* ldlang.h (lang_output_section_statement_type): Rearrange. Remove
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
77cfaee6 3 2003, 2004, 2005 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
3e110533 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
0f20cc35
DJ
67
68 /* The TLS types included in this GOT entry (specifically, GD and
69 IE). The GD and IE flags can be added as we encounter new
70 relocations. LDM can also be set; it will always be alone, not
71 combined with any GD or IE flags. An LDM GOT entry will be
72 a local symbol entry with r_symndx == 0. */
73 unsigned char tls_type;
74
b15e6682 75 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
76 corresponding to this symbol+addend. If it's a global symbol
77 whose offset is yet to be decided, it's going to be -1. */
78 long gotidx;
b15e6682
AO
79};
80
f0abc2a1 81/* This structure is used to hold .got information when linking. */
b49e97c9
TS
82
83struct mips_got_info
84{
85 /* The global symbol in the GOT with the lowest index in the dynamic
86 symbol table. */
87 struct elf_link_hash_entry *global_gotsym;
88 /* The number of global .got entries. */
89 unsigned int global_gotno;
0f20cc35
DJ
90 /* The number of .got slots used for TLS. */
91 unsigned int tls_gotno;
92 /* The first unused TLS .got entry. Used only during
93 mips_elf_initialize_tls_index. */
94 unsigned int tls_assigned_gotno;
b49e97c9
TS
95 /* The number of local .got entries. */
96 unsigned int local_gotno;
97 /* The number of local .got entries we have used. */
98 unsigned int assigned_gotno;
b15e6682
AO
99 /* A hash table holding members of the got. */
100 struct htab *got_entries;
f4416af6
AO
101 /* A hash table mapping input bfds to other mips_got_info. NULL
102 unless multi-got was necessary. */
103 struct htab *bfd2got;
104 /* In multi-got links, a pointer to the next got (err, rather, most
105 of the time, it points to the previous got). */
106 struct mips_got_info *next;
0f20cc35
DJ
107 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
108 for none, or MINUS_TWO for not yet assigned. This is needed
109 because a single-GOT link may have multiple hash table entries
110 for the LDM. It does not get initialized in multi-GOT mode. */
111 bfd_vma tls_ldm_offset;
f4416af6
AO
112};
113
114/* Map an input bfd to a got in a multi-got link. */
115
116struct mips_elf_bfd2got_hash {
117 bfd *bfd;
118 struct mips_got_info *g;
119};
120
121/* Structure passed when traversing the bfd2got hash table, used to
122 create and merge bfd's gots. */
123
124struct mips_elf_got_per_bfd_arg
125{
126 /* A hashtable that maps bfds to gots. */
127 htab_t bfd2got;
128 /* The output bfd. */
129 bfd *obfd;
130 /* The link information. */
131 struct bfd_link_info *info;
132 /* A pointer to the primary got, i.e., the one that's going to get
133 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
134 DT_MIPS_GOTSYM. */
135 struct mips_got_info *primary;
136 /* A non-primary got we're trying to merge with other input bfd's
137 gots. */
138 struct mips_got_info *current;
139 /* The maximum number of got entries that can be addressed with a
140 16-bit offset. */
141 unsigned int max_count;
142 /* The number of local and global entries in the primary got. */
143 unsigned int primary_count;
144 /* The number of local and global entries in the current got. */
145 unsigned int current_count;
0f20cc35
DJ
146 /* The total number of global entries which will live in the
147 primary got and be automatically relocated. This includes
148 those not referenced by the primary GOT but included in
149 the "master" GOT. */
150 unsigned int global_count;
f4416af6
AO
151};
152
153/* Another structure used to pass arguments for got entries traversal. */
154
155struct mips_elf_set_global_got_offset_arg
156{
157 struct mips_got_info *g;
158 int value;
159 unsigned int needed_relocs;
160 struct bfd_link_info *info;
b49e97c9
TS
161};
162
0f20cc35
DJ
163/* A structure used to count TLS relocations or GOT entries, for GOT
164 entry or ELF symbol table traversal. */
165
166struct mips_elf_count_tls_arg
167{
168 struct bfd_link_info *info;
169 unsigned int needed;
170};
171
f0abc2a1
AM
172struct _mips_elf_section_data
173{
174 struct bfd_elf_section_data elf;
175 union
176 {
177 struct mips_got_info *got_info;
178 bfd_byte *tdata;
179 } u;
180};
181
182#define mips_elf_section_data(sec) \
68bfbfcc 183 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 184
b49e97c9
TS
185/* This structure is passed to mips_elf_sort_hash_table_f when sorting
186 the dynamic symbols. */
187
188struct mips_elf_hash_sort_data
189{
190 /* The symbol in the global GOT with the lowest dynamic symbol table
191 index. */
192 struct elf_link_hash_entry *low;
0f20cc35
DJ
193 /* The least dynamic symbol table index corresponding to a non-TLS
194 symbol with a GOT entry. */
b49e97c9 195 long min_got_dynindx;
f4416af6
AO
196 /* The greatest dynamic symbol table index corresponding to a symbol
197 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 198 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 199 long max_unref_got_dynindx;
b49e97c9
TS
200 /* The greatest dynamic symbol table index not corresponding to a
201 symbol without a GOT entry. */
202 long max_non_got_dynindx;
203};
204
205/* The MIPS ELF linker needs additional information for each symbol in
206 the global hash table. */
207
208struct mips_elf_link_hash_entry
209{
210 struct elf_link_hash_entry root;
211
212 /* External symbol information. */
213 EXTR esym;
214
215 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
216 this symbol. */
217 unsigned int possibly_dynamic_relocs;
218
219 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
220 a readonly section. */
b34976b6 221 bfd_boolean readonly_reloc;
b49e97c9 222
b49e97c9
TS
223 /* We must not create a stub for a symbol that has relocations
224 related to taking the function's address, i.e. any but
225 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
226 p. 4-20. */
b34976b6 227 bfd_boolean no_fn_stub;
b49e97c9
TS
228
229 /* If there is a stub that 32 bit functions should use to call this
230 16 bit function, this points to the section containing the stub. */
231 asection *fn_stub;
232
233 /* Whether we need the fn_stub; this is set if this symbol appears
234 in any relocs other than a 16 bit call. */
b34976b6 235 bfd_boolean need_fn_stub;
b49e97c9
TS
236
237 /* If there is a stub that 16 bit functions should use to call this
238 32 bit function, this points to the section containing the stub. */
239 asection *call_stub;
240
241 /* This is like the call_stub field, but it is used if the function
242 being called returns a floating point value. */
243 asection *call_fp_stub;
7c5fcef7 244
a008ac03
DJ
245 /* Are we forced local? This will only be set if we have converted
246 the initial global GOT entry to a local GOT entry. */
b34976b6 247 bfd_boolean forced_local;
0f20cc35
DJ
248
249#define GOT_NORMAL 0
250#define GOT_TLS_GD 1
251#define GOT_TLS_LDM 2
252#define GOT_TLS_IE 4
253#define GOT_TLS_OFFSET_DONE 0x40
254#define GOT_TLS_DONE 0x80
255 unsigned char tls_type;
256 /* This is only used in single-GOT mode; in multi-GOT mode there
257 is one mips_got_entry per GOT entry, so the offset is stored
258 there. In single-GOT mode there may be many mips_got_entry
259 structures all referring to the same GOT slot. It might be
260 possible to use root.got.offset instead, but that field is
261 overloaded already. */
262 bfd_vma tls_got_offset;
b49e97c9
TS
263};
264
265/* MIPS ELF linker hash table. */
266
267struct mips_elf_link_hash_table
268{
269 struct elf_link_hash_table root;
270#if 0
271 /* We no longer use this. */
272 /* String section indices for the dynamic section symbols. */
273 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
274#endif
275 /* The number of .rtproc entries. */
276 bfd_size_type procedure_count;
277 /* The size of the .compact_rel section (if SGI_COMPAT). */
278 bfd_size_type compact_rel_size;
279 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 280 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 281 bfd_boolean use_rld_obj_head;
b49e97c9
TS
282 /* This is the value of the __rld_map or __rld_obj_head symbol. */
283 bfd_vma rld_value;
284 /* This is set if we see any mips16 stub sections. */
b34976b6 285 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
286};
287
0f20cc35
DJ
288#define TLS_RELOC_P(r_type) \
289 (r_type == R_MIPS_TLS_DTPMOD32 \
290 || r_type == R_MIPS_TLS_DTPMOD64 \
291 || r_type == R_MIPS_TLS_DTPREL32 \
292 || r_type == R_MIPS_TLS_DTPREL64 \
293 || r_type == R_MIPS_TLS_GD \
294 || r_type == R_MIPS_TLS_LDM \
295 || r_type == R_MIPS_TLS_DTPREL_HI16 \
296 || r_type == R_MIPS_TLS_DTPREL_LO16 \
297 || r_type == R_MIPS_TLS_GOTTPREL \
298 || r_type == R_MIPS_TLS_TPREL32 \
299 || r_type == R_MIPS_TLS_TPREL64 \
300 || r_type == R_MIPS_TLS_TPREL_HI16 \
301 || r_type == R_MIPS_TLS_TPREL_LO16)
302
b49e97c9
TS
303/* Structure used to pass information to mips_elf_output_extsym. */
304
305struct extsym_info
306{
9e4aeb93
RS
307 bfd *abfd;
308 struct bfd_link_info *info;
b49e97c9
TS
309 struct ecoff_debug_info *debug;
310 const struct ecoff_debug_swap *swap;
b34976b6 311 bfd_boolean failed;
b49e97c9
TS
312};
313
8dc1a139 314/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
315
316static const char * const mips_elf_dynsym_rtproc_names[] =
317{
318 "_procedure_table",
319 "_procedure_string_table",
320 "_procedure_table_size",
321 NULL
322};
323
324/* These structures are used to generate the .compact_rel section on
8dc1a139 325 IRIX5. */
b49e97c9
TS
326
327typedef struct
328{
329 unsigned long id1; /* Always one? */
330 unsigned long num; /* Number of compact relocation entries. */
331 unsigned long id2; /* Always two? */
332 unsigned long offset; /* The file offset of the first relocation. */
333 unsigned long reserved0; /* Zero? */
334 unsigned long reserved1; /* Zero? */
335} Elf32_compact_rel;
336
337typedef struct
338{
339 bfd_byte id1[4];
340 bfd_byte num[4];
341 bfd_byte id2[4];
342 bfd_byte offset[4];
343 bfd_byte reserved0[4];
344 bfd_byte reserved1[4];
345} Elf32_External_compact_rel;
346
347typedef struct
348{
349 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
350 unsigned int rtype : 4; /* Relocation types. See below. */
351 unsigned int dist2to : 8;
352 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
353 unsigned long konst; /* KONST field. See below. */
354 unsigned long vaddr; /* VADDR to be relocated. */
355} Elf32_crinfo;
356
357typedef struct
358{
359 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
360 unsigned int rtype : 4; /* Relocation types. See below. */
361 unsigned int dist2to : 8;
362 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
363 unsigned long konst; /* KONST field. See below. */
364} Elf32_crinfo2;
365
366typedef struct
367{
368 bfd_byte info[4];
369 bfd_byte konst[4];
370 bfd_byte vaddr[4];
371} Elf32_External_crinfo;
372
373typedef struct
374{
375 bfd_byte info[4];
376 bfd_byte konst[4];
377} Elf32_External_crinfo2;
378
379/* These are the constants used to swap the bitfields in a crinfo. */
380
381#define CRINFO_CTYPE (0x1)
382#define CRINFO_CTYPE_SH (31)
383#define CRINFO_RTYPE (0xf)
384#define CRINFO_RTYPE_SH (27)
385#define CRINFO_DIST2TO (0xff)
386#define CRINFO_DIST2TO_SH (19)
387#define CRINFO_RELVADDR (0x7ffff)
388#define CRINFO_RELVADDR_SH (0)
389
390/* A compact relocation info has long (3 words) or short (2 words)
391 formats. A short format doesn't have VADDR field and relvaddr
392 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
393#define CRF_MIPS_LONG 1
394#define CRF_MIPS_SHORT 0
395
396/* There are 4 types of compact relocation at least. The value KONST
397 has different meaning for each type:
398
399 (type) (konst)
400 CT_MIPS_REL32 Address in data
401 CT_MIPS_WORD Address in word (XXX)
402 CT_MIPS_GPHI_LO GP - vaddr
403 CT_MIPS_JMPAD Address to jump
404 */
405
406#define CRT_MIPS_REL32 0xa
407#define CRT_MIPS_WORD 0xb
408#define CRT_MIPS_GPHI_LO 0xc
409#define CRT_MIPS_JMPAD 0xd
410
411#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
412#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
413#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
414#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
415\f
416/* The structure of the runtime procedure descriptor created by the
417 loader for use by the static exception system. */
418
419typedef struct runtime_pdr {
ae9a127f
NC
420 bfd_vma adr; /* Memory address of start of procedure. */
421 long regmask; /* Save register mask. */
422 long regoffset; /* Save register offset. */
423 long fregmask; /* Save floating point register mask. */
424 long fregoffset; /* Save floating point register offset. */
425 long frameoffset; /* Frame size. */
426 short framereg; /* Frame pointer register. */
427 short pcreg; /* Offset or reg of return pc. */
428 long irpss; /* Index into the runtime string table. */
b49e97c9 429 long reserved;
ae9a127f 430 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
431} RPDR, *pRPDR;
432#define cbRPDR sizeof (RPDR)
433#define rpdNil ((pRPDR) 0)
434\f
b15e6682 435static struct mips_got_entry *mips_elf_create_local_got_entry
0f20cc35
DJ
436 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma, unsigned long,
437 struct mips_elf_link_hash_entry *, int);
b34976b6 438static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 439 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
440static bfd_vma mips_elf_high
441 (bfd_vma);
b34976b6 442static bfd_boolean mips_elf_stub_section_p
9719ad41 443 (bfd *, asection *);
b34976b6 444static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
445 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
446 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
447 bfd_vma *, asection *);
9719ad41
RS
448static hashval_t mips_elf_got_entry_hash
449 (const void *);
f4416af6 450static bfd_vma mips_elf_adjust_gp
9719ad41 451 (bfd *, struct mips_got_info *, bfd *);
f4416af6 452static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 453 (struct mips_got_info *, bfd *);
f4416af6 454
b49e97c9
TS
455/* This will be used when we sort the dynamic relocation records. */
456static bfd *reldyn_sorting_bfd;
457
458/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 459
b49e97c9
TS
460#define ABI_N32_P(abfd) \
461 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
462
4a14403c 463/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 464#define ABI_64_P(abfd) \
141ff970 465 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 466
4a14403c
TS
467/* Nonzero if ABFD is using NewABI conventions. */
468#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
469
470/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
471#define IRIX_COMPAT(abfd) \
472 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
473
b49e97c9
TS
474/* Whether we are trying to be compatible with IRIX at all. */
475#define SGI_COMPAT(abfd) \
476 (IRIX_COMPAT (abfd) != ict_none)
477
478/* The name of the options section. */
479#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 480 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 481
cc2e31b9
RS
482/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
483 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
484#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
485 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
486
b49e97c9 487/* The name of the stub section. */
ca07892d 488#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
489
490/* The size of an external REL relocation. */
491#define MIPS_ELF_REL_SIZE(abfd) \
492 (get_elf_backend_data (abfd)->s->sizeof_rel)
493
494/* The size of an external dynamic table entry. */
495#define MIPS_ELF_DYN_SIZE(abfd) \
496 (get_elf_backend_data (abfd)->s->sizeof_dyn)
497
498/* The size of a GOT entry. */
499#define MIPS_ELF_GOT_SIZE(abfd) \
500 (get_elf_backend_data (abfd)->s->arch_size / 8)
501
502/* The size of a symbol-table entry. */
503#define MIPS_ELF_SYM_SIZE(abfd) \
504 (get_elf_backend_data (abfd)->s->sizeof_sym)
505
506/* The default alignment for sections, as a power of two. */
507#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 508 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
509
510/* Get word-sized data. */
511#define MIPS_ELF_GET_WORD(abfd, ptr) \
512 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
513
514/* Put out word-sized data. */
515#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
516 (ABI_64_P (abfd) \
517 ? bfd_put_64 (abfd, val, ptr) \
518 : bfd_put_32 (abfd, val, ptr))
519
520/* Add a dynamic symbol table-entry. */
9719ad41 521#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 522 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
523
524#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
526
4ffba85c
AO
527/* Determine whether the internal relocation of index REL_IDX is REL
528 (zero) or RELA (non-zero). The assumption is that, if there are
529 two relocation sections for this section, one of them is REL and
530 the other is RELA. If the index of the relocation we're testing is
531 in range for the first relocation section, check that the external
532 relocation size is that for RELA. It is also assumed that, if
533 rel_idx is not in range for the first section, and this first
534 section contains REL relocs, then the relocation is in the second
535 section, that is RELA. */
536#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
537 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
538 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
539 > (bfd_vma)(rel_idx)) \
540 == (elf_section_data (sec)->rel_hdr.sh_entsize \
541 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
542 : sizeof (Elf32_External_Rela))))
543
b49e97c9
TS
544/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
545 from smaller values. Start with zero, widen, *then* decrement. */
546#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 547#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
548
549/* The number of local .got entries we reserve. */
550#define MIPS_RESERVED_GOTNO (2)
551
f4416af6
AO
552/* The offset of $gp from the beginning of the .got section. */
553#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
554
555/* The maximum size of the GOT for it to be addressable using 16-bit
556 offsets from $gp. */
557#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
558
6a691779 559/* Instructions which appear in a stub. */
b49e97c9 560#define STUB_LW(abfd) \
f4416af6
AO
561 ((ABI_64_P (abfd) \
562 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
563 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9 564#define STUB_MOVE(abfd) \
6a691779
TS
565 ((ABI_64_P (abfd) \
566 ? 0x03e0782d /* daddu t7,ra */ \
567 : 0x03e07821)) /* addu t7,ra */
568#define STUB_JALR 0x0320f809 /* jalr t9,ra */
b49e97c9 569#define STUB_LI16(abfd) \
6a691779
TS
570 ((ABI_64_P (abfd) \
571 ? 0x64180000 /* daddiu t8,zero,0 */ \
572 : 0x24180000)) /* addiu t8,zero,0 */
b49e97c9
TS
573#define MIPS_FUNCTION_STUB_SIZE (16)
574
575/* The name of the dynamic interpreter. This is put in the .interp
576 section. */
577
578#define ELF_DYNAMIC_INTERPRETER(abfd) \
579 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
580 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
581 : "/usr/lib/libc.so.1")
582
583#ifdef BFD64
ee6423ed
AO
584#define MNAME(bfd,pre,pos) \
585 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
586#define ELF_R_SYM(bfd, i) \
587 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
588#define ELF_R_TYPE(bfd, i) \
589 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
590#define ELF_R_INFO(bfd, s, t) \
591 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
592#else
ee6423ed 593#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
594#define ELF_R_SYM(bfd, i) \
595 (ELF32_R_SYM (i))
596#define ELF_R_TYPE(bfd, i) \
597 (ELF32_R_TYPE (i))
598#define ELF_R_INFO(bfd, s, t) \
599 (ELF32_R_INFO (s, t))
600#endif
601\f
602 /* The mips16 compiler uses a couple of special sections to handle
603 floating point arguments.
604
605 Section names that look like .mips16.fn.FNNAME contain stubs that
606 copy floating point arguments from the fp regs to the gp regs and
607 then jump to FNNAME. If any 32 bit function calls FNNAME, the
608 call should be redirected to the stub instead. If no 32 bit
609 function calls FNNAME, the stub should be discarded. We need to
610 consider any reference to the function, not just a call, because
611 if the address of the function is taken we will need the stub,
612 since the address might be passed to a 32 bit function.
613
614 Section names that look like .mips16.call.FNNAME contain stubs
615 that copy floating point arguments from the gp regs to the fp
616 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
617 then any 16 bit function that calls FNNAME should be redirected
618 to the stub instead. If FNNAME is not a 32 bit function, the
619 stub should be discarded.
620
621 .mips16.call.fp.FNNAME sections are similar, but contain stubs
622 which call FNNAME and then copy the return value from the fp regs
623 to the gp regs. These stubs store the return value in $18 while
624 calling FNNAME; any function which might call one of these stubs
625 must arrange to save $18 around the call. (This case is not
626 needed for 32 bit functions that call 16 bit functions, because
627 16 bit functions always return floating point values in both
628 $f0/$f1 and $2/$3.)
629
630 Note that in all cases FNNAME might be defined statically.
631 Therefore, FNNAME is not used literally. Instead, the relocation
632 information will indicate which symbol the section is for.
633
634 We record any stubs that we find in the symbol table. */
635
636#define FN_STUB ".mips16.fn."
637#define CALL_STUB ".mips16.call."
638#define CALL_FP_STUB ".mips16.call.fp."
639\f
640/* Look up an entry in a MIPS ELF linker hash table. */
641
642#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
643 ((struct mips_elf_link_hash_entry *) \
644 elf_link_hash_lookup (&(table)->root, (string), (create), \
645 (copy), (follow)))
646
647/* Traverse a MIPS ELF linker hash table. */
648
649#define mips_elf_link_hash_traverse(table, func, info) \
650 (elf_link_hash_traverse \
651 (&(table)->root, \
9719ad41 652 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
653 (info)))
654
655/* Get the MIPS ELF linker hash table from a link_info structure. */
656
657#define mips_elf_hash_table(p) \
658 ((struct mips_elf_link_hash_table *) ((p)->hash))
659
0f20cc35
DJ
660/* Find the base offsets for thread-local storage in this object,
661 for GD/LD and IE/LE respectively. */
662
663#define TP_OFFSET 0x7000
664#define DTP_OFFSET 0x8000
665
666static bfd_vma
667dtprel_base (struct bfd_link_info *info)
668{
669 /* If tls_sec is NULL, we should have signalled an error already. */
670 if (elf_hash_table (info)->tls_sec == NULL)
671 return 0;
672 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
673}
674
675static bfd_vma
676tprel_base (struct bfd_link_info *info)
677{
678 /* If tls_sec is NULL, we should have signalled an error already. */
679 if (elf_hash_table (info)->tls_sec == NULL)
680 return 0;
681 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
682}
683
b49e97c9
TS
684/* Create an entry in a MIPS ELF linker hash table. */
685
686static struct bfd_hash_entry *
9719ad41
RS
687mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
688 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
689{
690 struct mips_elf_link_hash_entry *ret =
691 (struct mips_elf_link_hash_entry *) entry;
692
693 /* Allocate the structure if it has not already been allocated by a
694 subclass. */
9719ad41
RS
695 if (ret == NULL)
696 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
697 if (ret == NULL)
b49e97c9
TS
698 return (struct bfd_hash_entry *) ret;
699
700 /* Call the allocation method of the superclass. */
701 ret = ((struct mips_elf_link_hash_entry *)
702 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
703 table, string));
9719ad41 704 if (ret != NULL)
b49e97c9
TS
705 {
706 /* Set local fields. */
707 memset (&ret->esym, 0, sizeof (EXTR));
708 /* We use -2 as a marker to indicate that the information has
709 not been set. -1 means there is no associated ifd. */
710 ret->esym.ifd = -2;
711 ret->possibly_dynamic_relocs = 0;
b34976b6 712 ret->readonly_reloc = FALSE;
b34976b6 713 ret->no_fn_stub = FALSE;
b49e97c9 714 ret->fn_stub = NULL;
b34976b6 715 ret->need_fn_stub = FALSE;
b49e97c9
TS
716 ret->call_stub = NULL;
717 ret->call_fp_stub = NULL;
b34976b6 718 ret->forced_local = FALSE;
0f20cc35 719 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
720 }
721
722 return (struct bfd_hash_entry *) ret;
723}
f0abc2a1
AM
724
725bfd_boolean
9719ad41 726_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1
AM
727{
728 struct _mips_elf_section_data *sdata;
729 bfd_size_type amt = sizeof (*sdata);
730
9719ad41 731 sdata = bfd_zalloc (abfd, amt);
f0abc2a1
AM
732 if (sdata == NULL)
733 return FALSE;
9719ad41 734 sec->used_by_bfd = sdata;
f0abc2a1
AM
735
736 return _bfd_elf_new_section_hook (abfd, sec);
737}
b49e97c9
TS
738\f
739/* Read ECOFF debugging information from a .mdebug section into a
740 ecoff_debug_info structure. */
741
b34976b6 742bfd_boolean
9719ad41
RS
743_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
744 struct ecoff_debug_info *debug)
b49e97c9
TS
745{
746 HDRR *symhdr;
747 const struct ecoff_debug_swap *swap;
9719ad41 748 char *ext_hdr;
b49e97c9
TS
749
750 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
751 memset (debug, 0, sizeof (*debug));
752
9719ad41 753 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
754 if (ext_hdr == NULL && swap->external_hdr_size != 0)
755 goto error_return;
756
9719ad41 757 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 758 swap->external_hdr_size))
b49e97c9
TS
759 goto error_return;
760
761 symhdr = &debug->symbolic_header;
762 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
763
764 /* The symbolic header contains absolute file offsets and sizes to
765 read. */
766#define READ(ptr, offset, count, size, type) \
767 if (symhdr->count == 0) \
768 debug->ptr = NULL; \
769 else \
770 { \
771 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 772 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
773 if (debug->ptr == NULL) \
774 goto error_return; \
9719ad41 775 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
776 || bfd_bread (debug->ptr, amt, abfd) != amt) \
777 goto error_return; \
778 }
779
780 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
781 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
782 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
783 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
784 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
785 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
786 union aux_ext *);
787 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
788 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
789 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
790 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
791 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
792#undef READ
793
794 debug->fdr = NULL;
b49e97c9 795
b34976b6 796 return TRUE;
b49e97c9
TS
797
798 error_return:
799 if (ext_hdr != NULL)
800 free (ext_hdr);
801 if (debug->line != NULL)
802 free (debug->line);
803 if (debug->external_dnr != NULL)
804 free (debug->external_dnr);
805 if (debug->external_pdr != NULL)
806 free (debug->external_pdr);
807 if (debug->external_sym != NULL)
808 free (debug->external_sym);
809 if (debug->external_opt != NULL)
810 free (debug->external_opt);
811 if (debug->external_aux != NULL)
812 free (debug->external_aux);
813 if (debug->ss != NULL)
814 free (debug->ss);
815 if (debug->ssext != NULL)
816 free (debug->ssext);
817 if (debug->external_fdr != NULL)
818 free (debug->external_fdr);
819 if (debug->external_rfd != NULL)
820 free (debug->external_rfd);
821 if (debug->external_ext != NULL)
822 free (debug->external_ext);
b34976b6 823 return FALSE;
b49e97c9
TS
824}
825\f
826/* Swap RPDR (runtime procedure table entry) for output. */
827
828static void
9719ad41 829ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
830{
831 H_PUT_S32 (abfd, in->adr, ex->p_adr);
832 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
833 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
834 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
835 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
836 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
837
838 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
839 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
840
841 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
842}
843
844/* Create a runtime procedure table from the .mdebug section. */
845
b34976b6 846static bfd_boolean
9719ad41
RS
847mips_elf_create_procedure_table (void *handle, bfd *abfd,
848 struct bfd_link_info *info, asection *s,
849 struct ecoff_debug_info *debug)
b49e97c9
TS
850{
851 const struct ecoff_debug_swap *swap;
852 HDRR *hdr = &debug->symbolic_header;
853 RPDR *rpdr, *rp;
854 struct rpdr_ext *erp;
9719ad41 855 void *rtproc;
b49e97c9
TS
856 struct pdr_ext *epdr;
857 struct sym_ext *esym;
858 char *ss, **sv;
859 char *str;
860 bfd_size_type size;
861 bfd_size_type count;
862 unsigned long sindex;
863 unsigned long i;
864 PDR pdr;
865 SYMR sym;
866 const char *no_name_func = _("static procedure (no name)");
867
868 epdr = NULL;
869 rpdr = NULL;
870 esym = NULL;
871 ss = NULL;
872 sv = NULL;
873
874 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
875
876 sindex = strlen (no_name_func) + 1;
877 count = hdr->ipdMax;
878 if (count > 0)
879 {
880 size = swap->external_pdr_size;
881
9719ad41 882 epdr = bfd_malloc (size * count);
b49e97c9
TS
883 if (epdr == NULL)
884 goto error_return;
885
9719ad41 886 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
887 goto error_return;
888
889 size = sizeof (RPDR);
9719ad41 890 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
891 if (rpdr == NULL)
892 goto error_return;
893
894 size = sizeof (char *);
9719ad41 895 sv = bfd_malloc (size * count);
b49e97c9
TS
896 if (sv == NULL)
897 goto error_return;
898
899 count = hdr->isymMax;
900 size = swap->external_sym_size;
9719ad41 901 esym = bfd_malloc (size * count);
b49e97c9
TS
902 if (esym == NULL)
903 goto error_return;
904
9719ad41 905 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
906 goto error_return;
907
908 count = hdr->issMax;
9719ad41 909 ss = bfd_malloc (count);
b49e97c9
TS
910 if (ss == NULL)
911 goto error_return;
f075ee0c 912 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
913 goto error_return;
914
915 count = hdr->ipdMax;
916 for (i = 0; i < (unsigned long) count; i++, rp++)
917 {
9719ad41
RS
918 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
919 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
920 rp->adr = sym.value;
921 rp->regmask = pdr.regmask;
922 rp->regoffset = pdr.regoffset;
923 rp->fregmask = pdr.fregmask;
924 rp->fregoffset = pdr.fregoffset;
925 rp->frameoffset = pdr.frameoffset;
926 rp->framereg = pdr.framereg;
927 rp->pcreg = pdr.pcreg;
928 rp->irpss = sindex;
929 sv[i] = ss + sym.iss;
930 sindex += strlen (sv[i]) + 1;
931 }
932 }
933
934 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
935 size = BFD_ALIGN (size, 16);
9719ad41 936 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
937 if (rtproc == NULL)
938 {
939 mips_elf_hash_table (info)->procedure_count = 0;
940 goto error_return;
941 }
942
943 mips_elf_hash_table (info)->procedure_count = count + 2;
944
9719ad41 945 erp = rtproc;
b49e97c9
TS
946 memset (erp, 0, sizeof (struct rpdr_ext));
947 erp++;
948 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
949 strcpy (str, no_name_func);
950 str += strlen (no_name_func) + 1;
951 for (i = 0; i < count; i++)
952 {
953 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
954 strcpy (str, sv[i]);
955 str += strlen (sv[i]) + 1;
956 }
957 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
958
959 /* Set the size and contents of .rtproc section. */
eea6121a 960 s->size = size;
9719ad41 961 s->contents = rtproc;
b49e97c9
TS
962
963 /* Skip this section later on (I don't think this currently
964 matters, but someday it might). */
8423293d 965 s->map_head.link_order = NULL;
b49e97c9
TS
966
967 if (epdr != NULL)
968 free (epdr);
969 if (rpdr != NULL)
970 free (rpdr);
971 if (esym != NULL)
972 free (esym);
973 if (ss != NULL)
974 free (ss);
975 if (sv != NULL)
976 free (sv);
977
b34976b6 978 return TRUE;
b49e97c9
TS
979
980 error_return:
981 if (epdr != NULL)
982 free (epdr);
983 if (rpdr != NULL)
984 free (rpdr);
985 if (esym != NULL)
986 free (esym);
987 if (ss != NULL)
988 free (ss);
989 if (sv != NULL)
990 free (sv);
b34976b6 991 return FALSE;
b49e97c9
TS
992}
993
994/* Check the mips16 stubs for a particular symbol, and see if we can
995 discard them. */
996
b34976b6 997static bfd_boolean
9719ad41
RS
998mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
999 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1000{
1001 if (h->root.root.type == bfd_link_hash_warning)
1002 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1003
1004 if (h->fn_stub != NULL
1005 && ! h->need_fn_stub)
1006 {
1007 /* We don't need the fn_stub; the only references to this symbol
1008 are 16 bit calls. Clobber the size to 0 to prevent it from
1009 being included in the link. */
eea6121a 1010 h->fn_stub->size = 0;
b49e97c9
TS
1011 h->fn_stub->flags &= ~SEC_RELOC;
1012 h->fn_stub->reloc_count = 0;
1013 h->fn_stub->flags |= SEC_EXCLUDE;
1014 }
1015
1016 if (h->call_stub != NULL
1017 && h->root.other == STO_MIPS16)
1018 {
1019 /* We don't need the call_stub; this is a 16 bit function, so
1020 calls from other 16 bit functions are OK. Clobber the size
1021 to 0 to prevent it from being included in the link. */
eea6121a 1022 h->call_stub->size = 0;
b49e97c9
TS
1023 h->call_stub->flags &= ~SEC_RELOC;
1024 h->call_stub->reloc_count = 0;
1025 h->call_stub->flags |= SEC_EXCLUDE;
1026 }
1027
1028 if (h->call_fp_stub != NULL
1029 && h->root.other == STO_MIPS16)
1030 {
1031 /* We don't need the call_stub; this is a 16 bit function, so
1032 calls from other 16 bit functions are OK. Clobber the size
1033 to 0 to prevent it from being included in the link. */
eea6121a 1034 h->call_fp_stub->size = 0;
b49e97c9
TS
1035 h->call_fp_stub->flags &= ~SEC_RELOC;
1036 h->call_fp_stub->reloc_count = 0;
1037 h->call_fp_stub->flags |= SEC_EXCLUDE;
1038 }
1039
b34976b6 1040 return TRUE;
b49e97c9
TS
1041}
1042\f
d6f16593
MR
1043/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1044 Most mips16 instructions are 16 bits, but these instructions
1045 are 32 bits.
1046
1047 The format of these instructions is:
1048
1049 +--------------+--------------------------------+
1050 | JALX | X| Imm 20:16 | Imm 25:21 |
1051 +--------------+--------------------------------+
1052 | Immediate 15:0 |
1053 +-----------------------------------------------+
1054
1055 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1056 Note that the immediate value in the first word is swapped.
1057
1058 When producing a relocatable object file, R_MIPS16_26 is
1059 handled mostly like R_MIPS_26. In particular, the addend is
1060 stored as a straight 26-bit value in a 32-bit instruction.
1061 (gas makes life simpler for itself by never adjusting a
1062 R_MIPS16_26 reloc to be against a section, so the addend is
1063 always zero). However, the 32 bit instruction is stored as 2
1064 16-bit values, rather than a single 32-bit value. In a
1065 big-endian file, the result is the same; in a little-endian
1066 file, the two 16-bit halves of the 32 bit value are swapped.
1067 This is so that a disassembler can recognize the jal
1068 instruction.
1069
1070 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1071 instruction stored as two 16-bit values. The addend A is the
1072 contents of the targ26 field. The calculation is the same as
1073 R_MIPS_26. When storing the calculated value, reorder the
1074 immediate value as shown above, and don't forget to store the
1075 value as two 16-bit values.
1076
1077 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1078 defined as
1079
1080 big-endian:
1081 +--------+----------------------+
1082 | | |
1083 | | targ26-16 |
1084 |31 26|25 0|
1085 +--------+----------------------+
1086
1087 little-endian:
1088 +----------+------+-------------+
1089 | | | |
1090 | sub1 | | sub2 |
1091 |0 9|10 15|16 31|
1092 +----------+--------------------+
1093 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1094 ((sub1 << 16) | sub2)).
1095
1096 When producing a relocatable object file, the calculation is
1097 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1098 When producing a fully linked file, the calculation is
1099 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1100 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1101
1102 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1103 mode. A typical instruction will have a format like this:
1104
1105 +--------------+--------------------------------+
1106 | EXTEND | Imm 10:5 | Imm 15:11 |
1107 +--------------+--------------------------------+
1108 | Major | rx | ry | Imm 4:0 |
1109 +--------------+--------------------------------+
1110
1111 EXTEND is the five bit value 11110. Major is the instruction
1112 opcode.
1113
1114 This is handled exactly like R_MIPS_GPREL16, except that the
1115 addend is retrieved and stored as shown in this diagram; that
1116 is, the Imm fields above replace the V-rel16 field.
1117
1118 All we need to do here is shuffle the bits appropriately. As
1119 above, the two 16-bit halves must be swapped on a
1120 little-endian system.
1121
1122 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1123 access data when neither GP-relative nor PC-relative addressing
1124 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1125 except that the addend is retrieved and stored as shown above
1126 for R_MIPS16_GPREL.
1127 */
1128void
1129_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1130 bfd_boolean jal_shuffle, bfd_byte *data)
1131{
1132 bfd_vma extend, insn, val;
1133
1134 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1135 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1136 return;
1137
1138 /* Pick up the mips16 extend instruction and the real instruction. */
1139 extend = bfd_get_16 (abfd, data);
1140 insn = bfd_get_16 (abfd, data + 2);
1141 if (r_type == R_MIPS16_26)
1142 {
1143 if (jal_shuffle)
1144 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1145 | ((extend & 0x1f) << 21) | insn;
1146 else
1147 val = extend << 16 | insn;
1148 }
1149 else
1150 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1151 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1152 bfd_put_32 (abfd, val, data);
1153}
1154
1155void
1156_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1157 bfd_boolean jal_shuffle, bfd_byte *data)
1158{
1159 bfd_vma extend, insn, val;
1160
1161 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1162 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1163 return;
1164
1165 val = bfd_get_32 (abfd, data);
1166 if (r_type == R_MIPS16_26)
1167 {
1168 if (jal_shuffle)
1169 {
1170 insn = val & 0xffff;
1171 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1172 | ((val >> 21) & 0x1f);
1173 }
1174 else
1175 {
1176 insn = val & 0xffff;
1177 extend = val >> 16;
1178 }
1179 }
1180 else
1181 {
1182 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1183 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1184 }
1185 bfd_put_16 (abfd, insn, data + 2);
1186 bfd_put_16 (abfd, extend, data);
1187}
1188
b49e97c9 1189bfd_reloc_status_type
9719ad41
RS
1190_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1191 arelent *reloc_entry, asection *input_section,
1192 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1193{
1194 bfd_vma relocation;
a7ebbfdf 1195 bfd_signed_vma val;
30ac9238 1196 bfd_reloc_status_type status;
b49e97c9
TS
1197
1198 if (bfd_is_com_section (symbol->section))
1199 relocation = 0;
1200 else
1201 relocation = symbol->value;
1202
1203 relocation += symbol->section->output_section->vma;
1204 relocation += symbol->section->output_offset;
1205
07515404 1206 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1207 return bfd_reloc_outofrange;
1208
b49e97c9 1209 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1210 val = reloc_entry->addend;
1211
30ac9238 1212 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1213
b49e97c9 1214 /* Adjust val for the final section location and GP value. If we
1049f94e 1215 are producing relocatable output, we don't want to do this for
b49e97c9 1216 an external symbol. */
1049f94e 1217 if (! relocatable
b49e97c9
TS
1218 || (symbol->flags & BSF_SECTION_SYM) != 0)
1219 val += relocation - gp;
1220
a7ebbfdf
TS
1221 if (reloc_entry->howto->partial_inplace)
1222 {
30ac9238
RS
1223 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1224 (bfd_byte *) data
1225 + reloc_entry->address);
1226 if (status != bfd_reloc_ok)
1227 return status;
a7ebbfdf
TS
1228 }
1229 else
1230 reloc_entry->addend = val;
b49e97c9 1231
1049f94e 1232 if (relocatable)
b49e97c9 1233 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1234
1235 return bfd_reloc_ok;
1236}
1237
1238/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1239 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1240 that contains the relocation field and DATA points to the start of
1241 INPUT_SECTION. */
1242
1243struct mips_hi16
1244{
1245 struct mips_hi16 *next;
1246 bfd_byte *data;
1247 asection *input_section;
1248 arelent rel;
1249};
1250
1251/* FIXME: This should not be a static variable. */
1252
1253static struct mips_hi16 *mips_hi16_list;
1254
1255/* A howto special_function for REL *HI16 relocations. We can only
1256 calculate the correct value once we've seen the partnering
1257 *LO16 relocation, so just save the information for later.
1258
1259 The ABI requires that the *LO16 immediately follow the *HI16.
1260 However, as a GNU extension, we permit an arbitrary number of
1261 *HI16s to be associated with a single *LO16. This significantly
1262 simplies the relocation handling in gcc. */
1263
1264bfd_reloc_status_type
1265_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1266 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1267 asection *input_section, bfd *output_bfd,
1268 char **error_message ATTRIBUTE_UNUSED)
1269{
1270 struct mips_hi16 *n;
1271
07515404 1272 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1273 return bfd_reloc_outofrange;
1274
1275 n = bfd_malloc (sizeof *n);
1276 if (n == NULL)
1277 return bfd_reloc_outofrange;
1278
1279 n->next = mips_hi16_list;
1280 n->data = data;
1281 n->input_section = input_section;
1282 n->rel = *reloc_entry;
1283 mips_hi16_list = n;
1284
1285 if (output_bfd != NULL)
1286 reloc_entry->address += input_section->output_offset;
1287
1288 return bfd_reloc_ok;
1289}
1290
1291/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1292 like any other 16-bit relocation when applied to global symbols, but is
1293 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1294
1295bfd_reloc_status_type
1296_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1297 void *data, asection *input_section,
1298 bfd *output_bfd, char **error_message)
1299{
1300 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1301 || bfd_is_und_section (bfd_get_section (symbol))
1302 || bfd_is_com_section (bfd_get_section (symbol)))
1303 /* The relocation is against a global symbol. */
1304 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1305 input_section, output_bfd,
1306 error_message);
1307
1308 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1309 input_section, output_bfd, error_message);
1310}
1311
1312/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1313 is a straightforward 16 bit inplace relocation, but we must deal with
1314 any partnering high-part relocations as well. */
1315
1316bfd_reloc_status_type
1317_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1318 void *data, asection *input_section,
1319 bfd *output_bfd, char **error_message)
1320{
1321 bfd_vma vallo;
d6f16593 1322 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1323
07515404 1324 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1325 return bfd_reloc_outofrange;
1326
d6f16593
MR
1327 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1328 location);
1329 vallo = bfd_get_32 (abfd, location);
1330 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1331 location);
1332
30ac9238
RS
1333 while (mips_hi16_list != NULL)
1334 {
1335 bfd_reloc_status_type ret;
1336 struct mips_hi16 *hi;
1337
1338 hi = mips_hi16_list;
1339
1340 /* R_MIPS_GOT16 relocations are something of a special case. We
1341 want to install the addend in the same way as for a R_MIPS_HI16
1342 relocation (with a rightshift of 16). However, since GOT16
1343 relocations can also be used with global symbols, their howto
1344 has a rightshift of 0. */
1345 if (hi->rel.howto->type == R_MIPS_GOT16)
1346 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1347
1348 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1349 carry or borrow will induce a change of +1 or -1 in the high part. */
1350 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1351
30ac9238
RS
1352 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1353 hi->input_section, output_bfd,
1354 error_message);
1355 if (ret != bfd_reloc_ok)
1356 return ret;
1357
1358 mips_hi16_list = hi->next;
1359 free (hi);
1360 }
1361
1362 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1363 input_section, output_bfd,
1364 error_message);
1365}
1366
1367/* A generic howto special_function. This calculates and installs the
1368 relocation itself, thus avoiding the oft-discussed problems in
1369 bfd_perform_relocation and bfd_install_relocation. */
1370
1371bfd_reloc_status_type
1372_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1373 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1374 asection *input_section, bfd *output_bfd,
1375 char **error_message ATTRIBUTE_UNUSED)
1376{
1377 bfd_signed_vma val;
1378 bfd_reloc_status_type status;
1379 bfd_boolean relocatable;
1380
1381 relocatable = (output_bfd != NULL);
1382
07515404 1383 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1384 return bfd_reloc_outofrange;
1385
1386 /* Build up the field adjustment in VAL. */
1387 val = 0;
1388 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1389 {
1390 /* Either we're calculating the final field value or we have a
1391 relocation against a section symbol. Add in the section's
1392 offset or address. */
1393 val += symbol->section->output_section->vma;
1394 val += symbol->section->output_offset;
1395 }
1396
1397 if (!relocatable)
1398 {
1399 /* We're calculating the final field value. Add in the symbol's value
1400 and, if pc-relative, subtract the address of the field itself. */
1401 val += symbol->value;
1402 if (reloc_entry->howto->pc_relative)
1403 {
1404 val -= input_section->output_section->vma;
1405 val -= input_section->output_offset;
1406 val -= reloc_entry->address;
1407 }
1408 }
1409
1410 /* VAL is now the final adjustment. If we're keeping this relocation
1411 in the output file, and if the relocation uses a separate addend,
1412 we just need to add VAL to that addend. Otherwise we need to add
1413 VAL to the relocation field itself. */
1414 if (relocatable && !reloc_entry->howto->partial_inplace)
1415 reloc_entry->addend += val;
1416 else
1417 {
d6f16593
MR
1418 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1419
30ac9238
RS
1420 /* Add in the separate addend, if any. */
1421 val += reloc_entry->addend;
1422
1423 /* Add VAL to the relocation field. */
d6f16593
MR
1424 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1425 location);
30ac9238 1426 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1427 location);
1428 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1429 location);
1430
30ac9238
RS
1431 if (status != bfd_reloc_ok)
1432 return status;
1433 }
1434
1435 if (relocatable)
1436 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1437
1438 return bfd_reloc_ok;
1439}
1440\f
1441/* Swap an entry in a .gptab section. Note that these routines rely
1442 on the equivalence of the two elements of the union. */
1443
1444static void
9719ad41
RS
1445bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1446 Elf32_gptab *in)
b49e97c9
TS
1447{
1448 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1449 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1450}
1451
1452static void
9719ad41
RS
1453bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1454 Elf32_External_gptab *ex)
b49e97c9
TS
1455{
1456 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1457 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1458}
1459
1460static void
9719ad41
RS
1461bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1462 Elf32_External_compact_rel *ex)
b49e97c9
TS
1463{
1464 H_PUT_32 (abfd, in->id1, ex->id1);
1465 H_PUT_32 (abfd, in->num, ex->num);
1466 H_PUT_32 (abfd, in->id2, ex->id2);
1467 H_PUT_32 (abfd, in->offset, ex->offset);
1468 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1469 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1470}
1471
1472static void
9719ad41
RS
1473bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1474 Elf32_External_crinfo *ex)
b49e97c9
TS
1475{
1476 unsigned long l;
1477
1478 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1479 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1480 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1481 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1482 H_PUT_32 (abfd, l, ex->info);
1483 H_PUT_32 (abfd, in->konst, ex->konst);
1484 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1485}
b49e97c9
TS
1486\f
1487/* A .reginfo section holds a single Elf32_RegInfo structure. These
1488 routines swap this structure in and out. They are used outside of
1489 BFD, so they are globally visible. */
1490
1491void
9719ad41
RS
1492bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1493 Elf32_RegInfo *in)
b49e97c9
TS
1494{
1495 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1496 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1497 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1498 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1499 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1500 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1501}
1502
1503void
9719ad41
RS
1504bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1505 Elf32_External_RegInfo *ex)
b49e97c9
TS
1506{
1507 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1508 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1509 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1510 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1511 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1512 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1513}
1514
1515/* In the 64 bit ABI, the .MIPS.options section holds register
1516 information in an Elf64_Reginfo structure. These routines swap
1517 them in and out. They are globally visible because they are used
1518 outside of BFD. These routines are here so that gas can call them
1519 without worrying about whether the 64 bit ABI has been included. */
1520
1521void
9719ad41
RS
1522bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1523 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1524{
1525 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1526 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1527 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1528 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1529 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1530 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1531 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1532}
1533
1534void
9719ad41
RS
1535bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1536 Elf64_External_RegInfo *ex)
b49e97c9
TS
1537{
1538 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1539 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1540 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1541 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1542 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1543 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1544 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1545}
1546
1547/* Swap in an options header. */
1548
1549void
9719ad41
RS
1550bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1551 Elf_Internal_Options *in)
b49e97c9
TS
1552{
1553 in->kind = H_GET_8 (abfd, ex->kind);
1554 in->size = H_GET_8 (abfd, ex->size);
1555 in->section = H_GET_16 (abfd, ex->section);
1556 in->info = H_GET_32 (abfd, ex->info);
1557}
1558
1559/* Swap out an options header. */
1560
1561void
9719ad41
RS
1562bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1563 Elf_External_Options *ex)
b49e97c9
TS
1564{
1565 H_PUT_8 (abfd, in->kind, ex->kind);
1566 H_PUT_8 (abfd, in->size, ex->size);
1567 H_PUT_16 (abfd, in->section, ex->section);
1568 H_PUT_32 (abfd, in->info, ex->info);
1569}
1570\f
1571/* This function is called via qsort() to sort the dynamic relocation
1572 entries by increasing r_symndx value. */
1573
1574static int
9719ad41 1575sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1576{
947216bf
AM
1577 Elf_Internal_Rela int_reloc1;
1578 Elf_Internal_Rela int_reloc2;
b49e97c9 1579
947216bf
AM
1580 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1581 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1582
947216bf 1583 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1584}
1585
f4416af6
AO
1586/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1587
1588static int
7e3102a7
AM
1589sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1590 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1591{
7e3102a7 1592#ifdef BFD64
f4416af6
AO
1593 Elf_Internal_Rela int_reloc1[3];
1594 Elf_Internal_Rela int_reloc2[3];
1595
1596 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1597 (reldyn_sorting_bfd, arg1, int_reloc1);
1598 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1599 (reldyn_sorting_bfd, arg2, int_reloc2);
1600
1601 return (ELF64_R_SYM (int_reloc1[0].r_info)
1602 - ELF64_R_SYM (int_reloc2[0].r_info));
7e3102a7
AM
1603#else
1604 abort ();
1605#endif
f4416af6
AO
1606}
1607
1608
b49e97c9
TS
1609/* This routine is used to write out ECOFF debugging external symbol
1610 information. It is called via mips_elf_link_hash_traverse. The
1611 ECOFF external symbol information must match the ELF external
1612 symbol information. Unfortunately, at this point we don't know
1613 whether a symbol is required by reloc information, so the two
1614 tables may wind up being different. We must sort out the external
1615 symbol information before we can set the final size of the .mdebug
1616 section, and we must set the size of the .mdebug section before we
1617 can relocate any sections, and we can't know which symbols are
1618 required by relocation until we relocate the sections.
1619 Fortunately, it is relatively unlikely that any symbol will be
1620 stripped but required by a reloc. In particular, it can not happen
1621 when generating a final executable. */
1622
b34976b6 1623static bfd_boolean
9719ad41 1624mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1625{
9719ad41 1626 struct extsym_info *einfo = data;
b34976b6 1627 bfd_boolean strip;
b49e97c9
TS
1628 asection *sec, *output_section;
1629
1630 if (h->root.root.type == bfd_link_hash_warning)
1631 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1632
1633 if (h->root.indx == -2)
b34976b6 1634 strip = FALSE;
f5385ebf 1635 else if ((h->root.def_dynamic
77cfaee6
AM
1636 || h->root.ref_dynamic
1637 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1638 && !h->root.def_regular
1639 && !h->root.ref_regular)
b34976b6 1640 strip = TRUE;
b49e97c9
TS
1641 else if (einfo->info->strip == strip_all
1642 || (einfo->info->strip == strip_some
1643 && bfd_hash_lookup (einfo->info->keep_hash,
1644 h->root.root.root.string,
b34976b6
AM
1645 FALSE, FALSE) == NULL))
1646 strip = TRUE;
b49e97c9 1647 else
b34976b6 1648 strip = FALSE;
b49e97c9
TS
1649
1650 if (strip)
b34976b6 1651 return TRUE;
b49e97c9
TS
1652
1653 if (h->esym.ifd == -2)
1654 {
1655 h->esym.jmptbl = 0;
1656 h->esym.cobol_main = 0;
1657 h->esym.weakext = 0;
1658 h->esym.reserved = 0;
1659 h->esym.ifd = ifdNil;
1660 h->esym.asym.value = 0;
1661 h->esym.asym.st = stGlobal;
1662
1663 if (h->root.root.type == bfd_link_hash_undefined
1664 || h->root.root.type == bfd_link_hash_undefweak)
1665 {
1666 const char *name;
1667
1668 /* Use undefined class. Also, set class and type for some
1669 special symbols. */
1670 name = h->root.root.root.string;
1671 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1672 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1673 {
1674 h->esym.asym.sc = scData;
1675 h->esym.asym.st = stLabel;
1676 h->esym.asym.value = 0;
1677 }
1678 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1679 {
1680 h->esym.asym.sc = scAbs;
1681 h->esym.asym.st = stLabel;
1682 h->esym.asym.value =
1683 mips_elf_hash_table (einfo->info)->procedure_count;
1684 }
4a14403c 1685 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1686 {
1687 h->esym.asym.sc = scAbs;
1688 h->esym.asym.st = stLabel;
1689 h->esym.asym.value = elf_gp (einfo->abfd);
1690 }
1691 else
1692 h->esym.asym.sc = scUndefined;
1693 }
1694 else if (h->root.root.type != bfd_link_hash_defined
1695 && h->root.root.type != bfd_link_hash_defweak)
1696 h->esym.asym.sc = scAbs;
1697 else
1698 {
1699 const char *name;
1700
1701 sec = h->root.root.u.def.section;
1702 output_section = sec->output_section;
1703
1704 /* When making a shared library and symbol h is the one from
1705 the another shared library, OUTPUT_SECTION may be null. */
1706 if (output_section == NULL)
1707 h->esym.asym.sc = scUndefined;
1708 else
1709 {
1710 name = bfd_section_name (output_section->owner, output_section);
1711
1712 if (strcmp (name, ".text") == 0)
1713 h->esym.asym.sc = scText;
1714 else if (strcmp (name, ".data") == 0)
1715 h->esym.asym.sc = scData;
1716 else if (strcmp (name, ".sdata") == 0)
1717 h->esym.asym.sc = scSData;
1718 else if (strcmp (name, ".rodata") == 0
1719 || strcmp (name, ".rdata") == 0)
1720 h->esym.asym.sc = scRData;
1721 else if (strcmp (name, ".bss") == 0)
1722 h->esym.asym.sc = scBss;
1723 else if (strcmp (name, ".sbss") == 0)
1724 h->esym.asym.sc = scSBss;
1725 else if (strcmp (name, ".init") == 0)
1726 h->esym.asym.sc = scInit;
1727 else if (strcmp (name, ".fini") == 0)
1728 h->esym.asym.sc = scFini;
1729 else
1730 h->esym.asym.sc = scAbs;
1731 }
1732 }
1733
1734 h->esym.asym.reserved = 0;
1735 h->esym.asym.index = indexNil;
1736 }
1737
1738 if (h->root.root.type == bfd_link_hash_common)
1739 h->esym.asym.value = h->root.root.u.c.size;
1740 else if (h->root.root.type == bfd_link_hash_defined
1741 || h->root.root.type == bfd_link_hash_defweak)
1742 {
1743 if (h->esym.asym.sc == scCommon)
1744 h->esym.asym.sc = scBss;
1745 else if (h->esym.asym.sc == scSCommon)
1746 h->esym.asym.sc = scSBss;
1747
1748 sec = h->root.root.u.def.section;
1749 output_section = sec->output_section;
1750 if (output_section != NULL)
1751 h->esym.asym.value = (h->root.root.u.def.value
1752 + sec->output_offset
1753 + output_section->vma);
1754 else
1755 h->esym.asym.value = 0;
1756 }
f5385ebf 1757 else if (h->root.needs_plt)
b49e97c9
TS
1758 {
1759 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1760 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1761
1762 while (hd->root.root.type == bfd_link_hash_indirect)
1763 {
1764 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1765 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1766 }
1767
1768 if (!no_fn_stub)
1769 {
1770 /* Set type and value for a symbol with a function stub. */
1771 h->esym.asym.st = stProc;
1772 sec = hd->root.root.u.def.section;
1773 if (sec == NULL)
1774 h->esym.asym.value = 0;
1775 else
1776 {
1777 output_section = sec->output_section;
1778 if (output_section != NULL)
1779 h->esym.asym.value = (hd->root.plt.offset
1780 + sec->output_offset
1781 + output_section->vma);
1782 else
1783 h->esym.asym.value = 0;
1784 }
b49e97c9
TS
1785 }
1786 }
1787
1788 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1789 h->root.root.root.string,
1790 &h->esym))
1791 {
b34976b6
AM
1792 einfo->failed = TRUE;
1793 return FALSE;
b49e97c9
TS
1794 }
1795
b34976b6 1796 return TRUE;
b49e97c9
TS
1797}
1798
1799/* A comparison routine used to sort .gptab entries. */
1800
1801static int
9719ad41 1802gptab_compare (const void *p1, const void *p2)
b49e97c9 1803{
9719ad41
RS
1804 const Elf32_gptab *a1 = p1;
1805 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1806
1807 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1808}
1809\f
b15e6682 1810/* Functions to manage the got entry hash table. */
f4416af6
AO
1811
1812/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1813 hash number. */
1814
1815static INLINE hashval_t
9719ad41 1816mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1817{
1818#ifdef BFD64
1819 return addr + (addr >> 32);
1820#else
1821 return addr;
1822#endif
1823}
1824
1825/* got_entries only match if they're identical, except for gotidx, so
1826 use all fields to compute the hash, and compare the appropriate
1827 union members. */
1828
b15e6682 1829static hashval_t
9719ad41 1830mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1831{
1832 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1833
38985a1c 1834 return entry->symndx
0f20cc35 1835 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1836 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1837 : entry->abfd->id
1838 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1839 : entry->d.h->root.root.root.hash));
b15e6682
AO
1840}
1841
1842static int
9719ad41 1843mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1844{
1845 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1846 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1847
0f20cc35
DJ
1848 /* An LDM entry can only match another LDM entry. */
1849 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1850 return 0;
1851
b15e6682 1852 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1853 && (! e1->abfd ? e1->d.address == e2->d.address
1854 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1855 : e1->d.h == e2->d.h);
1856}
1857
1858/* multi_got_entries are still a match in the case of global objects,
1859 even if the input bfd in which they're referenced differs, so the
1860 hash computation and compare functions are adjusted
1861 accordingly. */
1862
1863static hashval_t
9719ad41 1864mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1865{
1866 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1867
1868 return entry->symndx
1869 + (! entry->abfd
1870 ? mips_elf_hash_bfd_vma (entry->d.address)
1871 : entry->symndx >= 0
0f20cc35
DJ
1872 ? ((entry->tls_type & GOT_TLS_LDM)
1873 ? (GOT_TLS_LDM << 17)
1874 : (entry->abfd->id
1875 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
1876 : entry->d.h->root.root.root.hash);
1877}
1878
1879static int
9719ad41 1880mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1881{
1882 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1883 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1884
0f20cc35
DJ
1885 /* Any two LDM entries match. */
1886 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
1887 return 1;
1888
1889 /* Nothing else matches an LDM entry. */
1890 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1891 return 0;
1892
f4416af6
AO
1893 return e1->symndx == e2->symndx
1894 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1895 : e1->abfd == NULL || e2->abfd == NULL
1896 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1897 : e1->d.h == e2->d.h);
b15e6682
AO
1898}
1899\f
f4416af6
AO
1900/* Returns the dynamic relocation section for DYNOBJ. */
1901
1902static asection *
9719ad41 1903mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
f4416af6
AO
1904{
1905 static const char dname[] = ".rel.dyn";
1906 asection *sreloc;
1907
1908 sreloc = bfd_get_section_by_name (dynobj, dname);
1909 if (sreloc == NULL && create_p)
1910 {
3496cb2a
L
1911 sreloc = bfd_make_section_with_flags (dynobj, dname,
1912 (SEC_ALLOC
1913 | SEC_LOAD
1914 | SEC_HAS_CONTENTS
1915 | SEC_IN_MEMORY
1916 | SEC_LINKER_CREATED
1917 | SEC_READONLY));
f4416af6 1918 if (sreloc == NULL
f4416af6 1919 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1920 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1921 return NULL;
1922 }
1923 return sreloc;
1924}
1925
b49e97c9
TS
1926/* Returns the GOT section for ABFD. */
1927
1928static asection *
9719ad41 1929mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 1930{
f4416af6
AO
1931 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1932 if (sgot == NULL
1933 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1934 return NULL;
1935 return sgot;
b49e97c9
TS
1936}
1937
1938/* Returns the GOT information associated with the link indicated by
1939 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1940 section. */
1941
1942static struct mips_got_info *
9719ad41 1943mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
1944{
1945 asection *sgot;
1946 struct mips_got_info *g;
1947
f4416af6 1948 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1949 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1950 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1951 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1952 BFD_ASSERT (g != NULL);
1953
1954 if (sgotp)
f4416af6
AO
1955 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1956
b49e97c9
TS
1957 return g;
1958}
1959
0f20cc35
DJ
1960/* Count the number of relocations needed for a TLS GOT entry, with
1961 access types from TLS_TYPE, and symbol H (or a local symbol if H
1962 is NULL). */
1963
1964static int
1965mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
1966 struct elf_link_hash_entry *h)
1967{
1968 int indx = 0;
1969 int ret = 0;
1970 bfd_boolean need_relocs = FALSE;
1971 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
1972
1973 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1974 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
1975 indx = h->dynindx;
1976
1977 if ((info->shared || indx != 0)
1978 && (h == NULL
1979 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1980 || h->root.type != bfd_link_hash_undefweak))
1981 need_relocs = TRUE;
1982
1983 if (!need_relocs)
1984 return FALSE;
1985
1986 if (tls_type & GOT_TLS_GD)
1987 {
1988 ret++;
1989 if (indx != 0)
1990 ret++;
1991 }
1992
1993 if (tls_type & GOT_TLS_IE)
1994 ret++;
1995
1996 if ((tls_type & GOT_TLS_LDM) && info->shared)
1997 ret++;
1998
1999 return ret;
2000}
2001
2002/* Count the number of TLS relocations required for the GOT entry in
2003 ARG1, if it describes a local symbol. */
2004
2005static int
2006mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2007{
2008 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2009 struct mips_elf_count_tls_arg *arg = arg2;
2010
2011 if (entry->abfd != NULL && entry->symndx != -1)
2012 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2013
2014 return 1;
2015}
2016
2017/* Count the number of TLS GOT entries required for the global (or
2018 forced-local) symbol in ARG1. */
2019
2020static int
2021mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2022{
2023 struct mips_elf_link_hash_entry *hm
2024 = (struct mips_elf_link_hash_entry *) arg1;
2025 struct mips_elf_count_tls_arg *arg = arg2;
2026
2027 if (hm->tls_type & GOT_TLS_GD)
2028 arg->needed += 2;
2029 if (hm->tls_type & GOT_TLS_IE)
2030 arg->needed += 1;
2031
2032 return 1;
2033}
2034
2035/* Count the number of TLS relocations required for the global (or
2036 forced-local) symbol in ARG1. */
2037
2038static int
2039mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2040{
2041 struct mips_elf_link_hash_entry *hm
2042 = (struct mips_elf_link_hash_entry *) arg1;
2043 struct mips_elf_count_tls_arg *arg = arg2;
2044
2045 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2046
2047 return 1;
2048}
2049
2050/* Output a simple dynamic relocation into SRELOC. */
2051
2052static void
2053mips_elf_output_dynamic_relocation (bfd *output_bfd,
2054 asection *sreloc,
2055 unsigned long indx,
2056 int r_type,
2057 bfd_vma offset)
2058{
2059 Elf_Internal_Rela rel[3];
2060
2061 memset (rel, 0, sizeof (rel));
2062
2063 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2064 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2065
2066 if (ABI_64_P (output_bfd))
2067 {
2068 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2069 (output_bfd, &rel[0],
2070 (sreloc->contents
2071 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2072 }
2073 else
2074 bfd_elf32_swap_reloc_out
2075 (output_bfd, &rel[0],
2076 (sreloc->contents
2077 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2078 ++sreloc->reloc_count;
2079}
2080
2081/* Initialize a set of TLS GOT entries for one symbol. */
2082
2083static void
2084mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2085 unsigned char *tls_type_p,
2086 struct bfd_link_info *info,
2087 struct mips_elf_link_hash_entry *h,
2088 bfd_vma value)
2089{
2090 int indx;
2091 asection *sreloc, *sgot;
2092 bfd_vma offset, offset2;
2093 bfd *dynobj;
2094 bfd_boolean need_relocs = FALSE;
2095
2096 dynobj = elf_hash_table (info)->dynobj;
2097 sgot = mips_elf_got_section (dynobj, FALSE);
2098
2099 indx = 0;
2100 if (h != NULL)
2101 {
2102 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2103
2104 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2105 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2106 indx = h->root.dynindx;
2107 }
2108
2109 if (*tls_type_p & GOT_TLS_DONE)
2110 return;
2111
2112 if ((info->shared || indx != 0)
2113 && (h == NULL
2114 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2115 || h->root.type != bfd_link_hash_undefweak))
2116 need_relocs = TRUE;
2117
2118 /* MINUS_ONE means the symbol is not defined in this object. It may not
2119 be defined at all; assume that the value doesn't matter in that
2120 case. Otherwise complain if we would use the value. */
2121 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2122 || h->root.root.type == bfd_link_hash_undefweak);
2123
2124 /* Emit necessary relocations. */
2125 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
2126
2127 /* General Dynamic. */
2128 if (*tls_type_p & GOT_TLS_GD)
2129 {
2130 offset = got_offset;
2131 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2132
2133 if (need_relocs)
2134 {
2135 mips_elf_output_dynamic_relocation
2136 (abfd, sreloc, indx,
2137 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2138 sgot->output_offset + sgot->output_section->vma + offset);
2139
2140 if (indx)
2141 mips_elf_output_dynamic_relocation
2142 (abfd, sreloc, indx,
2143 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2144 sgot->output_offset + sgot->output_section->vma + offset2);
2145 else
2146 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2147 sgot->contents + offset2);
2148 }
2149 else
2150 {
2151 MIPS_ELF_PUT_WORD (abfd, 1,
2152 sgot->contents + offset);
2153 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2154 sgot->contents + offset2);
2155 }
2156
2157 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2158 }
2159
2160 /* Initial Exec model. */
2161 if (*tls_type_p & GOT_TLS_IE)
2162 {
2163 offset = got_offset;
2164
2165 if (need_relocs)
2166 {
2167 if (indx == 0)
2168 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2169 sgot->contents + offset);
2170 else
2171 MIPS_ELF_PUT_WORD (abfd, 0,
2172 sgot->contents + offset);
2173
2174 mips_elf_output_dynamic_relocation
2175 (abfd, sreloc, indx,
2176 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2177 sgot->output_offset + sgot->output_section->vma + offset);
2178 }
2179 else
2180 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2181 sgot->contents + offset);
2182 }
2183
2184 if (*tls_type_p & GOT_TLS_LDM)
2185 {
2186 /* The initial offset is zero, and the LD offsets will include the
2187 bias by DTP_OFFSET. */
2188 MIPS_ELF_PUT_WORD (abfd, 0,
2189 sgot->contents + got_offset
2190 + MIPS_ELF_GOT_SIZE (abfd));
2191
2192 if (!info->shared)
2193 MIPS_ELF_PUT_WORD (abfd, 1,
2194 sgot->contents + got_offset);
2195 else
2196 mips_elf_output_dynamic_relocation
2197 (abfd, sreloc, indx,
2198 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2199 sgot->output_offset + sgot->output_section->vma + got_offset);
2200 }
2201
2202 *tls_type_p |= GOT_TLS_DONE;
2203}
2204
2205/* Return the GOT index to use for a relocation of type R_TYPE against
2206 a symbol accessed using TLS_TYPE models. The GOT entries for this
2207 symbol in this GOT start at GOT_INDEX. This function initializes the
2208 GOT entries and corresponding relocations. */
2209
2210static bfd_vma
2211mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2212 int r_type, struct bfd_link_info *info,
2213 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2214{
2215 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2216 || r_type == R_MIPS_TLS_LDM);
2217
2218 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2219
2220 if (r_type == R_MIPS_TLS_GOTTPREL)
2221 {
2222 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2223 if (*tls_type & GOT_TLS_GD)
2224 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2225 else
2226 return got_index;
2227 }
2228
2229 if (r_type == R_MIPS_TLS_GD)
2230 {
2231 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2232 return got_index;
2233 }
2234
2235 if (r_type == R_MIPS_TLS_LDM)
2236 {
2237 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2238 return got_index;
2239 }
2240
2241 return got_index;
2242}
2243
b49e97c9 2244/* Returns the GOT offset at which the indicated address can be found.
0f20cc35
DJ
2245 If there is not yet a GOT entry for this value, create one. If
2246 R_SYMNDX refers to a TLS symbol, create a TLS GOT entry instead.
2247 Returns -1 if no satisfactory GOT offset can be found. */
b49e97c9
TS
2248
2249static bfd_vma
9719ad41 2250mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0f20cc35
DJ
2251 bfd_vma value, unsigned long r_symndx,
2252 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2253{
2254 asection *sgot;
2255 struct mips_got_info *g;
b15e6682 2256 struct mips_got_entry *entry;
b49e97c9
TS
2257
2258 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2259
0f20cc35
DJ
2260 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value,
2261 r_symndx, h, r_type);
2262 if (!entry)
b15e6682 2263 return MINUS_ONE;
0f20cc35
DJ
2264
2265 if (TLS_RELOC_P (r_type))
2266 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, r_type,
2267 info, h, value);
2268 else
2269 return entry->gotidx;
b49e97c9
TS
2270}
2271
2272/* Returns the GOT index for the global symbol indicated by H. */
2273
2274static bfd_vma
0f20cc35
DJ
2275mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2276 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2277{
2278 bfd_vma index;
2279 asection *sgot;
f4416af6 2280 struct mips_got_info *g, *gg;
d0c7ff07 2281 long global_got_dynindx = 0;
b49e97c9 2282
f4416af6
AO
2283 gg = g = mips_elf_got_info (abfd, &sgot);
2284 if (g->bfd2got && ibfd)
2285 {
2286 struct mips_got_entry e, *p;
143d77c5 2287
f4416af6
AO
2288 BFD_ASSERT (h->dynindx >= 0);
2289
2290 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2291 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2292 {
2293 e.abfd = ibfd;
2294 e.symndx = -1;
2295 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2296 e.tls_type = 0;
f4416af6 2297
9719ad41 2298 p = htab_find (g->got_entries, &e);
f4416af6
AO
2299
2300 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2301
2302 if (TLS_RELOC_P (r_type))
2303 {
2304 bfd_vma value = MINUS_ONE;
2305 if ((h->root.type == bfd_link_hash_defined
2306 || h->root.type == bfd_link_hash_defweak)
2307 && h->root.u.def.section->output_section)
2308 value = (h->root.u.def.value
2309 + h->root.u.def.section->output_offset
2310 + h->root.u.def.section->output_section->vma);
2311
2312 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2313 info, e.d.h, value);
2314 }
2315 else
2316 return p->gotidx;
f4416af6
AO
2317 }
2318 }
2319
2320 if (gg->global_gotsym != NULL)
2321 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2322
0f20cc35
DJ
2323 if (TLS_RELOC_P (r_type))
2324 {
2325 struct mips_elf_link_hash_entry *hm
2326 = (struct mips_elf_link_hash_entry *) h;
2327 bfd_vma value = MINUS_ONE;
2328
2329 if ((h->root.type == bfd_link_hash_defined
2330 || h->root.type == bfd_link_hash_defweak)
2331 && h->root.u.def.section->output_section)
2332 value = (h->root.u.def.value
2333 + h->root.u.def.section->output_offset
2334 + h->root.u.def.section->output_section->vma);
2335
2336 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2337 r_type, info, hm, value);
2338 }
2339 else
2340 {
2341 /* Once we determine the global GOT entry with the lowest dynamic
2342 symbol table index, we must put all dynamic symbols with greater
2343 indices into the GOT. That makes it easy to calculate the GOT
2344 offset. */
2345 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2346 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2347 * MIPS_ELF_GOT_SIZE (abfd));
2348 }
eea6121a 2349 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2350
2351 return index;
2352}
2353
2354/* Find a GOT entry that is within 32KB of the VALUE. These entries
2355 are supposed to be placed at small offsets in the GOT, i.e.,
2356 within 32KB of GP. Return the index into the GOT for this page,
2357 and store the offset from this entry to the desired address in
2358 OFFSETP, if it is non-NULL. */
2359
2360static bfd_vma
9719ad41
RS
2361mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2362 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2363{
2364 asection *sgot;
2365 struct mips_got_info *g;
b15e6682
AO
2366 bfd_vma index;
2367 struct mips_got_entry *entry;
b49e97c9
TS
2368
2369 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2370
f4416af6 2371 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682 2372 (value + 0x8000)
0f20cc35
DJ
2373 & (~(bfd_vma)0xffff), 0,
2374 NULL, R_MIPS_GOT_PAGE);
b49e97c9 2375
b15e6682
AO
2376 if (!entry)
2377 return MINUS_ONE;
143d77c5 2378
b15e6682 2379 index = entry->gotidx;
b49e97c9
TS
2380
2381 if (offsetp)
f4416af6 2382 *offsetp = value - entry->d.address;
b49e97c9
TS
2383
2384 return index;
2385}
2386
2387/* Find a GOT entry whose higher-order 16 bits are the same as those
2388 for value. Return the index into the GOT for this entry. */
2389
2390static bfd_vma
9719ad41
RS
2391mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2392 bfd_vma value, bfd_boolean external)
b49e97c9
TS
2393{
2394 asection *sgot;
2395 struct mips_got_info *g;
b15e6682 2396 struct mips_got_entry *entry;
b49e97c9
TS
2397
2398 if (! external)
2399 {
2400 /* Although the ABI says that it is "the high-order 16 bits" that we
2401 want, it is really the %high value. The complete value is
2402 calculated with a `addiu' of a LO16 relocation, just as with a
2403 HI16/LO16 pair. */
2404 value = mips_elf_high (value) << 16;
2405 }
2406
2407 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2408
0f20cc35
DJ
2409 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value, 0, NULL,
2410 R_MIPS_GOT16);
b15e6682
AO
2411 if (entry)
2412 return entry->gotidx;
2413 else
2414 return MINUS_ONE;
b49e97c9
TS
2415}
2416
2417/* Returns the offset for the entry at the INDEXth position
2418 in the GOT. */
2419
2420static bfd_vma
9719ad41
RS
2421mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2422 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2423{
2424 asection *sgot;
2425 bfd_vma gp;
f4416af6 2426 struct mips_got_info *g;
b49e97c9 2427
f4416af6
AO
2428 g = mips_elf_got_info (dynobj, &sgot);
2429 gp = _bfd_get_gp_value (output_bfd)
2430 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2431
f4416af6 2432 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2433}
2434
2435/* Create a local GOT entry for VALUE. Return the index of the entry,
0f20cc35
DJ
2436 or -1 if it could not be created. If R_SYMNDX refers to a TLS symbol,
2437 create a TLS entry instead. */
b49e97c9 2438
b15e6682 2439static struct mips_got_entry *
9719ad41
RS
2440mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
2441 struct mips_got_info *gg,
0f20cc35
DJ
2442 asection *sgot, bfd_vma value,
2443 unsigned long r_symndx,
2444 struct mips_elf_link_hash_entry *h,
2445 int r_type)
b49e97c9 2446{
b15e6682 2447 struct mips_got_entry entry, **loc;
f4416af6 2448 struct mips_got_info *g;
b15e6682 2449
f4416af6
AO
2450 entry.abfd = NULL;
2451 entry.symndx = -1;
2452 entry.d.address = value;
0f20cc35 2453 entry.tls_type = 0;
f4416af6
AO
2454
2455 g = mips_elf_got_for_ibfd (gg, ibfd);
2456 if (g == NULL)
2457 {
2458 g = mips_elf_got_for_ibfd (gg, abfd);
2459 BFD_ASSERT (g != NULL);
2460 }
b15e6682 2461
0f20cc35
DJ
2462 /* We might have a symbol, H, if it has been forced local. Use the
2463 global entry then. It doesn't matter whether an entry is local
2464 or global for TLS, since the dynamic linker does not
2465 automatically relocate TLS GOT entries. */
a008ac03 2466 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2467 if (TLS_RELOC_P (r_type))
2468 {
2469 struct mips_got_entry *p;
2470
2471 entry.abfd = ibfd;
2472 if (r_type == R_MIPS_TLS_LDM)
2473 {
2474 entry.tls_type = GOT_TLS_LDM;
2475 entry.symndx = 0;
2476 entry.d.addend = 0;
2477 }
2478 else if (h == NULL)
2479 {
2480 entry.symndx = r_symndx;
2481 entry.d.addend = 0;
2482 }
2483 else
2484 entry.d.h = h;
2485
2486 p = (struct mips_got_entry *)
2487 htab_find (g->got_entries, &entry);
2488
2489 BFD_ASSERT (p);
2490 return p;
2491 }
2492
b15e6682
AO
2493 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2494 INSERT);
2495 if (*loc)
2496 return *loc;
143d77c5 2497
b15e6682 2498 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2499 entry.tls_type = 0;
b15e6682
AO
2500
2501 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2502
2503 if (! *loc)
2504 return NULL;
143d77c5 2505
b15e6682
AO
2506 memcpy (*loc, &entry, sizeof entry);
2507
b49e97c9
TS
2508 if (g->assigned_gotno >= g->local_gotno)
2509 {
f4416af6 2510 (*loc)->gotidx = -1;
b49e97c9
TS
2511 /* We didn't allocate enough space in the GOT. */
2512 (*_bfd_error_handler)
2513 (_("not enough GOT space for local GOT entries"));
2514 bfd_set_error (bfd_error_bad_value);
b15e6682 2515 return NULL;
b49e97c9
TS
2516 }
2517
2518 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2519 (sgot->contents + entry.gotidx));
2520
2521 return *loc;
b49e97c9
TS
2522}
2523
2524/* Sort the dynamic symbol table so that symbols that need GOT entries
2525 appear towards the end. This reduces the amount of GOT space
2526 required. MAX_LOCAL is used to set the number of local symbols
2527 known to be in the dynamic symbol table. During
2528 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2529 section symbols are added and the count is higher. */
2530
b34976b6 2531static bfd_boolean
9719ad41 2532mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2533{
2534 struct mips_elf_hash_sort_data hsd;
2535 struct mips_got_info *g;
2536 bfd *dynobj;
2537
2538 dynobj = elf_hash_table (info)->dynobj;
2539
f4416af6
AO
2540 g = mips_elf_got_info (dynobj, NULL);
2541
b49e97c9 2542 hsd.low = NULL;
143d77c5 2543 hsd.max_unref_got_dynindx =
f4416af6
AO
2544 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2545 /* In the multi-got case, assigned_gotno of the master got_info
2546 indicate the number of entries that aren't referenced in the
2547 primary GOT, but that must have entries because there are
2548 dynamic relocations that reference it. Since they aren't
2549 referenced, we move them to the end of the GOT, so that they
2550 don't prevent other entries that are referenced from getting
2551 too large offsets. */
2552 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2553 hsd.max_non_got_dynindx = max_local;
2554 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2555 elf_hash_table (info)),
2556 mips_elf_sort_hash_table_f,
2557 &hsd);
2558
2559 /* There should have been enough room in the symbol table to
44c410de 2560 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2561 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2562 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2563 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2564
2565 /* Now we know which dynamic symbol has the lowest dynamic symbol
2566 table index in the GOT. */
b49e97c9
TS
2567 g->global_gotsym = hsd.low;
2568
b34976b6 2569 return TRUE;
b49e97c9
TS
2570}
2571
2572/* If H needs a GOT entry, assign it the highest available dynamic
2573 index. Otherwise, assign it the lowest available dynamic
2574 index. */
2575
b34976b6 2576static bfd_boolean
9719ad41 2577mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2578{
9719ad41 2579 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2580
2581 if (h->root.root.type == bfd_link_hash_warning)
2582 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2583
2584 /* Symbols without dynamic symbol table entries aren't interesting
2585 at all. */
2586 if (h->root.dynindx == -1)
b34976b6 2587 return TRUE;
b49e97c9 2588
f4416af6
AO
2589 /* Global symbols that need GOT entries that are not explicitly
2590 referenced are marked with got offset 2. Those that are
2591 referenced get a 1, and those that don't need GOT entries get
2592 -1. */
2593 if (h->root.got.offset == 2)
2594 {
0f20cc35
DJ
2595 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2596
f4416af6
AO
2597 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2598 hsd->low = (struct elf_link_hash_entry *) h;
2599 h->root.dynindx = hsd->max_unref_got_dynindx++;
2600 }
2601 else if (h->root.got.offset != 1)
b49e97c9
TS
2602 h->root.dynindx = hsd->max_non_got_dynindx++;
2603 else
2604 {
0f20cc35
DJ
2605 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2606
b49e97c9
TS
2607 h->root.dynindx = --hsd->min_got_dynindx;
2608 hsd->low = (struct elf_link_hash_entry *) h;
2609 }
2610
b34976b6 2611 return TRUE;
b49e97c9
TS
2612}
2613
2614/* If H is a symbol that needs a global GOT entry, but has a dynamic
2615 symbol table index lower than any we've seen to date, record it for
2616 posterity. */
2617
b34976b6 2618static bfd_boolean
9719ad41
RS
2619mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2620 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2621 struct mips_got_info *g,
2622 unsigned char tls_flag)
b49e97c9 2623{
f4416af6
AO
2624 struct mips_got_entry entry, **loc;
2625
b49e97c9
TS
2626 /* A global symbol in the GOT must also be in the dynamic symbol
2627 table. */
7c5fcef7
L
2628 if (h->dynindx == -1)
2629 {
2630 switch (ELF_ST_VISIBILITY (h->other))
2631 {
2632 case STV_INTERNAL:
2633 case STV_HIDDEN:
b34976b6 2634 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2635 break;
2636 }
c152c796 2637 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2638 return FALSE;
7c5fcef7 2639 }
b49e97c9 2640
f4416af6
AO
2641 entry.abfd = abfd;
2642 entry.symndx = -1;
2643 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2644 entry.tls_type = 0;
f4416af6
AO
2645
2646 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2647 INSERT);
2648
b49e97c9
TS
2649 /* If we've already marked this entry as needing GOT space, we don't
2650 need to do it again. */
f4416af6 2651 if (*loc)
0f20cc35
DJ
2652 {
2653 (*loc)->tls_type |= tls_flag;
2654 return TRUE;
2655 }
f4416af6
AO
2656
2657 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2658
2659 if (! *loc)
2660 return FALSE;
143d77c5 2661
f4416af6 2662 entry.gotidx = -1;
0f20cc35
DJ
2663 entry.tls_type = tls_flag;
2664
f4416af6
AO
2665 memcpy (*loc, &entry, sizeof entry);
2666
b49e97c9 2667 if (h->got.offset != MINUS_ONE)
b34976b6 2668 return TRUE;
b49e97c9
TS
2669
2670 /* By setting this to a value other than -1, we are indicating that
2671 there needs to be a GOT entry for H. Avoid using zero, as the
2672 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2673 if (tls_flag == 0)
2674 h->got.offset = 1;
b49e97c9 2675
b34976b6 2676 return TRUE;
b49e97c9 2677}
f4416af6
AO
2678
2679/* Reserve space in G for a GOT entry containing the value of symbol
2680 SYMNDX in input bfd ABDF, plus ADDEND. */
2681
2682static bfd_boolean
9719ad41 2683mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2684 struct mips_got_info *g,
2685 unsigned char tls_flag)
f4416af6
AO
2686{
2687 struct mips_got_entry entry, **loc;
2688
2689 entry.abfd = abfd;
2690 entry.symndx = symndx;
2691 entry.d.addend = addend;
0f20cc35 2692 entry.tls_type = tls_flag;
f4416af6
AO
2693 loc = (struct mips_got_entry **)
2694 htab_find_slot (g->got_entries, &entry, INSERT);
2695
2696 if (*loc)
0f20cc35
DJ
2697 {
2698 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2699 {
2700 g->tls_gotno += 2;
2701 (*loc)->tls_type |= tls_flag;
2702 }
2703 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2704 {
2705 g->tls_gotno += 1;
2706 (*loc)->tls_type |= tls_flag;
2707 }
2708 return TRUE;
2709 }
f4416af6 2710
0f20cc35
DJ
2711 if (tls_flag != 0)
2712 {
2713 entry.gotidx = -1;
2714 entry.tls_type = tls_flag;
2715 if (tls_flag == GOT_TLS_IE)
2716 g->tls_gotno += 1;
2717 else if (tls_flag == GOT_TLS_GD)
2718 g->tls_gotno += 2;
2719 else if (g->tls_ldm_offset == MINUS_ONE)
2720 {
2721 g->tls_ldm_offset = MINUS_TWO;
2722 g->tls_gotno += 2;
2723 }
2724 }
2725 else
2726 {
2727 entry.gotidx = g->local_gotno++;
2728 entry.tls_type = 0;
2729 }
f4416af6
AO
2730
2731 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2732
2733 if (! *loc)
2734 return FALSE;
143d77c5 2735
f4416af6
AO
2736 memcpy (*loc, &entry, sizeof entry);
2737
2738 return TRUE;
2739}
2740\f
2741/* Compute the hash value of the bfd in a bfd2got hash entry. */
2742
2743static hashval_t
9719ad41 2744mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2745{
2746 const struct mips_elf_bfd2got_hash *entry
2747 = (struct mips_elf_bfd2got_hash *)entry_;
2748
2749 return entry->bfd->id;
2750}
2751
2752/* Check whether two hash entries have the same bfd. */
2753
2754static int
9719ad41 2755mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2756{
2757 const struct mips_elf_bfd2got_hash *e1
2758 = (const struct mips_elf_bfd2got_hash *)entry1;
2759 const struct mips_elf_bfd2got_hash *e2
2760 = (const struct mips_elf_bfd2got_hash *)entry2;
2761
2762 return e1->bfd == e2->bfd;
2763}
2764
0b25d3e6 2765/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2766 be the master GOT data. */
2767
2768static struct mips_got_info *
9719ad41 2769mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2770{
2771 struct mips_elf_bfd2got_hash e, *p;
2772
2773 if (! g->bfd2got)
2774 return g;
2775
2776 e.bfd = ibfd;
9719ad41 2777 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2778 return p ? p->g : NULL;
2779}
2780
2781/* Create one separate got for each bfd that has entries in the global
2782 got, such that we can tell how many local and global entries each
2783 bfd requires. */
2784
2785static int
9719ad41 2786mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2787{
2788 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2789 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2790 htab_t bfd2got = arg->bfd2got;
2791 struct mips_got_info *g;
2792 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2793 void **bfdgotp;
143d77c5 2794
f4416af6
AO
2795 /* Find the got_info for this GOT entry's input bfd. Create one if
2796 none exists. */
2797 bfdgot_entry.bfd = entry->abfd;
2798 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2799 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2800
2801 if (bfdgot != NULL)
2802 g = bfdgot->g;
2803 else
2804 {
2805 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2806 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2807
2808 if (bfdgot == NULL)
2809 {
2810 arg->obfd = 0;
2811 return 0;
2812 }
2813
2814 *bfdgotp = bfdgot;
2815
2816 bfdgot->bfd = entry->abfd;
2817 bfdgot->g = g = (struct mips_got_info *)
2818 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2819 if (g == NULL)
2820 {
2821 arg->obfd = 0;
2822 return 0;
2823 }
2824
2825 g->global_gotsym = NULL;
2826 g->global_gotno = 0;
2827 g->local_gotno = 0;
2828 g->assigned_gotno = -1;
0f20cc35
DJ
2829 g->tls_gotno = 0;
2830 g->tls_assigned_gotno = 0;
2831 g->tls_ldm_offset = MINUS_ONE;
f4416af6 2832 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 2833 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
2834 if (g->got_entries == NULL)
2835 {
2836 arg->obfd = 0;
2837 return 0;
2838 }
2839
2840 g->bfd2got = NULL;
2841 g->next = NULL;
2842 }
2843
2844 /* Insert the GOT entry in the bfd's got entry hash table. */
2845 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2846 if (*entryp != NULL)
2847 return 1;
143d77c5 2848
f4416af6
AO
2849 *entryp = entry;
2850
0f20cc35
DJ
2851 if (entry->tls_type)
2852 {
2853 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
2854 g->tls_gotno += 2;
2855 if (entry->tls_type & GOT_TLS_IE)
2856 g->tls_gotno += 1;
2857 }
2858 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
2859 ++g->local_gotno;
2860 else
2861 ++g->global_gotno;
2862
2863 return 1;
2864}
2865
2866/* Attempt to merge gots of different input bfds. Try to use as much
2867 as possible of the primary got, since it doesn't require explicit
2868 dynamic relocations, but don't use bfds that would reference global
2869 symbols out of the addressable range. Failing the primary got,
2870 attempt to merge with the current got, or finish the current got
2871 and then make make the new got current. */
2872
2873static int
9719ad41 2874mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
2875{
2876 struct mips_elf_bfd2got_hash *bfd2got
2877 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2878 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2879 unsigned int lcount = bfd2got->g->local_gotno;
2880 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 2881 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 2882 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
2883 bfd_boolean too_many_for_tls = FALSE;
2884
2885 /* We place TLS GOT entries after both locals and globals. The globals
2886 for the primary GOT may overflow the normal GOT size limit, so be
2887 sure not to merge a GOT which requires TLS with the primary GOT in that
2888 case. This doesn't affect non-primary GOTs. */
2889 if (tcount > 0)
2890 {
2891 unsigned int primary_total = lcount + tcount + arg->global_count;
2892 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
2893 >= MIPS_ELF_GOT_MAX_SIZE (bfd2got->bfd))
2894 too_many_for_tls = TRUE;
2895 }
143d77c5 2896
f4416af6
AO
2897 /* If we don't have a primary GOT and this is not too big, use it as
2898 a starting point for the primary GOT. */
0f20cc35
DJ
2899 if (! arg->primary && lcount + gcount + tcount <= maxcnt
2900 && ! too_many_for_tls)
f4416af6
AO
2901 {
2902 arg->primary = bfd2got->g;
2903 arg->primary_count = lcount + gcount;
2904 }
2905 /* If it looks like we can merge this bfd's entries with those of
2906 the primary, merge them. The heuristics is conservative, but we
2907 don't have to squeeze it too hard. */
0f20cc35
DJ
2908 else if (arg->primary && ! too_many_for_tls
2909 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
2910 {
2911 struct mips_got_info *g = bfd2got->g;
2912 int old_lcount = arg->primary->local_gotno;
2913 int old_gcount = arg->primary->global_gotno;
0f20cc35 2914 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
2915
2916 bfd2got->g = arg->primary;
2917
2918 htab_traverse (g->got_entries,
2919 mips_elf_make_got_per_bfd,
2920 arg);
2921 if (arg->obfd == NULL)
2922 return 0;
2923
2924 htab_delete (g->got_entries);
2925 /* We don't have to worry about releasing memory of the actual
2926 got entries, since they're all in the master got_entries hash
2927 table anyway. */
2928
caec41ff 2929 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 2930 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 2931 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
2932
2933 arg->primary_count = arg->primary->local_gotno
0f20cc35 2934 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
2935 }
2936 /* If we can merge with the last-created got, do it. */
2937 else if (arg->current
0f20cc35 2938 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
2939 {
2940 struct mips_got_info *g = bfd2got->g;
2941 int old_lcount = arg->current->local_gotno;
2942 int old_gcount = arg->current->global_gotno;
0f20cc35 2943 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
2944
2945 bfd2got->g = arg->current;
2946
2947 htab_traverse (g->got_entries,
2948 mips_elf_make_got_per_bfd,
2949 arg);
2950 if (arg->obfd == NULL)
2951 return 0;
2952
2953 htab_delete (g->got_entries);
2954
caec41ff 2955 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 2956 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 2957 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
2958
2959 arg->current_count = arg->current->local_gotno
0f20cc35 2960 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
2961 }
2962 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2963 fits; if it turns out that it doesn't, we'll get relocation
2964 overflows anyway. */
2965 else
2966 {
2967 bfd2got->g->next = arg->current;
2968 arg->current = bfd2got->g;
143d77c5 2969
0f20cc35
DJ
2970 arg->current_count = lcount + gcount + 2 * tcount;
2971 }
2972
2973 return 1;
2974}
2975
2976/* Set the TLS GOT index for the GOT entry in ENTRYP. */
2977
2978static int
2979mips_elf_initialize_tls_index (void **entryp, void *p)
2980{
2981 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2982 struct mips_got_info *g = p;
2983
2984 /* We're only interested in TLS symbols. */
2985 if (entry->tls_type == 0)
2986 return 1;
2987
2988 if (entry->symndx == -1)
2989 {
2990 /* There may be multiple mips_got_entry structs for a global variable
2991 if there is just one GOT. Just do this once. */
2992 if (g->next == NULL)
2993 {
2994 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
2995 return 1;
2996 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
2997 }
2998 }
2999 else if (entry->tls_type & GOT_TLS_LDM)
3000 {
3001 /* Similarly, there may be multiple structs for the LDM entry. */
3002 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3003 {
3004 entry->gotidx = g->tls_ldm_offset;
3005 return 1;
3006 }
f4416af6
AO
3007 }
3008
0f20cc35
DJ
3009 /* Initialize the GOT offset. */
3010 entry->gotidx = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3011 if (g->next == NULL && entry->symndx == -1)
3012 entry->d.h->tls_got_offset = entry->gotidx;
3013
3014 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3015 g->tls_assigned_gotno += 2;
3016 if (entry->tls_type & GOT_TLS_IE)
3017 g->tls_assigned_gotno += 1;
3018
3019 if (entry->tls_type & GOT_TLS_LDM)
3020 g->tls_ldm_offset = entry->gotidx;
3021
f4416af6
AO
3022 return 1;
3023}
3024
3025/* If passed a NULL mips_got_info in the argument, set the marker used
3026 to tell whether a global symbol needs a got entry (in the primary
3027 got) to the given VALUE.
3028
3029 If passed a pointer G to a mips_got_info in the argument (it must
3030 not be the primary GOT), compute the offset from the beginning of
3031 the (primary) GOT section to the entry in G corresponding to the
3032 global symbol. G's assigned_gotno must contain the index of the
3033 first available global GOT entry in G. VALUE must contain the size
3034 of a GOT entry in bytes. For each global GOT entry that requires a
3035 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3036 marked as not eligible for lazy resolution through a function
f4416af6
AO
3037 stub. */
3038static int
9719ad41 3039mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3040{
3041 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3042 struct mips_elf_set_global_got_offset_arg *arg
3043 = (struct mips_elf_set_global_got_offset_arg *)p;
3044 struct mips_got_info *g = arg->g;
3045
0f20cc35
DJ
3046 if (g && entry->tls_type != GOT_NORMAL)
3047 arg->needed_relocs +=
3048 mips_tls_got_relocs (arg->info, entry->tls_type,
3049 entry->symndx == -1 ? &entry->d.h->root : NULL);
3050
f4416af6 3051 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3052 && entry->d.h->root.dynindx != -1
3053 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3054 {
3055 if (g)
3056 {
3057 BFD_ASSERT (g->global_gotsym == NULL);
3058
3059 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3060 if (arg->info->shared
3061 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3062 && entry->d.h->root.def_dynamic
3063 && !entry->d.h->root.def_regular))
f4416af6
AO
3064 ++arg->needed_relocs;
3065 }
3066 else
3067 entry->d.h->root.got.offset = arg->value;
3068 }
3069
3070 return 1;
3071}
3072
0626d451
RS
3073/* Mark any global symbols referenced in the GOT we are iterating over
3074 as inelligible for lazy resolution stubs. */
3075static int
9719ad41 3076mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3077{
3078 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3079
3080 if (entry->abfd != NULL
3081 && entry->symndx == -1
3082 && entry->d.h->root.dynindx != -1)
3083 entry->d.h->no_fn_stub = TRUE;
3084
3085 return 1;
3086}
3087
f4416af6
AO
3088/* Follow indirect and warning hash entries so that each got entry
3089 points to the final symbol definition. P must point to a pointer
3090 to the hash table we're traversing. Since this traversal may
3091 modify the hash table, we set this pointer to NULL to indicate
3092 we've made a potentially-destructive change to the hash table, so
3093 the traversal must be restarted. */
3094static int
9719ad41 3095mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3096{
3097 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3098 htab_t got_entries = *(htab_t *)p;
3099
3100 if (entry->abfd != NULL && entry->symndx == -1)
3101 {
3102 struct mips_elf_link_hash_entry *h = entry->d.h;
3103
3104 while (h->root.root.type == bfd_link_hash_indirect
3105 || h->root.root.type == bfd_link_hash_warning)
3106 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3107
3108 if (entry->d.h == h)
3109 return 1;
143d77c5 3110
f4416af6
AO
3111 entry->d.h = h;
3112
3113 /* If we can't find this entry with the new bfd hash, re-insert
3114 it, and get the traversal restarted. */
3115 if (! htab_find (got_entries, entry))
3116 {
3117 htab_clear_slot (got_entries, entryp);
3118 entryp = htab_find_slot (got_entries, entry, INSERT);
3119 if (! *entryp)
3120 *entryp = entry;
3121 /* Abort the traversal, since the whole table may have
3122 moved, and leave it up to the parent to restart the
3123 process. */
3124 *(htab_t *)p = NULL;
3125 return 0;
3126 }
3127 /* We might want to decrement the global_gotno count, but it's
3128 either too early or too late for that at this point. */
3129 }
143d77c5 3130
f4416af6
AO
3131 return 1;
3132}
3133
3134/* Turn indirect got entries in a got_entries table into their final
3135 locations. */
3136static void
9719ad41 3137mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3138{
3139 htab_t got_entries;
3140
3141 do
3142 {
3143 got_entries = g->got_entries;
3144
3145 htab_traverse (got_entries,
3146 mips_elf_resolve_final_got_entry,
3147 &got_entries);
3148 }
3149 while (got_entries == NULL);
3150}
3151
3152/* Return the offset of an input bfd IBFD's GOT from the beginning of
3153 the primary GOT. */
3154static bfd_vma
9719ad41 3155mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3156{
3157 if (g->bfd2got == NULL)
3158 return 0;
3159
3160 g = mips_elf_got_for_ibfd (g, ibfd);
3161 if (! g)
3162 return 0;
3163
3164 BFD_ASSERT (g->next);
3165
3166 g = g->next;
143d77c5 3167
0f20cc35
DJ
3168 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3169 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3170}
3171
3172/* Turn a single GOT that is too big for 16-bit addressing into
3173 a sequence of GOTs, each one 16-bit addressable. */
3174
3175static bfd_boolean
9719ad41
RS
3176mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3177 struct mips_got_info *g, asection *got,
3178 bfd_size_type pages)
f4416af6
AO
3179{
3180 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3181 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3182 struct mips_got_info *gg;
3183 unsigned int assign;
3184
3185 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3186 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3187 if (g->bfd2got == NULL)
3188 return FALSE;
3189
3190 got_per_bfd_arg.bfd2got = g->bfd2got;
3191 got_per_bfd_arg.obfd = abfd;
3192 got_per_bfd_arg.info = info;
3193
3194 /* Count how many GOT entries each input bfd requires, creating a
3195 map from bfd to got info while at that. */
f4416af6
AO
3196 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3197 if (got_per_bfd_arg.obfd == NULL)
3198 return FALSE;
3199
3200 got_per_bfd_arg.current = NULL;
3201 got_per_bfd_arg.primary = NULL;
3202 /* Taking out PAGES entries is a worst-case estimate. We could
3203 compute the maximum number of pages that each separate input bfd
3204 uses, but it's probably not worth it. */
3205 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
3206 / MIPS_ELF_GOT_SIZE (abfd))
3207 - MIPS_RESERVED_GOTNO - pages);
0f20cc35
DJ
3208 /* The number of globals that will be included in the primary GOT.
3209 See the calls to mips_elf_set_global_got_offset below for more
3210 information. */
3211 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3212
3213 /* Try to merge the GOTs of input bfds together, as long as they
3214 don't seem to exceed the maximum GOT size, choosing one of them
3215 to be the primary GOT. */
3216 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3217 if (got_per_bfd_arg.obfd == NULL)
3218 return FALSE;
3219
0f20cc35 3220 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3221 if (got_per_bfd_arg.primary == NULL)
3222 {
3223 g->next = (struct mips_got_info *)
3224 bfd_alloc (abfd, sizeof (struct mips_got_info));
3225 if (g->next == NULL)
3226 return FALSE;
3227
3228 g->next->global_gotsym = NULL;
3229 g->next->global_gotno = 0;
3230 g->next->local_gotno = 0;
0f20cc35 3231 g->next->tls_gotno = 0;
f4416af6 3232 g->next->assigned_gotno = 0;
0f20cc35
DJ
3233 g->next->tls_assigned_gotno = 0;
3234 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3235 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3236 mips_elf_multi_got_entry_eq,
9719ad41 3237 NULL);
f4416af6
AO
3238 if (g->next->got_entries == NULL)
3239 return FALSE;
3240 g->next->bfd2got = NULL;
3241 }
3242 else
3243 g->next = got_per_bfd_arg.primary;
3244 g->next->next = got_per_bfd_arg.current;
3245
3246 /* GG is now the master GOT, and G is the primary GOT. */
3247 gg = g;
3248 g = g->next;
3249
3250 /* Map the output bfd to the primary got. That's what we're going
3251 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3252 didn't mark in check_relocs, and we want a quick way to find it.
3253 We can't just use gg->next because we're going to reverse the
3254 list. */
3255 {
3256 struct mips_elf_bfd2got_hash *bfdgot;
3257 void **bfdgotp;
143d77c5 3258
f4416af6
AO
3259 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3260 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3261
3262 if (bfdgot == NULL)
3263 return FALSE;
3264
3265 bfdgot->bfd = abfd;
3266 bfdgot->g = g;
3267 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3268
3269 BFD_ASSERT (*bfdgotp == NULL);
3270 *bfdgotp = bfdgot;
3271 }
3272
3273 /* The IRIX dynamic linker requires every symbol that is referenced
3274 in a dynamic relocation to be present in the primary GOT, so
3275 arrange for them to appear after those that are actually
3276 referenced.
3277
3278 GNU/Linux could very well do without it, but it would slow down
3279 the dynamic linker, since it would have to resolve every dynamic
3280 symbol referenced in other GOTs more than once, without help from
3281 the cache. Also, knowing that every external symbol has a GOT
3282 helps speed up the resolution of local symbols too, so GNU/Linux
3283 follows IRIX's practice.
143d77c5 3284
f4416af6
AO
3285 The number 2 is used by mips_elf_sort_hash_table_f to count
3286 global GOT symbols that are unreferenced in the primary GOT, with
3287 an initial dynamic index computed from gg->assigned_gotno, where
3288 the number of unreferenced global entries in the primary GOT is
3289 preserved. */
3290 if (1)
3291 {
3292 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3293 g->global_gotno = gg->global_gotno;
3294 set_got_offset_arg.value = 2;
3295 }
3296 else
3297 {
3298 /* This could be used for dynamic linkers that don't optimize
3299 symbol resolution while applying relocations so as to use
3300 primary GOT entries or assuming the symbol is locally-defined.
3301 With this code, we assign lower dynamic indices to global
3302 symbols that are not referenced in the primary GOT, so that
3303 their entries can be omitted. */
3304 gg->assigned_gotno = 0;
3305 set_got_offset_arg.value = -1;
3306 }
3307
3308 /* Reorder dynamic symbols as described above (which behavior
3309 depends on the setting of VALUE). */
3310 set_got_offset_arg.g = NULL;
3311 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3312 &set_got_offset_arg);
3313 set_got_offset_arg.value = 1;
3314 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3315 &set_got_offset_arg);
3316 if (! mips_elf_sort_hash_table (info, 1))
3317 return FALSE;
3318
3319 /* Now go through the GOTs assigning them offset ranges.
3320 [assigned_gotno, local_gotno[ will be set to the range of local
3321 entries in each GOT. We can then compute the end of a GOT by
3322 adding local_gotno to global_gotno. We reverse the list and make
3323 it circular since then we'll be able to quickly compute the
3324 beginning of a GOT, by computing the end of its predecessor. To
3325 avoid special cases for the primary GOT, while still preserving
3326 assertions that are valid for both single- and multi-got links,
3327 we arrange for the main got struct to have the right number of
3328 global entries, but set its local_gotno such that the initial
3329 offset of the primary GOT is zero. Remember that the primary GOT
3330 will become the last item in the circular linked list, so it
3331 points back to the master GOT. */
3332 gg->local_gotno = -g->global_gotno;
3333 gg->global_gotno = g->global_gotno;
0f20cc35 3334 gg->tls_gotno = 0;
f4416af6
AO
3335 assign = 0;
3336 gg->next = gg;
3337
3338 do
3339 {
3340 struct mips_got_info *gn;
3341
3342 assign += MIPS_RESERVED_GOTNO;
3343 g->assigned_gotno = assign;
3344 g->local_gotno += assign + pages;
0f20cc35
DJ
3345 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3346
3347 /* Set up any TLS entries. We always place the TLS entries after
3348 all non-TLS entries. */
3349 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3350 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6
AO
3351
3352 /* Take g out of the direct list, and push it onto the reversed
3353 list that gg points to. */
3354 gn = g->next;
3355 g->next = gg->next;
3356 gg->next = g;
3357 g = gn;
0626d451
RS
3358
3359 /* Mark global symbols in every non-primary GOT as ineligible for
3360 stubs. */
3361 if (g)
3362 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3363 }
3364 while (g);
3365
eea6121a 3366 got->size = (gg->next->local_gotno
0f20cc35
DJ
3367 + gg->next->global_gotno
3368 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3369
f4416af6
AO
3370 return TRUE;
3371}
143d77c5 3372
b49e97c9
TS
3373\f
3374/* Returns the first relocation of type r_type found, beginning with
3375 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3376
3377static const Elf_Internal_Rela *
9719ad41
RS
3378mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3379 const Elf_Internal_Rela *relocation,
3380 const Elf_Internal_Rela *relend)
b49e97c9 3381{
b49e97c9
TS
3382 while (relocation < relend)
3383 {
3384 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3385 return relocation;
3386
3387 ++relocation;
3388 }
3389
3390 /* We didn't find it. */
3391 bfd_set_error (bfd_error_bad_value);
3392 return NULL;
3393}
3394
3395/* Return whether a relocation is against a local symbol. */
3396
b34976b6 3397static bfd_boolean
9719ad41
RS
3398mips_elf_local_relocation_p (bfd *input_bfd,
3399 const Elf_Internal_Rela *relocation,
3400 asection **local_sections,
3401 bfd_boolean check_forced)
b49e97c9
TS
3402{
3403 unsigned long r_symndx;
3404 Elf_Internal_Shdr *symtab_hdr;
3405 struct mips_elf_link_hash_entry *h;
3406 size_t extsymoff;
3407
3408 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3409 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3410 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3411
3412 if (r_symndx < extsymoff)
b34976b6 3413 return TRUE;
b49e97c9 3414 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3415 return TRUE;
b49e97c9
TS
3416
3417 if (check_forced)
3418 {
3419 /* Look up the hash table to check whether the symbol
3420 was forced local. */
3421 h = (struct mips_elf_link_hash_entry *)
3422 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3423 /* Find the real hash-table entry for this symbol. */
3424 while (h->root.root.type == bfd_link_hash_indirect
3425 || h->root.root.type == bfd_link_hash_warning)
3426 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3427 if (h->root.forced_local)
b34976b6 3428 return TRUE;
b49e97c9
TS
3429 }
3430
b34976b6 3431 return FALSE;
b49e97c9
TS
3432}
3433\f
3434/* Sign-extend VALUE, which has the indicated number of BITS. */
3435
a7ebbfdf 3436bfd_vma
9719ad41 3437_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3438{
3439 if (value & ((bfd_vma) 1 << (bits - 1)))
3440 /* VALUE is negative. */
3441 value |= ((bfd_vma) - 1) << bits;
3442
3443 return value;
3444}
3445
3446/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3447 range expressible by a signed number with the indicated number of
b49e97c9
TS
3448 BITS. */
3449
b34976b6 3450static bfd_boolean
9719ad41 3451mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3452{
3453 bfd_signed_vma svalue = (bfd_signed_vma) value;
3454
3455 if (svalue > (1 << (bits - 1)) - 1)
3456 /* The value is too big. */
b34976b6 3457 return TRUE;
b49e97c9
TS
3458 else if (svalue < -(1 << (bits - 1)))
3459 /* The value is too small. */
b34976b6 3460 return TRUE;
b49e97c9
TS
3461
3462 /* All is well. */
b34976b6 3463 return FALSE;
b49e97c9
TS
3464}
3465
3466/* Calculate the %high function. */
3467
3468static bfd_vma
9719ad41 3469mips_elf_high (bfd_vma value)
b49e97c9
TS
3470{
3471 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3472}
3473
3474/* Calculate the %higher function. */
3475
3476static bfd_vma
9719ad41 3477mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3478{
3479#ifdef BFD64
3480 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3481#else
3482 abort ();
c5ae1840 3483 return MINUS_ONE;
b49e97c9
TS
3484#endif
3485}
3486
3487/* Calculate the %highest function. */
3488
3489static bfd_vma
9719ad41 3490mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3491{
3492#ifdef BFD64
b15e6682 3493 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3494#else
3495 abort ();
c5ae1840 3496 return MINUS_ONE;
b49e97c9
TS
3497#endif
3498}
3499\f
3500/* Create the .compact_rel section. */
3501
b34976b6 3502static bfd_boolean
9719ad41
RS
3503mips_elf_create_compact_rel_section
3504 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3505{
3506 flagword flags;
3507 register asection *s;
3508
3509 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3510 {
3511 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3512 | SEC_READONLY);
3513
3496cb2a 3514 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3515 if (s == NULL
b49e97c9
TS
3516 || ! bfd_set_section_alignment (abfd, s,
3517 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3518 return FALSE;
b49e97c9 3519
eea6121a 3520 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3521 }
3522
b34976b6 3523 return TRUE;
b49e97c9
TS
3524}
3525
3526/* Create the .got section to hold the global offset table. */
3527
b34976b6 3528static bfd_boolean
9719ad41
RS
3529mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3530 bfd_boolean maybe_exclude)
b49e97c9
TS
3531{
3532 flagword flags;
3533 register asection *s;
3534 struct elf_link_hash_entry *h;
14a793b2 3535 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3536 struct mips_got_info *g;
3537 bfd_size_type amt;
3538
3539 /* This function may be called more than once. */
f4416af6
AO
3540 s = mips_elf_got_section (abfd, TRUE);
3541 if (s)
3542 {
3543 if (! maybe_exclude)
3544 s->flags &= ~SEC_EXCLUDE;
3545 return TRUE;
3546 }
b49e97c9
TS
3547
3548 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3549 | SEC_LINKER_CREATED);
3550
f4416af6
AO
3551 if (maybe_exclude)
3552 flags |= SEC_EXCLUDE;
3553
72b4917c
TS
3554 /* We have to use an alignment of 2**4 here because this is hardcoded
3555 in the function stub generation and in the linker script. */
3496cb2a 3556 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3557 if (s == NULL
72b4917c 3558 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3559 return FALSE;
b49e97c9
TS
3560
3561 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3562 linker script because we don't want to define the symbol if we
3563 are not creating a global offset table. */
14a793b2 3564 bh = NULL;
b49e97c9
TS
3565 if (! (_bfd_generic_link_add_one_symbol
3566 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3567 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3568 return FALSE;
14a793b2
AM
3569
3570 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3571 h->non_elf = 0;
3572 h->def_regular = 1;
b49e97c9
TS
3573 h->type = STT_OBJECT;
3574
3575 if (info->shared
c152c796 3576 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3577 return FALSE;
b49e97c9 3578
b49e97c9 3579 amt = sizeof (struct mips_got_info);
9719ad41 3580 g = bfd_alloc (abfd, amt);
b49e97c9 3581 if (g == NULL)
b34976b6 3582 return FALSE;
b49e97c9 3583 g->global_gotsym = NULL;
e3d54347 3584 g->global_gotno = 0;
0f20cc35 3585 g->tls_gotno = 0;
b49e97c9
TS
3586 g->local_gotno = MIPS_RESERVED_GOTNO;
3587 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
3588 g->bfd2got = NULL;
3589 g->next = NULL;
0f20cc35 3590 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3591 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3592 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3593 if (g->got_entries == NULL)
3594 return FALSE;
f0abc2a1
AM
3595 mips_elf_section_data (s)->u.got_info = g;
3596 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3597 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3598
b34976b6 3599 return TRUE;
b49e97c9 3600}
b49e97c9
TS
3601\f
3602/* Calculate the value produced by the RELOCATION (which comes from
3603 the INPUT_BFD). The ADDEND is the addend to use for this
3604 RELOCATION; RELOCATION->R_ADDEND is ignored.
3605
3606 The result of the relocation calculation is stored in VALUEP.
3607 REQUIRE_JALXP indicates whether or not the opcode used with this
3608 relocation must be JALX.
3609
3610 This function returns bfd_reloc_continue if the caller need take no
3611 further action regarding this relocation, bfd_reloc_notsupported if
3612 something goes dramatically wrong, bfd_reloc_overflow if an
3613 overflow occurs, and bfd_reloc_ok to indicate success. */
3614
3615static bfd_reloc_status_type
9719ad41
RS
3616mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3617 asection *input_section,
3618 struct bfd_link_info *info,
3619 const Elf_Internal_Rela *relocation,
3620 bfd_vma addend, reloc_howto_type *howto,
3621 Elf_Internal_Sym *local_syms,
3622 asection **local_sections, bfd_vma *valuep,
3623 const char **namep, bfd_boolean *require_jalxp,
3624 bfd_boolean save_addend)
b49e97c9
TS
3625{
3626 /* The eventual value we will return. */
3627 bfd_vma value;
3628 /* The address of the symbol against which the relocation is
3629 occurring. */
3630 bfd_vma symbol = 0;
3631 /* The final GP value to be used for the relocatable, executable, or
3632 shared object file being produced. */
3633 bfd_vma gp = MINUS_ONE;
3634 /* The place (section offset or address) of the storage unit being
3635 relocated. */
3636 bfd_vma p;
3637 /* The value of GP used to create the relocatable object. */
3638 bfd_vma gp0 = MINUS_ONE;
3639 /* The offset into the global offset table at which the address of
3640 the relocation entry symbol, adjusted by the addend, resides
3641 during execution. */
3642 bfd_vma g = MINUS_ONE;
3643 /* The section in which the symbol referenced by the relocation is
3644 located. */
3645 asection *sec = NULL;
3646 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3647 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3648 symbol. */
b34976b6
AM
3649 bfd_boolean local_p, was_local_p;
3650 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3651 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3652 /* TRUE if the symbol referred to by this relocation is
3653 "__gnu_local_gp". */
3654 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3655 Elf_Internal_Shdr *symtab_hdr;
3656 size_t extsymoff;
3657 unsigned long r_symndx;
3658 int r_type;
b34976b6 3659 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3660 relocation value. */
b34976b6
AM
3661 bfd_boolean overflowed_p;
3662 /* TRUE if this relocation refers to a MIPS16 function. */
3663 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
3664
3665 /* Parse the relocation. */
3666 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3667 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3668 p = (input_section->output_section->vma
3669 + input_section->output_offset
3670 + relocation->r_offset);
3671
3672 /* Assume that there will be no overflow. */
b34976b6 3673 overflowed_p = FALSE;
b49e97c9
TS
3674
3675 /* Figure out whether or not the symbol is local, and get the offset
3676 used in the array of hash table entries. */
3677 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3678 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3679 local_sections, FALSE);
bce03d3d 3680 was_local_p = local_p;
b49e97c9
TS
3681 if (! elf_bad_symtab (input_bfd))
3682 extsymoff = symtab_hdr->sh_info;
3683 else
3684 {
3685 /* The symbol table does not follow the rule that local symbols
3686 must come before globals. */
3687 extsymoff = 0;
3688 }
3689
3690 /* Figure out the value of the symbol. */
3691 if (local_p)
3692 {
3693 Elf_Internal_Sym *sym;
3694
3695 sym = local_syms + r_symndx;
3696 sec = local_sections[r_symndx];
3697
3698 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3699 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3700 || (sec->flags & SEC_MERGE))
b49e97c9 3701 symbol += sym->st_value;
d4df96e6
L
3702 if ((sec->flags & SEC_MERGE)
3703 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3704 {
3705 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3706 addend -= symbol;
3707 addend += sec->output_section->vma + sec->output_offset;
3708 }
b49e97c9
TS
3709
3710 /* MIPS16 text labels should be treated as odd. */
3711 if (sym->st_other == STO_MIPS16)
3712 ++symbol;
3713
3714 /* Record the name of this symbol, for our caller. */
3715 *namep = bfd_elf_string_from_elf_section (input_bfd,
3716 symtab_hdr->sh_link,
3717 sym->st_name);
3718 if (*namep == '\0')
3719 *namep = bfd_section_name (input_bfd, sec);
3720
3721 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3722 }
3723 else
3724 {
560e09e9
NC
3725 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3726
b49e97c9
TS
3727 /* For global symbols we look up the symbol in the hash-table. */
3728 h = ((struct mips_elf_link_hash_entry *)
3729 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3730 /* Find the real hash-table entry for this symbol. */
3731 while (h->root.root.type == bfd_link_hash_indirect
3732 || h->root.root.type == bfd_link_hash_warning)
3733 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3734
3735 /* Record the name of this symbol, for our caller. */
3736 *namep = h->root.root.root.string;
3737
3738 /* See if this is the special _gp_disp symbol. Note that such a
3739 symbol must always be a global symbol. */
560e09e9 3740 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3741 && ! NEWABI_P (input_bfd))
3742 {
3743 /* Relocations against _gp_disp are permitted only with
3744 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
3745 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3746 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
3747 return bfd_reloc_notsupported;
3748
b34976b6 3749 gp_disp_p = TRUE;
b49e97c9 3750 }
bbe506e8
TS
3751 /* See if this is the special _gp symbol. Note that such a
3752 symbol must always be a global symbol. */
3753 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3754 gnu_local_gp_p = TRUE;
3755
3756
b49e97c9
TS
3757 /* If this symbol is defined, calculate its address. Note that
3758 _gp_disp is a magic symbol, always implicitly defined by the
3759 linker, so it's inappropriate to check to see whether or not
3760 its defined. */
3761 else if ((h->root.root.type == bfd_link_hash_defined
3762 || h->root.root.type == bfd_link_hash_defweak)
3763 && h->root.root.u.def.section)
3764 {
3765 sec = h->root.root.u.def.section;
3766 if (sec->output_section)
3767 symbol = (h->root.root.u.def.value
3768 + sec->output_section->vma
3769 + sec->output_offset);
3770 else
3771 symbol = h->root.root.u.def.value;
3772 }
3773 else if (h->root.root.type == bfd_link_hash_undefweak)
3774 /* We allow relocations against undefined weak symbols, giving
3775 it the value zero, so that you can undefined weak functions
3776 and check to see if they exist by looking at their
3777 addresses. */
3778 symbol = 0;
59c2e50f 3779 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
3780 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3781 symbol = 0;
a4d0f181
TS
3782 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3783 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
3784 {
3785 /* If this is a dynamic link, we should have created a
3786 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3787 in in _bfd_mips_elf_create_dynamic_sections.
3788 Otherwise, we should define the symbol with a value of 0.
3789 FIXME: It should probably get into the symbol table
3790 somehow as well. */
3791 BFD_ASSERT (! info->shared);
3792 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3793 symbol = 0;
3794 }
3795 else
3796 {
3797 if (! ((*info->callbacks->undefined_symbol)
3798 (info, h->root.root.root.string, input_bfd,
3799 input_section, relocation->r_offset,
59c2e50f
L
3800 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3801 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
3802 return bfd_reloc_undefined;
3803 symbol = 0;
3804 }
3805
3806 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3807 }
3808
3809 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3810 need to redirect the call to the stub, unless we're already *in*
3811 a stub. */
1049f94e 3812 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3813 && ((h != NULL && h->fn_stub != NULL)
3814 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3815 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3816 && !mips_elf_stub_section_p (input_bfd, input_section))
3817 {
3818 /* This is a 32- or 64-bit call to a 16-bit function. We should
3819 have already noticed that we were going to need the
3820 stub. */
3821 if (local_p)
3822 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3823 else
3824 {
3825 BFD_ASSERT (h->need_fn_stub);
3826 sec = h->fn_stub;
3827 }
3828
3829 symbol = sec->output_section->vma + sec->output_offset;
3830 }
3831 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3832 need to redirect the call to the stub. */
1049f94e 3833 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3834 && h != NULL
3835 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3836 && !target_is_16_bit_code_p)
3837 {
3838 /* If both call_stub and call_fp_stub are defined, we can figure
3839 out which one to use by seeing which one appears in the input
3840 file. */
3841 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3842 {
3843 asection *o;
3844
3845 sec = NULL;
3846 for (o = input_bfd->sections; o != NULL; o = o->next)
3847 {
3848 if (strncmp (bfd_get_section_name (input_bfd, o),
3849 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3850 {
3851 sec = h->call_fp_stub;
3852 break;
3853 }
3854 }
3855 if (sec == NULL)
3856 sec = h->call_stub;
3857 }
3858 else if (h->call_stub != NULL)
3859 sec = h->call_stub;
3860 else
3861 sec = h->call_fp_stub;
3862
eea6121a 3863 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
3864 symbol = sec->output_section->vma + sec->output_offset;
3865 }
3866
3867 /* Calls from 16-bit code to 32-bit code and vice versa require the
3868 special jalx instruction. */
1049f94e 3869 *require_jalxp = (!info->relocatable
b49e97c9
TS
3870 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3871 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3872
3873 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3874 local_sections, TRUE);
b49e97c9
TS
3875
3876 /* If we haven't already determined the GOT offset, or the GP value,
3877 and we're going to need it, get it now. */
3878 switch (r_type)
3879 {
0fdc1bf1 3880 case R_MIPS_GOT_PAGE:
93a2b7ae 3881 case R_MIPS_GOT_OFST:
d25aed71
RS
3882 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3883 bind locally. */
3884 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 3885 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3886 break;
3887 /* Fall through. */
3888
b49e97c9
TS
3889 case R_MIPS_CALL16:
3890 case R_MIPS_GOT16:
3891 case R_MIPS_GOT_DISP:
3892 case R_MIPS_GOT_HI16:
3893 case R_MIPS_CALL_HI16:
3894 case R_MIPS_GOT_LO16:
3895 case R_MIPS_CALL_LO16:
0f20cc35
DJ
3896 case R_MIPS_TLS_GD:
3897 case R_MIPS_TLS_GOTTPREL:
3898 case R_MIPS_TLS_LDM:
b49e97c9 3899 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
3900 if (r_type == R_MIPS_TLS_LDM)
3901 {
3902 g = mips_elf_local_got_index (abfd, input_bfd, info, 0, 0, NULL,
3903 r_type);
3904 if (g == MINUS_ONE)
3905 return bfd_reloc_outofrange;
3906 }
3907 else if (!local_p)
b49e97c9 3908 {
0fdc1bf1
AO
3909 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3910 GOT_PAGE relocation that decays to GOT_DISP because the
3911 symbol turns out to be global. The addend is then added
3912 as GOT_OFST. */
3913 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3914 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3915 input_bfd,
0f20cc35
DJ
3916 (struct elf_link_hash_entry *) h,
3917 r_type, info);
3918 if (h->tls_type == GOT_NORMAL
3919 && (! elf_hash_table(info)->dynamic_sections_created
3920 || (info->shared
3921 && (info->symbolic || h->root.dynindx == -1)
3922 && h->root.def_regular)))
b49e97c9
TS
3923 {
3924 /* This is a static link or a -Bsymbolic link. The
3925 symbol is defined locally, or was forced to be local.
3926 We must initialize this entry in the GOT. */
3927 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3928 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3929 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3930 }
3931 }
3932 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3933 /* There's no need to create a local GOT entry here; the
3934 calculation for a local GOT16 entry does not involve G. */
3935 break;
3936 else
3937 {
f4416af6 3938 g = mips_elf_local_got_index (abfd, input_bfd,
0f20cc35
DJ
3939 info, symbol + addend, r_symndx, h,
3940 r_type);
b49e97c9
TS
3941 if (g == MINUS_ONE)
3942 return bfd_reloc_outofrange;
3943 }
3944
3945 /* Convert GOT indices to actual offsets. */
3946 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3947 abfd, input_bfd, g);
b49e97c9
TS
3948 break;
3949
3950 case R_MIPS_HI16:
3951 case R_MIPS_LO16:
b49e97c9
TS
3952 case R_MIPS_GPREL16:
3953 case R_MIPS_GPREL32:
3954 case R_MIPS_LITERAL:
d6f16593
MR
3955 case R_MIPS16_HI16:
3956 case R_MIPS16_LO16:
3957 case R_MIPS16_GPREL:
b49e97c9
TS
3958 gp0 = _bfd_get_gp_value (input_bfd);
3959 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3960 if (elf_hash_table (info)->dynobj)
3961 gp += mips_elf_adjust_gp (abfd,
3962 mips_elf_got_info
3963 (elf_hash_table (info)->dynobj, NULL),
3964 input_bfd);
b49e97c9
TS
3965 break;
3966
3967 default:
3968 break;
3969 }
3970
bbe506e8
TS
3971 if (gnu_local_gp_p)
3972 symbol = gp;
3973
b49e97c9
TS
3974 /* Figure out what kind of relocation is being performed. */
3975 switch (r_type)
3976 {
3977 case R_MIPS_NONE:
3978 return bfd_reloc_continue;
3979
3980 case R_MIPS_16:
a7ebbfdf 3981 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3982 overflowed_p = mips_elf_overflow_p (value, 16);
3983 break;
3984
3985 case R_MIPS_32:
3986 case R_MIPS_REL32:
3987 case R_MIPS_64:
3988 if ((info->shared
3989 || (elf_hash_table (info)->dynamic_sections_created
3990 && h != NULL
f5385ebf
AM
3991 && h->root.def_dynamic
3992 && !h->root.def_regular))
b49e97c9
TS
3993 && r_symndx != 0
3994 && (input_section->flags & SEC_ALLOC) != 0)
3995 {
3996 /* If we're creating a shared library, or this relocation is
3997 against a symbol in a shared library, then we can't know
3998 where the symbol will end up. So, we create a relocation
3999 record in the output, and leave the job up to the dynamic
4000 linker. */
4001 value = addend;
4002 if (!mips_elf_create_dynamic_relocation (abfd,
4003 info,
4004 relocation,
4005 h,
4006 sec,
4007 symbol,
4008 &value,
4009 input_section))
4010 return bfd_reloc_undefined;
4011 }
4012 else
4013 {
4014 if (r_type != R_MIPS_REL32)
4015 value = symbol + addend;
4016 else
4017 value = addend;
4018 }
4019 value &= howto->dst_mask;
092dcd75
CD
4020 break;
4021
4022 case R_MIPS_PC32:
4023 value = symbol + addend - p;
4024 value &= howto->dst_mask;
b49e97c9
TS
4025 break;
4026
0b25d3e6 4027 case R_MIPS_GNU_REL16_S2:
30ac9238 4028 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
0b25d3e6
AO
4029 overflowed_p = mips_elf_overflow_p (value, 18);
4030 value = (value >> 2) & howto->dst_mask;
4031 break;
4032
b49e97c9
TS
4033 case R_MIPS16_26:
4034 /* The calculation for R_MIPS16_26 is just the same as for an
4035 R_MIPS_26. It's only the storage of the relocated field into
4036 the output file that's different. That's handled in
4037 mips_elf_perform_relocation. So, we just fall through to the
4038 R_MIPS_26 case here. */
4039 case R_MIPS_26:
4040 if (local_p)
30ac9238 4041 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4042 else
728b2f21
ILT
4043 {
4044 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4045 if (h->root.root.type != bfd_link_hash_undefweak)
4046 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4047 }
b49e97c9
TS
4048 value &= howto->dst_mask;
4049 break;
4050
0f20cc35
DJ
4051 case R_MIPS_TLS_DTPREL_HI16:
4052 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4053 & howto->dst_mask);
4054 break;
4055
4056 case R_MIPS_TLS_DTPREL_LO16:
4057 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4058 break;
4059
4060 case R_MIPS_TLS_TPREL_HI16:
4061 value = (mips_elf_high (addend + symbol - tprel_base (info))
4062 & howto->dst_mask);
4063 break;
4064
4065 case R_MIPS_TLS_TPREL_LO16:
4066 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4067 break;
4068
b49e97c9 4069 case R_MIPS_HI16:
d6f16593 4070 case R_MIPS16_HI16:
b49e97c9
TS
4071 if (!gp_disp_p)
4072 {
4073 value = mips_elf_high (addend + symbol);
4074 value &= howto->dst_mask;
4075 }
4076 else
4077 {
d6f16593
MR
4078 /* For MIPS16 ABI code we generate this sequence
4079 0: li $v0,%hi(_gp_disp)
4080 4: addiupc $v1,%lo(_gp_disp)
4081 8: sll $v0,16
4082 12: addu $v0,$v1
4083 14: move $gp,$v0
4084 So the offsets of hi and lo relocs are the same, but the
4085 $pc is four higher than $t9 would be, so reduce
4086 both reloc addends by 4. */
4087 if (r_type == R_MIPS16_HI16)
4088 value = mips_elf_high (addend + gp - p - 4);
4089 else
4090 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4091 overflowed_p = mips_elf_overflow_p (value, 16);
4092 }
4093 break;
4094
4095 case R_MIPS_LO16:
d6f16593 4096 case R_MIPS16_LO16:
b49e97c9
TS
4097 if (!gp_disp_p)
4098 value = (symbol + addend) & howto->dst_mask;
4099 else
4100 {
d6f16593
MR
4101 /* See the comment for R_MIPS16_HI16 above for the reason
4102 for this conditional. */
4103 if (r_type == R_MIPS16_LO16)
4104 value = addend + gp - p;
4105 else
4106 value = addend + gp - p + 4;
b49e97c9 4107 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4108 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4109 _gp_disp are normally generated from the .cpload
4110 pseudo-op. It generates code that normally looks like
4111 this:
4112
4113 lui $gp,%hi(_gp_disp)
4114 addiu $gp,$gp,%lo(_gp_disp)
4115 addu $gp,$gp,$t9
4116
4117 Here $t9 holds the address of the function being called,
4118 as required by the MIPS ELF ABI. The R_MIPS_LO16
4119 relocation can easily overflow in this situation, but the
4120 R_MIPS_HI16 relocation will handle the overflow.
4121 Therefore, we consider this a bug in the MIPS ABI, and do
4122 not check for overflow here. */
4123 }
4124 break;
4125
4126 case R_MIPS_LITERAL:
4127 /* Because we don't merge literal sections, we can handle this
4128 just like R_MIPS_GPREL16. In the long run, we should merge
4129 shared literals, and then we will need to additional work
4130 here. */
4131
4132 /* Fall through. */
4133
4134 case R_MIPS16_GPREL:
4135 /* The R_MIPS16_GPREL performs the same calculation as
4136 R_MIPS_GPREL16, but stores the relocated bits in a different
4137 order. We don't need to do anything special here; the
4138 differences are handled in mips_elf_perform_relocation. */
4139 case R_MIPS_GPREL16:
bce03d3d
AO
4140 /* Only sign-extend the addend if it was extracted from the
4141 instruction. If the addend was separate, leave it alone,
4142 otherwise we may lose significant bits. */
4143 if (howto->partial_inplace)
a7ebbfdf 4144 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4145 value = symbol + addend - gp;
4146 /* If the symbol was local, any earlier relocatable links will
4147 have adjusted its addend with the gp offset, so compensate
4148 for that now. Don't do it for symbols forced local in this
4149 link, though, since they won't have had the gp offset applied
4150 to them before. */
4151 if (was_local_p)
4152 value += gp0;
b49e97c9
TS
4153 overflowed_p = mips_elf_overflow_p (value, 16);
4154 break;
4155
4156 case R_MIPS_GOT16:
4157 case R_MIPS_CALL16:
4158 if (local_p)
4159 {
b34976b6 4160 bfd_boolean forced;
b49e97c9
TS
4161
4162 /* The special case is when the symbol is forced to be local. We
4163 need the full address in the GOT since no R_MIPS_LO16 relocation
4164 follows. */
4165 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4166 local_sections, FALSE);
f4416af6
AO
4167 value = mips_elf_got16_entry (abfd, input_bfd, info,
4168 symbol + addend, forced);
b49e97c9
TS
4169 if (value == MINUS_ONE)
4170 return bfd_reloc_outofrange;
4171 value
4172 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 4173 abfd, input_bfd, value);
b49e97c9
TS
4174 overflowed_p = mips_elf_overflow_p (value, 16);
4175 break;
4176 }
4177
4178 /* Fall through. */
4179
0f20cc35
DJ
4180 case R_MIPS_TLS_GD:
4181 case R_MIPS_TLS_GOTTPREL:
4182 case R_MIPS_TLS_LDM:
b49e97c9 4183 case R_MIPS_GOT_DISP:
0fdc1bf1 4184 got_disp:
b49e97c9
TS
4185 value = g;
4186 overflowed_p = mips_elf_overflow_p (value, 16);
4187 break;
4188
4189 case R_MIPS_GPREL32:
bce03d3d
AO
4190 value = (addend + symbol + gp0 - gp);
4191 if (!save_addend)
4192 value &= howto->dst_mask;
b49e97c9
TS
4193 break;
4194
4195 case R_MIPS_PC16:
a7ebbfdf 4196 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
0b25d3e6 4197 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
4198 break;
4199
4200 case R_MIPS_GOT_HI16:
4201 case R_MIPS_CALL_HI16:
4202 /* We're allowed to handle these two relocations identically.
4203 The dynamic linker is allowed to handle the CALL relocations
4204 differently by creating a lazy evaluation stub. */
4205 value = g;
4206 value = mips_elf_high (value);
4207 value &= howto->dst_mask;
4208 break;
4209
4210 case R_MIPS_GOT_LO16:
4211 case R_MIPS_CALL_LO16:
4212 value = g & howto->dst_mask;
4213 break;
4214
4215 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4216 /* GOT_PAGE relocations that reference non-local symbols decay
4217 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4218 0. */
93a2b7ae 4219 if (! local_p)
0fdc1bf1 4220 goto got_disp;
f4416af6 4221 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
4222 if (value == MINUS_ONE)
4223 return bfd_reloc_outofrange;
4224 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 4225 abfd, input_bfd, value);
b49e97c9
TS
4226 overflowed_p = mips_elf_overflow_p (value, 16);
4227 break;
4228
4229 case R_MIPS_GOT_OFST:
93a2b7ae 4230 if (local_p)
0fdc1bf1
AO
4231 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4232 else
4233 value = addend;
b49e97c9
TS
4234 overflowed_p = mips_elf_overflow_p (value, 16);
4235 break;
4236
4237 case R_MIPS_SUB:
4238 value = symbol - addend;
4239 value &= howto->dst_mask;
4240 break;
4241
4242 case R_MIPS_HIGHER:
4243 value = mips_elf_higher (addend + symbol);
4244 value &= howto->dst_mask;
4245 break;
4246
4247 case R_MIPS_HIGHEST:
4248 value = mips_elf_highest (addend + symbol);
4249 value &= howto->dst_mask;
4250 break;
4251
4252 case R_MIPS_SCN_DISP:
4253 value = symbol + addend - sec->output_offset;
4254 value &= howto->dst_mask;
4255 break;
4256
b49e97c9 4257 case R_MIPS_JALR:
1367d393
ILT
4258 /* This relocation is only a hint. In some cases, we optimize
4259 it into a bal instruction. But we don't try to optimize
4260 branches to the PLT; that will wind up wasting time. */
4261 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4262 return bfd_reloc_continue;
4263 value = symbol + addend;
4264 break;
b49e97c9 4265
1367d393 4266 case R_MIPS_PJUMP:
b49e97c9
TS
4267 case R_MIPS_GNU_VTINHERIT:
4268 case R_MIPS_GNU_VTENTRY:
4269 /* We don't do anything with these at present. */
4270 return bfd_reloc_continue;
4271
4272 default:
4273 /* An unrecognized relocation type. */
4274 return bfd_reloc_notsupported;
4275 }
4276
4277 /* Store the VALUE for our caller. */
4278 *valuep = value;
4279 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4280}
4281
4282/* Obtain the field relocated by RELOCATION. */
4283
4284static bfd_vma
9719ad41
RS
4285mips_elf_obtain_contents (reloc_howto_type *howto,
4286 const Elf_Internal_Rela *relocation,
4287 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4288{
4289 bfd_vma x;
4290 bfd_byte *location = contents + relocation->r_offset;
4291
4292 /* Obtain the bytes. */
4293 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4294
b49e97c9
TS
4295 return x;
4296}
4297
4298/* It has been determined that the result of the RELOCATION is the
4299 VALUE. Use HOWTO to place VALUE into the output file at the
4300 appropriate position. The SECTION is the section to which the
b34976b6 4301 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4302 for the relocation must be either JAL or JALX, and it is
4303 unconditionally converted to JALX.
4304
b34976b6 4305 Returns FALSE if anything goes wrong. */
b49e97c9 4306
b34976b6 4307static bfd_boolean
9719ad41
RS
4308mips_elf_perform_relocation (struct bfd_link_info *info,
4309 reloc_howto_type *howto,
4310 const Elf_Internal_Rela *relocation,
4311 bfd_vma value, bfd *input_bfd,
4312 asection *input_section, bfd_byte *contents,
4313 bfd_boolean require_jalx)
b49e97c9
TS
4314{
4315 bfd_vma x;
4316 bfd_byte *location;
4317 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4318
4319 /* Figure out where the relocation is occurring. */
4320 location = contents + relocation->r_offset;
4321
d6f16593
MR
4322 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4323
b49e97c9
TS
4324 /* Obtain the current value. */
4325 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4326
4327 /* Clear the field we are setting. */
4328 x &= ~howto->dst_mask;
4329
b49e97c9
TS
4330 /* Set the field. */
4331 x |= (value & howto->dst_mask);
4332
4333 /* If required, turn JAL into JALX. */
4334 if (require_jalx)
4335 {
b34976b6 4336 bfd_boolean ok;
b49e97c9
TS
4337 bfd_vma opcode = x >> 26;
4338 bfd_vma jalx_opcode;
4339
4340 /* Check to see if the opcode is already JAL or JALX. */
4341 if (r_type == R_MIPS16_26)
4342 {
4343 ok = ((opcode == 0x6) || (opcode == 0x7));
4344 jalx_opcode = 0x7;
4345 }
4346 else
4347 {
4348 ok = ((opcode == 0x3) || (opcode == 0x1d));
4349 jalx_opcode = 0x1d;
4350 }
4351
4352 /* If the opcode is not JAL or JALX, there's a problem. */
4353 if (!ok)
4354 {
4355 (*_bfd_error_handler)
d003868e
AM
4356 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4357 input_bfd,
4358 input_section,
b49e97c9
TS
4359 (unsigned long) relocation->r_offset);
4360 bfd_set_error (bfd_error_bad_value);
b34976b6 4361 return FALSE;
b49e97c9
TS
4362 }
4363
4364 /* Make this the JALX opcode. */
4365 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4366 }
4367
1367d393
ILT
4368 /* On the RM9000, bal is faster than jal, because bal uses branch
4369 prediction hardware. If we are linking for the RM9000, and we
4370 see jal, and bal fits, use it instead. Note that this
4371 transformation should be safe for all architectures. */
4372 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4373 && !info->relocatable
4374 && !require_jalx
4375 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4376 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4377 {
4378 bfd_vma addr;
4379 bfd_vma dest;
4380 bfd_signed_vma off;
4381
4382 addr = (input_section->output_section->vma
4383 + input_section->output_offset
4384 + relocation->r_offset
4385 + 4);
4386 if (r_type == R_MIPS_26)
4387 dest = (value << 2) | ((addr >> 28) << 28);
4388 else
4389 dest = value;
4390 off = dest - addr;
4391 if (off <= 0x1ffff && off >= -0x20000)
4392 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4393 }
4394
b49e97c9
TS
4395 /* Put the value into the output. */
4396 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4397
4398 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4399 location);
4400
b34976b6 4401 return TRUE;
b49e97c9
TS
4402}
4403
b34976b6 4404/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4405
b34976b6 4406static bfd_boolean
9719ad41 4407mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4408{
4409 const char *name = bfd_get_section_name (abfd, section);
4410
4411 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4412 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4413 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4414}
4415\f
4416/* Add room for N relocations to the .rel.dyn section in ABFD. */
4417
4418static void
9719ad41 4419mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
b49e97c9
TS
4420{
4421 asection *s;
4422
f4416af6 4423 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
4424 BFD_ASSERT (s != NULL);
4425
eea6121a 4426 if (s->size == 0)
b49e97c9
TS
4427 {
4428 /* Make room for a null element. */
eea6121a 4429 s->size += MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
4430 ++s->reloc_count;
4431 }
eea6121a 4432 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
4433}
4434
4435/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4436 is the original relocation, which is now being transformed into a
4437 dynamic relocation. The ADDENDP is adjusted if necessary; the
4438 caller should store the result in place of the original addend. */
4439
b34976b6 4440static bfd_boolean
9719ad41
RS
4441mips_elf_create_dynamic_relocation (bfd *output_bfd,
4442 struct bfd_link_info *info,
4443 const Elf_Internal_Rela *rel,
4444 struct mips_elf_link_hash_entry *h,
4445 asection *sec, bfd_vma symbol,
4446 bfd_vma *addendp, asection *input_section)
b49e97c9 4447{
947216bf 4448 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4449 asection *sreloc;
4450 bfd *dynobj;
4451 int r_type;
5d41f0b6
RS
4452 long indx;
4453 bfd_boolean defined_p;
b49e97c9
TS
4454
4455 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4456 dynobj = elf_hash_table (info)->dynobj;
f4416af6 4457 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
4458 BFD_ASSERT (sreloc != NULL);
4459 BFD_ASSERT (sreloc->contents != NULL);
4460 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4461 < sreloc->size);
b49e97c9 4462
b49e97c9
TS
4463 outrel[0].r_offset =
4464 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4465 outrel[1].r_offset =
4466 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4467 outrel[2].r_offset =
4468 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4469
c5ae1840 4470 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4471 /* The relocation field has been deleted. */
5d41f0b6
RS
4472 return TRUE;
4473
4474 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4475 {
4476 /* The relocation field has been converted into a relative value of
4477 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4478 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4479 *addendp += symbol;
5d41f0b6 4480 return TRUE;
0d591ff7 4481 }
b49e97c9 4482
5d41f0b6
RS
4483 /* We must now calculate the dynamic symbol table index to use
4484 in the relocation. */
4485 if (h != NULL
4486 && (! info->symbolic || !h->root.def_regular)
4487 /* h->root.dynindx may be -1 if this symbol was marked to
4488 become local. */
4489 && h->root.dynindx != -1)
4490 {
4491 indx = h->root.dynindx;
4492 if (SGI_COMPAT (output_bfd))
4493 defined_p = h->root.def_regular;
4494 else
4495 /* ??? glibc's ld.so just adds the final GOT entry to the
4496 relocation field. It therefore treats relocs against
4497 defined symbols in the same way as relocs against
4498 undefined symbols. */
4499 defined_p = FALSE;
4500 }
b49e97c9
TS
4501 else
4502 {
5d41f0b6
RS
4503 if (sec != NULL && bfd_is_abs_section (sec))
4504 indx = 0;
4505 else if (sec == NULL || sec->owner == NULL)
fdd07405 4506 {
5d41f0b6
RS
4507 bfd_set_error (bfd_error_bad_value);
4508 return FALSE;
b49e97c9
TS
4509 }
4510 else
4511 {
5d41f0b6
RS
4512 indx = elf_section_data (sec->output_section)->dynindx;
4513 if (indx == 0)
4514 abort ();
b49e97c9
TS
4515 }
4516
5d41f0b6
RS
4517 /* Instead of generating a relocation using the section
4518 symbol, we may as well make it a fully relative
4519 relocation. We want to avoid generating relocations to
4520 local symbols because we used to generate them
4521 incorrectly, without adding the original symbol value,
4522 which is mandated by the ABI for section symbols. In
4523 order to give dynamic loaders and applications time to
4524 phase out the incorrect use, we refrain from emitting
4525 section-relative relocations. It's not like they're
4526 useful, after all. This should be a bit more efficient
4527 as well. */
4528 /* ??? Although this behavior is compatible with glibc's ld.so,
4529 the ABI says that relocations against STN_UNDEF should have
4530 a symbol value of 0. Irix rld honors this, so relocations
4531 against STN_UNDEF have no effect. */
4532 if (!SGI_COMPAT (output_bfd))
4533 indx = 0;
4534 defined_p = TRUE;
b49e97c9
TS
4535 }
4536
5d41f0b6
RS
4537 /* If the relocation was previously an absolute relocation and
4538 this symbol will not be referred to by the relocation, we must
4539 adjust it by the value we give it in the dynamic symbol table.
4540 Otherwise leave the job up to the dynamic linker. */
4541 if (defined_p && r_type != R_MIPS_REL32)
4542 *addendp += symbol;
4543
4544 /* The relocation is always an REL32 relocation because we don't
4545 know where the shared library will wind up at load-time. */
4546 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4547 R_MIPS_REL32);
4548 /* For strict adherence to the ABI specification, we should
4549 generate a R_MIPS_64 relocation record by itself before the
4550 _REL32/_64 record as well, such that the addend is read in as
4551 a 64-bit value (REL32 is a 32-bit relocation, after all).
4552 However, since none of the existing ELF64 MIPS dynamic
4553 loaders seems to care, we don't waste space with these
4554 artificial relocations. If this turns out to not be true,
4555 mips_elf_allocate_dynamic_relocation() should be tweaked so
4556 as to make room for a pair of dynamic relocations per
4557 invocation if ABI_64_P, and here we should generate an
4558 additional relocation record with R_MIPS_64 by itself for a
4559 NULL symbol before this relocation record. */
4560 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4561 ABI_64_P (output_bfd)
4562 ? R_MIPS_64
4563 : R_MIPS_NONE);
4564 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4565
4566 /* Adjust the output offset of the relocation to reference the
4567 correct location in the output file. */
4568 outrel[0].r_offset += (input_section->output_section->vma
4569 + input_section->output_offset);
4570 outrel[1].r_offset += (input_section->output_section->vma
4571 + input_section->output_offset);
4572 outrel[2].r_offset += (input_section->output_section->vma
4573 + input_section->output_offset);
4574
b49e97c9
TS
4575 /* Put the relocation back out. We have to use the special
4576 relocation outputter in the 64-bit case since the 64-bit
4577 relocation format is non-standard. */
4578 if (ABI_64_P (output_bfd))
4579 {
4580 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4581 (output_bfd, &outrel[0],
4582 (sreloc->contents
4583 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4584 }
4585 else
947216bf
AM
4586 bfd_elf32_swap_reloc_out
4587 (output_bfd, &outrel[0],
4588 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4589
b49e97c9
TS
4590 /* We've now added another relocation. */
4591 ++sreloc->reloc_count;
4592
4593 /* Make sure the output section is writable. The dynamic linker
4594 will be writing to it. */
4595 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4596 |= SHF_WRITE;
4597
4598 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4599 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4600 {
4601 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4602 bfd_byte *cr;
4603
4604 if (scpt)
4605 {
4606 Elf32_crinfo cptrel;
4607
4608 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4609 cptrel.vaddr = (rel->r_offset
4610 + input_section->output_section->vma
4611 + input_section->output_offset);
4612 if (r_type == R_MIPS_REL32)
4613 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4614 else
4615 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4616 mips_elf_set_cr_dist2to (cptrel, 0);
4617 cptrel.konst = *addendp;
4618
4619 cr = (scpt->contents
4620 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4621 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4622 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4623 ((Elf32_External_crinfo *) cr
4624 + scpt->reloc_count));
4625 ++scpt->reloc_count;
4626 }
4627 }
4628
b34976b6 4629 return TRUE;
b49e97c9
TS
4630}
4631\f
b49e97c9
TS
4632/* Return the MACH for a MIPS e_flags value. */
4633
4634unsigned long
9719ad41 4635_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4636{
4637 switch (flags & EF_MIPS_MACH)
4638 {
4639 case E_MIPS_MACH_3900:
4640 return bfd_mach_mips3900;
4641
4642 case E_MIPS_MACH_4010:
4643 return bfd_mach_mips4010;
4644
4645 case E_MIPS_MACH_4100:
4646 return bfd_mach_mips4100;
4647
4648 case E_MIPS_MACH_4111:
4649 return bfd_mach_mips4111;
4650
00707a0e
RS
4651 case E_MIPS_MACH_4120:
4652 return bfd_mach_mips4120;
4653
b49e97c9
TS
4654 case E_MIPS_MACH_4650:
4655 return bfd_mach_mips4650;
4656
00707a0e
RS
4657 case E_MIPS_MACH_5400:
4658 return bfd_mach_mips5400;
4659
4660 case E_MIPS_MACH_5500:
4661 return bfd_mach_mips5500;
4662
0d2e43ed
ILT
4663 case E_MIPS_MACH_9000:
4664 return bfd_mach_mips9000;
4665
b49e97c9
TS
4666 case E_MIPS_MACH_SB1:
4667 return bfd_mach_mips_sb1;
4668
4669 default:
4670 switch (flags & EF_MIPS_ARCH)
4671 {
4672 default:
4673 case E_MIPS_ARCH_1:
4674 return bfd_mach_mips3000;
4675 break;
4676
4677 case E_MIPS_ARCH_2:
4678 return bfd_mach_mips6000;
4679 break;
4680
4681 case E_MIPS_ARCH_3:
4682 return bfd_mach_mips4000;
4683 break;
4684
4685 case E_MIPS_ARCH_4:
4686 return bfd_mach_mips8000;
4687 break;
4688
4689 case E_MIPS_ARCH_5:
4690 return bfd_mach_mips5;
4691 break;
4692
4693 case E_MIPS_ARCH_32:
4694 return bfd_mach_mipsisa32;
4695 break;
4696
4697 case E_MIPS_ARCH_64:
4698 return bfd_mach_mipsisa64;
4699 break;
af7ee8bf
CD
4700
4701 case E_MIPS_ARCH_32R2:
4702 return bfd_mach_mipsisa32r2;
4703 break;
5f74bc13
CD
4704
4705 case E_MIPS_ARCH_64R2:
4706 return bfd_mach_mipsisa64r2;
4707 break;
b49e97c9
TS
4708 }
4709 }
4710
4711 return 0;
4712}
4713
4714/* Return printable name for ABI. */
4715
4716static INLINE char *
9719ad41 4717elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
4718{
4719 flagword flags;
4720
4721 flags = elf_elfheader (abfd)->e_flags;
4722 switch (flags & EF_MIPS_ABI)
4723 {
4724 case 0:
4725 if (ABI_N32_P (abfd))
4726 return "N32";
4727 else if (ABI_64_P (abfd))
4728 return "64";
4729 else
4730 return "none";
4731 case E_MIPS_ABI_O32:
4732 return "O32";
4733 case E_MIPS_ABI_O64:
4734 return "O64";
4735 case E_MIPS_ABI_EABI32:
4736 return "EABI32";
4737 case E_MIPS_ABI_EABI64:
4738 return "EABI64";
4739 default:
4740 return "unknown abi";
4741 }
4742}
4743\f
4744/* MIPS ELF uses two common sections. One is the usual one, and the
4745 other is for small objects. All the small objects are kept
4746 together, and then referenced via the gp pointer, which yields
4747 faster assembler code. This is what we use for the small common
4748 section. This approach is copied from ecoff.c. */
4749static asection mips_elf_scom_section;
4750static asymbol mips_elf_scom_symbol;
4751static asymbol *mips_elf_scom_symbol_ptr;
4752
4753/* MIPS ELF also uses an acommon section, which represents an
4754 allocated common symbol which may be overridden by a
4755 definition in a shared library. */
4756static asection mips_elf_acom_section;
4757static asymbol mips_elf_acom_symbol;
4758static asymbol *mips_elf_acom_symbol_ptr;
4759
4760/* Handle the special MIPS section numbers that a symbol may use.
4761 This is used for both the 32-bit and the 64-bit ABI. */
4762
4763void
9719ad41 4764_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
4765{
4766 elf_symbol_type *elfsym;
4767
4768 elfsym = (elf_symbol_type *) asym;
4769 switch (elfsym->internal_elf_sym.st_shndx)
4770 {
4771 case SHN_MIPS_ACOMMON:
4772 /* This section is used in a dynamically linked executable file.
4773 It is an allocated common section. The dynamic linker can
4774 either resolve these symbols to something in a shared
4775 library, or it can just leave them here. For our purposes,
4776 we can consider these symbols to be in a new section. */
4777 if (mips_elf_acom_section.name == NULL)
4778 {
4779 /* Initialize the acommon section. */
4780 mips_elf_acom_section.name = ".acommon";
4781 mips_elf_acom_section.flags = SEC_ALLOC;
4782 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4783 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4784 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4785 mips_elf_acom_symbol.name = ".acommon";
4786 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4787 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4788 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4789 }
4790 asym->section = &mips_elf_acom_section;
4791 break;
4792
4793 case SHN_COMMON:
4794 /* Common symbols less than the GP size are automatically
4795 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4796 if (asym->value > elf_gp_size (abfd)
4797 || IRIX_COMPAT (abfd) == ict_irix6)
4798 break;
4799 /* Fall through. */
4800 case SHN_MIPS_SCOMMON:
4801 if (mips_elf_scom_section.name == NULL)
4802 {
4803 /* Initialize the small common section. */
4804 mips_elf_scom_section.name = ".scommon";
4805 mips_elf_scom_section.flags = SEC_IS_COMMON;
4806 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4807 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4808 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4809 mips_elf_scom_symbol.name = ".scommon";
4810 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4811 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4812 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4813 }
4814 asym->section = &mips_elf_scom_section;
4815 asym->value = elfsym->internal_elf_sym.st_size;
4816 break;
4817
4818 case SHN_MIPS_SUNDEFINED:
4819 asym->section = bfd_und_section_ptr;
4820 break;
4821
b49e97c9 4822 case SHN_MIPS_TEXT:
00b4930b
TS
4823 {
4824 asection *section = bfd_get_section_by_name (abfd, ".text");
4825
4826 BFD_ASSERT (SGI_COMPAT (abfd));
4827 if (section != NULL)
4828 {
4829 asym->section = section;
4830 /* MIPS_TEXT is a bit special, the address is not an offset
4831 to the base of the .text section. So substract the section
4832 base address to make it an offset. */
4833 asym->value -= section->vma;
4834 }
4835 }
b49e97c9
TS
4836 break;
4837
4838 case SHN_MIPS_DATA:
00b4930b
TS
4839 {
4840 asection *section = bfd_get_section_by_name (abfd, ".data");
4841
4842 BFD_ASSERT (SGI_COMPAT (abfd));
4843 if (section != NULL)
4844 {
4845 asym->section = section;
4846 /* MIPS_DATA is a bit special, the address is not an offset
4847 to the base of the .data section. So substract the section
4848 base address to make it an offset. */
4849 asym->value -= section->vma;
4850 }
4851 }
b49e97c9 4852 break;
b49e97c9
TS
4853 }
4854}
4855\f
8c946ed5
RS
4856/* Implement elf_backend_eh_frame_address_size. This differs from
4857 the default in the way it handles EABI64.
4858
4859 EABI64 was originally specified as an LP64 ABI, and that is what
4860 -mabi=eabi normally gives on a 64-bit target. However, gcc has
4861 historically accepted the combination of -mabi=eabi and -mlong32,
4862 and this ILP32 variation has become semi-official over time.
4863 Both forms use elf32 and have pointer-sized FDE addresses.
4864
4865 If an EABI object was generated by GCC 4.0 or above, it will have
4866 an empty .gcc_compiled_longXX section, where XX is the size of longs
4867 in bits. Unfortunately, ILP32 objects generated by earlier compilers
4868 have no special marking to distinguish them from LP64 objects.
4869
4870 We don't want users of the official LP64 ABI to be punished for the
4871 existence of the ILP32 variant, but at the same time, we don't want
4872 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
4873 We therefore take the following approach:
4874
4875 - If ABFD contains a .gcc_compiled_longXX section, use it to
4876 determine the pointer size.
4877
4878 - Otherwise check the type of the first relocation. Assume that
4879 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
4880
4881 - Otherwise punt.
4882
4883 The second check is enough to detect LP64 objects generated by pre-4.0
4884 compilers because, in the kind of output generated by those compilers,
4885 the first relocation will be associated with either a CIE personality
4886 routine or an FDE start address. Furthermore, the compilers never
4887 used a special (non-pointer) encoding for this ABI.
4888
4889 Checking the relocation type should also be safe because there is no
4890 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
4891 did so. */
4892
4893unsigned int
4894_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
4895{
4896 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4897 return 8;
4898 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
4899 {
4900 bfd_boolean long32_p, long64_p;
4901
4902 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
4903 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
4904 if (long32_p && long64_p)
4905 return 0;
4906 if (long32_p)
4907 return 4;
4908 if (long64_p)
4909 return 8;
4910
4911 if (sec->reloc_count > 0
4912 && elf_section_data (sec)->relocs != NULL
4913 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
4914 == R_MIPS_64))
4915 return 8;
4916
4917 return 0;
4918 }
4919 return 4;
4920}
4921\f
174fd7f9
RS
4922/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4923 relocations against two unnamed section symbols to resolve to the
4924 same address. For example, if we have code like:
4925
4926 lw $4,%got_disp(.data)($gp)
4927 lw $25,%got_disp(.text)($gp)
4928 jalr $25
4929
4930 then the linker will resolve both relocations to .data and the program
4931 will jump there rather than to .text.
4932
4933 We can work around this problem by giving names to local section symbols.
4934 This is also what the MIPSpro tools do. */
4935
4936bfd_boolean
4937_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4938{
4939 return SGI_COMPAT (abfd);
4940}
4941\f
b49e97c9
TS
4942/* Work over a section just before writing it out. This routine is
4943 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4944 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4945 a better way. */
4946
b34976b6 4947bfd_boolean
9719ad41 4948_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
4949{
4950 if (hdr->sh_type == SHT_MIPS_REGINFO
4951 && hdr->sh_size > 0)
4952 {
4953 bfd_byte buf[4];
4954
4955 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4956 BFD_ASSERT (hdr->contents == NULL);
4957
4958 if (bfd_seek (abfd,
4959 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4960 SEEK_SET) != 0)
b34976b6 4961 return FALSE;
b49e97c9 4962 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4963 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4964 return FALSE;
b49e97c9
TS
4965 }
4966
4967 if (hdr->sh_type == SHT_MIPS_OPTIONS
4968 && hdr->bfd_section != NULL
f0abc2a1
AM
4969 && mips_elf_section_data (hdr->bfd_section) != NULL
4970 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4971 {
4972 bfd_byte *contents, *l, *lend;
4973
f0abc2a1
AM
4974 /* We stored the section contents in the tdata field in the
4975 set_section_contents routine. We save the section contents
4976 so that we don't have to read them again.
b49e97c9
TS
4977 At this point we know that elf_gp is set, so we can look
4978 through the section contents to see if there is an
4979 ODK_REGINFO structure. */
4980
f0abc2a1 4981 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4982 l = contents;
4983 lend = contents + hdr->sh_size;
4984 while (l + sizeof (Elf_External_Options) <= lend)
4985 {
4986 Elf_Internal_Options intopt;
4987
4988 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4989 &intopt);
1bc8074d
MR
4990 if (intopt.size < sizeof (Elf_External_Options))
4991 {
4992 (*_bfd_error_handler)
4993 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
4994 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
4995 break;
4996 }
b49e97c9
TS
4997 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4998 {
4999 bfd_byte buf[8];
5000
5001 if (bfd_seek (abfd,
5002 (hdr->sh_offset
5003 + (l - contents)
5004 + sizeof (Elf_External_Options)
5005 + (sizeof (Elf64_External_RegInfo) - 8)),
5006 SEEK_SET) != 0)
b34976b6 5007 return FALSE;
b49e97c9 5008 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5009 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5010 return FALSE;
b49e97c9
TS
5011 }
5012 else if (intopt.kind == ODK_REGINFO)
5013 {
5014 bfd_byte buf[4];
5015
5016 if (bfd_seek (abfd,
5017 (hdr->sh_offset
5018 + (l - contents)
5019 + sizeof (Elf_External_Options)
5020 + (sizeof (Elf32_External_RegInfo) - 4)),
5021 SEEK_SET) != 0)
b34976b6 5022 return FALSE;
b49e97c9 5023 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5024 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5025 return FALSE;
b49e97c9
TS
5026 }
5027 l += intopt.size;
5028 }
5029 }
5030
5031 if (hdr->bfd_section != NULL)
5032 {
5033 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5034
5035 if (strcmp (name, ".sdata") == 0
5036 || strcmp (name, ".lit8") == 0
5037 || strcmp (name, ".lit4") == 0)
5038 {
5039 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5040 hdr->sh_type = SHT_PROGBITS;
5041 }
5042 else if (strcmp (name, ".sbss") == 0)
5043 {
5044 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5045 hdr->sh_type = SHT_NOBITS;
5046 }
5047 else if (strcmp (name, ".srdata") == 0)
5048 {
5049 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5050 hdr->sh_type = SHT_PROGBITS;
5051 }
5052 else if (strcmp (name, ".compact_rel") == 0)
5053 {
5054 hdr->sh_flags = 0;
5055 hdr->sh_type = SHT_PROGBITS;
5056 }
5057 else if (strcmp (name, ".rtproc") == 0)
5058 {
5059 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5060 {
5061 unsigned int adjust;
5062
5063 adjust = hdr->sh_size % hdr->sh_addralign;
5064 if (adjust != 0)
5065 hdr->sh_size += hdr->sh_addralign - adjust;
5066 }
5067 }
5068 }
5069
b34976b6 5070 return TRUE;
b49e97c9
TS
5071}
5072
5073/* Handle a MIPS specific section when reading an object file. This
5074 is called when elfcode.h finds a section with an unknown type.
5075 This routine supports both the 32-bit and 64-bit ELF ABI.
5076
5077 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5078 how to. */
5079
b34976b6 5080bfd_boolean
6dc132d9
L
5081_bfd_mips_elf_section_from_shdr (bfd *abfd,
5082 Elf_Internal_Shdr *hdr,
5083 const char *name,
5084 int shindex)
b49e97c9
TS
5085{
5086 flagword flags = 0;
5087
5088 /* There ought to be a place to keep ELF backend specific flags, but
5089 at the moment there isn't one. We just keep track of the
5090 sections by their name, instead. Fortunately, the ABI gives
5091 suggested names for all the MIPS specific sections, so we will
5092 probably get away with this. */
5093 switch (hdr->sh_type)
5094 {
5095 case SHT_MIPS_LIBLIST:
5096 if (strcmp (name, ".liblist") != 0)
b34976b6 5097 return FALSE;
b49e97c9
TS
5098 break;
5099 case SHT_MIPS_MSYM:
5100 if (strcmp (name, ".msym") != 0)
b34976b6 5101 return FALSE;
b49e97c9
TS
5102 break;
5103 case SHT_MIPS_CONFLICT:
5104 if (strcmp (name, ".conflict") != 0)
b34976b6 5105 return FALSE;
b49e97c9
TS
5106 break;
5107 case SHT_MIPS_GPTAB:
5108 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 5109 return FALSE;
b49e97c9
TS
5110 break;
5111 case SHT_MIPS_UCODE:
5112 if (strcmp (name, ".ucode") != 0)
b34976b6 5113 return FALSE;
b49e97c9
TS
5114 break;
5115 case SHT_MIPS_DEBUG:
5116 if (strcmp (name, ".mdebug") != 0)
b34976b6 5117 return FALSE;
b49e97c9
TS
5118 flags = SEC_DEBUGGING;
5119 break;
5120 case SHT_MIPS_REGINFO:
5121 if (strcmp (name, ".reginfo") != 0
5122 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5123 return FALSE;
b49e97c9
TS
5124 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5125 break;
5126 case SHT_MIPS_IFACE:
5127 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5128 return FALSE;
b49e97c9
TS
5129 break;
5130 case SHT_MIPS_CONTENT:
5131 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 5132 return FALSE;
b49e97c9
TS
5133 break;
5134 case SHT_MIPS_OPTIONS:
cc2e31b9 5135 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5136 return FALSE;
b49e97c9
TS
5137 break;
5138 case SHT_MIPS_DWARF:
5139 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 5140 return FALSE;
b49e97c9
TS
5141 break;
5142 case SHT_MIPS_SYMBOL_LIB:
5143 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5144 return FALSE;
b49e97c9
TS
5145 break;
5146 case SHT_MIPS_EVENTS:
5147 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5148 && strncmp (name, ".MIPS.post_rel",
5149 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 5150 return FALSE;
b49e97c9
TS
5151 break;
5152 default:
cc2e31b9 5153 break;
b49e97c9
TS
5154 }
5155
6dc132d9 5156 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5157 return FALSE;
b49e97c9
TS
5158
5159 if (flags)
5160 {
5161 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5162 (bfd_get_section_flags (abfd,
5163 hdr->bfd_section)
5164 | flags)))
b34976b6 5165 return FALSE;
b49e97c9
TS
5166 }
5167
5168 /* FIXME: We should record sh_info for a .gptab section. */
5169
5170 /* For a .reginfo section, set the gp value in the tdata information
5171 from the contents of this section. We need the gp value while
5172 processing relocs, so we just get it now. The .reginfo section
5173 is not used in the 64-bit MIPS ELF ABI. */
5174 if (hdr->sh_type == SHT_MIPS_REGINFO)
5175 {
5176 Elf32_External_RegInfo ext;
5177 Elf32_RegInfo s;
5178
9719ad41
RS
5179 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5180 &ext, 0, sizeof ext))
b34976b6 5181 return FALSE;
b49e97c9
TS
5182 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5183 elf_gp (abfd) = s.ri_gp_value;
5184 }
5185
5186 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5187 set the gp value based on what we find. We may see both
5188 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5189 they should agree. */
5190 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5191 {
5192 bfd_byte *contents, *l, *lend;
5193
9719ad41 5194 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5195 if (contents == NULL)
b34976b6 5196 return FALSE;
b49e97c9 5197 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5198 0, hdr->sh_size))
b49e97c9
TS
5199 {
5200 free (contents);
b34976b6 5201 return FALSE;
b49e97c9
TS
5202 }
5203 l = contents;
5204 lend = contents + hdr->sh_size;
5205 while (l + sizeof (Elf_External_Options) <= lend)
5206 {
5207 Elf_Internal_Options intopt;
5208
5209 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5210 &intopt);
1bc8074d
MR
5211 if (intopt.size < sizeof (Elf_External_Options))
5212 {
5213 (*_bfd_error_handler)
5214 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5215 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5216 break;
5217 }
b49e97c9
TS
5218 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5219 {
5220 Elf64_Internal_RegInfo intreg;
5221
5222 bfd_mips_elf64_swap_reginfo_in
5223 (abfd,
5224 ((Elf64_External_RegInfo *)
5225 (l + sizeof (Elf_External_Options))),
5226 &intreg);
5227 elf_gp (abfd) = intreg.ri_gp_value;
5228 }
5229 else if (intopt.kind == ODK_REGINFO)
5230 {
5231 Elf32_RegInfo intreg;
5232
5233 bfd_mips_elf32_swap_reginfo_in
5234 (abfd,
5235 ((Elf32_External_RegInfo *)
5236 (l + sizeof (Elf_External_Options))),
5237 &intreg);
5238 elf_gp (abfd) = intreg.ri_gp_value;
5239 }
5240 l += intopt.size;
5241 }
5242 free (contents);
5243 }
5244
b34976b6 5245 return TRUE;
b49e97c9
TS
5246}
5247
5248/* Set the correct type for a MIPS ELF section. We do this by the
5249 section name, which is a hack, but ought to work. This routine is
5250 used by both the 32-bit and the 64-bit ABI. */
5251
b34976b6 5252bfd_boolean
9719ad41 5253_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
5254{
5255 register const char *name;
1bc8074d 5256 unsigned int sh_type;
b49e97c9
TS
5257
5258 name = bfd_get_section_name (abfd, sec);
1bc8074d 5259 sh_type = hdr->sh_type;
b49e97c9
TS
5260
5261 if (strcmp (name, ".liblist") == 0)
5262 {
5263 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5264 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5265 /* The sh_link field is set in final_write_processing. */
5266 }
5267 else if (strcmp (name, ".conflict") == 0)
5268 hdr->sh_type = SHT_MIPS_CONFLICT;
5269 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5270 {
5271 hdr->sh_type = SHT_MIPS_GPTAB;
5272 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5273 /* The sh_info field is set in final_write_processing. */
5274 }
5275 else if (strcmp (name, ".ucode") == 0)
5276 hdr->sh_type = SHT_MIPS_UCODE;
5277 else if (strcmp (name, ".mdebug") == 0)
5278 {
5279 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5280 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5281 entsize of 0. FIXME: Does this matter? */
5282 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5283 hdr->sh_entsize = 0;
5284 else
5285 hdr->sh_entsize = 1;
5286 }
5287 else if (strcmp (name, ".reginfo") == 0)
5288 {
5289 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5290 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5291 entsize of 0x18. FIXME: Does this matter? */
5292 if (SGI_COMPAT (abfd))
5293 {
5294 if ((abfd->flags & DYNAMIC) != 0)
5295 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5296 else
5297 hdr->sh_entsize = 1;
5298 }
5299 else
5300 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5301 }
5302 else if (SGI_COMPAT (abfd)
5303 && (strcmp (name, ".hash") == 0
5304 || strcmp (name, ".dynamic") == 0
5305 || strcmp (name, ".dynstr") == 0))
5306 {
5307 if (SGI_COMPAT (abfd))
5308 hdr->sh_entsize = 0;
5309#if 0
8dc1a139 5310 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5311 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5312#endif
5313 }
5314 else if (strcmp (name, ".got") == 0
5315 || strcmp (name, ".srdata") == 0
5316 || strcmp (name, ".sdata") == 0
5317 || strcmp (name, ".sbss") == 0
5318 || strcmp (name, ".lit4") == 0
5319 || strcmp (name, ".lit8") == 0)
5320 hdr->sh_flags |= SHF_MIPS_GPREL;
5321 else if (strcmp (name, ".MIPS.interfaces") == 0)
5322 {
5323 hdr->sh_type = SHT_MIPS_IFACE;
5324 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5325 }
5326 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5327 {
5328 hdr->sh_type = SHT_MIPS_CONTENT;
5329 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5330 /* The sh_info field is set in final_write_processing. */
5331 }
cc2e31b9 5332 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5333 {
5334 hdr->sh_type = SHT_MIPS_OPTIONS;
5335 hdr->sh_entsize = 1;
5336 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5337 }
5338 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5339 hdr->sh_type = SHT_MIPS_DWARF;
5340 else if (strcmp (name, ".MIPS.symlib") == 0)
5341 {
5342 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5343 /* The sh_link and sh_info fields are set in
5344 final_write_processing. */
5345 }
5346 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5347 || strncmp (name, ".MIPS.post_rel",
5348 sizeof ".MIPS.post_rel" - 1) == 0)
5349 {
5350 hdr->sh_type = SHT_MIPS_EVENTS;
5351 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5352 /* The sh_link field is set in final_write_processing. */
5353 }
5354 else if (strcmp (name, ".msym") == 0)
5355 {
5356 hdr->sh_type = SHT_MIPS_MSYM;
5357 hdr->sh_flags |= SHF_ALLOC;
5358 hdr->sh_entsize = 8;
5359 }
5360
1bc8074d
MR
5361 /* In the unlikely event a special section is empty it has to lose its
5362 special meaning. This may happen e.g. when using `strip' with the
5363 "--only-keep-debug" option. */
5364 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5365 hdr->sh_type = sh_type;
5366
7a79a000
TS
5367 /* The generic elf_fake_sections will set up REL_HDR using the default
5368 kind of relocations. We used to set up a second header for the
5369 non-default kind of relocations here, but only NewABI would use
5370 these, and the IRIX ld doesn't like resulting empty RELA sections.
5371 Thus we create those header only on demand now. */
b49e97c9 5372
b34976b6 5373 return TRUE;
b49e97c9
TS
5374}
5375
5376/* Given a BFD section, try to locate the corresponding ELF section
5377 index. This is used by both the 32-bit and the 64-bit ABI.
5378 Actually, it's not clear to me that the 64-bit ABI supports these,
5379 but for non-PIC objects we will certainly want support for at least
5380 the .scommon section. */
5381
b34976b6 5382bfd_boolean
9719ad41
RS
5383_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5384 asection *sec, int *retval)
b49e97c9
TS
5385{
5386 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5387 {
5388 *retval = SHN_MIPS_SCOMMON;
b34976b6 5389 return TRUE;
b49e97c9
TS
5390 }
5391 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5392 {
5393 *retval = SHN_MIPS_ACOMMON;
b34976b6 5394 return TRUE;
b49e97c9 5395 }
b34976b6 5396 return FALSE;
b49e97c9
TS
5397}
5398\f
5399/* Hook called by the linker routine which adds symbols from an object
5400 file. We must handle the special MIPS section numbers here. */
5401
b34976b6 5402bfd_boolean
9719ad41 5403_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5404 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5405 flagword *flagsp ATTRIBUTE_UNUSED,
5406 asection **secp, bfd_vma *valp)
b49e97c9
TS
5407{
5408 if (SGI_COMPAT (abfd)
5409 && (abfd->flags & DYNAMIC) != 0
5410 && strcmp (*namep, "_rld_new_interface") == 0)
5411 {
8dc1a139 5412 /* Skip IRIX5 rld entry name. */
b49e97c9 5413 *namep = NULL;
b34976b6 5414 return TRUE;
b49e97c9
TS
5415 }
5416
eedecc07
DD
5417 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5418 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5419 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5420 a magic symbol resolved by the linker, we ignore this bogus definition
5421 of _gp_disp. New ABI objects do not suffer from this problem so this
5422 is not done for them. */
5423 if (!NEWABI_P(abfd)
5424 && (sym->st_shndx == SHN_ABS)
5425 && (strcmp (*namep, "_gp_disp") == 0))
5426 {
5427 *namep = NULL;
5428 return TRUE;
5429 }
5430
b49e97c9
TS
5431 switch (sym->st_shndx)
5432 {
5433 case SHN_COMMON:
5434 /* Common symbols less than the GP size are automatically
5435 treated as SHN_MIPS_SCOMMON symbols. */
5436 if (sym->st_size > elf_gp_size (abfd)
5437 || IRIX_COMPAT (abfd) == ict_irix6)
5438 break;
5439 /* Fall through. */
5440 case SHN_MIPS_SCOMMON:
5441 *secp = bfd_make_section_old_way (abfd, ".scommon");
5442 (*secp)->flags |= SEC_IS_COMMON;
5443 *valp = sym->st_size;
5444 break;
5445
5446 case SHN_MIPS_TEXT:
5447 /* This section is used in a shared object. */
5448 if (elf_tdata (abfd)->elf_text_section == NULL)
5449 {
5450 asymbol *elf_text_symbol;
5451 asection *elf_text_section;
5452 bfd_size_type amt = sizeof (asection);
5453
5454 elf_text_section = bfd_zalloc (abfd, amt);
5455 if (elf_text_section == NULL)
b34976b6 5456 return FALSE;
b49e97c9
TS
5457
5458 amt = sizeof (asymbol);
5459 elf_text_symbol = bfd_zalloc (abfd, amt);
5460 if (elf_text_symbol == NULL)
b34976b6 5461 return FALSE;
b49e97c9
TS
5462
5463 /* Initialize the section. */
5464
5465 elf_tdata (abfd)->elf_text_section = elf_text_section;
5466 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5467
5468 elf_text_section->symbol = elf_text_symbol;
5469 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5470
5471 elf_text_section->name = ".text";
5472 elf_text_section->flags = SEC_NO_FLAGS;
5473 elf_text_section->output_section = NULL;
5474 elf_text_section->owner = abfd;
5475 elf_text_symbol->name = ".text";
5476 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5477 elf_text_symbol->section = elf_text_section;
5478 }
5479 /* This code used to do *secp = bfd_und_section_ptr if
5480 info->shared. I don't know why, and that doesn't make sense,
5481 so I took it out. */
5482 *secp = elf_tdata (abfd)->elf_text_section;
5483 break;
5484
5485 case SHN_MIPS_ACOMMON:
5486 /* Fall through. XXX Can we treat this as allocated data? */
5487 case SHN_MIPS_DATA:
5488 /* This section is used in a shared object. */
5489 if (elf_tdata (abfd)->elf_data_section == NULL)
5490 {
5491 asymbol *elf_data_symbol;
5492 asection *elf_data_section;
5493 bfd_size_type amt = sizeof (asection);
5494
5495 elf_data_section = bfd_zalloc (abfd, amt);
5496 if (elf_data_section == NULL)
b34976b6 5497 return FALSE;
b49e97c9
TS
5498
5499 amt = sizeof (asymbol);
5500 elf_data_symbol = bfd_zalloc (abfd, amt);
5501 if (elf_data_symbol == NULL)
b34976b6 5502 return FALSE;
b49e97c9
TS
5503
5504 /* Initialize the section. */
5505
5506 elf_tdata (abfd)->elf_data_section = elf_data_section;
5507 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5508
5509 elf_data_section->symbol = elf_data_symbol;
5510 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5511
5512 elf_data_section->name = ".data";
5513 elf_data_section->flags = SEC_NO_FLAGS;
5514 elf_data_section->output_section = NULL;
5515 elf_data_section->owner = abfd;
5516 elf_data_symbol->name = ".data";
5517 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5518 elf_data_symbol->section = elf_data_section;
5519 }
5520 /* This code used to do *secp = bfd_und_section_ptr if
5521 info->shared. I don't know why, and that doesn't make sense,
5522 so I took it out. */
5523 *secp = elf_tdata (abfd)->elf_data_section;
5524 break;
5525
5526 case SHN_MIPS_SUNDEFINED:
5527 *secp = bfd_und_section_ptr;
5528 break;
5529 }
5530
5531 if (SGI_COMPAT (abfd)
5532 && ! info->shared
5533 && info->hash->creator == abfd->xvec
5534 && strcmp (*namep, "__rld_obj_head") == 0)
5535 {
5536 struct elf_link_hash_entry *h;
14a793b2 5537 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5538
5539 /* Mark __rld_obj_head as dynamic. */
14a793b2 5540 bh = NULL;
b49e97c9 5541 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5542 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5543 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5544 return FALSE;
14a793b2
AM
5545
5546 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5547 h->non_elf = 0;
5548 h->def_regular = 1;
b49e97c9
TS
5549 h->type = STT_OBJECT;
5550
c152c796 5551 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5552 return FALSE;
b49e97c9 5553
b34976b6 5554 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5555 }
5556
5557 /* If this is a mips16 text symbol, add 1 to the value to make it
5558 odd. This will cause something like .word SYM to come up with
5559 the right value when it is loaded into the PC. */
5560 if (sym->st_other == STO_MIPS16)
5561 ++*valp;
5562
b34976b6 5563 return TRUE;
b49e97c9
TS
5564}
5565
5566/* This hook function is called before the linker writes out a global
5567 symbol. We mark symbols as small common if appropriate. This is
5568 also where we undo the increment of the value for a mips16 symbol. */
5569
b34976b6 5570bfd_boolean
9719ad41
RS
5571_bfd_mips_elf_link_output_symbol_hook
5572 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5573 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5574 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5575{
5576 /* If we see a common symbol, which implies a relocatable link, then
5577 if a symbol was small common in an input file, mark it as small
5578 common in the output file. */
5579 if (sym->st_shndx == SHN_COMMON
5580 && strcmp (input_sec->name, ".scommon") == 0)
5581 sym->st_shndx = SHN_MIPS_SCOMMON;
5582
79cda7cf
FF
5583 if (sym->st_other == STO_MIPS16)
5584 sym->st_value &= ~1;
b49e97c9 5585
b34976b6 5586 return TRUE;
b49e97c9
TS
5587}
5588\f
5589/* Functions for the dynamic linker. */
5590
5591/* Create dynamic sections when linking against a dynamic object. */
5592
b34976b6 5593bfd_boolean
9719ad41 5594_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5595{
5596 struct elf_link_hash_entry *h;
14a793b2 5597 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5598 flagword flags;
5599 register asection *s;
5600 const char * const *namep;
5601
5602 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5603 | SEC_LINKER_CREATED | SEC_READONLY);
5604
5605 /* Mips ABI requests the .dynamic section to be read only. */
5606 s = bfd_get_section_by_name (abfd, ".dynamic");
5607 if (s != NULL)
5608 {
5609 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 5610 return FALSE;
b49e97c9
TS
5611 }
5612
5613 /* We need to create .got section. */
f4416af6
AO
5614 if (! mips_elf_create_got_section (abfd, info, FALSE))
5615 return FALSE;
5616
5617 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 5618 return FALSE;
b49e97c9 5619
b49e97c9
TS
5620 /* Create .stub section. */
5621 if (bfd_get_section_by_name (abfd,
5622 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5623 {
3496cb2a
L
5624 s = bfd_make_section_with_flags (abfd,
5625 MIPS_ELF_STUB_SECTION_NAME (abfd),
5626 flags | SEC_CODE);
b49e97c9 5627 if (s == NULL
b49e97c9
TS
5628 || ! bfd_set_section_alignment (abfd, s,
5629 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5630 return FALSE;
b49e97c9
TS
5631 }
5632
5633 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5634 && !info->shared
5635 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5636 {
3496cb2a
L
5637 s = bfd_make_section_with_flags (abfd, ".rld_map",
5638 flags &~ (flagword) SEC_READONLY);
b49e97c9 5639 if (s == NULL
b49e97c9
TS
5640 || ! bfd_set_section_alignment (abfd, s,
5641 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5642 return FALSE;
b49e97c9
TS
5643 }
5644
5645 /* On IRIX5, we adjust add some additional symbols and change the
5646 alignments of several sections. There is no ABI documentation
5647 indicating that this is necessary on IRIX6, nor any evidence that
5648 the linker takes such action. */
5649 if (IRIX_COMPAT (abfd) == ict_irix5)
5650 {
5651 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5652 {
14a793b2 5653 bh = NULL;
b49e97c9 5654 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5655 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5656 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5657 return FALSE;
14a793b2
AM
5658
5659 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5660 h->non_elf = 0;
5661 h->def_regular = 1;
b49e97c9
TS
5662 h->type = STT_SECTION;
5663
c152c796 5664 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5665 return FALSE;
b49e97c9
TS
5666 }
5667
5668 /* We need to create a .compact_rel section. */
5669 if (SGI_COMPAT (abfd))
5670 {
5671 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 5672 return FALSE;
b49e97c9
TS
5673 }
5674
44c410de 5675 /* Change alignments of some sections. */
b49e97c9
TS
5676 s = bfd_get_section_by_name (abfd, ".hash");
5677 if (s != NULL)
d80dcc6a 5678 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5679 s = bfd_get_section_by_name (abfd, ".dynsym");
5680 if (s != NULL)
d80dcc6a 5681 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5682 s = bfd_get_section_by_name (abfd, ".dynstr");
5683 if (s != NULL)
d80dcc6a 5684 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5685 s = bfd_get_section_by_name (abfd, ".reginfo");
5686 if (s != NULL)
d80dcc6a 5687 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5688 s = bfd_get_section_by_name (abfd, ".dynamic");
5689 if (s != NULL)
d80dcc6a 5690 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5691 }
5692
5693 if (!info->shared)
5694 {
14a793b2
AM
5695 const char *name;
5696
5697 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5698 bh = NULL;
5699 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
5700 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5701 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5702 return FALSE;
14a793b2
AM
5703
5704 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5705 h->non_elf = 0;
5706 h->def_regular = 1;
b49e97c9
TS
5707 h->type = STT_SECTION;
5708
c152c796 5709 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5710 return FALSE;
b49e97c9
TS
5711
5712 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5713 {
5714 /* __rld_map is a four byte word located in the .data section
5715 and is filled in by the rtld to contain a pointer to
5716 the _r_debug structure. Its symbol value will be set in
5717 _bfd_mips_elf_finish_dynamic_symbol. */
5718 s = bfd_get_section_by_name (abfd, ".rld_map");
5719 BFD_ASSERT (s != NULL);
5720
14a793b2
AM
5721 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5722 bh = NULL;
5723 if (!(_bfd_generic_link_add_one_symbol
9719ad41 5724 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 5725 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5726 return FALSE;
14a793b2
AM
5727
5728 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5729 h->non_elf = 0;
5730 h->def_regular = 1;
b49e97c9
TS
5731 h->type = STT_OBJECT;
5732
c152c796 5733 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5734 return FALSE;
b49e97c9
TS
5735 }
5736 }
5737
b34976b6 5738 return TRUE;
b49e97c9
TS
5739}
5740\f
5741/* Look through the relocs for a section during the first phase, and
5742 allocate space in the global offset table. */
5743
b34976b6 5744bfd_boolean
9719ad41
RS
5745_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5746 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
5747{
5748 const char *name;
5749 bfd *dynobj;
5750 Elf_Internal_Shdr *symtab_hdr;
5751 struct elf_link_hash_entry **sym_hashes;
5752 struct mips_got_info *g;
5753 size_t extsymoff;
5754 const Elf_Internal_Rela *rel;
5755 const Elf_Internal_Rela *rel_end;
5756 asection *sgot;
5757 asection *sreloc;
9c5bfbb7 5758 const struct elf_backend_data *bed;
b49e97c9 5759
1049f94e 5760 if (info->relocatable)
b34976b6 5761 return TRUE;
b49e97c9
TS
5762
5763 dynobj = elf_hash_table (info)->dynobj;
5764 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5765 sym_hashes = elf_sym_hashes (abfd);
5766 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5767
5768 /* Check for the mips16 stub sections. */
5769
5770 name = bfd_get_section_name (abfd, sec);
5771 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5772 {
5773 unsigned long r_symndx;
5774
5775 /* Look at the relocation information to figure out which symbol
5776 this is for. */
5777
5778 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5779
5780 if (r_symndx < extsymoff
5781 || sym_hashes[r_symndx - extsymoff] == NULL)
5782 {
5783 asection *o;
5784
5785 /* This stub is for a local symbol. This stub will only be
5786 needed if there is some relocation in this BFD, other
5787 than a 16 bit function call, which refers to this symbol. */
5788 for (o = abfd->sections; o != NULL; o = o->next)
5789 {
5790 Elf_Internal_Rela *sec_relocs;
5791 const Elf_Internal_Rela *r, *rend;
5792
5793 /* We can ignore stub sections when looking for relocs. */
5794 if ((o->flags & SEC_RELOC) == 0
5795 || o->reloc_count == 0
5796 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5797 sizeof FN_STUB - 1) == 0
5798 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5799 sizeof CALL_STUB - 1) == 0
5800 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5801 sizeof CALL_FP_STUB - 1) == 0)
5802 continue;
5803
45d6a902 5804 sec_relocs
9719ad41 5805 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 5806 info->keep_memory);
b49e97c9 5807 if (sec_relocs == NULL)
b34976b6 5808 return FALSE;
b49e97c9
TS
5809
5810 rend = sec_relocs + o->reloc_count;
5811 for (r = sec_relocs; r < rend; r++)
5812 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5813 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5814 break;
5815
6cdc0ccc 5816 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5817 free (sec_relocs);
5818
5819 if (r < rend)
5820 break;
5821 }
5822
5823 if (o == NULL)
5824 {
5825 /* There is no non-call reloc for this stub, so we do
5826 not need it. Since this function is called before
5827 the linker maps input sections to output sections, we
5828 can easily discard it by setting the SEC_EXCLUDE
5829 flag. */
5830 sec->flags |= SEC_EXCLUDE;
b34976b6 5831 return TRUE;
b49e97c9
TS
5832 }
5833
5834 /* Record this stub in an array of local symbol stubs for
5835 this BFD. */
5836 if (elf_tdata (abfd)->local_stubs == NULL)
5837 {
5838 unsigned long symcount;
5839 asection **n;
5840 bfd_size_type amt;
5841
5842 if (elf_bad_symtab (abfd))
5843 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5844 else
5845 symcount = symtab_hdr->sh_info;
5846 amt = symcount * sizeof (asection *);
9719ad41 5847 n = bfd_zalloc (abfd, amt);
b49e97c9 5848 if (n == NULL)
b34976b6 5849 return FALSE;
b49e97c9
TS
5850 elf_tdata (abfd)->local_stubs = n;
5851 }
5852
5853 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5854
5855 /* We don't need to set mips16_stubs_seen in this case.
5856 That flag is used to see whether we need to look through
5857 the global symbol table for stubs. We don't need to set
5858 it here, because we just have a local stub. */
5859 }
5860 else
5861 {
5862 struct mips_elf_link_hash_entry *h;
5863
5864 h = ((struct mips_elf_link_hash_entry *)
5865 sym_hashes[r_symndx - extsymoff]);
5866
973a3492
L
5867 while (h->root.root.type == bfd_link_hash_indirect
5868 || h->root.root.type == bfd_link_hash_warning)
5869 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5870
b49e97c9
TS
5871 /* H is the symbol this stub is for. */
5872
5873 h->fn_stub = sec;
b34976b6 5874 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5875 }
5876 }
5877 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5878 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5879 {
5880 unsigned long r_symndx;
5881 struct mips_elf_link_hash_entry *h;
5882 asection **loc;
5883
5884 /* Look at the relocation information to figure out which symbol
5885 this is for. */
5886
5887 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5888
5889 if (r_symndx < extsymoff
5890 || sym_hashes[r_symndx - extsymoff] == NULL)
5891 {
5892 /* This stub was actually built for a static symbol defined
5893 in the same file. We assume that all static symbols in
5894 mips16 code are themselves mips16, so we can simply
5895 discard this stub. Since this function is called before
5896 the linker maps input sections to output sections, we can
5897 easily discard it by setting the SEC_EXCLUDE flag. */
5898 sec->flags |= SEC_EXCLUDE;
b34976b6 5899 return TRUE;
b49e97c9
TS
5900 }
5901
5902 h = ((struct mips_elf_link_hash_entry *)
5903 sym_hashes[r_symndx - extsymoff]);
5904
5905 /* H is the symbol this stub is for. */
5906
5907 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5908 loc = &h->call_fp_stub;
5909 else
5910 loc = &h->call_stub;
5911
5912 /* If we already have an appropriate stub for this function, we
5913 don't need another one, so we can discard this one. Since
5914 this function is called before the linker maps input sections
5915 to output sections, we can easily discard it by setting the
5916 SEC_EXCLUDE flag. We can also discard this section if we
5917 happen to already know that this is a mips16 function; it is
5918 not necessary to check this here, as it is checked later, but
5919 it is slightly faster to check now. */
5920 if (*loc != NULL || h->root.other == STO_MIPS16)
5921 {
5922 sec->flags |= SEC_EXCLUDE;
b34976b6 5923 return TRUE;
b49e97c9
TS
5924 }
5925
5926 *loc = sec;
b34976b6 5927 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5928 }
5929
5930 if (dynobj == NULL)
5931 {
5932 sgot = NULL;
5933 g = NULL;
5934 }
5935 else
5936 {
f4416af6 5937 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5938 if (sgot == NULL)
5939 g = NULL;
5940 else
5941 {
f0abc2a1
AM
5942 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5943 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5944 BFD_ASSERT (g != NULL);
5945 }
5946 }
5947
5948 sreloc = NULL;
5949 bed = get_elf_backend_data (abfd);
5950 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5951 for (rel = relocs; rel < rel_end; ++rel)
5952 {
5953 unsigned long r_symndx;
5954 unsigned int r_type;
5955 struct elf_link_hash_entry *h;
5956
5957 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5958 r_type = ELF_R_TYPE (abfd, rel->r_info);
5959
5960 if (r_symndx < extsymoff)
5961 h = NULL;
5962 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5963 {
5964 (*_bfd_error_handler)
d003868e
AM
5965 (_("%B: Malformed reloc detected for section %s"),
5966 abfd, name);
b49e97c9 5967 bfd_set_error (bfd_error_bad_value);
b34976b6 5968 return FALSE;
b49e97c9
TS
5969 }
5970 else
5971 {
5972 h = sym_hashes[r_symndx - extsymoff];
5973
5974 /* This may be an indirect symbol created because of a version. */
5975 if (h != NULL)
5976 {
5977 while (h->root.type == bfd_link_hash_indirect)
5978 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5979 }
5980 }
5981
5982 /* Some relocs require a global offset table. */
5983 if (dynobj == NULL || sgot == NULL)
5984 {
5985 switch (r_type)
5986 {
5987 case R_MIPS_GOT16:
5988 case R_MIPS_CALL16:
5989 case R_MIPS_CALL_HI16:
5990 case R_MIPS_CALL_LO16:
5991 case R_MIPS_GOT_HI16:
5992 case R_MIPS_GOT_LO16:
5993 case R_MIPS_GOT_PAGE:
5994 case R_MIPS_GOT_OFST:
5995 case R_MIPS_GOT_DISP:
0f20cc35
DJ
5996 case R_MIPS_TLS_GD:
5997 case R_MIPS_TLS_LDM:
b49e97c9
TS
5998 if (dynobj == NULL)
5999 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6000 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6001 return FALSE;
b49e97c9
TS
6002 g = mips_elf_got_info (dynobj, &sgot);
6003 break;
6004
6005 case R_MIPS_32:
6006 case R_MIPS_REL32:
6007 case R_MIPS_64:
6008 if (dynobj == NULL
6009 && (info->shared || h != NULL)
6010 && (sec->flags & SEC_ALLOC) != 0)
6011 elf_hash_table (info)->dynobj = dynobj = abfd;
6012 break;
6013
6014 default:
6015 break;
6016 }
6017 }
6018
6019 if (!h && (r_type == R_MIPS_CALL_LO16
6020 || r_type == R_MIPS_GOT_LO16
6021 || r_type == R_MIPS_GOT_DISP))
6022 {
6023 /* We may need a local GOT entry for this relocation. We
6024 don't count R_MIPS_GOT_PAGE because we can estimate the
6025 maximum number of pages needed by looking at the size of
6026 the segment. Similar comments apply to R_MIPS_GOT16 and
6027 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
6028 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6029 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6030 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6031 rel->r_addend, g, 0))
f4416af6 6032 return FALSE;
b49e97c9
TS
6033 }
6034
6035 switch (r_type)
6036 {
6037 case R_MIPS_CALL16:
6038 if (h == NULL)
6039 {
6040 (*_bfd_error_handler)
d003868e
AM
6041 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6042 abfd, (unsigned long) rel->r_offset);
b49e97c9 6043 bfd_set_error (bfd_error_bad_value);
b34976b6 6044 return FALSE;
b49e97c9
TS
6045 }
6046 /* Fall through. */
6047
6048 case R_MIPS_CALL_HI16:
6049 case R_MIPS_CALL_LO16:
6050 if (h != NULL)
6051 {
6052 /* This symbol requires a global offset table entry. */
0f20cc35 6053 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6054 return FALSE;
b49e97c9
TS
6055
6056 /* We need a stub, not a plt entry for the undefined
6057 function. But we record it as if it needs plt. See
c152c796 6058 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6059 h->needs_plt = 1;
b49e97c9
TS
6060 h->type = STT_FUNC;
6061 }
6062 break;
6063
0fdc1bf1
AO
6064 case R_MIPS_GOT_PAGE:
6065 /* If this is a global, overridable symbol, GOT_PAGE will
6066 decay to GOT_DISP, so we'll need a GOT entry for it. */
6067 if (h == NULL)
6068 break;
6069 else
6070 {
6071 struct mips_elf_link_hash_entry *hmips =
6072 (struct mips_elf_link_hash_entry *) h;
143d77c5 6073
0fdc1bf1
AO
6074 while (hmips->root.root.type == bfd_link_hash_indirect
6075 || hmips->root.root.type == bfd_link_hash_warning)
6076 hmips = (struct mips_elf_link_hash_entry *)
6077 hmips->root.root.u.i.link;
143d77c5 6078
f5385ebf 6079 if (hmips->root.def_regular
0fdc1bf1 6080 && ! (info->shared && ! info->symbolic
f5385ebf 6081 && ! hmips->root.forced_local))
0fdc1bf1
AO
6082 break;
6083 }
6084 /* Fall through. */
6085
b49e97c9
TS
6086 case R_MIPS_GOT16:
6087 case R_MIPS_GOT_HI16:
6088 case R_MIPS_GOT_LO16:
6089 case R_MIPS_GOT_DISP:
0f20cc35 6090 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6091 return FALSE;
b49e97c9
TS
6092 break;
6093
0f20cc35
DJ
6094 case R_MIPS_TLS_GOTTPREL:
6095 if (info->shared)
6096 info->flags |= DF_STATIC_TLS;
6097 /* Fall through */
6098
6099 case R_MIPS_TLS_LDM:
6100 if (r_type == R_MIPS_TLS_LDM)
6101 {
6102 r_symndx = 0;
6103 h = NULL;
6104 }
6105 /* Fall through */
6106
6107 case R_MIPS_TLS_GD:
6108 /* This symbol requires a global offset table entry, or two
6109 for TLS GD relocations. */
6110 {
6111 unsigned char flag = (r_type == R_MIPS_TLS_GD
6112 ? GOT_TLS_GD
6113 : r_type == R_MIPS_TLS_LDM
6114 ? GOT_TLS_LDM
6115 : GOT_TLS_IE);
6116 if (h != NULL)
6117 {
6118 struct mips_elf_link_hash_entry *hmips =
6119 (struct mips_elf_link_hash_entry *) h;
6120 hmips->tls_type |= flag;
6121
6122 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6123 return FALSE;
6124 }
6125 else
6126 {
6127 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6128
6129 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6130 rel->r_addend, g, flag))
6131 return FALSE;
6132 }
6133 }
6134 break;
6135
b49e97c9
TS
6136 case R_MIPS_32:
6137 case R_MIPS_REL32:
6138 case R_MIPS_64:
6139 if ((info->shared || h != NULL)
6140 && (sec->flags & SEC_ALLOC) != 0)
6141 {
6142 if (sreloc == NULL)
6143 {
f4416af6 6144 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 6145 if (sreloc == NULL)
f4416af6 6146 return FALSE;
b49e97c9 6147 }
82f0cfbd 6148#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
b49e97c9 6149 if (info->shared)
82f0cfbd
EC
6150 {
6151 /* When creating a shared object, we must copy these
6152 reloc types into the output file as R_MIPS_REL32
6153 relocs. We make room for this reloc in the
6154 .rel.dyn reloc section. */
6155 mips_elf_allocate_dynamic_relocations (dynobj, 1);
6156 if ((sec->flags & MIPS_READONLY_SECTION)
6157 == MIPS_READONLY_SECTION)
6158 /* We tell the dynamic linker that there are
6159 relocations against the text segment. */
6160 info->flags |= DF_TEXTREL;
6161 }
b49e97c9
TS
6162 else
6163 {
6164 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6165
b49e97c9
TS
6166 /* We only need to copy this reloc if the symbol is
6167 defined in a dynamic object. */
6168 hmips = (struct mips_elf_link_hash_entry *) h;
6169 ++hmips->possibly_dynamic_relocs;
82f0cfbd
EC
6170 if ((sec->flags & MIPS_READONLY_SECTION)
6171 == MIPS_READONLY_SECTION)
6172 /* We need it to tell the dynamic linker if there
6173 are relocations against the text segment. */
6174 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6175 }
6176
6177 /* Even though we don't directly need a GOT entry for
6178 this symbol, a symbol must have a dynamic symbol
6179 table index greater that DT_MIPS_GOTSYM if there are
6180 dynamic relocations against it. */
f4416af6
AO
6181 if (h != NULL)
6182 {
6183 if (dynobj == NULL)
6184 elf_hash_table (info)->dynobj = dynobj = abfd;
6185 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6186 return FALSE;
6187 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6188 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6189 return FALSE;
6190 }
b49e97c9
TS
6191 }
6192
6193 if (SGI_COMPAT (abfd))
6194 mips_elf_hash_table (info)->compact_rel_size +=
6195 sizeof (Elf32_External_crinfo);
6196 break;
6197
6198 case R_MIPS_26:
6199 case R_MIPS_GPREL16:
6200 case R_MIPS_LITERAL:
6201 case R_MIPS_GPREL32:
6202 if (SGI_COMPAT (abfd))
6203 mips_elf_hash_table (info)->compact_rel_size +=
6204 sizeof (Elf32_External_crinfo);
6205 break;
6206
6207 /* This relocation describes the C++ object vtable hierarchy.
6208 Reconstruct it for later use during GC. */
6209 case R_MIPS_GNU_VTINHERIT:
c152c796 6210 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6211 return FALSE;
b49e97c9
TS
6212 break;
6213
6214 /* This relocation describes which C++ vtable entries are actually
6215 used. Record for later use during GC. */
6216 case R_MIPS_GNU_VTENTRY:
c152c796 6217 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6218 return FALSE;
b49e97c9
TS
6219 break;
6220
6221 default:
6222 break;
6223 }
6224
6225 /* We must not create a stub for a symbol that has relocations
6226 related to taking the function's address. */
6227 switch (r_type)
6228 {
6229 default:
6230 if (h != NULL)
6231 {
6232 struct mips_elf_link_hash_entry *mh;
6233
6234 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6235 mh->no_fn_stub = TRUE;
b49e97c9
TS
6236 }
6237 break;
6238 case R_MIPS_CALL16:
6239 case R_MIPS_CALL_HI16:
6240 case R_MIPS_CALL_LO16:
2b86c02e 6241 case R_MIPS_JALR:
b49e97c9
TS
6242 break;
6243 }
6244
6245 /* If this reloc is not a 16 bit call, and it has a global
6246 symbol, then we will need the fn_stub if there is one.
6247 References from a stub section do not count. */
6248 if (h != NULL
6249 && r_type != R_MIPS16_26
6250 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6251 sizeof FN_STUB - 1) != 0
6252 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6253 sizeof CALL_STUB - 1) != 0
6254 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6255 sizeof CALL_FP_STUB - 1) != 0)
6256 {
6257 struct mips_elf_link_hash_entry *mh;
6258
6259 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6260 mh->need_fn_stub = TRUE;
b49e97c9
TS
6261 }
6262 }
6263
b34976b6 6264 return TRUE;
b49e97c9
TS
6265}
6266\f
d0647110 6267bfd_boolean
9719ad41
RS
6268_bfd_mips_relax_section (bfd *abfd, asection *sec,
6269 struct bfd_link_info *link_info,
6270 bfd_boolean *again)
d0647110
AO
6271{
6272 Elf_Internal_Rela *internal_relocs;
6273 Elf_Internal_Rela *irel, *irelend;
6274 Elf_Internal_Shdr *symtab_hdr;
6275 bfd_byte *contents = NULL;
d0647110
AO
6276 size_t extsymoff;
6277 bfd_boolean changed_contents = FALSE;
6278 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6279 Elf_Internal_Sym *isymbuf = NULL;
6280
6281 /* We are not currently changing any sizes, so only one pass. */
6282 *again = FALSE;
6283
1049f94e 6284 if (link_info->relocatable)
d0647110
AO
6285 return TRUE;
6286
9719ad41 6287 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6288 link_info->keep_memory);
d0647110
AO
6289 if (internal_relocs == NULL)
6290 return TRUE;
6291
6292 irelend = internal_relocs + sec->reloc_count
6293 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6294 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6295 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6296
6297 for (irel = internal_relocs; irel < irelend; irel++)
6298 {
6299 bfd_vma symval;
6300 bfd_signed_vma sym_offset;
6301 unsigned int r_type;
6302 unsigned long r_symndx;
6303 asection *sym_sec;
6304 unsigned long instruction;
6305
6306 /* Turn jalr into bgezal, and jr into beq, if they're marked
6307 with a JALR relocation, that indicate where they jump to.
6308 This saves some pipeline bubbles. */
6309 r_type = ELF_R_TYPE (abfd, irel->r_info);
6310 if (r_type != R_MIPS_JALR)
6311 continue;
6312
6313 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6314 /* Compute the address of the jump target. */
6315 if (r_symndx >= extsymoff)
6316 {
6317 struct mips_elf_link_hash_entry *h
6318 = ((struct mips_elf_link_hash_entry *)
6319 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6320
6321 while (h->root.root.type == bfd_link_hash_indirect
6322 || h->root.root.type == bfd_link_hash_warning)
6323 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6324
d0647110
AO
6325 /* If a symbol is undefined, or if it may be overridden,
6326 skip it. */
6327 if (! ((h->root.root.type == bfd_link_hash_defined
6328 || h->root.root.type == bfd_link_hash_defweak)
6329 && h->root.root.u.def.section)
6330 || (link_info->shared && ! link_info->symbolic
f5385ebf 6331 && !h->root.forced_local))
d0647110
AO
6332 continue;
6333
6334 sym_sec = h->root.root.u.def.section;
6335 if (sym_sec->output_section)
6336 symval = (h->root.root.u.def.value
6337 + sym_sec->output_section->vma
6338 + sym_sec->output_offset);
6339 else
6340 symval = h->root.root.u.def.value;
6341 }
6342 else
6343 {
6344 Elf_Internal_Sym *isym;
6345
6346 /* Read this BFD's symbols if we haven't done so already. */
6347 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6348 {
6349 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6350 if (isymbuf == NULL)
6351 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6352 symtab_hdr->sh_info, 0,
6353 NULL, NULL, NULL);
6354 if (isymbuf == NULL)
6355 goto relax_return;
6356 }
6357
6358 isym = isymbuf + r_symndx;
6359 if (isym->st_shndx == SHN_UNDEF)
6360 continue;
6361 else if (isym->st_shndx == SHN_ABS)
6362 sym_sec = bfd_abs_section_ptr;
6363 else if (isym->st_shndx == SHN_COMMON)
6364 sym_sec = bfd_com_section_ptr;
6365 else
6366 sym_sec
6367 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6368 symval = isym->st_value
6369 + sym_sec->output_section->vma
6370 + sym_sec->output_offset;
6371 }
6372
6373 /* Compute branch offset, from delay slot of the jump to the
6374 branch target. */
6375 sym_offset = (symval + irel->r_addend)
6376 - (sec_start + irel->r_offset + 4);
6377
6378 /* Branch offset must be properly aligned. */
6379 if ((sym_offset & 3) != 0)
6380 continue;
6381
6382 sym_offset >>= 2;
6383
6384 /* Check that it's in range. */
6385 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6386 continue;
143d77c5 6387
d0647110
AO
6388 /* Get the section contents if we haven't done so already. */
6389 if (contents == NULL)
6390 {
6391 /* Get cached copy if it exists. */
6392 if (elf_section_data (sec)->this_hdr.contents != NULL)
6393 contents = elf_section_data (sec)->this_hdr.contents;
6394 else
6395 {
eea6121a 6396 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6397 goto relax_return;
6398 }
6399 }
6400
6401 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6402
6403 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6404 if ((instruction & 0xfc1fffff) == 0x0000f809)
6405 instruction = 0x04110000;
6406 /* If it was jr <reg>, turn it into b <target>. */
6407 else if ((instruction & 0xfc1fffff) == 0x00000008)
6408 instruction = 0x10000000;
6409 else
6410 continue;
6411
6412 instruction |= (sym_offset & 0xffff);
6413 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6414 changed_contents = TRUE;
6415 }
6416
6417 if (contents != NULL
6418 && elf_section_data (sec)->this_hdr.contents != contents)
6419 {
6420 if (!changed_contents && !link_info->keep_memory)
6421 free (contents);
6422 else
6423 {
6424 /* Cache the section contents for elf_link_input_bfd. */
6425 elf_section_data (sec)->this_hdr.contents = contents;
6426 }
6427 }
6428 return TRUE;
6429
143d77c5 6430 relax_return:
eea6121a
AM
6431 if (contents != NULL
6432 && elf_section_data (sec)->this_hdr.contents != contents)
6433 free (contents);
d0647110
AO
6434 return FALSE;
6435}
6436\f
b49e97c9
TS
6437/* Adjust a symbol defined by a dynamic object and referenced by a
6438 regular object. The current definition is in some section of the
6439 dynamic object, but we're not including those sections. We have to
6440 change the definition to something the rest of the link can
6441 understand. */
6442
b34976b6 6443bfd_boolean
9719ad41
RS
6444_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6445 struct elf_link_hash_entry *h)
b49e97c9
TS
6446{
6447 bfd *dynobj;
6448 struct mips_elf_link_hash_entry *hmips;
6449 asection *s;
6450
6451 dynobj = elf_hash_table (info)->dynobj;
6452
6453 /* Make sure we know what is going on here. */
6454 BFD_ASSERT (dynobj != NULL
f5385ebf 6455 && (h->needs_plt
f6e332e6 6456 || h->u.weakdef != NULL
f5385ebf
AM
6457 || (h->def_dynamic
6458 && h->ref_regular
6459 && !h->def_regular)));
b49e97c9
TS
6460
6461 /* If this symbol is defined in a dynamic object, we need to copy
6462 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6463 file. */
6464 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6465 if (! info->relocatable
b49e97c9
TS
6466 && hmips->possibly_dynamic_relocs != 0
6467 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6468 || !h->def_regular))
b49e97c9
TS
6469 {
6470 mips_elf_allocate_dynamic_relocations (dynobj,
6471 hmips->possibly_dynamic_relocs);
82f0cfbd 6472 if (hmips->readonly_reloc)
b49e97c9
TS
6473 /* We tell the dynamic linker that there are relocations
6474 against the text segment. */
6475 info->flags |= DF_TEXTREL;
6476 }
6477
6478 /* For a function, create a stub, if allowed. */
6479 if (! hmips->no_fn_stub
f5385ebf 6480 && h->needs_plt)
b49e97c9
TS
6481 {
6482 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6483 return TRUE;
b49e97c9
TS
6484
6485 /* If this symbol is not defined in a regular file, then set
6486 the symbol to the stub location. This is required to make
6487 function pointers compare as equal between the normal
6488 executable and the shared library. */
f5385ebf 6489 if (!h->def_regular)
b49e97c9
TS
6490 {
6491 /* We need .stub section. */
6492 s = bfd_get_section_by_name (dynobj,
6493 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6494 BFD_ASSERT (s != NULL);
6495
6496 h->root.u.def.section = s;
eea6121a 6497 h->root.u.def.value = s->size;
b49e97c9
TS
6498
6499 /* XXX Write this stub address somewhere. */
eea6121a 6500 h->plt.offset = s->size;
b49e97c9
TS
6501
6502 /* Make room for this stub code. */
eea6121a 6503 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6504
6505 /* The last half word of the stub will be filled with the index
6506 of this symbol in .dynsym section. */
b34976b6 6507 return TRUE;
b49e97c9
TS
6508 }
6509 }
6510 else if ((h->type == STT_FUNC)
f5385ebf 6511 && !h->needs_plt)
b49e97c9
TS
6512 {
6513 /* This will set the entry for this symbol in the GOT to 0, and
6514 the dynamic linker will take care of this. */
6515 h->root.u.def.value = 0;
b34976b6 6516 return TRUE;
b49e97c9
TS
6517 }
6518
6519 /* If this is a weak symbol, and there is a real definition, the
6520 processor independent code will have arranged for us to see the
6521 real definition first, and we can just use the same value. */
f6e332e6 6522 if (h->u.weakdef != NULL)
b49e97c9 6523 {
f6e332e6
AM
6524 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6525 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6526 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6527 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 6528 return TRUE;
b49e97c9
TS
6529 }
6530
6531 /* This is a reference to a symbol defined by a dynamic object which
6532 is not a function. */
6533
b34976b6 6534 return TRUE;
b49e97c9
TS
6535}
6536\f
6537/* This function is called after all the input files have been read,
6538 and the input sections have been assigned to output sections. We
6539 check for any mips16 stub sections that we can discard. */
6540
b34976b6 6541bfd_boolean
9719ad41
RS
6542_bfd_mips_elf_always_size_sections (bfd *output_bfd,
6543 struct bfd_link_info *info)
b49e97c9
TS
6544{
6545 asection *ri;
6546
f4416af6
AO
6547 bfd *dynobj;
6548 asection *s;
6549 struct mips_got_info *g;
6550 int i;
6551 bfd_size_type loadable_size = 0;
6552 bfd_size_type local_gotno;
6553 bfd *sub;
0f20cc35 6554 struct mips_elf_count_tls_arg count_tls_arg;
f4416af6 6555
b49e97c9
TS
6556 /* The .reginfo section has a fixed size. */
6557 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
6558 if (ri != NULL)
9719ad41 6559 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 6560
1049f94e 6561 if (! (info->relocatable
f4416af6
AO
6562 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
6563 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 6564 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
6565
6566 dynobj = elf_hash_table (info)->dynobj;
6567 if (dynobj == NULL)
6568 /* Relocatable links don't have it. */
6569 return TRUE;
143d77c5 6570
f4416af6
AO
6571 g = mips_elf_got_info (dynobj, &s);
6572 if (s == NULL)
b34976b6 6573 return TRUE;
b49e97c9 6574
f4416af6
AO
6575 /* Calculate the total loadable size of the output. That
6576 will give us the maximum number of GOT_PAGE entries
6577 required. */
6578 for (sub = info->input_bfds; sub; sub = sub->link_next)
6579 {
6580 asection *subsection;
6581
6582 for (subsection = sub->sections;
6583 subsection;
6584 subsection = subsection->next)
6585 {
6586 if ((subsection->flags & SEC_ALLOC) == 0)
6587 continue;
eea6121a 6588 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
6589 &~ (bfd_size_type) 0xf);
6590 }
6591 }
6592
6593 /* There has to be a global GOT entry for every symbol with
6594 a dynamic symbol table index of DT_MIPS_GOTSYM or
6595 higher. Therefore, it make sense to put those symbols
6596 that need GOT entries at the end of the symbol table. We
6597 do that here. */
6598 if (! mips_elf_sort_hash_table (info, 1))
6599 return FALSE;
6600
6601 if (g->global_gotsym != NULL)
6602 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
6603 else
6604 /* If there are no global symbols, or none requiring
6605 relocations, then GLOBAL_GOTSYM will be NULL. */
6606 i = 0;
6607
6608 /* In the worst case, we'll get one stub per dynamic symbol, plus
6609 one to account for the dummy entry at the end required by IRIX
6610 rld. */
6611 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
6612
6613 /* Assume there are two loadable segments consisting of
6614 contiguous sections. Is 5 enough? */
6615 local_gotno = (loadable_size >> 16) + 5;
6616
6617 g->local_gotno += local_gotno;
eea6121a 6618 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
6619
6620 g->global_gotno = i;
eea6121a 6621 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 6622
0f20cc35
DJ
6623 /* We need to calculate tls_gotno for global symbols at this point
6624 instead of building it up earlier, to avoid doublecounting
6625 entries for one global symbol from multiple input files. */
6626 count_tls_arg.info = info;
6627 count_tls_arg.needed = 0;
6628 elf_link_hash_traverse (elf_hash_table (info),
6629 mips_elf_count_global_tls_entries,
6630 &count_tls_arg);
6631 g->tls_gotno += count_tls_arg.needed;
6632 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
6633
6634 mips_elf_resolve_final_got_entries (g);
6635
6636 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd))
6637 {
6638 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
6639 return FALSE;
6640 }
6641 else
6642 {
6643 /* Set up TLS entries for the first GOT. */
6644 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
6645 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
6646 }
b49e97c9 6647
b34976b6 6648 return TRUE;
b49e97c9
TS
6649}
6650
6651/* Set the sizes of the dynamic sections. */
6652
b34976b6 6653bfd_boolean
9719ad41
RS
6654_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
6655 struct bfd_link_info *info)
b49e97c9
TS
6656{
6657 bfd *dynobj;
6658 asection *s;
b34976b6 6659 bfd_boolean reltext;
b49e97c9
TS
6660
6661 dynobj = elf_hash_table (info)->dynobj;
6662 BFD_ASSERT (dynobj != NULL);
6663
6664 if (elf_hash_table (info)->dynamic_sections_created)
6665 {
6666 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 6667 if (info->executable)
b49e97c9
TS
6668 {
6669 s = bfd_get_section_by_name (dynobj, ".interp");
6670 BFD_ASSERT (s != NULL);
eea6121a 6671 s->size
b49e97c9
TS
6672 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
6673 s->contents
6674 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
6675 }
6676 }
6677
6678 /* The check_relocs and adjust_dynamic_symbol entry points have
6679 determined the sizes of the various dynamic sections. Allocate
6680 memory for them. */
b34976b6 6681 reltext = FALSE;
b49e97c9
TS
6682 for (s = dynobj->sections; s != NULL; s = s->next)
6683 {
6684 const char *name;
b49e97c9
TS
6685
6686 /* It's OK to base decisions on the section name, because none
6687 of the dynobj section names depend upon the input files. */
6688 name = bfd_get_section_name (dynobj, s);
6689
6690 if ((s->flags & SEC_LINKER_CREATED) == 0)
6691 continue;
6692
b49e97c9
TS
6693 if (strncmp (name, ".rel", 4) == 0)
6694 {
c456f082 6695 if (s->size != 0)
b49e97c9
TS
6696 {
6697 const char *outname;
6698 asection *target;
6699
6700 /* If this relocation section applies to a read only
6701 section, then we probably need a DT_TEXTREL entry.
6702 If the relocation section is .rel.dyn, we always
6703 assert a DT_TEXTREL entry rather than testing whether
6704 there exists a relocation to a read only section or
6705 not. */
6706 outname = bfd_get_section_name (output_bfd,
6707 s->output_section);
6708 target = bfd_get_section_by_name (output_bfd, outname + 4);
6709 if ((target != NULL
6710 && (target->flags & SEC_READONLY) != 0
6711 && (target->flags & SEC_ALLOC) != 0)
6712 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 6713 reltext = TRUE;
b49e97c9
TS
6714
6715 /* We use the reloc_count field as a counter if we need
6716 to copy relocs into the output file. */
6717 if (strcmp (name, ".rel.dyn") != 0)
6718 s->reloc_count = 0;
f4416af6
AO
6719
6720 /* If combreloc is enabled, elf_link_sort_relocs() will
6721 sort relocations, but in a different way than we do,
6722 and before we're done creating relocations. Also, it
6723 will move them around between input sections'
6724 relocation's contents, so our sorting would be
6725 broken, so don't let it run. */
6726 info->combreloc = 0;
b49e97c9
TS
6727 }
6728 }
6729 else if (strncmp (name, ".got", 4) == 0)
6730 {
f4416af6
AO
6731 /* _bfd_mips_elf_always_size_sections() has already done
6732 most of the work, but some symbols may have been mapped
6733 to versions that we must now resolve in the got_entries
6734 hash tables. */
6735 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6736 struct mips_got_info *g = gg;
6737 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6738 unsigned int needed_relocs = 0;
143d77c5 6739
f4416af6 6740 if (gg->next)
b49e97c9 6741 {
f4416af6
AO
6742 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6743 set_got_offset_arg.info = info;
b49e97c9 6744
0f20cc35
DJ
6745 /* NOTE 2005-02-03: How can this call, or the next, ever
6746 find any indirect entries to resolve? They were all
6747 resolved in mips_elf_multi_got. */
f4416af6
AO
6748 mips_elf_resolve_final_got_entries (gg);
6749 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 6750 {
f4416af6
AO
6751 unsigned int save_assign;
6752
6753 mips_elf_resolve_final_got_entries (g);
6754
6755 /* Assign offsets to global GOT entries. */
6756 save_assign = g->assigned_gotno;
6757 g->assigned_gotno = g->local_gotno;
6758 set_got_offset_arg.g = g;
6759 set_got_offset_arg.needed_relocs = 0;
6760 htab_traverse (g->got_entries,
6761 mips_elf_set_global_got_offset,
6762 &set_got_offset_arg);
6763 needed_relocs += set_got_offset_arg.needed_relocs;
6764 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6765 <= g->global_gotno);
6766
6767 g->assigned_gotno = save_assign;
6768 if (info->shared)
6769 {
6770 needed_relocs += g->local_gotno - g->assigned_gotno;
6771 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6772 + g->next->global_gotno
0f20cc35 6773 + g->next->tls_gotno
f4416af6
AO
6774 + MIPS_RESERVED_GOTNO);
6775 }
b49e97c9 6776 }
0f20cc35
DJ
6777 }
6778 else
6779 {
6780 struct mips_elf_count_tls_arg arg;
6781 arg.info = info;
6782 arg.needed = 0;
b49e97c9 6783
0f20cc35
DJ
6784 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
6785 &arg);
6786 elf_link_hash_traverse (elf_hash_table (info),
6787 mips_elf_count_global_tls_relocs,
6788 &arg);
6789
6790 needed_relocs += arg.needed;
f4416af6 6791 }
0f20cc35
DJ
6792
6793 if (needed_relocs)
6794 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
b49e97c9
TS
6795 }
6796 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6797 {
8dc1a139 6798 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9 6799 of .text section. So put a dummy. XXX */
eea6121a 6800 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6801 }
6802 else if (! info->shared
6803 && ! mips_elf_hash_table (info)->use_rld_obj_head
6804 && strncmp (name, ".rld_map", 8) == 0)
6805 {
6806 /* We add a room for __rld_map. It will be filled in by the
6807 rtld to contain a pointer to the _r_debug structure. */
eea6121a 6808 s->size += 4;
b49e97c9
TS
6809 }
6810 else if (SGI_COMPAT (output_bfd)
6811 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 6812 s->size += mips_elf_hash_table (info)->compact_rel_size;
b49e97c9
TS
6813 else if (strncmp (name, ".init", 5) != 0)
6814 {
6815 /* It's not one of our sections, so don't allocate space. */
6816 continue;
6817 }
6818
c456f082 6819 if (s->size == 0)
b49e97c9 6820 {
8423293d 6821 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
6822 continue;
6823 }
6824
c456f082
AM
6825 if ((s->flags & SEC_HAS_CONTENTS) == 0)
6826 continue;
6827
b49e97c9 6828 /* Allocate memory for the section contents. */
eea6121a 6829 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 6830 if (s->contents == NULL)
b49e97c9
TS
6831 {
6832 bfd_set_error (bfd_error_no_memory);
b34976b6 6833 return FALSE;
b49e97c9
TS
6834 }
6835 }
6836
6837 if (elf_hash_table (info)->dynamic_sections_created)
6838 {
6839 /* Add some entries to the .dynamic section. We fill in the
6840 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6841 must add the entries now so that we get the correct size for
6842 the .dynamic section. The DT_DEBUG entry is filled in by the
6843 dynamic linker and used by the debugger. */
6844 if (! info->shared)
6845 {
6846 /* SGI object has the equivalence of DT_DEBUG in the
6847 DT_MIPS_RLD_MAP entry. */
6848 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6849 return FALSE;
b49e97c9
TS
6850 if (!SGI_COMPAT (output_bfd))
6851 {
6852 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6853 return FALSE;
b49e97c9
TS
6854 }
6855 }
6856 else
6857 {
6858 /* Shared libraries on traditional mips have DT_DEBUG. */
6859 if (!SGI_COMPAT (output_bfd))
6860 {
6861 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6862 return FALSE;
b49e97c9
TS
6863 }
6864 }
6865
6866 if (reltext && SGI_COMPAT (output_bfd))
6867 info->flags |= DF_TEXTREL;
6868
6869 if ((info->flags & DF_TEXTREL) != 0)
6870 {
6871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6872 return FALSE;
b49e97c9
TS
6873 }
6874
6875 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6876 return FALSE;
b49e97c9 6877
f4416af6 6878 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6879 {
6880 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6881 return FALSE;
b49e97c9
TS
6882
6883 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6884 return FALSE;
b49e97c9
TS
6885
6886 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6887 return FALSE;
b49e97c9
TS
6888 }
6889
b49e97c9 6890 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6891 return FALSE;
b49e97c9
TS
6892
6893 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6894 return FALSE;
b49e97c9 6895
b49e97c9 6896 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6897 return FALSE;
b49e97c9
TS
6898
6899 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6900 return FALSE;
b49e97c9
TS
6901
6902 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6903 return FALSE;
b49e97c9
TS
6904
6905 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6906 return FALSE;
b49e97c9
TS
6907
6908 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6909 return FALSE;
b49e97c9
TS
6910
6911 if (IRIX_COMPAT (dynobj) == ict_irix5
6912 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6913 return FALSE;
b49e97c9
TS
6914
6915 if (IRIX_COMPAT (dynobj) == ict_irix6
6916 && (bfd_get_section_by_name
6917 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6918 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6919 return FALSE;
b49e97c9
TS
6920 }
6921
b34976b6 6922 return TRUE;
b49e97c9
TS
6923}
6924\f
6925/* Relocate a MIPS ELF section. */
6926
b34976b6 6927bfd_boolean
9719ad41
RS
6928_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6929 bfd *input_bfd, asection *input_section,
6930 bfd_byte *contents, Elf_Internal_Rela *relocs,
6931 Elf_Internal_Sym *local_syms,
6932 asection **local_sections)
b49e97c9
TS
6933{
6934 Elf_Internal_Rela *rel;
6935 const Elf_Internal_Rela *relend;
6936 bfd_vma addend = 0;
b34976b6 6937 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 6938 const struct elf_backend_data *bed;
b49e97c9
TS
6939
6940 bed = get_elf_backend_data (output_bfd);
6941 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6942 for (rel = relocs; rel < relend; ++rel)
6943 {
6944 const char *name;
c9adbffe 6945 bfd_vma value = 0;
b49e97c9 6946 reloc_howto_type *howto;
b34976b6
AM
6947 bfd_boolean require_jalx;
6948 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6949 REL relocation. */
b34976b6 6950 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 6951 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 6952 const char *msg;
b49e97c9
TS
6953
6954 /* Find the relocation howto for this relocation. */
4a14403c 6955 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6956 {
6957 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6958 64-bit code, but make sure all their addresses are in the
6959 lowermost or uppermost 32-bit section of the 64-bit address
6960 space. Thus, when they use an R_MIPS_64 they mean what is
6961 usually meant by R_MIPS_32, with the exception that the
6962 stored value is sign-extended to 64 bits. */
b34976b6 6963 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6964
6965 /* On big-endian systems, we need to lie about the position
6966 of the reloc. */
6967 if (bfd_big_endian (input_bfd))
6968 rel->r_offset += 4;
6969 }
6970 else
6971 /* NewABI defaults to RELA relocations. */
6972 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6973 NEWABI_P (input_bfd)
6974 && (MIPS_RELOC_RELA_P
6975 (input_bfd, input_section,
6976 rel - relocs)));
b49e97c9
TS
6977
6978 if (!use_saved_addend_p)
6979 {
6980 Elf_Internal_Shdr *rel_hdr;
6981
6982 /* If these relocations were originally of the REL variety,
6983 we must pull the addend out of the field that will be
6984 relocated. Otherwise, we simply use the contents of the
6985 RELA relocation. To determine which flavor or relocation
6986 this is, we depend on the fact that the INPUT_SECTION's
6987 REL_HDR is read before its REL_HDR2. */
6988 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6989 if ((size_t) (rel - relocs)
6990 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6991 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6992 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6993 {
d6f16593
MR
6994 bfd_byte *location = contents + rel->r_offset;
6995
b49e97c9 6996 /* Note that this is a REL relocation. */
b34976b6 6997 rela_relocation_p = FALSE;
b49e97c9
TS
6998
6999 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7000 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7001 location);
b49e97c9
TS
7002 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7003 contents);
d6f16593
MR
7004 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7005 location);
7006
b49e97c9
TS
7007 addend &= howto->src_mask;
7008
7009 /* For some kinds of relocations, the ADDEND is a
7010 combination of the addend stored in two different
7011 relocations. */
d6f16593 7012 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7013 || (r_type == R_MIPS_GOT16
7014 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7015 local_sections, FALSE)))
b49e97c9
TS
7016 {
7017 bfd_vma l;
7018 const Elf_Internal_Rela *lo16_relocation;
7019 reloc_howto_type *lo16_howto;
d6f16593
MR
7020 bfd_byte *lo16_location;
7021 int lo16_type;
7022
7023 if (r_type == R_MIPS16_HI16)
7024 lo16_type = R_MIPS16_LO16;
7025 else
7026 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7027
7028 /* The combined value is the sum of the HI16 addend,
7029 left-shifted by sixteen bits, and the LO16
7030 addend, sign extended. (Usually, the code does
7031 a `lui' of the HI16 value, and then an `addiu' of
7032 the LO16 value.)
7033
4030e8f6
CD
7034 Scan ahead to find a matching LO16 relocation.
7035
7036 According to the MIPS ELF ABI, the R_MIPS_LO16
7037 relocation must be immediately following.
7038 However, for the IRIX6 ABI, the next relocation
7039 may be a composed relocation consisting of
7040 several relocations for the same address. In
7041 that case, the R_MIPS_LO16 relocation may occur
7042 as one of these. We permit a similar extension
7043 in general, as that is useful for GCC. */
7044 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7045 lo16_type,
b49e97c9
TS
7046 rel, relend);
7047 if (lo16_relocation == NULL)
b34976b6 7048 return FALSE;
b49e97c9 7049
d6f16593
MR
7050 lo16_location = contents + lo16_relocation->r_offset;
7051
b49e97c9 7052 /* Obtain the addend kept there. */
4030e8f6 7053 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
d6f16593
MR
7054 lo16_type, FALSE);
7055 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7056 lo16_location);
b49e97c9
TS
7057 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7058 input_bfd, contents);
d6f16593
MR
7059 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7060 lo16_location);
b49e97c9 7061 l &= lo16_howto->src_mask;
5a659663 7062 l <<= lo16_howto->rightshift;
a7ebbfdf 7063 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
7064
7065 addend <<= 16;
7066
7067 /* Compute the combined addend. */
7068 addend += l;
b49e97c9 7069 }
30ac9238
RS
7070 else
7071 addend <<= howto->rightshift;
b49e97c9
TS
7072 }
7073 else
7074 addend = rel->r_addend;
7075 }
7076
1049f94e 7077 if (info->relocatable)
b49e97c9
TS
7078 {
7079 Elf_Internal_Sym *sym;
7080 unsigned long r_symndx;
7081
4a14403c 7082 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7083 && bfd_big_endian (input_bfd))
7084 rel->r_offset -= 4;
7085
7086 /* Since we're just relocating, all we need to do is copy
7087 the relocations back out to the object file, unless
7088 they're against a section symbol, in which case we need
7089 to adjust by the section offset, or unless they're GP
7090 relative in which case we need to adjust by the amount
1049f94e 7091 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
7092
7093 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 7094 FALSE))
b49e97c9
TS
7095 /* There's nothing to do for non-local relocations. */
7096 continue;
7097
7098 if (r_type == R_MIPS16_GPREL
7099 || r_type == R_MIPS_GPREL16
7100 || r_type == R_MIPS_GPREL32
7101 || r_type == R_MIPS_LITERAL)
7102 addend -= (_bfd_get_gp_value (output_bfd)
7103 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
7104
7105 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7106 sym = local_syms + r_symndx;
7107 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7108 /* Adjust the addend appropriately. */
7109 addend += local_sections[r_symndx]->output_offset;
7110
30ac9238
RS
7111 if (rela_relocation_p)
7112 /* If this is a RELA relocation, just update the addend. */
7113 rel->r_addend = addend;
7114 else
5a659663 7115 {
30ac9238 7116 if (r_type == R_MIPS_HI16
4030e8f6 7117 || r_type == R_MIPS_GOT16)
5a659663
TS
7118 addend = mips_elf_high (addend);
7119 else if (r_type == R_MIPS_HIGHER)
7120 addend = mips_elf_higher (addend);
7121 else if (r_type == R_MIPS_HIGHEST)
7122 addend = mips_elf_highest (addend);
30ac9238
RS
7123 else
7124 addend >>= howto->rightshift;
b49e97c9 7125
30ac9238
RS
7126 /* We use the source mask, rather than the destination
7127 mask because the place to which we are writing will be
7128 source of the addend in the final link. */
b49e97c9
TS
7129 addend &= howto->src_mask;
7130
5a659663 7131 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7132 /* See the comment above about using R_MIPS_64 in the 32-bit
7133 ABI. Here, we need to update the addend. It would be
7134 possible to get away with just using the R_MIPS_32 reloc
7135 but for endianness. */
7136 {
7137 bfd_vma sign_bits;
7138 bfd_vma low_bits;
7139 bfd_vma high_bits;
7140
7141 if (addend & ((bfd_vma) 1 << 31))
7142#ifdef BFD64
7143 sign_bits = ((bfd_vma) 1 << 32) - 1;
7144#else
7145 sign_bits = -1;
7146#endif
7147 else
7148 sign_bits = 0;
7149
7150 /* If we don't know that we have a 64-bit type,
7151 do two separate stores. */
7152 if (bfd_big_endian (input_bfd))
7153 {
7154 /* Store the sign-bits (which are most significant)
7155 first. */
7156 low_bits = sign_bits;
7157 high_bits = addend;
7158 }
7159 else
7160 {
7161 low_bits = addend;
7162 high_bits = sign_bits;
7163 }
7164 bfd_put_32 (input_bfd, low_bits,
7165 contents + rel->r_offset);
7166 bfd_put_32 (input_bfd, high_bits,
7167 contents + rel->r_offset + 4);
7168 continue;
7169 }
7170
7171 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7172 input_bfd, input_section,
b34976b6
AM
7173 contents, FALSE))
7174 return FALSE;
b49e97c9
TS
7175 }
7176
7177 /* Go on to the next relocation. */
7178 continue;
7179 }
7180
7181 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7182 relocations for the same offset. In that case we are
7183 supposed to treat the output of each relocation as the addend
7184 for the next. */
7185 if (rel + 1 < relend
7186 && rel->r_offset == rel[1].r_offset
7187 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 7188 use_saved_addend_p = TRUE;
b49e97c9 7189 else
b34976b6 7190 use_saved_addend_p = FALSE;
b49e97c9
TS
7191
7192 /* Figure out what value we are supposed to relocate. */
7193 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7194 input_section, info, rel,
7195 addend, howto, local_syms,
7196 local_sections, &value,
bce03d3d
AO
7197 &name, &require_jalx,
7198 use_saved_addend_p))
b49e97c9
TS
7199 {
7200 case bfd_reloc_continue:
7201 /* There's nothing to do. */
7202 continue;
7203
7204 case bfd_reloc_undefined:
7205 /* mips_elf_calculate_relocation already called the
7206 undefined_symbol callback. There's no real point in
7207 trying to perform the relocation at this point, so we
7208 just skip ahead to the next relocation. */
7209 continue;
7210
7211 case bfd_reloc_notsupported:
7212 msg = _("internal error: unsupported relocation error");
7213 info->callbacks->warning
7214 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 7215 return FALSE;
b49e97c9
TS
7216
7217 case bfd_reloc_overflow:
7218 if (use_saved_addend_p)
7219 /* Ignore overflow until we reach the last relocation for
7220 a given location. */
7221 ;
7222 else
7223 {
7224 BFD_ASSERT (name != NULL);
7225 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 7226 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 7227 input_bfd, input_section, rel->r_offset)))
b34976b6 7228 return FALSE;
b49e97c9
TS
7229 }
7230 break;
7231
7232 case bfd_reloc_ok:
7233 break;
7234
7235 default:
7236 abort ();
7237 break;
7238 }
7239
7240 /* If we've got another relocation for the address, keep going
7241 until we reach the last one. */
7242 if (use_saved_addend_p)
7243 {
7244 addend = value;
7245 continue;
7246 }
7247
4a14403c 7248 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7249 /* See the comment above about using R_MIPS_64 in the 32-bit
7250 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7251 that calculated the right value. Now, however, we
7252 sign-extend the 32-bit result to 64-bits, and store it as a
7253 64-bit value. We are especially generous here in that we
7254 go to extreme lengths to support this usage on systems with
7255 only a 32-bit VMA. */
7256 {
7257 bfd_vma sign_bits;
7258 bfd_vma low_bits;
7259 bfd_vma high_bits;
7260
7261 if (value & ((bfd_vma) 1 << 31))
7262#ifdef BFD64
7263 sign_bits = ((bfd_vma) 1 << 32) - 1;
7264#else
7265 sign_bits = -1;
7266#endif
7267 else
7268 sign_bits = 0;
7269
7270 /* If we don't know that we have a 64-bit type,
7271 do two separate stores. */
7272 if (bfd_big_endian (input_bfd))
7273 {
7274 /* Undo what we did above. */
7275 rel->r_offset -= 4;
7276 /* Store the sign-bits (which are most significant)
7277 first. */
7278 low_bits = sign_bits;
7279 high_bits = value;
7280 }
7281 else
7282 {
7283 low_bits = value;
7284 high_bits = sign_bits;
7285 }
7286 bfd_put_32 (input_bfd, low_bits,
7287 contents + rel->r_offset);
7288 bfd_put_32 (input_bfd, high_bits,
7289 contents + rel->r_offset + 4);
7290 continue;
7291 }
7292
7293 /* Actually perform the relocation. */
7294 if (! mips_elf_perform_relocation (info, howto, rel, value,
7295 input_bfd, input_section,
7296 contents, require_jalx))
b34976b6 7297 return FALSE;
b49e97c9
TS
7298 }
7299
b34976b6 7300 return TRUE;
b49e97c9
TS
7301}
7302\f
7303/* If NAME is one of the special IRIX6 symbols defined by the linker,
7304 adjust it appropriately now. */
7305
7306static void
9719ad41
RS
7307mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7308 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
7309{
7310 /* The linker script takes care of providing names and values for
7311 these, but we must place them into the right sections. */
7312 static const char* const text_section_symbols[] = {
7313 "_ftext",
7314 "_etext",
7315 "__dso_displacement",
7316 "__elf_header",
7317 "__program_header_table",
7318 NULL
7319 };
7320
7321 static const char* const data_section_symbols[] = {
7322 "_fdata",
7323 "_edata",
7324 "_end",
7325 "_fbss",
7326 NULL
7327 };
7328
7329 const char* const *p;
7330 int i;
7331
7332 for (i = 0; i < 2; ++i)
7333 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
7334 *p;
7335 ++p)
7336 if (strcmp (*p, name) == 0)
7337 {
7338 /* All of these symbols are given type STT_SECTION by the
7339 IRIX6 linker. */
7340 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 7341 sym->st_other = STO_PROTECTED;
b49e97c9
TS
7342
7343 /* The IRIX linker puts these symbols in special sections. */
7344 if (i == 0)
7345 sym->st_shndx = SHN_MIPS_TEXT;
7346 else
7347 sym->st_shndx = SHN_MIPS_DATA;
7348
7349 break;
7350 }
7351}
7352
7353/* Finish up dynamic symbol handling. We set the contents of various
7354 dynamic sections here. */
7355
b34976b6 7356bfd_boolean
9719ad41
RS
7357_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
7358 struct bfd_link_info *info,
7359 struct elf_link_hash_entry *h,
7360 Elf_Internal_Sym *sym)
b49e97c9
TS
7361{
7362 bfd *dynobj;
b49e97c9 7363 asection *sgot;
f4416af6 7364 struct mips_got_info *g, *gg;
b49e97c9 7365 const char *name;
b49e97c9
TS
7366
7367 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 7368
c5ae1840 7369 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
7370 {
7371 asection *s;
7372 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
7373
7374 /* This symbol has a stub. Set it up. */
7375
7376 BFD_ASSERT (h->dynindx != -1);
7377
7378 s = bfd_get_section_by_name (dynobj,
7379 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7380 BFD_ASSERT (s != NULL);
7381
7382 /* FIXME: Can h->dynindex be more than 64K? */
7383 if (h->dynindx & 0xffff0000)
b34976b6 7384 return FALSE;
b49e97c9
TS
7385
7386 /* Fill the stub. */
7387 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
7388 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
7389 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
7390 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
7391
eea6121a 7392 BFD_ASSERT (h->plt.offset <= s->size);
b49e97c9
TS
7393 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
7394
7395 /* Mark the symbol as undefined. plt.offset != -1 occurs
7396 only for the referenced symbol. */
7397 sym->st_shndx = SHN_UNDEF;
7398
7399 /* The run-time linker uses the st_value field of the symbol
7400 to reset the global offset table entry for this external
7401 to its stub address when unlinking a shared object. */
c5ae1840
TS
7402 sym->st_value = (s->output_section->vma + s->output_offset
7403 + h->plt.offset);
b49e97c9
TS
7404 }
7405
7406 BFD_ASSERT (h->dynindx != -1
f5385ebf 7407 || h->forced_local);
b49e97c9 7408
f4416af6 7409 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 7410 BFD_ASSERT (sgot != NULL);
f4416af6 7411 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 7412 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
7413 BFD_ASSERT (g != NULL);
7414
7415 /* Run through the global symbol table, creating GOT entries for all
7416 the symbols that need them. */
7417 if (g->global_gotsym != NULL
7418 && h->dynindx >= g->global_gotsym->dynindx)
7419 {
7420 bfd_vma offset;
7421 bfd_vma value;
7422
6eaa6adc 7423 value = sym->st_value;
0f20cc35 7424 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
7425 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
7426 }
7427
0f20cc35 7428 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
7429 {
7430 struct mips_got_entry e, *p;
0626d451 7431 bfd_vma entry;
f4416af6 7432 bfd_vma offset;
f4416af6
AO
7433
7434 gg = g;
7435
7436 e.abfd = output_bfd;
7437 e.symndx = -1;
7438 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 7439 e.tls_type = 0;
143d77c5 7440
f4416af6
AO
7441 for (g = g->next; g->next != gg; g = g->next)
7442 {
7443 if (g->got_entries
7444 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
7445 &e)))
7446 {
7447 offset = p->gotidx;
0626d451
RS
7448 if (info->shared
7449 || (elf_hash_table (info)->dynamic_sections_created
7450 && p->d.h != NULL
f5385ebf
AM
7451 && p->d.h->root.def_dynamic
7452 && !p->d.h->root.def_regular))
0626d451
RS
7453 {
7454 /* Create an R_MIPS_REL32 relocation for this entry. Due to
7455 the various compatibility problems, it's easier to mock
7456 up an R_MIPS_32 or R_MIPS_64 relocation and leave
7457 mips_elf_create_dynamic_relocation to calculate the
7458 appropriate addend. */
7459 Elf_Internal_Rela rel[3];
7460
7461 memset (rel, 0, sizeof (rel));
7462 if (ABI_64_P (output_bfd))
7463 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
7464 else
7465 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
7466 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
7467
7468 entry = 0;
7469 if (! (mips_elf_create_dynamic_relocation
7470 (output_bfd, info, rel,
7471 e.d.h, NULL, sym->st_value, &entry, sgot)))
7472 return FALSE;
7473 }
7474 else
7475 entry = sym->st_value;
7476 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
7477 }
7478 }
7479 }
7480
b49e97c9
TS
7481 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
7482 name = h->root.root.string;
7483 if (strcmp (name, "_DYNAMIC") == 0
7484 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
7485 sym->st_shndx = SHN_ABS;
7486 else if (strcmp (name, "_DYNAMIC_LINK") == 0
7487 || strcmp (name, "_DYNAMIC_LINKING") == 0)
7488 {
7489 sym->st_shndx = SHN_ABS;
7490 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7491 sym->st_value = 1;
7492 }
4a14403c 7493 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7494 {
7495 sym->st_shndx = SHN_ABS;
7496 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7497 sym->st_value = elf_gp (output_bfd);
7498 }
7499 else if (SGI_COMPAT (output_bfd))
7500 {
7501 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
7502 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
7503 {
7504 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7505 sym->st_other = STO_PROTECTED;
7506 sym->st_value = 0;
7507 sym->st_shndx = SHN_MIPS_DATA;
7508 }
7509 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
7510 {
7511 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7512 sym->st_other = STO_PROTECTED;
7513 sym->st_value = mips_elf_hash_table (info)->procedure_count;
7514 sym->st_shndx = SHN_ABS;
7515 }
7516 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
7517 {
7518 if (h->type == STT_FUNC)
7519 sym->st_shndx = SHN_MIPS_TEXT;
7520 else if (h->type == STT_OBJECT)
7521 sym->st_shndx = SHN_MIPS_DATA;
7522 }
7523 }
7524
7525 /* Handle the IRIX6-specific symbols. */
7526 if (IRIX_COMPAT (output_bfd) == ict_irix6)
7527 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
7528
7529 if (! info->shared)
7530 {
7531 if (! mips_elf_hash_table (info)->use_rld_obj_head
7532 && (strcmp (name, "__rld_map") == 0
7533 || strcmp (name, "__RLD_MAP") == 0))
7534 {
7535 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
7536 BFD_ASSERT (s != NULL);
7537 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 7538 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
7539 if (mips_elf_hash_table (info)->rld_value == 0)
7540 mips_elf_hash_table (info)->rld_value = sym->st_value;
7541 }
7542 else if (mips_elf_hash_table (info)->use_rld_obj_head
7543 && strcmp (name, "__rld_obj_head") == 0)
7544 {
7545 /* IRIX6 does not use a .rld_map section. */
7546 if (IRIX_COMPAT (output_bfd) == ict_irix5
7547 || IRIX_COMPAT (output_bfd) == ict_none)
7548 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
7549 != NULL);
7550 mips_elf_hash_table (info)->rld_value = sym->st_value;
7551 }
7552 }
7553
7554 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
7555 if (sym->st_other == STO_MIPS16)
7556 sym->st_value &= ~1;
b49e97c9 7557
b34976b6 7558 return TRUE;
b49e97c9
TS
7559}
7560
7561/* Finish up the dynamic sections. */
7562
b34976b6 7563bfd_boolean
9719ad41
RS
7564_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
7565 struct bfd_link_info *info)
b49e97c9
TS
7566{
7567 bfd *dynobj;
7568 asection *sdyn;
7569 asection *sgot;
f4416af6 7570 struct mips_got_info *gg, *g;
b49e97c9
TS
7571
7572 dynobj = elf_hash_table (info)->dynobj;
7573
7574 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
7575
f4416af6 7576 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 7577 if (sgot == NULL)
f4416af6 7578 gg = g = NULL;
b49e97c9
TS
7579 else
7580 {
f4416af6
AO
7581 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
7582 gg = mips_elf_section_data (sgot)->u.got_info;
7583 BFD_ASSERT (gg != NULL);
7584 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
7585 BFD_ASSERT (g != NULL);
7586 }
7587
7588 if (elf_hash_table (info)->dynamic_sections_created)
7589 {
7590 bfd_byte *b;
7591
7592 BFD_ASSERT (sdyn != NULL);
7593 BFD_ASSERT (g != NULL);
7594
7595 for (b = sdyn->contents;
eea6121a 7596 b < sdyn->contents + sdyn->size;
b49e97c9
TS
7597 b += MIPS_ELF_DYN_SIZE (dynobj))
7598 {
7599 Elf_Internal_Dyn dyn;
7600 const char *name;
7601 size_t elemsize;
7602 asection *s;
b34976b6 7603 bfd_boolean swap_out_p;
b49e97c9
TS
7604
7605 /* Read in the current dynamic entry. */
7606 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
7607
7608 /* Assume that we're going to modify it and write it out. */
b34976b6 7609 swap_out_p = TRUE;
b49e97c9
TS
7610
7611 switch (dyn.d_tag)
7612 {
7613 case DT_RELENT:
f4416af6 7614 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
7615 BFD_ASSERT (s != NULL);
7616 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
7617 break;
7618
7619 case DT_STRSZ:
7620 /* Rewrite DT_STRSZ. */
7621 dyn.d_un.d_val =
7622 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7623 break;
7624
7625 case DT_PLTGOT:
7626 name = ".got";
b49e97c9
TS
7627 s = bfd_get_section_by_name (output_bfd, name);
7628 BFD_ASSERT (s != NULL);
7629 dyn.d_un.d_ptr = s->vma;
7630 break;
7631
7632 case DT_MIPS_RLD_VERSION:
7633 dyn.d_un.d_val = 1; /* XXX */
7634 break;
7635
7636 case DT_MIPS_FLAGS:
7637 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
7638 break;
7639
b49e97c9 7640 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
7641 {
7642 time_t t;
7643 time (&t);
7644 dyn.d_un.d_val = t;
7645 }
b49e97c9
TS
7646 break;
7647
7648 case DT_MIPS_ICHECKSUM:
7649 /* XXX FIXME: */
b34976b6 7650 swap_out_p = FALSE;
b49e97c9
TS
7651 break;
7652
7653 case DT_MIPS_IVERSION:
7654 /* XXX FIXME: */
b34976b6 7655 swap_out_p = FALSE;
b49e97c9
TS
7656 break;
7657
7658 case DT_MIPS_BASE_ADDRESS:
7659 s = output_bfd->sections;
7660 BFD_ASSERT (s != NULL);
7661 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7662 break;
7663
7664 case DT_MIPS_LOCAL_GOTNO:
7665 dyn.d_un.d_val = g->local_gotno;
7666 break;
7667
7668 case DT_MIPS_UNREFEXTNO:
7669 /* The index into the dynamic symbol table which is the
7670 entry of the first external symbol that is not
7671 referenced within the same object. */
7672 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7673 break;
7674
7675 case DT_MIPS_GOTSYM:
f4416af6 7676 if (gg->global_gotsym)
b49e97c9 7677 {
f4416af6 7678 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
7679 break;
7680 }
7681 /* In case if we don't have global got symbols we default
7682 to setting DT_MIPS_GOTSYM to the same value as
7683 DT_MIPS_SYMTABNO, so we just fall through. */
7684
7685 case DT_MIPS_SYMTABNO:
7686 name = ".dynsym";
7687 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7688 s = bfd_get_section_by_name (output_bfd, name);
7689 BFD_ASSERT (s != NULL);
7690
eea6121a 7691 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
7692 break;
7693
7694 case DT_MIPS_HIPAGENO:
7695 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7696 break;
7697
7698 case DT_MIPS_RLD_MAP:
7699 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7700 break;
7701
7702 case DT_MIPS_OPTIONS:
7703 s = (bfd_get_section_by_name
7704 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7705 dyn.d_un.d_ptr = s->vma;
7706 break;
7707
b49e97c9 7708 default:
b34976b6 7709 swap_out_p = FALSE;
b49e97c9
TS
7710 break;
7711 }
7712
7713 if (swap_out_p)
7714 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7715 (dynobj, &dyn, b);
7716 }
7717 }
7718
7719 /* The first entry of the global offset table will be filled at
7720 runtime. The second entry will be used by some runtime loaders.
8dc1a139 7721 This isn't the case of IRIX rld. */
eea6121a 7722 if (sgot != NULL && sgot->size > 0)
b49e97c9 7723 {
9719ad41
RS
7724 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
7725 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
b49e97c9
TS
7726 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7727 }
7728
7729 if (sgot != NULL)
7730 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7731 = MIPS_ELF_GOT_SIZE (output_bfd);
7732
f4416af6
AO
7733 /* Generate dynamic relocations for the non-primary gots. */
7734 if (gg != NULL && gg->next)
7735 {
7736 Elf_Internal_Rela rel[3];
7737 bfd_vma addend = 0;
7738
7739 memset (rel, 0, sizeof (rel));
7740 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7741
7742 for (g = gg->next; g->next != gg; g = g->next)
7743 {
0f20cc35
DJ
7744 bfd_vma index = g->next->local_gotno + g->next->global_gotno
7745 + g->next->tls_gotno;
f4416af6 7746
9719ad41 7747 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 7748 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 7749 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
7750 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7751
7752 if (! info->shared)
7753 continue;
7754
7755 while (index < g->assigned_gotno)
7756 {
7757 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7758 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7759 if (!(mips_elf_create_dynamic_relocation
7760 (output_bfd, info, rel, NULL,
7761 bfd_abs_section_ptr,
7762 0, &addend, sgot)))
7763 return FALSE;
7764 BFD_ASSERT (addend == 0);
7765 }
7766 }
7767 }
7768
3133ddbf
DJ
7769 /* The generation of dynamic relocations for the non-primary gots
7770 adds more dynamic relocations. We cannot count them until
7771 here. */
7772
7773 if (elf_hash_table (info)->dynamic_sections_created)
7774 {
7775 bfd_byte *b;
7776 bfd_boolean swap_out_p;
7777
7778 BFD_ASSERT (sdyn != NULL);
7779
7780 for (b = sdyn->contents;
7781 b < sdyn->contents + sdyn->size;
7782 b += MIPS_ELF_DYN_SIZE (dynobj))
7783 {
7784 Elf_Internal_Dyn dyn;
7785 asection *s;
7786
7787 /* Read in the current dynamic entry. */
7788 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
7789
7790 /* Assume that we're going to modify it and write it out. */
7791 swap_out_p = TRUE;
7792
7793 switch (dyn.d_tag)
7794 {
7795 case DT_RELSZ:
7796 /* Reduce DT_RELSZ to account for any relocations we
7797 decided not to make. This is for the n64 irix rld,
7798 which doesn't seem to apply any relocations if there
7799 are trailing null entries. */
7800 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7801 dyn.d_un.d_val = (s->reloc_count
7802 * (ABI_64_P (output_bfd)
7803 ? sizeof (Elf64_Mips_External_Rel)
7804 : sizeof (Elf32_External_Rel)));
7805 break;
7806
7807 default:
7808 swap_out_p = FALSE;
7809 break;
7810 }
7811
7812 if (swap_out_p)
7813 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7814 (dynobj, &dyn, b);
7815 }
7816 }
7817
b49e97c9 7818 {
b49e97c9
TS
7819 asection *s;
7820 Elf32_compact_rel cpt;
7821
b49e97c9
TS
7822 if (SGI_COMPAT (output_bfd))
7823 {
7824 /* Write .compact_rel section out. */
7825 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7826 if (s != NULL)
7827 {
7828 cpt.id1 = 1;
7829 cpt.num = s->reloc_count;
7830 cpt.id2 = 2;
7831 cpt.offset = (s->output_section->filepos
7832 + sizeof (Elf32_External_compact_rel));
7833 cpt.reserved0 = 0;
7834 cpt.reserved1 = 0;
7835 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7836 ((Elf32_External_compact_rel *)
7837 s->contents));
7838
7839 /* Clean up a dummy stub function entry in .text. */
7840 s = bfd_get_section_by_name (dynobj,
7841 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7842 if (s != NULL)
7843 {
7844 file_ptr dummy_offset;
7845
eea6121a
AM
7846 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
7847 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
7848 memset (s->contents + dummy_offset, 0,
7849 MIPS_FUNCTION_STUB_SIZE);
7850 }
7851 }
7852 }
7853
7854 /* We need to sort the entries of the dynamic relocation section. */
7855
f4416af6
AO
7856 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7857
7858 if (s != NULL
eea6121a 7859 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7860 {
f4416af6 7861 reldyn_sorting_bfd = output_bfd;
b49e97c9 7862
f4416af6 7863 if (ABI_64_P (output_bfd))
9719ad41 7864 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6
AO
7865 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7866 else
9719ad41 7867 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6 7868 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7869 }
b49e97c9
TS
7870 }
7871
b34976b6 7872 return TRUE;
b49e97c9
TS
7873}
7874
b49e97c9 7875
64543e1a
RS
7876/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7877
7878static void
9719ad41 7879mips_set_isa_flags (bfd *abfd)
b49e97c9 7880{
64543e1a 7881 flagword val;
b49e97c9
TS
7882
7883 switch (bfd_get_mach (abfd))
7884 {
7885 default:
7886 case bfd_mach_mips3000:
7887 val = E_MIPS_ARCH_1;
7888 break;
7889
7890 case bfd_mach_mips3900:
7891 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7892 break;
7893
7894 case bfd_mach_mips6000:
7895 val = E_MIPS_ARCH_2;
7896 break;
7897
7898 case bfd_mach_mips4000:
7899 case bfd_mach_mips4300:
7900 case bfd_mach_mips4400:
7901 case bfd_mach_mips4600:
7902 val = E_MIPS_ARCH_3;
7903 break;
7904
7905 case bfd_mach_mips4010:
7906 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7907 break;
7908
7909 case bfd_mach_mips4100:
7910 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7911 break;
7912
7913 case bfd_mach_mips4111:
7914 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7915 break;
7916
00707a0e
RS
7917 case bfd_mach_mips4120:
7918 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7919 break;
7920
b49e97c9
TS
7921 case bfd_mach_mips4650:
7922 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7923 break;
7924
00707a0e
RS
7925 case bfd_mach_mips5400:
7926 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7927 break;
7928
7929 case bfd_mach_mips5500:
7930 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7931 break;
7932
0d2e43ed
ILT
7933 case bfd_mach_mips9000:
7934 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7935 break;
7936
b49e97c9 7937 case bfd_mach_mips5000:
5a7ea749 7938 case bfd_mach_mips7000:
b49e97c9
TS
7939 case bfd_mach_mips8000:
7940 case bfd_mach_mips10000:
7941 case bfd_mach_mips12000:
7942 val = E_MIPS_ARCH_4;
7943 break;
7944
7945 case bfd_mach_mips5:
7946 val = E_MIPS_ARCH_5;
7947 break;
7948
7949 case bfd_mach_mips_sb1:
7950 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7951 break;
7952
7953 case bfd_mach_mipsisa32:
7954 val = E_MIPS_ARCH_32;
7955 break;
7956
7957 case bfd_mach_mipsisa64:
7958 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7959 break;
7960
7961 case bfd_mach_mipsisa32r2:
7962 val = E_MIPS_ARCH_32R2;
7963 break;
5f74bc13
CD
7964
7965 case bfd_mach_mipsisa64r2:
7966 val = E_MIPS_ARCH_64R2;
7967 break;
b49e97c9 7968 }
b49e97c9
TS
7969 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7970 elf_elfheader (abfd)->e_flags |= val;
7971
64543e1a
RS
7972}
7973
7974
7975/* The final processing done just before writing out a MIPS ELF object
7976 file. This gets the MIPS architecture right based on the machine
7977 number. This is used by both the 32-bit and the 64-bit ABI. */
7978
7979void
9719ad41
RS
7980_bfd_mips_elf_final_write_processing (bfd *abfd,
7981 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
7982{
7983 unsigned int i;
7984 Elf_Internal_Shdr **hdrpp;
7985 const char *name;
7986 asection *sec;
7987
7988 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7989 is nonzero. This is for compatibility with old objects, which used
7990 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7991 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7992 mips_set_isa_flags (abfd);
7993
b49e97c9
TS
7994 /* Set the sh_info field for .gptab sections and other appropriate
7995 info for each special section. */
7996 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7997 i < elf_numsections (abfd);
7998 i++, hdrpp++)
7999 {
8000 switch ((*hdrpp)->sh_type)
8001 {
8002 case SHT_MIPS_MSYM:
8003 case SHT_MIPS_LIBLIST:
8004 sec = bfd_get_section_by_name (abfd, ".dynstr");
8005 if (sec != NULL)
8006 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8007 break;
8008
8009 case SHT_MIPS_GPTAB:
8010 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8011 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8012 BFD_ASSERT (name != NULL
8013 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
8014 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
8015 BFD_ASSERT (sec != NULL);
8016 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8017 break;
8018
8019 case SHT_MIPS_CONTENT:
8020 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8021 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8022 BFD_ASSERT (name != NULL
8023 && strncmp (name, ".MIPS.content",
8024 sizeof ".MIPS.content" - 1) == 0);
8025 sec = bfd_get_section_by_name (abfd,
8026 name + sizeof ".MIPS.content" - 1);
8027 BFD_ASSERT (sec != NULL);
8028 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8029 break;
8030
8031 case SHT_MIPS_SYMBOL_LIB:
8032 sec = bfd_get_section_by_name (abfd, ".dynsym");
8033 if (sec != NULL)
8034 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8035 sec = bfd_get_section_by_name (abfd, ".liblist");
8036 if (sec != NULL)
8037 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8038 break;
8039
8040 case SHT_MIPS_EVENTS:
8041 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8042 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8043 BFD_ASSERT (name != NULL);
8044 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
8045 sec = bfd_get_section_by_name (abfd,
8046 name + sizeof ".MIPS.events" - 1);
8047 else
8048 {
8049 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
8050 sizeof ".MIPS.post_rel" - 1) == 0);
8051 sec = bfd_get_section_by_name (abfd,
8052 (name
8053 + sizeof ".MIPS.post_rel" - 1));
8054 }
8055 BFD_ASSERT (sec != NULL);
8056 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8057 break;
8058
8059 }
8060 }
8061}
8062\f
8dc1a139 8063/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
8064 segments. */
8065
8066int
9719ad41 8067_bfd_mips_elf_additional_program_headers (bfd *abfd)
b49e97c9
TS
8068{
8069 asection *s;
8070 int ret = 0;
8071
8072 /* See if we need a PT_MIPS_REGINFO segment. */
8073 s = bfd_get_section_by_name (abfd, ".reginfo");
8074 if (s && (s->flags & SEC_LOAD))
8075 ++ret;
8076
8077 /* See if we need a PT_MIPS_OPTIONS segment. */
8078 if (IRIX_COMPAT (abfd) == ict_irix6
8079 && bfd_get_section_by_name (abfd,
8080 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
8081 ++ret;
8082
8083 /* See if we need a PT_MIPS_RTPROC segment. */
8084 if (IRIX_COMPAT (abfd) == ict_irix5
8085 && bfd_get_section_by_name (abfd, ".dynamic")
8086 && bfd_get_section_by_name (abfd, ".mdebug"))
8087 ++ret;
8088
8089 return ret;
8090}
8091
8dc1a139 8092/* Modify the segment map for an IRIX5 executable. */
b49e97c9 8093
b34976b6 8094bfd_boolean
9719ad41
RS
8095_bfd_mips_elf_modify_segment_map (bfd *abfd,
8096 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
8097{
8098 asection *s;
8099 struct elf_segment_map *m, **pm;
8100 bfd_size_type amt;
8101
8102 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
8103 segment. */
8104 s = bfd_get_section_by_name (abfd, ".reginfo");
8105 if (s != NULL && (s->flags & SEC_LOAD) != 0)
8106 {
8107 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
8108 if (m->p_type == PT_MIPS_REGINFO)
8109 break;
8110 if (m == NULL)
8111 {
8112 amt = sizeof *m;
9719ad41 8113 m = bfd_zalloc (abfd, amt);
b49e97c9 8114 if (m == NULL)
b34976b6 8115 return FALSE;
b49e97c9
TS
8116
8117 m->p_type = PT_MIPS_REGINFO;
8118 m->count = 1;
8119 m->sections[0] = s;
8120
8121 /* We want to put it after the PHDR and INTERP segments. */
8122 pm = &elf_tdata (abfd)->segment_map;
8123 while (*pm != NULL
8124 && ((*pm)->p_type == PT_PHDR
8125 || (*pm)->p_type == PT_INTERP))
8126 pm = &(*pm)->next;
8127
8128 m->next = *pm;
8129 *pm = m;
8130 }
8131 }
8132
8133 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
8134 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 8135 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 8136 table. */
c1fd6598
AO
8137 if (NEWABI_P (abfd)
8138 /* On non-IRIX6 new abi, we'll have already created a segment
8139 for this section, so don't create another. I'm not sure this
8140 is not also the case for IRIX 6, but I can't test it right
8141 now. */
8142 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
8143 {
8144 for (s = abfd->sections; s; s = s->next)
8145 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
8146 break;
8147
8148 if (s)
8149 {
8150 struct elf_segment_map *options_segment;
8151
98a8deaf
RS
8152 pm = &elf_tdata (abfd)->segment_map;
8153 while (*pm != NULL
8154 && ((*pm)->p_type == PT_PHDR
8155 || (*pm)->p_type == PT_INTERP))
8156 pm = &(*pm)->next;
b49e97c9
TS
8157
8158 amt = sizeof (struct elf_segment_map);
8159 options_segment = bfd_zalloc (abfd, amt);
8160 options_segment->next = *pm;
8161 options_segment->p_type = PT_MIPS_OPTIONS;
8162 options_segment->p_flags = PF_R;
b34976b6 8163 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
8164 options_segment->count = 1;
8165 options_segment->sections[0] = s;
8166 *pm = options_segment;
8167 }
8168 }
8169 else
8170 {
8171 if (IRIX_COMPAT (abfd) == ict_irix5)
8172 {
8173 /* If there are .dynamic and .mdebug sections, we make a room
8174 for the RTPROC header. FIXME: Rewrite without section names. */
8175 if (bfd_get_section_by_name (abfd, ".interp") == NULL
8176 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
8177 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
8178 {
8179 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
8180 if (m->p_type == PT_MIPS_RTPROC)
8181 break;
8182 if (m == NULL)
8183 {
8184 amt = sizeof *m;
9719ad41 8185 m = bfd_zalloc (abfd, amt);
b49e97c9 8186 if (m == NULL)
b34976b6 8187 return FALSE;
b49e97c9
TS
8188
8189 m->p_type = PT_MIPS_RTPROC;
8190
8191 s = bfd_get_section_by_name (abfd, ".rtproc");
8192 if (s == NULL)
8193 {
8194 m->count = 0;
8195 m->p_flags = 0;
8196 m->p_flags_valid = 1;
8197 }
8198 else
8199 {
8200 m->count = 1;
8201 m->sections[0] = s;
8202 }
8203
8204 /* We want to put it after the DYNAMIC segment. */
8205 pm = &elf_tdata (abfd)->segment_map;
8206 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
8207 pm = &(*pm)->next;
8208 if (*pm != NULL)
8209 pm = &(*pm)->next;
8210
8211 m->next = *pm;
8212 *pm = m;
8213 }
8214 }
8215 }
8dc1a139 8216 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
8217 .dynstr, .dynsym, and .hash sections, and everything in
8218 between. */
8219 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
8220 pm = &(*pm)->next)
8221 if ((*pm)->p_type == PT_DYNAMIC)
8222 break;
8223 m = *pm;
8224 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
8225 {
8226 /* For a normal mips executable the permissions for the PT_DYNAMIC
8227 segment are read, write and execute. We do that here since
8228 the code in elf.c sets only the read permission. This matters
8229 sometimes for the dynamic linker. */
8230 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
8231 {
8232 m->p_flags = PF_R | PF_W | PF_X;
8233 m->p_flags_valid = 1;
8234 }
8235 }
8236 if (m != NULL
8237 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
8238 {
8239 static const char *sec_names[] =
8240 {
8241 ".dynamic", ".dynstr", ".dynsym", ".hash"
8242 };
8243 bfd_vma low, high;
8244 unsigned int i, c;
8245 struct elf_segment_map *n;
8246
792b4a53 8247 low = ~(bfd_vma) 0;
b49e97c9
TS
8248 high = 0;
8249 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
8250 {
8251 s = bfd_get_section_by_name (abfd, sec_names[i]);
8252 if (s != NULL && (s->flags & SEC_LOAD) != 0)
8253 {
8254 bfd_size_type sz;
8255
8256 if (low > s->vma)
8257 low = s->vma;
eea6121a 8258 sz = s->size;
b49e97c9
TS
8259 if (high < s->vma + sz)
8260 high = s->vma + sz;
8261 }
8262 }
8263
8264 c = 0;
8265 for (s = abfd->sections; s != NULL; s = s->next)
8266 if ((s->flags & SEC_LOAD) != 0
8267 && s->vma >= low
eea6121a 8268 && s->vma + s->size <= high)
b49e97c9
TS
8269 ++c;
8270
8271 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 8272 n = bfd_zalloc (abfd, amt);
b49e97c9 8273 if (n == NULL)
b34976b6 8274 return FALSE;
b49e97c9
TS
8275 *n = *m;
8276 n->count = c;
8277
8278 i = 0;
8279 for (s = abfd->sections; s != NULL; s = s->next)
8280 {
8281 if ((s->flags & SEC_LOAD) != 0
8282 && s->vma >= low
eea6121a 8283 && s->vma + s->size <= high)
b49e97c9
TS
8284 {
8285 n->sections[i] = s;
8286 ++i;
8287 }
8288 }
8289
8290 *pm = n;
8291 }
8292 }
8293
b34976b6 8294 return TRUE;
b49e97c9
TS
8295}
8296\f
8297/* Return the section that should be marked against GC for a given
8298 relocation. */
8299
8300asection *
9719ad41
RS
8301_bfd_mips_elf_gc_mark_hook (asection *sec,
8302 struct bfd_link_info *info ATTRIBUTE_UNUSED,
8303 Elf_Internal_Rela *rel,
8304 struct elf_link_hash_entry *h,
8305 Elf_Internal_Sym *sym)
b49e97c9
TS
8306{
8307 /* ??? Do mips16 stub sections need to be handled special? */
8308
8309 if (h != NULL)
8310 {
1e2f5b6e 8311 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
8312 {
8313 case R_MIPS_GNU_VTINHERIT:
8314 case R_MIPS_GNU_VTENTRY:
8315 break;
8316
8317 default:
8318 switch (h->root.type)
8319 {
8320 case bfd_link_hash_defined:
8321 case bfd_link_hash_defweak:
8322 return h->root.u.def.section;
8323
8324 case bfd_link_hash_common:
8325 return h->root.u.c.p->section;
8326
8327 default:
8328 break;
8329 }
8330 }
8331 }
8332 else
1e2f5b6e 8333 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
8334
8335 return NULL;
8336}
8337
8338/* Update the got entry reference counts for the section being removed. */
8339
b34976b6 8340bfd_boolean
9719ad41
RS
8341_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
8342 struct bfd_link_info *info ATTRIBUTE_UNUSED,
8343 asection *sec ATTRIBUTE_UNUSED,
8344 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
8345{
8346#if 0
8347 Elf_Internal_Shdr *symtab_hdr;
8348 struct elf_link_hash_entry **sym_hashes;
8349 bfd_signed_vma *local_got_refcounts;
8350 const Elf_Internal_Rela *rel, *relend;
8351 unsigned long r_symndx;
8352 struct elf_link_hash_entry *h;
8353
8354 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8355 sym_hashes = elf_sym_hashes (abfd);
8356 local_got_refcounts = elf_local_got_refcounts (abfd);
8357
8358 relend = relocs + sec->reloc_count;
8359 for (rel = relocs; rel < relend; rel++)
8360 switch (ELF_R_TYPE (abfd, rel->r_info))
8361 {
8362 case R_MIPS_GOT16:
8363 case R_MIPS_CALL16:
8364 case R_MIPS_CALL_HI16:
8365 case R_MIPS_CALL_LO16:
8366 case R_MIPS_GOT_HI16:
8367 case R_MIPS_GOT_LO16:
4a14403c
TS
8368 case R_MIPS_GOT_DISP:
8369 case R_MIPS_GOT_PAGE:
8370 case R_MIPS_GOT_OFST:
b49e97c9
TS
8371 /* ??? It would seem that the existing MIPS code does no sort
8372 of reference counting or whatnot on its GOT and PLT entries,
8373 so it is not possible to garbage collect them at this time. */
8374 break;
8375
8376 default:
8377 break;
8378 }
8379#endif
8380
b34976b6 8381 return TRUE;
b49e97c9
TS
8382}
8383\f
8384/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8385 hiding the old indirect symbol. Process additional relocation
8386 information. Also called for weakdefs, in which case we just let
8387 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
8388
8389void
fcfa13d2 8390_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
8391 struct elf_link_hash_entry *dir,
8392 struct elf_link_hash_entry *ind)
b49e97c9
TS
8393{
8394 struct mips_elf_link_hash_entry *dirmips, *indmips;
8395
fcfa13d2 8396 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
8397
8398 if (ind->root.type != bfd_link_hash_indirect)
8399 return;
8400
8401 dirmips = (struct mips_elf_link_hash_entry *) dir;
8402 indmips = (struct mips_elf_link_hash_entry *) ind;
8403 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8404 if (indmips->readonly_reloc)
b34976b6 8405 dirmips->readonly_reloc = TRUE;
b49e97c9 8406 if (indmips->no_fn_stub)
b34976b6 8407 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
8408
8409 if (dirmips->tls_type == 0)
8410 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
8411}
8412
8413void
9719ad41
RS
8414_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
8415 struct elf_link_hash_entry *entry,
8416 bfd_boolean force_local)
b49e97c9
TS
8417{
8418 bfd *dynobj;
8419 asection *got;
8420 struct mips_got_info *g;
8421 struct mips_elf_link_hash_entry *h;
7c5fcef7 8422
b49e97c9 8423 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
8424 if (h->forced_local)
8425 return;
4b555070 8426 h->forced_local = force_local;
7c5fcef7 8427
b49e97c9 8428 dynobj = elf_hash_table (info)->dynobj;
8d1d654f
AM
8429 if (dynobj != NULL && force_local && h->root.type != STT_TLS
8430 && (got = mips_elf_got_section (dynobj, FALSE)) != NULL
8431 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 8432 {
c45a316a
AM
8433 if (g->next)
8434 {
8435 struct mips_got_entry e;
8436 struct mips_got_info *gg = g;
8437
8438 /* Since we're turning what used to be a global symbol into a
8439 local one, bump up the number of local entries of each GOT
8440 that had an entry for it. This will automatically decrease
8441 the number of global entries, since global_gotno is actually
8442 the upper limit of global entries. */
8443 e.abfd = dynobj;
8444 e.symndx = -1;
8445 e.d.h = h;
0f20cc35 8446 e.tls_type = 0;
c45a316a
AM
8447
8448 for (g = g->next; g != gg; g = g->next)
8449 if (htab_find (g->got_entries, &e))
8450 {
8451 BFD_ASSERT (g->global_gotno > 0);
8452 g->local_gotno++;
8453 g->global_gotno--;
8454 }
b49e97c9 8455
c45a316a
AM
8456 /* If this was a global symbol forced into the primary GOT, we
8457 no longer need an entry for it. We can't release the entry
8458 at this point, but we must at least stop counting it as one
8459 of the symbols that required a forced got entry. */
8460 if (h->root.got.offset == 2)
8461 {
8462 BFD_ASSERT (gg->assigned_gotno > 0);
8463 gg->assigned_gotno--;
8464 }
8465 }
8466 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
8467 /* If we haven't got through GOT allocation yet, just bump up the
8468 number of local entries, as this symbol won't be counted as
8469 global. */
8470 g->local_gotno++;
8471 else if (h->root.got.offset == 1)
f4416af6 8472 {
c45a316a
AM
8473 /* If we're past non-multi-GOT allocation and this symbol had
8474 been marked for a global got entry, give it a local entry
8475 instead. */
8476 BFD_ASSERT (g->global_gotno > 0);
8477 g->local_gotno++;
8478 g->global_gotno--;
f4416af6
AO
8479 }
8480 }
f4416af6
AO
8481
8482 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
8483}
8484\f
d01414a5
TS
8485#define PDR_SIZE 32
8486
b34976b6 8487bfd_boolean
9719ad41
RS
8488_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
8489 struct bfd_link_info *info)
d01414a5
TS
8490{
8491 asection *o;
b34976b6 8492 bfd_boolean ret = FALSE;
d01414a5
TS
8493 unsigned char *tdata;
8494 size_t i, skip;
8495
8496 o = bfd_get_section_by_name (abfd, ".pdr");
8497 if (! o)
b34976b6 8498 return FALSE;
eea6121a 8499 if (o->size == 0)
b34976b6 8500 return FALSE;
eea6121a 8501 if (o->size % PDR_SIZE != 0)
b34976b6 8502 return FALSE;
d01414a5
TS
8503 if (o->output_section != NULL
8504 && bfd_is_abs_section (o->output_section))
b34976b6 8505 return FALSE;
d01414a5 8506
eea6121a 8507 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 8508 if (! tdata)
b34976b6 8509 return FALSE;
d01414a5 8510
9719ad41 8511 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8512 info->keep_memory);
d01414a5
TS
8513 if (!cookie->rels)
8514 {
8515 free (tdata);
b34976b6 8516 return FALSE;
d01414a5
TS
8517 }
8518
8519 cookie->rel = cookie->rels;
8520 cookie->relend = cookie->rels + o->reloc_count;
8521
eea6121a 8522 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 8523 {
c152c796 8524 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
8525 {
8526 tdata[i] = 1;
8527 skip ++;
8528 }
8529 }
8530
8531 if (skip != 0)
8532 {
f0abc2a1 8533 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 8534 o->size -= skip * PDR_SIZE;
b34976b6 8535 ret = TRUE;
d01414a5
TS
8536 }
8537 else
8538 free (tdata);
8539
8540 if (! info->keep_memory)
8541 free (cookie->rels);
8542
8543 return ret;
8544}
8545
b34976b6 8546bfd_boolean
9719ad41 8547_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
8548{
8549 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
8550 return TRUE;
8551 return FALSE;
53bfd6b4 8552}
d01414a5 8553
b34976b6 8554bfd_boolean
9719ad41
RS
8555_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
8556 bfd_byte *contents)
d01414a5
TS
8557{
8558 bfd_byte *to, *from, *end;
8559 int i;
8560
8561 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 8562 return FALSE;
d01414a5 8563
f0abc2a1 8564 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 8565 return FALSE;
d01414a5
TS
8566
8567 to = contents;
eea6121a 8568 end = contents + sec->size;
d01414a5
TS
8569 for (from = contents, i = 0;
8570 from < end;
8571 from += PDR_SIZE, i++)
8572 {
f0abc2a1 8573 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
8574 continue;
8575 if (to != from)
8576 memcpy (to, from, PDR_SIZE);
8577 to += PDR_SIZE;
8578 }
8579 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 8580 sec->output_offset, sec->size);
b34976b6 8581 return TRUE;
d01414a5 8582}
53bfd6b4 8583\f
b49e97c9
TS
8584/* MIPS ELF uses a special find_nearest_line routine in order the
8585 handle the ECOFF debugging information. */
8586
8587struct mips_elf_find_line
8588{
8589 struct ecoff_debug_info d;
8590 struct ecoff_find_line i;
8591};
8592
b34976b6 8593bfd_boolean
9719ad41
RS
8594_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
8595 asymbol **symbols, bfd_vma offset,
8596 const char **filename_ptr,
8597 const char **functionname_ptr,
8598 unsigned int *line_ptr)
b49e97c9
TS
8599{
8600 asection *msec;
8601
8602 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
8603 filename_ptr, functionname_ptr,
8604 line_ptr))
b34976b6 8605 return TRUE;
b49e97c9
TS
8606
8607 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
8608 filename_ptr, functionname_ptr,
9719ad41 8609 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 8610 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 8611 return TRUE;
b49e97c9
TS
8612
8613 msec = bfd_get_section_by_name (abfd, ".mdebug");
8614 if (msec != NULL)
8615 {
8616 flagword origflags;
8617 struct mips_elf_find_line *fi;
8618 const struct ecoff_debug_swap * const swap =
8619 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8620
8621 /* If we are called during a link, mips_elf_final_link may have
8622 cleared the SEC_HAS_CONTENTS field. We force it back on here
8623 if appropriate (which it normally will be). */
8624 origflags = msec->flags;
8625 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
8626 msec->flags |= SEC_HAS_CONTENTS;
8627
8628 fi = elf_tdata (abfd)->find_line_info;
8629 if (fi == NULL)
8630 {
8631 bfd_size_type external_fdr_size;
8632 char *fraw_src;
8633 char *fraw_end;
8634 struct fdr *fdr_ptr;
8635 bfd_size_type amt = sizeof (struct mips_elf_find_line);
8636
9719ad41 8637 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
8638 if (fi == NULL)
8639 {
8640 msec->flags = origflags;
b34976b6 8641 return FALSE;
b49e97c9
TS
8642 }
8643
8644 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8645 {
8646 msec->flags = origflags;
b34976b6 8647 return FALSE;
b49e97c9
TS
8648 }
8649
8650 /* Swap in the FDR information. */
8651 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 8652 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
8653 if (fi->d.fdr == NULL)
8654 {
8655 msec->flags = origflags;
b34976b6 8656 return FALSE;
b49e97c9
TS
8657 }
8658 external_fdr_size = swap->external_fdr_size;
8659 fdr_ptr = fi->d.fdr;
8660 fraw_src = (char *) fi->d.external_fdr;
8661 fraw_end = (fraw_src
8662 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8663 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 8664 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
8665
8666 elf_tdata (abfd)->find_line_info = fi;
8667
8668 /* Note that we don't bother to ever free this information.
8669 find_nearest_line is either called all the time, as in
8670 objdump -l, so the information should be saved, or it is
8671 rarely called, as in ld error messages, so the memory
8672 wasted is unimportant. Still, it would probably be a
8673 good idea for free_cached_info to throw it away. */
8674 }
8675
8676 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8677 &fi->i, filename_ptr, functionname_ptr,
8678 line_ptr))
8679 {
8680 msec->flags = origflags;
b34976b6 8681 return TRUE;
b49e97c9
TS
8682 }
8683
8684 msec->flags = origflags;
8685 }
8686
8687 /* Fall back on the generic ELF find_nearest_line routine. */
8688
8689 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8690 filename_ptr, functionname_ptr,
8691 line_ptr);
8692}
4ab527b0
FF
8693
8694bfd_boolean
8695_bfd_mips_elf_find_inliner_info (bfd *abfd,
8696 const char **filename_ptr,
8697 const char **functionname_ptr,
8698 unsigned int *line_ptr)
8699{
8700 bfd_boolean found;
8701 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8702 functionname_ptr, line_ptr,
8703 & elf_tdata (abfd)->dwarf2_find_line_info);
8704 return found;
8705}
8706
b49e97c9
TS
8707\f
8708/* When are writing out the .options or .MIPS.options section,
8709 remember the bytes we are writing out, so that we can install the
8710 GP value in the section_processing routine. */
8711
b34976b6 8712bfd_boolean
9719ad41
RS
8713_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
8714 const void *location,
8715 file_ptr offset, bfd_size_type count)
b49e97c9 8716{
cc2e31b9 8717 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
8718 {
8719 bfd_byte *c;
8720
8721 if (elf_section_data (section) == NULL)
8722 {
8723 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 8724 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 8725 if (elf_section_data (section) == NULL)
b34976b6 8726 return FALSE;
b49e97c9 8727 }
f0abc2a1 8728 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
8729 if (c == NULL)
8730 {
eea6121a 8731 c = bfd_zalloc (abfd, section->size);
b49e97c9 8732 if (c == NULL)
b34976b6 8733 return FALSE;
f0abc2a1 8734 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
8735 }
8736
9719ad41 8737 memcpy (c + offset, location, count);
b49e97c9
TS
8738 }
8739
8740 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8741 count);
8742}
8743
8744/* This is almost identical to bfd_generic_get_... except that some
8745 MIPS relocations need to be handled specially. Sigh. */
8746
8747bfd_byte *
9719ad41
RS
8748_bfd_elf_mips_get_relocated_section_contents
8749 (bfd *abfd,
8750 struct bfd_link_info *link_info,
8751 struct bfd_link_order *link_order,
8752 bfd_byte *data,
8753 bfd_boolean relocatable,
8754 asymbol **symbols)
b49e97c9
TS
8755{
8756 /* Get enough memory to hold the stuff */
8757 bfd *input_bfd = link_order->u.indirect.section->owner;
8758 asection *input_section = link_order->u.indirect.section;
eea6121a 8759 bfd_size_type sz;
b49e97c9
TS
8760
8761 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8762 arelent **reloc_vector = NULL;
8763 long reloc_count;
8764
8765 if (reloc_size < 0)
8766 goto error_return;
8767
9719ad41 8768 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
8769 if (reloc_vector == NULL && reloc_size != 0)
8770 goto error_return;
8771
8772 /* read in the section */
eea6121a
AM
8773 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
8774 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
8775 goto error_return;
8776
b49e97c9
TS
8777 reloc_count = bfd_canonicalize_reloc (input_bfd,
8778 input_section,
8779 reloc_vector,
8780 symbols);
8781 if (reloc_count < 0)
8782 goto error_return;
8783
8784 if (reloc_count > 0)
8785 {
8786 arelent **parent;
8787 /* for mips */
8788 int gp_found;
8789 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8790
8791 {
8792 struct bfd_hash_entry *h;
8793 struct bfd_link_hash_entry *lh;
8794 /* Skip all this stuff if we aren't mixing formats. */
8795 if (abfd && input_bfd
8796 && abfd->xvec == input_bfd->xvec)
8797 lh = 0;
8798 else
8799 {
b34976b6 8800 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
8801 lh = (struct bfd_link_hash_entry *) h;
8802 }
8803 lookup:
8804 if (lh)
8805 {
8806 switch (lh->type)
8807 {
8808 case bfd_link_hash_undefined:
8809 case bfd_link_hash_undefweak:
8810 case bfd_link_hash_common:
8811 gp_found = 0;
8812 break;
8813 case bfd_link_hash_defined:
8814 case bfd_link_hash_defweak:
8815 gp_found = 1;
8816 gp = lh->u.def.value;
8817 break;
8818 case bfd_link_hash_indirect:
8819 case bfd_link_hash_warning:
8820 lh = lh->u.i.link;
8821 /* @@FIXME ignoring warning for now */
8822 goto lookup;
8823 case bfd_link_hash_new:
8824 default:
8825 abort ();
8826 }
8827 }
8828 else
8829 gp_found = 0;
8830 }
8831 /* end mips */
9719ad41 8832 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 8833 {
9719ad41 8834 char *error_message = NULL;
b49e97c9
TS
8835 bfd_reloc_status_type r;
8836
8837 /* Specific to MIPS: Deal with relocation types that require
8838 knowing the gp of the output bfd. */
8839 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 8840
8236346f
EC
8841 /* If we've managed to find the gp and have a special
8842 function for the relocation then go ahead, else default
8843 to the generic handling. */
8844 if (gp_found
8845 && (*parent)->howto->special_function
8846 == _bfd_mips_elf32_gprel16_reloc)
8847 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8848 input_section, relocatable,
8849 data, gp);
8850 else
8851 r = bfd_perform_relocation (input_bfd, *parent, data,
8852 input_section,
8853 relocatable ? abfd : NULL,
8854 &error_message);
b49e97c9 8855
1049f94e 8856 if (relocatable)
b49e97c9
TS
8857 {
8858 asection *os = input_section->output_section;
8859
8860 /* A partial link, so keep the relocs */
8861 os->orelocation[os->reloc_count] = *parent;
8862 os->reloc_count++;
8863 }
8864
8865 if (r != bfd_reloc_ok)
8866 {
8867 switch (r)
8868 {
8869 case bfd_reloc_undefined:
8870 if (!((*link_info->callbacks->undefined_symbol)
8871 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8872 input_bfd, input_section, (*parent)->address,
b34976b6 8873 TRUE)))
b49e97c9
TS
8874 goto error_return;
8875 break;
8876 case bfd_reloc_dangerous:
9719ad41 8877 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
8878 if (!((*link_info->callbacks->reloc_dangerous)
8879 (link_info, error_message, input_bfd, input_section,
8880 (*parent)->address)))
8881 goto error_return;
8882 break;
8883 case bfd_reloc_overflow:
8884 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
8885 (link_info, NULL,
8886 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
8887 (*parent)->howto->name, (*parent)->addend,
8888 input_bfd, input_section, (*parent)->address)))
8889 goto error_return;
8890 break;
8891 case bfd_reloc_outofrange:
8892 default:
8893 abort ();
8894 break;
8895 }
8896
8897 }
8898 }
8899 }
8900 if (reloc_vector != NULL)
8901 free (reloc_vector);
8902 return data;
8903
8904error_return:
8905 if (reloc_vector != NULL)
8906 free (reloc_vector);
8907 return NULL;
8908}
8909\f
8910/* Create a MIPS ELF linker hash table. */
8911
8912struct bfd_link_hash_table *
9719ad41 8913_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
8914{
8915 struct mips_elf_link_hash_table *ret;
8916 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8917
9719ad41
RS
8918 ret = bfd_malloc (amt);
8919 if (ret == NULL)
b49e97c9
TS
8920 return NULL;
8921
8922 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8923 mips_elf_link_hash_newfunc))
8924 {
e2d34d7d 8925 free (ret);
b49e97c9
TS
8926 return NULL;
8927 }
8928
8929#if 0
8930 /* We no longer use this. */
8931 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8932 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8933#endif
8934 ret->procedure_count = 0;
8935 ret->compact_rel_size = 0;
b34976b6 8936 ret->use_rld_obj_head = FALSE;
b49e97c9 8937 ret->rld_value = 0;
b34976b6 8938 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8939
8940 return &ret->root.root;
8941}
8942\f
8943/* We need to use a special link routine to handle the .reginfo and
8944 the .mdebug sections. We need to merge all instances of these
8945 sections together, not write them all out sequentially. */
8946
b34976b6 8947bfd_boolean
9719ad41 8948_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 8949{
b49e97c9
TS
8950 asection *o;
8951 struct bfd_link_order *p;
8952 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8953 asection *rtproc_sec;
8954 Elf32_RegInfo reginfo;
8955 struct ecoff_debug_info debug;
7a2a6943
NC
8956 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8957 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 8958 HDRR *symhdr = &debug.symbolic_header;
9719ad41 8959 void *mdebug_handle = NULL;
b49e97c9
TS
8960 asection *s;
8961 EXTR esym;
8962 unsigned int i;
8963 bfd_size_type amt;
8964
8965 static const char * const secname[] =
8966 {
8967 ".text", ".init", ".fini", ".data",
8968 ".rodata", ".sdata", ".sbss", ".bss"
8969 };
8970 static const int sc[] =
8971 {
8972 scText, scInit, scFini, scData,
8973 scRData, scSData, scSBss, scBss
8974 };
8975
b49e97c9
TS
8976 /* We'd carefully arranged the dynamic symbol indices, and then the
8977 generic size_dynamic_sections renumbered them out from under us.
8978 Rather than trying somehow to prevent the renumbering, just do
8979 the sort again. */
8980 if (elf_hash_table (info)->dynamic_sections_created)
8981 {
8982 bfd *dynobj;
8983 asection *got;
8984 struct mips_got_info *g;
7a2a6943 8985 bfd_size_type dynsecsymcount;
b49e97c9
TS
8986
8987 /* When we resort, we must tell mips_elf_sort_hash_table what
8988 the lowest index it may use is. That's the number of section
8989 symbols we're going to add. The generic ELF linker only
8990 adds these symbols when building a shared object. Note that
8991 we count the sections after (possibly) removing the .options
8992 section above. */
7a2a6943
NC
8993
8994 dynsecsymcount = 0;
8995 if (info->shared)
8996 {
8997 asection * p;
8998
8999 for (p = abfd->sections; p ; p = p->next)
9000 if ((p->flags & SEC_EXCLUDE) == 0
9001 && (p->flags & SEC_ALLOC) != 0
9002 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
9003 ++ dynsecsymcount;
9004 }
9005
9006 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 9007 return FALSE;
b49e97c9
TS
9008
9009 /* Make sure we didn't grow the global .got region. */
9010 dynobj = elf_hash_table (info)->dynobj;
f4416af6 9011 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 9012 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
9013
9014 if (g->global_gotsym != NULL)
9015 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
9016 - g->global_gotsym->dynindx)
9017 <= g->global_gotno);
9018 }
9019
b49e97c9
TS
9020 /* Get a value for the GP register. */
9021 if (elf_gp (abfd) == 0)
9022 {
9023 struct bfd_link_hash_entry *h;
9024
b34976b6 9025 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 9026 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
9027 elf_gp (abfd) = (h->u.def.value
9028 + h->u.def.section->output_section->vma
9029 + h->u.def.section->output_offset);
1049f94e 9030 else if (info->relocatable)
b49e97c9
TS
9031 {
9032 bfd_vma lo = MINUS_ONE;
9033
9034 /* Find the GP-relative section with the lowest offset. */
9719ad41 9035 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
9036 if (o->vma < lo
9037 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
9038 lo = o->vma;
9039
9040 /* And calculate GP relative to that. */
9041 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
9042 }
9043 else
9044 {
9045 /* If the relocate_section function needs to do a reloc
9046 involving the GP value, it should make a reloc_dangerous
9047 callback to warn that GP is not defined. */
9048 }
9049 }
9050
9051 /* Go through the sections and collect the .reginfo and .mdebug
9052 information. */
9053 reginfo_sec = NULL;
9054 mdebug_sec = NULL;
9055 gptab_data_sec = NULL;
9056 gptab_bss_sec = NULL;
9719ad41 9057 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
9058 {
9059 if (strcmp (o->name, ".reginfo") == 0)
9060 {
9061 memset (&reginfo, 0, sizeof reginfo);
9062
9063 /* We have found the .reginfo section in the output file.
9064 Look through all the link_orders comprising it and merge
9065 the information together. */
8423293d 9066 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9067 {
9068 asection *input_section;
9069 bfd *input_bfd;
9070 Elf32_External_RegInfo ext;
9071 Elf32_RegInfo sub;
9072
9073 if (p->type != bfd_indirect_link_order)
9074 {
9075 if (p->type == bfd_data_link_order)
9076 continue;
9077 abort ();
9078 }
9079
9080 input_section = p->u.indirect.section;
9081 input_bfd = input_section->owner;
9082
b49e97c9 9083 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 9084 &ext, 0, sizeof ext))
b34976b6 9085 return FALSE;
b49e97c9
TS
9086
9087 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
9088
9089 reginfo.ri_gprmask |= sub.ri_gprmask;
9090 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
9091 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
9092 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
9093 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
9094
9095 /* ri_gp_value is set by the function
9096 mips_elf32_section_processing when the section is
9097 finally written out. */
9098
9099 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9100 elf_link_input_bfd ignores this section. */
9101 input_section->flags &= ~SEC_HAS_CONTENTS;
9102 }
9103
9104 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 9105 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
9106
9107 /* Skip this section later on (I don't think this currently
9108 matters, but someday it might). */
8423293d 9109 o->map_head.link_order = NULL;
b49e97c9
TS
9110
9111 reginfo_sec = o;
9112 }
9113
9114 if (strcmp (o->name, ".mdebug") == 0)
9115 {
9116 struct extsym_info einfo;
9117 bfd_vma last;
9118
9119 /* We have found the .mdebug section in the output file.
9120 Look through all the link_orders comprising it and merge
9121 the information together. */
9122 symhdr->magic = swap->sym_magic;
9123 /* FIXME: What should the version stamp be? */
9124 symhdr->vstamp = 0;
9125 symhdr->ilineMax = 0;
9126 symhdr->cbLine = 0;
9127 symhdr->idnMax = 0;
9128 symhdr->ipdMax = 0;
9129 symhdr->isymMax = 0;
9130 symhdr->ioptMax = 0;
9131 symhdr->iauxMax = 0;
9132 symhdr->issMax = 0;
9133 symhdr->issExtMax = 0;
9134 symhdr->ifdMax = 0;
9135 symhdr->crfd = 0;
9136 symhdr->iextMax = 0;
9137
9138 /* We accumulate the debugging information itself in the
9139 debug_info structure. */
9140 debug.line = NULL;
9141 debug.external_dnr = NULL;
9142 debug.external_pdr = NULL;
9143 debug.external_sym = NULL;
9144 debug.external_opt = NULL;
9145 debug.external_aux = NULL;
9146 debug.ss = NULL;
9147 debug.ssext = debug.ssext_end = NULL;
9148 debug.external_fdr = NULL;
9149 debug.external_rfd = NULL;
9150 debug.external_ext = debug.external_ext_end = NULL;
9151
9152 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 9153 if (mdebug_handle == NULL)
b34976b6 9154 return FALSE;
b49e97c9
TS
9155
9156 esym.jmptbl = 0;
9157 esym.cobol_main = 0;
9158 esym.weakext = 0;
9159 esym.reserved = 0;
9160 esym.ifd = ifdNil;
9161 esym.asym.iss = issNil;
9162 esym.asym.st = stLocal;
9163 esym.asym.reserved = 0;
9164 esym.asym.index = indexNil;
9165 last = 0;
9166 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
9167 {
9168 esym.asym.sc = sc[i];
9169 s = bfd_get_section_by_name (abfd, secname[i]);
9170 if (s != NULL)
9171 {
9172 esym.asym.value = s->vma;
eea6121a 9173 last = s->vma + s->size;
b49e97c9
TS
9174 }
9175 else
9176 esym.asym.value = last;
9177 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
9178 secname[i], &esym))
b34976b6 9179 return FALSE;
b49e97c9
TS
9180 }
9181
8423293d 9182 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9183 {
9184 asection *input_section;
9185 bfd *input_bfd;
9186 const struct ecoff_debug_swap *input_swap;
9187 struct ecoff_debug_info input_debug;
9188 char *eraw_src;
9189 char *eraw_end;
9190
9191 if (p->type != bfd_indirect_link_order)
9192 {
9193 if (p->type == bfd_data_link_order)
9194 continue;
9195 abort ();
9196 }
9197
9198 input_section = p->u.indirect.section;
9199 input_bfd = input_section->owner;
9200
9201 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
9202 || (get_elf_backend_data (input_bfd)
9203 ->elf_backend_ecoff_debug_swap) == NULL)
9204 {
9205 /* I don't know what a non MIPS ELF bfd would be
9206 doing with a .mdebug section, but I don't really
9207 want to deal with it. */
9208 continue;
9209 }
9210
9211 input_swap = (get_elf_backend_data (input_bfd)
9212 ->elf_backend_ecoff_debug_swap);
9213
eea6121a 9214 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
9215
9216 /* The ECOFF linking code expects that we have already
9217 read in the debugging information and set up an
9218 ecoff_debug_info structure, so we do that now. */
9219 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
9220 &input_debug))
b34976b6 9221 return FALSE;
b49e97c9
TS
9222
9223 if (! (bfd_ecoff_debug_accumulate
9224 (mdebug_handle, abfd, &debug, swap, input_bfd,
9225 &input_debug, input_swap, info)))
b34976b6 9226 return FALSE;
b49e97c9
TS
9227
9228 /* Loop through the external symbols. For each one with
9229 interesting information, try to find the symbol in
9230 the linker global hash table and save the information
9231 for the output external symbols. */
9232 eraw_src = input_debug.external_ext;
9233 eraw_end = (eraw_src
9234 + (input_debug.symbolic_header.iextMax
9235 * input_swap->external_ext_size));
9236 for (;
9237 eraw_src < eraw_end;
9238 eraw_src += input_swap->external_ext_size)
9239 {
9240 EXTR ext;
9241 const char *name;
9242 struct mips_elf_link_hash_entry *h;
9243
9719ad41 9244 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
9245 if (ext.asym.sc == scNil
9246 || ext.asym.sc == scUndefined
9247 || ext.asym.sc == scSUndefined)
9248 continue;
9249
9250 name = input_debug.ssext + ext.asym.iss;
9251 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 9252 name, FALSE, FALSE, TRUE);
b49e97c9
TS
9253 if (h == NULL || h->esym.ifd != -2)
9254 continue;
9255
9256 if (ext.ifd != -1)
9257 {
9258 BFD_ASSERT (ext.ifd
9259 < input_debug.symbolic_header.ifdMax);
9260 ext.ifd = input_debug.ifdmap[ext.ifd];
9261 }
9262
9263 h->esym = ext;
9264 }
9265
9266 /* Free up the information we just read. */
9267 free (input_debug.line);
9268 free (input_debug.external_dnr);
9269 free (input_debug.external_pdr);
9270 free (input_debug.external_sym);
9271 free (input_debug.external_opt);
9272 free (input_debug.external_aux);
9273 free (input_debug.ss);
9274 free (input_debug.ssext);
9275 free (input_debug.external_fdr);
9276 free (input_debug.external_rfd);
9277 free (input_debug.external_ext);
9278
9279 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9280 elf_link_input_bfd ignores this section. */
9281 input_section->flags &= ~SEC_HAS_CONTENTS;
9282 }
9283
9284 if (SGI_COMPAT (abfd) && info->shared)
9285 {
9286 /* Create .rtproc section. */
9287 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9288 if (rtproc_sec == NULL)
9289 {
9290 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
9291 | SEC_LINKER_CREATED | SEC_READONLY);
9292
3496cb2a
L
9293 rtproc_sec = bfd_make_section_with_flags (abfd,
9294 ".rtproc",
9295 flags);
b49e97c9 9296 if (rtproc_sec == NULL
b49e97c9 9297 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 9298 return FALSE;
b49e97c9
TS
9299 }
9300
9301 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
9302 info, rtproc_sec,
9303 &debug))
b34976b6 9304 return FALSE;
b49e97c9
TS
9305 }
9306
9307 /* Build the external symbol information. */
9308 einfo.abfd = abfd;
9309 einfo.info = info;
9310 einfo.debug = &debug;
9311 einfo.swap = swap;
b34976b6 9312 einfo.failed = FALSE;
b49e97c9 9313 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 9314 mips_elf_output_extsym, &einfo);
b49e97c9 9315 if (einfo.failed)
b34976b6 9316 return FALSE;
b49e97c9
TS
9317
9318 /* Set the size of the .mdebug section. */
eea6121a 9319 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
9320
9321 /* Skip this section later on (I don't think this currently
9322 matters, but someday it might). */
8423293d 9323 o->map_head.link_order = NULL;
b49e97c9
TS
9324
9325 mdebug_sec = o;
9326 }
9327
9328 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
9329 {
9330 const char *subname;
9331 unsigned int c;
9332 Elf32_gptab *tab;
9333 Elf32_External_gptab *ext_tab;
9334 unsigned int j;
9335
9336 /* The .gptab.sdata and .gptab.sbss sections hold
9337 information describing how the small data area would
9338 change depending upon the -G switch. These sections
9339 not used in executables files. */
1049f94e 9340 if (! info->relocatable)
b49e97c9 9341 {
8423293d 9342 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9343 {
9344 asection *input_section;
9345
9346 if (p->type != bfd_indirect_link_order)
9347 {
9348 if (p->type == bfd_data_link_order)
9349 continue;
9350 abort ();
9351 }
9352
9353 input_section = p->u.indirect.section;
9354
9355 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9356 elf_link_input_bfd ignores this section. */
9357 input_section->flags &= ~SEC_HAS_CONTENTS;
9358 }
9359
9360 /* Skip this section later on (I don't think this
9361 currently matters, but someday it might). */
8423293d 9362 o->map_head.link_order = NULL;
b49e97c9
TS
9363
9364 /* Really remove the section. */
5daa8fe7 9365 bfd_section_list_remove (abfd, o);
b49e97c9
TS
9366 --abfd->section_count;
9367
9368 continue;
9369 }
9370
9371 /* There is one gptab for initialized data, and one for
9372 uninitialized data. */
9373 if (strcmp (o->name, ".gptab.sdata") == 0)
9374 gptab_data_sec = o;
9375 else if (strcmp (o->name, ".gptab.sbss") == 0)
9376 gptab_bss_sec = o;
9377 else
9378 {
9379 (*_bfd_error_handler)
9380 (_("%s: illegal section name `%s'"),
9381 bfd_get_filename (abfd), o->name);
9382 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 9383 return FALSE;
b49e97c9
TS
9384 }
9385
9386 /* The linker script always combines .gptab.data and
9387 .gptab.sdata into .gptab.sdata, and likewise for
9388 .gptab.bss and .gptab.sbss. It is possible that there is
9389 no .sdata or .sbss section in the output file, in which
9390 case we must change the name of the output section. */
9391 subname = o->name + sizeof ".gptab" - 1;
9392 if (bfd_get_section_by_name (abfd, subname) == NULL)
9393 {
9394 if (o == gptab_data_sec)
9395 o->name = ".gptab.data";
9396 else
9397 o->name = ".gptab.bss";
9398 subname = o->name + sizeof ".gptab" - 1;
9399 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
9400 }
9401
9402 /* Set up the first entry. */
9403 c = 1;
9404 amt = c * sizeof (Elf32_gptab);
9719ad41 9405 tab = bfd_malloc (amt);
b49e97c9 9406 if (tab == NULL)
b34976b6 9407 return FALSE;
b49e97c9
TS
9408 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
9409 tab[0].gt_header.gt_unused = 0;
9410
9411 /* Combine the input sections. */
8423293d 9412 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9413 {
9414 asection *input_section;
9415 bfd *input_bfd;
9416 bfd_size_type size;
9417 unsigned long last;
9418 bfd_size_type gpentry;
9419
9420 if (p->type != bfd_indirect_link_order)
9421 {
9422 if (p->type == bfd_data_link_order)
9423 continue;
9424 abort ();
9425 }
9426
9427 input_section = p->u.indirect.section;
9428 input_bfd = input_section->owner;
9429
9430 /* Combine the gptab entries for this input section one
9431 by one. We know that the input gptab entries are
9432 sorted by ascending -G value. */
eea6121a 9433 size = input_section->size;
b49e97c9
TS
9434 last = 0;
9435 for (gpentry = sizeof (Elf32_External_gptab);
9436 gpentry < size;
9437 gpentry += sizeof (Elf32_External_gptab))
9438 {
9439 Elf32_External_gptab ext_gptab;
9440 Elf32_gptab int_gptab;
9441 unsigned long val;
9442 unsigned long add;
b34976b6 9443 bfd_boolean exact;
b49e97c9
TS
9444 unsigned int look;
9445
9446 if (! (bfd_get_section_contents
9719ad41
RS
9447 (input_bfd, input_section, &ext_gptab, gpentry,
9448 sizeof (Elf32_External_gptab))))
b49e97c9
TS
9449 {
9450 free (tab);
b34976b6 9451 return FALSE;
b49e97c9
TS
9452 }
9453
9454 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
9455 &int_gptab);
9456 val = int_gptab.gt_entry.gt_g_value;
9457 add = int_gptab.gt_entry.gt_bytes - last;
9458
b34976b6 9459 exact = FALSE;
b49e97c9
TS
9460 for (look = 1; look < c; look++)
9461 {
9462 if (tab[look].gt_entry.gt_g_value >= val)
9463 tab[look].gt_entry.gt_bytes += add;
9464
9465 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 9466 exact = TRUE;
b49e97c9
TS
9467 }
9468
9469 if (! exact)
9470 {
9471 Elf32_gptab *new_tab;
9472 unsigned int max;
9473
9474 /* We need a new table entry. */
9475 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 9476 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
9477 if (new_tab == NULL)
9478 {
9479 free (tab);
b34976b6 9480 return FALSE;
b49e97c9
TS
9481 }
9482 tab = new_tab;
9483 tab[c].gt_entry.gt_g_value = val;
9484 tab[c].gt_entry.gt_bytes = add;
9485
9486 /* Merge in the size for the next smallest -G
9487 value, since that will be implied by this new
9488 value. */
9489 max = 0;
9490 for (look = 1; look < c; look++)
9491 {
9492 if (tab[look].gt_entry.gt_g_value < val
9493 && (max == 0
9494 || (tab[look].gt_entry.gt_g_value
9495 > tab[max].gt_entry.gt_g_value)))
9496 max = look;
9497 }
9498 if (max != 0)
9499 tab[c].gt_entry.gt_bytes +=
9500 tab[max].gt_entry.gt_bytes;
9501
9502 ++c;
9503 }
9504
9505 last = int_gptab.gt_entry.gt_bytes;
9506 }
9507
9508 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9509 elf_link_input_bfd ignores this section. */
9510 input_section->flags &= ~SEC_HAS_CONTENTS;
9511 }
9512
9513 /* The table must be sorted by -G value. */
9514 if (c > 2)
9515 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
9516
9517 /* Swap out the table. */
9518 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 9519 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
9520 if (ext_tab == NULL)
9521 {
9522 free (tab);
b34976b6 9523 return FALSE;
b49e97c9
TS
9524 }
9525
9526 for (j = 0; j < c; j++)
9527 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
9528 free (tab);
9529
eea6121a 9530 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
9531 o->contents = (bfd_byte *) ext_tab;
9532
9533 /* Skip this section later on (I don't think this currently
9534 matters, but someday it might). */
8423293d 9535 o->map_head.link_order = NULL;
b49e97c9
TS
9536 }
9537 }
9538
9539 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 9540 if (!bfd_elf_final_link (abfd, info))
b34976b6 9541 return FALSE;
b49e97c9
TS
9542
9543 /* Now write out the computed sections. */
9544
9719ad41 9545 if (reginfo_sec != NULL)
b49e97c9
TS
9546 {
9547 Elf32_External_RegInfo ext;
9548
9549 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 9550 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 9551 return FALSE;
b49e97c9
TS
9552 }
9553
9719ad41 9554 if (mdebug_sec != NULL)
b49e97c9
TS
9555 {
9556 BFD_ASSERT (abfd->output_has_begun);
9557 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
9558 swap, info,
9559 mdebug_sec->filepos))
b34976b6 9560 return FALSE;
b49e97c9
TS
9561
9562 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9563 }
9564
9719ad41 9565 if (gptab_data_sec != NULL)
b49e97c9
TS
9566 {
9567 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9568 gptab_data_sec->contents,
eea6121a 9569 0, gptab_data_sec->size))
b34976b6 9570 return FALSE;
b49e97c9
TS
9571 }
9572
9719ad41 9573 if (gptab_bss_sec != NULL)
b49e97c9
TS
9574 {
9575 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9576 gptab_bss_sec->contents,
eea6121a 9577 0, gptab_bss_sec->size))
b34976b6 9578 return FALSE;
b49e97c9
TS
9579 }
9580
9581 if (SGI_COMPAT (abfd))
9582 {
9583 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9584 if (rtproc_sec != NULL)
9585 {
9586 if (! bfd_set_section_contents (abfd, rtproc_sec,
9587 rtproc_sec->contents,
eea6121a 9588 0, rtproc_sec->size))
b34976b6 9589 return FALSE;
b49e97c9
TS
9590 }
9591 }
9592
b34976b6 9593 return TRUE;
b49e97c9
TS
9594}
9595\f
64543e1a
RS
9596/* Structure for saying that BFD machine EXTENSION extends BASE. */
9597
9598struct mips_mach_extension {
9599 unsigned long extension, base;
9600};
9601
9602
9603/* An array describing how BFD machines relate to one another. The entries
9604 are ordered topologically with MIPS I extensions listed last. */
9605
9606static const struct mips_mach_extension mips_mach_extensions[] = {
9607 /* MIPS64 extensions. */
5f74bc13 9608 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
9609 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9610
9611 /* MIPS V extensions. */
9612 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9613
9614 /* R10000 extensions. */
9615 { bfd_mach_mips12000, bfd_mach_mips10000 },
9616
9617 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9618 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9619 better to allow vr5400 and vr5500 code to be merged anyway, since
9620 many libraries will just use the core ISA. Perhaps we could add
9621 some sort of ASE flag if this ever proves a problem. */
9622 { bfd_mach_mips5500, bfd_mach_mips5400 },
9623 { bfd_mach_mips5400, bfd_mach_mips5000 },
9624
9625 /* MIPS IV extensions. */
9626 { bfd_mach_mips5, bfd_mach_mips8000 },
9627 { bfd_mach_mips10000, bfd_mach_mips8000 },
9628 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 9629 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 9630 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
9631
9632 /* VR4100 extensions. */
9633 { bfd_mach_mips4120, bfd_mach_mips4100 },
9634 { bfd_mach_mips4111, bfd_mach_mips4100 },
9635
9636 /* MIPS III extensions. */
9637 { bfd_mach_mips8000, bfd_mach_mips4000 },
9638 { bfd_mach_mips4650, bfd_mach_mips4000 },
9639 { bfd_mach_mips4600, bfd_mach_mips4000 },
9640 { bfd_mach_mips4400, bfd_mach_mips4000 },
9641 { bfd_mach_mips4300, bfd_mach_mips4000 },
9642 { bfd_mach_mips4100, bfd_mach_mips4000 },
9643 { bfd_mach_mips4010, bfd_mach_mips4000 },
9644
9645 /* MIPS32 extensions. */
9646 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9647
9648 /* MIPS II extensions. */
9649 { bfd_mach_mips4000, bfd_mach_mips6000 },
9650 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9651
9652 /* MIPS I extensions. */
9653 { bfd_mach_mips6000, bfd_mach_mips3000 },
9654 { bfd_mach_mips3900, bfd_mach_mips3000 }
9655};
9656
9657
9658/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9659
9660static bfd_boolean
9719ad41 9661mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
9662{
9663 size_t i;
9664
c5211a54
RS
9665 if (extension == base)
9666 return TRUE;
9667
9668 if (base == bfd_mach_mipsisa32
9669 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
9670 return TRUE;
9671
9672 if (base == bfd_mach_mipsisa32r2
9673 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
9674 return TRUE;
9675
9676 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 9677 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
9678 {
9679 extension = mips_mach_extensions[i].base;
9680 if (extension == base)
9681 return TRUE;
9682 }
64543e1a 9683
c5211a54 9684 return FALSE;
64543e1a
RS
9685}
9686
9687
9688/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 9689
b34976b6 9690static bfd_boolean
9719ad41 9691mips_32bit_flags_p (flagword flags)
00707a0e 9692{
64543e1a
RS
9693 return ((flags & EF_MIPS_32BITMODE) != 0
9694 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9695 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9696 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9697 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9698 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9699 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
9700}
9701
64543e1a 9702
b49e97c9
TS
9703/* Merge backend specific data from an object file to the output
9704 object file when linking. */
9705
b34976b6 9706bfd_boolean
9719ad41 9707_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
9708{
9709 flagword old_flags;
9710 flagword new_flags;
b34976b6
AM
9711 bfd_boolean ok;
9712 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
9713 asection *sec;
9714
9715 /* Check if we have the same endianess */
82e51918 9716 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
9717 {
9718 (*_bfd_error_handler)
d003868e
AM
9719 (_("%B: endianness incompatible with that of the selected emulation"),
9720 ibfd);
aa701218
AO
9721 return FALSE;
9722 }
b49e97c9
TS
9723
9724 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9725 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 9726 return TRUE;
b49e97c9 9727
aa701218
AO
9728 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9729 {
9730 (*_bfd_error_handler)
d003868e
AM
9731 (_("%B: ABI is incompatible with that of the selected emulation"),
9732 ibfd);
aa701218
AO
9733 return FALSE;
9734 }
9735
b49e97c9
TS
9736 new_flags = elf_elfheader (ibfd)->e_flags;
9737 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9738 old_flags = elf_elfheader (obfd)->e_flags;
9739
9740 if (! elf_flags_init (obfd))
9741 {
b34976b6 9742 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
9743 elf_elfheader (obfd)->e_flags = new_flags;
9744 elf_elfheader (obfd)->e_ident[EI_CLASS]
9745 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9746
9747 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9748 && bfd_get_arch_info (obfd)->the_default)
9749 {
9750 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9751 bfd_get_mach (ibfd)))
b34976b6 9752 return FALSE;
b49e97c9
TS
9753 }
9754
b34976b6 9755 return TRUE;
b49e97c9
TS
9756 }
9757
9758 /* Check flag compatibility. */
9759
9760 new_flags &= ~EF_MIPS_NOREORDER;
9761 old_flags &= ~EF_MIPS_NOREORDER;
9762
f4416af6
AO
9763 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9764 doesn't seem to matter. */
9765 new_flags &= ~EF_MIPS_XGOT;
9766 old_flags &= ~EF_MIPS_XGOT;
9767
98a8deaf
RS
9768 /* MIPSpro generates ucode info in n64 objects. Again, we should
9769 just be able to ignore this. */
9770 new_flags &= ~EF_MIPS_UCODE;
9771 old_flags &= ~EF_MIPS_UCODE;
9772
b49e97c9 9773 if (new_flags == old_flags)
b34976b6 9774 return TRUE;
b49e97c9
TS
9775
9776 /* Check to see if the input BFD actually contains any sections.
9777 If not, its flags may not have been initialised either, but it cannot
9778 actually cause any incompatibility. */
9779 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9780 {
9781 /* Ignore synthetic sections and empty .text, .data and .bss sections
9782 which are automatically generated by gas. */
9783 if (strcmp (sec->name, ".reginfo")
9784 && strcmp (sec->name, ".mdebug")
eea6121a 9785 && (sec->size != 0
d13d89fa
NS
9786 || (strcmp (sec->name, ".text")
9787 && strcmp (sec->name, ".data")
9788 && strcmp (sec->name, ".bss"))))
b49e97c9 9789 {
b34976b6 9790 null_input_bfd = FALSE;
b49e97c9
TS
9791 break;
9792 }
9793 }
9794 if (null_input_bfd)
b34976b6 9795 return TRUE;
b49e97c9 9796
b34976b6 9797 ok = TRUE;
b49e97c9 9798
143d77c5
EC
9799 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9800 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 9801 {
b49e97c9 9802 (*_bfd_error_handler)
d003868e
AM
9803 (_("%B: warning: linking PIC files with non-PIC files"),
9804 ibfd);
143d77c5 9805 ok = TRUE;
b49e97c9
TS
9806 }
9807
143d77c5
EC
9808 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9809 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9810 if (! (new_flags & EF_MIPS_PIC))
9811 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9812
9813 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9814 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 9815
64543e1a
RS
9816 /* Compare the ISAs. */
9817 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 9818 {
64543e1a 9819 (*_bfd_error_handler)
d003868e
AM
9820 (_("%B: linking 32-bit code with 64-bit code"),
9821 ibfd);
64543e1a
RS
9822 ok = FALSE;
9823 }
9824 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9825 {
9826 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9827 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 9828 {
64543e1a
RS
9829 /* Copy the architecture info from IBFD to OBFD. Also copy
9830 the 32-bit flag (if set) so that we continue to recognise
9831 OBFD as a 32-bit binary. */
9832 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9833 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9834 elf_elfheader (obfd)->e_flags
9835 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9836
9837 /* Copy across the ABI flags if OBFD doesn't use them
9838 and if that was what caused us to treat IBFD as 32-bit. */
9839 if ((old_flags & EF_MIPS_ABI) == 0
9840 && mips_32bit_flags_p (new_flags)
9841 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9842 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9843 }
9844 else
9845 {
64543e1a 9846 /* The ISAs aren't compatible. */
b49e97c9 9847 (*_bfd_error_handler)
d003868e
AM
9848 (_("%B: linking %s module with previous %s modules"),
9849 ibfd,
64543e1a
RS
9850 bfd_printable_name (ibfd),
9851 bfd_printable_name (obfd));
b34976b6 9852 ok = FALSE;
b49e97c9 9853 }
b49e97c9
TS
9854 }
9855
64543e1a
RS
9856 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9857 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9858
9859 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9860 does set EI_CLASS differently from any 32-bit ABI. */
9861 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9862 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9863 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9864 {
9865 /* Only error if both are set (to different values). */
9866 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9867 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9868 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9869 {
9870 (*_bfd_error_handler)
d003868e
AM
9871 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9872 ibfd,
b49e97c9
TS
9873 elf_mips_abi_name (ibfd),
9874 elf_mips_abi_name (obfd));
b34976b6 9875 ok = FALSE;
b49e97c9
TS
9876 }
9877 new_flags &= ~EF_MIPS_ABI;
9878 old_flags &= ~EF_MIPS_ABI;
9879 }
9880
fb39dac1
RS
9881 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9882 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9883 {
9884 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9885
9886 new_flags &= ~ EF_MIPS_ARCH_ASE;
9887 old_flags &= ~ EF_MIPS_ARCH_ASE;
9888 }
9889
b49e97c9
TS
9890 /* Warn about any other mismatches */
9891 if (new_flags != old_flags)
9892 {
9893 (*_bfd_error_handler)
d003868e
AM
9894 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9895 ibfd, (unsigned long) new_flags,
b49e97c9 9896 (unsigned long) old_flags);
b34976b6 9897 ok = FALSE;
b49e97c9
TS
9898 }
9899
9900 if (! ok)
9901 {
9902 bfd_set_error (bfd_error_bad_value);
b34976b6 9903 return FALSE;
b49e97c9
TS
9904 }
9905
b34976b6 9906 return TRUE;
b49e97c9
TS
9907}
9908
9909/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9910
b34976b6 9911bfd_boolean
9719ad41 9912_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
9913{
9914 BFD_ASSERT (!elf_flags_init (abfd)
9915 || elf_elfheader (abfd)->e_flags == flags);
9916
9917 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9918 elf_flags_init (abfd) = TRUE;
9919 return TRUE;
b49e97c9
TS
9920}
9921
b34976b6 9922bfd_boolean
9719ad41 9923_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 9924{
9719ad41 9925 FILE *file = ptr;
b49e97c9
TS
9926
9927 BFD_ASSERT (abfd != NULL && ptr != NULL);
9928
9929 /* Print normal ELF private data. */
9930 _bfd_elf_print_private_bfd_data (abfd, ptr);
9931
9932 /* xgettext:c-format */
9933 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9934
9935 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9936 fprintf (file, _(" [abi=O32]"));
9937 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9938 fprintf (file, _(" [abi=O64]"));
9939 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9940 fprintf (file, _(" [abi=EABI32]"));
9941 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9942 fprintf (file, _(" [abi=EABI64]"));
9943 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9944 fprintf (file, _(" [abi unknown]"));
9945 else if (ABI_N32_P (abfd))
9946 fprintf (file, _(" [abi=N32]"));
9947 else if (ABI_64_P (abfd))
9948 fprintf (file, _(" [abi=64]"));
9949 else
9950 fprintf (file, _(" [no abi set]"));
9951
9952 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9953 fprintf (file, _(" [mips1]"));
9954 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9955 fprintf (file, _(" [mips2]"));
9956 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9957 fprintf (file, _(" [mips3]"));
9958 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9959 fprintf (file, _(" [mips4]"));
9960 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9961 fprintf (file, _(" [mips5]"));
9962 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9963 fprintf (file, _(" [mips32]"));
9964 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9965 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9966 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9967 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
9968 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9969 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
9970 else
9971 fprintf (file, _(" [unknown ISA]"));
9972
40d32fc6
CD
9973 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9974 fprintf (file, _(" [mdmx]"));
9975
9976 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9977 fprintf (file, _(" [mips16]"));
9978
b49e97c9
TS
9979 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9980 fprintf (file, _(" [32bitmode]"));
9981 else
9982 fprintf (file, _(" [not 32bitmode]"));
9983
9984 fputc ('\n', file);
9985
b34976b6 9986 return TRUE;
b49e97c9 9987}
2f89ff8d 9988
b35d266b 9989const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 9990{
7dcb9820
AM
9991 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9992 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
7dcb9820 9993 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
551b43fd
AM
9994 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9995 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9996 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
7dcb9820 9997 { NULL, 0, 0, 0, 0 }
2f89ff8d 9998};
This page took 0.90014 seconds and 4 git commands to generate.