*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
79cda7cf 3 2003, 2004 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
b15e6682 67 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
b15e6682
AO
71};
72
f0abc2a1 73/* This structure is used to hold .got information when linking. */
b49e97c9
TS
74
75struct mips_got_info
76{
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
b15e6682
AO
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
f4416af6
AO
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94};
95
96/* Map an input bfd to a got in a multi-got link. */
97
98struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101};
102
103/* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106struct mips_elf_got_per_bfd_arg
107{
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128};
129
130/* Another structure used to pass arguments for got entries traversal. */
131
132struct mips_elf_set_global_got_offset_arg
133{
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
b49e97c9
TS
138};
139
f0abc2a1
AM
140struct _mips_elf_section_data
141{
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148};
149
150#define mips_elf_section_data(sec) \
68bfbfcc 151 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 152
b49e97c9
TS
153/* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156struct mips_elf_hash_sort_data
157{
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
f4416af6
AO
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 166 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 167 long max_unref_got_dynindx;
b49e97c9
TS
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171};
172
173/* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176struct mips_elf_link_hash_entry
177{
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
b34976b6 189 bfd_boolean readonly_reloc;
b49e97c9 190
b49e97c9
TS
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
b34976b6 195 bfd_boolean no_fn_stub;
b49e97c9
TS
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
b34976b6 203 bfd_boolean need_fn_stub;
b49e97c9
TS
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
7c5fcef7
L
212
213 /* Are we forced local? .*/
b34976b6 214 bfd_boolean forced_local;
b49e97c9
TS
215};
216
217/* MIPS ELF linker hash table. */
218
219struct mips_elf_link_hash_table
220{
221 struct elf_link_hash_table root;
222#if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226#endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 232 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 233 bfd_boolean use_rld_obj_head;
b49e97c9
TS
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
b34976b6 237 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
238};
239
240/* Structure used to pass information to mips_elf_output_extsym. */
241
242struct extsym_info
243{
9e4aeb93
RS
244 bfd *abfd;
245 struct bfd_link_info *info;
b49e97c9
TS
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
b34976b6 248 bfd_boolean failed;
b49e97c9
TS
249};
250
8dc1a139 251/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
252
253static const char * const mips_elf_dynsym_rtproc_names[] =
254{
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259};
260
261/* These structures are used to generate the .compact_rel section on
8dc1a139 262 IRIX5. */
b49e97c9
TS
263
264typedef struct
265{
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272} Elf32_compact_rel;
273
274typedef struct
275{
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282} Elf32_External_compact_rel;
283
284typedef struct
285{
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292} Elf32_crinfo;
293
294typedef struct
295{
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301} Elf32_crinfo2;
302
303typedef struct
304{
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308} Elf32_External_crinfo;
309
310typedef struct
311{
312 bfd_byte info[4];
313 bfd_byte konst[4];
314} Elf32_External_crinfo2;
315
316/* These are the constants used to swap the bitfields in a crinfo. */
317
318#define CRINFO_CTYPE (0x1)
319#define CRINFO_CTYPE_SH (31)
320#define CRINFO_RTYPE (0xf)
321#define CRINFO_RTYPE_SH (27)
322#define CRINFO_DIST2TO (0xff)
323#define CRINFO_DIST2TO_SH (19)
324#define CRINFO_RELVADDR (0x7ffff)
325#define CRINFO_RELVADDR_SH (0)
326
327/* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330#define CRF_MIPS_LONG 1
331#define CRF_MIPS_SHORT 0
332
333/* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343#define CRT_MIPS_REL32 0xa
344#define CRT_MIPS_WORD 0xb
345#define CRT_MIPS_GPHI_LO 0xc
346#define CRT_MIPS_JMPAD 0xd
347
348#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352\f
353/* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356typedef struct runtime_pdr {
ae9a127f
NC
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
b49e97c9 366 long reserved;
ae9a127f 367 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
368} RPDR, *pRPDR;
369#define cbRPDR sizeof (RPDR)
370#define rpdNil ((pRPDR) 0)
371\f
372static struct bfd_hash_entry *mips_elf_link_hash_newfunc
9719ad41 373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
b49e97c9 374static void ecoff_swap_rpdr_out
9719ad41 375 (bfd *, const RPDR *, struct rpdr_ext *);
b34976b6 376static bfd_boolean mips_elf_create_procedure_table
9719ad41
RS
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
b34976b6 379static bfd_boolean mips_elf_check_mips16_stubs
9719ad41 380 (struct mips_elf_link_hash_entry *, void *);
b49e97c9 381static void bfd_mips_elf32_swap_gptab_in
9719ad41 382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
b49e97c9 383static void bfd_mips_elf32_swap_gptab_out
9719ad41 384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
b49e97c9 385static void bfd_elf32_swap_compact_rel_out
9719ad41 386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
b49e97c9 387static void bfd_elf32_swap_crinfo_out
9719ad41 388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
b49e97c9 389static int sort_dynamic_relocs
9719ad41 390 (const void *, const void *);
f4416af6 391static int sort_dynamic_relocs_64
9719ad41 392 (const void *, const void *);
b34976b6 393static bfd_boolean mips_elf_output_extsym
9719ad41
RS
394 (struct mips_elf_link_hash_entry *, void *);
395static int gptab_compare
396 (const void *, const void *);
397static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
b49e97c9 401static struct mips_got_info *mips_elf_got_info
9719ad41 402 (bfd *, asection **);
b49e97c9 403static bfd_vma mips_elf_local_got_index
9719ad41 404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
b49e97c9 405static bfd_vma mips_elf_global_got_index
9719ad41 406 (bfd *, bfd *, struct elf_link_hash_entry *);
b49e97c9 407static bfd_vma mips_elf_got_page
9719ad41 408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
b49e97c9 409static bfd_vma mips_elf_got16_entry
9719ad41 410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
b49e97c9 411static bfd_vma mips_elf_got_offset_from_index
9719ad41 412 (bfd *, bfd *, bfd *, bfd_vma);
b15e6682 413static struct mips_got_entry *mips_elf_create_local_got_entry
9719ad41 414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
b34976b6 415static bfd_boolean mips_elf_sort_hash_table
9719ad41 416 (struct bfd_link_info *, unsigned long);
b34976b6 417static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 418 (struct mips_elf_link_hash_entry *, void *);
f4416af6 419static bfd_boolean mips_elf_record_local_got_symbol
9719ad41 420 (bfd *, long, bfd_vma, struct mips_got_info *);
b34976b6 421static bfd_boolean mips_elf_record_global_got_symbol
9719ad41
RS
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
b49e97c9 424static const Elf_Internal_Rela *mips_elf_next_relocation
9719ad41 425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
b34976b6 426static bfd_boolean mips_elf_local_relocation_p
9719ad41
RS
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430static bfd_vma mips_elf_high
431 (bfd_vma);
432static bfd_vma mips_elf_higher
433 (bfd_vma);
434static bfd_vma mips_elf_highest
435 (bfd_vma);
b34976b6 436static bfd_boolean mips_elf_create_compact_rel_section
9719ad41 437 (bfd *, struct bfd_link_info *);
b34976b6 438static bfd_boolean mips_elf_create_got_section
9719ad41 439 (bfd *, struct bfd_link_info *, bfd_boolean);
b49e97c9 440static bfd_reloc_status_type mips_elf_calculate_relocation
9719ad41
RS
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
b49e97c9 445static bfd_vma mips_elf_obtain_contents
9719ad41 446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
b34976b6 447static bfd_boolean mips_elf_perform_relocation
9719ad41
RS
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
b34976b6 450static bfd_boolean mips_elf_stub_section_p
9719ad41 451 (bfd *, asection *);
b49e97c9 452static void mips_elf_allocate_dynamic_relocations
9719ad41 453 (bfd *, unsigned int);
b34976b6 454static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458static void mips_set_isa_flags
459 (bfd *);
460static INLINE char *elf_mips_abi_name
461 (bfd *);
b49e97c9 462static void mips_elf_irix6_finish_dynamic_symbol
9719ad41
RS
463 (bfd *, const char *, Elf_Internal_Sym *);
464static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466static bfd_boolean mips_32bit_flags_p
467 (flagword);
468static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470static hashval_t mips_elf_got_entry_hash
471 (const void *);
472static int mips_elf_got_entry_eq
473 (const void *, const void *);
b49e97c9 474
f4416af6 475static bfd_boolean mips_elf_multi_got
9719ad41
RS
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486static int mips_elf_make_got_per_bfd
487 (void **, void *);
488static int mips_elf_merge_gots
489 (void **, void *);
490static int mips_elf_set_global_got_offset
491 (void **, void *);
492static int mips_elf_set_no_stub
493 (void **, void *);
494static int mips_elf_resolve_final_got_entry
495 (void **, void *);
f4416af6 496static void mips_elf_resolve_final_got_entries
9719ad41 497 (struct mips_got_info *);
f4416af6 498static bfd_vma mips_elf_adjust_gp
9719ad41 499 (bfd *, struct mips_got_info *, bfd *);
f4416af6 500static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 501 (struct mips_got_info *, bfd *);
f4416af6 502
b49e97c9
TS
503/* This will be used when we sort the dynamic relocation records. */
504static bfd *reldyn_sorting_bfd;
505
506/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 507
b49e97c9
TS
508#define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
4a14403c 511/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 512#define ABI_64_P(abfd) \
141ff970 513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 514
4a14403c
TS
515/* Nonzero if ABFD is using NewABI conventions. */
516#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
519#define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
b49e97c9
TS
522/* Whether we are trying to be compatible with IRIX at all. */
523#define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526/* The name of the options section. */
527#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9
TS
529
530/* The name of the stub section. */
ca07892d 531#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
532
533/* The size of an external REL relocation. */
534#define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537/* The size of an external dynamic table entry. */
538#define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541/* The size of a GOT entry. */
542#define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545/* The size of a symbol-table entry. */
546#define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549/* The default alignment for sections, as a power of two. */
550#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 551 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
552
553/* Get word-sized data. */
554#define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557/* Put out word-sized data. */
558#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563/* Add a dynamic symbol table-entry. */
9719ad41 564#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 565 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
566
567#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
4ffba85c
AO
570/* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
b49e97c9
TS
587/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 590#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
591
592/* The number of local .got entries we reserve. */
593#define MIPS_RESERVED_GOTNO (2)
594
f4416af6
AO
595/* The offset of $gp from the beginning of the .got section. */
596#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598/* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
6a691779 602/* Instructions which appear in a stub. */
b49e97c9 603#define STUB_LW(abfd) \
f4416af6
AO
604 ((ABI_64_P (abfd) \
605 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
606 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9 607#define STUB_MOVE(abfd) \
6a691779
TS
608 ((ABI_64_P (abfd) \
609 ? 0x03e0782d /* daddu t7,ra */ \
610 : 0x03e07821)) /* addu t7,ra */
611#define STUB_JALR 0x0320f809 /* jalr t9,ra */
b49e97c9 612#define STUB_LI16(abfd) \
6a691779
TS
613 ((ABI_64_P (abfd) \
614 ? 0x64180000 /* daddiu t8,zero,0 */ \
615 : 0x24180000)) /* addiu t8,zero,0 */
b49e97c9
TS
616#define MIPS_FUNCTION_STUB_SIZE (16)
617
618/* The name of the dynamic interpreter. This is put in the .interp
619 section. */
620
621#define ELF_DYNAMIC_INTERPRETER(abfd) \
622 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
623 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
624 : "/usr/lib/libc.so.1")
625
626#ifdef BFD64
ee6423ed
AO
627#define MNAME(bfd,pre,pos) \
628 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
629#define ELF_R_SYM(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
631#define ELF_R_TYPE(bfd, i) \
632 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
633#define ELF_R_INFO(bfd, s, t) \
634 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
635#else
ee6423ed 636#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
637#define ELF_R_SYM(bfd, i) \
638 (ELF32_R_SYM (i))
639#define ELF_R_TYPE(bfd, i) \
640 (ELF32_R_TYPE (i))
641#define ELF_R_INFO(bfd, s, t) \
642 (ELF32_R_INFO (s, t))
643#endif
644\f
645 /* The mips16 compiler uses a couple of special sections to handle
646 floating point arguments.
647
648 Section names that look like .mips16.fn.FNNAME contain stubs that
649 copy floating point arguments from the fp regs to the gp regs and
650 then jump to FNNAME. If any 32 bit function calls FNNAME, the
651 call should be redirected to the stub instead. If no 32 bit
652 function calls FNNAME, the stub should be discarded. We need to
653 consider any reference to the function, not just a call, because
654 if the address of the function is taken we will need the stub,
655 since the address might be passed to a 32 bit function.
656
657 Section names that look like .mips16.call.FNNAME contain stubs
658 that copy floating point arguments from the gp regs to the fp
659 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
660 then any 16 bit function that calls FNNAME should be redirected
661 to the stub instead. If FNNAME is not a 32 bit function, the
662 stub should be discarded.
663
664 .mips16.call.fp.FNNAME sections are similar, but contain stubs
665 which call FNNAME and then copy the return value from the fp regs
666 to the gp regs. These stubs store the return value in $18 while
667 calling FNNAME; any function which might call one of these stubs
668 must arrange to save $18 around the call. (This case is not
669 needed for 32 bit functions that call 16 bit functions, because
670 16 bit functions always return floating point values in both
671 $f0/$f1 and $2/$3.)
672
673 Note that in all cases FNNAME might be defined statically.
674 Therefore, FNNAME is not used literally. Instead, the relocation
675 information will indicate which symbol the section is for.
676
677 We record any stubs that we find in the symbol table. */
678
679#define FN_STUB ".mips16.fn."
680#define CALL_STUB ".mips16.call."
681#define CALL_FP_STUB ".mips16.call.fp."
682\f
683/* Look up an entry in a MIPS ELF linker hash table. */
684
685#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
686 ((struct mips_elf_link_hash_entry *) \
687 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 (copy), (follow)))
689
690/* Traverse a MIPS ELF linker hash table. */
691
692#define mips_elf_link_hash_traverse(table, func, info) \
693 (elf_link_hash_traverse \
694 (&(table)->root, \
9719ad41 695 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
696 (info)))
697
698/* Get the MIPS ELF linker hash table from a link_info structure. */
699
700#define mips_elf_hash_table(p) \
701 ((struct mips_elf_link_hash_table *) ((p)->hash))
702
703/* Create an entry in a MIPS ELF linker hash table. */
704
705static struct bfd_hash_entry *
9719ad41
RS
706mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
707 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
708{
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
9719ad41
RS
714 if (ret == NULL)
715 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
716 if (ret == NULL)
b49e97c9
TS
717 return (struct bfd_hash_entry *) ret;
718
719 /* Call the allocation method of the superclass. */
720 ret = ((struct mips_elf_link_hash_entry *)
721 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
722 table, string));
9719ad41 723 if (ret != NULL)
b49e97c9
TS
724 {
725 /* Set local fields. */
726 memset (&ret->esym, 0, sizeof (EXTR));
727 /* We use -2 as a marker to indicate that the information has
728 not been set. -1 means there is no associated ifd. */
729 ret->esym.ifd = -2;
730 ret->possibly_dynamic_relocs = 0;
b34976b6 731 ret->readonly_reloc = FALSE;
b34976b6 732 ret->no_fn_stub = FALSE;
b49e97c9 733 ret->fn_stub = NULL;
b34976b6 734 ret->need_fn_stub = FALSE;
b49e97c9
TS
735 ret->call_stub = NULL;
736 ret->call_fp_stub = NULL;
b34976b6 737 ret->forced_local = FALSE;
b49e97c9
TS
738 }
739
740 return (struct bfd_hash_entry *) ret;
741}
f0abc2a1
AM
742
743bfd_boolean
9719ad41 744_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1
AM
745{
746 struct _mips_elf_section_data *sdata;
747 bfd_size_type amt = sizeof (*sdata);
748
9719ad41 749 sdata = bfd_zalloc (abfd, amt);
f0abc2a1
AM
750 if (sdata == NULL)
751 return FALSE;
9719ad41 752 sec->used_by_bfd = sdata;
f0abc2a1
AM
753
754 return _bfd_elf_new_section_hook (abfd, sec);
755}
b49e97c9
TS
756\f
757/* Read ECOFF debugging information from a .mdebug section into a
758 ecoff_debug_info structure. */
759
b34976b6 760bfd_boolean
9719ad41
RS
761_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
762 struct ecoff_debug_info *debug)
b49e97c9
TS
763{
764 HDRR *symhdr;
765 const struct ecoff_debug_swap *swap;
9719ad41 766 char *ext_hdr;
b49e97c9
TS
767
768 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
769 memset (debug, 0, sizeof (*debug));
770
9719ad41 771 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
772 if (ext_hdr == NULL && swap->external_hdr_size != 0)
773 goto error_return;
774
9719ad41 775 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 776 swap->external_hdr_size))
b49e97c9
TS
777 goto error_return;
778
779 symhdr = &debug->symbolic_header;
780 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
781
782 /* The symbolic header contains absolute file offsets and sizes to
783 read. */
784#define READ(ptr, offset, count, size, type) \
785 if (symhdr->count == 0) \
786 debug->ptr = NULL; \
787 else \
788 { \
789 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 790 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
791 if (debug->ptr == NULL) \
792 goto error_return; \
9719ad41 793 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
794 || bfd_bread (debug->ptr, amt, abfd) != amt) \
795 goto error_return; \
796 }
797
798 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
799 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
800 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
801 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
802 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
803 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
804 union aux_ext *);
805 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
806 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
807 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
808 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
809 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
810#undef READ
811
812 debug->fdr = NULL;
b49e97c9 813
b34976b6 814 return TRUE;
b49e97c9
TS
815
816 error_return:
817 if (ext_hdr != NULL)
818 free (ext_hdr);
819 if (debug->line != NULL)
820 free (debug->line);
821 if (debug->external_dnr != NULL)
822 free (debug->external_dnr);
823 if (debug->external_pdr != NULL)
824 free (debug->external_pdr);
825 if (debug->external_sym != NULL)
826 free (debug->external_sym);
827 if (debug->external_opt != NULL)
828 free (debug->external_opt);
829 if (debug->external_aux != NULL)
830 free (debug->external_aux);
831 if (debug->ss != NULL)
832 free (debug->ss);
833 if (debug->ssext != NULL)
834 free (debug->ssext);
835 if (debug->external_fdr != NULL)
836 free (debug->external_fdr);
837 if (debug->external_rfd != NULL)
838 free (debug->external_rfd);
839 if (debug->external_ext != NULL)
840 free (debug->external_ext);
b34976b6 841 return FALSE;
b49e97c9
TS
842}
843\f
844/* Swap RPDR (runtime procedure table entry) for output. */
845
846static void
9719ad41 847ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
848{
849 H_PUT_S32 (abfd, in->adr, ex->p_adr);
850 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
851 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
852 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
853 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
854 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
855
856 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
857 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
858
859 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
860#if 0 /* FIXME */
861 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
862#endif
863}
864
865/* Create a runtime procedure table from the .mdebug section. */
866
b34976b6 867static bfd_boolean
9719ad41
RS
868mips_elf_create_procedure_table (void *handle, bfd *abfd,
869 struct bfd_link_info *info, asection *s,
870 struct ecoff_debug_info *debug)
b49e97c9
TS
871{
872 const struct ecoff_debug_swap *swap;
873 HDRR *hdr = &debug->symbolic_header;
874 RPDR *rpdr, *rp;
875 struct rpdr_ext *erp;
9719ad41 876 void *rtproc;
b49e97c9
TS
877 struct pdr_ext *epdr;
878 struct sym_ext *esym;
879 char *ss, **sv;
880 char *str;
881 bfd_size_type size;
882 bfd_size_type count;
883 unsigned long sindex;
884 unsigned long i;
885 PDR pdr;
886 SYMR sym;
887 const char *no_name_func = _("static procedure (no name)");
888
889 epdr = NULL;
890 rpdr = NULL;
891 esym = NULL;
892 ss = NULL;
893 sv = NULL;
894
895 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
896
897 sindex = strlen (no_name_func) + 1;
898 count = hdr->ipdMax;
899 if (count > 0)
900 {
901 size = swap->external_pdr_size;
902
9719ad41 903 epdr = bfd_malloc (size * count);
b49e97c9
TS
904 if (epdr == NULL)
905 goto error_return;
906
9719ad41 907 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
908 goto error_return;
909
910 size = sizeof (RPDR);
9719ad41 911 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
912 if (rpdr == NULL)
913 goto error_return;
914
915 size = sizeof (char *);
9719ad41 916 sv = bfd_malloc (size * count);
b49e97c9
TS
917 if (sv == NULL)
918 goto error_return;
919
920 count = hdr->isymMax;
921 size = swap->external_sym_size;
9719ad41 922 esym = bfd_malloc (size * count);
b49e97c9
TS
923 if (esym == NULL)
924 goto error_return;
925
9719ad41 926 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
927 goto error_return;
928
929 count = hdr->issMax;
9719ad41 930 ss = bfd_malloc (count);
b49e97c9
TS
931 if (ss == NULL)
932 goto error_return;
9719ad41 933 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
b49e97c9
TS
934 goto error_return;
935
936 count = hdr->ipdMax;
937 for (i = 0; i < (unsigned long) count; i++, rp++)
938 {
9719ad41
RS
939 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
940 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
941 rp->adr = sym.value;
942 rp->regmask = pdr.regmask;
943 rp->regoffset = pdr.regoffset;
944 rp->fregmask = pdr.fregmask;
945 rp->fregoffset = pdr.fregoffset;
946 rp->frameoffset = pdr.frameoffset;
947 rp->framereg = pdr.framereg;
948 rp->pcreg = pdr.pcreg;
949 rp->irpss = sindex;
950 sv[i] = ss + sym.iss;
951 sindex += strlen (sv[i]) + 1;
952 }
953 }
954
955 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
956 size = BFD_ALIGN (size, 16);
9719ad41 957 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
958 if (rtproc == NULL)
959 {
960 mips_elf_hash_table (info)->procedure_count = 0;
961 goto error_return;
962 }
963
964 mips_elf_hash_table (info)->procedure_count = count + 2;
965
9719ad41 966 erp = rtproc;
b49e97c9
TS
967 memset (erp, 0, sizeof (struct rpdr_ext));
968 erp++;
969 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
970 strcpy (str, no_name_func);
971 str += strlen (no_name_func) + 1;
972 for (i = 0; i < count; i++)
973 {
974 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
975 strcpy (str, sv[i]);
976 str += strlen (sv[i]) + 1;
977 }
978 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
979
980 /* Set the size and contents of .rtproc section. */
eea6121a 981 s->size = size;
9719ad41 982 s->contents = rtproc;
b49e97c9
TS
983
984 /* Skip this section later on (I don't think this currently
985 matters, but someday it might). */
9719ad41 986 s->link_order_head = NULL;
b49e97c9
TS
987
988 if (epdr != NULL)
989 free (epdr);
990 if (rpdr != NULL)
991 free (rpdr);
992 if (esym != NULL)
993 free (esym);
994 if (ss != NULL)
995 free (ss);
996 if (sv != NULL)
997 free (sv);
998
b34976b6 999 return TRUE;
b49e97c9
TS
1000
1001 error_return:
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
b34976b6 1012 return FALSE;
b49e97c9
TS
1013}
1014
1015/* Check the mips16 stubs for a particular symbol, and see if we can
1016 discard them. */
1017
b34976b6 1018static bfd_boolean
9719ad41
RS
1019mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1020 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1021{
1022 if (h->root.root.type == bfd_link_hash_warning)
1023 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1024
1025 if (h->fn_stub != NULL
1026 && ! h->need_fn_stub)
1027 {
1028 /* We don't need the fn_stub; the only references to this symbol
1029 are 16 bit calls. Clobber the size to 0 to prevent it from
1030 being included in the link. */
eea6121a 1031 h->fn_stub->size = 0;
b49e97c9
TS
1032 h->fn_stub->flags &= ~SEC_RELOC;
1033 h->fn_stub->reloc_count = 0;
1034 h->fn_stub->flags |= SEC_EXCLUDE;
1035 }
1036
1037 if (h->call_stub != NULL
1038 && h->root.other == STO_MIPS16)
1039 {
1040 /* We don't need the call_stub; this is a 16 bit function, so
1041 calls from other 16 bit functions are OK. Clobber the size
1042 to 0 to prevent it from being included in the link. */
eea6121a 1043 h->call_stub->size = 0;
b49e97c9
TS
1044 h->call_stub->flags &= ~SEC_RELOC;
1045 h->call_stub->reloc_count = 0;
1046 h->call_stub->flags |= SEC_EXCLUDE;
1047 }
1048
1049 if (h->call_fp_stub != NULL
1050 && h->root.other == STO_MIPS16)
1051 {
1052 /* We don't need the call_stub; this is a 16 bit function, so
1053 calls from other 16 bit functions are OK. Clobber the size
1054 to 0 to prevent it from being included in the link. */
eea6121a 1055 h->call_fp_stub->size = 0;
b49e97c9
TS
1056 h->call_fp_stub->flags &= ~SEC_RELOC;
1057 h->call_fp_stub->reloc_count = 0;
1058 h->call_fp_stub->flags |= SEC_EXCLUDE;
1059 }
1060
b34976b6 1061 return TRUE;
b49e97c9
TS
1062}
1063\f
1064bfd_reloc_status_type
9719ad41
RS
1065_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1066 arelent *reloc_entry, asection *input_section,
1067 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1068{
1069 bfd_vma relocation;
a7ebbfdf 1070 bfd_signed_vma val;
30ac9238 1071 bfd_reloc_status_type status;
b49e97c9
TS
1072
1073 if (bfd_is_com_section (symbol->section))
1074 relocation = 0;
1075 else
1076 relocation = symbol->value;
1077
1078 relocation += symbol->section->output_section->vma;
1079 relocation += symbol->section->output_offset;
1080
07515404 1081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1082 return bfd_reloc_outofrange;
1083
b49e97c9 1084 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1085 val = reloc_entry->addend;
1086
30ac9238 1087 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1088
b49e97c9 1089 /* Adjust val for the final section location and GP value. If we
1049f94e 1090 are producing relocatable output, we don't want to do this for
b49e97c9 1091 an external symbol. */
1049f94e 1092 if (! relocatable
b49e97c9
TS
1093 || (symbol->flags & BSF_SECTION_SYM) != 0)
1094 val += relocation - gp;
1095
a7ebbfdf
TS
1096 if (reloc_entry->howto->partial_inplace)
1097 {
30ac9238
RS
1098 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1099 (bfd_byte *) data
1100 + reloc_entry->address);
1101 if (status != bfd_reloc_ok)
1102 return status;
a7ebbfdf
TS
1103 }
1104 else
1105 reloc_entry->addend = val;
b49e97c9 1106
1049f94e 1107 if (relocatable)
b49e97c9 1108 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1109
1110 return bfd_reloc_ok;
1111}
1112
1113/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1114 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1115 that contains the relocation field and DATA points to the start of
1116 INPUT_SECTION. */
1117
1118struct mips_hi16
1119{
1120 struct mips_hi16 *next;
1121 bfd_byte *data;
1122 asection *input_section;
1123 arelent rel;
1124};
1125
1126/* FIXME: This should not be a static variable. */
1127
1128static struct mips_hi16 *mips_hi16_list;
1129
1130/* A howto special_function for REL *HI16 relocations. We can only
1131 calculate the correct value once we've seen the partnering
1132 *LO16 relocation, so just save the information for later.
1133
1134 The ABI requires that the *LO16 immediately follow the *HI16.
1135 However, as a GNU extension, we permit an arbitrary number of
1136 *HI16s to be associated with a single *LO16. This significantly
1137 simplies the relocation handling in gcc. */
1138
1139bfd_reloc_status_type
1140_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1141 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1142 asection *input_section, bfd *output_bfd,
1143 char **error_message ATTRIBUTE_UNUSED)
1144{
1145 struct mips_hi16 *n;
1146
07515404 1147 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1148 return bfd_reloc_outofrange;
1149
1150 n = bfd_malloc (sizeof *n);
1151 if (n == NULL)
1152 return bfd_reloc_outofrange;
1153
1154 n->next = mips_hi16_list;
1155 n->data = data;
1156 n->input_section = input_section;
1157 n->rel = *reloc_entry;
1158 mips_hi16_list = n;
1159
1160 if (output_bfd != NULL)
1161 reloc_entry->address += input_section->output_offset;
1162
1163 return bfd_reloc_ok;
1164}
1165
1166/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1167 like any other 16-bit relocation when applied to global symbols, but is
1168 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1169
1170bfd_reloc_status_type
1171_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1172 void *data, asection *input_section,
1173 bfd *output_bfd, char **error_message)
1174{
1175 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1176 || bfd_is_und_section (bfd_get_section (symbol))
1177 || bfd_is_com_section (bfd_get_section (symbol)))
1178 /* The relocation is against a global symbol. */
1179 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1180 input_section, output_bfd,
1181 error_message);
1182
1183 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1184 input_section, output_bfd, error_message);
1185}
1186
1187/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1188 is a straightforward 16 bit inplace relocation, but we must deal with
1189 any partnering high-part relocations as well. */
1190
1191bfd_reloc_status_type
1192_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1193 void *data, asection *input_section,
1194 bfd *output_bfd, char **error_message)
1195{
1196 bfd_vma vallo;
1197
07515404 1198 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1199 return bfd_reloc_outofrange;
1200
1201 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1202 while (mips_hi16_list != NULL)
1203 {
1204 bfd_reloc_status_type ret;
1205 struct mips_hi16 *hi;
1206
1207 hi = mips_hi16_list;
1208
1209 /* R_MIPS_GOT16 relocations are something of a special case. We
1210 want to install the addend in the same way as for a R_MIPS_HI16
1211 relocation (with a rightshift of 16). However, since GOT16
1212 relocations can also be used with global symbols, their howto
1213 has a rightshift of 0. */
1214 if (hi->rel.howto->type == R_MIPS_GOT16)
1215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1216
1217 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1218 carry or borrow will induce a change of +1 or -1 in the high part. */
1219 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1220
30ac9238
RS
1221 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1222 hi->input_section, output_bfd,
1223 error_message);
1224 if (ret != bfd_reloc_ok)
1225 return ret;
1226
1227 mips_hi16_list = hi->next;
1228 free (hi);
1229 }
1230
1231 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1232 input_section, output_bfd,
1233 error_message);
1234}
1235
1236/* A generic howto special_function. This calculates and installs the
1237 relocation itself, thus avoiding the oft-discussed problems in
1238 bfd_perform_relocation and bfd_install_relocation. */
1239
1240bfd_reloc_status_type
1241_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1242 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1243 asection *input_section, bfd *output_bfd,
1244 char **error_message ATTRIBUTE_UNUSED)
1245{
1246 bfd_signed_vma val;
1247 bfd_reloc_status_type status;
1248 bfd_boolean relocatable;
1249
1250 relocatable = (output_bfd != NULL);
1251
07515404 1252 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1253 return bfd_reloc_outofrange;
1254
1255 /* Build up the field adjustment in VAL. */
1256 val = 0;
1257 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1258 {
1259 /* Either we're calculating the final field value or we have a
1260 relocation against a section symbol. Add in the section's
1261 offset or address. */
1262 val += symbol->section->output_section->vma;
1263 val += symbol->section->output_offset;
1264 }
1265
1266 if (!relocatable)
1267 {
1268 /* We're calculating the final field value. Add in the symbol's value
1269 and, if pc-relative, subtract the address of the field itself. */
1270 val += symbol->value;
1271 if (reloc_entry->howto->pc_relative)
1272 {
1273 val -= input_section->output_section->vma;
1274 val -= input_section->output_offset;
1275 val -= reloc_entry->address;
1276 }
1277 }
1278
1279 /* VAL is now the final adjustment. If we're keeping this relocation
1280 in the output file, and if the relocation uses a separate addend,
1281 we just need to add VAL to that addend. Otherwise we need to add
1282 VAL to the relocation field itself. */
1283 if (relocatable && !reloc_entry->howto->partial_inplace)
1284 reloc_entry->addend += val;
1285 else
1286 {
1287 /* Add in the separate addend, if any. */
1288 val += reloc_entry->addend;
1289
1290 /* Add VAL to the relocation field. */
1291 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1292 (bfd_byte *) data
1293 + reloc_entry->address);
1294 if (status != bfd_reloc_ok)
1295 return status;
1296 }
1297
1298 if (relocatable)
1299 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1300
1301 return bfd_reloc_ok;
1302}
1303\f
1304/* Swap an entry in a .gptab section. Note that these routines rely
1305 on the equivalence of the two elements of the union. */
1306
1307static void
9719ad41
RS
1308bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1309 Elf32_gptab *in)
b49e97c9
TS
1310{
1311 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1312 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1313}
1314
1315static void
9719ad41
RS
1316bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1317 Elf32_External_gptab *ex)
b49e97c9
TS
1318{
1319 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1320 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1321}
1322
1323static void
9719ad41
RS
1324bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1325 Elf32_External_compact_rel *ex)
b49e97c9
TS
1326{
1327 H_PUT_32 (abfd, in->id1, ex->id1);
1328 H_PUT_32 (abfd, in->num, ex->num);
1329 H_PUT_32 (abfd, in->id2, ex->id2);
1330 H_PUT_32 (abfd, in->offset, ex->offset);
1331 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1332 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1333}
1334
1335static void
9719ad41
RS
1336bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1337 Elf32_External_crinfo *ex)
b49e97c9
TS
1338{
1339 unsigned long l;
1340
1341 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1342 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1343 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1344 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1345 H_PUT_32 (abfd, l, ex->info);
1346 H_PUT_32 (abfd, in->konst, ex->konst);
1347 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1348}
b49e97c9
TS
1349\f
1350/* A .reginfo section holds a single Elf32_RegInfo structure. These
1351 routines swap this structure in and out. They are used outside of
1352 BFD, so they are globally visible. */
1353
1354void
9719ad41
RS
1355bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1356 Elf32_RegInfo *in)
b49e97c9
TS
1357{
1358 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1359 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1360 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1361 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1362 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1363 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1364}
1365
1366void
9719ad41
RS
1367bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1368 Elf32_External_RegInfo *ex)
b49e97c9
TS
1369{
1370 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1371 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1372 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1373 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1374 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1375 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1376}
1377
1378/* In the 64 bit ABI, the .MIPS.options section holds register
1379 information in an Elf64_Reginfo structure. These routines swap
1380 them in and out. They are globally visible because they are used
1381 outside of BFD. These routines are here so that gas can call them
1382 without worrying about whether the 64 bit ABI has been included. */
1383
1384void
9719ad41
RS
1385bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1386 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1387{
1388 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1389 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1390 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1391 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1392 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1393 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1394 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1395}
1396
1397void
9719ad41
RS
1398bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1399 Elf64_External_RegInfo *ex)
b49e97c9
TS
1400{
1401 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1402 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1403 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1404 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1405 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1406 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1407 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1408}
1409
1410/* Swap in an options header. */
1411
1412void
9719ad41
RS
1413bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1414 Elf_Internal_Options *in)
b49e97c9
TS
1415{
1416 in->kind = H_GET_8 (abfd, ex->kind);
1417 in->size = H_GET_8 (abfd, ex->size);
1418 in->section = H_GET_16 (abfd, ex->section);
1419 in->info = H_GET_32 (abfd, ex->info);
1420}
1421
1422/* Swap out an options header. */
1423
1424void
9719ad41
RS
1425bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1426 Elf_External_Options *ex)
b49e97c9
TS
1427{
1428 H_PUT_8 (abfd, in->kind, ex->kind);
1429 H_PUT_8 (abfd, in->size, ex->size);
1430 H_PUT_16 (abfd, in->section, ex->section);
1431 H_PUT_32 (abfd, in->info, ex->info);
1432}
1433\f
1434/* This function is called via qsort() to sort the dynamic relocation
1435 entries by increasing r_symndx value. */
1436
1437static int
9719ad41 1438sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1439{
947216bf
AM
1440 Elf_Internal_Rela int_reloc1;
1441 Elf_Internal_Rela int_reloc2;
b49e97c9 1442
947216bf
AM
1443 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1444 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1445
947216bf 1446 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1447}
1448
f4416af6
AO
1449/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1450
1451static int
9719ad41 1452sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
f4416af6
AO
1453{
1454 Elf_Internal_Rela int_reloc1[3];
1455 Elf_Internal_Rela int_reloc2[3];
1456
1457 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1458 (reldyn_sorting_bfd, arg1, int_reloc1);
1459 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1460 (reldyn_sorting_bfd, arg2, int_reloc2);
1461
1462 return (ELF64_R_SYM (int_reloc1[0].r_info)
1463 - ELF64_R_SYM (int_reloc2[0].r_info));
1464}
1465
1466
b49e97c9
TS
1467/* This routine is used to write out ECOFF debugging external symbol
1468 information. It is called via mips_elf_link_hash_traverse. The
1469 ECOFF external symbol information must match the ELF external
1470 symbol information. Unfortunately, at this point we don't know
1471 whether a symbol is required by reloc information, so the two
1472 tables may wind up being different. We must sort out the external
1473 symbol information before we can set the final size of the .mdebug
1474 section, and we must set the size of the .mdebug section before we
1475 can relocate any sections, and we can't know which symbols are
1476 required by relocation until we relocate the sections.
1477 Fortunately, it is relatively unlikely that any symbol will be
1478 stripped but required by a reloc. In particular, it can not happen
1479 when generating a final executable. */
1480
b34976b6 1481static bfd_boolean
9719ad41 1482mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1483{
9719ad41 1484 struct extsym_info *einfo = data;
b34976b6 1485 bfd_boolean strip;
b49e97c9
TS
1486 asection *sec, *output_section;
1487
1488 if (h->root.root.type == bfd_link_hash_warning)
1489 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1490
1491 if (h->root.indx == -2)
b34976b6 1492 strip = FALSE;
f5385ebf
AM
1493 else if ((h->root.def_dynamic
1494 || h->root.ref_dynamic)
1495 && !h->root.def_regular
1496 && !h->root.ref_regular)
b34976b6 1497 strip = TRUE;
b49e97c9
TS
1498 else if (einfo->info->strip == strip_all
1499 || (einfo->info->strip == strip_some
1500 && bfd_hash_lookup (einfo->info->keep_hash,
1501 h->root.root.root.string,
b34976b6
AM
1502 FALSE, FALSE) == NULL))
1503 strip = TRUE;
b49e97c9 1504 else
b34976b6 1505 strip = FALSE;
b49e97c9
TS
1506
1507 if (strip)
b34976b6 1508 return TRUE;
b49e97c9
TS
1509
1510 if (h->esym.ifd == -2)
1511 {
1512 h->esym.jmptbl = 0;
1513 h->esym.cobol_main = 0;
1514 h->esym.weakext = 0;
1515 h->esym.reserved = 0;
1516 h->esym.ifd = ifdNil;
1517 h->esym.asym.value = 0;
1518 h->esym.asym.st = stGlobal;
1519
1520 if (h->root.root.type == bfd_link_hash_undefined
1521 || h->root.root.type == bfd_link_hash_undefweak)
1522 {
1523 const char *name;
1524
1525 /* Use undefined class. Also, set class and type for some
1526 special symbols. */
1527 name = h->root.root.root.string;
1528 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1529 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1530 {
1531 h->esym.asym.sc = scData;
1532 h->esym.asym.st = stLabel;
1533 h->esym.asym.value = 0;
1534 }
1535 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1536 {
1537 h->esym.asym.sc = scAbs;
1538 h->esym.asym.st = stLabel;
1539 h->esym.asym.value =
1540 mips_elf_hash_table (einfo->info)->procedure_count;
1541 }
4a14403c 1542 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1543 {
1544 h->esym.asym.sc = scAbs;
1545 h->esym.asym.st = stLabel;
1546 h->esym.asym.value = elf_gp (einfo->abfd);
1547 }
1548 else
1549 h->esym.asym.sc = scUndefined;
1550 }
1551 else if (h->root.root.type != bfd_link_hash_defined
1552 && h->root.root.type != bfd_link_hash_defweak)
1553 h->esym.asym.sc = scAbs;
1554 else
1555 {
1556 const char *name;
1557
1558 sec = h->root.root.u.def.section;
1559 output_section = sec->output_section;
1560
1561 /* When making a shared library and symbol h is the one from
1562 the another shared library, OUTPUT_SECTION may be null. */
1563 if (output_section == NULL)
1564 h->esym.asym.sc = scUndefined;
1565 else
1566 {
1567 name = bfd_section_name (output_section->owner, output_section);
1568
1569 if (strcmp (name, ".text") == 0)
1570 h->esym.asym.sc = scText;
1571 else if (strcmp (name, ".data") == 0)
1572 h->esym.asym.sc = scData;
1573 else if (strcmp (name, ".sdata") == 0)
1574 h->esym.asym.sc = scSData;
1575 else if (strcmp (name, ".rodata") == 0
1576 || strcmp (name, ".rdata") == 0)
1577 h->esym.asym.sc = scRData;
1578 else if (strcmp (name, ".bss") == 0)
1579 h->esym.asym.sc = scBss;
1580 else if (strcmp (name, ".sbss") == 0)
1581 h->esym.asym.sc = scSBss;
1582 else if (strcmp (name, ".init") == 0)
1583 h->esym.asym.sc = scInit;
1584 else if (strcmp (name, ".fini") == 0)
1585 h->esym.asym.sc = scFini;
1586 else
1587 h->esym.asym.sc = scAbs;
1588 }
1589 }
1590
1591 h->esym.asym.reserved = 0;
1592 h->esym.asym.index = indexNil;
1593 }
1594
1595 if (h->root.root.type == bfd_link_hash_common)
1596 h->esym.asym.value = h->root.root.u.c.size;
1597 else if (h->root.root.type == bfd_link_hash_defined
1598 || h->root.root.type == bfd_link_hash_defweak)
1599 {
1600 if (h->esym.asym.sc == scCommon)
1601 h->esym.asym.sc = scBss;
1602 else if (h->esym.asym.sc == scSCommon)
1603 h->esym.asym.sc = scSBss;
1604
1605 sec = h->root.root.u.def.section;
1606 output_section = sec->output_section;
1607 if (output_section != NULL)
1608 h->esym.asym.value = (h->root.root.u.def.value
1609 + sec->output_offset
1610 + output_section->vma);
1611 else
1612 h->esym.asym.value = 0;
1613 }
f5385ebf 1614 else if (h->root.needs_plt)
b49e97c9
TS
1615 {
1616 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1617 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1618
1619 while (hd->root.root.type == bfd_link_hash_indirect)
1620 {
1621 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1622 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1623 }
1624
1625 if (!no_fn_stub)
1626 {
1627 /* Set type and value for a symbol with a function stub. */
1628 h->esym.asym.st = stProc;
1629 sec = hd->root.root.u.def.section;
1630 if (sec == NULL)
1631 h->esym.asym.value = 0;
1632 else
1633 {
1634 output_section = sec->output_section;
1635 if (output_section != NULL)
1636 h->esym.asym.value = (hd->root.plt.offset
1637 + sec->output_offset
1638 + output_section->vma);
1639 else
1640 h->esym.asym.value = 0;
1641 }
1642#if 0 /* FIXME? */
1643 h->esym.ifd = 0;
1644#endif
1645 }
1646 }
1647
1648 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1649 h->root.root.root.string,
1650 &h->esym))
1651 {
b34976b6
AM
1652 einfo->failed = TRUE;
1653 return FALSE;
b49e97c9
TS
1654 }
1655
b34976b6 1656 return TRUE;
b49e97c9
TS
1657}
1658
1659/* A comparison routine used to sort .gptab entries. */
1660
1661static int
9719ad41 1662gptab_compare (const void *p1, const void *p2)
b49e97c9 1663{
9719ad41
RS
1664 const Elf32_gptab *a1 = p1;
1665 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1666
1667 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1668}
1669\f
b15e6682 1670/* Functions to manage the got entry hash table. */
f4416af6
AO
1671
1672/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1673 hash number. */
1674
1675static INLINE hashval_t
9719ad41 1676mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1677{
1678#ifdef BFD64
1679 return addr + (addr >> 32);
1680#else
1681 return addr;
1682#endif
1683}
1684
1685/* got_entries only match if they're identical, except for gotidx, so
1686 use all fields to compute the hash, and compare the appropriate
1687 union members. */
1688
b15e6682 1689static hashval_t
9719ad41 1690mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1691{
1692 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1693
38985a1c 1694 return entry->symndx
f4416af6 1695 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1696 : entry->abfd->id
1697 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1698 : entry->d.h->root.root.root.hash));
b15e6682
AO
1699}
1700
1701static int
9719ad41 1702mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1703{
1704 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1705 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1706
1707 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1708 && (! e1->abfd ? e1->d.address == e2->d.address
1709 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1710 : e1->d.h == e2->d.h);
1711}
1712
1713/* multi_got_entries are still a match in the case of global objects,
1714 even if the input bfd in which they're referenced differs, so the
1715 hash computation and compare functions are adjusted
1716 accordingly. */
1717
1718static hashval_t
9719ad41 1719mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1720{
1721 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1722
1723 return entry->symndx
1724 + (! entry->abfd
1725 ? mips_elf_hash_bfd_vma (entry->d.address)
1726 : entry->symndx >= 0
1727 ? (entry->abfd->id
1728 + mips_elf_hash_bfd_vma (entry->d.addend))
1729 : entry->d.h->root.root.root.hash);
1730}
1731
1732static int
9719ad41 1733mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1734{
1735 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1736 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1737
1738 return e1->symndx == e2->symndx
1739 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1740 : e1->abfd == NULL || e2->abfd == NULL
1741 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1742 : e1->d.h == e2->d.h);
b15e6682
AO
1743}
1744\f
f4416af6
AO
1745/* Returns the dynamic relocation section for DYNOBJ. */
1746
1747static asection *
9719ad41 1748mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
f4416af6
AO
1749{
1750 static const char dname[] = ".rel.dyn";
1751 asection *sreloc;
1752
1753 sreloc = bfd_get_section_by_name (dynobj, dname);
1754 if (sreloc == NULL && create_p)
1755 {
1756 sreloc = bfd_make_section (dynobj, dname);
1757 if (sreloc == NULL
1758 || ! bfd_set_section_flags (dynobj, sreloc,
1759 (SEC_ALLOC
1760 | SEC_LOAD
1761 | SEC_HAS_CONTENTS
1762 | SEC_IN_MEMORY
1763 | SEC_LINKER_CREATED
1764 | SEC_READONLY))
1765 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1766 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1767 return NULL;
1768 }
1769 return sreloc;
1770}
1771
b49e97c9
TS
1772/* Returns the GOT section for ABFD. */
1773
1774static asection *
9719ad41 1775mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 1776{
f4416af6
AO
1777 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1778 if (sgot == NULL
1779 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1780 return NULL;
1781 return sgot;
b49e97c9
TS
1782}
1783
1784/* Returns the GOT information associated with the link indicated by
1785 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1786 section. */
1787
1788static struct mips_got_info *
9719ad41 1789mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
1790{
1791 asection *sgot;
1792 struct mips_got_info *g;
1793
f4416af6 1794 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1795 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1796 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1797 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1798 BFD_ASSERT (g != NULL);
1799
1800 if (sgotp)
f4416af6
AO
1801 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1802
b49e97c9
TS
1803 return g;
1804}
1805
1806/* Returns the GOT offset at which the indicated address can be found.
1807 If there is not yet a GOT entry for this value, create one. Returns
1808 -1 if no satisfactory GOT offset can be found. */
1809
1810static bfd_vma
9719ad41
RS
1811mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1812 bfd_vma value)
b49e97c9
TS
1813{
1814 asection *sgot;
1815 struct mips_got_info *g;
b15e6682 1816 struct mips_got_entry *entry;
b49e97c9
TS
1817
1818 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1819
f4416af6 1820 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1821 if (entry)
1822 return entry->gotidx;
1823 else
1824 return MINUS_ONE;
b49e97c9
TS
1825}
1826
1827/* Returns the GOT index for the global symbol indicated by H. */
1828
1829static bfd_vma
9719ad41 1830mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
b49e97c9
TS
1831{
1832 bfd_vma index;
1833 asection *sgot;
f4416af6 1834 struct mips_got_info *g, *gg;
d0c7ff07 1835 long global_got_dynindx = 0;
b49e97c9 1836
f4416af6
AO
1837 gg = g = mips_elf_got_info (abfd, &sgot);
1838 if (g->bfd2got && ibfd)
1839 {
1840 struct mips_got_entry e, *p;
143d77c5 1841
f4416af6
AO
1842 BFD_ASSERT (h->dynindx >= 0);
1843
1844 g = mips_elf_got_for_ibfd (g, ibfd);
1845 if (g->next != gg)
1846 {
1847 e.abfd = ibfd;
1848 e.symndx = -1;
1849 e.d.h = (struct mips_elf_link_hash_entry *)h;
1850
9719ad41 1851 p = htab_find (g->got_entries, &e);
f4416af6
AO
1852
1853 BFD_ASSERT (p->gotidx > 0);
1854 return p->gotidx;
1855 }
1856 }
1857
1858 if (gg->global_gotsym != NULL)
1859 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9
TS
1860
1861 /* Once we determine the global GOT entry with the lowest dynamic
1862 symbol table index, we must put all dynamic symbols with greater
1863 indices into the GOT. That makes it easy to calculate the GOT
1864 offset. */
d0c7ff07
TS
1865 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1866 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
b49e97c9 1867 * MIPS_ELF_GOT_SIZE (abfd));
eea6121a 1868 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
1869
1870 return index;
1871}
1872
1873/* Find a GOT entry that is within 32KB of the VALUE. These entries
1874 are supposed to be placed at small offsets in the GOT, i.e.,
1875 within 32KB of GP. Return the index into the GOT for this page,
1876 and store the offset from this entry to the desired address in
1877 OFFSETP, if it is non-NULL. */
1878
1879static bfd_vma
9719ad41
RS
1880mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1881 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
1882{
1883 asection *sgot;
1884 struct mips_got_info *g;
b15e6682
AO
1885 bfd_vma index;
1886 struct mips_got_entry *entry;
b49e97c9
TS
1887
1888 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1889
f4416af6 1890 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682
AO
1891 (value + 0x8000)
1892 & (~(bfd_vma)0xffff));
b49e97c9 1893
b15e6682
AO
1894 if (!entry)
1895 return MINUS_ONE;
143d77c5 1896
b15e6682 1897 index = entry->gotidx;
b49e97c9
TS
1898
1899 if (offsetp)
f4416af6 1900 *offsetp = value - entry->d.address;
b49e97c9
TS
1901
1902 return index;
1903}
1904
1905/* Find a GOT entry whose higher-order 16 bits are the same as those
1906 for value. Return the index into the GOT for this entry. */
1907
1908static bfd_vma
9719ad41
RS
1909mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1910 bfd_vma value, bfd_boolean external)
b49e97c9
TS
1911{
1912 asection *sgot;
1913 struct mips_got_info *g;
b15e6682 1914 struct mips_got_entry *entry;
b49e97c9
TS
1915
1916 if (! external)
1917 {
1918 /* Although the ABI says that it is "the high-order 16 bits" that we
1919 want, it is really the %high value. The complete value is
1920 calculated with a `addiu' of a LO16 relocation, just as with a
1921 HI16/LO16 pair. */
1922 value = mips_elf_high (value) << 16;
1923 }
1924
1925 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1926
f4416af6 1927 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1928 if (entry)
1929 return entry->gotidx;
1930 else
1931 return MINUS_ONE;
b49e97c9
TS
1932}
1933
1934/* Returns the offset for the entry at the INDEXth position
1935 in the GOT. */
1936
1937static bfd_vma
9719ad41
RS
1938mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1939 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
1940{
1941 asection *sgot;
1942 bfd_vma gp;
f4416af6 1943 struct mips_got_info *g;
b49e97c9 1944
f4416af6
AO
1945 g = mips_elf_got_info (dynobj, &sgot);
1946 gp = _bfd_get_gp_value (output_bfd)
1947 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 1948
f4416af6 1949 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
1950}
1951
1952/* Create a local GOT entry for VALUE. Return the index of the entry,
1953 or -1 if it could not be created. */
1954
b15e6682 1955static struct mips_got_entry *
9719ad41
RS
1956mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1957 struct mips_got_info *gg,
1958 asection *sgot, bfd_vma value)
b49e97c9 1959{
b15e6682 1960 struct mips_got_entry entry, **loc;
f4416af6 1961 struct mips_got_info *g;
b15e6682 1962
f4416af6
AO
1963 entry.abfd = NULL;
1964 entry.symndx = -1;
1965 entry.d.address = value;
1966
1967 g = mips_elf_got_for_ibfd (gg, ibfd);
1968 if (g == NULL)
1969 {
1970 g = mips_elf_got_for_ibfd (gg, abfd);
1971 BFD_ASSERT (g != NULL);
1972 }
b15e6682
AO
1973
1974 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1975 INSERT);
1976 if (*loc)
1977 return *loc;
143d77c5 1978
b15e6682
AO
1979 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1980
1981 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1982
1983 if (! *loc)
1984 return NULL;
143d77c5 1985
b15e6682
AO
1986 memcpy (*loc, &entry, sizeof entry);
1987
b49e97c9
TS
1988 if (g->assigned_gotno >= g->local_gotno)
1989 {
f4416af6 1990 (*loc)->gotidx = -1;
b49e97c9
TS
1991 /* We didn't allocate enough space in the GOT. */
1992 (*_bfd_error_handler)
1993 (_("not enough GOT space for local GOT entries"));
1994 bfd_set_error (bfd_error_bad_value);
b15e6682 1995 return NULL;
b49e97c9
TS
1996 }
1997
1998 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
1999 (sgot->contents + entry.gotidx));
2000
2001 return *loc;
b49e97c9
TS
2002}
2003
2004/* Sort the dynamic symbol table so that symbols that need GOT entries
2005 appear towards the end. This reduces the amount of GOT space
2006 required. MAX_LOCAL is used to set the number of local symbols
2007 known to be in the dynamic symbol table. During
2008 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2009 section symbols are added and the count is higher. */
2010
b34976b6 2011static bfd_boolean
9719ad41 2012mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2013{
2014 struct mips_elf_hash_sort_data hsd;
2015 struct mips_got_info *g;
2016 bfd *dynobj;
2017
2018 dynobj = elf_hash_table (info)->dynobj;
2019
f4416af6
AO
2020 g = mips_elf_got_info (dynobj, NULL);
2021
b49e97c9 2022 hsd.low = NULL;
143d77c5 2023 hsd.max_unref_got_dynindx =
f4416af6
AO
2024 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2025 /* In the multi-got case, assigned_gotno of the master got_info
2026 indicate the number of entries that aren't referenced in the
2027 primary GOT, but that must have entries because there are
2028 dynamic relocations that reference it. Since they aren't
2029 referenced, we move them to the end of the GOT, so that they
2030 don't prevent other entries that are referenced from getting
2031 too large offsets. */
2032 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2033 hsd.max_non_got_dynindx = max_local;
2034 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2035 elf_hash_table (info)),
2036 mips_elf_sort_hash_table_f,
2037 &hsd);
2038
2039 /* There should have been enough room in the symbol table to
44c410de 2040 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2041 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2042 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2043 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2044
2045 /* Now we know which dynamic symbol has the lowest dynamic symbol
2046 table index in the GOT. */
b49e97c9
TS
2047 g->global_gotsym = hsd.low;
2048
b34976b6 2049 return TRUE;
b49e97c9
TS
2050}
2051
2052/* If H needs a GOT entry, assign it the highest available dynamic
2053 index. Otherwise, assign it the lowest available dynamic
2054 index. */
2055
b34976b6 2056static bfd_boolean
9719ad41 2057mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2058{
9719ad41 2059 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2060
2061 if (h->root.root.type == bfd_link_hash_warning)
2062 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2063
2064 /* Symbols without dynamic symbol table entries aren't interesting
2065 at all. */
2066 if (h->root.dynindx == -1)
b34976b6 2067 return TRUE;
b49e97c9 2068
f4416af6
AO
2069 /* Global symbols that need GOT entries that are not explicitly
2070 referenced are marked with got offset 2. Those that are
2071 referenced get a 1, and those that don't need GOT entries get
2072 -1. */
2073 if (h->root.got.offset == 2)
2074 {
2075 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2076 hsd->low = (struct elf_link_hash_entry *) h;
2077 h->root.dynindx = hsd->max_unref_got_dynindx++;
2078 }
2079 else if (h->root.got.offset != 1)
b49e97c9
TS
2080 h->root.dynindx = hsd->max_non_got_dynindx++;
2081 else
2082 {
2083 h->root.dynindx = --hsd->min_got_dynindx;
2084 hsd->low = (struct elf_link_hash_entry *) h;
2085 }
2086
b34976b6 2087 return TRUE;
b49e97c9
TS
2088}
2089
2090/* If H is a symbol that needs a global GOT entry, but has a dynamic
2091 symbol table index lower than any we've seen to date, record it for
2092 posterity. */
2093
b34976b6 2094static bfd_boolean
9719ad41
RS
2095mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2096 bfd *abfd, struct bfd_link_info *info,
2097 struct mips_got_info *g)
b49e97c9 2098{
f4416af6
AO
2099 struct mips_got_entry entry, **loc;
2100
b49e97c9
TS
2101 /* A global symbol in the GOT must also be in the dynamic symbol
2102 table. */
7c5fcef7
L
2103 if (h->dynindx == -1)
2104 {
2105 switch (ELF_ST_VISIBILITY (h->other))
2106 {
2107 case STV_INTERNAL:
2108 case STV_HIDDEN:
b34976b6 2109 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2110 break;
2111 }
c152c796 2112 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2113 return FALSE;
7c5fcef7 2114 }
b49e97c9 2115
f4416af6
AO
2116 entry.abfd = abfd;
2117 entry.symndx = -1;
2118 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2119
2120 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2121 INSERT);
2122
b49e97c9
TS
2123 /* If we've already marked this entry as needing GOT space, we don't
2124 need to do it again. */
f4416af6
AO
2125 if (*loc)
2126 return TRUE;
2127
2128 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2129
2130 if (! *loc)
2131 return FALSE;
143d77c5 2132
f4416af6
AO
2133 entry.gotidx = -1;
2134 memcpy (*loc, &entry, sizeof entry);
2135
b49e97c9 2136 if (h->got.offset != MINUS_ONE)
b34976b6 2137 return TRUE;
b49e97c9
TS
2138
2139 /* By setting this to a value other than -1, we are indicating that
2140 there needs to be a GOT entry for H. Avoid using zero, as the
2141 generic ELF copy_indirect_symbol tests for <= 0. */
2142 h->got.offset = 1;
2143
b34976b6 2144 return TRUE;
b49e97c9 2145}
f4416af6
AO
2146
2147/* Reserve space in G for a GOT entry containing the value of symbol
2148 SYMNDX in input bfd ABDF, plus ADDEND. */
2149
2150static bfd_boolean
9719ad41
RS
2151mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2152 struct mips_got_info *g)
f4416af6
AO
2153{
2154 struct mips_got_entry entry, **loc;
2155
2156 entry.abfd = abfd;
2157 entry.symndx = symndx;
2158 entry.d.addend = addend;
2159 loc = (struct mips_got_entry **)
2160 htab_find_slot (g->got_entries, &entry, INSERT);
2161
2162 if (*loc)
2163 return TRUE;
2164
2165 entry.gotidx = g->local_gotno++;
2166
2167 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2168
2169 if (! *loc)
2170 return FALSE;
143d77c5 2171
f4416af6
AO
2172 memcpy (*loc, &entry, sizeof entry);
2173
2174 return TRUE;
2175}
2176\f
2177/* Compute the hash value of the bfd in a bfd2got hash entry. */
2178
2179static hashval_t
9719ad41 2180mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2181{
2182 const struct mips_elf_bfd2got_hash *entry
2183 = (struct mips_elf_bfd2got_hash *)entry_;
2184
2185 return entry->bfd->id;
2186}
2187
2188/* Check whether two hash entries have the same bfd. */
2189
2190static int
9719ad41 2191mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2192{
2193 const struct mips_elf_bfd2got_hash *e1
2194 = (const struct mips_elf_bfd2got_hash *)entry1;
2195 const struct mips_elf_bfd2got_hash *e2
2196 = (const struct mips_elf_bfd2got_hash *)entry2;
2197
2198 return e1->bfd == e2->bfd;
2199}
2200
0b25d3e6 2201/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2202 be the master GOT data. */
2203
2204static struct mips_got_info *
9719ad41 2205mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2206{
2207 struct mips_elf_bfd2got_hash e, *p;
2208
2209 if (! g->bfd2got)
2210 return g;
2211
2212 e.bfd = ibfd;
9719ad41 2213 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2214 return p ? p->g : NULL;
2215}
2216
2217/* Create one separate got for each bfd that has entries in the global
2218 got, such that we can tell how many local and global entries each
2219 bfd requires. */
2220
2221static int
9719ad41 2222mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2223{
2224 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2225 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2226 htab_t bfd2got = arg->bfd2got;
2227 struct mips_got_info *g;
2228 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2229 void **bfdgotp;
143d77c5 2230
f4416af6
AO
2231 /* Find the got_info for this GOT entry's input bfd. Create one if
2232 none exists. */
2233 bfdgot_entry.bfd = entry->abfd;
2234 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2235 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2236
2237 if (bfdgot != NULL)
2238 g = bfdgot->g;
2239 else
2240 {
2241 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2242 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2243
2244 if (bfdgot == NULL)
2245 {
2246 arg->obfd = 0;
2247 return 0;
2248 }
2249
2250 *bfdgotp = bfdgot;
2251
2252 bfdgot->bfd = entry->abfd;
2253 bfdgot->g = g = (struct mips_got_info *)
2254 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2255 if (g == NULL)
2256 {
2257 arg->obfd = 0;
2258 return 0;
2259 }
2260
2261 g->global_gotsym = NULL;
2262 g->global_gotno = 0;
2263 g->local_gotno = 0;
2264 g->assigned_gotno = -1;
2265 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 2266 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
2267 if (g->got_entries == NULL)
2268 {
2269 arg->obfd = 0;
2270 return 0;
2271 }
2272
2273 g->bfd2got = NULL;
2274 g->next = NULL;
2275 }
2276
2277 /* Insert the GOT entry in the bfd's got entry hash table. */
2278 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2279 if (*entryp != NULL)
2280 return 1;
143d77c5 2281
f4416af6
AO
2282 *entryp = entry;
2283
2284 if (entry->symndx >= 0 || entry->d.h->forced_local)
2285 ++g->local_gotno;
2286 else
2287 ++g->global_gotno;
2288
2289 return 1;
2290}
2291
2292/* Attempt to merge gots of different input bfds. Try to use as much
2293 as possible of the primary got, since it doesn't require explicit
2294 dynamic relocations, but don't use bfds that would reference global
2295 symbols out of the addressable range. Failing the primary got,
2296 attempt to merge with the current got, or finish the current got
2297 and then make make the new got current. */
2298
2299static int
9719ad41 2300mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
2301{
2302 struct mips_elf_bfd2got_hash *bfd2got
2303 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2304 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2305 unsigned int lcount = bfd2got->g->local_gotno;
2306 unsigned int gcount = bfd2got->g->global_gotno;
2307 unsigned int maxcnt = arg->max_count;
143d77c5 2308
f4416af6
AO
2309 /* If we don't have a primary GOT and this is not too big, use it as
2310 a starting point for the primary GOT. */
2311 if (! arg->primary && lcount + gcount <= maxcnt)
2312 {
2313 arg->primary = bfd2got->g;
2314 arg->primary_count = lcount + gcount;
2315 }
2316 /* If it looks like we can merge this bfd's entries with those of
2317 the primary, merge them. The heuristics is conservative, but we
2318 don't have to squeeze it too hard. */
2319 else if (arg->primary
2320 && (arg->primary_count + lcount + gcount) <= maxcnt)
2321 {
2322 struct mips_got_info *g = bfd2got->g;
2323 int old_lcount = arg->primary->local_gotno;
2324 int old_gcount = arg->primary->global_gotno;
2325
2326 bfd2got->g = arg->primary;
2327
2328 htab_traverse (g->got_entries,
2329 mips_elf_make_got_per_bfd,
2330 arg);
2331 if (arg->obfd == NULL)
2332 return 0;
2333
2334 htab_delete (g->got_entries);
2335 /* We don't have to worry about releasing memory of the actual
2336 got entries, since they're all in the master got_entries hash
2337 table anyway. */
2338
caec41ff 2339 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6
AO
2340 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2341
2342 arg->primary_count = arg->primary->local_gotno
2343 + arg->primary->global_gotno;
2344 }
2345 /* If we can merge with the last-created got, do it. */
2346 else if (arg->current
2347 && arg->current_count + lcount + gcount <= maxcnt)
2348 {
2349 struct mips_got_info *g = bfd2got->g;
2350 int old_lcount = arg->current->local_gotno;
2351 int old_gcount = arg->current->global_gotno;
2352
2353 bfd2got->g = arg->current;
2354
2355 htab_traverse (g->got_entries,
2356 mips_elf_make_got_per_bfd,
2357 arg);
2358 if (arg->obfd == NULL)
2359 return 0;
2360
2361 htab_delete (g->got_entries);
2362
caec41ff 2363 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6
AO
2364 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2365
2366 arg->current_count = arg->current->local_gotno
2367 + arg->current->global_gotno;
2368 }
2369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2370 fits; if it turns out that it doesn't, we'll get relocation
2371 overflows anyway. */
2372 else
2373 {
2374 bfd2got->g->next = arg->current;
2375 arg->current = bfd2got->g;
143d77c5 2376
f4416af6
AO
2377 arg->current_count = lcount + gcount;
2378 }
2379
2380 return 1;
2381}
2382
2383/* If passed a NULL mips_got_info in the argument, set the marker used
2384 to tell whether a global symbol needs a got entry (in the primary
2385 got) to the given VALUE.
2386
2387 If passed a pointer G to a mips_got_info in the argument (it must
2388 not be the primary GOT), compute the offset from the beginning of
2389 the (primary) GOT section to the entry in G corresponding to the
2390 global symbol. G's assigned_gotno must contain the index of the
2391 first available global GOT entry in G. VALUE must contain the size
2392 of a GOT entry in bytes. For each global GOT entry that requires a
2393 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 2394 marked as not eligible for lazy resolution through a function
f4416af6
AO
2395 stub. */
2396static int
9719ad41 2397mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
2398{
2399 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2400 struct mips_elf_set_global_got_offset_arg *arg
2401 = (struct mips_elf_set_global_got_offset_arg *)p;
2402 struct mips_got_info *g = arg->g;
2403
2404 if (entry->abfd != NULL && entry->symndx == -1
2405 && entry->d.h->root.dynindx != -1)
2406 {
2407 if (g)
2408 {
2409 BFD_ASSERT (g->global_gotsym == NULL);
2410
2411 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
2412 if (arg->info->shared
2413 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
2414 && entry->d.h->root.def_dynamic
2415 && !entry->d.h->root.def_regular))
f4416af6
AO
2416 ++arg->needed_relocs;
2417 }
2418 else
2419 entry->d.h->root.got.offset = arg->value;
2420 }
2421
2422 return 1;
2423}
2424
0626d451
RS
2425/* Mark any global symbols referenced in the GOT we are iterating over
2426 as inelligible for lazy resolution stubs. */
2427static int
9719ad41 2428mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
2429{
2430 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2431
2432 if (entry->abfd != NULL
2433 && entry->symndx == -1
2434 && entry->d.h->root.dynindx != -1)
2435 entry->d.h->no_fn_stub = TRUE;
2436
2437 return 1;
2438}
2439
f4416af6
AO
2440/* Follow indirect and warning hash entries so that each got entry
2441 points to the final symbol definition. P must point to a pointer
2442 to the hash table we're traversing. Since this traversal may
2443 modify the hash table, we set this pointer to NULL to indicate
2444 we've made a potentially-destructive change to the hash table, so
2445 the traversal must be restarted. */
2446static int
9719ad41 2447mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
2448{
2449 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2450 htab_t got_entries = *(htab_t *)p;
2451
2452 if (entry->abfd != NULL && entry->symndx == -1)
2453 {
2454 struct mips_elf_link_hash_entry *h = entry->d.h;
2455
2456 while (h->root.root.type == bfd_link_hash_indirect
2457 || h->root.root.type == bfd_link_hash_warning)
2458 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2459
2460 if (entry->d.h == h)
2461 return 1;
143d77c5 2462
f4416af6
AO
2463 entry->d.h = h;
2464
2465 /* If we can't find this entry with the new bfd hash, re-insert
2466 it, and get the traversal restarted. */
2467 if (! htab_find (got_entries, entry))
2468 {
2469 htab_clear_slot (got_entries, entryp);
2470 entryp = htab_find_slot (got_entries, entry, INSERT);
2471 if (! *entryp)
2472 *entryp = entry;
2473 /* Abort the traversal, since the whole table may have
2474 moved, and leave it up to the parent to restart the
2475 process. */
2476 *(htab_t *)p = NULL;
2477 return 0;
2478 }
2479 /* We might want to decrement the global_gotno count, but it's
2480 either too early or too late for that at this point. */
2481 }
143d77c5 2482
f4416af6
AO
2483 return 1;
2484}
2485
2486/* Turn indirect got entries in a got_entries table into their final
2487 locations. */
2488static void
9719ad41 2489mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
2490{
2491 htab_t got_entries;
2492
2493 do
2494 {
2495 got_entries = g->got_entries;
2496
2497 htab_traverse (got_entries,
2498 mips_elf_resolve_final_got_entry,
2499 &got_entries);
2500 }
2501 while (got_entries == NULL);
2502}
2503
2504/* Return the offset of an input bfd IBFD's GOT from the beginning of
2505 the primary GOT. */
2506static bfd_vma
9719ad41 2507mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2508{
2509 if (g->bfd2got == NULL)
2510 return 0;
2511
2512 g = mips_elf_got_for_ibfd (g, ibfd);
2513 if (! g)
2514 return 0;
2515
2516 BFD_ASSERT (g->next);
2517
2518 g = g->next;
143d77c5 2519
f4416af6
AO
2520 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2521}
2522
2523/* Turn a single GOT that is too big for 16-bit addressing into
2524 a sequence of GOTs, each one 16-bit addressable. */
2525
2526static bfd_boolean
9719ad41
RS
2527mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2528 struct mips_got_info *g, asection *got,
2529 bfd_size_type pages)
f4416af6
AO
2530{
2531 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2532 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2533 struct mips_got_info *gg;
2534 unsigned int assign;
2535
2536 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 2537 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
2538 if (g->bfd2got == NULL)
2539 return FALSE;
2540
2541 got_per_bfd_arg.bfd2got = g->bfd2got;
2542 got_per_bfd_arg.obfd = abfd;
2543 got_per_bfd_arg.info = info;
2544
2545 /* Count how many GOT entries each input bfd requires, creating a
2546 map from bfd to got info while at that. */
2547 mips_elf_resolve_final_got_entries (g);
2548 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2549 if (got_per_bfd_arg.obfd == NULL)
2550 return FALSE;
2551
2552 got_per_bfd_arg.current = NULL;
2553 got_per_bfd_arg.primary = NULL;
2554 /* Taking out PAGES entries is a worst-case estimate. We could
2555 compute the maximum number of pages that each separate input bfd
2556 uses, but it's probably not worth it. */
2557 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2558 / MIPS_ELF_GOT_SIZE (abfd))
2559 - MIPS_RESERVED_GOTNO - pages);
2560
2561 /* Try to merge the GOTs of input bfds together, as long as they
2562 don't seem to exceed the maximum GOT size, choosing one of them
2563 to be the primary GOT. */
2564 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2565 if (got_per_bfd_arg.obfd == NULL)
2566 return FALSE;
2567
2568 /* If we find any suitable primary GOT, create an empty one. */
2569 if (got_per_bfd_arg.primary == NULL)
2570 {
2571 g->next = (struct mips_got_info *)
2572 bfd_alloc (abfd, sizeof (struct mips_got_info));
2573 if (g->next == NULL)
2574 return FALSE;
2575
2576 g->next->global_gotsym = NULL;
2577 g->next->global_gotno = 0;
2578 g->next->local_gotno = 0;
2579 g->next->assigned_gotno = 0;
2580 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2581 mips_elf_multi_got_entry_eq,
9719ad41 2582 NULL);
f4416af6
AO
2583 if (g->next->got_entries == NULL)
2584 return FALSE;
2585 g->next->bfd2got = NULL;
2586 }
2587 else
2588 g->next = got_per_bfd_arg.primary;
2589 g->next->next = got_per_bfd_arg.current;
2590
2591 /* GG is now the master GOT, and G is the primary GOT. */
2592 gg = g;
2593 g = g->next;
2594
2595 /* Map the output bfd to the primary got. That's what we're going
2596 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2597 didn't mark in check_relocs, and we want a quick way to find it.
2598 We can't just use gg->next because we're going to reverse the
2599 list. */
2600 {
2601 struct mips_elf_bfd2got_hash *bfdgot;
2602 void **bfdgotp;
143d77c5 2603
f4416af6
AO
2604 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2605 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2606
2607 if (bfdgot == NULL)
2608 return FALSE;
2609
2610 bfdgot->bfd = abfd;
2611 bfdgot->g = g;
2612 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2613
2614 BFD_ASSERT (*bfdgotp == NULL);
2615 *bfdgotp = bfdgot;
2616 }
2617
2618 /* The IRIX dynamic linker requires every symbol that is referenced
2619 in a dynamic relocation to be present in the primary GOT, so
2620 arrange for them to appear after those that are actually
2621 referenced.
2622
2623 GNU/Linux could very well do without it, but it would slow down
2624 the dynamic linker, since it would have to resolve every dynamic
2625 symbol referenced in other GOTs more than once, without help from
2626 the cache. Also, knowing that every external symbol has a GOT
2627 helps speed up the resolution of local symbols too, so GNU/Linux
2628 follows IRIX's practice.
143d77c5 2629
f4416af6
AO
2630 The number 2 is used by mips_elf_sort_hash_table_f to count
2631 global GOT symbols that are unreferenced in the primary GOT, with
2632 an initial dynamic index computed from gg->assigned_gotno, where
2633 the number of unreferenced global entries in the primary GOT is
2634 preserved. */
2635 if (1)
2636 {
2637 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2638 g->global_gotno = gg->global_gotno;
2639 set_got_offset_arg.value = 2;
2640 }
2641 else
2642 {
2643 /* This could be used for dynamic linkers that don't optimize
2644 symbol resolution while applying relocations so as to use
2645 primary GOT entries or assuming the symbol is locally-defined.
2646 With this code, we assign lower dynamic indices to global
2647 symbols that are not referenced in the primary GOT, so that
2648 their entries can be omitted. */
2649 gg->assigned_gotno = 0;
2650 set_got_offset_arg.value = -1;
2651 }
2652
2653 /* Reorder dynamic symbols as described above (which behavior
2654 depends on the setting of VALUE). */
2655 set_got_offset_arg.g = NULL;
2656 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2657 &set_got_offset_arg);
2658 set_got_offset_arg.value = 1;
2659 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2660 &set_got_offset_arg);
2661 if (! mips_elf_sort_hash_table (info, 1))
2662 return FALSE;
2663
2664 /* Now go through the GOTs assigning them offset ranges.
2665 [assigned_gotno, local_gotno[ will be set to the range of local
2666 entries in each GOT. We can then compute the end of a GOT by
2667 adding local_gotno to global_gotno. We reverse the list and make
2668 it circular since then we'll be able to quickly compute the
2669 beginning of a GOT, by computing the end of its predecessor. To
2670 avoid special cases for the primary GOT, while still preserving
2671 assertions that are valid for both single- and multi-got links,
2672 we arrange for the main got struct to have the right number of
2673 global entries, but set its local_gotno such that the initial
2674 offset of the primary GOT is zero. Remember that the primary GOT
2675 will become the last item in the circular linked list, so it
2676 points back to the master GOT. */
2677 gg->local_gotno = -g->global_gotno;
2678 gg->global_gotno = g->global_gotno;
2679 assign = 0;
2680 gg->next = gg;
2681
2682 do
2683 {
2684 struct mips_got_info *gn;
2685
2686 assign += MIPS_RESERVED_GOTNO;
2687 g->assigned_gotno = assign;
2688 g->local_gotno += assign + pages;
2689 assign = g->local_gotno + g->global_gotno;
2690
2691 /* Take g out of the direct list, and push it onto the reversed
2692 list that gg points to. */
2693 gn = g->next;
2694 g->next = gg->next;
2695 gg->next = g;
2696 g = gn;
0626d451
RS
2697
2698 /* Mark global symbols in every non-primary GOT as ineligible for
2699 stubs. */
2700 if (g)
2701 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
2702 }
2703 while (g);
2704
eea6121a 2705 got->size = (gg->next->local_gotno
f4416af6 2706 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 2707
f4416af6
AO
2708 return TRUE;
2709}
143d77c5 2710
b49e97c9
TS
2711\f
2712/* Returns the first relocation of type r_type found, beginning with
2713 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2714
2715static const Elf_Internal_Rela *
9719ad41
RS
2716mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2717 const Elf_Internal_Rela *relocation,
2718 const Elf_Internal_Rela *relend)
b49e97c9 2719{
b49e97c9
TS
2720 while (relocation < relend)
2721 {
2722 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2723 return relocation;
2724
2725 ++relocation;
2726 }
2727
2728 /* We didn't find it. */
2729 bfd_set_error (bfd_error_bad_value);
2730 return NULL;
2731}
2732
2733/* Return whether a relocation is against a local symbol. */
2734
b34976b6 2735static bfd_boolean
9719ad41
RS
2736mips_elf_local_relocation_p (bfd *input_bfd,
2737 const Elf_Internal_Rela *relocation,
2738 asection **local_sections,
2739 bfd_boolean check_forced)
b49e97c9
TS
2740{
2741 unsigned long r_symndx;
2742 Elf_Internal_Shdr *symtab_hdr;
2743 struct mips_elf_link_hash_entry *h;
2744 size_t extsymoff;
2745
2746 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2747 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2748 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2749
2750 if (r_symndx < extsymoff)
b34976b6 2751 return TRUE;
b49e97c9 2752 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 2753 return TRUE;
b49e97c9
TS
2754
2755 if (check_forced)
2756 {
2757 /* Look up the hash table to check whether the symbol
2758 was forced local. */
2759 h = (struct mips_elf_link_hash_entry *)
2760 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2761 /* Find the real hash-table entry for this symbol. */
2762 while (h->root.root.type == bfd_link_hash_indirect
2763 || h->root.root.type == bfd_link_hash_warning)
2764 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 2765 if (h->root.forced_local)
b34976b6 2766 return TRUE;
b49e97c9
TS
2767 }
2768
b34976b6 2769 return FALSE;
b49e97c9
TS
2770}
2771\f
2772/* Sign-extend VALUE, which has the indicated number of BITS. */
2773
a7ebbfdf 2774bfd_vma
9719ad41 2775_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
2776{
2777 if (value & ((bfd_vma) 1 << (bits - 1)))
2778 /* VALUE is negative. */
2779 value |= ((bfd_vma) - 1) << bits;
2780
2781 return value;
2782}
2783
2784/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 2785 range expressible by a signed number with the indicated number of
b49e97c9
TS
2786 BITS. */
2787
b34976b6 2788static bfd_boolean
9719ad41 2789mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
2790{
2791 bfd_signed_vma svalue = (bfd_signed_vma) value;
2792
2793 if (svalue > (1 << (bits - 1)) - 1)
2794 /* The value is too big. */
b34976b6 2795 return TRUE;
b49e97c9
TS
2796 else if (svalue < -(1 << (bits - 1)))
2797 /* The value is too small. */
b34976b6 2798 return TRUE;
b49e97c9
TS
2799
2800 /* All is well. */
b34976b6 2801 return FALSE;
b49e97c9
TS
2802}
2803
2804/* Calculate the %high function. */
2805
2806static bfd_vma
9719ad41 2807mips_elf_high (bfd_vma value)
b49e97c9
TS
2808{
2809 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2810}
2811
2812/* Calculate the %higher function. */
2813
2814static bfd_vma
9719ad41 2815mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2816{
2817#ifdef BFD64
2818 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2819#else
2820 abort ();
c5ae1840 2821 return MINUS_ONE;
b49e97c9
TS
2822#endif
2823}
2824
2825/* Calculate the %highest function. */
2826
2827static bfd_vma
9719ad41 2828mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2829{
2830#ifdef BFD64
b15e6682 2831 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
2832#else
2833 abort ();
c5ae1840 2834 return MINUS_ONE;
b49e97c9
TS
2835#endif
2836}
2837\f
2838/* Create the .compact_rel section. */
2839
b34976b6 2840static bfd_boolean
9719ad41
RS
2841mips_elf_create_compact_rel_section
2842 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
2843{
2844 flagword flags;
2845 register asection *s;
2846
2847 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2848 {
2849 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2850 | SEC_READONLY);
2851
2852 s = bfd_make_section (abfd, ".compact_rel");
2853 if (s == NULL
2854 || ! bfd_set_section_flags (abfd, s, flags)
2855 || ! bfd_set_section_alignment (abfd, s,
2856 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 2857 return FALSE;
b49e97c9 2858
eea6121a 2859 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
2860 }
2861
b34976b6 2862 return TRUE;
b49e97c9
TS
2863}
2864
2865/* Create the .got section to hold the global offset table. */
2866
b34976b6 2867static bfd_boolean
9719ad41
RS
2868mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2869 bfd_boolean maybe_exclude)
b49e97c9
TS
2870{
2871 flagword flags;
2872 register asection *s;
2873 struct elf_link_hash_entry *h;
14a793b2 2874 struct bfd_link_hash_entry *bh;
b49e97c9
TS
2875 struct mips_got_info *g;
2876 bfd_size_type amt;
2877
2878 /* This function may be called more than once. */
f4416af6
AO
2879 s = mips_elf_got_section (abfd, TRUE);
2880 if (s)
2881 {
2882 if (! maybe_exclude)
2883 s->flags &= ~SEC_EXCLUDE;
2884 return TRUE;
2885 }
b49e97c9
TS
2886
2887 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2888 | SEC_LINKER_CREATED);
2889
f4416af6
AO
2890 if (maybe_exclude)
2891 flags |= SEC_EXCLUDE;
2892
72b4917c
TS
2893 /* We have to use an alignment of 2**4 here because this is hardcoded
2894 in the function stub generation and in the linker script. */
b49e97c9
TS
2895 s = bfd_make_section (abfd, ".got");
2896 if (s == NULL
2897 || ! bfd_set_section_flags (abfd, s, flags)
72b4917c 2898 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 2899 return FALSE;
b49e97c9
TS
2900
2901 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2902 linker script because we don't want to define the symbol if we
2903 are not creating a global offset table. */
14a793b2 2904 bh = NULL;
b49e97c9
TS
2905 if (! (_bfd_generic_link_add_one_symbol
2906 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 2907 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 2908 return FALSE;
14a793b2
AM
2909
2910 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
2911 h->non_elf = 0;
2912 h->def_regular = 1;
b49e97c9
TS
2913 h->type = STT_OBJECT;
2914
2915 if (info->shared
c152c796 2916 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2917 return FALSE;
b49e97c9 2918
b49e97c9 2919 amt = sizeof (struct mips_got_info);
9719ad41 2920 g = bfd_alloc (abfd, amt);
b49e97c9 2921 if (g == NULL)
b34976b6 2922 return FALSE;
b49e97c9 2923 g->global_gotsym = NULL;
e3d54347 2924 g->global_gotno = 0;
b49e97c9
TS
2925 g->local_gotno = MIPS_RESERVED_GOTNO;
2926 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
2927 g->bfd2got = NULL;
2928 g->next = NULL;
b15e6682 2929 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 2930 mips_elf_got_entry_eq, NULL);
b15e6682
AO
2931 if (g->got_entries == NULL)
2932 return FALSE;
f0abc2a1
AM
2933 mips_elf_section_data (s)->u.got_info = g;
2934 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
2935 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2936
b34976b6 2937 return TRUE;
b49e97c9 2938}
b49e97c9
TS
2939\f
2940/* Calculate the value produced by the RELOCATION (which comes from
2941 the INPUT_BFD). The ADDEND is the addend to use for this
2942 RELOCATION; RELOCATION->R_ADDEND is ignored.
2943
2944 The result of the relocation calculation is stored in VALUEP.
2945 REQUIRE_JALXP indicates whether or not the opcode used with this
2946 relocation must be JALX.
2947
2948 This function returns bfd_reloc_continue if the caller need take no
2949 further action regarding this relocation, bfd_reloc_notsupported if
2950 something goes dramatically wrong, bfd_reloc_overflow if an
2951 overflow occurs, and bfd_reloc_ok to indicate success. */
2952
2953static bfd_reloc_status_type
9719ad41
RS
2954mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2955 asection *input_section,
2956 struct bfd_link_info *info,
2957 const Elf_Internal_Rela *relocation,
2958 bfd_vma addend, reloc_howto_type *howto,
2959 Elf_Internal_Sym *local_syms,
2960 asection **local_sections, bfd_vma *valuep,
2961 const char **namep, bfd_boolean *require_jalxp,
2962 bfd_boolean save_addend)
b49e97c9
TS
2963{
2964 /* The eventual value we will return. */
2965 bfd_vma value;
2966 /* The address of the symbol against which the relocation is
2967 occurring. */
2968 bfd_vma symbol = 0;
2969 /* The final GP value to be used for the relocatable, executable, or
2970 shared object file being produced. */
2971 bfd_vma gp = MINUS_ONE;
2972 /* The place (section offset or address) of the storage unit being
2973 relocated. */
2974 bfd_vma p;
2975 /* The value of GP used to create the relocatable object. */
2976 bfd_vma gp0 = MINUS_ONE;
2977 /* The offset into the global offset table at which the address of
2978 the relocation entry symbol, adjusted by the addend, resides
2979 during execution. */
2980 bfd_vma g = MINUS_ONE;
2981 /* The section in which the symbol referenced by the relocation is
2982 located. */
2983 asection *sec = NULL;
2984 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 2985 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 2986 symbol. */
b34976b6
AM
2987 bfd_boolean local_p, was_local_p;
2988 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2989 bfd_boolean gp_disp_p = FALSE;
b49e97c9
TS
2990 Elf_Internal_Shdr *symtab_hdr;
2991 size_t extsymoff;
2992 unsigned long r_symndx;
2993 int r_type;
b34976b6 2994 /* TRUE if overflow occurred during the calculation of the
b49e97c9 2995 relocation value. */
b34976b6
AM
2996 bfd_boolean overflowed_p;
2997 /* TRUE if this relocation refers to a MIPS16 function. */
2998 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
2999
3000 /* Parse the relocation. */
3001 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3002 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3003 p = (input_section->output_section->vma
3004 + input_section->output_offset
3005 + relocation->r_offset);
3006
3007 /* Assume that there will be no overflow. */
b34976b6 3008 overflowed_p = FALSE;
b49e97c9
TS
3009
3010 /* Figure out whether or not the symbol is local, and get the offset
3011 used in the array of hash table entries. */
3012 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3013 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3014 local_sections, FALSE);
bce03d3d 3015 was_local_p = local_p;
b49e97c9
TS
3016 if (! elf_bad_symtab (input_bfd))
3017 extsymoff = symtab_hdr->sh_info;
3018 else
3019 {
3020 /* The symbol table does not follow the rule that local symbols
3021 must come before globals. */
3022 extsymoff = 0;
3023 }
3024
3025 /* Figure out the value of the symbol. */
3026 if (local_p)
3027 {
3028 Elf_Internal_Sym *sym;
3029
3030 sym = local_syms + r_symndx;
3031 sec = local_sections[r_symndx];
3032
3033 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3034 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3035 || (sec->flags & SEC_MERGE))
b49e97c9 3036 symbol += sym->st_value;
d4df96e6
L
3037 if ((sec->flags & SEC_MERGE)
3038 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3039 {
3040 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3041 addend -= symbol;
3042 addend += sec->output_section->vma + sec->output_offset;
3043 }
b49e97c9
TS
3044
3045 /* MIPS16 text labels should be treated as odd. */
3046 if (sym->st_other == STO_MIPS16)
3047 ++symbol;
3048
3049 /* Record the name of this symbol, for our caller. */
3050 *namep = bfd_elf_string_from_elf_section (input_bfd,
3051 symtab_hdr->sh_link,
3052 sym->st_name);
3053 if (*namep == '\0')
3054 *namep = bfd_section_name (input_bfd, sec);
3055
3056 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3057 }
3058 else
3059 {
560e09e9
NC
3060 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3061
b49e97c9
TS
3062 /* For global symbols we look up the symbol in the hash-table. */
3063 h = ((struct mips_elf_link_hash_entry *)
3064 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3065 /* Find the real hash-table entry for this symbol. */
3066 while (h->root.root.type == bfd_link_hash_indirect
3067 || h->root.root.type == bfd_link_hash_warning)
3068 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3069
3070 /* Record the name of this symbol, for our caller. */
3071 *namep = h->root.root.root.string;
3072
3073 /* See if this is the special _gp_disp symbol. Note that such a
3074 symbol must always be a global symbol. */
560e09e9 3075 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3076 && ! NEWABI_P (input_bfd))
3077 {
3078 /* Relocations against _gp_disp are permitted only with
3079 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3080 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3081 return bfd_reloc_notsupported;
3082
b34976b6 3083 gp_disp_p = TRUE;
b49e97c9
TS
3084 }
3085 /* If this symbol is defined, calculate its address. Note that
3086 _gp_disp is a magic symbol, always implicitly defined by the
3087 linker, so it's inappropriate to check to see whether or not
3088 its defined. */
3089 else if ((h->root.root.type == bfd_link_hash_defined
3090 || h->root.root.type == bfd_link_hash_defweak)
3091 && h->root.root.u.def.section)
3092 {
3093 sec = h->root.root.u.def.section;
3094 if (sec->output_section)
3095 symbol = (h->root.root.u.def.value
3096 + sec->output_section->vma
3097 + sec->output_offset);
3098 else
3099 symbol = h->root.root.u.def.value;
3100 }
3101 else if (h->root.root.type == bfd_link_hash_undefweak)
3102 /* We allow relocations against undefined weak symbols, giving
3103 it the value zero, so that you can undefined weak functions
3104 and check to see if they exist by looking at their
3105 addresses. */
3106 symbol = 0;
59c2e50f 3107 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
3108 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3109 symbol = 0;
a4d0f181
TS
3110 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3111 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
3112 {
3113 /* If this is a dynamic link, we should have created a
3114 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3115 in in _bfd_mips_elf_create_dynamic_sections.
3116 Otherwise, we should define the symbol with a value of 0.
3117 FIXME: It should probably get into the symbol table
3118 somehow as well. */
3119 BFD_ASSERT (! info->shared);
3120 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3121 symbol = 0;
3122 }
3123 else
3124 {
3125 if (! ((*info->callbacks->undefined_symbol)
3126 (info, h->root.root.root.string, input_bfd,
3127 input_section, relocation->r_offset,
59c2e50f
L
3128 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3129 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
3130 return bfd_reloc_undefined;
3131 symbol = 0;
3132 }
3133
3134 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3135 }
3136
3137 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3138 need to redirect the call to the stub, unless we're already *in*
3139 a stub. */
1049f94e 3140 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3141 && ((h != NULL && h->fn_stub != NULL)
3142 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3143 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3144 && !mips_elf_stub_section_p (input_bfd, input_section))
3145 {
3146 /* This is a 32- or 64-bit call to a 16-bit function. We should
3147 have already noticed that we were going to need the
3148 stub. */
3149 if (local_p)
3150 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3151 else
3152 {
3153 BFD_ASSERT (h->need_fn_stub);
3154 sec = h->fn_stub;
3155 }
3156
3157 symbol = sec->output_section->vma + sec->output_offset;
3158 }
3159 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3160 need to redirect the call to the stub. */
1049f94e 3161 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3162 && h != NULL
3163 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3164 && !target_is_16_bit_code_p)
3165 {
3166 /* If both call_stub and call_fp_stub are defined, we can figure
3167 out which one to use by seeing which one appears in the input
3168 file. */
3169 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3170 {
3171 asection *o;
3172
3173 sec = NULL;
3174 for (o = input_bfd->sections; o != NULL; o = o->next)
3175 {
3176 if (strncmp (bfd_get_section_name (input_bfd, o),
3177 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3178 {
3179 sec = h->call_fp_stub;
3180 break;
3181 }
3182 }
3183 if (sec == NULL)
3184 sec = h->call_stub;
3185 }
3186 else if (h->call_stub != NULL)
3187 sec = h->call_stub;
3188 else
3189 sec = h->call_fp_stub;
3190
eea6121a 3191 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
3192 symbol = sec->output_section->vma + sec->output_offset;
3193 }
3194
3195 /* Calls from 16-bit code to 32-bit code and vice versa require the
3196 special jalx instruction. */
1049f94e 3197 *require_jalxp = (!info->relocatable
b49e97c9
TS
3198 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3199 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3200
3201 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3202 local_sections, TRUE);
b49e97c9
TS
3203
3204 /* If we haven't already determined the GOT offset, or the GP value,
3205 and we're going to need it, get it now. */
3206 switch (r_type)
3207 {
0fdc1bf1 3208 case R_MIPS_GOT_PAGE:
93a2b7ae 3209 case R_MIPS_GOT_OFST:
d25aed71
RS
3210 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3211 bind locally. */
3212 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 3213 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3214 break;
3215 /* Fall through. */
3216
b49e97c9
TS
3217 case R_MIPS_CALL16:
3218 case R_MIPS_GOT16:
3219 case R_MIPS_GOT_DISP:
3220 case R_MIPS_GOT_HI16:
3221 case R_MIPS_CALL_HI16:
3222 case R_MIPS_GOT_LO16:
3223 case R_MIPS_CALL_LO16:
3224 /* Find the index into the GOT where this value is located. */
3225 if (!local_p)
3226 {
0fdc1bf1
AO
3227 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3228 GOT_PAGE relocation that decays to GOT_DISP because the
3229 symbol turns out to be global. The addend is then added
3230 as GOT_OFST. */
3231 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3232 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3233 input_bfd,
b49e97c9
TS
3234 (struct elf_link_hash_entry *) h);
3235 if (! elf_hash_table(info)->dynamic_sections_created
3236 || (info->shared
3237 && (info->symbolic || h->root.dynindx == -1)
f5385ebf 3238 && h->root.def_regular))
b49e97c9
TS
3239 {
3240 /* This is a static link or a -Bsymbolic link. The
3241 symbol is defined locally, or was forced to be local.
3242 We must initialize this entry in the GOT. */
3243 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3244 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3245 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3246 }
3247 }
3248 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3249 /* There's no need to create a local GOT entry here; the
3250 calculation for a local GOT16 entry does not involve G. */
3251 break;
3252 else
3253 {
f4416af6
AO
3254 g = mips_elf_local_got_index (abfd, input_bfd,
3255 info, symbol + addend);
b49e97c9
TS
3256 if (g == MINUS_ONE)
3257 return bfd_reloc_outofrange;
3258 }
3259
3260 /* Convert GOT indices to actual offsets. */
3261 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3262 abfd, input_bfd, g);
b49e97c9
TS
3263 break;
3264
3265 case R_MIPS_HI16:
3266 case R_MIPS_LO16:
3267 case R_MIPS16_GPREL:
3268 case R_MIPS_GPREL16:
3269 case R_MIPS_GPREL32:
3270 case R_MIPS_LITERAL:
3271 gp0 = _bfd_get_gp_value (input_bfd);
3272 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3273 if (elf_hash_table (info)->dynobj)
3274 gp += mips_elf_adjust_gp (abfd,
3275 mips_elf_got_info
3276 (elf_hash_table (info)->dynobj, NULL),
3277 input_bfd);
b49e97c9
TS
3278 break;
3279
3280 default:
3281 break;
3282 }
3283
3284 /* Figure out what kind of relocation is being performed. */
3285 switch (r_type)
3286 {
3287 case R_MIPS_NONE:
3288 return bfd_reloc_continue;
3289
3290 case R_MIPS_16:
a7ebbfdf 3291 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3292 overflowed_p = mips_elf_overflow_p (value, 16);
3293 break;
3294
3295 case R_MIPS_32:
3296 case R_MIPS_REL32:
3297 case R_MIPS_64:
3298 if ((info->shared
3299 || (elf_hash_table (info)->dynamic_sections_created
3300 && h != NULL
f5385ebf
AM
3301 && h->root.def_dynamic
3302 && !h->root.def_regular))
b49e97c9
TS
3303 && r_symndx != 0
3304 && (input_section->flags & SEC_ALLOC) != 0)
3305 {
3306 /* If we're creating a shared library, or this relocation is
3307 against a symbol in a shared library, then we can't know
3308 where the symbol will end up. So, we create a relocation
3309 record in the output, and leave the job up to the dynamic
3310 linker. */
3311 value = addend;
3312 if (!mips_elf_create_dynamic_relocation (abfd,
3313 info,
3314 relocation,
3315 h,
3316 sec,
3317 symbol,
3318 &value,
3319 input_section))
3320 return bfd_reloc_undefined;
3321 }
3322 else
3323 {
3324 if (r_type != R_MIPS_REL32)
3325 value = symbol + addend;
3326 else
3327 value = addend;
3328 }
3329 value &= howto->dst_mask;
092dcd75
CD
3330 break;
3331
3332 case R_MIPS_PC32:
3333 value = symbol + addend - p;
3334 value &= howto->dst_mask;
b49e97c9
TS
3335 break;
3336
0b25d3e6 3337 case R_MIPS_GNU_REL16_S2:
30ac9238 3338 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
0b25d3e6
AO
3339 overflowed_p = mips_elf_overflow_p (value, 18);
3340 value = (value >> 2) & howto->dst_mask;
3341 break;
3342
b49e97c9
TS
3343 case R_MIPS16_26:
3344 /* The calculation for R_MIPS16_26 is just the same as for an
3345 R_MIPS_26. It's only the storage of the relocated field into
3346 the output file that's different. That's handled in
3347 mips_elf_perform_relocation. So, we just fall through to the
3348 R_MIPS_26 case here. */
3349 case R_MIPS_26:
3350 if (local_p)
30ac9238 3351 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 3352 else
728b2f21
ILT
3353 {
3354 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
3355 overflowed_p = (value >> 26) != ((p + 4) >> 28);
3356 }
b49e97c9
TS
3357 value &= howto->dst_mask;
3358 break;
3359
3360 case R_MIPS_HI16:
3361 if (!gp_disp_p)
3362 {
3363 value = mips_elf_high (addend + symbol);
3364 value &= howto->dst_mask;
3365 }
3366 else
3367 {
3368 value = mips_elf_high (addend + gp - p);
3369 overflowed_p = mips_elf_overflow_p (value, 16);
3370 }
3371 break;
3372
3373 case R_MIPS_LO16:
3374 if (!gp_disp_p)
3375 value = (symbol + addend) & howto->dst_mask;
3376 else
3377 {
3378 value = addend + gp - p + 4;
3379 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 3380 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
3381 _gp_disp are normally generated from the .cpload
3382 pseudo-op. It generates code that normally looks like
3383 this:
3384
3385 lui $gp,%hi(_gp_disp)
3386 addiu $gp,$gp,%lo(_gp_disp)
3387 addu $gp,$gp,$t9
3388
3389 Here $t9 holds the address of the function being called,
3390 as required by the MIPS ELF ABI. The R_MIPS_LO16
3391 relocation can easily overflow in this situation, but the
3392 R_MIPS_HI16 relocation will handle the overflow.
3393 Therefore, we consider this a bug in the MIPS ABI, and do
3394 not check for overflow here. */
3395 }
3396 break;
3397
3398 case R_MIPS_LITERAL:
3399 /* Because we don't merge literal sections, we can handle this
3400 just like R_MIPS_GPREL16. In the long run, we should merge
3401 shared literals, and then we will need to additional work
3402 here. */
3403
3404 /* Fall through. */
3405
3406 case R_MIPS16_GPREL:
3407 /* The R_MIPS16_GPREL performs the same calculation as
3408 R_MIPS_GPREL16, but stores the relocated bits in a different
3409 order. We don't need to do anything special here; the
3410 differences are handled in mips_elf_perform_relocation. */
3411 case R_MIPS_GPREL16:
bce03d3d
AO
3412 /* Only sign-extend the addend if it was extracted from the
3413 instruction. If the addend was separate, leave it alone,
3414 otherwise we may lose significant bits. */
3415 if (howto->partial_inplace)
a7ebbfdf 3416 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
3417 value = symbol + addend - gp;
3418 /* If the symbol was local, any earlier relocatable links will
3419 have adjusted its addend with the gp offset, so compensate
3420 for that now. Don't do it for symbols forced local in this
3421 link, though, since they won't have had the gp offset applied
3422 to them before. */
3423 if (was_local_p)
3424 value += gp0;
b49e97c9
TS
3425 overflowed_p = mips_elf_overflow_p (value, 16);
3426 break;
3427
3428 case R_MIPS_GOT16:
3429 case R_MIPS_CALL16:
3430 if (local_p)
3431 {
b34976b6 3432 bfd_boolean forced;
b49e97c9
TS
3433
3434 /* The special case is when the symbol is forced to be local. We
3435 need the full address in the GOT since no R_MIPS_LO16 relocation
3436 follows. */
3437 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3438 local_sections, FALSE);
f4416af6
AO
3439 value = mips_elf_got16_entry (abfd, input_bfd, info,
3440 symbol + addend, forced);
b49e97c9
TS
3441 if (value == MINUS_ONE)
3442 return bfd_reloc_outofrange;
3443 value
3444 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3445 abfd, input_bfd, value);
b49e97c9
TS
3446 overflowed_p = mips_elf_overflow_p (value, 16);
3447 break;
3448 }
3449
3450 /* Fall through. */
3451
3452 case R_MIPS_GOT_DISP:
0fdc1bf1 3453 got_disp:
b49e97c9
TS
3454 value = g;
3455 overflowed_p = mips_elf_overflow_p (value, 16);
3456 break;
3457
3458 case R_MIPS_GPREL32:
bce03d3d
AO
3459 value = (addend + symbol + gp0 - gp);
3460 if (!save_addend)
3461 value &= howto->dst_mask;
b49e97c9
TS
3462 break;
3463
3464 case R_MIPS_PC16:
a7ebbfdf 3465 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
0b25d3e6 3466 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
3467 break;
3468
3469 case R_MIPS_GOT_HI16:
3470 case R_MIPS_CALL_HI16:
3471 /* We're allowed to handle these two relocations identically.
3472 The dynamic linker is allowed to handle the CALL relocations
3473 differently by creating a lazy evaluation stub. */
3474 value = g;
3475 value = mips_elf_high (value);
3476 value &= howto->dst_mask;
3477 break;
3478
3479 case R_MIPS_GOT_LO16:
3480 case R_MIPS_CALL_LO16:
3481 value = g & howto->dst_mask;
3482 break;
3483
3484 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
3485 /* GOT_PAGE relocations that reference non-local symbols decay
3486 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3487 0. */
93a2b7ae 3488 if (! local_p)
0fdc1bf1 3489 goto got_disp;
f4416af6 3490 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
3491 if (value == MINUS_ONE)
3492 return bfd_reloc_outofrange;
3493 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3494 abfd, input_bfd, value);
b49e97c9
TS
3495 overflowed_p = mips_elf_overflow_p (value, 16);
3496 break;
3497
3498 case R_MIPS_GOT_OFST:
93a2b7ae 3499 if (local_p)
0fdc1bf1
AO
3500 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3501 else
3502 value = addend;
b49e97c9
TS
3503 overflowed_p = mips_elf_overflow_p (value, 16);
3504 break;
3505
3506 case R_MIPS_SUB:
3507 value = symbol - addend;
3508 value &= howto->dst_mask;
3509 break;
3510
3511 case R_MIPS_HIGHER:
3512 value = mips_elf_higher (addend + symbol);
3513 value &= howto->dst_mask;
3514 break;
3515
3516 case R_MIPS_HIGHEST:
3517 value = mips_elf_highest (addend + symbol);
3518 value &= howto->dst_mask;
3519 break;
3520
3521 case R_MIPS_SCN_DISP:
3522 value = symbol + addend - sec->output_offset;
3523 value &= howto->dst_mask;
3524 break;
3525
b49e97c9 3526 case R_MIPS_JALR:
1367d393
ILT
3527 /* This relocation is only a hint. In some cases, we optimize
3528 it into a bal instruction. But we don't try to optimize
3529 branches to the PLT; that will wind up wasting time. */
3530 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
3531 return bfd_reloc_continue;
3532 value = symbol + addend;
3533 break;
b49e97c9 3534
1367d393 3535 case R_MIPS_PJUMP:
b49e97c9
TS
3536 case R_MIPS_GNU_VTINHERIT:
3537 case R_MIPS_GNU_VTENTRY:
3538 /* We don't do anything with these at present. */
3539 return bfd_reloc_continue;
3540
3541 default:
3542 /* An unrecognized relocation type. */
3543 return bfd_reloc_notsupported;
3544 }
3545
3546 /* Store the VALUE for our caller. */
3547 *valuep = value;
3548 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3549}
3550
3551/* Obtain the field relocated by RELOCATION. */
3552
3553static bfd_vma
9719ad41
RS
3554mips_elf_obtain_contents (reloc_howto_type *howto,
3555 const Elf_Internal_Rela *relocation,
3556 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
3557{
3558 bfd_vma x;
3559 bfd_byte *location = contents + relocation->r_offset;
3560
3561 /* Obtain the bytes. */
3562 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3563
3564 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3565 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3566 && bfd_little_endian (input_bfd))
3567 /* The two 16-bit words will be reversed on a little-endian system.
3568 See mips_elf_perform_relocation for more details. */
3569 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3570
3571 return x;
3572}
3573
3574/* It has been determined that the result of the RELOCATION is the
3575 VALUE. Use HOWTO to place VALUE into the output file at the
3576 appropriate position. The SECTION is the section to which the
b34976b6 3577 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
3578 for the relocation must be either JAL or JALX, and it is
3579 unconditionally converted to JALX.
3580
b34976b6 3581 Returns FALSE if anything goes wrong. */
b49e97c9 3582
b34976b6 3583static bfd_boolean
9719ad41
RS
3584mips_elf_perform_relocation (struct bfd_link_info *info,
3585 reloc_howto_type *howto,
3586 const Elf_Internal_Rela *relocation,
3587 bfd_vma value, bfd *input_bfd,
3588 asection *input_section, bfd_byte *contents,
3589 bfd_boolean require_jalx)
b49e97c9
TS
3590{
3591 bfd_vma x;
3592 bfd_byte *location;
3593 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3594
3595 /* Figure out where the relocation is occurring. */
3596 location = contents + relocation->r_offset;
3597
3598 /* Obtain the current value. */
3599 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3600
3601 /* Clear the field we are setting. */
3602 x &= ~howto->dst_mask;
3603
3604 /* If this is the R_MIPS16_26 relocation, we must store the
3605 value in a funny way. */
3606 if (r_type == R_MIPS16_26)
3607 {
3608 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3609 Most mips16 instructions are 16 bits, but these instructions
3610 are 32 bits.
3611
3612 The format of these instructions is:
3613
3614 +--------------+--------------------------------+
3615 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3616 +--------------+--------------------------------+
3617 ! Immediate 15:0 !
3618 +-----------------------------------------------+
3619
3620 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3621 Note that the immediate value in the first word is swapped.
3622
1049f94e 3623 When producing a relocatable object file, R_MIPS16_26 is
b49e97c9
TS
3624 handled mostly like R_MIPS_26. In particular, the addend is
3625 stored as a straight 26-bit value in a 32-bit instruction.
3626 (gas makes life simpler for itself by never adjusting a
3627 R_MIPS16_26 reloc to be against a section, so the addend is
3628 always zero). However, the 32 bit instruction is stored as 2
3629 16-bit values, rather than a single 32-bit value. In a
3630 big-endian file, the result is the same; in a little-endian
3631 file, the two 16-bit halves of the 32 bit value are swapped.
3632 This is so that a disassembler can recognize the jal
3633 instruction.
3634
3635 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3636 instruction stored as two 16-bit values. The addend A is the
3637 contents of the targ26 field. The calculation is the same as
3638 R_MIPS_26. When storing the calculated value, reorder the
3639 immediate value as shown above, and don't forget to store the
3640 value as two 16-bit values.
3641
3642 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3643 defined as
3644
3645 big-endian:
3646 +--------+----------------------+
3647 | | |
3648 | | targ26-16 |
3649 |31 26|25 0|
3650 +--------+----------------------+
3651
3652 little-endian:
3653 +----------+------+-------------+
3654 | | | |
3655 | sub1 | | sub2 |
3656 |0 9|10 15|16 31|
3657 +----------+--------------------+
3658 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3659 ((sub1 << 16) | sub2)).
3660
1049f94e 3661 When producing a relocatable object file, the calculation is
b49e97c9
TS
3662 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3663 When producing a fully linked file, the calculation is
3664 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3665 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3666
1049f94e 3667 if (!info->relocatable)
b49e97c9
TS
3668 /* Shuffle the bits according to the formula above. */
3669 value = (((value & 0x1f0000) << 5)
3670 | ((value & 0x3e00000) >> 5)
3671 | (value & 0xffff));
3672 }
3673 else if (r_type == R_MIPS16_GPREL)
3674 {
3675 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3676 mode. A typical instruction will have a format like this:
3677
3678 +--------------+--------------------------------+
3679 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3680 +--------------+--------------------------------+
3681 ! Major ! rx ! ry ! Imm 4:0 !
3682 +--------------+--------------------------------+
3683
3684 EXTEND is the five bit value 11110. Major is the instruction
3685 opcode.
3686
3687 This is handled exactly like R_MIPS_GPREL16, except that the
3688 addend is retrieved and stored as shown in this diagram; that
3689 is, the Imm fields above replace the V-rel16 field.
3690
3691 All we need to do here is shuffle the bits appropriately. As
3692 above, the two 16-bit halves must be swapped on a
3693 little-endian system. */
3694 value = (((value & 0x7e0) << 16)
3695 | ((value & 0xf800) << 5)
3696 | (value & 0x1f));
3697 }
3698
3699 /* Set the field. */
3700 x |= (value & howto->dst_mask);
3701
3702 /* If required, turn JAL into JALX. */
3703 if (require_jalx)
3704 {
b34976b6 3705 bfd_boolean ok;
b49e97c9
TS
3706 bfd_vma opcode = x >> 26;
3707 bfd_vma jalx_opcode;
3708
3709 /* Check to see if the opcode is already JAL or JALX. */
3710 if (r_type == R_MIPS16_26)
3711 {
3712 ok = ((opcode == 0x6) || (opcode == 0x7));
3713 jalx_opcode = 0x7;
3714 }
3715 else
3716 {
3717 ok = ((opcode == 0x3) || (opcode == 0x1d));
3718 jalx_opcode = 0x1d;
3719 }
3720
3721 /* If the opcode is not JAL or JALX, there's a problem. */
3722 if (!ok)
3723 {
3724 (*_bfd_error_handler)
d003868e
AM
3725 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
3726 input_bfd,
3727 input_section,
b49e97c9
TS
3728 (unsigned long) relocation->r_offset);
3729 bfd_set_error (bfd_error_bad_value);
b34976b6 3730 return FALSE;
b49e97c9
TS
3731 }
3732
3733 /* Make this the JALX opcode. */
3734 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3735 }
3736
1367d393
ILT
3737 /* On the RM9000, bal is faster than jal, because bal uses branch
3738 prediction hardware. If we are linking for the RM9000, and we
3739 see jal, and bal fits, use it instead. Note that this
3740 transformation should be safe for all architectures. */
3741 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
3742 && !info->relocatable
3743 && !require_jalx
3744 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
3745 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
3746 {
3747 bfd_vma addr;
3748 bfd_vma dest;
3749 bfd_signed_vma off;
3750
3751 addr = (input_section->output_section->vma
3752 + input_section->output_offset
3753 + relocation->r_offset
3754 + 4);
3755 if (r_type == R_MIPS_26)
3756 dest = (value << 2) | ((addr >> 28) << 28);
3757 else
3758 dest = value;
3759 off = dest - addr;
3760 if (off <= 0x1ffff && off >= -0x20000)
3761 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
3762 }
3763
b49e97c9
TS
3764 /* Swap the high- and low-order 16 bits on little-endian systems
3765 when doing a MIPS16 relocation. */
3766 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3767 && bfd_little_endian (input_bfd))
3768 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3769
3770 /* Put the value into the output. */
3771 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
b34976b6 3772 return TRUE;
b49e97c9
TS
3773}
3774
b34976b6 3775/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 3776
b34976b6 3777static bfd_boolean
9719ad41 3778mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
3779{
3780 const char *name = bfd_get_section_name (abfd, section);
3781
3782 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3783 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3784 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3785}
3786\f
3787/* Add room for N relocations to the .rel.dyn section in ABFD. */
3788
3789static void
9719ad41 3790mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
b49e97c9
TS
3791{
3792 asection *s;
3793
f4416af6 3794 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
3795 BFD_ASSERT (s != NULL);
3796
eea6121a 3797 if (s->size == 0)
b49e97c9
TS
3798 {
3799 /* Make room for a null element. */
eea6121a 3800 s->size += MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
3801 ++s->reloc_count;
3802 }
eea6121a 3803 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
3804}
3805
3806/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3807 is the original relocation, which is now being transformed into a
3808 dynamic relocation. The ADDENDP is adjusted if necessary; the
3809 caller should store the result in place of the original addend. */
3810
b34976b6 3811static bfd_boolean
9719ad41
RS
3812mips_elf_create_dynamic_relocation (bfd *output_bfd,
3813 struct bfd_link_info *info,
3814 const Elf_Internal_Rela *rel,
3815 struct mips_elf_link_hash_entry *h,
3816 asection *sec, bfd_vma symbol,
3817 bfd_vma *addendp, asection *input_section)
b49e97c9 3818{
947216bf 3819 Elf_Internal_Rela outrel[3];
b49e97c9
TS
3820 asection *sreloc;
3821 bfd *dynobj;
3822 int r_type;
5d41f0b6
RS
3823 long indx;
3824 bfd_boolean defined_p;
b49e97c9
TS
3825
3826 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3827 dynobj = elf_hash_table (info)->dynobj;
f4416af6 3828 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
3829 BFD_ASSERT (sreloc != NULL);
3830 BFD_ASSERT (sreloc->contents != NULL);
3831 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 3832 < sreloc->size);
b49e97c9 3833
b49e97c9
TS
3834 outrel[0].r_offset =
3835 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3836 outrel[1].r_offset =
3837 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3838 outrel[2].r_offset =
3839 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3840
3841#if 0
3842 /* We begin by assuming that the offset for the dynamic relocation
3843 is the same as for the original relocation. We'll adjust this
3844 later to reflect the correct output offsets. */
a7ebbfdf 3845 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
b49e97c9
TS
3846 {
3847 outrel[1].r_offset = rel[1].r_offset;
3848 outrel[2].r_offset = rel[2].r_offset;
3849 }
3850 else
3851 {
3852 /* Except that in a stab section things are more complex.
3853 Because we compress stab information, the offset given in the
3854 relocation may not be the one we want; we must let the stabs
3855 machinery tell us the offset. */
3856 outrel[1].r_offset = outrel[0].r_offset;
3857 outrel[2].r_offset = outrel[0].r_offset;
3858 /* If we didn't need the relocation at all, this value will be
3859 -1. */
c5ae1840 3860 if (outrel[0].r_offset == MINUS_ONE)
b34976b6 3861 skip = TRUE;
b49e97c9
TS
3862 }
3863#endif
3864
c5ae1840 3865 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 3866 /* The relocation field has been deleted. */
5d41f0b6
RS
3867 return TRUE;
3868
3869 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
3870 {
3871 /* The relocation field has been converted into a relative value of
3872 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3873 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 3874 *addendp += symbol;
5d41f0b6 3875 return TRUE;
0d591ff7 3876 }
b49e97c9 3877
5d41f0b6
RS
3878 /* We must now calculate the dynamic symbol table index to use
3879 in the relocation. */
3880 if (h != NULL
3881 && (! info->symbolic || !h->root.def_regular)
3882 /* h->root.dynindx may be -1 if this symbol was marked to
3883 become local. */
3884 && h->root.dynindx != -1)
3885 {
3886 indx = h->root.dynindx;
3887 if (SGI_COMPAT (output_bfd))
3888 defined_p = h->root.def_regular;
3889 else
3890 /* ??? glibc's ld.so just adds the final GOT entry to the
3891 relocation field. It therefore treats relocs against
3892 defined symbols in the same way as relocs against
3893 undefined symbols. */
3894 defined_p = FALSE;
3895 }
b49e97c9
TS
3896 else
3897 {
5d41f0b6
RS
3898 if (sec != NULL && bfd_is_abs_section (sec))
3899 indx = 0;
3900 else if (sec == NULL || sec->owner == NULL)
fdd07405 3901 {
5d41f0b6
RS
3902 bfd_set_error (bfd_error_bad_value);
3903 return FALSE;
b49e97c9
TS
3904 }
3905 else
3906 {
5d41f0b6
RS
3907 indx = elf_section_data (sec->output_section)->dynindx;
3908 if (indx == 0)
3909 abort ();
b49e97c9
TS
3910 }
3911
5d41f0b6
RS
3912 /* Instead of generating a relocation using the section
3913 symbol, we may as well make it a fully relative
3914 relocation. We want to avoid generating relocations to
3915 local symbols because we used to generate them
3916 incorrectly, without adding the original symbol value,
3917 which is mandated by the ABI for section symbols. In
3918 order to give dynamic loaders and applications time to
3919 phase out the incorrect use, we refrain from emitting
3920 section-relative relocations. It's not like they're
3921 useful, after all. This should be a bit more efficient
3922 as well. */
3923 /* ??? Although this behavior is compatible with glibc's ld.so,
3924 the ABI says that relocations against STN_UNDEF should have
3925 a symbol value of 0. Irix rld honors this, so relocations
3926 against STN_UNDEF have no effect. */
3927 if (!SGI_COMPAT (output_bfd))
3928 indx = 0;
3929 defined_p = TRUE;
b49e97c9
TS
3930 }
3931
5d41f0b6
RS
3932 /* If the relocation was previously an absolute relocation and
3933 this symbol will not be referred to by the relocation, we must
3934 adjust it by the value we give it in the dynamic symbol table.
3935 Otherwise leave the job up to the dynamic linker. */
3936 if (defined_p && r_type != R_MIPS_REL32)
3937 *addendp += symbol;
3938
3939 /* The relocation is always an REL32 relocation because we don't
3940 know where the shared library will wind up at load-time. */
3941 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3942 R_MIPS_REL32);
3943 /* For strict adherence to the ABI specification, we should
3944 generate a R_MIPS_64 relocation record by itself before the
3945 _REL32/_64 record as well, such that the addend is read in as
3946 a 64-bit value (REL32 is a 32-bit relocation, after all).
3947 However, since none of the existing ELF64 MIPS dynamic
3948 loaders seems to care, we don't waste space with these
3949 artificial relocations. If this turns out to not be true,
3950 mips_elf_allocate_dynamic_relocation() should be tweaked so
3951 as to make room for a pair of dynamic relocations per
3952 invocation if ABI_64_P, and here we should generate an
3953 additional relocation record with R_MIPS_64 by itself for a
3954 NULL symbol before this relocation record. */
3955 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3956 ABI_64_P (output_bfd)
3957 ? R_MIPS_64
3958 : R_MIPS_NONE);
3959 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3960
3961 /* Adjust the output offset of the relocation to reference the
3962 correct location in the output file. */
3963 outrel[0].r_offset += (input_section->output_section->vma
3964 + input_section->output_offset);
3965 outrel[1].r_offset += (input_section->output_section->vma
3966 + input_section->output_offset);
3967 outrel[2].r_offset += (input_section->output_section->vma
3968 + input_section->output_offset);
3969
b49e97c9
TS
3970 /* Put the relocation back out. We have to use the special
3971 relocation outputter in the 64-bit case since the 64-bit
3972 relocation format is non-standard. */
3973 if (ABI_64_P (output_bfd))
3974 {
3975 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3976 (output_bfd, &outrel[0],
3977 (sreloc->contents
3978 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3979 }
3980 else
947216bf
AM
3981 bfd_elf32_swap_reloc_out
3982 (output_bfd, &outrel[0],
3983 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 3984
b49e97c9
TS
3985 /* We've now added another relocation. */
3986 ++sreloc->reloc_count;
3987
3988 /* Make sure the output section is writable. The dynamic linker
3989 will be writing to it. */
3990 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3991 |= SHF_WRITE;
3992
3993 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 3994 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
3995 {
3996 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3997 bfd_byte *cr;
3998
3999 if (scpt)
4000 {
4001 Elf32_crinfo cptrel;
4002
4003 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4004 cptrel.vaddr = (rel->r_offset
4005 + input_section->output_section->vma
4006 + input_section->output_offset);
4007 if (r_type == R_MIPS_REL32)
4008 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4009 else
4010 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4011 mips_elf_set_cr_dist2to (cptrel, 0);
4012 cptrel.konst = *addendp;
4013
4014 cr = (scpt->contents
4015 + sizeof (Elf32_External_compact_rel));
4016 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4017 ((Elf32_External_crinfo *) cr
4018 + scpt->reloc_count));
4019 ++scpt->reloc_count;
4020 }
4021 }
4022
b34976b6 4023 return TRUE;
b49e97c9
TS
4024}
4025\f
b49e97c9
TS
4026/* Return the MACH for a MIPS e_flags value. */
4027
4028unsigned long
9719ad41 4029_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4030{
4031 switch (flags & EF_MIPS_MACH)
4032 {
4033 case E_MIPS_MACH_3900:
4034 return bfd_mach_mips3900;
4035
4036 case E_MIPS_MACH_4010:
4037 return bfd_mach_mips4010;
4038
4039 case E_MIPS_MACH_4100:
4040 return bfd_mach_mips4100;
4041
4042 case E_MIPS_MACH_4111:
4043 return bfd_mach_mips4111;
4044
00707a0e
RS
4045 case E_MIPS_MACH_4120:
4046 return bfd_mach_mips4120;
4047
b49e97c9
TS
4048 case E_MIPS_MACH_4650:
4049 return bfd_mach_mips4650;
4050
00707a0e
RS
4051 case E_MIPS_MACH_5400:
4052 return bfd_mach_mips5400;
4053
4054 case E_MIPS_MACH_5500:
4055 return bfd_mach_mips5500;
4056
0d2e43ed
ILT
4057 case E_MIPS_MACH_9000:
4058 return bfd_mach_mips9000;
4059
b49e97c9
TS
4060 case E_MIPS_MACH_SB1:
4061 return bfd_mach_mips_sb1;
4062
4063 default:
4064 switch (flags & EF_MIPS_ARCH)
4065 {
4066 default:
4067 case E_MIPS_ARCH_1:
4068 return bfd_mach_mips3000;
4069 break;
4070
4071 case E_MIPS_ARCH_2:
4072 return bfd_mach_mips6000;
4073 break;
4074
4075 case E_MIPS_ARCH_3:
4076 return bfd_mach_mips4000;
4077 break;
4078
4079 case E_MIPS_ARCH_4:
4080 return bfd_mach_mips8000;
4081 break;
4082
4083 case E_MIPS_ARCH_5:
4084 return bfd_mach_mips5;
4085 break;
4086
4087 case E_MIPS_ARCH_32:
4088 return bfd_mach_mipsisa32;
4089 break;
4090
4091 case E_MIPS_ARCH_64:
4092 return bfd_mach_mipsisa64;
4093 break;
af7ee8bf
CD
4094
4095 case E_MIPS_ARCH_32R2:
4096 return bfd_mach_mipsisa32r2;
4097 break;
5f74bc13
CD
4098
4099 case E_MIPS_ARCH_64R2:
4100 return bfd_mach_mipsisa64r2;
4101 break;
b49e97c9
TS
4102 }
4103 }
4104
4105 return 0;
4106}
4107
4108/* Return printable name for ABI. */
4109
4110static INLINE char *
9719ad41 4111elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
4112{
4113 flagword flags;
4114
4115 flags = elf_elfheader (abfd)->e_flags;
4116 switch (flags & EF_MIPS_ABI)
4117 {
4118 case 0:
4119 if (ABI_N32_P (abfd))
4120 return "N32";
4121 else if (ABI_64_P (abfd))
4122 return "64";
4123 else
4124 return "none";
4125 case E_MIPS_ABI_O32:
4126 return "O32";
4127 case E_MIPS_ABI_O64:
4128 return "O64";
4129 case E_MIPS_ABI_EABI32:
4130 return "EABI32";
4131 case E_MIPS_ABI_EABI64:
4132 return "EABI64";
4133 default:
4134 return "unknown abi";
4135 }
4136}
4137\f
4138/* MIPS ELF uses two common sections. One is the usual one, and the
4139 other is for small objects. All the small objects are kept
4140 together, and then referenced via the gp pointer, which yields
4141 faster assembler code. This is what we use for the small common
4142 section. This approach is copied from ecoff.c. */
4143static asection mips_elf_scom_section;
4144static asymbol mips_elf_scom_symbol;
4145static asymbol *mips_elf_scom_symbol_ptr;
4146
4147/* MIPS ELF also uses an acommon section, which represents an
4148 allocated common symbol which may be overridden by a
4149 definition in a shared library. */
4150static asection mips_elf_acom_section;
4151static asymbol mips_elf_acom_symbol;
4152static asymbol *mips_elf_acom_symbol_ptr;
4153
4154/* Handle the special MIPS section numbers that a symbol may use.
4155 This is used for both the 32-bit and the 64-bit ABI. */
4156
4157void
9719ad41 4158_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
4159{
4160 elf_symbol_type *elfsym;
4161
4162 elfsym = (elf_symbol_type *) asym;
4163 switch (elfsym->internal_elf_sym.st_shndx)
4164 {
4165 case SHN_MIPS_ACOMMON:
4166 /* This section is used in a dynamically linked executable file.
4167 It is an allocated common section. The dynamic linker can
4168 either resolve these symbols to something in a shared
4169 library, or it can just leave them here. For our purposes,
4170 we can consider these symbols to be in a new section. */
4171 if (mips_elf_acom_section.name == NULL)
4172 {
4173 /* Initialize the acommon section. */
4174 mips_elf_acom_section.name = ".acommon";
4175 mips_elf_acom_section.flags = SEC_ALLOC;
4176 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4177 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4178 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4179 mips_elf_acom_symbol.name = ".acommon";
4180 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4181 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4182 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4183 }
4184 asym->section = &mips_elf_acom_section;
4185 break;
4186
4187 case SHN_COMMON:
4188 /* Common symbols less than the GP size are automatically
4189 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4190 if (asym->value > elf_gp_size (abfd)
4191 || IRIX_COMPAT (abfd) == ict_irix6)
4192 break;
4193 /* Fall through. */
4194 case SHN_MIPS_SCOMMON:
4195 if (mips_elf_scom_section.name == NULL)
4196 {
4197 /* Initialize the small common section. */
4198 mips_elf_scom_section.name = ".scommon";
4199 mips_elf_scom_section.flags = SEC_IS_COMMON;
4200 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4201 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4202 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4203 mips_elf_scom_symbol.name = ".scommon";
4204 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4205 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4206 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4207 }
4208 asym->section = &mips_elf_scom_section;
4209 asym->value = elfsym->internal_elf_sym.st_size;
4210 break;
4211
4212 case SHN_MIPS_SUNDEFINED:
4213 asym->section = bfd_und_section_ptr;
4214 break;
4215
b49e97c9 4216 case SHN_MIPS_TEXT:
00b4930b
TS
4217 {
4218 asection *section = bfd_get_section_by_name (abfd, ".text");
4219
4220 BFD_ASSERT (SGI_COMPAT (abfd));
4221 if (section != NULL)
4222 {
4223 asym->section = section;
4224 /* MIPS_TEXT is a bit special, the address is not an offset
4225 to the base of the .text section. So substract the section
4226 base address to make it an offset. */
4227 asym->value -= section->vma;
4228 }
4229 }
b49e97c9
TS
4230 break;
4231
4232 case SHN_MIPS_DATA:
00b4930b
TS
4233 {
4234 asection *section = bfd_get_section_by_name (abfd, ".data");
4235
4236 BFD_ASSERT (SGI_COMPAT (abfd));
4237 if (section != NULL)
4238 {
4239 asym->section = section;
4240 /* MIPS_DATA is a bit special, the address is not an offset
4241 to the base of the .data section. So substract the section
4242 base address to make it an offset. */
4243 asym->value -= section->vma;
4244 }
4245 }
b49e97c9 4246 break;
b49e97c9
TS
4247 }
4248}
4249\f
174fd7f9
RS
4250/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4251 relocations against two unnamed section symbols to resolve to the
4252 same address. For example, if we have code like:
4253
4254 lw $4,%got_disp(.data)($gp)
4255 lw $25,%got_disp(.text)($gp)
4256 jalr $25
4257
4258 then the linker will resolve both relocations to .data and the program
4259 will jump there rather than to .text.
4260
4261 We can work around this problem by giving names to local section symbols.
4262 This is also what the MIPSpro tools do. */
4263
4264bfd_boolean
4265_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4266{
4267 return SGI_COMPAT (abfd);
4268}
4269\f
b49e97c9
TS
4270/* Work over a section just before writing it out. This routine is
4271 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4272 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4273 a better way. */
4274
b34976b6 4275bfd_boolean
9719ad41 4276_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
4277{
4278 if (hdr->sh_type == SHT_MIPS_REGINFO
4279 && hdr->sh_size > 0)
4280 {
4281 bfd_byte buf[4];
4282
4283 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4284 BFD_ASSERT (hdr->contents == NULL);
4285
4286 if (bfd_seek (abfd,
4287 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4288 SEEK_SET) != 0)
b34976b6 4289 return FALSE;
b49e97c9 4290 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4291 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4292 return FALSE;
b49e97c9
TS
4293 }
4294
4295 if (hdr->sh_type == SHT_MIPS_OPTIONS
4296 && hdr->bfd_section != NULL
f0abc2a1
AM
4297 && mips_elf_section_data (hdr->bfd_section) != NULL
4298 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4299 {
4300 bfd_byte *contents, *l, *lend;
4301
f0abc2a1
AM
4302 /* We stored the section contents in the tdata field in the
4303 set_section_contents routine. We save the section contents
4304 so that we don't have to read them again.
b49e97c9
TS
4305 At this point we know that elf_gp is set, so we can look
4306 through the section contents to see if there is an
4307 ODK_REGINFO structure. */
4308
f0abc2a1 4309 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4310 l = contents;
4311 lend = contents + hdr->sh_size;
4312 while (l + sizeof (Elf_External_Options) <= lend)
4313 {
4314 Elf_Internal_Options intopt;
4315
4316 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4317 &intopt);
4318 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4319 {
4320 bfd_byte buf[8];
4321
4322 if (bfd_seek (abfd,
4323 (hdr->sh_offset
4324 + (l - contents)
4325 + sizeof (Elf_External_Options)
4326 + (sizeof (Elf64_External_RegInfo) - 8)),
4327 SEEK_SET) != 0)
b34976b6 4328 return FALSE;
b49e97c9 4329 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 4330 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 4331 return FALSE;
b49e97c9
TS
4332 }
4333 else if (intopt.kind == ODK_REGINFO)
4334 {
4335 bfd_byte buf[4];
4336
4337 if (bfd_seek (abfd,
4338 (hdr->sh_offset
4339 + (l - contents)
4340 + sizeof (Elf_External_Options)
4341 + (sizeof (Elf32_External_RegInfo) - 4)),
4342 SEEK_SET) != 0)
b34976b6 4343 return FALSE;
b49e97c9 4344 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4345 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4346 return FALSE;
b49e97c9
TS
4347 }
4348 l += intopt.size;
4349 }
4350 }
4351
4352 if (hdr->bfd_section != NULL)
4353 {
4354 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4355
4356 if (strcmp (name, ".sdata") == 0
4357 || strcmp (name, ".lit8") == 0
4358 || strcmp (name, ".lit4") == 0)
4359 {
4360 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4361 hdr->sh_type = SHT_PROGBITS;
4362 }
4363 else if (strcmp (name, ".sbss") == 0)
4364 {
4365 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4366 hdr->sh_type = SHT_NOBITS;
4367 }
4368 else if (strcmp (name, ".srdata") == 0)
4369 {
4370 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4371 hdr->sh_type = SHT_PROGBITS;
4372 }
4373 else if (strcmp (name, ".compact_rel") == 0)
4374 {
4375 hdr->sh_flags = 0;
4376 hdr->sh_type = SHT_PROGBITS;
4377 }
4378 else if (strcmp (name, ".rtproc") == 0)
4379 {
4380 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4381 {
4382 unsigned int adjust;
4383
4384 adjust = hdr->sh_size % hdr->sh_addralign;
4385 if (adjust != 0)
4386 hdr->sh_size += hdr->sh_addralign - adjust;
4387 }
4388 }
4389 }
4390
b34976b6 4391 return TRUE;
b49e97c9
TS
4392}
4393
4394/* Handle a MIPS specific section when reading an object file. This
4395 is called when elfcode.h finds a section with an unknown type.
4396 This routine supports both the 32-bit and 64-bit ELF ABI.
4397
4398 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4399 how to. */
4400
b34976b6 4401bfd_boolean
9719ad41
RS
4402_bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4403 const char *name)
b49e97c9
TS
4404{
4405 flagword flags = 0;
4406
4407 /* There ought to be a place to keep ELF backend specific flags, but
4408 at the moment there isn't one. We just keep track of the
4409 sections by their name, instead. Fortunately, the ABI gives
4410 suggested names for all the MIPS specific sections, so we will
4411 probably get away with this. */
4412 switch (hdr->sh_type)
4413 {
4414 case SHT_MIPS_LIBLIST:
4415 if (strcmp (name, ".liblist") != 0)
b34976b6 4416 return FALSE;
b49e97c9
TS
4417 break;
4418 case SHT_MIPS_MSYM:
4419 if (strcmp (name, ".msym") != 0)
b34976b6 4420 return FALSE;
b49e97c9
TS
4421 break;
4422 case SHT_MIPS_CONFLICT:
4423 if (strcmp (name, ".conflict") != 0)
b34976b6 4424 return FALSE;
b49e97c9
TS
4425 break;
4426 case SHT_MIPS_GPTAB:
4427 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 4428 return FALSE;
b49e97c9
TS
4429 break;
4430 case SHT_MIPS_UCODE:
4431 if (strcmp (name, ".ucode") != 0)
b34976b6 4432 return FALSE;
b49e97c9
TS
4433 break;
4434 case SHT_MIPS_DEBUG:
4435 if (strcmp (name, ".mdebug") != 0)
b34976b6 4436 return FALSE;
b49e97c9
TS
4437 flags = SEC_DEBUGGING;
4438 break;
4439 case SHT_MIPS_REGINFO:
4440 if (strcmp (name, ".reginfo") != 0
4441 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 4442 return FALSE;
b49e97c9
TS
4443 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4444 break;
4445 case SHT_MIPS_IFACE:
4446 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 4447 return FALSE;
b49e97c9
TS
4448 break;
4449 case SHT_MIPS_CONTENT:
4450 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 4451 return FALSE;
b49e97c9
TS
4452 break;
4453 case SHT_MIPS_OPTIONS:
4454 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
b34976b6 4455 return FALSE;
b49e97c9
TS
4456 break;
4457 case SHT_MIPS_DWARF:
4458 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 4459 return FALSE;
b49e97c9
TS
4460 break;
4461 case SHT_MIPS_SYMBOL_LIB:
4462 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 4463 return FALSE;
b49e97c9
TS
4464 break;
4465 case SHT_MIPS_EVENTS:
4466 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4467 && strncmp (name, ".MIPS.post_rel",
4468 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 4469 return FALSE;
b49e97c9
TS
4470 break;
4471 default:
b34976b6 4472 return FALSE;
b49e97c9
TS
4473 }
4474
4475 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
b34976b6 4476 return FALSE;
b49e97c9
TS
4477
4478 if (flags)
4479 {
4480 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4481 (bfd_get_section_flags (abfd,
4482 hdr->bfd_section)
4483 | flags)))
b34976b6 4484 return FALSE;
b49e97c9
TS
4485 }
4486
4487 /* FIXME: We should record sh_info for a .gptab section. */
4488
4489 /* For a .reginfo section, set the gp value in the tdata information
4490 from the contents of this section. We need the gp value while
4491 processing relocs, so we just get it now. The .reginfo section
4492 is not used in the 64-bit MIPS ELF ABI. */
4493 if (hdr->sh_type == SHT_MIPS_REGINFO)
4494 {
4495 Elf32_External_RegInfo ext;
4496 Elf32_RegInfo s;
4497
9719ad41
RS
4498 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4499 &ext, 0, sizeof ext))
b34976b6 4500 return FALSE;
b49e97c9
TS
4501 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4502 elf_gp (abfd) = s.ri_gp_value;
4503 }
4504
4505 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4506 set the gp value based on what we find. We may see both
4507 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4508 they should agree. */
4509 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4510 {
4511 bfd_byte *contents, *l, *lend;
4512
9719ad41 4513 contents = bfd_malloc (hdr->sh_size);
b49e97c9 4514 if (contents == NULL)
b34976b6 4515 return FALSE;
b49e97c9 4516 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 4517 0, hdr->sh_size))
b49e97c9
TS
4518 {
4519 free (contents);
b34976b6 4520 return FALSE;
b49e97c9
TS
4521 }
4522 l = contents;
4523 lend = contents + hdr->sh_size;
4524 while (l + sizeof (Elf_External_Options) <= lend)
4525 {
4526 Elf_Internal_Options intopt;
4527
4528 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4529 &intopt);
4530 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4531 {
4532 Elf64_Internal_RegInfo intreg;
4533
4534 bfd_mips_elf64_swap_reginfo_in
4535 (abfd,
4536 ((Elf64_External_RegInfo *)
4537 (l + sizeof (Elf_External_Options))),
4538 &intreg);
4539 elf_gp (abfd) = intreg.ri_gp_value;
4540 }
4541 else if (intopt.kind == ODK_REGINFO)
4542 {
4543 Elf32_RegInfo intreg;
4544
4545 bfd_mips_elf32_swap_reginfo_in
4546 (abfd,
4547 ((Elf32_External_RegInfo *)
4548 (l + sizeof (Elf_External_Options))),
4549 &intreg);
4550 elf_gp (abfd) = intreg.ri_gp_value;
4551 }
4552 l += intopt.size;
4553 }
4554 free (contents);
4555 }
4556
b34976b6 4557 return TRUE;
b49e97c9
TS
4558}
4559
4560/* Set the correct type for a MIPS ELF section. We do this by the
4561 section name, which is a hack, but ought to work. This routine is
4562 used by both the 32-bit and the 64-bit ABI. */
4563
b34976b6 4564bfd_boolean
9719ad41 4565_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
4566{
4567 register const char *name;
4568
4569 name = bfd_get_section_name (abfd, sec);
4570
4571 if (strcmp (name, ".liblist") == 0)
4572 {
4573 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 4574 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
4575 /* The sh_link field is set in final_write_processing. */
4576 }
4577 else if (strcmp (name, ".conflict") == 0)
4578 hdr->sh_type = SHT_MIPS_CONFLICT;
4579 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4580 {
4581 hdr->sh_type = SHT_MIPS_GPTAB;
4582 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4583 /* The sh_info field is set in final_write_processing. */
4584 }
4585 else if (strcmp (name, ".ucode") == 0)
4586 hdr->sh_type = SHT_MIPS_UCODE;
4587 else if (strcmp (name, ".mdebug") == 0)
4588 {
4589 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 4590 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
4591 entsize of 0. FIXME: Does this matter? */
4592 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4593 hdr->sh_entsize = 0;
4594 else
4595 hdr->sh_entsize = 1;
4596 }
4597 else if (strcmp (name, ".reginfo") == 0)
4598 {
4599 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 4600 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
4601 entsize of 0x18. FIXME: Does this matter? */
4602 if (SGI_COMPAT (abfd))
4603 {
4604 if ((abfd->flags & DYNAMIC) != 0)
4605 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4606 else
4607 hdr->sh_entsize = 1;
4608 }
4609 else
4610 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4611 }
4612 else if (SGI_COMPAT (abfd)
4613 && (strcmp (name, ".hash") == 0
4614 || strcmp (name, ".dynamic") == 0
4615 || strcmp (name, ".dynstr") == 0))
4616 {
4617 if (SGI_COMPAT (abfd))
4618 hdr->sh_entsize = 0;
4619#if 0
8dc1a139 4620 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
4621 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4622#endif
4623 }
4624 else if (strcmp (name, ".got") == 0
4625 || strcmp (name, ".srdata") == 0
4626 || strcmp (name, ".sdata") == 0
4627 || strcmp (name, ".sbss") == 0
4628 || strcmp (name, ".lit4") == 0
4629 || strcmp (name, ".lit8") == 0)
4630 hdr->sh_flags |= SHF_MIPS_GPREL;
4631 else if (strcmp (name, ".MIPS.interfaces") == 0)
4632 {
4633 hdr->sh_type = SHT_MIPS_IFACE;
4634 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4635 }
4636 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4637 {
4638 hdr->sh_type = SHT_MIPS_CONTENT;
4639 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4640 /* The sh_info field is set in final_write_processing. */
4641 }
4642 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4643 {
4644 hdr->sh_type = SHT_MIPS_OPTIONS;
4645 hdr->sh_entsize = 1;
4646 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4647 }
4648 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4649 hdr->sh_type = SHT_MIPS_DWARF;
4650 else if (strcmp (name, ".MIPS.symlib") == 0)
4651 {
4652 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4653 /* The sh_link and sh_info fields are set in
4654 final_write_processing. */
4655 }
4656 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4657 || strncmp (name, ".MIPS.post_rel",
4658 sizeof ".MIPS.post_rel" - 1) == 0)
4659 {
4660 hdr->sh_type = SHT_MIPS_EVENTS;
4661 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4662 /* The sh_link field is set in final_write_processing. */
4663 }
4664 else if (strcmp (name, ".msym") == 0)
4665 {
4666 hdr->sh_type = SHT_MIPS_MSYM;
4667 hdr->sh_flags |= SHF_ALLOC;
4668 hdr->sh_entsize = 8;
4669 }
4670
7a79a000
TS
4671 /* The generic elf_fake_sections will set up REL_HDR using the default
4672 kind of relocations. We used to set up a second header for the
4673 non-default kind of relocations here, but only NewABI would use
4674 these, and the IRIX ld doesn't like resulting empty RELA sections.
4675 Thus we create those header only on demand now. */
b49e97c9 4676
b34976b6 4677 return TRUE;
b49e97c9
TS
4678}
4679
4680/* Given a BFD section, try to locate the corresponding ELF section
4681 index. This is used by both the 32-bit and the 64-bit ABI.
4682 Actually, it's not clear to me that the 64-bit ABI supports these,
4683 but for non-PIC objects we will certainly want support for at least
4684 the .scommon section. */
4685
b34976b6 4686bfd_boolean
9719ad41
RS
4687_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4688 asection *sec, int *retval)
b49e97c9
TS
4689{
4690 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4691 {
4692 *retval = SHN_MIPS_SCOMMON;
b34976b6 4693 return TRUE;
b49e97c9
TS
4694 }
4695 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4696 {
4697 *retval = SHN_MIPS_ACOMMON;
b34976b6 4698 return TRUE;
b49e97c9 4699 }
b34976b6 4700 return FALSE;
b49e97c9
TS
4701}
4702\f
4703/* Hook called by the linker routine which adds symbols from an object
4704 file. We must handle the special MIPS section numbers here. */
4705
b34976b6 4706bfd_boolean
9719ad41 4707_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 4708 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
4709 flagword *flagsp ATTRIBUTE_UNUSED,
4710 asection **secp, bfd_vma *valp)
b49e97c9
TS
4711{
4712 if (SGI_COMPAT (abfd)
4713 && (abfd->flags & DYNAMIC) != 0
4714 && strcmp (*namep, "_rld_new_interface") == 0)
4715 {
8dc1a139 4716 /* Skip IRIX5 rld entry name. */
b49e97c9 4717 *namep = NULL;
b34976b6 4718 return TRUE;
b49e97c9
TS
4719 }
4720
4721 switch (sym->st_shndx)
4722 {
4723 case SHN_COMMON:
4724 /* Common symbols less than the GP size are automatically
4725 treated as SHN_MIPS_SCOMMON symbols. */
4726 if (sym->st_size > elf_gp_size (abfd)
4727 || IRIX_COMPAT (abfd) == ict_irix6)
4728 break;
4729 /* Fall through. */
4730 case SHN_MIPS_SCOMMON:
4731 *secp = bfd_make_section_old_way (abfd, ".scommon");
4732 (*secp)->flags |= SEC_IS_COMMON;
4733 *valp = sym->st_size;
4734 break;
4735
4736 case SHN_MIPS_TEXT:
4737 /* This section is used in a shared object. */
4738 if (elf_tdata (abfd)->elf_text_section == NULL)
4739 {
4740 asymbol *elf_text_symbol;
4741 asection *elf_text_section;
4742 bfd_size_type amt = sizeof (asection);
4743
4744 elf_text_section = bfd_zalloc (abfd, amt);
4745 if (elf_text_section == NULL)
b34976b6 4746 return FALSE;
b49e97c9
TS
4747
4748 amt = sizeof (asymbol);
4749 elf_text_symbol = bfd_zalloc (abfd, amt);
4750 if (elf_text_symbol == NULL)
b34976b6 4751 return FALSE;
b49e97c9
TS
4752
4753 /* Initialize the section. */
4754
4755 elf_tdata (abfd)->elf_text_section = elf_text_section;
4756 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4757
4758 elf_text_section->symbol = elf_text_symbol;
4759 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4760
4761 elf_text_section->name = ".text";
4762 elf_text_section->flags = SEC_NO_FLAGS;
4763 elf_text_section->output_section = NULL;
4764 elf_text_section->owner = abfd;
4765 elf_text_symbol->name = ".text";
4766 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4767 elf_text_symbol->section = elf_text_section;
4768 }
4769 /* This code used to do *secp = bfd_und_section_ptr if
4770 info->shared. I don't know why, and that doesn't make sense,
4771 so I took it out. */
4772 *secp = elf_tdata (abfd)->elf_text_section;
4773 break;
4774
4775 case SHN_MIPS_ACOMMON:
4776 /* Fall through. XXX Can we treat this as allocated data? */
4777 case SHN_MIPS_DATA:
4778 /* This section is used in a shared object. */
4779 if (elf_tdata (abfd)->elf_data_section == NULL)
4780 {
4781 asymbol *elf_data_symbol;
4782 asection *elf_data_section;
4783 bfd_size_type amt = sizeof (asection);
4784
4785 elf_data_section = bfd_zalloc (abfd, amt);
4786 if (elf_data_section == NULL)
b34976b6 4787 return FALSE;
b49e97c9
TS
4788
4789 amt = sizeof (asymbol);
4790 elf_data_symbol = bfd_zalloc (abfd, amt);
4791 if (elf_data_symbol == NULL)
b34976b6 4792 return FALSE;
b49e97c9
TS
4793
4794 /* Initialize the section. */
4795
4796 elf_tdata (abfd)->elf_data_section = elf_data_section;
4797 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4798
4799 elf_data_section->symbol = elf_data_symbol;
4800 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4801
4802 elf_data_section->name = ".data";
4803 elf_data_section->flags = SEC_NO_FLAGS;
4804 elf_data_section->output_section = NULL;
4805 elf_data_section->owner = abfd;
4806 elf_data_symbol->name = ".data";
4807 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4808 elf_data_symbol->section = elf_data_section;
4809 }
4810 /* This code used to do *secp = bfd_und_section_ptr if
4811 info->shared. I don't know why, and that doesn't make sense,
4812 so I took it out. */
4813 *secp = elf_tdata (abfd)->elf_data_section;
4814 break;
4815
4816 case SHN_MIPS_SUNDEFINED:
4817 *secp = bfd_und_section_ptr;
4818 break;
4819 }
4820
4821 if (SGI_COMPAT (abfd)
4822 && ! info->shared
4823 && info->hash->creator == abfd->xvec
4824 && strcmp (*namep, "__rld_obj_head") == 0)
4825 {
4826 struct elf_link_hash_entry *h;
14a793b2 4827 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4828
4829 /* Mark __rld_obj_head as dynamic. */
14a793b2 4830 bh = NULL;
b49e97c9 4831 if (! (_bfd_generic_link_add_one_symbol
9719ad41 4832 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 4833 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4834 return FALSE;
14a793b2
AM
4835
4836 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4837 h->non_elf = 0;
4838 h->def_regular = 1;
b49e97c9
TS
4839 h->type = STT_OBJECT;
4840
c152c796 4841 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4842 return FALSE;
b49e97c9 4843
b34976b6 4844 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
4845 }
4846
4847 /* If this is a mips16 text symbol, add 1 to the value to make it
4848 odd. This will cause something like .word SYM to come up with
4849 the right value when it is loaded into the PC. */
4850 if (sym->st_other == STO_MIPS16)
4851 ++*valp;
4852
b34976b6 4853 return TRUE;
b49e97c9
TS
4854}
4855
4856/* This hook function is called before the linker writes out a global
4857 symbol. We mark symbols as small common if appropriate. This is
4858 also where we undo the increment of the value for a mips16 symbol. */
4859
b34976b6 4860bfd_boolean
9719ad41
RS
4861_bfd_mips_elf_link_output_symbol_hook
4862 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4863 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4864 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
4865{
4866 /* If we see a common symbol, which implies a relocatable link, then
4867 if a symbol was small common in an input file, mark it as small
4868 common in the output file. */
4869 if (sym->st_shndx == SHN_COMMON
4870 && strcmp (input_sec->name, ".scommon") == 0)
4871 sym->st_shndx = SHN_MIPS_SCOMMON;
4872
79cda7cf
FF
4873 if (sym->st_other == STO_MIPS16)
4874 sym->st_value &= ~1;
b49e97c9 4875
b34976b6 4876 return TRUE;
b49e97c9
TS
4877}
4878\f
4879/* Functions for the dynamic linker. */
4880
4881/* Create dynamic sections when linking against a dynamic object. */
4882
b34976b6 4883bfd_boolean
9719ad41 4884_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4885{
4886 struct elf_link_hash_entry *h;
14a793b2 4887 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4888 flagword flags;
4889 register asection *s;
4890 const char * const *namep;
4891
4892 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4893 | SEC_LINKER_CREATED | SEC_READONLY);
4894
4895 /* Mips ABI requests the .dynamic section to be read only. */
4896 s = bfd_get_section_by_name (abfd, ".dynamic");
4897 if (s != NULL)
4898 {
4899 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 4900 return FALSE;
b49e97c9
TS
4901 }
4902
4903 /* We need to create .got section. */
f4416af6
AO
4904 if (! mips_elf_create_got_section (abfd, info, FALSE))
4905 return FALSE;
4906
4907 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 4908 return FALSE;
b49e97c9 4909
b49e97c9
TS
4910 /* Create .stub section. */
4911 if (bfd_get_section_by_name (abfd,
4912 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4913 {
4914 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4915 if (s == NULL
4916 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4917 || ! bfd_set_section_alignment (abfd, s,
4918 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4919 return FALSE;
b49e97c9
TS
4920 }
4921
4922 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4923 && !info->shared
4924 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4925 {
4926 s = bfd_make_section (abfd, ".rld_map");
4927 if (s == NULL
4928 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4929 || ! bfd_set_section_alignment (abfd, s,
4930 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4931 return FALSE;
b49e97c9
TS
4932 }
4933
4934 /* On IRIX5, we adjust add some additional symbols and change the
4935 alignments of several sections. There is no ABI documentation
4936 indicating that this is necessary on IRIX6, nor any evidence that
4937 the linker takes such action. */
4938 if (IRIX_COMPAT (abfd) == ict_irix5)
4939 {
4940 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4941 {
14a793b2 4942 bh = NULL;
b49e97c9 4943 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
4944 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4945 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4946 return FALSE;
14a793b2
AM
4947
4948 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4949 h->non_elf = 0;
4950 h->def_regular = 1;
b49e97c9
TS
4951 h->type = STT_SECTION;
4952
c152c796 4953 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4954 return FALSE;
b49e97c9
TS
4955 }
4956
4957 /* We need to create a .compact_rel section. */
4958 if (SGI_COMPAT (abfd))
4959 {
4960 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 4961 return FALSE;
b49e97c9
TS
4962 }
4963
44c410de 4964 /* Change alignments of some sections. */
b49e97c9
TS
4965 s = bfd_get_section_by_name (abfd, ".hash");
4966 if (s != NULL)
d80dcc6a 4967 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4968 s = bfd_get_section_by_name (abfd, ".dynsym");
4969 if (s != NULL)
d80dcc6a 4970 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4971 s = bfd_get_section_by_name (abfd, ".dynstr");
4972 if (s != NULL)
d80dcc6a 4973 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4974 s = bfd_get_section_by_name (abfd, ".reginfo");
4975 if (s != NULL)
d80dcc6a 4976 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4977 s = bfd_get_section_by_name (abfd, ".dynamic");
4978 if (s != NULL)
d80dcc6a 4979 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4980 }
4981
4982 if (!info->shared)
4983 {
14a793b2
AM
4984 const char *name;
4985
4986 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4987 bh = NULL;
4988 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
4989 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4990 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4991 return FALSE;
14a793b2
AM
4992
4993 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4994 h->non_elf = 0;
4995 h->def_regular = 1;
b49e97c9
TS
4996 h->type = STT_SECTION;
4997
c152c796 4998 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4999 return FALSE;
b49e97c9
TS
5000
5001 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5002 {
5003 /* __rld_map is a four byte word located in the .data section
5004 and is filled in by the rtld to contain a pointer to
5005 the _r_debug structure. Its symbol value will be set in
5006 _bfd_mips_elf_finish_dynamic_symbol. */
5007 s = bfd_get_section_by_name (abfd, ".rld_map");
5008 BFD_ASSERT (s != NULL);
5009
14a793b2
AM
5010 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5011 bh = NULL;
5012 if (!(_bfd_generic_link_add_one_symbol
9719ad41 5013 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 5014 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5015 return FALSE;
14a793b2
AM
5016
5017 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5018 h->non_elf = 0;
5019 h->def_regular = 1;
b49e97c9
TS
5020 h->type = STT_OBJECT;
5021
c152c796 5022 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5023 return FALSE;
b49e97c9
TS
5024 }
5025 }
5026
b34976b6 5027 return TRUE;
b49e97c9
TS
5028}
5029\f
5030/* Look through the relocs for a section during the first phase, and
5031 allocate space in the global offset table. */
5032
b34976b6 5033bfd_boolean
9719ad41
RS
5034_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5035 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
5036{
5037 const char *name;
5038 bfd *dynobj;
5039 Elf_Internal_Shdr *symtab_hdr;
5040 struct elf_link_hash_entry **sym_hashes;
5041 struct mips_got_info *g;
5042 size_t extsymoff;
5043 const Elf_Internal_Rela *rel;
5044 const Elf_Internal_Rela *rel_end;
5045 asection *sgot;
5046 asection *sreloc;
9c5bfbb7 5047 const struct elf_backend_data *bed;
b49e97c9 5048
1049f94e 5049 if (info->relocatable)
b34976b6 5050 return TRUE;
b49e97c9
TS
5051
5052 dynobj = elf_hash_table (info)->dynobj;
5053 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5054 sym_hashes = elf_sym_hashes (abfd);
5055 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5056
5057 /* Check for the mips16 stub sections. */
5058
5059 name = bfd_get_section_name (abfd, sec);
5060 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5061 {
5062 unsigned long r_symndx;
5063
5064 /* Look at the relocation information to figure out which symbol
5065 this is for. */
5066
5067 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5068
5069 if (r_symndx < extsymoff
5070 || sym_hashes[r_symndx - extsymoff] == NULL)
5071 {
5072 asection *o;
5073
5074 /* This stub is for a local symbol. This stub will only be
5075 needed if there is some relocation in this BFD, other
5076 than a 16 bit function call, which refers to this symbol. */
5077 for (o = abfd->sections; o != NULL; o = o->next)
5078 {
5079 Elf_Internal_Rela *sec_relocs;
5080 const Elf_Internal_Rela *r, *rend;
5081
5082 /* We can ignore stub sections when looking for relocs. */
5083 if ((o->flags & SEC_RELOC) == 0
5084 || o->reloc_count == 0
5085 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5086 sizeof FN_STUB - 1) == 0
5087 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5088 sizeof CALL_STUB - 1) == 0
5089 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5090 sizeof CALL_FP_STUB - 1) == 0)
5091 continue;
5092
45d6a902 5093 sec_relocs
9719ad41 5094 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 5095 info->keep_memory);
b49e97c9 5096 if (sec_relocs == NULL)
b34976b6 5097 return FALSE;
b49e97c9
TS
5098
5099 rend = sec_relocs + o->reloc_count;
5100 for (r = sec_relocs; r < rend; r++)
5101 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5102 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5103 break;
5104
6cdc0ccc 5105 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5106 free (sec_relocs);
5107
5108 if (r < rend)
5109 break;
5110 }
5111
5112 if (o == NULL)
5113 {
5114 /* There is no non-call reloc for this stub, so we do
5115 not need it. Since this function is called before
5116 the linker maps input sections to output sections, we
5117 can easily discard it by setting the SEC_EXCLUDE
5118 flag. */
5119 sec->flags |= SEC_EXCLUDE;
b34976b6 5120 return TRUE;
b49e97c9
TS
5121 }
5122
5123 /* Record this stub in an array of local symbol stubs for
5124 this BFD. */
5125 if (elf_tdata (abfd)->local_stubs == NULL)
5126 {
5127 unsigned long symcount;
5128 asection **n;
5129 bfd_size_type amt;
5130
5131 if (elf_bad_symtab (abfd))
5132 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5133 else
5134 symcount = symtab_hdr->sh_info;
5135 amt = symcount * sizeof (asection *);
9719ad41 5136 n = bfd_zalloc (abfd, amt);
b49e97c9 5137 if (n == NULL)
b34976b6 5138 return FALSE;
b49e97c9
TS
5139 elf_tdata (abfd)->local_stubs = n;
5140 }
5141
5142 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5143
5144 /* We don't need to set mips16_stubs_seen in this case.
5145 That flag is used to see whether we need to look through
5146 the global symbol table for stubs. We don't need to set
5147 it here, because we just have a local stub. */
5148 }
5149 else
5150 {
5151 struct mips_elf_link_hash_entry *h;
5152
5153 h = ((struct mips_elf_link_hash_entry *)
5154 sym_hashes[r_symndx - extsymoff]);
5155
5156 /* H is the symbol this stub is for. */
5157
5158 h->fn_stub = sec;
b34976b6 5159 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5160 }
5161 }
5162 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5163 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5164 {
5165 unsigned long r_symndx;
5166 struct mips_elf_link_hash_entry *h;
5167 asection **loc;
5168
5169 /* Look at the relocation information to figure out which symbol
5170 this is for. */
5171
5172 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5173
5174 if (r_symndx < extsymoff
5175 || sym_hashes[r_symndx - extsymoff] == NULL)
5176 {
5177 /* This stub was actually built for a static symbol defined
5178 in the same file. We assume that all static symbols in
5179 mips16 code are themselves mips16, so we can simply
5180 discard this stub. Since this function is called before
5181 the linker maps input sections to output sections, we can
5182 easily discard it by setting the SEC_EXCLUDE flag. */
5183 sec->flags |= SEC_EXCLUDE;
b34976b6 5184 return TRUE;
b49e97c9
TS
5185 }
5186
5187 h = ((struct mips_elf_link_hash_entry *)
5188 sym_hashes[r_symndx - extsymoff]);
5189
5190 /* H is the symbol this stub is for. */
5191
5192 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5193 loc = &h->call_fp_stub;
5194 else
5195 loc = &h->call_stub;
5196
5197 /* If we already have an appropriate stub for this function, we
5198 don't need another one, so we can discard this one. Since
5199 this function is called before the linker maps input sections
5200 to output sections, we can easily discard it by setting the
5201 SEC_EXCLUDE flag. We can also discard this section if we
5202 happen to already know that this is a mips16 function; it is
5203 not necessary to check this here, as it is checked later, but
5204 it is slightly faster to check now. */
5205 if (*loc != NULL || h->root.other == STO_MIPS16)
5206 {
5207 sec->flags |= SEC_EXCLUDE;
b34976b6 5208 return TRUE;
b49e97c9
TS
5209 }
5210
5211 *loc = sec;
b34976b6 5212 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5213 }
5214
5215 if (dynobj == NULL)
5216 {
5217 sgot = NULL;
5218 g = NULL;
5219 }
5220 else
5221 {
f4416af6 5222 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5223 if (sgot == NULL)
5224 g = NULL;
5225 else
5226 {
f0abc2a1
AM
5227 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5228 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5229 BFD_ASSERT (g != NULL);
5230 }
5231 }
5232
5233 sreloc = NULL;
5234 bed = get_elf_backend_data (abfd);
5235 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5236 for (rel = relocs; rel < rel_end; ++rel)
5237 {
5238 unsigned long r_symndx;
5239 unsigned int r_type;
5240 struct elf_link_hash_entry *h;
5241
5242 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5243 r_type = ELF_R_TYPE (abfd, rel->r_info);
5244
5245 if (r_symndx < extsymoff)
5246 h = NULL;
5247 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5248 {
5249 (*_bfd_error_handler)
d003868e
AM
5250 (_("%B: Malformed reloc detected for section %s"),
5251 abfd, name);
b49e97c9 5252 bfd_set_error (bfd_error_bad_value);
b34976b6 5253 return FALSE;
b49e97c9
TS
5254 }
5255 else
5256 {
5257 h = sym_hashes[r_symndx - extsymoff];
5258
5259 /* This may be an indirect symbol created because of a version. */
5260 if (h != NULL)
5261 {
5262 while (h->root.type == bfd_link_hash_indirect)
5263 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5264 }
5265 }
5266
5267 /* Some relocs require a global offset table. */
5268 if (dynobj == NULL || sgot == NULL)
5269 {
5270 switch (r_type)
5271 {
5272 case R_MIPS_GOT16:
5273 case R_MIPS_CALL16:
5274 case R_MIPS_CALL_HI16:
5275 case R_MIPS_CALL_LO16:
5276 case R_MIPS_GOT_HI16:
5277 case R_MIPS_GOT_LO16:
5278 case R_MIPS_GOT_PAGE:
5279 case R_MIPS_GOT_OFST:
5280 case R_MIPS_GOT_DISP:
5281 if (dynobj == NULL)
5282 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5283 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5284 return FALSE;
b49e97c9
TS
5285 g = mips_elf_got_info (dynobj, &sgot);
5286 break;
5287
5288 case R_MIPS_32:
5289 case R_MIPS_REL32:
5290 case R_MIPS_64:
5291 if (dynobj == NULL
5292 && (info->shared || h != NULL)
5293 && (sec->flags & SEC_ALLOC) != 0)
5294 elf_hash_table (info)->dynobj = dynobj = abfd;
5295 break;
5296
5297 default:
5298 break;
5299 }
5300 }
5301
5302 if (!h && (r_type == R_MIPS_CALL_LO16
5303 || r_type == R_MIPS_GOT_LO16
5304 || r_type == R_MIPS_GOT_DISP))
5305 {
5306 /* We may need a local GOT entry for this relocation. We
5307 don't count R_MIPS_GOT_PAGE because we can estimate the
5308 maximum number of pages needed by looking at the size of
5309 the segment. Similar comments apply to R_MIPS_GOT16 and
5310 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5311 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 5312 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6
AO
5313 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5314 rel->r_addend, g))
5315 return FALSE;
b49e97c9
TS
5316 }
5317
5318 switch (r_type)
5319 {
5320 case R_MIPS_CALL16:
5321 if (h == NULL)
5322 {
5323 (*_bfd_error_handler)
d003868e
AM
5324 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
5325 abfd, (unsigned long) rel->r_offset);
b49e97c9 5326 bfd_set_error (bfd_error_bad_value);
b34976b6 5327 return FALSE;
b49e97c9
TS
5328 }
5329 /* Fall through. */
5330
5331 case R_MIPS_CALL_HI16:
5332 case R_MIPS_CALL_LO16:
5333 if (h != NULL)
5334 {
5335 /* This symbol requires a global offset table entry. */
f4416af6 5336 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5337 return FALSE;
b49e97c9
TS
5338
5339 /* We need a stub, not a plt entry for the undefined
5340 function. But we record it as if it needs plt. See
c152c796 5341 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 5342 h->needs_plt = 1;
b49e97c9
TS
5343 h->type = STT_FUNC;
5344 }
5345 break;
5346
0fdc1bf1
AO
5347 case R_MIPS_GOT_PAGE:
5348 /* If this is a global, overridable symbol, GOT_PAGE will
5349 decay to GOT_DISP, so we'll need a GOT entry for it. */
5350 if (h == NULL)
5351 break;
5352 else
5353 {
5354 struct mips_elf_link_hash_entry *hmips =
5355 (struct mips_elf_link_hash_entry *) h;
143d77c5 5356
0fdc1bf1
AO
5357 while (hmips->root.root.type == bfd_link_hash_indirect
5358 || hmips->root.root.type == bfd_link_hash_warning)
5359 hmips = (struct mips_elf_link_hash_entry *)
5360 hmips->root.root.u.i.link;
143d77c5 5361
f5385ebf 5362 if (hmips->root.def_regular
0fdc1bf1 5363 && ! (info->shared && ! info->symbolic
f5385ebf 5364 && ! hmips->root.forced_local))
0fdc1bf1
AO
5365 break;
5366 }
5367 /* Fall through. */
5368
b49e97c9
TS
5369 case R_MIPS_GOT16:
5370 case R_MIPS_GOT_HI16:
5371 case R_MIPS_GOT_LO16:
5372 case R_MIPS_GOT_DISP:
5373 /* This symbol requires a global offset table entry. */
f4416af6 5374 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5375 return FALSE;
b49e97c9
TS
5376 break;
5377
5378 case R_MIPS_32:
5379 case R_MIPS_REL32:
5380 case R_MIPS_64:
5381 if ((info->shared || h != NULL)
5382 && (sec->flags & SEC_ALLOC) != 0)
5383 {
5384 if (sreloc == NULL)
5385 {
f4416af6 5386 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 5387 if (sreloc == NULL)
f4416af6 5388 return FALSE;
b49e97c9
TS
5389 }
5390#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5391 if (info->shared)
5392 {
5393 /* When creating a shared object, we must copy these
5394 reloc types into the output file as R_MIPS_REL32
5395 relocs. We make room for this reloc in the
5396 .rel.dyn reloc section. */
5397 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5398 if ((sec->flags & MIPS_READONLY_SECTION)
5399 == MIPS_READONLY_SECTION)
5400 /* We tell the dynamic linker that there are
5401 relocations against the text segment. */
5402 info->flags |= DF_TEXTREL;
5403 }
5404 else
5405 {
5406 struct mips_elf_link_hash_entry *hmips;
5407
5408 /* We only need to copy this reloc if the symbol is
5409 defined in a dynamic object. */
5410 hmips = (struct mips_elf_link_hash_entry *) h;
5411 ++hmips->possibly_dynamic_relocs;
5412 if ((sec->flags & MIPS_READONLY_SECTION)
5413 == MIPS_READONLY_SECTION)
5414 /* We need it to tell the dynamic linker if there
5415 are relocations against the text segment. */
b34976b6 5416 hmips->readonly_reloc = TRUE;
b49e97c9
TS
5417 }
5418
5419 /* Even though we don't directly need a GOT entry for
5420 this symbol, a symbol must have a dynamic symbol
5421 table index greater that DT_MIPS_GOTSYM if there are
5422 dynamic relocations against it. */
f4416af6
AO
5423 if (h != NULL)
5424 {
5425 if (dynobj == NULL)
5426 elf_hash_table (info)->dynobj = dynobj = abfd;
5427 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5428 return FALSE;
5429 g = mips_elf_got_info (dynobj, &sgot);
5430 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5431 return FALSE;
5432 }
b49e97c9
TS
5433 }
5434
5435 if (SGI_COMPAT (abfd))
5436 mips_elf_hash_table (info)->compact_rel_size +=
5437 sizeof (Elf32_External_crinfo);
5438 break;
5439
5440 case R_MIPS_26:
5441 case R_MIPS_GPREL16:
5442 case R_MIPS_LITERAL:
5443 case R_MIPS_GPREL32:
5444 if (SGI_COMPAT (abfd))
5445 mips_elf_hash_table (info)->compact_rel_size +=
5446 sizeof (Elf32_External_crinfo);
5447 break;
5448
5449 /* This relocation describes the C++ object vtable hierarchy.
5450 Reconstruct it for later use during GC. */
5451 case R_MIPS_GNU_VTINHERIT:
c152c796 5452 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 5453 return FALSE;
b49e97c9
TS
5454 break;
5455
5456 /* This relocation describes which C++ vtable entries are actually
5457 used. Record for later use during GC. */
5458 case R_MIPS_GNU_VTENTRY:
c152c796 5459 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 5460 return FALSE;
b49e97c9
TS
5461 break;
5462
5463 default:
5464 break;
5465 }
5466
5467 /* We must not create a stub for a symbol that has relocations
5468 related to taking the function's address. */
5469 switch (r_type)
5470 {
5471 default:
5472 if (h != NULL)
5473 {
5474 struct mips_elf_link_hash_entry *mh;
5475
5476 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5477 mh->no_fn_stub = TRUE;
b49e97c9
TS
5478 }
5479 break;
5480 case R_MIPS_CALL16:
5481 case R_MIPS_CALL_HI16:
5482 case R_MIPS_CALL_LO16:
2b86c02e 5483 case R_MIPS_JALR:
b49e97c9
TS
5484 break;
5485 }
5486
5487 /* If this reloc is not a 16 bit call, and it has a global
5488 symbol, then we will need the fn_stub if there is one.
5489 References from a stub section do not count. */
5490 if (h != NULL
5491 && r_type != R_MIPS16_26
5492 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5493 sizeof FN_STUB - 1) != 0
5494 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5495 sizeof CALL_STUB - 1) != 0
5496 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5497 sizeof CALL_FP_STUB - 1) != 0)
5498 {
5499 struct mips_elf_link_hash_entry *mh;
5500
5501 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5502 mh->need_fn_stub = TRUE;
b49e97c9
TS
5503 }
5504 }
5505
b34976b6 5506 return TRUE;
b49e97c9
TS
5507}
5508\f
d0647110 5509bfd_boolean
9719ad41
RS
5510_bfd_mips_relax_section (bfd *abfd, asection *sec,
5511 struct bfd_link_info *link_info,
5512 bfd_boolean *again)
d0647110
AO
5513{
5514 Elf_Internal_Rela *internal_relocs;
5515 Elf_Internal_Rela *irel, *irelend;
5516 Elf_Internal_Shdr *symtab_hdr;
5517 bfd_byte *contents = NULL;
d0647110
AO
5518 size_t extsymoff;
5519 bfd_boolean changed_contents = FALSE;
5520 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5521 Elf_Internal_Sym *isymbuf = NULL;
5522
5523 /* We are not currently changing any sizes, so only one pass. */
5524 *again = FALSE;
5525
1049f94e 5526 if (link_info->relocatable)
d0647110
AO
5527 return TRUE;
5528
9719ad41 5529 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 5530 link_info->keep_memory);
d0647110
AO
5531 if (internal_relocs == NULL)
5532 return TRUE;
5533
5534 irelend = internal_relocs + sec->reloc_count
5535 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5536 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5537 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5538
5539 for (irel = internal_relocs; irel < irelend; irel++)
5540 {
5541 bfd_vma symval;
5542 bfd_signed_vma sym_offset;
5543 unsigned int r_type;
5544 unsigned long r_symndx;
5545 asection *sym_sec;
5546 unsigned long instruction;
5547
5548 /* Turn jalr into bgezal, and jr into beq, if they're marked
5549 with a JALR relocation, that indicate where they jump to.
5550 This saves some pipeline bubbles. */
5551 r_type = ELF_R_TYPE (abfd, irel->r_info);
5552 if (r_type != R_MIPS_JALR)
5553 continue;
5554
5555 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5556 /* Compute the address of the jump target. */
5557 if (r_symndx >= extsymoff)
5558 {
5559 struct mips_elf_link_hash_entry *h
5560 = ((struct mips_elf_link_hash_entry *)
5561 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5562
5563 while (h->root.root.type == bfd_link_hash_indirect
5564 || h->root.root.type == bfd_link_hash_warning)
5565 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 5566
d0647110
AO
5567 /* If a symbol is undefined, or if it may be overridden,
5568 skip it. */
5569 if (! ((h->root.root.type == bfd_link_hash_defined
5570 || h->root.root.type == bfd_link_hash_defweak)
5571 && h->root.root.u.def.section)
5572 || (link_info->shared && ! link_info->symbolic
f5385ebf 5573 && !h->root.forced_local))
d0647110
AO
5574 continue;
5575
5576 sym_sec = h->root.root.u.def.section;
5577 if (sym_sec->output_section)
5578 symval = (h->root.root.u.def.value
5579 + sym_sec->output_section->vma
5580 + sym_sec->output_offset);
5581 else
5582 symval = h->root.root.u.def.value;
5583 }
5584 else
5585 {
5586 Elf_Internal_Sym *isym;
5587
5588 /* Read this BFD's symbols if we haven't done so already. */
5589 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5590 {
5591 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5592 if (isymbuf == NULL)
5593 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5594 symtab_hdr->sh_info, 0,
5595 NULL, NULL, NULL);
5596 if (isymbuf == NULL)
5597 goto relax_return;
5598 }
5599
5600 isym = isymbuf + r_symndx;
5601 if (isym->st_shndx == SHN_UNDEF)
5602 continue;
5603 else if (isym->st_shndx == SHN_ABS)
5604 sym_sec = bfd_abs_section_ptr;
5605 else if (isym->st_shndx == SHN_COMMON)
5606 sym_sec = bfd_com_section_ptr;
5607 else
5608 sym_sec
5609 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5610 symval = isym->st_value
5611 + sym_sec->output_section->vma
5612 + sym_sec->output_offset;
5613 }
5614
5615 /* Compute branch offset, from delay slot of the jump to the
5616 branch target. */
5617 sym_offset = (symval + irel->r_addend)
5618 - (sec_start + irel->r_offset + 4);
5619
5620 /* Branch offset must be properly aligned. */
5621 if ((sym_offset & 3) != 0)
5622 continue;
5623
5624 sym_offset >>= 2;
5625
5626 /* Check that it's in range. */
5627 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5628 continue;
143d77c5 5629
d0647110
AO
5630 /* Get the section contents if we haven't done so already. */
5631 if (contents == NULL)
5632 {
5633 /* Get cached copy if it exists. */
5634 if (elf_section_data (sec)->this_hdr.contents != NULL)
5635 contents = elf_section_data (sec)->this_hdr.contents;
5636 else
5637 {
eea6121a 5638 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
5639 goto relax_return;
5640 }
5641 }
5642
5643 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5644
5645 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5646 if ((instruction & 0xfc1fffff) == 0x0000f809)
5647 instruction = 0x04110000;
5648 /* If it was jr <reg>, turn it into b <target>. */
5649 else if ((instruction & 0xfc1fffff) == 0x00000008)
5650 instruction = 0x10000000;
5651 else
5652 continue;
5653
5654 instruction |= (sym_offset & 0xffff);
5655 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5656 changed_contents = TRUE;
5657 }
5658
5659 if (contents != NULL
5660 && elf_section_data (sec)->this_hdr.contents != contents)
5661 {
5662 if (!changed_contents && !link_info->keep_memory)
5663 free (contents);
5664 else
5665 {
5666 /* Cache the section contents for elf_link_input_bfd. */
5667 elf_section_data (sec)->this_hdr.contents = contents;
5668 }
5669 }
5670 return TRUE;
5671
143d77c5 5672 relax_return:
eea6121a
AM
5673 if (contents != NULL
5674 && elf_section_data (sec)->this_hdr.contents != contents)
5675 free (contents);
d0647110
AO
5676 return FALSE;
5677}
5678\f
b49e97c9
TS
5679/* Adjust a symbol defined by a dynamic object and referenced by a
5680 regular object. The current definition is in some section of the
5681 dynamic object, but we're not including those sections. We have to
5682 change the definition to something the rest of the link can
5683 understand. */
5684
b34976b6 5685bfd_boolean
9719ad41
RS
5686_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5687 struct elf_link_hash_entry *h)
b49e97c9
TS
5688{
5689 bfd *dynobj;
5690 struct mips_elf_link_hash_entry *hmips;
5691 asection *s;
5692
5693 dynobj = elf_hash_table (info)->dynobj;
5694
5695 /* Make sure we know what is going on here. */
5696 BFD_ASSERT (dynobj != NULL
f5385ebf 5697 && (h->needs_plt
f6e332e6 5698 || h->u.weakdef != NULL
f5385ebf
AM
5699 || (h->def_dynamic
5700 && h->ref_regular
5701 && !h->def_regular)));
b49e97c9
TS
5702
5703 /* If this symbol is defined in a dynamic object, we need to copy
5704 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5705 file. */
5706 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 5707 if (! info->relocatable
b49e97c9
TS
5708 && hmips->possibly_dynamic_relocs != 0
5709 && (h->root.type == bfd_link_hash_defweak
f5385ebf 5710 || !h->def_regular))
b49e97c9
TS
5711 {
5712 mips_elf_allocate_dynamic_relocations (dynobj,
5713 hmips->possibly_dynamic_relocs);
5714 if (hmips->readonly_reloc)
5715 /* We tell the dynamic linker that there are relocations
5716 against the text segment. */
5717 info->flags |= DF_TEXTREL;
5718 }
5719
5720 /* For a function, create a stub, if allowed. */
5721 if (! hmips->no_fn_stub
f5385ebf 5722 && h->needs_plt)
b49e97c9
TS
5723 {
5724 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 5725 return TRUE;
b49e97c9
TS
5726
5727 /* If this symbol is not defined in a regular file, then set
5728 the symbol to the stub location. This is required to make
5729 function pointers compare as equal between the normal
5730 executable and the shared library. */
f5385ebf 5731 if (!h->def_regular)
b49e97c9
TS
5732 {
5733 /* We need .stub section. */
5734 s = bfd_get_section_by_name (dynobj,
5735 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5736 BFD_ASSERT (s != NULL);
5737
5738 h->root.u.def.section = s;
eea6121a 5739 h->root.u.def.value = s->size;
b49e97c9
TS
5740
5741 /* XXX Write this stub address somewhere. */
eea6121a 5742 h->plt.offset = s->size;
b49e97c9
TS
5743
5744 /* Make room for this stub code. */
eea6121a 5745 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
5746
5747 /* The last half word of the stub will be filled with the index
5748 of this symbol in .dynsym section. */
b34976b6 5749 return TRUE;
b49e97c9
TS
5750 }
5751 }
5752 else if ((h->type == STT_FUNC)
f5385ebf 5753 && !h->needs_plt)
b49e97c9
TS
5754 {
5755 /* This will set the entry for this symbol in the GOT to 0, and
5756 the dynamic linker will take care of this. */
5757 h->root.u.def.value = 0;
b34976b6 5758 return TRUE;
b49e97c9
TS
5759 }
5760
5761 /* If this is a weak symbol, and there is a real definition, the
5762 processor independent code will have arranged for us to see the
5763 real definition first, and we can just use the same value. */
f6e332e6 5764 if (h->u.weakdef != NULL)
b49e97c9 5765 {
f6e332e6
AM
5766 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5767 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5768 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5769 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 5770 return TRUE;
b49e97c9
TS
5771 }
5772
5773 /* This is a reference to a symbol defined by a dynamic object which
5774 is not a function. */
5775
b34976b6 5776 return TRUE;
b49e97c9
TS
5777}
5778\f
5779/* This function is called after all the input files have been read,
5780 and the input sections have been assigned to output sections. We
5781 check for any mips16 stub sections that we can discard. */
5782
b34976b6 5783bfd_boolean
9719ad41
RS
5784_bfd_mips_elf_always_size_sections (bfd *output_bfd,
5785 struct bfd_link_info *info)
b49e97c9
TS
5786{
5787 asection *ri;
5788
f4416af6
AO
5789 bfd *dynobj;
5790 asection *s;
5791 struct mips_got_info *g;
5792 int i;
5793 bfd_size_type loadable_size = 0;
5794 bfd_size_type local_gotno;
5795 bfd *sub;
5796
b49e97c9
TS
5797 /* The .reginfo section has a fixed size. */
5798 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5799 if (ri != NULL)
9719ad41 5800 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 5801
1049f94e 5802 if (! (info->relocatable
f4416af6
AO
5803 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5804 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 5805 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
5806
5807 dynobj = elf_hash_table (info)->dynobj;
5808 if (dynobj == NULL)
5809 /* Relocatable links don't have it. */
5810 return TRUE;
143d77c5 5811
f4416af6
AO
5812 g = mips_elf_got_info (dynobj, &s);
5813 if (s == NULL)
b34976b6 5814 return TRUE;
b49e97c9 5815
f4416af6
AO
5816 /* Calculate the total loadable size of the output. That
5817 will give us the maximum number of GOT_PAGE entries
5818 required. */
5819 for (sub = info->input_bfds; sub; sub = sub->link_next)
5820 {
5821 asection *subsection;
5822
5823 for (subsection = sub->sections;
5824 subsection;
5825 subsection = subsection->next)
5826 {
5827 if ((subsection->flags & SEC_ALLOC) == 0)
5828 continue;
eea6121a 5829 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
5830 &~ (bfd_size_type) 0xf);
5831 }
5832 }
5833
5834 /* There has to be a global GOT entry for every symbol with
5835 a dynamic symbol table index of DT_MIPS_GOTSYM or
5836 higher. Therefore, it make sense to put those symbols
5837 that need GOT entries at the end of the symbol table. We
5838 do that here. */
5839 if (! mips_elf_sort_hash_table (info, 1))
5840 return FALSE;
5841
5842 if (g->global_gotsym != NULL)
5843 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5844 else
5845 /* If there are no global symbols, or none requiring
5846 relocations, then GLOBAL_GOTSYM will be NULL. */
5847 i = 0;
5848
5849 /* In the worst case, we'll get one stub per dynamic symbol, plus
5850 one to account for the dummy entry at the end required by IRIX
5851 rld. */
5852 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5853
5854 /* Assume there are two loadable segments consisting of
5855 contiguous sections. Is 5 enough? */
5856 local_gotno = (loadable_size >> 16) + 5;
5857
5858 g->local_gotno += local_gotno;
eea6121a 5859 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
5860
5861 g->global_gotno = i;
eea6121a 5862 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 5863
eea6121a 5864 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
f4416af6
AO
5865 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5866 return FALSE;
b49e97c9 5867
b34976b6 5868 return TRUE;
b49e97c9
TS
5869}
5870
5871/* Set the sizes of the dynamic sections. */
5872
b34976b6 5873bfd_boolean
9719ad41
RS
5874_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5875 struct bfd_link_info *info)
b49e97c9
TS
5876{
5877 bfd *dynobj;
5878 asection *s;
b34976b6 5879 bfd_boolean reltext;
b49e97c9
TS
5880
5881 dynobj = elf_hash_table (info)->dynobj;
5882 BFD_ASSERT (dynobj != NULL);
5883
5884 if (elf_hash_table (info)->dynamic_sections_created)
5885 {
5886 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 5887 if (info->executable)
b49e97c9
TS
5888 {
5889 s = bfd_get_section_by_name (dynobj, ".interp");
5890 BFD_ASSERT (s != NULL);
eea6121a 5891 s->size
b49e97c9
TS
5892 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5893 s->contents
5894 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5895 }
5896 }
5897
5898 /* The check_relocs and adjust_dynamic_symbol entry points have
5899 determined the sizes of the various dynamic sections. Allocate
5900 memory for them. */
b34976b6 5901 reltext = FALSE;
b49e97c9
TS
5902 for (s = dynobj->sections; s != NULL; s = s->next)
5903 {
5904 const char *name;
b34976b6 5905 bfd_boolean strip;
b49e97c9
TS
5906
5907 /* It's OK to base decisions on the section name, because none
5908 of the dynobj section names depend upon the input files. */
5909 name = bfd_get_section_name (dynobj, s);
5910
5911 if ((s->flags & SEC_LINKER_CREATED) == 0)
5912 continue;
5913
b34976b6 5914 strip = FALSE;
b49e97c9
TS
5915
5916 if (strncmp (name, ".rel", 4) == 0)
5917 {
eea6121a 5918 if (s->size == 0)
b49e97c9
TS
5919 {
5920 /* We only strip the section if the output section name
5921 has the same name. Otherwise, there might be several
5922 input sections for this output section. FIXME: This
5923 code is probably not needed these days anyhow, since
5924 the linker now does not create empty output sections. */
5925 if (s->output_section != NULL
5926 && strcmp (name,
5927 bfd_get_section_name (s->output_section->owner,
5928 s->output_section)) == 0)
b34976b6 5929 strip = TRUE;
b49e97c9
TS
5930 }
5931 else
5932 {
5933 const char *outname;
5934 asection *target;
5935
5936 /* If this relocation section applies to a read only
5937 section, then we probably need a DT_TEXTREL entry.
5938 If the relocation section is .rel.dyn, we always
5939 assert a DT_TEXTREL entry rather than testing whether
5940 there exists a relocation to a read only section or
5941 not. */
5942 outname = bfd_get_section_name (output_bfd,
5943 s->output_section);
5944 target = bfd_get_section_by_name (output_bfd, outname + 4);
5945 if ((target != NULL
5946 && (target->flags & SEC_READONLY) != 0
5947 && (target->flags & SEC_ALLOC) != 0)
5948 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 5949 reltext = TRUE;
b49e97c9
TS
5950
5951 /* We use the reloc_count field as a counter if we need
5952 to copy relocs into the output file. */
5953 if (strcmp (name, ".rel.dyn") != 0)
5954 s->reloc_count = 0;
f4416af6
AO
5955
5956 /* If combreloc is enabled, elf_link_sort_relocs() will
5957 sort relocations, but in a different way than we do,
5958 and before we're done creating relocations. Also, it
5959 will move them around between input sections'
5960 relocation's contents, so our sorting would be
5961 broken, so don't let it run. */
5962 info->combreloc = 0;
b49e97c9
TS
5963 }
5964 }
5965 else if (strncmp (name, ".got", 4) == 0)
5966 {
f4416af6
AO
5967 /* _bfd_mips_elf_always_size_sections() has already done
5968 most of the work, but some symbols may have been mapped
5969 to versions that we must now resolve in the got_entries
5970 hash tables. */
5971 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5972 struct mips_got_info *g = gg;
5973 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5974 unsigned int needed_relocs = 0;
143d77c5 5975
f4416af6 5976 if (gg->next)
b49e97c9 5977 {
f4416af6
AO
5978 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5979 set_got_offset_arg.info = info;
b49e97c9 5980
f4416af6
AO
5981 mips_elf_resolve_final_got_entries (gg);
5982 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 5983 {
f4416af6
AO
5984 unsigned int save_assign;
5985
5986 mips_elf_resolve_final_got_entries (g);
5987
5988 /* Assign offsets to global GOT entries. */
5989 save_assign = g->assigned_gotno;
5990 g->assigned_gotno = g->local_gotno;
5991 set_got_offset_arg.g = g;
5992 set_got_offset_arg.needed_relocs = 0;
5993 htab_traverse (g->got_entries,
5994 mips_elf_set_global_got_offset,
5995 &set_got_offset_arg);
5996 needed_relocs += set_got_offset_arg.needed_relocs;
5997 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5998 <= g->global_gotno);
5999
6000 g->assigned_gotno = save_assign;
6001 if (info->shared)
6002 {
6003 needed_relocs += g->local_gotno - g->assigned_gotno;
6004 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6005 + g->next->global_gotno
6006 + MIPS_RESERVED_GOTNO);
6007 }
b49e97c9 6008 }
b49e97c9 6009
f4416af6
AO
6010 if (needed_relocs)
6011 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6012 }
b49e97c9
TS
6013 }
6014 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6015 {
8dc1a139 6016 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9 6017 of .text section. So put a dummy. XXX */
eea6121a 6018 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6019 }
6020 else if (! info->shared
6021 && ! mips_elf_hash_table (info)->use_rld_obj_head
6022 && strncmp (name, ".rld_map", 8) == 0)
6023 {
6024 /* We add a room for __rld_map. It will be filled in by the
6025 rtld to contain a pointer to the _r_debug structure. */
eea6121a 6026 s->size += 4;
b49e97c9
TS
6027 }
6028 else if (SGI_COMPAT (output_bfd)
6029 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 6030 s->size += mips_elf_hash_table (info)->compact_rel_size;
b49e97c9
TS
6031 else if (strncmp (name, ".init", 5) != 0)
6032 {
6033 /* It's not one of our sections, so don't allocate space. */
6034 continue;
6035 }
6036
6037 if (strip)
6038 {
6039 _bfd_strip_section_from_output (info, s);
6040 continue;
6041 }
6042
6043 /* Allocate memory for the section contents. */
eea6121a
AM
6044 s->contents = bfd_zalloc (dynobj, s->size);
6045 if (s->contents == NULL && s->size != 0)
b49e97c9
TS
6046 {
6047 bfd_set_error (bfd_error_no_memory);
b34976b6 6048 return FALSE;
b49e97c9
TS
6049 }
6050 }
6051
6052 if (elf_hash_table (info)->dynamic_sections_created)
6053 {
6054 /* Add some entries to the .dynamic section. We fill in the
6055 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6056 must add the entries now so that we get the correct size for
6057 the .dynamic section. The DT_DEBUG entry is filled in by the
6058 dynamic linker and used by the debugger. */
6059 if (! info->shared)
6060 {
6061 /* SGI object has the equivalence of DT_DEBUG in the
6062 DT_MIPS_RLD_MAP entry. */
6063 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6064 return FALSE;
b49e97c9
TS
6065 if (!SGI_COMPAT (output_bfd))
6066 {
6067 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6068 return FALSE;
b49e97c9
TS
6069 }
6070 }
6071 else
6072 {
6073 /* Shared libraries on traditional mips have DT_DEBUG. */
6074 if (!SGI_COMPAT (output_bfd))
6075 {
6076 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6077 return FALSE;
b49e97c9
TS
6078 }
6079 }
6080
6081 if (reltext && SGI_COMPAT (output_bfd))
6082 info->flags |= DF_TEXTREL;
6083
6084 if ((info->flags & DF_TEXTREL) != 0)
6085 {
6086 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6087 return FALSE;
b49e97c9
TS
6088 }
6089
6090 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6091 return FALSE;
b49e97c9 6092
f4416af6 6093 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6094 {
6095 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6096 return FALSE;
b49e97c9
TS
6097
6098 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6099 return FALSE;
b49e97c9
TS
6100
6101 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6102 return FALSE;
b49e97c9
TS
6103 }
6104
b49e97c9 6105 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6106 return FALSE;
b49e97c9
TS
6107
6108 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6109 return FALSE;
b49e97c9
TS
6110
6111#if 0
6112 /* Time stamps in executable files are a bad idea. */
6113 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
b34976b6 6114 return FALSE;
b49e97c9
TS
6115#endif
6116
6117#if 0 /* FIXME */
6118 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
b34976b6 6119 return FALSE;
b49e97c9
TS
6120#endif
6121
6122#if 0 /* FIXME */
6123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
b34976b6 6124 return FALSE;
b49e97c9
TS
6125#endif
6126
6127 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6128 return FALSE;
b49e97c9
TS
6129
6130 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6131 return FALSE;
b49e97c9
TS
6132
6133 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6134 return FALSE;
b49e97c9
TS
6135
6136 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6137 return FALSE;
b49e97c9
TS
6138
6139 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6140 return FALSE;
b49e97c9
TS
6141
6142 if (IRIX_COMPAT (dynobj) == ict_irix5
6143 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6144 return FALSE;
b49e97c9
TS
6145
6146 if (IRIX_COMPAT (dynobj) == ict_irix6
6147 && (bfd_get_section_by_name
6148 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6149 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6150 return FALSE;
b49e97c9
TS
6151 }
6152
b34976b6 6153 return TRUE;
b49e97c9
TS
6154}
6155\f
6156/* Relocate a MIPS ELF section. */
6157
b34976b6 6158bfd_boolean
9719ad41
RS
6159_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6160 bfd *input_bfd, asection *input_section,
6161 bfd_byte *contents, Elf_Internal_Rela *relocs,
6162 Elf_Internal_Sym *local_syms,
6163 asection **local_sections)
b49e97c9
TS
6164{
6165 Elf_Internal_Rela *rel;
6166 const Elf_Internal_Rela *relend;
6167 bfd_vma addend = 0;
b34976b6 6168 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 6169 const struct elf_backend_data *bed;
b49e97c9
TS
6170
6171 bed = get_elf_backend_data (output_bfd);
6172 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6173 for (rel = relocs; rel < relend; ++rel)
6174 {
6175 const char *name;
6176 bfd_vma value;
6177 reloc_howto_type *howto;
b34976b6
AM
6178 bfd_boolean require_jalx;
6179 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6180 REL relocation. */
b34976b6 6181 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 6182 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 6183 const char *msg;
b49e97c9
TS
6184
6185 /* Find the relocation howto for this relocation. */
4a14403c 6186 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6187 {
6188 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6189 64-bit code, but make sure all their addresses are in the
6190 lowermost or uppermost 32-bit section of the 64-bit address
6191 space. Thus, when they use an R_MIPS_64 they mean what is
6192 usually meant by R_MIPS_32, with the exception that the
6193 stored value is sign-extended to 64 bits. */
b34976b6 6194 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6195
6196 /* On big-endian systems, we need to lie about the position
6197 of the reloc. */
6198 if (bfd_big_endian (input_bfd))
6199 rel->r_offset += 4;
6200 }
6201 else
6202 /* NewABI defaults to RELA relocations. */
6203 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6204 NEWABI_P (input_bfd)
6205 && (MIPS_RELOC_RELA_P
6206 (input_bfd, input_section,
6207 rel - relocs)));
b49e97c9
TS
6208
6209 if (!use_saved_addend_p)
6210 {
6211 Elf_Internal_Shdr *rel_hdr;
6212
6213 /* If these relocations were originally of the REL variety,
6214 we must pull the addend out of the field that will be
6215 relocated. Otherwise, we simply use the contents of the
6216 RELA relocation. To determine which flavor or relocation
6217 this is, we depend on the fact that the INPUT_SECTION's
6218 REL_HDR is read before its REL_HDR2. */
6219 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6220 if ((size_t) (rel - relocs)
6221 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6222 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6223 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6224 {
6225 /* Note that this is a REL relocation. */
b34976b6 6226 rela_relocation_p = FALSE;
b49e97c9
TS
6227
6228 /* Get the addend, which is stored in the input file. */
6229 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6230 contents);
6231 addend &= howto->src_mask;
6232
6233 /* For some kinds of relocations, the ADDEND is a
6234 combination of the addend stored in two different
6235 relocations. */
6236 if (r_type == R_MIPS_HI16
b49e97c9
TS
6237 || (r_type == R_MIPS_GOT16
6238 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 6239 local_sections, FALSE)))
b49e97c9
TS
6240 {
6241 bfd_vma l;
6242 const Elf_Internal_Rela *lo16_relocation;
6243 reloc_howto_type *lo16_howto;
b49e97c9
TS
6244
6245 /* The combined value is the sum of the HI16 addend,
6246 left-shifted by sixteen bits, and the LO16
6247 addend, sign extended. (Usually, the code does
6248 a `lui' of the HI16 value, and then an `addiu' of
6249 the LO16 value.)
6250
4030e8f6
CD
6251 Scan ahead to find a matching LO16 relocation.
6252
6253 According to the MIPS ELF ABI, the R_MIPS_LO16
6254 relocation must be immediately following.
6255 However, for the IRIX6 ABI, the next relocation
6256 may be a composed relocation consisting of
6257 several relocations for the same address. In
6258 that case, the R_MIPS_LO16 relocation may occur
6259 as one of these. We permit a similar extension
6260 in general, as that is useful for GCC. */
6261 lo16_relocation = mips_elf_next_relocation (input_bfd,
6262 R_MIPS_LO16,
b49e97c9
TS
6263 rel, relend);
6264 if (lo16_relocation == NULL)
b34976b6 6265 return FALSE;
b49e97c9
TS
6266
6267 /* Obtain the addend kept there. */
4030e8f6
CD
6268 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6269 R_MIPS_LO16, FALSE);
b49e97c9
TS
6270 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6271 input_bfd, contents);
6272 l &= lo16_howto->src_mask;
5a659663 6273 l <<= lo16_howto->rightshift;
a7ebbfdf 6274 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
6275
6276 addend <<= 16;
6277
6278 /* Compute the combined addend. */
6279 addend += l;
b49e97c9
TS
6280 }
6281 else if (r_type == R_MIPS16_GPREL)
6282 {
6283 /* The addend is scrambled in the object file. See
6284 mips_elf_perform_relocation for details on the
6285 format. */
6286 addend = (((addend & 0x1f0000) >> 5)
6287 | ((addend & 0x7e00000) >> 16)
6288 | (addend & 0x1f));
6289 }
30ac9238
RS
6290 else
6291 addend <<= howto->rightshift;
b49e97c9
TS
6292 }
6293 else
6294 addend = rel->r_addend;
6295 }
6296
1049f94e 6297 if (info->relocatable)
b49e97c9
TS
6298 {
6299 Elf_Internal_Sym *sym;
6300 unsigned long r_symndx;
6301
4a14403c 6302 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
6303 && bfd_big_endian (input_bfd))
6304 rel->r_offset -= 4;
6305
6306 /* Since we're just relocating, all we need to do is copy
6307 the relocations back out to the object file, unless
6308 they're against a section symbol, in which case we need
6309 to adjust by the section offset, or unless they're GP
6310 relative in which case we need to adjust by the amount
1049f94e 6311 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
6312
6313 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 6314 FALSE))
b49e97c9
TS
6315 /* There's nothing to do for non-local relocations. */
6316 continue;
6317
6318 if (r_type == R_MIPS16_GPREL
6319 || r_type == R_MIPS_GPREL16
6320 || r_type == R_MIPS_GPREL32
6321 || r_type == R_MIPS_LITERAL)
6322 addend -= (_bfd_get_gp_value (output_bfd)
6323 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
6324
6325 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6326 sym = local_syms + r_symndx;
6327 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6328 /* Adjust the addend appropriately. */
6329 addend += local_sections[r_symndx]->output_offset;
6330
30ac9238
RS
6331 if (rela_relocation_p)
6332 /* If this is a RELA relocation, just update the addend. */
6333 rel->r_addend = addend;
6334 else
5a659663 6335 {
30ac9238 6336 if (r_type == R_MIPS_HI16
4030e8f6 6337 || r_type == R_MIPS_GOT16)
5a659663
TS
6338 addend = mips_elf_high (addend);
6339 else if (r_type == R_MIPS_HIGHER)
6340 addend = mips_elf_higher (addend);
6341 else if (r_type == R_MIPS_HIGHEST)
6342 addend = mips_elf_highest (addend);
30ac9238
RS
6343 else
6344 addend >>= howto->rightshift;
b49e97c9 6345
30ac9238
RS
6346 /* We use the source mask, rather than the destination
6347 mask because the place to which we are writing will be
6348 source of the addend in the final link. */
b49e97c9
TS
6349 addend &= howto->src_mask;
6350
5a659663 6351 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6352 /* See the comment above about using R_MIPS_64 in the 32-bit
6353 ABI. Here, we need to update the addend. It would be
6354 possible to get away with just using the R_MIPS_32 reloc
6355 but for endianness. */
6356 {
6357 bfd_vma sign_bits;
6358 bfd_vma low_bits;
6359 bfd_vma high_bits;
6360
6361 if (addend & ((bfd_vma) 1 << 31))
6362#ifdef BFD64
6363 sign_bits = ((bfd_vma) 1 << 32) - 1;
6364#else
6365 sign_bits = -1;
6366#endif
6367 else
6368 sign_bits = 0;
6369
6370 /* If we don't know that we have a 64-bit type,
6371 do two separate stores. */
6372 if (bfd_big_endian (input_bfd))
6373 {
6374 /* Store the sign-bits (which are most significant)
6375 first. */
6376 low_bits = sign_bits;
6377 high_bits = addend;
6378 }
6379 else
6380 {
6381 low_bits = addend;
6382 high_bits = sign_bits;
6383 }
6384 bfd_put_32 (input_bfd, low_bits,
6385 contents + rel->r_offset);
6386 bfd_put_32 (input_bfd, high_bits,
6387 contents + rel->r_offset + 4);
6388 continue;
6389 }
6390
6391 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6392 input_bfd, input_section,
b34976b6
AM
6393 contents, FALSE))
6394 return FALSE;
b49e97c9
TS
6395 }
6396
6397 /* Go on to the next relocation. */
6398 continue;
6399 }
6400
6401 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6402 relocations for the same offset. In that case we are
6403 supposed to treat the output of each relocation as the addend
6404 for the next. */
6405 if (rel + 1 < relend
6406 && rel->r_offset == rel[1].r_offset
6407 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 6408 use_saved_addend_p = TRUE;
b49e97c9 6409 else
b34976b6 6410 use_saved_addend_p = FALSE;
b49e97c9
TS
6411
6412 /* Figure out what value we are supposed to relocate. */
6413 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6414 input_section, info, rel,
6415 addend, howto, local_syms,
6416 local_sections, &value,
bce03d3d
AO
6417 &name, &require_jalx,
6418 use_saved_addend_p))
b49e97c9
TS
6419 {
6420 case bfd_reloc_continue:
6421 /* There's nothing to do. */
6422 continue;
6423
6424 case bfd_reloc_undefined:
6425 /* mips_elf_calculate_relocation already called the
6426 undefined_symbol callback. There's no real point in
6427 trying to perform the relocation at this point, so we
6428 just skip ahead to the next relocation. */
6429 continue;
6430
6431 case bfd_reloc_notsupported:
6432 msg = _("internal error: unsupported relocation error");
6433 info->callbacks->warning
6434 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 6435 return FALSE;
b49e97c9
TS
6436
6437 case bfd_reloc_overflow:
6438 if (use_saved_addend_p)
6439 /* Ignore overflow until we reach the last relocation for
6440 a given location. */
6441 ;
6442 else
6443 {
6444 BFD_ASSERT (name != NULL);
6445 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 6446 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 6447 input_bfd, input_section, rel->r_offset)))
b34976b6 6448 return FALSE;
b49e97c9
TS
6449 }
6450 break;
6451
6452 case bfd_reloc_ok:
6453 break;
6454
6455 default:
6456 abort ();
6457 break;
6458 }
6459
6460 /* If we've got another relocation for the address, keep going
6461 until we reach the last one. */
6462 if (use_saved_addend_p)
6463 {
6464 addend = value;
6465 continue;
6466 }
6467
4a14403c 6468 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6469 /* See the comment above about using R_MIPS_64 in the 32-bit
6470 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6471 that calculated the right value. Now, however, we
6472 sign-extend the 32-bit result to 64-bits, and store it as a
6473 64-bit value. We are especially generous here in that we
6474 go to extreme lengths to support this usage on systems with
6475 only a 32-bit VMA. */
6476 {
6477 bfd_vma sign_bits;
6478 bfd_vma low_bits;
6479 bfd_vma high_bits;
6480
6481 if (value & ((bfd_vma) 1 << 31))
6482#ifdef BFD64
6483 sign_bits = ((bfd_vma) 1 << 32) - 1;
6484#else
6485 sign_bits = -1;
6486#endif
6487 else
6488 sign_bits = 0;
6489
6490 /* If we don't know that we have a 64-bit type,
6491 do two separate stores. */
6492 if (bfd_big_endian (input_bfd))
6493 {
6494 /* Undo what we did above. */
6495 rel->r_offset -= 4;
6496 /* Store the sign-bits (which are most significant)
6497 first. */
6498 low_bits = sign_bits;
6499 high_bits = value;
6500 }
6501 else
6502 {
6503 low_bits = value;
6504 high_bits = sign_bits;
6505 }
6506 bfd_put_32 (input_bfd, low_bits,
6507 contents + rel->r_offset);
6508 bfd_put_32 (input_bfd, high_bits,
6509 contents + rel->r_offset + 4);
6510 continue;
6511 }
6512
6513 /* Actually perform the relocation. */
6514 if (! mips_elf_perform_relocation (info, howto, rel, value,
6515 input_bfd, input_section,
6516 contents, require_jalx))
b34976b6 6517 return FALSE;
b49e97c9
TS
6518 }
6519
b34976b6 6520 return TRUE;
b49e97c9
TS
6521}
6522\f
6523/* If NAME is one of the special IRIX6 symbols defined by the linker,
6524 adjust it appropriately now. */
6525
6526static void
9719ad41
RS
6527mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6528 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
6529{
6530 /* The linker script takes care of providing names and values for
6531 these, but we must place them into the right sections. */
6532 static const char* const text_section_symbols[] = {
6533 "_ftext",
6534 "_etext",
6535 "__dso_displacement",
6536 "__elf_header",
6537 "__program_header_table",
6538 NULL
6539 };
6540
6541 static const char* const data_section_symbols[] = {
6542 "_fdata",
6543 "_edata",
6544 "_end",
6545 "_fbss",
6546 NULL
6547 };
6548
6549 const char* const *p;
6550 int i;
6551
6552 for (i = 0; i < 2; ++i)
6553 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6554 *p;
6555 ++p)
6556 if (strcmp (*p, name) == 0)
6557 {
6558 /* All of these symbols are given type STT_SECTION by the
6559 IRIX6 linker. */
6560 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 6561 sym->st_other = STO_PROTECTED;
b49e97c9
TS
6562
6563 /* The IRIX linker puts these symbols in special sections. */
6564 if (i == 0)
6565 sym->st_shndx = SHN_MIPS_TEXT;
6566 else
6567 sym->st_shndx = SHN_MIPS_DATA;
6568
6569 break;
6570 }
6571}
6572
6573/* Finish up dynamic symbol handling. We set the contents of various
6574 dynamic sections here. */
6575
b34976b6 6576bfd_boolean
9719ad41
RS
6577_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6578 struct bfd_link_info *info,
6579 struct elf_link_hash_entry *h,
6580 Elf_Internal_Sym *sym)
b49e97c9
TS
6581{
6582 bfd *dynobj;
b49e97c9 6583 asection *sgot;
f4416af6 6584 struct mips_got_info *g, *gg;
b49e97c9 6585 const char *name;
b49e97c9
TS
6586
6587 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 6588
c5ae1840 6589 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
6590 {
6591 asection *s;
6592 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6593
6594 /* This symbol has a stub. Set it up. */
6595
6596 BFD_ASSERT (h->dynindx != -1);
6597
6598 s = bfd_get_section_by_name (dynobj,
6599 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6600 BFD_ASSERT (s != NULL);
6601
6602 /* FIXME: Can h->dynindex be more than 64K? */
6603 if (h->dynindx & 0xffff0000)
b34976b6 6604 return FALSE;
b49e97c9
TS
6605
6606 /* Fill the stub. */
6607 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6608 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6609 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6610 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6611
eea6121a 6612 BFD_ASSERT (h->plt.offset <= s->size);
b49e97c9
TS
6613 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6614
6615 /* Mark the symbol as undefined. plt.offset != -1 occurs
6616 only for the referenced symbol. */
6617 sym->st_shndx = SHN_UNDEF;
6618
6619 /* The run-time linker uses the st_value field of the symbol
6620 to reset the global offset table entry for this external
6621 to its stub address when unlinking a shared object. */
c5ae1840
TS
6622 sym->st_value = (s->output_section->vma + s->output_offset
6623 + h->plt.offset);
b49e97c9
TS
6624 }
6625
6626 BFD_ASSERT (h->dynindx != -1
f5385ebf 6627 || h->forced_local);
b49e97c9 6628
f4416af6 6629 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6630 BFD_ASSERT (sgot != NULL);
f4416af6 6631 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 6632 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6633 BFD_ASSERT (g != NULL);
6634
6635 /* Run through the global symbol table, creating GOT entries for all
6636 the symbols that need them. */
6637 if (g->global_gotsym != NULL
6638 && h->dynindx >= g->global_gotsym->dynindx)
6639 {
6640 bfd_vma offset;
6641 bfd_vma value;
6642
6eaa6adc 6643 value = sym->st_value;
f4416af6 6644 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
b49e97c9
TS
6645 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6646 }
6647
f4416af6
AO
6648 if (g->next && h->dynindx != -1)
6649 {
6650 struct mips_got_entry e, *p;
0626d451 6651 bfd_vma entry;
f4416af6 6652 bfd_vma offset;
f4416af6
AO
6653
6654 gg = g;
6655
6656 e.abfd = output_bfd;
6657 e.symndx = -1;
6658 e.d.h = (struct mips_elf_link_hash_entry *)h;
143d77c5 6659
f4416af6
AO
6660 for (g = g->next; g->next != gg; g = g->next)
6661 {
6662 if (g->got_entries
6663 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6664 &e)))
6665 {
6666 offset = p->gotidx;
0626d451
RS
6667 if (info->shared
6668 || (elf_hash_table (info)->dynamic_sections_created
6669 && p->d.h != NULL
f5385ebf
AM
6670 && p->d.h->root.def_dynamic
6671 && !p->d.h->root.def_regular))
0626d451
RS
6672 {
6673 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6674 the various compatibility problems, it's easier to mock
6675 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6676 mips_elf_create_dynamic_relocation to calculate the
6677 appropriate addend. */
6678 Elf_Internal_Rela rel[3];
6679
6680 memset (rel, 0, sizeof (rel));
6681 if (ABI_64_P (output_bfd))
6682 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6683 else
6684 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6685 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6686
6687 entry = 0;
6688 if (! (mips_elf_create_dynamic_relocation
6689 (output_bfd, info, rel,
6690 e.d.h, NULL, sym->st_value, &entry, sgot)))
6691 return FALSE;
6692 }
6693 else
6694 entry = sym->st_value;
6695 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
6696 }
6697 }
6698 }
6699
b49e97c9
TS
6700 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6701 name = h->root.root.string;
6702 if (strcmp (name, "_DYNAMIC") == 0
6703 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6704 sym->st_shndx = SHN_ABS;
6705 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6706 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6707 {
6708 sym->st_shndx = SHN_ABS;
6709 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6710 sym->st_value = 1;
6711 }
4a14403c 6712 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6713 {
6714 sym->st_shndx = SHN_ABS;
6715 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6716 sym->st_value = elf_gp (output_bfd);
6717 }
6718 else if (SGI_COMPAT (output_bfd))
6719 {
6720 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6721 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6722 {
6723 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6724 sym->st_other = STO_PROTECTED;
6725 sym->st_value = 0;
6726 sym->st_shndx = SHN_MIPS_DATA;
6727 }
6728 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6729 {
6730 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6731 sym->st_other = STO_PROTECTED;
6732 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6733 sym->st_shndx = SHN_ABS;
6734 }
6735 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6736 {
6737 if (h->type == STT_FUNC)
6738 sym->st_shndx = SHN_MIPS_TEXT;
6739 else if (h->type == STT_OBJECT)
6740 sym->st_shndx = SHN_MIPS_DATA;
6741 }
6742 }
6743
6744 /* Handle the IRIX6-specific symbols. */
6745 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6746 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6747
6748 if (! info->shared)
6749 {
6750 if (! mips_elf_hash_table (info)->use_rld_obj_head
6751 && (strcmp (name, "__rld_map") == 0
6752 || strcmp (name, "__RLD_MAP") == 0))
6753 {
6754 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6755 BFD_ASSERT (s != NULL);
6756 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 6757 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
6758 if (mips_elf_hash_table (info)->rld_value == 0)
6759 mips_elf_hash_table (info)->rld_value = sym->st_value;
6760 }
6761 else if (mips_elf_hash_table (info)->use_rld_obj_head
6762 && strcmp (name, "__rld_obj_head") == 0)
6763 {
6764 /* IRIX6 does not use a .rld_map section. */
6765 if (IRIX_COMPAT (output_bfd) == ict_irix5
6766 || IRIX_COMPAT (output_bfd) == ict_none)
6767 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6768 != NULL);
6769 mips_elf_hash_table (info)->rld_value = sym->st_value;
6770 }
6771 }
6772
6773 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
6774 if (sym->st_other == STO_MIPS16)
6775 sym->st_value &= ~1;
b49e97c9 6776
b34976b6 6777 return TRUE;
b49e97c9
TS
6778}
6779
6780/* Finish up the dynamic sections. */
6781
b34976b6 6782bfd_boolean
9719ad41
RS
6783_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6784 struct bfd_link_info *info)
b49e97c9
TS
6785{
6786 bfd *dynobj;
6787 asection *sdyn;
6788 asection *sgot;
f4416af6 6789 struct mips_got_info *gg, *g;
b49e97c9
TS
6790
6791 dynobj = elf_hash_table (info)->dynobj;
6792
6793 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6794
f4416af6 6795 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6796 if (sgot == NULL)
f4416af6 6797 gg = g = NULL;
b49e97c9
TS
6798 else
6799 {
f4416af6
AO
6800 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6801 gg = mips_elf_section_data (sgot)->u.got_info;
6802 BFD_ASSERT (gg != NULL);
6803 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
6804 BFD_ASSERT (g != NULL);
6805 }
6806
6807 if (elf_hash_table (info)->dynamic_sections_created)
6808 {
6809 bfd_byte *b;
6810
6811 BFD_ASSERT (sdyn != NULL);
6812 BFD_ASSERT (g != NULL);
6813
6814 for (b = sdyn->contents;
eea6121a 6815 b < sdyn->contents + sdyn->size;
b49e97c9
TS
6816 b += MIPS_ELF_DYN_SIZE (dynobj))
6817 {
6818 Elf_Internal_Dyn dyn;
6819 const char *name;
6820 size_t elemsize;
6821 asection *s;
b34976b6 6822 bfd_boolean swap_out_p;
b49e97c9
TS
6823
6824 /* Read in the current dynamic entry. */
6825 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6826
6827 /* Assume that we're going to modify it and write it out. */
b34976b6 6828 swap_out_p = TRUE;
b49e97c9
TS
6829
6830 switch (dyn.d_tag)
6831 {
6832 case DT_RELENT:
f4416af6 6833 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
6834 BFD_ASSERT (s != NULL);
6835 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6836 break;
6837
6838 case DT_STRSZ:
6839 /* Rewrite DT_STRSZ. */
6840 dyn.d_un.d_val =
6841 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6842 break;
6843
6844 case DT_PLTGOT:
6845 name = ".got";
b49e97c9
TS
6846 s = bfd_get_section_by_name (output_bfd, name);
6847 BFD_ASSERT (s != NULL);
6848 dyn.d_un.d_ptr = s->vma;
6849 break;
6850
6851 case DT_MIPS_RLD_VERSION:
6852 dyn.d_un.d_val = 1; /* XXX */
6853 break;
6854
6855 case DT_MIPS_FLAGS:
6856 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6857 break;
6858
b49e97c9
TS
6859 case DT_MIPS_TIME_STAMP:
6860 time ((time_t *) &dyn.d_un.d_val);
6861 break;
6862
6863 case DT_MIPS_ICHECKSUM:
6864 /* XXX FIXME: */
b34976b6 6865 swap_out_p = FALSE;
b49e97c9
TS
6866 break;
6867
6868 case DT_MIPS_IVERSION:
6869 /* XXX FIXME: */
b34976b6 6870 swap_out_p = FALSE;
b49e97c9
TS
6871 break;
6872
6873 case DT_MIPS_BASE_ADDRESS:
6874 s = output_bfd->sections;
6875 BFD_ASSERT (s != NULL);
6876 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6877 break;
6878
6879 case DT_MIPS_LOCAL_GOTNO:
6880 dyn.d_un.d_val = g->local_gotno;
6881 break;
6882
6883 case DT_MIPS_UNREFEXTNO:
6884 /* The index into the dynamic symbol table which is the
6885 entry of the first external symbol that is not
6886 referenced within the same object. */
6887 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6888 break;
6889
6890 case DT_MIPS_GOTSYM:
f4416af6 6891 if (gg->global_gotsym)
b49e97c9 6892 {
f4416af6 6893 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
6894 break;
6895 }
6896 /* In case if we don't have global got symbols we default
6897 to setting DT_MIPS_GOTSYM to the same value as
6898 DT_MIPS_SYMTABNO, so we just fall through. */
6899
6900 case DT_MIPS_SYMTABNO:
6901 name = ".dynsym";
6902 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6903 s = bfd_get_section_by_name (output_bfd, name);
6904 BFD_ASSERT (s != NULL);
6905
eea6121a 6906 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
6907 break;
6908
6909 case DT_MIPS_HIPAGENO:
6910 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6911 break;
6912
6913 case DT_MIPS_RLD_MAP:
6914 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6915 break;
6916
6917 case DT_MIPS_OPTIONS:
6918 s = (bfd_get_section_by_name
6919 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6920 dyn.d_un.d_ptr = s->vma;
6921 break;
6922
98a8deaf
RS
6923 case DT_RELSZ:
6924 /* Reduce DT_RELSZ to account for any relocations we
6925 decided not to make. This is for the n64 irix rld,
6926 which doesn't seem to apply any relocations if there
6927 are trailing null entries. */
6928 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6929 dyn.d_un.d_val = (s->reloc_count
6930 * (ABI_64_P (output_bfd)
6931 ? sizeof (Elf64_Mips_External_Rel)
6932 : sizeof (Elf32_External_Rel)));
b49e97c9
TS
6933 break;
6934
6935 default:
b34976b6 6936 swap_out_p = FALSE;
b49e97c9
TS
6937 break;
6938 }
6939
6940 if (swap_out_p)
6941 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6942 (dynobj, &dyn, b);
6943 }
6944 }
6945
6946 /* The first entry of the global offset table will be filled at
6947 runtime. The second entry will be used by some runtime loaders.
8dc1a139 6948 This isn't the case of IRIX rld. */
eea6121a 6949 if (sgot != NULL && sgot->size > 0)
b49e97c9 6950 {
9719ad41
RS
6951 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6952 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
b49e97c9
TS
6953 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6954 }
6955
6956 if (sgot != NULL)
6957 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6958 = MIPS_ELF_GOT_SIZE (output_bfd);
6959
f4416af6
AO
6960 /* Generate dynamic relocations for the non-primary gots. */
6961 if (gg != NULL && gg->next)
6962 {
6963 Elf_Internal_Rela rel[3];
6964 bfd_vma addend = 0;
6965
6966 memset (rel, 0, sizeof (rel));
6967 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6968
6969 for (g = gg->next; g->next != gg; g = g->next)
6970 {
6971 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6972
9719ad41 6973 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 6974 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 6975 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
6976 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6977
6978 if (! info->shared)
6979 continue;
6980
6981 while (index < g->assigned_gotno)
6982 {
6983 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6984 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6985 if (!(mips_elf_create_dynamic_relocation
6986 (output_bfd, info, rel, NULL,
6987 bfd_abs_section_ptr,
6988 0, &addend, sgot)))
6989 return FALSE;
6990 BFD_ASSERT (addend == 0);
6991 }
6992 }
6993 }
6994
b49e97c9 6995 {
b49e97c9
TS
6996 asection *s;
6997 Elf32_compact_rel cpt;
6998
b49e97c9
TS
6999 if (SGI_COMPAT (output_bfd))
7000 {
7001 /* Write .compact_rel section out. */
7002 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7003 if (s != NULL)
7004 {
7005 cpt.id1 = 1;
7006 cpt.num = s->reloc_count;
7007 cpt.id2 = 2;
7008 cpt.offset = (s->output_section->filepos
7009 + sizeof (Elf32_External_compact_rel));
7010 cpt.reserved0 = 0;
7011 cpt.reserved1 = 0;
7012 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7013 ((Elf32_External_compact_rel *)
7014 s->contents));
7015
7016 /* Clean up a dummy stub function entry in .text. */
7017 s = bfd_get_section_by_name (dynobj,
7018 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7019 if (s != NULL)
7020 {
7021 file_ptr dummy_offset;
7022
eea6121a
AM
7023 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
7024 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
7025 memset (s->contents + dummy_offset, 0,
7026 MIPS_FUNCTION_STUB_SIZE);
7027 }
7028 }
7029 }
7030
7031 /* We need to sort the entries of the dynamic relocation section. */
7032
f4416af6
AO
7033 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7034
7035 if (s != NULL
eea6121a 7036 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7037 {
f4416af6 7038 reldyn_sorting_bfd = output_bfd;
b49e97c9 7039
f4416af6 7040 if (ABI_64_P (output_bfd))
9719ad41 7041 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6
AO
7042 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7043 else
9719ad41 7044 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6 7045 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7046 }
b49e97c9
TS
7047 }
7048
b34976b6 7049 return TRUE;
b49e97c9
TS
7050}
7051
b49e97c9 7052
64543e1a
RS
7053/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7054
7055static void
9719ad41 7056mips_set_isa_flags (bfd *abfd)
b49e97c9 7057{
64543e1a 7058 flagword val;
b49e97c9
TS
7059
7060 switch (bfd_get_mach (abfd))
7061 {
7062 default:
7063 case bfd_mach_mips3000:
7064 val = E_MIPS_ARCH_1;
7065 break;
7066
7067 case bfd_mach_mips3900:
7068 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7069 break;
7070
7071 case bfd_mach_mips6000:
7072 val = E_MIPS_ARCH_2;
7073 break;
7074
7075 case bfd_mach_mips4000:
7076 case bfd_mach_mips4300:
7077 case bfd_mach_mips4400:
7078 case bfd_mach_mips4600:
7079 val = E_MIPS_ARCH_3;
7080 break;
7081
7082 case bfd_mach_mips4010:
7083 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7084 break;
7085
7086 case bfd_mach_mips4100:
7087 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7088 break;
7089
7090 case bfd_mach_mips4111:
7091 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7092 break;
7093
00707a0e
RS
7094 case bfd_mach_mips4120:
7095 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7096 break;
7097
b49e97c9
TS
7098 case bfd_mach_mips4650:
7099 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7100 break;
7101
00707a0e
RS
7102 case bfd_mach_mips5400:
7103 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7104 break;
7105
7106 case bfd_mach_mips5500:
7107 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7108 break;
7109
0d2e43ed
ILT
7110 case bfd_mach_mips9000:
7111 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7112 break;
7113
b49e97c9 7114 case bfd_mach_mips5000:
5a7ea749 7115 case bfd_mach_mips7000:
b49e97c9
TS
7116 case bfd_mach_mips8000:
7117 case bfd_mach_mips10000:
7118 case bfd_mach_mips12000:
7119 val = E_MIPS_ARCH_4;
7120 break;
7121
7122 case bfd_mach_mips5:
7123 val = E_MIPS_ARCH_5;
7124 break;
7125
7126 case bfd_mach_mips_sb1:
7127 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7128 break;
7129
7130 case bfd_mach_mipsisa32:
7131 val = E_MIPS_ARCH_32;
7132 break;
7133
7134 case bfd_mach_mipsisa64:
7135 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7136 break;
7137
7138 case bfd_mach_mipsisa32r2:
7139 val = E_MIPS_ARCH_32R2;
7140 break;
5f74bc13
CD
7141
7142 case bfd_mach_mipsisa64r2:
7143 val = E_MIPS_ARCH_64R2;
7144 break;
b49e97c9 7145 }
b49e97c9
TS
7146 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7147 elf_elfheader (abfd)->e_flags |= val;
7148
64543e1a
RS
7149}
7150
7151
7152/* The final processing done just before writing out a MIPS ELF object
7153 file. This gets the MIPS architecture right based on the machine
7154 number. This is used by both the 32-bit and the 64-bit ABI. */
7155
7156void
9719ad41
RS
7157_bfd_mips_elf_final_write_processing (bfd *abfd,
7158 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
7159{
7160 unsigned int i;
7161 Elf_Internal_Shdr **hdrpp;
7162 const char *name;
7163 asection *sec;
7164
7165 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7166 is nonzero. This is for compatibility with old objects, which used
7167 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7168 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7169 mips_set_isa_flags (abfd);
7170
b49e97c9
TS
7171 /* Set the sh_info field for .gptab sections and other appropriate
7172 info for each special section. */
7173 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7174 i < elf_numsections (abfd);
7175 i++, hdrpp++)
7176 {
7177 switch ((*hdrpp)->sh_type)
7178 {
7179 case SHT_MIPS_MSYM:
7180 case SHT_MIPS_LIBLIST:
7181 sec = bfd_get_section_by_name (abfd, ".dynstr");
7182 if (sec != NULL)
7183 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7184 break;
7185
7186 case SHT_MIPS_GPTAB:
7187 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7188 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7189 BFD_ASSERT (name != NULL
7190 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7191 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7192 BFD_ASSERT (sec != NULL);
7193 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7194 break;
7195
7196 case SHT_MIPS_CONTENT:
7197 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7198 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7199 BFD_ASSERT (name != NULL
7200 && strncmp (name, ".MIPS.content",
7201 sizeof ".MIPS.content" - 1) == 0);
7202 sec = bfd_get_section_by_name (abfd,
7203 name + sizeof ".MIPS.content" - 1);
7204 BFD_ASSERT (sec != NULL);
7205 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7206 break;
7207
7208 case SHT_MIPS_SYMBOL_LIB:
7209 sec = bfd_get_section_by_name (abfd, ".dynsym");
7210 if (sec != NULL)
7211 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7212 sec = bfd_get_section_by_name (abfd, ".liblist");
7213 if (sec != NULL)
7214 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7215 break;
7216
7217 case SHT_MIPS_EVENTS:
7218 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7219 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7220 BFD_ASSERT (name != NULL);
7221 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7222 sec = bfd_get_section_by_name (abfd,
7223 name + sizeof ".MIPS.events" - 1);
7224 else
7225 {
7226 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7227 sizeof ".MIPS.post_rel" - 1) == 0);
7228 sec = bfd_get_section_by_name (abfd,
7229 (name
7230 + sizeof ".MIPS.post_rel" - 1));
7231 }
7232 BFD_ASSERT (sec != NULL);
7233 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7234 break;
7235
7236 }
7237 }
7238}
7239\f
8dc1a139 7240/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
7241 segments. */
7242
7243int
9719ad41 7244_bfd_mips_elf_additional_program_headers (bfd *abfd)
b49e97c9
TS
7245{
7246 asection *s;
7247 int ret = 0;
7248
7249 /* See if we need a PT_MIPS_REGINFO segment. */
7250 s = bfd_get_section_by_name (abfd, ".reginfo");
7251 if (s && (s->flags & SEC_LOAD))
7252 ++ret;
7253
7254 /* See if we need a PT_MIPS_OPTIONS segment. */
7255 if (IRIX_COMPAT (abfd) == ict_irix6
7256 && bfd_get_section_by_name (abfd,
7257 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7258 ++ret;
7259
7260 /* See if we need a PT_MIPS_RTPROC segment. */
7261 if (IRIX_COMPAT (abfd) == ict_irix5
7262 && bfd_get_section_by_name (abfd, ".dynamic")
7263 && bfd_get_section_by_name (abfd, ".mdebug"))
7264 ++ret;
7265
7266 return ret;
7267}
7268
8dc1a139 7269/* Modify the segment map for an IRIX5 executable. */
b49e97c9 7270
b34976b6 7271bfd_boolean
9719ad41
RS
7272_bfd_mips_elf_modify_segment_map (bfd *abfd,
7273 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
7274{
7275 asection *s;
7276 struct elf_segment_map *m, **pm;
7277 bfd_size_type amt;
7278
7279 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7280 segment. */
7281 s = bfd_get_section_by_name (abfd, ".reginfo");
7282 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7283 {
7284 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7285 if (m->p_type == PT_MIPS_REGINFO)
7286 break;
7287 if (m == NULL)
7288 {
7289 amt = sizeof *m;
9719ad41 7290 m = bfd_zalloc (abfd, amt);
b49e97c9 7291 if (m == NULL)
b34976b6 7292 return FALSE;
b49e97c9
TS
7293
7294 m->p_type = PT_MIPS_REGINFO;
7295 m->count = 1;
7296 m->sections[0] = s;
7297
7298 /* We want to put it after the PHDR and INTERP segments. */
7299 pm = &elf_tdata (abfd)->segment_map;
7300 while (*pm != NULL
7301 && ((*pm)->p_type == PT_PHDR
7302 || (*pm)->p_type == PT_INTERP))
7303 pm = &(*pm)->next;
7304
7305 m->next = *pm;
7306 *pm = m;
7307 }
7308 }
7309
7310 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7311 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 7312 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 7313 table. */
c1fd6598
AO
7314 if (NEWABI_P (abfd)
7315 /* On non-IRIX6 new abi, we'll have already created a segment
7316 for this section, so don't create another. I'm not sure this
7317 is not also the case for IRIX 6, but I can't test it right
7318 now. */
7319 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
7320 {
7321 for (s = abfd->sections; s; s = s->next)
7322 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7323 break;
7324
7325 if (s)
7326 {
7327 struct elf_segment_map *options_segment;
7328
98a8deaf
RS
7329 pm = &elf_tdata (abfd)->segment_map;
7330 while (*pm != NULL
7331 && ((*pm)->p_type == PT_PHDR
7332 || (*pm)->p_type == PT_INTERP))
7333 pm = &(*pm)->next;
b49e97c9
TS
7334
7335 amt = sizeof (struct elf_segment_map);
7336 options_segment = bfd_zalloc (abfd, amt);
7337 options_segment->next = *pm;
7338 options_segment->p_type = PT_MIPS_OPTIONS;
7339 options_segment->p_flags = PF_R;
b34976b6 7340 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
7341 options_segment->count = 1;
7342 options_segment->sections[0] = s;
7343 *pm = options_segment;
7344 }
7345 }
7346 else
7347 {
7348 if (IRIX_COMPAT (abfd) == ict_irix5)
7349 {
7350 /* If there are .dynamic and .mdebug sections, we make a room
7351 for the RTPROC header. FIXME: Rewrite without section names. */
7352 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7353 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7354 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7355 {
7356 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7357 if (m->p_type == PT_MIPS_RTPROC)
7358 break;
7359 if (m == NULL)
7360 {
7361 amt = sizeof *m;
9719ad41 7362 m = bfd_zalloc (abfd, amt);
b49e97c9 7363 if (m == NULL)
b34976b6 7364 return FALSE;
b49e97c9
TS
7365
7366 m->p_type = PT_MIPS_RTPROC;
7367
7368 s = bfd_get_section_by_name (abfd, ".rtproc");
7369 if (s == NULL)
7370 {
7371 m->count = 0;
7372 m->p_flags = 0;
7373 m->p_flags_valid = 1;
7374 }
7375 else
7376 {
7377 m->count = 1;
7378 m->sections[0] = s;
7379 }
7380
7381 /* We want to put it after the DYNAMIC segment. */
7382 pm = &elf_tdata (abfd)->segment_map;
7383 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7384 pm = &(*pm)->next;
7385 if (*pm != NULL)
7386 pm = &(*pm)->next;
7387
7388 m->next = *pm;
7389 *pm = m;
7390 }
7391 }
7392 }
8dc1a139 7393 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
7394 .dynstr, .dynsym, and .hash sections, and everything in
7395 between. */
7396 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7397 pm = &(*pm)->next)
7398 if ((*pm)->p_type == PT_DYNAMIC)
7399 break;
7400 m = *pm;
7401 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7402 {
7403 /* For a normal mips executable the permissions for the PT_DYNAMIC
7404 segment are read, write and execute. We do that here since
7405 the code in elf.c sets only the read permission. This matters
7406 sometimes for the dynamic linker. */
7407 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7408 {
7409 m->p_flags = PF_R | PF_W | PF_X;
7410 m->p_flags_valid = 1;
7411 }
7412 }
7413 if (m != NULL
7414 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7415 {
7416 static const char *sec_names[] =
7417 {
7418 ".dynamic", ".dynstr", ".dynsym", ".hash"
7419 };
7420 bfd_vma low, high;
7421 unsigned int i, c;
7422 struct elf_segment_map *n;
7423
792b4a53 7424 low = ~(bfd_vma) 0;
b49e97c9
TS
7425 high = 0;
7426 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7427 {
7428 s = bfd_get_section_by_name (abfd, sec_names[i]);
7429 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7430 {
7431 bfd_size_type sz;
7432
7433 if (low > s->vma)
7434 low = s->vma;
eea6121a 7435 sz = s->size;
b49e97c9
TS
7436 if (high < s->vma + sz)
7437 high = s->vma + sz;
7438 }
7439 }
7440
7441 c = 0;
7442 for (s = abfd->sections; s != NULL; s = s->next)
7443 if ((s->flags & SEC_LOAD) != 0
7444 && s->vma >= low
eea6121a 7445 && s->vma + s->size <= high)
b49e97c9
TS
7446 ++c;
7447
7448 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 7449 n = bfd_zalloc (abfd, amt);
b49e97c9 7450 if (n == NULL)
b34976b6 7451 return FALSE;
b49e97c9
TS
7452 *n = *m;
7453 n->count = c;
7454
7455 i = 0;
7456 for (s = abfd->sections; s != NULL; s = s->next)
7457 {
7458 if ((s->flags & SEC_LOAD) != 0
7459 && s->vma >= low
eea6121a 7460 && s->vma + s->size <= high)
b49e97c9
TS
7461 {
7462 n->sections[i] = s;
7463 ++i;
7464 }
7465 }
7466
7467 *pm = n;
7468 }
7469 }
7470
b34976b6 7471 return TRUE;
b49e97c9
TS
7472}
7473\f
7474/* Return the section that should be marked against GC for a given
7475 relocation. */
7476
7477asection *
9719ad41
RS
7478_bfd_mips_elf_gc_mark_hook (asection *sec,
7479 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7480 Elf_Internal_Rela *rel,
7481 struct elf_link_hash_entry *h,
7482 Elf_Internal_Sym *sym)
b49e97c9
TS
7483{
7484 /* ??? Do mips16 stub sections need to be handled special? */
7485
7486 if (h != NULL)
7487 {
1e2f5b6e 7488 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
7489 {
7490 case R_MIPS_GNU_VTINHERIT:
7491 case R_MIPS_GNU_VTENTRY:
7492 break;
7493
7494 default:
7495 switch (h->root.type)
7496 {
7497 case bfd_link_hash_defined:
7498 case bfd_link_hash_defweak:
7499 return h->root.u.def.section;
7500
7501 case bfd_link_hash_common:
7502 return h->root.u.c.p->section;
7503
7504 default:
7505 break;
7506 }
7507 }
7508 }
7509 else
1e2f5b6e 7510 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
7511
7512 return NULL;
7513}
7514
7515/* Update the got entry reference counts for the section being removed. */
7516
b34976b6 7517bfd_boolean
9719ad41
RS
7518_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7519 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7520 asection *sec ATTRIBUTE_UNUSED,
7521 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
7522{
7523#if 0
7524 Elf_Internal_Shdr *symtab_hdr;
7525 struct elf_link_hash_entry **sym_hashes;
7526 bfd_signed_vma *local_got_refcounts;
7527 const Elf_Internal_Rela *rel, *relend;
7528 unsigned long r_symndx;
7529 struct elf_link_hash_entry *h;
7530
7531 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7532 sym_hashes = elf_sym_hashes (abfd);
7533 local_got_refcounts = elf_local_got_refcounts (abfd);
7534
7535 relend = relocs + sec->reloc_count;
7536 for (rel = relocs; rel < relend; rel++)
7537 switch (ELF_R_TYPE (abfd, rel->r_info))
7538 {
7539 case R_MIPS_GOT16:
7540 case R_MIPS_CALL16:
7541 case R_MIPS_CALL_HI16:
7542 case R_MIPS_CALL_LO16:
7543 case R_MIPS_GOT_HI16:
7544 case R_MIPS_GOT_LO16:
4a14403c
TS
7545 case R_MIPS_GOT_DISP:
7546 case R_MIPS_GOT_PAGE:
7547 case R_MIPS_GOT_OFST:
b49e97c9
TS
7548 /* ??? It would seem that the existing MIPS code does no sort
7549 of reference counting or whatnot on its GOT and PLT entries,
7550 so it is not possible to garbage collect them at this time. */
7551 break;
7552
7553 default:
7554 break;
7555 }
7556#endif
7557
b34976b6 7558 return TRUE;
b49e97c9
TS
7559}
7560\f
7561/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7562 hiding the old indirect symbol. Process additional relocation
7563 information. Also called for weakdefs, in which case we just let
7564 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7565
7566void
9719ad41
RS
7567_bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7568 struct elf_link_hash_entry *dir,
7569 struct elf_link_hash_entry *ind)
b49e97c9
TS
7570{
7571 struct mips_elf_link_hash_entry *dirmips, *indmips;
7572
b48fa14c 7573 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
7574
7575 if (ind->root.type != bfd_link_hash_indirect)
7576 return;
7577
7578 dirmips = (struct mips_elf_link_hash_entry *) dir;
7579 indmips = (struct mips_elf_link_hash_entry *) ind;
7580 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7581 if (indmips->readonly_reloc)
b34976b6 7582 dirmips->readonly_reloc = TRUE;
b49e97c9 7583 if (indmips->no_fn_stub)
b34976b6 7584 dirmips->no_fn_stub = TRUE;
b49e97c9
TS
7585}
7586
7587void
9719ad41
RS
7588_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7589 struct elf_link_hash_entry *entry,
7590 bfd_boolean force_local)
b49e97c9
TS
7591{
7592 bfd *dynobj;
7593 asection *got;
7594 struct mips_got_info *g;
7595 struct mips_elf_link_hash_entry *h;
7c5fcef7 7596
b49e97c9 7597 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
7598 if (h->forced_local)
7599 return;
4b555070 7600 h->forced_local = force_local;
7c5fcef7 7601
b49e97c9 7602 dynobj = elf_hash_table (info)->dynobj;
4b555070 7603 if (dynobj != NULL && force_local)
f4416af6 7604 {
c45a316a
AM
7605 got = mips_elf_got_section (dynobj, FALSE);
7606 g = mips_elf_section_data (got)->u.got_info;
f4416af6 7607
c45a316a
AM
7608 if (g->next)
7609 {
7610 struct mips_got_entry e;
7611 struct mips_got_info *gg = g;
7612
7613 /* Since we're turning what used to be a global symbol into a
7614 local one, bump up the number of local entries of each GOT
7615 that had an entry for it. This will automatically decrease
7616 the number of global entries, since global_gotno is actually
7617 the upper limit of global entries. */
7618 e.abfd = dynobj;
7619 e.symndx = -1;
7620 e.d.h = h;
7621
7622 for (g = g->next; g != gg; g = g->next)
7623 if (htab_find (g->got_entries, &e))
7624 {
7625 BFD_ASSERT (g->global_gotno > 0);
7626 g->local_gotno++;
7627 g->global_gotno--;
7628 }
b49e97c9 7629
c45a316a
AM
7630 /* If this was a global symbol forced into the primary GOT, we
7631 no longer need an entry for it. We can't release the entry
7632 at this point, but we must at least stop counting it as one
7633 of the symbols that required a forced got entry. */
7634 if (h->root.got.offset == 2)
7635 {
7636 BFD_ASSERT (gg->assigned_gotno > 0);
7637 gg->assigned_gotno--;
7638 }
7639 }
7640 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7641 /* If we haven't got through GOT allocation yet, just bump up the
7642 number of local entries, as this symbol won't be counted as
7643 global. */
7644 g->local_gotno++;
7645 else if (h->root.got.offset == 1)
f4416af6 7646 {
c45a316a
AM
7647 /* If we're past non-multi-GOT allocation and this symbol had
7648 been marked for a global got entry, give it a local entry
7649 instead. */
7650 BFD_ASSERT (g->global_gotno > 0);
7651 g->local_gotno++;
7652 g->global_gotno--;
f4416af6
AO
7653 }
7654 }
f4416af6
AO
7655
7656 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
7657}
7658\f
d01414a5
TS
7659#define PDR_SIZE 32
7660
b34976b6 7661bfd_boolean
9719ad41
RS
7662_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7663 struct bfd_link_info *info)
d01414a5
TS
7664{
7665 asection *o;
b34976b6 7666 bfd_boolean ret = FALSE;
d01414a5
TS
7667 unsigned char *tdata;
7668 size_t i, skip;
7669
7670 o = bfd_get_section_by_name (abfd, ".pdr");
7671 if (! o)
b34976b6 7672 return FALSE;
eea6121a 7673 if (o->size == 0)
b34976b6 7674 return FALSE;
eea6121a 7675 if (o->size % PDR_SIZE != 0)
b34976b6 7676 return FALSE;
d01414a5
TS
7677 if (o->output_section != NULL
7678 && bfd_is_abs_section (o->output_section))
b34976b6 7679 return FALSE;
d01414a5 7680
eea6121a 7681 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 7682 if (! tdata)
b34976b6 7683 return FALSE;
d01414a5 7684
9719ad41 7685 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7686 info->keep_memory);
d01414a5
TS
7687 if (!cookie->rels)
7688 {
7689 free (tdata);
b34976b6 7690 return FALSE;
d01414a5
TS
7691 }
7692
7693 cookie->rel = cookie->rels;
7694 cookie->relend = cookie->rels + o->reloc_count;
7695
eea6121a 7696 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 7697 {
c152c796 7698 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
7699 {
7700 tdata[i] = 1;
7701 skip ++;
7702 }
7703 }
7704
7705 if (skip != 0)
7706 {
f0abc2a1 7707 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 7708 o->size -= skip * PDR_SIZE;
b34976b6 7709 ret = TRUE;
d01414a5
TS
7710 }
7711 else
7712 free (tdata);
7713
7714 if (! info->keep_memory)
7715 free (cookie->rels);
7716
7717 return ret;
7718}
7719
b34976b6 7720bfd_boolean
9719ad41 7721_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
7722{
7723 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
7724 return TRUE;
7725 return FALSE;
53bfd6b4 7726}
d01414a5 7727
b34976b6 7728bfd_boolean
9719ad41
RS
7729_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7730 bfd_byte *contents)
d01414a5
TS
7731{
7732 bfd_byte *to, *from, *end;
7733 int i;
7734
7735 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 7736 return FALSE;
d01414a5 7737
f0abc2a1 7738 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 7739 return FALSE;
d01414a5
TS
7740
7741 to = contents;
eea6121a 7742 end = contents + sec->size;
d01414a5
TS
7743 for (from = contents, i = 0;
7744 from < end;
7745 from += PDR_SIZE, i++)
7746 {
f0abc2a1 7747 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
7748 continue;
7749 if (to != from)
7750 memcpy (to, from, PDR_SIZE);
7751 to += PDR_SIZE;
7752 }
7753 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 7754 sec->output_offset, sec->size);
b34976b6 7755 return TRUE;
d01414a5 7756}
53bfd6b4 7757\f
b49e97c9
TS
7758/* MIPS ELF uses a special find_nearest_line routine in order the
7759 handle the ECOFF debugging information. */
7760
7761struct mips_elf_find_line
7762{
7763 struct ecoff_debug_info d;
7764 struct ecoff_find_line i;
7765};
7766
b34976b6 7767bfd_boolean
9719ad41
RS
7768_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7769 asymbol **symbols, bfd_vma offset,
7770 const char **filename_ptr,
7771 const char **functionname_ptr,
7772 unsigned int *line_ptr)
b49e97c9
TS
7773{
7774 asection *msec;
7775
7776 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7777 filename_ptr, functionname_ptr,
7778 line_ptr))
b34976b6 7779 return TRUE;
b49e97c9
TS
7780
7781 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7782 filename_ptr, functionname_ptr,
9719ad41 7783 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 7784 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 7785 return TRUE;
b49e97c9
TS
7786
7787 msec = bfd_get_section_by_name (abfd, ".mdebug");
7788 if (msec != NULL)
7789 {
7790 flagword origflags;
7791 struct mips_elf_find_line *fi;
7792 const struct ecoff_debug_swap * const swap =
7793 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7794
7795 /* If we are called during a link, mips_elf_final_link may have
7796 cleared the SEC_HAS_CONTENTS field. We force it back on here
7797 if appropriate (which it normally will be). */
7798 origflags = msec->flags;
7799 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7800 msec->flags |= SEC_HAS_CONTENTS;
7801
7802 fi = elf_tdata (abfd)->find_line_info;
7803 if (fi == NULL)
7804 {
7805 bfd_size_type external_fdr_size;
7806 char *fraw_src;
7807 char *fraw_end;
7808 struct fdr *fdr_ptr;
7809 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7810
9719ad41 7811 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
7812 if (fi == NULL)
7813 {
7814 msec->flags = origflags;
b34976b6 7815 return FALSE;
b49e97c9
TS
7816 }
7817
7818 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7819 {
7820 msec->flags = origflags;
b34976b6 7821 return FALSE;
b49e97c9
TS
7822 }
7823
7824 /* Swap in the FDR information. */
7825 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 7826 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
7827 if (fi->d.fdr == NULL)
7828 {
7829 msec->flags = origflags;
b34976b6 7830 return FALSE;
b49e97c9
TS
7831 }
7832 external_fdr_size = swap->external_fdr_size;
7833 fdr_ptr = fi->d.fdr;
7834 fraw_src = (char *) fi->d.external_fdr;
7835 fraw_end = (fraw_src
7836 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7837 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 7838 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
7839
7840 elf_tdata (abfd)->find_line_info = fi;
7841
7842 /* Note that we don't bother to ever free this information.
7843 find_nearest_line is either called all the time, as in
7844 objdump -l, so the information should be saved, or it is
7845 rarely called, as in ld error messages, so the memory
7846 wasted is unimportant. Still, it would probably be a
7847 good idea for free_cached_info to throw it away. */
7848 }
7849
7850 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7851 &fi->i, filename_ptr, functionname_ptr,
7852 line_ptr))
7853 {
7854 msec->flags = origflags;
b34976b6 7855 return TRUE;
b49e97c9
TS
7856 }
7857
7858 msec->flags = origflags;
7859 }
7860
7861 /* Fall back on the generic ELF find_nearest_line routine. */
7862
7863 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7864 filename_ptr, functionname_ptr,
7865 line_ptr);
7866}
7867\f
7868/* When are writing out the .options or .MIPS.options section,
7869 remember the bytes we are writing out, so that we can install the
7870 GP value in the section_processing routine. */
7871
b34976b6 7872bfd_boolean
9719ad41
RS
7873_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7874 const void *location,
7875 file_ptr offset, bfd_size_type count)
b49e97c9
TS
7876{
7877 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7878 {
7879 bfd_byte *c;
7880
7881 if (elf_section_data (section) == NULL)
7882 {
7883 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 7884 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 7885 if (elf_section_data (section) == NULL)
b34976b6 7886 return FALSE;
b49e97c9 7887 }
f0abc2a1 7888 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
7889 if (c == NULL)
7890 {
eea6121a 7891 c = bfd_zalloc (abfd, section->size);
b49e97c9 7892 if (c == NULL)
b34976b6 7893 return FALSE;
f0abc2a1 7894 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
7895 }
7896
9719ad41 7897 memcpy (c + offset, location, count);
b49e97c9
TS
7898 }
7899
7900 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7901 count);
7902}
7903
7904/* This is almost identical to bfd_generic_get_... except that some
7905 MIPS relocations need to be handled specially. Sigh. */
7906
7907bfd_byte *
9719ad41
RS
7908_bfd_elf_mips_get_relocated_section_contents
7909 (bfd *abfd,
7910 struct bfd_link_info *link_info,
7911 struct bfd_link_order *link_order,
7912 bfd_byte *data,
7913 bfd_boolean relocatable,
7914 asymbol **symbols)
b49e97c9
TS
7915{
7916 /* Get enough memory to hold the stuff */
7917 bfd *input_bfd = link_order->u.indirect.section->owner;
7918 asection *input_section = link_order->u.indirect.section;
eea6121a 7919 bfd_size_type sz;
b49e97c9
TS
7920
7921 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7922 arelent **reloc_vector = NULL;
7923 long reloc_count;
7924
7925 if (reloc_size < 0)
7926 goto error_return;
7927
9719ad41 7928 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
7929 if (reloc_vector == NULL && reloc_size != 0)
7930 goto error_return;
7931
7932 /* read in the section */
eea6121a
AM
7933 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
7934 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
7935 goto error_return;
7936
b49e97c9
TS
7937 reloc_count = bfd_canonicalize_reloc (input_bfd,
7938 input_section,
7939 reloc_vector,
7940 symbols);
7941 if (reloc_count < 0)
7942 goto error_return;
7943
7944 if (reloc_count > 0)
7945 {
7946 arelent **parent;
7947 /* for mips */
7948 int gp_found;
7949 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7950
7951 {
7952 struct bfd_hash_entry *h;
7953 struct bfd_link_hash_entry *lh;
7954 /* Skip all this stuff if we aren't mixing formats. */
7955 if (abfd && input_bfd
7956 && abfd->xvec == input_bfd->xvec)
7957 lh = 0;
7958 else
7959 {
b34976b6 7960 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
7961 lh = (struct bfd_link_hash_entry *) h;
7962 }
7963 lookup:
7964 if (lh)
7965 {
7966 switch (lh->type)
7967 {
7968 case bfd_link_hash_undefined:
7969 case bfd_link_hash_undefweak:
7970 case bfd_link_hash_common:
7971 gp_found = 0;
7972 break;
7973 case bfd_link_hash_defined:
7974 case bfd_link_hash_defweak:
7975 gp_found = 1;
7976 gp = lh->u.def.value;
7977 break;
7978 case bfd_link_hash_indirect:
7979 case bfd_link_hash_warning:
7980 lh = lh->u.i.link;
7981 /* @@FIXME ignoring warning for now */
7982 goto lookup;
7983 case bfd_link_hash_new:
7984 default:
7985 abort ();
7986 }
7987 }
7988 else
7989 gp_found = 0;
7990 }
7991 /* end mips */
9719ad41 7992 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 7993 {
9719ad41 7994 char *error_message = NULL;
b49e97c9
TS
7995 bfd_reloc_status_type r;
7996
7997 /* Specific to MIPS: Deal with relocation types that require
7998 knowing the gp of the output bfd. */
7999 asymbol *sym = *(*parent)->sym_ptr_ptr;
8000 if (bfd_is_abs_section (sym->section) && abfd)
8001 {
44c410de 8002 /* The special_function wouldn't get called anyway. */
b49e97c9
TS
8003 }
8004 else if (!gp_found)
8005 {
8006 /* The gp isn't there; let the special function code
8007 fall over on its own. */
8008 }
8009 else if ((*parent)->howto->special_function
8010 == _bfd_mips_elf32_gprel16_reloc)
8011 {
8012 /* bypass special_function call */
8013 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
1049f94e 8014 input_section, relocatable,
9719ad41 8015 data, gp);
b49e97c9
TS
8016 goto skip_bfd_perform_relocation;
8017 }
8018 /* end mips specific stuff */
8019
9719ad41
RS
8020 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
8021 relocatable ? abfd : NULL,
b49e97c9
TS
8022 &error_message);
8023 skip_bfd_perform_relocation:
8024
1049f94e 8025 if (relocatable)
b49e97c9
TS
8026 {
8027 asection *os = input_section->output_section;
8028
8029 /* A partial link, so keep the relocs */
8030 os->orelocation[os->reloc_count] = *parent;
8031 os->reloc_count++;
8032 }
8033
8034 if (r != bfd_reloc_ok)
8035 {
8036 switch (r)
8037 {
8038 case bfd_reloc_undefined:
8039 if (!((*link_info->callbacks->undefined_symbol)
8040 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8041 input_bfd, input_section, (*parent)->address,
b34976b6 8042 TRUE)))
b49e97c9
TS
8043 goto error_return;
8044 break;
8045 case bfd_reloc_dangerous:
9719ad41 8046 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
8047 if (!((*link_info->callbacks->reloc_dangerous)
8048 (link_info, error_message, input_bfd, input_section,
8049 (*parent)->address)))
8050 goto error_return;
8051 break;
8052 case bfd_reloc_overflow:
8053 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
8054 (link_info, NULL,
8055 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
8056 (*parent)->howto->name, (*parent)->addend,
8057 input_bfd, input_section, (*parent)->address)))
8058 goto error_return;
8059 break;
8060 case bfd_reloc_outofrange:
8061 default:
8062 abort ();
8063 break;
8064 }
8065
8066 }
8067 }
8068 }
8069 if (reloc_vector != NULL)
8070 free (reloc_vector);
8071 return data;
8072
8073error_return:
8074 if (reloc_vector != NULL)
8075 free (reloc_vector);
8076 return NULL;
8077}
8078\f
8079/* Create a MIPS ELF linker hash table. */
8080
8081struct bfd_link_hash_table *
9719ad41 8082_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
8083{
8084 struct mips_elf_link_hash_table *ret;
8085 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8086
9719ad41
RS
8087 ret = bfd_malloc (amt);
8088 if (ret == NULL)
b49e97c9
TS
8089 return NULL;
8090
8091 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8092 mips_elf_link_hash_newfunc))
8093 {
e2d34d7d 8094 free (ret);
b49e97c9
TS
8095 return NULL;
8096 }
8097
8098#if 0
8099 /* We no longer use this. */
8100 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8101 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8102#endif
8103 ret->procedure_count = 0;
8104 ret->compact_rel_size = 0;
b34976b6 8105 ret->use_rld_obj_head = FALSE;
b49e97c9 8106 ret->rld_value = 0;
b34976b6 8107 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8108
8109 return &ret->root.root;
8110}
8111\f
8112/* We need to use a special link routine to handle the .reginfo and
8113 the .mdebug sections. We need to merge all instances of these
8114 sections together, not write them all out sequentially. */
8115
b34976b6 8116bfd_boolean
9719ad41 8117_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
8118{
8119 asection **secpp;
8120 asection *o;
8121 struct bfd_link_order *p;
8122 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8123 asection *rtproc_sec;
8124 Elf32_RegInfo reginfo;
8125 struct ecoff_debug_info debug;
7a2a6943
NC
8126 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8127 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 8128 HDRR *symhdr = &debug.symbolic_header;
9719ad41 8129 void *mdebug_handle = NULL;
b49e97c9
TS
8130 asection *s;
8131 EXTR esym;
8132 unsigned int i;
8133 bfd_size_type amt;
8134
8135 static const char * const secname[] =
8136 {
8137 ".text", ".init", ".fini", ".data",
8138 ".rodata", ".sdata", ".sbss", ".bss"
8139 };
8140 static const int sc[] =
8141 {
8142 scText, scInit, scFini, scData,
8143 scRData, scSData, scSBss, scBss
8144 };
8145
b49e97c9
TS
8146 /* We'd carefully arranged the dynamic symbol indices, and then the
8147 generic size_dynamic_sections renumbered them out from under us.
8148 Rather than trying somehow to prevent the renumbering, just do
8149 the sort again. */
8150 if (elf_hash_table (info)->dynamic_sections_created)
8151 {
8152 bfd *dynobj;
8153 asection *got;
8154 struct mips_got_info *g;
7a2a6943 8155 bfd_size_type dynsecsymcount;
b49e97c9
TS
8156
8157 /* When we resort, we must tell mips_elf_sort_hash_table what
8158 the lowest index it may use is. That's the number of section
8159 symbols we're going to add. The generic ELF linker only
8160 adds these symbols when building a shared object. Note that
8161 we count the sections after (possibly) removing the .options
8162 section above. */
7a2a6943
NC
8163
8164 dynsecsymcount = 0;
8165 if (info->shared)
8166 {
8167 asection * p;
8168
8169 for (p = abfd->sections; p ; p = p->next)
8170 if ((p->flags & SEC_EXCLUDE) == 0
8171 && (p->flags & SEC_ALLOC) != 0
8172 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8173 ++ dynsecsymcount;
8174 }
8175
8176 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 8177 return FALSE;
b49e97c9
TS
8178
8179 /* Make sure we didn't grow the global .got region. */
8180 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8181 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8182 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8183
8184 if (g->global_gotsym != NULL)
8185 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8186 - g->global_gotsym->dynindx)
8187 <= g->global_gotno);
8188 }
8189
a902ee94
SC
8190#if 0
8191 /* We want to set the GP value for ld -r. */
b49e97c9
TS
8192 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8193 include it, even though we don't process it quite right. (Some
8194 entries are supposed to be merged.) Empirically, we seem to be
8195 better off including it then not. */
8196 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8197 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8198 {
8199 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8200 {
8201 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8202 if (p->type == bfd_indirect_link_order)
8203 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8204 (*secpp)->link_order_head = NULL;
8205 bfd_section_list_remove (abfd, secpp);
8206 --abfd->section_count;
8207
8208 break;
8209 }
8210 }
8211
8212 /* We include .MIPS.options, even though we don't process it quite right.
8213 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8214 to be better off including it than not. */
8215 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8216 {
8217 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8218 {
8219 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8220 if (p->type == bfd_indirect_link_order)
8221 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8222 (*secpp)->link_order_head = NULL;
8223 bfd_section_list_remove (abfd, secpp);
8224 --abfd->section_count;
b34976b6 8225
b49e97c9
TS
8226 break;
8227 }
8228 }
a902ee94 8229#endif
b49e97c9
TS
8230
8231 /* Get a value for the GP register. */
8232 if (elf_gp (abfd) == 0)
8233 {
8234 struct bfd_link_hash_entry *h;
8235
b34976b6 8236 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 8237 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
8238 elf_gp (abfd) = (h->u.def.value
8239 + h->u.def.section->output_section->vma
8240 + h->u.def.section->output_offset);
1049f94e 8241 else if (info->relocatable)
b49e97c9
TS
8242 {
8243 bfd_vma lo = MINUS_ONE;
8244
8245 /* Find the GP-relative section with the lowest offset. */
9719ad41 8246 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8247 if (o->vma < lo
8248 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8249 lo = o->vma;
8250
8251 /* And calculate GP relative to that. */
8252 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8253 }
8254 else
8255 {
8256 /* If the relocate_section function needs to do a reloc
8257 involving the GP value, it should make a reloc_dangerous
8258 callback to warn that GP is not defined. */
8259 }
8260 }
8261
8262 /* Go through the sections and collect the .reginfo and .mdebug
8263 information. */
8264 reginfo_sec = NULL;
8265 mdebug_sec = NULL;
8266 gptab_data_sec = NULL;
8267 gptab_bss_sec = NULL;
9719ad41 8268 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8269 {
8270 if (strcmp (o->name, ".reginfo") == 0)
8271 {
8272 memset (&reginfo, 0, sizeof reginfo);
8273
8274 /* We have found the .reginfo section in the output file.
8275 Look through all the link_orders comprising it and merge
8276 the information together. */
9719ad41 8277 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8278 {
8279 asection *input_section;
8280 bfd *input_bfd;
8281 Elf32_External_RegInfo ext;
8282 Elf32_RegInfo sub;
8283
8284 if (p->type != bfd_indirect_link_order)
8285 {
8286 if (p->type == bfd_data_link_order)
8287 continue;
8288 abort ();
8289 }
8290
8291 input_section = p->u.indirect.section;
8292 input_bfd = input_section->owner;
8293
b49e97c9 8294 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 8295 &ext, 0, sizeof ext))
b34976b6 8296 return FALSE;
b49e97c9
TS
8297
8298 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8299
8300 reginfo.ri_gprmask |= sub.ri_gprmask;
8301 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8302 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8303 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8304 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8305
8306 /* ri_gp_value is set by the function
8307 mips_elf32_section_processing when the section is
8308 finally written out. */
8309
8310 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8311 elf_link_input_bfd ignores this section. */
8312 input_section->flags &= ~SEC_HAS_CONTENTS;
8313 }
8314
8315 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 8316 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
8317
8318 /* Skip this section later on (I don't think this currently
8319 matters, but someday it might). */
9719ad41 8320 o->link_order_head = NULL;
b49e97c9
TS
8321
8322 reginfo_sec = o;
8323 }
8324
8325 if (strcmp (o->name, ".mdebug") == 0)
8326 {
8327 struct extsym_info einfo;
8328 bfd_vma last;
8329
8330 /* We have found the .mdebug section in the output file.
8331 Look through all the link_orders comprising it and merge
8332 the information together. */
8333 symhdr->magic = swap->sym_magic;
8334 /* FIXME: What should the version stamp be? */
8335 symhdr->vstamp = 0;
8336 symhdr->ilineMax = 0;
8337 symhdr->cbLine = 0;
8338 symhdr->idnMax = 0;
8339 symhdr->ipdMax = 0;
8340 symhdr->isymMax = 0;
8341 symhdr->ioptMax = 0;
8342 symhdr->iauxMax = 0;
8343 symhdr->issMax = 0;
8344 symhdr->issExtMax = 0;
8345 symhdr->ifdMax = 0;
8346 symhdr->crfd = 0;
8347 symhdr->iextMax = 0;
8348
8349 /* We accumulate the debugging information itself in the
8350 debug_info structure. */
8351 debug.line = NULL;
8352 debug.external_dnr = NULL;
8353 debug.external_pdr = NULL;
8354 debug.external_sym = NULL;
8355 debug.external_opt = NULL;
8356 debug.external_aux = NULL;
8357 debug.ss = NULL;
8358 debug.ssext = debug.ssext_end = NULL;
8359 debug.external_fdr = NULL;
8360 debug.external_rfd = NULL;
8361 debug.external_ext = debug.external_ext_end = NULL;
8362
8363 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 8364 if (mdebug_handle == NULL)
b34976b6 8365 return FALSE;
b49e97c9
TS
8366
8367 esym.jmptbl = 0;
8368 esym.cobol_main = 0;
8369 esym.weakext = 0;
8370 esym.reserved = 0;
8371 esym.ifd = ifdNil;
8372 esym.asym.iss = issNil;
8373 esym.asym.st = stLocal;
8374 esym.asym.reserved = 0;
8375 esym.asym.index = indexNil;
8376 last = 0;
8377 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8378 {
8379 esym.asym.sc = sc[i];
8380 s = bfd_get_section_by_name (abfd, secname[i]);
8381 if (s != NULL)
8382 {
8383 esym.asym.value = s->vma;
eea6121a 8384 last = s->vma + s->size;
b49e97c9
TS
8385 }
8386 else
8387 esym.asym.value = last;
8388 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8389 secname[i], &esym))
b34976b6 8390 return FALSE;
b49e97c9
TS
8391 }
8392
9719ad41 8393 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8394 {
8395 asection *input_section;
8396 bfd *input_bfd;
8397 const struct ecoff_debug_swap *input_swap;
8398 struct ecoff_debug_info input_debug;
8399 char *eraw_src;
8400 char *eraw_end;
8401
8402 if (p->type != bfd_indirect_link_order)
8403 {
8404 if (p->type == bfd_data_link_order)
8405 continue;
8406 abort ();
8407 }
8408
8409 input_section = p->u.indirect.section;
8410 input_bfd = input_section->owner;
8411
8412 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8413 || (get_elf_backend_data (input_bfd)
8414 ->elf_backend_ecoff_debug_swap) == NULL)
8415 {
8416 /* I don't know what a non MIPS ELF bfd would be
8417 doing with a .mdebug section, but I don't really
8418 want to deal with it. */
8419 continue;
8420 }
8421
8422 input_swap = (get_elf_backend_data (input_bfd)
8423 ->elf_backend_ecoff_debug_swap);
8424
eea6121a 8425 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
8426
8427 /* The ECOFF linking code expects that we have already
8428 read in the debugging information and set up an
8429 ecoff_debug_info structure, so we do that now. */
8430 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8431 &input_debug))
b34976b6 8432 return FALSE;
b49e97c9
TS
8433
8434 if (! (bfd_ecoff_debug_accumulate
8435 (mdebug_handle, abfd, &debug, swap, input_bfd,
8436 &input_debug, input_swap, info)))
b34976b6 8437 return FALSE;
b49e97c9
TS
8438
8439 /* Loop through the external symbols. For each one with
8440 interesting information, try to find the symbol in
8441 the linker global hash table and save the information
8442 for the output external symbols. */
8443 eraw_src = input_debug.external_ext;
8444 eraw_end = (eraw_src
8445 + (input_debug.symbolic_header.iextMax
8446 * input_swap->external_ext_size));
8447 for (;
8448 eraw_src < eraw_end;
8449 eraw_src += input_swap->external_ext_size)
8450 {
8451 EXTR ext;
8452 const char *name;
8453 struct mips_elf_link_hash_entry *h;
8454
9719ad41 8455 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
8456 if (ext.asym.sc == scNil
8457 || ext.asym.sc == scUndefined
8458 || ext.asym.sc == scSUndefined)
8459 continue;
8460
8461 name = input_debug.ssext + ext.asym.iss;
8462 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 8463 name, FALSE, FALSE, TRUE);
b49e97c9
TS
8464 if (h == NULL || h->esym.ifd != -2)
8465 continue;
8466
8467 if (ext.ifd != -1)
8468 {
8469 BFD_ASSERT (ext.ifd
8470 < input_debug.symbolic_header.ifdMax);
8471 ext.ifd = input_debug.ifdmap[ext.ifd];
8472 }
8473
8474 h->esym = ext;
8475 }
8476
8477 /* Free up the information we just read. */
8478 free (input_debug.line);
8479 free (input_debug.external_dnr);
8480 free (input_debug.external_pdr);
8481 free (input_debug.external_sym);
8482 free (input_debug.external_opt);
8483 free (input_debug.external_aux);
8484 free (input_debug.ss);
8485 free (input_debug.ssext);
8486 free (input_debug.external_fdr);
8487 free (input_debug.external_rfd);
8488 free (input_debug.external_ext);
8489
8490 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8491 elf_link_input_bfd ignores this section. */
8492 input_section->flags &= ~SEC_HAS_CONTENTS;
8493 }
8494
8495 if (SGI_COMPAT (abfd) && info->shared)
8496 {
8497 /* Create .rtproc section. */
8498 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8499 if (rtproc_sec == NULL)
8500 {
8501 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8502 | SEC_LINKER_CREATED | SEC_READONLY);
8503
8504 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8505 if (rtproc_sec == NULL
8506 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8507 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 8508 return FALSE;
b49e97c9
TS
8509 }
8510
8511 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8512 info, rtproc_sec,
8513 &debug))
b34976b6 8514 return FALSE;
b49e97c9
TS
8515 }
8516
8517 /* Build the external symbol information. */
8518 einfo.abfd = abfd;
8519 einfo.info = info;
8520 einfo.debug = &debug;
8521 einfo.swap = swap;
b34976b6 8522 einfo.failed = FALSE;
b49e97c9 8523 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 8524 mips_elf_output_extsym, &einfo);
b49e97c9 8525 if (einfo.failed)
b34976b6 8526 return FALSE;
b49e97c9
TS
8527
8528 /* Set the size of the .mdebug section. */
eea6121a 8529 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
8530
8531 /* Skip this section later on (I don't think this currently
8532 matters, but someday it might). */
9719ad41 8533 o->link_order_head = NULL;
b49e97c9
TS
8534
8535 mdebug_sec = o;
8536 }
8537
8538 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8539 {
8540 const char *subname;
8541 unsigned int c;
8542 Elf32_gptab *tab;
8543 Elf32_External_gptab *ext_tab;
8544 unsigned int j;
8545
8546 /* The .gptab.sdata and .gptab.sbss sections hold
8547 information describing how the small data area would
8548 change depending upon the -G switch. These sections
8549 not used in executables files. */
1049f94e 8550 if (! info->relocatable)
b49e97c9 8551 {
9719ad41 8552 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8553 {
8554 asection *input_section;
8555
8556 if (p->type != bfd_indirect_link_order)
8557 {
8558 if (p->type == bfd_data_link_order)
8559 continue;
8560 abort ();
8561 }
8562
8563 input_section = p->u.indirect.section;
8564
8565 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8566 elf_link_input_bfd ignores this section. */
8567 input_section->flags &= ~SEC_HAS_CONTENTS;
8568 }
8569
8570 /* Skip this section later on (I don't think this
8571 currently matters, but someday it might). */
9719ad41 8572 o->link_order_head = NULL;
b49e97c9
TS
8573
8574 /* Really remove the section. */
8575 for (secpp = &abfd->sections;
8576 *secpp != o;
8577 secpp = &(*secpp)->next)
8578 ;
8579 bfd_section_list_remove (abfd, secpp);
8580 --abfd->section_count;
8581
8582 continue;
8583 }
8584
8585 /* There is one gptab for initialized data, and one for
8586 uninitialized data. */
8587 if (strcmp (o->name, ".gptab.sdata") == 0)
8588 gptab_data_sec = o;
8589 else if (strcmp (o->name, ".gptab.sbss") == 0)
8590 gptab_bss_sec = o;
8591 else
8592 {
8593 (*_bfd_error_handler)
8594 (_("%s: illegal section name `%s'"),
8595 bfd_get_filename (abfd), o->name);
8596 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 8597 return FALSE;
b49e97c9
TS
8598 }
8599
8600 /* The linker script always combines .gptab.data and
8601 .gptab.sdata into .gptab.sdata, and likewise for
8602 .gptab.bss and .gptab.sbss. It is possible that there is
8603 no .sdata or .sbss section in the output file, in which
8604 case we must change the name of the output section. */
8605 subname = o->name + sizeof ".gptab" - 1;
8606 if (bfd_get_section_by_name (abfd, subname) == NULL)
8607 {
8608 if (o == gptab_data_sec)
8609 o->name = ".gptab.data";
8610 else
8611 o->name = ".gptab.bss";
8612 subname = o->name + sizeof ".gptab" - 1;
8613 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8614 }
8615
8616 /* Set up the first entry. */
8617 c = 1;
8618 amt = c * sizeof (Elf32_gptab);
9719ad41 8619 tab = bfd_malloc (amt);
b49e97c9 8620 if (tab == NULL)
b34976b6 8621 return FALSE;
b49e97c9
TS
8622 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8623 tab[0].gt_header.gt_unused = 0;
8624
8625 /* Combine the input sections. */
9719ad41 8626 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8627 {
8628 asection *input_section;
8629 bfd *input_bfd;
8630 bfd_size_type size;
8631 unsigned long last;
8632 bfd_size_type gpentry;
8633
8634 if (p->type != bfd_indirect_link_order)
8635 {
8636 if (p->type == bfd_data_link_order)
8637 continue;
8638 abort ();
8639 }
8640
8641 input_section = p->u.indirect.section;
8642 input_bfd = input_section->owner;
8643
8644 /* Combine the gptab entries for this input section one
8645 by one. We know that the input gptab entries are
8646 sorted by ascending -G value. */
eea6121a 8647 size = input_section->size;
b49e97c9
TS
8648 last = 0;
8649 for (gpentry = sizeof (Elf32_External_gptab);
8650 gpentry < size;
8651 gpentry += sizeof (Elf32_External_gptab))
8652 {
8653 Elf32_External_gptab ext_gptab;
8654 Elf32_gptab int_gptab;
8655 unsigned long val;
8656 unsigned long add;
b34976b6 8657 bfd_boolean exact;
b49e97c9
TS
8658 unsigned int look;
8659
8660 if (! (bfd_get_section_contents
9719ad41
RS
8661 (input_bfd, input_section, &ext_gptab, gpentry,
8662 sizeof (Elf32_External_gptab))))
b49e97c9
TS
8663 {
8664 free (tab);
b34976b6 8665 return FALSE;
b49e97c9
TS
8666 }
8667
8668 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8669 &int_gptab);
8670 val = int_gptab.gt_entry.gt_g_value;
8671 add = int_gptab.gt_entry.gt_bytes - last;
8672
b34976b6 8673 exact = FALSE;
b49e97c9
TS
8674 for (look = 1; look < c; look++)
8675 {
8676 if (tab[look].gt_entry.gt_g_value >= val)
8677 tab[look].gt_entry.gt_bytes += add;
8678
8679 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 8680 exact = TRUE;
b49e97c9
TS
8681 }
8682
8683 if (! exact)
8684 {
8685 Elf32_gptab *new_tab;
8686 unsigned int max;
8687
8688 /* We need a new table entry. */
8689 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 8690 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
8691 if (new_tab == NULL)
8692 {
8693 free (tab);
b34976b6 8694 return FALSE;
b49e97c9
TS
8695 }
8696 tab = new_tab;
8697 tab[c].gt_entry.gt_g_value = val;
8698 tab[c].gt_entry.gt_bytes = add;
8699
8700 /* Merge in the size for the next smallest -G
8701 value, since that will be implied by this new
8702 value. */
8703 max = 0;
8704 for (look = 1; look < c; look++)
8705 {
8706 if (tab[look].gt_entry.gt_g_value < val
8707 && (max == 0
8708 || (tab[look].gt_entry.gt_g_value
8709 > tab[max].gt_entry.gt_g_value)))
8710 max = look;
8711 }
8712 if (max != 0)
8713 tab[c].gt_entry.gt_bytes +=
8714 tab[max].gt_entry.gt_bytes;
8715
8716 ++c;
8717 }
8718
8719 last = int_gptab.gt_entry.gt_bytes;
8720 }
8721
8722 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8723 elf_link_input_bfd ignores this section. */
8724 input_section->flags &= ~SEC_HAS_CONTENTS;
8725 }
8726
8727 /* The table must be sorted by -G value. */
8728 if (c > 2)
8729 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8730
8731 /* Swap out the table. */
8732 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 8733 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
8734 if (ext_tab == NULL)
8735 {
8736 free (tab);
b34976b6 8737 return FALSE;
b49e97c9
TS
8738 }
8739
8740 for (j = 0; j < c; j++)
8741 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8742 free (tab);
8743
eea6121a 8744 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
8745 o->contents = (bfd_byte *) ext_tab;
8746
8747 /* Skip this section later on (I don't think this currently
8748 matters, but someday it might). */
9719ad41 8749 o->link_order_head = NULL;
b49e97c9
TS
8750 }
8751 }
8752
8753 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 8754 if (!bfd_elf_final_link (abfd, info))
b34976b6 8755 return FALSE;
b49e97c9
TS
8756
8757 /* Now write out the computed sections. */
8758
9719ad41 8759 if (reginfo_sec != NULL)
b49e97c9
TS
8760 {
8761 Elf32_External_RegInfo ext;
8762
8763 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 8764 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 8765 return FALSE;
b49e97c9
TS
8766 }
8767
9719ad41 8768 if (mdebug_sec != NULL)
b49e97c9
TS
8769 {
8770 BFD_ASSERT (abfd->output_has_begun);
8771 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8772 swap, info,
8773 mdebug_sec->filepos))
b34976b6 8774 return FALSE;
b49e97c9
TS
8775
8776 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8777 }
8778
9719ad41 8779 if (gptab_data_sec != NULL)
b49e97c9
TS
8780 {
8781 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8782 gptab_data_sec->contents,
eea6121a 8783 0, gptab_data_sec->size))
b34976b6 8784 return FALSE;
b49e97c9
TS
8785 }
8786
9719ad41 8787 if (gptab_bss_sec != NULL)
b49e97c9
TS
8788 {
8789 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8790 gptab_bss_sec->contents,
eea6121a 8791 0, gptab_bss_sec->size))
b34976b6 8792 return FALSE;
b49e97c9
TS
8793 }
8794
8795 if (SGI_COMPAT (abfd))
8796 {
8797 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8798 if (rtproc_sec != NULL)
8799 {
8800 if (! bfd_set_section_contents (abfd, rtproc_sec,
8801 rtproc_sec->contents,
eea6121a 8802 0, rtproc_sec->size))
b34976b6 8803 return FALSE;
b49e97c9
TS
8804 }
8805 }
8806
b34976b6 8807 return TRUE;
b49e97c9
TS
8808}
8809\f
64543e1a
RS
8810/* Structure for saying that BFD machine EXTENSION extends BASE. */
8811
8812struct mips_mach_extension {
8813 unsigned long extension, base;
8814};
8815
8816
8817/* An array describing how BFD machines relate to one another. The entries
8818 are ordered topologically with MIPS I extensions listed last. */
8819
8820static const struct mips_mach_extension mips_mach_extensions[] = {
8821 /* MIPS64 extensions. */
5f74bc13 8822 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
8823 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8824
8825 /* MIPS V extensions. */
8826 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8827
8828 /* R10000 extensions. */
8829 { bfd_mach_mips12000, bfd_mach_mips10000 },
8830
8831 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8832 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8833 better to allow vr5400 and vr5500 code to be merged anyway, since
8834 many libraries will just use the core ISA. Perhaps we could add
8835 some sort of ASE flag if this ever proves a problem. */
8836 { bfd_mach_mips5500, bfd_mach_mips5400 },
8837 { bfd_mach_mips5400, bfd_mach_mips5000 },
8838
8839 /* MIPS IV extensions. */
8840 { bfd_mach_mips5, bfd_mach_mips8000 },
8841 { bfd_mach_mips10000, bfd_mach_mips8000 },
8842 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 8843 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 8844 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
8845
8846 /* VR4100 extensions. */
8847 { bfd_mach_mips4120, bfd_mach_mips4100 },
8848 { bfd_mach_mips4111, bfd_mach_mips4100 },
8849
8850 /* MIPS III extensions. */
8851 { bfd_mach_mips8000, bfd_mach_mips4000 },
8852 { bfd_mach_mips4650, bfd_mach_mips4000 },
8853 { bfd_mach_mips4600, bfd_mach_mips4000 },
8854 { bfd_mach_mips4400, bfd_mach_mips4000 },
8855 { bfd_mach_mips4300, bfd_mach_mips4000 },
8856 { bfd_mach_mips4100, bfd_mach_mips4000 },
8857 { bfd_mach_mips4010, bfd_mach_mips4000 },
8858
8859 /* MIPS32 extensions. */
8860 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8861
8862 /* MIPS II extensions. */
8863 { bfd_mach_mips4000, bfd_mach_mips6000 },
8864 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8865
8866 /* MIPS I extensions. */
8867 { bfd_mach_mips6000, bfd_mach_mips3000 },
8868 { bfd_mach_mips3900, bfd_mach_mips3000 }
8869};
8870
8871
8872/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8873
8874static bfd_boolean
9719ad41 8875mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
8876{
8877 size_t i;
8878
8879 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8880 if (extension == mips_mach_extensions[i].extension)
8881 extension = mips_mach_extensions[i].base;
8882
8883 return extension == base;
8884}
8885
8886
8887/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 8888
b34976b6 8889static bfd_boolean
9719ad41 8890mips_32bit_flags_p (flagword flags)
00707a0e 8891{
64543e1a
RS
8892 return ((flags & EF_MIPS_32BITMODE) != 0
8893 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8894 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8895 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8896 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8897 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8898 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
8899}
8900
64543e1a 8901
b49e97c9
TS
8902/* Merge backend specific data from an object file to the output
8903 object file when linking. */
8904
b34976b6 8905bfd_boolean
9719ad41 8906_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
8907{
8908 flagword old_flags;
8909 flagword new_flags;
b34976b6
AM
8910 bfd_boolean ok;
8911 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
8912 asection *sec;
8913
8914 /* Check if we have the same endianess */
82e51918 8915 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
8916 {
8917 (*_bfd_error_handler)
d003868e
AM
8918 (_("%B: endianness incompatible with that of the selected emulation"),
8919 ibfd);
aa701218
AO
8920 return FALSE;
8921 }
b49e97c9
TS
8922
8923 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8924 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 8925 return TRUE;
b49e97c9 8926
aa701218
AO
8927 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8928 {
8929 (*_bfd_error_handler)
d003868e
AM
8930 (_("%B: ABI is incompatible with that of the selected emulation"),
8931 ibfd);
aa701218
AO
8932 return FALSE;
8933 }
8934
b49e97c9
TS
8935 new_flags = elf_elfheader (ibfd)->e_flags;
8936 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8937 old_flags = elf_elfheader (obfd)->e_flags;
8938
8939 if (! elf_flags_init (obfd))
8940 {
b34976b6 8941 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
8942 elf_elfheader (obfd)->e_flags = new_flags;
8943 elf_elfheader (obfd)->e_ident[EI_CLASS]
8944 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8945
8946 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8947 && bfd_get_arch_info (obfd)->the_default)
8948 {
8949 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8950 bfd_get_mach (ibfd)))
b34976b6 8951 return FALSE;
b49e97c9
TS
8952 }
8953
b34976b6 8954 return TRUE;
b49e97c9
TS
8955 }
8956
8957 /* Check flag compatibility. */
8958
8959 new_flags &= ~EF_MIPS_NOREORDER;
8960 old_flags &= ~EF_MIPS_NOREORDER;
8961
f4416af6
AO
8962 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8963 doesn't seem to matter. */
8964 new_flags &= ~EF_MIPS_XGOT;
8965 old_flags &= ~EF_MIPS_XGOT;
8966
98a8deaf
RS
8967 /* MIPSpro generates ucode info in n64 objects. Again, we should
8968 just be able to ignore this. */
8969 new_flags &= ~EF_MIPS_UCODE;
8970 old_flags &= ~EF_MIPS_UCODE;
8971
b49e97c9 8972 if (new_flags == old_flags)
b34976b6 8973 return TRUE;
b49e97c9
TS
8974
8975 /* Check to see if the input BFD actually contains any sections.
8976 If not, its flags may not have been initialised either, but it cannot
8977 actually cause any incompatibility. */
8978 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8979 {
8980 /* Ignore synthetic sections and empty .text, .data and .bss sections
8981 which are automatically generated by gas. */
8982 if (strcmp (sec->name, ".reginfo")
8983 && strcmp (sec->name, ".mdebug")
eea6121a 8984 && (sec->size != 0
d13d89fa
NS
8985 || (strcmp (sec->name, ".text")
8986 && strcmp (sec->name, ".data")
8987 && strcmp (sec->name, ".bss"))))
b49e97c9 8988 {
b34976b6 8989 null_input_bfd = FALSE;
b49e97c9
TS
8990 break;
8991 }
8992 }
8993 if (null_input_bfd)
b34976b6 8994 return TRUE;
b49e97c9 8995
b34976b6 8996 ok = TRUE;
b49e97c9 8997
143d77c5
EC
8998 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
8999 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 9000 {
b49e97c9 9001 (*_bfd_error_handler)
d003868e
AM
9002 (_("%B: warning: linking PIC files with non-PIC files"),
9003 ibfd);
143d77c5 9004 ok = TRUE;
b49e97c9
TS
9005 }
9006
143d77c5
EC
9007 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9008 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9009 if (! (new_flags & EF_MIPS_PIC))
9010 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9011
9012 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9013 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 9014
64543e1a
RS
9015 /* Compare the ISAs. */
9016 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 9017 {
64543e1a 9018 (*_bfd_error_handler)
d003868e
AM
9019 (_("%B: linking 32-bit code with 64-bit code"),
9020 ibfd);
64543e1a
RS
9021 ok = FALSE;
9022 }
9023 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9024 {
9025 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9026 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 9027 {
64543e1a
RS
9028 /* Copy the architecture info from IBFD to OBFD. Also copy
9029 the 32-bit flag (if set) so that we continue to recognise
9030 OBFD as a 32-bit binary. */
9031 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9032 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9033 elf_elfheader (obfd)->e_flags
9034 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9035
9036 /* Copy across the ABI flags if OBFD doesn't use them
9037 and if that was what caused us to treat IBFD as 32-bit. */
9038 if ((old_flags & EF_MIPS_ABI) == 0
9039 && mips_32bit_flags_p (new_flags)
9040 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9041 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9042 }
9043 else
9044 {
64543e1a 9045 /* The ISAs aren't compatible. */
b49e97c9 9046 (*_bfd_error_handler)
d003868e
AM
9047 (_("%B: linking %s module with previous %s modules"),
9048 ibfd,
64543e1a
RS
9049 bfd_printable_name (ibfd),
9050 bfd_printable_name (obfd));
b34976b6 9051 ok = FALSE;
b49e97c9 9052 }
b49e97c9
TS
9053 }
9054
64543e1a
RS
9055 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9056 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9057
9058 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9059 does set EI_CLASS differently from any 32-bit ABI. */
9060 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9061 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9062 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9063 {
9064 /* Only error if both are set (to different values). */
9065 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9066 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9067 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9068 {
9069 (*_bfd_error_handler)
d003868e
AM
9070 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9071 ibfd,
b49e97c9
TS
9072 elf_mips_abi_name (ibfd),
9073 elf_mips_abi_name (obfd));
b34976b6 9074 ok = FALSE;
b49e97c9
TS
9075 }
9076 new_flags &= ~EF_MIPS_ABI;
9077 old_flags &= ~EF_MIPS_ABI;
9078 }
9079
fb39dac1
RS
9080 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9081 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9082 {
9083 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9084
9085 new_flags &= ~ EF_MIPS_ARCH_ASE;
9086 old_flags &= ~ EF_MIPS_ARCH_ASE;
9087 }
9088
b49e97c9
TS
9089 /* Warn about any other mismatches */
9090 if (new_flags != old_flags)
9091 {
9092 (*_bfd_error_handler)
d003868e
AM
9093 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9094 ibfd, (unsigned long) new_flags,
b49e97c9 9095 (unsigned long) old_flags);
b34976b6 9096 ok = FALSE;
b49e97c9
TS
9097 }
9098
9099 if (! ok)
9100 {
9101 bfd_set_error (bfd_error_bad_value);
b34976b6 9102 return FALSE;
b49e97c9
TS
9103 }
9104
b34976b6 9105 return TRUE;
b49e97c9
TS
9106}
9107
9108/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9109
b34976b6 9110bfd_boolean
9719ad41 9111_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
9112{
9113 BFD_ASSERT (!elf_flags_init (abfd)
9114 || elf_elfheader (abfd)->e_flags == flags);
9115
9116 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9117 elf_flags_init (abfd) = TRUE;
9118 return TRUE;
b49e97c9
TS
9119}
9120
b34976b6 9121bfd_boolean
9719ad41 9122_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 9123{
9719ad41 9124 FILE *file = ptr;
b49e97c9
TS
9125
9126 BFD_ASSERT (abfd != NULL && ptr != NULL);
9127
9128 /* Print normal ELF private data. */
9129 _bfd_elf_print_private_bfd_data (abfd, ptr);
9130
9131 /* xgettext:c-format */
9132 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9133
9134 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9135 fprintf (file, _(" [abi=O32]"));
9136 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9137 fprintf (file, _(" [abi=O64]"));
9138 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9139 fprintf (file, _(" [abi=EABI32]"));
9140 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9141 fprintf (file, _(" [abi=EABI64]"));
9142 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9143 fprintf (file, _(" [abi unknown]"));
9144 else if (ABI_N32_P (abfd))
9145 fprintf (file, _(" [abi=N32]"));
9146 else if (ABI_64_P (abfd))
9147 fprintf (file, _(" [abi=64]"));
9148 else
9149 fprintf (file, _(" [no abi set]"));
9150
9151 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9152 fprintf (file, _(" [mips1]"));
9153 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9154 fprintf (file, _(" [mips2]"));
9155 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9156 fprintf (file, _(" [mips3]"));
9157 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9158 fprintf (file, _(" [mips4]"));
9159 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9160 fprintf (file, _(" [mips5]"));
9161 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9162 fprintf (file, _(" [mips32]"));
9163 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9164 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9165 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9166 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
9167 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9168 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
9169 else
9170 fprintf (file, _(" [unknown ISA]"));
9171
40d32fc6
CD
9172 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9173 fprintf (file, _(" [mdmx]"));
9174
9175 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9176 fprintf (file, _(" [mips16]"));
9177
b49e97c9
TS
9178 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9179 fprintf (file, _(" [32bitmode]"));
9180 else
9181 fprintf (file, _(" [not 32bitmode]"));
9182
9183 fputc ('\n', file);
9184
b34976b6 9185 return TRUE;
b49e97c9 9186}
2f89ff8d
L
9187
9188struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9189{
7dcb9820
AM
9190 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9191 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9192 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9193 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9194 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9195 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9196 { NULL, 0, 0, 0, 0 }
2f89ff8d 9197};
This page took 1.025326 seconds and 4 git commands to generate.