*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
77cfaee6 3 2003, 2004, 2005 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
3e110533 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
0f20cc35
DJ
67
68 /* The TLS types included in this GOT entry (specifically, GD and
69 IE). The GD and IE flags can be added as we encounter new
70 relocations. LDM can also be set; it will always be alone, not
71 combined with any GD or IE flags. An LDM GOT entry will be
72 a local symbol entry with r_symndx == 0. */
73 unsigned char tls_type;
74
b15e6682 75 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
76 corresponding to this symbol+addend. If it's a global symbol
77 whose offset is yet to be decided, it's going to be -1. */
78 long gotidx;
b15e6682
AO
79};
80
f0abc2a1 81/* This structure is used to hold .got information when linking. */
b49e97c9
TS
82
83struct mips_got_info
84{
85 /* The global symbol in the GOT with the lowest index in the dynamic
86 symbol table. */
87 struct elf_link_hash_entry *global_gotsym;
88 /* The number of global .got entries. */
89 unsigned int global_gotno;
0f20cc35
DJ
90 /* The number of .got slots used for TLS. */
91 unsigned int tls_gotno;
92 /* The first unused TLS .got entry. Used only during
93 mips_elf_initialize_tls_index. */
94 unsigned int tls_assigned_gotno;
b49e97c9
TS
95 /* The number of local .got entries. */
96 unsigned int local_gotno;
97 /* The number of local .got entries we have used. */
98 unsigned int assigned_gotno;
b15e6682
AO
99 /* A hash table holding members of the got. */
100 struct htab *got_entries;
f4416af6
AO
101 /* A hash table mapping input bfds to other mips_got_info. NULL
102 unless multi-got was necessary. */
103 struct htab *bfd2got;
104 /* In multi-got links, a pointer to the next got (err, rather, most
105 of the time, it points to the previous got). */
106 struct mips_got_info *next;
0f20cc35
DJ
107 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
108 for none, or MINUS_TWO for not yet assigned. This is needed
109 because a single-GOT link may have multiple hash table entries
110 for the LDM. It does not get initialized in multi-GOT mode. */
111 bfd_vma tls_ldm_offset;
f4416af6
AO
112};
113
114/* Map an input bfd to a got in a multi-got link. */
115
116struct mips_elf_bfd2got_hash {
117 bfd *bfd;
118 struct mips_got_info *g;
119};
120
121/* Structure passed when traversing the bfd2got hash table, used to
122 create and merge bfd's gots. */
123
124struct mips_elf_got_per_bfd_arg
125{
126 /* A hashtable that maps bfds to gots. */
127 htab_t bfd2got;
128 /* The output bfd. */
129 bfd *obfd;
130 /* The link information. */
131 struct bfd_link_info *info;
132 /* A pointer to the primary got, i.e., the one that's going to get
133 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
134 DT_MIPS_GOTSYM. */
135 struct mips_got_info *primary;
136 /* A non-primary got we're trying to merge with other input bfd's
137 gots. */
138 struct mips_got_info *current;
139 /* The maximum number of got entries that can be addressed with a
140 16-bit offset. */
141 unsigned int max_count;
142 /* The number of local and global entries in the primary got. */
143 unsigned int primary_count;
144 /* The number of local and global entries in the current got. */
145 unsigned int current_count;
0f20cc35
DJ
146 /* The total number of global entries which will live in the
147 primary got and be automatically relocated. This includes
148 those not referenced by the primary GOT but included in
149 the "master" GOT. */
150 unsigned int global_count;
f4416af6
AO
151};
152
153/* Another structure used to pass arguments for got entries traversal. */
154
155struct mips_elf_set_global_got_offset_arg
156{
157 struct mips_got_info *g;
158 int value;
159 unsigned int needed_relocs;
160 struct bfd_link_info *info;
b49e97c9
TS
161};
162
0f20cc35
DJ
163/* A structure used to count TLS relocations or GOT entries, for GOT
164 entry or ELF symbol table traversal. */
165
166struct mips_elf_count_tls_arg
167{
168 struct bfd_link_info *info;
169 unsigned int needed;
170};
171
f0abc2a1
AM
172struct _mips_elf_section_data
173{
174 struct bfd_elf_section_data elf;
175 union
176 {
177 struct mips_got_info *got_info;
178 bfd_byte *tdata;
179 } u;
180};
181
182#define mips_elf_section_data(sec) \
68bfbfcc 183 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 184
b49e97c9
TS
185/* This structure is passed to mips_elf_sort_hash_table_f when sorting
186 the dynamic symbols. */
187
188struct mips_elf_hash_sort_data
189{
190 /* The symbol in the global GOT with the lowest dynamic symbol table
191 index. */
192 struct elf_link_hash_entry *low;
0f20cc35
DJ
193 /* The least dynamic symbol table index corresponding to a non-TLS
194 symbol with a GOT entry. */
b49e97c9 195 long min_got_dynindx;
f4416af6
AO
196 /* The greatest dynamic symbol table index corresponding to a symbol
197 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 198 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 199 long max_unref_got_dynindx;
b49e97c9
TS
200 /* The greatest dynamic symbol table index not corresponding to a
201 symbol without a GOT entry. */
202 long max_non_got_dynindx;
203};
204
205/* The MIPS ELF linker needs additional information for each symbol in
206 the global hash table. */
207
208struct mips_elf_link_hash_entry
209{
210 struct elf_link_hash_entry root;
211
212 /* External symbol information. */
213 EXTR esym;
214
215 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
216 this symbol. */
217 unsigned int possibly_dynamic_relocs;
218
219 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
220 a readonly section. */
b34976b6 221 bfd_boolean readonly_reloc;
b49e97c9 222
b49e97c9
TS
223 /* We must not create a stub for a symbol that has relocations
224 related to taking the function's address, i.e. any but
225 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
226 p. 4-20. */
b34976b6 227 bfd_boolean no_fn_stub;
b49e97c9
TS
228
229 /* If there is a stub that 32 bit functions should use to call this
230 16 bit function, this points to the section containing the stub. */
231 asection *fn_stub;
232
233 /* Whether we need the fn_stub; this is set if this symbol appears
234 in any relocs other than a 16 bit call. */
b34976b6 235 bfd_boolean need_fn_stub;
b49e97c9
TS
236
237 /* If there is a stub that 16 bit functions should use to call this
238 32 bit function, this points to the section containing the stub. */
239 asection *call_stub;
240
241 /* This is like the call_stub field, but it is used if the function
242 being called returns a floating point value. */
243 asection *call_fp_stub;
7c5fcef7 244
a008ac03
DJ
245 /* Are we forced local? This will only be set if we have converted
246 the initial global GOT entry to a local GOT entry. */
b34976b6 247 bfd_boolean forced_local;
0f20cc35
DJ
248
249#define GOT_NORMAL 0
250#define GOT_TLS_GD 1
251#define GOT_TLS_LDM 2
252#define GOT_TLS_IE 4
253#define GOT_TLS_OFFSET_DONE 0x40
254#define GOT_TLS_DONE 0x80
255 unsigned char tls_type;
256 /* This is only used in single-GOT mode; in multi-GOT mode there
257 is one mips_got_entry per GOT entry, so the offset is stored
258 there. In single-GOT mode there may be many mips_got_entry
259 structures all referring to the same GOT slot. It might be
260 possible to use root.got.offset instead, but that field is
261 overloaded already. */
262 bfd_vma tls_got_offset;
b49e97c9
TS
263};
264
265/* MIPS ELF linker hash table. */
266
267struct mips_elf_link_hash_table
268{
269 struct elf_link_hash_table root;
270#if 0
271 /* We no longer use this. */
272 /* String section indices for the dynamic section symbols. */
273 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
274#endif
275 /* The number of .rtproc entries. */
276 bfd_size_type procedure_count;
277 /* The size of the .compact_rel section (if SGI_COMPAT). */
278 bfd_size_type compact_rel_size;
279 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 280 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 281 bfd_boolean use_rld_obj_head;
b49e97c9
TS
282 /* This is the value of the __rld_map or __rld_obj_head symbol. */
283 bfd_vma rld_value;
284 /* This is set if we see any mips16 stub sections. */
b34976b6 285 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
286};
287
0f20cc35
DJ
288#define TLS_RELOC_P(r_type) \
289 (r_type == R_MIPS_TLS_DTPMOD32 \
290 || r_type == R_MIPS_TLS_DTPMOD64 \
291 || r_type == R_MIPS_TLS_DTPREL32 \
292 || r_type == R_MIPS_TLS_DTPREL64 \
293 || r_type == R_MIPS_TLS_GD \
294 || r_type == R_MIPS_TLS_LDM \
295 || r_type == R_MIPS_TLS_DTPREL_HI16 \
296 || r_type == R_MIPS_TLS_DTPREL_LO16 \
297 || r_type == R_MIPS_TLS_GOTTPREL \
298 || r_type == R_MIPS_TLS_TPREL32 \
299 || r_type == R_MIPS_TLS_TPREL64 \
300 || r_type == R_MIPS_TLS_TPREL_HI16 \
301 || r_type == R_MIPS_TLS_TPREL_LO16)
302
b49e97c9
TS
303/* Structure used to pass information to mips_elf_output_extsym. */
304
305struct extsym_info
306{
9e4aeb93
RS
307 bfd *abfd;
308 struct bfd_link_info *info;
b49e97c9
TS
309 struct ecoff_debug_info *debug;
310 const struct ecoff_debug_swap *swap;
b34976b6 311 bfd_boolean failed;
b49e97c9
TS
312};
313
8dc1a139 314/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
315
316static const char * const mips_elf_dynsym_rtproc_names[] =
317{
318 "_procedure_table",
319 "_procedure_string_table",
320 "_procedure_table_size",
321 NULL
322};
323
324/* These structures are used to generate the .compact_rel section on
8dc1a139 325 IRIX5. */
b49e97c9
TS
326
327typedef struct
328{
329 unsigned long id1; /* Always one? */
330 unsigned long num; /* Number of compact relocation entries. */
331 unsigned long id2; /* Always two? */
332 unsigned long offset; /* The file offset of the first relocation. */
333 unsigned long reserved0; /* Zero? */
334 unsigned long reserved1; /* Zero? */
335} Elf32_compact_rel;
336
337typedef struct
338{
339 bfd_byte id1[4];
340 bfd_byte num[4];
341 bfd_byte id2[4];
342 bfd_byte offset[4];
343 bfd_byte reserved0[4];
344 bfd_byte reserved1[4];
345} Elf32_External_compact_rel;
346
347typedef struct
348{
349 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
350 unsigned int rtype : 4; /* Relocation types. See below. */
351 unsigned int dist2to : 8;
352 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
353 unsigned long konst; /* KONST field. See below. */
354 unsigned long vaddr; /* VADDR to be relocated. */
355} Elf32_crinfo;
356
357typedef struct
358{
359 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
360 unsigned int rtype : 4; /* Relocation types. See below. */
361 unsigned int dist2to : 8;
362 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
363 unsigned long konst; /* KONST field. See below. */
364} Elf32_crinfo2;
365
366typedef struct
367{
368 bfd_byte info[4];
369 bfd_byte konst[4];
370 bfd_byte vaddr[4];
371} Elf32_External_crinfo;
372
373typedef struct
374{
375 bfd_byte info[4];
376 bfd_byte konst[4];
377} Elf32_External_crinfo2;
378
379/* These are the constants used to swap the bitfields in a crinfo. */
380
381#define CRINFO_CTYPE (0x1)
382#define CRINFO_CTYPE_SH (31)
383#define CRINFO_RTYPE (0xf)
384#define CRINFO_RTYPE_SH (27)
385#define CRINFO_DIST2TO (0xff)
386#define CRINFO_DIST2TO_SH (19)
387#define CRINFO_RELVADDR (0x7ffff)
388#define CRINFO_RELVADDR_SH (0)
389
390/* A compact relocation info has long (3 words) or short (2 words)
391 formats. A short format doesn't have VADDR field and relvaddr
392 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
393#define CRF_MIPS_LONG 1
394#define CRF_MIPS_SHORT 0
395
396/* There are 4 types of compact relocation at least. The value KONST
397 has different meaning for each type:
398
399 (type) (konst)
400 CT_MIPS_REL32 Address in data
401 CT_MIPS_WORD Address in word (XXX)
402 CT_MIPS_GPHI_LO GP - vaddr
403 CT_MIPS_JMPAD Address to jump
404 */
405
406#define CRT_MIPS_REL32 0xa
407#define CRT_MIPS_WORD 0xb
408#define CRT_MIPS_GPHI_LO 0xc
409#define CRT_MIPS_JMPAD 0xd
410
411#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
412#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
413#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
414#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
415\f
416/* The structure of the runtime procedure descriptor created by the
417 loader for use by the static exception system. */
418
419typedef struct runtime_pdr {
ae9a127f
NC
420 bfd_vma adr; /* Memory address of start of procedure. */
421 long regmask; /* Save register mask. */
422 long regoffset; /* Save register offset. */
423 long fregmask; /* Save floating point register mask. */
424 long fregoffset; /* Save floating point register offset. */
425 long frameoffset; /* Frame size. */
426 short framereg; /* Frame pointer register. */
427 short pcreg; /* Offset or reg of return pc. */
428 long irpss; /* Index into the runtime string table. */
b49e97c9 429 long reserved;
ae9a127f 430 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
431} RPDR, *pRPDR;
432#define cbRPDR sizeof (RPDR)
433#define rpdNil ((pRPDR) 0)
434\f
b15e6682 435static struct mips_got_entry *mips_elf_create_local_got_entry
0f20cc35
DJ
436 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma, unsigned long,
437 struct mips_elf_link_hash_entry *, int);
b34976b6 438static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 439 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
440static bfd_vma mips_elf_high
441 (bfd_vma);
b34976b6 442static bfd_boolean mips_elf_stub_section_p
9719ad41 443 (bfd *, asection *);
b34976b6 444static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
445 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
446 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
447 bfd_vma *, asection *);
9719ad41
RS
448static hashval_t mips_elf_got_entry_hash
449 (const void *);
f4416af6 450static bfd_vma mips_elf_adjust_gp
9719ad41 451 (bfd *, struct mips_got_info *, bfd *);
f4416af6 452static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 453 (struct mips_got_info *, bfd *);
f4416af6 454
b49e97c9
TS
455/* This will be used when we sort the dynamic relocation records. */
456static bfd *reldyn_sorting_bfd;
457
458/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
459#define ABI_N32_P(abfd) \
460 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
461
4a14403c 462/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 463#define ABI_64_P(abfd) \
141ff970 464 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 465
4a14403c
TS
466/* Nonzero if ABFD is using NewABI conventions. */
467#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
468
469/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
470#define IRIX_COMPAT(abfd) \
471 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
472
b49e97c9
TS
473/* Whether we are trying to be compatible with IRIX at all. */
474#define SGI_COMPAT(abfd) \
475 (IRIX_COMPAT (abfd) != ict_none)
476
477/* The name of the options section. */
478#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 479 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 480
cc2e31b9
RS
481/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
482 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
483#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
484 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
485
b49e97c9 486/* The name of the stub section. */
ca07892d 487#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
488
489/* The size of an external REL relocation. */
490#define MIPS_ELF_REL_SIZE(abfd) \
491 (get_elf_backend_data (abfd)->s->sizeof_rel)
492
493/* The size of an external dynamic table entry. */
494#define MIPS_ELF_DYN_SIZE(abfd) \
495 (get_elf_backend_data (abfd)->s->sizeof_dyn)
496
497/* The size of a GOT entry. */
498#define MIPS_ELF_GOT_SIZE(abfd) \
499 (get_elf_backend_data (abfd)->s->arch_size / 8)
500
501/* The size of a symbol-table entry. */
502#define MIPS_ELF_SYM_SIZE(abfd) \
503 (get_elf_backend_data (abfd)->s->sizeof_sym)
504
505/* The default alignment for sections, as a power of two. */
506#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 507 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
508
509/* Get word-sized data. */
510#define MIPS_ELF_GET_WORD(abfd, ptr) \
511 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
512
513/* Put out word-sized data. */
514#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
515 (ABI_64_P (abfd) \
516 ? bfd_put_64 (abfd, val, ptr) \
517 : bfd_put_32 (abfd, val, ptr))
518
519/* Add a dynamic symbol table-entry. */
9719ad41 520#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 521 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
522
523#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
524 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
525
4ffba85c
AO
526/* Determine whether the internal relocation of index REL_IDX is REL
527 (zero) or RELA (non-zero). The assumption is that, if there are
528 two relocation sections for this section, one of them is REL and
529 the other is RELA. If the index of the relocation we're testing is
530 in range for the first relocation section, check that the external
531 relocation size is that for RELA. It is also assumed that, if
532 rel_idx is not in range for the first section, and this first
533 section contains REL relocs, then the relocation is in the second
534 section, that is RELA. */
535#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
536 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
537 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
538 > (bfd_vma)(rel_idx)) \
539 == (elf_section_data (sec)->rel_hdr.sh_entsize \
540 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
541 : sizeof (Elf32_External_Rela))))
542
b49e97c9
TS
543/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
544 from smaller values. Start with zero, widen, *then* decrement. */
545#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 546#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
547
548/* The number of local .got entries we reserve. */
549#define MIPS_RESERVED_GOTNO (2)
550
f4416af6
AO
551/* The offset of $gp from the beginning of the .got section. */
552#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
553
554/* The maximum size of the GOT for it to be addressable using 16-bit
555 offsets from $gp. */
556#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
557
6a691779 558/* Instructions which appear in a stub. */
b49e97c9 559#define STUB_LW(abfd) \
f4416af6
AO
560 ((ABI_64_P (abfd) \
561 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
562 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9 563#define STUB_MOVE(abfd) \
6a691779
TS
564 ((ABI_64_P (abfd) \
565 ? 0x03e0782d /* daddu t7,ra */ \
566 : 0x03e07821)) /* addu t7,ra */
567#define STUB_JALR 0x0320f809 /* jalr t9,ra */
b49e97c9 568#define STUB_LI16(abfd) \
6a691779
TS
569 ((ABI_64_P (abfd) \
570 ? 0x64180000 /* daddiu t8,zero,0 */ \
571 : 0x24180000)) /* addiu t8,zero,0 */
b49e97c9
TS
572#define MIPS_FUNCTION_STUB_SIZE (16)
573
574/* The name of the dynamic interpreter. This is put in the .interp
575 section. */
576
577#define ELF_DYNAMIC_INTERPRETER(abfd) \
578 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
579 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
580 : "/usr/lib/libc.so.1")
581
582#ifdef BFD64
ee6423ed
AO
583#define MNAME(bfd,pre,pos) \
584 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
585#define ELF_R_SYM(bfd, i) \
586 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
587#define ELF_R_TYPE(bfd, i) \
588 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
589#define ELF_R_INFO(bfd, s, t) \
590 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
591#else
ee6423ed 592#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
593#define ELF_R_SYM(bfd, i) \
594 (ELF32_R_SYM (i))
595#define ELF_R_TYPE(bfd, i) \
596 (ELF32_R_TYPE (i))
597#define ELF_R_INFO(bfd, s, t) \
598 (ELF32_R_INFO (s, t))
599#endif
600\f
601 /* The mips16 compiler uses a couple of special sections to handle
602 floating point arguments.
603
604 Section names that look like .mips16.fn.FNNAME contain stubs that
605 copy floating point arguments from the fp regs to the gp regs and
606 then jump to FNNAME. If any 32 bit function calls FNNAME, the
607 call should be redirected to the stub instead. If no 32 bit
608 function calls FNNAME, the stub should be discarded. We need to
609 consider any reference to the function, not just a call, because
610 if the address of the function is taken we will need the stub,
611 since the address might be passed to a 32 bit function.
612
613 Section names that look like .mips16.call.FNNAME contain stubs
614 that copy floating point arguments from the gp regs to the fp
615 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
616 then any 16 bit function that calls FNNAME should be redirected
617 to the stub instead. If FNNAME is not a 32 bit function, the
618 stub should be discarded.
619
620 .mips16.call.fp.FNNAME sections are similar, but contain stubs
621 which call FNNAME and then copy the return value from the fp regs
622 to the gp regs. These stubs store the return value in $18 while
623 calling FNNAME; any function which might call one of these stubs
624 must arrange to save $18 around the call. (This case is not
625 needed for 32 bit functions that call 16 bit functions, because
626 16 bit functions always return floating point values in both
627 $f0/$f1 and $2/$3.)
628
629 Note that in all cases FNNAME might be defined statically.
630 Therefore, FNNAME is not used literally. Instead, the relocation
631 information will indicate which symbol the section is for.
632
633 We record any stubs that we find in the symbol table. */
634
635#define FN_STUB ".mips16.fn."
636#define CALL_STUB ".mips16.call."
637#define CALL_FP_STUB ".mips16.call.fp."
638\f
639/* Look up an entry in a MIPS ELF linker hash table. */
640
641#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
642 ((struct mips_elf_link_hash_entry *) \
643 elf_link_hash_lookup (&(table)->root, (string), (create), \
644 (copy), (follow)))
645
646/* Traverse a MIPS ELF linker hash table. */
647
648#define mips_elf_link_hash_traverse(table, func, info) \
649 (elf_link_hash_traverse \
650 (&(table)->root, \
9719ad41 651 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
652 (info)))
653
654/* Get the MIPS ELF linker hash table from a link_info structure. */
655
656#define mips_elf_hash_table(p) \
657 ((struct mips_elf_link_hash_table *) ((p)->hash))
658
0f20cc35
DJ
659/* Find the base offsets for thread-local storage in this object,
660 for GD/LD and IE/LE respectively. */
661
662#define TP_OFFSET 0x7000
663#define DTP_OFFSET 0x8000
664
665static bfd_vma
666dtprel_base (struct bfd_link_info *info)
667{
668 /* If tls_sec is NULL, we should have signalled an error already. */
669 if (elf_hash_table (info)->tls_sec == NULL)
670 return 0;
671 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
672}
673
674static bfd_vma
675tprel_base (struct bfd_link_info *info)
676{
677 /* If tls_sec is NULL, we should have signalled an error already. */
678 if (elf_hash_table (info)->tls_sec == NULL)
679 return 0;
680 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
681}
682
b49e97c9
TS
683/* Create an entry in a MIPS ELF linker hash table. */
684
685static struct bfd_hash_entry *
9719ad41
RS
686mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
687 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
688{
689 struct mips_elf_link_hash_entry *ret =
690 (struct mips_elf_link_hash_entry *) entry;
691
692 /* Allocate the structure if it has not already been allocated by a
693 subclass. */
9719ad41
RS
694 if (ret == NULL)
695 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
696 if (ret == NULL)
b49e97c9
TS
697 return (struct bfd_hash_entry *) ret;
698
699 /* Call the allocation method of the superclass. */
700 ret = ((struct mips_elf_link_hash_entry *)
701 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
702 table, string));
9719ad41 703 if (ret != NULL)
b49e97c9
TS
704 {
705 /* Set local fields. */
706 memset (&ret->esym, 0, sizeof (EXTR));
707 /* We use -2 as a marker to indicate that the information has
708 not been set. -1 means there is no associated ifd. */
709 ret->esym.ifd = -2;
710 ret->possibly_dynamic_relocs = 0;
b34976b6 711 ret->readonly_reloc = FALSE;
b34976b6 712 ret->no_fn_stub = FALSE;
b49e97c9 713 ret->fn_stub = NULL;
b34976b6 714 ret->need_fn_stub = FALSE;
b49e97c9
TS
715 ret->call_stub = NULL;
716 ret->call_fp_stub = NULL;
b34976b6 717 ret->forced_local = FALSE;
0f20cc35 718 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
719 }
720
721 return (struct bfd_hash_entry *) ret;
722}
f0abc2a1
AM
723
724bfd_boolean
9719ad41 725_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1
AM
726{
727 struct _mips_elf_section_data *sdata;
728 bfd_size_type amt = sizeof (*sdata);
729
9719ad41 730 sdata = bfd_zalloc (abfd, amt);
f0abc2a1
AM
731 if (sdata == NULL)
732 return FALSE;
9719ad41 733 sec->used_by_bfd = sdata;
f0abc2a1
AM
734
735 return _bfd_elf_new_section_hook (abfd, sec);
736}
b49e97c9
TS
737\f
738/* Read ECOFF debugging information from a .mdebug section into a
739 ecoff_debug_info structure. */
740
b34976b6 741bfd_boolean
9719ad41
RS
742_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
743 struct ecoff_debug_info *debug)
b49e97c9
TS
744{
745 HDRR *symhdr;
746 const struct ecoff_debug_swap *swap;
9719ad41 747 char *ext_hdr;
b49e97c9
TS
748
749 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
750 memset (debug, 0, sizeof (*debug));
751
9719ad41 752 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
753 if (ext_hdr == NULL && swap->external_hdr_size != 0)
754 goto error_return;
755
9719ad41 756 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 757 swap->external_hdr_size))
b49e97c9
TS
758 goto error_return;
759
760 symhdr = &debug->symbolic_header;
761 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
762
763 /* The symbolic header contains absolute file offsets and sizes to
764 read. */
765#define READ(ptr, offset, count, size, type) \
766 if (symhdr->count == 0) \
767 debug->ptr = NULL; \
768 else \
769 { \
770 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 771 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
772 if (debug->ptr == NULL) \
773 goto error_return; \
9719ad41 774 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
775 || bfd_bread (debug->ptr, amt, abfd) != amt) \
776 goto error_return; \
777 }
778
779 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
780 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
781 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
782 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
783 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
784 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
785 union aux_ext *);
786 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
787 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
788 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
789 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
790 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
791#undef READ
792
793 debug->fdr = NULL;
b49e97c9 794
b34976b6 795 return TRUE;
b49e97c9
TS
796
797 error_return:
798 if (ext_hdr != NULL)
799 free (ext_hdr);
800 if (debug->line != NULL)
801 free (debug->line);
802 if (debug->external_dnr != NULL)
803 free (debug->external_dnr);
804 if (debug->external_pdr != NULL)
805 free (debug->external_pdr);
806 if (debug->external_sym != NULL)
807 free (debug->external_sym);
808 if (debug->external_opt != NULL)
809 free (debug->external_opt);
810 if (debug->external_aux != NULL)
811 free (debug->external_aux);
812 if (debug->ss != NULL)
813 free (debug->ss);
814 if (debug->ssext != NULL)
815 free (debug->ssext);
816 if (debug->external_fdr != NULL)
817 free (debug->external_fdr);
818 if (debug->external_rfd != NULL)
819 free (debug->external_rfd);
820 if (debug->external_ext != NULL)
821 free (debug->external_ext);
b34976b6 822 return FALSE;
b49e97c9
TS
823}
824\f
825/* Swap RPDR (runtime procedure table entry) for output. */
826
827static void
9719ad41 828ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
829{
830 H_PUT_S32 (abfd, in->adr, ex->p_adr);
831 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
832 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
833 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
834 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
835 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
836
837 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
838 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
839
840 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
841}
842
843/* Create a runtime procedure table from the .mdebug section. */
844
b34976b6 845static bfd_boolean
9719ad41
RS
846mips_elf_create_procedure_table (void *handle, bfd *abfd,
847 struct bfd_link_info *info, asection *s,
848 struct ecoff_debug_info *debug)
b49e97c9
TS
849{
850 const struct ecoff_debug_swap *swap;
851 HDRR *hdr = &debug->symbolic_header;
852 RPDR *rpdr, *rp;
853 struct rpdr_ext *erp;
9719ad41 854 void *rtproc;
b49e97c9
TS
855 struct pdr_ext *epdr;
856 struct sym_ext *esym;
857 char *ss, **sv;
858 char *str;
859 bfd_size_type size;
860 bfd_size_type count;
861 unsigned long sindex;
862 unsigned long i;
863 PDR pdr;
864 SYMR sym;
865 const char *no_name_func = _("static procedure (no name)");
866
867 epdr = NULL;
868 rpdr = NULL;
869 esym = NULL;
870 ss = NULL;
871 sv = NULL;
872
873 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
874
875 sindex = strlen (no_name_func) + 1;
876 count = hdr->ipdMax;
877 if (count > 0)
878 {
879 size = swap->external_pdr_size;
880
9719ad41 881 epdr = bfd_malloc (size * count);
b49e97c9
TS
882 if (epdr == NULL)
883 goto error_return;
884
9719ad41 885 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
886 goto error_return;
887
888 size = sizeof (RPDR);
9719ad41 889 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
890 if (rpdr == NULL)
891 goto error_return;
892
893 size = sizeof (char *);
9719ad41 894 sv = bfd_malloc (size * count);
b49e97c9
TS
895 if (sv == NULL)
896 goto error_return;
897
898 count = hdr->isymMax;
899 size = swap->external_sym_size;
9719ad41 900 esym = bfd_malloc (size * count);
b49e97c9
TS
901 if (esym == NULL)
902 goto error_return;
903
9719ad41 904 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
905 goto error_return;
906
907 count = hdr->issMax;
9719ad41 908 ss = bfd_malloc (count);
b49e97c9
TS
909 if (ss == NULL)
910 goto error_return;
f075ee0c 911 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
912 goto error_return;
913
914 count = hdr->ipdMax;
915 for (i = 0; i < (unsigned long) count; i++, rp++)
916 {
9719ad41
RS
917 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
918 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
919 rp->adr = sym.value;
920 rp->regmask = pdr.regmask;
921 rp->regoffset = pdr.regoffset;
922 rp->fregmask = pdr.fregmask;
923 rp->fregoffset = pdr.fregoffset;
924 rp->frameoffset = pdr.frameoffset;
925 rp->framereg = pdr.framereg;
926 rp->pcreg = pdr.pcreg;
927 rp->irpss = sindex;
928 sv[i] = ss + sym.iss;
929 sindex += strlen (sv[i]) + 1;
930 }
931 }
932
933 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
934 size = BFD_ALIGN (size, 16);
9719ad41 935 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
936 if (rtproc == NULL)
937 {
938 mips_elf_hash_table (info)->procedure_count = 0;
939 goto error_return;
940 }
941
942 mips_elf_hash_table (info)->procedure_count = count + 2;
943
9719ad41 944 erp = rtproc;
b49e97c9
TS
945 memset (erp, 0, sizeof (struct rpdr_ext));
946 erp++;
947 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
948 strcpy (str, no_name_func);
949 str += strlen (no_name_func) + 1;
950 for (i = 0; i < count; i++)
951 {
952 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
953 strcpy (str, sv[i]);
954 str += strlen (sv[i]) + 1;
955 }
956 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
957
958 /* Set the size and contents of .rtproc section. */
eea6121a 959 s->size = size;
9719ad41 960 s->contents = rtproc;
b49e97c9
TS
961
962 /* Skip this section later on (I don't think this currently
963 matters, but someday it might). */
8423293d 964 s->map_head.link_order = NULL;
b49e97c9
TS
965
966 if (epdr != NULL)
967 free (epdr);
968 if (rpdr != NULL)
969 free (rpdr);
970 if (esym != NULL)
971 free (esym);
972 if (ss != NULL)
973 free (ss);
974 if (sv != NULL)
975 free (sv);
976
b34976b6 977 return TRUE;
b49e97c9
TS
978
979 error_return:
980 if (epdr != NULL)
981 free (epdr);
982 if (rpdr != NULL)
983 free (rpdr);
984 if (esym != NULL)
985 free (esym);
986 if (ss != NULL)
987 free (ss);
988 if (sv != NULL)
989 free (sv);
b34976b6 990 return FALSE;
b49e97c9
TS
991}
992
993/* Check the mips16 stubs for a particular symbol, and see if we can
994 discard them. */
995
b34976b6 996static bfd_boolean
9719ad41
RS
997mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
998 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
999{
1000 if (h->root.root.type == bfd_link_hash_warning)
1001 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1002
1003 if (h->fn_stub != NULL
1004 && ! h->need_fn_stub)
1005 {
1006 /* We don't need the fn_stub; the only references to this symbol
1007 are 16 bit calls. Clobber the size to 0 to prevent it from
1008 being included in the link. */
eea6121a 1009 h->fn_stub->size = 0;
b49e97c9
TS
1010 h->fn_stub->flags &= ~SEC_RELOC;
1011 h->fn_stub->reloc_count = 0;
1012 h->fn_stub->flags |= SEC_EXCLUDE;
1013 }
1014
1015 if (h->call_stub != NULL
1016 && h->root.other == STO_MIPS16)
1017 {
1018 /* We don't need the call_stub; this is a 16 bit function, so
1019 calls from other 16 bit functions are OK. Clobber the size
1020 to 0 to prevent it from being included in the link. */
eea6121a 1021 h->call_stub->size = 0;
b49e97c9
TS
1022 h->call_stub->flags &= ~SEC_RELOC;
1023 h->call_stub->reloc_count = 0;
1024 h->call_stub->flags |= SEC_EXCLUDE;
1025 }
1026
1027 if (h->call_fp_stub != NULL
1028 && h->root.other == STO_MIPS16)
1029 {
1030 /* We don't need the call_stub; this is a 16 bit function, so
1031 calls from other 16 bit functions are OK. Clobber the size
1032 to 0 to prevent it from being included in the link. */
eea6121a 1033 h->call_fp_stub->size = 0;
b49e97c9
TS
1034 h->call_fp_stub->flags &= ~SEC_RELOC;
1035 h->call_fp_stub->reloc_count = 0;
1036 h->call_fp_stub->flags |= SEC_EXCLUDE;
1037 }
1038
b34976b6 1039 return TRUE;
b49e97c9
TS
1040}
1041\f
d6f16593
MR
1042/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1043 Most mips16 instructions are 16 bits, but these instructions
1044 are 32 bits.
1045
1046 The format of these instructions is:
1047
1048 +--------------+--------------------------------+
1049 | JALX | X| Imm 20:16 | Imm 25:21 |
1050 +--------------+--------------------------------+
1051 | Immediate 15:0 |
1052 +-----------------------------------------------+
1053
1054 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1055 Note that the immediate value in the first word is swapped.
1056
1057 When producing a relocatable object file, R_MIPS16_26 is
1058 handled mostly like R_MIPS_26. In particular, the addend is
1059 stored as a straight 26-bit value in a 32-bit instruction.
1060 (gas makes life simpler for itself by never adjusting a
1061 R_MIPS16_26 reloc to be against a section, so the addend is
1062 always zero). However, the 32 bit instruction is stored as 2
1063 16-bit values, rather than a single 32-bit value. In a
1064 big-endian file, the result is the same; in a little-endian
1065 file, the two 16-bit halves of the 32 bit value are swapped.
1066 This is so that a disassembler can recognize the jal
1067 instruction.
1068
1069 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1070 instruction stored as two 16-bit values. The addend A is the
1071 contents of the targ26 field. The calculation is the same as
1072 R_MIPS_26. When storing the calculated value, reorder the
1073 immediate value as shown above, and don't forget to store the
1074 value as two 16-bit values.
1075
1076 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1077 defined as
1078
1079 big-endian:
1080 +--------+----------------------+
1081 | | |
1082 | | targ26-16 |
1083 |31 26|25 0|
1084 +--------+----------------------+
1085
1086 little-endian:
1087 +----------+------+-------------+
1088 | | | |
1089 | sub1 | | sub2 |
1090 |0 9|10 15|16 31|
1091 +----------+--------------------+
1092 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1093 ((sub1 << 16) | sub2)).
1094
1095 When producing a relocatable object file, the calculation is
1096 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1097 When producing a fully linked file, the calculation is
1098 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1099 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1100
1101 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1102 mode. A typical instruction will have a format like this:
1103
1104 +--------------+--------------------------------+
1105 | EXTEND | Imm 10:5 | Imm 15:11 |
1106 +--------------+--------------------------------+
1107 | Major | rx | ry | Imm 4:0 |
1108 +--------------+--------------------------------+
1109
1110 EXTEND is the five bit value 11110. Major is the instruction
1111 opcode.
1112
1113 This is handled exactly like R_MIPS_GPREL16, except that the
1114 addend is retrieved and stored as shown in this diagram; that
1115 is, the Imm fields above replace the V-rel16 field.
1116
1117 All we need to do here is shuffle the bits appropriately. As
1118 above, the two 16-bit halves must be swapped on a
1119 little-endian system.
1120
1121 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1122 access data when neither GP-relative nor PC-relative addressing
1123 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1124 except that the addend is retrieved and stored as shown above
1125 for R_MIPS16_GPREL.
1126 */
1127void
1128_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1129 bfd_boolean jal_shuffle, bfd_byte *data)
1130{
1131 bfd_vma extend, insn, val;
1132
1133 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1134 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1135 return;
1136
1137 /* Pick up the mips16 extend instruction and the real instruction. */
1138 extend = bfd_get_16 (abfd, data);
1139 insn = bfd_get_16 (abfd, data + 2);
1140 if (r_type == R_MIPS16_26)
1141 {
1142 if (jal_shuffle)
1143 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1144 | ((extend & 0x1f) << 21) | insn;
1145 else
1146 val = extend << 16 | insn;
1147 }
1148 else
1149 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1150 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1151 bfd_put_32 (abfd, val, data);
1152}
1153
1154void
1155_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1156 bfd_boolean jal_shuffle, bfd_byte *data)
1157{
1158 bfd_vma extend, insn, val;
1159
1160 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1161 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1162 return;
1163
1164 val = bfd_get_32 (abfd, data);
1165 if (r_type == R_MIPS16_26)
1166 {
1167 if (jal_shuffle)
1168 {
1169 insn = val & 0xffff;
1170 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1171 | ((val >> 21) & 0x1f);
1172 }
1173 else
1174 {
1175 insn = val & 0xffff;
1176 extend = val >> 16;
1177 }
1178 }
1179 else
1180 {
1181 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1182 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1183 }
1184 bfd_put_16 (abfd, insn, data + 2);
1185 bfd_put_16 (abfd, extend, data);
1186}
1187
b49e97c9 1188bfd_reloc_status_type
9719ad41
RS
1189_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1190 arelent *reloc_entry, asection *input_section,
1191 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1192{
1193 bfd_vma relocation;
a7ebbfdf 1194 bfd_signed_vma val;
30ac9238 1195 bfd_reloc_status_type status;
b49e97c9
TS
1196
1197 if (bfd_is_com_section (symbol->section))
1198 relocation = 0;
1199 else
1200 relocation = symbol->value;
1201
1202 relocation += symbol->section->output_section->vma;
1203 relocation += symbol->section->output_offset;
1204
07515404 1205 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1206 return bfd_reloc_outofrange;
1207
b49e97c9 1208 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1209 val = reloc_entry->addend;
1210
30ac9238 1211 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1212
b49e97c9 1213 /* Adjust val for the final section location and GP value. If we
1049f94e 1214 are producing relocatable output, we don't want to do this for
b49e97c9 1215 an external symbol. */
1049f94e 1216 if (! relocatable
b49e97c9
TS
1217 || (symbol->flags & BSF_SECTION_SYM) != 0)
1218 val += relocation - gp;
1219
a7ebbfdf
TS
1220 if (reloc_entry->howto->partial_inplace)
1221 {
30ac9238
RS
1222 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1223 (bfd_byte *) data
1224 + reloc_entry->address);
1225 if (status != bfd_reloc_ok)
1226 return status;
a7ebbfdf
TS
1227 }
1228 else
1229 reloc_entry->addend = val;
b49e97c9 1230
1049f94e 1231 if (relocatable)
b49e97c9 1232 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1233
1234 return bfd_reloc_ok;
1235}
1236
1237/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1238 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1239 that contains the relocation field and DATA points to the start of
1240 INPUT_SECTION. */
1241
1242struct mips_hi16
1243{
1244 struct mips_hi16 *next;
1245 bfd_byte *data;
1246 asection *input_section;
1247 arelent rel;
1248};
1249
1250/* FIXME: This should not be a static variable. */
1251
1252static struct mips_hi16 *mips_hi16_list;
1253
1254/* A howto special_function for REL *HI16 relocations. We can only
1255 calculate the correct value once we've seen the partnering
1256 *LO16 relocation, so just save the information for later.
1257
1258 The ABI requires that the *LO16 immediately follow the *HI16.
1259 However, as a GNU extension, we permit an arbitrary number of
1260 *HI16s to be associated with a single *LO16. This significantly
1261 simplies the relocation handling in gcc. */
1262
1263bfd_reloc_status_type
1264_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1265 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1266 asection *input_section, bfd *output_bfd,
1267 char **error_message ATTRIBUTE_UNUSED)
1268{
1269 struct mips_hi16 *n;
1270
07515404 1271 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1272 return bfd_reloc_outofrange;
1273
1274 n = bfd_malloc (sizeof *n);
1275 if (n == NULL)
1276 return bfd_reloc_outofrange;
1277
1278 n->next = mips_hi16_list;
1279 n->data = data;
1280 n->input_section = input_section;
1281 n->rel = *reloc_entry;
1282 mips_hi16_list = n;
1283
1284 if (output_bfd != NULL)
1285 reloc_entry->address += input_section->output_offset;
1286
1287 return bfd_reloc_ok;
1288}
1289
1290/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1291 like any other 16-bit relocation when applied to global symbols, but is
1292 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1293
1294bfd_reloc_status_type
1295_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1296 void *data, asection *input_section,
1297 bfd *output_bfd, char **error_message)
1298{
1299 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1300 || bfd_is_und_section (bfd_get_section (symbol))
1301 || bfd_is_com_section (bfd_get_section (symbol)))
1302 /* The relocation is against a global symbol. */
1303 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1304 input_section, output_bfd,
1305 error_message);
1306
1307 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1308 input_section, output_bfd, error_message);
1309}
1310
1311/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1312 is a straightforward 16 bit inplace relocation, but we must deal with
1313 any partnering high-part relocations as well. */
1314
1315bfd_reloc_status_type
1316_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1317 void *data, asection *input_section,
1318 bfd *output_bfd, char **error_message)
1319{
1320 bfd_vma vallo;
d6f16593 1321 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1322
07515404 1323 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1324 return bfd_reloc_outofrange;
1325
d6f16593
MR
1326 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1327 location);
1328 vallo = bfd_get_32 (abfd, location);
1329 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1330 location);
1331
30ac9238
RS
1332 while (mips_hi16_list != NULL)
1333 {
1334 bfd_reloc_status_type ret;
1335 struct mips_hi16 *hi;
1336
1337 hi = mips_hi16_list;
1338
1339 /* R_MIPS_GOT16 relocations are something of a special case. We
1340 want to install the addend in the same way as for a R_MIPS_HI16
1341 relocation (with a rightshift of 16). However, since GOT16
1342 relocations can also be used with global symbols, their howto
1343 has a rightshift of 0. */
1344 if (hi->rel.howto->type == R_MIPS_GOT16)
1345 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1346
1347 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1348 carry or borrow will induce a change of +1 or -1 in the high part. */
1349 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1350
30ac9238
RS
1351 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1352 hi->input_section, output_bfd,
1353 error_message);
1354 if (ret != bfd_reloc_ok)
1355 return ret;
1356
1357 mips_hi16_list = hi->next;
1358 free (hi);
1359 }
1360
1361 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1362 input_section, output_bfd,
1363 error_message);
1364}
1365
1366/* A generic howto special_function. This calculates and installs the
1367 relocation itself, thus avoiding the oft-discussed problems in
1368 bfd_perform_relocation and bfd_install_relocation. */
1369
1370bfd_reloc_status_type
1371_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1372 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1373 asection *input_section, bfd *output_bfd,
1374 char **error_message ATTRIBUTE_UNUSED)
1375{
1376 bfd_signed_vma val;
1377 bfd_reloc_status_type status;
1378 bfd_boolean relocatable;
1379
1380 relocatable = (output_bfd != NULL);
1381
07515404 1382 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1383 return bfd_reloc_outofrange;
1384
1385 /* Build up the field adjustment in VAL. */
1386 val = 0;
1387 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1388 {
1389 /* Either we're calculating the final field value or we have a
1390 relocation against a section symbol. Add in the section's
1391 offset or address. */
1392 val += symbol->section->output_section->vma;
1393 val += symbol->section->output_offset;
1394 }
1395
1396 if (!relocatable)
1397 {
1398 /* We're calculating the final field value. Add in the symbol's value
1399 and, if pc-relative, subtract the address of the field itself. */
1400 val += symbol->value;
1401 if (reloc_entry->howto->pc_relative)
1402 {
1403 val -= input_section->output_section->vma;
1404 val -= input_section->output_offset;
1405 val -= reloc_entry->address;
1406 }
1407 }
1408
1409 /* VAL is now the final adjustment. If we're keeping this relocation
1410 in the output file, and if the relocation uses a separate addend,
1411 we just need to add VAL to that addend. Otherwise we need to add
1412 VAL to the relocation field itself. */
1413 if (relocatable && !reloc_entry->howto->partial_inplace)
1414 reloc_entry->addend += val;
1415 else
1416 {
d6f16593
MR
1417 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1418
30ac9238
RS
1419 /* Add in the separate addend, if any. */
1420 val += reloc_entry->addend;
1421
1422 /* Add VAL to the relocation field. */
d6f16593
MR
1423 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1424 location);
30ac9238 1425 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1426 location);
1427 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1428 location);
1429
30ac9238
RS
1430 if (status != bfd_reloc_ok)
1431 return status;
1432 }
1433
1434 if (relocatable)
1435 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1436
1437 return bfd_reloc_ok;
1438}
1439\f
1440/* Swap an entry in a .gptab section. Note that these routines rely
1441 on the equivalence of the two elements of the union. */
1442
1443static void
9719ad41
RS
1444bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1445 Elf32_gptab *in)
b49e97c9
TS
1446{
1447 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1448 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1449}
1450
1451static void
9719ad41
RS
1452bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1453 Elf32_External_gptab *ex)
b49e97c9
TS
1454{
1455 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1456 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1457}
1458
1459static void
9719ad41
RS
1460bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1461 Elf32_External_compact_rel *ex)
b49e97c9
TS
1462{
1463 H_PUT_32 (abfd, in->id1, ex->id1);
1464 H_PUT_32 (abfd, in->num, ex->num);
1465 H_PUT_32 (abfd, in->id2, ex->id2);
1466 H_PUT_32 (abfd, in->offset, ex->offset);
1467 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1468 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1469}
1470
1471static void
9719ad41
RS
1472bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1473 Elf32_External_crinfo *ex)
b49e97c9
TS
1474{
1475 unsigned long l;
1476
1477 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1478 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1479 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1480 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1481 H_PUT_32 (abfd, l, ex->info);
1482 H_PUT_32 (abfd, in->konst, ex->konst);
1483 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1484}
b49e97c9
TS
1485\f
1486/* A .reginfo section holds a single Elf32_RegInfo structure. These
1487 routines swap this structure in and out. They are used outside of
1488 BFD, so they are globally visible. */
1489
1490void
9719ad41
RS
1491bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1492 Elf32_RegInfo *in)
b49e97c9
TS
1493{
1494 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1495 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1496 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1497 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1498 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1499 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1500}
1501
1502void
9719ad41
RS
1503bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1504 Elf32_External_RegInfo *ex)
b49e97c9
TS
1505{
1506 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1507 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1508 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1509 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1510 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1511 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1512}
1513
1514/* In the 64 bit ABI, the .MIPS.options section holds register
1515 information in an Elf64_Reginfo structure. These routines swap
1516 them in and out. They are globally visible because they are used
1517 outside of BFD. These routines are here so that gas can call them
1518 without worrying about whether the 64 bit ABI has been included. */
1519
1520void
9719ad41
RS
1521bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1522 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1523{
1524 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1525 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1526 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1527 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1528 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1529 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1530 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1531}
1532
1533void
9719ad41
RS
1534bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1535 Elf64_External_RegInfo *ex)
b49e97c9
TS
1536{
1537 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1538 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1539 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1540 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1541 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1542 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1543 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1544}
1545
1546/* Swap in an options header. */
1547
1548void
9719ad41
RS
1549bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1550 Elf_Internal_Options *in)
b49e97c9
TS
1551{
1552 in->kind = H_GET_8 (abfd, ex->kind);
1553 in->size = H_GET_8 (abfd, ex->size);
1554 in->section = H_GET_16 (abfd, ex->section);
1555 in->info = H_GET_32 (abfd, ex->info);
1556}
1557
1558/* Swap out an options header. */
1559
1560void
9719ad41
RS
1561bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1562 Elf_External_Options *ex)
b49e97c9
TS
1563{
1564 H_PUT_8 (abfd, in->kind, ex->kind);
1565 H_PUT_8 (abfd, in->size, ex->size);
1566 H_PUT_16 (abfd, in->section, ex->section);
1567 H_PUT_32 (abfd, in->info, ex->info);
1568}
1569\f
1570/* This function is called via qsort() to sort the dynamic relocation
1571 entries by increasing r_symndx value. */
1572
1573static int
9719ad41 1574sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1575{
947216bf
AM
1576 Elf_Internal_Rela int_reloc1;
1577 Elf_Internal_Rela int_reloc2;
b49e97c9 1578
947216bf
AM
1579 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1580 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1581
947216bf 1582 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1583}
1584
f4416af6
AO
1585/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1586
1587static int
7e3102a7
AM
1588sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1589 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1590{
7e3102a7 1591#ifdef BFD64
f4416af6
AO
1592 Elf_Internal_Rela int_reloc1[3];
1593 Elf_Internal_Rela int_reloc2[3];
1594
1595 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1596 (reldyn_sorting_bfd, arg1, int_reloc1);
1597 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1598 (reldyn_sorting_bfd, arg2, int_reloc2);
1599
1600 return (ELF64_R_SYM (int_reloc1[0].r_info)
1601 - ELF64_R_SYM (int_reloc2[0].r_info));
7e3102a7
AM
1602#else
1603 abort ();
1604#endif
f4416af6
AO
1605}
1606
1607
b49e97c9
TS
1608/* This routine is used to write out ECOFF debugging external symbol
1609 information. It is called via mips_elf_link_hash_traverse. The
1610 ECOFF external symbol information must match the ELF external
1611 symbol information. Unfortunately, at this point we don't know
1612 whether a symbol is required by reloc information, so the two
1613 tables may wind up being different. We must sort out the external
1614 symbol information before we can set the final size of the .mdebug
1615 section, and we must set the size of the .mdebug section before we
1616 can relocate any sections, and we can't know which symbols are
1617 required by relocation until we relocate the sections.
1618 Fortunately, it is relatively unlikely that any symbol will be
1619 stripped but required by a reloc. In particular, it can not happen
1620 when generating a final executable. */
1621
b34976b6 1622static bfd_boolean
9719ad41 1623mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1624{
9719ad41 1625 struct extsym_info *einfo = data;
b34976b6 1626 bfd_boolean strip;
b49e97c9
TS
1627 asection *sec, *output_section;
1628
1629 if (h->root.root.type == bfd_link_hash_warning)
1630 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1631
1632 if (h->root.indx == -2)
b34976b6 1633 strip = FALSE;
f5385ebf 1634 else if ((h->root.def_dynamic
77cfaee6
AM
1635 || h->root.ref_dynamic
1636 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1637 && !h->root.def_regular
1638 && !h->root.ref_regular)
b34976b6 1639 strip = TRUE;
b49e97c9
TS
1640 else if (einfo->info->strip == strip_all
1641 || (einfo->info->strip == strip_some
1642 && bfd_hash_lookup (einfo->info->keep_hash,
1643 h->root.root.root.string,
b34976b6
AM
1644 FALSE, FALSE) == NULL))
1645 strip = TRUE;
b49e97c9 1646 else
b34976b6 1647 strip = FALSE;
b49e97c9
TS
1648
1649 if (strip)
b34976b6 1650 return TRUE;
b49e97c9
TS
1651
1652 if (h->esym.ifd == -2)
1653 {
1654 h->esym.jmptbl = 0;
1655 h->esym.cobol_main = 0;
1656 h->esym.weakext = 0;
1657 h->esym.reserved = 0;
1658 h->esym.ifd = ifdNil;
1659 h->esym.asym.value = 0;
1660 h->esym.asym.st = stGlobal;
1661
1662 if (h->root.root.type == bfd_link_hash_undefined
1663 || h->root.root.type == bfd_link_hash_undefweak)
1664 {
1665 const char *name;
1666
1667 /* Use undefined class. Also, set class and type for some
1668 special symbols. */
1669 name = h->root.root.root.string;
1670 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1671 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1672 {
1673 h->esym.asym.sc = scData;
1674 h->esym.asym.st = stLabel;
1675 h->esym.asym.value = 0;
1676 }
1677 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1678 {
1679 h->esym.asym.sc = scAbs;
1680 h->esym.asym.st = stLabel;
1681 h->esym.asym.value =
1682 mips_elf_hash_table (einfo->info)->procedure_count;
1683 }
4a14403c 1684 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1685 {
1686 h->esym.asym.sc = scAbs;
1687 h->esym.asym.st = stLabel;
1688 h->esym.asym.value = elf_gp (einfo->abfd);
1689 }
1690 else
1691 h->esym.asym.sc = scUndefined;
1692 }
1693 else if (h->root.root.type != bfd_link_hash_defined
1694 && h->root.root.type != bfd_link_hash_defweak)
1695 h->esym.asym.sc = scAbs;
1696 else
1697 {
1698 const char *name;
1699
1700 sec = h->root.root.u.def.section;
1701 output_section = sec->output_section;
1702
1703 /* When making a shared library and symbol h is the one from
1704 the another shared library, OUTPUT_SECTION may be null. */
1705 if (output_section == NULL)
1706 h->esym.asym.sc = scUndefined;
1707 else
1708 {
1709 name = bfd_section_name (output_section->owner, output_section);
1710
1711 if (strcmp (name, ".text") == 0)
1712 h->esym.asym.sc = scText;
1713 else if (strcmp (name, ".data") == 0)
1714 h->esym.asym.sc = scData;
1715 else if (strcmp (name, ".sdata") == 0)
1716 h->esym.asym.sc = scSData;
1717 else if (strcmp (name, ".rodata") == 0
1718 || strcmp (name, ".rdata") == 0)
1719 h->esym.asym.sc = scRData;
1720 else if (strcmp (name, ".bss") == 0)
1721 h->esym.asym.sc = scBss;
1722 else if (strcmp (name, ".sbss") == 0)
1723 h->esym.asym.sc = scSBss;
1724 else if (strcmp (name, ".init") == 0)
1725 h->esym.asym.sc = scInit;
1726 else if (strcmp (name, ".fini") == 0)
1727 h->esym.asym.sc = scFini;
1728 else
1729 h->esym.asym.sc = scAbs;
1730 }
1731 }
1732
1733 h->esym.asym.reserved = 0;
1734 h->esym.asym.index = indexNil;
1735 }
1736
1737 if (h->root.root.type == bfd_link_hash_common)
1738 h->esym.asym.value = h->root.root.u.c.size;
1739 else if (h->root.root.type == bfd_link_hash_defined
1740 || h->root.root.type == bfd_link_hash_defweak)
1741 {
1742 if (h->esym.asym.sc == scCommon)
1743 h->esym.asym.sc = scBss;
1744 else if (h->esym.asym.sc == scSCommon)
1745 h->esym.asym.sc = scSBss;
1746
1747 sec = h->root.root.u.def.section;
1748 output_section = sec->output_section;
1749 if (output_section != NULL)
1750 h->esym.asym.value = (h->root.root.u.def.value
1751 + sec->output_offset
1752 + output_section->vma);
1753 else
1754 h->esym.asym.value = 0;
1755 }
f5385ebf 1756 else if (h->root.needs_plt)
b49e97c9
TS
1757 {
1758 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1759 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1760
1761 while (hd->root.root.type == bfd_link_hash_indirect)
1762 {
1763 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1764 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1765 }
1766
1767 if (!no_fn_stub)
1768 {
1769 /* Set type and value for a symbol with a function stub. */
1770 h->esym.asym.st = stProc;
1771 sec = hd->root.root.u.def.section;
1772 if (sec == NULL)
1773 h->esym.asym.value = 0;
1774 else
1775 {
1776 output_section = sec->output_section;
1777 if (output_section != NULL)
1778 h->esym.asym.value = (hd->root.plt.offset
1779 + sec->output_offset
1780 + output_section->vma);
1781 else
1782 h->esym.asym.value = 0;
1783 }
b49e97c9
TS
1784 }
1785 }
1786
1787 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1788 h->root.root.root.string,
1789 &h->esym))
1790 {
b34976b6
AM
1791 einfo->failed = TRUE;
1792 return FALSE;
b49e97c9
TS
1793 }
1794
b34976b6 1795 return TRUE;
b49e97c9
TS
1796}
1797
1798/* A comparison routine used to sort .gptab entries. */
1799
1800static int
9719ad41 1801gptab_compare (const void *p1, const void *p2)
b49e97c9 1802{
9719ad41
RS
1803 const Elf32_gptab *a1 = p1;
1804 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1805
1806 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1807}
1808\f
b15e6682 1809/* Functions to manage the got entry hash table. */
f4416af6
AO
1810
1811/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1812 hash number. */
1813
1814static INLINE hashval_t
9719ad41 1815mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1816{
1817#ifdef BFD64
1818 return addr + (addr >> 32);
1819#else
1820 return addr;
1821#endif
1822}
1823
1824/* got_entries only match if they're identical, except for gotidx, so
1825 use all fields to compute the hash, and compare the appropriate
1826 union members. */
1827
b15e6682 1828static hashval_t
9719ad41 1829mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1830{
1831 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1832
38985a1c 1833 return entry->symndx
0f20cc35 1834 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1835 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1836 : entry->abfd->id
1837 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1838 : entry->d.h->root.root.root.hash));
b15e6682
AO
1839}
1840
1841static int
9719ad41 1842mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1843{
1844 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1845 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1846
0f20cc35
DJ
1847 /* An LDM entry can only match another LDM entry. */
1848 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1849 return 0;
1850
b15e6682 1851 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1852 && (! e1->abfd ? e1->d.address == e2->d.address
1853 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1854 : e1->d.h == e2->d.h);
1855}
1856
1857/* multi_got_entries are still a match in the case of global objects,
1858 even if the input bfd in which they're referenced differs, so the
1859 hash computation and compare functions are adjusted
1860 accordingly. */
1861
1862static hashval_t
9719ad41 1863mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1864{
1865 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1866
1867 return entry->symndx
1868 + (! entry->abfd
1869 ? mips_elf_hash_bfd_vma (entry->d.address)
1870 : entry->symndx >= 0
0f20cc35
DJ
1871 ? ((entry->tls_type & GOT_TLS_LDM)
1872 ? (GOT_TLS_LDM << 17)
1873 : (entry->abfd->id
1874 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
1875 : entry->d.h->root.root.root.hash);
1876}
1877
1878static int
9719ad41 1879mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1880{
1881 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1882 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1883
0f20cc35
DJ
1884 /* Any two LDM entries match. */
1885 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
1886 return 1;
1887
1888 /* Nothing else matches an LDM entry. */
1889 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1890 return 0;
1891
f4416af6
AO
1892 return e1->symndx == e2->symndx
1893 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1894 : e1->abfd == NULL || e2->abfd == NULL
1895 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1896 : e1->d.h == e2->d.h);
b15e6682
AO
1897}
1898\f
f4416af6
AO
1899/* Returns the dynamic relocation section for DYNOBJ. */
1900
1901static asection *
9719ad41 1902mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
f4416af6
AO
1903{
1904 static const char dname[] = ".rel.dyn";
1905 asection *sreloc;
1906
1907 sreloc = bfd_get_section_by_name (dynobj, dname);
1908 if (sreloc == NULL && create_p)
1909 {
3496cb2a
L
1910 sreloc = bfd_make_section_with_flags (dynobj, dname,
1911 (SEC_ALLOC
1912 | SEC_LOAD
1913 | SEC_HAS_CONTENTS
1914 | SEC_IN_MEMORY
1915 | SEC_LINKER_CREATED
1916 | SEC_READONLY));
f4416af6 1917 if (sreloc == NULL
f4416af6 1918 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1919 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1920 return NULL;
1921 }
1922 return sreloc;
1923}
1924
b49e97c9
TS
1925/* Returns the GOT section for ABFD. */
1926
1927static asection *
9719ad41 1928mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 1929{
f4416af6
AO
1930 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1931 if (sgot == NULL
1932 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1933 return NULL;
1934 return sgot;
b49e97c9
TS
1935}
1936
1937/* Returns the GOT information associated with the link indicated by
1938 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1939 section. */
1940
1941static struct mips_got_info *
9719ad41 1942mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
1943{
1944 asection *sgot;
1945 struct mips_got_info *g;
1946
f4416af6 1947 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1948 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1949 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1950 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1951 BFD_ASSERT (g != NULL);
1952
1953 if (sgotp)
f4416af6
AO
1954 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1955
b49e97c9
TS
1956 return g;
1957}
1958
0f20cc35
DJ
1959/* Count the number of relocations needed for a TLS GOT entry, with
1960 access types from TLS_TYPE, and symbol H (or a local symbol if H
1961 is NULL). */
1962
1963static int
1964mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
1965 struct elf_link_hash_entry *h)
1966{
1967 int indx = 0;
1968 int ret = 0;
1969 bfd_boolean need_relocs = FALSE;
1970 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
1971
1972 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1973 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
1974 indx = h->dynindx;
1975
1976 if ((info->shared || indx != 0)
1977 && (h == NULL
1978 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1979 || h->root.type != bfd_link_hash_undefweak))
1980 need_relocs = TRUE;
1981
1982 if (!need_relocs)
1983 return FALSE;
1984
1985 if (tls_type & GOT_TLS_GD)
1986 {
1987 ret++;
1988 if (indx != 0)
1989 ret++;
1990 }
1991
1992 if (tls_type & GOT_TLS_IE)
1993 ret++;
1994
1995 if ((tls_type & GOT_TLS_LDM) && info->shared)
1996 ret++;
1997
1998 return ret;
1999}
2000
2001/* Count the number of TLS relocations required for the GOT entry in
2002 ARG1, if it describes a local symbol. */
2003
2004static int
2005mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2006{
2007 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2008 struct mips_elf_count_tls_arg *arg = arg2;
2009
2010 if (entry->abfd != NULL && entry->symndx != -1)
2011 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2012
2013 return 1;
2014}
2015
2016/* Count the number of TLS GOT entries required for the global (or
2017 forced-local) symbol in ARG1. */
2018
2019static int
2020mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2021{
2022 struct mips_elf_link_hash_entry *hm
2023 = (struct mips_elf_link_hash_entry *) arg1;
2024 struct mips_elf_count_tls_arg *arg = arg2;
2025
2026 if (hm->tls_type & GOT_TLS_GD)
2027 arg->needed += 2;
2028 if (hm->tls_type & GOT_TLS_IE)
2029 arg->needed += 1;
2030
2031 return 1;
2032}
2033
2034/* Count the number of TLS relocations required for the global (or
2035 forced-local) symbol in ARG1. */
2036
2037static int
2038mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2039{
2040 struct mips_elf_link_hash_entry *hm
2041 = (struct mips_elf_link_hash_entry *) arg1;
2042 struct mips_elf_count_tls_arg *arg = arg2;
2043
2044 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2045
2046 return 1;
2047}
2048
2049/* Output a simple dynamic relocation into SRELOC. */
2050
2051static void
2052mips_elf_output_dynamic_relocation (bfd *output_bfd,
2053 asection *sreloc,
2054 unsigned long indx,
2055 int r_type,
2056 bfd_vma offset)
2057{
2058 Elf_Internal_Rela rel[3];
2059
2060 memset (rel, 0, sizeof (rel));
2061
2062 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2063 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2064
2065 if (ABI_64_P (output_bfd))
2066 {
2067 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2068 (output_bfd, &rel[0],
2069 (sreloc->contents
2070 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2071 }
2072 else
2073 bfd_elf32_swap_reloc_out
2074 (output_bfd, &rel[0],
2075 (sreloc->contents
2076 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2077 ++sreloc->reloc_count;
2078}
2079
2080/* Initialize a set of TLS GOT entries for one symbol. */
2081
2082static void
2083mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2084 unsigned char *tls_type_p,
2085 struct bfd_link_info *info,
2086 struct mips_elf_link_hash_entry *h,
2087 bfd_vma value)
2088{
2089 int indx;
2090 asection *sreloc, *sgot;
2091 bfd_vma offset, offset2;
2092 bfd *dynobj;
2093 bfd_boolean need_relocs = FALSE;
2094
2095 dynobj = elf_hash_table (info)->dynobj;
2096 sgot = mips_elf_got_section (dynobj, FALSE);
2097
2098 indx = 0;
2099 if (h != NULL)
2100 {
2101 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2102
2103 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2104 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2105 indx = h->root.dynindx;
2106 }
2107
2108 if (*tls_type_p & GOT_TLS_DONE)
2109 return;
2110
2111 if ((info->shared || indx != 0)
2112 && (h == NULL
2113 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2114 || h->root.type != bfd_link_hash_undefweak))
2115 need_relocs = TRUE;
2116
2117 /* MINUS_ONE means the symbol is not defined in this object. It may not
2118 be defined at all; assume that the value doesn't matter in that
2119 case. Otherwise complain if we would use the value. */
2120 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2121 || h->root.root.type == bfd_link_hash_undefweak);
2122
2123 /* Emit necessary relocations. */
2124 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
2125
2126 /* General Dynamic. */
2127 if (*tls_type_p & GOT_TLS_GD)
2128 {
2129 offset = got_offset;
2130 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2131
2132 if (need_relocs)
2133 {
2134 mips_elf_output_dynamic_relocation
2135 (abfd, sreloc, indx,
2136 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2137 sgot->output_offset + sgot->output_section->vma + offset);
2138
2139 if (indx)
2140 mips_elf_output_dynamic_relocation
2141 (abfd, sreloc, indx,
2142 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2143 sgot->output_offset + sgot->output_section->vma + offset2);
2144 else
2145 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2146 sgot->contents + offset2);
2147 }
2148 else
2149 {
2150 MIPS_ELF_PUT_WORD (abfd, 1,
2151 sgot->contents + offset);
2152 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2153 sgot->contents + offset2);
2154 }
2155
2156 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2157 }
2158
2159 /* Initial Exec model. */
2160 if (*tls_type_p & GOT_TLS_IE)
2161 {
2162 offset = got_offset;
2163
2164 if (need_relocs)
2165 {
2166 if (indx == 0)
2167 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2168 sgot->contents + offset);
2169 else
2170 MIPS_ELF_PUT_WORD (abfd, 0,
2171 sgot->contents + offset);
2172
2173 mips_elf_output_dynamic_relocation
2174 (abfd, sreloc, indx,
2175 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2176 sgot->output_offset + sgot->output_section->vma + offset);
2177 }
2178 else
2179 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2180 sgot->contents + offset);
2181 }
2182
2183 if (*tls_type_p & GOT_TLS_LDM)
2184 {
2185 /* The initial offset is zero, and the LD offsets will include the
2186 bias by DTP_OFFSET. */
2187 MIPS_ELF_PUT_WORD (abfd, 0,
2188 sgot->contents + got_offset
2189 + MIPS_ELF_GOT_SIZE (abfd));
2190
2191 if (!info->shared)
2192 MIPS_ELF_PUT_WORD (abfd, 1,
2193 sgot->contents + got_offset);
2194 else
2195 mips_elf_output_dynamic_relocation
2196 (abfd, sreloc, indx,
2197 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2198 sgot->output_offset + sgot->output_section->vma + got_offset);
2199 }
2200
2201 *tls_type_p |= GOT_TLS_DONE;
2202}
2203
2204/* Return the GOT index to use for a relocation of type R_TYPE against
2205 a symbol accessed using TLS_TYPE models. The GOT entries for this
2206 symbol in this GOT start at GOT_INDEX. This function initializes the
2207 GOT entries and corresponding relocations. */
2208
2209static bfd_vma
2210mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2211 int r_type, struct bfd_link_info *info,
2212 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2213{
2214 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2215 || r_type == R_MIPS_TLS_LDM);
2216
2217 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2218
2219 if (r_type == R_MIPS_TLS_GOTTPREL)
2220 {
2221 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2222 if (*tls_type & GOT_TLS_GD)
2223 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2224 else
2225 return got_index;
2226 }
2227
2228 if (r_type == R_MIPS_TLS_GD)
2229 {
2230 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2231 return got_index;
2232 }
2233
2234 if (r_type == R_MIPS_TLS_LDM)
2235 {
2236 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2237 return got_index;
2238 }
2239
2240 return got_index;
2241}
2242
b49e97c9 2243/* Returns the GOT offset at which the indicated address can be found.
0f20cc35
DJ
2244 If there is not yet a GOT entry for this value, create one. If
2245 R_SYMNDX refers to a TLS symbol, create a TLS GOT entry instead.
2246 Returns -1 if no satisfactory GOT offset can be found. */
b49e97c9
TS
2247
2248static bfd_vma
9719ad41 2249mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0f20cc35
DJ
2250 bfd_vma value, unsigned long r_symndx,
2251 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2252{
2253 asection *sgot;
2254 struct mips_got_info *g;
b15e6682 2255 struct mips_got_entry *entry;
b49e97c9
TS
2256
2257 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2258
0f20cc35
DJ
2259 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value,
2260 r_symndx, h, r_type);
2261 if (!entry)
b15e6682 2262 return MINUS_ONE;
0f20cc35
DJ
2263
2264 if (TLS_RELOC_P (r_type))
2265 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, r_type,
2266 info, h, value);
2267 else
2268 return entry->gotidx;
b49e97c9
TS
2269}
2270
2271/* Returns the GOT index for the global symbol indicated by H. */
2272
2273static bfd_vma
0f20cc35
DJ
2274mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2275 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2276{
2277 bfd_vma index;
2278 asection *sgot;
f4416af6 2279 struct mips_got_info *g, *gg;
d0c7ff07 2280 long global_got_dynindx = 0;
b49e97c9 2281
f4416af6
AO
2282 gg = g = mips_elf_got_info (abfd, &sgot);
2283 if (g->bfd2got && ibfd)
2284 {
2285 struct mips_got_entry e, *p;
143d77c5 2286
f4416af6
AO
2287 BFD_ASSERT (h->dynindx >= 0);
2288
2289 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2290 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2291 {
2292 e.abfd = ibfd;
2293 e.symndx = -1;
2294 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2295 e.tls_type = 0;
f4416af6 2296
9719ad41 2297 p = htab_find (g->got_entries, &e);
f4416af6
AO
2298
2299 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2300
2301 if (TLS_RELOC_P (r_type))
2302 {
2303 bfd_vma value = MINUS_ONE;
2304 if ((h->root.type == bfd_link_hash_defined
2305 || h->root.type == bfd_link_hash_defweak)
2306 && h->root.u.def.section->output_section)
2307 value = (h->root.u.def.value
2308 + h->root.u.def.section->output_offset
2309 + h->root.u.def.section->output_section->vma);
2310
2311 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2312 info, e.d.h, value);
2313 }
2314 else
2315 return p->gotidx;
f4416af6
AO
2316 }
2317 }
2318
2319 if (gg->global_gotsym != NULL)
2320 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2321
0f20cc35
DJ
2322 if (TLS_RELOC_P (r_type))
2323 {
2324 struct mips_elf_link_hash_entry *hm
2325 = (struct mips_elf_link_hash_entry *) h;
2326 bfd_vma value = MINUS_ONE;
2327
2328 if ((h->root.type == bfd_link_hash_defined
2329 || h->root.type == bfd_link_hash_defweak)
2330 && h->root.u.def.section->output_section)
2331 value = (h->root.u.def.value
2332 + h->root.u.def.section->output_offset
2333 + h->root.u.def.section->output_section->vma);
2334
2335 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2336 r_type, info, hm, value);
2337 }
2338 else
2339 {
2340 /* Once we determine the global GOT entry with the lowest dynamic
2341 symbol table index, we must put all dynamic symbols with greater
2342 indices into the GOT. That makes it easy to calculate the GOT
2343 offset. */
2344 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2345 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2346 * MIPS_ELF_GOT_SIZE (abfd));
2347 }
eea6121a 2348 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2349
2350 return index;
2351}
2352
2353/* Find a GOT entry that is within 32KB of the VALUE. These entries
2354 are supposed to be placed at small offsets in the GOT, i.e.,
2355 within 32KB of GP. Return the index into the GOT for this page,
2356 and store the offset from this entry to the desired address in
2357 OFFSETP, if it is non-NULL. */
2358
2359static bfd_vma
9719ad41
RS
2360mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2361 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2362{
2363 asection *sgot;
2364 struct mips_got_info *g;
b15e6682
AO
2365 bfd_vma index;
2366 struct mips_got_entry *entry;
b49e97c9
TS
2367
2368 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2369
f4416af6 2370 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682 2371 (value + 0x8000)
0f20cc35
DJ
2372 & (~(bfd_vma)0xffff), 0,
2373 NULL, R_MIPS_GOT_PAGE);
b49e97c9 2374
b15e6682
AO
2375 if (!entry)
2376 return MINUS_ONE;
143d77c5 2377
b15e6682 2378 index = entry->gotidx;
b49e97c9
TS
2379
2380 if (offsetp)
f4416af6 2381 *offsetp = value - entry->d.address;
b49e97c9
TS
2382
2383 return index;
2384}
2385
2386/* Find a GOT entry whose higher-order 16 bits are the same as those
2387 for value. Return the index into the GOT for this entry. */
2388
2389static bfd_vma
9719ad41
RS
2390mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2391 bfd_vma value, bfd_boolean external)
b49e97c9
TS
2392{
2393 asection *sgot;
2394 struct mips_got_info *g;
b15e6682 2395 struct mips_got_entry *entry;
b49e97c9
TS
2396
2397 if (! external)
2398 {
2399 /* Although the ABI says that it is "the high-order 16 bits" that we
2400 want, it is really the %high value. The complete value is
2401 calculated with a `addiu' of a LO16 relocation, just as with a
2402 HI16/LO16 pair. */
2403 value = mips_elf_high (value) << 16;
2404 }
2405
2406 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2407
0f20cc35
DJ
2408 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value, 0, NULL,
2409 R_MIPS_GOT16);
b15e6682
AO
2410 if (entry)
2411 return entry->gotidx;
2412 else
2413 return MINUS_ONE;
b49e97c9
TS
2414}
2415
2416/* Returns the offset for the entry at the INDEXth position
2417 in the GOT. */
2418
2419static bfd_vma
9719ad41
RS
2420mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2421 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2422{
2423 asection *sgot;
2424 bfd_vma gp;
f4416af6 2425 struct mips_got_info *g;
b49e97c9 2426
f4416af6
AO
2427 g = mips_elf_got_info (dynobj, &sgot);
2428 gp = _bfd_get_gp_value (output_bfd)
2429 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2430
f4416af6 2431 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2432}
2433
2434/* Create a local GOT entry for VALUE. Return the index of the entry,
0f20cc35
DJ
2435 or -1 if it could not be created. If R_SYMNDX refers to a TLS symbol,
2436 create a TLS entry instead. */
b49e97c9 2437
b15e6682 2438static struct mips_got_entry *
9719ad41
RS
2439mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
2440 struct mips_got_info *gg,
0f20cc35
DJ
2441 asection *sgot, bfd_vma value,
2442 unsigned long r_symndx,
2443 struct mips_elf_link_hash_entry *h,
2444 int r_type)
b49e97c9 2445{
b15e6682 2446 struct mips_got_entry entry, **loc;
f4416af6 2447 struct mips_got_info *g;
b15e6682 2448
f4416af6
AO
2449 entry.abfd = NULL;
2450 entry.symndx = -1;
2451 entry.d.address = value;
0f20cc35 2452 entry.tls_type = 0;
f4416af6
AO
2453
2454 g = mips_elf_got_for_ibfd (gg, ibfd);
2455 if (g == NULL)
2456 {
2457 g = mips_elf_got_for_ibfd (gg, abfd);
2458 BFD_ASSERT (g != NULL);
2459 }
b15e6682 2460
0f20cc35
DJ
2461 /* We might have a symbol, H, if it has been forced local. Use the
2462 global entry then. It doesn't matter whether an entry is local
2463 or global for TLS, since the dynamic linker does not
2464 automatically relocate TLS GOT entries. */
a008ac03 2465 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2466 if (TLS_RELOC_P (r_type))
2467 {
2468 struct mips_got_entry *p;
2469
2470 entry.abfd = ibfd;
2471 if (r_type == R_MIPS_TLS_LDM)
2472 {
2473 entry.tls_type = GOT_TLS_LDM;
2474 entry.symndx = 0;
2475 entry.d.addend = 0;
2476 }
2477 else if (h == NULL)
2478 {
2479 entry.symndx = r_symndx;
2480 entry.d.addend = 0;
2481 }
2482 else
2483 entry.d.h = h;
2484
2485 p = (struct mips_got_entry *)
2486 htab_find (g->got_entries, &entry);
2487
2488 BFD_ASSERT (p);
2489 return p;
2490 }
2491
b15e6682
AO
2492 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2493 INSERT);
2494 if (*loc)
2495 return *loc;
143d77c5 2496
b15e6682 2497 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2498 entry.tls_type = 0;
b15e6682
AO
2499
2500 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2501
2502 if (! *loc)
2503 return NULL;
143d77c5 2504
b15e6682
AO
2505 memcpy (*loc, &entry, sizeof entry);
2506
b49e97c9
TS
2507 if (g->assigned_gotno >= g->local_gotno)
2508 {
f4416af6 2509 (*loc)->gotidx = -1;
b49e97c9
TS
2510 /* We didn't allocate enough space in the GOT. */
2511 (*_bfd_error_handler)
2512 (_("not enough GOT space for local GOT entries"));
2513 bfd_set_error (bfd_error_bad_value);
b15e6682 2514 return NULL;
b49e97c9
TS
2515 }
2516
2517 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2518 (sgot->contents + entry.gotidx));
2519
2520 return *loc;
b49e97c9
TS
2521}
2522
2523/* Sort the dynamic symbol table so that symbols that need GOT entries
2524 appear towards the end. This reduces the amount of GOT space
2525 required. MAX_LOCAL is used to set the number of local symbols
2526 known to be in the dynamic symbol table. During
2527 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2528 section symbols are added and the count is higher. */
2529
b34976b6 2530static bfd_boolean
9719ad41 2531mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2532{
2533 struct mips_elf_hash_sort_data hsd;
2534 struct mips_got_info *g;
2535 bfd *dynobj;
2536
2537 dynobj = elf_hash_table (info)->dynobj;
2538
f4416af6
AO
2539 g = mips_elf_got_info (dynobj, NULL);
2540
b49e97c9 2541 hsd.low = NULL;
143d77c5 2542 hsd.max_unref_got_dynindx =
f4416af6
AO
2543 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2544 /* In the multi-got case, assigned_gotno of the master got_info
2545 indicate the number of entries that aren't referenced in the
2546 primary GOT, but that must have entries because there are
2547 dynamic relocations that reference it. Since they aren't
2548 referenced, we move them to the end of the GOT, so that they
2549 don't prevent other entries that are referenced from getting
2550 too large offsets. */
2551 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2552 hsd.max_non_got_dynindx = max_local;
2553 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2554 elf_hash_table (info)),
2555 mips_elf_sort_hash_table_f,
2556 &hsd);
2557
2558 /* There should have been enough room in the symbol table to
44c410de 2559 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2560 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2561 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2562 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2563
2564 /* Now we know which dynamic symbol has the lowest dynamic symbol
2565 table index in the GOT. */
b49e97c9
TS
2566 g->global_gotsym = hsd.low;
2567
b34976b6 2568 return TRUE;
b49e97c9
TS
2569}
2570
2571/* If H needs a GOT entry, assign it the highest available dynamic
2572 index. Otherwise, assign it the lowest available dynamic
2573 index. */
2574
b34976b6 2575static bfd_boolean
9719ad41 2576mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2577{
9719ad41 2578 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2579
2580 if (h->root.root.type == bfd_link_hash_warning)
2581 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2582
2583 /* Symbols without dynamic symbol table entries aren't interesting
2584 at all. */
2585 if (h->root.dynindx == -1)
b34976b6 2586 return TRUE;
b49e97c9 2587
f4416af6
AO
2588 /* Global symbols that need GOT entries that are not explicitly
2589 referenced are marked with got offset 2. Those that are
2590 referenced get a 1, and those that don't need GOT entries get
2591 -1. */
2592 if (h->root.got.offset == 2)
2593 {
0f20cc35
DJ
2594 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2595
f4416af6
AO
2596 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2597 hsd->low = (struct elf_link_hash_entry *) h;
2598 h->root.dynindx = hsd->max_unref_got_dynindx++;
2599 }
2600 else if (h->root.got.offset != 1)
b49e97c9
TS
2601 h->root.dynindx = hsd->max_non_got_dynindx++;
2602 else
2603 {
0f20cc35
DJ
2604 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2605
b49e97c9
TS
2606 h->root.dynindx = --hsd->min_got_dynindx;
2607 hsd->low = (struct elf_link_hash_entry *) h;
2608 }
2609
b34976b6 2610 return TRUE;
b49e97c9
TS
2611}
2612
2613/* If H is a symbol that needs a global GOT entry, but has a dynamic
2614 symbol table index lower than any we've seen to date, record it for
2615 posterity. */
2616
b34976b6 2617static bfd_boolean
9719ad41
RS
2618mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2619 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2620 struct mips_got_info *g,
2621 unsigned char tls_flag)
b49e97c9 2622{
f4416af6
AO
2623 struct mips_got_entry entry, **loc;
2624
b49e97c9
TS
2625 /* A global symbol in the GOT must also be in the dynamic symbol
2626 table. */
7c5fcef7
L
2627 if (h->dynindx == -1)
2628 {
2629 switch (ELF_ST_VISIBILITY (h->other))
2630 {
2631 case STV_INTERNAL:
2632 case STV_HIDDEN:
b34976b6 2633 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2634 break;
2635 }
c152c796 2636 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2637 return FALSE;
7c5fcef7 2638 }
b49e97c9 2639
86324f90
EC
2640 /* Make sure we have a GOT to put this entry into. */
2641 BFD_ASSERT (g != NULL);
2642
f4416af6
AO
2643 entry.abfd = abfd;
2644 entry.symndx = -1;
2645 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2646 entry.tls_type = 0;
f4416af6
AO
2647
2648 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2649 INSERT);
2650
b49e97c9
TS
2651 /* If we've already marked this entry as needing GOT space, we don't
2652 need to do it again. */
f4416af6 2653 if (*loc)
0f20cc35
DJ
2654 {
2655 (*loc)->tls_type |= tls_flag;
2656 return TRUE;
2657 }
f4416af6
AO
2658
2659 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2660
2661 if (! *loc)
2662 return FALSE;
143d77c5 2663
f4416af6 2664 entry.gotidx = -1;
0f20cc35
DJ
2665 entry.tls_type = tls_flag;
2666
f4416af6
AO
2667 memcpy (*loc, &entry, sizeof entry);
2668
b49e97c9 2669 if (h->got.offset != MINUS_ONE)
b34976b6 2670 return TRUE;
b49e97c9
TS
2671
2672 /* By setting this to a value other than -1, we are indicating that
2673 there needs to be a GOT entry for H. Avoid using zero, as the
2674 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2675 if (tls_flag == 0)
2676 h->got.offset = 1;
b49e97c9 2677
b34976b6 2678 return TRUE;
b49e97c9 2679}
f4416af6
AO
2680
2681/* Reserve space in G for a GOT entry containing the value of symbol
2682 SYMNDX in input bfd ABDF, plus ADDEND. */
2683
2684static bfd_boolean
9719ad41 2685mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2686 struct mips_got_info *g,
2687 unsigned char tls_flag)
f4416af6
AO
2688{
2689 struct mips_got_entry entry, **loc;
2690
2691 entry.abfd = abfd;
2692 entry.symndx = symndx;
2693 entry.d.addend = addend;
0f20cc35 2694 entry.tls_type = tls_flag;
f4416af6
AO
2695 loc = (struct mips_got_entry **)
2696 htab_find_slot (g->got_entries, &entry, INSERT);
2697
2698 if (*loc)
0f20cc35
DJ
2699 {
2700 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2701 {
2702 g->tls_gotno += 2;
2703 (*loc)->tls_type |= tls_flag;
2704 }
2705 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2706 {
2707 g->tls_gotno += 1;
2708 (*loc)->tls_type |= tls_flag;
2709 }
2710 return TRUE;
2711 }
f4416af6 2712
0f20cc35
DJ
2713 if (tls_flag != 0)
2714 {
2715 entry.gotidx = -1;
2716 entry.tls_type = tls_flag;
2717 if (tls_flag == GOT_TLS_IE)
2718 g->tls_gotno += 1;
2719 else if (tls_flag == GOT_TLS_GD)
2720 g->tls_gotno += 2;
2721 else if (g->tls_ldm_offset == MINUS_ONE)
2722 {
2723 g->tls_ldm_offset = MINUS_TWO;
2724 g->tls_gotno += 2;
2725 }
2726 }
2727 else
2728 {
2729 entry.gotidx = g->local_gotno++;
2730 entry.tls_type = 0;
2731 }
f4416af6
AO
2732
2733 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2734
2735 if (! *loc)
2736 return FALSE;
143d77c5 2737
f4416af6
AO
2738 memcpy (*loc, &entry, sizeof entry);
2739
2740 return TRUE;
2741}
2742\f
2743/* Compute the hash value of the bfd in a bfd2got hash entry. */
2744
2745static hashval_t
9719ad41 2746mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2747{
2748 const struct mips_elf_bfd2got_hash *entry
2749 = (struct mips_elf_bfd2got_hash *)entry_;
2750
2751 return entry->bfd->id;
2752}
2753
2754/* Check whether two hash entries have the same bfd. */
2755
2756static int
9719ad41 2757mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2758{
2759 const struct mips_elf_bfd2got_hash *e1
2760 = (const struct mips_elf_bfd2got_hash *)entry1;
2761 const struct mips_elf_bfd2got_hash *e2
2762 = (const struct mips_elf_bfd2got_hash *)entry2;
2763
2764 return e1->bfd == e2->bfd;
2765}
2766
bad36eac 2767/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
2768 be the master GOT data. */
2769
2770static struct mips_got_info *
9719ad41 2771mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2772{
2773 struct mips_elf_bfd2got_hash e, *p;
2774
2775 if (! g->bfd2got)
2776 return g;
2777
2778 e.bfd = ibfd;
9719ad41 2779 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2780 return p ? p->g : NULL;
2781}
2782
2783/* Create one separate got for each bfd that has entries in the global
2784 got, such that we can tell how many local and global entries each
2785 bfd requires. */
2786
2787static int
9719ad41 2788mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2789{
2790 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2791 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2792 htab_t bfd2got = arg->bfd2got;
2793 struct mips_got_info *g;
2794 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2795 void **bfdgotp;
143d77c5 2796
f4416af6
AO
2797 /* Find the got_info for this GOT entry's input bfd. Create one if
2798 none exists. */
2799 bfdgot_entry.bfd = entry->abfd;
2800 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2801 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2802
2803 if (bfdgot != NULL)
2804 g = bfdgot->g;
2805 else
2806 {
2807 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2808 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2809
2810 if (bfdgot == NULL)
2811 {
2812 arg->obfd = 0;
2813 return 0;
2814 }
2815
2816 *bfdgotp = bfdgot;
2817
2818 bfdgot->bfd = entry->abfd;
2819 bfdgot->g = g = (struct mips_got_info *)
2820 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2821 if (g == NULL)
2822 {
2823 arg->obfd = 0;
2824 return 0;
2825 }
2826
2827 g->global_gotsym = NULL;
2828 g->global_gotno = 0;
2829 g->local_gotno = 0;
2830 g->assigned_gotno = -1;
0f20cc35
DJ
2831 g->tls_gotno = 0;
2832 g->tls_assigned_gotno = 0;
2833 g->tls_ldm_offset = MINUS_ONE;
f4416af6 2834 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 2835 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
2836 if (g->got_entries == NULL)
2837 {
2838 arg->obfd = 0;
2839 return 0;
2840 }
2841
2842 g->bfd2got = NULL;
2843 g->next = NULL;
2844 }
2845
2846 /* Insert the GOT entry in the bfd's got entry hash table. */
2847 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2848 if (*entryp != NULL)
2849 return 1;
143d77c5 2850
f4416af6
AO
2851 *entryp = entry;
2852
0f20cc35
DJ
2853 if (entry->tls_type)
2854 {
2855 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
2856 g->tls_gotno += 2;
2857 if (entry->tls_type & GOT_TLS_IE)
2858 g->tls_gotno += 1;
2859 }
2860 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
2861 ++g->local_gotno;
2862 else
2863 ++g->global_gotno;
2864
2865 return 1;
2866}
2867
2868/* Attempt to merge gots of different input bfds. Try to use as much
2869 as possible of the primary got, since it doesn't require explicit
2870 dynamic relocations, but don't use bfds that would reference global
2871 symbols out of the addressable range. Failing the primary got,
2872 attempt to merge with the current got, or finish the current got
2873 and then make make the new got current. */
2874
2875static int
9719ad41 2876mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
2877{
2878 struct mips_elf_bfd2got_hash *bfd2got
2879 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2880 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2881 unsigned int lcount = bfd2got->g->local_gotno;
2882 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 2883 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 2884 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
2885 bfd_boolean too_many_for_tls = FALSE;
2886
2887 /* We place TLS GOT entries after both locals and globals. The globals
2888 for the primary GOT may overflow the normal GOT size limit, so be
2889 sure not to merge a GOT which requires TLS with the primary GOT in that
2890 case. This doesn't affect non-primary GOTs. */
2891 if (tcount > 0)
2892 {
2893 unsigned int primary_total = lcount + tcount + arg->global_count;
2894 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
2895 >= MIPS_ELF_GOT_MAX_SIZE (bfd2got->bfd))
2896 too_many_for_tls = TRUE;
2897 }
143d77c5 2898
f4416af6
AO
2899 /* If we don't have a primary GOT and this is not too big, use it as
2900 a starting point for the primary GOT. */
0f20cc35
DJ
2901 if (! arg->primary && lcount + gcount + tcount <= maxcnt
2902 && ! too_many_for_tls)
f4416af6
AO
2903 {
2904 arg->primary = bfd2got->g;
2905 arg->primary_count = lcount + gcount;
2906 }
2907 /* If it looks like we can merge this bfd's entries with those of
2908 the primary, merge them. The heuristics is conservative, but we
2909 don't have to squeeze it too hard. */
0f20cc35
DJ
2910 else if (arg->primary && ! too_many_for_tls
2911 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
2912 {
2913 struct mips_got_info *g = bfd2got->g;
2914 int old_lcount = arg->primary->local_gotno;
2915 int old_gcount = arg->primary->global_gotno;
0f20cc35 2916 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
2917
2918 bfd2got->g = arg->primary;
2919
2920 htab_traverse (g->got_entries,
2921 mips_elf_make_got_per_bfd,
2922 arg);
2923 if (arg->obfd == NULL)
2924 return 0;
2925
2926 htab_delete (g->got_entries);
2927 /* We don't have to worry about releasing memory of the actual
2928 got entries, since they're all in the master got_entries hash
2929 table anyway. */
2930
caec41ff 2931 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 2932 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 2933 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
2934
2935 arg->primary_count = arg->primary->local_gotno
0f20cc35 2936 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
2937 }
2938 /* If we can merge with the last-created got, do it. */
2939 else if (arg->current
0f20cc35 2940 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
2941 {
2942 struct mips_got_info *g = bfd2got->g;
2943 int old_lcount = arg->current->local_gotno;
2944 int old_gcount = arg->current->global_gotno;
0f20cc35 2945 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
2946
2947 bfd2got->g = arg->current;
2948
2949 htab_traverse (g->got_entries,
2950 mips_elf_make_got_per_bfd,
2951 arg);
2952 if (arg->obfd == NULL)
2953 return 0;
2954
2955 htab_delete (g->got_entries);
2956
caec41ff 2957 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 2958 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 2959 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
2960
2961 arg->current_count = arg->current->local_gotno
0f20cc35 2962 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
2963 }
2964 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2965 fits; if it turns out that it doesn't, we'll get relocation
2966 overflows anyway. */
2967 else
2968 {
2969 bfd2got->g->next = arg->current;
2970 arg->current = bfd2got->g;
143d77c5 2971
0f20cc35
DJ
2972 arg->current_count = lcount + gcount + 2 * tcount;
2973 }
2974
2975 return 1;
2976}
2977
2978/* Set the TLS GOT index for the GOT entry in ENTRYP. */
2979
2980static int
2981mips_elf_initialize_tls_index (void **entryp, void *p)
2982{
2983 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2984 struct mips_got_info *g = p;
2985
2986 /* We're only interested in TLS symbols. */
2987 if (entry->tls_type == 0)
2988 return 1;
2989
2990 if (entry->symndx == -1)
2991 {
2992 /* There may be multiple mips_got_entry structs for a global variable
2993 if there is just one GOT. Just do this once. */
2994 if (g->next == NULL)
2995 {
2996 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4005427f
RS
2997 {
2998 entry->gotidx = entry->d.h->tls_got_offset;
2999 return 1;
3000 }
0f20cc35
DJ
3001 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3002 }
3003 }
3004 else if (entry->tls_type & GOT_TLS_LDM)
3005 {
3006 /* Similarly, there may be multiple structs for the LDM entry. */
3007 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3008 {
3009 entry->gotidx = g->tls_ldm_offset;
3010 return 1;
3011 }
f4416af6
AO
3012 }
3013
0f20cc35
DJ
3014 /* Initialize the GOT offset. */
3015 entry->gotidx = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3016 if (g->next == NULL && entry->symndx == -1)
3017 entry->d.h->tls_got_offset = entry->gotidx;
3018
3019 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3020 g->tls_assigned_gotno += 2;
3021 if (entry->tls_type & GOT_TLS_IE)
3022 g->tls_assigned_gotno += 1;
3023
3024 if (entry->tls_type & GOT_TLS_LDM)
3025 g->tls_ldm_offset = entry->gotidx;
3026
f4416af6
AO
3027 return 1;
3028}
3029
3030/* If passed a NULL mips_got_info in the argument, set the marker used
3031 to tell whether a global symbol needs a got entry (in the primary
3032 got) to the given VALUE.
3033
3034 If passed a pointer G to a mips_got_info in the argument (it must
3035 not be the primary GOT), compute the offset from the beginning of
3036 the (primary) GOT section to the entry in G corresponding to the
3037 global symbol. G's assigned_gotno must contain the index of the
3038 first available global GOT entry in G. VALUE must contain the size
3039 of a GOT entry in bytes. For each global GOT entry that requires a
3040 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3041 marked as not eligible for lazy resolution through a function
f4416af6
AO
3042 stub. */
3043static int
9719ad41 3044mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3045{
3046 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3047 struct mips_elf_set_global_got_offset_arg *arg
3048 = (struct mips_elf_set_global_got_offset_arg *)p;
3049 struct mips_got_info *g = arg->g;
3050
0f20cc35
DJ
3051 if (g && entry->tls_type != GOT_NORMAL)
3052 arg->needed_relocs +=
3053 mips_tls_got_relocs (arg->info, entry->tls_type,
3054 entry->symndx == -1 ? &entry->d.h->root : NULL);
3055
f4416af6 3056 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3057 && entry->d.h->root.dynindx != -1
3058 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3059 {
3060 if (g)
3061 {
3062 BFD_ASSERT (g->global_gotsym == NULL);
3063
3064 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3065 if (arg->info->shared
3066 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3067 && entry->d.h->root.def_dynamic
3068 && !entry->d.h->root.def_regular))
f4416af6
AO
3069 ++arg->needed_relocs;
3070 }
3071 else
3072 entry->d.h->root.got.offset = arg->value;
3073 }
3074
3075 return 1;
3076}
3077
0626d451
RS
3078/* Mark any global symbols referenced in the GOT we are iterating over
3079 as inelligible for lazy resolution stubs. */
3080static int
9719ad41 3081mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3082{
3083 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3084
3085 if (entry->abfd != NULL
3086 && entry->symndx == -1
3087 && entry->d.h->root.dynindx != -1)
3088 entry->d.h->no_fn_stub = TRUE;
3089
3090 return 1;
3091}
3092
f4416af6
AO
3093/* Follow indirect and warning hash entries so that each got entry
3094 points to the final symbol definition. P must point to a pointer
3095 to the hash table we're traversing. Since this traversal may
3096 modify the hash table, we set this pointer to NULL to indicate
3097 we've made a potentially-destructive change to the hash table, so
3098 the traversal must be restarted. */
3099static int
9719ad41 3100mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3101{
3102 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3103 htab_t got_entries = *(htab_t *)p;
3104
3105 if (entry->abfd != NULL && entry->symndx == -1)
3106 {
3107 struct mips_elf_link_hash_entry *h = entry->d.h;
3108
3109 while (h->root.root.type == bfd_link_hash_indirect
3110 || h->root.root.type == bfd_link_hash_warning)
3111 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3112
3113 if (entry->d.h == h)
3114 return 1;
143d77c5 3115
f4416af6
AO
3116 entry->d.h = h;
3117
3118 /* If we can't find this entry with the new bfd hash, re-insert
3119 it, and get the traversal restarted. */
3120 if (! htab_find (got_entries, entry))
3121 {
3122 htab_clear_slot (got_entries, entryp);
3123 entryp = htab_find_slot (got_entries, entry, INSERT);
3124 if (! *entryp)
3125 *entryp = entry;
3126 /* Abort the traversal, since the whole table may have
3127 moved, and leave it up to the parent to restart the
3128 process. */
3129 *(htab_t *)p = NULL;
3130 return 0;
3131 }
3132 /* We might want to decrement the global_gotno count, but it's
3133 either too early or too late for that at this point. */
3134 }
143d77c5 3135
f4416af6
AO
3136 return 1;
3137}
3138
3139/* Turn indirect got entries in a got_entries table into their final
3140 locations. */
3141static void
9719ad41 3142mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3143{
3144 htab_t got_entries;
3145
3146 do
3147 {
3148 got_entries = g->got_entries;
3149
3150 htab_traverse (got_entries,
3151 mips_elf_resolve_final_got_entry,
3152 &got_entries);
3153 }
3154 while (got_entries == NULL);
3155}
3156
3157/* Return the offset of an input bfd IBFD's GOT from the beginning of
3158 the primary GOT. */
3159static bfd_vma
9719ad41 3160mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3161{
3162 if (g->bfd2got == NULL)
3163 return 0;
3164
3165 g = mips_elf_got_for_ibfd (g, ibfd);
3166 if (! g)
3167 return 0;
3168
3169 BFD_ASSERT (g->next);
3170
3171 g = g->next;
143d77c5 3172
0f20cc35
DJ
3173 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3174 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3175}
3176
3177/* Turn a single GOT that is too big for 16-bit addressing into
3178 a sequence of GOTs, each one 16-bit addressable. */
3179
3180static bfd_boolean
9719ad41
RS
3181mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3182 struct mips_got_info *g, asection *got,
3183 bfd_size_type pages)
f4416af6
AO
3184{
3185 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3186 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3187 struct mips_got_info *gg;
3188 unsigned int assign;
3189
3190 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3191 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3192 if (g->bfd2got == NULL)
3193 return FALSE;
3194
3195 got_per_bfd_arg.bfd2got = g->bfd2got;
3196 got_per_bfd_arg.obfd = abfd;
3197 got_per_bfd_arg.info = info;
3198
3199 /* Count how many GOT entries each input bfd requires, creating a
3200 map from bfd to got info while at that. */
f4416af6
AO
3201 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3202 if (got_per_bfd_arg.obfd == NULL)
3203 return FALSE;
3204
3205 got_per_bfd_arg.current = NULL;
3206 got_per_bfd_arg.primary = NULL;
3207 /* Taking out PAGES entries is a worst-case estimate. We could
3208 compute the maximum number of pages that each separate input bfd
3209 uses, but it's probably not worth it. */
3210 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
3211 / MIPS_ELF_GOT_SIZE (abfd))
3212 - MIPS_RESERVED_GOTNO - pages);
0f20cc35
DJ
3213 /* The number of globals that will be included in the primary GOT.
3214 See the calls to mips_elf_set_global_got_offset below for more
3215 information. */
3216 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3217
3218 /* Try to merge the GOTs of input bfds together, as long as they
3219 don't seem to exceed the maximum GOT size, choosing one of them
3220 to be the primary GOT. */
3221 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3222 if (got_per_bfd_arg.obfd == NULL)
3223 return FALSE;
3224
0f20cc35 3225 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3226 if (got_per_bfd_arg.primary == NULL)
3227 {
3228 g->next = (struct mips_got_info *)
3229 bfd_alloc (abfd, sizeof (struct mips_got_info));
3230 if (g->next == NULL)
3231 return FALSE;
3232
3233 g->next->global_gotsym = NULL;
3234 g->next->global_gotno = 0;
3235 g->next->local_gotno = 0;
0f20cc35 3236 g->next->tls_gotno = 0;
f4416af6 3237 g->next->assigned_gotno = 0;
0f20cc35
DJ
3238 g->next->tls_assigned_gotno = 0;
3239 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3240 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3241 mips_elf_multi_got_entry_eq,
9719ad41 3242 NULL);
f4416af6
AO
3243 if (g->next->got_entries == NULL)
3244 return FALSE;
3245 g->next->bfd2got = NULL;
3246 }
3247 else
3248 g->next = got_per_bfd_arg.primary;
3249 g->next->next = got_per_bfd_arg.current;
3250
3251 /* GG is now the master GOT, and G is the primary GOT. */
3252 gg = g;
3253 g = g->next;
3254
3255 /* Map the output bfd to the primary got. That's what we're going
3256 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3257 didn't mark in check_relocs, and we want a quick way to find it.
3258 We can't just use gg->next because we're going to reverse the
3259 list. */
3260 {
3261 struct mips_elf_bfd2got_hash *bfdgot;
3262 void **bfdgotp;
143d77c5 3263
f4416af6
AO
3264 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3265 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3266
3267 if (bfdgot == NULL)
3268 return FALSE;
3269
3270 bfdgot->bfd = abfd;
3271 bfdgot->g = g;
3272 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3273
3274 BFD_ASSERT (*bfdgotp == NULL);
3275 *bfdgotp = bfdgot;
3276 }
3277
3278 /* The IRIX dynamic linker requires every symbol that is referenced
3279 in a dynamic relocation to be present in the primary GOT, so
3280 arrange for them to appear after those that are actually
3281 referenced.
3282
3283 GNU/Linux could very well do without it, but it would slow down
3284 the dynamic linker, since it would have to resolve every dynamic
3285 symbol referenced in other GOTs more than once, without help from
3286 the cache. Also, knowing that every external symbol has a GOT
3287 helps speed up the resolution of local symbols too, so GNU/Linux
3288 follows IRIX's practice.
143d77c5 3289
f4416af6
AO
3290 The number 2 is used by mips_elf_sort_hash_table_f to count
3291 global GOT symbols that are unreferenced in the primary GOT, with
3292 an initial dynamic index computed from gg->assigned_gotno, where
3293 the number of unreferenced global entries in the primary GOT is
3294 preserved. */
3295 if (1)
3296 {
3297 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3298 g->global_gotno = gg->global_gotno;
3299 set_got_offset_arg.value = 2;
3300 }
3301 else
3302 {
3303 /* This could be used for dynamic linkers that don't optimize
3304 symbol resolution while applying relocations so as to use
3305 primary GOT entries or assuming the symbol is locally-defined.
3306 With this code, we assign lower dynamic indices to global
3307 symbols that are not referenced in the primary GOT, so that
3308 their entries can be omitted. */
3309 gg->assigned_gotno = 0;
3310 set_got_offset_arg.value = -1;
3311 }
3312
3313 /* Reorder dynamic symbols as described above (which behavior
3314 depends on the setting of VALUE). */
3315 set_got_offset_arg.g = NULL;
3316 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3317 &set_got_offset_arg);
3318 set_got_offset_arg.value = 1;
3319 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3320 &set_got_offset_arg);
3321 if (! mips_elf_sort_hash_table (info, 1))
3322 return FALSE;
3323
3324 /* Now go through the GOTs assigning them offset ranges.
3325 [assigned_gotno, local_gotno[ will be set to the range of local
3326 entries in each GOT. We can then compute the end of a GOT by
3327 adding local_gotno to global_gotno. We reverse the list and make
3328 it circular since then we'll be able to quickly compute the
3329 beginning of a GOT, by computing the end of its predecessor. To
3330 avoid special cases for the primary GOT, while still preserving
3331 assertions that are valid for both single- and multi-got links,
3332 we arrange for the main got struct to have the right number of
3333 global entries, but set its local_gotno such that the initial
3334 offset of the primary GOT is zero. Remember that the primary GOT
3335 will become the last item in the circular linked list, so it
3336 points back to the master GOT. */
3337 gg->local_gotno = -g->global_gotno;
3338 gg->global_gotno = g->global_gotno;
0f20cc35 3339 gg->tls_gotno = 0;
f4416af6
AO
3340 assign = 0;
3341 gg->next = gg;
3342
3343 do
3344 {
3345 struct mips_got_info *gn;
3346
3347 assign += MIPS_RESERVED_GOTNO;
3348 g->assigned_gotno = assign;
3349 g->local_gotno += assign + pages;
0f20cc35
DJ
3350 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3351
3352 /* Set up any TLS entries. We always place the TLS entries after
3353 all non-TLS entries. */
3354 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3355 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6
AO
3356
3357 /* Take g out of the direct list, and push it onto the reversed
3358 list that gg points to. */
3359 gn = g->next;
3360 g->next = gg->next;
3361 gg->next = g;
3362 g = gn;
0626d451
RS
3363
3364 /* Mark global symbols in every non-primary GOT as ineligible for
3365 stubs. */
3366 if (g)
3367 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3368 }
3369 while (g);
3370
eea6121a 3371 got->size = (gg->next->local_gotno
0f20cc35
DJ
3372 + gg->next->global_gotno
3373 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3374
f4416af6
AO
3375 return TRUE;
3376}
143d77c5 3377
b49e97c9
TS
3378\f
3379/* Returns the first relocation of type r_type found, beginning with
3380 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3381
3382static const Elf_Internal_Rela *
9719ad41
RS
3383mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3384 const Elf_Internal_Rela *relocation,
3385 const Elf_Internal_Rela *relend)
b49e97c9 3386{
b49e97c9
TS
3387 while (relocation < relend)
3388 {
3389 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3390 return relocation;
3391
3392 ++relocation;
3393 }
3394
3395 /* We didn't find it. */
3396 bfd_set_error (bfd_error_bad_value);
3397 return NULL;
3398}
3399
3400/* Return whether a relocation is against a local symbol. */
3401
b34976b6 3402static bfd_boolean
9719ad41
RS
3403mips_elf_local_relocation_p (bfd *input_bfd,
3404 const Elf_Internal_Rela *relocation,
3405 asection **local_sections,
3406 bfd_boolean check_forced)
b49e97c9
TS
3407{
3408 unsigned long r_symndx;
3409 Elf_Internal_Shdr *symtab_hdr;
3410 struct mips_elf_link_hash_entry *h;
3411 size_t extsymoff;
3412
3413 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3414 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3415 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3416
3417 if (r_symndx < extsymoff)
b34976b6 3418 return TRUE;
b49e97c9 3419 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3420 return TRUE;
b49e97c9
TS
3421
3422 if (check_forced)
3423 {
3424 /* Look up the hash table to check whether the symbol
3425 was forced local. */
3426 h = (struct mips_elf_link_hash_entry *)
3427 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3428 /* Find the real hash-table entry for this symbol. */
3429 while (h->root.root.type == bfd_link_hash_indirect
3430 || h->root.root.type == bfd_link_hash_warning)
3431 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3432 if (h->root.forced_local)
b34976b6 3433 return TRUE;
b49e97c9
TS
3434 }
3435
b34976b6 3436 return FALSE;
b49e97c9
TS
3437}
3438\f
3439/* Sign-extend VALUE, which has the indicated number of BITS. */
3440
a7ebbfdf 3441bfd_vma
9719ad41 3442_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3443{
3444 if (value & ((bfd_vma) 1 << (bits - 1)))
3445 /* VALUE is negative. */
3446 value |= ((bfd_vma) - 1) << bits;
3447
3448 return value;
3449}
3450
3451/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3452 range expressible by a signed number with the indicated number of
b49e97c9
TS
3453 BITS. */
3454
b34976b6 3455static bfd_boolean
9719ad41 3456mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3457{
3458 bfd_signed_vma svalue = (bfd_signed_vma) value;
3459
3460 if (svalue > (1 << (bits - 1)) - 1)
3461 /* The value is too big. */
b34976b6 3462 return TRUE;
b49e97c9
TS
3463 else if (svalue < -(1 << (bits - 1)))
3464 /* The value is too small. */
b34976b6 3465 return TRUE;
b49e97c9
TS
3466
3467 /* All is well. */
b34976b6 3468 return FALSE;
b49e97c9
TS
3469}
3470
3471/* Calculate the %high function. */
3472
3473static bfd_vma
9719ad41 3474mips_elf_high (bfd_vma value)
b49e97c9
TS
3475{
3476 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3477}
3478
3479/* Calculate the %higher function. */
3480
3481static bfd_vma
9719ad41 3482mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3483{
3484#ifdef BFD64
3485 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3486#else
3487 abort ();
c5ae1840 3488 return MINUS_ONE;
b49e97c9
TS
3489#endif
3490}
3491
3492/* Calculate the %highest function. */
3493
3494static bfd_vma
9719ad41 3495mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3496{
3497#ifdef BFD64
b15e6682 3498 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3499#else
3500 abort ();
c5ae1840 3501 return MINUS_ONE;
b49e97c9
TS
3502#endif
3503}
3504\f
3505/* Create the .compact_rel section. */
3506
b34976b6 3507static bfd_boolean
9719ad41
RS
3508mips_elf_create_compact_rel_section
3509 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3510{
3511 flagword flags;
3512 register asection *s;
3513
3514 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3515 {
3516 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3517 | SEC_READONLY);
3518
3496cb2a 3519 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3520 if (s == NULL
b49e97c9
TS
3521 || ! bfd_set_section_alignment (abfd, s,
3522 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3523 return FALSE;
b49e97c9 3524
eea6121a 3525 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3526 }
3527
b34976b6 3528 return TRUE;
b49e97c9
TS
3529}
3530
3531/* Create the .got section to hold the global offset table. */
3532
b34976b6 3533static bfd_boolean
9719ad41
RS
3534mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3535 bfd_boolean maybe_exclude)
b49e97c9
TS
3536{
3537 flagword flags;
3538 register asection *s;
3539 struct elf_link_hash_entry *h;
14a793b2 3540 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3541 struct mips_got_info *g;
3542 bfd_size_type amt;
3543
3544 /* This function may be called more than once. */
f4416af6
AO
3545 s = mips_elf_got_section (abfd, TRUE);
3546 if (s)
3547 {
3548 if (! maybe_exclude)
3549 s->flags &= ~SEC_EXCLUDE;
3550 return TRUE;
3551 }
b49e97c9
TS
3552
3553 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3554 | SEC_LINKER_CREATED);
3555
f4416af6
AO
3556 if (maybe_exclude)
3557 flags |= SEC_EXCLUDE;
3558
72b4917c
TS
3559 /* We have to use an alignment of 2**4 here because this is hardcoded
3560 in the function stub generation and in the linker script. */
3496cb2a 3561 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3562 if (s == NULL
72b4917c 3563 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3564 return FALSE;
b49e97c9
TS
3565
3566 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3567 linker script because we don't want to define the symbol if we
3568 are not creating a global offset table. */
14a793b2 3569 bh = NULL;
b49e97c9
TS
3570 if (! (_bfd_generic_link_add_one_symbol
3571 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3572 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3573 return FALSE;
14a793b2
AM
3574
3575 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3576 h->non_elf = 0;
3577 h->def_regular = 1;
b49e97c9
TS
3578 h->type = STT_OBJECT;
3579
3580 if (info->shared
c152c796 3581 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3582 return FALSE;
b49e97c9 3583
b49e97c9 3584 amt = sizeof (struct mips_got_info);
9719ad41 3585 g = bfd_alloc (abfd, amt);
b49e97c9 3586 if (g == NULL)
b34976b6 3587 return FALSE;
b49e97c9 3588 g->global_gotsym = NULL;
e3d54347 3589 g->global_gotno = 0;
0f20cc35 3590 g->tls_gotno = 0;
b49e97c9
TS
3591 g->local_gotno = MIPS_RESERVED_GOTNO;
3592 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
3593 g->bfd2got = NULL;
3594 g->next = NULL;
0f20cc35 3595 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3596 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3597 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3598 if (g->got_entries == NULL)
3599 return FALSE;
f0abc2a1
AM
3600 mips_elf_section_data (s)->u.got_info = g;
3601 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3602 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3603
b34976b6 3604 return TRUE;
b49e97c9 3605}
b49e97c9
TS
3606\f
3607/* Calculate the value produced by the RELOCATION (which comes from
3608 the INPUT_BFD). The ADDEND is the addend to use for this
3609 RELOCATION; RELOCATION->R_ADDEND is ignored.
3610
3611 The result of the relocation calculation is stored in VALUEP.
3612 REQUIRE_JALXP indicates whether or not the opcode used with this
3613 relocation must be JALX.
3614
3615 This function returns bfd_reloc_continue if the caller need take no
3616 further action regarding this relocation, bfd_reloc_notsupported if
3617 something goes dramatically wrong, bfd_reloc_overflow if an
3618 overflow occurs, and bfd_reloc_ok to indicate success. */
3619
3620static bfd_reloc_status_type
9719ad41
RS
3621mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3622 asection *input_section,
3623 struct bfd_link_info *info,
3624 const Elf_Internal_Rela *relocation,
3625 bfd_vma addend, reloc_howto_type *howto,
3626 Elf_Internal_Sym *local_syms,
3627 asection **local_sections, bfd_vma *valuep,
3628 const char **namep, bfd_boolean *require_jalxp,
3629 bfd_boolean save_addend)
b49e97c9
TS
3630{
3631 /* The eventual value we will return. */
3632 bfd_vma value;
3633 /* The address of the symbol against which the relocation is
3634 occurring. */
3635 bfd_vma symbol = 0;
3636 /* The final GP value to be used for the relocatable, executable, or
3637 shared object file being produced. */
3638 bfd_vma gp = MINUS_ONE;
3639 /* The place (section offset or address) of the storage unit being
3640 relocated. */
3641 bfd_vma p;
3642 /* The value of GP used to create the relocatable object. */
3643 bfd_vma gp0 = MINUS_ONE;
3644 /* The offset into the global offset table at which the address of
3645 the relocation entry symbol, adjusted by the addend, resides
3646 during execution. */
3647 bfd_vma g = MINUS_ONE;
3648 /* The section in which the symbol referenced by the relocation is
3649 located. */
3650 asection *sec = NULL;
3651 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3652 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3653 symbol. */
b34976b6
AM
3654 bfd_boolean local_p, was_local_p;
3655 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3656 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3657 /* TRUE if the symbol referred to by this relocation is
3658 "__gnu_local_gp". */
3659 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3660 Elf_Internal_Shdr *symtab_hdr;
3661 size_t extsymoff;
3662 unsigned long r_symndx;
3663 int r_type;
b34976b6 3664 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3665 relocation value. */
b34976b6
AM
3666 bfd_boolean overflowed_p;
3667 /* TRUE if this relocation refers to a MIPS16 function. */
3668 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
3669
3670 /* Parse the relocation. */
3671 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3672 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3673 p = (input_section->output_section->vma
3674 + input_section->output_offset
3675 + relocation->r_offset);
3676
3677 /* Assume that there will be no overflow. */
b34976b6 3678 overflowed_p = FALSE;
b49e97c9
TS
3679
3680 /* Figure out whether or not the symbol is local, and get the offset
3681 used in the array of hash table entries. */
3682 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3683 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3684 local_sections, FALSE);
bce03d3d 3685 was_local_p = local_p;
b49e97c9
TS
3686 if (! elf_bad_symtab (input_bfd))
3687 extsymoff = symtab_hdr->sh_info;
3688 else
3689 {
3690 /* The symbol table does not follow the rule that local symbols
3691 must come before globals. */
3692 extsymoff = 0;
3693 }
3694
3695 /* Figure out the value of the symbol. */
3696 if (local_p)
3697 {
3698 Elf_Internal_Sym *sym;
3699
3700 sym = local_syms + r_symndx;
3701 sec = local_sections[r_symndx];
3702
3703 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3704 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3705 || (sec->flags & SEC_MERGE))
b49e97c9 3706 symbol += sym->st_value;
d4df96e6
L
3707 if ((sec->flags & SEC_MERGE)
3708 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3709 {
3710 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3711 addend -= symbol;
3712 addend += sec->output_section->vma + sec->output_offset;
3713 }
b49e97c9
TS
3714
3715 /* MIPS16 text labels should be treated as odd. */
3716 if (sym->st_other == STO_MIPS16)
3717 ++symbol;
3718
3719 /* Record the name of this symbol, for our caller. */
3720 *namep = bfd_elf_string_from_elf_section (input_bfd,
3721 symtab_hdr->sh_link,
3722 sym->st_name);
3723 if (*namep == '\0')
3724 *namep = bfd_section_name (input_bfd, sec);
3725
3726 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3727 }
3728 else
3729 {
560e09e9
NC
3730 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3731
b49e97c9
TS
3732 /* For global symbols we look up the symbol in the hash-table. */
3733 h = ((struct mips_elf_link_hash_entry *)
3734 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3735 /* Find the real hash-table entry for this symbol. */
3736 while (h->root.root.type == bfd_link_hash_indirect
3737 || h->root.root.type == bfd_link_hash_warning)
3738 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3739
3740 /* Record the name of this symbol, for our caller. */
3741 *namep = h->root.root.root.string;
3742
3743 /* See if this is the special _gp_disp symbol. Note that such a
3744 symbol must always be a global symbol. */
560e09e9 3745 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3746 && ! NEWABI_P (input_bfd))
3747 {
3748 /* Relocations against _gp_disp are permitted only with
3749 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
3750 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3751 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
3752 return bfd_reloc_notsupported;
3753
b34976b6 3754 gp_disp_p = TRUE;
b49e97c9 3755 }
bbe506e8
TS
3756 /* See if this is the special _gp symbol. Note that such a
3757 symbol must always be a global symbol. */
3758 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3759 gnu_local_gp_p = TRUE;
3760
3761
b49e97c9
TS
3762 /* If this symbol is defined, calculate its address. Note that
3763 _gp_disp is a magic symbol, always implicitly defined by the
3764 linker, so it's inappropriate to check to see whether or not
3765 its defined. */
3766 else if ((h->root.root.type == bfd_link_hash_defined
3767 || h->root.root.type == bfd_link_hash_defweak)
3768 && h->root.root.u.def.section)
3769 {
3770 sec = h->root.root.u.def.section;
3771 if (sec->output_section)
3772 symbol = (h->root.root.u.def.value
3773 + sec->output_section->vma
3774 + sec->output_offset);
3775 else
3776 symbol = h->root.root.u.def.value;
3777 }
3778 else if (h->root.root.type == bfd_link_hash_undefweak)
3779 /* We allow relocations against undefined weak symbols, giving
3780 it the value zero, so that you can undefined weak functions
3781 and check to see if they exist by looking at their
3782 addresses. */
3783 symbol = 0;
59c2e50f 3784 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
3785 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3786 symbol = 0;
a4d0f181
TS
3787 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3788 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
3789 {
3790 /* If this is a dynamic link, we should have created a
3791 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3792 in in _bfd_mips_elf_create_dynamic_sections.
3793 Otherwise, we should define the symbol with a value of 0.
3794 FIXME: It should probably get into the symbol table
3795 somehow as well. */
3796 BFD_ASSERT (! info->shared);
3797 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3798 symbol = 0;
3799 }
5e2b0d47
NC
3800 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
3801 {
3802 /* This is an optional symbol - an Irix specific extension to the
3803 ELF spec. Ignore it for now.
3804 XXX - FIXME - there is more to the spec for OPTIONAL symbols
3805 than simply ignoring them, but we do not handle this for now.
3806 For information see the "64-bit ELF Object File Specification"
3807 which is available from here:
3808 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
3809 symbol = 0;
3810 }
b49e97c9
TS
3811 else
3812 {
3813 if (! ((*info->callbacks->undefined_symbol)
3814 (info, h->root.root.root.string, input_bfd,
3815 input_section, relocation->r_offset,
59c2e50f
L
3816 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3817 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
3818 return bfd_reloc_undefined;
3819 symbol = 0;
3820 }
3821
3822 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3823 }
3824
3825 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3826 need to redirect the call to the stub, unless we're already *in*
3827 a stub. */
1049f94e 3828 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3829 && ((h != NULL && h->fn_stub != NULL)
3830 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3831 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3832 && !mips_elf_stub_section_p (input_bfd, input_section))
3833 {
3834 /* This is a 32- or 64-bit call to a 16-bit function. We should
3835 have already noticed that we were going to need the
3836 stub. */
3837 if (local_p)
3838 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3839 else
3840 {
3841 BFD_ASSERT (h->need_fn_stub);
3842 sec = h->fn_stub;
3843 }
3844
3845 symbol = sec->output_section->vma + sec->output_offset;
3846 }
3847 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3848 need to redirect the call to the stub. */
1049f94e 3849 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3850 && h != NULL
3851 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3852 && !target_is_16_bit_code_p)
3853 {
3854 /* If both call_stub and call_fp_stub are defined, we can figure
3855 out which one to use by seeing which one appears in the input
3856 file. */
3857 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3858 {
3859 asection *o;
3860
3861 sec = NULL;
3862 for (o = input_bfd->sections; o != NULL; o = o->next)
3863 {
3864 if (strncmp (bfd_get_section_name (input_bfd, o),
3865 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3866 {
3867 sec = h->call_fp_stub;
3868 break;
3869 }
3870 }
3871 if (sec == NULL)
3872 sec = h->call_stub;
3873 }
3874 else if (h->call_stub != NULL)
3875 sec = h->call_stub;
3876 else
3877 sec = h->call_fp_stub;
3878
eea6121a 3879 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
3880 symbol = sec->output_section->vma + sec->output_offset;
3881 }
3882
3883 /* Calls from 16-bit code to 32-bit code and vice versa require the
3884 special jalx instruction. */
1049f94e 3885 *require_jalxp = (!info->relocatable
b49e97c9
TS
3886 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3887 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3888
3889 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3890 local_sections, TRUE);
b49e97c9
TS
3891
3892 /* If we haven't already determined the GOT offset, or the GP value,
3893 and we're going to need it, get it now. */
3894 switch (r_type)
3895 {
0fdc1bf1 3896 case R_MIPS_GOT_PAGE:
93a2b7ae 3897 case R_MIPS_GOT_OFST:
d25aed71
RS
3898 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3899 bind locally. */
3900 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 3901 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3902 break;
3903 /* Fall through. */
3904
b49e97c9
TS
3905 case R_MIPS_CALL16:
3906 case R_MIPS_GOT16:
3907 case R_MIPS_GOT_DISP:
3908 case R_MIPS_GOT_HI16:
3909 case R_MIPS_CALL_HI16:
3910 case R_MIPS_GOT_LO16:
3911 case R_MIPS_CALL_LO16:
0f20cc35
DJ
3912 case R_MIPS_TLS_GD:
3913 case R_MIPS_TLS_GOTTPREL:
3914 case R_MIPS_TLS_LDM:
b49e97c9 3915 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
3916 if (r_type == R_MIPS_TLS_LDM)
3917 {
3918 g = mips_elf_local_got_index (abfd, input_bfd, info, 0, 0, NULL,
3919 r_type);
3920 if (g == MINUS_ONE)
3921 return bfd_reloc_outofrange;
3922 }
3923 else if (!local_p)
b49e97c9 3924 {
0fdc1bf1
AO
3925 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3926 GOT_PAGE relocation that decays to GOT_DISP because the
3927 symbol turns out to be global. The addend is then added
3928 as GOT_OFST. */
3929 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3930 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3931 input_bfd,
0f20cc35
DJ
3932 (struct elf_link_hash_entry *) h,
3933 r_type, info);
3934 if (h->tls_type == GOT_NORMAL
3935 && (! elf_hash_table(info)->dynamic_sections_created
3936 || (info->shared
6ece8836 3937 && (info->symbolic || h->root.forced_local)
0f20cc35 3938 && h->root.def_regular)))
b49e97c9
TS
3939 {
3940 /* This is a static link or a -Bsymbolic link. The
3941 symbol is defined locally, or was forced to be local.
3942 We must initialize this entry in the GOT. */
3943 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3944 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3945 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3946 }
3947 }
3948 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3949 /* There's no need to create a local GOT entry here; the
3950 calculation for a local GOT16 entry does not involve G. */
3951 break;
3952 else
3953 {
f4416af6 3954 g = mips_elf_local_got_index (abfd, input_bfd,
0f20cc35
DJ
3955 info, symbol + addend, r_symndx, h,
3956 r_type);
b49e97c9
TS
3957 if (g == MINUS_ONE)
3958 return bfd_reloc_outofrange;
3959 }
3960
3961 /* Convert GOT indices to actual offsets. */
3962 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3963 abfd, input_bfd, g);
b49e97c9
TS
3964 break;
3965
3966 case R_MIPS_HI16:
3967 case R_MIPS_LO16:
b49e97c9
TS
3968 case R_MIPS_GPREL16:
3969 case R_MIPS_GPREL32:
3970 case R_MIPS_LITERAL:
d6f16593
MR
3971 case R_MIPS16_HI16:
3972 case R_MIPS16_LO16:
3973 case R_MIPS16_GPREL:
b49e97c9
TS
3974 gp0 = _bfd_get_gp_value (input_bfd);
3975 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3976 if (elf_hash_table (info)->dynobj)
3977 gp += mips_elf_adjust_gp (abfd,
3978 mips_elf_got_info
3979 (elf_hash_table (info)->dynobj, NULL),
3980 input_bfd);
b49e97c9
TS
3981 break;
3982
3983 default:
3984 break;
3985 }
3986
bbe506e8
TS
3987 if (gnu_local_gp_p)
3988 symbol = gp;
86324f90 3989
b49e97c9
TS
3990 /* Figure out what kind of relocation is being performed. */
3991 switch (r_type)
3992 {
3993 case R_MIPS_NONE:
3994 return bfd_reloc_continue;
3995
3996 case R_MIPS_16:
a7ebbfdf 3997 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3998 overflowed_p = mips_elf_overflow_p (value, 16);
3999 break;
4000
4001 case R_MIPS_32:
4002 case R_MIPS_REL32:
4003 case R_MIPS_64:
4004 if ((info->shared
4005 || (elf_hash_table (info)->dynamic_sections_created
4006 && h != NULL
f5385ebf
AM
4007 && h->root.def_dynamic
4008 && !h->root.def_regular))
b49e97c9
TS
4009 && r_symndx != 0
4010 && (input_section->flags & SEC_ALLOC) != 0)
4011 {
4012 /* If we're creating a shared library, or this relocation is
4013 against a symbol in a shared library, then we can't know
4014 where the symbol will end up. So, we create a relocation
4015 record in the output, and leave the job up to the dynamic
4016 linker. */
4017 value = addend;
4018 if (!mips_elf_create_dynamic_relocation (abfd,
4019 info,
4020 relocation,
4021 h,
4022 sec,
4023 symbol,
4024 &value,
4025 input_section))
4026 return bfd_reloc_undefined;
4027 }
4028 else
4029 {
4030 if (r_type != R_MIPS_REL32)
4031 value = symbol + addend;
4032 else
4033 value = addend;
4034 }
4035 value &= howto->dst_mask;
092dcd75
CD
4036 break;
4037
4038 case R_MIPS_PC32:
4039 value = symbol + addend - p;
4040 value &= howto->dst_mask;
b49e97c9
TS
4041 break;
4042
b49e97c9
TS
4043 case R_MIPS16_26:
4044 /* The calculation for R_MIPS16_26 is just the same as for an
4045 R_MIPS_26. It's only the storage of the relocated field into
4046 the output file that's different. That's handled in
4047 mips_elf_perform_relocation. So, we just fall through to the
4048 R_MIPS_26 case here. */
4049 case R_MIPS_26:
4050 if (local_p)
30ac9238 4051 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4052 else
728b2f21
ILT
4053 {
4054 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4055 if (h->root.root.type != bfd_link_hash_undefweak)
4056 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4057 }
b49e97c9
TS
4058 value &= howto->dst_mask;
4059 break;
4060
0f20cc35
DJ
4061 case R_MIPS_TLS_DTPREL_HI16:
4062 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4063 & howto->dst_mask);
4064 break;
4065
4066 case R_MIPS_TLS_DTPREL_LO16:
4067 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4068 break;
4069
4070 case R_MIPS_TLS_TPREL_HI16:
4071 value = (mips_elf_high (addend + symbol - tprel_base (info))
4072 & howto->dst_mask);
4073 break;
4074
4075 case R_MIPS_TLS_TPREL_LO16:
4076 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4077 break;
4078
b49e97c9 4079 case R_MIPS_HI16:
d6f16593 4080 case R_MIPS16_HI16:
b49e97c9
TS
4081 if (!gp_disp_p)
4082 {
4083 value = mips_elf_high (addend + symbol);
4084 value &= howto->dst_mask;
4085 }
4086 else
4087 {
d6f16593
MR
4088 /* For MIPS16 ABI code we generate this sequence
4089 0: li $v0,%hi(_gp_disp)
4090 4: addiupc $v1,%lo(_gp_disp)
4091 8: sll $v0,16
4092 12: addu $v0,$v1
4093 14: move $gp,$v0
4094 So the offsets of hi and lo relocs are the same, but the
4095 $pc is four higher than $t9 would be, so reduce
4096 both reloc addends by 4. */
4097 if (r_type == R_MIPS16_HI16)
4098 value = mips_elf_high (addend + gp - p - 4);
4099 else
4100 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4101 overflowed_p = mips_elf_overflow_p (value, 16);
4102 }
4103 break;
4104
4105 case R_MIPS_LO16:
d6f16593 4106 case R_MIPS16_LO16:
b49e97c9
TS
4107 if (!gp_disp_p)
4108 value = (symbol + addend) & howto->dst_mask;
4109 else
4110 {
d6f16593
MR
4111 /* See the comment for R_MIPS16_HI16 above for the reason
4112 for this conditional. */
4113 if (r_type == R_MIPS16_LO16)
4114 value = addend + gp - p;
4115 else
4116 value = addend + gp - p + 4;
b49e97c9 4117 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4118 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4119 _gp_disp are normally generated from the .cpload
4120 pseudo-op. It generates code that normally looks like
4121 this:
4122
4123 lui $gp,%hi(_gp_disp)
4124 addiu $gp,$gp,%lo(_gp_disp)
4125 addu $gp,$gp,$t9
4126
4127 Here $t9 holds the address of the function being called,
4128 as required by the MIPS ELF ABI. The R_MIPS_LO16
4129 relocation can easily overflow in this situation, but the
4130 R_MIPS_HI16 relocation will handle the overflow.
4131 Therefore, we consider this a bug in the MIPS ABI, and do
4132 not check for overflow here. */
4133 }
4134 break;
4135
4136 case R_MIPS_LITERAL:
4137 /* Because we don't merge literal sections, we can handle this
4138 just like R_MIPS_GPREL16. In the long run, we should merge
4139 shared literals, and then we will need to additional work
4140 here. */
4141
4142 /* Fall through. */
4143
4144 case R_MIPS16_GPREL:
4145 /* The R_MIPS16_GPREL performs the same calculation as
4146 R_MIPS_GPREL16, but stores the relocated bits in a different
4147 order. We don't need to do anything special here; the
4148 differences are handled in mips_elf_perform_relocation. */
4149 case R_MIPS_GPREL16:
bce03d3d
AO
4150 /* Only sign-extend the addend if it was extracted from the
4151 instruction. If the addend was separate, leave it alone,
4152 otherwise we may lose significant bits. */
4153 if (howto->partial_inplace)
a7ebbfdf 4154 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4155 value = symbol + addend - gp;
4156 /* If the symbol was local, any earlier relocatable links will
4157 have adjusted its addend with the gp offset, so compensate
4158 for that now. Don't do it for symbols forced local in this
4159 link, though, since they won't have had the gp offset applied
4160 to them before. */
4161 if (was_local_p)
4162 value += gp0;
b49e97c9
TS
4163 overflowed_p = mips_elf_overflow_p (value, 16);
4164 break;
4165
4166 case R_MIPS_GOT16:
4167 case R_MIPS_CALL16:
4168 if (local_p)
4169 {
b34976b6 4170 bfd_boolean forced;
b49e97c9
TS
4171
4172 /* The special case is when the symbol is forced to be local. We
4173 need the full address in the GOT since no R_MIPS_LO16 relocation
4174 follows. */
4175 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4176 local_sections, FALSE);
f4416af6
AO
4177 value = mips_elf_got16_entry (abfd, input_bfd, info,
4178 symbol + addend, forced);
b49e97c9
TS
4179 if (value == MINUS_ONE)
4180 return bfd_reloc_outofrange;
4181 value
4182 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 4183 abfd, input_bfd, value);
b49e97c9
TS
4184 overflowed_p = mips_elf_overflow_p (value, 16);
4185 break;
4186 }
4187
4188 /* Fall through. */
4189
0f20cc35
DJ
4190 case R_MIPS_TLS_GD:
4191 case R_MIPS_TLS_GOTTPREL:
4192 case R_MIPS_TLS_LDM:
b49e97c9 4193 case R_MIPS_GOT_DISP:
0fdc1bf1 4194 got_disp:
b49e97c9
TS
4195 value = g;
4196 overflowed_p = mips_elf_overflow_p (value, 16);
4197 break;
4198
4199 case R_MIPS_GPREL32:
bce03d3d
AO
4200 value = (addend + symbol + gp0 - gp);
4201 if (!save_addend)
4202 value &= howto->dst_mask;
b49e97c9
TS
4203 break;
4204
4205 case R_MIPS_PC16:
bad36eac
DJ
4206 case R_MIPS_GNU_REL16_S2:
4207 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4208 overflowed_p = mips_elf_overflow_p (value, 18);
4209 value = (value >> 2) & howto->dst_mask;
b49e97c9
TS
4210 break;
4211
4212 case R_MIPS_GOT_HI16:
4213 case R_MIPS_CALL_HI16:
4214 /* We're allowed to handle these two relocations identically.
4215 The dynamic linker is allowed to handle the CALL relocations
4216 differently by creating a lazy evaluation stub. */
4217 value = g;
4218 value = mips_elf_high (value);
4219 value &= howto->dst_mask;
4220 break;
4221
4222 case R_MIPS_GOT_LO16:
4223 case R_MIPS_CALL_LO16:
4224 value = g & howto->dst_mask;
4225 break;
4226
4227 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4228 /* GOT_PAGE relocations that reference non-local symbols decay
4229 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4230 0. */
93a2b7ae 4231 if (! local_p)
0fdc1bf1 4232 goto got_disp;
f4416af6 4233 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
4234 if (value == MINUS_ONE)
4235 return bfd_reloc_outofrange;
4236 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 4237 abfd, input_bfd, value);
b49e97c9
TS
4238 overflowed_p = mips_elf_overflow_p (value, 16);
4239 break;
4240
4241 case R_MIPS_GOT_OFST:
93a2b7ae 4242 if (local_p)
0fdc1bf1
AO
4243 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4244 else
4245 value = addend;
b49e97c9
TS
4246 overflowed_p = mips_elf_overflow_p (value, 16);
4247 break;
4248
4249 case R_MIPS_SUB:
4250 value = symbol - addend;
4251 value &= howto->dst_mask;
4252 break;
4253
4254 case R_MIPS_HIGHER:
4255 value = mips_elf_higher (addend + symbol);
4256 value &= howto->dst_mask;
4257 break;
4258
4259 case R_MIPS_HIGHEST:
4260 value = mips_elf_highest (addend + symbol);
4261 value &= howto->dst_mask;
4262 break;
4263
4264 case R_MIPS_SCN_DISP:
4265 value = symbol + addend - sec->output_offset;
4266 value &= howto->dst_mask;
4267 break;
4268
b49e97c9 4269 case R_MIPS_JALR:
1367d393
ILT
4270 /* This relocation is only a hint. In some cases, we optimize
4271 it into a bal instruction. But we don't try to optimize
4272 branches to the PLT; that will wind up wasting time. */
4273 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4274 return bfd_reloc_continue;
4275 value = symbol + addend;
4276 break;
b49e97c9 4277
1367d393 4278 case R_MIPS_PJUMP:
b49e97c9
TS
4279 case R_MIPS_GNU_VTINHERIT:
4280 case R_MIPS_GNU_VTENTRY:
4281 /* We don't do anything with these at present. */
4282 return bfd_reloc_continue;
4283
4284 default:
4285 /* An unrecognized relocation type. */
4286 return bfd_reloc_notsupported;
4287 }
4288
4289 /* Store the VALUE for our caller. */
4290 *valuep = value;
4291 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4292}
4293
4294/* Obtain the field relocated by RELOCATION. */
4295
4296static bfd_vma
9719ad41
RS
4297mips_elf_obtain_contents (reloc_howto_type *howto,
4298 const Elf_Internal_Rela *relocation,
4299 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4300{
4301 bfd_vma x;
4302 bfd_byte *location = contents + relocation->r_offset;
4303
4304 /* Obtain the bytes. */
4305 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4306
b49e97c9
TS
4307 return x;
4308}
4309
4310/* It has been determined that the result of the RELOCATION is the
4311 VALUE. Use HOWTO to place VALUE into the output file at the
4312 appropriate position. The SECTION is the section to which the
b34976b6 4313 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4314 for the relocation must be either JAL or JALX, and it is
4315 unconditionally converted to JALX.
4316
b34976b6 4317 Returns FALSE if anything goes wrong. */
b49e97c9 4318
b34976b6 4319static bfd_boolean
9719ad41
RS
4320mips_elf_perform_relocation (struct bfd_link_info *info,
4321 reloc_howto_type *howto,
4322 const Elf_Internal_Rela *relocation,
4323 bfd_vma value, bfd *input_bfd,
4324 asection *input_section, bfd_byte *contents,
4325 bfd_boolean require_jalx)
b49e97c9
TS
4326{
4327 bfd_vma x;
4328 bfd_byte *location;
4329 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4330
4331 /* Figure out where the relocation is occurring. */
4332 location = contents + relocation->r_offset;
4333
d6f16593
MR
4334 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4335
b49e97c9
TS
4336 /* Obtain the current value. */
4337 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4338
4339 /* Clear the field we are setting. */
4340 x &= ~howto->dst_mask;
4341
b49e97c9
TS
4342 /* Set the field. */
4343 x |= (value & howto->dst_mask);
4344
4345 /* If required, turn JAL into JALX. */
4346 if (require_jalx)
4347 {
b34976b6 4348 bfd_boolean ok;
b49e97c9
TS
4349 bfd_vma opcode = x >> 26;
4350 bfd_vma jalx_opcode;
4351
4352 /* Check to see if the opcode is already JAL or JALX. */
4353 if (r_type == R_MIPS16_26)
4354 {
4355 ok = ((opcode == 0x6) || (opcode == 0x7));
4356 jalx_opcode = 0x7;
4357 }
4358 else
4359 {
4360 ok = ((opcode == 0x3) || (opcode == 0x1d));
4361 jalx_opcode = 0x1d;
4362 }
4363
4364 /* If the opcode is not JAL or JALX, there's a problem. */
4365 if (!ok)
4366 {
4367 (*_bfd_error_handler)
d003868e
AM
4368 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4369 input_bfd,
4370 input_section,
b49e97c9
TS
4371 (unsigned long) relocation->r_offset);
4372 bfd_set_error (bfd_error_bad_value);
b34976b6 4373 return FALSE;
b49e97c9
TS
4374 }
4375
4376 /* Make this the JALX opcode. */
4377 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4378 }
4379
1367d393
ILT
4380 /* On the RM9000, bal is faster than jal, because bal uses branch
4381 prediction hardware. If we are linking for the RM9000, and we
4382 see jal, and bal fits, use it instead. Note that this
4383 transformation should be safe for all architectures. */
4384 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4385 && !info->relocatable
4386 && !require_jalx
4387 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4388 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4389 {
4390 bfd_vma addr;
4391 bfd_vma dest;
4392 bfd_signed_vma off;
4393
4394 addr = (input_section->output_section->vma
4395 + input_section->output_offset
4396 + relocation->r_offset
4397 + 4);
4398 if (r_type == R_MIPS_26)
4399 dest = (value << 2) | ((addr >> 28) << 28);
4400 else
4401 dest = value;
4402 off = dest - addr;
4403 if (off <= 0x1ffff && off >= -0x20000)
4404 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4405 }
4406
b49e97c9
TS
4407 /* Put the value into the output. */
4408 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4409
4410 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4411 location);
4412
b34976b6 4413 return TRUE;
b49e97c9
TS
4414}
4415
b34976b6 4416/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4417
b34976b6 4418static bfd_boolean
9719ad41 4419mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4420{
4421 const char *name = bfd_get_section_name (abfd, section);
4422
4423 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4424 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4425 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4426}
4427\f
4428/* Add room for N relocations to the .rel.dyn section in ABFD. */
4429
4430static void
9719ad41 4431mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
b49e97c9
TS
4432{
4433 asection *s;
4434
f4416af6 4435 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
4436 BFD_ASSERT (s != NULL);
4437
eea6121a 4438 if (s->size == 0)
b49e97c9
TS
4439 {
4440 /* Make room for a null element. */
eea6121a 4441 s->size += MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
4442 ++s->reloc_count;
4443 }
eea6121a 4444 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
4445}
4446
4447/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4448 is the original relocation, which is now being transformed into a
4449 dynamic relocation. The ADDENDP is adjusted if necessary; the
4450 caller should store the result in place of the original addend. */
4451
b34976b6 4452static bfd_boolean
9719ad41
RS
4453mips_elf_create_dynamic_relocation (bfd *output_bfd,
4454 struct bfd_link_info *info,
4455 const Elf_Internal_Rela *rel,
4456 struct mips_elf_link_hash_entry *h,
4457 asection *sec, bfd_vma symbol,
4458 bfd_vma *addendp, asection *input_section)
b49e97c9 4459{
947216bf 4460 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4461 asection *sreloc;
4462 bfd *dynobj;
4463 int r_type;
5d41f0b6
RS
4464 long indx;
4465 bfd_boolean defined_p;
b49e97c9
TS
4466
4467 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4468 dynobj = elf_hash_table (info)->dynobj;
f4416af6 4469 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
4470 BFD_ASSERT (sreloc != NULL);
4471 BFD_ASSERT (sreloc->contents != NULL);
4472 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4473 < sreloc->size);
b49e97c9 4474
b49e97c9
TS
4475 outrel[0].r_offset =
4476 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4477 outrel[1].r_offset =
4478 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4479 outrel[2].r_offset =
4480 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4481
c5ae1840 4482 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4483 /* The relocation field has been deleted. */
5d41f0b6
RS
4484 return TRUE;
4485
4486 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4487 {
4488 /* The relocation field has been converted into a relative value of
4489 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4490 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4491 *addendp += symbol;
5d41f0b6 4492 return TRUE;
0d591ff7 4493 }
b49e97c9 4494
5d41f0b6
RS
4495 /* We must now calculate the dynamic symbol table index to use
4496 in the relocation. */
4497 if (h != NULL
6ece8836
TS
4498 && (!h->root.def_regular
4499 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
4500 {
4501 indx = h->root.dynindx;
4502 if (SGI_COMPAT (output_bfd))
4503 defined_p = h->root.def_regular;
4504 else
4505 /* ??? glibc's ld.so just adds the final GOT entry to the
4506 relocation field. It therefore treats relocs against
4507 defined symbols in the same way as relocs against
4508 undefined symbols. */
4509 defined_p = FALSE;
4510 }
b49e97c9
TS
4511 else
4512 {
5d41f0b6
RS
4513 if (sec != NULL && bfd_is_abs_section (sec))
4514 indx = 0;
4515 else if (sec == NULL || sec->owner == NULL)
fdd07405 4516 {
5d41f0b6
RS
4517 bfd_set_error (bfd_error_bad_value);
4518 return FALSE;
b49e97c9
TS
4519 }
4520 else
4521 {
5d41f0b6
RS
4522 indx = elf_section_data (sec->output_section)->dynindx;
4523 if (indx == 0)
4524 abort ();
b49e97c9
TS
4525 }
4526
5d41f0b6
RS
4527 /* Instead of generating a relocation using the section
4528 symbol, we may as well make it a fully relative
4529 relocation. We want to avoid generating relocations to
4530 local symbols because we used to generate them
4531 incorrectly, without adding the original symbol value,
4532 which is mandated by the ABI for section symbols. In
4533 order to give dynamic loaders and applications time to
4534 phase out the incorrect use, we refrain from emitting
4535 section-relative relocations. It's not like they're
4536 useful, after all. This should be a bit more efficient
4537 as well. */
4538 /* ??? Although this behavior is compatible with glibc's ld.so,
4539 the ABI says that relocations against STN_UNDEF should have
4540 a symbol value of 0. Irix rld honors this, so relocations
4541 against STN_UNDEF have no effect. */
4542 if (!SGI_COMPAT (output_bfd))
4543 indx = 0;
4544 defined_p = TRUE;
b49e97c9
TS
4545 }
4546
5d41f0b6
RS
4547 /* If the relocation was previously an absolute relocation and
4548 this symbol will not be referred to by the relocation, we must
4549 adjust it by the value we give it in the dynamic symbol table.
4550 Otherwise leave the job up to the dynamic linker. */
4551 if (defined_p && r_type != R_MIPS_REL32)
4552 *addendp += symbol;
4553
4554 /* The relocation is always an REL32 relocation because we don't
4555 know where the shared library will wind up at load-time. */
4556 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4557 R_MIPS_REL32);
4558 /* For strict adherence to the ABI specification, we should
4559 generate a R_MIPS_64 relocation record by itself before the
4560 _REL32/_64 record as well, such that the addend is read in as
4561 a 64-bit value (REL32 is a 32-bit relocation, after all).
4562 However, since none of the existing ELF64 MIPS dynamic
4563 loaders seems to care, we don't waste space with these
4564 artificial relocations. If this turns out to not be true,
4565 mips_elf_allocate_dynamic_relocation() should be tweaked so
4566 as to make room for a pair of dynamic relocations per
4567 invocation if ABI_64_P, and here we should generate an
4568 additional relocation record with R_MIPS_64 by itself for a
4569 NULL symbol before this relocation record. */
4570 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4571 ABI_64_P (output_bfd)
4572 ? R_MIPS_64
4573 : R_MIPS_NONE);
4574 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4575
4576 /* Adjust the output offset of the relocation to reference the
4577 correct location in the output file. */
4578 outrel[0].r_offset += (input_section->output_section->vma
4579 + input_section->output_offset);
4580 outrel[1].r_offset += (input_section->output_section->vma
4581 + input_section->output_offset);
4582 outrel[2].r_offset += (input_section->output_section->vma
4583 + input_section->output_offset);
4584
b49e97c9
TS
4585 /* Put the relocation back out. We have to use the special
4586 relocation outputter in the 64-bit case since the 64-bit
4587 relocation format is non-standard. */
4588 if (ABI_64_P (output_bfd))
4589 {
4590 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4591 (output_bfd, &outrel[0],
4592 (sreloc->contents
4593 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4594 }
4595 else
947216bf
AM
4596 bfd_elf32_swap_reloc_out
4597 (output_bfd, &outrel[0],
4598 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4599
b49e97c9
TS
4600 /* We've now added another relocation. */
4601 ++sreloc->reloc_count;
4602
4603 /* Make sure the output section is writable. The dynamic linker
4604 will be writing to it. */
4605 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4606 |= SHF_WRITE;
4607
4608 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4609 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4610 {
4611 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4612 bfd_byte *cr;
4613
4614 if (scpt)
4615 {
4616 Elf32_crinfo cptrel;
4617
4618 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4619 cptrel.vaddr = (rel->r_offset
4620 + input_section->output_section->vma
4621 + input_section->output_offset);
4622 if (r_type == R_MIPS_REL32)
4623 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4624 else
4625 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4626 mips_elf_set_cr_dist2to (cptrel, 0);
4627 cptrel.konst = *addendp;
4628
4629 cr = (scpt->contents
4630 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4631 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4632 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4633 ((Elf32_External_crinfo *) cr
4634 + scpt->reloc_count));
4635 ++scpt->reloc_count;
4636 }
4637 }
4638
b34976b6 4639 return TRUE;
b49e97c9
TS
4640}
4641\f
b49e97c9
TS
4642/* Return the MACH for a MIPS e_flags value. */
4643
4644unsigned long
9719ad41 4645_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4646{
4647 switch (flags & EF_MIPS_MACH)
4648 {
4649 case E_MIPS_MACH_3900:
4650 return bfd_mach_mips3900;
4651
4652 case E_MIPS_MACH_4010:
4653 return bfd_mach_mips4010;
4654
4655 case E_MIPS_MACH_4100:
4656 return bfd_mach_mips4100;
4657
4658 case E_MIPS_MACH_4111:
4659 return bfd_mach_mips4111;
4660
00707a0e
RS
4661 case E_MIPS_MACH_4120:
4662 return bfd_mach_mips4120;
4663
b49e97c9
TS
4664 case E_MIPS_MACH_4650:
4665 return bfd_mach_mips4650;
4666
00707a0e
RS
4667 case E_MIPS_MACH_5400:
4668 return bfd_mach_mips5400;
4669
4670 case E_MIPS_MACH_5500:
4671 return bfd_mach_mips5500;
4672
0d2e43ed
ILT
4673 case E_MIPS_MACH_9000:
4674 return bfd_mach_mips9000;
4675
b49e97c9
TS
4676 case E_MIPS_MACH_SB1:
4677 return bfd_mach_mips_sb1;
4678
4679 default:
4680 switch (flags & EF_MIPS_ARCH)
4681 {
4682 default:
4683 case E_MIPS_ARCH_1:
4684 return bfd_mach_mips3000;
4685 break;
4686
4687 case E_MIPS_ARCH_2:
4688 return bfd_mach_mips6000;
4689 break;
4690
4691 case E_MIPS_ARCH_3:
4692 return bfd_mach_mips4000;
4693 break;
4694
4695 case E_MIPS_ARCH_4:
4696 return bfd_mach_mips8000;
4697 break;
4698
4699 case E_MIPS_ARCH_5:
4700 return bfd_mach_mips5;
4701 break;
4702
4703 case E_MIPS_ARCH_32:
4704 return bfd_mach_mipsisa32;
4705 break;
4706
4707 case E_MIPS_ARCH_64:
4708 return bfd_mach_mipsisa64;
4709 break;
af7ee8bf
CD
4710
4711 case E_MIPS_ARCH_32R2:
4712 return bfd_mach_mipsisa32r2;
4713 break;
5f74bc13
CD
4714
4715 case E_MIPS_ARCH_64R2:
4716 return bfd_mach_mipsisa64r2;
4717 break;
b49e97c9
TS
4718 }
4719 }
4720
4721 return 0;
4722}
4723
4724/* Return printable name for ABI. */
4725
4726static INLINE char *
9719ad41 4727elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
4728{
4729 flagword flags;
4730
4731 flags = elf_elfheader (abfd)->e_flags;
4732 switch (flags & EF_MIPS_ABI)
4733 {
4734 case 0:
4735 if (ABI_N32_P (abfd))
4736 return "N32";
4737 else if (ABI_64_P (abfd))
4738 return "64";
4739 else
4740 return "none";
4741 case E_MIPS_ABI_O32:
4742 return "O32";
4743 case E_MIPS_ABI_O64:
4744 return "O64";
4745 case E_MIPS_ABI_EABI32:
4746 return "EABI32";
4747 case E_MIPS_ABI_EABI64:
4748 return "EABI64";
4749 default:
4750 return "unknown abi";
4751 }
4752}
4753\f
4754/* MIPS ELF uses two common sections. One is the usual one, and the
4755 other is for small objects. All the small objects are kept
4756 together, and then referenced via the gp pointer, which yields
4757 faster assembler code. This is what we use for the small common
4758 section. This approach is copied from ecoff.c. */
4759static asection mips_elf_scom_section;
4760static asymbol mips_elf_scom_symbol;
4761static asymbol *mips_elf_scom_symbol_ptr;
4762
4763/* MIPS ELF also uses an acommon section, which represents an
4764 allocated common symbol which may be overridden by a
4765 definition in a shared library. */
4766static asection mips_elf_acom_section;
4767static asymbol mips_elf_acom_symbol;
4768static asymbol *mips_elf_acom_symbol_ptr;
4769
4770/* Handle the special MIPS section numbers that a symbol may use.
4771 This is used for both the 32-bit and the 64-bit ABI. */
4772
4773void
9719ad41 4774_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
4775{
4776 elf_symbol_type *elfsym;
4777
4778 elfsym = (elf_symbol_type *) asym;
4779 switch (elfsym->internal_elf_sym.st_shndx)
4780 {
4781 case SHN_MIPS_ACOMMON:
4782 /* This section is used in a dynamically linked executable file.
4783 It is an allocated common section. The dynamic linker can
4784 either resolve these symbols to something in a shared
4785 library, or it can just leave them here. For our purposes,
4786 we can consider these symbols to be in a new section. */
4787 if (mips_elf_acom_section.name == NULL)
4788 {
4789 /* Initialize the acommon section. */
4790 mips_elf_acom_section.name = ".acommon";
4791 mips_elf_acom_section.flags = SEC_ALLOC;
4792 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4793 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4794 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4795 mips_elf_acom_symbol.name = ".acommon";
4796 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4797 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4798 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4799 }
4800 asym->section = &mips_elf_acom_section;
4801 break;
4802
4803 case SHN_COMMON:
4804 /* Common symbols less than the GP size are automatically
4805 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4806 if (asym->value > elf_gp_size (abfd)
4807 || IRIX_COMPAT (abfd) == ict_irix6)
4808 break;
4809 /* Fall through. */
4810 case SHN_MIPS_SCOMMON:
4811 if (mips_elf_scom_section.name == NULL)
4812 {
4813 /* Initialize the small common section. */
4814 mips_elf_scom_section.name = ".scommon";
4815 mips_elf_scom_section.flags = SEC_IS_COMMON;
4816 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4817 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4818 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4819 mips_elf_scom_symbol.name = ".scommon";
4820 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4821 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4822 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4823 }
4824 asym->section = &mips_elf_scom_section;
4825 asym->value = elfsym->internal_elf_sym.st_size;
4826 break;
4827
4828 case SHN_MIPS_SUNDEFINED:
4829 asym->section = bfd_und_section_ptr;
4830 break;
4831
b49e97c9 4832 case SHN_MIPS_TEXT:
00b4930b
TS
4833 {
4834 asection *section = bfd_get_section_by_name (abfd, ".text");
4835
4836 BFD_ASSERT (SGI_COMPAT (abfd));
4837 if (section != NULL)
4838 {
4839 asym->section = section;
4840 /* MIPS_TEXT is a bit special, the address is not an offset
4841 to the base of the .text section. So substract the section
4842 base address to make it an offset. */
4843 asym->value -= section->vma;
4844 }
4845 }
b49e97c9
TS
4846 break;
4847
4848 case SHN_MIPS_DATA:
00b4930b
TS
4849 {
4850 asection *section = bfd_get_section_by_name (abfd, ".data");
4851
4852 BFD_ASSERT (SGI_COMPAT (abfd));
4853 if (section != NULL)
4854 {
4855 asym->section = section;
4856 /* MIPS_DATA is a bit special, the address is not an offset
4857 to the base of the .data section. So substract the section
4858 base address to make it an offset. */
4859 asym->value -= section->vma;
4860 }
4861 }
b49e97c9 4862 break;
b49e97c9
TS
4863 }
4864}
4865\f
8c946ed5
RS
4866/* Implement elf_backend_eh_frame_address_size. This differs from
4867 the default in the way it handles EABI64.
4868
4869 EABI64 was originally specified as an LP64 ABI, and that is what
4870 -mabi=eabi normally gives on a 64-bit target. However, gcc has
4871 historically accepted the combination of -mabi=eabi and -mlong32,
4872 and this ILP32 variation has become semi-official over time.
4873 Both forms use elf32 and have pointer-sized FDE addresses.
4874
4875 If an EABI object was generated by GCC 4.0 or above, it will have
4876 an empty .gcc_compiled_longXX section, where XX is the size of longs
4877 in bits. Unfortunately, ILP32 objects generated by earlier compilers
4878 have no special marking to distinguish them from LP64 objects.
4879
4880 We don't want users of the official LP64 ABI to be punished for the
4881 existence of the ILP32 variant, but at the same time, we don't want
4882 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
4883 We therefore take the following approach:
4884
4885 - If ABFD contains a .gcc_compiled_longXX section, use it to
4886 determine the pointer size.
4887
4888 - Otherwise check the type of the first relocation. Assume that
4889 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
4890
4891 - Otherwise punt.
4892
4893 The second check is enough to detect LP64 objects generated by pre-4.0
4894 compilers because, in the kind of output generated by those compilers,
4895 the first relocation will be associated with either a CIE personality
4896 routine or an FDE start address. Furthermore, the compilers never
4897 used a special (non-pointer) encoding for this ABI.
4898
4899 Checking the relocation type should also be safe because there is no
4900 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
4901 did so. */
4902
4903unsigned int
4904_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
4905{
4906 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4907 return 8;
4908 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
4909 {
4910 bfd_boolean long32_p, long64_p;
4911
4912 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
4913 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
4914 if (long32_p && long64_p)
4915 return 0;
4916 if (long32_p)
4917 return 4;
4918 if (long64_p)
4919 return 8;
4920
4921 if (sec->reloc_count > 0
4922 && elf_section_data (sec)->relocs != NULL
4923 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
4924 == R_MIPS_64))
4925 return 8;
4926
4927 return 0;
4928 }
4929 return 4;
4930}
4931\f
174fd7f9
RS
4932/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4933 relocations against two unnamed section symbols to resolve to the
4934 same address. For example, if we have code like:
4935
4936 lw $4,%got_disp(.data)($gp)
4937 lw $25,%got_disp(.text)($gp)
4938 jalr $25
4939
4940 then the linker will resolve both relocations to .data and the program
4941 will jump there rather than to .text.
4942
4943 We can work around this problem by giving names to local section symbols.
4944 This is also what the MIPSpro tools do. */
4945
4946bfd_boolean
4947_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4948{
4949 return SGI_COMPAT (abfd);
4950}
4951\f
b49e97c9
TS
4952/* Work over a section just before writing it out. This routine is
4953 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4954 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4955 a better way. */
4956
b34976b6 4957bfd_boolean
9719ad41 4958_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
4959{
4960 if (hdr->sh_type == SHT_MIPS_REGINFO
4961 && hdr->sh_size > 0)
4962 {
4963 bfd_byte buf[4];
4964
4965 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4966 BFD_ASSERT (hdr->contents == NULL);
4967
4968 if (bfd_seek (abfd,
4969 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4970 SEEK_SET) != 0)
b34976b6 4971 return FALSE;
b49e97c9 4972 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4973 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4974 return FALSE;
b49e97c9
TS
4975 }
4976
4977 if (hdr->sh_type == SHT_MIPS_OPTIONS
4978 && hdr->bfd_section != NULL
f0abc2a1
AM
4979 && mips_elf_section_data (hdr->bfd_section) != NULL
4980 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4981 {
4982 bfd_byte *contents, *l, *lend;
4983
f0abc2a1
AM
4984 /* We stored the section contents in the tdata field in the
4985 set_section_contents routine. We save the section contents
4986 so that we don't have to read them again.
b49e97c9
TS
4987 At this point we know that elf_gp is set, so we can look
4988 through the section contents to see if there is an
4989 ODK_REGINFO structure. */
4990
f0abc2a1 4991 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4992 l = contents;
4993 lend = contents + hdr->sh_size;
4994 while (l + sizeof (Elf_External_Options) <= lend)
4995 {
4996 Elf_Internal_Options intopt;
4997
4998 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4999 &intopt);
1bc8074d
MR
5000 if (intopt.size < sizeof (Elf_External_Options))
5001 {
5002 (*_bfd_error_handler)
5003 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5004 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5005 break;
5006 }
b49e97c9
TS
5007 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5008 {
5009 bfd_byte buf[8];
5010
5011 if (bfd_seek (abfd,
5012 (hdr->sh_offset
5013 + (l - contents)
5014 + sizeof (Elf_External_Options)
5015 + (sizeof (Elf64_External_RegInfo) - 8)),
5016 SEEK_SET) != 0)
b34976b6 5017 return FALSE;
b49e97c9 5018 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5019 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5020 return FALSE;
b49e97c9
TS
5021 }
5022 else if (intopt.kind == ODK_REGINFO)
5023 {
5024 bfd_byte buf[4];
5025
5026 if (bfd_seek (abfd,
5027 (hdr->sh_offset
5028 + (l - contents)
5029 + sizeof (Elf_External_Options)
5030 + (sizeof (Elf32_External_RegInfo) - 4)),
5031 SEEK_SET) != 0)
b34976b6 5032 return FALSE;
b49e97c9 5033 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5034 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5035 return FALSE;
b49e97c9
TS
5036 }
5037 l += intopt.size;
5038 }
5039 }
5040
5041 if (hdr->bfd_section != NULL)
5042 {
5043 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5044
5045 if (strcmp (name, ".sdata") == 0
5046 || strcmp (name, ".lit8") == 0
5047 || strcmp (name, ".lit4") == 0)
5048 {
5049 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5050 hdr->sh_type = SHT_PROGBITS;
5051 }
5052 else if (strcmp (name, ".sbss") == 0)
5053 {
5054 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5055 hdr->sh_type = SHT_NOBITS;
5056 }
5057 else if (strcmp (name, ".srdata") == 0)
5058 {
5059 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5060 hdr->sh_type = SHT_PROGBITS;
5061 }
5062 else if (strcmp (name, ".compact_rel") == 0)
5063 {
5064 hdr->sh_flags = 0;
5065 hdr->sh_type = SHT_PROGBITS;
5066 }
5067 else if (strcmp (name, ".rtproc") == 0)
5068 {
5069 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5070 {
5071 unsigned int adjust;
5072
5073 adjust = hdr->sh_size % hdr->sh_addralign;
5074 if (adjust != 0)
5075 hdr->sh_size += hdr->sh_addralign - adjust;
5076 }
5077 }
5078 }
5079
b34976b6 5080 return TRUE;
b49e97c9
TS
5081}
5082
5083/* Handle a MIPS specific section when reading an object file. This
5084 is called when elfcode.h finds a section with an unknown type.
5085 This routine supports both the 32-bit and 64-bit ELF ABI.
5086
5087 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5088 how to. */
5089
b34976b6 5090bfd_boolean
6dc132d9
L
5091_bfd_mips_elf_section_from_shdr (bfd *abfd,
5092 Elf_Internal_Shdr *hdr,
5093 const char *name,
5094 int shindex)
b49e97c9
TS
5095{
5096 flagword flags = 0;
5097
5098 /* There ought to be a place to keep ELF backend specific flags, but
5099 at the moment there isn't one. We just keep track of the
5100 sections by their name, instead. Fortunately, the ABI gives
5101 suggested names for all the MIPS specific sections, so we will
5102 probably get away with this. */
5103 switch (hdr->sh_type)
5104 {
5105 case SHT_MIPS_LIBLIST:
5106 if (strcmp (name, ".liblist") != 0)
b34976b6 5107 return FALSE;
b49e97c9
TS
5108 break;
5109 case SHT_MIPS_MSYM:
5110 if (strcmp (name, ".msym") != 0)
b34976b6 5111 return FALSE;
b49e97c9
TS
5112 break;
5113 case SHT_MIPS_CONFLICT:
5114 if (strcmp (name, ".conflict") != 0)
b34976b6 5115 return FALSE;
b49e97c9
TS
5116 break;
5117 case SHT_MIPS_GPTAB:
5118 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 5119 return FALSE;
b49e97c9
TS
5120 break;
5121 case SHT_MIPS_UCODE:
5122 if (strcmp (name, ".ucode") != 0)
b34976b6 5123 return FALSE;
b49e97c9
TS
5124 break;
5125 case SHT_MIPS_DEBUG:
5126 if (strcmp (name, ".mdebug") != 0)
b34976b6 5127 return FALSE;
b49e97c9
TS
5128 flags = SEC_DEBUGGING;
5129 break;
5130 case SHT_MIPS_REGINFO:
5131 if (strcmp (name, ".reginfo") != 0
5132 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5133 return FALSE;
b49e97c9
TS
5134 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5135 break;
5136 case SHT_MIPS_IFACE:
5137 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5138 return FALSE;
b49e97c9
TS
5139 break;
5140 case SHT_MIPS_CONTENT:
5141 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 5142 return FALSE;
b49e97c9
TS
5143 break;
5144 case SHT_MIPS_OPTIONS:
cc2e31b9 5145 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5146 return FALSE;
b49e97c9
TS
5147 break;
5148 case SHT_MIPS_DWARF:
5149 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 5150 return FALSE;
b49e97c9
TS
5151 break;
5152 case SHT_MIPS_SYMBOL_LIB:
5153 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5154 return FALSE;
b49e97c9
TS
5155 break;
5156 case SHT_MIPS_EVENTS:
5157 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5158 && strncmp (name, ".MIPS.post_rel",
5159 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 5160 return FALSE;
b49e97c9
TS
5161 break;
5162 default:
cc2e31b9 5163 break;
b49e97c9
TS
5164 }
5165
6dc132d9 5166 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5167 return FALSE;
b49e97c9
TS
5168
5169 if (flags)
5170 {
5171 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5172 (bfd_get_section_flags (abfd,
5173 hdr->bfd_section)
5174 | flags)))
b34976b6 5175 return FALSE;
b49e97c9
TS
5176 }
5177
5178 /* FIXME: We should record sh_info for a .gptab section. */
5179
5180 /* For a .reginfo section, set the gp value in the tdata information
5181 from the contents of this section. We need the gp value while
5182 processing relocs, so we just get it now. The .reginfo section
5183 is not used in the 64-bit MIPS ELF ABI. */
5184 if (hdr->sh_type == SHT_MIPS_REGINFO)
5185 {
5186 Elf32_External_RegInfo ext;
5187 Elf32_RegInfo s;
5188
9719ad41
RS
5189 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5190 &ext, 0, sizeof ext))
b34976b6 5191 return FALSE;
b49e97c9
TS
5192 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5193 elf_gp (abfd) = s.ri_gp_value;
5194 }
5195
5196 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5197 set the gp value based on what we find. We may see both
5198 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5199 they should agree. */
5200 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5201 {
5202 bfd_byte *contents, *l, *lend;
5203
9719ad41 5204 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5205 if (contents == NULL)
b34976b6 5206 return FALSE;
b49e97c9 5207 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5208 0, hdr->sh_size))
b49e97c9
TS
5209 {
5210 free (contents);
b34976b6 5211 return FALSE;
b49e97c9
TS
5212 }
5213 l = contents;
5214 lend = contents + hdr->sh_size;
5215 while (l + sizeof (Elf_External_Options) <= lend)
5216 {
5217 Elf_Internal_Options intopt;
5218
5219 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5220 &intopt);
1bc8074d
MR
5221 if (intopt.size < sizeof (Elf_External_Options))
5222 {
5223 (*_bfd_error_handler)
5224 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5225 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5226 break;
5227 }
b49e97c9
TS
5228 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5229 {
5230 Elf64_Internal_RegInfo intreg;
5231
5232 bfd_mips_elf64_swap_reginfo_in
5233 (abfd,
5234 ((Elf64_External_RegInfo *)
5235 (l + sizeof (Elf_External_Options))),
5236 &intreg);
5237 elf_gp (abfd) = intreg.ri_gp_value;
5238 }
5239 else if (intopt.kind == ODK_REGINFO)
5240 {
5241 Elf32_RegInfo intreg;
5242
5243 bfd_mips_elf32_swap_reginfo_in
5244 (abfd,
5245 ((Elf32_External_RegInfo *)
5246 (l + sizeof (Elf_External_Options))),
5247 &intreg);
5248 elf_gp (abfd) = intreg.ri_gp_value;
5249 }
5250 l += intopt.size;
5251 }
5252 free (contents);
5253 }
5254
b34976b6 5255 return TRUE;
b49e97c9
TS
5256}
5257
5258/* Set the correct type for a MIPS ELF section. We do this by the
5259 section name, which is a hack, but ought to work. This routine is
5260 used by both the 32-bit and the 64-bit ABI. */
5261
b34976b6 5262bfd_boolean
9719ad41 5263_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
5264{
5265 register const char *name;
1bc8074d 5266 unsigned int sh_type;
b49e97c9
TS
5267
5268 name = bfd_get_section_name (abfd, sec);
1bc8074d 5269 sh_type = hdr->sh_type;
b49e97c9
TS
5270
5271 if (strcmp (name, ".liblist") == 0)
5272 {
5273 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5274 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5275 /* The sh_link field is set in final_write_processing. */
5276 }
5277 else if (strcmp (name, ".conflict") == 0)
5278 hdr->sh_type = SHT_MIPS_CONFLICT;
5279 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5280 {
5281 hdr->sh_type = SHT_MIPS_GPTAB;
5282 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5283 /* The sh_info field is set in final_write_processing. */
5284 }
5285 else if (strcmp (name, ".ucode") == 0)
5286 hdr->sh_type = SHT_MIPS_UCODE;
5287 else if (strcmp (name, ".mdebug") == 0)
5288 {
5289 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5290 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5291 entsize of 0. FIXME: Does this matter? */
5292 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5293 hdr->sh_entsize = 0;
5294 else
5295 hdr->sh_entsize = 1;
5296 }
5297 else if (strcmp (name, ".reginfo") == 0)
5298 {
5299 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5300 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5301 entsize of 0x18. FIXME: Does this matter? */
5302 if (SGI_COMPAT (abfd))
5303 {
5304 if ((abfd->flags & DYNAMIC) != 0)
5305 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5306 else
5307 hdr->sh_entsize = 1;
5308 }
5309 else
5310 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5311 }
5312 else if (SGI_COMPAT (abfd)
5313 && (strcmp (name, ".hash") == 0
5314 || strcmp (name, ".dynamic") == 0
5315 || strcmp (name, ".dynstr") == 0))
5316 {
5317 if (SGI_COMPAT (abfd))
5318 hdr->sh_entsize = 0;
5319#if 0
8dc1a139 5320 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5321 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5322#endif
5323 }
5324 else if (strcmp (name, ".got") == 0
5325 || strcmp (name, ".srdata") == 0
5326 || strcmp (name, ".sdata") == 0
5327 || strcmp (name, ".sbss") == 0
5328 || strcmp (name, ".lit4") == 0
5329 || strcmp (name, ".lit8") == 0)
5330 hdr->sh_flags |= SHF_MIPS_GPREL;
5331 else if (strcmp (name, ".MIPS.interfaces") == 0)
5332 {
5333 hdr->sh_type = SHT_MIPS_IFACE;
5334 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5335 }
5336 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5337 {
5338 hdr->sh_type = SHT_MIPS_CONTENT;
5339 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5340 /* The sh_info field is set in final_write_processing. */
5341 }
cc2e31b9 5342 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5343 {
5344 hdr->sh_type = SHT_MIPS_OPTIONS;
5345 hdr->sh_entsize = 1;
5346 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5347 }
5348 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5349 hdr->sh_type = SHT_MIPS_DWARF;
5350 else if (strcmp (name, ".MIPS.symlib") == 0)
5351 {
5352 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5353 /* The sh_link and sh_info fields are set in
5354 final_write_processing. */
5355 }
5356 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5357 || strncmp (name, ".MIPS.post_rel",
5358 sizeof ".MIPS.post_rel" - 1) == 0)
5359 {
5360 hdr->sh_type = SHT_MIPS_EVENTS;
5361 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5362 /* The sh_link field is set in final_write_processing. */
5363 }
5364 else if (strcmp (name, ".msym") == 0)
5365 {
5366 hdr->sh_type = SHT_MIPS_MSYM;
5367 hdr->sh_flags |= SHF_ALLOC;
5368 hdr->sh_entsize = 8;
5369 }
5370
1bc8074d
MR
5371 /* In the unlikely event a special section is empty it has to lose its
5372 special meaning. This may happen e.g. when using `strip' with the
5373 "--only-keep-debug" option. */
5374 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5375 hdr->sh_type = sh_type;
5376
7a79a000
TS
5377 /* The generic elf_fake_sections will set up REL_HDR using the default
5378 kind of relocations. We used to set up a second header for the
5379 non-default kind of relocations here, but only NewABI would use
5380 these, and the IRIX ld doesn't like resulting empty RELA sections.
5381 Thus we create those header only on demand now. */
b49e97c9 5382
b34976b6 5383 return TRUE;
b49e97c9
TS
5384}
5385
5386/* Given a BFD section, try to locate the corresponding ELF section
5387 index. This is used by both the 32-bit and the 64-bit ABI.
5388 Actually, it's not clear to me that the 64-bit ABI supports these,
5389 but for non-PIC objects we will certainly want support for at least
5390 the .scommon section. */
5391
b34976b6 5392bfd_boolean
9719ad41
RS
5393_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5394 asection *sec, int *retval)
b49e97c9
TS
5395{
5396 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5397 {
5398 *retval = SHN_MIPS_SCOMMON;
b34976b6 5399 return TRUE;
b49e97c9
TS
5400 }
5401 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5402 {
5403 *retval = SHN_MIPS_ACOMMON;
b34976b6 5404 return TRUE;
b49e97c9 5405 }
b34976b6 5406 return FALSE;
b49e97c9
TS
5407}
5408\f
5409/* Hook called by the linker routine which adds symbols from an object
5410 file. We must handle the special MIPS section numbers here. */
5411
b34976b6 5412bfd_boolean
9719ad41 5413_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5414 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5415 flagword *flagsp ATTRIBUTE_UNUSED,
5416 asection **secp, bfd_vma *valp)
b49e97c9
TS
5417{
5418 if (SGI_COMPAT (abfd)
5419 && (abfd->flags & DYNAMIC) != 0
5420 && strcmp (*namep, "_rld_new_interface") == 0)
5421 {
8dc1a139 5422 /* Skip IRIX5 rld entry name. */
b49e97c9 5423 *namep = NULL;
b34976b6 5424 return TRUE;
b49e97c9
TS
5425 }
5426
eedecc07
DD
5427 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5428 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5429 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5430 a magic symbol resolved by the linker, we ignore this bogus definition
5431 of _gp_disp. New ABI objects do not suffer from this problem so this
5432 is not done for them. */
5433 if (!NEWABI_P(abfd)
5434 && (sym->st_shndx == SHN_ABS)
5435 && (strcmp (*namep, "_gp_disp") == 0))
5436 {
5437 *namep = NULL;
5438 return TRUE;
5439 }
5440
b49e97c9
TS
5441 switch (sym->st_shndx)
5442 {
5443 case SHN_COMMON:
5444 /* Common symbols less than the GP size are automatically
5445 treated as SHN_MIPS_SCOMMON symbols. */
5446 if (sym->st_size > elf_gp_size (abfd)
5447 || IRIX_COMPAT (abfd) == ict_irix6)
5448 break;
5449 /* Fall through. */
5450 case SHN_MIPS_SCOMMON:
5451 *secp = bfd_make_section_old_way (abfd, ".scommon");
5452 (*secp)->flags |= SEC_IS_COMMON;
5453 *valp = sym->st_size;
5454 break;
5455
5456 case SHN_MIPS_TEXT:
5457 /* This section is used in a shared object. */
5458 if (elf_tdata (abfd)->elf_text_section == NULL)
5459 {
5460 asymbol *elf_text_symbol;
5461 asection *elf_text_section;
5462 bfd_size_type amt = sizeof (asection);
5463
5464 elf_text_section = bfd_zalloc (abfd, amt);
5465 if (elf_text_section == NULL)
b34976b6 5466 return FALSE;
b49e97c9
TS
5467
5468 amt = sizeof (asymbol);
5469 elf_text_symbol = bfd_zalloc (abfd, amt);
5470 if (elf_text_symbol == NULL)
b34976b6 5471 return FALSE;
b49e97c9
TS
5472
5473 /* Initialize the section. */
5474
5475 elf_tdata (abfd)->elf_text_section = elf_text_section;
5476 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5477
5478 elf_text_section->symbol = elf_text_symbol;
5479 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5480
5481 elf_text_section->name = ".text";
5482 elf_text_section->flags = SEC_NO_FLAGS;
5483 elf_text_section->output_section = NULL;
5484 elf_text_section->owner = abfd;
5485 elf_text_symbol->name = ".text";
5486 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5487 elf_text_symbol->section = elf_text_section;
5488 }
5489 /* This code used to do *secp = bfd_und_section_ptr if
5490 info->shared. I don't know why, and that doesn't make sense,
5491 so I took it out. */
5492 *secp = elf_tdata (abfd)->elf_text_section;
5493 break;
5494
5495 case SHN_MIPS_ACOMMON:
5496 /* Fall through. XXX Can we treat this as allocated data? */
5497 case SHN_MIPS_DATA:
5498 /* This section is used in a shared object. */
5499 if (elf_tdata (abfd)->elf_data_section == NULL)
5500 {
5501 asymbol *elf_data_symbol;
5502 asection *elf_data_section;
5503 bfd_size_type amt = sizeof (asection);
5504
5505 elf_data_section = bfd_zalloc (abfd, amt);
5506 if (elf_data_section == NULL)
b34976b6 5507 return FALSE;
b49e97c9
TS
5508
5509 amt = sizeof (asymbol);
5510 elf_data_symbol = bfd_zalloc (abfd, amt);
5511 if (elf_data_symbol == NULL)
b34976b6 5512 return FALSE;
b49e97c9
TS
5513
5514 /* Initialize the section. */
5515
5516 elf_tdata (abfd)->elf_data_section = elf_data_section;
5517 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5518
5519 elf_data_section->symbol = elf_data_symbol;
5520 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5521
5522 elf_data_section->name = ".data";
5523 elf_data_section->flags = SEC_NO_FLAGS;
5524 elf_data_section->output_section = NULL;
5525 elf_data_section->owner = abfd;
5526 elf_data_symbol->name = ".data";
5527 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5528 elf_data_symbol->section = elf_data_section;
5529 }
5530 /* This code used to do *secp = bfd_und_section_ptr if
5531 info->shared. I don't know why, and that doesn't make sense,
5532 so I took it out. */
5533 *secp = elf_tdata (abfd)->elf_data_section;
5534 break;
5535
5536 case SHN_MIPS_SUNDEFINED:
5537 *secp = bfd_und_section_ptr;
5538 break;
5539 }
5540
5541 if (SGI_COMPAT (abfd)
5542 && ! info->shared
5543 && info->hash->creator == abfd->xvec
5544 && strcmp (*namep, "__rld_obj_head") == 0)
5545 {
5546 struct elf_link_hash_entry *h;
14a793b2 5547 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5548
5549 /* Mark __rld_obj_head as dynamic. */
14a793b2 5550 bh = NULL;
b49e97c9 5551 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5552 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5553 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5554 return FALSE;
14a793b2
AM
5555
5556 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5557 h->non_elf = 0;
5558 h->def_regular = 1;
b49e97c9
TS
5559 h->type = STT_OBJECT;
5560
c152c796 5561 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5562 return FALSE;
b49e97c9 5563
b34976b6 5564 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5565 }
5566
5567 /* If this is a mips16 text symbol, add 1 to the value to make it
5568 odd. This will cause something like .word SYM to come up with
5569 the right value when it is loaded into the PC. */
5570 if (sym->st_other == STO_MIPS16)
5571 ++*valp;
5572
b34976b6 5573 return TRUE;
b49e97c9
TS
5574}
5575
5576/* This hook function is called before the linker writes out a global
5577 symbol. We mark symbols as small common if appropriate. This is
5578 also where we undo the increment of the value for a mips16 symbol. */
5579
b34976b6 5580bfd_boolean
9719ad41
RS
5581_bfd_mips_elf_link_output_symbol_hook
5582 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5583 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5584 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5585{
5586 /* If we see a common symbol, which implies a relocatable link, then
5587 if a symbol was small common in an input file, mark it as small
5588 common in the output file. */
5589 if (sym->st_shndx == SHN_COMMON
5590 && strcmp (input_sec->name, ".scommon") == 0)
5591 sym->st_shndx = SHN_MIPS_SCOMMON;
5592
79cda7cf
FF
5593 if (sym->st_other == STO_MIPS16)
5594 sym->st_value &= ~1;
b49e97c9 5595
b34976b6 5596 return TRUE;
b49e97c9
TS
5597}
5598\f
5599/* Functions for the dynamic linker. */
5600
5601/* Create dynamic sections when linking against a dynamic object. */
5602
b34976b6 5603bfd_boolean
9719ad41 5604_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5605{
5606 struct elf_link_hash_entry *h;
14a793b2 5607 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5608 flagword flags;
5609 register asection *s;
5610 const char * const *namep;
5611
5612 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5613 | SEC_LINKER_CREATED | SEC_READONLY);
5614
5615 /* Mips ABI requests the .dynamic section to be read only. */
5616 s = bfd_get_section_by_name (abfd, ".dynamic");
5617 if (s != NULL)
5618 {
5619 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 5620 return FALSE;
b49e97c9
TS
5621 }
5622
5623 /* We need to create .got section. */
f4416af6
AO
5624 if (! mips_elf_create_got_section (abfd, info, FALSE))
5625 return FALSE;
5626
5627 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 5628 return FALSE;
b49e97c9 5629
b49e97c9
TS
5630 /* Create .stub section. */
5631 if (bfd_get_section_by_name (abfd,
5632 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5633 {
3496cb2a
L
5634 s = bfd_make_section_with_flags (abfd,
5635 MIPS_ELF_STUB_SECTION_NAME (abfd),
5636 flags | SEC_CODE);
b49e97c9 5637 if (s == NULL
b49e97c9
TS
5638 || ! bfd_set_section_alignment (abfd, s,
5639 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5640 return FALSE;
b49e97c9
TS
5641 }
5642
5643 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5644 && !info->shared
5645 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5646 {
3496cb2a
L
5647 s = bfd_make_section_with_flags (abfd, ".rld_map",
5648 flags &~ (flagword) SEC_READONLY);
b49e97c9 5649 if (s == NULL
b49e97c9
TS
5650 || ! bfd_set_section_alignment (abfd, s,
5651 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5652 return FALSE;
b49e97c9
TS
5653 }
5654
5655 /* On IRIX5, we adjust add some additional symbols and change the
5656 alignments of several sections. There is no ABI documentation
5657 indicating that this is necessary on IRIX6, nor any evidence that
5658 the linker takes such action. */
5659 if (IRIX_COMPAT (abfd) == ict_irix5)
5660 {
5661 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5662 {
14a793b2 5663 bh = NULL;
b49e97c9 5664 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5665 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5666 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5667 return FALSE;
14a793b2
AM
5668
5669 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5670 h->non_elf = 0;
5671 h->def_regular = 1;
b49e97c9
TS
5672 h->type = STT_SECTION;
5673
c152c796 5674 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5675 return FALSE;
b49e97c9
TS
5676 }
5677
5678 /* We need to create a .compact_rel section. */
5679 if (SGI_COMPAT (abfd))
5680 {
5681 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 5682 return FALSE;
b49e97c9
TS
5683 }
5684
44c410de 5685 /* Change alignments of some sections. */
b49e97c9
TS
5686 s = bfd_get_section_by_name (abfd, ".hash");
5687 if (s != NULL)
d80dcc6a 5688 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5689 s = bfd_get_section_by_name (abfd, ".dynsym");
5690 if (s != NULL)
d80dcc6a 5691 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5692 s = bfd_get_section_by_name (abfd, ".dynstr");
5693 if (s != NULL)
d80dcc6a 5694 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5695 s = bfd_get_section_by_name (abfd, ".reginfo");
5696 if (s != NULL)
d80dcc6a 5697 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5698 s = bfd_get_section_by_name (abfd, ".dynamic");
5699 if (s != NULL)
d80dcc6a 5700 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5701 }
5702
5703 if (!info->shared)
5704 {
14a793b2
AM
5705 const char *name;
5706
5707 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5708 bh = NULL;
5709 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
5710 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5711 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5712 return FALSE;
14a793b2
AM
5713
5714 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5715 h->non_elf = 0;
5716 h->def_regular = 1;
b49e97c9
TS
5717 h->type = STT_SECTION;
5718
c152c796 5719 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5720 return FALSE;
b49e97c9
TS
5721
5722 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5723 {
5724 /* __rld_map is a four byte word located in the .data section
5725 and is filled in by the rtld to contain a pointer to
5726 the _r_debug structure. Its symbol value will be set in
5727 _bfd_mips_elf_finish_dynamic_symbol. */
5728 s = bfd_get_section_by_name (abfd, ".rld_map");
5729 BFD_ASSERT (s != NULL);
5730
14a793b2
AM
5731 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5732 bh = NULL;
5733 if (!(_bfd_generic_link_add_one_symbol
9719ad41 5734 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 5735 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5736 return FALSE;
14a793b2
AM
5737
5738 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5739 h->non_elf = 0;
5740 h->def_regular = 1;
b49e97c9
TS
5741 h->type = STT_OBJECT;
5742
c152c796 5743 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5744 return FALSE;
b49e97c9
TS
5745 }
5746 }
5747
b34976b6 5748 return TRUE;
b49e97c9
TS
5749}
5750\f
5751/* Look through the relocs for a section during the first phase, and
5752 allocate space in the global offset table. */
5753
b34976b6 5754bfd_boolean
9719ad41
RS
5755_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5756 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
5757{
5758 const char *name;
5759 bfd *dynobj;
5760 Elf_Internal_Shdr *symtab_hdr;
5761 struct elf_link_hash_entry **sym_hashes;
5762 struct mips_got_info *g;
5763 size_t extsymoff;
5764 const Elf_Internal_Rela *rel;
5765 const Elf_Internal_Rela *rel_end;
5766 asection *sgot;
5767 asection *sreloc;
9c5bfbb7 5768 const struct elf_backend_data *bed;
b49e97c9 5769
1049f94e 5770 if (info->relocatable)
b34976b6 5771 return TRUE;
b49e97c9
TS
5772
5773 dynobj = elf_hash_table (info)->dynobj;
5774 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5775 sym_hashes = elf_sym_hashes (abfd);
5776 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5777
5778 /* Check for the mips16 stub sections. */
5779
5780 name = bfd_get_section_name (abfd, sec);
5781 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5782 {
5783 unsigned long r_symndx;
5784
5785 /* Look at the relocation information to figure out which symbol
5786 this is for. */
5787
5788 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5789
5790 if (r_symndx < extsymoff
5791 || sym_hashes[r_symndx - extsymoff] == NULL)
5792 {
5793 asection *o;
5794
5795 /* This stub is for a local symbol. This stub will only be
5796 needed if there is some relocation in this BFD, other
5797 than a 16 bit function call, which refers to this symbol. */
5798 for (o = abfd->sections; o != NULL; o = o->next)
5799 {
5800 Elf_Internal_Rela *sec_relocs;
5801 const Elf_Internal_Rela *r, *rend;
5802
5803 /* We can ignore stub sections when looking for relocs. */
5804 if ((o->flags & SEC_RELOC) == 0
5805 || o->reloc_count == 0
5806 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5807 sizeof FN_STUB - 1) == 0
5808 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5809 sizeof CALL_STUB - 1) == 0
5810 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5811 sizeof CALL_FP_STUB - 1) == 0)
5812 continue;
5813
45d6a902 5814 sec_relocs
9719ad41 5815 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 5816 info->keep_memory);
b49e97c9 5817 if (sec_relocs == NULL)
b34976b6 5818 return FALSE;
b49e97c9
TS
5819
5820 rend = sec_relocs + o->reloc_count;
5821 for (r = sec_relocs; r < rend; r++)
5822 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5823 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5824 break;
5825
6cdc0ccc 5826 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5827 free (sec_relocs);
5828
5829 if (r < rend)
5830 break;
5831 }
5832
5833 if (o == NULL)
5834 {
5835 /* There is no non-call reloc for this stub, so we do
5836 not need it. Since this function is called before
5837 the linker maps input sections to output sections, we
5838 can easily discard it by setting the SEC_EXCLUDE
5839 flag. */
5840 sec->flags |= SEC_EXCLUDE;
b34976b6 5841 return TRUE;
b49e97c9
TS
5842 }
5843
5844 /* Record this stub in an array of local symbol stubs for
5845 this BFD. */
5846 if (elf_tdata (abfd)->local_stubs == NULL)
5847 {
5848 unsigned long symcount;
5849 asection **n;
5850 bfd_size_type amt;
5851
5852 if (elf_bad_symtab (abfd))
5853 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5854 else
5855 symcount = symtab_hdr->sh_info;
5856 amt = symcount * sizeof (asection *);
9719ad41 5857 n = bfd_zalloc (abfd, amt);
b49e97c9 5858 if (n == NULL)
b34976b6 5859 return FALSE;
b49e97c9
TS
5860 elf_tdata (abfd)->local_stubs = n;
5861 }
5862
5863 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5864
5865 /* We don't need to set mips16_stubs_seen in this case.
5866 That flag is used to see whether we need to look through
5867 the global symbol table for stubs. We don't need to set
5868 it here, because we just have a local stub. */
5869 }
5870 else
5871 {
5872 struct mips_elf_link_hash_entry *h;
5873
5874 h = ((struct mips_elf_link_hash_entry *)
5875 sym_hashes[r_symndx - extsymoff]);
5876
973a3492
L
5877 while (h->root.root.type == bfd_link_hash_indirect
5878 || h->root.root.type == bfd_link_hash_warning)
5879 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5880
b49e97c9
TS
5881 /* H is the symbol this stub is for. */
5882
5883 h->fn_stub = sec;
b34976b6 5884 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5885 }
5886 }
5887 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5888 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5889 {
5890 unsigned long r_symndx;
5891 struct mips_elf_link_hash_entry *h;
5892 asection **loc;
5893
5894 /* Look at the relocation information to figure out which symbol
5895 this is for. */
5896
5897 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5898
5899 if (r_symndx < extsymoff
5900 || sym_hashes[r_symndx - extsymoff] == NULL)
5901 {
5902 /* This stub was actually built for a static symbol defined
5903 in the same file. We assume that all static symbols in
5904 mips16 code are themselves mips16, so we can simply
5905 discard this stub. Since this function is called before
5906 the linker maps input sections to output sections, we can
5907 easily discard it by setting the SEC_EXCLUDE flag. */
5908 sec->flags |= SEC_EXCLUDE;
b34976b6 5909 return TRUE;
b49e97c9
TS
5910 }
5911
5912 h = ((struct mips_elf_link_hash_entry *)
5913 sym_hashes[r_symndx - extsymoff]);
5914
5915 /* H is the symbol this stub is for. */
5916
5917 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5918 loc = &h->call_fp_stub;
5919 else
5920 loc = &h->call_stub;
5921
5922 /* If we already have an appropriate stub for this function, we
5923 don't need another one, so we can discard this one. Since
5924 this function is called before the linker maps input sections
5925 to output sections, we can easily discard it by setting the
5926 SEC_EXCLUDE flag. We can also discard this section if we
5927 happen to already know that this is a mips16 function; it is
5928 not necessary to check this here, as it is checked later, but
5929 it is slightly faster to check now. */
5930 if (*loc != NULL || h->root.other == STO_MIPS16)
5931 {
5932 sec->flags |= SEC_EXCLUDE;
b34976b6 5933 return TRUE;
b49e97c9
TS
5934 }
5935
5936 *loc = sec;
b34976b6 5937 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5938 }
5939
5940 if (dynobj == NULL)
5941 {
5942 sgot = NULL;
5943 g = NULL;
5944 }
5945 else
5946 {
f4416af6 5947 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5948 if (sgot == NULL)
5949 g = NULL;
5950 else
5951 {
f0abc2a1
AM
5952 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5953 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5954 BFD_ASSERT (g != NULL);
5955 }
5956 }
5957
5958 sreloc = NULL;
5959 bed = get_elf_backend_data (abfd);
5960 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5961 for (rel = relocs; rel < rel_end; ++rel)
5962 {
5963 unsigned long r_symndx;
5964 unsigned int r_type;
5965 struct elf_link_hash_entry *h;
5966
5967 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5968 r_type = ELF_R_TYPE (abfd, rel->r_info);
5969
5970 if (r_symndx < extsymoff)
5971 h = NULL;
5972 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5973 {
5974 (*_bfd_error_handler)
d003868e
AM
5975 (_("%B: Malformed reloc detected for section %s"),
5976 abfd, name);
b49e97c9 5977 bfd_set_error (bfd_error_bad_value);
b34976b6 5978 return FALSE;
b49e97c9
TS
5979 }
5980 else
5981 {
5982 h = sym_hashes[r_symndx - extsymoff];
5983
5984 /* This may be an indirect symbol created because of a version. */
5985 if (h != NULL)
5986 {
5987 while (h->root.type == bfd_link_hash_indirect)
5988 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5989 }
5990 }
5991
5992 /* Some relocs require a global offset table. */
5993 if (dynobj == NULL || sgot == NULL)
5994 {
5995 switch (r_type)
5996 {
5997 case R_MIPS_GOT16:
5998 case R_MIPS_CALL16:
5999 case R_MIPS_CALL_HI16:
6000 case R_MIPS_CALL_LO16:
6001 case R_MIPS_GOT_HI16:
6002 case R_MIPS_GOT_LO16:
6003 case R_MIPS_GOT_PAGE:
6004 case R_MIPS_GOT_OFST:
6005 case R_MIPS_GOT_DISP:
86324f90 6006 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6007 case R_MIPS_TLS_GD:
6008 case R_MIPS_TLS_LDM:
b49e97c9
TS
6009 if (dynobj == NULL)
6010 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6011 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6012 return FALSE;
b49e97c9
TS
6013 g = mips_elf_got_info (dynobj, &sgot);
6014 break;
6015
6016 case R_MIPS_32:
6017 case R_MIPS_REL32:
6018 case R_MIPS_64:
6019 if (dynobj == NULL
6020 && (info->shared || h != NULL)
6021 && (sec->flags & SEC_ALLOC) != 0)
6022 elf_hash_table (info)->dynobj = dynobj = abfd;
6023 break;
6024
6025 default:
6026 break;
6027 }
6028 }
6029
6030 if (!h && (r_type == R_MIPS_CALL_LO16
6031 || r_type == R_MIPS_GOT_LO16
6032 || r_type == R_MIPS_GOT_DISP))
6033 {
6034 /* We may need a local GOT entry for this relocation. We
6035 don't count R_MIPS_GOT_PAGE because we can estimate the
6036 maximum number of pages needed by looking at the size of
6037 the segment. Similar comments apply to R_MIPS_GOT16 and
6038 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
6039 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6040 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6041 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6042 rel->r_addend, g, 0))
f4416af6 6043 return FALSE;
b49e97c9
TS
6044 }
6045
6046 switch (r_type)
6047 {
6048 case R_MIPS_CALL16:
6049 if (h == NULL)
6050 {
6051 (*_bfd_error_handler)
d003868e
AM
6052 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6053 abfd, (unsigned long) rel->r_offset);
b49e97c9 6054 bfd_set_error (bfd_error_bad_value);
b34976b6 6055 return FALSE;
b49e97c9
TS
6056 }
6057 /* Fall through. */
6058
6059 case R_MIPS_CALL_HI16:
6060 case R_MIPS_CALL_LO16:
6061 if (h != NULL)
6062 {
6063 /* This symbol requires a global offset table entry. */
0f20cc35 6064 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6065 return FALSE;
b49e97c9
TS
6066
6067 /* We need a stub, not a plt entry for the undefined
6068 function. But we record it as if it needs plt. See
c152c796 6069 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6070 h->needs_plt = 1;
b49e97c9
TS
6071 h->type = STT_FUNC;
6072 }
6073 break;
6074
0fdc1bf1
AO
6075 case R_MIPS_GOT_PAGE:
6076 /* If this is a global, overridable symbol, GOT_PAGE will
6077 decay to GOT_DISP, so we'll need a GOT entry for it. */
6078 if (h == NULL)
6079 break;
6080 else
6081 {
6082 struct mips_elf_link_hash_entry *hmips =
6083 (struct mips_elf_link_hash_entry *) h;
143d77c5 6084
0fdc1bf1
AO
6085 while (hmips->root.root.type == bfd_link_hash_indirect
6086 || hmips->root.root.type == bfd_link_hash_warning)
6087 hmips = (struct mips_elf_link_hash_entry *)
6088 hmips->root.root.u.i.link;
143d77c5 6089
f5385ebf 6090 if (hmips->root.def_regular
0fdc1bf1 6091 && ! (info->shared && ! info->symbolic
f5385ebf 6092 && ! hmips->root.forced_local))
0fdc1bf1
AO
6093 break;
6094 }
6095 /* Fall through. */
6096
b49e97c9
TS
6097 case R_MIPS_GOT16:
6098 case R_MIPS_GOT_HI16:
6099 case R_MIPS_GOT_LO16:
6100 case R_MIPS_GOT_DISP:
0f20cc35 6101 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6102 return FALSE;
b49e97c9
TS
6103 break;
6104
0f20cc35
DJ
6105 case R_MIPS_TLS_GOTTPREL:
6106 if (info->shared)
6107 info->flags |= DF_STATIC_TLS;
6108 /* Fall through */
6109
6110 case R_MIPS_TLS_LDM:
6111 if (r_type == R_MIPS_TLS_LDM)
6112 {
6113 r_symndx = 0;
6114 h = NULL;
6115 }
6116 /* Fall through */
6117
6118 case R_MIPS_TLS_GD:
6119 /* This symbol requires a global offset table entry, or two
6120 for TLS GD relocations. */
6121 {
6122 unsigned char flag = (r_type == R_MIPS_TLS_GD
6123 ? GOT_TLS_GD
6124 : r_type == R_MIPS_TLS_LDM
6125 ? GOT_TLS_LDM
6126 : GOT_TLS_IE);
6127 if (h != NULL)
6128 {
6129 struct mips_elf_link_hash_entry *hmips =
6130 (struct mips_elf_link_hash_entry *) h;
6131 hmips->tls_type |= flag;
6132
6133 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6134 return FALSE;
6135 }
6136 else
6137 {
6138 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6139
6140 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6141 rel->r_addend, g, flag))
6142 return FALSE;
6143 }
6144 }
6145 break;
6146
b49e97c9
TS
6147 case R_MIPS_32:
6148 case R_MIPS_REL32:
6149 case R_MIPS_64:
6150 if ((info->shared || h != NULL)
6151 && (sec->flags & SEC_ALLOC) != 0)
6152 {
6153 if (sreloc == NULL)
6154 {
f4416af6 6155 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 6156 if (sreloc == NULL)
f4416af6 6157 return FALSE;
b49e97c9 6158 }
82f0cfbd 6159#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
b49e97c9 6160 if (info->shared)
82f0cfbd
EC
6161 {
6162 /* When creating a shared object, we must copy these
6163 reloc types into the output file as R_MIPS_REL32
6164 relocs. We make room for this reloc in the
6165 .rel.dyn reloc section. */
6166 mips_elf_allocate_dynamic_relocations (dynobj, 1);
6167 if ((sec->flags & MIPS_READONLY_SECTION)
6168 == MIPS_READONLY_SECTION)
6169 /* We tell the dynamic linker that there are
6170 relocations against the text segment. */
6171 info->flags |= DF_TEXTREL;
6172 }
b49e97c9
TS
6173 else
6174 {
6175 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6176
b49e97c9
TS
6177 /* We only need to copy this reloc if the symbol is
6178 defined in a dynamic object. */
6179 hmips = (struct mips_elf_link_hash_entry *) h;
6180 ++hmips->possibly_dynamic_relocs;
82f0cfbd
EC
6181 if ((sec->flags & MIPS_READONLY_SECTION)
6182 == MIPS_READONLY_SECTION)
6183 /* We need it to tell the dynamic linker if there
6184 are relocations against the text segment. */
6185 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6186 }
6187
6188 /* Even though we don't directly need a GOT entry for
6189 this symbol, a symbol must have a dynamic symbol
6190 table index greater that DT_MIPS_GOTSYM if there are
6191 dynamic relocations against it. */
f4416af6
AO
6192 if (h != NULL)
6193 {
6194 if (dynobj == NULL)
6195 elf_hash_table (info)->dynobj = dynobj = abfd;
6196 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6197 return FALSE;
6198 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6199 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6200 return FALSE;
6201 }
b49e97c9
TS
6202 }
6203
6204 if (SGI_COMPAT (abfd))
6205 mips_elf_hash_table (info)->compact_rel_size +=
6206 sizeof (Elf32_External_crinfo);
6207 break;
6208
6209 case R_MIPS_26:
6210 case R_MIPS_GPREL16:
6211 case R_MIPS_LITERAL:
6212 case R_MIPS_GPREL32:
6213 if (SGI_COMPAT (abfd))
6214 mips_elf_hash_table (info)->compact_rel_size +=
6215 sizeof (Elf32_External_crinfo);
6216 break;
6217
6218 /* This relocation describes the C++ object vtable hierarchy.
6219 Reconstruct it for later use during GC. */
6220 case R_MIPS_GNU_VTINHERIT:
c152c796 6221 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6222 return FALSE;
b49e97c9
TS
6223 break;
6224
6225 /* This relocation describes which C++ vtable entries are actually
6226 used. Record for later use during GC. */
6227 case R_MIPS_GNU_VTENTRY:
c152c796 6228 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6229 return FALSE;
b49e97c9
TS
6230 break;
6231
6232 default:
6233 break;
6234 }
6235
6236 /* We must not create a stub for a symbol that has relocations
6237 related to taking the function's address. */
6238 switch (r_type)
6239 {
6240 default:
6241 if (h != NULL)
6242 {
6243 struct mips_elf_link_hash_entry *mh;
6244
6245 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6246 mh->no_fn_stub = TRUE;
b49e97c9
TS
6247 }
6248 break;
6249 case R_MIPS_CALL16:
6250 case R_MIPS_CALL_HI16:
6251 case R_MIPS_CALL_LO16:
2b86c02e 6252 case R_MIPS_JALR:
b49e97c9
TS
6253 break;
6254 }
6255
6256 /* If this reloc is not a 16 bit call, and it has a global
6257 symbol, then we will need the fn_stub if there is one.
6258 References from a stub section do not count. */
6259 if (h != NULL
6260 && r_type != R_MIPS16_26
6261 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6262 sizeof FN_STUB - 1) != 0
6263 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6264 sizeof CALL_STUB - 1) != 0
6265 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6266 sizeof CALL_FP_STUB - 1) != 0)
6267 {
6268 struct mips_elf_link_hash_entry *mh;
6269
6270 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6271 mh->need_fn_stub = TRUE;
b49e97c9
TS
6272 }
6273 }
6274
b34976b6 6275 return TRUE;
b49e97c9
TS
6276}
6277\f
d0647110 6278bfd_boolean
9719ad41
RS
6279_bfd_mips_relax_section (bfd *abfd, asection *sec,
6280 struct bfd_link_info *link_info,
6281 bfd_boolean *again)
d0647110
AO
6282{
6283 Elf_Internal_Rela *internal_relocs;
6284 Elf_Internal_Rela *irel, *irelend;
6285 Elf_Internal_Shdr *symtab_hdr;
6286 bfd_byte *contents = NULL;
d0647110
AO
6287 size_t extsymoff;
6288 bfd_boolean changed_contents = FALSE;
6289 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6290 Elf_Internal_Sym *isymbuf = NULL;
6291
6292 /* We are not currently changing any sizes, so only one pass. */
6293 *again = FALSE;
6294
1049f94e 6295 if (link_info->relocatable)
d0647110
AO
6296 return TRUE;
6297
9719ad41 6298 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6299 link_info->keep_memory);
d0647110
AO
6300 if (internal_relocs == NULL)
6301 return TRUE;
6302
6303 irelend = internal_relocs + sec->reloc_count
6304 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6305 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6306 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6307
6308 for (irel = internal_relocs; irel < irelend; irel++)
6309 {
6310 bfd_vma symval;
6311 bfd_signed_vma sym_offset;
6312 unsigned int r_type;
6313 unsigned long r_symndx;
6314 asection *sym_sec;
6315 unsigned long instruction;
6316
6317 /* Turn jalr into bgezal, and jr into beq, if they're marked
6318 with a JALR relocation, that indicate where they jump to.
6319 This saves some pipeline bubbles. */
6320 r_type = ELF_R_TYPE (abfd, irel->r_info);
6321 if (r_type != R_MIPS_JALR)
6322 continue;
6323
6324 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6325 /* Compute the address of the jump target. */
6326 if (r_symndx >= extsymoff)
6327 {
6328 struct mips_elf_link_hash_entry *h
6329 = ((struct mips_elf_link_hash_entry *)
6330 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6331
6332 while (h->root.root.type == bfd_link_hash_indirect
6333 || h->root.root.type == bfd_link_hash_warning)
6334 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6335
d0647110
AO
6336 /* If a symbol is undefined, or if it may be overridden,
6337 skip it. */
6338 if (! ((h->root.root.type == bfd_link_hash_defined
6339 || h->root.root.type == bfd_link_hash_defweak)
6340 && h->root.root.u.def.section)
6341 || (link_info->shared && ! link_info->symbolic
f5385ebf 6342 && !h->root.forced_local))
d0647110
AO
6343 continue;
6344
6345 sym_sec = h->root.root.u.def.section;
6346 if (sym_sec->output_section)
6347 symval = (h->root.root.u.def.value
6348 + sym_sec->output_section->vma
6349 + sym_sec->output_offset);
6350 else
6351 symval = h->root.root.u.def.value;
6352 }
6353 else
6354 {
6355 Elf_Internal_Sym *isym;
6356
6357 /* Read this BFD's symbols if we haven't done so already. */
6358 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6359 {
6360 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6361 if (isymbuf == NULL)
6362 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6363 symtab_hdr->sh_info, 0,
6364 NULL, NULL, NULL);
6365 if (isymbuf == NULL)
6366 goto relax_return;
6367 }
6368
6369 isym = isymbuf + r_symndx;
6370 if (isym->st_shndx == SHN_UNDEF)
6371 continue;
6372 else if (isym->st_shndx == SHN_ABS)
6373 sym_sec = bfd_abs_section_ptr;
6374 else if (isym->st_shndx == SHN_COMMON)
6375 sym_sec = bfd_com_section_ptr;
6376 else
6377 sym_sec
6378 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6379 symval = isym->st_value
6380 + sym_sec->output_section->vma
6381 + sym_sec->output_offset;
6382 }
6383
6384 /* Compute branch offset, from delay slot of the jump to the
6385 branch target. */
6386 sym_offset = (symval + irel->r_addend)
6387 - (sec_start + irel->r_offset + 4);
6388
6389 /* Branch offset must be properly aligned. */
6390 if ((sym_offset & 3) != 0)
6391 continue;
6392
6393 sym_offset >>= 2;
6394
6395 /* Check that it's in range. */
6396 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6397 continue;
143d77c5 6398
d0647110
AO
6399 /* Get the section contents if we haven't done so already. */
6400 if (contents == NULL)
6401 {
6402 /* Get cached copy if it exists. */
6403 if (elf_section_data (sec)->this_hdr.contents != NULL)
6404 contents = elf_section_data (sec)->this_hdr.contents;
6405 else
6406 {
eea6121a 6407 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6408 goto relax_return;
6409 }
6410 }
6411
6412 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6413
6414 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6415 if ((instruction & 0xfc1fffff) == 0x0000f809)
6416 instruction = 0x04110000;
6417 /* If it was jr <reg>, turn it into b <target>. */
6418 else if ((instruction & 0xfc1fffff) == 0x00000008)
6419 instruction = 0x10000000;
6420 else
6421 continue;
6422
6423 instruction |= (sym_offset & 0xffff);
6424 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6425 changed_contents = TRUE;
6426 }
6427
6428 if (contents != NULL
6429 && elf_section_data (sec)->this_hdr.contents != contents)
6430 {
6431 if (!changed_contents && !link_info->keep_memory)
6432 free (contents);
6433 else
6434 {
6435 /* Cache the section contents for elf_link_input_bfd. */
6436 elf_section_data (sec)->this_hdr.contents = contents;
6437 }
6438 }
6439 return TRUE;
6440
143d77c5 6441 relax_return:
eea6121a
AM
6442 if (contents != NULL
6443 && elf_section_data (sec)->this_hdr.contents != contents)
6444 free (contents);
d0647110
AO
6445 return FALSE;
6446}
6447\f
b49e97c9
TS
6448/* Adjust a symbol defined by a dynamic object and referenced by a
6449 regular object. The current definition is in some section of the
6450 dynamic object, but we're not including those sections. We have to
6451 change the definition to something the rest of the link can
6452 understand. */
6453
b34976b6 6454bfd_boolean
9719ad41
RS
6455_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6456 struct elf_link_hash_entry *h)
b49e97c9
TS
6457{
6458 bfd *dynobj;
6459 struct mips_elf_link_hash_entry *hmips;
6460 asection *s;
6461
6462 dynobj = elf_hash_table (info)->dynobj;
6463
6464 /* Make sure we know what is going on here. */
6465 BFD_ASSERT (dynobj != NULL
f5385ebf 6466 && (h->needs_plt
f6e332e6 6467 || h->u.weakdef != NULL
f5385ebf
AM
6468 || (h->def_dynamic
6469 && h->ref_regular
6470 && !h->def_regular)));
b49e97c9
TS
6471
6472 /* If this symbol is defined in a dynamic object, we need to copy
6473 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6474 file. */
6475 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6476 if (! info->relocatable
b49e97c9
TS
6477 && hmips->possibly_dynamic_relocs != 0
6478 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6479 || !h->def_regular))
b49e97c9
TS
6480 {
6481 mips_elf_allocate_dynamic_relocations (dynobj,
6482 hmips->possibly_dynamic_relocs);
82f0cfbd 6483 if (hmips->readonly_reloc)
b49e97c9
TS
6484 /* We tell the dynamic linker that there are relocations
6485 against the text segment. */
6486 info->flags |= DF_TEXTREL;
6487 }
6488
6489 /* For a function, create a stub, if allowed. */
6490 if (! hmips->no_fn_stub
f5385ebf 6491 && h->needs_plt)
b49e97c9
TS
6492 {
6493 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6494 return TRUE;
b49e97c9
TS
6495
6496 /* If this symbol is not defined in a regular file, then set
6497 the symbol to the stub location. This is required to make
6498 function pointers compare as equal between the normal
6499 executable and the shared library. */
f5385ebf 6500 if (!h->def_regular)
b49e97c9
TS
6501 {
6502 /* We need .stub section. */
6503 s = bfd_get_section_by_name (dynobj,
6504 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6505 BFD_ASSERT (s != NULL);
6506
6507 h->root.u.def.section = s;
eea6121a 6508 h->root.u.def.value = s->size;
b49e97c9
TS
6509
6510 /* XXX Write this stub address somewhere. */
eea6121a 6511 h->plt.offset = s->size;
b49e97c9
TS
6512
6513 /* Make room for this stub code. */
eea6121a 6514 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6515
6516 /* The last half word of the stub will be filled with the index
6517 of this symbol in .dynsym section. */
b34976b6 6518 return TRUE;
b49e97c9
TS
6519 }
6520 }
6521 else if ((h->type == STT_FUNC)
f5385ebf 6522 && !h->needs_plt)
b49e97c9
TS
6523 {
6524 /* This will set the entry for this symbol in the GOT to 0, and
6525 the dynamic linker will take care of this. */
6526 h->root.u.def.value = 0;
b34976b6 6527 return TRUE;
b49e97c9
TS
6528 }
6529
6530 /* If this is a weak symbol, and there is a real definition, the
6531 processor independent code will have arranged for us to see the
6532 real definition first, and we can just use the same value. */
f6e332e6 6533 if (h->u.weakdef != NULL)
b49e97c9 6534 {
f6e332e6
AM
6535 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6536 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6537 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6538 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 6539 return TRUE;
b49e97c9
TS
6540 }
6541
6542 /* This is a reference to a symbol defined by a dynamic object which
6543 is not a function. */
6544
b34976b6 6545 return TRUE;
b49e97c9
TS
6546}
6547\f
6548/* This function is called after all the input files have been read,
6549 and the input sections have been assigned to output sections. We
6550 check for any mips16 stub sections that we can discard. */
6551
b34976b6 6552bfd_boolean
9719ad41
RS
6553_bfd_mips_elf_always_size_sections (bfd *output_bfd,
6554 struct bfd_link_info *info)
b49e97c9
TS
6555{
6556 asection *ri;
6557
f4416af6
AO
6558 bfd *dynobj;
6559 asection *s;
6560 struct mips_got_info *g;
6561 int i;
6562 bfd_size_type loadable_size = 0;
6563 bfd_size_type local_gotno;
6564 bfd *sub;
0f20cc35 6565 struct mips_elf_count_tls_arg count_tls_arg;
f4416af6 6566
b49e97c9
TS
6567 /* The .reginfo section has a fixed size. */
6568 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
6569 if (ri != NULL)
9719ad41 6570 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 6571
1049f94e 6572 if (! (info->relocatable
f4416af6
AO
6573 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
6574 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 6575 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
6576
6577 dynobj = elf_hash_table (info)->dynobj;
6578 if (dynobj == NULL)
6579 /* Relocatable links don't have it. */
6580 return TRUE;
143d77c5 6581
f4416af6
AO
6582 g = mips_elf_got_info (dynobj, &s);
6583 if (s == NULL)
b34976b6 6584 return TRUE;
b49e97c9 6585
f4416af6
AO
6586 /* Calculate the total loadable size of the output. That
6587 will give us the maximum number of GOT_PAGE entries
6588 required. */
6589 for (sub = info->input_bfds; sub; sub = sub->link_next)
6590 {
6591 asection *subsection;
6592
6593 for (subsection = sub->sections;
6594 subsection;
6595 subsection = subsection->next)
6596 {
6597 if ((subsection->flags & SEC_ALLOC) == 0)
6598 continue;
eea6121a 6599 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
6600 &~ (bfd_size_type) 0xf);
6601 }
6602 }
6603
6604 /* There has to be a global GOT entry for every symbol with
6605 a dynamic symbol table index of DT_MIPS_GOTSYM or
6606 higher. Therefore, it make sense to put those symbols
6607 that need GOT entries at the end of the symbol table. We
6608 do that here. */
6609 if (! mips_elf_sort_hash_table (info, 1))
6610 return FALSE;
6611
6612 if (g->global_gotsym != NULL)
6613 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
6614 else
6615 /* If there are no global symbols, or none requiring
6616 relocations, then GLOBAL_GOTSYM will be NULL. */
6617 i = 0;
6618
6619 /* In the worst case, we'll get one stub per dynamic symbol, plus
6620 one to account for the dummy entry at the end required by IRIX
6621 rld. */
6622 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
6623
6624 /* Assume there are two loadable segments consisting of
6625 contiguous sections. Is 5 enough? */
6626 local_gotno = (loadable_size >> 16) + 5;
6627
6628 g->local_gotno += local_gotno;
eea6121a 6629 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
6630
6631 g->global_gotno = i;
eea6121a 6632 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 6633
0f20cc35
DJ
6634 /* We need to calculate tls_gotno for global symbols at this point
6635 instead of building it up earlier, to avoid doublecounting
6636 entries for one global symbol from multiple input files. */
6637 count_tls_arg.info = info;
6638 count_tls_arg.needed = 0;
6639 elf_link_hash_traverse (elf_hash_table (info),
6640 mips_elf_count_global_tls_entries,
6641 &count_tls_arg);
6642 g->tls_gotno += count_tls_arg.needed;
6643 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
6644
6645 mips_elf_resolve_final_got_entries (g);
6646
6647 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd))
6648 {
6649 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
6650 return FALSE;
6651 }
6652 else
6653 {
6654 /* Set up TLS entries for the first GOT. */
6655 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
6656 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
6657 }
b49e97c9 6658
b34976b6 6659 return TRUE;
b49e97c9
TS
6660}
6661
6662/* Set the sizes of the dynamic sections. */
6663
b34976b6 6664bfd_boolean
9719ad41
RS
6665_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
6666 struct bfd_link_info *info)
b49e97c9
TS
6667{
6668 bfd *dynobj;
6669 asection *s;
b34976b6 6670 bfd_boolean reltext;
b49e97c9
TS
6671
6672 dynobj = elf_hash_table (info)->dynobj;
6673 BFD_ASSERT (dynobj != NULL);
6674
6675 if (elf_hash_table (info)->dynamic_sections_created)
6676 {
6677 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 6678 if (info->executable)
b49e97c9
TS
6679 {
6680 s = bfd_get_section_by_name (dynobj, ".interp");
6681 BFD_ASSERT (s != NULL);
eea6121a 6682 s->size
b49e97c9
TS
6683 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
6684 s->contents
6685 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
6686 }
6687 }
6688
6689 /* The check_relocs and adjust_dynamic_symbol entry points have
6690 determined the sizes of the various dynamic sections. Allocate
6691 memory for them. */
b34976b6 6692 reltext = FALSE;
b49e97c9
TS
6693 for (s = dynobj->sections; s != NULL; s = s->next)
6694 {
6695 const char *name;
b49e97c9
TS
6696
6697 /* It's OK to base decisions on the section name, because none
6698 of the dynobj section names depend upon the input files. */
6699 name = bfd_get_section_name (dynobj, s);
6700
6701 if ((s->flags & SEC_LINKER_CREATED) == 0)
6702 continue;
6703
b49e97c9
TS
6704 if (strncmp (name, ".rel", 4) == 0)
6705 {
c456f082 6706 if (s->size != 0)
b49e97c9
TS
6707 {
6708 const char *outname;
6709 asection *target;
6710
6711 /* If this relocation section applies to a read only
6712 section, then we probably need a DT_TEXTREL entry.
6713 If the relocation section is .rel.dyn, we always
6714 assert a DT_TEXTREL entry rather than testing whether
6715 there exists a relocation to a read only section or
6716 not. */
6717 outname = bfd_get_section_name (output_bfd,
6718 s->output_section);
6719 target = bfd_get_section_by_name (output_bfd, outname + 4);
6720 if ((target != NULL
6721 && (target->flags & SEC_READONLY) != 0
6722 && (target->flags & SEC_ALLOC) != 0)
6723 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 6724 reltext = TRUE;
b49e97c9
TS
6725
6726 /* We use the reloc_count field as a counter if we need
6727 to copy relocs into the output file. */
6728 if (strcmp (name, ".rel.dyn") != 0)
6729 s->reloc_count = 0;
f4416af6
AO
6730
6731 /* If combreloc is enabled, elf_link_sort_relocs() will
6732 sort relocations, but in a different way than we do,
6733 and before we're done creating relocations. Also, it
6734 will move them around between input sections'
6735 relocation's contents, so our sorting would be
6736 broken, so don't let it run. */
6737 info->combreloc = 0;
b49e97c9
TS
6738 }
6739 }
6740 else if (strncmp (name, ".got", 4) == 0)
6741 {
f4416af6
AO
6742 /* _bfd_mips_elf_always_size_sections() has already done
6743 most of the work, but some symbols may have been mapped
6744 to versions that we must now resolve in the got_entries
6745 hash tables. */
6746 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6747 struct mips_got_info *g = gg;
6748 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6749 unsigned int needed_relocs = 0;
143d77c5 6750
f4416af6 6751 if (gg->next)
b49e97c9 6752 {
f4416af6
AO
6753 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6754 set_got_offset_arg.info = info;
b49e97c9 6755
0f20cc35
DJ
6756 /* NOTE 2005-02-03: How can this call, or the next, ever
6757 find any indirect entries to resolve? They were all
6758 resolved in mips_elf_multi_got. */
f4416af6
AO
6759 mips_elf_resolve_final_got_entries (gg);
6760 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 6761 {
f4416af6
AO
6762 unsigned int save_assign;
6763
6764 mips_elf_resolve_final_got_entries (g);
6765
6766 /* Assign offsets to global GOT entries. */
6767 save_assign = g->assigned_gotno;
6768 g->assigned_gotno = g->local_gotno;
6769 set_got_offset_arg.g = g;
6770 set_got_offset_arg.needed_relocs = 0;
6771 htab_traverse (g->got_entries,
6772 mips_elf_set_global_got_offset,
6773 &set_got_offset_arg);
6774 needed_relocs += set_got_offset_arg.needed_relocs;
6775 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6776 <= g->global_gotno);
6777
6778 g->assigned_gotno = save_assign;
6779 if (info->shared)
6780 {
6781 needed_relocs += g->local_gotno - g->assigned_gotno;
6782 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6783 + g->next->global_gotno
0f20cc35 6784 + g->next->tls_gotno
f4416af6
AO
6785 + MIPS_RESERVED_GOTNO);
6786 }
b49e97c9 6787 }
0f20cc35
DJ
6788 }
6789 else
6790 {
6791 struct mips_elf_count_tls_arg arg;
6792 arg.info = info;
6793 arg.needed = 0;
b49e97c9 6794
0f20cc35
DJ
6795 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
6796 &arg);
6797 elf_link_hash_traverse (elf_hash_table (info),
6798 mips_elf_count_global_tls_relocs,
6799 &arg);
6800
6801 needed_relocs += arg.needed;
f4416af6 6802 }
0f20cc35
DJ
6803
6804 if (needed_relocs)
6805 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
b49e97c9
TS
6806 }
6807 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6808 {
8dc1a139 6809 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9 6810 of .text section. So put a dummy. XXX */
eea6121a 6811 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6812 }
6813 else if (! info->shared
6814 && ! mips_elf_hash_table (info)->use_rld_obj_head
6815 && strncmp (name, ".rld_map", 8) == 0)
6816 {
6817 /* We add a room for __rld_map. It will be filled in by the
6818 rtld to contain a pointer to the _r_debug structure. */
eea6121a 6819 s->size += 4;
b49e97c9
TS
6820 }
6821 else if (SGI_COMPAT (output_bfd)
6822 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 6823 s->size += mips_elf_hash_table (info)->compact_rel_size;
b49e97c9
TS
6824 else if (strncmp (name, ".init", 5) != 0)
6825 {
6826 /* It's not one of our sections, so don't allocate space. */
6827 continue;
6828 }
6829
c456f082 6830 if (s->size == 0)
b49e97c9 6831 {
8423293d 6832 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
6833 continue;
6834 }
6835
c456f082
AM
6836 if ((s->flags & SEC_HAS_CONTENTS) == 0)
6837 continue;
6838
b49e97c9 6839 /* Allocate memory for the section contents. */
eea6121a 6840 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 6841 if (s->contents == NULL)
b49e97c9
TS
6842 {
6843 bfd_set_error (bfd_error_no_memory);
b34976b6 6844 return FALSE;
b49e97c9
TS
6845 }
6846 }
6847
6848 if (elf_hash_table (info)->dynamic_sections_created)
6849 {
6850 /* Add some entries to the .dynamic section. We fill in the
6851 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6852 must add the entries now so that we get the correct size for
6853 the .dynamic section. The DT_DEBUG entry is filled in by the
6854 dynamic linker and used by the debugger. */
6855 if (! info->shared)
6856 {
6857 /* SGI object has the equivalence of DT_DEBUG in the
6858 DT_MIPS_RLD_MAP entry. */
6859 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6860 return FALSE;
b49e97c9
TS
6861 if (!SGI_COMPAT (output_bfd))
6862 {
6863 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6864 return FALSE;
b49e97c9
TS
6865 }
6866 }
6867 else
6868 {
6869 /* Shared libraries on traditional mips have DT_DEBUG. */
6870 if (!SGI_COMPAT (output_bfd))
6871 {
6872 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6873 return FALSE;
b49e97c9
TS
6874 }
6875 }
6876
6877 if (reltext && SGI_COMPAT (output_bfd))
6878 info->flags |= DF_TEXTREL;
6879
6880 if ((info->flags & DF_TEXTREL) != 0)
6881 {
6882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6883 return FALSE;
b49e97c9
TS
6884 }
6885
6886 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6887 return FALSE;
b49e97c9 6888
f4416af6 6889 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6890 {
6891 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6892 return FALSE;
b49e97c9
TS
6893
6894 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6895 return FALSE;
b49e97c9
TS
6896
6897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6898 return FALSE;
b49e97c9
TS
6899 }
6900
b49e97c9 6901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6902 return FALSE;
b49e97c9
TS
6903
6904 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6905 return FALSE;
b49e97c9 6906
b49e97c9 6907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6908 return FALSE;
b49e97c9
TS
6909
6910 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6911 return FALSE;
b49e97c9
TS
6912
6913 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6914 return FALSE;
b49e97c9
TS
6915
6916 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6917 return FALSE;
b49e97c9
TS
6918
6919 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6920 return FALSE;
b49e97c9
TS
6921
6922 if (IRIX_COMPAT (dynobj) == ict_irix5
6923 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6924 return FALSE;
b49e97c9
TS
6925
6926 if (IRIX_COMPAT (dynobj) == ict_irix6
6927 && (bfd_get_section_by_name
6928 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6929 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6930 return FALSE;
b49e97c9
TS
6931 }
6932
b34976b6 6933 return TRUE;
b49e97c9
TS
6934}
6935\f
6936/* Relocate a MIPS ELF section. */
6937
b34976b6 6938bfd_boolean
9719ad41
RS
6939_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6940 bfd *input_bfd, asection *input_section,
6941 bfd_byte *contents, Elf_Internal_Rela *relocs,
6942 Elf_Internal_Sym *local_syms,
6943 asection **local_sections)
b49e97c9
TS
6944{
6945 Elf_Internal_Rela *rel;
6946 const Elf_Internal_Rela *relend;
6947 bfd_vma addend = 0;
b34976b6 6948 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 6949 const struct elf_backend_data *bed;
b49e97c9
TS
6950
6951 bed = get_elf_backend_data (output_bfd);
6952 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6953 for (rel = relocs; rel < relend; ++rel)
6954 {
6955 const char *name;
c9adbffe 6956 bfd_vma value = 0;
b49e97c9 6957 reloc_howto_type *howto;
b34976b6
AM
6958 bfd_boolean require_jalx;
6959 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6960 REL relocation. */
b34976b6 6961 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 6962 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 6963 const char *msg;
b49e97c9
TS
6964
6965 /* Find the relocation howto for this relocation. */
4a14403c 6966 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6967 {
6968 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6969 64-bit code, but make sure all their addresses are in the
6970 lowermost or uppermost 32-bit section of the 64-bit address
6971 space. Thus, when they use an R_MIPS_64 they mean what is
6972 usually meant by R_MIPS_32, with the exception that the
6973 stored value is sign-extended to 64 bits. */
b34976b6 6974 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6975
6976 /* On big-endian systems, we need to lie about the position
6977 of the reloc. */
6978 if (bfd_big_endian (input_bfd))
6979 rel->r_offset += 4;
6980 }
6981 else
6982 /* NewABI defaults to RELA relocations. */
6983 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6984 NEWABI_P (input_bfd)
6985 && (MIPS_RELOC_RELA_P
6986 (input_bfd, input_section,
6987 rel - relocs)));
b49e97c9
TS
6988
6989 if (!use_saved_addend_p)
6990 {
6991 Elf_Internal_Shdr *rel_hdr;
6992
6993 /* If these relocations were originally of the REL variety,
6994 we must pull the addend out of the field that will be
6995 relocated. Otherwise, we simply use the contents of the
6996 RELA relocation. To determine which flavor or relocation
6997 this is, we depend on the fact that the INPUT_SECTION's
6998 REL_HDR is read before its REL_HDR2. */
6999 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7000 if ((size_t) (rel - relocs)
7001 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7002 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7003 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7004 {
d6f16593
MR
7005 bfd_byte *location = contents + rel->r_offset;
7006
b49e97c9 7007 /* Note that this is a REL relocation. */
b34976b6 7008 rela_relocation_p = FALSE;
b49e97c9
TS
7009
7010 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7011 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7012 location);
b49e97c9
TS
7013 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7014 contents);
d6f16593
MR
7015 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7016 location);
7017
b49e97c9
TS
7018 addend &= howto->src_mask;
7019
7020 /* For some kinds of relocations, the ADDEND is a
7021 combination of the addend stored in two different
7022 relocations. */
d6f16593 7023 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7024 || (r_type == R_MIPS_GOT16
7025 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7026 local_sections, FALSE)))
b49e97c9
TS
7027 {
7028 bfd_vma l;
7029 const Elf_Internal_Rela *lo16_relocation;
7030 reloc_howto_type *lo16_howto;
d6f16593
MR
7031 bfd_byte *lo16_location;
7032 int lo16_type;
7033
7034 if (r_type == R_MIPS16_HI16)
7035 lo16_type = R_MIPS16_LO16;
7036 else
7037 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7038
7039 /* The combined value is the sum of the HI16 addend,
7040 left-shifted by sixteen bits, and the LO16
7041 addend, sign extended. (Usually, the code does
7042 a `lui' of the HI16 value, and then an `addiu' of
7043 the LO16 value.)
7044
4030e8f6
CD
7045 Scan ahead to find a matching LO16 relocation.
7046
7047 According to the MIPS ELF ABI, the R_MIPS_LO16
7048 relocation must be immediately following.
7049 However, for the IRIX6 ABI, the next relocation
7050 may be a composed relocation consisting of
7051 several relocations for the same address. In
7052 that case, the R_MIPS_LO16 relocation may occur
7053 as one of these. We permit a similar extension
7054 in general, as that is useful for GCC. */
7055 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7056 lo16_type,
b49e97c9
TS
7057 rel, relend);
7058 if (lo16_relocation == NULL)
b34976b6 7059 return FALSE;
b49e97c9 7060
d6f16593
MR
7061 lo16_location = contents + lo16_relocation->r_offset;
7062
b49e97c9 7063 /* Obtain the addend kept there. */
4030e8f6 7064 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
d6f16593
MR
7065 lo16_type, FALSE);
7066 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7067 lo16_location);
b49e97c9
TS
7068 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7069 input_bfd, contents);
d6f16593
MR
7070 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7071 lo16_location);
b49e97c9 7072 l &= lo16_howto->src_mask;
5a659663 7073 l <<= lo16_howto->rightshift;
a7ebbfdf 7074 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
7075
7076 addend <<= 16;
7077
7078 /* Compute the combined addend. */
7079 addend += l;
b49e97c9 7080 }
30ac9238
RS
7081 else
7082 addend <<= howto->rightshift;
b49e97c9
TS
7083 }
7084 else
7085 addend = rel->r_addend;
7086 }
7087
1049f94e 7088 if (info->relocatable)
b49e97c9
TS
7089 {
7090 Elf_Internal_Sym *sym;
7091 unsigned long r_symndx;
7092
4a14403c 7093 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7094 && bfd_big_endian (input_bfd))
7095 rel->r_offset -= 4;
7096
7097 /* Since we're just relocating, all we need to do is copy
7098 the relocations back out to the object file, unless
7099 they're against a section symbol, in which case we need
7100 to adjust by the section offset, or unless they're GP
7101 relative in which case we need to adjust by the amount
1049f94e 7102 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
7103
7104 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 7105 FALSE))
b49e97c9
TS
7106 /* There's nothing to do for non-local relocations. */
7107 continue;
7108
7109 if (r_type == R_MIPS16_GPREL
7110 || r_type == R_MIPS_GPREL16
7111 || r_type == R_MIPS_GPREL32
7112 || r_type == R_MIPS_LITERAL)
7113 addend -= (_bfd_get_gp_value (output_bfd)
7114 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
7115
7116 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7117 sym = local_syms + r_symndx;
7118 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7119 /* Adjust the addend appropriately. */
7120 addend += local_sections[r_symndx]->output_offset;
7121
30ac9238
RS
7122 if (rela_relocation_p)
7123 /* If this is a RELA relocation, just update the addend. */
7124 rel->r_addend = addend;
7125 else
5a659663 7126 {
30ac9238 7127 if (r_type == R_MIPS_HI16
4030e8f6 7128 || r_type == R_MIPS_GOT16)
5a659663
TS
7129 addend = mips_elf_high (addend);
7130 else if (r_type == R_MIPS_HIGHER)
7131 addend = mips_elf_higher (addend);
7132 else if (r_type == R_MIPS_HIGHEST)
7133 addend = mips_elf_highest (addend);
30ac9238
RS
7134 else
7135 addend >>= howto->rightshift;
b49e97c9 7136
30ac9238
RS
7137 /* We use the source mask, rather than the destination
7138 mask because the place to which we are writing will be
7139 source of the addend in the final link. */
b49e97c9
TS
7140 addend &= howto->src_mask;
7141
5a659663 7142 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7143 /* See the comment above about using R_MIPS_64 in the 32-bit
7144 ABI. Here, we need to update the addend. It would be
7145 possible to get away with just using the R_MIPS_32 reloc
7146 but for endianness. */
7147 {
7148 bfd_vma sign_bits;
7149 bfd_vma low_bits;
7150 bfd_vma high_bits;
7151
7152 if (addend & ((bfd_vma) 1 << 31))
7153#ifdef BFD64
7154 sign_bits = ((bfd_vma) 1 << 32) - 1;
7155#else
7156 sign_bits = -1;
7157#endif
7158 else
7159 sign_bits = 0;
7160
7161 /* If we don't know that we have a 64-bit type,
7162 do two separate stores. */
7163 if (bfd_big_endian (input_bfd))
7164 {
7165 /* Store the sign-bits (which are most significant)
7166 first. */
7167 low_bits = sign_bits;
7168 high_bits = addend;
7169 }
7170 else
7171 {
7172 low_bits = addend;
7173 high_bits = sign_bits;
7174 }
7175 bfd_put_32 (input_bfd, low_bits,
7176 contents + rel->r_offset);
7177 bfd_put_32 (input_bfd, high_bits,
7178 contents + rel->r_offset + 4);
7179 continue;
7180 }
7181
7182 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7183 input_bfd, input_section,
b34976b6
AM
7184 contents, FALSE))
7185 return FALSE;
b49e97c9
TS
7186 }
7187
7188 /* Go on to the next relocation. */
7189 continue;
7190 }
7191
7192 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7193 relocations for the same offset. In that case we are
7194 supposed to treat the output of each relocation as the addend
7195 for the next. */
7196 if (rel + 1 < relend
7197 && rel->r_offset == rel[1].r_offset
7198 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 7199 use_saved_addend_p = TRUE;
b49e97c9 7200 else
b34976b6 7201 use_saved_addend_p = FALSE;
b49e97c9
TS
7202
7203 /* Figure out what value we are supposed to relocate. */
7204 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7205 input_section, info, rel,
7206 addend, howto, local_syms,
7207 local_sections, &value,
bce03d3d
AO
7208 &name, &require_jalx,
7209 use_saved_addend_p))
b49e97c9
TS
7210 {
7211 case bfd_reloc_continue:
7212 /* There's nothing to do. */
7213 continue;
7214
7215 case bfd_reloc_undefined:
7216 /* mips_elf_calculate_relocation already called the
7217 undefined_symbol callback. There's no real point in
7218 trying to perform the relocation at this point, so we
7219 just skip ahead to the next relocation. */
7220 continue;
7221
7222 case bfd_reloc_notsupported:
7223 msg = _("internal error: unsupported relocation error");
7224 info->callbacks->warning
7225 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 7226 return FALSE;
b49e97c9
TS
7227
7228 case bfd_reloc_overflow:
7229 if (use_saved_addend_p)
7230 /* Ignore overflow until we reach the last relocation for
7231 a given location. */
7232 ;
7233 else
7234 {
7235 BFD_ASSERT (name != NULL);
7236 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 7237 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 7238 input_bfd, input_section, rel->r_offset)))
b34976b6 7239 return FALSE;
b49e97c9
TS
7240 }
7241 break;
7242
7243 case bfd_reloc_ok:
7244 break;
7245
7246 default:
7247 abort ();
7248 break;
7249 }
7250
7251 /* If we've got another relocation for the address, keep going
7252 until we reach the last one. */
7253 if (use_saved_addend_p)
7254 {
7255 addend = value;
7256 continue;
7257 }
7258
4a14403c 7259 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7260 /* See the comment above about using R_MIPS_64 in the 32-bit
7261 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7262 that calculated the right value. Now, however, we
7263 sign-extend the 32-bit result to 64-bits, and store it as a
7264 64-bit value. We are especially generous here in that we
7265 go to extreme lengths to support this usage on systems with
7266 only a 32-bit VMA. */
7267 {
7268 bfd_vma sign_bits;
7269 bfd_vma low_bits;
7270 bfd_vma high_bits;
7271
7272 if (value & ((bfd_vma) 1 << 31))
7273#ifdef BFD64
7274 sign_bits = ((bfd_vma) 1 << 32) - 1;
7275#else
7276 sign_bits = -1;
7277#endif
7278 else
7279 sign_bits = 0;
7280
7281 /* If we don't know that we have a 64-bit type,
7282 do two separate stores. */
7283 if (bfd_big_endian (input_bfd))
7284 {
7285 /* Undo what we did above. */
7286 rel->r_offset -= 4;
7287 /* Store the sign-bits (which are most significant)
7288 first. */
7289 low_bits = sign_bits;
7290 high_bits = value;
7291 }
7292 else
7293 {
7294 low_bits = value;
7295 high_bits = sign_bits;
7296 }
7297 bfd_put_32 (input_bfd, low_bits,
7298 contents + rel->r_offset);
7299 bfd_put_32 (input_bfd, high_bits,
7300 contents + rel->r_offset + 4);
7301 continue;
7302 }
7303
7304 /* Actually perform the relocation. */
7305 if (! mips_elf_perform_relocation (info, howto, rel, value,
7306 input_bfd, input_section,
7307 contents, require_jalx))
b34976b6 7308 return FALSE;
b49e97c9
TS
7309 }
7310
b34976b6 7311 return TRUE;
b49e97c9
TS
7312}
7313\f
7314/* If NAME is one of the special IRIX6 symbols defined by the linker,
7315 adjust it appropriately now. */
7316
7317static void
9719ad41
RS
7318mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7319 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
7320{
7321 /* The linker script takes care of providing names and values for
7322 these, but we must place them into the right sections. */
7323 static const char* const text_section_symbols[] = {
7324 "_ftext",
7325 "_etext",
7326 "__dso_displacement",
7327 "__elf_header",
7328 "__program_header_table",
7329 NULL
7330 };
7331
7332 static const char* const data_section_symbols[] = {
7333 "_fdata",
7334 "_edata",
7335 "_end",
7336 "_fbss",
7337 NULL
7338 };
7339
7340 const char* const *p;
7341 int i;
7342
7343 for (i = 0; i < 2; ++i)
7344 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
7345 *p;
7346 ++p)
7347 if (strcmp (*p, name) == 0)
7348 {
7349 /* All of these symbols are given type STT_SECTION by the
7350 IRIX6 linker. */
7351 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 7352 sym->st_other = STO_PROTECTED;
b49e97c9
TS
7353
7354 /* The IRIX linker puts these symbols in special sections. */
7355 if (i == 0)
7356 sym->st_shndx = SHN_MIPS_TEXT;
7357 else
7358 sym->st_shndx = SHN_MIPS_DATA;
7359
7360 break;
7361 }
7362}
7363
7364/* Finish up dynamic symbol handling. We set the contents of various
7365 dynamic sections here. */
7366
b34976b6 7367bfd_boolean
9719ad41
RS
7368_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
7369 struct bfd_link_info *info,
7370 struct elf_link_hash_entry *h,
7371 Elf_Internal_Sym *sym)
b49e97c9
TS
7372{
7373 bfd *dynobj;
b49e97c9 7374 asection *sgot;
f4416af6 7375 struct mips_got_info *g, *gg;
b49e97c9 7376 const char *name;
b49e97c9
TS
7377
7378 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 7379
c5ae1840 7380 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
7381 {
7382 asection *s;
7383 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
7384
7385 /* This symbol has a stub. Set it up. */
7386
7387 BFD_ASSERT (h->dynindx != -1);
7388
7389 s = bfd_get_section_by_name (dynobj,
7390 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7391 BFD_ASSERT (s != NULL);
7392
6ece8836 7393 /* FIXME: Can h->dynindx be more than 64K? */
b49e97c9 7394 if (h->dynindx & 0xffff0000)
b34976b6 7395 return FALSE;
b49e97c9
TS
7396
7397 /* Fill the stub. */
7398 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
7399 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
7400 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
7401 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
7402
eea6121a 7403 BFD_ASSERT (h->plt.offset <= s->size);
b49e97c9
TS
7404 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
7405
7406 /* Mark the symbol as undefined. plt.offset != -1 occurs
7407 only for the referenced symbol. */
7408 sym->st_shndx = SHN_UNDEF;
7409
7410 /* The run-time linker uses the st_value field of the symbol
7411 to reset the global offset table entry for this external
7412 to its stub address when unlinking a shared object. */
c5ae1840
TS
7413 sym->st_value = (s->output_section->vma + s->output_offset
7414 + h->plt.offset);
b49e97c9
TS
7415 }
7416
7417 BFD_ASSERT (h->dynindx != -1
f5385ebf 7418 || h->forced_local);
b49e97c9 7419
f4416af6 7420 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 7421 BFD_ASSERT (sgot != NULL);
f4416af6 7422 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 7423 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
7424 BFD_ASSERT (g != NULL);
7425
7426 /* Run through the global symbol table, creating GOT entries for all
7427 the symbols that need them. */
7428 if (g->global_gotsym != NULL
7429 && h->dynindx >= g->global_gotsym->dynindx)
7430 {
7431 bfd_vma offset;
7432 bfd_vma value;
7433
6eaa6adc 7434 value = sym->st_value;
0f20cc35 7435 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
7436 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
7437 }
7438
0f20cc35 7439 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
7440 {
7441 struct mips_got_entry e, *p;
0626d451 7442 bfd_vma entry;
f4416af6 7443 bfd_vma offset;
f4416af6
AO
7444
7445 gg = g;
7446
7447 e.abfd = output_bfd;
7448 e.symndx = -1;
7449 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 7450 e.tls_type = 0;
143d77c5 7451
f4416af6
AO
7452 for (g = g->next; g->next != gg; g = g->next)
7453 {
7454 if (g->got_entries
7455 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
7456 &e)))
7457 {
7458 offset = p->gotidx;
0626d451
RS
7459 if (info->shared
7460 || (elf_hash_table (info)->dynamic_sections_created
7461 && p->d.h != NULL
f5385ebf
AM
7462 && p->d.h->root.def_dynamic
7463 && !p->d.h->root.def_regular))
0626d451
RS
7464 {
7465 /* Create an R_MIPS_REL32 relocation for this entry. Due to
7466 the various compatibility problems, it's easier to mock
7467 up an R_MIPS_32 or R_MIPS_64 relocation and leave
7468 mips_elf_create_dynamic_relocation to calculate the
7469 appropriate addend. */
7470 Elf_Internal_Rela rel[3];
7471
7472 memset (rel, 0, sizeof (rel));
7473 if (ABI_64_P (output_bfd))
7474 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
7475 else
7476 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
7477 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
7478
7479 entry = 0;
7480 if (! (mips_elf_create_dynamic_relocation
7481 (output_bfd, info, rel,
7482 e.d.h, NULL, sym->st_value, &entry, sgot)))
7483 return FALSE;
7484 }
7485 else
7486 entry = sym->st_value;
7487 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
7488 }
7489 }
7490 }
7491
b49e97c9
TS
7492 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
7493 name = h->root.root.string;
7494 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 7495 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
7496 sym->st_shndx = SHN_ABS;
7497 else if (strcmp (name, "_DYNAMIC_LINK") == 0
7498 || strcmp (name, "_DYNAMIC_LINKING") == 0)
7499 {
7500 sym->st_shndx = SHN_ABS;
7501 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7502 sym->st_value = 1;
7503 }
4a14403c 7504 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7505 {
7506 sym->st_shndx = SHN_ABS;
7507 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7508 sym->st_value = elf_gp (output_bfd);
7509 }
7510 else if (SGI_COMPAT (output_bfd))
7511 {
7512 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
7513 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
7514 {
7515 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7516 sym->st_other = STO_PROTECTED;
7517 sym->st_value = 0;
7518 sym->st_shndx = SHN_MIPS_DATA;
7519 }
7520 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
7521 {
7522 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7523 sym->st_other = STO_PROTECTED;
7524 sym->st_value = mips_elf_hash_table (info)->procedure_count;
7525 sym->st_shndx = SHN_ABS;
7526 }
7527 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
7528 {
7529 if (h->type == STT_FUNC)
7530 sym->st_shndx = SHN_MIPS_TEXT;
7531 else if (h->type == STT_OBJECT)
7532 sym->st_shndx = SHN_MIPS_DATA;
7533 }
7534 }
7535
7536 /* Handle the IRIX6-specific symbols. */
7537 if (IRIX_COMPAT (output_bfd) == ict_irix6)
7538 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
7539
7540 if (! info->shared)
7541 {
7542 if (! mips_elf_hash_table (info)->use_rld_obj_head
7543 && (strcmp (name, "__rld_map") == 0
7544 || strcmp (name, "__RLD_MAP") == 0))
7545 {
7546 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
7547 BFD_ASSERT (s != NULL);
7548 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 7549 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
7550 if (mips_elf_hash_table (info)->rld_value == 0)
7551 mips_elf_hash_table (info)->rld_value = sym->st_value;
7552 }
7553 else if (mips_elf_hash_table (info)->use_rld_obj_head
7554 && strcmp (name, "__rld_obj_head") == 0)
7555 {
7556 /* IRIX6 does not use a .rld_map section. */
7557 if (IRIX_COMPAT (output_bfd) == ict_irix5
7558 || IRIX_COMPAT (output_bfd) == ict_none)
7559 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
7560 != NULL);
7561 mips_elf_hash_table (info)->rld_value = sym->st_value;
7562 }
7563 }
7564
7565 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
7566 if (sym->st_other == STO_MIPS16)
7567 sym->st_value &= ~1;
b49e97c9 7568
b34976b6 7569 return TRUE;
b49e97c9
TS
7570}
7571
7572/* Finish up the dynamic sections. */
7573
b34976b6 7574bfd_boolean
9719ad41
RS
7575_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
7576 struct bfd_link_info *info)
b49e97c9
TS
7577{
7578 bfd *dynobj;
7579 asection *sdyn;
7580 asection *sgot;
f4416af6 7581 struct mips_got_info *gg, *g;
b49e97c9
TS
7582
7583 dynobj = elf_hash_table (info)->dynobj;
7584
7585 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
7586
f4416af6 7587 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 7588 if (sgot == NULL)
f4416af6 7589 gg = g = NULL;
b49e97c9
TS
7590 else
7591 {
f4416af6
AO
7592 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
7593 gg = mips_elf_section_data (sgot)->u.got_info;
7594 BFD_ASSERT (gg != NULL);
7595 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
7596 BFD_ASSERT (g != NULL);
7597 }
7598
7599 if (elf_hash_table (info)->dynamic_sections_created)
7600 {
7601 bfd_byte *b;
7602
7603 BFD_ASSERT (sdyn != NULL);
7604 BFD_ASSERT (g != NULL);
7605
7606 for (b = sdyn->contents;
eea6121a 7607 b < sdyn->contents + sdyn->size;
b49e97c9
TS
7608 b += MIPS_ELF_DYN_SIZE (dynobj))
7609 {
7610 Elf_Internal_Dyn dyn;
7611 const char *name;
7612 size_t elemsize;
7613 asection *s;
b34976b6 7614 bfd_boolean swap_out_p;
b49e97c9
TS
7615
7616 /* Read in the current dynamic entry. */
7617 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
7618
7619 /* Assume that we're going to modify it and write it out. */
b34976b6 7620 swap_out_p = TRUE;
b49e97c9
TS
7621
7622 switch (dyn.d_tag)
7623 {
7624 case DT_RELENT:
f4416af6 7625 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
7626 BFD_ASSERT (s != NULL);
7627 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
7628 break;
7629
7630 case DT_STRSZ:
7631 /* Rewrite DT_STRSZ. */
7632 dyn.d_un.d_val =
7633 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7634 break;
7635
7636 case DT_PLTGOT:
7637 name = ".got";
b49e97c9
TS
7638 s = bfd_get_section_by_name (output_bfd, name);
7639 BFD_ASSERT (s != NULL);
7640 dyn.d_un.d_ptr = s->vma;
7641 break;
7642
7643 case DT_MIPS_RLD_VERSION:
7644 dyn.d_un.d_val = 1; /* XXX */
7645 break;
7646
7647 case DT_MIPS_FLAGS:
7648 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
7649 break;
7650
b49e97c9 7651 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
7652 {
7653 time_t t;
7654 time (&t);
7655 dyn.d_un.d_val = t;
7656 }
b49e97c9
TS
7657 break;
7658
7659 case DT_MIPS_ICHECKSUM:
7660 /* XXX FIXME: */
b34976b6 7661 swap_out_p = FALSE;
b49e97c9
TS
7662 break;
7663
7664 case DT_MIPS_IVERSION:
7665 /* XXX FIXME: */
b34976b6 7666 swap_out_p = FALSE;
b49e97c9
TS
7667 break;
7668
7669 case DT_MIPS_BASE_ADDRESS:
7670 s = output_bfd->sections;
7671 BFD_ASSERT (s != NULL);
7672 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7673 break;
7674
7675 case DT_MIPS_LOCAL_GOTNO:
7676 dyn.d_un.d_val = g->local_gotno;
7677 break;
7678
7679 case DT_MIPS_UNREFEXTNO:
7680 /* The index into the dynamic symbol table which is the
7681 entry of the first external symbol that is not
7682 referenced within the same object. */
7683 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7684 break;
7685
7686 case DT_MIPS_GOTSYM:
f4416af6 7687 if (gg->global_gotsym)
b49e97c9 7688 {
f4416af6 7689 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
7690 break;
7691 }
7692 /* In case if we don't have global got symbols we default
7693 to setting DT_MIPS_GOTSYM to the same value as
7694 DT_MIPS_SYMTABNO, so we just fall through. */
7695
7696 case DT_MIPS_SYMTABNO:
7697 name = ".dynsym";
7698 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7699 s = bfd_get_section_by_name (output_bfd, name);
7700 BFD_ASSERT (s != NULL);
7701
eea6121a 7702 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
7703 break;
7704
7705 case DT_MIPS_HIPAGENO:
7706 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7707 break;
7708
7709 case DT_MIPS_RLD_MAP:
7710 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7711 break;
7712
7713 case DT_MIPS_OPTIONS:
7714 s = (bfd_get_section_by_name
7715 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7716 dyn.d_un.d_ptr = s->vma;
7717 break;
7718
b49e97c9 7719 default:
b34976b6 7720 swap_out_p = FALSE;
b49e97c9
TS
7721 break;
7722 }
7723
7724 if (swap_out_p)
7725 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7726 (dynobj, &dyn, b);
7727 }
7728 }
7729
7730 /* The first entry of the global offset table will be filled at
7731 runtime. The second entry will be used by some runtime loaders.
8dc1a139 7732 This isn't the case of IRIX rld. */
eea6121a 7733 if (sgot != NULL && sgot->size > 0)
b49e97c9 7734 {
9719ad41
RS
7735 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
7736 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
b49e97c9
TS
7737 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7738 }
7739
7740 if (sgot != NULL)
7741 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7742 = MIPS_ELF_GOT_SIZE (output_bfd);
7743
f4416af6
AO
7744 /* Generate dynamic relocations for the non-primary gots. */
7745 if (gg != NULL && gg->next)
7746 {
7747 Elf_Internal_Rela rel[3];
7748 bfd_vma addend = 0;
7749
7750 memset (rel, 0, sizeof (rel));
7751 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7752
7753 for (g = gg->next; g->next != gg; g = g->next)
7754 {
0f20cc35
DJ
7755 bfd_vma index = g->next->local_gotno + g->next->global_gotno
7756 + g->next->tls_gotno;
f4416af6 7757
9719ad41 7758 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 7759 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 7760 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
7761 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7762
7763 if (! info->shared)
7764 continue;
7765
7766 while (index < g->assigned_gotno)
7767 {
7768 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7769 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7770 if (!(mips_elf_create_dynamic_relocation
7771 (output_bfd, info, rel, NULL,
7772 bfd_abs_section_ptr,
7773 0, &addend, sgot)))
7774 return FALSE;
7775 BFD_ASSERT (addend == 0);
7776 }
7777 }
7778 }
7779
3133ddbf
DJ
7780 /* The generation of dynamic relocations for the non-primary gots
7781 adds more dynamic relocations. We cannot count them until
7782 here. */
7783
7784 if (elf_hash_table (info)->dynamic_sections_created)
7785 {
7786 bfd_byte *b;
7787 bfd_boolean swap_out_p;
7788
7789 BFD_ASSERT (sdyn != NULL);
7790
7791 for (b = sdyn->contents;
7792 b < sdyn->contents + sdyn->size;
7793 b += MIPS_ELF_DYN_SIZE (dynobj))
7794 {
7795 Elf_Internal_Dyn dyn;
7796 asection *s;
7797
7798 /* Read in the current dynamic entry. */
7799 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
7800
7801 /* Assume that we're going to modify it and write it out. */
7802 swap_out_p = TRUE;
7803
7804 switch (dyn.d_tag)
7805 {
7806 case DT_RELSZ:
7807 /* Reduce DT_RELSZ to account for any relocations we
7808 decided not to make. This is for the n64 irix rld,
7809 which doesn't seem to apply any relocations if there
7810 are trailing null entries. */
7811 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7812 dyn.d_un.d_val = (s->reloc_count
7813 * (ABI_64_P (output_bfd)
7814 ? sizeof (Elf64_Mips_External_Rel)
7815 : sizeof (Elf32_External_Rel)));
7816 break;
7817
7818 default:
7819 swap_out_p = FALSE;
7820 break;
7821 }
7822
7823 if (swap_out_p)
7824 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7825 (dynobj, &dyn, b);
7826 }
7827 }
7828
b49e97c9 7829 {
b49e97c9
TS
7830 asection *s;
7831 Elf32_compact_rel cpt;
7832
b49e97c9
TS
7833 if (SGI_COMPAT (output_bfd))
7834 {
7835 /* Write .compact_rel section out. */
7836 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7837 if (s != NULL)
7838 {
7839 cpt.id1 = 1;
7840 cpt.num = s->reloc_count;
7841 cpt.id2 = 2;
7842 cpt.offset = (s->output_section->filepos
7843 + sizeof (Elf32_External_compact_rel));
7844 cpt.reserved0 = 0;
7845 cpt.reserved1 = 0;
7846 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7847 ((Elf32_External_compact_rel *)
7848 s->contents));
7849
7850 /* Clean up a dummy stub function entry in .text. */
7851 s = bfd_get_section_by_name (dynobj,
7852 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7853 if (s != NULL)
7854 {
7855 file_ptr dummy_offset;
7856
eea6121a
AM
7857 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
7858 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
7859 memset (s->contents + dummy_offset, 0,
7860 MIPS_FUNCTION_STUB_SIZE);
7861 }
7862 }
7863 }
7864
7865 /* We need to sort the entries of the dynamic relocation section. */
7866
f4416af6
AO
7867 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7868
7869 if (s != NULL
eea6121a 7870 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7871 {
f4416af6 7872 reldyn_sorting_bfd = output_bfd;
b49e97c9 7873
f4416af6 7874 if (ABI_64_P (output_bfd))
9719ad41 7875 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6
AO
7876 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7877 else
9719ad41 7878 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6 7879 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7880 }
b49e97c9
TS
7881 }
7882
b34976b6 7883 return TRUE;
b49e97c9
TS
7884}
7885
b49e97c9 7886
64543e1a
RS
7887/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7888
7889static void
9719ad41 7890mips_set_isa_flags (bfd *abfd)
b49e97c9 7891{
64543e1a 7892 flagword val;
b49e97c9
TS
7893
7894 switch (bfd_get_mach (abfd))
7895 {
7896 default:
7897 case bfd_mach_mips3000:
7898 val = E_MIPS_ARCH_1;
7899 break;
7900
7901 case bfd_mach_mips3900:
7902 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7903 break;
7904
7905 case bfd_mach_mips6000:
7906 val = E_MIPS_ARCH_2;
7907 break;
7908
7909 case bfd_mach_mips4000:
7910 case bfd_mach_mips4300:
7911 case bfd_mach_mips4400:
7912 case bfd_mach_mips4600:
7913 val = E_MIPS_ARCH_3;
7914 break;
7915
7916 case bfd_mach_mips4010:
7917 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7918 break;
7919
7920 case bfd_mach_mips4100:
7921 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7922 break;
7923
7924 case bfd_mach_mips4111:
7925 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7926 break;
7927
00707a0e
RS
7928 case bfd_mach_mips4120:
7929 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7930 break;
7931
b49e97c9
TS
7932 case bfd_mach_mips4650:
7933 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7934 break;
7935
00707a0e
RS
7936 case bfd_mach_mips5400:
7937 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7938 break;
7939
7940 case bfd_mach_mips5500:
7941 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7942 break;
7943
0d2e43ed
ILT
7944 case bfd_mach_mips9000:
7945 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7946 break;
7947
b49e97c9 7948 case bfd_mach_mips5000:
5a7ea749 7949 case bfd_mach_mips7000:
b49e97c9
TS
7950 case bfd_mach_mips8000:
7951 case bfd_mach_mips10000:
7952 case bfd_mach_mips12000:
7953 val = E_MIPS_ARCH_4;
7954 break;
7955
7956 case bfd_mach_mips5:
7957 val = E_MIPS_ARCH_5;
7958 break;
7959
7960 case bfd_mach_mips_sb1:
7961 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7962 break;
7963
7964 case bfd_mach_mipsisa32:
7965 val = E_MIPS_ARCH_32;
7966 break;
7967
7968 case bfd_mach_mipsisa64:
7969 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7970 break;
7971
7972 case bfd_mach_mipsisa32r2:
7973 val = E_MIPS_ARCH_32R2;
7974 break;
5f74bc13
CD
7975
7976 case bfd_mach_mipsisa64r2:
7977 val = E_MIPS_ARCH_64R2;
7978 break;
b49e97c9 7979 }
b49e97c9
TS
7980 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7981 elf_elfheader (abfd)->e_flags |= val;
7982
64543e1a
RS
7983}
7984
7985
7986/* The final processing done just before writing out a MIPS ELF object
7987 file. This gets the MIPS architecture right based on the machine
7988 number. This is used by both the 32-bit and the 64-bit ABI. */
7989
7990void
9719ad41
RS
7991_bfd_mips_elf_final_write_processing (bfd *abfd,
7992 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
7993{
7994 unsigned int i;
7995 Elf_Internal_Shdr **hdrpp;
7996 const char *name;
7997 asection *sec;
7998
7999 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
8000 is nonzero. This is for compatibility with old objects, which used
8001 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
8002 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
8003 mips_set_isa_flags (abfd);
8004
b49e97c9
TS
8005 /* Set the sh_info field for .gptab sections and other appropriate
8006 info for each special section. */
8007 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
8008 i < elf_numsections (abfd);
8009 i++, hdrpp++)
8010 {
8011 switch ((*hdrpp)->sh_type)
8012 {
8013 case SHT_MIPS_MSYM:
8014 case SHT_MIPS_LIBLIST:
8015 sec = bfd_get_section_by_name (abfd, ".dynstr");
8016 if (sec != NULL)
8017 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8018 break;
8019
8020 case SHT_MIPS_GPTAB:
8021 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8022 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8023 BFD_ASSERT (name != NULL
8024 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
8025 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
8026 BFD_ASSERT (sec != NULL);
8027 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8028 break;
8029
8030 case SHT_MIPS_CONTENT:
8031 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8032 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8033 BFD_ASSERT (name != NULL
8034 && strncmp (name, ".MIPS.content",
8035 sizeof ".MIPS.content" - 1) == 0);
8036 sec = bfd_get_section_by_name (abfd,
8037 name + sizeof ".MIPS.content" - 1);
8038 BFD_ASSERT (sec != NULL);
8039 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8040 break;
8041
8042 case SHT_MIPS_SYMBOL_LIB:
8043 sec = bfd_get_section_by_name (abfd, ".dynsym");
8044 if (sec != NULL)
8045 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8046 sec = bfd_get_section_by_name (abfd, ".liblist");
8047 if (sec != NULL)
8048 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8049 break;
8050
8051 case SHT_MIPS_EVENTS:
8052 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8053 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8054 BFD_ASSERT (name != NULL);
8055 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
8056 sec = bfd_get_section_by_name (abfd,
8057 name + sizeof ".MIPS.events" - 1);
8058 else
8059 {
8060 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
8061 sizeof ".MIPS.post_rel" - 1) == 0);
8062 sec = bfd_get_section_by_name (abfd,
8063 (name
8064 + sizeof ".MIPS.post_rel" - 1));
8065 }
8066 BFD_ASSERT (sec != NULL);
8067 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8068 break;
8069
8070 }
8071 }
8072}
8073\f
8dc1a139 8074/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
8075 segments. */
8076
8077int
9719ad41 8078_bfd_mips_elf_additional_program_headers (bfd *abfd)
b49e97c9
TS
8079{
8080 asection *s;
8081 int ret = 0;
8082
8083 /* See if we need a PT_MIPS_REGINFO segment. */
8084 s = bfd_get_section_by_name (abfd, ".reginfo");
8085 if (s && (s->flags & SEC_LOAD))
8086 ++ret;
8087
8088 /* See if we need a PT_MIPS_OPTIONS segment. */
8089 if (IRIX_COMPAT (abfd) == ict_irix6
8090 && bfd_get_section_by_name (abfd,
8091 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
8092 ++ret;
8093
8094 /* See if we need a PT_MIPS_RTPROC segment. */
8095 if (IRIX_COMPAT (abfd) == ict_irix5
8096 && bfd_get_section_by_name (abfd, ".dynamic")
8097 && bfd_get_section_by_name (abfd, ".mdebug"))
8098 ++ret;
8099
8100 return ret;
8101}
8102
8dc1a139 8103/* Modify the segment map for an IRIX5 executable. */
b49e97c9 8104
b34976b6 8105bfd_boolean
9719ad41
RS
8106_bfd_mips_elf_modify_segment_map (bfd *abfd,
8107 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
8108{
8109 asection *s;
8110 struct elf_segment_map *m, **pm;
8111 bfd_size_type amt;
8112
8113 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
8114 segment. */
8115 s = bfd_get_section_by_name (abfd, ".reginfo");
8116 if (s != NULL && (s->flags & SEC_LOAD) != 0)
8117 {
8118 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
8119 if (m->p_type == PT_MIPS_REGINFO)
8120 break;
8121 if (m == NULL)
8122 {
8123 amt = sizeof *m;
9719ad41 8124 m = bfd_zalloc (abfd, amt);
b49e97c9 8125 if (m == NULL)
b34976b6 8126 return FALSE;
b49e97c9
TS
8127
8128 m->p_type = PT_MIPS_REGINFO;
8129 m->count = 1;
8130 m->sections[0] = s;
8131
8132 /* We want to put it after the PHDR and INTERP segments. */
8133 pm = &elf_tdata (abfd)->segment_map;
8134 while (*pm != NULL
8135 && ((*pm)->p_type == PT_PHDR
8136 || (*pm)->p_type == PT_INTERP))
8137 pm = &(*pm)->next;
8138
8139 m->next = *pm;
8140 *pm = m;
8141 }
8142 }
8143
8144 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
8145 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 8146 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 8147 table. */
c1fd6598
AO
8148 if (NEWABI_P (abfd)
8149 /* On non-IRIX6 new abi, we'll have already created a segment
8150 for this section, so don't create another. I'm not sure this
8151 is not also the case for IRIX 6, but I can't test it right
8152 now. */
8153 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
8154 {
8155 for (s = abfd->sections; s; s = s->next)
8156 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
8157 break;
8158
8159 if (s)
8160 {
8161 struct elf_segment_map *options_segment;
8162
98a8deaf
RS
8163 pm = &elf_tdata (abfd)->segment_map;
8164 while (*pm != NULL
8165 && ((*pm)->p_type == PT_PHDR
8166 || (*pm)->p_type == PT_INTERP))
8167 pm = &(*pm)->next;
b49e97c9
TS
8168
8169 amt = sizeof (struct elf_segment_map);
8170 options_segment = bfd_zalloc (abfd, amt);
8171 options_segment->next = *pm;
8172 options_segment->p_type = PT_MIPS_OPTIONS;
8173 options_segment->p_flags = PF_R;
b34976b6 8174 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
8175 options_segment->count = 1;
8176 options_segment->sections[0] = s;
8177 *pm = options_segment;
8178 }
8179 }
8180 else
8181 {
8182 if (IRIX_COMPAT (abfd) == ict_irix5)
8183 {
8184 /* If there are .dynamic and .mdebug sections, we make a room
8185 for the RTPROC header. FIXME: Rewrite without section names. */
8186 if (bfd_get_section_by_name (abfd, ".interp") == NULL
8187 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
8188 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
8189 {
8190 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
8191 if (m->p_type == PT_MIPS_RTPROC)
8192 break;
8193 if (m == NULL)
8194 {
8195 amt = sizeof *m;
9719ad41 8196 m = bfd_zalloc (abfd, amt);
b49e97c9 8197 if (m == NULL)
b34976b6 8198 return FALSE;
b49e97c9
TS
8199
8200 m->p_type = PT_MIPS_RTPROC;
8201
8202 s = bfd_get_section_by_name (abfd, ".rtproc");
8203 if (s == NULL)
8204 {
8205 m->count = 0;
8206 m->p_flags = 0;
8207 m->p_flags_valid = 1;
8208 }
8209 else
8210 {
8211 m->count = 1;
8212 m->sections[0] = s;
8213 }
8214
8215 /* We want to put it after the DYNAMIC segment. */
8216 pm = &elf_tdata (abfd)->segment_map;
8217 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
8218 pm = &(*pm)->next;
8219 if (*pm != NULL)
8220 pm = &(*pm)->next;
8221
8222 m->next = *pm;
8223 *pm = m;
8224 }
8225 }
8226 }
8dc1a139 8227 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
8228 .dynstr, .dynsym, and .hash sections, and everything in
8229 between. */
8230 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
8231 pm = &(*pm)->next)
8232 if ((*pm)->p_type == PT_DYNAMIC)
8233 break;
8234 m = *pm;
8235 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
8236 {
8237 /* For a normal mips executable the permissions for the PT_DYNAMIC
8238 segment are read, write and execute. We do that here since
8239 the code in elf.c sets only the read permission. This matters
8240 sometimes for the dynamic linker. */
8241 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
8242 {
8243 m->p_flags = PF_R | PF_W | PF_X;
8244 m->p_flags_valid = 1;
8245 }
8246 }
8247 if (m != NULL
8248 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
8249 {
8250 static const char *sec_names[] =
8251 {
8252 ".dynamic", ".dynstr", ".dynsym", ".hash"
8253 };
8254 bfd_vma low, high;
8255 unsigned int i, c;
8256 struct elf_segment_map *n;
8257
792b4a53 8258 low = ~(bfd_vma) 0;
b49e97c9
TS
8259 high = 0;
8260 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
8261 {
8262 s = bfd_get_section_by_name (abfd, sec_names[i]);
8263 if (s != NULL && (s->flags & SEC_LOAD) != 0)
8264 {
8265 bfd_size_type sz;
8266
8267 if (low > s->vma)
8268 low = s->vma;
eea6121a 8269 sz = s->size;
b49e97c9
TS
8270 if (high < s->vma + sz)
8271 high = s->vma + sz;
8272 }
8273 }
8274
8275 c = 0;
8276 for (s = abfd->sections; s != NULL; s = s->next)
8277 if ((s->flags & SEC_LOAD) != 0
8278 && s->vma >= low
eea6121a 8279 && s->vma + s->size <= high)
b49e97c9
TS
8280 ++c;
8281
8282 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 8283 n = bfd_zalloc (abfd, amt);
b49e97c9 8284 if (n == NULL)
b34976b6 8285 return FALSE;
b49e97c9
TS
8286 *n = *m;
8287 n->count = c;
8288
8289 i = 0;
8290 for (s = abfd->sections; s != NULL; s = s->next)
8291 {
8292 if ((s->flags & SEC_LOAD) != 0
8293 && s->vma >= low
eea6121a 8294 && s->vma + s->size <= high)
b49e97c9
TS
8295 {
8296 n->sections[i] = s;
8297 ++i;
8298 }
8299 }
8300
8301 *pm = n;
8302 }
8303 }
8304
b34976b6 8305 return TRUE;
b49e97c9
TS
8306}
8307\f
8308/* Return the section that should be marked against GC for a given
8309 relocation. */
8310
8311asection *
9719ad41
RS
8312_bfd_mips_elf_gc_mark_hook (asection *sec,
8313 struct bfd_link_info *info ATTRIBUTE_UNUSED,
8314 Elf_Internal_Rela *rel,
8315 struct elf_link_hash_entry *h,
8316 Elf_Internal_Sym *sym)
b49e97c9
TS
8317{
8318 /* ??? Do mips16 stub sections need to be handled special? */
8319
8320 if (h != NULL)
8321 {
1e2f5b6e 8322 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
8323 {
8324 case R_MIPS_GNU_VTINHERIT:
8325 case R_MIPS_GNU_VTENTRY:
8326 break;
8327
8328 default:
8329 switch (h->root.type)
8330 {
8331 case bfd_link_hash_defined:
8332 case bfd_link_hash_defweak:
8333 return h->root.u.def.section;
8334
8335 case bfd_link_hash_common:
8336 return h->root.u.c.p->section;
8337
8338 default:
8339 break;
8340 }
8341 }
8342 }
8343 else
1e2f5b6e 8344 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
8345
8346 return NULL;
8347}
8348
8349/* Update the got entry reference counts for the section being removed. */
8350
b34976b6 8351bfd_boolean
9719ad41
RS
8352_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
8353 struct bfd_link_info *info ATTRIBUTE_UNUSED,
8354 asection *sec ATTRIBUTE_UNUSED,
8355 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
8356{
8357#if 0
8358 Elf_Internal_Shdr *symtab_hdr;
8359 struct elf_link_hash_entry **sym_hashes;
8360 bfd_signed_vma *local_got_refcounts;
8361 const Elf_Internal_Rela *rel, *relend;
8362 unsigned long r_symndx;
8363 struct elf_link_hash_entry *h;
8364
8365 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8366 sym_hashes = elf_sym_hashes (abfd);
8367 local_got_refcounts = elf_local_got_refcounts (abfd);
8368
8369 relend = relocs + sec->reloc_count;
8370 for (rel = relocs; rel < relend; rel++)
8371 switch (ELF_R_TYPE (abfd, rel->r_info))
8372 {
8373 case R_MIPS_GOT16:
8374 case R_MIPS_CALL16:
8375 case R_MIPS_CALL_HI16:
8376 case R_MIPS_CALL_LO16:
8377 case R_MIPS_GOT_HI16:
8378 case R_MIPS_GOT_LO16:
4a14403c
TS
8379 case R_MIPS_GOT_DISP:
8380 case R_MIPS_GOT_PAGE:
8381 case R_MIPS_GOT_OFST:
b49e97c9
TS
8382 /* ??? It would seem that the existing MIPS code does no sort
8383 of reference counting or whatnot on its GOT and PLT entries,
8384 so it is not possible to garbage collect them at this time. */
8385 break;
8386
8387 default:
8388 break;
8389 }
8390#endif
8391
b34976b6 8392 return TRUE;
b49e97c9
TS
8393}
8394\f
8395/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8396 hiding the old indirect symbol. Process additional relocation
8397 information. Also called for weakdefs, in which case we just let
8398 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
8399
8400void
fcfa13d2 8401_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
8402 struct elf_link_hash_entry *dir,
8403 struct elf_link_hash_entry *ind)
b49e97c9
TS
8404{
8405 struct mips_elf_link_hash_entry *dirmips, *indmips;
8406
fcfa13d2 8407 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
8408
8409 if (ind->root.type != bfd_link_hash_indirect)
8410 return;
8411
8412 dirmips = (struct mips_elf_link_hash_entry *) dir;
8413 indmips = (struct mips_elf_link_hash_entry *) ind;
8414 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8415 if (indmips->readonly_reloc)
b34976b6 8416 dirmips->readonly_reloc = TRUE;
b49e97c9 8417 if (indmips->no_fn_stub)
b34976b6 8418 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
8419
8420 if (dirmips->tls_type == 0)
8421 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
8422}
8423
8424void
9719ad41
RS
8425_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
8426 struct elf_link_hash_entry *entry,
8427 bfd_boolean force_local)
b49e97c9
TS
8428{
8429 bfd *dynobj;
8430 asection *got;
8431 struct mips_got_info *g;
8432 struct mips_elf_link_hash_entry *h;
7c5fcef7 8433
b49e97c9 8434 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
8435 if (h->forced_local)
8436 return;
4b555070 8437 h->forced_local = force_local;
7c5fcef7 8438
b49e97c9 8439 dynobj = elf_hash_table (info)->dynobj;
8d1d654f
AM
8440 if (dynobj != NULL && force_local && h->root.type != STT_TLS
8441 && (got = mips_elf_got_section (dynobj, FALSE)) != NULL
8442 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 8443 {
c45a316a
AM
8444 if (g->next)
8445 {
8446 struct mips_got_entry e;
8447 struct mips_got_info *gg = g;
8448
8449 /* Since we're turning what used to be a global symbol into a
8450 local one, bump up the number of local entries of each GOT
8451 that had an entry for it. This will automatically decrease
8452 the number of global entries, since global_gotno is actually
8453 the upper limit of global entries. */
8454 e.abfd = dynobj;
8455 e.symndx = -1;
8456 e.d.h = h;
0f20cc35 8457 e.tls_type = 0;
c45a316a
AM
8458
8459 for (g = g->next; g != gg; g = g->next)
8460 if (htab_find (g->got_entries, &e))
8461 {
8462 BFD_ASSERT (g->global_gotno > 0);
8463 g->local_gotno++;
8464 g->global_gotno--;
8465 }
b49e97c9 8466
c45a316a
AM
8467 /* If this was a global symbol forced into the primary GOT, we
8468 no longer need an entry for it. We can't release the entry
8469 at this point, but we must at least stop counting it as one
8470 of the symbols that required a forced got entry. */
8471 if (h->root.got.offset == 2)
8472 {
8473 BFD_ASSERT (gg->assigned_gotno > 0);
8474 gg->assigned_gotno--;
8475 }
8476 }
8477 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
8478 /* If we haven't got through GOT allocation yet, just bump up the
8479 number of local entries, as this symbol won't be counted as
8480 global. */
8481 g->local_gotno++;
8482 else if (h->root.got.offset == 1)
f4416af6 8483 {
c45a316a
AM
8484 /* If we're past non-multi-GOT allocation and this symbol had
8485 been marked for a global got entry, give it a local entry
8486 instead. */
8487 BFD_ASSERT (g->global_gotno > 0);
8488 g->local_gotno++;
8489 g->global_gotno--;
f4416af6
AO
8490 }
8491 }
f4416af6
AO
8492
8493 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
8494}
8495\f
d01414a5
TS
8496#define PDR_SIZE 32
8497
b34976b6 8498bfd_boolean
9719ad41
RS
8499_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
8500 struct bfd_link_info *info)
d01414a5
TS
8501{
8502 asection *o;
b34976b6 8503 bfd_boolean ret = FALSE;
d01414a5
TS
8504 unsigned char *tdata;
8505 size_t i, skip;
8506
8507 o = bfd_get_section_by_name (abfd, ".pdr");
8508 if (! o)
b34976b6 8509 return FALSE;
eea6121a 8510 if (o->size == 0)
b34976b6 8511 return FALSE;
eea6121a 8512 if (o->size % PDR_SIZE != 0)
b34976b6 8513 return FALSE;
d01414a5
TS
8514 if (o->output_section != NULL
8515 && bfd_is_abs_section (o->output_section))
b34976b6 8516 return FALSE;
d01414a5 8517
eea6121a 8518 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 8519 if (! tdata)
b34976b6 8520 return FALSE;
d01414a5 8521
9719ad41 8522 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8523 info->keep_memory);
d01414a5
TS
8524 if (!cookie->rels)
8525 {
8526 free (tdata);
b34976b6 8527 return FALSE;
d01414a5
TS
8528 }
8529
8530 cookie->rel = cookie->rels;
8531 cookie->relend = cookie->rels + o->reloc_count;
8532
eea6121a 8533 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 8534 {
c152c796 8535 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
8536 {
8537 tdata[i] = 1;
8538 skip ++;
8539 }
8540 }
8541
8542 if (skip != 0)
8543 {
f0abc2a1 8544 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 8545 o->size -= skip * PDR_SIZE;
b34976b6 8546 ret = TRUE;
d01414a5
TS
8547 }
8548 else
8549 free (tdata);
8550
8551 if (! info->keep_memory)
8552 free (cookie->rels);
8553
8554 return ret;
8555}
8556
b34976b6 8557bfd_boolean
9719ad41 8558_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
8559{
8560 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
8561 return TRUE;
8562 return FALSE;
53bfd6b4 8563}
d01414a5 8564
b34976b6 8565bfd_boolean
9719ad41
RS
8566_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
8567 bfd_byte *contents)
d01414a5
TS
8568{
8569 bfd_byte *to, *from, *end;
8570 int i;
8571
8572 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 8573 return FALSE;
d01414a5 8574
f0abc2a1 8575 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 8576 return FALSE;
d01414a5
TS
8577
8578 to = contents;
eea6121a 8579 end = contents + sec->size;
d01414a5
TS
8580 for (from = contents, i = 0;
8581 from < end;
8582 from += PDR_SIZE, i++)
8583 {
f0abc2a1 8584 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
8585 continue;
8586 if (to != from)
8587 memcpy (to, from, PDR_SIZE);
8588 to += PDR_SIZE;
8589 }
8590 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 8591 sec->output_offset, sec->size);
b34976b6 8592 return TRUE;
d01414a5 8593}
53bfd6b4 8594\f
b49e97c9
TS
8595/* MIPS ELF uses a special find_nearest_line routine in order the
8596 handle the ECOFF debugging information. */
8597
8598struct mips_elf_find_line
8599{
8600 struct ecoff_debug_info d;
8601 struct ecoff_find_line i;
8602};
8603
b34976b6 8604bfd_boolean
9719ad41
RS
8605_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
8606 asymbol **symbols, bfd_vma offset,
8607 const char **filename_ptr,
8608 const char **functionname_ptr,
8609 unsigned int *line_ptr)
b49e97c9
TS
8610{
8611 asection *msec;
8612
8613 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
8614 filename_ptr, functionname_ptr,
8615 line_ptr))
b34976b6 8616 return TRUE;
b49e97c9
TS
8617
8618 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
8619 filename_ptr, functionname_ptr,
9719ad41 8620 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 8621 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 8622 return TRUE;
b49e97c9
TS
8623
8624 msec = bfd_get_section_by_name (abfd, ".mdebug");
8625 if (msec != NULL)
8626 {
8627 flagword origflags;
8628 struct mips_elf_find_line *fi;
8629 const struct ecoff_debug_swap * const swap =
8630 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8631
8632 /* If we are called during a link, mips_elf_final_link may have
8633 cleared the SEC_HAS_CONTENTS field. We force it back on here
8634 if appropriate (which it normally will be). */
8635 origflags = msec->flags;
8636 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
8637 msec->flags |= SEC_HAS_CONTENTS;
8638
8639 fi = elf_tdata (abfd)->find_line_info;
8640 if (fi == NULL)
8641 {
8642 bfd_size_type external_fdr_size;
8643 char *fraw_src;
8644 char *fraw_end;
8645 struct fdr *fdr_ptr;
8646 bfd_size_type amt = sizeof (struct mips_elf_find_line);
8647
9719ad41 8648 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
8649 if (fi == NULL)
8650 {
8651 msec->flags = origflags;
b34976b6 8652 return FALSE;
b49e97c9
TS
8653 }
8654
8655 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8656 {
8657 msec->flags = origflags;
b34976b6 8658 return FALSE;
b49e97c9
TS
8659 }
8660
8661 /* Swap in the FDR information. */
8662 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 8663 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
8664 if (fi->d.fdr == NULL)
8665 {
8666 msec->flags = origflags;
b34976b6 8667 return FALSE;
b49e97c9
TS
8668 }
8669 external_fdr_size = swap->external_fdr_size;
8670 fdr_ptr = fi->d.fdr;
8671 fraw_src = (char *) fi->d.external_fdr;
8672 fraw_end = (fraw_src
8673 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8674 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 8675 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
8676
8677 elf_tdata (abfd)->find_line_info = fi;
8678
8679 /* Note that we don't bother to ever free this information.
8680 find_nearest_line is either called all the time, as in
8681 objdump -l, so the information should be saved, or it is
8682 rarely called, as in ld error messages, so the memory
8683 wasted is unimportant. Still, it would probably be a
8684 good idea for free_cached_info to throw it away. */
8685 }
8686
8687 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8688 &fi->i, filename_ptr, functionname_ptr,
8689 line_ptr))
8690 {
8691 msec->flags = origflags;
b34976b6 8692 return TRUE;
b49e97c9
TS
8693 }
8694
8695 msec->flags = origflags;
8696 }
8697
8698 /* Fall back on the generic ELF find_nearest_line routine. */
8699
8700 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8701 filename_ptr, functionname_ptr,
8702 line_ptr);
8703}
4ab527b0
FF
8704
8705bfd_boolean
8706_bfd_mips_elf_find_inliner_info (bfd *abfd,
8707 const char **filename_ptr,
8708 const char **functionname_ptr,
8709 unsigned int *line_ptr)
8710{
8711 bfd_boolean found;
8712 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8713 functionname_ptr, line_ptr,
8714 & elf_tdata (abfd)->dwarf2_find_line_info);
8715 return found;
8716}
8717
b49e97c9
TS
8718\f
8719/* When are writing out the .options or .MIPS.options section,
8720 remember the bytes we are writing out, so that we can install the
8721 GP value in the section_processing routine. */
8722
b34976b6 8723bfd_boolean
9719ad41
RS
8724_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
8725 const void *location,
8726 file_ptr offset, bfd_size_type count)
b49e97c9 8727{
cc2e31b9 8728 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
8729 {
8730 bfd_byte *c;
8731
8732 if (elf_section_data (section) == NULL)
8733 {
8734 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 8735 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 8736 if (elf_section_data (section) == NULL)
b34976b6 8737 return FALSE;
b49e97c9 8738 }
f0abc2a1 8739 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
8740 if (c == NULL)
8741 {
eea6121a 8742 c = bfd_zalloc (abfd, section->size);
b49e97c9 8743 if (c == NULL)
b34976b6 8744 return FALSE;
f0abc2a1 8745 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
8746 }
8747
9719ad41 8748 memcpy (c + offset, location, count);
b49e97c9
TS
8749 }
8750
8751 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8752 count);
8753}
8754
8755/* This is almost identical to bfd_generic_get_... except that some
8756 MIPS relocations need to be handled specially. Sigh. */
8757
8758bfd_byte *
9719ad41
RS
8759_bfd_elf_mips_get_relocated_section_contents
8760 (bfd *abfd,
8761 struct bfd_link_info *link_info,
8762 struct bfd_link_order *link_order,
8763 bfd_byte *data,
8764 bfd_boolean relocatable,
8765 asymbol **symbols)
b49e97c9
TS
8766{
8767 /* Get enough memory to hold the stuff */
8768 bfd *input_bfd = link_order->u.indirect.section->owner;
8769 asection *input_section = link_order->u.indirect.section;
eea6121a 8770 bfd_size_type sz;
b49e97c9
TS
8771
8772 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8773 arelent **reloc_vector = NULL;
8774 long reloc_count;
8775
8776 if (reloc_size < 0)
8777 goto error_return;
8778
9719ad41 8779 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
8780 if (reloc_vector == NULL && reloc_size != 0)
8781 goto error_return;
8782
8783 /* read in the section */
eea6121a
AM
8784 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
8785 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
8786 goto error_return;
8787
b49e97c9
TS
8788 reloc_count = bfd_canonicalize_reloc (input_bfd,
8789 input_section,
8790 reloc_vector,
8791 symbols);
8792 if (reloc_count < 0)
8793 goto error_return;
8794
8795 if (reloc_count > 0)
8796 {
8797 arelent **parent;
8798 /* for mips */
8799 int gp_found;
8800 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8801
8802 {
8803 struct bfd_hash_entry *h;
8804 struct bfd_link_hash_entry *lh;
8805 /* Skip all this stuff if we aren't mixing formats. */
8806 if (abfd && input_bfd
8807 && abfd->xvec == input_bfd->xvec)
8808 lh = 0;
8809 else
8810 {
b34976b6 8811 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
8812 lh = (struct bfd_link_hash_entry *) h;
8813 }
8814 lookup:
8815 if (lh)
8816 {
8817 switch (lh->type)
8818 {
8819 case bfd_link_hash_undefined:
8820 case bfd_link_hash_undefweak:
8821 case bfd_link_hash_common:
8822 gp_found = 0;
8823 break;
8824 case bfd_link_hash_defined:
8825 case bfd_link_hash_defweak:
8826 gp_found = 1;
8827 gp = lh->u.def.value;
8828 break;
8829 case bfd_link_hash_indirect:
8830 case bfd_link_hash_warning:
8831 lh = lh->u.i.link;
8832 /* @@FIXME ignoring warning for now */
8833 goto lookup;
8834 case bfd_link_hash_new:
8835 default:
8836 abort ();
8837 }
8838 }
8839 else
8840 gp_found = 0;
8841 }
8842 /* end mips */
9719ad41 8843 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 8844 {
9719ad41 8845 char *error_message = NULL;
b49e97c9
TS
8846 bfd_reloc_status_type r;
8847
8848 /* Specific to MIPS: Deal with relocation types that require
8849 knowing the gp of the output bfd. */
8850 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 8851
8236346f
EC
8852 /* If we've managed to find the gp and have a special
8853 function for the relocation then go ahead, else default
8854 to the generic handling. */
8855 if (gp_found
8856 && (*parent)->howto->special_function
8857 == _bfd_mips_elf32_gprel16_reloc)
8858 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8859 input_section, relocatable,
8860 data, gp);
8861 else
86324f90 8862 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
8863 input_section,
8864 relocatable ? abfd : NULL,
8865 &error_message);
b49e97c9 8866
1049f94e 8867 if (relocatable)
b49e97c9
TS
8868 {
8869 asection *os = input_section->output_section;
8870
8871 /* A partial link, so keep the relocs */
8872 os->orelocation[os->reloc_count] = *parent;
8873 os->reloc_count++;
8874 }
8875
8876 if (r != bfd_reloc_ok)
8877 {
8878 switch (r)
8879 {
8880 case bfd_reloc_undefined:
8881 if (!((*link_info->callbacks->undefined_symbol)
8882 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 8883 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
8884 goto error_return;
8885 break;
8886 case bfd_reloc_dangerous:
9719ad41 8887 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
8888 if (!((*link_info->callbacks->reloc_dangerous)
8889 (link_info, error_message, input_bfd, input_section,
8890 (*parent)->address)))
8891 goto error_return;
8892 break;
8893 case bfd_reloc_overflow:
8894 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
8895 (link_info, NULL,
8896 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
8897 (*parent)->howto->name, (*parent)->addend,
8898 input_bfd, input_section, (*parent)->address)))
8899 goto error_return;
8900 break;
8901 case bfd_reloc_outofrange:
8902 default:
8903 abort ();
8904 break;
8905 }
8906
8907 }
8908 }
8909 }
8910 if (reloc_vector != NULL)
8911 free (reloc_vector);
8912 return data;
8913
8914error_return:
8915 if (reloc_vector != NULL)
8916 free (reloc_vector);
8917 return NULL;
8918}
8919\f
8920/* Create a MIPS ELF linker hash table. */
8921
8922struct bfd_link_hash_table *
9719ad41 8923_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
8924{
8925 struct mips_elf_link_hash_table *ret;
8926 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8927
9719ad41
RS
8928 ret = bfd_malloc (amt);
8929 if (ret == NULL)
b49e97c9
TS
8930 return NULL;
8931
8932 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8933 mips_elf_link_hash_newfunc))
8934 {
e2d34d7d 8935 free (ret);
b49e97c9
TS
8936 return NULL;
8937 }
8938
8939#if 0
8940 /* We no longer use this. */
8941 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8942 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8943#endif
8944 ret->procedure_count = 0;
8945 ret->compact_rel_size = 0;
b34976b6 8946 ret->use_rld_obj_head = FALSE;
b49e97c9 8947 ret->rld_value = 0;
b34976b6 8948 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8949
8950 return &ret->root.root;
8951}
8952\f
8953/* We need to use a special link routine to handle the .reginfo and
8954 the .mdebug sections. We need to merge all instances of these
8955 sections together, not write them all out sequentially. */
8956
b34976b6 8957bfd_boolean
9719ad41 8958_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 8959{
b49e97c9
TS
8960 asection *o;
8961 struct bfd_link_order *p;
8962 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8963 asection *rtproc_sec;
8964 Elf32_RegInfo reginfo;
8965 struct ecoff_debug_info debug;
7a2a6943
NC
8966 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8967 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 8968 HDRR *symhdr = &debug.symbolic_header;
9719ad41 8969 void *mdebug_handle = NULL;
b49e97c9
TS
8970 asection *s;
8971 EXTR esym;
8972 unsigned int i;
8973 bfd_size_type amt;
8974
8975 static const char * const secname[] =
8976 {
8977 ".text", ".init", ".fini", ".data",
8978 ".rodata", ".sdata", ".sbss", ".bss"
8979 };
8980 static const int sc[] =
8981 {
8982 scText, scInit, scFini, scData,
8983 scRData, scSData, scSBss, scBss
8984 };
8985
b49e97c9
TS
8986 /* We'd carefully arranged the dynamic symbol indices, and then the
8987 generic size_dynamic_sections renumbered them out from under us.
8988 Rather than trying somehow to prevent the renumbering, just do
8989 the sort again. */
8990 if (elf_hash_table (info)->dynamic_sections_created)
8991 {
8992 bfd *dynobj;
8993 asection *got;
8994 struct mips_got_info *g;
7a2a6943 8995 bfd_size_type dynsecsymcount;
b49e97c9
TS
8996
8997 /* When we resort, we must tell mips_elf_sort_hash_table what
8998 the lowest index it may use is. That's the number of section
8999 symbols we're going to add. The generic ELF linker only
9000 adds these symbols when building a shared object. Note that
9001 we count the sections after (possibly) removing the .options
9002 section above. */
7a2a6943
NC
9003
9004 dynsecsymcount = 0;
9005 if (info->shared)
9006 {
9007 asection * p;
9008
9009 for (p = abfd->sections; p ; p = p->next)
9010 if ((p->flags & SEC_EXCLUDE) == 0
9011 && (p->flags & SEC_ALLOC) != 0
9012 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
9013 ++ dynsecsymcount;
9014 }
86324f90 9015
7a2a6943 9016 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 9017 return FALSE;
b49e97c9
TS
9018
9019 /* Make sure we didn't grow the global .got region. */
9020 dynobj = elf_hash_table (info)->dynobj;
f4416af6 9021 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 9022 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
9023
9024 if (g->global_gotsym != NULL)
9025 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
9026 - g->global_gotsym->dynindx)
9027 <= g->global_gotno);
9028 }
9029
b49e97c9
TS
9030 /* Get a value for the GP register. */
9031 if (elf_gp (abfd) == 0)
9032 {
9033 struct bfd_link_hash_entry *h;
9034
b34976b6 9035 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 9036 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
9037 elf_gp (abfd) = (h->u.def.value
9038 + h->u.def.section->output_section->vma
9039 + h->u.def.section->output_offset);
1049f94e 9040 else if (info->relocatable)
b49e97c9
TS
9041 {
9042 bfd_vma lo = MINUS_ONE;
9043
9044 /* Find the GP-relative section with the lowest offset. */
9719ad41 9045 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
9046 if (o->vma < lo
9047 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
9048 lo = o->vma;
9049
9050 /* And calculate GP relative to that. */
9051 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
9052 }
9053 else
9054 {
9055 /* If the relocate_section function needs to do a reloc
9056 involving the GP value, it should make a reloc_dangerous
9057 callback to warn that GP is not defined. */
9058 }
9059 }
9060
9061 /* Go through the sections and collect the .reginfo and .mdebug
9062 information. */
9063 reginfo_sec = NULL;
9064 mdebug_sec = NULL;
9065 gptab_data_sec = NULL;
9066 gptab_bss_sec = NULL;
9719ad41 9067 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
9068 {
9069 if (strcmp (o->name, ".reginfo") == 0)
9070 {
9071 memset (&reginfo, 0, sizeof reginfo);
9072
9073 /* We have found the .reginfo section in the output file.
9074 Look through all the link_orders comprising it and merge
9075 the information together. */
8423293d 9076 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9077 {
9078 asection *input_section;
9079 bfd *input_bfd;
9080 Elf32_External_RegInfo ext;
9081 Elf32_RegInfo sub;
9082
9083 if (p->type != bfd_indirect_link_order)
9084 {
9085 if (p->type == bfd_data_link_order)
9086 continue;
9087 abort ();
9088 }
9089
9090 input_section = p->u.indirect.section;
9091 input_bfd = input_section->owner;
9092
b49e97c9 9093 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 9094 &ext, 0, sizeof ext))
b34976b6 9095 return FALSE;
b49e97c9
TS
9096
9097 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
9098
9099 reginfo.ri_gprmask |= sub.ri_gprmask;
9100 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
9101 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
9102 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
9103 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
9104
9105 /* ri_gp_value is set by the function
9106 mips_elf32_section_processing when the section is
9107 finally written out. */
9108
9109 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9110 elf_link_input_bfd ignores this section. */
9111 input_section->flags &= ~SEC_HAS_CONTENTS;
9112 }
9113
9114 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 9115 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
9116
9117 /* Skip this section later on (I don't think this currently
9118 matters, but someday it might). */
8423293d 9119 o->map_head.link_order = NULL;
b49e97c9
TS
9120
9121 reginfo_sec = o;
9122 }
9123
9124 if (strcmp (o->name, ".mdebug") == 0)
9125 {
9126 struct extsym_info einfo;
9127 bfd_vma last;
9128
9129 /* We have found the .mdebug section in the output file.
9130 Look through all the link_orders comprising it and merge
9131 the information together. */
9132 symhdr->magic = swap->sym_magic;
9133 /* FIXME: What should the version stamp be? */
9134 symhdr->vstamp = 0;
9135 symhdr->ilineMax = 0;
9136 symhdr->cbLine = 0;
9137 symhdr->idnMax = 0;
9138 symhdr->ipdMax = 0;
9139 symhdr->isymMax = 0;
9140 symhdr->ioptMax = 0;
9141 symhdr->iauxMax = 0;
9142 symhdr->issMax = 0;
9143 symhdr->issExtMax = 0;
9144 symhdr->ifdMax = 0;
9145 symhdr->crfd = 0;
9146 symhdr->iextMax = 0;
9147
9148 /* We accumulate the debugging information itself in the
9149 debug_info structure. */
9150 debug.line = NULL;
9151 debug.external_dnr = NULL;
9152 debug.external_pdr = NULL;
9153 debug.external_sym = NULL;
9154 debug.external_opt = NULL;
9155 debug.external_aux = NULL;
9156 debug.ss = NULL;
9157 debug.ssext = debug.ssext_end = NULL;
9158 debug.external_fdr = NULL;
9159 debug.external_rfd = NULL;
9160 debug.external_ext = debug.external_ext_end = NULL;
9161
9162 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 9163 if (mdebug_handle == NULL)
b34976b6 9164 return FALSE;
b49e97c9
TS
9165
9166 esym.jmptbl = 0;
9167 esym.cobol_main = 0;
9168 esym.weakext = 0;
9169 esym.reserved = 0;
9170 esym.ifd = ifdNil;
9171 esym.asym.iss = issNil;
9172 esym.asym.st = stLocal;
9173 esym.asym.reserved = 0;
9174 esym.asym.index = indexNil;
9175 last = 0;
9176 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
9177 {
9178 esym.asym.sc = sc[i];
9179 s = bfd_get_section_by_name (abfd, secname[i]);
9180 if (s != NULL)
9181 {
9182 esym.asym.value = s->vma;
eea6121a 9183 last = s->vma + s->size;
b49e97c9
TS
9184 }
9185 else
9186 esym.asym.value = last;
9187 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
9188 secname[i], &esym))
b34976b6 9189 return FALSE;
b49e97c9
TS
9190 }
9191
8423293d 9192 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9193 {
9194 asection *input_section;
9195 bfd *input_bfd;
9196 const struct ecoff_debug_swap *input_swap;
9197 struct ecoff_debug_info input_debug;
9198 char *eraw_src;
9199 char *eraw_end;
9200
9201 if (p->type != bfd_indirect_link_order)
9202 {
9203 if (p->type == bfd_data_link_order)
9204 continue;
9205 abort ();
9206 }
9207
9208 input_section = p->u.indirect.section;
9209 input_bfd = input_section->owner;
9210
9211 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
9212 || (get_elf_backend_data (input_bfd)
9213 ->elf_backend_ecoff_debug_swap) == NULL)
9214 {
9215 /* I don't know what a non MIPS ELF bfd would be
9216 doing with a .mdebug section, but I don't really
9217 want to deal with it. */
9218 continue;
9219 }
9220
9221 input_swap = (get_elf_backend_data (input_bfd)
9222 ->elf_backend_ecoff_debug_swap);
9223
eea6121a 9224 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
9225
9226 /* The ECOFF linking code expects that we have already
9227 read in the debugging information and set up an
9228 ecoff_debug_info structure, so we do that now. */
9229 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
9230 &input_debug))
b34976b6 9231 return FALSE;
b49e97c9
TS
9232
9233 if (! (bfd_ecoff_debug_accumulate
9234 (mdebug_handle, abfd, &debug, swap, input_bfd,
9235 &input_debug, input_swap, info)))
b34976b6 9236 return FALSE;
b49e97c9
TS
9237
9238 /* Loop through the external symbols. For each one with
9239 interesting information, try to find the symbol in
9240 the linker global hash table and save the information
9241 for the output external symbols. */
9242 eraw_src = input_debug.external_ext;
9243 eraw_end = (eraw_src
9244 + (input_debug.symbolic_header.iextMax
9245 * input_swap->external_ext_size));
9246 for (;
9247 eraw_src < eraw_end;
9248 eraw_src += input_swap->external_ext_size)
9249 {
9250 EXTR ext;
9251 const char *name;
9252 struct mips_elf_link_hash_entry *h;
9253
9719ad41 9254 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
9255 if (ext.asym.sc == scNil
9256 || ext.asym.sc == scUndefined
9257 || ext.asym.sc == scSUndefined)
9258 continue;
9259
9260 name = input_debug.ssext + ext.asym.iss;
9261 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 9262 name, FALSE, FALSE, TRUE);
b49e97c9
TS
9263 if (h == NULL || h->esym.ifd != -2)
9264 continue;
9265
9266 if (ext.ifd != -1)
9267 {
9268 BFD_ASSERT (ext.ifd
9269 < input_debug.symbolic_header.ifdMax);
9270 ext.ifd = input_debug.ifdmap[ext.ifd];
9271 }
9272
9273 h->esym = ext;
9274 }
9275
9276 /* Free up the information we just read. */
9277 free (input_debug.line);
9278 free (input_debug.external_dnr);
9279 free (input_debug.external_pdr);
9280 free (input_debug.external_sym);
9281 free (input_debug.external_opt);
9282 free (input_debug.external_aux);
9283 free (input_debug.ss);
9284 free (input_debug.ssext);
9285 free (input_debug.external_fdr);
9286 free (input_debug.external_rfd);
9287 free (input_debug.external_ext);
9288
9289 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9290 elf_link_input_bfd ignores this section. */
9291 input_section->flags &= ~SEC_HAS_CONTENTS;
9292 }
9293
9294 if (SGI_COMPAT (abfd) && info->shared)
9295 {
9296 /* Create .rtproc section. */
9297 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9298 if (rtproc_sec == NULL)
9299 {
9300 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
9301 | SEC_LINKER_CREATED | SEC_READONLY);
9302
3496cb2a
L
9303 rtproc_sec = bfd_make_section_with_flags (abfd,
9304 ".rtproc",
9305 flags);
b49e97c9 9306 if (rtproc_sec == NULL
b49e97c9 9307 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 9308 return FALSE;
b49e97c9
TS
9309 }
9310
9311 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
9312 info, rtproc_sec,
9313 &debug))
b34976b6 9314 return FALSE;
b49e97c9
TS
9315 }
9316
9317 /* Build the external symbol information. */
9318 einfo.abfd = abfd;
9319 einfo.info = info;
9320 einfo.debug = &debug;
9321 einfo.swap = swap;
b34976b6 9322 einfo.failed = FALSE;
b49e97c9 9323 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 9324 mips_elf_output_extsym, &einfo);
b49e97c9 9325 if (einfo.failed)
b34976b6 9326 return FALSE;
b49e97c9
TS
9327
9328 /* Set the size of the .mdebug section. */
eea6121a 9329 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
9330
9331 /* Skip this section later on (I don't think this currently
9332 matters, but someday it might). */
8423293d 9333 o->map_head.link_order = NULL;
b49e97c9
TS
9334
9335 mdebug_sec = o;
9336 }
9337
9338 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
9339 {
9340 const char *subname;
9341 unsigned int c;
9342 Elf32_gptab *tab;
9343 Elf32_External_gptab *ext_tab;
9344 unsigned int j;
9345
9346 /* The .gptab.sdata and .gptab.sbss sections hold
9347 information describing how the small data area would
9348 change depending upon the -G switch. These sections
9349 not used in executables files. */
1049f94e 9350 if (! info->relocatable)
b49e97c9 9351 {
8423293d 9352 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9353 {
9354 asection *input_section;
9355
9356 if (p->type != bfd_indirect_link_order)
9357 {
9358 if (p->type == bfd_data_link_order)
9359 continue;
9360 abort ();
9361 }
9362
9363 input_section = p->u.indirect.section;
9364
9365 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9366 elf_link_input_bfd ignores this section. */
9367 input_section->flags &= ~SEC_HAS_CONTENTS;
9368 }
9369
9370 /* Skip this section later on (I don't think this
9371 currently matters, but someday it might). */
8423293d 9372 o->map_head.link_order = NULL;
b49e97c9
TS
9373
9374 /* Really remove the section. */
5daa8fe7 9375 bfd_section_list_remove (abfd, o);
b49e97c9
TS
9376 --abfd->section_count;
9377
9378 continue;
9379 }
9380
9381 /* There is one gptab for initialized data, and one for
9382 uninitialized data. */
9383 if (strcmp (o->name, ".gptab.sdata") == 0)
9384 gptab_data_sec = o;
9385 else if (strcmp (o->name, ".gptab.sbss") == 0)
9386 gptab_bss_sec = o;
9387 else
9388 {
9389 (*_bfd_error_handler)
9390 (_("%s: illegal section name `%s'"),
9391 bfd_get_filename (abfd), o->name);
9392 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 9393 return FALSE;
b49e97c9
TS
9394 }
9395
9396 /* The linker script always combines .gptab.data and
9397 .gptab.sdata into .gptab.sdata, and likewise for
9398 .gptab.bss and .gptab.sbss. It is possible that there is
9399 no .sdata or .sbss section in the output file, in which
9400 case we must change the name of the output section. */
9401 subname = o->name + sizeof ".gptab" - 1;
9402 if (bfd_get_section_by_name (abfd, subname) == NULL)
9403 {
9404 if (o == gptab_data_sec)
9405 o->name = ".gptab.data";
9406 else
9407 o->name = ".gptab.bss";
9408 subname = o->name + sizeof ".gptab" - 1;
9409 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
9410 }
9411
9412 /* Set up the first entry. */
9413 c = 1;
9414 amt = c * sizeof (Elf32_gptab);
9719ad41 9415 tab = bfd_malloc (amt);
b49e97c9 9416 if (tab == NULL)
b34976b6 9417 return FALSE;
b49e97c9
TS
9418 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
9419 tab[0].gt_header.gt_unused = 0;
9420
9421 /* Combine the input sections. */
8423293d 9422 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9423 {
9424 asection *input_section;
9425 bfd *input_bfd;
9426 bfd_size_type size;
9427 unsigned long last;
9428 bfd_size_type gpentry;
9429
9430 if (p->type != bfd_indirect_link_order)
9431 {
9432 if (p->type == bfd_data_link_order)
9433 continue;
9434 abort ();
9435 }
9436
9437 input_section = p->u.indirect.section;
9438 input_bfd = input_section->owner;
9439
9440 /* Combine the gptab entries for this input section one
9441 by one. We know that the input gptab entries are
9442 sorted by ascending -G value. */
eea6121a 9443 size = input_section->size;
b49e97c9
TS
9444 last = 0;
9445 for (gpentry = sizeof (Elf32_External_gptab);
9446 gpentry < size;
9447 gpentry += sizeof (Elf32_External_gptab))
9448 {
9449 Elf32_External_gptab ext_gptab;
9450 Elf32_gptab int_gptab;
9451 unsigned long val;
9452 unsigned long add;
b34976b6 9453 bfd_boolean exact;
b49e97c9
TS
9454 unsigned int look;
9455
9456 if (! (bfd_get_section_contents
9719ad41
RS
9457 (input_bfd, input_section, &ext_gptab, gpentry,
9458 sizeof (Elf32_External_gptab))))
b49e97c9
TS
9459 {
9460 free (tab);
b34976b6 9461 return FALSE;
b49e97c9
TS
9462 }
9463
9464 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
9465 &int_gptab);
9466 val = int_gptab.gt_entry.gt_g_value;
9467 add = int_gptab.gt_entry.gt_bytes - last;
9468
b34976b6 9469 exact = FALSE;
b49e97c9
TS
9470 for (look = 1; look < c; look++)
9471 {
9472 if (tab[look].gt_entry.gt_g_value >= val)
9473 tab[look].gt_entry.gt_bytes += add;
9474
9475 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 9476 exact = TRUE;
b49e97c9
TS
9477 }
9478
9479 if (! exact)
9480 {
9481 Elf32_gptab *new_tab;
9482 unsigned int max;
9483
9484 /* We need a new table entry. */
9485 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 9486 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
9487 if (new_tab == NULL)
9488 {
9489 free (tab);
b34976b6 9490 return FALSE;
b49e97c9
TS
9491 }
9492 tab = new_tab;
9493 tab[c].gt_entry.gt_g_value = val;
9494 tab[c].gt_entry.gt_bytes = add;
9495
9496 /* Merge in the size for the next smallest -G
9497 value, since that will be implied by this new
9498 value. */
9499 max = 0;
9500 for (look = 1; look < c; look++)
9501 {
9502 if (tab[look].gt_entry.gt_g_value < val
9503 && (max == 0
9504 || (tab[look].gt_entry.gt_g_value
9505 > tab[max].gt_entry.gt_g_value)))
9506 max = look;
9507 }
9508 if (max != 0)
9509 tab[c].gt_entry.gt_bytes +=
9510 tab[max].gt_entry.gt_bytes;
9511
9512 ++c;
9513 }
9514
9515 last = int_gptab.gt_entry.gt_bytes;
9516 }
9517
9518 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9519 elf_link_input_bfd ignores this section. */
9520 input_section->flags &= ~SEC_HAS_CONTENTS;
9521 }
9522
9523 /* The table must be sorted by -G value. */
9524 if (c > 2)
9525 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
9526
9527 /* Swap out the table. */
9528 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 9529 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
9530 if (ext_tab == NULL)
9531 {
9532 free (tab);
b34976b6 9533 return FALSE;
b49e97c9
TS
9534 }
9535
9536 for (j = 0; j < c; j++)
9537 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
9538 free (tab);
9539
eea6121a 9540 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
9541 o->contents = (bfd_byte *) ext_tab;
9542
9543 /* Skip this section later on (I don't think this currently
9544 matters, but someday it might). */
8423293d 9545 o->map_head.link_order = NULL;
b49e97c9
TS
9546 }
9547 }
9548
9549 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 9550 if (!bfd_elf_final_link (abfd, info))
b34976b6 9551 return FALSE;
b49e97c9
TS
9552
9553 /* Now write out the computed sections. */
9554
9719ad41 9555 if (reginfo_sec != NULL)
b49e97c9
TS
9556 {
9557 Elf32_External_RegInfo ext;
9558
9559 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 9560 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 9561 return FALSE;
b49e97c9
TS
9562 }
9563
9719ad41 9564 if (mdebug_sec != NULL)
b49e97c9
TS
9565 {
9566 BFD_ASSERT (abfd->output_has_begun);
9567 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
9568 swap, info,
9569 mdebug_sec->filepos))
b34976b6 9570 return FALSE;
b49e97c9
TS
9571
9572 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9573 }
9574
9719ad41 9575 if (gptab_data_sec != NULL)
b49e97c9
TS
9576 {
9577 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9578 gptab_data_sec->contents,
eea6121a 9579 0, gptab_data_sec->size))
b34976b6 9580 return FALSE;
b49e97c9
TS
9581 }
9582
9719ad41 9583 if (gptab_bss_sec != NULL)
b49e97c9
TS
9584 {
9585 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9586 gptab_bss_sec->contents,
eea6121a 9587 0, gptab_bss_sec->size))
b34976b6 9588 return FALSE;
b49e97c9
TS
9589 }
9590
9591 if (SGI_COMPAT (abfd))
9592 {
9593 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9594 if (rtproc_sec != NULL)
9595 {
9596 if (! bfd_set_section_contents (abfd, rtproc_sec,
9597 rtproc_sec->contents,
eea6121a 9598 0, rtproc_sec->size))
b34976b6 9599 return FALSE;
b49e97c9
TS
9600 }
9601 }
9602
b34976b6 9603 return TRUE;
b49e97c9
TS
9604}
9605\f
64543e1a
RS
9606/* Structure for saying that BFD machine EXTENSION extends BASE. */
9607
9608struct mips_mach_extension {
9609 unsigned long extension, base;
9610};
9611
9612
9613/* An array describing how BFD machines relate to one another. The entries
9614 are ordered topologically with MIPS I extensions listed last. */
9615
9616static const struct mips_mach_extension mips_mach_extensions[] = {
9617 /* MIPS64 extensions. */
5f74bc13 9618 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
9619 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9620
9621 /* MIPS V extensions. */
9622 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9623
9624 /* R10000 extensions. */
9625 { bfd_mach_mips12000, bfd_mach_mips10000 },
9626
9627 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9628 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9629 better to allow vr5400 and vr5500 code to be merged anyway, since
9630 many libraries will just use the core ISA. Perhaps we could add
9631 some sort of ASE flag if this ever proves a problem. */
9632 { bfd_mach_mips5500, bfd_mach_mips5400 },
9633 { bfd_mach_mips5400, bfd_mach_mips5000 },
9634
9635 /* MIPS IV extensions. */
9636 { bfd_mach_mips5, bfd_mach_mips8000 },
9637 { bfd_mach_mips10000, bfd_mach_mips8000 },
9638 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 9639 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 9640 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
9641
9642 /* VR4100 extensions. */
9643 { bfd_mach_mips4120, bfd_mach_mips4100 },
9644 { bfd_mach_mips4111, bfd_mach_mips4100 },
9645
9646 /* MIPS III extensions. */
9647 { bfd_mach_mips8000, bfd_mach_mips4000 },
9648 { bfd_mach_mips4650, bfd_mach_mips4000 },
9649 { bfd_mach_mips4600, bfd_mach_mips4000 },
9650 { bfd_mach_mips4400, bfd_mach_mips4000 },
9651 { bfd_mach_mips4300, bfd_mach_mips4000 },
9652 { bfd_mach_mips4100, bfd_mach_mips4000 },
9653 { bfd_mach_mips4010, bfd_mach_mips4000 },
9654
9655 /* MIPS32 extensions. */
9656 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9657
9658 /* MIPS II extensions. */
9659 { bfd_mach_mips4000, bfd_mach_mips6000 },
9660 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9661
9662 /* MIPS I extensions. */
9663 { bfd_mach_mips6000, bfd_mach_mips3000 },
9664 { bfd_mach_mips3900, bfd_mach_mips3000 }
9665};
9666
9667
9668/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9669
9670static bfd_boolean
9719ad41 9671mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
9672{
9673 size_t i;
9674
c5211a54
RS
9675 if (extension == base)
9676 return TRUE;
9677
9678 if (base == bfd_mach_mipsisa32
9679 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
9680 return TRUE;
9681
9682 if (base == bfd_mach_mipsisa32r2
9683 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
9684 return TRUE;
9685
9686 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 9687 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
9688 {
9689 extension = mips_mach_extensions[i].base;
9690 if (extension == base)
9691 return TRUE;
9692 }
64543e1a 9693
c5211a54 9694 return FALSE;
64543e1a
RS
9695}
9696
9697
9698/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 9699
b34976b6 9700static bfd_boolean
9719ad41 9701mips_32bit_flags_p (flagword flags)
00707a0e 9702{
64543e1a
RS
9703 return ((flags & EF_MIPS_32BITMODE) != 0
9704 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9705 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9706 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9707 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9708 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9709 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
9710}
9711
64543e1a 9712
b49e97c9
TS
9713/* Merge backend specific data from an object file to the output
9714 object file when linking. */
9715
b34976b6 9716bfd_boolean
9719ad41 9717_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
9718{
9719 flagword old_flags;
9720 flagword new_flags;
b34976b6
AM
9721 bfd_boolean ok;
9722 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
9723 asection *sec;
9724
9725 /* Check if we have the same endianess */
82e51918 9726 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
9727 {
9728 (*_bfd_error_handler)
d003868e
AM
9729 (_("%B: endianness incompatible with that of the selected emulation"),
9730 ibfd);
aa701218
AO
9731 return FALSE;
9732 }
b49e97c9
TS
9733
9734 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9735 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 9736 return TRUE;
b49e97c9 9737
aa701218
AO
9738 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9739 {
9740 (*_bfd_error_handler)
d003868e
AM
9741 (_("%B: ABI is incompatible with that of the selected emulation"),
9742 ibfd);
aa701218
AO
9743 return FALSE;
9744 }
9745
b49e97c9
TS
9746 new_flags = elf_elfheader (ibfd)->e_flags;
9747 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9748 old_flags = elf_elfheader (obfd)->e_flags;
9749
9750 if (! elf_flags_init (obfd))
9751 {
b34976b6 9752 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
9753 elf_elfheader (obfd)->e_flags = new_flags;
9754 elf_elfheader (obfd)->e_ident[EI_CLASS]
9755 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9756
9757 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9758 && bfd_get_arch_info (obfd)->the_default)
9759 {
9760 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9761 bfd_get_mach (ibfd)))
b34976b6 9762 return FALSE;
b49e97c9
TS
9763 }
9764
b34976b6 9765 return TRUE;
b49e97c9
TS
9766 }
9767
9768 /* Check flag compatibility. */
9769
9770 new_flags &= ~EF_MIPS_NOREORDER;
9771 old_flags &= ~EF_MIPS_NOREORDER;
9772
f4416af6
AO
9773 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9774 doesn't seem to matter. */
9775 new_flags &= ~EF_MIPS_XGOT;
9776 old_flags &= ~EF_MIPS_XGOT;
9777
98a8deaf
RS
9778 /* MIPSpro generates ucode info in n64 objects. Again, we should
9779 just be able to ignore this. */
9780 new_flags &= ~EF_MIPS_UCODE;
9781 old_flags &= ~EF_MIPS_UCODE;
9782
b49e97c9 9783 if (new_flags == old_flags)
b34976b6 9784 return TRUE;
b49e97c9
TS
9785
9786 /* Check to see if the input BFD actually contains any sections.
9787 If not, its flags may not have been initialised either, but it cannot
9788 actually cause any incompatibility. */
9789 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9790 {
9791 /* Ignore synthetic sections and empty .text, .data and .bss sections
9792 which are automatically generated by gas. */
9793 if (strcmp (sec->name, ".reginfo")
9794 && strcmp (sec->name, ".mdebug")
eea6121a 9795 && (sec->size != 0
d13d89fa
NS
9796 || (strcmp (sec->name, ".text")
9797 && strcmp (sec->name, ".data")
9798 && strcmp (sec->name, ".bss"))))
b49e97c9 9799 {
b34976b6 9800 null_input_bfd = FALSE;
b49e97c9
TS
9801 break;
9802 }
9803 }
9804 if (null_input_bfd)
b34976b6 9805 return TRUE;
b49e97c9 9806
b34976b6 9807 ok = TRUE;
b49e97c9 9808
143d77c5
EC
9809 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9810 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 9811 {
b49e97c9 9812 (*_bfd_error_handler)
d003868e
AM
9813 (_("%B: warning: linking PIC files with non-PIC files"),
9814 ibfd);
143d77c5 9815 ok = TRUE;
b49e97c9
TS
9816 }
9817
143d77c5
EC
9818 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9819 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9820 if (! (new_flags & EF_MIPS_PIC))
9821 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9822
9823 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9824 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 9825
64543e1a
RS
9826 /* Compare the ISAs. */
9827 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 9828 {
64543e1a 9829 (*_bfd_error_handler)
d003868e
AM
9830 (_("%B: linking 32-bit code with 64-bit code"),
9831 ibfd);
64543e1a
RS
9832 ok = FALSE;
9833 }
9834 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9835 {
9836 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9837 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 9838 {
64543e1a
RS
9839 /* Copy the architecture info from IBFD to OBFD. Also copy
9840 the 32-bit flag (if set) so that we continue to recognise
9841 OBFD as a 32-bit binary. */
9842 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9843 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9844 elf_elfheader (obfd)->e_flags
9845 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9846
9847 /* Copy across the ABI flags if OBFD doesn't use them
9848 and if that was what caused us to treat IBFD as 32-bit. */
9849 if ((old_flags & EF_MIPS_ABI) == 0
9850 && mips_32bit_flags_p (new_flags)
9851 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9852 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9853 }
9854 else
9855 {
64543e1a 9856 /* The ISAs aren't compatible. */
b49e97c9 9857 (*_bfd_error_handler)
d003868e
AM
9858 (_("%B: linking %s module with previous %s modules"),
9859 ibfd,
64543e1a
RS
9860 bfd_printable_name (ibfd),
9861 bfd_printable_name (obfd));
b34976b6 9862 ok = FALSE;
b49e97c9 9863 }
b49e97c9
TS
9864 }
9865
64543e1a
RS
9866 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9867 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9868
9869 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9870 does set EI_CLASS differently from any 32-bit ABI. */
9871 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9872 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9873 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9874 {
9875 /* Only error if both are set (to different values). */
9876 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9877 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9878 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9879 {
9880 (*_bfd_error_handler)
d003868e
AM
9881 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9882 ibfd,
b49e97c9
TS
9883 elf_mips_abi_name (ibfd),
9884 elf_mips_abi_name (obfd));
b34976b6 9885 ok = FALSE;
b49e97c9
TS
9886 }
9887 new_flags &= ~EF_MIPS_ABI;
9888 old_flags &= ~EF_MIPS_ABI;
9889 }
9890
fb39dac1
RS
9891 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9892 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9893 {
9894 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9895
9896 new_flags &= ~ EF_MIPS_ARCH_ASE;
9897 old_flags &= ~ EF_MIPS_ARCH_ASE;
9898 }
9899
b49e97c9
TS
9900 /* Warn about any other mismatches */
9901 if (new_flags != old_flags)
9902 {
9903 (*_bfd_error_handler)
d003868e
AM
9904 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9905 ibfd, (unsigned long) new_flags,
b49e97c9 9906 (unsigned long) old_flags);
b34976b6 9907 ok = FALSE;
b49e97c9
TS
9908 }
9909
9910 if (! ok)
9911 {
9912 bfd_set_error (bfd_error_bad_value);
b34976b6 9913 return FALSE;
b49e97c9
TS
9914 }
9915
b34976b6 9916 return TRUE;
b49e97c9
TS
9917}
9918
9919/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9920
b34976b6 9921bfd_boolean
9719ad41 9922_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
9923{
9924 BFD_ASSERT (!elf_flags_init (abfd)
9925 || elf_elfheader (abfd)->e_flags == flags);
9926
9927 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9928 elf_flags_init (abfd) = TRUE;
9929 return TRUE;
b49e97c9
TS
9930}
9931
b34976b6 9932bfd_boolean
9719ad41 9933_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 9934{
9719ad41 9935 FILE *file = ptr;
b49e97c9
TS
9936
9937 BFD_ASSERT (abfd != NULL && ptr != NULL);
9938
9939 /* Print normal ELF private data. */
9940 _bfd_elf_print_private_bfd_data (abfd, ptr);
9941
9942 /* xgettext:c-format */
9943 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9944
9945 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9946 fprintf (file, _(" [abi=O32]"));
9947 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9948 fprintf (file, _(" [abi=O64]"));
9949 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9950 fprintf (file, _(" [abi=EABI32]"));
9951 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9952 fprintf (file, _(" [abi=EABI64]"));
9953 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9954 fprintf (file, _(" [abi unknown]"));
9955 else if (ABI_N32_P (abfd))
9956 fprintf (file, _(" [abi=N32]"));
9957 else if (ABI_64_P (abfd))
9958 fprintf (file, _(" [abi=64]"));
9959 else
9960 fprintf (file, _(" [no abi set]"));
9961
9962 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9963 fprintf (file, _(" [mips1]"));
9964 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9965 fprintf (file, _(" [mips2]"));
9966 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9967 fprintf (file, _(" [mips3]"));
9968 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9969 fprintf (file, _(" [mips4]"));
9970 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9971 fprintf (file, _(" [mips5]"));
9972 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9973 fprintf (file, _(" [mips32]"));
9974 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9975 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9976 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9977 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
9978 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9979 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
9980 else
9981 fprintf (file, _(" [unknown ISA]"));
9982
40d32fc6
CD
9983 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9984 fprintf (file, _(" [mdmx]"));
9985
9986 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9987 fprintf (file, _(" [mips16]"));
9988
b49e97c9
TS
9989 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9990 fprintf (file, _(" [32bitmode]"));
9991 else
9992 fprintf (file, _(" [not 32bitmode]"));
9993
9994 fputc ('\n', file);
9995
b34976b6 9996 return TRUE;
b49e97c9 9997}
2f89ff8d 9998
b35d266b 9999const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 10000{
7dcb9820
AM
10001 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10002 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
7dcb9820 10003 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
551b43fd
AM
10004 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10005 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10006 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
7dcb9820 10007 { NULL, 0, 0, 0, 0 }
2f89ff8d 10008};
5e2b0d47
NC
10009
10010/* Ensure that the STO_OPTIONAL flag is copied into h->other,
10011 even if this is not a defintion of the symbol. */
10012void
10013_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
10014 const Elf_Internal_Sym *isym,
10015 bfd_boolean definition,
10016 bfd_boolean dynamic ATTRIBUTE_UNUSED)
10017{
10018 if (! definition
10019 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
10020 h->other |= STO_OPTIONAL;
10021}
12ac1cf5
NC
10022
10023/* Decide whether an undefined symbol is special and can be ignored.
10024 This is the case for OPTIONAL symbols on IRIX. */
10025bfd_boolean
10026_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
10027{
10028 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
10029}
This page took 0.964527 seconds and 4 git commands to generate.