2007-05-31 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3db64b00 3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
3e110533 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
b49e97c9 30#include "sysdep.h"
3db64b00 31#include "bfd.h"
b49e97c9 32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
0a44bf69 37#include "elf-vxworks.h"
b49e97c9
TS
38
39/* Get the ECOFF swapping routines. */
40#include "coff/sym.h"
41#include "coff/symconst.h"
42#include "coff/ecoff.h"
43#include "coff/mips.h"
44
b15e6682
AO
45#include "hashtab.h"
46
ead49a57
RS
47/* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
80struct mips_got_entry
81{
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
f4416af6
AO
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
0f20cc35
DJ
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
b15e6682 107 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
b15e6682
AO
111};
112
f0abc2a1 113/* This structure is used to hold .got information when linking. */
b49e97c9
TS
114
115struct mips_got_info
116{
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
0f20cc35
DJ
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
b49e97c9
TS
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
b15e6682
AO
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
f4416af6
AO
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
0f20cc35
DJ
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
f4416af6
AO
144};
145
146/* Map an input bfd to a got in a multi-got link. */
147
148struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151};
152
153/* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156struct mips_elf_got_per_bfd_arg
157{
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
0f20cc35
DJ
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
f4416af6
AO
183};
184
185/* Another structure used to pass arguments for got entries traversal. */
186
187struct mips_elf_set_global_got_offset_arg
188{
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
b49e97c9
TS
193};
194
0f20cc35
DJ
195/* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198struct mips_elf_count_tls_arg
199{
200 struct bfd_link_info *info;
201 unsigned int needed;
202};
203
f0abc2a1
AM
204struct _mips_elf_section_data
205{
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212};
213
214#define mips_elf_section_data(sec) \
68bfbfcc 215 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 216
b49e97c9
TS
217/* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220struct mips_elf_hash_sort_data
221{
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
0f20cc35
DJ
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
b49e97c9 227 long min_got_dynindx;
f4416af6
AO
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 230 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 231 long max_unref_got_dynindx;
b49e97c9
TS
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235};
236
237/* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240struct mips_elf_link_hash_entry
241{
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
b34976b6 253 bfd_boolean readonly_reloc;
b49e97c9 254
b49e97c9
TS
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
b34976b6 259 bfd_boolean no_fn_stub;
b49e97c9
TS
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
b34976b6 267 bfd_boolean need_fn_stub;
b49e97c9
TS
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
7c5fcef7 276
a008ac03
DJ
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
b34976b6 279 bfd_boolean forced_local;
0f20cc35 280
0a44bf69
RS
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
0f20cc35
DJ
287#define GOT_NORMAL 0
288#define GOT_TLS_GD 1
289#define GOT_TLS_LDM 2
290#define GOT_TLS_IE 4
291#define GOT_TLS_OFFSET_DONE 0x40
292#define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
b49e97c9
TS
301};
302
303/* MIPS ELF linker hash table. */
304
305struct mips_elf_link_hash_table
306{
307 struct elf_link_hash_table root;
308#if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312#endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 318 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 319 bfd_boolean use_rld_obj_head;
b49e97c9
TS
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
b34976b6 323 bfd_boolean mips16_stubs_seen;
0a44bf69
RS
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
5108fc1b
RS
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
b49e97c9
TS
340};
341
0f20cc35
DJ
342#define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
b49e97c9
TS
357/* Structure used to pass information to mips_elf_output_extsym. */
358
359struct extsym_info
360{
9e4aeb93
RS
361 bfd *abfd;
362 struct bfd_link_info *info;
b49e97c9
TS
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
b34976b6 365 bfd_boolean failed;
b49e97c9
TS
366};
367
8dc1a139 368/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
369
370static const char * const mips_elf_dynsym_rtproc_names[] =
371{
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376};
377
378/* These structures are used to generate the .compact_rel section on
8dc1a139 379 IRIX5. */
b49e97c9
TS
380
381typedef struct
382{
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389} Elf32_compact_rel;
390
391typedef struct
392{
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399} Elf32_External_compact_rel;
400
401typedef struct
402{
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409} Elf32_crinfo;
410
411typedef struct
412{
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418} Elf32_crinfo2;
419
420typedef struct
421{
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425} Elf32_External_crinfo;
426
427typedef struct
428{
429 bfd_byte info[4];
430 bfd_byte konst[4];
431} Elf32_External_crinfo2;
432
433/* These are the constants used to swap the bitfields in a crinfo. */
434
435#define CRINFO_CTYPE (0x1)
436#define CRINFO_CTYPE_SH (31)
437#define CRINFO_RTYPE (0xf)
438#define CRINFO_RTYPE_SH (27)
439#define CRINFO_DIST2TO (0xff)
440#define CRINFO_DIST2TO_SH (19)
441#define CRINFO_RELVADDR (0x7ffff)
442#define CRINFO_RELVADDR_SH (0)
443
444/* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447#define CRF_MIPS_LONG 1
448#define CRF_MIPS_SHORT 0
449
450/* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460#define CRT_MIPS_REL32 0xa
461#define CRT_MIPS_WORD 0xb
462#define CRT_MIPS_GPHI_LO 0xc
463#define CRT_MIPS_JMPAD 0xd
464
465#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469\f
470/* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473typedef struct runtime_pdr {
ae9a127f
NC
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
b49e97c9 483 long reserved;
ae9a127f 484 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
485} RPDR, *pRPDR;
486#define cbRPDR sizeof (RPDR)
487#define rpdNil ((pRPDR) 0)
488\f
b15e6682 489static struct mips_got_entry *mips_elf_create_local_got_entry
0a44bf69 490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
5c18022e 491 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
b34976b6 492static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 493 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
494static bfd_vma mips_elf_high
495 (bfd_vma);
b9d58d71 496static bfd_boolean mips16_stub_section_p
9719ad41 497 (bfd *, asection *);
b34976b6 498static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
9719ad41
RS
502static hashval_t mips_elf_got_entry_hash
503 (const void *);
f4416af6 504static bfd_vma mips_elf_adjust_gp
9719ad41 505 (bfd *, struct mips_got_info *, bfd *);
f4416af6 506static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 507 (struct mips_got_info *, bfd *);
f4416af6 508
b49e97c9
TS
509/* This will be used when we sort the dynamic relocation records. */
510static bfd *reldyn_sorting_bfd;
511
512/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
513#define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
4a14403c 516/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 517#define ABI_64_P(abfd) \
141ff970 518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 519
4a14403c
TS
520/* Nonzero if ABFD is using NewABI conventions. */
521#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
524#define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
b49e97c9
TS
527/* Whether we are trying to be compatible with IRIX at all. */
528#define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531/* The name of the options section. */
532#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 534
cc2e31b9
RS
535/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
943284cc
DJ
540/* Whether the section is readonly. */
541#define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
b49e97c9 545/* The name of the stub section. */
ca07892d 546#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
547
548/* The size of an external REL relocation. */
549#define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
0a44bf69
RS
552/* The size of an external RELA relocation. */
553#define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
b49e97c9
TS
556/* The size of an external dynamic table entry. */
557#define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560/* The size of a GOT entry. */
561#define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564/* The size of a symbol-table entry. */
565#define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568/* The default alignment for sections, as a power of two. */
569#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 570 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
571
572/* Get word-sized data. */
573#define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576/* Put out word-sized data. */
577#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582/* Add a dynamic symbol table-entry. */
9719ad41 583#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 584 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
585
586#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
4ffba85c
AO
589/* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
0a44bf69
RS
606/* The name of the dynamic relocation section. */
607#define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
b49e97c9
TS
610/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 613#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
614
615/* The number of local .got entries we reserve. */
0a44bf69
RS
616#define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 618
f4416af6 619/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
620#define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
622
623/* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
0a44bf69 625#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 626
6a691779 627/* Instructions which appear in a stub. */
3d6746ca
DD
628#define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632#define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
638#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
640#define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
5108fc1b
RS
645#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
647
648/* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651#define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656#ifdef BFD64
ee6423ed
AO
657#define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
659#define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661#define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663#define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665#else
ee6423ed 666#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
667#define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669#define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671#define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673#endif
674\f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709#define FN_STUB ".mips16.fn."
710#define CALL_STUB ".mips16.call."
711#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
712
713#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 716\f
0a44bf69
RS
717/* The format of the first PLT entry in a VxWorks executable. */
718static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725};
726
727/* The format of subsequent PLT entries. */
728static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737};
738
739/* The format of the first PLT entry in a VxWorks shared object. */
740static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747};
748
749/* The format of subsequent PLT entries. */
750static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753};
754\f
b49e97c9
TS
755/* Look up an entry in a MIPS ELF linker hash table. */
756
757#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762/* Traverse a MIPS ELF linker hash table. */
763
764#define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
9719ad41 767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
768 (info)))
769
770/* Get the MIPS ELF linker hash table from a link_info structure. */
771
772#define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
0f20cc35
DJ
775/* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778#define TP_OFFSET 0x7000
779#define DTP_OFFSET 0x8000
780
781static bfd_vma
782dtprel_base (struct bfd_link_info *info)
783{
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788}
789
790static bfd_vma
791tprel_base (struct bfd_link_info *info)
792{
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797}
798
b49e97c9
TS
799/* Create an entry in a MIPS ELF linker hash table. */
800
801static struct bfd_hash_entry *
9719ad41
RS
802mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
804{
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
9719ad41
RS
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
b49e97c9
TS
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
9719ad41 819 if (ret != NULL)
b49e97c9
TS
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
b34976b6 827 ret->readonly_reloc = FALSE;
b34976b6 828 ret->no_fn_stub = FALSE;
b49e97c9 829 ret->fn_stub = NULL;
b34976b6 830 ret->need_fn_stub = FALSE;
b49e97c9
TS
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
b34976b6 833 ret->forced_local = FALSE;
0a44bf69
RS
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
0f20cc35 836 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
837 }
838
839 return (struct bfd_hash_entry *) ret;
840}
f0abc2a1
AM
841
842bfd_boolean
9719ad41 843_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 844{
f592407e
AM
845 if (!sec->used_by_bfd)
846 {
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 849
f592407e
AM
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
854 }
f0abc2a1
AM
855
856 return _bfd_elf_new_section_hook (abfd, sec);
857}
b49e97c9
TS
858\f
859/* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
861
b34976b6 862bfd_boolean
9719ad41
RS
863_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
b49e97c9
TS
865{
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
9719ad41 868 char *ext_hdr;
b49e97c9
TS
869
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
872
9719ad41 873 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
876
9719ad41 877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 878 swap->external_hdr_size))
b49e97c9
TS
879 goto error_return;
880
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
883
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886#define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
890 { \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 892 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
893 if (debug->ptr == NULL) \
894 goto error_return; \
9719ad41 895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
898 }
899
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
912#undef READ
913
914 debug->fdr = NULL;
b49e97c9 915
b34976b6 916 return TRUE;
b49e97c9
TS
917
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
b34976b6 943 return FALSE;
b49e97c9
TS
944}
945\f
946/* Swap RPDR (runtime procedure table entry) for output. */
947
948static void
9719ad41 949ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
950{
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
957
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
960
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
962}
963
964/* Create a runtime procedure table from the .mdebug section. */
965
b34976b6 966static bfd_boolean
9719ad41
RS
967mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
b49e97c9
TS
970{
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
9719ad41 975 void *rtproc;
b49e97c9
TS
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
987
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
993
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
995
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
999 {
1000 size = swap->external_pdr_size;
1001
9719ad41 1002 epdr = bfd_malloc (size * count);
b49e97c9
TS
1003 if (epdr == NULL)
1004 goto error_return;
1005
9719ad41 1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1007 goto error_return;
1008
1009 size = sizeof (RPDR);
9719ad41 1010 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1011 if (rpdr == NULL)
1012 goto error_return;
1013
1014 size = sizeof (char *);
9719ad41 1015 sv = bfd_malloc (size * count);
b49e97c9
TS
1016 if (sv == NULL)
1017 goto error_return;
1018
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
9719ad41 1021 esym = bfd_malloc (size * count);
b49e97c9
TS
1022 if (esym == NULL)
1023 goto error_return;
1024
9719ad41 1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1026 goto error_return;
1027
1028 count = hdr->issMax;
9719ad41 1029 ss = bfd_malloc (count);
b49e97c9
TS
1030 if (ss == NULL)
1031 goto error_return;
f075ee0c 1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1033 goto error_return;
1034
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1037 {
9719ad41
RS
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1051 }
1052 }
1053
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
9719ad41 1056 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1057 if (rtproc == NULL)
1058 {
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1061 }
1062
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1064
9719ad41 1065 erp = rtproc;
b49e97c9
TS
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1072 {
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1076 }
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1078
1079 /* Set the size and contents of .rtproc section. */
eea6121a 1080 s->size = size;
9719ad41 1081 s->contents = rtproc;
b49e97c9
TS
1082
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
8423293d 1085 s->map_head.link_order = NULL;
b49e97c9
TS
1086
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1097
b34976b6 1098 return TRUE;
b49e97c9
TS
1099
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
b34976b6 1111 return FALSE;
b49e97c9
TS
1112}
1113
1114/* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1116
b34976b6 1117static bfd_boolean
9719ad41
RS
1118mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1120{
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1123
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1126 {
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
eea6121a 1130 h->fn_stub->size = 0;
b49e97c9
TS
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1134 }
1135
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1138 {
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
eea6121a 1142 h->call_stub->size = 0;
b49e97c9
TS
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1146 }
1147
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1150 {
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
eea6121a 1154 h->call_fp_stub->size = 0;
b49e97c9
TS
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1158 }
1159
b34976b6 1160 return TRUE;
b49e97c9
TS
1161}
1162\f
d6f16593
MR
1163/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1166
1167 The format of these instructions is:
1168
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1174
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1177
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1189
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1196
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1199
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1206
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1215
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1221
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1224
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1230
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1233
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1237
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1241
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1247 */
1248void
1249_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1251{
1252 bfd_vma extend, insn, val;
1253
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1257
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1262 {
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1268 }
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1273}
1274
1275void
1276_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1278{
1279 bfd_vma extend, insn, val;
1280
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1284
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1287 {
1288 if (jal_shuffle)
1289 {
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1293 }
1294 else
1295 {
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1298 }
1299 }
1300 else
1301 {
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1304 }
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1307}
1308
b49e97c9 1309bfd_reloc_status_type
9719ad41
RS
1310_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1313{
1314 bfd_vma relocation;
a7ebbfdf 1315 bfd_signed_vma val;
30ac9238 1316 bfd_reloc_status_type status;
b49e97c9
TS
1317
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1322
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1325
07515404 1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1327 return bfd_reloc_outofrange;
1328
b49e97c9 1329 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1330 val = reloc_entry->addend;
1331
30ac9238 1332 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1333
b49e97c9 1334 /* Adjust val for the final section location and GP value. If we
1049f94e 1335 are producing relocatable output, we don't want to do this for
b49e97c9 1336 an external symbol. */
1049f94e 1337 if (! relocatable
b49e97c9
TS
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1340
a7ebbfdf
TS
1341 if (reloc_entry->howto->partial_inplace)
1342 {
30ac9238
RS
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
a7ebbfdf
TS
1348 }
1349 else
1350 reloc_entry->addend = val;
b49e97c9 1351
1049f94e 1352 if (relocatable)
b49e97c9 1353 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1354
1355 return bfd_reloc_ok;
1356}
1357
1358/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1362
1363struct mips_hi16
1364{
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1369};
1370
1371/* FIXME: This should not be a static variable. */
1372
1373static struct mips_hi16 *mips_hi16_list;
1374
1375/* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1378
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1383
1384bfd_reloc_status_type
1385_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1389{
1390 struct mips_hi16 *n;
1391
07515404 1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1393 return bfd_reloc_outofrange;
1394
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1398
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1404
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1407
1408 return bfd_reloc_ok;
1409}
1410
1411/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1414
1415bfd_reloc_status_type
1416_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1419{
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1427
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430}
1431
1432/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1435
1436bfd_reloc_status_type
1437_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1440{
1441 bfd_vma vallo;
d6f16593 1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1443
07515404 1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1445 return bfd_reloc_outofrange;
1446
d6f16593
MR
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1452
30ac9238
RS
1453 while (mips_hi16_list != NULL)
1454 {
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1457
1458 hi = mips_hi16_list;
1459
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1467
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1471
30ac9238
RS
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1477
1478 mips_hi16_list = hi->next;
1479 free (hi);
1480 }
1481
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1485}
1486
1487/* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1490
1491bfd_reloc_status_type
1492_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1496{
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1500
1501 relocatable = (output_bfd != NULL);
1502
07515404 1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1504 return bfd_reloc_outofrange;
1505
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1509 {
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1515 }
1516
1517 if (!relocatable)
1518 {
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1523 {
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1527 }
1528 }
1529
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1537 {
d6f16593
MR
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1539
30ac9238
RS
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1542
1543 /* Add VAL to the relocation field. */
d6f16593
MR
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
30ac9238 1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550
30ac9238
RS
1551 if (status != bfd_reloc_ok)
1552 return status;
1553 }
1554
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1557
1558 return bfd_reloc_ok;
1559}
1560\f
1561/* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1563
1564static void
9719ad41
RS
1565bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
b49e97c9
TS
1567{
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1570}
1571
1572static void
9719ad41
RS
1573bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
b49e97c9
TS
1575{
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1578}
1579
1580static void
9719ad41
RS
1581bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
b49e97c9
TS
1583{
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1590}
1591
1592static void
9719ad41
RS
1593bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
b49e97c9
TS
1595{
1596 unsigned long l;
1597
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1605}
b49e97c9
TS
1606\f
1607/* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1610
1611void
9719ad41
RS
1612bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
b49e97c9
TS
1614{
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1621}
1622
1623void
9719ad41
RS
1624bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
b49e97c9
TS
1626{
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1633}
1634
1635/* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1640
1641void
9719ad41
RS
1642bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1644{
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1652}
1653
1654void
9719ad41
RS
1655bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
b49e97c9
TS
1657{
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665}
1666
1667/* Swap in an options header. */
1668
1669void
9719ad41
RS
1670bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
b49e97c9
TS
1672{
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1677}
1678
1679/* Swap out an options header. */
1680
1681void
9719ad41
RS
1682bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
b49e97c9
TS
1684{
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1689}
1690\f
1691/* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1693
1694static int
9719ad41 1695sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1696{
947216bf
AM
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
6870500c 1699 int diff;
b49e97c9 1700
947216bf
AM
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1703
6870500c
RS
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1707
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
b49e97c9
TS
1713}
1714
f4416af6
AO
1715/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1716
1717static int
7e3102a7
AM
1718sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1720{
7e3102a7 1721#ifdef BFD64
f4416af6
AO
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1724
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1729
6870500c
RS
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1734
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
7e3102a7
AM
1740#else
1741 abort ();
1742#endif
f4416af6
AO
1743}
1744
1745
b49e97c9
TS
1746/* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1759
b34976b6 1760static bfd_boolean
9719ad41 1761mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1762{
9719ad41 1763 struct extsym_info *einfo = data;
b34976b6 1764 bfd_boolean strip;
b49e97c9
TS
1765 asection *sec, *output_section;
1766
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1769
1770 if (h->root.indx == -2)
b34976b6 1771 strip = FALSE;
f5385ebf 1772 else if ((h->root.def_dynamic
77cfaee6
AM
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
b34976b6 1777 strip = TRUE;
b49e97c9
TS
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
b34976b6
AM
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
b49e97c9 1784 else
b34976b6 1785 strip = FALSE;
b49e97c9
TS
1786
1787 if (strip)
b34976b6 1788 return TRUE;
b49e97c9
TS
1789
1790 if (h->esym.ifd == -2)
1791 {
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1799
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1802 {
1803 const char *name;
1804
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1810 {
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1814 }
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1816 {
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1821 }
4a14403c 1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1823 {
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1827 }
1828 else
1829 h->esym.asym.sc = scUndefined;
1830 }
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1835 {
1836 const char *name;
1837
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1840
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1846 {
1847 name = bfd_section_name (output_section->owner, output_section);
1848
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1868 }
1869 }
1870
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1873 }
1874
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 {
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1884
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
f5385ebf 1894 else if (h->root.needs_plt)
b49e97c9
TS
1895 {
1896 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1897 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1898
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1900 {
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1903 }
1904
1905 if (!no_fn_stub)
1906 {
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1913 {
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1921 }
b49e97c9
TS
1922 }
1923 }
1924
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1928 {
b34976b6
AM
1929 einfo->failed = TRUE;
1930 return FALSE;
b49e97c9
TS
1931 }
1932
b34976b6 1933 return TRUE;
b49e97c9
TS
1934}
1935
1936/* A comparison routine used to sort .gptab entries. */
1937
1938static int
9719ad41 1939gptab_compare (const void *p1, const void *p2)
b49e97c9 1940{
9719ad41
RS
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1943
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1945}
1946\f
b15e6682 1947/* Functions to manage the got entry hash table. */
f4416af6
AO
1948
1949/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1951
1952static INLINE hashval_t
9719ad41 1953mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1954{
1955#ifdef BFD64
1956 return addr + (addr >> 32);
1957#else
1958 return addr;
1959#endif
1960}
1961
1962/* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1965
b15e6682 1966static hashval_t
9719ad41 1967mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1968{
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1970
38985a1c 1971 return entry->symndx
0f20cc35 1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
b15e6682
AO
1977}
1978
1979static int
9719ad41 1980mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1981{
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1984
0f20cc35
DJ
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1988
b15e6682 1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1993}
1994
1995/* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
1999
2000static hashval_t
9719ad41 2001mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2002{
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2004
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
0f20cc35
DJ
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2013 : entry->d.h->root.root.root.hash);
2014}
2015
2016static int
9719ad41 2017mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2018{
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2021
0f20cc35
DJ
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2025
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2029
f4416af6
AO
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
b15e6682
AO
2035}
2036\f
0a44bf69
RS
2037/* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
f4416af6
AO
2040
2041static asection *
0a44bf69 2042mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2043{
0a44bf69 2044 const char *dname;
f4416af6 2045 asection *sreloc;
0a44bf69 2046 bfd *dynobj;
f4416af6 2047
0a44bf69
RS
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2052 {
3496cb2a
L
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
f4416af6 2060 if (sreloc == NULL
f4416af6 2061 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2063 return NULL;
2064 }
2065 return sreloc;
2066}
2067
b49e97c9
TS
2068/* Returns the GOT section for ABFD. */
2069
2070static asection *
9719ad41 2071mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 2072{
f4416af6
AO
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
b49e97c9
TS
2078}
2079
2080/* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2083
2084static struct mips_got_info *
9719ad41 2085mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
2086{
2087 asection *sgot;
2088 struct mips_got_info *g;
2089
f4416af6 2090 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 2091 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
2094 BFD_ASSERT (g != NULL);
2095
2096 if (sgotp)
f4416af6
AO
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2098
b49e97c9
TS
2099 return g;
2100}
2101
0f20cc35
DJ
2102/* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2105
2106static int
2107mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2109{
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2114
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2124
2125 if (!need_relocs)
2126 return FALSE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2133 }
2134
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2137
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2140
2141 return ret;
2142}
2143
2144/* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2146
2147static int
2148mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2149{
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2152
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2155
2156 return 1;
2157}
2158
2159/* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2161
2162static int
2163mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2164{
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2168
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2173
2174 return 1;
2175}
2176
2177/* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2179
2180static int
2181mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2182{
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2186
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2188
2189 return 1;
2190}
2191
2192/* Output a simple dynamic relocation into SRELOC. */
2193
2194static void
2195mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2200{
2201 Elf_Internal_Rela rel[3];
2202
2203 memset (rel, 0, sizeof (rel));
2204
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2207
2208 if (ABI_64_P (output_bfd))
2209 {
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2214 }
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2221}
2222
2223/* Initialize a set of TLS GOT entries for one symbol. */
2224
2225static void
2226mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2231{
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2237
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2240
2241 indx = 0;
2242 if (h != NULL)
2243 {
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2245
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2249 }
2250
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2253
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2259
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2265
2266 /* Emit necessary relocations. */
0a44bf69 2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2268
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2271 {
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2274
2275 if (need_relocs)
2276 {
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2281
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2290 }
2291 else
2292 {
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2297 }
2298
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2300 }
2301
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2304 {
2305 offset = got_offset;
2306
2307 if (need_relocs)
2308 {
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2315
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2320 }
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2324 }
2325
2326 if (*tls_type_p & GOT_TLS_LDM)
2327 {
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2333
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2342 }
2343
2344 *tls_type_p |= GOT_TLS_DONE;
2345}
2346
2347/* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2351
2352static bfd_vma
2353mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2356{
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2359
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2361
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2363 {
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2369 }
2370
2371 if (r_type == R_MIPS_TLS_GD)
2372 {
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_LDM)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2381 }
2382
2383 return got_index;
2384}
2385
0a44bf69
RS
2386/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2389
2390static bfd_vma
2391mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2393{
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2396
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2399
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2402
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2407
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2412
2413 return got_address - got_value;
2414}
2415
5c18022e 2416/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
2417 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2418 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2419 offset can be found. */
b49e97c9
TS
2420
2421static bfd_vma
9719ad41 2422mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2423 bfd_vma value, unsigned long r_symndx,
0f20cc35 2424 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2425{
2426 asection *sgot;
2427 struct mips_got_info *g;
b15e6682 2428 struct mips_got_entry *entry;
b49e97c9
TS
2429
2430 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2431
0a44bf69 2432 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2433 value, r_symndx, h, r_type);
0f20cc35 2434 if (!entry)
b15e6682 2435 return MINUS_ONE;
0f20cc35
DJ
2436
2437 if (TLS_RELOC_P (r_type))
ead49a57
RS
2438 {
2439 if (entry->symndx == -1 && g->next == NULL)
2440 /* A type (3) entry in the single-GOT case. We use the symbol's
2441 hash table entry to track the index. */
2442 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2443 r_type, info, h, value);
2444 else
2445 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2446 r_type, info, h, value);
2447 }
0f20cc35
DJ
2448 else
2449 return entry->gotidx;
b49e97c9
TS
2450}
2451
2452/* Returns the GOT index for the global symbol indicated by H. */
2453
2454static bfd_vma
0f20cc35
DJ
2455mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2456 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2457{
2458 bfd_vma index;
2459 asection *sgot;
f4416af6 2460 struct mips_got_info *g, *gg;
d0c7ff07 2461 long global_got_dynindx = 0;
b49e97c9 2462
f4416af6
AO
2463 gg = g = mips_elf_got_info (abfd, &sgot);
2464 if (g->bfd2got && ibfd)
2465 {
2466 struct mips_got_entry e, *p;
143d77c5 2467
f4416af6
AO
2468 BFD_ASSERT (h->dynindx >= 0);
2469
2470 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2471 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2472 {
2473 e.abfd = ibfd;
2474 e.symndx = -1;
2475 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2476 e.tls_type = 0;
f4416af6 2477
9719ad41 2478 p = htab_find (g->got_entries, &e);
f4416af6
AO
2479
2480 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2481
2482 if (TLS_RELOC_P (r_type))
2483 {
2484 bfd_vma value = MINUS_ONE;
2485 if ((h->root.type == bfd_link_hash_defined
2486 || h->root.type == bfd_link_hash_defweak)
2487 && h->root.u.def.section->output_section)
2488 value = (h->root.u.def.value
2489 + h->root.u.def.section->output_offset
2490 + h->root.u.def.section->output_section->vma);
2491
2492 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2493 info, e.d.h, value);
2494 }
2495 else
2496 return p->gotidx;
f4416af6
AO
2497 }
2498 }
2499
2500 if (gg->global_gotsym != NULL)
2501 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2502
0f20cc35
DJ
2503 if (TLS_RELOC_P (r_type))
2504 {
2505 struct mips_elf_link_hash_entry *hm
2506 = (struct mips_elf_link_hash_entry *) h;
2507 bfd_vma value = MINUS_ONE;
2508
2509 if ((h->root.type == bfd_link_hash_defined
2510 || h->root.type == bfd_link_hash_defweak)
2511 && h->root.u.def.section->output_section)
2512 value = (h->root.u.def.value
2513 + h->root.u.def.section->output_offset
2514 + h->root.u.def.section->output_section->vma);
2515
2516 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2517 r_type, info, hm, value);
2518 }
2519 else
2520 {
2521 /* Once we determine the global GOT entry with the lowest dynamic
2522 symbol table index, we must put all dynamic symbols with greater
2523 indices into the GOT. That makes it easy to calculate the GOT
2524 offset. */
2525 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2526 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2527 * MIPS_ELF_GOT_SIZE (abfd));
2528 }
eea6121a 2529 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2530
2531 return index;
2532}
2533
5c18022e
RS
2534/* Find a GOT page entry that points to within 32KB of VALUE. These
2535 entries are supposed to be placed at small offsets in the GOT, i.e.,
2536 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2537 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 2538 offset of the GOT entry from VALUE. */
b49e97c9
TS
2539
2540static bfd_vma
9719ad41 2541mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2542 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2543{
2544 asection *sgot;
2545 struct mips_got_info *g;
0a44bf69 2546 bfd_vma page, index;
b15e6682 2547 struct mips_got_entry *entry;
b49e97c9
TS
2548
2549 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2550
0a44bf69
RS
2551 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2552 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2553 page, 0, NULL, R_MIPS_GOT_PAGE);
b49e97c9 2554
b15e6682
AO
2555 if (!entry)
2556 return MINUS_ONE;
143d77c5 2557
b15e6682 2558 index = entry->gotidx;
b49e97c9
TS
2559
2560 if (offsetp)
f4416af6 2561 *offsetp = value - entry->d.address;
b49e97c9
TS
2562
2563 return index;
2564}
2565
5c18022e 2566/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
0a44bf69
RS
2567 EXTERNAL is true if the relocation was against a global symbol
2568 that has been forced local. */
b49e97c9
TS
2569
2570static bfd_vma
9719ad41 2571mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2572 bfd_vma value, bfd_boolean external)
b49e97c9
TS
2573{
2574 asection *sgot;
2575 struct mips_got_info *g;
b15e6682 2576 struct mips_got_entry *entry;
b49e97c9 2577
0a44bf69
RS
2578 /* GOT16 relocations against local symbols are followed by a LO16
2579 relocation; those against global symbols are not. Thus if the
2580 symbol was originally local, the GOT16 relocation should load the
2581 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2582 if (! external)
0a44bf69 2583 value = mips_elf_high (value) << 16;
b49e97c9
TS
2584
2585 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2586
0a44bf69 2587 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2588 value, 0, NULL, R_MIPS_GOT16);
b15e6682
AO
2589 if (entry)
2590 return entry->gotidx;
2591 else
2592 return MINUS_ONE;
b49e97c9
TS
2593}
2594
2595/* Returns the offset for the entry at the INDEXth position
2596 in the GOT. */
2597
2598static bfd_vma
9719ad41
RS
2599mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2600 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2601{
2602 asection *sgot;
2603 bfd_vma gp;
f4416af6 2604 struct mips_got_info *g;
b49e97c9 2605
f4416af6
AO
2606 g = mips_elf_got_info (dynobj, &sgot);
2607 gp = _bfd_get_gp_value (output_bfd)
2608 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2609
f4416af6 2610 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2611}
2612
0a44bf69
RS
2613/* Create and return a local GOT entry for VALUE, which was calculated
2614 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2615 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2616 instead. */
b49e97c9 2617
b15e6682 2618static struct mips_got_entry *
0a44bf69
RS
2619mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2620 bfd *ibfd, struct mips_got_info *gg,
5c18022e
RS
2621 asection *sgot, bfd_vma value,
2622 unsigned long r_symndx,
0f20cc35
DJ
2623 struct mips_elf_link_hash_entry *h,
2624 int r_type)
b49e97c9 2625{
b15e6682 2626 struct mips_got_entry entry, **loc;
f4416af6 2627 struct mips_got_info *g;
0a44bf69
RS
2628 struct mips_elf_link_hash_table *htab;
2629
2630 htab = mips_elf_hash_table (info);
b15e6682 2631
f4416af6
AO
2632 entry.abfd = NULL;
2633 entry.symndx = -1;
2634 entry.d.address = value;
0f20cc35 2635 entry.tls_type = 0;
f4416af6
AO
2636
2637 g = mips_elf_got_for_ibfd (gg, ibfd);
2638 if (g == NULL)
2639 {
2640 g = mips_elf_got_for_ibfd (gg, abfd);
2641 BFD_ASSERT (g != NULL);
2642 }
b15e6682 2643
0f20cc35
DJ
2644 /* We might have a symbol, H, if it has been forced local. Use the
2645 global entry then. It doesn't matter whether an entry is local
2646 or global for TLS, since the dynamic linker does not
2647 automatically relocate TLS GOT entries. */
a008ac03 2648 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2649 if (TLS_RELOC_P (r_type))
2650 {
2651 struct mips_got_entry *p;
2652
2653 entry.abfd = ibfd;
2654 if (r_type == R_MIPS_TLS_LDM)
2655 {
2656 entry.tls_type = GOT_TLS_LDM;
2657 entry.symndx = 0;
2658 entry.d.addend = 0;
2659 }
2660 else if (h == NULL)
2661 {
2662 entry.symndx = r_symndx;
2663 entry.d.addend = 0;
2664 }
2665 else
2666 entry.d.h = h;
2667
2668 p = (struct mips_got_entry *)
2669 htab_find (g->got_entries, &entry);
2670
2671 BFD_ASSERT (p);
2672 return p;
2673 }
2674
b15e6682
AO
2675 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2676 INSERT);
2677 if (*loc)
2678 return *loc;
143d77c5 2679
b15e6682 2680 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2681 entry.tls_type = 0;
b15e6682
AO
2682
2683 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2684
2685 if (! *loc)
2686 return NULL;
143d77c5 2687
b15e6682
AO
2688 memcpy (*loc, &entry, sizeof entry);
2689
b49e97c9
TS
2690 if (g->assigned_gotno >= g->local_gotno)
2691 {
f4416af6 2692 (*loc)->gotidx = -1;
b49e97c9
TS
2693 /* We didn't allocate enough space in the GOT. */
2694 (*_bfd_error_handler)
2695 (_("not enough GOT space for local GOT entries"));
2696 bfd_set_error (bfd_error_bad_value);
b15e6682 2697 return NULL;
b49e97c9
TS
2698 }
2699
2700 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2701 (sgot->contents + entry.gotidx));
2702
5c18022e 2703 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
2704 if (htab->is_vxworks)
2705 {
2706 Elf_Internal_Rela outrel;
5c18022e 2707 asection *s;
0a44bf69
RS
2708 bfd_byte *loc;
2709 bfd_vma got_address;
0a44bf69
RS
2710
2711 s = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69
RS
2712 got_address = (sgot->output_section->vma
2713 + sgot->output_offset
2714 + entry.gotidx);
2715
2716 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2717 outrel.r_offset = got_address;
5c18022e
RS
2718 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2719 outrel.r_addend = value;
0a44bf69
RS
2720 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2721 }
2722
b15e6682 2723 return *loc;
b49e97c9
TS
2724}
2725
2726/* Sort the dynamic symbol table so that symbols that need GOT entries
2727 appear towards the end. This reduces the amount of GOT space
2728 required. MAX_LOCAL is used to set the number of local symbols
2729 known to be in the dynamic symbol table. During
2730 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2731 section symbols are added and the count is higher. */
2732
b34976b6 2733static bfd_boolean
9719ad41 2734mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2735{
2736 struct mips_elf_hash_sort_data hsd;
2737 struct mips_got_info *g;
2738 bfd *dynobj;
2739
2740 dynobj = elf_hash_table (info)->dynobj;
2741
f4416af6
AO
2742 g = mips_elf_got_info (dynobj, NULL);
2743
b49e97c9 2744 hsd.low = NULL;
143d77c5 2745 hsd.max_unref_got_dynindx =
f4416af6
AO
2746 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2747 /* In the multi-got case, assigned_gotno of the master got_info
2748 indicate the number of entries that aren't referenced in the
2749 primary GOT, but that must have entries because there are
2750 dynamic relocations that reference it. Since they aren't
2751 referenced, we move them to the end of the GOT, so that they
2752 don't prevent other entries that are referenced from getting
2753 too large offsets. */
2754 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2755 hsd.max_non_got_dynindx = max_local;
2756 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2757 elf_hash_table (info)),
2758 mips_elf_sort_hash_table_f,
2759 &hsd);
2760
2761 /* There should have been enough room in the symbol table to
44c410de 2762 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2763 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2764 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2765 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2766
2767 /* Now we know which dynamic symbol has the lowest dynamic symbol
2768 table index in the GOT. */
b49e97c9
TS
2769 g->global_gotsym = hsd.low;
2770
b34976b6 2771 return TRUE;
b49e97c9
TS
2772}
2773
2774/* If H needs a GOT entry, assign it the highest available dynamic
2775 index. Otherwise, assign it the lowest available dynamic
2776 index. */
2777
b34976b6 2778static bfd_boolean
9719ad41 2779mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2780{
9719ad41 2781 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2782
2783 if (h->root.root.type == bfd_link_hash_warning)
2784 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2785
2786 /* Symbols without dynamic symbol table entries aren't interesting
2787 at all. */
2788 if (h->root.dynindx == -1)
b34976b6 2789 return TRUE;
b49e97c9 2790
f4416af6
AO
2791 /* Global symbols that need GOT entries that are not explicitly
2792 referenced are marked with got offset 2. Those that are
2793 referenced get a 1, and those that don't need GOT entries get
2794 -1. */
2795 if (h->root.got.offset == 2)
2796 {
0f20cc35
DJ
2797 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2798
f4416af6
AO
2799 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2800 hsd->low = (struct elf_link_hash_entry *) h;
2801 h->root.dynindx = hsd->max_unref_got_dynindx++;
2802 }
2803 else if (h->root.got.offset != 1)
b49e97c9
TS
2804 h->root.dynindx = hsd->max_non_got_dynindx++;
2805 else
2806 {
0f20cc35
DJ
2807 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2808
b49e97c9
TS
2809 h->root.dynindx = --hsd->min_got_dynindx;
2810 hsd->low = (struct elf_link_hash_entry *) h;
2811 }
2812
b34976b6 2813 return TRUE;
b49e97c9
TS
2814}
2815
2816/* If H is a symbol that needs a global GOT entry, but has a dynamic
2817 symbol table index lower than any we've seen to date, record it for
2818 posterity. */
2819
b34976b6 2820static bfd_boolean
9719ad41
RS
2821mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2822 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2823 struct mips_got_info *g,
2824 unsigned char tls_flag)
b49e97c9 2825{
f4416af6
AO
2826 struct mips_got_entry entry, **loc;
2827
b49e97c9
TS
2828 /* A global symbol in the GOT must also be in the dynamic symbol
2829 table. */
7c5fcef7
L
2830 if (h->dynindx == -1)
2831 {
2832 switch (ELF_ST_VISIBILITY (h->other))
2833 {
2834 case STV_INTERNAL:
2835 case STV_HIDDEN:
b34976b6 2836 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2837 break;
2838 }
c152c796 2839 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2840 return FALSE;
7c5fcef7 2841 }
b49e97c9 2842
86324f90
EC
2843 /* Make sure we have a GOT to put this entry into. */
2844 BFD_ASSERT (g != NULL);
2845
f4416af6
AO
2846 entry.abfd = abfd;
2847 entry.symndx = -1;
2848 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2849 entry.tls_type = 0;
f4416af6
AO
2850
2851 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2852 INSERT);
2853
b49e97c9
TS
2854 /* If we've already marked this entry as needing GOT space, we don't
2855 need to do it again. */
f4416af6 2856 if (*loc)
0f20cc35
DJ
2857 {
2858 (*loc)->tls_type |= tls_flag;
2859 return TRUE;
2860 }
f4416af6
AO
2861
2862 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2863
2864 if (! *loc)
2865 return FALSE;
143d77c5 2866
f4416af6 2867 entry.gotidx = -1;
0f20cc35
DJ
2868 entry.tls_type = tls_flag;
2869
f4416af6
AO
2870 memcpy (*loc, &entry, sizeof entry);
2871
b49e97c9 2872 if (h->got.offset != MINUS_ONE)
b34976b6 2873 return TRUE;
b49e97c9
TS
2874
2875 /* By setting this to a value other than -1, we are indicating that
2876 there needs to be a GOT entry for H. Avoid using zero, as the
2877 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2878 if (tls_flag == 0)
2879 h->got.offset = 1;
b49e97c9 2880
b34976b6 2881 return TRUE;
b49e97c9 2882}
f4416af6
AO
2883
2884/* Reserve space in G for a GOT entry containing the value of symbol
2885 SYMNDX in input bfd ABDF, plus ADDEND. */
2886
2887static bfd_boolean
9719ad41 2888mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2889 struct mips_got_info *g,
2890 unsigned char tls_flag)
f4416af6
AO
2891{
2892 struct mips_got_entry entry, **loc;
2893
2894 entry.abfd = abfd;
2895 entry.symndx = symndx;
2896 entry.d.addend = addend;
0f20cc35 2897 entry.tls_type = tls_flag;
f4416af6
AO
2898 loc = (struct mips_got_entry **)
2899 htab_find_slot (g->got_entries, &entry, INSERT);
2900
2901 if (*loc)
0f20cc35
DJ
2902 {
2903 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2904 {
2905 g->tls_gotno += 2;
2906 (*loc)->tls_type |= tls_flag;
2907 }
2908 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2909 {
2910 g->tls_gotno += 1;
2911 (*loc)->tls_type |= tls_flag;
2912 }
2913 return TRUE;
2914 }
f4416af6 2915
0f20cc35
DJ
2916 if (tls_flag != 0)
2917 {
2918 entry.gotidx = -1;
2919 entry.tls_type = tls_flag;
2920 if (tls_flag == GOT_TLS_IE)
2921 g->tls_gotno += 1;
2922 else if (tls_flag == GOT_TLS_GD)
2923 g->tls_gotno += 2;
2924 else if (g->tls_ldm_offset == MINUS_ONE)
2925 {
2926 g->tls_ldm_offset = MINUS_TWO;
2927 g->tls_gotno += 2;
2928 }
2929 }
2930 else
2931 {
2932 entry.gotidx = g->local_gotno++;
2933 entry.tls_type = 0;
2934 }
f4416af6
AO
2935
2936 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2937
2938 if (! *loc)
2939 return FALSE;
143d77c5 2940
f4416af6
AO
2941 memcpy (*loc, &entry, sizeof entry);
2942
2943 return TRUE;
2944}
2945\f
2946/* Compute the hash value of the bfd in a bfd2got hash entry. */
2947
2948static hashval_t
9719ad41 2949mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2950{
2951 const struct mips_elf_bfd2got_hash *entry
2952 = (struct mips_elf_bfd2got_hash *)entry_;
2953
2954 return entry->bfd->id;
2955}
2956
2957/* Check whether two hash entries have the same bfd. */
2958
2959static int
9719ad41 2960mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2961{
2962 const struct mips_elf_bfd2got_hash *e1
2963 = (const struct mips_elf_bfd2got_hash *)entry1;
2964 const struct mips_elf_bfd2got_hash *e2
2965 = (const struct mips_elf_bfd2got_hash *)entry2;
2966
2967 return e1->bfd == e2->bfd;
2968}
2969
bad36eac 2970/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
2971 be the master GOT data. */
2972
2973static struct mips_got_info *
9719ad41 2974mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2975{
2976 struct mips_elf_bfd2got_hash e, *p;
2977
2978 if (! g->bfd2got)
2979 return g;
2980
2981 e.bfd = ibfd;
9719ad41 2982 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2983 return p ? p->g : NULL;
2984}
2985
2986/* Create one separate got for each bfd that has entries in the global
2987 got, such that we can tell how many local and global entries each
2988 bfd requires. */
2989
2990static int
9719ad41 2991mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2992{
2993 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2994 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2995 htab_t bfd2got = arg->bfd2got;
2996 struct mips_got_info *g;
2997 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2998 void **bfdgotp;
143d77c5 2999
f4416af6
AO
3000 /* Find the got_info for this GOT entry's input bfd. Create one if
3001 none exists. */
3002 bfdgot_entry.bfd = entry->abfd;
3003 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3004 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3005
3006 if (bfdgot != NULL)
3007 g = bfdgot->g;
3008 else
3009 {
3010 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3011 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3012
3013 if (bfdgot == NULL)
3014 {
3015 arg->obfd = 0;
3016 return 0;
3017 }
3018
3019 *bfdgotp = bfdgot;
3020
3021 bfdgot->bfd = entry->abfd;
3022 bfdgot->g = g = (struct mips_got_info *)
3023 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3024 if (g == NULL)
3025 {
3026 arg->obfd = 0;
3027 return 0;
3028 }
3029
3030 g->global_gotsym = NULL;
3031 g->global_gotno = 0;
3032 g->local_gotno = 0;
3033 g->assigned_gotno = -1;
0f20cc35
DJ
3034 g->tls_gotno = 0;
3035 g->tls_assigned_gotno = 0;
3036 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3037 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3038 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
3039 if (g->got_entries == NULL)
3040 {
3041 arg->obfd = 0;
3042 return 0;
3043 }
3044
3045 g->bfd2got = NULL;
3046 g->next = NULL;
3047 }
3048
3049 /* Insert the GOT entry in the bfd's got entry hash table. */
3050 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3051 if (*entryp != NULL)
3052 return 1;
143d77c5 3053
f4416af6
AO
3054 *entryp = entry;
3055
0f20cc35
DJ
3056 if (entry->tls_type)
3057 {
3058 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3059 g->tls_gotno += 2;
3060 if (entry->tls_type & GOT_TLS_IE)
3061 g->tls_gotno += 1;
3062 }
3063 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
3064 ++g->local_gotno;
3065 else
3066 ++g->global_gotno;
3067
3068 return 1;
3069}
3070
3071/* Attempt to merge gots of different input bfds. Try to use as much
3072 as possible of the primary got, since it doesn't require explicit
3073 dynamic relocations, but don't use bfds that would reference global
3074 symbols out of the addressable range. Failing the primary got,
3075 attempt to merge with the current got, or finish the current got
3076 and then make make the new got current. */
3077
3078static int
9719ad41 3079mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3080{
3081 struct mips_elf_bfd2got_hash *bfd2got
3082 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3083 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3084 unsigned int lcount = bfd2got->g->local_gotno;
3085 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 3086 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 3087 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
3088 bfd_boolean too_many_for_tls = FALSE;
3089
3090 /* We place TLS GOT entries after both locals and globals. The globals
3091 for the primary GOT may overflow the normal GOT size limit, so be
3092 sure not to merge a GOT which requires TLS with the primary GOT in that
3093 case. This doesn't affect non-primary GOTs. */
3094 if (tcount > 0)
3095 {
3096 unsigned int primary_total = lcount + tcount + arg->global_count;
3110dbc9 3097 if (primary_total > maxcnt)
0f20cc35
DJ
3098 too_many_for_tls = TRUE;
3099 }
143d77c5 3100
f4416af6
AO
3101 /* If we don't have a primary GOT and this is not too big, use it as
3102 a starting point for the primary GOT. */
0f20cc35
DJ
3103 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3104 && ! too_many_for_tls)
f4416af6
AO
3105 {
3106 arg->primary = bfd2got->g;
3107 arg->primary_count = lcount + gcount;
3108 }
3109 /* If it looks like we can merge this bfd's entries with those of
3110 the primary, merge them. The heuristics is conservative, but we
3111 don't have to squeeze it too hard. */
0f20cc35
DJ
3112 else if (arg->primary && ! too_many_for_tls
3113 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
3114 {
3115 struct mips_got_info *g = bfd2got->g;
3116 int old_lcount = arg->primary->local_gotno;
3117 int old_gcount = arg->primary->global_gotno;
0f20cc35 3118 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
3119
3120 bfd2got->g = arg->primary;
3121
3122 htab_traverse (g->got_entries,
3123 mips_elf_make_got_per_bfd,
3124 arg);
3125 if (arg->obfd == NULL)
3126 return 0;
3127
3128 htab_delete (g->got_entries);
3129 /* We don't have to worry about releasing memory of the actual
3130 got entries, since they're all in the master got_entries hash
3131 table anyway. */
3132
caec41ff 3133 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 3134 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 3135 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
3136
3137 arg->primary_count = arg->primary->local_gotno
0f20cc35 3138 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
3139 }
3140 /* If we can merge with the last-created got, do it. */
3141 else if (arg->current
0f20cc35 3142 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
3143 {
3144 struct mips_got_info *g = bfd2got->g;
3145 int old_lcount = arg->current->local_gotno;
3146 int old_gcount = arg->current->global_gotno;
0f20cc35 3147 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
3148
3149 bfd2got->g = arg->current;
3150
3151 htab_traverse (g->got_entries,
3152 mips_elf_make_got_per_bfd,
3153 arg);
3154 if (arg->obfd == NULL)
3155 return 0;
3156
3157 htab_delete (g->got_entries);
3158
caec41ff 3159 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 3160 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 3161 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
3162
3163 arg->current_count = arg->current->local_gotno
0f20cc35 3164 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
3165 }
3166 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3167 fits; if it turns out that it doesn't, we'll get relocation
3168 overflows anyway. */
3169 else
3170 {
3171 bfd2got->g->next = arg->current;
3172 arg->current = bfd2got->g;
143d77c5 3173
0f20cc35
DJ
3174 arg->current_count = lcount + gcount + 2 * tcount;
3175 }
3176
3177 return 1;
3178}
3179
ead49a57
RS
3180/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3181 is null iff there is just a single GOT. */
0f20cc35
DJ
3182
3183static int
3184mips_elf_initialize_tls_index (void **entryp, void *p)
3185{
3186 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3187 struct mips_got_info *g = p;
ead49a57 3188 bfd_vma next_index;
0f20cc35
DJ
3189
3190 /* We're only interested in TLS symbols. */
3191 if (entry->tls_type == 0)
3192 return 1;
3193
ead49a57
RS
3194 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3195
3196 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3197 {
ead49a57
RS
3198 /* A type (3) got entry in the single-GOT case. We use the symbol's
3199 hash table entry to track its index. */
3200 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3201 return 1;
3202 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3203 entry->d.h->tls_got_offset = next_index;
3204 }
3205 else
3206 {
3207 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3208 {
ead49a57
RS
3209 /* There are separate mips_got_entry objects for each input bfd
3210 that requires an LDM entry. Make sure that all LDM entries in
3211 a GOT resolve to the same index. */
3212 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3213 {
ead49a57 3214 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3215 return 1;
3216 }
ead49a57 3217 g->tls_ldm_offset = next_index;
0f20cc35 3218 }
ead49a57 3219 entry->gotidx = next_index;
f4416af6
AO
3220 }
3221
ead49a57 3222 /* Account for the entries we've just allocated. */
0f20cc35
DJ
3223 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3224 g->tls_assigned_gotno += 2;
3225 if (entry->tls_type & GOT_TLS_IE)
3226 g->tls_assigned_gotno += 1;
3227
f4416af6
AO
3228 return 1;
3229}
3230
3231/* If passed a NULL mips_got_info in the argument, set the marker used
3232 to tell whether a global symbol needs a got entry (in the primary
3233 got) to the given VALUE.
3234
3235 If passed a pointer G to a mips_got_info in the argument (it must
3236 not be the primary GOT), compute the offset from the beginning of
3237 the (primary) GOT section to the entry in G corresponding to the
3238 global symbol. G's assigned_gotno must contain the index of the
3239 first available global GOT entry in G. VALUE must contain the size
3240 of a GOT entry in bytes. For each global GOT entry that requires a
3241 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3242 marked as not eligible for lazy resolution through a function
f4416af6
AO
3243 stub. */
3244static int
9719ad41 3245mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3246{
3247 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3248 struct mips_elf_set_global_got_offset_arg *arg
3249 = (struct mips_elf_set_global_got_offset_arg *)p;
3250 struct mips_got_info *g = arg->g;
3251
0f20cc35
DJ
3252 if (g && entry->tls_type != GOT_NORMAL)
3253 arg->needed_relocs +=
3254 mips_tls_got_relocs (arg->info, entry->tls_type,
3255 entry->symndx == -1 ? &entry->d.h->root : NULL);
3256
f4416af6 3257 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3258 && entry->d.h->root.dynindx != -1
3259 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3260 {
3261 if (g)
3262 {
3263 BFD_ASSERT (g->global_gotsym == NULL);
3264
3265 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3266 if (arg->info->shared
3267 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3268 && entry->d.h->root.def_dynamic
3269 && !entry->d.h->root.def_regular))
f4416af6
AO
3270 ++arg->needed_relocs;
3271 }
3272 else
3273 entry->d.h->root.got.offset = arg->value;
3274 }
3275
3276 return 1;
3277}
3278
0626d451
RS
3279/* Mark any global symbols referenced in the GOT we are iterating over
3280 as inelligible for lazy resolution stubs. */
3281static int
9719ad41 3282mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3283{
3284 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3285
3286 if (entry->abfd != NULL
3287 && entry->symndx == -1
3288 && entry->d.h->root.dynindx != -1)
3289 entry->d.h->no_fn_stub = TRUE;
3290
3291 return 1;
3292}
3293
f4416af6
AO
3294/* Follow indirect and warning hash entries so that each got entry
3295 points to the final symbol definition. P must point to a pointer
3296 to the hash table we're traversing. Since this traversal may
3297 modify the hash table, we set this pointer to NULL to indicate
3298 we've made a potentially-destructive change to the hash table, so
3299 the traversal must be restarted. */
3300static int
9719ad41 3301mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3302{
3303 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3304 htab_t got_entries = *(htab_t *)p;
3305
3306 if (entry->abfd != NULL && entry->symndx == -1)
3307 {
3308 struct mips_elf_link_hash_entry *h = entry->d.h;
3309
3310 while (h->root.root.type == bfd_link_hash_indirect
3311 || h->root.root.type == bfd_link_hash_warning)
3312 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3313
3314 if (entry->d.h == h)
3315 return 1;
143d77c5 3316
f4416af6
AO
3317 entry->d.h = h;
3318
3319 /* If we can't find this entry with the new bfd hash, re-insert
3320 it, and get the traversal restarted. */
3321 if (! htab_find (got_entries, entry))
3322 {
3323 htab_clear_slot (got_entries, entryp);
3324 entryp = htab_find_slot (got_entries, entry, INSERT);
3325 if (! *entryp)
3326 *entryp = entry;
3327 /* Abort the traversal, since the whole table may have
3328 moved, and leave it up to the parent to restart the
3329 process. */
3330 *(htab_t *)p = NULL;
3331 return 0;
3332 }
3333 /* We might want to decrement the global_gotno count, but it's
3334 either too early or too late for that at this point. */
3335 }
143d77c5 3336
f4416af6
AO
3337 return 1;
3338}
3339
3340/* Turn indirect got entries in a got_entries table into their final
3341 locations. */
3342static void
9719ad41 3343mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3344{
3345 htab_t got_entries;
3346
3347 do
3348 {
3349 got_entries = g->got_entries;
3350
3351 htab_traverse (got_entries,
3352 mips_elf_resolve_final_got_entry,
3353 &got_entries);
3354 }
3355 while (got_entries == NULL);
3356}
3357
3358/* Return the offset of an input bfd IBFD's GOT from the beginning of
3359 the primary GOT. */
3360static bfd_vma
9719ad41 3361mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3362{
3363 if (g->bfd2got == NULL)
3364 return 0;
3365
3366 g = mips_elf_got_for_ibfd (g, ibfd);
3367 if (! g)
3368 return 0;
3369
3370 BFD_ASSERT (g->next);
3371
3372 g = g->next;
143d77c5 3373
0f20cc35
DJ
3374 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3375 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3376}
3377
3378/* Turn a single GOT that is too big for 16-bit addressing into
3379 a sequence of GOTs, each one 16-bit addressable. */
3380
3381static bfd_boolean
9719ad41
RS
3382mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3383 struct mips_got_info *g, asection *got,
3384 bfd_size_type pages)
f4416af6
AO
3385{
3386 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3387 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3388 struct mips_got_info *gg;
3389 unsigned int assign;
3390
3391 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3392 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3393 if (g->bfd2got == NULL)
3394 return FALSE;
3395
3396 got_per_bfd_arg.bfd2got = g->bfd2got;
3397 got_per_bfd_arg.obfd = abfd;
3398 got_per_bfd_arg.info = info;
3399
3400 /* Count how many GOT entries each input bfd requires, creating a
3401 map from bfd to got info while at that. */
f4416af6
AO
3402 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3403 if (got_per_bfd_arg.obfd == NULL)
3404 return FALSE;
3405
3406 got_per_bfd_arg.current = NULL;
3407 got_per_bfd_arg.primary = NULL;
3408 /* Taking out PAGES entries is a worst-case estimate. We could
3409 compute the maximum number of pages that each separate input bfd
3410 uses, but it's probably not worth it. */
0a44bf69 3411 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3412 / MIPS_ELF_GOT_SIZE (abfd))
0a44bf69 3413 - MIPS_RESERVED_GOTNO (info) - pages);
0f20cc35
DJ
3414 /* The number of globals that will be included in the primary GOT.
3415 See the calls to mips_elf_set_global_got_offset below for more
3416 information. */
3417 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3418
3419 /* Try to merge the GOTs of input bfds together, as long as they
3420 don't seem to exceed the maximum GOT size, choosing one of them
3421 to be the primary GOT. */
3422 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3423 if (got_per_bfd_arg.obfd == NULL)
3424 return FALSE;
3425
0f20cc35 3426 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3427 if (got_per_bfd_arg.primary == NULL)
3428 {
3429 g->next = (struct mips_got_info *)
3430 bfd_alloc (abfd, sizeof (struct mips_got_info));
3431 if (g->next == NULL)
3432 return FALSE;
3433
3434 g->next->global_gotsym = NULL;
3435 g->next->global_gotno = 0;
3436 g->next->local_gotno = 0;
0f20cc35 3437 g->next->tls_gotno = 0;
f4416af6 3438 g->next->assigned_gotno = 0;
0f20cc35
DJ
3439 g->next->tls_assigned_gotno = 0;
3440 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3441 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3442 mips_elf_multi_got_entry_eq,
9719ad41 3443 NULL);
f4416af6
AO
3444 if (g->next->got_entries == NULL)
3445 return FALSE;
3446 g->next->bfd2got = NULL;
3447 }
3448 else
3449 g->next = got_per_bfd_arg.primary;
3450 g->next->next = got_per_bfd_arg.current;
3451
3452 /* GG is now the master GOT, and G is the primary GOT. */
3453 gg = g;
3454 g = g->next;
3455
3456 /* Map the output bfd to the primary got. That's what we're going
3457 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3458 didn't mark in check_relocs, and we want a quick way to find it.
3459 We can't just use gg->next because we're going to reverse the
3460 list. */
3461 {
3462 struct mips_elf_bfd2got_hash *bfdgot;
3463 void **bfdgotp;
143d77c5 3464
f4416af6
AO
3465 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3466 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3467
3468 if (bfdgot == NULL)
3469 return FALSE;
3470
3471 bfdgot->bfd = abfd;
3472 bfdgot->g = g;
3473 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3474
3475 BFD_ASSERT (*bfdgotp == NULL);
3476 *bfdgotp = bfdgot;
3477 }
3478
3479 /* The IRIX dynamic linker requires every symbol that is referenced
3480 in a dynamic relocation to be present in the primary GOT, so
3481 arrange for them to appear after those that are actually
3482 referenced.
3483
3484 GNU/Linux could very well do without it, but it would slow down
3485 the dynamic linker, since it would have to resolve every dynamic
3486 symbol referenced in other GOTs more than once, without help from
3487 the cache. Also, knowing that every external symbol has a GOT
3488 helps speed up the resolution of local symbols too, so GNU/Linux
3489 follows IRIX's practice.
143d77c5 3490
f4416af6
AO
3491 The number 2 is used by mips_elf_sort_hash_table_f to count
3492 global GOT symbols that are unreferenced in the primary GOT, with
3493 an initial dynamic index computed from gg->assigned_gotno, where
3494 the number of unreferenced global entries in the primary GOT is
3495 preserved. */
3496 if (1)
3497 {
3498 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3499 g->global_gotno = gg->global_gotno;
3500 set_got_offset_arg.value = 2;
3501 }
3502 else
3503 {
3504 /* This could be used for dynamic linkers that don't optimize
3505 symbol resolution while applying relocations so as to use
3506 primary GOT entries or assuming the symbol is locally-defined.
3507 With this code, we assign lower dynamic indices to global
3508 symbols that are not referenced in the primary GOT, so that
3509 their entries can be omitted. */
3510 gg->assigned_gotno = 0;
3511 set_got_offset_arg.value = -1;
3512 }
3513
3514 /* Reorder dynamic symbols as described above (which behavior
3515 depends on the setting of VALUE). */
3516 set_got_offset_arg.g = NULL;
3517 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3518 &set_got_offset_arg);
3519 set_got_offset_arg.value = 1;
3520 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3521 &set_got_offset_arg);
3522 if (! mips_elf_sort_hash_table (info, 1))
3523 return FALSE;
3524
3525 /* Now go through the GOTs assigning them offset ranges.
3526 [assigned_gotno, local_gotno[ will be set to the range of local
3527 entries in each GOT. We can then compute the end of a GOT by
3528 adding local_gotno to global_gotno. We reverse the list and make
3529 it circular since then we'll be able to quickly compute the
3530 beginning of a GOT, by computing the end of its predecessor. To
3531 avoid special cases for the primary GOT, while still preserving
3532 assertions that are valid for both single- and multi-got links,
3533 we arrange for the main got struct to have the right number of
3534 global entries, but set its local_gotno such that the initial
3535 offset of the primary GOT is zero. Remember that the primary GOT
3536 will become the last item in the circular linked list, so it
3537 points back to the master GOT. */
3538 gg->local_gotno = -g->global_gotno;
3539 gg->global_gotno = g->global_gotno;
0f20cc35 3540 gg->tls_gotno = 0;
f4416af6
AO
3541 assign = 0;
3542 gg->next = gg;
3543
3544 do
3545 {
3546 struct mips_got_info *gn;
3547
0a44bf69 3548 assign += MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3549 g->assigned_gotno = assign;
3550 g->local_gotno += assign + pages;
0f20cc35
DJ
3551 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3552
ead49a57
RS
3553 /* Take g out of the direct list, and push it onto the reversed
3554 list that gg points to. g->next is guaranteed to be nonnull after
3555 this operation, as required by mips_elf_initialize_tls_index. */
3556 gn = g->next;
3557 g->next = gg->next;
3558 gg->next = g;
3559
0f20cc35
DJ
3560 /* Set up any TLS entries. We always place the TLS entries after
3561 all non-TLS entries. */
3562 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3563 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 3564
ead49a57 3565 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 3566 g = gn;
0626d451
RS
3567
3568 /* Mark global symbols in every non-primary GOT as ineligible for
3569 stubs. */
3570 if (g)
3571 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3572 }
3573 while (g);
3574
eea6121a 3575 got->size = (gg->next->local_gotno
0f20cc35
DJ
3576 + gg->next->global_gotno
3577 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3578
f4416af6
AO
3579 return TRUE;
3580}
143d77c5 3581
b49e97c9
TS
3582\f
3583/* Returns the first relocation of type r_type found, beginning with
3584 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3585
3586static const Elf_Internal_Rela *
9719ad41
RS
3587mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3588 const Elf_Internal_Rela *relocation,
3589 const Elf_Internal_Rela *relend)
b49e97c9 3590{
c000e262
TS
3591 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3592
b49e97c9
TS
3593 while (relocation < relend)
3594 {
c000e262
TS
3595 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3596 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
3597 return relocation;
3598
3599 ++relocation;
3600 }
3601
3602 /* We didn't find it. */
b49e97c9
TS
3603 return NULL;
3604}
3605
3606/* Return whether a relocation is against a local symbol. */
3607
b34976b6 3608static bfd_boolean
9719ad41
RS
3609mips_elf_local_relocation_p (bfd *input_bfd,
3610 const Elf_Internal_Rela *relocation,
3611 asection **local_sections,
3612 bfd_boolean check_forced)
b49e97c9
TS
3613{
3614 unsigned long r_symndx;
3615 Elf_Internal_Shdr *symtab_hdr;
3616 struct mips_elf_link_hash_entry *h;
3617 size_t extsymoff;
3618
3619 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3620 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3621 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3622
3623 if (r_symndx < extsymoff)
b34976b6 3624 return TRUE;
b49e97c9 3625 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3626 return TRUE;
b49e97c9
TS
3627
3628 if (check_forced)
3629 {
3630 /* Look up the hash table to check whether the symbol
3631 was forced local. */
3632 h = (struct mips_elf_link_hash_entry *)
3633 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3634 /* Find the real hash-table entry for this symbol. */
3635 while (h->root.root.type == bfd_link_hash_indirect
3636 || h->root.root.type == bfd_link_hash_warning)
3637 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3638 if (h->root.forced_local)
b34976b6 3639 return TRUE;
b49e97c9
TS
3640 }
3641
b34976b6 3642 return FALSE;
b49e97c9
TS
3643}
3644\f
3645/* Sign-extend VALUE, which has the indicated number of BITS. */
3646
a7ebbfdf 3647bfd_vma
9719ad41 3648_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3649{
3650 if (value & ((bfd_vma) 1 << (bits - 1)))
3651 /* VALUE is negative. */
3652 value |= ((bfd_vma) - 1) << bits;
3653
3654 return value;
3655}
3656
3657/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3658 range expressible by a signed number with the indicated number of
b49e97c9
TS
3659 BITS. */
3660
b34976b6 3661static bfd_boolean
9719ad41 3662mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3663{
3664 bfd_signed_vma svalue = (bfd_signed_vma) value;
3665
3666 if (svalue > (1 << (bits - 1)) - 1)
3667 /* The value is too big. */
b34976b6 3668 return TRUE;
b49e97c9
TS
3669 else if (svalue < -(1 << (bits - 1)))
3670 /* The value is too small. */
b34976b6 3671 return TRUE;
b49e97c9
TS
3672
3673 /* All is well. */
b34976b6 3674 return FALSE;
b49e97c9
TS
3675}
3676
3677/* Calculate the %high function. */
3678
3679static bfd_vma
9719ad41 3680mips_elf_high (bfd_vma value)
b49e97c9
TS
3681{
3682 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3683}
3684
3685/* Calculate the %higher function. */
3686
3687static bfd_vma
9719ad41 3688mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3689{
3690#ifdef BFD64
3691 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3692#else
3693 abort ();
c5ae1840 3694 return MINUS_ONE;
b49e97c9
TS
3695#endif
3696}
3697
3698/* Calculate the %highest function. */
3699
3700static bfd_vma
9719ad41 3701mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3702{
3703#ifdef BFD64
b15e6682 3704 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3705#else
3706 abort ();
c5ae1840 3707 return MINUS_ONE;
b49e97c9
TS
3708#endif
3709}
3710\f
3711/* Create the .compact_rel section. */
3712
b34976b6 3713static bfd_boolean
9719ad41
RS
3714mips_elf_create_compact_rel_section
3715 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3716{
3717 flagword flags;
3718 register asection *s;
3719
3720 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3721 {
3722 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3723 | SEC_READONLY);
3724
3496cb2a 3725 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3726 if (s == NULL
b49e97c9
TS
3727 || ! bfd_set_section_alignment (abfd, s,
3728 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3729 return FALSE;
b49e97c9 3730
eea6121a 3731 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3732 }
3733
b34976b6 3734 return TRUE;
b49e97c9
TS
3735}
3736
3737/* Create the .got section to hold the global offset table. */
3738
b34976b6 3739static bfd_boolean
9719ad41
RS
3740mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3741 bfd_boolean maybe_exclude)
b49e97c9
TS
3742{
3743 flagword flags;
3744 register asection *s;
3745 struct elf_link_hash_entry *h;
14a793b2 3746 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3747 struct mips_got_info *g;
3748 bfd_size_type amt;
0a44bf69
RS
3749 struct mips_elf_link_hash_table *htab;
3750
3751 htab = mips_elf_hash_table (info);
b49e97c9
TS
3752
3753 /* This function may be called more than once. */
f4416af6
AO
3754 s = mips_elf_got_section (abfd, TRUE);
3755 if (s)
3756 {
3757 if (! maybe_exclude)
3758 s->flags &= ~SEC_EXCLUDE;
3759 return TRUE;
3760 }
b49e97c9
TS
3761
3762 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3763 | SEC_LINKER_CREATED);
3764
f4416af6
AO
3765 if (maybe_exclude)
3766 flags |= SEC_EXCLUDE;
3767
72b4917c
TS
3768 /* We have to use an alignment of 2**4 here because this is hardcoded
3769 in the function stub generation and in the linker script. */
3496cb2a 3770 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3771 if (s == NULL
72b4917c 3772 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3773 return FALSE;
b49e97c9
TS
3774
3775 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3776 linker script because we don't want to define the symbol if we
3777 are not creating a global offset table. */
14a793b2 3778 bh = NULL;
b49e97c9
TS
3779 if (! (_bfd_generic_link_add_one_symbol
3780 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3781 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3782 return FALSE;
14a793b2
AM
3783
3784 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3785 h->non_elf = 0;
3786 h->def_regular = 1;
b49e97c9 3787 h->type = STT_OBJECT;
d329bcd1 3788 elf_hash_table (info)->hgot = h;
b49e97c9
TS
3789
3790 if (info->shared
c152c796 3791 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3792 return FALSE;
b49e97c9 3793
b49e97c9 3794 amt = sizeof (struct mips_got_info);
9719ad41 3795 g = bfd_alloc (abfd, amt);
b49e97c9 3796 if (g == NULL)
b34976b6 3797 return FALSE;
b49e97c9 3798 g->global_gotsym = NULL;
e3d54347 3799 g->global_gotno = 0;
0f20cc35 3800 g->tls_gotno = 0;
0a44bf69
RS
3801 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3802 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3803 g->bfd2got = NULL;
3804 g->next = NULL;
0f20cc35 3805 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3806 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3807 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3808 if (g->got_entries == NULL)
3809 return FALSE;
f0abc2a1
AM
3810 mips_elf_section_data (s)->u.got_info = g;
3811 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3812 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3813
0a44bf69
RS
3814 /* VxWorks also needs a .got.plt section. */
3815 if (htab->is_vxworks)
3816 {
3817 s = bfd_make_section_with_flags (abfd, ".got.plt",
3818 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3819 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3820 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3821 return FALSE;
3822
3823 htab->sgotplt = s;
3824 }
b34976b6 3825 return TRUE;
b49e97c9 3826}
b49e97c9 3827\f
0a44bf69
RS
3828/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3829 __GOTT_INDEX__ symbols. These symbols are only special for
3830 shared objects; they are not used in executables. */
3831
3832static bfd_boolean
3833is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3834{
3835 return (mips_elf_hash_table (info)->is_vxworks
3836 && info->shared
3837 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3838 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3839}
3840\f
b49e97c9
TS
3841/* Calculate the value produced by the RELOCATION (which comes from
3842 the INPUT_BFD). The ADDEND is the addend to use for this
3843 RELOCATION; RELOCATION->R_ADDEND is ignored.
3844
3845 The result of the relocation calculation is stored in VALUEP.
3846 REQUIRE_JALXP indicates whether or not the opcode used with this
3847 relocation must be JALX.
3848
3849 This function returns bfd_reloc_continue if the caller need take no
3850 further action regarding this relocation, bfd_reloc_notsupported if
3851 something goes dramatically wrong, bfd_reloc_overflow if an
3852 overflow occurs, and bfd_reloc_ok to indicate success. */
3853
3854static bfd_reloc_status_type
9719ad41
RS
3855mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3856 asection *input_section,
3857 struct bfd_link_info *info,
3858 const Elf_Internal_Rela *relocation,
3859 bfd_vma addend, reloc_howto_type *howto,
3860 Elf_Internal_Sym *local_syms,
3861 asection **local_sections, bfd_vma *valuep,
3862 const char **namep, bfd_boolean *require_jalxp,
3863 bfd_boolean save_addend)
b49e97c9
TS
3864{
3865 /* The eventual value we will return. */
3866 bfd_vma value;
3867 /* The address of the symbol against which the relocation is
3868 occurring. */
3869 bfd_vma symbol = 0;
3870 /* The final GP value to be used for the relocatable, executable, or
3871 shared object file being produced. */
3872 bfd_vma gp = MINUS_ONE;
3873 /* The place (section offset or address) of the storage unit being
3874 relocated. */
3875 bfd_vma p;
3876 /* The value of GP used to create the relocatable object. */
3877 bfd_vma gp0 = MINUS_ONE;
3878 /* The offset into the global offset table at which the address of
3879 the relocation entry symbol, adjusted by the addend, resides
3880 during execution. */
3881 bfd_vma g = MINUS_ONE;
3882 /* The section in which the symbol referenced by the relocation is
3883 located. */
3884 asection *sec = NULL;
3885 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3886 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3887 symbol. */
b34976b6
AM
3888 bfd_boolean local_p, was_local_p;
3889 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3890 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3891 /* TRUE if the symbol referred to by this relocation is
3892 "__gnu_local_gp". */
3893 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3894 Elf_Internal_Shdr *symtab_hdr;
3895 size_t extsymoff;
3896 unsigned long r_symndx;
3897 int r_type;
b34976b6 3898 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3899 relocation value. */
b34976b6
AM
3900 bfd_boolean overflowed_p;
3901 /* TRUE if this relocation refers to a MIPS16 function. */
3902 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
3903 struct mips_elf_link_hash_table *htab;
3904 bfd *dynobj;
3905
3906 dynobj = elf_hash_table (info)->dynobj;
3907 htab = mips_elf_hash_table (info);
b49e97c9
TS
3908
3909 /* Parse the relocation. */
3910 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3911 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3912 p = (input_section->output_section->vma
3913 + input_section->output_offset
3914 + relocation->r_offset);
3915
3916 /* Assume that there will be no overflow. */
b34976b6 3917 overflowed_p = FALSE;
b49e97c9
TS
3918
3919 /* Figure out whether or not the symbol is local, and get the offset
3920 used in the array of hash table entries. */
3921 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3922 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3923 local_sections, FALSE);
bce03d3d 3924 was_local_p = local_p;
b49e97c9
TS
3925 if (! elf_bad_symtab (input_bfd))
3926 extsymoff = symtab_hdr->sh_info;
3927 else
3928 {
3929 /* The symbol table does not follow the rule that local symbols
3930 must come before globals. */
3931 extsymoff = 0;
3932 }
3933
3934 /* Figure out the value of the symbol. */
3935 if (local_p)
3936 {
3937 Elf_Internal_Sym *sym;
3938
3939 sym = local_syms + r_symndx;
3940 sec = local_sections[r_symndx];
3941
3942 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3943 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3944 || (sec->flags & SEC_MERGE))
b49e97c9 3945 symbol += sym->st_value;
d4df96e6
L
3946 if ((sec->flags & SEC_MERGE)
3947 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3948 {
3949 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3950 addend -= symbol;
3951 addend += sec->output_section->vma + sec->output_offset;
3952 }
b49e97c9
TS
3953
3954 /* MIPS16 text labels should be treated as odd. */
3955 if (sym->st_other == STO_MIPS16)
3956 ++symbol;
3957
3958 /* Record the name of this symbol, for our caller. */
3959 *namep = bfd_elf_string_from_elf_section (input_bfd,
3960 symtab_hdr->sh_link,
3961 sym->st_name);
3962 if (*namep == '\0')
3963 *namep = bfd_section_name (input_bfd, sec);
3964
3965 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3966 }
3967 else
3968 {
560e09e9
NC
3969 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3970
b49e97c9
TS
3971 /* For global symbols we look up the symbol in the hash-table. */
3972 h = ((struct mips_elf_link_hash_entry *)
3973 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3974 /* Find the real hash-table entry for this symbol. */
3975 while (h->root.root.type == bfd_link_hash_indirect
3976 || h->root.root.type == bfd_link_hash_warning)
3977 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3978
3979 /* Record the name of this symbol, for our caller. */
3980 *namep = h->root.root.root.string;
3981
3982 /* See if this is the special _gp_disp symbol. Note that such a
3983 symbol must always be a global symbol. */
560e09e9 3984 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3985 && ! NEWABI_P (input_bfd))
3986 {
3987 /* Relocations against _gp_disp are permitted only with
3988 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
3989 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3990 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
3991 return bfd_reloc_notsupported;
3992
b34976b6 3993 gp_disp_p = TRUE;
b49e97c9 3994 }
bbe506e8
TS
3995 /* See if this is the special _gp symbol. Note that such a
3996 symbol must always be a global symbol. */
3997 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3998 gnu_local_gp_p = TRUE;
3999
4000
b49e97c9
TS
4001 /* If this symbol is defined, calculate its address. Note that
4002 _gp_disp is a magic symbol, always implicitly defined by the
4003 linker, so it's inappropriate to check to see whether or not
4004 its defined. */
4005 else if ((h->root.root.type == bfd_link_hash_defined
4006 || h->root.root.type == bfd_link_hash_defweak)
4007 && h->root.root.u.def.section)
4008 {
4009 sec = h->root.root.u.def.section;
4010 if (sec->output_section)
4011 symbol = (h->root.root.u.def.value
4012 + sec->output_section->vma
4013 + sec->output_offset);
4014 else
4015 symbol = h->root.root.u.def.value;
4016 }
4017 else if (h->root.root.type == bfd_link_hash_undefweak)
4018 /* We allow relocations against undefined weak symbols, giving
4019 it the value zero, so that you can undefined weak functions
4020 and check to see if they exist by looking at their
4021 addresses. */
4022 symbol = 0;
59c2e50f 4023 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4024 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4025 symbol = 0;
a4d0f181
TS
4026 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4027 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4028 {
4029 /* If this is a dynamic link, we should have created a
4030 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4031 in in _bfd_mips_elf_create_dynamic_sections.
4032 Otherwise, we should define the symbol with a value of 0.
4033 FIXME: It should probably get into the symbol table
4034 somehow as well. */
4035 BFD_ASSERT (! info->shared);
4036 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4037 symbol = 0;
4038 }
5e2b0d47
NC
4039 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4040 {
4041 /* This is an optional symbol - an Irix specific extension to the
4042 ELF spec. Ignore it for now.
4043 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4044 than simply ignoring them, but we do not handle this for now.
4045 For information see the "64-bit ELF Object File Specification"
4046 which is available from here:
4047 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4048 symbol = 0;
4049 }
b49e97c9
TS
4050 else
4051 {
4052 if (! ((*info->callbacks->undefined_symbol)
4053 (info, h->root.root.root.string, input_bfd,
4054 input_section, relocation->r_offset,
59c2e50f
L
4055 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4056 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4057 return bfd_reloc_undefined;
4058 symbol = 0;
4059 }
4060
4061 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4062 }
4063
4064 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4065 need to redirect the call to the stub, unless we're already *in*
4066 a stub. */
1049f94e 4067 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9 4068 && ((h != NULL && h->fn_stub != NULL)
b9d58d71
TS
4069 || (local_p
4070 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 4071 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
b9d58d71 4072 && !mips16_stub_section_p (input_bfd, input_section))
b49e97c9
TS
4073 {
4074 /* This is a 32- or 64-bit call to a 16-bit function. We should
4075 have already noticed that we were going to need the
4076 stub. */
4077 if (local_p)
4078 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4079 else
4080 {
4081 BFD_ASSERT (h->need_fn_stub);
4082 sec = h->fn_stub;
4083 }
4084
4085 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
4086 /* The target is 16-bit, but the stub isn't. */
4087 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
4088 }
4089 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4090 need to redirect the call to the stub. */
1049f94e 4091 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9 4092 && h != NULL
b9d58d71
TS
4093 && ((h->call_stub != NULL || h->call_fp_stub != NULL)
4094 || (local_p
4095 && elf_tdata (input_bfd)->local_call_stubs != NULL
4096 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
4097 && !target_is_16_bit_code_p)
4098 {
b9d58d71
TS
4099 if (local_p)
4100 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4101 else
b49e97c9 4102 {
b9d58d71
TS
4103 /* If both call_stub and call_fp_stub are defined, we can figure
4104 out which one to use by checking which one appears in the input
4105 file. */
4106 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 4107 {
b9d58d71
TS
4108 asection *o;
4109
4110 sec = NULL;
4111 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 4112 {
b9d58d71
TS
4113 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4114 {
4115 sec = h->call_fp_stub;
4116 break;
4117 }
b49e97c9 4118 }
b9d58d71
TS
4119 if (sec == NULL)
4120 sec = h->call_stub;
b49e97c9 4121 }
b9d58d71 4122 else if (h->call_stub != NULL)
b49e97c9 4123 sec = h->call_stub;
b9d58d71
TS
4124 else
4125 sec = h->call_fp_stub;
4126 }
b49e97c9 4127
eea6121a 4128 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4129 symbol = sec->output_section->vma + sec->output_offset;
4130 }
4131
4132 /* Calls from 16-bit code to 32-bit code and vice versa require the
4133 special jalx instruction. */
1049f94e 4134 *require_jalxp = (!info->relocatable
b49e97c9
TS
4135 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4136 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4137
4138 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4139 local_sections, TRUE);
b49e97c9
TS
4140
4141 /* If we haven't already determined the GOT offset, or the GP value,
4142 and we're going to need it, get it now. */
4143 switch (r_type)
4144 {
0fdc1bf1 4145 case R_MIPS_GOT_PAGE:
93a2b7ae 4146 case R_MIPS_GOT_OFST:
d25aed71
RS
4147 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4148 bind locally. */
4149 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4150 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4151 break;
4152 /* Fall through. */
4153
b49e97c9
TS
4154 case R_MIPS_CALL16:
4155 case R_MIPS_GOT16:
4156 case R_MIPS_GOT_DISP:
4157 case R_MIPS_GOT_HI16:
4158 case R_MIPS_CALL_HI16:
4159 case R_MIPS_GOT_LO16:
4160 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4161 case R_MIPS_TLS_GD:
4162 case R_MIPS_TLS_GOTTPREL:
4163 case R_MIPS_TLS_LDM:
b49e97c9 4164 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4165 if (r_type == R_MIPS_TLS_LDM)
4166 {
0a44bf69 4167 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 4168 0, 0, NULL, r_type);
0f20cc35
DJ
4169 if (g == MINUS_ONE)
4170 return bfd_reloc_outofrange;
4171 }
4172 else if (!local_p)
b49e97c9 4173 {
0a44bf69
RS
4174 /* On VxWorks, CALL relocations should refer to the .got.plt
4175 entry, which is initialized to point at the PLT stub. */
4176 if (htab->is_vxworks
4177 && (r_type == R_MIPS_CALL_HI16
4178 || r_type == R_MIPS_CALL_LO16
4179 || r_type == R_MIPS_CALL16))
4180 {
4181 BFD_ASSERT (addend == 0);
4182 BFD_ASSERT (h->root.needs_plt);
4183 g = mips_elf_gotplt_index (info, &h->root);
4184 }
4185 else
b49e97c9 4186 {
0a44bf69
RS
4187 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4188 GOT_PAGE relocation that decays to GOT_DISP because the
4189 symbol turns out to be global. The addend is then added
4190 as GOT_OFST. */
4191 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4192 g = mips_elf_global_got_index (dynobj, input_bfd,
4193 &h->root, r_type, info);
4194 if (h->tls_type == GOT_NORMAL
4195 && (! elf_hash_table(info)->dynamic_sections_created
4196 || (info->shared
4197 && (info->symbolic || h->root.forced_local)
4198 && h->root.def_regular)))
4199 {
4200 /* This is a static link or a -Bsymbolic link. The
4201 symbol is defined locally, or was forced to be local.
4202 We must initialize this entry in the GOT. */
4203 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4204 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4205 }
b49e97c9
TS
4206 }
4207 }
0a44bf69
RS
4208 else if (!htab->is_vxworks
4209 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4210 /* The calculation below does not involve "g". */
b49e97c9
TS
4211 break;
4212 else
4213 {
5c18022e 4214 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 4215 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4216 if (g == MINUS_ONE)
4217 return bfd_reloc_outofrange;
4218 }
4219
4220 /* Convert GOT indices to actual offsets. */
0a44bf69 4221 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
b49e97c9
TS
4222 break;
4223
4224 case R_MIPS_HI16:
4225 case R_MIPS_LO16:
b49e97c9
TS
4226 case R_MIPS_GPREL16:
4227 case R_MIPS_GPREL32:
4228 case R_MIPS_LITERAL:
d6f16593
MR
4229 case R_MIPS16_HI16:
4230 case R_MIPS16_LO16:
4231 case R_MIPS16_GPREL:
b49e97c9
TS
4232 gp0 = _bfd_get_gp_value (input_bfd);
4233 gp = _bfd_get_gp_value (abfd);
0a44bf69
RS
4234 if (dynobj)
4235 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
f4416af6 4236 input_bfd);
b49e97c9
TS
4237 break;
4238
4239 default:
4240 break;
4241 }
4242
bbe506e8
TS
4243 if (gnu_local_gp_p)
4244 symbol = gp;
86324f90 4245
0a44bf69
RS
4246 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4247 symbols are resolved by the loader. Add them to .rela.dyn. */
4248 if (h != NULL && is_gott_symbol (info, &h->root))
4249 {
4250 Elf_Internal_Rela outrel;
4251 bfd_byte *loc;
4252 asection *s;
4253
4254 s = mips_elf_rel_dyn_section (info, FALSE);
4255 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4256
4257 outrel.r_offset = (input_section->output_section->vma
4258 + input_section->output_offset
4259 + relocation->r_offset);
4260 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4261 outrel.r_addend = addend;
4262 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
4263
4264 /* If we've written this relocation for a readonly section,
4265 we need to set DF_TEXTREL again, so that we do not delete the
4266 DT_TEXTREL tag. */
4267 if (MIPS_ELF_READONLY_SECTION (input_section))
4268 info->flags |= DF_TEXTREL;
4269
0a44bf69
RS
4270 *valuep = 0;
4271 return bfd_reloc_ok;
4272 }
4273
b49e97c9
TS
4274 /* Figure out what kind of relocation is being performed. */
4275 switch (r_type)
4276 {
4277 case R_MIPS_NONE:
4278 return bfd_reloc_continue;
4279
4280 case R_MIPS_16:
a7ebbfdf 4281 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4282 overflowed_p = mips_elf_overflow_p (value, 16);
4283 break;
4284
4285 case R_MIPS_32:
4286 case R_MIPS_REL32:
4287 case R_MIPS_64:
4288 if ((info->shared
0a44bf69
RS
4289 || (!htab->is_vxworks
4290 && htab->root.dynamic_sections_created
b49e97c9 4291 && h != NULL
f5385ebf
AM
4292 && h->root.def_dynamic
4293 && !h->root.def_regular))
b49e97c9
TS
4294 && r_symndx != 0
4295 && (input_section->flags & SEC_ALLOC) != 0)
4296 {
4297 /* If we're creating a shared library, or this relocation is
4298 against a symbol in a shared library, then we can't know
4299 where the symbol will end up. So, we create a relocation
4300 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4301 linker.
4302
4303 In VxWorks executables, references to external symbols
4304 are handled using copy relocs or PLT stubs, so there's
4305 no need to add a dynamic relocation here. */
b49e97c9
TS
4306 value = addend;
4307 if (!mips_elf_create_dynamic_relocation (abfd,
4308 info,
4309 relocation,
4310 h,
4311 sec,
4312 symbol,
4313 &value,
4314 input_section))
4315 return bfd_reloc_undefined;
4316 }
4317 else
4318 {
4319 if (r_type != R_MIPS_REL32)
4320 value = symbol + addend;
4321 else
4322 value = addend;
4323 }
4324 value &= howto->dst_mask;
092dcd75
CD
4325 break;
4326
4327 case R_MIPS_PC32:
4328 value = symbol + addend - p;
4329 value &= howto->dst_mask;
b49e97c9
TS
4330 break;
4331
b49e97c9
TS
4332 case R_MIPS16_26:
4333 /* The calculation for R_MIPS16_26 is just the same as for an
4334 R_MIPS_26. It's only the storage of the relocated field into
4335 the output file that's different. That's handled in
4336 mips_elf_perform_relocation. So, we just fall through to the
4337 R_MIPS_26 case here. */
4338 case R_MIPS_26:
4339 if (local_p)
30ac9238 4340 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4341 else
728b2f21
ILT
4342 {
4343 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4344 if (h->root.root.type != bfd_link_hash_undefweak)
4345 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4346 }
b49e97c9
TS
4347 value &= howto->dst_mask;
4348 break;
4349
0f20cc35
DJ
4350 case R_MIPS_TLS_DTPREL_HI16:
4351 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4352 & howto->dst_mask);
4353 break;
4354
4355 case R_MIPS_TLS_DTPREL_LO16:
4356 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4357 break;
4358
4359 case R_MIPS_TLS_TPREL_HI16:
4360 value = (mips_elf_high (addend + symbol - tprel_base (info))
4361 & howto->dst_mask);
4362 break;
4363
4364 case R_MIPS_TLS_TPREL_LO16:
4365 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4366 break;
4367
b49e97c9 4368 case R_MIPS_HI16:
d6f16593 4369 case R_MIPS16_HI16:
b49e97c9
TS
4370 if (!gp_disp_p)
4371 {
4372 value = mips_elf_high (addend + symbol);
4373 value &= howto->dst_mask;
4374 }
4375 else
4376 {
d6f16593
MR
4377 /* For MIPS16 ABI code we generate this sequence
4378 0: li $v0,%hi(_gp_disp)
4379 4: addiupc $v1,%lo(_gp_disp)
4380 8: sll $v0,16
4381 12: addu $v0,$v1
4382 14: move $gp,$v0
4383 So the offsets of hi and lo relocs are the same, but the
4384 $pc is four higher than $t9 would be, so reduce
4385 both reloc addends by 4. */
4386 if (r_type == R_MIPS16_HI16)
4387 value = mips_elf_high (addend + gp - p - 4);
4388 else
4389 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4390 overflowed_p = mips_elf_overflow_p (value, 16);
4391 }
4392 break;
4393
4394 case R_MIPS_LO16:
d6f16593 4395 case R_MIPS16_LO16:
b49e97c9
TS
4396 if (!gp_disp_p)
4397 value = (symbol + addend) & howto->dst_mask;
4398 else
4399 {
d6f16593
MR
4400 /* See the comment for R_MIPS16_HI16 above for the reason
4401 for this conditional. */
4402 if (r_type == R_MIPS16_LO16)
4403 value = addend + gp - p;
4404 else
4405 value = addend + gp - p + 4;
b49e97c9 4406 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4407 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4408 _gp_disp are normally generated from the .cpload
4409 pseudo-op. It generates code that normally looks like
4410 this:
4411
4412 lui $gp,%hi(_gp_disp)
4413 addiu $gp,$gp,%lo(_gp_disp)
4414 addu $gp,$gp,$t9
4415
4416 Here $t9 holds the address of the function being called,
4417 as required by the MIPS ELF ABI. The R_MIPS_LO16
4418 relocation can easily overflow in this situation, but the
4419 R_MIPS_HI16 relocation will handle the overflow.
4420 Therefore, we consider this a bug in the MIPS ABI, and do
4421 not check for overflow here. */
4422 }
4423 break;
4424
4425 case R_MIPS_LITERAL:
4426 /* Because we don't merge literal sections, we can handle this
4427 just like R_MIPS_GPREL16. In the long run, we should merge
4428 shared literals, and then we will need to additional work
4429 here. */
4430
4431 /* Fall through. */
4432
4433 case R_MIPS16_GPREL:
4434 /* The R_MIPS16_GPREL performs the same calculation as
4435 R_MIPS_GPREL16, but stores the relocated bits in a different
4436 order. We don't need to do anything special here; the
4437 differences are handled in mips_elf_perform_relocation. */
4438 case R_MIPS_GPREL16:
bce03d3d
AO
4439 /* Only sign-extend the addend if it was extracted from the
4440 instruction. If the addend was separate, leave it alone,
4441 otherwise we may lose significant bits. */
4442 if (howto->partial_inplace)
a7ebbfdf 4443 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4444 value = symbol + addend - gp;
4445 /* If the symbol was local, any earlier relocatable links will
4446 have adjusted its addend with the gp offset, so compensate
4447 for that now. Don't do it for symbols forced local in this
4448 link, though, since they won't have had the gp offset applied
4449 to them before. */
4450 if (was_local_p)
4451 value += gp0;
b49e97c9
TS
4452 overflowed_p = mips_elf_overflow_p (value, 16);
4453 break;
4454
4455 case R_MIPS_GOT16:
4456 case R_MIPS_CALL16:
0a44bf69
RS
4457 /* VxWorks does not have separate local and global semantics for
4458 R_MIPS_GOT16; every relocation evaluates to "G". */
4459 if (!htab->is_vxworks && local_p)
b49e97c9 4460 {
b34976b6 4461 bfd_boolean forced;
b49e97c9 4462
b49e97c9 4463 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4464 local_sections, FALSE);
5c18022e 4465 value = mips_elf_got16_entry (abfd, input_bfd, info,
f4416af6 4466 symbol + addend, forced);
b49e97c9
TS
4467 if (value == MINUS_ONE)
4468 return bfd_reloc_outofrange;
4469 value
0a44bf69 4470 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4471 overflowed_p = mips_elf_overflow_p (value, 16);
4472 break;
4473 }
4474
4475 /* Fall through. */
4476
0f20cc35
DJ
4477 case R_MIPS_TLS_GD:
4478 case R_MIPS_TLS_GOTTPREL:
4479 case R_MIPS_TLS_LDM:
b49e97c9 4480 case R_MIPS_GOT_DISP:
0fdc1bf1 4481 got_disp:
b49e97c9
TS
4482 value = g;
4483 overflowed_p = mips_elf_overflow_p (value, 16);
4484 break;
4485
4486 case R_MIPS_GPREL32:
bce03d3d
AO
4487 value = (addend + symbol + gp0 - gp);
4488 if (!save_addend)
4489 value &= howto->dst_mask;
b49e97c9
TS
4490 break;
4491
4492 case R_MIPS_PC16:
bad36eac
DJ
4493 case R_MIPS_GNU_REL16_S2:
4494 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4495 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
4496 value >>= howto->rightshift;
4497 value &= howto->dst_mask;
b49e97c9
TS
4498 break;
4499
4500 case R_MIPS_GOT_HI16:
4501 case R_MIPS_CALL_HI16:
4502 /* We're allowed to handle these two relocations identically.
4503 The dynamic linker is allowed to handle the CALL relocations
4504 differently by creating a lazy evaluation stub. */
4505 value = g;
4506 value = mips_elf_high (value);
4507 value &= howto->dst_mask;
4508 break;
4509
4510 case R_MIPS_GOT_LO16:
4511 case R_MIPS_CALL_LO16:
4512 value = g & howto->dst_mask;
4513 break;
4514
4515 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4516 /* GOT_PAGE relocations that reference non-local symbols decay
4517 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4518 0. */
93a2b7ae 4519 if (! local_p)
0fdc1bf1 4520 goto got_disp;
5c18022e 4521 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
4522 if (value == MINUS_ONE)
4523 return bfd_reloc_outofrange;
0a44bf69 4524 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4525 overflowed_p = mips_elf_overflow_p (value, 16);
4526 break;
4527
4528 case R_MIPS_GOT_OFST:
93a2b7ae 4529 if (local_p)
5c18022e 4530 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
4531 else
4532 value = addend;
b49e97c9
TS
4533 overflowed_p = mips_elf_overflow_p (value, 16);
4534 break;
4535
4536 case R_MIPS_SUB:
4537 value = symbol - addend;
4538 value &= howto->dst_mask;
4539 break;
4540
4541 case R_MIPS_HIGHER:
4542 value = mips_elf_higher (addend + symbol);
4543 value &= howto->dst_mask;
4544 break;
4545
4546 case R_MIPS_HIGHEST:
4547 value = mips_elf_highest (addend + symbol);
4548 value &= howto->dst_mask;
4549 break;
4550
4551 case R_MIPS_SCN_DISP:
4552 value = symbol + addend - sec->output_offset;
4553 value &= howto->dst_mask;
4554 break;
4555
b49e97c9 4556 case R_MIPS_JALR:
1367d393
ILT
4557 /* This relocation is only a hint. In some cases, we optimize
4558 it into a bal instruction. But we don't try to optimize
4559 branches to the PLT; that will wind up wasting time. */
4560 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4561 return bfd_reloc_continue;
4562 value = symbol + addend;
4563 break;
b49e97c9 4564
1367d393 4565 case R_MIPS_PJUMP:
b49e97c9
TS
4566 case R_MIPS_GNU_VTINHERIT:
4567 case R_MIPS_GNU_VTENTRY:
4568 /* We don't do anything with these at present. */
4569 return bfd_reloc_continue;
4570
4571 default:
4572 /* An unrecognized relocation type. */
4573 return bfd_reloc_notsupported;
4574 }
4575
4576 /* Store the VALUE for our caller. */
4577 *valuep = value;
4578 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4579}
4580
4581/* Obtain the field relocated by RELOCATION. */
4582
4583static bfd_vma
9719ad41
RS
4584mips_elf_obtain_contents (reloc_howto_type *howto,
4585 const Elf_Internal_Rela *relocation,
4586 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4587{
4588 bfd_vma x;
4589 bfd_byte *location = contents + relocation->r_offset;
4590
4591 /* Obtain the bytes. */
4592 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4593
b49e97c9
TS
4594 return x;
4595}
4596
4597/* It has been determined that the result of the RELOCATION is the
4598 VALUE. Use HOWTO to place VALUE into the output file at the
4599 appropriate position. The SECTION is the section to which the
b34976b6 4600 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4601 for the relocation must be either JAL or JALX, and it is
4602 unconditionally converted to JALX.
4603
b34976b6 4604 Returns FALSE if anything goes wrong. */
b49e97c9 4605
b34976b6 4606static bfd_boolean
9719ad41
RS
4607mips_elf_perform_relocation (struct bfd_link_info *info,
4608 reloc_howto_type *howto,
4609 const Elf_Internal_Rela *relocation,
4610 bfd_vma value, bfd *input_bfd,
4611 asection *input_section, bfd_byte *contents,
4612 bfd_boolean require_jalx)
b49e97c9
TS
4613{
4614 bfd_vma x;
4615 bfd_byte *location;
4616 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4617
4618 /* Figure out where the relocation is occurring. */
4619 location = contents + relocation->r_offset;
4620
d6f16593
MR
4621 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4622
b49e97c9
TS
4623 /* Obtain the current value. */
4624 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4625
4626 /* Clear the field we are setting. */
4627 x &= ~howto->dst_mask;
4628
b49e97c9
TS
4629 /* Set the field. */
4630 x |= (value & howto->dst_mask);
4631
4632 /* If required, turn JAL into JALX. */
4633 if (require_jalx)
4634 {
b34976b6 4635 bfd_boolean ok;
b49e97c9
TS
4636 bfd_vma opcode = x >> 26;
4637 bfd_vma jalx_opcode;
4638
4639 /* Check to see if the opcode is already JAL or JALX. */
4640 if (r_type == R_MIPS16_26)
4641 {
4642 ok = ((opcode == 0x6) || (opcode == 0x7));
4643 jalx_opcode = 0x7;
4644 }
4645 else
4646 {
4647 ok = ((opcode == 0x3) || (opcode == 0x1d));
4648 jalx_opcode = 0x1d;
4649 }
4650
4651 /* If the opcode is not JAL or JALX, there's a problem. */
4652 if (!ok)
4653 {
4654 (*_bfd_error_handler)
d003868e
AM
4655 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4656 input_bfd,
4657 input_section,
b49e97c9
TS
4658 (unsigned long) relocation->r_offset);
4659 bfd_set_error (bfd_error_bad_value);
b34976b6 4660 return FALSE;
b49e97c9
TS
4661 }
4662
4663 /* Make this the JALX opcode. */
4664 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4665 }
4666
1367d393
ILT
4667 /* On the RM9000, bal is faster than jal, because bal uses branch
4668 prediction hardware. If we are linking for the RM9000, and we
4669 see jal, and bal fits, use it instead. Note that this
4670 transformation should be safe for all architectures. */
4671 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4672 && !info->relocatable
4673 && !require_jalx
4674 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4675 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4676 {
4677 bfd_vma addr;
4678 bfd_vma dest;
4679 bfd_signed_vma off;
4680
4681 addr = (input_section->output_section->vma
4682 + input_section->output_offset
4683 + relocation->r_offset
4684 + 4);
4685 if (r_type == R_MIPS_26)
4686 dest = (value << 2) | ((addr >> 28) << 28);
4687 else
4688 dest = value;
4689 off = dest - addr;
4690 if (off <= 0x1ffff && off >= -0x20000)
4691 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4692 }
4693
b49e97c9
TS
4694 /* Put the value into the output. */
4695 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4696
4697 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4698 location);
4699
b34976b6 4700 return TRUE;
b49e97c9
TS
4701}
4702
b34976b6 4703/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4704
b34976b6 4705static bfd_boolean
b9d58d71 4706mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4707{
4708 const char *name = bfd_get_section_name (abfd, section);
4709
b9d58d71 4710 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
b49e97c9
TS
4711}
4712\f
0a44bf69 4713/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
b49e97c9
TS
4714
4715static void
0a44bf69
RS
4716mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4717 unsigned int n)
b49e97c9
TS
4718{
4719 asection *s;
0a44bf69 4720 struct mips_elf_link_hash_table *htab;
b49e97c9 4721
0a44bf69
RS
4722 htab = mips_elf_hash_table (info);
4723 s = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4724 BFD_ASSERT (s != NULL);
4725
0a44bf69
RS
4726 if (htab->is_vxworks)
4727 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4728 else
b49e97c9 4729 {
0a44bf69
RS
4730 if (s->size == 0)
4731 {
4732 /* Make room for a null element. */
4733 s->size += MIPS_ELF_REL_SIZE (abfd);
4734 ++s->reloc_count;
4735 }
4736 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9 4737 }
b49e97c9
TS
4738}
4739
4740/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4741 is the original relocation, which is now being transformed into a
4742 dynamic relocation. The ADDENDP is adjusted if necessary; the
4743 caller should store the result in place of the original addend. */
4744
b34976b6 4745static bfd_boolean
9719ad41
RS
4746mips_elf_create_dynamic_relocation (bfd *output_bfd,
4747 struct bfd_link_info *info,
4748 const Elf_Internal_Rela *rel,
4749 struct mips_elf_link_hash_entry *h,
4750 asection *sec, bfd_vma symbol,
4751 bfd_vma *addendp, asection *input_section)
b49e97c9 4752{
947216bf 4753 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4754 asection *sreloc;
4755 bfd *dynobj;
4756 int r_type;
5d41f0b6
RS
4757 long indx;
4758 bfd_boolean defined_p;
0a44bf69 4759 struct mips_elf_link_hash_table *htab;
b49e97c9 4760
0a44bf69 4761 htab = mips_elf_hash_table (info);
b49e97c9
TS
4762 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4763 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 4764 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4765 BFD_ASSERT (sreloc != NULL);
4766 BFD_ASSERT (sreloc->contents != NULL);
4767 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4768 < sreloc->size);
b49e97c9 4769
b49e97c9
TS
4770 outrel[0].r_offset =
4771 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
4772 if (ABI_64_P (output_bfd))
4773 {
4774 outrel[1].r_offset =
4775 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4776 outrel[2].r_offset =
4777 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4778 }
b49e97c9 4779
c5ae1840 4780 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4781 /* The relocation field has been deleted. */
5d41f0b6
RS
4782 return TRUE;
4783
4784 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4785 {
4786 /* The relocation field has been converted into a relative value of
4787 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4788 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4789 *addendp += symbol;
5d41f0b6 4790 return TRUE;
0d591ff7 4791 }
b49e97c9 4792
5d41f0b6
RS
4793 /* We must now calculate the dynamic symbol table index to use
4794 in the relocation. */
4795 if (h != NULL
6ece8836
TS
4796 && (!h->root.def_regular
4797 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
4798 {
4799 indx = h->root.dynindx;
4800 if (SGI_COMPAT (output_bfd))
4801 defined_p = h->root.def_regular;
4802 else
4803 /* ??? glibc's ld.so just adds the final GOT entry to the
4804 relocation field. It therefore treats relocs against
4805 defined symbols in the same way as relocs against
4806 undefined symbols. */
4807 defined_p = FALSE;
4808 }
b49e97c9
TS
4809 else
4810 {
5d41f0b6
RS
4811 if (sec != NULL && bfd_is_abs_section (sec))
4812 indx = 0;
4813 else if (sec == NULL || sec->owner == NULL)
fdd07405 4814 {
5d41f0b6
RS
4815 bfd_set_error (bfd_error_bad_value);
4816 return FALSE;
b49e97c9
TS
4817 }
4818 else
4819 {
5d41f0b6 4820 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
4821 if (indx == 0)
4822 {
4823 asection *osec = htab->root.text_index_section;
4824 indx = elf_section_data (osec)->dynindx;
4825 }
5d41f0b6
RS
4826 if (indx == 0)
4827 abort ();
b49e97c9
TS
4828 }
4829
5d41f0b6
RS
4830 /* Instead of generating a relocation using the section
4831 symbol, we may as well make it a fully relative
4832 relocation. We want to avoid generating relocations to
4833 local symbols because we used to generate them
4834 incorrectly, without adding the original symbol value,
4835 which is mandated by the ABI for section symbols. In
4836 order to give dynamic loaders and applications time to
4837 phase out the incorrect use, we refrain from emitting
4838 section-relative relocations. It's not like they're
4839 useful, after all. This should be a bit more efficient
4840 as well. */
4841 /* ??? Although this behavior is compatible with glibc's ld.so,
4842 the ABI says that relocations against STN_UNDEF should have
4843 a symbol value of 0. Irix rld honors this, so relocations
4844 against STN_UNDEF have no effect. */
4845 if (!SGI_COMPAT (output_bfd))
4846 indx = 0;
4847 defined_p = TRUE;
b49e97c9
TS
4848 }
4849
5d41f0b6
RS
4850 /* If the relocation was previously an absolute relocation and
4851 this symbol will not be referred to by the relocation, we must
4852 adjust it by the value we give it in the dynamic symbol table.
4853 Otherwise leave the job up to the dynamic linker. */
4854 if (defined_p && r_type != R_MIPS_REL32)
4855 *addendp += symbol;
4856
0a44bf69
RS
4857 if (htab->is_vxworks)
4858 /* VxWorks uses non-relative relocations for this. */
4859 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4860 else
4861 /* The relocation is always an REL32 relocation because we don't
4862 know where the shared library will wind up at load-time. */
4863 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4864 R_MIPS_REL32);
4865
5d41f0b6
RS
4866 /* For strict adherence to the ABI specification, we should
4867 generate a R_MIPS_64 relocation record by itself before the
4868 _REL32/_64 record as well, such that the addend is read in as
4869 a 64-bit value (REL32 is a 32-bit relocation, after all).
4870 However, since none of the existing ELF64 MIPS dynamic
4871 loaders seems to care, we don't waste space with these
4872 artificial relocations. If this turns out to not be true,
4873 mips_elf_allocate_dynamic_relocation() should be tweaked so
4874 as to make room for a pair of dynamic relocations per
4875 invocation if ABI_64_P, and here we should generate an
4876 additional relocation record with R_MIPS_64 by itself for a
4877 NULL symbol before this relocation record. */
4878 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4879 ABI_64_P (output_bfd)
4880 ? R_MIPS_64
4881 : R_MIPS_NONE);
4882 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4883
4884 /* Adjust the output offset of the relocation to reference the
4885 correct location in the output file. */
4886 outrel[0].r_offset += (input_section->output_section->vma
4887 + input_section->output_offset);
4888 outrel[1].r_offset += (input_section->output_section->vma
4889 + input_section->output_offset);
4890 outrel[2].r_offset += (input_section->output_section->vma
4891 + input_section->output_offset);
4892
b49e97c9
TS
4893 /* Put the relocation back out. We have to use the special
4894 relocation outputter in the 64-bit case since the 64-bit
4895 relocation format is non-standard. */
4896 if (ABI_64_P (output_bfd))
4897 {
4898 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4899 (output_bfd, &outrel[0],
4900 (sreloc->contents
4901 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4902 }
0a44bf69
RS
4903 else if (htab->is_vxworks)
4904 {
4905 /* VxWorks uses RELA rather than REL dynamic relocations. */
4906 outrel[0].r_addend = *addendp;
4907 bfd_elf32_swap_reloca_out
4908 (output_bfd, &outrel[0],
4909 (sreloc->contents
4910 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4911 }
b49e97c9 4912 else
947216bf
AM
4913 bfd_elf32_swap_reloc_out
4914 (output_bfd, &outrel[0],
4915 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4916
b49e97c9
TS
4917 /* We've now added another relocation. */
4918 ++sreloc->reloc_count;
4919
4920 /* Make sure the output section is writable. The dynamic linker
4921 will be writing to it. */
4922 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4923 |= SHF_WRITE;
4924
4925 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4926 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4927 {
4928 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4929 bfd_byte *cr;
4930
4931 if (scpt)
4932 {
4933 Elf32_crinfo cptrel;
4934
4935 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4936 cptrel.vaddr = (rel->r_offset
4937 + input_section->output_section->vma
4938 + input_section->output_offset);
4939 if (r_type == R_MIPS_REL32)
4940 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4941 else
4942 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4943 mips_elf_set_cr_dist2to (cptrel, 0);
4944 cptrel.konst = *addendp;
4945
4946 cr = (scpt->contents
4947 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4948 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4949 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4950 ((Elf32_External_crinfo *) cr
4951 + scpt->reloc_count));
4952 ++scpt->reloc_count;
4953 }
4954 }
4955
943284cc
DJ
4956 /* If we've written this relocation for a readonly section,
4957 we need to set DF_TEXTREL again, so that we do not delete the
4958 DT_TEXTREL tag. */
4959 if (MIPS_ELF_READONLY_SECTION (input_section))
4960 info->flags |= DF_TEXTREL;
4961
b34976b6 4962 return TRUE;
b49e97c9
TS
4963}
4964\f
b49e97c9
TS
4965/* Return the MACH for a MIPS e_flags value. */
4966
4967unsigned long
9719ad41 4968_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4969{
4970 switch (flags & EF_MIPS_MACH)
4971 {
4972 case E_MIPS_MACH_3900:
4973 return bfd_mach_mips3900;
4974
4975 case E_MIPS_MACH_4010:
4976 return bfd_mach_mips4010;
4977
4978 case E_MIPS_MACH_4100:
4979 return bfd_mach_mips4100;
4980
4981 case E_MIPS_MACH_4111:
4982 return bfd_mach_mips4111;
4983
00707a0e
RS
4984 case E_MIPS_MACH_4120:
4985 return bfd_mach_mips4120;
4986
b49e97c9
TS
4987 case E_MIPS_MACH_4650:
4988 return bfd_mach_mips4650;
4989
00707a0e
RS
4990 case E_MIPS_MACH_5400:
4991 return bfd_mach_mips5400;
4992
4993 case E_MIPS_MACH_5500:
4994 return bfd_mach_mips5500;
4995
0d2e43ed
ILT
4996 case E_MIPS_MACH_9000:
4997 return bfd_mach_mips9000;
4998
b49e97c9
TS
4999 case E_MIPS_MACH_SB1:
5000 return bfd_mach_mips_sb1;
5001
5002 default:
5003 switch (flags & EF_MIPS_ARCH)
5004 {
5005 default:
5006 case E_MIPS_ARCH_1:
5007 return bfd_mach_mips3000;
b49e97c9
TS
5008
5009 case E_MIPS_ARCH_2:
5010 return bfd_mach_mips6000;
b49e97c9
TS
5011
5012 case E_MIPS_ARCH_3:
5013 return bfd_mach_mips4000;
b49e97c9
TS
5014
5015 case E_MIPS_ARCH_4:
5016 return bfd_mach_mips8000;
b49e97c9
TS
5017
5018 case E_MIPS_ARCH_5:
5019 return bfd_mach_mips5;
b49e97c9
TS
5020
5021 case E_MIPS_ARCH_32:
5022 return bfd_mach_mipsisa32;
b49e97c9
TS
5023
5024 case E_MIPS_ARCH_64:
5025 return bfd_mach_mipsisa64;
af7ee8bf
CD
5026
5027 case E_MIPS_ARCH_32R2:
5028 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5029
5030 case E_MIPS_ARCH_64R2:
5031 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5032 }
5033 }
5034
5035 return 0;
5036}
5037
5038/* Return printable name for ABI. */
5039
5040static INLINE char *
9719ad41 5041elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5042{
5043 flagword flags;
5044
5045 flags = elf_elfheader (abfd)->e_flags;
5046 switch (flags & EF_MIPS_ABI)
5047 {
5048 case 0:
5049 if (ABI_N32_P (abfd))
5050 return "N32";
5051 else if (ABI_64_P (abfd))
5052 return "64";
5053 else
5054 return "none";
5055 case E_MIPS_ABI_O32:
5056 return "O32";
5057 case E_MIPS_ABI_O64:
5058 return "O64";
5059 case E_MIPS_ABI_EABI32:
5060 return "EABI32";
5061 case E_MIPS_ABI_EABI64:
5062 return "EABI64";
5063 default:
5064 return "unknown abi";
5065 }
5066}
5067\f
5068/* MIPS ELF uses two common sections. One is the usual one, and the
5069 other is for small objects. All the small objects are kept
5070 together, and then referenced via the gp pointer, which yields
5071 faster assembler code. This is what we use for the small common
5072 section. This approach is copied from ecoff.c. */
5073static asection mips_elf_scom_section;
5074static asymbol mips_elf_scom_symbol;
5075static asymbol *mips_elf_scom_symbol_ptr;
5076
5077/* MIPS ELF also uses an acommon section, which represents an
5078 allocated common symbol which may be overridden by a
5079 definition in a shared library. */
5080static asection mips_elf_acom_section;
5081static asymbol mips_elf_acom_symbol;
5082static asymbol *mips_elf_acom_symbol_ptr;
5083
5084/* Handle the special MIPS section numbers that a symbol may use.
5085 This is used for both the 32-bit and the 64-bit ABI. */
5086
5087void
9719ad41 5088_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5089{
5090 elf_symbol_type *elfsym;
5091
5092 elfsym = (elf_symbol_type *) asym;
5093 switch (elfsym->internal_elf_sym.st_shndx)
5094 {
5095 case SHN_MIPS_ACOMMON:
5096 /* This section is used in a dynamically linked executable file.
5097 It is an allocated common section. The dynamic linker can
5098 either resolve these symbols to something in a shared
5099 library, or it can just leave them here. For our purposes,
5100 we can consider these symbols to be in a new section. */
5101 if (mips_elf_acom_section.name == NULL)
5102 {
5103 /* Initialize the acommon section. */
5104 mips_elf_acom_section.name = ".acommon";
5105 mips_elf_acom_section.flags = SEC_ALLOC;
5106 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5107 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5108 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5109 mips_elf_acom_symbol.name = ".acommon";
5110 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5111 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5112 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5113 }
5114 asym->section = &mips_elf_acom_section;
5115 break;
5116
5117 case SHN_COMMON:
5118 /* Common symbols less than the GP size are automatically
5119 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5120 if (asym->value > elf_gp_size (abfd)
b59eed79 5121 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
5122 || IRIX_COMPAT (abfd) == ict_irix6)
5123 break;
5124 /* Fall through. */
5125 case SHN_MIPS_SCOMMON:
5126 if (mips_elf_scom_section.name == NULL)
5127 {
5128 /* Initialize the small common section. */
5129 mips_elf_scom_section.name = ".scommon";
5130 mips_elf_scom_section.flags = SEC_IS_COMMON;
5131 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5132 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5133 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5134 mips_elf_scom_symbol.name = ".scommon";
5135 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5136 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5137 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5138 }
5139 asym->section = &mips_elf_scom_section;
5140 asym->value = elfsym->internal_elf_sym.st_size;
5141 break;
5142
5143 case SHN_MIPS_SUNDEFINED:
5144 asym->section = bfd_und_section_ptr;
5145 break;
5146
b49e97c9 5147 case SHN_MIPS_TEXT:
00b4930b
TS
5148 {
5149 asection *section = bfd_get_section_by_name (abfd, ".text");
5150
5151 BFD_ASSERT (SGI_COMPAT (abfd));
5152 if (section != NULL)
5153 {
5154 asym->section = section;
5155 /* MIPS_TEXT is a bit special, the address is not an offset
5156 to the base of the .text section. So substract the section
5157 base address to make it an offset. */
5158 asym->value -= section->vma;
5159 }
5160 }
b49e97c9
TS
5161 break;
5162
5163 case SHN_MIPS_DATA:
00b4930b
TS
5164 {
5165 asection *section = bfd_get_section_by_name (abfd, ".data");
5166
5167 BFD_ASSERT (SGI_COMPAT (abfd));
5168 if (section != NULL)
5169 {
5170 asym->section = section;
5171 /* MIPS_DATA is a bit special, the address is not an offset
5172 to the base of the .data section. So substract the section
5173 base address to make it an offset. */
5174 asym->value -= section->vma;
5175 }
5176 }
b49e97c9 5177 break;
b49e97c9
TS
5178 }
5179}
5180\f
8c946ed5
RS
5181/* Implement elf_backend_eh_frame_address_size. This differs from
5182 the default in the way it handles EABI64.
5183
5184 EABI64 was originally specified as an LP64 ABI, and that is what
5185 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5186 historically accepted the combination of -mabi=eabi and -mlong32,
5187 and this ILP32 variation has become semi-official over time.
5188 Both forms use elf32 and have pointer-sized FDE addresses.
5189
5190 If an EABI object was generated by GCC 4.0 or above, it will have
5191 an empty .gcc_compiled_longXX section, where XX is the size of longs
5192 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5193 have no special marking to distinguish them from LP64 objects.
5194
5195 We don't want users of the official LP64 ABI to be punished for the
5196 existence of the ILP32 variant, but at the same time, we don't want
5197 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5198 We therefore take the following approach:
5199
5200 - If ABFD contains a .gcc_compiled_longXX section, use it to
5201 determine the pointer size.
5202
5203 - Otherwise check the type of the first relocation. Assume that
5204 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5205
5206 - Otherwise punt.
5207
5208 The second check is enough to detect LP64 objects generated by pre-4.0
5209 compilers because, in the kind of output generated by those compilers,
5210 the first relocation will be associated with either a CIE personality
5211 routine or an FDE start address. Furthermore, the compilers never
5212 used a special (non-pointer) encoding for this ABI.
5213
5214 Checking the relocation type should also be safe because there is no
5215 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5216 did so. */
5217
5218unsigned int
5219_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5220{
5221 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5222 return 8;
5223 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5224 {
5225 bfd_boolean long32_p, long64_p;
5226
5227 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5228 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5229 if (long32_p && long64_p)
5230 return 0;
5231 if (long32_p)
5232 return 4;
5233 if (long64_p)
5234 return 8;
5235
5236 if (sec->reloc_count > 0
5237 && elf_section_data (sec)->relocs != NULL
5238 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5239 == R_MIPS_64))
5240 return 8;
5241
5242 return 0;
5243 }
5244 return 4;
5245}
5246\f
174fd7f9
RS
5247/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5248 relocations against two unnamed section symbols to resolve to the
5249 same address. For example, if we have code like:
5250
5251 lw $4,%got_disp(.data)($gp)
5252 lw $25,%got_disp(.text)($gp)
5253 jalr $25
5254
5255 then the linker will resolve both relocations to .data and the program
5256 will jump there rather than to .text.
5257
5258 We can work around this problem by giving names to local section symbols.
5259 This is also what the MIPSpro tools do. */
5260
5261bfd_boolean
5262_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5263{
5264 return SGI_COMPAT (abfd);
5265}
5266\f
b49e97c9
TS
5267/* Work over a section just before writing it out. This routine is
5268 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5269 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5270 a better way. */
5271
b34976b6 5272bfd_boolean
9719ad41 5273_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5274{
5275 if (hdr->sh_type == SHT_MIPS_REGINFO
5276 && hdr->sh_size > 0)
5277 {
5278 bfd_byte buf[4];
5279
5280 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5281 BFD_ASSERT (hdr->contents == NULL);
5282
5283 if (bfd_seek (abfd,
5284 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5285 SEEK_SET) != 0)
b34976b6 5286 return FALSE;
b49e97c9 5287 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5288 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5289 return FALSE;
b49e97c9
TS
5290 }
5291
5292 if (hdr->sh_type == SHT_MIPS_OPTIONS
5293 && hdr->bfd_section != NULL
f0abc2a1
AM
5294 && mips_elf_section_data (hdr->bfd_section) != NULL
5295 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5296 {
5297 bfd_byte *contents, *l, *lend;
5298
f0abc2a1
AM
5299 /* We stored the section contents in the tdata field in the
5300 set_section_contents routine. We save the section contents
5301 so that we don't have to read them again.
b49e97c9
TS
5302 At this point we know that elf_gp is set, so we can look
5303 through the section contents to see if there is an
5304 ODK_REGINFO structure. */
5305
f0abc2a1 5306 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5307 l = contents;
5308 lend = contents + hdr->sh_size;
5309 while (l + sizeof (Elf_External_Options) <= lend)
5310 {
5311 Elf_Internal_Options intopt;
5312
5313 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5314 &intopt);
1bc8074d
MR
5315 if (intopt.size < sizeof (Elf_External_Options))
5316 {
5317 (*_bfd_error_handler)
5318 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5319 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5320 break;
5321 }
b49e97c9
TS
5322 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5323 {
5324 bfd_byte buf[8];
5325
5326 if (bfd_seek (abfd,
5327 (hdr->sh_offset
5328 + (l - contents)
5329 + sizeof (Elf_External_Options)
5330 + (sizeof (Elf64_External_RegInfo) - 8)),
5331 SEEK_SET) != 0)
b34976b6 5332 return FALSE;
b49e97c9 5333 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5334 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5335 return FALSE;
b49e97c9
TS
5336 }
5337 else if (intopt.kind == ODK_REGINFO)
5338 {
5339 bfd_byte buf[4];
5340
5341 if (bfd_seek (abfd,
5342 (hdr->sh_offset
5343 + (l - contents)
5344 + sizeof (Elf_External_Options)
5345 + (sizeof (Elf32_External_RegInfo) - 4)),
5346 SEEK_SET) != 0)
b34976b6 5347 return FALSE;
b49e97c9 5348 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5349 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5350 return FALSE;
b49e97c9
TS
5351 }
5352 l += intopt.size;
5353 }
5354 }
5355
5356 if (hdr->bfd_section != NULL)
5357 {
5358 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5359
5360 if (strcmp (name, ".sdata") == 0
5361 || strcmp (name, ".lit8") == 0
5362 || strcmp (name, ".lit4") == 0)
5363 {
5364 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5365 hdr->sh_type = SHT_PROGBITS;
5366 }
5367 else if (strcmp (name, ".sbss") == 0)
5368 {
5369 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5370 hdr->sh_type = SHT_NOBITS;
5371 }
5372 else if (strcmp (name, ".srdata") == 0)
5373 {
5374 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5375 hdr->sh_type = SHT_PROGBITS;
5376 }
5377 else if (strcmp (name, ".compact_rel") == 0)
5378 {
5379 hdr->sh_flags = 0;
5380 hdr->sh_type = SHT_PROGBITS;
5381 }
5382 else if (strcmp (name, ".rtproc") == 0)
5383 {
5384 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5385 {
5386 unsigned int adjust;
5387
5388 adjust = hdr->sh_size % hdr->sh_addralign;
5389 if (adjust != 0)
5390 hdr->sh_size += hdr->sh_addralign - adjust;
5391 }
5392 }
5393 }
5394
b34976b6 5395 return TRUE;
b49e97c9
TS
5396}
5397
5398/* Handle a MIPS specific section when reading an object file. This
5399 is called when elfcode.h finds a section with an unknown type.
5400 This routine supports both the 32-bit and 64-bit ELF ABI.
5401
5402 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5403 how to. */
5404
b34976b6 5405bfd_boolean
6dc132d9
L
5406_bfd_mips_elf_section_from_shdr (bfd *abfd,
5407 Elf_Internal_Shdr *hdr,
5408 const char *name,
5409 int shindex)
b49e97c9
TS
5410{
5411 flagword flags = 0;
5412
5413 /* There ought to be a place to keep ELF backend specific flags, but
5414 at the moment there isn't one. We just keep track of the
5415 sections by their name, instead. Fortunately, the ABI gives
5416 suggested names for all the MIPS specific sections, so we will
5417 probably get away with this. */
5418 switch (hdr->sh_type)
5419 {
5420 case SHT_MIPS_LIBLIST:
5421 if (strcmp (name, ".liblist") != 0)
b34976b6 5422 return FALSE;
b49e97c9
TS
5423 break;
5424 case SHT_MIPS_MSYM:
5425 if (strcmp (name, ".msym") != 0)
b34976b6 5426 return FALSE;
b49e97c9
TS
5427 break;
5428 case SHT_MIPS_CONFLICT:
5429 if (strcmp (name, ".conflict") != 0)
b34976b6 5430 return FALSE;
b49e97c9
TS
5431 break;
5432 case SHT_MIPS_GPTAB:
0112cd26 5433 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 5434 return FALSE;
b49e97c9
TS
5435 break;
5436 case SHT_MIPS_UCODE:
5437 if (strcmp (name, ".ucode") != 0)
b34976b6 5438 return FALSE;
b49e97c9
TS
5439 break;
5440 case SHT_MIPS_DEBUG:
5441 if (strcmp (name, ".mdebug") != 0)
b34976b6 5442 return FALSE;
b49e97c9
TS
5443 flags = SEC_DEBUGGING;
5444 break;
5445 case SHT_MIPS_REGINFO:
5446 if (strcmp (name, ".reginfo") != 0
5447 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5448 return FALSE;
b49e97c9
TS
5449 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5450 break;
5451 case SHT_MIPS_IFACE:
5452 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5453 return FALSE;
b49e97c9
TS
5454 break;
5455 case SHT_MIPS_CONTENT:
0112cd26 5456 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 5457 return FALSE;
b49e97c9
TS
5458 break;
5459 case SHT_MIPS_OPTIONS:
cc2e31b9 5460 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5461 return FALSE;
b49e97c9
TS
5462 break;
5463 case SHT_MIPS_DWARF:
0112cd26 5464 if (! CONST_STRNEQ (name, ".debug_"))
b34976b6 5465 return FALSE;
b49e97c9
TS
5466 break;
5467 case SHT_MIPS_SYMBOL_LIB:
5468 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5469 return FALSE;
b49e97c9
TS
5470 break;
5471 case SHT_MIPS_EVENTS:
0112cd26
NC
5472 if (! CONST_STRNEQ (name, ".MIPS.events")
5473 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 5474 return FALSE;
b49e97c9
TS
5475 break;
5476 default:
cc2e31b9 5477 break;
b49e97c9
TS
5478 }
5479
6dc132d9 5480 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5481 return FALSE;
b49e97c9
TS
5482
5483 if (flags)
5484 {
5485 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5486 (bfd_get_section_flags (abfd,
5487 hdr->bfd_section)
5488 | flags)))
b34976b6 5489 return FALSE;
b49e97c9
TS
5490 }
5491
5492 /* FIXME: We should record sh_info for a .gptab section. */
5493
5494 /* For a .reginfo section, set the gp value in the tdata information
5495 from the contents of this section. We need the gp value while
5496 processing relocs, so we just get it now. The .reginfo section
5497 is not used in the 64-bit MIPS ELF ABI. */
5498 if (hdr->sh_type == SHT_MIPS_REGINFO)
5499 {
5500 Elf32_External_RegInfo ext;
5501 Elf32_RegInfo s;
5502
9719ad41
RS
5503 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5504 &ext, 0, sizeof ext))
b34976b6 5505 return FALSE;
b49e97c9
TS
5506 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5507 elf_gp (abfd) = s.ri_gp_value;
5508 }
5509
5510 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5511 set the gp value based on what we find. We may see both
5512 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5513 they should agree. */
5514 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5515 {
5516 bfd_byte *contents, *l, *lend;
5517
9719ad41 5518 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5519 if (contents == NULL)
b34976b6 5520 return FALSE;
b49e97c9 5521 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5522 0, hdr->sh_size))
b49e97c9
TS
5523 {
5524 free (contents);
b34976b6 5525 return FALSE;
b49e97c9
TS
5526 }
5527 l = contents;
5528 lend = contents + hdr->sh_size;
5529 while (l + sizeof (Elf_External_Options) <= lend)
5530 {
5531 Elf_Internal_Options intopt;
5532
5533 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5534 &intopt);
1bc8074d
MR
5535 if (intopt.size < sizeof (Elf_External_Options))
5536 {
5537 (*_bfd_error_handler)
5538 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5539 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5540 break;
5541 }
b49e97c9
TS
5542 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5543 {
5544 Elf64_Internal_RegInfo intreg;
5545
5546 bfd_mips_elf64_swap_reginfo_in
5547 (abfd,
5548 ((Elf64_External_RegInfo *)
5549 (l + sizeof (Elf_External_Options))),
5550 &intreg);
5551 elf_gp (abfd) = intreg.ri_gp_value;
5552 }
5553 else if (intopt.kind == ODK_REGINFO)
5554 {
5555 Elf32_RegInfo intreg;
5556
5557 bfd_mips_elf32_swap_reginfo_in
5558 (abfd,
5559 ((Elf32_External_RegInfo *)
5560 (l + sizeof (Elf_External_Options))),
5561 &intreg);
5562 elf_gp (abfd) = intreg.ri_gp_value;
5563 }
5564 l += intopt.size;
5565 }
5566 free (contents);
5567 }
5568
b34976b6 5569 return TRUE;
b49e97c9
TS
5570}
5571
5572/* Set the correct type for a MIPS ELF section. We do this by the
5573 section name, which is a hack, but ought to work. This routine is
5574 used by both the 32-bit and the 64-bit ABI. */
5575
b34976b6 5576bfd_boolean
9719ad41 5577_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 5578{
0414f35b 5579 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
5580
5581 if (strcmp (name, ".liblist") == 0)
5582 {
5583 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5584 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5585 /* The sh_link field is set in final_write_processing. */
5586 }
5587 else if (strcmp (name, ".conflict") == 0)
5588 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 5589 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
5590 {
5591 hdr->sh_type = SHT_MIPS_GPTAB;
5592 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5593 /* The sh_info field is set in final_write_processing. */
5594 }
5595 else if (strcmp (name, ".ucode") == 0)
5596 hdr->sh_type = SHT_MIPS_UCODE;
5597 else if (strcmp (name, ".mdebug") == 0)
5598 {
5599 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5600 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5601 entsize of 0. FIXME: Does this matter? */
5602 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5603 hdr->sh_entsize = 0;
5604 else
5605 hdr->sh_entsize = 1;
5606 }
5607 else if (strcmp (name, ".reginfo") == 0)
5608 {
5609 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5610 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5611 entsize of 0x18. FIXME: Does this matter? */
5612 if (SGI_COMPAT (abfd))
5613 {
5614 if ((abfd->flags & DYNAMIC) != 0)
5615 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5616 else
5617 hdr->sh_entsize = 1;
5618 }
5619 else
5620 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5621 }
5622 else if (SGI_COMPAT (abfd)
5623 && (strcmp (name, ".hash") == 0
5624 || strcmp (name, ".dynamic") == 0
5625 || strcmp (name, ".dynstr") == 0))
5626 {
5627 if (SGI_COMPAT (abfd))
5628 hdr->sh_entsize = 0;
5629#if 0
8dc1a139 5630 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5631 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5632#endif
5633 }
5634 else if (strcmp (name, ".got") == 0
5635 || strcmp (name, ".srdata") == 0
5636 || strcmp (name, ".sdata") == 0
5637 || strcmp (name, ".sbss") == 0
5638 || strcmp (name, ".lit4") == 0
5639 || strcmp (name, ".lit8") == 0)
5640 hdr->sh_flags |= SHF_MIPS_GPREL;
5641 else if (strcmp (name, ".MIPS.interfaces") == 0)
5642 {
5643 hdr->sh_type = SHT_MIPS_IFACE;
5644 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5645 }
0112cd26 5646 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
5647 {
5648 hdr->sh_type = SHT_MIPS_CONTENT;
5649 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5650 /* The sh_info field is set in final_write_processing. */
5651 }
cc2e31b9 5652 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5653 {
5654 hdr->sh_type = SHT_MIPS_OPTIONS;
5655 hdr->sh_entsize = 1;
5656 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5657 }
0112cd26 5658 else if (CONST_STRNEQ (name, ".debug_"))
b49e97c9
TS
5659 hdr->sh_type = SHT_MIPS_DWARF;
5660 else if (strcmp (name, ".MIPS.symlib") == 0)
5661 {
5662 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5663 /* The sh_link and sh_info fields are set in
5664 final_write_processing. */
5665 }
0112cd26
NC
5666 else if (CONST_STRNEQ (name, ".MIPS.events")
5667 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
5668 {
5669 hdr->sh_type = SHT_MIPS_EVENTS;
5670 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5671 /* The sh_link field is set in final_write_processing. */
5672 }
5673 else if (strcmp (name, ".msym") == 0)
5674 {
5675 hdr->sh_type = SHT_MIPS_MSYM;
5676 hdr->sh_flags |= SHF_ALLOC;
5677 hdr->sh_entsize = 8;
5678 }
5679
7a79a000
TS
5680 /* The generic elf_fake_sections will set up REL_HDR using the default
5681 kind of relocations. We used to set up a second header for the
5682 non-default kind of relocations here, but only NewABI would use
5683 these, and the IRIX ld doesn't like resulting empty RELA sections.
5684 Thus we create those header only on demand now. */
b49e97c9 5685
b34976b6 5686 return TRUE;
b49e97c9
TS
5687}
5688
5689/* Given a BFD section, try to locate the corresponding ELF section
5690 index. This is used by both the 32-bit and the 64-bit ABI.
5691 Actually, it's not clear to me that the 64-bit ABI supports these,
5692 but for non-PIC objects we will certainly want support for at least
5693 the .scommon section. */
5694
b34976b6 5695bfd_boolean
9719ad41
RS
5696_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5697 asection *sec, int *retval)
b49e97c9
TS
5698{
5699 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5700 {
5701 *retval = SHN_MIPS_SCOMMON;
b34976b6 5702 return TRUE;
b49e97c9
TS
5703 }
5704 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5705 {
5706 *retval = SHN_MIPS_ACOMMON;
b34976b6 5707 return TRUE;
b49e97c9 5708 }
b34976b6 5709 return FALSE;
b49e97c9
TS
5710}
5711\f
5712/* Hook called by the linker routine which adds symbols from an object
5713 file. We must handle the special MIPS section numbers here. */
5714
b34976b6 5715bfd_boolean
9719ad41 5716_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5717 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5718 flagword *flagsp ATTRIBUTE_UNUSED,
5719 asection **secp, bfd_vma *valp)
b49e97c9
TS
5720{
5721 if (SGI_COMPAT (abfd)
5722 && (abfd->flags & DYNAMIC) != 0
5723 && strcmp (*namep, "_rld_new_interface") == 0)
5724 {
8dc1a139 5725 /* Skip IRIX5 rld entry name. */
b49e97c9 5726 *namep = NULL;
b34976b6 5727 return TRUE;
b49e97c9
TS
5728 }
5729
eedecc07
DD
5730 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5731 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5732 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5733 a magic symbol resolved by the linker, we ignore this bogus definition
5734 of _gp_disp. New ABI objects do not suffer from this problem so this
5735 is not done for them. */
5736 if (!NEWABI_P(abfd)
5737 && (sym->st_shndx == SHN_ABS)
5738 && (strcmp (*namep, "_gp_disp") == 0))
5739 {
5740 *namep = NULL;
5741 return TRUE;
5742 }
5743
b49e97c9
TS
5744 switch (sym->st_shndx)
5745 {
5746 case SHN_COMMON:
5747 /* Common symbols less than the GP size are automatically
5748 treated as SHN_MIPS_SCOMMON symbols. */
5749 if (sym->st_size > elf_gp_size (abfd)
b59eed79 5750 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
5751 || IRIX_COMPAT (abfd) == ict_irix6)
5752 break;
5753 /* Fall through. */
5754 case SHN_MIPS_SCOMMON:
5755 *secp = bfd_make_section_old_way (abfd, ".scommon");
5756 (*secp)->flags |= SEC_IS_COMMON;
5757 *valp = sym->st_size;
5758 break;
5759
5760 case SHN_MIPS_TEXT:
5761 /* This section is used in a shared object. */
5762 if (elf_tdata (abfd)->elf_text_section == NULL)
5763 {
5764 asymbol *elf_text_symbol;
5765 asection *elf_text_section;
5766 bfd_size_type amt = sizeof (asection);
5767
5768 elf_text_section = bfd_zalloc (abfd, amt);
5769 if (elf_text_section == NULL)
b34976b6 5770 return FALSE;
b49e97c9
TS
5771
5772 amt = sizeof (asymbol);
5773 elf_text_symbol = bfd_zalloc (abfd, amt);
5774 if (elf_text_symbol == NULL)
b34976b6 5775 return FALSE;
b49e97c9
TS
5776
5777 /* Initialize the section. */
5778
5779 elf_tdata (abfd)->elf_text_section = elf_text_section;
5780 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5781
5782 elf_text_section->symbol = elf_text_symbol;
5783 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5784
5785 elf_text_section->name = ".text";
5786 elf_text_section->flags = SEC_NO_FLAGS;
5787 elf_text_section->output_section = NULL;
5788 elf_text_section->owner = abfd;
5789 elf_text_symbol->name = ".text";
5790 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5791 elf_text_symbol->section = elf_text_section;
5792 }
5793 /* This code used to do *secp = bfd_und_section_ptr if
5794 info->shared. I don't know why, and that doesn't make sense,
5795 so I took it out. */
5796 *secp = elf_tdata (abfd)->elf_text_section;
5797 break;
5798
5799 case SHN_MIPS_ACOMMON:
5800 /* Fall through. XXX Can we treat this as allocated data? */
5801 case SHN_MIPS_DATA:
5802 /* This section is used in a shared object. */
5803 if (elf_tdata (abfd)->elf_data_section == NULL)
5804 {
5805 asymbol *elf_data_symbol;
5806 asection *elf_data_section;
5807 bfd_size_type amt = sizeof (asection);
5808
5809 elf_data_section = bfd_zalloc (abfd, amt);
5810 if (elf_data_section == NULL)
b34976b6 5811 return FALSE;
b49e97c9
TS
5812
5813 amt = sizeof (asymbol);
5814 elf_data_symbol = bfd_zalloc (abfd, amt);
5815 if (elf_data_symbol == NULL)
b34976b6 5816 return FALSE;
b49e97c9
TS
5817
5818 /* Initialize the section. */
5819
5820 elf_tdata (abfd)->elf_data_section = elf_data_section;
5821 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5822
5823 elf_data_section->symbol = elf_data_symbol;
5824 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5825
5826 elf_data_section->name = ".data";
5827 elf_data_section->flags = SEC_NO_FLAGS;
5828 elf_data_section->output_section = NULL;
5829 elf_data_section->owner = abfd;
5830 elf_data_symbol->name = ".data";
5831 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5832 elf_data_symbol->section = elf_data_section;
5833 }
5834 /* This code used to do *secp = bfd_und_section_ptr if
5835 info->shared. I don't know why, and that doesn't make sense,
5836 so I took it out. */
5837 *secp = elf_tdata (abfd)->elf_data_section;
5838 break;
5839
5840 case SHN_MIPS_SUNDEFINED:
5841 *secp = bfd_und_section_ptr;
5842 break;
5843 }
5844
5845 if (SGI_COMPAT (abfd)
5846 && ! info->shared
5847 && info->hash->creator == abfd->xvec
5848 && strcmp (*namep, "__rld_obj_head") == 0)
5849 {
5850 struct elf_link_hash_entry *h;
14a793b2 5851 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5852
5853 /* Mark __rld_obj_head as dynamic. */
14a793b2 5854 bh = NULL;
b49e97c9 5855 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5856 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5857 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5858 return FALSE;
14a793b2
AM
5859
5860 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5861 h->non_elf = 0;
5862 h->def_regular = 1;
b49e97c9
TS
5863 h->type = STT_OBJECT;
5864
c152c796 5865 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5866 return FALSE;
b49e97c9 5867
b34976b6 5868 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5869 }
5870
5871 /* If this is a mips16 text symbol, add 1 to the value to make it
5872 odd. This will cause something like .word SYM to come up with
5873 the right value when it is loaded into the PC. */
5874 if (sym->st_other == STO_MIPS16)
5875 ++*valp;
5876
b34976b6 5877 return TRUE;
b49e97c9
TS
5878}
5879
5880/* This hook function is called before the linker writes out a global
5881 symbol. We mark symbols as small common if appropriate. This is
5882 also where we undo the increment of the value for a mips16 symbol. */
5883
b34976b6 5884bfd_boolean
9719ad41
RS
5885_bfd_mips_elf_link_output_symbol_hook
5886 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5887 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5888 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5889{
5890 /* If we see a common symbol, which implies a relocatable link, then
5891 if a symbol was small common in an input file, mark it as small
5892 common in the output file. */
5893 if (sym->st_shndx == SHN_COMMON
5894 && strcmp (input_sec->name, ".scommon") == 0)
5895 sym->st_shndx = SHN_MIPS_SCOMMON;
5896
79cda7cf
FF
5897 if (sym->st_other == STO_MIPS16)
5898 sym->st_value &= ~1;
b49e97c9 5899
b34976b6 5900 return TRUE;
b49e97c9
TS
5901}
5902\f
5903/* Functions for the dynamic linker. */
5904
5905/* Create dynamic sections when linking against a dynamic object. */
5906
b34976b6 5907bfd_boolean
9719ad41 5908_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5909{
5910 struct elf_link_hash_entry *h;
14a793b2 5911 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5912 flagword flags;
5913 register asection *s;
5914 const char * const *namep;
0a44bf69 5915 struct mips_elf_link_hash_table *htab;
b49e97c9 5916
0a44bf69 5917 htab = mips_elf_hash_table (info);
b49e97c9
TS
5918 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5919 | SEC_LINKER_CREATED | SEC_READONLY);
5920
0a44bf69
RS
5921 /* The psABI requires a read-only .dynamic section, but the VxWorks
5922 EABI doesn't. */
5923 if (!htab->is_vxworks)
b49e97c9 5924 {
0a44bf69
RS
5925 s = bfd_get_section_by_name (abfd, ".dynamic");
5926 if (s != NULL)
5927 {
5928 if (! bfd_set_section_flags (abfd, s, flags))
5929 return FALSE;
5930 }
b49e97c9
TS
5931 }
5932
5933 /* We need to create .got section. */
f4416af6
AO
5934 if (! mips_elf_create_got_section (abfd, info, FALSE))
5935 return FALSE;
5936
0a44bf69 5937 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 5938 return FALSE;
b49e97c9 5939
b49e97c9
TS
5940 /* Create .stub section. */
5941 if (bfd_get_section_by_name (abfd,
5942 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5943 {
3496cb2a
L
5944 s = bfd_make_section_with_flags (abfd,
5945 MIPS_ELF_STUB_SECTION_NAME (abfd),
5946 flags | SEC_CODE);
b49e97c9 5947 if (s == NULL
b49e97c9
TS
5948 || ! bfd_set_section_alignment (abfd, s,
5949 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5950 return FALSE;
b49e97c9
TS
5951 }
5952
5953 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5954 && !info->shared
5955 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5956 {
3496cb2a
L
5957 s = bfd_make_section_with_flags (abfd, ".rld_map",
5958 flags &~ (flagword) SEC_READONLY);
b49e97c9 5959 if (s == NULL
b49e97c9
TS
5960 || ! bfd_set_section_alignment (abfd, s,
5961 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5962 return FALSE;
b49e97c9
TS
5963 }
5964
5965 /* On IRIX5, we adjust add some additional symbols and change the
5966 alignments of several sections. There is no ABI documentation
5967 indicating that this is necessary on IRIX6, nor any evidence that
5968 the linker takes such action. */
5969 if (IRIX_COMPAT (abfd) == ict_irix5)
5970 {
5971 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5972 {
14a793b2 5973 bh = NULL;
b49e97c9 5974 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5975 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5976 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5977 return FALSE;
14a793b2
AM
5978
5979 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5980 h->non_elf = 0;
5981 h->def_regular = 1;
b49e97c9
TS
5982 h->type = STT_SECTION;
5983
c152c796 5984 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5985 return FALSE;
b49e97c9
TS
5986 }
5987
5988 /* We need to create a .compact_rel section. */
5989 if (SGI_COMPAT (abfd))
5990 {
5991 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 5992 return FALSE;
b49e97c9
TS
5993 }
5994
44c410de 5995 /* Change alignments of some sections. */
b49e97c9
TS
5996 s = bfd_get_section_by_name (abfd, ".hash");
5997 if (s != NULL)
d80dcc6a 5998 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5999 s = bfd_get_section_by_name (abfd, ".dynsym");
6000 if (s != NULL)
d80dcc6a 6001 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6002 s = bfd_get_section_by_name (abfd, ".dynstr");
6003 if (s != NULL)
d80dcc6a 6004 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6005 s = bfd_get_section_by_name (abfd, ".reginfo");
6006 if (s != NULL)
d80dcc6a 6007 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6008 s = bfd_get_section_by_name (abfd, ".dynamic");
6009 if (s != NULL)
d80dcc6a 6010 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6011 }
6012
6013 if (!info->shared)
6014 {
14a793b2
AM
6015 const char *name;
6016
6017 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6018 bh = NULL;
6019 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6020 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6021 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6022 return FALSE;
14a793b2
AM
6023
6024 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6025 h->non_elf = 0;
6026 h->def_regular = 1;
b49e97c9
TS
6027 h->type = STT_SECTION;
6028
c152c796 6029 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6030 return FALSE;
b49e97c9
TS
6031
6032 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6033 {
6034 /* __rld_map is a four byte word located in the .data section
6035 and is filled in by the rtld to contain a pointer to
6036 the _r_debug structure. Its symbol value will be set in
6037 _bfd_mips_elf_finish_dynamic_symbol. */
6038 s = bfd_get_section_by_name (abfd, ".rld_map");
6039 BFD_ASSERT (s != NULL);
6040
14a793b2
AM
6041 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6042 bh = NULL;
6043 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6044 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6045 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6046 return FALSE;
14a793b2
AM
6047
6048 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6049 h->non_elf = 0;
6050 h->def_regular = 1;
b49e97c9
TS
6051 h->type = STT_OBJECT;
6052
c152c796 6053 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6054 return FALSE;
b49e97c9
TS
6055 }
6056 }
6057
0a44bf69
RS
6058 if (htab->is_vxworks)
6059 {
6060 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6061 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6062 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6063 return FALSE;
6064
6065 /* Cache the sections created above. */
6066 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6067 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6068 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6069 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6070 if (!htab->sdynbss
6071 || (!htab->srelbss && !info->shared)
6072 || !htab->srelplt
6073 || !htab->splt)
6074 abort ();
6075
6076 /* Do the usual VxWorks handling. */
6077 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6078 return FALSE;
6079
6080 /* Work out the PLT sizes. */
6081 if (info->shared)
6082 {
6083 htab->plt_header_size
6084 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6085 htab->plt_entry_size
6086 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6087 }
6088 else
6089 {
6090 htab->plt_header_size
6091 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6092 htab->plt_entry_size
6093 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6094 }
6095 }
6096
b34976b6 6097 return TRUE;
b49e97c9
TS
6098}
6099\f
6100/* Look through the relocs for a section during the first phase, and
6101 allocate space in the global offset table. */
6102
b34976b6 6103bfd_boolean
9719ad41
RS
6104_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6105 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6106{
6107 const char *name;
6108 bfd *dynobj;
6109 Elf_Internal_Shdr *symtab_hdr;
6110 struct elf_link_hash_entry **sym_hashes;
6111 struct mips_got_info *g;
6112 size_t extsymoff;
6113 const Elf_Internal_Rela *rel;
6114 const Elf_Internal_Rela *rel_end;
6115 asection *sgot;
6116 asection *sreloc;
9c5bfbb7 6117 const struct elf_backend_data *bed;
0a44bf69 6118 struct mips_elf_link_hash_table *htab;
b49e97c9 6119
1049f94e 6120 if (info->relocatable)
b34976b6 6121 return TRUE;
b49e97c9 6122
0a44bf69 6123 htab = mips_elf_hash_table (info);
b49e97c9
TS
6124 dynobj = elf_hash_table (info)->dynobj;
6125 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6126 sym_hashes = elf_sym_hashes (abfd);
6127 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6128
6129 /* Check for the mips16 stub sections. */
6130
6131 name = bfd_get_section_name (abfd, sec);
b9d58d71 6132 if (FN_STUB_P (name))
b49e97c9
TS
6133 {
6134 unsigned long r_symndx;
6135
6136 /* Look at the relocation information to figure out which symbol
6137 this is for. */
6138
6139 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6140
6141 if (r_symndx < extsymoff
6142 || sym_hashes[r_symndx - extsymoff] == NULL)
6143 {
6144 asection *o;
6145
6146 /* This stub is for a local symbol. This stub will only be
6147 needed if there is some relocation in this BFD, other
6148 than a 16 bit function call, which refers to this symbol. */
6149 for (o = abfd->sections; o != NULL; o = o->next)
6150 {
6151 Elf_Internal_Rela *sec_relocs;
6152 const Elf_Internal_Rela *r, *rend;
6153
6154 /* We can ignore stub sections when looking for relocs. */
6155 if ((o->flags & SEC_RELOC) == 0
6156 || o->reloc_count == 0
b9d58d71 6157 || mips16_stub_section_p (abfd, o))
b49e97c9
TS
6158 continue;
6159
45d6a902 6160 sec_relocs
9719ad41 6161 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6162 info->keep_memory);
b49e97c9 6163 if (sec_relocs == NULL)
b34976b6 6164 return FALSE;
b49e97c9
TS
6165
6166 rend = sec_relocs + o->reloc_count;
6167 for (r = sec_relocs; r < rend; r++)
6168 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6169 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6170 break;
6171
6cdc0ccc 6172 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6173 free (sec_relocs);
6174
6175 if (r < rend)
6176 break;
6177 }
6178
6179 if (o == NULL)
6180 {
6181 /* There is no non-call reloc for this stub, so we do
6182 not need it. Since this function is called before
6183 the linker maps input sections to output sections, we
6184 can easily discard it by setting the SEC_EXCLUDE
6185 flag. */
6186 sec->flags |= SEC_EXCLUDE;
b34976b6 6187 return TRUE;
b49e97c9
TS
6188 }
6189
6190 /* Record this stub in an array of local symbol stubs for
6191 this BFD. */
6192 if (elf_tdata (abfd)->local_stubs == NULL)
6193 {
6194 unsigned long symcount;
6195 asection **n;
6196 bfd_size_type amt;
6197
6198 if (elf_bad_symtab (abfd))
6199 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6200 else
6201 symcount = symtab_hdr->sh_info;
6202 amt = symcount * sizeof (asection *);
9719ad41 6203 n = bfd_zalloc (abfd, amt);
b49e97c9 6204 if (n == NULL)
b34976b6 6205 return FALSE;
b49e97c9
TS
6206 elf_tdata (abfd)->local_stubs = n;
6207 }
6208
b9d58d71 6209 sec->flags |= SEC_KEEP;
b49e97c9
TS
6210 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6211
6212 /* We don't need to set mips16_stubs_seen in this case.
6213 That flag is used to see whether we need to look through
6214 the global symbol table for stubs. We don't need to set
6215 it here, because we just have a local stub. */
6216 }
6217 else
6218 {
6219 struct mips_elf_link_hash_entry *h;
6220
6221 h = ((struct mips_elf_link_hash_entry *)
6222 sym_hashes[r_symndx - extsymoff]);
6223
973a3492
L
6224 while (h->root.root.type == bfd_link_hash_indirect
6225 || h->root.root.type == bfd_link_hash_warning)
6226 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6227
b49e97c9
TS
6228 /* H is the symbol this stub is for. */
6229
b9d58d71
TS
6230 /* If we already have an appropriate stub for this function, we
6231 don't need another one, so we can discard this one. Since
6232 this function is called before the linker maps input sections
6233 to output sections, we can easily discard it by setting the
6234 SEC_EXCLUDE flag. */
6235 if (h->fn_stub != NULL)
6236 {
6237 sec->flags |= SEC_EXCLUDE;
6238 return TRUE;
6239 }
6240
6241 sec->flags |= SEC_KEEP;
b49e97c9 6242 h->fn_stub = sec;
b34976b6 6243 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6244 }
6245 }
b9d58d71 6246 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
6247 {
6248 unsigned long r_symndx;
6249 struct mips_elf_link_hash_entry *h;
6250 asection **loc;
6251
6252 /* Look at the relocation information to figure out which symbol
6253 this is for. */
6254
6255 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6256
6257 if (r_symndx < extsymoff
6258 || sym_hashes[r_symndx - extsymoff] == NULL)
6259 {
b9d58d71 6260 asection *o;
b49e97c9 6261
b9d58d71
TS
6262 /* This stub is for a local symbol. This stub will only be
6263 needed if there is some relocation (R_MIPS16_26) in this BFD
6264 that refers to this symbol. */
6265 for (o = abfd->sections; o != NULL; o = o->next)
6266 {
6267 Elf_Internal_Rela *sec_relocs;
6268 const Elf_Internal_Rela *r, *rend;
6269
6270 /* We can ignore stub sections when looking for relocs. */
6271 if ((o->flags & SEC_RELOC) == 0
6272 || o->reloc_count == 0
6273 || mips16_stub_section_p (abfd, o))
6274 continue;
6275
6276 sec_relocs
6277 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6278 info->keep_memory);
6279 if (sec_relocs == NULL)
6280 return FALSE;
6281
6282 rend = sec_relocs + o->reloc_count;
6283 for (r = sec_relocs; r < rend; r++)
6284 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6285 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6286 break;
6287
6288 if (elf_section_data (o)->relocs != sec_relocs)
6289 free (sec_relocs);
6290
6291 if (r < rend)
6292 break;
6293 }
6294
6295 if (o == NULL)
6296 {
6297 /* There is no non-call reloc for this stub, so we do
6298 not need it. Since this function is called before
6299 the linker maps input sections to output sections, we
6300 can easily discard it by setting the SEC_EXCLUDE
6301 flag. */
6302 sec->flags |= SEC_EXCLUDE;
6303 return TRUE;
6304 }
6305
6306 /* Record this stub in an array of local symbol call_stubs for
6307 this BFD. */
6308 if (elf_tdata (abfd)->local_call_stubs == NULL)
6309 {
6310 unsigned long symcount;
6311 asection **n;
6312 bfd_size_type amt;
6313
6314 if (elf_bad_symtab (abfd))
6315 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6316 else
6317 symcount = symtab_hdr->sh_info;
6318 amt = symcount * sizeof (asection *);
6319 n = bfd_zalloc (abfd, amt);
6320 if (n == NULL)
6321 return FALSE;
6322 elf_tdata (abfd)->local_call_stubs = n;
6323 }
b49e97c9 6324
b9d58d71
TS
6325 sec->flags |= SEC_KEEP;
6326 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 6327
b9d58d71
TS
6328 /* We don't need to set mips16_stubs_seen in this case.
6329 That flag is used to see whether we need to look through
6330 the global symbol table for stubs. We don't need to set
6331 it here, because we just have a local stub. */
6332 }
b49e97c9 6333 else
b49e97c9 6334 {
b9d58d71
TS
6335 h = ((struct mips_elf_link_hash_entry *)
6336 sym_hashes[r_symndx - extsymoff]);
6337
6338 /* H is the symbol this stub is for. */
6339
6340 if (CALL_FP_STUB_P (name))
6341 loc = &h->call_fp_stub;
6342 else
6343 loc = &h->call_stub;
6344
6345 /* If we already have an appropriate stub for this function, we
6346 don't need another one, so we can discard this one. Since
6347 this function is called before the linker maps input sections
6348 to output sections, we can easily discard it by setting the
6349 SEC_EXCLUDE flag. */
6350 if (*loc != NULL)
6351 {
6352 sec->flags |= SEC_EXCLUDE;
6353 return TRUE;
6354 }
b49e97c9 6355
b9d58d71
TS
6356 sec->flags |= SEC_KEEP;
6357 *loc = sec;
6358 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6359 }
b49e97c9
TS
6360 }
6361
6362 if (dynobj == NULL)
6363 {
6364 sgot = NULL;
6365 g = NULL;
6366 }
6367 else
6368 {
f4416af6 6369 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
6370 if (sgot == NULL)
6371 g = NULL;
6372 else
6373 {
f0abc2a1
AM
6374 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6375 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6376 BFD_ASSERT (g != NULL);
6377 }
6378 }
6379
6380 sreloc = NULL;
6381 bed = get_elf_backend_data (abfd);
6382 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6383 for (rel = relocs; rel < rel_end; ++rel)
6384 {
6385 unsigned long r_symndx;
6386 unsigned int r_type;
6387 struct elf_link_hash_entry *h;
6388
6389 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6390 r_type = ELF_R_TYPE (abfd, rel->r_info);
6391
6392 if (r_symndx < extsymoff)
6393 h = NULL;
6394 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6395 {
6396 (*_bfd_error_handler)
d003868e
AM
6397 (_("%B: Malformed reloc detected for section %s"),
6398 abfd, name);
b49e97c9 6399 bfd_set_error (bfd_error_bad_value);
b34976b6 6400 return FALSE;
b49e97c9
TS
6401 }
6402 else
6403 {
6404 h = sym_hashes[r_symndx - extsymoff];
6405
6406 /* This may be an indirect symbol created because of a version. */
6407 if (h != NULL)
6408 {
6409 while (h->root.type == bfd_link_hash_indirect)
6410 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6411 }
6412 }
6413
6414 /* Some relocs require a global offset table. */
6415 if (dynobj == NULL || sgot == NULL)
6416 {
6417 switch (r_type)
6418 {
6419 case R_MIPS_GOT16:
6420 case R_MIPS_CALL16:
6421 case R_MIPS_CALL_HI16:
6422 case R_MIPS_CALL_LO16:
6423 case R_MIPS_GOT_HI16:
6424 case R_MIPS_GOT_LO16:
6425 case R_MIPS_GOT_PAGE:
6426 case R_MIPS_GOT_OFST:
6427 case R_MIPS_GOT_DISP:
86324f90 6428 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6429 case R_MIPS_TLS_GD:
6430 case R_MIPS_TLS_LDM:
b49e97c9
TS
6431 if (dynobj == NULL)
6432 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6433 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6434 return FALSE;
b49e97c9 6435 g = mips_elf_got_info (dynobj, &sgot);
0a44bf69
RS
6436 if (htab->is_vxworks && !info->shared)
6437 {
6438 (*_bfd_error_handler)
6439 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6440 abfd, (unsigned long) rel->r_offset);
6441 bfd_set_error (bfd_error_bad_value);
6442 return FALSE;
6443 }
b49e97c9
TS
6444 break;
6445
6446 case R_MIPS_32:
6447 case R_MIPS_REL32:
6448 case R_MIPS_64:
0a44bf69
RS
6449 /* In VxWorks executables, references to external symbols
6450 are handled using copy relocs or PLT stubs, so there's
6451 no need to add a dynamic relocation here. */
b49e97c9 6452 if (dynobj == NULL
0a44bf69 6453 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6454 && (sec->flags & SEC_ALLOC) != 0)
6455 elf_hash_table (info)->dynobj = dynobj = abfd;
6456 break;
6457
6458 default:
6459 break;
6460 }
6461 }
6462
0a44bf69
RS
6463 if (h)
6464 {
6465 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6466
6467 /* Relocations against the special VxWorks __GOTT_BASE__ and
6468 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6469 room for them in .rela.dyn. */
6470 if (is_gott_symbol (info, h))
6471 {
6472 if (sreloc == NULL)
6473 {
6474 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6475 if (sreloc == NULL)
6476 return FALSE;
6477 }
6478 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
6479 if (MIPS_ELF_READONLY_SECTION (sec))
6480 /* We tell the dynamic linker that there are
6481 relocations against the text segment. */
6482 info->flags |= DF_TEXTREL;
0a44bf69
RS
6483 }
6484 }
6485 else if (r_type == R_MIPS_CALL_LO16
6486 || r_type == R_MIPS_GOT_LO16
6487 || r_type == R_MIPS_GOT_DISP
6488 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
b49e97c9
TS
6489 {
6490 /* We may need a local GOT entry for this relocation. We
6491 don't count R_MIPS_GOT_PAGE because we can estimate the
6492 maximum number of pages needed by looking at the size of
6493 the segment. Similar comments apply to R_MIPS_GOT16 and
0a44bf69
RS
6494 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6495 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 6496 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6497 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6498 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6499 rel->r_addend, g, 0))
f4416af6 6500 return FALSE;
b49e97c9
TS
6501 }
6502
6503 switch (r_type)
6504 {
6505 case R_MIPS_CALL16:
6506 if (h == NULL)
6507 {
6508 (*_bfd_error_handler)
d003868e
AM
6509 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6510 abfd, (unsigned long) rel->r_offset);
b49e97c9 6511 bfd_set_error (bfd_error_bad_value);
b34976b6 6512 return FALSE;
b49e97c9
TS
6513 }
6514 /* Fall through. */
6515
6516 case R_MIPS_CALL_HI16:
6517 case R_MIPS_CALL_LO16:
6518 if (h != NULL)
6519 {
0a44bf69
RS
6520 /* VxWorks call relocations point the function's .got.plt
6521 entry, which will be allocated by adjust_dynamic_symbol.
6522 Otherwise, this symbol requires a global GOT entry. */
6523 if (!htab->is_vxworks
6524 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6525 return FALSE;
b49e97c9
TS
6526
6527 /* We need a stub, not a plt entry for the undefined
6528 function. But we record it as if it needs plt. See
c152c796 6529 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6530 h->needs_plt = 1;
b49e97c9
TS
6531 h->type = STT_FUNC;
6532 }
6533 break;
6534
0fdc1bf1
AO
6535 case R_MIPS_GOT_PAGE:
6536 /* If this is a global, overridable symbol, GOT_PAGE will
6537 decay to GOT_DISP, so we'll need a GOT entry for it. */
6538 if (h == NULL)
6539 break;
6540 else
6541 {
6542 struct mips_elf_link_hash_entry *hmips =
6543 (struct mips_elf_link_hash_entry *) h;
143d77c5 6544
0fdc1bf1
AO
6545 while (hmips->root.root.type == bfd_link_hash_indirect
6546 || hmips->root.root.type == bfd_link_hash_warning)
6547 hmips = (struct mips_elf_link_hash_entry *)
6548 hmips->root.root.u.i.link;
143d77c5 6549
f5385ebf 6550 if (hmips->root.def_regular
0fdc1bf1 6551 && ! (info->shared && ! info->symbolic
f5385ebf 6552 && ! hmips->root.forced_local))
0fdc1bf1
AO
6553 break;
6554 }
6555 /* Fall through. */
6556
b49e97c9
TS
6557 case R_MIPS_GOT16:
6558 case R_MIPS_GOT_HI16:
6559 case R_MIPS_GOT_LO16:
6560 case R_MIPS_GOT_DISP:
0f20cc35 6561 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6562 return FALSE;
b49e97c9
TS
6563 break;
6564
0f20cc35
DJ
6565 case R_MIPS_TLS_GOTTPREL:
6566 if (info->shared)
6567 info->flags |= DF_STATIC_TLS;
6568 /* Fall through */
6569
6570 case R_MIPS_TLS_LDM:
6571 if (r_type == R_MIPS_TLS_LDM)
6572 {
6573 r_symndx = 0;
6574 h = NULL;
6575 }
6576 /* Fall through */
6577
6578 case R_MIPS_TLS_GD:
6579 /* This symbol requires a global offset table entry, or two
6580 for TLS GD relocations. */
6581 {
6582 unsigned char flag = (r_type == R_MIPS_TLS_GD
6583 ? GOT_TLS_GD
6584 : r_type == R_MIPS_TLS_LDM
6585 ? GOT_TLS_LDM
6586 : GOT_TLS_IE);
6587 if (h != NULL)
6588 {
6589 struct mips_elf_link_hash_entry *hmips =
6590 (struct mips_elf_link_hash_entry *) h;
6591 hmips->tls_type |= flag;
6592
6593 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6594 return FALSE;
6595 }
6596 else
6597 {
6598 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6599
6600 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6601 rel->r_addend, g, flag))
6602 return FALSE;
6603 }
6604 }
6605 break;
6606
b49e97c9
TS
6607 case R_MIPS_32:
6608 case R_MIPS_REL32:
6609 case R_MIPS_64:
0a44bf69
RS
6610 /* In VxWorks executables, references to external symbols
6611 are handled using copy relocs or PLT stubs, so there's
6612 no need to add a .rela.dyn entry for this relocation. */
6613 if ((info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6614 && (sec->flags & SEC_ALLOC) != 0)
6615 {
6616 if (sreloc == NULL)
6617 {
0a44bf69 6618 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 6619 if (sreloc == NULL)
f4416af6 6620 return FALSE;
b49e97c9 6621 }
b49e97c9 6622 if (info->shared)
82f0cfbd
EC
6623 {
6624 /* When creating a shared object, we must copy these
6625 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
6626 relocs. Make room for this reloc in .rel(a).dyn. */
6627 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 6628 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6629 /* We tell the dynamic linker that there are
6630 relocations against the text segment. */
6631 info->flags |= DF_TEXTREL;
6632 }
b49e97c9
TS
6633 else
6634 {
6635 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6636
b49e97c9
TS
6637 /* We only need to copy this reloc if the symbol is
6638 defined in a dynamic object. */
6639 hmips = (struct mips_elf_link_hash_entry *) h;
6640 ++hmips->possibly_dynamic_relocs;
943284cc 6641 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6642 /* We need it to tell the dynamic linker if there
6643 are relocations against the text segment. */
6644 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6645 }
6646
6647 /* Even though we don't directly need a GOT entry for
6648 this symbol, a symbol must have a dynamic symbol
6649 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
6650 dynamic relocations against it. This does not apply
6651 to VxWorks, which does not have the usual coupling
6652 between global GOT entries and .dynsym entries. */
6653 if (h != NULL && !htab->is_vxworks)
f4416af6
AO
6654 {
6655 if (dynobj == NULL)
6656 elf_hash_table (info)->dynobj = dynobj = abfd;
6657 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6658 return FALSE;
6659 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6660 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6661 return FALSE;
6662 }
b49e97c9
TS
6663 }
6664
6665 if (SGI_COMPAT (abfd))
6666 mips_elf_hash_table (info)->compact_rel_size +=
6667 sizeof (Elf32_External_crinfo);
6668 break;
6669
0a44bf69
RS
6670 case R_MIPS_PC16:
6671 if (h)
6672 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6673 break;
6674
b49e97c9 6675 case R_MIPS_26:
0a44bf69
RS
6676 if (h)
6677 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6678 /* Fall through. */
6679
b49e97c9
TS
6680 case R_MIPS_GPREL16:
6681 case R_MIPS_LITERAL:
6682 case R_MIPS_GPREL32:
6683 if (SGI_COMPAT (abfd))
6684 mips_elf_hash_table (info)->compact_rel_size +=
6685 sizeof (Elf32_External_crinfo);
6686 break;
6687
6688 /* This relocation describes the C++ object vtable hierarchy.
6689 Reconstruct it for later use during GC. */
6690 case R_MIPS_GNU_VTINHERIT:
c152c796 6691 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6692 return FALSE;
b49e97c9
TS
6693 break;
6694
6695 /* This relocation describes which C++ vtable entries are actually
6696 used. Record for later use during GC. */
6697 case R_MIPS_GNU_VTENTRY:
c152c796 6698 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6699 return FALSE;
b49e97c9
TS
6700 break;
6701
6702 default:
6703 break;
6704 }
6705
6706 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
6707 related to taking the function's address. This doesn't apply to
6708 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6709 a normal .got entry. */
6710 if (!htab->is_vxworks && h != NULL)
6711 switch (r_type)
6712 {
6713 default:
6714 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6715 break;
6716 case R_MIPS_CALL16:
6717 case R_MIPS_CALL_HI16:
6718 case R_MIPS_CALL_LO16:
6719 case R_MIPS_JALR:
6720 break;
6721 }
b49e97c9
TS
6722
6723 /* If this reloc is not a 16 bit call, and it has a global
6724 symbol, then we will need the fn_stub if there is one.
6725 References from a stub section do not count. */
6726 if (h != NULL
6727 && r_type != R_MIPS16_26
b9d58d71 6728 && !mips16_stub_section_p (abfd, sec))
b49e97c9
TS
6729 {
6730 struct mips_elf_link_hash_entry *mh;
6731
6732 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6733 mh->need_fn_stub = TRUE;
b49e97c9
TS
6734 }
6735 }
6736
b34976b6 6737 return TRUE;
b49e97c9
TS
6738}
6739\f
d0647110 6740bfd_boolean
9719ad41
RS
6741_bfd_mips_relax_section (bfd *abfd, asection *sec,
6742 struct bfd_link_info *link_info,
6743 bfd_boolean *again)
d0647110
AO
6744{
6745 Elf_Internal_Rela *internal_relocs;
6746 Elf_Internal_Rela *irel, *irelend;
6747 Elf_Internal_Shdr *symtab_hdr;
6748 bfd_byte *contents = NULL;
d0647110
AO
6749 size_t extsymoff;
6750 bfd_boolean changed_contents = FALSE;
6751 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6752 Elf_Internal_Sym *isymbuf = NULL;
6753
6754 /* We are not currently changing any sizes, so only one pass. */
6755 *again = FALSE;
6756
1049f94e 6757 if (link_info->relocatable)
d0647110
AO
6758 return TRUE;
6759
9719ad41 6760 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6761 link_info->keep_memory);
d0647110
AO
6762 if (internal_relocs == NULL)
6763 return TRUE;
6764
6765 irelend = internal_relocs + sec->reloc_count
6766 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6767 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6768 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6769
6770 for (irel = internal_relocs; irel < irelend; irel++)
6771 {
6772 bfd_vma symval;
6773 bfd_signed_vma sym_offset;
6774 unsigned int r_type;
6775 unsigned long r_symndx;
6776 asection *sym_sec;
6777 unsigned long instruction;
6778
6779 /* Turn jalr into bgezal, and jr into beq, if they're marked
6780 with a JALR relocation, that indicate where they jump to.
6781 This saves some pipeline bubbles. */
6782 r_type = ELF_R_TYPE (abfd, irel->r_info);
6783 if (r_type != R_MIPS_JALR)
6784 continue;
6785
6786 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6787 /* Compute the address of the jump target. */
6788 if (r_symndx >= extsymoff)
6789 {
6790 struct mips_elf_link_hash_entry *h
6791 = ((struct mips_elf_link_hash_entry *)
6792 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6793
6794 while (h->root.root.type == bfd_link_hash_indirect
6795 || h->root.root.type == bfd_link_hash_warning)
6796 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6797
d0647110
AO
6798 /* If a symbol is undefined, or if it may be overridden,
6799 skip it. */
6800 if (! ((h->root.root.type == bfd_link_hash_defined
6801 || h->root.root.type == bfd_link_hash_defweak)
6802 && h->root.root.u.def.section)
6803 || (link_info->shared && ! link_info->symbolic
f5385ebf 6804 && !h->root.forced_local))
d0647110
AO
6805 continue;
6806
6807 sym_sec = h->root.root.u.def.section;
6808 if (sym_sec->output_section)
6809 symval = (h->root.root.u.def.value
6810 + sym_sec->output_section->vma
6811 + sym_sec->output_offset);
6812 else
6813 symval = h->root.root.u.def.value;
6814 }
6815 else
6816 {
6817 Elf_Internal_Sym *isym;
6818
6819 /* Read this BFD's symbols if we haven't done so already. */
6820 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6821 {
6822 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6823 if (isymbuf == NULL)
6824 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6825 symtab_hdr->sh_info, 0,
6826 NULL, NULL, NULL);
6827 if (isymbuf == NULL)
6828 goto relax_return;
6829 }
6830
6831 isym = isymbuf + r_symndx;
6832 if (isym->st_shndx == SHN_UNDEF)
6833 continue;
6834 else if (isym->st_shndx == SHN_ABS)
6835 sym_sec = bfd_abs_section_ptr;
6836 else if (isym->st_shndx == SHN_COMMON)
6837 sym_sec = bfd_com_section_ptr;
6838 else
6839 sym_sec
6840 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6841 symval = isym->st_value
6842 + sym_sec->output_section->vma
6843 + sym_sec->output_offset;
6844 }
6845
6846 /* Compute branch offset, from delay slot of the jump to the
6847 branch target. */
6848 sym_offset = (symval + irel->r_addend)
6849 - (sec_start + irel->r_offset + 4);
6850
6851 /* Branch offset must be properly aligned. */
6852 if ((sym_offset & 3) != 0)
6853 continue;
6854
6855 sym_offset >>= 2;
6856
6857 /* Check that it's in range. */
6858 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6859 continue;
143d77c5 6860
d0647110
AO
6861 /* Get the section contents if we haven't done so already. */
6862 if (contents == NULL)
6863 {
6864 /* Get cached copy if it exists. */
6865 if (elf_section_data (sec)->this_hdr.contents != NULL)
6866 contents = elf_section_data (sec)->this_hdr.contents;
6867 else
6868 {
eea6121a 6869 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6870 goto relax_return;
6871 }
6872 }
6873
6874 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6875
6876 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6877 if ((instruction & 0xfc1fffff) == 0x0000f809)
6878 instruction = 0x04110000;
6879 /* If it was jr <reg>, turn it into b <target>. */
6880 else if ((instruction & 0xfc1fffff) == 0x00000008)
6881 instruction = 0x10000000;
6882 else
6883 continue;
6884
6885 instruction |= (sym_offset & 0xffff);
6886 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6887 changed_contents = TRUE;
6888 }
6889
6890 if (contents != NULL
6891 && elf_section_data (sec)->this_hdr.contents != contents)
6892 {
6893 if (!changed_contents && !link_info->keep_memory)
6894 free (contents);
6895 else
6896 {
6897 /* Cache the section contents for elf_link_input_bfd. */
6898 elf_section_data (sec)->this_hdr.contents = contents;
6899 }
6900 }
6901 return TRUE;
6902
143d77c5 6903 relax_return:
eea6121a
AM
6904 if (contents != NULL
6905 && elf_section_data (sec)->this_hdr.contents != contents)
6906 free (contents);
d0647110
AO
6907 return FALSE;
6908}
6909\f
b49e97c9
TS
6910/* Adjust a symbol defined by a dynamic object and referenced by a
6911 regular object. The current definition is in some section of the
6912 dynamic object, but we're not including those sections. We have to
6913 change the definition to something the rest of the link can
6914 understand. */
6915
b34976b6 6916bfd_boolean
9719ad41
RS
6917_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6918 struct elf_link_hash_entry *h)
b49e97c9
TS
6919{
6920 bfd *dynobj;
6921 struct mips_elf_link_hash_entry *hmips;
6922 asection *s;
5108fc1b 6923 struct mips_elf_link_hash_table *htab;
b49e97c9 6924
5108fc1b 6925 htab = mips_elf_hash_table (info);
b49e97c9
TS
6926 dynobj = elf_hash_table (info)->dynobj;
6927
6928 /* Make sure we know what is going on here. */
6929 BFD_ASSERT (dynobj != NULL
f5385ebf 6930 && (h->needs_plt
f6e332e6 6931 || h->u.weakdef != NULL
f5385ebf
AM
6932 || (h->def_dynamic
6933 && h->ref_regular
6934 && !h->def_regular)));
b49e97c9
TS
6935
6936 /* If this symbol is defined in a dynamic object, we need to copy
6937 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6938 file. */
6939 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6940 if (! info->relocatable
b49e97c9
TS
6941 && hmips->possibly_dynamic_relocs != 0
6942 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6943 || !h->def_regular))
b49e97c9 6944 {
0a44bf69
RS
6945 mips_elf_allocate_dynamic_relocations
6946 (dynobj, info, hmips->possibly_dynamic_relocs);
82f0cfbd 6947 if (hmips->readonly_reloc)
b49e97c9
TS
6948 /* We tell the dynamic linker that there are relocations
6949 against the text segment. */
6950 info->flags |= DF_TEXTREL;
6951 }
6952
6953 /* For a function, create a stub, if allowed. */
6954 if (! hmips->no_fn_stub
f5385ebf 6955 && h->needs_plt)
b49e97c9
TS
6956 {
6957 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6958 return TRUE;
b49e97c9
TS
6959
6960 /* If this symbol is not defined in a regular file, then set
6961 the symbol to the stub location. This is required to make
6962 function pointers compare as equal between the normal
6963 executable and the shared library. */
f5385ebf 6964 if (!h->def_regular)
b49e97c9
TS
6965 {
6966 /* We need .stub section. */
6967 s = bfd_get_section_by_name (dynobj,
6968 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6969 BFD_ASSERT (s != NULL);
6970
6971 h->root.u.def.section = s;
eea6121a 6972 h->root.u.def.value = s->size;
b49e97c9
TS
6973
6974 /* XXX Write this stub address somewhere. */
eea6121a 6975 h->plt.offset = s->size;
b49e97c9
TS
6976
6977 /* Make room for this stub code. */
5108fc1b 6978 s->size += htab->function_stub_size;
b49e97c9
TS
6979
6980 /* The last half word of the stub will be filled with the index
6981 of this symbol in .dynsym section. */
b34976b6 6982 return TRUE;
b49e97c9
TS
6983 }
6984 }
6985 else if ((h->type == STT_FUNC)
f5385ebf 6986 && !h->needs_plt)
b49e97c9
TS
6987 {
6988 /* This will set the entry for this symbol in the GOT to 0, and
6989 the dynamic linker will take care of this. */
6990 h->root.u.def.value = 0;
b34976b6 6991 return TRUE;
b49e97c9
TS
6992 }
6993
6994 /* If this is a weak symbol, and there is a real definition, the
6995 processor independent code will have arranged for us to see the
6996 real definition first, and we can just use the same value. */
f6e332e6 6997 if (h->u.weakdef != NULL)
b49e97c9 6998 {
f6e332e6
AM
6999 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7000 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7001 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7002 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 7003 return TRUE;
b49e97c9
TS
7004 }
7005
7006 /* This is a reference to a symbol defined by a dynamic object which
7007 is not a function. */
7008
b34976b6 7009 return TRUE;
b49e97c9 7010}
0a44bf69
RS
7011
7012/* Likewise, for VxWorks. */
7013
7014bfd_boolean
7015_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7016 struct elf_link_hash_entry *h)
7017{
7018 bfd *dynobj;
7019 struct mips_elf_link_hash_entry *hmips;
7020 struct mips_elf_link_hash_table *htab;
0a44bf69
RS
7021
7022 htab = mips_elf_hash_table (info);
7023 dynobj = elf_hash_table (info)->dynobj;
7024 hmips = (struct mips_elf_link_hash_entry *) h;
7025
7026 /* Make sure we know what is going on here. */
7027 BFD_ASSERT (dynobj != NULL
7028 && (h->needs_plt
7029 || h->needs_copy
7030 || h->u.weakdef != NULL
7031 || (h->def_dynamic
7032 && h->ref_regular
7033 && !h->def_regular)));
7034
7035 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7036 either (a) we want to branch to the symbol or (b) we're linking an
7037 executable that needs a canonical function address. In the latter
7038 case, the canonical address will be the address of the executable's
7039 load stub. */
7040 if ((hmips->is_branch_target
7041 || (!info->shared
7042 && h->type == STT_FUNC
7043 && hmips->is_relocation_target))
7044 && h->def_dynamic
7045 && h->ref_regular
7046 && !h->def_regular
7047 && !h->forced_local)
7048 h->needs_plt = 1;
7049
7050 /* Locally-binding symbols do not need a PLT stub; we can refer to
7051 the functions directly. */
7052 else if (h->needs_plt
7053 && (SYMBOL_CALLS_LOCAL (info, h)
7054 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7055 && h->root.type == bfd_link_hash_undefweak)))
7056 {
7057 h->needs_plt = 0;
7058 return TRUE;
7059 }
7060
7061 if (h->needs_plt)
7062 {
7063 /* If this is the first symbol to need a PLT entry, allocate room
7064 for the header, and for the header's .rela.plt.unloaded entries. */
7065 if (htab->splt->size == 0)
7066 {
7067 htab->splt->size += htab->plt_header_size;
7068 if (!info->shared)
7069 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7070 }
7071
7072 /* Assign the next .plt entry to this symbol. */
7073 h->plt.offset = htab->splt->size;
7074 htab->splt->size += htab->plt_entry_size;
7075
7076 /* If the output file has no definition of the symbol, set the
7077 symbol's value to the address of the stub. For executables,
7078 point at the PLT load stub rather than the lazy resolution stub;
7079 this stub will become the canonical function address. */
7080 if (!h->def_regular)
7081 {
7082 h->root.u.def.section = htab->splt;
7083 h->root.u.def.value = h->plt.offset;
7084 if (!info->shared)
7085 h->root.u.def.value += 8;
7086 }
7087
7088 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7089 htab->sgotplt->size += 4;
7090 htab->srelplt->size += sizeof (Elf32_External_Rela);
7091
7092 /* Make room for the .rela.plt.unloaded relocations. */
7093 if (!info->shared)
7094 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7095
7096 return TRUE;
7097 }
7098
7099 /* If a function symbol is defined by a dynamic object, and we do not
7100 need a PLT stub for it, the symbol's value should be zero. */
7101 if (h->type == STT_FUNC
7102 && h->def_dynamic
7103 && h->ref_regular
7104 && !h->def_regular)
7105 {
7106 h->root.u.def.value = 0;
7107 return TRUE;
7108 }
7109
7110 /* If this is a weak symbol, and there is a real definition, the
7111 processor independent code will have arranged for us to see the
7112 real definition first, and we can just use the same value. */
7113 if (h->u.weakdef != NULL)
7114 {
7115 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7116 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7117 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7118 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7119 return TRUE;
7120 }
7121
7122 /* This is a reference to a symbol defined by a dynamic object which
7123 is not a function. */
7124 if (info->shared)
7125 return TRUE;
7126
7127 /* We must allocate the symbol in our .dynbss section, which will
7128 become part of the .bss section of the executable. There will be
7129 an entry for this symbol in the .dynsym section. The dynamic
7130 object will contain position independent code, so all references
7131 from the dynamic object to this symbol will go through the global
7132 offset table. The dynamic linker will use the .dynsym entry to
7133 determine the address it must put in the global offset table, so
7134 both the dynamic object and the regular object will refer to the
7135 same memory location for the variable. */
7136
7137 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7138 {
7139 htab->srelbss->size += sizeof (Elf32_External_Rela);
7140 h->needs_copy = 1;
7141 }
7142
027297b7 7143 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 7144}
b49e97c9 7145\f
5108fc1b
RS
7146/* Return the number of dynamic section symbols required by OUTPUT_BFD.
7147 The number might be exact or a worst-case estimate, depending on how
7148 much information is available to elf_backend_omit_section_dynsym at
7149 the current linking stage. */
7150
7151static bfd_size_type
7152count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7153{
7154 bfd_size_type count;
7155
7156 count = 0;
7157 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7158 {
7159 asection *p;
7160 const struct elf_backend_data *bed;
7161
7162 bed = get_elf_backend_data (output_bfd);
7163 for (p = output_bfd->sections; p ; p = p->next)
7164 if ((p->flags & SEC_EXCLUDE) == 0
7165 && (p->flags & SEC_ALLOC) != 0
7166 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7167 ++count;
7168 }
7169 return count;
7170}
7171
b49e97c9
TS
7172/* This function is called after all the input files have been read,
7173 and the input sections have been assigned to output sections. We
7174 check for any mips16 stub sections that we can discard. */
7175
b34976b6 7176bfd_boolean
9719ad41
RS
7177_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7178 struct bfd_link_info *info)
b49e97c9
TS
7179{
7180 asection *ri;
7181
f4416af6
AO
7182 bfd *dynobj;
7183 asection *s;
7184 struct mips_got_info *g;
7185 int i;
7186 bfd_size_type loadable_size = 0;
7187 bfd_size_type local_gotno;
5108fc1b 7188 bfd_size_type dynsymcount;
f4416af6 7189 bfd *sub;
0f20cc35 7190 struct mips_elf_count_tls_arg count_tls_arg;
0a44bf69
RS
7191 struct mips_elf_link_hash_table *htab;
7192
7193 htab = mips_elf_hash_table (info);
f4416af6 7194
b49e97c9
TS
7195 /* The .reginfo section has a fixed size. */
7196 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7197 if (ri != NULL)
9719ad41 7198 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7199
1049f94e 7200 if (! (info->relocatable
f4416af6
AO
7201 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7202 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 7203 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
7204
7205 dynobj = elf_hash_table (info)->dynobj;
7206 if (dynobj == NULL)
7207 /* Relocatable links don't have it. */
7208 return TRUE;
143d77c5 7209
f4416af6
AO
7210 g = mips_elf_got_info (dynobj, &s);
7211 if (s == NULL)
b34976b6 7212 return TRUE;
b49e97c9 7213
f4416af6
AO
7214 /* Calculate the total loadable size of the output. That
7215 will give us the maximum number of GOT_PAGE entries
7216 required. */
7217 for (sub = info->input_bfds; sub; sub = sub->link_next)
7218 {
7219 asection *subsection;
7220
7221 for (subsection = sub->sections;
7222 subsection;
7223 subsection = subsection->next)
7224 {
7225 if ((subsection->flags & SEC_ALLOC) == 0)
7226 continue;
eea6121a 7227 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
7228 &~ (bfd_size_type) 0xf);
7229 }
7230 }
7231
7232 /* There has to be a global GOT entry for every symbol with
7233 a dynamic symbol table index of DT_MIPS_GOTSYM or
7234 higher. Therefore, it make sense to put those symbols
7235 that need GOT entries at the end of the symbol table. We
7236 do that here. */
7237 if (! mips_elf_sort_hash_table (info, 1))
7238 return FALSE;
7239
7240 if (g->global_gotsym != NULL)
7241 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7242 else
7243 /* If there are no global symbols, or none requiring
7244 relocations, then GLOBAL_GOTSYM will be NULL. */
7245 i = 0;
7246
5108fc1b
RS
7247 /* Get a worst-case estimate of the number of dynamic symbols needed.
7248 At this point, dynsymcount does not account for section symbols
7249 and count_section_dynsyms may overestimate the number that will
7250 be needed. */
7251 dynsymcount = (elf_hash_table (info)->dynsymcount
7252 + count_section_dynsyms (output_bfd, info));
7253
7254 /* Determine the size of one stub entry. */
7255 htab->function_stub_size = (dynsymcount > 0x10000
7256 ? MIPS_FUNCTION_STUB_BIG_SIZE
7257 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7258
f4416af6
AO
7259 /* In the worst case, we'll get one stub per dynamic symbol, plus
7260 one to account for the dummy entry at the end required by IRIX
7261 rld. */
5108fc1b 7262 loadable_size += htab->function_stub_size * (i + 1);
f4416af6 7263
0a44bf69
RS
7264 if (htab->is_vxworks)
7265 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7266 relocations against local symbols evaluate to "G", and the EABI does
7267 not include R_MIPS_GOT_PAGE. */
7268 local_gotno = 0;
7269 else
7270 /* Assume there are two loadable segments consisting of contiguous
7271 sections. Is 5 enough? */
7272 local_gotno = (loadable_size >> 16) + 5;
f4416af6
AO
7273
7274 g->local_gotno += local_gotno;
eea6121a 7275 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
7276
7277 g->global_gotno = i;
eea6121a 7278 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7279
0f20cc35
DJ
7280 /* We need to calculate tls_gotno for global symbols at this point
7281 instead of building it up earlier, to avoid doublecounting
7282 entries for one global symbol from multiple input files. */
7283 count_tls_arg.info = info;
7284 count_tls_arg.needed = 0;
7285 elf_link_hash_traverse (elf_hash_table (info),
7286 mips_elf_count_global_tls_entries,
7287 &count_tls_arg);
7288 g->tls_gotno += count_tls_arg.needed;
7289 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7290
7291 mips_elf_resolve_final_got_entries (g);
7292
0a44bf69
RS
7293 /* VxWorks does not support multiple GOTs. It initializes $gp to
7294 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7295 dynamic loader. */
7296 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35
DJ
7297 {
7298 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7299 return FALSE;
7300 }
7301 else
7302 {
7303 /* Set up TLS entries for the first GOT. */
7304 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7305 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7306 }
b49e97c9 7307
b34976b6 7308 return TRUE;
b49e97c9
TS
7309}
7310
7311/* Set the sizes of the dynamic sections. */
7312
b34976b6 7313bfd_boolean
9719ad41
RS
7314_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7315 struct bfd_link_info *info)
b49e97c9
TS
7316{
7317 bfd *dynobj;
0a44bf69 7318 asection *s, *sreldyn;
b34976b6 7319 bfd_boolean reltext;
0a44bf69 7320 struct mips_elf_link_hash_table *htab;
b49e97c9 7321
0a44bf69 7322 htab = mips_elf_hash_table (info);
b49e97c9
TS
7323 dynobj = elf_hash_table (info)->dynobj;
7324 BFD_ASSERT (dynobj != NULL);
7325
7326 if (elf_hash_table (info)->dynamic_sections_created)
7327 {
7328 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 7329 if (info->executable)
b49e97c9
TS
7330 {
7331 s = bfd_get_section_by_name (dynobj, ".interp");
7332 BFD_ASSERT (s != NULL);
eea6121a 7333 s->size
b49e97c9
TS
7334 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7335 s->contents
7336 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7337 }
7338 }
7339
7340 /* The check_relocs and adjust_dynamic_symbol entry points have
7341 determined the sizes of the various dynamic sections. Allocate
7342 memory for them. */
b34976b6 7343 reltext = FALSE;
0a44bf69 7344 sreldyn = NULL;
b49e97c9
TS
7345 for (s = dynobj->sections; s != NULL; s = s->next)
7346 {
7347 const char *name;
b49e97c9
TS
7348
7349 /* It's OK to base decisions on the section name, because none
7350 of the dynobj section names depend upon the input files. */
7351 name = bfd_get_section_name (dynobj, s);
7352
7353 if ((s->flags & SEC_LINKER_CREATED) == 0)
7354 continue;
7355
0112cd26 7356 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 7357 {
c456f082 7358 if (s->size != 0)
b49e97c9
TS
7359 {
7360 const char *outname;
7361 asection *target;
7362
7363 /* If this relocation section applies to a read only
7364 section, then we probably need a DT_TEXTREL entry.
0a44bf69 7365 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
7366 assert a DT_TEXTREL entry rather than testing whether
7367 there exists a relocation to a read only section or
7368 not. */
7369 outname = bfd_get_section_name (output_bfd,
7370 s->output_section);
7371 target = bfd_get_section_by_name (output_bfd, outname + 4);
7372 if ((target != NULL
7373 && (target->flags & SEC_READONLY) != 0
7374 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 7375 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 7376 reltext = TRUE;
b49e97c9
TS
7377
7378 /* We use the reloc_count field as a counter if we need
7379 to copy relocs into the output file. */
0a44bf69 7380 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 7381 s->reloc_count = 0;
f4416af6
AO
7382
7383 /* If combreloc is enabled, elf_link_sort_relocs() will
7384 sort relocations, but in a different way than we do,
7385 and before we're done creating relocations. Also, it
7386 will move them around between input sections'
7387 relocation's contents, so our sorting would be
7388 broken, so don't let it run. */
7389 info->combreloc = 0;
b49e97c9
TS
7390 }
7391 }
0a44bf69
RS
7392 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7393 {
7394 /* Executables do not need a GOT. */
7395 if (info->shared)
7396 {
7397 /* Allocate relocations for all but the reserved entries. */
7398 struct mips_got_info *g;
7399 unsigned int count;
7400
7401 g = mips_elf_got_info (dynobj, NULL);
7402 count = (g->global_gotno
7403 + g->local_gotno
7404 - MIPS_RESERVED_GOTNO (info));
7405 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7406 }
7407 }
0112cd26 7408 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
b49e97c9 7409 {
f4416af6
AO
7410 /* _bfd_mips_elf_always_size_sections() has already done
7411 most of the work, but some symbols may have been mapped
7412 to versions that we must now resolve in the got_entries
7413 hash tables. */
7414 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7415 struct mips_got_info *g = gg;
7416 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7417 unsigned int needed_relocs = 0;
143d77c5 7418
f4416af6 7419 if (gg->next)
b49e97c9 7420 {
f4416af6
AO
7421 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7422 set_got_offset_arg.info = info;
b49e97c9 7423
0f20cc35
DJ
7424 /* NOTE 2005-02-03: How can this call, or the next, ever
7425 find any indirect entries to resolve? They were all
7426 resolved in mips_elf_multi_got. */
f4416af6
AO
7427 mips_elf_resolve_final_got_entries (gg);
7428 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 7429 {
f4416af6
AO
7430 unsigned int save_assign;
7431
7432 mips_elf_resolve_final_got_entries (g);
7433
7434 /* Assign offsets to global GOT entries. */
7435 save_assign = g->assigned_gotno;
7436 g->assigned_gotno = g->local_gotno;
7437 set_got_offset_arg.g = g;
7438 set_got_offset_arg.needed_relocs = 0;
7439 htab_traverse (g->got_entries,
7440 mips_elf_set_global_got_offset,
7441 &set_got_offset_arg);
7442 needed_relocs += set_got_offset_arg.needed_relocs;
7443 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7444 <= g->global_gotno);
7445
7446 g->assigned_gotno = save_assign;
7447 if (info->shared)
7448 {
7449 needed_relocs += g->local_gotno - g->assigned_gotno;
7450 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7451 + g->next->global_gotno
0f20cc35 7452 + g->next->tls_gotno
0a44bf69 7453 + MIPS_RESERVED_GOTNO (info));
f4416af6 7454 }
b49e97c9 7455 }
0f20cc35
DJ
7456 }
7457 else
7458 {
7459 struct mips_elf_count_tls_arg arg;
7460 arg.info = info;
7461 arg.needed = 0;
b49e97c9 7462
0f20cc35
DJ
7463 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7464 &arg);
7465 elf_link_hash_traverse (elf_hash_table (info),
7466 mips_elf_count_global_tls_relocs,
7467 &arg);
7468
7469 needed_relocs += arg.needed;
f4416af6 7470 }
0f20cc35
DJ
7471
7472 if (needed_relocs)
0a44bf69
RS
7473 mips_elf_allocate_dynamic_relocations (dynobj, info,
7474 needed_relocs);
b49e97c9
TS
7475 }
7476 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7477 {
8dc1a139 7478 /* IRIX rld assumes that the function stub isn't at the end
5108fc1b
RS
7479 of .text section. So put a dummy. XXX */
7480 s->size += htab->function_stub_size;
b49e97c9
TS
7481 }
7482 else if (! info->shared
7483 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 7484 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 7485 {
5108fc1b 7486 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 7487 rtld to contain a pointer to the _r_debug structure. */
eea6121a 7488 s->size += 4;
b49e97c9
TS
7489 }
7490 else if (SGI_COMPAT (output_bfd)
0112cd26 7491 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 7492 s->size += mips_elf_hash_table (info)->compact_rel_size;
0112cd26 7493 else if (! CONST_STRNEQ (name, ".init")
0a44bf69
RS
7494 && s != htab->sgotplt
7495 && s != htab->splt)
b49e97c9
TS
7496 {
7497 /* It's not one of our sections, so don't allocate space. */
7498 continue;
7499 }
7500
c456f082 7501 if (s->size == 0)
b49e97c9 7502 {
8423293d 7503 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
7504 continue;
7505 }
7506
c456f082
AM
7507 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7508 continue;
7509
0a44bf69
RS
7510 /* Allocate memory for this section last, since we may increase its
7511 size above. */
7512 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7513 {
7514 sreldyn = s;
7515 continue;
7516 }
7517
b49e97c9 7518 /* Allocate memory for the section contents. */
eea6121a 7519 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 7520 if (s->contents == NULL)
b49e97c9
TS
7521 {
7522 bfd_set_error (bfd_error_no_memory);
b34976b6 7523 return FALSE;
b49e97c9
TS
7524 }
7525 }
7526
0a44bf69
RS
7527 /* Allocate memory for the .rel(a).dyn section. */
7528 if (sreldyn != NULL)
7529 {
7530 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7531 if (sreldyn->contents == NULL)
7532 {
7533 bfd_set_error (bfd_error_no_memory);
7534 return FALSE;
7535 }
7536 }
7537
b49e97c9
TS
7538 if (elf_hash_table (info)->dynamic_sections_created)
7539 {
7540 /* Add some entries to the .dynamic section. We fill in the
7541 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7542 must add the entries now so that we get the correct size for
5750dcec 7543 the .dynamic section. */
af5978fb
RS
7544
7545 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec
DJ
7546 DT_MIPS_RLD_MAP entry. This must come first because glibc
7547 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7548 looks at the first one it sees. */
af5978fb
RS
7549 if (!info->shared
7550 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7551 return FALSE;
b49e97c9 7552
5750dcec
DJ
7553 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7554 used by the debugger. */
7555 if (info->executable
7556 && !SGI_COMPAT (output_bfd)
7557 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7558 return FALSE;
7559
0a44bf69 7560 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
7561 info->flags |= DF_TEXTREL;
7562
7563 if ((info->flags & DF_TEXTREL) != 0)
7564 {
7565 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 7566 return FALSE;
943284cc
DJ
7567
7568 /* Clear the DF_TEXTREL flag. It will be set again if we
7569 write out an actual text relocation; we may not, because
7570 at this point we do not know whether e.g. any .eh_frame
7571 absolute relocations have been converted to PC-relative. */
7572 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
7573 }
7574
7575 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 7576 return FALSE;
b49e97c9 7577
0a44bf69 7578 if (htab->is_vxworks)
b49e97c9 7579 {
0a44bf69
RS
7580 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7581 use any of the DT_MIPS_* tags. */
7582 if (mips_elf_rel_dyn_section (info, FALSE))
7583 {
7584 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7585 return FALSE;
b49e97c9 7586
0a44bf69
RS
7587 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7588 return FALSE;
b49e97c9 7589
0a44bf69
RS
7590 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7591 return FALSE;
7592 }
7593 if (htab->splt->size > 0)
7594 {
7595 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7596 return FALSE;
7597
7598 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7599 return FALSE;
7600
7601 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7602 return FALSE;
7603 }
b49e97c9 7604 }
0a44bf69
RS
7605 else
7606 {
7607 if (mips_elf_rel_dyn_section (info, FALSE))
7608 {
7609 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7610 return FALSE;
b49e97c9 7611
0a44bf69
RS
7612 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7613 return FALSE;
b49e97c9 7614
0a44bf69
RS
7615 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7616 return FALSE;
7617 }
b49e97c9 7618
0a44bf69
RS
7619 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7620 return FALSE;
b49e97c9 7621
0a44bf69
RS
7622 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7623 return FALSE;
b49e97c9 7624
0a44bf69
RS
7625 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7626 return FALSE;
b49e97c9 7627
0a44bf69
RS
7628 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7629 return FALSE;
b49e97c9 7630
0a44bf69
RS
7631 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7632 return FALSE;
b49e97c9 7633
0a44bf69
RS
7634 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7635 return FALSE;
b49e97c9 7636
0a44bf69
RS
7637 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7638 return FALSE;
7639
7640 if (IRIX_COMPAT (dynobj) == ict_irix5
7641 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7642 return FALSE;
7643
7644 if (IRIX_COMPAT (dynobj) == ict_irix6
7645 && (bfd_get_section_by_name
7646 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7647 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7648 return FALSE;
7649 }
b49e97c9
TS
7650 }
7651
b34976b6 7652 return TRUE;
b49e97c9
TS
7653}
7654\f
81d43bff
RS
7655/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7656 Adjust its R_ADDEND field so that it is correct for the output file.
7657 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7658 and sections respectively; both use symbol indexes. */
7659
7660static void
7661mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7662 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7663 asection **local_sections, Elf_Internal_Rela *rel)
7664{
7665 unsigned int r_type, r_symndx;
7666 Elf_Internal_Sym *sym;
7667 asection *sec;
7668
7669 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7670 {
7671 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7672 if (r_type == R_MIPS16_GPREL
7673 || r_type == R_MIPS_GPREL16
7674 || r_type == R_MIPS_GPREL32
7675 || r_type == R_MIPS_LITERAL)
7676 {
7677 rel->r_addend += _bfd_get_gp_value (input_bfd);
7678 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7679 }
7680
7681 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7682 sym = local_syms + r_symndx;
7683
7684 /* Adjust REL's addend to account for section merging. */
7685 if (!info->relocatable)
7686 {
7687 sec = local_sections[r_symndx];
7688 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7689 }
7690
7691 /* This would normally be done by the rela_normal code in elflink.c. */
7692 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7693 rel->r_addend += local_sections[r_symndx]->output_offset;
7694 }
7695}
7696
b49e97c9
TS
7697/* Relocate a MIPS ELF section. */
7698
b34976b6 7699bfd_boolean
9719ad41
RS
7700_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7701 bfd *input_bfd, asection *input_section,
7702 bfd_byte *contents, Elf_Internal_Rela *relocs,
7703 Elf_Internal_Sym *local_syms,
7704 asection **local_sections)
b49e97c9
TS
7705{
7706 Elf_Internal_Rela *rel;
7707 const Elf_Internal_Rela *relend;
7708 bfd_vma addend = 0;
b34976b6 7709 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 7710 const struct elf_backend_data *bed;
b49e97c9
TS
7711
7712 bed = get_elf_backend_data (output_bfd);
7713 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7714 for (rel = relocs; rel < relend; ++rel)
7715 {
7716 const char *name;
c9adbffe 7717 bfd_vma value = 0;
b49e97c9 7718 reloc_howto_type *howto;
b34976b6
AM
7719 bfd_boolean require_jalx;
7720 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 7721 REL relocation. */
b34976b6 7722 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 7723 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 7724 const char *msg;
ab96bf03
AM
7725 unsigned long r_symndx;
7726 asection *sec;
749b8d9d
L
7727 Elf_Internal_Shdr *symtab_hdr;
7728 struct elf_link_hash_entry *h;
b49e97c9
TS
7729
7730 /* Find the relocation howto for this relocation. */
ab96bf03
AM
7731 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7732 NEWABI_P (input_bfd)
7733 && (MIPS_RELOC_RELA_P
7734 (input_bfd, input_section,
7735 rel - relocs)));
7736
7737 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 7738 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
ab96bf03 7739 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
749b8d9d
L
7740 {
7741 sec = local_sections[r_symndx];
7742 h = NULL;
7743 }
ab96bf03
AM
7744 else
7745 {
ab96bf03 7746 unsigned long extsymoff;
ab96bf03 7747
ab96bf03
AM
7748 extsymoff = 0;
7749 if (!elf_bad_symtab (input_bfd))
7750 extsymoff = symtab_hdr->sh_info;
7751 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7752 while (h->root.type == bfd_link_hash_indirect
7753 || h->root.type == bfd_link_hash_warning)
7754 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7755
7756 sec = NULL;
7757 if (h->root.type == bfd_link_hash_defined
7758 || h->root.type == bfd_link_hash_defweak)
7759 sec = h->root.u.def.section;
7760 }
7761
7762 if (sec != NULL && elf_discarded_section (sec))
7763 {
7764 /* For relocs against symbols from removed linkonce sections,
7765 or sections discarded by a linker script, we just want the
7766 section contents zeroed. Avoid any special processing. */
7767 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7768 rel->r_info = 0;
7769 rel->r_addend = 0;
7770 continue;
7771 }
7772
4a14403c 7773 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
7774 {
7775 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7776 64-bit code, but make sure all their addresses are in the
7777 lowermost or uppermost 32-bit section of the 64-bit address
7778 space. Thus, when they use an R_MIPS_64 they mean what is
7779 usually meant by R_MIPS_32, with the exception that the
7780 stored value is sign-extended to 64 bits. */
b34976b6 7781 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
7782
7783 /* On big-endian systems, we need to lie about the position
7784 of the reloc. */
7785 if (bfd_big_endian (input_bfd))
7786 rel->r_offset += 4;
7787 }
b49e97c9
TS
7788
7789 if (!use_saved_addend_p)
7790 {
7791 Elf_Internal_Shdr *rel_hdr;
7792
7793 /* If these relocations were originally of the REL variety,
7794 we must pull the addend out of the field that will be
7795 relocated. Otherwise, we simply use the contents of the
7796 RELA relocation. To determine which flavor or relocation
7797 this is, we depend on the fact that the INPUT_SECTION's
7798 REL_HDR is read before its REL_HDR2. */
7799 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7800 if ((size_t) (rel - relocs)
7801 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7802 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7803 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7804 {
d6f16593
MR
7805 bfd_byte *location = contents + rel->r_offset;
7806
b49e97c9 7807 /* Note that this is a REL relocation. */
b34976b6 7808 rela_relocation_p = FALSE;
b49e97c9
TS
7809
7810 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7811 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7812 location);
b49e97c9
TS
7813 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7814 contents);
d6f16593
MR
7815 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7816 location);
7817
b49e97c9
TS
7818 addend &= howto->src_mask;
7819
7820 /* For some kinds of relocations, the ADDEND is a
7821 combination of the addend stored in two different
7822 relocations. */
d6f16593 7823 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7824 || (r_type == R_MIPS_GOT16
7825 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7826 local_sections, FALSE)))
b49e97c9 7827 {
b49e97c9
TS
7828 const Elf_Internal_Rela *lo16_relocation;
7829 reloc_howto_type *lo16_howto;
d6f16593
MR
7830 int lo16_type;
7831
7832 if (r_type == R_MIPS16_HI16)
7833 lo16_type = R_MIPS16_LO16;
7834 else
7835 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7836
7837 /* The combined value is the sum of the HI16 addend,
7838 left-shifted by sixteen bits, and the LO16
7839 addend, sign extended. (Usually, the code does
7840 a `lui' of the HI16 value, and then an `addiu' of
7841 the LO16 value.)
7842
4030e8f6
CD
7843 Scan ahead to find a matching LO16 relocation.
7844
7845 According to the MIPS ELF ABI, the R_MIPS_LO16
7846 relocation must be immediately following.
7847 However, for the IRIX6 ABI, the next relocation
7848 may be a composed relocation consisting of
7849 several relocations for the same address. In
7850 that case, the R_MIPS_LO16 relocation may occur
7851 as one of these. We permit a similar extension
2d82d84d
TS
7852 in general, as that is useful for GCC.
7853
7854 In some cases GCC dead code elimination removes
7855 the LO16 but keeps the corresponding HI16. This
7856 is strictly speaking a violation of the ABI but
7857 not immediately harmful. */
4030e8f6 7858 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7859 lo16_type,
b49e97c9
TS
7860 rel, relend);
7861 if (lo16_relocation == NULL)
749b8d9d
L
7862 {
7863 const char *name;
7864
7865 if (h)
7866 name = h->root.root.string;
7867 else
7868 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7869 local_syms + r_symndx,
7870 sec);
7871 (*_bfd_error_handler)
7872 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7873 input_bfd, input_section, name, howto->name,
7874 rel->r_offset);
749b8d9d 7875 }
2d82d84d
TS
7876 else
7877 {
7878 bfd_byte *lo16_location;
7879 bfd_vma l;
7880
7881 lo16_location = contents + lo16_relocation->r_offset;
7882
7883 /* Obtain the addend kept there. */
7884 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7885 lo16_type, FALSE);
7886 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7887 FALSE, lo16_location);
7888 l = mips_elf_obtain_contents (lo16_howto,
7889 lo16_relocation,
7890 input_bfd, contents);
7891 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7892 FALSE, lo16_location);
7893 l &= lo16_howto->src_mask;
7894 l <<= lo16_howto->rightshift;
7895 l = _bfd_mips_elf_sign_extend (l, 16);
7896
7897 addend <<= 16;
7898
7899 /* Compute the combined addend. */
7900 addend += l;
7901 }
b49e97c9 7902 }
30ac9238
RS
7903 else
7904 addend <<= howto->rightshift;
b49e97c9
TS
7905 }
7906 else
7907 addend = rel->r_addend;
81d43bff
RS
7908 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7909 local_syms, local_sections, rel);
b49e97c9
TS
7910 }
7911
1049f94e 7912 if (info->relocatable)
b49e97c9 7913 {
4a14403c 7914 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7915 && bfd_big_endian (input_bfd))
7916 rel->r_offset -= 4;
7917
81d43bff 7918 if (!rela_relocation_p && rel->r_addend)
5a659663 7919 {
81d43bff 7920 addend += rel->r_addend;
30ac9238 7921 if (r_type == R_MIPS_HI16
4030e8f6 7922 || r_type == R_MIPS_GOT16)
5a659663
TS
7923 addend = mips_elf_high (addend);
7924 else if (r_type == R_MIPS_HIGHER)
7925 addend = mips_elf_higher (addend);
7926 else if (r_type == R_MIPS_HIGHEST)
7927 addend = mips_elf_highest (addend);
30ac9238
RS
7928 else
7929 addend >>= howto->rightshift;
b49e97c9 7930
30ac9238
RS
7931 /* We use the source mask, rather than the destination
7932 mask because the place to which we are writing will be
7933 source of the addend in the final link. */
b49e97c9
TS
7934 addend &= howto->src_mask;
7935
5a659663 7936 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7937 /* See the comment above about using R_MIPS_64 in the 32-bit
7938 ABI. Here, we need to update the addend. It would be
7939 possible to get away with just using the R_MIPS_32 reloc
7940 but for endianness. */
7941 {
7942 bfd_vma sign_bits;
7943 bfd_vma low_bits;
7944 bfd_vma high_bits;
7945
7946 if (addend & ((bfd_vma) 1 << 31))
7947#ifdef BFD64
7948 sign_bits = ((bfd_vma) 1 << 32) - 1;
7949#else
7950 sign_bits = -1;
7951#endif
7952 else
7953 sign_bits = 0;
7954
7955 /* If we don't know that we have a 64-bit type,
7956 do two separate stores. */
7957 if (bfd_big_endian (input_bfd))
7958 {
7959 /* Store the sign-bits (which are most significant)
7960 first. */
7961 low_bits = sign_bits;
7962 high_bits = addend;
7963 }
7964 else
7965 {
7966 low_bits = addend;
7967 high_bits = sign_bits;
7968 }
7969 bfd_put_32 (input_bfd, low_bits,
7970 contents + rel->r_offset);
7971 bfd_put_32 (input_bfd, high_bits,
7972 contents + rel->r_offset + 4);
7973 continue;
7974 }
7975
7976 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7977 input_bfd, input_section,
b34976b6
AM
7978 contents, FALSE))
7979 return FALSE;
b49e97c9
TS
7980 }
7981
7982 /* Go on to the next relocation. */
7983 continue;
7984 }
7985
7986 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7987 relocations for the same offset. In that case we are
7988 supposed to treat the output of each relocation as the addend
7989 for the next. */
7990 if (rel + 1 < relend
7991 && rel->r_offset == rel[1].r_offset
7992 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 7993 use_saved_addend_p = TRUE;
b49e97c9 7994 else
b34976b6 7995 use_saved_addend_p = FALSE;
b49e97c9
TS
7996
7997 /* Figure out what value we are supposed to relocate. */
7998 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7999 input_section, info, rel,
8000 addend, howto, local_syms,
8001 local_sections, &value,
bce03d3d
AO
8002 &name, &require_jalx,
8003 use_saved_addend_p))
b49e97c9
TS
8004 {
8005 case bfd_reloc_continue:
8006 /* There's nothing to do. */
8007 continue;
8008
8009 case bfd_reloc_undefined:
8010 /* mips_elf_calculate_relocation already called the
8011 undefined_symbol callback. There's no real point in
8012 trying to perform the relocation at this point, so we
8013 just skip ahead to the next relocation. */
8014 continue;
8015
8016 case bfd_reloc_notsupported:
8017 msg = _("internal error: unsupported relocation error");
8018 info->callbacks->warning
8019 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 8020 return FALSE;
b49e97c9
TS
8021
8022 case bfd_reloc_overflow:
8023 if (use_saved_addend_p)
8024 /* Ignore overflow until we reach the last relocation for
8025 a given location. */
8026 ;
8027 else
8028 {
8029 BFD_ASSERT (name != NULL);
8030 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 8031 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 8032 input_bfd, input_section, rel->r_offset)))
b34976b6 8033 return FALSE;
b49e97c9
TS
8034 }
8035 break;
8036
8037 case bfd_reloc_ok:
8038 break;
8039
8040 default:
8041 abort ();
8042 break;
8043 }
8044
8045 /* If we've got another relocation for the address, keep going
8046 until we reach the last one. */
8047 if (use_saved_addend_p)
8048 {
8049 addend = value;
8050 continue;
8051 }
8052
4a14403c 8053 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8054 /* See the comment above about using R_MIPS_64 in the 32-bit
8055 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8056 that calculated the right value. Now, however, we
8057 sign-extend the 32-bit result to 64-bits, and store it as a
8058 64-bit value. We are especially generous here in that we
8059 go to extreme lengths to support this usage on systems with
8060 only a 32-bit VMA. */
8061 {
8062 bfd_vma sign_bits;
8063 bfd_vma low_bits;
8064 bfd_vma high_bits;
8065
8066 if (value & ((bfd_vma) 1 << 31))
8067#ifdef BFD64
8068 sign_bits = ((bfd_vma) 1 << 32) - 1;
8069#else
8070 sign_bits = -1;
8071#endif
8072 else
8073 sign_bits = 0;
8074
8075 /* If we don't know that we have a 64-bit type,
8076 do two separate stores. */
8077 if (bfd_big_endian (input_bfd))
8078 {
8079 /* Undo what we did above. */
8080 rel->r_offset -= 4;
8081 /* Store the sign-bits (which are most significant)
8082 first. */
8083 low_bits = sign_bits;
8084 high_bits = value;
8085 }
8086 else
8087 {
8088 low_bits = value;
8089 high_bits = sign_bits;
8090 }
8091 bfd_put_32 (input_bfd, low_bits,
8092 contents + rel->r_offset);
8093 bfd_put_32 (input_bfd, high_bits,
8094 contents + rel->r_offset + 4);
8095 continue;
8096 }
8097
8098 /* Actually perform the relocation. */
8099 if (! mips_elf_perform_relocation (info, howto, rel, value,
8100 input_bfd, input_section,
8101 contents, require_jalx))
b34976b6 8102 return FALSE;
b49e97c9
TS
8103 }
8104
b34976b6 8105 return TRUE;
b49e97c9
TS
8106}
8107\f
8108/* If NAME is one of the special IRIX6 symbols defined by the linker,
8109 adjust it appropriately now. */
8110
8111static void
9719ad41
RS
8112mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8113 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
8114{
8115 /* The linker script takes care of providing names and values for
8116 these, but we must place them into the right sections. */
8117 static const char* const text_section_symbols[] = {
8118 "_ftext",
8119 "_etext",
8120 "__dso_displacement",
8121 "__elf_header",
8122 "__program_header_table",
8123 NULL
8124 };
8125
8126 static const char* const data_section_symbols[] = {
8127 "_fdata",
8128 "_edata",
8129 "_end",
8130 "_fbss",
8131 NULL
8132 };
8133
8134 const char* const *p;
8135 int i;
8136
8137 for (i = 0; i < 2; ++i)
8138 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8139 *p;
8140 ++p)
8141 if (strcmp (*p, name) == 0)
8142 {
8143 /* All of these symbols are given type STT_SECTION by the
8144 IRIX6 linker. */
8145 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 8146 sym->st_other = STO_PROTECTED;
b49e97c9
TS
8147
8148 /* The IRIX linker puts these symbols in special sections. */
8149 if (i == 0)
8150 sym->st_shndx = SHN_MIPS_TEXT;
8151 else
8152 sym->st_shndx = SHN_MIPS_DATA;
8153
8154 break;
8155 }
8156}
8157
8158/* Finish up dynamic symbol handling. We set the contents of various
8159 dynamic sections here. */
8160
b34976b6 8161bfd_boolean
9719ad41
RS
8162_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8163 struct bfd_link_info *info,
8164 struct elf_link_hash_entry *h,
8165 Elf_Internal_Sym *sym)
b49e97c9
TS
8166{
8167 bfd *dynobj;
b49e97c9 8168 asection *sgot;
f4416af6 8169 struct mips_got_info *g, *gg;
b49e97c9 8170 const char *name;
3d6746ca 8171 int idx;
5108fc1b 8172 struct mips_elf_link_hash_table *htab;
b49e97c9 8173
5108fc1b 8174 htab = mips_elf_hash_table (info);
b49e97c9 8175 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 8176
c5ae1840 8177 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
8178 {
8179 asection *s;
5108fc1b 8180 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
8181
8182 /* This symbol has a stub. Set it up. */
8183
8184 BFD_ASSERT (h->dynindx != -1);
8185
8186 s = bfd_get_section_by_name (dynobj,
8187 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8188 BFD_ASSERT (s != NULL);
8189
5108fc1b
RS
8190 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8191 || (h->dynindx <= 0xffff));
3d6746ca
DD
8192
8193 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
8194 sign extension at runtime in the stub, resulting in a negative
8195 index value. */
8196 if (h->dynindx & ~0x7fffffff)
b34976b6 8197 return FALSE;
b49e97c9
TS
8198
8199 /* Fill the stub. */
3d6746ca
DD
8200 idx = 0;
8201 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8202 idx += 4;
8203 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8204 idx += 4;
5108fc1b 8205 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 8206 {
5108fc1b 8207 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
8208 stub + idx);
8209 idx += 4;
8210 }
8211 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8212 idx += 4;
b49e97c9 8213
3d6746ca
DD
8214 /* If a large stub is not required and sign extension is not a
8215 problem, then use legacy code in the stub. */
5108fc1b
RS
8216 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8217 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8218 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
8219 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8220 else
5108fc1b
RS
8221 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8222 stub + idx);
8223
eea6121a 8224 BFD_ASSERT (h->plt.offset <= s->size);
5108fc1b 8225 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
b49e97c9
TS
8226
8227 /* Mark the symbol as undefined. plt.offset != -1 occurs
8228 only for the referenced symbol. */
8229 sym->st_shndx = SHN_UNDEF;
8230
8231 /* The run-time linker uses the st_value field of the symbol
8232 to reset the global offset table entry for this external
8233 to its stub address when unlinking a shared object. */
c5ae1840
TS
8234 sym->st_value = (s->output_section->vma + s->output_offset
8235 + h->plt.offset);
b49e97c9
TS
8236 }
8237
8238 BFD_ASSERT (h->dynindx != -1
f5385ebf 8239 || h->forced_local);
b49e97c9 8240
f4416af6 8241 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8242 BFD_ASSERT (sgot != NULL);
f4416af6 8243 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 8244 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
8245 BFD_ASSERT (g != NULL);
8246
8247 /* Run through the global symbol table, creating GOT entries for all
8248 the symbols that need them. */
8249 if (g->global_gotsym != NULL
8250 && h->dynindx >= g->global_gotsym->dynindx)
8251 {
8252 bfd_vma offset;
8253 bfd_vma value;
8254
6eaa6adc 8255 value = sym->st_value;
0f20cc35 8256 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
8257 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8258 }
8259
0f20cc35 8260 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8261 {
8262 struct mips_got_entry e, *p;
0626d451 8263 bfd_vma entry;
f4416af6 8264 bfd_vma offset;
f4416af6
AO
8265
8266 gg = g;
8267
8268 e.abfd = output_bfd;
8269 e.symndx = -1;
8270 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 8271 e.tls_type = 0;
143d77c5 8272
f4416af6
AO
8273 for (g = g->next; g->next != gg; g = g->next)
8274 {
8275 if (g->got_entries
8276 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8277 &e)))
8278 {
8279 offset = p->gotidx;
0626d451
RS
8280 if (info->shared
8281 || (elf_hash_table (info)->dynamic_sections_created
8282 && p->d.h != NULL
f5385ebf
AM
8283 && p->d.h->root.def_dynamic
8284 && !p->d.h->root.def_regular))
0626d451
RS
8285 {
8286 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8287 the various compatibility problems, it's easier to mock
8288 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8289 mips_elf_create_dynamic_relocation to calculate the
8290 appropriate addend. */
8291 Elf_Internal_Rela rel[3];
8292
8293 memset (rel, 0, sizeof (rel));
8294 if (ABI_64_P (output_bfd))
8295 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8296 else
8297 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8298 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8299
8300 entry = 0;
8301 if (! (mips_elf_create_dynamic_relocation
8302 (output_bfd, info, rel,
8303 e.d.h, NULL, sym->st_value, &entry, sgot)))
8304 return FALSE;
8305 }
8306 else
8307 entry = sym->st_value;
8308 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8309 }
8310 }
8311 }
8312
b49e97c9
TS
8313 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8314 name = h->root.root.string;
8315 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8316 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8317 sym->st_shndx = SHN_ABS;
8318 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8319 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8320 {
8321 sym->st_shndx = SHN_ABS;
8322 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8323 sym->st_value = 1;
8324 }
4a14403c 8325 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8326 {
8327 sym->st_shndx = SHN_ABS;
8328 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8329 sym->st_value = elf_gp (output_bfd);
8330 }
8331 else if (SGI_COMPAT (output_bfd))
8332 {
8333 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8334 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8335 {
8336 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8337 sym->st_other = STO_PROTECTED;
8338 sym->st_value = 0;
8339 sym->st_shndx = SHN_MIPS_DATA;
8340 }
8341 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8342 {
8343 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8344 sym->st_other = STO_PROTECTED;
8345 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8346 sym->st_shndx = SHN_ABS;
8347 }
8348 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8349 {
8350 if (h->type == STT_FUNC)
8351 sym->st_shndx = SHN_MIPS_TEXT;
8352 else if (h->type == STT_OBJECT)
8353 sym->st_shndx = SHN_MIPS_DATA;
8354 }
8355 }
8356
8357 /* Handle the IRIX6-specific symbols. */
8358 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8359 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8360
8361 if (! info->shared)
8362 {
8363 if (! mips_elf_hash_table (info)->use_rld_obj_head
8364 && (strcmp (name, "__rld_map") == 0
8365 || strcmp (name, "__RLD_MAP") == 0))
8366 {
8367 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8368 BFD_ASSERT (s != NULL);
8369 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8370 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8371 if (mips_elf_hash_table (info)->rld_value == 0)
8372 mips_elf_hash_table (info)->rld_value = sym->st_value;
8373 }
8374 else if (mips_elf_hash_table (info)->use_rld_obj_head
8375 && strcmp (name, "__rld_obj_head") == 0)
8376 {
8377 /* IRIX6 does not use a .rld_map section. */
8378 if (IRIX_COMPAT (output_bfd) == ict_irix5
8379 || IRIX_COMPAT (output_bfd) == ict_none)
8380 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8381 != NULL);
8382 mips_elf_hash_table (info)->rld_value = sym->st_value;
8383 }
8384 }
8385
8386 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
8387 if (sym->st_other == STO_MIPS16)
8388 sym->st_value &= ~1;
b49e97c9 8389
b34976b6 8390 return TRUE;
b49e97c9
TS
8391}
8392
0a44bf69
RS
8393/* Likewise, for VxWorks. */
8394
8395bfd_boolean
8396_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8397 struct bfd_link_info *info,
8398 struct elf_link_hash_entry *h,
8399 Elf_Internal_Sym *sym)
8400{
8401 bfd *dynobj;
8402 asection *sgot;
8403 struct mips_got_info *g;
8404 struct mips_elf_link_hash_table *htab;
8405
8406 htab = mips_elf_hash_table (info);
8407 dynobj = elf_hash_table (info)->dynobj;
8408
8409 if (h->plt.offset != (bfd_vma) -1)
8410 {
6d79d2ed 8411 bfd_byte *loc;
0a44bf69
RS
8412 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8413 Elf_Internal_Rela rel;
8414 static const bfd_vma *plt_entry;
8415
8416 BFD_ASSERT (h->dynindx != -1);
8417 BFD_ASSERT (htab->splt != NULL);
8418 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8419
8420 /* Calculate the address of the .plt entry. */
8421 plt_address = (htab->splt->output_section->vma
8422 + htab->splt->output_offset
8423 + h->plt.offset);
8424
8425 /* Calculate the index of the entry. */
8426 plt_index = ((h->plt.offset - htab->plt_header_size)
8427 / htab->plt_entry_size);
8428
8429 /* Calculate the address of the .got.plt entry. */
8430 got_address = (htab->sgotplt->output_section->vma
8431 + htab->sgotplt->output_offset
8432 + plt_index * 4);
8433
8434 /* Calculate the offset of the .got.plt entry from
8435 _GLOBAL_OFFSET_TABLE_. */
8436 got_offset = mips_elf_gotplt_index (info, h);
8437
8438 /* Calculate the offset for the branch at the start of the PLT
8439 entry. The branch jumps to the beginning of .plt. */
8440 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8441
8442 /* Fill in the initial value of the .got.plt entry. */
8443 bfd_put_32 (output_bfd, plt_address,
8444 htab->sgotplt->contents + plt_index * 4);
8445
8446 /* Find out where the .plt entry should go. */
8447 loc = htab->splt->contents + h->plt.offset;
8448
8449 if (info->shared)
8450 {
8451 plt_entry = mips_vxworks_shared_plt_entry;
8452 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8453 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8454 }
8455 else
8456 {
8457 bfd_vma got_address_high, got_address_low;
8458
8459 plt_entry = mips_vxworks_exec_plt_entry;
8460 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8461 got_address_low = got_address & 0xffff;
8462
8463 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8464 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8465 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8466 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8467 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8468 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8469 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8470 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8471
8472 loc = (htab->srelplt2->contents
8473 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8474
8475 /* Emit a relocation for the .got.plt entry. */
8476 rel.r_offset = got_address;
8477 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8478 rel.r_addend = h->plt.offset;
8479 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8480
8481 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8482 loc += sizeof (Elf32_External_Rela);
8483 rel.r_offset = plt_address + 8;
8484 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8485 rel.r_addend = got_offset;
8486 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8487
8488 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8489 loc += sizeof (Elf32_External_Rela);
8490 rel.r_offset += 4;
8491 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8492 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8493 }
8494
8495 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8496 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8497 rel.r_offset = got_address;
8498 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8499 rel.r_addend = 0;
8500 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8501
8502 if (!h->def_regular)
8503 sym->st_shndx = SHN_UNDEF;
8504 }
8505
8506 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8507
8508 sgot = mips_elf_got_section (dynobj, FALSE);
8509 BFD_ASSERT (sgot != NULL);
8510 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8511 g = mips_elf_section_data (sgot)->u.got_info;
8512 BFD_ASSERT (g != NULL);
8513
8514 /* See if this symbol has an entry in the GOT. */
8515 if (g->global_gotsym != NULL
8516 && h->dynindx >= g->global_gotsym->dynindx)
8517 {
8518 bfd_vma offset;
8519 Elf_Internal_Rela outrel;
8520 bfd_byte *loc;
8521 asection *s;
8522
8523 /* Install the symbol value in the GOT. */
8524 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8525 R_MIPS_GOT16, info);
8526 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8527
8528 /* Add a dynamic relocation for it. */
8529 s = mips_elf_rel_dyn_section (info, FALSE);
8530 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8531 outrel.r_offset = (sgot->output_section->vma
8532 + sgot->output_offset
8533 + offset);
8534 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8535 outrel.r_addend = 0;
8536 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8537 }
8538
8539 /* Emit a copy reloc, if needed. */
8540 if (h->needs_copy)
8541 {
8542 Elf_Internal_Rela rel;
8543
8544 BFD_ASSERT (h->dynindx != -1);
8545
8546 rel.r_offset = (h->root.u.def.section->output_section->vma
8547 + h->root.u.def.section->output_offset
8548 + h->root.u.def.value);
8549 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8550 rel.r_addend = 0;
8551 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8552 htab->srelbss->contents
8553 + (htab->srelbss->reloc_count
8554 * sizeof (Elf32_External_Rela)));
8555 ++htab->srelbss->reloc_count;
8556 }
8557
8558 /* If this is a mips16 symbol, force the value to be even. */
8559 if (sym->st_other == STO_MIPS16)
8560 sym->st_value &= ~1;
8561
8562 return TRUE;
8563}
8564
8565/* Install the PLT header for a VxWorks executable and finalize the
8566 contents of .rela.plt.unloaded. */
8567
8568static void
8569mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8570{
8571 Elf_Internal_Rela rela;
8572 bfd_byte *loc;
8573 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8574 static const bfd_vma *plt_entry;
8575 struct mips_elf_link_hash_table *htab;
8576
8577 htab = mips_elf_hash_table (info);
8578 plt_entry = mips_vxworks_exec_plt0_entry;
8579
8580 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8581 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8582 + htab->root.hgot->root.u.def.section->output_offset
8583 + htab->root.hgot->root.u.def.value);
8584
8585 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8586 got_value_low = got_value & 0xffff;
8587
8588 /* Calculate the address of the PLT header. */
8589 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8590
8591 /* Install the PLT header. */
8592 loc = htab->splt->contents;
8593 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8594 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8595 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8596 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8597 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8598 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8599
8600 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8601 loc = htab->srelplt2->contents;
8602 rela.r_offset = plt_address;
8603 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8604 rela.r_addend = 0;
8605 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8606 loc += sizeof (Elf32_External_Rela);
8607
8608 /* Output the relocation for the following addiu of
8609 %lo(_GLOBAL_OFFSET_TABLE_). */
8610 rela.r_offset += 4;
8611 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8612 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8613 loc += sizeof (Elf32_External_Rela);
8614
8615 /* Fix up the remaining relocations. They may have the wrong
8616 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8617 in which symbols were output. */
8618 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8619 {
8620 Elf_Internal_Rela rel;
8621
8622 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8623 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8624 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8625 loc += sizeof (Elf32_External_Rela);
8626
8627 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8628 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8629 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8630 loc += sizeof (Elf32_External_Rela);
8631
8632 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8633 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8634 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8635 loc += sizeof (Elf32_External_Rela);
8636 }
8637}
8638
8639/* Install the PLT header for a VxWorks shared library. */
8640
8641static void
8642mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8643{
8644 unsigned int i;
8645 struct mips_elf_link_hash_table *htab;
8646
8647 htab = mips_elf_hash_table (info);
8648
8649 /* We just need to copy the entry byte-by-byte. */
8650 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8651 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8652 htab->splt->contents + i * 4);
8653}
8654
b49e97c9
TS
8655/* Finish up the dynamic sections. */
8656
b34976b6 8657bfd_boolean
9719ad41
RS
8658_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8659 struct bfd_link_info *info)
b49e97c9
TS
8660{
8661 bfd *dynobj;
8662 asection *sdyn;
8663 asection *sgot;
f4416af6 8664 struct mips_got_info *gg, *g;
0a44bf69 8665 struct mips_elf_link_hash_table *htab;
b49e97c9 8666
0a44bf69 8667 htab = mips_elf_hash_table (info);
b49e97c9
TS
8668 dynobj = elf_hash_table (info)->dynobj;
8669
8670 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8671
f4416af6 8672 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8673 if (sgot == NULL)
f4416af6 8674 gg = g = NULL;
b49e97c9
TS
8675 else
8676 {
f4416af6
AO
8677 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8678 gg = mips_elf_section_data (sgot)->u.got_info;
8679 BFD_ASSERT (gg != NULL);
8680 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
8681 BFD_ASSERT (g != NULL);
8682 }
8683
8684 if (elf_hash_table (info)->dynamic_sections_created)
8685 {
8686 bfd_byte *b;
943284cc 8687 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
8688
8689 BFD_ASSERT (sdyn != NULL);
8690 BFD_ASSERT (g != NULL);
8691
8692 for (b = sdyn->contents;
eea6121a 8693 b < sdyn->contents + sdyn->size;
b49e97c9
TS
8694 b += MIPS_ELF_DYN_SIZE (dynobj))
8695 {
8696 Elf_Internal_Dyn dyn;
8697 const char *name;
8698 size_t elemsize;
8699 asection *s;
b34976b6 8700 bfd_boolean swap_out_p;
b49e97c9
TS
8701
8702 /* Read in the current dynamic entry. */
8703 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8704
8705 /* Assume that we're going to modify it and write it out. */
b34976b6 8706 swap_out_p = TRUE;
b49e97c9
TS
8707
8708 switch (dyn.d_tag)
8709 {
8710 case DT_RELENT:
b49e97c9
TS
8711 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8712 break;
8713
0a44bf69
RS
8714 case DT_RELAENT:
8715 BFD_ASSERT (htab->is_vxworks);
8716 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8717 break;
8718
b49e97c9
TS
8719 case DT_STRSZ:
8720 /* Rewrite DT_STRSZ. */
8721 dyn.d_un.d_val =
8722 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8723 break;
8724
8725 case DT_PLTGOT:
8726 name = ".got";
0a44bf69
RS
8727 if (htab->is_vxworks)
8728 {
8729 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8730 of the ".got" section in DYNOBJ. */
8731 s = bfd_get_section_by_name (dynobj, name);
8732 BFD_ASSERT (s != NULL);
8733 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8734 }
8735 else
8736 {
8737 s = bfd_get_section_by_name (output_bfd, name);
8738 BFD_ASSERT (s != NULL);
8739 dyn.d_un.d_ptr = s->vma;
8740 }
b49e97c9
TS
8741 break;
8742
8743 case DT_MIPS_RLD_VERSION:
8744 dyn.d_un.d_val = 1; /* XXX */
8745 break;
8746
8747 case DT_MIPS_FLAGS:
8748 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8749 break;
8750
b49e97c9 8751 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
8752 {
8753 time_t t;
8754 time (&t);
8755 dyn.d_un.d_val = t;
8756 }
b49e97c9
TS
8757 break;
8758
8759 case DT_MIPS_ICHECKSUM:
8760 /* XXX FIXME: */
b34976b6 8761 swap_out_p = FALSE;
b49e97c9
TS
8762 break;
8763
8764 case DT_MIPS_IVERSION:
8765 /* XXX FIXME: */
b34976b6 8766 swap_out_p = FALSE;
b49e97c9
TS
8767 break;
8768
8769 case DT_MIPS_BASE_ADDRESS:
8770 s = output_bfd->sections;
8771 BFD_ASSERT (s != NULL);
8772 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8773 break;
8774
8775 case DT_MIPS_LOCAL_GOTNO:
8776 dyn.d_un.d_val = g->local_gotno;
8777 break;
8778
8779 case DT_MIPS_UNREFEXTNO:
8780 /* The index into the dynamic symbol table which is the
8781 entry of the first external symbol that is not
8782 referenced within the same object. */
8783 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8784 break;
8785
8786 case DT_MIPS_GOTSYM:
f4416af6 8787 if (gg->global_gotsym)
b49e97c9 8788 {
f4416af6 8789 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
8790 break;
8791 }
8792 /* In case if we don't have global got symbols we default
8793 to setting DT_MIPS_GOTSYM to the same value as
8794 DT_MIPS_SYMTABNO, so we just fall through. */
8795
8796 case DT_MIPS_SYMTABNO:
8797 name = ".dynsym";
8798 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8799 s = bfd_get_section_by_name (output_bfd, name);
8800 BFD_ASSERT (s != NULL);
8801
eea6121a 8802 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
8803 break;
8804
8805 case DT_MIPS_HIPAGENO:
0a44bf69 8806 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
8807 break;
8808
8809 case DT_MIPS_RLD_MAP:
8810 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8811 break;
8812
8813 case DT_MIPS_OPTIONS:
8814 s = (bfd_get_section_by_name
8815 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8816 dyn.d_un.d_ptr = s->vma;
8817 break;
8818
0a44bf69
RS
8819 case DT_RELASZ:
8820 BFD_ASSERT (htab->is_vxworks);
8821 /* The count does not include the JUMP_SLOT relocations. */
8822 if (htab->srelplt)
8823 dyn.d_un.d_val -= htab->srelplt->size;
8824 break;
8825
8826 case DT_PLTREL:
8827 BFD_ASSERT (htab->is_vxworks);
8828 dyn.d_un.d_val = DT_RELA;
8829 break;
8830
8831 case DT_PLTRELSZ:
8832 BFD_ASSERT (htab->is_vxworks);
8833 dyn.d_un.d_val = htab->srelplt->size;
8834 break;
8835
8836 case DT_JMPREL:
8837 BFD_ASSERT (htab->is_vxworks);
8838 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8839 + htab->srelplt->output_offset);
8840 break;
8841
943284cc
DJ
8842 case DT_TEXTREL:
8843 /* If we didn't need any text relocations after all, delete
8844 the dynamic tag. */
8845 if (!(info->flags & DF_TEXTREL))
8846 {
8847 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8848 swap_out_p = FALSE;
8849 }
8850 break;
8851
8852 case DT_FLAGS:
8853 /* If we didn't need any text relocations after all, clear
8854 DF_TEXTREL from DT_FLAGS. */
8855 if (!(info->flags & DF_TEXTREL))
8856 dyn.d_un.d_val &= ~DF_TEXTREL;
8857 else
8858 swap_out_p = FALSE;
8859 break;
8860
b49e97c9 8861 default:
b34976b6 8862 swap_out_p = FALSE;
b49e97c9
TS
8863 break;
8864 }
8865
943284cc 8866 if (swap_out_p || dyn_skipped)
b49e97c9 8867 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
8868 (dynobj, &dyn, b - dyn_skipped);
8869
8870 if (dyn_to_skip)
8871 {
8872 dyn_skipped += dyn_to_skip;
8873 dyn_to_skip = 0;
8874 }
b49e97c9 8875 }
943284cc
DJ
8876
8877 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8878 if (dyn_skipped > 0)
8879 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
8880 }
8881
eea6121a 8882 if (sgot != NULL && sgot->size > 0)
b49e97c9 8883 {
0a44bf69
RS
8884 if (htab->is_vxworks)
8885 {
8886 /* The first entry of the global offset table points to the
8887 ".dynamic" section. The second is initialized by the
8888 loader and contains the shared library identifier.
8889 The third is also initialized by the loader and points
8890 to the lazy resolution stub. */
8891 MIPS_ELF_PUT_WORD (output_bfd,
8892 sdyn->output_offset + sdyn->output_section->vma,
8893 sgot->contents);
8894 MIPS_ELF_PUT_WORD (output_bfd, 0,
8895 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8896 MIPS_ELF_PUT_WORD (output_bfd, 0,
8897 sgot->contents
8898 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8899 }
8900 else
8901 {
8902 /* The first entry of the global offset table will be filled at
8903 runtime. The second entry will be used by some runtime loaders.
8904 This isn't the case of IRIX rld. */
8905 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8906 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8907 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8908 }
b49e97c9 8909
54938e2a
TS
8910 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8911 = MIPS_ELF_GOT_SIZE (output_bfd);
8912 }
b49e97c9 8913
f4416af6
AO
8914 /* Generate dynamic relocations for the non-primary gots. */
8915 if (gg != NULL && gg->next)
8916 {
8917 Elf_Internal_Rela rel[3];
8918 bfd_vma addend = 0;
8919
8920 memset (rel, 0, sizeof (rel));
8921 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8922
8923 for (g = gg->next; g->next != gg; g = g->next)
8924 {
0f20cc35
DJ
8925 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8926 + g->next->tls_gotno;
f4416af6 8927
9719ad41 8928 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 8929 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 8930 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
8931 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8932
8933 if (! info->shared)
8934 continue;
8935
8936 while (index < g->assigned_gotno)
8937 {
8938 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8939 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8940 if (!(mips_elf_create_dynamic_relocation
8941 (output_bfd, info, rel, NULL,
8942 bfd_abs_section_ptr,
8943 0, &addend, sgot)))
8944 return FALSE;
8945 BFD_ASSERT (addend == 0);
8946 }
8947 }
8948 }
8949
3133ddbf
DJ
8950 /* The generation of dynamic relocations for the non-primary gots
8951 adds more dynamic relocations. We cannot count them until
8952 here. */
8953
8954 if (elf_hash_table (info)->dynamic_sections_created)
8955 {
8956 bfd_byte *b;
8957 bfd_boolean swap_out_p;
8958
8959 BFD_ASSERT (sdyn != NULL);
8960
8961 for (b = sdyn->contents;
8962 b < sdyn->contents + sdyn->size;
8963 b += MIPS_ELF_DYN_SIZE (dynobj))
8964 {
8965 Elf_Internal_Dyn dyn;
8966 asection *s;
8967
8968 /* Read in the current dynamic entry. */
8969 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8970
8971 /* Assume that we're going to modify it and write it out. */
8972 swap_out_p = TRUE;
8973
8974 switch (dyn.d_tag)
8975 {
8976 case DT_RELSZ:
8977 /* Reduce DT_RELSZ to account for any relocations we
8978 decided not to make. This is for the n64 irix rld,
8979 which doesn't seem to apply any relocations if there
8980 are trailing null entries. */
0a44bf69 8981 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
8982 dyn.d_un.d_val = (s->reloc_count
8983 * (ABI_64_P (output_bfd)
8984 ? sizeof (Elf64_Mips_External_Rel)
8985 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
8986 /* Adjust the section size too. Tools like the prelinker
8987 can reasonably expect the values to the same. */
8988 elf_section_data (s->output_section)->this_hdr.sh_size
8989 = dyn.d_un.d_val;
3133ddbf
DJ
8990 break;
8991
8992 default:
8993 swap_out_p = FALSE;
8994 break;
8995 }
8996
8997 if (swap_out_p)
8998 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8999 (dynobj, &dyn, b);
9000 }
9001 }
9002
b49e97c9 9003 {
b49e97c9
TS
9004 asection *s;
9005 Elf32_compact_rel cpt;
9006
b49e97c9
TS
9007 if (SGI_COMPAT (output_bfd))
9008 {
9009 /* Write .compact_rel section out. */
9010 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9011 if (s != NULL)
9012 {
9013 cpt.id1 = 1;
9014 cpt.num = s->reloc_count;
9015 cpt.id2 = 2;
9016 cpt.offset = (s->output_section->filepos
9017 + sizeof (Elf32_External_compact_rel));
9018 cpt.reserved0 = 0;
9019 cpt.reserved1 = 0;
9020 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9021 ((Elf32_External_compact_rel *)
9022 s->contents));
9023
9024 /* Clean up a dummy stub function entry in .text. */
9025 s = bfd_get_section_by_name (dynobj,
9026 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9027 if (s != NULL)
9028 {
9029 file_ptr dummy_offset;
9030
5108fc1b
RS
9031 BFD_ASSERT (s->size >= htab->function_stub_size);
9032 dummy_offset = s->size - htab->function_stub_size;
b49e97c9 9033 memset (s->contents + dummy_offset, 0,
5108fc1b 9034 htab->function_stub_size);
b49e97c9
TS
9035 }
9036 }
9037 }
9038
0a44bf69
RS
9039 /* The psABI says that the dynamic relocations must be sorted in
9040 increasing order of r_symndx. The VxWorks EABI doesn't require
9041 this, and because the code below handles REL rather than RELA
9042 relocations, using it for VxWorks would be outright harmful. */
9043 if (!htab->is_vxworks)
b49e97c9 9044 {
0a44bf69
RS
9045 s = mips_elf_rel_dyn_section (info, FALSE);
9046 if (s != NULL
9047 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9048 {
9049 reldyn_sorting_bfd = output_bfd;
b49e97c9 9050
0a44bf69
RS
9051 if (ABI_64_P (output_bfd))
9052 qsort ((Elf64_External_Rel *) s->contents + 1,
9053 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9054 sort_dynamic_relocs_64);
9055 else
9056 qsort ((Elf32_External_Rel *) s->contents + 1,
9057 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9058 sort_dynamic_relocs);
9059 }
b49e97c9 9060 }
b49e97c9
TS
9061 }
9062
0a44bf69
RS
9063 if (htab->is_vxworks && htab->splt->size > 0)
9064 {
9065 if (info->shared)
9066 mips_vxworks_finish_shared_plt (output_bfd, info);
9067 else
9068 mips_vxworks_finish_exec_plt (output_bfd, info);
9069 }
b34976b6 9070 return TRUE;
b49e97c9
TS
9071}
9072
b49e97c9 9073
64543e1a
RS
9074/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9075
9076static void
9719ad41 9077mips_set_isa_flags (bfd *abfd)
b49e97c9 9078{
64543e1a 9079 flagword val;
b49e97c9
TS
9080
9081 switch (bfd_get_mach (abfd))
9082 {
9083 default:
9084 case bfd_mach_mips3000:
9085 val = E_MIPS_ARCH_1;
9086 break;
9087
9088 case bfd_mach_mips3900:
9089 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9090 break;
9091
9092 case bfd_mach_mips6000:
9093 val = E_MIPS_ARCH_2;
9094 break;
9095
9096 case bfd_mach_mips4000:
9097 case bfd_mach_mips4300:
9098 case bfd_mach_mips4400:
9099 case bfd_mach_mips4600:
9100 val = E_MIPS_ARCH_3;
9101 break;
9102
9103 case bfd_mach_mips4010:
9104 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9105 break;
9106
9107 case bfd_mach_mips4100:
9108 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9109 break;
9110
9111 case bfd_mach_mips4111:
9112 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9113 break;
9114
00707a0e
RS
9115 case bfd_mach_mips4120:
9116 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9117 break;
9118
b49e97c9
TS
9119 case bfd_mach_mips4650:
9120 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9121 break;
9122
00707a0e
RS
9123 case bfd_mach_mips5400:
9124 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9125 break;
9126
9127 case bfd_mach_mips5500:
9128 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9129 break;
9130
0d2e43ed
ILT
9131 case bfd_mach_mips9000:
9132 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9133 break;
9134
b49e97c9 9135 case bfd_mach_mips5000:
5a7ea749 9136 case bfd_mach_mips7000:
b49e97c9
TS
9137 case bfd_mach_mips8000:
9138 case bfd_mach_mips10000:
9139 case bfd_mach_mips12000:
9140 val = E_MIPS_ARCH_4;
9141 break;
9142
9143 case bfd_mach_mips5:
9144 val = E_MIPS_ARCH_5;
9145 break;
9146
9147 case bfd_mach_mips_sb1:
9148 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9149 break;
9150
9151 case bfd_mach_mipsisa32:
9152 val = E_MIPS_ARCH_32;
9153 break;
9154
9155 case bfd_mach_mipsisa64:
9156 val = E_MIPS_ARCH_64;
af7ee8bf
CD
9157 break;
9158
9159 case bfd_mach_mipsisa32r2:
9160 val = E_MIPS_ARCH_32R2;
9161 break;
5f74bc13
CD
9162
9163 case bfd_mach_mipsisa64r2:
9164 val = E_MIPS_ARCH_64R2;
9165 break;
b49e97c9 9166 }
b49e97c9
TS
9167 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9168 elf_elfheader (abfd)->e_flags |= val;
9169
64543e1a
RS
9170}
9171
9172
9173/* The final processing done just before writing out a MIPS ELF object
9174 file. This gets the MIPS architecture right based on the machine
9175 number. This is used by both the 32-bit and the 64-bit ABI. */
9176
9177void
9719ad41
RS
9178_bfd_mips_elf_final_write_processing (bfd *abfd,
9179 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
9180{
9181 unsigned int i;
9182 Elf_Internal_Shdr **hdrpp;
9183 const char *name;
9184 asection *sec;
9185
9186 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9187 is nonzero. This is for compatibility with old objects, which used
9188 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9189 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9190 mips_set_isa_flags (abfd);
9191
b49e97c9
TS
9192 /* Set the sh_info field for .gptab sections and other appropriate
9193 info for each special section. */
9194 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9195 i < elf_numsections (abfd);
9196 i++, hdrpp++)
9197 {
9198 switch ((*hdrpp)->sh_type)
9199 {
9200 case SHT_MIPS_MSYM:
9201 case SHT_MIPS_LIBLIST:
9202 sec = bfd_get_section_by_name (abfd, ".dynstr");
9203 if (sec != NULL)
9204 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9205 break;
9206
9207 case SHT_MIPS_GPTAB:
9208 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9209 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9210 BFD_ASSERT (name != NULL
0112cd26 9211 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
9212 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9213 BFD_ASSERT (sec != NULL);
9214 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9215 break;
9216
9217 case SHT_MIPS_CONTENT:
9218 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9219 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9220 BFD_ASSERT (name != NULL
0112cd26 9221 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
9222 sec = bfd_get_section_by_name (abfd,
9223 name + sizeof ".MIPS.content" - 1);
9224 BFD_ASSERT (sec != NULL);
9225 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9226 break;
9227
9228 case SHT_MIPS_SYMBOL_LIB:
9229 sec = bfd_get_section_by_name (abfd, ".dynsym");
9230 if (sec != NULL)
9231 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9232 sec = bfd_get_section_by_name (abfd, ".liblist");
9233 if (sec != NULL)
9234 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9235 break;
9236
9237 case SHT_MIPS_EVENTS:
9238 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9239 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9240 BFD_ASSERT (name != NULL);
0112cd26 9241 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
9242 sec = bfd_get_section_by_name (abfd,
9243 name + sizeof ".MIPS.events" - 1);
9244 else
9245 {
0112cd26 9246 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
9247 sec = bfd_get_section_by_name (abfd,
9248 (name
9249 + sizeof ".MIPS.post_rel" - 1));
9250 }
9251 BFD_ASSERT (sec != NULL);
9252 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9253 break;
9254
9255 }
9256 }
9257}
9258\f
8dc1a139 9259/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9260 segments. */
9261
9262int
a6b96beb
AM
9263_bfd_mips_elf_additional_program_headers (bfd *abfd,
9264 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9265{
9266 asection *s;
9267 int ret = 0;
9268
9269 /* See if we need a PT_MIPS_REGINFO segment. */
9270 s = bfd_get_section_by_name (abfd, ".reginfo");
9271 if (s && (s->flags & SEC_LOAD))
9272 ++ret;
9273
9274 /* See if we need a PT_MIPS_OPTIONS segment. */
9275 if (IRIX_COMPAT (abfd) == ict_irix6
9276 && bfd_get_section_by_name (abfd,
9277 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9278 ++ret;
9279
9280 /* See if we need a PT_MIPS_RTPROC segment. */
9281 if (IRIX_COMPAT (abfd) == ict_irix5
9282 && bfd_get_section_by_name (abfd, ".dynamic")
9283 && bfd_get_section_by_name (abfd, ".mdebug"))
9284 ++ret;
9285
98c904a8
RS
9286 /* Allocate a PT_NULL header in dynamic objects. See
9287 _bfd_mips_elf_modify_segment_map for details. */
9288 if (!SGI_COMPAT (abfd)
9289 && bfd_get_section_by_name (abfd, ".dynamic"))
9290 ++ret;
9291
b49e97c9
TS
9292 return ret;
9293}
9294
8dc1a139 9295/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9296
b34976b6 9297bfd_boolean
9719ad41
RS
9298_bfd_mips_elf_modify_segment_map (bfd *abfd,
9299 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9300{
9301 asection *s;
9302 struct elf_segment_map *m, **pm;
9303 bfd_size_type amt;
9304
9305 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9306 segment. */
9307 s = bfd_get_section_by_name (abfd, ".reginfo");
9308 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9309 {
9310 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9311 if (m->p_type == PT_MIPS_REGINFO)
9312 break;
9313 if (m == NULL)
9314 {
9315 amt = sizeof *m;
9719ad41 9316 m = bfd_zalloc (abfd, amt);
b49e97c9 9317 if (m == NULL)
b34976b6 9318 return FALSE;
b49e97c9
TS
9319
9320 m->p_type = PT_MIPS_REGINFO;
9321 m->count = 1;
9322 m->sections[0] = s;
9323
9324 /* We want to put it after the PHDR and INTERP segments. */
9325 pm = &elf_tdata (abfd)->segment_map;
9326 while (*pm != NULL
9327 && ((*pm)->p_type == PT_PHDR
9328 || (*pm)->p_type == PT_INTERP))
9329 pm = &(*pm)->next;
9330
9331 m->next = *pm;
9332 *pm = m;
9333 }
9334 }
9335
9336 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9337 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9338 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9339 table. */
c1fd6598
AO
9340 if (NEWABI_P (abfd)
9341 /* On non-IRIX6 new abi, we'll have already created a segment
9342 for this section, so don't create another. I'm not sure this
9343 is not also the case for IRIX 6, but I can't test it right
9344 now. */
9345 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9346 {
9347 for (s = abfd->sections; s; s = s->next)
9348 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9349 break;
9350
9351 if (s)
9352 {
9353 struct elf_segment_map *options_segment;
9354
98a8deaf
RS
9355 pm = &elf_tdata (abfd)->segment_map;
9356 while (*pm != NULL
9357 && ((*pm)->p_type == PT_PHDR
9358 || (*pm)->p_type == PT_INTERP))
9359 pm = &(*pm)->next;
b49e97c9 9360
8ded5a0f
AM
9361 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9362 {
9363 amt = sizeof (struct elf_segment_map);
9364 options_segment = bfd_zalloc (abfd, amt);
9365 options_segment->next = *pm;
9366 options_segment->p_type = PT_MIPS_OPTIONS;
9367 options_segment->p_flags = PF_R;
9368 options_segment->p_flags_valid = TRUE;
9369 options_segment->count = 1;
9370 options_segment->sections[0] = s;
9371 *pm = options_segment;
9372 }
b49e97c9
TS
9373 }
9374 }
9375 else
9376 {
9377 if (IRIX_COMPAT (abfd) == ict_irix5)
9378 {
9379 /* If there are .dynamic and .mdebug sections, we make a room
9380 for the RTPROC header. FIXME: Rewrite without section names. */
9381 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9382 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9383 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9384 {
9385 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9386 if (m->p_type == PT_MIPS_RTPROC)
9387 break;
9388 if (m == NULL)
9389 {
9390 amt = sizeof *m;
9719ad41 9391 m = bfd_zalloc (abfd, amt);
b49e97c9 9392 if (m == NULL)
b34976b6 9393 return FALSE;
b49e97c9
TS
9394
9395 m->p_type = PT_MIPS_RTPROC;
9396
9397 s = bfd_get_section_by_name (abfd, ".rtproc");
9398 if (s == NULL)
9399 {
9400 m->count = 0;
9401 m->p_flags = 0;
9402 m->p_flags_valid = 1;
9403 }
9404 else
9405 {
9406 m->count = 1;
9407 m->sections[0] = s;
9408 }
9409
9410 /* We want to put it after the DYNAMIC segment. */
9411 pm = &elf_tdata (abfd)->segment_map;
9412 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9413 pm = &(*pm)->next;
9414 if (*pm != NULL)
9415 pm = &(*pm)->next;
9416
9417 m->next = *pm;
9418 *pm = m;
9419 }
9420 }
9421 }
8dc1a139 9422 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9423 .dynstr, .dynsym, and .hash sections, and everything in
9424 between. */
9425 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9426 pm = &(*pm)->next)
9427 if ((*pm)->p_type == PT_DYNAMIC)
9428 break;
9429 m = *pm;
9430 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9431 {
9432 /* For a normal mips executable the permissions for the PT_DYNAMIC
9433 segment are read, write and execute. We do that here since
9434 the code in elf.c sets only the read permission. This matters
9435 sometimes for the dynamic linker. */
9436 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9437 {
9438 m->p_flags = PF_R | PF_W | PF_X;
9439 m->p_flags_valid = 1;
9440 }
9441 }
f6f62d6f
RS
9442 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9443 glibc's dynamic linker has traditionally derived the number of
9444 tags from the p_filesz field, and sometimes allocates stack
9445 arrays of that size. An overly-big PT_DYNAMIC segment can
9446 be actively harmful in such cases. Making PT_DYNAMIC contain
9447 other sections can also make life hard for the prelinker,
9448 which might move one of the other sections to a different
9449 PT_LOAD segment. */
9450 if (SGI_COMPAT (abfd)
9451 && m != NULL
9452 && m->count == 1
9453 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
9454 {
9455 static const char *sec_names[] =
9456 {
9457 ".dynamic", ".dynstr", ".dynsym", ".hash"
9458 };
9459 bfd_vma low, high;
9460 unsigned int i, c;
9461 struct elf_segment_map *n;
9462
792b4a53 9463 low = ~(bfd_vma) 0;
b49e97c9
TS
9464 high = 0;
9465 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9466 {
9467 s = bfd_get_section_by_name (abfd, sec_names[i]);
9468 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9469 {
9470 bfd_size_type sz;
9471
9472 if (low > s->vma)
9473 low = s->vma;
eea6121a 9474 sz = s->size;
b49e97c9
TS
9475 if (high < s->vma + sz)
9476 high = s->vma + sz;
9477 }
9478 }
9479
9480 c = 0;
9481 for (s = abfd->sections; s != NULL; s = s->next)
9482 if ((s->flags & SEC_LOAD) != 0
9483 && s->vma >= low
eea6121a 9484 && s->vma + s->size <= high)
b49e97c9
TS
9485 ++c;
9486
9487 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 9488 n = bfd_zalloc (abfd, amt);
b49e97c9 9489 if (n == NULL)
b34976b6 9490 return FALSE;
b49e97c9
TS
9491 *n = *m;
9492 n->count = c;
9493
9494 i = 0;
9495 for (s = abfd->sections; s != NULL; s = s->next)
9496 {
9497 if ((s->flags & SEC_LOAD) != 0
9498 && s->vma >= low
eea6121a 9499 && s->vma + s->size <= high)
b49e97c9
TS
9500 {
9501 n->sections[i] = s;
9502 ++i;
9503 }
9504 }
9505
9506 *pm = n;
9507 }
9508 }
9509
98c904a8
RS
9510 /* Allocate a spare program header in dynamic objects so that tools
9511 like the prelinker can add an extra PT_LOAD entry.
9512
9513 If the prelinker needs to make room for a new PT_LOAD entry, its
9514 standard procedure is to move the first (read-only) sections into
9515 the new (writable) segment. However, the MIPS ABI requires
9516 .dynamic to be in a read-only segment, and the section will often
9517 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9518
9519 Although the prelinker could in principle move .dynamic to a
9520 writable segment, it seems better to allocate a spare program
9521 header instead, and avoid the need to move any sections.
9522 There is a long tradition of allocating spare dynamic tags,
9523 so allocating a spare program header seems like a natural
9524 extension. */
9525 if (!SGI_COMPAT (abfd)
9526 && bfd_get_section_by_name (abfd, ".dynamic"))
9527 {
9528 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9529 if ((*pm)->p_type == PT_NULL)
9530 break;
9531 if (*pm == NULL)
9532 {
9533 m = bfd_zalloc (abfd, sizeof (*m));
9534 if (m == NULL)
9535 return FALSE;
9536
9537 m->p_type = PT_NULL;
9538 *pm = m;
9539 }
9540 }
9541
b34976b6 9542 return TRUE;
b49e97c9
TS
9543}
9544\f
9545/* Return the section that should be marked against GC for a given
9546 relocation. */
9547
9548asection *
9719ad41 9549_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 9550 struct bfd_link_info *info,
9719ad41
RS
9551 Elf_Internal_Rela *rel,
9552 struct elf_link_hash_entry *h,
9553 Elf_Internal_Sym *sym)
b49e97c9
TS
9554{
9555 /* ??? Do mips16 stub sections need to be handled special? */
9556
9557 if (h != NULL)
07adf181
AM
9558 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9559 {
9560 case R_MIPS_GNU_VTINHERIT:
9561 case R_MIPS_GNU_VTENTRY:
9562 return NULL;
9563 }
b49e97c9 9564
07adf181 9565 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
9566}
9567
9568/* Update the got entry reference counts for the section being removed. */
9569
b34976b6 9570bfd_boolean
9719ad41
RS
9571_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9572 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9573 asection *sec ATTRIBUTE_UNUSED,
9574 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
9575{
9576#if 0
9577 Elf_Internal_Shdr *symtab_hdr;
9578 struct elf_link_hash_entry **sym_hashes;
9579 bfd_signed_vma *local_got_refcounts;
9580 const Elf_Internal_Rela *rel, *relend;
9581 unsigned long r_symndx;
9582 struct elf_link_hash_entry *h;
9583
9584 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9585 sym_hashes = elf_sym_hashes (abfd);
9586 local_got_refcounts = elf_local_got_refcounts (abfd);
9587
9588 relend = relocs + sec->reloc_count;
9589 for (rel = relocs; rel < relend; rel++)
9590 switch (ELF_R_TYPE (abfd, rel->r_info))
9591 {
9592 case R_MIPS_GOT16:
9593 case R_MIPS_CALL16:
9594 case R_MIPS_CALL_HI16:
9595 case R_MIPS_CALL_LO16:
9596 case R_MIPS_GOT_HI16:
9597 case R_MIPS_GOT_LO16:
4a14403c
TS
9598 case R_MIPS_GOT_DISP:
9599 case R_MIPS_GOT_PAGE:
9600 case R_MIPS_GOT_OFST:
b49e97c9
TS
9601 /* ??? It would seem that the existing MIPS code does no sort
9602 of reference counting or whatnot on its GOT and PLT entries,
9603 so it is not possible to garbage collect them at this time. */
9604 break;
9605
9606 default:
9607 break;
9608 }
9609#endif
9610
b34976b6 9611 return TRUE;
b49e97c9
TS
9612}
9613\f
9614/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9615 hiding the old indirect symbol. Process additional relocation
9616 information. Also called for weakdefs, in which case we just let
9617 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9618
9619void
fcfa13d2 9620_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
9621 struct elf_link_hash_entry *dir,
9622 struct elf_link_hash_entry *ind)
b49e97c9
TS
9623{
9624 struct mips_elf_link_hash_entry *dirmips, *indmips;
9625
fcfa13d2 9626 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
9627
9628 if (ind->root.type != bfd_link_hash_indirect)
9629 return;
9630
9631 dirmips = (struct mips_elf_link_hash_entry *) dir;
9632 indmips = (struct mips_elf_link_hash_entry *) ind;
9633 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9634 if (indmips->readonly_reloc)
b34976b6 9635 dirmips->readonly_reloc = TRUE;
b49e97c9 9636 if (indmips->no_fn_stub)
b34976b6 9637 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
9638
9639 if (dirmips->tls_type == 0)
9640 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
9641}
9642
9643void
9719ad41
RS
9644_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9645 struct elf_link_hash_entry *entry,
9646 bfd_boolean force_local)
b49e97c9
TS
9647{
9648 bfd *dynobj;
9649 asection *got;
9650 struct mips_got_info *g;
9651 struct mips_elf_link_hash_entry *h;
7c5fcef7 9652
b49e97c9 9653 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
9654 if (h->forced_local)
9655 return;
4b555070 9656 h->forced_local = force_local;
7c5fcef7 9657
b49e97c9 9658 dynobj = elf_hash_table (info)->dynobj;
8d1d654f 9659 if (dynobj != NULL && force_local && h->root.type != STT_TLS
003b8e1d 9660 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
8d1d654f 9661 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 9662 {
c45a316a
AM
9663 if (g->next)
9664 {
9665 struct mips_got_entry e;
9666 struct mips_got_info *gg = g;
9667
9668 /* Since we're turning what used to be a global symbol into a
9669 local one, bump up the number of local entries of each GOT
9670 that had an entry for it. This will automatically decrease
9671 the number of global entries, since global_gotno is actually
9672 the upper limit of global entries. */
9673 e.abfd = dynobj;
9674 e.symndx = -1;
9675 e.d.h = h;
0f20cc35 9676 e.tls_type = 0;
c45a316a
AM
9677
9678 for (g = g->next; g != gg; g = g->next)
9679 if (htab_find (g->got_entries, &e))
9680 {
9681 BFD_ASSERT (g->global_gotno > 0);
9682 g->local_gotno++;
9683 g->global_gotno--;
9684 }
b49e97c9 9685
c45a316a
AM
9686 /* If this was a global symbol forced into the primary GOT, we
9687 no longer need an entry for it. We can't release the entry
9688 at this point, but we must at least stop counting it as one
9689 of the symbols that required a forced got entry. */
9690 if (h->root.got.offset == 2)
9691 {
9692 BFD_ASSERT (gg->assigned_gotno > 0);
9693 gg->assigned_gotno--;
9694 }
9695 }
9696 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9697 /* If we haven't got through GOT allocation yet, just bump up the
9698 number of local entries, as this symbol won't be counted as
9699 global. */
9700 g->local_gotno++;
9701 else if (h->root.got.offset == 1)
f4416af6 9702 {
c45a316a
AM
9703 /* If we're past non-multi-GOT allocation and this symbol had
9704 been marked for a global got entry, give it a local entry
9705 instead. */
9706 BFD_ASSERT (g->global_gotno > 0);
9707 g->local_gotno++;
9708 g->global_gotno--;
f4416af6
AO
9709 }
9710 }
f4416af6
AO
9711
9712 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
9713}
9714\f
d01414a5
TS
9715#define PDR_SIZE 32
9716
b34976b6 9717bfd_boolean
9719ad41
RS
9718_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9719 struct bfd_link_info *info)
d01414a5
TS
9720{
9721 asection *o;
b34976b6 9722 bfd_boolean ret = FALSE;
d01414a5
TS
9723 unsigned char *tdata;
9724 size_t i, skip;
9725
9726 o = bfd_get_section_by_name (abfd, ".pdr");
9727 if (! o)
b34976b6 9728 return FALSE;
eea6121a 9729 if (o->size == 0)
b34976b6 9730 return FALSE;
eea6121a 9731 if (o->size % PDR_SIZE != 0)
b34976b6 9732 return FALSE;
d01414a5
TS
9733 if (o->output_section != NULL
9734 && bfd_is_abs_section (o->output_section))
b34976b6 9735 return FALSE;
d01414a5 9736
eea6121a 9737 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 9738 if (! tdata)
b34976b6 9739 return FALSE;
d01414a5 9740
9719ad41 9741 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 9742 info->keep_memory);
d01414a5
TS
9743 if (!cookie->rels)
9744 {
9745 free (tdata);
b34976b6 9746 return FALSE;
d01414a5
TS
9747 }
9748
9749 cookie->rel = cookie->rels;
9750 cookie->relend = cookie->rels + o->reloc_count;
9751
eea6121a 9752 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 9753 {
c152c796 9754 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
9755 {
9756 tdata[i] = 1;
9757 skip ++;
9758 }
9759 }
9760
9761 if (skip != 0)
9762 {
f0abc2a1 9763 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 9764 o->size -= skip * PDR_SIZE;
b34976b6 9765 ret = TRUE;
d01414a5
TS
9766 }
9767 else
9768 free (tdata);
9769
9770 if (! info->keep_memory)
9771 free (cookie->rels);
9772
9773 return ret;
9774}
9775
b34976b6 9776bfd_boolean
9719ad41 9777_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
9778{
9779 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
9780 return TRUE;
9781 return FALSE;
53bfd6b4 9782}
d01414a5 9783
b34976b6 9784bfd_boolean
c7b8f16e
JB
9785_bfd_mips_elf_write_section (bfd *output_bfd,
9786 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9787 asection *sec, bfd_byte *contents)
d01414a5
TS
9788{
9789 bfd_byte *to, *from, *end;
9790 int i;
9791
9792 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 9793 return FALSE;
d01414a5 9794
f0abc2a1 9795 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 9796 return FALSE;
d01414a5
TS
9797
9798 to = contents;
eea6121a 9799 end = contents + sec->size;
d01414a5
TS
9800 for (from = contents, i = 0;
9801 from < end;
9802 from += PDR_SIZE, i++)
9803 {
f0abc2a1 9804 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
9805 continue;
9806 if (to != from)
9807 memcpy (to, from, PDR_SIZE);
9808 to += PDR_SIZE;
9809 }
9810 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 9811 sec->output_offset, sec->size);
b34976b6 9812 return TRUE;
d01414a5 9813}
53bfd6b4 9814\f
b49e97c9
TS
9815/* MIPS ELF uses a special find_nearest_line routine in order the
9816 handle the ECOFF debugging information. */
9817
9818struct mips_elf_find_line
9819{
9820 struct ecoff_debug_info d;
9821 struct ecoff_find_line i;
9822};
9823
b34976b6 9824bfd_boolean
9719ad41
RS
9825_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9826 asymbol **symbols, bfd_vma offset,
9827 const char **filename_ptr,
9828 const char **functionname_ptr,
9829 unsigned int *line_ptr)
b49e97c9
TS
9830{
9831 asection *msec;
9832
9833 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9834 filename_ptr, functionname_ptr,
9835 line_ptr))
b34976b6 9836 return TRUE;
b49e97c9
TS
9837
9838 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9839 filename_ptr, functionname_ptr,
9719ad41 9840 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 9841 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 9842 return TRUE;
b49e97c9
TS
9843
9844 msec = bfd_get_section_by_name (abfd, ".mdebug");
9845 if (msec != NULL)
9846 {
9847 flagword origflags;
9848 struct mips_elf_find_line *fi;
9849 const struct ecoff_debug_swap * const swap =
9850 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9851
9852 /* If we are called during a link, mips_elf_final_link may have
9853 cleared the SEC_HAS_CONTENTS field. We force it back on here
9854 if appropriate (which it normally will be). */
9855 origflags = msec->flags;
9856 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9857 msec->flags |= SEC_HAS_CONTENTS;
9858
9859 fi = elf_tdata (abfd)->find_line_info;
9860 if (fi == NULL)
9861 {
9862 bfd_size_type external_fdr_size;
9863 char *fraw_src;
9864 char *fraw_end;
9865 struct fdr *fdr_ptr;
9866 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9867
9719ad41 9868 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
9869 if (fi == NULL)
9870 {
9871 msec->flags = origflags;
b34976b6 9872 return FALSE;
b49e97c9
TS
9873 }
9874
9875 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9876 {
9877 msec->flags = origflags;
b34976b6 9878 return FALSE;
b49e97c9
TS
9879 }
9880
9881 /* Swap in the FDR information. */
9882 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 9883 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
9884 if (fi->d.fdr == NULL)
9885 {
9886 msec->flags = origflags;
b34976b6 9887 return FALSE;
b49e97c9
TS
9888 }
9889 external_fdr_size = swap->external_fdr_size;
9890 fdr_ptr = fi->d.fdr;
9891 fraw_src = (char *) fi->d.external_fdr;
9892 fraw_end = (fraw_src
9893 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9894 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 9895 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
9896
9897 elf_tdata (abfd)->find_line_info = fi;
9898
9899 /* Note that we don't bother to ever free this information.
9900 find_nearest_line is either called all the time, as in
9901 objdump -l, so the information should be saved, or it is
9902 rarely called, as in ld error messages, so the memory
9903 wasted is unimportant. Still, it would probably be a
9904 good idea for free_cached_info to throw it away. */
9905 }
9906
9907 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9908 &fi->i, filename_ptr, functionname_ptr,
9909 line_ptr))
9910 {
9911 msec->flags = origflags;
b34976b6 9912 return TRUE;
b49e97c9
TS
9913 }
9914
9915 msec->flags = origflags;
9916 }
9917
9918 /* Fall back on the generic ELF find_nearest_line routine. */
9919
9920 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9921 filename_ptr, functionname_ptr,
9922 line_ptr);
9923}
4ab527b0
FF
9924
9925bfd_boolean
9926_bfd_mips_elf_find_inliner_info (bfd *abfd,
9927 const char **filename_ptr,
9928 const char **functionname_ptr,
9929 unsigned int *line_ptr)
9930{
9931 bfd_boolean found;
9932 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9933 functionname_ptr, line_ptr,
9934 & elf_tdata (abfd)->dwarf2_find_line_info);
9935 return found;
9936}
9937
b49e97c9
TS
9938\f
9939/* When are writing out the .options or .MIPS.options section,
9940 remember the bytes we are writing out, so that we can install the
9941 GP value in the section_processing routine. */
9942
b34976b6 9943bfd_boolean
9719ad41
RS
9944_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9945 const void *location,
9946 file_ptr offset, bfd_size_type count)
b49e97c9 9947{
cc2e31b9 9948 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
9949 {
9950 bfd_byte *c;
9951
9952 if (elf_section_data (section) == NULL)
9953 {
9954 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 9955 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 9956 if (elf_section_data (section) == NULL)
b34976b6 9957 return FALSE;
b49e97c9 9958 }
f0abc2a1 9959 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
9960 if (c == NULL)
9961 {
eea6121a 9962 c = bfd_zalloc (abfd, section->size);
b49e97c9 9963 if (c == NULL)
b34976b6 9964 return FALSE;
f0abc2a1 9965 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
9966 }
9967
9719ad41 9968 memcpy (c + offset, location, count);
b49e97c9
TS
9969 }
9970
9971 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9972 count);
9973}
9974
9975/* This is almost identical to bfd_generic_get_... except that some
9976 MIPS relocations need to be handled specially. Sigh. */
9977
9978bfd_byte *
9719ad41
RS
9979_bfd_elf_mips_get_relocated_section_contents
9980 (bfd *abfd,
9981 struct bfd_link_info *link_info,
9982 struct bfd_link_order *link_order,
9983 bfd_byte *data,
9984 bfd_boolean relocatable,
9985 asymbol **symbols)
b49e97c9
TS
9986{
9987 /* Get enough memory to hold the stuff */
9988 bfd *input_bfd = link_order->u.indirect.section->owner;
9989 asection *input_section = link_order->u.indirect.section;
eea6121a 9990 bfd_size_type sz;
b49e97c9
TS
9991
9992 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9993 arelent **reloc_vector = NULL;
9994 long reloc_count;
9995
9996 if (reloc_size < 0)
9997 goto error_return;
9998
9719ad41 9999 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
10000 if (reloc_vector == NULL && reloc_size != 0)
10001 goto error_return;
10002
10003 /* read in the section */
eea6121a
AM
10004 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10005 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
10006 goto error_return;
10007
b49e97c9
TS
10008 reloc_count = bfd_canonicalize_reloc (input_bfd,
10009 input_section,
10010 reloc_vector,
10011 symbols);
10012 if (reloc_count < 0)
10013 goto error_return;
10014
10015 if (reloc_count > 0)
10016 {
10017 arelent **parent;
10018 /* for mips */
10019 int gp_found;
10020 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10021
10022 {
10023 struct bfd_hash_entry *h;
10024 struct bfd_link_hash_entry *lh;
10025 /* Skip all this stuff if we aren't mixing formats. */
10026 if (abfd && input_bfd
10027 && abfd->xvec == input_bfd->xvec)
10028 lh = 0;
10029 else
10030 {
b34976b6 10031 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
10032 lh = (struct bfd_link_hash_entry *) h;
10033 }
10034 lookup:
10035 if (lh)
10036 {
10037 switch (lh->type)
10038 {
10039 case bfd_link_hash_undefined:
10040 case bfd_link_hash_undefweak:
10041 case bfd_link_hash_common:
10042 gp_found = 0;
10043 break;
10044 case bfd_link_hash_defined:
10045 case bfd_link_hash_defweak:
10046 gp_found = 1;
10047 gp = lh->u.def.value;
10048 break;
10049 case bfd_link_hash_indirect:
10050 case bfd_link_hash_warning:
10051 lh = lh->u.i.link;
10052 /* @@FIXME ignoring warning for now */
10053 goto lookup;
10054 case bfd_link_hash_new:
10055 default:
10056 abort ();
10057 }
10058 }
10059 else
10060 gp_found = 0;
10061 }
10062 /* end mips */
9719ad41 10063 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 10064 {
9719ad41 10065 char *error_message = NULL;
b49e97c9
TS
10066 bfd_reloc_status_type r;
10067
10068 /* Specific to MIPS: Deal with relocation types that require
10069 knowing the gp of the output bfd. */
10070 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 10071
8236346f
EC
10072 /* If we've managed to find the gp and have a special
10073 function for the relocation then go ahead, else default
10074 to the generic handling. */
10075 if (gp_found
10076 && (*parent)->howto->special_function
10077 == _bfd_mips_elf32_gprel16_reloc)
10078 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10079 input_section, relocatable,
10080 data, gp);
10081 else
86324f90 10082 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
10083 input_section,
10084 relocatable ? abfd : NULL,
10085 &error_message);
b49e97c9 10086
1049f94e 10087 if (relocatable)
b49e97c9
TS
10088 {
10089 asection *os = input_section->output_section;
10090
10091 /* A partial link, so keep the relocs */
10092 os->orelocation[os->reloc_count] = *parent;
10093 os->reloc_count++;
10094 }
10095
10096 if (r != bfd_reloc_ok)
10097 {
10098 switch (r)
10099 {
10100 case bfd_reloc_undefined:
10101 if (!((*link_info->callbacks->undefined_symbol)
10102 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 10103 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
10104 goto error_return;
10105 break;
10106 case bfd_reloc_dangerous:
9719ad41 10107 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
10108 if (!((*link_info->callbacks->reloc_dangerous)
10109 (link_info, error_message, input_bfd, input_section,
10110 (*parent)->address)))
10111 goto error_return;
10112 break;
10113 case bfd_reloc_overflow:
10114 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
10115 (link_info, NULL,
10116 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
10117 (*parent)->howto->name, (*parent)->addend,
10118 input_bfd, input_section, (*parent)->address)))
10119 goto error_return;
10120 break;
10121 case bfd_reloc_outofrange:
10122 default:
10123 abort ();
10124 break;
10125 }
10126
10127 }
10128 }
10129 }
10130 if (reloc_vector != NULL)
10131 free (reloc_vector);
10132 return data;
10133
10134error_return:
10135 if (reloc_vector != NULL)
10136 free (reloc_vector);
10137 return NULL;
10138}
10139\f
10140/* Create a MIPS ELF linker hash table. */
10141
10142struct bfd_link_hash_table *
9719ad41 10143_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
10144{
10145 struct mips_elf_link_hash_table *ret;
10146 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10147
9719ad41
RS
10148 ret = bfd_malloc (amt);
10149 if (ret == NULL)
b49e97c9
TS
10150 return NULL;
10151
66eb6687
AM
10152 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10153 mips_elf_link_hash_newfunc,
10154 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 10155 {
e2d34d7d 10156 free (ret);
b49e97c9
TS
10157 return NULL;
10158 }
10159
10160#if 0
10161 /* We no longer use this. */
10162 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10163 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10164#endif
10165 ret->procedure_count = 0;
10166 ret->compact_rel_size = 0;
b34976b6 10167 ret->use_rld_obj_head = FALSE;
b49e97c9 10168 ret->rld_value = 0;
b34976b6 10169 ret->mips16_stubs_seen = FALSE;
0a44bf69
RS
10170 ret->is_vxworks = FALSE;
10171 ret->srelbss = NULL;
10172 ret->sdynbss = NULL;
10173 ret->srelplt = NULL;
10174 ret->srelplt2 = NULL;
10175 ret->sgotplt = NULL;
10176 ret->splt = NULL;
10177 ret->plt_header_size = 0;
10178 ret->plt_entry_size = 0;
5108fc1b 10179 ret->function_stub_size = 0;
b49e97c9
TS
10180
10181 return &ret->root.root;
10182}
0a44bf69
RS
10183
10184/* Likewise, but indicate that the target is VxWorks. */
10185
10186struct bfd_link_hash_table *
10187_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10188{
10189 struct bfd_link_hash_table *ret;
10190
10191 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10192 if (ret)
10193 {
10194 struct mips_elf_link_hash_table *htab;
10195
10196 htab = (struct mips_elf_link_hash_table *) ret;
10197 htab->is_vxworks = 1;
10198 }
10199 return ret;
10200}
b49e97c9
TS
10201\f
10202/* We need to use a special link routine to handle the .reginfo and
10203 the .mdebug sections. We need to merge all instances of these
10204 sections together, not write them all out sequentially. */
10205
b34976b6 10206bfd_boolean
9719ad41 10207_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 10208{
b49e97c9
TS
10209 asection *o;
10210 struct bfd_link_order *p;
10211 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10212 asection *rtproc_sec;
10213 Elf32_RegInfo reginfo;
10214 struct ecoff_debug_info debug;
7a2a6943
NC
10215 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10216 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 10217 HDRR *symhdr = &debug.symbolic_header;
9719ad41 10218 void *mdebug_handle = NULL;
b49e97c9
TS
10219 asection *s;
10220 EXTR esym;
10221 unsigned int i;
10222 bfd_size_type amt;
0a44bf69 10223 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
10224
10225 static const char * const secname[] =
10226 {
10227 ".text", ".init", ".fini", ".data",
10228 ".rodata", ".sdata", ".sbss", ".bss"
10229 };
10230 static const int sc[] =
10231 {
10232 scText, scInit, scFini, scData,
10233 scRData, scSData, scSBss, scBss
10234 };
10235
b49e97c9
TS
10236 /* We'd carefully arranged the dynamic symbol indices, and then the
10237 generic size_dynamic_sections renumbered them out from under us.
10238 Rather than trying somehow to prevent the renumbering, just do
10239 the sort again. */
0a44bf69 10240 htab = mips_elf_hash_table (info);
b49e97c9
TS
10241 if (elf_hash_table (info)->dynamic_sections_created)
10242 {
10243 bfd *dynobj;
10244 asection *got;
10245 struct mips_got_info *g;
7a2a6943 10246 bfd_size_type dynsecsymcount;
b49e97c9
TS
10247
10248 /* When we resort, we must tell mips_elf_sort_hash_table what
10249 the lowest index it may use is. That's the number of section
10250 symbols we're going to add. The generic ELF linker only
10251 adds these symbols when building a shared object. Note that
10252 we count the sections after (possibly) removing the .options
10253 section above. */
7a2a6943 10254
5108fc1b 10255 dynsecsymcount = count_section_dynsyms (abfd, info);
7a2a6943 10256 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 10257 return FALSE;
b49e97c9
TS
10258
10259 /* Make sure we didn't grow the global .got region. */
10260 dynobj = elf_hash_table (info)->dynobj;
f4416af6 10261 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 10262 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
10263
10264 if (g->global_gotsym != NULL)
10265 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10266 - g->global_gotsym->dynindx)
10267 <= g->global_gotno);
10268 }
10269
b49e97c9
TS
10270 /* Get a value for the GP register. */
10271 if (elf_gp (abfd) == 0)
10272 {
10273 struct bfd_link_hash_entry *h;
10274
b34976b6 10275 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10276 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10277 elf_gp (abfd) = (h->u.def.value
10278 + h->u.def.section->output_section->vma
10279 + h->u.def.section->output_offset);
0a44bf69
RS
10280 else if (htab->is_vxworks
10281 && (h = bfd_link_hash_lookup (info->hash,
10282 "_GLOBAL_OFFSET_TABLE_",
10283 FALSE, FALSE, TRUE))
10284 && h->type == bfd_link_hash_defined)
10285 elf_gp (abfd) = (h->u.def.section->output_section->vma
10286 + h->u.def.section->output_offset
10287 + h->u.def.value);
1049f94e 10288 else if (info->relocatable)
b49e97c9
TS
10289 {
10290 bfd_vma lo = MINUS_ONE;
10291
10292 /* Find the GP-relative section with the lowest offset. */
9719ad41 10293 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10294 if (o->vma < lo
10295 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10296 lo = o->vma;
10297
10298 /* And calculate GP relative to that. */
0a44bf69 10299 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10300 }
10301 else
10302 {
10303 /* If the relocate_section function needs to do a reloc
10304 involving the GP value, it should make a reloc_dangerous
10305 callback to warn that GP is not defined. */
10306 }
10307 }
10308
10309 /* Go through the sections and collect the .reginfo and .mdebug
10310 information. */
10311 reginfo_sec = NULL;
10312 mdebug_sec = NULL;
10313 gptab_data_sec = NULL;
10314 gptab_bss_sec = NULL;
9719ad41 10315 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10316 {
10317 if (strcmp (o->name, ".reginfo") == 0)
10318 {
10319 memset (&reginfo, 0, sizeof reginfo);
10320
10321 /* We have found the .reginfo section in the output file.
10322 Look through all the link_orders comprising it and merge
10323 the information together. */
8423293d 10324 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10325 {
10326 asection *input_section;
10327 bfd *input_bfd;
10328 Elf32_External_RegInfo ext;
10329 Elf32_RegInfo sub;
10330
10331 if (p->type != bfd_indirect_link_order)
10332 {
10333 if (p->type == bfd_data_link_order)
10334 continue;
10335 abort ();
10336 }
10337
10338 input_section = p->u.indirect.section;
10339 input_bfd = input_section->owner;
10340
b49e97c9 10341 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10342 &ext, 0, sizeof ext))
b34976b6 10343 return FALSE;
b49e97c9
TS
10344
10345 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10346
10347 reginfo.ri_gprmask |= sub.ri_gprmask;
10348 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10349 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10350 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10351 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10352
10353 /* ri_gp_value is set by the function
10354 mips_elf32_section_processing when the section is
10355 finally written out. */
10356
10357 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10358 elf_link_input_bfd ignores this section. */
10359 input_section->flags &= ~SEC_HAS_CONTENTS;
10360 }
10361
10362 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10363 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10364
10365 /* Skip this section later on (I don't think this currently
10366 matters, but someday it might). */
8423293d 10367 o->map_head.link_order = NULL;
b49e97c9
TS
10368
10369 reginfo_sec = o;
10370 }
10371
10372 if (strcmp (o->name, ".mdebug") == 0)
10373 {
10374 struct extsym_info einfo;
10375 bfd_vma last;
10376
10377 /* We have found the .mdebug section in the output file.
10378 Look through all the link_orders comprising it and merge
10379 the information together. */
10380 symhdr->magic = swap->sym_magic;
10381 /* FIXME: What should the version stamp be? */
10382 symhdr->vstamp = 0;
10383 symhdr->ilineMax = 0;
10384 symhdr->cbLine = 0;
10385 symhdr->idnMax = 0;
10386 symhdr->ipdMax = 0;
10387 symhdr->isymMax = 0;
10388 symhdr->ioptMax = 0;
10389 symhdr->iauxMax = 0;
10390 symhdr->issMax = 0;
10391 symhdr->issExtMax = 0;
10392 symhdr->ifdMax = 0;
10393 symhdr->crfd = 0;
10394 symhdr->iextMax = 0;
10395
10396 /* We accumulate the debugging information itself in the
10397 debug_info structure. */
10398 debug.line = NULL;
10399 debug.external_dnr = NULL;
10400 debug.external_pdr = NULL;
10401 debug.external_sym = NULL;
10402 debug.external_opt = NULL;
10403 debug.external_aux = NULL;
10404 debug.ss = NULL;
10405 debug.ssext = debug.ssext_end = NULL;
10406 debug.external_fdr = NULL;
10407 debug.external_rfd = NULL;
10408 debug.external_ext = debug.external_ext_end = NULL;
10409
10410 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10411 if (mdebug_handle == NULL)
b34976b6 10412 return FALSE;
b49e97c9
TS
10413
10414 esym.jmptbl = 0;
10415 esym.cobol_main = 0;
10416 esym.weakext = 0;
10417 esym.reserved = 0;
10418 esym.ifd = ifdNil;
10419 esym.asym.iss = issNil;
10420 esym.asym.st = stLocal;
10421 esym.asym.reserved = 0;
10422 esym.asym.index = indexNil;
10423 last = 0;
10424 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10425 {
10426 esym.asym.sc = sc[i];
10427 s = bfd_get_section_by_name (abfd, secname[i]);
10428 if (s != NULL)
10429 {
10430 esym.asym.value = s->vma;
eea6121a 10431 last = s->vma + s->size;
b49e97c9
TS
10432 }
10433 else
10434 esym.asym.value = last;
10435 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10436 secname[i], &esym))
b34976b6 10437 return FALSE;
b49e97c9
TS
10438 }
10439
8423293d 10440 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10441 {
10442 asection *input_section;
10443 bfd *input_bfd;
10444 const struct ecoff_debug_swap *input_swap;
10445 struct ecoff_debug_info input_debug;
10446 char *eraw_src;
10447 char *eraw_end;
10448
10449 if (p->type != bfd_indirect_link_order)
10450 {
10451 if (p->type == bfd_data_link_order)
10452 continue;
10453 abort ();
10454 }
10455
10456 input_section = p->u.indirect.section;
10457 input_bfd = input_section->owner;
10458
10459 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10460 || (get_elf_backend_data (input_bfd)
10461 ->elf_backend_ecoff_debug_swap) == NULL)
10462 {
10463 /* I don't know what a non MIPS ELF bfd would be
10464 doing with a .mdebug section, but I don't really
10465 want to deal with it. */
10466 continue;
10467 }
10468
10469 input_swap = (get_elf_backend_data (input_bfd)
10470 ->elf_backend_ecoff_debug_swap);
10471
eea6121a 10472 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10473
10474 /* The ECOFF linking code expects that we have already
10475 read in the debugging information and set up an
10476 ecoff_debug_info structure, so we do that now. */
10477 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10478 &input_debug))
b34976b6 10479 return FALSE;
b49e97c9
TS
10480
10481 if (! (bfd_ecoff_debug_accumulate
10482 (mdebug_handle, abfd, &debug, swap, input_bfd,
10483 &input_debug, input_swap, info)))
b34976b6 10484 return FALSE;
b49e97c9
TS
10485
10486 /* Loop through the external symbols. For each one with
10487 interesting information, try to find the symbol in
10488 the linker global hash table and save the information
10489 for the output external symbols. */
10490 eraw_src = input_debug.external_ext;
10491 eraw_end = (eraw_src
10492 + (input_debug.symbolic_header.iextMax
10493 * input_swap->external_ext_size));
10494 for (;
10495 eraw_src < eraw_end;
10496 eraw_src += input_swap->external_ext_size)
10497 {
10498 EXTR ext;
10499 const char *name;
10500 struct mips_elf_link_hash_entry *h;
10501
9719ad41 10502 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10503 if (ext.asym.sc == scNil
10504 || ext.asym.sc == scUndefined
10505 || ext.asym.sc == scSUndefined)
10506 continue;
10507
10508 name = input_debug.ssext + ext.asym.iss;
10509 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10510 name, FALSE, FALSE, TRUE);
b49e97c9
TS
10511 if (h == NULL || h->esym.ifd != -2)
10512 continue;
10513
10514 if (ext.ifd != -1)
10515 {
10516 BFD_ASSERT (ext.ifd
10517 < input_debug.symbolic_header.ifdMax);
10518 ext.ifd = input_debug.ifdmap[ext.ifd];
10519 }
10520
10521 h->esym = ext;
10522 }
10523
10524 /* Free up the information we just read. */
10525 free (input_debug.line);
10526 free (input_debug.external_dnr);
10527 free (input_debug.external_pdr);
10528 free (input_debug.external_sym);
10529 free (input_debug.external_opt);
10530 free (input_debug.external_aux);
10531 free (input_debug.ss);
10532 free (input_debug.ssext);
10533 free (input_debug.external_fdr);
10534 free (input_debug.external_rfd);
10535 free (input_debug.external_ext);
10536
10537 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10538 elf_link_input_bfd ignores this section. */
10539 input_section->flags &= ~SEC_HAS_CONTENTS;
10540 }
10541
10542 if (SGI_COMPAT (abfd) && info->shared)
10543 {
10544 /* Create .rtproc section. */
10545 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10546 if (rtproc_sec == NULL)
10547 {
10548 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10549 | SEC_LINKER_CREATED | SEC_READONLY);
10550
3496cb2a
L
10551 rtproc_sec = bfd_make_section_with_flags (abfd,
10552 ".rtproc",
10553 flags);
b49e97c9 10554 if (rtproc_sec == NULL
b49e97c9 10555 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 10556 return FALSE;
b49e97c9
TS
10557 }
10558
10559 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10560 info, rtproc_sec,
10561 &debug))
b34976b6 10562 return FALSE;
b49e97c9
TS
10563 }
10564
10565 /* Build the external symbol information. */
10566 einfo.abfd = abfd;
10567 einfo.info = info;
10568 einfo.debug = &debug;
10569 einfo.swap = swap;
b34976b6 10570 einfo.failed = FALSE;
b49e97c9 10571 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 10572 mips_elf_output_extsym, &einfo);
b49e97c9 10573 if (einfo.failed)
b34976b6 10574 return FALSE;
b49e97c9
TS
10575
10576 /* Set the size of the .mdebug section. */
eea6121a 10577 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
10578
10579 /* Skip this section later on (I don't think this currently
10580 matters, but someday it might). */
8423293d 10581 o->map_head.link_order = NULL;
b49e97c9
TS
10582
10583 mdebug_sec = o;
10584 }
10585
0112cd26 10586 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
10587 {
10588 const char *subname;
10589 unsigned int c;
10590 Elf32_gptab *tab;
10591 Elf32_External_gptab *ext_tab;
10592 unsigned int j;
10593
10594 /* The .gptab.sdata and .gptab.sbss sections hold
10595 information describing how the small data area would
10596 change depending upon the -G switch. These sections
10597 not used in executables files. */
1049f94e 10598 if (! info->relocatable)
b49e97c9 10599 {
8423293d 10600 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10601 {
10602 asection *input_section;
10603
10604 if (p->type != bfd_indirect_link_order)
10605 {
10606 if (p->type == bfd_data_link_order)
10607 continue;
10608 abort ();
10609 }
10610
10611 input_section = p->u.indirect.section;
10612
10613 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10614 elf_link_input_bfd ignores this section. */
10615 input_section->flags &= ~SEC_HAS_CONTENTS;
10616 }
10617
10618 /* Skip this section later on (I don't think this
10619 currently matters, but someday it might). */
8423293d 10620 o->map_head.link_order = NULL;
b49e97c9
TS
10621
10622 /* Really remove the section. */
5daa8fe7 10623 bfd_section_list_remove (abfd, o);
b49e97c9
TS
10624 --abfd->section_count;
10625
10626 continue;
10627 }
10628
10629 /* There is one gptab for initialized data, and one for
10630 uninitialized data. */
10631 if (strcmp (o->name, ".gptab.sdata") == 0)
10632 gptab_data_sec = o;
10633 else if (strcmp (o->name, ".gptab.sbss") == 0)
10634 gptab_bss_sec = o;
10635 else
10636 {
10637 (*_bfd_error_handler)
10638 (_("%s: illegal section name `%s'"),
10639 bfd_get_filename (abfd), o->name);
10640 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 10641 return FALSE;
b49e97c9
TS
10642 }
10643
10644 /* The linker script always combines .gptab.data and
10645 .gptab.sdata into .gptab.sdata, and likewise for
10646 .gptab.bss and .gptab.sbss. It is possible that there is
10647 no .sdata or .sbss section in the output file, in which
10648 case we must change the name of the output section. */
10649 subname = o->name + sizeof ".gptab" - 1;
10650 if (bfd_get_section_by_name (abfd, subname) == NULL)
10651 {
10652 if (o == gptab_data_sec)
10653 o->name = ".gptab.data";
10654 else
10655 o->name = ".gptab.bss";
10656 subname = o->name + sizeof ".gptab" - 1;
10657 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10658 }
10659
10660 /* Set up the first entry. */
10661 c = 1;
10662 amt = c * sizeof (Elf32_gptab);
9719ad41 10663 tab = bfd_malloc (amt);
b49e97c9 10664 if (tab == NULL)
b34976b6 10665 return FALSE;
b49e97c9
TS
10666 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10667 tab[0].gt_header.gt_unused = 0;
10668
10669 /* Combine the input sections. */
8423293d 10670 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10671 {
10672 asection *input_section;
10673 bfd *input_bfd;
10674 bfd_size_type size;
10675 unsigned long last;
10676 bfd_size_type gpentry;
10677
10678 if (p->type != bfd_indirect_link_order)
10679 {
10680 if (p->type == bfd_data_link_order)
10681 continue;
10682 abort ();
10683 }
10684
10685 input_section = p->u.indirect.section;
10686 input_bfd = input_section->owner;
10687
10688 /* Combine the gptab entries for this input section one
10689 by one. We know that the input gptab entries are
10690 sorted by ascending -G value. */
eea6121a 10691 size = input_section->size;
b49e97c9
TS
10692 last = 0;
10693 for (gpentry = sizeof (Elf32_External_gptab);
10694 gpentry < size;
10695 gpentry += sizeof (Elf32_External_gptab))
10696 {
10697 Elf32_External_gptab ext_gptab;
10698 Elf32_gptab int_gptab;
10699 unsigned long val;
10700 unsigned long add;
b34976b6 10701 bfd_boolean exact;
b49e97c9
TS
10702 unsigned int look;
10703
10704 if (! (bfd_get_section_contents
9719ad41
RS
10705 (input_bfd, input_section, &ext_gptab, gpentry,
10706 sizeof (Elf32_External_gptab))))
b49e97c9
TS
10707 {
10708 free (tab);
b34976b6 10709 return FALSE;
b49e97c9
TS
10710 }
10711
10712 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10713 &int_gptab);
10714 val = int_gptab.gt_entry.gt_g_value;
10715 add = int_gptab.gt_entry.gt_bytes - last;
10716
b34976b6 10717 exact = FALSE;
b49e97c9
TS
10718 for (look = 1; look < c; look++)
10719 {
10720 if (tab[look].gt_entry.gt_g_value >= val)
10721 tab[look].gt_entry.gt_bytes += add;
10722
10723 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 10724 exact = TRUE;
b49e97c9
TS
10725 }
10726
10727 if (! exact)
10728 {
10729 Elf32_gptab *new_tab;
10730 unsigned int max;
10731
10732 /* We need a new table entry. */
10733 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 10734 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
10735 if (new_tab == NULL)
10736 {
10737 free (tab);
b34976b6 10738 return FALSE;
b49e97c9
TS
10739 }
10740 tab = new_tab;
10741 tab[c].gt_entry.gt_g_value = val;
10742 tab[c].gt_entry.gt_bytes = add;
10743
10744 /* Merge in the size for the next smallest -G
10745 value, since that will be implied by this new
10746 value. */
10747 max = 0;
10748 for (look = 1; look < c; look++)
10749 {
10750 if (tab[look].gt_entry.gt_g_value < val
10751 && (max == 0
10752 || (tab[look].gt_entry.gt_g_value
10753 > tab[max].gt_entry.gt_g_value)))
10754 max = look;
10755 }
10756 if (max != 0)
10757 tab[c].gt_entry.gt_bytes +=
10758 tab[max].gt_entry.gt_bytes;
10759
10760 ++c;
10761 }
10762
10763 last = int_gptab.gt_entry.gt_bytes;
10764 }
10765
10766 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10767 elf_link_input_bfd ignores this section. */
10768 input_section->flags &= ~SEC_HAS_CONTENTS;
10769 }
10770
10771 /* The table must be sorted by -G value. */
10772 if (c > 2)
10773 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10774
10775 /* Swap out the table. */
10776 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 10777 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
10778 if (ext_tab == NULL)
10779 {
10780 free (tab);
b34976b6 10781 return FALSE;
b49e97c9
TS
10782 }
10783
10784 for (j = 0; j < c; j++)
10785 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10786 free (tab);
10787
eea6121a 10788 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
10789 o->contents = (bfd_byte *) ext_tab;
10790
10791 /* Skip this section later on (I don't think this currently
10792 matters, but someday it might). */
8423293d 10793 o->map_head.link_order = NULL;
b49e97c9
TS
10794 }
10795 }
10796
10797 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 10798 if (!bfd_elf_final_link (abfd, info))
b34976b6 10799 return FALSE;
b49e97c9
TS
10800
10801 /* Now write out the computed sections. */
10802
9719ad41 10803 if (reginfo_sec != NULL)
b49e97c9
TS
10804 {
10805 Elf32_External_RegInfo ext;
10806
10807 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 10808 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 10809 return FALSE;
b49e97c9
TS
10810 }
10811
9719ad41 10812 if (mdebug_sec != NULL)
b49e97c9
TS
10813 {
10814 BFD_ASSERT (abfd->output_has_begun);
10815 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10816 swap, info,
10817 mdebug_sec->filepos))
b34976b6 10818 return FALSE;
b49e97c9
TS
10819
10820 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10821 }
10822
9719ad41 10823 if (gptab_data_sec != NULL)
b49e97c9
TS
10824 {
10825 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10826 gptab_data_sec->contents,
eea6121a 10827 0, gptab_data_sec->size))
b34976b6 10828 return FALSE;
b49e97c9
TS
10829 }
10830
9719ad41 10831 if (gptab_bss_sec != NULL)
b49e97c9
TS
10832 {
10833 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10834 gptab_bss_sec->contents,
eea6121a 10835 0, gptab_bss_sec->size))
b34976b6 10836 return FALSE;
b49e97c9
TS
10837 }
10838
10839 if (SGI_COMPAT (abfd))
10840 {
10841 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10842 if (rtproc_sec != NULL)
10843 {
10844 if (! bfd_set_section_contents (abfd, rtproc_sec,
10845 rtproc_sec->contents,
eea6121a 10846 0, rtproc_sec->size))
b34976b6 10847 return FALSE;
b49e97c9
TS
10848 }
10849 }
10850
b34976b6 10851 return TRUE;
b49e97c9
TS
10852}
10853\f
64543e1a
RS
10854/* Structure for saying that BFD machine EXTENSION extends BASE. */
10855
10856struct mips_mach_extension {
10857 unsigned long extension, base;
10858};
10859
10860
10861/* An array describing how BFD machines relate to one another. The entries
10862 are ordered topologically with MIPS I extensions listed last. */
10863
10864static const struct mips_mach_extension mips_mach_extensions[] = {
10865 /* MIPS64 extensions. */
5f74bc13 10866 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
10867 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10868
10869 /* MIPS V extensions. */
10870 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10871
10872 /* R10000 extensions. */
10873 { bfd_mach_mips12000, bfd_mach_mips10000 },
10874
10875 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10876 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10877 better to allow vr5400 and vr5500 code to be merged anyway, since
10878 many libraries will just use the core ISA. Perhaps we could add
10879 some sort of ASE flag if this ever proves a problem. */
10880 { bfd_mach_mips5500, bfd_mach_mips5400 },
10881 { bfd_mach_mips5400, bfd_mach_mips5000 },
10882
10883 /* MIPS IV extensions. */
10884 { bfd_mach_mips5, bfd_mach_mips8000 },
10885 { bfd_mach_mips10000, bfd_mach_mips8000 },
10886 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 10887 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 10888 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
10889
10890 /* VR4100 extensions. */
10891 { bfd_mach_mips4120, bfd_mach_mips4100 },
10892 { bfd_mach_mips4111, bfd_mach_mips4100 },
10893
10894 /* MIPS III extensions. */
10895 { bfd_mach_mips8000, bfd_mach_mips4000 },
10896 { bfd_mach_mips4650, bfd_mach_mips4000 },
10897 { bfd_mach_mips4600, bfd_mach_mips4000 },
10898 { bfd_mach_mips4400, bfd_mach_mips4000 },
10899 { bfd_mach_mips4300, bfd_mach_mips4000 },
10900 { bfd_mach_mips4100, bfd_mach_mips4000 },
10901 { bfd_mach_mips4010, bfd_mach_mips4000 },
10902
10903 /* MIPS32 extensions. */
10904 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10905
10906 /* MIPS II extensions. */
10907 { bfd_mach_mips4000, bfd_mach_mips6000 },
10908 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10909
10910 /* MIPS I extensions. */
10911 { bfd_mach_mips6000, bfd_mach_mips3000 },
10912 { bfd_mach_mips3900, bfd_mach_mips3000 }
10913};
10914
10915
10916/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10917
10918static bfd_boolean
9719ad41 10919mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
10920{
10921 size_t i;
10922
c5211a54
RS
10923 if (extension == base)
10924 return TRUE;
10925
10926 if (base == bfd_mach_mipsisa32
10927 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10928 return TRUE;
10929
10930 if (base == bfd_mach_mipsisa32r2
10931 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10932 return TRUE;
10933
10934 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 10935 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
10936 {
10937 extension = mips_mach_extensions[i].base;
10938 if (extension == base)
10939 return TRUE;
10940 }
64543e1a 10941
c5211a54 10942 return FALSE;
64543e1a
RS
10943}
10944
10945
10946/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 10947
b34976b6 10948static bfd_boolean
9719ad41 10949mips_32bit_flags_p (flagword flags)
00707a0e 10950{
64543e1a
RS
10951 return ((flags & EF_MIPS_32BITMODE) != 0
10952 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10953 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10954 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10955 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10956 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10957 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
10958}
10959
64543e1a 10960
b49e97c9
TS
10961/* Merge backend specific data from an object file to the output
10962 object file when linking. */
10963
b34976b6 10964bfd_boolean
9719ad41 10965_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
10966{
10967 flagword old_flags;
10968 flagword new_flags;
b34976b6
AM
10969 bfd_boolean ok;
10970 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
10971 asection *sec;
10972
10973 /* Check if we have the same endianess */
82e51918 10974 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
10975 {
10976 (*_bfd_error_handler)
d003868e
AM
10977 (_("%B: endianness incompatible with that of the selected emulation"),
10978 ibfd);
aa701218
AO
10979 return FALSE;
10980 }
b49e97c9
TS
10981
10982 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10983 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 10984 return TRUE;
b49e97c9 10985
aa701218
AO
10986 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10987 {
10988 (*_bfd_error_handler)
d003868e
AM
10989 (_("%B: ABI is incompatible with that of the selected emulation"),
10990 ibfd);
aa701218
AO
10991 return FALSE;
10992 }
10993
b49e97c9
TS
10994 new_flags = elf_elfheader (ibfd)->e_flags;
10995 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10996 old_flags = elf_elfheader (obfd)->e_flags;
10997
10998 if (! elf_flags_init (obfd))
10999 {
b34976b6 11000 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
11001 elf_elfheader (obfd)->e_flags = new_flags;
11002 elf_elfheader (obfd)->e_ident[EI_CLASS]
11003 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11004
11005 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
11006 && (bfd_get_arch_info (obfd)->the_default
11007 || mips_mach_extends_p (bfd_get_mach (obfd),
11008 bfd_get_mach (ibfd))))
b49e97c9
TS
11009 {
11010 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11011 bfd_get_mach (ibfd)))
b34976b6 11012 return FALSE;
b49e97c9
TS
11013 }
11014
b34976b6 11015 return TRUE;
b49e97c9
TS
11016 }
11017
11018 /* Check flag compatibility. */
11019
11020 new_flags &= ~EF_MIPS_NOREORDER;
11021 old_flags &= ~EF_MIPS_NOREORDER;
11022
f4416af6
AO
11023 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11024 doesn't seem to matter. */
11025 new_flags &= ~EF_MIPS_XGOT;
11026 old_flags &= ~EF_MIPS_XGOT;
11027
98a8deaf
RS
11028 /* MIPSpro generates ucode info in n64 objects. Again, we should
11029 just be able to ignore this. */
11030 new_flags &= ~EF_MIPS_UCODE;
11031 old_flags &= ~EF_MIPS_UCODE;
11032
0a44bf69
RS
11033 /* Don't care about the PIC flags from dynamic objects; they are
11034 PIC by design. */
11035 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11036 && (ibfd->flags & DYNAMIC) != 0)
11037 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11038
b49e97c9 11039 if (new_flags == old_flags)
b34976b6 11040 return TRUE;
b49e97c9
TS
11041
11042 /* Check to see if the input BFD actually contains any sections.
11043 If not, its flags may not have been initialised either, but it cannot
11044 actually cause any incompatibility. */
11045 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11046 {
11047 /* Ignore synthetic sections and empty .text, .data and .bss sections
11048 which are automatically generated by gas. */
11049 if (strcmp (sec->name, ".reginfo")
11050 && strcmp (sec->name, ".mdebug")
eea6121a 11051 && (sec->size != 0
d13d89fa
NS
11052 || (strcmp (sec->name, ".text")
11053 && strcmp (sec->name, ".data")
11054 && strcmp (sec->name, ".bss"))))
b49e97c9 11055 {
b34976b6 11056 null_input_bfd = FALSE;
b49e97c9
TS
11057 break;
11058 }
11059 }
11060 if (null_input_bfd)
b34976b6 11061 return TRUE;
b49e97c9 11062
b34976b6 11063 ok = TRUE;
b49e97c9 11064
143d77c5
EC
11065 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11066 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 11067 {
b49e97c9 11068 (*_bfd_error_handler)
d003868e
AM
11069 (_("%B: warning: linking PIC files with non-PIC files"),
11070 ibfd);
143d77c5 11071 ok = TRUE;
b49e97c9
TS
11072 }
11073
143d77c5
EC
11074 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11075 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11076 if (! (new_flags & EF_MIPS_PIC))
11077 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11078
11079 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11080 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 11081
64543e1a
RS
11082 /* Compare the ISAs. */
11083 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 11084 {
64543e1a 11085 (*_bfd_error_handler)
d003868e
AM
11086 (_("%B: linking 32-bit code with 64-bit code"),
11087 ibfd);
64543e1a
RS
11088 ok = FALSE;
11089 }
11090 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11091 {
11092 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11093 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 11094 {
64543e1a
RS
11095 /* Copy the architecture info from IBFD to OBFD. Also copy
11096 the 32-bit flag (if set) so that we continue to recognise
11097 OBFD as a 32-bit binary. */
11098 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11099 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11100 elf_elfheader (obfd)->e_flags
11101 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11102
11103 /* Copy across the ABI flags if OBFD doesn't use them
11104 and if that was what caused us to treat IBFD as 32-bit. */
11105 if ((old_flags & EF_MIPS_ABI) == 0
11106 && mips_32bit_flags_p (new_flags)
11107 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11108 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
11109 }
11110 else
11111 {
64543e1a 11112 /* The ISAs aren't compatible. */
b49e97c9 11113 (*_bfd_error_handler)
d003868e
AM
11114 (_("%B: linking %s module with previous %s modules"),
11115 ibfd,
64543e1a
RS
11116 bfd_printable_name (ibfd),
11117 bfd_printable_name (obfd));
b34976b6 11118 ok = FALSE;
b49e97c9 11119 }
b49e97c9
TS
11120 }
11121
64543e1a
RS
11122 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11123 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11124
11125 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
11126 does set EI_CLASS differently from any 32-bit ABI. */
11127 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11128 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11129 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11130 {
11131 /* Only error if both are set (to different values). */
11132 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11133 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11134 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11135 {
11136 (*_bfd_error_handler)
d003868e
AM
11137 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11138 ibfd,
b49e97c9
TS
11139 elf_mips_abi_name (ibfd),
11140 elf_mips_abi_name (obfd));
b34976b6 11141 ok = FALSE;
b49e97c9
TS
11142 }
11143 new_flags &= ~EF_MIPS_ABI;
11144 old_flags &= ~EF_MIPS_ABI;
11145 }
11146
fb39dac1
RS
11147 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11148 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11149 {
11150 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11151
11152 new_flags &= ~ EF_MIPS_ARCH_ASE;
11153 old_flags &= ~ EF_MIPS_ARCH_ASE;
11154 }
11155
b49e97c9
TS
11156 /* Warn about any other mismatches */
11157 if (new_flags != old_flags)
11158 {
11159 (*_bfd_error_handler)
d003868e
AM
11160 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11161 ibfd, (unsigned long) new_flags,
b49e97c9 11162 (unsigned long) old_flags);
b34976b6 11163 ok = FALSE;
b49e97c9
TS
11164 }
11165
11166 if (! ok)
11167 {
11168 bfd_set_error (bfd_error_bad_value);
b34976b6 11169 return FALSE;
b49e97c9
TS
11170 }
11171
b34976b6 11172 return TRUE;
b49e97c9
TS
11173}
11174
11175/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11176
b34976b6 11177bfd_boolean
9719ad41 11178_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
11179{
11180 BFD_ASSERT (!elf_flags_init (abfd)
11181 || elf_elfheader (abfd)->e_flags == flags);
11182
11183 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
11184 elf_flags_init (abfd) = TRUE;
11185 return TRUE;
b49e97c9
TS
11186}
11187
b34976b6 11188bfd_boolean
9719ad41 11189_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 11190{
9719ad41 11191 FILE *file = ptr;
b49e97c9
TS
11192
11193 BFD_ASSERT (abfd != NULL && ptr != NULL);
11194
11195 /* Print normal ELF private data. */
11196 _bfd_elf_print_private_bfd_data (abfd, ptr);
11197
11198 /* xgettext:c-format */
11199 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11200
11201 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11202 fprintf (file, _(" [abi=O32]"));
11203 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11204 fprintf (file, _(" [abi=O64]"));
11205 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11206 fprintf (file, _(" [abi=EABI32]"));
11207 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11208 fprintf (file, _(" [abi=EABI64]"));
11209 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11210 fprintf (file, _(" [abi unknown]"));
11211 else if (ABI_N32_P (abfd))
11212 fprintf (file, _(" [abi=N32]"));
11213 else if (ABI_64_P (abfd))
11214 fprintf (file, _(" [abi=64]"));
11215 else
11216 fprintf (file, _(" [no abi set]"));
11217
11218 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 11219 fprintf (file, " [mips1]");
b49e97c9 11220 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 11221 fprintf (file, " [mips2]");
b49e97c9 11222 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 11223 fprintf (file, " [mips3]");
b49e97c9 11224 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 11225 fprintf (file, " [mips4]");
b49e97c9 11226 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 11227 fprintf (file, " [mips5]");
b49e97c9 11228 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 11229 fprintf (file, " [mips32]");
b49e97c9 11230 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 11231 fprintf (file, " [mips64]");
af7ee8bf 11232 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 11233 fprintf (file, " [mips32r2]");
5f74bc13 11234 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 11235 fprintf (file, " [mips64r2]");
b49e97c9
TS
11236 else
11237 fprintf (file, _(" [unknown ISA]"));
11238
40d32fc6 11239 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 11240 fprintf (file, " [mdmx]");
40d32fc6
CD
11241
11242 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 11243 fprintf (file, " [mips16]");
40d32fc6 11244
b49e97c9 11245 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 11246 fprintf (file, " [32bitmode]");
b49e97c9
TS
11247 else
11248 fprintf (file, _(" [not 32bitmode]"));
11249
c0e3f241 11250 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 11251 fprintf (file, " [noreorder]");
c0e3f241
CD
11252
11253 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 11254 fprintf (file, " [PIC]");
c0e3f241
CD
11255
11256 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 11257 fprintf (file, " [CPIC]");
c0e3f241
CD
11258
11259 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 11260 fprintf (file, " [XGOT]");
c0e3f241
CD
11261
11262 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 11263 fprintf (file, " [UCODE]");
c0e3f241 11264
b49e97c9
TS
11265 fputc ('\n', file);
11266
b34976b6 11267 return TRUE;
b49e97c9 11268}
2f89ff8d 11269
b35d266b 11270const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 11271{
0112cd26
NC
11272 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11273 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11274 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11275 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11276 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11277 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11278 { NULL, 0, 0, 0, 0 }
2f89ff8d 11279};
5e2b0d47 11280
8992f0d7
TS
11281/* Merge non visibility st_other attributes. Ensure that the
11282 STO_OPTIONAL flag is copied into h->other, even if this is not a
11283 definiton of the symbol. */
5e2b0d47
NC
11284void
11285_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11286 const Elf_Internal_Sym *isym,
11287 bfd_boolean definition,
11288 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11289{
8992f0d7
TS
11290 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11291 {
11292 unsigned char other;
11293
11294 other = (definition ? isym->st_other : h->other);
11295 other &= ~ELF_ST_VISIBILITY (-1);
11296 h->other = other | ELF_ST_VISIBILITY (h->other);
11297 }
11298
11299 if (!definition
5e2b0d47
NC
11300 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11301 h->other |= STO_OPTIONAL;
11302}
12ac1cf5
NC
11303
11304/* Decide whether an undefined symbol is special and can be ignored.
11305 This is the case for OPTIONAL symbols on IRIX. */
11306bfd_boolean
11307_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11308{
11309 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11310}
e0764319
NC
11311
11312bfd_boolean
11313_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11314{
11315 return (sym->st_shndx == SHN_COMMON
11316 || sym->st_shndx == SHN_MIPS_ACOMMON
11317 || sym->st_shndx == SHN_MIPS_SCOMMON);
11318}
This page took 1.20994 seconds and 4 git commands to generate.