* elfn32-mips.c (elf_mips_howto_table_rela): Change dst_mask of
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
79cda7cf 3 2003, 2004 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
b15e6682 67 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
b15e6682
AO
71};
72
f0abc2a1 73/* This structure is used to hold .got information when linking. */
b49e97c9
TS
74
75struct mips_got_info
76{
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
b15e6682
AO
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
f4416af6
AO
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94};
95
96/* Map an input bfd to a got in a multi-got link. */
97
98struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101};
102
103/* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106struct mips_elf_got_per_bfd_arg
107{
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128};
129
130/* Another structure used to pass arguments for got entries traversal. */
131
132struct mips_elf_set_global_got_offset_arg
133{
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
b49e97c9
TS
138};
139
f0abc2a1
AM
140struct _mips_elf_section_data
141{
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148};
149
150#define mips_elf_section_data(sec) \
68bfbfcc 151 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 152
b49e97c9
TS
153/* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156struct mips_elf_hash_sort_data
157{
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
f4416af6
AO
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 166 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 167 long max_unref_got_dynindx;
b49e97c9
TS
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171};
172
173/* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176struct mips_elf_link_hash_entry
177{
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
b34976b6 189 bfd_boolean readonly_reloc;
b49e97c9 190
b49e97c9
TS
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
b34976b6 195 bfd_boolean no_fn_stub;
b49e97c9
TS
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
b34976b6 203 bfd_boolean need_fn_stub;
b49e97c9
TS
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
7c5fcef7
L
212
213 /* Are we forced local? .*/
b34976b6 214 bfd_boolean forced_local;
b49e97c9
TS
215};
216
217/* MIPS ELF linker hash table. */
218
219struct mips_elf_link_hash_table
220{
221 struct elf_link_hash_table root;
222#if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226#endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 232 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 233 bfd_boolean use_rld_obj_head;
b49e97c9
TS
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
b34976b6 237 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
238};
239
240/* Structure used to pass information to mips_elf_output_extsym. */
241
242struct extsym_info
243{
9e4aeb93
RS
244 bfd *abfd;
245 struct bfd_link_info *info;
b49e97c9
TS
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
b34976b6 248 bfd_boolean failed;
b49e97c9
TS
249};
250
8dc1a139 251/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
252
253static const char * const mips_elf_dynsym_rtproc_names[] =
254{
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259};
260
261/* These structures are used to generate the .compact_rel section on
8dc1a139 262 IRIX5. */
b49e97c9
TS
263
264typedef struct
265{
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272} Elf32_compact_rel;
273
274typedef struct
275{
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282} Elf32_External_compact_rel;
283
284typedef struct
285{
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292} Elf32_crinfo;
293
294typedef struct
295{
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301} Elf32_crinfo2;
302
303typedef struct
304{
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308} Elf32_External_crinfo;
309
310typedef struct
311{
312 bfd_byte info[4];
313 bfd_byte konst[4];
314} Elf32_External_crinfo2;
315
316/* These are the constants used to swap the bitfields in a crinfo. */
317
318#define CRINFO_CTYPE (0x1)
319#define CRINFO_CTYPE_SH (31)
320#define CRINFO_RTYPE (0xf)
321#define CRINFO_RTYPE_SH (27)
322#define CRINFO_DIST2TO (0xff)
323#define CRINFO_DIST2TO_SH (19)
324#define CRINFO_RELVADDR (0x7ffff)
325#define CRINFO_RELVADDR_SH (0)
326
327/* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330#define CRF_MIPS_LONG 1
331#define CRF_MIPS_SHORT 0
332
333/* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343#define CRT_MIPS_REL32 0xa
344#define CRT_MIPS_WORD 0xb
345#define CRT_MIPS_GPHI_LO 0xc
346#define CRT_MIPS_JMPAD 0xd
347
348#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352\f
353/* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356typedef struct runtime_pdr {
ae9a127f
NC
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
b49e97c9 366 long reserved;
ae9a127f 367 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
368} RPDR, *pRPDR;
369#define cbRPDR sizeof (RPDR)
370#define rpdNil ((pRPDR) 0)
371\f
372static struct bfd_hash_entry *mips_elf_link_hash_newfunc
9719ad41 373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
b49e97c9 374static void ecoff_swap_rpdr_out
9719ad41 375 (bfd *, const RPDR *, struct rpdr_ext *);
b34976b6 376static bfd_boolean mips_elf_create_procedure_table
9719ad41
RS
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
b34976b6 379static bfd_boolean mips_elf_check_mips16_stubs
9719ad41 380 (struct mips_elf_link_hash_entry *, void *);
b49e97c9 381static void bfd_mips_elf32_swap_gptab_in
9719ad41 382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
b49e97c9 383static void bfd_mips_elf32_swap_gptab_out
9719ad41 384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
b49e97c9 385static void bfd_elf32_swap_compact_rel_out
9719ad41 386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
b49e97c9 387static void bfd_elf32_swap_crinfo_out
9719ad41 388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
b49e97c9 389static int sort_dynamic_relocs
9719ad41 390 (const void *, const void *);
f4416af6 391static int sort_dynamic_relocs_64
9719ad41 392 (const void *, const void *);
b34976b6 393static bfd_boolean mips_elf_output_extsym
9719ad41
RS
394 (struct mips_elf_link_hash_entry *, void *);
395static int gptab_compare
396 (const void *, const void *);
397static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
b49e97c9 401static struct mips_got_info *mips_elf_got_info
9719ad41 402 (bfd *, asection **);
b49e97c9 403static bfd_vma mips_elf_local_got_index
9719ad41 404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
b49e97c9 405static bfd_vma mips_elf_global_got_index
9719ad41 406 (bfd *, bfd *, struct elf_link_hash_entry *);
b49e97c9 407static bfd_vma mips_elf_got_page
9719ad41 408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
b49e97c9 409static bfd_vma mips_elf_got16_entry
9719ad41 410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
b49e97c9 411static bfd_vma mips_elf_got_offset_from_index
9719ad41 412 (bfd *, bfd *, bfd *, bfd_vma);
b15e6682 413static struct mips_got_entry *mips_elf_create_local_got_entry
9719ad41 414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
b34976b6 415static bfd_boolean mips_elf_sort_hash_table
9719ad41 416 (struct bfd_link_info *, unsigned long);
b34976b6 417static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 418 (struct mips_elf_link_hash_entry *, void *);
f4416af6 419static bfd_boolean mips_elf_record_local_got_symbol
9719ad41 420 (bfd *, long, bfd_vma, struct mips_got_info *);
b34976b6 421static bfd_boolean mips_elf_record_global_got_symbol
9719ad41
RS
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
b49e97c9 424static const Elf_Internal_Rela *mips_elf_next_relocation
9719ad41 425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
b34976b6 426static bfd_boolean mips_elf_local_relocation_p
9719ad41
RS
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430static bfd_vma mips_elf_high
431 (bfd_vma);
432static bfd_vma mips_elf_higher
433 (bfd_vma);
434static bfd_vma mips_elf_highest
435 (bfd_vma);
b34976b6 436static bfd_boolean mips_elf_create_compact_rel_section
9719ad41 437 (bfd *, struct bfd_link_info *);
b34976b6 438static bfd_boolean mips_elf_create_got_section
9719ad41 439 (bfd *, struct bfd_link_info *, bfd_boolean);
b49e97c9 440static bfd_reloc_status_type mips_elf_calculate_relocation
9719ad41
RS
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
b49e97c9 445static bfd_vma mips_elf_obtain_contents
9719ad41 446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
b34976b6 447static bfd_boolean mips_elf_perform_relocation
9719ad41
RS
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
b34976b6 450static bfd_boolean mips_elf_stub_section_p
9719ad41 451 (bfd *, asection *);
b49e97c9 452static void mips_elf_allocate_dynamic_relocations
9719ad41 453 (bfd *, unsigned int);
b34976b6 454static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458static void mips_set_isa_flags
459 (bfd *);
460static INLINE char *elf_mips_abi_name
461 (bfd *);
b49e97c9 462static void mips_elf_irix6_finish_dynamic_symbol
9719ad41
RS
463 (bfd *, const char *, Elf_Internal_Sym *);
464static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466static bfd_boolean mips_32bit_flags_p
467 (flagword);
468static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470static hashval_t mips_elf_got_entry_hash
471 (const void *);
472static int mips_elf_got_entry_eq
473 (const void *, const void *);
b49e97c9 474
f4416af6 475static bfd_boolean mips_elf_multi_got
9719ad41
RS
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486static int mips_elf_make_got_per_bfd
487 (void **, void *);
488static int mips_elf_merge_gots
489 (void **, void *);
490static int mips_elf_set_global_got_offset
491 (void **, void *);
492static int mips_elf_set_no_stub
493 (void **, void *);
494static int mips_elf_resolve_final_got_entry
495 (void **, void *);
f4416af6 496static void mips_elf_resolve_final_got_entries
9719ad41 497 (struct mips_got_info *);
f4416af6 498static bfd_vma mips_elf_adjust_gp
9719ad41 499 (bfd *, struct mips_got_info *, bfd *);
f4416af6 500static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 501 (struct mips_got_info *, bfd *);
f4416af6 502
b49e97c9
TS
503/* This will be used when we sort the dynamic relocation records. */
504static bfd *reldyn_sorting_bfd;
505
506/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 507
b49e97c9
TS
508#define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
4a14403c 511/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 512#define ABI_64_P(abfd) \
141ff970 513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 514
4a14403c
TS
515/* Nonzero if ABFD is using NewABI conventions. */
516#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
519#define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
b49e97c9
TS
522/* Whether we are trying to be compatible with IRIX at all. */
523#define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526/* The name of the options section. */
527#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9
TS
529
530/* The name of the stub section. */
ca07892d 531#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
532
533/* The size of an external REL relocation. */
534#define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537/* The size of an external dynamic table entry. */
538#define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541/* The size of a GOT entry. */
542#define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545/* The size of a symbol-table entry. */
546#define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549/* The default alignment for sections, as a power of two. */
550#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 551 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
552
553/* Get word-sized data. */
554#define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557/* Put out word-sized data. */
558#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563/* Add a dynamic symbol table-entry. */
9719ad41 564#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 565 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
566
567#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
4ffba85c
AO
570/* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
b49e97c9
TS
587/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 590#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
591
592/* The number of local .got entries we reserve. */
593#define MIPS_RESERVED_GOTNO (2)
594
f4416af6
AO
595/* The offset of $gp from the beginning of the .got section. */
596#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598/* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
6a691779 602/* Instructions which appear in a stub. */
b49e97c9 603#define STUB_LW(abfd) \
f4416af6
AO
604 ((ABI_64_P (abfd) \
605 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
606 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9 607#define STUB_MOVE(abfd) \
6a691779
TS
608 ((ABI_64_P (abfd) \
609 ? 0x03e0782d /* daddu t7,ra */ \
610 : 0x03e07821)) /* addu t7,ra */
611#define STUB_JALR 0x0320f809 /* jalr t9,ra */
b49e97c9 612#define STUB_LI16(abfd) \
6a691779
TS
613 ((ABI_64_P (abfd) \
614 ? 0x64180000 /* daddiu t8,zero,0 */ \
615 : 0x24180000)) /* addiu t8,zero,0 */
b49e97c9
TS
616#define MIPS_FUNCTION_STUB_SIZE (16)
617
618/* The name of the dynamic interpreter. This is put in the .interp
619 section. */
620
621#define ELF_DYNAMIC_INTERPRETER(abfd) \
622 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
623 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
624 : "/usr/lib/libc.so.1")
625
626#ifdef BFD64
ee6423ed
AO
627#define MNAME(bfd,pre,pos) \
628 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
629#define ELF_R_SYM(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
631#define ELF_R_TYPE(bfd, i) \
632 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
633#define ELF_R_INFO(bfd, s, t) \
634 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
635#else
ee6423ed 636#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
637#define ELF_R_SYM(bfd, i) \
638 (ELF32_R_SYM (i))
639#define ELF_R_TYPE(bfd, i) \
640 (ELF32_R_TYPE (i))
641#define ELF_R_INFO(bfd, s, t) \
642 (ELF32_R_INFO (s, t))
643#endif
644\f
645 /* The mips16 compiler uses a couple of special sections to handle
646 floating point arguments.
647
648 Section names that look like .mips16.fn.FNNAME contain stubs that
649 copy floating point arguments from the fp regs to the gp regs and
650 then jump to FNNAME. If any 32 bit function calls FNNAME, the
651 call should be redirected to the stub instead. If no 32 bit
652 function calls FNNAME, the stub should be discarded. We need to
653 consider any reference to the function, not just a call, because
654 if the address of the function is taken we will need the stub,
655 since the address might be passed to a 32 bit function.
656
657 Section names that look like .mips16.call.FNNAME contain stubs
658 that copy floating point arguments from the gp regs to the fp
659 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
660 then any 16 bit function that calls FNNAME should be redirected
661 to the stub instead. If FNNAME is not a 32 bit function, the
662 stub should be discarded.
663
664 .mips16.call.fp.FNNAME sections are similar, but contain stubs
665 which call FNNAME and then copy the return value from the fp regs
666 to the gp regs. These stubs store the return value in $18 while
667 calling FNNAME; any function which might call one of these stubs
668 must arrange to save $18 around the call. (This case is not
669 needed for 32 bit functions that call 16 bit functions, because
670 16 bit functions always return floating point values in both
671 $f0/$f1 and $2/$3.)
672
673 Note that in all cases FNNAME might be defined statically.
674 Therefore, FNNAME is not used literally. Instead, the relocation
675 information will indicate which symbol the section is for.
676
677 We record any stubs that we find in the symbol table. */
678
679#define FN_STUB ".mips16.fn."
680#define CALL_STUB ".mips16.call."
681#define CALL_FP_STUB ".mips16.call.fp."
682\f
683/* Look up an entry in a MIPS ELF linker hash table. */
684
685#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
686 ((struct mips_elf_link_hash_entry *) \
687 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 (copy), (follow)))
689
690/* Traverse a MIPS ELF linker hash table. */
691
692#define mips_elf_link_hash_traverse(table, func, info) \
693 (elf_link_hash_traverse \
694 (&(table)->root, \
9719ad41 695 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
696 (info)))
697
698/* Get the MIPS ELF linker hash table from a link_info structure. */
699
700#define mips_elf_hash_table(p) \
701 ((struct mips_elf_link_hash_table *) ((p)->hash))
702
703/* Create an entry in a MIPS ELF linker hash table. */
704
705static struct bfd_hash_entry *
9719ad41
RS
706mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
707 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
708{
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
9719ad41
RS
714 if (ret == NULL)
715 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
716 if (ret == NULL)
b49e97c9
TS
717 return (struct bfd_hash_entry *) ret;
718
719 /* Call the allocation method of the superclass. */
720 ret = ((struct mips_elf_link_hash_entry *)
721 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
722 table, string));
9719ad41 723 if (ret != NULL)
b49e97c9
TS
724 {
725 /* Set local fields. */
726 memset (&ret->esym, 0, sizeof (EXTR));
727 /* We use -2 as a marker to indicate that the information has
728 not been set. -1 means there is no associated ifd. */
729 ret->esym.ifd = -2;
730 ret->possibly_dynamic_relocs = 0;
b34976b6 731 ret->readonly_reloc = FALSE;
b34976b6 732 ret->no_fn_stub = FALSE;
b49e97c9 733 ret->fn_stub = NULL;
b34976b6 734 ret->need_fn_stub = FALSE;
b49e97c9
TS
735 ret->call_stub = NULL;
736 ret->call_fp_stub = NULL;
b34976b6 737 ret->forced_local = FALSE;
b49e97c9
TS
738 }
739
740 return (struct bfd_hash_entry *) ret;
741}
f0abc2a1
AM
742
743bfd_boolean
9719ad41 744_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1
AM
745{
746 struct _mips_elf_section_data *sdata;
747 bfd_size_type amt = sizeof (*sdata);
748
9719ad41 749 sdata = bfd_zalloc (abfd, amt);
f0abc2a1
AM
750 if (sdata == NULL)
751 return FALSE;
9719ad41 752 sec->used_by_bfd = sdata;
f0abc2a1
AM
753
754 return _bfd_elf_new_section_hook (abfd, sec);
755}
b49e97c9
TS
756\f
757/* Read ECOFF debugging information from a .mdebug section into a
758 ecoff_debug_info structure. */
759
b34976b6 760bfd_boolean
9719ad41
RS
761_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
762 struct ecoff_debug_info *debug)
b49e97c9
TS
763{
764 HDRR *symhdr;
765 const struct ecoff_debug_swap *swap;
9719ad41 766 char *ext_hdr;
b49e97c9
TS
767
768 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
769 memset (debug, 0, sizeof (*debug));
770
9719ad41 771 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
772 if (ext_hdr == NULL && swap->external_hdr_size != 0)
773 goto error_return;
774
9719ad41 775 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 776 swap->external_hdr_size))
b49e97c9
TS
777 goto error_return;
778
779 symhdr = &debug->symbolic_header;
780 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
781
782 /* The symbolic header contains absolute file offsets and sizes to
783 read. */
784#define READ(ptr, offset, count, size, type) \
785 if (symhdr->count == 0) \
786 debug->ptr = NULL; \
787 else \
788 { \
789 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 790 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
791 if (debug->ptr == NULL) \
792 goto error_return; \
9719ad41 793 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
794 || bfd_bread (debug->ptr, amt, abfd) != amt) \
795 goto error_return; \
796 }
797
798 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
799 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
800 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
801 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
802 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
803 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
804 union aux_ext *);
805 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
806 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
807 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
808 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
809 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
810#undef READ
811
812 debug->fdr = NULL;
b49e97c9 813
b34976b6 814 return TRUE;
b49e97c9
TS
815
816 error_return:
817 if (ext_hdr != NULL)
818 free (ext_hdr);
819 if (debug->line != NULL)
820 free (debug->line);
821 if (debug->external_dnr != NULL)
822 free (debug->external_dnr);
823 if (debug->external_pdr != NULL)
824 free (debug->external_pdr);
825 if (debug->external_sym != NULL)
826 free (debug->external_sym);
827 if (debug->external_opt != NULL)
828 free (debug->external_opt);
829 if (debug->external_aux != NULL)
830 free (debug->external_aux);
831 if (debug->ss != NULL)
832 free (debug->ss);
833 if (debug->ssext != NULL)
834 free (debug->ssext);
835 if (debug->external_fdr != NULL)
836 free (debug->external_fdr);
837 if (debug->external_rfd != NULL)
838 free (debug->external_rfd);
839 if (debug->external_ext != NULL)
840 free (debug->external_ext);
b34976b6 841 return FALSE;
b49e97c9
TS
842}
843\f
844/* Swap RPDR (runtime procedure table entry) for output. */
845
846static void
9719ad41 847ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
848{
849 H_PUT_S32 (abfd, in->adr, ex->p_adr);
850 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
851 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
852 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
853 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
854 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
855
856 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
857 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
858
859 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
860#if 0 /* FIXME */
861 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
862#endif
863}
864
865/* Create a runtime procedure table from the .mdebug section. */
866
b34976b6 867static bfd_boolean
9719ad41
RS
868mips_elf_create_procedure_table (void *handle, bfd *abfd,
869 struct bfd_link_info *info, asection *s,
870 struct ecoff_debug_info *debug)
b49e97c9
TS
871{
872 const struct ecoff_debug_swap *swap;
873 HDRR *hdr = &debug->symbolic_header;
874 RPDR *rpdr, *rp;
875 struct rpdr_ext *erp;
9719ad41 876 void *rtproc;
b49e97c9
TS
877 struct pdr_ext *epdr;
878 struct sym_ext *esym;
879 char *ss, **sv;
880 char *str;
881 bfd_size_type size;
882 bfd_size_type count;
883 unsigned long sindex;
884 unsigned long i;
885 PDR pdr;
886 SYMR sym;
887 const char *no_name_func = _("static procedure (no name)");
888
889 epdr = NULL;
890 rpdr = NULL;
891 esym = NULL;
892 ss = NULL;
893 sv = NULL;
894
895 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
896
897 sindex = strlen (no_name_func) + 1;
898 count = hdr->ipdMax;
899 if (count > 0)
900 {
901 size = swap->external_pdr_size;
902
9719ad41 903 epdr = bfd_malloc (size * count);
b49e97c9
TS
904 if (epdr == NULL)
905 goto error_return;
906
9719ad41 907 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
908 goto error_return;
909
910 size = sizeof (RPDR);
9719ad41 911 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
912 if (rpdr == NULL)
913 goto error_return;
914
915 size = sizeof (char *);
9719ad41 916 sv = bfd_malloc (size * count);
b49e97c9
TS
917 if (sv == NULL)
918 goto error_return;
919
920 count = hdr->isymMax;
921 size = swap->external_sym_size;
9719ad41 922 esym = bfd_malloc (size * count);
b49e97c9
TS
923 if (esym == NULL)
924 goto error_return;
925
9719ad41 926 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
927 goto error_return;
928
929 count = hdr->issMax;
9719ad41 930 ss = bfd_malloc (count);
b49e97c9
TS
931 if (ss == NULL)
932 goto error_return;
9719ad41 933 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
b49e97c9
TS
934 goto error_return;
935
936 count = hdr->ipdMax;
937 for (i = 0; i < (unsigned long) count; i++, rp++)
938 {
9719ad41
RS
939 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
940 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
941 rp->adr = sym.value;
942 rp->regmask = pdr.regmask;
943 rp->regoffset = pdr.regoffset;
944 rp->fregmask = pdr.fregmask;
945 rp->fregoffset = pdr.fregoffset;
946 rp->frameoffset = pdr.frameoffset;
947 rp->framereg = pdr.framereg;
948 rp->pcreg = pdr.pcreg;
949 rp->irpss = sindex;
950 sv[i] = ss + sym.iss;
951 sindex += strlen (sv[i]) + 1;
952 }
953 }
954
955 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
956 size = BFD_ALIGN (size, 16);
9719ad41 957 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
958 if (rtproc == NULL)
959 {
960 mips_elf_hash_table (info)->procedure_count = 0;
961 goto error_return;
962 }
963
964 mips_elf_hash_table (info)->procedure_count = count + 2;
965
9719ad41 966 erp = rtproc;
b49e97c9
TS
967 memset (erp, 0, sizeof (struct rpdr_ext));
968 erp++;
969 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
970 strcpy (str, no_name_func);
971 str += strlen (no_name_func) + 1;
972 for (i = 0; i < count; i++)
973 {
974 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
975 strcpy (str, sv[i]);
976 str += strlen (sv[i]) + 1;
977 }
978 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
979
980 /* Set the size and contents of .rtproc section. */
eea6121a 981 s->size = size;
9719ad41 982 s->contents = rtproc;
b49e97c9
TS
983
984 /* Skip this section later on (I don't think this currently
985 matters, but someday it might). */
9719ad41 986 s->link_order_head = NULL;
b49e97c9
TS
987
988 if (epdr != NULL)
989 free (epdr);
990 if (rpdr != NULL)
991 free (rpdr);
992 if (esym != NULL)
993 free (esym);
994 if (ss != NULL)
995 free (ss);
996 if (sv != NULL)
997 free (sv);
998
b34976b6 999 return TRUE;
b49e97c9
TS
1000
1001 error_return:
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
b34976b6 1012 return FALSE;
b49e97c9
TS
1013}
1014
1015/* Check the mips16 stubs for a particular symbol, and see if we can
1016 discard them. */
1017
b34976b6 1018static bfd_boolean
9719ad41
RS
1019mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1020 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1021{
1022 if (h->root.root.type == bfd_link_hash_warning)
1023 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1024
1025 if (h->fn_stub != NULL
1026 && ! h->need_fn_stub)
1027 {
1028 /* We don't need the fn_stub; the only references to this symbol
1029 are 16 bit calls. Clobber the size to 0 to prevent it from
1030 being included in the link. */
eea6121a 1031 h->fn_stub->size = 0;
b49e97c9
TS
1032 h->fn_stub->flags &= ~SEC_RELOC;
1033 h->fn_stub->reloc_count = 0;
1034 h->fn_stub->flags |= SEC_EXCLUDE;
1035 }
1036
1037 if (h->call_stub != NULL
1038 && h->root.other == STO_MIPS16)
1039 {
1040 /* We don't need the call_stub; this is a 16 bit function, so
1041 calls from other 16 bit functions are OK. Clobber the size
1042 to 0 to prevent it from being included in the link. */
eea6121a 1043 h->call_stub->size = 0;
b49e97c9
TS
1044 h->call_stub->flags &= ~SEC_RELOC;
1045 h->call_stub->reloc_count = 0;
1046 h->call_stub->flags |= SEC_EXCLUDE;
1047 }
1048
1049 if (h->call_fp_stub != NULL
1050 && h->root.other == STO_MIPS16)
1051 {
1052 /* We don't need the call_stub; this is a 16 bit function, so
1053 calls from other 16 bit functions are OK. Clobber the size
1054 to 0 to prevent it from being included in the link. */
eea6121a 1055 h->call_fp_stub->size = 0;
b49e97c9
TS
1056 h->call_fp_stub->flags &= ~SEC_RELOC;
1057 h->call_fp_stub->reloc_count = 0;
1058 h->call_fp_stub->flags |= SEC_EXCLUDE;
1059 }
1060
b34976b6 1061 return TRUE;
b49e97c9
TS
1062}
1063\f
1064bfd_reloc_status_type
9719ad41
RS
1065_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1066 arelent *reloc_entry, asection *input_section,
1067 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1068{
1069 bfd_vma relocation;
a7ebbfdf 1070 bfd_signed_vma val;
30ac9238 1071 bfd_reloc_status_type status;
b49e97c9
TS
1072
1073 if (bfd_is_com_section (symbol->section))
1074 relocation = 0;
1075 else
1076 relocation = symbol->value;
1077
1078 relocation += symbol->section->output_section->vma;
1079 relocation += symbol->section->output_offset;
1080
07515404 1081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1082 return bfd_reloc_outofrange;
1083
b49e97c9 1084 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1085 val = reloc_entry->addend;
1086
30ac9238 1087 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1088
b49e97c9 1089 /* Adjust val for the final section location and GP value. If we
1049f94e 1090 are producing relocatable output, we don't want to do this for
b49e97c9 1091 an external symbol. */
1049f94e 1092 if (! relocatable
b49e97c9
TS
1093 || (symbol->flags & BSF_SECTION_SYM) != 0)
1094 val += relocation - gp;
1095
a7ebbfdf
TS
1096 if (reloc_entry->howto->partial_inplace)
1097 {
30ac9238
RS
1098 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1099 (bfd_byte *) data
1100 + reloc_entry->address);
1101 if (status != bfd_reloc_ok)
1102 return status;
a7ebbfdf
TS
1103 }
1104 else
1105 reloc_entry->addend = val;
b49e97c9 1106
1049f94e 1107 if (relocatable)
b49e97c9 1108 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1109
1110 return bfd_reloc_ok;
1111}
1112
1113/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1114 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1115 that contains the relocation field and DATA points to the start of
1116 INPUT_SECTION. */
1117
1118struct mips_hi16
1119{
1120 struct mips_hi16 *next;
1121 bfd_byte *data;
1122 asection *input_section;
1123 arelent rel;
1124};
1125
1126/* FIXME: This should not be a static variable. */
1127
1128static struct mips_hi16 *mips_hi16_list;
1129
1130/* A howto special_function for REL *HI16 relocations. We can only
1131 calculate the correct value once we've seen the partnering
1132 *LO16 relocation, so just save the information for later.
1133
1134 The ABI requires that the *LO16 immediately follow the *HI16.
1135 However, as a GNU extension, we permit an arbitrary number of
1136 *HI16s to be associated with a single *LO16. This significantly
1137 simplies the relocation handling in gcc. */
1138
1139bfd_reloc_status_type
1140_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1141 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1142 asection *input_section, bfd *output_bfd,
1143 char **error_message ATTRIBUTE_UNUSED)
1144{
1145 struct mips_hi16 *n;
1146
07515404 1147 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1148 return bfd_reloc_outofrange;
1149
1150 n = bfd_malloc (sizeof *n);
1151 if (n == NULL)
1152 return bfd_reloc_outofrange;
1153
1154 n->next = mips_hi16_list;
1155 n->data = data;
1156 n->input_section = input_section;
1157 n->rel = *reloc_entry;
1158 mips_hi16_list = n;
1159
1160 if (output_bfd != NULL)
1161 reloc_entry->address += input_section->output_offset;
1162
1163 return bfd_reloc_ok;
1164}
1165
1166/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1167 like any other 16-bit relocation when applied to global symbols, but is
1168 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1169
1170bfd_reloc_status_type
1171_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1172 void *data, asection *input_section,
1173 bfd *output_bfd, char **error_message)
1174{
1175 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1176 || bfd_is_und_section (bfd_get_section (symbol))
1177 || bfd_is_com_section (bfd_get_section (symbol)))
1178 /* The relocation is against a global symbol. */
1179 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1180 input_section, output_bfd,
1181 error_message);
1182
1183 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1184 input_section, output_bfd, error_message);
1185}
1186
1187/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1188 is a straightforward 16 bit inplace relocation, but we must deal with
1189 any partnering high-part relocations as well. */
1190
1191bfd_reloc_status_type
1192_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1193 void *data, asection *input_section,
1194 bfd *output_bfd, char **error_message)
1195{
1196 bfd_vma vallo;
1197
07515404 1198 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1199 return bfd_reloc_outofrange;
1200
1201 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1202 while (mips_hi16_list != NULL)
1203 {
1204 bfd_reloc_status_type ret;
1205 struct mips_hi16 *hi;
1206
1207 hi = mips_hi16_list;
1208
1209 /* R_MIPS_GOT16 relocations are something of a special case. We
1210 want to install the addend in the same way as for a R_MIPS_HI16
1211 relocation (with a rightshift of 16). However, since GOT16
1212 relocations can also be used with global symbols, their howto
1213 has a rightshift of 0. */
1214 if (hi->rel.howto->type == R_MIPS_GOT16)
1215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1216
1217 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1218 carry or borrow will induce a change of +1 or -1 in the high part. */
1219 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1220
30ac9238
RS
1221 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1222 hi->input_section, output_bfd,
1223 error_message);
1224 if (ret != bfd_reloc_ok)
1225 return ret;
1226
1227 mips_hi16_list = hi->next;
1228 free (hi);
1229 }
1230
1231 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1232 input_section, output_bfd,
1233 error_message);
1234}
1235
1236/* A generic howto special_function. This calculates and installs the
1237 relocation itself, thus avoiding the oft-discussed problems in
1238 bfd_perform_relocation and bfd_install_relocation. */
1239
1240bfd_reloc_status_type
1241_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1242 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1243 asection *input_section, bfd *output_bfd,
1244 char **error_message ATTRIBUTE_UNUSED)
1245{
1246 bfd_signed_vma val;
1247 bfd_reloc_status_type status;
1248 bfd_boolean relocatable;
1249
1250 relocatable = (output_bfd != NULL);
1251
07515404 1252 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1253 return bfd_reloc_outofrange;
1254
1255 /* Build up the field adjustment in VAL. */
1256 val = 0;
1257 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1258 {
1259 /* Either we're calculating the final field value or we have a
1260 relocation against a section symbol. Add in the section's
1261 offset or address. */
1262 val += symbol->section->output_section->vma;
1263 val += symbol->section->output_offset;
1264 }
1265
1266 if (!relocatable)
1267 {
1268 /* We're calculating the final field value. Add in the symbol's value
1269 and, if pc-relative, subtract the address of the field itself. */
1270 val += symbol->value;
1271 if (reloc_entry->howto->pc_relative)
1272 {
1273 val -= input_section->output_section->vma;
1274 val -= input_section->output_offset;
1275 val -= reloc_entry->address;
1276 }
1277 }
1278
1279 /* VAL is now the final adjustment. If we're keeping this relocation
1280 in the output file, and if the relocation uses a separate addend,
1281 we just need to add VAL to that addend. Otherwise we need to add
1282 VAL to the relocation field itself. */
1283 if (relocatable && !reloc_entry->howto->partial_inplace)
1284 reloc_entry->addend += val;
1285 else
1286 {
1287 /* Add in the separate addend, if any. */
1288 val += reloc_entry->addend;
1289
1290 /* Add VAL to the relocation field. */
1291 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1292 (bfd_byte *) data
1293 + reloc_entry->address);
1294 if (status != bfd_reloc_ok)
1295 return status;
1296 }
1297
1298 if (relocatable)
1299 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1300
1301 return bfd_reloc_ok;
1302}
1303\f
1304/* Swap an entry in a .gptab section. Note that these routines rely
1305 on the equivalence of the two elements of the union. */
1306
1307static void
9719ad41
RS
1308bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1309 Elf32_gptab *in)
b49e97c9
TS
1310{
1311 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1312 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1313}
1314
1315static void
9719ad41
RS
1316bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1317 Elf32_External_gptab *ex)
b49e97c9
TS
1318{
1319 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1320 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1321}
1322
1323static void
9719ad41
RS
1324bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1325 Elf32_External_compact_rel *ex)
b49e97c9
TS
1326{
1327 H_PUT_32 (abfd, in->id1, ex->id1);
1328 H_PUT_32 (abfd, in->num, ex->num);
1329 H_PUT_32 (abfd, in->id2, ex->id2);
1330 H_PUT_32 (abfd, in->offset, ex->offset);
1331 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1332 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1333}
1334
1335static void
9719ad41
RS
1336bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1337 Elf32_External_crinfo *ex)
b49e97c9
TS
1338{
1339 unsigned long l;
1340
1341 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1342 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1343 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1344 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1345 H_PUT_32 (abfd, l, ex->info);
1346 H_PUT_32 (abfd, in->konst, ex->konst);
1347 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1348}
b49e97c9
TS
1349\f
1350/* A .reginfo section holds a single Elf32_RegInfo structure. These
1351 routines swap this structure in and out. They are used outside of
1352 BFD, so they are globally visible. */
1353
1354void
9719ad41
RS
1355bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1356 Elf32_RegInfo *in)
b49e97c9
TS
1357{
1358 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1359 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1360 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1361 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1362 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1363 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1364}
1365
1366void
9719ad41
RS
1367bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1368 Elf32_External_RegInfo *ex)
b49e97c9
TS
1369{
1370 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1371 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1372 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1373 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1374 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1375 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1376}
1377
1378/* In the 64 bit ABI, the .MIPS.options section holds register
1379 information in an Elf64_Reginfo structure. These routines swap
1380 them in and out. They are globally visible because they are used
1381 outside of BFD. These routines are here so that gas can call them
1382 without worrying about whether the 64 bit ABI has been included. */
1383
1384void
9719ad41
RS
1385bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1386 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1387{
1388 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1389 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1390 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1391 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1392 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1393 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1394 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1395}
1396
1397void
9719ad41
RS
1398bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1399 Elf64_External_RegInfo *ex)
b49e97c9
TS
1400{
1401 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1402 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1403 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1404 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1405 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1406 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1407 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1408}
1409
1410/* Swap in an options header. */
1411
1412void
9719ad41
RS
1413bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1414 Elf_Internal_Options *in)
b49e97c9
TS
1415{
1416 in->kind = H_GET_8 (abfd, ex->kind);
1417 in->size = H_GET_8 (abfd, ex->size);
1418 in->section = H_GET_16 (abfd, ex->section);
1419 in->info = H_GET_32 (abfd, ex->info);
1420}
1421
1422/* Swap out an options header. */
1423
1424void
9719ad41
RS
1425bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1426 Elf_External_Options *ex)
b49e97c9
TS
1427{
1428 H_PUT_8 (abfd, in->kind, ex->kind);
1429 H_PUT_8 (abfd, in->size, ex->size);
1430 H_PUT_16 (abfd, in->section, ex->section);
1431 H_PUT_32 (abfd, in->info, ex->info);
1432}
1433\f
1434/* This function is called via qsort() to sort the dynamic relocation
1435 entries by increasing r_symndx value. */
1436
1437static int
9719ad41 1438sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1439{
947216bf
AM
1440 Elf_Internal_Rela int_reloc1;
1441 Elf_Internal_Rela int_reloc2;
b49e97c9 1442
947216bf
AM
1443 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1444 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1445
947216bf 1446 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1447}
1448
f4416af6
AO
1449/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1450
1451static int
9719ad41 1452sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
f4416af6
AO
1453{
1454 Elf_Internal_Rela int_reloc1[3];
1455 Elf_Internal_Rela int_reloc2[3];
1456
1457 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1458 (reldyn_sorting_bfd, arg1, int_reloc1);
1459 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1460 (reldyn_sorting_bfd, arg2, int_reloc2);
1461
1462 return (ELF64_R_SYM (int_reloc1[0].r_info)
1463 - ELF64_R_SYM (int_reloc2[0].r_info));
1464}
1465
1466
b49e97c9
TS
1467/* This routine is used to write out ECOFF debugging external symbol
1468 information. It is called via mips_elf_link_hash_traverse. The
1469 ECOFF external symbol information must match the ELF external
1470 symbol information. Unfortunately, at this point we don't know
1471 whether a symbol is required by reloc information, so the two
1472 tables may wind up being different. We must sort out the external
1473 symbol information before we can set the final size of the .mdebug
1474 section, and we must set the size of the .mdebug section before we
1475 can relocate any sections, and we can't know which symbols are
1476 required by relocation until we relocate the sections.
1477 Fortunately, it is relatively unlikely that any symbol will be
1478 stripped but required by a reloc. In particular, it can not happen
1479 when generating a final executable. */
1480
b34976b6 1481static bfd_boolean
9719ad41 1482mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1483{
9719ad41 1484 struct extsym_info *einfo = data;
b34976b6 1485 bfd_boolean strip;
b49e97c9
TS
1486 asection *sec, *output_section;
1487
1488 if (h->root.root.type == bfd_link_hash_warning)
1489 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1490
1491 if (h->root.indx == -2)
b34976b6 1492 strip = FALSE;
f5385ebf
AM
1493 else if ((h->root.def_dynamic
1494 || h->root.ref_dynamic)
1495 && !h->root.def_regular
1496 && !h->root.ref_regular)
b34976b6 1497 strip = TRUE;
b49e97c9
TS
1498 else if (einfo->info->strip == strip_all
1499 || (einfo->info->strip == strip_some
1500 && bfd_hash_lookup (einfo->info->keep_hash,
1501 h->root.root.root.string,
b34976b6
AM
1502 FALSE, FALSE) == NULL))
1503 strip = TRUE;
b49e97c9 1504 else
b34976b6 1505 strip = FALSE;
b49e97c9
TS
1506
1507 if (strip)
b34976b6 1508 return TRUE;
b49e97c9
TS
1509
1510 if (h->esym.ifd == -2)
1511 {
1512 h->esym.jmptbl = 0;
1513 h->esym.cobol_main = 0;
1514 h->esym.weakext = 0;
1515 h->esym.reserved = 0;
1516 h->esym.ifd = ifdNil;
1517 h->esym.asym.value = 0;
1518 h->esym.asym.st = stGlobal;
1519
1520 if (h->root.root.type == bfd_link_hash_undefined
1521 || h->root.root.type == bfd_link_hash_undefweak)
1522 {
1523 const char *name;
1524
1525 /* Use undefined class. Also, set class and type for some
1526 special symbols. */
1527 name = h->root.root.root.string;
1528 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1529 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1530 {
1531 h->esym.asym.sc = scData;
1532 h->esym.asym.st = stLabel;
1533 h->esym.asym.value = 0;
1534 }
1535 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1536 {
1537 h->esym.asym.sc = scAbs;
1538 h->esym.asym.st = stLabel;
1539 h->esym.asym.value =
1540 mips_elf_hash_table (einfo->info)->procedure_count;
1541 }
4a14403c 1542 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1543 {
1544 h->esym.asym.sc = scAbs;
1545 h->esym.asym.st = stLabel;
1546 h->esym.asym.value = elf_gp (einfo->abfd);
1547 }
1548 else
1549 h->esym.asym.sc = scUndefined;
1550 }
1551 else if (h->root.root.type != bfd_link_hash_defined
1552 && h->root.root.type != bfd_link_hash_defweak)
1553 h->esym.asym.sc = scAbs;
1554 else
1555 {
1556 const char *name;
1557
1558 sec = h->root.root.u.def.section;
1559 output_section = sec->output_section;
1560
1561 /* When making a shared library and symbol h is the one from
1562 the another shared library, OUTPUT_SECTION may be null. */
1563 if (output_section == NULL)
1564 h->esym.asym.sc = scUndefined;
1565 else
1566 {
1567 name = bfd_section_name (output_section->owner, output_section);
1568
1569 if (strcmp (name, ".text") == 0)
1570 h->esym.asym.sc = scText;
1571 else if (strcmp (name, ".data") == 0)
1572 h->esym.asym.sc = scData;
1573 else if (strcmp (name, ".sdata") == 0)
1574 h->esym.asym.sc = scSData;
1575 else if (strcmp (name, ".rodata") == 0
1576 || strcmp (name, ".rdata") == 0)
1577 h->esym.asym.sc = scRData;
1578 else if (strcmp (name, ".bss") == 0)
1579 h->esym.asym.sc = scBss;
1580 else if (strcmp (name, ".sbss") == 0)
1581 h->esym.asym.sc = scSBss;
1582 else if (strcmp (name, ".init") == 0)
1583 h->esym.asym.sc = scInit;
1584 else if (strcmp (name, ".fini") == 0)
1585 h->esym.asym.sc = scFini;
1586 else
1587 h->esym.asym.sc = scAbs;
1588 }
1589 }
1590
1591 h->esym.asym.reserved = 0;
1592 h->esym.asym.index = indexNil;
1593 }
1594
1595 if (h->root.root.type == bfd_link_hash_common)
1596 h->esym.asym.value = h->root.root.u.c.size;
1597 else if (h->root.root.type == bfd_link_hash_defined
1598 || h->root.root.type == bfd_link_hash_defweak)
1599 {
1600 if (h->esym.asym.sc == scCommon)
1601 h->esym.asym.sc = scBss;
1602 else if (h->esym.asym.sc == scSCommon)
1603 h->esym.asym.sc = scSBss;
1604
1605 sec = h->root.root.u.def.section;
1606 output_section = sec->output_section;
1607 if (output_section != NULL)
1608 h->esym.asym.value = (h->root.root.u.def.value
1609 + sec->output_offset
1610 + output_section->vma);
1611 else
1612 h->esym.asym.value = 0;
1613 }
f5385ebf 1614 else if (h->root.needs_plt)
b49e97c9
TS
1615 {
1616 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1617 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1618
1619 while (hd->root.root.type == bfd_link_hash_indirect)
1620 {
1621 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1622 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1623 }
1624
1625 if (!no_fn_stub)
1626 {
1627 /* Set type and value for a symbol with a function stub. */
1628 h->esym.asym.st = stProc;
1629 sec = hd->root.root.u.def.section;
1630 if (sec == NULL)
1631 h->esym.asym.value = 0;
1632 else
1633 {
1634 output_section = sec->output_section;
1635 if (output_section != NULL)
1636 h->esym.asym.value = (hd->root.plt.offset
1637 + sec->output_offset
1638 + output_section->vma);
1639 else
1640 h->esym.asym.value = 0;
1641 }
1642#if 0 /* FIXME? */
1643 h->esym.ifd = 0;
1644#endif
1645 }
1646 }
1647
1648 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1649 h->root.root.root.string,
1650 &h->esym))
1651 {
b34976b6
AM
1652 einfo->failed = TRUE;
1653 return FALSE;
b49e97c9
TS
1654 }
1655
b34976b6 1656 return TRUE;
b49e97c9
TS
1657}
1658
1659/* A comparison routine used to sort .gptab entries. */
1660
1661static int
9719ad41 1662gptab_compare (const void *p1, const void *p2)
b49e97c9 1663{
9719ad41
RS
1664 const Elf32_gptab *a1 = p1;
1665 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1666
1667 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1668}
1669\f
b15e6682 1670/* Functions to manage the got entry hash table. */
f4416af6
AO
1671
1672/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1673 hash number. */
1674
1675static INLINE hashval_t
9719ad41 1676mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1677{
1678#ifdef BFD64
1679 return addr + (addr >> 32);
1680#else
1681 return addr;
1682#endif
1683}
1684
1685/* got_entries only match if they're identical, except for gotidx, so
1686 use all fields to compute the hash, and compare the appropriate
1687 union members. */
1688
b15e6682 1689static hashval_t
9719ad41 1690mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1691{
1692 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1693
38985a1c 1694 return entry->symndx
f4416af6 1695 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1696 : entry->abfd->id
1697 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1698 : entry->d.h->root.root.root.hash));
b15e6682
AO
1699}
1700
1701static int
9719ad41 1702mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1703{
1704 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1705 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1706
1707 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1708 && (! e1->abfd ? e1->d.address == e2->d.address
1709 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1710 : e1->d.h == e2->d.h);
1711}
1712
1713/* multi_got_entries are still a match in the case of global objects,
1714 even if the input bfd in which they're referenced differs, so the
1715 hash computation and compare functions are adjusted
1716 accordingly. */
1717
1718static hashval_t
9719ad41 1719mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1720{
1721 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1722
1723 return entry->symndx
1724 + (! entry->abfd
1725 ? mips_elf_hash_bfd_vma (entry->d.address)
1726 : entry->symndx >= 0
1727 ? (entry->abfd->id
1728 + mips_elf_hash_bfd_vma (entry->d.addend))
1729 : entry->d.h->root.root.root.hash);
1730}
1731
1732static int
9719ad41 1733mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1734{
1735 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1736 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1737
1738 return e1->symndx == e2->symndx
1739 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1740 : e1->abfd == NULL || e2->abfd == NULL
1741 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1742 : e1->d.h == e2->d.h);
b15e6682
AO
1743}
1744\f
f4416af6
AO
1745/* Returns the dynamic relocation section for DYNOBJ. */
1746
1747static asection *
9719ad41 1748mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
f4416af6
AO
1749{
1750 static const char dname[] = ".rel.dyn";
1751 asection *sreloc;
1752
1753 sreloc = bfd_get_section_by_name (dynobj, dname);
1754 if (sreloc == NULL && create_p)
1755 {
1756 sreloc = bfd_make_section (dynobj, dname);
1757 if (sreloc == NULL
1758 || ! bfd_set_section_flags (dynobj, sreloc,
1759 (SEC_ALLOC
1760 | SEC_LOAD
1761 | SEC_HAS_CONTENTS
1762 | SEC_IN_MEMORY
1763 | SEC_LINKER_CREATED
1764 | SEC_READONLY))
1765 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1766 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1767 return NULL;
1768 }
1769 return sreloc;
1770}
1771
b49e97c9
TS
1772/* Returns the GOT section for ABFD. */
1773
1774static asection *
9719ad41 1775mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 1776{
f4416af6
AO
1777 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1778 if (sgot == NULL
1779 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1780 return NULL;
1781 return sgot;
b49e97c9
TS
1782}
1783
1784/* Returns the GOT information associated with the link indicated by
1785 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1786 section. */
1787
1788static struct mips_got_info *
9719ad41 1789mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
1790{
1791 asection *sgot;
1792 struct mips_got_info *g;
1793
f4416af6 1794 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1795 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1796 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1797 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1798 BFD_ASSERT (g != NULL);
1799
1800 if (sgotp)
f4416af6
AO
1801 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1802
b49e97c9
TS
1803 return g;
1804}
1805
1806/* Returns the GOT offset at which the indicated address can be found.
1807 If there is not yet a GOT entry for this value, create one. Returns
1808 -1 if no satisfactory GOT offset can be found. */
1809
1810static bfd_vma
9719ad41
RS
1811mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1812 bfd_vma value)
b49e97c9
TS
1813{
1814 asection *sgot;
1815 struct mips_got_info *g;
b15e6682 1816 struct mips_got_entry *entry;
b49e97c9
TS
1817
1818 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1819
f4416af6 1820 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1821 if (entry)
1822 return entry->gotidx;
1823 else
1824 return MINUS_ONE;
b49e97c9
TS
1825}
1826
1827/* Returns the GOT index for the global symbol indicated by H. */
1828
1829static bfd_vma
9719ad41 1830mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
b49e97c9
TS
1831{
1832 bfd_vma index;
1833 asection *sgot;
f4416af6 1834 struct mips_got_info *g, *gg;
d0c7ff07 1835 long global_got_dynindx = 0;
b49e97c9 1836
f4416af6
AO
1837 gg = g = mips_elf_got_info (abfd, &sgot);
1838 if (g->bfd2got && ibfd)
1839 {
1840 struct mips_got_entry e, *p;
143d77c5 1841
f4416af6
AO
1842 BFD_ASSERT (h->dynindx >= 0);
1843
1844 g = mips_elf_got_for_ibfd (g, ibfd);
1845 if (g->next != gg)
1846 {
1847 e.abfd = ibfd;
1848 e.symndx = -1;
1849 e.d.h = (struct mips_elf_link_hash_entry *)h;
1850
9719ad41 1851 p = htab_find (g->got_entries, &e);
f4416af6
AO
1852
1853 BFD_ASSERT (p->gotidx > 0);
1854 return p->gotidx;
1855 }
1856 }
1857
1858 if (gg->global_gotsym != NULL)
1859 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9
TS
1860
1861 /* Once we determine the global GOT entry with the lowest dynamic
1862 symbol table index, we must put all dynamic symbols with greater
1863 indices into the GOT. That makes it easy to calculate the GOT
1864 offset. */
d0c7ff07
TS
1865 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1866 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
b49e97c9 1867 * MIPS_ELF_GOT_SIZE (abfd));
eea6121a 1868 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
1869
1870 return index;
1871}
1872
1873/* Find a GOT entry that is within 32KB of the VALUE. These entries
1874 are supposed to be placed at small offsets in the GOT, i.e.,
1875 within 32KB of GP. Return the index into the GOT for this page,
1876 and store the offset from this entry to the desired address in
1877 OFFSETP, if it is non-NULL. */
1878
1879static bfd_vma
9719ad41
RS
1880mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1881 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
1882{
1883 asection *sgot;
1884 struct mips_got_info *g;
b15e6682
AO
1885 bfd_vma index;
1886 struct mips_got_entry *entry;
b49e97c9
TS
1887
1888 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1889
f4416af6 1890 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682
AO
1891 (value + 0x8000)
1892 & (~(bfd_vma)0xffff));
b49e97c9 1893
b15e6682
AO
1894 if (!entry)
1895 return MINUS_ONE;
143d77c5 1896
b15e6682 1897 index = entry->gotidx;
b49e97c9
TS
1898
1899 if (offsetp)
f4416af6 1900 *offsetp = value - entry->d.address;
b49e97c9
TS
1901
1902 return index;
1903}
1904
1905/* Find a GOT entry whose higher-order 16 bits are the same as those
1906 for value. Return the index into the GOT for this entry. */
1907
1908static bfd_vma
9719ad41
RS
1909mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1910 bfd_vma value, bfd_boolean external)
b49e97c9
TS
1911{
1912 asection *sgot;
1913 struct mips_got_info *g;
b15e6682 1914 struct mips_got_entry *entry;
b49e97c9
TS
1915
1916 if (! external)
1917 {
1918 /* Although the ABI says that it is "the high-order 16 bits" that we
1919 want, it is really the %high value. The complete value is
1920 calculated with a `addiu' of a LO16 relocation, just as with a
1921 HI16/LO16 pair. */
1922 value = mips_elf_high (value) << 16;
1923 }
1924
1925 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1926
f4416af6 1927 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1928 if (entry)
1929 return entry->gotidx;
1930 else
1931 return MINUS_ONE;
b49e97c9
TS
1932}
1933
1934/* Returns the offset for the entry at the INDEXth position
1935 in the GOT. */
1936
1937static bfd_vma
9719ad41
RS
1938mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1939 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
1940{
1941 asection *sgot;
1942 bfd_vma gp;
f4416af6 1943 struct mips_got_info *g;
b49e97c9 1944
f4416af6
AO
1945 g = mips_elf_got_info (dynobj, &sgot);
1946 gp = _bfd_get_gp_value (output_bfd)
1947 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 1948
f4416af6 1949 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
1950}
1951
1952/* Create a local GOT entry for VALUE. Return the index of the entry,
1953 or -1 if it could not be created. */
1954
b15e6682 1955static struct mips_got_entry *
9719ad41
RS
1956mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1957 struct mips_got_info *gg,
1958 asection *sgot, bfd_vma value)
b49e97c9 1959{
b15e6682 1960 struct mips_got_entry entry, **loc;
f4416af6 1961 struct mips_got_info *g;
b15e6682 1962
f4416af6
AO
1963 entry.abfd = NULL;
1964 entry.symndx = -1;
1965 entry.d.address = value;
1966
1967 g = mips_elf_got_for_ibfd (gg, ibfd);
1968 if (g == NULL)
1969 {
1970 g = mips_elf_got_for_ibfd (gg, abfd);
1971 BFD_ASSERT (g != NULL);
1972 }
b15e6682
AO
1973
1974 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1975 INSERT);
1976 if (*loc)
1977 return *loc;
143d77c5 1978
b15e6682
AO
1979 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1980
1981 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1982
1983 if (! *loc)
1984 return NULL;
143d77c5 1985
b15e6682
AO
1986 memcpy (*loc, &entry, sizeof entry);
1987
b49e97c9
TS
1988 if (g->assigned_gotno >= g->local_gotno)
1989 {
f4416af6 1990 (*loc)->gotidx = -1;
b49e97c9
TS
1991 /* We didn't allocate enough space in the GOT. */
1992 (*_bfd_error_handler)
1993 (_("not enough GOT space for local GOT entries"));
1994 bfd_set_error (bfd_error_bad_value);
b15e6682 1995 return NULL;
b49e97c9
TS
1996 }
1997
1998 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
1999 (sgot->contents + entry.gotidx));
2000
2001 return *loc;
b49e97c9
TS
2002}
2003
2004/* Sort the dynamic symbol table so that symbols that need GOT entries
2005 appear towards the end. This reduces the amount of GOT space
2006 required. MAX_LOCAL is used to set the number of local symbols
2007 known to be in the dynamic symbol table. During
2008 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2009 section symbols are added and the count is higher. */
2010
b34976b6 2011static bfd_boolean
9719ad41 2012mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2013{
2014 struct mips_elf_hash_sort_data hsd;
2015 struct mips_got_info *g;
2016 bfd *dynobj;
2017
2018 dynobj = elf_hash_table (info)->dynobj;
2019
f4416af6
AO
2020 g = mips_elf_got_info (dynobj, NULL);
2021
b49e97c9 2022 hsd.low = NULL;
143d77c5 2023 hsd.max_unref_got_dynindx =
f4416af6
AO
2024 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2025 /* In the multi-got case, assigned_gotno of the master got_info
2026 indicate the number of entries that aren't referenced in the
2027 primary GOT, but that must have entries because there are
2028 dynamic relocations that reference it. Since they aren't
2029 referenced, we move them to the end of the GOT, so that they
2030 don't prevent other entries that are referenced from getting
2031 too large offsets. */
2032 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2033 hsd.max_non_got_dynindx = max_local;
2034 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2035 elf_hash_table (info)),
2036 mips_elf_sort_hash_table_f,
2037 &hsd);
2038
2039 /* There should have been enough room in the symbol table to
44c410de 2040 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2041 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2042 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2043 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2044
2045 /* Now we know which dynamic symbol has the lowest dynamic symbol
2046 table index in the GOT. */
b49e97c9
TS
2047 g->global_gotsym = hsd.low;
2048
b34976b6 2049 return TRUE;
b49e97c9
TS
2050}
2051
2052/* If H needs a GOT entry, assign it the highest available dynamic
2053 index. Otherwise, assign it the lowest available dynamic
2054 index. */
2055
b34976b6 2056static bfd_boolean
9719ad41 2057mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2058{
9719ad41 2059 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2060
2061 if (h->root.root.type == bfd_link_hash_warning)
2062 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2063
2064 /* Symbols without dynamic symbol table entries aren't interesting
2065 at all. */
2066 if (h->root.dynindx == -1)
b34976b6 2067 return TRUE;
b49e97c9 2068
f4416af6
AO
2069 /* Global symbols that need GOT entries that are not explicitly
2070 referenced are marked with got offset 2. Those that are
2071 referenced get a 1, and those that don't need GOT entries get
2072 -1. */
2073 if (h->root.got.offset == 2)
2074 {
2075 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2076 hsd->low = (struct elf_link_hash_entry *) h;
2077 h->root.dynindx = hsd->max_unref_got_dynindx++;
2078 }
2079 else if (h->root.got.offset != 1)
b49e97c9
TS
2080 h->root.dynindx = hsd->max_non_got_dynindx++;
2081 else
2082 {
2083 h->root.dynindx = --hsd->min_got_dynindx;
2084 hsd->low = (struct elf_link_hash_entry *) h;
2085 }
2086
b34976b6 2087 return TRUE;
b49e97c9
TS
2088}
2089
2090/* If H is a symbol that needs a global GOT entry, but has a dynamic
2091 symbol table index lower than any we've seen to date, record it for
2092 posterity. */
2093
b34976b6 2094static bfd_boolean
9719ad41
RS
2095mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2096 bfd *abfd, struct bfd_link_info *info,
2097 struct mips_got_info *g)
b49e97c9 2098{
f4416af6
AO
2099 struct mips_got_entry entry, **loc;
2100
b49e97c9
TS
2101 /* A global symbol in the GOT must also be in the dynamic symbol
2102 table. */
7c5fcef7
L
2103 if (h->dynindx == -1)
2104 {
2105 switch (ELF_ST_VISIBILITY (h->other))
2106 {
2107 case STV_INTERNAL:
2108 case STV_HIDDEN:
b34976b6 2109 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2110 break;
2111 }
c152c796 2112 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2113 return FALSE;
7c5fcef7 2114 }
b49e97c9 2115
f4416af6
AO
2116 entry.abfd = abfd;
2117 entry.symndx = -1;
2118 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2119
2120 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2121 INSERT);
2122
b49e97c9
TS
2123 /* If we've already marked this entry as needing GOT space, we don't
2124 need to do it again. */
f4416af6
AO
2125 if (*loc)
2126 return TRUE;
2127
2128 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2129
2130 if (! *loc)
2131 return FALSE;
143d77c5 2132
f4416af6
AO
2133 entry.gotidx = -1;
2134 memcpy (*loc, &entry, sizeof entry);
2135
b49e97c9 2136 if (h->got.offset != MINUS_ONE)
b34976b6 2137 return TRUE;
b49e97c9
TS
2138
2139 /* By setting this to a value other than -1, we are indicating that
2140 there needs to be a GOT entry for H. Avoid using zero, as the
2141 generic ELF copy_indirect_symbol tests for <= 0. */
2142 h->got.offset = 1;
2143
b34976b6 2144 return TRUE;
b49e97c9 2145}
f4416af6
AO
2146
2147/* Reserve space in G for a GOT entry containing the value of symbol
2148 SYMNDX in input bfd ABDF, plus ADDEND. */
2149
2150static bfd_boolean
9719ad41
RS
2151mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2152 struct mips_got_info *g)
f4416af6
AO
2153{
2154 struct mips_got_entry entry, **loc;
2155
2156 entry.abfd = abfd;
2157 entry.symndx = symndx;
2158 entry.d.addend = addend;
2159 loc = (struct mips_got_entry **)
2160 htab_find_slot (g->got_entries, &entry, INSERT);
2161
2162 if (*loc)
2163 return TRUE;
2164
2165 entry.gotidx = g->local_gotno++;
2166
2167 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2168
2169 if (! *loc)
2170 return FALSE;
143d77c5 2171
f4416af6
AO
2172 memcpy (*loc, &entry, sizeof entry);
2173
2174 return TRUE;
2175}
2176\f
2177/* Compute the hash value of the bfd in a bfd2got hash entry. */
2178
2179static hashval_t
9719ad41 2180mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2181{
2182 const struct mips_elf_bfd2got_hash *entry
2183 = (struct mips_elf_bfd2got_hash *)entry_;
2184
2185 return entry->bfd->id;
2186}
2187
2188/* Check whether two hash entries have the same bfd. */
2189
2190static int
9719ad41 2191mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2192{
2193 const struct mips_elf_bfd2got_hash *e1
2194 = (const struct mips_elf_bfd2got_hash *)entry1;
2195 const struct mips_elf_bfd2got_hash *e2
2196 = (const struct mips_elf_bfd2got_hash *)entry2;
2197
2198 return e1->bfd == e2->bfd;
2199}
2200
0b25d3e6 2201/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2202 be the master GOT data. */
2203
2204static struct mips_got_info *
9719ad41 2205mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2206{
2207 struct mips_elf_bfd2got_hash e, *p;
2208
2209 if (! g->bfd2got)
2210 return g;
2211
2212 e.bfd = ibfd;
9719ad41 2213 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2214 return p ? p->g : NULL;
2215}
2216
2217/* Create one separate got for each bfd that has entries in the global
2218 got, such that we can tell how many local and global entries each
2219 bfd requires. */
2220
2221static int
9719ad41 2222mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2223{
2224 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2225 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2226 htab_t bfd2got = arg->bfd2got;
2227 struct mips_got_info *g;
2228 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2229 void **bfdgotp;
143d77c5 2230
f4416af6
AO
2231 /* Find the got_info for this GOT entry's input bfd. Create one if
2232 none exists. */
2233 bfdgot_entry.bfd = entry->abfd;
2234 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2235 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2236
2237 if (bfdgot != NULL)
2238 g = bfdgot->g;
2239 else
2240 {
2241 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2242 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2243
2244 if (bfdgot == NULL)
2245 {
2246 arg->obfd = 0;
2247 return 0;
2248 }
2249
2250 *bfdgotp = bfdgot;
2251
2252 bfdgot->bfd = entry->abfd;
2253 bfdgot->g = g = (struct mips_got_info *)
2254 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2255 if (g == NULL)
2256 {
2257 arg->obfd = 0;
2258 return 0;
2259 }
2260
2261 g->global_gotsym = NULL;
2262 g->global_gotno = 0;
2263 g->local_gotno = 0;
2264 g->assigned_gotno = -1;
2265 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 2266 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
2267 if (g->got_entries == NULL)
2268 {
2269 arg->obfd = 0;
2270 return 0;
2271 }
2272
2273 g->bfd2got = NULL;
2274 g->next = NULL;
2275 }
2276
2277 /* Insert the GOT entry in the bfd's got entry hash table. */
2278 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2279 if (*entryp != NULL)
2280 return 1;
143d77c5 2281
f4416af6
AO
2282 *entryp = entry;
2283
2284 if (entry->symndx >= 0 || entry->d.h->forced_local)
2285 ++g->local_gotno;
2286 else
2287 ++g->global_gotno;
2288
2289 return 1;
2290}
2291
2292/* Attempt to merge gots of different input bfds. Try to use as much
2293 as possible of the primary got, since it doesn't require explicit
2294 dynamic relocations, but don't use bfds that would reference global
2295 symbols out of the addressable range. Failing the primary got,
2296 attempt to merge with the current got, or finish the current got
2297 and then make make the new got current. */
2298
2299static int
9719ad41 2300mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
2301{
2302 struct mips_elf_bfd2got_hash *bfd2got
2303 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2304 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2305 unsigned int lcount = bfd2got->g->local_gotno;
2306 unsigned int gcount = bfd2got->g->global_gotno;
2307 unsigned int maxcnt = arg->max_count;
143d77c5 2308
f4416af6
AO
2309 /* If we don't have a primary GOT and this is not too big, use it as
2310 a starting point for the primary GOT. */
2311 if (! arg->primary && lcount + gcount <= maxcnt)
2312 {
2313 arg->primary = bfd2got->g;
2314 arg->primary_count = lcount + gcount;
2315 }
2316 /* If it looks like we can merge this bfd's entries with those of
2317 the primary, merge them. The heuristics is conservative, but we
2318 don't have to squeeze it too hard. */
2319 else if (arg->primary
2320 && (arg->primary_count + lcount + gcount) <= maxcnt)
2321 {
2322 struct mips_got_info *g = bfd2got->g;
2323 int old_lcount = arg->primary->local_gotno;
2324 int old_gcount = arg->primary->global_gotno;
2325
2326 bfd2got->g = arg->primary;
2327
2328 htab_traverse (g->got_entries,
2329 mips_elf_make_got_per_bfd,
2330 arg);
2331 if (arg->obfd == NULL)
2332 return 0;
2333
2334 htab_delete (g->got_entries);
2335 /* We don't have to worry about releasing memory of the actual
2336 got entries, since they're all in the master got_entries hash
2337 table anyway. */
2338
caec41ff 2339 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6
AO
2340 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2341
2342 arg->primary_count = arg->primary->local_gotno
2343 + arg->primary->global_gotno;
2344 }
2345 /* If we can merge with the last-created got, do it. */
2346 else if (arg->current
2347 && arg->current_count + lcount + gcount <= maxcnt)
2348 {
2349 struct mips_got_info *g = bfd2got->g;
2350 int old_lcount = arg->current->local_gotno;
2351 int old_gcount = arg->current->global_gotno;
2352
2353 bfd2got->g = arg->current;
2354
2355 htab_traverse (g->got_entries,
2356 mips_elf_make_got_per_bfd,
2357 arg);
2358 if (arg->obfd == NULL)
2359 return 0;
2360
2361 htab_delete (g->got_entries);
2362
caec41ff 2363 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6
AO
2364 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2365
2366 arg->current_count = arg->current->local_gotno
2367 + arg->current->global_gotno;
2368 }
2369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2370 fits; if it turns out that it doesn't, we'll get relocation
2371 overflows anyway. */
2372 else
2373 {
2374 bfd2got->g->next = arg->current;
2375 arg->current = bfd2got->g;
143d77c5 2376
f4416af6
AO
2377 arg->current_count = lcount + gcount;
2378 }
2379
2380 return 1;
2381}
2382
2383/* If passed a NULL mips_got_info in the argument, set the marker used
2384 to tell whether a global symbol needs a got entry (in the primary
2385 got) to the given VALUE.
2386
2387 If passed a pointer G to a mips_got_info in the argument (it must
2388 not be the primary GOT), compute the offset from the beginning of
2389 the (primary) GOT section to the entry in G corresponding to the
2390 global symbol. G's assigned_gotno must contain the index of the
2391 first available global GOT entry in G. VALUE must contain the size
2392 of a GOT entry in bytes. For each global GOT entry that requires a
2393 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 2394 marked as not eligible for lazy resolution through a function
f4416af6
AO
2395 stub. */
2396static int
9719ad41 2397mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
2398{
2399 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2400 struct mips_elf_set_global_got_offset_arg *arg
2401 = (struct mips_elf_set_global_got_offset_arg *)p;
2402 struct mips_got_info *g = arg->g;
2403
2404 if (entry->abfd != NULL && entry->symndx == -1
2405 && entry->d.h->root.dynindx != -1)
2406 {
2407 if (g)
2408 {
2409 BFD_ASSERT (g->global_gotsym == NULL);
2410
2411 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
2412 if (arg->info->shared
2413 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
2414 && entry->d.h->root.def_dynamic
2415 && !entry->d.h->root.def_regular))
f4416af6
AO
2416 ++arg->needed_relocs;
2417 }
2418 else
2419 entry->d.h->root.got.offset = arg->value;
2420 }
2421
2422 return 1;
2423}
2424
0626d451
RS
2425/* Mark any global symbols referenced in the GOT we are iterating over
2426 as inelligible for lazy resolution stubs. */
2427static int
9719ad41 2428mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
2429{
2430 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2431
2432 if (entry->abfd != NULL
2433 && entry->symndx == -1
2434 && entry->d.h->root.dynindx != -1)
2435 entry->d.h->no_fn_stub = TRUE;
2436
2437 return 1;
2438}
2439
f4416af6
AO
2440/* Follow indirect and warning hash entries so that each got entry
2441 points to the final symbol definition. P must point to a pointer
2442 to the hash table we're traversing. Since this traversal may
2443 modify the hash table, we set this pointer to NULL to indicate
2444 we've made a potentially-destructive change to the hash table, so
2445 the traversal must be restarted. */
2446static int
9719ad41 2447mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
2448{
2449 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2450 htab_t got_entries = *(htab_t *)p;
2451
2452 if (entry->abfd != NULL && entry->symndx == -1)
2453 {
2454 struct mips_elf_link_hash_entry *h = entry->d.h;
2455
2456 while (h->root.root.type == bfd_link_hash_indirect
2457 || h->root.root.type == bfd_link_hash_warning)
2458 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2459
2460 if (entry->d.h == h)
2461 return 1;
143d77c5 2462
f4416af6
AO
2463 entry->d.h = h;
2464
2465 /* If we can't find this entry with the new bfd hash, re-insert
2466 it, and get the traversal restarted. */
2467 if (! htab_find (got_entries, entry))
2468 {
2469 htab_clear_slot (got_entries, entryp);
2470 entryp = htab_find_slot (got_entries, entry, INSERT);
2471 if (! *entryp)
2472 *entryp = entry;
2473 /* Abort the traversal, since the whole table may have
2474 moved, and leave it up to the parent to restart the
2475 process. */
2476 *(htab_t *)p = NULL;
2477 return 0;
2478 }
2479 /* We might want to decrement the global_gotno count, but it's
2480 either too early or too late for that at this point. */
2481 }
143d77c5 2482
f4416af6
AO
2483 return 1;
2484}
2485
2486/* Turn indirect got entries in a got_entries table into their final
2487 locations. */
2488static void
9719ad41 2489mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
2490{
2491 htab_t got_entries;
2492
2493 do
2494 {
2495 got_entries = g->got_entries;
2496
2497 htab_traverse (got_entries,
2498 mips_elf_resolve_final_got_entry,
2499 &got_entries);
2500 }
2501 while (got_entries == NULL);
2502}
2503
2504/* Return the offset of an input bfd IBFD's GOT from the beginning of
2505 the primary GOT. */
2506static bfd_vma
9719ad41 2507mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2508{
2509 if (g->bfd2got == NULL)
2510 return 0;
2511
2512 g = mips_elf_got_for_ibfd (g, ibfd);
2513 if (! g)
2514 return 0;
2515
2516 BFD_ASSERT (g->next);
2517
2518 g = g->next;
143d77c5 2519
f4416af6
AO
2520 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2521}
2522
2523/* Turn a single GOT that is too big for 16-bit addressing into
2524 a sequence of GOTs, each one 16-bit addressable. */
2525
2526static bfd_boolean
9719ad41
RS
2527mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2528 struct mips_got_info *g, asection *got,
2529 bfd_size_type pages)
f4416af6
AO
2530{
2531 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2532 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2533 struct mips_got_info *gg;
2534 unsigned int assign;
2535
2536 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 2537 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
2538 if (g->bfd2got == NULL)
2539 return FALSE;
2540
2541 got_per_bfd_arg.bfd2got = g->bfd2got;
2542 got_per_bfd_arg.obfd = abfd;
2543 got_per_bfd_arg.info = info;
2544
2545 /* Count how many GOT entries each input bfd requires, creating a
2546 map from bfd to got info while at that. */
2547 mips_elf_resolve_final_got_entries (g);
2548 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2549 if (got_per_bfd_arg.obfd == NULL)
2550 return FALSE;
2551
2552 got_per_bfd_arg.current = NULL;
2553 got_per_bfd_arg.primary = NULL;
2554 /* Taking out PAGES entries is a worst-case estimate. We could
2555 compute the maximum number of pages that each separate input bfd
2556 uses, but it's probably not worth it. */
2557 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2558 / MIPS_ELF_GOT_SIZE (abfd))
2559 - MIPS_RESERVED_GOTNO - pages);
2560
2561 /* Try to merge the GOTs of input bfds together, as long as they
2562 don't seem to exceed the maximum GOT size, choosing one of them
2563 to be the primary GOT. */
2564 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2565 if (got_per_bfd_arg.obfd == NULL)
2566 return FALSE;
2567
2568 /* If we find any suitable primary GOT, create an empty one. */
2569 if (got_per_bfd_arg.primary == NULL)
2570 {
2571 g->next = (struct mips_got_info *)
2572 bfd_alloc (abfd, sizeof (struct mips_got_info));
2573 if (g->next == NULL)
2574 return FALSE;
2575
2576 g->next->global_gotsym = NULL;
2577 g->next->global_gotno = 0;
2578 g->next->local_gotno = 0;
2579 g->next->assigned_gotno = 0;
2580 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2581 mips_elf_multi_got_entry_eq,
9719ad41 2582 NULL);
f4416af6
AO
2583 if (g->next->got_entries == NULL)
2584 return FALSE;
2585 g->next->bfd2got = NULL;
2586 }
2587 else
2588 g->next = got_per_bfd_arg.primary;
2589 g->next->next = got_per_bfd_arg.current;
2590
2591 /* GG is now the master GOT, and G is the primary GOT. */
2592 gg = g;
2593 g = g->next;
2594
2595 /* Map the output bfd to the primary got. That's what we're going
2596 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2597 didn't mark in check_relocs, and we want a quick way to find it.
2598 We can't just use gg->next because we're going to reverse the
2599 list. */
2600 {
2601 struct mips_elf_bfd2got_hash *bfdgot;
2602 void **bfdgotp;
143d77c5 2603
f4416af6
AO
2604 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2605 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2606
2607 if (bfdgot == NULL)
2608 return FALSE;
2609
2610 bfdgot->bfd = abfd;
2611 bfdgot->g = g;
2612 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2613
2614 BFD_ASSERT (*bfdgotp == NULL);
2615 *bfdgotp = bfdgot;
2616 }
2617
2618 /* The IRIX dynamic linker requires every symbol that is referenced
2619 in a dynamic relocation to be present in the primary GOT, so
2620 arrange for them to appear after those that are actually
2621 referenced.
2622
2623 GNU/Linux could very well do without it, but it would slow down
2624 the dynamic linker, since it would have to resolve every dynamic
2625 symbol referenced in other GOTs more than once, without help from
2626 the cache. Also, knowing that every external symbol has a GOT
2627 helps speed up the resolution of local symbols too, so GNU/Linux
2628 follows IRIX's practice.
143d77c5 2629
f4416af6
AO
2630 The number 2 is used by mips_elf_sort_hash_table_f to count
2631 global GOT symbols that are unreferenced in the primary GOT, with
2632 an initial dynamic index computed from gg->assigned_gotno, where
2633 the number of unreferenced global entries in the primary GOT is
2634 preserved. */
2635 if (1)
2636 {
2637 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2638 g->global_gotno = gg->global_gotno;
2639 set_got_offset_arg.value = 2;
2640 }
2641 else
2642 {
2643 /* This could be used for dynamic linkers that don't optimize
2644 symbol resolution while applying relocations so as to use
2645 primary GOT entries or assuming the symbol is locally-defined.
2646 With this code, we assign lower dynamic indices to global
2647 symbols that are not referenced in the primary GOT, so that
2648 their entries can be omitted. */
2649 gg->assigned_gotno = 0;
2650 set_got_offset_arg.value = -1;
2651 }
2652
2653 /* Reorder dynamic symbols as described above (which behavior
2654 depends on the setting of VALUE). */
2655 set_got_offset_arg.g = NULL;
2656 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2657 &set_got_offset_arg);
2658 set_got_offset_arg.value = 1;
2659 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2660 &set_got_offset_arg);
2661 if (! mips_elf_sort_hash_table (info, 1))
2662 return FALSE;
2663
2664 /* Now go through the GOTs assigning them offset ranges.
2665 [assigned_gotno, local_gotno[ will be set to the range of local
2666 entries in each GOT. We can then compute the end of a GOT by
2667 adding local_gotno to global_gotno. We reverse the list and make
2668 it circular since then we'll be able to quickly compute the
2669 beginning of a GOT, by computing the end of its predecessor. To
2670 avoid special cases for the primary GOT, while still preserving
2671 assertions that are valid for both single- and multi-got links,
2672 we arrange for the main got struct to have the right number of
2673 global entries, but set its local_gotno such that the initial
2674 offset of the primary GOT is zero. Remember that the primary GOT
2675 will become the last item in the circular linked list, so it
2676 points back to the master GOT. */
2677 gg->local_gotno = -g->global_gotno;
2678 gg->global_gotno = g->global_gotno;
2679 assign = 0;
2680 gg->next = gg;
2681
2682 do
2683 {
2684 struct mips_got_info *gn;
2685
2686 assign += MIPS_RESERVED_GOTNO;
2687 g->assigned_gotno = assign;
2688 g->local_gotno += assign + pages;
2689 assign = g->local_gotno + g->global_gotno;
2690
2691 /* Take g out of the direct list, and push it onto the reversed
2692 list that gg points to. */
2693 gn = g->next;
2694 g->next = gg->next;
2695 gg->next = g;
2696 g = gn;
0626d451
RS
2697
2698 /* Mark global symbols in every non-primary GOT as ineligible for
2699 stubs. */
2700 if (g)
2701 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
2702 }
2703 while (g);
2704
eea6121a 2705 got->size = (gg->next->local_gotno
f4416af6 2706 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 2707
f4416af6
AO
2708 return TRUE;
2709}
143d77c5 2710
b49e97c9
TS
2711\f
2712/* Returns the first relocation of type r_type found, beginning with
2713 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2714
2715static const Elf_Internal_Rela *
9719ad41
RS
2716mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2717 const Elf_Internal_Rela *relocation,
2718 const Elf_Internal_Rela *relend)
b49e97c9 2719{
b49e97c9
TS
2720 while (relocation < relend)
2721 {
2722 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2723 return relocation;
2724
2725 ++relocation;
2726 }
2727
2728 /* We didn't find it. */
2729 bfd_set_error (bfd_error_bad_value);
2730 return NULL;
2731}
2732
2733/* Return whether a relocation is against a local symbol. */
2734
b34976b6 2735static bfd_boolean
9719ad41
RS
2736mips_elf_local_relocation_p (bfd *input_bfd,
2737 const Elf_Internal_Rela *relocation,
2738 asection **local_sections,
2739 bfd_boolean check_forced)
b49e97c9
TS
2740{
2741 unsigned long r_symndx;
2742 Elf_Internal_Shdr *symtab_hdr;
2743 struct mips_elf_link_hash_entry *h;
2744 size_t extsymoff;
2745
2746 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2747 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2748 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2749
2750 if (r_symndx < extsymoff)
b34976b6 2751 return TRUE;
b49e97c9 2752 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 2753 return TRUE;
b49e97c9
TS
2754
2755 if (check_forced)
2756 {
2757 /* Look up the hash table to check whether the symbol
2758 was forced local. */
2759 h = (struct mips_elf_link_hash_entry *)
2760 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2761 /* Find the real hash-table entry for this symbol. */
2762 while (h->root.root.type == bfd_link_hash_indirect
2763 || h->root.root.type == bfd_link_hash_warning)
2764 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 2765 if (h->root.forced_local)
b34976b6 2766 return TRUE;
b49e97c9
TS
2767 }
2768
b34976b6 2769 return FALSE;
b49e97c9
TS
2770}
2771\f
2772/* Sign-extend VALUE, which has the indicated number of BITS. */
2773
a7ebbfdf 2774bfd_vma
9719ad41 2775_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
2776{
2777 if (value & ((bfd_vma) 1 << (bits - 1)))
2778 /* VALUE is negative. */
2779 value |= ((bfd_vma) - 1) << bits;
2780
2781 return value;
2782}
2783
2784/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 2785 range expressible by a signed number with the indicated number of
b49e97c9
TS
2786 BITS. */
2787
b34976b6 2788static bfd_boolean
9719ad41 2789mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
2790{
2791 bfd_signed_vma svalue = (bfd_signed_vma) value;
2792
2793 if (svalue > (1 << (bits - 1)) - 1)
2794 /* The value is too big. */
b34976b6 2795 return TRUE;
b49e97c9
TS
2796 else if (svalue < -(1 << (bits - 1)))
2797 /* The value is too small. */
b34976b6 2798 return TRUE;
b49e97c9
TS
2799
2800 /* All is well. */
b34976b6 2801 return FALSE;
b49e97c9
TS
2802}
2803
2804/* Calculate the %high function. */
2805
2806static bfd_vma
9719ad41 2807mips_elf_high (bfd_vma value)
b49e97c9
TS
2808{
2809 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2810}
2811
2812/* Calculate the %higher function. */
2813
2814static bfd_vma
9719ad41 2815mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2816{
2817#ifdef BFD64
2818 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2819#else
2820 abort ();
c5ae1840 2821 return MINUS_ONE;
b49e97c9
TS
2822#endif
2823}
2824
2825/* Calculate the %highest function. */
2826
2827static bfd_vma
9719ad41 2828mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2829{
2830#ifdef BFD64
b15e6682 2831 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
2832#else
2833 abort ();
c5ae1840 2834 return MINUS_ONE;
b49e97c9
TS
2835#endif
2836}
2837\f
2838/* Create the .compact_rel section. */
2839
b34976b6 2840static bfd_boolean
9719ad41
RS
2841mips_elf_create_compact_rel_section
2842 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
2843{
2844 flagword flags;
2845 register asection *s;
2846
2847 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2848 {
2849 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2850 | SEC_READONLY);
2851
2852 s = bfd_make_section (abfd, ".compact_rel");
2853 if (s == NULL
2854 || ! bfd_set_section_flags (abfd, s, flags)
2855 || ! bfd_set_section_alignment (abfd, s,
2856 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 2857 return FALSE;
b49e97c9 2858
eea6121a 2859 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
2860 }
2861
b34976b6 2862 return TRUE;
b49e97c9
TS
2863}
2864
2865/* Create the .got section to hold the global offset table. */
2866
b34976b6 2867static bfd_boolean
9719ad41
RS
2868mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2869 bfd_boolean maybe_exclude)
b49e97c9
TS
2870{
2871 flagword flags;
2872 register asection *s;
2873 struct elf_link_hash_entry *h;
14a793b2 2874 struct bfd_link_hash_entry *bh;
b49e97c9
TS
2875 struct mips_got_info *g;
2876 bfd_size_type amt;
2877
2878 /* This function may be called more than once. */
f4416af6
AO
2879 s = mips_elf_got_section (abfd, TRUE);
2880 if (s)
2881 {
2882 if (! maybe_exclude)
2883 s->flags &= ~SEC_EXCLUDE;
2884 return TRUE;
2885 }
b49e97c9
TS
2886
2887 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2888 | SEC_LINKER_CREATED);
2889
f4416af6
AO
2890 if (maybe_exclude)
2891 flags |= SEC_EXCLUDE;
2892
72b4917c
TS
2893 /* We have to use an alignment of 2**4 here because this is hardcoded
2894 in the function stub generation and in the linker script. */
b49e97c9
TS
2895 s = bfd_make_section (abfd, ".got");
2896 if (s == NULL
2897 || ! bfd_set_section_flags (abfd, s, flags)
72b4917c 2898 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 2899 return FALSE;
b49e97c9
TS
2900
2901 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2902 linker script because we don't want to define the symbol if we
2903 are not creating a global offset table. */
14a793b2 2904 bh = NULL;
b49e97c9
TS
2905 if (! (_bfd_generic_link_add_one_symbol
2906 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 2907 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 2908 return FALSE;
14a793b2
AM
2909
2910 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
2911 h->non_elf = 0;
2912 h->def_regular = 1;
b49e97c9
TS
2913 h->type = STT_OBJECT;
2914
2915 if (info->shared
c152c796 2916 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2917 return FALSE;
b49e97c9 2918
b49e97c9 2919 amt = sizeof (struct mips_got_info);
9719ad41 2920 g = bfd_alloc (abfd, amt);
b49e97c9 2921 if (g == NULL)
b34976b6 2922 return FALSE;
b49e97c9 2923 g->global_gotsym = NULL;
e3d54347 2924 g->global_gotno = 0;
b49e97c9
TS
2925 g->local_gotno = MIPS_RESERVED_GOTNO;
2926 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
2927 g->bfd2got = NULL;
2928 g->next = NULL;
b15e6682 2929 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 2930 mips_elf_got_entry_eq, NULL);
b15e6682
AO
2931 if (g->got_entries == NULL)
2932 return FALSE;
f0abc2a1
AM
2933 mips_elf_section_data (s)->u.got_info = g;
2934 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
2935 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2936
b34976b6 2937 return TRUE;
b49e97c9 2938}
b49e97c9
TS
2939\f
2940/* Calculate the value produced by the RELOCATION (which comes from
2941 the INPUT_BFD). The ADDEND is the addend to use for this
2942 RELOCATION; RELOCATION->R_ADDEND is ignored.
2943
2944 The result of the relocation calculation is stored in VALUEP.
2945 REQUIRE_JALXP indicates whether or not the opcode used with this
2946 relocation must be JALX.
2947
2948 This function returns bfd_reloc_continue if the caller need take no
2949 further action regarding this relocation, bfd_reloc_notsupported if
2950 something goes dramatically wrong, bfd_reloc_overflow if an
2951 overflow occurs, and bfd_reloc_ok to indicate success. */
2952
2953static bfd_reloc_status_type
9719ad41
RS
2954mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2955 asection *input_section,
2956 struct bfd_link_info *info,
2957 const Elf_Internal_Rela *relocation,
2958 bfd_vma addend, reloc_howto_type *howto,
2959 Elf_Internal_Sym *local_syms,
2960 asection **local_sections, bfd_vma *valuep,
2961 const char **namep, bfd_boolean *require_jalxp,
2962 bfd_boolean save_addend)
b49e97c9
TS
2963{
2964 /* The eventual value we will return. */
2965 bfd_vma value;
2966 /* The address of the symbol against which the relocation is
2967 occurring. */
2968 bfd_vma symbol = 0;
2969 /* The final GP value to be used for the relocatable, executable, or
2970 shared object file being produced. */
2971 bfd_vma gp = MINUS_ONE;
2972 /* The place (section offset or address) of the storage unit being
2973 relocated. */
2974 bfd_vma p;
2975 /* The value of GP used to create the relocatable object. */
2976 bfd_vma gp0 = MINUS_ONE;
2977 /* The offset into the global offset table at which the address of
2978 the relocation entry symbol, adjusted by the addend, resides
2979 during execution. */
2980 bfd_vma g = MINUS_ONE;
2981 /* The section in which the symbol referenced by the relocation is
2982 located. */
2983 asection *sec = NULL;
2984 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 2985 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 2986 symbol. */
b34976b6
AM
2987 bfd_boolean local_p, was_local_p;
2988 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2989 bfd_boolean gp_disp_p = FALSE;
b49e97c9
TS
2990 Elf_Internal_Shdr *symtab_hdr;
2991 size_t extsymoff;
2992 unsigned long r_symndx;
2993 int r_type;
b34976b6 2994 /* TRUE if overflow occurred during the calculation of the
b49e97c9 2995 relocation value. */
b34976b6
AM
2996 bfd_boolean overflowed_p;
2997 /* TRUE if this relocation refers to a MIPS16 function. */
2998 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
2999
3000 /* Parse the relocation. */
3001 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3002 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3003 p = (input_section->output_section->vma
3004 + input_section->output_offset
3005 + relocation->r_offset);
3006
3007 /* Assume that there will be no overflow. */
b34976b6 3008 overflowed_p = FALSE;
b49e97c9
TS
3009
3010 /* Figure out whether or not the symbol is local, and get the offset
3011 used in the array of hash table entries. */
3012 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3013 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3014 local_sections, FALSE);
bce03d3d 3015 was_local_p = local_p;
b49e97c9
TS
3016 if (! elf_bad_symtab (input_bfd))
3017 extsymoff = symtab_hdr->sh_info;
3018 else
3019 {
3020 /* The symbol table does not follow the rule that local symbols
3021 must come before globals. */
3022 extsymoff = 0;
3023 }
3024
3025 /* Figure out the value of the symbol. */
3026 if (local_p)
3027 {
3028 Elf_Internal_Sym *sym;
3029
3030 sym = local_syms + r_symndx;
3031 sec = local_sections[r_symndx];
3032
3033 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3034 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3035 || (sec->flags & SEC_MERGE))
b49e97c9 3036 symbol += sym->st_value;
d4df96e6
L
3037 if ((sec->flags & SEC_MERGE)
3038 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3039 {
3040 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3041 addend -= symbol;
3042 addend += sec->output_section->vma + sec->output_offset;
3043 }
b49e97c9
TS
3044
3045 /* MIPS16 text labels should be treated as odd. */
3046 if (sym->st_other == STO_MIPS16)
3047 ++symbol;
3048
3049 /* Record the name of this symbol, for our caller. */
3050 *namep = bfd_elf_string_from_elf_section (input_bfd,
3051 symtab_hdr->sh_link,
3052 sym->st_name);
3053 if (*namep == '\0')
3054 *namep = bfd_section_name (input_bfd, sec);
3055
3056 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3057 }
3058 else
3059 {
560e09e9
NC
3060 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3061
b49e97c9
TS
3062 /* For global symbols we look up the symbol in the hash-table. */
3063 h = ((struct mips_elf_link_hash_entry *)
3064 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3065 /* Find the real hash-table entry for this symbol. */
3066 while (h->root.root.type == bfd_link_hash_indirect
3067 || h->root.root.type == bfd_link_hash_warning)
3068 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3069
3070 /* Record the name of this symbol, for our caller. */
3071 *namep = h->root.root.root.string;
3072
3073 /* See if this is the special _gp_disp symbol. Note that such a
3074 symbol must always be a global symbol. */
560e09e9 3075 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3076 && ! NEWABI_P (input_bfd))
3077 {
3078 /* Relocations against _gp_disp are permitted only with
3079 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3080 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3081 return bfd_reloc_notsupported;
3082
b34976b6 3083 gp_disp_p = TRUE;
b49e97c9
TS
3084 }
3085 /* If this symbol is defined, calculate its address. Note that
3086 _gp_disp is a magic symbol, always implicitly defined by the
3087 linker, so it's inappropriate to check to see whether or not
3088 its defined. */
3089 else if ((h->root.root.type == bfd_link_hash_defined
3090 || h->root.root.type == bfd_link_hash_defweak)
3091 && h->root.root.u.def.section)
3092 {
3093 sec = h->root.root.u.def.section;
3094 if (sec->output_section)
3095 symbol = (h->root.root.u.def.value
3096 + sec->output_section->vma
3097 + sec->output_offset);
3098 else
3099 symbol = h->root.root.u.def.value;
3100 }
3101 else if (h->root.root.type == bfd_link_hash_undefweak)
3102 /* We allow relocations against undefined weak symbols, giving
3103 it the value zero, so that you can undefined weak functions
3104 and check to see if they exist by looking at their
3105 addresses. */
3106 symbol = 0;
59c2e50f 3107 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
3108 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3109 symbol = 0;
a4d0f181
TS
3110 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3111 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
3112 {
3113 /* If this is a dynamic link, we should have created a
3114 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3115 in in _bfd_mips_elf_create_dynamic_sections.
3116 Otherwise, we should define the symbol with a value of 0.
3117 FIXME: It should probably get into the symbol table
3118 somehow as well. */
3119 BFD_ASSERT (! info->shared);
3120 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3121 symbol = 0;
3122 }
3123 else
3124 {
3125 if (! ((*info->callbacks->undefined_symbol)
3126 (info, h->root.root.root.string, input_bfd,
3127 input_section, relocation->r_offset,
59c2e50f
L
3128 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3129 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
3130 return bfd_reloc_undefined;
3131 symbol = 0;
3132 }
3133
3134 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3135 }
3136
3137 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3138 need to redirect the call to the stub, unless we're already *in*
3139 a stub. */
1049f94e 3140 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3141 && ((h != NULL && h->fn_stub != NULL)
3142 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3143 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3144 && !mips_elf_stub_section_p (input_bfd, input_section))
3145 {
3146 /* This is a 32- or 64-bit call to a 16-bit function. We should
3147 have already noticed that we were going to need the
3148 stub. */
3149 if (local_p)
3150 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3151 else
3152 {
3153 BFD_ASSERT (h->need_fn_stub);
3154 sec = h->fn_stub;
3155 }
3156
3157 symbol = sec->output_section->vma + sec->output_offset;
3158 }
3159 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3160 need to redirect the call to the stub. */
1049f94e 3161 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3162 && h != NULL
3163 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3164 && !target_is_16_bit_code_p)
3165 {
3166 /* If both call_stub and call_fp_stub are defined, we can figure
3167 out which one to use by seeing which one appears in the input
3168 file. */
3169 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3170 {
3171 asection *o;
3172
3173 sec = NULL;
3174 for (o = input_bfd->sections; o != NULL; o = o->next)
3175 {
3176 if (strncmp (bfd_get_section_name (input_bfd, o),
3177 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3178 {
3179 sec = h->call_fp_stub;
3180 break;
3181 }
3182 }
3183 if (sec == NULL)
3184 sec = h->call_stub;
3185 }
3186 else if (h->call_stub != NULL)
3187 sec = h->call_stub;
3188 else
3189 sec = h->call_fp_stub;
3190
eea6121a 3191 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
3192 symbol = sec->output_section->vma + sec->output_offset;
3193 }
3194
3195 /* Calls from 16-bit code to 32-bit code and vice versa require the
3196 special jalx instruction. */
1049f94e 3197 *require_jalxp = (!info->relocatable
b49e97c9
TS
3198 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3199 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3200
3201 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3202 local_sections, TRUE);
b49e97c9
TS
3203
3204 /* If we haven't already determined the GOT offset, or the GP value,
3205 and we're going to need it, get it now. */
3206 switch (r_type)
3207 {
0fdc1bf1 3208 case R_MIPS_GOT_PAGE:
93a2b7ae 3209 case R_MIPS_GOT_OFST:
d25aed71
RS
3210 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3211 bind locally. */
3212 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 3213 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3214 break;
3215 /* Fall through. */
3216
b49e97c9
TS
3217 case R_MIPS_CALL16:
3218 case R_MIPS_GOT16:
3219 case R_MIPS_GOT_DISP:
3220 case R_MIPS_GOT_HI16:
3221 case R_MIPS_CALL_HI16:
3222 case R_MIPS_GOT_LO16:
3223 case R_MIPS_CALL_LO16:
3224 /* Find the index into the GOT where this value is located. */
3225 if (!local_p)
3226 {
0fdc1bf1
AO
3227 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3228 GOT_PAGE relocation that decays to GOT_DISP because the
3229 symbol turns out to be global. The addend is then added
3230 as GOT_OFST. */
3231 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3232 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3233 input_bfd,
b49e97c9
TS
3234 (struct elf_link_hash_entry *) h);
3235 if (! elf_hash_table(info)->dynamic_sections_created
3236 || (info->shared
3237 && (info->symbolic || h->root.dynindx == -1)
f5385ebf 3238 && h->root.def_regular))
b49e97c9
TS
3239 {
3240 /* This is a static link or a -Bsymbolic link. The
3241 symbol is defined locally, or was forced to be local.
3242 We must initialize this entry in the GOT. */
3243 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3244 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3245 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3246 }
3247 }
3248 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3249 /* There's no need to create a local GOT entry here; the
3250 calculation for a local GOT16 entry does not involve G. */
3251 break;
3252 else
3253 {
f4416af6
AO
3254 g = mips_elf_local_got_index (abfd, input_bfd,
3255 info, symbol + addend);
b49e97c9
TS
3256 if (g == MINUS_ONE)
3257 return bfd_reloc_outofrange;
3258 }
3259
3260 /* Convert GOT indices to actual offsets. */
3261 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3262 abfd, input_bfd, g);
b49e97c9
TS
3263 break;
3264
3265 case R_MIPS_HI16:
3266 case R_MIPS_LO16:
3267 case R_MIPS16_GPREL:
3268 case R_MIPS_GPREL16:
3269 case R_MIPS_GPREL32:
3270 case R_MIPS_LITERAL:
3271 gp0 = _bfd_get_gp_value (input_bfd);
3272 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3273 if (elf_hash_table (info)->dynobj)
3274 gp += mips_elf_adjust_gp (abfd,
3275 mips_elf_got_info
3276 (elf_hash_table (info)->dynobj, NULL),
3277 input_bfd);
b49e97c9
TS
3278 break;
3279
3280 default:
3281 break;
3282 }
3283
3284 /* Figure out what kind of relocation is being performed. */
3285 switch (r_type)
3286 {
3287 case R_MIPS_NONE:
3288 return bfd_reloc_continue;
3289
3290 case R_MIPS_16:
a7ebbfdf 3291 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3292 overflowed_p = mips_elf_overflow_p (value, 16);
3293 break;
3294
3295 case R_MIPS_32:
3296 case R_MIPS_REL32:
3297 case R_MIPS_64:
3298 if ((info->shared
3299 || (elf_hash_table (info)->dynamic_sections_created
3300 && h != NULL
f5385ebf
AM
3301 && h->root.def_dynamic
3302 && !h->root.def_regular))
b49e97c9
TS
3303 && r_symndx != 0
3304 && (input_section->flags & SEC_ALLOC) != 0)
3305 {
3306 /* If we're creating a shared library, or this relocation is
3307 against a symbol in a shared library, then we can't know
3308 where the symbol will end up. So, we create a relocation
3309 record in the output, and leave the job up to the dynamic
3310 linker. */
3311 value = addend;
3312 if (!mips_elf_create_dynamic_relocation (abfd,
3313 info,
3314 relocation,
3315 h,
3316 sec,
3317 symbol,
3318 &value,
3319 input_section))
3320 return bfd_reloc_undefined;
3321 }
3322 else
3323 {
3324 if (r_type != R_MIPS_REL32)
3325 value = symbol + addend;
3326 else
3327 value = addend;
3328 }
3329 value &= howto->dst_mask;
092dcd75
CD
3330 break;
3331
3332 case R_MIPS_PC32:
3333 value = symbol + addend - p;
3334 value &= howto->dst_mask;
b49e97c9
TS
3335 break;
3336
0b25d3e6 3337 case R_MIPS_GNU_REL16_S2:
30ac9238 3338 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
0b25d3e6
AO
3339 overflowed_p = mips_elf_overflow_p (value, 18);
3340 value = (value >> 2) & howto->dst_mask;
3341 break;
3342
b49e97c9
TS
3343 case R_MIPS16_26:
3344 /* The calculation for R_MIPS16_26 is just the same as for an
3345 R_MIPS_26. It's only the storage of the relocated field into
3346 the output file that's different. That's handled in
3347 mips_elf_perform_relocation. So, we just fall through to the
3348 R_MIPS_26 case here. */
3349 case R_MIPS_26:
3350 if (local_p)
30ac9238 3351 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 3352 else
728b2f21
ILT
3353 {
3354 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
3355 overflowed_p = (value >> 26) != ((p + 4) >> 28);
3356 }
b49e97c9
TS
3357 value &= howto->dst_mask;
3358 break;
3359
3360 case R_MIPS_HI16:
3361 if (!gp_disp_p)
3362 {
3363 value = mips_elf_high (addend + symbol);
3364 value &= howto->dst_mask;
3365 }
3366 else
3367 {
3368 value = mips_elf_high (addend + gp - p);
3369 overflowed_p = mips_elf_overflow_p (value, 16);
3370 }
3371 break;
3372
3373 case R_MIPS_LO16:
3374 if (!gp_disp_p)
3375 value = (symbol + addend) & howto->dst_mask;
3376 else
3377 {
3378 value = addend + gp - p + 4;
3379 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 3380 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
3381 _gp_disp are normally generated from the .cpload
3382 pseudo-op. It generates code that normally looks like
3383 this:
3384
3385 lui $gp,%hi(_gp_disp)
3386 addiu $gp,$gp,%lo(_gp_disp)
3387 addu $gp,$gp,$t9
3388
3389 Here $t9 holds the address of the function being called,
3390 as required by the MIPS ELF ABI. The R_MIPS_LO16
3391 relocation can easily overflow in this situation, but the
3392 R_MIPS_HI16 relocation will handle the overflow.
3393 Therefore, we consider this a bug in the MIPS ABI, and do
3394 not check for overflow here. */
3395 }
3396 break;
3397
3398 case R_MIPS_LITERAL:
3399 /* Because we don't merge literal sections, we can handle this
3400 just like R_MIPS_GPREL16. In the long run, we should merge
3401 shared literals, and then we will need to additional work
3402 here. */
3403
3404 /* Fall through. */
3405
3406 case R_MIPS16_GPREL:
3407 /* The R_MIPS16_GPREL performs the same calculation as
3408 R_MIPS_GPREL16, but stores the relocated bits in a different
3409 order. We don't need to do anything special here; the
3410 differences are handled in mips_elf_perform_relocation. */
3411 case R_MIPS_GPREL16:
bce03d3d
AO
3412 /* Only sign-extend the addend if it was extracted from the
3413 instruction. If the addend was separate, leave it alone,
3414 otherwise we may lose significant bits. */
3415 if (howto->partial_inplace)
a7ebbfdf 3416 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
3417 value = symbol + addend - gp;
3418 /* If the symbol was local, any earlier relocatable links will
3419 have adjusted its addend with the gp offset, so compensate
3420 for that now. Don't do it for symbols forced local in this
3421 link, though, since they won't have had the gp offset applied
3422 to them before. */
3423 if (was_local_p)
3424 value += gp0;
b49e97c9
TS
3425 overflowed_p = mips_elf_overflow_p (value, 16);
3426 break;
3427
3428 case R_MIPS_GOT16:
3429 case R_MIPS_CALL16:
3430 if (local_p)
3431 {
b34976b6 3432 bfd_boolean forced;
b49e97c9
TS
3433
3434 /* The special case is when the symbol is forced to be local. We
3435 need the full address in the GOT since no R_MIPS_LO16 relocation
3436 follows. */
3437 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3438 local_sections, FALSE);
f4416af6
AO
3439 value = mips_elf_got16_entry (abfd, input_bfd, info,
3440 symbol + addend, forced);
b49e97c9
TS
3441 if (value == MINUS_ONE)
3442 return bfd_reloc_outofrange;
3443 value
3444 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3445 abfd, input_bfd, value);
b49e97c9
TS
3446 overflowed_p = mips_elf_overflow_p (value, 16);
3447 break;
3448 }
3449
3450 /* Fall through. */
3451
3452 case R_MIPS_GOT_DISP:
0fdc1bf1 3453 got_disp:
b49e97c9
TS
3454 value = g;
3455 overflowed_p = mips_elf_overflow_p (value, 16);
3456 break;
3457
3458 case R_MIPS_GPREL32:
bce03d3d
AO
3459 value = (addend + symbol + gp0 - gp);
3460 if (!save_addend)
3461 value &= howto->dst_mask;
b49e97c9
TS
3462 break;
3463
3464 case R_MIPS_PC16:
a7ebbfdf 3465 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
0b25d3e6 3466 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
3467 break;
3468
3469 case R_MIPS_GOT_HI16:
3470 case R_MIPS_CALL_HI16:
3471 /* We're allowed to handle these two relocations identically.
3472 The dynamic linker is allowed to handle the CALL relocations
3473 differently by creating a lazy evaluation stub. */
3474 value = g;
3475 value = mips_elf_high (value);
3476 value &= howto->dst_mask;
3477 break;
3478
3479 case R_MIPS_GOT_LO16:
3480 case R_MIPS_CALL_LO16:
3481 value = g & howto->dst_mask;
3482 break;
3483
3484 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
3485 /* GOT_PAGE relocations that reference non-local symbols decay
3486 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3487 0. */
93a2b7ae 3488 if (! local_p)
0fdc1bf1 3489 goto got_disp;
f4416af6 3490 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
3491 if (value == MINUS_ONE)
3492 return bfd_reloc_outofrange;
3493 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3494 abfd, input_bfd, value);
b49e97c9
TS
3495 overflowed_p = mips_elf_overflow_p (value, 16);
3496 break;
3497
3498 case R_MIPS_GOT_OFST:
93a2b7ae 3499 if (local_p)
0fdc1bf1
AO
3500 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3501 else
3502 value = addend;
b49e97c9
TS
3503 overflowed_p = mips_elf_overflow_p (value, 16);
3504 break;
3505
3506 case R_MIPS_SUB:
3507 value = symbol - addend;
3508 value &= howto->dst_mask;
3509 break;
3510
3511 case R_MIPS_HIGHER:
3512 value = mips_elf_higher (addend + symbol);
3513 value &= howto->dst_mask;
3514 break;
3515
3516 case R_MIPS_HIGHEST:
3517 value = mips_elf_highest (addend + symbol);
3518 value &= howto->dst_mask;
3519 break;
3520
3521 case R_MIPS_SCN_DISP:
3522 value = symbol + addend - sec->output_offset;
3523 value &= howto->dst_mask;
3524 break;
3525
3526 case R_MIPS_PJUMP:
3527 case R_MIPS_JALR:
3528 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3529 hint; we could improve performance by honoring that hint. */
3530 return bfd_reloc_continue;
3531
3532 case R_MIPS_GNU_VTINHERIT:
3533 case R_MIPS_GNU_VTENTRY:
3534 /* We don't do anything with these at present. */
3535 return bfd_reloc_continue;
3536
3537 default:
3538 /* An unrecognized relocation type. */
3539 return bfd_reloc_notsupported;
3540 }
3541
3542 /* Store the VALUE for our caller. */
3543 *valuep = value;
3544 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3545}
3546
3547/* Obtain the field relocated by RELOCATION. */
3548
3549static bfd_vma
9719ad41
RS
3550mips_elf_obtain_contents (reloc_howto_type *howto,
3551 const Elf_Internal_Rela *relocation,
3552 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
3553{
3554 bfd_vma x;
3555 bfd_byte *location = contents + relocation->r_offset;
3556
3557 /* Obtain the bytes. */
3558 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3559
3560 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3561 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3562 && bfd_little_endian (input_bfd))
3563 /* The two 16-bit words will be reversed on a little-endian system.
3564 See mips_elf_perform_relocation for more details. */
3565 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3566
3567 return x;
3568}
3569
3570/* It has been determined that the result of the RELOCATION is the
3571 VALUE. Use HOWTO to place VALUE into the output file at the
3572 appropriate position. The SECTION is the section to which the
b34976b6 3573 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
3574 for the relocation must be either JAL or JALX, and it is
3575 unconditionally converted to JALX.
3576
b34976b6 3577 Returns FALSE if anything goes wrong. */
b49e97c9 3578
b34976b6 3579static bfd_boolean
9719ad41
RS
3580mips_elf_perform_relocation (struct bfd_link_info *info,
3581 reloc_howto_type *howto,
3582 const Elf_Internal_Rela *relocation,
3583 bfd_vma value, bfd *input_bfd,
3584 asection *input_section, bfd_byte *contents,
3585 bfd_boolean require_jalx)
b49e97c9
TS
3586{
3587 bfd_vma x;
3588 bfd_byte *location;
3589 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3590
3591 /* Figure out where the relocation is occurring. */
3592 location = contents + relocation->r_offset;
3593
3594 /* Obtain the current value. */
3595 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3596
3597 /* Clear the field we are setting. */
3598 x &= ~howto->dst_mask;
3599
3600 /* If this is the R_MIPS16_26 relocation, we must store the
3601 value in a funny way. */
3602 if (r_type == R_MIPS16_26)
3603 {
3604 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3605 Most mips16 instructions are 16 bits, but these instructions
3606 are 32 bits.
3607
3608 The format of these instructions is:
3609
3610 +--------------+--------------------------------+
3611 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3612 +--------------+--------------------------------+
3613 ! Immediate 15:0 !
3614 +-----------------------------------------------+
3615
3616 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3617 Note that the immediate value in the first word is swapped.
3618
1049f94e 3619 When producing a relocatable object file, R_MIPS16_26 is
b49e97c9
TS
3620 handled mostly like R_MIPS_26. In particular, the addend is
3621 stored as a straight 26-bit value in a 32-bit instruction.
3622 (gas makes life simpler for itself by never adjusting a
3623 R_MIPS16_26 reloc to be against a section, so the addend is
3624 always zero). However, the 32 bit instruction is stored as 2
3625 16-bit values, rather than a single 32-bit value. In a
3626 big-endian file, the result is the same; in a little-endian
3627 file, the two 16-bit halves of the 32 bit value are swapped.
3628 This is so that a disassembler can recognize the jal
3629 instruction.
3630
3631 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3632 instruction stored as two 16-bit values. The addend A is the
3633 contents of the targ26 field. The calculation is the same as
3634 R_MIPS_26. When storing the calculated value, reorder the
3635 immediate value as shown above, and don't forget to store the
3636 value as two 16-bit values.
3637
3638 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3639 defined as
3640
3641 big-endian:
3642 +--------+----------------------+
3643 | | |
3644 | | targ26-16 |
3645 |31 26|25 0|
3646 +--------+----------------------+
3647
3648 little-endian:
3649 +----------+------+-------------+
3650 | | | |
3651 | sub1 | | sub2 |
3652 |0 9|10 15|16 31|
3653 +----------+--------------------+
3654 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3655 ((sub1 << 16) | sub2)).
3656
1049f94e 3657 When producing a relocatable object file, the calculation is
b49e97c9
TS
3658 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3659 When producing a fully linked file, the calculation is
3660 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3661 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3662
1049f94e 3663 if (!info->relocatable)
b49e97c9
TS
3664 /* Shuffle the bits according to the formula above. */
3665 value = (((value & 0x1f0000) << 5)
3666 | ((value & 0x3e00000) >> 5)
3667 | (value & 0xffff));
3668 }
3669 else if (r_type == R_MIPS16_GPREL)
3670 {
3671 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3672 mode. A typical instruction will have a format like this:
3673
3674 +--------------+--------------------------------+
3675 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3676 +--------------+--------------------------------+
3677 ! Major ! rx ! ry ! Imm 4:0 !
3678 +--------------+--------------------------------+
3679
3680 EXTEND is the five bit value 11110. Major is the instruction
3681 opcode.
3682
3683 This is handled exactly like R_MIPS_GPREL16, except that the
3684 addend is retrieved and stored as shown in this diagram; that
3685 is, the Imm fields above replace the V-rel16 field.
3686
3687 All we need to do here is shuffle the bits appropriately. As
3688 above, the two 16-bit halves must be swapped on a
3689 little-endian system. */
3690 value = (((value & 0x7e0) << 16)
3691 | ((value & 0xf800) << 5)
3692 | (value & 0x1f));
3693 }
3694
3695 /* Set the field. */
3696 x |= (value & howto->dst_mask);
3697
3698 /* If required, turn JAL into JALX. */
3699 if (require_jalx)
3700 {
b34976b6 3701 bfd_boolean ok;
b49e97c9
TS
3702 bfd_vma opcode = x >> 26;
3703 bfd_vma jalx_opcode;
3704
3705 /* Check to see if the opcode is already JAL or JALX. */
3706 if (r_type == R_MIPS16_26)
3707 {
3708 ok = ((opcode == 0x6) || (opcode == 0x7));
3709 jalx_opcode = 0x7;
3710 }
3711 else
3712 {
3713 ok = ((opcode == 0x3) || (opcode == 0x1d));
3714 jalx_opcode = 0x1d;
3715 }
3716
3717 /* If the opcode is not JAL or JALX, there's a problem. */
3718 if (!ok)
3719 {
3720 (*_bfd_error_handler)
d003868e
AM
3721 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
3722 input_bfd,
3723 input_section,
b49e97c9
TS
3724 (unsigned long) relocation->r_offset);
3725 bfd_set_error (bfd_error_bad_value);
b34976b6 3726 return FALSE;
b49e97c9
TS
3727 }
3728
3729 /* Make this the JALX opcode. */
3730 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3731 }
3732
3733 /* Swap the high- and low-order 16 bits on little-endian systems
3734 when doing a MIPS16 relocation. */
3735 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3736 && bfd_little_endian (input_bfd))
3737 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3738
3739 /* Put the value into the output. */
3740 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
b34976b6 3741 return TRUE;
b49e97c9
TS
3742}
3743
b34976b6 3744/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 3745
b34976b6 3746static bfd_boolean
9719ad41 3747mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
3748{
3749 const char *name = bfd_get_section_name (abfd, section);
3750
3751 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3752 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3753 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3754}
3755\f
3756/* Add room for N relocations to the .rel.dyn section in ABFD. */
3757
3758static void
9719ad41 3759mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
b49e97c9
TS
3760{
3761 asection *s;
3762
f4416af6 3763 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
3764 BFD_ASSERT (s != NULL);
3765
eea6121a 3766 if (s->size == 0)
b49e97c9
TS
3767 {
3768 /* Make room for a null element. */
eea6121a 3769 s->size += MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
3770 ++s->reloc_count;
3771 }
eea6121a 3772 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
3773}
3774
3775/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3776 is the original relocation, which is now being transformed into a
3777 dynamic relocation. The ADDENDP is adjusted if necessary; the
3778 caller should store the result in place of the original addend. */
3779
b34976b6 3780static bfd_boolean
9719ad41
RS
3781mips_elf_create_dynamic_relocation (bfd *output_bfd,
3782 struct bfd_link_info *info,
3783 const Elf_Internal_Rela *rel,
3784 struct mips_elf_link_hash_entry *h,
3785 asection *sec, bfd_vma symbol,
3786 bfd_vma *addendp, asection *input_section)
b49e97c9 3787{
947216bf 3788 Elf_Internal_Rela outrel[3];
b49e97c9
TS
3789 asection *sreloc;
3790 bfd *dynobj;
3791 int r_type;
5d41f0b6
RS
3792 long indx;
3793 bfd_boolean defined_p;
b49e97c9
TS
3794
3795 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3796 dynobj = elf_hash_table (info)->dynobj;
f4416af6 3797 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
3798 BFD_ASSERT (sreloc != NULL);
3799 BFD_ASSERT (sreloc->contents != NULL);
3800 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 3801 < sreloc->size);
b49e97c9 3802
b49e97c9
TS
3803 outrel[0].r_offset =
3804 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3805 outrel[1].r_offset =
3806 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3807 outrel[2].r_offset =
3808 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3809
3810#if 0
3811 /* We begin by assuming that the offset for the dynamic relocation
3812 is the same as for the original relocation. We'll adjust this
3813 later to reflect the correct output offsets. */
a7ebbfdf 3814 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
b49e97c9
TS
3815 {
3816 outrel[1].r_offset = rel[1].r_offset;
3817 outrel[2].r_offset = rel[2].r_offset;
3818 }
3819 else
3820 {
3821 /* Except that in a stab section things are more complex.
3822 Because we compress stab information, the offset given in the
3823 relocation may not be the one we want; we must let the stabs
3824 machinery tell us the offset. */
3825 outrel[1].r_offset = outrel[0].r_offset;
3826 outrel[2].r_offset = outrel[0].r_offset;
3827 /* If we didn't need the relocation at all, this value will be
3828 -1. */
c5ae1840 3829 if (outrel[0].r_offset == MINUS_ONE)
b34976b6 3830 skip = TRUE;
b49e97c9
TS
3831 }
3832#endif
3833
c5ae1840 3834 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 3835 /* The relocation field has been deleted. */
5d41f0b6
RS
3836 return TRUE;
3837
3838 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
3839 {
3840 /* The relocation field has been converted into a relative value of
3841 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3842 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 3843 *addendp += symbol;
5d41f0b6 3844 return TRUE;
0d591ff7 3845 }
b49e97c9 3846
5d41f0b6
RS
3847 /* We must now calculate the dynamic symbol table index to use
3848 in the relocation. */
3849 if (h != NULL
3850 && (! info->symbolic || !h->root.def_regular)
3851 /* h->root.dynindx may be -1 if this symbol was marked to
3852 become local. */
3853 && h->root.dynindx != -1)
3854 {
3855 indx = h->root.dynindx;
3856 if (SGI_COMPAT (output_bfd))
3857 defined_p = h->root.def_regular;
3858 else
3859 /* ??? glibc's ld.so just adds the final GOT entry to the
3860 relocation field. It therefore treats relocs against
3861 defined symbols in the same way as relocs against
3862 undefined symbols. */
3863 defined_p = FALSE;
3864 }
b49e97c9
TS
3865 else
3866 {
5d41f0b6
RS
3867 if (sec != NULL && bfd_is_abs_section (sec))
3868 indx = 0;
3869 else if (sec == NULL || sec->owner == NULL)
fdd07405 3870 {
5d41f0b6
RS
3871 bfd_set_error (bfd_error_bad_value);
3872 return FALSE;
b49e97c9
TS
3873 }
3874 else
3875 {
5d41f0b6
RS
3876 indx = elf_section_data (sec->output_section)->dynindx;
3877 if (indx == 0)
3878 abort ();
b49e97c9
TS
3879 }
3880
5d41f0b6
RS
3881 /* Instead of generating a relocation using the section
3882 symbol, we may as well make it a fully relative
3883 relocation. We want to avoid generating relocations to
3884 local symbols because we used to generate them
3885 incorrectly, without adding the original symbol value,
3886 which is mandated by the ABI for section symbols. In
3887 order to give dynamic loaders and applications time to
3888 phase out the incorrect use, we refrain from emitting
3889 section-relative relocations. It's not like they're
3890 useful, after all. This should be a bit more efficient
3891 as well. */
3892 /* ??? Although this behavior is compatible with glibc's ld.so,
3893 the ABI says that relocations against STN_UNDEF should have
3894 a symbol value of 0. Irix rld honors this, so relocations
3895 against STN_UNDEF have no effect. */
3896 if (!SGI_COMPAT (output_bfd))
3897 indx = 0;
3898 defined_p = TRUE;
b49e97c9
TS
3899 }
3900
5d41f0b6
RS
3901 /* If the relocation was previously an absolute relocation and
3902 this symbol will not be referred to by the relocation, we must
3903 adjust it by the value we give it in the dynamic symbol table.
3904 Otherwise leave the job up to the dynamic linker. */
3905 if (defined_p && r_type != R_MIPS_REL32)
3906 *addendp += symbol;
3907
3908 /* The relocation is always an REL32 relocation because we don't
3909 know where the shared library will wind up at load-time. */
3910 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3911 R_MIPS_REL32);
3912 /* For strict adherence to the ABI specification, we should
3913 generate a R_MIPS_64 relocation record by itself before the
3914 _REL32/_64 record as well, such that the addend is read in as
3915 a 64-bit value (REL32 is a 32-bit relocation, after all).
3916 However, since none of the existing ELF64 MIPS dynamic
3917 loaders seems to care, we don't waste space with these
3918 artificial relocations. If this turns out to not be true,
3919 mips_elf_allocate_dynamic_relocation() should be tweaked so
3920 as to make room for a pair of dynamic relocations per
3921 invocation if ABI_64_P, and here we should generate an
3922 additional relocation record with R_MIPS_64 by itself for a
3923 NULL symbol before this relocation record. */
3924 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3925 ABI_64_P (output_bfd)
3926 ? R_MIPS_64
3927 : R_MIPS_NONE);
3928 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3929
3930 /* Adjust the output offset of the relocation to reference the
3931 correct location in the output file. */
3932 outrel[0].r_offset += (input_section->output_section->vma
3933 + input_section->output_offset);
3934 outrel[1].r_offset += (input_section->output_section->vma
3935 + input_section->output_offset);
3936 outrel[2].r_offset += (input_section->output_section->vma
3937 + input_section->output_offset);
3938
b49e97c9
TS
3939 /* Put the relocation back out. We have to use the special
3940 relocation outputter in the 64-bit case since the 64-bit
3941 relocation format is non-standard. */
3942 if (ABI_64_P (output_bfd))
3943 {
3944 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3945 (output_bfd, &outrel[0],
3946 (sreloc->contents
3947 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3948 }
3949 else
947216bf
AM
3950 bfd_elf32_swap_reloc_out
3951 (output_bfd, &outrel[0],
3952 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 3953
b49e97c9
TS
3954 /* We've now added another relocation. */
3955 ++sreloc->reloc_count;
3956
3957 /* Make sure the output section is writable. The dynamic linker
3958 will be writing to it. */
3959 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3960 |= SHF_WRITE;
3961
3962 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 3963 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
3964 {
3965 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3966 bfd_byte *cr;
3967
3968 if (scpt)
3969 {
3970 Elf32_crinfo cptrel;
3971
3972 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3973 cptrel.vaddr = (rel->r_offset
3974 + input_section->output_section->vma
3975 + input_section->output_offset);
3976 if (r_type == R_MIPS_REL32)
3977 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3978 else
3979 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3980 mips_elf_set_cr_dist2to (cptrel, 0);
3981 cptrel.konst = *addendp;
3982
3983 cr = (scpt->contents
3984 + sizeof (Elf32_External_compact_rel));
3985 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3986 ((Elf32_External_crinfo *) cr
3987 + scpt->reloc_count));
3988 ++scpt->reloc_count;
3989 }
3990 }
3991
b34976b6 3992 return TRUE;
b49e97c9
TS
3993}
3994\f
b49e97c9
TS
3995/* Return the MACH for a MIPS e_flags value. */
3996
3997unsigned long
9719ad41 3998_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
3999{
4000 switch (flags & EF_MIPS_MACH)
4001 {
4002 case E_MIPS_MACH_3900:
4003 return bfd_mach_mips3900;
4004
4005 case E_MIPS_MACH_4010:
4006 return bfd_mach_mips4010;
4007
4008 case E_MIPS_MACH_4100:
4009 return bfd_mach_mips4100;
4010
4011 case E_MIPS_MACH_4111:
4012 return bfd_mach_mips4111;
4013
00707a0e
RS
4014 case E_MIPS_MACH_4120:
4015 return bfd_mach_mips4120;
4016
b49e97c9
TS
4017 case E_MIPS_MACH_4650:
4018 return bfd_mach_mips4650;
4019
00707a0e
RS
4020 case E_MIPS_MACH_5400:
4021 return bfd_mach_mips5400;
4022
4023 case E_MIPS_MACH_5500:
4024 return bfd_mach_mips5500;
4025
0d2e43ed
ILT
4026 case E_MIPS_MACH_9000:
4027 return bfd_mach_mips9000;
4028
b49e97c9
TS
4029 case E_MIPS_MACH_SB1:
4030 return bfd_mach_mips_sb1;
4031
4032 default:
4033 switch (flags & EF_MIPS_ARCH)
4034 {
4035 default:
4036 case E_MIPS_ARCH_1:
4037 return bfd_mach_mips3000;
4038 break;
4039
4040 case E_MIPS_ARCH_2:
4041 return bfd_mach_mips6000;
4042 break;
4043
4044 case E_MIPS_ARCH_3:
4045 return bfd_mach_mips4000;
4046 break;
4047
4048 case E_MIPS_ARCH_4:
4049 return bfd_mach_mips8000;
4050 break;
4051
4052 case E_MIPS_ARCH_5:
4053 return bfd_mach_mips5;
4054 break;
4055
4056 case E_MIPS_ARCH_32:
4057 return bfd_mach_mipsisa32;
4058 break;
4059
4060 case E_MIPS_ARCH_64:
4061 return bfd_mach_mipsisa64;
4062 break;
af7ee8bf
CD
4063
4064 case E_MIPS_ARCH_32R2:
4065 return bfd_mach_mipsisa32r2;
4066 break;
5f74bc13
CD
4067
4068 case E_MIPS_ARCH_64R2:
4069 return bfd_mach_mipsisa64r2;
4070 break;
b49e97c9
TS
4071 }
4072 }
4073
4074 return 0;
4075}
4076
4077/* Return printable name for ABI. */
4078
4079static INLINE char *
9719ad41 4080elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
4081{
4082 flagword flags;
4083
4084 flags = elf_elfheader (abfd)->e_flags;
4085 switch (flags & EF_MIPS_ABI)
4086 {
4087 case 0:
4088 if (ABI_N32_P (abfd))
4089 return "N32";
4090 else if (ABI_64_P (abfd))
4091 return "64";
4092 else
4093 return "none";
4094 case E_MIPS_ABI_O32:
4095 return "O32";
4096 case E_MIPS_ABI_O64:
4097 return "O64";
4098 case E_MIPS_ABI_EABI32:
4099 return "EABI32";
4100 case E_MIPS_ABI_EABI64:
4101 return "EABI64";
4102 default:
4103 return "unknown abi";
4104 }
4105}
4106\f
4107/* MIPS ELF uses two common sections. One is the usual one, and the
4108 other is for small objects. All the small objects are kept
4109 together, and then referenced via the gp pointer, which yields
4110 faster assembler code. This is what we use for the small common
4111 section. This approach is copied from ecoff.c. */
4112static asection mips_elf_scom_section;
4113static asymbol mips_elf_scom_symbol;
4114static asymbol *mips_elf_scom_symbol_ptr;
4115
4116/* MIPS ELF also uses an acommon section, which represents an
4117 allocated common symbol which may be overridden by a
4118 definition in a shared library. */
4119static asection mips_elf_acom_section;
4120static asymbol mips_elf_acom_symbol;
4121static asymbol *mips_elf_acom_symbol_ptr;
4122
4123/* Handle the special MIPS section numbers that a symbol may use.
4124 This is used for both the 32-bit and the 64-bit ABI. */
4125
4126void
9719ad41 4127_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
4128{
4129 elf_symbol_type *elfsym;
4130
4131 elfsym = (elf_symbol_type *) asym;
4132 switch (elfsym->internal_elf_sym.st_shndx)
4133 {
4134 case SHN_MIPS_ACOMMON:
4135 /* This section is used in a dynamically linked executable file.
4136 It is an allocated common section. The dynamic linker can
4137 either resolve these symbols to something in a shared
4138 library, or it can just leave them here. For our purposes,
4139 we can consider these symbols to be in a new section. */
4140 if (mips_elf_acom_section.name == NULL)
4141 {
4142 /* Initialize the acommon section. */
4143 mips_elf_acom_section.name = ".acommon";
4144 mips_elf_acom_section.flags = SEC_ALLOC;
4145 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4146 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4147 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4148 mips_elf_acom_symbol.name = ".acommon";
4149 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4150 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4151 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4152 }
4153 asym->section = &mips_elf_acom_section;
4154 break;
4155
4156 case SHN_COMMON:
4157 /* Common symbols less than the GP size are automatically
4158 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4159 if (asym->value > elf_gp_size (abfd)
4160 || IRIX_COMPAT (abfd) == ict_irix6)
4161 break;
4162 /* Fall through. */
4163 case SHN_MIPS_SCOMMON:
4164 if (mips_elf_scom_section.name == NULL)
4165 {
4166 /* Initialize the small common section. */
4167 mips_elf_scom_section.name = ".scommon";
4168 mips_elf_scom_section.flags = SEC_IS_COMMON;
4169 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4170 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4171 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4172 mips_elf_scom_symbol.name = ".scommon";
4173 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4174 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4175 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4176 }
4177 asym->section = &mips_elf_scom_section;
4178 asym->value = elfsym->internal_elf_sym.st_size;
4179 break;
4180
4181 case SHN_MIPS_SUNDEFINED:
4182 asym->section = bfd_und_section_ptr;
4183 break;
4184
b49e97c9 4185 case SHN_MIPS_TEXT:
00b4930b
TS
4186 {
4187 asection *section = bfd_get_section_by_name (abfd, ".text");
4188
4189 BFD_ASSERT (SGI_COMPAT (abfd));
4190 if (section != NULL)
4191 {
4192 asym->section = section;
4193 /* MIPS_TEXT is a bit special, the address is not an offset
4194 to the base of the .text section. So substract the section
4195 base address to make it an offset. */
4196 asym->value -= section->vma;
4197 }
4198 }
b49e97c9
TS
4199 break;
4200
4201 case SHN_MIPS_DATA:
00b4930b
TS
4202 {
4203 asection *section = bfd_get_section_by_name (abfd, ".data");
4204
4205 BFD_ASSERT (SGI_COMPAT (abfd));
4206 if (section != NULL)
4207 {
4208 asym->section = section;
4209 /* MIPS_DATA is a bit special, the address is not an offset
4210 to the base of the .data section. So substract the section
4211 base address to make it an offset. */
4212 asym->value -= section->vma;
4213 }
4214 }
b49e97c9 4215 break;
b49e97c9
TS
4216 }
4217}
4218\f
174fd7f9
RS
4219/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4220 relocations against two unnamed section symbols to resolve to the
4221 same address. For example, if we have code like:
4222
4223 lw $4,%got_disp(.data)($gp)
4224 lw $25,%got_disp(.text)($gp)
4225 jalr $25
4226
4227 then the linker will resolve both relocations to .data and the program
4228 will jump there rather than to .text.
4229
4230 We can work around this problem by giving names to local section symbols.
4231 This is also what the MIPSpro tools do. */
4232
4233bfd_boolean
4234_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4235{
4236 return SGI_COMPAT (abfd);
4237}
4238\f
b49e97c9
TS
4239/* Work over a section just before writing it out. This routine is
4240 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4241 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4242 a better way. */
4243
b34976b6 4244bfd_boolean
9719ad41 4245_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
4246{
4247 if (hdr->sh_type == SHT_MIPS_REGINFO
4248 && hdr->sh_size > 0)
4249 {
4250 bfd_byte buf[4];
4251
4252 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4253 BFD_ASSERT (hdr->contents == NULL);
4254
4255 if (bfd_seek (abfd,
4256 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4257 SEEK_SET) != 0)
b34976b6 4258 return FALSE;
b49e97c9 4259 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4260 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4261 return FALSE;
b49e97c9
TS
4262 }
4263
4264 if (hdr->sh_type == SHT_MIPS_OPTIONS
4265 && hdr->bfd_section != NULL
f0abc2a1
AM
4266 && mips_elf_section_data (hdr->bfd_section) != NULL
4267 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4268 {
4269 bfd_byte *contents, *l, *lend;
4270
f0abc2a1
AM
4271 /* We stored the section contents in the tdata field in the
4272 set_section_contents routine. We save the section contents
4273 so that we don't have to read them again.
b49e97c9
TS
4274 At this point we know that elf_gp is set, so we can look
4275 through the section contents to see if there is an
4276 ODK_REGINFO structure. */
4277
f0abc2a1 4278 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4279 l = contents;
4280 lend = contents + hdr->sh_size;
4281 while (l + sizeof (Elf_External_Options) <= lend)
4282 {
4283 Elf_Internal_Options intopt;
4284
4285 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4286 &intopt);
4287 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4288 {
4289 bfd_byte buf[8];
4290
4291 if (bfd_seek (abfd,
4292 (hdr->sh_offset
4293 + (l - contents)
4294 + sizeof (Elf_External_Options)
4295 + (sizeof (Elf64_External_RegInfo) - 8)),
4296 SEEK_SET) != 0)
b34976b6 4297 return FALSE;
b49e97c9 4298 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 4299 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 4300 return FALSE;
b49e97c9
TS
4301 }
4302 else if (intopt.kind == ODK_REGINFO)
4303 {
4304 bfd_byte buf[4];
4305
4306 if (bfd_seek (abfd,
4307 (hdr->sh_offset
4308 + (l - contents)
4309 + sizeof (Elf_External_Options)
4310 + (sizeof (Elf32_External_RegInfo) - 4)),
4311 SEEK_SET) != 0)
b34976b6 4312 return FALSE;
b49e97c9 4313 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4314 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4315 return FALSE;
b49e97c9
TS
4316 }
4317 l += intopt.size;
4318 }
4319 }
4320
4321 if (hdr->bfd_section != NULL)
4322 {
4323 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4324
4325 if (strcmp (name, ".sdata") == 0
4326 || strcmp (name, ".lit8") == 0
4327 || strcmp (name, ".lit4") == 0)
4328 {
4329 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4330 hdr->sh_type = SHT_PROGBITS;
4331 }
4332 else if (strcmp (name, ".sbss") == 0)
4333 {
4334 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4335 hdr->sh_type = SHT_NOBITS;
4336 }
4337 else if (strcmp (name, ".srdata") == 0)
4338 {
4339 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4340 hdr->sh_type = SHT_PROGBITS;
4341 }
4342 else if (strcmp (name, ".compact_rel") == 0)
4343 {
4344 hdr->sh_flags = 0;
4345 hdr->sh_type = SHT_PROGBITS;
4346 }
4347 else if (strcmp (name, ".rtproc") == 0)
4348 {
4349 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4350 {
4351 unsigned int adjust;
4352
4353 adjust = hdr->sh_size % hdr->sh_addralign;
4354 if (adjust != 0)
4355 hdr->sh_size += hdr->sh_addralign - adjust;
4356 }
4357 }
4358 }
4359
b34976b6 4360 return TRUE;
b49e97c9
TS
4361}
4362
4363/* Handle a MIPS specific section when reading an object file. This
4364 is called when elfcode.h finds a section with an unknown type.
4365 This routine supports both the 32-bit and 64-bit ELF ABI.
4366
4367 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4368 how to. */
4369
b34976b6 4370bfd_boolean
9719ad41
RS
4371_bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4372 const char *name)
b49e97c9
TS
4373{
4374 flagword flags = 0;
4375
4376 /* There ought to be a place to keep ELF backend specific flags, but
4377 at the moment there isn't one. We just keep track of the
4378 sections by their name, instead. Fortunately, the ABI gives
4379 suggested names for all the MIPS specific sections, so we will
4380 probably get away with this. */
4381 switch (hdr->sh_type)
4382 {
4383 case SHT_MIPS_LIBLIST:
4384 if (strcmp (name, ".liblist") != 0)
b34976b6 4385 return FALSE;
b49e97c9
TS
4386 break;
4387 case SHT_MIPS_MSYM:
4388 if (strcmp (name, ".msym") != 0)
b34976b6 4389 return FALSE;
b49e97c9
TS
4390 break;
4391 case SHT_MIPS_CONFLICT:
4392 if (strcmp (name, ".conflict") != 0)
b34976b6 4393 return FALSE;
b49e97c9
TS
4394 break;
4395 case SHT_MIPS_GPTAB:
4396 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 4397 return FALSE;
b49e97c9
TS
4398 break;
4399 case SHT_MIPS_UCODE:
4400 if (strcmp (name, ".ucode") != 0)
b34976b6 4401 return FALSE;
b49e97c9
TS
4402 break;
4403 case SHT_MIPS_DEBUG:
4404 if (strcmp (name, ".mdebug") != 0)
b34976b6 4405 return FALSE;
b49e97c9
TS
4406 flags = SEC_DEBUGGING;
4407 break;
4408 case SHT_MIPS_REGINFO:
4409 if (strcmp (name, ".reginfo") != 0
4410 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 4411 return FALSE;
b49e97c9
TS
4412 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4413 break;
4414 case SHT_MIPS_IFACE:
4415 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 4416 return FALSE;
b49e97c9
TS
4417 break;
4418 case SHT_MIPS_CONTENT:
4419 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 4420 return FALSE;
b49e97c9
TS
4421 break;
4422 case SHT_MIPS_OPTIONS:
4423 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
b34976b6 4424 return FALSE;
b49e97c9
TS
4425 break;
4426 case SHT_MIPS_DWARF:
4427 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 4428 return FALSE;
b49e97c9
TS
4429 break;
4430 case SHT_MIPS_SYMBOL_LIB:
4431 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 4432 return FALSE;
b49e97c9
TS
4433 break;
4434 case SHT_MIPS_EVENTS:
4435 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4436 && strncmp (name, ".MIPS.post_rel",
4437 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 4438 return FALSE;
b49e97c9
TS
4439 break;
4440 default:
b34976b6 4441 return FALSE;
b49e97c9
TS
4442 }
4443
4444 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
b34976b6 4445 return FALSE;
b49e97c9
TS
4446
4447 if (flags)
4448 {
4449 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4450 (bfd_get_section_flags (abfd,
4451 hdr->bfd_section)
4452 | flags)))
b34976b6 4453 return FALSE;
b49e97c9
TS
4454 }
4455
4456 /* FIXME: We should record sh_info for a .gptab section. */
4457
4458 /* For a .reginfo section, set the gp value in the tdata information
4459 from the contents of this section. We need the gp value while
4460 processing relocs, so we just get it now. The .reginfo section
4461 is not used in the 64-bit MIPS ELF ABI. */
4462 if (hdr->sh_type == SHT_MIPS_REGINFO)
4463 {
4464 Elf32_External_RegInfo ext;
4465 Elf32_RegInfo s;
4466
9719ad41
RS
4467 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4468 &ext, 0, sizeof ext))
b34976b6 4469 return FALSE;
b49e97c9
TS
4470 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4471 elf_gp (abfd) = s.ri_gp_value;
4472 }
4473
4474 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4475 set the gp value based on what we find. We may see both
4476 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4477 they should agree. */
4478 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4479 {
4480 bfd_byte *contents, *l, *lend;
4481
9719ad41 4482 contents = bfd_malloc (hdr->sh_size);
b49e97c9 4483 if (contents == NULL)
b34976b6 4484 return FALSE;
b49e97c9 4485 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 4486 0, hdr->sh_size))
b49e97c9
TS
4487 {
4488 free (contents);
b34976b6 4489 return FALSE;
b49e97c9
TS
4490 }
4491 l = contents;
4492 lend = contents + hdr->sh_size;
4493 while (l + sizeof (Elf_External_Options) <= lend)
4494 {
4495 Elf_Internal_Options intopt;
4496
4497 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4498 &intopt);
4499 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4500 {
4501 Elf64_Internal_RegInfo intreg;
4502
4503 bfd_mips_elf64_swap_reginfo_in
4504 (abfd,
4505 ((Elf64_External_RegInfo *)
4506 (l + sizeof (Elf_External_Options))),
4507 &intreg);
4508 elf_gp (abfd) = intreg.ri_gp_value;
4509 }
4510 else if (intopt.kind == ODK_REGINFO)
4511 {
4512 Elf32_RegInfo intreg;
4513
4514 bfd_mips_elf32_swap_reginfo_in
4515 (abfd,
4516 ((Elf32_External_RegInfo *)
4517 (l + sizeof (Elf_External_Options))),
4518 &intreg);
4519 elf_gp (abfd) = intreg.ri_gp_value;
4520 }
4521 l += intopt.size;
4522 }
4523 free (contents);
4524 }
4525
b34976b6 4526 return TRUE;
b49e97c9
TS
4527}
4528
4529/* Set the correct type for a MIPS ELF section. We do this by the
4530 section name, which is a hack, but ought to work. This routine is
4531 used by both the 32-bit and the 64-bit ABI. */
4532
b34976b6 4533bfd_boolean
9719ad41 4534_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
4535{
4536 register const char *name;
4537
4538 name = bfd_get_section_name (abfd, sec);
4539
4540 if (strcmp (name, ".liblist") == 0)
4541 {
4542 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 4543 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
4544 /* The sh_link field is set in final_write_processing. */
4545 }
4546 else if (strcmp (name, ".conflict") == 0)
4547 hdr->sh_type = SHT_MIPS_CONFLICT;
4548 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4549 {
4550 hdr->sh_type = SHT_MIPS_GPTAB;
4551 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4552 /* The sh_info field is set in final_write_processing. */
4553 }
4554 else if (strcmp (name, ".ucode") == 0)
4555 hdr->sh_type = SHT_MIPS_UCODE;
4556 else if (strcmp (name, ".mdebug") == 0)
4557 {
4558 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 4559 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
4560 entsize of 0. FIXME: Does this matter? */
4561 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4562 hdr->sh_entsize = 0;
4563 else
4564 hdr->sh_entsize = 1;
4565 }
4566 else if (strcmp (name, ".reginfo") == 0)
4567 {
4568 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 4569 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
4570 entsize of 0x18. FIXME: Does this matter? */
4571 if (SGI_COMPAT (abfd))
4572 {
4573 if ((abfd->flags & DYNAMIC) != 0)
4574 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4575 else
4576 hdr->sh_entsize = 1;
4577 }
4578 else
4579 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4580 }
4581 else if (SGI_COMPAT (abfd)
4582 && (strcmp (name, ".hash") == 0
4583 || strcmp (name, ".dynamic") == 0
4584 || strcmp (name, ".dynstr") == 0))
4585 {
4586 if (SGI_COMPAT (abfd))
4587 hdr->sh_entsize = 0;
4588#if 0
8dc1a139 4589 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
4590 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4591#endif
4592 }
4593 else if (strcmp (name, ".got") == 0
4594 || strcmp (name, ".srdata") == 0
4595 || strcmp (name, ".sdata") == 0
4596 || strcmp (name, ".sbss") == 0
4597 || strcmp (name, ".lit4") == 0
4598 || strcmp (name, ".lit8") == 0)
4599 hdr->sh_flags |= SHF_MIPS_GPREL;
4600 else if (strcmp (name, ".MIPS.interfaces") == 0)
4601 {
4602 hdr->sh_type = SHT_MIPS_IFACE;
4603 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4604 }
4605 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4606 {
4607 hdr->sh_type = SHT_MIPS_CONTENT;
4608 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4609 /* The sh_info field is set in final_write_processing. */
4610 }
4611 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4612 {
4613 hdr->sh_type = SHT_MIPS_OPTIONS;
4614 hdr->sh_entsize = 1;
4615 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4616 }
4617 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4618 hdr->sh_type = SHT_MIPS_DWARF;
4619 else if (strcmp (name, ".MIPS.symlib") == 0)
4620 {
4621 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4622 /* The sh_link and sh_info fields are set in
4623 final_write_processing. */
4624 }
4625 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4626 || strncmp (name, ".MIPS.post_rel",
4627 sizeof ".MIPS.post_rel" - 1) == 0)
4628 {
4629 hdr->sh_type = SHT_MIPS_EVENTS;
4630 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4631 /* The sh_link field is set in final_write_processing. */
4632 }
4633 else if (strcmp (name, ".msym") == 0)
4634 {
4635 hdr->sh_type = SHT_MIPS_MSYM;
4636 hdr->sh_flags |= SHF_ALLOC;
4637 hdr->sh_entsize = 8;
4638 }
4639
7a79a000
TS
4640 /* The generic elf_fake_sections will set up REL_HDR using the default
4641 kind of relocations. We used to set up a second header for the
4642 non-default kind of relocations here, but only NewABI would use
4643 these, and the IRIX ld doesn't like resulting empty RELA sections.
4644 Thus we create those header only on demand now. */
b49e97c9 4645
b34976b6 4646 return TRUE;
b49e97c9
TS
4647}
4648
4649/* Given a BFD section, try to locate the corresponding ELF section
4650 index. This is used by both the 32-bit and the 64-bit ABI.
4651 Actually, it's not clear to me that the 64-bit ABI supports these,
4652 but for non-PIC objects we will certainly want support for at least
4653 the .scommon section. */
4654
b34976b6 4655bfd_boolean
9719ad41
RS
4656_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4657 asection *sec, int *retval)
b49e97c9
TS
4658{
4659 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4660 {
4661 *retval = SHN_MIPS_SCOMMON;
b34976b6 4662 return TRUE;
b49e97c9
TS
4663 }
4664 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4665 {
4666 *retval = SHN_MIPS_ACOMMON;
b34976b6 4667 return TRUE;
b49e97c9 4668 }
b34976b6 4669 return FALSE;
b49e97c9
TS
4670}
4671\f
4672/* Hook called by the linker routine which adds symbols from an object
4673 file. We must handle the special MIPS section numbers here. */
4674
b34976b6 4675bfd_boolean
9719ad41 4676_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 4677 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
4678 flagword *flagsp ATTRIBUTE_UNUSED,
4679 asection **secp, bfd_vma *valp)
b49e97c9
TS
4680{
4681 if (SGI_COMPAT (abfd)
4682 && (abfd->flags & DYNAMIC) != 0
4683 && strcmp (*namep, "_rld_new_interface") == 0)
4684 {
8dc1a139 4685 /* Skip IRIX5 rld entry name. */
b49e97c9 4686 *namep = NULL;
b34976b6 4687 return TRUE;
b49e97c9
TS
4688 }
4689
4690 switch (sym->st_shndx)
4691 {
4692 case SHN_COMMON:
4693 /* Common symbols less than the GP size are automatically
4694 treated as SHN_MIPS_SCOMMON symbols. */
4695 if (sym->st_size > elf_gp_size (abfd)
4696 || IRIX_COMPAT (abfd) == ict_irix6)
4697 break;
4698 /* Fall through. */
4699 case SHN_MIPS_SCOMMON:
4700 *secp = bfd_make_section_old_way (abfd, ".scommon");
4701 (*secp)->flags |= SEC_IS_COMMON;
4702 *valp = sym->st_size;
4703 break;
4704
4705 case SHN_MIPS_TEXT:
4706 /* This section is used in a shared object. */
4707 if (elf_tdata (abfd)->elf_text_section == NULL)
4708 {
4709 asymbol *elf_text_symbol;
4710 asection *elf_text_section;
4711 bfd_size_type amt = sizeof (asection);
4712
4713 elf_text_section = bfd_zalloc (abfd, amt);
4714 if (elf_text_section == NULL)
b34976b6 4715 return FALSE;
b49e97c9
TS
4716
4717 amt = sizeof (asymbol);
4718 elf_text_symbol = bfd_zalloc (abfd, amt);
4719 if (elf_text_symbol == NULL)
b34976b6 4720 return FALSE;
b49e97c9
TS
4721
4722 /* Initialize the section. */
4723
4724 elf_tdata (abfd)->elf_text_section = elf_text_section;
4725 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4726
4727 elf_text_section->symbol = elf_text_symbol;
4728 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4729
4730 elf_text_section->name = ".text";
4731 elf_text_section->flags = SEC_NO_FLAGS;
4732 elf_text_section->output_section = NULL;
4733 elf_text_section->owner = abfd;
4734 elf_text_symbol->name = ".text";
4735 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4736 elf_text_symbol->section = elf_text_section;
4737 }
4738 /* This code used to do *secp = bfd_und_section_ptr if
4739 info->shared. I don't know why, and that doesn't make sense,
4740 so I took it out. */
4741 *secp = elf_tdata (abfd)->elf_text_section;
4742 break;
4743
4744 case SHN_MIPS_ACOMMON:
4745 /* Fall through. XXX Can we treat this as allocated data? */
4746 case SHN_MIPS_DATA:
4747 /* This section is used in a shared object. */
4748 if (elf_tdata (abfd)->elf_data_section == NULL)
4749 {
4750 asymbol *elf_data_symbol;
4751 asection *elf_data_section;
4752 bfd_size_type amt = sizeof (asection);
4753
4754 elf_data_section = bfd_zalloc (abfd, amt);
4755 if (elf_data_section == NULL)
b34976b6 4756 return FALSE;
b49e97c9
TS
4757
4758 amt = sizeof (asymbol);
4759 elf_data_symbol = bfd_zalloc (abfd, amt);
4760 if (elf_data_symbol == NULL)
b34976b6 4761 return FALSE;
b49e97c9
TS
4762
4763 /* Initialize the section. */
4764
4765 elf_tdata (abfd)->elf_data_section = elf_data_section;
4766 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4767
4768 elf_data_section->symbol = elf_data_symbol;
4769 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4770
4771 elf_data_section->name = ".data";
4772 elf_data_section->flags = SEC_NO_FLAGS;
4773 elf_data_section->output_section = NULL;
4774 elf_data_section->owner = abfd;
4775 elf_data_symbol->name = ".data";
4776 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4777 elf_data_symbol->section = elf_data_section;
4778 }
4779 /* This code used to do *secp = bfd_und_section_ptr if
4780 info->shared. I don't know why, and that doesn't make sense,
4781 so I took it out. */
4782 *secp = elf_tdata (abfd)->elf_data_section;
4783 break;
4784
4785 case SHN_MIPS_SUNDEFINED:
4786 *secp = bfd_und_section_ptr;
4787 break;
4788 }
4789
4790 if (SGI_COMPAT (abfd)
4791 && ! info->shared
4792 && info->hash->creator == abfd->xvec
4793 && strcmp (*namep, "__rld_obj_head") == 0)
4794 {
4795 struct elf_link_hash_entry *h;
14a793b2 4796 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4797
4798 /* Mark __rld_obj_head as dynamic. */
14a793b2 4799 bh = NULL;
b49e97c9 4800 if (! (_bfd_generic_link_add_one_symbol
9719ad41 4801 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 4802 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4803 return FALSE;
14a793b2
AM
4804
4805 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4806 h->non_elf = 0;
4807 h->def_regular = 1;
b49e97c9
TS
4808 h->type = STT_OBJECT;
4809
c152c796 4810 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4811 return FALSE;
b49e97c9 4812
b34976b6 4813 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
4814 }
4815
4816 /* If this is a mips16 text symbol, add 1 to the value to make it
4817 odd. This will cause something like .word SYM to come up with
4818 the right value when it is loaded into the PC. */
4819 if (sym->st_other == STO_MIPS16)
4820 ++*valp;
4821
b34976b6 4822 return TRUE;
b49e97c9
TS
4823}
4824
4825/* This hook function is called before the linker writes out a global
4826 symbol. We mark symbols as small common if appropriate. This is
4827 also where we undo the increment of the value for a mips16 symbol. */
4828
b34976b6 4829bfd_boolean
9719ad41
RS
4830_bfd_mips_elf_link_output_symbol_hook
4831 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4832 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4833 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
4834{
4835 /* If we see a common symbol, which implies a relocatable link, then
4836 if a symbol was small common in an input file, mark it as small
4837 common in the output file. */
4838 if (sym->st_shndx == SHN_COMMON
4839 && strcmp (input_sec->name, ".scommon") == 0)
4840 sym->st_shndx = SHN_MIPS_SCOMMON;
4841
79cda7cf
FF
4842 if (sym->st_other == STO_MIPS16)
4843 sym->st_value &= ~1;
b49e97c9 4844
b34976b6 4845 return TRUE;
b49e97c9
TS
4846}
4847\f
4848/* Functions for the dynamic linker. */
4849
4850/* Create dynamic sections when linking against a dynamic object. */
4851
b34976b6 4852bfd_boolean
9719ad41 4853_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4854{
4855 struct elf_link_hash_entry *h;
14a793b2 4856 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4857 flagword flags;
4858 register asection *s;
4859 const char * const *namep;
4860
4861 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4862 | SEC_LINKER_CREATED | SEC_READONLY);
4863
4864 /* Mips ABI requests the .dynamic section to be read only. */
4865 s = bfd_get_section_by_name (abfd, ".dynamic");
4866 if (s != NULL)
4867 {
4868 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 4869 return FALSE;
b49e97c9
TS
4870 }
4871
4872 /* We need to create .got section. */
f4416af6
AO
4873 if (! mips_elf_create_got_section (abfd, info, FALSE))
4874 return FALSE;
4875
4876 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 4877 return FALSE;
b49e97c9 4878
b49e97c9
TS
4879 /* Create .stub section. */
4880 if (bfd_get_section_by_name (abfd,
4881 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4882 {
4883 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4884 if (s == NULL
4885 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4886 || ! bfd_set_section_alignment (abfd, s,
4887 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4888 return FALSE;
b49e97c9
TS
4889 }
4890
4891 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4892 && !info->shared
4893 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4894 {
4895 s = bfd_make_section (abfd, ".rld_map");
4896 if (s == NULL
4897 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4898 || ! bfd_set_section_alignment (abfd, s,
4899 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4900 return FALSE;
b49e97c9
TS
4901 }
4902
4903 /* On IRIX5, we adjust add some additional symbols and change the
4904 alignments of several sections. There is no ABI documentation
4905 indicating that this is necessary on IRIX6, nor any evidence that
4906 the linker takes such action. */
4907 if (IRIX_COMPAT (abfd) == ict_irix5)
4908 {
4909 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4910 {
14a793b2 4911 bh = NULL;
b49e97c9 4912 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
4913 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4914 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4915 return FALSE;
14a793b2
AM
4916
4917 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4918 h->non_elf = 0;
4919 h->def_regular = 1;
b49e97c9
TS
4920 h->type = STT_SECTION;
4921
c152c796 4922 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4923 return FALSE;
b49e97c9
TS
4924 }
4925
4926 /* We need to create a .compact_rel section. */
4927 if (SGI_COMPAT (abfd))
4928 {
4929 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 4930 return FALSE;
b49e97c9
TS
4931 }
4932
44c410de 4933 /* Change alignments of some sections. */
b49e97c9
TS
4934 s = bfd_get_section_by_name (abfd, ".hash");
4935 if (s != NULL)
d80dcc6a 4936 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4937 s = bfd_get_section_by_name (abfd, ".dynsym");
4938 if (s != NULL)
d80dcc6a 4939 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4940 s = bfd_get_section_by_name (abfd, ".dynstr");
4941 if (s != NULL)
d80dcc6a 4942 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4943 s = bfd_get_section_by_name (abfd, ".reginfo");
4944 if (s != NULL)
d80dcc6a 4945 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4946 s = bfd_get_section_by_name (abfd, ".dynamic");
4947 if (s != NULL)
d80dcc6a 4948 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4949 }
4950
4951 if (!info->shared)
4952 {
14a793b2
AM
4953 const char *name;
4954
4955 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4956 bh = NULL;
4957 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
4958 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4959 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4960 return FALSE;
14a793b2
AM
4961
4962 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4963 h->non_elf = 0;
4964 h->def_regular = 1;
b49e97c9
TS
4965 h->type = STT_SECTION;
4966
c152c796 4967 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4968 return FALSE;
b49e97c9
TS
4969
4970 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4971 {
4972 /* __rld_map is a four byte word located in the .data section
4973 and is filled in by the rtld to contain a pointer to
4974 the _r_debug structure. Its symbol value will be set in
4975 _bfd_mips_elf_finish_dynamic_symbol. */
4976 s = bfd_get_section_by_name (abfd, ".rld_map");
4977 BFD_ASSERT (s != NULL);
4978
14a793b2
AM
4979 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4980 bh = NULL;
4981 if (!(_bfd_generic_link_add_one_symbol
9719ad41 4982 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 4983 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4984 return FALSE;
14a793b2
AM
4985
4986 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4987 h->non_elf = 0;
4988 h->def_regular = 1;
b49e97c9
TS
4989 h->type = STT_OBJECT;
4990
c152c796 4991 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4992 return FALSE;
b49e97c9
TS
4993 }
4994 }
4995
b34976b6 4996 return TRUE;
b49e97c9
TS
4997}
4998\f
4999/* Look through the relocs for a section during the first phase, and
5000 allocate space in the global offset table. */
5001
b34976b6 5002bfd_boolean
9719ad41
RS
5003_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5004 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
5005{
5006 const char *name;
5007 bfd *dynobj;
5008 Elf_Internal_Shdr *symtab_hdr;
5009 struct elf_link_hash_entry **sym_hashes;
5010 struct mips_got_info *g;
5011 size_t extsymoff;
5012 const Elf_Internal_Rela *rel;
5013 const Elf_Internal_Rela *rel_end;
5014 asection *sgot;
5015 asection *sreloc;
9c5bfbb7 5016 const struct elf_backend_data *bed;
b49e97c9 5017
1049f94e 5018 if (info->relocatable)
b34976b6 5019 return TRUE;
b49e97c9
TS
5020
5021 dynobj = elf_hash_table (info)->dynobj;
5022 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5023 sym_hashes = elf_sym_hashes (abfd);
5024 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5025
5026 /* Check for the mips16 stub sections. */
5027
5028 name = bfd_get_section_name (abfd, sec);
5029 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5030 {
5031 unsigned long r_symndx;
5032
5033 /* Look at the relocation information to figure out which symbol
5034 this is for. */
5035
5036 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5037
5038 if (r_symndx < extsymoff
5039 || sym_hashes[r_symndx - extsymoff] == NULL)
5040 {
5041 asection *o;
5042
5043 /* This stub is for a local symbol. This stub will only be
5044 needed if there is some relocation in this BFD, other
5045 than a 16 bit function call, which refers to this symbol. */
5046 for (o = abfd->sections; o != NULL; o = o->next)
5047 {
5048 Elf_Internal_Rela *sec_relocs;
5049 const Elf_Internal_Rela *r, *rend;
5050
5051 /* We can ignore stub sections when looking for relocs. */
5052 if ((o->flags & SEC_RELOC) == 0
5053 || o->reloc_count == 0
5054 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5055 sizeof FN_STUB - 1) == 0
5056 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5057 sizeof CALL_STUB - 1) == 0
5058 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5059 sizeof CALL_FP_STUB - 1) == 0)
5060 continue;
5061
45d6a902 5062 sec_relocs
9719ad41 5063 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 5064 info->keep_memory);
b49e97c9 5065 if (sec_relocs == NULL)
b34976b6 5066 return FALSE;
b49e97c9
TS
5067
5068 rend = sec_relocs + o->reloc_count;
5069 for (r = sec_relocs; r < rend; r++)
5070 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5071 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5072 break;
5073
6cdc0ccc 5074 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5075 free (sec_relocs);
5076
5077 if (r < rend)
5078 break;
5079 }
5080
5081 if (o == NULL)
5082 {
5083 /* There is no non-call reloc for this stub, so we do
5084 not need it. Since this function is called before
5085 the linker maps input sections to output sections, we
5086 can easily discard it by setting the SEC_EXCLUDE
5087 flag. */
5088 sec->flags |= SEC_EXCLUDE;
b34976b6 5089 return TRUE;
b49e97c9
TS
5090 }
5091
5092 /* Record this stub in an array of local symbol stubs for
5093 this BFD. */
5094 if (elf_tdata (abfd)->local_stubs == NULL)
5095 {
5096 unsigned long symcount;
5097 asection **n;
5098 bfd_size_type amt;
5099
5100 if (elf_bad_symtab (abfd))
5101 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5102 else
5103 symcount = symtab_hdr->sh_info;
5104 amt = symcount * sizeof (asection *);
9719ad41 5105 n = bfd_zalloc (abfd, amt);
b49e97c9 5106 if (n == NULL)
b34976b6 5107 return FALSE;
b49e97c9
TS
5108 elf_tdata (abfd)->local_stubs = n;
5109 }
5110
5111 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5112
5113 /* We don't need to set mips16_stubs_seen in this case.
5114 That flag is used to see whether we need to look through
5115 the global symbol table for stubs. We don't need to set
5116 it here, because we just have a local stub. */
5117 }
5118 else
5119 {
5120 struct mips_elf_link_hash_entry *h;
5121
5122 h = ((struct mips_elf_link_hash_entry *)
5123 sym_hashes[r_symndx - extsymoff]);
5124
5125 /* H is the symbol this stub is for. */
5126
5127 h->fn_stub = sec;
b34976b6 5128 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5129 }
5130 }
5131 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5132 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5133 {
5134 unsigned long r_symndx;
5135 struct mips_elf_link_hash_entry *h;
5136 asection **loc;
5137
5138 /* Look at the relocation information to figure out which symbol
5139 this is for. */
5140
5141 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5142
5143 if (r_symndx < extsymoff
5144 || sym_hashes[r_symndx - extsymoff] == NULL)
5145 {
5146 /* This stub was actually built for a static symbol defined
5147 in the same file. We assume that all static symbols in
5148 mips16 code are themselves mips16, so we can simply
5149 discard this stub. Since this function is called before
5150 the linker maps input sections to output sections, we can
5151 easily discard it by setting the SEC_EXCLUDE flag. */
5152 sec->flags |= SEC_EXCLUDE;
b34976b6 5153 return TRUE;
b49e97c9
TS
5154 }
5155
5156 h = ((struct mips_elf_link_hash_entry *)
5157 sym_hashes[r_symndx - extsymoff]);
5158
5159 /* H is the symbol this stub is for. */
5160
5161 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5162 loc = &h->call_fp_stub;
5163 else
5164 loc = &h->call_stub;
5165
5166 /* If we already have an appropriate stub for this function, we
5167 don't need another one, so we can discard this one. Since
5168 this function is called before the linker maps input sections
5169 to output sections, we can easily discard it by setting the
5170 SEC_EXCLUDE flag. We can also discard this section if we
5171 happen to already know that this is a mips16 function; it is
5172 not necessary to check this here, as it is checked later, but
5173 it is slightly faster to check now. */
5174 if (*loc != NULL || h->root.other == STO_MIPS16)
5175 {
5176 sec->flags |= SEC_EXCLUDE;
b34976b6 5177 return TRUE;
b49e97c9
TS
5178 }
5179
5180 *loc = sec;
b34976b6 5181 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5182 }
5183
5184 if (dynobj == NULL)
5185 {
5186 sgot = NULL;
5187 g = NULL;
5188 }
5189 else
5190 {
f4416af6 5191 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5192 if (sgot == NULL)
5193 g = NULL;
5194 else
5195 {
f0abc2a1
AM
5196 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5197 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5198 BFD_ASSERT (g != NULL);
5199 }
5200 }
5201
5202 sreloc = NULL;
5203 bed = get_elf_backend_data (abfd);
5204 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5205 for (rel = relocs; rel < rel_end; ++rel)
5206 {
5207 unsigned long r_symndx;
5208 unsigned int r_type;
5209 struct elf_link_hash_entry *h;
5210
5211 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5212 r_type = ELF_R_TYPE (abfd, rel->r_info);
5213
5214 if (r_symndx < extsymoff)
5215 h = NULL;
5216 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5217 {
5218 (*_bfd_error_handler)
d003868e
AM
5219 (_("%B: Malformed reloc detected for section %s"),
5220 abfd, name);
b49e97c9 5221 bfd_set_error (bfd_error_bad_value);
b34976b6 5222 return FALSE;
b49e97c9
TS
5223 }
5224 else
5225 {
5226 h = sym_hashes[r_symndx - extsymoff];
5227
5228 /* This may be an indirect symbol created because of a version. */
5229 if (h != NULL)
5230 {
5231 while (h->root.type == bfd_link_hash_indirect)
5232 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5233 }
5234 }
5235
5236 /* Some relocs require a global offset table. */
5237 if (dynobj == NULL || sgot == NULL)
5238 {
5239 switch (r_type)
5240 {
5241 case R_MIPS_GOT16:
5242 case R_MIPS_CALL16:
5243 case R_MIPS_CALL_HI16:
5244 case R_MIPS_CALL_LO16:
5245 case R_MIPS_GOT_HI16:
5246 case R_MIPS_GOT_LO16:
5247 case R_MIPS_GOT_PAGE:
5248 case R_MIPS_GOT_OFST:
5249 case R_MIPS_GOT_DISP:
5250 if (dynobj == NULL)
5251 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5252 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5253 return FALSE;
b49e97c9
TS
5254 g = mips_elf_got_info (dynobj, &sgot);
5255 break;
5256
5257 case R_MIPS_32:
5258 case R_MIPS_REL32:
5259 case R_MIPS_64:
5260 if (dynobj == NULL
5261 && (info->shared || h != NULL)
5262 && (sec->flags & SEC_ALLOC) != 0)
5263 elf_hash_table (info)->dynobj = dynobj = abfd;
5264 break;
5265
5266 default:
5267 break;
5268 }
5269 }
5270
5271 if (!h && (r_type == R_MIPS_CALL_LO16
5272 || r_type == R_MIPS_GOT_LO16
5273 || r_type == R_MIPS_GOT_DISP))
5274 {
5275 /* We may need a local GOT entry for this relocation. We
5276 don't count R_MIPS_GOT_PAGE because we can estimate the
5277 maximum number of pages needed by looking at the size of
5278 the segment. Similar comments apply to R_MIPS_GOT16 and
5279 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5280 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 5281 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6
AO
5282 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5283 rel->r_addend, g))
5284 return FALSE;
b49e97c9
TS
5285 }
5286
5287 switch (r_type)
5288 {
5289 case R_MIPS_CALL16:
5290 if (h == NULL)
5291 {
5292 (*_bfd_error_handler)
d003868e
AM
5293 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
5294 abfd, (unsigned long) rel->r_offset);
b49e97c9 5295 bfd_set_error (bfd_error_bad_value);
b34976b6 5296 return FALSE;
b49e97c9
TS
5297 }
5298 /* Fall through. */
5299
5300 case R_MIPS_CALL_HI16:
5301 case R_MIPS_CALL_LO16:
5302 if (h != NULL)
5303 {
5304 /* This symbol requires a global offset table entry. */
f4416af6 5305 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5306 return FALSE;
b49e97c9
TS
5307
5308 /* We need a stub, not a plt entry for the undefined
5309 function. But we record it as if it needs plt. See
c152c796 5310 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 5311 h->needs_plt = 1;
b49e97c9
TS
5312 h->type = STT_FUNC;
5313 }
5314 break;
5315
0fdc1bf1
AO
5316 case R_MIPS_GOT_PAGE:
5317 /* If this is a global, overridable symbol, GOT_PAGE will
5318 decay to GOT_DISP, so we'll need a GOT entry for it. */
5319 if (h == NULL)
5320 break;
5321 else
5322 {
5323 struct mips_elf_link_hash_entry *hmips =
5324 (struct mips_elf_link_hash_entry *) h;
143d77c5 5325
0fdc1bf1
AO
5326 while (hmips->root.root.type == bfd_link_hash_indirect
5327 || hmips->root.root.type == bfd_link_hash_warning)
5328 hmips = (struct mips_elf_link_hash_entry *)
5329 hmips->root.root.u.i.link;
143d77c5 5330
f5385ebf 5331 if (hmips->root.def_regular
0fdc1bf1 5332 && ! (info->shared && ! info->symbolic
f5385ebf 5333 && ! hmips->root.forced_local))
0fdc1bf1
AO
5334 break;
5335 }
5336 /* Fall through. */
5337
b49e97c9
TS
5338 case R_MIPS_GOT16:
5339 case R_MIPS_GOT_HI16:
5340 case R_MIPS_GOT_LO16:
5341 case R_MIPS_GOT_DISP:
5342 /* This symbol requires a global offset table entry. */
f4416af6 5343 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5344 return FALSE;
b49e97c9
TS
5345 break;
5346
5347 case R_MIPS_32:
5348 case R_MIPS_REL32:
5349 case R_MIPS_64:
5350 if ((info->shared || h != NULL)
5351 && (sec->flags & SEC_ALLOC) != 0)
5352 {
5353 if (sreloc == NULL)
5354 {
f4416af6 5355 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 5356 if (sreloc == NULL)
f4416af6 5357 return FALSE;
b49e97c9
TS
5358 }
5359#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5360 if (info->shared)
5361 {
5362 /* When creating a shared object, we must copy these
5363 reloc types into the output file as R_MIPS_REL32
5364 relocs. We make room for this reloc in the
5365 .rel.dyn reloc section. */
5366 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5367 if ((sec->flags & MIPS_READONLY_SECTION)
5368 == MIPS_READONLY_SECTION)
5369 /* We tell the dynamic linker that there are
5370 relocations against the text segment. */
5371 info->flags |= DF_TEXTREL;
5372 }
5373 else
5374 {
5375 struct mips_elf_link_hash_entry *hmips;
5376
5377 /* We only need to copy this reloc if the symbol is
5378 defined in a dynamic object. */
5379 hmips = (struct mips_elf_link_hash_entry *) h;
5380 ++hmips->possibly_dynamic_relocs;
5381 if ((sec->flags & MIPS_READONLY_SECTION)
5382 == MIPS_READONLY_SECTION)
5383 /* We need it to tell the dynamic linker if there
5384 are relocations against the text segment. */
b34976b6 5385 hmips->readonly_reloc = TRUE;
b49e97c9
TS
5386 }
5387
5388 /* Even though we don't directly need a GOT entry for
5389 this symbol, a symbol must have a dynamic symbol
5390 table index greater that DT_MIPS_GOTSYM if there are
5391 dynamic relocations against it. */
f4416af6
AO
5392 if (h != NULL)
5393 {
5394 if (dynobj == NULL)
5395 elf_hash_table (info)->dynobj = dynobj = abfd;
5396 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5397 return FALSE;
5398 g = mips_elf_got_info (dynobj, &sgot);
5399 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5400 return FALSE;
5401 }
b49e97c9
TS
5402 }
5403
5404 if (SGI_COMPAT (abfd))
5405 mips_elf_hash_table (info)->compact_rel_size +=
5406 sizeof (Elf32_External_crinfo);
5407 break;
5408
5409 case R_MIPS_26:
5410 case R_MIPS_GPREL16:
5411 case R_MIPS_LITERAL:
5412 case R_MIPS_GPREL32:
5413 if (SGI_COMPAT (abfd))
5414 mips_elf_hash_table (info)->compact_rel_size +=
5415 sizeof (Elf32_External_crinfo);
5416 break;
5417
5418 /* This relocation describes the C++ object vtable hierarchy.
5419 Reconstruct it for later use during GC. */
5420 case R_MIPS_GNU_VTINHERIT:
c152c796 5421 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 5422 return FALSE;
b49e97c9
TS
5423 break;
5424
5425 /* This relocation describes which C++ vtable entries are actually
5426 used. Record for later use during GC. */
5427 case R_MIPS_GNU_VTENTRY:
c152c796 5428 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 5429 return FALSE;
b49e97c9
TS
5430 break;
5431
5432 default:
5433 break;
5434 }
5435
5436 /* We must not create a stub for a symbol that has relocations
5437 related to taking the function's address. */
5438 switch (r_type)
5439 {
5440 default:
5441 if (h != NULL)
5442 {
5443 struct mips_elf_link_hash_entry *mh;
5444
5445 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5446 mh->no_fn_stub = TRUE;
b49e97c9
TS
5447 }
5448 break;
5449 case R_MIPS_CALL16:
5450 case R_MIPS_CALL_HI16:
5451 case R_MIPS_CALL_LO16:
2b86c02e 5452 case R_MIPS_JALR:
b49e97c9
TS
5453 break;
5454 }
5455
5456 /* If this reloc is not a 16 bit call, and it has a global
5457 symbol, then we will need the fn_stub if there is one.
5458 References from a stub section do not count. */
5459 if (h != NULL
5460 && r_type != R_MIPS16_26
5461 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5462 sizeof FN_STUB - 1) != 0
5463 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5464 sizeof CALL_STUB - 1) != 0
5465 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5466 sizeof CALL_FP_STUB - 1) != 0)
5467 {
5468 struct mips_elf_link_hash_entry *mh;
5469
5470 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5471 mh->need_fn_stub = TRUE;
b49e97c9
TS
5472 }
5473 }
5474
b34976b6 5475 return TRUE;
b49e97c9
TS
5476}
5477\f
d0647110 5478bfd_boolean
9719ad41
RS
5479_bfd_mips_relax_section (bfd *abfd, asection *sec,
5480 struct bfd_link_info *link_info,
5481 bfd_boolean *again)
d0647110
AO
5482{
5483 Elf_Internal_Rela *internal_relocs;
5484 Elf_Internal_Rela *irel, *irelend;
5485 Elf_Internal_Shdr *symtab_hdr;
5486 bfd_byte *contents = NULL;
d0647110
AO
5487 size_t extsymoff;
5488 bfd_boolean changed_contents = FALSE;
5489 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5490 Elf_Internal_Sym *isymbuf = NULL;
5491
5492 /* We are not currently changing any sizes, so only one pass. */
5493 *again = FALSE;
5494
1049f94e 5495 if (link_info->relocatable)
d0647110
AO
5496 return TRUE;
5497
9719ad41 5498 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 5499 link_info->keep_memory);
d0647110
AO
5500 if (internal_relocs == NULL)
5501 return TRUE;
5502
5503 irelend = internal_relocs + sec->reloc_count
5504 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5505 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5506 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5507
5508 for (irel = internal_relocs; irel < irelend; irel++)
5509 {
5510 bfd_vma symval;
5511 bfd_signed_vma sym_offset;
5512 unsigned int r_type;
5513 unsigned long r_symndx;
5514 asection *sym_sec;
5515 unsigned long instruction;
5516
5517 /* Turn jalr into bgezal, and jr into beq, if they're marked
5518 with a JALR relocation, that indicate where they jump to.
5519 This saves some pipeline bubbles. */
5520 r_type = ELF_R_TYPE (abfd, irel->r_info);
5521 if (r_type != R_MIPS_JALR)
5522 continue;
5523
5524 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5525 /* Compute the address of the jump target. */
5526 if (r_symndx >= extsymoff)
5527 {
5528 struct mips_elf_link_hash_entry *h
5529 = ((struct mips_elf_link_hash_entry *)
5530 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5531
5532 while (h->root.root.type == bfd_link_hash_indirect
5533 || h->root.root.type == bfd_link_hash_warning)
5534 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 5535
d0647110
AO
5536 /* If a symbol is undefined, or if it may be overridden,
5537 skip it. */
5538 if (! ((h->root.root.type == bfd_link_hash_defined
5539 || h->root.root.type == bfd_link_hash_defweak)
5540 && h->root.root.u.def.section)
5541 || (link_info->shared && ! link_info->symbolic
f5385ebf 5542 && !h->root.forced_local))
d0647110
AO
5543 continue;
5544
5545 sym_sec = h->root.root.u.def.section;
5546 if (sym_sec->output_section)
5547 symval = (h->root.root.u.def.value
5548 + sym_sec->output_section->vma
5549 + sym_sec->output_offset);
5550 else
5551 symval = h->root.root.u.def.value;
5552 }
5553 else
5554 {
5555 Elf_Internal_Sym *isym;
5556
5557 /* Read this BFD's symbols if we haven't done so already. */
5558 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5559 {
5560 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5561 if (isymbuf == NULL)
5562 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5563 symtab_hdr->sh_info, 0,
5564 NULL, NULL, NULL);
5565 if (isymbuf == NULL)
5566 goto relax_return;
5567 }
5568
5569 isym = isymbuf + r_symndx;
5570 if (isym->st_shndx == SHN_UNDEF)
5571 continue;
5572 else if (isym->st_shndx == SHN_ABS)
5573 sym_sec = bfd_abs_section_ptr;
5574 else if (isym->st_shndx == SHN_COMMON)
5575 sym_sec = bfd_com_section_ptr;
5576 else
5577 sym_sec
5578 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5579 symval = isym->st_value
5580 + sym_sec->output_section->vma
5581 + sym_sec->output_offset;
5582 }
5583
5584 /* Compute branch offset, from delay slot of the jump to the
5585 branch target. */
5586 sym_offset = (symval + irel->r_addend)
5587 - (sec_start + irel->r_offset + 4);
5588
5589 /* Branch offset must be properly aligned. */
5590 if ((sym_offset & 3) != 0)
5591 continue;
5592
5593 sym_offset >>= 2;
5594
5595 /* Check that it's in range. */
5596 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5597 continue;
143d77c5 5598
d0647110
AO
5599 /* Get the section contents if we haven't done so already. */
5600 if (contents == NULL)
5601 {
5602 /* Get cached copy if it exists. */
5603 if (elf_section_data (sec)->this_hdr.contents != NULL)
5604 contents = elf_section_data (sec)->this_hdr.contents;
5605 else
5606 {
eea6121a 5607 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
5608 goto relax_return;
5609 }
5610 }
5611
5612 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5613
5614 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5615 if ((instruction & 0xfc1fffff) == 0x0000f809)
5616 instruction = 0x04110000;
5617 /* If it was jr <reg>, turn it into b <target>. */
5618 else if ((instruction & 0xfc1fffff) == 0x00000008)
5619 instruction = 0x10000000;
5620 else
5621 continue;
5622
5623 instruction |= (sym_offset & 0xffff);
5624 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5625 changed_contents = TRUE;
5626 }
5627
5628 if (contents != NULL
5629 && elf_section_data (sec)->this_hdr.contents != contents)
5630 {
5631 if (!changed_contents && !link_info->keep_memory)
5632 free (contents);
5633 else
5634 {
5635 /* Cache the section contents for elf_link_input_bfd. */
5636 elf_section_data (sec)->this_hdr.contents = contents;
5637 }
5638 }
5639 return TRUE;
5640
143d77c5 5641 relax_return:
eea6121a
AM
5642 if (contents != NULL
5643 && elf_section_data (sec)->this_hdr.contents != contents)
5644 free (contents);
d0647110
AO
5645 return FALSE;
5646}
5647\f
b49e97c9
TS
5648/* Adjust a symbol defined by a dynamic object and referenced by a
5649 regular object. The current definition is in some section of the
5650 dynamic object, but we're not including those sections. We have to
5651 change the definition to something the rest of the link can
5652 understand. */
5653
b34976b6 5654bfd_boolean
9719ad41
RS
5655_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5656 struct elf_link_hash_entry *h)
b49e97c9
TS
5657{
5658 bfd *dynobj;
5659 struct mips_elf_link_hash_entry *hmips;
5660 asection *s;
5661
5662 dynobj = elf_hash_table (info)->dynobj;
5663
5664 /* Make sure we know what is going on here. */
5665 BFD_ASSERT (dynobj != NULL
f5385ebf 5666 && (h->needs_plt
f6e332e6 5667 || h->u.weakdef != NULL
f5385ebf
AM
5668 || (h->def_dynamic
5669 && h->ref_regular
5670 && !h->def_regular)));
b49e97c9
TS
5671
5672 /* If this symbol is defined in a dynamic object, we need to copy
5673 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5674 file. */
5675 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 5676 if (! info->relocatable
b49e97c9
TS
5677 && hmips->possibly_dynamic_relocs != 0
5678 && (h->root.type == bfd_link_hash_defweak
f5385ebf 5679 || !h->def_regular))
b49e97c9
TS
5680 {
5681 mips_elf_allocate_dynamic_relocations (dynobj,
5682 hmips->possibly_dynamic_relocs);
5683 if (hmips->readonly_reloc)
5684 /* We tell the dynamic linker that there are relocations
5685 against the text segment. */
5686 info->flags |= DF_TEXTREL;
5687 }
5688
5689 /* For a function, create a stub, if allowed. */
5690 if (! hmips->no_fn_stub
f5385ebf 5691 && h->needs_plt)
b49e97c9
TS
5692 {
5693 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 5694 return TRUE;
b49e97c9
TS
5695
5696 /* If this symbol is not defined in a regular file, then set
5697 the symbol to the stub location. This is required to make
5698 function pointers compare as equal between the normal
5699 executable and the shared library. */
f5385ebf 5700 if (!h->def_regular)
b49e97c9
TS
5701 {
5702 /* We need .stub section. */
5703 s = bfd_get_section_by_name (dynobj,
5704 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5705 BFD_ASSERT (s != NULL);
5706
5707 h->root.u.def.section = s;
eea6121a 5708 h->root.u.def.value = s->size;
b49e97c9
TS
5709
5710 /* XXX Write this stub address somewhere. */
eea6121a 5711 h->plt.offset = s->size;
b49e97c9
TS
5712
5713 /* Make room for this stub code. */
eea6121a 5714 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
5715
5716 /* The last half word of the stub will be filled with the index
5717 of this symbol in .dynsym section. */
b34976b6 5718 return TRUE;
b49e97c9
TS
5719 }
5720 }
5721 else if ((h->type == STT_FUNC)
f5385ebf 5722 && !h->needs_plt)
b49e97c9
TS
5723 {
5724 /* This will set the entry for this symbol in the GOT to 0, and
5725 the dynamic linker will take care of this. */
5726 h->root.u.def.value = 0;
b34976b6 5727 return TRUE;
b49e97c9
TS
5728 }
5729
5730 /* If this is a weak symbol, and there is a real definition, the
5731 processor independent code will have arranged for us to see the
5732 real definition first, and we can just use the same value. */
f6e332e6 5733 if (h->u.weakdef != NULL)
b49e97c9 5734 {
f6e332e6
AM
5735 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5736 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5737 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5738 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 5739 return TRUE;
b49e97c9
TS
5740 }
5741
5742 /* This is a reference to a symbol defined by a dynamic object which
5743 is not a function. */
5744
b34976b6 5745 return TRUE;
b49e97c9
TS
5746}
5747\f
5748/* This function is called after all the input files have been read,
5749 and the input sections have been assigned to output sections. We
5750 check for any mips16 stub sections that we can discard. */
5751
b34976b6 5752bfd_boolean
9719ad41
RS
5753_bfd_mips_elf_always_size_sections (bfd *output_bfd,
5754 struct bfd_link_info *info)
b49e97c9
TS
5755{
5756 asection *ri;
5757
f4416af6
AO
5758 bfd *dynobj;
5759 asection *s;
5760 struct mips_got_info *g;
5761 int i;
5762 bfd_size_type loadable_size = 0;
5763 bfd_size_type local_gotno;
5764 bfd *sub;
5765
b49e97c9
TS
5766 /* The .reginfo section has a fixed size. */
5767 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5768 if (ri != NULL)
9719ad41 5769 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 5770
1049f94e 5771 if (! (info->relocatable
f4416af6
AO
5772 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5773 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 5774 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
5775
5776 dynobj = elf_hash_table (info)->dynobj;
5777 if (dynobj == NULL)
5778 /* Relocatable links don't have it. */
5779 return TRUE;
143d77c5 5780
f4416af6
AO
5781 g = mips_elf_got_info (dynobj, &s);
5782 if (s == NULL)
b34976b6 5783 return TRUE;
b49e97c9 5784
f4416af6
AO
5785 /* Calculate the total loadable size of the output. That
5786 will give us the maximum number of GOT_PAGE entries
5787 required. */
5788 for (sub = info->input_bfds; sub; sub = sub->link_next)
5789 {
5790 asection *subsection;
5791
5792 for (subsection = sub->sections;
5793 subsection;
5794 subsection = subsection->next)
5795 {
5796 if ((subsection->flags & SEC_ALLOC) == 0)
5797 continue;
eea6121a 5798 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
5799 &~ (bfd_size_type) 0xf);
5800 }
5801 }
5802
5803 /* There has to be a global GOT entry for every symbol with
5804 a dynamic symbol table index of DT_MIPS_GOTSYM or
5805 higher. Therefore, it make sense to put those symbols
5806 that need GOT entries at the end of the symbol table. We
5807 do that here. */
5808 if (! mips_elf_sort_hash_table (info, 1))
5809 return FALSE;
5810
5811 if (g->global_gotsym != NULL)
5812 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5813 else
5814 /* If there are no global symbols, or none requiring
5815 relocations, then GLOBAL_GOTSYM will be NULL. */
5816 i = 0;
5817
5818 /* In the worst case, we'll get one stub per dynamic symbol, plus
5819 one to account for the dummy entry at the end required by IRIX
5820 rld. */
5821 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5822
5823 /* Assume there are two loadable segments consisting of
5824 contiguous sections. Is 5 enough? */
5825 local_gotno = (loadable_size >> 16) + 5;
5826
5827 g->local_gotno += local_gotno;
eea6121a 5828 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
5829
5830 g->global_gotno = i;
eea6121a 5831 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 5832
eea6121a 5833 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
f4416af6
AO
5834 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5835 return FALSE;
b49e97c9 5836
b34976b6 5837 return TRUE;
b49e97c9
TS
5838}
5839
5840/* Set the sizes of the dynamic sections. */
5841
b34976b6 5842bfd_boolean
9719ad41
RS
5843_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5844 struct bfd_link_info *info)
b49e97c9
TS
5845{
5846 bfd *dynobj;
5847 asection *s;
b34976b6 5848 bfd_boolean reltext;
b49e97c9
TS
5849
5850 dynobj = elf_hash_table (info)->dynobj;
5851 BFD_ASSERT (dynobj != NULL);
5852
5853 if (elf_hash_table (info)->dynamic_sections_created)
5854 {
5855 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 5856 if (info->executable)
b49e97c9
TS
5857 {
5858 s = bfd_get_section_by_name (dynobj, ".interp");
5859 BFD_ASSERT (s != NULL);
eea6121a 5860 s->size
b49e97c9
TS
5861 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5862 s->contents
5863 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5864 }
5865 }
5866
5867 /* The check_relocs and adjust_dynamic_symbol entry points have
5868 determined the sizes of the various dynamic sections. Allocate
5869 memory for them. */
b34976b6 5870 reltext = FALSE;
b49e97c9
TS
5871 for (s = dynobj->sections; s != NULL; s = s->next)
5872 {
5873 const char *name;
b34976b6 5874 bfd_boolean strip;
b49e97c9
TS
5875
5876 /* It's OK to base decisions on the section name, because none
5877 of the dynobj section names depend upon the input files. */
5878 name = bfd_get_section_name (dynobj, s);
5879
5880 if ((s->flags & SEC_LINKER_CREATED) == 0)
5881 continue;
5882
b34976b6 5883 strip = FALSE;
b49e97c9
TS
5884
5885 if (strncmp (name, ".rel", 4) == 0)
5886 {
eea6121a 5887 if (s->size == 0)
b49e97c9
TS
5888 {
5889 /* We only strip the section if the output section name
5890 has the same name. Otherwise, there might be several
5891 input sections for this output section. FIXME: This
5892 code is probably not needed these days anyhow, since
5893 the linker now does not create empty output sections. */
5894 if (s->output_section != NULL
5895 && strcmp (name,
5896 bfd_get_section_name (s->output_section->owner,
5897 s->output_section)) == 0)
b34976b6 5898 strip = TRUE;
b49e97c9
TS
5899 }
5900 else
5901 {
5902 const char *outname;
5903 asection *target;
5904
5905 /* If this relocation section applies to a read only
5906 section, then we probably need a DT_TEXTREL entry.
5907 If the relocation section is .rel.dyn, we always
5908 assert a DT_TEXTREL entry rather than testing whether
5909 there exists a relocation to a read only section or
5910 not. */
5911 outname = bfd_get_section_name (output_bfd,
5912 s->output_section);
5913 target = bfd_get_section_by_name (output_bfd, outname + 4);
5914 if ((target != NULL
5915 && (target->flags & SEC_READONLY) != 0
5916 && (target->flags & SEC_ALLOC) != 0)
5917 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 5918 reltext = TRUE;
b49e97c9
TS
5919
5920 /* We use the reloc_count field as a counter if we need
5921 to copy relocs into the output file. */
5922 if (strcmp (name, ".rel.dyn") != 0)
5923 s->reloc_count = 0;
f4416af6
AO
5924
5925 /* If combreloc is enabled, elf_link_sort_relocs() will
5926 sort relocations, but in a different way than we do,
5927 and before we're done creating relocations. Also, it
5928 will move them around between input sections'
5929 relocation's contents, so our sorting would be
5930 broken, so don't let it run. */
5931 info->combreloc = 0;
b49e97c9
TS
5932 }
5933 }
5934 else if (strncmp (name, ".got", 4) == 0)
5935 {
f4416af6
AO
5936 /* _bfd_mips_elf_always_size_sections() has already done
5937 most of the work, but some symbols may have been mapped
5938 to versions that we must now resolve in the got_entries
5939 hash tables. */
5940 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5941 struct mips_got_info *g = gg;
5942 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5943 unsigned int needed_relocs = 0;
143d77c5 5944
f4416af6 5945 if (gg->next)
b49e97c9 5946 {
f4416af6
AO
5947 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5948 set_got_offset_arg.info = info;
b49e97c9 5949
f4416af6
AO
5950 mips_elf_resolve_final_got_entries (gg);
5951 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 5952 {
f4416af6
AO
5953 unsigned int save_assign;
5954
5955 mips_elf_resolve_final_got_entries (g);
5956
5957 /* Assign offsets to global GOT entries. */
5958 save_assign = g->assigned_gotno;
5959 g->assigned_gotno = g->local_gotno;
5960 set_got_offset_arg.g = g;
5961 set_got_offset_arg.needed_relocs = 0;
5962 htab_traverse (g->got_entries,
5963 mips_elf_set_global_got_offset,
5964 &set_got_offset_arg);
5965 needed_relocs += set_got_offset_arg.needed_relocs;
5966 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5967 <= g->global_gotno);
5968
5969 g->assigned_gotno = save_assign;
5970 if (info->shared)
5971 {
5972 needed_relocs += g->local_gotno - g->assigned_gotno;
5973 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5974 + g->next->global_gotno
5975 + MIPS_RESERVED_GOTNO);
5976 }
b49e97c9 5977 }
b49e97c9 5978
f4416af6
AO
5979 if (needed_relocs)
5980 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5981 }
b49e97c9
TS
5982 }
5983 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5984 {
8dc1a139 5985 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9 5986 of .text section. So put a dummy. XXX */
eea6121a 5987 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
5988 }
5989 else if (! info->shared
5990 && ! mips_elf_hash_table (info)->use_rld_obj_head
5991 && strncmp (name, ".rld_map", 8) == 0)
5992 {
5993 /* We add a room for __rld_map. It will be filled in by the
5994 rtld to contain a pointer to the _r_debug structure. */
eea6121a 5995 s->size += 4;
b49e97c9
TS
5996 }
5997 else if (SGI_COMPAT (output_bfd)
5998 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 5999 s->size += mips_elf_hash_table (info)->compact_rel_size;
b49e97c9
TS
6000 else if (strncmp (name, ".init", 5) != 0)
6001 {
6002 /* It's not one of our sections, so don't allocate space. */
6003 continue;
6004 }
6005
6006 if (strip)
6007 {
6008 _bfd_strip_section_from_output (info, s);
6009 continue;
6010 }
6011
6012 /* Allocate memory for the section contents. */
eea6121a
AM
6013 s->contents = bfd_zalloc (dynobj, s->size);
6014 if (s->contents == NULL && s->size != 0)
b49e97c9
TS
6015 {
6016 bfd_set_error (bfd_error_no_memory);
b34976b6 6017 return FALSE;
b49e97c9
TS
6018 }
6019 }
6020
6021 if (elf_hash_table (info)->dynamic_sections_created)
6022 {
6023 /* Add some entries to the .dynamic section. We fill in the
6024 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6025 must add the entries now so that we get the correct size for
6026 the .dynamic section. The DT_DEBUG entry is filled in by the
6027 dynamic linker and used by the debugger. */
6028 if (! info->shared)
6029 {
6030 /* SGI object has the equivalence of DT_DEBUG in the
6031 DT_MIPS_RLD_MAP entry. */
6032 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6033 return FALSE;
b49e97c9
TS
6034 if (!SGI_COMPAT (output_bfd))
6035 {
6036 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6037 return FALSE;
b49e97c9
TS
6038 }
6039 }
6040 else
6041 {
6042 /* Shared libraries on traditional mips have DT_DEBUG. */
6043 if (!SGI_COMPAT (output_bfd))
6044 {
6045 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6046 return FALSE;
b49e97c9
TS
6047 }
6048 }
6049
6050 if (reltext && SGI_COMPAT (output_bfd))
6051 info->flags |= DF_TEXTREL;
6052
6053 if ((info->flags & DF_TEXTREL) != 0)
6054 {
6055 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6056 return FALSE;
b49e97c9
TS
6057 }
6058
6059 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6060 return FALSE;
b49e97c9 6061
f4416af6 6062 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6063 {
6064 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6065 return FALSE;
b49e97c9
TS
6066
6067 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6068 return FALSE;
b49e97c9
TS
6069
6070 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6071 return FALSE;
b49e97c9
TS
6072 }
6073
b49e97c9 6074 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6075 return FALSE;
b49e97c9
TS
6076
6077 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6078 return FALSE;
b49e97c9
TS
6079
6080#if 0
6081 /* Time stamps in executable files are a bad idea. */
6082 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
b34976b6 6083 return FALSE;
b49e97c9
TS
6084#endif
6085
6086#if 0 /* FIXME */
6087 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
b34976b6 6088 return FALSE;
b49e97c9
TS
6089#endif
6090
6091#if 0 /* FIXME */
6092 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
b34976b6 6093 return FALSE;
b49e97c9
TS
6094#endif
6095
6096 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6097 return FALSE;
b49e97c9
TS
6098
6099 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6100 return FALSE;
b49e97c9
TS
6101
6102 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6103 return FALSE;
b49e97c9
TS
6104
6105 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6106 return FALSE;
b49e97c9
TS
6107
6108 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6109 return FALSE;
b49e97c9
TS
6110
6111 if (IRIX_COMPAT (dynobj) == ict_irix5
6112 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6113 return FALSE;
b49e97c9
TS
6114
6115 if (IRIX_COMPAT (dynobj) == ict_irix6
6116 && (bfd_get_section_by_name
6117 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6118 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6119 return FALSE;
b49e97c9
TS
6120 }
6121
b34976b6 6122 return TRUE;
b49e97c9
TS
6123}
6124\f
6125/* Relocate a MIPS ELF section. */
6126
b34976b6 6127bfd_boolean
9719ad41
RS
6128_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6129 bfd *input_bfd, asection *input_section,
6130 bfd_byte *contents, Elf_Internal_Rela *relocs,
6131 Elf_Internal_Sym *local_syms,
6132 asection **local_sections)
b49e97c9
TS
6133{
6134 Elf_Internal_Rela *rel;
6135 const Elf_Internal_Rela *relend;
6136 bfd_vma addend = 0;
b34976b6 6137 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 6138 const struct elf_backend_data *bed;
b49e97c9
TS
6139
6140 bed = get_elf_backend_data (output_bfd);
6141 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6142 for (rel = relocs; rel < relend; ++rel)
6143 {
6144 const char *name;
6145 bfd_vma value;
6146 reloc_howto_type *howto;
b34976b6
AM
6147 bfd_boolean require_jalx;
6148 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6149 REL relocation. */
b34976b6 6150 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 6151 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 6152 const char *msg;
b49e97c9
TS
6153
6154 /* Find the relocation howto for this relocation. */
4a14403c 6155 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6156 {
6157 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6158 64-bit code, but make sure all their addresses are in the
6159 lowermost or uppermost 32-bit section of the 64-bit address
6160 space. Thus, when they use an R_MIPS_64 they mean what is
6161 usually meant by R_MIPS_32, with the exception that the
6162 stored value is sign-extended to 64 bits. */
b34976b6 6163 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6164
6165 /* On big-endian systems, we need to lie about the position
6166 of the reloc. */
6167 if (bfd_big_endian (input_bfd))
6168 rel->r_offset += 4;
6169 }
6170 else
6171 /* NewABI defaults to RELA relocations. */
6172 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6173 NEWABI_P (input_bfd)
6174 && (MIPS_RELOC_RELA_P
6175 (input_bfd, input_section,
6176 rel - relocs)));
b49e97c9
TS
6177
6178 if (!use_saved_addend_p)
6179 {
6180 Elf_Internal_Shdr *rel_hdr;
6181
6182 /* If these relocations were originally of the REL variety,
6183 we must pull the addend out of the field that will be
6184 relocated. Otherwise, we simply use the contents of the
6185 RELA relocation. To determine which flavor or relocation
6186 this is, we depend on the fact that the INPUT_SECTION's
6187 REL_HDR is read before its REL_HDR2. */
6188 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6189 if ((size_t) (rel - relocs)
6190 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6191 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6192 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6193 {
6194 /* Note that this is a REL relocation. */
b34976b6 6195 rela_relocation_p = FALSE;
b49e97c9
TS
6196
6197 /* Get the addend, which is stored in the input file. */
6198 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6199 contents);
6200 addend &= howto->src_mask;
6201
6202 /* For some kinds of relocations, the ADDEND is a
6203 combination of the addend stored in two different
6204 relocations. */
6205 if (r_type == R_MIPS_HI16
b49e97c9
TS
6206 || (r_type == R_MIPS_GOT16
6207 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 6208 local_sections, FALSE)))
b49e97c9
TS
6209 {
6210 bfd_vma l;
6211 const Elf_Internal_Rela *lo16_relocation;
6212 reloc_howto_type *lo16_howto;
b49e97c9
TS
6213
6214 /* The combined value is the sum of the HI16 addend,
6215 left-shifted by sixteen bits, and the LO16
6216 addend, sign extended. (Usually, the code does
6217 a `lui' of the HI16 value, and then an `addiu' of
6218 the LO16 value.)
6219
4030e8f6
CD
6220 Scan ahead to find a matching LO16 relocation.
6221
6222 According to the MIPS ELF ABI, the R_MIPS_LO16
6223 relocation must be immediately following.
6224 However, for the IRIX6 ABI, the next relocation
6225 may be a composed relocation consisting of
6226 several relocations for the same address. In
6227 that case, the R_MIPS_LO16 relocation may occur
6228 as one of these. We permit a similar extension
6229 in general, as that is useful for GCC. */
6230 lo16_relocation = mips_elf_next_relocation (input_bfd,
6231 R_MIPS_LO16,
b49e97c9
TS
6232 rel, relend);
6233 if (lo16_relocation == NULL)
b34976b6 6234 return FALSE;
b49e97c9
TS
6235
6236 /* Obtain the addend kept there. */
4030e8f6
CD
6237 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6238 R_MIPS_LO16, FALSE);
b49e97c9
TS
6239 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6240 input_bfd, contents);
6241 l &= lo16_howto->src_mask;
5a659663 6242 l <<= lo16_howto->rightshift;
a7ebbfdf 6243 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
6244
6245 addend <<= 16;
6246
6247 /* Compute the combined addend. */
6248 addend += l;
b49e97c9
TS
6249 }
6250 else if (r_type == R_MIPS16_GPREL)
6251 {
6252 /* The addend is scrambled in the object file. See
6253 mips_elf_perform_relocation for details on the
6254 format. */
6255 addend = (((addend & 0x1f0000) >> 5)
6256 | ((addend & 0x7e00000) >> 16)
6257 | (addend & 0x1f));
6258 }
30ac9238
RS
6259 else
6260 addend <<= howto->rightshift;
b49e97c9
TS
6261 }
6262 else
6263 addend = rel->r_addend;
6264 }
6265
1049f94e 6266 if (info->relocatable)
b49e97c9
TS
6267 {
6268 Elf_Internal_Sym *sym;
6269 unsigned long r_symndx;
6270
4a14403c 6271 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
6272 && bfd_big_endian (input_bfd))
6273 rel->r_offset -= 4;
6274
6275 /* Since we're just relocating, all we need to do is copy
6276 the relocations back out to the object file, unless
6277 they're against a section symbol, in which case we need
6278 to adjust by the section offset, or unless they're GP
6279 relative in which case we need to adjust by the amount
1049f94e 6280 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
6281
6282 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 6283 FALSE))
b49e97c9
TS
6284 /* There's nothing to do for non-local relocations. */
6285 continue;
6286
6287 if (r_type == R_MIPS16_GPREL
6288 || r_type == R_MIPS_GPREL16
6289 || r_type == R_MIPS_GPREL32
6290 || r_type == R_MIPS_LITERAL)
6291 addend -= (_bfd_get_gp_value (output_bfd)
6292 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
6293
6294 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6295 sym = local_syms + r_symndx;
6296 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6297 /* Adjust the addend appropriately. */
6298 addend += local_sections[r_symndx]->output_offset;
6299
30ac9238
RS
6300 if (rela_relocation_p)
6301 /* If this is a RELA relocation, just update the addend. */
6302 rel->r_addend = addend;
6303 else
5a659663 6304 {
30ac9238 6305 if (r_type == R_MIPS_HI16
4030e8f6 6306 || r_type == R_MIPS_GOT16)
5a659663
TS
6307 addend = mips_elf_high (addend);
6308 else if (r_type == R_MIPS_HIGHER)
6309 addend = mips_elf_higher (addend);
6310 else if (r_type == R_MIPS_HIGHEST)
6311 addend = mips_elf_highest (addend);
30ac9238
RS
6312 else
6313 addend >>= howto->rightshift;
b49e97c9 6314
30ac9238
RS
6315 /* We use the source mask, rather than the destination
6316 mask because the place to which we are writing will be
6317 source of the addend in the final link. */
b49e97c9
TS
6318 addend &= howto->src_mask;
6319
5a659663 6320 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6321 /* See the comment above about using R_MIPS_64 in the 32-bit
6322 ABI. Here, we need to update the addend. It would be
6323 possible to get away with just using the R_MIPS_32 reloc
6324 but for endianness. */
6325 {
6326 bfd_vma sign_bits;
6327 bfd_vma low_bits;
6328 bfd_vma high_bits;
6329
6330 if (addend & ((bfd_vma) 1 << 31))
6331#ifdef BFD64
6332 sign_bits = ((bfd_vma) 1 << 32) - 1;
6333#else
6334 sign_bits = -1;
6335#endif
6336 else
6337 sign_bits = 0;
6338
6339 /* If we don't know that we have a 64-bit type,
6340 do two separate stores. */
6341 if (bfd_big_endian (input_bfd))
6342 {
6343 /* Store the sign-bits (which are most significant)
6344 first. */
6345 low_bits = sign_bits;
6346 high_bits = addend;
6347 }
6348 else
6349 {
6350 low_bits = addend;
6351 high_bits = sign_bits;
6352 }
6353 bfd_put_32 (input_bfd, low_bits,
6354 contents + rel->r_offset);
6355 bfd_put_32 (input_bfd, high_bits,
6356 contents + rel->r_offset + 4);
6357 continue;
6358 }
6359
6360 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6361 input_bfd, input_section,
b34976b6
AM
6362 contents, FALSE))
6363 return FALSE;
b49e97c9
TS
6364 }
6365
6366 /* Go on to the next relocation. */
6367 continue;
6368 }
6369
6370 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6371 relocations for the same offset. In that case we are
6372 supposed to treat the output of each relocation as the addend
6373 for the next. */
6374 if (rel + 1 < relend
6375 && rel->r_offset == rel[1].r_offset
6376 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 6377 use_saved_addend_p = TRUE;
b49e97c9 6378 else
b34976b6 6379 use_saved_addend_p = FALSE;
b49e97c9
TS
6380
6381 /* Figure out what value we are supposed to relocate. */
6382 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6383 input_section, info, rel,
6384 addend, howto, local_syms,
6385 local_sections, &value,
bce03d3d
AO
6386 &name, &require_jalx,
6387 use_saved_addend_p))
b49e97c9
TS
6388 {
6389 case bfd_reloc_continue:
6390 /* There's nothing to do. */
6391 continue;
6392
6393 case bfd_reloc_undefined:
6394 /* mips_elf_calculate_relocation already called the
6395 undefined_symbol callback. There's no real point in
6396 trying to perform the relocation at this point, so we
6397 just skip ahead to the next relocation. */
6398 continue;
6399
6400 case bfd_reloc_notsupported:
6401 msg = _("internal error: unsupported relocation error");
6402 info->callbacks->warning
6403 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 6404 return FALSE;
b49e97c9
TS
6405
6406 case bfd_reloc_overflow:
6407 if (use_saved_addend_p)
6408 /* Ignore overflow until we reach the last relocation for
6409 a given location. */
6410 ;
6411 else
6412 {
6413 BFD_ASSERT (name != NULL);
6414 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 6415 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 6416 input_bfd, input_section, rel->r_offset)))
b34976b6 6417 return FALSE;
b49e97c9
TS
6418 }
6419 break;
6420
6421 case bfd_reloc_ok:
6422 break;
6423
6424 default:
6425 abort ();
6426 break;
6427 }
6428
6429 /* If we've got another relocation for the address, keep going
6430 until we reach the last one. */
6431 if (use_saved_addend_p)
6432 {
6433 addend = value;
6434 continue;
6435 }
6436
4a14403c 6437 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6438 /* See the comment above about using R_MIPS_64 in the 32-bit
6439 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6440 that calculated the right value. Now, however, we
6441 sign-extend the 32-bit result to 64-bits, and store it as a
6442 64-bit value. We are especially generous here in that we
6443 go to extreme lengths to support this usage on systems with
6444 only a 32-bit VMA. */
6445 {
6446 bfd_vma sign_bits;
6447 bfd_vma low_bits;
6448 bfd_vma high_bits;
6449
6450 if (value & ((bfd_vma) 1 << 31))
6451#ifdef BFD64
6452 sign_bits = ((bfd_vma) 1 << 32) - 1;
6453#else
6454 sign_bits = -1;
6455#endif
6456 else
6457 sign_bits = 0;
6458
6459 /* If we don't know that we have a 64-bit type,
6460 do two separate stores. */
6461 if (bfd_big_endian (input_bfd))
6462 {
6463 /* Undo what we did above. */
6464 rel->r_offset -= 4;
6465 /* Store the sign-bits (which are most significant)
6466 first. */
6467 low_bits = sign_bits;
6468 high_bits = value;
6469 }
6470 else
6471 {
6472 low_bits = value;
6473 high_bits = sign_bits;
6474 }
6475 bfd_put_32 (input_bfd, low_bits,
6476 contents + rel->r_offset);
6477 bfd_put_32 (input_bfd, high_bits,
6478 contents + rel->r_offset + 4);
6479 continue;
6480 }
6481
6482 /* Actually perform the relocation. */
6483 if (! mips_elf_perform_relocation (info, howto, rel, value,
6484 input_bfd, input_section,
6485 contents, require_jalx))
b34976b6 6486 return FALSE;
b49e97c9
TS
6487 }
6488
b34976b6 6489 return TRUE;
b49e97c9
TS
6490}
6491\f
6492/* If NAME is one of the special IRIX6 symbols defined by the linker,
6493 adjust it appropriately now. */
6494
6495static void
9719ad41
RS
6496mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6497 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
6498{
6499 /* The linker script takes care of providing names and values for
6500 these, but we must place them into the right sections. */
6501 static const char* const text_section_symbols[] = {
6502 "_ftext",
6503 "_etext",
6504 "__dso_displacement",
6505 "__elf_header",
6506 "__program_header_table",
6507 NULL
6508 };
6509
6510 static const char* const data_section_symbols[] = {
6511 "_fdata",
6512 "_edata",
6513 "_end",
6514 "_fbss",
6515 NULL
6516 };
6517
6518 const char* const *p;
6519 int i;
6520
6521 for (i = 0; i < 2; ++i)
6522 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6523 *p;
6524 ++p)
6525 if (strcmp (*p, name) == 0)
6526 {
6527 /* All of these symbols are given type STT_SECTION by the
6528 IRIX6 linker. */
6529 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 6530 sym->st_other = STO_PROTECTED;
b49e97c9
TS
6531
6532 /* The IRIX linker puts these symbols in special sections. */
6533 if (i == 0)
6534 sym->st_shndx = SHN_MIPS_TEXT;
6535 else
6536 sym->st_shndx = SHN_MIPS_DATA;
6537
6538 break;
6539 }
6540}
6541
6542/* Finish up dynamic symbol handling. We set the contents of various
6543 dynamic sections here. */
6544
b34976b6 6545bfd_boolean
9719ad41
RS
6546_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6547 struct bfd_link_info *info,
6548 struct elf_link_hash_entry *h,
6549 Elf_Internal_Sym *sym)
b49e97c9
TS
6550{
6551 bfd *dynobj;
b49e97c9 6552 asection *sgot;
f4416af6 6553 struct mips_got_info *g, *gg;
b49e97c9 6554 const char *name;
b49e97c9
TS
6555
6556 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 6557
c5ae1840 6558 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
6559 {
6560 asection *s;
6561 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6562
6563 /* This symbol has a stub. Set it up. */
6564
6565 BFD_ASSERT (h->dynindx != -1);
6566
6567 s = bfd_get_section_by_name (dynobj,
6568 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6569 BFD_ASSERT (s != NULL);
6570
6571 /* FIXME: Can h->dynindex be more than 64K? */
6572 if (h->dynindx & 0xffff0000)
b34976b6 6573 return FALSE;
b49e97c9
TS
6574
6575 /* Fill the stub. */
6576 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6577 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6578 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6579 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6580
eea6121a 6581 BFD_ASSERT (h->plt.offset <= s->size);
b49e97c9
TS
6582 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6583
6584 /* Mark the symbol as undefined. plt.offset != -1 occurs
6585 only for the referenced symbol. */
6586 sym->st_shndx = SHN_UNDEF;
6587
6588 /* The run-time linker uses the st_value field of the symbol
6589 to reset the global offset table entry for this external
6590 to its stub address when unlinking a shared object. */
c5ae1840
TS
6591 sym->st_value = (s->output_section->vma + s->output_offset
6592 + h->plt.offset);
b49e97c9
TS
6593 }
6594
6595 BFD_ASSERT (h->dynindx != -1
f5385ebf 6596 || h->forced_local);
b49e97c9 6597
f4416af6 6598 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6599 BFD_ASSERT (sgot != NULL);
f4416af6 6600 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 6601 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6602 BFD_ASSERT (g != NULL);
6603
6604 /* Run through the global symbol table, creating GOT entries for all
6605 the symbols that need them. */
6606 if (g->global_gotsym != NULL
6607 && h->dynindx >= g->global_gotsym->dynindx)
6608 {
6609 bfd_vma offset;
6610 bfd_vma value;
6611
6eaa6adc 6612 value = sym->st_value;
f4416af6 6613 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
b49e97c9
TS
6614 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6615 }
6616
f4416af6
AO
6617 if (g->next && h->dynindx != -1)
6618 {
6619 struct mips_got_entry e, *p;
0626d451 6620 bfd_vma entry;
f4416af6 6621 bfd_vma offset;
f4416af6
AO
6622
6623 gg = g;
6624
6625 e.abfd = output_bfd;
6626 e.symndx = -1;
6627 e.d.h = (struct mips_elf_link_hash_entry *)h;
143d77c5 6628
f4416af6
AO
6629 for (g = g->next; g->next != gg; g = g->next)
6630 {
6631 if (g->got_entries
6632 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6633 &e)))
6634 {
6635 offset = p->gotidx;
0626d451
RS
6636 if (info->shared
6637 || (elf_hash_table (info)->dynamic_sections_created
6638 && p->d.h != NULL
f5385ebf
AM
6639 && p->d.h->root.def_dynamic
6640 && !p->d.h->root.def_regular))
0626d451
RS
6641 {
6642 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6643 the various compatibility problems, it's easier to mock
6644 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6645 mips_elf_create_dynamic_relocation to calculate the
6646 appropriate addend. */
6647 Elf_Internal_Rela rel[3];
6648
6649 memset (rel, 0, sizeof (rel));
6650 if (ABI_64_P (output_bfd))
6651 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6652 else
6653 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6654 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6655
6656 entry = 0;
6657 if (! (mips_elf_create_dynamic_relocation
6658 (output_bfd, info, rel,
6659 e.d.h, NULL, sym->st_value, &entry, sgot)))
6660 return FALSE;
6661 }
6662 else
6663 entry = sym->st_value;
6664 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
6665 }
6666 }
6667 }
6668
b49e97c9
TS
6669 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6670 name = h->root.root.string;
6671 if (strcmp (name, "_DYNAMIC") == 0
6672 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6673 sym->st_shndx = SHN_ABS;
6674 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6675 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6676 {
6677 sym->st_shndx = SHN_ABS;
6678 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6679 sym->st_value = 1;
6680 }
4a14403c 6681 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6682 {
6683 sym->st_shndx = SHN_ABS;
6684 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6685 sym->st_value = elf_gp (output_bfd);
6686 }
6687 else if (SGI_COMPAT (output_bfd))
6688 {
6689 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6690 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6691 {
6692 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6693 sym->st_other = STO_PROTECTED;
6694 sym->st_value = 0;
6695 sym->st_shndx = SHN_MIPS_DATA;
6696 }
6697 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6698 {
6699 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6700 sym->st_other = STO_PROTECTED;
6701 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6702 sym->st_shndx = SHN_ABS;
6703 }
6704 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6705 {
6706 if (h->type == STT_FUNC)
6707 sym->st_shndx = SHN_MIPS_TEXT;
6708 else if (h->type == STT_OBJECT)
6709 sym->st_shndx = SHN_MIPS_DATA;
6710 }
6711 }
6712
6713 /* Handle the IRIX6-specific symbols. */
6714 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6715 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6716
6717 if (! info->shared)
6718 {
6719 if (! mips_elf_hash_table (info)->use_rld_obj_head
6720 && (strcmp (name, "__rld_map") == 0
6721 || strcmp (name, "__RLD_MAP") == 0))
6722 {
6723 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6724 BFD_ASSERT (s != NULL);
6725 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 6726 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
6727 if (mips_elf_hash_table (info)->rld_value == 0)
6728 mips_elf_hash_table (info)->rld_value = sym->st_value;
6729 }
6730 else if (mips_elf_hash_table (info)->use_rld_obj_head
6731 && strcmp (name, "__rld_obj_head") == 0)
6732 {
6733 /* IRIX6 does not use a .rld_map section. */
6734 if (IRIX_COMPAT (output_bfd) == ict_irix5
6735 || IRIX_COMPAT (output_bfd) == ict_none)
6736 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6737 != NULL);
6738 mips_elf_hash_table (info)->rld_value = sym->st_value;
6739 }
6740 }
6741
6742 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
6743 if (sym->st_other == STO_MIPS16)
6744 sym->st_value &= ~1;
b49e97c9 6745
b34976b6 6746 return TRUE;
b49e97c9
TS
6747}
6748
6749/* Finish up the dynamic sections. */
6750
b34976b6 6751bfd_boolean
9719ad41
RS
6752_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6753 struct bfd_link_info *info)
b49e97c9
TS
6754{
6755 bfd *dynobj;
6756 asection *sdyn;
6757 asection *sgot;
f4416af6 6758 struct mips_got_info *gg, *g;
b49e97c9
TS
6759
6760 dynobj = elf_hash_table (info)->dynobj;
6761
6762 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6763
f4416af6 6764 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6765 if (sgot == NULL)
f4416af6 6766 gg = g = NULL;
b49e97c9
TS
6767 else
6768 {
f4416af6
AO
6769 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6770 gg = mips_elf_section_data (sgot)->u.got_info;
6771 BFD_ASSERT (gg != NULL);
6772 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
6773 BFD_ASSERT (g != NULL);
6774 }
6775
6776 if (elf_hash_table (info)->dynamic_sections_created)
6777 {
6778 bfd_byte *b;
6779
6780 BFD_ASSERT (sdyn != NULL);
6781 BFD_ASSERT (g != NULL);
6782
6783 for (b = sdyn->contents;
eea6121a 6784 b < sdyn->contents + sdyn->size;
b49e97c9
TS
6785 b += MIPS_ELF_DYN_SIZE (dynobj))
6786 {
6787 Elf_Internal_Dyn dyn;
6788 const char *name;
6789 size_t elemsize;
6790 asection *s;
b34976b6 6791 bfd_boolean swap_out_p;
b49e97c9
TS
6792
6793 /* Read in the current dynamic entry. */
6794 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6795
6796 /* Assume that we're going to modify it and write it out. */
b34976b6 6797 swap_out_p = TRUE;
b49e97c9
TS
6798
6799 switch (dyn.d_tag)
6800 {
6801 case DT_RELENT:
f4416af6 6802 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
6803 BFD_ASSERT (s != NULL);
6804 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6805 break;
6806
6807 case DT_STRSZ:
6808 /* Rewrite DT_STRSZ. */
6809 dyn.d_un.d_val =
6810 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6811 break;
6812
6813 case DT_PLTGOT:
6814 name = ".got";
b49e97c9
TS
6815 s = bfd_get_section_by_name (output_bfd, name);
6816 BFD_ASSERT (s != NULL);
6817 dyn.d_un.d_ptr = s->vma;
6818 break;
6819
6820 case DT_MIPS_RLD_VERSION:
6821 dyn.d_un.d_val = 1; /* XXX */
6822 break;
6823
6824 case DT_MIPS_FLAGS:
6825 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6826 break;
6827
b49e97c9
TS
6828 case DT_MIPS_TIME_STAMP:
6829 time ((time_t *) &dyn.d_un.d_val);
6830 break;
6831
6832 case DT_MIPS_ICHECKSUM:
6833 /* XXX FIXME: */
b34976b6 6834 swap_out_p = FALSE;
b49e97c9
TS
6835 break;
6836
6837 case DT_MIPS_IVERSION:
6838 /* XXX FIXME: */
b34976b6 6839 swap_out_p = FALSE;
b49e97c9
TS
6840 break;
6841
6842 case DT_MIPS_BASE_ADDRESS:
6843 s = output_bfd->sections;
6844 BFD_ASSERT (s != NULL);
6845 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6846 break;
6847
6848 case DT_MIPS_LOCAL_GOTNO:
6849 dyn.d_un.d_val = g->local_gotno;
6850 break;
6851
6852 case DT_MIPS_UNREFEXTNO:
6853 /* The index into the dynamic symbol table which is the
6854 entry of the first external symbol that is not
6855 referenced within the same object. */
6856 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6857 break;
6858
6859 case DT_MIPS_GOTSYM:
f4416af6 6860 if (gg->global_gotsym)
b49e97c9 6861 {
f4416af6 6862 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
6863 break;
6864 }
6865 /* In case if we don't have global got symbols we default
6866 to setting DT_MIPS_GOTSYM to the same value as
6867 DT_MIPS_SYMTABNO, so we just fall through. */
6868
6869 case DT_MIPS_SYMTABNO:
6870 name = ".dynsym";
6871 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6872 s = bfd_get_section_by_name (output_bfd, name);
6873 BFD_ASSERT (s != NULL);
6874
eea6121a 6875 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
6876 break;
6877
6878 case DT_MIPS_HIPAGENO:
6879 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6880 break;
6881
6882 case DT_MIPS_RLD_MAP:
6883 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6884 break;
6885
6886 case DT_MIPS_OPTIONS:
6887 s = (bfd_get_section_by_name
6888 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6889 dyn.d_un.d_ptr = s->vma;
6890 break;
6891
98a8deaf
RS
6892 case DT_RELSZ:
6893 /* Reduce DT_RELSZ to account for any relocations we
6894 decided not to make. This is for the n64 irix rld,
6895 which doesn't seem to apply any relocations if there
6896 are trailing null entries. */
6897 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6898 dyn.d_un.d_val = (s->reloc_count
6899 * (ABI_64_P (output_bfd)
6900 ? sizeof (Elf64_Mips_External_Rel)
6901 : sizeof (Elf32_External_Rel)));
b49e97c9
TS
6902 break;
6903
6904 default:
b34976b6 6905 swap_out_p = FALSE;
b49e97c9
TS
6906 break;
6907 }
6908
6909 if (swap_out_p)
6910 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6911 (dynobj, &dyn, b);
6912 }
6913 }
6914
6915 /* The first entry of the global offset table will be filled at
6916 runtime. The second entry will be used by some runtime loaders.
8dc1a139 6917 This isn't the case of IRIX rld. */
eea6121a 6918 if (sgot != NULL && sgot->size > 0)
b49e97c9 6919 {
9719ad41
RS
6920 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6921 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
b49e97c9
TS
6922 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6923 }
6924
6925 if (sgot != NULL)
6926 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6927 = MIPS_ELF_GOT_SIZE (output_bfd);
6928
f4416af6
AO
6929 /* Generate dynamic relocations for the non-primary gots. */
6930 if (gg != NULL && gg->next)
6931 {
6932 Elf_Internal_Rela rel[3];
6933 bfd_vma addend = 0;
6934
6935 memset (rel, 0, sizeof (rel));
6936 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6937
6938 for (g = gg->next; g->next != gg; g = g->next)
6939 {
6940 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6941
9719ad41 6942 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 6943 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 6944 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
6945 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6946
6947 if (! info->shared)
6948 continue;
6949
6950 while (index < g->assigned_gotno)
6951 {
6952 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6953 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6954 if (!(mips_elf_create_dynamic_relocation
6955 (output_bfd, info, rel, NULL,
6956 bfd_abs_section_ptr,
6957 0, &addend, sgot)))
6958 return FALSE;
6959 BFD_ASSERT (addend == 0);
6960 }
6961 }
6962 }
6963
b49e97c9 6964 {
b49e97c9
TS
6965 asection *s;
6966 Elf32_compact_rel cpt;
6967
b49e97c9
TS
6968 if (SGI_COMPAT (output_bfd))
6969 {
6970 /* Write .compact_rel section out. */
6971 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6972 if (s != NULL)
6973 {
6974 cpt.id1 = 1;
6975 cpt.num = s->reloc_count;
6976 cpt.id2 = 2;
6977 cpt.offset = (s->output_section->filepos
6978 + sizeof (Elf32_External_compact_rel));
6979 cpt.reserved0 = 0;
6980 cpt.reserved1 = 0;
6981 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6982 ((Elf32_External_compact_rel *)
6983 s->contents));
6984
6985 /* Clean up a dummy stub function entry in .text. */
6986 s = bfd_get_section_by_name (dynobj,
6987 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6988 if (s != NULL)
6989 {
6990 file_ptr dummy_offset;
6991
eea6121a
AM
6992 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
6993 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6994 memset (s->contents + dummy_offset, 0,
6995 MIPS_FUNCTION_STUB_SIZE);
6996 }
6997 }
6998 }
6999
7000 /* We need to sort the entries of the dynamic relocation section. */
7001
f4416af6
AO
7002 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7003
7004 if (s != NULL
eea6121a 7005 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7006 {
f4416af6 7007 reldyn_sorting_bfd = output_bfd;
b49e97c9 7008
f4416af6 7009 if (ABI_64_P (output_bfd))
9719ad41 7010 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6
AO
7011 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7012 else
9719ad41 7013 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6 7014 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7015 }
b49e97c9
TS
7016 }
7017
b34976b6 7018 return TRUE;
b49e97c9
TS
7019}
7020
b49e97c9 7021
64543e1a
RS
7022/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7023
7024static void
9719ad41 7025mips_set_isa_flags (bfd *abfd)
b49e97c9 7026{
64543e1a 7027 flagword val;
b49e97c9
TS
7028
7029 switch (bfd_get_mach (abfd))
7030 {
7031 default:
7032 case bfd_mach_mips3000:
7033 val = E_MIPS_ARCH_1;
7034 break;
7035
7036 case bfd_mach_mips3900:
7037 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7038 break;
7039
7040 case bfd_mach_mips6000:
7041 val = E_MIPS_ARCH_2;
7042 break;
7043
7044 case bfd_mach_mips4000:
7045 case bfd_mach_mips4300:
7046 case bfd_mach_mips4400:
7047 case bfd_mach_mips4600:
7048 val = E_MIPS_ARCH_3;
7049 break;
7050
7051 case bfd_mach_mips4010:
7052 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7053 break;
7054
7055 case bfd_mach_mips4100:
7056 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7057 break;
7058
7059 case bfd_mach_mips4111:
7060 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7061 break;
7062
00707a0e
RS
7063 case bfd_mach_mips4120:
7064 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7065 break;
7066
b49e97c9
TS
7067 case bfd_mach_mips4650:
7068 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7069 break;
7070
00707a0e
RS
7071 case bfd_mach_mips5400:
7072 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7073 break;
7074
7075 case bfd_mach_mips5500:
7076 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7077 break;
7078
0d2e43ed
ILT
7079 case bfd_mach_mips9000:
7080 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7081 break;
7082
b49e97c9 7083 case bfd_mach_mips5000:
5a7ea749 7084 case bfd_mach_mips7000:
b49e97c9
TS
7085 case bfd_mach_mips8000:
7086 case bfd_mach_mips10000:
7087 case bfd_mach_mips12000:
7088 val = E_MIPS_ARCH_4;
7089 break;
7090
7091 case bfd_mach_mips5:
7092 val = E_MIPS_ARCH_5;
7093 break;
7094
7095 case bfd_mach_mips_sb1:
7096 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7097 break;
7098
7099 case bfd_mach_mipsisa32:
7100 val = E_MIPS_ARCH_32;
7101 break;
7102
7103 case bfd_mach_mipsisa64:
7104 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7105 break;
7106
7107 case bfd_mach_mipsisa32r2:
7108 val = E_MIPS_ARCH_32R2;
7109 break;
5f74bc13
CD
7110
7111 case bfd_mach_mipsisa64r2:
7112 val = E_MIPS_ARCH_64R2;
7113 break;
b49e97c9 7114 }
b49e97c9
TS
7115 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7116 elf_elfheader (abfd)->e_flags |= val;
7117
64543e1a
RS
7118}
7119
7120
7121/* The final processing done just before writing out a MIPS ELF object
7122 file. This gets the MIPS architecture right based on the machine
7123 number. This is used by both the 32-bit and the 64-bit ABI. */
7124
7125void
9719ad41
RS
7126_bfd_mips_elf_final_write_processing (bfd *abfd,
7127 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
7128{
7129 unsigned int i;
7130 Elf_Internal_Shdr **hdrpp;
7131 const char *name;
7132 asection *sec;
7133
7134 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7135 is nonzero. This is for compatibility with old objects, which used
7136 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7137 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7138 mips_set_isa_flags (abfd);
7139
b49e97c9
TS
7140 /* Set the sh_info field for .gptab sections and other appropriate
7141 info for each special section. */
7142 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7143 i < elf_numsections (abfd);
7144 i++, hdrpp++)
7145 {
7146 switch ((*hdrpp)->sh_type)
7147 {
7148 case SHT_MIPS_MSYM:
7149 case SHT_MIPS_LIBLIST:
7150 sec = bfd_get_section_by_name (abfd, ".dynstr");
7151 if (sec != NULL)
7152 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7153 break;
7154
7155 case SHT_MIPS_GPTAB:
7156 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7157 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7158 BFD_ASSERT (name != NULL
7159 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7160 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7161 BFD_ASSERT (sec != NULL);
7162 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7163 break;
7164
7165 case SHT_MIPS_CONTENT:
7166 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7167 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7168 BFD_ASSERT (name != NULL
7169 && strncmp (name, ".MIPS.content",
7170 sizeof ".MIPS.content" - 1) == 0);
7171 sec = bfd_get_section_by_name (abfd,
7172 name + sizeof ".MIPS.content" - 1);
7173 BFD_ASSERT (sec != NULL);
7174 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7175 break;
7176
7177 case SHT_MIPS_SYMBOL_LIB:
7178 sec = bfd_get_section_by_name (abfd, ".dynsym");
7179 if (sec != NULL)
7180 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7181 sec = bfd_get_section_by_name (abfd, ".liblist");
7182 if (sec != NULL)
7183 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7184 break;
7185
7186 case SHT_MIPS_EVENTS:
7187 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7188 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7189 BFD_ASSERT (name != NULL);
7190 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7191 sec = bfd_get_section_by_name (abfd,
7192 name + sizeof ".MIPS.events" - 1);
7193 else
7194 {
7195 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7196 sizeof ".MIPS.post_rel" - 1) == 0);
7197 sec = bfd_get_section_by_name (abfd,
7198 (name
7199 + sizeof ".MIPS.post_rel" - 1));
7200 }
7201 BFD_ASSERT (sec != NULL);
7202 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7203 break;
7204
7205 }
7206 }
7207}
7208\f
8dc1a139 7209/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
7210 segments. */
7211
7212int
9719ad41 7213_bfd_mips_elf_additional_program_headers (bfd *abfd)
b49e97c9
TS
7214{
7215 asection *s;
7216 int ret = 0;
7217
7218 /* See if we need a PT_MIPS_REGINFO segment. */
7219 s = bfd_get_section_by_name (abfd, ".reginfo");
7220 if (s && (s->flags & SEC_LOAD))
7221 ++ret;
7222
7223 /* See if we need a PT_MIPS_OPTIONS segment. */
7224 if (IRIX_COMPAT (abfd) == ict_irix6
7225 && bfd_get_section_by_name (abfd,
7226 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7227 ++ret;
7228
7229 /* See if we need a PT_MIPS_RTPROC segment. */
7230 if (IRIX_COMPAT (abfd) == ict_irix5
7231 && bfd_get_section_by_name (abfd, ".dynamic")
7232 && bfd_get_section_by_name (abfd, ".mdebug"))
7233 ++ret;
7234
7235 return ret;
7236}
7237
8dc1a139 7238/* Modify the segment map for an IRIX5 executable. */
b49e97c9 7239
b34976b6 7240bfd_boolean
9719ad41
RS
7241_bfd_mips_elf_modify_segment_map (bfd *abfd,
7242 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
7243{
7244 asection *s;
7245 struct elf_segment_map *m, **pm;
7246 bfd_size_type amt;
7247
7248 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7249 segment. */
7250 s = bfd_get_section_by_name (abfd, ".reginfo");
7251 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7252 {
7253 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7254 if (m->p_type == PT_MIPS_REGINFO)
7255 break;
7256 if (m == NULL)
7257 {
7258 amt = sizeof *m;
9719ad41 7259 m = bfd_zalloc (abfd, amt);
b49e97c9 7260 if (m == NULL)
b34976b6 7261 return FALSE;
b49e97c9
TS
7262
7263 m->p_type = PT_MIPS_REGINFO;
7264 m->count = 1;
7265 m->sections[0] = s;
7266
7267 /* We want to put it after the PHDR and INTERP segments. */
7268 pm = &elf_tdata (abfd)->segment_map;
7269 while (*pm != NULL
7270 && ((*pm)->p_type == PT_PHDR
7271 || (*pm)->p_type == PT_INTERP))
7272 pm = &(*pm)->next;
7273
7274 m->next = *pm;
7275 *pm = m;
7276 }
7277 }
7278
7279 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7280 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 7281 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 7282 table. */
c1fd6598
AO
7283 if (NEWABI_P (abfd)
7284 /* On non-IRIX6 new abi, we'll have already created a segment
7285 for this section, so don't create another. I'm not sure this
7286 is not also the case for IRIX 6, but I can't test it right
7287 now. */
7288 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
7289 {
7290 for (s = abfd->sections; s; s = s->next)
7291 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7292 break;
7293
7294 if (s)
7295 {
7296 struct elf_segment_map *options_segment;
7297
98a8deaf
RS
7298 pm = &elf_tdata (abfd)->segment_map;
7299 while (*pm != NULL
7300 && ((*pm)->p_type == PT_PHDR
7301 || (*pm)->p_type == PT_INTERP))
7302 pm = &(*pm)->next;
b49e97c9
TS
7303
7304 amt = sizeof (struct elf_segment_map);
7305 options_segment = bfd_zalloc (abfd, amt);
7306 options_segment->next = *pm;
7307 options_segment->p_type = PT_MIPS_OPTIONS;
7308 options_segment->p_flags = PF_R;
b34976b6 7309 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
7310 options_segment->count = 1;
7311 options_segment->sections[0] = s;
7312 *pm = options_segment;
7313 }
7314 }
7315 else
7316 {
7317 if (IRIX_COMPAT (abfd) == ict_irix5)
7318 {
7319 /* If there are .dynamic and .mdebug sections, we make a room
7320 for the RTPROC header. FIXME: Rewrite without section names. */
7321 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7322 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7323 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7324 {
7325 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7326 if (m->p_type == PT_MIPS_RTPROC)
7327 break;
7328 if (m == NULL)
7329 {
7330 amt = sizeof *m;
9719ad41 7331 m = bfd_zalloc (abfd, amt);
b49e97c9 7332 if (m == NULL)
b34976b6 7333 return FALSE;
b49e97c9
TS
7334
7335 m->p_type = PT_MIPS_RTPROC;
7336
7337 s = bfd_get_section_by_name (abfd, ".rtproc");
7338 if (s == NULL)
7339 {
7340 m->count = 0;
7341 m->p_flags = 0;
7342 m->p_flags_valid = 1;
7343 }
7344 else
7345 {
7346 m->count = 1;
7347 m->sections[0] = s;
7348 }
7349
7350 /* We want to put it after the DYNAMIC segment. */
7351 pm = &elf_tdata (abfd)->segment_map;
7352 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7353 pm = &(*pm)->next;
7354 if (*pm != NULL)
7355 pm = &(*pm)->next;
7356
7357 m->next = *pm;
7358 *pm = m;
7359 }
7360 }
7361 }
8dc1a139 7362 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
7363 .dynstr, .dynsym, and .hash sections, and everything in
7364 between. */
7365 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7366 pm = &(*pm)->next)
7367 if ((*pm)->p_type == PT_DYNAMIC)
7368 break;
7369 m = *pm;
7370 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7371 {
7372 /* For a normal mips executable the permissions for the PT_DYNAMIC
7373 segment are read, write and execute. We do that here since
7374 the code in elf.c sets only the read permission. This matters
7375 sometimes for the dynamic linker. */
7376 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7377 {
7378 m->p_flags = PF_R | PF_W | PF_X;
7379 m->p_flags_valid = 1;
7380 }
7381 }
7382 if (m != NULL
7383 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7384 {
7385 static const char *sec_names[] =
7386 {
7387 ".dynamic", ".dynstr", ".dynsym", ".hash"
7388 };
7389 bfd_vma low, high;
7390 unsigned int i, c;
7391 struct elf_segment_map *n;
7392
792b4a53 7393 low = ~(bfd_vma) 0;
b49e97c9
TS
7394 high = 0;
7395 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7396 {
7397 s = bfd_get_section_by_name (abfd, sec_names[i]);
7398 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7399 {
7400 bfd_size_type sz;
7401
7402 if (low > s->vma)
7403 low = s->vma;
eea6121a 7404 sz = s->size;
b49e97c9
TS
7405 if (high < s->vma + sz)
7406 high = s->vma + sz;
7407 }
7408 }
7409
7410 c = 0;
7411 for (s = abfd->sections; s != NULL; s = s->next)
7412 if ((s->flags & SEC_LOAD) != 0
7413 && s->vma >= low
eea6121a 7414 && s->vma + s->size <= high)
b49e97c9
TS
7415 ++c;
7416
7417 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 7418 n = bfd_zalloc (abfd, amt);
b49e97c9 7419 if (n == NULL)
b34976b6 7420 return FALSE;
b49e97c9
TS
7421 *n = *m;
7422 n->count = c;
7423
7424 i = 0;
7425 for (s = abfd->sections; s != NULL; s = s->next)
7426 {
7427 if ((s->flags & SEC_LOAD) != 0
7428 && s->vma >= low
eea6121a 7429 && s->vma + s->size <= high)
b49e97c9
TS
7430 {
7431 n->sections[i] = s;
7432 ++i;
7433 }
7434 }
7435
7436 *pm = n;
7437 }
7438 }
7439
b34976b6 7440 return TRUE;
b49e97c9
TS
7441}
7442\f
7443/* Return the section that should be marked against GC for a given
7444 relocation. */
7445
7446asection *
9719ad41
RS
7447_bfd_mips_elf_gc_mark_hook (asection *sec,
7448 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7449 Elf_Internal_Rela *rel,
7450 struct elf_link_hash_entry *h,
7451 Elf_Internal_Sym *sym)
b49e97c9
TS
7452{
7453 /* ??? Do mips16 stub sections need to be handled special? */
7454
7455 if (h != NULL)
7456 {
1e2f5b6e 7457 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
7458 {
7459 case R_MIPS_GNU_VTINHERIT:
7460 case R_MIPS_GNU_VTENTRY:
7461 break;
7462
7463 default:
7464 switch (h->root.type)
7465 {
7466 case bfd_link_hash_defined:
7467 case bfd_link_hash_defweak:
7468 return h->root.u.def.section;
7469
7470 case bfd_link_hash_common:
7471 return h->root.u.c.p->section;
7472
7473 default:
7474 break;
7475 }
7476 }
7477 }
7478 else
1e2f5b6e 7479 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
7480
7481 return NULL;
7482}
7483
7484/* Update the got entry reference counts for the section being removed. */
7485
b34976b6 7486bfd_boolean
9719ad41
RS
7487_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7488 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7489 asection *sec ATTRIBUTE_UNUSED,
7490 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
7491{
7492#if 0
7493 Elf_Internal_Shdr *symtab_hdr;
7494 struct elf_link_hash_entry **sym_hashes;
7495 bfd_signed_vma *local_got_refcounts;
7496 const Elf_Internal_Rela *rel, *relend;
7497 unsigned long r_symndx;
7498 struct elf_link_hash_entry *h;
7499
7500 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7501 sym_hashes = elf_sym_hashes (abfd);
7502 local_got_refcounts = elf_local_got_refcounts (abfd);
7503
7504 relend = relocs + sec->reloc_count;
7505 for (rel = relocs; rel < relend; rel++)
7506 switch (ELF_R_TYPE (abfd, rel->r_info))
7507 {
7508 case R_MIPS_GOT16:
7509 case R_MIPS_CALL16:
7510 case R_MIPS_CALL_HI16:
7511 case R_MIPS_CALL_LO16:
7512 case R_MIPS_GOT_HI16:
7513 case R_MIPS_GOT_LO16:
4a14403c
TS
7514 case R_MIPS_GOT_DISP:
7515 case R_MIPS_GOT_PAGE:
7516 case R_MIPS_GOT_OFST:
b49e97c9
TS
7517 /* ??? It would seem that the existing MIPS code does no sort
7518 of reference counting or whatnot on its GOT and PLT entries,
7519 so it is not possible to garbage collect them at this time. */
7520 break;
7521
7522 default:
7523 break;
7524 }
7525#endif
7526
b34976b6 7527 return TRUE;
b49e97c9
TS
7528}
7529\f
7530/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7531 hiding the old indirect symbol. Process additional relocation
7532 information. Also called for weakdefs, in which case we just let
7533 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7534
7535void
9719ad41
RS
7536_bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7537 struct elf_link_hash_entry *dir,
7538 struct elf_link_hash_entry *ind)
b49e97c9
TS
7539{
7540 struct mips_elf_link_hash_entry *dirmips, *indmips;
7541
b48fa14c 7542 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
7543
7544 if (ind->root.type != bfd_link_hash_indirect)
7545 return;
7546
7547 dirmips = (struct mips_elf_link_hash_entry *) dir;
7548 indmips = (struct mips_elf_link_hash_entry *) ind;
7549 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7550 if (indmips->readonly_reloc)
b34976b6 7551 dirmips->readonly_reloc = TRUE;
b49e97c9 7552 if (indmips->no_fn_stub)
b34976b6 7553 dirmips->no_fn_stub = TRUE;
b49e97c9
TS
7554}
7555
7556void
9719ad41
RS
7557_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7558 struct elf_link_hash_entry *entry,
7559 bfd_boolean force_local)
b49e97c9
TS
7560{
7561 bfd *dynobj;
7562 asection *got;
7563 struct mips_got_info *g;
7564 struct mips_elf_link_hash_entry *h;
7c5fcef7 7565
b49e97c9 7566 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
7567 if (h->forced_local)
7568 return;
4b555070 7569 h->forced_local = force_local;
7c5fcef7 7570
b49e97c9 7571 dynobj = elf_hash_table (info)->dynobj;
4b555070 7572 if (dynobj != NULL && force_local)
f4416af6 7573 {
c45a316a
AM
7574 got = mips_elf_got_section (dynobj, FALSE);
7575 g = mips_elf_section_data (got)->u.got_info;
f4416af6 7576
c45a316a
AM
7577 if (g->next)
7578 {
7579 struct mips_got_entry e;
7580 struct mips_got_info *gg = g;
7581
7582 /* Since we're turning what used to be a global symbol into a
7583 local one, bump up the number of local entries of each GOT
7584 that had an entry for it. This will automatically decrease
7585 the number of global entries, since global_gotno is actually
7586 the upper limit of global entries. */
7587 e.abfd = dynobj;
7588 e.symndx = -1;
7589 e.d.h = h;
7590
7591 for (g = g->next; g != gg; g = g->next)
7592 if (htab_find (g->got_entries, &e))
7593 {
7594 BFD_ASSERT (g->global_gotno > 0);
7595 g->local_gotno++;
7596 g->global_gotno--;
7597 }
b49e97c9 7598
c45a316a
AM
7599 /* If this was a global symbol forced into the primary GOT, we
7600 no longer need an entry for it. We can't release the entry
7601 at this point, but we must at least stop counting it as one
7602 of the symbols that required a forced got entry. */
7603 if (h->root.got.offset == 2)
7604 {
7605 BFD_ASSERT (gg->assigned_gotno > 0);
7606 gg->assigned_gotno--;
7607 }
7608 }
7609 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7610 /* If we haven't got through GOT allocation yet, just bump up the
7611 number of local entries, as this symbol won't be counted as
7612 global. */
7613 g->local_gotno++;
7614 else if (h->root.got.offset == 1)
f4416af6 7615 {
c45a316a
AM
7616 /* If we're past non-multi-GOT allocation and this symbol had
7617 been marked for a global got entry, give it a local entry
7618 instead. */
7619 BFD_ASSERT (g->global_gotno > 0);
7620 g->local_gotno++;
7621 g->global_gotno--;
f4416af6
AO
7622 }
7623 }
f4416af6
AO
7624
7625 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
7626}
7627\f
d01414a5
TS
7628#define PDR_SIZE 32
7629
b34976b6 7630bfd_boolean
9719ad41
RS
7631_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7632 struct bfd_link_info *info)
d01414a5
TS
7633{
7634 asection *o;
b34976b6 7635 bfd_boolean ret = FALSE;
d01414a5
TS
7636 unsigned char *tdata;
7637 size_t i, skip;
7638
7639 o = bfd_get_section_by_name (abfd, ".pdr");
7640 if (! o)
b34976b6 7641 return FALSE;
eea6121a 7642 if (o->size == 0)
b34976b6 7643 return FALSE;
eea6121a 7644 if (o->size % PDR_SIZE != 0)
b34976b6 7645 return FALSE;
d01414a5
TS
7646 if (o->output_section != NULL
7647 && bfd_is_abs_section (o->output_section))
b34976b6 7648 return FALSE;
d01414a5 7649
eea6121a 7650 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 7651 if (! tdata)
b34976b6 7652 return FALSE;
d01414a5 7653
9719ad41 7654 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7655 info->keep_memory);
d01414a5
TS
7656 if (!cookie->rels)
7657 {
7658 free (tdata);
b34976b6 7659 return FALSE;
d01414a5
TS
7660 }
7661
7662 cookie->rel = cookie->rels;
7663 cookie->relend = cookie->rels + o->reloc_count;
7664
eea6121a 7665 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 7666 {
c152c796 7667 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
7668 {
7669 tdata[i] = 1;
7670 skip ++;
7671 }
7672 }
7673
7674 if (skip != 0)
7675 {
f0abc2a1 7676 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 7677 o->size -= skip * PDR_SIZE;
b34976b6 7678 ret = TRUE;
d01414a5
TS
7679 }
7680 else
7681 free (tdata);
7682
7683 if (! info->keep_memory)
7684 free (cookie->rels);
7685
7686 return ret;
7687}
7688
b34976b6 7689bfd_boolean
9719ad41 7690_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
7691{
7692 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
7693 return TRUE;
7694 return FALSE;
53bfd6b4 7695}
d01414a5 7696
b34976b6 7697bfd_boolean
9719ad41
RS
7698_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7699 bfd_byte *contents)
d01414a5
TS
7700{
7701 bfd_byte *to, *from, *end;
7702 int i;
7703
7704 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 7705 return FALSE;
d01414a5 7706
f0abc2a1 7707 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 7708 return FALSE;
d01414a5
TS
7709
7710 to = contents;
eea6121a 7711 end = contents + sec->size;
d01414a5
TS
7712 for (from = contents, i = 0;
7713 from < end;
7714 from += PDR_SIZE, i++)
7715 {
f0abc2a1 7716 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
7717 continue;
7718 if (to != from)
7719 memcpy (to, from, PDR_SIZE);
7720 to += PDR_SIZE;
7721 }
7722 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 7723 sec->output_offset, sec->size);
b34976b6 7724 return TRUE;
d01414a5 7725}
53bfd6b4 7726\f
b49e97c9
TS
7727/* MIPS ELF uses a special find_nearest_line routine in order the
7728 handle the ECOFF debugging information. */
7729
7730struct mips_elf_find_line
7731{
7732 struct ecoff_debug_info d;
7733 struct ecoff_find_line i;
7734};
7735
b34976b6 7736bfd_boolean
9719ad41
RS
7737_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7738 asymbol **symbols, bfd_vma offset,
7739 const char **filename_ptr,
7740 const char **functionname_ptr,
7741 unsigned int *line_ptr)
b49e97c9
TS
7742{
7743 asection *msec;
7744
7745 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7746 filename_ptr, functionname_ptr,
7747 line_ptr))
b34976b6 7748 return TRUE;
b49e97c9
TS
7749
7750 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7751 filename_ptr, functionname_ptr,
9719ad41 7752 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 7753 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 7754 return TRUE;
b49e97c9
TS
7755
7756 msec = bfd_get_section_by_name (abfd, ".mdebug");
7757 if (msec != NULL)
7758 {
7759 flagword origflags;
7760 struct mips_elf_find_line *fi;
7761 const struct ecoff_debug_swap * const swap =
7762 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7763
7764 /* If we are called during a link, mips_elf_final_link may have
7765 cleared the SEC_HAS_CONTENTS field. We force it back on here
7766 if appropriate (which it normally will be). */
7767 origflags = msec->flags;
7768 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7769 msec->flags |= SEC_HAS_CONTENTS;
7770
7771 fi = elf_tdata (abfd)->find_line_info;
7772 if (fi == NULL)
7773 {
7774 bfd_size_type external_fdr_size;
7775 char *fraw_src;
7776 char *fraw_end;
7777 struct fdr *fdr_ptr;
7778 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7779
9719ad41 7780 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
7781 if (fi == NULL)
7782 {
7783 msec->flags = origflags;
b34976b6 7784 return FALSE;
b49e97c9
TS
7785 }
7786
7787 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7788 {
7789 msec->flags = origflags;
b34976b6 7790 return FALSE;
b49e97c9
TS
7791 }
7792
7793 /* Swap in the FDR information. */
7794 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 7795 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
7796 if (fi->d.fdr == NULL)
7797 {
7798 msec->flags = origflags;
b34976b6 7799 return FALSE;
b49e97c9
TS
7800 }
7801 external_fdr_size = swap->external_fdr_size;
7802 fdr_ptr = fi->d.fdr;
7803 fraw_src = (char *) fi->d.external_fdr;
7804 fraw_end = (fraw_src
7805 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7806 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 7807 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
7808
7809 elf_tdata (abfd)->find_line_info = fi;
7810
7811 /* Note that we don't bother to ever free this information.
7812 find_nearest_line is either called all the time, as in
7813 objdump -l, so the information should be saved, or it is
7814 rarely called, as in ld error messages, so the memory
7815 wasted is unimportant. Still, it would probably be a
7816 good idea for free_cached_info to throw it away. */
7817 }
7818
7819 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7820 &fi->i, filename_ptr, functionname_ptr,
7821 line_ptr))
7822 {
7823 msec->flags = origflags;
b34976b6 7824 return TRUE;
b49e97c9
TS
7825 }
7826
7827 msec->flags = origflags;
7828 }
7829
7830 /* Fall back on the generic ELF find_nearest_line routine. */
7831
7832 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7833 filename_ptr, functionname_ptr,
7834 line_ptr);
7835}
7836\f
7837/* When are writing out the .options or .MIPS.options section,
7838 remember the bytes we are writing out, so that we can install the
7839 GP value in the section_processing routine. */
7840
b34976b6 7841bfd_boolean
9719ad41
RS
7842_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7843 const void *location,
7844 file_ptr offset, bfd_size_type count)
b49e97c9
TS
7845{
7846 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7847 {
7848 bfd_byte *c;
7849
7850 if (elf_section_data (section) == NULL)
7851 {
7852 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 7853 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 7854 if (elf_section_data (section) == NULL)
b34976b6 7855 return FALSE;
b49e97c9 7856 }
f0abc2a1 7857 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
7858 if (c == NULL)
7859 {
eea6121a 7860 c = bfd_zalloc (abfd, section->size);
b49e97c9 7861 if (c == NULL)
b34976b6 7862 return FALSE;
f0abc2a1 7863 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
7864 }
7865
9719ad41 7866 memcpy (c + offset, location, count);
b49e97c9
TS
7867 }
7868
7869 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7870 count);
7871}
7872
7873/* This is almost identical to bfd_generic_get_... except that some
7874 MIPS relocations need to be handled specially. Sigh. */
7875
7876bfd_byte *
9719ad41
RS
7877_bfd_elf_mips_get_relocated_section_contents
7878 (bfd *abfd,
7879 struct bfd_link_info *link_info,
7880 struct bfd_link_order *link_order,
7881 bfd_byte *data,
7882 bfd_boolean relocatable,
7883 asymbol **symbols)
b49e97c9
TS
7884{
7885 /* Get enough memory to hold the stuff */
7886 bfd *input_bfd = link_order->u.indirect.section->owner;
7887 asection *input_section = link_order->u.indirect.section;
eea6121a 7888 bfd_size_type sz;
b49e97c9
TS
7889
7890 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7891 arelent **reloc_vector = NULL;
7892 long reloc_count;
7893
7894 if (reloc_size < 0)
7895 goto error_return;
7896
9719ad41 7897 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
7898 if (reloc_vector == NULL && reloc_size != 0)
7899 goto error_return;
7900
7901 /* read in the section */
eea6121a
AM
7902 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
7903 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
7904 goto error_return;
7905
b49e97c9
TS
7906 reloc_count = bfd_canonicalize_reloc (input_bfd,
7907 input_section,
7908 reloc_vector,
7909 symbols);
7910 if (reloc_count < 0)
7911 goto error_return;
7912
7913 if (reloc_count > 0)
7914 {
7915 arelent **parent;
7916 /* for mips */
7917 int gp_found;
7918 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7919
7920 {
7921 struct bfd_hash_entry *h;
7922 struct bfd_link_hash_entry *lh;
7923 /* Skip all this stuff if we aren't mixing formats. */
7924 if (abfd && input_bfd
7925 && abfd->xvec == input_bfd->xvec)
7926 lh = 0;
7927 else
7928 {
b34976b6 7929 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
7930 lh = (struct bfd_link_hash_entry *) h;
7931 }
7932 lookup:
7933 if (lh)
7934 {
7935 switch (lh->type)
7936 {
7937 case bfd_link_hash_undefined:
7938 case bfd_link_hash_undefweak:
7939 case bfd_link_hash_common:
7940 gp_found = 0;
7941 break;
7942 case bfd_link_hash_defined:
7943 case bfd_link_hash_defweak:
7944 gp_found = 1;
7945 gp = lh->u.def.value;
7946 break;
7947 case bfd_link_hash_indirect:
7948 case bfd_link_hash_warning:
7949 lh = lh->u.i.link;
7950 /* @@FIXME ignoring warning for now */
7951 goto lookup;
7952 case bfd_link_hash_new:
7953 default:
7954 abort ();
7955 }
7956 }
7957 else
7958 gp_found = 0;
7959 }
7960 /* end mips */
9719ad41 7961 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 7962 {
9719ad41 7963 char *error_message = NULL;
b49e97c9
TS
7964 bfd_reloc_status_type r;
7965
7966 /* Specific to MIPS: Deal with relocation types that require
7967 knowing the gp of the output bfd. */
7968 asymbol *sym = *(*parent)->sym_ptr_ptr;
7969 if (bfd_is_abs_section (sym->section) && abfd)
7970 {
44c410de 7971 /* The special_function wouldn't get called anyway. */
b49e97c9
TS
7972 }
7973 else if (!gp_found)
7974 {
7975 /* The gp isn't there; let the special function code
7976 fall over on its own. */
7977 }
7978 else if ((*parent)->howto->special_function
7979 == _bfd_mips_elf32_gprel16_reloc)
7980 {
7981 /* bypass special_function call */
7982 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
1049f94e 7983 input_section, relocatable,
9719ad41 7984 data, gp);
b49e97c9
TS
7985 goto skip_bfd_perform_relocation;
7986 }
7987 /* end mips specific stuff */
7988
9719ad41
RS
7989 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
7990 relocatable ? abfd : NULL,
b49e97c9
TS
7991 &error_message);
7992 skip_bfd_perform_relocation:
7993
1049f94e 7994 if (relocatable)
b49e97c9
TS
7995 {
7996 asection *os = input_section->output_section;
7997
7998 /* A partial link, so keep the relocs */
7999 os->orelocation[os->reloc_count] = *parent;
8000 os->reloc_count++;
8001 }
8002
8003 if (r != bfd_reloc_ok)
8004 {
8005 switch (r)
8006 {
8007 case bfd_reloc_undefined:
8008 if (!((*link_info->callbacks->undefined_symbol)
8009 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8010 input_bfd, input_section, (*parent)->address,
b34976b6 8011 TRUE)))
b49e97c9
TS
8012 goto error_return;
8013 break;
8014 case bfd_reloc_dangerous:
9719ad41 8015 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
8016 if (!((*link_info->callbacks->reloc_dangerous)
8017 (link_info, error_message, input_bfd, input_section,
8018 (*parent)->address)))
8019 goto error_return;
8020 break;
8021 case bfd_reloc_overflow:
8022 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
8023 (link_info, NULL,
8024 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
8025 (*parent)->howto->name, (*parent)->addend,
8026 input_bfd, input_section, (*parent)->address)))
8027 goto error_return;
8028 break;
8029 case bfd_reloc_outofrange:
8030 default:
8031 abort ();
8032 break;
8033 }
8034
8035 }
8036 }
8037 }
8038 if (reloc_vector != NULL)
8039 free (reloc_vector);
8040 return data;
8041
8042error_return:
8043 if (reloc_vector != NULL)
8044 free (reloc_vector);
8045 return NULL;
8046}
8047\f
8048/* Create a MIPS ELF linker hash table. */
8049
8050struct bfd_link_hash_table *
9719ad41 8051_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
8052{
8053 struct mips_elf_link_hash_table *ret;
8054 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8055
9719ad41
RS
8056 ret = bfd_malloc (amt);
8057 if (ret == NULL)
b49e97c9
TS
8058 return NULL;
8059
8060 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8061 mips_elf_link_hash_newfunc))
8062 {
e2d34d7d 8063 free (ret);
b49e97c9
TS
8064 return NULL;
8065 }
8066
8067#if 0
8068 /* We no longer use this. */
8069 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8070 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8071#endif
8072 ret->procedure_count = 0;
8073 ret->compact_rel_size = 0;
b34976b6 8074 ret->use_rld_obj_head = FALSE;
b49e97c9 8075 ret->rld_value = 0;
b34976b6 8076 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8077
8078 return &ret->root.root;
8079}
8080\f
8081/* We need to use a special link routine to handle the .reginfo and
8082 the .mdebug sections. We need to merge all instances of these
8083 sections together, not write them all out sequentially. */
8084
b34976b6 8085bfd_boolean
9719ad41 8086_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
8087{
8088 asection **secpp;
8089 asection *o;
8090 struct bfd_link_order *p;
8091 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8092 asection *rtproc_sec;
8093 Elf32_RegInfo reginfo;
8094 struct ecoff_debug_info debug;
7a2a6943
NC
8095 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8096 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 8097 HDRR *symhdr = &debug.symbolic_header;
9719ad41 8098 void *mdebug_handle = NULL;
b49e97c9
TS
8099 asection *s;
8100 EXTR esym;
8101 unsigned int i;
8102 bfd_size_type amt;
8103
8104 static const char * const secname[] =
8105 {
8106 ".text", ".init", ".fini", ".data",
8107 ".rodata", ".sdata", ".sbss", ".bss"
8108 };
8109 static const int sc[] =
8110 {
8111 scText, scInit, scFini, scData,
8112 scRData, scSData, scSBss, scBss
8113 };
8114
b49e97c9
TS
8115 /* We'd carefully arranged the dynamic symbol indices, and then the
8116 generic size_dynamic_sections renumbered them out from under us.
8117 Rather than trying somehow to prevent the renumbering, just do
8118 the sort again. */
8119 if (elf_hash_table (info)->dynamic_sections_created)
8120 {
8121 bfd *dynobj;
8122 asection *got;
8123 struct mips_got_info *g;
7a2a6943 8124 bfd_size_type dynsecsymcount;
b49e97c9
TS
8125
8126 /* When we resort, we must tell mips_elf_sort_hash_table what
8127 the lowest index it may use is. That's the number of section
8128 symbols we're going to add. The generic ELF linker only
8129 adds these symbols when building a shared object. Note that
8130 we count the sections after (possibly) removing the .options
8131 section above. */
7a2a6943
NC
8132
8133 dynsecsymcount = 0;
8134 if (info->shared)
8135 {
8136 asection * p;
8137
8138 for (p = abfd->sections; p ; p = p->next)
8139 if ((p->flags & SEC_EXCLUDE) == 0
8140 && (p->flags & SEC_ALLOC) != 0
8141 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8142 ++ dynsecsymcount;
8143 }
8144
8145 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 8146 return FALSE;
b49e97c9
TS
8147
8148 /* Make sure we didn't grow the global .got region. */
8149 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8150 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8151 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8152
8153 if (g->global_gotsym != NULL)
8154 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8155 - g->global_gotsym->dynindx)
8156 <= g->global_gotno);
8157 }
8158
a902ee94
SC
8159#if 0
8160 /* We want to set the GP value for ld -r. */
b49e97c9
TS
8161 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8162 include it, even though we don't process it quite right. (Some
8163 entries are supposed to be merged.) Empirically, we seem to be
8164 better off including it then not. */
8165 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8166 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8167 {
8168 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8169 {
8170 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8171 if (p->type == bfd_indirect_link_order)
8172 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8173 (*secpp)->link_order_head = NULL;
8174 bfd_section_list_remove (abfd, secpp);
8175 --abfd->section_count;
8176
8177 break;
8178 }
8179 }
8180
8181 /* We include .MIPS.options, even though we don't process it quite right.
8182 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8183 to be better off including it than not. */
8184 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8185 {
8186 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8187 {
8188 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8189 if (p->type == bfd_indirect_link_order)
8190 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8191 (*secpp)->link_order_head = NULL;
8192 bfd_section_list_remove (abfd, secpp);
8193 --abfd->section_count;
b34976b6 8194
b49e97c9
TS
8195 break;
8196 }
8197 }
a902ee94 8198#endif
b49e97c9
TS
8199
8200 /* Get a value for the GP register. */
8201 if (elf_gp (abfd) == 0)
8202 {
8203 struct bfd_link_hash_entry *h;
8204
b34976b6 8205 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 8206 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
8207 elf_gp (abfd) = (h->u.def.value
8208 + h->u.def.section->output_section->vma
8209 + h->u.def.section->output_offset);
1049f94e 8210 else if (info->relocatable)
b49e97c9
TS
8211 {
8212 bfd_vma lo = MINUS_ONE;
8213
8214 /* Find the GP-relative section with the lowest offset. */
9719ad41 8215 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8216 if (o->vma < lo
8217 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8218 lo = o->vma;
8219
8220 /* And calculate GP relative to that. */
8221 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8222 }
8223 else
8224 {
8225 /* If the relocate_section function needs to do a reloc
8226 involving the GP value, it should make a reloc_dangerous
8227 callback to warn that GP is not defined. */
8228 }
8229 }
8230
8231 /* Go through the sections and collect the .reginfo and .mdebug
8232 information. */
8233 reginfo_sec = NULL;
8234 mdebug_sec = NULL;
8235 gptab_data_sec = NULL;
8236 gptab_bss_sec = NULL;
9719ad41 8237 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8238 {
8239 if (strcmp (o->name, ".reginfo") == 0)
8240 {
8241 memset (&reginfo, 0, sizeof reginfo);
8242
8243 /* We have found the .reginfo section in the output file.
8244 Look through all the link_orders comprising it and merge
8245 the information together. */
9719ad41 8246 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8247 {
8248 asection *input_section;
8249 bfd *input_bfd;
8250 Elf32_External_RegInfo ext;
8251 Elf32_RegInfo sub;
8252
8253 if (p->type != bfd_indirect_link_order)
8254 {
8255 if (p->type == bfd_data_link_order)
8256 continue;
8257 abort ();
8258 }
8259
8260 input_section = p->u.indirect.section;
8261 input_bfd = input_section->owner;
8262
b49e97c9 8263 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 8264 &ext, 0, sizeof ext))
b34976b6 8265 return FALSE;
b49e97c9
TS
8266
8267 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8268
8269 reginfo.ri_gprmask |= sub.ri_gprmask;
8270 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8271 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8272 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8273 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8274
8275 /* ri_gp_value is set by the function
8276 mips_elf32_section_processing when the section is
8277 finally written out. */
8278
8279 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8280 elf_link_input_bfd ignores this section. */
8281 input_section->flags &= ~SEC_HAS_CONTENTS;
8282 }
8283
8284 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 8285 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
8286
8287 /* Skip this section later on (I don't think this currently
8288 matters, but someday it might). */
9719ad41 8289 o->link_order_head = NULL;
b49e97c9
TS
8290
8291 reginfo_sec = o;
8292 }
8293
8294 if (strcmp (o->name, ".mdebug") == 0)
8295 {
8296 struct extsym_info einfo;
8297 bfd_vma last;
8298
8299 /* We have found the .mdebug section in the output file.
8300 Look through all the link_orders comprising it and merge
8301 the information together. */
8302 symhdr->magic = swap->sym_magic;
8303 /* FIXME: What should the version stamp be? */
8304 symhdr->vstamp = 0;
8305 symhdr->ilineMax = 0;
8306 symhdr->cbLine = 0;
8307 symhdr->idnMax = 0;
8308 symhdr->ipdMax = 0;
8309 symhdr->isymMax = 0;
8310 symhdr->ioptMax = 0;
8311 symhdr->iauxMax = 0;
8312 symhdr->issMax = 0;
8313 symhdr->issExtMax = 0;
8314 symhdr->ifdMax = 0;
8315 symhdr->crfd = 0;
8316 symhdr->iextMax = 0;
8317
8318 /* We accumulate the debugging information itself in the
8319 debug_info structure. */
8320 debug.line = NULL;
8321 debug.external_dnr = NULL;
8322 debug.external_pdr = NULL;
8323 debug.external_sym = NULL;
8324 debug.external_opt = NULL;
8325 debug.external_aux = NULL;
8326 debug.ss = NULL;
8327 debug.ssext = debug.ssext_end = NULL;
8328 debug.external_fdr = NULL;
8329 debug.external_rfd = NULL;
8330 debug.external_ext = debug.external_ext_end = NULL;
8331
8332 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 8333 if (mdebug_handle == NULL)
b34976b6 8334 return FALSE;
b49e97c9
TS
8335
8336 esym.jmptbl = 0;
8337 esym.cobol_main = 0;
8338 esym.weakext = 0;
8339 esym.reserved = 0;
8340 esym.ifd = ifdNil;
8341 esym.asym.iss = issNil;
8342 esym.asym.st = stLocal;
8343 esym.asym.reserved = 0;
8344 esym.asym.index = indexNil;
8345 last = 0;
8346 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8347 {
8348 esym.asym.sc = sc[i];
8349 s = bfd_get_section_by_name (abfd, secname[i]);
8350 if (s != NULL)
8351 {
8352 esym.asym.value = s->vma;
eea6121a 8353 last = s->vma + s->size;
b49e97c9
TS
8354 }
8355 else
8356 esym.asym.value = last;
8357 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8358 secname[i], &esym))
b34976b6 8359 return FALSE;
b49e97c9
TS
8360 }
8361
9719ad41 8362 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8363 {
8364 asection *input_section;
8365 bfd *input_bfd;
8366 const struct ecoff_debug_swap *input_swap;
8367 struct ecoff_debug_info input_debug;
8368 char *eraw_src;
8369 char *eraw_end;
8370
8371 if (p->type != bfd_indirect_link_order)
8372 {
8373 if (p->type == bfd_data_link_order)
8374 continue;
8375 abort ();
8376 }
8377
8378 input_section = p->u.indirect.section;
8379 input_bfd = input_section->owner;
8380
8381 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8382 || (get_elf_backend_data (input_bfd)
8383 ->elf_backend_ecoff_debug_swap) == NULL)
8384 {
8385 /* I don't know what a non MIPS ELF bfd would be
8386 doing with a .mdebug section, but I don't really
8387 want to deal with it. */
8388 continue;
8389 }
8390
8391 input_swap = (get_elf_backend_data (input_bfd)
8392 ->elf_backend_ecoff_debug_swap);
8393
eea6121a 8394 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
8395
8396 /* The ECOFF linking code expects that we have already
8397 read in the debugging information and set up an
8398 ecoff_debug_info structure, so we do that now. */
8399 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8400 &input_debug))
b34976b6 8401 return FALSE;
b49e97c9
TS
8402
8403 if (! (bfd_ecoff_debug_accumulate
8404 (mdebug_handle, abfd, &debug, swap, input_bfd,
8405 &input_debug, input_swap, info)))
b34976b6 8406 return FALSE;
b49e97c9
TS
8407
8408 /* Loop through the external symbols. For each one with
8409 interesting information, try to find the symbol in
8410 the linker global hash table and save the information
8411 for the output external symbols. */
8412 eraw_src = input_debug.external_ext;
8413 eraw_end = (eraw_src
8414 + (input_debug.symbolic_header.iextMax
8415 * input_swap->external_ext_size));
8416 for (;
8417 eraw_src < eraw_end;
8418 eraw_src += input_swap->external_ext_size)
8419 {
8420 EXTR ext;
8421 const char *name;
8422 struct mips_elf_link_hash_entry *h;
8423
9719ad41 8424 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
8425 if (ext.asym.sc == scNil
8426 || ext.asym.sc == scUndefined
8427 || ext.asym.sc == scSUndefined)
8428 continue;
8429
8430 name = input_debug.ssext + ext.asym.iss;
8431 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 8432 name, FALSE, FALSE, TRUE);
b49e97c9
TS
8433 if (h == NULL || h->esym.ifd != -2)
8434 continue;
8435
8436 if (ext.ifd != -1)
8437 {
8438 BFD_ASSERT (ext.ifd
8439 < input_debug.symbolic_header.ifdMax);
8440 ext.ifd = input_debug.ifdmap[ext.ifd];
8441 }
8442
8443 h->esym = ext;
8444 }
8445
8446 /* Free up the information we just read. */
8447 free (input_debug.line);
8448 free (input_debug.external_dnr);
8449 free (input_debug.external_pdr);
8450 free (input_debug.external_sym);
8451 free (input_debug.external_opt);
8452 free (input_debug.external_aux);
8453 free (input_debug.ss);
8454 free (input_debug.ssext);
8455 free (input_debug.external_fdr);
8456 free (input_debug.external_rfd);
8457 free (input_debug.external_ext);
8458
8459 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8460 elf_link_input_bfd ignores this section. */
8461 input_section->flags &= ~SEC_HAS_CONTENTS;
8462 }
8463
8464 if (SGI_COMPAT (abfd) && info->shared)
8465 {
8466 /* Create .rtproc section. */
8467 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8468 if (rtproc_sec == NULL)
8469 {
8470 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8471 | SEC_LINKER_CREATED | SEC_READONLY);
8472
8473 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8474 if (rtproc_sec == NULL
8475 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8476 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 8477 return FALSE;
b49e97c9
TS
8478 }
8479
8480 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8481 info, rtproc_sec,
8482 &debug))
b34976b6 8483 return FALSE;
b49e97c9
TS
8484 }
8485
8486 /* Build the external symbol information. */
8487 einfo.abfd = abfd;
8488 einfo.info = info;
8489 einfo.debug = &debug;
8490 einfo.swap = swap;
b34976b6 8491 einfo.failed = FALSE;
b49e97c9 8492 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 8493 mips_elf_output_extsym, &einfo);
b49e97c9 8494 if (einfo.failed)
b34976b6 8495 return FALSE;
b49e97c9
TS
8496
8497 /* Set the size of the .mdebug section. */
eea6121a 8498 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
8499
8500 /* Skip this section later on (I don't think this currently
8501 matters, but someday it might). */
9719ad41 8502 o->link_order_head = NULL;
b49e97c9
TS
8503
8504 mdebug_sec = o;
8505 }
8506
8507 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8508 {
8509 const char *subname;
8510 unsigned int c;
8511 Elf32_gptab *tab;
8512 Elf32_External_gptab *ext_tab;
8513 unsigned int j;
8514
8515 /* The .gptab.sdata and .gptab.sbss sections hold
8516 information describing how the small data area would
8517 change depending upon the -G switch. These sections
8518 not used in executables files. */
1049f94e 8519 if (! info->relocatable)
b49e97c9 8520 {
9719ad41 8521 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8522 {
8523 asection *input_section;
8524
8525 if (p->type != bfd_indirect_link_order)
8526 {
8527 if (p->type == bfd_data_link_order)
8528 continue;
8529 abort ();
8530 }
8531
8532 input_section = p->u.indirect.section;
8533
8534 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8535 elf_link_input_bfd ignores this section. */
8536 input_section->flags &= ~SEC_HAS_CONTENTS;
8537 }
8538
8539 /* Skip this section later on (I don't think this
8540 currently matters, but someday it might). */
9719ad41 8541 o->link_order_head = NULL;
b49e97c9
TS
8542
8543 /* Really remove the section. */
8544 for (secpp = &abfd->sections;
8545 *secpp != o;
8546 secpp = &(*secpp)->next)
8547 ;
8548 bfd_section_list_remove (abfd, secpp);
8549 --abfd->section_count;
8550
8551 continue;
8552 }
8553
8554 /* There is one gptab for initialized data, and one for
8555 uninitialized data. */
8556 if (strcmp (o->name, ".gptab.sdata") == 0)
8557 gptab_data_sec = o;
8558 else if (strcmp (o->name, ".gptab.sbss") == 0)
8559 gptab_bss_sec = o;
8560 else
8561 {
8562 (*_bfd_error_handler)
8563 (_("%s: illegal section name `%s'"),
8564 bfd_get_filename (abfd), o->name);
8565 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 8566 return FALSE;
b49e97c9
TS
8567 }
8568
8569 /* The linker script always combines .gptab.data and
8570 .gptab.sdata into .gptab.sdata, and likewise for
8571 .gptab.bss and .gptab.sbss. It is possible that there is
8572 no .sdata or .sbss section in the output file, in which
8573 case we must change the name of the output section. */
8574 subname = o->name + sizeof ".gptab" - 1;
8575 if (bfd_get_section_by_name (abfd, subname) == NULL)
8576 {
8577 if (o == gptab_data_sec)
8578 o->name = ".gptab.data";
8579 else
8580 o->name = ".gptab.bss";
8581 subname = o->name + sizeof ".gptab" - 1;
8582 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8583 }
8584
8585 /* Set up the first entry. */
8586 c = 1;
8587 amt = c * sizeof (Elf32_gptab);
9719ad41 8588 tab = bfd_malloc (amt);
b49e97c9 8589 if (tab == NULL)
b34976b6 8590 return FALSE;
b49e97c9
TS
8591 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8592 tab[0].gt_header.gt_unused = 0;
8593
8594 /* Combine the input sections. */
9719ad41 8595 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8596 {
8597 asection *input_section;
8598 bfd *input_bfd;
8599 bfd_size_type size;
8600 unsigned long last;
8601 bfd_size_type gpentry;
8602
8603 if (p->type != bfd_indirect_link_order)
8604 {
8605 if (p->type == bfd_data_link_order)
8606 continue;
8607 abort ();
8608 }
8609
8610 input_section = p->u.indirect.section;
8611 input_bfd = input_section->owner;
8612
8613 /* Combine the gptab entries for this input section one
8614 by one. We know that the input gptab entries are
8615 sorted by ascending -G value. */
eea6121a 8616 size = input_section->size;
b49e97c9
TS
8617 last = 0;
8618 for (gpentry = sizeof (Elf32_External_gptab);
8619 gpentry < size;
8620 gpentry += sizeof (Elf32_External_gptab))
8621 {
8622 Elf32_External_gptab ext_gptab;
8623 Elf32_gptab int_gptab;
8624 unsigned long val;
8625 unsigned long add;
b34976b6 8626 bfd_boolean exact;
b49e97c9
TS
8627 unsigned int look;
8628
8629 if (! (bfd_get_section_contents
9719ad41
RS
8630 (input_bfd, input_section, &ext_gptab, gpentry,
8631 sizeof (Elf32_External_gptab))))
b49e97c9
TS
8632 {
8633 free (tab);
b34976b6 8634 return FALSE;
b49e97c9
TS
8635 }
8636
8637 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8638 &int_gptab);
8639 val = int_gptab.gt_entry.gt_g_value;
8640 add = int_gptab.gt_entry.gt_bytes - last;
8641
b34976b6 8642 exact = FALSE;
b49e97c9
TS
8643 for (look = 1; look < c; look++)
8644 {
8645 if (tab[look].gt_entry.gt_g_value >= val)
8646 tab[look].gt_entry.gt_bytes += add;
8647
8648 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 8649 exact = TRUE;
b49e97c9
TS
8650 }
8651
8652 if (! exact)
8653 {
8654 Elf32_gptab *new_tab;
8655 unsigned int max;
8656
8657 /* We need a new table entry. */
8658 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 8659 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
8660 if (new_tab == NULL)
8661 {
8662 free (tab);
b34976b6 8663 return FALSE;
b49e97c9
TS
8664 }
8665 tab = new_tab;
8666 tab[c].gt_entry.gt_g_value = val;
8667 tab[c].gt_entry.gt_bytes = add;
8668
8669 /* Merge in the size for the next smallest -G
8670 value, since that will be implied by this new
8671 value. */
8672 max = 0;
8673 for (look = 1; look < c; look++)
8674 {
8675 if (tab[look].gt_entry.gt_g_value < val
8676 && (max == 0
8677 || (tab[look].gt_entry.gt_g_value
8678 > tab[max].gt_entry.gt_g_value)))
8679 max = look;
8680 }
8681 if (max != 0)
8682 tab[c].gt_entry.gt_bytes +=
8683 tab[max].gt_entry.gt_bytes;
8684
8685 ++c;
8686 }
8687
8688 last = int_gptab.gt_entry.gt_bytes;
8689 }
8690
8691 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8692 elf_link_input_bfd ignores this section. */
8693 input_section->flags &= ~SEC_HAS_CONTENTS;
8694 }
8695
8696 /* The table must be sorted by -G value. */
8697 if (c > 2)
8698 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8699
8700 /* Swap out the table. */
8701 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 8702 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
8703 if (ext_tab == NULL)
8704 {
8705 free (tab);
b34976b6 8706 return FALSE;
b49e97c9
TS
8707 }
8708
8709 for (j = 0; j < c; j++)
8710 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8711 free (tab);
8712
eea6121a 8713 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
8714 o->contents = (bfd_byte *) ext_tab;
8715
8716 /* Skip this section later on (I don't think this currently
8717 matters, but someday it might). */
9719ad41 8718 o->link_order_head = NULL;
b49e97c9
TS
8719 }
8720 }
8721
8722 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 8723 if (!bfd_elf_final_link (abfd, info))
b34976b6 8724 return FALSE;
b49e97c9
TS
8725
8726 /* Now write out the computed sections. */
8727
9719ad41 8728 if (reginfo_sec != NULL)
b49e97c9
TS
8729 {
8730 Elf32_External_RegInfo ext;
8731
8732 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 8733 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 8734 return FALSE;
b49e97c9
TS
8735 }
8736
9719ad41 8737 if (mdebug_sec != NULL)
b49e97c9
TS
8738 {
8739 BFD_ASSERT (abfd->output_has_begun);
8740 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8741 swap, info,
8742 mdebug_sec->filepos))
b34976b6 8743 return FALSE;
b49e97c9
TS
8744
8745 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8746 }
8747
9719ad41 8748 if (gptab_data_sec != NULL)
b49e97c9
TS
8749 {
8750 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8751 gptab_data_sec->contents,
eea6121a 8752 0, gptab_data_sec->size))
b34976b6 8753 return FALSE;
b49e97c9
TS
8754 }
8755
9719ad41 8756 if (gptab_bss_sec != NULL)
b49e97c9
TS
8757 {
8758 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8759 gptab_bss_sec->contents,
eea6121a 8760 0, gptab_bss_sec->size))
b34976b6 8761 return FALSE;
b49e97c9
TS
8762 }
8763
8764 if (SGI_COMPAT (abfd))
8765 {
8766 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8767 if (rtproc_sec != NULL)
8768 {
8769 if (! bfd_set_section_contents (abfd, rtproc_sec,
8770 rtproc_sec->contents,
eea6121a 8771 0, rtproc_sec->size))
b34976b6 8772 return FALSE;
b49e97c9
TS
8773 }
8774 }
8775
b34976b6 8776 return TRUE;
b49e97c9
TS
8777}
8778\f
64543e1a
RS
8779/* Structure for saying that BFD machine EXTENSION extends BASE. */
8780
8781struct mips_mach_extension {
8782 unsigned long extension, base;
8783};
8784
8785
8786/* An array describing how BFD machines relate to one another. The entries
8787 are ordered topologically with MIPS I extensions listed last. */
8788
8789static const struct mips_mach_extension mips_mach_extensions[] = {
8790 /* MIPS64 extensions. */
5f74bc13 8791 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
8792 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8793
8794 /* MIPS V extensions. */
8795 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8796
8797 /* R10000 extensions. */
8798 { bfd_mach_mips12000, bfd_mach_mips10000 },
8799
8800 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8801 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8802 better to allow vr5400 and vr5500 code to be merged anyway, since
8803 many libraries will just use the core ISA. Perhaps we could add
8804 some sort of ASE flag if this ever proves a problem. */
8805 { bfd_mach_mips5500, bfd_mach_mips5400 },
8806 { bfd_mach_mips5400, bfd_mach_mips5000 },
8807
8808 /* MIPS IV extensions. */
8809 { bfd_mach_mips5, bfd_mach_mips8000 },
8810 { bfd_mach_mips10000, bfd_mach_mips8000 },
8811 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 8812 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 8813 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
8814
8815 /* VR4100 extensions. */
8816 { bfd_mach_mips4120, bfd_mach_mips4100 },
8817 { bfd_mach_mips4111, bfd_mach_mips4100 },
8818
8819 /* MIPS III extensions. */
8820 { bfd_mach_mips8000, bfd_mach_mips4000 },
8821 { bfd_mach_mips4650, bfd_mach_mips4000 },
8822 { bfd_mach_mips4600, bfd_mach_mips4000 },
8823 { bfd_mach_mips4400, bfd_mach_mips4000 },
8824 { bfd_mach_mips4300, bfd_mach_mips4000 },
8825 { bfd_mach_mips4100, bfd_mach_mips4000 },
8826 { bfd_mach_mips4010, bfd_mach_mips4000 },
8827
8828 /* MIPS32 extensions. */
8829 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8830
8831 /* MIPS II extensions. */
8832 { bfd_mach_mips4000, bfd_mach_mips6000 },
8833 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8834
8835 /* MIPS I extensions. */
8836 { bfd_mach_mips6000, bfd_mach_mips3000 },
8837 { bfd_mach_mips3900, bfd_mach_mips3000 }
8838};
8839
8840
8841/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8842
8843static bfd_boolean
9719ad41 8844mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
8845{
8846 size_t i;
8847
8848 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8849 if (extension == mips_mach_extensions[i].extension)
8850 extension = mips_mach_extensions[i].base;
8851
8852 return extension == base;
8853}
8854
8855
8856/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 8857
b34976b6 8858static bfd_boolean
9719ad41 8859mips_32bit_flags_p (flagword flags)
00707a0e 8860{
64543e1a
RS
8861 return ((flags & EF_MIPS_32BITMODE) != 0
8862 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8863 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8864 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8865 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8866 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8867 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
8868}
8869
64543e1a 8870
b49e97c9
TS
8871/* Merge backend specific data from an object file to the output
8872 object file when linking. */
8873
b34976b6 8874bfd_boolean
9719ad41 8875_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
8876{
8877 flagword old_flags;
8878 flagword new_flags;
b34976b6
AM
8879 bfd_boolean ok;
8880 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
8881 asection *sec;
8882
8883 /* Check if we have the same endianess */
82e51918 8884 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
8885 {
8886 (*_bfd_error_handler)
d003868e
AM
8887 (_("%B: endianness incompatible with that of the selected emulation"),
8888 ibfd);
aa701218
AO
8889 return FALSE;
8890 }
b49e97c9
TS
8891
8892 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8893 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 8894 return TRUE;
b49e97c9 8895
aa701218
AO
8896 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8897 {
8898 (*_bfd_error_handler)
d003868e
AM
8899 (_("%B: ABI is incompatible with that of the selected emulation"),
8900 ibfd);
aa701218
AO
8901 return FALSE;
8902 }
8903
b49e97c9
TS
8904 new_flags = elf_elfheader (ibfd)->e_flags;
8905 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8906 old_flags = elf_elfheader (obfd)->e_flags;
8907
8908 if (! elf_flags_init (obfd))
8909 {
b34976b6 8910 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
8911 elf_elfheader (obfd)->e_flags = new_flags;
8912 elf_elfheader (obfd)->e_ident[EI_CLASS]
8913 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8914
8915 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8916 && bfd_get_arch_info (obfd)->the_default)
8917 {
8918 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8919 bfd_get_mach (ibfd)))
b34976b6 8920 return FALSE;
b49e97c9
TS
8921 }
8922
b34976b6 8923 return TRUE;
b49e97c9
TS
8924 }
8925
8926 /* Check flag compatibility. */
8927
8928 new_flags &= ~EF_MIPS_NOREORDER;
8929 old_flags &= ~EF_MIPS_NOREORDER;
8930
f4416af6
AO
8931 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8932 doesn't seem to matter. */
8933 new_flags &= ~EF_MIPS_XGOT;
8934 old_flags &= ~EF_MIPS_XGOT;
8935
98a8deaf
RS
8936 /* MIPSpro generates ucode info in n64 objects. Again, we should
8937 just be able to ignore this. */
8938 new_flags &= ~EF_MIPS_UCODE;
8939 old_flags &= ~EF_MIPS_UCODE;
8940
b49e97c9 8941 if (new_flags == old_flags)
b34976b6 8942 return TRUE;
b49e97c9
TS
8943
8944 /* Check to see if the input BFD actually contains any sections.
8945 If not, its flags may not have been initialised either, but it cannot
8946 actually cause any incompatibility. */
8947 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8948 {
8949 /* Ignore synthetic sections and empty .text, .data and .bss sections
8950 which are automatically generated by gas. */
8951 if (strcmp (sec->name, ".reginfo")
8952 && strcmp (sec->name, ".mdebug")
eea6121a 8953 && (sec->size != 0
d13d89fa
NS
8954 || (strcmp (sec->name, ".text")
8955 && strcmp (sec->name, ".data")
8956 && strcmp (sec->name, ".bss"))))
b49e97c9 8957 {
b34976b6 8958 null_input_bfd = FALSE;
b49e97c9
TS
8959 break;
8960 }
8961 }
8962 if (null_input_bfd)
b34976b6 8963 return TRUE;
b49e97c9 8964
b34976b6 8965 ok = TRUE;
b49e97c9 8966
143d77c5
EC
8967 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
8968 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 8969 {
b49e97c9 8970 (*_bfd_error_handler)
d003868e
AM
8971 (_("%B: warning: linking PIC files with non-PIC files"),
8972 ibfd);
143d77c5 8973 ok = TRUE;
b49e97c9
TS
8974 }
8975
143d77c5
EC
8976 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
8977 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
8978 if (! (new_flags & EF_MIPS_PIC))
8979 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
8980
8981 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8982 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 8983
64543e1a
RS
8984 /* Compare the ISAs. */
8985 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 8986 {
64543e1a 8987 (*_bfd_error_handler)
d003868e
AM
8988 (_("%B: linking 32-bit code with 64-bit code"),
8989 ibfd);
64543e1a
RS
8990 ok = FALSE;
8991 }
8992 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8993 {
8994 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8995 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 8996 {
64543e1a
RS
8997 /* Copy the architecture info from IBFD to OBFD. Also copy
8998 the 32-bit flag (if set) so that we continue to recognise
8999 OBFD as a 32-bit binary. */
9000 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9001 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9002 elf_elfheader (obfd)->e_flags
9003 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9004
9005 /* Copy across the ABI flags if OBFD doesn't use them
9006 and if that was what caused us to treat IBFD as 32-bit. */
9007 if ((old_flags & EF_MIPS_ABI) == 0
9008 && mips_32bit_flags_p (new_flags)
9009 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9010 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9011 }
9012 else
9013 {
64543e1a 9014 /* The ISAs aren't compatible. */
b49e97c9 9015 (*_bfd_error_handler)
d003868e
AM
9016 (_("%B: linking %s module with previous %s modules"),
9017 ibfd,
64543e1a
RS
9018 bfd_printable_name (ibfd),
9019 bfd_printable_name (obfd));
b34976b6 9020 ok = FALSE;
b49e97c9 9021 }
b49e97c9
TS
9022 }
9023
64543e1a
RS
9024 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9025 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9026
9027 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9028 does set EI_CLASS differently from any 32-bit ABI. */
9029 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9030 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9031 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9032 {
9033 /* Only error if both are set (to different values). */
9034 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9035 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9036 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9037 {
9038 (*_bfd_error_handler)
d003868e
AM
9039 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9040 ibfd,
b49e97c9
TS
9041 elf_mips_abi_name (ibfd),
9042 elf_mips_abi_name (obfd));
b34976b6 9043 ok = FALSE;
b49e97c9
TS
9044 }
9045 new_flags &= ~EF_MIPS_ABI;
9046 old_flags &= ~EF_MIPS_ABI;
9047 }
9048
fb39dac1
RS
9049 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9050 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9051 {
9052 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9053
9054 new_flags &= ~ EF_MIPS_ARCH_ASE;
9055 old_flags &= ~ EF_MIPS_ARCH_ASE;
9056 }
9057
b49e97c9
TS
9058 /* Warn about any other mismatches */
9059 if (new_flags != old_flags)
9060 {
9061 (*_bfd_error_handler)
d003868e
AM
9062 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9063 ibfd, (unsigned long) new_flags,
b49e97c9 9064 (unsigned long) old_flags);
b34976b6 9065 ok = FALSE;
b49e97c9
TS
9066 }
9067
9068 if (! ok)
9069 {
9070 bfd_set_error (bfd_error_bad_value);
b34976b6 9071 return FALSE;
b49e97c9
TS
9072 }
9073
b34976b6 9074 return TRUE;
b49e97c9
TS
9075}
9076
9077/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9078
b34976b6 9079bfd_boolean
9719ad41 9080_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
9081{
9082 BFD_ASSERT (!elf_flags_init (abfd)
9083 || elf_elfheader (abfd)->e_flags == flags);
9084
9085 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9086 elf_flags_init (abfd) = TRUE;
9087 return TRUE;
b49e97c9
TS
9088}
9089
b34976b6 9090bfd_boolean
9719ad41 9091_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 9092{
9719ad41 9093 FILE *file = ptr;
b49e97c9
TS
9094
9095 BFD_ASSERT (abfd != NULL && ptr != NULL);
9096
9097 /* Print normal ELF private data. */
9098 _bfd_elf_print_private_bfd_data (abfd, ptr);
9099
9100 /* xgettext:c-format */
9101 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9102
9103 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9104 fprintf (file, _(" [abi=O32]"));
9105 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9106 fprintf (file, _(" [abi=O64]"));
9107 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9108 fprintf (file, _(" [abi=EABI32]"));
9109 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9110 fprintf (file, _(" [abi=EABI64]"));
9111 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9112 fprintf (file, _(" [abi unknown]"));
9113 else if (ABI_N32_P (abfd))
9114 fprintf (file, _(" [abi=N32]"));
9115 else if (ABI_64_P (abfd))
9116 fprintf (file, _(" [abi=64]"));
9117 else
9118 fprintf (file, _(" [no abi set]"));
9119
9120 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9121 fprintf (file, _(" [mips1]"));
9122 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9123 fprintf (file, _(" [mips2]"));
9124 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9125 fprintf (file, _(" [mips3]"));
9126 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9127 fprintf (file, _(" [mips4]"));
9128 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9129 fprintf (file, _(" [mips5]"));
9130 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9131 fprintf (file, _(" [mips32]"));
9132 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9133 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9134 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9135 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
9136 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9137 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
9138 else
9139 fprintf (file, _(" [unknown ISA]"));
9140
40d32fc6
CD
9141 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9142 fprintf (file, _(" [mdmx]"));
9143
9144 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9145 fprintf (file, _(" [mips16]"));
9146
b49e97c9
TS
9147 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9148 fprintf (file, _(" [32bitmode]"));
9149 else
9150 fprintf (file, _(" [not 32bitmode]"));
9151
9152 fputc ('\n', file);
9153
b34976b6 9154 return TRUE;
b49e97c9 9155}
2f89ff8d
L
9156
9157struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9158{
7dcb9820
AM
9159 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9160 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9161 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9162 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9163 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9164 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9165 { NULL, 0, 0, 0, 0 }
2f89ff8d 9166};
This page took 0.921442 seconds and 4 git commands to generate.