Fix the behaviour of --allow-shlib-undefined, so that it does what it claims
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a
RS
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
b15e6682 67 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
b15e6682
AO
71};
72
f0abc2a1 73/* This structure is used to hold .got information when linking. */
b49e97c9
TS
74
75struct mips_got_info
76{
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
b15e6682
AO
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
f4416af6
AO
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94};
95
96/* Map an input bfd to a got in a multi-got link. */
97
98struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101};
102
103/* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106struct mips_elf_got_per_bfd_arg
107{
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128};
129
130/* Another structure used to pass arguments for got entries traversal. */
131
132struct mips_elf_set_global_got_offset_arg
133{
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
b49e97c9
TS
138};
139
f0abc2a1
AM
140struct _mips_elf_section_data
141{
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148};
149
150#define mips_elf_section_data(sec) \
68bfbfcc 151 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 152
b49e97c9
TS
153/* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156struct mips_elf_hash_sort_data
157{
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
f4416af6
AO
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary
167 GOTs). */
168 long max_unref_got_dynindx;
b49e97c9
TS
169 /* The greatest dynamic symbol table index not corresponding to a
170 symbol without a GOT entry. */
171 long max_non_got_dynindx;
172};
173
174/* The MIPS ELF linker needs additional information for each symbol in
175 the global hash table. */
176
177struct mips_elf_link_hash_entry
178{
179 struct elf_link_hash_entry root;
180
181 /* External symbol information. */
182 EXTR esym;
183
184 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
185 this symbol. */
186 unsigned int possibly_dynamic_relocs;
187
188 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
189 a readonly section. */
b34976b6 190 bfd_boolean readonly_reloc;
b49e97c9
TS
191
192 /* The index of the first dynamic relocation (in the .rel.dyn
193 section) against this symbol. */
194 unsigned int min_dyn_reloc_index;
195
196 /* We must not create a stub for a symbol that has relocations
197 related to taking the function's address, i.e. any but
198 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
199 p. 4-20. */
b34976b6 200 bfd_boolean no_fn_stub;
b49e97c9
TS
201
202 /* If there is a stub that 32 bit functions should use to call this
203 16 bit function, this points to the section containing the stub. */
204 asection *fn_stub;
205
206 /* Whether we need the fn_stub; this is set if this symbol appears
207 in any relocs other than a 16 bit call. */
b34976b6 208 bfd_boolean need_fn_stub;
b49e97c9
TS
209
210 /* If there is a stub that 16 bit functions should use to call this
211 32 bit function, this points to the section containing the stub. */
212 asection *call_stub;
213
214 /* This is like the call_stub field, but it is used if the function
215 being called returns a floating point value. */
216 asection *call_fp_stub;
7c5fcef7
L
217
218 /* Are we forced local? .*/
b34976b6 219 bfd_boolean forced_local;
b49e97c9
TS
220};
221
222/* MIPS ELF linker hash table. */
223
224struct mips_elf_link_hash_table
225{
226 struct elf_link_hash_table root;
227#if 0
228 /* We no longer use this. */
229 /* String section indices for the dynamic section symbols. */
230 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
231#endif
232 /* The number of .rtproc entries. */
233 bfd_size_type procedure_count;
234 /* The size of the .compact_rel section (if SGI_COMPAT). */
235 bfd_size_type compact_rel_size;
236 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 237 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 238 bfd_boolean use_rld_obj_head;
b49e97c9
TS
239 /* This is the value of the __rld_map or __rld_obj_head symbol. */
240 bfd_vma rld_value;
241 /* This is set if we see any mips16 stub sections. */
b34976b6 242 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
243};
244
245/* Structure used to pass information to mips_elf_output_extsym. */
246
247struct extsym_info
248{
249 bfd *abfd;
250 struct bfd_link_info *info;
251 struct ecoff_debug_info *debug;
252 const struct ecoff_debug_swap *swap;
b34976b6 253 bfd_boolean failed;
b49e97c9
TS
254};
255
8dc1a139 256/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
257
258static const char * const mips_elf_dynsym_rtproc_names[] =
259{
260 "_procedure_table",
261 "_procedure_string_table",
262 "_procedure_table_size",
263 NULL
264};
265
266/* These structures are used to generate the .compact_rel section on
8dc1a139 267 IRIX5. */
b49e97c9
TS
268
269typedef struct
270{
271 unsigned long id1; /* Always one? */
272 unsigned long num; /* Number of compact relocation entries. */
273 unsigned long id2; /* Always two? */
274 unsigned long offset; /* The file offset of the first relocation. */
275 unsigned long reserved0; /* Zero? */
276 unsigned long reserved1; /* Zero? */
277} Elf32_compact_rel;
278
279typedef struct
280{
281 bfd_byte id1[4];
282 bfd_byte num[4];
283 bfd_byte id2[4];
284 bfd_byte offset[4];
285 bfd_byte reserved0[4];
286 bfd_byte reserved1[4];
287} Elf32_External_compact_rel;
288
289typedef struct
290{
291 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
292 unsigned int rtype : 4; /* Relocation types. See below. */
293 unsigned int dist2to : 8;
294 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
295 unsigned long konst; /* KONST field. See below. */
296 unsigned long vaddr; /* VADDR to be relocated. */
297} Elf32_crinfo;
298
299typedef struct
300{
301 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
302 unsigned int rtype : 4; /* Relocation types. See below. */
303 unsigned int dist2to : 8;
304 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
305 unsigned long konst; /* KONST field. See below. */
306} Elf32_crinfo2;
307
308typedef struct
309{
310 bfd_byte info[4];
311 bfd_byte konst[4];
312 bfd_byte vaddr[4];
313} Elf32_External_crinfo;
314
315typedef struct
316{
317 bfd_byte info[4];
318 bfd_byte konst[4];
319} Elf32_External_crinfo2;
320
321/* These are the constants used to swap the bitfields in a crinfo. */
322
323#define CRINFO_CTYPE (0x1)
324#define CRINFO_CTYPE_SH (31)
325#define CRINFO_RTYPE (0xf)
326#define CRINFO_RTYPE_SH (27)
327#define CRINFO_DIST2TO (0xff)
328#define CRINFO_DIST2TO_SH (19)
329#define CRINFO_RELVADDR (0x7ffff)
330#define CRINFO_RELVADDR_SH (0)
331
332/* A compact relocation info has long (3 words) or short (2 words)
333 formats. A short format doesn't have VADDR field and relvaddr
334 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
335#define CRF_MIPS_LONG 1
336#define CRF_MIPS_SHORT 0
337
338/* There are 4 types of compact relocation at least. The value KONST
339 has different meaning for each type:
340
341 (type) (konst)
342 CT_MIPS_REL32 Address in data
343 CT_MIPS_WORD Address in word (XXX)
344 CT_MIPS_GPHI_LO GP - vaddr
345 CT_MIPS_JMPAD Address to jump
346 */
347
348#define CRT_MIPS_REL32 0xa
349#define CRT_MIPS_WORD 0xb
350#define CRT_MIPS_GPHI_LO 0xc
351#define CRT_MIPS_JMPAD 0xd
352
353#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
354#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
355#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
356#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
357\f
358/* The structure of the runtime procedure descriptor created by the
359 loader for use by the static exception system. */
360
361typedef struct runtime_pdr {
ae9a127f
NC
362 bfd_vma adr; /* Memory address of start of procedure. */
363 long regmask; /* Save register mask. */
364 long regoffset; /* Save register offset. */
365 long fregmask; /* Save floating point register mask. */
366 long fregoffset; /* Save floating point register offset. */
367 long frameoffset; /* Frame size. */
368 short framereg; /* Frame pointer register. */
369 short pcreg; /* Offset or reg of return pc. */
370 long irpss; /* Index into the runtime string table. */
b49e97c9 371 long reserved;
ae9a127f 372 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
373} RPDR, *pRPDR;
374#define cbRPDR sizeof (RPDR)
375#define rpdNil ((pRPDR) 0)
376\f
377static struct bfd_hash_entry *mips_elf_link_hash_newfunc
378 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
379static void ecoff_swap_rpdr_out
380 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
b34976b6 381static bfd_boolean mips_elf_create_procedure_table
b49e97c9
TS
382 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
383 struct ecoff_debug_info *));
b34976b6 384static bfd_boolean mips_elf_check_mips16_stubs
b49e97c9
TS
385 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
386static void bfd_mips_elf32_swap_gptab_in
387 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
388static void bfd_mips_elf32_swap_gptab_out
389 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
390static void bfd_elf32_swap_compact_rel_out
391 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
392static void bfd_elf32_swap_crinfo_out
393 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
394#if 0
395static void bfd_mips_elf_swap_msym_in
396 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
397#endif
398static void bfd_mips_elf_swap_msym_out
399 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
400static int sort_dynamic_relocs
401 PARAMS ((const void *, const void *));
f4416af6
AO
402static int sort_dynamic_relocs_64
403 PARAMS ((const void *, const void *));
b34976b6 404static bfd_boolean mips_elf_output_extsym
b49e97c9
TS
405 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
406static int gptab_compare PARAMS ((const void *, const void *));
f4416af6
AO
407static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
408static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
b49e97c9
TS
409static struct mips_got_info *mips_elf_got_info
410 PARAMS ((bfd *, asection **));
411static bfd_vma mips_elf_local_got_index
f4416af6 412 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
b49e97c9 413static bfd_vma mips_elf_global_got_index
f4416af6 414 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
b49e97c9 415static bfd_vma mips_elf_got_page
f4416af6 416 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
b49e97c9 417static bfd_vma mips_elf_got16_entry
f4416af6 418 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
b49e97c9 419static bfd_vma mips_elf_got_offset_from_index
f4416af6 420 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
b15e6682 421static struct mips_got_entry *mips_elf_create_local_got_entry
f4416af6 422 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
b34976b6 423static bfd_boolean mips_elf_sort_hash_table
b49e97c9 424 PARAMS ((struct bfd_link_info *, unsigned long));
b34976b6 425static bfd_boolean mips_elf_sort_hash_table_f
b49e97c9 426 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
f4416af6
AO
427static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
b34976b6 429static bfd_boolean mips_elf_record_global_got_symbol
f4416af6 430 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
b49e97c9
TS
431 struct mips_got_info *));
432static const Elf_Internal_Rela *mips_elf_next_relocation
433 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
434 const Elf_Internal_Rela *));
b34976b6
AM
435static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
b49e97c9 437static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
b34976b6 438static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
b49e97c9
TS
439static bfd_vma mips_elf_high PARAMS ((bfd_vma));
440static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
441static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
b34976b6 442static bfd_boolean mips_elf_create_compact_rel_section
b49e97c9 443 PARAMS ((bfd *, struct bfd_link_info *));
b34976b6 444static bfd_boolean mips_elf_create_got_section
f4416af6 445 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
b49e97c9
TS
446static asection *mips_elf_create_msym_section
447 PARAMS ((bfd *));
448static bfd_reloc_status_type mips_elf_calculate_relocation
449 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
450 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
451 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
b34976b6 452 bfd_boolean *, bfd_boolean));
b49e97c9
TS
453static bfd_vma mips_elf_obtain_contents
454 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
b34976b6 455static bfd_boolean mips_elf_perform_relocation
b49e97c9
TS
456 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
457 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
b34976b6
AM
458 bfd_boolean));
459static bfd_boolean mips_elf_stub_section_p
b49e97c9
TS
460 PARAMS ((bfd *, asection *));
461static void mips_elf_allocate_dynamic_relocations
462 PARAMS ((bfd *, unsigned int));
b34976b6 463static bfd_boolean mips_elf_create_dynamic_relocation
b49e97c9
TS
464 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
465 struct mips_elf_link_hash_entry *, asection *,
466 bfd_vma, bfd_vma *, asection *));
64543e1a 467static void mips_set_isa_flags PARAMS ((bfd *));
b49e97c9
TS
468static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
469static void mips_elf_irix6_finish_dynamic_symbol
470 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
64543e1a
RS
471static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
472static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
f4416af6 473static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
b15e6682
AO
474static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
475static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
b49e97c9 476
f4416af6
AO
477static bfd_boolean mips_elf_multi_got
478 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
479 asection *, bfd_size_type));
480static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
481static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
482static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
483static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
484static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
485static int mips_elf_merge_gots PARAMS ((void **, void *));
486static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
487static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
488static void mips_elf_resolve_final_got_entries
489 PARAMS ((struct mips_got_info *));
490static bfd_vma mips_elf_adjust_gp
491 PARAMS ((bfd *, struct mips_got_info *, bfd *));
492static struct mips_got_info *mips_elf_got_for_ibfd
493 PARAMS ((struct mips_got_info *, bfd *));
494
b49e97c9
TS
495/* This will be used when we sort the dynamic relocation records. */
496static bfd *reldyn_sorting_bfd;
497
498/* Nonzero if ABFD is using the N32 ABI. */
499
500#define ABI_N32_P(abfd) \
501 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
502
4a14403c 503/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 504#define ABI_64_P(abfd) \
141ff970 505 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 506
4a14403c
TS
507/* Nonzero if ABFD is using NewABI conventions. */
508#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
509
510/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
511#define IRIX_COMPAT(abfd) \
512 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
513
b49e97c9
TS
514/* Whether we are trying to be compatible with IRIX at all. */
515#define SGI_COMPAT(abfd) \
516 (IRIX_COMPAT (abfd) != ict_none)
517
518/* The name of the options section. */
519#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
4a14403c 520 (ABI_64_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9
TS
521
522/* The name of the stub section. */
523#define MIPS_ELF_STUB_SECTION_NAME(abfd) \
4a14403c 524 (ABI_64_P (abfd) ? ".MIPS.stubs" : ".stub")
b49e97c9
TS
525
526/* The size of an external REL relocation. */
527#define MIPS_ELF_REL_SIZE(abfd) \
528 (get_elf_backend_data (abfd)->s->sizeof_rel)
529
530/* The size of an external dynamic table entry. */
531#define MIPS_ELF_DYN_SIZE(abfd) \
532 (get_elf_backend_data (abfd)->s->sizeof_dyn)
533
534/* The size of a GOT entry. */
535#define MIPS_ELF_GOT_SIZE(abfd) \
536 (get_elf_backend_data (abfd)->s->arch_size / 8)
537
538/* The size of a symbol-table entry. */
539#define MIPS_ELF_SYM_SIZE(abfd) \
540 (get_elf_backend_data (abfd)->s->sizeof_sym)
541
542/* The default alignment for sections, as a power of two. */
543#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
544 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
545
546/* Get word-sized data. */
547#define MIPS_ELF_GET_WORD(abfd, ptr) \
548 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
549
550/* Put out word-sized data. */
551#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
552 (ABI_64_P (abfd) \
553 ? bfd_put_64 (abfd, val, ptr) \
554 : bfd_put_32 (abfd, val, ptr))
555
556/* Add a dynamic symbol table-entry. */
557#ifdef BFD64
558#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
559 (ABI_64_P (elf_hash_table (info)->dynobj) \
560 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
561 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
562#else
563#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
564 (ABI_64_P (elf_hash_table (info)->dynobj) \
b34976b6 565 ? (abort (), FALSE) \
b49e97c9
TS
566 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
567#endif
568
569#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
570 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
571
4ffba85c
AO
572/* Determine whether the internal relocation of index REL_IDX is REL
573 (zero) or RELA (non-zero). The assumption is that, if there are
574 two relocation sections for this section, one of them is REL and
575 the other is RELA. If the index of the relocation we're testing is
576 in range for the first relocation section, check that the external
577 relocation size is that for RELA. It is also assumed that, if
578 rel_idx is not in range for the first section, and this first
579 section contains REL relocs, then the relocation is in the second
580 section, that is RELA. */
581#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
582 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
583 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
584 > (bfd_vma)(rel_idx)) \
585 == (elf_section_data (sec)->rel_hdr.sh_entsize \
586 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
587 : sizeof (Elf32_External_Rela))))
588
b49e97c9
TS
589/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
590 from smaller values. Start with zero, widen, *then* decrement. */
591#define MINUS_ONE (((bfd_vma)0) - 1)
592
593/* The number of local .got entries we reserve. */
594#define MIPS_RESERVED_GOTNO (2)
595
f4416af6
AO
596/* The offset of $gp from the beginning of the .got section. */
597#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
598
599/* The maximum size of the GOT for it to be addressable using 16-bit
600 offsets from $gp. */
601#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
602
b49e97c9
TS
603/* Instructions which appear in a stub. For some reason the stub is
604 slightly different on an SGI system. */
b49e97c9 605#define STUB_LW(abfd) \
f4416af6
AO
606 ((ABI_64_P (abfd) \
607 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
608 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9
TS
609#define STUB_MOVE(abfd) \
610 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
611#define STUB_JALR 0x0320f809 /* jal t9 */
612#define STUB_LI16(abfd) \
613 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
614#define MIPS_FUNCTION_STUB_SIZE (16)
615
616/* The name of the dynamic interpreter. This is put in the .interp
617 section. */
618
619#define ELF_DYNAMIC_INTERPRETER(abfd) \
620 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
621 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
622 : "/usr/lib/libc.so.1")
623
624#ifdef BFD64
ee6423ed
AO
625#define MNAME(bfd,pre,pos) \
626 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
627#define ELF_R_SYM(bfd, i) \
628 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
629#define ELF_R_TYPE(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
631#define ELF_R_INFO(bfd, s, t) \
632 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
633#else
ee6423ed 634#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
635#define ELF_R_SYM(bfd, i) \
636 (ELF32_R_SYM (i))
637#define ELF_R_TYPE(bfd, i) \
638 (ELF32_R_TYPE (i))
639#define ELF_R_INFO(bfd, s, t) \
640 (ELF32_R_INFO (s, t))
641#endif
642\f
643 /* The mips16 compiler uses a couple of special sections to handle
644 floating point arguments.
645
646 Section names that look like .mips16.fn.FNNAME contain stubs that
647 copy floating point arguments from the fp regs to the gp regs and
648 then jump to FNNAME. If any 32 bit function calls FNNAME, the
649 call should be redirected to the stub instead. If no 32 bit
650 function calls FNNAME, the stub should be discarded. We need to
651 consider any reference to the function, not just a call, because
652 if the address of the function is taken we will need the stub,
653 since the address might be passed to a 32 bit function.
654
655 Section names that look like .mips16.call.FNNAME contain stubs
656 that copy floating point arguments from the gp regs to the fp
657 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
658 then any 16 bit function that calls FNNAME should be redirected
659 to the stub instead. If FNNAME is not a 32 bit function, the
660 stub should be discarded.
661
662 .mips16.call.fp.FNNAME sections are similar, but contain stubs
663 which call FNNAME and then copy the return value from the fp regs
664 to the gp regs. These stubs store the return value in $18 while
665 calling FNNAME; any function which might call one of these stubs
666 must arrange to save $18 around the call. (This case is not
667 needed for 32 bit functions that call 16 bit functions, because
668 16 bit functions always return floating point values in both
669 $f0/$f1 and $2/$3.)
670
671 Note that in all cases FNNAME might be defined statically.
672 Therefore, FNNAME is not used literally. Instead, the relocation
673 information will indicate which symbol the section is for.
674
675 We record any stubs that we find in the symbol table. */
676
677#define FN_STUB ".mips16.fn."
678#define CALL_STUB ".mips16.call."
679#define CALL_FP_STUB ".mips16.call.fp."
680\f
681/* Look up an entry in a MIPS ELF linker hash table. */
682
683#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
684 ((struct mips_elf_link_hash_entry *) \
685 elf_link_hash_lookup (&(table)->root, (string), (create), \
686 (copy), (follow)))
687
688/* Traverse a MIPS ELF linker hash table. */
689
690#define mips_elf_link_hash_traverse(table, func, info) \
691 (elf_link_hash_traverse \
692 (&(table)->root, \
b34976b6 693 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
b49e97c9
TS
694 (info)))
695
696/* Get the MIPS ELF linker hash table from a link_info structure. */
697
698#define mips_elf_hash_table(p) \
699 ((struct mips_elf_link_hash_table *) ((p)->hash))
700
701/* Create an entry in a MIPS ELF linker hash table. */
702
703static struct bfd_hash_entry *
704mips_elf_link_hash_newfunc (entry, table, string)
705 struct bfd_hash_entry *entry;
706 struct bfd_hash_table *table;
707 const char *string;
708{
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == (struct mips_elf_link_hash_entry *) NULL)
715 ret = ((struct mips_elf_link_hash_entry *)
716 bfd_hash_allocate (table,
717 sizeof (struct mips_elf_link_hash_entry)));
718 if (ret == (struct mips_elf_link_hash_entry *) NULL)
719 return (struct bfd_hash_entry *) ret;
720
721 /* Call the allocation method of the superclass. */
722 ret = ((struct mips_elf_link_hash_entry *)
723 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
724 table, string));
725 if (ret != (struct mips_elf_link_hash_entry *) NULL)
726 {
727 /* Set local fields. */
728 memset (&ret->esym, 0, sizeof (EXTR));
729 /* We use -2 as a marker to indicate that the information has
730 not been set. -1 means there is no associated ifd. */
731 ret->esym.ifd = -2;
732 ret->possibly_dynamic_relocs = 0;
b34976b6 733 ret->readonly_reloc = FALSE;
b49e97c9 734 ret->min_dyn_reloc_index = 0;
b34976b6 735 ret->no_fn_stub = FALSE;
b49e97c9 736 ret->fn_stub = NULL;
b34976b6 737 ret->need_fn_stub = FALSE;
b49e97c9
TS
738 ret->call_stub = NULL;
739 ret->call_fp_stub = NULL;
b34976b6 740 ret->forced_local = FALSE;
b49e97c9
TS
741 }
742
743 return (struct bfd_hash_entry *) ret;
744}
f0abc2a1
AM
745
746bfd_boolean
747_bfd_mips_elf_new_section_hook (abfd, sec)
748 bfd *abfd;
749 asection *sec;
750{
751 struct _mips_elf_section_data *sdata;
752 bfd_size_type amt = sizeof (*sdata);
753
754 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
755 if (sdata == NULL)
756 return FALSE;
757 sec->used_by_bfd = (PTR) sdata;
758
759 return _bfd_elf_new_section_hook (abfd, sec);
760}
b49e97c9
TS
761\f
762/* Read ECOFF debugging information from a .mdebug section into a
763 ecoff_debug_info structure. */
764
b34976b6 765bfd_boolean
b49e97c9
TS
766_bfd_mips_elf_read_ecoff_info (abfd, section, debug)
767 bfd *abfd;
768 asection *section;
769 struct ecoff_debug_info *debug;
770{
771 HDRR *symhdr;
772 const struct ecoff_debug_swap *swap;
773 char *ext_hdr = NULL;
774
775 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
776 memset (debug, 0, sizeof (*debug));
777
778 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
779 if (ext_hdr == NULL && swap->external_hdr_size != 0)
780 goto error_return;
781
82e51918
AM
782 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
783 swap->external_hdr_size))
b49e97c9
TS
784 goto error_return;
785
786 symhdr = &debug->symbolic_header;
787 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
788
789 /* The symbolic header contains absolute file offsets and sizes to
790 read. */
791#define READ(ptr, offset, count, size, type) \
792 if (symhdr->count == 0) \
793 debug->ptr = NULL; \
794 else \
795 { \
796 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
797 debug->ptr = (type) bfd_malloc (amt); \
798 if (debug->ptr == NULL) \
799 goto error_return; \
800 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
801 || bfd_bread (debug->ptr, amt, abfd) != amt) \
802 goto error_return; \
803 }
804
805 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
806 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
807 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
808 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
809 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
810 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
811 union aux_ext *);
812 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
813 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
814 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
815 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
816 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
817#undef READ
818
819 debug->fdr = NULL;
820 debug->adjust = NULL;
821
b34976b6 822 return TRUE;
b49e97c9
TS
823
824 error_return:
825 if (ext_hdr != NULL)
826 free (ext_hdr);
827 if (debug->line != NULL)
828 free (debug->line);
829 if (debug->external_dnr != NULL)
830 free (debug->external_dnr);
831 if (debug->external_pdr != NULL)
832 free (debug->external_pdr);
833 if (debug->external_sym != NULL)
834 free (debug->external_sym);
835 if (debug->external_opt != NULL)
836 free (debug->external_opt);
837 if (debug->external_aux != NULL)
838 free (debug->external_aux);
839 if (debug->ss != NULL)
840 free (debug->ss);
841 if (debug->ssext != NULL)
842 free (debug->ssext);
843 if (debug->external_fdr != NULL)
844 free (debug->external_fdr);
845 if (debug->external_rfd != NULL)
846 free (debug->external_rfd);
847 if (debug->external_ext != NULL)
848 free (debug->external_ext);
b34976b6 849 return FALSE;
b49e97c9
TS
850}
851\f
852/* Swap RPDR (runtime procedure table entry) for output. */
853
854static void
855ecoff_swap_rpdr_out (abfd, in, ex)
856 bfd *abfd;
857 const RPDR *in;
858 struct rpdr_ext *ex;
859{
860 H_PUT_S32 (abfd, in->adr, ex->p_adr);
861 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
862 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
863 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
864 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
865 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
866
867 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
868 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
869
870 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
871#if 0 /* FIXME */
872 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
873#endif
874}
875
876/* Create a runtime procedure table from the .mdebug section. */
877
b34976b6 878static bfd_boolean
b49e97c9
TS
879mips_elf_create_procedure_table (handle, abfd, info, s, debug)
880 PTR handle;
881 bfd *abfd;
882 struct bfd_link_info *info;
883 asection *s;
884 struct ecoff_debug_info *debug;
885{
886 const struct ecoff_debug_swap *swap;
887 HDRR *hdr = &debug->symbolic_header;
888 RPDR *rpdr, *rp;
889 struct rpdr_ext *erp;
890 PTR rtproc;
891 struct pdr_ext *epdr;
892 struct sym_ext *esym;
893 char *ss, **sv;
894 char *str;
895 bfd_size_type size;
896 bfd_size_type count;
897 unsigned long sindex;
898 unsigned long i;
899 PDR pdr;
900 SYMR sym;
901 const char *no_name_func = _("static procedure (no name)");
902
903 epdr = NULL;
904 rpdr = NULL;
905 esym = NULL;
906 ss = NULL;
907 sv = NULL;
908
909 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
910
911 sindex = strlen (no_name_func) + 1;
912 count = hdr->ipdMax;
913 if (count > 0)
914 {
915 size = swap->external_pdr_size;
916
917 epdr = (struct pdr_ext *) bfd_malloc (size * count);
918 if (epdr == NULL)
919 goto error_return;
920
921 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
922 goto error_return;
923
924 size = sizeof (RPDR);
925 rp = rpdr = (RPDR *) bfd_malloc (size * count);
926 if (rpdr == NULL)
927 goto error_return;
928
929 size = sizeof (char *);
930 sv = (char **) bfd_malloc (size * count);
931 if (sv == NULL)
932 goto error_return;
933
934 count = hdr->isymMax;
935 size = swap->external_sym_size;
936 esym = (struct sym_ext *) bfd_malloc (size * count);
937 if (esym == NULL)
938 goto error_return;
939
940 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
941 goto error_return;
942
943 count = hdr->issMax;
944 ss = (char *) bfd_malloc (count);
945 if (ss == NULL)
946 goto error_return;
947 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
948 goto error_return;
949
950 count = hdr->ipdMax;
951 for (i = 0; i < (unsigned long) count; i++, rp++)
952 {
953 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
954 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
955 rp->adr = sym.value;
956 rp->regmask = pdr.regmask;
957 rp->regoffset = pdr.regoffset;
958 rp->fregmask = pdr.fregmask;
959 rp->fregoffset = pdr.fregoffset;
960 rp->frameoffset = pdr.frameoffset;
961 rp->framereg = pdr.framereg;
962 rp->pcreg = pdr.pcreg;
963 rp->irpss = sindex;
964 sv[i] = ss + sym.iss;
965 sindex += strlen (sv[i]) + 1;
966 }
967 }
968
969 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
970 size = BFD_ALIGN (size, 16);
971 rtproc = (PTR) bfd_alloc (abfd, size);
972 if (rtproc == NULL)
973 {
974 mips_elf_hash_table (info)->procedure_count = 0;
975 goto error_return;
976 }
977
978 mips_elf_hash_table (info)->procedure_count = count + 2;
979
980 erp = (struct rpdr_ext *) rtproc;
981 memset (erp, 0, sizeof (struct rpdr_ext));
982 erp++;
983 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
984 strcpy (str, no_name_func);
985 str += strlen (no_name_func) + 1;
986 for (i = 0; i < count; i++)
987 {
988 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
989 strcpy (str, sv[i]);
990 str += strlen (sv[i]) + 1;
991 }
992 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
993
994 /* Set the size and contents of .rtproc section. */
995 s->_raw_size = size;
996 s->contents = (bfd_byte *) rtproc;
997
998 /* Skip this section later on (I don't think this currently
999 matters, but someday it might). */
1000 s->link_order_head = (struct bfd_link_order *) NULL;
1001
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012
b34976b6 1013 return TRUE;
b49e97c9
TS
1014
1015 error_return:
1016 if (epdr != NULL)
1017 free (epdr);
1018 if (rpdr != NULL)
1019 free (rpdr);
1020 if (esym != NULL)
1021 free (esym);
1022 if (ss != NULL)
1023 free (ss);
1024 if (sv != NULL)
1025 free (sv);
b34976b6 1026 return FALSE;
b49e97c9
TS
1027}
1028
1029/* Check the mips16 stubs for a particular symbol, and see if we can
1030 discard them. */
1031
b34976b6 1032static bfd_boolean
b49e97c9
TS
1033mips_elf_check_mips16_stubs (h, data)
1034 struct mips_elf_link_hash_entry *h;
1035 PTR data ATTRIBUTE_UNUSED;
1036{
1037 if (h->root.root.type == bfd_link_hash_warning)
1038 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1039
1040 if (h->fn_stub != NULL
1041 && ! h->need_fn_stub)
1042 {
1043 /* We don't need the fn_stub; the only references to this symbol
1044 are 16 bit calls. Clobber the size to 0 to prevent it from
1045 being included in the link. */
1046 h->fn_stub->_raw_size = 0;
1047 h->fn_stub->_cooked_size = 0;
1048 h->fn_stub->flags &= ~SEC_RELOC;
1049 h->fn_stub->reloc_count = 0;
1050 h->fn_stub->flags |= SEC_EXCLUDE;
1051 }
1052
1053 if (h->call_stub != NULL
1054 && h->root.other == STO_MIPS16)
1055 {
1056 /* We don't need the call_stub; this is a 16 bit function, so
1057 calls from other 16 bit functions are OK. Clobber the size
1058 to 0 to prevent it from being included in the link. */
1059 h->call_stub->_raw_size = 0;
1060 h->call_stub->_cooked_size = 0;
1061 h->call_stub->flags &= ~SEC_RELOC;
1062 h->call_stub->reloc_count = 0;
1063 h->call_stub->flags |= SEC_EXCLUDE;
1064 }
1065
1066 if (h->call_fp_stub != NULL
1067 && h->root.other == STO_MIPS16)
1068 {
1069 /* We don't need the call_stub; this is a 16 bit function, so
1070 calls from other 16 bit functions are OK. Clobber the size
1071 to 0 to prevent it from being included in the link. */
1072 h->call_fp_stub->_raw_size = 0;
1073 h->call_fp_stub->_cooked_size = 0;
1074 h->call_fp_stub->flags &= ~SEC_RELOC;
1075 h->call_fp_stub->reloc_count = 0;
1076 h->call_fp_stub->flags |= SEC_EXCLUDE;
1077 }
1078
b34976b6 1079 return TRUE;
b49e97c9
TS
1080}
1081\f
1082bfd_reloc_status_type
1083_bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1084 relocateable, data, gp)
1085 bfd *abfd;
1086 asymbol *symbol;
1087 arelent *reloc_entry;
1088 asection *input_section;
b34976b6 1089 bfd_boolean relocateable;
b49e97c9
TS
1090 PTR data;
1091 bfd_vma gp;
1092{
1093 bfd_vma relocation;
1094 unsigned long insn;
1095 unsigned long val;
1096
1097 if (bfd_is_com_section (symbol->section))
1098 relocation = 0;
1099 else
1100 relocation = symbol->value;
1101
1102 relocation += symbol->section->output_section->vma;
1103 relocation += symbol->section->output_offset;
1104
1105 if (reloc_entry->address > input_section->_cooked_size)
1106 return bfd_reloc_outofrange;
1107
1108 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1109
1110 /* Set val to the offset into the section or symbol. */
1111 if (reloc_entry->howto->src_mask == 0)
1112 {
1113 /* This case occurs with the 64-bit MIPS ELF ABI. */
1114 val = reloc_entry->addend;
1115 }
1116 else
1117 {
1118 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1119 if (val & 0x8000)
1120 val -= 0x10000;
1121 }
1122
1123 /* Adjust val for the final section location and GP value. If we
1124 are producing relocateable output, we don't want to do this for
1125 an external symbol. */
1126 if (! relocateable
1127 || (symbol->flags & BSF_SECTION_SYM) != 0)
1128 val += relocation - gp;
1129
1130 insn = (insn & ~0xffff) | (val & 0xffff);
1131 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1132
1133 if (relocateable)
1134 reloc_entry->address += input_section->output_offset;
1135
1136 else if ((long) val >= 0x8000 || (long) val < -0x8000)
1137 return bfd_reloc_overflow;
1138
1139 return bfd_reloc_ok;
1140}
1141\f
1142/* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1144
1145static void
1146bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1147 bfd *abfd;
1148 const Elf32_External_gptab *ex;
1149 Elf32_gptab *in;
1150{
1151 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1152 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1153}
1154
1155static void
1156bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1157 bfd *abfd;
1158 const Elf32_gptab *in;
1159 Elf32_External_gptab *ex;
1160{
1161 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1162 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1163}
1164
1165static void
1166bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1167 bfd *abfd;
1168 const Elf32_compact_rel *in;
1169 Elf32_External_compact_rel *ex;
1170{
1171 H_PUT_32 (abfd, in->id1, ex->id1);
1172 H_PUT_32 (abfd, in->num, ex->num);
1173 H_PUT_32 (abfd, in->id2, ex->id2);
1174 H_PUT_32 (abfd, in->offset, ex->offset);
1175 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1176 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1177}
1178
1179static void
1180bfd_elf32_swap_crinfo_out (abfd, in, ex)
1181 bfd *abfd;
1182 const Elf32_crinfo *in;
1183 Elf32_External_crinfo *ex;
1184{
1185 unsigned long l;
1186
1187 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1188 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1189 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1190 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1191 H_PUT_32 (abfd, l, ex->info);
1192 H_PUT_32 (abfd, in->konst, ex->konst);
1193 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1194}
1195
1196#if 0
1197/* Swap in an MSYM entry. */
1198
1199static void
1200bfd_mips_elf_swap_msym_in (abfd, ex, in)
1201 bfd *abfd;
1202 const Elf32_External_Msym *ex;
1203 Elf32_Internal_Msym *in;
1204{
1205 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1206 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1207}
1208#endif
1209/* Swap out an MSYM entry. */
1210
1211static void
1212bfd_mips_elf_swap_msym_out (abfd, in, ex)
1213 bfd *abfd;
1214 const Elf32_Internal_Msym *in;
1215 Elf32_External_Msym *ex;
1216{
1217 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1218 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1219}
1220\f
1221/* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1224
1225void
1226bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1227 bfd *abfd;
1228 const Elf32_External_RegInfo *ex;
1229 Elf32_RegInfo *in;
1230{
1231 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1232 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1233 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1234 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1235 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1236 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1237}
1238
1239void
1240bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1241 bfd *abfd;
1242 const Elf32_RegInfo *in;
1243 Elf32_External_RegInfo *ex;
1244{
1245 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1246 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1247 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1248 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1249 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1250 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1251}
1252
1253/* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1258
1259void
1260bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1261 bfd *abfd;
1262 const Elf64_External_RegInfo *ex;
1263 Elf64_Internal_RegInfo *in;
1264{
1265 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1266 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1267 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1268 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1269 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1270 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1271 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1272}
1273
1274void
1275bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1276 bfd *abfd;
1277 const Elf64_Internal_RegInfo *in;
1278 Elf64_External_RegInfo *ex;
1279{
1280 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1281 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1282 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1283 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1284 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1285 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1286 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1287}
1288
1289/* Swap in an options header. */
1290
1291void
1292bfd_mips_elf_swap_options_in (abfd, ex, in)
1293 bfd *abfd;
1294 const Elf_External_Options *ex;
1295 Elf_Internal_Options *in;
1296{
1297 in->kind = H_GET_8 (abfd, ex->kind);
1298 in->size = H_GET_8 (abfd, ex->size);
1299 in->section = H_GET_16 (abfd, ex->section);
1300 in->info = H_GET_32 (abfd, ex->info);
1301}
1302
1303/* Swap out an options header. */
1304
1305void
1306bfd_mips_elf_swap_options_out (abfd, in, ex)
1307 bfd *abfd;
1308 const Elf_Internal_Options *in;
1309 Elf_External_Options *ex;
1310{
1311 H_PUT_8 (abfd, in->kind, ex->kind);
1312 H_PUT_8 (abfd, in->size, ex->size);
1313 H_PUT_16 (abfd, in->section, ex->section);
1314 H_PUT_32 (abfd, in->info, ex->info);
1315}
1316\f
1317/* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1319
1320static int
1321sort_dynamic_relocs (arg1, arg2)
1322 const PTR arg1;
1323 const PTR arg2;
1324{
947216bf
AM
1325 Elf_Internal_Rela int_reloc1;
1326 Elf_Internal_Rela int_reloc2;
b49e97c9 1327
947216bf
AM
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1330
947216bf 1331 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1332}
1333
f4416af6
AO
1334/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1335
1336static int
1337sort_dynamic_relocs_64 (arg1, arg2)
1338 const PTR arg1;
1339 const PTR arg2;
1340{
1341 Elf_Internal_Rela int_reloc1[3];
1342 Elf_Internal_Rela int_reloc2[3];
1343
1344 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1345 (reldyn_sorting_bfd, arg1, int_reloc1);
1346 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1347 (reldyn_sorting_bfd, arg2, int_reloc2);
1348
1349 return (ELF64_R_SYM (int_reloc1[0].r_info)
1350 - ELF64_R_SYM (int_reloc2[0].r_info));
1351}
1352
1353
b49e97c9
TS
1354/* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1367
b34976b6 1368static bfd_boolean
b49e97c9
TS
1369mips_elf_output_extsym (h, data)
1370 struct mips_elf_link_hash_entry *h;
1371 PTR data;
1372{
1373 struct extsym_info *einfo = (struct extsym_info *) data;
b34976b6 1374 bfd_boolean strip;
b49e97c9
TS
1375 asection *sec, *output_section;
1376
1377 if (h->root.root.type == bfd_link_hash_warning)
1378 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1379
1380 if (h->root.indx == -2)
b34976b6 1381 strip = FALSE;
b49e97c9
TS
1382 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1385 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
b34976b6 1386 strip = TRUE;
b49e97c9
TS
1387 else if (einfo->info->strip == strip_all
1388 || (einfo->info->strip == strip_some
1389 && bfd_hash_lookup (einfo->info->keep_hash,
1390 h->root.root.root.string,
b34976b6
AM
1391 FALSE, FALSE) == NULL))
1392 strip = TRUE;
b49e97c9 1393 else
b34976b6 1394 strip = FALSE;
b49e97c9
TS
1395
1396 if (strip)
b34976b6 1397 return TRUE;
b49e97c9
TS
1398
1399 if (h->esym.ifd == -2)
1400 {
1401 h->esym.jmptbl = 0;
1402 h->esym.cobol_main = 0;
1403 h->esym.weakext = 0;
1404 h->esym.reserved = 0;
1405 h->esym.ifd = ifdNil;
1406 h->esym.asym.value = 0;
1407 h->esym.asym.st = stGlobal;
1408
1409 if (h->root.root.type == bfd_link_hash_undefined
1410 || h->root.root.type == bfd_link_hash_undefweak)
1411 {
1412 const char *name;
1413
1414 /* Use undefined class. Also, set class and type for some
1415 special symbols. */
1416 name = h->root.root.root.string;
1417 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1418 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1419 {
1420 h->esym.asym.sc = scData;
1421 h->esym.asym.st = stLabel;
1422 h->esym.asym.value = 0;
1423 }
1424 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1425 {
1426 h->esym.asym.sc = scAbs;
1427 h->esym.asym.st = stLabel;
1428 h->esym.asym.value =
1429 mips_elf_hash_table (einfo->info)->procedure_count;
1430 }
4a14403c 1431 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1432 {
1433 h->esym.asym.sc = scAbs;
1434 h->esym.asym.st = stLabel;
1435 h->esym.asym.value = elf_gp (einfo->abfd);
1436 }
1437 else
1438 h->esym.asym.sc = scUndefined;
1439 }
1440 else if (h->root.root.type != bfd_link_hash_defined
1441 && h->root.root.type != bfd_link_hash_defweak)
1442 h->esym.asym.sc = scAbs;
1443 else
1444 {
1445 const char *name;
1446
1447 sec = h->root.root.u.def.section;
1448 output_section = sec->output_section;
1449
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section == NULL)
1453 h->esym.asym.sc = scUndefined;
1454 else
1455 {
1456 name = bfd_section_name (output_section->owner, output_section);
1457
1458 if (strcmp (name, ".text") == 0)
1459 h->esym.asym.sc = scText;
1460 else if (strcmp (name, ".data") == 0)
1461 h->esym.asym.sc = scData;
1462 else if (strcmp (name, ".sdata") == 0)
1463 h->esym.asym.sc = scSData;
1464 else if (strcmp (name, ".rodata") == 0
1465 || strcmp (name, ".rdata") == 0)
1466 h->esym.asym.sc = scRData;
1467 else if (strcmp (name, ".bss") == 0)
1468 h->esym.asym.sc = scBss;
1469 else if (strcmp (name, ".sbss") == 0)
1470 h->esym.asym.sc = scSBss;
1471 else if (strcmp (name, ".init") == 0)
1472 h->esym.asym.sc = scInit;
1473 else if (strcmp (name, ".fini") == 0)
1474 h->esym.asym.sc = scFini;
1475 else
1476 h->esym.asym.sc = scAbs;
1477 }
1478 }
1479
1480 h->esym.asym.reserved = 0;
1481 h->esym.asym.index = indexNil;
1482 }
1483
1484 if (h->root.root.type == bfd_link_hash_common)
1485 h->esym.asym.value = h->root.root.u.c.size;
1486 else if (h->root.root.type == bfd_link_hash_defined
1487 || h->root.root.type == bfd_link_hash_defweak)
1488 {
1489 if (h->esym.asym.sc == scCommon)
1490 h->esym.asym.sc = scBss;
1491 else if (h->esym.asym.sc == scSCommon)
1492 h->esym.asym.sc = scSBss;
1493
1494 sec = h->root.root.u.def.section;
1495 output_section = sec->output_section;
1496 if (output_section != NULL)
1497 h->esym.asym.value = (h->root.root.u.def.value
1498 + sec->output_offset
1499 + output_section->vma);
1500 else
1501 h->esym.asym.value = 0;
1502 }
1503 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1504 {
1505 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1506 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1507
1508 while (hd->root.root.type == bfd_link_hash_indirect)
1509 {
1510 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1511 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1512 }
1513
1514 if (!no_fn_stub)
1515 {
1516 /* Set type and value for a symbol with a function stub. */
1517 h->esym.asym.st = stProc;
1518 sec = hd->root.root.u.def.section;
1519 if (sec == NULL)
1520 h->esym.asym.value = 0;
1521 else
1522 {
1523 output_section = sec->output_section;
1524 if (output_section != NULL)
1525 h->esym.asym.value = (hd->root.plt.offset
1526 + sec->output_offset
1527 + output_section->vma);
1528 else
1529 h->esym.asym.value = 0;
1530 }
1531#if 0 /* FIXME? */
1532 h->esym.ifd = 0;
1533#endif
1534 }
1535 }
1536
1537 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1538 h->root.root.root.string,
1539 &h->esym))
1540 {
b34976b6
AM
1541 einfo->failed = TRUE;
1542 return FALSE;
b49e97c9
TS
1543 }
1544
b34976b6 1545 return TRUE;
b49e97c9
TS
1546}
1547
1548/* A comparison routine used to sort .gptab entries. */
1549
1550static int
1551gptab_compare (p1, p2)
1552 const PTR p1;
1553 const PTR p2;
1554{
1555 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1556 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1557
1558 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1559}
1560\f
b15e6682 1561/* Functions to manage the got entry hash table. */
f4416af6
AO
1562
1563/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1564 hash number. */
1565
1566static INLINE hashval_t
1567mips_elf_hash_bfd_vma (addr)
1568 bfd_vma addr;
1569{
1570#ifdef BFD64
1571 return addr + (addr >> 32);
1572#else
1573 return addr;
1574#endif
1575}
1576
1577/* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1579 union members. */
1580
b15e6682
AO
1581static hashval_t
1582mips_elf_got_entry_hash (entry_)
1583 const PTR entry_;
1584{
1585 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1586
38985a1c 1587 return entry->symndx
f4416af6 1588 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1589 : entry->abfd->id
1590 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1591 : entry->d.h->root.root.root.hash));
b15e6682
AO
1592}
1593
1594static int
1595mips_elf_got_entry_eq (entry1, entry2)
1596 const PTR entry1;
1597 const PTR entry2;
1598{
1599 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1600 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1601
1602 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1603 && (! e1->abfd ? e1->d.address == e2->d.address
1604 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1605 : e1->d.h == e2->d.h);
1606}
1607
1608/* multi_got_entries are still a match in the case of global objects,
1609 even if the input bfd in which they're referenced differs, so the
1610 hash computation and compare functions are adjusted
1611 accordingly. */
1612
1613static hashval_t
1614mips_elf_multi_got_entry_hash (entry_)
1615 const PTR entry_;
1616{
1617 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1618
1619 return entry->symndx
1620 + (! entry->abfd
1621 ? mips_elf_hash_bfd_vma (entry->d.address)
1622 : entry->symndx >= 0
1623 ? (entry->abfd->id
1624 + mips_elf_hash_bfd_vma (entry->d.addend))
1625 : entry->d.h->root.root.root.hash);
1626}
1627
1628static int
1629mips_elf_multi_got_entry_eq (entry1, entry2)
1630 const PTR entry1;
1631 const PTR entry2;
1632{
1633 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1634 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1635
1636 return e1->symndx == e2->symndx
1637 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1638 : e1->abfd == NULL || e2->abfd == NULL
1639 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1640 : e1->d.h == e2->d.h);
b15e6682
AO
1641}
1642\f
f4416af6
AO
1643/* Returns the dynamic relocation section for DYNOBJ. */
1644
1645static asection *
1646mips_elf_rel_dyn_section (dynobj, create_p)
1647 bfd *dynobj;
1648 bfd_boolean create_p;
1649{
1650 static const char dname[] = ".rel.dyn";
1651 asection *sreloc;
1652
1653 sreloc = bfd_get_section_by_name (dynobj, dname);
1654 if (sreloc == NULL && create_p)
1655 {
1656 sreloc = bfd_make_section (dynobj, dname);
1657 if (sreloc == NULL
1658 || ! bfd_set_section_flags (dynobj, sreloc,
1659 (SEC_ALLOC
1660 | SEC_LOAD
1661 | SEC_HAS_CONTENTS
1662 | SEC_IN_MEMORY
1663 | SEC_LINKER_CREATED
1664 | SEC_READONLY))
1665 || ! bfd_set_section_alignment (dynobj, sreloc,
1666 4))
1667 return NULL;
1668 }
1669 return sreloc;
1670}
1671
b49e97c9
TS
1672/* Returns the GOT section for ABFD. */
1673
1674static asection *
f4416af6 1675mips_elf_got_section (abfd, maybe_excluded)
b49e97c9 1676 bfd *abfd;
f4416af6 1677 bfd_boolean maybe_excluded;
b49e97c9 1678{
f4416af6
AO
1679 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1680 if (sgot == NULL
1681 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1682 return NULL;
1683 return sgot;
b49e97c9
TS
1684}
1685
1686/* Returns the GOT information associated with the link indicated by
1687 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1688 section. */
1689
1690static struct mips_got_info *
1691mips_elf_got_info (abfd, sgotp)
1692 bfd *abfd;
1693 asection **sgotp;
1694{
1695 asection *sgot;
1696 struct mips_got_info *g;
1697
f4416af6 1698 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1699 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1700 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1701 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1702 BFD_ASSERT (g != NULL);
1703
1704 if (sgotp)
f4416af6
AO
1705 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1706
b49e97c9
TS
1707 return g;
1708}
1709
1710/* Returns the GOT offset at which the indicated address can be found.
1711 If there is not yet a GOT entry for this value, create one. Returns
1712 -1 if no satisfactory GOT offset can be found. */
1713
1714static bfd_vma
f4416af6
AO
1715mips_elf_local_got_index (abfd, ibfd, info, value)
1716 bfd *abfd, *ibfd;
b49e97c9
TS
1717 struct bfd_link_info *info;
1718 bfd_vma value;
1719{
1720 asection *sgot;
1721 struct mips_got_info *g;
b15e6682 1722 struct mips_got_entry *entry;
b49e97c9
TS
1723
1724 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1725
f4416af6 1726 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1727 if (entry)
1728 return entry->gotidx;
1729 else
1730 return MINUS_ONE;
b49e97c9
TS
1731}
1732
1733/* Returns the GOT index for the global symbol indicated by H. */
1734
1735static bfd_vma
f4416af6
AO
1736mips_elf_global_got_index (abfd, ibfd, h)
1737 bfd *abfd, *ibfd;
b49e97c9
TS
1738 struct elf_link_hash_entry *h;
1739{
1740 bfd_vma index;
1741 asection *sgot;
f4416af6 1742 struct mips_got_info *g, *gg;
d0c7ff07 1743 long global_got_dynindx = 0;
b49e97c9 1744
f4416af6
AO
1745 gg = g = mips_elf_got_info (abfd, &sgot);
1746 if (g->bfd2got && ibfd)
1747 {
1748 struct mips_got_entry e, *p;
1749
1750 BFD_ASSERT (h->dynindx >= 0);
1751
1752 g = mips_elf_got_for_ibfd (g, ibfd);
1753 if (g->next != gg)
1754 {
1755 e.abfd = ibfd;
1756 e.symndx = -1;
1757 e.d.h = (struct mips_elf_link_hash_entry *)h;
1758
1759 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1760
1761 BFD_ASSERT (p->gotidx > 0);
1762 return p->gotidx;
1763 }
1764 }
1765
1766 if (gg->global_gotsym != NULL)
1767 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9
TS
1768
1769 /* Once we determine the global GOT entry with the lowest dynamic
1770 symbol table index, we must put all dynamic symbols with greater
1771 indices into the GOT. That makes it easy to calculate the GOT
1772 offset. */
d0c7ff07
TS
1773 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1774 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
b49e97c9
TS
1775 * MIPS_ELF_GOT_SIZE (abfd));
1776 BFD_ASSERT (index < sgot->_raw_size);
1777
1778 return index;
1779}
1780
1781/* Find a GOT entry that is within 32KB of the VALUE. These entries
1782 are supposed to be placed at small offsets in the GOT, i.e.,
1783 within 32KB of GP. Return the index into the GOT for this page,
1784 and store the offset from this entry to the desired address in
1785 OFFSETP, if it is non-NULL. */
1786
1787static bfd_vma
f4416af6
AO
1788mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1789 bfd *abfd, *ibfd;
b49e97c9
TS
1790 struct bfd_link_info *info;
1791 bfd_vma value;
1792 bfd_vma *offsetp;
1793{
1794 asection *sgot;
1795 struct mips_got_info *g;
b15e6682
AO
1796 bfd_vma index;
1797 struct mips_got_entry *entry;
b49e97c9
TS
1798
1799 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1800
f4416af6 1801 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682
AO
1802 (value + 0x8000)
1803 & (~(bfd_vma)0xffff));
b49e97c9 1804
b15e6682
AO
1805 if (!entry)
1806 return MINUS_ONE;
1807
1808 index = entry->gotidx;
b49e97c9
TS
1809
1810 if (offsetp)
f4416af6 1811 *offsetp = value - entry->d.address;
b49e97c9
TS
1812
1813 return index;
1814}
1815
1816/* Find a GOT entry whose higher-order 16 bits are the same as those
1817 for value. Return the index into the GOT for this entry. */
1818
1819static bfd_vma
f4416af6
AO
1820mips_elf_got16_entry (abfd, ibfd, info, value, external)
1821 bfd *abfd, *ibfd;
b49e97c9
TS
1822 struct bfd_link_info *info;
1823 bfd_vma value;
b34976b6 1824 bfd_boolean external;
b49e97c9
TS
1825{
1826 asection *sgot;
1827 struct mips_got_info *g;
b15e6682 1828 struct mips_got_entry *entry;
b49e97c9
TS
1829
1830 if (! external)
1831 {
1832 /* Although the ABI says that it is "the high-order 16 bits" that we
1833 want, it is really the %high value. The complete value is
1834 calculated with a `addiu' of a LO16 relocation, just as with a
1835 HI16/LO16 pair. */
1836 value = mips_elf_high (value) << 16;
1837 }
1838
1839 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1840
f4416af6 1841 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1842 if (entry)
1843 return entry->gotidx;
1844 else
1845 return MINUS_ONE;
b49e97c9
TS
1846}
1847
1848/* Returns the offset for the entry at the INDEXth position
1849 in the GOT. */
1850
1851static bfd_vma
f4416af6 1852mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
b49e97c9
TS
1853 bfd *dynobj;
1854 bfd *output_bfd;
f4416af6 1855 bfd *input_bfd;
b49e97c9
TS
1856 bfd_vma index;
1857{
1858 asection *sgot;
1859 bfd_vma gp;
f4416af6 1860 struct mips_got_info *g;
b49e97c9 1861
f4416af6
AO
1862 g = mips_elf_got_info (dynobj, &sgot);
1863 gp = _bfd_get_gp_value (output_bfd)
1864 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1865
1866 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
1867}
1868
1869/* Create a local GOT entry for VALUE. Return the index of the entry,
1870 or -1 if it could not be created. */
1871
b15e6682 1872static struct mips_got_entry *
f4416af6
AO
1873mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1874 bfd *abfd, *ibfd;
1875 struct mips_got_info *gg;
b49e97c9
TS
1876 asection *sgot;
1877 bfd_vma value;
1878{
b15e6682 1879 struct mips_got_entry entry, **loc;
f4416af6 1880 struct mips_got_info *g;
b15e6682 1881
f4416af6
AO
1882 entry.abfd = NULL;
1883 entry.symndx = -1;
1884 entry.d.address = value;
1885
1886 g = mips_elf_got_for_ibfd (gg, ibfd);
1887 if (g == NULL)
1888 {
1889 g = mips_elf_got_for_ibfd (gg, abfd);
1890 BFD_ASSERT (g != NULL);
1891 }
b15e6682
AO
1892
1893 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1894 INSERT);
1895 if (*loc)
1896 return *loc;
1897
1898 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1899
1900 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1901
1902 if (! *loc)
1903 return NULL;
1904
1905 memcpy (*loc, &entry, sizeof entry);
1906
b49e97c9
TS
1907 if (g->assigned_gotno >= g->local_gotno)
1908 {
f4416af6 1909 (*loc)->gotidx = -1;
b49e97c9
TS
1910 /* We didn't allocate enough space in the GOT. */
1911 (*_bfd_error_handler)
1912 (_("not enough GOT space for local GOT entries"));
1913 bfd_set_error (bfd_error_bad_value);
b15e6682 1914 return NULL;
b49e97c9
TS
1915 }
1916
1917 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
1918 (sgot->contents + entry.gotidx));
1919
1920 return *loc;
b49e97c9
TS
1921}
1922
1923/* Sort the dynamic symbol table so that symbols that need GOT entries
1924 appear towards the end. This reduces the amount of GOT space
1925 required. MAX_LOCAL is used to set the number of local symbols
1926 known to be in the dynamic symbol table. During
1927 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1928 section symbols are added and the count is higher. */
1929
b34976b6 1930static bfd_boolean
b49e97c9
TS
1931mips_elf_sort_hash_table (info, max_local)
1932 struct bfd_link_info *info;
1933 unsigned long max_local;
1934{
1935 struct mips_elf_hash_sort_data hsd;
1936 struct mips_got_info *g;
1937 bfd *dynobj;
1938
1939 dynobj = elf_hash_table (info)->dynobj;
1940
f4416af6
AO
1941 g = mips_elf_got_info (dynobj, NULL);
1942
b49e97c9 1943 hsd.low = NULL;
f4416af6
AO
1944 hsd.max_unref_got_dynindx =
1945 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1946 /* In the multi-got case, assigned_gotno of the master got_info
1947 indicate the number of entries that aren't referenced in the
1948 primary GOT, but that must have entries because there are
1949 dynamic relocations that reference it. Since they aren't
1950 referenced, we move them to the end of the GOT, so that they
1951 don't prevent other entries that are referenced from getting
1952 too large offsets. */
1953 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
1954 hsd.max_non_got_dynindx = max_local;
1955 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1956 elf_hash_table (info)),
1957 mips_elf_sort_hash_table_f,
1958 &hsd);
1959
1960 /* There should have been enough room in the symbol table to
44c410de 1961 accommodate both the GOT and non-GOT symbols. */
b49e97c9 1962 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
1963 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1964 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
1965
1966 /* Now we know which dynamic symbol has the lowest dynamic symbol
1967 table index in the GOT. */
b49e97c9
TS
1968 g->global_gotsym = hsd.low;
1969
b34976b6 1970 return TRUE;
b49e97c9
TS
1971}
1972
1973/* If H needs a GOT entry, assign it the highest available dynamic
1974 index. Otherwise, assign it the lowest available dynamic
1975 index. */
1976
b34976b6 1977static bfd_boolean
b49e97c9
TS
1978mips_elf_sort_hash_table_f (h, data)
1979 struct mips_elf_link_hash_entry *h;
1980 PTR data;
1981{
1982 struct mips_elf_hash_sort_data *hsd
1983 = (struct mips_elf_hash_sort_data *) data;
1984
1985 if (h->root.root.type == bfd_link_hash_warning)
1986 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1987
1988 /* Symbols without dynamic symbol table entries aren't interesting
1989 at all. */
1990 if (h->root.dynindx == -1)
b34976b6 1991 return TRUE;
b49e97c9 1992
f4416af6
AO
1993 /* Global symbols that need GOT entries that are not explicitly
1994 referenced are marked with got offset 2. Those that are
1995 referenced get a 1, and those that don't need GOT entries get
1996 -1. */
1997 if (h->root.got.offset == 2)
1998 {
1999 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2000 hsd->low = (struct elf_link_hash_entry *) h;
2001 h->root.dynindx = hsd->max_unref_got_dynindx++;
2002 }
2003 else if (h->root.got.offset != 1)
b49e97c9
TS
2004 h->root.dynindx = hsd->max_non_got_dynindx++;
2005 else
2006 {
2007 h->root.dynindx = --hsd->min_got_dynindx;
2008 hsd->low = (struct elf_link_hash_entry *) h;
2009 }
2010
b34976b6 2011 return TRUE;
b49e97c9
TS
2012}
2013
2014/* If H is a symbol that needs a global GOT entry, but has a dynamic
2015 symbol table index lower than any we've seen to date, record it for
2016 posterity. */
2017
b34976b6 2018static bfd_boolean
f4416af6 2019mips_elf_record_global_got_symbol (h, abfd, info, g)
b49e97c9 2020 struct elf_link_hash_entry *h;
f4416af6 2021 bfd *abfd;
b49e97c9 2022 struct bfd_link_info *info;
f4416af6 2023 struct mips_got_info *g;
b49e97c9 2024{
f4416af6
AO
2025 struct mips_got_entry entry, **loc;
2026
b49e97c9
TS
2027 /* A global symbol in the GOT must also be in the dynamic symbol
2028 table. */
7c5fcef7
L
2029 if (h->dynindx == -1)
2030 {
2031 switch (ELF_ST_VISIBILITY (h->other))
2032 {
2033 case STV_INTERNAL:
2034 case STV_HIDDEN:
b34976b6 2035 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2036 break;
2037 }
2038 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 2039 return FALSE;
7c5fcef7 2040 }
b49e97c9 2041
f4416af6
AO
2042 entry.abfd = abfd;
2043 entry.symndx = -1;
2044 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2045
2046 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2047 INSERT);
2048
b49e97c9
TS
2049 /* If we've already marked this entry as needing GOT space, we don't
2050 need to do it again. */
f4416af6
AO
2051 if (*loc)
2052 return TRUE;
2053
2054 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2055
2056 if (! *loc)
2057 return FALSE;
2058
2059 entry.gotidx = -1;
2060 memcpy (*loc, &entry, sizeof entry);
2061
b49e97c9 2062 if (h->got.offset != MINUS_ONE)
b34976b6 2063 return TRUE;
b49e97c9
TS
2064
2065 /* By setting this to a value other than -1, we are indicating that
2066 there needs to be a GOT entry for H. Avoid using zero, as the
2067 generic ELF copy_indirect_symbol tests for <= 0. */
2068 h->got.offset = 1;
2069
b34976b6 2070 return TRUE;
b49e97c9 2071}
f4416af6
AO
2072
2073/* Reserve space in G for a GOT entry containing the value of symbol
2074 SYMNDX in input bfd ABDF, plus ADDEND. */
2075
2076static bfd_boolean
2077mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2078 bfd *abfd;
2079 long symndx;
2080 bfd_vma addend;
2081 struct mips_got_info *g;
2082{
2083 struct mips_got_entry entry, **loc;
2084
2085 entry.abfd = abfd;
2086 entry.symndx = symndx;
2087 entry.d.addend = addend;
2088 loc = (struct mips_got_entry **)
2089 htab_find_slot (g->got_entries, &entry, INSERT);
2090
2091 if (*loc)
2092 return TRUE;
2093
2094 entry.gotidx = g->local_gotno++;
2095
2096 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2097
2098 if (! *loc)
2099 return FALSE;
2100
2101 memcpy (*loc, &entry, sizeof entry);
2102
2103 return TRUE;
2104}
2105\f
2106/* Compute the hash value of the bfd in a bfd2got hash entry. */
2107
2108static hashval_t
2109mips_elf_bfd2got_entry_hash (entry_)
2110 const PTR entry_;
2111{
2112 const struct mips_elf_bfd2got_hash *entry
2113 = (struct mips_elf_bfd2got_hash *)entry_;
2114
2115 return entry->bfd->id;
2116}
2117
2118/* Check whether two hash entries have the same bfd. */
2119
2120static int
2121mips_elf_bfd2got_entry_eq (entry1, entry2)
2122 const PTR entry1;
2123 const PTR entry2;
2124{
2125 const struct mips_elf_bfd2got_hash *e1
2126 = (const struct mips_elf_bfd2got_hash *)entry1;
2127 const struct mips_elf_bfd2got_hash *e2
2128 = (const struct mips_elf_bfd2got_hash *)entry2;
2129
2130 return e1->bfd == e2->bfd;
2131}
2132
2133/* In a multi-got link, determine the GOT to be used for IBDF. G must
2134 be the master GOT data. */
2135
2136static struct mips_got_info *
2137mips_elf_got_for_ibfd (g, ibfd)
2138 struct mips_got_info *g;
2139 bfd *ibfd;
2140{
2141 struct mips_elf_bfd2got_hash e, *p;
2142
2143 if (! g->bfd2got)
2144 return g;
2145
2146 e.bfd = ibfd;
2147 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2148 return p ? p->g : NULL;
2149}
2150
2151/* Create one separate got for each bfd that has entries in the global
2152 got, such that we can tell how many local and global entries each
2153 bfd requires. */
2154
2155static int
2156mips_elf_make_got_per_bfd (entryp, p)
2157 void **entryp;
2158 void *p;
2159{
2160 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2161 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2162 htab_t bfd2got = arg->bfd2got;
2163 struct mips_got_info *g;
2164 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2165 void **bfdgotp;
2166
2167 /* Find the got_info for this GOT entry's input bfd. Create one if
2168 none exists. */
2169 bfdgot_entry.bfd = entry->abfd;
2170 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2171 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2172
2173 if (bfdgot != NULL)
2174 g = bfdgot->g;
2175 else
2176 {
2177 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2178 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2179
2180 if (bfdgot == NULL)
2181 {
2182 arg->obfd = 0;
2183 return 0;
2184 }
2185
2186 *bfdgotp = bfdgot;
2187
2188 bfdgot->bfd = entry->abfd;
2189 bfdgot->g = g = (struct mips_got_info *)
2190 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2191 if (g == NULL)
2192 {
2193 arg->obfd = 0;
2194 return 0;
2195 }
2196
2197 g->global_gotsym = NULL;
2198 g->global_gotno = 0;
2199 g->local_gotno = 0;
2200 g->assigned_gotno = -1;
2201 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2202 mips_elf_multi_got_entry_eq,
2203 (htab_del) NULL);
2204 if (g->got_entries == NULL)
2205 {
2206 arg->obfd = 0;
2207 return 0;
2208 }
2209
2210 g->bfd2got = NULL;
2211 g->next = NULL;
2212 }
2213
2214 /* Insert the GOT entry in the bfd's got entry hash table. */
2215 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2216 if (*entryp != NULL)
2217 return 1;
2218
2219 *entryp = entry;
2220
2221 if (entry->symndx >= 0 || entry->d.h->forced_local)
2222 ++g->local_gotno;
2223 else
2224 ++g->global_gotno;
2225
2226 return 1;
2227}
2228
2229/* Attempt to merge gots of different input bfds. Try to use as much
2230 as possible of the primary got, since it doesn't require explicit
2231 dynamic relocations, but don't use bfds that would reference global
2232 symbols out of the addressable range. Failing the primary got,
2233 attempt to merge with the current got, or finish the current got
2234 and then make make the new got current. */
2235
2236static int
2237mips_elf_merge_gots (bfd2got_, p)
2238 void **bfd2got_;
2239 void *p;
2240{
2241 struct mips_elf_bfd2got_hash *bfd2got
2242 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2243 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2244 unsigned int lcount = bfd2got->g->local_gotno;
2245 unsigned int gcount = bfd2got->g->global_gotno;
2246 unsigned int maxcnt = arg->max_count;
2247
2248 /* If we don't have a primary GOT and this is not too big, use it as
2249 a starting point for the primary GOT. */
2250 if (! arg->primary && lcount + gcount <= maxcnt)
2251 {
2252 arg->primary = bfd2got->g;
2253 arg->primary_count = lcount + gcount;
2254 }
2255 /* If it looks like we can merge this bfd's entries with those of
2256 the primary, merge them. The heuristics is conservative, but we
2257 don't have to squeeze it too hard. */
2258 else if (arg->primary
2259 && (arg->primary_count + lcount + gcount) <= maxcnt)
2260 {
2261 struct mips_got_info *g = bfd2got->g;
2262 int old_lcount = arg->primary->local_gotno;
2263 int old_gcount = arg->primary->global_gotno;
2264
2265 bfd2got->g = arg->primary;
2266
2267 htab_traverse (g->got_entries,
2268 mips_elf_make_got_per_bfd,
2269 arg);
2270 if (arg->obfd == NULL)
2271 return 0;
2272
2273 htab_delete (g->got_entries);
2274 /* We don't have to worry about releasing memory of the actual
2275 got entries, since they're all in the master got_entries hash
2276 table anyway. */
2277
2278 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2279 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2280
2281 arg->primary_count = arg->primary->local_gotno
2282 + arg->primary->global_gotno;
2283 }
2284 /* If we can merge with the last-created got, do it. */
2285 else if (arg->current
2286 && arg->current_count + lcount + gcount <= maxcnt)
2287 {
2288 struct mips_got_info *g = bfd2got->g;
2289 int old_lcount = arg->current->local_gotno;
2290 int old_gcount = arg->current->global_gotno;
2291
2292 bfd2got->g = arg->current;
2293
2294 htab_traverse (g->got_entries,
2295 mips_elf_make_got_per_bfd,
2296 arg);
2297 if (arg->obfd == NULL)
2298 return 0;
2299
2300 htab_delete (g->got_entries);
2301
2302 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2303 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2304
2305 arg->current_count = arg->current->local_gotno
2306 + arg->current->global_gotno;
2307 }
2308 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2309 fits; if it turns out that it doesn't, we'll get relocation
2310 overflows anyway. */
2311 else
2312 {
2313 bfd2got->g->next = arg->current;
2314 arg->current = bfd2got->g;
2315
2316 arg->current_count = lcount + gcount;
2317 }
2318
2319 return 1;
2320}
2321
2322/* If passed a NULL mips_got_info in the argument, set the marker used
2323 to tell whether a global symbol needs a got entry (in the primary
2324 got) to the given VALUE.
2325
2326 If passed a pointer G to a mips_got_info in the argument (it must
2327 not be the primary GOT), compute the offset from the beginning of
2328 the (primary) GOT section to the entry in G corresponding to the
2329 global symbol. G's assigned_gotno must contain the index of the
2330 first available global GOT entry in G. VALUE must contain the size
2331 of a GOT entry in bytes. For each global GOT entry that requires a
2332 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2333 marked as not elligible for lazy resolution through a function
2334 stub. */
2335static int
2336mips_elf_set_global_got_offset (entryp, p)
2337 void **entryp;
2338 void *p;
2339{
2340 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2341 struct mips_elf_set_global_got_offset_arg *arg
2342 = (struct mips_elf_set_global_got_offset_arg *)p;
2343 struct mips_got_info *g = arg->g;
2344
2345 if (entry->abfd != NULL && entry->symndx == -1
2346 && entry->d.h->root.dynindx != -1)
2347 {
2348 if (g)
2349 {
2350 BFD_ASSERT (g->global_gotsym == NULL);
2351
2352 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2353 /* We can't do lazy update of GOT entries for
2354 non-primary GOTs since the PLT entries don't use the
2355 right offsets, so punt at it for now. */
2356 entry->d.h->no_fn_stub = TRUE;
2357 if (arg->info->shared
2358 || (elf_hash_table (arg->info)->dynamic_sections_created
2359 && ((entry->d.h->root.elf_link_hash_flags
2360 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2361 && ((entry->d.h->root.elf_link_hash_flags
2362 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2363 ++arg->needed_relocs;
2364 }
2365 else
2366 entry->d.h->root.got.offset = arg->value;
2367 }
2368
2369 return 1;
2370}
2371
2372/* Follow indirect and warning hash entries so that each got entry
2373 points to the final symbol definition. P must point to a pointer
2374 to the hash table we're traversing. Since this traversal may
2375 modify the hash table, we set this pointer to NULL to indicate
2376 we've made a potentially-destructive change to the hash table, so
2377 the traversal must be restarted. */
2378static int
2379mips_elf_resolve_final_got_entry (entryp, p)
2380 void **entryp;
2381 void *p;
2382{
2383 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2384 htab_t got_entries = *(htab_t *)p;
2385
2386 if (entry->abfd != NULL && entry->symndx == -1)
2387 {
2388 struct mips_elf_link_hash_entry *h = entry->d.h;
2389
2390 while (h->root.root.type == bfd_link_hash_indirect
2391 || h->root.root.type == bfd_link_hash_warning)
2392 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2393
2394 if (entry->d.h == h)
2395 return 1;
2396
2397 entry->d.h = h;
2398
2399 /* If we can't find this entry with the new bfd hash, re-insert
2400 it, and get the traversal restarted. */
2401 if (! htab_find (got_entries, entry))
2402 {
2403 htab_clear_slot (got_entries, entryp);
2404 entryp = htab_find_slot (got_entries, entry, INSERT);
2405 if (! *entryp)
2406 *entryp = entry;
2407 /* Abort the traversal, since the whole table may have
2408 moved, and leave it up to the parent to restart the
2409 process. */
2410 *(htab_t *)p = NULL;
2411 return 0;
2412 }
2413 /* We might want to decrement the global_gotno count, but it's
2414 either too early or too late for that at this point. */
2415 }
2416
2417 return 1;
2418}
2419
2420/* Turn indirect got entries in a got_entries table into their final
2421 locations. */
2422static void
2423mips_elf_resolve_final_got_entries (g)
2424 struct mips_got_info *g;
2425{
2426 htab_t got_entries;
2427
2428 do
2429 {
2430 got_entries = g->got_entries;
2431
2432 htab_traverse (got_entries,
2433 mips_elf_resolve_final_got_entry,
2434 &got_entries);
2435 }
2436 while (got_entries == NULL);
2437}
2438
2439/* Return the offset of an input bfd IBFD's GOT from the beginning of
2440 the primary GOT. */
2441static bfd_vma
2442mips_elf_adjust_gp (abfd, g, ibfd)
2443 bfd *abfd;
2444 struct mips_got_info *g;
2445 bfd *ibfd;
2446{
2447 if (g->bfd2got == NULL)
2448 return 0;
2449
2450 g = mips_elf_got_for_ibfd (g, ibfd);
2451 if (! g)
2452 return 0;
2453
2454 BFD_ASSERT (g->next);
2455
2456 g = g->next;
2457
2458 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2459}
2460
2461/* Turn a single GOT that is too big for 16-bit addressing into
2462 a sequence of GOTs, each one 16-bit addressable. */
2463
2464static bfd_boolean
2465mips_elf_multi_got (abfd, info, g, got, pages)
2466 bfd *abfd;
2467 struct bfd_link_info *info;
2468 struct mips_got_info *g;
2469 asection *got;
2470 bfd_size_type pages;
2471{
2472 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2473 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2474 struct mips_got_info *gg;
2475 unsigned int assign;
2476
2477 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2478 mips_elf_bfd2got_entry_eq,
2479 (htab_del) NULL);
2480 if (g->bfd2got == NULL)
2481 return FALSE;
2482
2483 got_per_bfd_arg.bfd2got = g->bfd2got;
2484 got_per_bfd_arg.obfd = abfd;
2485 got_per_bfd_arg.info = info;
2486
2487 /* Count how many GOT entries each input bfd requires, creating a
2488 map from bfd to got info while at that. */
2489 mips_elf_resolve_final_got_entries (g);
2490 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2491 if (got_per_bfd_arg.obfd == NULL)
2492 return FALSE;
2493
2494 got_per_bfd_arg.current = NULL;
2495 got_per_bfd_arg.primary = NULL;
2496 /* Taking out PAGES entries is a worst-case estimate. We could
2497 compute the maximum number of pages that each separate input bfd
2498 uses, but it's probably not worth it. */
2499 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2500 / MIPS_ELF_GOT_SIZE (abfd))
2501 - MIPS_RESERVED_GOTNO - pages);
2502
2503 /* Try to merge the GOTs of input bfds together, as long as they
2504 don't seem to exceed the maximum GOT size, choosing one of them
2505 to be the primary GOT. */
2506 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2507 if (got_per_bfd_arg.obfd == NULL)
2508 return FALSE;
2509
2510 /* If we find any suitable primary GOT, create an empty one. */
2511 if (got_per_bfd_arg.primary == NULL)
2512 {
2513 g->next = (struct mips_got_info *)
2514 bfd_alloc (abfd, sizeof (struct mips_got_info));
2515 if (g->next == NULL)
2516 return FALSE;
2517
2518 g->next->global_gotsym = NULL;
2519 g->next->global_gotno = 0;
2520 g->next->local_gotno = 0;
2521 g->next->assigned_gotno = 0;
2522 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2523 mips_elf_multi_got_entry_eq,
2524 (htab_del) NULL);
2525 if (g->next->got_entries == NULL)
2526 return FALSE;
2527 g->next->bfd2got = NULL;
2528 }
2529 else
2530 g->next = got_per_bfd_arg.primary;
2531 g->next->next = got_per_bfd_arg.current;
2532
2533 /* GG is now the master GOT, and G is the primary GOT. */
2534 gg = g;
2535 g = g->next;
2536
2537 /* Map the output bfd to the primary got. That's what we're going
2538 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2539 didn't mark in check_relocs, and we want a quick way to find it.
2540 We can't just use gg->next because we're going to reverse the
2541 list. */
2542 {
2543 struct mips_elf_bfd2got_hash *bfdgot;
2544 void **bfdgotp;
2545
2546 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2547 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2548
2549 if (bfdgot == NULL)
2550 return FALSE;
2551
2552 bfdgot->bfd = abfd;
2553 bfdgot->g = g;
2554 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2555
2556 BFD_ASSERT (*bfdgotp == NULL);
2557 *bfdgotp = bfdgot;
2558 }
2559
2560 /* The IRIX dynamic linker requires every symbol that is referenced
2561 in a dynamic relocation to be present in the primary GOT, so
2562 arrange for them to appear after those that are actually
2563 referenced.
2564
2565 GNU/Linux could very well do without it, but it would slow down
2566 the dynamic linker, since it would have to resolve every dynamic
2567 symbol referenced in other GOTs more than once, without help from
2568 the cache. Also, knowing that every external symbol has a GOT
2569 helps speed up the resolution of local symbols too, so GNU/Linux
2570 follows IRIX's practice.
2571
2572 The number 2 is used by mips_elf_sort_hash_table_f to count
2573 global GOT symbols that are unreferenced in the primary GOT, with
2574 an initial dynamic index computed from gg->assigned_gotno, where
2575 the number of unreferenced global entries in the primary GOT is
2576 preserved. */
2577 if (1)
2578 {
2579 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2580 g->global_gotno = gg->global_gotno;
2581 set_got_offset_arg.value = 2;
2582 }
2583 else
2584 {
2585 /* This could be used for dynamic linkers that don't optimize
2586 symbol resolution while applying relocations so as to use
2587 primary GOT entries or assuming the symbol is locally-defined.
2588 With this code, we assign lower dynamic indices to global
2589 symbols that are not referenced in the primary GOT, so that
2590 their entries can be omitted. */
2591 gg->assigned_gotno = 0;
2592 set_got_offset_arg.value = -1;
2593 }
2594
2595 /* Reorder dynamic symbols as described above (which behavior
2596 depends on the setting of VALUE). */
2597 set_got_offset_arg.g = NULL;
2598 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2599 &set_got_offset_arg);
2600 set_got_offset_arg.value = 1;
2601 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2602 &set_got_offset_arg);
2603 if (! mips_elf_sort_hash_table (info, 1))
2604 return FALSE;
2605
2606 /* Now go through the GOTs assigning them offset ranges.
2607 [assigned_gotno, local_gotno[ will be set to the range of local
2608 entries in each GOT. We can then compute the end of a GOT by
2609 adding local_gotno to global_gotno. We reverse the list and make
2610 it circular since then we'll be able to quickly compute the
2611 beginning of a GOT, by computing the end of its predecessor. To
2612 avoid special cases for the primary GOT, while still preserving
2613 assertions that are valid for both single- and multi-got links,
2614 we arrange for the main got struct to have the right number of
2615 global entries, but set its local_gotno such that the initial
2616 offset of the primary GOT is zero. Remember that the primary GOT
2617 will become the last item in the circular linked list, so it
2618 points back to the master GOT. */
2619 gg->local_gotno = -g->global_gotno;
2620 gg->global_gotno = g->global_gotno;
2621 assign = 0;
2622 gg->next = gg;
2623
2624 do
2625 {
2626 struct mips_got_info *gn;
2627
2628 assign += MIPS_RESERVED_GOTNO;
2629 g->assigned_gotno = assign;
2630 g->local_gotno += assign + pages;
2631 assign = g->local_gotno + g->global_gotno;
2632
2633 /* Take g out of the direct list, and push it onto the reversed
2634 list that gg points to. */
2635 gn = g->next;
2636 g->next = gg->next;
2637 gg->next = g;
2638 g = gn;
2639 }
2640 while (g);
2641
2642 got->_raw_size = (gg->next->local_gotno
2643 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2644
2645 return TRUE;
2646}
2647
b49e97c9
TS
2648\f
2649/* Returns the first relocation of type r_type found, beginning with
2650 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2651
2652static const Elf_Internal_Rela *
2653mips_elf_next_relocation (abfd, r_type, relocation, relend)
2654 bfd *abfd ATTRIBUTE_UNUSED;
2655 unsigned int r_type;
2656 const Elf_Internal_Rela *relocation;
2657 const Elf_Internal_Rela *relend;
2658{
2659 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2660 immediately following. However, for the IRIX6 ABI, the next
2661 relocation may be a composed relocation consisting of several
2662 relocations for the same address. In that case, the R_MIPS_LO16
2663 relocation may occur as one of these. We permit a similar
2664 extension in general, as that is useful for GCC. */
2665 while (relocation < relend)
2666 {
2667 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2668 return relocation;
2669
2670 ++relocation;
2671 }
2672
2673 /* We didn't find it. */
2674 bfd_set_error (bfd_error_bad_value);
2675 return NULL;
2676}
2677
2678/* Return whether a relocation is against a local symbol. */
2679
b34976b6 2680static bfd_boolean
b49e97c9
TS
2681mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2682 check_forced)
2683 bfd *input_bfd;
2684 const Elf_Internal_Rela *relocation;
2685 asection **local_sections;
b34976b6 2686 bfd_boolean check_forced;
b49e97c9
TS
2687{
2688 unsigned long r_symndx;
2689 Elf_Internal_Shdr *symtab_hdr;
2690 struct mips_elf_link_hash_entry *h;
2691 size_t extsymoff;
2692
2693 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2694 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2695 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2696
2697 if (r_symndx < extsymoff)
b34976b6 2698 return TRUE;
b49e97c9 2699 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 2700 return TRUE;
b49e97c9
TS
2701
2702 if (check_forced)
2703 {
2704 /* Look up the hash table to check whether the symbol
2705 was forced local. */
2706 h = (struct mips_elf_link_hash_entry *)
2707 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2708 /* Find the real hash-table entry for this symbol. */
2709 while (h->root.root.type == bfd_link_hash_indirect
2710 || h->root.root.type == bfd_link_hash_warning)
2711 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2712 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
b34976b6 2713 return TRUE;
b49e97c9
TS
2714 }
2715
b34976b6 2716 return FALSE;
b49e97c9
TS
2717}
2718\f
2719/* Sign-extend VALUE, which has the indicated number of BITS. */
2720
2721static bfd_vma
2722mips_elf_sign_extend (value, bits)
2723 bfd_vma value;
2724 int bits;
2725{
2726 if (value & ((bfd_vma) 1 << (bits - 1)))
2727 /* VALUE is negative. */
2728 value |= ((bfd_vma) - 1) << bits;
2729
2730 return value;
2731}
2732
2733/* Return non-zero if the indicated VALUE has overflowed the maximum
2734 range expressable by a signed number with the indicated number of
2735 BITS. */
2736
b34976b6 2737static bfd_boolean
b49e97c9
TS
2738mips_elf_overflow_p (value, bits)
2739 bfd_vma value;
2740 int bits;
2741{
2742 bfd_signed_vma svalue = (bfd_signed_vma) value;
2743
2744 if (svalue > (1 << (bits - 1)) - 1)
2745 /* The value is too big. */
b34976b6 2746 return TRUE;
b49e97c9
TS
2747 else if (svalue < -(1 << (bits - 1)))
2748 /* The value is too small. */
b34976b6 2749 return TRUE;
b49e97c9
TS
2750
2751 /* All is well. */
b34976b6 2752 return FALSE;
b49e97c9
TS
2753}
2754
2755/* Calculate the %high function. */
2756
2757static bfd_vma
2758mips_elf_high (value)
2759 bfd_vma value;
2760{
2761 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2762}
2763
2764/* Calculate the %higher function. */
2765
2766static bfd_vma
2767mips_elf_higher (value)
2768 bfd_vma value ATTRIBUTE_UNUSED;
2769{
2770#ifdef BFD64
2771 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2772#else
2773 abort ();
2774 return (bfd_vma) -1;
2775#endif
2776}
2777
2778/* Calculate the %highest function. */
2779
2780static bfd_vma
2781mips_elf_highest (value)
2782 bfd_vma value ATTRIBUTE_UNUSED;
2783{
2784#ifdef BFD64
b15e6682 2785 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
2786#else
2787 abort ();
2788 return (bfd_vma) -1;
2789#endif
2790}
2791\f
2792/* Create the .compact_rel section. */
2793
b34976b6 2794static bfd_boolean
b49e97c9
TS
2795mips_elf_create_compact_rel_section (abfd, info)
2796 bfd *abfd;
2797 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2798{
2799 flagword flags;
2800 register asection *s;
2801
2802 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2803 {
2804 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2805 | SEC_READONLY);
2806
2807 s = bfd_make_section (abfd, ".compact_rel");
2808 if (s == NULL
2809 || ! bfd_set_section_flags (abfd, s, flags)
2810 || ! bfd_set_section_alignment (abfd, s,
2811 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 2812 return FALSE;
b49e97c9
TS
2813
2814 s->_raw_size = sizeof (Elf32_External_compact_rel);
2815 }
2816
b34976b6 2817 return TRUE;
b49e97c9
TS
2818}
2819
2820/* Create the .got section to hold the global offset table. */
2821
b34976b6 2822static bfd_boolean
f4416af6 2823mips_elf_create_got_section (abfd, info, maybe_exclude)
b49e97c9
TS
2824 bfd *abfd;
2825 struct bfd_link_info *info;
f4416af6 2826 bfd_boolean maybe_exclude;
b49e97c9
TS
2827{
2828 flagword flags;
2829 register asection *s;
2830 struct elf_link_hash_entry *h;
14a793b2 2831 struct bfd_link_hash_entry *bh;
b49e97c9
TS
2832 struct mips_got_info *g;
2833 bfd_size_type amt;
2834
2835 /* This function may be called more than once. */
f4416af6
AO
2836 s = mips_elf_got_section (abfd, TRUE);
2837 if (s)
2838 {
2839 if (! maybe_exclude)
2840 s->flags &= ~SEC_EXCLUDE;
2841 return TRUE;
2842 }
b49e97c9
TS
2843
2844 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2845 | SEC_LINKER_CREATED);
2846
f4416af6
AO
2847 if (maybe_exclude)
2848 flags |= SEC_EXCLUDE;
2849
b49e97c9
TS
2850 s = bfd_make_section (abfd, ".got");
2851 if (s == NULL
2852 || ! bfd_set_section_flags (abfd, s, flags)
2853 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 2854 return FALSE;
b49e97c9
TS
2855
2856 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2857 linker script because we don't want to define the symbol if we
2858 are not creating a global offset table. */
14a793b2 2859 bh = NULL;
b49e97c9
TS
2860 if (! (_bfd_generic_link_add_one_symbol
2861 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
b34976b6 2862 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 2863 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 2864 return FALSE;
14a793b2
AM
2865
2866 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
2867 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2868 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2869 h->type = STT_OBJECT;
2870
2871 if (info->shared
2872 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 2873 return FALSE;
b49e97c9 2874
b49e97c9
TS
2875 amt = sizeof (struct mips_got_info);
2876 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2877 if (g == NULL)
b34976b6 2878 return FALSE;
b49e97c9
TS
2879 g->global_gotsym = NULL;
2880 g->local_gotno = MIPS_RESERVED_GOTNO;
2881 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
2882 g->bfd2got = NULL;
2883 g->next = NULL;
b15e6682
AO
2884 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2885 mips_elf_got_entry_eq,
2886 (htab_del) NULL);
2887 if (g->got_entries == NULL)
2888 return FALSE;
f0abc2a1
AM
2889 mips_elf_section_data (s)->u.got_info = g;
2890 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
2891 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2892
b34976b6 2893 return TRUE;
b49e97c9
TS
2894}
2895
2896/* Returns the .msym section for ABFD, creating it if it does not
2897 already exist. Returns NULL to indicate error. */
2898
2899static asection *
2900mips_elf_create_msym_section (abfd)
2901 bfd *abfd;
2902{
2903 asection *s;
2904
2905 s = bfd_get_section_by_name (abfd, ".msym");
2906 if (!s)
2907 {
2908 s = bfd_make_section (abfd, ".msym");
2909 if (!s
2910 || !bfd_set_section_flags (abfd, s,
2911 SEC_ALLOC
2912 | SEC_LOAD
2913 | SEC_HAS_CONTENTS
2914 | SEC_LINKER_CREATED
2915 | SEC_READONLY)
2916 || !bfd_set_section_alignment (abfd, s,
2917 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2918 return NULL;
2919 }
2920
2921 return s;
2922}
2923\f
2924/* Calculate the value produced by the RELOCATION (which comes from
2925 the INPUT_BFD). The ADDEND is the addend to use for this
2926 RELOCATION; RELOCATION->R_ADDEND is ignored.
2927
2928 The result of the relocation calculation is stored in VALUEP.
2929 REQUIRE_JALXP indicates whether or not the opcode used with this
2930 relocation must be JALX.
2931
2932 This function returns bfd_reloc_continue if the caller need take no
2933 further action regarding this relocation, bfd_reloc_notsupported if
2934 something goes dramatically wrong, bfd_reloc_overflow if an
2935 overflow occurs, and bfd_reloc_ok to indicate success. */
2936
2937static bfd_reloc_status_type
2938mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2939 relocation, addend, howto, local_syms,
2940 local_sections, valuep, namep,
bce03d3d 2941 require_jalxp, save_addend)
b49e97c9
TS
2942 bfd *abfd;
2943 bfd *input_bfd;
2944 asection *input_section;
2945 struct bfd_link_info *info;
2946 const Elf_Internal_Rela *relocation;
2947 bfd_vma addend;
2948 reloc_howto_type *howto;
2949 Elf_Internal_Sym *local_syms;
2950 asection **local_sections;
2951 bfd_vma *valuep;
2952 const char **namep;
b34976b6
AM
2953 bfd_boolean *require_jalxp;
2954 bfd_boolean save_addend;
b49e97c9
TS
2955{
2956 /* The eventual value we will return. */
2957 bfd_vma value;
2958 /* The address of the symbol against which the relocation is
2959 occurring. */
2960 bfd_vma symbol = 0;
2961 /* The final GP value to be used for the relocatable, executable, or
2962 shared object file being produced. */
2963 bfd_vma gp = MINUS_ONE;
2964 /* The place (section offset or address) of the storage unit being
2965 relocated. */
2966 bfd_vma p;
2967 /* The value of GP used to create the relocatable object. */
2968 bfd_vma gp0 = MINUS_ONE;
2969 /* The offset into the global offset table at which the address of
2970 the relocation entry symbol, adjusted by the addend, resides
2971 during execution. */
2972 bfd_vma g = MINUS_ONE;
2973 /* The section in which the symbol referenced by the relocation is
2974 located. */
2975 asection *sec = NULL;
2976 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 2977 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 2978 symbol. */
b34976b6
AM
2979 bfd_boolean local_p, was_local_p;
2980 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2981 bfd_boolean gp_disp_p = FALSE;
b49e97c9
TS
2982 Elf_Internal_Shdr *symtab_hdr;
2983 size_t extsymoff;
2984 unsigned long r_symndx;
2985 int r_type;
b34976b6 2986 /* TRUE if overflow occurred during the calculation of the
b49e97c9 2987 relocation value. */
b34976b6
AM
2988 bfd_boolean overflowed_p;
2989 /* TRUE if this relocation refers to a MIPS16 function. */
2990 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
2991
2992 /* Parse the relocation. */
2993 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2994 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
2995 p = (input_section->output_section->vma
2996 + input_section->output_offset
2997 + relocation->r_offset);
2998
2999 /* Assume that there will be no overflow. */
b34976b6 3000 overflowed_p = FALSE;
b49e97c9
TS
3001
3002 /* Figure out whether or not the symbol is local, and get the offset
3003 used in the array of hash table entries. */
3004 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3005 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3006 local_sections, FALSE);
bce03d3d 3007 was_local_p = local_p;
b49e97c9
TS
3008 if (! elf_bad_symtab (input_bfd))
3009 extsymoff = symtab_hdr->sh_info;
3010 else
3011 {
3012 /* The symbol table does not follow the rule that local symbols
3013 must come before globals. */
3014 extsymoff = 0;
3015 }
3016
3017 /* Figure out the value of the symbol. */
3018 if (local_p)
3019 {
3020 Elf_Internal_Sym *sym;
3021
3022 sym = local_syms + r_symndx;
3023 sec = local_sections[r_symndx];
3024
3025 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3026 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3027 || (sec->flags & SEC_MERGE))
b49e97c9 3028 symbol += sym->st_value;
d4df96e6
L
3029 if ((sec->flags & SEC_MERGE)
3030 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3031 {
3032 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3033 addend -= symbol;
3034 addend += sec->output_section->vma + sec->output_offset;
3035 }
b49e97c9
TS
3036
3037 /* MIPS16 text labels should be treated as odd. */
3038 if (sym->st_other == STO_MIPS16)
3039 ++symbol;
3040
3041 /* Record the name of this symbol, for our caller. */
3042 *namep = bfd_elf_string_from_elf_section (input_bfd,
3043 symtab_hdr->sh_link,
3044 sym->st_name);
3045 if (*namep == '\0')
3046 *namep = bfd_section_name (input_bfd, sec);
3047
3048 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3049 }
3050 else
3051 {
3052 /* For global symbols we look up the symbol in the hash-table. */
3053 h = ((struct mips_elf_link_hash_entry *)
3054 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3055 /* Find the real hash-table entry for this symbol. */
3056 while (h->root.root.type == bfd_link_hash_indirect
3057 || h->root.root.type == bfd_link_hash_warning)
3058 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3059
3060 /* Record the name of this symbol, for our caller. */
3061 *namep = h->root.root.root.string;
3062
3063 /* See if this is the special _gp_disp symbol. Note that such a
3064 symbol must always be a global symbol. */
3065 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3066 && ! NEWABI_P (input_bfd))
3067 {
3068 /* Relocations against _gp_disp are permitted only with
3069 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3070 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3071 return bfd_reloc_notsupported;
3072
b34976b6 3073 gp_disp_p = TRUE;
b49e97c9
TS
3074 }
3075 /* If this symbol is defined, calculate its address. Note that
3076 _gp_disp is a magic symbol, always implicitly defined by the
3077 linker, so it's inappropriate to check to see whether or not
3078 its defined. */
3079 else if ((h->root.root.type == bfd_link_hash_defined
3080 || h->root.root.type == bfd_link_hash_defweak)
3081 && h->root.root.u.def.section)
3082 {
3083 sec = h->root.root.u.def.section;
3084 if (sec->output_section)
3085 symbol = (h->root.root.u.def.value
3086 + sec->output_section->vma
3087 + sec->output_offset);
3088 else
3089 symbol = h->root.root.u.def.value;
3090 }
3091 else if (h->root.root.type == bfd_link_hash_undefweak)
3092 /* We allow relocations against undefined weak symbols, giving
3093 it the value zero, so that you can undefined weak functions
3094 and check to see if they exist by looking at their
3095 addresses. */
3096 symbol = 0;
3097 else if (info->shared
b49e97c9
TS
3098 && !info->no_undefined
3099 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3100 symbol = 0;
3101 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3102 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3103 {
3104 /* If this is a dynamic link, we should have created a
3105 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3106 in in _bfd_mips_elf_create_dynamic_sections.
3107 Otherwise, we should define the symbol with a value of 0.
3108 FIXME: It should probably get into the symbol table
3109 somehow as well. */
3110 BFD_ASSERT (! info->shared);
3111 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3112 symbol = 0;
3113 }
3114 else
3115 {
3116 if (! ((*info->callbacks->undefined_symbol)
3117 (info, h->root.root.root.string, input_bfd,
3118 input_section, relocation->r_offset,
3119 (!info->shared || info->no_undefined
3120 || ELF_ST_VISIBILITY (h->root.other)))))
3121 return bfd_reloc_undefined;
3122 symbol = 0;
3123 }
3124
3125 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3126 }
3127
3128 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3129 need to redirect the call to the stub, unless we're already *in*
3130 a stub. */
3131 if (r_type != R_MIPS16_26 && !info->relocateable
3132 && ((h != NULL && h->fn_stub != NULL)
3133 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3134 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3135 && !mips_elf_stub_section_p (input_bfd, input_section))
3136 {
3137 /* This is a 32- or 64-bit call to a 16-bit function. We should
3138 have already noticed that we were going to need the
3139 stub. */
3140 if (local_p)
3141 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3142 else
3143 {
3144 BFD_ASSERT (h->need_fn_stub);
3145 sec = h->fn_stub;
3146 }
3147
3148 symbol = sec->output_section->vma + sec->output_offset;
3149 }
3150 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3151 need to redirect the call to the stub. */
3152 else if (r_type == R_MIPS16_26 && !info->relocateable
3153 && h != NULL
3154 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3155 && !target_is_16_bit_code_p)
3156 {
3157 /* If both call_stub and call_fp_stub are defined, we can figure
3158 out which one to use by seeing which one appears in the input
3159 file. */
3160 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3161 {
3162 asection *o;
3163
3164 sec = NULL;
3165 for (o = input_bfd->sections; o != NULL; o = o->next)
3166 {
3167 if (strncmp (bfd_get_section_name (input_bfd, o),
3168 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3169 {
3170 sec = h->call_fp_stub;
3171 break;
3172 }
3173 }
3174 if (sec == NULL)
3175 sec = h->call_stub;
3176 }
3177 else if (h->call_stub != NULL)
3178 sec = h->call_stub;
3179 else
3180 sec = h->call_fp_stub;
3181
3182 BFD_ASSERT (sec->_raw_size > 0);
3183 symbol = sec->output_section->vma + sec->output_offset;
3184 }
3185
3186 /* Calls from 16-bit code to 32-bit code and vice versa require the
3187 special jalx instruction. */
3188 *require_jalxp = (!info->relocateable
3189 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3190 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3191
3192 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3193 local_sections, TRUE);
b49e97c9
TS
3194
3195 /* If we haven't already determined the GOT offset, or the GP value,
3196 and we're going to need it, get it now. */
3197 switch (r_type)
3198 {
3199 case R_MIPS_CALL16:
3200 case R_MIPS_GOT16:
3201 case R_MIPS_GOT_DISP:
3202 case R_MIPS_GOT_HI16:
3203 case R_MIPS_CALL_HI16:
3204 case R_MIPS_GOT_LO16:
3205 case R_MIPS_CALL_LO16:
3206 /* Find the index into the GOT where this value is located. */
3207 if (!local_p)
3208 {
3209 BFD_ASSERT (addend == 0);
3210 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3211 input_bfd,
b49e97c9
TS
3212 (struct elf_link_hash_entry *) h);
3213 if (! elf_hash_table(info)->dynamic_sections_created
3214 || (info->shared
3215 && (info->symbolic || h->root.dynindx == -1)
3216 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3217 {
3218 /* This is a static link or a -Bsymbolic link. The
3219 symbol is defined locally, or was forced to be local.
3220 We must initialize this entry in the GOT. */
3221 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3222 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
b49e97c9
TS
3223 MIPS_ELF_PUT_WORD (tmpbfd, symbol + addend, sgot->contents + g);
3224 }
3225 }
3226 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3227 /* There's no need to create a local GOT entry here; the
3228 calculation for a local GOT16 entry does not involve G. */
3229 break;
3230 else
3231 {
f4416af6
AO
3232 g = mips_elf_local_got_index (abfd, input_bfd,
3233 info, symbol + addend);
b49e97c9
TS
3234 if (g == MINUS_ONE)
3235 return bfd_reloc_outofrange;
3236 }
3237
3238 /* Convert GOT indices to actual offsets. */
3239 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3240 abfd, input_bfd, g);
b49e97c9
TS
3241 break;
3242
3243 case R_MIPS_HI16:
3244 case R_MIPS_LO16:
3245 case R_MIPS16_GPREL:
3246 case R_MIPS_GPREL16:
3247 case R_MIPS_GPREL32:
3248 case R_MIPS_LITERAL:
3249 gp0 = _bfd_get_gp_value (input_bfd);
3250 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3251 if (elf_hash_table (info)->dynobj)
3252 gp += mips_elf_adjust_gp (abfd,
3253 mips_elf_got_info
3254 (elf_hash_table (info)->dynobj, NULL),
3255 input_bfd);
b49e97c9
TS
3256 break;
3257
3258 default:
3259 break;
3260 }
3261
3262 /* Figure out what kind of relocation is being performed. */
3263 switch (r_type)
3264 {
3265 case R_MIPS_NONE:
3266 return bfd_reloc_continue;
3267
3268 case R_MIPS_16:
3269 value = symbol + mips_elf_sign_extend (addend, 16);
3270 overflowed_p = mips_elf_overflow_p (value, 16);
3271 break;
3272
3273 case R_MIPS_32:
3274 case R_MIPS_REL32:
3275 case R_MIPS_64:
3276 if ((info->shared
3277 || (elf_hash_table (info)->dynamic_sections_created
3278 && h != NULL
3279 && ((h->root.elf_link_hash_flags
3280 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3281 && ((h->root.elf_link_hash_flags
3282 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3283 && r_symndx != 0
3284 && (input_section->flags & SEC_ALLOC) != 0)
3285 {
3286 /* If we're creating a shared library, or this relocation is
3287 against a symbol in a shared library, then we can't know
3288 where the symbol will end up. So, we create a relocation
3289 record in the output, and leave the job up to the dynamic
3290 linker. */
3291 value = addend;
3292 if (!mips_elf_create_dynamic_relocation (abfd,
3293 info,
3294 relocation,
3295 h,
3296 sec,
3297 symbol,
3298 &value,
3299 input_section))
3300 return bfd_reloc_undefined;
3301 }
3302 else
3303 {
3304 if (r_type != R_MIPS_REL32)
3305 value = symbol + addend;
3306 else
3307 value = addend;
3308 }
3309 value &= howto->dst_mask;
3310 break;
3311
3312 case R_MIPS_PC32:
3313 case R_MIPS_PC64:
3314 case R_MIPS_GNU_REL_LO16:
3315 value = symbol + addend - p;
3316 value &= howto->dst_mask;
3317 break;
3318
3319 case R_MIPS_GNU_REL16_S2:
3320 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
3321 overflowed_p = mips_elf_overflow_p (value, 18);
3322 value = (value >> 2) & howto->dst_mask;
3323 break;
3324
3325 case R_MIPS_GNU_REL_HI16:
3326 /* Instead of subtracting 'p' here, we should be subtracting the
3327 equivalent value for the LO part of the reloc, since the value
3328 here is relative to that address. Because that's not easy to do,
3329 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3330 the comment there for more information. */
3331 value = mips_elf_high (addend + symbol - p);
3332 value &= howto->dst_mask;
3333 break;
3334
3335 case R_MIPS16_26:
3336 /* The calculation for R_MIPS16_26 is just the same as for an
3337 R_MIPS_26. It's only the storage of the relocated field into
3338 the output file that's different. That's handled in
3339 mips_elf_perform_relocation. So, we just fall through to the
3340 R_MIPS_26 case here. */
3341 case R_MIPS_26:
3342 if (local_p)
3343 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3344 else
3345 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
3346 value &= howto->dst_mask;
3347 break;
3348
3349 case R_MIPS_HI16:
3350 if (!gp_disp_p)
3351 {
3352 value = mips_elf_high (addend + symbol);
3353 value &= howto->dst_mask;
3354 }
3355 else
3356 {
3357 value = mips_elf_high (addend + gp - p);
3358 overflowed_p = mips_elf_overflow_p (value, 16);
3359 }
3360 break;
3361
3362 case R_MIPS_LO16:
3363 if (!gp_disp_p)
3364 value = (symbol + addend) & howto->dst_mask;
3365 else
3366 {
3367 value = addend + gp - p + 4;
3368 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 3369 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
3370 _gp_disp are normally generated from the .cpload
3371 pseudo-op. It generates code that normally looks like
3372 this:
3373
3374 lui $gp,%hi(_gp_disp)
3375 addiu $gp,$gp,%lo(_gp_disp)
3376 addu $gp,$gp,$t9
3377
3378 Here $t9 holds the address of the function being called,
3379 as required by the MIPS ELF ABI. The R_MIPS_LO16
3380 relocation can easily overflow in this situation, but the
3381 R_MIPS_HI16 relocation will handle the overflow.
3382 Therefore, we consider this a bug in the MIPS ABI, and do
3383 not check for overflow here. */
3384 }
3385 break;
3386
3387 case R_MIPS_LITERAL:
3388 /* Because we don't merge literal sections, we can handle this
3389 just like R_MIPS_GPREL16. In the long run, we should merge
3390 shared literals, and then we will need to additional work
3391 here. */
3392
3393 /* Fall through. */
3394
3395 case R_MIPS16_GPREL:
3396 /* The R_MIPS16_GPREL performs the same calculation as
3397 R_MIPS_GPREL16, but stores the relocated bits in a different
3398 order. We don't need to do anything special here; the
3399 differences are handled in mips_elf_perform_relocation. */
3400 case R_MIPS_GPREL16:
bce03d3d
AO
3401 /* Only sign-extend the addend if it was extracted from the
3402 instruction. If the addend was separate, leave it alone,
3403 otherwise we may lose significant bits. */
3404 if (howto->partial_inplace)
3405 addend = mips_elf_sign_extend (addend, 16);
3406 value = symbol + addend - gp;
3407 /* If the symbol was local, any earlier relocatable links will
3408 have adjusted its addend with the gp offset, so compensate
3409 for that now. Don't do it for symbols forced local in this
3410 link, though, since they won't have had the gp offset applied
3411 to them before. */
3412 if (was_local_p)
3413 value += gp0;
b49e97c9
TS
3414 overflowed_p = mips_elf_overflow_p (value, 16);
3415 break;
3416
3417 case R_MIPS_GOT16:
3418 case R_MIPS_CALL16:
3419 if (local_p)
3420 {
b34976b6 3421 bfd_boolean forced;
b49e97c9
TS
3422
3423 /* The special case is when the symbol is forced to be local. We
3424 need the full address in the GOT since no R_MIPS_LO16 relocation
3425 follows. */
3426 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3427 local_sections, FALSE);
f4416af6
AO
3428 value = mips_elf_got16_entry (abfd, input_bfd, info,
3429 symbol + addend, forced);
b49e97c9
TS
3430 if (value == MINUS_ONE)
3431 return bfd_reloc_outofrange;
3432 value
3433 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3434 abfd, input_bfd, value);
b49e97c9
TS
3435 overflowed_p = mips_elf_overflow_p (value, 16);
3436 break;
3437 }
3438
3439 /* Fall through. */
3440
3441 case R_MIPS_GOT_DISP:
3442 value = g;
3443 overflowed_p = mips_elf_overflow_p (value, 16);
3444 break;
3445
3446 case R_MIPS_GPREL32:
bce03d3d
AO
3447 value = (addend + symbol + gp0 - gp);
3448 if (!save_addend)
3449 value &= howto->dst_mask;
b49e97c9
TS
3450 break;
3451
3452 case R_MIPS_PC16:
3453 value = mips_elf_sign_extend (addend, 16) + symbol - p;
3454 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
3455 break;
3456
3457 case R_MIPS_GOT_HI16:
3458 case R_MIPS_CALL_HI16:
3459 /* We're allowed to handle these two relocations identically.
3460 The dynamic linker is allowed to handle the CALL relocations
3461 differently by creating a lazy evaluation stub. */
3462 value = g;
3463 value = mips_elf_high (value);
3464 value &= howto->dst_mask;
3465 break;
3466
3467 case R_MIPS_GOT_LO16:
3468 case R_MIPS_CALL_LO16:
3469 value = g & howto->dst_mask;
3470 break;
3471
3472 case R_MIPS_GOT_PAGE:
f4416af6 3473 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
3474 if (value == MINUS_ONE)
3475 return bfd_reloc_outofrange;
3476 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3477 abfd, input_bfd, value);
b49e97c9
TS
3478 overflowed_p = mips_elf_overflow_p (value, 16);
3479 break;
3480
3481 case R_MIPS_GOT_OFST:
f4416af6 3482 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
b49e97c9
TS
3483 overflowed_p = mips_elf_overflow_p (value, 16);
3484 break;
3485
3486 case R_MIPS_SUB:
3487 value = symbol - addend;
3488 value &= howto->dst_mask;
3489 break;
3490
3491 case R_MIPS_HIGHER:
3492 value = mips_elf_higher (addend + symbol);
3493 value &= howto->dst_mask;
3494 break;
3495
3496 case R_MIPS_HIGHEST:
3497 value = mips_elf_highest (addend + symbol);
3498 value &= howto->dst_mask;
3499 break;
3500
3501 case R_MIPS_SCN_DISP:
3502 value = symbol + addend - sec->output_offset;
3503 value &= howto->dst_mask;
3504 break;
3505
3506 case R_MIPS_PJUMP:
3507 case R_MIPS_JALR:
3508 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3509 hint; we could improve performance by honoring that hint. */
3510 return bfd_reloc_continue;
3511
3512 case R_MIPS_GNU_VTINHERIT:
3513 case R_MIPS_GNU_VTENTRY:
3514 /* We don't do anything with these at present. */
3515 return bfd_reloc_continue;
3516
3517 default:
3518 /* An unrecognized relocation type. */
3519 return bfd_reloc_notsupported;
3520 }
3521
3522 /* Store the VALUE for our caller. */
3523 *valuep = value;
3524 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3525}
3526
3527/* Obtain the field relocated by RELOCATION. */
3528
3529static bfd_vma
3530mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3531 reloc_howto_type *howto;
3532 const Elf_Internal_Rela *relocation;
3533 bfd *input_bfd;
3534 bfd_byte *contents;
3535{
3536 bfd_vma x;
3537 bfd_byte *location = contents + relocation->r_offset;
3538
3539 /* Obtain the bytes. */
3540 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3541
3542 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3543 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3544 && bfd_little_endian (input_bfd))
3545 /* The two 16-bit words will be reversed on a little-endian system.
3546 See mips_elf_perform_relocation for more details. */
3547 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3548
3549 return x;
3550}
3551
3552/* It has been determined that the result of the RELOCATION is the
3553 VALUE. Use HOWTO to place VALUE into the output file at the
3554 appropriate position. The SECTION is the section to which the
b34976b6 3555 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
3556 for the relocation must be either JAL or JALX, and it is
3557 unconditionally converted to JALX.
3558
b34976b6 3559 Returns FALSE if anything goes wrong. */
b49e97c9 3560
b34976b6 3561static bfd_boolean
b49e97c9
TS
3562mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3563 input_section, contents, require_jalx)
3564 struct bfd_link_info *info;
3565 reloc_howto_type *howto;
3566 const Elf_Internal_Rela *relocation;
3567 bfd_vma value;
3568 bfd *input_bfd;
3569 asection *input_section;
3570 bfd_byte *contents;
b34976b6 3571 bfd_boolean require_jalx;
b49e97c9
TS
3572{
3573 bfd_vma x;
3574 bfd_byte *location;
3575 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3576
3577 /* Figure out where the relocation is occurring. */
3578 location = contents + relocation->r_offset;
3579
3580 /* Obtain the current value. */
3581 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3582
3583 /* Clear the field we are setting. */
3584 x &= ~howto->dst_mask;
3585
3586 /* If this is the R_MIPS16_26 relocation, we must store the
3587 value in a funny way. */
3588 if (r_type == R_MIPS16_26)
3589 {
3590 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3591 Most mips16 instructions are 16 bits, but these instructions
3592 are 32 bits.
3593
3594 The format of these instructions is:
3595
3596 +--------------+--------------------------------+
3597 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3598 +--------------+--------------------------------+
3599 ! Immediate 15:0 !
3600 +-----------------------------------------------+
3601
3602 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3603 Note that the immediate value in the first word is swapped.
3604
3605 When producing a relocateable object file, R_MIPS16_26 is
3606 handled mostly like R_MIPS_26. In particular, the addend is
3607 stored as a straight 26-bit value in a 32-bit instruction.
3608 (gas makes life simpler for itself by never adjusting a
3609 R_MIPS16_26 reloc to be against a section, so the addend is
3610 always zero). However, the 32 bit instruction is stored as 2
3611 16-bit values, rather than a single 32-bit value. In a
3612 big-endian file, the result is the same; in a little-endian
3613 file, the two 16-bit halves of the 32 bit value are swapped.
3614 This is so that a disassembler can recognize the jal
3615 instruction.
3616
3617 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3618 instruction stored as two 16-bit values. The addend A is the
3619 contents of the targ26 field. The calculation is the same as
3620 R_MIPS_26. When storing the calculated value, reorder the
3621 immediate value as shown above, and don't forget to store the
3622 value as two 16-bit values.
3623
3624 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3625 defined as
3626
3627 big-endian:
3628 +--------+----------------------+
3629 | | |
3630 | | targ26-16 |
3631 |31 26|25 0|
3632 +--------+----------------------+
3633
3634 little-endian:
3635 +----------+------+-------------+
3636 | | | |
3637 | sub1 | | sub2 |
3638 |0 9|10 15|16 31|
3639 +----------+--------------------+
3640 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3641 ((sub1 << 16) | sub2)).
3642
3643 When producing a relocateable object file, the calculation is
3644 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3645 When producing a fully linked file, the calculation is
3646 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3647 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3648
3649 if (!info->relocateable)
3650 /* Shuffle the bits according to the formula above. */
3651 value = (((value & 0x1f0000) << 5)
3652 | ((value & 0x3e00000) >> 5)
3653 | (value & 0xffff));
3654 }
3655 else if (r_type == R_MIPS16_GPREL)
3656 {
3657 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3658 mode. A typical instruction will have a format like this:
3659
3660 +--------------+--------------------------------+
3661 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3662 +--------------+--------------------------------+
3663 ! Major ! rx ! ry ! Imm 4:0 !
3664 +--------------+--------------------------------+
3665
3666 EXTEND is the five bit value 11110. Major is the instruction
3667 opcode.
3668
3669 This is handled exactly like R_MIPS_GPREL16, except that the
3670 addend is retrieved and stored as shown in this diagram; that
3671 is, the Imm fields above replace the V-rel16 field.
3672
3673 All we need to do here is shuffle the bits appropriately. As
3674 above, the two 16-bit halves must be swapped on a
3675 little-endian system. */
3676 value = (((value & 0x7e0) << 16)
3677 | ((value & 0xf800) << 5)
3678 | (value & 0x1f));
3679 }
3680
3681 /* Set the field. */
3682 x |= (value & howto->dst_mask);
3683
3684 /* If required, turn JAL into JALX. */
3685 if (require_jalx)
3686 {
b34976b6 3687 bfd_boolean ok;
b49e97c9
TS
3688 bfd_vma opcode = x >> 26;
3689 bfd_vma jalx_opcode;
3690
3691 /* Check to see if the opcode is already JAL or JALX. */
3692 if (r_type == R_MIPS16_26)
3693 {
3694 ok = ((opcode == 0x6) || (opcode == 0x7));
3695 jalx_opcode = 0x7;
3696 }
3697 else
3698 {
3699 ok = ((opcode == 0x3) || (opcode == 0x1d));
3700 jalx_opcode = 0x1d;
3701 }
3702
3703 /* If the opcode is not JAL or JALX, there's a problem. */
3704 if (!ok)
3705 {
3706 (*_bfd_error_handler)
3707 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3708 bfd_archive_filename (input_bfd),
3709 input_section->name,
3710 (unsigned long) relocation->r_offset);
3711 bfd_set_error (bfd_error_bad_value);
b34976b6 3712 return FALSE;
b49e97c9
TS
3713 }
3714
3715 /* Make this the JALX opcode. */
3716 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3717 }
3718
3719 /* Swap the high- and low-order 16 bits on little-endian systems
3720 when doing a MIPS16 relocation. */
3721 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3722 && bfd_little_endian (input_bfd))
3723 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3724
3725 /* Put the value into the output. */
3726 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
b34976b6 3727 return TRUE;
b49e97c9
TS
3728}
3729
b34976b6 3730/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 3731
b34976b6 3732static bfd_boolean
b49e97c9
TS
3733mips_elf_stub_section_p (abfd, section)
3734 bfd *abfd ATTRIBUTE_UNUSED;
3735 asection *section;
3736{
3737 const char *name = bfd_get_section_name (abfd, section);
3738
3739 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3740 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3741 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3742}
3743\f
3744/* Add room for N relocations to the .rel.dyn section in ABFD. */
3745
3746static void
3747mips_elf_allocate_dynamic_relocations (abfd, n)
3748 bfd *abfd;
3749 unsigned int n;
3750{
3751 asection *s;
3752
f4416af6 3753 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
3754 BFD_ASSERT (s != NULL);
3755
3756 if (s->_raw_size == 0)
3757 {
3758 /* Make room for a null element. */
3759 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3760 ++s->reloc_count;
3761 }
3762 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3763}
3764
3765/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3766 is the original relocation, which is now being transformed into a
3767 dynamic relocation. The ADDENDP is adjusted if necessary; the
3768 caller should store the result in place of the original addend. */
3769
b34976b6 3770static bfd_boolean
b49e97c9
TS
3771mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3772 symbol, addendp, input_section)
3773 bfd *output_bfd;
3774 struct bfd_link_info *info;
3775 const Elf_Internal_Rela *rel;
3776 struct mips_elf_link_hash_entry *h;
3777 asection *sec;
3778 bfd_vma symbol;
3779 bfd_vma *addendp;
3780 asection *input_section;
3781{
947216bf 3782 Elf_Internal_Rela outrel[3];
b34976b6 3783 bfd_boolean skip;
b49e97c9
TS
3784 asection *sreloc;
3785 bfd *dynobj;
3786 int r_type;
3787
3788 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3789 dynobj = elf_hash_table (info)->dynobj;
f4416af6 3790 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
3791 BFD_ASSERT (sreloc != NULL);
3792 BFD_ASSERT (sreloc->contents != NULL);
3793 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3794 < sreloc->_raw_size);
3795
b34976b6 3796 skip = FALSE;
b49e97c9
TS
3797 outrel[0].r_offset =
3798 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3799 outrel[1].r_offset =
3800 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3801 outrel[2].r_offset =
3802 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3803
3804#if 0
3805 /* We begin by assuming that the offset for the dynamic relocation
3806 is the same as for the original relocation. We'll adjust this
3807 later to reflect the correct output offsets. */
3808 if (elf_section_data (input_section)->sec_info_type != ELF_INFO_TYPE_STABS)
3809 {
3810 outrel[1].r_offset = rel[1].r_offset;
3811 outrel[2].r_offset = rel[2].r_offset;
3812 }
3813 else
3814 {
3815 /* Except that in a stab section things are more complex.
3816 Because we compress stab information, the offset given in the
3817 relocation may not be the one we want; we must let the stabs
3818 machinery tell us the offset. */
3819 outrel[1].r_offset = outrel[0].r_offset;
3820 outrel[2].r_offset = outrel[0].r_offset;
3821 /* If we didn't need the relocation at all, this value will be
3822 -1. */
3823 if (outrel[0].r_offset == (bfd_vma) -1)
b34976b6 3824 skip = TRUE;
b49e97c9
TS
3825 }
3826#endif
3827
4bb9a95f
AO
3828 if (outrel[0].r_offset == (bfd_vma) -1
3829 || outrel[0].r_offset == (bfd_vma) -2)
b34976b6 3830 skip = TRUE;
b49e97c9
TS
3831
3832 /* If we've decided to skip this relocation, just output an empty
3833 record. Note that R_MIPS_NONE == 0, so that this call to memset
3834 is a way of setting R_TYPE to R_MIPS_NONE. */
3835 if (skip)
947216bf 3836 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
b49e97c9
TS
3837 else
3838 {
3839 long indx;
3840 bfd_vma section_offset;
3841
3842 /* We must now calculate the dynamic symbol table index to use
3843 in the relocation. */
3844 if (h != NULL
3845 && (! info->symbolic || (h->root.elf_link_hash_flags
3846 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3847 {
3848 indx = h->root.dynindx;
3849 /* h->root.dynindx may be -1 if this symbol was marked to
3850 become local. */
3851 if (indx == -1)
3852 indx = 0;
3853 }
3854 else
3855 {
3856 if (sec != NULL && bfd_is_abs_section (sec))
3857 indx = 0;
3858 else if (sec == NULL || sec->owner == NULL)
3859 {
3860 bfd_set_error (bfd_error_bad_value);
b34976b6 3861 return FALSE;
b49e97c9
TS
3862 }
3863 else
3864 {
3865 indx = elf_section_data (sec->output_section)->dynindx;
3866 if (indx == 0)
3867 abort ();
3868 }
3869
3870 /* Figure out how far the target of the relocation is from
3871 the beginning of its section. */
3872 section_offset = symbol - sec->output_section->vma;
3873 /* The relocation we're building is section-relative.
3874 Therefore, the original addend must be adjusted by the
3875 section offset. */
3876 *addendp += section_offset;
3877 /* Now, the relocation is just against the section. */
3878 symbol = sec->output_section->vma;
3879 }
3880
3881 /* If the relocation was previously an absolute relocation and
3882 this symbol will not be referred to by the relocation, we must
3883 adjust it by the value we give it in the dynamic symbol table.
3884 Otherwise leave the job up to the dynamic linker. */
3885 if (!indx && r_type != R_MIPS_REL32)
3886 *addendp += symbol;
3887
3888 /* The relocation is always an REL32 relocation because we don't
3889 know where the shared library will wind up at load-time. */
34ea4a36
TS
3890 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3891 R_MIPS_REL32);
7c4ca42d 3892 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
033fd5f9
AO
3893 ABI_64_P (output_bfd)
3894 ? R_MIPS_64
3895 : R_MIPS_NONE);
7c4ca42d
AO
3896 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3897 R_MIPS_NONE);
b49e97c9
TS
3898
3899 /* Adjust the output offset of the relocation to reference the
3900 correct location in the output file. */
3901 outrel[0].r_offset += (input_section->output_section->vma
3902 + input_section->output_offset);
3903 outrel[1].r_offset += (input_section->output_section->vma
3904 + input_section->output_offset);
3905 outrel[2].r_offset += (input_section->output_section->vma
3906 + input_section->output_offset);
3907 }
3908
3909 /* Put the relocation back out. We have to use the special
3910 relocation outputter in the 64-bit case since the 64-bit
3911 relocation format is non-standard. */
3912 if (ABI_64_P (output_bfd))
3913 {
3914 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3915 (output_bfd, &outrel[0],
3916 (sreloc->contents
3917 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3918 }
3919 else
947216bf
AM
3920 bfd_elf32_swap_reloc_out
3921 (output_bfd, &outrel[0],
3922 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9
TS
3923
3924 /* Record the index of the first relocation referencing H. This
3925 information is later emitted in the .msym section. */
3926 if (h != NULL
3927 && (h->min_dyn_reloc_index == 0
3928 || sreloc->reloc_count < h->min_dyn_reloc_index))
3929 h->min_dyn_reloc_index = sreloc->reloc_count;
3930
3931 /* We've now added another relocation. */
3932 ++sreloc->reloc_count;
3933
3934 /* Make sure the output section is writable. The dynamic linker
3935 will be writing to it. */
3936 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3937 |= SHF_WRITE;
3938
3939 /* On IRIX5, make an entry of compact relocation info. */
3940 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
3941 {
3942 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3943 bfd_byte *cr;
3944
3945 if (scpt)
3946 {
3947 Elf32_crinfo cptrel;
3948
3949 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3950 cptrel.vaddr = (rel->r_offset
3951 + input_section->output_section->vma
3952 + input_section->output_offset);
3953 if (r_type == R_MIPS_REL32)
3954 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3955 else
3956 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3957 mips_elf_set_cr_dist2to (cptrel, 0);
3958 cptrel.konst = *addendp;
3959
3960 cr = (scpt->contents
3961 + sizeof (Elf32_External_compact_rel));
3962 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3963 ((Elf32_External_crinfo *) cr
3964 + scpt->reloc_count));
3965 ++scpt->reloc_count;
3966 }
3967 }
3968
b34976b6 3969 return TRUE;
b49e97c9
TS
3970}
3971\f
b49e97c9
TS
3972/* Return the MACH for a MIPS e_flags value. */
3973
3974unsigned long
3975_bfd_elf_mips_mach (flags)
3976 flagword flags;
3977{
3978 switch (flags & EF_MIPS_MACH)
3979 {
3980 case E_MIPS_MACH_3900:
3981 return bfd_mach_mips3900;
3982
3983 case E_MIPS_MACH_4010:
3984 return bfd_mach_mips4010;
3985
3986 case E_MIPS_MACH_4100:
3987 return bfd_mach_mips4100;
3988
3989 case E_MIPS_MACH_4111:
3990 return bfd_mach_mips4111;
3991
00707a0e
RS
3992 case E_MIPS_MACH_4120:
3993 return bfd_mach_mips4120;
3994
b49e97c9
TS
3995 case E_MIPS_MACH_4650:
3996 return bfd_mach_mips4650;
3997
00707a0e
RS
3998 case E_MIPS_MACH_5400:
3999 return bfd_mach_mips5400;
4000
4001 case E_MIPS_MACH_5500:
4002 return bfd_mach_mips5500;
4003
b49e97c9
TS
4004 case E_MIPS_MACH_SB1:
4005 return bfd_mach_mips_sb1;
4006
4007 default:
4008 switch (flags & EF_MIPS_ARCH)
4009 {
4010 default:
4011 case E_MIPS_ARCH_1:
4012 return bfd_mach_mips3000;
4013 break;
4014
4015 case E_MIPS_ARCH_2:
4016 return bfd_mach_mips6000;
4017 break;
4018
4019 case E_MIPS_ARCH_3:
4020 return bfd_mach_mips4000;
4021 break;
4022
4023 case E_MIPS_ARCH_4:
4024 return bfd_mach_mips8000;
4025 break;
4026
4027 case E_MIPS_ARCH_5:
4028 return bfd_mach_mips5;
4029 break;
4030
4031 case E_MIPS_ARCH_32:
4032 return bfd_mach_mipsisa32;
4033 break;
4034
4035 case E_MIPS_ARCH_64:
4036 return bfd_mach_mipsisa64;
4037 break;
af7ee8bf
CD
4038
4039 case E_MIPS_ARCH_32R2:
4040 return bfd_mach_mipsisa32r2;
4041 break;
b49e97c9
TS
4042 }
4043 }
4044
4045 return 0;
4046}
4047
4048/* Return printable name for ABI. */
4049
4050static INLINE char *
4051elf_mips_abi_name (abfd)
4052 bfd *abfd;
4053{
4054 flagword flags;
4055
4056 flags = elf_elfheader (abfd)->e_flags;
4057 switch (flags & EF_MIPS_ABI)
4058 {
4059 case 0:
4060 if (ABI_N32_P (abfd))
4061 return "N32";
4062 else if (ABI_64_P (abfd))
4063 return "64";
4064 else
4065 return "none";
4066 case E_MIPS_ABI_O32:
4067 return "O32";
4068 case E_MIPS_ABI_O64:
4069 return "O64";
4070 case E_MIPS_ABI_EABI32:
4071 return "EABI32";
4072 case E_MIPS_ABI_EABI64:
4073 return "EABI64";
4074 default:
4075 return "unknown abi";
4076 }
4077}
4078\f
4079/* MIPS ELF uses two common sections. One is the usual one, and the
4080 other is for small objects. All the small objects are kept
4081 together, and then referenced via the gp pointer, which yields
4082 faster assembler code. This is what we use for the small common
4083 section. This approach is copied from ecoff.c. */
4084static asection mips_elf_scom_section;
4085static asymbol mips_elf_scom_symbol;
4086static asymbol *mips_elf_scom_symbol_ptr;
4087
4088/* MIPS ELF also uses an acommon section, which represents an
4089 allocated common symbol which may be overridden by a
4090 definition in a shared library. */
4091static asection mips_elf_acom_section;
4092static asymbol mips_elf_acom_symbol;
4093static asymbol *mips_elf_acom_symbol_ptr;
4094
4095/* Handle the special MIPS section numbers that a symbol may use.
4096 This is used for both the 32-bit and the 64-bit ABI. */
4097
4098void
4099_bfd_mips_elf_symbol_processing (abfd, asym)
4100 bfd *abfd;
4101 asymbol *asym;
4102{
4103 elf_symbol_type *elfsym;
4104
4105 elfsym = (elf_symbol_type *) asym;
4106 switch (elfsym->internal_elf_sym.st_shndx)
4107 {
4108 case SHN_MIPS_ACOMMON:
4109 /* This section is used in a dynamically linked executable file.
4110 It is an allocated common section. The dynamic linker can
4111 either resolve these symbols to something in a shared
4112 library, or it can just leave them here. For our purposes,
4113 we can consider these symbols to be in a new section. */
4114 if (mips_elf_acom_section.name == NULL)
4115 {
4116 /* Initialize the acommon section. */
4117 mips_elf_acom_section.name = ".acommon";
4118 mips_elf_acom_section.flags = SEC_ALLOC;
4119 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4120 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4121 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4122 mips_elf_acom_symbol.name = ".acommon";
4123 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4124 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4125 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4126 }
4127 asym->section = &mips_elf_acom_section;
4128 break;
4129
4130 case SHN_COMMON:
4131 /* Common symbols less than the GP size are automatically
4132 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4133 if (asym->value > elf_gp_size (abfd)
4134 || IRIX_COMPAT (abfd) == ict_irix6)
4135 break;
4136 /* Fall through. */
4137 case SHN_MIPS_SCOMMON:
4138 if (mips_elf_scom_section.name == NULL)
4139 {
4140 /* Initialize the small common section. */
4141 mips_elf_scom_section.name = ".scommon";
4142 mips_elf_scom_section.flags = SEC_IS_COMMON;
4143 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4144 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4145 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4146 mips_elf_scom_symbol.name = ".scommon";
4147 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4148 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4149 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4150 }
4151 asym->section = &mips_elf_scom_section;
4152 asym->value = elfsym->internal_elf_sym.st_size;
4153 break;
4154
4155 case SHN_MIPS_SUNDEFINED:
4156 asym->section = bfd_und_section_ptr;
4157 break;
4158
4159#if 0 /* for SGI_COMPAT */
4160 case SHN_MIPS_TEXT:
4161 asym->section = mips_elf_text_section_ptr;
4162 break;
4163
4164 case SHN_MIPS_DATA:
4165 asym->section = mips_elf_data_section_ptr;
4166 break;
4167#endif
4168 }
4169}
4170\f
4171/* Work over a section just before writing it out. This routine is
4172 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4173 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4174 a better way. */
4175
b34976b6 4176bfd_boolean
b49e97c9
TS
4177_bfd_mips_elf_section_processing (abfd, hdr)
4178 bfd *abfd;
4179 Elf_Internal_Shdr *hdr;
4180{
4181 if (hdr->sh_type == SHT_MIPS_REGINFO
4182 && hdr->sh_size > 0)
4183 {
4184 bfd_byte buf[4];
4185
4186 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4187 BFD_ASSERT (hdr->contents == NULL);
4188
4189 if (bfd_seek (abfd,
4190 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4191 SEEK_SET) != 0)
b34976b6 4192 return FALSE;
b49e97c9
TS
4193 H_PUT_32 (abfd, elf_gp (abfd), buf);
4194 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
b34976b6 4195 return FALSE;
b49e97c9
TS
4196 }
4197
4198 if (hdr->sh_type == SHT_MIPS_OPTIONS
4199 && hdr->bfd_section != NULL
f0abc2a1
AM
4200 && mips_elf_section_data (hdr->bfd_section) != NULL
4201 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4202 {
4203 bfd_byte *contents, *l, *lend;
4204
f0abc2a1
AM
4205 /* We stored the section contents in the tdata field in the
4206 set_section_contents routine. We save the section contents
4207 so that we don't have to read them again.
b49e97c9
TS
4208 At this point we know that elf_gp is set, so we can look
4209 through the section contents to see if there is an
4210 ODK_REGINFO structure. */
4211
f0abc2a1 4212 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4213 l = contents;
4214 lend = contents + hdr->sh_size;
4215 while (l + sizeof (Elf_External_Options) <= lend)
4216 {
4217 Elf_Internal_Options intopt;
4218
4219 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4220 &intopt);
4221 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4222 {
4223 bfd_byte buf[8];
4224
4225 if (bfd_seek (abfd,
4226 (hdr->sh_offset
4227 + (l - contents)
4228 + sizeof (Elf_External_Options)
4229 + (sizeof (Elf64_External_RegInfo) - 8)),
4230 SEEK_SET) != 0)
b34976b6 4231 return FALSE;
b49e97c9
TS
4232 H_PUT_64 (abfd, elf_gp (abfd), buf);
4233 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
b34976b6 4234 return FALSE;
b49e97c9
TS
4235 }
4236 else if (intopt.kind == ODK_REGINFO)
4237 {
4238 bfd_byte buf[4];
4239
4240 if (bfd_seek (abfd,
4241 (hdr->sh_offset
4242 + (l - contents)
4243 + sizeof (Elf_External_Options)
4244 + (sizeof (Elf32_External_RegInfo) - 4)),
4245 SEEK_SET) != 0)
b34976b6 4246 return FALSE;
b49e97c9
TS
4247 H_PUT_32 (abfd, elf_gp (abfd), buf);
4248 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
b34976b6 4249 return FALSE;
b49e97c9
TS
4250 }
4251 l += intopt.size;
4252 }
4253 }
4254
4255 if (hdr->bfd_section != NULL)
4256 {
4257 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4258
4259 if (strcmp (name, ".sdata") == 0
4260 || strcmp (name, ".lit8") == 0
4261 || strcmp (name, ".lit4") == 0)
4262 {
4263 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4264 hdr->sh_type = SHT_PROGBITS;
4265 }
4266 else if (strcmp (name, ".sbss") == 0)
4267 {
4268 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4269 hdr->sh_type = SHT_NOBITS;
4270 }
4271 else if (strcmp (name, ".srdata") == 0)
4272 {
4273 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4274 hdr->sh_type = SHT_PROGBITS;
4275 }
4276 else if (strcmp (name, ".compact_rel") == 0)
4277 {
4278 hdr->sh_flags = 0;
4279 hdr->sh_type = SHT_PROGBITS;
4280 }
4281 else if (strcmp (name, ".rtproc") == 0)
4282 {
4283 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4284 {
4285 unsigned int adjust;
4286
4287 adjust = hdr->sh_size % hdr->sh_addralign;
4288 if (adjust != 0)
4289 hdr->sh_size += hdr->sh_addralign - adjust;
4290 }
4291 }
4292 }
4293
b34976b6 4294 return TRUE;
b49e97c9
TS
4295}
4296
4297/* Handle a MIPS specific section when reading an object file. This
4298 is called when elfcode.h finds a section with an unknown type.
4299 This routine supports both the 32-bit and 64-bit ELF ABI.
4300
4301 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4302 how to. */
4303
b34976b6 4304bfd_boolean
b49e97c9
TS
4305_bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4306 bfd *abfd;
4307 Elf_Internal_Shdr *hdr;
90937f86 4308 const char *name;
b49e97c9
TS
4309{
4310 flagword flags = 0;
4311
4312 /* There ought to be a place to keep ELF backend specific flags, but
4313 at the moment there isn't one. We just keep track of the
4314 sections by their name, instead. Fortunately, the ABI gives
4315 suggested names for all the MIPS specific sections, so we will
4316 probably get away with this. */
4317 switch (hdr->sh_type)
4318 {
4319 case SHT_MIPS_LIBLIST:
4320 if (strcmp (name, ".liblist") != 0)
b34976b6 4321 return FALSE;
b49e97c9
TS
4322 break;
4323 case SHT_MIPS_MSYM:
4324 if (strcmp (name, ".msym") != 0)
b34976b6 4325 return FALSE;
b49e97c9
TS
4326 break;
4327 case SHT_MIPS_CONFLICT:
4328 if (strcmp (name, ".conflict") != 0)
b34976b6 4329 return FALSE;
b49e97c9
TS
4330 break;
4331 case SHT_MIPS_GPTAB:
4332 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 4333 return FALSE;
b49e97c9
TS
4334 break;
4335 case SHT_MIPS_UCODE:
4336 if (strcmp (name, ".ucode") != 0)
b34976b6 4337 return FALSE;
b49e97c9
TS
4338 break;
4339 case SHT_MIPS_DEBUG:
4340 if (strcmp (name, ".mdebug") != 0)
b34976b6 4341 return FALSE;
b49e97c9
TS
4342 flags = SEC_DEBUGGING;
4343 break;
4344 case SHT_MIPS_REGINFO:
4345 if (strcmp (name, ".reginfo") != 0
4346 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 4347 return FALSE;
b49e97c9
TS
4348 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4349 break;
4350 case SHT_MIPS_IFACE:
4351 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 4352 return FALSE;
b49e97c9
TS
4353 break;
4354 case SHT_MIPS_CONTENT:
4355 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 4356 return FALSE;
b49e97c9
TS
4357 break;
4358 case SHT_MIPS_OPTIONS:
4359 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
b34976b6 4360 return FALSE;
b49e97c9
TS
4361 break;
4362 case SHT_MIPS_DWARF:
4363 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 4364 return FALSE;
b49e97c9
TS
4365 break;
4366 case SHT_MIPS_SYMBOL_LIB:
4367 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 4368 return FALSE;
b49e97c9
TS
4369 break;
4370 case SHT_MIPS_EVENTS:
4371 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4372 && strncmp (name, ".MIPS.post_rel",
4373 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 4374 return FALSE;
b49e97c9
TS
4375 break;
4376 default:
b34976b6 4377 return FALSE;
b49e97c9
TS
4378 }
4379
4380 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
b34976b6 4381 return FALSE;
b49e97c9
TS
4382
4383 if (flags)
4384 {
4385 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4386 (bfd_get_section_flags (abfd,
4387 hdr->bfd_section)
4388 | flags)))
b34976b6 4389 return FALSE;
b49e97c9
TS
4390 }
4391
4392 /* FIXME: We should record sh_info for a .gptab section. */
4393
4394 /* For a .reginfo section, set the gp value in the tdata information
4395 from the contents of this section. We need the gp value while
4396 processing relocs, so we just get it now. The .reginfo section
4397 is not used in the 64-bit MIPS ELF ABI. */
4398 if (hdr->sh_type == SHT_MIPS_REGINFO)
4399 {
4400 Elf32_External_RegInfo ext;
4401 Elf32_RegInfo s;
4402
4403 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4404 (file_ptr) 0,
4405 (bfd_size_type) sizeof ext))
b34976b6 4406 return FALSE;
b49e97c9
TS
4407 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4408 elf_gp (abfd) = s.ri_gp_value;
4409 }
4410
4411 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4412 set the gp value based on what we find. We may see both
4413 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4414 they should agree. */
4415 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4416 {
4417 bfd_byte *contents, *l, *lend;
4418
4419 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4420 if (contents == NULL)
b34976b6 4421 return FALSE;
b49e97c9
TS
4422 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4423 (file_ptr) 0, hdr->sh_size))
4424 {
4425 free (contents);
b34976b6 4426 return FALSE;
b49e97c9
TS
4427 }
4428 l = contents;
4429 lend = contents + hdr->sh_size;
4430 while (l + sizeof (Elf_External_Options) <= lend)
4431 {
4432 Elf_Internal_Options intopt;
4433
4434 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4435 &intopt);
4436 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4437 {
4438 Elf64_Internal_RegInfo intreg;
4439
4440 bfd_mips_elf64_swap_reginfo_in
4441 (abfd,
4442 ((Elf64_External_RegInfo *)
4443 (l + sizeof (Elf_External_Options))),
4444 &intreg);
4445 elf_gp (abfd) = intreg.ri_gp_value;
4446 }
4447 else if (intopt.kind == ODK_REGINFO)
4448 {
4449 Elf32_RegInfo intreg;
4450
4451 bfd_mips_elf32_swap_reginfo_in
4452 (abfd,
4453 ((Elf32_External_RegInfo *)
4454 (l + sizeof (Elf_External_Options))),
4455 &intreg);
4456 elf_gp (abfd) = intreg.ri_gp_value;
4457 }
4458 l += intopt.size;
4459 }
4460 free (contents);
4461 }
4462
b34976b6 4463 return TRUE;
b49e97c9
TS
4464}
4465
4466/* Set the correct type for a MIPS ELF section. We do this by the
4467 section name, which is a hack, but ought to work. This routine is
4468 used by both the 32-bit and the 64-bit ABI. */
4469
b34976b6 4470bfd_boolean
b49e97c9
TS
4471_bfd_mips_elf_fake_sections (abfd, hdr, sec)
4472 bfd *abfd;
947216bf 4473 Elf_Internal_Shdr *hdr;
b49e97c9
TS
4474 asection *sec;
4475{
4476 register const char *name;
4477
4478 name = bfd_get_section_name (abfd, sec);
4479
4480 if (strcmp (name, ".liblist") == 0)
4481 {
4482 hdr->sh_type = SHT_MIPS_LIBLIST;
4483 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4484 /* The sh_link field is set in final_write_processing. */
4485 }
4486 else if (strcmp (name, ".conflict") == 0)
4487 hdr->sh_type = SHT_MIPS_CONFLICT;
4488 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4489 {
4490 hdr->sh_type = SHT_MIPS_GPTAB;
4491 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4492 /* The sh_info field is set in final_write_processing. */
4493 }
4494 else if (strcmp (name, ".ucode") == 0)
4495 hdr->sh_type = SHT_MIPS_UCODE;
4496 else if (strcmp (name, ".mdebug") == 0)
4497 {
4498 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 4499 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
4500 entsize of 0. FIXME: Does this matter? */
4501 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4502 hdr->sh_entsize = 0;
4503 else
4504 hdr->sh_entsize = 1;
4505 }
4506 else if (strcmp (name, ".reginfo") == 0)
4507 {
4508 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 4509 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
4510 entsize of 0x18. FIXME: Does this matter? */
4511 if (SGI_COMPAT (abfd))
4512 {
4513 if ((abfd->flags & DYNAMIC) != 0)
4514 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4515 else
4516 hdr->sh_entsize = 1;
4517 }
4518 else
4519 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4520 }
4521 else if (SGI_COMPAT (abfd)
4522 && (strcmp (name, ".hash") == 0
4523 || strcmp (name, ".dynamic") == 0
4524 || strcmp (name, ".dynstr") == 0))
4525 {
4526 if (SGI_COMPAT (abfd))
4527 hdr->sh_entsize = 0;
4528#if 0
8dc1a139 4529 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
4530 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4531#endif
4532 }
4533 else if (strcmp (name, ".got") == 0
4534 || strcmp (name, ".srdata") == 0
4535 || strcmp (name, ".sdata") == 0
4536 || strcmp (name, ".sbss") == 0
4537 || strcmp (name, ".lit4") == 0
4538 || strcmp (name, ".lit8") == 0)
4539 hdr->sh_flags |= SHF_MIPS_GPREL;
4540 else if (strcmp (name, ".MIPS.interfaces") == 0)
4541 {
4542 hdr->sh_type = SHT_MIPS_IFACE;
4543 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4544 }
4545 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4546 {
4547 hdr->sh_type = SHT_MIPS_CONTENT;
4548 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4549 /* The sh_info field is set in final_write_processing. */
4550 }
4551 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4552 {
4553 hdr->sh_type = SHT_MIPS_OPTIONS;
4554 hdr->sh_entsize = 1;
4555 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4556 }
4557 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4558 hdr->sh_type = SHT_MIPS_DWARF;
4559 else if (strcmp (name, ".MIPS.symlib") == 0)
4560 {
4561 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4562 /* The sh_link and sh_info fields are set in
4563 final_write_processing. */
4564 }
4565 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4566 || strncmp (name, ".MIPS.post_rel",
4567 sizeof ".MIPS.post_rel" - 1) == 0)
4568 {
4569 hdr->sh_type = SHT_MIPS_EVENTS;
4570 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4571 /* The sh_link field is set in final_write_processing. */
4572 }
4573 else if (strcmp (name, ".msym") == 0)
4574 {
4575 hdr->sh_type = SHT_MIPS_MSYM;
4576 hdr->sh_flags |= SHF_ALLOC;
4577 hdr->sh_entsize = 8;
4578 }
4579
4580 /* The generic elf_fake_sections will set up REL_HDR using the
4581 default kind of relocations. But, we may actually need both
4582 kinds of relocations, so we set up the second header here.
4583
4584 This is not necessary for the O32 ABI since that only uses Elf32_Rel
4585 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
4586 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
4587 of the resulting empty .rela.<section> sections starts with
4588 sh_offset == object size, and ld doesn't allow that. While the check
4589 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
4590 avoided by not emitting those useless sections in the first place. */
14366460 4591 if (! SGI_COMPAT (abfd) && ! NEWABI_P(abfd)
4a14403c 4592 && (sec->flags & SEC_RELOC) != 0)
b49e97c9
TS
4593 {
4594 struct bfd_elf_section_data *esd;
4595 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
4596
4597 esd = elf_section_data (sec);
4598 BFD_ASSERT (esd->rel_hdr2 == NULL);
4599 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
4600 if (!esd->rel_hdr2)
b34976b6 4601 return FALSE;
68bfbfcc 4602 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec, !sec->use_rela_p);
b49e97c9
TS
4603 }
4604
b34976b6 4605 return TRUE;
b49e97c9
TS
4606}
4607
4608/* Given a BFD section, try to locate the corresponding ELF section
4609 index. This is used by both the 32-bit and the 64-bit ABI.
4610 Actually, it's not clear to me that the 64-bit ABI supports these,
4611 but for non-PIC objects we will certainly want support for at least
4612 the .scommon section. */
4613
b34976b6 4614bfd_boolean
b49e97c9
TS
4615_bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4616 bfd *abfd ATTRIBUTE_UNUSED;
4617 asection *sec;
4618 int *retval;
4619{
4620 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4621 {
4622 *retval = SHN_MIPS_SCOMMON;
b34976b6 4623 return TRUE;
b49e97c9
TS
4624 }
4625 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4626 {
4627 *retval = SHN_MIPS_ACOMMON;
b34976b6 4628 return TRUE;
b49e97c9 4629 }
b34976b6 4630 return FALSE;
b49e97c9
TS
4631}
4632\f
4633/* Hook called by the linker routine which adds symbols from an object
4634 file. We must handle the special MIPS section numbers here. */
4635
b34976b6 4636bfd_boolean
b49e97c9
TS
4637_bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4638 bfd *abfd;
4639 struct bfd_link_info *info;
4640 const Elf_Internal_Sym *sym;
4641 const char **namep;
4642 flagword *flagsp ATTRIBUTE_UNUSED;
4643 asection **secp;
4644 bfd_vma *valp;
4645{
4646 if (SGI_COMPAT (abfd)
4647 && (abfd->flags & DYNAMIC) != 0
4648 && strcmp (*namep, "_rld_new_interface") == 0)
4649 {
8dc1a139 4650 /* Skip IRIX5 rld entry name. */
b49e97c9 4651 *namep = NULL;
b34976b6 4652 return TRUE;
b49e97c9
TS
4653 }
4654
4655 switch (sym->st_shndx)
4656 {
4657 case SHN_COMMON:
4658 /* Common symbols less than the GP size are automatically
4659 treated as SHN_MIPS_SCOMMON symbols. */
4660 if (sym->st_size > elf_gp_size (abfd)
4661 || IRIX_COMPAT (abfd) == ict_irix6)
4662 break;
4663 /* Fall through. */
4664 case SHN_MIPS_SCOMMON:
4665 *secp = bfd_make_section_old_way (abfd, ".scommon");
4666 (*secp)->flags |= SEC_IS_COMMON;
4667 *valp = sym->st_size;
4668 break;
4669
4670 case SHN_MIPS_TEXT:
4671 /* This section is used in a shared object. */
4672 if (elf_tdata (abfd)->elf_text_section == NULL)
4673 {
4674 asymbol *elf_text_symbol;
4675 asection *elf_text_section;
4676 bfd_size_type amt = sizeof (asection);
4677
4678 elf_text_section = bfd_zalloc (abfd, amt);
4679 if (elf_text_section == NULL)
b34976b6 4680 return FALSE;
b49e97c9
TS
4681
4682 amt = sizeof (asymbol);
4683 elf_text_symbol = bfd_zalloc (abfd, amt);
4684 if (elf_text_symbol == NULL)
b34976b6 4685 return FALSE;
b49e97c9
TS
4686
4687 /* Initialize the section. */
4688
4689 elf_tdata (abfd)->elf_text_section = elf_text_section;
4690 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4691
4692 elf_text_section->symbol = elf_text_symbol;
4693 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4694
4695 elf_text_section->name = ".text";
4696 elf_text_section->flags = SEC_NO_FLAGS;
4697 elf_text_section->output_section = NULL;
4698 elf_text_section->owner = abfd;
4699 elf_text_symbol->name = ".text";
4700 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4701 elf_text_symbol->section = elf_text_section;
4702 }
4703 /* This code used to do *secp = bfd_und_section_ptr if
4704 info->shared. I don't know why, and that doesn't make sense,
4705 so I took it out. */
4706 *secp = elf_tdata (abfd)->elf_text_section;
4707 break;
4708
4709 case SHN_MIPS_ACOMMON:
4710 /* Fall through. XXX Can we treat this as allocated data? */
4711 case SHN_MIPS_DATA:
4712 /* This section is used in a shared object. */
4713 if (elf_tdata (abfd)->elf_data_section == NULL)
4714 {
4715 asymbol *elf_data_symbol;
4716 asection *elf_data_section;
4717 bfd_size_type amt = sizeof (asection);
4718
4719 elf_data_section = bfd_zalloc (abfd, amt);
4720 if (elf_data_section == NULL)
b34976b6 4721 return FALSE;
b49e97c9
TS
4722
4723 amt = sizeof (asymbol);
4724 elf_data_symbol = bfd_zalloc (abfd, amt);
4725 if (elf_data_symbol == NULL)
b34976b6 4726 return FALSE;
b49e97c9
TS
4727
4728 /* Initialize the section. */
4729
4730 elf_tdata (abfd)->elf_data_section = elf_data_section;
4731 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4732
4733 elf_data_section->symbol = elf_data_symbol;
4734 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4735
4736 elf_data_section->name = ".data";
4737 elf_data_section->flags = SEC_NO_FLAGS;
4738 elf_data_section->output_section = NULL;
4739 elf_data_section->owner = abfd;
4740 elf_data_symbol->name = ".data";
4741 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4742 elf_data_symbol->section = elf_data_section;
4743 }
4744 /* This code used to do *secp = bfd_und_section_ptr if
4745 info->shared. I don't know why, and that doesn't make sense,
4746 so I took it out. */
4747 *secp = elf_tdata (abfd)->elf_data_section;
4748 break;
4749
4750 case SHN_MIPS_SUNDEFINED:
4751 *secp = bfd_und_section_ptr;
4752 break;
4753 }
4754
4755 if (SGI_COMPAT (abfd)
4756 && ! info->shared
4757 && info->hash->creator == abfd->xvec
4758 && strcmp (*namep, "__rld_obj_head") == 0)
4759 {
4760 struct elf_link_hash_entry *h;
14a793b2 4761 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4762
4763 /* Mark __rld_obj_head as dynamic. */
14a793b2 4764 bh = NULL;
b49e97c9
TS
4765 if (! (_bfd_generic_link_add_one_symbol
4766 (info, abfd, *namep, BSF_GLOBAL, *secp,
b34976b6 4767 (bfd_vma) *valp, (const char *) NULL, FALSE,
14a793b2 4768 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4769 return FALSE;
14a793b2
AM
4770
4771 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4772 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4773 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4774 h->type = STT_OBJECT;
4775
4776 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4777 return FALSE;
b49e97c9 4778
b34976b6 4779 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
4780 }
4781
4782 /* If this is a mips16 text symbol, add 1 to the value to make it
4783 odd. This will cause something like .word SYM to come up with
4784 the right value when it is loaded into the PC. */
4785 if (sym->st_other == STO_MIPS16)
4786 ++*valp;
4787
b34976b6 4788 return TRUE;
b49e97c9
TS
4789}
4790
4791/* This hook function is called before the linker writes out a global
4792 symbol. We mark symbols as small common if appropriate. This is
4793 also where we undo the increment of the value for a mips16 symbol. */
4794
b34976b6 4795bfd_boolean
b49e97c9
TS
4796_bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4797 bfd *abfd ATTRIBUTE_UNUSED;
4798 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4799 const char *name ATTRIBUTE_UNUSED;
4800 Elf_Internal_Sym *sym;
4801 asection *input_sec;
4802{
4803 /* If we see a common symbol, which implies a relocatable link, then
4804 if a symbol was small common in an input file, mark it as small
4805 common in the output file. */
4806 if (sym->st_shndx == SHN_COMMON
4807 && strcmp (input_sec->name, ".scommon") == 0)
4808 sym->st_shndx = SHN_MIPS_SCOMMON;
4809
4810 if (sym->st_other == STO_MIPS16
4811 && (sym->st_value & 1) != 0)
4812 --sym->st_value;
4813
b34976b6 4814 return TRUE;
b49e97c9
TS
4815}
4816\f
4817/* Functions for the dynamic linker. */
4818
4819/* Create dynamic sections when linking against a dynamic object. */
4820
b34976b6 4821bfd_boolean
b49e97c9
TS
4822_bfd_mips_elf_create_dynamic_sections (abfd, info)
4823 bfd *abfd;
4824 struct bfd_link_info *info;
4825{
4826 struct elf_link_hash_entry *h;
14a793b2 4827 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4828 flagword flags;
4829 register asection *s;
4830 const char * const *namep;
4831
4832 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4833 | SEC_LINKER_CREATED | SEC_READONLY);
4834
4835 /* Mips ABI requests the .dynamic section to be read only. */
4836 s = bfd_get_section_by_name (abfd, ".dynamic");
4837 if (s != NULL)
4838 {
4839 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 4840 return FALSE;
b49e97c9
TS
4841 }
4842
4843 /* We need to create .got section. */
f4416af6
AO
4844 if (! mips_elf_create_got_section (abfd, info, FALSE))
4845 return FALSE;
4846
4847 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 4848 return FALSE;
b49e97c9
TS
4849
4850 /* Create the .msym section on IRIX6. It is used by the dynamic
4851 linker to speed up dynamic relocations, and to avoid computing
4852 the ELF hash for symbols. */
4853 if (IRIX_COMPAT (abfd) == ict_irix6
4854 && !mips_elf_create_msym_section (abfd))
b34976b6 4855 return FALSE;
b49e97c9
TS
4856
4857 /* Create .stub section. */
4858 if (bfd_get_section_by_name (abfd,
4859 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4860 {
4861 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4862 if (s == NULL
4863 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4864 || ! bfd_set_section_alignment (abfd, s,
4865 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4866 return FALSE;
b49e97c9
TS
4867 }
4868
4869 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4870 && !info->shared
4871 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4872 {
4873 s = bfd_make_section (abfd, ".rld_map");
4874 if (s == NULL
4875 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4876 || ! bfd_set_section_alignment (abfd, s,
4877 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4878 return FALSE;
b49e97c9
TS
4879 }
4880
4881 /* On IRIX5, we adjust add some additional symbols and change the
4882 alignments of several sections. There is no ABI documentation
4883 indicating that this is necessary on IRIX6, nor any evidence that
4884 the linker takes such action. */
4885 if (IRIX_COMPAT (abfd) == ict_irix5)
4886 {
4887 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4888 {
14a793b2 4889 bh = NULL;
b49e97c9
TS
4890 if (! (_bfd_generic_link_add_one_symbol
4891 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
b34976b6 4892 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 4893 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4894 return FALSE;
14a793b2
AM
4895
4896 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4897 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4898 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4899 h->type = STT_SECTION;
4900
4901 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4902 return FALSE;
b49e97c9
TS
4903 }
4904
4905 /* We need to create a .compact_rel section. */
4906 if (SGI_COMPAT (abfd))
4907 {
4908 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 4909 return FALSE;
b49e97c9
TS
4910 }
4911
44c410de 4912 /* Change alignments of some sections. */
b49e97c9
TS
4913 s = bfd_get_section_by_name (abfd, ".hash");
4914 if (s != NULL)
4915 bfd_set_section_alignment (abfd, s, 4);
4916 s = bfd_get_section_by_name (abfd, ".dynsym");
4917 if (s != NULL)
4918 bfd_set_section_alignment (abfd, s, 4);
4919 s = bfd_get_section_by_name (abfd, ".dynstr");
4920 if (s != NULL)
4921 bfd_set_section_alignment (abfd, s, 4);
4922 s = bfd_get_section_by_name (abfd, ".reginfo");
4923 if (s != NULL)
4924 bfd_set_section_alignment (abfd, s, 4);
4925 s = bfd_get_section_by_name (abfd, ".dynamic");
4926 if (s != NULL)
4927 bfd_set_section_alignment (abfd, s, 4);
4928 }
4929
4930 if (!info->shared)
4931 {
14a793b2
AM
4932 const char *name;
4933
4934 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4935 bh = NULL;
4936 if (!(_bfd_generic_link_add_one_symbol
4937 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
b34976b6 4938 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 4939 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4940 return FALSE;
14a793b2
AM
4941
4942 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4943 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4944 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4945 h->type = STT_SECTION;
4946
4947 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4948 return FALSE;
b49e97c9
TS
4949
4950 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4951 {
4952 /* __rld_map is a four byte word located in the .data section
4953 and is filled in by the rtld to contain a pointer to
4954 the _r_debug structure. Its symbol value will be set in
4955 _bfd_mips_elf_finish_dynamic_symbol. */
4956 s = bfd_get_section_by_name (abfd, ".rld_map");
4957 BFD_ASSERT (s != NULL);
4958
14a793b2
AM
4959 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4960 bh = NULL;
4961 if (!(_bfd_generic_link_add_one_symbol
4962 (info, abfd, name, BSF_GLOBAL, s,
b34976b6 4963 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 4964 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4965 return FALSE;
14a793b2
AM
4966
4967 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4968 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4969 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4970 h->type = STT_OBJECT;
4971
4972 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4973 return FALSE;
b49e97c9
TS
4974 }
4975 }
4976
b34976b6 4977 return TRUE;
b49e97c9
TS
4978}
4979\f
4980/* Look through the relocs for a section during the first phase, and
4981 allocate space in the global offset table. */
4982
b34976b6 4983bfd_boolean
b49e97c9
TS
4984_bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
4985 bfd *abfd;
4986 struct bfd_link_info *info;
4987 asection *sec;
4988 const Elf_Internal_Rela *relocs;
4989{
4990 const char *name;
4991 bfd *dynobj;
4992 Elf_Internal_Shdr *symtab_hdr;
4993 struct elf_link_hash_entry **sym_hashes;
4994 struct mips_got_info *g;
4995 size_t extsymoff;
4996 const Elf_Internal_Rela *rel;
4997 const Elf_Internal_Rela *rel_end;
4998 asection *sgot;
4999 asection *sreloc;
5000 struct elf_backend_data *bed;
5001
5002 if (info->relocateable)
b34976b6 5003 return TRUE;
b49e97c9
TS
5004
5005 dynobj = elf_hash_table (info)->dynobj;
5006 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5007 sym_hashes = elf_sym_hashes (abfd);
5008 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5009
5010 /* Check for the mips16 stub sections. */
5011
5012 name = bfd_get_section_name (abfd, sec);
5013 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5014 {
5015 unsigned long r_symndx;
5016
5017 /* Look at the relocation information to figure out which symbol
5018 this is for. */
5019
5020 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5021
5022 if (r_symndx < extsymoff
5023 || sym_hashes[r_symndx - extsymoff] == NULL)
5024 {
5025 asection *o;
5026
5027 /* This stub is for a local symbol. This stub will only be
5028 needed if there is some relocation in this BFD, other
5029 than a 16 bit function call, which refers to this symbol. */
5030 for (o = abfd->sections; o != NULL; o = o->next)
5031 {
5032 Elf_Internal_Rela *sec_relocs;
5033 const Elf_Internal_Rela *r, *rend;
5034
5035 /* We can ignore stub sections when looking for relocs. */
5036 if ((o->flags & SEC_RELOC) == 0
5037 || o->reloc_count == 0
5038 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5039 sizeof FN_STUB - 1) == 0
5040 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5041 sizeof CALL_STUB - 1) == 0
5042 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5043 sizeof CALL_FP_STUB - 1) == 0)
5044 continue;
5045
ee6423ed 5046 sec_relocs = (MNAME(abfd,_bfd_elf,link_read_relocs)
b49e97c9
TS
5047 (abfd, o, (PTR) NULL,
5048 (Elf_Internal_Rela *) NULL,
5049 info->keep_memory));
5050 if (sec_relocs == NULL)
b34976b6 5051 return FALSE;
b49e97c9
TS
5052
5053 rend = sec_relocs + o->reloc_count;
5054 for (r = sec_relocs; r < rend; r++)
5055 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5056 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5057 break;
5058
6cdc0ccc 5059 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5060 free (sec_relocs);
5061
5062 if (r < rend)
5063 break;
5064 }
5065
5066 if (o == NULL)
5067 {
5068 /* There is no non-call reloc for this stub, so we do
5069 not need it. Since this function is called before
5070 the linker maps input sections to output sections, we
5071 can easily discard it by setting the SEC_EXCLUDE
5072 flag. */
5073 sec->flags |= SEC_EXCLUDE;
b34976b6 5074 return TRUE;
b49e97c9
TS
5075 }
5076
5077 /* Record this stub in an array of local symbol stubs for
5078 this BFD. */
5079 if (elf_tdata (abfd)->local_stubs == NULL)
5080 {
5081 unsigned long symcount;
5082 asection **n;
5083 bfd_size_type amt;
5084
5085 if (elf_bad_symtab (abfd))
5086 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5087 else
5088 symcount = symtab_hdr->sh_info;
5089 amt = symcount * sizeof (asection *);
5090 n = (asection **) bfd_zalloc (abfd, amt);
5091 if (n == NULL)
b34976b6 5092 return FALSE;
b49e97c9
TS
5093 elf_tdata (abfd)->local_stubs = n;
5094 }
5095
5096 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5097
5098 /* We don't need to set mips16_stubs_seen in this case.
5099 That flag is used to see whether we need to look through
5100 the global symbol table for stubs. We don't need to set
5101 it here, because we just have a local stub. */
5102 }
5103 else
5104 {
5105 struct mips_elf_link_hash_entry *h;
5106
5107 h = ((struct mips_elf_link_hash_entry *)
5108 sym_hashes[r_symndx - extsymoff]);
5109
5110 /* H is the symbol this stub is for. */
5111
5112 h->fn_stub = sec;
b34976b6 5113 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5114 }
5115 }
5116 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5117 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5118 {
5119 unsigned long r_symndx;
5120 struct mips_elf_link_hash_entry *h;
5121 asection **loc;
5122
5123 /* Look at the relocation information to figure out which symbol
5124 this is for. */
5125
5126 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5127
5128 if (r_symndx < extsymoff
5129 || sym_hashes[r_symndx - extsymoff] == NULL)
5130 {
5131 /* This stub was actually built for a static symbol defined
5132 in the same file. We assume that all static symbols in
5133 mips16 code are themselves mips16, so we can simply
5134 discard this stub. Since this function is called before
5135 the linker maps input sections to output sections, we can
5136 easily discard it by setting the SEC_EXCLUDE flag. */
5137 sec->flags |= SEC_EXCLUDE;
b34976b6 5138 return TRUE;
b49e97c9
TS
5139 }
5140
5141 h = ((struct mips_elf_link_hash_entry *)
5142 sym_hashes[r_symndx - extsymoff]);
5143
5144 /* H is the symbol this stub is for. */
5145
5146 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5147 loc = &h->call_fp_stub;
5148 else
5149 loc = &h->call_stub;
5150
5151 /* If we already have an appropriate stub for this function, we
5152 don't need another one, so we can discard this one. Since
5153 this function is called before the linker maps input sections
5154 to output sections, we can easily discard it by setting the
5155 SEC_EXCLUDE flag. We can also discard this section if we
5156 happen to already know that this is a mips16 function; it is
5157 not necessary to check this here, as it is checked later, but
5158 it is slightly faster to check now. */
5159 if (*loc != NULL || h->root.other == STO_MIPS16)
5160 {
5161 sec->flags |= SEC_EXCLUDE;
b34976b6 5162 return TRUE;
b49e97c9
TS
5163 }
5164
5165 *loc = sec;
b34976b6 5166 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5167 }
5168
5169 if (dynobj == NULL)
5170 {
5171 sgot = NULL;
5172 g = NULL;
5173 }
5174 else
5175 {
f4416af6 5176 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5177 if (sgot == NULL)
5178 g = NULL;
5179 else
5180 {
f0abc2a1
AM
5181 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5182 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5183 BFD_ASSERT (g != NULL);
5184 }
5185 }
5186
5187 sreloc = NULL;
5188 bed = get_elf_backend_data (abfd);
5189 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5190 for (rel = relocs; rel < rel_end; ++rel)
5191 {
5192 unsigned long r_symndx;
5193 unsigned int r_type;
5194 struct elf_link_hash_entry *h;
5195
5196 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5197 r_type = ELF_R_TYPE (abfd, rel->r_info);
5198
5199 if (r_symndx < extsymoff)
5200 h = NULL;
5201 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5202 {
5203 (*_bfd_error_handler)
5204 (_("%s: Malformed reloc detected for section %s"),
5205 bfd_archive_filename (abfd), name);
5206 bfd_set_error (bfd_error_bad_value);
b34976b6 5207 return FALSE;
b49e97c9
TS
5208 }
5209 else
5210 {
5211 h = sym_hashes[r_symndx - extsymoff];
5212
5213 /* This may be an indirect symbol created because of a version. */
5214 if (h != NULL)
5215 {
5216 while (h->root.type == bfd_link_hash_indirect)
5217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5218 }
5219 }
5220
5221 /* Some relocs require a global offset table. */
5222 if (dynobj == NULL || sgot == NULL)
5223 {
5224 switch (r_type)
5225 {
5226 case R_MIPS_GOT16:
5227 case R_MIPS_CALL16:
5228 case R_MIPS_CALL_HI16:
5229 case R_MIPS_CALL_LO16:
5230 case R_MIPS_GOT_HI16:
5231 case R_MIPS_GOT_LO16:
5232 case R_MIPS_GOT_PAGE:
5233 case R_MIPS_GOT_OFST:
5234 case R_MIPS_GOT_DISP:
5235 if (dynobj == NULL)
5236 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5237 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5238 return FALSE;
b49e97c9
TS
5239 g = mips_elf_got_info (dynobj, &sgot);
5240 break;
5241
5242 case R_MIPS_32:
5243 case R_MIPS_REL32:
5244 case R_MIPS_64:
5245 if (dynobj == NULL
5246 && (info->shared || h != NULL)
5247 && (sec->flags & SEC_ALLOC) != 0)
5248 elf_hash_table (info)->dynobj = dynobj = abfd;
5249 break;
5250
5251 default:
5252 break;
5253 }
5254 }
5255
5256 if (!h && (r_type == R_MIPS_CALL_LO16
5257 || r_type == R_MIPS_GOT_LO16
5258 || r_type == R_MIPS_GOT_DISP))
5259 {
5260 /* We may need a local GOT entry for this relocation. We
5261 don't count R_MIPS_GOT_PAGE because we can estimate the
5262 maximum number of pages needed by looking at the size of
5263 the segment. Similar comments apply to R_MIPS_GOT16 and
5264 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5265 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 5266 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6
AO
5267 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5268 rel->r_addend, g))
5269 return FALSE;
b49e97c9
TS
5270 }
5271
5272 switch (r_type)
5273 {
5274 case R_MIPS_CALL16:
5275 if (h == NULL)
5276 {
5277 (*_bfd_error_handler)
5278 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5279 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5280 bfd_set_error (bfd_error_bad_value);
b34976b6 5281 return FALSE;
b49e97c9
TS
5282 }
5283 /* Fall through. */
5284
5285 case R_MIPS_CALL_HI16:
5286 case R_MIPS_CALL_LO16:
5287 if (h != NULL)
5288 {
5289 /* This symbol requires a global offset table entry. */
f4416af6 5290 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5291 return FALSE;
b49e97c9
TS
5292
5293 /* We need a stub, not a plt entry for the undefined
5294 function. But we record it as if it needs plt. See
5295 elf_adjust_dynamic_symbol in elflink.h. */
5296 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5297 h->type = STT_FUNC;
5298 }
5299 break;
5300
5301 case R_MIPS_GOT16:
5302 case R_MIPS_GOT_HI16:
5303 case R_MIPS_GOT_LO16:
5304 case R_MIPS_GOT_DISP:
5305 /* This symbol requires a global offset table entry. */
f4416af6 5306 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5307 return FALSE;
b49e97c9
TS
5308 break;
5309
5310 case R_MIPS_32:
5311 case R_MIPS_REL32:
5312 case R_MIPS_64:
5313 if ((info->shared || h != NULL)
5314 && (sec->flags & SEC_ALLOC) != 0)
5315 {
5316 if (sreloc == NULL)
5317 {
f4416af6 5318 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 5319 if (sreloc == NULL)
f4416af6 5320 return FALSE;
b49e97c9
TS
5321 }
5322#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5323 if (info->shared)
5324 {
5325 /* When creating a shared object, we must copy these
5326 reloc types into the output file as R_MIPS_REL32
5327 relocs. We make room for this reloc in the
5328 .rel.dyn reloc section. */
5329 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5330 if ((sec->flags & MIPS_READONLY_SECTION)
5331 == MIPS_READONLY_SECTION)
5332 /* We tell the dynamic linker that there are
5333 relocations against the text segment. */
5334 info->flags |= DF_TEXTREL;
5335 }
5336 else
5337 {
5338 struct mips_elf_link_hash_entry *hmips;
5339
5340 /* We only need to copy this reloc if the symbol is
5341 defined in a dynamic object. */
5342 hmips = (struct mips_elf_link_hash_entry *) h;
5343 ++hmips->possibly_dynamic_relocs;
5344 if ((sec->flags & MIPS_READONLY_SECTION)
5345 == MIPS_READONLY_SECTION)
5346 /* We need it to tell the dynamic linker if there
5347 are relocations against the text segment. */
b34976b6 5348 hmips->readonly_reloc = TRUE;
b49e97c9
TS
5349 }
5350
5351 /* Even though we don't directly need a GOT entry for
5352 this symbol, a symbol must have a dynamic symbol
5353 table index greater that DT_MIPS_GOTSYM if there are
5354 dynamic relocations against it. */
f4416af6
AO
5355 if (h != NULL)
5356 {
5357 if (dynobj == NULL)
5358 elf_hash_table (info)->dynobj = dynobj = abfd;
5359 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5360 return FALSE;
5361 g = mips_elf_got_info (dynobj, &sgot);
5362 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5363 return FALSE;
5364 }
b49e97c9
TS
5365 }
5366
5367 if (SGI_COMPAT (abfd))
5368 mips_elf_hash_table (info)->compact_rel_size +=
5369 sizeof (Elf32_External_crinfo);
5370 break;
5371
5372 case R_MIPS_26:
5373 case R_MIPS_GPREL16:
5374 case R_MIPS_LITERAL:
5375 case R_MIPS_GPREL32:
5376 if (SGI_COMPAT (abfd))
5377 mips_elf_hash_table (info)->compact_rel_size +=
5378 sizeof (Elf32_External_crinfo);
5379 break;
5380
5381 /* This relocation describes the C++ object vtable hierarchy.
5382 Reconstruct it for later use during GC. */
5383 case R_MIPS_GNU_VTINHERIT:
5384 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 5385 return FALSE;
b49e97c9
TS
5386 break;
5387
5388 /* This relocation describes which C++ vtable entries are actually
5389 used. Record for later use during GC. */
5390 case R_MIPS_GNU_VTENTRY:
5391 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 5392 return FALSE;
b49e97c9
TS
5393 break;
5394
5395 default:
5396 break;
5397 }
5398
5399 /* We must not create a stub for a symbol that has relocations
5400 related to taking the function's address. */
5401 switch (r_type)
5402 {
5403 default:
5404 if (h != NULL)
5405 {
5406 struct mips_elf_link_hash_entry *mh;
5407
5408 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5409 mh->no_fn_stub = TRUE;
b49e97c9
TS
5410 }
5411 break;
5412 case R_MIPS_CALL16:
5413 case R_MIPS_CALL_HI16:
5414 case R_MIPS_CALL_LO16:
5415 break;
5416 }
5417
5418 /* If this reloc is not a 16 bit call, and it has a global
5419 symbol, then we will need the fn_stub if there is one.
5420 References from a stub section do not count. */
5421 if (h != NULL
5422 && r_type != R_MIPS16_26
5423 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5424 sizeof FN_STUB - 1) != 0
5425 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5426 sizeof CALL_STUB - 1) != 0
5427 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5428 sizeof CALL_FP_STUB - 1) != 0)
5429 {
5430 struct mips_elf_link_hash_entry *mh;
5431
5432 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5433 mh->need_fn_stub = TRUE;
b49e97c9
TS
5434 }
5435 }
5436
b34976b6 5437 return TRUE;
b49e97c9
TS
5438}
5439\f
5440/* Adjust a symbol defined by a dynamic object and referenced by a
5441 regular object. The current definition is in some section of the
5442 dynamic object, but we're not including those sections. We have to
5443 change the definition to something the rest of the link can
5444 understand. */
5445
b34976b6 5446bfd_boolean
b49e97c9
TS
5447_bfd_mips_elf_adjust_dynamic_symbol (info, h)
5448 struct bfd_link_info *info;
5449 struct elf_link_hash_entry *h;
5450{
5451 bfd *dynobj;
5452 struct mips_elf_link_hash_entry *hmips;
5453 asection *s;
5454
5455 dynobj = elf_hash_table (info)->dynobj;
5456
5457 /* Make sure we know what is going on here. */
5458 BFD_ASSERT (dynobj != NULL
5459 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5460 || h->weakdef != NULL
5461 || ((h->elf_link_hash_flags
5462 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5463 && (h->elf_link_hash_flags
5464 & ELF_LINK_HASH_REF_REGULAR) != 0
5465 && (h->elf_link_hash_flags
5466 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5467
5468 /* If this symbol is defined in a dynamic object, we need to copy
5469 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5470 file. */
5471 hmips = (struct mips_elf_link_hash_entry *) h;
5472 if (! info->relocateable
5473 && hmips->possibly_dynamic_relocs != 0
5474 && (h->root.type == bfd_link_hash_defweak
5475 || (h->elf_link_hash_flags
5476 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5477 {
5478 mips_elf_allocate_dynamic_relocations (dynobj,
5479 hmips->possibly_dynamic_relocs);
5480 if (hmips->readonly_reloc)
5481 /* We tell the dynamic linker that there are relocations
5482 against the text segment. */
5483 info->flags |= DF_TEXTREL;
5484 }
5485
5486 /* For a function, create a stub, if allowed. */
5487 if (! hmips->no_fn_stub
5488 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5489 {
5490 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 5491 return TRUE;
b49e97c9
TS
5492
5493 /* If this symbol is not defined in a regular file, then set
5494 the symbol to the stub location. This is required to make
5495 function pointers compare as equal between the normal
5496 executable and the shared library. */
5497 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5498 {
5499 /* We need .stub section. */
5500 s = bfd_get_section_by_name (dynobj,
5501 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5502 BFD_ASSERT (s != NULL);
5503
5504 h->root.u.def.section = s;
5505 h->root.u.def.value = s->_raw_size;
5506
5507 /* XXX Write this stub address somewhere. */
5508 h->plt.offset = s->_raw_size;
5509
5510 /* Make room for this stub code. */
5511 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5512
5513 /* The last half word of the stub will be filled with the index
5514 of this symbol in .dynsym section. */
b34976b6 5515 return TRUE;
b49e97c9
TS
5516 }
5517 }
5518 else if ((h->type == STT_FUNC)
5519 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5520 {
5521 /* This will set the entry for this symbol in the GOT to 0, and
5522 the dynamic linker will take care of this. */
5523 h->root.u.def.value = 0;
b34976b6 5524 return TRUE;
b49e97c9
TS
5525 }
5526
5527 /* If this is a weak symbol, and there is a real definition, the
5528 processor independent code will have arranged for us to see the
5529 real definition first, and we can just use the same value. */
5530 if (h->weakdef != NULL)
5531 {
5532 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5533 || h->weakdef->root.type == bfd_link_hash_defweak);
5534 h->root.u.def.section = h->weakdef->root.u.def.section;
5535 h->root.u.def.value = h->weakdef->root.u.def.value;
b34976b6 5536 return TRUE;
b49e97c9
TS
5537 }
5538
5539 /* This is a reference to a symbol defined by a dynamic object which
5540 is not a function. */
5541
b34976b6 5542 return TRUE;
b49e97c9
TS
5543}
5544\f
5545/* This function is called after all the input files have been read,
5546 and the input sections have been assigned to output sections. We
5547 check for any mips16 stub sections that we can discard. */
5548
b34976b6 5549bfd_boolean
b49e97c9
TS
5550_bfd_mips_elf_always_size_sections (output_bfd, info)
5551 bfd *output_bfd;
5552 struct bfd_link_info *info;
5553{
5554 asection *ri;
5555
f4416af6
AO
5556 bfd *dynobj;
5557 asection *s;
5558 struct mips_got_info *g;
5559 int i;
5560 bfd_size_type loadable_size = 0;
5561 bfd_size_type local_gotno;
5562 bfd *sub;
5563
b49e97c9
TS
5564 /* The .reginfo section has a fixed size. */
5565 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5566 if (ri != NULL)
5567 bfd_set_section_size (output_bfd, ri,
5568 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5569
f4416af6
AO
5570 if (! (info->relocateable
5571 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5572 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5573 mips_elf_check_mips16_stubs,
5574 (PTR) NULL);
5575
5576 dynobj = elf_hash_table (info)->dynobj;
5577 if (dynobj == NULL)
5578 /* Relocatable links don't have it. */
5579 return TRUE;
5580
5581 g = mips_elf_got_info (dynobj, &s);
5582 if (s == NULL)
b34976b6 5583 return TRUE;
b49e97c9 5584
f4416af6
AO
5585 /* Calculate the total loadable size of the output. That
5586 will give us the maximum number of GOT_PAGE entries
5587 required. */
5588 for (sub = info->input_bfds; sub; sub = sub->link_next)
5589 {
5590 asection *subsection;
5591
5592 for (subsection = sub->sections;
5593 subsection;
5594 subsection = subsection->next)
5595 {
5596 if ((subsection->flags & SEC_ALLOC) == 0)
5597 continue;
5598 loadable_size += ((subsection->_raw_size + 0xf)
5599 &~ (bfd_size_type) 0xf);
5600 }
5601 }
5602
5603 /* There has to be a global GOT entry for every symbol with
5604 a dynamic symbol table index of DT_MIPS_GOTSYM or
5605 higher. Therefore, it make sense to put those symbols
5606 that need GOT entries at the end of the symbol table. We
5607 do that here. */
5608 if (! mips_elf_sort_hash_table (info, 1))
5609 return FALSE;
5610
5611 if (g->global_gotsym != NULL)
5612 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5613 else
5614 /* If there are no global symbols, or none requiring
5615 relocations, then GLOBAL_GOTSYM will be NULL. */
5616 i = 0;
5617
5618 /* In the worst case, we'll get one stub per dynamic symbol, plus
5619 one to account for the dummy entry at the end required by IRIX
5620 rld. */
5621 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5622
5623 /* Assume there are two loadable segments consisting of
5624 contiguous sections. Is 5 enough? */
5625 local_gotno = (loadable_size >> 16) + 5;
5626
5627 g->local_gotno += local_gotno;
5628 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5629
5630 g->global_gotno = i;
5631 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5632
5633 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5634 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5635 return FALSE;
b49e97c9 5636
b34976b6 5637 return TRUE;
b49e97c9
TS
5638}
5639
5640/* Set the sizes of the dynamic sections. */
5641
b34976b6 5642bfd_boolean
b49e97c9
TS
5643_bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5644 bfd *output_bfd;
5645 struct bfd_link_info *info;
5646{
5647 bfd *dynobj;
5648 asection *s;
b34976b6 5649 bfd_boolean reltext;
b49e97c9
TS
5650
5651 dynobj = elf_hash_table (info)->dynobj;
5652 BFD_ASSERT (dynobj != NULL);
5653
5654 if (elf_hash_table (info)->dynamic_sections_created)
5655 {
5656 /* Set the contents of the .interp section to the interpreter. */
5657 if (! info->shared)
5658 {
5659 s = bfd_get_section_by_name (dynobj, ".interp");
5660 BFD_ASSERT (s != NULL);
5661 s->_raw_size
5662 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5663 s->contents
5664 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5665 }
5666 }
5667
5668 /* The check_relocs and adjust_dynamic_symbol entry points have
5669 determined the sizes of the various dynamic sections. Allocate
5670 memory for them. */
b34976b6 5671 reltext = FALSE;
b49e97c9
TS
5672 for (s = dynobj->sections; s != NULL; s = s->next)
5673 {
5674 const char *name;
b34976b6 5675 bfd_boolean strip;
b49e97c9
TS
5676
5677 /* It's OK to base decisions on the section name, because none
5678 of the dynobj section names depend upon the input files. */
5679 name = bfd_get_section_name (dynobj, s);
5680
5681 if ((s->flags & SEC_LINKER_CREATED) == 0)
5682 continue;
5683
b34976b6 5684 strip = FALSE;
b49e97c9
TS
5685
5686 if (strncmp (name, ".rel", 4) == 0)
5687 {
5688 if (s->_raw_size == 0)
5689 {
5690 /* We only strip the section if the output section name
5691 has the same name. Otherwise, there might be several
5692 input sections for this output section. FIXME: This
5693 code is probably not needed these days anyhow, since
5694 the linker now does not create empty output sections. */
5695 if (s->output_section != NULL
5696 && strcmp (name,
5697 bfd_get_section_name (s->output_section->owner,
5698 s->output_section)) == 0)
b34976b6 5699 strip = TRUE;
b49e97c9
TS
5700 }
5701 else
5702 {
5703 const char *outname;
5704 asection *target;
5705
5706 /* If this relocation section applies to a read only
5707 section, then we probably need a DT_TEXTREL entry.
5708 If the relocation section is .rel.dyn, we always
5709 assert a DT_TEXTREL entry rather than testing whether
5710 there exists a relocation to a read only section or
5711 not. */
5712 outname = bfd_get_section_name (output_bfd,
5713 s->output_section);
5714 target = bfd_get_section_by_name (output_bfd, outname + 4);
5715 if ((target != NULL
5716 && (target->flags & SEC_READONLY) != 0
5717 && (target->flags & SEC_ALLOC) != 0)
5718 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 5719 reltext = TRUE;
b49e97c9
TS
5720
5721 /* We use the reloc_count field as a counter if we need
5722 to copy relocs into the output file. */
5723 if (strcmp (name, ".rel.dyn") != 0)
5724 s->reloc_count = 0;
f4416af6
AO
5725
5726 /* If combreloc is enabled, elf_link_sort_relocs() will
5727 sort relocations, but in a different way than we do,
5728 and before we're done creating relocations. Also, it
5729 will move them around between input sections'
5730 relocation's contents, so our sorting would be
5731 broken, so don't let it run. */
5732 info->combreloc = 0;
b49e97c9
TS
5733 }
5734 }
5735 else if (strncmp (name, ".got", 4) == 0)
5736 {
f4416af6
AO
5737 /* _bfd_mips_elf_always_size_sections() has already done
5738 most of the work, but some symbols may have been mapped
5739 to versions that we must now resolve in the got_entries
5740 hash tables. */
5741 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5742 struct mips_got_info *g = gg;
5743 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5744 unsigned int needed_relocs = 0;
5745
5746 if (gg->next)
b49e97c9 5747 {
f4416af6
AO
5748 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5749 set_got_offset_arg.info = info;
b49e97c9 5750
f4416af6
AO
5751 mips_elf_resolve_final_got_entries (gg);
5752 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 5753 {
f4416af6
AO
5754 unsigned int save_assign;
5755
5756 mips_elf_resolve_final_got_entries (g);
5757
5758 /* Assign offsets to global GOT entries. */
5759 save_assign = g->assigned_gotno;
5760 g->assigned_gotno = g->local_gotno;
5761 set_got_offset_arg.g = g;
5762 set_got_offset_arg.needed_relocs = 0;
5763 htab_traverse (g->got_entries,
5764 mips_elf_set_global_got_offset,
5765 &set_got_offset_arg);
5766 needed_relocs += set_got_offset_arg.needed_relocs;
5767 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5768 <= g->global_gotno);
5769
5770 g->assigned_gotno = save_assign;
5771 if (info->shared)
5772 {
5773 needed_relocs += g->local_gotno - g->assigned_gotno;
5774 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5775 + g->next->global_gotno
5776 + MIPS_RESERVED_GOTNO);
5777 }
b49e97c9 5778 }
b49e97c9 5779
f4416af6
AO
5780 if (needed_relocs)
5781 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5782 }
b49e97c9
TS
5783 }
5784 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5785 {
8dc1a139 5786 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9
TS
5787 of .text section. So put a dummy. XXX */
5788 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5789 }
5790 else if (! info->shared
5791 && ! mips_elf_hash_table (info)->use_rld_obj_head
5792 && strncmp (name, ".rld_map", 8) == 0)
5793 {
5794 /* We add a room for __rld_map. It will be filled in by the
5795 rtld to contain a pointer to the _r_debug structure. */
5796 s->_raw_size += 4;
5797 }
5798 else if (SGI_COMPAT (output_bfd)
5799 && strncmp (name, ".compact_rel", 12) == 0)
5800 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
5801 else if (strcmp (name, ".msym") == 0)
5802 s->_raw_size = (sizeof (Elf32_External_Msym)
5803 * (elf_hash_table (info)->dynsymcount
5804 + bfd_count_sections (output_bfd)));
5805 else if (strncmp (name, ".init", 5) != 0)
5806 {
5807 /* It's not one of our sections, so don't allocate space. */
5808 continue;
5809 }
5810
5811 if (strip)
5812 {
5813 _bfd_strip_section_from_output (info, s);
5814 continue;
5815 }
5816
5817 /* Allocate memory for the section contents. */
5818 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
5819 if (s->contents == NULL && s->_raw_size != 0)
5820 {
5821 bfd_set_error (bfd_error_no_memory);
b34976b6 5822 return FALSE;
b49e97c9
TS
5823 }
5824 }
5825
5826 if (elf_hash_table (info)->dynamic_sections_created)
5827 {
5828 /* Add some entries to the .dynamic section. We fill in the
5829 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
5830 must add the entries now so that we get the correct size for
5831 the .dynamic section. The DT_DEBUG entry is filled in by the
5832 dynamic linker and used by the debugger. */
5833 if (! info->shared)
5834 {
5835 /* SGI object has the equivalence of DT_DEBUG in the
5836 DT_MIPS_RLD_MAP entry. */
5837 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 5838 return FALSE;
b49e97c9
TS
5839 if (!SGI_COMPAT (output_bfd))
5840 {
5841 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 5842 return FALSE;
b49e97c9
TS
5843 }
5844 }
5845 else
5846 {
5847 /* Shared libraries on traditional mips have DT_DEBUG. */
5848 if (!SGI_COMPAT (output_bfd))
5849 {
5850 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 5851 return FALSE;
b49e97c9
TS
5852 }
5853 }
5854
5855 if (reltext && SGI_COMPAT (output_bfd))
5856 info->flags |= DF_TEXTREL;
5857
5858 if ((info->flags & DF_TEXTREL) != 0)
5859 {
5860 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 5861 return FALSE;
b49e97c9
TS
5862 }
5863
5864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 5865 return FALSE;
b49e97c9 5866
f4416af6 5867 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
5868 {
5869 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 5870 return FALSE;
b49e97c9
TS
5871
5872 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 5873 return FALSE;
b49e97c9
TS
5874
5875 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 5876 return FALSE;
b49e97c9
TS
5877 }
5878
5879 if (SGI_COMPAT (output_bfd))
5880 {
5881 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
b34976b6 5882 return FALSE;
b49e97c9
TS
5883 }
5884
5885 if (SGI_COMPAT (output_bfd))
5886 {
5887 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
b34976b6 5888 return FALSE;
b49e97c9
TS
5889 }
5890
5891 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
5892 {
5893 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
b34976b6 5894 return FALSE;
b49e97c9
TS
5895
5896 s = bfd_get_section_by_name (dynobj, ".liblist");
5897 BFD_ASSERT (s != NULL);
5898
5899 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
b34976b6 5900 return FALSE;
b49e97c9
TS
5901 }
5902
5903 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 5904 return FALSE;
b49e97c9
TS
5905
5906 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 5907 return FALSE;
b49e97c9
TS
5908
5909#if 0
5910 /* Time stamps in executable files are a bad idea. */
5911 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
b34976b6 5912 return FALSE;
b49e97c9
TS
5913#endif
5914
5915#if 0 /* FIXME */
5916 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
b34976b6 5917 return FALSE;
b49e97c9
TS
5918#endif
5919
5920#if 0 /* FIXME */
5921 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
b34976b6 5922 return FALSE;
b49e97c9
TS
5923#endif
5924
5925 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 5926 return FALSE;
b49e97c9
TS
5927
5928 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 5929 return FALSE;
b49e97c9
TS
5930
5931 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 5932 return FALSE;
b49e97c9
TS
5933
5934 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 5935 return FALSE;
b49e97c9
TS
5936
5937 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 5938 return FALSE;
b49e97c9
TS
5939
5940 if (IRIX_COMPAT (dynobj) == ict_irix5
5941 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 5942 return FALSE;
b49e97c9
TS
5943
5944 if (IRIX_COMPAT (dynobj) == ict_irix6
5945 && (bfd_get_section_by_name
5946 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
5947 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 5948 return FALSE;
b49e97c9
TS
5949
5950 if (bfd_get_section_by_name (dynobj, ".msym")
5951 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
b34976b6 5952 return FALSE;
b49e97c9
TS
5953 }
5954
b34976b6 5955 return TRUE;
b49e97c9
TS
5956}
5957\f
5958/* Relocate a MIPS ELF section. */
5959
b34976b6 5960bfd_boolean
b49e97c9
TS
5961_bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
5962 contents, relocs, local_syms, local_sections)
5963 bfd *output_bfd;
5964 struct bfd_link_info *info;
5965 bfd *input_bfd;
5966 asection *input_section;
5967 bfd_byte *contents;
5968 Elf_Internal_Rela *relocs;
5969 Elf_Internal_Sym *local_syms;
5970 asection **local_sections;
5971{
5972 Elf_Internal_Rela *rel;
5973 const Elf_Internal_Rela *relend;
5974 bfd_vma addend = 0;
b34976b6 5975 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9
TS
5976 struct elf_backend_data *bed;
5977
5978 bed = get_elf_backend_data (output_bfd);
5979 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
5980 for (rel = relocs; rel < relend; ++rel)
5981 {
5982 const char *name;
5983 bfd_vma value;
5984 reloc_howto_type *howto;
b34976b6
AM
5985 bfd_boolean require_jalx;
5986 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 5987 REL relocation. */
b34976b6 5988 bfd_boolean rela_relocation_p = TRUE;
b49e97c9
TS
5989 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5990 const char * msg = (const char *) NULL;
5991
5992 /* Find the relocation howto for this relocation. */
4a14403c 5993 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
5994 {
5995 /* Some 32-bit code uses R_MIPS_64. In particular, people use
5996 64-bit code, but make sure all their addresses are in the
5997 lowermost or uppermost 32-bit section of the 64-bit address
5998 space. Thus, when they use an R_MIPS_64 they mean what is
5999 usually meant by R_MIPS_32, with the exception that the
6000 stored value is sign-extended to 64 bits. */
b34976b6 6001 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6002
6003 /* On big-endian systems, we need to lie about the position
6004 of the reloc. */
6005 if (bfd_big_endian (input_bfd))
6006 rel->r_offset += 4;
6007 }
6008 else
6009 /* NewABI defaults to RELA relocations. */
6010 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6011 NEWABI_P (input_bfd)
6012 && (MIPS_RELOC_RELA_P
6013 (input_bfd, input_section,
6014 rel - relocs)));
b49e97c9
TS
6015
6016 if (!use_saved_addend_p)
6017 {
6018 Elf_Internal_Shdr *rel_hdr;
6019
6020 /* If these relocations were originally of the REL variety,
6021 we must pull the addend out of the field that will be
6022 relocated. Otherwise, we simply use the contents of the
6023 RELA relocation. To determine which flavor or relocation
6024 this is, we depend on the fact that the INPUT_SECTION's
6025 REL_HDR is read before its REL_HDR2. */
6026 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6027 if ((size_t) (rel - relocs)
6028 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6029 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6030 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6031 {
6032 /* Note that this is a REL relocation. */
b34976b6 6033 rela_relocation_p = FALSE;
b49e97c9
TS
6034
6035 /* Get the addend, which is stored in the input file. */
6036 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6037 contents);
6038 addend &= howto->src_mask;
5a659663 6039 addend <<= howto->rightshift;
b49e97c9
TS
6040
6041 /* For some kinds of relocations, the ADDEND is a
6042 combination of the addend stored in two different
6043 relocations. */
6044 if (r_type == R_MIPS_HI16
6045 || r_type == R_MIPS_GNU_REL_HI16
6046 || (r_type == R_MIPS_GOT16
6047 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 6048 local_sections, FALSE)))
b49e97c9
TS
6049 {
6050 bfd_vma l;
6051 const Elf_Internal_Rela *lo16_relocation;
6052 reloc_howto_type *lo16_howto;
6053 unsigned int lo;
6054
6055 /* The combined value is the sum of the HI16 addend,
6056 left-shifted by sixteen bits, and the LO16
6057 addend, sign extended. (Usually, the code does
6058 a `lui' of the HI16 value, and then an `addiu' of
6059 the LO16 value.)
6060
6061 Scan ahead to find a matching LO16 relocation. */
6062 if (r_type == R_MIPS_GNU_REL_HI16)
6063 lo = R_MIPS_GNU_REL_LO16;
6064 else
6065 lo = R_MIPS_LO16;
6066 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6067 rel, relend);
6068 if (lo16_relocation == NULL)
b34976b6 6069 return FALSE;
b49e97c9
TS
6070
6071 /* Obtain the addend kept there. */
b34976b6 6072 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
b49e97c9
TS
6073 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6074 input_bfd, contents);
6075 l &= lo16_howto->src_mask;
5a659663 6076 l <<= lo16_howto->rightshift;
b49e97c9
TS
6077 l = mips_elf_sign_extend (l, 16);
6078
6079 addend <<= 16;
6080
6081 /* Compute the combined addend. */
6082 addend += l;
6083
6084 /* If PC-relative, subtract the difference between the
6085 address of the LO part of the reloc and the address of
6086 the HI part. The relocation is relative to the LO
6087 part, but mips_elf_calculate_relocation() doesn't
6088 know its address or the difference from the HI part, so
6089 we subtract that difference here. See also the
6090 comment in mips_elf_calculate_relocation(). */
6091 if (r_type == R_MIPS_GNU_REL_HI16)
6092 addend -= (lo16_relocation->r_offset - rel->r_offset);
6093 }
6094 else if (r_type == R_MIPS16_GPREL)
6095 {
6096 /* The addend is scrambled in the object file. See
6097 mips_elf_perform_relocation for details on the
6098 format. */
6099 addend = (((addend & 0x1f0000) >> 5)
6100 | ((addend & 0x7e00000) >> 16)
6101 | (addend & 0x1f));
6102 }
6103 }
6104 else
6105 addend = rel->r_addend;
6106 }
6107
6108 if (info->relocateable)
6109 {
6110 Elf_Internal_Sym *sym;
6111 unsigned long r_symndx;
6112
4a14403c 6113 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
6114 && bfd_big_endian (input_bfd))
6115 rel->r_offset -= 4;
6116
6117 /* Since we're just relocating, all we need to do is copy
6118 the relocations back out to the object file, unless
6119 they're against a section symbol, in which case we need
6120 to adjust by the section offset, or unless they're GP
6121 relative in which case we need to adjust by the amount
6122 that we're adjusting GP in this relocateable object. */
6123
6124 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 6125 FALSE))
b49e97c9
TS
6126 /* There's nothing to do for non-local relocations. */
6127 continue;
6128
6129 if (r_type == R_MIPS16_GPREL
6130 || r_type == R_MIPS_GPREL16
6131 || r_type == R_MIPS_GPREL32
6132 || r_type == R_MIPS_LITERAL)
6133 addend -= (_bfd_get_gp_value (output_bfd)
6134 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
6135
6136 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6137 sym = local_syms + r_symndx;
6138 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6139 /* Adjust the addend appropriately. */
6140 addend += local_sections[r_symndx]->output_offset;
6141
5a659663
TS
6142 if (howto->partial_inplace)
6143 {
6144 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6145 then we only want to write out the high-order 16 bits.
6146 The subsequent R_MIPS_LO16 will handle the low-order bits.
6147 */
6148 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6149 || r_type == R_MIPS_GNU_REL_HI16)
6150 addend = mips_elf_high (addend);
6151 else if (r_type == R_MIPS_HIGHER)
6152 addend = mips_elf_higher (addend);
6153 else if (r_type == R_MIPS_HIGHEST)
6154 addend = mips_elf_highest (addend);
6155 }
b49e97c9
TS
6156
6157 if (rela_relocation_p)
6158 /* If this is a RELA relocation, just update the addend.
6159 We have to cast away constness for REL. */
6160 rel->r_addend = addend;
6161 else
6162 {
6163 /* Otherwise, we have to write the value back out. Note
6164 that we use the source mask, rather than the
6165 destination mask because the place to which we are
6166 writing will be source of the addend in the final
6167 link. */
5a659663 6168 addend >>= howto->rightshift;
b49e97c9
TS
6169 addend &= howto->src_mask;
6170
5a659663 6171 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6172 /* See the comment above about using R_MIPS_64 in the 32-bit
6173 ABI. Here, we need to update the addend. It would be
6174 possible to get away with just using the R_MIPS_32 reloc
6175 but for endianness. */
6176 {
6177 bfd_vma sign_bits;
6178 bfd_vma low_bits;
6179 bfd_vma high_bits;
6180
6181 if (addend & ((bfd_vma) 1 << 31))
6182#ifdef BFD64
6183 sign_bits = ((bfd_vma) 1 << 32) - 1;
6184#else
6185 sign_bits = -1;
6186#endif
6187 else
6188 sign_bits = 0;
6189
6190 /* If we don't know that we have a 64-bit type,
6191 do two separate stores. */
6192 if (bfd_big_endian (input_bfd))
6193 {
6194 /* Store the sign-bits (which are most significant)
6195 first. */
6196 low_bits = sign_bits;
6197 high_bits = addend;
6198 }
6199 else
6200 {
6201 low_bits = addend;
6202 high_bits = sign_bits;
6203 }
6204 bfd_put_32 (input_bfd, low_bits,
6205 contents + rel->r_offset);
6206 bfd_put_32 (input_bfd, high_bits,
6207 contents + rel->r_offset + 4);
6208 continue;
6209 }
6210
6211 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6212 input_bfd, input_section,
b34976b6
AM
6213 contents, FALSE))
6214 return FALSE;
b49e97c9
TS
6215 }
6216
6217 /* Go on to the next relocation. */
6218 continue;
6219 }
6220
6221 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6222 relocations for the same offset. In that case we are
6223 supposed to treat the output of each relocation as the addend
6224 for the next. */
6225 if (rel + 1 < relend
6226 && rel->r_offset == rel[1].r_offset
6227 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 6228 use_saved_addend_p = TRUE;
b49e97c9 6229 else
b34976b6 6230 use_saved_addend_p = FALSE;
b49e97c9 6231
5a659663
TS
6232 addend >>= howto->rightshift;
6233
b49e97c9
TS
6234 /* Figure out what value we are supposed to relocate. */
6235 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6236 input_section, info, rel,
6237 addend, howto, local_syms,
6238 local_sections, &value,
bce03d3d
AO
6239 &name, &require_jalx,
6240 use_saved_addend_p))
b49e97c9
TS
6241 {
6242 case bfd_reloc_continue:
6243 /* There's nothing to do. */
6244 continue;
6245
6246 case bfd_reloc_undefined:
6247 /* mips_elf_calculate_relocation already called the
6248 undefined_symbol callback. There's no real point in
6249 trying to perform the relocation at this point, so we
6250 just skip ahead to the next relocation. */
6251 continue;
6252
6253 case bfd_reloc_notsupported:
6254 msg = _("internal error: unsupported relocation error");
6255 info->callbacks->warning
6256 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 6257 return FALSE;
b49e97c9
TS
6258
6259 case bfd_reloc_overflow:
6260 if (use_saved_addend_p)
6261 /* Ignore overflow until we reach the last relocation for
6262 a given location. */
6263 ;
6264 else
6265 {
6266 BFD_ASSERT (name != NULL);
6267 if (! ((*info->callbacks->reloc_overflow)
6268 (info, name, howto->name, (bfd_vma) 0,
6269 input_bfd, input_section, rel->r_offset)))
b34976b6 6270 return FALSE;
b49e97c9
TS
6271 }
6272 break;
6273
6274 case bfd_reloc_ok:
6275 break;
6276
6277 default:
6278 abort ();
6279 break;
6280 }
6281
6282 /* If we've got another relocation for the address, keep going
6283 until we reach the last one. */
6284 if (use_saved_addend_p)
6285 {
6286 addend = value;
6287 continue;
6288 }
6289
4a14403c 6290 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6291 /* See the comment above about using R_MIPS_64 in the 32-bit
6292 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6293 that calculated the right value. Now, however, we
6294 sign-extend the 32-bit result to 64-bits, and store it as a
6295 64-bit value. We are especially generous here in that we
6296 go to extreme lengths to support this usage on systems with
6297 only a 32-bit VMA. */
6298 {
6299 bfd_vma sign_bits;
6300 bfd_vma low_bits;
6301 bfd_vma high_bits;
6302
6303 if (value & ((bfd_vma) 1 << 31))
6304#ifdef BFD64
6305 sign_bits = ((bfd_vma) 1 << 32) - 1;
6306#else
6307 sign_bits = -1;
6308#endif
6309 else
6310 sign_bits = 0;
6311
6312 /* If we don't know that we have a 64-bit type,
6313 do two separate stores. */
6314 if (bfd_big_endian (input_bfd))
6315 {
6316 /* Undo what we did above. */
6317 rel->r_offset -= 4;
6318 /* Store the sign-bits (which are most significant)
6319 first. */
6320 low_bits = sign_bits;
6321 high_bits = value;
6322 }
6323 else
6324 {
6325 low_bits = value;
6326 high_bits = sign_bits;
6327 }
6328 bfd_put_32 (input_bfd, low_bits,
6329 contents + rel->r_offset);
6330 bfd_put_32 (input_bfd, high_bits,
6331 contents + rel->r_offset + 4);
6332 continue;
6333 }
6334
6335 /* Actually perform the relocation. */
6336 if (! mips_elf_perform_relocation (info, howto, rel, value,
6337 input_bfd, input_section,
6338 contents, require_jalx))
b34976b6 6339 return FALSE;
b49e97c9
TS
6340 }
6341
b34976b6 6342 return TRUE;
b49e97c9
TS
6343}
6344\f
6345/* If NAME is one of the special IRIX6 symbols defined by the linker,
6346 adjust it appropriately now. */
6347
6348static void
6349mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6350 bfd *abfd ATTRIBUTE_UNUSED;
6351 const char *name;
6352 Elf_Internal_Sym *sym;
6353{
6354 /* The linker script takes care of providing names and values for
6355 these, but we must place them into the right sections. */
6356 static const char* const text_section_symbols[] = {
6357 "_ftext",
6358 "_etext",
6359 "__dso_displacement",
6360 "__elf_header",
6361 "__program_header_table",
6362 NULL
6363 };
6364
6365 static const char* const data_section_symbols[] = {
6366 "_fdata",
6367 "_edata",
6368 "_end",
6369 "_fbss",
6370 NULL
6371 };
6372
6373 const char* const *p;
6374 int i;
6375
6376 for (i = 0; i < 2; ++i)
6377 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6378 *p;
6379 ++p)
6380 if (strcmp (*p, name) == 0)
6381 {
6382 /* All of these symbols are given type STT_SECTION by the
6383 IRIX6 linker. */
6384 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6385
6386 /* The IRIX linker puts these symbols in special sections. */
6387 if (i == 0)
6388 sym->st_shndx = SHN_MIPS_TEXT;
6389 else
6390 sym->st_shndx = SHN_MIPS_DATA;
6391
6392 break;
6393 }
6394}
6395
6396/* Finish up dynamic symbol handling. We set the contents of various
6397 dynamic sections here. */
6398
b34976b6 6399bfd_boolean
b49e97c9
TS
6400_bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6401 bfd *output_bfd;
6402 struct bfd_link_info *info;
6403 struct elf_link_hash_entry *h;
6404 Elf_Internal_Sym *sym;
6405{
6406 bfd *dynobj;
6407 bfd_vma gval;
6408 asection *sgot;
6409 asection *smsym;
f4416af6 6410 struct mips_got_info *g, *gg;
b49e97c9
TS
6411 const char *name;
6412 struct mips_elf_link_hash_entry *mh;
6413
6414 dynobj = elf_hash_table (info)->dynobj;
6415 gval = sym->st_value;
6416 mh = (struct mips_elf_link_hash_entry *) h;
6417
6418 if (h->plt.offset != (bfd_vma) -1)
6419 {
6420 asection *s;
6421 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6422
6423 /* This symbol has a stub. Set it up. */
6424
6425 BFD_ASSERT (h->dynindx != -1);
6426
6427 s = bfd_get_section_by_name (dynobj,
6428 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6429 BFD_ASSERT (s != NULL);
6430
6431 /* FIXME: Can h->dynindex be more than 64K? */
6432 if (h->dynindx & 0xffff0000)
b34976b6 6433 return FALSE;
b49e97c9
TS
6434
6435 /* Fill the stub. */
6436 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6437 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6438 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6439 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6440
6441 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6442 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6443
6444 /* Mark the symbol as undefined. plt.offset != -1 occurs
6445 only for the referenced symbol. */
6446 sym->st_shndx = SHN_UNDEF;
6447
6448 /* The run-time linker uses the st_value field of the symbol
6449 to reset the global offset table entry for this external
6450 to its stub address when unlinking a shared object. */
6451 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6452 sym->st_value = gval;
6453 }
6454
6455 BFD_ASSERT (h->dynindx != -1
6456 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6457
f4416af6 6458 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6459 BFD_ASSERT (sgot != NULL);
f4416af6 6460 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 6461 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6462 BFD_ASSERT (g != NULL);
6463
6464 /* Run through the global symbol table, creating GOT entries for all
6465 the symbols that need them. */
6466 if (g->global_gotsym != NULL
6467 && h->dynindx >= g->global_gotsym->dynindx)
6468 {
6469 bfd_vma offset;
6470 bfd_vma value;
6471
6472 if (sym->st_value)
6473 value = sym->st_value;
6474 else
6475 {
6476 /* For an entity defined in a shared object, this will be
6477 NULL. (For functions in shared objects for
6478 which we have created stubs, ST_VALUE will be non-NULL.
6479 That's because such the functions are now no longer defined
6480 in a shared object.) */
6481
f4416af6
AO
6482 if ((info->shared && h->root.type == bfd_link_hash_undefined)
6483 || h->root.type == bfd_link_hash_undefweak)
b49e97c9
TS
6484 value = 0;
6485 else
6486 value = h->root.u.def.value;
6487 }
f4416af6 6488 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
b49e97c9
TS
6489 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6490 }
6491
f4416af6
AO
6492 if (g->next && h->dynindx != -1)
6493 {
6494 struct mips_got_entry e, *p;
6495 bfd_vma offset;
6496 bfd_vma value;
6497 Elf_Internal_Rela rel[3];
6498 bfd_vma addend = 0;
6499
6500 gg = g;
6501
6502 e.abfd = output_bfd;
6503 e.symndx = -1;
6504 e.d.h = (struct mips_elf_link_hash_entry *)h;
6505
6506 if (info->shared
6507 || h->root.type == bfd_link_hash_undefined
6508 || h->root.type == bfd_link_hash_undefweak)
6509 value = 0;
6510 else if (sym->st_value)
6511 value = sym->st_value;
6512 else
6513 value = h->root.u.def.value;
6514
6515 memset (rel, 0, sizeof (rel));
6516 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6517
6518 for (g = g->next; g->next != gg; g = g->next)
6519 {
6520 if (g->got_entries
6521 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6522 &e)))
6523 {
6524 offset = p->gotidx;
6525 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6526
6527 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6528
6529 if ((info->shared
6530 || (elf_hash_table (info)->dynamic_sections_created
6531 && p->d.h != NULL
6532 && ((p->d.h->root.elf_link_hash_flags
6533 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6534 && ((p->d.h->root.elf_link_hash_flags
6535 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6536 && ! (mips_elf_create_dynamic_relocation
6537 (output_bfd, info, rel,
6538 e.d.h, NULL, value, &addend, sgot)))
6539 return FALSE;
6540 BFD_ASSERT (addend == 0);
6541 }
6542 }
6543 }
6544
b49e97c9
TS
6545 /* Create a .msym entry, if appropriate. */
6546 smsym = bfd_get_section_by_name (dynobj, ".msym");
6547 if (smsym)
6548 {
6549 Elf32_Internal_Msym msym;
6550
6551 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6552 /* It is undocumented what the `1' indicates, but IRIX6 uses
6553 this value. */
6554 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6555 bfd_mips_elf_swap_msym_out
6556 (dynobj, &msym,
6557 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6558 }
6559
6560 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6561 name = h->root.root.string;
6562 if (strcmp (name, "_DYNAMIC") == 0
6563 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6564 sym->st_shndx = SHN_ABS;
6565 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6566 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6567 {
6568 sym->st_shndx = SHN_ABS;
6569 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6570 sym->st_value = 1;
6571 }
4a14403c 6572 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6573 {
6574 sym->st_shndx = SHN_ABS;
6575 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6576 sym->st_value = elf_gp (output_bfd);
6577 }
6578 else if (SGI_COMPAT (output_bfd))
6579 {
6580 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6581 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6582 {
6583 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6584 sym->st_other = STO_PROTECTED;
6585 sym->st_value = 0;
6586 sym->st_shndx = SHN_MIPS_DATA;
6587 }
6588 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6589 {
6590 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6591 sym->st_other = STO_PROTECTED;
6592 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6593 sym->st_shndx = SHN_ABS;
6594 }
6595 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6596 {
6597 if (h->type == STT_FUNC)
6598 sym->st_shndx = SHN_MIPS_TEXT;
6599 else if (h->type == STT_OBJECT)
6600 sym->st_shndx = SHN_MIPS_DATA;
6601 }
6602 }
6603
6604 /* Handle the IRIX6-specific symbols. */
6605 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6606 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6607
6608 if (! info->shared)
6609 {
6610 if (! mips_elf_hash_table (info)->use_rld_obj_head
6611 && (strcmp (name, "__rld_map") == 0
6612 || strcmp (name, "__RLD_MAP") == 0))
6613 {
6614 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6615 BFD_ASSERT (s != NULL);
6616 sym->st_value = s->output_section->vma + s->output_offset;
6617 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6618 if (mips_elf_hash_table (info)->rld_value == 0)
6619 mips_elf_hash_table (info)->rld_value = sym->st_value;
6620 }
6621 else if (mips_elf_hash_table (info)->use_rld_obj_head
6622 && strcmp (name, "__rld_obj_head") == 0)
6623 {
6624 /* IRIX6 does not use a .rld_map section. */
6625 if (IRIX_COMPAT (output_bfd) == ict_irix5
6626 || IRIX_COMPAT (output_bfd) == ict_none)
6627 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6628 != NULL);
6629 mips_elf_hash_table (info)->rld_value = sym->st_value;
6630 }
6631 }
6632
6633 /* If this is a mips16 symbol, force the value to be even. */
6634 if (sym->st_other == STO_MIPS16
6635 && (sym->st_value & 1) != 0)
6636 --sym->st_value;
6637
b34976b6 6638 return TRUE;
b49e97c9
TS
6639}
6640
6641/* Finish up the dynamic sections. */
6642
b34976b6 6643bfd_boolean
b49e97c9
TS
6644_bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6645 bfd *output_bfd;
6646 struct bfd_link_info *info;
6647{
6648 bfd *dynobj;
6649 asection *sdyn;
6650 asection *sgot;
f4416af6 6651 struct mips_got_info *gg, *g;
b49e97c9
TS
6652
6653 dynobj = elf_hash_table (info)->dynobj;
6654
6655 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6656
f4416af6 6657 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6658 if (sgot == NULL)
f4416af6 6659 gg = g = NULL;
b49e97c9
TS
6660 else
6661 {
f4416af6
AO
6662 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6663 gg = mips_elf_section_data (sgot)->u.got_info;
6664 BFD_ASSERT (gg != NULL);
6665 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
6666 BFD_ASSERT (g != NULL);
6667 }
6668
6669 if (elf_hash_table (info)->dynamic_sections_created)
6670 {
6671 bfd_byte *b;
6672
6673 BFD_ASSERT (sdyn != NULL);
6674 BFD_ASSERT (g != NULL);
6675
6676 for (b = sdyn->contents;
6677 b < sdyn->contents + sdyn->_raw_size;
6678 b += MIPS_ELF_DYN_SIZE (dynobj))
6679 {
6680 Elf_Internal_Dyn dyn;
6681 const char *name;
6682 size_t elemsize;
6683 asection *s;
b34976b6 6684 bfd_boolean swap_out_p;
b49e97c9
TS
6685
6686 /* Read in the current dynamic entry. */
6687 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6688
6689 /* Assume that we're going to modify it and write it out. */
b34976b6 6690 swap_out_p = TRUE;
b49e97c9
TS
6691
6692 switch (dyn.d_tag)
6693 {
6694 case DT_RELENT:
f4416af6 6695 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
6696 BFD_ASSERT (s != NULL);
6697 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6698 break;
6699
6700 case DT_STRSZ:
6701 /* Rewrite DT_STRSZ. */
6702 dyn.d_un.d_val =
6703 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6704 break;
6705
6706 case DT_PLTGOT:
6707 name = ".got";
6708 goto get_vma;
6709 case DT_MIPS_CONFLICT:
6710 name = ".conflict";
6711 goto get_vma;
6712 case DT_MIPS_LIBLIST:
6713 name = ".liblist";
6714 get_vma:
6715 s = bfd_get_section_by_name (output_bfd, name);
6716 BFD_ASSERT (s != NULL);
6717 dyn.d_un.d_ptr = s->vma;
6718 break;
6719
6720 case DT_MIPS_RLD_VERSION:
6721 dyn.d_un.d_val = 1; /* XXX */
6722 break;
6723
6724 case DT_MIPS_FLAGS:
6725 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6726 break;
6727
6728 case DT_MIPS_CONFLICTNO:
6729 name = ".conflict";
6730 elemsize = sizeof (Elf32_Conflict);
6731 goto set_elemno;
6732
6733 case DT_MIPS_LIBLISTNO:
6734 name = ".liblist";
6735 elemsize = sizeof (Elf32_Lib);
6736 set_elemno:
6737 s = bfd_get_section_by_name (output_bfd, name);
6738 if (s != NULL)
6739 {
6740 if (s->_cooked_size != 0)
6741 dyn.d_un.d_val = s->_cooked_size / elemsize;
6742 else
6743 dyn.d_un.d_val = s->_raw_size / elemsize;
6744 }
6745 else
6746 dyn.d_un.d_val = 0;
6747 break;
6748
6749 case DT_MIPS_TIME_STAMP:
6750 time ((time_t *) &dyn.d_un.d_val);
6751 break;
6752
6753 case DT_MIPS_ICHECKSUM:
6754 /* XXX FIXME: */
b34976b6 6755 swap_out_p = FALSE;
b49e97c9
TS
6756 break;
6757
6758 case DT_MIPS_IVERSION:
6759 /* XXX FIXME: */
b34976b6 6760 swap_out_p = FALSE;
b49e97c9
TS
6761 break;
6762
6763 case DT_MIPS_BASE_ADDRESS:
6764 s = output_bfd->sections;
6765 BFD_ASSERT (s != NULL);
6766 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6767 break;
6768
6769 case DT_MIPS_LOCAL_GOTNO:
6770 dyn.d_un.d_val = g->local_gotno;
6771 break;
6772
6773 case DT_MIPS_UNREFEXTNO:
6774 /* The index into the dynamic symbol table which is the
6775 entry of the first external symbol that is not
6776 referenced within the same object. */
6777 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6778 break;
6779
6780 case DT_MIPS_GOTSYM:
f4416af6 6781 if (gg->global_gotsym)
b49e97c9 6782 {
f4416af6 6783 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
6784 break;
6785 }
6786 /* In case if we don't have global got symbols we default
6787 to setting DT_MIPS_GOTSYM to the same value as
6788 DT_MIPS_SYMTABNO, so we just fall through. */
6789
6790 case DT_MIPS_SYMTABNO:
6791 name = ".dynsym";
6792 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6793 s = bfd_get_section_by_name (output_bfd, name);
6794 BFD_ASSERT (s != NULL);
6795
6796 if (s->_cooked_size != 0)
6797 dyn.d_un.d_val = s->_cooked_size / elemsize;
6798 else
6799 dyn.d_un.d_val = s->_raw_size / elemsize;
6800 break;
6801
6802 case DT_MIPS_HIPAGENO:
6803 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6804 break;
6805
6806 case DT_MIPS_RLD_MAP:
6807 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6808 break;
6809
6810 case DT_MIPS_OPTIONS:
6811 s = (bfd_get_section_by_name
6812 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6813 dyn.d_un.d_ptr = s->vma;
6814 break;
6815
6816 case DT_MIPS_MSYM:
6817 s = (bfd_get_section_by_name (output_bfd, ".msym"));
6818 dyn.d_un.d_ptr = s->vma;
6819 break;
6820
6821 default:
b34976b6 6822 swap_out_p = FALSE;
b49e97c9
TS
6823 break;
6824 }
6825
6826 if (swap_out_p)
6827 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6828 (dynobj, &dyn, b);
6829 }
6830 }
6831
6832 /* The first entry of the global offset table will be filled at
6833 runtime. The second entry will be used by some runtime loaders.
8dc1a139 6834 This isn't the case of IRIX rld. */
b49e97c9
TS
6835 if (sgot != NULL && sgot->_raw_size > 0)
6836 {
6837 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
6838 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
6839 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6840 }
6841
6842 if (sgot != NULL)
6843 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6844 = MIPS_ELF_GOT_SIZE (output_bfd);
6845
f4416af6
AO
6846 /* Generate dynamic relocations for the non-primary gots. */
6847 if (gg != NULL && gg->next)
6848 {
6849 Elf_Internal_Rela rel[3];
6850 bfd_vma addend = 0;
6851
6852 memset (rel, 0, sizeof (rel));
6853 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6854
6855 for (g = gg->next; g->next != gg; g = g->next)
6856 {
6857 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6858
6859 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
6860 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6861 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
6862 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6863
6864 if (! info->shared)
6865 continue;
6866
6867 while (index < g->assigned_gotno)
6868 {
6869 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6870 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6871 if (!(mips_elf_create_dynamic_relocation
6872 (output_bfd, info, rel, NULL,
6873 bfd_abs_section_ptr,
6874 0, &addend, sgot)))
6875 return FALSE;
6876 BFD_ASSERT (addend == 0);
6877 }
6878 }
6879 }
6880
b49e97c9
TS
6881 {
6882 asection *smsym;
6883 asection *s;
6884 Elf32_compact_rel cpt;
6885
6886 /* ??? The section symbols for the output sections were set up in
6887 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
6888 symbols. Should we do so? */
6889
6890 smsym = bfd_get_section_by_name (dynobj, ".msym");
6891 if (smsym != NULL)
6892 {
6893 Elf32_Internal_Msym msym;
6894
6895 msym.ms_hash_value = 0;
6896 msym.ms_info = ELF32_MS_INFO (0, 1);
6897
6898 for (s = output_bfd->sections; s != NULL; s = s->next)
6899 {
6900 long dynindx = elf_section_data (s)->dynindx;
6901
6902 bfd_mips_elf_swap_msym_out
6903 (output_bfd, &msym,
6904 (((Elf32_External_Msym *) smsym->contents)
6905 + dynindx));
6906 }
6907 }
6908
6909 if (SGI_COMPAT (output_bfd))
6910 {
6911 /* Write .compact_rel section out. */
6912 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6913 if (s != NULL)
6914 {
6915 cpt.id1 = 1;
6916 cpt.num = s->reloc_count;
6917 cpt.id2 = 2;
6918 cpt.offset = (s->output_section->filepos
6919 + sizeof (Elf32_External_compact_rel));
6920 cpt.reserved0 = 0;
6921 cpt.reserved1 = 0;
6922 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6923 ((Elf32_External_compact_rel *)
6924 s->contents));
6925
6926 /* Clean up a dummy stub function entry in .text. */
6927 s = bfd_get_section_by_name (dynobj,
6928 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6929 if (s != NULL)
6930 {
6931 file_ptr dummy_offset;
6932
6933 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
6934 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
6935 memset (s->contents + dummy_offset, 0,
6936 MIPS_FUNCTION_STUB_SIZE);
6937 }
6938 }
6939 }
6940
6941 /* We need to sort the entries of the dynamic relocation section. */
6942
f4416af6
AO
6943 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6944
6945 if (s != NULL
6946 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 6947 {
f4416af6 6948 reldyn_sorting_bfd = output_bfd;
b49e97c9 6949
f4416af6
AO
6950 if (ABI_64_P (output_bfd))
6951 qsort ((Elf64_External_Rel *) s->contents + 1,
6952 (size_t) s->reloc_count - 1,
6953 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
6954 else
6955 qsort ((Elf32_External_Rel *) s->contents + 1,
6956 (size_t) s->reloc_count - 1,
6957 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 6958 }
b49e97c9
TS
6959 }
6960
b34976b6 6961 return TRUE;
b49e97c9
TS
6962}
6963
b49e97c9 6964
64543e1a
RS
6965/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
6966
6967static void
6968mips_set_isa_flags (abfd)
b49e97c9 6969 bfd *abfd;
b49e97c9 6970{
64543e1a 6971 flagword val;
b49e97c9
TS
6972
6973 switch (bfd_get_mach (abfd))
6974 {
6975 default:
6976 case bfd_mach_mips3000:
6977 val = E_MIPS_ARCH_1;
6978 break;
6979
6980 case bfd_mach_mips3900:
6981 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
6982 break;
6983
6984 case bfd_mach_mips6000:
6985 val = E_MIPS_ARCH_2;
6986 break;
6987
6988 case bfd_mach_mips4000:
6989 case bfd_mach_mips4300:
6990 case bfd_mach_mips4400:
6991 case bfd_mach_mips4600:
6992 val = E_MIPS_ARCH_3;
6993 break;
6994
6995 case bfd_mach_mips4010:
6996 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
6997 break;
6998
6999 case bfd_mach_mips4100:
7000 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7001 break;
7002
7003 case bfd_mach_mips4111:
7004 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7005 break;
7006
00707a0e
RS
7007 case bfd_mach_mips4120:
7008 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7009 break;
7010
b49e97c9
TS
7011 case bfd_mach_mips4650:
7012 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7013 break;
7014
00707a0e
RS
7015 case bfd_mach_mips5400:
7016 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7017 break;
7018
7019 case bfd_mach_mips5500:
7020 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7021 break;
7022
b49e97c9
TS
7023 case bfd_mach_mips5000:
7024 case bfd_mach_mips8000:
7025 case bfd_mach_mips10000:
7026 case bfd_mach_mips12000:
7027 val = E_MIPS_ARCH_4;
7028 break;
7029
7030 case bfd_mach_mips5:
7031 val = E_MIPS_ARCH_5;
7032 break;
7033
7034 case bfd_mach_mips_sb1:
7035 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7036 break;
7037
7038 case bfd_mach_mipsisa32:
7039 val = E_MIPS_ARCH_32;
7040 break;
7041
7042 case bfd_mach_mipsisa64:
7043 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7044 break;
7045
7046 case bfd_mach_mipsisa32r2:
7047 val = E_MIPS_ARCH_32R2;
7048 break;
b49e97c9 7049 }
b49e97c9
TS
7050 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7051 elf_elfheader (abfd)->e_flags |= val;
7052
64543e1a
RS
7053}
7054
7055
7056/* The final processing done just before writing out a MIPS ELF object
7057 file. This gets the MIPS architecture right based on the machine
7058 number. This is used by both the 32-bit and the 64-bit ABI. */
7059
7060void
7061_bfd_mips_elf_final_write_processing (abfd, linker)
7062 bfd *abfd;
7063 bfd_boolean linker ATTRIBUTE_UNUSED;
7064{
7065 unsigned int i;
7066 Elf_Internal_Shdr **hdrpp;
7067 const char *name;
7068 asection *sec;
7069
7070 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7071 is nonzero. This is for compatibility with old objects, which used
7072 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7073 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7074 mips_set_isa_flags (abfd);
7075
b49e97c9
TS
7076 /* Set the sh_info field for .gptab sections and other appropriate
7077 info for each special section. */
7078 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7079 i < elf_numsections (abfd);
7080 i++, hdrpp++)
7081 {
7082 switch ((*hdrpp)->sh_type)
7083 {
7084 case SHT_MIPS_MSYM:
7085 case SHT_MIPS_LIBLIST:
7086 sec = bfd_get_section_by_name (abfd, ".dynstr");
7087 if (sec != NULL)
7088 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7089 break;
7090
7091 case SHT_MIPS_GPTAB:
7092 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7093 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7094 BFD_ASSERT (name != NULL
7095 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7096 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7097 BFD_ASSERT (sec != NULL);
7098 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7099 break;
7100
7101 case SHT_MIPS_CONTENT:
7102 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7103 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7104 BFD_ASSERT (name != NULL
7105 && strncmp (name, ".MIPS.content",
7106 sizeof ".MIPS.content" - 1) == 0);
7107 sec = bfd_get_section_by_name (abfd,
7108 name + sizeof ".MIPS.content" - 1);
7109 BFD_ASSERT (sec != NULL);
7110 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7111 break;
7112
7113 case SHT_MIPS_SYMBOL_LIB:
7114 sec = bfd_get_section_by_name (abfd, ".dynsym");
7115 if (sec != NULL)
7116 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7117 sec = bfd_get_section_by_name (abfd, ".liblist");
7118 if (sec != NULL)
7119 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7120 break;
7121
7122 case SHT_MIPS_EVENTS:
7123 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7124 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7125 BFD_ASSERT (name != NULL);
7126 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7127 sec = bfd_get_section_by_name (abfd,
7128 name + sizeof ".MIPS.events" - 1);
7129 else
7130 {
7131 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7132 sizeof ".MIPS.post_rel" - 1) == 0);
7133 sec = bfd_get_section_by_name (abfd,
7134 (name
7135 + sizeof ".MIPS.post_rel" - 1));
7136 }
7137 BFD_ASSERT (sec != NULL);
7138 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7139 break;
7140
7141 }
7142 }
7143}
7144\f
8dc1a139 7145/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
7146 segments. */
7147
7148int
7149_bfd_mips_elf_additional_program_headers (abfd)
7150 bfd *abfd;
7151{
7152 asection *s;
7153 int ret = 0;
7154
7155 /* See if we need a PT_MIPS_REGINFO segment. */
7156 s = bfd_get_section_by_name (abfd, ".reginfo");
7157 if (s && (s->flags & SEC_LOAD))
7158 ++ret;
7159
7160 /* See if we need a PT_MIPS_OPTIONS segment. */
7161 if (IRIX_COMPAT (abfd) == ict_irix6
7162 && bfd_get_section_by_name (abfd,
7163 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7164 ++ret;
7165
7166 /* See if we need a PT_MIPS_RTPROC segment. */
7167 if (IRIX_COMPAT (abfd) == ict_irix5
7168 && bfd_get_section_by_name (abfd, ".dynamic")
7169 && bfd_get_section_by_name (abfd, ".mdebug"))
7170 ++ret;
7171
7172 return ret;
7173}
7174
8dc1a139 7175/* Modify the segment map for an IRIX5 executable. */
b49e97c9 7176
b34976b6 7177bfd_boolean
b49e97c9
TS
7178_bfd_mips_elf_modify_segment_map (abfd)
7179 bfd *abfd;
7180{
7181 asection *s;
7182 struct elf_segment_map *m, **pm;
7183 bfd_size_type amt;
7184
7185 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7186 segment. */
7187 s = bfd_get_section_by_name (abfd, ".reginfo");
7188 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7189 {
7190 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7191 if (m->p_type == PT_MIPS_REGINFO)
7192 break;
7193 if (m == NULL)
7194 {
7195 amt = sizeof *m;
7196 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7197 if (m == NULL)
b34976b6 7198 return FALSE;
b49e97c9
TS
7199
7200 m->p_type = PT_MIPS_REGINFO;
7201 m->count = 1;
7202 m->sections[0] = s;
7203
7204 /* We want to put it after the PHDR and INTERP segments. */
7205 pm = &elf_tdata (abfd)->segment_map;
7206 while (*pm != NULL
7207 && ((*pm)->p_type == PT_PHDR
7208 || (*pm)->p_type == PT_INTERP))
7209 pm = &(*pm)->next;
7210
7211 m->next = *pm;
7212 *pm = m;
7213 }
7214 }
7215
7216 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7217 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
44c410de 7218 PT_OPTIONS segment immediately following the program header
b49e97c9 7219 table. */
c1fd6598
AO
7220 if (NEWABI_P (abfd)
7221 /* On non-IRIX6 new abi, we'll have already created a segment
7222 for this section, so don't create another. I'm not sure this
7223 is not also the case for IRIX 6, but I can't test it right
7224 now. */
7225 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
7226 {
7227 for (s = abfd->sections; s; s = s->next)
7228 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7229 break;
7230
7231 if (s)
7232 {
7233 struct elf_segment_map *options_segment;
7234
7235 /* Usually, there's a program header table. But, sometimes
7236 there's not (like when running the `ld' testsuite). So,
7237 if there's no program header table, we just put the
44c410de 7238 options segment at the end. */
b49e97c9
TS
7239 for (pm = &elf_tdata (abfd)->segment_map;
7240 *pm != NULL;
7241 pm = &(*pm)->next)
7242 if ((*pm)->p_type == PT_PHDR)
7243 break;
7244
7245 amt = sizeof (struct elf_segment_map);
7246 options_segment = bfd_zalloc (abfd, amt);
7247 options_segment->next = *pm;
7248 options_segment->p_type = PT_MIPS_OPTIONS;
7249 options_segment->p_flags = PF_R;
b34976b6 7250 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
7251 options_segment->count = 1;
7252 options_segment->sections[0] = s;
7253 *pm = options_segment;
7254 }
7255 }
7256 else
7257 {
7258 if (IRIX_COMPAT (abfd) == ict_irix5)
7259 {
7260 /* If there are .dynamic and .mdebug sections, we make a room
7261 for the RTPROC header. FIXME: Rewrite without section names. */
7262 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7263 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7264 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7265 {
7266 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7267 if (m->p_type == PT_MIPS_RTPROC)
7268 break;
7269 if (m == NULL)
7270 {
7271 amt = sizeof *m;
7272 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7273 if (m == NULL)
b34976b6 7274 return FALSE;
b49e97c9
TS
7275
7276 m->p_type = PT_MIPS_RTPROC;
7277
7278 s = bfd_get_section_by_name (abfd, ".rtproc");
7279 if (s == NULL)
7280 {
7281 m->count = 0;
7282 m->p_flags = 0;
7283 m->p_flags_valid = 1;
7284 }
7285 else
7286 {
7287 m->count = 1;
7288 m->sections[0] = s;
7289 }
7290
7291 /* We want to put it after the DYNAMIC segment. */
7292 pm = &elf_tdata (abfd)->segment_map;
7293 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7294 pm = &(*pm)->next;
7295 if (*pm != NULL)
7296 pm = &(*pm)->next;
7297
7298 m->next = *pm;
7299 *pm = m;
7300 }
7301 }
7302 }
8dc1a139 7303 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
7304 .dynstr, .dynsym, and .hash sections, and everything in
7305 between. */
7306 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7307 pm = &(*pm)->next)
7308 if ((*pm)->p_type == PT_DYNAMIC)
7309 break;
7310 m = *pm;
7311 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7312 {
7313 /* For a normal mips executable the permissions for the PT_DYNAMIC
7314 segment are read, write and execute. We do that here since
7315 the code in elf.c sets only the read permission. This matters
7316 sometimes for the dynamic linker. */
7317 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7318 {
7319 m->p_flags = PF_R | PF_W | PF_X;
7320 m->p_flags_valid = 1;
7321 }
7322 }
7323 if (m != NULL
7324 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7325 {
7326 static const char *sec_names[] =
7327 {
7328 ".dynamic", ".dynstr", ".dynsym", ".hash"
7329 };
7330 bfd_vma low, high;
7331 unsigned int i, c;
7332 struct elf_segment_map *n;
7333
7334 low = 0xffffffff;
7335 high = 0;
7336 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7337 {
7338 s = bfd_get_section_by_name (abfd, sec_names[i]);
7339 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7340 {
7341 bfd_size_type sz;
7342
7343 if (low > s->vma)
7344 low = s->vma;
7345 sz = s->_cooked_size;
7346 if (sz == 0)
7347 sz = s->_raw_size;
7348 if (high < s->vma + sz)
7349 high = s->vma + sz;
7350 }
7351 }
7352
7353 c = 0;
7354 for (s = abfd->sections; s != NULL; s = s->next)
7355 if ((s->flags & SEC_LOAD) != 0
7356 && s->vma >= low
7357 && ((s->vma
7358 + (s->_cooked_size !=
7359 0 ? s->_cooked_size : s->_raw_size)) <= high))
7360 ++c;
7361
7362 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7363 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7364 if (n == NULL)
b34976b6 7365 return FALSE;
b49e97c9
TS
7366 *n = *m;
7367 n->count = c;
7368
7369 i = 0;
7370 for (s = abfd->sections; s != NULL; s = s->next)
7371 {
7372 if ((s->flags & SEC_LOAD) != 0
7373 && s->vma >= low
7374 && ((s->vma
7375 + (s->_cooked_size != 0 ?
7376 s->_cooked_size : s->_raw_size)) <= high))
7377 {
7378 n->sections[i] = s;
7379 ++i;
7380 }
7381 }
7382
7383 *pm = n;
7384 }
7385 }
7386
b34976b6 7387 return TRUE;
b49e97c9
TS
7388}
7389\f
7390/* Return the section that should be marked against GC for a given
7391 relocation. */
7392
7393asection *
1e2f5b6e
AM
7394_bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7395 asection *sec;
b49e97c9
TS
7396 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7397 Elf_Internal_Rela *rel;
7398 struct elf_link_hash_entry *h;
7399 Elf_Internal_Sym *sym;
7400{
7401 /* ??? Do mips16 stub sections need to be handled special? */
7402
7403 if (h != NULL)
7404 {
1e2f5b6e 7405 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
7406 {
7407 case R_MIPS_GNU_VTINHERIT:
7408 case R_MIPS_GNU_VTENTRY:
7409 break;
7410
7411 default:
7412 switch (h->root.type)
7413 {
7414 case bfd_link_hash_defined:
7415 case bfd_link_hash_defweak:
7416 return h->root.u.def.section;
7417
7418 case bfd_link_hash_common:
7419 return h->root.u.c.p->section;
7420
7421 default:
7422 break;
7423 }
7424 }
7425 }
7426 else
1e2f5b6e 7427 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
7428
7429 return NULL;
7430}
7431
7432/* Update the got entry reference counts for the section being removed. */
7433
b34976b6 7434bfd_boolean
b49e97c9
TS
7435_bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7436 bfd *abfd ATTRIBUTE_UNUSED;
7437 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7438 asection *sec ATTRIBUTE_UNUSED;
7439 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7440{
7441#if 0
7442 Elf_Internal_Shdr *symtab_hdr;
7443 struct elf_link_hash_entry **sym_hashes;
7444 bfd_signed_vma *local_got_refcounts;
7445 const Elf_Internal_Rela *rel, *relend;
7446 unsigned long r_symndx;
7447 struct elf_link_hash_entry *h;
7448
7449 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7450 sym_hashes = elf_sym_hashes (abfd);
7451 local_got_refcounts = elf_local_got_refcounts (abfd);
7452
7453 relend = relocs + sec->reloc_count;
7454 for (rel = relocs; rel < relend; rel++)
7455 switch (ELF_R_TYPE (abfd, rel->r_info))
7456 {
7457 case R_MIPS_GOT16:
7458 case R_MIPS_CALL16:
7459 case R_MIPS_CALL_HI16:
7460 case R_MIPS_CALL_LO16:
7461 case R_MIPS_GOT_HI16:
7462 case R_MIPS_GOT_LO16:
4a14403c
TS
7463 case R_MIPS_GOT_DISP:
7464 case R_MIPS_GOT_PAGE:
7465 case R_MIPS_GOT_OFST:
b49e97c9
TS
7466 /* ??? It would seem that the existing MIPS code does no sort
7467 of reference counting or whatnot on its GOT and PLT entries,
7468 so it is not possible to garbage collect them at this time. */
7469 break;
7470
7471 default:
7472 break;
7473 }
7474#endif
7475
b34976b6 7476 return TRUE;
b49e97c9
TS
7477}
7478\f
7479/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7480 hiding the old indirect symbol. Process additional relocation
7481 information. Also called for weakdefs, in which case we just let
7482 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7483
7484void
b48fa14c
AM
7485_bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7486 struct elf_backend_data *bed;
b49e97c9
TS
7487 struct elf_link_hash_entry *dir, *ind;
7488{
7489 struct mips_elf_link_hash_entry *dirmips, *indmips;
7490
b48fa14c 7491 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
7492
7493 if (ind->root.type != bfd_link_hash_indirect)
7494 return;
7495
7496 dirmips = (struct mips_elf_link_hash_entry *) dir;
7497 indmips = (struct mips_elf_link_hash_entry *) ind;
7498 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7499 if (indmips->readonly_reloc)
b34976b6 7500 dirmips->readonly_reloc = TRUE;
b49e97c9
TS
7501 if (dirmips->min_dyn_reloc_index == 0
7502 || (indmips->min_dyn_reloc_index != 0
7503 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7504 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7505 if (indmips->no_fn_stub)
b34976b6 7506 dirmips->no_fn_stub = TRUE;
b49e97c9
TS
7507}
7508
7509void
7510_bfd_mips_elf_hide_symbol (info, entry, force_local)
7511 struct bfd_link_info *info;
7512 struct elf_link_hash_entry *entry;
b34976b6 7513 bfd_boolean force_local;
b49e97c9
TS
7514{
7515 bfd *dynobj;
7516 asection *got;
7517 struct mips_got_info *g;
7518 struct mips_elf_link_hash_entry *h;
7c5fcef7 7519
b49e97c9 7520 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
7521 if (h->forced_local)
7522 return;
b34976b6 7523 h->forced_local = TRUE;
7c5fcef7 7524
b49e97c9 7525 dynobj = elf_hash_table (info)->dynobj;
f4416af6 7526 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 7527 g = mips_elf_section_data (got)->u.got_info;
b49e97c9 7528
f4416af6
AO
7529 if (g->next)
7530 {
7531 struct mips_got_entry e;
7532 struct mips_got_info *gg = g;
7533
7534 /* Since we're turning what used to be a global symbol into a
7535 local one, bump up the number of local entries of each GOT
7536 that had an entry for it. This will automatically decrease
7537 the number of global entries, since global_gotno is actually
7538 the upper limit of global entries. */
7539 e.abfd = dynobj;
7540 e.symndx = -1;
7541 e.d.h = h;
7542
7543 for (g = g->next; g != gg; g = g->next)
7544 if (htab_find (g->got_entries, &e))
7545 {
7546 BFD_ASSERT (g->global_gotno > 0);
7547 g->local_gotno++;
7548 g->global_gotno--;
7549 }
b49e97c9 7550
f4416af6
AO
7551 /* If this was a global symbol forced into the primary GOT, we
7552 no longer need an entry for it. We can't release the entry
7553 at this point, but we must at least stop counting it as one
7554 of the symbols that required a forced got entry. */
7555 if (h->root.got.offset == 2)
7556 {
7557 BFD_ASSERT (gg->assigned_gotno > 0);
7558 gg->assigned_gotno--;
7559 }
7560 }
7561 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7562 /* If we haven't got through GOT allocation yet, just bump up the
7563 number of local entries, as this symbol won't be counted as
7564 global. */
7565 g->local_gotno++;
7566 else if (h->root.got.offset == 1)
7567 {
7568 /* If we're past non-multi-GOT allocation and this symbol had
7569 been marked for a global got entry, give it a local entry
7570 instead. */
7571 BFD_ASSERT (g->global_gotno > 0);
7572 g->local_gotno++;
7573 g->global_gotno--;
7574 }
7575
7576 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
7577}
7578\f
d01414a5
TS
7579#define PDR_SIZE 32
7580
b34976b6 7581bfd_boolean
d01414a5
TS
7582_bfd_mips_elf_discard_info (abfd, cookie, info)
7583 bfd *abfd;
7584 struct elf_reloc_cookie *cookie;
7585 struct bfd_link_info *info;
7586{
7587 asection *o;
b34976b6 7588 bfd_boolean ret = FALSE;
d01414a5
TS
7589 unsigned char *tdata;
7590 size_t i, skip;
7591
7592 o = bfd_get_section_by_name (abfd, ".pdr");
7593 if (! o)
b34976b6 7594 return FALSE;
d01414a5 7595 if (o->_raw_size == 0)
b34976b6 7596 return FALSE;
d01414a5 7597 if (o->_raw_size % PDR_SIZE != 0)
b34976b6 7598 return FALSE;
d01414a5
TS
7599 if (o->output_section != NULL
7600 && bfd_is_abs_section (o->output_section))
b34976b6 7601 return FALSE;
d01414a5
TS
7602
7603 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7604 if (! tdata)
b34976b6 7605 return FALSE;
d01414a5 7606
ee6423ed
AO
7607 cookie->rels = (MNAME(abfd,_bfd_elf,link_read_relocs)
7608 (abfd, o, (PTR) NULL,
7609 (Elf_Internal_Rela *) NULL,
7610 info->keep_memory));
d01414a5
TS
7611 if (!cookie->rels)
7612 {
7613 free (tdata);
b34976b6 7614 return FALSE;
d01414a5
TS
7615 }
7616
7617 cookie->rel = cookie->rels;
7618 cookie->relend = cookie->rels + o->reloc_count;
7619
7620 for (i = 0, skip = 0; i < o->_raw_size; i ++)
7621 {
ee6423ed 7622 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
d01414a5
TS
7623 {
7624 tdata[i] = 1;
7625 skip ++;
7626 }
7627 }
7628
7629 if (skip != 0)
7630 {
f0abc2a1 7631 mips_elf_section_data (o)->u.tdata = tdata;
d01414a5 7632 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
b34976b6 7633 ret = TRUE;
d01414a5
TS
7634 }
7635 else
7636 free (tdata);
7637
7638 if (! info->keep_memory)
7639 free (cookie->rels);
7640
7641 return ret;
7642}
7643
b34976b6 7644bfd_boolean
53bfd6b4
MR
7645_bfd_mips_elf_ignore_discarded_relocs (sec)
7646 asection *sec;
7647{
7648 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
7649 return TRUE;
7650 return FALSE;
53bfd6b4 7651}
d01414a5 7652
b34976b6 7653bfd_boolean
d01414a5
TS
7654_bfd_mips_elf_write_section (output_bfd, sec, contents)
7655 bfd *output_bfd;
7656 asection *sec;
7657 bfd_byte *contents;
7658{
7659 bfd_byte *to, *from, *end;
7660 int i;
7661
7662 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 7663 return FALSE;
d01414a5 7664
f0abc2a1 7665 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 7666 return FALSE;
d01414a5
TS
7667
7668 to = contents;
7669 end = contents + sec->_raw_size;
7670 for (from = contents, i = 0;
7671 from < end;
7672 from += PDR_SIZE, i++)
7673 {
f0abc2a1 7674 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
7675 continue;
7676 if (to != from)
7677 memcpy (to, from, PDR_SIZE);
7678 to += PDR_SIZE;
7679 }
7680 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7681 (file_ptr) sec->output_offset,
7682 sec->_cooked_size);
b34976b6 7683 return TRUE;
d01414a5 7684}
53bfd6b4 7685\f
b49e97c9
TS
7686/* MIPS ELF uses a special find_nearest_line routine in order the
7687 handle the ECOFF debugging information. */
7688
7689struct mips_elf_find_line
7690{
7691 struct ecoff_debug_info d;
7692 struct ecoff_find_line i;
7693};
7694
b34976b6 7695bfd_boolean
b49e97c9
TS
7696_bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7697 functionname_ptr, line_ptr)
7698 bfd *abfd;
7699 asection *section;
7700 asymbol **symbols;
7701 bfd_vma offset;
7702 const char **filename_ptr;
7703 const char **functionname_ptr;
7704 unsigned int *line_ptr;
7705{
7706 asection *msec;
7707
7708 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7709 filename_ptr, functionname_ptr,
7710 line_ptr))
b34976b6 7711 return TRUE;
b49e97c9
TS
7712
7713 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7714 filename_ptr, functionname_ptr,
7715 line_ptr,
7716 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7717 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 7718 return TRUE;
b49e97c9
TS
7719
7720 msec = bfd_get_section_by_name (abfd, ".mdebug");
7721 if (msec != NULL)
7722 {
7723 flagword origflags;
7724 struct mips_elf_find_line *fi;
7725 const struct ecoff_debug_swap * const swap =
7726 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7727
7728 /* If we are called during a link, mips_elf_final_link may have
7729 cleared the SEC_HAS_CONTENTS field. We force it back on here
7730 if appropriate (which it normally will be). */
7731 origflags = msec->flags;
7732 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7733 msec->flags |= SEC_HAS_CONTENTS;
7734
7735 fi = elf_tdata (abfd)->find_line_info;
7736 if (fi == NULL)
7737 {
7738 bfd_size_type external_fdr_size;
7739 char *fraw_src;
7740 char *fraw_end;
7741 struct fdr *fdr_ptr;
7742 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7743
7744 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
7745 if (fi == NULL)
7746 {
7747 msec->flags = origflags;
b34976b6 7748 return FALSE;
b49e97c9
TS
7749 }
7750
7751 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7752 {
7753 msec->flags = origflags;
b34976b6 7754 return FALSE;
b49e97c9
TS
7755 }
7756
7757 /* Swap in the FDR information. */
7758 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7759 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
7760 if (fi->d.fdr == NULL)
7761 {
7762 msec->flags = origflags;
b34976b6 7763 return FALSE;
b49e97c9
TS
7764 }
7765 external_fdr_size = swap->external_fdr_size;
7766 fdr_ptr = fi->d.fdr;
7767 fraw_src = (char *) fi->d.external_fdr;
7768 fraw_end = (fraw_src
7769 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7770 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7771 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
7772
7773 elf_tdata (abfd)->find_line_info = fi;
7774
7775 /* Note that we don't bother to ever free this information.
7776 find_nearest_line is either called all the time, as in
7777 objdump -l, so the information should be saved, or it is
7778 rarely called, as in ld error messages, so the memory
7779 wasted is unimportant. Still, it would probably be a
7780 good idea for free_cached_info to throw it away. */
7781 }
7782
7783 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7784 &fi->i, filename_ptr, functionname_ptr,
7785 line_ptr))
7786 {
7787 msec->flags = origflags;
b34976b6 7788 return TRUE;
b49e97c9
TS
7789 }
7790
7791 msec->flags = origflags;
7792 }
7793
7794 /* Fall back on the generic ELF find_nearest_line routine. */
7795
7796 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7797 filename_ptr, functionname_ptr,
7798 line_ptr);
7799}
7800\f
7801/* When are writing out the .options or .MIPS.options section,
7802 remember the bytes we are writing out, so that we can install the
7803 GP value in the section_processing routine. */
7804
b34976b6 7805bfd_boolean
b49e97c9
TS
7806_bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
7807 bfd *abfd;
7808 sec_ptr section;
7809 PTR location;
7810 file_ptr offset;
7811 bfd_size_type count;
7812{
7813 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7814 {
7815 bfd_byte *c;
7816
7817 if (elf_section_data (section) == NULL)
7818 {
7819 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7820 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
7821 if (elf_section_data (section) == NULL)
b34976b6 7822 return FALSE;
b49e97c9 7823 }
f0abc2a1 7824 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
7825 if (c == NULL)
7826 {
7827 bfd_size_type size;
7828
7829 if (section->_cooked_size != 0)
7830 size = section->_cooked_size;
7831 else
7832 size = section->_raw_size;
7833 c = (bfd_byte *) bfd_zalloc (abfd, size);
7834 if (c == NULL)
b34976b6 7835 return FALSE;
f0abc2a1 7836 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
7837 }
7838
7839 memcpy (c + offset, location, (size_t) count);
7840 }
7841
7842 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7843 count);
7844}
7845
7846/* This is almost identical to bfd_generic_get_... except that some
7847 MIPS relocations need to be handled specially. Sigh. */
7848
7849bfd_byte *
7850_bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
7851 data, relocateable, symbols)
7852 bfd *abfd;
7853 struct bfd_link_info *link_info;
7854 struct bfd_link_order *link_order;
7855 bfd_byte *data;
b34976b6 7856 bfd_boolean relocateable;
b49e97c9
TS
7857 asymbol **symbols;
7858{
7859 /* Get enough memory to hold the stuff */
7860 bfd *input_bfd = link_order->u.indirect.section->owner;
7861 asection *input_section = link_order->u.indirect.section;
7862
7863 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7864 arelent **reloc_vector = NULL;
7865 long reloc_count;
7866
7867 if (reloc_size < 0)
7868 goto error_return;
7869
7870 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
7871 if (reloc_vector == NULL && reloc_size != 0)
7872 goto error_return;
7873
7874 /* read in the section */
7875 if (!bfd_get_section_contents (input_bfd,
7876 input_section,
7877 (PTR) data,
7878 (file_ptr) 0,
7879 input_section->_raw_size))
7880 goto error_return;
7881
7882 /* We're not relaxing the section, so just copy the size info */
7883 input_section->_cooked_size = input_section->_raw_size;
b34976b6 7884 input_section->reloc_done = TRUE;
b49e97c9
TS
7885
7886 reloc_count = bfd_canonicalize_reloc (input_bfd,
7887 input_section,
7888 reloc_vector,
7889 symbols);
7890 if (reloc_count < 0)
7891 goto error_return;
7892
7893 if (reloc_count > 0)
7894 {
7895 arelent **parent;
7896 /* for mips */
7897 int gp_found;
7898 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7899
7900 {
7901 struct bfd_hash_entry *h;
7902 struct bfd_link_hash_entry *lh;
7903 /* Skip all this stuff if we aren't mixing formats. */
7904 if (abfd && input_bfd
7905 && abfd->xvec == input_bfd->xvec)
7906 lh = 0;
7907 else
7908 {
b34976b6 7909 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
7910 lh = (struct bfd_link_hash_entry *) h;
7911 }
7912 lookup:
7913 if (lh)
7914 {
7915 switch (lh->type)
7916 {
7917 case bfd_link_hash_undefined:
7918 case bfd_link_hash_undefweak:
7919 case bfd_link_hash_common:
7920 gp_found = 0;
7921 break;
7922 case bfd_link_hash_defined:
7923 case bfd_link_hash_defweak:
7924 gp_found = 1;
7925 gp = lh->u.def.value;
7926 break;
7927 case bfd_link_hash_indirect:
7928 case bfd_link_hash_warning:
7929 lh = lh->u.i.link;
7930 /* @@FIXME ignoring warning for now */
7931 goto lookup;
7932 case bfd_link_hash_new:
7933 default:
7934 abort ();
7935 }
7936 }
7937 else
7938 gp_found = 0;
7939 }
7940 /* end mips */
7941 for (parent = reloc_vector; *parent != (arelent *) NULL;
7942 parent++)
7943 {
7944 char *error_message = (char *) NULL;
7945 bfd_reloc_status_type r;
7946
7947 /* Specific to MIPS: Deal with relocation types that require
7948 knowing the gp of the output bfd. */
7949 asymbol *sym = *(*parent)->sym_ptr_ptr;
7950 if (bfd_is_abs_section (sym->section) && abfd)
7951 {
44c410de 7952 /* The special_function wouldn't get called anyway. */
b49e97c9
TS
7953 }
7954 else if (!gp_found)
7955 {
7956 /* The gp isn't there; let the special function code
7957 fall over on its own. */
7958 }
7959 else if ((*parent)->howto->special_function
7960 == _bfd_mips_elf32_gprel16_reloc)
7961 {
7962 /* bypass special_function call */
7963 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
7964 input_section, relocateable,
7965 (PTR) data, gp);
7966 goto skip_bfd_perform_relocation;
7967 }
7968 /* end mips specific stuff */
7969
7970 r = bfd_perform_relocation (input_bfd,
7971 *parent,
7972 (PTR) data,
7973 input_section,
7974 relocateable ? abfd : (bfd *) NULL,
7975 &error_message);
7976 skip_bfd_perform_relocation:
7977
7978 if (relocateable)
7979 {
7980 asection *os = input_section->output_section;
7981
7982 /* A partial link, so keep the relocs */
7983 os->orelocation[os->reloc_count] = *parent;
7984 os->reloc_count++;
7985 }
7986
7987 if (r != bfd_reloc_ok)
7988 {
7989 switch (r)
7990 {
7991 case bfd_reloc_undefined:
7992 if (!((*link_info->callbacks->undefined_symbol)
7993 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
7994 input_bfd, input_section, (*parent)->address,
b34976b6 7995 TRUE)))
b49e97c9
TS
7996 goto error_return;
7997 break;
7998 case bfd_reloc_dangerous:
7999 BFD_ASSERT (error_message != (char *) NULL);
8000 if (!((*link_info->callbacks->reloc_dangerous)
8001 (link_info, error_message, input_bfd, input_section,
8002 (*parent)->address)))
8003 goto error_return;
8004 break;
8005 case bfd_reloc_overflow:
8006 if (!((*link_info->callbacks->reloc_overflow)
8007 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8008 (*parent)->howto->name, (*parent)->addend,
8009 input_bfd, input_section, (*parent)->address)))
8010 goto error_return;
8011 break;
8012 case bfd_reloc_outofrange:
8013 default:
8014 abort ();
8015 break;
8016 }
8017
8018 }
8019 }
8020 }
8021 if (reloc_vector != NULL)
8022 free (reloc_vector);
8023 return data;
8024
8025error_return:
8026 if (reloc_vector != NULL)
8027 free (reloc_vector);
8028 return NULL;
8029}
8030\f
8031/* Create a MIPS ELF linker hash table. */
8032
8033struct bfd_link_hash_table *
8034_bfd_mips_elf_link_hash_table_create (abfd)
8035 bfd *abfd;
8036{
8037 struct mips_elf_link_hash_table *ret;
8038 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8039
e2d34d7d 8040 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
b49e97c9
TS
8041 if (ret == (struct mips_elf_link_hash_table *) NULL)
8042 return NULL;
8043
8044 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8045 mips_elf_link_hash_newfunc))
8046 {
e2d34d7d 8047 free (ret);
b49e97c9
TS
8048 return NULL;
8049 }
8050
8051#if 0
8052 /* We no longer use this. */
8053 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8054 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8055#endif
8056 ret->procedure_count = 0;
8057 ret->compact_rel_size = 0;
b34976b6 8058 ret->use_rld_obj_head = FALSE;
b49e97c9 8059 ret->rld_value = 0;
b34976b6 8060 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8061
8062 return &ret->root.root;
8063}
8064\f
8065/* We need to use a special link routine to handle the .reginfo and
8066 the .mdebug sections. We need to merge all instances of these
8067 sections together, not write them all out sequentially. */
8068
b34976b6 8069bfd_boolean
b49e97c9
TS
8070_bfd_mips_elf_final_link (abfd, info)
8071 bfd *abfd;
8072 struct bfd_link_info *info;
8073{
8074 asection **secpp;
8075 asection *o;
8076 struct bfd_link_order *p;
8077 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8078 asection *rtproc_sec;
8079 Elf32_RegInfo reginfo;
8080 struct ecoff_debug_info debug;
8081 const struct ecoff_debug_swap *swap
8082 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8083 HDRR *symhdr = &debug.symbolic_header;
8084 PTR mdebug_handle = NULL;
8085 asection *s;
8086 EXTR esym;
8087 unsigned int i;
8088 bfd_size_type amt;
8089
8090 static const char * const secname[] =
8091 {
8092 ".text", ".init", ".fini", ".data",
8093 ".rodata", ".sdata", ".sbss", ".bss"
8094 };
8095 static const int sc[] =
8096 {
8097 scText, scInit, scFini, scData,
8098 scRData, scSData, scSBss, scBss
8099 };
8100
8101 /* If all the things we linked together were PIC, but we're
8102 producing an executable (rather than a shared object), then the
8103 resulting file is CPIC (i.e., it calls PIC code.) */
8104 if (!info->shared
8105 && !info->relocateable
8106 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
8107 {
8108 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
8109 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
8110 }
8111
8112 /* We'd carefully arranged the dynamic symbol indices, and then the
8113 generic size_dynamic_sections renumbered them out from under us.
8114 Rather than trying somehow to prevent the renumbering, just do
8115 the sort again. */
8116 if (elf_hash_table (info)->dynamic_sections_created)
8117 {
8118 bfd *dynobj;
8119 asection *got;
8120 struct mips_got_info *g;
8121
8122 /* When we resort, we must tell mips_elf_sort_hash_table what
8123 the lowest index it may use is. That's the number of section
8124 symbols we're going to add. The generic ELF linker only
8125 adds these symbols when building a shared object. Note that
8126 we count the sections after (possibly) removing the .options
8127 section above. */
8128 if (! mips_elf_sort_hash_table (info, (info->shared
8129 ? bfd_count_sections (abfd) + 1
8130 : 1)))
b34976b6 8131 return FALSE;
b49e97c9
TS
8132
8133 /* Make sure we didn't grow the global .got region. */
8134 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8135 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8136 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8137
8138 if (g->global_gotsym != NULL)
8139 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8140 - g->global_gotsym->dynindx)
8141 <= g->global_gotno);
8142 }
8143
a902ee94
SC
8144#if 0
8145 /* We want to set the GP value for ld -r. */
b49e97c9
TS
8146 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8147 include it, even though we don't process it quite right. (Some
8148 entries are supposed to be merged.) Empirically, we seem to be
8149 better off including it then not. */
8150 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8151 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8152 {
8153 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8154 {
8155 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8156 if (p->type == bfd_indirect_link_order)
8157 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8158 (*secpp)->link_order_head = NULL;
8159 bfd_section_list_remove (abfd, secpp);
8160 --abfd->section_count;
8161
8162 break;
8163 }
8164 }
8165
8166 /* We include .MIPS.options, even though we don't process it quite right.
8167 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8168 to be better off including it than not. */
8169 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8170 {
8171 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8172 {
8173 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8174 if (p->type == bfd_indirect_link_order)
8175 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8176 (*secpp)->link_order_head = NULL;
8177 bfd_section_list_remove (abfd, secpp);
8178 --abfd->section_count;
b34976b6 8179
b49e97c9
TS
8180 break;
8181 }
8182 }
a902ee94 8183#endif
b49e97c9
TS
8184
8185 /* Get a value for the GP register. */
8186 if (elf_gp (abfd) == 0)
8187 {
8188 struct bfd_link_hash_entry *h;
8189
b34976b6 8190 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
b49e97c9
TS
8191 if (h != (struct bfd_link_hash_entry *) NULL
8192 && h->type == bfd_link_hash_defined)
8193 elf_gp (abfd) = (h->u.def.value
8194 + h->u.def.section->output_section->vma
8195 + h->u.def.section->output_offset);
8196 else if (info->relocateable)
8197 {
8198 bfd_vma lo = MINUS_ONE;
8199
8200 /* Find the GP-relative section with the lowest offset. */
8201 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8202 if (o->vma < lo
8203 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8204 lo = o->vma;
8205
8206 /* And calculate GP relative to that. */
8207 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8208 }
8209 else
8210 {
8211 /* If the relocate_section function needs to do a reloc
8212 involving the GP value, it should make a reloc_dangerous
8213 callback to warn that GP is not defined. */
8214 }
8215 }
8216
8217 /* Go through the sections and collect the .reginfo and .mdebug
8218 information. */
8219 reginfo_sec = NULL;
8220 mdebug_sec = NULL;
8221 gptab_data_sec = NULL;
8222 gptab_bss_sec = NULL;
8223 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8224 {
8225 if (strcmp (o->name, ".reginfo") == 0)
8226 {
8227 memset (&reginfo, 0, sizeof reginfo);
8228
8229 /* We have found the .reginfo section in the output file.
8230 Look through all the link_orders comprising it and merge
8231 the information together. */
8232 for (p = o->link_order_head;
8233 p != (struct bfd_link_order *) NULL;
8234 p = p->next)
8235 {
8236 asection *input_section;
8237 bfd *input_bfd;
8238 Elf32_External_RegInfo ext;
8239 Elf32_RegInfo sub;
8240
8241 if (p->type != bfd_indirect_link_order)
8242 {
8243 if (p->type == bfd_data_link_order)
8244 continue;
8245 abort ();
8246 }
8247
8248 input_section = p->u.indirect.section;
8249 input_bfd = input_section->owner;
8250
8251 /* The linker emulation code has probably clobbered the
8252 size to be zero bytes. */
8253 if (input_section->_raw_size == 0)
8254 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8255
8256 if (! bfd_get_section_contents (input_bfd, input_section,
8257 (PTR) &ext,
8258 (file_ptr) 0,
8259 (bfd_size_type) sizeof ext))
b34976b6 8260 return FALSE;
b49e97c9
TS
8261
8262 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8263
8264 reginfo.ri_gprmask |= sub.ri_gprmask;
8265 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8266 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8267 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8268 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8269
8270 /* ri_gp_value is set by the function
8271 mips_elf32_section_processing when the section is
8272 finally written out. */
8273
8274 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8275 elf_link_input_bfd ignores this section. */
8276 input_section->flags &= ~SEC_HAS_CONTENTS;
8277 }
8278
8279 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8280 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8281
8282 /* Skip this section later on (I don't think this currently
8283 matters, but someday it might). */
8284 o->link_order_head = (struct bfd_link_order *) NULL;
8285
8286 reginfo_sec = o;
8287 }
8288
8289 if (strcmp (o->name, ".mdebug") == 0)
8290 {
8291 struct extsym_info einfo;
8292 bfd_vma last;
8293
8294 /* We have found the .mdebug section in the output file.
8295 Look through all the link_orders comprising it and merge
8296 the information together. */
8297 symhdr->magic = swap->sym_magic;
8298 /* FIXME: What should the version stamp be? */
8299 symhdr->vstamp = 0;
8300 symhdr->ilineMax = 0;
8301 symhdr->cbLine = 0;
8302 symhdr->idnMax = 0;
8303 symhdr->ipdMax = 0;
8304 symhdr->isymMax = 0;
8305 symhdr->ioptMax = 0;
8306 symhdr->iauxMax = 0;
8307 symhdr->issMax = 0;
8308 symhdr->issExtMax = 0;
8309 symhdr->ifdMax = 0;
8310 symhdr->crfd = 0;
8311 symhdr->iextMax = 0;
8312
8313 /* We accumulate the debugging information itself in the
8314 debug_info structure. */
8315 debug.line = NULL;
8316 debug.external_dnr = NULL;
8317 debug.external_pdr = NULL;
8318 debug.external_sym = NULL;
8319 debug.external_opt = NULL;
8320 debug.external_aux = NULL;
8321 debug.ss = NULL;
8322 debug.ssext = debug.ssext_end = NULL;
8323 debug.external_fdr = NULL;
8324 debug.external_rfd = NULL;
8325 debug.external_ext = debug.external_ext_end = NULL;
8326
8327 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8328 if (mdebug_handle == (PTR) NULL)
b34976b6 8329 return FALSE;
b49e97c9
TS
8330
8331 esym.jmptbl = 0;
8332 esym.cobol_main = 0;
8333 esym.weakext = 0;
8334 esym.reserved = 0;
8335 esym.ifd = ifdNil;
8336 esym.asym.iss = issNil;
8337 esym.asym.st = stLocal;
8338 esym.asym.reserved = 0;
8339 esym.asym.index = indexNil;
8340 last = 0;
8341 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8342 {
8343 esym.asym.sc = sc[i];
8344 s = bfd_get_section_by_name (abfd, secname[i]);
8345 if (s != NULL)
8346 {
8347 esym.asym.value = s->vma;
8348 last = s->vma + s->_raw_size;
8349 }
8350 else
8351 esym.asym.value = last;
8352 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8353 secname[i], &esym))
b34976b6 8354 return FALSE;
b49e97c9
TS
8355 }
8356
8357 for (p = o->link_order_head;
8358 p != (struct bfd_link_order *) NULL;
8359 p = p->next)
8360 {
8361 asection *input_section;
8362 bfd *input_bfd;
8363 const struct ecoff_debug_swap *input_swap;
8364 struct ecoff_debug_info input_debug;
8365 char *eraw_src;
8366 char *eraw_end;
8367
8368 if (p->type != bfd_indirect_link_order)
8369 {
8370 if (p->type == bfd_data_link_order)
8371 continue;
8372 abort ();
8373 }
8374
8375 input_section = p->u.indirect.section;
8376 input_bfd = input_section->owner;
8377
8378 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8379 || (get_elf_backend_data (input_bfd)
8380 ->elf_backend_ecoff_debug_swap) == NULL)
8381 {
8382 /* I don't know what a non MIPS ELF bfd would be
8383 doing with a .mdebug section, but I don't really
8384 want to deal with it. */
8385 continue;
8386 }
8387
8388 input_swap = (get_elf_backend_data (input_bfd)
8389 ->elf_backend_ecoff_debug_swap);
8390
8391 BFD_ASSERT (p->size == input_section->_raw_size);
8392
8393 /* The ECOFF linking code expects that we have already
8394 read in the debugging information and set up an
8395 ecoff_debug_info structure, so we do that now. */
8396 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8397 &input_debug))
b34976b6 8398 return FALSE;
b49e97c9
TS
8399
8400 if (! (bfd_ecoff_debug_accumulate
8401 (mdebug_handle, abfd, &debug, swap, input_bfd,
8402 &input_debug, input_swap, info)))
b34976b6 8403 return FALSE;
b49e97c9
TS
8404
8405 /* Loop through the external symbols. For each one with
8406 interesting information, try to find the symbol in
8407 the linker global hash table and save the information
8408 for the output external symbols. */
8409 eraw_src = input_debug.external_ext;
8410 eraw_end = (eraw_src
8411 + (input_debug.symbolic_header.iextMax
8412 * input_swap->external_ext_size));
8413 for (;
8414 eraw_src < eraw_end;
8415 eraw_src += input_swap->external_ext_size)
8416 {
8417 EXTR ext;
8418 const char *name;
8419 struct mips_elf_link_hash_entry *h;
8420
8421 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8422 if (ext.asym.sc == scNil
8423 || ext.asym.sc == scUndefined
8424 || ext.asym.sc == scSUndefined)
8425 continue;
8426
8427 name = input_debug.ssext + ext.asym.iss;
8428 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 8429 name, FALSE, FALSE, TRUE);
b49e97c9
TS
8430 if (h == NULL || h->esym.ifd != -2)
8431 continue;
8432
8433 if (ext.ifd != -1)
8434 {
8435 BFD_ASSERT (ext.ifd
8436 < input_debug.symbolic_header.ifdMax);
8437 ext.ifd = input_debug.ifdmap[ext.ifd];
8438 }
8439
8440 h->esym = ext;
8441 }
8442
8443 /* Free up the information we just read. */
8444 free (input_debug.line);
8445 free (input_debug.external_dnr);
8446 free (input_debug.external_pdr);
8447 free (input_debug.external_sym);
8448 free (input_debug.external_opt);
8449 free (input_debug.external_aux);
8450 free (input_debug.ss);
8451 free (input_debug.ssext);
8452 free (input_debug.external_fdr);
8453 free (input_debug.external_rfd);
8454 free (input_debug.external_ext);
8455
8456 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8457 elf_link_input_bfd ignores this section. */
8458 input_section->flags &= ~SEC_HAS_CONTENTS;
8459 }
8460
8461 if (SGI_COMPAT (abfd) && info->shared)
8462 {
8463 /* Create .rtproc section. */
8464 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8465 if (rtproc_sec == NULL)
8466 {
8467 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8468 | SEC_LINKER_CREATED | SEC_READONLY);
8469
8470 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8471 if (rtproc_sec == NULL
8472 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8473 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 8474 return FALSE;
b49e97c9
TS
8475 }
8476
8477 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8478 info, rtproc_sec,
8479 &debug))
b34976b6 8480 return FALSE;
b49e97c9
TS
8481 }
8482
8483 /* Build the external symbol information. */
8484 einfo.abfd = abfd;
8485 einfo.info = info;
8486 einfo.debug = &debug;
8487 einfo.swap = swap;
b34976b6 8488 einfo.failed = FALSE;
b49e97c9
TS
8489 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8490 mips_elf_output_extsym,
8491 (PTR) &einfo);
8492 if (einfo.failed)
b34976b6 8493 return FALSE;
b49e97c9
TS
8494
8495 /* Set the size of the .mdebug section. */
8496 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8497
8498 /* Skip this section later on (I don't think this currently
8499 matters, but someday it might). */
8500 o->link_order_head = (struct bfd_link_order *) NULL;
8501
8502 mdebug_sec = o;
8503 }
8504
8505 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8506 {
8507 const char *subname;
8508 unsigned int c;
8509 Elf32_gptab *tab;
8510 Elf32_External_gptab *ext_tab;
8511 unsigned int j;
8512
8513 /* The .gptab.sdata and .gptab.sbss sections hold
8514 information describing how the small data area would
8515 change depending upon the -G switch. These sections
8516 not used in executables files. */
8517 if (! info->relocateable)
8518 {
8519 for (p = o->link_order_head;
8520 p != (struct bfd_link_order *) NULL;
8521 p = p->next)
8522 {
8523 asection *input_section;
8524
8525 if (p->type != bfd_indirect_link_order)
8526 {
8527 if (p->type == bfd_data_link_order)
8528 continue;
8529 abort ();
8530 }
8531
8532 input_section = p->u.indirect.section;
8533
8534 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8535 elf_link_input_bfd ignores this section. */
8536 input_section->flags &= ~SEC_HAS_CONTENTS;
8537 }
8538
8539 /* Skip this section later on (I don't think this
8540 currently matters, but someday it might). */
8541 o->link_order_head = (struct bfd_link_order *) NULL;
8542
8543 /* Really remove the section. */
8544 for (secpp = &abfd->sections;
8545 *secpp != o;
8546 secpp = &(*secpp)->next)
8547 ;
8548 bfd_section_list_remove (abfd, secpp);
8549 --abfd->section_count;
8550
8551 continue;
8552 }
8553
8554 /* There is one gptab for initialized data, and one for
8555 uninitialized data. */
8556 if (strcmp (o->name, ".gptab.sdata") == 0)
8557 gptab_data_sec = o;
8558 else if (strcmp (o->name, ".gptab.sbss") == 0)
8559 gptab_bss_sec = o;
8560 else
8561 {
8562 (*_bfd_error_handler)
8563 (_("%s: illegal section name `%s'"),
8564 bfd_get_filename (abfd), o->name);
8565 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 8566 return FALSE;
b49e97c9
TS
8567 }
8568
8569 /* The linker script always combines .gptab.data and
8570 .gptab.sdata into .gptab.sdata, and likewise for
8571 .gptab.bss and .gptab.sbss. It is possible that there is
8572 no .sdata or .sbss section in the output file, in which
8573 case we must change the name of the output section. */
8574 subname = o->name + sizeof ".gptab" - 1;
8575 if (bfd_get_section_by_name (abfd, subname) == NULL)
8576 {
8577 if (o == gptab_data_sec)
8578 o->name = ".gptab.data";
8579 else
8580 o->name = ".gptab.bss";
8581 subname = o->name + sizeof ".gptab" - 1;
8582 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8583 }
8584
8585 /* Set up the first entry. */
8586 c = 1;
8587 amt = c * sizeof (Elf32_gptab);
8588 tab = (Elf32_gptab *) bfd_malloc (amt);
8589 if (tab == NULL)
b34976b6 8590 return FALSE;
b49e97c9
TS
8591 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8592 tab[0].gt_header.gt_unused = 0;
8593
8594 /* Combine the input sections. */
8595 for (p = o->link_order_head;
8596 p != (struct bfd_link_order *) NULL;
8597 p = p->next)
8598 {
8599 asection *input_section;
8600 bfd *input_bfd;
8601 bfd_size_type size;
8602 unsigned long last;
8603 bfd_size_type gpentry;
8604
8605 if (p->type != bfd_indirect_link_order)
8606 {
8607 if (p->type == bfd_data_link_order)
8608 continue;
8609 abort ();
8610 }
8611
8612 input_section = p->u.indirect.section;
8613 input_bfd = input_section->owner;
8614
8615 /* Combine the gptab entries for this input section one
8616 by one. We know that the input gptab entries are
8617 sorted by ascending -G value. */
8618 size = bfd_section_size (input_bfd, input_section);
8619 last = 0;
8620 for (gpentry = sizeof (Elf32_External_gptab);
8621 gpentry < size;
8622 gpentry += sizeof (Elf32_External_gptab))
8623 {
8624 Elf32_External_gptab ext_gptab;
8625 Elf32_gptab int_gptab;
8626 unsigned long val;
8627 unsigned long add;
b34976b6 8628 bfd_boolean exact;
b49e97c9
TS
8629 unsigned int look;
8630
8631 if (! (bfd_get_section_contents
8632 (input_bfd, input_section, (PTR) &ext_gptab,
8633 (file_ptr) gpentry,
8634 (bfd_size_type) sizeof (Elf32_External_gptab))))
8635 {
8636 free (tab);
b34976b6 8637 return FALSE;
b49e97c9
TS
8638 }
8639
8640 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8641 &int_gptab);
8642 val = int_gptab.gt_entry.gt_g_value;
8643 add = int_gptab.gt_entry.gt_bytes - last;
8644
b34976b6 8645 exact = FALSE;
b49e97c9
TS
8646 for (look = 1; look < c; look++)
8647 {
8648 if (tab[look].gt_entry.gt_g_value >= val)
8649 tab[look].gt_entry.gt_bytes += add;
8650
8651 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 8652 exact = TRUE;
b49e97c9
TS
8653 }
8654
8655 if (! exact)
8656 {
8657 Elf32_gptab *new_tab;
8658 unsigned int max;
8659
8660 /* We need a new table entry. */
8661 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8662 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8663 if (new_tab == NULL)
8664 {
8665 free (tab);
b34976b6 8666 return FALSE;
b49e97c9
TS
8667 }
8668 tab = new_tab;
8669 tab[c].gt_entry.gt_g_value = val;
8670 tab[c].gt_entry.gt_bytes = add;
8671
8672 /* Merge in the size for the next smallest -G
8673 value, since that will be implied by this new
8674 value. */
8675 max = 0;
8676 for (look = 1; look < c; look++)
8677 {
8678 if (tab[look].gt_entry.gt_g_value < val
8679 && (max == 0
8680 || (tab[look].gt_entry.gt_g_value
8681 > tab[max].gt_entry.gt_g_value)))
8682 max = look;
8683 }
8684 if (max != 0)
8685 tab[c].gt_entry.gt_bytes +=
8686 tab[max].gt_entry.gt_bytes;
8687
8688 ++c;
8689 }
8690
8691 last = int_gptab.gt_entry.gt_bytes;
8692 }
8693
8694 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8695 elf_link_input_bfd ignores this section. */
8696 input_section->flags &= ~SEC_HAS_CONTENTS;
8697 }
8698
8699 /* The table must be sorted by -G value. */
8700 if (c > 2)
8701 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8702
8703 /* Swap out the table. */
8704 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8705 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8706 if (ext_tab == NULL)
8707 {
8708 free (tab);
b34976b6 8709 return FALSE;
b49e97c9
TS
8710 }
8711
8712 for (j = 0; j < c; j++)
8713 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8714 free (tab);
8715
8716 o->_raw_size = c * sizeof (Elf32_External_gptab);
8717 o->contents = (bfd_byte *) ext_tab;
8718
8719 /* Skip this section later on (I don't think this currently
8720 matters, but someday it might). */
8721 o->link_order_head = (struct bfd_link_order *) NULL;
8722 }
8723 }
8724
8725 /* Invoke the regular ELF backend linker to do all the work. */
ee6423ed 8726 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
b34976b6 8727 return FALSE;
b49e97c9
TS
8728
8729 /* Now write out the computed sections. */
8730
8731 if (reginfo_sec != (asection *) NULL)
8732 {
8733 Elf32_External_RegInfo ext;
8734
8735 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8736 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
8737 (file_ptr) 0,
8738 (bfd_size_type) sizeof ext))
b34976b6 8739 return FALSE;
b49e97c9
TS
8740 }
8741
8742 if (mdebug_sec != (asection *) NULL)
8743 {
8744 BFD_ASSERT (abfd->output_has_begun);
8745 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8746 swap, info,
8747 mdebug_sec->filepos))
b34976b6 8748 return FALSE;
b49e97c9
TS
8749
8750 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8751 }
8752
8753 if (gptab_data_sec != (asection *) NULL)
8754 {
8755 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8756 gptab_data_sec->contents,
8757 (file_ptr) 0,
8758 gptab_data_sec->_raw_size))
b34976b6 8759 return FALSE;
b49e97c9
TS
8760 }
8761
8762 if (gptab_bss_sec != (asection *) NULL)
8763 {
8764 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8765 gptab_bss_sec->contents,
8766 (file_ptr) 0,
8767 gptab_bss_sec->_raw_size))
b34976b6 8768 return FALSE;
b49e97c9
TS
8769 }
8770
8771 if (SGI_COMPAT (abfd))
8772 {
8773 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8774 if (rtproc_sec != NULL)
8775 {
8776 if (! bfd_set_section_contents (abfd, rtproc_sec,
8777 rtproc_sec->contents,
8778 (file_ptr) 0,
8779 rtproc_sec->_raw_size))
b34976b6 8780 return FALSE;
b49e97c9
TS
8781 }
8782 }
8783
b34976b6 8784 return TRUE;
b49e97c9
TS
8785}
8786\f
64543e1a
RS
8787/* Structure for saying that BFD machine EXTENSION extends BASE. */
8788
8789struct mips_mach_extension {
8790 unsigned long extension, base;
8791};
8792
8793
8794/* An array describing how BFD machines relate to one another. The entries
8795 are ordered topologically with MIPS I extensions listed last. */
8796
8797static const struct mips_mach_extension mips_mach_extensions[] = {
8798 /* MIPS64 extensions. */
8799 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8800
8801 /* MIPS V extensions. */
8802 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8803
8804 /* R10000 extensions. */
8805 { bfd_mach_mips12000, bfd_mach_mips10000 },
8806
8807 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8808 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8809 better to allow vr5400 and vr5500 code to be merged anyway, since
8810 many libraries will just use the core ISA. Perhaps we could add
8811 some sort of ASE flag if this ever proves a problem. */
8812 { bfd_mach_mips5500, bfd_mach_mips5400 },
8813 { bfd_mach_mips5400, bfd_mach_mips5000 },
8814
8815 /* MIPS IV extensions. */
8816 { bfd_mach_mips5, bfd_mach_mips8000 },
8817 { bfd_mach_mips10000, bfd_mach_mips8000 },
8818 { bfd_mach_mips5000, bfd_mach_mips8000 },
8819
8820 /* VR4100 extensions. */
8821 { bfd_mach_mips4120, bfd_mach_mips4100 },
8822 { bfd_mach_mips4111, bfd_mach_mips4100 },
8823
8824 /* MIPS III extensions. */
8825 { bfd_mach_mips8000, bfd_mach_mips4000 },
8826 { bfd_mach_mips4650, bfd_mach_mips4000 },
8827 { bfd_mach_mips4600, bfd_mach_mips4000 },
8828 { bfd_mach_mips4400, bfd_mach_mips4000 },
8829 { bfd_mach_mips4300, bfd_mach_mips4000 },
8830 { bfd_mach_mips4100, bfd_mach_mips4000 },
8831 { bfd_mach_mips4010, bfd_mach_mips4000 },
8832
8833 /* MIPS32 extensions. */
8834 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8835
8836 /* MIPS II extensions. */
8837 { bfd_mach_mips4000, bfd_mach_mips6000 },
8838 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8839
8840 /* MIPS I extensions. */
8841 { bfd_mach_mips6000, bfd_mach_mips3000 },
8842 { bfd_mach_mips3900, bfd_mach_mips3000 }
8843};
8844
8845
8846/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8847
8848static bfd_boolean
8849mips_mach_extends_p (base, extension)
8850 unsigned long base, extension;
8851{
8852 size_t i;
8853
8854 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8855 if (extension == mips_mach_extensions[i].extension)
8856 extension = mips_mach_extensions[i].base;
8857
8858 return extension == base;
8859}
8860
8861
8862/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 8863
b34976b6 8864static bfd_boolean
64543e1a
RS
8865mips_32bit_flags_p (flags)
8866 flagword flags;
00707a0e 8867{
64543e1a
RS
8868 return ((flags & EF_MIPS_32BITMODE) != 0
8869 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8870 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8871 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8872 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8873 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8874 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
8875}
8876
64543e1a 8877
b49e97c9
TS
8878/* Merge backend specific data from an object file to the output
8879 object file when linking. */
8880
b34976b6 8881bfd_boolean
b49e97c9
TS
8882_bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
8883 bfd *ibfd;
8884 bfd *obfd;
8885{
8886 flagword old_flags;
8887 flagword new_flags;
b34976b6
AM
8888 bfd_boolean ok;
8889 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
8890 asection *sec;
8891
8892 /* Check if we have the same endianess */
82e51918 8893 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
b34976b6 8894 return FALSE;
b49e97c9
TS
8895
8896 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8897 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 8898 return TRUE;
b49e97c9
TS
8899
8900 new_flags = elf_elfheader (ibfd)->e_flags;
8901 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8902 old_flags = elf_elfheader (obfd)->e_flags;
8903
8904 if (! elf_flags_init (obfd))
8905 {
b34976b6 8906 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
8907 elf_elfheader (obfd)->e_flags = new_flags;
8908 elf_elfheader (obfd)->e_ident[EI_CLASS]
8909 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8910
8911 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8912 && bfd_get_arch_info (obfd)->the_default)
8913 {
8914 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8915 bfd_get_mach (ibfd)))
b34976b6 8916 return FALSE;
b49e97c9
TS
8917 }
8918
b34976b6 8919 return TRUE;
b49e97c9
TS
8920 }
8921
8922 /* Check flag compatibility. */
8923
8924 new_flags &= ~EF_MIPS_NOREORDER;
8925 old_flags &= ~EF_MIPS_NOREORDER;
8926
f4416af6
AO
8927 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8928 doesn't seem to matter. */
8929 new_flags &= ~EF_MIPS_XGOT;
8930 old_flags &= ~EF_MIPS_XGOT;
8931
b49e97c9 8932 if (new_flags == old_flags)
b34976b6 8933 return TRUE;
b49e97c9
TS
8934
8935 /* Check to see if the input BFD actually contains any sections.
8936 If not, its flags may not have been initialised either, but it cannot
8937 actually cause any incompatibility. */
8938 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8939 {
8940 /* Ignore synthetic sections and empty .text, .data and .bss sections
8941 which are automatically generated by gas. */
8942 if (strcmp (sec->name, ".reginfo")
8943 && strcmp (sec->name, ".mdebug")
8944 && ((!strcmp (sec->name, ".text")
8945 || !strcmp (sec->name, ".data")
8946 || !strcmp (sec->name, ".bss"))
8947 && sec->_raw_size != 0))
8948 {
b34976b6 8949 null_input_bfd = FALSE;
b49e97c9
TS
8950 break;
8951 }
8952 }
8953 if (null_input_bfd)
b34976b6 8954 return TRUE;
b49e97c9 8955
b34976b6 8956 ok = TRUE;
b49e97c9
TS
8957
8958 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
8959 {
8960 new_flags &= ~EF_MIPS_PIC;
8961 old_flags &= ~EF_MIPS_PIC;
8962 (*_bfd_error_handler)
8963 (_("%s: linking PIC files with non-PIC files"),
8964 bfd_archive_filename (ibfd));
b34976b6 8965 ok = FALSE;
b49e97c9
TS
8966 }
8967
8968 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
8969 {
8970 new_flags &= ~EF_MIPS_CPIC;
8971 old_flags &= ~EF_MIPS_CPIC;
8972 (*_bfd_error_handler)
8973 (_("%s: linking abicalls files with non-abicalls files"),
8974 bfd_archive_filename (ibfd));
b34976b6 8975 ok = FALSE;
b49e97c9
TS
8976 }
8977
64543e1a
RS
8978 /* Compare the ISAs. */
8979 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 8980 {
64543e1a
RS
8981 (*_bfd_error_handler)
8982 (_("%s: linking 32-bit code with 64-bit code"),
8983 bfd_archive_filename (ibfd));
8984 ok = FALSE;
8985 }
8986 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8987 {
8988 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8989 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 8990 {
64543e1a
RS
8991 /* Copy the architecture info from IBFD to OBFD. Also copy
8992 the 32-bit flag (if set) so that we continue to recognise
8993 OBFD as a 32-bit binary. */
8994 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
8995 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
8996 elf_elfheader (obfd)->e_flags
8997 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
8998
8999 /* Copy across the ABI flags if OBFD doesn't use them
9000 and if that was what caused us to treat IBFD as 32-bit. */
9001 if ((old_flags & EF_MIPS_ABI) == 0
9002 && mips_32bit_flags_p (new_flags)
9003 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9004 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9005 }
9006 else
9007 {
64543e1a 9008 /* The ISAs aren't compatible. */
b49e97c9 9009 (*_bfd_error_handler)
64543e1a 9010 (_("%s: linking %s module with previous %s modules"),
b49e97c9 9011 bfd_archive_filename (ibfd),
64543e1a
RS
9012 bfd_printable_name (ibfd),
9013 bfd_printable_name (obfd));
b34976b6 9014 ok = FALSE;
b49e97c9 9015 }
b49e97c9
TS
9016 }
9017
64543e1a
RS
9018 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9019 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9020
9021 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9022 does set EI_CLASS differently from any 32-bit ABI. */
9023 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9024 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9025 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9026 {
9027 /* Only error if both are set (to different values). */
9028 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9029 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9030 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9031 {
9032 (*_bfd_error_handler)
9033 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9034 bfd_archive_filename (ibfd),
9035 elf_mips_abi_name (ibfd),
9036 elf_mips_abi_name (obfd));
b34976b6 9037 ok = FALSE;
b49e97c9
TS
9038 }
9039 new_flags &= ~EF_MIPS_ABI;
9040 old_flags &= ~EF_MIPS_ABI;
9041 }
9042
fb39dac1
RS
9043 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9044 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9045 {
9046 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9047
9048 new_flags &= ~ EF_MIPS_ARCH_ASE;
9049 old_flags &= ~ EF_MIPS_ARCH_ASE;
9050 }
9051
b49e97c9
TS
9052 /* Warn about any other mismatches */
9053 if (new_flags != old_flags)
9054 {
9055 (*_bfd_error_handler)
9056 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9057 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9058 (unsigned long) old_flags);
b34976b6 9059 ok = FALSE;
b49e97c9
TS
9060 }
9061
9062 if (! ok)
9063 {
9064 bfd_set_error (bfd_error_bad_value);
b34976b6 9065 return FALSE;
b49e97c9
TS
9066 }
9067
b34976b6 9068 return TRUE;
b49e97c9
TS
9069}
9070
9071/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9072
b34976b6 9073bfd_boolean
b49e97c9
TS
9074_bfd_mips_elf_set_private_flags (abfd, flags)
9075 bfd *abfd;
9076 flagword flags;
9077{
9078 BFD_ASSERT (!elf_flags_init (abfd)
9079 || elf_elfheader (abfd)->e_flags == flags);
9080
9081 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9082 elf_flags_init (abfd) = TRUE;
9083 return TRUE;
b49e97c9
TS
9084}
9085
b34976b6 9086bfd_boolean
b49e97c9
TS
9087_bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9088 bfd *abfd;
9089 PTR ptr;
9090{
9091 FILE *file = (FILE *) ptr;
9092
9093 BFD_ASSERT (abfd != NULL && ptr != NULL);
9094
9095 /* Print normal ELF private data. */
9096 _bfd_elf_print_private_bfd_data (abfd, ptr);
9097
9098 /* xgettext:c-format */
9099 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9100
9101 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9102 fprintf (file, _(" [abi=O32]"));
9103 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9104 fprintf (file, _(" [abi=O64]"));
9105 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9106 fprintf (file, _(" [abi=EABI32]"));
9107 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9108 fprintf (file, _(" [abi=EABI64]"));
9109 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9110 fprintf (file, _(" [abi unknown]"));
9111 else if (ABI_N32_P (abfd))
9112 fprintf (file, _(" [abi=N32]"));
9113 else if (ABI_64_P (abfd))
9114 fprintf (file, _(" [abi=64]"));
9115 else
9116 fprintf (file, _(" [no abi set]"));
9117
9118 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9119 fprintf (file, _(" [mips1]"));
9120 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9121 fprintf (file, _(" [mips2]"));
9122 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9123 fprintf (file, _(" [mips3]"));
9124 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9125 fprintf (file, _(" [mips4]"));
9126 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9127 fprintf (file, _(" [mips5]"));
9128 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9129 fprintf (file, _(" [mips32]"));
9130 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9131 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9132 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9133 fprintf (file, _(" [mips32r2]"));
b49e97c9
TS
9134 else
9135 fprintf (file, _(" [unknown ISA]"));
9136
40d32fc6
CD
9137 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9138 fprintf (file, _(" [mdmx]"));
9139
9140 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9141 fprintf (file, _(" [mips16]"));
9142
b49e97c9
TS
9143 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9144 fprintf (file, _(" [32bitmode]"));
9145 else
9146 fprintf (file, _(" [not 32bitmode]"));
9147
9148 fputc ('\n', file);
9149
b34976b6 9150 return TRUE;
b49e97c9 9151}
This page took 0.502841 seconds and 4 git commands to generate.