 hdr->sh_entsize = 1;
4569 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4570 }
4571 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4572 hdr->sh_type = SHT_MIPS_DWARF;
4573 else if (strcmp (name, ".MIPS.symlib") == 0)
4574 {
4575 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4576 /* The sh_link and sh_info fields are set in
4577 final_write_processing. */
4578 }
4579 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4580 || strncmp (name, ".MIPS.post_rel",
4581 sizeof ".MIPS.post_rel" - 1) == 0)
4582 {
4583 hdr->sh_type = SHT_MIPS_EVENTS;
4584 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4585 /* The sh_link field is set in final_write_processing. */
4586 }
4587 else if (strcmp (name, ".msym") == 0)
4588 {
4589 hdr->sh_type = SHT_MIPS_MSYM;
4590 hdr->sh_flags |= SHF_ALLOC;
4591 hdr->sh_entsize = 8;
4592 }
4593
4594 /* The generic elf_fake_sections will set up REL_HDR using the
4595 default kind of relocations. But, we may actually need both
4596 kinds of relocations, so we set up the second header here.
4597
4598 This is not necessary for the O32 ABI since that only uses Elf32_Rel
4599 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
4600 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
4601 of the resulting empty .rela.<section> sections starts with
4602 sh_offset == object size, and ld doesn't allow that. While the check
4603 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
4604 avoided by not emitting those useless sections in the first place. */
14366460 4605 if (! SGI_COMPAT (abfd) && ! NEWABI_P(abfd)
4a14403c 4606 && (sec->flags & SEC_RELOC) != 0)
b49e97c9
TS
4607 {
4608 struct bfd_elf_section_data *esd;
4609 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
4610
4611 esd = elf_section_data (sec);
4612 BFD_ASSERT (esd->rel_hdr2 == NULL);
4613 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
4614 if (!esd->rel_hdr2)
b34976b6 4615 return FALSE;
68bfbfcc 4616 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec, !sec->use_rela_p);
b49e97c9
TS
4617 }
4618
b34976b6 4619 return TRUE;
b49e97c9
TS
4620}
4621
4622/* Given a BFD section, try to locate the corresponding ELF section
4623 index. This is used by both the 32-bit and the 64-bit ABI.
4624 Actually, it's not clear to me that the 64-bit ABI supports these,
4625 but for non-PIC objects we will certainly want support for at least
4626 the .scommon section. */
4627
b34976b6 4628bfd_boolean
b49e97c9
TS
4629_bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4630 bfd *abfd ATTRIBUTE_UNUSED;
4631 asection *sec;
4632 int *retval;
4633{
4634 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4635 {
4636 *retval = SHN_MIPS_SCOMMON;
b34976b6 4637 return TRUE;
b49e97c9
TS
4638 }
4639 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4640 {
4641 *retval = SHN_MIPS_ACOMMON;
b34976b6 4642 return TRUE;
b49e97c9 4643 }
b34976b6 4644 return FALSE;
b49e97c9
TS
4645}
4646\f
4647/* Hook called by the linker routine which adds symbols from an object
4648 file. We must handle the special MIPS section numbers here. */
4649
b34976b6 4650bfd_boolean
b49e97c9
TS
4651_bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4652 bfd *abfd;
4653 struct bfd_link_info *info;
4654 const Elf_Internal_Sym *sym;
4655 const char **namep;
4656 flagword *flagsp ATTRIBUTE_UNUSED;
4657 asection **secp;
4658 bfd_vma *valp;
4659{
4660 if (SGI_COMPAT (abfd)
4661 && (abfd->flags & DYNAMIC) != 0
4662 && strcmp (*namep, "_rld_new_interface") == 0)
4663 {
8dc1a139 4664 /* Skip IRIX5 rld entry name. */
b49e97c9 4665 *namep = NULL;
b34976b6 4666 return TRUE;
b49e97c9
TS
4667 }
4668
4669 switch (sym->st_shndx)
4670 {
4671 case SHN_COMMON:
4672 /* Common symbols less than the GP size are automatically
4673 treated as SHN_MIPS_SCOMMON symbols. */
4674 if (sym->st_size > elf_gp_size (abfd)
4675 || IRIX_COMPAT (abfd) == ict_irix6)
4676 break;
4677 /* Fall through. */
4678 case SHN_MIPS_SCOMMON:
4679 *secp = bfd_make_section_old_way (abfd, ".scommon");
4680 (*secp)->flags |= SEC_IS_COMMON;
4681 *valp = sym->st_size;
4682 break;
4683
4684 case SHN_MIPS_TEXT:
4685 /* This section is used in a shared object. */
4686 if (elf_tdata (abfd)->elf_text_section == NULL)
4687 {
4688 asymbol *elf_text_symbol;
4689 asection *elf_text_section;
4690 bfd_size_type amt = sizeof (asection);
4691
4692 elf_text_section = bfd_zalloc (abfd, amt);
4693 if (elf_text_section == NULL)
b34976b6 4694 return FALSE;
b49e97c9
TS
4695
4696 amt = sizeof (asymbol);
4697 elf_text_symbol = bfd_zalloc (abfd, amt);
4698 if (elf_text_symbol == NULL)
b34976b6 4699 return FALSE;
b49e97c9
TS
4700
4701 /* Initialize the section. */
4702
4703 elf_tdata (abfd)->elf_text_section = elf_text_section;
4704 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4705
4706 elf_text_section->symbol = elf_text_symbol;
4707 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4708
4709 elf_text_section->name = ".text";
4710 elf_text_section->flags = SEC_NO_FLAGS;
4711 elf_text_section->output_section = NULL;
4712 elf_text_section->owner = abfd;
4713 elf_text_symbol->name = ".text";
4714 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4715 elf_text_symbol->section = elf_text_section;
4716 }
4717 /* This code used to do *secp = bfd_und_section_ptr if
4718 info->shared. I don't know why, and that doesn't make sense,
4719 so I took it out. */
4720 *secp = elf_tdata (abfd)->elf_text_section;
4721 break;
4722
4723 case SHN_MIPS_ACOMMON:
4724 /* Fall through. XXX Can we treat this as allocated data? */
4725 case SHN_MIPS_DATA:
4726 /* This section is used in a shared object. */
4727 if (elf_tdata (abfd)->elf_data_section == NULL)
4728 {
4729 asymbol *elf_data_symbol;
4730 asection *elf_data_section;
4731 bfd_size_type amt = sizeof (asection);
4732
4733 elf_data_section = bfd_zalloc (abfd, amt);
4734 if (elf_data_section == NULL)
b34976b6 4735 return FALSE;
b49e97c9
TS
4736
4737 amt = sizeof (asymbol);
4738 elf_data_symbol = bfd_zalloc (abfd, amt);
4739 if (elf_data_symbol == NULL)
b34976b6 4740 return FALSE;
b49e97c9
TS
4741
4742 /* Initialize the section. */
4743
4744 elf_tdata (abfd)->elf_data_section = elf_data_section;
4745 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4746
4747 elf_data_section->symbol = elf_data_symbol;
4748 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4749
4750 elf_data_section->name = ".data";
4751 elf_data_section->flags = SEC_NO_FLAGS;
4752 elf_data_section->output_section = NULL;
4753 elf_data_section->owner = abfd;
4754 elf_data_symbol->name = ".data";
4755 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4756 elf_data_symbol->section = elf_data_section;
4757 }
4758 /* This code used to do *secp = bfd_und_section_ptr if
4759 info->shared. I don't know why, and that doesn't make sense,
4760 so I took it out. */
4761 *secp = elf_tdata (abfd)->elf_data_section;
4762 break;
4763
4764 case SHN_MIPS_SUNDEFINED:
4765 *secp = bfd_und_section_ptr;
4766 break;
4767 }
4768
4769 if (SGI_COMPAT (abfd)
4770 && ! info->shared
4771 && info->hash->creator == abfd->xvec
4772 && strcmp (*namep, "__rld_obj_head") == 0)
4773 {
4774 struct elf_link_hash_entry *h;
14a793b2 4775 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4776
4777 /* Mark __rld_obj_head as dynamic. */
14a793b2 4778 bh = NULL;
b49e97c9
TS
4779 if (! (_bfd_generic_link_add_one_symbol
4780 (info, abfd, *namep, BSF_GLOBAL, *secp,
b34976b6 4781 (bfd_vma) *valp, (const char *) NULL, FALSE,
14a793b2 4782 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4783 return FALSE;
14a793b2
AM
4784
4785 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4786 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4787 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4788 h->type = STT_OBJECT;
4789
4790 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4791 return FALSE;
b49e97c9 4792
b34976b6 4793 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
4794 }
4795
4796 /* If this is a mips16 text symbol, add 1 to the value to make it
4797 odd. This will cause something like .word SYM to come up with
4798 the right value when it is loaded into the PC. */
4799 if (sym->st_other == STO_MIPS16)
4800 ++*valp;
4801
b34976b6 4802 return TRUE;
b49e97c9
TS
4803}
4804
4805/* This hook function is called before the linker writes out a global
4806 symbol. We mark symbols as small common if appropriate. This is
4807 also where we undo the increment of the value for a mips16 symbol. */
4808
b34976b6 4809bfd_boolean
b49e97c9
TS
4810_bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4811 bfd *abfd ATTRIBUTE_UNUSED;
4812 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4813 const char *name ATTRIBUTE_UNUSED;
4814 Elf_Internal_Sym *sym;
4815 asection *input_sec;
4816{
4817 /* If we see a common symbol, which implies a relocatable link, then
4818 if a symbol was small common in an input file, mark it as small
4819 common in the output file. */
4820 if (sym->st_shndx == SHN_COMMON
4821 && strcmp (input_sec->name, ".scommon") == 0)
4822 sym->st_shndx = SHN_MIPS_SCOMMON;
4823
4824 if (sym->st_other == STO_MIPS16
4825 && (sym->st_value & 1) != 0)
4826 --sym->st_value;
4827
b34976b6 4828 return TRUE;
b49e97c9
TS
4829}
4830\f
4831/* Functions for the dynamic linker. */
4832
4833/* Create dynamic sections when linking against a dynamic object. */
4834
b34976b6 4835bfd_boolean
b49e97c9
TS
4836_bfd_mips_elf_create_dynamic_sections (abfd, info)
4837 bfd *abfd;
4838 struct bfd_link_info *info;
4839{
4840 struct elf_link_hash_entry *h;
14a793b2 4841 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4842 flagword flags;
4843 register asection *s;
4844 const char * const *namep;
4845
4846 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4847 | SEC_LINKER_CREATED | SEC_READONLY);
4848
4849 /* Mips ABI requests the .dynamic section to be read only. */
4850 s = bfd_get_section_by_name (abfd, ".dynamic");
4851 if (s != NULL)
4852 {
4853 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 4854 return FALSE;
b49e97c9
TS
4855 }
4856
4857 /* We need to create .got section. */
f4416af6
AO
4858 if (! mips_elf_create_got_section (abfd, info, FALSE))
4859 return FALSE;
4860
4861 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 4862 return FALSE;
b49e97c9
TS
4863
4864 /* Create the .msym section on IRIX6. It is used by the dynamic
4865 linker to speed up dynamic relocations, and to avoid computing
4866 the ELF hash for symbols. */
4867 if (IRIX_COMPAT (abfd) == ict_irix6
4868 && !mips_elf_create_msym_section (abfd))
b34976b6 4869 return FALSE;
b49e97c9
TS
4870
4871 /* Create .stub section. */
4872 if (bfd_get_section_by_name (abfd,
4873 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4874 {
4875 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4876 if (s == NULL
4877 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4878 || ! bfd_set_section_alignment (abfd, s,
4879 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4880 return FALSE;
b49e97c9
TS
4881 }
4882
4883 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4884 && !info->shared
4885 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4886 {
4887 s = bfd_make_section (abfd, ".rld_map");
4888 if (s == NULL
4889 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4890 || ! bfd_set_section_alignment (abfd, s,
4891 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4892 return FALSE;
b49e97c9
TS
4893 }
4894
4895 /* On IRIX5, we adjust add some additional symbols and change the
4896 alignments of several sections. There is no ABI documentation
4897 indicating that this is necessary on IRIX6, nor any evidence that
4898 the linker takes such action. */
4899 if (IRIX_COMPAT (abfd) == ict_irix5)
4900 {
4901 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4902 {
14a793b2 4903 bh = NULL;
b49e97c9
TS
4904 if (! (_bfd_generic_link_add_one_symbol
4905 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
b34976b6 4906 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 4907 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4908 return FALSE;
14a793b2
AM
4909
4910 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4911 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4912 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4913 h->type = STT_SECTION;
4914
4915 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4916 return FALSE;
b49e97c9
TS
4917 }
4918
4919 /* We need to create a .compact_rel section. */
4920 if (SGI_COMPAT (abfd))
4921 {
4922 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 4923 return FALSE;
b49e97c9
TS
4924 }
4925
44c410de 4926 /* Change alignments of some sections. */
b49e97c9
TS
4927 s = bfd_get_section_by_name (abfd, ".hash");
4928 if (s != NULL)
4929 bfd_set_section_alignment (abfd, s, 4);
4930 s = bfd_get_section_by_name (abfd, ".dynsym");
4931 if (s != NULL)
4932 bfd_set_section_alignment (abfd, s, 4);
4933 s = bfd_get_section_by_name (abfd, ".dynstr");
4934 if (s != NULL)
4935 bfd_set_section_alignment (abfd, s, 4);
4936 s = bfd_get_section_by_name (abfd, ".reginfo");
4937 if (s != NULL)
4938 bfd_set_section_alignment (abfd, s, 4);
4939 s = bfd_get_section_by_name (abfd, ".dynamic");
4940 if (s != NULL)
4941 bfd_set_section_alignment (abfd, s, 4);
4942 }
4943
4944 if (!info->shared)
4945 {
14a793b2
AM
4946 const char *name;
4947
4948 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4949 bh = NULL;
4950 if (!(_bfd_generic_link_add_one_symbol
4951 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
b34976b6 4952 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 4953 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4954 return FALSE;
14a793b2
AM
4955
4956 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4957 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4958 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4959 h->type = STT_SECTION;
4960
4961 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4962 return FALSE;
b49e97c9
TS
4963
4964 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4965 {
4966 /* __rld_map is a four byte word located in the .data section
4967 and is filled in by the rtld to contain a pointer to
4968 the _r_debug structure. Its symbol value will be set in
4969 _bfd_mips_elf_finish_dynamic_symbol. */
4970 s = bfd_get_section_by_name (abfd, ".rld_map");
4971 BFD_ASSERT (s != NULL);
4972
14a793b2
AM
4973 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4974 bh = NULL;
4975 if (!(_bfd_generic_link_add_one_symbol
4976 (info, abfd, name, BSF_GLOBAL, s,
b34976b6 4977 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 4978 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4979 return FALSE;
14a793b2
AM
4980
4981 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4982 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4983 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4984 h->type = STT_OBJECT;
4985
4986 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4987 return FALSE;
b49e97c9
TS
4988 }
4989 }
4990
b34976b6 4991 return TRUE;
b49e97c9
TS
4992}
4993\f
4994/* Look through the relocs for a section during the first phase, and
4995 allocate space in the global offset table. */
4996
b34976b6 4997bfd_boolean
b49e97c9
TS
4998_bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
4999 bfd *abfd;
5000 struct bfd_link_info *info;
5001 asection *sec;
5002 const Elf_Internal_Rela *relocs;
5003{
5004 const char *name;
5005 bfd *dynobj;
5006 Elf_Internal_Shdr *symtab_hdr;
5007 struct elf_link_hash_entry **sym_hashes;
5008 struct mips_got_info *g;
5009 size_t extsymoff;
5010 const Elf_Internal_Rela *rel;
5011 const Elf_Internal_Rela *rel_end;
5012 asection *sgot;
5013 asection *sreloc;
5014 struct elf_backend_data *bed;
5015
5016 if (info->relocateable)
b34976b6 5017 return TRUE;
b49e97c9
TS
5018
5019 dynobj = elf_hash_table (info)->dynobj;
5020 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5021 sym_hashes = elf_sym_hashes (abfd);
5022 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5023
5024 /* Check for the mips16 stub sections. */
5025
5026 name = bfd_get_section_name (abfd, sec);
5027 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5028 {
5029 unsigned long r_symndx;
5030
5031 /* Look at the relocation information to figure out which symbol
5032 this is for. */
5033
5034 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5035
5036 if (r_symndx < extsymoff
5037 || sym_hashes[r_symndx - extsymoff] == NULL)
5038 {
5039 asection *o;
5040
5041 /* This stub is for a local symbol. This stub will only be
5042 needed if there is some relocation in this BFD, other
5043 than a 16 bit function call, which refers to this symbol. */
5044 for (o = abfd->sections; o != NULL; o = o->next)
5045 {
5046 Elf_Internal_Rela *sec_relocs;
5047 const Elf_Internal_Rela *r, *rend;
5048
5049 /* We can ignore stub sections when looking for relocs. */
5050 if ((o->flags & SEC_RELOC) == 0
5051 || o->reloc_count == 0
5052 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5053 sizeof FN_STUB - 1) == 0
5054 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5055 sizeof CALL_STUB - 1) == 0
5056 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5057 sizeof CALL_FP_STUB - 1) == 0)
5058 continue;
5059
ee6423ed 5060 sec_relocs = (MNAME(abfd,_bfd_elf,link_read_relocs)
b49e97c9
TS
5061 (abfd, o, (PTR) NULL,
5062 (Elf_Internal_Rela *) NULL,
5063 info->keep_memory));
5064 if (sec_relocs == NULL)
b34976b6 5065 return FALSE;
b49e97c9
TS
5066
5067 rend = sec_relocs + o->reloc_count;
5068 for (r = sec_relocs; r < rend; r++)
5069 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5070 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5071 break;
5072
6cdc0ccc 5073 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5074 free (sec_relocs);
5075
5076 if (r < rend)
5077 break;
5078 }
5079
5080 if (o == NULL)
5081 {
5082 /* There is no non-call reloc for this stub, so we do
5083 not need it. Since this function is called before
5084 the linker maps input sections to output sections, we
5085 can easily discard it by setting the SEC_EXCLUDE
5086 flag. */
5087 sec->flags |= SEC_EXCLUDE;
b34976b6 5088 return TRUE;
b49e97c9
TS
5089 }
5090
5091 /* Record this stub in an array of local symbol stubs for
5092 this BFD. */
5093 if (elf_tdata (abfd)->local_stubs == NULL)
5094 {
5095 unsigned long symcount;
5096 asection **n;
5097 bfd_size_type amt;
5098
5099 if (elf_bad_symtab (abfd))
5100 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5101 else
5102 symcount = symtab_hdr->sh_info;
5103 amt = symcount * sizeof (asection *);
5104 n = (asection **) bfd_zalloc (abfd, amt);
5105 if (n == NULL)
b34976b6 5106 return FALSE;
b49e97c9
TS
5107 elf_tdata (abfd)->local_stubs = n;
5108 }
5109
5110 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5111
5112 /* We don't need to set mips16_stubs_seen in this case.
5113 That flag is used to see whether we need to look through
5114 the global symbol table for stubs. We don't need to set
5115 it here, because we just have a local stub. */
5116 }
5117 else
5118 {
5119 struct mips_elf_link_hash_entry *h;
5120
5121 h = ((struct mips_elf_link_hash_entry *)
5122 sym_hashes[r_symndx - extsymoff]);
5123
5124 /* H is the symbol this stub is for. */
5125
5126 h->fn_stub = sec;
b34976b6 5127 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5128 }
5129 }
5130 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5131 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5132 {
5133 unsigned long r_symndx;
5134 struct mips_elf_link_hash_entry *h;
5135 asection **loc;
5136
5137 /* Look at the relocation information to figure out which symbol
5138 this is for. */
5139
5140 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5141
5142 if (r_symndx < extsymoff
5143 || sym_hashes[r_symndx - extsymoff] == NULL)
5144 {
5145 /* This stub was actually built for a static symbol defined
5146 in the same file. We assume that all static symbols in
5147 mips16 code are themselves mips16, so we can simply
5148 discard this stub. Since this function is called before
5149 the linker maps input sections to output sections, we can
5150 easily discard it by setting the SEC_EXCLUDE flag. */
5151 sec->flags |= SEC_EXCLUDE;
b34976b6 5152 return TRUE;
b49e97c9
TS
5153 }
5154
5155 h = ((struct mips_elf_link_hash_entry *)
5156 sym_hashes[r_symndx - extsymoff]);
5157
5158 /* H is the symbol this stub is for. */
5159
5160 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5161 loc = &h->call_fp_stub;
5162 else
5163 loc = &h->call_stub;
5164
5165 /* If we already have an appropriate stub for this function, we
5166 don't need another one, so we can discard this one. Since
5167 this function is called before the linker maps input sections
5168 to output sections, we can easily discard it by setting the
5169 SEC_EXCLUDE flag. We can also discard this section if we
5170 happen to already know that this is a mips16 function; it is
5171 not necessary to check this here, as it is checked later, but
5172 it is slightly faster to check now. */
5173 if (*loc != NULL || h->root.other == STO_MIPS16)
5174 {
5175 sec->flags |= SEC_EXCLUDE;
b34976b6 5176 return TRUE;
b49e97c9
TS
5177 }
5178
5179 *loc = sec;
b34976b6 5180 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5181 }
5182
5183 if (dynobj == NULL)
5184 {
5185 sgot = NULL;
5186 g = NULL;
5187 }
5188 else
5189 {
f4416af6 5190 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5191 if (sgot == NULL)
5192 g = NULL;
5193 else
5194 {
f0abc2a1
AM
5195 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5196 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5197 BFD_ASSERT (g != NULL);
5198 }
5199 }
5200
5201 sreloc = NULL;
5202 bed = get_elf_backend_data (abfd);
5203 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5204 for (rel = relocs; rel < rel_end; ++rel)
5205 {
5206 unsigned long r_symndx;
5207 unsigned int r_type;
5208 struct elf_link_hash_entry *h;
5209
5210 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5211 r_type = ELF_R_TYPE (abfd, rel->r_info);
5212
5213 if (r_symndx < extsymoff)
5214 h = NULL;
5215 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5216 {
5217 (*_bfd_error_handler)
5218 (_("%s: Malformed reloc detected for section %s"),
5219 bfd_archive_filename (abfd), name);
5220 bfd_set_error (bfd_error_bad_value);
b34976b6 5221 return FALSE;
b49e97c9
TS
5222 }
5223 else
5224 {
5225 h = sym_hashes[r_symndx - extsymoff];
5226
5227 /* This may be an indirect symbol created because of a version. */
5228 if (h != NULL)
5229 {
5230 while (h->root.type == bfd_link_hash_indirect)
5231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5232 }
5233 }
5234
5235 /* Some relocs require a global offset table. */
5236 if (dynobj == NULL || sgot == NULL)
5237 {
5238 switch (r_type)
5239 {
5240 case R_MIPS_GOT16:
5241 case R_MIPS_CALL16:
5242 case R_MIPS_CALL_HI16:
5243 case R_MIPS_CALL_LO16:
5244 case R_MIPS_GOT_HI16:
5245 case R_MIPS_GOT_LO16:
5246 case R_MIPS_GOT_PAGE:
5247 case R_MIPS_GOT_OFST:
5248 case R_MIPS_GOT_DISP:
5249 if (dynobj == NULL)
5250 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5251 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5252 return FALSE;
b49e97c9
TS
5253 g = mips_elf_got_info (dynobj, &sgot);
5254 break;
5255
5256 case R_MIPS_32:
5257 case R_MIPS_REL32:
5258 case R_MIPS_64:
5259 if (dynobj == NULL
5260 && (info->shared || h != NULL)
5261 && (sec->flags & SEC_ALLOC) != 0)
5262 elf_hash_table (info)->dynobj = dynobj = abfd;
5263 break;
5264
5265 default:
5266 break;
5267 }
5268 }
5269
5270 if (!h && (r_type == R_MIPS_CALL_LO16
5271 || r_type == R_MIPS_GOT_LO16
5272 || r_type == R_MIPS_GOT_DISP))
5273 {
5274 /* We may need a local GOT entry for this relocation. We
5275 don't count R_MIPS_GOT_PAGE because we can estimate the
5276 maximum number of pages needed by looking at the size of
5277 the segment. Similar comments apply to R_MIPS_GOT16 and
5278 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5279 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 5280 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6
AO
5281 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5282 rel->r_addend, g))
5283 return FALSE;
b49e97c9
TS
5284 }
5285
5286 switch (r_type)
5287 {
5288 case R_MIPS_CALL16:
5289 if (h == NULL)
5290 {
5291 (*_bfd_error_handler)
5292 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5293 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5294 bfd_set_error (bfd_error_bad_value);
b34976b6 5295 return FALSE;
b49e97c9
TS
5296 }
5297 /* Fall through. */
5298
5299 case R_MIPS_CALL_HI16:
5300 case R_MIPS_CALL_LO16:
5301 if (h != NULL)
5302 {
5303 /* This symbol requires a global offset table entry. */
f4416af6 5304 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5305 return FALSE;
b49e97c9
TS
5306
5307 /* We need a stub, not a plt entry for the undefined
5308 function. But we record it as if it needs plt. See
5309 elf_adjust_dynamic_symbol in elflink.h. */
5310 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5311 h->type = STT_FUNC;
5312 }
5313 break;
5314
5315 case R_MIPS_GOT16:
5316 case R_MIPS_GOT_HI16:
5317 case R_MIPS_GOT_LO16:
5318 case R_MIPS_GOT_DISP:
5319 /* This symbol requires a global offset table entry. */
f4416af6 5320 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5321 return FALSE;
b49e97c9
TS
5322 break;
5323
5324 case R_MIPS_32:
5325 case R_MIPS_REL32:
5326 case R_MIPS_64:
5327 if ((info->shared || h != NULL)
5328 && (sec->flags & SEC_ALLOC) != 0)
5329 {
5330 if (sreloc == NULL)
5331 {
f4416af6 5332 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 5333 if (sreloc == NULL)
f4416af6 5334 return FALSE;
b49e97c9
TS
5335 }
5336#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5337 if (info->shared)
5338 {
5339 /* When creating a shared object, we must copy these
5340 reloc types into the output file as R_MIPS_REL32
5341 relocs. We make room for this reloc in the
5342 .rel.dyn reloc section. */
5343 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5344 if ((sec->flags & MIPS_READONLY_SECTION)
5345 == MIPS_READONLY_SECTION)
5346 /* We tell the dynamic linker that there are
5347 relocations against the text segment. */
5348 info->flags |= DF_TEXTREL;
5349 }
5350 else
5351 {
5352 struct mips_elf_link_hash_entry *hmips;
5353
5354 /* We only need to copy this reloc if the symbol is
5355 defined in a dynamic object. */
5356 hmips = (struct mips_elf_link_hash_entry *) h;
5357 ++hmips->possibly_dynamic_relocs;
5358 if ((sec->flags & MIPS_READONLY_SECTION)
5359 == MIPS_READONLY_SECTION)
5360 /* We need it to tell the dynamic linker if there
5361 are relocations against the text segment. */
b34976b6 5362 hmips->readonly_reloc = TRUE;
b49e97c9
TS
5363 }
5364
5365 /* Even though we don't directly need a GOT entry for
5366 this symbol, a symbol must have a dynamic symbol
5367 table index greater that DT_MIPS_GOTSYM if there are
5368 dynamic relocations against it. */
f4416af6
AO
5369 if (h != NULL)
5370 {
5371 if (dynobj == NULL)
5372 elf_hash_table (info)->dynobj = dynobj = abfd;
5373 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5374 return FALSE;
5375 g = mips_elf_got_info (dynobj, &sgot);
5376 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5377 return FALSE;
5378 }
b49e97c9
TS
5379 }
5380
5381 if (SGI_COMPAT (abfd))
5382 mips_elf_hash_table (info)->compact_rel_size +=
5383 sizeof (Elf32_External_crinfo);
5384 break;
5385
5386 case R_MIPS_26:
5387 case R_MIPS_GPREL16:
5388 case R_MIPS_LITERAL:
5389 case R_MIPS_GPREL32:
5390 if (SGI_COMPAT (abfd))
5391 mips_elf_hash_table (info)->compact_rel_size +=
5392 sizeof (Elf32_External_crinfo);
5393 break;
5394
5395 /* This relocation describes the C++ object vtable hierarchy.
5396 Reconstruct it for later use during GC. */
5397 case R_MIPS_GNU_VTINHERIT:
5398 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 5399 return FALSE;
b49e97c9
TS
5400 break;
5401
5402 /* This relocation describes which C++ vtable entries are actually
5403 used. Record for later use during GC. */
5404 case R_MIPS_GNU_VTENTRY:
5405 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 5406 return FALSE;
b49e97c9
TS
5407 break;
5408
5409 default:
5410 break;
5411 }
5412
5413 /* We must not create a stub for a symbol that has relocations
5414 related to taking the function's address. */
5415 switch (r_type)
5416 {
5417 default:
5418 if (h != NULL)
5419 {
5420 struct mips_elf_link_hash_entry *mh;
5421
5422 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5423 mh->no_fn_stub = TRUE;
b49e97c9
TS
5424 }
5425 break;
5426 case R_MIPS_CALL16:
5427 case R_MIPS_CALL_HI16:
5428 case R_MIPS_CALL_LO16:
5429 break;
5430 }
5431
5432 /* If this reloc is not a 16 bit call, and it has a global
5433 symbol, then we will need the fn_stub if there is one.
5434 References from a stub section do not count. */
5435 if (h != NULL
5436 && r_type != R_MIPS16_26
5437 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5438 sizeof FN_STUB - 1) != 0
5439 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5440 sizeof CALL_STUB - 1) != 0
5441 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5442 sizeof CALL_FP_STUB - 1) != 0)
5443 {
5444 struct mips_elf_link_hash_entry *mh;
5445
5446 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5447 mh->need_fn_stub = TRUE;
b49e97c9
TS
5448 }
5449 }
5450
b34976b6 5451 return TRUE;
b49e97c9
TS
5452}
5453\f
d0647110
AO
5454bfd_boolean
5455_bfd_mips_relax_section (abfd, sec, link_info, again)
5456 bfd *abfd;
5457 asection *sec;
5458 struct bfd_link_info *link_info;
5459 bfd_boolean *again;
5460{
5461 Elf_Internal_Rela *internal_relocs;
5462 Elf_Internal_Rela *irel, *irelend;
5463 Elf_Internal_Shdr *symtab_hdr;
5464 bfd_byte *contents = NULL;
5465 bfd_byte *free_contents = NULL;
5466 size_t extsymoff;
5467 bfd_boolean changed_contents = FALSE;
5468 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5469 Elf_Internal_Sym *isymbuf = NULL;
5470
5471 /* We are not currently changing any sizes, so only one pass. */
5472 *again = FALSE;
5473
5474 if (link_info->relocateable)
5475 return TRUE;
5476
5477 internal_relocs = (MNAME(abfd,_bfd_elf,link_read_relocs)
5478 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
5479 link_info->keep_memory));
5480 if (internal_relocs == NULL)
5481 return TRUE;
5482
5483 irelend = internal_relocs + sec->reloc_count
5484 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5485 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5486 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5487
5488 for (irel = internal_relocs; irel < irelend; irel++)
5489 {
5490 bfd_vma symval;
5491 bfd_signed_vma sym_offset;
5492 unsigned int r_type;
5493 unsigned long r_symndx;
5494 asection *sym_sec;
5495 unsigned long instruction;
5496
5497 /* Turn jalr into bgezal, and jr into beq, if they're marked
5498 with a JALR relocation, that indicate where they jump to.
5499 This saves some pipeline bubbles. */
5500 r_type = ELF_R_TYPE (abfd, irel->r_info);
5501 if (r_type != R_MIPS_JALR)
5502 continue;
5503
5504 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5505 /* Compute the address of the jump target. */
5506 if (r_symndx >= extsymoff)
5507 {
5508 struct mips_elf_link_hash_entry *h
5509 = ((struct mips_elf_link_hash_entry *)
5510 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5511
5512 while (h->root.root.type == bfd_link_hash_indirect
5513 || h->root.root.type == bfd_link_hash_warning)
5514 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5515
5516 /* If a symbol is undefined, or if it may be overridden,
5517 skip it. */
5518 if (! ((h->root.root.type == bfd_link_hash_defined
5519 || h->root.root.type == bfd_link_hash_defweak)
5520 && h->root.root.u.def.section)
5521 || (link_info->shared && ! link_info->symbolic
5522 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5523 continue;
5524
5525 sym_sec = h->root.root.u.def.section;
5526 if (sym_sec->output_section)
5527 symval = (h->root.root.u.def.value
5528 + sym_sec->output_section->vma
5529 + sym_sec->output_offset);
5530 else
5531 symval = h->root.root.u.def.value;
5532 }
5533 else
5534 {
5535 Elf_Internal_Sym *isym;
5536
5537 /* Read this BFD's symbols if we haven't done so already. */
5538 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5539 {
5540 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5541 if (isymbuf == NULL)
5542 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5543 symtab_hdr->sh_info, 0,
5544 NULL, NULL, NULL);
5545 if (isymbuf == NULL)
5546 goto relax_return;
5547 }
5548
5549 isym = isymbuf + r_symndx;
5550 if (isym->st_shndx == SHN_UNDEF)
5551 continue;
5552 else if (isym->st_shndx == SHN_ABS)
5553 sym_sec = bfd_abs_section_ptr;
5554 else if (isym->st_shndx == SHN_COMMON)
5555 sym_sec = bfd_com_section_ptr;
5556 else
5557 sym_sec
5558 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5559 symval = isym->st_value
5560 + sym_sec->output_section->vma
5561 + sym_sec->output_offset;
5562 }
5563
5564 /* Compute branch offset, from delay slot of the jump to the
5565 branch target. */
5566 sym_offset = (symval + irel->r_addend)
5567 - (sec_start + irel->r_offset + 4);
5568
5569 /* Branch offset must be properly aligned. */
5570 if ((sym_offset & 3) != 0)
5571 continue;
5572
5573 sym_offset >>= 2;
5574
5575 /* Check that it's in range. */
5576 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5577 continue;
5578
5579 /* Get the section contents if we haven't done so already. */
5580 if (contents == NULL)
5581 {
5582 /* Get cached copy if it exists. */
5583 if (elf_section_data (sec)->this_hdr.contents != NULL)
5584 contents = elf_section_data (sec)->this_hdr.contents;
5585 else
5586 {
5587 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
5588 if (contents == NULL)
5589 goto relax_return;
5590
5591 free_contents = contents;
5592 if (! bfd_get_section_contents (abfd, sec, contents,
5593 (file_ptr) 0, sec->_raw_size))
5594 goto relax_return;
5595 }
5596 }
5597
5598 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5599
5600 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5601 if ((instruction & 0xfc1fffff) == 0x0000f809)
5602 instruction = 0x04110000;
5603 /* If it was jr <reg>, turn it into b <target>. */
5604 else if ((instruction & 0xfc1fffff) == 0x00000008)
5605 instruction = 0x10000000;
5606 else
5607 continue;
5608
5609 instruction |= (sym_offset & 0xffff);
5610 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5611 changed_contents = TRUE;
5612 }
5613
5614 if (contents != NULL
5615 && elf_section_data (sec)->this_hdr.contents != contents)
5616 {
5617 if (!changed_contents && !link_info->keep_memory)
5618 free (contents);
5619 else
5620 {
5621 /* Cache the section contents for elf_link_input_bfd. */
5622 elf_section_data (sec)->this_hdr.contents = contents;
5623 }
5624 }
5625 return TRUE;
5626
5627 relax_return:
5628 if (free_contents != NULL)
5629 free (free_contents);
5630 return FALSE;
5631}
5632\f
b49e97c9
TS
5633/* Adjust a symbol defined by a dynamic object and referenced by a
5634 regular object. The current definition is in some section of the
5635 dynamic object, but we're not including those sections. We have to
5636 change the definition to something the rest of the link can
5637 understand. */
5638
b34976b6 5639bfd_boolean
b49e97c9
TS
5640_bfd_mips_elf_adjust_dynamic_symbol (info, h)
5641 struct bfd_link_info *info;
5642 struct elf_link_hash_entry *h;
5643{
5644 bfd *dynobj;
5645 struct mips_elf_link_hash_entry *hmips;
5646 asection *s;
5647
5648 dynobj = elf_hash_table (info)->dynobj;
5649
5650 /* Make sure we know what is going on here. */
5651 BFD_ASSERT (dynobj != NULL
5652 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5653 || h->weakdef != NULL
5654 || ((h->elf_link_hash_flags
5655 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5656 && (h->elf_link_hash_flags
5657 & ELF_LINK_HASH_REF_REGULAR) != 0
5658 && (h->elf_link_hash_flags
5659 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5660
5661 /* If this symbol is defined in a dynamic object, we need to copy
5662 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5663 file. */
5664 hmips = (struct mips_elf_link_hash_entry *) h;
5665 if (! info->relocateable
5666 && hmips->possibly_dynamic_relocs != 0
5667 && (h->root.type == bfd_link_hash_defweak
5668 || (h->elf_link_hash_flags
5669 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5670 {
5671 mips_elf_allocate_dynamic_relocations (dynobj,
5672 hmips->possibly_dynamic_relocs);
5673 if (hmips->readonly_reloc)
5674 /* We tell the dynamic linker that there are relocations
5675 against the text segment. */
5676 info->flags |= DF_TEXTREL;
5677 }
5678
5679 /* For a function, create a stub, if allowed. */
5680 if (! hmips->no_fn_stub
5681 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5682 {
5683 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 5684 return TRUE;
b49e97c9
TS
5685
5686 /* If this symbol is not defined in a regular file, then set
5687 the symbol to the stub location. This is required to make
5688 function pointers compare as equal between the normal
5689 executable and the shared library. */
5690 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5691 {
5692 /* We need .stub section. */
5693 s = bfd_get_section_by_name (dynobj,
5694 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5695 BFD_ASSERT (s != NULL);
5696
5697 h->root.u.def.section = s;
5698 h->root.u.def.value = s->_raw_size;
5699
5700 /* XXX Write this stub address somewhere. */
5701 h->plt.offset = s->_raw_size;
5702
5703 /* Make room for this stub code. */
5704 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5705
5706 /* The last half word of the stub will be filled with the index
5707 of this symbol in .dynsym section. */
b34976b6 5708 return TRUE;
b49e97c9
TS
5709 }
5710 }
5711 else if ((h->type == STT_FUNC)
5712 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5713 {
5714 /* This will set the entry for this symbol in the GOT to 0, and
5715 the dynamic linker will take care of this. */
5716 h->root.u.def.value = 0;
b34976b6 5717 return TRUE;
b49e97c9
TS
5718 }
5719
5720 /* If this is a weak symbol, and there is a real definition, the
5721 processor independent code will have arranged for us to see the
5722 real definition first, and we can just use the same value. */
5723 if (h->weakdef != NULL)
5724 {
5725 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5726 || h->weakdef->root.type == bfd_link_hash_defweak);
5727 h->root.u.def.section = h->weakdef->root.u.def.section;
5728 h->root.u.def.value = h->weakdef->root.u.def.value;
b34976b6 5729 return TRUE;
b49e97c9
TS
5730 }
5731
5732 /* This is a reference to a symbol defined by a dynamic object which
5733 is not a function. */
5734
b34976b6 5735 return TRUE;
b49e97c9
TS
5736}
5737\f
5738/* This function is called after all the input files have been read,
5739 and the input sections have been assigned to output sections. We
5740 check for any mips16 stub sections that we can discard. */
5741
b34976b6 5742bfd_boolean
b49e97c9
TS
5743_bfd_mips_elf_always_size_sections (output_bfd, info)
5744 bfd *output_bfd;
5745 struct bfd_link_info *info;
5746{
5747 asection *ri;
5748
f4416af6
AO
5749 bfd *dynobj;
5750 asection *s;
5751 struct mips_got_info *g;
5752 int i;
5753 bfd_size_type loadable_size = 0;
5754 bfd_size_type local_gotno;
5755 bfd *sub;
5756
b49e97c9
TS
5757 /* The .reginfo section has a fixed size. */
5758 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5759 if (ri != NULL)
5760 bfd_set_section_size (output_bfd, ri,
5761 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5762
f4416af6
AO
5763 if (! (info->relocateable
5764 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5765 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5766 mips_elf_check_mips16_stubs,
5767 (PTR) NULL);
5768
5769 dynobj = elf_hash_table (info)->dynobj;
5770 if (dynobj == NULL)
5771 /* Relocatable links don't have it. */
5772 return TRUE;
5773
5774 g = mips_elf_got_info (dynobj, &s);
5775 if (s == NULL)
b34976b6 5776 return TRUE;
b49e97c9 5777
f4416af6
AO
5778 /* Calculate the total loadable size of the output. That
5779 will give us the maximum number of GOT_PAGE entries
5780 required. */
5781 for (sub = info->input_bfds; sub; sub = sub->link_next)
5782 {
5783 asection *subsection;
5784
5785 for (subsection = sub->sections;
5786 subsection;
5787 subsection = subsection->next)
5788 {
5789 if ((subsection->flags & SEC_ALLOC) == 0)
5790 continue;
5791 loadable_size += ((subsection->_raw_size + 0xf)
5792 &~ (bfd_size_type) 0xf);
5793 }
5794 }
5795
5796 /* There has to be a global GOT entry for every symbol with
5797 a dynamic symbol table index of DT_MIPS_GOTSYM or
5798 higher. Therefore, it make sense to put those symbols
5799 that need GOT entries at the end of the symbol table. We
5800 do that here. */
5801 if (! mips_elf_sort_hash_table (info, 1))
5802 return FALSE;
5803
5804 if (g->global_gotsym != NULL)
5805 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5806 else
5807 /* If there are no global symbols, or none requiring
5808 relocations, then GLOBAL_GOTSYM will be NULL. */
5809 i = 0;
5810
5811 /* In the worst case, we'll get one stub per dynamic symbol, plus
5812 one to account for the dummy entry at the end required by IRIX
5813 rld. */
5814 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5815
5816 /* Assume there are two loadable segments consisting of
5817 contiguous sections. Is 5 enough? */
5818 local_gotno = (loadable_size >> 16) + 5;
5819
5820 g->local_gotno += local_gotno;
5821 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5822
5823 g->global_gotno = i;
5824 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5825
5826 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5827 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5828 return FALSE;
b49e97c9 5829
b34976b6 5830 return TRUE;
b49e97c9
TS
5831}
5832
5833/* Set the sizes of the dynamic sections. */
5834
b34976b6 5835bfd_boolean
b49e97c9
TS
5836_bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5837 bfd *output_bfd;
5838 struct bfd_link_info *info;
5839{
5840 bfd *dynobj;
5841 asection *s;
b34976b6 5842 bfd_boolean reltext;
b49e97c9
TS
5843
5844 dynobj = elf_hash_table (info)->dynobj;
5845 BFD_ASSERT (dynobj != NULL);
5846
5847 if (elf_hash_table (info)->dynamic_sections_created)
5848 {
5849 /* Set the contents of the .interp section to the interpreter. */
5850 if (! info->shared)
5851 {
5852 s = bfd_get_section_by_name (dynobj, ".interp");
5853 BFD_ASSERT (s != NULL);
5854 s->_raw_size
5855 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5856 s->contents
5857 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5858 }
5859 }
5860
5861 /* The check_relocs and adjust_dynamic_symbol entry points have
5862 determined the sizes of the various dynamic sections. Allocate
5863 memory for them. */
b34976b6 5864 reltext = FALSE;
b49e97c9
TS
5865 for (s = dynobj->sections; s != NULL; s = s->next)
5866 {
5867 const char *name;
b34976b6 5868 bfd_boolean strip;
b49e97c9
TS
5869
5870 /* It's OK to base decisions on the section name, because none
5871 of the dynobj section names depend upon the input files. */
5872 name = bfd_get_section_name (dynobj, s);
5873
5874 if ((s->flags & SEC_LINKER_CREATED) == 0)
5875 continue;
5876
b34976b6 5877 strip = FALSE;
b49e97c9
TS
5878
5879 if (strncmp (name, ".rel", 4) == 0)
5880 {
5881 if (s->_raw_size == 0)
5882 {
5883 /* We only strip the section if the output section name
5884 has the same name. Otherwise, there might be several
5885 input sections for this output section. FIXME: This
5886 code is probably not needed these days anyhow, since
5887 the linker now does not create empty output sections. */
5888 if (s->output_section != NULL
5889 && strcmp (name,
5890 bfd_get_section_name (s->output_section->owner,
5891 s->output_section)) == 0)
b34976b6 5892 strip = TRUE;
b49e97c9
TS
5893 }
5894 else
5895 {
5896 const char *outname;
5897 asection *target;
5898
5899 /* If this relocation section applies to a read only
5900 section, then we probably need a DT_TEXTREL entry.
5901 If the relocation section is .rel.dyn, we always
5902 assert a DT_TEXTREL entry rather than testing whether
5903 there exists a relocation to a read only section or
5904 not. */
5905 outname = bfd_get_section_name (output_bfd,
5906 s->output_section);
5907 target = bfd_get_section_by_name (output_bfd, outname + 4);
5908 if ((target != NULL
5909 && (target->flags & SEC_READONLY) != 0
5910 && (target->flags & SEC_ALLOC) != 0)
5911 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 5912 reltext = TRUE;
b49e97c9
TS
5913
5914 /* We use the reloc_count field as a counter if we need
5915 to copy relocs into the output file. */
5916 if (strcmp (name, ".rel.dyn") != 0)
5917 s->reloc_count = 0;
f4416af6
AO
5918
5919 /* If combreloc is enabled, elf_link_sort_relocs() will
5920 sort relocations, but in a different way than we do,
5921 and before we're done creating relocations. Also, it
5922 will move them around between input sections'
5923 relocation's contents, so our sorting would be
5924 broken, so don't let it run. */
5925 info->combreloc = 0;
b49e97c9
TS
5926 }
5927 }
5928 else if (strncmp (name, ".got", 4) == 0)
5929 {
f4416af6
AO
5930 /* _bfd_mips_elf_always_size_sections() has already done
5931 most of the work, but some symbols may have been mapped
5932 to versions that we must now resolve in the got_entries
5933 hash tables. */
5934 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5935 struct mips_got_info *g = gg;
5936 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5937 unsigned int needed_relocs = 0;
5938
5939 if (gg->next)
b49e97c9 5940 {
f4416af6
AO
5941 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5942 set_got_offset_arg.info = info;
b49e97c9 5943
f4416af6
AO
5944 mips_elf_resolve_final_got_entries (gg);
5945 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 5946 {
f4416af6
AO
5947 unsigned int save_assign;
5948
5949 mips_elf_resolve_final_got_entries (g);
5950
5951 /* Assign offsets to global GOT entries. */
5952 save_assign = g->assigned_gotno;
5953 g->assigned_gotno = g->local_gotno;
5954 set_got_offset_arg.g = g;
5955 set_got_offset_arg.needed_relocs = 0;
5956 htab_traverse (g->got_entries,
5957 mips_elf_set_global_got_offset,
5958 &set_got_offset_arg);
5959 needed_relocs += set_got_offset_arg.needed_relocs;
5960 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5961 <= g->global_gotno);
5962
5963 g->assigned_gotno = save_assign;
5964 if (info->shared)
5965 {
5966 needed_relocs += g->local_gotno - g->assigned_gotno;
5967 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5968 + g->next->global_gotno
5969 + MIPS_RESERVED_GOTNO);
5970 }
b49e97c9 5971 }
b49e97c9 5972
f4416af6
AO
5973 if (needed_relocs)
5974 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5975 }
b49e97c9
TS
5976 }
5977 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5978 {
8dc1a139 5979 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9
TS
5980 of .text section. So put a dummy. XXX */
5981 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5982 }
5983 else if (! info->shared
5984 && ! mips_elf_hash_table (info)->use_rld_obj_head
5985 && strncmp (name, ".rld_map", 8) == 0)
5986 {
5987 /* We add a room for __rld_map. It will be filled in by the
5988 rtld to contain a pointer to the _r_debug structure. */
5989 s->_raw_size += 4;
5990 }
5991 else if (SGI_COMPAT (output_bfd)
5992 && strncmp (name, ".compact_rel", 12) == 0)
5993 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
5994 else if (strcmp (name, ".msym") == 0)
5995 s->_raw_size = (sizeof (Elf32_External_Msym)
5996 * (elf_hash_table (info)->dynsymcount
5997 + bfd_count_sections (output_bfd)));
5998 else if (strncmp (name, ".init", 5) != 0)
5999 {
6000 /* It's not one of our sections, so don't allocate space. */
6001 continue;
6002 }
6003
6004 if (strip)
6005 {
6006 _bfd_strip_section_from_output (info, s);
6007 continue;
6008 }
6009
6010 /* Allocate memory for the section contents. */
6011 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
6012 if (s->contents == NULL && s->_raw_size != 0)
6013 {
6014 bfd_set_error (bfd_error_no_memory);
b34976b6 6015 return FALSE;
b49e97c9
TS
6016 }
6017 }
6018
6019 if (elf_hash_table (info)->dynamic_sections_created)
6020 {
6021 /* Add some entries to the .dynamic section. We fill in the
6022 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6023 must add the entries now so that we get the correct size for
6024 the .dynamic section. The DT_DEBUG entry is filled in by the
6025 dynamic linker and used by the debugger. */
6026 if (! info->shared)
6027 {
6028 /* SGI object has the equivalence of DT_DEBUG in the
6029 DT_MIPS_RLD_MAP entry. */
6030 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6031 return FALSE;
b49e97c9
TS
6032 if (!SGI_COMPAT (output_bfd))
6033 {
6034 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6035 return FALSE;
b49e97c9
TS
6036 }
6037 }
6038 else
6039 {
6040 /* Shared libraries on traditional mips have DT_DEBUG. */
6041 if (!SGI_COMPAT (output_bfd))
6042 {
6043 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6044 return FALSE;
b49e97c9
TS
6045 }
6046 }
6047
6048 if (reltext && SGI_COMPAT (output_bfd))
6049 info->flags |= DF_TEXTREL;
6050
6051 if ((info->flags & DF_TEXTREL) != 0)
6052 {
6053 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6054 return FALSE;
b49e97c9
TS
6055 }
6056
6057 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6058 return FALSE;
b49e97c9 6059
f4416af6 6060 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6061 {
6062 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6063 return FALSE;
b49e97c9
TS
6064
6065 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6066 return FALSE;
b49e97c9
TS
6067
6068 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6069 return FALSE;
b49e97c9
TS
6070 }
6071
6072 if (SGI_COMPAT (output_bfd))
6073 {
6074 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
b34976b6 6075 return FALSE;
b49e97c9
TS
6076 }
6077
6078 if (SGI_COMPAT (output_bfd))
6079 {
6080 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
b34976b6 6081 return FALSE;
b49e97c9
TS
6082 }
6083
6084 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
6085 {
6086 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
b34976b6 6087 return FALSE;
b49e97c9
TS
6088
6089 s = bfd_get_section_by_name (dynobj, ".liblist");
6090 BFD_ASSERT (s != NULL);
6091
6092 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
b34976b6 6093 return FALSE;
b49e97c9
TS
6094 }
6095
6096 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6097 return FALSE;
b49e97c9
TS
6098
6099 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6100 return FALSE;
b49e97c9
TS
6101
6102#if 0
6103 /* Time stamps in executable files are a bad idea. */
6104 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
b34976b6 6105 return FALSE;
b49e97c9
TS
6106#endif
6107
6108#if 0 /* FIXME */
6109 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
b34976b6 6110 return FALSE;
b49e97c9
TS
6111#endif
6112
6113#if 0 /* FIXME */
6114 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
b34976b6 6115 return FALSE;
b49e97c9
TS
6116#endif
6117
6118 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6119 return FALSE;
b49e97c9
TS
6120
6121 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6122 return FALSE;
b49e97c9
TS
6123
6124 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6125 return FALSE;
b49e97c9
TS
6126
6127 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6128 return FALSE;
b49e97c9
TS
6129
6130 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6131 return FALSE;
b49e97c9
TS
6132
6133 if (IRIX_COMPAT (dynobj) == ict_irix5
6134 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6135 return FALSE;
b49e97c9
TS
6136
6137 if (IRIX_COMPAT (dynobj) == ict_irix6
6138 && (bfd_get_section_by_name
6139 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6140 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6141 return FALSE;
b49e97c9
TS
6142
6143 if (bfd_get_section_by_name (dynobj, ".msym")
6144 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
b34976b6 6145 return FALSE;
b49e97c9
TS
6146 }
6147
b34976b6 6148 return TRUE;
b49e97c9
TS
6149}
6150\f
6151/* Relocate a MIPS ELF section. */
6152
b34976b6 6153bfd_boolean
b49e97c9
TS
6154_bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6155 contents, relocs, local_syms, local_sections)
6156 bfd *output_bfd;
6157 struct bfd_link_info *info;
6158 bfd *input_bfd;
6159 asection *input_section;
6160 bfd_byte *contents;
6161 Elf_Internal_Rela *relocs;
6162 Elf_Internal_Sym *local_syms;
6163 asection **local_sections;
6164{
6165 Elf_Internal_Rela *rel;
6166 const Elf_Internal_Rela *relend;
6167 bfd_vma addend = 0;
b34976b6 6168 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9
TS
6169 struct elf_backend_data *bed;
6170
6171 bed = get_elf_backend_data (output_bfd);
6172 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6173 for (rel = relocs; rel < relend; ++rel)
6174 {
6175 const char *name;
6176 bfd_vma value;
6177 reloc_howto_type *howto;
b34976b6
AM
6178 bfd_boolean require_jalx;
6179 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6180 REL relocation. */
b34976b6 6181 bfd_boolean rela_relocation_p = TRUE;
b49e97c9
TS
6182 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6183 const char * msg = (const char *) NULL;
6184
6185 /* Find the relocation howto for this relocation. */
4a14403c 6186 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6187 {
6188 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6189 64-bit code, but make sure all their addresses are in the
6190 lowermost or uppermost 32-bit section of the 64-bit address
6191 space. Thus, when they use an R_MIPS_64 they mean what is
6192 usually meant by R_MIPS_32, with the exception that the
6193 stored value is sign-extended to 64 bits. */
b34976b6 6194 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6195
6196 /* On big-endian systems, we need to lie about the position
6197 of the reloc. */
6198 if (bfd_big_endian (input_bfd))
6199 rel->r_offset += 4;
6200 }
6201 else
6202 /* NewABI defaults to RELA relocations. */
6203 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6204 NEWABI_P (input_bfd)
6205 && (MIPS_RELOC_RELA_P
6206 (input_bfd, input_section,
6207 rel - relocs)));
b49e97c9
TS
6208
6209 if (!use_saved_addend_p)
6210 {
6211 Elf_Internal_Shdr *rel_hdr;
6212
6213 /* If these relocations were originally of the REL variety,
6214 we must pull the addend out of the field that will be
6215 relocated. Otherwise, we simply use the contents of the
6216 RELA relocation. To determine which flavor or relocation
6217 this is, we depend on the fact that the INPUT_SECTION's
6218 REL_HDR is read before its REL_HDR2. */
6219 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6220 if ((size_t) (rel - relocs)
6221 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6222 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6223 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6224 {
6225 /* Note that this is a REL relocation. */
b34976b6 6226 rela_relocation_p = FALSE;
b49e97c9
TS
6227
6228 /* Get the addend, which is stored in the input file. */
6229 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6230 contents);
6231 addend &= howto->src_mask;
5a659663 6232 addend <<= howto->rightshift;
b49e97c9
TS
6233
6234 /* For some kinds of relocations, the ADDEND is a
6235 combination of the addend stored in two different
6236 relocations. */
6237 if (r_type == R_MIPS_HI16
6238 || r_type == R_MIPS_GNU_REL_HI16
6239 || (r_type == R_MIPS_GOT16
6240 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 6241 local_sections, FALSE)))
b49e97c9
TS
6242 {
6243 bfd_vma l;
6244 const Elf_Internal_Rela *lo16_relocation;
6245 reloc_howto_type *lo16_howto;
6246 unsigned int lo;
6247
6248 /* The combined value is the sum of the HI16 addend,
6249 left-shifted by sixteen bits, and the LO16
6250 addend, sign extended. (Usually, the code does
6251 a `lui' of the HI16 value, and then an `addiu' of
6252 the LO16 value.)
6253
6254 Scan ahead to find a matching LO16 relocation. */
6255 if (r_type == R_MIPS_GNU_REL_HI16)
6256 lo = R_MIPS_GNU_REL_LO16;
6257 else
6258 lo = R_MIPS_LO16;
6259 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6260 rel, relend);
6261 if (lo16_relocation == NULL)
b34976b6 6262 return FALSE;
b49e97c9
TS
6263
6264 /* Obtain the addend kept there. */
b34976b6 6265 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
b49e97c9
TS
6266 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6267 input_bfd, contents);
6268 l &= lo16_howto->src_mask;
5a659663 6269 l <<= lo16_howto->rightshift;
b49e97c9
TS
6270 l = mips_elf_sign_extend (l, 16);
6271
6272 addend <<= 16;
6273
6274 /* Compute the combined addend. */
6275 addend += l;
6276
6277 /* If PC-relative, subtract the difference between the
6278 address of the LO part of the reloc and the address of
6279 the HI part. The relocation is relative to the LO
6280 part, but mips_elf_calculate_relocation() doesn't
6281 know its address or the difference from the HI part, so
6282 we subtract that difference here. See also the
6283 comment in mips_elf_calculate_relocation(). */
6284 if (r_type == R_MIPS_GNU_REL_HI16)
6285 addend -= (lo16_relocation->r_offset - rel->r_offset);
6286 }
6287 else if (r_type == R_MIPS16_GPREL)
6288 {
6289 /* The addend is scrambled in the object file. See
6290 mips_elf_perform_relocation for details on the
6291 format. */
6292 addend = (((addend & 0x1f0000) >> 5)
6293 | ((addend & 0x7e00000) >> 16)
6294 | (addend & 0x1f));
6295 }
6296 }
6297 else
6298 addend = rel->r_addend;
6299 }
6300
6301 if (info->relocateable)
6302 {
6303 Elf_Internal_Sym *sym;
6304 unsigned long r_symndx;
6305
4a14403c 6306 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
6307 && bfd_big_endian (input_bfd))
6308 rel->r_offset -= 4;
6309
6310 /* Since we're just relocating, all we need to do is copy
6311 the relocations back out to the object file, unless
6312 they're against a section symbol, in which case we need
6313 to adjust by the section offset, or unless they're GP
6314 relative in which case we need to adjust by the amount
6315 that we're adjusting GP in this relocateable object. */
6316
6317 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 6318 FALSE))
b49e97c9
TS
6319 /* There's nothing to do for non-local relocations. */
6320 continue;
6321
6322 if (r_type == R_MIPS16_GPREL
6323 || r_type == R_MIPS_GPREL16
6324 || r_type == R_MIPS_GPREL32
6325 || r_type == R_MIPS_LITERAL)
6326 addend -= (_bfd_get_gp_value (output_bfd)
6327 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
6328
6329 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6330 sym = local_syms + r_symndx;
6331 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6332 /* Adjust the addend appropriately. */
6333 addend += local_sections[r_symndx]->output_offset;
6334
5a659663
TS
6335 if (howto->partial_inplace)
6336 {
6337 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6338 then we only want to write out the high-order 16 bits.
6339 The subsequent R_MIPS_LO16 will handle the low-order bits.
6340 */
6341 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6342 || r_type == R_MIPS_GNU_REL_HI16)
6343 addend = mips_elf_high (addend);
6344 else if (r_type == R_MIPS_HIGHER)
6345 addend = mips_elf_higher (addend);
6346 else if (r_type == R_MIPS_HIGHEST)
6347 addend = mips_elf_highest (addend);
6348 }
b49e97c9
TS
6349
6350 if (rela_relocation_p)
6351 /* If this is a RELA relocation, just update the addend.
6352 We have to cast away constness for REL. */
6353 rel->r_addend = addend;
6354 else
6355 {
6356 /* Otherwise, we have to write the value back out. Note
6357 that we use the source mask, rather than the
6358 destination mask because the place to which we are
6359 writing will be source of the addend in the final
6360 link. */
5a659663 6361 addend >>= howto->rightshift;
b49e97c9
TS
6362 addend &= howto->src_mask;
6363
5a659663 6364 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6365 /* See the comment above about using R_MIPS_64 in the 32-bit
6366 ABI. Here, we need to update the addend. It would be
6367 possible to get away with just using the R_MIPS_32 reloc
6368 but for endianness. */
6369 {
6370 bfd_vma sign_bits;
6371 bfd_vma low_bits;
6372 bfd_vma high_bits;
6373
6374 if (addend & ((bfd_vma) 1 << 31))
6375#ifdef BFD64
6376 sign_bits = ((bfd_vma) 1 << 32) - 1;
6377#else
6378 sign_bits = -1;
6379#endif
6380 else
6381 sign_bits = 0;
6382
6383 /* If we don't know that we have a 64-bit type,
6384 do two separate stores. */
6385 if (bfd_big_endian (input_bfd))
6386 {
6387 /* Store the sign-bits (which are most significant)
6388 first. */
6389 low_bits = sign_bits;
6390 high_bits = addend;
6391 }
6392 else
6393 {
6394 low_bits = addend;
6395 high_bits = sign_bits;
6396 }
6397 bfd_put_32 (input_bfd, low_bits,
6398 contents + rel->r_offset);
6399 bfd_put_32 (input_bfd, high_bits,
6400 contents + rel->r_offset + 4);
6401 continue;
6402 }
6403
6404 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6405 input_bfd, input_section,
b34976b6
AM
6406 contents, FALSE))
6407 return FALSE;
b49e97c9
TS
6408 }
6409
6410 /* Go on to the next relocation. */
6411 continue;
6412 }
6413
6414 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6415 relocations for the same offset. In that case we are
6416 supposed to treat the output of each relocation as the addend
6417 for the next. */
6418 if (rel + 1 < relend
6419 && rel->r_offset == rel[1].r_offset
6420 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 6421 use_saved_addend_p = TRUE;
b49e97c9 6422 else
b34976b6 6423 use_saved_addend_p = FALSE;
b49e97c9 6424
5a659663
TS
6425 addend >>= howto->rightshift;
6426
b49e97c9
TS
6427 /* Figure out what value we are supposed to relocate. */
6428 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6429 input_section, info, rel,
6430 addend, howto, local_syms,
6431 local_sections, &value,
bce03d3d
AO
6432 &name, &require_jalx,
6433 use_saved_addend_p))
b49e97c9
TS
6434 {
6435 case bfd_reloc_continue:
6436 /* There's nothing to do. */
6437 continue;
6438
6439 case bfd_reloc_undefined:
6440 /* mips_elf_calculate_relocation already called the
6441 undefined_symbol callback. There's no real point in
6442 trying to perform the relocation at this point, so we
6443 just skip ahead to the next relocation. */
6444 continue;
6445
6446 case bfd_reloc_notsupported:
6447 msg = _("internal error: unsupported relocation error");
6448 info->callbacks->warning
6449 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 6450 return FALSE;
b49e97c9
TS
6451
6452 case bfd_reloc_overflow:
6453 if (use_saved_addend_p)
6454 /* Ignore overflow until we reach the last relocation for
6455 a given location. */
6456 ;
6457 else
6458 {
6459 BFD_ASSERT (name != NULL);
6460 if (! ((*info->callbacks->reloc_overflow)
6461 (info, name, howto->name, (bfd_vma) 0,
6462 input_bfd, input_section, rel->r_offset)))
b34976b6 6463 return FALSE;
b49e97c9
TS
6464 }
6465 break;
6466
6467 case bfd_reloc_ok:
6468 break;
6469
6470 default:
6471 abort ();
6472 break;
6473 }
6474
6475 /* If we've got another relocation for the address, keep going
6476 until we reach the last one. */
6477 if (use_saved_addend_p)
6478 {
6479 addend = value;
6480 continue;
6481 }
6482
4a14403c 6483 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6484 /* See the comment above about using R_MIPS_64 in the 32-bit
6485 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6486 that calculated the right value. Now, however, we
6487 sign-extend the 32-bit result to 64-bits, and store it as a
6488 64-bit value. We are especially generous here in that we
6489 go to extreme lengths to support this usage on systems with
6490 only a 32-bit VMA. */
6491 {
6492 bfd_vma sign_bits;
6493 bfd_vma low_bits;
6494 bfd_vma high_bits;
6495
6496 if (value & ((bfd_vma) 1 << 31))
6497#ifdef BFD64
6498 sign_bits = ((bfd_vma) 1 << 32) - 1;
6499#else
6500 sign_bits = -1;
6501#endif
6502 else
6503 sign_bits = 0;
6504
6505 /* If we don't know that we have a 64-bit type,
6506 do two separate stores. */
6507 if (bfd_big_endian (input_bfd))
6508 {
6509 /* Undo what we did above. */
6510 rel->r_offset -= 4;
6511 /* Store the sign-bits (which are most significant)
6512 first. */
6513 low_bits = sign_bits;
6514 high_bits = value;
6515 }
6516 else
6517 {
6518 low_bits = value;
6519 high_bits = sign_bits;
6520 }
6521 bfd_put_32 (input_bfd, low_bits,
6522 contents + rel->r_offset);
6523 bfd_put_32 (input_bfd, high_bits,
6524 contents + rel->r_offset + 4);
6525 continue;
6526 }
6527
6528 /* Actually perform the relocation. */
6529 if (! mips_elf_perform_relocation (info, howto, rel, value,
6530 input_bfd, input_section,
6531 contents, require_jalx))
b34976b6 6532 return FALSE;
b49e97c9
TS
6533 }
6534
b34976b6 6535 return TRUE;
b49e97c9
TS
6536}
6537\f
6538/* If NAME is one of the special IRIX6 symbols defined by the linker,
6539 adjust it appropriately now. */
6540
6541static void
6542mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6543 bfd *abfd ATTRIBUTE_UNUSED;
6544 const char *name;
6545 Elf_Internal_Sym *sym;
6546{
6547 /* The linker script takes care of providing names and values for
6548 these, but we must place them into the right sections. */
6549 static const char* const text_section_symbols[] = {
6550 "_ftext",
6551 "_etext",
6552 "__dso_displacement",
6553 "__elf_header",
6554 "__program_header_table",
6555 NULL
6556 };
6557
6558 static const char* const data_section_symbols[] = {
6559 "_fdata",
6560 "_edata",
6561 "_end",
6562 "_fbss",
6563 NULL
6564 };
6565
6566 const char* const *p;
6567 int i;
6568
6569 for (i = 0; i < 2; ++i)
6570 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6571 *p;
6572 ++p)
6573 if (strcmp (*p, name) == 0)
6574 {
6575 /* All of these symbols are given type STT_SECTION by the
6576 IRIX6 linker. */
6577 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6578
6579 /* The IRIX linker puts these symbols in special sections. */
6580 if (i == 0)
6581 sym->st_shndx = SHN_MIPS_TEXT;
6582 else
6583 sym->st_shndx = SHN_MIPS_DATA;
6584
6585 break;
6586 }
6587}
6588
6589/* Finish up dynamic symbol handling. We set the contents of various
6590 dynamic sections here. */
6591
b34976b6 6592bfd_boolean
b49e97c9
TS
6593_bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6594 bfd *output_bfd;
6595 struct bfd_link_info *info;
6596 struct elf_link_hash_entry *h;
6597 Elf_Internal_Sym *sym;
6598{
6599 bfd *dynobj;
6600 bfd_vma gval;
6601 asection *sgot;
6602 asection *smsym;
f4416af6 6603 struct mips_got_info *g, *gg;
b49e97c9
TS
6604 const char *name;
6605 struct mips_elf_link_hash_entry *mh;
6606
6607 dynobj = elf_hash_table (info)->dynobj;
6608 gval = sym->st_value;
6609 mh = (struct mips_elf_link_hash_entry *) h;
6610
6611 if (h->plt.offset != (bfd_vma) -1)
6612 {
6613 asection *s;
6614 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6615
6616 /* This symbol has a stub. Set it up. */
6617
6618 BFD_ASSERT (h->dynindx != -1);
6619
6620 s = bfd_get_section_by_name (dynobj,
6621 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6622 BFD_ASSERT (s != NULL);
6623
6624 /* FIXME: Can h->dynindex be more than 64K? */
6625 if (h->dynindx & 0xffff0000)
b34976b6 6626 return FALSE;
b49e97c9
TS
6627
6628 /* Fill the stub. */
6629 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6630 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6631 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6632 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6633
6634 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6635 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6636
6637 /* Mark the symbol as undefined. plt.offset != -1 occurs
6638 only for the referenced symbol. */
6639 sym->st_shndx = SHN_UNDEF;
6640
6641 /* The run-time linker uses the st_value field of the symbol
6642 to reset the global offset table entry for this external
6643 to its stub address when unlinking a shared object. */
6644 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6645 sym->st_value = gval;
6646 }
6647
6648 BFD_ASSERT (h->dynindx != -1
6649 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6650
f4416af6 6651 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6652 BFD_ASSERT (sgot != NULL);
f4416af6 6653 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 6654 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6655 BFD_ASSERT (g != NULL);
6656
6657 /* Run through the global symbol table, creating GOT entries for all
6658 the symbols that need them. */
6659 if (g->global_gotsym != NULL
6660 && h->dynindx >= g->global_gotsym->dynindx)
6661 {
6662 bfd_vma offset;
6663 bfd_vma value;
6664
6665 if (sym->st_value)
6666 value = sym->st_value;
6667 else
6668 {
6669 /* For an entity defined in a shared object, this will be
6670 NULL. (For functions in shared objects for
6671 which we have created stubs, ST_VALUE will be non-NULL.
6672 That's because such the functions are now no longer defined
6673 in a shared object.) */
6674
f4416af6
AO
6675 if ((info->shared && h->root.type == bfd_link_hash_undefined)
6676 || h->root.type == bfd_link_hash_undefweak)
b49e97c9
TS
6677 value = 0;
6678 else
6679 value = h->root.u.def.value;
6680 }
f4416af6 6681 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
b49e97c9
TS
6682 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6683 }
6684
f4416af6
AO
6685 if (g->next && h->dynindx != -1)
6686 {
6687 struct mips_got_entry e, *p;
6688 bfd_vma offset;
6689 bfd_vma value;
6690 Elf_Internal_Rela rel[3];
6691 bfd_vma addend = 0;
6692
6693 gg = g;
6694
6695 e.abfd = output_bfd;
6696 e.symndx = -1;
6697 e.d.h = (struct mips_elf_link_hash_entry *)h;
6698
6699 if (info->shared
6700 || h->root.type == bfd_link_hash_undefined
6701 || h->root.type == bfd_link_hash_undefweak)
6702 value = 0;
6703 else if (sym->st_value)
6704 value = sym->st_value;
6705 else
6706 value = h->root.u.def.value;
6707
6708 memset (rel, 0, sizeof (rel));
6709 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6710
6711 for (g = g->next; g->next != gg; g = g->next)
6712 {
6713 if (g->got_entries
6714 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6715 &e)))
6716 {
6717 offset = p->gotidx;
6718 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6719
6720 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6721
6722 if ((info->shared
6723 || (elf_hash_table (info)->dynamic_sections_created
6724 && p->d.h != NULL
6725 && ((p->d.h->root.elf_link_hash_flags
6726 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6727 && ((p->d.h->root.elf_link_hash_flags
6728 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6729 && ! (mips_elf_create_dynamic_relocation
6730 (output_bfd, info, rel,
6731 e.d.h, NULL, value, &addend, sgot)))
6732 return FALSE;
6733 BFD_ASSERT (addend == 0);
6734 }
6735 }
6736 }
6737
b49e97c9
TS
6738 /* Create a .msym entry, if appropriate. */
6739 smsym = bfd_get_section_by_name (dynobj, ".msym");
6740 if (smsym)
6741 {
6742 Elf32_Internal_Msym msym;
6743
6744 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6745 /* It is undocumented what the `1' indicates, but IRIX6 uses
6746 this value. */
6747 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6748 bfd_mips_elf_swap_msym_out
6749 (dynobj, &msym,
6750 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6751 }
6752
6753 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6754 name = h->root.root.string;
6755 if (strcmp (name, "_DYNAMIC") == 0
6756 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6757 sym->st_shndx = SHN_ABS;
6758 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6759 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6760 {
6761 sym->st_shndx = SHN_ABS;
6762 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6763 sym->st_value = 1;
6764 }
4a14403c 6765 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6766 {
6767 sym->st_shndx = SHN_ABS;
6768 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6769 sym->st_value = elf_gp (output_bfd);
6770 }
6771 else if (SGI_COMPAT (output_bfd))
6772 {
6773 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6774 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6775 {
6776 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6777 sym->st_other = STO_PROTECTED;
6778 sym->st_value = 0;
6779 sym->st_shndx = SHN_MIPS_DATA;
6780 }
6781 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6782 {
6783 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6784 sym->st_other = STO_PROTECTED;
6785 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6786 sym->st_shndx = SHN_ABS;
6787 }
6788 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6789 {
6790 if (h->type == STT_FUNC)
6791 sym->st_shndx = SHN_MIPS_TEXT;
6792 else if (h->type == STT_OBJECT)
6793 sym->st_shndx = SHN_MIPS_DATA;
6794 }
6795 }
6796
6797 /* Handle the IRIX6-specific symbols. */
6798 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6799 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6800
6801 if (! info->shared)
6802 {
6803 if (! mips_elf_hash_table (info)->use_rld_obj_head
6804 && (strcmp (name, "__rld_map") == 0
6805 || strcmp (name, "__RLD_MAP") == 0))
6806 {
6807 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6808 BFD_ASSERT (s != NULL);
6809 sym->st_value = s->output_section->vma + s->output_offset;
6810 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6811 if (mips_elf_hash_table (info)->rld_value == 0)
6812 mips_elf_hash_table (info)->rld_value = sym->st_value;
6813 }
6814 else if (mips_elf_hash_table (info)->use_rld_obj_head
6815 && strcmp (name, "__rld_obj_head") == 0)
6816 {
6817 /* IRIX6 does not use a .rld_map section. */
6818 if (IRIX_COMPAT (output_bfd) == ict_irix5
6819 || IRIX_COMPAT (output_bfd) == ict_none)
6820 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6821 != NULL);
6822 mips_elf_hash_table (info)->rld_value = sym->st_value;
6823 }
6824 }
6825
6826 /* If this is a mips16 symbol, force the value to be even. */
6827 if (sym->st_other == STO_MIPS16
6828 && (sym->st_value & 1) != 0)
6829 --sym->st_value;
6830
b34976b6 6831 return TRUE;
b49e97c9
TS
6832}
6833
6834/* Finish up the dynamic sections. */
6835
b34976b6 6836bfd_boolean
b49e97c9
TS
6837_bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6838 bfd *output_bfd;
6839 struct bfd_link_info *info;
6840{
6841 bfd *dynobj;
6842 asection *sdyn;
6843 asection *sgot;
f4416af6 6844 struct mips_got_info *gg, *g;
b49e97c9
TS
6845
6846 dynobj = elf_hash_table (info)->dynobj;
6847
6848 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6849
f4416af6 6850 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6851 if (sgot == NULL)
f4416af6 6852 gg = g = NULL;
b49e97c9
TS
6853 else
6854 {
f4416af6
AO
6855 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6856 gg = mips_elf_section_data (sgot)->u.got_info;
6857 BFD_ASSERT (gg != NULL);
6858 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
6859 BFD_ASSERT (g != NULL);
6860 }
6861
6862 if (elf_hash_table (info)->dynamic_sections_created)
6863 {
6864 bfd_byte *b;
6865
6866 BFD_ASSERT (sdyn != NULL);
6867 BFD_ASSERT (g != NULL);
6868
6869 for (b = sdyn->contents;
6870 b < sdyn->contents + sdyn->_raw_size;
6871 b += MIPS_ELF_DYN_SIZE (dynobj))
6872 {
6873 Elf_Internal_Dyn dyn;
6874 const char *name;
6875 size_t elemsize;
6876 asection *s;
b34976b6 6877 bfd_boolean swap_out_p;
b49e97c9
TS
6878
6879 /* Read in the current dynamic entry. */
6880 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6881
6882 /* Assume that we're going to modify it and write it out. */
b34976b6 6883 swap_out_p = TRUE;
b49e97c9
TS
6884
6885 switch (dyn.d_tag)
6886 {
6887 case DT_RELENT:
f4416af6 6888 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
6889 BFD_ASSERT (s != NULL);
6890 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6891 break;
6892
6893 case DT_STRSZ:
6894 /* Rewrite DT_STRSZ. */
6895 dyn.d_un.d_val =
6896 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6897 break;
6898
6899 case DT_PLTGOT:
6900 name = ".got";
6901 goto get_vma;
6902 case DT_MIPS_CONFLICT:
6903 name = ".conflict";
6904 goto get_vma;
6905 case DT_MIPS_LIBLIST:
6906 name = ".liblist";
6907 get_vma:
6908 s = bfd_get_section_by_name (output_bfd, name);
6909 BFD_ASSERT (s != NULL);
6910 dyn.d_un.d_ptr = s->vma;
6911 break;
6912
6913 case DT_MIPS_RLD_VERSION:
6914 dyn.d_un.d_val = 1; /* XXX */
6915 break;
6916
6917 case DT_MIPS_FLAGS:
6918 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6919 break;
6920
6921 case DT_MIPS_CONFLICTNO:
6922 name = ".conflict";
6923 elemsize = sizeof (Elf32_Conflict);
6924 goto set_elemno;
6925
6926 case DT_MIPS_LIBLISTNO:
6927 name = ".liblist";
6928 elemsize = sizeof (Elf32_Lib);
6929 set_elemno:
6930 s = bfd_get_section_by_name (output_bfd, name);
6931 if (s != NULL)
6932 {
6933 if (s->_cooked_size != 0)
6934 dyn.d_un.d_val = s->_cooked_size / elemsize;
6935 else
6936 dyn.d_un.d_val = s->_raw_size / elemsize;
6937 }
6938 else
6939 dyn.d_un.d_val = 0;
6940 break;
6941
6942 case DT_MIPS_TIME_STAMP:
6943 time ((time_t *) &dyn.d_un.d_val);
6944 break;
6945
6946 case DT_MIPS_ICHECKSUM:
6947 /* XXX FIXME: */
b34976b6 6948 swap_out_p = FALSE;
b49e97c9
TS
6949 break;
6950
6951 case DT_MIPS_IVERSION:
6952 /* XXX FIXME: */
b34976b6 6953 swap_out_p = FALSE;
b49e97c9
TS
6954 break;
6955
6956 case DT_MIPS_BASE_ADDRESS:
6957 s = output_bfd->sections;
6958 BFD_ASSERT (s != NULL);
6959 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6960 break;
6961
6962 case DT_MIPS_LOCAL_GOTNO:
6963 dyn.d_un.d_val = g->local_gotno;
6964 break;
6965
6966 case DT_MIPS_UNREFEXTNO:
6967 /* The index into the dynamic symbol table which is the
6968 entry of the first external symbol that is not
6969 referenced within the same object. */
6970 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6971 break;
6972
6973 case DT_MIPS_GOTSYM:
f4416af6 6974 if (gg->global_gotsym)
b49e97c9 6975 {
f4416af6 6976 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
6977 break;
6978 }
6979 /* In case if we don't have global got symbols we default
6980 to setting DT_MIPS_GOTSYM to the same value as
6981 DT_MIPS_SYMTABNO, so we just fall through. */
6982
6983 case DT_MIPS_SYMTABNO:
6984 name = ".dynsym";
6985 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6986 s = bfd_get_section_by_name (output_bfd, name);
6987 BFD_ASSERT (s != NULL);
6988
6989 if (s->_cooked_size != 0)
6990 dyn.d_un.d_val = s->_cooked_size / elemsize;
6991 else
6992 dyn.d_un.d_val = s->_raw_size / elemsize;
6993 break;
6994
6995 case DT_MIPS_HIPAGENO:
6996 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6997 break;
6998
6999 case DT_MIPS_RLD_MAP:
7000 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7001 break;
7002
7003 case DT_MIPS_OPTIONS:
7004 s = (bfd_get_section_by_name
7005 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7006 dyn.d_un.d_ptr = s->vma;
7007 break;
7008
7009 case DT_MIPS_MSYM:
7010 s = (bfd_get_section_by_name (output_bfd, ".msym"));
7011 dyn.d_un.d_ptr = s->vma;
7012 break;
7013
7014 default:
b34976b6 7015 swap_out_p = FALSE;
b49e97c9
TS
7016 break;
7017 }
7018
7019 if (swap_out_p)
7020 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7021 (dynobj, &dyn, b);
7022 }
7023 }
7024
7025 /* The first entry of the global offset table will be filled at
7026 runtime. The second entry will be used by some runtime loaders.
8dc1a139 7027 This isn't the case of IRIX rld. */
b49e97c9
TS
7028 if (sgot != NULL && sgot->_raw_size > 0)
7029 {
7030 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
7031 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
7032 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7033 }
7034
7035 if (sgot != NULL)
7036 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7037 = MIPS_ELF_GOT_SIZE (output_bfd);
7038
f4416af6
AO
7039 /* Generate dynamic relocations for the non-primary gots. */
7040 if (gg != NULL && gg->next)
7041 {
7042 Elf_Internal_Rela rel[3];
7043 bfd_vma addend = 0;
7044
7045 memset (rel, 0, sizeof (rel));
7046 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7047
7048 for (g = gg->next; g->next != gg; g = g->next)
7049 {
7050 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7051
7052 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
7053 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7054 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
7055 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7056
7057 if (! info->shared)
7058 continue;
7059
7060 while (index < g->assigned_gotno)
7061 {
7062 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7063 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7064 if (!(mips_elf_create_dynamic_relocation
7065 (output_bfd, info, rel, NULL,
7066 bfd_abs_section_ptr,
7067 0, &addend, sgot)))
7068 return FALSE;
7069 BFD_ASSERT (addend == 0);
7070 }
7071 }
7072 }
7073
b49e97c9
TS
7074 {
7075 asection *smsym;
7076 asection *s;
7077 Elf32_compact_rel cpt;
7078
7079 /* ??? The section symbols for the output sections were set up in
7080 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
7081 symbols. Should we do so? */
7082
7083 smsym = bfd_get_section_by_name (dynobj, ".msym");
7084 if (smsym != NULL)
7085 {
7086 Elf32_Internal_Msym msym;
7087
7088 msym.ms_hash_value = 0;
7089 msym.ms_info = ELF32_MS_INFO (0, 1);
7090
7091 for (s = output_bfd->sections; s != NULL; s = s->next)
7092 {
7093 long dynindx = elf_section_data (s)->dynindx;
7094
7095 bfd_mips_elf_swap_msym_out
7096 (output_bfd, &msym,
7097 (((Elf32_External_Msym *) smsym->contents)
7098 + dynindx));
7099 }
7100 }
7101
7102 if (SGI_COMPAT (output_bfd))
7103 {
7104 /* Write .compact_rel section out. */
7105 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7106 if (s != NULL)
7107 {
7108 cpt.id1 = 1;
7109 cpt.num = s->reloc_count;
7110 cpt.id2 = 2;
7111 cpt.offset = (s->output_section->filepos
7112 + sizeof (Elf32_External_compact_rel));
7113 cpt.reserved0 = 0;
7114 cpt.reserved1 = 0;
7115 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7116 ((Elf32_External_compact_rel *)
7117 s->contents));
7118
7119 /* Clean up a dummy stub function entry in .text. */
7120 s = bfd_get_section_by_name (dynobj,
7121 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7122 if (s != NULL)
7123 {
7124 file_ptr dummy_offset;
7125
7126 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
7127 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
7128 memset (s->contents + dummy_offset, 0,
7129 MIPS_FUNCTION_STUB_SIZE);
7130 }
7131 }
7132 }
7133
7134 /* We need to sort the entries of the dynamic relocation section. */
7135
f4416af6
AO
7136 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7137
7138 if (s != NULL
7139 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7140 {
f4416af6 7141 reldyn_sorting_bfd = output_bfd;
b49e97c9 7142
f4416af6
AO
7143 if (ABI_64_P (output_bfd))
7144 qsort ((Elf64_External_Rel *) s->contents + 1,
7145 (size_t) s->reloc_count - 1,
7146 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7147 else
7148 qsort ((Elf32_External_Rel *) s->contents + 1,
7149 (size_t) s->reloc_count - 1,
7150 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7151 }
b49e97c9
TS
7152 }
7153
b34976b6 7154 return TRUE;
b49e97c9
TS
7155}
7156
b49e97c9 7157
64543e1a
RS
7158/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7159
7160static void
7161mips_set_isa_flags (abfd)
b49e97c9 7162 bfd *abfd;
b49e97c9 7163{
64543e1a 7164 flagword val;
b49e97c9
TS
7165
7166 switch (bfd_get_mach (abfd))
7167 {
7168 default:
7169 case bfd_mach_mips3000:
7170 val = E_MIPS_ARCH_1;
7171 break;
7172
7173 case bfd_mach_mips3900:
7174 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7175 break;
7176
7177 case bfd_mach_mips6000:
7178 val = E_MIPS_ARCH_2;
7179 break;
7180
7181 case bfd_mach_mips4000:
7182 case bfd_mach_mips4300:
7183 case bfd_mach_mips4400:
7184 case bfd_mach_mips4600:
7185 val = E_MIPS_ARCH_3;
7186 break;
7187
7188 case bfd_mach_mips4010:
7189 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7190 break;
7191
7192 case bfd_mach_mips4100:
7193 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7194 break;
7195
7196 case bfd_mach_mips4111:
7197 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7198 break;
7199
00707a0e
RS
7200 case bfd_mach_mips4120:
7201 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7202 break;
7203
b49e97c9
TS
7204 case bfd_mach_mips4650:
7205 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7206 break;
7207
00707a0e
RS
7208 case bfd_mach_mips5400:
7209 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7210 break;
7211
7212 case bfd_mach_mips5500:
7213 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7214 break;
7215
b49e97c9
TS
7216 case bfd_mach_mips5000:
7217 case bfd_mach_mips8000:
7218 case bfd_mach_mips10000:
7219 case bfd_mach_mips12000:
7220 val = E_MIPS_ARCH_4;
7221 break;
7222
7223 case bfd_mach_mips5:
7224 val = E_MIPS_ARCH_5;
7225 break;
7226
7227 case bfd_mach_mips_sb1:
7228 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7229 break;
7230
7231 case bfd_mach_mipsisa32:
7232 val = E_MIPS_ARCH_32;
7233 break;
7234
7235 case bfd_mach_mipsisa64:
7236 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7237 break;
7238
7239 case bfd_mach_mipsisa32r2:
7240 val = E_MIPS_ARCH_32R2;
7241 break;
b49e97c9 7242 }
b49e97c9
TS
7243 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7244 elf_elfheader (abfd)->e_flags |= val;
7245
64543e1a
RS
7246}
7247
7248
7249/* The final processing done just before writing out a MIPS ELF object
7250 file. This gets the MIPS architecture right based on the machine
7251 number. This is used by both the 32-bit and the 64-bit ABI. */
7252
7253void
7254_bfd_mips_elf_final_write_processing (abfd, linker)
7255 bfd *abfd;
7256 bfd_boolean linker ATTRIBUTE_UNUSED;
7257{
7258 unsigned int i;
7259 Elf_Internal_Shdr **hdrpp;
7260 const char *name;
7261 asection *sec;
7262
7263 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7264 is nonzero. This is for compatibility with old objects, which used
7265 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7266 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7267 mips_set_isa_flags (abfd);
7268
b49e97c9
TS
7269 /* Set the sh_info field for .gptab sections and other appropriate
7270 info for each special section. */
7271 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7272 i < elf_numsections (abfd);
7273 i++, hdrpp++)
7274 {
7275 switch ((*hdrpp)->sh_type)
7276 {
7277 case SHT_MIPS_MSYM:
7278 case SHT_MIPS_LIBLIST:
7279 sec = bfd_get_section_by_name (abfd, ".dynstr");
7280 if (sec != NULL)
7281 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7282 break;
7283
7284 case SHT_MIPS_GPTAB:
7285 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7286 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7287 BFD_ASSERT (name != NULL
7288 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7289 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7290 BFD_ASSERT (sec != NULL);
7291 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7292 break;
7293
7294 case SHT_MIPS_CONTENT:
7295 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7296 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7297 BFD_ASSERT (name != NULL
7298 && strncmp (name, ".MIPS.content",
7299 sizeof ".MIPS.content" - 1) == 0);
7300 sec = bfd_get_section_by_name (abfd,
7301 name + sizeof ".MIPS.content" - 1);
7302 BFD_ASSERT (sec != NULL);
7303 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7304 break;
7305
7306 case SHT_MIPS_SYMBOL_LIB:
7307 sec = bfd_get_section_by_name (abfd, ".dynsym");
7308 if (sec != NULL)
7309 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7310 sec = bfd_get_section_by_name (abfd, ".liblist");
7311 if (sec != NULL)
7312 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7313 break;
7314
7315 case SHT_MIPS_EVENTS:
7316 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7317 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7318 BFD_ASSERT (name != NULL);
7319 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7320 sec = bfd_get_section_by_name (abfd,
7321 name + sizeof ".MIPS.events" - 1);
7322 else
7323 {
7324 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7325 sizeof ".MIPS.post_rel" - 1) == 0);
7326 sec = bfd_get_section_by_name (abfd,
7327 (name
7328 + sizeof ".MIPS.post_rel" - 1));
7329 }
7330 BFD_ASSERT (sec != NULL);
7331 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7332 break;
7333
7334 }
7335 }
7336}
7337\f
8dc1a139 7338/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
7339 segments. */
7340
7341int
7342_bfd_mips_elf_additional_program_headers (abfd)
7343 bfd *abfd;
7344{
7345 asection *s;
7346 int ret = 0;
7347
7348 /* See if we need a PT_MIPS_REGINFO segment. */
7349 s = bfd_get_section_by_name (abfd, ".reginfo");
7350 if (s && (s->flags & SEC_LOAD))
7351 ++ret;
7352
7353 /* See if we need a PT_MIPS_OPTIONS segment. */
7354 if (IRIX_COMPAT (abfd) == ict_irix6
7355 && bfd_get_section_by_name (abfd,
7356 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7357 ++ret;
7358
7359 /* See if we need a PT_MIPS_RTPROC segment. */
7360 if (IRIX_COMPAT (abfd) == ict_irix5
7361 && bfd_get_section_by_name (abfd, ".dynamic")
7362 && bfd_get_section_by_name (abfd, ".mdebug"))
7363 ++ret;
7364
7365 return ret;
7366}
7367
8dc1a139 7368/* Modify the segment map for an IRIX5 executable. */
b49e97c9 7369
b34976b6 7370bfd_boolean
b49e97c9
TS
7371_bfd_mips_elf_modify_segment_map (abfd)
7372 bfd *abfd;
7373{
7374 asection *s;
7375 struct elf_segment_map *m, **pm;
7376 bfd_size_type amt;
7377
7378 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7379 segment. */
7380 s = bfd_get_section_by_name (abfd, ".reginfo");
7381 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7382 {
7383 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7384 if (m->p_type == PT_MIPS_REGINFO)
7385 break;
7386 if (m == NULL)
7387 {
7388 amt = sizeof *m;
7389 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7390 if (m == NULL)
b34976b6 7391 return FALSE;
b49e97c9
TS
7392
7393 m->p_type = PT_MIPS_REGINFO;
7394 m->count = 1;
7395 m->sections[0] = s;
7396
7397 /* We want to put it after the PHDR and INTERP segments. */
7398 pm = &elf_tdata (abfd)->segment_map;
7399 while (*pm != NULL
7400 && ((*pm)->p_type == PT_PHDR
7401 || (*pm)->p_type == PT_INTERP))
7402 pm = &(*pm)->next;
7403
7404 m->next = *pm;
7405 *pm = m;
7406 }
7407 }
7408
7409 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7410 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
44c410de 7411 PT_OPTIONS segment immediately following the program header
b49e97c9 7412 table. */
c1fd6598
AO
7413 if (NEWABI_P (abfd)
7414 /* On non-IRIX6 new abi, we'll have already created a segment
7415 for this section, so don't create another. I'm not sure this
7416 is not also the case for IRIX 6, but I can't test it right
7417 now. */
7418 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
7419 {
7420 for (s = abfd->sections; s; s = s->next)
7421 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7422 break;
7423
7424 if (s)
7425 {
7426 struct elf_segment_map *options_segment;
7427
7428 /* Usually, there's a program header table. But, sometimes
7429 there's not (like when running the `ld' testsuite). So,
7430 if there's no program header table, we just put the
44c410de 7431 options segment at the end. */
b49e97c9
TS
7432 for (pm = &elf_tdata (abfd)->segment_map;
7433 *pm != NULL;
7434 pm = &(*pm)->next)
7435 if ((*pm)->p_type == PT_PHDR)
7436 break;
7437
7438 amt = sizeof (struct elf_segment_map);
7439 options_segment = bfd_zalloc (abfd, amt);
7440 options_segment->next = *pm;
7441 options_segment->p_type = PT_MIPS_OPTIONS;
7442 options_segment->p_flags = PF_R;
b34976b6 7443 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
7444 options_segment->count = 1;
7445 options_segment->sections[0] = s;
7446 *pm = options_segment;
7447 }
7448 }
7449 else
7450 {
7451 if (IRIX_COMPAT (abfd) == ict_irix5)
7452 {
7453 /* If there are .dynamic and .mdebug sections, we make a room
7454 for the RTPROC header. FIXME: Rewrite without section names. */
7455 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7456 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7457 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7458 {
7459 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7460 if (m->p_type == PT_MIPS_RTPROC)
7461 break;
7462 if (m == NULL)
7463 {
7464 amt = sizeof *m;
7465 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7466 if (m == NULL)
b34976b6 7467 return FALSE;
b49e97c9
TS
7468
7469 m->p_type = PT_MIPS_RTPROC;
7470
7471 s = bfd_get_section_by_name (abfd, ".rtproc");
7472 if (s == NULL)
7473 {
7474 m->count = 0;
7475 m->p_flags = 0;
7476 m->p_flags_valid = 1;
7477 }
7478 else
7479 {
7480 m->count = 1;
7481 m->sections[0] = s;
7482 }
7483
7484 /* We want to put it after the DYNAMIC segment. */
7485 pm = &elf_tdata (abfd)->segment_map;
7486 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7487 pm = &(*pm)->next;
7488 if (*pm != NULL)
7489 pm = &(*pm)->next;
7490
7491 m->next = *pm;
7492 *pm = m;
7493 }
7494 }
7495 }
8dc1a139 7496 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
7497 .dynstr, .dynsym, and .hash sections, and everything in
7498 between. */
7499 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7500 pm = &(*pm)->next)
7501 if ((*pm)->p_type == PT_DYNAMIC)
7502 break;
7503 m = *pm;
7504 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7505 {
7506 /* For a normal mips executable the permissions for the PT_DYNAMIC
7507 segment are read, write and execute. We do that here since
7508 the code in elf.c sets only the read permission. This matters
7509 sometimes for the dynamic linker. */
7510 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7511 {
7512 m->p_flags = PF_R | PF_W | PF_X;
7513 m->p_flags_valid = 1;
7514 }
7515 }
7516 if (m != NULL
7517 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7518 {
7519 static const char *sec_names[] =
7520 {
7521 ".dynamic", ".dynstr", ".dynsym", ".hash"
7522 };
7523 bfd_vma low, high;
7524 unsigned int i, c;
7525 struct elf_segment_map *n;
7526
7527 low = 0xffffffff;
7528 high = 0;
7529 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7530 {
7531 s = bfd_get_section_by_name (abfd, sec_names[i]);
7532 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7533 {
7534 bfd_size_type sz;
7535
7536 if (low > s->vma)
7537 low = s->vma;
7538 sz = s->_cooked_size;
7539 if (sz == 0)
7540 sz = s->_raw_size;
7541 if (high < s->vma + sz)
7542 high = s->vma + sz;
7543 }
7544 }
7545
7546 c = 0;
7547 for (s = abfd->sections; s != NULL; s = s->next)
7548 if ((s->flags & SEC_LOAD) != 0
7549 && s->vma >= low
7550 && ((s->vma
7551 + (s->_cooked_size !=
7552 0 ? s->_cooked_size : s->_raw_size)) <= high))
7553 ++c;
7554
7555 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7556 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7557 if (n == NULL)
b34976b6 7558 return FALSE;
b49e97c9
TS
7559 *n = *m;
7560 n->count = c;
7561
7562 i = 0;
7563 for (s = abfd->sections; s != NULL; s = s->next)
7564 {
7565 if ((s->flags & SEC_LOAD) != 0
7566 && s->vma >= low
7567 && ((s->vma
7568 + (s->_cooked_size != 0 ?
7569 s->_cooked_size : s->_raw_size)) <= high))
7570 {
7571 n->sections[i] = s;
7572 ++i;
7573 }
7574 }
7575
7576 *pm = n;
7577 }
7578 }
7579
b34976b6 7580 return TRUE;
b49e97c9
TS
7581}
7582\f
7583/* Return the section that should be marked against GC for a given
7584 relocation. */
7585
7586asection *
1e2f5b6e
AM
7587_bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7588 asection *sec;
b49e97c9
TS
7589 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7590 Elf_Internal_Rela *rel;
7591 struct elf_link_hash_entry *h;
7592 Elf_Internal_Sym *sym;
7593{
7594 /* ??? Do mips16 stub sections need to be handled special? */
7595
7596 if (h != NULL)
7597 {
1e2f5b6e 7598 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
7599 {
7600 case R_MIPS_GNU_VTINHERIT:
7601 case R_MIPS_GNU_VTENTRY:
7602 break;
7603
7604 default:
7605 switch (h->root.type)
7606 {
7607 case bfd_link_hash_defined:
7608 case bfd_link_hash_defweak:
7609 return h->root.u.def.section;
7610
7611 case bfd_link_hash_common:
7612 return h->root.u.c.p->section;
7613
7614 default:
7615 break;
7616 }
7617 }
7618 }
7619 else
1e2f5b6e 7620 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
7621
7622 return NULL;
7623}
7624
7625/* Update the got entry reference counts for the section being removed. */
7626
b34976b6 7627bfd_boolean
b49e97c9
TS
7628_bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7629 bfd *abfd ATTRIBUTE_UNUSED;
7630 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7631 asection *sec ATTRIBUTE_UNUSED;
7632 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7633{
7634#if 0
7635 Elf_Internal_Shdr *symtab_hdr;
7636 struct elf_link_hash_entry **sym_hashes;
7637 bfd_signed_vma *local_got_refcounts;
7638 const Elf_Internal_Rela *rel, *relend;
7639 unsigned long r_symndx;
7640 struct elf_link_hash_entry *h;
7641
7642 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7643 sym_hashes = elf_sym_hashes (abfd);
7644 local_got_refcounts = elf_local_got_refcounts (abfd);
7645
7646 relend = relocs + sec->reloc_count;
7647 for (rel = relocs; rel < relend; rel++)
7648 switch (ELF_R_TYPE (abfd, rel->r_info))
7649 {
7650 case R_MIPS_GOT16:
7651 case R_MIPS_CALL16:
7652 case R_MIPS_CALL_HI16:
7653 case R_MIPS_CALL_LO16:
7654 case R_MIPS_GOT_HI16:
7655 case R_MIPS_GOT_LO16:
4a14403c
TS
7656 case R_MIPS_GOT_DISP:
7657 case R_MIPS_GOT_PAGE:
7658 case R_MIPS_GOT_OFST:
b49e97c9
TS
7659 /* ??? It would seem that the existing MIPS code does no sort
7660 of reference counting or whatnot on its GOT and PLT entries,
7661 so it is not possible to garbage collect them at this time. */
7662 break;
7663
7664 default:
7665 break;
7666 }
7667#endif
7668
b34976b6 7669 return TRUE;
b49e97c9
TS
7670}
7671\f
7672/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7673 hiding the old indirect symbol. Process additional relocation
7674 information. Also called for weakdefs, in which case we just let
7675 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7676
7677void
b48fa14c
AM
7678_bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7679 struct elf_backend_data *bed;
b49e97c9
TS
7680 struct elf_link_hash_entry *dir, *ind;
7681{
7682 struct mips_elf_link_hash_entry *dirmips, *indmips;
7683
b48fa14c 7684 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
7685
7686 if (ind->root.type != bfd_link_hash_indirect)
7687 return;
7688
7689 dirmips = (struct mips_elf_link_hash_entry *) dir;
7690 indmips = (struct mips_elf_link_hash_entry *) ind;
7691 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7692 if (indmips->readonly_reloc)
b34976b6 7693 dirmips->readonly_reloc = TRUE;
b49e97c9
TS
7694 if (dirmips->min_dyn_reloc_index == 0
7695 || (indmips->min_dyn_reloc_index != 0
7696 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7697 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7698 if (indmips->no_fn_stub)
b34976b6 7699 dirmips->no_fn_stub = TRUE;
b49e97c9
TS
7700}
7701
7702void
7703_bfd_mips_elf_hide_symbol (info, entry, force_local)
7704 struct bfd_link_info *info;
7705 struct elf_link_hash_entry *entry;
b34976b6 7706 bfd_boolean force_local;
b49e97c9
TS
7707{
7708 bfd *dynobj;
7709 asection *got;
7710 struct mips_got_info *g;
7711 struct mips_elf_link_hash_entry *h;
7c5fcef7 7712
b49e97c9 7713 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
7714 if (h->forced_local)
7715 return;
b34976b6 7716 h->forced_local = TRUE;
7c5fcef7 7717
b49e97c9 7718 dynobj = elf_hash_table (info)->dynobj;
f4416af6 7719 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 7720 g = mips_elf_section_data (got)->u.got_info;
b49e97c9 7721
f4416af6
AO
7722 if (g->next)
7723 {
7724 struct mips_got_entry e;
7725 struct mips_got_info *gg = g;
7726
7727 /* Since we're turning what used to be a global symbol into a
7728 local one, bump up the number of local entries of each GOT
7729 that had an entry for it. This will automatically decrease
7730 the number of global entries, since global_gotno is actually
7731 the upper limit of global entries. */
7732 e.abfd = dynobj;
7733 e.symndx = -1;
7734 e.d.h = h;
7735
7736 for (g = g->next; g != gg; g = g->next)
7737 if (htab_find (g->got_entries, &e))
7738 {
7739 BFD_ASSERT (g->global_gotno > 0);
7740 g->local_gotno++;
7741 g->global_gotno--;
7742 }
b49e97c9 7743
f4416af6
AO
7744 /* If this was a global symbol forced into the primary GOT, we
7745 no longer need an entry for it. We can't release the entry
7746 at this point, but we must at least stop counting it as one
7747 of the symbols that required a forced got entry. */
7748 if (h->root.got.offset == 2)
7749 {
7750 BFD_ASSERT (gg->assigned_gotno > 0);
7751 gg->assigned_gotno--;
7752 }
7753 }
7754 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7755 /* If we haven't got through GOT allocation yet, just bump up the
7756 number of local entries, as this symbol won't be counted as
7757 global. */
7758 g->local_gotno++;
7759 else if (h->root.got.offset == 1)
7760 {
7761 /* If we're past non-multi-GOT allocation and this symbol had
7762 been marked for a global got entry, give it a local entry
7763 instead. */
7764 BFD_ASSERT (g->global_gotno > 0);
7765 g->local_gotno++;
7766 g->global_gotno--;
7767 }
7768
7769 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
7770}
7771\f
d01414a5
TS
7772#define PDR_SIZE 32
7773
b34976b6 7774bfd_boolean
d01414a5
TS
7775_bfd_mips_elf_discard_info (abfd, cookie, info)
7776 bfd *abfd;
7777 struct elf_reloc_cookie *cookie;
7778 struct bfd_link_info *info;
7779{
7780 asection *o;
b34976b6 7781 bfd_boolean ret = FALSE;
d01414a5
TS
7782 unsigned char *tdata;
7783 size_t i, skip;
7784
7785 o = bfd_get_section_by_name (abfd, ".pdr");
7786 if (! o)
b34976b6 7787 return FALSE;
d01414a5 7788 if (o->_raw_size == 0)
b34976b6 7789 return FALSE;
d01414a5 7790 if (o->_raw_size % PDR_SIZE != 0)
b34976b6 7791 return FALSE;
d01414a5
TS
7792 if (o->output_section != NULL
7793 && bfd_is_abs_section (o->output_section))
b34976b6 7794 return FALSE;
d01414a5
TS
7795
7796 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7797 if (! tdata)
b34976b6 7798 return FALSE;
d01414a5 7799
ee6423ed
AO
7800 cookie->rels = (MNAME(abfd,_bfd_elf,link_read_relocs)
7801 (abfd, o, (PTR) NULL,
7802 (Elf_Internal_Rela *) NULL,
7803 info->keep_memory));
d01414a5
TS
7804 if (!cookie->rels)
7805 {
7806 free (tdata);
b34976b6 7807 return FALSE;
d01414a5
TS
7808 }
7809
7810 cookie->rel = cookie->rels;
7811 cookie->relend = cookie->rels + o->reloc_count;
7812
7813 for (i = 0, skip = 0; i < o->_raw_size; i ++)
7814 {
ee6423ed 7815 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
d01414a5
TS
7816 {
7817 tdata[i] = 1;
7818 skip ++;
7819 }
7820 }
7821
7822 if (skip != 0)
7823 {
f0abc2a1 7824 mips_elf_section_data (o)->u.tdata = tdata;
d01414a5 7825 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
b34976b6 7826 ret = TRUE;
d01414a5
TS
7827 }
7828 else
7829 free (tdata);
7830
7831 if (! info->keep_memory)
7832 free (cookie->rels);
7833
7834 return ret;
7835}
7836
b34976b6 7837bfd_boolean
53bfd6b4
MR
7838_bfd_mips_elf_ignore_discarded_relocs (sec)
7839 asection *sec;
7840{
7841 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
7842 return TRUE;
7843 return FALSE;
53bfd6b4 7844}
d01414a5 7845
b34976b6 7846bfd_boolean
d01414a5
TS
7847_bfd_mips_elf_write_section (output_bfd, sec, contents)
7848 bfd *output_bfd;
7849 asection *sec;
7850 bfd_byte *contents;
7851{
7852 bfd_byte *to, *from, *end;
7853 int i;
7854
7855 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 7856 return FALSE;
d01414a5 7857
f0abc2a1 7858 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 7859 return FALSE;
d01414a5
TS
7860
7861 to = contents;
7862 end = contents + sec->_raw_size;
7863 for (from = contents, i = 0;
7864 from < end;
7865 from += PDR_SIZE, i++)
7866 {
f0abc2a1 7867 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
7868 continue;
7869 if (to != from)
7870 memcpy (to, from, PDR_SIZE);
7871 to += PDR_SIZE;
7872 }
7873 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7874 (file_ptr) sec->output_offset,
7875 sec->_cooked_size);
b34976b6 7876 return TRUE;
d01414a5 7877}
53bfd6b4 7878\f
b49e97c9
TS
7879/* MIPS ELF uses a special find_nearest_line routine in order the
7880 handle the ECOFF debugging information. */
7881
7882struct mips_elf_find_line
7883{
7884 struct ecoff_debug_info d;
7885 struct ecoff_find_line i;
7886};
7887
b34976b6 7888bfd_boolean
b49e97c9
TS
7889_bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7890 functionname_ptr, line_ptr)
7891 bfd *abfd;
7892 asection *section;
7893 asymbol **symbols;
7894 bfd_vma offset;
7895 const char **filename_ptr;
7896 const char **functionname_ptr;
7897 unsigned int *line_ptr;
7898{
7899 asection *msec;
7900
7901 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7902 filename_ptr, functionname_ptr,
7903 line_ptr))
b34976b6 7904 return TRUE;
b49e97c9
TS
7905
7906 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7907 filename_ptr, functionname_ptr,
7908 line_ptr,
7909 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7910 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 7911 return TRUE;
b49e97c9
TS
7912
7913 msec = bfd_get_section_by_name (abfd, ".mdebug");
7914 if (msec != NULL)
7915 {
7916 flagword origflags;
7917 struct mips_elf_find_line *fi;
7918 const struct ecoff_debug_swap * const swap =
7919 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7920
7921 /* If we are called during a link, mips_elf_final_link may have
7922 cleared the SEC_HAS_CONTENTS field. We force it back on here
7923 if appropriate (which it normally will be). */
7924 origflags = msec->flags;
7925 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7926 msec->flags |= SEC_HAS_CONTENTS;
7927
7928 fi = elf_tdata (abfd)->find_line_info;
7929 if (fi == NULL)
7930 {
7931 bfd_size_type external_fdr_size;
7932 char *fraw_src;
7933 char *fraw_end;
7934 struct fdr *fdr_ptr;
7935 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7936
7937 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
7938 if (fi == NULL)
7939 {
7940 msec->flags = origflags;
b34976b6 7941 return FALSE;
b49e97c9
TS
7942 }
7943
7944 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7945 {
7946 msec->flags = origflags;
b34976b6 7947 return FALSE;
b49e97c9
TS
7948 }
7949
7950 /* Swap in the FDR information. */
7951 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7952 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
7953 if (fi->d.fdr == NULL)
7954 {
7955 msec->flags = origflags;
b34976b6 7956 return FALSE;
b49e97c9
TS
7957 }
7958 external_fdr_size = swap->external_fdr_size;
7959 fdr_ptr = fi->d.fdr;
7960 fraw_src = (char *) fi->d.external_fdr;
7961 fraw_end = (fraw_src
7962 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7963 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7964 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
7965
7966 elf_tdata (abfd)->find_line_info = fi;
7967
7968 /* Note that we don't bother to ever free this information.
7969 find_nearest_line is either called all the time, as in
7970 objdump -l, so the information should be saved, or it is
7971 rarely called, as in ld error messages, so the memory
7972 wasted is unimportant. Still, it would probably be a
7973 good idea for free_cached_info to throw it away. */
7974 }
7975
7976 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7977 &fi->i, filename_ptr, functionname_ptr,
7978 line_ptr))
7979 {
7980 msec->flags = origflags;
b34976b6 7981 return TRUE;
b49e97c9
TS
7982 }
7983
7984 msec->flags = origflags;
7985 }
7986
7987 /* Fall back on the generic ELF find_nearest_line routine. */
7988
7989 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7990 filename_ptr, functionname_ptr,
7991 line_ptr);
7992}
7993\f
7994/* When are writing out the .options or .MIPS.options section,
7995 remember the bytes we are writing out, so that we can install the
7996 GP value in the section_processing routine. */
7997
b34976b6 7998bfd_boolean
b49e97c9
TS
7999_bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
8000 bfd *abfd;
8001 sec_ptr section;
8002 PTR location;
8003 file_ptr offset;
8004 bfd_size_type count;
8005{
8006 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8007 {
8008 bfd_byte *c;
8009
8010 if (elf_section_data (section) == NULL)
8011 {
8012 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
8013 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
8014 if (elf_section_data (section) == NULL)
b34976b6 8015 return FALSE;
b49e97c9 8016 }
f0abc2a1 8017 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
8018 if (c == NULL)
8019 {
8020 bfd_size_type size;
8021
8022 if (section->_cooked_size != 0)
8023 size = section->_cooked_size;
8024 else
8025 size = section->_raw_size;
8026 c = (bfd_byte *) bfd_zalloc (abfd, size);
8027 if (c == NULL)
b34976b6 8028 return FALSE;
f0abc2a1 8029 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
8030 }
8031
8032 memcpy (c + offset, location, (size_t) count);
8033 }
8034
8035 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8036 count);
8037}
8038
8039/* This is almost identical to bfd_generic_get_... except that some
8040 MIPS relocations need to be handled specially. Sigh. */
8041
8042bfd_byte *
8043_bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
8044 data, relocateable, symbols)
8045 bfd *abfd;
8046 struct bfd_link_info *link_info;
8047 struct bfd_link_order *link_order;
8048 bfd_byte *data;
b34976b6 8049 bfd_boolean relocateable;
b49e97c9
TS
8050 asymbol **symbols;
8051{
8052 /* Get enough memory to hold the stuff */
8053 bfd *input_bfd = link_order->u.indirect.section->owner;
8054 asection *input_section = link_order->u.indirect.section;
8055
8056 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8057 arelent **reloc_vector = NULL;
8058 long reloc_count;
8059
8060 if (reloc_size < 0)
8061 goto error_return;
8062
8063 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
8064 if (reloc_vector == NULL && reloc_size != 0)
8065 goto error_return;
8066
8067 /* read in the section */
8068 if (!bfd_get_section_contents (input_bfd,
8069 input_section,
8070 (PTR) data,
8071 (file_ptr) 0,
8072 input_section->_raw_size))
8073 goto error_return;
8074
8075 /* We're not relaxing the section, so just copy the size info */
8076 input_section->_cooked_size = input_section->_raw_size;
b34976b6 8077 input_section->reloc_done = TRUE;
b49e97c9
TS
8078
8079 reloc_count = bfd_canonicalize_reloc (input_bfd,
8080 input_section,
8081 reloc_vector,
8082 symbols);
8083 if (reloc_count < 0)
8084 goto error_return;
8085
8086 if (reloc_count > 0)
8087 {
8088 arelent **parent;
8089 /* for mips */
8090 int gp_found;
8091 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8092
8093 {
8094 struct bfd_hash_entry *h;
8095 struct bfd_link_hash_entry *lh;
8096 /* Skip all this stuff if we aren't mixing formats. */
8097 if (abfd && input_bfd
8098 && abfd->xvec == input_bfd->xvec)
8099 lh = 0;
8100 else
8101 {
b34976b6 8102 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
8103 lh = (struct bfd_link_hash_entry *) h;
8104 }
8105 lookup:
8106 if (lh)
8107 {
8108 switch (lh->type)
8109 {
8110 case bfd_link_hash_undefined:
8111 case bfd_link_hash_undefweak:
8112 case bfd_link_hash_common:
8113 gp_found = 0;
8114 break;
8115 case bfd_link_hash_defined:
8116 case bfd_link_hash_defweak:
8117 gp_found = 1;
8118 gp = lh->u.def.value;
8119 break;
8120 case bfd_link_hash_indirect:
8121 case bfd_link_hash_warning:
8122 lh = lh->u.i.link;
8123 /* @@FIXME ignoring warning for now */
8124 goto lookup;
8125 case bfd_link_hash_new:
8126 default:
8127 abort ();
8128 }
8129 }
8130 else
8131 gp_found = 0;
8132 }
8133 /* end mips */
8134 for (parent = reloc_vector; *parent != (arelent *) NULL;
8135 parent++)
8136 {
8137 char *error_message = (char *) NULL;
8138 bfd_reloc_status_type r;
8139
8140 /* Specific to MIPS: Deal with relocation types that require
8141 knowing the gp of the output bfd. */
8142 asymbol *sym = *(*parent)->sym_ptr_ptr;
8143 if (bfd_is_abs_section (sym->section) && abfd)
8144 {
44c410de 8145 /* The special_function wouldn't get called anyway. */
b49e97c9
TS
8146 }
8147 else if (!gp_found)
8148 {
8149 /* The gp isn't there; let the special function code
8150 fall over on its own. */
8151 }
8152 else if ((*parent)->howto->special_function
8153 == _bfd_mips_elf32_gprel16_reloc)
8154 {
8155 /* bypass special_function call */
8156 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8157 input_section, relocateable,
8158 (PTR) data, gp);
8159 goto skip_bfd_perform_relocation;
8160 }
8161 /* end mips specific stuff */
8162
8163 r = bfd_perform_relocation (input_bfd,
8164 *parent,
8165 (PTR) data,
8166 input_section,
8167 relocateable ? abfd : (bfd *) NULL,
8168 &error_message);
8169 skip_bfd_perform_relocation:
8170
8171 if (relocateable)
8172 {
8173 asection *os = input_section->output_section;
8174
8175 /* A partial link, so keep the relocs */
8176 os->orelocation[os->reloc_count] = *parent;
8177 os->reloc_count++;
8178 }
8179
8180 if (r != bfd_reloc_ok)
8181 {
8182 switch (r)
8183 {
8184 case bfd_reloc_undefined:
8185 if (!((*link_info->callbacks->undefined_symbol)
8186 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8187 input_bfd, input_section, (*parent)->address,
b34976b6 8188 TRUE)))
b49e97c9
TS
8189 goto error_return;
8190 break;
8191 case bfd_reloc_dangerous:
8192 BFD_ASSERT (error_message != (char *) NULL);
8193 if (!((*link_info->callbacks->reloc_dangerous)
8194 (link_info, error_message, input_bfd, input_section,
8195 (*parent)->address)))
8196 goto error_return;
8197 break;
8198 case bfd_reloc_overflow:
8199 if (!((*link_info->callbacks->reloc_overflow)
8200 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8201 (*parent)->howto->name, (*parent)->addend,
8202 input_bfd, input_section, (*parent)->address)))
8203 goto error_return;
8204 break;
8205 case bfd_reloc_outofrange:
8206 default:
8207 abort ();
8208 break;
8209 }
8210
8211 }
8212 }
8213 }
8214 if (reloc_vector != NULL)
8215 free (reloc_vector);
8216 return data;
8217
8218error_return:
8219 if (reloc_vector != NULL)
8220 free (reloc_vector);
8221 return NULL;
8222}
8223\f
8224/* Create a MIPS ELF linker hash table. */
8225
8226struct bfd_link_hash_table *
8227_bfd_mips_elf_link_hash_table_create (abfd)
8228 bfd *abfd;
8229{
8230 struct mips_elf_link_hash_table *ret;
8231 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8232
e2d34d7d 8233 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
b49e97c9
TS
8234 if (ret == (struct mips_elf_link_hash_table *) NULL)
8235 return NULL;
8236
8237 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8238 mips_elf_link_hash_newfunc))
8239 {
e2d34d7d 8240 free (ret);
b49e97c9
TS
8241 return NULL;
8242 }
8243
8244#if 0
8245 /* We no longer use this. */
8246 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8247 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8248#endif
8249 ret->procedure_count = 0;
8250 ret->compact_rel_size = 0;
b34976b6 8251 ret->use_rld_obj_head = FALSE;
b49e97c9 8252 ret->rld_value = 0;
b34976b6 8253 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8254
8255 return &ret->root.root;
8256}
8257\f
8258/* We need to use a special link routine to handle the .reginfo and
8259 the .mdebug sections. We need to merge all instances of these
8260 sections together, not write them all out sequentially. */
8261
b34976b6 8262bfd_boolean
b49e97c9
TS
8263_bfd_mips_elf_final_link (abfd, info)
8264 bfd *abfd;
8265 struct bfd_link_info *info;
8266{
8267 asection **secpp;
8268 asection *o;
8269 struct bfd_link_order *p;
8270 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8271 asection *rtproc_sec;
8272 Elf32_RegInfo reginfo;
8273 struct ecoff_debug_info debug;
8274 const struct ecoff_debug_swap *swap
8275 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8276 HDRR *symhdr = &debug.symbolic_header;
8277 PTR mdebug_handle = NULL;
8278 asection *s;
8279 EXTR esym;
8280 unsigned int i;
8281 bfd_size_type amt;
8282
8283 static const char * const secname[] =
8284 {
8285 ".text", ".init", ".fini", ".data",
8286 ".rodata", ".sdata", ".sbss", ".bss"
8287 };
8288 static const int sc[] =
8289 {
8290 scText, scInit, scFini, scData,
8291 scRData, scSData, scSBss, scBss
8292 };
8293
8294 /* If all the things we linked together were PIC, but we're
8295 producing an executable (rather than a shared object), then the
8296 resulting file is CPIC (i.e., it calls PIC code.) */
8297 if (!info->shared
8298 && !info->relocateable
8299 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
8300 {
8301 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
8302 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
8303 }
8304
8305 /* We'd carefully arranged the dynamic symbol indices, and then the
8306 generic size_dynamic_sections renumbered them out from under us.
8307 Rather than trying somehow to prevent the renumbering, just do
8308 the sort again. */
8309 if (elf_hash_table (info)->dynamic_sections_created)
8310 {
8311 bfd *dynobj;
8312 asection *got;
8313 struct mips_got_info *g;
8314
8315 /* When we resort, we must tell mips_elf_sort_hash_table what
8316 the lowest index it may use is. That's the number of section
8317 symbols we're going to add. The generic ELF linker only
8318 adds these symbols when building a shared object. Note that
8319 we count the sections after (possibly) removing the .options
8320 section above. */
8321 if (! mips_elf_sort_hash_table (info, (info->shared
8322 ? bfd_count_sections (abfd) + 1
8323 : 1)))
b34976b6 8324 return FALSE;
b49e97c9
TS
8325
8326 /* Make sure we didn't grow the global .got region. */
8327 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8328 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8329 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8330
8331 if (g->global_gotsym != NULL)
8332 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8333 - g->global_gotsym->dynindx)
8334 <= g->global_gotno);
8335 }
8336
a902ee94
SC
8337#if 0
8338 /* We want to set the GP value for ld -r. */
b49e97c9
TS
8339 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8340 include it, even though we don't process it quite right. (Some
8341 entries are supposed to be merged.) Empirically, we seem to be
8342 better off including it then not. */
8343 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8344 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8345 {
8346 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8347 {
8348 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8349 if (p->type == bfd_indirect_link_order)
8350 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8351 (*secpp)->link_order_head = NULL;
8352 bfd_section_list_remove (abfd, secpp);
8353 --abfd->section_count;
8354
8355 break;
8356 }
8357 }
8358
8359 /* We include .MIPS.options, even though we don't process it quite right.
8360 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8361 to be better off including it than not. */
8362 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8363 {
8364 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8365 {
8366 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8367 if (p->type == bfd_indirect_link_order)
8368 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8369 (*secpp)->link_order_head = NULL;
8370 bfd_section_list_remove (abfd, secpp);
8371 --abfd->section_count;
b34976b6 8372
b49e97c9
TS
8373 break;
8374 }
8375 }
a902ee94 8376#endif
b49e97c9
TS
8377
8378 /* Get a value for the GP register. */
8379 if (elf_gp (abfd) == 0)
8380 {
8381 struct bfd_link_hash_entry *h;
8382
b34976b6 8383 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
b49e97c9
TS
8384 if (h != (struct bfd_link_hash_entry *) NULL
8385 && h->type == bfd_link_hash_defined)
8386 elf_gp (abfd) = (h->u.def.value
8387 + h->u.def.section->output_section->vma
8388 + h->u.def.section->output_offset);
8389 else if (info->relocateable)
8390 {
8391 bfd_vma lo = MINUS_ONE;
8392
8393 /* Find the GP-relative section with the lowest offset. */
8394 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8395 if (o->vma < lo
8396 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8397 lo = o->vma;
8398
8399 /* And calculate GP relative to that. */
8400 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8401 }
8402 else
8403 {
8404 /* If the relocate_section function needs to do a reloc
8405 involving the GP value, it should make a reloc_dangerous
8406 callback to warn that GP is not defined. */
8407 }
8408 }
8409
8410 /* Go through the sections and collect the .reginfo and .mdebug
8411 information. */
8412 reginfo_sec = NULL;
8413 mdebug_sec = NULL;
8414 gptab_data_sec = NULL;
8415 gptab_bss_sec = NULL;
8416 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8417 {
8418 if (strcmp (o->name, ".reginfo") == 0)
8419 {
8420 memset (&reginfo, 0, sizeof reginfo);
8421
8422 /* We have found the .reginfo section in the output file.
8423 Look through all the link_orders comprising it and merge
8424 the information together. */
8425 for (p = o->link_order_head;
8426 p != (struct bfd_link_order *) NULL;
8427 p = p->next)
8428 {
8429 asection *input_section;
8430 bfd *input_bfd;
8431 Elf32_External_RegInfo ext;
8432 Elf32_RegInfo sub;
8433
8434 if (p->type != bfd_indirect_link_order)
8435 {
8436 if (p->type == bfd_data_link_order)
8437 continue;
8438 abort ();
8439 }
8440
8441 input_section = p->u.indirect.section;
8442 input_bfd = input_section->owner;
8443
8444 /* The linker emulation code has probably clobbered the
8445 size to be zero bytes. */
8446 if (input_section->_raw_size == 0)
8447 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8448
8449 if (! bfd_get_section_contents (input_bfd, input_section,
8450 (PTR) &ext,
8451 (file_ptr) 0,
8452 (bfd_size_type) sizeof ext))
b34976b6 8453 return FALSE;
b49e97c9
TS
8454
8455 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8456
8457 reginfo.ri_gprmask |= sub.ri_gprmask;
8458 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8459 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8460 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8461 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8462
8463 /* ri_gp_value is set by the function
8464 mips_elf32_section_processing when the section is
8465 finally written out. */
8466
8467 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8468 elf_link_input_bfd ignores this section. */
8469 input_section->flags &= ~SEC_HAS_CONTENTS;
8470 }
8471
8472 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8473 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8474
8475 /* Skip this section later on (I don't think this currently
8476 matters, but someday it might). */
8477 o->link_order_head = (struct bfd_link_order *) NULL;
8478
8479 reginfo_sec = o;
8480 }
8481
8482 if (strcmp (o->name, ".mdebug") == 0)
8483 {
8484 struct extsym_info einfo;
8485 bfd_vma last;
8486
8487 /* We have found the .mdebug section in the output file.
8488 Look through all the link_orders comprising it and merge
8489 the information together. */
8490 symhdr->magic = swap->sym_magic;
8491 /* FIXME: What should the version stamp be? */
8492 symhdr->vstamp = 0;
8493 symhdr->ilineMax = 0;
8494 symhdr->cbLine = 0;
8495 symhdr->idnMax = 0;
8496 symhdr->ipdMax = 0;
8497 symhdr->isymMax = 0;
8498 symhdr->ioptMax = 0;
8499 symhdr->iauxMax = 0;
8500 symhdr->issMax = 0;
8501 symhdr->issExtMax = 0;
8502 symhdr->ifdMax = 0;
8503 symhdr->crfd = 0;
8504 symhdr->iextMax = 0;
8505
8506 /* We accumulate the debugging information itself in the
8507 debug_info structure. */
8508 debug.line = NULL;
8509 debug.external_dnr = NULL;
8510 debug.external_pdr = NULL;
8511 debug.external_sym = NULL;
8512 debug.external_opt = NULL;
8513 debug.external_aux = NULL;
8514 debug.ss = NULL;
8515 debug.ssext = debug.ssext_end = NULL;
8516 debug.external_fdr = NULL;
8517 debug.external_rfd = NULL;
8518 debug.external_ext = debug.external_ext_end = NULL;
8519
8520 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8521 if (mdebug_handle == (PTR) NULL)
b34976b6 8522 return FALSE;
b49e97c9
TS
8523
8524 esym.jmptbl = 0;
8525 esym.cobol_main = 0;
8526 esym.weakext = 0;
8527 esym.reserved = 0;
8528 esym.ifd = ifdNil;
8529 esym.asym.iss = issNil;
8530 esym.asym.st = stLocal;
8531 esym.asym.reserved = 0;
8532 esym.asym.index = indexNil;
8533 last = 0;
8534 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8535 {
8536 esym.asym.sc = sc[i];
8537 s = bfd_get_section_by_name (abfd, secname[i]);
8538 if (s != NULL)
8539 {
8540 esym.asym.value = s->vma;
8541 last = s->vma + s->_raw_size;
8542 }
8543 else
8544 esym.asym.value = last;
8545 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8546 secname[i], &esym))
b34976b6 8547 return FALSE;
b49e97c9
TS
8548 }
8549
8550 for (p = o->link_order_head;
8551 p != (struct bfd_link_order *) NULL;
8552 p = p->next)
8553 {
8554 asection *input_section;
8555 bfd *input_bfd;
8556 const struct ecoff_debug_swap *input_swap;
8557 struct ecoff_debug_info input_debug;
8558 char *eraw_src;
8559 char *eraw_end;
8560
8561 if (p->type != bfd_indirect_link_order)
8562 {
8563 if (p->type == bfd_data_link_order)
8564 continue;
8565 abort ();
8566 }
8567
8568 input_section = p->u.indirect.section;
8569 input_bfd = input_section->owner;
8570
8571 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8572 || (get_elf_backend_data (input_bfd)
8573 ->elf_backend_ecoff_debug_swap) == NULL)
8574 {
8575 /* I don't know what a non MIPS ELF bfd would be
8576 doing with a .mdebug section, but I don't really
8577 want to deal with it. */
8578 continue;
8579 }
8580
8581 input_swap = (get_elf_backend_data (input_bfd)
8582 ->elf_backend_ecoff_debug_swap);
8583
8584 BFD_ASSERT (p->size == input_section->_raw_size);
8585
8586 /* The ECOFF linking code expects that we have already
8587 read in the debugging information and set up an
8588 ecoff_debug_info structure, so we do that now. */
8589 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8590 &input_debug))
b34976b6 8591 return FALSE;
b49e97c9
TS
8592
8593 if (! (bfd_ecoff_debug_accumulate
8594 (mdebug_handle, abfd, &debug, swap, input_bfd,
8595 &input_debug, input_swap, info)))
b34976b6 8596 return FALSE;
b49e97c9
TS
8597
8598 /* Loop through the external symbols. For each one with
8599 interesting information, try to find the symbol in
8600 the linker global hash table and save the information
8601 for the output external symbols. */
8602 eraw_src = input_debug.external_ext;
8603 eraw_end = (eraw_src
8604 + (input_debug.symbolic_header.iextMax
8605 * input_swap->external_ext_size));
8606 for (;
8607 eraw_src < eraw_end;
8608 eraw_src += input_swap->external_ext_size)
8609 {
8610 EXTR ext;
8611 const char *name;
8612 struct mips_elf_link_hash_entry *h;
8613
8614 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8615 if (ext.asym.sc == scNil
8616 || ext.asym.sc == scUndefined
8617 || ext.asym.sc == scSUndefined)
8618 continue;
8619
8620 name = input_debug.ssext + ext.asym.iss;
8621 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 8622 name, FALSE, FALSE, TRUE);
b49e97c9
TS
8623 if (h == NULL || h->esym.ifd != -2)
8624 continue;
8625
8626 if (ext.ifd != -1)
8627 {
8628 BFD_ASSERT (ext.ifd
8629 < input_debug.symbolic_header.ifdMax);
8630 ext.ifd = input_debug.ifdmap[ext.ifd];
8631 }
8632
8633 h->esym = ext;
8634 }
8635
8636 /* Free up the information we just read. */
8637 free (input_debug.line);
8638 free (input_debug.external_dnr);
8639 free (input_debug.external_pdr);
8640 free (input_debug.external_sym);
8641 free (input_debug.external_opt);
8642 free (input_debug.external_aux);
8643 free (input_debug.ss);
8644 free (input_debug.ssext);
8645 free (input_debug.external_fdr);
8646 free (input_debug.external_rfd);
8647 free (input_debug.external_ext);
8648
8649 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8650 elf_link_input_bfd ignores this section. */
8651 input_section->flags &= ~SEC_HAS_CONTENTS;
8652 }
8653
8654 if (SGI_COMPAT (abfd) && info->shared)
8655 {
8656 /* Create .rtproc section. */
8657 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8658 if (rtproc_sec == NULL)
8659 {
8660 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8661 | SEC_LINKER_CREATED | SEC_READONLY);
8662
8663 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8664 if (rtproc_sec == NULL
8665 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8666 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 8667 return FALSE;
b49e97c9
TS
8668 }
8669
8670 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8671 info, rtproc_sec,
8672 &debug))
b34976b6 8673 return FALSE;
b49e97c9
TS
8674 }
8675
8676 /* Build the external symbol information. */
8677 einfo.abfd = abfd;
8678 einfo.info = info;
8679 einfo.debug = &debug;
8680 einfo.swap = swap;
b34976b6 8681 einfo.failed = FALSE;
b49e97c9
TS
8682 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8683 mips_elf_output_extsym,
8684 (PTR) &einfo);
8685 if (einfo.failed)
b34976b6 8686 return FALSE;
b49e97c9
TS
8687
8688 /* Set the size of the .mdebug section. */
8689 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8690
8691 /* Skip this section later on (I don't think this currently
8692 matters, but someday it might). */
8693 o->link_order_head = (struct bfd_link_order *) NULL;
8694
8695 mdebug_sec = o;
8696 }
8697
8698 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8699 {
8700 const char *subname;
8701 unsigned int c;
8702 Elf32_gptab *tab;
8703 Elf32_External_gptab *ext_tab;
8704 unsigned int j;
8705
8706 /* The .gptab.sdata and .gptab.sbss sections hold
8707 information describing how the small data area would
8708 change depending upon the -G switch. These sections
8709 not used in executables files. */
8710 if (! info->relocateable)
8711 {
8712 for (p = o->link_order_head;
8713 p != (struct bfd_link_order *) NULL;
8714 p = p->next)
8715 {
8716 asection *input_section;
8717
8718 if (p->type != bfd_indirect_link_order)
8719 {
8720 if (p->type == bfd_data_link_order)
8721 continue;
8722 abort ();
8723 }
8724
8725 input_section = p->u.indirect.section;
8726
8727 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8728 elf_link_input_bfd ignores this section. */
8729 input_section->flags &= ~SEC_HAS_CONTENTS;
8730 }
8731
8732 /* Skip this section later on (I don't think this
8733 currently matters, but someday it might). */
8734 o->link_order_head = (struct bfd_link_order *) NULL;
8735
8736 /* Really remove the section. */
8737 for (secpp = &abfd->sections;
8738 *secpp != o;
8739 secpp = &(*secpp)->next)
8740 ;
8741 bfd_section_list_remove (abfd, secpp);
8742 --abfd->section_count;
8743
8744 continue;
8745 }
8746
8747 /* There is one gptab for initialized data, and one for
8748 uninitialized data. */
8749 if (strcmp (o->name, ".gptab.sdata") == 0)
8750 gptab_data_sec = o;
8751 else if (strcmp (o->name, ".gptab.sbss") == 0)
8752 gptab_bss_sec = o;
8753 else
8754 {
8755 (*_bfd_error_handler)
8756 (_("%s: illegal section name `%s'"),
8757 bfd_get_filename (abfd), o->name);
8758 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 8759 return FALSE;
b49e97c9
TS
8760 }
8761
8762 /* The linker script always combines .gptab.data and
8763 .gptab.sdata into .gptab.sdata, and likewise for
8764 .gptab.bss and .gptab.sbss. It is possible that there is
8765 no .sdata or .sbss section in the output file, in which
8766 case we must change the name of the output section. */
8767 subname = o->name + sizeof ".gptab" - 1;
8768 if (bfd_get_section_by_name (abfd, subname) == NULL)
8769 {
8770 if (o == gptab_data_sec)
8771 o->name = ".gptab.data";
8772 else
8773 o->name = ".gptab.bss";
8774 subname = o->name + sizeof ".gptab" - 1;
8775 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8776 }
8777
8778 /* Set up the first entry. */
8779 c = 1;
8780 amt = c * sizeof (Elf32_gptab);
8781 tab = (Elf32_gptab *) bfd_malloc (amt);
8782 if (tab == NULL)
b34976b6 8783 return FALSE;
b49e97c9
TS
8784 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8785 tab[0].gt_header.gt_unused = 0;
8786
8787 /* Combine the input sections. */
8788 for (p = o->link_order_head;
8789 p != (struct bfd_link_order *) NULL;
8790 p = p->next)
8791 {
8792 asection *input_section;
8793 bfd *input_bfd;
8794 bfd_size_type size;
8795 unsigned long last;
8796 bfd_size_type gpentry;
8797
8798 if (p->type != bfd_indirect_link_order)
8799 {
8800 if (p->type == bfd_data_link_order)
8801 continue;
8802 abort ();
8803 }
8804
8805 input_section = p->u.indirect.section;
8806 input_bfd = input_section->owner;
8807
8808 /* Combine the gptab entries for this input section one
8809 by one. We know that the input gptab entries are
8810 sorted by ascending -G value. */
8811 size = bfd_section_size (input_bfd, input_section);
8812 last = 0;
8813 for (gpentry = sizeof (Elf32_External_gptab);
8814 gpentry < size;
8815 gpentry += sizeof (Elf32_External_gptab))
8816 {
8817 Elf32_External_gptab ext_gptab;
8818 Elf32_gptab int_gptab;
8819 unsigned long val;
8820 unsigned long add;
b34976b6 8821 bfd_boolean exact;
b49e97c9
TS
8822 unsigned int look;
8823
8824 if (! (bfd_get_section_contents
8825 (input_bfd, input_section, (PTR) &ext_gptab,
8826 (file_ptr) gpentry,
8827 (bfd_size_type) sizeof (Elf32_External_gptab))))
8828 {
8829 free (tab);
b34976b6 8830 return FALSE;
b49e97c9
TS
8831 }
8832
8833 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8834 &int_gptab);
8835 val = int_gptab.gt_entry.gt_g_value;
8836 add = int_gptab.gt_entry.gt_bytes - last;
8837
b34976b6 8838 exact = FALSE;
b49e97c9
TS
8839 for (look = 1; look < c; look++)
8840 {
8841 if (tab[look].gt_entry.gt_g_value >= val)
8842 tab[look].gt_entry.gt_bytes += add;
8843
8844 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 8845 exact = TRUE;
b49e97c9
TS
8846 }
8847
8848 if (! exact)
8849 {
8850 Elf32_gptab *new_tab;
8851 unsigned int max;
8852
8853 /* We need a new table entry. */
8854 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8855 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8856 if (new_tab == NULL)
8857 {
8858 free (tab);
b34976b6 8859 return FALSE;
b49e97c9
TS
8860 }
8861 tab = new_tab;
8862 tab[c].gt_entry.gt_g_value = val;
8863 tab[c].gt_entry.gt_bytes = add;
8864
8865 /* Merge in the size for the next smallest -G
8866 value, since that will be implied by this new
8867 value. */
8868 max = 0;
8869 for (look = 1; look < c; look++)
8870 {
8871 if (tab[look].gt_entry.gt_g_value < val
8872 && (max == 0
8873 || (tab[look].gt_entry.gt_g_value
8874 > tab[max].gt_entry.gt_g_value)))
8875 max = look;
8876 }
8877 if (max != 0)
8878 tab[c].gt_entry.gt_bytes +=
8879 tab[max].gt_entry.gt_bytes;
8880
8881 ++c;
8882 }
8883
8884 last = int_gptab.gt_entry.gt_bytes;
8885 }
8886
8887 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8888 elf_link_input_bfd ignores this section. */
8889 input_section->flags &= ~SEC_HAS_CONTENTS;
8890 }
8891
8892 /* The table must be sorted by -G value. */
8893 if (c > 2)
8894 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8895
8896 /* Swap out the table. */
8897 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8898 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8899 if (ext_tab == NULL)
8900 {
8901 free (tab);
b34976b6 8902 return FALSE;
b49e97c9
TS
8903 }
8904
8905 for (j = 0; j < c; j++)
8906 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8907 free (tab);
8908
8909 o->_raw_size = c * sizeof (Elf32_External_gptab);
8910 o->contents = (bfd_byte *) ext_tab;
8911
8912 /* Skip this section later on (I don't think this currently
8913 matters, but someday it might). */
8914 o->link_order_head = (struct bfd_link_order *) NULL;
8915 }
8916 }
8917
8918 /* Invoke the regular ELF backend linker to do all the work. */
ee6423ed 8919 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
b34976b6 8920 return FALSE;
b49e97c9
TS
8921
8922 /* Now write out the computed sections. */
8923
8924 if (reginfo_sec != (asection *) NULL)
8925 {
8926 Elf32_External_RegInfo ext;
8927
8928 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8929 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
8930 (file_ptr) 0,
8931 (bfd_size_type) sizeof ext))
b34976b6 8932 return FALSE;
b49e97c9
TS
8933 }
8934
8935 if (mdebug_sec != (asection *) NULL)
8936 {
8937 BFD_ASSERT (abfd->output_has_begun);
8938 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8939 swap, info,
8940 mdebug_sec->filepos))
b34976b6 8941 return FALSE;
b49e97c9
TS
8942
8943 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8944 }
8945
8946 if (gptab_data_sec != (asection *) NULL)
8947 {
8948 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8949 gptab_data_sec->contents,
8950 (file_ptr) 0,
8951 gptab_data_sec->_raw_size))
b34976b6 8952 return FALSE;
b49e97c9
TS
8953 }
8954
8955 if (gptab_bss_sec != (asection *) NULL)
8956 {
8957 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8958 gptab_bss_sec->contents,
8959 (file_ptr) 0,
8960 gptab_bss_sec->_raw_size))
b34976b6 8961 return FALSE;
b49e97c9
TS
8962 }
8963
8964 if (SGI_COMPAT (abfd))
8965 {
8966 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8967 if (rtproc_sec != NULL)
8968 {
8969 if (! bfd_set_section_contents (abfd, rtproc_sec,
8970 rtproc_sec->contents,
8971 (file_ptr) 0,
8972 rtproc_sec->_raw_size))
b34976b6 8973 return FALSE;
b49e97c9
TS
8974 }
8975 }
8976
b34976b6 8977 return TRUE;
b49e97c9
TS
8978}
8979\f
64543e1a
RS
8980/* Structure for saying that BFD machine EXTENSION extends BASE. */
8981
8982struct mips_mach_extension {
8983 unsigned long extension, base;
8984};
8985
8986
8987/* An array describing how BFD machines relate to one another. The entries
8988 are ordered topologically with MIPS I extensions listed last. */
8989
8990static const struct mips_mach_extension mips_mach_extensions[] = {
8991 /* MIPS64 extensions. */
8992 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8993
8994 /* MIPS V extensions. */
8995 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8996
8997 /* R10000 extensions. */
8998 { bfd_mach_mips12000, bfd_mach_mips10000 },
8999
9000 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9001 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9002 better to allow vr5400 and vr5500 code to be merged anyway, since
9003 many libraries will just use the core ISA. Perhaps we could add
9004 some sort of ASE flag if this ever proves a problem. */
9005 { bfd_mach_mips5500, bfd_mach_mips5400 },
9006 { bfd_mach_mips5400, bfd_mach_mips5000 },
9007
9008 /* MIPS IV extensions. */
9009 { bfd_mach_mips5, bfd_mach_mips8000 },
9010 { bfd_mach_mips10000, bfd_mach_mips8000 },
9011 { bfd_mach_mips5000, bfd_mach_mips8000 },
9012
9013 /* VR4100 extensions. */
9014 { bfd_mach_mips4120, bfd_mach_mips4100 },
9015 { bfd_mach_mips4111, bfd_mach_mips4100 },
9016
9017 /* MIPS III extensions. */
9018 { bfd_mach_mips8000, bfd_mach_mips4000 },
9019 { bfd_mach_mips4650, bfd_mach_mips4000 },
9020 { bfd_mach_mips4600, bfd_mach_mips4000 },
9021 { bfd_mach_mips4400, bfd_mach_mips4000 },
9022 { bfd_mach_mips4300, bfd_mach_mips4000 },
9023 { bfd_mach_mips4100, bfd_mach_mips4000 },
9024 { bfd_mach_mips4010, bfd_mach_mips4000 },
9025
9026 /* MIPS32 extensions. */
9027 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9028
9029 /* MIPS II extensions. */
9030 { bfd_mach_mips4000, bfd_mach_mips6000 },
9031 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9032
9033 /* MIPS I extensions. */
9034 { bfd_mach_mips6000, bfd_mach_mips3000 },
9035 { bfd_mach_mips3900, bfd_mach_mips3000 }
9036};
9037
9038
9039/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9040
9041static bfd_boolean
9042mips_mach_extends_p (base, extension)
9043 unsigned long base, extension;
9044{
9045 size_t i;
9046
9047 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
9048 if (extension == mips_mach_extensions[i].extension)
9049 extension = mips_mach_extensions[i].base;
9050
9051 return extension == base;
9052}
9053
9054
9055/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 9056
b34976b6 9057static bfd_boolean
64543e1a
RS
9058mips_32bit_flags_p (flags)
9059 flagword flags;
00707a0e 9060{
64543e1a
RS
9061 return ((flags & EF_MIPS_32BITMODE) != 0
9062 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9063 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9064 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9065 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9066 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9067 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
9068}
9069
64543e1a 9070
b49e97c9
TS
9071/* Merge backend specific data from an object file to the output
9072 object file when linking. */
9073
b34976b6 9074bfd_boolean
b49e97c9
TS
9075_bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
9076 bfd *ibfd;
9077 bfd *obfd;
9078{
9079 flagword old_flags;
9080 flagword new_flags;
b34976b6
AM
9081 bfd_boolean ok;
9082 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
9083 asection *sec;
9084
9085 /* Check if we have the same endianess */
82e51918 9086 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
b34976b6 9087 return FALSE;
b49e97c9
TS
9088
9089 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9090 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 9091 return TRUE;
b49e97c9
TS
9092
9093 new_flags = elf_elfheader (ibfd)->e_flags;
9094 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9095 old_flags = elf_elfheader (obfd)->e_flags;
9096
9097 if (! elf_flags_init (obfd))
9098 {
b34976b6 9099 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
9100 elf_elfheader (obfd)->e_flags = new_flags;
9101 elf_elfheader (obfd)->e_ident[EI_CLASS]
9102 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9103
9104 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9105 && bfd_get_arch_info (obfd)->the_default)
9106 {
9107 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9108 bfd_get_mach (ibfd)))
b34976b6 9109 return FALSE;
b49e97c9
TS
9110 }
9111
b34976b6 9112 return TRUE;
b49e97c9
TS
9113 }
9114
9115 /* Check flag compatibility. */
9116
9117 new_flags &= ~EF_MIPS_NOREORDER;
9118 old_flags &= ~EF_MIPS_NOREORDER;
9119
f4416af6
AO
9120 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9121 doesn't seem to matter. */
9122 new_flags &= ~EF_MIPS_XGOT;
9123 old_flags &= ~EF_MIPS_XGOT;
9124
b49e97c9 9125 if (new_flags == old_flags)
b34976b6 9126 return TRUE;
b49e97c9
TS
9127
9128 /* Check to see if the input BFD actually contains any sections.
9129 If not, its flags may not have been initialised either, but it cannot
9130 actually cause any incompatibility. */
9131 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9132 {
9133 /* Ignore synthetic sections and empty .text, .data and .bss sections
9134 which are automatically generated by gas. */
9135 if (strcmp (sec->name, ".reginfo")
9136 && strcmp (sec->name, ".mdebug")
9137 && ((!strcmp (sec->name, ".text")
9138 || !strcmp (sec->name, ".data")
9139 || !strcmp (sec->name, ".bss"))
9140 && sec->_raw_size != 0))
9141 {
b34976b6 9142 null_input_bfd = FALSE;
b49e97c9
TS
9143 break;
9144 }
9145 }
9146 if (null_input_bfd)
b34976b6 9147 return TRUE;
b49e97c9 9148
b34976b6 9149 ok = TRUE;
b49e97c9
TS
9150
9151 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
9152 {
9153 new_flags &= ~EF_MIPS_PIC;
9154 old_flags &= ~EF_MIPS_PIC;
9155 (*_bfd_error_handler)
9156 (_("%s: linking PIC files with non-PIC files"),
9157 bfd_archive_filename (ibfd));
b34976b6 9158 ok = FALSE;
b49e97c9
TS
9159 }
9160
9161 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
9162 {
9163 new_flags &= ~EF_MIPS_CPIC;
9164 old_flags &= ~EF_MIPS_CPIC;
9165 (*_bfd_error_handler)
9166 (_("%s: linking abicalls files with non-abicalls files"),
9167 bfd_archive_filename (ibfd));
b34976b6 9168 ok = FALSE;
b49e97c9
TS
9169 }
9170
64543e1a
RS
9171 /* Compare the ISAs. */
9172 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 9173 {
64543e1a
RS
9174 (*_bfd_error_handler)
9175 (_("%s: linking 32-bit code with 64-bit code"),
9176 bfd_archive_filename (ibfd));
9177 ok = FALSE;
9178 }
9179 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9180 {
9181 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9182 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 9183 {
64543e1a
RS
9184 /* Copy the architecture info from IBFD to OBFD. Also copy
9185 the 32-bit flag (if set) so that we continue to recognise
9186 OBFD as a 32-bit binary. */
9187 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9188 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9189 elf_elfheader (obfd)->e_flags
9190 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9191
9192 /* Copy across the ABI flags if OBFD doesn't use them
9193 and if that was what caused us to treat IBFD as 32-bit. */
9194 if ((old_flags & EF_MIPS_ABI) == 0
9195 && mips_32bit_flags_p (new_flags)
9196 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9197 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9198 }
9199 else
9200 {
64543e1a 9201 /* The ISAs aren't compatible. */
b49e97c9 9202 (*_bfd_error_handler)
64543e1a 9203 (_("%s: linking %s module with previous %s modules"),
b49e97c9 9204 bfd_archive_filename (ibfd),
64543e1a
RS
9205 bfd_printable_name (ibfd),
9206 bfd_printable_name (obfd));
b34976b6 9207 ok = FALSE;
b49e97c9 9208 }
b49e97c9
TS
9209 }
9210
64543e1a
RS
9211 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9212 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9213
9214 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9215 does set EI_CLASS differently from any 32-bit ABI. */
9216 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9217 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9218 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9219 {
9220 /* Only error if both are set (to different values). */
9221 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9222 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9223 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9224 {
9225 (*_bfd_error_handler)
9226 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9227 bfd_archive_filename (ibfd),
9228 elf_mips_abi_name (ibfd),
9229 elf_mips_abi_name (obfd));
b34976b6 9230 ok = FALSE;
b49e97c9
TS
9231 }
9232 new_flags &= ~EF_MIPS_ABI;
9233 old_flags &= ~EF_MIPS_ABI;
9234 }
9235
fb39dac1
RS
9236 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9237 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9238 {
9239 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9240
9241 new_flags &= ~ EF_MIPS_ARCH_ASE;
9242 old_flags &= ~ EF_MIPS_ARCH_ASE;
9243 }
9244
b49e97c9
TS
9245 /* Warn about any other mismatches */
9246 if (new_flags != old_flags)
9247 {
9248 (*_bfd_error_handler)
9249 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9250 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9251 (unsigned long) old_flags);
b34976b6 9252 ok = FALSE;
b49e97c9
TS
9253 }
9254
9255 if (! ok)
9256 {
9257 bfd_set_error (bfd_error_bad_value);
b34976b6 9258 return FALSE;
b49e97c9
TS
9259 }
9260
b34976b6 9261 return TRUE;
b49e97c9
TS
9262}
9263
9264/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9265
b34976b6 9266bfd_boolean
b49e97c9
TS
9267_bfd_mips_elf_set_private_flags (abfd, flags)
9268 bfd *abfd;
9269 flagword flags;
9270{
9271 BFD_ASSERT (!elf_flags_init (abfd)
9272 || elf_elfheader (abfd)->e_flags == flags);
9273
9274 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9275 elf_flags_init (abfd) = TRUE;
9276 return TRUE;
b49e97c9
TS
9277}
9278
b34976b6 9279bfd_boolean
b49e97c9
TS
9280_bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9281 bfd *abfd;
9282 PTR ptr;
9283{
9284 FILE *file = (FILE *) ptr;
9285
9286 BFD_ASSERT (abfd != NULL && ptr != NULL);
9287
9288 /* Print normal ELF private data. */
9289 _bfd_elf_print_private_bfd_data (abfd, ptr);
9290
9291 /* xgettext:c-format */
9292 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9293
9294 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9295 fprintf (file, _(" [abi=O32]"));
9296 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9297 fprintf (file, _(" [abi=O64]"));
9298 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9299 fprintf (file, _(" [abi=EABI32]"));
9300 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9301 fprintf (file, _(" [abi=EABI64]"));
9302 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9303 fprintf (file, _(" [abi unknown]"));
9304 else if (ABI_N32_P (abfd))
9305 fprintf (file, _(" [abi=N32]"));
9306 else if (ABI_64_P (abfd))
9307 fprintf (file, _(" [abi=64]"));
9308 else
9309 fprintf (file, _(" [no abi set]"));
9310
9311 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9312 fprintf (file, _(" [mips1]"));
9313 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9314 fprintf (file, _(" [mips2]"));
9315 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9316 fprintf (file, _(" [mips3]"));
9317 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9318 fprintf (file, _(" [mips4]"));
9319 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9320 fprintf (file, _(" [mips5]"));
9321 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9322 fprintf (file, _(" [mips32]"));
9323 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9324 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9325 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9326 fprintf (file, _(" [mips32r2]"));
b49e97c9
TS
9327 else
9328 fprintf (file, _(" [unknown ISA]"));
9329
40d32fc6
CD
9330 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9331 fprintf (file, _(" [mdmx]"));
9332
9333 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9334 fprintf (file, _(" [mips16]"));
9335
b49e97c9
TS
9336 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9337 fprintf (file, _(" [32bitmode]"));
9338 else
9339 fprintf (file, _(" [not 32bitmode]"));
9340
9341 fputc ('\n', file);
9342
b34976b6 9343 return TRUE;
b49e97c9 9344}
This page took 0.607542 seconds and 4 git commands to generate.