2004-10-21 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
79cda7cf 3 2003, 2004 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
b15e6682 67 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
b15e6682
AO
71};
72
f0abc2a1 73/* This structure is used to hold .got information when linking. */
b49e97c9
TS
74
75struct mips_got_info
76{
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
b15e6682
AO
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
f4416af6
AO
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94};
95
96/* Map an input bfd to a got in a multi-got link. */
97
98struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101};
102
103/* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106struct mips_elf_got_per_bfd_arg
107{
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128};
129
130/* Another structure used to pass arguments for got entries traversal. */
131
132struct mips_elf_set_global_got_offset_arg
133{
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
b49e97c9
TS
138};
139
f0abc2a1
AM
140struct _mips_elf_section_data
141{
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148};
149
150#define mips_elf_section_data(sec) \
68bfbfcc 151 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 152
b49e97c9
TS
153/* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156struct mips_elf_hash_sort_data
157{
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
f4416af6
AO
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 166 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 167 long max_unref_got_dynindx;
b49e97c9
TS
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171};
172
173/* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176struct mips_elf_link_hash_entry
177{
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
b34976b6 189 bfd_boolean readonly_reloc;
b49e97c9 190
b49e97c9
TS
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
b34976b6 195 bfd_boolean no_fn_stub;
b49e97c9
TS
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
b34976b6 203 bfd_boolean need_fn_stub;
b49e97c9
TS
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
7c5fcef7
L
212
213 /* Are we forced local? .*/
b34976b6 214 bfd_boolean forced_local;
b49e97c9
TS
215};
216
217/* MIPS ELF linker hash table. */
218
219struct mips_elf_link_hash_table
220{
221 struct elf_link_hash_table root;
222#if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226#endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 232 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 233 bfd_boolean use_rld_obj_head;
b49e97c9
TS
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
b34976b6 237 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
238};
239
240/* Structure used to pass information to mips_elf_output_extsym. */
241
242struct extsym_info
243{
9e4aeb93
RS
244 bfd *abfd;
245 struct bfd_link_info *info;
b49e97c9
TS
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
b34976b6 248 bfd_boolean failed;
b49e97c9
TS
249};
250
8dc1a139 251/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
252
253static const char * const mips_elf_dynsym_rtproc_names[] =
254{
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259};
260
261/* These structures are used to generate the .compact_rel section on
8dc1a139 262 IRIX5. */
b49e97c9
TS
263
264typedef struct
265{
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272} Elf32_compact_rel;
273
274typedef struct
275{
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282} Elf32_External_compact_rel;
283
284typedef struct
285{
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292} Elf32_crinfo;
293
294typedef struct
295{
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301} Elf32_crinfo2;
302
303typedef struct
304{
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308} Elf32_External_crinfo;
309
310typedef struct
311{
312 bfd_byte info[4];
313 bfd_byte konst[4];
314} Elf32_External_crinfo2;
315
316/* These are the constants used to swap the bitfields in a crinfo. */
317
318#define CRINFO_CTYPE (0x1)
319#define CRINFO_CTYPE_SH (31)
320#define CRINFO_RTYPE (0xf)
321#define CRINFO_RTYPE_SH (27)
322#define CRINFO_DIST2TO (0xff)
323#define CRINFO_DIST2TO_SH (19)
324#define CRINFO_RELVADDR (0x7ffff)
325#define CRINFO_RELVADDR_SH (0)
326
327/* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330#define CRF_MIPS_LONG 1
331#define CRF_MIPS_SHORT 0
332
333/* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343#define CRT_MIPS_REL32 0xa
344#define CRT_MIPS_WORD 0xb
345#define CRT_MIPS_GPHI_LO 0xc
346#define CRT_MIPS_JMPAD 0xd
347
348#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352\f
353/* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356typedef struct runtime_pdr {
ae9a127f
NC
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
b49e97c9 366 long reserved;
ae9a127f 367 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
368} RPDR, *pRPDR;
369#define cbRPDR sizeof (RPDR)
370#define rpdNil ((pRPDR) 0)
371\f
372static struct bfd_hash_entry *mips_elf_link_hash_newfunc
9719ad41 373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
b49e97c9 374static void ecoff_swap_rpdr_out
9719ad41 375 (bfd *, const RPDR *, struct rpdr_ext *);
b34976b6 376static bfd_boolean mips_elf_create_procedure_table
9719ad41
RS
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
b34976b6 379static bfd_boolean mips_elf_check_mips16_stubs
9719ad41 380 (struct mips_elf_link_hash_entry *, void *);
b49e97c9 381static void bfd_mips_elf32_swap_gptab_in
9719ad41 382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
b49e97c9 383static void bfd_mips_elf32_swap_gptab_out
9719ad41 384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
b49e97c9 385static void bfd_elf32_swap_compact_rel_out
9719ad41 386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
b49e97c9 387static void bfd_elf32_swap_crinfo_out
9719ad41 388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
b49e97c9 389static int sort_dynamic_relocs
9719ad41 390 (const void *, const void *);
f4416af6 391static int sort_dynamic_relocs_64
9719ad41 392 (const void *, const void *);
b34976b6 393static bfd_boolean mips_elf_output_extsym
9719ad41
RS
394 (struct mips_elf_link_hash_entry *, void *);
395static int gptab_compare
396 (const void *, const void *);
397static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
b49e97c9 401static struct mips_got_info *mips_elf_got_info
9719ad41 402 (bfd *, asection **);
b49e97c9 403static bfd_vma mips_elf_local_got_index
9719ad41 404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
b49e97c9 405static bfd_vma mips_elf_global_got_index
9719ad41 406 (bfd *, bfd *, struct elf_link_hash_entry *);
b49e97c9 407static bfd_vma mips_elf_got_page
9719ad41 408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
b49e97c9 409static bfd_vma mips_elf_got16_entry
9719ad41 410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
b49e97c9 411static bfd_vma mips_elf_got_offset_from_index
9719ad41 412 (bfd *, bfd *, bfd *, bfd_vma);
b15e6682 413static struct mips_got_entry *mips_elf_create_local_got_entry
9719ad41 414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
b34976b6 415static bfd_boolean mips_elf_sort_hash_table
9719ad41 416 (struct bfd_link_info *, unsigned long);
b34976b6 417static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 418 (struct mips_elf_link_hash_entry *, void *);
f4416af6 419static bfd_boolean mips_elf_record_local_got_symbol
9719ad41 420 (bfd *, long, bfd_vma, struct mips_got_info *);
b34976b6 421static bfd_boolean mips_elf_record_global_got_symbol
9719ad41
RS
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
b49e97c9 424static const Elf_Internal_Rela *mips_elf_next_relocation
9719ad41 425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
b34976b6 426static bfd_boolean mips_elf_local_relocation_p
9719ad41
RS
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430static bfd_vma mips_elf_high
431 (bfd_vma);
432static bfd_vma mips_elf_higher
433 (bfd_vma);
434static bfd_vma mips_elf_highest
435 (bfd_vma);
b34976b6 436static bfd_boolean mips_elf_create_compact_rel_section
9719ad41 437 (bfd *, struct bfd_link_info *);
b34976b6 438static bfd_boolean mips_elf_create_got_section
9719ad41 439 (bfd *, struct bfd_link_info *, bfd_boolean);
b49e97c9 440static bfd_reloc_status_type mips_elf_calculate_relocation
9719ad41
RS
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
b49e97c9 445static bfd_vma mips_elf_obtain_contents
9719ad41 446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
b34976b6 447static bfd_boolean mips_elf_perform_relocation
9719ad41
RS
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
b34976b6 450static bfd_boolean mips_elf_stub_section_p
9719ad41 451 (bfd *, asection *);
b49e97c9 452static void mips_elf_allocate_dynamic_relocations
9719ad41 453 (bfd *, unsigned int);
b34976b6 454static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458static void mips_set_isa_flags
459 (bfd *);
460static INLINE char *elf_mips_abi_name
461 (bfd *);
b49e97c9 462static void mips_elf_irix6_finish_dynamic_symbol
9719ad41
RS
463 (bfd *, const char *, Elf_Internal_Sym *);
464static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466static bfd_boolean mips_32bit_flags_p
467 (flagword);
468static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470static hashval_t mips_elf_got_entry_hash
471 (const void *);
472static int mips_elf_got_entry_eq
473 (const void *, const void *);
b49e97c9 474
f4416af6 475static bfd_boolean mips_elf_multi_got
9719ad41
RS
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486static int mips_elf_make_got_per_bfd
487 (void **, void *);
488static int mips_elf_merge_gots
489 (void **, void *);
490static int mips_elf_set_global_got_offset
491 (void **, void *);
492static int mips_elf_set_no_stub
493 (void **, void *);
494static int mips_elf_resolve_final_got_entry
495 (void **, void *);
f4416af6 496static void mips_elf_resolve_final_got_entries
9719ad41 497 (struct mips_got_info *);
f4416af6 498static bfd_vma mips_elf_adjust_gp
9719ad41 499 (bfd *, struct mips_got_info *, bfd *);
f4416af6 500static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 501 (struct mips_got_info *, bfd *);
f4416af6 502
b49e97c9
TS
503/* This will be used when we sort the dynamic relocation records. */
504static bfd *reldyn_sorting_bfd;
505
506/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 507
b49e97c9
TS
508#define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
4a14403c 511/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 512#define ABI_64_P(abfd) \
141ff970 513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 514
4a14403c
TS
515/* Nonzero if ABFD is using NewABI conventions. */
516#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
519#define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
b49e97c9
TS
522/* Whether we are trying to be compatible with IRIX at all. */
523#define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526/* The name of the options section. */
527#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9
TS
529
530/* The name of the stub section. */
ca07892d 531#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
532
533/* The size of an external REL relocation. */
534#define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537/* The size of an external dynamic table entry. */
538#define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541/* The size of a GOT entry. */
542#define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545/* The size of a symbol-table entry. */
546#define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549/* The default alignment for sections, as a power of two. */
550#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 551 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
552
553/* Get word-sized data. */
554#define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557/* Put out word-sized data. */
558#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563/* Add a dynamic symbol table-entry. */
9719ad41 564#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 565 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
566
567#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
4ffba85c
AO
570/* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
b49e97c9
TS
587/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 590#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
591
592/* The number of local .got entries we reserve. */
593#define MIPS_RESERVED_GOTNO (2)
594
f4416af6
AO
595/* The offset of $gp from the beginning of the .got section. */
596#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598/* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
6a691779 602/* Instructions which appear in a stub. */
b49e97c9 603#define STUB_LW(abfd) \
f4416af6
AO
604 ((ABI_64_P (abfd) \
605 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
606 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9 607#define STUB_MOVE(abfd) \
6a691779
TS
608 ((ABI_64_P (abfd) \
609 ? 0x03e0782d /* daddu t7,ra */ \
610 : 0x03e07821)) /* addu t7,ra */
611#define STUB_JALR 0x0320f809 /* jalr t9,ra */
b49e97c9 612#define STUB_LI16(abfd) \
6a691779
TS
613 ((ABI_64_P (abfd) \
614 ? 0x64180000 /* daddiu t8,zero,0 */ \
615 : 0x24180000)) /* addiu t8,zero,0 */
b49e97c9
TS
616#define MIPS_FUNCTION_STUB_SIZE (16)
617
618/* The name of the dynamic interpreter. This is put in the .interp
619 section. */
620
621#define ELF_DYNAMIC_INTERPRETER(abfd) \
622 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
623 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
624 : "/usr/lib/libc.so.1")
625
626#ifdef BFD64
ee6423ed
AO
627#define MNAME(bfd,pre,pos) \
628 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
629#define ELF_R_SYM(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
631#define ELF_R_TYPE(bfd, i) \
632 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
633#define ELF_R_INFO(bfd, s, t) \
634 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
635#else
ee6423ed 636#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
637#define ELF_R_SYM(bfd, i) \
638 (ELF32_R_SYM (i))
639#define ELF_R_TYPE(bfd, i) \
640 (ELF32_R_TYPE (i))
641#define ELF_R_INFO(bfd, s, t) \
642 (ELF32_R_INFO (s, t))
643#endif
644\f
645 /* The mips16 compiler uses a couple of special sections to handle
646 floating point arguments.
647
648 Section names that look like .mips16.fn.FNNAME contain stubs that
649 copy floating point arguments from the fp regs to the gp regs and
650 then jump to FNNAME. If any 32 bit function calls FNNAME, the
651 call should be redirected to the stub instead. If no 32 bit
652 function calls FNNAME, the stub should be discarded. We need to
653 consider any reference to the function, not just a call, because
654 if the address of the function is taken we will need the stub,
655 since the address might be passed to a 32 bit function.
656
657 Section names that look like .mips16.call.FNNAME contain stubs
658 that copy floating point arguments from the gp regs to the fp
659 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
660 then any 16 bit function that calls FNNAME should be redirected
661 to the stub instead. If FNNAME is not a 32 bit function, the
662 stub should be discarded.
663
664 .mips16.call.fp.FNNAME sections are similar, but contain stubs
665 which call FNNAME and then copy the return value from the fp regs
666 to the gp regs. These stubs store the return value in $18 while
667 calling FNNAME; any function which might call one of these stubs
668 must arrange to save $18 around the call. (This case is not
669 needed for 32 bit functions that call 16 bit functions, because
670 16 bit functions always return floating point values in both
671 $f0/$f1 and $2/$3.)
672
673 Note that in all cases FNNAME might be defined statically.
674 Therefore, FNNAME is not used literally. Instead, the relocation
675 information will indicate which symbol the section is for.
676
677 We record any stubs that we find in the symbol table. */
678
679#define FN_STUB ".mips16.fn."
680#define CALL_STUB ".mips16.call."
681#define CALL_FP_STUB ".mips16.call.fp."
682\f
683/* Look up an entry in a MIPS ELF linker hash table. */
684
685#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
686 ((struct mips_elf_link_hash_entry *) \
687 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 (copy), (follow)))
689
690/* Traverse a MIPS ELF linker hash table. */
691
692#define mips_elf_link_hash_traverse(table, func, info) \
693 (elf_link_hash_traverse \
694 (&(table)->root, \
9719ad41 695 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
696 (info)))
697
698/* Get the MIPS ELF linker hash table from a link_info structure. */
699
700#define mips_elf_hash_table(p) \
701 ((struct mips_elf_link_hash_table *) ((p)->hash))
702
703/* Create an entry in a MIPS ELF linker hash table. */
704
705static struct bfd_hash_entry *
9719ad41
RS
706mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
707 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
708{
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
9719ad41
RS
714 if (ret == NULL)
715 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
716 if (ret == NULL)
b49e97c9
TS
717 return (struct bfd_hash_entry *) ret;
718
719 /* Call the allocation method of the superclass. */
720 ret = ((struct mips_elf_link_hash_entry *)
721 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
722 table, string));
9719ad41 723 if (ret != NULL)
b49e97c9
TS
724 {
725 /* Set local fields. */
726 memset (&ret->esym, 0, sizeof (EXTR));
727 /* We use -2 as a marker to indicate that the information has
728 not been set. -1 means there is no associated ifd. */
729 ret->esym.ifd = -2;
730 ret->possibly_dynamic_relocs = 0;
b34976b6 731 ret->readonly_reloc = FALSE;
b34976b6 732 ret->no_fn_stub = FALSE;
b49e97c9 733 ret->fn_stub = NULL;
b34976b6 734 ret->need_fn_stub = FALSE;
b49e97c9
TS
735 ret->call_stub = NULL;
736 ret->call_fp_stub = NULL;
b34976b6 737 ret->forced_local = FALSE;
b49e97c9
TS
738 }
739
740 return (struct bfd_hash_entry *) ret;
741}
f0abc2a1
AM
742
743bfd_boolean
9719ad41 744_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1
AM
745{
746 struct _mips_elf_section_data *sdata;
747 bfd_size_type amt = sizeof (*sdata);
748
9719ad41 749 sdata = bfd_zalloc (abfd, amt);
f0abc2a1
AM
750 if (sdata == NULL)
751 return FALSE;
9719ad41 752 sec->used_by_bfd = sdata;
f0abc2a1
AM
753
754 return _bfd_elf_new_section_hook (abfd, sec);
755}
b49e97c9
TS
756\f
757/* Read ECOFF debugging information from a .mdebug section into a
758 ecoff_debug_info structure. */
759
b34976b6 760bfd_boolean
9719ad41
RS
761_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
762 struct ecoff_debug_info *debug)
b49e97c9
TS
763{
764 HDRR *symhdr;
765 const struct ecoff_debug_swap *swap;
9719ad41 766 char *ext_hdr;
b49e97c9
TS
767
768 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
769 memset (debug, 0, sizeof (*debug));
770
9719ad41 771 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
772 if (ext_hdr == NULL && swap->external_hdr_size != 0)
773 goto error_return;
774
9719ad41 775 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 776 swap->external_hdr_size))
b49e97c9
TS
777 goto error_return;
778
779 symhdr = &debug->symbolic_header;
780 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
781
782 /* The symbolic header contains absolute file offsets and sizes to
783 read. */
784#define READ(ptr, offset, count, size, type) \
785 if (symhdr->count == 0) \
786 debug->ptr = NULL; \
787 else \
788 { \
789 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 790 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
791 if (debug->ptr == NULL) \
792 goto error_return; \
9719ad41 793 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
794 || bfd_bread (debug->ptr, amt, abfd) != amt) \
795 goto error_return; \
796 }
797
798 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
799 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
800 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
801 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
802 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
803 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
804 union aux_ext *);
805 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
806 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
807 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
808 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
809 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
810#undef READ
811
812 debug->fdr = NULL;
b49e97c9 813
b34976b6 814 return TRUE;
b49e97c9
TS
815
816 error_return:
817 if (ext_hdr != NULL)
818 free (ext_hdr);
819 if (debug->line != NULL)
820 free (debug->line);
821 if (debug->external_dnr != NULL)
822 free (debug->external_dnr);
823 if (debug->external_pdr != NULL)
824 free (debug->external_pdr);
825 if (debug->external_sym != NULL)
826 free (debug->external_sym);
827 if (debug->external_opt != NULL)
828 free (debug->external_opt);
829 if (debug->external_aux != NULL)
830 free (debug->external_aux);
831 if (debug->ss != NULL)
832 free (debug->ss);
833 if (debug->ssext != NULL)
834 free (debug->ssext);
835 if (debug->external_fdr != NULL)
836 free (debug->external_fdr);
837 if (debug->external_rfd != NULL)
838 free (debug->external_rfd);
839 if (debug->external_ext != NULL)
840 free (debug->external_ext);
b34976b6 841 return FALSE;
b49e97c9
TS
842}
843\f
844/* Swap RPDR (runtime procedure table entry) for output. */
845
846static void
9719ad41 847ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
848{
849 H_PUT_S32 (abfd, in->adr, ex->p_adr);
850 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
851 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
852 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
853 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
854 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
855
856 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
857 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
858
859 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
860#if 0 /* FIXME */
861 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
862#endif
863}
864
865/* Create a runtime procedure table from the .mdebug section. */
866
b34976b6 867static bfd_boolean
9719ad41
RS
868mips_elf_create_procedure_table (void *handle, bfd *abfd,
869 struct bfd_link_info *info, asection *s,
870 struct ecoff_debug_info *debug)
b49e97c9
TS
871{
872 const struct ecoff_debug_swap *swap;
873 HDRR *hdr = &debug->symbolic_header;
874 RPDR *rpdr, *rp;
875 struct rpdr_ext *erp;
9719ad41 876 void *rtproc;
b49e97c9
TS
877 struct pdr_ext *epdr;
878 struct sym_ext *esym;
879 char *ss, **sv;
880 char *str;
881 bfd_size_type size;
882 bfd_size_type count;
883 unsigned long sindex;
884 unsigned long i;
885 PDR pdr;
886 SYMR sym;
887 const char *no_name_func = _("static procedure (no name)");
888
889 epdr = NULL;
890 rpdr = NULL;
891 esym = NULL;
892 ss = NULL;
893 sv = NULL;
894
895 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
896
897 sindex = strlen (no_name_func) + 1;
898 count = hdr->ipdMax;
899 if (count > 0)
900 {
901 size = swap->external_pdr_size;
902
9719ad41 903 epdr = bfd_malloc (size * count);
b49e97c9
TS
904 if (epdr == NULL)
905 goto error_return;
906
9719ad41 907 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
908 goto error_return;
909
910 size = sizeof (RPDR);
9719ad41 911 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
912 if (rpdr == NULL)
913 goto error_return;
914
915 size = sizeof (char *);
9719ad41 916 sv = bfd_malloc (size * count);
b49e97c9
TS
917 if (sv == NULL)
918 goto error_return;
919
920 count = hdr->isymMax;
921 size = swap->external_sym_size;
9719ad41 922 esym = bfd_malloc (size * count);
b49e97c9
TS
923 if (esym == NULL)
924 goto error_return;
925
9719ad41 926 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
927 goto error_return;
928
929 count = hdr->issMax;
9719ad41 930 ss = bfd_malloc (count);
b49e97c9
TS
931 if (ss == NULL)
932 goto error_return;
9719ad41 933 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
b49e97c9
TS
934 goto error_return;
935
936 count = hdr->ipdMax;
937 for (i = 0; i < (unsigned long) count; i++, rp++)
938 {
9719ad41
RS
939 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
940 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
941 rp->adr = sym.value;
942 rp->regmask = pdr.regmask;
943 rp->regoffset = pdr.regoffset;
944 rp->fregmask = pdr.fregmask;
945 rp->fregoffset = pdr.fregoffset;
946 rp->frameoffset = pdr.frameoffset;
947 rp->framereg = pdr.framereg;
948 rp->pcreg = pdr.pcreg;
949 rp->irpss = sindex;
950 sv[i] = ss + sym.iss;
951 sindex += strlen (sv[i]) + 1;
952 }
953 }
954
955 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
956 size = BFD_ALIGN (size, 16);
9719ad41 957 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
958 if (rtproc == NULL)
959 {
960 mips_elf_hash_table (info)->procedure_count = 0;
961 goto error_return;
962 }
963
964 mips_elf_hash_table (info)->procedure_count = count + 2;
965
9719ad41 966 erp = rtproc;
b49e97c9
TS
967 memset (erp, 0, sizeof (struct rpdr_ext));
968 erp++;
969 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
970 strcpy (str, no_name_func);
971 str += strlen (no_name_func) + 1;
972 for (i = 0; i < count; i++)
973 {
974 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
975 strcpy (str, sv[i]);
976 str += strlen (sv[i]) + 1;
977 }
978 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
979
980 /* Set the size and contents of .rtproc section. */
eea6121a 981 s->size = size;
9719ad41 982 s->contents = rtproc;
b49e97c9
TS
983
984 /* Skip this section later on (I don't think this currently
985 matters, but someday it might). */
9719ad41 986 s->link_order_head = NULL;
b49e97c9
TS
987
988 if (epdr != NULL)
989 free (epdr);
990 if (rpdr != NULL)
991 free (rpdr);
992 if (esym != NULL)
993 free (esym);
994 if (ss != NULL)
995 free (ss);
996 if (sv != NULL)
997 free (sv);
998
b34976b6 999 return TRUE;
b49e97c9
TS
1000
1001 error_return:
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
b34976b6 1012 return FALSE;
b49e97c9
TS
1013}
1014
1015/* Check the mips16 stubs for a particular symbol, and see if we can
1016 discard them. */
1017
b34976b6 1018static bfd_boolean
9719ad41
RS
1019mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1020 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1021{
1022 if (h->root.root.type == bfd_link_hash_warning)
1023 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1024
1025 if (h->fn_stub != NULL
1026 && ! h->need_fn_stub)
1027 {
1028 /* We don't need the fn_stub; the only references to this symbol
1029 are 16 bit calls. Clobber the size to 0 to prevent it from
1030 being included in the link. */
eea6121a 1031 h->fn_stub->size = 0;
b49e97c9
TS
1032 h->fn_stub->flags &= ~SEC_RELOC;
1033 h->fn_stub->reloc_count = 0;
1034 h->fn_stub->flags |= SEC_EXCLUDE;
1035 }
1036
1037 if (h->call_stub != NULL
1038 && h->root.other == STO_MIPS16)
1039 {
1040 /* We don't need the call_stub; this is a 16 bit function, so
1041 calls from other 16 bit functions are OK. Clobber the size
1042 to 0 to prevent it from being included in the link. */
eea6121a 1043 h->call_stub->size = 0;
b49e97c9
TS
1044 h->call_stub->flags &= ~SEC_RELOC;
1045 h->call_stub->reloc_count = 0;
1046 h->call_stub->flags |= SEC_EXCLUDE;
1047 }
1048
1049 if (h->call_fp_stub != NULL
1050 && h->root.other == STO_MIPS16)
1051 {
1052 /* We don't need the call_stub; this is a 16 bit function, so
1053 calls from other 16 bit functions are OK. Clobber the size
1054 to 0 to prevent it from being included in the link. */
eea6121a 1055 h->call_fp_stub->size = 0;
b49e97c9
TS
1056 h->call_fp_stub->flags &= ~SEC_RELOC;
1057 h->call_fp_stub->reloc_count = 0;
1058 h->call_fp_stub->flags |= SEC_EXCLUDE;
1059 }
1060
b34976b6 1061 return TRUE;
b49e97c9
TS
1062}
1063\f
1064bfd_reloc_status_type
9719ad41
RS
1065_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1066 arelent *reloc_entry, asection *input_section,
1067 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1068{
1069 bfd_vma relocation;
a7ebbfdf 1070 bfd_signed_vma val;
30ac9238 1071 bfd_reloc_status_type status;
b49e97c9
TS
1072
1073 if (bfd_is_com_section (symbol->section))
1074 relocation = 0;
1075 else
1076 relocation = symbol->value;
1077
1078 relocation += symbol->section->output_section->vma;
1079 relocation += symbol->section->output_offset;
1080
07515404 1081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1082 return bfd_reloc_outofrange;
1083
b49e97c9 1084 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1085 val = reloc_entry->addend;
1086
30ac9238 1087 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1088
b49e97c9 1089 /* Adjust val for the final section location and GP value. If we
1049f94e 1090 are producing relocatable output, we don't want to do this for
b49e97c9 1091 an external symbol. */
1049f94e 1092 if (! relocatable
b49e97c9
TS
1093 || (symbol->flags & BSF_SECTION_SYM) != 0)
1094 val += relocation - gp;
1095
a7ebbfdf
TS
1096 if (reloc_entry->howto->partial_inplace)
1097 {
30ac9238
RS
1098 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1099 (bfd_byte *) data
1100 + reloc_entry->address);
1101 if (status != bfd_reloc_ok)
1102 return status;
a7ebbfdf
TS
1103 }
1104 else
1105 reloc_entry->addend = val;
b49e97c9 1106
1049f94e 1107 if (relocatable)
b49e97c9 1108 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1109
1110 return bfd_reloc_ok;
1111}
1112
1113/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1114 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1115 that contains the relocation field and DATA points to the start of
1116 INPUT_SECTION. */
1117
1118struct mips_hi16
1119{
1120 struct mips_hi16 *next;
1121 bfd_byte *data;
1122 asection *input_section;
1123 arelent rel;
1124};
1125
1126/* FIXME: This should not be a static variable. */
1127
1128static struct mips_hi16 *mips_hi16_list;
1129
1130/* A howto special_function for REL *HI16 relocations. We can only
1131 calculate the correct value once we've seen the partnering
1132 *LO16 relocation, so just save the information for later.
1133
1134 The ABI requires that the *LO16 immediately follow the *HI16.
1135 However, as a GNU extension, we permit an arbitrary number of
1136 *HI16s to be associated with a single *LO16. This significantly
1137 simplies the relocation handling in gcc. */
1138
1139bfd_reloc_status_type
1140_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1141 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1142 asection *input_section, bfd *output_bfd,
1143 char **error_message ATTRIBUTE_UNUSED)
1144{
1145 struct mips_hi16 *n;
1146
07515404 1147 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1148 return bfd_reloc_outofrange;
1149
1150 n = bfd_malloc (sizeof *n);
1151 if (n == NULL)
1152 return bfd_reloc_outofrange;
1153
1154 n->next = mips_hi16_list;
1155 n->data = data;
1156 n->input_section = input_section;
1157 n->rel = *reloc_entry;
1158 mips_hi16_list = n;
1159
1160 if (output_bfd != NULL)
1161 reloc_entry->address += input_section->output_offset;
1162
1163 return bfd_reloc_ok;
1164}
1165
1166/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1167 like any other 16-bit relocation when applied to global symbols, but is
1168 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1169
1170bfd_reloc_status_type
1171_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1172 void *data, asection *input_section,
1173 bfd *output_bfd, char **error_message)
1174{
1175 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1176 || bfd_is_und_section (bfd_get_section (symbol))
1177 || bfd_is_com_section (bfd_get_section (symbol)))
1178 /* The relocation is against a global symbol. */
1179 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1180 input_section, output_bfd,
1181 error_message);
1182
1183 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1184 input_section, output_bfd, error_message);
1185}
1186
1187/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1188 is a straightforward 16 bit inplace relocation, but we must deal with
1189 any partnering high-part relocations as well. */
1190
1191bfd_reloc_status_type
1192_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1193 void *data, asection *input_section,
1194 bfd *output_bfd, char **error_message)
1195{
1196 bfd_vma vallo;
1197
07515404 1198 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1199 return bfd_reloc_outofrange;
1200
1201 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1202 while (mips_hi16_list != NULL)
1203 {
1204 bfd_reloc_status_type ret;
1205 struct mips_hi16 *hi;
1206
1207 hi = mips_hi16_list;
1208
1209 /* R_MIPS_GOT16 relocations are something of a special case. We
1210 want to install the addend in the same way as for a R_MIPS_HI16
1211 relocation (with a rightshift of 16). However, since GOT16
1212 relocations can also be used with global symbols, their howto
1213 has a rightshift of 0. */
1214 if (hi->rel.howto->type == R_MIPS_GOT16)
1215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1216
1217 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1218 carry or borrow will induce a change of +1 or -1 in the high part. */
1219 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1220
30ac9238
RS
1221 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1222 hi->input_section, output_bfd,
1223 error_message);
1224 if (ret != bfd_reloc_ok)
1225 return ret;
1226
1227 mips_hi16_list = hi->next;
1228 free (hi);
1229 }
1230
1231 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1232 input_section, output_bfd,
1233 error_message);
1234}
1235
1236/* A generic howto special_function. This calculates and installs the
1237 relocation itself, thus avoiding the oft-discussed problems in
1238 bfd_perform_relocation and bfd_install_relocation. */
1239
1240bfd_reloc_status_type
1241_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1242 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1243 asection *input_section, bfd *output_bfd,
1244 char **error_message ATTRIBUTE_UNUSED)
1245{
1246 bfd_signed_vma val;
1247 bfd_reloc_status_type status;
1248 bfd_boolean relocatable;
1249
1250 relocatable = (output_bfd != NULL);
1251
07515404 1252 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1253 return bfd_reloc_outofrange;
1254
1255 /* Build up the field adjustment in VAL. */
1256 val = 0;
1257 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1258 {
1259 /* Either we're calculating the final field value or we have a
1260 relocation against a section symbol. Add in the section's
1261 offset or address. */
1262 val += symbol->section->output_section->vma;
1263 val += symbol->section->output_offset;
1264 }
1265
1266 if (!relocatable)
1267 {
1268 /* We're calculating the final field value. Add in the symbol's value
1269 and, if pc-relative, subtract the address of the field itself. */
1270 val += symbol->value;
1271 if (reloc_entry->howto->pc_relative)
1272 {
1273 val -= input_section->output_section->vma;
1274 val -= input_section->output_offset;
1275 val -= reloc_entry->address;
1276 }
1277 }
1278
1279 /* VAL is now the final adjustment. If we're keeping this relocation
1280 in the output file, and if the relocation uses a separate addend,
1281 we just need to add VAL to that addend. Otherwise we need to add
1282 VAL to the relocation field itself. */
1283 if (relocatable && !reloc_entry->howto->partial_inplace)
1284 reloc_entry->addend += val;
1285 else
1286 {
1287 /* Add in the separate addend, if any. */
1288 val += reloc_entry->addend;
1289
1290 /* Add VAL to the relocation field. */
1291 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1292 (bfd_byte *) data
1293 + reloc_entry->address);
1294 if (status != bfd_reloc_ok)
1295 return status;
1296 }
1297
1298 if (relocatable)
1299 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1300
1301 return bfd_reloc_ok;
1302}
1303\f
1304/* Swap an entry in a .gptab section. Note that these routines rely
1305 on the equivalence of the two elements of the union. */
1306
1307static void
9719ad41
RS
1308bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1309 Elf32_gptab *in)
b49e97c9
TS
1310{
1311 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1312 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1313}
1314
1315static void
9719ad41
RS
1316bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1317 Elf32_External_gptab *ex)
b49e97c9
TS
1318{
1319 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1320 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1321}
1322
1323static void
9719ad41
RS
1324bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1325 Elf32_External_compact_rel *ex)
b49e97c9
TS
1326{
1327 H_PUT_32 (abfd, in->id1, ex->id1);
1328 H_PUT_32 (abfd, in->num, ex->num);
1329 H_PUT_32 (abfd, in->id2, ex->id2);
1330 H_PUT_32 (abfd, in->offset, ex->offset);
1331 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1332 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1333}
1334
1335static void
9719ad41
RS
1336bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1337 Elf32_External_crinfo *ex)
b49e97c9
TS
1338{
1339 unsigned long l;
1340
1341 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1342 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1343 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1344 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1345 H_PUT_32 (abfd, l, ex->info);
1346 H_PUT_32 (abfd, in->konst, ex->konst);
1347 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1348}
b49e97c9
TS
1349\f
1350/* A .reginfo section holds a single Elf32_RegInfo structure. These
1351 routines swap this structure in and out. They are used outside of
1352 BFD, so they are globally visible. */
1353
1354void
9719ad41
RS
1355bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1356 Elf32_RegInfo *in)
b49e97c9
TS
1357{
1358 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1359 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1360 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1361 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1362 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1363 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1364}
1365
1366void
9719ad41
RS
1367bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1368 Elf32_External_RegInfo *ex)
b49e97c9
TS
1369{
1370 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1371 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1372 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1373 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1374 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1375 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1376}
1377
1378/* In the 64 bit ABI, the .MIPS.options section holds register
1379 information in an Elf64_Reginfo structure. These routines swap
1380 them in and out. They are globally visible because they are used
1381 outside of BFD. These routines are here so that gas can call them
1382 without worrying about whether the 64 bit ABI has been included. */
1383
1384void
9719ad41
RS
1385bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1386 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1387{
1388 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1389 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1390 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1391 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1392 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1393 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1394 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1395}
1396
1397void
9719ad41
RS
1398bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1399 Elf64_External_RegInfo *ex)
b49e97c9
TS
1400{
1401 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1402 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1403 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1404 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1405 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1406 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1407 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1408}
1409
1410/* Swap in an options header. */
1411
1412void
9719ad41
RS
1413bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1414 Elf_Internal_Options *in)
b49e97c9
TS
1415{
1416 in->kind = H_GET_8 (abfd, ex->kind);
1417 in->size = H_GET_8 (abfd, ex->size);
1418 in->section = H_GET_16 (abfd, ex->section);
1419 in->info = H_GET_32 (abfd, ex->info);
1420}
1421
1422/* Swap out an options header. */
1423
1424void
9719ad41
RS
1425bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1426 Elf_External_Options *ex)
b49e97c9
TS
1427{
1428 H_PUT_8 (abfd, in->kind, ex->kind);
1429 H_PUT_8 (abfd, in->size, ex->size);
1430 H_PUT_16 (abfd, in->section, ex->section);
1431 H_PUT_32 (abfd, in->info, ex->info);
1432}
1433\f
1434/* This function is called via qsort() to sort the dynamic relocation
1435 entries by increasing r_symndx value. */
1436
1437static int
9719ad41 1438sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1439{
947216bf
AM
1440 Elf_Internal_Rela int_reloc1;
1441 Elf_Internal_Rela int_reloc2;
b49e97c9 1442
947216bf
AM
1443 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1444 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1445
947216bf 1446 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1447}
1448
f4416af6
AO
1449/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1450
1451static int
9719ad41 1452sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
f4416af6
AO
1453{
1454 Elf_Internal_Rela int_reloc1[3];
1455 Elf_Internal_Rela int_reloc2[3];
1456
1457 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1458 (reldyn_sorting_bfd, arg1, int_reloc1);
1459 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1460 (reldyn_sorting_bfd, arg2, int_reloc2);
1461
1462 return (ELF64_R_SYM (int_reloc1[0].r_info)
1463 - ELF64_R_SYM (int_reloc2[0].r_info));
1464}
1465
1466
b49e97c9
TS
1467/* This routine is used to write out ECOFF debugging external symbol
1468 information. It is called via mips_elf_link_hash_traverse. The
1469 ECOFF external symbol information must match the ELF external
1470 symbol information. Unfortunately, at this point we don't know
1471 whether a symbol is required by reloc information, so the two
1472 tables may wind up being different. We must sort out the external
1473 symbol information before we can set the final size of the .mdebug
1474 section, and we must set the size of the .mdebug section before we
1475 can relocate any sections, and we can't know which symbols are
1476 required by relocation until we relocate the sections.
1477 Fortunately, it is relatively unlikely that any symbol will be
1478 stripped but required by a reloc. In particular, it can not happen
1479 when generating a final executable. */
1480
b34976b6 1481static bfd_boolean
9719ad41 1482mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1483{
9719ad41 1484 struct extsym_info *einfo = data;
b34976b6 1485 bfd_boolean strip;
b49e97c9
TS
1486 asection *sec, *output_section;
1487
1488 if (h->root.root.type == bfd_link_hash_warning)
1489 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1490
1491 if (h->root.indx == -2)
b34976b6 1492 strip = FALSE;
f5385ebf
AM
1493 else if ((h->root.def_dynamic
1494 || h->root.ref_dynamic)
1495 && !h->root.def_regular
1496 && !h->root.ref_regular)
b34976b6 1497 strip = TRUE;
b49e97c9
TS
1498 else if (einfo->info->strip == strip_all
1499 || (einfo->info->strip == strip_some
1500 && bfd_hash_lookup (einfo->info->keep_hash,
1501 h->root.root.root.string,
b34976b6
AM
1502 FALSE, FALSE) == NULL))
1503 strip = TRUE;
b49e97c9 1504 else
b34976b6 1505 strip = FALSE;
b49e97c9
TS
1506
1507 if (strip)
b34976b6 1508 return TRUE;
b49e97c9
TS
1509
1510 if (h->esym.ifd == -2)
1511 {
1512 h->esym.jmptbl = 0;
1513 h->esym.cobol_main = 0;
1514 h->esym.weakext = 0;
1515 h->esym.reserved = 0;
1516 h->esym.ifd = ifdNil;
1517 h->esym.asym.value = 0;
1518 h->esym.asym.st = stGlobal;
1519
1520 if (h->root.root.type == bfd_link_hash_undefined
1521 || h->root.root.type == bfd_link_hash_undefweak)
1522 {
1523 const char *name;
1524
1525 /* Use undefined class. Also, set class and type for some
1526 special symbols. */
1527 name = h->root.root.root.string;
1528 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1529 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1530 {
1531 h->esym.asym.sc = scData;
1532 h->esym.asym.st = stLabel;
1533 h->esym.asym.value = 0;
1534 }
1535 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1536 {
1537 h->esym.asym.sc = scAbs;
1538 h->esym.asym.st = stLabel;
1539 h->esym.asym.value =
1540 mips_elf_hash_table (einfo->info)->procedure_count;
1541 }
4a14403c 1542 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1543 {
1544 h->esym.asym.sc = scAbs;
1545 h->esym.asym.st = stLabel;
1546 h->esym.asym.value = elf_gp (einfo->abfd);
1547 }
1548 else
1549 h->esym.asym.sc = scUndefined;
1550 }
1551 else if (h->root.root.type != bfd_link_hash_defined
1552 && h->root.root.type != bfd_link_hash_defweak)
1553 h->esym.asym.sc = scAbs;
1554 else
1555 {
1556 const char *name;
1557
1558 sec = h->root.root.u.def.section;
1559 output_section = sec->output_section;
1560
1561 /* When making a shared library and symbol h is the one from
1562 the another shared library, OUTPUT_SECTION may be null. */
1563 if (output_section == NULL)
1564 h->esym.asym.sc = scUndefined;
1565 else
1566 {
1567 name = bfd_section_name (output_section->owner, output_section);
1568
1569 if (strcmp (name, ".text") == 0)
1570 h->esym.asym.sc = scText;
1571 else if (strcmp (name, ".data") == 0)
1572 h->esym.asym.sc = scData;
1573 else if (strcmp (name, ".sdata") == 0)
1574 h->esym.asym.sc = scSData;
1575 else if (strcmp (name, ".rodata") == 0
1576 || strcmp (name, ".rdata") == 0)
1577 h->esym.asym.sc = scRData;
1578 else if (strcmp (name, ".bss") == 0)
1579 h->esym.asym.sc = scBss;
1580 else if (strcmp (name, ".sbss") == 0)
1581 h->esym.asym.sc = scSBss;
1582 else if (strcmp (name, ".init") == 0)
1583 h->esym.asym.sc = scInit;
1584 else if (strcmp (name, ".fini") == 0)
1585 h->esym.asym.sc = scFini;
1586 else
1587 h->esym.asym.sc = scAbs;
1588 }
1589 }
1590
1591 h->esym.asym.reserved = 0;
1592 h->esym.asym.index = indexNil;
1593 }
1594
1595 if (h->root.root.type == bfd_link_hash_common)
1596 h->esym.asym.value = h->root.root.u.c.size;
1597 else if (h->root.root.type == bfd_link_hash_defined
1598 || h->root.root.type == bfd_link_hash_defweak)
1599 {
1600 if (h->esym.asym.sc == scCommon)
1601 h->esym.asym.sc = scBss;
1602 else if (h->esym.asym.sc == scSCommon)
1603 h->esym.asym.sc = scSBss;
1604
1605 sec = h->root.root.u.def.section;
1606 output_section = sec->output_section;
1607 if (output_section != NULL)
1608 h->esym.asym.value = (h->root.root.u.def.value
1609 + sec->output_offset
1610 + output_section->vma);
1611 else
1612 h->esym.asym.value = 0;
1613 }
f5385ebf 1614 else if (h->root.needs_plt)
b49e97c9
TS
1615 {
1616 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1617 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1618
1619 while (hd->root.root.type == bfd_link_hash_indirect)
1620 {
1621 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1622 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1623 }
1624
1625 if (!no_fn_stub)
1626 {
1627 /* Set type and value for a symbol with a function stub. */
1628 h->esym.asym.st = stProc;
1629 sec = hd->root.root.u.def.section;
1630 if (sec == NULL)
1631 h->esym.asym.value = 0;
1632 else
1633 {
1634 output_section = sec->output_section;
1635 if (output_section != NULL)
1636 h->esym.asym.value = (hd->root.plt.offset
1637 + sec->output_offset
1638 + output_section->vma);
1639 else
1640 h->esym.asym.value = 0;
1641 }
1642#if 0 /* FIXME? */
1643 h->esym.ifd = 0;
1644#endif
1645 }
1646 }
1647
1648 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1649 h->root.root.root.string,
1650 &h->esym))
1651 {
b34976b6
AM
1652 einfo->failed = TRUE;
1653 return FALSE;
b49e97c9
TS
1654 }
1655
b34976b6 1656 return TRUE;
b49e97c9
TS
1657}
1658
1659/* A comparison routine used to sort .gptab entries. */
1660
1661static int
9719ad41 1662gptab_compare (const void *p1, const void *p2)
b49e97c9 1663{
9719ad41
RS
1664 const Elf32_gptab *a1 = p1;
1665 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1666
1667 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1668}
1669\f
b15e6682 1670/* Functions to manage the got entry hash table. */
f4416af6
AO
1671
1672/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1673 hash number. */
1674
1675static INLINE hashval_t
9719ad41 1676mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1677{
1678#ifdef BFD64
1679 return addr + (addr >> 32);
1680#else
1681 return addr;
1682#endif
1683}
1684
1685/* got_entries only match if they're identical, except for gotidx, so
1686 use all fields to compute the hash, and compare the appropriate
1687 union members. */
1688
b15e6682 1689static hashval_t
9719ad41 1690mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1691{
1692 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1693
38985a1c 1694 return entry->symndx
f4416af6 1695 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1696 : entry->abfd->id
1697 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1698 : entry->d.h->root.root.root.hash));
b15e6682
AO
1699}
1700
1701static int
9719ad41 1702mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1703{
1704 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1705 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1706
1707 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1708 && (! e1->abfd ? e1->d.address == e2->d.address
1709 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1710 : e1->d.h == e2->d.h);
1711}
1712
1713/* multi_got_entries are still a match in the case of global objects,
1714 even if the input bfd in which they're referenced differs, so the
1715 hash computation and compare functions are adjusted
1716 accordingly. */
1717
1718static hashval_t
9719ad41 1719mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1720{
1721 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1722
1723 return entry->symndx
1724 + (! entry->abfd
1725 ? mips_elf_hash_bfd_vma (entry->d.address)
1726 : entry->symndx >= 0
1727 ? (entry->abfd->id
1728 + mips_elf_hash_bfd_vma (entry->d.addend))
1729 : entry->d.h->root.root.root.hash);
1730}
1731
1732static int
9719ad41 1733mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1734{
1735 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1736 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1737
1738 return e1->symndx == e2->symndx
1739 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1740 : e1->abfd == NULL || e2->abfd == NULL
1741 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1742 : e1->d.h == e2->d.h);
b15e6682
AO
1743}
1744\f
f4416af6
AO
1745/* Returns the dynamic relocation section for DYNOBJ. */
1746
1747static asection *
9719ad41 1748mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
f4416af6
AO
1749{
1750 static const char dname[] = ".rel.dyn";
1751 asection *sreloc;
1752
1753 sreloc = bfd_get_section_by_name (dynobj, dname);
1754 if (sreloc == NULL && create_p)
1755 {
1756 sreloc = bfd_make_section (dynobj, dname);
1757 if (sreloc == NULL
1758 || ! bfd_set_section_flags (dynobj, sreloc,
1759 (SEC_ALLOC
1760 | SEC_LOAD
1761 | SEC_HAS_CONTENTS
1762 | SEC_IN_MEMORY
1763 | SEC_LINKER_CREATED
1764 | SEC_READONLY))
1765 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1766 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1767 return NULL;
1768 }
1769 return sreloc;
1770}
1771
b49e97c9
TS
1772/* Returns the GOT section for ABFD. */
1773
1774static asection *
9719ad41 1775mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 1776{
f4416af6
AO
1777 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1778 if (sgot == NULL
1779 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1780 return NULL;
1781 return sgot;
b49e97c9
TS
1782}
1783
1784/* Returns the GOT information associated with the link indicated by
1785 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1786 section. */
1787
1788static struct mips_got_info *
9719ad41 1789mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
1790{
1791 asection *sgot;
1792 struct mips_got_info *g;
1793
f4416af6 1794 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1795 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1796 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1797 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1798 BFD_ASSERT (g != NULL);
1799
1800 if (sgotp)
f4416af6
AO
1801 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1802
b49e97c9
TS
1803 return g;
1804}
1805
1806/* Returns the GOT offset at which the indicated address can be found.
1807 If there is not yet a GOT entry for this value, create one. Returns
1808 -1 if no satisfactory GOT offset can be found. */
1809
1810static bfd_vma
9719ad41
RS
1811mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1812 bfd_vma value)
b49e97c9
TS
1813{
1814 asection *sgot;
1815 struct mips_got_info *g;
b15e6682 1816 struct mips_got_entry *entry;
b49e97c9
TS
1817
1818 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1819
f4416af6 1820 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1821 if (entry)
1822 return entry->gotidx;
1823 else
1824 return MINUS_ONE;
b49e97c9
TS
1825}
1826
1827/* Returns the GOT index for the global symbol indicated by H. */
1828
1829static bfd_vma
9719ad41 1830mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
b49e97c9
TS
1831{
1832 bfd_vma index;
1833 asection *sgot;
f4416af6 1834 struct mips_got_info *g, *gg;
d0c7ff07 1835 long global_got_dynindx = 0;
b49e97c9 1836
f4416af6
AO
1837 gg = g = mips_elf_got_info (abfd, &sgot);
1838 if (g->bfd2got && ibfd)
1839 {
1840 struct mips_got_entry e, *p;
143d77c5 1841
f4416af6
AO
1842 BFD_ASSERT (h->dynindx >= 0);
1843
1844 g = mips_elf_got_for_ibfd (g, ibfd);
1845 if (g->next != gg)
1846 {
1847 e.abfd = ibfd;
1848 e.symndx = -1;
1849 e.d.h = (struct mips_elf_link_hash_entry *)h;
1850
9719ad41 1851 p = htab_find (g->got_entries, &e);
f4416af6
AO
1852
1853 BFD_ASSERT (p->gotidx > 0);
1854 return p->gotidx;
1855 }
1856 }
1857
1858 if (gg->global_gotsym != NULL)
1859 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9
TS
1860
1861 /* Once we determine the global GOT entry with the lowest dynamic
1862 symbol table index, we must put all dynamic symbols with greater
1863 indices into the GOT. That makes it easy to calculate the GOT
1864 offset. */
d0c7ff07
TS
1865 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1866 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
b49e97c9 1867 * MIPS_ELF_GOT_SIZE (abfd));
eea6121a 1868 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
1869
1870 return index;
1871}
1872
1873/* Find a GOT entry that is within 32KB of the VALUE. These entries
1874 are supposed to be placed at small offsets in the GOT, i.e.,
1875 within 32KB of GP. Return the index into the GOT for this page,
1876 and store the offset from this entry to the desired address in
1877 OFFSETP, if it is non-NULL. */
1878
1879static bfd_vma
9719ad41
RS
1880mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1881 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
1882{
1883 asection *sgot;
1884 struct mips_got_info *g;
b15e6682
AO
1885 bfd_vma index;
1886 struct mips_got_entry *entry;
b49e97c9
TS
1887
1888 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1889
f4416af6 1890 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682
AO
1891 (value + 0x8000)
1892 & (~(bfd_vma)0xffff));
b49e97c9 1893
b15e6682
AO
1894 if (!entry)
1895 return MINUS_ONE;
143d77c5 1896
b15e6682 1897 index = entry->gotidx;
b49e97c9
TS
1898
1899 if (offsetp)
f4416af6 1900 *offsetp = value - entry->d.address;
b49e97c9
TS
1901
1902 return index;
1903}
1904
1905/* Find a GOT entry whose higher-order 16 bits are the same as those
1906 for value. Return the index into the GOT for this entry. */
1907
1908static bfd_vma
9719ad41
RS
1909mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1910 bfd_vma value, bfd_boolean external)
b49e97c9
TS
1911{
1912 asection *sgot;
1913 struct mips_got_info *g;
b15e6682 1914 struct mips_got_entry *entry;
b49e97c9
TS
1915
1916 if (! external)
1917 {
1918 /* Although the ABI says that it is "the high-order 16 bits" that we
1919 want, it is really the %high value. The complete value is
1920 calculated with a `addiu' of a LO16 relocation, just as with a
1921 HI16/LO16 pair. */
1922 value = mips_elf_high (value) << 16;
1923 }
1924
1925 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1926
f4416af6 1927 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1928 if (entry)
1929 return entry->gotidx;
1930 else
1931 return MINUS_ONE;
b49e97c9
TS
1932}
1933
1934/* Returns the offset for the entry at the INDEXth position
1935 in the GOT. */
1936
1937static bfd_vma
9719ad41
RS
1938mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1939 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
1940{
1941 asection *sgot;
1942 bfd_vma gp;
f4416af6 1943 struct mips_got_info *g;
b49e97c9 1944
f4416af6
AO
1945 g = mips_elf_got_info (dynobj, &sgot);
1946 gp = _bfd_get_gp_value (output_bfd)
1947 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 1948
f4416af6 1949 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
1950}
1951
1952/* Create a local GOT entry for VALUE. Return the index of the entry,
1953 or -1 if it could not be created. */
1954
b15e6682 1955static struct mips_got_entry *
9719ad41
RS
1956mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1957 struct mips_got_info *gg,
1958 asection *sgot, bfd_vma value)
b49e97c9 1959{
b15e6682 1960 struct mips_got_entry entry, **loc;
f4416af6 1961 struct mips_got_info *g;
b15e6682 1962
f4416af6
AO
1963 entry.abfd = NULL;
1964 entry.symndx = -1;
1965 entry.d.address = value;
1966
1967 g = mips_elf_got_for_ibfd (gg, ibfd);
1968 if (g == NULL)
1969 {
1970 g = mips_elf_got_for_ibfd (gg, abfd);
1971 BFD_ASSERT (g != NULL);
1972 }
b15e6682
AO
1973
1974 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1975 INSERT);
1976 if (*loc)
1977 return *loc;
143d77c5 1978
b15e6682
AO
1979 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1980
1981 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1982
1983 if (! *loc)
1984 return NULL;
143d77c5 1985
b15e6682
AO
1986 memcpy (*loc, &entry, sizeof entry);
1987
b49e97c9
TS
1988 if (g->assigned_gotno >= g->local_gotno)
1989 {
f4416af6 1990 (*loc)->gotidx = -1;
b49e97c9
TS
1991 /* We didn't allocate enough space in the GOT. */
1992 (*_bfd_error_handler)
1993 (_("not enough GOT space for local GOT entries"));
1994 bfd_set_error (bfd_error_bad_value);
b15e6682 1995 return NULL;
b49e97c9
TS
1996 }
1997
1998 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
1999 (sgot->contents + entry.gotidx));
2000
2001 return *loc;
b49e97c9
TS
2002}
2003
2004/* Sort the dynamic symbol table so that symbols that need GOT entries
2005 appear towards the end. This reduces the amount of GOT space
2006 required. MAX_LOCAL is used to set the number of local symbols
2007 known to be in the dynamic symbol table. During
2008 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2009 section symbols are added and the count is higher. */
2010
b34976b6 2011static bfd_boolean
9719ad41 2012mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2013{
2014 struct mips_elf_hash_sort_data hsd;
2015 struct mips_got_info *g;
2016 bfd *dynobj;
2017
2018 dynobj = elf_hash_table (info)->dynobj;
2019
f4416af6
AO
2020 g = mips_elf_got_info (dynobj, NULL);
2021
b49e97c9 2022 hsd.low = NULL;
143d77c5 2023 hsd.max_unref_got_dynindx =
f4416af6
AO
2024 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2025 /* In the multi-got case, assigned_gotno of the master got_info
2026 indicate the number of entries that aren't referenced in the
2027 primary GOT, but that must have entries because there are
2028 dynamic relocations that reference it. Since they aren't
2029 referenced, we move them to the end of the GOT, so that they
2030 don't prevent other entries that are referenced from getting
2031 too large offsets. */
2032 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2033 hsd.max_non_got_dynindx = max_local;
2034 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2035 elf_hash_table (info)),
2036 mips_elf_sort_hash_table_f,
2037 &hsd);
2038
2039 /* There should have been enough room in the symbol table to
44c410de 2040 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2041 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2042 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2043 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2044
2045 /* Now we know which dynamic symbol has the lowest dynamic symbol
2046 table index in the GOT. */
b49e97c9
TS
2047 g->global_gotsym = hsd.low;
2048
b34976b6 2049 return TRUE;
b49e97c9
TS
2050}
2051
2052/* If H needs a GOT entry, assign it the highest available dynamic
2053 index. Otherwise, assign it the lowest available dynamic
2054 index. */
2055
b34976b6 2056static bfd_boolean
9719ad41 2057mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2058{
9719ad41 2059 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2060
2061 if (h->root.root.type == bfd_link_hash_warning)
2062 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2063
2064 /* Symbols without dynamic symbol table entries aren't interesting
2065 at all. */
2066 if (h->root.dynindx == -1)
b34976b6 2067 return TRUE;
b49e97c9 2068
f4416af6
AO
2069 /* Global symbols that need GOT entries that are not explicitly
2070 referenced are marked with got offset 2. Those that are
2071 referenced get a 1, and those that don't need GOT entries get
2072 -1. */
2073 if (h->root.got.offset == 2)
2074 {
2075 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2076 hsd->low = (struct elf_link_hash_entry *) h;
2077 h->root.dynindx = hsd->max_unref_got_dynindx++;
2078 }
2079 else if (h->root.got.offset != 1)
b49e97c9
TS
2080 h->root.dynindx = hsd->max_non_got_dynindx++;
2081 else
2082 {
2083 h->root.dynindx = --hsd->min_got_dynindx;
2084 hsd->low = (struct elf_link_hash_entry *) h;
2085 }
2086
b34976b6 2087 return TRUE;
b49e97c9
TS
2088}
2089
2090/* If H is a symbol that needs a global GOT entry, but has a dynamic
2091 symbol table index lower than any we've seen to date, record it for
2092 posterity. */
2093
b34976b6 2094static bfd_boolean
9719ad41
RS
2095mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2096 bfd *abfd, struct bfd_link_info *info,
2097 struct mips_got_info *g)
b49e97c9 2098{
f4416af6
AO
2099 struct mips_got_entry entry, **loc;
2100
b49e97c9
TS
2101 /* A global symbol in the GOT must also be in the dynamic symbol
2102 table. */
7c5fcef7
L
2103 if (h->dynindx == -1)
2104 {
2105 switch (ELF_ST_VISIBILITY (h->other))
2106 {
2107 case STV_INTERNAL:
2108 case STV_HIDDEN:
b34976b6 2109 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2110 break;
2111 }
c152c796 2112 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2113 return FALSE;
7c5fcef7 2114 }
b49e97c9 2115
f4416af6
AO
2116 entry.abfd = abfd;
2117 entry.symndx = -1;
2118 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2119
2120 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2121 INSERT);
2122
b49e97c9
TS
2123 /* If we've already marked this entry as needing GOT space, we don't
2124 need to do it again. */
f4416af6
AO
2125 if (*loc)
2126 return TRUE;
2127
2128 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2129
2130 if (! *loc)
2131 return FALSE;
143d77c5 2132
f4416af6
AO
2133 entry.gotidx = -1;
2134 memcpy (*loc, &entry, sizeof entry);
2135
b49e97c9 2136 if (h->got.offset != MINUS_ONE)
b34976b6 2137 return TRUE;
b49e97c9
TS
2138
2139 /* By setting this to a value other than -1, we are indicating that
2140 there needs to be a GOT entry for H. Avoid using zero, as the
2141 generic ELF copy_indirect_symbol tests for <= 0. */
2142 h->got.offset = 1;
2143
b34976b6 2144 return TRUE;
b49e97c9 2145}
f4416af6
AO
2146
2147/* Reserve space in G for a GOT entry containing the value of symbol
2148 SYMNDX in input bfd ABDF, plus ADDEND. */
2149
2150static bfd_boolean
9719ad41
RS
2151mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2152 struct mips_got_info *g)
f4416af6
AO
2153{
2154 struct mips_got_entry entry, **loc;
2155
2156 entry.abfd = abfd;
2157 entry.symndx = symndx;
2158 entry.d.addend = addend;
2159 loc = (struct mips_got_entry **)
2160 htab_find_slot (g->got_entries, &entry, INSERT);
2161
2162 if (*loc)
2163 return TRUE;
2164
2165 entry.gotidx = g->local_gotno++;
2166
2167 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2168
2169 if (! *loc)
2170 return FALSE;
143d77c5 2171
f4416af6
AO
2172 memcpy (*loc, &entry, sizeof entry);
2173
2174 return TRUE;
2175}
2176\f
2177/* Compute the hash value of the bfd in a bfd2got hash entry. */
2178
2179static hashval_t
9719ad41 2180mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2181{
2182 const struct mips_elf_bfd2got_hash *entry
2183 = (struct mips_elf_bfd2got_hash *)entry_;
2184
2185 return entry->bfd->id;
2186}
2187
2188/* Check whether two hash entries have the same bfd. */
2189
2190static int
9719ad41 2191mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2192{
2193 const struct mips_elf_bfd2got_hash *e1
2194 = (const struct mips_elf_bfd2got_hash *)entry1;
2195 const struct mips_elf_bfd2got_hash *e2
2196 = (const struct mips_elf_bfd2got_hash *)entry2;
2197
2198 return e1->bfd == e2->bfd;
2199}
2200
0b25d3e6 2201/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2202 be the master GOT data. */
2203
2204static struct mips_got_info *
9719ad41 2205mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2206{
2207 struct mips_elf_bfd2got_hash e, *p;
2208
2209 if (! g->bfd2got)
2210 return g;
2211
2212 e.bfd = ibfd;
9719ad41 2213 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2214 return p ? p->g : NULL;
2215}
2216
2217/* Create one separate got for each bfd that has entries in the global
2218 got, such that we can tell how many local and global entries each
2219 bfd requires. */
2220
2221static int
9719ad41 2222mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2223{
2224 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2225 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2226 htab_t bfd2got = arg->bfd2got;
2227 struct mips_got_info *g;
2228 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2229 void **bfdgotp;
143d77c5 2230
f4416af6
AO
2231 /* Find the got_info for this GOT entry's input bfd. Create one if
2232 none exists. */
2233 bfdgot_entry.bfd = entry->abfd;
2234 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2235 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2236
2237 if (bfdgot != NULL)
2238 g = bfdgot->g;
2239 else
2240 {
2241 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2242 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2243
2244 if (bfdgot == NULL)
2245 {
2246 arg->obfd = 0;
2247 return 0;
2248 }
2249
2250 *bfdgotp = bfdgot;
2251
2252 bfdgot->bfd = entry->abfd;
2253 bfdgot->g = g = (struct mips_got_info *)
2254 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2255 if (g == NULL)
2256 {
2257 arg->obfd = 0;
2258 return 0;
2259 }
2260
2261 g->global_gotsym = NULL;
2262 g->global_gotno = 0;
2263 g->local_gotno = 0;
2264 g->assigned_gotno = -1;
2265 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 2266 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
2267 if (g->got_entries == NULL)
2268 {
2269 arg->obfd = 0;
2270 return 0;
2271 }
2272
2273 g->bfd2got = NULL;
2274 g->next = NULL;
2275 }
2276
2277 /* Insert the GOT entry in the bfd's got entry hash table. */
2278 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2279 if (*entryp != NULL)
2280 return 1;
143d77c5 2281
f4416af6
AO
2282 *entryp = entry;
2283
2284 if (entry->symndx >= 0 || entry->d.h->forced_local)
2285 ++g->local_gotno;
2286 else
2287 ++g->global_gotno;
2288
2289 return 1;
2290}
2291
2292/* Attempt to merge gots of different input bfds. Try to use as much
2293 as possible of the primary got, since it doesn't require explicit
2294 dynamic relocations, but don't use bfds that would reference global
2295 symbols out of the addressable range. Failing the primary got,
2296 attempt to merge with the current got, or finish the current got
2297 and then make make the new got current. */
2298
2299static int
9719ad41 2300mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
2301{
2302 struct mips_elf_bfd2got_hash *bfd2got
2303 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2304 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2305 unsigned int lcount = bfd2got->g->local_gotno;
2306 unsigned int gcount = bfd2got->g->global_gotno;
2307 unsigned int maxcnt = arg->max_count;
143d77c5 2308
f4416af6
AO
2309 /* If we don't have a primary GOT and this is not too big, use it as
2310 a starting point for the primary GOT. */
2311 if (! arg->primary && lcount + gcount <= maxcnt)
2312 {
2313 arg->primary = bfd2got->g;
2314 arg->primary_count = lcount + gcount;
2315 }
2316 /* If it looks like we can merge this bfd's entries with those of
2317 the primary, merge them. The heuristics is conservative, but we
2318 don't have to squeeze it too hard. */
2319 else if (arg->primary
2320 && (arg->primary_count + lcount + gcount) <= maxcnt)
2321 {
2322 struct mips_got_info *g = bfd2got->g;
2323 int old_lcount = arg->primary->local_gotno;
2324 int old_gcount = arg->primary->global_gotno;
2325
2326 bfd2got->g = arg->primary;
2327
2328 htab_traverse (g->got_entries,
2329 mips_elf_make_got_per_bfd,
2330 arg);
2331 if (arg->obfd == NULL)
2332 return 0;
2333
2334 htab_delete (g->got_entries);
2335 /* We don't have to worry about releasing memory of the actual
2336 got entries, since they're all in the master got_entries hash
2337 table anyway. */
2338
caec41ff 2339 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6
AO
2340 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2341
2342 arg->primary_count = arg->primary->local_gotno
2343 + arg->primary->global_gotno;
2344 }
2345 /* If we can merge with the last-created got, do it. */
2346 else if (arg->current
2347 && arg->current_count + lcount + gcount <= maxcnt)
2348 {
2349 struct mips_got_info *g = bfd2got->g;
2350 int old_lcount = arg->current->local_gotno;
2351 int old_gcount = arg->current->global_gotno;
2352
2353 bfd2got->g = arg->current;
2354
2355 htab_traverse (g->got_entries,
2356 mips_elf_make_got_per_bfd,
2357 arg);
2358 if (arg->obfd == NULL)
2359 return 0;
2360
2361 htab_delete (g->got_entries);
2362
caec41ff 2363 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6
AO
2364 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2365
2366 arg->current_count = arg->current->local_gotno
2367 + arg->current->global_gotno;
2368 }
2369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2370 fits; if it turns out that it doesn't, we'll get relocation
2371 overflows anyway. */
2372 else
2373 {
2374 bfd2got->g->next = arg->current;
2375 arg->current = bfd2got->g;
143d77c5 2376
f4416af6
AO
2377 arg->current_count = lcount + gcount;
2378 }
2379
2380 return 1;
2381}
2382
2383/* If passed a NULL mips_got_info in the argument, set the marker used
2384 to tell whether a global symbol needs a got entry (in the primary
2385 got) to the given VALUE.
2386
2387 If passed a pointer G to a mips_got_info in the argument (it must
2388 not be the primary GOT), compute the offset from the beginning of
2389 the (primary) GOT section to the entry in G corresponding to the
2390 global symbol. G's assigned_gotno must contain the index of the
2391 first available global GOT entry in G. VALUE must contain the size
2392 of a GOT entry in bytes. For each global GOT entry that requires a
2393 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 2394 marked as not eligible for lazy resolution through a function
f4416af6
AO
2395 stub. */
2396static int
9719ad41 2397mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
2398{
2399 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2400 struct mips_elf_set_global_got_offset_arg *arg
2401 = (struct mips_elf_set_global_got_offset_arg *)p;
2402 struct mips_got_info *g = arg->g;
2403
2404 if (entry->abfd != NULL && entry->symndx == -1
2405 && entry->d.h->root.dynindx != -1)
2406 {
2407 if (g)
2408 {
2409 BFD_ASSERT (g->global_gotsym == NULL);
2410
2411 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
2412 if (arg->info->shared
2413 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
2414 && entry->d.h->root.def_dynamic
2415 && !entry->d.h->root.def_regular))
f4416af6
AO
2416 ++arg->needed_relocs;
2417 }
2418 else
2419 entry->d.h->root.got.offset = arg->value;
2420 }
2421
2422 return 1;
2423}
2424
0626d451
RS
2425/* Mark any global symbols referenced in the GOT we are iterating over
2426 as inelligible for lazy resolution stubs. */
2427static int
9719ad41 2428mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
2429{
2430 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2431
2432 if (entry->abfd != NULL
2433 && entry->symndx == -1
2434 && entry->d.h->root.dynindx != -1)
2435 entry->d.h->no_fn_stub = TRUE;
2436
2437 return 1;
2438}
2439
f4416af6
AO
2440/* Follow indirect and warning hash entries so that each got entry
2441 points to the final symbol definition. P must point to a pointer
2442 to the hash table we're traversing. Since this traversal may
2443 modify the hash table, we set this pointer to NULL to indicate
2444 we've made a potentially-destructive change to the hash table, so
2445 the traversal must be restarted. */
2446static int
9719ad41 2447mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
2448{
2449 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2450 htab_t got_entries = *(htab_t *)p;
2451
2452 if (entry->abfd != NULL && entry->symndx == -1)
2453 {
2454 struct mips_elf_link_hash_entry *h = entry->d.h;
2455
2456 while (h->root.root.type == bfd_link_hash_indirect
2457 || h->root.root.type == bfd_link_hash_warning)
2458 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2459
2460 if (entry->d.h == h)
2461 return 1;
143d77c5 2462
f4416af6
AO
2463 entry->d.h = h;
2464
2465 /* If we can't find this entry with the new bfd hash, re-insert
2466 it, and get the traversal restarted. */
2467 if (! htab_find (got_entries, entry))
2468 {
2469 htab_clear_slot (got_entries, entryp);
2470 entryp = htab_find_slot (got_entries, entry, INSERT);
2471 if (! *entryp)
2472 *entryp = entry;
2473 /* Abort the traversal, since the whole table may have
2474 moved, and leave it up to the parent to restart the
2475 process. */
2476 *(htab_t *)p = NULL;
2477 return 0;
2478 }
2479 /* We might want to decrement the global_gotno count, but it's
2480 either too early or too late for that at this point. */
2481 }
143d77c5 2482
f4416af6
AO
2483 return 1;
2484}
2485
2486/* Turn indirect got entries in a got_entries table into their final
2487 locations. */
2488static void
9719ad41 2489mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
2490{
2491 htab_t got_entries;
2492
2493 do
2494 {
2495 got_entries = g->got_entries;
2496
2497 htab_traverse (got_entries,
2498 mips_elf_resolve_final_got_entry,
2499 &got_entries);
2500 }
2501 while (got_entries == NULL);
2502}
2503
2504/* Return the offset of an input bfd IBFD's GOT from the beginning of
2505 the primary GOT. */
2506static bfd_vma
9719ad41 2507mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2508{
2509 if (g->bfd2got == NULL)
2510 return 0;
2511
2512 g = mips_elf_got_for_ibfd (g, ibfd);
2513 if (! g)
2514 return 0;
2515
2516 BFD_ASSERT (g->next);
2517
2518 g = g->next;
143d77c5 2519
f4416af6
AO
2520 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2521}
2522
2523/* Turn a single GOT that is too big for 16-bit addressing into
2524 a sequence of GOTs, each one 16-bit addressable. */
2525
2526static bfd_boolean
9719ad41
RS
2527mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2528 struct mips_got_info *g, asection *got,
2529 bfd_size_type pages)
f4416af6
AO
2530{
2531 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2532 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2533 struct mips_got_info *gg;
2534 unsigned int assign;
2535
2536 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 2537 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
2538 if (g->bfd2got == NULL)
2539 return FALSE;
2540
2541 got_per_bfd_arg.bfd2got = g->bfd2got;
2542 got_per_bfd_arg.obfd = abfd;
2543 got_per_bfd_arg.info = info;
2544
2545 /* Count how many GOT entries each input bfd requires, creating a
2546 map from bfd to got info while at that. */
2547 mips_elf_resolve_final_got_entries (g);
2548 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2549 if (got_per_bfd_arg.obfd == NULL)
2550 return FALSE;
2551
2552 got_per_bfd_arg.current = NULL;
2553 got_per_bfd_arg.primary = NULL;
2554 /* Taking out PAGES entries is a worst-case estimate. We could
2555 compute the maximum number of pages that each separate input bfd
2556 uses, but it's probably not worth it. */
2557 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2558 / MIPS_ELF_GOT_SIZE (abfd))
2559 - MIPS_RESERVED_GOTNO - pages);
2560
2561 /* Try to merge the GOTs of input bfds together, as long as they
2562 don't seem to exceed the maximum GOT size, choosing one of them
2563 to be the primary GOT. */
2564 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2565 if (got_per_bfd_arg.obfd == NULL)
2566 return FALSE;
2567
2568 /* If we find any suitable primary GOT, create an empty one. */
2569 if (got_per_bfd_arg.primary == NULL)
2570 {
2571 g->next = (struct mips_got_info *)
2572 bfd_alloc (abfd, sizeof (struct mips_got_info));
2573 if (g->next == NULL)
2574 return FALSE;
2575
2576 g->next->global_gotsym = NULL;
2577 g->next->global_gotno = 0;
2578 g->next->local_gotno = 0;
2579 g->next->assigned_gotno = 0;
2580 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2581 mips_elf_multi_got_entry_eq,
9719ad41 2582 NULL);
f4416af6
AO
2583 if (g->next->got_entries == NULL)
2584 return FALSE;
2585 g->next->bfd2got = NULL;
2586 }
2587 else
2588 g->next = got_per_bfd_arg.primary;
2589 g->next->next = got_per_bfd_arg.current;
2590
2591 /* GG is now the master GOT, and G is the primary GOT. */
2592 gg = g;
2593 g = g->next;
2594
2595 /* Map the output bfd to the primary got. That's what we're going
2596 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2597 didn't mark in check_relocs, and we want a quick way to find it.
2598 We can't just use gg->next because we're going to reverse the
2599 list. */
2600 {
2601 struct mips_elf_bfd2got_hash *bfdgot;
2602 void **bfdgotp;
143d77c5 2603
f4416af6
AO
2604 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2605 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2606
2607 if (bfdgot == NULL)
2608 return FALSE;
2609
2610 bfdgot->bfd = abfd;
2611 bfdgot->g = g;
2612 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2613
2614 BFD_ASSERT (*bfdgotp == NULL);
2615 *bfdgotp = bfdgot;
2616 }
2617
2618 /* The IRIX dynamic linker requires every symbol that is referenced
2619 in a dynamic relocation to be present in the primary GOT, so
2620 arrange for them to appear after those that are actually
2621 referenced.
2622
2623 GNU/Linux could very well do without it, but it would slow down
2624 the dynamic linker, since it would have to resolve every dynamic
2625 symbol referenced in other GOTs more than once, without help from
2626 the cache. Also, knowing that every external symbol has a GOT
2627 helps speed up the resolution of local symbols too, so GNU/Linux
2628 follows IRIX's practice.
143d77c5 2629
f4416af6
AO
2630 The number 2 is used by mips_elf_sort_hash_table_f to count
2631 global GOT symbols that are unreferenced in the primary GOT, with
2632 an initial dynamic index computed from gg->assigned_gotno, where
2633 the number of unreferenced global entries in the primary GOT is
2634 preserved. */
2635 if (1)
2636 {
2637 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2638 g->global_gotno = gg->global_gotno;
2639 set_got_offset_arg.value = 2;
2640 }
2641 else
2642 {
2643 /* This could be used for dynamic linkers that don't optimize
2644 symbol resolution while applying relocations so as to use
2645 primary GOT entries or assuming the symbol is locally-defined.
2646 With this code, we assign lower dynamic indices to global
2647 symbols that are not referenced in the primary GOT, so that
2648 their entries can be omitted. */
2649 gg->assigned_gotno = 0;
2650 set_got_offset_arg.value = -1;
2651 }
2652
2653 /* Reorder dynamic symbols as described above (which behavior
2654 depends on the setting of VALUE). */
2655 set_got_offset_arg.g = NULL;
2656 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2657 &set_got_offset_arg);
2658 set_got_offset_arg.value = 1;
2659 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2660 &set_got_offset_arg);
2661 if (! mips_elf_sort_hash_table (info, 1))
2662 return FALSE;
2663
2664 /* Now go through the GOTs assigning them offset ranges.
2665 [assigned_gotno, local_gotno[ will be set to the range of local
2666 entries in each GOT. We can then compute the end of a GOT by
2667 adding local_gotno to global_gotno. We reverse the list and make
2668 it circular since then we'll be able to quickly compute the
2669 beginning of a GOT, by computing the end of its predecessor. To
2670 avoid special cases for the primary GOT, while still preserving
2671 assertions that are valid for both single- and multi-got links,
2672 we arrange for the main got struct to have the right number of
2673 global entries, but set its local_gotno such that the initial
2674 offset of the primary GOT is zero. Remember that the primary GOT
2675 will become the last item in the circular linked list, so it
2676 points back to the master GOT. */
2677 gg->local_gotno = -g->global_gotno;
2678 gg->global_gotno = g->global_gotno;
2679 assign = 0;
2680 gg->next = gg;
2681
2682 do
2683 {
2684 struct mips_got_info *gn;
2685
2686 assign += MIPS_RESERVED_GOTNO;
2687 g->assigned_gotno = assign;
2688 g->local_gotno += assign + pages;
2689 assign = g->local_gotno + g->global_gotno;
2690
2691 /* Take g out of the direct list, and push it onto the reversed
2692 list that gg points to. */
2693 gn = g->next;
2694 g->next = gg->next;
2695 gg->next = g;
2696 g = gn;
0626d451
RS
2697
2698 /* Mark global symbols in every non-primary GOT as ineligible for
2699 stubs. */
2700 if (g)
2701 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
2702 }
2703 while (g);
2704
eea6121a 2705 got->size = (gg->next->local_gotno
f4416af6 2706 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 2707
f4416af6
AO
2708 return TRUE;
2709}
143d77c5 2710
b49e97c9
TS
2711\f
2712/* Returns the first relocation of type r_type found, beginning with
2713 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2714
2715static const Elf_Internal_Rela *
9719ad41
RS
2716mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2717 const Elf_Internal_Rela *relocation,
2718 const Elf_Internal_Rela *relend)
b49e97c9 2719{
b49e97c9
TS
2720 while (relocation < relend)
2721 {
2722 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2723 return relocation;
2724
2725 ++relocation;
2726 }
2727
2728 /* We didn't find it. */
2729 bfd_set_error (bfd_error_bad_value);
2730 return NULL;
2731}
2732
2733/* Return whether a relocation is against a local symbol. */
2734
b34976b6 2735static bfd_boolean
9719ad41
RS
2736mips_elf_local_relocation_p (bfd *input_bfd,
2737 const Elf_Internal_Rela *relocation,
2738 asection **local_sections,
2739 bfd_boolean check_forced)
b49e97c9
TS
2740{
2741 unsigned long r_symndx;
2742 Elf_Internal_Shdr *symtab_hdr;
2743 struct mips_elf_link_hash_entry *h;
2744 size_t extsymoff;
2745
2746 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2747 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2748 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2749
2750 if (r_symndx < extsymoff)
b34976b6 2751 return TRUE;
b49e97c9 2752 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 2753 return TRUE;
b49e97c9
TS
2754
2755 if (check_forced)
2756 {
2757 /* Look up the hash table to check whether the symbol
2758 was forced local. */
2759 h = (struct mips_elf_link_hash_entry *)
2760 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2761 /* Find the real hash-table entry for this symbol. */
2762 while (h->root.root.type == bfd_link_hash_indirect
2763 || h->root.root.type == bfd_link_hash_warning)
2764 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 2765 if (h->root.forced_local)
b34976b6 2766 return TRUE;
b49e97c9
TS
2767 }
2768
b34976b6 2769 return FALSE;
b49e97c9
TS
2770}
2771\f
2772/* Sign-extend VALUE, which has the indicated number of BITS. */
2773
a7ebbfdf 2774bfd_vma
9719ad41 2775_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
2776{
2777 if (value & ((bfd_vma) 1 << (bits - 1)))
2778 /* VALUE is negative. */
2779 value |= ((bfd_vma) - 1) << bits;
2780
2781 return value;
2782}
2783
2784/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 2785 range expressible by a signed number with the indicated number of
b49e97c9
TS
2786 BITS. */
2787
b34976b6 2788static bfd_boolean
9719ad41 2789mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
2790{
2791 bfd_signed_vma svalue = (bfd_signed_vma) value;
2792
2793 if (svalue > (1 << (bits - 1)) - 1)
2794 /* The value is too big. */
b34976b6 2795 return TRUE;
b49e97c9
TS
2796 else if (svalue < -(1 << (bits - 1)))
2797 /* The value is too small. */
b34976b6 2798 return TRUE;
b49e97c9
TS
2799
2800 /* All is well. */
b34976b6 2801 return FALSE;
b49e97c9
TS
2802}
2803
2804/* Calculate the %high function. */
2805
2806static bfd_vma
9719ad41 2807mips_elf_high (bfd_vma value)
b49e97c9
TS
2808{
2809 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2810}
2811
2812/* Calculate the %higher function. */
2813
2814static bfd_vma
9719ad41 2815mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2816{
2817#ifdef BFD64
2818 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2819#else
2820 abort ();
c5ae1840 2821 return MINUS_ONE;
b49e97c9
TS
2822#endif
2823}
2824
2825/* Calculate the %highest function. */
2826
2827static bfd_vma
9719ad41 2828mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2829{
2830#ifdef BFD64
b15e6682 2831 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
2832#else
2833 abort ();
c5ae1840 2834 return MINUS_ONE;
b49e97c9
TS
2835#endif
2836}
2837\f
2838/* Create the .compact_rel section. */
2839
b34976b6 2840static bfd_boolean
9719ad41
RS
2841mips_elf_create_compact_rel_section
2842 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
2843{
2844 flagword flags;
2845 register asection *s;
2846
2847 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2848 {
2849 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2850 | SEC_READONLY);
2851
2852 s = bfd_make_section (abfd, ".compact_rel");
2853 if (s == NULL
2854 || ! bfd_set_section_flags (abfd, s, flags)
2855 || ! bfd_set_section_alignment (abfd, s,
2856 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 2857 return FALSE;
b49e97c9 2858
eea6121a 2859 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
2860 }
2861
b34976b6 2862 return TRUE;
b49e97c9
TS
2863}
2864
2865/* Create the .got section to hold the global offset table. */
2866
b34976b6 2867static bfd_boolean
9719ad41
RS
2868mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2869 bfd_boolean maybe_exclude)
b49e97c9
TS
2870{
2871 flagword flags;
2872 register asection *s;
2873 struct elf_link_hash_entry *h;
14a793b2 2874 struct bfd_link_hash_entry *bh;
b49e97c9
TS
2875 struct mips_got_info *g;
2876 bfd_size_type amt;
2877
2878 /* This function may be called more than once. */
f4416af6
AO
2879 s = mips_elf_got_section (abfd, TRUE);
2880 if (s)
2881 {
2882 if (! maybe_exclude)
2883 s->flags &= ~SEC_EXCLUDE;
2884 return TRUE;
2885 }
b49e97c9
TS
2886
2887 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2888 | SEC_LINKER_CREATED);
2889
f4416af6
AO
2890 if (maybe_exclude)
2891 flags |= SEC_EXCLUDE;
2892
72b4917c
TS
2893 /* We have to use an alignment of 2**4 here because this is hardcoded
2894 in the function stub generation and in the linker script. */
b49e97c9
TS
2895 s = bfd_make_section (abfd, ".got");
2896 if (s == NULL
2897 || ! bfd_set_section_flags (abfd, s, flags)
72b4917c 2898 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 2899 return FALSE;
b49e97c9
TS
2900
2901 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2902 linker script because we don't want to define the symbol if we
2903 are not creating a global offset table. */
14a793b2 2904 bh = NULL;
b49e97c9
TS
2905 if (! (_bfd_generic_link_add_one_symbol
2906 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 2907 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 2908 return FALSE;
14a793b2
AM
2909
2910 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
2911 h->non_elf = 0;
2912 h->def_regular = 1;
b49e97c9
TS
2913 h->type = STT_OBJECT;
2914
2915 if (info->shared
c152c796 2916 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2917 return FALSE;
b49e97c9 2918
b49e97c9 2919 amt = sizeof (struct mips_got_info);
9719ad41 2920 g = bfd_alloc (abfd, amt);
b49e97c9 2921 if (g == NULL)
b34976b6 2922 return FALSE;
b49e97c9 2923 g->global_gotsym = NULL;
e3d54347 2924 g->global_gotno = 0;
b49e97c9
TS
2925 g->local_gotno = MIPS_RESERVED_GOTNO;
2926 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
2927 g->bfd2got = NULL;
2928 g->next = NULL;
b15e6682 2929 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 2930 mips_elf_got_entry_eq, NULL);
b15e6682
AO
2931 if (g->got_entries == NULL)
2932 return FALSE;
f0abc2a1
AM
2933 mips_elf_section_data (s)->u.got_info = g;
2934 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
2935 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2936
b34976b6 2937 return TRUE;
b49e97c9 2938}
b49e97c9
TS
2939\f
2940/* Calculate the value produced by the RELOCATION (which comes from
2941 the INPUT_BFD). The ADDEND is the addend to use for this
2942 RELOCATION; RELOCATION->R_ADDEND is ignored.
2943
2944 The result of the relocation calculation is stored in VALUEP.
2945 REQUIRE_JALXP indicates whether or not the opcode used with this
2946 relocation must be JALX.
2947
2948 This function returns bfd_reloc_continue if the caller need take no
2949 further action regarding this relocation, bfd_reloc_notsupported if
2950 something goes dramatically wrong, bfd_reloc_overflow if an
2951 overflow occurs, and bfd_reloc_ok to indicate success. */
2952
2953static bfd_reloc_status_type
9719ad41
RS
2954mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2955 asection *input_section,
2956 struct bfd_link_info *info,
2957 const Elf_Internal_Rela *relocation,
2958 bfd_vma addend, reloc_howto_type *howto,
2959 Elf_Internal_Sym *local_syms,
2960 asection **local_sections, bfd_vma *valuep,
2961 const char **namep, bfd_boolean *require_jalxp,
2962 bfd_boolean save_addend)
b49e97c9
TS
2963{
2964 /* The eventual value we will return. */
2965 bfd_vma value;
2966 /* The address of the symbol against which the relocation is
2967 occurring. */
2968 bfd_vma symbol = 0;
2969 /* The final GP value to be used for the relocatable, executable, or
2970 shared object file being produced. */
2971 bfd_vma gp = MINUS_ONE;
2972 /* The place (section offset or address) of the storage unit being
2973 relocated. */
2974 bfd_vma p;
2975 /* The value of GP used to create the relocatable object. */
2976 bfd_vma gp0 = MINUS_ONE;
2977 /* The offset into the global offset table at which the address of
2978 the relocation entry symbol, adjusted by the addend, resides
2979 during execution. */
2980 bfd_vma g = MINUS_ONE;
2981 /* The section in which the symbol referenced by the relocation is
2982 located. */
2983 asection *sec = NULL;
2984 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 2985 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 2986 symbol. */
b34976b6
AM
2987 bfd_boolean local_p, was_local_p;
2988 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2989 bfd_boolean gp_disp_p = FALSE;
b49e97c9
TS
2990 Elf_Internal_Shdr *symtab_hdr;
2991 size_t extsymoff;
2992 unsigned long r_symndx;
2993 int r_type;
b34976b6 2994 /* TRUE if overflow occurred during the calculation of the
b49e97c9 2995 relocation value. */
b34976b6
AM
2996 bfd_boolean overflowed_p;
2997 /* TRUE if this relocation refers to a MIPS16 function. */
2998 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
2999
3000 /* Parse the relocation. */
3001 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3002 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3003 p = (input_section->output_section->vma
3004 + input_section->output_offset
3005 + relocation->r_offset);
3006
3007 /* Assume that there will be no overflow. */
b34976b6 3008 overflowed_p = FALSE;
b49e97c9
TS
3009
3010 /* Figure out whether or not the symbol is local, and get the offset
3011 used in the array of hash table entries. */
3012 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3013 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3014 local_sections, FALSE);
bce03d3d 3015 was_local_p = local_p;
b49e97c9
TS
3016 if (! elf_bad_symtab (input_bfd))
3017 extsymoff = symtab_hdr->sh_info;
3018 else
3019 {
3020 /* The symbol table does not follow the rule that local symbols
3021 must come before globals. */
3022 extsymoff = 0;
3023 }
3024
3025 /* Figure out the value of the symbol. */
3026 if (local_p)
3027 {
3028 Elf_Internal_Sym *sym;
3029
3030 sym = local_syms + r_symndx;
3031 sec = local_sections[r_symndx];
3032
3033 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3034 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3035 || (sec->flags & SEC_MERGE))
b49e97c9 3036 symbol += sym->st_value;
d4df96e6
L
3037 if ((sec->flags & SEC_MERGE)
3038 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3039 {
3040 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3041 addend -= symbol;
3042 addend += sec->output_section->vma + sec->output_offset;
3043 }
b49e97c9
TS
3044
3045 /* MIPS16 text labels should be treated as odd. */
3046 if (sym->st_other == STO_MIPS16)
3047 ++symbol;
3048
3049 /* Record the name of this symbol, for our caller. */
3050 *namep = bfd_elf_string_from_elf_section (input_bfd,
3051 symtab_hdr->sh_link,
3052 sym->st_name);
3053 if (*namep == '\0')
3054 *namep = bfd_section_name (input_bfd, sec);
3055
3056 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3057 }
3058 else
3059 {
560e09e9
NC
3060 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3061
b49e97c9
TS
3062 /* For global symbols we look up the symbol in the hash-table. */
3063 h = ((struct mips_elf_link_hash_entry *)
3064 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3065 /* Find the real hash-table entry for this symbol. */
3066 while (h->root.root.type == bfd_link_hash_indirect
3067 || h->root.root.type == bfd_link_hash_warning)
3068 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3069
3070 /* Record the name of this symbol, for our caller. */
3071 *namep = h->root.root.root.string;
3072
3073 /* See if this is the special _gp_disp symbol. Note that such a
3074 symbol must always be a global symbol. */
560e09e9 3075 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3076 && ! NEWABI_P (input_bfd))
3077 {
3078 /* Relocations against _gp_disp are permitted only with
3079 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3080 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3081 return bfd_reloc_notsupported;
3082
b34976b6 3083 gp_disp_p = TRUE;
b49e97c9
TS
3084 }
3085 /* If this symbol is defined, calculate its address. Note that
3086 _gp_disp is a magic symbol, always implicitly defined by the
3087 linker, so it's inappropriate to check to see whether or not
3088 its defined. */
3089 else if ((h->root.root.type == bfd_link_hash_defined
3090 || h->root.root.type == bfd_link_hash_defweak)
3091 && h->root.root.u.def.section)
3092 {
3093 sec = h->root.root.u.def.section;
3094 if (sec->output_section)
3095 symbol = (h->root.root.u.def.value
3096 + sec->output_section->vma
3097 + sec->output_offset);
3098 else
3099 symbol = h->root.root.u.def.value;
3100 }
3101 else if (h->root.root.type == bfd_link_hash_undefweak)
3102 /* We allow relocations against undefined weak symbols, giving
3103 it the value zero, so that you can undefined weak functions
3104 and check to see if they exist by looking at their
3105 addresses. */
3106 symbol = 0;
59c2e50f 3107 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
3108 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3109 symbol = 0;
a4d0f181
TS
3110 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3111 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
3112 {
3113 /* If this is a dynamic link, we should have created a
3114 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3115 in in _bfd_mips_elf_create_dynamic_sections.
3116 Otherwise, we should define the symbol with a value of 0.
3117 FIXME: It should probably get into the symbol table
3118 somehow as well. */
3119 BFD_ASSERT (! info->shared);
3120 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3121 symbol = 0;
3122 }
3123 else
3124 {
3125 if (! ((*info->callbacks->undefined_symbol)
3126 (info, h->root.root.root.string, input_bfd,
3127 input_section, relocation->r_offset,
59c2e50f
L
3128 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3129 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
3130 return bfd_reloc_undefined;
3131 symbol = 0;
3132 }
3133
3134 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3135 }
3136
3137 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3138 need to redirect the call to the stub, unless we're already *in*
3139 a stub. */
1049f94e 3140 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3141 && ((h != NULL && h->fn_stub != NULL)
3142 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3143 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3144 && !mips_elf_stub_section_p (input_bfd, input_section))
3145 {
3146 /* This is a 32- or 64-bit call to a 16-bit function. We should
3147 have already noticed that we were going to need the
3148 stub. */
3149 if (local_p)
3150 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3151 else
3152 {
3153 BFD_ASSERT (h->need_fn_stub);
3154 sec = h->fn_stub;
3155 }
3156
3157 symbol = sec->output_section->vma + sec->output_offset;
3158 }
3159 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3160 need to redirect the call to the stub. */
1049f94e 3161 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3162 && h != NULL
3163 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3164 && !target_is_16_bit_code_p)
3165 {
3166 /* If both call_stub and call_fp_stub are defined, we can figure
3167 out which one to use by seeing which one appears in the input
3168 file. */
3169 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3170 {
3171 asection *o;
3172
3173 sec = NULL;
3174 for (o = input_bfd->sections; o != NULL; o = o->next)
3175 {
3176 if (strncmp (bfd_get_section_name (input_bfd, o),
3177 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3178 {
3179 sec = h->call_fp_stub;
3180 break;
3181 }
3182 }
3183 if (sec == NULL)
3184 sec = h->call_stub;
3185 }
3186 else if (h->call_stub != NULL)
3187 sec = h->call_stub;
3188 else
3189 sec = h->call_fp_stub;
3190
eea6121a 3191 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
3192 symbol = sec->output_section->vma + sec->output_offset;
3193 }
3194
3195 /* Calls from 16-bit code to 32-bit code and vice versa require the
3196 special jalx instruction. */
1049f94e 3197 *require_jalxp = (!info->relocatable
b49e97c9
TS
3198 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3199 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3200
3201 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3202 local_sections, TRUE);
b49e97c9
TS
3203
3204 /* If we haven't already determined the GOT offset, or the GP value,
3205 and we're going to need it, get it now. */
3206 switch (r_type)
3207 {
0fdc1bf1 3208 case R_MIPS_GOT_PAGE:
93a2b7ae 3209 case R_MIPS_GOT_OFST:
d25aed71
RS
3210 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3211 bind locally. */
3212 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 3213 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3214 break;
3215 /* Fall through. */
3216
b49e97c9
TS
3217 case R_MIPS_CALL16:
3218 case R_MIPS_GOT16:
3219 case R_MIPS_GOT_DISP:
3220 case R_MIPS_GOT_HI16:
3221 case R_MIPS_CALL_HI16:
3222 case R_MIPS_GOT_LO16:
3223 case R_MIPS_CALL_LO16:
3224 /* Find the index into the GOT where this value is located. */
3225 if (!local_p)
3226 {
0fdc1bf1
AO
3227 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3228 GOT_PAGE relocation that decays to GOT_DISP because the
3229 symbol turns out to be global. The addend is then added
3230 as GOT_OFST. */
3231 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3232 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3233 input_bfd,
b49e97c9
TS
3234 (struct elf_link_hash_entry *) h);
3235 if (! elf_hash_table(info)->dynamic_sections_created
3236 || (info->shared
3237 && (info->symbolic || h->root.dynindx == -1)
f5385ebf 3238 && h->root.def_regular))
b49e97c9
TS
3239 {
3240 /* This is a static link or a -Bsymbolic link. The
3241 symbol is defined locally, or was forced to be local.
3242 We must initialize this entry in the GOT. */
3243 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3244 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3245 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3246 }
3247 }
3248 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3249 /* There's no need to create a local GOT entry here; the
3250 calculation for a local GOT16 entry does not involve G. */
3251 break;
3252 else
3253 {
f4416af6
AO
3254 g = mips_elf_local_got_index (abfd, input_bfd,
3255 info, symbol + addend);
b49e97c9
TS
3256 if (g == MINUS_ONE)
3257 return bfd_reloc_outofrange;
3258 }
3259
3260 /* Convert GOT indices to actual offsets. */
3261 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3262 abfd, input_bfd, g);
b49e97c9
TS
3263 break;
3264
3265 case R_MIPS_HI16:
3266 case R_MIPS_LO16:
3267 case R_MIPS16_GPREL:
3268 case R_MIPS_GPREL16:
3269 case R_MIPS_GPREL32:
3270 case R_MIPS_LITERAL:
3271 gp0 = _bfd_get_gp_value (input_bfd);
3272 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3273 if (elf_hash_table (info)->dynobj)
3274 gp += mips_elf_adjust_gp (abfd,
3275 mips_elf_got_info
3276 (elf_hash_table (info)->dynobj, NULL),
3277 input_bfd);
b49e97c9
TS
3278 break;
3279
3280 default:
3281 break;
3282 }
3283
3284 /* Figure out what kind of relocation is being performed. */
3285 switch (r_type)
3286 {
3287 case R_MIPS_NONE:
3288 return bfd_reloc_continue;
3289
3290 case R_MIPS_16:
a7ebbfdf 3291 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3292 overflowed_p = mips_elf_overflow_p (value, 16);
3293 break;
3294
3295 case R_MIPS_32:
3296 case R_MIPS_REL32:
3297 case R_MIPS_64:
3298 if ((info->shared
3299 || (elf_hash_table (info)->dynamic_sections_created
3300 && h != NULL
f5385ebf
AM
3301 && h->root.def_dynamic
3302 && !h->root.def_regular))
b49e97c9
TS
3303 && r_symndx != 0
3304 && (input_section->flags & SEC_ALLOC) != 0)
3305 {
3306 /* If we're creating a shared library, or this relocation is
3307 against a symbol in a shared library, then we can't know
3308 where the symbol will end up. So, we create a relocation
3309 record in the output, and leave the job up to the dynamic
3310 linker. */
3311 value = addend;
3312 if (!mips_elf_create_dynamic_relocation (abfd,
3313 info,
3314 relocation,
3315 h,
3316 sec,
3317 symbol,
3318 &value,
3319 input_section))
3320 return bfd_reloc_undefined;
3321 }
3322 else
3323 {
3324 if (r_type != R_MIPS_REL32)
3325 value = symbol + addend;
3326 else
3327 value = addend;
3328 }
3329 value &= howto->dst_mask;
092dcd75
CD
3330 break;
3331
3332 case R_MIPS_PC32:
3333 value = symbol + addend - p;
3334 value &= howto->dst_mask;
b49e97c9
TS
3335 break;
3336
0b25d3e6 3337 case R_MIPS_GNU_REL16_S2:
30ac9238 3338 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
0b25d3e6
AO
3339 overflowed_p = mips_elf_overflow_p (value, 18);
3340 value = (value >> 2) & howto->dst_mask;
3341 break;
3342
b49e97c9
TS
3343 case R_MIPS16_26:
3344 /* The calculation for R_MIPS16_26 is just the same as for an
3345 R_MIPS_26. It's only the storage of the relocated field into
3346 the output file that's different. That's handled in
3347 mips_elf_perform_relocation. So, we just fall through to the
3348 R_MIPS_26 case here. */
3349 case R_MIPS_26:
3350 if (local_p)
30ac9238 3351 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 3352 else
30ac9238 3353 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
b49e97c9
TS
3354 value &= howto->dst_mask;
3355 break;
3356
3357 case R_MIPS_HI16:
3358 if (!gp_disp_p)
3359 {
3360 value = mips_elf_high (addend + symbol);
3361 value &= howto->dst_mask;
3362 }
3363 else
3364 {
3365 value = mips_elf_high (addend + gp - p);
3366 overflowed_p = mips_elf_overflow_p (value, 16);
3367 }
3368 break;
3369
3370 case R_MIPS_LO16:
3371 if (!gp_disp_p)
3372 value = (symbol + addend) & howto->dst_mask;
3373 else
3374 {
3375 value = addend + gp - p + 4;
3376 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 3377 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
3378 _gp_disp are normally generated from the .cpload
3379 pseudo-op. It generates code that normally looks like
3380 this:
3381
3382 lui $gp,%hi(_gp_disp)
3383 addiu $gp,$gp,%lo(_gp_disp)
3384 addu $gp,$gp,$t9
3385
3386 Here $t9 holds the address of the function being called,
3387 as required by the MIPS ELF ABI. The R_MIPS_LO16
3388 relocation can easily overflow in this situation, but the
3389 R_MIPS_HI16 relocation will handle the overflow.
3390 Therefore, we consider this a bug in the MIPS ABI, and do
3391 not check for overflow here. */
3392 }
3393 break;
3394
3395 case R_MIPS_LITERAL:
3396 /* Because we don't merge literal sections, we can handle this
3397 just like R_MIPS_GPREL16. In the long run, we should merge
3398 shared literals, and then we will need to additional work
3399 here. */
3400
3401 /* Fall through. */
3402
3403 case R_MIPS16_GPREL:
3404 /* The R_MIPS16_GPREL performs the same calculation as
3405 R_MIPS_GPREL16, but stores the relocated bits in a different
3406 order. We don't need to do anything special here; the
3407 differences are handled in mips_elf_perform_relocation. */
3408 case R_MIPS_GPREL16:
bce03d3d
AO
3409 /* Only sign-extend the addend if it was extracted from the
3410 instruction. If the addend was separate, leave it alone,
3411 otherwise we may lose significant bits. */
3412 if (howto->partial_inplace)
a7ebbfdf 3413 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
3414 value = symbol + addend - gp;
3415 /* If the symbol was local, any earlier relocatable links will
3416 have adjusted its addend with the gp offset, so compensate
3417 for that now. Don't do it for symbols forced local in this
3418 link, though, since they won't have had the gp offset applied
3419 to them before. */
3420 if (was_local_p)
3421 value += gp0;
b49e97c9
TS
3422 overflowed_p = mips_elf_overflow_p (value, 16);
3423 break;
3424
3425 case R_MIPS_GOT16:
3426 case R_MIPS_CALL16:
3427 if (local_p)
3428 {
b34976b6 3429 bfd_boolean forced;
b49e97c9
TS
3430
3431 /* The special case is when the symbol is forced to be local. We
3432 need the full address in the GOT since no R_MIPS_LO16 relocation
3433 follows. */
3434 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3435 local_sections, FALSE);
f4416af6
AO
3436 value = mips_elf_got16_entry (abfd, input_bfd, info,
3437 symbol + addend, forced);
b49e97c9
TS
3438 if (value == MINUS_ONE)
3439 return bfd_reloc_outofrange;
3440 value
3441 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3442 abfd, input_bfd, value);
b49e97c9
TS
3443 overflowed_p = mips_elf_overflow_p (value, 16);
3444 break;
3445 }
3446
3447 /* Fall through. */
3448
3449 case R_MIPS_GOT_DISP:
0fdc1bf1 3450 got_disp:
b49e97c9
TS
3451 value = g;
3452 overflowed_p = mips_elf_overflow_p (value, 16);
3453 break;
3454
3455 case R_MIPS_GPREL32:
bce03d3d
AO
3456 value = (addend + symbol + gp0 - gp);
3457 if (!save_addend)
3458 value &= howto->dst_mask;
b49e97c9
TS
3459 break;
3460
3461 case R_MIPS_PC16:
a7ebbfdf 3462 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
0b25d3e6 3463 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
3464 break;
3465
3466 case R_MIPS_GOT_HI16:
3467 case R_MIPS_CALL_HI16:
3468 /* We're allowed to handle these two relocations identically.
3469 The dynamic linker is allowed to handle the CALL relocations
3470 differently by creating a lazy evaluation stub. */
3471 value = g;
3472 value = mips_elf_high (value);
3473 value &= howto->dst_mask;
3474 break;
3475
3476 case R_MIPS_GOT_LO16:
3477 case R_MIPS_CALL_LO16:
3478 value = g & howto->dst_mask;
3479 break;
3480
3481 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
3482 /* GOT_PAGE relocations that reference non-local symbols decay
3483 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3484 0. */
93a2b7ae 3485 if (! local_p)
0fdc1bf1 3486 goto got_disp;
f4416af6 3487 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
3488 if (value == MINUS_ONE)
3489 return bfd_reloc_outofrange;
3490 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3491 abfd, input_bfd, value);
b49e97c9
TS
3492 overflowed_p = mips_elf_overflow_p (value, 16);
3493 break;
3494
3495 case R_MIPS_GOT_OFST:
93a2b7ae 3496 if (local_p)
0fdc1bf1
AO
3497 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3498 else
3499 value = addend;
b49e97c9
TS
3500 overflowed_p = mips_elf_overflow_p (value, 16);
3501 break;
3502
3503 case R_MIPS_SUB:
3504 value = symbol - addend;
3505 value &= howto->dst_mask;
3506 break;
3507
3508 case R_MIPS_HIGHER:
3509 value = mips_elf_higher (addend + symbol);
3510 value &= howto->dst_mask;
3511 break;
3512
3513 case R_MIPS_HIGHEST:
3514 value = mips_elf_highest (addend + symbol);
3515 value &= howto->dst_mask;
3516 break;
3517
3518 case R_MIPS_SCN_DISP:
3519 value = symbol + addend - sec->output_offset;
3520 value &= howto->dst_mask;
3521 break;
3522
3523 case R_MIPS_PJUMP:
3524 case R_MIPS_JALR:
3525 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3526 hint; we could improve performance by honoring that hint. */
3527 return bfd_reloc_continue;
3528
3529 case R_MIPS_GNU_VTINHERIT:
3530 case R_MIPS_GNU_VTENTRY:
3531 /* We don't do anything with these at present. */
3532 return bfd_reloc_continue;
3533
3534 default:
3535 /* An unrecognized relocation type. */
3536 return bfd_reloc_notsupported;
3537 }
3538
3539 /* Store the VALUE for our caller. */
3540 *valuep = value;
3541 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3542}
3543
3544/* Obtain the field relocated by RELOCATION. */
3545
3546static bfd_vma
9719ad41
RS
3547mips_elf_obtain_contents (reloc_howto_type *howto,
3548 const Elf_Internal_Rela *relocation,
3549 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
3550{
3551 bfd_vma x;
3552 bfd_byte *location = contents + relocation->r_offset;
3553
3554 /* Obtain the bytes. */
3555 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3556
3557 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3558 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3559 && bfd_little_endian (input_bfd))
3560 /* The two 16-bit words will be reversed on a little-endian system.
3561 See mips_elf_perform_relocation for more details. */
3562 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3563
3564 return x;
3565}
3566
3567/* It has been determined that the result of the RELOCATION is the
3568 VALUE. Use HOWTO to place VALUE into the output file at the
3569 appropriate position. The SECTION is the section to which the
b34976b6 3570 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
3571 for the relocation must be either JAL or JALX, and it is
3572 unconditionally converted to JALX.
3573
b34976b6 3574 Returns FALSE if anything goes wrong. */
b49e97c9 3575
b34976b6 3576static bfd_boolean
9719ad41
RS
3577mips_elf_perform_relocation (struct bfd_link_info *info,
3578 reloc_howto_type *howto,
3579 const Elf_Internal_Rela *relocation,
3580 bfd_vma value, bfd *input_bfd,
3581 asection *input_section, bfd_byte *contents,
3582 bfd_boolean require_jalx)
b49e97c9
TS
3583{
3584 bfd_vma x;
3585 bfd_byte *location;
3586 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3587
3588 /* Figure out where the relocation is occurring. */
3589 location = contents + relocation->r_offset;
3590
3591 /* Obtain the current value. */
3592 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3593
3594 /* Clear the field we are setting. */
3595 x &= ~howto->dst_mask;
3596
3597 /* If this is the R_MIPS16_26 relocation, we must store the
3598 value in a funny way. */
3599 if (r_type == R_MIPS16_26)
3600 {
3601 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3602 Most mips16 instructions are 16 bits, but these instructions
3603 are 32 bits.
3604
3605 The format of these instructions is:
3606
3607 +--------------+--------------------------------+
3608 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3609 +--------------+--------------------------------+
3610 ! Immediate 15:0 !
3611 +-----------------------------------------------+
3612
3613 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3614 Note that the immediate value in the first word is swapped.
3615
1049f94e 3616 When producing a relocatable object file, R_MIPS16_26 is
b49e97c9
TS
3617 handled mostly like R_MIPS_26. In particular, the addend is
3618 stored as a straight 26-bit value in a 32-bit instruction.
3619 (gas makes life simpler for itself by never adjusting a
3620 R_MIPS16_26 reloc to be against a section, so the addend is
3621 always zero). However, the 32 bit instruction is stored as 2
3622 16-bit values, rather than a single 32-bit value. In a
3623 big-endian file, the result is the same; in a little-endian
3624 file, the two 16-bit halves of the 32 bit value are swapped.
3625 This is so that a disassembler can recognize the jal
3626 instruction.
3627
3628 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3629 instruction stored as two 16-bit values. The addend A is the
3630 contents of the targ26 field. The calculation is the same as
3631 R_MIPS_26. When storing the calculated value, reorder the
3632 immediate value as shown above, and don't forget to store the
3633 value as two 16-bit values.
3634
3635 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3636 defined as
3637
3638 big-endian:
3639 +--------+----------------------+
3640 | | |
3641 | | targ26-16 |
3642 |31 26|25 0|
3643 +--------+----------------------+
3644
3645 little-endian:
3646 +----------+------+-------------+
3647 | | | |
3648 | sub1 | | sub2 |
3649 |0 9|10 15|16 31|
3650 +----------+--------------------+
3651 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3652 ((sub1 << 16) | sub2)).
3653
1049f94e 3654 When producing a relocatable object file, the calculation is
b49e97c9
TS
3655 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3656 When producing a fully linked file, the calculation is
3657 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3658 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3659
1049f94e 3660 if (!info->relocatable)
b49e97c9
TS
3661 /* Shuffle the bits according to the formula above. */
3662 value = (((value & 0x1f0000) << 5)
3663 | ((value & 0x3e00000) >> 5)
3664 | (value & 0xffff));
3665 }
3666 else if (r_type == R_MIPS16_GPREL)
3667 {
3668 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3669 mode. A typical instruction will have a format like this:
3670
3671 +--------------+--------------------------------+
3672 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3673 +--------------+--------------------------------+
3674 ! Major ! rx ! ry ! Imm 4:0 !
3675 +--------------+--------------------------------+
3676
3677 EXTEND is the five bit value 11110. Major is the instruction
3678 opcode.
3679
3680 This is handled exactly like R_MIPS_GPREL16, except that the
3681 addend is retrieved and stored as shown in this diagram; that
3682 is, the Imm fields above replace the V-rel16 field.
3683
3684 All we need to do here is shuffle the bits appropriately. As
3685 above, the two 16-bit halves must be swapped on a
3686 little-endian system. */
3687 value = (((value & 0x7e0) << 16)
3688 | ((value & 0xf800) << 5)
3689 | (value & 0x1f));
3690 }
3691
3692 /* Set the field. */
3693 x |= (value & howto->dst_mask);
3694
3695 /* If required, turn JAL into JALX. */
3696 if (require_jalx)
3697 {
b34976b6 3698 bfd_boolean ok;
b49e97c9
TS
3699 bfd_vma opcode = x >> 26;
3700 bfd_vma jalx_opcode;
3701
3702 /* Check to see if the opcode is already JAL or JALX. */
3703 if (r_type == R_MIPS16_26)
3704 {
3705 ok = ((opcode == 0x6) || (opcode == 0x7));
3706 jalx_opcode = 0x7;
3707 }
3708 else
3709 {
3710 ok = ((opcode == 0x3) || (opcode == 0x1d));
3711 jalx_opcode = 0x1d;
3712 }
3713
3714 /* If the opcode is not JAL or JALX, there's a problem. */
3715 if (!ok)
3716 {
3717 (*_bfd_error_handler)
d003868e
AM
3718 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
3719 input_bfd,
3720 input_section,
b49e97c9
TS
3721 (unsigned long) relocation->r_offset);
3722 bfd_set_error (bfd_error_bad_value);
b34976b6 3723 return FALSE;
b49e97c9
TS
3724 }
3725
3726 /* Make this the JALX opcode. */
3727 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3728 }
3729
3730 /* Swap the high- and low-order 16 bits on little-endian systems
3731 when doing a MIPS16 relocation. */
3732 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3733 && bfd_little_endian (input_bfd))
3734 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3735
3736 /* Put the value into the output. */
3737 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
b34976b6 3738 return TRUE;
b49e97c9
TS
3739}
3740
b34976b6 3741/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 3742
b34976b6 3743static bfd_boolean
9719ad41 3744mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
3745{
3746 const char *name = bfd_get_section_name (abfd, section);
3747
3748 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3749 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3750 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3751}
3752\f
3753/* Add room for N relocations to the .rel.dyn section in ABFD. */
3754
3755static void
9719ad41 3756mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
b49e97c9
TS
3757{
3758 asection *s;
3759
f4416af6 3760 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
3761 BFD_ASSERT (s != NULL);
3762
eea6121a 3763 if (s->size == 0)
b49e97c9
TS
3764 {
3765 /* Make room for a null element. */
eea6121a 3766 s->size += MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
3767 ++s->reloc_count;
3768 }
eea6121a 3769 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
3770}
3771
3772/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3773 is the original relocation, which is now being transformed into a
3774 dynamic relocation. The ADDENDP is adjusted if necessary; the
3775 caller should store the result in place of the original addend. */
3776
b34976b6 3777static bfd_boolean
9719ad41
RS
3778mips_elf_create_dynamic_relocation (bfd *output_bfd,
3779 struct bfd_link_info *info,
3780 const Elf_Internal_Rela *rel,
3781 struct mips_elf_link_hash_entry *h,
3782 asection *sec, bfd_vma symbol,
3783 bfd_vma *addendp, asection *input_section)
b49e97c9 3784{
947216bf 3785 Elf_Internal_Rela outrel[3];
b34976b6 3786 bfd_boolean skip;
b49e97c9
TS
3787 asection *sreloc;
3788 bfd *dynobj;
3789 int r_type;
3790
3791 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3792 dynobj = elf_hash_table (info)->dynobj;
f4416af6 3793 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
3794 BFD_ASSERT (sreloc != NULL);
3795 BFD_ASSERT (sreloc->contents != NULL);
3796 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 3797 < sreloc->size);
b49e97c9 3798
b34976b6 3799 skip = FALSE;
b49e97c9
TS
3800 outrel[0].r_offset =
3801 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3802 outrel[1].r_offset =
3803 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3804 outrel[2].r_offset =
3805 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3806
3807#if 0
3808 /* We begin by assuming that the offset for the dynamic relocation
3809 is the same as for the original relocation. We'll adjust this
3810 later to reflect the correct output offsets. */
a7ebbfdf 3811 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
b49e97c9
TS
3812 {
3813 outrel[1].r_offset = rel[1].r_offset;
3814 outrel[2].r_offset = rel[2].r_offset;
3815 }
3816 else
3817 {
3818 /* Except that in a stab section things are more complex.
3819 Because we compress stab information, the offset given in the
3820 relocation may not be the one we want; we must let the stabs
3821 machinery tell us the offset. */
3822 outrel[1].r_offset = outrel[0].r_offset;
3823 outrel[2].r_offset = outrel[0].r_offset;
3824 /* If we didn't need the relocation at all, this value will be
3825 -1. */
c5ae1840 3826 if (outrel[0].r_offset == MINUS_ONE)
b34976b6 3827 skip = TRUE;
b49e97c9
TS
3828 }
3829#endif
3830
c5ae1840 3831 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 3832 /* The relocation field has been deleted. */
b34976b6 3833 skip = TRUE;
c5ae1840 3834 else if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
3835 {
3836 /* The relocation field has been converted into a relative value of
3837 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3838 the field to be fully relocated, so add in the symbol's value. */
3839 skip = TRUE;
3840 *addendp += symbol;
3841 }
b49e97c9
TS
3842
3843 /* If we've decided to skip this relocation, just output an empty
3844 record. Note that R_MIPS_NONE == 0, so that this call to memset
3845 is a way of setting R_TYPE to R_MIPS_NONE. */
3846 if (skip)
947216bf 3847 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
b49e97c9
TS
3848 else
3849 {
3850 long indx;
d2fba50d 3851 bfd_boolean defined_p;
b49e97c9
TS
3852
3853 /* We must now calculate the dynamic symbol table index to use
3854 in the relocation. */
3855 if (h != NULL
f5385ebf 3856 && (! info->symbolic || !h->root.def_regular)
b49e97c9
TS
3857 /* h->root.dynindx may be -1 if this symbol was marked to
3858 become local. */
fdd07405
RS
3859 && h->root.dynindx != -1)
3860 {
3861 indx = h->root.dynindx;
d2fba50d 3862 if (SGI_COMPAT (output_bfd))
f5385ebf 3863 defined_p = h->root.def_regular;
d2fba50d
RS
3864 else
3865 /* ??? glibc's ld.so just adds the final GOT entry to the
3866 relocation field. It therefore treats relocs against
3867 defined symbols in the same way as relocs against
3868 undefined symbols. */
3869 defined_p = FALSE;
b49e97c9
TS
3870 }
3871 else
3872 {
3873 if (sec != NULL && bfd_is_abs_section (sec))
3874 indx = 0;
3875 else if (sec == NULL || sec->owner == NULL)
3876 {
3877 bfd_set_error (bfd_error_bad_value);
b34976b6 3878 return FALSE;
b49e97c9
TS
3879 }
3880 else
3881 {
3882 indx = elf_section_data (sec->output_section)->dynindx;
3883 if (indx == 0)
3884 abort ();
3885 }
3886
908488f1
AO
3887 /* Instead of generating a relocation using the section
3888 symbol, we may as well make it a fully relative
3889 relocation. We want to avoid generating relocations to
3890 local symbols because we used to generate them
3891 incorrectly, without adding the original symbol value,
3892 which is mandated by the ABI for section symbols. In
3893 order to give dynamic loaders and applications time to
3894 phase out the incorrect use, we refrain from emitting
3895 section-relative relocations. It's not like they're
3896 useful, after all. This should be a bit more efficient
3897 as well. */
fdd07405
RS
3898 /* ??? Although this behavior is compatible with glibc's ld.so,
3899 the ABI says that relocations against STN_UNDEF should have
3900 a symbol value of 0. Irix rld honors this, so relocations
3901 against STN_UNDEF have no effect. */
3902 if (!SGI_COMPAT (output_bfd))
3903 indx = 0;
d2fba50d 3904 defined_p = TRUE;
b49e97c9
TS
3905 }
3906
3907 /* If the relocation was previously an absolute relocation and
3908 this symbol will not be referred to by the relocation, we must
3909 adjust it by the value we give it in the dynamic symbol table.
3910 Otherwise leave the job up to the dynamic linker. */
d2fba50d 3911 if (defined_p && r_type != R_MIPS_REL32)
b49e97c9
TS
3912 *addendp += symbol;
3913
3914 /* The relocation is always an REL32 relocation because we don't
3915 know where the shared library will wind up at load-time. */
34ea4a36
TS
3916 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3917 R_MIPS_REL32);
908488f1
AO
3918 /* For strict adherence to the ABI specification, we should
3919 generate a R_MIPS_64 relocation record by itself before the
3920 _REL32/_64 record as well, such that the addend is read in as
3921 a 64-bit value (REL32 is a 32-bit relocation, after all).
3922 However, since none of the existing ELF64 MIPS dynamic
3923 loaders seems to care, we don't waste space with these
3924 artificial relocations. If this turns out to not be true,
3925 mips_elf_allocate_dynamic_relocation() should be tweaked so
3926 as to make room for a pair of dynamic relocations per
3927 invocation if ABI_64_P, and here we should generate an
3928 additional relocation record with R_MIPS_64 by itself for a
3929 NULL symbol before this relocation record. */
9719ad41 3930 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
033fd5f9
AO
3931 ABI_64_P (output_bfd)
3932 ? R_MIPS_64
3933 : R_MIPS_NONE);
9719ad41 3934 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
b49e97c9
TS
3935
3936 /* Adjust the output offset of the relocation to reference the
3937 correct location in the output file. */
3938 outrel[0].r_offset += (input_section->output_section->vma
3939 + input_section->output_offset);
3940 outrel[1].r_offset += (input_section->output_section->vma
3941 + input_section->output_offset);
3942 outrel[2].r_offset += (input_section->output_section->vma
3943 + input_section->output_offset);
3944 }
3945
3946 /* Put the relocation back out. We have to use the special
3947 relocation outputter in the 64-bit case since the 64-bit
3948 relocation format is non-standard. */
3949 if (ABI_64_P (output_bfd))
3950 {
3951 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3952 (output_bfd, &outrel[0],
3953 (sreloc->contents
3954 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3955 }
3956 else
947216bf
AM
3957 bfd_elf32_swap_reloc_out
3958 (output_bfd, &outrel[0],
3959 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 3960
b49e97c9
TS
3961 /* We've now added another relocation. */
3962 ++sreloc->reloc_count;
3963
3964 /* Make sure the output section is writable. The dynamic linker
3965 will be writing to it. */
3966 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3967 |= SHF_WRITE;
3968
3969 /* On IRIX5, make an entry of compact relocation info. */
3970 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
3971 {
3972 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3973 bfd_byte *cr;
3974
3975 if (scpt)
3976 {
3977 Elf32_crinfo cptrel;
3978
3979 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3980 cptrel.vaddr = (rel->r_offset
3981 + input_section->output_section->vma
3982 + input_section->output_offset);
3983 if (r_type == R_MIPS_REL32)
3984 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3985 else
3986 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3987 mips_elf_set_cr_dist2to (cptrel, 0);
3988 cptrel.konst = *addendp;
3989
3990 cr = (scpt->contents
3991 + sizeof (Elf32_External_compact_rel));
3992 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3993 ((Elf32_External_crinfo *) cr
3994 + scpt->reloc_count));
3995 ++scpt->reloc_count;
3996 }
3997 }
3998
b34976b6 3999 return TRUE;
b49e97c9
TS
4000}
4001\f
b49e97c9
TS
4002/* Return the MACH for a MIPS e_flags value. */
4003
4004unsigned long
9719ad41 4005_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4006{
4007 switch (flags & EF_MIPS_MACH)
4008 {
4009 case E_MIPS_MACH_3900:
4010 return bfd_mach_mips3900;
4011
4012 case E_MIPS_MACH_4010:
4013 return bfd_mach_mips4010;
4014
4015 case E_MIPS_MACH_4100:
4016 return bfd_mach_mips4100;
4017
4018 case E_MIPS_MACH_4111:
4019 return bfd_mach_mips4111;
4020
00707a0e
RS
4021 case E_MIPS_MACH_4120:
4022 return bfd_mach_mips4120;
4023
b49e97c9
TS
4024 case E_MIPS_MACH_4650:
4025 return bfd_mach_mips4650;
4026
00707a0e
RS
4027 case E_MIPS_MACH_5400:
4028 return bfd_mach_mips5400;
4029
4030 case E_MIPS_MACH_5500:
4031 return bfd_mach_mips5500;
4032
b49e97c9
TS
4033 case E_MIPS_MACH_SB1:
4034 return bfd_mach_mips_sb1;
4035
4036 default:
4037 switch (flags & EF_MIPS_ARCH)
4038 {
4039 default:
4040 case E_MIPS_ARCH_1:
4041 return bfd_mach_mips3000;
4042 break;
4043
4044 case E_MIPS_ARCH_2:
4045 return bfd_mach_mips6000;
4046 break;
4047
4048 case E_MIPS_ARCH_3:
4049 return bfd_mach_mips4000;
4050 break;
4051
4052 case E_MIPS_ARCH_4:
4053 return bfd_mach_mips8000;
4054 break;
4055
4056 case E_MIPS_ARCH_5:
4057 return bfd_mach_mips5;
4058 break;
4059
4060 case E_MIPS_ARCH_32:
4061 return bfd_mach_mipsisa32;
4062 break;
4063
4064 case E_MIPS_ARCH_64:
4065 return bfd_mach_mipsisa64;
4066 break;
af7ee8bf
CD
4067
4068 case E_MIPS_ARCH_32R2:
4069 return bfd_mach_mipsisa32r2;
4070 break;
5f74bc13
CD
4071
4072 case E_MIPS_ARCH_64R2:
4073 return bfd_mach_mipsisa64r2;
4074 break;
b49e97c9
TS
4075 }
4076 }
4077
4078 return 0;
4079}
4080
4081/* Return printable name for ABI. */
4082
4083static INLINE char *
9719ad41 4084elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
4085{
4086 flagword flags;
4087
4088 flags = elf_elfheader (abfd)->e_flags;
4089 switch (flags & EF_MIPS_ABI)
4090 {
4091 case 0:
4092 if (ABI_N32_P (abfd))
4093 return "N32";
4094 else if (ABI_64_P (abfd))
4095 return "64";
4096 else
4097 return "none";
4098 case E_MIPS_ABI_O32:
4099 return "O32";
4100 case E_MIPS_ABI_O64:
4101 return "O64";
4102 case E_MIPS_ABI_EABI32:
4103 return "EABI32";
4104 case E_MIPS_ABI_EABI64:
4105 return "EABI64";
4106 default:
4107 return "unknown abi";
4108 }
4109}
4110\f
4111/* MIPS ELF uses two common sections. One is the usual one, and the
4112 other is for small objects. All the small objects are kept
4113 together, and then referenced via the gp pointer, which yields
4114 faster assembler code. This is what we use for the small common
4115 section. This approach is copied from ecoff.c. */
4116static asection mips_elf_scom_section;
4117static asymbol mips_elf_scom_symbol;
4118static asymbol *mips_elf_scom_symbol_ptr;
4119
4120/* MIPS ELF also uses an acommon section, which represents an
4121 allocated common symbol which may be overridden by a
4122 definition in a shared library. */
4123static asection mips_elf_acom_section;
4124static asymbol mips_elf_acom_symbol;
4125static asymbol *mips_elf_acom_symbol_ptr;
4126
4127/* Handle the special MIPS section numbers that a symbol may use.
4128 This is used for both the 32-bit and the 64-bit ABI. */
4129
4130void
9719ad41 4131_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
4132{
4133 elf_symbol_type *elfsym;
4134
4135 elfsym = (elf_symbol_type *) asym;
4136 switch (elfsym->internal_elf_sym.st_shndx)
4137 {
4138 case SHN_MIPS_ACOMMON:
4139 /* This section is used in a dynamically linked executable file.
4140 It is an allocated common section. The dynamic linker can
4141 either resolve these symbols to something in a shared
4142 library, or it can just leave them here. For our purposes,
4143 we can consider these symbols to be in a new section. */
4144 if (mips_elf_acom_section.name == NULL)
4145 {
4146 /* Initialize the acommon section. */
4147 mips_elf_acom_section.name = ".acommon";
4148 mips_elf_acom_section.flags = SEC_ALLOC;
4149 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4150 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4151 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4152 mips_elf_acom_symbol.name = ".acommon";
4153 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4154 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4155 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4156 }
4157 asym->section = &mips_elf_acom_section;
4158 break;
4159
4160 case SHN_COMMON:
4161 /* Common symbols less than the GP size are automatically
4162 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4163 if (asym->value > elf_gp_size (abfd)
4164 || IRIX_COMPAT (abfd) == ict_irix6)
4165 break;
4166 /* Fall through. */
4167 case SHN_MIPS_SCOMMON:
4168 if (mips_elf_scom_section.name == NULL)
4169 {
4170 /* Initialize the small common section. */
4171 mips_elf_scom_section.name = ".scommon";
4172 mips_elf_scom_section.flags = SEC_IS_COMMON;
4173 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4174 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4175 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4176 mips_elf_scom_symbol.name = ".scommon";
4177 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4178 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4179 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4180 }
4181 asym->section = &mips_elf_scom_section;
4182 asym->value = elfsym->internal_elf_sym.st_size;
4183 break;
4184
4185 case SHN_MIPS_SUNDEFINED:
4186 asym->section = bfd_und_section_ptr;
4187 break;
4188
b49e97c9 4189 case SHN_MIPS_TEXT:
00b4930b
TS
4190 {
4191 asection *section = bfd_get_section_by_name (abfd, ".text");
4192
4193 BFD_ASSERT (SGI_COMPAT (abfd));
4194 if (section != NULL)
4195 {
4196 asym->section = section;
4197 /* MIPS_TEXT is a bit special, the address is not an offset
4198 to the base of the .text section. So substract the section
4199 base address to make it an offset. */
4200 asym->value -= section->vma;
4201 }
4202 }
b49e97c9
TS
4203 break;
4204
4205 case SHN_MIPS_DATA:
00b4930b
TS
4206 {
4207 asection *section = bfd_get_section_by_name (abfd, ".data");
4208
4209 BFD_ASSERT (SGI_COMPAT (abfd));
4210 if (section != NULL)
4211 {
4212 asym->section = section;
4213 /* MIPS_DATA is a bit special, the address is not an offset
4214 to the base of the .data section. So substract the section
4215 base address to make it an offset. */
4216 asym->value -= section->vma;
4217 }
4218 }
b49e97c9 4219 break;
b49e97c9
TS
4220 }
4221}
4222\f
174fd7f9
RS
4223/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4224 relocations against two unnamed section symbols to resolve to the
4225 same address. For example, if we have code like:
4226
4227 lw $4,%got_disp(.data)($gp)
4228 lw $25,%got_disp(.text)($gp)
4229 jalr $25
4230
4231 then the linker will resolve both relocations to .data and the program
4232 will jump there rather than to .text.
4233
4234 We can work around this problem by giving names to local section symbols.
4235 This is also what the MIPSpro tools do. */
4236
4237bfd_boolean
4238_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4239{
4240 return SGI_COMPAT (abfd);
4241}
4242\f
b49e97c9
TS
4243/* Work over a section just before writing it out. This routine is
4244 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4245 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4246 a better way. */
4247
b34976b6 4248bfd_boolean
9719ad41 4249_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
4250{
4251 if (hdr->sh_type == SHT_MIPS_REGINFO
4252 && hdr->sh_size > 0)
4253 {
4254 bfd_byte buf[4];
4255
4256 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4257 BFD_ASSERT (hdr->contents == NULL);
4258
4259 if (bfd_seek (abfd,
4260 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4261 SEEK_SET) != 0)
b34976b6 4262 return FALSE;
b49e97c9 4263 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4264 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4265 return FALSE;
b49e97c9
TS
4266 }
4267
4268 if (hdr->sh_type == SHT_MIPS_OPTIONS
4269 && hdr->bfd_section != NULL
f0abc2a1
AM
4270 && mips_elf_section_data (hdr->bfd_section) != NULL
4271 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4272 {
4273 bfd_byte *contents, *l, *lend;
4274
f0abc2a1
AM
4275 /* We stored the section contents in the tdata field in the
4276 set_section_contents routine. We save the section contents
4277 so that we don't have to read them again.
b49e97c9
TS
4278 At this point we know that elf_gp is set, so we can look
4279 through the section contents to see if there is an
4280 ODK_REGINFO structure. */
4281
f0abc2a1 4282 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4283 l = contents;
4284 lend = contents + hdr->sh_size;
4285 while (l + sizeof (Elf_External_Options) <= lend)
4286 {
4287 Elf_Internal_Options intopt;
4288
4289 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4290 &intopt);
4291 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4292 {
4293 bfd_byte buf[8];
4294
4295 if (bfd_seek (abfd,
4296 (hdr->sh_offset
4297 + (l - contents)
4298 + sizeof (Elf_External_Options)
4299 + (sizeof (Elf64_External_RegInfo) - 8)),
4300 SEEK_SET) != 0)
b34976b6 4301 return FALSE;
b49e97c9 4302 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 4303 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 4304 return FALSE;
b49e97c9
TS
4305 }
4306 else if (intopt.kind == ODK_REGINFO)
4307 {
4308 bfd_byte buf[4];
4309
4310 if (bfd_seek (abfd,
4311 (hdr->sh_offset
4312 + (l - contents)
4313 + sizeof (Elf_External_Options)
4314 + (sizeof (Elf32_External_RegInfo) - 4)),
4315 SEEK_SET) != 0)
b34976b6 4316 return FALSE;
b49e97c9 4317 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4318 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4319 return FALSE;
b49e97c9
TS
4320 }
4321 l += intopt.size;
4322 }
4323 }
4324
4325 if (hdr->bfd_section != NULL)
4326 {
4327 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4328
4329 if (strcmp (name, ".sdata") == 0
4330 || strcmp (name, ".lit8") == 0
4331 || strcmp (name, ".lit4") == 0)
4332 {
4333 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4334 hdr->sh_type = SHT_PROGBITS;
4335 }
4336 else if (strcmp (name, ".sbss") == 0)
4337 {
4338 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4339 hdr->sh_type = SHT_NOBITS;
4340 }
4341 else if (strcmp (name, ".srdata") == 0)
4342 {
4343 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4344 hdr->sh_type = SHT_PROGBITS;
4345 }
4346 else if (strcmp (name, ".compact_rel") == 0)
4347 {
4348 hdr->sh_flags = 0;
4349 hdr->sh_type = SHT_PROGBITS;
4350 }
4351 else if (strcmp (name, ".rtproc") == 0)
4352 {
4353 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4354 {
4355 unsigned int adjust;
4356
4357 adjust = hdr->sh_size % hdr->sh_addralign;
4358 if (adjust != 0)
4359 hdr->sh_size += hdr->sh_addralign - adjust;
4360 }
4361 }
4362 }
4363
b34976b6 4364 return TRUE;
b49e97c9
TS
4365}
4366
4367/* Handle a MIPS specific section when reading an object file. This
4368 is called when elfcode.h finds a section with an unknown type.
4369 This routine supports both the 32-bit and 64-bit ELF ABI.
4370
4371 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4372 how to. */
4373
b34976b6 4374bfd_boolean
9719ad41
RS
4375_bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4376 const char *name)
b49e97c9
TS
4377{
4378 flagword flags = 0;
4379
4380 /* There ought to be a place to keep ELF backend specific flags, but
4381 at the moment there isn't one. We just keep track of the
4382 sections by their name, instead. Fortunately, the ABI gives
4383 suggested names for all the MIPS specific sections, so we will
4384 probably get away with this. */
4385 switch (hdr->sh_type)
4386 {
4387 case SHT_MIPS_LIBLIST:
4388 if (strcmp (name, ".liblist") != 0)
b34976b6 4389 return FALSE;
b49e97c9
TS
4390 break;
4391 case SHT_MIPS_MSYM:
4392 if (strcmp (name, ".msym") != 0)
b34976b6 4393 return FALSE;
b49e97c9
TS
4394 break;
4395 case SHT_MIPS_CONFLICT:
4396 if (strcmp (name, ".conflict") != 0)
b34976b6 4397 return FALSE;
b49e97c9
TS
4398 break;
4399 case SHT_MIPS_GPTAB:
4400 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 4401 return FALSE;
b49e97c9
TS
4402 break;
4403 case SHT_MIPS_UCODE:
4404 if (strcmp (name, ".ucode") != 0)
b34976b6 4405 return FALSE;
b49e97c9
TS
4406 break;
4407 case SHT_MIPS_DEBUG:
4408 if (strcmp (name, ".mdebug") != 0)
b34976b6 4409 return FALSE;
b49e97c9
TS
4410 flags = SEC_DEBUGGING;
4411 break;
4412 case SHT_MIPS_REGINFO:
4413 if (strcmp (name, ".reginfo") != 0
4414 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 4415 return FALSE;
b49e97c9
TS
4416 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4417 break;
4418 case SHT_MIPS_IFACE:
4419 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 4420 return FALSE;
b49e97c9
TS
4421 break;
4422 case SHT_MIPS_CONTENT:
4423 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 4424 return FALSE;
b49e97c9
TS
4425 break;
4426 case SHT_MIPS_OPTIONS:
4427 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
b34976b6 4428 return FALSE;
b49e97c9
TS
4429 break;
4430 case SHT_MIPS_DWARF:
4431 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 4432 return FALSE;
b49e97c9
TS
4433 break;
4434 case SHT_MIPS_SYMBOL_LIB:
4435 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 4436 return FALSE;
b49e97c9
TS
4437 break;
4438 case SHT_MIPS_EVENTS:
4439 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4440 && strncmp (name, ".MIPS.post_rel",
4441 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 4442 return FALSE;
b49e97c9
TS
4443 break;
4444 default:
b34976b6 4445 return FALSE;
b49e97c9
TS
4446 }
4447
4448 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
b34976b6 4449 return FALSE;
b49e97c9
TS
4450
4451 if (flags)
4452 {
4453 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4454 (bfd_get_section_flags (abfd,
4455 hdr->bfd_section)
4456 | flags)))
b34976b6 4457 return FALSE;
b49e97c9
TS
4458 }
4459
4460 /* FIXME: We should record sh_info for a .gptab section. */
4461
4462 /* For a .reginfo section, set the gp value in the tdata information
4463 from the contents of this section. We need the gp value while
4464 processing relocs, so we just get it now. The .reginfo section
4465 is not used in the 64-bit MIPS ELF ABI. */
4466 if (hdr->sh_type == SHT_MIPS_REGINFO)
4467 {
4468 Elf32_External_RegInfo ext;
4469 Elf32_RegInfo s;
4470
9719ad41
RS
4471 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4472 &ext, 0, sizeof ext))
b34976b6 4473 return FALSE;
b49e97c9
TS
4474 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4475 elf_gp (abfd) = s.ri_gp_value;
4476 }
4477
4478 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4479 set the gp value based on what we find. We may see both
4480 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4481 they should agree. */
4482 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4483 {
4484 bfd_byte *contents, *l, *lend;
4485
9719ad41 4486 contents = bfd_malloc (hdr->sh_size);
b49e97c9 4487 if (contents == NULL)
b34976b6 4488 return FALSE;
b49e97c9 4489 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 4490 0, hdr->sh_size))
b49e97c9
TS
4491 {
4492 free (contents);
b34976b6 4493 return FALSE;
b49e97c9
TS
4494 }
4495 l = contents;
4496 lend = contents + hdr->sh_size;
4497 while (l + sizeof (Elf_External_Options) <= lend)
4498 {
4499 Elf_Internal_Options intopt;
4500
4501 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4502 &intopt);
4503 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4504 {
4505 Elf64_Internal_RegInfo intreg;
4506
4507 bfd_mips_elf64_swap_reginfo_in
4508 (abfd,
4509 ((Elf64_External_RegInfo *)
4510 (l + sizeof (Elf_External_Options))),
4511 &intreg);
4512 elf_gp (abfd) = intreg.ri_gp_value;
4513 }
4514 else if (intopt.kind == ODK_REGINFO)
4515 {
4516 Elf32_RegInfo intreg;
4517
4518 bfd_mips_elf32_swap_reginfo_in
4519 (abfd,
4520 ((Elf32_External_RegInfo *)
4521 (l + sizeof (Elf_External_Options))),
4522 &intreg);
4523 elf_gp (abfd) = intreg.ri_gp_value;
4524 }
4525 l += intopt.size;
4526 }
4527 free (contents);
4528 }
4529
b34976b6 4530 return TRUE;
b49e97c9
TS
4531}
4532
4533/* Set the correct type for a MIPS ELF section. We do this by the
4534 section name, which is a hack, but ought to work. This routine is
4535 used by both the 32-bit and the 64-bit ABI. */
4536
b34976b6 4537bfd_boolean
9719ad41 4538_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
4539{
4540 register const char *name;
4541
4542 name = bfd_get_section_name (abfd, sec);
4543
4544 if (strcmp (name, ".liblist") == 0)
4545 {
4546 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 4547 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
4548 /* The sh_link field is set in final_write_processing. */
4549 }
4550 else if (strcmp (name, ".conflict") == 0)
4551 hdr->sh_type = SHT_MIPS_CONFLICT;
4552 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4553 {
4554 hdr->sh_type = SHT_MIPS_GPTAB;
4555 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4556 /* The sh_info field is set in final_write_processing. */
4557 }
4558 else if (strcmp (name, ".ucode") == 0)
4559 hdr->sh_type = SHT_MIPS_UCODE;
4560 else if (strcmp (name, ".mdebug") == 0)
4561 {
4562 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 4563 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
4564 entsize of 0. FIXME: Does this matter? */
4565 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4566 hdr->sh_entsize = 0;
4567 else
4568 hdr->sh_entsize = 1;
4569 }
4570 else if (strcmp (name, ".reginfo") == 0)
4571 {
4572 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 4573 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
4574 entsize of 0x18. FIXME: Does this matter? */
4575 if (SGI_COMPAT (abfd))
4576 {
4577 if ((abfd->flags & DYNAMIC) != 0)
4578 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4579 else
4580 hdr->sh_entsize = 1;
4581 }
4582 else
4583 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4584 }
4585 else if (SGI_COMPAT (abfd)
4586 && (strcmp (name, ".hash") == 0
4587 || strcmp (name, ".dynamic") == 0
4588 || strcmp (name, ".dynstr") == 0))
4589 {
4590 if (SGI_COMPAT (abfd))
4591 hdr->sh_entsize = 0;
4592#if 0
8dc1a139 4593 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
4594 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4595#endif
4596 }
4597 else if (strcmp (name, ".got") == 0
4598 || strcmp (name, ".srdata") == 0
4599 || strcmp (name, ".sdata") == 0
4600 || strcmp (name, ".sbss") == 0
4601 || strcmp (name, ".lit4") == 0
4602 || strcmp (name, ".lit8") == 0)
4603 hdr->sh_flags |= SHF_MIPS_GPREL;
4604 else if (strcmp (name, ".MIPS.interfaces") == 0)
4605 {
4606 hdr->sh_type = SHT_MIPS_IFACE;
4607 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4608 }
4609 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4610 {
4611 hdr->sh_type = SHT_MIPS_CONTENT;
4612 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4613 /* The sh_info field is set in final_write_processing. */
4614 }
4615 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4616 {
4617 hdr->sh_type = SHT_MIPS_OPTIONS;
4618 hdr->sh_entsize = 1;
4619 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4620 }
4621 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4622 hdr->sh_type = SHT_MIPS_DWARF;
4623 else if (strcmp (name, ".MIPS.symlib") == 0)
4624 {
4625 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4626 /* The sh_link and sh_info fields are set in
4627 final_write_processing. */
4628 }
4629 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4630 || strncmp (name, ".MIPS.post_rel",
4631 sizeof ".MIPS.post_rel" - 1) == 0)
4632 {
4633 hdr->sh_type = SHT_MIPS_EVENTS;
4634 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4635 /* The sh_link field is set in final_write_processing. */
4636 }
4637 else if (strcmp (name, ".msym") == 0)
4638 {
4639 hdr->sh_type = SHT_MIPS_MSYM;
4640 hdr->sh_flags |= SHF_ALLOC;
4641 hdr->sh_entsize = 8;
4642 }
4643
7a79a000
TS
4644 /* The generic elf_fake_sections will set up REL_HDR using the default
4645 kind of relocations. We used to set up a second header for the
4646 non-default kind of relocations here, but only NewABI would use
4647 these, and the IRIX ld doesn't like resulting empty RELA sections.
4648 Thus we create those header only on demand now. */
b49e97c9 4649
b34976b6 4650 return TRUE;
b49e97c9
TS
4651}
4652
4653/* Given a BFD section, try to locate the corresponding ELF section
4654 index. This is used by both the 32-bit and the 64-bit ABI.
4655 Actually, it's not clear to me that the 64-bit ABI supports these,
4656 but for non-PIC objects we will certainly want support for at least
4657 the .scommon section. */
4658
b34976b6 4659bfd_boolean
9719ad41
RS
4660_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4661 asection *sec, int *retval)
b49e97c9
TS
4662{
4663 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4664 {
4665 *retval = SHN_MIPS_SCOMMON;
b34976b6 4666 return TRUE;
b49e97c9
TS
4667 }
4668 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4669 {
4670 *retval = SHN_MIPS_ACOMMON;
b34976b6 4671 return TRUE;
b49e97c9 4672 }
b34976b6 4673 return FALSE;
b49e97c9
TS
4674}
4675\f
4676/* Hook called by the linker routine which adds symbols from an object
4677 file. We must handle the special MIPS section numbers here. */
4678
b34976b6 4679bfd_boolean
9719ad41 4680_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 4681 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
4682 flagword *flagsp ATTRIBUTE_UNUSED,
4683 asection **secp, bfd_vma *valp)
b49e97c9
TS
4684{
4685 if (SGI_COMPAT (abfd)
4686 && (abfd->flags & DYNAMIC) != 0
4687 && strcmp (*namep, "_rld_new_interface") == 0)
4688 {
8dc1a139 4689 /* Skip IRIX5 rld entry name. */
b49e97c9 4690 *namep = NULL;
b34976b6 4691 return TRUE;
b49e97c9
TS
4692 }
4693
4694 switch (sym->st_shndx)
4695 {
4696 case SHN_COMMON:
4697 /* Common symbols less than the GP size are automatically
4698 treated as SHN_MIPS_SCOMMON symbols. */
4699 if (sym->st_size > elf_gp_size (abfd)
4700 || IRIX_COMPAT (abfd) == ict_irix6)
4701 break;
4702 /* Fall through. */
4703 case SHN_MIPS_SCOMMON:
4704 *secp = bfd_make_section_old_way (abfd, ".scommon");
4705 (*secp)->flags |= SEC_IS_COMMON;
4706 *valp = sym->st_size;
4707 break;
4708
4709 case SHN_MIPS_TEXT:
4710 /* This section is used in a shared object. */
4711 if (elf_tdata (abfd)->elf_text_section == NULL)
4712 {
4713 asymbol *elf_text_symbol;
4714 asection *elf_text_section;
4715 bfd_size_type amt = sizeof (asection);
4716
4717 elf_text_section = bfd_zalloc (abfd, amt);
4718 if (elf_text_section == NULL)
b34976b6 4719 return FALSE;
b49e97c9
TS
4720
4721 amt = sizeof (asymbol);
4722 elf_text_symbol = bfd_zalloc (abfd, amt);
4723 if (elf_text_symbol == NULL)
b34976b6 4724 return FALSE;
b49e97c9
TS
4725
4726 /* Initialize the section. */
4727
4728 elf_tdata (abfd)->elf_text_section = elf_text_section;
4729 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4730
4731 elf_text_section->symbol = elf_text_symbol;
4732 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4733
4734 elf_text_section->name = ".text";
4735 elf_text_section->flags = SEC_NO_FLAGS;
4736 elf_text_section->output_section = NULL;
4737 elf_text_section->owner = abfd;
4738 elf_text_symbol->name = ".text";
4739 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4740 elf_text_symbol->section = elf_text_section;
4741 }
4742 /* This code used to do *secp = bfd_und_section_ptr if
4743 info->shared. I don't know why, and that doesn't make sense,
4744 so I took it out. */
4745 *secp = elf_tdata (abfd)->elf_text_section;
4746 break;
4747
4748 case SHN_MIPS_ACOMMON:
4749 /* Fall through. XXX Can we treat this as allocated data? */
4750 case SHN_MIPS_DATA:
4751 /* This section is used in a shared object. */
4752 if (elf_tdata (abfd)->elf_data_section == NULL)
4753 {
4754 asymbol *elf_data_symbol;
4755 asection *elf_data_section;
4756 bfd_size_type amt = sizeof (asection);
4757
4758 elf_data_section = bfd_zalloc (abfd, amt);
4759 if (elf_data_section == NULL)
b34976b6 4760 return FALSE;
b49e97c9
TS
4761
4762 amt = sizeof (asymbol);
4763 elf_data_symbol = bfd_zalloc (abfd, amt);
4764 if (elf_data_symbol == NULL)
b34976b6 4765 return FALSE;
b49e97c9
TS
4766
4767 /* Initialize the section. */
4768
4769 elf_tdata (abfd)->elf_data_section = elf_data_section;
4770 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4771
4772 elf_data_section->symbol = elf_data_symbol;
4773 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4774
4775 elf_data_section->name = ".data";
4776 elf_data_section->flags = SEC_NO_FLAGS;
4777 elf_data_section->output_section = NULL;
4778 elf_data_section->owner = abfd;
4779 elf_data_symbol->name = ".data";
4780 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4781 elf_data_symbol->section = elf_data_section;
4782 }
4783 /* This code used to do *secp = bfd_und_section_ptr if
4784 info->shared. I don't know why, and that doesn't make sense,
4785 so I took it out. */
4786 *secp = elf_tdata (abfd)->elf_data_section;
4787 break;
4788
4789 case SHN_MIPS_SUNDEFINED:
4790 *secp = bfd_und_section_ptr;
4791 break;
4792 }
4793
4794 if (SGI_COMPAT (abfd)
4795 && ! info->shared
4796 && info->hash->creator == abfd->xvec
4797 && strcmp (*namep, "__rld_obj_head") == 0)
4798 {
4799 struct elf_link_hash_entry *h;
14a793b2 4800 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4801
4802 /* Mark __rld_obj_head as dynamic. */
14a793b2 4803 bh = NULL;
b49e97c9 4804 if (! (_bfd_generic_link_add_one_symbol
9719ad41 4805 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 4806 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4807 return FALSE;
14a793b2
AM
4808
4809 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4810 h->non_elf = 0;
4811 h->def_regular = 1;
b49e97c9
TS
4812 h->type = STT_OBJECT;
4813
c152c796 4814 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4815 return FALSE;
b49e97c9 4816
b34976b6 4817 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
4818 }
4819
4820 /* If this is a mips16 text symbol, add 1 to the value to make it
4821 odd. This will cause something like .word SYM to come up with
4822 the right value when it is loaded into the PC. */
4823 if (sym->st_other == STO_MIPS16)
4824 ++*valp;
4825
b34976b6 4826 return TRUE;
b49e97c9
TS
4827}
4828
4829/* This hook function is called before the linker writes out a global
4830 symbol. We mark symbols as small common if appropriate. This is
4831 also where we undo the increment of the value for a mips16 symbol. */
4832
b34976b6 4833bfd_boolean
9719ad41
RS
4834_bfd_mips_elf_link_output_symbol_hook
4835 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4836 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4837 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
4838{
4839 /* If we see a common symbol, which implies a relocatable link, then
4840 if a symbol was small common in an input file, mark it as small
4841 common in the output file. */
4842 if (sym->st_shndx == SHN_COMMON
4843 && strcmp (input_sec->name, ".scommon") == 0)
4844 sym->st_shndx = SHN_MIPS_SCOMMON;
4845
79cda7cf
FF
4846 if (sym->st_other == STO_MIPS16)
4847 sym->st_value &= ~1;
b49e97c9 4848
b34976b6 4849 return TRUE;
b49e97c9
TS
4850}
4851\f
4852/* Functions for the dynamic linker. */
4853
4854/* Create dynamic sections when linking against a dynamic object. */
4855
b34976b6 4856bfd_boolean
9719ad41 4857_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4858{
4859 struct elf_link_hash_entry *h;
14a793b2 4860 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4861 flagword flags;
4862 register asection *s;
4863 const char * const *namep;
4864
4865 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4866 | SEC_LINKER_CREATED | SEC_READONLY);
4867
4868 /* Mips ABI requests the .dynamic section to be read only. */
4869 s = bfd_get_section_by_name (abfd, ".dynamic");
4870 if (s != NULL)
4871 {
4872 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 4873 return FALSE;
b49e97c9
TS
4874 }
4875
4876 /* We need to create .got section. */
f4416af6
AO
4877 if (! mips_elf_create_got_section (abfd, info, FALSE))
4878 return FALSE;
4879
4880 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 4881 return FALSE;
b49e97c9 4882
b49e97c9
TS
4883 /* Create .stub section. */
4884 if (bfd_get_section_by_name (abfd,
4885 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4886 {
4887 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4888 if (s == NULL
4889 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4890 || ! bfd_set_section_alignment (abfd, s,
4891 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4892 return FALSE;
b49e97c9
TS
4893 }
4894
4895 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4896 && !info->shared
4897 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4898 {
4899 s = bfd_make_section (abfd, ".rld_map");
4900 if (s == NULL
4901 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4902 || ! bfd_set_section_alignment (abfd, s,
4903 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4904 return FALSE;
b49e97c9
TS
4905 }
4906
4907 /* On IRIX5, we adjust add some additional symbols and change the
4908 alignments of several sections. There is no ABI documentation
4909 indicating that this is necessary on IRIX6, nor any evidence that
4910 the linker takes such action. */
4911 if (IRIX_COMPAT (abfd) == ict_irix5)
4912 {
4913 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4914 {
14a793b2 4915 bh = NULL;
b49e97c9 4916 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
4917 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4918 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4919 return FALSE;
14a793b2
AM
4920
4921 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4922 h->non_elf = 0;
4923 h->def_regular = 1;
b49e97c9
TS
4924 h->type = STT_SECTION;
4925
c152c796 4926 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4927 return FALSE;
b49e97c9
TS
4928 }
4929
4930 /* We need to create a .compact_rel section. */
4931 if (SGI_COMPAT (abfd))
4932 {
4933 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 4934 return FALSE;
b49e97c9
TS
4935 }
4936
44c410de 4937 /* Change alignments of some sections. */
b49e97c9
TS
4938 s = bfd_get_section_by_name (abfd, ".hash");
4939 if (s != NULL)
d80dcc6a 4940 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4941 s = bfd_get_section_by_name (abfd, ".dynsym");
4942 if (s != NULL)
d80dcc6a 4943 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4944 s = bfd_get_section_by_name (abfd, ".dynstr");
4945 if (s != NULL)
d80dcc6a 4946 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4947 s = bfd_get_section_by_name (abfd, ".reginfo");
4948 if (s != NULL)
d80dcc6a 4949 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4950 s = bfd_get_section_by_name (abfd, ".dynamic");
4951 if (s != NULL)
d80dcc6a 4952 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4953 }
4954
4955 if (!info->shared)
4956 {
14a793b2
AM
4957 const char *name;
4958
4959 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4960 bh = NULL;
4961 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
4962 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4963 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4964 return FALSE;
14a793b2
AM
4965
4966 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4967 h->non_elf = 0;
4968 h->def_regular = 1;
b49e97c9
TS
4969 h->type = STT_SECTION;
4970
c152c796 4971 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4972 return FALSE;
b49e97c9
TS
4973
4974 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4975 {
4976 /* __rld_map is a four byte word located in the .data section
4977 and is filled in by the rtld to contain a pointer to
4978 the _r_debug structure. Its symbol value will be set in
4979 _bfd_mips_elf_finish_dynamic_symbol. */
4980 s = bfd_get_section_by_name (abfd, ".rld_map");
4981 BFD_ASSERT (s != NULL);
4982
14a793b2
AM
4983 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4984 bh = NULL;
4985 if (!(_bfd_generic_link_add_one_symbol
9719ad41 4986 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 4987 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4988 return FALSE;
14a793b2
AM
4989
4990 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4991 h->non_elf = 0;
4992 h->def_regular = 1;
b49e97c9
TS
4993 h->type = STT_OBJECT;
4994
c152c796 4995 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4996 return FALSE;
b49e97c9
TS
4997 }
4998 }
4999
b34976b6 5000 return TRUE;
b49e97c9
TS
5001}
5002\f
5003/* Look through the relocs for a section during the first phase, and
5004 allocate space in the global offset table. */
5005
b34976b6 5006bfd_boolean
9719ad41
RS
5007_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5008 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
5009{
5010 const char *name;
5011 bfd *dynobj;
5012 Elf_Internal_Shdr *symtab_hdr;
5013 struct elf_link_hash_entry **sym_hashes;
5014 struct mips_got_info *g;
5015 size_t extsymoff;
5016 const Elf_Internal_Rela *rel;
5017 const Elf_Internal_Rela *rel_end;
5018 asection *sgot;
5019 asection *sreloc;
9c5bfbb7 5020 const struct elf_backend_data *bed;
b49e97c9 5021
1049f94e 5022 if (info->relocatable)
b34976b6 5023 return TRUE;
b49e97c9
TS
5024
5025 dynobj = elf_hash_table (info)->dynobj;
5026 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5027 sym_hashes = elf_sym_hashes (abfd);
5028 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5029
5030 /* Check for the mips16 stub sections. */
5031
5032 name = bfd_get_section_name (abfd, sec);
5033 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5034 {
5035 unsigned long r_symndx;
5036
5037 /* Look at the relocation information to figure out which symbol
5038 this is for. */
5039
5040 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5041
5042 if (r_symndx < extsymoff
5043 || sym_hashes[r_symndx - extsymoff] == NULL)
5044 {
5045 asection *o;
5046
5047 /* This stub is for a local symbol. This stub will only be
5048 needed if there is some relocation in this BFD, other
5049 than a 16 bit function call, which refers to this symbol. */
5050 for (o = abfd->sections; o != NULL; o = o->next)
5051 {
5052 Elf_Internal_Rela *sec_relocs;
5053 const Elf_Internal_Rela *r, *rend;
5054
5055 /* We can ignore stub sections when looking for relocs. */
5056 if ((o->flags & SEC_RELOC) == 0
5057 || o->reloc_count == 0
5058 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5059 sizeof FN_STUB - 1) == 0
5060 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5061 sizeof CALL_STUB - 1) == 0
5062 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5063 sizeof CALL_FP_STUB - 1) == 0)
5064 continue;
5065
45d6a902 5066 sec_relocs
9719ad41 5067 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 5068 info->keep_memory);
b49e97c9 5069 if (sec_relocs == NULL)
b34976b6 5070 return FALSE;
b49e97c9
TS
5071
5072 rend = sec_relocs + o->reloc_count;
5073 for (r = sec_relocs; r < rend; r++)
5074 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5075 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5076 break;
5077
6cdc0ccc 5078 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5079 free (sec_relocs);
5080
5081 if (r < rend)
5082 break;
5083 }
5084
5085 if (o == NULL)
5086 {
5087 /* There is no non-call reloc for this stub, so we do
5088 not need it. Since this function is called before
5089 the linker maps input sections to output sections, we
5090 can easily discard it by setting the SEC_EXCLUDE
5091 flag. */
5092 sec->flags |= SEC_EXCLUDE;
b34976b6 5093 return TRUE;
b49e97c9
TS
5094 }
5095
5096 /* Record this stub in an array of local symbol stubs for
5097 this BFD. */
5098 if (elf_tdata (abfd)->local_stubs == NULL)
5099 {
5100 unsigned long symcount;
5101 asection **n;
5102 bfd_size_type amt;
5103
5104 if (elf_bad_symtab (abfd))
5105 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5106 else
5107 symcount = symtab_hdr->sh_info;
5108 amt = symcount * sizeof (asection *);
9719ad41 5109 n = bfd_zalloc (abfd, amt);
b49e97c9 5110 if (n == NULL)
b34976b6 5111 return FALSE;
b49e97c9
TS
5112 elf_tdata (abfd)->local_stubs = n;
5113 }
5114
5115 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5116
5117 /* We don't need to set mips16_stubs_seen in this case.
5118 That flag is used to see whether we need to look through
5119 the global symbol table for stubs. We don't need to set
5120 it here, because we just have a local stub. */
5121 }
5122 else
5123 {
5124 struct mips_elf_link_hash_entry *h;
5125
5126 h = ((struct mips_elf_link_hash_entry *)
5127 sym_hashes[r_symndx - extsymoff]);
5128
5129 /* H is the symbol this stub is for. */
5130
5131 h->fn_stub = sec;
b34976b6 5132 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5133 }
5134 }
5135 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5136 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5137 {
5138 unsigned long r_symndx;
5139 struct mips_elf_link_hash_entry *h;
5140 asection **loc;
5141
5142 /* Look at the relocation information to figure out which symbol
5143 this is for. */
5144
5145 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5146
5147 if (r_symndx < extsymoff
5148 || sym_hashes[r_symndx - extsymoff] == NULL)
5149 {
5150 /* This stub was actually built for a static symbol defined
5151 in the same file. We assume that all static symbols in
5152 mips16 code are themselves mips16, so we can simply
5153 discard this stub. Since this function is called before
5154 the linker maps input sections to output sections, we can
5155 easily discard it by setting the SEC_EXCLUDE flag. */
5156 sec->flags |= SEC_EXCLUDE;
b34976b6 5157 return TRUE;
b49e97c9
TS
5158 }
5159
5160 h = ((struct mips_elf_link_hash_entry *)
5161 sym_hashes[r_symndx - extsymoff]);
5162
5163 /* H is the symbol this stub is for. */
5164
5165 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5166 loc = &h->call_fp_stub;
5167 else
5168 loc = &h->call_stub;
5169
5170 /* If we already have an appropriate stub for this function, we
5171 don't need another one, so we can discard this one. Since
5172 this function is called before the linker maps input sections
5173 to output sections, we can easily discard it by setting the
5174 SEC_EXCLUDE flag. We can also discard this section if we
5175 happen to already know that this is a mips16 function; it is
5176 not necessary to check this here, as it is checked later, but
5177 it is slightly faster to check now. */
5178 if (*loc != NULL || h->root.other == STO_MIPS16)
5179 {
5180 sec->flags |= SEC_EXCLUDE;
b34976b6 5181 return TRUE;
b49e97c9
TS
5182 }
5183
5184 *loc = sec;
b34976b6 5185 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5186 }
5187
5188 if (dynobj == NULL)
5189 {
5190 sgot = NULL;
5191 g = NULL;
5192 }
5193 else
5194 {
f4416af6 5195 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5196 if (sgot == NULL)
5197 g = NULL;
5198 else
5199 {
f0abc2a1
AM
5200 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5201 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5202 BFD_ASSERT (g != NULL);
5203 }
5204 }
5205
5206 sreloc = NULL;
5207 bed = get_elf_backend_data (abfd);
5208 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5209 for (rel = relocs; rel < rel_end; ++rel)
5210 {
5211 unsigned long r_symndx;
5212 unsigned int r_type;
5213 struct elf_link_hash_entry *h;
5214
5215 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5216 r_type = ELF_R_TYPE (abfd, rel->r_info);
5217
5218 if (r_symndx < extsymoff)
5219 h = NULL;
5220 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5221 {
5222 (*_bfd_error_handler)
d003868e
AM
5223 (_("%B: Malformed reloc detected for section %s"),
5224 abfd, name);
b49e97c9 5225 bfd_set_error (bfd_error_bad_value);
b34976b6 5226 return FALSE;
b49e97c9
TS
5227 }
5228 else
5229 {
5230 h = sym_hashes[r_symndx - extsymoff];
5231
5232 /* This may be an indirect symbol created because of a version. */
5233 if (h != NULL)
5234 {
5235 while (h->root.type == bfd_link_hash_indirect)
5236 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5237 }
5238 }
5239
5240 /* Some relocs require a global offset table. */
5241 if (dynobj == NULL || sgot == NULL)
5242 {
5243 switch (r_type)
5244 {
5245 case R_MIPS_GOT16:
5246 case R_MIPS_CALL16:
5247 case R_MIPS_CALL_HI16:
5248 case R_MIPS_CALL_LO16:
5249 case R_MIPS_GOT_HI16:
5250 case R_MIPS_GOT_LO16:
5251 case R_MIPS_GOT_PAGE:
5252 case R_MIPS_GOT_OFST:
5253 case R_MIPS_GOT_DISP:
5254 if (dynobj == NULL)
5255 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5256 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5257 return FALSE;
b49e97c9
TS
5258 g = mips_elf_got_info (dynobj, &sgot);
5259 break;
5260
5261 case R_MIPS_32:
5262 case R_MIPS_REL32:
5263 case R_MIPS_64:
5264 if (dynobj == NULL
5265 && (info->shared || h != NULL)
5266 && (sec->flags & SEC_ALLOC) != 0)
5267 elf_hash_table (info)->dynobj = dynobj = abfd;
5268 break;
5269
5270 default:
5271 break;
5272 }
5273 }
5274
5275 if (!h && (r_type == R_MIPS_CALL_LO16
5276 || r_type == R_MIPS_GOT_LO16
5277 || r_type == R_MIPS_GOT_DISP))
5278 {
5279 /* We may need a local GOT entry for this relocation. We
5280 don't count R_MIPS_GOT_PAGE because we can estimate the
5281 maximum number of pages needed by looking at the size of
5282 the segment. Similar comments apply to R_MIPS_GOT16 and
5283 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5284 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 5285 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6
AO
5286 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5287 rel->r_addend, g))
5288 return FALSE;
b49e97c9
TS
5289 }
5290
5291 switch (r_type)
5292 {
5293 case R_MIPS_CALL16:
5294 if (h == NULL)
5295 {
5296 (*_bfd_error_handler)
d003868e
AM
5297 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
5298 abfd, (unsigned long) rel->r_offset);
b49e97c9 5299 bfd_set_error (bfd_error_bad_value);
b34976b6 5300 return FALSE;
b49e97c9
TS
5301 }
5302 /* Fall through. */
5303
5304 case R_MIPS_CALL_HI16:
5305 case R_MIPS_CALL_LO16:
5306 if (h != NULL)
5307 {
5308 /* This symbol requires a global offset table entry. */
f4416af6 5309 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5310 return FALSE;
b49e97c9
TS
5311
5312 /* We need a stub, not a plt entry for the undefined
5313 function. But we record it as if it needs plt. See
c152c796 5314 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 5315 h->needs_plt = 1;
b49e97c9
TS
5316 h->type = STT_FUNC;
5317 }
5318 break;
5319
0fdc1bf1
AO
5320 case R_MIPS_GOT_PAGE:
5321 /* If this is a global, overridable symbol, GOT_PAGE will
5322 decay to GOT_DISP, so we'll need a GOT entry for it. */
5323 if (h == NULL)
5324 break;
5325 else
5326 {
5327 struct mips_elf_link_hash_entry *hmips =
5328 (struct mips_elf_link_hash_entry *) h;
143d77c5 5329
0fdc1bf1
AO
5330 while (hmips->root.root.type == bfd_link_hash_indirect
5331 || hmips->root.root.type == bfd_link_hash_warning)
5332 hmips = (struct mips_elf_link_hash_entry *)
5333 hmips->root.root.u.i.link;
143d77c5 5334
f5385ebf 5335 if (hmips->root.def_regular
0fdc1bf1 5336 && ! (info->shared && ! info->symbolic
f5385ebf 5337 && ! hmips->root.forced_local))
0fdc1bf1
AO
5338 break;
5339 }
5340 /* Fall through. */
5341
b49e97c9
TS
5342 case R_MIPS_GOT16:
5343 case R_MIPS_GOT_HI16:
5344 case R_MIPS_GOT_LO16:
5345 case R_MIPS_GOT_DISP:
5346 /* This symbol requires a global offset table entry. */
f4416af6 5347 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5348 return FALSE;
b49e97c9
TS
5349 break;
5350
5351 case R_MIPS_32:
5352 case R_MIPS_REL32:
5353 case R_MIPS_64:
5354 if ((info->shared || h != NULL)
5355 && (sec->flags & SEC_ALLOC) != 0)
5356 {
5357 if (sreloc == NULL)
5358 {
f4416af6 5359 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 5360 if (sreloc == NULL)
f4416af6 5361 return FALSE;
b49e97c9
TS
5362 }
5363#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5364 if (info->shared)
5365 {
5366 /* When creating a shared object, we must copy these
5367 reloc types into the output file as R_MIPS_REL32
5368 relocs. We make room for this reloc in the
5369 .rel.dyn reloc section. */
5370 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5371 if ((sec->flags & MIPS_READONLY_SECTION)
5372 == MIPS_READONLY_SECTION)
5373 /* We tell the dynamic linker that there are
5374 relocations against the text segment. */
5375 info->flags |= DF_TEXTREL;
5376 }
5377 else
5378 {
5379 struct mips_elf_link_hash_entry *hmips;
5380
5381 /* We only need to copy this reloc if the symbol is
5382 defined in a dynamic object. */
5383 hmips = (struct mips_elf_link_hash_entry *) h;
5384 ++hmips->possibly_dynamic_relocs;
5385 if ((sec->flags & MIPS_READONLY_SECTION)
5386 == MIPS_READONLY_SECTION)
5387 /* We need it to tell the dynamic linker if there
5388 are relocations against the text segment. */
b34976b6 5389 hmips->readonly_reloc = TRUE;
b49e97c9
TS
5390 }
5391
5392 /* Even though we don't directly need a GOT entry for
5393 this symbol, a symbol must have a dynamic symbol
5394 table index greater that DT_MIPS_GOTSYM if there are
5395 dynamic relocations against it. */
f4416af6
AO
5396 if (h != NULL)
5397 {
5398 if (dynobj == NULL)
5399 elf_hash_table (info)->dynobj = dynobj = abfd;
5400 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5401 return FALSE;
5402 g = mips_elf_got_info (dynobj, &sgot);
5403 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5404 return FALSE;
5405 }
b49e97c9
TS
5406 }
5407
5408 if (SGI_COMPAT (abfd))
5409 mips_elf_hash_table (info)->compact_rel_size +=
5410 sizeof (Elf32_External_crinfo);
5411 break;
5412
5413 case R_MIPS_26:
5414 case R_MIPS_GPREL16:
5415 case R_MIPS_LITERAL:
5416 case R_MIPS_GPREL32:
5417 if (SGI_COMPAT (abfd))
5418 mips_elf_hash_table (info)->compact_rel_size +=
5419 sizeof (Elf32_External_crinfo);
5420 break;
5421
5422 /* This relocation describes the C++ object vtable hierarchy.
5423 Reconstruct it for later use during GC. */
5424 case R_MIPS_GNU_VTINHERIT:
c152c796 5425 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 5426 return FALSE;
b49e97c9
TS
5427 break;
5428
5429 /* This relocation describes which C++ vtable entries are actually
5430 used. Record for later use during GC. */
5431 case R_MIPS_GNU_VTENTRY:
c152c796 5432 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 5433 return FALSE;
b49e97c9
TS
5434 break;
5435
5436 default:
5437 break;
5438 }
5439
5440 /* We must not create a stub for a symbol that has relocations
5441 related to taking the function's address. */
5442 switch (r_type)
5443 {
5444 default:
5445 if (h != NULL)
5446 {
5447 struct mips_elf_link_hash_entry *mh;
5448
5449 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5450 mh->no_fn_stub = TRUE;
b49e97c9
TS
5451 }
5452 break;
5453 case R_MIPS_CALL16:
5454 case R_MIPS_CALL_HI16:
5455 case R_MIPS_CALL_LO16:
2b86c02e 5456 case R_MIPS_JALR:
b49e97c9
TS
5457 break;
5458 }
5459
5460 /* If this reloc is not a 16 bit call, and it has a global
5461 symbol, then we will need the fn_stub if there is one.
5462 References from a stub section do not count. */
5463 if (h != NULL
5464 && r_type != R_MIPS16_26
5465 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5466 sizeof FN_STUB - 1) != 0
5467 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5468 sizeof CALL_STUB - 1) != 0
5469 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5470 sizeof CALL_FP_STUB - 1) != 0)
5471 {
5472 struct mips_elf_link_hash_entry *mh;
5473
5474 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5475 mh->need_fn_stub = TRUE;
b49e97c9
TS
5476 }
5477 }
5478
b34976b6 5479 return TRUE;
b49e97c9
TS
5480}
5481\f
d0647110 5482bfd_boolean
9719ad41
RS
5483_bfd_mips_relax_section (bfd *abfd, asection *sec,
5484 struct bfd_link_info *link_info,
5485 bfd_boolean *again)
d0647110
AO
5486{
5487 Elf_Internal_Rela *internal_relocs;
5488 Elf_Internal_Rela *irel, *irelend;
5489 Elf_Internal_Shdr *symtab_hdr;
5490 bfd_byte *contents = NULL;
d0647110
AO
5491 size_t extsymoff;
5492 bfd_boolean changed_contents = FALSE;
5493 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5494 Elf_Internal_Sym *isymbuf = NULL;
5495
5496 /* We are not currently changing any sizes, so only one pass. */
5497 *again = FALSE;
5498
1049f94e 5499 if (link_info->relocatable)
d0647110
AO
5500 return TRUE;
5501
9719ad41 5502 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 5503 link_info->keep_memory);
d0647110
AO
5504 if (internal_relocs == NULL)
5505 return TRUE;
5506
5507 irelend = internal_relocs + sec->reloc_count
5508 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5509 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5510 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5511
5512 for (irel = internal_relocs; irel < irelend; irel++)
5513 {
5514 bfd_vma symval;
5515 bfd_signed_vma sym_offset;
5516 unsigned int r_type;
5517 unsigned long r_symndx;
5518 asection *sym_sec;
5519 unsigned long instruction;
5520
5521 /* Turn jalr into bgezal, and jr into beq, if they're marked
5522 with a JALR relocation, that indicate where they jump to.
5523 This saves some pipeline bubbles. */
5524 r_type = ELF_R_TYPE (abfd, irel->r_info);
5525 if (r_type != R_MIPS_JALR)
5526 continue;
5527
5528 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5529 /* Compute the address of the jump target. */
5530 if (r_symndx >= extsymoff)
5531 {
5532 struct mips_elf_link_hash_entry *h
5533 = ((struct mips_elf_link_hash_entry *)
5534 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5535
5536 while (h->root.root.type == bfd_link_hash_indirect
5537 || h->root.root.type == bfd_link_hash_warning)
5538 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 5539
d0647110
AO
5540 /* If a symbol is undefined, or if it may be overridden,
5541 skip it. */
5542 if (! ((h->root.root.type == bfd_link_hash_defined
5543 || h->root.root.type == bfd_link_hash_defweak)
5544 && h->root.root.u.def.section)
5545 || (link_info->shared && ! link_info->symbolic
f5385ebf 5546 && !h->root.forced_local))
d0647110
AO
5547 continue;
5548
5549 sym_sec = h->root.root.u.def.section;
5550 if (sym_sec->output_section)
5551 symval = (h->root.root.u.def.value
5552 + sym_sec->output_section->vma
5553 + sym_sec->output_offset);
5554 else
5555 symval = h->root.root.u.def.value;
5556 }
5557 else
5558 {
5559 Elf_Internal_Sym *isym;
5560
5561 /* Read this BFD's symbols if we haven't done so already. */
5562 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5563 {
5564 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5565 if (isymbuf == NULL)
5566 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5567 symtab_hdr->sh_info, 0,
5568 NULL, NULL, NULL);
5569 if (isymbuf == NULL)
5570 goto relax_return;
5571 }
5572
5573 isym = isymbuf + r_symndx;
5574 if (isym->st_shndx == SHN_UNDEF)
5575 continue;
5576 else if (isym->st_shndx == SHN_ABS)
5577 sym_sec = bfd_abs_section_ptr;
5578 else if (isym->st_shndx == SHN_COMMON)
5579 sym_sec = bfd_com_section_ptr;
5580 else
5581 sym_sec
5582 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5583 symval = isym->st_value
5584 + sym_sec->output_section->vma
5585 + sym_sec->output_offset;
5586 }
5587
5588 /* Compute branch offset, from delay slot of the jump to the
5589 branch target. */
5590 sym_offset = (symval + irel->r_addend)
5591 - (sec_start + irel->r_offset + 4);
5592
5593 /* Branch offset must be properly aligned. */
5594 if ((sym_offset & 3) != 0)
5595 continue;
5596
5597 sym_offset >>= 2;
5598
5599 /* Check that it's in range. */
5600 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5601 continue;
143d77c5 5602
d0647110
AO
5603 /* Get the section contents if we haven't done so already. */
5604 if (contents == NULL)
5605 {
5606 /* Get cached copy if it exists. */
5607 if (elf_section_data (sec)->this_hdr.contents != NULL)
5608 contents = elf_section_data (sec)->this_hdr.contents;
5609 else
5610 {
eea6121a 5611 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
5612 goto relax_return;
5613 }
5614 }
5615
5616 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5617
5618 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5619 if ((instruction & 0xfc1fffff) == 0x0000f809)
5620 instruction = 0x04110000;
5621 /* If it was jr <reg>, turn it into b <target>. */
5622 else if ((instruction & 0xfc1fffff) == 0x00000008)
5623 instruction = 0x10000000;
5624 else
5625 continue;
5626
5627 instruction |= (sym_offset & 0xffff);
5628 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5629 changed_contents = TRUE;
5630 }
5631
5632 if (contents != NULL
5633 && elf_section_data (sec)->this_hdr.contents != contents)
5634 {
5635 if (!changed_contents && !link_info->keep_memory)
5636 free (contents);
5637 else
5638 {
5639 /* Cache the section contents for elf_link_input_bfd. */
5640 elf_section_data (sec)->this_hdr.contents = contents;
5641 }
5642 }
5643 return TRUE;
5644
143d77c5 5645 relax_return:
eea6121a
AM
5646 if (contents != NULL
5647 && elf_section_data (sec)->this_hdr.contents != contents)
5648 free (contents);
d0647110
AO
5649 return FALSE;
5650}
5651\f
b49e97c9
TS
5652/* Adjust a symbol defined by a dynamic object and referenced by a
5653 regular object. The current definition is in some section of the
5654 dynamic object, but we're not including those sections. We have to
5655 change the definition to something the rest of the link can
5656 understand. */
5657
b34976b6 5658bfd_boolean
9719ad41
RS
5659_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5660 struct elf_link_hash_entry *h)
b49e97c9
TS
5661{
5662 bfd *dynobj;
5663 struct mips_elf_link_hash_entry *hmips;
5664 asection *s;
5665
5666 dynobj = elf_hash_table (info)->dynobj;
5667
5668 /* Make sure we know what is going on here. */
5669 BFD_ASSERT (dynobj != NULL
f5385ebf 5670 && (h->needs_plt
f6e332e6 5671 || h->u.weakdef != NULL
f5385ebf
AM
5672 || (h->def_dynamic
5673 && h->ref_regular
5674 && !h->def_regular)));
b49e97c9
TS
5675
5676 /* If this symbol is defined in a dynamic object, we need to copy
5677 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5678 file. */
5679 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 5680 if (! info->relocatable
b49e97c9
TS
5681 && hmips->possibly_dynamic_relocs != 0
5682 && (h->root.type == bfd_link_hash_defweak
f5385ebf 5683 || !h->def_regular))
b49e97c9
TS
5684 {
5685 mips_elf_allocate_dynamic_relocations (dynobj,
5686 hmips->possibly_dynamic_relocs);
5687 if (hmips->readonly_reloc)
5688 /* We tell the dynamic linker that there are relocations
5689 against the text segment. */
5690 info->flags |= DF_TEXTREL;
5691 }
5692
5693 /* For a function, create a stub, if allowed. */
5694 if (! hmips->no_fn_stub
f5385ebf 5695 && h->needs_plt)
b49e97c9
TS
5696 {
5697 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 5698 return TRUE;
b49e97c9
TS
5699
5700 /* If this symbol is not defined in a regular file, then set
5701 the symbol to the stub location. This is required to make
5702 function pointers compare as equal between the normal
5703 executable and the shared library. */
f5385ebf 5704 if (!h->def_regular)
b49e97c9
TS
5705 {
5706 /* We need .stub section. */
5707 s = bfd_get_section_by_name (dynobj,
5708 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5709 BFD_ASSERT (s != NULL);
5710
5711 h->root.u.def.section = s;
eea6121a 5712 h->root.u.def.value = s->size;
b49e97c9
TS
5713
5714 /* XXX Write this stub address somewhere. */
eea6121a 5715 h->plt.offset = s->size;
b49e97c9
TS
5716
5717 /* Make room for this stub code. */
eea6121a 5718 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
5719
5720 /* The last half word of the stub will be filled with the index
5721 of this symbol in .dynsym section. */
b34976b6 5722 return TRUE;
b49e97c9
TS
5723 }
5724 }
5725 else if ((h->type == STT_FUNC)
f5385ebf 5726 && !h->needs_plt)
b49e97c9
TS
5727 {
5728 /* This will set the entry for this symbol in the GOT to 0, and
5729 the dynamic linker will take care of this. */
5730 h->root.u.def.value = 0;
b34976b6 5731 return TRUE;
b49e97c9
TS
5732 }
5733
5734 /* If this is a weak symbol, and there is a real definition, the
5735 processor independent code will have arranged for us to see the
5736 real definition first, and we can just use the same value. */
f6e332e6 5737 if (h->u.weakdef != NULL)
b49e97c9 5738 {
f6e332e6
AM
5739 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5740 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5741 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5742 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 5743 return TRUE;
b49e97c9
TS
5744 }
5745
5746 /* This is a reference to a symbol defined by a dynamic object which
5747 is not a function. */
5748
b34976b6 5749 return TRUE;
b49e97c9
TS
5750}
5751\f
5752/* This function is called after all the input files have been read,
5753 and the input sections have been assigned to output sections. We
5754 check for any mips16 stub sections that we can discard. */
5755
b34976b6 5756bfd_boolean
9719ad41
RS
5757_bfd_mips_elf_always_size_sections (bfd *output_bfd,
5758 struct bfd_link_info *info)
b49e97c9
TS
5759{
5760 asection *ri;
5761
f4416af6
AO
5762 bfd *dynobj;
5763 asection *s;
5764 struct mips_got_info *g;
5765 int i;
5766 bfd_size_type loadable_size = 0;
5767 bfd_size_type local_gotno;
5768 bfd *sub;
5769
b49e97c9
TS
5770 /* The .reginfo section has a fixed size. */
5771 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5772 if (ri != NULL)
9719ad41 5773 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 5774
1049f94e 5775 if (! (info->relocatable
f4416af6
AO
5776 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5777 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 5778 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
5779
5780 dynobj = elf_hash_table (info)->dynobj;
5781 if (dynobj == NULL)
5782 /* Relocatable links don't have it. */
5783 return TRUE;
143d77c5 5784
f4416af6
AO
5785 g = mips_elf_got_info (dynobj, &s);
5786 if (s == NULL)
b34976b6 5787 return TRUE;
b49e97c9 5788
f4416af6
AO
5789 /* Calculate the total loadable size of the output. That
5790 will give us the maximum number of GOT_PAGE entries
5791 required. */
5792 for (sub = info->input_bfds; sub; sub = sub->link_next)
5793 {
5794 asection *subsection;
5795
5796 for (subsection = sub->sections;
5797 subsection;
5798 subsection = subsection->next)
5799 {
5800 if ((subsection->flags & SEC_ALLOC) == 0)
5801 continue;
eea6121a 5802 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
5803 &~ (bfd_size_type) 0xf);
5804 }
5805 }
5806
5807 /* There has to be a global GOT entry for every symbol with
5808 a dynamic symbol table index of DT_MIPS_GOTSYM or
5809 higher. Therefore, it make sense to put those symbols
5810 that need GOT entries at the end of the symbol table. We
5811 do that here. */
5812 if (! mips_elf_sort_hash_table (info, 1))
5813 return FALSE;
5814
5815 if (g->global_gotsym != NULL)
5816 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5817 else
5818 /* If there are no global symbols, or none requiring
5819 relocations, then GLOBAL_GOTSYM will be NULL. */
5820 i = 0;
5821
5822 /* In the worst case, we'll get one stub per dynamic symbol, plus
5823 one to account for the dummy entry at the end required by IRIX
5824 rld. */
5825 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5826
5827 /* Assume there are two loadable segments consisting of
5828 contiguous sections. Is 5 enough? */
5829 local_gotno = (loadable_size >> 16) + 5;
5830
5831 g->local_gotno += local_gotno;
eea6121a 5832 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
5833
5834 g->global_gotno = i;
eea6121a 5835 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 5836
eea6121a 5837 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
f4416af6
AO
5838 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5839 return FALSE;
b49e97c9 5840
b34976b6 5841 return TRUE;
b49e97c9
TS
5842}
5843
5844/* Set the sizes of the dynamic sections. */
5845
b34976b6 5846bfd_boolean
9719ad41
RS
5847_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5848 struct bfd_link_info *info)
b49e97c9
TS
5849{
5850 bfd *dynobj;
5851 asection *s;
b34976b6 5852 bfd_boolean reltext;
b49e97c9
TS
5853
5854 dynobj = elf_hash_table (info)->dynobj;
5855 BFD_ASSERT (dynobj != NULL);
5856
5857 if (elf_hash_table (info)->dynamic_sections_created)
5858 {
5859 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 5860 if (info->executable)
b49e97c9
TS
5861 {
5862 s = bfd_get_section_by_name (dynobj, ".interp");
5863 BFD_ASSERT (s != NULL);
eea6121a 5864 s->size
b49e97c9
TS
5865 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5866 s->contents
5867 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5868 }
5869 }
5870
5871 /* The check_relocs and adjust_dynamic_symbol entry points have
5872 determined the sizes of the various dynamic sections. Allocate
5873 memory for them. */
b34976b6 5874 reltext = FALSE;
b49e97c9
TS
5875 for (s = dynobj->sections; s != NULL; s = s->next)
5876 {
5877 const char *name;
b34976b6 5878 bfd_boolean strip;
b49e97c9
TS
5879
5880 /* It's OK to base decisions on the section name, because none
5881 of the dynobj section names depend upon the input files. */
5882 name = bfd_get_section_name (dynobj, s);
5883
5884 if ((s->flags & SEC_LINKER_CREATED) == 0)
5885 continue;
5886
b34976b6 5887 strip = FALSE;
b49e97c9
TS
5888
5889 if (strncmp (name, ".rel", 4) == 0)
5890 {
eea6121a 5891 if (s->size == 0)
b49e97c9
TS
5892 {
5893 /* We only strip the section if the output section name
5894 has the same name. Otherwise, there might be several
5895 input sections for this output section. FIXME: This
5896 code is probably not needed these days anyhow, since
5897 the linker now does not create empty output sections. */
5898 if (s->output_section != NULL
5899 && strcmp (name,
5900 bfd_get_section_name (s->output_section->owner,
5901 s->output_section)) == 0)
b34976b6 5902 strip = TRUE;
b49e97c9
TS
5903 }
5904 else
5905 {
5906 const char *outname;
5907 asection *target;
5908
5909 /* If this relocation section applies to a read only
5910 section, then we probably need a DT_TEXTREL entry.
5911 If the relocation section is .rel.dyn, we always
5912 assert a DT_TEXTREL entry rather than testing whether
5913 there exists a relocation to a read only section or
5914 not. */
5915 outname = bfd_get_section_name (output_bfd,
5916 s->output_section);
5917 target = bfd_get_section_by_name (output_bfd, outname + 4);
5918 if ((target != NULL
5919 && (target->flags & SEC_READONLY) != 0
5920 && (target->flags & SEC_ALLOC) != 0)
5921 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 5922 reltext = TRUE;
b49e97c9
TS
5923
5924 /* We use the reloc_count field as a counter if we need
5925 to copy relocs into the output file. */
5926 if (strcmp (name, ".rel.dyn") != 0)
5927 s->reloc_count = 0;
f4416af6
AO
5928
5929 /* If combreloc is enabled, elf_link_sort_relocs() will
5930 sort relocations, but in a different way than we do,
5931 and before we're done creating relocations. Also, it
5932 will move them around between input sections'
5933 relocation's contents, so our sorting would be
5934 broken, so don't let it run. */
5935 info->combreloc = 0;
b49e97c9
TS
5936 }
5937 }
5938 else if (strncmp (name, ".got", 4) == 0)
5939 {
f4416af6
AO
5940 /* _bfd_mips_elf_always_size_sections() has already done
5941 most of the work, but some symbols may have been mapped
5942 to versions that we must now resolve in the got_entries
5943 hash tables. */
5944 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5945 struct mips_got_info *g = gg;
5946 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5947 unsigned int needed_relocs = 0;
143d77c5 5948
f4416af6 5949 if (gg->next)
b49e97c9 5950 {
f4416af6
AO
5951 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5952 set_got_offset_arg.info = info;
b49e97c9 5953
f4416af6
AO
5954 mips_elf_resolve_final_got_entries (gg);
5955 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 5956 {
f4416af6
AO
5957 unsigned int save_assign;
5958
5959 mips_elf_resolve_final_got_entries (g);
5960
5961 /* Assign offsets to global GOT entries. */
5962 save_assign = g->assigned_gotno;
5963 g->assigned_gotno = g->local_gotno;
5964 set_got_offset_arg.g = g;
5965 set_got_offset_arg.needed_relocs = 0;
5966 htab_traverse (g->got_entries,
5967 mips_elf_set_global_got_offset,
5968 &set_got_offset_arg);
5969 needed_relocs += set_got_offset_arg.needed_relocs;
5970 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5971 <= g->global_gotno);
5972
5973 g->assigned_gotno = save_assign;
5974 if (info->shared)
5975 {
5976 needed_relocs += g->local_gotno - g->assigned_gotno;
5977 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5978 + g->next->global_gotno
5979 + MIPS_RESERVED_GOTNO);
5980 }
b49e97c9 5981 }
b49e97c9 5982
f4416af6
AO
5983 if (needed_relocs)
5984 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5985 }
b49e97c9
TS
5986 }
5987 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5988 {
8dc1a139 5989 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9 5990 of .text section. So put a dummy. XXX */
eea6121a 5991 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
5992 }
5993 else if (! info->shared
5994 && ! mips_elf_hash_table (info)->use_rld_obj_head
5995 && strncmp (name, ".rld_map", 8) == 0)
5996 {
5997 /* We add a room for __rld_map. It will be filled in by the
5998 rtld to contain a pointer to the _r_debug structure. */
eea6121a 5999 s->size += 4;
b49e97c9
TS
6000 }
6001 else if (SGI_COMPAT (output_bfd)
6002 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 6003 s->size += mips_elf_hash_table (info)->compact_rel_size;
b49e97c9
TS
6004 else if (strncmp (name, ".init", 5) != 0)
6005 {
6006 /* It's not one of our sections, so don't allocate space. */
6007 continue;
6008 }
6009
6010 if (strip)
6011 {
6012 _bfd_strip_section_from_output (info, s);
6013 continue;
6014 }
6015
6016 /* Allocate memory for the section contents. */
eea6121a
AM
6017 s->contents = bfd_zalloc (dynobj, s->size);
6018 if (s->contents == NULL && s->size != 0)
b49e97c9
TS
6019 {
6020 bfd_set_error (bfd_error_no_memory);
b34976b6 6021 return FALSE;
b49e97c9
TS
6022 }
6023 }
6024
6025 if (elf_hash_table (info)->dynamic_sections_created)
6026 {
6027 /* Add some entries to the .dynamic section. We fill in the
6028 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6029 must add the entries now so that we get the correct size for
6030 the .dynamic section. The DT_DEBUG entry is filled in by the
6031 dynamic linker and used by the debugger. */
6032 if (! info->shared)
6033 {
6034 /* SGI object has the equivalence of DT_DEBUG in the
6035 DT_MIPS_RLD_MAP entry. */
6036 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6037 return FALSE;
b49e97c9
TS
6038 if (!SGI_COMPAT (output_bfd))
6039 {
6040 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6041 return FALSE;
b49e97c9
TS
6042 }
6043 }
6044 else
6045 {
6046 /* Shared libraries on traditional mips have DT_DEBUG. */
6047 if (!SGI_COMPAT (output_bfd))
6048 {
6049 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6050 return FALSE;
b49e97c9
TS
6051 }
6052 }
6053
6054 if (reltext && SGI_COMPAT (output_bfd))
6055 info->flags |= DF_TEXTREL;
6056
6057 if ((info->flags & DF_TEXTREL) != 0)
6058 {
6059 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6060 return FALSE;
b49e97c9
TS
6061 }
6062
6063 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6064 return FALSE;
b49e97c9 6065
f4416af6 6066 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6067 {
6068 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6069 return FALSE;
b49e97c9
TS
6070
6071 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6072 return FALSE;
b49e97c9
TS
6073
6074 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6075 return FALSE;
b49e97c9
TS
6076 }
6077
b49e97c9 6078 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6079 return FALSE;
b49e97c9
TS
6080
6081 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6082 return FALSE;
b49e97c9
TS
6083
6084#if 0
6085 /* Time stamps in executable files are a bad idea. */
6086 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
b34976b6 6087 return FALSE;
b49e97c9
TS
6088#endif
6089
6090#if 0 /* FIXME */
6091 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
b34976b6 6092 return FALSE;
b49e97c9
TS
6093#endif
6094
6095#if 0 /* FIXME */
6096 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
b34976b6 6097 return FALSE;
b49e97c9
TS
6098#endif
6099
6100 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6101 return FALSE;
b49e97c9
TS
6102
6103 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6104 return FALSE;
b49e97c9
TS
6105
6106 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6107 return FALSE;
b49e97c9
TS
6108
6109 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6110 return FALSE;
b49e97c9
TS
6111
6112 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6113 return FALSE;
b49e97c9
TS
6114
6115 if (IRIX_COMPAT (dynobj) == ict_irix5
6116 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6117 return FALSE;
b49e97c9
TS
6118
6119 if (IRIX_COMPAT (dynobj) == ict_irix6
6120 && (bfd_get_section_by_name
6121 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6122 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6123 return FALSE;
b49e97c9
TS
6124 }
6125
b34976b6 6126 return TRUE;
b49e97c9
TS
6127}
6128\f
6129/* Relocate a MIPS ELF section. */
6130
b34976b6 6131bfd_boolean
9719ad41
RS
6132_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6133 bfd *input_bfd, asection *input_section,
6134 bfd_byte *contents, Elf_Internal_Rela *relocs,
6135 Elf_Internal_Sym *local_syms,
6136 asection **local_sections)
b49e97c9
TS
6137{
6138 Elf_Internal_Rela *rel;
6139 const Elf_Internal_Rela *relend;
6140 bfd_vma addend = 0;
b34976b6 6141 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 6142 const struct elf_backend_data *bed;
b49e97c9
TS
6143
6144 bed = get_elf_backend_data (output_bfd);
6145 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6146 for (rel = relocs; rel < relend; ++rel)
6147 {
6148 const char *name;
6149 bfd_vma value;
6150 reloc_howto_type *howto;
b34976b6
AM
6151 bfd_boolean require_jalx;
6152 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6153 REL relocation. */
b34976b6 6154 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 6155 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 6156 const char *msg;
b49e97c9
TS
6157
6158 /* Find the relocation howto for this relocation. */
4a14403c 6159 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6160 {
6161 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6162 64-bit code, but make sure all their addresses are in the
6163 lowermost or uppermost 32-bit section of the 64-bit address
6164 space. Thus, when they use an R_MIPS_64 they mean what is
6165 usually meant by R_MIPS_32, with the exception that the
6166 stored value is sign-extended to 64 bits. */
b34976b6 6167 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6168
6169 /* On big-endian systems, we need to lie about the position
6170 of the reloc. */
6171 if (bfd_big_endian (input_bfd))
6172 rel->r_offset += 4;
6173 }
6174 else
6175 /* NewABI defaults to RELA relocations. */
6176 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6177 NEWABI_P (input_bfd)
6178 && (MIPS_RELOC_RELA_P
6179 (input_bfd, input_section,
6180 rel - relocs)));
b49e97c9
TS
6181
6182 if (!use_saved_addend_p)
6183 {
6184 Elf_Internal_Shdr *rel_hdr;
6185
6186 /* If these relocations were originally of the REL variety,
6187 we must pull the addend out of the field that will be
6188 relocated. Otherwise, we simply use the contents of the
6189 RELA relocation. To determine which flavor or relocation
6190 this is, we depend on the fact that the INPUT_SECTION's
6191 REL_HDR is read before its REL_HDR2. */
6192 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6193 if ((size_t) (rel - relocs)
6194 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6195 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6196 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6197 {
6198 /* Note that this is a REL relocation. */
b34976b6 6199 rela_relocation_p = FALSE;
b49e97c9
TS
6200
6201 /* Get the addend, which is stored in the input file. */
6202 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6203 contents);
6204 addend &= howto->src_mask;
6205
6206 /* For some kinds of relocations, the ADDEND is a
6207 combination of the addend stored in two different
6208 relocations. */
6209 if (r_type == R_MIPS_HI16
b49e97c9
TS
6210 || (r_type == R_MIPS_GOT16
6211 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 6212 local_sections, FALSE)))
b49e97c9
TS
6213 {
6214 bfd_vma l;
6215 const Elf_Internal_Rela *lo16_relocation;
6216 reloc_howto_type *lo16_howto;
b49e97c9
TS
6217
6218 /* The combined value is the sum of the HI16 addend,
6219 left-shifted by sixteen bits, and the LO16
6220 addend, sign extended. (Usually, the code does
6221 a `lui' of the HI16 value, and then an `addiu' of
6222 the LO16 value.)
6223
4030e8f6
CD
6224 Scan ahead to find a matching LO16 relocation.
6225
6226 According to the MIPS ELF ABI, the R_MIPS_LO16
6227 relocation must be immediately following.
6228 However, for the IRIX6 ABI, the next relocation
6229 may be a composed relocation consisting of
6230 several relocations for the same address. In
6231 that case, the R_MIPS_LO16 relocation may occur
6232 as one of these. We permit a similar extension
6233 in general, as that is useful for GCC. */
6234 lo16_relocation = mips_elf_next_relocation (input_bfd,
6235 R_MIPS_LO16,
b49e97c9
TS
6236 rel, relend);
6237 if (lo16_relocation == NULL)
b34976b6 6238 return FALSE;
b49e97c9
TS
6239
6240 /* Obtain the addend kept there. */
4030e8f6
CD
6241 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6242 R_MIPS_LO16, FALSE);
b49e97c9
TS
6243 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6244 input_bfd, contents);
6245 l &= lo16_howto->src_mask;
5a659663 6246 l <<= lo16_howto->rightshift;
a7ebbfdf 6247 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
6248
6249 addend <<= 16;
6250
6251 /* Compute the combined addend. */
6252 addend += l;
b49e97c9
TS
6253 }
6254 else if (r_type == R_MIPS16_GPREL)
6255 {
6256 /* The addend is scrambled in the object file. See
6257 mips_elf_perform_relocation for details on the
6258 format. */
6259 addend = (((addend & 0x1f0000) >> 5)
6260 | ((addend & 0x7e00000) >> 16)
6261 | (addend & 0x1f));
6262 }
30ac9238
RS
6263 else
6264 addend <<= howto->rightshift;
b49e97c9
TS
6265 }
6266 else
6267 addend = rel->r_addend;
6268 }
6269
1049f94e 6270 if (info->relocatable)
b49e97c9
TS
6271 {
6272 Elf_Internal_Sym *sym;
6273 unsigned long r_symndx;
6274
4a14403c 6275 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
6276 && bfd_big_endian (input_bfd))
6277 rel->r_offset -= 4;
6278
6279 /* Since we're just relocating, all we need to do is copy
6280 the relocations back out to the object file, unless
6281 they're against a section symbol, in which case we need
6282 to adjust by the section offset, or unless they're GP
6283 relative in which case we need to adjust by the amount
1049f94e 6284 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
6285
6286 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 6287 FALSE))
b49e97c9
TS
6288 /* There's nothing to do for non-local relocations. */
6289 continue;
6290
6291 if (r_type == R_MIPS16_GPREL
6292 || r_type == R_MIPS_GPREL16
6293 || r_type == R_MIPS_GPREL32
6294 || r_type == R_MIPS_LITERAL)
6295 addend -= (_bfd_get_gp_value (output_bfd)
6296 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
6297
6298 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6299 sym = local_syms + r_symndx;
6300 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6301 /* Adjust the addend appropriately. */
6302 addend += local_sections[r_symndx]->output_offset;
6303
30ac9238
RS
6304 if (rela_relocation_p)
6305 /* If this is a RELA relocation, just update the addend. */
6306 rel->r_addend = addend;
6307 else
5a659663 6308 {
30ac9238 6309 if (r_type == R_MIPS_HI16
4030e8f6 6310 || r_type == R_MIPS_GOT16)
5a659663
TS
6311 addend = mips_elf_high (addend);
6312 else if (r_type == R_MIPS_HIGHER)
6313 addend = mips_elf_higher (addend);
6314 else if (r_type == R_MIPS_HIGHEST)
6315 addend = mips_elf_highest (addend);
30ac9238
RS
6316 else
6317 addend >>= howto->rightshift;
b49e97c9 6318
30ac9238
RS
6319 /* We use the source mask, rather than the destination
6320 mask because the place to which we are writing will be
6321 source of the addend in the final link. */
b49e97c9
TS
6322 addend &= howto->src_mask;
6323
5a659663 6324 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6325 /* See the comment above about using R_MIPS_64 in the 32-bit
6326 ABI. Here, we need to update the addend. It would be
6327 possible to get away with just using the R_MIPS_32 reloc
6328 but for endianness. */
6329 {
6330 bfd_vma sign_bits;
6331 bfd_vma low_bits;
6332 bfd_vma high_bits;
6333
6334 if (addend & ((bfd_vma) 1 << 31))
6335#ifdef BFD64
6336 sign_bits = ((bfd_vma) 1 << 32) - 1;
6337#else
6338 sign_bits = -1;
6339#endif
6340 else
6341 sign_bits = 0;
6342
6343 /* If we don't know that we have a 64-bit type,
6344 do two separate stores. */
6345 if (bfd_big_endian (input_bfd))
6346 {
6347 /* Store the sign-bits (which are most significant)
6348 first. */
6349 low_bits = sign_bits;
6350 high_bits = addend;
6351 }
6352 else
6353 {
6354 low_bits = addend;
6355 high_bits = sign_bits;
6356 }
6357 bfd_put_32 (input_bfd, low_bits,
6358 contents + rel->r_offset);
6359 bfd_put_32 (input_bfd, high_bits,
6360 contents + rel->r_offset + 4);
6361 continue;
6362 }
6363
6364 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6365 input_bfd, input_section,
b34976b6
AM
6366 contents, FALSE))
6367 return FALSE;
b49e97c9
TS
6368 }
6369
6370 /* Go on to the next relocation. */
6371 continue;
6372 }
6373
6374 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6375 relocations for the same offset. In that case we are
6376 supposed to treat the output of each relocation as the addend
6377 for the next. */
6378 if (rel + 1 < relend
6379 && rel->r_offset == rel[1].r_offset
6380 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 6381 use_saved_addend_p = TRUE;
b49e97c9 6382 else
b34976b6 6383 use_saved_addend_p = FALSE;
b49e97c9
TS
6384
6385 /* Figure out what value we are supposed to relocate. */
6386 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6387 input_section, info, rel,
6388 addend, howto, local_syms,
6389 local_sections, &value,
bce03d3d
AO
6390 &name, &require_jalx,
6391 use_saved_addend_p))
b49e97c9
TS
6392 {
6393 case bfd_reloc_continue:
6394 /* There's nothing to do. */
6395 continue;
6396
6397 case bfd_reloc_undefined:
6398 /* mips_elf_calculate_relocation already called the
6399 undefined_symbol callback. There's no real point in
6400 trying to perform the relocation at this point, so we
6401 just skip ahead to the next relocation. */
6402 continue;
6403
6404 case bfd_reloc_notsupported:
6405 msg = _("internal error: unsupported relocation error");
6406 info->callbacks->warning
6407 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 6408 return FALSE;
b49e97c9
TS
6409
6410 case bfd_reloc_overflow:
6411 if (use_saved_addend_p)
6412 /* Ignore overflow until we reach the last relocation for
6413 a given location. */
6414 ;
6415 else
6416 {
6417 BFD_ASSERT (name != NULL);
6418 if (! ((*info->callbacks->reloc_overflow)
9719ad41 6419 (info, name, howto->name, 0,
b49e97c9 6420 input_bfd, input_section, rel->r_offset)))
b34976b6 6421 return FALSE;
b49e97c9
TS
6422 }
6423 break;
6424
6425 case bfd_reloc_ok:
6426 break;
6427
6428 default:
6429 abort ();
6430 break;
6431 }
6432
6433 /* If we've got another relocation for the address, keep going
6434 until we reach the last one. */
6435 if (use_saved_addend_p)
6436 {
6437 addend = value;
6438 continue;
6439 }
6440
4a14403c 6441 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6442 /* See the comment above about using R_MIPS_64 in the 32-bit
6443 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6444 that calculated the right value. Now, however, we
6445 sign-extend the 32-bit result to 64-bits, and store it as a
6446 64-bit value. We are especially generous here in that we
6447 go to extreme lengths to support this usage on systems with
6448 only a 32-bit VMA. */
6449 {
6450 bfd_vma sign_bits;
6451 bfd_vma low_bits;
6452 bfd_vma high_bits;
6453
6454 if (value & ((bfd_vma) 1 << 31))
6455#ifdef BFD64
6456 sign_bits = ((bfd_vma) 1 << 32) - 1;
6457#else
6458 sign_bits = -1;
6459#endif
6460 else
6461 sign_bits = 0;
6462
6463 /* If we don't know that we have a 64-bit type,
6464 do two separate stores. */
6465 if (bfd_big_endian (input_bfd))
6466 {
6467 /* Undo what we did above. */
6468 rel->r_offset -= 4;
6469 /* Store the sign-bits (which are most significant)
6470 first. */
6471 low_bits = sign_bits;
6472 high_bits = value;
6473 }
6474 else
6475 {
6476 low_bits = value;
6477 high_bits = sign_bits;
6478 }
6479 bfd_put_32 (input_bfd, low_bits,
6480 contents + rel->r_offset);
6481 bfd_put_32 (input_bfd, high_bits,
6482 contents + rel->r_offset + 4);
6483 continue;
6484 }
6485
6486 /* Actually perform the relocation. */
6487 if (! mips_elf_perform_relocation (info, howto, rel, value,
6488 input_bfd, input_section,
6489 contents, require_jalx))
b34976b6 6490 return FALSE;
b49e97c9
TS
6491 }
6492
b34976b6 6493 return TRUE;
b49e97c9
TS
6494}
6495\f
6496/* If NAME is one of the special IRIX6 symbols defined by the linker,
6497 adjust it appropriately now. */
6498
6499static void
9719ad41
RS
6500mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6501 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
6502{
6503 /* The linker script takes care of providing names and values for
6504 these, but we must place them into the right sections. */
6505 static const char* const text_section_symbols[] = {
6506 "_ftext",
6507 "_etext",
6508 "__dso_displacement",
6509 "__elf_header",
6510 "__program_header_table",
6511 NULL
6512 };
6513
6514 static const char* const data_section_symbols[] = {
6515 "_fdata",
6516 "_edata",
6517 "_end",
6518 "_fbss",
6519 NULL
6520 };
6521
6522 const char* const *p;
6523 int i;
6524
6525 for (i = 0; i < 2; ++i)
6526 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6527 *p;
6528 ++p)
6529 if (strcmp (*p, name) == 0)
6530 {
6531 /* All of these symbols are given type STT_SECTION by the
6532 IRIX6 linker. */
6533 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 6534 sym->st_other = STO_PROTECTED;
b49e97c9
TS
6535
6536 /* The IRIX linker puts these symbols in special sections. */
6537 if (i == 0)
6538 sym->st_shndx = SHN_MIPS_TEXT;
6539 else
6540 sym->st_shndx = SHN_MIPS_DATA;
6541
6542 break;
6543 }
6544}
6545
6546/* Finish up dynamic symbol handling. We set the contents of various
6547 dynamic sections here. */
6548
b34976b6 6549bfd_boolean
9719ad41
RS
6550_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6551 struct bfd_link_info *info,
6552 struct elf_link_hash_entry *h,
6553 Elf_Internal_Sym *sym)
b49e97c9
TS
6554{
6555 bfd *dynobj;
b49e97c9 6556 asection *sgot;
f4416af6 6557 struct mips_got_info *g, *gg;
b49e97c9 6558 const char *name;
b49e97c9
TS
6559
6560 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 6561
c5ae1840 6562 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
6563 {
6564 asection *s;
6565 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6566
6567 /* This symbol has a stub. Set it up. */
6568
6569 BFD_ASSERT (h->dynindx != -1);
6570
6571 s = bfd_get_section_by_name (dynobj,
6572 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6573 BFD_ASSERT (s != NULL);
6574
6575 /* FIXME: Can h->dynindex be more than 64K? */
6576 if (h->dynindx & 0xffff0000)
b34976b6 6577 return FALSE;
b49e97c9
TS
6578
6579 /* Fill the stub. */
6580 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6581 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6582 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6583 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6584
eea6121a 6585 BFD_ASSERT (h->plt.offset <= s->size);
b49e97c9
TS
6586 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6587
6588 /* Mark the symbol as undefined. plt.offset != -1 occurs
6589 only for the referenced symbol. */
6590 sym->st_shndx = SHN_UNDEF;
6591
6592 /* The run-time linker uses the st_value field of the symbol
6593 to reset the global offset table entry for this external
6594 to its stub address when unlinking a shared object. */
c5ae1840
TS
6595 sym->st_value = (s->output_section->vma + s->output_offset
6596 + h->plt.offset);
b49e97c9
TS
6597 }
6598
6599 BFD_ASSERT (h->dynindx != -1
f5385ebf 6600 || h->forced_local);
b49e97c9 6601
f4416af6 6602 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6603 BFD_ASSERT (sgot != NULL);
f4416af6 6604 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 6605 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6606 BFD_ASSERT (g != NULL);
6607
6608 /* Run through the global symbol table, creating GOT entries for all
6609 the symbols that need them. */
6610 if (g->global_gotsym != NULL
6611 && h->dynindx >= g->global_gotsym->dynindx)
6612 {
6613 bfd_vma offset;
6614 bfd_vma value;
6615
6eaa6adc 6616 value = sym->st_value;
f4416af6 6617 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
b49e97c9
TS
6618 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6619 }
6620
f4416af6
AO
6621 if (g->next && h->dynindx != -1)
6622 {
6623 struct mips_got_entry e, *p;
0626d451 6624 bfd_vma entry;
f4416af6 6625 bfd_vma offset;
f4416af6
AO
6626
6627 gg = g;
6628
6629 e.abfd = output_bfd;
6630 e.symndx = -1;
6631 e.d.h = (struct mips_elf_link_hash_entry *)h;
143d77c5 6632
f4416af6
AO
6633 for (g = g->next; g->next != gg; g = g->next)
6634 {
6635 if (g->got_entries
6636 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6637 &e)))
6638 {
6639 offset = p->gotidx;
0626d451
RS
6640 if (info->shared
6641 || (elf_hash_table (info)->dynamic_sections_created
6642 && p->d.h != NULL
f5385ebf
AM
6643 && p->d.h->root.def_dynamic
6644 && !p->d.h->root.def_regular))
0626d451
RS
6645 {
6646 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6647 the various compatibility problems, it's easier to mock
6648 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6649 mips_elf_create_dynamic_relocation to calculate the
6650 appropriate addend. */
6651 Elf_Internal_Rela rel[3];
6652
6653 memset (rel, 0, sizeof (rel));
6654 if (ABI_64_P (output_bfd))
6655 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6656 else
6657 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6658 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6659
6660 entry = 0;
6661 if (! (mips_elf_create_dynamic_relocation
6662 (output_bfd, info, rel,
6663 e.d.h, NULL, sym->st_value, &entry, sgot)))
6664 return FALSE;
6665 }
6666 else
6667 entry = sym->st_value;
6668 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
6669 }
6670 }
6671 }
6672
b49e97c9
TS
6673 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6674 name = h->root.root.string;
6675 if (strcmp (name, "_DYNAMIC") == 0
6676 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6677 sym->st_shndx = SHN_ABS;
6678 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6679 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6680 {
6681 sym->st_shndx = SHN_ABS;
6682 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6683 sym->st_value = 1;
6684 }
4a14403c 6685 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6686 {
6687 sym->st_shndx = SHN_ABS;
6688 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6689 sym->st_value = elf_gp (output_bfd);
6690 }
6691 else if (SGI_COMPAT (output_bfd))
6692 {
6693 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6694 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6695 {
6696 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6697 sym->st_other = STO_PROTECTED;
6698 sym->st_value = 0;
6699 sym->st_shndx = SHN_MIPS_DATA;
6700 }
6701 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6702 {
6703 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6704 sym->st_other = STO_PROTECTED;
6705 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6706 sym->st_shndx = SHN_ABS;
6707 }
6708 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6709 {
6710 if (h->type == STT_FUNC)
6711 sym->st_shndx = SHN_MIPS_TEXT;
6712 else if (h->type == STT_OBJECT)
6713 sym->st_shndx = SHN_MIPS_DATA;
6714 }
6715 }
6716
6717 /* Handle the IRIX6-specific symbols. */
6718 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6719 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6720
6721 if (! info->shared)
6722 {
6723 if (! mips_elf_hash_table (info)->use_rld_obj_head
6724 && (strcmp (name, "__rld_map") == 0
6725 || strcmp (name, "__RLD_MAP") == 0))
6726 {
6727 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6728 BFD_ASSERT (s != NULL);
6729 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 6730 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
6731 if (mips_elf_hash_table (info)->rld_value == 0)
6732 mips_elf_hash_table (info)->rld_value = sym->st_value;
6733 }
6734 else if (mips_elf_hash_table (info)->use_rld_obj_head
6735 && strcmp (name, "__rld_obj_head") == 0)
6736 {
6737 /* IRIX6 does not use a .rld_map section. */
6738 if (IRIX_COMPAT (output_bfd) == ict_irix5
6739 || IRIX_COMPAT (output_bfd) == ict_none)
6740 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6741 != NULL);
6742 mips_elf_hash_table (info)->rld_value = sym->st_value;
6743 }
6744 }
6745
6746 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
6747 if (sym->st_other == STO_MIPS16)
6748 sym->st_value &= ~1;
b49e97c9 6749
b34976b6 6750 return TRUE;
b49e97c9
TS
6751}
6752
6753/* Finish up the dynamic sections. */
6754
b34976b6 6755bfd_boolean
9719ad41
RS
6756_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6757 struct bfd_link_info *info)
b49e97c9
TS
6758{
6759 bfd *dynobj;
6760 asection *sdyn;
6761 asection *sgot;
f4416af6 6762 struct mips_got_info *gg, *g;
b49e97c9
TS
6763
6764 dynobj = elf_hash_table (info)->dynobj;
6765
6766 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6767
f4416af6 6768 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6769 if (sgot == NULL)
f4416af6 6770 gg = g = NULL;
b49e97c9
TS
6771 else
6772 {
f4416af6
AO
6773 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6774 gg = mips_elf_section_data (sgot)->u.got_info;
6775 BFD_ASSERT (gg != NULL);
6776 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
6777 BFD_ASSERT (g != NULL);
6778 }
6779
6780 if (elf_hash_table (info)->dynamic_sections_created)
6781 {
6782 bfd_byte *b;
6783
6784 BFD_ASSERT (sdyn != NULL);
6785 BFD_ASSERT (g != NULL);
6786
6787 for (b = sdyn->contents;
eea6121a 6788 b < sdyn->contents + sdyn->size;
b49e97c9
TS
6789 b += MIPS_ELF_DYN_SIZE (dynobj))
6790 {
6791 Elf_Internal_Dyn dyn;
6792 const char *name;
6793 size_t elemsize;
6794 asection *s;
b34976b6 6795 bfd_boolean swap_out_p;
b49e97c9
TS
6796
6797 /* Read in the current dynamic entry. */
6798 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6799
6800 /* Assume that we're going to modify it and write it out. */
b34976b6 6801 swap_out_p = TRUE;
b49e97c9
TS
6802
6803 switch (dyn.d_tag)
6804 {
6805 case DT_RELENT:
f4416af6 6806 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
6807 BFD_ASSERT (s != NULL);
6808 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6809 break;
6810
6811 case DT_STRSZ:
6812 /* Rewrite DT_STRSZ. */
6813 dyn.d_un.d_val =
6814 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6815 break;
6816
6817 case DT_PLTGOT:
6818 name = ".got";
b49e97c9
TS
6819 s = bfd_get_section_by_name (output_bfd, name);
6820 BFD_ASSERT (s != NULL);
6821 dyn.d_un.d_ptr = s->vma;
6822 break;
6823
6824 case DT_MIPS_RLD_VERSION:
6825 dyn.d_un.d_val = 1; /* XXX */
6826 break;
6827
6828 case DT_MIPS_FLAGS:
6829 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6830 break;
6831
b49e97c9
TS
6832 case DT_MIPS_TIME_STAMP:
6833 time ((time_t *) &dyn.d_un.d_val);
6834 break;
6835
6836 case DT_MIPS_ICHECKSUM:
6837 /* XXX FIXME: */
b34976b6 6838 swap_out_p = FALSE;
b49e97c9
TS
6839 break;
6840
6841 case DT_MIPS_IVERSION:
6842 /* XXX FIXME: */
b34976b6 6843 swap_out_p = FALSE;
b49e97c9
TS
6844 break;
6845
6846 case DT_MIPS_BASE_ADDRESS:
6847 s = output_bfd->sections;
6848 BFD_ASSERT (s != NULL);
6849 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6850 break;
6851
6852 case DT_MIPS_LOCAL_GOTNO:
6853 dyn.d_un.d_val = g->local_gotno;
6854 break;
6855
6856 case DT_MIPS_UNREFEXTNO:
6857 /* The index into the dynamic symbol table which is the
6858 entry of the first external symbol that is not
6859 referenced within the same object. */
6860 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6861 break;
6862
6863 case DT_MIPS_GOTSYM:
f4416af6 6864 if (gg->global_gotsym)
b49e97c9 6865 {
f4416af6 6866 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
6867 break;
6868 }
6869 /* In case if we don't have global got symbols we default
6870 to setting DT_MIPS_GOTSYM to the same value as
6871 DT_MIPS_SYMTABNO, so we just fall through. */
6872
6873 case DT_MIPS_SYMTABNO:
6874 name = ".dynsym";
6875 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6876 s = bfd_get_section_by_name (output_bfd, name);
6877 BFD_ASSERT (s != NULL);
6878
eea6121a 6879 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
6880 break;
6881
6882 case DT_MIPS_HIPAGENO:
6883 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6884 break;
6885
6886 case DT_MIPS_RLD_MAP:
6887 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6888 break;
6889
6890 case DT_MIPS_OPTIONS:
6891 s = (bfd_get_section_by_name
6892 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6893 dyn.d_un.d_ptr = s->vma;
6894 break;
6895
98a8deaf
RS
6896 case DT_RELSZ:
6897 /* Reduce DT_RELSZ to account for any relocations we
6898 decided not to make. This is for the n64 irix rld,
6899 which doesn't seem to apply any relocations if there
6900 are trailing null entries. */
6901 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6902 dyn.d_un.d_val = (s->reloc_count
6903 * (ABI_64_P (output_bfd)
6904 ? sizeof (Elf64_Mips_External_Rel)
6905 : sizeof (Elf32_External_Rel)));
b49e97c9
TS
6906 break;
6907
6908 default:
b34976b6 6909 swap_out_p = FALSE;
b49e97c9
TS
6910 break;
6911 }
6912
6913 if (swap_out_p)
6914 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6915 (dynobj, &dyn, b);
6916 }
6917 }
6918
6919 /* The first entry of the global offset table will be filled at
6920 runtime. The second entry will be used by some runtime loaders.
8dc1a139 6921 This isn't the case of IRIX rld. */
eea6121a 6922 if (sgot != NULL && sgot->size > 0)
b49e97c9 6923 {
9719ad41
RS
6924 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6925 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
b49e97c9
TS
6926 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6927 }
6928
6929 if (sgot != NULL)
6930 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6931 = MIPS_ELF_GOT_SIZE (output_bfd);
6932
f4416af6
AO
6933 /* Generate dynamic relocations for the non-primary gots. */
6934 if (gg != NULL && gg->next)
6935 {
6936 Elf_Internal_Rela rel[3];
6937 bfd_vma addend = 0;
6938
6939 memset (rel, 0, sizeof (rel));
6940 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6941
6942 for (g = gg->next; g->next != gg; g = g->next)
6943 {
6944 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6945
9719ad41 6946 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 6947 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 6948 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
6949 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6950
6951 if (! info->shared)
6952 continue;
6953
6954 while (index < g->assigned_gotno)
6955 {
6956 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6957 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6958 if (!(mips_elf_create_dynamic_relocation
6959 (output_bfd, info, rel, NULL,
6960 bfd_abs_section_ptr,
6961 0, &addend, sgot)))
6962 return FALSE;
6963 BFD_ASSERT (addend == 0);
6964 }
6965 }
6966 }
6967
b49e97c9 6968 {
b49e97c9
TS
6969 asection *s;
6970 Elf32_compact_rel cpt;
6971
b49e97c9
TS
6972 if (SGI_COMPAT (output_bfd))
6973 {
6974 /* Write .compact_rel section out. */
6975 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6976 if (s != NULL)
6977 {
6978 cpt.id1 = 1;
6979 cpt.num = s->reloc_count;
6980 cpt.id2 = 2;
6981 cpt.offset = (s->output_section->filepos
6982 + sizeof (Elf32_External_compact_rel));
6983 cpt.reserved0 = 0;
6984 cpt.reserved1 = 0;
6985 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6986 ((Elf32_External_compact_rel *)
6987 s->contents));
6988
6989 /* Clean up a dummy stub function entry in .text. */
6990 s = bfd_get_section_by_name (dynobj,
6991 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6992 if (s != NULL)
6993 {
6994 file_ptr dummy_offset;
6995
eea6121a
AM
6996 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
6997 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6998 memset (s->contents + dummy_offset, 0,
6999 MIPS_FUNCTION_STUB_SIZE);
7000 }
7001 }
7002 }
7003
7004 /* We need to sort the entries of the dynamic relocation section. */
7005
f4416af6
AO
7006 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7007
7008 if (s != NULL
eea6121a 7009 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7010 {
f4416af6 7011 reldyn_sorting_bfd = output_bfd;
b49e97c9 7012
f4416af6 7013 if (ABI_64_P (output_bfd))
9719ad41 7014 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6
AO
7015 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7016 else
9719ad41 7017 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6 7018 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7019 }
b49e97c9
TS
7020 }
7021
b34976b6 7022 return TRUE;
b49e97c9
TS
7023}
7024
b49e97c9 7025
64543e1a
RS
7026/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7027
7028static void
9719ad41 7029mips_set_isa_flags (bfd *abfd)
b49e97c9 7030{
64543e1a 7031 flagword val;
b49e97c9
TS
7032
7033 switch (bfd_get_mach (abfd))
7034 {
7035 default:
7036 case bfd_mach_mips3000:
7037 val = E_MIPS_ARCH_1;
7038 break;
7039
7040 case bfd_mach_mips3900:
7041 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7042 break;
7043
7044 case bfd_mach_mips6000:
7045 val = E_MIPS_ARCH_2;
7046 break;
7047
7048 case bfd_mach_mips4000:
7049 case bfd_mach_mips4300:
7050 case bfd_mach_mips4400:
7051 case bfd_mach_mips4600:
7052 val = E_MIPS_ARCH_3;
7053 break;
7054
7055 case bfd_mach_mips4010:
7056 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7057 break;
7058
7059 case bfd_mach_mips4100:
7060 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7061 break;
7062
7063 case bfd_mach_mips4111:
7064 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7065 break;
7066
00707a0e
RS
7067 case bfd_mach_mips4120:
7068 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7069 break;
7070
b49e97c9
TS
7071 case bfd_mach_mips4650:
7072 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7073 break;
7074
00707a0e
RS
7075 case bfd_mach_mips5400:
7076 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7077 break;
7078
7079 case bfd_mach_mips5500:
7080 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7081 break;
7082
b49e97c9 7083 case bfd_mach_mips5000:
5a7ea749 7084 case bfd_mach_mips7000:
b49e97c9
TS
7085 case bfd_mach_mips8000:
7086 case bfd_mach_mips10000:
7087 case bfd_mach_mips12000:
7088 val = E_MIPS_ARCH_4;
7089 break;
7090
7091 case bfd_mach_mips5:
7092 val = E_MIPS_ARCH_5;
7093 break;
7094
7095 case bfd_mach_mips_sb1:
7096 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7097 break;
7098
7099 case bfd_mach_mipsisa32:
7100 val = E_MIPS_ARCH_32;
7101 break;
7102
7103 case bfd_mach_mipsisa64:
7104 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7105 break;
7106
7107 case bfd_mach_mipsisa32r2:
7108 val = E_MIPS_ARCH_32R2;
7109 break;
5f74bc13
CD
7110
7111 case bfd_mach_mipsisa64r2:
7112 val = E_MIPS_ARCH_64R2;
7113 break;
b49e97c9 7114 }
b49e97c9
TS
7115 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7116 elf_elfheader (abfd)->e_flags |= val;
7117
64543e1a
RS
7118}
7119
7120
7121/* The final processing done just before writing out a MIPS ELF object
7122 file. This gets the MIPS architecture right based on the machine
7123 number. This is used by both the 32-bit and the 64-bit ABI. */
7124
7125void
9719ad41
RS
7126_bfd_mips_elf_final_write_processing (bfd *abfd,
7127 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
7128{
7129 unsigned int i;
7130 Elf_Internal_Shdr **hdrpp;
7131 const char *name;
7132 asection *sec;
7133
7134 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7135 is nonzero. This is for compatibility with old objects, which used
7136 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7137 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7138 mips_set_isa_flags (abfd);
7139
b49e97c9
TS
7140 /* Set the sh_info field for .gptab sections and other appropriate
7141 info for each special section. */
7142 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7143 i < elf_numsections (abfd);
7144 i++, hdrpp++)
7145 {
7146 switch ((*hdrpp)->sh_type)
7147 {
7148 case SHT_MIPS_MSYM:
7149 case SHT_MIPS_LIBLIST:
7150 sec = bfd_get_section_by_name (abfd, ".dynstr");
7151 if (sec != NULL)
7152 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7153 break;
7154
7155 case SHT_MIPS_GPTAB:
7156 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7157 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7158 BFD_ASSERT (name != NULL
7159 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7160 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7161 BFD_ASSERT (sec != NULL);
7162 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7163 break;
7164
7165 case SHT_MIPS_CONTENT:
7166 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7167 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7168 BFD_ASSERT (name != NULL
7169 && strncmp (name, ".MIPS.content",
7170 sizeof ".MIPS.content" - 1) == 0);
7171 sec = bfd_get_section_by_name (abfd,
7172 name + sizeof ".MIPS.content" - 1);
7173 BFD_ASSERT (sec != NULL);
7174 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7175 break;
7176
7177 case SHT_MIPS_SYMBOL_LIB:
7178 sec = bfd_get_section_by_name (abfd, ".dynsym");
7179 if (sec != NULL)
7180 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7181 sec = bfd_get_section_by_name (abfd, ".liblist");
7182 if (sec != NULL)
7183 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7184 break;
7185
7186 case SHT_MIPS_EVENTS:
7187 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7188 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7189 BFD_ASSERT (name != NULL);
7190 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7191 sec = bfd_get_section_by_name (abfd,
7192 name + sizeof ".MIPS.events" - 1);
7193 else
7194 {
7195 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7196 sizeof ".MIPS.post_rel" - 1) == 0);
7197 sec = bfd_get_section_by_name (abfd,
7198 (name
7199 + sizeof ".MIPS.post_rel" - 1));
7200 }
7201 BFD_ASSERT (sec != NULL);
7202 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7203 break;
7204
7205 }
7206 }
7207}
7208\f
8dc1a139 7209/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
7210 segments. */
7211
7212int
9719ad41 7213_bfd_mips_elf_additional_program_headers (bfd *abfd)
b49e97c9
TS
7214{
7215 asection *s;
7216 int ret = 0;
7217
7218 /* See if we need a PT_MIPS_REGINFO segment. */
7219 s = bfd_get_section_by_name (abfd, ".reginfo");
7220 if (s && (s->flags & SEC_LOAD))
7221 ++ret;
7222
7223 /* See if we need a PT_MIPS_OPTIONS segment. */
7224 if (IRIX_COMPAT (abfd) == ict_irix6
7225 && bfd_get_section_by_name (abfd,
7226 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7227 ++ret;
7228
7229 /* See if we need a PT_MIPS_RTPROC segment. */
7230 if (IRIX_COMPAT (abfd) == ict_irix5
7231 && bfd_get_section_by_name (abfd, ".dynamic")
7232 && bfd_get_section_by_name (abfd, ".mdebug"))
7233 ++ret;
7234
7235 return ret;
7236}
7237
8dc1a139 7238/* Modify the segment map for an IRIX5 executable. */
b49e97c9 7239
b34976b6 7240bfd_boolean
9719ad41
RS
7241_bfd_mips_elf_modify_segment_map (bfd *abfd,
7242 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
7243{
7244 asection *s;
7245 struct elf_segment_map *m, **pm;
7246 bfd_size_type amt;
7247
7248 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7249 segment. */
7250 s = bfd_get_section_by_name (abfd, ".reginfo");
7251 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7252 {
7253 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7254 if (m->p_type == PT_MIPS_REGINFO)
7255 break;
7256 if (m == NULL)
7257 {
7258 amt = sizeof *m;
9719ad41 7259 m = bfd_zalloc (abfd, amt);
b49e97c9 7260 if (m == NULL)
b34976b6 7261 return FALSE;
b49e97c9
TS
7262
7263 m->p_type = PT_MIPS_REGINFO;
7264 m->count = 1;
7265 m->sections[0] = s;
7266
7267 /* We want to put it after the PHDR and INTERP segments. */
7268 pm = &elf_tdata (abfd)->segment_map;
7269 while (*pm != NULL
7270 && ((*pm)->p_type == PT_PHDR
7271 || (*pm)->p_type == PT_INTERP))
7272 pm = &(*pm)->next;
7273
7274 m->next = *pm;
7275 *pm = m;
7276 }
7277 }
7278
7279 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7280 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 7281 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 7282 table. */
c1fd6598
AO
7283 if (NEWABI_P (abfd)
7284 /* On non-IRIX6 new abi, we'll have already created a segment
7285 for this section, so don't create another. I'm not sure this
7286 is not also the case for IRIX 6, but I can't test it right
7287 now. */
7288 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
7289 {
7290 for (s = abfd->sections; s; s = s->next)
7291 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7292 break;
7293
7294 if (s)
7295 {
7296 struct elf_segment_map *options_segment;
7297
98a8deaf
RS
7298 pm = &elf_tdata (abfd)->segment_map;
7299 while (*pm != NULL
7300 && ((*pm)->p_type == PT_PHDR
7301 || (*pm)->p_type == PT_INTERP))
7302 pm = &(*pm)->next;
b49e97c9
TS
7303
7304 amt = sizeof (struct elf_segment_map);
7305 options_segment = bfd_zalloc (abfd, amt);
7306 options_segment->next = *pm;
7307 options_segment->p_type = PT_MIPS_OPTIONS;
7308 options_segment->p_flags = PF_R;
b34976b6 7309 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
7310 options_segment->count = 1;
7311 options_segment->sections[0] = s;
7312 *pm = options_segment;
7313 }
7314 }
7315 else
7316 {
7317 if (IRIX_COMPAT (abfd) == ict_irix5)
7318 {
7319 /* If there are .dynamic and .mdebug sections, we make a room
7320 for the RTPROC header. FIXME: Rewrite without section names. */
7321 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7322 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7323 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7324 {
7325 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7326 if (m->p_type == PT_MIPS_RTPROC)
7327 break;
7328 if (m == NULL)
7329 {
7330 amt = sizeof *m;
9719ad41 7331 m = bfd_zalloc (abfd, amt);
b49e97c9 7332 if (m == NULL)
b34976b6 7333 return FALSE;
b49e97c9
TS
7334
7335 m->p_type = PT_MIPS_RTPROC;
7336
7337 s = bfd_get_section_by_name (abfd, ".rtproc");
7338 if (s == NULL)
7339 {
7340 m->count = 0;
7341 m->p_flags = 0;
7342 m->p_flags_valid = 1;
7343 }
7344 else
7345 {
7346 m->count = 1;
7347 m->sections[0] = s;
7348 }
7349
7350 /* We want to put it after the DYNAMIC segment. */
7351 pm = &elf_tdata (abfd)->segment_map;
7352 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7353 pm = &(*pm)->next;
7354 if (*pm != NULL)
7355 pm = &(*pm)->next;
7356
7357 m->next = *pm;
7358 *pm = m;
7359 }
7360 }
7361 }
8dc1a139 7362 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
7363 .dynstr, .dynsym, and .hash sections, and everything in
7364 between. */
7365 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7366 pm = &(*pm)->next)
7367 if ((*pm)->p_type == PT_DYNAMIC)
7368 break;
7369 m = *pm;
7370 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7371 {
7372 /* For a normal mips executable the permissions for the PT_DYNAMIC
7373 segment are read, write and execute. We do that here since
7374 the code in elf.c sets only the read permission. This matters
7375 sometimes for the dynamic linker. */
7376 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7377 {
7378 m->p_flags = PF_R | PF_W | PF_X;
7379 m->p_flags_valid = 1;
7380 }
7381 }
7382 if (m != NULL
7383 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7384 {
7385 static const char *sec_names[] =
7386 {
7387 ".dynamic", ".dynstr", ".dynsym", ".hash"
7388 };
7389 bfd_vma low, high;
7390 unsigned int i, c;
7391 struct elf_segment_map *n;
7392
792b4a53 7393 low = ~(bfd_vma) 0;
b49e97c9
TS
7394 high = 0;
7395 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7396 {
7397 s = bfd_get_section_by_name (abfd, sec_names[i]);
7398 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7399 {
7400 bfd_size_type sz;
7401
7402 if (low > s->vma)
7403 low = s->vma;
eea6121a 7404 sz = s->size;
b49e97c9
TS
7405 if (high < s->vma + sz)
7406 high = s->vma + sz;
7407 }
7408 }
7409
7410 c = 0;
7411 for (s = abfd->sections; s != NULL; s = s->next)
7412 if ((s->flags & SEC_LOAD) != 0
7413 && s->vma >= low
eea6121a 7414 && s->vma + s->size <= high)
b49e97c9
TS
7415 ++c;
7416
7417 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 7418 n = bfd_zalloc (abfd, amt);
b49e97c9 7419 if (n == NULL)
b34976b6 7420 return FALSE;
b49e97c9
TS
7421 *n = *m;
7422 n->count = c;
7423
7424 i = 0;
7425 for (s = abfd->sections; s != NULL; s = s->next)
7426 {
7427 if ((s->flags & SEC_LOAD) != 0
7428 && s->vma >= low
eea6121a 7429 && s->vma + s->size <= high)
b49e97c9
TS
7430 {
7431 n->sections[i] = s;
7432 ++i;
7433 }
7434 }
7435
7436 *pm = n;
7437 }
7438 }
7439
b34976b6 7440 return TRUE;
b49e97c9
TS
7441}
7442\f
7443/* Return the section that should be marked against GC for a given
7444 relocation. */
7445
7446asection *
9719ad41
RS
7447_bfd_mips_elf_gc_mark_hook (asection *sec,
7448 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7449 Elf_Internal_Rela *rel,
7450 struct elf_link_hash_entry *h,
7451 Elf_Internal_Sym *sym)
b49e97c9
TS
7452{
7453 /* ??? Do mips16 stub sections need to be handled special? */
7454
7455 if (h != NULL)
7456 {
1e2f5b6e 7457 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
7458 {
7459 case R_MIPS_GNU_VTINHERIT:
7460 case R_MIPS_GNU_VTENTRY:
7461 break;
7462
7463 default:
7464 switch (h->root.type)
7465 {
7466 case bfd_link_hash_defined:
7467 case bfd_link_hash_defweak:
7468 return h->root.u.def.section;
7469
7470 case bfd_link_hash_common:
7471 return h->root.u.c.p->section;
7472
7473 default:
7474 break;
7475 }
7476 }
7477 }
7478 else
1e2f5b6e 7479 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
7480
7481 return NULL;
7482}
7483
7484/* Update the got entry reference counts for the section being removed. */
7485
b34976b6 7486bfd_boolean
9719ad41
RS
7487_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7488 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7489 asection *sec ATTRIBUTE_UNUSED,
7490 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
7491{
7492#if 0
7493 Elf_Internal_Shdr *symtab_hdr;
7494 struct elf_link_hash_entry **sym_hashes;
7495 bfd_signed_vma *local_got_refcounts;
7496 const Elf_Internal_Rela *rel, *relend;
7497 unsigned long r_symndx;
7498 struct elf_link_hash_entry *h;
7499
7500 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7501 sym_hashes = elf_sym_hashes (abfd);
7502 local_got_refcounts = elf_local_got_refcounts (abfd);
7503
7504 relend = relocs + sec->reloc_count;
7505 for (rel = relocs; rel < relend; rel++)
7506 switch (ELF_R_TYPE (abfd, rel->r_info))
7507 {
7508 case R_MIPS_GOT16:
7509 case R_MIPS_CALL16:
7510 case R_MIPS_CALL_HI16:
7511 case R_MIPS_CALL_LO16:
7512 case R_MIPS_GOT_HI16:
7513 case R_MIPS_GOT_LO16:
4a14403c
TS
7514 case R_MIPS_GOT_DISP:
7515 case R_MIPS_GOT_PAGE:
7516 case R_MIPS_GOT_OFST:
b49e97c9
TS
7517 /* ??? It would seem that the existing MIPS code does no sort
7518 of reference counting or whatnot on its GOT and PLT entries,
7519 so it is not possible to garbage collect them at this time. */
7520 break;
7521
7522 default:
7523 break;
7524 }
7525#endif
7526
b34976b6 7527 return TRUE;
b49e97c9
TS
7528}
7529\f
7530/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7531 hiding the old indirect symbol. Process additional relocation
7532 information. Also called for weakdefs, in which case we just let
7533 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7534
7535void
9719ad41
RS
7536_bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7537 struct elf_link_hash_entry *dir,
7538 struct elf_link_hash_entry *ind)
b49e97c9
TS
7539{
7540 struct mips_elf_link_hash_entry *dirmips, *indmips;
7541
b48fa14c 7542 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
7543
7544 if (ind->root.type != bfd_link_hash_indirect)
7545 return;
7546
7547 dirmips = (struct mips_elf_link_hash_entry *) dir;
7548 indmips = (struct mips_elf_link_hash_entry *) ind;
7549 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7550 if (indmips->readonly_reloc)
b34976b6 7551 dirmips->readonly_reloc = TRUE;
b49e97c9 7552 if (indmips->no_fn_stub)
b34976b6 7553 dirmips->no_fn_stub = TRUE;
b49e97c9
TS
7554}
7555
7556void
9719ad41
RS
7557_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7558 struct elf_link_hash_entry *entry,
7559 bfd_boolean force_local)
b49e97c9
TS
7560{
7561 bfd *dynobj;
7562 asection *got;
7563 struct mips_got_info *g;
7564 struct mips_elf_link_hash_entry *h;
7c5fcef7 7565
b49e97c9 7566 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
7567 if (h->forced_local)
7568 return;
4b555070 7569 h->forced_local = force_local;
7c5fcef7 7570
b49e97c9 7571 dynobj = elf_hash_table (info)->dynobj;
4b555070 7572 if (dynobj != NULL && force_local)
f4416af6 7573 {
c45a316a
AM
7574 got = mips_elf_got_section (dynobj, FALSE);
7575 g = mips_elf_section_data (got)->u.got_info;
f4416af6 7576
c45a316a
AM
7577 if (g->next)
7578 {
7579 struct mips_got_entry e;
7580 struct mips_got_info *gg = g;
7581
7582 /* Since we're turning what used to be a global symbol into a
7583 local one, bump up the number of local entries of each GOT
7584 that had an entry for it. This will automatically decrease
7585 the number of global entries, since global_gotno is actually
7586 the upper limit of global entries. */
7587 e.abfd = dynobj;
7588 e.symndx = -1;
7589 e.d.h = h;
7590
7591 for (g = g->next; g != gg; g = g->next)
7592 if (htab_find (g->got_entries, &e))
7593 {
7594 BFD_ASSERT (g->global_gotno > 0);
7595 g->local_gotno++;
7596 g->global_gotno--;
7597 }
b49e97c9 7598
c45a316a
AM
7599 /* If this was a global symbol forced into the primary GOT, we
7600 no longer need an entry for it. We can't release the entry
7601 at this point, but we must at least stop counting it as one
7602 of the symbols that required a forced got entry. */
7603 if (h->root.got.offset == 2)
7604 {
7605 BFD_ASSERT (gg->assigned_gotno > 0);
7606 gg->assigned_gotno--;
7607 }
7608 }
7609 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7610 /* If we haven't got through GOT allocation yet, just bump up the
7611 number of local entries, as this symbol won't be counted as
7612 global. */
7613 g->local_gotno++;
7614 else if (h->root.got.offset == 1)
f4416af6 7615 {
c45a316a
AM
7616 /* If we're past non-multi-GOT allocation and this symbol had
7617 been marked for a global got entry, give it a local entry
7618 instead. */
7619 BFD_ASSERT (g->global_gotno > 0);
7620 g->local_gotno++;
7621 g->global_gotno--;
f4416af6
AO
7622 }
7623 }
f4416af6
AO
7624
7625 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
7626}
7627\f
d01414a5
TS
7628#define PDR_SIZE 32
7629
b34976b6 7630bfd_boolean
9719ad41
RS
7631_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7632 struct bfd_link_info *info)
d01414a5
TS
7633{
7634 asection *o;
b34976b6 7635 bfd_boolean ret = FALSE;
d01414a5
TS
7636 unsigned char *tdata;
7637 size_t i, skip;
7638
7639 o = bfd_get_section_by_name (abfd, ".pdr");
7640 if (! o)
b34976b6 7641 return FALSE;
eea6121a 7642 if (o->size == 0)
b34976b6 7643 return FALSE;
eea6121a 7644 if (o->size % PDR_SIZE != 0)
b34976b6 7645 return FALSE;
d01414a5
TS
7646 if (o->output_section != NULL
7647 && bfd_is_abs_section (o->output_section))
b34976b6 7648 return FALSE;
d01414a5 7649
eea6121a 7650 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 7651 if (! tdata)
b34976b6 7652 return FALSE;
d01414a5 7653
9719ad41 7654 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7655 info->keep_memory);
d01414a5
TS
7656 if (!cookie->rels)
7657 {
7658 free (tdata);
b34976b6 7659 return FALSE;
d01414a5
TS
7660 }
7661
7662 cookie->rel = cookie->rels;
7663 cookie->relend = cookie->rels + o->reloc_count;
7664
eea6121a 7665 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 7666 {
c152c796 7667 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
7668 {
7669 tdata[i] = 1;
7670 skip ++;
7671 }
7672 }
7673
7674 if (skip != 0)
7675 {
f0abc2a1 7676 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 7677 o->size -= skip * PDR_SIZE;
b34976b6 7678 ret = TRUE;
d01414a5
TS
7679 }
7680 else
7681 free (tdata);
7682
7683 if (! info->keep_memory)
7684 free (cookie->rels);
7685
7686 return ret;
7687}
7688
b34976b6 7689bfd_boolean
9719ad41 7690_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
7691{
7692 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
7693 return TRUE;
7694 return FALSE;
53bfd6b4 7695}
d01414a5 7696
b34976b6 7697bfd_boolean
9719ad41
RS
7698_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7699 bfd_byte *contents)
d01414a5
TS
7700{
7701 bfd_byte *to, *from, *end;
7702 int i;
7703
7704 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 7705 return FALSE;
d01414a5 7706
f0abc2a1 7707 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 7708 return FALSE;
d01414a5
TS
7709
7710 to = contents;
eea6121a 7711 end = contents + sec->size;
d01414a5
TS
7712 for (from = contents, i = 0;
7713 from < end;
7714 from += PDR_SIZE, i++)
7715 {
f0abc2a1 7716 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
7717 continue;
7718 if (to != from)
7719 memcpy (to, from, PDR_SIZE);
7720 to += PDR_SIZE;
7721 }
7722 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 7723 sec->output_offset, sec->size);
b34976b6 7724 return TRUE;
d01414a5 7725}
53bfd6b4 7726\f
b49e97c9
TS
7727/* MIPS ELF uses a special find_nearest_line routine in order the
7728 handle the ECOFF debugging information. */
7729
7730struct mips_elf_find_line
7731{
7732 struct ecoff_debug_info d;
7733 struct ecoff_find_line i;
7734};
7735
b34976b6 7736bfd_boolean
9719ad41
RS
7737_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7738 asymbol **symbols, bfd_vma offset,
7739 const char **filename_ptr,
7740 const char **functionname_ptr,
7741 unsigned int *line_ptr)
b49e97c9
TS
7742{
7743 asection *msec;
7744
7745 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7746 filename_ptr, functionname_ptr,
7747 line_ptr))
b34976b6 7748 return TRUE;
b49e97c9
TS
7749
7750 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7751 filename_ptr, functionname_ptr,
9719ad41 7752 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 7753 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 7754 return TRUE;
b49e97c9
TS
7755
7756 msec = bfd_get_section_by_name (abfd, ".mdebug");
7757 if (msec != NULL)
7758 {
7759 flagword origflags;
7760 struct mips_elf_find_line *fi;
7761 const struct ecoff_debug_swap * const swap =
7762 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7763
7764 /* If we are called during a link, mips_elf_final_link may have
7765 cleared the SEC_HAS_CONTENTS field. We force it back on here
7766 if appropriate (which it normally will be). */
7767 origflags = msec->flags;
7768 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7769 msec->flags |= SEC_HAS_CONTENTS;
7770
7771 fi = elf_tdata (abfd)->find_line_info;
7772 if (fi == NULL)
7773 {
7774 bfd_size_type external_fdr_size;
7775 char *fraw_src;
7776 char *fraw_end;
7777 struct fdr *fdr_ptr;
7778 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7779
9719ad41 7780 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
7781 if (fi == NULL)
7782 {
7783 msec->flags = origflags;
b34976b6 7784 return FALSE;
b49e97c9
TS
7785 }
7786
7787 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7788 {
7789 msec->flags = origflags;
b34976b6 7790 return FALSE;
b49e97c9
TS
7791 }
7792
7793 /* Swap in the FDR information. */
7794 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 7795 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
7796 if (fi->d.fdr == NULL)
7797 {
7798 msec->flags = origflags;
b34976b6 7799 return FALSE;
b49e97c9
TS
7800 }
7801 external_fdr_size = swap->external_fdr_size;
7802 fdr_ptr = fi->d.fdr;
7803 fraw_src = (char *) fi->d.external_fdr;
7804 fraw_end = (fraw_src
7805 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7806 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 7807 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
7808
7809 elf_tdata (abfd)->find_line_info = fi;
7810
7811 /* Note that we don't bother to ever free this information.
7812 find_nearest_line is either called all the time, as in
7813 objdump -l, so the information should be saved, or it is
7814 rarely called, as in ld error messages, so the memory
7815 wasted is unimportant. Still, it would probably be a
7816 good idea for free_cached_info to throw it away. */
7817 }
7818
7819 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7820 &fi->i, filename_ptr, functionname_ptr,
7821 line_ptr))
7822 {
7823 msec->flags = origflags;
b34976b6 7824 return TRUE;
b49e97c9
TS
7825 }
7826
7827 msec->flags = origflags;
7828 }
7829
7830 /* Fall back on the generic ELF find_nearest_line routine. */
7831
7832 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7833 filename_ptr, functionname_ptr,
7834 line_ptr);
7835}
7836\f
7837/* When are writing out the .options or .MIPS.options section,
7838 remember the bytes we are writing out, so that we can install the
7839 GP value in the section_processing routine. */
7840
b34976b6 7841bfd_boolean
9719ad41
RS
7842_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7843 const void *location,
7844 file_ptr offset, bfd_size_type count)
b49e97c9
TS
7845{
7846 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7847 {
7848 bfd_byte *c;
7849
7850 if (elf_section_data (section) == NULL)
7851 {
7852 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 7853 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 7854 if (elf_section_data (section) == NULL)
b34976b6 7855 return FALSE;
b49e97c9 7856 }
f0abc2a1 7857 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
7858 if (c == NULL)
7859 {
eea6121a 7860 c = bfd_zalloc (abfd, section->size);
b49e97c9 7861 if (c == NULL)
b34976b6 7862 return FALSE;
f0abc2a1 7863 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
7864 }
7865
9719ad41 7866 memcpy (c + offset, location, count);
b49e97c9
TS
7867 }
7868
7869 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7870 count);
7871}
7872
7873/* This is almost identical to bfd_generic_get_... except that some
7874 MIPS relocations need to be handled specially. Sigh. */
7875
7876bfd_byte *
9719ad41
RS
7877_bfd_elf_mips_get_relocated_section_contents
7878 (bfd *abfd,
7879 struct bfd_link_info *link_info,
7880 struct bfd_link_order *link_order,
7881 bfd_byte *data,
7882 bfd_boolean relocatable,
7883 asymbol **symbols)
b49e97c9
TS
7884{
7885 /* Get enough memory to hold the stuff */
7886 bfd *input_bfd = link_order->u.indirect.section->owner;
7887 asection *input_section = link_order->u.indirect.section;
eea6121a 7888 bfd_size_type sz;
b49e97c9
TS
7889
7890 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7891 arelent **reloc_vector = NULL;
7892 long reloc_count;
7893
7894 if (reloc_size < 0)
7895 goto error_return;
7896
9719ad41 7897 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
7898 if (reloc_vector == NULL && reloc_size != 0)
7899 goto error_return;
7900
7901 /* read in the section */
eea6121a
AM
7902 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
7903 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
7904 goto error_return;
7905
b49e97c9
TS
7906 reloc_count = bfd_canonicalize_reloc (input_bfd,
7907 input_section,
7908 reloc_vector,
7909 symbols);
7910 if (reloc_count < 0)
7911 goto error_return;
7912
7913 if (reloc_count > 0)
7914 {
7915 arelent **parent;
7916 /* for mips */
7917 int gp_found;
7918 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7919
7920 {
7921 struct bfd_hash_entry *h;
7922 struct bfd_link_hash_entry *lh;
7923 /* Skip all this stuff if we aren't mixing formats. */
7924 if (abfd && input_bfd
7925 && abfd->xvec == input_bfd->xvec)
7926 lh = 0;
7927 else
7928 {
b34976b6 7929 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
7930 lh = (struct bfd_link_hash_entry *) h;
7931 }
7932 lookup:
7933 if (lh)
7934 {
7935 switch (lh->type)
7936 {
7937 case bfd_link_hash_undefined:
7938 case bfd_link_hash_undefweak:
7939 case bfd_link_hash_common:
7940 gp_found = 0;
7941 break;
7942 case bfd_link_hash_defined:
7943 case bfd_link_hash_defweak:
7944 gp_found = 1;
7945 gp = lh->u.def.value;
7946 break;
7947 case bfd_link_hash_indirect:
7948 case bfd_link_hash_warning:
7949 lh = lh->u.i.link;
7950 /* @@FIXME ignoring warning for now */
7951 goto lookup;
7952 case bfd_link_hash_new:
7953 default:
7954 abort ();
7955 }
7956 }
7957 else
7958 gp_found = 0;
7959 }
7960 /* end mips */
9719ad41 7961 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 7962 {
9719ad41 7963 char *error_message = NULL;
b49e97c9
TS
7964 bfd_reloc_status_type r;
7965
7966 /* Specific to MIPS: Deal with relocation types that require
7967 knowing the gp of the output bfd. */
7968 asymbol *sym = *(*parent)->sym_ptr_ptr;
7969 if (bfd_is_abs_section (sym->section) && abfd)
7970 {
44c410de 7971 /* The special_function wouldn't get called anyway. */
b49e97c9
TS
7972 }
7973 else if (!gp_found)
7974 {
7975 /* The gp isn't there; let the special function code
7976 fall over on its own. */
7977 }
7978 else if ((*parent)->howto->special_function
7979 == _bfd_mips_elf32_gprel16_reloc)
7980 {
7981 /* bypass special_function call */
7982 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
1049f94e 7983 input_section, relocatable,
9719ad41 7984 data, gp);
b49e97c9
TS
7985 goto skip_bfd_perform_relocation;
7986 }
7987 /* end mips specific stuff */
7988
9719ad41
RS
7989 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
7990 relocatable ? abfd : NULL,
b49e97c9
TS
7991 &error_message);
7992 skip_bfd_perform_relocation:
7993
1049f94e 7994 if (relocatable)
b49e97c9
TS
7995 {
7996 asection *os = input_section->output_section;
7997
7998 /* A partial link, so keep the relocs */
7999 os->orelocation[os->reloc_count] = *parent;
8000 os->reloc_count++;
8001 }
8002
8003 if (r != bfd_reloc_ok)
8004 {
8005 switch (r)
8006 {
8007 case bfd_reloc_undefined:
8008 if (!((*link_info->callbacks->undefined_symbol)
8009 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8010 input_bfd, input_section, (*parent)->address,
b34976b6 8011 TRUE)))
b49e97c9
TS
8012 goto error_return;
8013 break;
8014 case bfd_reloc_dangerous:
9719ad41 8015 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
8016 if (!((*link_info->callbacks->reloc_dangerous)
8017 (link_info, error_message, input_bfd, input_section,
8018 (*parent)->address)))
8019 goto error_return;
8020 break;
8021 case bfd_reloc_overflow:
8022 if (!((*link_info->callbacks->reloc_overflow)
8023 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8024 (*parent)->howto->name, (*parent)->addend,
8025 input_bfd, input_section, (*parent)->address)))
8026 goto error_return;
8027 break;
8028 case bfd_reloc_outofrange:
8029 default:
8030 abort ();
8031 break;
8032 }
8033
8034 }
8035 }
8036 }
8037 if (reloc_vector != NULL)
8038 free (reloc_vector);
8039 return data;
8040
8041error_return:
8042 if (reloc_vector != NULL)
8043 free (reloc_vector);
8044 return NULL;
8045}
8046\f
8047/* Create a MIPS ELF linker hash table. */
8048
8049struct bfd_link_hash_table *
9719ad41 8050_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
8051{
8052 struct mips_elf_link_hash_table *ret;
8053 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8054
9719ad41
RS
8055 ret = bfd_malloc (amt);
8056 if (ret == NULL)
b49e97c9
TS
8057 return NULL;
8058
8059 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8060 mips_elf_link_hash_newfunc))
8061 {
e2d34d7d 8062 free (ret);
b49e97c9
TS
8063 return NULL;
8064 }
8065
8066#if 0
8067 /* We no longer use this. */
8068 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8069 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8070#endif
8071 ret->procedure_count = 0;
8072 ret->compact_rel_size = 0;
b34976b6 8073 ret->use_rld_obj_head = FALSE;
b49e97c9 8074 ret->rld_value = 0;
b34976b6 8075 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8076
8077 return &ret->root.root;
8078}
8079\f
8080/* We need to use a special link routine to handle the .reginfo and
8081 the .mdebug sections. We need to merge all instances of these
8082 sections together, not write them all out sequentially. */
8083
b34976b6 8084bfd_boolean
9719ad41 8085_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
8086{
8087 asection **secpp;
8088 asection *o;
8089 struct bfd_link_order *p;
8090 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8091 asection *rtproc_sec;
8092 Elf32_RegInfo reginfo;
8093 struct ecoff_debug_info debug;
7a2a6943
NC
8094 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8095 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 8096 HDRR *symhdr = &debug.symbolic_header;
9719ad41 8097 void *mdebug_handle = NULL;
b49e97c9
TS
8098 asection *s;
8099 EXTR esym;
8100 unsigned int i;
8101 bfd_size_type amt;
8102
8103 static const char * const secname[] =
8104 {
8105 ".text", ".init", ".fini", ".data",
8106 ".rodata", ".sdata", ".sbss", ".bss"
8107 };
8108 static const int sc[] =
8109 {
8110 scText, scInit, scFini, scData,
8111 scRData, scSData, scSBss, scBss
8112 };
8113
b49e97c9
TS
8114 /* We'd carefully arranged the dynamic symbol indices, and then the
8115 generic size_dynamic_sections renumbered them out from under us.
8116 Rather than trying somehow to prevent the renumbering, just do
8117 the sort again. */
8118 if (elf_hash_table (info)->dynamic_sections_created)
8119 {
8120 bfd *dynobj;
8121 asection *got;
8122 struct mips_got_info *g;
7a2a6943 8123 bfd_size_type dynsecsymcount;
b49e97c9
TS
8124
8125 /* When we resort, we must tell mips_elf_sort_hash_table what
8126 the lowest index it may use is. That's the number of section
8127 symbols we're going to add. The generic ELF linker only
8128 adds these symbols when building a shared object. Note that
8129 we count the sections after (possibly) removing the .options
8130 section above. */
7a2a6943
NC
8131
8132 dynsecsymcount = 0;
8133 if (info->shared)
8134 {
8135 asection * p;
8136
8137 for (p = abfd->sections; p ; p = p->next)
8138 if ((p->flags & SEC_EXCLUDE) == 0
8139 && (p->flags & SEC_ALLOC) != 0
8140 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8141 ++ dynsecsymcount;
8142 }
8143
8144 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 8145 return FALSE;
b49e97c9
TS
8146
8147 /* Make sure we didn't grow the global .got region. */
8148 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8149 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8150 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8151
8152 if (g->global_gotsym != NULL)
8153 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8154 - g->global_gotsym->dynindx)
8155 <= g->global_gotno);
8156 }
8157
a902ee94
SC
8158#if 0
8159 /* We want to set the GP value for ld -r. */
b49e97c9
TS
8160 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8161 include it, even though we don't process it quite right. (Some
8162 entries are supposed to be merged.) Empirically, we seem to be
8163 better off including it then not. */
8164 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8165 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8166 {
8167 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8168 {
8169 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8170 if (p->type == bfd_indirect_link_order)
8171 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8172 (*secpp)->link_order_head = NULL;
8173 bfd_section_list_remove (abfd, secpp);
8174 --abfd->section_count;
8175
8176 break;
8177 }
8178 }
8179
8180 /* We include .MIPS.options, even though we don't process it quite right.
8181 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8182 to be better off including it than not. */
8183 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8184 {
8185 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8186 {
8187 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8188 if (p->type == bfd_indirect_link_order)
8189 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8190 (*secpp)->link_order_head = NULL;
8191 bfd_section_list_remove (abfd, secpp);
8192 --abfd->section_count;
b34976b6 8193
b49e97c9
TS
8194 break;
8195 }
8196 }
a902ee94 8197#endif
b49e97c9
TS
8198
8199 /* Get a value for the GP register. */
8200 if (elf_gp (abfd) == 0)
8201 {
8202 struct bfd_link_hash_entry *h;
8203
b34976b6 8204 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 8205 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
8206 elf_gp (abfd) = (h->u.def.value
8207 + h->u.def.section->output_section->vma
8208 + h->u.def.section->output_offset);
1049f94e 8209 else if (info->relocatable)
b49e97c9
TS
8210 {
8211 bfd_vma lo = MINUS_ONE;
8212
8213 /* Find the GP-relative section with the lowest offset. */
9719ad41 8214 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8215 if (o->vma < lo
8216 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8217 lo = o->vma;
8218
8219 /* And calculate GP relative to that. */
8220 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8221 }
8222 else
8223 {
8224 /* If the relocate_section function needs to do a reloc
8225 involving the GP value, it should make a reloc_dangerous
8226 callback to warn that GP is not defined. */
8227 }
8228 }
8229
8230 /* Go through the sections and collect the .reginfo and .mdebug
8231 information. */
8232 reginfo_sec = NULL;
8233 mdebug_sec = NULL;
8234 gptab_data_sec = NULL;
8235 gptab_bss_sec = NULL;
9719ad41 8236 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8237 {
8238 if (strcmp (o->name, ".reginfo") == 0)
8239 {
8240 memset (&reginfo, 0, sizeof reginfo);
8241
8242 /* We have found the .reginfo section in the output file.
8243 Look through all the link_orders comprising it and merge
8244 the information together. */
9719ad41 8245 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8246 {
8247 asection *input_section;
8248 bfd *input_bfd;
8249 Elf32_External_RegInfo ext;
8250 Elf32_RegInfo sub;
8251
8252 if (p->type != bfd_indirect_link_order)
8253 {
8254 if (p->type == bfd_data_link_order)
8255 continue;
8256 abort ();
8257 }
8258
8259 input_section = p->u.indirect.section;
8260 input_bfd = input_section->owner;
8261
b49e97c9 8262 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 8263 &ext, 0, sizeof ext))
b34976b6 8264 return FALSE;
b49e97c9
TS
8265
8266 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8267
8268 reginfo.ri_gprmask |= sub.ri_gprmask;
8269 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8270 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8271 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8272 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8273
8274 /* ri_gp_value is set by the function
8275 mips_elf32_section_processing when the section is
8276 finally written out. */
8277
8278 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8279 elf_link_input_bfd ignores this section. */
8280 input_section->flags &= ~SEC_HAS_CONTENTS;
8281 }
8282
8283 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 8284 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
8285
8286 /* Skip this section later on (I don't think this currently
8287 matters, but someday it might). */
9719ad41 8288 o->link_order_head = NULL;
b49e97c9
TS
8289
8290 reginfo_sec = o;
8291 }
8292
8293 if (strcmp (o->name, ".mdebug") == 0)
8294 {
8295 struct extsym_info einfo;
8296 bfd_vma last;
8297
8298 /* We have found the .mdebug section in the output file.
8299 Look through all the link_orders comprising it and merge
8300 the information together. */
8301 symhdr->magic = swap->sym_magic;
8302 /* FIXME: What should the version stamp be? */
8303 symhdr->vstamp = 0;
8304 symhdr->ilineMax = 0;
8305 symhdr->cbLine = 0;
8306 symhdr->idnMax = 0;
8307 symhdr->ipdMax = 0;
8308 symhdr->isymMax = 0;
8309 symhdr->ioptMax = 0;
8310 symhdr->iauxMax = 0;
8311 symhdr->issMax = 0;
8312 symhdr->issExtMax = 0;
8313 symhdr->ifdMax = 0;
8314 symhdr->crfd = 0;
8315 symhdr->iextMax = 0;
8316
8317 /* We accumulate the debugging information itself in the
8318 debug_info structure. */
8319 debug.line = NULL;
8320 debug.external_dnr = NULL;
8321 debug.external_pdr = NULL;
8322 debug.external_sym = NULL;
8323 debug.external_opt = NULL;
8324 debug.external_aux = NULL;
8325 debug.ss = NULL;
8326 debug.ssext = debug.ssext_end = NULL;
8327 debug.external_fdr = NULL;
8328 debug.external_rfd = NULL;
8329 debug.external_ext = debug.external_ext_end = NULL;
8330
8331 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 8332 if (mdebug_handle == NULL)
b34976b6 8333 return FALSE;
b49e97c9
TS
8334
8335 esym.jmptbl = 0;
8336 esym.cobol_main = 0;
8337 esym.weakext = 0;
8338 esym.reserved = 0;
8339 esym.ifd = ifdNil;
8340 esym.asym.iss = issNil;
8341 esym.asym.st = stLocal;
8342 esym.asym.reserved = 0;
8343 esym.asym.index = indexNil;
8344 last = 0;
8345 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8346 {
8347 esym.asym.sc = sc[i];
8348 s = bfd_get_section_by_name (abfd, secname[i]);
8349 if (s != NULL)
8350 {
8351 esym.asym.value = s->vma;
eea6121a 8352 last = s->vma + s->size;
b49e97c9
TS
8353 }
8354 else
8355 esym.asym.value = last;
8356 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8357 secname[i], &esym))
b34976b6 8358 return FALSE;
b49e97c9
TS
8359 }
8360
9719ad41 8361 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8362 {
8363 asection *input_section;
8364 bfd *input_bfd;
8365 const struct ecoff_debug_swap *input_swap;
8366 struct ecoff_debug_info input_debug;
8367 char *eraw_src;
8368 char *eraw_end;
8369
8370 if (p->type != bfd_indirect_link_order)
8371 {
8372 if (p->type == bfd_data_link_order)
8373 continue;
8374 abort ();
8375 }
8376
8377 input_section = p->u.indirect.section;
8378 input_bfd = input_section->owner;
8379
8380 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8381 || (get_elf_backend_data (input_bfd)
8382 ->elf_backend_ecoff_debug_swap) == NULL)
8383 {
8384 /* I don't know what a non MIPS ELF bfd would be
8385 doing with a .mdebug section, but I don't really
8386 want to deal with it. */
8387 continue;
8388 }
8389
8390 input_swap = (get_elf_backend_data (input_bfd)
8391 ->elf_backend_ecoff_debug_swap);
8392
eea6121a 8393 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
8394
8395 /* The ECOFF linking code expects that we have already
8396 read in the debugging information and set up an
8397 ecoff_debug_info structure, so we do that now. */
8398 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8399 &input_debug))
b34976b6 8400 return FALSE;
b49e97c9
TS
8401
8402 if (! (bfd_ecoff_debug_accumulate
8403 (mdebug_handle, abfd, &debug, swap, input_bfd,
8404 &input_debug, input_swap, info)))
b34976b6 8405 return FALSE;
b49e97c9
TS
8406
8407 /* Loop through the external symbols. For each one with
8408 interesting information, try to find the symbol in
8409 the linker global hash table and save the information
8410 for the output external symbols. */
8411 eraw_src = input_debug.external_ext;
8412 eraw_end = (eraw_src
8413 + (input_debug.symbolic_header.iextMax
8414 * input_swap->external_ext_size));
8415 for (;
8416 eraw_src < eraw_end;
8417 eraw_src += input_swap->external_ext_size)
8418 {
8419 EXTR ext;
8420 const char *name;
8421 struct mips_elf_link_hash_entry *h;
8422
9719ad41 8423 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
8424 if (ext.asym.sc == scNil
8425 || ext.asym.sc == scUndefined
8426 || ext.asym.sc == scSUndefined)
8427 continue;
8428
8429 name = input_debug.ssext + ext.asym.iss;
8430 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 8431 name, FALSE, FALSE, TRUE);
b49e97c9
TS
8432 if (h == NULL || h->esym.ifd != -2)
8433 continue;
8434
8435 if (ext.ifd != -1)
8436 {
8437 BFD_ASSERT (ext.ifd
8438 < input_debug.symbolic_header.ifdMax);
8439 ext.ifd = input_debug.ifdmap[ext.ifd];
8440 }
8441
8442 h->esym = ext;
8443 }
8444
8445 /* Free up the information we just read. */
8446 free (input_debug.line);
8447 free (input_debug.external_dnr);
8448 free (input_debug.external_pdr);
8449 free (input_debug.external_sym);
8450 free (input_debug.external_opt);
8451 free (input_debug.external_aux);
8452 free (input_debug.ss);
8453 free (input_debug.ssext);
8454 free (input_debug.external_fdr);
8455 free (input_debug.external_rfd);
8456 free (input_debug.external_ext);
8457
8458 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8459 elf_link_input_bfd ignores this section. */
8460 input_section->flags &= ~SEC_HAS_CONTENTS;
8461 }
8462
8463 if (SGI_COMPAT (abfd) && info->shared)
8464 {
8465 /* Create .rtproc section. */
8466 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8467 if (rtproc_sec == NULL)
8468 {
8469 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8470 | SEC_LINKER_CREATED | SEC_READONLY);
8471
8472 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8473 if (rtproc_sec == NULL
8474 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8475 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 8476 return FALSE;
b49e97c9
TS
8477 }
8478
8479 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8480 info, rtproc_sec,
8481 &debug))
b34976b6 8482 return FALSE;
b49e97c9
TS
8483 }
8484
8485 /* Build the external symbol information. */
8486 einfo.abfd = abfd;
8487 einfo.info = info;
8488 einfo.debug = &debug;
8489 einfo.swap = swap;
b34976b6 8490 einfo.failed = FALSE;
b49e97c9 8491 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 8492 mips_elf_output_extsym, &einfo);
b49e97c9 8493 if (einfo.failed)
b34976b6 8494 return FALSE;
b49e97c9
TS
8495
8496 /* Set the size of the .mdebug section. */
eea6121a 8497 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
8498
8499 /* Skip this section later on (I don't think this currently
8500 matters, but someday it might). */
9719ad41 8501 o->link_order_head = NULL;
b49e97c9
TS
8502
8503 mdebug_sec = o;
8504 }
8505
8506 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8507 {
8508 const char *subname;
8509 unsigned int c;
8510 Elf32_gptab *tab;
8511 Elf32_External_gptab *ext_tab;
8512 unsigned int j;
8513
8514 /* The .gptab.sdata and .gptab.sbss sections hold
8515 information describing how the small data area would
8516 change depending upon the -G switch. These sections
8517 not used in executables files. */
1049f94e 8518 if (! info->relocatable)
b49e97c9 8519 {
9719ad41 8520 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8521 {
8522 asection *input_section;
8523
8524 if (p->type != bfd_indirect_link_order)
8525 {
8526 if (p->type == bfd_data_link_order)
8527 continue;
8528 abort ();
8529 }
8530
8531 input_section = p->u.indirect.section;
8532
8533 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8534 elf_link_input_bfd ignores this section. */
8535 input_section->flags &= ~SEC_HAS_CONTENTS;
8536 }
8537
8538 /* Skip this section later on (I don't think this
8539 currently matters, but someday it might). */
9719ad41 8540 o->link_order_head = NULL;
b49e97c9
TS
8541
8542 /* Really remove the section. */
8543 for (secpp = &abfd->sections;
8544 *secpp != o;
8545 secpp = &(*secpp)->next)
8546 ;
8547 bfd_section_list_remove (abfd, secpp);
8548 --abfd->section_count;
8549
8550 continue;
8551 }
8552
8553 /* There is one gptab for initialized data, and one for
8554 uninitialized data. */
8555 if (strcmp (o->name, ".gptab.sdata") == 0)
8556 gptab_data_sec = o;
8557 else if (strcmp (o->name, ".gptab.sbss") == 0)
8558 gptab_bss_sec = o;
8559 else
8560 {
8561 (*_bfd_error_handler)
8562 (_("%s: illegal section name `%s'"),
8563 bfd_get_filename (abfd), o->name);
8564 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 8565 return FALSE;
b49e97c9
TS
8566 }
8567
8568 /* The linker script always combines .gptab.data and
8569 .gptab.sdata into .gptab.sdata, and likewise for
8570 .gptab.bss and .gptab.sbss. It is possible that there is
8571 no .sdata or .sbss section in the output file, in which
8572 case we must change the name of the output section. */
8573 subname = o->name + sizeof ".gptab" - 1;
8574 if (bfd_get_section_by_name (abfd, subname) == NULL)
8575 {
8576 if (o == gptab_data_sec)
8577 o->name = ".gptab.data";
8578 else
8579 o->name = ".gptab.bss";
8580 subname = o->name + sizeof ".gptab" - 1;
8581 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8582 }
8583
8584 /* Set up the first entry. */
8585 c = 1;
8586 amt = c * sizeof (Elf32_gptab);
9719ad41 8587 tab = bfd_malloc (amt);
b49e97c9 8588 if (tab == NULL)
b34976b6 8589 return FALSE;
b49e97c9
TS
8590 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8591 tab[0].gt_header.gt_unused = 0;
8592
8593 /* Combine the input sections. */
9719ad41 8594 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8595 {
8596 asection *input_section;
8597 bfd *input_bfd;
8598 bfd_size_type size;
8599 unsigned long last;
8600 bfd_size_type gpentry;
8601
8602 if (p->type != bfd_indirect_link_order)
8603 {
8604 if (p->type == bfd_data_link_order)
8605 continue;
8606 abort ();
8607 }
8608
8609 input_section = p->u.indirect.section;
8610 input_bfd = input_section->owner;
8611
8612 /* Combine the gptab entries for this input section one
8613 by one. We know that the input gptab entries are
8614 sorted by ascending -G value. */
eea6121a 8615 size = input_section->size;
b49e97c9
TS
8616 last = 0;
8617 for (gpentry = sizeof (Elf32_External_gptab);
8618 gpentry < size;
8619 gpentry += sizeof (Elf32_External_gptab))
8620 {
8621 Elf32_External_gptab ext_gptab;
8622 Elf32_gptab int_gptab;
8623 unsigned long val;
8624 unsigned long add;
b34976b6 8625 bfd_boolean exact;
b49e97c9
TS
8626 unsigned int look;
8627
8628 if (! (bfd_get_section_contents
9719ad41
RS
8629 (input_bfd, input_section, &ext_gptab, gpentry,
8630 sizeof (Elf32_External_gptab))))
b49e97c9
TS
8631 {
8632 free (tab);
b34976b6 8633 return FALSE;
b49e97c9
TS
8634 }
8635
8636 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8637 &int_gptab);
8638 val = int_gptab.gt_entry.gt_g_value;
8639 add = int_gptab.gt_entry.gt_bytes - last;
8640
b34976b6 8641 exact = FALSE;
b49e97c9
TS
8642 for (look = 1; look < c; look++)
8643 {
8644 if (tab[look].gt_entry.gt_g_value >= val)
8645 tab[look].gt_entry.gt_bytes += add;
8646
8647 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 8648 exact = TRUE;
b49e97c9
TS
8649 }
8650
8651 if (! exact)
8652 {
8653 Elf32_gptab *new_tab;
8654 unsigned int max;
8655
8656 /* We need a new table entry. */
8657 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 8658 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
8659 if (new_tab == NULL)
8660 {
8661 free (tab);
b34976b6 8662 return FALSE;
b49e97c9
TS
8663 }
8664 tab = new_tab;
8665 tab[c].gt_entry.gt_g_value = val;
8666 tab[c].gt_entry.gt_bytes = add;
8667
8668 /* Merge in the size for the next smallest -G
8669 value, since that will be implied by this new
8670 value. */
8671 max = 0;
8672 for (look = 1; look < c; look++)
8673 {
8674 if (tab[look].gt_entry.gt_g_value < val
8675 && (max == 0
8676 || (tab[look].gt_entry.gt_g_value
8677 > tab[max].gt_entry.gt_g_value)))
8678 max = look;
8679 }
8680 if (max != 0)
8681 tab[c].gt_entry.gt_bytes +=
8682 tab[max].gt_entry.gt_bytes;
8683
8684 ++c;
8685 }
8686
8687 last = int_gptab.gt_entry.gt_bytes;
8688 }
8689
8690 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8691 elf_link_input_bfd ignores this section. */
8692 input_section->flags &= ~SEC_HAS_CONTENTS;
8693 }
8694
8695 /* The table must be sorted by -G value. */
8696 if (c > 2)
8697 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8698
8699 /* Swap out the table. */
8700 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 8701 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
8702 if (ext_tab == NULL)
8703 {
8704 free (tab);
b34976b6 8705 return FALSE;
b49e97c9
TS
8706 }
8707
8708 for (j = 0; j < c; j++)
8709 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8710 free (tab);
8711
eea6121a 8712 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
8713 o->contents = (bfd_byte *) ext_tab;
8714
8715 /* Skip this section later on (I don't think this currently
8716 matters, but someday it might). */
9719ad41 8717 o->link_order_head = NULL;
b49e97c9
TS
8718 }
8719 }
8720
8721 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 8722 if (!bfd_elf_final_link (abfd, info))
b34976b6 8723 return FALSE;
b49e97c9
TS
8724
8725 /* Now write out the computed sections. */
8726
9719ad41 8727 if (reginfo_sec != NULL)
b49e97c9
TS
8728 {
8729 Elf32_External_RegInfo ext;
8730
8731 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 8732 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 8733 return FALSE;
b49e97c9
TS
8734 }
8735
9719ad41 8736 if (mdebug_sec != NULL)
b49e97c9
TS
8737 {
8738 BFD_ASSERT (abfd->output_has_begun);
8739 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8740 swap, info,
8741 mdebug_sec->filepos))
b34976b6 8742 return FALSE;
b49e97c9
TS
8743
8744 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8745 }
8746
9719ad41 8747 if (gptab_data_sec != NULL)
b49e97c9
TS
8748 {
8749 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8750 gptab_data_sec->contents,
eea6121a 8751 0, gptab_data_sec->size))
b34976b6 8752 return FALSE;
b49e97c9
TS
8753 }
8754
9719ad41 8755 if (gptab_bss_sec != NULL)
b49e97c9
TS
8756 {
8757 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8758 gptab_bss_sec->contents,
eea6121a 8759 0, gptab_bss_sec->size))
b34976b6 8760 return FALSE;
b49e97c9
TS
8761 }
8762
8763 if (SGI_COMPAT (abfd))
8764 {
8765 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8766 if (rtproc_sec != NULL)
8767 {
8768 if (! bfd_set_section_contents (abfd, rtproc_sec,
8769 rtproc_sec->contents,
eea6121a 8770 0, rtproc_sec->size))
b34976b6 8771 return FALSE;
b49e97c9
TS
8772 }
8773 }
8774
b34976b6 8775 return TRUE;
b49e97c9
TS
8776}
8777\f
64543e1a
RS
8778/* Structure for saying that BFD machine EXTENSION extends BASE. */
8779
8780struct mips_mach_extension {
8781 unsigned long extension, base;
8782};
8783
8784
8785/* An array describing how BFD machines relate to one another. The entries
8786 are ordered topologically with MIPS I extensions listed last. */
8787
8788static const struct mips_mach_extension mips_mach_extensions[] = {
8789 /* MIPS64 extensions. */
5f74bc13 8790 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
8791 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8792
8793 /* MIPS V extensions. */
8794 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8795
8796 /* R10000 extensions. */
8797 { bfd_mach_mips12000, bfd_mach_mips10000 },
8798
8799 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8800 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8801 better to allow vr5400 and vr5500 code to be merged anyway, since
8802 many libraries will just use the core ISA. Perhaps we could add
8803 some sort of ASE flag if this ever proves a problem. */
8804 { bfd_mach_mips5500, bfd_mach_mips5400 },
8805 { bfd_mach_mips5400, bfd_mach_mips5000 },
8806
8807 /* MIPS IV extensions. */
8808 { bfd_mach_mips5, bfd_mach_mips8000 },
8809 { bfd_mach_mips10000, bfd_mach_mips8000 },
8810 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 8811 { bfd_mach_mips7000, bfd_mach_mips8000 },
64543e1a
RS
8812
8813 /* VR4100 extensions. */
8814 { bfd_mach_mips4120, bfd_mach_mips4100 },
8815 { bfd_mach_mips4111, bfd_mach_mips4100 },
8816
8817 /* MIPS III extensions. */
8818 { bfd_mach_mips8000, bfd_mach_mips4000 },
8819 { bfd_mach_mips4650, bfd_mach_mips4000 },
8820 { bfd_mach_mips4600, bfd_mach_mips4000 },
8821 { bfd_mach_mips4400, bfd_mach_mips4000 },
8822 { bfd_mach_mips4300, bfd_mach_mips4000 },
8823 { bfd_mach_mips4100, bfd_mach_mips4000 },
8824 { bfd_mach_mips4010, bfd_mach_mips4000 },
8825
8826 /* MIPS32 extensions. */
8827 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8828
8829 /* MIPS II extensions. */
8830 { bfd_mach_mips4000, bfd_mach_mips6000 },
8831 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8832
8833 /* MIPS I extensions. */
8834 { bfd_mach_mips6000, bfd_mach_mips3000 },
8835 { bfd_mach_mips3900, bfd_mach_mips3000 }
8836};
8837
8838
8839/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8840
8841static bfd_boolean
9719ad41 8842mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
8843{
8844 size_t i;
8845
8846 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8847 if (extension == mips_mach_extensions[i].extension)
8848 extension = mips_mach_extensions[i].base;
8849
8850 return extension == base;
8851}
8852
8853
8854/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 8855
b34976b6 8856static bfd_boolean
9719ad41 8857mips_32bit_flags_p (flagword flags)
00707a0e 8858{
64543e1a
RS
8859 return ((flags & EF_MIPS_32BITMODE) != 0
8860 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8861 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8862 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8863 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8864 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8865 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
8866}
8867
64543e1a 8868
b49e97c9
TS
8869/* Merge backend specific data from an object file to the output
8870 object file when linking. */
8871
b34976b6 8872bfd_boolean
9719ad41 8873_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
8874{
8875 flagword old_flags;
8876 flagword new_flags;
b34976b6
AM
8877 bfd_boolean ok;
8878 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
8879 asection *sec;
8880
8881 /* Check if we have the same endianess */
82e51918 8882 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
8883 {
8884 (*_bfd_error_handler)
d003868e
AM
8885 (_("%B: endianness incompatible with that of the selected emulation"),
8886 ibfd);
aa701218
AO
8887 return FALSE;
8888 }
b49e97c9
TS
8889
8890 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8891 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 8892 return TRUE;
b49e97c9 8893
aa701218
AO
8894 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8895 {
8896 (*_bfd_error_handler)
d003868e
AM
8897 (_("%B: ABI is incompatible with that of the selected emulation"),
8898 ibfd);
aa701218
AO
8899 return FALSE;
8900 }
8901
b49e97c9
TS
8902 new_flags = elf_elfheader (ibfd)->e_flags;
8903 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8904 old_flags = elf_elfheader (obfd)->e_flags;
8905
8906 if (! elf_flags_init (obfd))
8907 {
b34976b6 8908 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
8909 elf_elfheader (obfd)->e_flags = new_flags;
8910 elf_elfheader (obfd)->e_ident[EI_CLASS]
8911 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8912
8913 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8914 && bfd_get_arch_info (obfd)->the_default)
8915 {
8916 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8917 bfd_get_mach (ibfd)))
b34976b6 8918 return FALSE;
b49e97c9
TS
8919 }
8920
b34976b6 8921 return TRUE;
b49e97c9
TS
8922 }
8923
8924 /* Check flag compatibility. */
8925
8926 new_flags &= ~EF_MIPS_NOREORDER;
8927 old_flags &= ~EF_MIPS_NOREORDER;
8928
f4416af6
AO
8929 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8930 doesn't seem to matter. */
8931 new_flags &= ~EF_MIPS_XGOT;
8932 old_flags &= ~EF_MIPS_XGOT;
8933
98a8deaf
RS
8934 /* MIPSpro generates ucode info in n64 objects. Again, we should
8935 just be able to ignore this. */
8936 new_flags &= ~EF_MIPS_UCODE;
8937 old_flags &= ~EF_MIPS_UCODE;
8938
b49e97c9 8939 if (new_flags == old_flags)
b34976b6 8940 return TRUE;
b49e97c9
TS
8941
8942 /* Check to see if the input BFD actually contains any sections.
8943 If not, its flags may not have been initialised either, but it cannot
8944 actually cause any incompatibility. */
8945 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8946 {
8947 /* Ignore synthetic sections and empty .text, .data and .bss sections
8948 which are automatically generated by gas. */
8949 if (strcmp (sec->name, ".reginfo")
8950 && strcmp (sec->name, ".mdebug")
eea6121a 8951 && (sec->size != 0
d13d89fa
NS
8952 || (strcmp (sec->name, ".text")
8953 && strcmp (sec->name, ".data")
8954 && strcmp (sec->name, ".bss"))))
b49e97c9 8955 {
b34976b6 8956 null_input_bfd = FALSE;
b49e97c9
TS
8957 break;
8958 }
8959 }
8960 if (null_input_bfd)
b34976b6 8961 return TRUE;
b49e97c9 8962
b34976b6 8963 ok = TRUE;
b49e97c9 8964
143d77c5
EC
8965 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
8966 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 8967 {
b49e97c9 8968 (*_bfd_error_handler)
d003868e
AM
8969 (_("%B: warning: linking PIC files with non-PIC files"),
8970 ibfd);
143d77c5 8971 ok = TRUE;
b49e97c9
TS
8972 }
8973
143d77c5
EC
8974 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
8975 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
8976 if (! (new_flags & EF_MIPS_PIC))
8977 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
8978
8979 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8980 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 8981
64543e1a
RS
8982 /* Compare the ISAs. */
8983 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 8984 {
64543e1a 8985 (*_bfd_error_handler)
d003868e
AM
8986 (_("%B: linking 32-bit code with 64-bit code"),
8987 ibfd);
64543e1a
RS
8988 ok = FALSE;
8989 }
8990 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8991 {
8992 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8993 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 8994 {
64543e1a
RS
8995 /* Copy the architecture info from IBFD to OBFD. Also copy
8996 the 32-bit flag (if set) so that we continue to recognise
8997 OBFD as a 32-bit binary. */
8998 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
8999 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9000 elf_elfheader (obfd)->e_flags
9001 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9002
9003 /* Copy across the ABI flags if OBFD doesn't use them
9004 and if that was what caused us to treat IBFD as 32-bit. */
9005 if ((old_flags & EF_MIPS_ABI) == 0
9006 && mips_32bit_flags_p (new_flags)
9007 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9008 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9009 }
9010 else
9011 {
64543e1a 9012 /* The ISAs aren't compatible. */
b49e97c9 9013 (*_bfd_error_handler)
d003868e
AM
9014 (_("%B: linking %s module with previous %s modules"),
9015 ibfd,
64543e1a
RS
9016 bfd_printable_name (ibfd),
9017 bfd_printable_name (obfd));
b34976b6 9018 ok = FALSE;
b49e97c9 9019 }
b49e97c9
TS
9020 }
9021
64543e1a
RS
9022 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9023 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9024
9025 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9026 does set EI_CLASS differently from any 32-bit ABI. */
9027 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9028 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9029 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9030 {
9031 /* Only error if both are set (to different values). */
9032 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9033 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9034 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9035 {
9036 (*_bfd_error_handler)
d003868e
AM
9037 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9038 ibfd,
b49e97c9
TS
9039 elf_mips_abi_name (ibfd),
9040 elf_mips_abi_name (obfd));
b34976b6 9041 ok = FALSE;
b49e97c9
TS
9042 }
9043 new_flags &= ~EF_MIPS_ABI;
9044 old_flags &= ~EF_MIPS_ABI;
9045 }
9046
fb39dac1
RS
9047 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9048 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9049 {
9050 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9051
9052 new_flags &= ~ EF_MIPS_ARCH_ASE;
9053 old_flags &= ~ EF_MIPS_ARCH_ASE;
9054 }
9055
b49e97c9
TS
9056 /* Warn about any other mismatches */
9057 if (new_flags != old_flags)
9058 {
9059 (*_bfd_error_handler)
d003868e
AM
9060 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9061 ibfd, (unsigned long) new_flags,
b49e97c9 9062 (unsigned long) old_flags);
b34976b6 9063 ok = FALSE;
b49e97c9
TS
9064 }
9065
9066 if (! ok)
9067 {
9068 bfd_set_error (bfd_error_bad_value);
b34976b6 9069 return FALSE;
b49e97c9
TS
9070 }
9071
b34976b6 9072 return TRUE;
b49e97c9
TS
9073}
9074
9075/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9076
b34976b6 9077bfd_boolean
9719ad41 9078_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
9079{
9080 BFD_ASSERT (!elf_flags_init (abfd)
9081 || elf_elfheader (abfd)->e_flags == flags);
9082
9083 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9084 elf_flags_init (abfd) = TRUE;
9085 return TRUE;
b49e97c9
TS
9086}
9087
b34976b6 9088bfd_boolean
9719ad41 9089_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 9090{
9719ad41 9091 FILE *file = ptr;
b49e97c9
TS
9092
9093 BFD_ASSERT (abfd != NULL && ptr != NULL);
9094
9095 /* Print normal ELF private data. */
9096 _bfd_elf_print_private_bfd_data (abfd, ptr);
9097
9098 /* xgettext:c-format */
9099 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9100
9101 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9102 fprintf (file, _(" [abi=O32]"));
9103 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9104 fprintf (file, _(" [abi=O64]"));
9105 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9106 fprintf (file, _(" [abi=EABI32]"));
9107 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9108 fprintf (file, _(" [abi=EABI64]"));
9109 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9110 fprintf (file, _(" [abi unknown]"));
9111 else if (ABI_N32_P (abfd))
9112 fprintf (file, _(" [abi=N32]"));
9113 else if (ABI_64_P (abfd))
9114 fprintf (file, _(" [abi=64]"));
9115 else
9116 fprintf (file, _(" [no abi set]"));
9117
9118 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9119 fprintf (file, _(" [mips1]"));
9120 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9121 fprintf (file, _(" [mips2]"));
9122 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9123 fprintf (file, _(" [mips3]"));
9124 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9125 fprintf (file, _(" [mips4]"));
9126 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9127 fprintf (file, _(" [mips5]"));
9128 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9129 fprintf (file, _(" [mips32]"));
9130 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9131 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9132 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9133 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
9134 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9135 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
9136 else
9137 fprintf (file, _(" [unknown ISA]"));
9138
40d32fc6
CD
9139 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9140 fprintf (file, _(" [mdmx]"));
9141
9142 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9143 fprintf (file, _(" [mips16]"));
9144
b49e97c9
TS
9145 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9146 fprintf (file, _(" [32bitmode]"));
9147 else
9148 fprintf (file, _(" [not 32bitmode]"));
9149
9150 fputc ('\n', file);
9151
b34976b6 9152 return TRUE;
b49e97c9 9153}
2f89ff8d
L
9154
9155struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9156{
7dcb9820
AM
9157 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9158 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9159 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9160 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9161 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9162 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9163 { NULL, 0, 0, 0, 0 }
2f89ff8d 9164};
This page took 0.741127 seconds and 4 git commands to generate.