2004-03-16 Michael Chastain <mec.gnu@mindspring.com>
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
79cda7cf 3 2003, 2004 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
b15e6682 67 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
b15e6682
AO
71};
72
f0abc2a1 73/* This structure is used to hold .got information when linking. */
b49e97c9
TS
74
75struct mips_got_info
76{
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
b15e6682
AO
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
f4416af6
AO
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94};
95
96/* Map an input bfd to a got in a multi-got link. */
97
98struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101};
102
103/* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106struct mips_elf_got_per_bfd_arg
107{
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128};
129
130/* Another structure used to pass arguments for got entries traversal. */
131
132struct mips_elf_set_global_got_offset_arg
133{
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
b49e97c9
TS
138};
139
f0abc2a1
AM
140struct _mips_elf_section_data
141{
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148};
149
150#define mips_elf_section_data(sec) \
68bfbfcc 151 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 152
b49e97c9
TS
153/* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156struct mips_elf_hash_sort_data
157{
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
f4416af6
AO
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 166 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 167 long max_unref_got_dynindx;
b49e97c9
TS
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171};
172
173/* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176struct mips_elf_link_hash_entry
177{
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
b34976b6 189 bfd_boolean readonly_reloc;
b49e97c9 190
b49e97c9
TS
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
b34976b6 195 bfd_boolean no_fn_stub;
b49e97c9
TS
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
b34976b6 203 bfd_boolean need_fn_stub;
b49e97c9
TS
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
7c5fcef7
L
212
213 /* Are we forced local? .*/
b34976b6 214 bfd_boolean forced_local;
b49e97c9
TS
215};
216
217/* MIPS ELF linker hash table. */
218
219struct mips_elf_link_hash_table
220{
221 struct elf_link_hash_table root;
222#if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226#endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 232 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 233 bfd_boolean use_rld_obj_head;
b49e97c9
TS
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
b34976b6 237 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
238};
239
240/* Structure used to pass information to mips_elf_output_extsym. */
241
242struct extsym_info
243{
9e4aeb93
RS
244 bfd *abfd;
245 struct bfd_link_info *info;
b49e97c9
TS
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
b34976b6 248 bfd_boolean failed;
b49e97c9
TS
249};
250
8dc1a139 251/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
252
253static const char * const mips_elf_dynsym_rtproc_names[] =
254{
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259};
260
261/* These structures are used to generate the .compact_rel section on
8dc1a139 262 IRIX5. */
b49e97c9
TS
263
264typedef struct
265{
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272} Elf32_compact_rel;
273
274typedef struct
275{
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282} Elf32_External_compact_rel;
283
284typedef struct
285{
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292} Elf32_crinfo;
293
294typedef struct
295{
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301} Elf32_crinfo2;
302
303typedef struct
304{
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308} Elf32_External_crinfo;
309
310typedef struct
311{
312 bfd_byte info[4];
313 bfd_byte konst[4];
314} Elf32_External_crinfo2;
315
316/* These are the constants used to swap the bitfields in a crinfo. */
317
318#define CRINFO_CTYPE (0x1)
319#define CRINFO_CTYPE_SH (31)
320#define CRINFO_RTYPE (0xf)
321#define CRINFO_RTYPE_SH (27)
322#define CRINFO_DIST2TO (0xff)
323#define CRINFO_DIST2TO_SH (19)
324#define CRINFO_RELVADDR (0x7ffff)
325#define CRINFO_RELVADDR_SH (0)
326
327/* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330#define CRF_MIPS_LONG 1
331#define CRF_MIPS_SHORT 0
332
333/* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343#define CRT_MIPS_REL32 0xa
344#define CRT_MIPS_WORD 0xb
345#define CRT_MIPS_GPHI_LO 0xc
346#define CRT_MIPS_JMPAD 0xd
347
348#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352\f
353/* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356typedef struct runtime_pdr {
ae9a127f
NC
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
b49e97c9 366 long reserved;
ae9a127f 367 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
368} RPDR, *pRPDR;
369#define cbRPDR sizeof (RPDR)
370#define rpdNil ((pRPDR) 0)
371\f
372static struct bfd_hash_entry *mips_elf_link_hash_newfunc
9719ad41 373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
b49e97c9 374static void ecoff_swap_rpdr_out
9719ad41 375 (bfd *, const RPDR *, struct rpdr_ext *);
b34976b6 376static bfd_boolean mips_elf_create_procedure_table
9719ad41
RS
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
b34976b6 379static bfd_boolean mips_elf_check_mips16_stubs
9719ad41 380 (struct mips_elf_link_hash_entry *, void *);
b49e97c9 381static void bfd_mips_elf32_swap_gptab_in
9719ad41 382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
b49e97c9 383static void bfd_mips_elf32_swap_gptab_out
9719ad41 384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
b49e97c9 385static void bfd_elf32_swap_compact_rel_out
9719ad41 386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
b49e97c9 387static void bfd_elf32_swap_crinfo_out
9719ad41 388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
b49e97c9 389static int sort_dynamic_relocs
9719ad41 390 (const void *, const void *);
f4416af6 391static int sort_dynamic_relocs_64
9719ad41 392 (const void *, const void *);
b34976b6 393static bfd_boolean mips_elf_output_extsym
9719ad41
RS
394 (struct mips_elf_link_hash_entry *, void *);
395static int gptab_compare
396 (const void *, const void *);
397static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
b49e97c9 401static struct mips_got_info *mips_elf_got_info
9719ad41
RS
402 (bfd *, asection **);
403static long mips_elf_get_global_gotsym_index
404 (bfd *abfd);
b49e97c9 405static bfd_vma mips_elf_local_got_index
9719ad41 406 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
b49e97c9 407static bfd_vma mips_elf_global_got_index
9719ad41 408 (bfd *, bfd *, struct elf_link_hash_entry *);
b49e97c9 409static bfd_vma mips_elf_got_page
9719ad41 410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
b49e97c9 411static bfd_vma mips_elf_got16_entry
9719ad41 412 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
b49e97c9 413static bfd_vma mips_elf_got_offset_from_index
9719ad41 414 (bfd *, bfd *, bfd *, bfd_vma);
b15e6682 415static struct mips_got_entry *mips_elf_create_local_got_entry
9719ad41 416 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
b34976b6 417static bfd_boolean mips_elf_sort_hash_table
9719ad41 418 (struct bfd_link_info *, unsigned long);
b34976b6 419static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 420 (struct mips_elf_link_hash_entry *, void *);
f4416af6 421static bfd_boolean mips_elf_record_local_got_symbol
9719ad41 422 (bfd *, long, bfd_vma, struct mips_got_info *);
b34976b6 423static bfd_boolean mips_elf_record_global_got_symbol
9719ad41
RS
424 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
425 struct mips_got_info *);
b49e97c9 426static const Elf_Internal_Rela *mips_elf_next_relocation
9719ad41 427 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
b34976b6 428static bfd_boolean mips_elf_local_relocation_p
9719ad41
RS
429 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
430static bfd_boolean mips_elf_overflow_p
431 (bfd_vma, int);
432static bfd_vma mips_elf_high
433 (bfd_vma);
434static bfd_vma mips_elf_higher
435 (bfd_vma);
436static bfd_vma mips_elf_highest
437 (bfd_vma);
b34976b6 438static bfd_boolean mips_elf_create_compact_rel_section
9719ad41 439 (bfd *, struct bfd_link_info *);
b34976b6 440static bfd_boolean mips_elf_create_got_section
9719ad41 441 (bfd *, struct bfd_link_info *, bfd_boolean);
b49e97c9 442static bfd_reloc_status_type mips_elf_calculate_relocation
9719ad41
RS
443 (bfd *, bfd *, asection *, struct bfd_link_info *,
444 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
445 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
446 bfd_boolean *, bfd_boolean);
b49e97c9 447static bfd_vma mips_elf_obtain_contents
9719ad41 448 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
b34976b6 449static bfd_boolean mips_elf_perform_relocation
9719ad41
RS
450 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
451 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
b34976b6 452static bfd_boolean mips_elf_stub_section_p
9719ad41 453 (bfd *, asection *);
b49e97c9 454static void mips_elf_allocate_dynamic_relocations
9719ad41 455 (bfd *, unsigned int);
b34976b6 456static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
457 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
458 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
459 bfd_vma *, asection *);
460static void mips_set_isa_flags
461 (bfd *);
462static INLINE char *elf_mips_abi_name
463 (bfd *);
b49e97c9 464static void mips_elf_irix6_finish_dynamic_symbol
9719ad41
RS
465 (bfd *, const char *, Elf_Internal_Sym *);
466static bfd_boolean mips_mach_extends_p
467 (unsigned long, unsigned long);
468static bfd_boolean mips_32bit_flags_p
469 (flagword);
470static INLINE hashval_t mips_elf_hash_bfd_vma
471 (bfd_vma);
472static hashval_t mips_elf_got_entry_hash
473 (const void *);
474static int mips_elf_got_entry_eq
475 (const void *, const void *);
b49e97c9 476
f4416af6 477static bfd_boolean mips_elf_multi_got
9719ad41
RS
478 (bfd *, struct bfd_link_info *, struct mips_got_info *,
479 asection *, bfd_size_type);
480static hashval_t mips_elf_multi_got_entry_hash
481 (const void *);
482static int mips_elf_multi_got_entry_eq
483 (const void *, const void *);
484static hashval_t mips_elf_bfd2got_entry_hash
485 (const void *);
486static int mips_elf_bfd2got_entry_eq
487 (const void *, const void *);
488static int mips_elf_make_got_per_bfd
489 (void **, void *);
490static int mips_elf_merge_gots
491 (void **, void *);
492static int mips_elf_set_global_got_offset
493 (void **, void *);
494static int mips_elf_set_no_stub
495 (void **, void *);
496static int mips_elf_resolve_final_got_entry
497 (void **, void *);
f4416af6 498static void mips_elf_resolve_final_got_entries
9719ad41 499 (struct mips_got_info *);
f4416af6 500static bfd_vma mips_elf_adjust_gp
9719ad41 501 (bfd *, struct mips_got_info *, bfd *);
f4416af6 502static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 503 (struct mips_got_info *, bfd *);
f4416af6 504
b49e97c9
TS
505/* This will be used when we sort the dynamic relocation records. */
506static bfd *reldyn_sorting_bfd;
507
508/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 509
b49e97c9
TS
510#define ABI_N32_P(abfd) \
511 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
512
4a14403c 513/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 514#define ABI_64_P(abfd) \
141ff970 515 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 516
4a14403c
TS
517/* Nonzero if ABFD is using NewABI conventions. */
518#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
519
520/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
521#define IRIX_COMPAT(abfd) \
522 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
523
b49e97c9
TS
524/* Whether we are trying to be compatible with IRIX at all. */
525#define SGI_COMPAT(abfd) \
526 (IRIX_COMPAT (abfd) != ict_none)
527
528/* The name of the options section. */
529#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 530 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9
TS
531
532/* The name of the stub section. */
533#define MIPS_ELF_STUB_SECTION_NAME(abfd) \
d80dcc6a 534 (NEWABI_P (abfd) ? ".MIPS.stubs" : ".stub")
b49e97c9
TS
535
536/* The size of an external REL relocation. */
537#define MIPS_ELF_REL_SIZE(abfd) \
538 (get_elf_backend_data (abfd)->s->sizeof_rel)
539
540/* The size of an external dynamic table entry. */
541#define MIPS_ELF_DYN_SIZE(abfd) \
542 (get_elf_backend_data (abfd)->s->sizeof_dyn)
543
544/* The size of a GOT entry. */
545#define MIPS_ELF_GOT_SIZE(abfd) \
546 (get_elf_backend_data (abfd)->s->arch_size / 8)
547
548/* The size of a symbol-table entry. */
549#define MIPS_ELF_SYM_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_sym)
551
552/* The default alignment for sections, as a power of two. */
553#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 554 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
555
556/* Get word-sized data. */
557#define MIPS_ELF_GET_WORD(abfd, ptr) \
558 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
559
560/* Put out word-sized data. */
561#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
562 (ABI_64_P (abfd) \
563 ? bfd_put_64 (abfd, val, ptr) \
564 : bfd_put_32 (abfd, val, ptr))
565
566/* Add a dynamic symbol table-entry. */
567#ifdef BFD64
9719ad41
RS
568#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
569 (ABI_64_P (elf_hash_table (info)->dynobj) \
570 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
571 : bfd_elf32_add_dynamic_entry (info, tag, val))
b49e97c9 572#else
9719ad41
RS
573#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
574 (ABI_64_P (elf_hash_table (info)->dynobj) \
575 ? (abort (), FALSE) \
576 : bfd_elf32_add_dynamic_entry (info, tag, val))
b49e97c9
TS
577#endif
578
579#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
580 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
581
4ffba85c
AO
582/* Determine whether the internal relocation of index REL_IDX is REL
583 (zero) or RELA (non-zero). The assumption is that, if there are
584 two relocation sections for this section, one of them is REL and
585 the other is RELA. If the index of the relocation we're testing is
586 in range for the first relocation section, check that the external
587 relocation size is that for RELA. It is also assumed that, if
588 rel_idx is not in range for the first section, and this first
589 section contains REL relocs, then the relocation is in the second
590 section, that is RELA. */
591#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
592 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
593 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
594 > (bfd_vma)(rel_idx)) \
595 == (elf_section_data (sec)->rel_hdr.sh_entsize \
596 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
597 : sizeof (Elf32_External_Rela))))
598
b49e97c9
TS
599/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
600 from smaller values. Start with zero, widen, *then* decrement. */
601#define MINUS_ONE (((bfd_vma)0) - 1)
602
603/* The number of local .got entries we reserve. */
604#define MIPS_RESERVED_GOTNO (2)
605
f4416af6
AO
606/* The offset of $gp from the beginning of the .got section. */
607#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
608
609/* The maximum size of the GOT for it to be addressable using 16-bit
610 offsets from $gp. */
611#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
612
6a691779 613/* Instructions which appear in a stub. */
b49e97c9 614#define STUB_LW(abfd) \
f4416af6
AO
615 ((ABI_64_P (abfd) \
616 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
617 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9 618#define STUB_MOVE(abfd) \
6a691779
TS
619 ((ABI_64_P (abfd) \
620 ? 0x03e0782d /* daddu t7,ra */ \
621 : 0x03e07821)) /* addu t7,ra */
622#define STUB_JALR 0x0320f809 /* jalr t9,ra */
b49e97c9 623#define STUB_LI16(abfd) \
6a691779
TS
624 ((ABI_64_P (abfd) \
625 ? 0x64180000 /* daddiu t8,zero,0 */ \
626 : 0x24180000)) /* addiu t8,zero,0 */
b49e97c9
TS
627#define MIPS_FUNCTION_STUB_SIZE (16)
628
629/* The name of the dynamic interpreter. This is put in the .interp
630 section. */
631
632#define ELF_DYNAMIC_INTERPRETER(abfd) \
633 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
634 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
635 : "/usr/lib/libc.so.1")
636
637#ifdef BFD64
ee6423ed
AO
638#define MNAME(bfd,pre,pos) \
639 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
640#define ELF_R_SYM(bfd, i) \
641 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
642#define ELF_R_TYPE(bfd, i) \
643 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
644#define ELF_R_INFO(bfd, s, t) \
645 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
646#else
ee6423ed 647#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
648#define ELF_R_SYM(bfd, i) \
649 (ELF32_R_SYM (i))
650#define ELF_R_TYPE(bfd, i) \
651 (ELF32_R_TYPE (i))
652#define ELF_R_INFO(bfd, s, t) \
653 (ELF32_R_INFO (s, t))
654#endif
655\f
656 /* The mips16 compiler uses a couple of special sections to handle
657 floating point arguments.
658
659 Section names that look like .mips16.fn.FNNAME contain stubs that
660 copy floating point arguments from the fp regs to the gp regs and
661 then jump to FNNAME. If any 32 bit function calls FNNAME, the
662 call should be redirected to the stub instead. If no 32 bit
663 function calls FNNAME, the stub should be discarded. We need to
664 consider any reference to the function, not just a call, because
665 if the address of the function is taken we will need the stub,
666 since the address might be passed to a 32 bit function.
667
668 Section names that look like .mips16.call.FNNAME contain stubs
669 that copy floating point arguments from the gp regs to the fp
670 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
671 then any 16 bit function that calls FNNAME should be redirected
672 to the stub instead. If FNNAME is not a 32 bit function, the
673 stub should be discarded.
674
675 .mips16.call.fp.FNNAME sections are similar, but contain stubs
676 which call FNNAME and then copy the return value from the fp regs
677 to the gp regs. These stubs store the return value in $18 while
678 calling FNNAME; any function which might call one of these stubs
679 must arrange to save $18 around the call. (This case is not
680 needed for 32 bit functions that call 16 bit functions, because
681 16 bit functions always return floating point values in both
682 $f0/$f1 and $2/$3.)
683
684 Note that in all cases FNNAME might be defined statically.
685 Therefore, FNNAME is not used literally. Instead, the relocation
686 information will indicate which symbol the section is for.
687
688 We record any stubs that we find in the symbol table. */
689
690#define FN_STUB ".mips16.fn."
691#define CALL_STUB ".mips16.call."
692#define CALL_FP_STUB ".mips16.call.fp."
693\f
694/* Look up an entry in a MIPS ELF linker hash table. */
695
696#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
697 ((struct mips_elf_link_hash_entry *) \
698 elf_link_hash_lookup (&(table)->root, (string), (create), \
699 (copy), (follow)))
700
701/* Traverse a MIPS ELF linker hash table. */
702
703#define mips_elf_link_hash_traverse(table, func, info) \
704 (elf_link_hash_traverse \
705 (&(table)->root, \
9719ad41 706 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
707 (info)))
708
709/* Get the MIPS ELF linker hash table from a link_info structure. */
710
711#define mips_elf_hash_table(p) \
712 ((struct mips_elf_link_hash_table *) ((p)->hash))
713
714/* Create an entry in a MIPS ELF linker hash table. */
715
716static struct bfd_hash_entry *
9719ad41
RS
717mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
718 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
719{
720 struct mips_elf_link_hash_entry *ret =
721 (struct mips_elf_link_hash_entry *) entry;
722
723 /* Allocate the structure if it has not already been allocated by a
724 subclass. */
9719ad41
RS
725 if (ret == NULL)
726 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
727 if (ret == NULL)
b49e97c9
TS
728 return (struct bfd_hash_entry *) ret;
729
730 /* Call the allocation method of the superclass. */
731 ret = ((struct mips_elf_link_hash_entry *)
732 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
733 table, string));
9719ad41 734 if (ret != NULL)
b49e97c9
TS
735 {
736 /* Set local fields. */
737 memset (&ret->esym, 0, sizeof (EXTR));
738 /* We use -2 as a marker to indicate that the information has
739 not been set. -1 means there is no associated ifd. */
740 ret->esym.ifd = -2;
741 ret->possibly_dynamic_relocs = 0;
b34976b6 742 ret->readonly_reloc = FALSE;
b34976b6 743 ret->no_fn_stub = FALSE;
b49e97c9 744 ret->fn_stub = NULL;
b34976b6 745 ret->need_fn_stub = FALSE;
b49e97c9
TS
746 ret->call_stub = NULL;
747 ret->call_fp_stub = NULL;
b34976b6 748 ret->forced_local = FALSE;
b49e97c9
TS
749 }
750
751 return (struct bfd_hash_entry *) ret;
752}
f0abc2a1
AM
753
754bfd_boolean
9719ad41 755_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1
AM
756{
757 struct _mips_elf_section_data *sdata;
758 bfd_size_type amt = sizeof (*sdata);
759
9719ad41 760 sdata = bfd_zalloc (abfd, amt);
f0abc2a1
AM
761 if (sdata == NULL)
762 return FALSE;
9719ad41 763 sec->used_by_bfd = sdata;
f0abc2a1
AM
764
765 return _bfd_elf_new_section_hook (abfd, sec);
766}
b49e97c9
TS
767\f
768/* Read ECOFF debugging information from a .mdebug section into a
769 ecoff_debug_info structure. */
770
b34976b6 771bfd_boolean
9719ad41
RS
772_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
773 struct ecoff_debug_info *debug)
b49e97c9
TS
774{
775 HDRR *symhdr;
776 const struct ecoff_debug_swap *swap;
9719ad41 777 char *ext_hdr;
b49e97c9
TS
778
779 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
780 memset (debug, 0, sizeof (*debug));
781
9719ad41 782 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
783 if (ext_hdr == NULL && swap->external_hdr_size != 0)
784 goto error_return;
785
9719ad41 786 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 787 swap->external_hdr_size))
b49e97c9
TS
788 goto error_return;
789
790 symhdr = &debug->symbolic_header;
791 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
792
793 /* The symbolic header contains absolute file offsets and sizes to
794 read. */
795#define READ(ptr, offset, count, size, type) \
796 if (symhdr->count == 0) \
797 debug->ptr = NULL; \
798 else \
799 { \
800 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 801 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
802 if (debug->ptr == NULL) \
803 goto error_return; \
9719ad41 804 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
805 || bfd_bread (debug->ptr, amt, abfd) != amt) \
806 goto error_return; \
807 }
808
809 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
810 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
811 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
812 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
813 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
814 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
815 union aux_ext *);
816 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
817 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
818 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
819 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
820 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
821#undef READ
822
823 debug->fdr = NULL;
824 debug->adjust = NULL;
825
b34976b6 826 return TRUE;
b49e97c9
TS
827
828 error_return:
829 if (ext_hdr != NULL)
830 free (ext_hdr);
831 if (debug->line != NULL)
832 free (debug->line);
833 if (debug->external_dnr != NULL)
834 free (debug->external_dnr);
835 if (debug->external_pdr != NULL)
836 free (debug->external_pdr);
837 if (debug->external_sym != NULL)
838 free (debug->external_sym);
839 if (debug->external_opt != NULL)
840 free (debug->external_opt);
841 if (debug->external_aux != NULL)
842 free (debug->external_aux);
843 if (debug->ss != NULL)
844 free (debug->ss);
845 if (debug->ssext != NULL)
846 free (debug->ssext);
847 if (debug->external_fdr != NULL)
848 free (debug->external_fdr);
849 if (debug->external_rfd != NULL)
850 free (debug->external_rfd);
851 if (debug->external_ext != NULL)
852 free (debug->external_ext);
b34976b6 853 return FALSE;
b49e97c9
TS
854}
855\f
856/* Swap RPDR (runtime procedure table entry) for output. */
857
858static void
9719ad41 859ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
860{
861 H_PUT_S32 (abfd, in->adr, ex->p_adr);
862 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
863 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
864 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
865 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
866 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
867
868 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
869 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
870
871 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
872#if 0 /* FIXME */
873 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
874#endif
875}
876
877/* Create a runtime procedure table from the .mdebug section. */
878
b34976b6 879static bfd_boolean
9719ad41
RS
880mips_elf_create_procedure_table (void *handle, bfd *abfd,
881 struct bfd_link_info *info, asection *s,
882 struct ecoff_debug_info *debug)
b49e97c9
TS
883{
884 const struct ecoff_debug_swap *swap;
885 HDRR *hdr = &debug->symbolic_header;
886 RPDR *rpdr, *rp;
887 struct rpdr_ext *erp;
9719ad41 888 void *rtproc;
b49e97c9
TS
889 struct pdr_ext *epdr;
890 struct sym_ext *esym;
891 char *ss, **sv;
892 char *str;
893 bfd_size_type size;
894 bfd_size_type count;
895 unsigned long sindex;
896 unsigned long i;
897 PDR pdr;
898 SYMR sym;
899 const char *no_name_func = _("static procedure (no name)");
900
901 epdr = NULL;
902 rpdr = NULL;
903 esym = NULL;
904 ss = NULL;
905 sv = NULL;
906
907 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
908
909 sindex = strlen (no_name_func) + 1;
910 count = hdr->ipdMax;
911 if (count > 0)
912 {
913 size = swap->external_pdr_size;
914
9719ad41 915 epdr = bfd_malloc (size * count);
b49e97c9
TS
916 if (epdr == NULL)
917 goto error_return;
918
9719ad41 919 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
920 goto error_return;
921
922 size = sizeof (RPDR);
9719ad41 923 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
924 if (rpdr == NULL)
925 goto error_return;
926
927 size = sizeof (char *);
9719ad41 928 sv = bfd_malloc (size * count);
b49e97c9
TS
929 if (sv == NULL)
930 goto error_return;
931
932 count = hdr->isymMax;
933 size = swap->external_sym_size;
9719ad41 934 esym = bfd_malloc (size * count);
b49e97c9
TS
935 if (esym == NULL)
936 goto error_return;
937
9719ad41 938 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
939 goto error_return;
940
941 count = hdr->issMax;
9719ad41 942 ss = bfd_malloc (count);
b49e97c9
TS
943 if (ss == NULL)
944 goto error_return;
9719ad41 945 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
b49e97c9
TS
946 goto error_return;
947
948 count = hdr->ipdMax;
949 for (i = 0; i < (unsigned long) count; i++, rp++)
950 {
9719ad41
RS
951 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
952 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
953 rp->adr = sym.value;
954 rp->regmask = pdr.regmask;
955 rp->regoffset = pdr.regoffset;
956 rp->fregmask = pdr.fregmask;
957 rp->fregoffset = pdr.fregoffset;
958 rp->frameoffset = pdr.frameoffset;
959 rp->framereg = pdr.framereg;
960 rp->pcreg = pdr.pcreg;
961 rp->irpss = sindex;
962 sv[i] = ss + sym.iss;
963 sindex += strlen (sv[i]) + 1;
964 }
965 }
966
967 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
968 size = BFD_ALIGN (size, 16);
9719ad41 969 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
970 if (rtproc == NULL)
971 {
972 mips_elf_hash_table (info)->procedure_count = 0;
973 goto error_return;
974 }
975
976 mips_elf_hash_table (info)->procedure_count = count + 2;
977
9719ad41 978 erp = rtproc;
b49e97c9
TS
979 memset (erp, 0, sizeof (struct rpdr_ext));
980 erp++;
981 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
982 strcpy (str, no_name_func);
983 str += strlen (no_name_func) + 1;
984 for (i = 0; i < count; i++)
985 {
986 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
987 strcpy (str, sv[i]);
988 str += strlen (sv[i]) + 1;
989 }
990 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
991
992 /* Set the size and contents of .rtproc section. */
993 s->_raw_size = size;
9719ad41 994 s->contents = rtproc;
b49e97c9
TS
995
996 /* Skip this section later on (I don't think this currently
997 matters, but someday it might). */
9719ad41 998 s->link_order_head = NULL;
b49e97c9
TS
999
1000 if (epdr != NULL)
1001 free (epdr);
1002 if (rpdr != NULL)
1003 free (rpdr);
1004 if (esym != NULL)
1005 free (esym);
1006 if (ss != NULL)
1007 free (ss);
1008 if (sv != NULL)
1009 free (sv);
1010
b34976b6 1011 return TRUE;
b49e97c9
TS
1012
1013 error_return:
1014 if (epdr != NULL)
1015 free (epdr);
1016 if (rpdr != NULL)
1017 free (rpdr);
1018 if (esym != NULL)
1019 free (esym);
1020 if (ss != NULL)
1021 free (ss);
1022 if (sv != NULL)
1023 free (sv);
b34976b6 1024 return FALSE;
b49e97c9
TS
1025}
1026
1027/* Check the mips16 stubs for a particular symbol, and see if we can
1028 discard them. */
1029
b34976b6 1030static bfd_boolean
9719ad41
RS
1031mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1032 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1033{
1034 if (h->root.root.type == bfd_link_hash_warning)
1035 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1036
1037 if (h->fn_stub != NULL
1038 && ! h->need_fn_stub)
1039 {
1040 /* We don't need the fn_stub; the only references to this symbol
1041 are 16 bit calls. Clobber the size to 0 to prevent it from
1042 being included in the link. */
1043 h->fn_stub->_raw_size = 0;
1044 h->fn_stub->_cooked_size = 0;
1045 h->fn_stub->flags &= ~SEC_RELOC;
1046 h->fn_stub->reloc_count = 0;
1047 h->fn_stub->flags |= SEC_EXCLUDE;
1048 }
1049
1050 if (h->call_stub != NULL
1051 && h->root.other == STO_MIPS16)
1052 {
1053 /* We don't need the call_stub; this is a 16 bit function, so
1054 calls from other 16 bit functions are OK. Clobber the size
1055 to 0 to prevent it from being included in the link. */
1056 h->call_stub->_raw_size = 0;
1057 h->call_stub->_cooked_size = 0;
1058 h->call_stub->flags &= ~SEC_RELOC;
1059 h->call_stub->reloc_count = 0;
1060 h->call_stub->flags |= SEC_EXCLUDE;
1061 }
1062
1063 if (h->call_fp_stub != NULL
1064 && h->root.other == STO_MIPS16)
1065 {
1066 /* We don't need the call_stub; this is a 16 bit function, so
1067 calls from other 16 bit functions are OK. Clobber the size
1068 to 0 to prevent it from being included in the link. */
1069 h->call_fp_stub->_raw_size = 0;
1070 h->call_fp_stub->_cooked_size = 0;
1071 h->call_fp_stub->flags &= ~SEC_RELOC;
1072 h->call_fp_stub->reloc_count = 0;
1073 h->call_fp_stub->flags |= SEC_EXCLUDE;
1074 }
1075
b34976b6 1076 return TRUE;
b49e97c9
TS
1077}
1078\f
1079bfd_reloc_status_type
9719ad41
RS
1080_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1081 arelent *reloc_entry, asection *input_section,
1082 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1083{
1084 bfd_vma relocation;
a7ebbfdf 1085 bfd_signed_vma val;
30ac9238 1086 bfd_reloc_status_type status;
b49e97c9
TS
1087
1088 if (bfd_is_com_section (symbol->section))
1089 relocation = 0;
1090 else
1091 relocation = symbol->value;
1092
1093 relocation += symbol->section->output_section->vma;
1094 relocation += symbol->section->output_offset;
1095
1096 if (reloc_entry->address > input_section->_cooked_size)
1097 return bfd_reloc_outofrange;
1098
b49e97c9 1099 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1100 val = reloc_entry->addend;
1101
30ac9238 1102 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1103
b49e97c9 1104 /* Adjust val for the final section location and GP value. If we
1049f94e 1105 are producing relocatable output, we don't want to do this for
b49e97c9 1106 an external symbol. */
1049f94e 1107 if (! relocatable
b49e97c9
TS
1108 || (symbol->flags & BSF_SECTION_SYM) != 0)
1109 val += relocation - gp;
1110
a7ebbfdf
TS
1111 if (reloc_entry->howto->partial_inplace)
1112 {
30ac9238
RS
1113 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1114 (bfd_byte *) data
1115 + reloc_entry->address);
1116 if (status != bfd_reloc_ok)
1117 return status;
a7ebbfdf
TS
1118 }
1119 else
1120 reloc_entry->addend = val;
b49e97c9 1121
1049f94e 1122 if (relocatable)
b49e97c9 1123 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1124
1125 return bfd_reloc_ok;
1126}
1127
1128/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1129 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1130 that contains the relocation field and DATA points to the start of
1131 INPUT_SECTION. */
1132
1133struct mips_hi16
1134{
1135 struct mips_hi16 *next;
1136 bfd_byte *data;
1137 asection *input_section;
1138 arelent rel;
1139};
1140
1141/* FIXME: This should not be a static variable. */
1142
1143static struct mips_hi16 *mips_hi16_list;
1144
1145/* A howto special_function for REL *HI16 relocations. We can only
1146 calculate the correct value once we've seen the partnering
1147 *LO16 relocation, so just save the information for later.
1148
1149 The ABI requires that the *LO16 immediately follow the *HI16.
1150 However, as a GNU extension, we permit an arbitrary number of
1151 *HI16s to be associated with a single *LO16. This significantly
1152 simplies the relocation handling in gcc. */
1153
1154bfd_reloc_status_type
1155_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1156 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1157 asection *input_section, bfd *output_bfd,
1158 char **error_message ATTRIBUTE_UNUSED)
1159{
1160 struct mips_hi16 *n;
1161
1162 if (reloc_entry->address > input_section->_cooked_size)
1163 return bfd_reloc_outofrange;
1164
1165 n = bfd_malloc (sizeof *n);
1166 if (n == NULL)
1167 return bfd_reloc_outofrange;
1168
1169 n->next = mips_hi16_list;
1170 n->data = data;
1171 n->input_section = input_section;
1172 n->rel = *reloc_entry;
1173 mips_hi16_list = n;
1174
1175 if (output_bfd != NULL)
1176 reloc_entry->address += input_section->output_offset;
1177
1178 return bfd_reloc_ok;
1179}
1180
1181/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1182 like any other 16-bit relocation when applied to global symbols, but is
1183 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1184
1185bfd_reloc_status_type
1186_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1187 void *data, asection *input_section,
1188 bfd *output_bfd, char **error_message)
1189{
1190 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1191 || bfd_is_und_section (bfd_get_section (symbol))
1192 || bfd_is_com_section (bfd_get_section (symbol)))
1193 /* The relocation is against a global symbol. */
1194 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1195 input_section, output_bfd,
1196 error_message);
1197
1198 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1199 input_section, output_bfd, error_message);
1200}
1201
1202/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1203 is a straightforward 16 bit inplace relocation, but we must deal with
1204 any partnering high-part relocations as well. */
1205
1206bfd_reloc_status_type
1207_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1208 void *data, asection *input_section,
1209 bfd *output_bfd, char **error_message)
1210{
1211 bfd_vma vallo;
1212
1213 if (reloc_entry->address > input_section->_cooked_size)
1214 return bfd_reloc_outofrange;
1215
1216 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1217 while (mips_hi16_list != NULL)
1218 {
1219 bfd_reloc_status_type ret;
1220 struct mips_hi16 *hi;
1221
1222 hi = mips_hi16_list;
1223
1224 /* R_MIPS_GOT16 relocations are something of a special case. We
1225 want to install the addend in the same way as for a R_MIPS_HI16
1226 relocation (with a rightshift of 16). However, since GOT16
1227 relocations can also be used with global symbols, their howto
1228 has a rightshift of 0. */
1229 if (hi->rel.howto->type == R_MIPS_GOT16)
1230 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1231
1232 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1233 carry or borrow will induce a change of +1 or -1 in the high part. */
1234 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1235
1236 /* R_MIPS_GNU_REL_HI16 relocations are relative to the address of the
1237 lo16 relocation, not their own address. If we're calculating the
1238 final value, and hence subtracting the "PC", subtract the offset
1239 of the lo16 relocation from here. */
1240 if (output_bfd == NULL && hi->rel.howto->type == R_MIPS_GNU_REL_HI16)
1241 hi->rel.addend -= reloc_entry->address - hi->rel.address;
1242
1243 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1244 hi->input_section, output_bfd,
1245 error_message);
1246 if (ret != bfd_reloc_ok)
1247 return ret;
1248
1249 mips_hi16_list = hi->next;
1250 free (hi);
1251 }
1252
1253 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1254 input_section, output_bfd,
1255 error_message);
1256}
1257
1258/* A generic howto special_function. This calculates and installs the
1259 relocation itself, thus avoiding the oft-discussed problems in
1260 bfd_perform_relocation and bfd_install_relocation. */
1261
1262bfd_reloc_status_type
1263_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1264 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1265 asection *input_section, bfd *output_bfd,
1266 char **error_message ATTRIBUTE_UNUSED)
1267{
1268 bfd_signed_vma val;
1269 bfd_reloc_status_type status;
1270 bfd_boolean relocatable;
1271
1272 relocatable = (output_bfd != NULL);
1273
1274 if (reloc_entry->address > input_section->_cooked_size)
1275 return bfd_reloc_outofrange;
1276
1277 /* Build up the field adjustment in VAL. */
1278 val = 0;
1279 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1280 {
1281 /* Either we're calculating the final field value or we have a
1282 relocation against a section symbol. Add in the section's
1283 offset or address. */
1284 val += symbol->section->output_section->vma;
1285 val += symbol->section->output_offset;
1286 }
1287
1288 if (!relocatable)
1289 {
1290 /* We're calculating the final field value. Add in the symbol's value
1291 and, if pc-relative, subtract the address of the field itself. */
1292 val += symbol->value;
1293 if (reloc_entry->howto->pc_relative)
1294 {
1295 val -= input_section->output_section->vma;
1296 val -= input_section->output_offset;
1297 val -= reloc_entry->address;
1298 }
1299 }
1300
1301 /* VAL is now the final adjustment. If we're keeping this relocation
1302 in the output file, and if the relocation uses a separate addend,
1303 we just need to add VAL to that addend. Otherwise we need to add
1304 VAL to the relocation field itself. */
1305 if (relocatable && !reloc_entry->howto->partial_inplace)
1306 reloc_entry->addend += val;
1307 else
1308 {
1309 /* Add in the separate addend, if any. */
1310 val += reloc_entry->addend;
1311
1312 /* Add VAL to the relocation field. */
1313 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1314 (bfd_byte *) data
1315 + reloc_entry->address);
1316 if (status != bfd_reloc_ok)
1317 return status;
1318 }
1319
1320 if (relocatable)
1321 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1322
1323 return bfd_reloc_ok;
1324}
1325\f
1326/* Swap an entry in a .gptab section. Note that these routines rely
1327 on the equivalence of the two elements of the union. */
1328
1329static void
9719ad41
RS
1330bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1331 Elf32_gptab *in)
b49e97c9
TS
1332{
1333 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1334 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1335}
1336
1337static void
9719ad41
RS
1338bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1339 Elf32_External_gptab *ex)
b49e97c9
TS
1340{
1341 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1342 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1343}
1344
1345static void
9719ad41
RS
1346bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1347 Elf32_External_compact_rel *ex)
b49e97c9
TS
1348{
1349 H_PUT_32 (abfd, in->id1, ex->id1);
1350 H_PUT_32 (abfd, in->num, ex->num);
1351 H_PUT_32 (abfd, in->id2, ex->id2);
1352 H_PUT_32 (abfd, in->offset, ex->offset);
1353 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1354 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1355}
1356
1357static void
9719ad41
RS
1358bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1359 Elf32_External_crinfo *ex)
b49e97c9
TS
1360{
1361 unsigned long l;
1362
1363 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1364 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1365 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1366 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1367 H_PUT_32 (abfd, l, ex->info);
1368 H_PUT_32 (abfd, in->konst, ex->konst);
1369 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1370}
b49e97c9
TS
1371\f
1372/* A .reginfo section holds a single Elf32_RegInfo structure. These
1373 routines swap this structure in and out. They are used outside of
1374 BFD, so they are globally visible. */
1375
1376void
9719ad41
RS
1377bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1378 Elf32_RegInfo *in)
b49e97c9
TS
1379{
1380 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1381 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1382 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1383 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1384 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1385 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1386}
1387
1388void
9719ad41
RS
1389bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1390 Elf32_External_RegInfo *ex)
b49e97c9
TS
1391{
1392 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1393 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1394 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1395 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1396 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1397 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1398}
1399
1400/* In the 64 bit ABI, the .MIPS.options section holds register
1401 information in an Elf64_Reginfo structure. These routines swap
1402 them in and out. They are globally visible because they are used
1403 outside of BFD. These routines are here so that gas can call them
1404 without worrying about whether the 64 bit ABI has been included. */
1405
1406void
9719ad41
RS
1407bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1408 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1409{
1410 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1411 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1412 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1413 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1414 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1415 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1416 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1417}
1418
1419void
9719ad41
RS
1420bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1421 Elf64_External_RegInfo *ex)
b49e97c9
TS
1422{
1423 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1424 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1425 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1426 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1427 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1428 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1429 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1430}
1431
1432/* Swap in an options header. */
1433
1434void
9719ad41
RS
1435bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1436 Elf_Internal_Options *in)
b49e97c9
TS
1437{
1438 in->kind = H_GET_8 (abfd, ex->kind);
1439 in->size = H_GET_8 (abfd, ex->size);
1440 in->section = H_GET_16 (abfd, ex->section);
1441 in->info = H_GET_32 (abfd, ex->info);
1442}
1443
1444/* Swap out an options header. */
1445
1446void
9719ad41
RS
1447bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1448 Elf_External_Options *ex)
b49e97c9
TS
1449{
1450 H_PUT_8 (abfd, in->kind, ex->kind);
1451 H_PUT_8 (abfd, in->size, ex->size);
1452 H_PUT_16 (abfd, in->section, ex->section);
1453 H_PUT_32 (abfd, in->info, ex->info);
1454}
1455\f
1456/* This function is called via qsort() to sort the dynamic relocation
1457 entries by increasing r_symndx value. */
1458
1459static int
9719ad41 1460sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1461{
947216bf
AM
1462 Elf_Internal_Rela int_reloc1;
1463 Elf_Internal_Rela int_reloc2;
b49e97c9 1464
947216bf
AM
1465 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1466 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1467
947216bf 1468 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1469}
1470
f4416af6
AO
1471/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1472
1473static int
9719ad41 1474sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
f4416af6
AO
1475{
1476 Elf_Internal_Rela int_reloc1[3];
1477 Elf_Internal_Rela int_reloc2[3];
1478
1479 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1480 (reldyn_sorting_bfd, arg1, int_reloc1);
1481 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1482 (reldyn_sorting_bfd, arg2, int_reloc2);
1483
1484 return (ELF64_R_SYM (int_reloc1[0].r_info)
1485 - ELF64_R_SYM (int_reloc2[0].r_info));
1486}
1487
1488
b49e97c9
TS
1489/* This routine is used to write out ECOFF debugging external symbol
1490 information. It is called via mips_elf_link_hash_traverse. The
1491 ECOFF external symbol information must match the ELF external
1492 symbol information. Unfortunately, at this point we don't know
1493 whether a symbol is required by reloc information, so the two
1494 tables may wind up being different. We must sort out the external
1495 symbol information before we can set the final size of the .mdebug
1496 section, and we must set the size of the .mdebug section before we
1497 can relocate any sections, and we can't know which symbols are
1498 required by relocation until we relocate the sections.
1499 Fortunately, it is relatively unlikely that any symbol will be
1500 stripped but required by a reloc. In particular, it can not happen
1501 when generating a final executable. */
1502
b34976b6 1503static bfd_boolean
9719ad41 1504mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1505{
9719ad41 1506 struct extsym_info *einfo = data;
b34976b6 1507 bfd_boolean strip;
b49e97c9
TS
1508 asection *sec, *output_section;
1509
1510 if (h->root.root.type == bfd_link_hash_warning)
1511 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1512
1513 if (h->root.indx == -2)
b34976b6 1514 strip = FALSE;
b49e97c9
TS
1515 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1516 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1517 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1518 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
b34976b6 1519 strip = TRUE;
b49e97c9
TS
1520 else if (einfo->info->strip == strip_all
1521 || (einfo->info->strip == strip_some
1522 && bfd_hash_lookup (einfo->info->keep_hash,
1523 h->root.root.root.string,
b34976b6
AM
1524 FALSE, FALSE) == NULL))
1525 strip = TRUE;
b49e97c9 1526 else
b34976b6 1527 strip = FALSE;
b49e97c9
TS
1528
1529 if (strip)
b34976b6 1530 return TRUE;
b49e97c9
TS
1531
1532 if (h->esym.ifd == -2)
1533 {
1534 h->esym.jmptbl = 0;
1535 h->esym.cobol_main = 0;
1536 h->esym.weakext = 0;
1537 h->esym.reserved = 0;
1538 h->esym.ifd = ifdNil;
1539 h->esym.asym.value = 0;
1540 h->esym.asym.st = stGlobal;
1541
1542 if (h->root.root.type == bfd_link_hash_undefined
1543 || h->root.root.type == bfd_link_hash_undefweak)
1544 {
1545 const char *name;
1546
1547 /* Use undefined class. Also, set class and type for some
1548 special symbols. */
1549 name = h->root.root.root.string;
1550 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1551 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1552 {
1553 h->esym.asym.sc = scData;
1554 h->esym.asym.st = stLabel;
1555 h->esym.asym.value = 0;
1556 }
1557 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1558 {
1559 h->esym.asym.sc = scAbs;
1560 h->esym.asym.st = stLabel;
1561 h->esym.asym.value =
1562 mips_elf_hash_table (einfo->info)->procedure_count;
1563 }
4a14403c 1564 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1565 {
1566 h->esym.asym.sc = scAbs;
1567 h->esym.asym.st = stLabel;
1568 h->esym.asym.value = elf_gp (einfo->abfd);
1569 }
1570 else
1571 h->esym.asym.sc = scUndefined;
1572 }
1573 else if (h->root.root.type != bfd_link_hash_defined
1574 && h->root.root.type != bfd_link_hash_defweak)
1575 h->esym.asym.sc = scAbs;
1576 else
1577 {
1578 const char *name;
1579
1580 sec = h->root.root.u.def.section;
1581 output_section = sec->output_section;
1582
1583 /* When making a shared library and symbol h is the one from
1584 the another shared library, OUTPUT_SECTION may be null. */
1585 if (output_section == NULL)
1586 h->esym.asym.sc = scUndefined;
1587 else
1588 {
1589 name = bfd_section_name (output_section->owner, output_section);
1590
1591 if (strcmp (name, ".text") == 0)
1592 h->esym.asym.sc = scText;
1593 else if (strcmp (name, ".data") == 0)
1594 h->esym.asym.sc = scData;
1595 else if (strcmp (name, ".sdata") == 0)
1596 h->esym.asym.sc = scSData;
1597 else if (strcmp (name, ".rodata") == 0
1598 || strcmp (name, ".rdata") == 0)
1599 h->esym.asym.sc = scRData;
1600 else if (strcmp (name, ".bss") == 0)
1601 h->esym.asym.sc = scBss;
1602 else if (strcmp (name, ".sbss") == 0)
1603 h->esym.asym.sc = scSBss;
1604 else if (strcmp (name, ".init") == 0)
1605 h->esym.asym.sc = scInit;
1606 else if (strcmp (name, ".fini") == 0)
1607 h->esym.asym.sc = scFini;
1608 else
1609 h->esym.asym.sc = scAbs;
1610 }
1611 }
1612
1613 h->esym.asym.reserved = 0;
1614 h->esym.asym.index = indexNil;
1615 }
1616
1617 if (h->root.root.type == bfd_link_hash_common)
1618 h->esym.asym.value = h->root.root.u.c.size;
1619 else if (h->root.root.type == bfd_link_hash_defined
1620 || h->root.root.type == bfd_link_hash_defweak)
1621 {
1622 if (h->esym.asym.sc == scCommon)
1623 h->esym.asym.sc = scBss;
1624 else if (h->esym.asym.sc == scSCommon)
1625 h->esym.asym.sc = scSBss;
1626
1627 sec = h->root.root.u.def.section;
1628 output_section = sec->output_section;
1629 if (output_section != NULL)
1630 h->esym.asym.value = (h->root.root.u.def.value
1631 + sec->output_offset
1632 + output_section->vma);
1633 else
1634 h->esym.asym.value = 0;
1635 }
1636 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1637 {
1638 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1639 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1640
1641 while (hd->root.root.type == bfd_link_hash_indirect)
1642 {
1643 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1644 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1645 }
1646
1647 if (!no_fn_stub)
1648 {
1649 /* Set type and value for a symbol with a function stub. */
1650 h->esym.asym.st = stProc;
1651 sec = hd->root.root.u.def.section;
1652 if (sec == NULL)
1653 h->esym.asym.value = 0;
1654 else
1655 {
1656 output_section = sec->output_section;
1657 if (output_section != NULL)
1658 h->esym.asym.value = (hd->root.plt.offset
1659 + sec->output_offset
1660 + output_section->vma);
1661 else
1662 h->esym.asym.value = 0;
1663 }
1664#if 0 /* FIXME? */
1665 h->esym.ifd = 0;
1666#endif
1667 }
1668 }
1669
1670 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1671 h->root.root.root.string,
1672 &h->esym))
1673 {
b34976b6
AM
1674 einfo->failed = TRUE;
1675 return FALSE;
b49e97c9
TS
1676 }
1677
b34976b6 1678 return TRUE;
b49e97c9
TS
1679}
1680
1681/* A comparison routine used to sort .gptab entries. */
1682
1683static int
9719ad41 1684gptab_compare (const void *p1, const void *p2)
b49e97c9 1685{
9719ad41
RS
1686 const Elf32_gptab *a1 = p1;
1687 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1688
1689 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1690}
1691\f
b15e6682 1692/* Functions to manage the got entry hash table. */
f4416af6
AO
1693
1694/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1695 hash number. */
1696
1697static INLINE hashval_t
9719ad41 1698mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1699{
1700#ifdef BFD64
1701 return addr + (addr >> 32);
1702#else
1703 return addr;
1704#endif
1705}
1706
1707/* got_entries only match if they're identical, except for gotidx, so
1708 use all fields to compute the hash, and compare the appropriate
1709 union members. */
1710
b15e6682 1711static hashval_t
9719ad41 1712mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1713{
1714 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1715
38985a1c 1716 return entry->symndx
f4416af6 1717 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1718 : entry->abfd->id
1719 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1720 : entry->d.h->root.root.root.hash));
b15e6682
AO
1721}
1722
1723static int
9719ad41 1724mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1725{
1726 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1727 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1728
1729 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1730 && (! e1->abfd ? e1->d.address == e2->d.address
1731 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1732 : e1->d.h == e2->d.h);
1733}
1734
1735/* multi_got_entries are still a match in the case of global objects,
1736 even if the input bfd in which they're referenced differs, so the
1737 hash computation and compare functions are adjusted
1738 accordingly. */
1739
1740static hashval_t
9719ad41 1741mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1742{
1743 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1744
1745 return entry->symndx
1746 + (! entry->abfd
1747 ? mips_elf_hash_bfd_vma (entry->d.address)
1748 : entry->symndx >= 0
1749 ? (entry->abfd->id
1750 + mips_elf_hash_bfd_vma (entry->d.addend))
1751 : entry->d.h->root.root.root.hash);
1752}
1753
1754static int
9719ad41 1755mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1756{
1757 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1758 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1759
1760 return e1->symndx == e2->symndx
1761 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1762 : e1->abfd == NULL || e2->abfd == NULL
1763 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1764 : e1->d.h == e2->d.h);
b15e6682
AO
1765}
1766\f
f4416af6
AO
1767/* Returns the dynamic relocation section for DYNOBJ. */
1768
1769static asection *
9719ad41 1770mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
f4416af6
AO
1771{
1772 static const char dname[] = ".rel.dyn";
1773 asection *sreloc;
1774
1775 sreloc = bfd_get_section_by_name (dynobj, dname);
1776 if (sreloc == NULL && create_p)
1777 {
1778 sreloc = bfd_make_section (dynobj, dname);
1779 if (sreloc == NULL
1780 || ! bfd_set_section_flags (dynobj, sreloc,
1781 (SEC_ALLOC
1782 | SEC_LOAD
1783 | SEC_HAS_CONTENTS
1784 | SEC_IN_MEMORY
1785 | SEC_LINKER_CREATED
1786 | SEC_READONLY))
1787 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1788 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1789 return NULL;
1790 }
1791 return sreloc;
1792}
1793
b49e97c9
TS
1794/* Returns the GOT section for ABFD. */
1795
1796static asection *
9719ad41 1797mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 1798{
f4416af6
AO
1799 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1800 if (sgot == NULL
1801 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1802 return NULL;
1803 return sgot;
b49e97c9
TS
1804}
1805
1806/* Returns the GOT information associated with the link indicated by
1807 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1808 section. */
1809
1810static struct mips_got_info *
9719ad41 1811mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
1812{
1813 asection *sgot;
1814 struct mips_got_info *g;
1815
f4416af6 1816 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1817 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1818 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1819 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1820 BFD_ASSERT (g != NULL);
1821
1822 if (sgotp)
f4416af6
AO
1823 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1824
b49e97c9
TS
1825 return g;
1826}
1827
0176c794
AO
1828/* Obtain the lowest dynamic index of a symbol that was assigned a
1829 global GOT entry. */
1830static long
9719ad41 1831mips_elf_get_global_gotsym_index (bfd *abfd)
0176c794
AO
1832{
1833 asection *sgot;
1834 struct mips_got_info *g;
1835
1836 if (abfd == NULL)
1837 return 0;
143d77c5 1838
0176c794
AO
1839 sgot = mips_elf_got_section (abfd, TRUE);
1840 if (sgot == NULL || mips_elf_section_data (sgot) == NULL)
1841 return 0;
143d77c5 1842
0176c794
AO
1843 g = mips_elf_section_data (sgot)->u.got_info;
1844 if (g == NULL || g->global_gotsym == NULL)
1845 return 0;
143d77c5 1846
0176c794
AO
1847 return g->global_gotsym->dynindx;
1848}
1849
b49e97c9
TS
1850/* Returns the GOT offset at which the indicated address can be found.
1851 If there is not yet a GOT entry for this value, create one. Returns
1852 -1 if no satisfactory GOT offset can be found. */
1853
1854static bfd_vma
9719ad41
RS
1855mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1856 bfd_vma value)
b49e97c9
TS
1857{
1858 asection *sgot;
1859 struct mips_got_info *g;
b15e6682 1860 struct mips_got_entry *entry;
b49e97c9
TS
1861
1862 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1863
f4416af6 1864 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1865 if (entry)
1866 return entry->gotidx;
1867 else
1868 return MINUS_ONE;
b49e97c9
TS
1869}
1870
1871/* Returns the GOT index for the global symbol indicated by H. */
1872
1873static bfd_vma
9719ad41 1874mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
b49e97c9
TS
1875{
1876 bfd_vma index;
1877 asection *sgot;
f4416af6 1878 struct mips_got_info *g, *gg;
d0c7ff07 1879 long global_got_dynindx = 0;
b49e97c9 1880
f4416af6
AO
1881 gg = g = mips_elf_got_info (abfd, &sgot);
1882 if (g->bfd2got && ibfd)
1883 {
1884 struct mips_got_entry e, *p;
143d77c5 1885
f4416af6
AO
1886 BFD_ASSERT (h->dynindx >= 0);
1887
1888 g = mips_elf_got_for_ibfd (g, ibfd);
1889 if (g->next != gg)
1890 {
1891 e.abfd = ibfd;
1892 e.symndx = -1;
1893 e.d.h = (struct mips_elf_link_hash_entry *)h;
1894
9719ad41 1895 p = htab_find (g->got_entries, &e);
f4416af6
AO
1896
1897 BFD_ASSERT (p->gotidx > 0);
1898 return p->gotidx;
1899 }
1900 }
1901
1902 if (gg->global_gotsym != NULL)
1903 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9
TS
1904
1905 /* Once we determine the global GOT entry with the lowest dynamic
1906 symbol table index, we must put all dynamic symbols with greater
1907 indices into the GOT. That makes it easy to calculate the GOT
1908 offset. */
d0c7ff07
TS
1909 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1910 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
b49e97c9
TS
1911 * MIPS_ELF_GOT_SIZE (abfd));
1912 BFD_ASSERT (index < sgot->_raw_size);
1913
1914 return index;
1915}
1916
1917/* Find a GOT entry that is within 32KB of the VALUE. These entries
1918 are supposed to be placed at small offsets in the GOT, i.e.,
1919 within 32KB of GP. Return the index into the GOT for this page,
1920 and store the offset from this entry to the desired address in
1921 OFFSETP, if it is non-NULL. */
1922
1923static bfd_vma
9719ad41
RS
1924mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1925 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
1926{
1927 asection *sgot;
1928 struct mips_got_info *g;
b15e6682
AO
1929 bfd_vma index;
1930 struct mips_got_entry *entry;
b49e97c9
TS
1931
1932 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1933
f4416af6 1934 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682
AO
1935 (value + 0x8000)
1936 & (~(bfd_vma)0xffff));
b49e97c9 1937
b15e6682
AO
1938 if (!entry)
1939 return MINUS_ONE;
143d77c5 1940
b15e6682 1941 index = entry->gotidx;
b49e97c9
TS
1942
1943 if (offsetp)
f4416af6 1944 *offsetp = value - entry->d.address;
b49e97c9
TS
1945
1946 return index;
1947}
1948
1949/* Find a GOT entry whose higher-order 16 bits are the same as those
1950 for value. Return the index into the GOT for this entry. */
1951
1952static bfd_vma
9719ad41
RS
1953mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1954 bfd_vma value, bfd_boolean external)
b49e97c9
TS
1955{
1956 asection *sgot;
1957 struct mips_got_info *g;
b15e6682 1958 struct mips_got_entry *entry;
b49e97c9
TS
1959
1960 if (! external)
1961 {
1962 /* Although the ABI says that it is "the high-order 16 bits" that we
1963 want, it is really the %high value. The complete value is
1964 calculated with a `addiu' of a LO16 relocation, just as with a
1965 HI16/LO16 pair. */
1966 value = mips_elf_high (value) << 16;
1967 }
1968
1969 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1970
f4416af6 1971 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1972 if (entry)
1973 return entry->gotidx;
1974 else
1975 return MINUS_ONE;
b49e97c9
TS
1976}
1977
1978/* Returns the offset for the entry at the INDEXth position
1979 in the GOT. */
1980
1981static bfd_vma
9719ad41
RS
1982mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1983 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
1984{
1985 asection *sgot;
1986 bfd_vma gp;
f4416af6 1987 struct mips_got_info *g;
b49e97c9 1988
f4416af6
AO
1989 g = mips_elf_got_info (dynobj, &sgot);
1990 gp = _bfd_get_gp_value (output_bfd)
1991 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 1992
f4416af6 1993 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
1994}
1995
1996/* Create a local GOT entry for VALUE. Return the index of the entry,
1997 or -1 if it could not be created. */
1998
b15e6682 1999static struct mips_got_entry *
9719ad41
RS
2000mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
2001 struct mips_got_info *gg,
2002 asection *sgot, bfd_vma value)
b49e97c9 2003{
b15e6682 2004 struct mips_got_entry entry, **loc;
f4416af6 2005 struct mips_got_info *g;
b15e6682 2006
f4416af6
AO
2007 entry.abfd = NULL;
2008 entry.symndx = -1;
2009 entry.d.address = value;
2010
2011 g = mips_elf_got_for_ibfd (gg, ibfd);
2012 if (g == NULL)
2013 {
2014 g = mips_elf_got_for_ibfd (gg, abfd);
2015 BFD_ASSERT (g != NULL);
2016 }
b15e6682
AO
2017
2018 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2019 INSERT);
2020 if (*loc)
2021 return *loc;
143d77c5 2022
b15e6682
AO
2023 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2024
2025 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2026
2027 if (! *loc)
2028 return NULL;
143d77c5 2029
b15e6682
AO
2030 memcpy (*loc, &entry, sizeof entry);
2031
b49e97c9
TS
2032 if (g->assigned_gotno >= g->local_gotno)
2033 {
f4416af6 2034 (*loc)->gotidx = -1;
b49e97c9
TS
2035 /* We didn't allocate enough space in the GOT. */
2036 (*_bfd_error_handler)
2037 (_("not enough GOT space for local GOT entries"));
2038 bfd_set_error (bfd_error_bad_value);
b15e6682 2039 return NULL;
b49e97c9
TS
2040 }
2041
2042 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2043 (sgot->contents + entry.gotidx));
2044
2045 return *loc;
b49e97c9
TS
2046}
2047
2048/* Sort the dynamic symbol table so that symbols that need GOT entries
2049 appear towards the end. This reduces the amount of GOT space
2050 required. MAX_LOCAL is used to set the number of local symbols
2051 known to be in the dynamic symbol table. During
2052 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2053 section symbols are added and the count is higher. */
2054
b34976b6 2055static bfd_boolean
9719ad41 2056mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2057{
2058 struct mips_elf_hash_sort_data hsd;
2059 struct mips_got_info *g;
2060 bfd *dynobj;
2061
2062 dynobj = elf_hash_table (info)->dynobj;
2063
f4416af6
AO
2064 g = mips_elf_got_info (dynobj, NULL);
2065
b49e97c9 2066 hsd.low = NULL;
143d77c5 2067 hsd.max_unref_got_dynindx =
f4416af6
AO
2068 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2069 /* In the multi-got case, assigned_gotno of the master got_info
2070 indicate the number of entries that aren't referenced in the
2071 primary GOT, but that must have entries because there are
2072 dynamic relocations that reference it. Since they aren't
2073 referenced, we move them to the end of the GOT, so that they
2074 don't prevent other entries that are referenced from getting
2075 too large offsets. */
2076 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2077 hsd.max_non_got_dynindx = max_local;
2078 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2079 elf_hash_table (info)),
2080 mips_elf_sort_hash_table_f,
2081 &hsd);
2082
2083 /* There should have been enough room in the symbol table to
44c410de 2084 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2085 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2086 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2087 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2088
2089 /* Now we know which dynamic symbol has the lowest dynamic symbol
2090 table index in the GOT. */
b49e97c9
TS
2091 g->global_gotsym = hsd.low;
2092
b34976b6 2093 return TRUE;
b49e97c9
TS
2094}
2095
2096/* If H needs a GOT entry, assign it the highest available dynamic
2097 index. Otherwise, assign it the lowest available dynamic
2098 index. */
2099
b34976b6 2100static bfd_boolean
9719ad41 2101mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2102{
9719ad41 2103 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2104
2105 if (h->root.root.type == bfd_link_hash_warning)
2106 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2107
2108 /* Symbols without dynamic symbol table entries aren't interesting
2109 at all. */
2110 if (h->root.dynindx == -1)
b34976b6 2111 return TRUE;
b49e97c9 2112
f4416af6
AO
2113 /* Global symbols that need GOT entries that are not explicitly
2114 referenced are marked with got offset 2. Those that are
2115 referenced get a 1, and those that don't need GOT entries get
2116 -1. */
2117 if (h->root.got.offset == 2)
2118 {
2119 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2120 hsd->low = (struct elf_link_hash_entry *) h;
2121 h->root.dynindx = hsd->max_unref_got_dynindx++;
2122 }
2123 else if (h->root.got.offset != 1)
b49e97c9
TS
2124 h->root.dynindx = hsd->max_non_got_dynindx++;
2125 else
2126 {
2127 h->root.dynindx = --hsd->min_got_dynindx;
2128 hsd->low = (struct elf_link_hash_entry *) h;
2129 }
2130
b34976b6 2131 return TRUE;
b49e97c9
TS
2132}
2133
2134/* If H is a symbol that needs a global GOT entry, but has a dynamic
2135 symbol table index lower than any we've seen to date, record it for
2136 posterity. */
2137
b34976b6 2138static bfd_boolean
9719ad41
RS
2139mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2140 bfd *abfd, struct bfd_link_info *info,
2141 struct mips_got_info *g)
b49e97c9 2142{
f4416af6
AO
2143 struct mips_got_entry entry, **loc;
2144
b49e97c9
TS
2145 /* A global symbol in the GOT must also be in the dynamic symbol
2146 table. */
7c5fcef7
L
2147 if (h->dynindx == -1)
2148 {
2149 switch (ELF_ST_VISIBILITY (h->other))
2150 {
2151 case STV_INTERNAL:
2152 case STV_HIDDEN:
b34976b6 2153 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2154 break;
2155 }
2156 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 2157 return FALSE;
7c5fcef7 2158 }
b49e97c9 2159
f4416af6
AO
2160 entry.abfd = abfd;
2161 entry.symndx = -1;
2162 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2163
2164 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2165 INSERT);
2166
b49e97c9
TS
2167 /* If we've already marked this entry as needing GOT space, we don't
2168 need to do it again. */
f4416af6
AO
2169 if (*loc)
2170 return TRUE;
2171
2172 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2173
2174 if (! *loc)
2175 return FALSE;
143d77c5 2176
f4416af6
AO
2177 entry.gotidx = -1;
2178 memcpy (*loc, &entry, sizeof entry);
2179
b49e97c9 2180 if (h->got.offset != MINUS_ONE)
b34976b6 2181 return TRUE;
b49e97c9
TS
2182
2183 /* By setting this to a value other than -1, we are indicating that
2184 there needs to be a GOT entry for H. Avoid using zero, as the
2185 generic ELF copy_indirect_symbol tests for <= 0. */
2186 h->got.offset = 1;
2187
b34976b6 2188 return TRUE;
b49e97c9 2189}
f4416af6
AO
2190
2191/* Reserve space in G for a GOT entry containing the value of symbol
2192 SYMNDX in input bfd ABDF, plus ADDEND. */
2193
2194static bfd_boolean
9719ad41
RS
2195mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2196 struct mips_got_info *g)
f4416af6
AO
2197{
2198 struct mips_got_entry entry, **loc;
2199
2200 entry.abfd = abfd;
2201 entry.symndx = symndx;
2202 entry.d.addend = addend;
2203 loc = (struct mips_got_entry **)
2204 htab_find_slot (g->got_entries, &entry, INSERT);
2205
2206 if (*loc)
2207 return TRUE;
2208
2209 entry.gotidx = g->local_gotno++;
2210
2211 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2212
2213 if (! *loc)
2214 return FALSE;
143d77c5 2215
f4416af6
AO
2216 memcpy (*loc, &entry, sizeof entry);
2217
2218 return TRUE;
2219}
2220\f
2221/* Compute the hash value of the bfd in a bfd2got hash entry. */
2222
2223static hashval_t
9719ad41 2224mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2225{
2226 const struct mips_elf_bfd2got_hash *entry
2227 = (struct mips_elf_bfd2got_hash *)entry_;
2228
2229 return entry->bfd->id;
2230}
2231
2232/* Check whether two hash entries have the same bfd. */
2233
2234static int
9719ad41 2235mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2236{
2237 const struct mips_elf_bfd2got_hash *e1
2238 = (const struct mips_elf_bfd2got_hash *)entry1;
2239 const struct mips_elf_bfd2got_hash *e2
2240 = (const struct mips_elf_bfd2got_hash *)entry2;
2241
2242 return e1->bfd == e2->bfd;
2243}
2244
0b25d3e6 2245/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2246 be the master GOT data. */
2247
2248static struct mips_got_info *
9719ad41 2249mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2250{
2251 struct mips_elf_bfd2got_hash e, *p;
2252
2253 if (! g->bfd2got)
2254 return g;
2255
2256 e.bfd = ibfd;
9719ad41 2257 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2258 return p ? p->g : NULL;
2259}
2260
2261/* Create one separate got for each bfd that has entries in the global
2262 got, such that we can tell how many local and global entries each
2263 bfd requires. */
2264
2265static int
9719ad41 2266mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2267{
2268 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2269 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2270 htab_t bfd2got = arg->bfd2got;
2271 struct mips_got_info *g;
2272 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2273 void **bfdgotp;
143d77c5 2274
f4416af6
AO
2275 /* Find the got_info for this GOT entry's input bfd. Create one if
2276 none exists. */
2277 bfdgot_entry.bfd = entry->abfd;
2278 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2279 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2280
2281 if (bfdgot != NULL)
2282 g = bfdgot->g;
2283 else
2284 {
2285 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2286 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2287
2288 if (bfdgot == NULL)
2289 {
2290 arg->obfd = 0;
2291 return 0;
2292 }
2293
2294 *bfdgotp = bfdgot;
2295
2296 bfdgot->bfd = entry->abfd;
2297 bfdgot->g = g = (struct mips_got_info *)
2298 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2299 if (g == NULL)
2300 {
2301 arg->obfd = 0;
2302 return 0;
2303 }
2304
2305 g->global_gotsym = NULL;
2306 g->global_gotno = 0;
2307 g->local_gotno = 0;
2308 g->assigned_gotno = -1;
2309 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 2310 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
2311 if (g->got_entries == NULL)
2312 {
2313 arg->obfd = 0;
2314 return 0;
2315 }
2316
2317 g->bfd2got = NULL;
2318 g->next = NULL;
2319 }
2320
2321 /* Insert the GOT entry in the bfd's got entry hash table. */
2322 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2323 if (*entryp != NULL)
2324 return 1;
143d77c5 2325
f4416af6
AO
2326 *entryp = entry;
2327
2328 if (entry->symndx >= 0 || entry->d.h->forced_local)
2329 ++g->local_gotno;
2330 else
2331 ++g->global_gotno;
2332
2333 return 1;
2334}
2335
2336/* Attempt to merge gots of different input bfds. Try to use as much
2337 as possible of the primary got, since it doesn't require explicit
2338 dynamic relocations, but don't use bfds that would reference global
2339 symbols out of the addressable range. Failing the primary got,
2340 attempt to merge with the current got, or finish the current got
2341 and then make make the new got current. */
2342
2343static int
9719ad41 2344mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
2345{
2346 struct mips_elf_bfd2got_hash *bfd2got
2347 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2348 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2349 unsigned int lcount = bfd2got->g->local_gotno;
2350 unsigned int gcount = bfd2got->g->global_gotno;
2351 unsigned int maxcnt = arg->max_count;
143d77c5 2352
f4416af6
AO
2353 /* If we don't have a primary GOT and this is not too big, use it as
2354 a starting point for the primary GOT. */
2355 if (! arg->primary && lcount + gcount <= maxcnt)
2356 {
2357 arg->primary = bfd2got->g;
2358 arg->primary_count = lcount + gcount;
2359 }
2360 /* If it looks like we can merge this bfd's entries with those of
2361 the primary, merge them. The heuristics is conservative, but we
2362 don't have to squeeze it too hard. */
2363 else if (arg->primary
2364 && (arg->primary_count + lcount + gcount) <= maxcnt)
2365 {
2366 struct mips_got_info *g = bfd2got->g;
2367 int old_lcount = arg->primary->local_gotno;
2368 int old_gcount = arg->primary->global_gotno;
2369
2370 bfd2got->g = arg->primary;
2371
2372 htab_traverse (g->got_entries,
2373 mips_elf_make_got_per_bfd,
2374 arg);
2375 if (arg->obfd == NULL)
2376 return 0;
2377
2378 htab_delete (g->got_entries);
2379 /* We don't have to worry about releasing memory of the actual
2380 got entries, since they're all in the master got_entries hash
2381 table anyway. */
2382
caec41ff 2383 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6
AO
2384 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2385
2386 arg->primary_count = arg->primary->local_gotno
2387 + arg->primary->global_gotno;
2388 }
2389 /* If we can merge with the last-created got, do it. */
2390 else if (arg->current
2391 && arg->current_count + lcount + gcount <= maxcnt)
2392 {
2393 struct mips_got_info *g = bfd2got->g;
2394 int old_lcount = arg->current->local_gotno;
2395 int old_gcount = arg->current->global_gotno;
2396
2397 bfd2got->g = arg->current;
2398
2399 htab_traverse (g->got_entries,
2400 mips_elf_make_got_per_bfd,
2401 arg);
2402 if (arg->obfd == NULL)
2403 return 0;
2404
2405 htab_delete (g->got_entries);
2406
caec41ff 2407 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6
AO
2408 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2409
2410 arg->current_count = arg->current->local_gotno
2411 + arg->current->global_gotno;
2412 }
2413 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2414 fits; if it turns out that it doesn't, we'll get relocation
2415 overflows anyway. */
2416 else
2417 {
2418 bfd2got->g->next = arg->current;
2419 arg->current = bfd2got->g;
143d77c5 2420
f4416af6
AO
2421 arg->current_count = lcount + gcount;
2422 }
2423
2424 return 1;
2425}
2426
2427/* If passed a NULL mips_got_info in the argument, set the marker used
2428 to tell whether a global symbol needs a got entry (in the primary
2429 got) to the given VALUE.
2430
2431 If passed a pointer G to a mips_got_info in the argument (it must
2432 not be the primary GOT), compute the offset from the beginning of
2433 the (primary) GOT section to the entry in G corresponding to the
2434 global symbol. G's assigned_gotno must contain the index of the
2435 first available global GOT entry in G. VALUE must contain the size
2436 of a GOT entry in bytes. For each global GOT entry that requires a
2437 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 2438 marked as not eligible for lazy resolution through a function
f4416af6
AO
2439 stub. */
2440static int
9719ad41 2441mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
2442{
2443 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2444 struct mips_elf_set_global_got_offset_arg *arg
2445 = (struct mips_elf_set_global_got_offset_arg *)p;
2446 struct mips_got_info *g = arg->g;
2447
2448 if (entry->abfd != NULL && entry->symndx == -1
2449 && entry->d.h->root.dynindx != -1)
2450 {
2451 if (g)
2452 {
2453 BFD_ASSERT (g->global_gotsym == NULL);
2454
2455 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
2456 if (arg->info->shared
2457 || (elf_hash_table (arg->info)->dynamic_sections_created
2458 && ((entry->d.h->root.elf_link_hash_flags
2459 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2460 && ((entry->d.h->root.elf_link_hash_flags
2461 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2462 ++arg->needed_relocs;
2463 }
2464 else
2465 entry->d.h->root.got.offset = arg->value;
2466 }
2467
2468 return 1;
2469}
2470
0626d451
RS
2471/* Mark any global symbols referenced in the GOT we are iterating over
2472 as inelligible for lazy resolution stubs. */
2473static int
9719ad41 2474mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
2475{
2476 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2477
2478 if (entry->abfd != NULL
2479 && entry->symndx == -1
2480 && entry->d.h->root.dynindx != -1)
2481 entry->d.h->no_fn_stub = TRUE;
2482
2483 return 1;
2484}
2485
f4416af6
AO
2486/* Follow indirect and warning hash entries so that each got entry
2487 points to the final symbol definition. P must point to a pointer
2488 to the hash table we're traversing. Since this traversal may
2489 modify the hash table, we set this pointer to NULL to indicate
2490 we've made a potentially-destructive change to the hash table, so
2491 the traversal must be restarted. */
2492static int
9719ad41 2493mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
2494{
2495 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2496 htab_t got_entries = *(htab_t *)p;
2497
2498 if (entry->abfd != NULL && entry->symndx == -1)
2499 {
2500 struct mips_elf_link_hash_entry *h = entry->d.h;
2501
2502 while (h->root.root.type == bfd_link_hash_indirect
2503 || h->root.root.type == bfd_link_hash_warning)
2504 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2505
2506 if (entry->d.h == h)
2507 return 1;
143d77c5 2508
f4416af6
AO
2509 entry->d.h = h;
2510
2511 /* If we can't find this entry with the new bfd hash, re-insert
2512 it, and get the traversal restarted. */
2513 if (! htab_find (got_entries, entry))
2514 {
2515 htab_clear_slot (got_entries, entryp);
2516 entryp = htab_find_slot (got_entries, entry, INSERT);
2517 if (! *entryp)
2518 *entryp = entry;
2519 /* Abort the traversal, since the whole table may have
2520 moved, and leave it up to the parent to restart the
2521 process. */
2522 *(htab_t *)p = NULL;
2523 return 0;
2524 }
2525 /* We might want to decrement the global_gotno count, but it's
2526 either too early or too late for that at this point. */
2527 }
143d77c5 2528
f4416af6
AO
2529 return 1;
2530}
2531
2532/* Turn indirect got entries in a got_entries table into their final
2533 locations. */
2534static void
9719ad41 2535mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
2536{
2537 htab_t got_entries;
2538
2539 do
2540 {
2541 got_entries = g->got_entries;
2542
2543 htab_traverse (got_entries,
2544 mips_elf_resolve_final_got_entry,
2545 &got_entries);
2546 }
2547 while (got_entries == NULL);
2548}
2549
2550/* Return the offset of an input bfd IBFD's GOT from the beginning of
2551 the primary GOT. */
2552static bfd_vma
9719ad41 2553mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2554{
2555 if (g->bfd2got == NULL)
2556 return 0;
2557
2558 g = mips_elf_got_for_ibfd (g, ibfd);
2559 if (! g)
2560 return 0;
2561
2562 BFD_ASSERT (g->next);
2563
2564 g = g->next;
143d77c5 2565
f4416af6
AO
2566 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2567}
2568
2569/* Turn a single GOT that is too big for 16-bit addressing into
2570 a sequence of GOTs, each one 16-bit addressable. */
2571
2572static bfd_boolean
9719ad41
RS
2573mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2574 struct mips_got_info *g, asection *got,
2575 bfd_size_type pages)
f4416af6
AO
2576{
2577 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2578 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2579 struct mips_got_info *gg;
2580 unsigned int assign;
2581
2582 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 2583 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
2584 if (g->bfd2got == NULL)
2585 return FALSE;
2586
2587 got_per_bfd_arg.bfd2got = g->bfd2got;
2588 got_per_bfd_arg.obfd = abfd;
2589 got_per_bfd_arg.info = info;
2590
2591 /* Count how many GOT entries each input bfd requires, creating a
2592 map from bfd to got info while at that. */
2593 mips_elf_resolve_final_got_entries (g);
2594 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2595 if (got_per_bfd_arg.obfd == NULL)
2596 return FALSE;
2597
2598 got_per_bfd_arg.current = NULL;
2599 got_per_bfd_arg.primary = NULL;
2600 /* Taking out PAGES entries is a worst-case estimate. We could
2601 compute the maximum number of pages that each separate input bfd
2602 uses, but it's probably not worth it. */
2603 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2604 / MIPS_ELF_GOT_SIZE (abfd))
2605 - MIPS_RESERVED_GOTNO - pages);
2606
2607 /* Try to merge the GOTs of input bfds together, as long as they
2608 don't seem to exceed the maximum GOT size, choosing one of them
2609 to be the primary GOT. */
2610 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2611 if (got_per_bfd_arg.obfd == NULL)
2612 return FALSE;
2613
2614 /* If we find any suitable primary GOT, create an empty one. */
2615 if (got_per_bfd_arg.primary == NULL)
2616 {
2617 g->next = (struct mips_got_info *)
2618 bfd_alloc (abfd, sizeof (struct mips_got_info));
2619 if (g->next == NULL)
2620 return FALSE;
2621
2622 g->next->global_gotsym = NULL;
2623 g->next->global_gotno = 0;
2624 g->next->local_gotno = 0;
2625 g->next->assigned_gotno = 0;
2626 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2627 mips_elf_multi_got_entry_eq,
9719ad41 2628 NULL);
f4416af6
AO
2629 if (g->next->got_entries == NULL)
2630 return FALSE;
2631 g->next->bfd2got = NULL;
2632 }
2633 else
2634 g->next = got_per_bfd_arg.primary;
2635 g->next->next = got_per_bfd_arg.current;
2636
2637 /* GG is now the master GOT, and G is the primary GOT. */
2638 gg = g;
2639 g = g->next;
2640
2641 /* Map the output bfd to the primary got. That's what we're going
2642 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2643 didn't mark in check_relocs, and we want a quick way to find it.
2644 We can't just use gg->next because we're going to reverse the
2645 list. */
2646 {
2647 struct mips_elf_bfd2got_hash *bfdgot;
2648 void **bfdgotp;
143d77c5 2649
f4416af6
AO
2650 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2651 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2652
2653 if (bfdgot == NULL)
2654 return FALSE;
2655
2656 bfdgot->bfd = abfd;
2657 bfdgot->g = g;
2658 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2659
2660 BFD_ASSERT (*bfdgotp == NULL);
2661 *bfdgotp = bfdgot;
2662 }
2663
2664 /* The IRIX dynamic linker requires every symbol that is referenced
2665 in a dynamic relocation to be present in the primary GOT, so
2666 arrange for them to appear after those that are actually
2667 referenced.
2668
2669 GNU/Linux could very well do without it, but it would slow down
2670 the dynamic linker, since it would have to resolve every dynamic
2671 symbol referenced in other GOTs more than once, without help from
2672 the cache. Also, knowing that every external symbol has a GOT
2673 helps speed up the resolution of local symbols too, so GNU/Linux
2674 follows IRIX's practice.
143d77c5 2675
f4416af6
AO
2676 The number 2 is used by mips_elf_sort_hash_table_f to count
2677 global GOT symbols that are unreferenced in the primary GOT, with
2678 an initial dynamic index computed from gg->assigned_gotno, where
2679 the number of unreferenced global entries in the primary GOT is
2680 preserved. */
2681 if (1)
2682 {
2683 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2684 g->global_gotno = gg->global_gotno;
2685 set_got_offset_arg.value = 2;
2686 }
2687 else
2688 {
2689 /* This could be used for dynamic linkers that don't optimize
2690 symbol resolution while applying relocations so as to use
2691 primary GOT entries or assuming the symbol is locally-defined.
2692 With this code, we assign lower dynamic indices to global
2693 symbols that are not referenced in the primary GOT, so that
2694 their entries can be omitted. */
2695 gg->assigned_gotno = 0;
2696 set_got_offset_arg.value = -1;
2697 }
2698
2699 /* Reorder dynamic symbols as described above (which behavior
2700 depends on the setting of VALUE). */
2701 set_got_offset_arg.g = NULL;
2702 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2703 &set_got_offset_arg);
2704 set_got_offset_arg.value = 1;
2705 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2706 &set_got_offset_arg);
2707 if (! mips_elf_sort_hash_table (info, 1))
2708 return FALSE;
2709
2710 /* Now go through the GOTs assigning them offset ranges.
2711 [assigned_gotno, local_gotno[ will be set to the range of local
2712 entries in each GOT. We can then compute the end of a GOT by
2713 adding local_gotno to global_gotno. We reverse the list and make
2714 it circular since then we'll be able to quickly compute the
2715 beginning of a GOT, by computing the end of its predecessor. To
2716 avoid special cases for the primary GOT, while still preserving
2717 assertions that are valid for both single- and multi-got links,
2718 we arrange for the main got struct to have the right number of
2719 global entries, but set its local_gotno such that the initial
2720 offset of the primary GOT is zero. Remember that the primary GOT
2721 will become the last item in the circular linked list, so it
2722 points back to the master GOT. */
2723 gg->local_gotno = -g->global_gotno;
2724 gg->global_gotno = g->global_gotno;
2725 assign = 0;
2726 gg->next = gg;
2727
2728 do
2729 {
2730 struct mips_got_info *gn;
2731
2732 assign += MIPS_RESERVED_GOTNO;
2733 g->assigned_gotno = assign;
2734 g->local_gotno += assign + pages;
2735 assign = g->local_gotno + g->global_gotno;
2736
2737 /* Take g out of the direct list, and push it onto the reversed
2738 list that gg points to. */
2739 gn = g->next;
2740 g->next = gg->next;
2741 gg->next = g;
2742 g = gn;
0626d451
RS
2743
2744 /* Mark global symbols in every non-primary GOT as ineligible for
2745 stubs. */
2746 if (g)
2747 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
2748 }
2749 while (g);
2750
2751 got->_raw_size = (gg->next->local_gotno
2752 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 2753
f4416af6
AO
2754 return TRUE;
2755}
143d77c5 2756
b49e97c9
TS
2757\f
2758/* Returns the first relocation of type r_type found, beginning with
2759 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2760
2761static const Elf_Internal_Rela *
9719ad41
RS
2762mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2763 const Elf_Internal_Rela *relocation,
2764 const Elf_Internal_Rela *relend)
b49e97c9
TS
2765{
2766 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2767 immediately following. However, for the IRIX6 ABI, the next
2768 relocation may be a composed relocation consisting of several
2769 relocations for the same address. In that case, the R_MIPS_LO16
2770 relocation may occur as one of these. We permit a similar
2771 extension in general, as that is useful for GCC. */
2772 while (relocation < relend)
2773 {
2774 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2775 return relocation;
2776
2777 ++relocation;
2778 }
2779
2780 /* We didn't find it. */
2781 bfd_set_error (bfd_error_bad_value);
2782 return NULL;
2783}
2784
2785/* Return whether a relocation is against a local symbol. */
2786
b34976b6 2787static bfd_boolean
9719ad41
RS
2788mips_elf_local_relocation_p (bfd *input_bfd,
2789 const Elf_Internal_Rela *relocation,
2790 asection **local_sections,
2791 bfd_boolean check_forced)
b49e97c9
TS
2792{
2793 unsigned long r_symndx;
2794 Elf_Internal_Shdr *symtab_hdr;
2795 struct mips_elf_link_hash_entry *h;
2796 size_t extsymoff;
2797
2798 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2799 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2800 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2801
2802 if (r_symndx < extsymoff)
b34976b6 2803 return TRUE;
b49e97c9 2804 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 2805 return TRUE;
b49e97c9
TS
2806
2807 if (check_forced)
2808 {
2809 /* Look up the hash table to check whether the symbol
2810 was forced local. */
2811 h = (struct mips_elf_link_hash_entry *)
2812 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2813 /* Find the real hash-table entry for this symbol. */
2814 while (h->root.root.type == bfd_link_hash_indirect
2815 || h->root.root.type == bfd_link_hash_warning)
2816 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2817 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
b34976b6 2818 return TRUE;
b49e97c9
TS
2819 }
2820
b34976b6 2821 return FALSE;
b49e97c9
TS
2822}
2823\f
2824/* Sign-extend VALUE, which has the indicated number of BITS. */
2825
a7ebbfdf 2826bfd_vma
9719ad41 2827_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
2828{
2829 if (value & ((bfd_vma) 1 << (bits - 1)))
2830 /* VALUE is negative. */
2831 value |= ((bfd_vma) - 1) << bits;
2832
2833 return value;
2834}
2835
2836/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 2837 range expressible by a signed number with the indicated number of
b49e97c9
TS
2838 BITS. */
2839
b34976b6 2840static bfd_boolean
9719ad41 2841mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
2842{
2843 bfd_signed_vma svalue = (bfd_signed_vma) value;
2844
2845 if (svalue > (1 << (bits - 1)) - 1)
2846 /* The value is too big. */
b34976b6 2847 return TRUE;
b49e97c9
TS
2848 else if (svalue < -(1 << (bits - 1)))
2849 /* The value is too small. */
b34976b6 2850 return TRUE;
b49e97c9
TS
2851
2852 /* All is well. */
b34976b6 2853 return FALSE;
b49e97c9
TS
2854}
2855
2856/* Calculate the %high function. */
2857
2858static bfd_vma
9719ad41 2859mips_elf_high (bfd_vma value)
b49e97c9
TS
2860{
2861 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2862}
2863
2864/* Calculate the %higher function. */
2865
2866static bfd_vma
9719ad41 2867mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2868{
2869#ifdef BFD64
2870 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2871#else
2872 abort ();
2873 return (bfd_vma) -1;
2874#endif
2875}
2876
2877/* Calculate the %highest function. */
2878
2879static bfd_vma
9719ad41 2880mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2881{
2882#ifdef BFD64
b15e6682 2883 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
2884#else
2885 abort ();
2886 return (bfd_vma) -1;
2887#endif
2888}
2889\f
2890/* Create the .compact_rel section. */
2891
b34976b6 2892static bfd_boolean
9719ad41
RS
2893mips_elf_create_compact_rel_section
2894 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
2895{
2896 flagword flags;
2897 register asection *s;
2898
2899 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2900 {
2901 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2902 | SEC_READONLY);
2903
2904 s = bfd_make_section (abfd, ".compact_rel");
2905 if (s == NULL
2906 || ! bfd_set_section_flags (abfd, s, flags)
2907 || ! bfd_set_section_alignment (abfd, s,
2908 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 2909 return FALSE;
b49e97c9
TS
2910
2911 s->_raw_size = sizeof (Elf32_External_compact_rel);
2912 }
2913
b34976b6 2914 return TRUE;
b49e97c9
TS
2915}
2916
2917/* Create the .got section to hold the global offset table. */
2918
b34976b6 2919static bfd_boolean
9719ad41
RS
2920mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2921 bfd_boolean maybe_exclude)
b49e97c9
TS
2922{
2923 flagword flags;
2924 register asection *s;
2925 struct elf_link_hash_entry *h;
14a793b2 2926 struct bfd_link_hash_entry *bh;
b49e97c9
TS
2927 struct mips_got_info *g;
2928 bfd_size_type amt;
2929
2930 /* This function may be called more than once. */
f4416af6
AO
2931 s = mips_elf_got_section (abfd, TRUE);
2932 if (s)
2933 {
2934 if (! maybe_exclude)
2935 s->flags &= ~SEC_EXCLUDE;
2936 return TRUE;
2937 }
b49e97c9
TS
2938
2939 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2940 | SEC_LINKER_CREATED);
2941
f4416af6
AO
2942 if (maybe_exclude)
2943 flags |= SEC_EXCLUDE;
2944
72b4917c
TS
2945 /* We have to use an alignment of 2**4 here because this is hardcoded
2946 in the function stub generation and in the linker script. */
b49e97c9
TS
2947 s = bfd_make_section (abfd, ".got");
2948 if (s == NULL
2949 || ! bfd_set_section_flags (abfd, s, flags)
72b4917c 2950 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 2951 return FALSE;
b49e97c9
TS
2952
2953 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2954 linker script because we don't want to define the symbol if we
2955 are not creating a global offset table. */
14a793b2 2956 bh = NULL;
b49e97c9
TS
2957 if (! (_bfd_generic_link_add_one_symbol
2958 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 2959 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 2960 return FALSE;
14a793b2
AM
2961
2962 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
2963 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2964 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2965 h->type = STT_OBJECT;
2966
2967 if (info->shared
2968 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 2969 return FALSE;
b49e97c9 2970
b49e97c9 2971 amt = sizeof (struct mips_got_info);
9719ad41 2972 g = bfd_alloc (abfd, amt);
b49e97c9 2973 if (g == NULL)
b34976b6 2974 return FALSE;
b49e97c9 2975 g->global_gotsym = NULL;
e3d54347 2976 g->global_gotno = 0;
b49e97c9
TS
2977 g->local_gotno = MIPS_RESERVED_GOTNO;
2978 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
2979 g->bfd2got = NULL;
2980 g->next = NULL;
b15e6682 2981 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 2982 mips_elf_got_entry_eq, NULL);
b15e6682
AO
2983 if (g->got_entries == NULL)
2984 return FALSE;
f0abc2a1
AM
2985 mips_elf_section_data (s)->u.got_info = g;
2986 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
2987 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2988
b34976b6 2989 return TRUE;
b49e97c9 2990}
b49e97c9
TS
2991\f
2992/* Calculate the value produced by the RELOCATION (which comes from
2993 the INPUT_BFD). The ADDEND is the addend to use for this
2994 RELOCATION; RELOCATION->R_ADDEND is ignored.
2995
2996 The result of the relocation calculation is stored in VALUEP.
2997 REQUIRE_JALXP indicates whether or not the opcode used with this
2998 relocation must be JALX.
2999
3000 This function returns bfd_reloc_continue if the caller need take no
3001 further action regarding this relocation, bfd_reloc_notsupported if
3002 something goes dramatically wrong, bfd_reloc_overflow if an
3003 overflow occurs, and bfd_reloc_ok to indicate success. */
3004
3005static bfd_reloc_status_type
9719ad41
RS
3006mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3007 asection *input_section,
3008 struct bfd_link_info *info,
3009 const Elf_Internal_Rela *relocation,
3010 bfd_vma addend, reloc_howto_type *howto,
3011 Elf_Internal_Sym *local_syms,
3012 asection **local_sections, bfd_vma *valuep,
3013 const char **namep, bfd_boolean *require_jalxp,
3014 bfd_boolean save_addend)
b49e97c9
TS
3015{
3016 /* The eventual value we will return. */
3017 bfd_vma value;
3018 /* The address of the symbol against which the relocation is
3019 occurring. */
3020 bfd_vma symbol = 0;
3021 /* The final GP value to be used for the relocatable, executable, or
3022 shared object file being produced. */
3023 bfd_vma gp = MINUS_ONE;
3024 /* The place (section offset or address) of the storage unit being
3025 relocated. */
3026 bfd_vma p;
3027 /* The value of GP used to create the relocatable object. */
3028 bfd_vma gp0 = MINUS_ONE;
3029 /* The offset into the global offset table at which the address of
3030 the relocation entry symbol, adjusted by the addend, resides
3031 during execution. */
3032 bfd_vma g = MINUS_ONE;
3033 /* The section in which the symbol referenced by the relocation is
3034 located. */
3035 asection *sec = NULL;
3036 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3037 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3038 symbol. */
b34976b6
AM
3039 bfd_boolean local_p, was_local_p;
3040 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3041 bfd_boolean gp_disp_p = FALSE;
b49e97c9
TS
3042 Elf_Internal_Shdr *symtab_hdr;
3043 size_t extsymoff;
3044 unsigned long r_symndx;
3045 int r_type;
b34976b6 3046 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3047 relocation value. */
b34976b6
AM
3048 bfd_boolean overflowed_p;
3049 /* TRUE if this relocation refers to a MIPS16 function. */
3050 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
3051
3052 /* Parse the relocation. */
3053 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3054 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3055 p = (input_section->output_section->vma
3056 + input_section->output_offset
3057 + relocation->r_offset);
3058
3059 /* Assume that there will be no overflow. */
b34976b6 3060 overflowed_p = FALSE;
b49e97c9
TS
3061
3062 /* Figure out whether or not the symbol is local, and get the offset
3063 used in the array of hash table entries. */
3064 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3065 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3066 local_sections, FALSE);
bce03d3d 3067 was_local_p = local_p;
b49e97c9
TS
3068 if (! elf_bad_symtab (input_bfd))
3069 extsymoff = symtab_hdr->sh_info;
3070 else
3071 {
3072 /* The symbol table does not follow the rule that local symbols
3073 must come before globals. */
3074 extsymoff = 0;
3075 }
3076
3077 /* Figure out the value of the symbol. */
3078 if (local_p)
3079 {
3080 Elf_Internal_Sym *sym;
3081
3082 sym = local_syms + r_symndx;
3083 sec = local_sections[r_symndx];
3084
3085 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3086 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3087 || (sec->flags & SEC_MERGE))
b49e97c9 3088 symbol += sym->st_value;
d4df96e6
L
3089 if ((sec->flags & SEC_MERGE)
3090 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3091 {
3092 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3093 addend -= symbol;
3094 addend += sec->output_section->vma + sec->output_offset;
3095 }
b49e97c9
TS
3096
3097 /* MIPS16 text labels should be treated as odd. */
3098 if (sym->st_other == STO_MIPS16)
3099 ++symbol;
3100
3101 /* Record the name of this symbol, for our caller. */
3102 *namep = bfd_elf_string_from_elf_section (input_bfd,
3103 symtab_hdr->sh_link,
3104 sym->st_name);
3105 if (*namep == '\0')
3106 *namep = bfd_section_name (input_bfd, sec);
3107
3108 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3109 }
3110 else
3111 {
560e09e9
NC
3112 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3113
b49e97c9
TS
3114 /* For global symbols we look up the symbol in the hash-table. */
3115 h = ((struct mips_elf_link_hash_entry *)
3116 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3117 /* Find the real hash-table entry for this symbol. */
3118 while (h->root.root.type == bfd_link_hash_indirect
3119 || h->root.root.type == bfd_link_hash_warning)
3120 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3121
3122 /* Record the name of this symbol, for our caller. */
3123 *namep = h->root.root.root.string;
3124
3125 /* See if this is the special _gp_disp symbol. Note that such a
3126 symbol must always be a global symbol. */
560e09e9 3127 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3128 && ! NEWABI_P (input_bfd))
3129 {
3130 /* Relocations against _gp_disp are permitted only with
3131 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3132 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3133 return bfd_reloc_notsupported;
3134
b34976b6 3135 gp_disp_p = TRUE;
b49e97c9
TS
3136 }
3137 /* If this symbol is defined, calculate its address. Note that
3138 _gp_disp is a magic symbol, always implicitly defined by the
3139 linker, so it's inappropriate to check to see whether or not
3140 its defined. */
3141 else if ((h->root.root.type == bfd_link_hash_defined
3142 || h->root.root.type == bfd_link_hash_defweak)
3143 && h->root.root.u.def.section)
3144 {
3145 sec = h->root.root.u.def.section;
3146 if (sec->output_section)
3147 symbol = (h->root.root.u.def.value
3148 + sec->output_section->vma
3149 + sec->output_offset);
3150 else
3151 symbol = h->root.root.u.def.value;
3152 }
3153 else if (h->root.root.type == bfd_link_hash_undefweak)
3154 /* We allow relocations against undefined weak symbols, giving
3155 it the value zero, so that you can undefined weak functions
3156 and check to see if they exist by looking at their
3157 addresses. */
3158 symbol = 0;
3159 else if (info->shared
560e09e9 3160 && info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
3161 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3162 symbol = 0;
560e09e9
NC
3163 else if (strcmp (*namep, "_DYNAMIC_LINK") == 0 ||
3164 strcmp (*namep, "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
3165 {
3166 /* If this is a dynamic link, we should have created a
3167 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3168 in in _bfd_mips_elf_create_dynamic_sections.
3169 Otherwise, we should define the symbol with a value of 0.
3170 FIXME: It should probably get into the symbol table
3171 somehow as well. */
3172 BFD_ASSERT (! info->shared);
3173 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3174 symbol = 0;
3175 }
3176 else
3177 {
3178 if (! ((*info->callbacks->undefined_symbol)
3179 (info, h->root.root.root.string, input_bfd,
3180 input_section, relocation->r_offset,
560e09e9
NC
3181 ((info->shared && info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)
3182 || (!info->shared && info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
b49e97c9
TS
3183 || ELF_ST_VISIBILITY (h->root.other)))))
3184 return bfd_reloc_undefined;
3185 symbol = 0;
3186 }
3187
3188 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3189 }
3190
3191 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3192 need to redirect the call to the stub, unless we're already *in*
3193 a stub. */
1049f94e 3194 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3195 && ((h != NULL && h->fn_stub != NULL)
3196 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3197 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3198 && !mips_elf_stub_section_p (input_bfd, input_section))
3199 {
3200 /* This is a 32- or 64-bit call to a 16-bit function. We should
3201 have already noticed that we were going to need the
3202 stub. */
3203 if (local_p)
3204 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3205 else
3206 {
3207 BFD_ASSERT (h->need_fn_stub);
3208 sec = h->fn_stub;
3209 }
3210
3211 symbol = sec->output_section->vma + sec->output_offset;
3212 }
3213 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3214 need to redirect the call to the stub. */
1049f94e 3215 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3216 && h != NULL
3217 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3218 && !target_is_16_bit_code_p)
3219 {
3220 /* If both call_stub and call_fp_stub are defined, we can figure
3221 out which one to use by seeing which one appears in the input
3222 file. */
3223 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3224 {
3225 asection *o;
3226
3227 sec = NULL;
3228 for (o = input_bfd->sections; o != NULL; o = o->next)
3229 {
3230 if (strncmp (bfd_get_section_name (input_bfd, o),
3231 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3232 {
3233 sec = h->call_fp_stub;
3234 break;
3235 }
3236 }
3237 if (sec == NULL)
3238 sec = h->call_stub;
3239 }
3240 else if (h->call_stub != NULL)
3241 sec = h->call_stub;
3242 else
3243 sec = h->call_fp_stub;
3244
3245 BFD_ASSERT (sec->_raw_size > 0);
3246 symbol = sec->output_section->vma + sec->output_offset;
3247 }
3248
3249 /* Calls from 16-bit code to 32-bit code and vice versa require the
3250 special jalx instruction. */
1049f94e 3251 *require_jalxp = (!info->relocatable
b49e97c9
TS
3252 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3253 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3254
3255 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3256 local_sections, TRUE);
b49e97c9
TS
3257
3258 /* If we haven't already determined the GOT offset, or the GP value,
3259 and we're going to need it, get it now. */
3260 switch (r_type)
3261 {
0fdc1bf1 3262 case R_MIPS_GOT_PAGE:
93a2b7ae 3263 case R_MIPS_GOT_OFST:
d25aed71
RS
3264 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3265 bind locally. */
3266 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 3267 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3268 break;
3269 /* Fall through. */
3270
b49e97c9
TS
3271 case R_MIPS_CALL16:
3272 case R_MIPS_GOT16:
3273 case R_MIPS_GOT_DISP:
3274 case R_MIPS_GOT_HI16:
3275 case R_MIPS_CALL_HI16:
3276 case R_MIPS_GOT_LO16:
3277 case R_MIPS_CALL_LO16:
3278 /* Find the index into the GOT where this value is located. */
3279 if (!local_p)
3280 {
0fdc1bf1
AO
3281 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3282 GOT_PAGE relocation that decays to GOT_DISP because the
3283 symbol turns out to be global. The addend is then added
3284 as GOT_OFST. */
3285 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3286 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3287 input_bfd,
b49e97c9
TS
3288 (struct elf_link_hash_entry *) h);
3289 if (! elf_hash_table(info)->dynamic_sections_created
3290 || (info->shared
3291 && (info->symbolic || h->root.dynindx == -1)
3292 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3293 {
3294 /* This is a static link or a -Bsymbolic link. The
3295 symbol is defined locally, or was forced to be local.
3296 We must initialize this entry in the GOT. */
3297 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3298 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3299 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3300 }
3301 }
3302 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3303 /* There's no need to create a local GOT entry here; the
3304 calculation for a local GOT16 entry does not involve G. */
3305 break;
3306 else
3307 {
f4416af6
AO
3308 g = mips_elf_local_got_index (abfd, input_bfd,
3309 info, symbol + addend);
b49e97c9
TS
3310 if (g == MINUS_ONE)
3311 return bfd_reloc_outofrange;
3312 }
3313
3314 /* Convert GOT indices to actual offsets. */
3315 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3316 abfd, input_bfd, g);
b49e97c9
TS
3317 break;
3318
3319 case R_MIPS_HI16:
3320 case R_MIPS_LO16:
3321 case R_MIPS16_GPREL:
3322 case R_MIPS_GPREL16:
3323 case R_MIPS_GPREL32:
3324 case R_MIPS_LITERAL:
3325 gp0 = _bfd_get_gp_value (input_bfd);
3326 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3327 if (elf_hash_table (info)->dynobj)
3328 gp += mips_elf_adjust_gp (abfd,
3329 mips_elf_got_info
3330 (elf_hash_table (info)->dynobj, NULL),
3331 input_bfd);
b49e97c9
TS
3332 break;
3333
3334 default:
3335 break;
3336 }
3337
3338 /* Figure out what kind of relocation is being performed. */
3339 switch (r_type)
3340 {
3341 case R_MIPS_NONE:
3342 return bfd_reloc_continue;
3343
3344 case R_MIPS_16:
a7ebbfdf 3345 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3346 overflowed_p = mips_elf_overflow_p (value, 16);
3347 break;
3348
3349 case R_MIPS_32:
3350 case R_MIPS_REL32:
3351 case R_MIPS_64:
3352 if ((info->shared
3353 || (elf_hash_table (info)->dynamic_sections_created
3354 && h != NULL
3355 && ((h->root.elf_link_hash_flags
3356 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3357 && ((h->root.elf_link_hash_flags
3358 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3359 && r_symndx != 0
3360 && (input_section->flags & SEC_ALLOC) != 0)
3361 {
3362 /* If we're creating a shared library, or this relocation is
3363 against a symbol in a shared library, then we can't know
3364 where the symbol will end up. So, we create a relocation
3365 record in the output, and leave the job up to the dynamic
3366 linker. */
3367 value = addend;
3368 if (!mips_elf_create_dynamic_relocation (abfd,
3369 info,
3370 relocation,
3371 h,
3372 sec,
3373 symbol,
3374 &value,
3375 input_section))
3376 return bfd_reloc_undefined;
3377 }
3378 else
3379 {
3380 if (r_type != R_MIPS_REL32)
3381 value = symbol + addend;
3382 else
3383 value = addend;
3384 }
3385 value &= howto->dst_mask;
3386 break;
3387
3388 case R_MIPS_PC32:
3389 case R_MIPS_PC64:
3390 case R_MIPS_GNU_REL_LO16:
3391 value = symbol + addend - p;
3392 value &= howto->dst_mask;
3393 break;
3394
0b25d3e6 3395 case R_MIPS_GNU_REL16_S2:
30ac9238 3396 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
0b25d3e6
AO
3397 overflowed_p = mips_elf_overflow_p (value, 18);
3398 value = (value >> 2) & howto->dst_mask;
3399 break;
3400
b49e97c9
TS
3401 case R_MIPS_GNU_REL_HI16:
3402 /* Instead of subtracting 'p' here, we should be subtracting the
3403 equivalent value for the LO part of the reloc, since the value
3404 here is relative to that address. Because that's not easy to do,
3405 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3406 the comment there for more information. */
3407 value = mips_elf_high (addend + symbol - p);
3408 value &= howto->dst_mask;
3409 break;
3410
3411 case R_MIPS16_26:
3412 /* The calculation for R_MIPS16_26 is just the same as for an
3413 R_MIPS_26. It's only the storage of the relocated field into
3414 the output file that's different. That's handled in
3415 mips_elf_perform_relocation. So, we just fall through to the
3416 R_MIPS_26 case here. */
3417 case R_MIPS_26:
3418 if (local_p)
30ac9238 3419 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 3420 else
30ac9238 3421 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
b49e97c9
TS
3422 value &= howto->dst_mask;
3423 break;
3424
3425 case R_MIPS_HI16:
3426 if (!gp_disp_p)
3427 {
3428 value = mips_elf_high (addend + symbol);
3429 value &= howto->dst_mask;
3430 }
3431 else
3432 {
3433 value = mips_elf_high (addend + gp - p);
3434 overflowed_p = mips_elf_overflow_p (value, 16);
3435 }
3436 break;
3437
3438 case R_MIPS_LO16:
3439 if (!gp_disp_p)
3440 value = (symbol + addend) & howto->dst_mask;
3441 else
3442 {
3443 value = addend + gp - p + 4;
3444 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 3445 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
3446 _gp_disp are normally generated from the .cpload
3447 pseudo-op. It generates code that normally looks like
3448 this:
3449
3450 lui $gp,%hi(_gp_disp)
3451 addiu $gp,$gp,%lo(_gp_disp)
3452 addu $gp,$gp,$t9
3453
3454 Here $t9 holds the address of the function being called,
3455 as required by the MIPS ELF ABI. The R_MIPS_LO16
3456 relocation can easily overflow in this situation, but the
3457 R_MIPS_HI16 relocation will handle the overflow.
3458 Therefore, we consider this a bug in the MIPS ABI, and do
3459 not check for overflow here. */
3460 }
3461 break;
3462
3463 case R_MIPS_LITERAL:
3464 /* Because we don't merge literal sections, we can handle this
3465 just like R_MIPS_GPREL16. In the long run, we should merge
3466 shared literals, and then we will need to additional work
3467 here. */
3468
3469 /* Fall through. */
3470
3471 case R_MIPS16_GPREL:
3472 /* The R_MIPS16_GPREL performs the same calculation as
3473 R_MIPS_GPREL16, but stores the relocated bits in a different
3474 order. We don't need to do anything special here; the
3475 differences are handled in mips_elf_perform_relocation. */
3476 case R_MIPS_GPREL16:
bce03d3d
AO
3477 /* Only sign-extend the addend if it was extracted from the
3478 instruction. If the addend was separate, leave it alone,
3479 otherwise we may lose significant bits. */
3480 if (howto->partial_inplace)
a7ebbfdf 3481 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
3482 value = symbol + addend - gp;
3483 /* If the symbol was local, any earlier relocatable links will
3484 have adjusted its addend with the gp offset, so compensate
3485 for that now. Don't do it for symbols forced local in this
3486 link, though, since they won't have had the gp offset applied
3487 to them before. */
3488 if (was_local_p)
3489 value += gp0;
b49e97c9
TS
3490 overflowed_p = mips_elf_overflow_p (value, 16);
3491 break;
3492
3493 case R_MIPS_GOT16:
3494 case R_MIPS_CALL16:
3495 if (local_p)
3496 {
b34976b6 3497 bfd_boolean forced;
b49e97c9
TS
3498
3499 /* The special case is when the symbol is forced to be local. We
3500 need the full address in the GOT since no R_MIPS_LO16 relocation
3501 follows. */
3502 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3503 local_sections, FALSE);
f4416af6
AO
3504 value = mips_elf_got16_entry (abfd, input_bfd, info,
3505 symbol + addend, forced);
b49e97c9
TS
3506 if (value == MINUS_ONE)
3507 return bfd_reloc_outofrange;
3508 value
3509 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3510 abfd, input_bfd, value);
b49e97c9
TS
3511 overflowed_p = mips_elf_overflow_p (value, 16);
3512 break;
3513 }
3514
3515 /* Fall through. */
3516
3517 case R_MIPS_GOT_DISP:
0fdc1bf1 3518 got_disp:
b49e97c9
TS
3519 value = g;
3520 overflowed_p = mips_elf_overflow_p (value, 16);
3521 break;
3522
3523 case R_MIPS_GPREL32:
bce03d3d
AO
3524 value = (addend + symbol + gp0 - gp);
3525 if (!save_addend)
3526 value &= howto->dst_mask;
b49e97c9
TS
3527 break;
3528
3529 case R_MIPS_PC16:
a7ebbfdf 3530 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
0b25d3e6 3531 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
3532 break;
3533
3534 case R_MIPS_GOT_HI16:
3535 case R_MIPS_CALL_HI16:
3536 /* We're allowed to handle these two relocations identically.
3537 The dynamic linker is allowed to handle the CALL relocations
3538 differently by creating a lazy evaluation stub. */
3539 value = g;
3540 value = mips_elf_high (value);
3541 value &= howto->dst_mask;
3542 break;
3543
3544 case R_MIPS_GOT_LO16:
3545 case R_MIPS_CALL_LO16:
3546 value = g & howto->dst_mask;
3547 break;
3548
3549 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
3550 /* GOT_PAGE relocations that reference non-local symbols decay
3551 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3552 0. */
93a2b7ae 3553 if (! local_p)
0fdc1bf1 3554 goto got_disp;
f4416af6 3555 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
3556 if (value == MINUS_ONE)
3557 return bfd_reloc_outofrange;
3558 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3559 abfd, input_bfd, value);
b49e97c9
TS
3560 overflowed_p = mips_elf_overflow_p (value, 16);
3561 break;
3562
3563 case R_MIPS_GOT_OFST:
93a2b7ae 3564 if (local_p)
0fdc1bf1
AO
3565 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3566 else
3567 value = addend;
b49e97c9
TS
3568 overflowed_p = mips_elf_overflow_p (value, 16);
3569 break;
3570
3571 case R_MIPS_SUB:
3572 value = symbol - addend;
3573 value &= howto->dst_mask;
3574 break;
3575
3576 case R_MIPS_HIGHER:
3577 value = mips_elf_higher (addend + symbol);
3578 value &= howto->dst_mask;
3579 break;
3580
3581 case R_MIPS_HIGHEST:
3582 value = mips_elf_highest (addend + symbol);
3583 value &= howto->dst_mask;
3584 break;
3585
3586 case R_MIPS_SCN_DISP:
3587 value = symbol + addend - sec->output_offset;
3588 value &= howto->dst_mask;
3589 break;
3590
3591 case R_MIPS_PJUMP:
3592 case R_MIPS_JALR:
3593 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3594 hint; we could improve performance by honoring that hint. */
3595 return bfd_reloc_continue;
3596
3597 case R_MIPS_GNU_VTINHERIT:
3598 case R_MIPS_GNU_VTENTRY:
3599 /* We don't do anything with these at present. */
3600 return bfd_reloc_continue;
3601
3602 default:
3603 /* An unrecognized relocation type. */
3604 return bfd_reloc_notsupported;
3605 }
3606
3607 /* Store the VALUE for our caller. */
3608 *valuep = value;
3609 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3610}
3611
3612/* Obtain the field relocated by RELOCATION. */
3613
3614static bfd_vma
9719ad41
RS
3615mips_elf_obtain_contents (reloc_howto_type *howto,
3616 const Elf_Internal_Rela *relocation,
3617 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
3618{
3619 bfd_vma x;
3620 bfd_byte *location = contents + relocation->r_offset;
3621
3622 /* Obtain the bytes. */
3623 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3624
3625 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3626 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3627 && bfd_little_endian (input_bfd))
3628 /* The two 16-bit words will be reversed on a little-endian system.
3629 See mips_elf_perform_relocation for more details. */
3630 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3631
3632 return x;
3633}
3634
3635/* It has been determined that the result of the RELOCATION is the
3636 VALUE. Use HOWTO to place VALUE into the output file at the
3637 appropriate position. The SECTION is the section to which the
b34976b6 3638 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
3639 for the relocation must be either JAL or JALX, and it is
3640 unconditionally converted to JALX.
3641
b34976b6 3642 Returns FALSE if anything goes wrong. */
b49e97c9 3643
b34976b6 3644static bfd_boolean
9719ad41
RS
3645mips_elf_perform_relocation (struct bfd_link_info *info,
3646 reloc_howto_type *howto,
3647 const Elf_Internal_Rela *relocation,
3648 bfd_vma value, bfd *input_bfd,
3649 asection *input_section, bfd_byte *contents,
3650 bfd_boolean require_jalx)
b49e97c9
TS
3651{
3652 bfd_vma x;
3653 bfd_byte *location;
3654 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3655
3656 /* Figure out where the relocation is occurring. */
3657 location = contents + relocation->r_offset;
3658
3659 /* Obtain the current value. */
3660 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3661
3662 /* Clear the field we are setting. */
3663 x &= ~howto->dst_mask;
3664
3665 /* If this is the R_MIPS16_26 relocation, we must store the
3666 value in a funny way. */
3667 if (r_type == R_MIPS16_26)
3668 {
3669 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3670 Most mips16 instructions are 16 bits, but these instructions
3671 are 32 bits.
3672
3673 The format of these instructions is:
3674
3675 +--------------+--------------------------------+
3676 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3677 +--------------+--------------------------------+
3678 ! Immediate 15:0 !
3679 +-----------------------------------------------+
3680
3681 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3682 Note that the immediate value in the first word is swapped.
3683
1049f94e 3684 When producing a relocatable object file, R_MIPS16_26 is
b49e97c9
TS
3685 handled mostly like R_MIPS_26. In particular, the addend is
3686 stored as a straight 26-bit value in a 32-bit instruction.
3687 (gas makes life simpler for itself by never adjusting a
3688 R_MIPS16_26 reloc to be against a section, so the addend is
3689 always zero). However, the 32 bit instruction is stored as 2
3690 16-bit values, rather than a single 32-bit value. In a
3691 big-endian file, the result is the same; in a little-endian
3692 file, the two 16-bit halves of the 32 bit value are swapped.
3693 This is so that a disassembler can recognize the jal
3694 instruction.
3695
3696 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3697 instruction stored as two 16-bit values. The addend A is the
3698 contents of the targ26 field. The calculation is the same as
3699 R_MIPS_26. When storing the calculated value, reorder the
3700 immediate value as shown above, and don't forget to store the
3701 value as two 16-bit values.
3702
3703 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3704 defined as
3705
3706 big-endian:
3707 +--------+----------------------+
3708 | | |
3709 | | targ26-16 |
3710 |31 26|25 0|
3711 +--------+----------------------+
3712
3713 little-endian:
3714 +----------+------+-------------+
3715 | | | |
3716 | sub1 | | sub2 |
3717 |0 9|10 15|16 31|
3718 +----------+--------------------+
3719 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3720 ((sub1 << 16) | sub2)).
3721
1049f94e 3722 When producing a relocatable object file, the calculation is
b49e97c9
TS
3723 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3724 When producing a fully linked file, the calculation is
3725 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3726 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3727
1049f94e 3728 if (!info->relocatable)
b49e97c9
TS
3729 /* Shuffle the bits according to the formula above. */
3730 value = (((value & 0x1f0000) << 5)
3731 | ((value & 0x3e00000) >> 5)
3732 | (value & 0xffff));
3733 }
3734 else if (r_type == R_MIPS16_GPREL)
3735 {
3736 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3737 mode. A typical instruction will have a format like this:
3738
3739 +--------------+--------------------------------+
3740 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3741 +--------------+--------------------------------+
3742 ! Major ! rx ! ry ! Imm 4:0 !
3743 +--------------+--------------------------------+
3744
3745 EXTEND is the five bit value 11110. Major is the instruction
3746 opcode.
3747
3748 This is handled exactly like R_MIPS_GPREL16, except that the
3749 addend is retrieved and stored as shown in this diagram; that
3750 is, the Imm fields above replace the V-rel16 field.
3751
3752 All we need to do here is shuffle the bits appropriately. As
3753 above, the two 16-bit halves must be swapped on a
3754 little-endian system. */
3755 value = (((value & 0x7e0) << 16)
3756 | ((value & 0xf800) << 5)
3757 | (value & 0x1f));
3758 }
3759
3760 /* Set the field. */
3761 x |= (value & howto->dst_mask);
3762
3763 /* If required, turn JAL into JALX. */
3764 if (require_jalx)
3765 {
b34976b6 3766 bfd_boolean ok;
b49e97c9
TS
3767 bfd_vma opcode = x >> 26;
3768 bfd_vma jalx_opcode;
3769
3770 /* Check to see if the opcode is already JAL or JALX. */
3771 if (r_type == R_MIPS16_26)
3772 {
3773 ok = ((opcode == 0x6) || (opcode == 0x7));
3774 jalx_opcode = 0x7;
3775 }
3776 else
3777 {
3778 ok = ((opcode == 0x3) || (opcode == 0x1d));
3779 jalx_opcode = 0x1d;
3780 }
3781
3782 /* If the opcode is not JAL or JALX, there's a problem. */
3783 if (!ok)
3784 {
3785 (*_bfd_error_handler)
3786 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3787 bfd_archive_filename (input_bfd),
3788 input_section->name,
3789 (unsigned long) relocation->r_offset);
3790 bfd_set_error (bfd_error_bad_value);
b34976b6 3791 return FALSE;
b49e97c9
TS
3792 }
3793
3794 /* Make this the JALX opcode. */
3795 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3796 }
3797
3798 /* Swap the high- and low-order 16 bits on little-endian systems
3799 when doing a MIPS16 relocation. */
3800 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3801 && bfd_little_endian (input_bfd))
3802 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3803
3804 /* Put the value into the output. */
3805 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
b34976b6 3806 return TRUE;
b49e97c9
TS
3807}
3808
b34976b6 3809/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 3810
b34976b6 3811static bfd_boolean
9719ad41 3812mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
3813{
3814 const char *name = bfd_get_section_name (abfd, section);
3815
3816 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3817 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3818 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3819}
3820\f
3821/* Add room for N relocations to the .rel.dyn section in ABFD. */
3822
3823static void
9719ad41 3824mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
b49e97c9
TS
3825{
3826 asection *s;
3827
f4416af6 3828 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
3829 BFD_ASSERT (s != NULL);
3830
3831 if (s->_raw_size == 0)
3832 {
3833 /* Make room for a null element. */
3834 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3835 ++s->reloc_count;
3836 }
3837 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3838}
3839
3840/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3841 is the original relocation, which is now being transformed into a
3842 dynamic relocation. The ADDENDP is adjusted if necessary; the
3843 caller should store the result in place of the original addend. */
3844
b34976b6 3845static bfd_boolean
9719ad41
RS
3846mips_elf_create_dynamic_relocation (bfd *output_bfd,
3847 struct bfd_link_info *info,
3848 const Elf_Internal_Rela *rel,
3849 struct mips_elf_link_hash_entry *h,
3850 asection *sec, bfd_vma symbol,
3851 bfd_vma *addendp, asection *input_section)
b49e97c9 3852{
947216bf 3853 Elf_Internal_Rela outrel[3];
b34976b6 3854 bfd_boolean skip;
b49e97c9
TS
3855 asection *sreloc;
3856 bfd *dynobj;
3857 int r_type;
3858
3859 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3860 dynobj = elf_hash_table (info)->dynobj;
f4416af6 3861 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
3862 BFD_ASSERT (sreloc != NULL);
3863 BFD_ASSERT (sreloc->contents != NULL);
3864 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3865 < sreloc->_raw_size);
3866
b34976b6 3867 skip = FALSE;
b49e97c9
TS
3868 outrel[0].r_offset =
3869 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3870 outrel[1].r_offset =
3871 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3872 outrel[2].r_offset =
3873 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3874
3875#if 0
3876 /* We begin by assuming that the offset for the dynamic relocation
3877 is the same as for the original relocation. We'll adjust this
3878 later to reflect the correct output offsets. */
a7ebbfdf 3879 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
b49e97c9
TS
3880 {
3881 outrel[1].r_offset = rel[1].r_offset;
3882 outrel[2].r_offset = rel[2].r_offset;
3883 }
3884 else
3885 {
3886 /* Except that in a stab section things are more complex.
3887 Because we compress stab information, the offset given in the
3888 relocation may not be the one we want; we must let the stabs
3889 machinery tell us the offset. */
3890 outrel[1].r_offset = outrel[0].r_offset;
3891 outrel[2].r_offset = outrel[0].r_offset;
3892 /* If we didn't need the relocation at all, this value will be
3893 -1. */
3894 if (outrel[0].r_offset == (bfd_vma) -1)
b34976b6 3895 skip = TRUE;
b49e97c9
TS
3896 }
3897#endif
3898
0d591ff7
RS
3899 if (outrel[0].r_offset == (bfd_vma) -1)
3900 /* The relocation field has been deleted. */
b34976b6 3901 skip = TRUE;
0d591ff7
RS
3902 else if (outrel[0].r_offset == (bfd_vma) -2)
3903 {
3904 /* The relocation field has been converted into a relative value of
3905 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3906 the field to be fully relocated, so add in the symbol's value. */
3907 skip = TRUE;
3908 *addendp += symbol;
3909 }
b49e97c9
TS
3910
3911 /* If we've decided to skip this relocation, just output an empty
3912 record. Note that R_MIPS_NONE == 0, so that this call to memset
3913 is a way of setting R_TYPE to R_MIPS_NONE. */
3914 if (skip)
947216bf 3915 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
b49e97c9
TS
3916 else
3917 {
3918 long indx;
d2fba50d 3919 bfd_boolean defined_p;
b49e97c9
TS
3920
3921 /* We must now calculate the dynamic symbol table index to use
3922 in the relocation. */
3923 if (h != NULL
3924 && (! info->symbolic || (h->root.elf_link_hash_flags
fdd07405 3925 & ELF_LINK_HASH_DEF_REGULAR) == 0)
b49e97c9
TS
3926 /* h->root.dynindx may be -1 if this symbol was marked to
3927 become local. */
fdd07405
RS
3928 && h->root.dynindx != -1)
3929 {
3930 indx = h->root.dynindx;
d2fba50d
RS
3931 if (SGI_COMPAT (output_bfd))
3932 defined_p = ((h->root.elf_link_hash_flags
3933 & ELF_LINK_HASH_DEF_REGULAR) != 0);
3934 else
3935 /* ??? glibc's ld.so just adds the final GOT entry to the
3936 relocation field. It therefore treats relocs against
3937 defined symbols in the same way as relocs against
3938 undefined symbols. */
3939 defined_p = FALSE;
b49e97c9
TS
3940 }
3941 else
3942 {
3943 if (sec != NULL && bfd_is_abs_section (sec))
3944 indx = 0;
3945 else if (sec == NULL || sec->owner == NULL)
3946 {
3947 bfd_set_error (bfd_error_bad_value);
b34976b6 3948 return FALSE;
b49e97c9
TS
3949 }
3950 else
3951 {
3952 indx = elf_section_data (sec->output_section)->dynindx;
3953 if (indx == 0)
3954 abort ();
3955 }
3956
908488f1
AO
3957 /* Instead of generating a relocation using the section
3958 symbol, we may as well make it a fully relative
3959 relocation. We want to avoid generating relocations to
3960 local symbols because we used to generate them
3961 incorrectly, without adding the original symbol value,
3962 which is mandated by the ABI for section symbols. In
3963 order to give dynamic loaders and applications time to
3964 phase out the incorrect use, we refrain from emitting
3965 section-relative relocations. It's not like they're
3966 useful, after all. This should be a bit more efficient
3967 as well. */
fdd07405
RS
3968 /* ??? Although this behavior is compatible with glibc's ld.so,
3969 the ABI says that relocations against STN_UNDEF should have
3970 a symbol value of 0. Irix rld honors this, so relocations
3971 against STN_UNDEF have no effect. */
3972 if (!SGI_COMPAT (output_bfd))
3973 indx = 0;
d2fba50d 3974 defined_p = TRUE;
b49e97c9
TS
3975 }
3976
3977 /* If the relocation was previously an absolute relocation and
3978 this symbol will not be referred to by the relocation, we must
3979 adjust it by the value we give it in the dynamic symbol table.
3980 Otherwise leave the job up to the dynamic linker. */
d2fba50d 3981 if (defined_p && r_type != R_MIPS_REL32)
b49e97c9
TS
3982 *addendp += symbol;
3983
3984 /* The relocation is always an REL32 relocation because we don't
3985 know where the shared library will wind up at load-time. */
34ea4a36
TS
3986 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3987 R_MIPS_REL32);
908488f1
AO
3988 /* For strict adherence to the ABI specification, we should
3989 generate a R_MIPS_64 relocation record by itself before the
3990 _REL32/_64 record as well, such that the addend is read in as
3991 a 64-bit value (REL32 is a 32-bit relocation, after all).
3992 However, since none of the existing ELF64 MIPS dynamic
3993 loaders seems to care, we don't waste space with these
3994 artificial relocations. If this turns out to not be true,
3995 mips_elf_allocate_dynamic_relocation() should be tweaked so
3996 as to make room for a pair of dynamic relocations per
3997 invocation if ABI_64_P, and here we should generate an
3998 additional relocation record with R_MIPS_64 by itself for a
3999 NULL symbol before this relocation record. */
9719ad41 4000 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
033fd5f9
AO
4001 ABI_64_P (output_bfd)
4002 ? R_MIPS_64
4003 : R_MIPS_NONE);
9719ad41 4004 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
b49e97c9
TS
4005
4006 /* Adjust the output offset of the relocation to reference the
4007 correct location in the output file. */
4008 outrel[0].r_offset += (input_section->output_section->vma
4009 + input_section->output_offset);
4010 outrel[1].r_offset += (input_section->output_section->vma
4011 + input_section->output_offset);
4012 outrel[2].r_offset += (input_section->output_section->vma
4013 + input_section->output_offset);
4014 }
4015
4016 /* Put the relocation back out. We have to use the special
4017 relocation outputter in the 64-bit case since the 64-bit
4018 relocation format is non-standard. */
4019 if (ABI_64_P (output_bfd))
4020 {
4021 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4022 (output_bfd, &outrel[0],
4023 (sreloc->contents
4024 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4025 }
4026 else
947216bf
AM
4027 bfd_elf32_swap_reloc_out
4028 (output_bfd, &outrel[0],
4029 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4030
b49e97c9
TS
4031 /* We've now added another relocation. */
4032 ++sreloc->reloc_count;
4033
4034 /* Make sure the output section is writable. The dynamic linker
4035 will be writing to it. */
4036 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4037 |= SHF_WRITE;
4038
4039 /* On IRIX5, make an entry of compact relocation info. */
4040 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
4041 {
4042 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4043 bfd_byte *cr;
4044
4045 if (scpt)
4046 {
4047 Elf32_crinfo cptrel;
4048
4049 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4050 cptrel.vaddr = (rel->r_offset
4051 + input_section->output_section->vma
4052 + input_section->output_offset);
4053 if (r_type == R_MIPS_REL32)
4054 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4055 else
4056 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4057 mips_elf_set_cr_dist2to (cptrel, 0);
4058 cptrel.konst = *addendp;
4059
4060 cr = (scpt->contents
4061 + sizeof (Elf32_External_compact_rel));
4062 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4063 ((Elf32_External_crinfo *) cr
4064 + scpt->reloc_count));
4065 ++scpt->reloc_count;
4066 }
4067 }
4068
b34976b6 4069 return TRUE;
b49e97c9
TS
4070}
4071\f
b49e97c9
TS
4072/* Return the MACH for a MIPS e_flags value. */
4073
4074unsigned long
9719ad41 4075_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4076{
4077 switch (flags & EF_MIPS_MACH)
4078 {
4079 case E_MIPS_MACH_3900:
4080 return bfd_mach_mips3900;
4081
4082 case E_MIPS_MACH_4010:
4083 return bfd_mach_mips4010;
4084
4085 case E_MIPS_MACH_4100:
4086 return bfd_mach_mips4100;
4087
4088 case E_MIPS_MACH_4111:
4089 return bfd_mach_mips4111;
4090
00707a0e
RS
4091 case E_MIPS_MACH_4120:
4092 return bfd_mach_mips4120;
4093
b49e97c9
TS
4094 case E_MIPS_MACH_4650:
4095 return bfd_mach_mips4650;
4096
00707a0e
RS
4097 case E_MIPS_MACH_5400:
4098 return bfd_mach_mips5400;
4099
4100 case E_MIPS_MACH_5500:
4101 return bfd_mach_mips5500;
4102
b49e97c9
TS
4103 case E_MIPS_MACH_SB1:
4104 return bfd_mach_mips_sb1;
4105
4106 default:
4107 switch (flags & EF_MIPS_ARCH)
4108 {
4109 default:
4110 case E_MIPS_ARCH_1:
4111 return bfd_mach_mips3000;
4112 break;
4113
4114 case E_MIPS_ARCH_2:
4115 return bfd_mach_mips6000;
4116 break;
4117
4118 case E_MIPS_ARCH_3:
4119 return bfd_mach_mips4000;
4120 break;
4121
4122 case E_MIPS_ARCH_4:
4123 return bfd_mach_mips8000;
4124 break;
4125
4126 case E_MIPS_ARCH_5:
4127 return bfd_mach_mips5;
4128 break;
4129
4130 case E_MIPS_ARCH_32:
4131 return bfd_mach_mipsisa32;
4132 break;
4133
4134 case E_MIPS_ARCH_64:
4135 return bfd_mach_mipsisa64;
4136 break;
af7ee8bf
CD
4137
4138 case E_MIPS_ARCH_32R2:
4139 return bfd_mach_mipsisa32r2;
4140 break;
5f74bc13
CD
4141
4142 case E_MIPS_ARCH_64R2:
4143 return bfd_mach_mipsisa64r2;
4144 break;
b49e97c9
TS
4145 }
4146 }
4147
4148 return 0;
4149}
4150
4151/* Return printable name for ABI. */
4152
4153static INLINE char *
9719ad41 4154elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
4155{
4156 flagword flags;
4157
4158 flags = elf_elfheader (abfd)->e_flags;
4159 switch (flags & EF_MIPS_ABI)
4160 {
4161 case 0:
4162 if (ABI_N32_P (abfd))
4163 return "N32";
4164 else if (ABI_64_P (abfd))
4165 return "64";
4166 else
4167 return "none";
4168 case E_MIPS_ABI_O32:
4169 return "O32";
4170 case E_MIPS_ABI_O64:
4171 return "O64";
4172 case E_MIPS_ABI_EABI32:
4173 return "EABI32";
4174 case E_MIPS_ABI_EABI64:
4175 return "EABI64";
4176 default:
4177 return "unknown abi";
4178 }
4179}
4180\f
4181/* MIPS ELF uses two common sections. One is the usual one, and the
4182 other is for small objects. All the small objects are kept
4183 together, and then referenced via the gp pointer, which yields
4184 faster assembler code. This is what we use for the small common
4185 section. This approach is copied from ecoff.c. */
4186static asection mips_elf_scom_section;
4187static asymbol mips_elf_scom_symbol;
4188static asymbol *mips_elf_scom_symbol_ptr;
4189
4190/* MIPS ELF also uses an acommon section, which represents an
4191 allocated common symbol which may be overridden by a
4192 definition in a shared library. */
4193static asection mips_elf_acom_section;
4194static asymbol mips_elf_acom_symbol;
4195static asymbol *mips_elf_acom_symbol_ptr;
4196
4197/* Handle the special MIPS section numbers that a symbol may use.
4198 This is used for both the 32-bit and the 64-bit ABI. */
4199
4200void
9719ad41 4201_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
4202{
4203 elf_symbol_type *elfsym;
4204
4205 elfsym = (elf_symbol_type *) asym;
4206 switch (elfsym->internal_elf_sym.st_shndx)
4207 {
4208 case SHN_MIPS_ACOMMON:
4209 /* This section is used in a dynamically linked executable file.
4210 It is an allocated common section. The dynamic linker can
4211 either resolve these symbols to something in a shared
4212 library, or it can just leave them here. For our purposes,
4213 we can consider these symbols to be in a new section. */
4214 if (mips_elf_acom_section.name == NULL)
4215 {
4216 /* Initialize the acommon section. */
4217 mips_elf_acom_section.name = ".acommon";
4218 mips_elf_acom_section.flags = SEC_ALLOC;
4219 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4220 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4221 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4222 mips_elf_acom_symbol.name = ".acommon";
4223 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4224 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4225 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4226 }
4227 asym->section = &mips_elf_acom_section;
4228 break;
4229
4230 case SHN_COMMON:
4231 /* Common symbols less than the GP size are automatically
4232 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4233 if (asym->value > elf_gp_size (abfd)
4234 || IRIX_COMPAT (abfd) == ict_irix6)
4235 break;
4236 /* Fall through. */
4237 case SHN_MIPS_SCOMMON:
4238 if (mips_elf_scom_section.name == NULL)
4239 {
4240 /* Initialize the small common section. */
4241 mips_elf_scom_section.name = ".scommon";
4242 mips_elf_scom_section.flags = SEC_IS_COMMON;
4243 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4244 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4245 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4246 mips_elf_scom_symbol.name = ".scommon";
4247 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4248 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4249 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4250 }
4251 asym->section = &mips_elf_scom_section;
4252 asym->value = elfsym->internal_elf_sym.st_size;
4253 break;
4254
4255 case SHN_MIPS_SUNDEFINED:
4256 asym->section = bfd_und_section_ptr;
4257 break;
4258
4259#if 0 /* for SGI_COMPAT */
4260 case SHN_MIPS_TEXT:
4261 asym->section = mips_elf_text_section_ptr;
4262 break;
4263
4264 case SHN_MIPS_DATA:
4265 asym->section = mips_elf_data_section_ptr;
4266 break;
4267#endif
4268 }
4269}
4270\f
174fd7f9
RS
4271/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4272 relocations against two unnamed section symbols to resolve to the
4273 same address. For example, if we have code like:
4274
4275 lw $4,%got_disp(.data)($gp)
4276 lw $25,%got_disp(.text)($gp)
4277 jalr $25
4278
4279 then the linker will resolve both relocations to .data and the program
4280 will jump there rather than to .text.
4281
4282 We can work around this problem by giving names to local section symbols.
4283 This is also what the MIPSpro tools do. */
4284
4285bfd_boolean
4286_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4287{
4288 return SGI_COMPAT (abfd);
4289}
4290\f
b49e97c9
TS
4291/* Work over a section just before writing it out. This routine is
4292 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4293 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4294 a better way. */
4295
b34976b6 4296bfd_boolean
9719ad41 4297_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
4298{
4299 if (hdr->sh_type == SHT_MIPS_REGINFO
4300 && hdr->sh_size > 0)
4301 {
4302 bfd_byte buf[4];
4303
4304 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4305 BFD_ASSERT (hdr->contents == NULL);
4306
4307 if (bfd_seek (abfd,
4308 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4309 SEEK_SET) != 0)
b34976b6 4310 return FALSE;
b49e97c9 4311 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4312 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4313 return FALSE;
b49e97c9
TS
4314 }
4315
4316 if (hdr->sh_type == SHT_MIPS_OPTIONS
4317 && hdr->bfd_section != NULL
f0abc2a1
AM
4318 && mips_elf_section_data (hdr->bfd_section) != NULL
4319 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4320 {
4321 bfd_byte *contents, *l, *lend;
4322
f0abc2a1
AM
4323 /* We stored the section contents in the tdata field in the
4324 set_section_contents routine. We save the section contents
4325 so that we don't have to read them again.
b49e97c9
TS
4326 At this point we know that elf_gp is set, so we can look
4327 through the section contents to see if there is an
4328 ODK_REGINFO structure. */
4329
f0abc2a1 4330 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4331 l = contents;
4332 lend = contents + hdr->sh_size;
4333 while (l + sizeof (Elf_External_Options) <= lend)
4334 {
4335 Elf_Internal_Options intopt;
4336
4337 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4338 &intopt);
4339 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4340 {
4341 bfd_byte buf[8];
4342
4343 if (bfd_seek (abfd,
4344 (hdr->sh_offset
4345 + (l - contents)
4346 + sizeof (Elf_External_Options)
4347 + (sizeof (Elf64_External_RegInfo) - 8)),
4348 SEEK_SET) != 0)
b34976b6 4349 return FALSE;
b49e97c9 4350 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 4351 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 4352 return FALSE;
b49e97c9
TS
4353 }
4354 else if (intopt.kind == ODK_REGINFO)
4355 {
4356 bfd_byte buf[4];
4357
4358 if (bfd_seek (abfd,
4359 (hdr->sh_offset
4360 + (l - contents)
4361 + sizeof (Elf_External_Options)
4362 + (sizeof (Elf32_External_RegInfo) - 4)),
4363 SEEK_SET) != 0)
b34976b6 4364 return FALSE;
b49e97c9 4365 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4366 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4367 return FALSE;
b49e97c9
TS
4368 }
4369 l += intopt.size;
4370 }
4371 }
4372
4373 if (hdr->bfd_section != NULL)
4374 {
4375 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4376
4377 if (strcmp (name, ".sdata") == 0
4378 || strcmp (name, ".lit8") == 0
4379 || strcmp (name, ".lit4") == 0)
4380 {
4381 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4382 hdr->sh_type = SHT_PROGBITS;
4383 }
4384 else if (strcmp (name, ".sbss") == 0)
4385 {
4386 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4387 hdr->sh_type = SHT_NOBITS;
4388 }
4389 else if (strcmp (name, ".srdata") == 0)
4390 {
4391 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4392 hdr->sh_type = SHT_PROGBITS;
4393 }
4394 else if (strcmp (name, ".compact_rel") == 0)
4395 {
4396 hdr->sh_flags = 0;
4397 hdr->sh_type = SHT_PROGBITS;
4398 }
4399 else if (strcmp (name, ".rtproc") == 0)
4400 {
4401 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4402 {
4403 unsigned int adjust;
4404
4405 adjust = hdr->sh_size % hdr->sh_addralign;
4406 if (adjust != 0)
4407 hdr->sh_size += hdr->sh_addralign - adjust;
4408 }
4409 }
4410 }
4411
b34976b6 4412 return TRUE;
b49e97c9
TS
4413}
4414
4415/* Handle a MIPS specific section when reading an object file. This
4416 is called when elfcode.h finds a section with an unknown type.
4417 This routine supports both the 32-bit and 64-bit ELF ABI.
4418
4419 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4420 how to. */
4421
b34976b6 4422bfd_boolean
9719ad41
RS
4423_bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4424 const char *name)
b49e97c9
TS
4425{
4426 flagword flags = 0;
4427
4428 /* There ought to be a place to keep ELF backend specific flags, but
4429 at the moment there isn't one. We just keep track of the
4430 sections by their name, instead. Fortunately, the ABI gives
4431 suggested names for all the MIPS specific sections, so we will
4432 probably get away with this. */
4433 switch (hdr->sh_type)
4434 {
4435 case SHT_MIPS_LIBLIST:
4436 if (strcmp (name, ".liblist") != 0)
b34976b6 4437 return FALSE;
b49e97c9
TS
4438 break;
4439 case SHT_MIPS_MSYM:
4440 if (strcmp (name, ".msym") != 0)
b34976b6 4441 return FALSE;
b49e97c9
TS
4442 break;
4443 case SHT_MIPS_CONFLICT:
4444 if (strcmp (name, ".conflict") != 0)
b34976b6 4445 return FALSE;
b49e97c9
TS
4446 break;
4447 case SHT_MIPS_GPTAB:
4448 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 4449 return FALSE;
b49e97c9
TS
4450 break;
4451 case SHT_MIPS_UCODE:
4452 if (strcmp (name, ".ucode") != 0)
b34976b6 4453 return FALSE;
b49e97c9
TS
4454 break;
4455 case SHT_MIPS_DEBUG:
4456 if (strcmp (name, ".mdebug") != 0)
b34976b6 4457 return FALSE;
b49e97c9
TS
4458 flags = SEC_DEBUGGING;
4459 break;
4460 case SHT_MIPS_REGINFO:
4461 if (strcmp (name, ".reginfo") != 0
4462 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 4463 return FALSE;
b49e97c9
TS
4464 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4465 break;
4466 case SHT_MIPS_IFACE:
4467 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 4468 return FALSE;
b49e97c9
TS
4469 break;
4470 case SHT_MIPS_CONTENT:
4471 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 4472 return FALSE;
b49e97c9
TS
4473 break;
4474 case SHT_MIPS_OPTIONS:
4475 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
b34976b6 4476 return FALSE;
b49e97c9
TS
4477 break;
4478 case SHT_MIPS_DWARF:
4479 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 4480 return FALSE;
b49e97c9
TS
4481 break;
4482 case SHT_MIPS_SYMBOL_LIB:
4483 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 4484 return FALSE;
b49e97c9
TS
4485 break;
4486 case SHT_MIPS_EVENTS:
4487 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4488 && strncmp (name, ".MIPS.post_rel",
4489 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 4490 return FALSE;
b49e97c9
TS
4491 break;
4492 default:
b34976b6 4493 return FALSE;
b49e97c9
TS
4494 }
4495
4496 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
b34976b6 4497 return FALSE;
b49e97c9
TS
4498
4499 if (flags)
4500 {
4501 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4502 (bfd_get_section_flags (abfd,
4503 hdr->bfd_section)
4504 | flags)))
b34976b6 4505 return FALSE;
b49e97c9
TS
4506 }
4507
4508 /* FIXME: We should record sh_info for a .gptab section. */
4509
4510 /* For a .reginfo section, set the gp value in the tdata information
4511 from the contents of this section. We need the gp value while
4512 processing relocs, so we just get it now. The .reginfo section
4513 is not used in the 64-bit MIPS ELF ABI. */
4514 if (hdr->sh_type == SHT_MIPS_REGINFO)
4515 {
4516 Elf32_External_RegInfo ext;
4517 Elf32_RegInfo s;
4518
9719ad41
RS
4519 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4520 &ext, 0, sizeof ext))
b34976b6 4521 return FALSE;
b49e97c9
TS
4522 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4523 elf_gp (abfd) = s.ri_gp_value;
4524 }
4525
4526 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4527 set the gp value based on what we find. We may see both
4528 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4529 they should agree. */
4530 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4531 {
4532 bfd_byte *contents, *l, *lend;
4533
9719ad41 4534 contents = bfd_malloc (hdr->sh_size);
b49e97c9 4535 if (contents == NULL)
b34976b6 4536 return FALSE;
b49e97c9 4537 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 4538 0, hdr->sh_size))
b49e97c9
TS
4539 {
4540 free (contents);
b34976b6 4541 return FALSE;
b49e97c9
TS
4542 }
4543 l = contents;
4544 lend = contents + hdr->sh_size;
4545 while (l + sizeof (Elf_External_Options) <= lend)
4546 {
4547 Elf_Internal_Options intopt;
4548
4549 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4550 &intopt);
4551 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4552 {
4553 Elf64_Internal_RegInfo intreg;
4554
4555 bfd_mips_elf64_swap_reginfo_in
4556 (abfd,
4557 ((Elf64_External_RegInfo *)
4558 (l + sizeof (Elf_External_Options))),
4559 &intreg);
4560 elf_gp (abfd) = intreg.ri_gp_value;
4561 }
4562 else if (intopt.kind == ODK_REGINFO)
4563 {
4564 Elf32_RegInfo intreg;
4565
4566 bfd_mips_elf32_swap_reginfo_in
4567 (abfd,
4568 ((Elf32_External_RegInfo *)
4569 (l + sizeof (Elf_External_Options))),
4570 &intreg);
4571 elf_gp (abfd) = intreg.ri_gp_value;
4572 }
4573 l += intopt.size;
4574 }
4575 free (contents);
4576 }
4577
b34976b6 4578 return TRUE;
b49e97c9
TS
4579}
4580
4581/* Set the correct type for a MIPS ELF section. We do this by the
4582 section name, which is a hack, but ought to work. This routine is
4583 used by both the 32-bit and the 64-bit ABI. */
4584
b34976b6 4585bfd_boolean
9719ad41 4586_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
4587{
4588 register const char *name;
4589
4590 name = bfd_get_section_name (abfd, sec);
4591
4592 if (strcmp (name, ".liblist") == 0)
4593 {
4594 hdr->sh_type = SHT_MIPS_LIBLIST;
4595 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4596 /* The sh_link field is set in final_write_processing. */
4597 }
4598 else if (strcmp (name, ".conflict") == 0)
4599 hdr->sh_type = SHT_MIPS_CONFLICT;
4600 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4601 {
4602 hdr->sh_type = SHT_MIPS_GPTAB;
4603 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4604 /* The sh_info field is set in final_write_processing. */
4605 }
4606 else if (strcmp (name, ".ucode") == 0)
4607 hdr->sh_type = SHT_MIPS_UCODE;
4608 else if (strcmp (name, ".mdebug") == 0)
4609 {
4610 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 4611 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
4612 entsize of 0. FIXME: Does this matter? */
4613 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4614 hdr->sh_entsize = 0;
4615 else
4616 hdr->sh_entsize = 1;
4617 }
4618 else if (strcmp (name, ".reginfo") == 0)
4619 {
4620 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 4621 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
4622 entsize of 0x18. FIXME: Does this matter? */
4623 if (SGI_COMPAT (abfd))
4624 {
4625 if ((abfd->flags & DYNAMIC) != 0)
4626 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4627 else
4628 hdr->sh_entsize = 1;
4629 }
4630 else
4631 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4632 }
4633 else if (SGI_COMPAT (abfd)
4634 && (strcmp (name, ".hash") == 0
4635 || strcmp (name, ".dynamic") == 0
4636 || strcmp (name, ".dynstr") == 0))
4637 {
4638 if (SGI_COMPAT (abfd))
4639 hdr->sh_entsize = 0;
4640#if 0
8dc1a139 4641 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
4642 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4643#endif
4644 }
4645 else if (strcmp (name, ".got") == 0
4646 || strcmp (name, ".srdata") == 0
4647 || strcmp (name, ".sdata") == 0
4648 || strcmp (name, ".sbss") == 0
4649 || strcmp (name, ".lit4") == 0
4650 || strcmp (name, ".lit8") == 0)
4651 hdr->sh_flags |= SHF_MIPS_GPREL;
4652 else if (strcmp (name, ".MIPS.interfaces") == 0)
4653 {
4654 hdr->sh_type = SHT_MIPS_IFACE;
4655 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4656 }
4657 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4658 {
4659 hdr->sh_type = SHT_MIPS_CONTENT;
4660 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4661 /* The sh_info field is set in final_write_processing. */
4662 }
4663 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4664 {
4665 hdr->sh_type = SHT_MIPS_OPTIONS;
4666 hdr->sh_entsize = 1;
4667 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4668 }
4669 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4670 hdr->sh_type = SHT_MIPS_DWARF;
4671 else if (strcmp (name, ".MIPS.symlib") == 0)
4672 {
4673 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4674 /* The sh_link and sh_info fields are set in
4675 final_write_processing. */
4676 }
4677 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4678 || strncmp (name, ".MIPS.post_rel",
4679 sizeof ".MIPS.post_rel" - 1) == 0)
4680 {
4681 hdr->sh_type = SHT_MIPS_EVENTS;
4682 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4683 /* The sh_link field is set in final_write_processing. */
4684 }
4685 else if (strcmp (name, ".msym") == 0)
4686 {
4687 hdr->sh_type = SHT_MIPS_MSYM;
4688 hdr->sh_flags |= SHF_ALLOC;
4689 hdr->sh_entsize = 8;
4690 }
4691
7a79a000
TS
4692 /* The generic elf_fake_sections will set up REL_HDR using the default
4693 kind of relocations. We used to set up a second header for the
4694 non-default kind of relocations here, but only NewABI would use
4695 these, and the IRIX ld doesn't like resulting empty RELA sections.
4696 Thus we create those header only on demand now. */
b49e97c9 4697
b34976b6 4698 return TRUE;
b49e97c9
TS
4699}
4700
4701/* Given a BFD section, try to locate the corresponding ELF section
4702 index. This is used by both the 32-bit and the 64-bit ABI.
4703 Actually, it's not clear to me that the 64-bit ABI supports these,
4704 but for non-PIC objects we will certainly want support for at least
4705 the .scommon section. */
4706
b34976b6 4707bfd_boolean
9719ad41
RS
4708_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4709 asection *sec, int *retval)
b49e97c9
TS
4710{
4711 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4712 {
4713 *retval = SHN_MIPS_SCOMMON;
b34976b6 4714 return TRUE;
b49e97c9
TS
4715 }
4716 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4717 {
4718 *retval = SHN_MIPS_ACOMMON;
b34976b6 4719 return TRUE;
b49e97c9 4720 }
b34976b6 4721 return FALSE;
b49e97c9
TS
4722}
4723\f
4724/* Hook called by the linker routine which adds symbols from an object
4725 file. We must handle the special MIPS section numbers here. */
4726
b34976b6 4727bfd_boolean
9719ad41
RS
4728_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
4729 const Elf_Internal_Sym *sym, const char **namep,
4730 flagword *flagsp ATTRIBUTE_UNUSED,
4731 asection **secp, bfd_vma *valp)
b49e97c9
TS
4732{
4733 if (SGI_COMPAT (abfd)
4734 && (abfd->flags & DYNAMIC) != 0
4735 && strcmp (*namep, "_rld_new_interface") == 0)
4736 {
8dc1a139 4737 /* Skip IRIX5 rld entry name. */
b49e97c9 4738 *namep = NULL;
b34976b6 4739 return TRUE;
b49e97c9
TS
4740 }
4741
4742 switch (sym->st_shndx)
4743 {
4744 case SHN_COMMON:
4745 /* Common symbols less than the GP size are automatically
4746 treated as SHN_MIPS_SCOMMON symbols. */
4747 if (sym->st_size > elf_gp_size (abfd)
4748 || IRIX_COMPAT (abfd) == ict_irix6)
4749 break;
4750 /* Fall through. */
4751 case SHN_MIPS_SCOMMON:
4752 *secp = bfd_make_section_old_way (abfd, ".scommon");
4753 (*secp)->flags |= SEC_IS_COMMON;
4754 *valp = sym->st_size;
4755 break;
4756
4757 case SHN_MIPS_TEXT:
4758 /* This section is used in a shared object. */
4759 if (elf_tdata (abfd)->elf_text_section == NULL)
4760 {
4761 asymbol *elf_text_symbol;
4762 asection *elf_text_section;
4763 bfd_size_type amt = sizeof (asection);
4764
4765 elf_text_section = bfd_zalloc (abfd, amt);
4766 if (elf_text_section == NULL)
b34976b6 4767 return FALSE;
b49e97c9
TS
4768
4769 amt = sizeof (asymbol);
4770 elf_text_symbol = bfd_zalloc (abfd, amt);
4771 if (elf_text_symbol == NULL)
b34976b6 4772 return FALSE;
b49e97c9
TS
4773
4774 /* Initialize the section. */
4775
4776 elf_tdata (abfd)->elf_text_section = elf_text_section;
4777 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4778
4779 elf_text_section->symbol = elf_text_symbol;
4780 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4781
4782 elf_text_section->name = ".text";
4783 elf_text_section->flags = SEC_NO_FLAGS;
4784 elf_text_section->output_section = NULL;
4785 elf_text_section->owner = abfd;
4786 elf_text_symbol->name = ".text";
4787 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4788 elf_text_symbol->section = elf_text_section;
4789 }
4790 /* This code used to do *secp = bfd_und_section_ptr if
4791 info->shared. I don't know why, and that doesn't make sense,
4792 so I took it out. */
4793 *secp = elf_tdata (abfd)->elf_text_section;
4794 break;
4795
4796 case SHN_MIPS_ACOMMON:
4797 /* Fall through. XXX Can we treat this as allocated data? */
4798 case SHN_MIPS_DATA:
4799 /* This section is used in a shared object. */
4800 if (elf_tdata (abfd)->elf_data_section == NULL)
4801 {
4802 asymbol *elf_data_symbol;
4803 asection *elf_data_section;
4804 bfd_size_type amt = sizeof (asection);
4805
4806 elf_data_section = bfd_zalloc (abfd, amt);
4807 if (elf_data_section == NULL)
b34976b6 4808 return FALSE;
b49e97c9
TS
4809
4810 amt = sizeof (asymbol);
4811 elf_data_symbol = bfd_zalloc (abfd, amt);
4812 if (elf_data_symbol == NULL)
b34976b6 4813 return FALSE;
b49e97c9
TS
4814
4815 /* Initialize the section. */
4816
4817 elf_tdata (abfd)->elf_data_section = elf_data_section;
4818 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4819
4820 elf_data_section->symbol = elf_data_symbol;
4821 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4822
4823 elf_data_section->name = ".data";
4824 elf_data_section->flags = SEC_NO_FLAGS;
4825 elf_data_section->output_section = NULL;
4826 elf_data_section->owner = abfd;
4827 elf_data_symbol->name = ".data";
4828 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4829 elf_data_symbol->section = elf_data_section;
4830 }
4831 /* This code used to do *secp = bfd_und_section_ptr if
4832 info->shared. I don't know why, and that doesn't make sense,
4833 so I took it out. */
4834 *secp = elf_tdata (abfd)->elf_data_section;
4835 break;
4836
4837 case SHN_MIPS_SUNDEFINED:
4838 *secp = bfd_und_section_ptr;
4839 break;
4840 }
4841
4842 if (SGI_COMPAT (abfd)
4843 && ! info->shared
4844 && info->hash->creator == abfd->xvec
4845 && strcmp (*namep, "__rld_obj_head") == 0)
4846 {
4847 struct elf_link_hash_entry *h;
14a793b2 4848 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4849
4850 /* Mark __rld_obj_head as dynamic. */
14a793b2 4851 bh = NULL;
b49e97c9 4852 if (! (_bfd_generic_link_add_one_symbol
9719ad41 4853 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 4854 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4855 return FALSE;
14a793b2
AM
4856
4857 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4858 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4859 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4860 h->type = STT_OBJECT;
4861
4862 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4863 return FALSE;
b49e97c9 4864
b34976b6 4865 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
4866 }
4867
4868 /* If this is a mips16 text symbol, add 1 to the value to make it
4869 odd. This will cause something like .word SYM to come up with
4870 the right value when it is loaded into the PC. */
4871 if (sym->st_other == STO_MIPS16)
4872 ++*valp;
4873
b34976b6 4874 return TRUE;
b49e97c9
TS
4875}
4876
4877/* This hook function is called before the linker writes out a global
4878 symbol. We mark symbols as small common if appropriate. This is
4879 also where we undo the increment of the value for a mips16 symbol. */
4880
b34976b6 4881bfd_boolean
9719ad41
RS
4882_bfd_mips_elf_link_output_symbol_hook
4883 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4884 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4885 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
4886{
4887 /* If we see a common symbol, which implies a relocatable link, then
4888 if a symbol was small common in an input file, mark it as small
4889 common in the output file. */
4890 if (sym->st_shndx == SHN_COMMON
4891 && strcmp (input_sec->name, ".scommon") == 0)
4892 sym->st_shndx = SHN_MIPS_SCOMMON;
4893
79cda7cf
FF
4894 if (sym->st_other == STO_MIPS16)
4895 sym->st_value &= ~1;
b49e97c9 4896
b34976b6 4897 return TRUE;
b49e97c9
TS
4898}
4899\f
4900/* Functions for the dynamic linker. */
4901
4902/* Create dynamic sections when linking against a dynamic object. */
4903
b34976b6 4904bfd_boolean
9719ad41 4905_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4906{
4907 struct elf_link_hash_entry *h;
14a793b2 4908 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4909 flagword flags;
4910 register asection *s;
4911 const char * const *namep;
4912
4913 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4914 | SEC_LINKER_CREATED | SEC_READONLY);
4915
4916 /* Mips ABI requests the .dynamic section to be read only. */
4917 s = bfd_get_section_by_name (abfd, ".dynamic");
4918 if (s != NULL)
4919 {
4920 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 4921 return FALSE;
b49e97c9
TS
4922 }
4923
4924 /* We need to create .got section. */
f4416af6
AO
4925 if (! mips_elf_create_got_section (abfd, info, FALSE))
4926 return FALSE;
4927
4928 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 4929 return FALSE;
b49e97c9 4930
b49e97c9
TS
4931 /* Create .stub section. */
4932 if (bfd_get_section_by_name (abfd,
4933 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4934 {
4935 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4936 if (s == NULL
4937 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4938 || ! bfd_set_section_alignment (abfd, s,
4939 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4940 return FALSE;
b49e97c9
TS
4941 }
4942
4943 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4944 && !info->shared
4945 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4946 {
4947 s = bfd_make_section (abfd, ".rld_map");
4948 if (s == NULL
4949 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4950 || ! bfd_set_section_alignment (abfd, s,
4951 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4952 return FALSE;
b49e97c9
TS
4953 }
4954
4955 /* On IRIX5, we adjust add some additional symbols and change the
4956 alignments of several sections. There is no ABI documentation
4957 indicating that this is necessary on IRIX6, nor any evidence that
4958 the linker takes such action. */
4959 if (IRIX_COMPAT (abfd) == ict_irix5)
4960 {
4961 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4962 {
14a793b2 4963 bh = NULL;
b49e97c9 4964 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
4965 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4966 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4967 return FALSE;
14a793b2
AM
4968
4969 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4970 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4971 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4972 h->type = STT_SECTION;
4973
4974 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4975 return FALSE;
b49e97c9
TS
4976 }
4977
4978 /* We need to create a .compact_rel section. */
4979 if (SGI_COMPAT (abfd))
4980 {
4981 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 4982 return FALSE;
b49e97c9
TS
4983 }
4984
44c410de 4985 /* Change alignments of some sections. */
b49e97c9
TS
4986 s = bfd_get_section_by_name (abfd, ".hash");
4987 if (s != NULL)
d80dcc6a 4988 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4989 s = bfd_get_section_by_name (abfd, ".dynsym");
4990 if (s != NULL)
d80dcc6a 4991 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4992 s = bfd_get_section_by_name (abfd, ".dynstr");
4993 if (s != NULL)
d80dcc6a 4994 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4995 s = bfd_get_section_by_name (abfd, ".reginfo");
4996 if (s != NULL)
d80dcc6a 4997 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4998 s = bfd_get_section_by_name (abfd, ".dynamic");
4999 if (s != NULL)
d80dcc6a 5000 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5001 }
5002
5003 if (!info->shared)
5004 {
14a793b2
AM
5005 const char *name;
5006
5007 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5008 bh = NULL;
5009 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
5010 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5011 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5012 return FALSE;
14a793b2
AM
5013
5014 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
5015 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5016 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5017 h->type = STT_SECTION;
5018
5019 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 5020 return FALSE;
b49e97c9
TS
5021
5022 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5023 {
5024 /* __rld_map is a four byte word located in the .data section
5025 and is filled in by the rtld to contain a pointer to
5026 the _r_debug structure. Its symbol value will be set in
5027 _bfd_mips_elf_finish_dynamic_symbol. */
5028 s = bfd_get_section_by_name (abfd, ".rld_map");
5029 BFD_ASSERT (s != NULL);
5030
14a793b2
AM
5031 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5032 bh = NULL;
5033 if (!(_bfd_generic_link_add_one_symbol
9719ad41 5034 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 5035 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5036 return FALSE;
14a793b2
AM
5037
5038 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
5039 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5040 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5041 h->type = STT_OBJECT;
5042
5043 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 5044 return FALSE;
b49e97c9
TS
5045 }
5046 }
5047
b34976b6 5048 return TRUE;
b49e97c9
TS
5049}
5050\f
5051/* Look through the relocs for a section during the first phase, and
5052 allocate space in the global offset table. */
5053
b34976b6 5054bfd_boolean
9719ad41
RS
5055_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5056 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
5057{
5058 const char *name;
5059 bfd *dynobj;
5060 Elf_Internal_Shdr *symtab_hdr;
5061 struct elf_link_hash_entry **sym_hashes;
5062 struct mips_got_info *g;
5063 size_t extsymoff;
5064 const Elf_Internal_Rela *rel;
5065 const Elf_Internal_Rela *rel_end;
5066 asection *sgot;
5067 asection *sreloc;
9c5bfbb7 5068 const struct elf_backend_data *bed;
b49e97c9 5069
1049f94e 5070 if (info->relocatable)
b34976b6 5071 return TRUE;
b49e97c9
TS
5072
5073 dynobj = elf_hash_table (info)->dynobj;
5074 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5075 sym_hashes = elf_sym_hashes (abfd);
5076 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5077
5078 /* Check for the mips16 stub sections. */
5079
5080 name = bfd_get_section_name (abfd, sec);
5081 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5082 {
5083 unsigned long r_symndx;
5084
5085 /* Look at the relocation information to figure out which symbol
5086 this is for. */
5087
5088 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5089
5090 if (r_symndx < extsymoff
5091 || sym_hashes[r_symndx - extsymoff] == NULL)
5092 {
5093 asection *o;
5094
5095 /* This stub is for a local symbol. This stub will only be
5096 needed if there is some relocation in this BFD, other
5097 than a 16 bit function call, which refers to this symbol. */
5098 for (o = abfd->sections; o != NULL; o = o->next)
5099 {
5100 Elf_Internal_Rela *sec_relocs;
5101 const Elf_Internal_Rela *r, *rend;
5102
5103 /* We can ignore stub sections when looking for relocs. */
5104 if ((o->flags & SEC_RELOC) == 0
5105 || o->reloc_count == 0
5106 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5107 sizeof FN_STUB - 1) == 0
5108 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5109 sizeof CALL_STUB - 1) == 0
5110 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5111 sizeof CALL_FP_STUB - 1) == 0)
5112 continue;
5113
45d6a902 5114 sec_relocs
9719ad41 5115 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 5116 info->keep_memory);
b49e97c9 5117 if (sec_relocs == NULL)
b34976b6 5118 return FALSE;
b49e97c9
TS
5119
5120 rend = sec_relocs + o->reloc_count;
5121 for (r = sec_relocs; r < rend; r++)
5122 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5123 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5124 break;
5125
6cdc0ccc 5126 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5127 free (sec_relocs);
5128
5129 if (r < rend)
5130 break;
5131 }
5132
5133 if (o == NULL)
5134 {
5135 /* There is no non-call reloc for this stub, so we do
5136 not need it. Since this function is called before
5137 the linker maps input sections to output sections, we
5138 can easily discard it by setting the SEC_EXCLUDE
5139 flag. */
5140 sec->flags |= SEC_EXCLUDE;
b34976b6 5141 return TRUE;
b49e97c9
TS
5142 }
5143
5144 /* Record this stub in an array of local symbol stubs for
5145 this BFD. */
5146 if (elf_tdata (abfd)->local_stubs == NULL)
5147 {
5148 unsigned long symcount;
5149 asection **n;
5150 bfd_size_type amt;
5151
5152 if (elf_bad_symtab (abfd))
5153 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5154 else
5155 symcount = symtab_hdr->sh_info;
5156 amt = symcount * sizeof (asection *);
9719ad41 5157 n = bfd_zalloc (abfd, amt);
b49e97c9 5158 if (n == NULL)
b34976b6 5159 return FALSE;
b49e97c9
TS
5160 elf_tdata (abfd)->local_stubs = n;
5161 }
5162
5163 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5164
5165 /* We don't need to set mips16_stubs_seen in this case.
5166 That flag is used to see whether we need to look through
5167 the global symbol table for stubs. We don't need to set
5168 it here, because we just have a local stub. */
5169 }
5170 else
5171 {
5172 struct mips_elf_link_hash_entry *h;
5173
5174 h = ((struct mips_elf_link_hash_entry *)
5175 sym_hashes[r_symndx - extsymoff]);
5176
5177 /* H is the symbol this stub is for. */
5178
5179 h->fn_stub = sec;
b34976b6 5180 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5181 }
5182 }
5183 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5184 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5185 {
5186 unsigned long r_symndx;
5187 struct mips_elf_link_hash_entry *h;
5188 asection **loc;
5189
5190 /* Look at the relocation information to figure out which symbol
5191 this is for. */
5192
5193 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5194
5195 if (r_symndx < extsymoff
5196 || sym_hashes[r_symndx - extsymoff] == NULL)
5197 {
5198 /* This stub was actually built for a static symbol defined
5199 in the same file. We assume that all static symbols in
5200 mips16 code are themselves mips16, so we can simply
5201 discard this stub. Since this function is called before
5202 the linker maps input sections to output sections, we can
5203 easily discard it by setting the SEC_EXCLUDE flag. */
5204 sec->flags |= SEC_EXCLUDE;
b34976b6 5205 return TRUE;
b49e97c9
TS
5206 }
5207
5208 h = ((struct mips_elf_link_hash_entry *)
5209 sym_hashes[r_symndx - extsymoff]);
5210
5211 /* H is the symbol this stub is for. */
5212
5213 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5214 loc = &h->call_fp_stub;
5215 else
5216 loc = &h->call_stub;
5217
5218 /* If we already have an appropriate stub for this function, we
5219 don't need another one, so we can discard this one. Since
5220 this function is called before the linker maps input sections
5221 to output sections, we can easily discard it by setting the
5222 SEC_EXCLUDE flag. We can also discard this section if we
5223 happen to already know that this is a mips16 function; it is
5224 not necessary to check this here, as it is checked later, but
5225 it is slightly faster to check now. */
5226 if (*loc != NULL || h->root.other == STO_MIPS16)
5227 {
5228 sec->flags |= SEC_EXCLUDE;
b34976b6 5229 return TRUE;
b49e97c9
TS
5230 }
5231
5232 *loc = sec;
b34976b6 5233 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5234 }
5235
5236 if (dynobj == NULL)
5237 {
5238 sgot = NULL;
5239 g = NULL;
5240 }
5241 else
5242 {
f4416af6 5243 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5244 if (sgot == NULL)
5245 g = NULL;
5246 else
5247 {
f0abc2a1
AM
5248 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5249 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5250 BFD_ASSERT (g != NULL);
5251 }
5252 }
5253
5254 sreloc = NULL;
5255 bed = get_elf_backend_data (abfd);
5256 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5257 for (rel = relocs; rel < rel_end; ++rel)
5258 {
5259 unsigned long r_symndx;
5260 unsigned int r_type;
5261 struct elf_link_hash_entry *h;
5262
5263 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5264 r_type = ELF_R_TYPE (abfd, rel->r_info);
5265
5266 if (r_symndx < extsymoff)
5267 h = NULL;
5268 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5269 {
5270 (*_bfd_error_handler)
5271 (_("%s: Malformed reloc detected for section %s"),
5272 bfd_archive_filename (abfd), name);
5273 bfd_set_error (bfd_error_bad_value);
b34976b6 5274 return FALSE;
b49e97c9
TS
5275 }
5276 else
5277 {
5278 h = sym_hashes[r_symndx - extsymoff];
5279
5280 /* This may be an indirect symbol created because of a version. */
5281 if (h != NULL)
5282 {
5283 while (h->root.type == bfd_link_hash_indirect)
5284 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5285 }
5286 }
5287
5288 /* Some relocs require a global offset table. */
5289 if (dynobj == NULL || sgot == NULL)
5290 {
5291 switch (r_type)
5292 {
5293 case R_MIPS_GOT16:
5294 case R_MIPS_CALL16:
5295 case R_MIPS_CALL_HI16:
5296 case R_MIPS_CALL_LO16:
5297 case R_MIPS_GOT_HI16:
5298 case R_MIPS_GOT_LO16:
5299 case R_MIPS_GOT_PAGE:
5300 case R_MIPS_GOT_OFST:
5301 case R_MIPS_GOT_DISP:
5302 if (dynobj == NULL)
5303 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5304 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5305 return FALSE;
b49e97c9
TS
5306 g = mips_elf_got_info (dynobj, &sgot);
5307 break;
5308
5309 case R_MIPS_32:
5310 case R_MIPS_REL32:
5311 case R_MIPS_64:
5312 if (dynobj == NULL
5313 && (info->shared || h != NULL)
5314 && (sec->flags & SEC_ALLOC) != 0)
5315 elf_hash_table (info)->dynobj = dynobj = abfd;
5316 break;
5317
5318 default:
5319 break;
5320 }
5321 }
5322
5323 if (!h && (r_type == R_MIPS_CALL_LO16
5324 || r_type == R_MIPS_GOT_LO16
5325 || r_type == R_MIPS_GOT_DISP))
5326 {
5327 /* We may need a local GOT entry for this relocation. We
5328 don't count R_MIPS_GOT_PAGE because we can estimate the
5329 maximum number of pages needed by looking at the size of
5330 the segment. Similar comments apply to R_MIPS_GOT16 and
5331 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5332 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 5333 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6
AO
5334 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5335 rel->r_addend, g))
5336 return FALSE;
b49e97c9
TS
5337 }
5338
5339 switch (r_type)
5340 {
5341 case R_MIPS_CALL16:
5342 if (h == NULL)
5343 {
5344 (*_bfd_error_handler)
5345 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5346 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5347 bfd_set_error (bfd_error_bad_value);
b34976b6 5348 return FALSE;
b49e97c9
TS
5349 }
5350 /* Fall through. */
5351
5352 case R_MIPS_CALL_HI16:
5353 case R_MIPS_CALL_LO16:
5354 if (h != NULL)
5355 {
5356 /* This symbol requires a global offset table entry. */
f4416af6 5357 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5358 return FALSE;
b49e97c9
TS
5359
5360 /* We need a stub, not a plt entry for the undefined
5361 function. But we record it as if it needs plt. See
5362 elf_adjust_dynamic_symbol in elflink.h. */
5363 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5364 h->type = STT_FUNC;
5365 }
5366 break;
5367
0fdc1bf1
AO
5368 case R_MIPS_GOT_PAGE:
5369 /* If this is a global, overridable symbol, GOT_PAGE will
5370 decay to GOT_DISP, so we'll need a GOT entry for it. */
5371 if (h == NULL)
5372 break;
5373 else
5374 {
5375 struct mips_elf_link_hash_entry *hmips =
5376 (struct mips_elf_link_hash_entry *) h;
143d77c5 5377
0fdc1bf1
AO
5378 while (hmips->root.root.type == bfd_link_hash_indirect
5379 || hmips->root.root.type == bfd_link_hash_warning)
5380 hmips = (struct mips_elf_link_hash_entry *)
5381 hmips->root.root.u.i.link;
143d77c5 5382
d25aed71 5383 if ((hmips->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
0fdc1bf1
AO
5384 && ! (info->shared && ! info->symbolic
5385 && ! (hmips->root.elf_link_hash_flags
d25aed71 5386 & ELF_LINK_FORCED_LOCAL)))
0fdc1bf1
AO
5387 break;
5388 }
5389 /* Fall through. */
5390
b49e97c9
TS
5391 case R_MIPS_GOT16:
5392 case R_MIPS_GOT_HI16:
5393 case R_MIPS_GOT_LO16:
5394 case R_MIPS_GOT_DISP:
5395 /* This symbol requires a global offset table entry. */
f4416af6 5396 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5397 return FALSE;
b49e97c9
TS
5398 break;
5399
5400 case R_MIPS_32:
5401 case R_MIPS_REL32:
5402 case R_MIPS_64:
5403 if ((info->shared || h != NULL)
5404 && (sec->flags & SEC_ALLOC) != 0)
5405 {
5406 if (sreloc == NULL)
5407 {
f4416af6 5408 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 5409 if (sreloc == NULL)
f4416af6 5410 return FALSE;
b49e97c9
TS
5411 }
5412#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5413 if (info->shared)
5414 {
5415 /* When creating a shared object, we must copy these
5416 reloc types into the output file as R_MIPS_REL32
5417 relocs. We make room for this reloc in the
5418 .rel.dyn reloc section. */
5419 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5420 if ((sec->flags & MIPS_READONLY_SECTION)
5421 == MIPS_READONLY_SECTION)
5422 /* We tell the dynamic linker that there are
5423 relocations against the text segment. */
5424 info->flags |= DF_TEXTREL;
5425 }
5426 else
5427 {
5428 struct mips_elf_link_hash_entry *hmips;
5429
5430 /* We only need to copy this reloc if the symbol is
5431 defined in a dynamic object. */
5432 hmips = (struct mips_elf_link_hash_entry *) h;
5433 ++hmips->possibly_dynamic_relocs;
5434 if ((sec->flags & MIPS_READONLY_SECTION)
5435 == MIPS_READONLY_SECTION)
5436 /* We need it to tell the dynamic linker if there
5437 are relocations against the text segment. */
b34976b6 5438 hmips->readonly_reloc = TRUE;
b49e97c9
TS
5439 }
5440
5441 /* Even though we don't directly need a GOT entry for
5442 this symbol, a symbol must have a dynamic symbol
5443 table index greater that DT_MIPS_GOTSYM if there are
5444 dynamic relocations against it. */
f4416af6
AO
5445 if (h != NULL)
5446 {
5447 if (dynobj == NULL)
5448 elf_hash_table (info)->dynobj = dynobj = abfd;
5449 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5450 return FALSE;
5451 g = mips_elf_got_info (dynobj, &sgot);
5452 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5453 return FALSE;
5454 }
b49e97c9
TS
5455 }
5456
5457 if (SGI_COMPAT (abfd))
5458 mips_elf_hash_table (info)->compact_rel_size +=
5459 sizeof (Elf32_External_crinfo);
5460 break;
5461
5462 case R_MIPS_26:
5463 case R_MIPS_GPREL16:
5464 case R_MIPS_LITERAL:
5465 case R_MIPS_GPREL32:
5466 if (SGI_COMPAT (abfd))
5467 mips_elf_hash_table (info)->compact_rel_size +=
5468 sizeof (Elf32_External_crinfo);
5469 break;
5470
5471 /* This relocation describes the C++ object vtable hierarchy.
5472 Reconstruct it for later use during GC. */
5473 case R_MIPS_GNU_VTINHERIT:
5474 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 5475 return FALSE;
b49e97c9
TS
5476 break;
5477
5478 /* This relocation describes which C++ vtable entries are actually
5479 used. Record for later use during GC. */
5480 case R_MIPS_GNU_VTENTRY:
5481 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 5482 return FALSE;
b49e97c9
TS
5483 break;
5484
5485 default:
5486 break;
5487 }
5488
5489 /* We must not create a stub for a symbol that has relocations
5490 related to taking the function's address. */
5491 switch (r_type)
5492 {
5493 default:
5494 if (h != NULL)
5495 {
5496 struct mips_elf_link_hash_entry *mh;
5497
5498 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5499 mh->no_fn_stub = TRUE;
b49e97c9
TS
5500 }
5501 break;
5502 case R_MIPS_CALL16:
5503 case R_MIPS_CALL_HI16:
5504 case R_MIPS_CALL_LO16:
2b86c02e 5505 case R_MIPS_JALR:
b49e97c9
TS
5506 break;
5507 }
5508
5509 /* If this reloc is not a 16 bit call, and it has a global
5510 symbol, then we will need the fn_stub if there is one.
5511 References from a stub section do not count. */
5512 if (h != NULL
5513 && r_type != R_MIPS16_26
5514 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5515 sizeof FN_STUB - 1) != 0
5516 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5517 sizeof CALL_STUB - 1) != 0
5518 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5519 sizeof CALL_FP_STUB - 1) != 0)
5520 {
5521 struct mips_elf_link_hash_entry *mh;
5522
5523 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5524 mh->need_fn_stub = TRUE;
b49e97c9
TS
5525 }
5526 }
5527
b34976b6 5528 return TRUE;
b49e97c9
TS
5529}
5530\f
d0647110 5531bfd_boolean
9719ad41
RS
5532_bfd_mips_relax_section (bfd *abfd, asection *sec,
5533 struct bfd_link_info *link_info,
5534 bfd_boolean *again)
d0647110
AO
5535{
5536 Elf_Internal_Rela *internal_relocs;
5537 Elf_Internal_Rela *irel, *irelend;
5538 Elf_Internal_Shdr *symtab_hdr;
5539 bfd_byte *contents = NULL;
5540 bfd_byte *free_contents = NULL;
5541 size_t extsymoff;
5542 bfd_boolean changed_contents = FALSE;
5543 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5544 Elf_Internal_Sym *isymbuf = NULL;
5545
5546 /* We are not currently changing any sizes, so only one pass. */
5547 *again = FALSE;
5548
1049f94e 5549 if (link_info->relocatable)
d0647110
AO
5550 return TRUE;
5551
9719ad41 5552 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 5553 link_info->keep_memory);
d0647110
AO
5554 if (internal_relocs == NULL)
5555 return TRUE;
5556
5557 irelend = internal_relocs + sec->reloc_count
5558 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5559 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5560 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5561
5562 for (irel = internal_relocs; irel < irelend; irel++)
5563 {
5564 bfd_vma symval;
5565 bfd_signed_vma sym_offset;
5566 unsigned int r_type;
5567 unsigned long r_symndx;
5568 asection *sym_sec;
5569 unsigned long instruction;
5570
5571 /* Turn jalr into bgezal, and jr into beq, if they're marked
5572 with a JALR relocation, that indicate where they jump to.
5573 This saves some pipeline bubbles. */
5574 r_type = ELF_R_TYPE (abfd, irel->r_info);
5575 if (r_type != R_MIPS_JALR)
5576 continue;
5577
5578 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5579 /* Compute the address of the jump target. */
5580 if (r_symndx >= extsymoff)
5581 {
5582 struct mips_elf_link_hash_entry *h
5583 = ((struct mips_elf_link_hash_entry *)
5584 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5585
5586 while (h->root.root.type == bfd_link_hash_indirect
5587 || h->root.root.type == bfd_link_hash_warning)
5588 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 5589
d0647110
AO
5590 /* If a symbol is undefined, or if it may be overridden,
5591 skip it. */
5592 if (! ((h->root.root.type == bfd_link_hash_defined
5593 || h->root.root.type == bfd_link_hash_defweak)
5594 && h->root.root.u.def.section)
5595 || (link_info->shared && ! link_info->symbolic
5596 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5597 continue;
5598
5599 sym_sec = h->root.root.u.def.section;
5600 if (sym_sec->output_section)
5601 symval = (h->root.root.u.def.value
5602 + sym_sec->output_section->vma
5603 + sym_sec->output_offset);
5604 else
5605 symval = h->root.root.u.def.value;
5606 }
5607 else
5608 {
5609 Elf_Internal_Sym *isym;
5610
5611 /* Read this BFD's symbols if we haven't done so already. */
5612 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5613 {
5614 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5615 if (isymbuf == NULL)
5616 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5617 symtab_hdr->sh_info, 0,
5618 NULL, NULL, NULL);
5619 if (isymbuf == NULL)
5620 goto relax_return;
5621 }
5622
5623 isym = isymbuf + r_symndx;
5624 if (isym->st_shndx == SHN_UNDEF)
5625 continue;
5626 else if (isym->st_shndx == SHN_ABS)
5627 sym_sec = bfd_abs_section_ptr;
5628 else if (isym->st_shndx == SHN_COMMON)
5629 sym_sec = bfd_com_section_ptr;
5630 else
5631 sym_sec
5632 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5633 symval = isym->st_value
5634 + sym_sec->output_section->vma
5635 + sym_sec->output_offset;
5636 }
5637
5638 /* Compute branch offset, from delay slot of the jump to the
5639 branch target. */
5640 sym_offset = (symval + irel->r_addend)
5641 - (sec_start + irel->r_offset + 4);
5642
5643 /* Branch offset must be properly aligned. */
5644 if ((sym_offset & 3) != 0)
5645 continue;
5646
5647 sym_offset >>= 2;
5648
5649 /* Check that it's in range. */
5650 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5651 continue;
143d77c5 5652
d0647110
AO
5653 /* Get the section contents if we haven't done so already. */
5654 if (contents == NULL)
5655 {
5656 /* Get cached copy if it exists. */
5657 if (elf_section_data (sec)->this_hdr.contents != NULL)
5658 contents = elf_section_data (sec)->this_hdr.contents;
5659 else
5660 {
9719ad41 5661 contents = bfd_malloc (sec->_raw_size);
d0647110
AO
5662 if (contents == NULL)
5663 goto relax_return;
5664
5665 free_contents = contents;
5666 if (! bfd_get_section_contents (abfd, sec, contents,
9719ad41 5667 0, sec->_raw_size))
d0647110
AO
5668 goto relax_return;
5669 }
5670 }
5671
5672 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5673
5674 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5675 if ((instruction & 0xfc1fffff) == 0x0000f809)
5676 instruction = 0x04110000;
5677 /* If it was jr <reg>, turn it into b <target>. */
5678 else if ((instruction & 0xfc1fffff) == 0x00000008)
5679 instruction = 0x10000000;
5680 else
5681 continue;
5682
5683 instruction |= (sym_offset & 0xffff);
5684 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5685 changed_contents = TRUE;
5686 }
5687
5688 if (contents != NULL
5689 && elf_section_data (sec)->this_hdr.contents != contents)
5690 {
5691 if (!changed_contents && !link_info->keep_memory)
5692 free (contents);
5693 else
5694 {
5695 /* Cache the section contents for elf_link_input_bfd. */
5696 elf_section_data (sec)->this_hdr.contents = contents;
5697 }
5698 }
5699 return TRUE;
5700
143d77c5 5701 relax_return:
d0647110
AO
5702 if (free_contents != NULL)
5703 free (free_contents);
5704 return FALSE;
5705}
5706\f
b49e97c9
TS
5707/* Adjust a symbol defined by a dynamic object and referenced by a
5708 regular object. The current definition is in some section of the
5709 dynamic object, but we're not including those sections. We have to
5710 change the definition to something the rest of the link can
5711 understand. */
5712
b34976b6 5713bfd_boolean
9719ad41
RS
5714_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5715 struct elf_link_hash_entry *h)
b49e97c9
TS
5716{
5717 bfd *dynobj;
5718 struct mips_elf_link_hash_entry *hmips;
5719 asection *s;
5720
5721 dynobj = elf_hash_table (info)->dynobj;
5722
5723 /* Make sure we know what is going on here. */
5724 BFD_ASSERT (dynobj != NULL
5725 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5726 || h->weakdef != NULL
5727 || ((h->elf_link_hash_flags
5728 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5729 && (h->elf_link_hash_flags
5730 & ELF_LINK_HASH_REF_REGULAR) != 0
5731 && (h->elf_link_hash_flags
5732 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5733
5734 /* If this symbol is defined in a dynamic object, we need to copy
5735 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5736 file. */
5737 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 5738 if (! info->relocatable
b49e97c9
TS
5739 && hmips->possibly_dynamic_relocs != 0
5740 && (h->root.type == bfd_link_hash_defweak
5741 || (h->elf_link_hash_flags
5742 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5743 {
5744 mips_elf_allocate_dynamic_relocations (dynobj,
5745 hmips->possibly_dynamic_relocs);
5746 if (hmips->readonly_reloc)
5747 /* We tell the dynamic linker that there are relocations
5748 against the text segment. */
5749 info->flags |= DF_TEXTREL;
5750 }
5751
5752 /* For a function, create a stub, if allowed. */
5753 if (! hmips->no_fn_stub
5754 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5755 {
5756 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 5757 return TRUE;
b49e97c9
TS
5758
5759 /* If this symbol is not defined in a regular file, then set
5760 the symbol to the stub location. This is required to make
5761 function pointers compare as equal between the normal
5762 executable and the shared library. */
5763 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5764 {
5765 /* We need .stub section. */
5766 s = bfd_get_section_by_name (dynobj,
5767 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5768 BFD_ASSERT (s != NULL);
5769
5770 h->root.u.def.section = s;
5771 h->root.u.def.value = s->_raw_size;
5772
5773 /* XXX Write this stub address somewhere. */
5774 h->plt.offset = s->_raw_size;
5775
5776 /* Make room for this stub code. */
5777 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5778
5779 /* The last half word of the stub will be filled with the index
5780 of this symbol in .dynsym section. */
b34976b6 5781 return TRUE;
b49e97c9
TS
5782 }
5783 }
5784 else if ((h->type == STT_FUNC)
5785 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5786 {
5787 /* This will set the entry for this symbol in the GOT to 0, and
5788 the dynamic linker will take care of this. */
5789 h->root.u.def.value = 0;
b34976b6 5790 return TRUE;
b49e97c9
TS
5791 }
5792
5793 /* If this is a weak symbol, and there is a real definition, the
5794 processor independent code will have arranged for us to see the
5795 real definition first, and we can just use the same value. */
5796 if (h->weakdef != NULL)
5797 {
5798 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5799 || h->weakdef->root.type == bfd_link_hash_defweak);
5800 h->root.u.def.section = h->weakdef->root.u.def.section;
5801 h->root.u.def.value = h->weakdef->root.u.def.value;
b34976b6 5802 return TRUE;
b49e97c9
TS
5803 }
5804
5805 /* This is a reference to a symbol defined by a dynamic object which
5806 is not a function. */
5807
b34976b6 5808 return TRUE;
b49e97c9
TS
5809}
5810\f
5811/* This function is called after all the input files have been read,
5812 and the input sections have been assigned to output sections. We
5813 check for any mips16 stub sections that we can discard. */
5814
b34976b6 5815bfd_boolean
9719ad41
RS
5816_bfd_mips_elf_always_size_sections (bfd *output_bfd,
5817 struct bfd_link_info *info)
b49e97c9
TS
5818{
5819 asection *ri;
5820
f4416af6
AO
5821 bfd *dynobj;
5822 asection *s;
5823 struct mips_got_info *g;
5824 int i;
5825 bfd_size_type loadable_size = 0;
5826 bfd_size_type local_gotno;
5827 bfd *sub;
5828
b49e97c9
TS
5829 /* The .reginfo section has a fixed size. */
5830 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5831 if (ri != NULL)
9719ad41 5832 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 5833
1049f94e 5834 if (! (info->relocatable
f4416af6
AO
5835 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5836 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 5837 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
5838
5839 dynobj = elf_hash_table (info)->dynobj;
5840 if (dynobj == NULL)
5841 /* Relocatable links don't have it. */
5842 return TRUE;
143d77c5 5843
f4416af6
AO
5844 g = mips_elf_got_info (dynobj, &s);
5845 if (s == NULL)
b34976b6 5846 return TRUE;
b49e97c9 5847
f4416af6
AO
5848 /* Calculate the total loadable size of the output. That
5849 will give us the maximum number of GOT_PAGE entries
5850 required. */
5851 for (sub = info->input_bfds; sub; sub = sub->link_next)
5852 {
5853 asection *subsection;
5854
5855 for (subsection = sub->sections;
5856 subsection;
5857 subsection = subsection->next)
5858 {
5859 if ((subsection->flags & SEC_ALLOC) == 0)
5860 continue;
5861 loadable_size += ((subsection->_raw_size + 0xf)
5862 &~ (bfd_size_type) 0xf);
5863 }
5864 }
5865
5866 /* There has to be a global GOT entry for every symbol with
5867 a dynamic symbol table index of DT_MIPS_GOTSYM or
5868 higher. Therefore, it make sense to put those symbols
5869 that need GOT entries at the end of the symbol table. We
5870 do that here. */
5871 if (! mips_elf_sort_hash_table (info, 1))
5872 return FALSE;
5873
5874 if (g->global_gotsym != NULL)
5875 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5876 else
5877 /* If there are no global symbols, or none requiring
5878 relocations, then GLOBAL_GOTSYM will be NULL. */
5879 i = 0;
5880
5881 /* In the worst case, we'll get one stub per dynamic symbol, plus
5882 one to account for the dummy entry at the end required by IRIX
5883 rld. */
5884 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5885
5886 /* Assume there are two loadable segments consisting of
5887 contiguous sections. Is 5 enough? */
5888 local_gotno = (loadable_size >> 16) + 5;
5889
5890 g->local_gotno += local_gotno;
5891 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5892
5893 g->global_gotno = i;
5894 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5895
5896 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5897 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5898 return FALSE;
b49e97c9 5899
b34976b6 5900 return TRUE;
b49e97c9
TS
5901}
5902
5903/* Set the sizes of the dynamic sections. */
5904
b34976b6 5905bfd_boolean
9719ad41
RS
5906_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5907 struct bfd_link_info *info)
b49e97c9
TS
5908{
5909 bfd *dynobj;
5910 asection *s;
b34976b6 5911 bfd_boolean reltext;
b49e97c9
TS
5912
5913 dynobj = elf_hash_table (info)->dynobj;
5914 BFD_ASSERT (dynobj != NULL);
5915
5916 if (elf_hash_table (info)->dynamic_sections_created)
5917 {
5918 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 5919 if (info->executable)
b49e97c9
TS
5920 {
5921 s = bfd_get_section_by_name (dynobj, ".interp");
5922 BFD_ASSERT (s != NULL);
5923 s->_raw_size
5924 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5925 s->contents
5926 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5927 }
5928 }
5929
5930 /* The check_relocs and adjust_dynamic_symbol entry points have
5931 determined the sizes of the various dynamic sections. Allocate
5932 memory for them. */
b34976b6 5933 reltext = FALSE;
b49e97c9
TS
5934 for (s = dynobj->sections; s != NULL; s = s->next)
5935 {
5936 const char *name;
b34976b6 5937 bfd_boolean strip;
b49e97c9
TS
5938
5939 /* It's OK to base decisions on the section name, because none
5940 of the dynobj section names depend upon the input files. */
5941 name = bfd_get_section_name (dynobj, s);
5942
5943 if ((s->flags & SEC_LINKER_CREATED) == 0)
5944 continue;
5945
b34976b6 5946 strip = FALSE;
b49e97c9
TS
5947
5948 if (strncmp (name, ".rel", 4) == 0)
5949 {
5950 if (s->_raw_size == 0)
5951 {
5952 /* We only strip the section if the output section name
5953 has the same name. Otherwise, there might be several
5954 input sections for this output section. FIXME: This
5955 code is probably not needed these days anyhow, since
5956 the linker now does not create empty output sections. */
5957 if (s->output_section != NULL
5958 && strcmp (name,
5959 bfd_get_section_name (s->output_section->owner,
5960 s->output_section)) == 0)
b34976b6 5961 strip = TRUE;
b49e97c9
TS
5962 }
5963 else
5964 {
5965 const char *outname;
5966 asection *target;
5967
5968 /* If this relocation section applies to a read only
5969 section, then we probably need a DT_TEXTREL entry.
5970 If the relocation section is .rel.dyn, we always
5971 assert a DT_TEXTREL entry rather than testing whether
5972 there exists a relocation to a read only section or
5973 not. */
5974 outname = bfd_get_section_name (output_bfd,
5975 s->output_section);
5976 target = bfd_get_section_by_name (output_bfd, outname + 4);
5977 if ((target != NULL
5978 && (target->flags & SEC_READONLY) != 0
5979 && (target->flags & SEC_ALLOC) != 0)
5980 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 5981 reltext = TRUE;
b49e97c9
TS
5982
5983 /* We use the reloc_count field as a counter if we need
5984 to copy relocs into the output file. */
5985 if (strcmp (name, ".rel.dyn") != 0)
5986 s->reloc_count = 0;
f4416af6
AO
5987
5988 /* If combreloc is enabled, elf_link_sort_relocs() will
5989 sort relocations, but in a different way than we do,
5990 and before we're done creating relocations. Also, it
5991 will move them around between input sections'
5992 relocation's contents, so our sorting would be
5993 broken, so don't let it run. */
5994 info->combreloc = 0;
b49e97c9
TS
5995 }
5996 }
5997 else if (strncmp (name, ".got", 4) == 0)
5998 {
f4416af6
AO
5999 /* _bfd_mips_elf_always_size_sections() has already done
6000 most of the work, but some symbols may have been mapped
6001 to versions that we must now resolve in the got_entries
6002 hash tables. */
6003 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6004 struct mips_got_info *g = gg;
6005 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6006 unsigned int needed_relocs = 0;
143d77c5 6007
f4416af6 6008 if (gg->next)
b49e97c9 6009 {
f4416af6
AO
6010 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6011 set_got_offset_arg.info = info;
b49e97c9 6012
f4416af6
AO
6013 mips_elf_resolve_final_got_entries (gg);
6014 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 6015 {
f4416af6
AO
6016 unsigned int save_assign;
6017
6018 mips_elf_resolve_final_got_entries (g);
6019
6020 /* Assign offsets to global GOT entries. */
6021 save_assign = g->assigned_gotno;
6022 g->assigned_gotno = g->local_gotno;
6023 set_got_offset_arg.g = g;
6024 set_got_offset_arg.needed_relocs = 0;
6025 htab_traverse (g->got_entries,
6026 mips_elf_set_global_got_offset,
6027 &set_got_offset_arg);
6028 needed_relocs += set_got_offset_arg.needed_relocs;
6029 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6030 <= g->global_gotno);
6031
6032 g->assigned_gotno = save_assign;
6033 if (info->shared)
6034 {
6035 needed_relocs += g->local_gotno - g->assigned_gotno;
6036 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6037 + g->next->global_gotno
6038 + MIPS_RESERVED_GOTNO);
6039 }
b49e97c9 6040 }
b49e97c9 6041
f4416af6
AO
6042 if (needed_relocs)
6043 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6044 }
b49e97c9
TS
6045 }
6046 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6047 {
8dc1a139 6048 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9
TS
6049 of .text section. So put a dummy. XXX */
6050 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
6051 }
6052 else if (! info->shared
6053 && ! mips_elf_hash_table (info)->use_rld_obj_head
6054 && strncmp (name, ".rld_map", 8) == 0)
6055 {
6056 /* We add a room for __rld_map. It will be filled in by the
6057 rtld to contain a pointer to the _r_debug structure. */
6058 s->_raw_size += 4;
6059 }
6060 else if (SGI_COMPAT (output_bfd)
6061 && strncmp (name, ".compact_rel", 12) == 0)
6062 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
b49e97c9
TS
6063 else if (strncmp (name, ".init", 5) != 0)
6064 {
6065 /* It's not one of our sections, so don't allocate space. */
6066 continue;
6067 }
6068
6069 if (strip)
6070 {
6071 _bfd_strip_section_from_output (info, s);
6072 continue;
6073 }
6074
6075 /* Allocate memory for the section contents. */
9719ad41 6076 s->contents = bfd_zalloc (dynobj, s->_raw_size);
b49e97c9
TS
6077 if (s->contents == NULL && s->_raw_size != 0)
6078 {
6079 bfd_set_error (bfd_error_no_memory);
b34976b6 6080 return FALSE;
b49e97c9
TS
6081 }
6082 }
6083
6084 if (elf_hash_table (info)->dynamic_sections_created)
6085 {
6086 /* Add some entries to the .dynamic section. We fill in the
6087 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6088 must add the entries now so that we get the correct size for
6089 the .dynamic section. The DT_DEBUG entry is filled in by the
6090 dynamic linker and used by the debugger. */
6091 if (! info->shared)
6092 {
6093 /* SGI object has the equivalence of DT_DEBUG in the
6094 DT_MIPS_RLD_MAP entry. */
6095 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6096 return FALSE;
b49e97c9
TS
6097 if (!SGI_COMPAT (output_bfd))
6098 {
6099 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6100 return FALSE;
b49e97c9
TS
6101 }
6102 }
6103 else
6104 {
6105 /* Shared libraries on traditional mips have DT_DEBUG. */
6106 if (!SGI_COMPAT (output_bfd))
6107 {
6108 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6109 return FALSE;
b49e97c9
TS
6110 }
6111 }
6112
6113 if (reltext && SGI_COMPAT (output_bfd))
6114 info->flags |= DF_TEXTREL;
6115
6116 if ((info->flags & DF_TEXTREL) != 0)
6117 {
6118 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6119 return FALSE;
b49e97c9
TS
6120 }
6121
6122 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6123 return FALSE;
b49e97c9 6124
f4416af6 6125 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6126 {
6127 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6128 return FALSE;
b49e97c9
TS
6129
6130 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6131 return FALSE;
b49e97c9
TS
6132
6133 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6134 return FALSE;
b49e97c9
TS
6135 }
6136
b49e97c9 6137 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6138 return FALSE;
b49e97c9
TS
6139
6140 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6141 return FALSE;
b49e97c9
TS
6142
6143#if 0
6144 /* Time stamps in executable files are a bad idea. */
6145 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
b34976b6 6146 return FALSE;
b49e97c9
TS
6147#endif
6148
6149#if 0 /* FIXME */
6150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
b34976b6 6151 return FALSE;
b49e97c9
TS
6152#endif
6153
6154#if 0 /* FIXME */
6155 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
b34976b6 6156 return FALSE;
b49e97c9
TS
6157#endif
6158
6159 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6160 return FALSE;
b49e97c9
TS
6161
6162 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6163 return FALSE;
b49e97c9
TS
6164
6165 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6166 return FALSE;
b49e97c9
TS
6167
6168 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6169 return FALSE;
b49e97c9
TS
6170
6171 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6172 return FALSE;
b49e97c9
TS
6173
6174 if (IRIX_COMPAT (dynobj) == ict_irix5
6175 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6176 return FALSE;
b49e97c9
TS
6177
6178 if (IRIX_COMPAT (dynobj) == ict_irix6
6179 && (bfd_get_section_by_name
6180 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6181 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6182 return FALSE;
b49e97c9
TS
6183 }
6184
b34976b6 6185 return TRUE;
b49e97c9
TS
6186}
6187\f
6188/* Relocate a MIPS ELF section. */
6189
b34976b6 6190bfd_boolean
9719ad41
RS
6191_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6192 bfd *input_bfd, asection *input_section,
6193 bfd_byte *contents, Elf_Internal_Rela *relocs,
6194 Elf_Internal_Sym *local_syms,
6195 asection **local_sections)
b49e97c9
TS
6196{
6197 Elf_Internal_Rela *rel;
6198 const Elf_Internal_Rela *relend;
6199 bfd_vma addend = 0;
b34976b6 6200 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 6201 const struct elf_backend_data *bed;
b49e97c9
TS
6202
6203 bed = get_elf_backend_data (output_bfd);
6204 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6205 for (rel = relocs; rel < relend; ++rel)
6206 {
6207 const char *name;
6208 bfd_vma value;
6209 reloc_howto_type *howto;
b34976b6
AM
6210 bfd_boolean require_jalx;
6211 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6212 REL relocation. */
b34976b6 6213 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 6214 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 6215 const char *msg;
b49e97c9
TS
6216
6217 /* Find the relocation howto for this relocation. */
4a14403c 6218 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6219 {
6220 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6221 64-bit code, but make sure all their addresses are in the
6222 lowermost or uppermost 32-bit section of the 64-bit address
6223 space. Thus, when they use an R_MIPS_64 they mean what is
6224 usually meant by R_MIPS_32, with the exception that the
6225 stored value is sign-extended to 64 bits. */
b34976b6 6226 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6227
6228 /* On big-endian systems, we need to lie about the position
6229 of the reloc. */
6230 if (bfd_big_endian (input_bfd))
6231 rel->r_offset += 4;
6232 }
6233 else
6234 /* NewABI defaults to RELA relocations. */
6235 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6236 NEWABI_P (input_bfd)
6237 && (MIPS_RELOC_RELA_P
6238 (input_bfd, input_section,
6239 rel - relocs)));
b49e97c9
TS
6240
6241 if (!use_saved_addend_p)
6242 {
6243 Elf_Internal_Shdr *rel_hdr;
6244
6245 /* If these relocations were originally of the REL variety,
6246 we must pull the addend out of the field that will be
6247 relocated. Otherwise, we simply use the contents of the
6248 RELA relocation. To determine which flavor or relocation
6249 this is, we depend on the fact that the INPUT_SECTION's
6250 REL_HDR is read before its REL_HDR2. */
6251 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6252 if ((size_t) (rel - relocs)
6253 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6254 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6255 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6256 {
6257 /* Note that this is a REL relocation. */
b34976b6 6258 rela_relocation_p = FALSE;
b49e97c9
TS
6259
6260 /* Get the addend, which is stored in the input file. */
6261 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6262 contents);
6263 addend &= howto->src_mask;
6264
6265 /* For some kinds of relocations, the ADDEND is a
6266 combination of the addend stored in two different
6267 relocations. */
6268 if (r_type == R_MIPS_HI16
6269 || r_type == R_MIPS_GNU_REL_HI16
6270 || (r_type == R_MIPS_GOT16
6271 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 6272 local_sections, FALSE)))
b49e97c9
TS
6273 {
6274 bfd_vma l;
6275 const Elf_Internal_Rela *lo16_relocation;
6276 reloc_howto_type *lo16_howto;
6277 unsigned int lo;
6278
6279 /* The combined value is the sum of the HI16 addend,
6280 left-shifted by sixteen bits, and the LO16
6281 addend, sign extended. (Usually, the code does
6282 a `lui' of the HI16 value, and then an `addiu' of
6283 the LO16 value.)
6284
6285 Scan ahead to find a matching LO16 relocation. */
6286 if (r_type == R_MIPS_GNU_REL_HI16)
6287 lo = R_MIPS_GNU_REL_LO16;
6288 else
6289 lo = R_MIPS_LO16;
6290 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6291 rel, relend);
6292 if (lo16_relocation == NULL)
b34976b6 6293 return FALSE;
b49e97c9
TS
6294
6295 /* Obtain the addend kept there. */
b34976b6 6296 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
b49e97c9
TS
6297 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6298 input_bfd, contents);
6299 l &= lo16_howto->src_mask;
5a659663 6300 l <<= lo16_howto->rightshift;
a7ebbfdf 6301 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
6302
6303 addend <<= 16;
6304
6305 /* Compute the combined addend. */
6306 addend += l;
6307
6308 /* If PC-relative, subtract the difference between the
6309 address of the LO part of the reloc and the address of
6310 the HI part. The relocation is relative to the LO
6311 part, but mips_elf_calculate_relocation() doesn't
6312 know its address or the difference from the HI part, so
6313 we subtract that difference here. See also the
6314 comment in mips_elf_calculate_relocation(). */
6315 if (r_type == R_MIPS_GNU_REL_HI16)
6316 addend -= (lo16_relocation->r_offset - rel->r_offset);
6317 }
6318 else if (r_type == R_MIPS16_GPREL)
6319 {
6320 /* The addend is scrambled in the object file. See
6321 mips_elf_perform_relocation for details on the
6322 format. */
6323 addend = (((addend & 0x1f0000) >> 5)
6324 | ((addend & 0x7e00000) >> 16)
6325 | (addend & 0x1f));
6326 }
30ac9238
RS
6327 else
6328 addend <<= howto->rightshift;
b49e97c9
TS
6329 }
6330 else
6331 addend = rel->r_addend;
6332 }
6333
1049f94e 6334 if (info->relocatable)
b49e97c9
TS
6335 {
6336 Elf_Internal_Sym *sym;
6337 unsigned long r_symndx;
6338
4a14403c 6339 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
6340 && bfd_big_endian (input_bfd))
6341 rel->r_offset -= 4;
6342
6343 /* Since we're just relocating, all we need to do is copy
6344 the relocations back out to the object file, unless
6345 they're against a section symbol, in which case we need
6346 to adjust by the section offset, or unless they're GP
6347 relative in which case we need to adjust by the amount
1049f94e 6348 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
6349
6350 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 6351 FALSE))
b49e97c9
TS
6352 /* There's nothing to do for non-local relocations. */
6353 continue;
6354
6355 if (r_type == R_MIPS16_GPREL
6356 || r_type == R_MIPS_GPREL16
6357 || r_type == R_MIPS_GPREL32
6358 || r_type == R_MIPS_LITERAL)
6359 addend -= (_bfd_get_gp_value (output_bfd)
6360 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
6361
6362 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6363 sym = local_syms + r_symndx;
6364 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6365 /* Adjust the addend appropriately. */
6366 addend += local_sections[r_symndx]->output_offset;
6367
30ac9238
RS
6368 if (rela_relocation_p)
6369 /* If this is a RELA relocation, just update the addend. */
6370 rel->r_addend = addend;
6371 else
5a659663 6372 {
30ac9238
RS
6373 if (r_type == R_MIPS_HI16
6374 || r_type == R_MIPS_GOT16
5a659663
TS
6375 || r_type == R_MIPS_GNU_REL_HI16)
6376 addend = mips_elf_high (addend);
6377 else if (r_type == R_MIPS_HIGHER)
6378 addend = mips_elf_higher (addend);
6379 else if (r_type == R_MIPS_HIGHEST)
6380 addend = mips_elf_highest (addend);
30ac9238
RS
6381 else
6382 addend >>= howto->rightshift;
b49e97c9 6383
30ac9238
RS
6384 /* We use the source mask, rather than the destination
6385 mask because the place to which we are writing will be
6386 source of the addend in the final link. */
b49e97c9
TS
6387 addend &= howto->src_mask;
6388
5a659663 6389 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6390 /* See the comment above about using R_MIPS_64 in the 32-bit
6391 ABI. Here, we need to update the addend. It would be
6392 possible to get away with just using the R_MIPS_32 reloc
6393 but for endianness. */
6394 {
6395 bfd_vma sign_bits;
6396 bfd_vma low_bits;
6397 bfd_vma high_bits;
6398
6399 if (addend & ((bfd_vma) 1 << 31))
6400#ifdef BFD64
6401 sign_bits = ((bfd_vma) 1 << 32) - 1;
6402#else
6403 sign_bits = -1;
6404#endif
6405 else
6406 sign_bits = 0;
6407
6408 /* If we don't know that we have a 64-bit type,
6409 do two separate stores. */
6410 if (bfd_big_endian (input_bfd))
6411 {
6412 /* Store the sign-bits (which are most significant)
6413 first. */
6414 low_bits = sign_bits;
6415 high_bits = addend;
6416 }
6417 else
6418 {
6419 low_bits = addend;
6420 high_bits = sign_bits;
6421 }
6422 bfd_put_32 (input_bfd, low_bits,
6423 contents + rel->r_offset);
6424 bfd_put_32 (input_bfd, high_bits,
6425 contents + rel->r_offset + 4);
6426 continue;
6427 }
6428
6429 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6430 input_bfd, input_section,
b34976b6
AM
6431 contents, FALSE))
6432 return FALSE;
b49e97c9
TS
6433 }
6434
6435 /* Go on to the next relocation. */
6436 continue;
6437 }
6438
6439 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6440 relocations for the same offset. In that case we are
6441 supposed to treat the output of each relocation as the addend
6442 for the next. */
6443 if (rel + 1 < relend
6444 && rel->r_offset == rel[1].r_offset
6445 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 6446 use_saved_addend_p = TRUE;
b49e97c9 6447 else
b34976b6 6448 use_saved_addend_p = FALSE;
b49e97c9
TS
6449
6450 /* Figure out what value we are supposed to relocate. */
6451 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6452 input_section, info, rel,
6453 addend, howto, local_syms,
6454 local_sections, &value,
bce03d3d
AO
6455 &name, &require_jalx,
6456 use_saved_addend_p))
b49e97c9
TS
6457 {
6458 case bfd_reloc_continue:
6459 /* There's nothing to do. */
6460 continue;
6461
6462 case bfd_reloc_undefined:
6463 /* mips_elf_calculate_relocation already called the
6464 undefined_symbol callback. There's no real point in
6465 trying to perform the relocation at this point, so we
6466 just skip ahead to the next relocation. */
6467 continue;
6468
6469 case bfd_reloc_notsupported:
6470 msg = _("internal error: unsupported relocation error");
6471 info->callbacks->warning
6472 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 6473 return FALSE;
b49e97c9
TS
6474
6475 case bfd_reloc_overflow:
6476 if (use_saved_addend_p)
6477 /* Ignore overflow until we reach the last relocation for
6478 a given location. */
6479 ;
6480 else
6481 {
6482 BFD_ASSERT (name != NULL);
6483 if (! ((*info->callbacks->reloc_overflow)
9719ad41 6484 (info, name, howto->name, 0,
b49e97c9 6485 input_bfd, input_section, rel->r_offset)))
b34976b6 6486 return FALSE;
b49e97c9
TS
6487 }
6488 break;
6489
6490 case bfd_reloc_ok:
6491 break;
6492
6493 default:
6494 abort ();
6495 break;
6496 }
6497
6498 /* If we've got another relocation for the address, keep going
6499 until we reach the last one. */
6500 if (use_saved_addend_p)
6501 {
6502 addend = value;
6503 continue;
6504 }
6505
4a14403c 6506 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6507 /* See the comment above about using R_MIPS_64 in the 32-bit
6508 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6509 that calculated the right value. Now, however, we
6510 sign-extend the 32-bit result to 64-bits, and store it as a
6511 64-bit value. We are especially generous here in that we
6512 go to extreme lengths to support this usage on systems with
6513 only a 32-bit VMA. */
6514 {
6515 bfd_vma sign_bits;
6516 bfd_vma low_bits;
6517 bfd_vma high_bits;
6518
6519 if (value & ((bfd_vma) 1 << 31))
6520#ifdef BFD64
6521 sign_bits = ((bfd_vma) 1 << 32) - 1;
6522#else
6523 sign_bits = -1;
6524#endif
6525 else
6526 sign_bits = 0;
6527
6528 /* If we don't know that we have a 64-bit type,
6529 do two separate stores. */
6530 if (bfd_big_endian (input_bfd))
6531 {
6532 /* Undo what we did above. */
6533 rel->r_offset -= 4;
6534 /* Store the sign-bits (which are most significant)
6535 first. */
6536 low_bits = sign_bits;
6537 high_bits = value;
6538 }
6539 else
6540 {
6541 low_bits = value;
6542 high_bits = sign_bits;
6543 }
6544 bfd_put_32 (input_bfd, low_bits,
6545 contents + rel->r_offset);
6546 bfd_put_32 (input_bfd, high_bits,
6547 contents + rel->r_offset + 4);
6548 continue;
6549 }
6550
6551 /* Actually perform the relocation. */
6552 if (! mips_elf_perform_relocation (info, howto, rel, value,
6553 input_bfd, input_section,
6554 contents, require_jalx))
b34976b6 6555 return FALSE;
b49e97c9
TS
6556 }
6557
b34976b6 6558 return TRUE;
b49e97c9
TS
6559}
6560\f
6561/* If NAME is one of the special IRIX6 symbols defined by the linker,
6562 adjust it appropriately now. */
6563
6564static void
9719ad41
RS
6565mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6566 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
6567{
6568 /* The linker script takes care of providing names and values for
6569 these, but we must place them into the right sections. */
6570 static const char* const text_section_symbols[] = {
6571 "_ftext",
6572 "_etext",
6573 "__dso_displacement",
6574 "__elf_header",
6575 "__program_header_table",
6576 NULL
6577 };
6578
6579 static const char* const data_section_symbols[] = {
6580 "_fdata",
6581 "_edata",
6582 "_end",
6583 "_fbss",
6584 NULL
6585 };
6586
6587 const char* const *p;
6588 int i;
6589
6590 for (i = 0; i < 2; ++i)
6591 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6592 *p;
6593 ++p)
6594 if (strcmp (*p, name) == 0)
6595 {
6596 /* All of these symbols are given type STT_SECTION by the
6597 IRIX6 linker. */
6598 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 6599 sym->st_other = STO_PROTECTED;
b49e97c9
TS
6600
6601 /* The IRIX linker puts these symbols in special sections. */
6602 if (i == 0)
6603 sym->st_shndx = SHN_MIPS_TEXT;
6604 else
6605 sym->st_shndx = SHN_MIPS_DATA;
6606
6607 break;
6608 }
6609}
6610
6611/* Finish up dynamic symbol handling. We set the contents of various
6612 dynamic sections here. */
6613
b34976b6 6614bfd_boolean
9719ad41
RS
6615_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6616 struct bfd_link_info *info,
6617 struct elf_link_hash_entry *h,
6618 Elf_Internal_Sym *sym)
b49e97c9
TS
6619{
6620 bfd *dynobj;
6621 bfd_vma gval;
6622 asection *sgot;
f4416af6 6623 struct mips_got_info *g, *gg;
b49e97c9 6624 const char *name;
b49e97c9
TS
6625
6626 dynobj = elf_hash_table (info)->dynobj;
6627 gval = sym->st_value;
b49e97c9
TS
6628
6629 if (h->plt.offset != (bfd_vma) -1)
6630 {
6631 asection *s;
6632 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6633
6634 /* This symbol has a stub. Set it up. */
6635
6636 BFD_ASSERT (h->dynindx != -1);
6637
6638 s = bfd_get_section_by_name (dynobj,
6639 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6640 BFD_ASSERT (s != NULL);
6641
6642 /* FIXME: Can h->dynindex be more than 64K? */
6643 if (h->dynindx & 0xffff0000)
b34976b6 6644 return FALSE;
b49e97c9
TS
6645
6646 /* Fill the stub. */
6647 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6648 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6649 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6650 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6651
6652 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6653 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6654
6655 /* Mark the symbol as undefined. plt.offset != -1 occurs
6656 only for the referenced symbol. */
6657 sym->st_shndx = SHN_UNDEF;
6658
6659 /* The run-time linker uses the st_value field of the symbol
6660 to reset the global offset table entry for this external
6661 to its stub address when unlinking a shared object. */
6662 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6663 sym->st_value = gval;
6664 }
6665
6666 BFD_ASSERT (h->dynindx != -1
6667 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6668
f4416af6 6669 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6670 BFD_ASSERT (sgot != NULL);
f4416af6 6671 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 6672 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6673 BFD_ASSERT (g != NULL);
6674
6675 /* Run through the global symbol table, creating GOT entries for all
6676 the symbols that need them. */
6677 if (g->global_gotsym != NULL
6678 && h->dynindx >= g->global_gotsym->dynindx)
6679 {
6680 bfd_vma offset;
6681 bfd_vma value;
6682
6eaa6adc 6683 value = sym->st_value;
f4416af6 6684 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
b49e97c9
TS
6685 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6686 }
6687
f4416af6
AO
6688 if (g->next && h->dynindx != -1)
6689 {
6690 struct mips_got_entry e, *p;
0626d451 6691 bfd_vma entry;
f4416af6 6692 bfd_vma offset;
f4416af6
AO
6693
6694 gg = g;
6695
6696 e.abfd = output_bfd;
6697 e.symndx = -1;
6698 e.d.h = (struct mips_elf_link_hash_entry *)h;
143d77c5 6699
f4416af6
AO
6700 for (g = g->next; g->next != gg; g = g->next)
6701 {
6702 if (g->got_entries
6703 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6704 &e)))
6705 {
6706 offset = p->gotidx;
0626d451
RS
6707 if (info->shared
6708 || (elf_hash_table (info)->dynamic_sections_created
6709 && p->d.h != NULL
6710 && ((p->d.h->root.elf_link_hash_flags
6711 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6712 && ((p->d.h->root.elf_link_hash_flags
6713 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6714 {
6715 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6716 the various compatibility problems, it's easier to mock
6717 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6718 mips_elf_create_dynamic_relocation to calculate the
6719 appropriate addend. */
6720 Elf_Internal_Rela rel[3];
6721
6722 memset (rel, 0, sizeof (rel));
6723 if (ABI_64_P (output_bfd))
6724 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6725 else
6726 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6727 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6728
6729 entry = 0;
6730 if (! (mips_elf_create_dynamic_relocation
6731 (output_bfd, info, rel,
6732 e.d.h, NULL, sym->st_value, &entry, sgot)))
6733 return FALSE;
6734 }
6735 else
6736 entry = sym->st_value;
6737 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
6738 }
6739 }
6740 }
6741
b49e97c9
TS
6742 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6743 name = h->root.root.string;
6744 if (strcmp (name, "_DYNAMIC") == 0
6745 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6746 sym->st_shndx = SHN_ABS;
6747 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6748 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6749 {
6750 sym->st_shndx = SHN_ABS;
6751 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6752 sym->st_value = 1;
6753 }
4a14403c 6754 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6755 {
6756 sym->st_shndx = SHN_ABS;
6757 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6758 sym->st_value = elf_gp (output_bfd);
6759 }
6760 else if (SGI_COMPAT (output_bfd))
6761 {
6762 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6763 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6764 {
6765 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6766 sym->st_other = STO_PROTECTED;
6767 sym->st_value = 0;
6768 sym->st_shndx = SHN_MIPS_DATA;
6769 }
6770 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6771 {
6772 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6773 sym->st_other = STO_PROTECTED;
6774 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6775 sym->st_shndx = SHN_ABS;
6776 }
6777 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6778 {
6779 if (h->type == STT_FUNC)
6780 sym->st_shndx = SHN_MIPS_TEXT;
6781 else if (h->type == STT_OBJECT)
6782 sym->st_shndx = SHN_MIPS_DATA;
6783 }
6784 }
6785
6786 /* Handle the IRIX6-specific symbols. */
6787 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6788 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6789
6790 if (! info->shared)
6791 {
6792 if (! mips_elf_hash_table (info)->use_rld_obj_head
6793 && (strcmp (name, "__rld_map") == 0
6794 || strcmp (name, "__RLD_MAP") == 0))
6795 {
6796 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6797 BFD_ASSERT (s != NULL);
6798 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 6799 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
6800 if (mips_elf_hash_table (info)->rld_value == 0)
6801 mips_elf_hash_table (info)->rld_value = sym->st_value;
6802 }
6803 else if (mips_elf_hash_table (info)->use_rld_obj_head
6804 && strcmp (name, "__rld_obj_head") == 0)
6805 {
6806 /* IRIX6 does not use a .rld_map section. */
6807 if (IRIX_COMPAT (output_bfd) == ict_irix5
6808 || IRIX_COMPAT (output_bfd) == ict_none)
6809 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6810 != NULL);
6811 mips_elf_hash_table (info)->rld_value = sym->st_value;
6812 }
6813 }
6814
6815 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
6816 if (sym->st_other == STO_MIPS16)
6817 sym->st_value &= ~1;
b49e97c9 6818
b34976b6 6819 return TRUE;
b49e97c9
TS
6820}
6821
6822/* Finish up the dynamic sections. */
6823
b34976b6 6824bfd_boolean
9719ad41
RS
6825_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6826 struct bfd_link_info *info)
b49e97c9
TS
6827{
6828 bfd *dynobj;
6829 asection *sdyn;
6830 asection *sgot;
f4416af6 6831 struct mips_got_info *gg, *g;
b49e97c9
TS
6832
6833 dynobj = elf_hash_table (info)->dynobj;
6834
6835 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6836
f4416af6 6837 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6838 if (sgot == NULL)
f4416af6 6839 gg = g = NULL;
b49e97c9
TS
6840 else
6841 {
f4416af6
AO
6842 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6843 gg = mips_elf_section_data (sgot)->u.got_info;
6844 BFD_ASSERT (gg != NULL);
6845 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
6846 BFD_ASSERT (g != NULL);
6847 }
6848
6849 if (elf_hash_table (info)->dynamic_sections_created)
6850 {
6851 bfd_byte *b;
6852
6853 BFD_ASSERT (sdyn != NULL);
6854 BFD_ASSERT (g != NULL);
6855
6856 for (b = sdyn->contents;
6857 b < sdyn->contents + sdyn->_raw_size;
6858 b += MIPS_ELF_DYN_SIZE (dynobj))
6859 {
6860 Elf_Internal_Dyn dyn;
6861 const char *name;
6862 size_t elemsize;
6863 asection *s;
b34976b6 6864 bfd_boolean swap_out_p;
b49e97c9
TS
6865
6866 /* Read in the current dynamic entry. */
6867 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6868
6869 /* Assume that we're going to modify it and write it out. */
b34976b6 6870 swap_out_p = TRUE;
b49e97c9
TS
6871
6872 switch (dyn.d_tag)
6873 {
6874 case DT_RELENT:
f4416af6 6875 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
6876 BFD_ASSERT (s != NULL);
6877 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6878 break;
6879
6880 case DT_STRSZ:
6881 /* Rewrite DT_STRSZ. */
6882 dyn.d_un.d_val =
6883 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6884 break;
6885
6886 case DT_PLTGOT:
6887 name = ".got";
b49e97c9
TS
6888 s = bfd_get_section_by_name (output_bfd, name);
6889 BFD_ASSERT (s != NULL);
6890 dyn.d_un.d_ptr = s->vma;
6891 break;
6892
6893 case DT_MIPS_RLD_VERSION:
6894 dyn.d_un.d_val = 1; /* XXX */
6895 break;
6896
6897 case DT_MIPS_FLAGS:
6898 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6899 break;
6900
b49e97c9
TS
6901 case DT_MIPS_TIME_STAMP:
6902 time ((time_t *) &dyn.d_un.d_val);
6903 break;
6904
6905 case DT_MIPS_ICHECKSUM:
6906 /* XXX FIXME: */
b34976b6 6907 swap_out_p = FALSE;
b49e97c9
TS
6908 break;
6909
6910 case DT_MIPS_IVERSION:
6911 /* XXX FIXME: */
b34976b6 6912 swap_out_p = FALSE;
b49e97c9
TS
6913 break;
6914
6915 case DT_MIPS_BASE_ADDRESS:
6916 s = output_bfd->sections;
6917 BFD_ASSERT (s != NULL);
6918 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6919 break;
6920
6921 case DT_MIPS_LOCAL_GOTNO:
6922 dyn.d_un.d_val = g->local_gotno;
6923 break;
6924
6925 case DT_MIPS_UNREFEXTNO:
6926 /* The index into the dynamic symbol table which is the
6927 entry of the first external symbol that is not
6928 referenced within the same object. */
6929 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6930 break;
6931
6932 case DT_MIPS_GOTSYM:
f4416af6 6933 if (gg->global_gotsym)
b49e97c9 6934 {
f4416af6 6935 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
6936 break;
6937 }
6938 /* In case if we don't have global got symbols we default
6939 to setting DT_MIPS_GOTSYM to the same value as
6940 DT_MIPS_SYMTABNO, so we just fall through. */
6941
6942 case DT_MIPS_SYMTABNO:
6943 name = ".dynsym";
6944 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6945 s = bfd_get_section_by_name (output_bfd, name);
6946 BFD_ASSERT (s != NULL);
6947
6948 if (s->_cooked_size != 0)
6949 dyn.d_un.d_val = s->_cooked_size / elemsize;
6950 else
6951 dyn.d_un.d_val = s->_raw_size / elemsize;
6952 break;
6953
6954 case DT_MIPS_HIPAGENO:
6955 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6956 break;
6957
6958 case DT_MIPS_RLD_MAP:
6959 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6960 break;
6961
6962 case DT_MIPS_OPTIONS:
6963 s = (bfd_get_section_by_name
6964 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6965 dyn.d_un.d_ptr = s->vma;
6966 break;
6967
98a8deaf
RS
6968 case DT_RELSZ:
6969 /* Reduce DT_RELSZ to account for any relocations we
6970 decided not to make. This is for the n64 irix rld,
6971 which doesn't seem to apply any relocations if there
6972 are trailing null entries. */
6973 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6974 dyn.d_un.d_val = (s->reloc_count
6975 * (ABI_64_P (output_bfd)
6976 ? sizeof (Elf64_Mips_External_Rel)
6977 : sizeof (Elf32_External_Rel)));
b49e97c9
TS
6978 break;
6979
6980 default:
b34976b6 6981 swap_out_p = FALSE;
b49e97c9
TS
6982 break;
6983 }
6984
6985 if (swap_out_p)
6986 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6987 (dynobj, &dyn, b);
6988 }
6989 }
6990
6991 /* The first entry of the global offset table will be filled at
6992 runtime. The second entry will be used by some runtime loaders.
8dc1a139 6993 This isn't the case of IRIX rld. */
b49e97c9
TS
6994 if (sgot != NULL && sgot->_raw_size > 0)
6995 {
9719ad41
RS
6996 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6997 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
b49e97c9
TS
6998 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6999 }
7000
7001 if (sgot != NULL)
7002 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7003 = MIPS_ELF_GOT_SIZE (output_bfd);
7004
f4416af6
AO
7005 /* Generate dynamic relocations for the non-primary gots. */
7006 if (gg != NULL && gg->next)
7007 {
7008 Elf_Internal_Rela rel[3];
7009 bfd_vma addend = 0;
7010
7011 memset (rel, 0, sizeof (rel));
7012 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7013
7014 for (g = gg->next; g->next != gg; g = g->next)
7015 {
7016 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7017
9719ad41 7018 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 7019 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 7020 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
7021 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7022
7023 if (! info->shared)
7024 continue;
7025
7026 while (index < g->assigned_gotno)
7027 {
7028 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7029 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7030 if (!(mips_elf_create_dynamic_relocation
7031 (output_bfd, info, rel, NULL,
7032 bfd_abs_section_ptr,
7033 0, &addend, sgot)))
7034 return FALSE;
7035 BFD_ASSERT (addend == 0);
7036 }
7037 }
7038 }
7039
b49e97c9 7040 {
b49e97c9
TS
7041 asection *s;
7042 Elf32_compact_rel cpt;
7043
b49e97c9
TS
7044 if (SGI_COMPAT (output_bfd))
7045 {
7046 /* Write .compact_rel section out. */
7047 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7048 if (s != NULL)
7049 {
7050 cpt.id1 = 1;
7051 cpt.num = s->reloc_count;
7052 cpt.id2 = 2;
7053 cpt.offset = (s->output_section->filepos
7054 + sizeof (Elf32_External_compact_rel));
7055 cpt.reserved0 = 0;
7056 cpt.reserved1 = 0;
7057 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7058 ((Elf32_External_compact_rel *)
7059 s->contents));
7060
7061 /* Clean up a dummy stub function entry in .text. */
7062 s = bfd_get_section_by_name (dynobj,
7063 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7064 if (s != NULL)
7065 {
7066 file_ptr dummy_offset;
7067
7068 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
7069 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
7070 memset (s->contents + dummy_offset, 0,
7071 MIPS_FUNCTION_STUB_SIZE);
7072 }
7073 }
7074 }
7075
7076 /* We need to sort the entries of the dynamic relocation section. */
7077
f4416af6
AO
7078 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7079
7080 if (s != NULL
7081 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7082 {
f4416af6 7083 reldyn_sorting_bfd = output_bfd;
b49e97c9 7084
f4416af6 7085 if (ABI_64_P (output_bfd))
9719ad41 7086 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6
AO
7087 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7088 else
9719ad41 7089 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6 7090 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7091 }
b49e97c9
TS
7092 }
7093
b34976b6 7094 return TRUE;
b49e97c9
TS
7095}
7096
b49e97c9 7097
64543e1a
RS
7098/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7099
7100static void
9719ad41 7101mips_set_isa_flags (bfd *abfd)
b49e97c9 7102{
64543e1a 7103 flagword val;
b49e97c9
TS
7104
7105 switch (bfd_get_mach (abfd))
7106 {
7107 default:
7108 case bfd_mach_mips3000:
7109 val = E_MIPS_ARCH_1;
7110 break;
7111
7112 case bfd_mach_mips3900:
7113 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7114 break;
7115
7116 case bfd_mach_mips6000:
7117 val = E_MIPS_ARCH_2;
7118 break;
7119
7120 case bfd_mach_mips4000:
7121 case bfd_mach_mips4300:
7122 case bfd_mach_mips4400:
7123 case bfd_mach_mips4600:
7124 val = E_MIPS_ARCH_3;
7125 break;
7126
7127 case bfd_mach_mips4010:
7128 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7129 break;
7130
7131 case bfd_mach_mips4100:
7132 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7133 break;
7134
7135 case bfd_mach_mips4111:
7136 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7137 break;
7138
00707a0e
RS
7139 case bfd_mach_mips4120:
7140 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7141 break;
7142
b49e97c9
TS
7143 case bfd_mach_mips4650:
7144 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7145 break;
7146
00707a0e
RS
7147 case bfd_mach_mips5400:
7148 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7149 break;
7150
7151 case bfd_mach_mips5500:
7152 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7153 break;
7154
b49e97c9 7155 case bfd_mach_mips5000:
5a7ea749 7156 case bfd_mach_mips7000:
b49e97c9
TS
7157 case bfd_mach_mips8000:
7158 case bfd_mach_mips10000:
7159 case bfd_mach_mips12000:
7160 val = E_MIPS_ARCH_4;
7161 break;
7162
7163 case bfd_mach_mips5:
7164 val = E_MIPS_ARCH_5;
7165 break;
7166
7167 case bfd_mach_mips_sb1:
7168 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7169 break;
7170
7171 case bfd_mach_mipsisa32:
7172 val = E_MIPS_ARCH_32;
7173 break;
7174
7175 case bfd_mach_mipsisa64:
7176 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7177 break;
7178
7179 case bfd_mach_mipsisa32r2:
7180 val = E_MIPS_ARCH_32R2;
7181 break;
5f74bc13
CD
7182
7183 case bfd_mach_mipsisa64r2:
7184 val = E_MIPS_ARCH_64R2;
7185 break;
b49e97c9 7186 }
b49e97c9
TS
7187 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7188 elf_elfheader (abfd)->e_flags |= val;
7189
64543e1a
RS
7190}
7191
7192
7193/* The final processing done just before writing out a MIPS ELF object
7194 file. This gets the MIPS architecture right based on the machine
7195 number. This is used by both the 32-bit and the 64-bit ABI. */
7196
7197void
9719ad41
RS
7198_bfd_mips_elf_final_write_processing (bfd *abfd,
7199 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
7200{
7201 unsigned int i;
7202 Elf_Internal_Shdr **hdrpp;
7203 const char *name;
7204 asection *sec;
7205
7206 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7207 is nonzero. This is for compatibility with old objects, which used
7208 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7209 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7210 mips_set_isa_flags (abfd);
7211
b49e97c9
TS
7212 /* Set the sh_info field for .gptab sections and other appropriate
7213 info for each special section. */
7214 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7215 i < elf_numsections (abfd);
7216 i++, hdrpp++)
7217 {
7218 switch ((*hdrpp)->sh_type)
7219 {
7220 case SHT_MIPS_MSYM:
7221 case SHT_MIPS_LIBLIST:
7222 sec = bfd_get_section_by_name (abfd, ".dynstr");
7223 if (sec != NULL)
7224 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7225 break;
7226
7227 case SHT_MIPS_GPTAB:
7228 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7229 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7230 BFD_ASSERT (name != NULL
7231 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7232 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7233 BFD_ASSERT (sec != NULL);
7234 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7235 break;
7236
7237 case SHT_MIPS_CONTENT:
7238 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7239 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7240 BFD_ASSERT (name != NULL
7241 && strncmp (name, ".MIPS.content",
7242 sizeof ".MIPS.content" - 1) == 0);
7243 sec = bfd_get_section_by_name (abfd,
7244 name + sizeof ".MIPS.content" - 1);
7245 BFD_ASSERT (sec != NULL);
7246 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7247 break;
7248
7249 case SHT_MIPS_SYMBOL_LIB:
7250 sec = bfd_get_section_by_name (abfd, ".dynsym");
7251 if (sec != NULL)
7252 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7253 sec = bfd_get_section_by_name (abfd, ".liblist");
7254 if (sec != NULL)
7255 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7256 break;
7257
7258 case SHT_MIPS_EVENTS:
7259 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7260 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7261 BFD_ASSERT (name != NULL);
7262 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7263 sec = bfd_get_section_by_name (abfd,
7264 name + sizeof ".MIPS.events" - 1);
7265 else
7266 {
7267 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7268 sizeof ".MIPS.post_rel" - 1) == 0);
7269 sec = bfd_get_section_by_name (abfd,
7270 (name
7271 + sizeof ".MIPS.post_rel" - 1));
7272 }
7273 BFD_ASSERT (sec != NULL);
7274 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7275 break;
7276
7277 }
7278 }
7279}
7280\f
8dc1a139 7281/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
7282 segments. */
7283
7284int
9719ad41 7285_bfd_mips_elf_additional_program_headers (bfd *abfd)
b49e97c9
TS
7286{
7287 asection *s;
7288 int ret = 0;
7289
7290 /* See if we need a PT_MIPS_REGINFO segment. */
7291 s = bfd_get_section_by_name (abfd, ".reginfo");
7292 if (s && (s->flags & SEC_LOAD))
7293 ++ret;
7294
7295 /* See if we need a PT_MIPS_OPTIONS segment. */
7296 if (IRIX_COMPAT (abfd) == ict_irix6
7297 && bfd_get_section_by_name (abfd,
7298 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7299 ++ret;
7300
7301 /* See if we need a PT_MIPS_RTPROC segment. */
7302 if (IRIX_COMPAT (abfd) == ict_irix5
7303 && bfd_get_section_by_name (abfd, ".dynamic")
7304 && bfd_get_section_by_name (abfd, ".mdebug"))
7305 ++ret;
7306
7307 return ret;
7308}
7309
8dc1a139 7310/* Modify the segment map for an IRIX5 executable. */
b49e97c9 7311
b34976b6 7312bfd_boolean
9719ad41
RS
7313_bfd_mips_elf_modify_segment_map (bfd *abfd,
7314 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
7315{
7316 asection *s;
7317 struct elf_segment_map *m, **pm;
7318 bfd_size_type amt;
7319
7320 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7321 segment. */
7322 s = bfd_get_section_by_name (abfd, ".reginfo");
7323 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7324 {
7325 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7326 if (m->p_type == PT_MIPS_REGINFO)
7327 break;
7328 if (m == NULL)
7329 {
7330 amt = sizeof *m;
9719ad41 7331 m = bfd_zalloc (abfd, amt);
b49e97c9 7332 if (m == NULL)
b34976b6 7333 return FALSE;
b49e97c9
TS
7334
7335 m->p_type = PT_MIPS_REGINFO;
7336 m->count = 1;
7337 m->sections[0] = s;
7338
7339 /* We want to put it after the PHDR and INTERP segments. */
7340 pm = &elf_tdata (abfd)->segment_map;
7341 while (*pm != NULL
7342 && ((*pm)->p_type == PT_PHDR
7343 || (*pm)->p_type == PT_INTERP))
7344 pm = &(*pm)->next;
7345
7346 m->next = *pm;
7347 *pm = m;
7348 }
7349 }
7350
7351 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7352 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 7353 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 7354 table. */
c1fd6598
AO
7355 if (NEWABI_P (abfd)
7356 /* On non-IRIX6 new abi, we'll have already created a segment
7357 for this section, so don't create another. I'm not sure this
7358 is not also the case for IRIX 6, but I can't test it right
7359 now. */
7360 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
7361 {
7362 for (s = abfd->sections; s; s = s->next)
7363 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7364 break;
7365
7366 if (s)
7367 {
7368 struct elf_segment_map *options_segment;
7369
98a8deaf
RS
7370 pm = &elf_tdata (abfd)->segment_map;
7371 while (*pm != NULL
7372 && ((*pm)->p_type == PT_PHDR
7373 || (*pm)->p_type == PT_INTERP))
7374 pm = &(*pm)->next;
b49e97c9
TS
7375
7376 amt = sizeof (struct elf_segment_map);
7377 options_segment = bfd_zalloc (abfd, amt);
7378 options_segment->next = *pm;
7379 options_segment->p_type = PT_MIPS_OPTIONS;
7380 options_segment->p_flags = PF_R;
b34976b6 7381 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
7382 options_segment->count = 1;
7383 options_segment->sections[0] = s;
7384 *pm = options_segment;
7385 }
7386 }
7387 else
7388 {
7389 if (IRIX_COMPAT (abfd) == ict_irix5)
7390 {
7391 /* If there are .dynamic and .mdebug sections, we make a room
7392 for the RTPROC header. FIXME: Rewrite without section names. */
7393 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7394 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7395 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7396 {
7397 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7398 if (m->p_type == PT_MIPS_RTPROC)
7399 break;
7400 if (m == NULL)
7401 {
7402 amt = sizeof *m;
9719ad41 7403 m = bfd_zalloc (abfd, amt);
b49e97c9 7404 if (m == NULL)
b34976b6 7405 return FALSE;
b49e97c9
TS
7406
7407 m->p_type = PT_MIPS_RTPROC;
7408
7409 s = bfd_get_section_by_name (abfd, ".rtproc");
7410 if (s == NULL)
7411 {
7412 m->count = 0;
7413 m->p_flags = 0;
7414 m->p_flags_valid = 1;
7415 }
7416 else
7417 {
7418 m->count = 1;
7419 m->sections[0] = s;
7420 }
7421
7422 /* We want to put it after the DYNAMIC segment. */
7423 pm = &elf_tdata (abfd)->segment_map;
7424 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7425 pm = &(*pm)->next;
7426 if (*pm != NULL)
7427 pm = &(*pm)->next;
7428
7429 m->next = *pm;
7430 *pm = m;
7431 }
7432 }
7433 }
8dc1a139 7434 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
7435 .dynstr, .dynsym, and .hash sections, and everything in
7436 between. */
7437 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7438 pm = &(*pm)->next)
7439 if ((*pm)->p_type == PT_DYNAMIC)
7440 break;
7441 m = *pm;
7442 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7443 {
7444 /* For a normal mips executable the permissions for the PT_DYNAMIC
7445 segment are read, write and execute. We do that here since
7446 the code in elf.c sets only the read permission. This matters
7447 sometimes for the dynamic linker. */
7448 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7449 {
7450 m->p_flags = PF_R | PF_W | PF_X;
7451 m->p_flags_valid = 1;
7452 }
7453 }
7454 if (m != NULL
7455 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7456 {
7457 static const char *sec_names[] =
7458 {
7459 ".dynamic", ".dynstr", ".dynsym", ".hash"
7460 };
7461 bfd_vma low, high;
7462 unsigned int i, c;
7463 struct elf_segment_map *n;
7464
792b4a53 7465 low = ~(bfd_vma) 0;
b49e97c9
TS
7466 high = 0;
7467 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7468 {
7469 s = bfd_get_section_by_name (abfd, sec_names[i]);
7470 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7471 {
7472 bfd_size_type sz;
7473
7474 if (low > s->vma)
7475 low = s->vma;
7476 sz = s->_cooked_size;
7477 if (sz == 0)
7478 sz = s->_raw_size;
7479 if (high < s->vma + sz)
7480 high = s->vma + sz;
7481 }
7482 }
7483
7484 c = 0;
7485 for (s = abfd->sections; s != NULL; s = s->next)
7486 if ((s->flags & SEC_LOAD) != 0
7487 && s->vma >= low
7488 && ((s->vma
7489 + (s->_cooked_size !=
7490 0 ? s->_cooked_size : s->_raw_size)) <= high))
7491 ++c;
7492
7493 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 7494 n = bfd_zalloc (abfd, amt);
b49e97c9 7495 if (n == NULL)
b34976b6 7496 return FALSE;
b49e97c9
TS
7497 *n = *m;
7498 n->count = c;
7499
7500 i = 0;
7501 for (s = abfd->sections; s != NULL; s = s->next)
7502 {
7503 if ((s->flags & SEC_LOAD) != 0
7504 && s->vma >= low
7505 && ((s->vma
7506 + (s->_cooked_size != 0 ?
7507 s->_cooked_size : s->_raw_size)) <= high))
7508 {
7509 n->sections[i] = s;
7510 ++i;
7511 }
7512 }
7513
7514 *pm = n;
7515 }
7516 }
7517
b34976b6 7518 return TRUE;
b49e97c9
TS
7519}
7520\f
7521/* Return the section that should be marked against GC for a given
7522 relocation. */
7523
7524asection *
9719ad41
RS
7525_bfd_mips_elf_gc_mark_hook (asection *sec,
7526 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7527 Elf_Internal_Rela *rel,
7528 struct elf_link_hash_entry *h,
7529 Elf_Internal_Sym *sym)
b49e97c9
TS
7530{
7531 /* ??? Do mips16 stub sections need to be handled special? */
7532
7533 if (h != NULL)
7534 {
1e2f5b6e 7535 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
7536 {
7537 case R_MIPS_GNU_VTINHERIT:
7538 case R_MIPS_GNU_VTENTRY:
7539 break;
7540
7541 default:
7542 switch (h->root.type)
7543 {
7544 case bfd_link_hash_defined:
7545 case bfd_link_hash_defweak:
7546 return h->root.u.def.section;
7547
7548 case bfd_link_hash_common:
7549 return h->root.u.c.p->section;
7550
7551 default:
7552 break;
7553 }
7554 }
7555 }
7556 else
1e2f5b6e 7557 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
7558
7559 return NULL;
7560}
7561
7562/* Update the got entry reference counts for the section being removed. */
7563
b34976b6 7564bfd_boolean
9719ad41
RS
7565_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7566 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7567 asection *sec ATTRIBUTE_UNUSED,
7568 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
7569{
7570#if 0
7571 Elf_Internal_Shdr *symtab_hdr;
7572 struct elf_link_hash_entry **sym_hashes;
7573 bfd_signed_vma *local_got_refcounts;
7574 const Elf_Internal_Rela *rel, *relend;
7575 unsigned long r_symndx;
7576 struct elf_link_hash_entry *h;
7577
7578 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7579 sym_hashes = elf_sym_hashes (abfd);
7580 local_got_refcounts = elf_local_got_refcounts (abfd);
7581
7582 relend = relocs + sec->reloc_count;
7583 for (rel = relocs; rel < relend; rel++)
7584 switch (ELF_R_TYPE (abfd, rel->r_info))
7585 {
7586 case R_MIPS_GOT16:
7587 case R_MIPS_CALL16:
7588 case R_MIPS_CALL_HI16:
7589 case R_MIPS_CALL_LO16:
7590 case R_MIPS_GOT_HI16:
7591 case R_MIPS_GOT_LO16:
4a14403c
TS
7592 case R_MIPS_GOT_DISP:
7593 case R_MIPS_GOT_PAGE:
7594 case R_MIPS_GOT_OFST:
b49e97c9
TS
7595 /* ??? It would seem that the existing MIPS code does no sort
7596 of reference counting or whatnot on its GOT and PLT entries,
7597 so it is not possible to garbage collect them at this time. */
7598 break;
7599
7600 default:
7601 break;
7602 }
7603#endif
7604
b34976b6 7605 return TRUE;
b49e97c9
TS
7606}
7607\f
7608/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7609 hiding the old indirect symbol. Process additional relocation
7610 information. Also called for weakdefs, in which case we just let
7611 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7612
7613void
9719ad41
RS
7614_bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7615 struct elf_link_hash_entry *dir,
7616 struct elf_link_hash_entry *ind)
b49e97c9
TS
7617{
7618 struct mips_elf_link_hash_entry *dirmips, *indmips;
7619
b48fa14c 7620 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
7621
7622 if (ind->root.type != bfd_link_hash_indirect)
7623 return;
7624
7625 dirmips = (struct mips_elf_link_hash_entry *) dir;
7626 indmips = (struct mips_elf_link_hash_entry *) ind;
7627 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7628 if (indmips->readonly_reloc)
b34976b6 7629 dirmips->readonly_reloc = TRUE;
b49e97c9 7630 if (indmips->no_fn_stub)
b34976b6 7631 dirmips->no_fn_stub = TRUE;
b49e97c9
TS
7632}
7633
7634void
9719ad41
RS
7635_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7636 struct elf_link_hash_entry *entry,
7637 bfd_boolean force_local)
b49e97c9
TS
7638{
7639 bfd *dynobj;
7640 asection *got;
7641 struct mips_got_info *g;
7642 struct mips_elf_link_hash_entry *h;
7c5fcef7 7643
b49e97c9 7644 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
7645 if (h->forced_local)
7646 return;
4b555070 7647 h->forced_local = force_local;
7c5fcef7 7648
b49e97c9 7649 dynobj = elf_hash_table (info)->dynobj;
4b555070 7650 if (dynobj != NULL && force_local)
f4416af6 7651 {
c45a316a
AM
7652 got = mips_elf_got_section (dynobj, FALSE);
7653 g = mips_elf_section_data (got)->u.got_info;
f4416af6 7654
c45a316a
AM
7655 if (g->next)
7656 {
7657 struct mips_got_entry e;
7658 struct mips_got_info *gg = g;
7659
7660 /* Since we're turning what used to be a global symbol into a
7661 local one, bump up the number of local entries of each GOT
7662 that had an entry for it. This will automatically decrease
7663 the number of global entries, since global_gotno is actually
7664 the upper limit of global entries. */
7665 e.abfd = dynobj;
7666 e.symndx = -1;
7667 e.d.h = h;
7668
7669 for (g = g->next; g != gg; g = g->next)
7670 if (htab_find (g->got_entries, &e))
7671 {
7672 BFD_ASSERT (g->global_gotno > 0);
7673 g->local_gotno++;
7674 g->global_gotno--;
7675 }
b49e97c9 7676
c45a316a
AM
7677 /* If this was a global symbol forced into the primary GOT, we
7678 no longer need an entry for it. We can't release the entry
7679 at this point, but we must at least stop counting it as one
7680 of the symbols that required a forced got entry. */
7681 if (h->root.got.offset == 2)
7682 {
7683 BFD_ASSERT (gg->assigned_gotno > 0);
7684 gg->assigned_gotno--;
7685 }
7686 }
7687 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7688 /* If we haven't got through GOT allocation yet, just bump up the
7689 number of local entries, as this symbol won't be counted as
7690 global. */
7691 g->local_gotno++;
7692 else if (h->root.got.offset == 1)
f4416af6 7693 {
c45a316a
AM
7694 /* If we're past non-multi-GOT allocation and this symbol had
7695 been marked for a global got entry, give it a local entry
7696 instead. */
7697 BFD_ASSERT (g->global_gotno > 0);
7698 g->local_gotno++;
7699 g->global_gotno--;
f4416af6
AO
7700 }
7701 }
f4416af6
AO
7702
7703 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
7704}
7705\f
d01414a5
TS
7706#define PDR_SIZE 32
7707
b34976b6 7708bfd_boolean
9719ad41
RS
7709_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7710 struct bfd_link_info *info)
d01414a5
TS
7711{
7712 asection *o;
b34976b6 7713 bfd_boolean ret = FALSE;
d01414a5
TS
7714 unsigned char *tdata;
7715 size_t i, skip;
7716
7717 o = bfd_get_section_by_name (abfd, ".pdr");
7718 if (! o)
b34976b6 7719 return FALSE;
d01414a5 7720 if (o->_raw_size == 0)
b34976b6 7721 return FALSE;
d01414a5 7722 if (o->_raw_size % PDR_SIZE != 0)
b34976b6 7723 return FALSE;
d01414a5
TS
7724 if (o->output_section != NULL
7725 && bfd_is_abs_section (o->output_section))
b34976b6 7726 return FALSE;
d01414a5
TS
7727
7728 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7729 if (! tdata)
b34976b6 7730 return FALSE;
d01414a5 7731
9719ad41 7732 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7733 info->keep_memory);
d01414a5
TS
7734 if (!cookie->rels)
7735 {
7736 free (tdata);
b34976b6 7737 return FALSE;
d01414a5
TS
7738 }
7739
7740 cookie->rel = cookie->rels;
7741 cookie->relend = cookie->rels + o->reloc_count;
7742
c9c27aad 7743 for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++)
d01414a5 7744 {
ee6423ed 7745 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
d01414a5
TS
7746 {
7747 tdata[i] = 1;
7748 skip ++;
7749 }
7750 }
7751
7752 if (skip != 0)
7753 {
f0abc2a1 7754 mips_elf_section_data (o)->u.tdata = tdata;
d01414a5 7755 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
b34976b6 7756 ret = TRUE;
d01414a5
TS
7757 }
7758 else
7759 free (tdata);
7760
7761 if (! info->keep_memory)
7762 free (cookie->rels);
7763
7764 return ret;
7765}
7766
b34976b6 7767bfd_boolean
9719ad41 7768_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
7769{
7770 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
7771 return TRUE;
7772 return FALSE;
53bfd6b4 7773}
d01414a5 7774
b34976b6 7775bfd_boolean
9719ad41
RS
7776_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7777 bfd_byte *contents)
d01414a5
TS
7778{
7779 bfd_byte *to, *from, *end;
7780 int i;
7781
7782 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 7783 return FALSE;
d01414a5 7784
f0abc2a1 7785 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 7786 return FALSE;
d01414a5
TS
7787
7788 to = contents;
7789 end = contents + sec->_raw_size;
7790 for (from = contents, i = 0;
7791 from < end;
7792 from += PDR_SIZE, i++)
7793 {
f0abc2a1 7794 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
7795 continue;
7796 if (to != from)
7797 memcpy (to, from, PDR_SIZE);
7798 to += PDR_SIZE;
7799 }
7800 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9719ad41 7801 sec->output_offset, sec->_cooked_size);
b34976b6 7802 return TRUE;
d01414a5 7803}
53bfd6b4 7804\f
b49e97c9
TS
7805/* MIPS ELF uses a special find_nearest_line routine in order the
7806 handle the ECOFF debugging information. */
7807
7808struct mips_elf_find_line
7809{
7810 struct ecoff_debug_info d;
7811 struct ecoff_find_line i;
7812};
7813
b34976b6 7814bfd_boolean
9719ad41
RS
7815_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7816 asymbol **symbols, bfd_vma offset,
7817 const char **filename_ptr,
7818 const char **functionname_ptr,
7819 unsigned int *line_ptr)
b49e97c9
TS
7820{
7821 asection *msec;
7822
7823 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7824 filename_ptr, functionname_ptr,
7825 line_ptr))
b34976b6 7826 return TRUE;
b49e97c9
TS
7827
7828 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7829 filename_ptr, functionname_ptr,
9719ad41 7830 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 7831 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 7832 return TRUE;
b49e97c9
TS
7833
7834 msec = bfd_get_section_by_name (abfd, ".mdebug");
7835 if (msec != NULL)
7836 {
7837 flagword origflags;
7838 struct mips_elf_find_line *fi;
7839 const struct ecoff_debug_swap * const swap =
7840 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7841
7842 /* If we are called during a link, mips_elf_final_link may have
7843 cleared the SEC_HAS_CONTENTS field. We force it back on here
7844 if appropriate (which it normally will be). */
7845 origflags = msec->flags;
7846 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7847 msec->flags |= SEC_HAS_CONTENTS;
7848
7849 fi = elf_tdata (abfd)->find_line_info;
7850 if (fi == NULL)
7851 {
7852 bfd_size_type external_fdr_size;
7853 char *fraw_src;
7854 char *fraw_end;
7855 struct fdr *fdr_ptr;
7856 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7857
9719ad41 7858 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
7859 if (fi == NULL)
7860 {
7861 msec->flags = origflags;
b34976b6 7862 return FALSE;
b49e97c9
TS
7863 }
7864
7865 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7866 {
7867 msec->flags = origflags;
b34976b6 7868 return FALSE;
b49e97c9
TS
7869 }
7870
7871 /* Swap in the FDR information. */
7872 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 7873 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
7874 if (fi->d.fdr == NULL)
7875 {
7876 msec->flags = origflags;
b34976b6 7877 return FALSE;
b49e97c9
TS
7878 }
7879 external_fdr_size = swap->external_fdr_size;
7880 fdr_ptr = fi->d.fdr;
7881 fraw_src = (char *) fi->d.external_fdr;
7882 fraw_end = (fraw_src
7883 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7884 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 7885 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
7886
7887 elf_tdata (abfd)->find_line_info = fi;
7888
7889 /* Note that we don't bother to ever free this information.
7890 find_nearest_line is either called all the time, as in
7891 objdump -l, so the information should be saved, or it is
7892 rarely called, as in ld error messages, so the memory
7893 wasted is unimportant. Still, it would probably be a
7894 good idea for free_cached_info to throw it away. */
7895 }
7896
7897 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7898 &fi->i, filename_ptr, functionname_ptr,
7899 line_ptr))
7900 {
7901 msec->flags = origflags;
b34976b6 7902 return TRUE;
b49e97c9
TS
7903 }
7904
7905 msec->flags = origflags;
7906 }
7907
7908 /* Fall back on the generic ELF find_nearest_line routine. */
7909
7910 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7911 filename_ptr, functionname_ptr,
7912 line_ptr);
7913}
7914\f
7915/* When are writing out the .options or .MIPS.options section,
7916 remember the bytes we are writing out, so that we can install the
7917 GP value in the section_processing routine. */
7918
b34976b6 7919bfd_boolean
9719ad41
RS
7920_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7921 const void *location,
7922 file_ptr offset, bfd_size_type count)
b49e97c9
TS
7923{
7924 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7925 {
7926 bfd_byte *c;
7927
7928 if (elf_section_data (section) == NULL)
7929 {
7930 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 7931 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 7932 if (elf_section_data (section) == NULL)
b34976b6 7933 return FALSE;
b49e97c9 7934 }
f0abc2a1 7935 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
7936 if (c == NULL)
7937 {
7938 bfd_size_type size;
7939
7940 if (section->_cooked_size != 0)
7941 size = section->_cooked_size;
7942 else
7943 size = section->_raw_size;
9719ad41 7944 c = bfd_zalloc (abfd, size);
b49e97c9 7945 if (c == NULL)
b34976b6 7946 return FALSE;
f0abc2a1 7947 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
7948 }
7949
9719ad41 7950 memcpy (c + offset, location, count);
b49e97c9
TS
7951 }
7952
7953 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7954 count);
7955}
7956
7957/* This is almost identical to bfd_generic_get_... except that some
7958 MIPS relocations need to be handled specially. Sigh. */
7959
7960bfd_byte *
9719ad41
RS
7961_bfd_elf_mips_get_relocated_section_contents
7962 (bfd *abfd,
7963 struct bfd_link_info *link_info,
7964 struct bfd_link_order *link_order,
7965 bfd_byte *data,
7966 bfd_boolean relocatable,
7967 asymbol **symbols)
b49e97c9
TS
7968{
7969 /* Get enough memory to hold the stuff */
7970 bfd *input_bfd = link_order->u.indirect.section->owner;
7971 asection *input_section = link_order->u.indirect.section;
7972
7973 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7974 arelent **reloc_vector = NULL;
7975 long reloc_count;
7976
7977 if (reloc_size < 0)
7978 goto error_return;
7979
9719ad41 7980 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
7981 if (reloc_vector == NULL && reloc_size != 0)
7982 goto error_return;
7983
7984 /* read in the section */
9719ad41 7985 if (!bfd_get_section_contents (input_bfd, input_section, data, 0,
b49e97c9
TS
7986 input_section->_raw_size))
7987 goto error_return;
7988
7989 /* We're not relaxing the section, so just copy the size info */
7990 input_section->_cooked_size = input_section->_raw_size;
b34976b6 7991 input_section->reloc_done = TRUE;
b49e97c9
TS
7992
7993 reloc_count = bfd_canonicalize_reloc (input_bfd,
7994 input_section,
7995 reloc_vector,
7996 symbols);
7997 if (reloc_count < 0)
7998 goto error_return;
7999
8000 if (reloc_count > 0)
8001 {
8002 arelent **parent;
8003 /* for mips */
8004 int gp_found;
8005 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8006
8007 {
8008 struct bfd_hash_entry *h;
8009 struct bfd_link_hash_entry *lh;
8010 /* Skip all this stuff if we aren't mixing formats. */
8011 if (abfd && input_bfd
8012 && abfd->xvec == input_bfd->xvec)
8013 lh = 0;
8014 else
8015 {
b34976b6 8016 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
8017 lh = (struct bfd_link_hash_entry *) h;
8018 }
8019 lookup:
8020 if (lh)
8021 {
8022 switch (lh->type)
8023 {
8024 case bfd_link_hash_undefined:
8025 case bfd_link_hash_undefweak:
8026 case bfd_link_hash_common:
8027 gp_found = 0;
8028 break;
8029 case bfd_link_hash_defined:
8030 case bfd_link_hash_defweak:
8031 gp_found = 1;
8032 gp = lh->u.def.value;
8033 break;
8034 case bfd_link_hash_indirect:
8035 case bfd_link_hash_warning:
8036 lh = lh->u.i.link;
8037 /* @@FIXME ignoring warning for now */
8038 goto lookup;
8039 case bfd_link_hash_new:
8040 default:
8041 abort ();
8042 }
8043 }
8044 else
8045 gp_found = 0;
8046 }
8047 /* end mips */
9719ad41 8048 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 8049 {
9719ad41 8050 char *error_message = NULL;
b49e97c9
TS
8051 bfd_reloc_status_type r;
8052
8053 /* Specific to MIPS: Deal with relocation types that require
8054 knowing the gp of the output bfd. */
8055 asymbol *sym = *(*parent)->sym_ptr_ptr;
8056 if (bfd_is_abs_section (sym->section) && abfd)
8057 {
44c410de 8058 /* The special_function wouldn't get called anyway. */
b49e97c9
TS
8059 }
8060 else if (!gp_found)
8061 {
8062 /* The gp isn't there; let the special function code
8063 fall over on its own. */
8064 }
8065 else if ((*parent)->howto->special_function
8066 == _bfd_mips_elf32_gprel16_reloc)
8067 {
8068 /* bypass special_function call */
8069 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
1049f94e 8070 input_section, relocatable,
9719ad41 8071 data, gp);
b49e97c9
TS
8072 goto skip_bfd_perform_relocation;
8073 }
8074 /* end mips specific stuff */
8075
9719ad41
RS
8076 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
8077 relocatable ? abfd : NULL,
b49e97c9
TS
8078 &error_message);
8079 skip_bfd_perform_relocation:
8080
1049f94e 8081 if (relocatable)
b49e97c9
TS
8082 {
8083 asection *os = input_section->output_section;
8084
8085 /* A partial link, so keep the relocs */
8086 os->orelocation[os->reloc_count] = *parent;
8087 os->reloc_count++;
8088 }
8089
8090 if (r != bfd_reloc_ok)
8091 {
8092 switch (r)
8093 {
8094 case bfd_reloc_undefined:
8095 if (!((*link_info->callbacks->undefined_symbol)
8096 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8097 input_bfd, input_section, (*parent)->address,
b34976b6 8098 TRUE)))
b49e97c9
TS
8099 goto error_return;
8100 break;
8101 case bfd_reloc_dangerous:
9719ad41 8102 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
8103 if (!((*link_info->callbacks->reloc_dangerous)
8104 (link_info, error_message, input_bfd, input_section,
8105 (*parent)->address)))
8106 goto error_return;
8107 break;
8108 case bfd_reloc_overflow:
8109 if (!((*link_info->callbacks->reloc_overflow)
8110 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8111 (*parent)->howto->name, (*parent)->addend,
8112 input_bfd, input_section, (*parent)->address)))
8113 goto error_return;
8114 break;
8115 case bfd_reloc_outofrange:
8116 default:
8117 abort ();
8118 break;
8119 }
8120
8121 }
8122 }
8123 }
8124 if (reloc_vector != NULL)
8125 free (reloc_vector);
8126 return data;
8127
8128error_return:
8129 if (reloc_vector != NULL)
8130 free (reloc_vector);
8131 return NULL;
8132}
8133\f
8134/* Create a MIPS ELF linker hash table. */
8135
8136struct bfd_link_hash_table *
9719ad41 8137_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
8138{
8139 struct mips_elf_link_hash_table *ret;
8140 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8141
9719ad41
RS
8142 ret = bfd_malloc (amt);
8143 if (ret == NULL)
b49e97c9
TS
8144 return NULL;
8145
8146 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8147 mips_elf_link_hash_newfunc))
8148 {
e2d34d7d 8149 free (ret);
b49e97c9
TS
8150 return NULL;
8151 }
8152
8153#if 0
8154 /* We no longer use this. */
8155 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8156 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8157#endif
8158 ret->procedure_count = 0;
8159 ret->compact_rel_size = 0;
b34976b6 8160 ret->use_rld_obj_head = FALSE;
b49e97c9 8161 ret->rld_value = 0;
b34976b6 8162 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8163
8164 return &ret->root.root;
8165}
8166\f
8167/* We need to use a special link routine to handle the .reginfo and
8168 the .mdebug sections. We need to merge all instances of these
8169 sections together, not write them all out sequentially. */
8170
b34976b6 8171bfd_boolean
9719ad41 8172_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
8173{
8174 asection **secpp;
8175 asection *o;
8176 struct bfd_link_order *p;
8177 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8178 asection *rtproc_sec;
8179 Elf32_RegInfo reginfo;
8180 struct ecoff_debug_info debug;
8181 const struct ecoff_debug_swap *swap
8182 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8183 HDRR *symhdr = &debug.symbolic_header;
9719ad41 8184 void *mdebug_handle = NULL;
b49e97c9
TS
8185 asection *s;
8186 EXTR esym;
8187 unsigned int i;
8188 bfd_size_type amt;
8189
8190 static const char * const secname[] =
8191 {
8192 ".text", ".init", ".fini", ".data",
8193 ".rodata", ".sdata", ".sbss", ".bss"
8194 };
8195 static const int sc[] =
8196 {
8197 scText, scInit, scFini, scData,
8198 scRData, scSData, scSBss, scBss
8199 };
8200
b49e97c9
TS
8201 /* We'd carefully arranged the dynamic symbol indices, and then the
8202 generic size_dynamic_sections renumbered them out from under us.
8203 Rather than trying somehow to prevent the renumbering, just do
8204 the sort again. */
8205 if (elf_hash_table (info)->dynamic_sections_created)
8206 {
8207 bfd *dynobj;
8208 asection *got;
8209 struct mips_got_info *g;
8210
8211 /* When we resort, we must tell mips_elf_sort_hash_table what
8212 the lowest index it may use is. That's the number of section
8213 symbols we're going to add. The generic ELF linker only
8214 adds these symbols when building a shared object. Note that
8215 we count the sections after (possibly) removing the .options
8216 section above. */
8217 if (! mips_elf_sort_hash_table (info, (info->shared
8218 ? bfd_count_sections (abfd) + 1
8219 : 1)))
b34976b6 8220 return FALSE;
b49e97c9
TS
8221
8222 /* Make sure we didn't grow the global .got region. */
8223 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8224 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8225 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8226
8227 if (g->global_gotsym != NULL)
8228 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8229 - g->global_gotsym->dynindx)
8230 <= g->global_gotno);
8231 }
8232
a902ee94
SC
8233#if 0
8234 /* We want to set the GP value for ld -r. */
b49e97c9
TS
8235 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8236 include it, even though we don't process it quite right. (Some
8237 entries are supposed to be merged.) Empirically, we seem to be
8238 better off including it then not. */
8239 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8240 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8241 {
8242 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8243 {
8244 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8245 if (p->type == bfd_indirect_link_order)
8246 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8247 (*secpp)->link_order_head = NULL;
8248 bfd_section_list_remove (abfd, secpp);
8249 --abfd->section_count;
8250
8251 break;
8252 }
8253 }
8254
8255 /* We include .MIPS.options, even though we don't process it quite right.
8256 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8257 to be better off including it than not. */
8258 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8259 {
8260 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8261 {
8262 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8263 if (p->type == bfd_indirect_link_order)
8264 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8265 (*secpp)->link_order_head = NULL;
8266 bfd_section_list_remove (abfd, secpp);
8267 --abfd->section_count;
b34976b6 8268
b49e97c9
TS
8269 break;
8270 }
8271 }
a902ee94 8272#endif
b49e97c9
TS
8273
8274 /* Get a value for the GP register. */
8275 if (elf_gp (abfd) == 0)
8276 {
8277 struct bfd_link_hash_entry *h;
8278
b34976b6 8279 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 8280 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
8281 elf_gp (abfd) = (h->u.def.value
8282 + h->u.def.section->output_section->vma
8283 + h->u.def.section->output_offset);
1049f94e 8284 else if (info->relocatable)
b49e97c9
TS
8285 {
8286 bfd_vma lo = MINUS_ONE;
8287
8288 /* Find the GP-relative section with the lowest offset. */
9719ad41 8289 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8290 if (o->vma < lo
8291 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8292 lo = o->vma;
8293
8294 /* And calculate GP relative to that. */
8295 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8296 }
8297 else
8298 {
8299 /* If the relocate_section function needs to do a reloc
8300 involving the GP value, it should make a reloc_dangerous
8301 callback to warn that GP is not defined. */
8302 }
8303 }
8304
8305 /* Go through the sections and collect the .reginfo and .mdebug
8306 information. */
8307 reginfo_sec = NULL;
8308 mdebug_sec = NULL;
8309 gptab_data_sec = NULL;
8310 gptab_bss_sec = NULL;
9719ad41 8311 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8312 {
8313 if (strcmp (o->name, ".reginfo") == 0)
8314 {
8315 memset (&reginfo, 0, sizeof reginfo);
8316
8317 /* We have found the .reginfo section in the output file.
8318 Look through all the link_orders comprising it and merge
8319 the information together. */
9719ad41 8320 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8321 {
8322 asection *input_section;
8323 bfd *input_bfd;
8324 Elf32_External_RegInfo ext;
8325 Elf32_RegInfo sub;
8326
8327 if (p->type != bfd_indirect_link_order)
8328 {
8329 if (p->type == bfd_data_link_order)
8330 continue;
8331 abort ();
8332 }
8333
8334 input_section = p->u.indirect.section;
8335 input_bfd = input_section->owner;
8336
8337 /* The linker emulation code has probably clobbered the
8338 size to be zero bytes. */
8339 if (input_section->_raw_size == 0)
8340 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8341
8342 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 8343 &ext, 0, sizeof ext))
b34976b6 8344 return FALSE;
b49e97c9
TS
8345
8346 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8347
8348 reginfo.ri_gprmask |= sub.ri_gprmask;
8349 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8350 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8351 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8352 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8353
8354 /* ri_gp_value is set by the function
8355 mips_elf32_section_processing when the section is
8356 finally written out. */
8357
8358 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8359 elf_link_input_bfd ignores this section. */
8360 input_section->flags &= ~SEC_HAS_CONTENTS;
8361 }
8362
8363 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8364 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8365
8366 /* Skip this section later on (I don't think this currently
8367 matters, but someday it might). */
9719ad41 8368 o->link_order_head = NULL;
b49e97c9
TS
8369
8370 reginfo_sec = o;
8371 }
8372
8373 if (strcmp (o->name, ".mdebug") == 0)
8374 {
8375 struct extsym_info einfo;
8376 bfd_vma last;
8377
8378 /* We have found the .mdebug section in the output file.
8379 Look through all the link_orders comprising it and merge
8380 the information together. */
8381 symhdr->magic = swap->sym_magic;
8382 /* FIXME: What should the version stamp be? */
8383 symhdr->vstamp = 0;
8384 symhdr->ilineMax = 0;
8385 symhdr->cbLine = 0;
8386 symhdr->idnMax = 0;
8387 symhdr->ipdMax = 0;
8388 symhdr->isymMax = 0;
8389 symhdr->ioptMax = 0;
8390 symhdr->iauxMax = 0;
8391 symhdr->issMax = 0;
8392 symhdr->issExtMax = 0;
8393 symhdr->ifdMax = 0;
8394 symhdr->crfd = 0;
8395 symhdr->iextMax = 0;
8396
8397 /* We accumulate the debugging information itself in the
8398 debug_info structure. */
8399 debug.line = NULL;
8400 debug.external_dnr = NULL;
8401 debug.external_pdr = NULL;
8402 debug.external_sym = NULL;
8403 debug.external_opt = NULL;
8404 debug.external_aux = NULL;
8405 debug.ss = NULL;
8406 debug.ssext = debug.ssext_end = NULL;
8407 debug.external_fdr = NULL;
8408 debug.external_rfd = NULL;
8409 debug.external_ext = debug.external_ext_end = NULL;
8410
8411 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 8412 if (mdebug_handle == NULL)
b34976b6 8413 return FALSE;
b49e97c9
TS
8414
8415 esym.jmptbl = 0;
8416 esym.cobol_main = 0;
8417 esym.weakext = 0;
8418 esym.reserved = 0;
8419 esym.ifd = ifdNil;
8420 esym.asym.iss = issNil;
8421 esym.asym.st = stLocal;
8422 esym.asym.reserved = 0;
8423 esym.asym.index = indexNil;
8424 last = 0;
8425 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8426 {
8427 esym.asym.sc = sc[i];
8428 s = bfd_get_section_by_name (abfd, secname[i]);
8429 if (s != NULL)
8430 {
8431 esym.asym.value = s->vma;
8432 last = s->vma + s->_raw_size;
8433 }
8434 else
8435 esym.asym.value = last;
8436 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8437 secname[i], &esym))
b34976b6 8438 return FALSE;
b49e97c9
TS
8439 }
8440
9719ad41 8441 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8442 {
8443 asection *input_section;
8444 bfd *input_bfd;
8445 const struct ecoff_debug_swap *input_swap;
8446 struct ecoff_debug_info input_debug;
8447 char *eraw_src;
8448 char *eraw_end;
8449
8450 if (p->type != bfd_indirect_link_order)
8451 {
8452 if (p->type == bfd_data_link_order)
8453 continue;
8454 abort ();
8455 }
8456
8457 input_section = p->u.indirect.section;
8458 input_bfd = input_section->owner;
8459
8460 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8461 || (get_elf_backend_data (input_bfd)
8462 ->elf_backend_ecoff_debug_swap) == NULL)
8463 {
8464 /* I don't know what a non MIPS ELF bfd would be
8465 doing with a .mdebug section, but I don't really
8466 want to deal with it. */
8467 continue;
8468 }
8469
8470 input_swap = (get_elf_backend_data (input_bfd)
8471 ->elf_backend_ecoff_debug_swap);
8472
8473 BFD_ASSERT (p->size == input_section->_raw_size);
8474
8475 /* The ECOFF linking code expects that we have already
8476 read in the debugging information and set up an
8477 ecoff_debug_info structure, so we do that now. */
8478 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8479 &input_debug))
b34976b6 8480 return FALSE;
b49e97c9
TS
8481
8482 if (! (bfd_ecoff_debug_accumulate
8483 (mdebug_handle, abfd, &debug, swap, input_bfd,
8484 &input_debug, input_swap, info)))
b34976b6 8485 return FALSE;
b49e97c9
TS
8486
8487 /* Loop through the external symbols. For each one with
8488 interesting information, try to find the symbol in
8489 the linker global hash table and save the information
8490 for the output external symbols. */
8491 eraw_src = input_debug.external_ext;
8492 eraw_end = (eraw_src
8493 + (input_debug.symbolic_header.iextMax
8494 * input_swap->external_ext_size));
8495 for (;
8496 eraw_src < eraw_end;
8497 eraw_src += input_swap->external_ext_size)
8498 {
8499 EXTR ext;
8500 const char *name;
8501 struct mips_elf_link_hash_entry *h;
8502
9719ad41 8503 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
8504 if (ext.asym.sc == scNil
8505 || ext.asym.sc == scUndefined
8506 || ext.asym.sc == scSUndefined)
8507 continue;
8508
8509 name = input_debug.ssext + ext.asym.iss;
8510 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 8511 name, FALSE, FALSE, TRUE);
b49e97c9
TS
8512 if (h == NULL || h->esym.ifd != -2)
8513 continue;
8514
8515 if (ext.ifd != -1)
8516 {
8517 BFD_ASSERT (ext.ifd
8518 < input_debug.symbolic_header.ifdMax);
8519 ext.ifd = input_debug.ifdmap[ext.ifd];
8520 }
8521
8522 h->esym = ext;
8523 }
8524
8525 /* Free up the information we just read. */
8526 free (input_debug.line);
8527 free (input_debug.external_dnr);
8528 free (input_debug.external_pdr);
8529 free (input_debug.external_sym);
8530 free (input_debug.external_opt);
8531 free (input_debug.external_aux);
8532 free (input_debug.ss);
8533 free (input_debug.ssext);
8534 free (input_debug.external_fdr);
8535 free (input_debug.external_rfd);
8536 free (input_debug.external_ext);
8537
8538 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8539 elf_link_input_bfd ignores this section. */
8540 input_section->flags &= ~SEC_HAS_CONTENTS;
8541 }
8542
8543 if (SGI_COMPAT (abfd) && info->shared)
8544 {
8545 /* Create .rtproc section. */
8546 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8547 if (rtproc_sec == NULL)
8548 {
8549 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8550 | SEC_LINKER_CREATED | SEC_READONLY);
8551
8552 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8553 if (rtproc_sec == NULL
8554 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8555 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 8556 return FALSE;
b49e97c9
TS
8557 }
8558
8559 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8560 info, rtproc_sec,
8561 &debug))
b34976b6 8562 return FALSE;
b49e97c9
TS
8563 }
8564
8565 /* Build the external symbol information. */
8566 einfo.abfd = abfd;
8567 einfo.info = info;
8568 einfo.debug = &debug;
8569 einfo.swap = swap;
b34976b6 8570 einfo.failed = FALSE;
b49e97c9 8571 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 8572 mips_elf_output_extsym, &einfo);
b49e97c9 8573 if (einfo.failed)
b34976b6 8574 return FALSE;
b49e97c9
TS
8575
8576 /* Set the size of the .mdebug section. */
8577 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8578
8579 /* Skip this section later on (I don't think this currently
8580 matters, but someday it might). */
9719ad41 8581 o->link_order_head = NULL;
b49e97c9
TS
8582
8583 mdebug_sec = o;
8584 }
8585
8586 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8587 {
8588 const char *subname;
8589 unsigned int c;
8590 Elf32_gptab *tab;
8591 Elf32_External_gptab *ext_tab;
8592 unsigned int j;
8593
8594 /* The .gptab.sdata and .gptab.sbss sections hold
8595 information describing how the small data area would
8596 change depending upon the -G switch. These sections
8597 not used in executables files. */
1049f94e 8598 if (! info->relocatable)
b49e97c9 8599 {
9719ad41 8600 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8601 {
8602 asection *input_section;
8603
8604 if (p->type != bfd_indirect_link_order)
8605 {
8606 if (p->type == bfd_data_link_order)
8607 continue;
8608 abort ();
8609 }
8610
8611 input_section = p->u.indirect.section;
8612
8613 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8614 elf_link_input_bfd ignores this section. */
8615 input_section->flags &= ~SEC_HAS_CONTENTS;
8616 }
8617
8618 /* Skip this section later on (I don't think this
8619 currently matters, but someday it might). */
9719ad41 8620 o->link_order_head = NULL;
b49e97c9
TS
8621
8622 /* Really remove the section. */
8623 for (secpp = &abfd->sections;
8624 *secpp != o;
8625 secpp = &(*secpp)->next)
8626 ;
8627 bfd_section_list_remove (abfd, secpp);
8628 --abfd->section_count;
8629
8630 continue;
8631 }
8632
8633 /* There is one gptab for initialized data, and one for
8634 uninitialized data. */
8635 if (strcmp (o->name, ".gptab.sdata") == 0)
8636 gptab_data_sec = o;
8637 else if (strcmp (o->name, ".gptab.sbss") == 0)
8638 gptab_bss_sec = o;
8639 else
8640 {
8641 (*_bfd_error_handler)
8642 (_("%s: illegal section name `%s'"),
8643 bfd_get_filename (abfd), o->name);
8644 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 8645 return FALSE;
b49e97c9
TS
8646 }
8647
8648 /* The linker script always combines .gptab.data and
8649 .gptab.sdata into .gptab.sdata, and likewise for
8650 .gptab.bss and .gptab.sbss. It is possible that there is
8651 no .sdata or .sbss section in the output file, in which
8652 case we must change the name of the output section. */
8653 subname = o->name + sizeof ".gptab" - 1;
8654 if (bfd_get_section_by_name (abfd, subname) == NULL)
8655 {
8656 if (o == gptab_data_sec)
8657 o->name = ".gptab.data";
8658 else
8659 o->name = ".gptab.bss";
8660 subname = o->name + sizeof ".gptab" - 1;
8661 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8662 }
8663
8664 /* Set up the first entry. */
8665 c = 1;
8666 amt = c * sizeof (Elf32_gptab);
9719ad41 8667 tab = bfd_malloc (amt);
b49e97c9 8668 if (tab == NULL)
b34976b6 8669 return FALSE;
b49e97c9
TS
8670 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8671 tab[0].gt_header.gt_unused = 0;
8672
8673 /* Combine the input sections. */
9719ad41 8674 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8675 {
8676 asection *input_section;
8677 bfd *input_bfd;
8678 bfd_size_type size;
8679 unsigned long last;
8680 bfd_size_type gpentry;
8681
8682 if (p->type != bfd_indirect_link_order)
8683 {
8684 if (p->type == bfd_data_link_order)
8685 continue;
8686 abort ();
8687 }
8688
8689 input_section = p->u.indirect.section;
8690 input_bfd = input_section->owner;
8691
8692 /* Combine the gptab entries for this input section one
8693 by one. We know that the input gptab entries are
8694 sorted by ascending -G value. */
8695 size = bfd_section_size (input_bfd, input_section);
8696 last = 0;
8697 for (gpentry = sizeof (Elf32_External_gptab);
8698 gpentry < size;
8699 gpentry += sizeof (Elf32_External_gptab))
8700 {
8701 Elf32_External_gptab ext_gptab;
8702 Elf32_gptab int_gptab;
8703 unsigned long val;
8704 unsigned long add;
b34976b6 8705 bfd_boolean exact;
b49e97c9
TS
8706 unsigned int look;
8707
8708 if (! (bfd_get_section_contents
9719ad41
RS
8709 (input_bfd, input_section, &ext_gptab, gpentry,
8710 sizeof (Elf32_External_gptab))))
b49e97c9
TS
8711 {
8712 free (tab);
b34976b6 8713 return FALSE;
b49e97c9
TS
8714 }
8715
8716 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8717 &int_gptab);
8718 val = int_gptab.gt_entry.gt_g_value;
8719 add = int_gptab.gt_entry.gt_bytes - last;
8720
b34976b6 8721 exact = FALSE;
b49e97c9
TS
8722 for (look = 1; look < c; look++)
8723 {
8724 if (tab[look].gt_entry.gt_g_value >= val)
8725 tab[look].gt_entry.gt_bytes += add;
8726
8727 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 8728 exact = TRUE;
b49e97c9
TS
8729 }
8730
8731 if (! exact)
8732 {
8733 Elf32_gptab *new_tab;
8734 unsigned int max;
8735
8736 /* We need a new table entry. */
8737 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 8738 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
8739 if (new_tab == NULL)
8740 {
8741 free (tab);
b34976b6 8742 return FALSE;
b49e97c9
TS
8743 }
8744 tab = new_tab;
8745 tab[c].gt_entry.gt_g_value = val;
8746 tab[c].gt_entry.gt_bytes = add;
8747
8748 /* Merge in the size for the next smallest -G
8749 value, since that will be implied by this new
8750 value. */
8751 max = 0;
8752 for (look = 1; look < c; look++)
8753 {
8754 if (tab[look].gt_entry.gt_g_value < val
8755 && (max == 0
8756 || (tab[look].gt_entry.gt_g_value
8757 > tab[max].gt_entry.gt_g_value)))
8758 max = look;
8759 }
8760 if (max != 0)
8761 tab[c].gt_entry.gt_bytes +=
8762 tab[max].gt_entry.gt_bytes;
8763
8764 ++c;
8765 }
8766
8767 last = int_gptab.gt_entry.gt_bytes;
8768 }
8769
8770 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8771 elf_link_input_bfd ignores this section. */
8772 input_section->flags &= ~SEC_HAS_CONTENTS;
8773 }
8774
8775 /* The table must be sorted by -G value. */
8776 if (c > 2)
8777 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8778
8779 /* Swap out the table. */
8780 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 8781 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
8782 if (ext_tab == NULL)
8783 {
8784 free (tab);
b34976b6 8785 return FALSE;
b49e97c9
TS
8786 }
8787
8788 for (j = 0; j < c; j++)
8789 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8790 free (tab);
8791
8792 o->_raw_size = c * sizeof (Elf32_External_gptab);
8793 o->contents = (bfd_byte *) ext_tab;
8794
8795 /* Skip this section later on (I don't think this currently
8796 matters, but someday it might). */
9719ad41 8797 o->link_order_head = NULL;
b49e97c9
TS
8798 }
8799 }
8800
8801 /* Invoke the regular ELF backend linker to do all the work. */
ee6423ed 8802 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
b34976b6 8803 return FALSE;
b49e97c9
TS
8804
8805 /* Now write out the computed sections. */
8806
9719ad41 8807 if (reginfo_sec != NULL)
b49e97c9
TS
8808 {
8809 Elf32_External_RegInfo ext;
8810
8811 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 8812 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 8813 return FALSE;
b49e97c9
TS
8814 }
8815
9719ad41 8816 if (mdebug_sec != NULL)
b49e97c9
TS
8817 {
8818 BFD_ASSERT (abfd->output_has_begun);
8819 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8820 swap, info,
8821 mdebug_sec->filepos))
b34976b6 8822 return FALSE;
b49e97c9
TS
8823
8824 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8825 }
8826
9719ad41 8827 if (gptab_data_sec != NULL)
b49e97c9
TS
8828 {
8829 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8830 gptab_data_sec->contents,
9719ad41 8831 0, gptab_data_sec->_raw_size))
b34976b6 8832 return FALSE;
b49e97c9
TS
8833 }
8834
9719ad41 8835 if (gptab_bss_sec != NULL)
b49e97c9
TS
8836 {
8837 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8838 gptab_bss_sec->contents,
9719ad41 8839 0, gptab_bss_sec->_raw_size))
b34976b6 8840 return FALSE;
b49e97c9
TS
8841 }
8842
8843 if (SGI_COMPAT (abfd))
8844 {
8845 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8846 if (rtproc_sec != NULL)
8847 {
8848 if (! bfd_set_section_contents (abfd, rtproc_sec,
8849 rtproc_sec->contents,
9719ad41 8850 0, rtproc_sec->_raw_size))
b34976b6 8851 return FALSE;
b49e97c9
TS
8852 }
8853 }
8854
b34976b6 8855 return TRUE;
b49e97c9
TS
8856}
8857\f
64543e1a
RS
8858/* Structure for saying that BFD machine EXTENSION extends BASE. */
8859
8860struct mips_mach_extension {
8861 unsigned long extension, base;
8862};
8863
8864
8865/* An array describing how BFD machines relate to one another. The entries
8866 are ordered topologically with MIPS I extensions listed last. */
8867
8868static const struct mips_mach_extension mips_mach_extensions[] = {
8869 /* MIPS64 extensions. */
5f74bc13 8870 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
8871 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8872
8873 /* MIPS V extensions. */
8874 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8875
8876 /* R10000 extensions. */
8877 { bfd_mach_mips12000, bfd_mach_mips10000 },
8878
8879 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8880 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8881 better to allow vr5400 and vr5500 code to be merged anyway, since
8882 many libraries will just use the core ISA. Perhaps we could add
8883 some sort of ASE flag if this ever proves a problem. */
8884 { bfd_mach_mips5500, bfd_mach_mips5400 },
8885 { bfd_mach_mips5400, bfd_mach_mips5000 },
8886
8887 /* MIPS IV extensions. */
8888 { bfd_mach_mips5, bfd_mach_mips8000 },
8889 { bfd_mach_mips10000, bfd_mach_mips8000 },
8890 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 8891 { bfd_mach_mips7000, bfd_mach_mips8000 },
64543e1a
RS
8892
8893 /* VR4100 extensions. */
8894 { bfd_mach_mips4120, bfd_mach_mips4100 },
8895 { bfd_mach_mips4111, bfd_mach_mips4100 },
8896
8897 /* MIPS III extensions. */
8898 { bfd_mach_mips8000, bfd_mach_mips4000 },
8899 { bfd_mach_mips4650, bfd_mach_mips4000 },
8900 { bfd_mach_mips4600, bfd_mach_mips4000 },
8901 { bfd_mach_mips4400, bfd_mach_mips4000 },
8902 { bfd_mach_mips4300, bfd_mach_mips4000 },
8903 { bfd_mach_mips4100, bfd_mach_mips4000 },
8904 { bfd_mach_mips4010, bfd_mach_mips4000 },
8905
8906 /* MIPS32 extensions. */
8907 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8908
8909 /* MIPS II extensions. */
8910 { bfd_mach_mips4000, bfd_mach_mips6000 },
8911 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8912
8913 /* MIPS I extensions. */
8914 { bfd_mach_mips6000, bfd_mach_mips3000 },
8915 { bfd_mach_mips3900, bfd_mach_mips3000 }
8916};
8917
8918
8919/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8920
8921static bfd_boolean
9719ad41 8922mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
8923{
8924 size_t i;
8925
8926 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8927 if (extension == mips_mach_extensions[i].extension)
8928 extension = mips_mach_extensions[i].base;
8929
8930 return extension == base;
8931}
8932
8933
8934/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 8935
b34976b6 8936static bfd_boolean
9719ad41 8937mips_32bit_flags_p (flagword flags)
00707a0e 8938{
64543e1a
RS
8939 return ((flags & EF_MIPS_32BITMODE) != 0
8940 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8941 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8942 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8943 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8944 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8945 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
8946}
8947
64543e1a 8948
b49e97c9
TS
8949/* Merge backend specific data from an object file to the output
8950 object file when linking. */
8951
b34976b6 8952bfd_boolean
9719ad41 8953_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
8954{
8955 flagword old_flags;
8956 flagword new_flags;
b34976b6
AM
8957 bfd_boolean ok;
8958 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
8959 asection *sec;
8960
8961 /* Check if we have the same endianess */
82e51918 8962 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
8963 {
8964 (*_bfd_error_handler)
8965 (_("%s: endianness incompatible with that of the selected emulation"),
8966 bfd_archive_filename (ibfd));
8967 return FALSE;
8968 }
b49e97c9
TS
8969
8970 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8971 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 8972 return TRUE;
b49e97c9 8973
aa701218
AO
8974 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8975 {
8976 (*_bfd_error_handler)
8977 (_("%s: ABI is incompatible with that of the selected emulation"),
8978 bfd_archive_filename (ibfd));
8979 return FALSE;
8980 }
8981
b49e97c9
TS
8982 new_flags = elf_elfheader (ibfd)->e_flags;
8983 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8984 old_flags = elf_elfheader (obfd)->e_flags;
8985
8986 if (! elf_flags_init (obfd))
8987 {
b34976b6 8988 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
8989 elf_elfheader (obfd)->e_flags = new_flags;
8990 elf_elfheader (obfd)->e_ident[EI_CLASS]
8991 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8992
8993 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8994 && bfd_get_arch_info (obfd)->the_default)
8995 {
8996 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8997 bfd_get_mach (ibfd)))
b34976b6 8998 return FALSE;
b49e97c9
TS
8999 }
9000
b34976b6 9001 return TRUE;
b49e97c9
TS
9002 }
9003
9004 /* Check flag compatibility. */
9005
9006 new_flags &= ~EF_MIPS_NOREORDER;
9007 old_flags &= ~EF_MIPS_NOREORDER;
9008
f4416af6
AO
9009 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9010 doesn't seem to matter. */
9011 new_flags &= ~EF_MIPS_XGOT;
9012 old_flags &= ~EF_MIPS_XGOT;
9013
98a8deaf
RS
9014 /* MIPSpro generates ucode info in n64 objects. Again, we should
9015 just be able to ignore this. */
9016 new_flags &= ~EF_MIPS_UCODE;
9017 old_flags &= ~EF_MIPS_UCODE;
9018
b49e97c9 9019 if (new_flags == old_flags)
b34976b6 9020 return TRUE;
b49e97c9
TS
9021
9022 /* Check to see if the input BFD actually contains any sections.
9023 If not, its flags may not have been initialised either, but it cannot
9024 actually cause any incompatibility. */
9025 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9026 {
9027 /* Ignore synthetic sections and empty .text, .data and .bss sections
9028 which are automatically generated by gas. */
9029 if (strcmp (sec->name, ".reginfo")
9030 && strcmp (sec->name, ".mdebug")
9031 && ((!strcmp (sec->name, ".text")
9032 || !strcmp (sec->name, ".data")
9033 || !strcmp (sec->name, ".bss"))
9034 && sec->_raw_size != 0))
9035 {
b34976b6 9036 null_input_bfd = FALSE;
b49e97c9
TS
9037 break;
9038 }
9039 }
9040 if (null_input_bfd)
b34976b6 9041 return TRUE;
b49e97c9 9042
b34976b6 9043 ok = TRUE;
b49e97c9 9044
143d77c5
EC
9045 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9046 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 9047 {
b49e97c9 9048 (*_bfd_error_handler)
143d77c5 9049 (_("%s: warning: linking PIC files with non-PIC files"),
b49e97c9 9050 bfd_archive_filename (ibfd));
143d77c5 9051 ok = TRUE;
b49e97c9
TS
9052 }
9053
143d77c5
EC
9054 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9055 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9056 if (! (new_flags & EF_MIPS_PIC))
9057 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9058
9059 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9060 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 9061
64543e1a
RS
9062 /* Compare the ISAs. */
9063 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 9064 {
64543e1a
RS
9065 (*_bfd_error_handler)
9066 (_("%s: linking 32-bit code with 64-bit code"),
9067 bfd_archive_filename (ibfd));
9068 ok = FALSE;
9069 }
9070 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9071 {
9072 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9073 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 9074 {
64543e1a
RS
9075 /* Copy the architecture info from IBFD to OBFD. Also copy
9076 the 32-bit flag (if set) so that we continue to recognise
9077 OBFD as a 32-bit binary. */
9078 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9079 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9080 elf_elfheader (obfd)->e_flags
9081 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9082
9083 /* Copy across the ABI flags if OBFD doesn't use them
9084 and if that was what caused us to treat IBFD as 32-bit. */
9085 if ((old_flags & EF_MIPS_ABI) == 0
9086 && mips_32bit_flags_p (new_flags)
9087 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9088 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9089 }
9090 else
9091 {
64543e1a 9092 /* The ISAs aren't compatible. */
b49e97c9 9093 (*_bfd_error_handler)
64543e1a 9094 (_("%s: linking %s module with previous %s modules"),
b49e97c9 9095 bfd_archive_filename (ibfd),
64543e1a
RS
9096 bfd_printable_name (ibfd),
9097 bfd_printable_name (obfd));
b34976b6 9098 ok = FALSE;
b49e97c9 9099 }
b49e97c9
TS
9100 }
9101
64543e1a
RS
9102 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9103 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9104
9105 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9106 does set EI_CLASS differently from any 32-bit ABI. */
9107 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9108 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9109 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9110 {
9111 /* Only error if both are set (to different values). */
9112 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9113 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9114 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9115 {
9116 (*_bfd_error_handler)
9117 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9118 bfd_archive_filename (ibfd),
9119 elf_mips_abi_name (ibfd),
9120 elf_mips_abi_name (obfd));
b34976b6 9121 ok = FALSE;
b49e97c9
TS
9122 }
9123 new_flags &= ~EF_MIPS_ABI;
9124 old_flags &= ~EF_MIPS_ABI;
9125 }
9126
fb39dac1
RS
9127 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9128 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9129 {
9130 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9131
9132 new_flags &= ~ EF_MIPS_ARCH_ASE;
9133 old_flags &= ~ EF_MIPS_ARCH_ASE;
9134 }
9135
b49e97c9
TS
9136 /* Warn about any other mismatches */
9137 if (new_flags != old_flags)
9138 {
9139 (*_bfd_error_handler)
9140 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9141 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9142 (unsigned long) old_flags);
b34976b6 9143 ok = FALSE;
b49e97c9
TS
9144 }
9145
9146 if (! ok)
9147 {
9148 bfd_set_error (bfd_error_bad_value);
b34976b6 9149 return FALSE;
b49e97c9
TS
9150 }
9151
b34976b6 9152 return TRUE;
b49e97c9
TS
9153}
9154
9155/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9156
b34976b6 9157bfd_boolean
9719ad41 9158_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
9159{
9160 BFD_ASSERT (!elf_flags_init (abfd)
9161 || elf_elfheader (abfd)->e_flags == flags);
9162
9163 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9164 elf_flags_init (abfd) = TRUE;
9165 return TRUE;
b49e97c9
TS
9166}
9167
b34976b6 9168bfd_boolean
9719ad41 9169_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 9170{
9719ad41 9171 FILE *file = ptr;
b49e97c9
TS
9172
9173 BFD_ASSERT (abfd != NULL && ptr != NULL);
9174
9175 /* Print normal ELF private data. */
9176 _bfd_elf_print_private_bfd_data (abfd, ptr);
9177
9178 /* xgettext:c-format */
9179 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9180
9181 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9182 fprintf (file, _(" [abi=O32]"));
9183 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9184 fprintf (file, _(" [abi=O64]"));
9185 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9186 fprintf (file, _(" [abi=EABI32]"));
9187 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9188 fprintf (file, _(" [abi=EABI64]"));
9189 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9190 fprintf (file, _(" [abi unknown]"));
9191 else if (ABI_N32_P (abfd))
9192 fprintf (file, _(" [abi=N32]"));
9193 else if (ABI_64_P (abfd))
9194 fprintf (file, _(" [abi=64]"));
9195 else
9196 fprintf (file, _(" [no abi set]"));
9197
9198 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9199 fprintf (file, _(" [mips1]"));
9200 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9201 fprintf (file, _(" [mips2]"));
9202 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9203 fprintf (file, _(" [mips3]"));
9204 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9205 fprintf (file, _(" [mips4]"));
9206 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9207 fprintf (file, _(" [mips5]"));
9208 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9209 fprintf (file, _(" [mips32]"));
9210 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9211 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9212 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9213 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
9214 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9215 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
9216 else
9217 fprintf (file, _(" [unknown ISA]"));
9218
40d32fc6
CD
9219 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9220 fprintf (file, _(" [mdmx]"));
9221
9222 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9223 fprintf (file, _(" [mips16]"));
9224
b49e97c9
TS
9225 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9226 fprintf (file, _(" [32bitmode]"));
9227 else
9228 fprintf (file, _(" [not 32bitmode]"));
9229
9230 fputc ('\n', file);
9231
b34976b6 9232 return TRUE;
b49e97c9 9233}
2f89ff8d
L
9234
9235struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9236{
7dcb9820
AM
9237 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9238 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9239 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9240 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9241 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9242 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9243 { NULL, 0, 0, 0, 0 }
2f89ff8d 9244};
This page took 0.796261 seconds and 4 git commands to generate.