PR23282, Reinstate seek optimization
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
219d1afa 2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
296#define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298#define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300#define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 302
b49e97c9
TS
303/* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306struct mips_elf_hash_sort_data
307{
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
0f20cc35
DJ
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
55f8b9d2 313 bfd_size_type min_got_dynindx;
f4416af6
AO
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 316 with dynamic relocations pointing to it from non-primary GOTs). */
55f8b9d2 317 bfd_size_type max_unref_got_dynindx;
e17b0c35
MR
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
b49e97c9 322 symbol without a GOT entry. */
55f8b9d2 323 bfd_size_type max_non_got_dynindx;
b49e97c9
TS
324};
325
1bbce132
MR
326/* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331struct plt_entry
332{
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350};
351
b49e97c9
TS
352/* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355struct mips_elf_link_hash_entry
356{
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
861fb55a
DJ
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
b49e97c9
TS
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
b49e97c9
TS
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
b49e97c9
TS
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
7c5fcef7 380
634835ae
RS
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
6ccf4795
RS
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
71782a75
RS
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
861fb55a
DJ
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
71782a75
RS
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
861fb55a
DJ
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
1bbce132
MR
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
b49e97c9
TS
419};
420
421/* MIPS ELF linker hash table. */
422
423struct mips_elf_link_hash_table
424{
425 struct elf_link_hash_table root;
861fb55a 426
b49e97c9
TS
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
861fb55a 429
b49e97c9
TS
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
861fb55a 432
e6aea42d
MR
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 435 bfd_boolean use_rld_obj_head;
861fb55a 436
b4082c70
DD
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
861fb55a 439
b49e97c9 440 /* This is set if we see any mips16 stub sections. */
b34976b6 441 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
833794fc
MR
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
8b10b0b3
MR
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
0a44bf69
RS
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
861fb55a 454
0e53d9da
AN
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
861fb55a 457
0a44bf69
RS
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
0a44bf69 460 asection *srelplt2;
4e41d0d7 461 asection *sstubs;
861fb55a 462
a8028dd0
RS
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
861fb55a 465
d222d210
RS
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
861fb55a 470 /* The size of the PLT header in bytes. */
0a44bf69 471 bfd_vma plt_header_size;
861fb55a 472
1bbce132
MR
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
861fb55a 487
33bb52fb
RS
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
861fb55a 490
5108fc1b
RS
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
861fb55a
DJ
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
1bbce132
MR
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
519};
520
4dfe6ac6
NC
521/* Get the MIPS ELF linker hash table from a link_info structure. */
522
523#define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
861fb55a 527/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
528struct mips_htab_traverse_info
529{
861fb55a
DJ
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
b49e97c9
TS
536};
537
6ae68ba3
MR
538/* MIPS ELF private object data. */
539
540struct mips_elf_obj_tdata
541{
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
ee227692 547
b60bf9be
CF
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
351cdf24
MF
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
ee227692
RS
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
698600e4
AM
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
6ae68ba3
MR
573};
574
575/* Get MIPS ELF private object data from BFD's tdata. */
576
577#define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
0f20cc35
DJ
580#define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 593 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 608
b49e97c9
TS
609/* Structure used to pass information to mips_elf_output_extsym. */
610
611struct extsym_info
612{
9e4aeb93
RS
613 bfd *abfd;
614 struct bfd_link_info *info;
b49e97c9
TS
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
b34976b6 617 bfd_boolean failed;
b49e97c9
TS
618};
619
8dc1a139 620/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
621
622static const char * const mips_elf_dynsym_rtproc_names[] =
623{
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628};
629
630/* These structures are used to generate the .compact_rel section on
8dc1a139 631 IRIX5. */
b49e97c9
TS
632
633typedef struct
634{
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641} Elf32_compact_rel;
642
643typedef struct
644{
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651} Elf32_External_compact_rel;
652
653typedef struct
654{
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661} Elf32_crinfo;
662
663typedef struct
664{
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670} Elf32_crinfo2;
671
672typedef struct
673{
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677} Elf32_External_crinfo;
678
679typedef struct
680{
681 bfd_byte info[4];
682 bfd_byte konst[4];
683} Elf32_External_crinfo2;
684
685/* These are the constants used to swap the bitfields in a crinfo. */
686
687#define CRINFO_CTYPE (0x1)
688#define CRINFO_CTYPE_SH (31)
689#define CRINFO_RTYPE (0xf)
690#define CRINFO_RTYPE_SH (27)
691#define CRINFO_DIST2TO (0xff)
692#define CRINFO_DIST2TO_SH (19)
693#define CRINFO_RELVADDR (0x7ffff)
694#define CRINFO_RELVADDR_SH (0)
695
696/* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699#define CRF_MIPS_LONG 1
700#define CRF_MIPS_SHORT 0
701
702/* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712#define CRT_MIPS_REL32 0xa
713#define CRT_MIPS_WORD 0xb
714#define CRT_MIPS_GPHI_LO 0xc
715#define CRT_MIPS_JMPAD 0xd
716
717#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721\f
722/* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725typedef struct runtime_pdr {
ae9a127f
NC
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
b49e97c9 735 long reserved;
ae9a127f 736 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
737} RPDR, *pRPDR;
738#define cbRPDR sizeof (RPDR)
739#define rpdNil ((pRPDR) 0)
740\f
b15e6682 741static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
b34976b6 744static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 745 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
746static bfd_vma mips_elf_high
747 (bfd_vma);
b34976b6 748static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
f4416af6 752static bfd_vma mips_elf_adjust_gp
9719ad41 753 (bfd *, struct mips_got_info *, bfd *);
f4416af6 754
b49e97c9
TS
755/* This will be used when we sort the dynamic relocation records. */
756static bfd *reldyn_sorting_bfd;
757
6d30f5b2
NC
758/* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760#define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
cd8d5a82
CF
764/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767#define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773#define JALR_TO_BAL_P(abfd) 1
774
38a7df63
CF
775/* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778#define JR_TO_B_P(abfd) 1
779
861fb55a
DJ
780/* True if ABFD is a PIC object. */
781#define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
351cdf24
MF
784/* Nonzero if ABFD is using the O32 ABI. */
785#define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
b49e97c9 788/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
789#define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
4a14403c 792/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 793#define ABI_64_P(abfd) \
141ff970 794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 795
4a14403c
TS
796/* Nonzero if ABFD is using NewABI conventions. */
797#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
e8faf7d1
MR
799/* Nonzero if ABFD has microMIPS code. */
800#define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
7361da2c
AB
803/* Nonzero if ABFD is MIPS R6. */
804#define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
4a14403c 808/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
809#define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
b49e97c9
TS
812/* Whether we are trying to be compatible with IRIX at all. */
813#define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816/* The name of the options section. */
817#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 819
cc2e31b9
RS
820/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
351cdf24
MF
825/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
943284cc
DJ
829/* Whether the section is readonly. */
830#define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
b49e97c9 834/* The name of the stub section. */
ca07892d 835#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
836
837/* The size of an external REL relocation. */
838#define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
0a44bf69
RS
841/* The size of an external RELA relocation. */
842#define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
b49e97c9
TS
845/* The size of an external dynamic table entry. */
846#define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849/* The size of a GOT entry. */
850#define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
b4082c70
DD
853/* The size of the .rld_map section. */
854#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
b49e97c9
TS
857/* The size of a symbol-table entry. */
858#define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861/* The default alignment for sections, as a power of two. */
862#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 863 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
864
865/* Get word-sized data. */
866#define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869/* Put out word-sized data. */
870#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
07d6d2b8
AM
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
b49e97c9
TS
873 : bfd_put_32 (abfd, val, ptr))
874
861fb55a
DJ
875/* The opcode for word-sized loads (LW or LD). */
876#define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
b49e97c9 879/* Add a dynamic symbol table-entry. */
9719ad41 880#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 881 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
882
883#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
0aa13fee 884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
b49e97c9 885
0a44bf69
RS
886/* The name of the dynamic relocation section. */
887#define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
b49e97c9
TS
890/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 893#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 894
51e38d68
RS
895/* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
f4416af6 901/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
902#define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
904
905/* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
0a44bf69 907#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 908
6a691779 909/* Instructions which appear in a stub. */
3d6746ca
DD
910#define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
07d6d2b8 913 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 914#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 915#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 916#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
5108fc1b
RS
917#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
919#define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
1bbce132
MR
924/* Likewise for the microMIPS ASE. */
925#define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 930#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
931#define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 934#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
935#define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937#define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939#define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
5108fc1b
RS
944#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
946#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
948#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
950
951/* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
07d6d2b8
AM
954#define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
b49e97c9
TS
957 : "/usr/lib/libc.so.1")
958
959#ifdef BFD64
ee6423ed
AO
960#define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
962#define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964#define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966#define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968#else
ee6423ed 969#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
970#define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972#define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974#define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976#endif
977\f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012#define FN_STUB ".mips16.fn."
1013#define CALL_STUB ".mips16.call."
1014#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1015
1016#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1019\f
861fb55a 1020/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1021static const bfd_vma mips_o32_exec_plt0_entry[] =
1022{
861fb55a
DJ
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1027 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031};
1032
1033/* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1035static const bfd_vma mips_n32_exec_plt0_entry[] =
1036{
861fb55a
DJ
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1041 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045};
1046
1047/* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1049static const bfd_vma mips_n64_exec_plt0_entry[] =
1050{
861fb55a
DJ
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1055 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059};
1060
1bbce132
MR
1061/* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068{
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078};
1079
833794fc
MR
1080/* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083{
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1088 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092};
1093
1bbce132 1094/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1095static const bfd_vma mips_exec_plt_entry[] =
1096{
861fb55a
DJ
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101};
1102
7361da2c
AB
1103/* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106static const bfd_vma mipsr6_exec_plt_entry[] =
1107{
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112};
1113
1bbce132
MR
1114/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117static const bfd_vma mips16_o32_exec_plt_entry[] =
1118{
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126};
1127
1128/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130static const bfd_vma micromips_o32_exec_plt_entry[] =
1131{
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136};
1137
833794fc
MR
1138/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140{
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145};
1146
0a44bf69 1147/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1148static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149{
0a44bf69
RS
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156};
1157
1158/* The format of subsequent PLT entries. */
6d30f5b2
NC
1159static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160{
0a44bf69
RS
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169};
1170
1171/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1172static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173{
0a44bf69
RS
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180};
1181
1182/* The format of subsequent PLT entries. */
6d30f5b2
NC
1183static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184{
0a44bf69
RS
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187};
1188\f
d21911ea
MR
1189/* microMIPS 32-bit opcode helper installer. */
1190
1191static void
1192bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193{
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
07d6d2b8 1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
d21911ea
MR
1196}
1197
1198/* microMIPS 32-bit opcode helper retriever. */
1199
1200static bfd_vma
1201bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202{
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204}
1205\f
b49e97c9
TS
1206/* Look up an entry in a MIPS ELF linker hash table. */
1207
1208#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213/* Traverse a MIPS ELF linker hash table. */
1214
1215#define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
9719ad41 1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1219 (info)))
1220
0f20cc35
DJ
1221/* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224#define TP_OFFSET 0x7000
1225#define DTP_OFFSET 0x8000
1226
1227static bfd_vma
1228dtprel_base (struct bfd_link_info *info)
1229{
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234}
1235
1236static bfd_vma
1237tprel_base (struct bfd_link_info *info)
1238{
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243}
1244
b49e97c9
TS
1245/* Create an entry in a MIPS ELF linker hash table. */
1246
1247static struct bfd_hash_entry *
9719ad41
RS
1248mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1250{
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
9719ad41
RS
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
b49e97c9
TS
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
9719ad41 1265 if (ret != NULL)
b49e97c9
TS
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
861fb55a 1272 ret->la25_stub = 0;
b49e97c9 1273 ret->possibly_dynamic_relocs = 0;
b49e97c9 1274 ret->fn_stub = NULL;
b49e97c9
TS
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
634835ae 1277 ret->global_got_area = GGA_NONE;
6ccf4795 1278 ret->got_only_for_calls = TRUE;
71782a75 1279 ret->readonly_reloc = FALSE;
861fb55a 1280 ret->has_static_relocs = FALSE;
71782a75
RS
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
861fb55a 1283 ret->has_nonpic_branches = FALSE;
33bb52fb 1284 ret->needs_lazy_stub = FALSE;
1bbce132 1285 ret->use_plt_entry = FALSE;
b49e97c9
TS
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289}
f0abc2a1 1290
6ae68ba3
MR
1291/* Allocate MIPS ELF private object data. */
1292
1293bfd_boolean
1294_bfd_mips_elf_mkobject (bfd *abfd)
1295{
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298}
1299
f0abc2a1 1300bfd_boolean
9719ad41 1301_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1302{
f592407e
AM
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1307
f592407e
AM
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
f0abc2a1
AM
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315}
b49e97c9
TS
1316\f
1317/* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
b34976b6 1320bfd_boolean
9719ad41
RS
1321_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
b49e97c9
TS
1323{
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
9719ad41 1326 char *ext_hdr;
b49e97c9
TS
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
9719ad41 1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
9719ad41 1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1336 swap->external_hdr_size))
b49e97c9
TS
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344#define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1350 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
9719ad41 1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1370#undef READ
1371
1372 debug->fdr = NULL;
b49e97c9 1373
b34976b6 1374 return TRUE;
b49e97c9
TS
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
b34976b6 1401 return FALSE;
b49e97c9
TS
1402}
1403\f
1404/* Swap RPDR (runtime procedure table entry) for output. */
1405
1406static void
9719ad41 1407ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1408{
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1420}
1421
1422/* Create a runtime procedure table from the .mdebug section. */
1423
b34976b6 1424static bfd_boolean
9719ad41
RS
1425mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
b49e97c9
TS
1428{
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
9719ad41 1433 void *rtproc;
b49e97c9
TS
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
9719ad41 1460 epdr = bfd_malloc (size * count);
b49e97c9
TS
1461 if (epdr == NULL)
1462 goto error_return;
1463
9719ad41 1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
9719ad41 1468 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
9719ad41 1473 sv = bfd_malloc (size * count);
b49e97c9
TS
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
9719ad41 1479 esym = bfd_malloc (size * count);
b49e97c9
TS
1480 if (esym == NULL)
1481 goto error_return;
1482
9719ad41 1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1484 goto error_return;
1485
1486 count = hdr->issMax;
9719ad41 1487 ss = bfd_malloc (count);
b49e97c9
TS
1488 if (ss == NULL)
1489 goto error_return;
f075ee0c 1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
9719ad41
RS
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
9719ad41 1514 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
9719ad41 1523 erp = rtproc;
b49e97c9
TS
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
eea6121a 1538 s->size = size;
9719ad41 1539 s->contents = rtproc;
b49e97c9
TS
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
8423293d 1543 s->map_head.link_order = NULL;
b49e97c9
TS
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
b34976b6 1556 return TRUE;
b49e97c9
TS
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
b34976b6 1569 return FALSE;
b49e97c9 1570}
738e5348 1571\f
861fb55a
DJ
1572/* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575static bfd_boolean
1576mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580{
a848a227 1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1584 char *name;
1585 bfd_boolean res;
861fb55a 1586
a848a227 1587 if (micromips_p)
df58fc94
RS
1588 value |= 1;
1589
861fb55a 1590 /* Create a new symbol. */
e1fa0163 1591 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1592 bh = NULL;
e1fa0163
NC
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
861fb55a
DJ
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
a848a227
MR
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1607 return TRUE;
1608}
1609
738e5348
RS
1610/* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614static bfd_boolean
1615mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618{
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
e1fa0163 1621 char *name;
738e5348
RS
1622 asection *s;
1623 bfd_vma value;
e1fa0163 1624 bfd_boolean res;
738e5348
RS
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
e1fa0163 1633 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1634 bh = NULL;
e1fa0163
NC
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
738e5348
RS
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649}
1650
1651/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654static bfd_boolean
1655section_allows_mips16_refs_p (asection *section)
1656{
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664}
1665
1666/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670static unsigned long
cb4437b8
MR
1671mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
502e814e 1673 const Elf_Internal_Rela *relocs,
738e5348
RS
1674 const Elf_Internal_Rela *relend)
1675{
cb4437b8 1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1677 const Elf_Internal_Rela *rel;
1678
cb4437b8
MR
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691}
b49e97c9
TS
1692
1693/* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
861fb55a
DJ
1696static void
1697mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
b49e97c9 1699{
738e5348
RS
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
b49e97c9
TS
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
07d6d2b8
AM
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
eea6121a 1715 h->fn_stub->size = 0;
b49e97c9
TS
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1719 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1720 }
1721
1722 if (h->call_stub != NULL
30c09090 1723 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
eea6121a 1728 h->call_stub->size = 0;
b49e97c9
TS
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1732 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1733 }
1734
1735 if (h->call_fp_stub != NULL
30c09090 1736 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
eea6121a 1741 h->call_fp_stub->size = 0;
b49e97c9
TS
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1746 }
861fb55a
DJ
1747}
1748
1749/* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751static hashval_t
1752mips_elf_la25_stub_hash (const void *entry_)
1753{
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759}
1760
1761static int
1762mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763{
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772}
1773
1774/* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778bfd_boolean
1779_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782{
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1786 if (htab == NULL)
1787 return FALSE;
1788
861fb55a
DJ
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796}
1797
1798/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
861fb55a
DJ
1803
1804static bfd_boolean
1805mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806{
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1811 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816}
1817
8f0c309a
CLT
1818/* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821static bfd_vma
1822mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824{
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836}
1837
861fb55a
DJ
1838/* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842static bfd_boolean
1843mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845{
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1852 if (htab == NULL)
1853 return FALSE;
861fb55a
DJ
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
8f0c309a 1862 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883}
1884
1885/* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889static bfd_boolean
1890mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892{
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1897 if (htab == NULL)
1898 return FALSE;
861fb55a
DJ
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920}
1921
1922/* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925static bfd_boolean
1926mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928{
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
861fb55a
DJ
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1943 if (htab == NULL)
1944 return FALSE;
1945
861fb55a
DJ
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
8f0c309a
CLT
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
8f0c309a
CLT
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
861fb55a
DJ
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976}
1977
1978/* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981static bfd_boolean
1982mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983{
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 1987 if (!bfd_link_relocatable (hti->info))
861fb55a 1988 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1989
861fb55a
DJ
1990 if (mips_elf_local_pic_function_p (h))
1991 {
ba85c43e
NC
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
861fb55a
DJ
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
0e1862bb 2002 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
b34976b6 2013 return TRUE;
b49e97c9
TS
2014}
2015\f
d6f16593
MR
2016/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
07d6d2b8 2025 | Immediate 15:0 |
d6f16593
MR
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
07d6d2b8
AM
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
d6f16593
MR
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
07d6d2b8
AM
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
d6f16593
MR
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
738e5348
RS
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
d6f16593
MR
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
738e5348
RS
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
738e5348
RS
2104
2105static inline bfd_boolean
2106mips16_reloc_p (int r_type)
2107{
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
d0f13682
CLT
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2123 case R_MIPS16_PC16_S1:
738e5348
RS
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129}
2130
df58fc94
RS
2131/* Check if a microMIPS reloc. */
2132
2133static inline bfd_boolean
2134micromips_reloc_p (unsigned int r_type)
2135{
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137}
2138
2139/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143static inline bfd_boolean
2144micromips_reloc_shuffle_p (unsigned int r_type)
2145{
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149}
2150
738e5348
RS
2151static inline bfd_boolean
2152got16_reloc_p (int r_type)
2153{
df58fc94
RS
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2157}
2158
2159static inline bfd_boolean
2160call16_reloc_p (int r_type)
2161{
df58fc94
RS
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165}
2166
2167static inline bfd_boolean
2168got_disp_reloc_p (unsigned int r_type)
2169{
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171}
2172
2173static inline bfd_boolean
2174got_page_reloc_p (unsigned int r_type)
2175{
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177}
2178
df58fc94
RS
2179static inline bfd_boolean
2180got_lo16_reloc_p (unsigned int r_type)
2181{
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183}
2184
2185static inline bfd_boolean
2186call_hi16_reloc_p (unsigned int r_type)
2187{
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189}
2190
2191static inline bfd_boolean
2192call_lo16_reloc_p (unsigned int r_type)
2193{
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2195}
2196
2197static inline bfd_boolean
2198hi16_reloc_p (int r_type)
2199{
df58fc94
RS
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
7361da2c
AB
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
738e5348 2204}
d6f16593 2205
738e5348
RS
2206static inline bfd_boolean
2207lo16_reloc_p (int r_type)
2208{
df58fc94
RS
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
7361da2c
AB
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
738e5348
RS
2213}
2214
2215static inline bfd_boolean
2216mips16_call_reloc_p (int r_type)
2217{
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219}
d6f16593 2220
38a7df63
CF
2221static inline bfd_boolean
2222jal_reloc_p (int r_type)
2223{
df58fc94
RS
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227}
2228
99aefae6
MR
2229static inline bfd_boolean
2230b_reloc_p (int r_type)
2231{
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
c9775dde 2235 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2240}
2241
7361da2c
AB
2242static inline bfd_boolean
2243aligned_pcrel_reloc_p (int r_type)
2244{
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247}
2248
9d862524
MR
2249static inline bfd_boolean
2250branch_reloc_p (int r_type)
2251{
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257}
2258
c9775dde
MR
2259static inline bfd_boolean
2260mips16_branch_reloc_p (int r_type)
2261{
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264}
2265
df58fc94
RS
2266static inline bfd_boolean
2267micromips_branch_reloc_p (int r_type)
2268{
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273}
2274
2275static inline bfd_boolean
2276tls_gd_reloc_p (unsigned int r_type)
2277{
d0f13682
CLT
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2281}
2282
2283static inline bfd_boolean
2284tls_ldm_reloc_p (unsigned int r_type)
2285{
d0f13682
CLT
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2289}
2290
2291static inline bfd_boolean
2292tls_gottprel_reloc_p (unsigned int r_type)
2293{
d0f13682
CLT
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2297}
2298
d6f16593 2299void
df58fc94
RS
2300_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2302{
df58fc94 2303 bfd_vma first, second, val;
d6f16593 2304
df58fc94 2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2306 return;
2307
df58fc94
RS
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2316 else
df58fc94
RS
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2319 bfd_put_32 (abfd, val, data);
2320}
2321
2322void
df58fc94
RS
2323_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2325{
df58fc94 2326 bfd_vma first, second, val;
d6f16593 2327
df58fc94 2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
df58fc94 2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2333 {
df58fc94
RS
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2341 }
2342 else
2343 {
df58fc94
RS
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
d6f16593 2347 }
df58fc94
RS
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
d6f16593
MR
2350}
2351
b49e97c9 2352bfd_reloc_status_type
9719ad41
RS
2353_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2356{
2357 bfd_vma relocation;
a7ebbfdf 2358 bfd_signed_vma val;
30ac9238 2359 bfd_reloc_status_type status;
b49e97c9
TS
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
07515404 2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2370 return bfd_reloc_outofrange;
2371
b49e97c9 2372 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2373 val = reloc_entry->addend;
2374
30ac9238 2375 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2376
b49e97c9 2377 /* Adjust val for the final section location and GP value. If we
1049f94e 2378 are producing relocatable output, we don't want to do this for
b49e97c9 2379 an external symbol. */
1049f94e 2380 if (! relocatable
b49e97c9
TS
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
a7ebbfdf
TS
2384 if (reloc_entry->howto->partial_inplace)
2385 {
30ac9238
RS
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
a7ebbfdf
TS
2391 }
2392 else
2393 reloc_entry->addend = val;
b49e97c9 2394
1049f94e 2395 if (relocatable)
b49e97c9 2396 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2397
2398 return bfd_reloc_ok;
2399}
2400
2401/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406struct mips_hi16
2407{
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412};
2413
2414/* FIXME: This should not be a static variable. */
2415
2416static struct mips_hi16 *mips_hi16_list;
2417
2418/* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427bfd_reloc_status_type
2428_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432{
2433 struct mips_hi16 *n;
2434
07515404 2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452}
2453
738e5348 2454/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458bfd_reloc_status_type
2459_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462{
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473}
2474
2475/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479bfd_reloc_status_type
2480_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483{
2484 bfd_vma vallo;
d6f16593 2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2486
07515404 2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2488 return bfd_reloc_outofrange;
2489
df58fc94 2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2491 location);
df58fc94
RS
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
d6f16593 2495
30ac9238
RS
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
738e5348
RS
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
30ac9238
RS
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532}
2533
2534/* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538bfd_reloc_status_type
2539_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543{
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
07515404 2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
d6f16593
MR
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
30ac9238
RS
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
df58fc94
RS
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
30ac9238 2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2594 location);
df58fc94
RS
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
d6f16593 2597
30ac9238
RS
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2604
2605 return bfd_reloc_ok;
2606}
2607\f
2608/* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611static void
9719ad41
RS
2612bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
b49e97c9
TS
2614{
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617}
2618
2619static void
9719ad41
RS
2620bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
b49e97c9
TS
2622{
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625}
2626
2627static void
9719ad41
RS
2628bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
b49e97c9
TS
2630{
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637}
2638
2639static void
9719ad41
RS
2640bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
b49e97c9
TS
2642{
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652}
b49e97c9
TS
2653\f
2654/* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658void
9719ad41
RS
2659bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
b49e97c9
TS
2661{
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668}
2669
2670void
9719ad41
RS
2671bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
b49e97c9
TS
2673{
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680}
2681
2682/* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688void
9719ad41
RS
2689bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2691{
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699}
2700
2701void
9719ad41
RS
2702bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
b49e97c9
TS
2704{
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712}
2713
2714/* Swap in an options header. */
2715
2716void
9719ad41
RS
2717bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
b49e97c9
TS
2719{
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724}
2725
2726/* Swap out an options header. */
2727
2728void
9719ad41
RS
2729bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
b49e97c9
TS
2731{
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736}
351cdf24
MF
2737
2738/* Swap in an abiflags structure. */
2739
2740void
2741bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744{
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756}
2757
2758/* Swap out an abiflags structure. */
2759
2760void
2761bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764{
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776}
b49e97c9
TS
2777\f
2778/* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781static int
9719ad41 2782sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2783{
947216bf
AM
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
6870500c 2786 int diff;
b49e97c9 2787
947216bf
AM
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2790
6870500c
RS
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
b49e97c9
TS
2800}
2801
f4416af6
AO
2802/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804static int
7e3102a7
AM
2805sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2807{
7e3102a7 2808#ifdef BFD64
f4416af6
AO
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
6870500c
RS
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
7e3102a7
AM
2827#else
2828 abort ();
2829#endif
f4416af6
AO
2830}
2831
2832
b49e97c9
TS
2833/* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
b34976b6 2847static bfd_boolean
9719ad41 2848mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2849{
9719ad41 2850 struct extsym_info *einfo = data;
b34976b6 2851 bfd_boolean strip;
b49e97c9
TS
2852 asection *sec, *output_section;
2853
b49e97c9 2854 if (h->root.indx == -2)
b34976b6 2855 strip = FALSE;
f5385ebf 2856 else if ((h->root.def_dynamic
77cfaee6
AM
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
b34976b6 2861 strip = TRUE;
b49e97c9
TS
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
b34976b6
AM
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
b49e97c9 2868 else
b34976b6 2869 strip = FALSE;
b49e97c9
TS
2870
2871 if (strip)
b34976b6 2872 return TRUE;
b49e97c9
TS
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
07d6d2b8 2890 special symbols. */
b49e97c9
TS
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
b49e97c9
TS
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
33bb52fb 2972 else
b49e97c9
TS
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2978
33bb52fb 2979 if (hd->needs_lazy_stub)
b49e97c9 2980 {
1bbce132
MR
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
1bbce132 2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
b49e97c9
TS
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
b34976b6
AM
3005 einfo->failed = TRUE;
3006 return FALSE;
b49e97c9
TS
3007 }
3008
b34976b6 3009 return TRUE;
b49e97c9
TS
3010}
3011
3012/* A comparison routine used to sort .gptab entries. */
3013
3014static int
9719ad41 3015gptab_compare (const void *p1, const void *p2)
b49e97c9 3016{
9719ad41
RS
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021}
3022\f
b15e6682 3023/* Functions to manage the got entry hash table. */
f4416af6
AO
3024
3025/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028static INLINE hashval_t
9719ad41 3029mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3030{
3031#ifdef BFD64
3032 return addr + (addr >> 32);
3033#else
3034 return addr;
3035#endif
3036}
3037
f4416af6 3038static hashval_t
d9bf376d 3039mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3040{
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
e641e783 3043 return (entry->symndx
9ab066b4
RS
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
f4416af6
AO
3050}
3051
3052static int
3dff0dd1 3053mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3054{
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
e641e783 3058 return (e1->symndx == e2->symndx
9ab066b4
RS
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3065}
c224138d 3066
13db6b44
RS
3067static hashval_t
3068mips_got_page_ref_hash (const void *ref_)
3069{
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077}
3078
3079static int
3080mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081{
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091}
3092
c224138d
RS
3093static hashval_t
3094mips_got_page_entry_hash (const void *entry_)
3095{
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3099 return entry->sec->id;
c224138d
RS
3100}
3101
3102static int
3103mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104{
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3109 return entry1->sec == entry2->sec;
c224138d 3110}
b15e6682 3111\f
3dff0dd1 3112/* Create and return a new mips_got_info structure. */
5334aa52
RS
3113
3114static struct mips_got_info *
3dff0dd1 3115mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3116{
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3dff0dd1
RS
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
13db6b44
RS
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
5334aa52
RS
3131 return NULL;
3132
3133 return g;
3134}
3135
ee227692
RS
3136/* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139static struct mips_got_info *
3140mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141{
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3dff0dd1 3149 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3150 return tdata->got;
3151}
3152
d7206569
RS
3153/* Record that ABFD should use output GOT G. */
3154
3155static void
3156mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157{
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
13db6b44
RS
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3170 }
3171 tdata->got = g;
3172}
3173
0a44bf69
RS
3174/* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
f4416af6
AO
3177
3178static asection *
0a44bf69 3179mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3180{
0a44bf69 3181 const char *dname;
f4416af6 3182 asection *sreloc;
0a44bf69 3183 bfd *dynobj;
f4416af6 3184
0a44bf69
RS
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3187 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3188 if (sreloc == NULL && create_p)
3189 {
3d4d4302
AM
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
f4416af6 3197 if (sreloc == NULL
f4416af6 3198 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3200 return NULL;
3201 }
3202 return sreloc;
3203}
3204
e641e783
RS
3205/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207static int
3208mips_elf_reloc_tls_type (unsigned int r_type)
3209{
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
9ab066b4 3219 return GOT_TLS_NONE;
e641e783
RS
3220}
3221
3222/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224static int
3225mips_tls_got_entries (unsigned int type)
3226{
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
9ab066b4 3236 case GOT_TLS_NONE:
e641e783
RS
3237 return 0;
3238 }
3239 abort ();
3240}
3241
0f20cc35
DJ
3242/* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246static int
3247mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249{
3250 int indx = 0;
0f20cc35
DJ
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
0e1862bb
L
3254 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3255 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3256 indx = h->dynindx;
3257
0e1862bb 3258 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3259 && (h == NULL
3260 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3261 || h->root.type != bfd_link_hash_undefweak))
3262 need_relocs = TRUE;
3263
3264 if (!need_relocs)
e641e783 3265 return 0;
0f20cc35 3266
9ab066b4 3267 switch (tls_type)
0f20cc35 3268 {
e641e783
RS
3269 case GOT_TLS_GD:
3270 return indx != 0 ? 2 : 1;
0f20cc35 3271
e641e783
RS
3272 case GOT_TLS_IE:
3273 return 1;
0f20cc35 3274
e641e783 3275 case GOT_TLS_LDM:
0e1862bb 3276 return bfd_link_pic (info) ? 1 : 0;
0f20cc35 3277
e641e783
RS
3278 default:
3279 return 0;
3280 }
0f20cc35
DJ
3281}
3282
ab361d49
RS
3283/* Add the number of GOT entries and TLS relocations required by ENTRY
3284 to G. */
0f20cc35 3285
ab361d49
RS
3286static void
3287mips_elf_count_got_entry (struct bfd_link_info *info,
3288 struct mips_got_info *g,
3289 struct mips_got_entry *entry)
0f20cc35 3290{
9ab066b4 3291 if (entry->tls_type)
ab361d49 3292 {
9ab066b4
RS
3293 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3294 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3295 entry->symndx < 0
3296 ? &entry->d.h->root : NULL);
3297 }
3298 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3299 g->local_gotno += 1;
3300 else
3301 g->global_gotno += 1;
0f20cc35
DJ
3302}
3303
0f20cc35
DJ
3304/* Output a simple dynamic relocation into SRELOC. */
3305
3306static void
3307mips_elf_output_dynamic_relocation (bfd *output_bfd,
3308 asection *sreloc,
861fb55a 3309 unsigned long reloc_index,
0f20cc35
DJ
3310 unsigned long indx,
3311 int r_type,
3312 bfd_vma offset)
3313{
3314 Elf_Internal_Rela rel[3];
3315
3316 memset (rel, 0, sizeof (rel));
3317
3318 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3319 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3320
3321 if (ABI_64_P (output_bfd))
3322 {
3323 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3324 (output_bfd, &rel[0],
3325 (sreloc->contents
861fb55a 3326 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3327 }
3328 else
3329 bfd_elf32_swap_reloc_out
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
861fb55a 3332 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3333}
3334
3335/* Initialize a set of TLS GOT entries for one symbol. */
3336
3337static void
9ab066b4
RS
3338mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3339 struct mips_got_entry *entry,
0f20cc35
DJ
3340 struct mips_elf_link_hash_entry *h,
3341 bfd_vma value)
3342{
23cc69b6 3343 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3344 int indx;
3345 asection *sreloc, *sgot;
9ab066b4 3346 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3347 bfd_boolean need_relocs = FALSE;
3348
23cc69b6 3349 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3350 if (htab == NULL)
3351 return;
3352
ce558b89 3353 sgot = htab->root.sgot;
0f20cc35
DJ
3354
3355 indx = 0;
3356 if (h != NULL)
3357 {
3358 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3359
0e1862bb
L
3360 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3361 &h->root)
3362 && (!bfd_link_pic (info)
3363 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
0f20cc35
DJ
3364 indx = h->root.dynindx;
3365 }
3366
9ab066b4 3367 if (entry->tls_initialized)
0f20cc35
DJ
3368 return;
3369
0e1862bb 3370 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3371 && (h == NULL
3372 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3373 || h->root.type != bfd_link_hash_undefweak))
3374 need_relocs = TRUE;
3375
3376 /* MINUS_ONE means the symbol is not defined in this object. It may not
3377 be defined at all; assume that the value doesn't matter in that
3378 case. Otherwise complain if we would use the value. */
3379 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3380 || h->root.root.type == bfd_link_hash_undefweak);
3381
3382 /* Emit necessary relocations. */
0a44bf69 3383 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3384 got_offset = entry->gotidx;
0f20cc35 3385
9ab066b4 3386 switch (entry->tls_type)
0f20cc35 3387 {
e641e783
RS
3388 case GOT_TLS_GD:
3389 /* General Dynamic. */
3390 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3391
3392 if (need_relocs)
3393 {
3394 mips_elf_output_dynamic_relocation
861fb55a 3395 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3396 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3397 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3398
3399 if (indx)
3400 mips_elf_output_dynamic_relocation
861fb55a 3401 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3403 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3406 sgot->contents + got_offset2);
0f20cc35
DJ
3407 }
3408 else
3409 {
3410 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3411 sgot->contents + got_offset);
0f20cc35 3412 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3413 sgot->contents + got_offset2);
0f20cc35 3414 }
e641e783 3415 break;
0f20cc35 3416
e641e783
RS
3417 case GOT_TLS_IE:
3418 /* Initial Exec model. */
0f20cc35
DJ
3419 if (need_relocs)
3420 {
3421 if (indx == 0)
3422 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3423 sgot->contents + got_offset);
0f20cc35
DJ
3424 else
3425 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3426 sgot->contents + got_offset);
0f20cc35
DJ
3427
3428 mips_elf_output_dynamic_relocation
861fb55a 3429 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3430 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3431 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3432 }
3433 else
3434 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3435 sgot->contents + got_offset);
3436 break;
0f20cc35 3437
e641e783 3438 case GOT_TLS_LDM:
0f20cc35
DJ
3439 /* The initial offset is zero, and the LD offsets will include the
3440 bias by DTP_OFFSET. */
3441 MIPS_ELF_PUT_WORD (abfd, 0,
3442 sgot->contents + got_offset
3443 + MIPS_ELF_GOT_SIZE (abfd));
3444
0e1862bb 3445 if (!bfd_link_pic (info))
0f20cc35
DJ
3446 MIPS_ELF_PUT_WORD (abfd, 1,
3447 sgot->contents + got_offset);
3448 else
3449 mips_elf_output_dynamic_relocation
861fb55a 3450 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3451 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3452 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3453 break;
3454
3455 default:
3456 abort ();
0f20cc35
DJ
3457 }
3458
9ab066b4 3459 entry->tls_initialized = TRUE;
e641e783 3460}
0f20cc35 3461
0a44bf69
RS
3462/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3463 for global symbol H. .got.plt comes before the GOT, so the offset
3464 will be negative. */
3465
3466static bfd_vma
3467mips_elf_gotplt_index (struct bfd_link_info *info,
3468 struct elf_link_hash_entry *h)
3469{
1bbce132 3470 bfd_vma got_address, got_value;
0a44bf69
RS
3471 struct mips_elf_link_hash_table *htab;
3472
3473 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3474 BFD_ASSERT (htab != NULL);
3475
1bbce132
MR
3476 BFD_ASSERT (h->plt.plist != NULL);
3477 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3478
3479 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3480 got_address = (htab->root.sgotplt->output_section->vma
3481 + htab->root.sgotplt->output_offset
1bbce132
MR
3482 + (h->plt.plist->gotplt_index
3483 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3484
3485 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3486 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3487 + htab->root.hgot->root.u.def.section->output_offset
3488 + htab->root.hgot->root.u.def.value);
3489
3490 return got_address - got_value;
3491}
3492
5c18022e 3493/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3494 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3495 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3496 offset can be found. */
b49e97c9
TS
3497
3498static bfd_vma
9719ad41 3499mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3500 bfd_vma value, unsigned long r_symndx,
0f20cc35 3501 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3502{
a8028dd0 3503 struct mips_elf_link_hash_table *htab;
b15e6682 3504 struct mips_got_entry *entry;
b49e97c9 3505
a8028dd0 3506 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3507 BFD_ASSERT (htab != NULL);
3508
a8028dd0
RS
3509 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3510 r_symndx, h, r_type);
0f20cc35 3511 if (!entry)
b15e6682 3512 return MINUS_ONE;
0f20cc35 3513
e641e783 3514 if (entry->tls_type)
9ab066b4
RS
3515 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3516 return entry->gotidx;
b49e97c9
TS
3517}
3518
13fbec83 3519/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3520
3521static bfd_vma
13fbec83
RS
3522mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3523 struct elf_link_hash_entry *h)
3524{
3525 struct mips_elf_link_hash_table *htab;
3526 long global_got_dynindx;
3527 struct mips_got_info *g;
3528 bfd_vma got_index;
3529
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3532
3533 global_got_dynindx = 0;
3534 if (htab->global_gotsym != NULL)
3535 global_got_dynindx = htab->global_gotsym->dynindx;
3536
3537 /* Once we determine the global GOT entry with the lowest dynamic
3538 symbol table index, we must put all dynamic symbols with greater
3539 indices into the primary GOT. That makes it easy to calculate the
3540 GOT offset. */
3541 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3542 g = mips_elf_bfd_got (obfd, FALSE);
3543 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3544 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3545 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3546
3547 return got_index;
3548}
3549
3550/* Return the GOT index for the global symbol indicated by H, which is
3551 referenced by a relocation of type R_TYPE in IBFD. */
3552
3553static bfd_vma
3554mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3555 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3556{
a8028dd0 3557 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3558 struct mips_got_info *g;
3559 struct mips_got_entry lookup, *entry;
3560 bfd_vma gotidx;
b49e97c9 3561
a8028dd0 3562 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3563 BFD_ASSERT (htab != NULL);
3564
6c42ddb9
RS
3565 g = mips_elf_bfd_got (ibfd, FALSE);
3566 BFD_ASSERT (g);
f4416af6 3567
6c42ddb9
RS
3568 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3569 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3570 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3571
6c42ddb9
RS
3572 lookup.abfd = ibfd;
3573 lookup.symndx = -1;
3574 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3575 entry = htab_find (g->got_entries, &lookup);
3576 BFD_ASSERT (entry);
0f20cc35 3577
6c42ddb9 3578 gotidx = entry->gotidx;
ce558b89 3579 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3580
6c42ddb9 3581 if (lookup.tls_type)
0f20cc35 3582 {
0f20cc35
DJ
3583 bfd_vma value = MINUS_ONE;
3584
3585 if ((h->root.type == bfd_link_hash_defined
3586 || h->root.type == bfd_link_hash_defweak)
3587 && h->root.u.def.section->output_section)
3588 value = (h->root.u.def.value
3589 + h->root.u.def.section->output_offset
3590 + h->root.u.def.section->output_section->vma);
3591
9ab066b4 3592 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3593 }
6c42ddb9 3594 return gotidx;
b49e97c9
TS
3595}
3596
5c18022e
RS
3597/* Find a GOT page entry that points to within 32KB of VALUE. These
3598 entries are supposed to be placed at small offsets in the GOT, i.e.,
3599 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3600 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3601 offset of the GOT entry from VALUE. */
b49e97c9
TS
3602
3603static bfd_vma
9719ad41 3604mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3605 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3606{
91d6fa6a 3607 bfd_vma page, got_index;
b15e6682 3608 struct mips_got_entry *entry;
b49e97c9 3609
0a44bf69 3610 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3612 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3613
b15e6682
AO
3614 if (!entry)
3615 return MINUS_ONE;
143d77c5 3616
91d6fa6a 3617 got_index = entry->gotidx;
b49e97c9
TS
3618
3619 if (offsetp)
f4416af6 3620 *offsetp = value - entry->d.address;
b49e97c9 3621
91d6fa6a 3622 return got_index;
b49e97c9
TS
3623}
3624
738e5348 3625/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3626 EXTERNAL is true if the relocation was originally against a global
3627 symbol that binds locally. */
b49e97c9
TS
3628
3629static bfd_vma
9719ad41 3630mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3631 bfd_vma value, bfd_boolean external)
b49e97c9 3632{
b15e6682 3633 struct mips_got_entry *entry;
b49e97c9 3634
0a44bf69
RS
3635 /* GOT16 relocations against local symbols are followed by a LO16
3636 relocation; those against global symbols are not. Thus if the
3637 symbol was originally local, the GOT16 relocation should load the
3638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3639 if (! external)
0a44bf69 3640 value = mips_elf_high (value) << 16;
b49e97c9 3641
738e5348
RS
3642 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3643 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3644 same in all cases. */
a8028dd0
RS
3645 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3646 NULL, R_MIPS_GOT16);
b15e6682
AO
3647 if (entry)
3648 return entry->gotidx;
3649 else
3650 return MINUS_ONE;
b49e97c9
TS
3651}
3652
3653/* Returns the offset for the entry at the INDEXth position
3654 in the GOT. */
3655
3656static bfd_vma
a8028dd0 3657mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3658 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3659{
a8028dd0 3660 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3661 asection *sgot;
3662 bfd_vma gp;
3663
a8028dd0 3664 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3665 BFD_ASSERT (htab != NULL);
3666
ce558b89 3667 sgot = htab->root.sgot;
f4416af6 3668 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3669 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3670
91d6fa6a 3671 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3672}
3673
0a44bf69
RS
3674/* Create and return a local GOT entry for VALUE, which was calculated
3675 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3676 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3677 instead. */
b49e97c9 3678
b15e6682 3679static struct mips_got_entry *
0a44bf69 3680mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3681 bfd *ibfd, bfd_vma value,
5c18022e 3682 unsigned long r_symndx,
0f20cc35
DJ
3683 struct mips_elf_link_hash_entry *h,
3684 int r_type)
b49e97c9 3685{
ebc53538
RS
3686 struct mips_got_entry lookup, *entry;
3687 void **loc;
f4416af6 3688 struct mips_got_info *g;
0a44bf69 3689 struct mips_elf_link_hash_table *htab;
6c42ddb9 3690 bfd_vma gotidx;
0a44bf69
RS
3691
3692 htab = mips_elf_hash_table (info);
4dfe6ac6 3693 BFD_ASSERT (htab != NULL);
b15e6682 3694
d7206569 3695 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3696 if (g == NULL)
3697 {
d7206569 3698 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3699 BFD_ASSERT (g != NULL);
3700 }
b15e6682 3701
020d7251
RS
3702 /* This function shouldn't be called for symbols that live in the global
3703 area of the GOT. */
3704 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3705
ebc53538
RS
3706 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3707 if (lookup.tls_type)
3708 {
3709 lookup.abfd = ibfd;
df58fc94 3710 if (tls_ldm_reloc_p (r_type))
0f20cc35 3711 {
ebc53538
RS
3712 lookup.symndx = 0;
3713 lookup.d.addend = 0;
0f20cc35
DJ
3714 }
3715 else if (h == NULL)
3716 {
ebc53538
RS
3717 lookup.symndx = r_symndx;
3718 lookup.d.addend = 0;
0f20cc35
DJ
3719 }
3720 else
ebc53538
RS
3721 {
3722 lookup.symndx = -1;
3723 lookup.d.h = h;
3724 }
0f20cc35 3725
ebc53538
RS
3726 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3727 BFD_ASSERT (entry);
0f20cc35 3728
6c42ddb9 3729 gotidx = entry->gotidx;
ce558b89 3730 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3731
ebc53538 3732 return entry;
0f20cc35
DJ
3733 }
3734
ebc53538
RS
3735 lookup.abfd = NULL;
3736 lookup.symndx = -1;
3737 lookup.d.address = value;
3738 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3739 if (!loc)
b15e6682 3740 return NULL;
143d77c5 3741
ebc53538
RS
3742 entry = (struct mips_got_entry *) *loc;
3743 if (entry)
3744 return entry;
b15e6682 3745
cb22ccf4 3746 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3747 {
3748 /* We didn't allocate enough space in the GOT. */
4eca0228 3749 _bfd_error_handler
b49e97c9
TS
3750 (_("not enough GOT space for local GOT entries"));
3751 bfd_set_error (bfd_error_bad_value);
b15e6682 3752 return NULL;
b49e97c9
TS
3753 }
3754
ebc53538
RS
3755 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3756 if (!entry)
3757 return NULL;
3758
cb22ccf4
KCY
3759 if (got16_reloc_p (r_type)
3760 || call16_reloc_p (r_type)
3761 || got_page_reloc_p (r_type)
3762 || got_disp_reloc_p (r_type))
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3764 else
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3766
ebc53538
RS
3767 *entry = lookup;
3768 *loc = entry;
3769
ce558b89 3770 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3771
5c18022e 3772 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3773 if (htab->is_vxworks)
3774 {
3775 Elf_Internal_Rela outrel;
5c18022e 3776 asection *s;
91d6fa6a 3777 bfd_byte *rloc;
0a44bf69 3778 bfd_vma got_address;
0a44bf69
RS
3779
3780 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3781 got_address = (htab->root.sgot->output_section->vma
3782 + htab->root.sgot->output_offset
ebc53538 3783 + entry->gotidx);
0a44bf69 3784
91d6fa6a 3785 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3786 outrel.r_offset = got_address;
5c18022e
RS
3787 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3788 outrel.r_addend = value;
91d6fa6a 3789 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3790 }
3791
ebc53538 3792 return entry;
b49e97c9
TS
3793}
3794
d4596a51
RS
3795/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3796 The number might be exact or a worst-case estimate, depending on how
3797 much information is available to elf_backend_omit_section_dynsym at
3798 the current linking stage. */
3799
3800static bfd_size_type
3801count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3802{
3803 bfd_size_type count;
3804
3805 count = 0;
0e1862bb
L
3806 if (bfd_link_pic (info)
3807 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3808 {
3809 asection *p;
3810 const struct elf_backend_data *bed;
3811
3812 bed = get_elf_backend_data (output_bfd);
3813 for (p = output_bfd->sections; p ; p = p->next)
3814 if ((p->flags & SEC_EXCLUDE) == 0
3815 && (p->flags & SEC_ALLOC) != 0
3816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3817 ++count;
3818 }
3819 return count;
3820}
3821
b49e97c9 3822/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3823 appear towards the end. */
b49e97c9 3824
b34976b6 3825static bfd_boolean
d4596a51 3826mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3827{
a8028dd0 3828 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3829 struct mips_elf_hash_sort_data hsd;
3830 struct mips_got_info *g;
b49e97c9 3831
a8028dd0 3832 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3833 BFD_ASSERT (htab != NULL);
3834
0f8c4b60 3835 if (htab->root.dynsymcount == 0)
17a80fa8
MR
3836 return TRUE;
3837
a8028dd0 3838 g = htab->got_info;
d4596a51
RS
3839 if (g == NULL)
3840 return TRUE;
f4416af6 3841
b49e97c9 3842 hsd.low = NULL;
23cc69b6
RS
3843 hsd.max_unref_got_dynindx
3844 = hsd.min_got_dynindx
0f8c4b60 3845 = (htab->root.dynsymcount - g->reloc_only_gotno);
e17b0c35
MR
3846 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3847 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3848 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3849 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
0f8c4b60 3850 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
b49e97c9
TS
3851
3852 /* There should have been enough room in the symbol table to
44c410de 3853 accommodate both the GOT and non-GOT symbols. */
e17b0c35 3854 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
b49e97c9 3855 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
55f8b9d2 3856 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
0f8c4b60 3857 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
b49e97c9
TS
3858
3859 /* Now we know which dynamic symbol has the lowest dynamic symbol
3860 table index in the GOT. */
d222d210 3861 htab->global_gotsym = hsd.low;
b49e97c9 3862
b34976b6 3863 return TRUE;
b49e97c9
TS
3864}
3865
3866/* If H needs a GOT entry, assign it the highest available dynamic
3867 index. Otherwise, assign it the lowest available dynamic
3868 index. */
3869
b34976b6 3870static bfd_boolean
9719ad41 3871mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3872{
9719ad41 3873 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3874
b49e97c9
TS
3875 /* Symbols without dynamic symbol table entries aren't interesting
3876 at all. */
3877 if (h->root.dynindx == -1)
b34976b6 3878 return TRUE;
b49e97c9 3879
634835ae 3880 switch (h->global_got_area)
f4416af6 3881 {
634835ae 3882 case GGA_NONE:
e17b0c35
MR
3883 if (h->root.forced_local)
3884 h->root.dynindx = hsd->max_local_dynindx++;
3885 else
3886 h->root.dynindx = hsd->max_non_got_dynindx++;
634835ae 3887 break;
0f20cc35 3888
634835ae 3889 case GGA_NORMAL:
b49e97c9
TS
3890 h->root.dynindx = --hsd->min_got_dynindx;
3891 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3892 break;
3893
3894 case GGA_RELOC_ONLY:
634835ae
RS
3895 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3896 hsd->low = (struct elf_link_hash_entry *) h;
3897 h->root.dynindx = hsd->max_unref_got_dynindx++;
3898 break;
b49e97c9
TS
3899 }
3900
b34976b6 3901 return TRUE;
b49e97c9
TS
3902}
3903
ee227692
RS
3904/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3905 (which is owned by the caller and shouldn't be added to the
3906 hash table directly). */
3907
3908static bfd_boolean
3909mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3910 struct mips_got_entry *lookup)
3911{
3912 struct mips_elf_link_hash_table *htab;
3913 struct mips_got_entry *entry;
3914 struct mips_got_info *g;
3915 void **loc, **bfd_loc;
3916
3917 /* Make sure there's a slot for this entry in the master GOT. */
3918 htab = mips_elf_hash_table (info);
3919 g = htab->got_info;
3920 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3921 if (!loc)
3922 return FALSE;
3923
3924 /* Populate the entry if it isn't already. */
3925 entry = (struct mips_got_entry *) *loc;
3926 if (!entry)
3927 {
3928 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3929 if (!entry)
3930 return FALSE;
3931
9ab066b4 3932 lookup->tls_initialized = FALSE;
ee227692
RS
3933 lookup->gotidx = -1;
3934 *entry = *lookup;
3935 *loc = entry;
3936 }
3937
3938 /* Reuse the same GOT entry for the BFD's GOT. */
3939 g = mips_elf_bfd_got (abfd, TRUE);
3940 if (!g)
3941 return FALSE;
3942
3943 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3944 if (!bfd_loc)
3945 return FALSE;
3946
3947 if (!*bfd_loc)
3948 *bfd_loc = entry;
3949 return TRUE;
3950}
3951
e641e783
RS
3952/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3953 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3954 using the GOT entry for calls. */
b49e97c9 3955
b34976b6 3956static bfd_boolean
9719ad41
RS
3957mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3958 bfd *abfd, struct bfd_link_info *info,
e641e783 3959 bfd_boolean for_call, int r_type)
b49e97c9 3960{
a8028dd0 3961 struct mips_elf_link_hash_table *htab;
634835ae 3962 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3963 struct mips_got_entry entry;
3964 unsigned char tls_type;
a8028dd0
RS
3965
3966 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3967 BFD_ASSERT (htab != NULL);
3968
634835ae 3969 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3970 if (!for_call)
3971 hmips->got_only_for_calls = FALSE;
f4416af6 3972
b49e97c9
TS
3973 /* A global symbol in the GOT must also be in the dynamic symbol
3974 table. */
7c5fcef7
L
3975 if (h->dynindx == -1)
3976 {
3977 switch (ELF_ST_VISIBILITY (h->other))
3978 {
3979 case STV_INTERNAL:
3980 case STV_HIDDEN:
33bb52fb 3981 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3982 break;
3983 }
c152c796 3984 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3985 return FALSE;
7c5fcef7 3986 }
b49e97c9 3987
ee227692 3988 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3989 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3990 hmips->global_got_area = GGA_NORMAL;
86324f90 3991
f4416af6
AO
3992 entry.abfd = abfd;
3993 entry.symndx = -1;
3994 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
3995 entry.tls_type = tls_type;
3996 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 3997}
f4416af6 3998
e641e783
RS
3999/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4000 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4001
4002static bfd_boolean
9719ad41 4003mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4004 struct bfd_link_info *info, int r_type)
f4416af6 4005{
a8028dd0
RS
4006 struct mips_elf_link_hash_table *htab;
4007 struct mips_got_info *g;
ee227692 4008 struct mips_got_entry entry;
f4416af6 4009
a8028dd0 4010 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4011 BFD_ASSERT (htab != NULL);
4012
a8028dd0
RS
4013 g = htab->got_info;
4014 BFD_ASSERT (g != NULL);
4015
f4416af6
AO
4016 entry.abfd = abfd;
4017 entry.symndx = symndx;
4018 entry.d.addend = addend;
e641e783 4019 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4020 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4021}
c224138d 4022
13db6b44
RS
4023/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4024 H is the symbol's hash table entry, or null if SYMNDX is local
4025 to ABFD. */
c224138d
RS
4026
4027static bfd_boolean
13db6b44
RS
4028mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4029 long symndx, struct elf_link_hash_entry *h,
4030 bfd_signed_vma addend)
c224138d 4031{
a8028dd0 4032 struct mips_elf_link_hash_table *htab;
ee227692 4033 struct mips_got_info *g1, *g2;
13db6b44 4034 struct mips_got_page_ref lookup, *entry;
ee227692 4035 void **loc, **bfd_loc;
c224138d 4036
a8028dd0 4037 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4038 BFD_ASSERT (htab != NULL);
4039
ee227692
RS
4040 g1 = htab->got_info;
4041 BFD_ASSERT (g1 != NULL);
a8028dd0 4042
13db6b44
RS
4043 if (h)
4044 {
4045 lookup.symndx = -1;
4046 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4047 }
4048 else
4049 {
4050 lookup.symndx = symndx;
4051 lookup.u.abfd = abfd;
4052 }
4053 lookup.addend = addend;
4054 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4055 if (loc == NULL)
4056 return FALSE;
4057
13db6b44 4058 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4059 if (!entry)
4060 {
4061 entry = bfd_alloc (abfd, sizeof (*entry));
4062 if (!entry)
4063 return FALSE;
4064
13db6b44 4065 *entry = lookup;
c224138d
RS
4066 *loc = entry;
4067 }
4068
ee227692
RS
4069 /* Add the same entry to the BFD's GOT. */
4070 g2 = mips_elf_bfd_got (abfd, TRUE);
4071 if (!g2)
4072 return FALSE;
4073
13db6b44 4074 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4075 if (!bfd_loc)
4076 return FALSE;
4077
4078 if (!*bfd_loc)
4079 *bfd_loc = entry;
4080
c224138d
RS
4081 return TRUE;
4082}
33bb52fb
RS
4083
4084/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4085
4086static void
4087mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4088 unsigned int n)
4089{
4090 asection *s;
4091 struct mips_elf_link_hash_table *htab;
4092
4093 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4094 BFD_ASSERT (htab != NULL);
4095
33bb52fb
RS
4096 s = mips_elf_rel_dyn_section (info, FALSE);
4097 BFD_ASSERT (s != NULL);
4098
4099 if (htab->is_vxworks)
4100 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4101 else
4102 {
4103 if (s->size == 0)
4104 {
4105 /* Make room for a null element. */
4106 s->size += MIPS_ELF_REL_SIZE (abfd);
4107 ++s->reloc_count;
4108 }
4109 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4110 }
4111}
4112\f
476366af
RS
4113/* A htab_traverse callback for GOT entries, with DATA pointing to a
4114 mips_elf_traverse_got_arg structure. Count the number of GOT
4115 entries and TLS relocs. Set DATA->value to true if we need
4116 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4117
4118static int
4119mips_elf_check_recreate_got (void **entryp, void *data)
4120{
4121 struct mips_got_entry *entry;
476366af 4122 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4123
4124 entry = (struct mips_got_entry *) *entryp;
476366af 4125 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4126 if (entry->abfd != NULL && entry->symndx == -1)
4127 {
4128 struct mips_elf_link_hash_entry *h;
4129
4130 h = entry->d.h;
4131 if (h->root.root.type == bfd_link_hash_indirect
4132 || h->root.root.type == bfd_link_hash_warning)
4133 {
476366af 4134 arg->value = TRUE;
33bb52fb
RS
4135 return 0;
4136 }
4137 }
476366af 4138 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4139 return 1;
4140}
4141
476366af
RS
4142/* A htab_traverse callback for GOT entries, with DATA pointing to a
4143 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4144 converting entries for indirect and warning symbols into entries
4145 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4146
4147static int
4148mips_elf_recreate_got (void **entryp, void *data)
4149{
72e7511a 4150 struct mips_got_entry new_entry, *entry;
476366af 4151 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4152 void **slot;
4153
33bb52fb 4154 entry = (struct mips_got_entry *) *entryp;
476366af 4155 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4156 if (entry->abfd != NULL
4157 && entry->symndx == -1
4158 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4159 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4160 {
4161 struct mips_elf_link_hash_entry *h;
4162
72e7511a
RS
4163 new_entry = *entry;
4164 entry = &new_entry;
33bb52fb 4165 h = entry->d.h;
72e7511a 4166 do
634835ae
RS
4167 {
4168 BFD_ASSERT (h->global_got_area == GGA_NONE);
4169 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4170 }
72e7511a
RS
4171 while (h->root.root.type == bfd_link_hash_indirect
4172 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4173 entry->d.h = h;
4174 }
476366af 4175 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4176 if (slot == NULL)
4177 {
476366af 4178 arg->g = NULL;
33bb52fb
RS
4179 return 0;
4180 }
4181 if (*slot == NULL)
72e7511a
RS
4182 {
4183 if (entry == &new_entry)
4184 {
4185 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4186 if (!entry)
4187 {
476366af 4188 arg->g = NULL;
72e7511a
RS
4189 return 0;
4190 }
4191 *entry = new_entry;
4192 }
4193 *slot = entry;
476366af 4194 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4195 }
33bb52fb
RS
4196 return 1;
4197}
4198
13db6b44
RS
4199/* Return the maximum number of GOT page entries required for RANGE. */
4200
4201static bfd_vma
4202mips_elf_pages_for_range (const struct mips_got_page_range *range)
4203{
4204 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4205}
4206
4207/* Record that G requires a page entry that can reach SEC + ADDEND. */
4208
4209static bfd_boolean
b75d42bc 4210mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4211 asection *sec, bfd_signed_vma addend)
4212{
b75d42bc 4213 struct mips_got_info *g = arg->g;
13db6b44
RS
4214 struct mips_got_page_entry lookup, *entry;
4215 struct mips_got_page_range **range_ptr, *range;
4216 bfd_vma old_pages, new_pages;
4217 void **loc;
4218
4219 /* Find the mips_got_page_entry hash table entry for this section. */
4220 lookup.sec = sec;
4221 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4222 if (loc == NULL)
4223 return FALSE;
4224
4225 /* Create a mips_got_page_entry if this is the first time we've
4226 seen the section. */
4227 entry = (struct mips_got_page_entry *) *loc;
4228 if (!entry)
4229 {
b75d42bc 4230 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4231 if (!entry)
4232 return FALSE;
4233
4234 entry->sec = sec;
4235 *loc = entry;
4236 }
4237
4238 /* Skip over ranges whose maximum extent cannot share a page entry
4239 with ADDEND. */
4240 range_ptr = &entry->ranges;
4241 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4242 range_ptr = &(*range_ptr)->next;
4243
4244 /* If we scanned to the end of the list, or found a range whose
4245 minimum extent cannot share a page entry with ADDEND, create
4246 a new singleton range. */
4247 range = *range_ptr;
4248 if (!range || addend < range->min_addend - 0xffff)
4249 {
b75d42bc 4250 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4251 if (!range)
4252 return FALSE;
4253
4254 range->next = *range_ptr;
4255 range->min_addend = addend;
4256 range->max_addend = addend;
4257
4258 *range_ptr = range;
4259 entry->num_pages++;
4260 g->page_gotno++;
4261 return TRUE;
4262 }
4263
4264 /* Remember how many pages the old range contributed. */
4265 old_pages = mips_elf_pages_for_range (range);
4266
4267 /* Update the ranges. */
4268 if (addend < range->min_addend)
4269 range->min_addend = addend;
4270 else if (addend > range->max_addend)
4271 {
4272 if (range->next && addend >= range->next->min_addend - 0xffff)
4273 {
4274 old_pages += mips_elf_pages_for_range (range->next);
4275 range->max_addend = range->next->max_addend;
4276 range->next = range->next->next;
4277 }
4278 else
4279 range->max_addend = addend;
4280 }
4281
4282 /* Record any change in the total estimate. */
4283 new_pages = mips_elf_pages_for_range (range);
4284 if (old_pages != new_pages)
4285 {
4286 entry->num_pages += new_pages - old_pages;
4287 g->page_gotno += new_pages - old_pages;
4288 }
4289
4290 return TRUE;
4291}
4292
4293/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4294 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4295 whether the page reference described by *REFP needs a GOT page entry,
4296 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4297
4298static bfd_boolean
4299mips_elf_resolve_got_page_ref (void **refp, void *data)
4300{
4301 struct mips_got_page_ref *ref;
4302 struct mips_elf_traverse_got_arg *arg;
4303 struct mips_elf_link_hash_table *htab;
4304 asection *sec;
4305 bfd_vma addend;
4306
4307 ref = (struct mips_got_page_ref *) *refp;
4308 arg = (struct mips_elf_traverse_got_arg *) data;
4309 htab = mips_elf_hash_table (arg->info);
4310
4311 if (ref->symndx < 0)
4312 {
4313 struct mips_elf_link_hash_entry *h;
4314
4315 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4316 h = ref->u.h;
4317 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4318 return 1;
4319
4320 /* Ignore undefined symbols; we'll issue an error later if
4321 appropriate. */
4322 if (!((h->root.root.type == bfd_link_hash_defined
4323 || h->root.root.type == bfd_link_hash_defweak)
4324 && h->root.root.u.def.section))
4325 return 1;
4326
4327 sec = h->root.root.u.def.section;
4328 addend = h->root.root.u.def.value + ref->addend;
4329 }
4330 else
4331 {
4332 Elf_Internal_Sym *isym;
4333
4334 /* Read in the symbol. */
4335 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4336 ref->symndx);
4337 if (isym == NULL)
4338 {
4339 arg->g = NULL;
4340 return 0;
4341 }
4342
4343 /* Get the associated input section. */
4344 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4345 if (sec == NULL)
4346 {
4347 arg->g = NULL;
4348 return 0;
4349 }
4350
4351 /* If this is a mergable section, work out the section and offset
4352 of the merged data. For section symbols, the addend specifies
4353 of the offset _of_ the first byte in the data, otherwise it
4354 specifies the offset _from_ the first byte. */
4355 if (sec->flags & SEC_MERGE)
4356 {
4357 void *secinfo;
4358
4359 secinfo = elf_section_data (sec)->sec_info;
4360 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4361 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4362 isym->st_value + ref->addend);
4363 else
4364 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4365 isym->st_value) + ref->addend;
4366 }
4367 else
4368 addend = isym->st_value + ref->addend;
4369 }
b75d42bc 4370 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4371 {
4372 arg->g = NULL;
4373 return 0;
4374 }
4375 return 1;
4376}
4377
33bb52fb 4378/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4379 replace them with entries for the target symbol. Convert g->got_page_refs
4380 into got_page_entry structures and estimate the number of page entries
4381 that they require. */
33bb52fb
RS
4382
4383static bfd_boolean
476366af
RS
4384mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4385 struct mips_got_info *g)
33bb52fb 4386{
476366af
RS
4387 struct mips_elf_traverse_got_arg tga;
4388 struct mips_got_info oldg;
4389
4390 oldg = *g;
33bb52fb 4391
476366af
RS
4392 tga.info = info;
4393 tga.g = g;
4394 tga.value = FALSE;
4395 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4396 if (tga.value)
33bb52fb 4397 {
476366af
RS
4398 *g = oldg;
4399 g->got_entries = htab_create (htab_size (oldg.got_entries),
4400 mips_elf_got_entry_hash,
4401 mips_elf_got_entry_eq, NULL);
4402 if (!g->got_entries)
33bb52fb
RS
4403 return FALSE;
4404
476366af
RS
4405 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4406 if (!tga.g)
4407 return FALSE;
4408
4409 htab_delete (oldg.got_entries);
33bb52fb 4410 }
13db6b44
RS
4411
4412 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4413 mips_got_page_entry_eq, NULL);
4414 if (g->got_page_entries == NULL)
4415 return FALSE;
4416
4417 tga.info = info;
4418 tga.g = g;
4419 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4420
33bb52fb
RS
4421 return TRUE;
4422}
4423
c5d6fa44
RS
4424/* Return true if a GOT entry for H should live in the local rather than
4425 global GOT area. */
4426
4427static bfd_boolean
4428mips_use_local_got_p (struct bfd_link_info *info,
4429 struct mips_elf_link_hash_entry *h)
4430{
4431 /* Symbols that aren't in the dynamic symbol table must live in the
4432 local GOT. This includes symbols that are completely undefined
4433 and which therefore don't bind locally. We'll report undefined
4434 symbols later if appropriate. */
4435 if (h->root.dynindx == -1)
4436 return TRUE;
4437
4438 /* Symbols that bind locally can (and in the case of forced-local
4439 symbols, must) live in the local GOT. */
4440 if (h->got_only_for_calls
4441 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4442 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4443 return TRUE;
4444
4445 /* If this is an executable that must provide a definition of the symbol,
4446 either though PLTs or copy relocations, then that address should go in
4447 the local rather than global GOT. */
0e1862bb 4448 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4449 return TRUE;
4450
4451 return FALSE;
4452}
4453
6c42ddb9
RS
4454/* A mips_elf_link_hash_traverse callback for which DATA points to the
4455 link_info structure. Decide whether the hash entry needs an entry in
4456 the global part of the primary GOT, setting global_got_area accordingly.
4457 Count the number of global symbols that are in the primary GOT only
4458 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4459
4460static int
d4596a51 4461mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4462{
020d7251 4463 struct bfd_link_info *info;
6ccf4795 4464 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4465 struct mips_got_info *g;
4466
020d7251 4467 info = (struct bfd_link_info *) data;
6ccf4795
RS
4468 htab = mips_elf_hash_table (info);
4469 g = htab->got_info;
d4596a51 4470 if (h->global_got_area != GGA_NONE)
33bb52fb 4471 {
020d7251 4472 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4473 local or global GOT. */
4474 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4475 /* The symbol belongs in the local GOT. We no longer need this
4476 entry if it was only used for relocations; those relocations
4477 will be against the null or section symbol instead of H. */
4478 h->global_got_area = GGA_NONE;
6ccf4795
RS
4479 else if (htab->is_vxworks
4480 && h->got_only_for_calls
1bbce132 4481 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4482 /* On VxWorks, calls can refer directly to the .got.plt entry;
4483 they don't need entries in the regular GOT. .got.plt entries
4484 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4485 h->global_got_area = GGA_NONE;
6c42ddb9 4486 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4487 {
6c42ddb9 4488 g->reloc_only_gotno++;
23cc69b6 4489 g->global_gotno++;
23cc69b6 4490 }
33bb52fb
RS
4491 }
4492 return 1;
4493}
f4416af6 4494\f
d7206569
RS
4495/* A htab_traverse callback for GOT entries. Add each one to the GOT
4496 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4497
4498static int
d7206569 4499mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4500{
d7206569
RS
4501 struct mips_got_entry *entry;
4502 struct mips_elf_traverse_got_arg *arg;
4503 void **slot;
f4416af6 4504
d7206569
RS
4505 entry = (struct mips_got_entry *) *entryp;
4506 arg = (struct mips_elf_traverse_got_arg *) data;
4507 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4508 if (!slot)
f4416af6 4509 {
d7206569
RS
4510 arg->g = NULL;
4511 return 0;
f4416af6 4512 }
d7206569 4513 if (!*slot)
c224138d 4514 {
d7206569
RS
4515 *slot = entry;
4516 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4517 }
f4416af6
AO
4518 return 1;
4519}
4520
d7206569
RS
4521/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4522 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4523
4524static int
d7206569 4525mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4526{
d7206569
RS
4527 struct mips_got_page_entry *entry;
4528 struct mips_elf_traverse_got_arg *arg;
4529 void **slot;
c224138d 4530
d7206569
RS
4531 entry = (struct mips_got_page_entry *) *entryp;
4532 arg = (struct mips_elf_traverse_got_arg *) data;
4533 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4534 if (!slot)
c224138d 4535 {
d7206569 4536 arg->g = NULL;
c224138d
RS
4537 return 0;
4538 }
d7206569
RS
4539 if (!*slot)
4540 {
4541 *slot = entry;
4542 arg->g->page_gotno += entry->num_pages;
4543 }
c224138d
RS
4544 return 1;
4545}
4546
d7206569
RS
4547/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4548 this would lead to overflow, 1 if they were merged successfully,
4549 and 0 if a merge failed due to lack of memory. (These values are chosen
4550 so that nonnegative return values can be returned by a htab_traverse
4551 callback.) */
c224138d
RS
4552
4553static int
d7206569 4554mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4555 struct mips_got_info *to,
4556 struct mips_elf_got_per_bfd_arg *arg)
4557{
d7206569 4558 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4559 unsigned int estimate;
4560
4561 /* Work out how many page entries we would need for the combined GOT. */
4562 estimate = arg->max_pages;
4563 if (estimate >= from->page_gotno + to->page_gotno)
4564 estimate = from->page_gotno + to->page_gotno;
4565
e2ece73c 4566 /* And conservatively estimate how many local and TLS entries
c224138d 4567 would be needed. */
e2ece73c
RS
4568 estimate += from->local_gotno + to->local_gotno;
4569 estimate += from->tls_gotno + to->tls_gotno;
4570
17214937
RS
4571 /* If we're merging with the primary got, any TLS relocations will
4572 come after the full set of global entries. Otherwise estimate those
e2ece73c 4573 conservatively as well. */
17214937 4574 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4575 estimate += arg->global_count;
4576 else
4577 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4578
4579 /* Bail out if the combined GOT might be too big. */
4580 if (estimate > arg->max_count)
4581 return -1;
4582
c224138d 4583 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4584 tga.info = arg->info;
4585 tga.g = to;
4586 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4587 if (!tga.g)
c224138d
RS
4588 return 0;
4589
d7206569
RS
4590 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4591 if (!tga.g)
c224138d
RS
4592 return 0;
4593
d7206569 4594 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4595 return 1;
4596}
4597
d7206569 4598/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4599 as possible of the primary got, since it doesn't require explicit
4600 dynamic relocations, but don't use bfds that would reference global
4601 symbols out of the addressable range. Failing the primary got,
4602 attempt to merge with the current got, or finish the current got
4603 and then make make the new got current. */
4604
d7206569
RS
4605static bfd_boolean
4606mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4607 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4608{
c224138d
RS
4609 unsigned int estimate;
4610 int result;
4611
476366af 4612 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4613 return FALSE;
4614
c224138d
RS
4615 /* Work out the number of page, local and TLS entries. */
4616 estimate = arg->max_pages;
4617 if (estimate > g->page_gotno)
4618 estimate = g->page_gotno;
4619 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4620
4621 /* We place TLS GOT entries after both locals and globals. The globals
4622 for the primary GOT may overflow the normal GOT size limit, so be
4623 sure not to merge a GOT which requires TLS with the primary GOT in that
4624 case. This doesn't affect non-primary GOTs. */
c224138d 4625 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4626
c224138d 4627 if (estimate <= arg->max_count)
f4416af6 4628 {
c224138d
RS
4629 /* If we don't have a primary GOT, use it as
4630 a starting point for the primary GOT. */
4631 if (!arg->primary)
4632 {
d7206569
RS
4633 arg->primary = g;
4634 return TRUE;
c224138d 4635 }
f4416af6 4636
c224138d 4637 /* Try merging with the primary GOT. */
d7206569 4638 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4639 if (result >= 0)
4640 return result;
f4416af6 4641 }
c224138d 4642
f4416af6 4643 /* If we can merge with the last-created got, do it. */
c224138d 4644 if (arg->current)
f4416af6 4645 {
d7206569 4646 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4647 if (result >= 0)
4648 return result;
f4416af6 4649 }
c224138d 4650
f4416af6
AO
4651 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4652 fits; if it turns out that it doesn't, we'll get relocation
4653 overflows anyway. */
c224138d
RS
4654 g->next = arg->current;
4655 arg->current = g;
0f20cc35 4656
d7206569 4657 return TRUE;
0f20cc35
DJ
4658}
4659
72e7511a
RS
4660/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4661 to GOTIDX, duplicating the entry if it has already been assigned
4662 an index in a different GOT. */
4663
4664static bfd_boolean
4665mips_elf_set_gotidx (void **entryp, long gotidx)
4666{
4667 struct mips_got_entry *entry;
4668
4669 entry = (struct mips_got_entry *) *entryp;
4670 if (entry->gotidx > 0)
4671 {
4672 struct mips_got_entry *new_entry;
4673
4674 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4675 if (!new_entry)
4676 return FALSE;
4677
4678 *new_entry = *entry;
4679 *entryp = new_entry;
4680 entry = new_entry;
4681 }
4682 entry->gotidx = gotidx;
4683 return TRUE;
4684}
4685
4686/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4687 mips_elf_traverse_got_arg in which DATA->value is the size of one
4688 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4689
4690static int
72e7511a 4691mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4692{
72e7511a
RS
4693 struct mips_got_entry *entry;
4694 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4695
4696 /* We're only interested in TLS symbols. */
72e7511a 4697 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4698 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4699 return 1;
4700
72e7511a 4701 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4702 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4703 {
6c42ddb9
RS
4704 arg->g = NULL;
4705 return 0;
f4416af6
AO
4706 }
4707
ead49a57 4708 /* Account for the entries we've just allocated. */
9ab066b4 4709 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4710 return 1;
4711}
4712
ab361d49
RS
4713/* A htab_traverse callback for GOT entries, where DATA points to a
4714 mips_elf_traverse_got_arg. Set the global_got_area of each global
4715 symbol to DATA->value. */
f4416af6 4716
f4416af6 4717static int
ab361d49 4718mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4719{
ab361d49
RS
4720 struct mips_got_entry *entry;
4721 struct mips_elf_traverse_got_arg *arg;
f4416af6 4722
ab361d49
RS
4723 entry = (struct mips_got_entry *) *entryp;
4724 arg = (struct mips_elf_traverse_got_arg *) data;
4725 if (entry->abfd != NULL
4726 && entry->symndx == -1
4727 && entry->d.h->global_got_area != GGA_NONE)
4728 entry->d.h->global_got_area = arg->value;
4729 return 1;
4730}
4731
4732/* A htab_traverse callback for secondary GOT entries, where DATA points
4733 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4734 and record the number of relocations they require. DATA->value is
72e7511a 4735 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4736
4737static int
4738mips_elf_set_global_gotidx (void **entryp, void *data)
4739{
4740 struct mips_got_entry *entry;
4741 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4742
ab361d49
RS
4743 entry = (struct mips_got_entry *) *entryp;
4744 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4745 if (entry->abfd != NULL
4746 && entry->symndx == -1
4747 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4748 {
cb22ccf4 4749 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4750 {
4751 arg->g = NULL;
4752 return 0;
4753 }
cb22ccf4 4754 arg->g->assigned_low_gotno += 1;
72e7511a 4755
0e1862bb 4756 if (bfd_link_pic (arg->info)
ab361d49
RS
4757 || (elf_hash_table (arg->info)->dynamic_sections_created
4758 && entry->d.h->root.def_dynamic
4759 && !entry->d.h->root.def_regular))
4760 arg->g->relocs += 1;
f4416af6
AO
4761 }
4762
4763 return 1;
4764}
4765
33bb52fb
RS
4766/* A htab_traverse callback for GOT entries for which DATA is the
4767 bfd_link_info. Forbid any global symbols from having traditional
4768 lazy-binding stubs. */
4769
0626d451 4770static int
33bb52fb 4771mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4772{
33bb52fb
RS
4773 struct bfd_link_info *info;
4774 struct mips_elf_link_hash_table *htab;
4775 struct mips_got_entry *entry;
0626d451 4776
33bb52fb
RS
4777 entry = (struct mips_got_entry *) *entryp;
4778 info = (struct bfd_link_info *) data;
4779 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4780 BFD_ASSERT (htab != NULL);
4781
0626d451
RS
4782 if (entry->abfd != NULL
4783 && entry->symndx == -1
33bb52fb 4784 && entry->d.h->needs_lazy_stub)
f4416af6 4785 {
33bb52fb
RS
4786 entry->d.h->needs_lazy_stub = FALSE;
4787 htab->lazy_stub_count--;
f4416af6 4788 }
143d77c5 4789
f4416af6
AO
4790 return 1;
4791}
4792
f4416af6
AO
4793/* Return the offset of an input bfd IBFD's GOT from the beginning of
4794 the primary GOT. */
4795static bfd_vma
9719ad41 4796mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4797{
d7206569 4798 if (!g->next)
f4416af6
AO
4799 return 0;
4800
d7206569 4801 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4802 if (! g)
4803 return 0;
4804
4805 BFD_ASSERT (g->next);
4806
4807 g = g->next;
143d77c5 4808
0f20cc35
DJ
4809 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4810 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4811}
4812
4813/* Turn a single GOT that is too big for 16-bit addressing into
4814 a sequence of GOTs, each one 16-bit addressable. */
4815
4816static bfd_boolean
9719ad41 4817mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4818 asection *got, bfd_size_type pages)
f4416af6 4819{
a8028dd0 4820 struct mips_elf_link_hash_table *htab;
f4416af6 4821 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4822 struct mips_elf_traverse_got_arg tga;
a8028dd0 4823 struct mips_got_info *g, *gg;
33bb52fb 4824 unsigned int assign, needed_relocs;
d7206569 4825 bfd *dynobj, *ibfd;
f4416af6 4826
33bb52fb 4827 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4828 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4829 BFD_ASSERT (htab != NULL);
4830
a8028dd0 4831 g = htab->got_info;
f4416af6 4832
f4416af6
AO
4833 got_per_bfd_arg.obfd = abfd;
4834 got_per_bfd_arg.info = info;
f4416af6
AO
4835 got_per_bfd_arg.current = NULL;
4836 got_per_bfd_arg.primary = NULL;
0a44bf69 4837 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4838 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4839 - htab->reserved_gotno);
c224138d 4840 got_per_bfd_arg.max_pages = pages;
0f20cc35 4841 /* The number of globals that will be included in the primary GOT.
ab361d49 4842 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4843 information. */
4844 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4845
4846 /* Try to merge the GOTs of input bfds together, as long as they
4847 don't seem to exceed the maximum GOT size, choosing one of them
4848 to be the primary GOT. */
c72f2fb2 4849 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4850 {
4851 gg = mips_elf_bfd_got (ibfd, FALSE);
4852 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4853 return FALSE;
4854 }
f4416af6 4855
0f20cc35 4856 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4857 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4858 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4859 else
4860 g->next = got_per_bfd_arg.primary;
4861 g->next->next = got_per_bfd_arg.current;
4862
4863 /* GG is now the master GOT, and G is the primary GOT. */
4864 gg = g;
4865 g = g->next;
4866
4867 /* Map the output bfd to the primary got. That's what we're going
4868 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4869 didn't mark in check_relocs, and we want a quick way to find it.
4870 We can't just use gg->next because we're going to reverse the
4871 list. */
d7206569 4872 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4873
634835ae
RS
4874 /* Every symbol that is referenced in a dynamic relocation must be
4875 present in the primary GOT, so arrange for them to appear after
4876 those that are actually referenced. */
23cc69b6 4877 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4878 g->global_gotno = gg->global_gotno;
f4416af6 4879
ab361d49
RS
4880 tga.info = info;
4881 tga.value = GGA_RELOC_ONLY;
4882 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4883 tga.value = GGA_NORMAL;
4884 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4885
4886 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4887 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4888 entries in each GOT. We can then compute the end of a GOT by
4889 adding local_gotno to global_gotno. We reverse the list and make
4890 it circular since then we'll be able to quickly compute the
4891 beginning of a GOT, by computing the end of its predecessor. To
4892 avoid special cases for the primary GOT, while still preserving
4893 assertions that are valid for both single- and multi-got links,
4894 we arrange for the main got struct to have the right number of
4895 global entries, but set its local_gotno such that the initial
4896 offset of the primary GOT is zero. Remember that the primary GOT
4897 will become the last item in the circular linked list, so it
4898 points back to the master GOT. */
4899 gg->local_gotno = -g->global_gotno;
4900 gg->global_gotno = g->global_gotno;
0f20cc35 4901 gg->tls_gotno = 0;
f4416af6
AO
4902 assign = 0;
4903 gg->next = gg;
4904
4905 do
4906 {
4907 struct mips_got_info *gn;
4908
861fb55a 4909 assign += htab->reserved_gotno;
cb22ccf4 4910 g->assigned_low_gotno = assign;
c224138d
RS
4911 g->local_gotno += assign;
4912 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4913 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4914 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4915
ead49a57
RS
4916 /* Take g out of the direct list, and push it onto the reversed
4917 list that gg points to. g->next is guaranteed to be nonnull after
4918 this operation, as required by mips_elf_initialize_tls_index. */
4919 gn = g->next;
4920 g->next = gg->next;
4921 gg->next = g;
4922
0f20cc35
DJ
4923 /* Set up any TLS entries. We always place the TLS entries after
4924 all non-TLS entries. */
4925 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4926 tga.g = g;
4927 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4928 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4929 if (!tga.g)
4930 return FALSE;
1fd20d70 4931 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4932
ead49a57 4933 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4934 g = gn;
0626d451 4935
33bb52fb
RS
4936 /* Forbid global symbols in every non-primary GOT from having
4937 lazy-binding stubs. */
0626d451 4938 if (g)
33bb52fb 4939 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4940 }
4941 while (g);
4942
59b08994 4943 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4944
4945 needed_relocs = 0;
33bb52fb
RS
4946 for (g = gg->next; g && g->next != gg; g = g->next)
4947 {
4948 unsigned int save_assign;
4949
ab361d49
RS
4950 /* Assign offsets to global GOT entries and count how many
4951 relocations they need. */
cb22ccf4
KCY
4952 save_assign = g->assigned_low_gotno;
4953 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
4954 tga.info = info;
4955 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4956 tga.g = g;
4957 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4958 if (!tga.g)
4959 return FALSE;
cb22ccf4
KCY
4960 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4961 g->assigned_low_gotno = save_assign;
72e7511a 4962
0e1862bb 4963 if (bfd_link_pic (info))
33bb52fb 4964 {
cb22ccf4
KCY
4965 g->relocs += g->local_gotno - g->assigned_low_gotno;
4966 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
4967 + g->next->global_gotno
4968 + g->next->tls_gotno
861fb55a 4969 + htab->reserved_gotno);
33bb52fb 4970 }
ab361d49 4971 needed_relocs += g->relocs;
33bb52fb 4972 }
ab361d49 4973 needed_relocs += g->relocs;
33bb52fb
RS
4974
4975 if (needed_relocs)
4976 mips_elf_allocate_dynamic_relocations (dynobj, info,
4977 needed_relocs);
143d77c5 4978
f4416af6
AO
4979 return TRUE;
4980}
143d77c5 4981
b49e97c9
TS
4982\f
4983/* Returns the first relocation of type r_type found, beginning with
4984 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4985
4986static const Elf_Internal_Rela *
9719ad41
RS
4987mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4988 const Elf_Internal_Rela *relocation,
4989 const Elf_Internal_Rela *relend)
b49e97c9 4990{
c000e262
TS
4991 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4992
b49e97c9
TS
4993 while (relocation < relend)
4994 {
c000e262
TS
4995 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4996 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4997 return relocation;
4998
4999 ++relocation;
5000 }
5001
5002 /* We didn't find it. */
b49e97c9
TS
5003 return NULL;
5004}
5005
020d7251 5006/* Return whether an input relocation is against a local symbol. */
b49e97c9 5007
b34976b6 5008static bfd_boolean
9719ad41
RS
5009mips_elf_local_relocation_p (bfd *input_bfd,
5010 const Elf_Internal_Rela *relocation,
020d7251 5011 asection **local_sections)
b49e97c9
TS
5012{
5013 unsigned long r_symndx;
5014 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5015 size_t extsymoff;
5016
5017 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5018 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5019 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5020
5021 if (r_symndx < extsymoff)
b34976b6 5022 return TRUE;
b49e97c9 5023 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5024 return TRUE;
b49e97c9 5025
b34976b6 5026 return FALSE;
b49e97c9
TS
5027}
5028\f
5029/* Sign-extend VALUE, which has the indicated number of BITS. */
5030
a7ebbfdf 5031bfd_vma
9719ad41 5032_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5033{
5034 if (value & ((bfd_vma) 1 << (bits - 1)))
5035 /* VALUE is negative. */
5036 value |= ((bfd_vma) - 1) << bits;
5037
5038 return value;
5039}
5040
5041/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5042 range expressible by a signed number with the indicated number of
b49e97c9
TS
5043 BITS. */
5044
b34976b6 5045static bfd_boolean
9719ad41 5046mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5047{
5048 bfd_signed_vma svalue = (bfd_signed_vma) value;
5049
5050 if (svalue > (1 << (bits - 1)) - 1)
5051 /* The value is too big. */
b34976b6 5052 return TRUE;
b49e97c9
TS
5053 else if (svalue < -(1 << (bits - 1)))
5054 /* The value is too small. */
b34976b6 5055 return TRUE;
b49e97c9
TS
5056
5057 /* All is well. */
b34976b6 5058 return FALSE;
b49e97c9
TS
5059}
5060
5061/* Calculate the %high function. */
5062
5063static bfd_vma
9719ad41 5064mips_elf_high (bfd_vma value)
b49e97c9
TS
5065{
5066 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5067}
5068
5069/* Calculate the %higher function. */
5070
5071static bfd_vma
9719ad41 5072mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5073{
5074#ifdef BFD64
5075 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5076#else
5077 abort ();
c5ae1840 5078 return MINUS_ONE;
b49e97c9
TS
5079#endif
5080}
5081
5082/* Calculate the %highest function. */
5083
5084static bfd_vma
9719ad41 5085mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5086{
5087#ifdef BFD64
b15e6682 5088 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5089#else
5090 abort ();
c5ae1840 5091 return MINUS_ONE;
b49e97c9
TS
5092#endif
5093}
5094\f
5095/* Create the .compact_rel section. */
5096
b34976b6 5097static bfd_boolean
9719ad41
RS
5098mips_elf_create_compact_rel_section
5099 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5100{
5101 flagword flags;
5102 register asection *s;
5103
3d4d4302 5104 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5105 {
5106 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5107 | SEC_READONLY);
5108
3d4d4302 5109 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5110 if (s == NULL
b49e97c9
TS
5111 || ! bfd_set_section_alignment (abfd, s,
5112 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5113 return FALSE;
b49e97c9 5114
eea6121a 5115 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5116 }
5117
b34976b6 5118 return TRUE;
b49e97c9
TS
5119}
5120
5121/* Create the .got section to hold the global offset table. */
5122
b34976b6 5123static bfd_boolean
23cc69b6 5124mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5125{
5126 flagword flags;
5127 register asection *s;
5128 struct elf_link_hash_entry *h;
14a793b2 5129 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5130 struct mips_elf_link_hash_table *htab;
5131
5132 htab = mips_elf_hash_table (info);
4dfe6ac6 5133 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5134
5135 /* This function may be called more than once. */
ce558b89 5136 if (htab->root.sgot)
23cc69b6 5137 return TRUE;
b49e97c9
TS
5138
5139 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5140 | SEC_LINKER_CREATED);
5141
72b4917c
TS
5142 /* We have to use an alignment of 2**4 here because this is hardcoded
5143 in the function stub generation and in the linker script. */
87e0a731 5144 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5145 if (s == NULL
72b4917c 5146 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5147 return FALSE;
ce558b89 5148 htab->root.sgot = s;
b49e97c9
TS
5149
5150 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5151 linker script because we don't want to define the symbol if we
5152 are not creating a global offset table. */
14a793b2 5153 bh = NULL;
b49e97c9
TS
5154 if (! (_bfd_generic_link_add_one_symbol
5155 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5156 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5157 return FALSE;
14a793b2
AM
5158
5159 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5160 h->non_elf = 0;
5161 h->def_regular = 1;
b49e97c9 5162 h->type = STT_OBJECT;
2f9efdfc 5163 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5164 elf_hash_table (info)->hgot = h;
b49e97c9 5165
0e1862bb 5166 if (bfd_link_pic (info)
c152c796 5167 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5168 return FALSE;
b49e97c9 5169
3dff0dd1 5170 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5171 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5172 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5173
861fb55a 5174 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5175 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5176 SEC_ALLOC | SEC_LOAD
5177 | SEC_HAS_CONTENTS
5178 | SEC_IN_MEMORY
5179 | SEC_LINKER_CREATED);
861fb55a
DJ
5180 if (s == NULL)
5181 return FALSE;
ce558b89 5182 htab->root.sgotplt = s;
0a44bf69 5183
b34976b6 5184 return TRUE;
b49e97c9 5185}
b49e97c9 5186\f
0a44bf69
RS
5187/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5188 __GOTT_INDEX__ symbols. These symbols are only special for
5189 shared objects; they are not used in executables. */
5190
5191static bfd_boolean
5192is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5193{
5194 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5195 && bfd_link_pic (info)
0a44bf69
RS
5196 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5197 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5198}
861fb55a
DJ
5199
5200/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5201 require an la25 stub. See also mips_elf_local_pic_function_p,
5202 which determines whether the destination function ever requires a
5203 stub. */
5204
5205static bfd_boolean
8f0c309a
CLT
5206mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5207 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5208{
5209 /* We specifically ignore branches and jumps from EF_PIC objects,
5210 where the onus is on the compiler or programmer to perform any
5211 necessary initialization of $25. Sometimes such initialization
5212 is unnecessary; for example, -mno-shared functions do not use
5213 the incoming value of $25, and may therefore be called directly. */
5214 if (PIC_OBJECT_P (input_bfd))
5215 return FALSE;
5216
5217 switch (r_type)
5218 {
5219 case R_MIPS_26:
5220 case R_MIPS_PC16:
7361da2c
AB
5221 case R_MIPS_PC21_S2:
5222 case R_MIPS_PC26_S2:
df58fc94
RS
5223 case R_MICROMIPS_26_S1:
5224 case R_MICROMIPS_PC7_S1:
5225 case R_MICROMIPS_PC10_S1:
5226 case R_MICROMIPS_PC16_S1:
5227 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5228 return TRUE;
5229
8f0c309a
CLT
5230 case R_MIPS16_26:
5231 return !target_is_16_bit_code_p;
5232
861fb55a
DJ
5233 default:
5234 return FALSE;
5235 }
5236}
0a44bf69 5237\f
b49e97c9
TS
5238/* Calculate the value produced by the RELOCATION (which comes from
5239 the INPUT_BFD). The ADDEND is the addend to use for this
5240 RELOCATION; RELOCATION->R_ADDEND is ignored.
5241
5242 The result of the relocation calculation is stored in VALUEP.
38a7df63 5243 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5244 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5245
5246 This function returns bfd_reloc_continue if the caller need take no
5247 further action regarding this relocation, bfd_reloc_notsupported if
5248 something goes dramatically wrong, bfd_reloc_overflow if an
5249 overflow occurs, and bfd_reloc_ok to indicate success. */
5250
5251static bfd_reloc_status_type
9719ad41
RS
5252mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5253 asection *input_section,
5254 struct bfd_link_info *info,
5255 const Elf_Internal_Rela *relocation,
5256 bfd_vma addend, reloc_howto_type *howto,
5257 Elf_Internal_Sym *local_syms,
5258 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5259 const char **namep,
5260 bfd_boolean *cross_mode_jump_p,
9719ad41 5261 bfd_boolean save_addend)
b49e97c9
TS
5262{
5263 /* The eventual value we will return. */
5264 bfd_vma value;
5265 /* The address of the symbol against which the relocation is
5266 occurring. */
5267 bfd_vma symbol = 0;
5268 /* The final GP value to be used for the relocatable, executable, or
5269 shared object file being produced. */
0a61c8c2 5270 bfd_vma gp;
b49e97c9
TS
5271 /* The place (section offset or address) of the storage unit being
5272 relocated. */
5273 bfd_vma p;
5274 /* The value of GP used to create the relocatable object. */
0a61c8c2 5275 bfd_vma gp0;
b49e97c9
TS
5276 /* The offset into the global offset table at which the address of
5277 the relocation entry symbol, adjusted by the addend, resides
5278 during execution. */
5279 bfd_vma g = MINUS_ONE;
5280 /* The section in which the symbol referenced by the relocation is
5281 located. */
5282 asection *sec = NULL;
5283 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5284 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5285 symbol. */
b34976b6 5286 bfd_boolean local_p, was_local_p;
77434823
MR
5287 /* TRUE if the symbol referred to by this relocation is a section
5288 symbol. */
5289 bfd_boolean section_p = FALSE;
b34976b6
AM
5290 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5291 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5292 /* TRUE if the symbol referred to by this relocation is
5293 "__gnu_local_gp". */
5294 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5295 Elf_Internal_Shdr *symtab_hdr;
5296 size_t extsymoff;
5297 unsigned long r_symndx;
5298 int r_type;
b34976b6 5299 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5300 relocation value. */
b34976b6
AM
5301 bfd_boolean overflowed_p;
5302 /* TRUE if this relocation refers to a MIPS16 function. */
5303 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5304 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5305 struct mips_elf_link_hash_table *htab;
5306 bfd *dynobj;
ad951203 5307 bfd_boolean resolved_to_zero;
0a44bf69
RS
5308
5309 dynobj = elf_hash_table (info)->dynobj;
5310 htab = mips_elf_hash_table (info);
4dfe6ac6 5311 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5312
5313 /* Parse the relocation. */
5314 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5315 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5316 p = (input_section->output_section->vma
5317 + input_section->output_offset
5318 + relocation->r_offset);
5319
5320 /* Assume that there will be no overflow. */
b34976b6 5321 overflowed_p = FALSE;
b49e97c9
TS
5322
5323 /* Figure out whether or not the symbol is local, and get the offset
5324 used in the array of hash table entries. */
5325 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5326 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5327 local_sections);
bce03d3d 5328 was_local_p = local_p;
b49e97c9
TS
5329 if (! elf_bad_symtab (input_bfd))
5330 extsymoff = symtab_hdr->sh_info;
5331 else
5332 {
5333 /* The symbol table does not follow the rule that local symbols
5334 must come before globals. */
5335 extsymoff = 0;
5336 }
5337
5338 /* Figure out the value of the symbol. */
5339 if (local_p)
5340 {
9d862524 5341 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5342 Elf_Internal_Sym *sym;
5343
5344 sym = local_syms + r_symndx;
5345 sec = local_sections[r_symndx];
5346
77434823
MR
5347 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5348
b49e97c9 5349 symbol = sec->output_section->vma + sec->output_offset;
77434823 5350 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5351 symbol += sym->st_value;
77434823 5352 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5353 {
5354 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5355 addend -= symbol;
5356 addend += sec->output_section->vma + sec->output_offset;
5357 }
b49e97c9 5358
df58fc94
RS
5359 /* MIPS16/microMIPS text labels should be treated as odd. */
5360 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5361 ++symbol;
5362
5363 /* Record the name of this symbol, for our caller. */
5364 *namep = bfd_elf_string_from_elf_section (input_bfd,
5365 symtab_hdr->sh_link,
5366 sym->st_name);
ceab86af 5367 if (*namep == NULL || **namep == '\0')
b49e97c9
TS
5368 *namep = bfd_section_name (input_bfd, sec);
5369
9d862524 5370 /* For relocations against a section symbol and ones against no
07d6d2b8 5371 symbol (absolute relocations) infer the ISA mode from the addend. */
9d862524
MR
5372 if (section_p || r_symndx == STN_UNDEF)
5373 {
5374 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5375 target_is_micromips_code_p = (addend & 1) && micromips_p;
5376 }
5377 /* For relocations against an absolute symbol infer the ISA mode
07d6d2b8 5378 from the value of the symbol plus addend. */
9d862524
MR
5379 else if (bfd_is_abs_section (sec))
5380 {
5381 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5382 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5383 }
5384 /* Otherwise just use the regular symbol annotation available. */
5385 else
5386 {
5387 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5388 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5389 }
b49e97c9
TS
5390 }
5391 else
5392 {
560e09e9
NC
5393 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5394
b49e97c9
TS
5395 /* For global symbols we look up the symbol in the hash-table. */
5396 h = ((struct mips_elf_link_hash_entry *)
5397 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5398 /* Find the real hash-table entry for this symbol. */
5399 while (h->root.root.type == bfd_link_hash_indirect
5400 || h->root.root.type == bfd_link_hash_warning)
5401 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5402
5403 /* Record the name of this symbol, for our caller. */
5404 *namep = h->root.root.root.string;
5405
5406 /* See if this is the special _gp_disp symbol. Note that such a
5407 symbol must always be a global symbol. */
560e09e9 5408 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5409 && ! NEWABI_P (input_bfd))
5410 {
5411 /* Relocations against _gp_disp are permitted only with
5412 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5413 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5414 return bfd_reloc_notsupported;
5415
b34976b6 5416 gp_disp_p = TRUE;
b49e97c9 5417 }
bbe506e8
TS
5418 /* See if this is the special _gp symbol. Note that such a
5419 symbol must always be a global symbol. */
5420 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5421 gnu_local_gp_p = TRUE;
5422
5423
b49e97c9
TS
5424 /* If this symbol is defined, calculate its address. Note that
5425 _gp_disp is a magic symbol, always implicitly defined by the
5426 linker, so it's inappropriate to check to see whether or not
5427 its defined. */
5428 else if ((h->root.root.type == bfd_link_hash_defined
5429 || h->root.root.type == bfd_link_hash_defweak)
5430 && h->root.root.u.def.section)
5431 {
5432 sec = h->root.root.u.def.section;
5433 if (sec->output_section)
5434 symbol = (h->root.root.u.def.value
5435 + sec->output_section->vma
5436 + sec->output_offset);
5437 else
5438 symbol = h->root.root.u.def.value;
5439 }
5440 else if (h->root.root.type == bfd_link_hash_undefweak)
5441 /* We allow relocations against undefined weak symbols, giving
5442 it the value zero, so that you can undefined weak functions
5443 and check to see if they exist by looking at their
5444 addresses. */
5445 symbol = 0;
59c2e50f 5446 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5447 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5448 symbol = 0;
a4d0f181
TS
5449 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5450 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5451 {
5452 /* If this is a dynamic link, we should have created a
5453 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
de194d85 5454 in _bfd_mips_elf_create_dynamic_sections.
b49e97c9
TS
5455 Otherwise, we should define the symbol with a value of 0.
5456 FIXME: It should probably get into the symbol table
5457 somehow as well. */
0e1862bb 5458 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5459 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5460 symbol = 0;
5461 }
5e2b0d47
NC
5462 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5463 {
5464 /* This is an optional symbol - an Irix specific extension to the
5465 ELF spec. Ignore it for now.
5466 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5467 than simply ignoring them, but we do not handle this for now.
5468 For information see the "64-bit ELF Object File Specification"
5469 which is available from here:
5470 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5471 symbol = 0;
5472 }
b49e97c9
TS
5473 else
5474 {
dfb93f11
JC
5475 bfd_boolean reject_undefined
5476 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5477 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5478
1a72702b
AM
5479 (*info->callbacks->undefined_symbol)
5480 (info, h->root.root.root.string, input_bfd,
dfb93f11
JC
5481 input_section, relocation->r_offset, reject_undefined);
5482
5483 if (reject_undefined)
5484 return bfd_reloc_undefined;
5485
5486 symbol = 0;
b49e97c9
TS
5487 }
5488
30c09090 5489 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5490 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5491 }
5492
738e5348
RS
5493 /* If this is a reference to a 16-bit function with a stub, we need
5494 to redirect the relocation to the stub unless:
5495
5496 (a) the relocation is for a MIPS16 JAL;
5497
5498 (b) the relocation is for a MIPS16 PIC call, and there are no
5499 non-MIPS16 uses of the GOT slot; or
5500
5501 (c) the section allows direct references to MIPS16 functions. */
5502 if (r_type != R_MIPS16_26
0e1862bb 5503 && !bfd_link_relocatable (info)
738e5348
RS
5504 && ((h != NULL
5505 && h->fn_stub != NULL
5506 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5507 || (local_p
698600e4
AM
5508 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5509 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5510 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5511 {
5512 /* This is a 32- or 64-bit call to a 16-bit function. We should
5513 have already noticed that we were going to need the
5514 stub. */
5515 if (local_p)
8f0c309a 5516 {
698600e4 5517 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5518 value = 0;
5519 }
b49e97c9
TS
5520 else
5521 {
5522 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5523 if (h->la25_stub)
5524 {
5525 /* If a LA25 header for the stub itself exists, point to the
5526 prepended LUI/ADDIU sequence. */
5527 sec = h->la25_stub->stub_section;
5528 value = h->la25_stub->offset;
5529 }
5530 else
5531 {
5532 sec = h->fn_stub;
5533 value = 0;
5534 }
b49e97c9
TS
5535 }
5536
8f0c309a 5537 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5538 /* The target is 16-bit, but the stub isn't. */
5539 target_is_16_bit_code_p = FALSE;
b49e97c9 5540 }
1bbce132
MR
5541 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5542 to a standard MIPS function, we need to redirect the call to the stub.
5543 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5544 indirect calls should use an indirect stub instead. */
0e1862bb 5545 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5546 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5547 || (local_p
698600e4
AM
5548 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5549 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5550 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5551 {
b9d58d71 5552 if (local_p)
698600e4 5553 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5554 else
b49e97c9 5555 {
b9d58d71
TS
5556 /* If both call_stub and call_fp_stub are defined, we can figure
5557 out which one to use by checking which one appears in the input
5558 file. */
5559 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5560 {
b9d58d71 5561 asection *o;
68ffbac6 5562
b9d58d71
TS
5563 sec = NULL;
5564 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5565 {
b9d58d71
TS
5566 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5567 {
5568 sec = h->call_fp_stub;
5569 break;
5570 }
b49e97c9 5571 }
b9d58d71
TS
5572 if (sec == NULL)
5573 sec = h->call_stub;
b49e97c9 5574 }
b9d58d71 5575 else if (h->call_stub != NULL)
b49e97c9 5576 sec = h->call_stub;
b9d58d71
TS
5577 else
5578 sec = h->call_fp_stub;
07d6d2b8 5579 }
b49e97c9 5580
eea6121a 5581 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5582 symbol = sec->output_section->vma + sec->output_offset;
5583 }
861fb55a
DJ
5584 /* If this is a direct call to a PIC function, redirect to the
5585 non-PIC stub. */
5586 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5587 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5588 target_is_16_bit_code_p))
c7318def
MR
5589 {
5590 symbol = (h->la25_stub->stub_section->output_section->vma
5591 + h->la25_stub->stub_section->output_offset
5592 + h->la25_stub->offset);
5593 if (ELF_ST_IS_MICROMIPS (h->root.other))
5594 symbol |= 1;
5595 }
1bbce132
MR
5596 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5597 entry is used if a standard PLT entry has also been made. In this
5598 case the symbol will have been set by mips_elf_set_plt_sym_value
5599 to point to the standard PLT entry, so redirect to the compressed
5600 one. */
54806ffa
MR
5601 else if ((mips16_branch_reloc_p (r_type)
5602 || micromips_branch_reloc_p (r_type))
0e1862bb 5603 && !bfd_link_relocatable (info)
1bbce132
MR
5604 && h != NULL
5605 && h->use_plt_entry
5606 && h->root.plt.plist->comp_offset != MINUS_ONE
5607 && h->root.plt.plist->mips_offset != MINUS_ONE)
5608 {
5609 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5610
ce558b89 5611 sec = htab->root.splt;
1bbce132
MR
5612 symbol = (sec->output_section->vma
5613 + sec->output_offset
5614 + htab->plt_header_size
5615 + htab->plt_mips_offset
5616 + h->root.plt.plist->comp_offset
5617 + 1);
5618
5619 target_is_16_bit_code_p = !micromips_p;
5620 target_is_micromips_code_p = micromips_p;
5621 }
b49e97c9 5622
df58fc94 5623 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5624 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5625 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5626 {
4eca0228 5627 _bfd_error_handler
df58fc94
RS
5628 (_("MIPS16 and microMIPS functions cannot call each other"));
5629 return bfd_reloc_notsupported;
5630 }
5631
b49e97c9 5632 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5633 mode change. However, we can ignore calls to undefined weak symbols,
5634 which should never be executed at runtime. This exception is important
5635 because the assembly writer may have "known" that any definition of the
5636 symbol would be 16-bit code, and that direct jumps were therefore
5637 acceptable. */
0e1862bb 5638 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5639 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5640 && ((mips16_branch_reloc_p (r_type)
5641 && !target_is_16_bit_code_p)
5642 || (micromips_branch_reloc_p (r_type)
df58fc94 5643 && !target_is_micromips_code_p)
9d862524
MR
5644 || ((branch_reloc_p (r_type)
5645 || r_type == R_MIPS_JALR)
df58fc94
RS
5646 && (target_is_16_bit_code_p
5647 || target_is_micromips_code_p))));
b49e97c9 5648
c5d6fa44 5649 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5650
0a61c8c2
RS
5651 gp0 = _bfd_get_gp_value (input_bfd);
5652 gp = _bfd_get_gp_value (abfd);
23cc69b6 5653 if (htab->got_info)
a8028dd0 5654 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5655
5656 if (gnu_local_gp_p)
5657 symbol = gp;
5658
df58fc94
RS
5659 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5660 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5661 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5662 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5663 {
df58fc94
RS
5664 r_type = (micromips_reloc_p (r_type)
5665 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5666 addend = 0;
5667 }
5668
ad951203
L
5669 resolved_to_zero = (h != NULL
5670 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5671 &h->root));
5672
e77760d2 5673 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5674 to need it, get it now. */
b49e97c9
TS
5675 switch (r_type)
5676 {
738e5348
RS
5677 case R_MIPS16_CALL16:
5678 case R_MIPS16_GOT16:
b49e97c9
TS
5679 case R_MIPS_CALL16:
5680 case R_MIPS_GOT16:
5681 case R_MIPS_GOT_DISP:
5682 case R_MIPS_GOT_HI16:
5683 case R_MIPS_CALL_HI16:
5684 case R_MIPS_GOT_LO16:
5685 case R_MIPS_CALL_LO16:
df58fc94
RS
5686 case R_MICROMIPS_CALL16:
5687 case R_MICROMIPS_GOT16:
5688 case R_MICROMIPS_GOT_DISP:
5689 case R_MICROMIPS_GOT_HI16:
5690 case R_MICROMIPS_CALL_HI16:
5691 case R_MICROMIPS_GOT_LO16:
5692 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5693 case R_MIPS_TLS_GD:
5694 case R_MIPS_TLS_GOTTPREL:
5695 case R_MIPS_TLS_LDM:
d0f13682
CLT
5696 case R_MIPS16_TLS_GD:
5697 case R_MIPS16_TLS_GOTTPREL:
5698 case R_MIPS16_TLS_LDM:
df58fc94
RS
5699 case R_MICROMIPS_TLS_GD:
5700 case R_MICROMIPS_TLS_GOTTPREL:
5701 case R_MICROMIPS_TLS_LDM:
b49e97c9 5702 /* Find the index into the GOT where this value is located. */
df58fc94 5703 if (tls_ldm_reloc_p (r_type))
0f20cc35 5704 {
0a44bf69 5705 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5706 0, 0, NULL, r_type);
0f20cc35
DJ
5707 if (g == MINUS_ONE)
5708 return bfd_reloc_outofrange;
5709 }
5710 else if (!local_p)
b49e97c9 5711 {
0a44bf69
RS
5712 /* On VxWorks, CALL relocations should refer to the .got.plt
5713 entry, which is initialized to point at the PLT stub. */
5714 if (htab->is_vxworks
df58fc94
RS
5715 && (call_hi16_reloc_p (r_type)
5716 || call_lo16_reloc_p (r_type)
738e5348 5717 || call16_reloc_p (r_type)))
0a44bf69
RS
5718 {
5719 BFD_ASSERT (addend == 0);
5720 BFD_ASSERT (h->root.needs_plt);
5721 g = mips_elf_gotplt_index (info, &h->root);
5722 }
5723 else
b49e97c9 5724 {
020d7251 5725 BFD_ASSERT (addend == 0);
13fbec83
RS
5726 g = mips_elf_global_got_index (abfd, info, input_bfd,
5727 &h->root, r_type);
e641e783 5728 if (!TLS_RELOC_P (r_type)
020d7251
RS
5729 && !elf_hash_table (info)->dynamic_sections_created)
5730 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5731 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5732 }
5733 }
0a44bf69 5734 else if (!htab->is_vxworks
738e5348 5735 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5736 /* The calculation below does not involve "g". */
b49e97c9
TS
5737 break;
5738 else
5739 {
5c18022e 5740 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5741 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5742 if (g == MINUS_ONE)
5743 return bfd_reloc_outofrange;
5744 }
5745
5746 /* Convert GOT indices to actual offsets. */
a8028dd0 5747 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5748 break;
b49e97c9
TS
5749 }
5750
0a44bf69
RS
5751 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5752 symbols are resolved by the loader. Add them to .rela.dyn. */
5753 if (h != NULL && is_gott_symbol (info, &h->root))
5754 {
5755 Elf_Internal_Rela outrel;
5756 bfd_byte *loc;
5757 asection *s;
5758
5759 s = mips_elf_rel_dyn_section (info, FALSE);
5760 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5761
5762 outrel.r_offset = (input_section->output_section->vma
5763 + input_section->output_offset
5764 + relocation->r_offset);
5765 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5766 outrel.r_addend = addend;
5767 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5768
5769 /* If we've written this relocation for a readonly section,
5770 we need to set DF_TEXTREL again, so that we do not delete the
5771 DT_TEXTREL tag. */
5772 if (MIPS_ELF_READONLY_SECTION (input_section))
5773 info->flags |= DF_TEXTREL;
5774
0a44bf69
RS
5775 *valuep = 0;
5776 return bfd_reloc_ok;
5777 }
5778
b49e97c9
TS
5779 /* Figure out what kind of relocation is being performed. */
5780 switch (r_type)
5781 {
5782 case R_MIPS_NONE:
5783 return bfd_reloc_continue;
5784
5785 case R_MIPS_16:
c3eb94b4
MF
5786 if (howto->partial_inplace)
5787 addend = _bfd_mips_elf_sign_extend (addend, 16);
5788 value = symbol + addend;
b49e97c9
TS
5789 overflowed_p = mips_elf_overflow_p (value, 16);
5790 break;
5791
5792 case R_MIPS_32:
5793 case R_MIPS_REL32:
5794 case R_MIPS_64:
0e1862bb 5795 if ((bfd_link_pic (info)
861fb55a 5796 || (htab->root.dynamic_sections_created
b49e97c9 5797 && h != NULL
f5385ebf 5798 && h->root.def_dynamic
861fb55a
DJ
5799 && !h->root.def_regular
5800 && !h->has_static_relocs))
cf35638d 5801 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5802 && (h == NULL
5803 || h->root.root.type != bfd_link_hash_undefweak
ad951203
L
5804 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5805 && !resolved_to_zero))
b49e97c9
TS
5806 && (input_section->flags & SEC_ALLOC) != 0)
5807 {
861fb55a 5808 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5809 where the symbol will end up. So, we create a relocation
5810 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5811 linker. We must do the same for executable references to
5812 shared library symbols, unless we've decided to use copy
5813 relocs or PLTs instead. */
b49e97c9
TS
5814 value = addend;
5815 if (!mips_elf_create_dynamic_relocation (abfd,
5816 info,
5817 relocation,
5818 h,
5819 sec,
5820 symbol,
5821 &value,
5822 input_section))
5823 return bfd_reloc_undefined;
5824 }
5825 else
5826 {
5827 if (r_type != R_MIPS_REL32)
5828 value = symbol + addend;
5829 else
5830 value = addend;
5831 }
5832 value &= howto->dst_mask;
092dcd75
CD
5833 break;
5834
5835 case R_MIPS_PC32:
5836 value = symbol + addend - p;
5837 value &= howto->dst_mask;
b49e97c9
TS
5838 break;
5839
b49e97c9
TS
5840 case R_MIPS16_26:
5841 /* The calculation for R_MIPS16_26 is just the same as for an
5842 R_MIPS_26. It's only the storage of the relocated field into
5843 the output file that's different. That's handled in
5844 mips_elf_perform_relocation. So, we just fall through to the
5845 R_MIPS_26 case here. */
5846 case R_MIPS_26:
df58fc94
RS
5847 case R_MICROMIPS_26_S1:
5848 {
5849 unsigned int shift;
5850
df58fc94
RS
5851 /* Shift is 2, unusually, for microMIPS JALX. */
5852 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5853
77434823 5854 if (howto->partial_inplace && !section_p)
df58fc94 5855 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
5856 else
5857 value = addend;
bc27bb05
MR
5858 value += symbol;
5859
9d862524
MR
5860 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5861 be the correct ISA mode selector except for weak undefined
5862 symbols. */
5863 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5864 && (*cross_mode_jump_p
5865 ? (value & 3) != (r_type == R_MIPS_26)
07d6d2b8 5866 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
5867 return bfd_reloc_outofrange;
5868
5869 value >>= shift;
77434823 5870 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
5871 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5872 value &= howto->dst_mask;
5873 }
b49e97c9
TS
5874 break;
5875
0f20cc35 5876 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5877 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5878 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5879 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5880 & howto->dst_mask);
5881 break;
5882
5883 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5884 case R_MIPS_TLS_DTPREL32:
5885 case R_MIPS_TLS_DTPREL64:
d0f13682 5886 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5887 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5888 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5889 break;
5890
5891 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5892 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5893 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5894 value = (mips_elf_high (addend + symbol - tprel_base (info))
5895 & howto->dst_mask);
5896 break;
5897
5898 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5899 case R_MIPS_TLS_TPREL32:
5900 case R_MIPS_TLS_TPREL64:
5901 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5902 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5903 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5904 break;
5905
b49e97c9 5906 case R_MIPS_HI16:
d6f16593 5907 case R_MIPS16_HI16:
df58fc94 5908 case R_MICROMIPS_HI16:
b49e97c9
TS
5909 if (!gp_disp_p)
5910 {
5911 value = mips_elf_high (addend + symbol);
5912 value &= howto->dst_mask;
5913 }
5914 else
5915 {
d6f16593 5916 /* For MIPS16 ABI code we generate this sequence
07d6d2b8
AM
5917 0: li $v0,%hi(_gp_disp)
5918 4: addiupc $v1,%lo(_gp_disp)
5919 8: sll $v0,16
d6f16593
MR
5920 12: addu $v0,$v1
5921 14: move $gp,$v0
5922 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5923 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5924 ADDIUPC clears the low two bits of the instruction address,
5925 so the base is ($t9 + 4) & ~3. */
d6f16593 5926 if (r_type == R_MIPS16_HI16)
888b9c01 5927 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5928 /* The microMIPS .cpload sequence uses the same assembly
5929 instructions as the traditional psABI version, but the
5930 incoming $t9 has the low bit set. */
5931 else if (r_type == R_MICROMIPS_HI16)
5932 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5933 else
5934 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5935 }
5936 break;
5937
5938 case R_MIPS_LO16:
d6f16593 5939 case R_MIPS16_LO16:
df58fc94
RS
5940 case R_MICROMIPS_LO16:
5941 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5942 if (!gp_disp_p)
5943 value = (symbol + addend) & howto->dst_mask;
5944 else
5945 {
d6f16593
MR
5946 /* See the comment for R_MIPS16_HI16 above for the reason
5947 for this conditional. */
5948 if (r_type == R_MIPS16_LO16)
888b9c01 5949 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5950 else if (r_type == R_MICROMIPS_LO16
5951 || r_type == R_MICROMIPS_HI0_LO16)
5952 value = addend + gp - p + 3;
d6f16593
MR
5953 else
5954 value = addend + gp - p + 4;
b49e97c9 5955 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5956 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5957 _gp_disp are normally generated from the .cpload
5958 pseudo-op. It generates code that normally looks like
5959 this:
5960
5961 lui $gp,%hi(_gp_disp)
5962 addiu $gp,$gp,%lo(_gp_disp)
5963 addu $gp,$gp,$t9
5964
5965 Here $t9 holds the address of the function being called,
5966 as required by the MIPS ELF ABI. The R_MIPS_LO16
5967 relocation can easily overflow in this situation, but the
5968 R_MIPS_HI16 relocation will handle the overflow.
5969 Therefore, we consider this a bug in the MIPS ABI, and do
5970 not check for overflow here. */
5971 }
5972 break;
5973
5974 case R_MIPS_LITERAL:
df58fc94 5975 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5976 /* Because we don't merge literal sections, we can handle this
5977 just like R_MIPS_GPREL16. In the long run, we should merge
5978 shared literals, and then we will need to additional work
5979 here. */
5980
5981 /* Fall through. */
5982
5983 case R_MIPS16_GPREL:
5984 /* The R_MIPS16_GPREL performs the same calculation as
5985 R_MIPS_GPREL16, but stores the relocated bits in a different
5986 order. We don't need to do anything special here; the
5987 differences are handled in mips_elf_perform_relocation. */
5988 case R_MIPS_GPREL16:
df58fc94
RS
5989 case R_MICROMIPS_GPREL7_S2:
5990 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5991 /* Only sign-extend the addend if it was extracted from the
5992 instruction. If the addend was separate, leave it alone,
5993 otherwise we may lose significant bits. */
5994 if (howto->partial_inplace)
a7ebbfdf 5995 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5996 value = symbol + addend - gp;
5997 /* If the symbol was local, any earlier relocatable links will
5998 have adjusted its addend with the gp offset, so compensate
5999 for that now. Don't do it for symbols forced local in this
6000 link, though, since they won't have had the gp offset applied
6001 to them before. */
6002 if (was_local_p)
6003 value += gp0;
538baf8b
AB
6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6005 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
6006 break;
6007
738e5348
RS
6008 case R_MIPS16_GOT16:
6009 case R_MIPS16_CALL16:
b49e97c9
TS
6010 case R_MIPS_GOT16:
6011 case R_MIPS_CALL16:
df58fc94
RS
6012 case R_MICROMIPS_GOT16:
6013 case R_MICROMIPS_CALL16:
0a44bf69 6014 /* VxWorks does not have separate local and global semantics for
738e5348 6015 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6016 if (!htab->is_vxworks && local_p)
b49e97c9 6017 {
5c18022e 6018 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6019 symbol + addend, !was_local_p);
b49e97c9
TS
6020 if (value == MINUS_ONE)
6021 return bfd_reloc_outofrange;
6022 value
a8028dd0 6023 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6024 overflowed_p = mips_elf_overflow_p (value, 16);
6025 break;
6026 }
6027
6028 /* Fall through. */
6029
0f20cc35
DJ
6030 case R_MIPS_TLS_GD:
6031 case R_MIPS_TLS_GOTTPREL:
6032 case R_MIPS_TLS_LDM:
b49e97c9 6033 case R_MIPS_GOT_DISP:
d0f13682
CLT
6034 case R_MIPS16_TLS_GD:
6035 case R_MIPS16_TLS_GOTTPREL:
6036 case R_MIPS16_TLS_LDM:
df58fc94
RS
6037 case R_MICROMIPS_TLS_GD:
6038 case R_MICROMIPS_TLS_GOTTPREL:
6039 case R_MICROMIPS_TLS_LDM:
6040 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6041 value = g;
6042 overflowed_p = mips_elf_overflow_p (value, 16);
6043 break;
6044
6045 case R_MIPS_GPREL32:
bce03d3d
AO
6046 value = (addend + symbol + gp0 - gp);
6047 if (!save_addend)
6048 value &= howto->dst_mask;
b49e97c9
TS
6049 break;
6050
6051 case R_MIPS_PC16:
bad36eac 6052 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6053 if (howto->partial_inplace)
6054 addend = _bfd_mips_elf_sign_extend (addend, 18);
6055
9d862524 6056 /* No need to exclude weak undefined symbols here as they resolve
07d6d2b8
AM
6057 to 0 and never set `*cross_mode_jump_p', so this alignment check
6058 will never trigger for them. */
9d862524
MR
6059 if (*cross_mode_jump_p
6060 ? ((symbol + addend) & 3) != 1
6061 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6062 return bfd_reloc_outofrange;
6063
6064 value = symbol + addend - p;
538baf8b
AB
6065 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6066 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6067 value >>= howto->rightshift;
6068 value &= howto->dst_mask;
b49e97c9
TS
6069 break;
6070
c9775dde
MR
6071 case R_MIPS16_PC16_S1:
6072 if (howto->partial_inplace)
6073 addend = _bfd_mips_elf_sign_extend (addend, 17);
6074
6075 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6076 && (*cross_mode_jump_p
6077 ? ((symbol + addend) & 3) != 0
6078 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6079 return bfd_reloc_outofrange;
6080
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6087
7361da2c
AB
6088 case R_MIPS_PC21_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 23);
6091
6092 if ((symbol + addend) & 3)
6093 return bfd_reloc_outofrange;
6094
6095 value = symbol + addend - p;
538baf8b
AB
6096 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6097 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6098 value >>= howto->rightshift;
6099 value &= howto->dst_mask;
6100 break;
6101
6102 case R_MIPS_PC26_S2:
6103 if (howto->partial_inplace)
6104 addend = _bfd_mips_elf_sign_extend (addend, 28);
6105
6106 if ((symbol + addend) & 3)
6107 return bfd_reloc_outofrange;
6108
6109 value = symbol + addend - p;
538baf8b
AB
6110 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6111 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6112 value >>= howto->rightshift;
6113 value &= howto->dst_mask;
6114 break;
6115
6116 case R_MIPS_PC18_S3:
6117 if (howto->partial_inplace)
6118 addend = _bfd_mips_elf_sign_extend (addend, 21);
6119
6120 if ((symbol + addend) & 7)
6121 return bfd_reloc_outofrange;
6122
6123 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6124 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6125 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6126 value >>= howto->rightshift;
6127 value &= howto->dst_mask;
6128 break;
6129
6130 case R_MIPS_PC19_S2:
6131 if (howto->partial_inplace)
6132 addend = _bfd_mips_elf_sign_extend (addend, 21);
6133
6134 if ((symbol + addend) & 3)
6135 return bfd_reloc_outofrange;
6136
6137 value = symbol + addend - p;
538baf8b
AB
6138 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6139 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6140 value >>= howto->rightshift;
6141 value &= howto->dst_mask;
6142 break;
6143
6144 case R_MIPS_PCHI16:
6145 value = mips_elf_high (symbol + addend - p);
538baf8b
AB
6146 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6147 overflowed_p = mips_elf_overflow_p (value, 16);
7361da2c
AB
6148 value &= howto->dst_mask;
6149 break;
6150
6151 case R_MIPS_PCLO16:
6152 if (howto->partial_inplace)
6153 addend = _bfd_mips_elf_sign_extend (addend, 16);
6154 value = symbol + addend - p;
6155 value &= howto->dst_mask;
6156 break;
6157
df58fc94 6158 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6159 if (howto->partial_inplace)
6160 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6161
6162 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6163 && (*cross_mode_jump_p
6164 ? ((symbol + addend + 2) & 3) != 0
6165 : ((symbol + addend + 2) & 1) == 0))
6166 return bfd_reloc_outofrange;
6167
c3eb94b4 6168 value = symbol + addend - p;
538baf8b
AB
6169 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6170 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6171 value >>= howto->rightshift;
6172 value &= howto->dst_mask;
6173 break;
6174
6175 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6176 if (howto->partial_inplace)
6177 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6178
6179 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6180 && (*cross_mode_jump_p
6181 ? ((symbol + addend + 2) & 3) != 0
6182 : ((symbol + addend + 2) & 1) == 0))
6183 return bfd_reloc_outofrange;
6184
c3eb94b4 6185 value = symbol + addend - p;
538baf8b
AB
6186 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6187 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6188 value >>= howto->rightshift;
6189 value &= howto->dst_mask;
6190 break;
6191
6192 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6193 if (howto->partial_inplace)
6194 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6195
6196 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6197 && (*cross_mode_jump_p
6198 ? ((symbol + addend) & 3) != 0
6199 : ((symbol + addend) & 1) == 0))
6200 return bfd_reloc_outofrange;
6201
c3eb94b4 6202 value = symbol + addend - p;
538baf8b
AB
6203 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6204 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6205 value >>= howto->rightshift;
6206 value &= howto->dst_mask;
6207 break;
6208
6209 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6210 if (howto->partial_inplace)
6211 addend = _bfd_mips_elf_sign_extend (addend, 25);
6212 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6213 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6214 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6215 value >>= howto->rightshift;
6216 value &= howto->dst_mask;
6217 break;
6218
b49e97c9
TS
6219 case R_MIPS_GOT_HI16:
6220 case R_MIPS_CALL_HI16:
df58fc94
RS
6221 case R_MICROMIPS_GOT_HI16:
6222 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6223 /* We're allowed to handle these two relocations identically.
6224 The dynamic linker is allowed to handle the CALL relocations
6225 differently by creating a lazy evaluation stub. */
6226 value = g;
6227 value = mips_elf_high (value);
6228 value &= howto->dst_mask;
6229 break;
6230
6231 case R_MIPS_GOT_LO16:
6232 case R_MIPS_CALL_LO16:
df58fc94
RS
6233 case R_MICROMIPS_GOT_LO16:
6234 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6235 value = g & howto->dst_mask;
6236 break;
6237
6238 case R_MIPS_GOT_PAGE:
df58fc94 6239 case R_MICROMIPS_GOT_PAGE:
5c18022e 6240 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6241 if (value == MINUS_ONE)
6242 return bfd_reloc_outofrange;
a8028dd0 6243 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6244 overflowed_p = mips_elf_overflow_p (value, 16);
6245 break;
6246
6247 case R_MIPS_GOT_OFST:
df58fc94 6248 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6249 if (local_p)
5c18022e 6250 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6251 else
6252 value = addend;
b49e97c9
TS
6253 overflowed_p = mips_elf_overflow_p (value, 16);
6254 break;
6255
6256 case R_MIPS_SUB:
df58fc94 6257 case R_MICROMIPS_SUB:
b49e97c9
TS
6258 value = symbol - addend;
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_HIGHER:
df58fc94 6263 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6264 value = mips_elf_higher (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_HIGHEST:
df58fc94 6269 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6270 value = mips_elf_highest (addend + symbol);
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_SCN_DISP:
df58fc94 6275 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6276 value = symbol + addend - sec->output_offset;
6277 value &= howto->dst_mask;
6278 break;
6279
b49e97c9 6280 case R_MIPS_JALR:
df58fc94 6281 case R_MICROMIPS_JALR:
1367d393
ILT
6282 /* This relocation is only a hint. In some cases, we optimize
6283 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6284 when the symbol does not resolve locally. */
6285 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393 6286 return bfd_reloc_continue;
c1556ecd
MR
6287 /* We can't optimize cross-mode jumps either. */
6288 if (*cross_mode_jump_p)
6289 return bfd_reloc_continue;
1367d393 6290 value = symbol + addend;
c1556ecd
MR
6291 /* Neither we can non-instruction-aligned targets. */
6292 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6293 return bfd_reloc_continue;
1367d393 6294 break;
b49e97c9 6295
1367d393 6296 case R_MIPS_PJUMP:
b49e97c9
TS
6297 case R_MIPS_GNU_VTINHERIT:
6298 case R_MIPS_GNU_VTENTRY:
6299 /* We don't do anything with these at present. */
6300 return bfd_reloc_continue;
6301
6302 default:
6303 /* An unrecognized relocation type. */
6304 return bfd_reloc_notsupported;
6305 }
6306
6307 /* Store the VALUE for our caller. */
6308 *valuep = value;
6309 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6310}
6311
6312/* Obtain the field relocated by RELOCATION. */
6313
6314static bfd_vma
9719ad41
RS
6315mips_elf_obtain_contents (reloc_howto_type *howto,
6316 const Elf_Internal_Rela *relocation,
6317 bfd *input_bfd, bfd_byte *contents)
b49e97c9 6318{
6346d5ca 6319 bfd_vma x = 0;
b49e97c9 6320 bfd_byte *location = contents + relocation->r_offset;
6346d5ca 6321 unsigned int size = bfd_get_reloc_size (howto);
b49e97c9
TS
6322
6323 /* Obtain the bytes. */
6346d5ca
AM
6324 if (size != 0)
6325 x = bfd_get (8 * size, input_bfd, location);
b49e97c9 6326
b49e97c9
TS
6327 return x;
6328}
6329
6330/* It has been determined that the result of the RELOCATION is the
6331 VALUE. Use HOWTO to place VALUE into the output file at the
6332 appropriate position. The SECTION is the section to which the
68ffbac6 6333 relocation applies.
38a7df63 6334 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6335 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6336
b34976b6 6337 Returns FALSE if anything goes wrong. */
b49e97c9 6338
b34976b6 6339static bfd_boolean
9719ad41
RS
6340mips_elf_perform_relocation (struct bfd_link_info *info,
6341 reloc_howto_type *howto,
6342 const Elf_Internal_Rela *relocation,
6343 bfd_vma value, bfd *input_bfd,
6344 asection *input_section, bfd_byte *contents,
38a7df63 6345 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6346{
6347 bfd_vma x;
6348 bfd_byte *location;
6349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6346d5ca 6350 unsigned int size;
b49e97c9
TS
6351
6352 /* Figure out where the relocation is occurring. */
6353 location = contents + relocation->r_offset;
6354
df58fc94 6355 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6356
b49e97c9
TS
6357 /* Obtain the current value. */
6358 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6359
6360 /* Clear the field we are setting. */
6361 x &= ~howto->dst_mask;
6362
b49e97c9
TS
6363 /* Set the field. */
6364 x |= (value & howto->dst_mask);
6365
a6ebf616 6366 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6367 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6368 {
6369 bfd_vma opcode = x >> 26;
6370
6371 if (r_type == R_MIPS16_26 ? opcode == 0x7
6372 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6373 : opcode == 0x1d)
6374 {
6375 info->callbacks->einfo
2c1c9679 6376 (_("%X%H: unsupported JALX to the same ISA mode\n"),
9d862524
MR
6377 input_bfd, input_section, relocation->r_offset);
6378 return TRUE;
6379 }
6380 }
38a7df63 6381 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6382 {
b34976b6 6383 bfd_boolean ok;
b49e97c9
TS
6384 bfd_vma opcode = x >> 26;
6385 bfd_vma jalx_opcode;
6386
6387 /* Check to see if the opcode is already JAL or JALX. */
6388 if (r_type == R_MIPS16_26)
6389 {
6390 ok = ((opcode == 0x6) || (opcode == 0x7));
6391 jalx_opcode = 0x7;
6392 }
df58fc94
RS
6393 else if (r_type == R_MICROMIPS_26_S1)
6394 {
6395 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6396 jalx_opcode = 0x3c;
6397 }
b49e97c9
TS
6398 else
6399 {
6400 ok = ((opcode == 0x3) || (opcode == 0x1d));
6401 jalx_opcode = 0x1d;
6402 }
6403
3bdf9505 6404 /* If the opcode is not JAL or JALX, there's a problem. We cannot
07d6d2b8 6405 convert J or JALS to JALX. */
b49e97c9
TS
6406 if (!ok)
6407 {
5f68df25 6408 info->callbacks->einfo
2c1c9679 6409 (_("%X%H: unsupported jump between ISA modes; "
5f68df25
MR
6410 "consider recompiling with interlinking enabled\n"),
6411 input_bfd, input_section, relocation->r_offset);
6412 return TRUE;
b49e97c9
TS
6413 }
6414
6415 /* Make this the JALX opcode. */
6416 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6417 }
9d862524
MR
6418 else if (cross_mode_jump_p && b_reloc_p (r_type))
6419 {
a6ebf616
MR
6420 bfd_boolean ok = FALSE;
6421 bfd_vma opcode = x >> 16;
6422 bfd_vma jalx_opcode = 0;
70e65ca8 6423 bfd_vma sign_bit = 0;
a6ebf616
MR
6424 bfd_vma addr;
6425 bfd_vma dest;
6426
6427 if (r_type == R_MICROMIPS_PC16_S1)
6428 {
6429 ok = opcode == 0x4060;
6430 jalx_opcode = 0x3c;
70e65ca8 6431 sign_bit = 0x10000;
a6ebf616
MR
6432 value <<= 1;
6433 }
6434 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6435 {
6436 ok = opcode == 0x411;
6437 jalx_opcode = 0x1d;
70e65ca8 6438 sign_bit = 0x20000;
a6ebf616
MR
6439 value <<= 2;
6440 }
6441
8b10b0b3 6442 if (ok && !bfd_link_pic (info))
a6ebf616 6443 {
8b10b0b3
MR
6444 addr = (input_section->output_section->vma
6445 + input_section->output_offset
6446 + relocation->r_offset
6447 + 4);
70e65ca8
MR
6448 dest = (addr
6449 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
a6ebf616 6450
8b10b0b3
MR
6451 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6452 {
6453 info->callbacks->einfo
2c1c9679 6454 (_("%X%H: cannot convert branch between ISA modes "
8b10b0b3
MR
6455 "to JALX: relocation out of range\n"),
6456 input_bfd, input_section, relocation->r_offset);
6457 return TRUE;
6458 }
a6ebf616 6459
8b10b0b3
MR
6460 /* Make this the JALX opcode. */
6461 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6462 }
6463 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
a6ebf616
MR
6464 {
6465 info->callbacks->einfo
2c1c9679 6466 (_("%X%H: unsupported branch between ISA modes\n"),
a6ebf616
MR
6467 input_bfd, input_section, relocation->r_offset);
6468 return TRUE;
6469 }
9d862524 6470 }
b49e97c9 6471
38a7df63
CF
6472 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6473 range. */
0e1862bb 6474 if (!bfd_link_relocatable (info)
38a7df63 6475 && !cross_mode_jump_p
cd8d5a82
CF
6476 && ((JAL_TO_BAL_P (input_bfd)
6477 && r_type == R_MIPS_26
0e392101 6478 && (x >> 26) == 0x3) /* jal addr */
cd8d5a82
CF
6479 || (JALR_TO_BAL_P (input_bfd)
6480 && r_type == R_MIPS_JALR
0e392101 6481 && x == 0x0320f809) /* jalr t9 */
38a7df63
CF
6482 || (JR_TO_B_P (input_bfd)
6483 && r_type == R_MIPS_JALR
0e392101 6484 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
1367d393
ILT
6485 {
6486 bfd_vma addr;
6487 bfd_vma dest;
6488 bfd_signed_vma off;
6489
6490 addr = (input_section->output_section->vma
6491 + input_section->output_offset
6492 + relocation->r_offset
6493 + 4);
6494 if (r_type == R_MIPS_26)
6495 dest = (value << 2) | ((addr >> 28) << 28);
6496 else
6497 dest = value;
6498 off = dest - addr;
6499 if (off <= 0x1ffff && off >= -0x20000)
38a7df63 6500 {
0e392101 6501 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
38a7df63
CF
6502 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6503 else
6504 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6505 }
1367d393
ILT
6506 }
6507
b49e97c9 6508 /* Put the value into the output. */
6346d5ca
AM
6509 size = bfd_get_reloc_size (howto);
6510 if (size != 0)
6511 bfd_put (8 * size, input_bfd, x, location);
d6f16593 6512
0e1862bb 6513 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6514 location);
d6f16593 6515
b34976b6 6516 return TRUE;
b49e97c9 6517}
b49e97c9 6518\f
b49e97c9
TS
6519/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6520 is the original relocation, which is now being transformed into a
6521 dynamic relocation. The ADDENDP is adjusted if necessary; the
6522 caller should store the result in place of the original addend. */
6523
b34976b6 6524static bfd_boolean
9719ad41
RS
6525mips_elf_create_dynamic_relocation (bfd *output_bfd,
6526 struct bfd_link_info *info,
6527 const Elf_Internal_Rela *rel,
6528 struct mips_elf_link_hash_entry *h,
6529 asection *sec, bfd_vma symbol,
6530 bfd_vma *addendp, asection *input_section)
b49e97c9 6531{
947216bf 6532 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6533 asection *sreloc;
6534 bfd *dynobj;
6535 int r_type;
5d41f0b6
RS
6536 long indx;
6537 bfd_boolean defined_p;
0a44bf69 6538 struct mips_elf_link_hash_table *htab;
b49e97c9 6539
0a44bf69 6540 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6541 BFD_ASSERT (htab != NULL);
6542
b49e97c9
TS
6543 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6544 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6545 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6546 BFD_ASSERT (sreloc != NULL);
6547 BFD_ASSERT (sreloc->contents != NULL);
6548 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6549 < sreloc->size);
b49e97c9 6550
b49e97c9
TS
6551 outrel[0].r_offset =
6552 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6553 if (ABI_64_P (output_bfd))
6554 {
6555 outrel[1].r_offset =
6556 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6557 outrel[2].r_offset =
6558 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6559 }
b49e97c9 6560
c5ae1840 6561 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6562 /* The relocation field has been deleted. */
5d41f0b6
RS
6563 return TRUE;
6564
6565 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6566 {
6567 /* The relocation field has been converted into a relative value of
6568 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6569 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6570 *addendp += symbol;
5d41f0b6 6571 return TRUE;
0d591ff7 6572 }
b49e97c9 6573
5d41f0b6
RS
6574 /* We must now calculate the dynamic symbol table index to use
6575 in the relocation. */
d4a77f3f 6576 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6577 {
020d7251 6578 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6579 indx = h->root.dynindx;
6580 if (SGI_COMPAT (output_bfd))
6581 defined_p = h->root.def_regular;
6582 else
6583 /* ??? glibc's ld.so just adds the final GOT entry to the
6584 relocation field. It therefore treats relocs against
6585 defined symbols in the same way as relocs against
6586 undefined symbols. */
6587 defined_p = FALSE;
6588 }
b49e97c9
TS
6589 else
6590 {
5d41f0b6
RS
6591 if (sec != NULL && bfd_is_abs_section (sec))
6592 indx = 0;
6593 else if (sec == NULL || sec->owner == NULL)
fdd07405 6594 {
5d41f0b6
RS
6595 bfd_set_error (bfd_error_bad_value);
6596 return FALSE;
b49e97c9
TS
6597 }
6598 else
6599 {
5d41f0b6 6600 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6601 if (indx == 0)
6602 {
6603 asection *osec = htab->root.text_index_section;
6604 indx = elf_section_data (osec)->dynindx;
6605 }
5d41f0b6
RS
6606 if (indx == 0)
6607 abort ();
b49e97c9
TS
6608 }
6609
5d41f0b6
RS
6610 /* Instead of generating a relocation using the section
6611 symbol, we may as well make it a fully relative
6612 relocation. We want to avoid generating relocations to
6613 local symbols because we used to generate them
6614 incorrectly, without adding the original symbol value,
6615 which is mandated by the ABI for section symbols. In
6616 order to give dynamic loaders and applications time to
6617 phase out the incorrect use, we refrain from emitting
6618 section-relative relocations. It's not like they're
6619 useful, after all. This should be a bit more efficient
6620 as well. */
6621 /* ??? Although this behavior is compatible with glibc's ld.so,
6622 the ABI says that relocations against STN_UNDEF should have
6623 a symbol value of 0. Irix rld honors this, so relocations
6624 against STN_UNDEF have no effect. */
6625 if (!SGI_COMPAT (output_bfd))
6626 indx = 0;
6627 defined_p = TRUE;
b49e97c9
TS
6628 }
6629
5d41f0b6
RS
6630 /* If the relocation was previously an absolute relocation and
6631 this symbol will not be referred to by the relocation, we must
6632 adjust it by the value we give it in the dynamic symbol table.
6633 Otherwise leave the job up to the dynamic linker. */
6634 if (defined_p && r_type != R_MIPS_REL32)
6635 *addendp += symbol;
6636
0a44bf69
RS
6637 if (htab->is_vxworks)
6638 /* VxWorks uses non-relative relocations for this. */
6639 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6640 else
6641 /* The relocation is always an REL32 relocation because we don't
6642 know where the shared library will wind up at load-time. */
6643 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6644 R_MIPS_REL32);
6645
5d41f0b6
RS
6646 /* For strict adherence to the ABI specification, we should
6647 generate a R_MIPS_64 relocation record by itself before the
6648 _REL32/_64 record as well, such that the addend is read in as
6649 a 64-bit value (REL32 is a 32-bit relocation, after all).
6650 However, since none of the existing ELF64 MIPS dynamic
6651 loaders seems to care, we don't waste space with these
6652 artificial relocations. If this turns out to not be true,
6653 mips_elf_allocate_dynamic_relocation() should be tweaked so
6654 as to make room for a pair of dynamic relocations per
6655 invocation if ABI_64_P, and here we should generate an
6656 additional relocation record with R_MIPS_64 by itself for a
6657 NULL symbol before this relocation record. */
6658 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6659 ABI_64_P (output_bfd)
6660 ? R_MIPS_64
6661 : R_MIPS_NONE);
6662 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6663
6664 /* Adjust the output offset of the relocation to reference the
6665 correct location in the output file. */
6666 outrel[0].r_offset += (input_section->output_section->vma
6667 + input_section->output_offset);
6668 outrel[1].r_offset += (input_section->output_section->vma
6669 + input_section->output_offset);
6670 outrel[2].r_offset += (input_section->output_section->vma
6671 + input_section->output_offset);
6672
b49e97c9
TS
6673 /* Put the relocation back out. We have to use the special
6674 relocation outputter in the 64-bit case since the 64-bit
6675 relocation format is non-standard. */
6676 if (ABI_64_P (output_bfd))
6677 {
6678 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6679 (output_bfd, &outrel[0],
6680 (sreloc->contents
6681 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6682 }
0a44bf69
RS
6683 else if (htab->is_vxworks)
6684 {
6685 /* VxWorks uses RELA rather than REL dynamic relocations. */
6686 outrel[0].r_addend = *addendp;
6687 bfd_elf32_swap_reloca_out
6688 (output_bfd, &outrel[0],
6689 (sreloc->contents
6690 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6691 }
b49e97c9 6692 else
947216bf
AM
6693 bfd_elf32_swap_reloc_out
6694 (output_bfd, &outrel[0],
6695 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6696
b49e97c9
TS
6697 /* We've now added another relocation. */
6698 ++sreloc->reloc_count;
6699
6700 /* Make sure the output section is writable. The dynamic linker
6701 will be writing to it. */
6702 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6703 |= SHF_WRITE;
6704
6705 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6706 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6707 {
3d4d4302 6708 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6709 bfd_byte *cr;
6710
6711 if (scpt)
6712 {
6713 Elf32_crinfo cptrel;
6714
6715 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6716 cptrel.vaddr = (rel->r_offset
6717 + input_section->output_section->vma
6718 + input_section->output_offset);
6719 if (r_type == R_MIPS_REL32)
6720 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6721 else
6722 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6723 mips_elf_set_cr_dist2to (cptrel, 0);
6724 cptrel.konst = *addendp;
6725
6726 cr = (scpt->contents
6727 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6728 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6729 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6730 ((Elf32_External_crinfo *) cr
6731 + scpt->reloc_count));
6732 ++scpt->reloc_count;
6733 }
6734 }
6735
943284cc
DJ
6736 /* If we've written this relocation for a readonly section,
6737 we need to set DF_TEXTREL again, so that we do not delete the
6738 DT_TEXTREL tag. */
6739 if (MIPS_ELF_READONLY_SECTION (input_section))
6740 info->flags |= DF_TEXTREL;
6741
b34976b6 6742 return TRUE;
b49e97c9
TS
6743}
6744\f
b49e97c9
TS
6745/* Return the MACH for a MIPS e_flags value. */
6746
6747unsigned long
9719ad41 6748_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6749{
6750 switch (flags & EF_MIPS_MACH)
6751 {
6752 case E_MIPS_MACH_3900:
6753 return bfd_mach_mips3900;
6754
6755 case E_MIPS_MACH_4010:
6756 return bfd_mach_mips4010;
6757
6758 case E_MIPS_MACH_4100:
6759 return bfd_mach_mips4100;
6760
6761 case E_MIPS_MACH_4111:
6762 return bfd_mach_mips4111;
6763
00707a0e
RS
6764 case E_MIPS_MACH_4120:
6765 return bfd_mach_mips4120;
6766
b49e97c9
TS
6767 case E_MIPS_MACH_4650:
6768 return bfd_mach_mips4650;
6769
00707a0e
RS
6770 case E_MIPS_MACH_5400:
6771 return bfd_mach_mips5400;
6772
6773 case E_MIPS_MACH_5500:
6774 return bfd_mach_mips5500;
6775
e407c74b
NC
6776 case E_MIPS_MACH_5900:
6777 return bfd_mach_mips5900;
6778
0d2e43ed
ILT
6779 case E_MIPS_MACH_9000:
6780 return bfd_mach_mips9000;
6781
b49e97c9
TS
6782 case E_MIPS_MACH_SB1:
6783 return bfd_mach_mips_sb1;
6784
350cc38d
MS
6785 case E_MIPS_MACH_LS2E:
6786 return bfd_mach_mips_loongson_2e;
6787
6788 case E_MIPS_MACH_LS2F:
6789 return bfd_mach_mips_loongson_2f;
6790
fd503541
NC
6791 case E_MIPS_MACH_LS3A:
6792 return bfd_mach_mips_loongson_3a;
6793
2c629856
N
6794 case E_MIPS_MACH_OCTEON3:
6795 return bfd_mach_mips_octeon3;
6796
432233b3
AP
6797 case E_MIPS_MACH_OCTEON2:
6798 return bfd_mach_mips_octeon2;
6799
6f179bd0
AN
6800 case E_MIPS_MACH_OCTEON:
6801 return bfd_mach_mips_octeon;
6802
52b6b6b9
JM
6803 case E_MIPS_MACH_XLR:
6804 return bfd_mach_mips_xlr;
6805
38bf472a
MR
6806 case E_MIPS_MACH_IAMR2:
6807 return bfd_mach_mips_interaptiv_mr2;
6808
b49e97c9
TS
6809 default:
6810 switch (flags & EF_MIPS_ARCH)
6811 {
6812 default:
6813 case E_MIPS_ARCH_1:
6814 return bfd_mach_mips3000;
b49e97c9
TS
6815
6816 case E_MIPS_ARCH_2:
6817 return bfd_mach_mips6000;
b49e97c9
TS
6818
6819 case E_MIPS_ARCH_3:
6820 return bfd_mach_mips4000;
b49e97c9
TS
6821
6822 case E_MIPS_ARCH_4:
6823 return bfd_mach_mips8000;
b49e97c9
TS
6824
6825 case E_MIPS_ARCH_5:
6826 return bfd_mach_mips5;
b49e97c9
TS
6827
6828 case E_MIPS_ARCH_32:
6829 return bfd_mach_mipsisa32;
b49e97c9
TS
6830
6831 case E_MIPS_ARCH_64:
6832 return bfd_mach_mipsisa64;
af7ee8bf
CD
6833
6834 case E_MIPS_ARCH_32R2:
6835 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6836
6837 case E_MIPS_ARCH_64R2:
6838 return bfd_mach_mipsisa64r2;
7361da2c
AB
6839
6840 case E_MIPS_ARCH_32R6:
6841 return bfd_mach_mipsisa32r6;
6842
6843 case E_MIPS_ARCH_64R6:
6844 return bfd_mach_mipsisa64r6;
b49e97c9
TS
6845 }
6846 }
6847
6848 return 0;
6849}
6850
6851/* Return printable name for ABI. */
6852
6853static INLINE char *
9719ad41 6854elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6855{
6856 flagword flags;
6857
6858 flags = elf_elfheader (abfd)->e_flags;
6859 switch (flags & EF_MIPS_ABI)
6860 {
6861 case 0:
6862 if (ABI_N32_P (abfd))
6863 return "N32";
6864 else if (ABI_64_P (abfd))
6865 return "64";
6866 else
6867 return "none";
6868 case E_MIPS_ABI_O32:
6869 return "O32";
6870 case E_MIPS_ABI_O64:
6871 return "O64";
6872 case E_MIPS_ABI_EABI32:
6873 return "EABI32";
6874 case E_MIPS_ABI_EABI64:
6875 return "EABI64";
6876 default:
6877 return "unknown abi";
6878 }
6879}
6880\f
6881/* MIPS ELF uses two common sections. One is the usual one, and the
6882 other is for small objects. All the small objects are kept
6883 together, and then referenced via the gp pointer, which yields
6884 faster assembler code. This is what we use for the small common
6885 section. This approach is copied from ecoff.c. */
6886static asection mips_elf_scom_section;
6887static asymbol mips_elf_scom_symbol;
6888static asymbol *mips_elf_scom_symbol_ptr;
6889
6890/* MIPS ELF also uses an acommon section, which represents an
6891 allocated common symbol which may be overridden by a
6892 definition in a shared library. */
6893static asection mips_elf_acom_section;
6894static asymbol mips_elf_acom_symbol;
6895static asymbol *mips_elf_acom_symbol_ptr;
6896
738e5348 6897/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6898
6899void
9719ad41 6900_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6901{
6902 elf_symbol_type *elfsym;
6903
738e5348 6904 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6905 elfsym = (elf_symbol_type *) asym;
6906 switch (elfsym->internal_elf_sym.st_shndx)
6907 {
6908 case SHN_MIPS_ACOMMON:
6909 /* This section is used in a dynamically linked executable file.
6910 It is an allocated common section. The dynamic linker can
6911 either resolve these symbols to something in a shared
6912 library, or it can just leave them here. For our purposes,
6913 we can consider these symbols to be in a new section. */
6914 if (mips_elf_acom_section.name == NULL)
6915 {
6916 /* Initialize the acommon section. */
6917 mips_elf_acom_section.name = ".acommon";
6918 mips_elf_acom_section.flags = SEC_ALLOC;
6919 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6920 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6921 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6922 mips_elf_acom_symbol.name = ".acommon";
6923 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6924 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6925 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6926 }
6927 asym->section = &mips_elf_acom_section;
6928 break;
6929
6930 case SHN_COMMON:
6931 /* Common symbols less than the GP size are automatically
6932 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6933 if (asym->value > elf_gp_size (abfd)
b59eed79 6934 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6935 || IRIX_COMPAT (abfd) == ict_irix6)
6936 break;
6937 /* Fall through. */
6938 case SHN_MIPS_SCOMMON:
6939 if (mips_elf_scom_section.name == NULL)
6940 {
6941 /* Initialize the small common section. */
6942 mips_elf_scom_section.name = ".scommon";
6943 mips_elf_scom_section.flags = SEC_IS_COMMON;
6944 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6945 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6946 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6947 mips_elf_scom_symbol.name = ".scommon";
6948 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6949 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6950 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6951 }
6952 asym->section = &mips_elf_scom_section;
6953 asym->value = elfsym->internal_elf_sym.st_size;
6954 break;
6955
6956 case SHN_MIPS_SUNDEFINED:
6957 asym->section = bfd_und_section_ptr;
6958 break;
6959
b49e97c9 6960 case SHN_MIPS_TEXT:
00b4930b
TS
6961 {
6962 asection *section = bfd_get_section_by_name (abfd, ".text");
6963
00b4930b
TS
6964 if (section != NULL)
6965 {
6966 asym->section = section;
6967 /* MIPS_TEXT is a bit special, the address is not an offset
de194d85 6968 to the base of the .text section. So subtract the section
00b4930b
TS
6969 base address to make it an offset. */
6970 asym->value -= section->vma;
6971 }
6972 }
b49e97c9
TS
6973 break;
6974
6975 case SHN_MIPS_DATA:
00b4930b
TS
6976 {
6977 asection *section = bfd_get_section_by_name (abfd, ".data");
6978
00b4930b
TS
6979 if (section != NULL)
6980 {
6981 asym->section = section;
6982 /* MIPS_DATA is a bit special, the address is not an offset
de194d85 6983 to the base of the .data section. So subtract the section
00b4930b
TS
6984 base address to make it an offset. */
6985 asym->value -= section->vma;
6986 }
6987 }
b49e97c9 6988 break;
b49e97c9 6989 }
738e5348 6990
df58fc94
RS
6991 /* If this is an odd-valued function symbol, assume it's a MIPS16
6992 or microMIPS one. */
738e5348
RS
6993 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6994 && (asym->value & 1) != 0)
6995 {
6996 asym->value--;
e8faf7d1 6997 if (MICROMIPS_P (abfd))
df58fc94
RS
6998 elfsym->internal_elf_sym.st_other
6999 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7000 else
7001 elfsym->internal_elf_sym.st_other
7002 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 7003 }
b49e97c9
TS
7004}
7005\f
8c946ed5
RS
7006/* Implement elf_backend_eh_frame_address_size. This differs from
7007 the default in the way it handles EABI64.
7008
7009 EABI64 was originally specified as an LP64 ABI, and that is what
7010 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7011 historically accepted the combination of -mabi=eabi and -mlong32,
7012 and this ILP32 variation has become semi-official over time.
7013 Both forms use elf32 and have pointer-sized FDE addresses.
7014
7015 If an EABI object was generated by GCC 4.0 or above, it will have
7016 an empty .gcc_compiled_longXX section, where XX is the size of longs
7017 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7018 have no special marking to distinguish them from LP64 objects.
7019
7020 We don't want users of the official LP64 ABI to be punished for the
7021 existence of the ILP32 variant, but at the same time, we don't want
7022 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7023 We therefore take the following approach:
7024
7025 - If ABFD contains a .gcc_compiled_longXX section, use it to
07d6d2b8 7026 determine the pointer size.
8c946ed5
RS
7027
7028 - Otherwise check the type of the first relocation. Assume that
07d6d2b8 7029 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
8c946ed5
RS
7030
7031 - Otherwise punt.
7032
7033 The second check is enough to detect LP64 objects generated by pre-4.0
7034 compilers because, in the kind of output generated by those compilers,
7035 the first relocation will be associated with either a CIE personality
7036 routine or an FDE start address. Furthermore, the compilers never
7037 used a special (non-pointer) encoding for this ABI.
7038
7039 Checking the relocation type should also be safe because there is no
7040 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7041 did so. */
7042
7043unsigned int
76c20d54 7044_bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
8c946ed5
RS
7045{
7046 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7047 return 8;
7048 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7049 {
7050 bfd_boolean long32_p, long64_p;
7051
7052 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7053 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7054 if (long32_p && long64_p)
7055 return 0;
7056 if (long32_p)
7057 return 4;
7058 if (long64_p)
7059 return 8;
7060
7061 if (sec->reloc_count > 0
7062 && elf_section_data (sec)->relocs != NULL
7063 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7064 == R_MIPS_64))
7065 return 8;
7066
7067 return 0;
7068 }
7069 return 4;
7070}
7071\f
174fd7f9
RS
7072/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7073 relocations against two unnamed section symbols to resolve to the
7074 same address. For example, if we have code like:
7075
7076 lw $4,%got_disp(.data)($gp)
7077 lw $25,%got_disp(.text)($gp)
7078 jalr $25
7079
7080 then the linker will resolve both relocations to .data and the program
7081 will jump there rather than to .text.
7082
7083 We can work around this problem by giving names to local section symbols.
7084 This is also what the MIPSpro tools do. */
7085
7086bfd_boolean
7087_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7088{
7089 return SGI_COMPAT (abfd);
7090}
7091\f
b49e97c9
TS
7092/* Work over a section just before writing it out. This routine is
7093 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7094 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7095 a better way. */
7096
b34976b6 7097bfd_boolean
9719ad41 7098_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7099{
7100 if (hdr->sh_type == SHT_MIPS_REGINFO
7101 && hdr->sh_size > 0)
7102 {
7103 bfd_byte buf[4];
7104
b49e97c9
TS
7105 BFD_ASSERT (hdr->contents == NULL);
7106
2d6dda71
MR
7107 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7108 {
7109 _bfd_error_handler
2c1c9679 7110 (_("%pB: incorrect `.reginfo' section size; "
2dcf00ce
AM
7111 "expected %" PRIu64 ", got %" PRIu64),
7112 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7113 (uint64_t) hdr->sh_size);
2d6dda71
MR
7114 bfd_set_error (bfd_error_bad_value);
7115 return FALSE;
7116 }
7117
b49e97c9
TS
7118 if (bfd_seek (abfd,
7119 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7120 SEEK_SET) != 0)
b34976b6 7121 return FALSE;
b49e97c9 7122 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7123 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7124 return FALSE;
b49e97c9
TS
7125 }
7126
7127 if (hdr->sh_type == SHT_MIPS_OPTIONS
7128 && hdr->bfd_section != NULL
f0abc2a1
AM
7129 && mips_elf_section_data (hdr->bfd_section) != NULL
7130 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7131 {
7132 bfd_byte *contents, *l, *lend;
7133
f0abc2a1
AM
7134 /* We stored the section contents in the tdata field in the
7135 set_section_contents routine. We save the section contents
7136 so that we don't have to read them again.
b49e97c9
TS
7137 At this point we know that elf_gp is set, so we can look
7138 through the section contents to see if there is an
7139 ODK_REGINFO structure. */
7140
f0abc2a1 7141 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7142 l = contents;
7143 lend = contents + hdr->sh_size;
7144 while (l + sizeof (Elf_External_Options) <= lend)
7145 {
7146 Elf_Internal_Options intopt;
7147
7148 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7149 &intopt);
1bc8074d
MR
7150 if (intopt.size < sizeof (Elf_External_Options))
7151 {
4eca0228 7152 _bfd_error_handler
695344c0 7153 /* xgettext:c-format */
2c1c9679 7154 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7155 " its header"),
1bc8074d
MR
7156 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7157 break;
7158 }
b49e97c9
TS
7159 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7160 {
7161 bfd_byte buf[8];
7162
7163 if (bfd_seek (abfd,
7164 (hdr->sh_offset
7165 + (l - contents)
7166 + sizeof (Elf_External_Options)
7167 + (sizeof (Elf64_External_RegInfo) - 8)),
7168 SEEK_SET) != 0)
b34976b6 7169 return FALSE;
b49e97c9 7170 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7171 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7172 return FALSE;
b49e97c9
TS
7173 }
7174 else if (intopt.kind == ODK_REGINFO)
7175 {
7176 bfd_byte buf[4];
7177
7178 if (bfd_seek (abfd,
7179 (hdr->sh_offset
7180 + (l - contents)
7181 + sizeof (Elf_External_Options)
7182 + (sizeof (Elf32_External_RegInfo) - 4)),
7183 SEEK_SET) != 0)
b34976b6 7184 return FALSE;
b49e97c9 7185 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7186 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7187 return FALSE;
b49e97c9
TS
7188 }
7189 l += intopt.size;
7190 }
7191 }
7192
7193 if (hdr->bfd_section != NULL)
7194 {
7195 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7196
2d0f9ad9
JM
7197 /* .sbss is not handled specially here because the GNU/Linux
7198 prelinker can convert .sbss from NOBITS to PROGBITS and
7199 changing it back to NOBITS breaks the binary. The entry in
7200 _bfd_mips_elf_special_sections will ensure the correct flags
7201 are set on .sbss if BFD creates it without reading it from an
7202 input file, and without special handling here the flags set
7203 on it in an input file will be followed. */
b49e97c9
TS
7204 if (strcmp (name, ".sdata") == 0
7205 || strcmp (name, ".lit8") == 0
7206 || strcmp (name, ".lit4") == 0)
fd6f9d17 7207 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7208 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7209 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7210 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7211 hdr->sh_flags = 0;
b49e97c9
TS
7212 else if (strcmp (name, ".rtproc") == 0)
7213 {
7214 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7215 {
7216 unsigned int adjust;
7217
7218 adjust = hdr->sh_size % hdr->sh_addralign;
7219 if (adjust != 0)
7220 hdr->sh_size += hdr->sh_addralign - adjust;
7221 }
7222 }
7223 }
7224
b34976b6 7225 return TRUE;
b49e97c9
TS
7226}
7227
7228/* Handle a MIPS specific section when reading an object file. This
7229 is called when elfcode.h finds a section with an unknown type.
7230 This routine supports both the 32-bit and 64-bit ELF ABI.
7231
7232 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7233 how to. */
7234
b34976b6 7235bfd_boolean
6dc132d9
L
7236_bfd_mips_elf_section_from_shdr (bfd *abfd,
7237 Elf_Internal_Shdr *hdr,
7238 const char *name,
7239 int shindex)
b49e97c9
TS
7240{
7241 flagword flags = 0;
7242
7243 /* There ought to be a place to keep ELF backend specific flags, but
7244 at the moment there isn't one. We just keep track of the
7245 sections by their name, instead. Fortunately, the ABI gives
7246 suggested names for all the MIPS specific sections, so we will
7247 probably get away with this. */
7248 switch (hdr->sh_type)
7249 {
7250 case SHT_MIPS_LIBLIST:
7251 if (strcmp (name, ".liblist") != 0)
b34976b6 7252 return FALSE;
b49e97c9
TS
7253 break;
7254 case SHT_MIPS_MSYM:
7255 if (strcmp (name, ".msym") != 0)
b34976b6 7256 return FALSE;
b49e97c9
TS
7257 break;
7258 case SHT_MIPS_CONFLICT:
7259 if (strcmp (name, ".conflict") != 0)
b34976b6 7260 return FALSE;
b49e97c9
TS
7261 break;
7262 case SHT_MIPS_GPTAB:
0112cd26 7263 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7264 return FALSE;
b49e97c9
TS
7265 break;
7266 case SHT_MIPS_UCODE:
7267 if (strcmp (name, ".ucode") != 0)
b34976b6 7268 return FALSE;
b49e97c9
TS
7269 break;
7270 case SHT_MIPS_DEBUG:
7271 if (strcmp (name, ".mdebug") != 0)
b34976b6 7272 return FALSE;
b49e97c9
TS
7273 flags = SEC_DEBUGGING;
7274 break;
7275 case SHT_MIPS_REGINFO:
7276 if (strcmp (name, ".reginfo") != 0
7277 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7278 return FALSE;
b49e97c9
TS
7279 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7280 break;
7281 case SHT_MIPS_IFACE:
7282 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7283 return FALSE;
b49e97c9
TS
7284 break;
7285 case SHT_MIPS_CONTENT:
0112cd26 7286 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7287 return FALSE;
b49e97c9
TS
7288 break;
7289 case SHT_MIPS_OPTIONS:
cc2e31b9 7290 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7291 return FALSE;
b49e97c9 7292 break;
351cdf24
MF
7293 case SHT_MIPS_ABIFLAGS:
7294 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7295 return FALSE;
7296 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7297 break;
b49e97c9 7298 case SHT_MIPS_DWARF:
1b315056 7299 if (! CONST_STRNEQ (name, ".debug_")
07d6d2b8 7300 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7301 return FALSE;
b49e97c9
TS
7302 break;
7303 case SHT_MIPS_SYMBOL_LIB:
7304 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7305 return FALSE;
b49e97c9
TS
7306 break;
7307 case SHT_MIPS_EVENTS:
0112cd26
NC
7308 if (! CONST_STRNEQ (name, ".MIPS.events")
7309 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7310 return FALSE;
b49e97c9
TS
7311 break;
7312 default:
cc2e31b9 7313 break;
b49e97c9
TS
7314 }
7315
6dc132d9 7316 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7317 return FALSE;
b49e97c9
TS
7318
7319 if (flags)
7320 {
7321 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7322 (bfd_get_section_flags (abfd,
7323 hdr->bfd_section)
7324 | flags)))
b34976b6 7325 return FALSE;
b49e97c9
TS
7326 }
7327
351cdf24
MF
7328 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7329 {
7330 Elf_External_ABIFlags_v0 ext;
7331
7332 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7333 &ext, 0, sizeof ext))
7334 return FALSE;
7335 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7336 &mips_elf_tdata (abfd)->abiflags);
7337 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7338 return FALSE;
7339 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7340 }
7341
b49e97c9
TS
7342 /* FIXME: We should record sh_info for a .gptab section. */
7343
7344 /* For a .reginfo section, set the gp value in the tdata information
7345 from the contents of this section. We need the gp value while
7346 processing relocs, so we just get it now. The .reginfo section
7347 is not used in the 64-bit MIPS ELF ABI. */
7348 if (hdr->sh_type == SHT_MIPS_REGINFO)
7349 {
7350 Elf32_External_RegInfo ext;
7351 Elf32_RegInfo s;
7352
9719ad41
RS
7353 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7354 &ext, 0, sizeof ext))
b34976b6 7355 return FALSE;
b49e97c9
TS
7356 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7357 elf_gp (abfd) = s.ri_gp_value;
7358 }
7359
7360 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7361 set the gp value based on what we find. We may see both
7362 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7363 they should agree. */
7364 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7365 {
7366 bfd_byte *contents, *l, *lend;
7367
9719ad41 7368 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7369 if (contents == NULL)
b34976b6 7370 return FALSE;
b49e97c9 7371 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7372 0, hdr->sh_size))
b49e97c9
TS
7373 {
7374 free (contents);
b34976b6 7375 return FALSE;
b49e97c9
TS
7376 }
7377 l = contents;
7378 lend = contents + hdr->sh_size;
7379 while (l + sizeof (Elf_External_Options) <= lend)
7380 {
7381 Elf_Internal_Options intopt;
7382
7383 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7384 &intopt);
1bc8074d
MR
7385 if (intopt.size < sizeof (Elf_External_Options))
7386 {
4eca0228 7387 _bfd_error_handler
695344c0 7388 /* xgettext:c-format */
2c1c9679 7389 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7390 " its header"),
1bc8074d
MR
7391 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7392 break;
7393 }
b49e97c9
TS
7394 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7395 {
7396 Elf64_Internal_RegInfo intreg;
7397
7398 bfd_mips_elf64_swap_reginfo_in
7399 (abfd,
7400 ((Elf64_External_RegInfo *)
7401 (l + sizeof (Elf_External_Options))),
7402 &intreg);
7403 elf_gp (abfd) = intreg.ri_gp_value;
7404 }
7405 else if (intopt.kind == ODK_REGINFO)
7406 {
7407 Elf32_RegInfo intreg;
7408
7409 bfd_mips_elf32_swap_reginfo_in
7410 (abfd,
7411 ((Elf32_External_RegInfo *)
7412 (l + sizeof (Elf_External_Options))),
7413 &intreg);
7414 elf_gp (abfd) = intreg.ri_gp_value;
7415 }
7416 l += intopt.size;
7417 }
7418 free (contents);
7419 }
7420
b34976b6 7421 return TRUE;
b49e97c9
TS
7422}
7423
7424/* Set the correct type for a MIPS ELF section. We do this by the
7425 section name, which is a hack, but ought to work. This routine is
7426 used by both the 32-bit and the 64-bit ABI. */
7427
b34976b6 7428bfd_boolean
9719ad41 7429_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7430{
0414f35b 7431 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7432
7433 if (strcmp (name, ".liblist") == 0)
7434 {
7435 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7436 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7437 /* The sh_link field is set in final_write_processing. */
7438 }
7439 else if (strcmp (name, ".conflict") == 0)
7440 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7441 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7442 {
7443 hdr->sh_type = SHT_MIPS_GPTAB;
7444 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7445 /* The sh_info field is set in final_write_processing. */
7446 }
7447 else if (strcmp (name, ".ucode") == 0)
7448 hdr->sh_type = SHT_MIPS_UCODE;
7449 else if (strcmp (name, ".mdebug") == 0)
7450 {
7451 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7452 /* In a shared object on IRIX 5.3, the .mdebug section has an
07d6d2b8 7453 entsize of 0. FIXME: Does this matter? */
b49e97c9
TS
7454 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7455 hdr->sh_entsize = 0;
7456 else
7457 hdr->sh_entsize = 1;
7458 }
7459 else if (strcmp (name, ".reginfo") == 0)
7460 {
7461 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7462 /* In a shared object on IRIX 5.3, the .reginfo section has an
07d6d2b8 7463 entsize of 0x18. FIXME: Does this matter? */
b49e97c9
TS
7464 if (SGI_COMPAT (abfd))
7465 {
7466 if ((abfd->flags & DYNAMIC) != 0)
7467 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7468 else
7469 hdr->sh_entsize = 1;
7470 }
7471 else
7472 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7473 }
7474 else if (SGI_COMPAT (abfd)
7475 && (strcmp (name, ".hash") == 0
7476 || strcmp (name, ".dynamic") == 0
7477 || strcmp (name, ".dynstr") == 0))
7478 {
7479 if (SGI_COMPAT (abfd))
7480 hdr->sh_entsize = 0;
7481#if 0
8dc1a139 7482 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7483 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7484#endif
7485 }
7486 else if (strcmp (name, ".got") == 0
7487 || strcmp (name, ".srdata") == 0
7488 || strcmp (name, ".sdata") == 0
7489 || strcmp (name, ".sbss") == 0
7490 || strcmp (name, ".lit4") == 0
7491 || strcmp (name, ".lit8") == 0)
7492 hdr->sh_flags |= SHF_MIPS_GPREL;
7493 else if (strcmp (name, ".MIPS.interfaces") == 0)
7494 {
7495 hdr->sh_type = SHT_MIPS_IFACE;
7496 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7497 }
0112cd26 7498 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7499 {
7500 hdr->sh_type = SHT_MIPS_CONTENT;
7501 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7502 /* The sh_info field is set in final_write_processing. */
7503 }
cc2e31b9 7504 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7505 {
7506 hdr->sh_type = SHT_MIPS_OPTIONS;
7507 hdr->sh_entsize = 1;
7508 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7509 }
351cdf24
MF
7510 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7511 {
7512 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7513 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7514 }
1b315056 7515 else if (CONST_STRNEQ (name, ".debug_")
07d6d2b8 7516 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7517 {
7518 hdr->sh_type = SHT_MIPS_DWARF;
7519
7520 /* Irix facilities such as libexc expect a single .debug_frame
7521 per executable, the system ones have NOSTRIP set and the linker
7522 doesn't merge sections with different flags so ... */
7523 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7524 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7525 }
b49e97c9
TS
7526 else if (strcmp (name, ".MIPS.symlib") == 0)
7527 {
7528 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7529 /* The sh_link and sh_info fields are set in
07d6d2b8 7530 final_write_processing. */
b49e97c9 7531 }
0112cd26
NC
7532 else if (CONST_STRNEQ (name, ".MIPS.events")
7533 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7534 {
7535 hdr->sh_type = SHT_MIPS_EVENTS;
7536 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7537 /* The sh_link field is set in final_write_processing. */
7538 }
7539 else if (strcmp (name, ".msym") == 0)
7540 {
7541 hdr->sh_type = SHT_MIPS_MSYM;
7542 hdr->sh_flags |= SHF_ALLOC;
7543 hdr->sh_entsize = 8;
7544 }
7545
7a79a000
TS
7546 /* The generic elf_fake_sections will set up REL_HDR using the default
7547 kind of relocations. We used to set up a second header for the
7548 non-default kind of relocations here, but only NewABI would use
7549 these, and the IRIX ld doesn't like resulting empty RELA sections.
7550 Thus we create those header only on demand now. */
b49e97c9 7551
b34976b6 7552 return TRUE;
b49e97c9
TS
7553}
7554
7555/* Given a BFD section, try to locate the corresponding ELF section
7556 index. This is used by both the 32-bit and the 64-bit ABI.
7557 Actually, it's not clear to me that the 64-bit ABI supports these,
7558 but for non-PIC objects we will certainly want support for at least
7559 the .scommon section. */
7560
b34976b6 7561bfd_boolean
9719ad41
RS
7562_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7563 asection *sec, int *retval)
b49e97c9
TS
7564{
7565 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7566 {
7567 *retval = SHN_MIPS_SCOMMON;
b34976b6 7568 return TRUE;
b49e97c9
TS
7569 }
7570 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7571 {
7572 *retval = SHN_MIPS_ACOMMON;
b34976b6 7573 return TRUE;
b49e97c9 7574 }
b34976b6 7575 return FALSE;
b49e97c9
TS
7576}
7577\f
7578/* Hook called by the linker routine which adds symbols from an object
7579 file. We must handle the special MIPS section numbers here. */
7580
b34976b6 7581bfd_boolean
9719ad41 7582_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7583 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7584 flagword *flagsp ATTRIBUTE_UNUSED,
7585 asection **secp, bfd_vma *valp)
b49e97c9
TS
7586{
7587 if (SGI_COMPAT (abfd)
7588 && (abfd->flags & DYNAMIC) != 0
7589 && strcmp (*namep, "_rld_new_interface") == 0)
7590 {
8dc1a139 7591 /* Skip IRIX5 rld entry name. */
b49e97c9 7592 *namep = NULL;
b34976b6 7593 return TRUE;
b49e97c9
TS
7594 }
7595
eedecc07
DD
7596 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7597 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7598 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7599 a magic symbol resolved by the linker, we ignore this bogus definition
7600 of _gp_disp. New ABI objects do not suffer from this problem so this
7601 is not done for them. */
7602 if (!NEWABI_P(abfd)
7603 && (sym->st_shndx == SHN_ABS)
7604 && (strcmp (*namep, "_gp_disp") == 0))
7605 {
7606 *namep = NULL;
7607 return TRUE;
7608 }
7609
b49e97c9
TS
7610 switch (sym->st_shndx)
7611 {
7612 case SHN_COMMON:
7613 /* Common symbols less than the GP size are automatically
7614 treated as SHN_MIPS_SCOMMON symbols. */
7615 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7616 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7617 || IRIX_COMPAT (abfd) == ict_irix6)
7618 break;
7619 /* Fall through. */
7620 case SHN_MIPS_SCOMMON:
7621 *secp = bfd_make_section_old_way (abfd, ".scommon");
7622 (*secp)->flags |= SEC_IS_COMMON;
7623 *valp = sym->st_size;
7624 break;
7625
7626 case SHN_MIPS_TEXT:
7627 /* This section is used in a shared object. */
698600e4 7628 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7629 {
7630 asymbol *elf_text_symbol;
7631 asection *elf_text_section;
7632 bfd_size_type amt = sizeof (asection);
7633
7634 elf_text_section = bfd_zalloc (abfd, amt);
7635 if (elf_text_section == NULL)
b34976b6 7636 return FALSE;
b49e97c9
TS
7637
7638 amt = sizeof (asymbol);
7639 elf_text_symbol = bfd_zalloc (abfd, amt);
7640 if (elf_text_symbol == NULL)
b34976b6 7641 return FALSE;
b49e97c9
TS
7642
7643 /* Initialize the section. */
7644
698600e4
AM
7645 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7646 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7647
7648 elf_text_section->symbol = elf_text_symbol;
698600e4 7649 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7650
7651 elf_text_section->name = ".text";
7652 elf_text_section->flags = SEC_NO_FLAGS;
7653 elf_text_section->output_section = NULL;
7654 elf_text_section->owner = abfd;
7655 elf_text_symbol->name = ".text";
7656 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7657 elf_text_symbol->section = elf_text_section;
7658 }
7659 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7660 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7661 so I took it out. */
698600e4 7662 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7663 break;
7664
7665 case SHN_MIPS_ACOMMON:
7666 /* Fall through. XXX Can we treat this as allocated data? */
7667 case SHN_MIPS_DATA:
7668 /* This section is used in a shared object. */
698600e4 7669 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7670 {
7671 asymbol *elf_data_symbol;
7672 asection *elf_data_section;
7673 bfd_size_type amt = sizeof (asection);
7674
7675 elf_data_section = bfd_zalloc (abfd, amt);
7676 if (elf_data_section == NULL)
b34976b6 7677 return FALSE;
b49e97c9
TS
7678
7679 amt = sizeof (asymbol);
7680 elf_data_symbol = bfd_zalloc (abfd, amt);
7681 if (elf_data_symbol == NULL)
b34976b6 7682 return FALSE;
b49e97c9
TS
7683
7684 /* Initialize the section. */
7685
698600e4
AM
7686 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7687 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7688
7689 elf_data_section->symbol = elf_data_symbol;
698600e4 7690 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7691
7692 elf_data_section->name = ".data";
7693 elf_data_section->flags = SEC_NO_FLAGS;
7694 elf_data_section->output_section = NULL;
7695 elf_data_section->owner = abfd;
7696 elf_data_symbol->name = ".data";
7697 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7698 elf_data_symbol->section = elf_data_section;
7699 }
7700 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7701 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7702 so I took it out. */
698600e4 7703 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7704 break;
7705
7706 case SHN_MIPS_SUNDEFINED:
7707 *secp = bfd_und_section_ptr;
7708 break;
7709 }
7710
7711 if (SGI_COMPAT (abfd)
0e1862bb 7712 && ! bfd_link_pic (info)
f13a99db 7713 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7714 && strcmp (*namep, "__rld_obj_head") == 0)
7715 {
7716 struct elf_link_hash_entry *h;
14a793b2 7717 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7718
7719 /* Mark __rld_obj_head as dynamic. */
14a793b2 7720 bh = NULL;
b49e97c9 7721 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7722 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7723 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7724 return FALSE;
14a793b2
AM
7725
7726 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7727 h->non_elf = 0;
7728 h->def_regular = 1;
b49e97c9
TS
7729 h->type = STT_OBJECT;
7730
c152c796 7731 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7732 return FALSE;
b49e97c9 7733
b34976b6 7734 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7735 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7736 }
7737
7738 /* If this is a mips16 text symbol, add 1 to the value to make it
7739 odd. This will cause something like .word SYM to come up with
7740 the right value when it is loaded into the PC. */
df58fc94 7741 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7742 ++*valp;
7743
b34976b6 7744 return TRUE;
b49e97c9
TS
7745}
7746
7747/* This hook function is called before the linker writes out a global
7748 symbol. We mark symbols as small common if appropriate. This is
7749 also where we undo the increment of the value for a mips16 symbol. */
7750
6e0b88f1 7751int
9719ad41
RS
7752_bfd_mips_elf_link_output_symbol_hook
7753 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7754 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7755 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7756{
7757 /* If we see a common symbol, which implies a relocatable link, then
7758 if a symbol was small common in an input file, mark it as small
7759 common in the output file. */
7760 if (sym->st_shndx == SHN_COMMON
7761 && strcmp (input_sec->name, ".scommon") == 0)
7762 sym->st_shndx = SHN_MIPS_SCOMMON;
7763
df58fc94 7764 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7765 sym->st_value &= ~1;
b49e97c9 7766
6e0b88f1 7767 return 1;
b49e97c9
TS
7768}
7769\f
7770/* Functions for the dynamic linker. */
7771
7772/* Create dynamic sections when linking against a dynamic object. */
7773
b34976b6 7774bfd_boolean
9719ad41 7775_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7776{
7777 struct elf_link_hash_entry *h;
14a793b2 7778 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7779 flagword flags;
7780 register asection *s;
7781 const char * const *namep;
0a44bf69 7782 struct mips_elf_link_hash_table *htab;
b49e97c9 7783
0a44bf69 7784 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7785 BFD_ASSERT (htab != NULL);
7786
b49e97c9
TS
7787 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7788 | SEC_LINKER_CREATED | SEC_READONLY);
7789
0a44bf69
RS
7790 /* The psABI requires a read-only .dynamic section, but the VxWorks
7791 EABI doesn't. */
7792 if (!htab->is_vxworks)
b49e97c9 7793 {
3d4d4302 7794 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7795 if (s != NULL)
7796 {
7797 if (! bfd_set_section_flags (abfd, s, flags))
7798 return FALSE;
7799 }
b49e97c9
TS
7800 }
7801
7802 /* We need to create .got section. */
23cc69b6 7803 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7804 return FALSE;
7805
0a44bf69 7806 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7807 return FALSE;
b49e97c9 7808
b49e97c9 7809 /* Create .stub section. */
3d4d4302
AM
7810 s = bfd_make_section_anyway_with_flags (abfd,
7811 MIPS_ELF_STUB_SECTION_NAME (abfd),
7812 flags | SEC_CODE);
4e41d0d7
RS
7813 if (s == NULL
7814 || ! bfd_set_section_alignment (abfd, s,
7815 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7816 return FALSE;
7817 htab->sstubs = s;
b49e97c9 7818
e6aea42d 7819 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7820 && bfd_link_executable (info)
3d4d4302 7821 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7822 {
3d4d4302
AM
7823 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7824 flags &~ (flagword) SEC_READONLY);
b49e97c9 7825 if (s == NULL
b49e97c9
TS
7826 || ! bfd_set_section_alignment (abfd, s,
7827 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7828 return FALSE;
b49e97c9
TS
7829 }
7830
7831 /* On IRIX5, we adjust add some additional symbols and change the
7832 alignments of several sections. There is no ABI documentation
7833 indicating that this is necessary on IRIX6, nor any evidence that
7834 the linker takes such action. */
7835 if (IRIX_COMPAT (abfd) == ict_irix5)
7836 {
7837 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7838 {
14a793b2 7839 bh = NULL;
b49e97c9 7840 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7841 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7842 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7843 return FALSE;
14a793b2
AM
7844
7845 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7846 h->non_elf = 0;
7847 h->def_regular = 1;
b49e97c9
TS
7848 h->type = STT_SECTION;
7849
c152c796 7850 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7851 return FALSE;
b49e97c9
TS
7852 }
7853
7854 /* We need to create a .compact_rel section. */
7855 if (SGI_COMPAT (abfd))
7856 {
7857 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7858 return FALSE;
b49e97c9
TS
7859 }
7860
44c410de 7861 /* Change alignments of some sections. */
3d4d4302 7862 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7863 if (s != NULL)
a253d456
NC
7864 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7865
3d4d4302 7866 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7867 if (s != NULL)
a253d456
NC
7868 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7869
3d4d4302 7870 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7871 if (s != NULL)
a253d456
NC
7872 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7873
3d4d4302 7874 /* ??? */
b49e97c9
TS
7875 s = bfd_get_section_by_name (abfd, ".reginfo");
7876 if (s != NULL)
a253d456
NC
7877 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7878
3d4d4302 7879 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7880 if (s != NULL)
a253d456 7881 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7882 }
7883
0e1862bb 7884 if (bfd_link_executable (info))
b49e97c9 7885 {
14a793b2
AM
7886 const char *name;
7887
7888 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7889 bh = NULL;
7890 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7891 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7892 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7893 return FALSE;
14a793b2
AM
7894
7895 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7896 h->non_elf = 0;
7897 h->def_regular = 1;
b49e97c9
TS
7898 h->type = STT_SECTION;
7899
c152c796 7900 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7901 return FALSE;
b49e97c9
TS
7902
7903 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7904 {
7905 /* __rld_map is a four byte word located in the .data section
7906 and is filled in by the rtld to contain a pointer to
7907 the _r_debug structure. Its symbol value will be set in
7908 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7909 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7910 BFD_ASSERT (s != NULL);
14a793b2 7911
0abfb97a
L
7912 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7913 bh = NULL;
7914 if (!(_bfd_generic_link_add_one_symbol
7915 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7916 get_elf_backend_data (abfd)->collect, &bh)))
7917 return FALSE;
b49e97c9 7918
0abfb97a
L
7919 h = (struct elf_link_hash_entry *) bh;
7920 h->non_elf = 0;
7921 h->def_regular = 1;
7922 h->type = STT_OBJECT;
7923
7924 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7925 return FALSE;
b4082c70 7926 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7927 }
7928 }
7929
861fb55a 7930 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7931 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7932 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7933 return FALSE;
7934
1bbce132
MR
7935 /* Do the usual VxWorks handling. */
7936 if (htab->is_vxworks
7937 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7938 return FALSE;
0a44bf69 7939
b34976b6 7940 return TRUE;
b49e97c9
TS
7941}
7942\f
c224138d
RS
7943/* Return true if relocation REL against section SEC is a REL rather than
7944 RELA relocation. RELOCS is the first relocation in the section and
7945 ABFD is the bfd that contains SEC. */
7946
7947static bfd_boolean
7948mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7949 const Elf_Internal_Rela *relocs,
7950 const Elf_Internal_Rela *rel)
7951{
7952 Elf_Internal_Shdr *rel_hdr;
7953 const struct elf_backend_data *bed;
7954
d4730f92
BS
7955 /* To determine which flavor of relocation this is, we depend on the
7956 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7957 rel_hdr = elf_section_data (sec)->rel.hdr;
7958 if (rel_hdr == NULL)
7959 return FALSE;
c224138d 7960 bed = get_elf_backend_data (abfd);
d4730f92
BS
7961 return ((size_t) (rel - relocs)
7962 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7963}
7964
7965/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7966 HOWTO is the relocation's howto and CONTENTS points to the contents
7967 of the section that REL is against. */
7968
7969static bfd_vma
7970mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7971 reloc_howto_type *howto, bfd_byte *contents)
7972{
7973 bfd_byte *location;
7974 unsigned int r_type;
7975 bfd_vma addend;
17c6c9d9 7976 bfd_vma bytes;
c224138d
RS
7977
7978 r_type = ELF_R_TYPE (abfd, rel->r_info);
7979 location = contents + rel->r_offset;
7980
7981 /* Get the addend, which is stored in the input file. */
df58fc94 7982 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 7983 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7984 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 7985
17c6c9d9
MR
7986 addend = bytes & howto->src_mask;
7987
7988 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7989 accordingly. */
7990 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7991 addend <<= 1;
7992
7993 return addend;
c224138d
RS
7994}
7995
7996/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7997 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7998 and update *ADDEND with the final addend. Return true on success
7999 or false if the LO16 could not be found. RELEND is the exclusive
8000 upper bound on the relocations for REL's section. */
8001
8002static bfd_boolean
8003mips_elf_add_lo16_rel_addend (bfd *abfd,
8004 const Elf_Internal_Rela *rel,
8005 const Elf_Internal_Rela *relend,
8006 bfd_byte *contents, bfd_vma *addend)
8007{
8008 unsigned int r_type, lo16_type;
8009 const Elf_Internal_Rela *lo16_relocation;
8010 reloc_howto_type *lo16_howto;
8011 bfd_vma l;
8012
8013 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 8014 if (mips16_reloc_p (r_type))
c224138d 8015 lo16_type = R_MIPS16_LO16;
df58fc94
RS
8016 else if (micromips_reloc_p (r_type))
8017 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
8018 else if (r_type == R_MIPS_PCHI16)
8019 lo16_type = R_MIPS_PCLO16;
c224138d
RS
8020 else
8021 lo16_type = R_MIPS_LO16;
8022
8023 /* The combined value is the sum of the HI16 addend, left-shifted by
8024 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8025 code does a `lui' of the HI16 value, and then an `addiu' of the
8026 LO16 value.)
8027
8028 Scan ahead to find a matching LO16 relocation.
8029
8030 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8031 be immediately following. However, for the IRIX6 ABI, the next
8032 relocation may be a composed relocation consisting of several
8033 relocations for the same address. In that case, the R_MIPS_LO16
8034 relocation may occur as one of these. We permit a similar
8035 extension in general, as that is useful for GCC.
8036
8037 In some cases GCC dead code elimination removes the LO16 but keeps
8038 the corresponding HI16. This is strictly speaking a violation of
8039 the ABI but not immediately harmful. */
8040 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8041 if (lo16_relocation == NULL)
8042 return FALSE;
8043
8044 /* Obtain the addend kept there. */
8045 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8046 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8047
8048 l <<= lo16_howto->rightshift;
8049 l = _bfd_mips_elf_sign_extend (l, 16);
8050
8051 *addend <<= 16;
8052 *addend += l;
8053 return TRUE;
8054}
8055
8056/* Try to read the contents of section SEC in bfd ABFD. Return true and
8057 store the contents in *CONTENTS on success. Assume that *CONTENTS
8058 already holds the contents if it is nonull on entry. */
8059
8060static bfd_boolean
8061mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8062{
8063 if (*contents)
8064 return TRUE;
8065
8066 /* Get cached copy if it exists. */
8067 if (elf_section_data (sec)->this_hdr.contents != NULL)
8068 {
8069 *contents = elf_section_data (sec)->this_hdr.contents;
8070 return TRUE;
8071 }
8072
8073 return bfd_malloc_and_get_section (abfd, sec, contents);
8074}
8075
1bbce132
MR
8076/* Make a new PLT record to keep internal data. */
8077
8078static struct plt_entry *
8079mips_elf_make_plt_record (bfd *abfd)
8080{
8081 struct plt_entry *entry;
8082
8083 entry = bfd_zalloc (abfd, sizeof (*entry));
8084 if (entry == NULL)
8085 return NULL;
8086
8087 entry->stub_offset = MINUS_ONE;
8088 entry->mips_offset = MINUS_ONE;
8089 entry->comp_offset = MINUS_ONE;
8090 entry->gotplt_index = MINUS_ONE;
8091 return entry;
8092}
8093
b49e97c9 8094/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8095 allocate space in the global offset table and record the need for
8096 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8097
b34976b6 8098bfd_boolean
9719ad41
RS
8099_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8100 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8101{
8102 const char *name;
8103 bfd *dynobj;
8104 Elf_Internal_Shdr *symtab_hdr;
8105 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8106 size_t extsymoff;
8107 const Elf_Internal_Rela *rel;
8108 const Elf_Internal_Rela *rel_end;
b49e97c9 8109 asection *sreloc;
9c5bfbb7 8110 const struct elf_backend_data *bed;
0a44bf69 8111 struct mips_elf_link_hash_table *htab;
c224138d
RS
8112 bfd_byte *contents;
8113 bfd_vma addend;
8114 reloc_howto_type *howto;
b49e97c9 8115
0e1862bb 8116 if (bfd_link_relocatable (info))
b34976b6 8117 return TRUE;
b49e97c9 8118
0a44bf69 8119 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8120 BFD_ASSERT (htab != NULL);
8121
b49e97c9
TS
8122 dynobj = elf_hash_table (info)->dynobj;
8123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8124 sym_hashes = elf_sym_hashes (abfd);
8125 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8126
738e5348 8127 bed = get_elf_backend_data (abfd);
056bafd4 8128 rel_end = relocs + sec->reloc_count;
738e5348 8129
b49e97c9
TS
8130 /* Check for the mips16 stub sections. */
8131
8132 name = bfd_get_section_name (abfd, sec);
b9d58d71 8133 if (FN_STUB_P (name))
b49e97c9
TS
8134 {
8135 unsigned long r_symndx;
8136
8137 /* Look at the relocation information to figure out which symbol
07d6d2b8 8138 this is for. */
b49e97c9 8139
cb4437b8 8140 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8141 if (r_symndx == 0)
8142 {
4eca0228 8143 _bfd_error_handler
695344c0 8144 /* xgettext:c-format */
2c1c9679 8145 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8146 " stub section `%s'"),
8147 abfd, name);
8148 bfd_set_error (bfd_error_bad_value);
8149 return FALSE;
8150 }
b49e97c9
TS
8151
8152 if (r_symndx < extsymoff
8153 || sym_hashes[r_symndx - extsymoff] == NULL)
8154 {
8155 asection *o;
8156
8157 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8158 needed if there is some relocation in this BFD, other
8159 than a 16 bit function call, which refers to this symbol. */
b49e97c9
TS
8160 for (o = abfd->sections; o != NULL; o = o->next)
8161 {
8162 Elf_Internal_Rela *sec_relocs;
8163 const Elf_Internal_Rela *r, *rend;
8164
8165 /* We can ignore stub sections when looking for relocs. */
8166 if ((o->flags & SEC_RELOC) == 0
8167 || o->reloc_count == 0
738e5348 8168 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8169 continue;
8170
45d6a902 8171 sec_relocs
9719ad41 8172 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8173 info->keep_memory);
b49e97c9 8174 if (sec_relocs == NULL)
b34976b6 8175 return FALSE;
b49e97c9
TS
8176
8177 rend = sec_relocs + o->reloc_count;
8178 for (r = sec_relocs; r < rend; r++)
8179 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8180 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8181 break;
8182
6cdc0ccc 8183 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8184 free (sec_relocs);
8185
8186 if (r < rend)
8187 break;
8188 }
8189
8190 if (o == NULL)
8191 {
8192 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8193 not need it. Since this function is called before
8194 the linker maps input sections to output sections, we
8195 can easily discard it by setting the SEC_EXCLUDE
8196 flag. */
b49e97c9 8197 sec->flags |= SEC_EXCLUDE;
b34976b6 8198 return TRUE;
b49e97c9
TS
8199 }
8200
8201 /* Record this stub in an array of local symbol stubs for
07d6d2b8 8202 this BFD. */
698600e4 8203 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8204 {
8205 unsigned long symcount;
8206 asection **n;
8207 bfd_size_type amt;
8208
8209 if (elf_bad_symtab (abfd))
8210 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8211 else
8212 symcount = symtab_hdr->sh_info;
8213 amt = symcount * sizeof (asection *);
9719ad41 8214 n = bfd_zalloc (abfd, amt);
b49e97c9 8215 if (n == NULL)
b34976b6 8216 return FALSE;
698600e4 8217 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8218 }
8219
b9d58d71 8220 sec->flags |= SEC_KEEP;
698600e4 8221 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8222
8223 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8224 That flag is used to see whether we need to look through
8225 the global symbol table for stubs. We don't need to set
8226 it here, because we just have a local stub. */
b49e97c9
TS
8227 }
8228 else
8229 {
8230 struct mips_elf_link_hash_entry *h;
8231
8232 h = ((struct mips_elf_link_hash_entry *)
8233 sym_hashes[r_symndx - extsymoff]);
8234
973a3492
L
8235 while (h->root.root.type == bfd_link_hash_indirect
8236 || h->root.root.type == bfd_link_hash_warning)
8237 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8238
b49e97c9
TS
8239 /* H is the symbol this stub is for. */
8240
b9d58d71
TS
8241 /* If we already have an appropriate stub for this function, we
8242 don't need another one, so we can discard this one. Since
8243 this function is called before the linker maps input sections
8244 to output sections, we can easily discard it by setting the
8245 SEC_EXCLUDE flag. */
8246 if (h->fn_stub != NULL)
8247 {
8248 sec->flags |= SEC_EXCLUDE;
8249 return TRUE;
8250 }
8251
8252 sec->flags |= SEC_KEEP;
b49e97c9 8253 h->fn_stub = sec;
b34976b6 8254 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8255 }
8256 }
b9d58d71 8257 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8258 {
8259 unsigned long r_symndx;
8260 struct mips_elf_link_hash_entry *h;
8261 asection **loc;
8262
8263 /* Look at the relocation information to figure out which symbol
07d6d2b8 8264 this is for. */
b49e97c9 8265
cb4437b8 8266 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8267 if (r_symndx == 0)
8268 {
4eca0228 8269 _bfd_error_handler
695344c0 8270 /* xgettext:c-format */
2c1c9679 8271 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8272 " stub section `%s'"),
8273 abfd, name);
8274 bfd_set_error (bfd_error_bad_value);
8275 return FALSE;
8276 }
b49e97c9
TS
8277
8278 if (r_symndx < extsymoff
8279 || sym_hashes[r_symndx - extsymoff] == NULL)
8280 {
b9d58d71 8281 asection *o;
b49e97c9 8282
b9d58d71 8283 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8284 needed if there is some relocation (R_MIPS16_26) in this BFD
8285 that refers to this symbol. */
b9d58d71
TS
8286 for (o = abfd->sections; o != NULL; o = o->next)
8287 {
8288 Elf_Internal_Rela *sec_relocs;
8289 const Elf_Internal_Rela *r, *rend;
8290
8291 /* We can ignore stub sections when looking for relocs. */
8292 if ((o->flags & SEC_RELOC) == 0
8293 || o->reloc_count == 0
738e5348 8294 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8295 continue;
8296
8297 sec_relocs
8298 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8299 info->keep_memory);
8300 if (sec_relocs == NULL)
8301 return FALSE;
8302
8303 rend = sec_relocs + o->reloc_count;
8304 for (r = sec_relocs; r < rend; r++)
8305 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8306 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8307 break;
8308
8309 if (elf_section_data (o)->relocs != sec_relocs)
8310 free (sec_relocs);
8311
8312 if (r < rend)
8313 break;
8314 }
8315
8316 if (o == NULL)
8317 {
8318 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8319 not need it. Since this function is called before
8320 the linker maps input sections to output sections, we
8321 can easily discard it by setting the SEC_EXCLUDE
8322 flag. */
b9d58d71
TS
8323 sec->flags |= SEC_EXCLUDE;
8324 return TRUE;
8325 }
8326
8327 /* Record this stub in an array of local symbol call_stubs for
07d6d2b8 8328 this BFD. */
698600e4 8329 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8330 {
8331 unsigned long symcount;
8332 asection **n;
8333 bfd_size_type amt;
8334
8335 if (elf_bad_symtab (abfd))
8336 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8337 else
8338 symcount = symtab_hdr->sh_info;
8339 amt = symcount * sizeof (asection *);
8340 n = bfd_zalloc (abfd, amt);
8341 if (n == NULL)
8342 return FALSE;
698600e4 8343 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8344 }
b49e97c9 8345
b9d58d71 8346 sec->flags |= SEC_KEEP;
698600e4 8347 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8348
b9d58d71 8349 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8350 That flag is used to see whether we need to look through
8351 the global symbol table for stubs. We don't need to set
8352 it here, because we just have a local stub. */
b9d58d71 8353 }
b49e97c9 8354 else
b49e97c9 8355 {
b9d58d71
TS
8356 h = ((struct mips_elf_link_hash_entry *)
8357 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8358
b9d58d71 8359 /* H is the symbol this stub is for. */
68ffbac6 8360
b9d58d71
TS
8361 if (CALL_FP_STUB_P (name))
8362 loc = &h->call_fp_stub;
8363 else
8364 loc = &h->call_stub;
68ffbac6 8365
b9d58d71
TS
8366 /* If we already have an appropriate stub for this function, we
8367 don't need another one, so we can discard this one. Since
8368 this function is called before the linker maps input sections
8369 to output sections, we can easily discard it by setting the
8370 SEC_EXCLUDE flag. */
8371 if (*loc != NULL)
8372 {
8373 sec->flags |= SEC_EXCLUDE;
8374 return TRUE;
8375 }
b49e97c9 8376
b9d58d71
TS
8377 sec->flags |= SEC_KEEP;
8378 *loc = sec;
8379 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8380 }
b49e97c9
TS
8381 }
8382
b49e97c9 8383 sreloc = NULL;
c224138d 8384 contents = NULL;
b49e97c9
TS
8385 for (rel = relocs; rel < rel_end; ++rel)
8386 {
8387 unsigned long r_symndx;
8388 unsigned int r_type;
8389 struct elf_link_hash_entry *h;
861fb55a 8390 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8391 bfd_boolean call_reloc_p;
8392 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8393
8394 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8395 r_type = ELF_R_TYPE (abfd, rel->r_info);
8396
8397 if (r_symndx < extsymoff)
8398 h = NULL;
8399 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8400 {
4eca0228 8401 _bfd_error_handler
695344c0 8402 /* xgettext:c-format */
2c1c9679 8403 (_("%pB: malformed reloc detected for section %s"),
d003868e 8404 abfd, name);
b49e97c9 8405 bfd_set_error (bfd_error_bad_value);
b34976b6 8406 return FALSE;
b49e97c9
TS
8407 }
8408 else
8409 {
8410 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8411 if (h != NULL)
8412 {
8413 while (h->root.type == bfd_link_hash_indirect
8414 || h->root.type == bfd_link_hash_warning)
8415 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831 8416 }
861fb55a 8417 }
b49e97c9 8418
861fb55a
DJ
8419 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8420 relocation into a dynamic one. */
8421 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8422
8423 /* Set CALL_RELOC_P to true if the relocation is for a call,
8424 and if pointer equality therefore doesn't matter. */
8425 call_reloc_p = FALSE;
8426
8427 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8428 into account when deciding how to define the symbol.
8429 Relocations in nonallocatable sections such as .pdr and
8430 .debug* should have no effect. */
8431 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8432
861fb55a
DJ
8433 switch (r_type)
8434 {
861fb55a
DJ
8435 case R_MIPS_CALL16:
8436 case R_MIPS_CALL_HI16:
8437 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8438 case R_MIPS16_CALL16:
8439 case R_MICROMIPS_CALL16:
8440 case R_MICROMIPS_CALL_HI16:
8441 case R_MICROMIPS_CALL_LO16:
8442 call_reloc_p = TRUE;
8443 /* Fall through. */
8444
8445 case R_MIPS_GOT16:
861fb55a
DJ
8446 case R_MIPS_GOT_HI16:
8447 case R_MIPS_GOT_LO16:
8448 case R_MIPS_GOT_PAGE:
8449 case R_MIPS_GOT_OFST:
8450 case R_MIPS_GOT_DISP:
8451 case R_MIPS_TLS_GOTTPREL:
8452 case R_MIPS_TLS_GD:
8453 case R_MIPS_TLS_LDM:
d0f13682 8454 case R_MIPS16_GOT16:
d0f13682
CLT
8455 case R_MIPS16_TLS_GOTTPREL:
8456 case R_MIPS16_TLS_GD:
8457 case R_MIPS16_TLS_LDM:
df58fc94 8458 case R_MICROMIPS_GOT16:
df58fc94
RS
8459 case R_MICROMIPS_GOT_HI16:
8460 case R_MICROMIPS_GOT_LO16:
8461 case R_MICROMIPS_GOT_PAGE:
8462 case R_MICROMIPS_GOT_OFST:
8463 case R_MICROMIPS_GOT_DISP:
8464 case R_MICROMIPS_TLS_GOTTPREL:
8465 case R_MICROMIPS_TLS_GD:
8466 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8467 if (dynobj == NULL)
8468 elf_hash_table (info)->dynobj = dynobj = abfd;
8469 if (!mips_elf_create_got_section (dynobj, info))
8470 return FALSE;
0e1862bb 8471 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8472 {
4eca0228 8473 _bfd_error_handler
695344c0 8474 /* xgettext:c-format */
2dcf00ce
AM
8475 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8476 abfd, (uint64_t) rel->r_offset);
861fb55a
DJ
8477 bfd_set_error (bfd_error_bad_value);
8478 return FALSE;
b49e97c9 8479 }
c5d6fa44 8480 can_make_dynamic_p = TRUE;
861fb55a 8481 break;
b49e97c9 8482
c5d6fa44 8483 case R_MIPS_NONE:
99da6b5f 8484 case R_MIPS_JALR:
df58fc94 8485 case R_MICROMIPS_JALR:
c5d6fa44
RS
8486 /* These relocations have empty fields and are purely there to
8487 provide link information. The symbol value doesn't matter. */
8488 constrain_symbol_p = FALSE;
8489 break;
8490
8491 case R_MIPS_GPREL16:
8492 case R_MIPS_GPREL32:
8493 case R_MIPS16_GPREL:
8494 case R_MICROMIPS_GPREL16:
8495 /* GP-relative relocations always resolve to a definition in a
8496 regular input file, ignoring the one-definition rule. This is
8497 important for the GP setup sequence in NewABI code, which
8498 always resolves to a local function even if other relocations
8499 against the symbol wouldn't. */
8500 constrain_symbol_p = FALSE;
99da6b5f
AN
8501 break;
8502
861fb55a
DJ
8503 case R_MIPS_32:
8504 case R_MIPS_REL32:
8505 case R_MIPS_64:
8506 /* In VxWorks executables, references to external symbols
8507 must be handled using copy relocs or PLT entries; it is not
8508 possible to convert this relocation into a dynamic one.
8509
8510 For executables that use PLTs and copy-relocs, we have a
8511 choice between converting the relocation into a dynamic
8512 one or using copy relocations or PLT entries. It is
8513 usually better to do the former, unless the relocation is
8514 against a read-only section. */
0e1862bb 8515 if ((bfd_link_pic (info)
861fb55a
DJ
8516 || (h != NULL
8517 && !htab->is_vxworks
8518 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8519 && !(!info->nocopyreloc
8520 && !PIC_OBJECT_P (abfd)
8521 && MIPS_ELF_READONLY_SECTION (sec))))
8522 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8523 {
861fb55a 8524 can_make_dynamic_p = TRUE;
b49e97c9
TS
8525 if (dynobj == NULL)
8526 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8527 }
c5d6fa44 8528 break;
b49e97c9 8529
861fb55a
DJ
8530 case R_MIPS_26:
8531 case R_MIPS_PC16:
7361da2c
AB
8532 case R_MIPS_PC21_S2:
8533 case R_MIPS_PC26_S2:
861fb55a 8534 case R_MIPS16_26:
c9775dde 8535 case R_MIPS16_PC16_S1:
df58fc94
RS
8536 case R_MICROMIPS_26_S1:
8537 case R_MICROMIPS_PC7_S1:
8538 case R_MICROMIPS_PC10_S1:
8539 case R_MICROMIPS_PC16_S1:
8540 case R_MICROMIPS_PC23_S2:
c5d6fa44 8541 call_reloc_p = TRUE;
861fb55a 8542 break;
b49e97c9
TS
8543 }
8544
0a44bf69
RS
8545 if (h)
8546 {
c5d6fa44
RS
8547 if (constrain_symbol_p)
8548 {
8549 if (!can_make_dynamic_p)
8550 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8551
8552 if (!call_reloc_p)
8553 h->pointer_equality_needed = 1;
8554
8555 /* We must not create a stub for a symbol that has
8556 relocations related to taking the function's address.
8557 This doesn't apply to VxWorks, where CALL relocs refer
8558 to a .got.plt entry instead of a normal .got entry. */
8559 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8560 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8561 }
8562
0a44bf69
RS
8563 /* Relocations against the special VxWorks __GOTT_BASE__ and
8564 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8565 room for them in .rela.dyn. */
8566 if (is_gott_symbol (info, h))
8567 {
8568 if (sreloc == NULL)
8569 {
8570 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8571 if (sreloc == NULL)
8572 return FALSE;
8573 }
8574 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8575 if (MIPS_ELF_READONLY_SECTION (sec))
8576 /* We tell the dynamic linker that there are
8577 relocations against the text segment. */
8578 info->flags |= DF_TEXTREL;
0a44bf69
RS
8579 }
8580 }
df58fc94
RS
8581 else if (call_lo16_reloc_p (r_type)
8582 || got_lo16_reloc_p (r_type)
8583 || got_disp_reloc_p (r_type)
738e5348 8584 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8585 {
8586 /* We may need a local GOT entry for this relocation. We
8587 don't count R_MIPS_GOT_PAGE because we can estimate the
8588 maximum number of pages needed by looking at the size of
738e5348
RS
8589 the segment. Similar comments apply to R_MIPS*_GOT16 and
8590 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8591 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8592 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8593 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8594 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8595 rel->r_addend, info, r_type))
f4416af6 8596 return FALSE;
b49e97c9
TS
8597 }
8598
8f0c309a
CLT
8599 if (h != NULL
8600 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8601 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8602 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8603
b49e97c9
TS
8604 switch (r_type)
8605 {
8606 case R_MIPS_CALL16:
738e5348 8607 case R_MIPS16_CALL16:
df58fc94 8608 case R_MICROMIPS_CALL16:
b49e97c9
TS
8609 if (h == NULL)
8610 {
4eca0228 8611 _bfd_error_handler
695344c0 8612 /* xgettext:c-format */
2dcf00ce
AM
8613 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8614 abfd, (uint64_t) rel->r_offset);
b49e97c9 8615 bfd_set_error (bfd_error_bad_value);
b34976b6 8616 return FALSE;
b49e97c9
TS
8617 }
8618 /* Fall through. */
8619
8620 case R_MIPS_CALL_HI16:
8621 case R_MIPS_CALL_LO16:
df58fc94
RS
8622 case R_MICROMIPS_CALL_HI16:
8623 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8624 if (h != NULL)
8625 {
6ccf4795
RS
8626 /* Make sure there is room in the regular GOT to hold the
8627 function's address. We may eliminate it in favour of
8628 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8629 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8630 r_type))
b34976b6 8631 return FALSE;
b49e97c9
TS
8632
8633 /* We need a stub, not a plt entry for the undefined
8634 function. But we record it as if it needs plt. See
c152c796 8635 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8636 h->needs_plt = 1;
b49e97c9
TS
8637 h->type = STT_FUNC;
8638 }
8639 break;
8640
0fdc1bf1 8641 case R_MIPS_GOT_PAGE:
df58fc94 8642 case R_MICROMIPS_GOT_PAGE:
738e5348 8643 case R_MIPS16_GOT16:
b49e97c9
TS
8644 case R_MIPS_GOT16:
8645 case R_MIPS_GOT_HI16:
8646 case R_MIPS_GOT_LO16:
df58fc94
RS
8647 case R_MICROMIPS_GOT16:
8648 case R_MICROMIPS_GOT_HI16:
8649 case R_MICROMIPS_GOT_LO16:
8650 if (!h || got_page_reloc_p (r_type))
c224138d 8651 {
3a3b6725
DJ
8652 /* This relocation needs (or may need, if h != NULL) a
8653 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8654 know for sure until we know whether the symbol is
8655 preemptible. */
c224138d
RS
8656 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8657 {
8658 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8659 return FALSE;
8660 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8661 addend = mips_elf_read_rel_addend (abfd, rel,
8662 howto, contents);
9684f078 8663 if (got16_reloc_p (r_type))
c224138d
RS
8664 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8665 contents, &addend);
8666 else
8667 addend <<= howto->rightshift;
8668 }
8669 else
8670 addend = rel->r_addend;
13db6b44
RS
8671 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8672 h, addend))
c224138d 8673 return FALSE;
13db6b44
RS
8674
8675 if (h)
8676 {
8677 struct mips_elf_link_hash_entry *hmips =
8678 (struct mips_elf_link_hash_entry *) h;
8679
8680 /* This symbol is definitely not overridable. */
8681 if (hmips->root.def_regular
0e1862bb 8682 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8683 && ! hmips->root.forced_local))
8684 h = NULL;
8685 }
c224138d 8686 }
13db6b44
RS
8687 /* If this is a global, overridable symbol, GOT_PAGE will
8688 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8689 /* Fall through. */
8690
b49e97c9 8691 case R_MIPS_GOT_DISP:
df58fc94 8692 case R_MICROMIPS_GOT_DISP:
6ccf4795 8693 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8694 FALSE, r_type))
b34976b6 8695 return FALSE;
b49e97c9
TS
8696 break;
8697
0f20cc35 8698 case R_MIPS_TLS_GOTTPREL:
d0f13682 8699 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8700 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8701 if (bfd_link_pic (info))
0f20cc35
DJ
8702 info->flags |= DF_STATIC_TLS;
8703 /* Fall through */
8704
8705 case R_MIPS_TLS_LDM:
d0f13682 8706 case R_MIPS16_TLS_LDM:
df58fc94
RS
8707 case R_MICROMIPS_TLS_LDM:
8708 if (tls_ldm_reloc_p (r_type))
0f20cc35 8709 {
cf35638d 8710 r_symndx = STN_UNDEF;
0f20cc35
DJ
8711 h = NULL;
8712 }
8713 /* Fall through */
8714
8715 case R_MIPS_TLS_GD:
d0f13682 8716 case R_MIPS16_TLS_GD:
df58fc94 8717 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8718 /* This symbol requires a global offset table entry, or two
8719 for TLS GD relocations. */
e641e783
RS
8720 if (h != NULL)
8721 {
8722 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8723 FALSE, r_type))
8724 return FALSE;
8725 }
8726 else
8727 {
8728 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8729 rel->r_addend,
8730 info, r_type))
8731 return FALSE;
8732 }
0f20cc35
DJ
8733 break;
8734
b49e97c9
TS
8735 case R_MIPS_32:
8736 case R_MIPS_REL32:
8737 case R_MIPS_64:
0a44bf69
RS
8738 /* In VxWorks executables, references to external symbols
8739 are handled using copy relocs or PLT stubs, so there's
8740 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8741 if (can_make_dynamic_p)
b49e97c9
TS
8742 {
8743 if (sreloc == NULL)
8744 {
0a44bf69 8745 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8746 if (sreloc == NULL)
f4416af6 8747 return FALSE;
b49e97c9 8748 }
0e1862bb 8749 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8750 {
8751 /* When creating a shared object, we must copy these
8752 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8753 relocs. Make room for this reloc in .rel(a).dyn. */
8754 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8755 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8756 /* We tell the dynamic linker that there are
8757 relocations against the text segment. */
8758 info->flags |= DF_TEXTREL;
8759 }
b49e97c9
TS
8760 else
8761 {
8762 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8763
9a59ad6b
DJ
8764 /* For a shared object, we must copy this relocation
8765 unless the symbol turns out to be undefined and
8766 weak with non-default visibility, in which case
8767 it will be left as zero.
8768
8769 We could elide R_MIPS_REL32 for locally binding symbols
8770 in shared libraries, but do not yet do so.
8771
8772 For an executable, we only need to copy this
8773 reloc if the symbol is defined in a dynamic
8774 object. */
b49e97c9
TS
8775 hmips = (struct mips_elf_link_hash_entry *) h;
8776 ++hmips->possibly_dynamic_relocs;
943284cc 8777 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8778 /* We need it to tell the dynamic linker if there
8779 are relocations against the text segment. */
8780 hmips->readonly_reloc = TRUE;
b49e97c9 8781 }
b49e97c9
TS
8782 }
8783
8784 if (SGI_COMPAT (abfd))
8785 mips_elf_hash_table (info)->compact_rel_size +=
8786 sizeof (Elf32_External_crinfo);
8787 break;
8788
8789 case R_MIPS_26:
8790 case R_MIPS_GPREL16:
8791 case R_MIPS_LITERAL:
8792 case R_MIPS_GPREL32:
df58fc94
RS
8793 case R_MICROMIPS_26_S1:
8794 case R_MICROMIPS_GPREL16:
8795 case R_MICROMIPS_LITERAL:
8796 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8797 if (SGI_COMPAT (abfd))
8798 mips_elf_hash_table (info)->compact_rel_size +=
8799 sizeof (Elf32_External_crinfo);
8800 break;
8801
8802 /* This relocation describes the C++ object vtable hierarchy.
8803 Reconstruct it for later use during GC. */
8804 case R_MIPS_GNU_VTINHERIT:
c152c796 8805 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8806 return FALSE;
b49e97c9
TS
8807 break;
8808
8809 /* This relocation describes which C++ vtable entries are actually
8810 used. Record for later use during GC. */
8811 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8812 BFD_ASSERT (h != NULL);
8813 if (h != NULL
8814 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8815 return FALSE;
b49e97c9
TS
8816 break;
8817
8818 default:
8819 break;
8820 }
8821
1bbce132 8822 /* Record the need for a PLT entry. At this point we don't know
07d6d2b8
AM
8823 yet if we are going to create a PLT in the first place, but
8824 we only record whether the relocation requires a standard MIPS
8825 or a compressed code entry anyway. If we don't make a PLT after
8826 all, then we'll just ignore these arrangements. Likewise if
8827 a PLT entry is not created because the symbol is satisfied
8828 locally. */
1bbce132 8829 if (h != NULL
54806ffa
MR
8830 && (branch_reloc_p (r_type)
8831 || mips16_branch_reloc_p (r_type)
8832 || micromips_branch_reloc_p (r_type))
1bbce132
MR
8833 && !SYMBOL_CALLS_LOCAL (info, h))
8834 {
8835 if (h->plt.plist == NULL)
8836 h->plt.plist = mips_elf_make_plt_record (abfd);
8837 if (h->plt.plist == NULL)
8838 return FALSE;
8839
54806ffa 8840 if (branch_reloc_p (r_type))
1bbce132
MR
8841 h->plt.plist->need_mips = TRUE;
8842 else
8843 h->plt.plist->need_comp = TRUE;
8844 }
8845
738e5348
RS
8846 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8847 if there is one. We only need to handle global symbols here;
8848 we decide whether to keep or delete stubs for local symbols
8849 when processing the stub's relocations. */
b49e97c9 8850 if (h != NULL
738e5348
RS
8851 && !mips16_call_reloc_p (r_type)
8852 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8853 {
8854 struct mips_elf_link_hash_entry *mh;
8855
8856 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8857 mh->need_fn_stub = TRUE;
b49e97c9 8858 }
861fb55a
DJ
8859
8860 /* Refuse some position-dependent relocations when creating a
8861 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8862 not PIC, but we can create dynamic relocations and the result
8863 will be fine. Also do not refuse R_MIPS_LO16, which can be
8864 combined with R_MIPS_GOT16. */
0e1862bb 8865 if (bfd_link_pic (info))
861fb55a
DJ
8866 {
8867 switch (r_type)
8868 {
8869 case R_MIPS16_HI16:
8870 case R_MIPS_HI16:
8871 case R_MIPS_HIGHER:
8872 case R_MIPS_HIGHEST:
df58fc94
RS
8873 case R_MICROMIPS_HI16:
8874 case R_MICROMIPS_HIGHER:
8875 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8876 /* Don't refuse a high part relocation if it's against
8877 no symbol (e.g. part of a compound relocation). */
cf35638d 8878 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8879 break;
8880
8881 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8882 and has a special meaning. */
8883 if (!NEWABI_P (abfd) && h != NULL
8884 && strcmp (h->root.root.string, "_gp_disp") == 0)
8885 break;
8886
0fc1eb3c
RS
8887 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8888 if (is_gott_symbol (info, h))
8889 break;
8890
861fb55a
DJ
8891 /* FALLTHROUGH */
8892
8893 case R_MIPS16_26:
8894 case R_MIPS_26:
df58fc94 8895 case R_MICROMIPS_26_S1:
861fb55a 8896 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
4eca0228 8897 _bfd_error_handler
695344c0 8898 /* xgettext:c-format */
871b3ab2 8899 (_("%pB: relocation %s against `%s' can not be used"
63a5468a 8900 " when making a shared object; recompile with -fPIC"),
861fb55a
DJ
8901 abfd, howto->name,
8902 (h) ? h->root.root.string : "a local symbol");
8903 bfd_set_error (bfd_error_bad_value);
8904 return FALSE;
8905 default:
8906 break;
8907 }
8908 }
b49e97c9
TS
8909 }
8910
b34976b6 8911 return TRUE;
b49e97c9
TS
8912}
8913\f
9a59ad6b
DJ
8914/* Allocate space for global sym dynamic relocs. */
8915
8916static bfd_boolean
8917allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8918{
8919 struct bfd_link_info *info = inf;
8920 bfd *dynobj;
8921 struct mips_elf_link_hash_entry *hmips;
8922 struct mips_elf_link_hash_table *htab;
8923
8924 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8925 BFD_ASSERT (htab != NULL);
8926
9a59ad6b
DJ
8927 dynobj = elf_hash_table (info)->dynobj;
8928 hmips = (struct mips_elf_link_hash_entry *) h;
8929
8930 /* VxWorks executables are handled elsewhere; we only need to
8931 allocate relocations in shared objects. */
0e1862bb 8932 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
8933 return TRUE;
8934
7686d77d
AM
8935 /* Ignore indirect symbols. All relocations against such symbols
8936 will be redirected to the target symbol. */
8937 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8938 return TRUE;
8939
9a59ad6b
DJ
8940 /* If this symbol is defined in a dynamic object, or we are creating
8941 a shared library, we will need to copy any R_MIPS_32 or
8942 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 8943 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
8944 && hmips->possibly_dynamic_relocs != 0
8945 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8946 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 8947 || bfd_link_pic (info)))
9a59ad6b
DJ
8948 {
8949 bfd_boolean do_copy = TRUE;
8950
8951 if (h->root.type == bfd_link_hash_undefweak)
8952 {
8953 /* Do not copy relocations for undefined weak symbols with
8954 non-default visibility. */
ad951203
L
8955 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8956 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9a59ad6b
DJ
8957 do_copy = FALSE;
8958
8959 /* Make sure undefined weak symbols are output as a dynamic
8960 symbol in PIEs. */
8961 else if (h->dynindx == -1 && !h->forced_local)
8962 {
8963 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8964 return FALSE;
8965 }
8966 }
8967
8968 if (do_copy)
8969 {
aff469fa 8970 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8971 the SVR4 psABI requires it to have a dynamic symbol table
8972 index greater that DT_MIPS_GOTSYM if there are dynamic
8973 relocations against it.
8974
8975 VxWorks does not enforce the same mapping between the GOT
8976 and the symbol table, so the same requirement does not
8977 apply there. */
6ccf4795
RS
8978 if (!htab->is_vxworks)
8979 {
8980 if (hmips->global_got_area > GGA_RELOC_ONLY)
8981 hmips->global_got_area = GGA_RELOC_ONLY;
8982 hmips->got_only_for_calls = FALSE;
8983 }
aff469fa 8984
9a59ad6b
DJ
8985 mips_elf_allocate_dynamic_relocations
8986 (dynobj, info, hmips->possibly_dynamic_relocs);
8987 if (hmips->readonly_reloc)
8988 /* We tell the dynamic linker that there are relocations
8989 against the text segment. */
8990 info->flags |= DF_TEXTREL;
8991 }
8992 }
8993
8994 return TRUE;
8995}
8996
b49e97c9
TS
8997/* Adjust a symbol defined by a dynamic object and referenced by a
8998 regular object. The current definition is in some section of the
8999 dynamic object, but we're not including those sections. We have to
9000 change the definition to something the rest of the link can
9001 understand. */
9002
b34976b6 9003bfd_boolean
9719ad41
RS
9004_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9005 struct elf_link_hash_entry *h)
b49e97c9
TS
9006{
9007 bfd *dynobj;
9008 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9009 struct mips_elf_link_hash_table *htab;
5474d94f 9010 asection *s, *srel;
b49e97c9 9011
5108fc1b 9012 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9013 BFD_ASSERT (htab != NULL);
9014
b49e97c9 9015 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9016 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9017
9018 /* Make sure we know what is going on here. */
9019 BFD_ASSERT (dynobj != NULL
f5385ebf 9020 && (h->needs_plt
60d67dc8 9021 || h->is_weakalias
f5385ebf
AM
9022 || (h->def_dynamic
9023 && h->ref_regular
9024 && !h->def_regular)));
b49e97c9 9025
b49e97c9 9026 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9027
861fb55a
DJ
9028 /* If there are call relocations against an externally-defined symbol,
9029 see whether we can create a MIPS lazy-binding stub for it. We can
9030 only do this if all references to the function are through call
9031 relocations, and in that case, the traditional lazy-binding stubs
9032 are much more efficient than PLT entries.
9033
9034 Traditional stubs are only available on SVR4 psABI-based systems;
9035 VxWorks always uses PLTs instead. */
9036 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9037 {
9038 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9039 return TRUE;
b49e97c9
TS
9040
9041 /* If this symbol is not defined in a regular file, then set
9042 the symbol to the stub location. This is required to make
9043 function pointers compare as equal between the normal
9044 executable and the shared library. */
f5385ebf 9045 if (!h->def_regular)
b49e97c9 9046 {
33bb52fb
RS
9047 hmips->needs_lazy_stub = TRUE;
9048 htab->lazy_stub_count++;
b34976b6 9049 return TRUE;
b49e97c9
TS
9050 }
9051 }
861fb55a
DJ
9052 /* As above, VxWorks requires PLT entries for externally-defined
9053 functions that are only accessed through call relocations.
b49e97c9 9054
861fb55a
DJ
9055 Both VxWorks and non-VxWorks targets also need PLT entries if there
9056 are static-only relocations against an externally-defined function.
9057 This can technically occur for shared libraries if there are
9058 branches to the symbol, although it is unlikely that this will be
9059 used in practice due to the short ranges involved. It can occur
9060 for any relative or absolute relocation in executables; in that
9061 case, the PLT entry becomes the function's canonical address. */
9062 else if (((h->needs_plt && !hmips->no_fn_stub)
9063 || (h->type == STT_FUNC && hmips->has_static_relocs))
9064 && htab->use_plts_and_copy_relocs
9065 && !SYMBOL_CALLS_LOCAL (info, h)
9066 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9067 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9068 {
1bbce132
MR
9069 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9070 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9071
9072 /* If this is the first symbol to need a PLT entry, then make some
07d6d2b8
AM
9073 basic setup. Also work out PLT entry sizes. We'll need them
9074 for PLT offset calculations. */
1bbce132 9075 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9076 {
ce558b89 9077 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9078 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9079
861fb55a
DJ
9080 /* If we're using the PLT additions to the psABI, each PLT
9081 entry is 16 bytes and the PLT0 entry is 32 bytes.
9082 Encourage better cache usage by aligning. We do this
9083 lazily to avoid pessimizing traditional objects. */
9084 if (!htab->is_vxworks
ce558b89 9085 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
861fb55a 9086 return FALSE;
0a44bf69 9087
861fb55a
DJ
9088 /* Make sure that .got.plt is word-aligned. We do this lazily
9089 for the same reason as above. */
ce558b89 9090 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
861fb55a
DJ
9091 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9092 return FALSE;
0a44bf69 9093
861fb55a
DJ
9094 /* On non-VxWorks targets, the first two entries in .got.plt
9095 are reserved. */
9096 if (!htab->is_vxworks)
1bbce132
MR
9097 htab->plt_got_index
9098 += (get_elf_backend_data (dynobj)->got_header_size
9099 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9100
861fb55a
DJ
9101 /* On VxWorks, also allocate room for the header's
9102 .rela.plt.unloaded entries. */
0e1862bb 9103 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9104 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9105
9106 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9107 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9108 htab->plt_mips_entry_size
9109 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9110 else if (htab->is_vxworks)
9111 htab->plt_mips_entry_size
9112 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9113 else if (newabi_p)
9114 htab->plt_mips_entry_size
9115 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9116 else if (!micromips_p)
1bbce132
MR
9117 {
9118 htab->plt_mips_entry_size
9119 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9120 htab->plt_comp_entry_size
833794fc
MR
9121 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9122 }
9123 else if (htab->insn32)
9124 {
9125 htab->plt_mips_entry_size
9126 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9127 htab->plt_comp_entry_size
9128 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9129 }
9130 else
9131 {
9132 htab->plt_mips_entry_size
9133 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9134 htab->plt_comp_entry_size
833794fc 9135 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9136 }
0a44bf69
RS
9137 }
9138
1bbce132
MR
9139 if (h->plt.plist == NULL)
9140 h->plt.plist = mips_elf_make_plt_record (dynobj);
9141 if (h->plt.plist == NULL)
9142 return FALSE;
9143
9144 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
07d6d2b8 9145 n32 or n64, so always use a standard entry there.
1bbce132 9146
07d6d2b8
AM
9147 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9148 all MIPS16 calls will go via that stub, and there is no benefit
9149 to having a MIPS16 entry. And in the case of call_stub a
9150 standard entry actually has to be used as the stub ends with a J
9151 instruction. */
1bbce132
MR
9152 if (newabi_p
9153 || htab->is_vxworks
9154 || hmips->call_stub
9155 || hmips->call_fp_stub)
9156 {
9157 h->plt.plist->need_mips = TRUE;
9158 h->plt.plist->need_comp = FALSE;
9159 }
9160
9161 /* Otherwise, if there are no direct calls to the function, we
07d6d2b8
AM
9162 have a free choice of whether to use standard or compressed
9163 entries. Prefer microMIPS entries if the object is known to
9164 contain microMIPS code, so that it becomes possible to create
9165 pure microMIPS binaries. Prefer standard entries otherwise,
9166 because MIPS16 ones are no smaller and are usually slower. */
1bbce132
MR
9167 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9168 {
9169 if (micromips_p)
9170 h->plt.plist->need_comp = TRUE;
9171 else
9172 h->plt.plist->need_mips = TRUE;
9173 }
9174
9175 if (h->plt.plist->need_mips)
9176 {
9177 h->plt.plist->mips_offset = htab->plt_mips_offset;
9178 htab->plt_mips_offset += htab->plt_mips_entry_size;
9179 }
9180 if (h->plt.plist->need_comp)
9181 {
9182 h->plt.plist->comp_offset = htab->plt_comp_offset;
9183 htab->plt_comp_offset += htab->plt_comp_entry_size;
9184 }
9185
9186 /* Reserve the corresponding .got.plt entry now too. */
9187 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9188
9189 /* If the output file has no definition of the symbol, set the
861fb55a 9190 symbol's value to the address of the stub. */
0e1862bb 9191 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9192 hmips->use_plt_entry = TRUE;
0a44bf69 9193
1bbce132 9194 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
ce558b89
AM
9195 htab->root.srelplt->size += (htab->is_vxworks
9196 ? MIPS_ELF_RELA_SIZE (dynobj)
9197 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9198
9199 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9200 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9201 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9202
861fb55a
DJ
9203 /* All relocations against this symbol that could have been made
9204 dynamic will now refer to the PLT entry instead. */
9205 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9206
0a44bf69
RS
9207 return TRUE;
9208 }
9209
9210 /* If this is a weak symbol, and there is a real definition, the
9211 processor independent code will have arranged for us to see the
9212 real definition first, and we can just use the same value. */
60d67dc8 9213 if (h->is_weakalias)
0a44bf69 9214 {
60d67dc8
AM
9215 struct elf_link_hash_entry *def = weakdef (h);
9216 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9217 h->root.u.def.section = def->root.u.def.section;
9218 h->root.u.def.value = def->root.u.def.value;
0a44bf69
RS
9219 return TRUE;
9220 }
9221
861fb55a
DJ
9222 /* Otherwise, there is nothing further to do for symbols defined
9223 in regular objects. */
9224 if (h->def_regular)
0a44bf69
RS
9225 return TRUE;
9226
861fb55a
DJ
9227 /* There's also nothing more to do if we'll convert all relocations
9228 against this symbol into dynamic relocations. */
9229 if (!hmips->has_static_relocs)
9230 return TRUE;
9231
9232 /* We're now relying on copy relocations. Complain if we have
9233 some that we can't convert. */
0e1862bb 9234 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9235 {
4eca0228
AM
9236 _bfd_error_handler (_("non-dynamic relocations refer to "
9237 "dynamic symbol %s"),
9238 h->root.root.string);
861fb55a
DJ
9239 bfd_set_error (bfd_error_bad_value);
9240 return FALSE;
9241 }
9242
0a44bf69
RS
9243 /* We must allocate the symbol in our .dynbss section, which will
9244 become part of the .bss section of the executable. There will be
9245 an entry for this symbol in the .dynsym section. The dynamic
9246 object will contain position independent code, so all references
9247 from the dynamic object to this symbol will go through the global
9248 offset table. The dynamic linker will use the .dynsym entry to
9249 determine the address it must put in the global offset table, so
9250 both the dynamic object and the regular object will refer to the
9251 same memory location for the variable. */
9252
5474d94f
AM
9253 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9254 {
9255 s = htab->root.sdynrelro;
9256 srel = htab->root.sreldynrelro;
9257 }
9258 else
9259 {
9260 s = htab->root.sdynbss;
9261 srel = htab->root.srelbss;
9262 }
0a44bf69
RS
9263 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9264 {
861fb55a 9265 if (htab->is_vxworks)
5474d94f 9266 srel->size += sizeof (Elf32_External_Rela);
861fb55a
DJ
9267 else
9268 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9269 h->needs_copy = 1;
9270 }
9271
861fb55a
DJ
9272 /* All relocations against this symbol that could have been made
9273 dynamic will now refer to the local copy instead. */
9274 hmips->possibly_dynamic_relocs = 0;
9275
5474d94f 9276 return _bfd_elf_adjust_dynamic_copy (info, h, s);
0a44bf69 9277}
b49e97c9
TS
9278\f
9279/* This function is called after all the input files have been read,
9280 and the input sections have been assigned to output sections. We
9281 check for any mips16 stub sections that we can discard. */
9282
b34976b6 9283bfd_boolean
9719ad41
RS
9284_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9285 struct bfd_link_info *info)
b49e97c9 9286{
351cdf24 9287 asection *sect;
0a44bf69 9288 struct mips_elf_link_hash_table *htab;
861fb55a 9289 struct mips_htab_traverse_info hti;
0a44bf69
RS
9290
9291 htab = mips_elf_hash_table (info);
4dfe6ac6 9292 BFD_ASSERT (htab != NULL);
f4416af6 9293
b49e97c9 9294 /* The .reginfo section has a fixed size. */
351cdf24
MF
9295 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9296 if (sect != NULL)
6798f8bf
MR
9297 {
9298 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9299 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9300 }
351cdf24
MF
9301
9302 /* The .MIPS.abiflags section has a fixed size. */
9303 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9304 if (sect != NULL)
6798f8bf
MR
9305 {
9306 bfd_set_section_size (output_bfd, sect,
9307 sizeof (Elf_External_ABIFlags_v0));
9308 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9309 }
b49e97c9 9310
861fb55a
DJ
9311 hti.info = info;
9312 hti.output_bfd = output_bfd;
9313 hti.error = FALSE;
9314 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9315 mips_elf_check_symbols, &hti);
9316 if (hti.error)
9317 return FALSE;
f4416af6 9318
33bb52fb
RS
9319 return TRUE;
9320}
9321
9322/* If the link uses a GOT, lay it out and work out its size. */
9323
9324static bfd_boolean
9325mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9326{
9327 bfd *dynobj;
9328 asection *s;
9329 struct mips_got_info *g;
33bb52fb
RS
9330 bfd_size_type loadable_size = 0;
9331 bfd_size_type page_gotno;
d7206569 9332 bfd *ibfd;
ab361d49 9333 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9334 struct mips_elf_link_hash_table *htab;
9335
9336 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9337 BFD_ASSERT (htab != NULL);
9338
ce558b89 9339 s = htab->root.sgot;
f4416af6 9340 if (s == NULL)
b34976b6 9341 return TRUE;
b49e97c9 9342
33bb52fb 9343 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9344 g = htab->got_info;
9345
861fb55a
DJ
9346 /* Allocate room for the reserved entries. VxWorks always reserves
9347 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9348 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9349 if (htab->is_vxworks)
9350 htab->reserved_gotno = 3;
9351 else
9352 htab->reserved_gotno = 2;
9353 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9354 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9355
6c42ddb9
RS
9356 /* Decide which symbols need to go in the global part of the GOT and
9357 count the number of reloc-only GOT symbols. */
020d7251 9358 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9359
13db6b44
RS
9360 if (!mips_elf_resolve_final_got_entries (info, g))
9361 return FALSE;
9362
33bb52fb
RS
9363 /* Calculate the total loadable size of the output. That
9364 will give us the maximum number of GOT_PAGE entries
9365 required. */
c72f2fb2 9366 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9367 {
9368 asection *subsection;
5108fc1b 9369
d7206569 9370 for (subsection = ibfd->sections;
33bb52fb
RS
9371 subsection;
9372 subsection = subsection->next)
9373 {
9374 if ((subsection->flags & SEC_ALLOC) == 0)
9375 continue;
9376 loadable_size += ((subsection->size + 0xf)
9377 &~ (bfd_size_type) 0xf);
9378 }
9379 }
f4416af6 9380
0a44bf69 9381 if (htab->is_vxworks)
738e5348 9382 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9383 relocations against local symbols evaluate to "G", and the EABI does
9384 not include R_MIPS_GOT_PAGE. */
c224138d 9385 page_gotno = 0;
0a44bf69
RS
9386 else
9387 /* Assume there are two loadable segments consisting of contiguous
9388 sections. Is 5 enough? */
c224138d
RS
9389 page_gotno = (loadable_size >> 16) + 5;
9390
13db6b44 9391 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9392 conservative. */
9393 if (page_gotno > g->page_gotno)
9394 page_gotno = g->page_gotno;
f4416af6 9395
c224138d 9396 g->local_gotno += page_gotno;
cb22ccf4 9397 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9398
ab361d49
RS
9399 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9400 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9401 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9402
0a44bf69
RS
9403 /* VxWorks does not support multiple GOTs. It initializes $gp to
9404 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9405 dynamic loader. */
57093f5e 9406 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9407 {
a8028dd0 9408 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9409 return FALSE;
9410 }
9411 else
9412 {
d7206569
RS
9413 /* Record that all bfds use G. This also has the effect of freeing
9414 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9415 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9416 if (mips_elf_bfd_got (ibfd, FALSE))
9417 mips_elf_replace_bfd_got (ibfd, g);
9418 mips_elf_replace_bfd_got (output_bfd, g);
9419
33bb52fb 9420 /* Set up TLS entries. */
0f20cc35 9421 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9422 tga.info = info;
9423 tga.g = g;
9424 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9425 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9426 if (!tga.g)
9427 return FALSE;
1fd20d70
RS
9428 BFD_ASSERT (g->tls_assigned_gotno
9429 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9430
57093f5e 9431 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9432 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9433 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9434
33bb52fb 9435 /* Allocate room for the TLS relocations. */
ab361d49
RS
9436 if (g->relocs)
9437 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9438 }
b49e97c9 9439
b34976b6 9440 return TRUE;
b49e97c9
TS
9441}
9442
33bb52fb
RS
9443/* Estimate the size of the .MIPS.stubs section. */
9444
9445static void
9446mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9447{
9448 struct mips_elf_link_hash_table *htab;
9449 bfd_size_type dynsymcount;
9450
9451 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9452 BFD_ASSERT (htab != NULL);
9453
33bb52fb
RS
9454 if (htab->lazy_stub_count == 0)
9455 return;
9456
9457 /* IRIX rld assumes that a function stub isn't at the end of the .text
9458 section, so add a dummy entry to the end. */
9459 htab->lazy_stub_count++;
9460
9461 /* Get a worst-case estimate of the number of dynamic symbols needed.
9462 At this point, dynsymcount does not account for section symbols
9463 and count_section_dynsyms may overestimate the number that will
9464 be needed. */
9465 dynsymcount = (elf_hash_table (info)->dynsymcount
9466 + count_section_dynsyms (output_bfd, info));
9467
1bbce132
MR
9468 /* Determine the size of one stub entry. There's no disadvantage
9469 from using microMIPS code here, so for the sake of pure-microMIPS
9470 binaries we prefer it whenever there's any microMIPS code in
9471 output produced at all. This has a benefit of stubs being
833794fc
MR
9472 shorter by 4 bytes each too, unless in the insn32 mode. */
9473 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9474 htab->function_stub_size = (dynsymcount > 0x10000
9475 ? MIPS_FUNCTION_STUB_BIG_SIZE
9476 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9477 else if (htab->insn32)
9478 htab->function_stub_size = (dynsymcount > 0x10000
9479 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9480 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9481 else
9482 htab->function_stub_size = (dynsymcount > 0x10000
9483 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9484 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9485
9486 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9487}
9488
1bbce132
MR
9489/* A mips_elf_link_hash_traverse callback for which DATA points to a
9490 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9491 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9492
9493static bfd_boolean
af924177 9494mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9495{
1bbce132 9496 struct mips_htab_traverse_info *hti = data;
33bb52fb 9497 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9498 struct bfd_link_info *info;
9499 bfd *output_bfd;
9500
9501 info = hti->info;
9502 output_bfd = hti->output_bfd;
9503 htab = mips_elf_hash_table (info);
9504 BFD_ASSERT (htab != NULL);
33bb52fb 9505
33bb52fb
RS
9506 if (h->needs_lazy_stub)
9507 {
1bbce132
MR
9508 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9509 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9510 bfd_vma isa_bit = micromips_p;
9511
9512 BFD_ASSERT (htab->root.dynobj != NULL);
9513 if (h->root.plt.plist == NULL)
9514 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9515 if (h->root.plt.plist == NULL)
9516 {
9517 hti->error = TRUE;
9518 return FALSE;
9519 }
33bb52fb 9520 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9521 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9522 h->root.plt.plist->stub_offset = htab->sstubs->size;
9523 h->root.other = other;
33bb52fb
RS
9524 htab->sstubs->size += htab->function_stub_size;
9525 }
9526 return TRUE;
9527}
9528
9529/* Allocate offsets in the stubs section to each symbol that needs one.
9530 Set the final size of the .MIPS.stub section. */
9531
1bbce132 9532static bfd_boolean
33bb52fb
RS
9533mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9534{
1bbce132
MR
9535 bfd *output_bfd = info->output_bfd;
9536 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9537 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9538 bfd_vma isa_bit = micromips_p;
33bb52fb 9539 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9540 struct mips_htab_traverse_info hti;
9541 struct elf_link_hash_entry *h;
9542 bfd *dynobj;
33bb52fb
RS
9543
9544 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9545 BFD_ASSERT (htab != NULL);
9546
33bb52fb 9547 if (htab->lazy_stub_count == 0)
1bbce132 9548 return TRUE;
33bb52fb
RS
9549
9550 htab->sstubs->size = 0;
1bbce132
MR
9551 hti.info = info;
9552 hti.output_bfd = output_bfd;
9553 hti.error = FALSE;
9554 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9555 if (hti.error)
9556 return FALSE;
33bb52fb
RS
9557 htab->sstubs->size += htab->function_stub_size;
9558 BFD_ASSERT (htab->sstubs->size
9559 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9560
9561 dynobj = elf_hash_table (info)->dynobj;
9562 BFD_ASSERT (dynobj != NULL);
9563 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9564 if (h == NULL)
9565 return FALSE;
9566 h->root.u.def.value = isa_bit;
9567 h->other = other;
9568 h->type = STT_FUNC;
9569
9570 return TRUE;
9571}
9572
9573/* A mips_elf_link_hash_traverse callback for which DATA points to a
9574 bfd_link_info. If H uses the address of a PLT entry as the value
9575 of the symbol, then set the entry in the symbol table now. Prefer
9576 a standard MIPS PLT entry. */
9577
9578static bfd_boolean
9579mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9580{
9581 struct bfd_link_info *info = data;
9582 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9583 struct mips_elf_link_hash_table *htab;
9584 unsigned int other;
9585 bfd_vma isa_bit;
9586 bfd_vma val;
9587
9588 htab = mips_elf_hash_table (info);
9589 BFD_ASSERT (htab != NULL);
9590
9591 if (h->use_plt_entry)
9592 {
9593 BFD_ASSERT (h->root.plt.plist != NULL);
9594 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9595 || h->root.plt.plist->comp_offset != MINUS_ONE);
9596
9597 val = htab->plt_header_size;
9598 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9599 {
9600 isa_bit = 0;
9601 val += h->root.plt.plist->mips_offset;
9602 other = 0;
9603 }
9604 else
9605 {
9606 isa_bit = 1;
9607 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9608 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9609 }
9610 val += isa_bit;
9611 /* For VxWorks, point at the PLT load stub rather than the lazy
07d6d2b8
AM
9612 resolution stub; this stub will become the canonical function
9613 address. */
1bbce132
MR
9614 if (htab->is_vxworks)
9615 val += 8;
9616
ce558b89 9617 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9618 h->root.root.u.def.value = val;
9619 h->root.other = other;
9620 }
9621
9622 return TRUE;
33bb52fb
RS
9623}
9624
b49e97c9
TS
9625/* Set the sizes of the dynamic sections. */
9626
b34976b6 9627bfd_boolean
9719ad41
RS
9628_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9629 struct bfd_link_info *info)
b49e97c9
TS
9630{
9631 bfd *dynobj;
861fb55a 9632 asection *s, *sreldyn;
b34976b6 9633 bfd_boolean reltext;
0a44bf69 9634 struct mips_elf_link_hash_table *htab;
b49e97c9 9635
0a44bf69 9636 htab = mips_elf_hash_table (info);
4dfe6ac6 9637 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9638 dynobj = elf_hash_table (info)->dynobj;
9639 BFD_ASSERT (dynobj != NULL);
9640
9641 if (elf_hash_table (info)->dynamic_sections_created)
9642 {
9643 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9644 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9645 {
3d4d4302 9646 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9647 BFD_ASSERT (s != NULL);
eea6121a 9648 s->size
b49e97c9
TS
9649 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9650 s->contents
9651 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9652 }
861fb55a 9653
1bbce132 9654 /* Figure out the size of the PLT header if we know that we
07d6d2b8
AM
9655 are using it. For the sake of cache alignment always use
9656 a standard header whenever any standard entries are present
9657 even if microMIPS entries are present as well. This also
9658 lets the microMIPS header rely on the value of $v0 only set
9659 by microMIPS entries, for a small size reduction.
1bbce132 9660
07d6d2b8
AM
9661 Set symbol table entry values for symbols that use the
9662 address of their PLT entry now that we can calculate it.
1bbce132 9663
07d6d2b8
AM
9664 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9665 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9666 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9667 {
1bbce132
MR
9668 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9669 && !htab->plt_mips_offset);
9670 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9671 bfd_vma isa_bit = micromips_p;
861fb55a 9672 struct elf_link_hash_entry *h;
1bbce132 9673 bfd_vma size;
861fb55a
DJ
9674
9675 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9676 BFD_ASSERT (htab->root.sgotplt->size == 0);
9677 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9678
0e1862bb 9679 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9680 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9681 else if (htab->is_vxworks)
9682 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9683 else if (ABI_64_P (output_bfd))
9684 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9685 else if (ABI_N32_P (output_bfd))
9686 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9687 else if (!micromips_p)
9688 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9689 else if (htab->insn32)
9690 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9691 else
9692 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9693
1bbce132
MR
9694 htab->plt_header_is_comp = micromips_p;
9695 htab->plt_header_size = size;
ce558b89
AM
9696 htab->root.splt->size = (size
9697 + htab->plt_mips_offset
9698 + htab->plt_comp_offset);
9699 htab->root.sgotplt->size = (htab->plt_got_index
9700 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9701
9702 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9703
9704 if (htab->root.hplt == NULL)
9705 {
ce558b89 9706 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9707 "_PROCEDURE_LINKAGE_TABLE_");
9708 htab->root.hplt = h;
9709 if (h == NULL)
9710 return FALSE;
9711 }
9712
9713 h = htab->root.hplt;
9714 h->root.u.def.value = isa_bit;
9715 h->other = other;
861fb55a
DJ
9716 h->type = STT_FUNC;
9717 }
9718 }
4e41d0d7 9719
9a59ad6b 9720 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9721 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9722
33bb52fb
RS
9723 mips_elf_estimate_stub_size (output_bfd, info);
9724
9725 if (!mips_elf_lay_out_got (output_bfd, info))
9726 return FALSE;
9727
9728 mips_elf_lay_out_lazy_stubs (info);
9729
b49e97c9
TS
9730 /* The check_relocs and adjust_dynamic_symbol entry points have
9731 determined the sizes of the various dynamic sections. Allocate
9732 memory for them. */
b34976b6 9733 reltext = FALSE;
b49e97c9
TS
9734 for (s = dynobj->sections; s != NULL; s = s->next)
9735 {
9736 const char *name;
b49e97c9
TS
9737
9738 /* It's OK to base decisions on the section name, because none
9739 of the dynobj section names depend upon the input files. */
9740 name = bfd_get_section_name (dynobj, s);
9741
9742 if ((s->flags & SEC_LINKER_CREATED) == 0)
9743 continue;
9744
0112cd26 9745 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9746 {
c456f082 9747 if (s->size != 0)
b49e97c9
TS
9748 {
9749 const char *outname;
9750 asection *target;
9751
9752 /* If this relocation section applies to a read only
07d6d2b8
AM
9753 section, then we probably need a DT_TEXTREL entry.
9754 If the relocation section is .rel(a).dyn, we always
9755 assert a DT_TEXTREL entry rather than testing whether
9756 there exists a relocation to a read only section or
9757 not. */
b49e97c9
TS
9758 outname = bfd_get_section_name (output_bfd,
9759 s->output_section);
9760 target = bfd_get_section_by_name (output_bfd, outname + 4);
9761 if ((target != NULL
9762 && (target->flags & SEC_READONLY) != 0
9763 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9764 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9765 reltext = TRUE;
b49e97c9
TS
9766
9767 /* We use the reloc_count field as a counter if we need
9768 to copy relocs into the output file. */
0a44bf69 9769 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9770 s->reloc_count = 0;
f4416af6
AO
9771
9772 /* If combreloc is enabled, elf_link_sort_relocs() will
9773 sort relocations, but in a different way than we do,
9774 and before we're done creating relocations. Also, it
9775 will move them around between input sections'
9776 relocation's contents, so our sorting would be
9777 broken, so don't let it run. */
9778 info->combreloc = 0;
b49e97c9
TS
9779 }
9780 }
0e1862bb 9781 else if (bfd_link_executable (info)
b49e97c9 9782 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9783 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9784 {
5108fc1b 9785 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9786 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9787 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9788 }
9789 else if (SGI_COMPAT (output_bfd)
0112cd26 9790 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9791 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 9792 else if (s == htab->root.splt)
861fb55a
DJ
9793 {
9794 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9795 room for an extra nop to fill the delay slot. This is
9796 for CPUs without load interlocking. */
9797 if (! LOAD_INTERLOCKS_P (output_bfd)
9798 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9799 s->size += 4;
9800 }
0112cd26 9801 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
9802 && s != htab->root.sgot
9803 && s != htab->root.sgotplt
861fb55a 9804 && s != htab->sstubs
5474d94f
AM
9805 && s != htab->root.sdynbss
9806 && s != htab->root.sdynrelro)
b49e97c9
TS
9807 {
9808 /* It's not one of our sections, so don't allocate space. */
9809 continue;
9810 }
9811
c456f082 9812 if (s->size == 0)
b49e97c9 9813 {
8423293d 9814 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9815 continue;
9816 }
9817
c456f082
AM
9818 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9819 continue;
9820
b49e97c9 9821 /* Allocate memory for the section contents. */
eea6121a 9822 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9823 if (s->contents == NULL)
b49e97c9
TS
9824 {
9825 bfd_set_error (bfd_error_no_memory);
b34976b6 9826 return FALSE;
b49e97c9
TS
9827 }
9828 }
9829
9830 if (elf_hash_table (info)->dynamic_sections_created)
9831 {
9832 /* Add some entries to the .dynamic section. We fill in the
9833 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9834 must add the entries now so that we get the correct size for
5750dcec 9835 the .dynamic section. */
af5978fb
RS
9836
9837 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9838 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9839 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9840 may only look at the first one they see. */
0e1862bb 9841 if (!bfd_link_pic (info)
af5978fb
RS
9842 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9843 return FALSE;
b49e97c9 9844
0e1862bb 9845 if (bfd_link_executable (info)
a5499fa4
MF
9846 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9847 return FALSE;
9848
5750dcec
DJ
9849 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9850 used by the debugger. */
0e1862bb 9851 if (bfd_link_executable (info)
5750dcec
DJ
9852 && !SGI_COMPAT (output_bfd)
9853 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9854 return FALSE;
9855
0a44bf69 9856 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9857 info->flags |= DF_TEXTREL;
9858
9859 if ((info->flags & DF_TEXTREL) != 0)
9860 {
9861 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9862 return FALSE;
943284cc
DJ
9863
9864 /* Clear the DF_TEXTREL flag. It will be set again if we
9865 write out an actual text relocation; we may not, because
9866 at this point we do not know whether e.g. any .eh_frame
9867 absolute relocations have been converted to PC-relative. */
9868 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9869 }
9870
9871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9872 return FALSE;
b49e97c9 9873
861fb55a 9874 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9875 if (htab->is_vxworks)
b49e97c9 9876 {
0a44bf69
RS
9877 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9878 use any of the DT_MIPS_* tags. */
861fb55a 9879 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9880 {
9881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9882 return FALSE;
b49e97c9 9883
0a44bf69
RS
9884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9885 return FALSE;
b49e97c9 9886
0a44bf69
RS
9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9888 return FALSE;
9889 }
b49e97c9 9890 }
0a44bf69
RS
9891 else
9892 {
861fb55a 9893 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9894 {
9895 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9896 return FALSE;
b49e97c9 9897
0a44bf69
RS
9898 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9899 return FALSE;
b49e97c9 9900
0a44bf69
RS
9901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9902 return FALSE;
9903 }
b49e97c9 9904
0a44bf69
RS
9905 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9906 return FALSE;
b49e97c9 9907
0a44bf69
RS
9908 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9909 return FALSE;
b49e97c9 9910
0a44bf69
RS
9911 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9912 return FALSE;
b49e97c9 9913
0a44bf69
RS
9914 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9915 return FALSE;
b49e97c9 9916
0a44bf69
RS
9917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9918 return FALSE;
b49e97c9 9919
0a44bf69
RS
9920 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9921 return FALSE;
b49e97c9 9922
0a44bf69
RS
9923 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9924 return FALSE;
9925
9926 if (IRIX_COMPAT (dynobj) == ict_irix5
9927 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9928 return FALSE;
9929
9930 if (IRIX_COMPAT (dynobj) == ict_irix6
9931 && (bfd_get_section_by_name
af0edeb8 9932 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9933 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9934 return FALSE;
9935 }
ce558b89 9936 if (htab->root.splt->size > 0)
861fb55a
DJ
9937 {
9938 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9939 return FALSE;
9940
9941 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9942 return FALSE;
9943
9944 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9945 return FALSE;
9946
9947 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9948 return FALSE;
9949 }
7a2b07ff
NS
9950 if (htab->is_vxworks
9951 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9952 return FALSE;
b49e97c9
TS
9953 }
9954
b34976b6 9955 return TRUE;
b49e97c9
TS
9956}
9957\f
81d43bff
RS
9958/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9959 Adjust its R_ADDEND field so that it is correct for the output file.
9960 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9961 and sections respectively; both use symbol indexes. */
9962
9963static void
9964mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9965 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9966 asection **local_sections, Elf_Internal_Rela *rel)
9967{
9968 unsigned int r_type, r_symndx;
9969 Elf_Internal_Sym *sym;
9970 asection *sec;
9971
020d7251 9972 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9973 {
9974 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9975 if (gprel16_reloc_p (r_type)
81d43bff 9976 || r_type == R_MIPS_GPREL32
df58fc94 9977 || literal_reloc_p (r_type))
81d43bff
RS
9978 {
9979 rel->r_addend += _bfd_get_gp_value (input_bfd);
9980 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9981 }
9982
9983 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9984 sym = local_syms + r_symndx;
9985
9986 /* Adjust REL's addend to account for section merging. */
0e1862bb 9987 if (!bfd_link_relocatable (info))
81d43bff
RS
9988 {
9989 sec = local_sections[r_symndx];
9990 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9991 }
9992
9993 /* This would normally be done by the rela_normal code in elflink.c. */
9994 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9995 rel->r_addend += local_sections[r_symndx]->output_offset;
9996 }
9997}
9998
545fd46b
MR
9999/* Handle relocations against symbols from removed linkonce sections,
10000 or sections discarded by a linker script. We use this wrapper around
10001 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10002 on 64-bit ELF targets. In this case for any relocation handled, which
10003 always be the first in a triplet, the remaining two have to be processed
10004 together with the first, even if they are R_MIPS_NONE. It is the symbol
10005 index referred by the first reloc that applies to all the three and the
10006 remaining two never refer to an object symbol. And it is the final
10007 relocation (the last non-null one) that determines the output field of
10008 the whole relocation so retrieve the corresponding howto structure for
10009 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10010
10011 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10012 and therefore requires to be pasted in a loop. It also defines a block
10013 and does not protect any of its arguments, hence the extra brackets. */
10014
10015static void
10016mips_reloc_against_discarded_section (bfd *output_bfd,
10017 struct bfd_link_info *info,
10018 bfd *input_bfd, asection *input_section,
10019 Elf_Internal_Rela **rel,
10020 const Elf_Internal_Rela **relend,
10021 bfd_boolean rel_reloc,
10022 reloc_howto_type *howto,
10023 bfd_byte *contents)
10024{
10025 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10026 int count = bed->s->int_rels_per_ext_rel;
10027 unsigned int r_type;
10028 int i;
10029
10030 for (i = count - 1; i > 0; i--)
10031 {
10032 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10033 if (r_type != R_MIPS_NONE)
10034 {
10035 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10036 break;
10037 }
10038 }
10039 do
10040 {
10041 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10042 (*rel), count, (*relend),
10043 howto, i, contents);
10044 }
10045 while (0);
10046}
10047
b49e97c9
TS
10048/* Relocate a MIPS ELF section. */
10049
b34976b6 10050bfd_boolean
9719ad41
RS
10051_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10052 bfd *input_bfd, asection *input_section,
10053 bfd_byte *contents, Elf_Internal_Rela *relocs,
10054 Elf_Internal_Sym *local_syms,
10055 asection **local_sections)
b49e97c9
TS
10056{
10057 Elf_Internal_Rela *rel;
10058 const Elf_Internal_Rela *relend;
10059 bfd_vma addend = 0;
b34976b6 10060 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9 10061
056bafd4 10062 relend = relocs + input_section->reloc_count;
b49e97c9
TS
10063 for (rel = relocs; rel < relend; ++rel)
10064 {
10065 const char *name;
c9adbffe 10066 bfd_vma value = 0;
b49e97c9 10067 reloc_howto_type *howto;
ad3d9127 10068 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10069 /* TRUE if the relocation is a RELA relocation, rather than a
07d6d2b8 10070 REL relocation. */
b34976b6 10071 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10072 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10073 const char *msg;
ab96bf03
AM
10074 unsigned long r_symndx;
10075 asection *sec;
749b8d9d
L
10076 Elf_Internal_Shdr *symtab_hdr;
10077 struct elf_link_hash_entry *h;
d4730f92 10078 bfd_boolean rel_reloc;
b49e97c9 10079
d4730f92
BS
10080 rel_reloc = (NEWABI_P (input_bfd)
10081 && mips_elf_rel_relocation_p (input_bfd, input_section,
10082 relocs, rel));
b49e97c9 10083 /* Find the relocation howto for this relocation. */
d4730f92 10084 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10085
10086 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10087 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10088 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10089 {
10090 sec = local_sections[r_symndx];
10091 h = NULL;
10092 }
ab96bf03
AM
10093 else
10094 {
ab96bf03 10095 unsigned long extsymoff;
ab96bf03 10096
ab96bf03
AM
10097 extsymoff = 0;
10098 if (!elf_bad_symtab (input_bfd))
10099 extsymoff = symtab_hdr->sh_info;
10100 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10101 while (h->root.type == bfd_link_hash_indirect
10102 || h->root.type == bfd_link_hash_warning)
10103 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10104
10105 sec = NULL;
10106 if (h->root.type == bfd_link_hash_defined
10107 || h->root.type == bfd_link_hash_defweak)
10108 sec = h->root.u.def.section;
10109 }
10110
dbaa2011 10111 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10112 {
10113 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10114 input_section, &rel, &relend,
10115 rel_reloc, howto, contents);
10116 continue;
10117 }
ab96bf03 10118
4a14403c 10119 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10120 {
10121 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10122 64-bit code, but make sure all their addresses are in the
10123 lowermost or uppermost 32-bit section of the 64-bit address
10124 space. Thus, when they use an R_MIPS_64 they mean what is
10125 usually meant by R_MIPS_32, with the exception that the
10126 stored value is sign-extended to 64 bits. */
b34976b6 10127 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10128
10129 /* On big-endian systems, we need to lie about the position
10130 of the reloc. */
10131 if (bfd_big_endian (input_bfd))
10132 rel->r_offset += 4;
10133 }
b49e97c9
TS
10134
10135 if (!use_saved_addend_p)
10136 {
b49e97c9
TS
10137 /* If these relocations were originally of the REL variety,
10138 we must pull the addend out of the field that will be
10139 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10140 RELA relocation. */
10141 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10142 relocs, rel))
b49e97c9 10143 {
b34976b6 10144 rela_relocation_p = FALSE;
c224138d
RS
10145 addend = mips_elf_read_rel_addend (input_bfd, rel,
10146 howto, contents);
738e5348
RS
10147 if (hi16_reloc_p (r_type)
10148 || (got16_reloc_p (r_type)
b49e97c9 10149 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10150 local_sections)))
b49e97c9 10151 {
c224138d
RS
10152 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10153 contents, &addend))
749b8d9d 10154 {
749b8d9d
L
10155 if (h)
10156 name = h->root.root.string;
10157 else
10158 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10159 local_syms + r_symndx,
10160 sec);
4eca0228 10161 _bfd_error_handler
695344c0 10162 /* xgettext:c-format */
2c1c9679 10163 (_("%pB: can't find matching LO16 reloc against `%s'"
2dcf00ce 10164 " for %s at %#" PRIx64 " in section `%pA'"),
c08bb8dd 10165 input_bfd, name,
2dcf00ce 10166 howto->name, (uint64_t) rel->r_offset, input_section);
749b8d9d 10167 }
b49e97c9 10168 }
30ac9238
RS
10169 else
10170 addend <<= howto->rightshift;
b49e97c9
TS
10171 }
10172 else
10173 addend = rel->r_addend;
81d43bff
RS
10174 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10175 local_syms, local_sections, rel);
b49e97c9
TS
10176 }
10177
0e1862bb 10178 if (bfd_link_relocatable (info))
b49e97c9 10179 {
4a14403c 10180 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10181 && bfd_big_endian (input_bfd))
10182 rel->r_offset -= 4;
10183
81d43bff 10184 if (!rela_relocation_p && rel->r_addend)
5a659663 10185 {
81d43bff 10186 addend += rel->r_addend;
738e5348 10187 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10188 addend = mips_elf_high (addend);
10189 else if (r_type == R_MIPS_HIGHER)
10190 addend = mips_elf_higher (addend);
10191 else if (r_type == R_MIPS_HIGHEST)
10192 addend = mips_elf_highest (addend);
30ac9238
RS
10193 else
10194 addend >>= howto->rightshift;
b49e97c9 10195
30ac9238
RS
10196 /* We use the source mask, rather than the destination
10197 mask because the place to which we are writing will be
10198 source of the addend in the final link. */
b49e97c9
TS
10199 addend &= howto->src_mask;
10200
5a659663 10201 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10202 /* See the comment above about using R_MIPS_64 in the 32-bit
10203 ABI. Here, we need to update the addend. It would be
10204 possible to get away with just using the R_MIPS_32 reloc
10205 but for endianness. */
10206 {
10207 bfd_vma sign_bits;
10208 bfd_vma low_bits;
10209 bfd_vma high_bits;
10210
10211 if (addend & ((bfd_vma) 1 << 31))
10212#ifdef BFD64
10213 sign_bits = ((bfd_vma) 1 << 32) - 1;
10214#else
10215 sign_bits = -1;
10216#endif
10217 else
10218 sign_bits = 0;
10219
10220 /* If we don't know that we have a 64-bit type,
10221 do two separate stores. */
10222 if (bfd_big_endian (input_bfd))
10223 {
10224 /* Store the sign-bits (which are most significant)
10225 first. */
10226 low_bits = sign_bits;
10227 high_bits = addend;
10228 }
10229 else
10230 {
10231 low_bits = addend;
10232 high_bits = sign_bits;
10233 }
10234 bfd_put_32 (input_bfd, low_bits,
10235 contents + rel->r_offset);
10236 bfd_put_32 (input_bfd, high_bits,
10237 contents + rel->r_offset + 4);
10238 continue;
10239 }
10240
10241 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10242 input_bfd, input_section,
b34976b6
AM
10243 contents, FALSE))
10244 return FALSE;
b49e97c9
TS
10245 }
10246
10247 /* Go on to the next relocation. */
10248 continue;
10249 }
10250
10251 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10252 relocations for the same offset. In that case we are
10253 supposed to treat the output of each relocation as the addend
10254 for the next. */
10255 if (rel + 1 < relend
10256 && rel->r_offset == rel[1].r_offset
10257 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10258 use_saved_addend_p = TRUE;
b49e97c9 10259 else
b34976b6 10260 use_saved_addend_p = FALSE;
b49e97c9
TS
10261
10262 /* Figure out what value we are supposed to relocate. */
10263 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10264 input_section, info, rel,
10265 addend, howto, local_syms,
10266 local_sections, &value,
38a7df63 10267 &name, &cross_mode_jump_p,
bce03d3d 10268 use_saved_addend_p))
b49e97c9
TS
10269 {
10270 case bfd_reloc_continue:
10271 /* There's nothing to do. */
10272 continue;
10273
10274 case bfd_reloc_undefined:
10275 /* mips_elf_calculate_relocation already called the
10276 undefined_symbol callback. There's no real point in
10277 trying to perform the relocation at this point, so we
10278 just skip ahead to the next relocation. */
10279 continue;
10280
10281 case bfd_reloc_notsupported:
10282 msg = _("internal error: unsupported relocation error");
10283 info->callbacks->warning
10284 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10285 return FALSE;
b49e97c9
TS
10286
10287 case bfd_reloc_overflow:
10288 if (use_saved_addend_p)
10289 /* Ignore overflow until we reach the last relocation for
10290 a given location. */
10291 ;
10292 else
10293 {
0e53d9da
AN
10294 struct mips_elf_link_hash_table *htab;
10295
10296 htab = mips_elf_hash_table (info);
4dfe6ac6 10297 BFD_ASSERT (htab != NULL);
b49e97c9 10298 BFD_ASSERT (name != NULL);
0e53d9da 10299 if (!htab->small_data_overflow_reported
9684f078 10300 && (gprel16_reloc_p (howto->type)
df58fc94 10301 || literal_reloc_p (howto->type)))
0e53d9da 10302 {
91d6fa6a
NC
10303 msg = _("small-data section exceeds 64KB;"
10304 " lower small-data size limit (see option -G)");
0e53d9da
AN
10305
10306 htab->small_data_overflow_reported = TRUE;
10307 (*info->callbacks->einfo) ("%P: %s\n", msg);
10308 }
1a72702b
AM
10309 (*info->callbacks->reloc_overflow)
10310 (info, NULL, name, howto->name, (bfd_vma) 0,
10311 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10312 }
10313 break;
10314
10315 case bfd_reloc_ok:
10316 break;
10317
df58fc94 10318 case bfd_reloc_outofrange:
7db9a74e 10319 msg = NULL;
df58fc94 10320 if (jal_reloc_p (howto->type))
9d862524 10321 msg = (cross_mode_jump_p
2c1c9679 10322 ? _("cannot convert a jump to JALX "
9d862524
MR
10323 "for a non-word-aligned address")
10324 : (howto->type == R_MIPS16_26
2c1c9679
AM
10325 ? _("jump to a non-word-aligned address")
10326 : _("jump to a non-instruction-aligned address")));
99aefae6 10327 else if (b_reloc_p (howto->type))
a6ebf616 10328 msg = (cross_mode_jump_p
2c1c9679 10329 ? _("cannot convert a branch to JALX "
a6ebf616 10330 "for a non-word-aligned address")
2c1c9679 10331 : _("branch to a non-instruction-aligned address"));
7db9a74e
MR
10332 else if (aligned_pcrel_reloc_p (howto->type))
10333 msg = _("PC-relative load from unaligned address");
10334 if (msg)
df58fc94 10335 {
de341542 10336 info->callbacks->einfo
ed53407e
MR
10337 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10338 break;
7361da2c 10339 }
df58fc94
RS
10340 /* Fall through. */
10341
b49e97c9
TS
10342 default:
10343 abort ();
10344 break;
10345 }
10346
10347 /* If we've got another relocation for the address, keep going
10348 until we reach the last one. */
10349 if (use_saved_addend_p)
10350 {
10351 addend = value;
10352 continue;
10353 }
10354
4a14403c 10355 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10356 /* See the comment above about using R_MIPS_64 in the 32-bit
10357 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10358 that calculated the right value. Now, however, we
10359 sign-extend the 32-bit result to 64-bits, and store it as a
10360 64-bit value. We are especially generous here in that we
10361 go to extreme lengths to support this usage on systems with
10362 only a 32-bit VMA. */
10363 {
10364 bfd_vma sign_bits;
10365 bfd_vma low_bits;
10366 bfd_vma high_bits;
10367
10368 if (value & ((bfd_vma) 1 << 31))
10369#ifdef BFD64
10370 sign_bits = ((bfd_vma) 1 << 32) - 1;
10371#else
10372 sign_bits = -1;
10373#endif
10374 else
10375 sign_bits = 0;
10376
10377 /* If we don't know that we have a 64-bit type,
10378 do two separate stores. */
10379 if (bfd_big_endian (input_bfd))
10380 {
10381 /* Undo what we did above. */
10382 rel->r_offset -= 4;
10383 /* Store the sign-bits (which are most significant)
10384 first. */
10385 low_bits = sign_bits;
10386 high_bits = value;
10387 }
10388 else
10389 {
10390 low_bits = value;
10391 high_bits = sign_bits;
10392 }
10393 bfd_put_32 (input_bfd, low_bits,
10394 contents + rel->r_offset);
10395 bfd_put_32 (input_bfd, high_bits,
10396 contents + rel->r_offset + 4);
10397 continue;
10398 }
10399
10400 /* Actually perform the relocation. */
10401 if (! mips_elf_perform_relocation (info, howto, rel, value,
10402 input_bfd, input_section,
38a7df63 10403 contents, cross_mode_jump_p))
b34976b6 10404 return FALSE;
b49e97c9
TS
10405 }
10406
b34976b6 10407 return TRUE;
b49e97c9
TS
10408}
10409\f
861fb55a
DJ
10410/* A function that iterates over each entry in la25_stubs and fills
10411 in the code for each one. DATA points to a mips_htab_traverse_info. */
10412
10413static int
10414mips_elf_create_la25_stub (void **slot, void *data)
10415{
10416 struct mips_htab_traverse_info *hti;
10417 struct mips_elf_link_hash_table *htab;
10418 struct mips_elf_la25_stub *stub;
10419 asection *s;
10420 bfd_byte *loc;
10421 bfd_vma offset, target, target_high, target_low;
10422
10423 stub = (struct mips_elf_la25_stub *) *slot;
10424 hti = (struct mips_htab_traverse_info *) data;
10425 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10426 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10427
10428 /* Create the section contents, if we haven't already. */
10429 s = stub->stub_section;
10430 loc = s->contents;
10431 if (loc == NULL)
10432 {
10433 loc = bfd_malloc (s->size);
10434 if (loc == NULL)
10435 {
10436 hti->error = TRUE;
10437 return FALSE;
10438 }
10439 s->contents = loc;
10440 }
10441
10442 /* Work out where in the section this stub should go. */
10443 offset = stub->offset;
10444
10445 /* Work out the target address. */
8f0c309a
CLT
10446 target = mips_elf_get_la25_target (stub, &s);
10447 target += s->output_section->vma + s->output_offset;
10448
861fb55a
DJ
10449 target_high = ((target + 0x8000) >> 16) & 0xffff;
10450 target_low = (target & 0xffff);
10451
10452 if (stub->stub_section != htab->strampoline)
10453 {
df58fc94 10454 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10455 of the section and write the two instructions at the end. */
10456 memset (loc, 0, offset);
10457 loc += offset;
df58fc94
RS
10458 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10459 {
d21911ea
MR
10460 bfd_put_micromips_32 (hti->output_bfd,
10461 LA25_LUI_MICROMIPS (target_high),
10462 loc);
10463 bfd_put_micromips_32 (hti->output_bfd,
10464 LA25_ADDIU_MICROMIPS (target_low),
10465 loc + 4);
df58fc94
RS
10466 }
10467 else
10468 {
10469 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10470 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10471 }
861fb55a
DJ
10472 }
10473 else
10474 {
10475 /* This is trampoline. */
10476 loc += offset;
df58fc94
RS
10477 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10478 {
d21911ea
MR
10479 bfd_put_micromips_32 (hti->output_bfd,
10480 LA25_LUI_MICROMIPS (target_high), loc);
10481 bfd_put_micromips_32 (hti->output_bfd,
10482 LA25_J_MICROMIPS (target), loc + 4);
10483 bfd_put_micromips_32 (hti->output_bfd,
10484 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10485 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10486 }
10487 else
10488 {
10489 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10490 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10491 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10492 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10493 }
861fb55a
DJ
10494 }
10495 return TRUE;
10496}
10497
b49e97c9
TS
10498/* If NAME is one of the special IRIX6 symbols defined by the linker,
10499 adjust it appropriately now. */
10500
10501static void
9719ad41
RS
10502mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10503 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10504{
10505 /* The linker script takes care of providing names and values for
10506 these, but we must place them into the right sections. */
10507 static const char* const text_section_symbols[] = {
10508 "_ftext",
10509 "_etext",
10510 "__dso_displacement",
10511 "__elf_header",
10512 "__program_header_table",
10513 NULL
10514 };
10515
10516 static const char* const data_section_symbols[] = {
10517 "_fdata",
10518 "_edata",
10519 "_end",
10520 "_fbss",
10521 NULL
10522 };
10523
10524 const char* const *p;
10525 int i;
10526
10527 for (i = 0; i < 2; ++i)
10528 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10529 *p;
10530 ++p)
10531 if (strcmp (*p, name) == 0)
10532 {
10533 /* All of these symbols are given type STT_SECTION by the
10534 IRIX6 linker. */
10535 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10536 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10537
10538 /* The IRIX linker puts these symbols in special sections. */
10539 if (i == 0)
10540 sym->st_shndx = SHN_MIPS_TEXT;
10541 else
10542 sym->st_shndx = SHN_MIPS_DATA;
10543
10544 break;
10545 }
10546}
10547
10548/* Finish up dynamic symbol handling. We set the contents of various
10549 dynamic sections here. */
10550
b34976b6 10551bfd_boolean
9719ad41
RS
10552_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10553 struct bfd_link_info *info,
10554 struct elf_link_hash_entry *h,
10555 Elf_Internal_Sym *sym)
b49e97c9
TS
10556{
10557 bfd *dynobj;
b49e97c9 10558 asection *sgot;
f4416af6 10559 struct mips_got_info *g, *gg;
b49e97c9 10560 const char *name;
3d6746ca 10561 int idx;
5108fc1b 10562 struct mips_elf_link_hash_table *htab;
738e5348 10563 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10564
5108fc1b 10565 htab = mips_elf_hash_table (info);
4dfe6ac6 10566 BFD_ASSERT (htab != NULL);
b49e97c9 10567 dynobj = elf_hash_table (info)->dynobj;
738e5348 10568 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10569
861fb55a
DJ
10570 BFD_ASSERT (!htab->is_vxworks);
10571
1bbce132
MR
10572 if (h->plt.plist != NULL
10573 && (h->plt.plist->mips_offset != MINUS_ONE
10574 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10575 {
10576 /* We've decided to create a PLT entry for this symbol. */
10577 bfd_byte *loc;
1bbce132 10578 bfd_vma header_address, got_address;
861fb55a 10579 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10580 bfd_vma got_index;
10581 bfd_vma isa_bit;
10582
10583 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10584
10585 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10586 BFD_ASSERT (h->dynindx != -1);
ce558b89 10587 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10588 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10589 BFD_ASSERT (!h->def_regular);
10590
10591 /* Calculate the address of the PLT header. */
1bbce132 10592 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10593 header_address = (htab->root.splt->output_section->vma
10594 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10595
10596 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10597 got_address = (htab->root.sgotplt->output_section->vma
10598 + htab->root.sgotplt->output_offset
1bbce132
MR
10599 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10600
861fb55a
DJ
10601 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10602 got_address_low = got_address & 0xffff;
10603
10604 /* Initially point the .got.plt entry at the PLT header. */
ce558b89 10605 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10606 if (ABI_64_P (output_bfd))
10607 bfd_put_64 (output_bfd, header_address, loc);
10608 else
10609 bfd_put_32 (output_bfd, header_address, loc);
10610
1bbce132 10611 /* Now handle the PLT itself. First the standard entry (the order
07d6d2b8 10612 does not matter, we just have to pick one). */
1bbce132
MR
10613 if (h->plt.plist->mips_offset != MINUS_ONE)
10614 {
10615 const bfd_vma *plt_entry;
10616 bfd_vma plt_offset;
861fb55a 10617
1bbce132 10618 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10619
ce558b89 10620 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10621
1bbce132 10622 /* Find out where the .plt entry should go. */
ce558b89 10623 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10624
10625 /* Pick the load opcode. */
10626 load = MIPS_ELF_LOAD_WORD (output_bfd);
10627
10628 /* Fill in the PLT entry itself. */
7361da2c
AB
10629
10630 if (MIPSR6_P (output_bfd))
10631 plt_entry = mipsr6_exec_plt_entry;
10632 else
10633 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10634 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10635 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10636 loc + 4);
10637
10638 if (! LOAD_INTERLOCKS_P (output_bfd))
10639 {
10640 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10641 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10642 }
10643 else
10644 {
10645 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10646 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10647 loc + 12);
10648 }
6d30f5b2 10649 }
1bbce132
MR
10650
10651 /* Now the compressed entry. They come after any standard ones. */
10652 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10653 {
1bbce132
MR
10654 bfd_vma plt_offset;
10655
10656 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10657 + h->plt.plist->comp_offset);
10658
ce558b89 10659 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10660
10661 /* Find out where the .plt entry should go. */
ce558b89 10662 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10663
10664 /* Fill in the PLT entry itself. */
833794fc
MR
10665 if (!MICROMIPS_P (output_bfd))
10666 {
10667 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10668
10669 bfd_put_16 (output_bfd, plt_entry[0], loc);
10670 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10671 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10672 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10673 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10674 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10675 bfd_put_32 (output_bfd, got_address, loc + 12);
10676 }
10677 else if (htab->insn32)
10678 {
10679 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10680
10681 bfd_put_16 (output_bfd, plt_entry[0], loc);
10682 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10683 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10684 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10685 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10686 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10687 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10688 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10689 }
10690 else
1bbce132
MR
10691 {
10692 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10693 bfd_signed_vma gotpc_offset;
10694 bfd_vma loc_address;
10695
10696 BFD_ASSERT (got_address % 4 == 0);
10697
ce558b89
AM
10698 loc_address = (htab->root.splt->output_section->vma
10699 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
10700 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10701
10702 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10703 if (gotpc_offset + 0x1000000 >= 0x2000000)
10704 {
4eca0228 10705 _bfd_error_handler
695344c0 10706 /* xgettext:c-format */
2dcf00ce 10707 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
1bbce132
MR
10708 "beyond the range of ADDIUPC"),
10709 output_bfd,
ce558b89 10710 htab->root.sgotplt->output_section,
2dcf00ce 10711 (int64_t) gotpc_offset,
c08bb8dd 10712 htab->root.splt->output_section);
1bbce132
MR
10713 bfd_set_error (bfd_error_no_error);
10714 return FALSE;
10715 }
10716 bfd_put_16 (output_bfd,
10717 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10718 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10719 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10720 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10721 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10722 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10723 }
6d30f5b2 10724 }
861fb55a
DJ
10725
10726 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 10727 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 10728 got_index - 2, h->dynindx,
861fb55a
DJ
10729 R_MIPS_JUMP_SLOT, got_address);
10730
10731 /* We distinguish between PLT entries and lazy-binding stubs by
10732 giving the former an st_other value of STO_MIPS_PLT. Set the
10733 flag and leave the value if there are any relocations in the
10734 binary where pointer equality matters. */
10735 sym->st_shndx = SHN_UNDEF;
10736 if (h->pointer_equality_needed)
1bbce132 10737 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 10738 else
1bbce132
MR
10739 {
10740 sym->st_value = 0;
10741 sym->st_other = 0;
10742 }
861fb55a 10743 }
1bbce132
MR
10744
10745 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 10746 {
861fb55a 10747 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
10748 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10749 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10750 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 10751 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
10752 bfd_vma isa_bit = micromips_p;
10753 bfd_vma stub_big_size;
10754
833794fc 10755 if (!micromips_p)
1bbce132 10756 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
10757 else if (htab->insn32)
10758 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10759 else
10760 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
10761
10762 /* This symbol has a stub. Set it up. */
10763
10764 BFD_ASSERT (h->dynindx != -1);
10765
1bbce132 10766 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
10767
10768 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10769 sign extension at runtime in the stub, resulting in a negative
10770 index value. */
10771 if (h->dynindx & ~0x7fffffff)
b34976b6 10772 return FALSE;
b49e97c9
TS
10773
10774 /* Fill the stub. */
1bbce132
MR
10775 if (micromips_p)
10776 {
10777 idx = 0;
10778 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10779 stub + idx);
10780 idx += 4;
833794fc
MR
10781 if (htab->insn32)
10782 {
10783 bfd_put_micromips_32 (output_bfd,
40fc1451 10784 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
10785 idx += 4;
10786 }
10787 else
10788 {
10789 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10790 idx += 2;
10791 }
1bbce132
MR
10792 if (stub_size == stub_big_size)
10793 {
10794 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10795
10796 bfd_put_micromips_32 (output_bfd,
10797 STUB_LUI_MICROMIPS (dynindx_hi),
10798 stub + idx);
10799 idx += 4;
10800 }
833794fc
MR
10801 if (htab->insn32)
10802 {
10803 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10804 stub + idx);
10805 idx += 4;
10806 }
10807 else
10808 {
10809 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10810 idx += 2;
10811 }
1bbce132
MR
10812
10813 /* If a large stub is not required and sign extension is not a
10814 problem, then use legacy code in the stub. */
10815 if (stub_size == stub_big_size)
10816 bfd_put_micromips_32 (output_bfd,
10817 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10818 stub + idx);
10819 else if (h->dynindx & ~0x7fff)
10820 bfd_put_micromips_32 (output_bfd,
10821 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10822 stub + idx);
10823 else
10824 bfd_put_micromips_32 (output_bfd,
10825 STUB_LI16S_MICROMIPS (output_bfd,
10826 h->dynindx),
10827 stub + idx);
10828 }
3d6746ca 10829 else
1bbce132
MR
10830 {
10831 idx = 0;
10832 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10833 idx += 4;
40fc1451 10834 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
10835 idx += 4;
10836 if (stub_size == stub_big_size)
10837 {
10838 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10839 stub + idx);
10840 idx += 4;
10841 }
10842 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10843 idx += 4;
10844
10845 /* If a large stub is not required and sign extension is not a
10846 problem, then use legacy code in the stub. */
10847 if (stub_size == stub_big_size)
10848 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10849 stub + idx);
10850 else if (h->dynindx & ~0x7fff)
10851 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10852 stub + idx);
10853 else
10854 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10855 stub + idx);
10856 }
5108fc1b 10857
1bbce132
MR
10858 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10859 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10860 stub, stub_size);
b49e97c9 10861
1bbce132 10862 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
10863 only for the referenced symbol. */
10864 sym->st_shndx = SHN_UNDEF;
10865
10866 /* The run-time linker uses the st_value field of the symbol
10867 to reset the global offset table entry for this external
10868 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10869 sym->st_value = (htab->sstubs->output_section->vma
10870 + htab->sstubs->output_offset
1bbce132
MR
10871 + h->plt.plist->stub_offset
10872 + isa_bit);
10873 sym->st_other = other;
b49e97c9
TS
10874 }
10875
738e5348
RS
10876 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10877 refer to the stub, since only the stub uses the standard calling
10878 conventions. */
10879 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10880 {
10881 BFD_ASSERT (hmips->need_fn_stub);
10882 sym->st_value = (hmips->fn_stub->output_section->vma
10883 + hmips->fn_stub->output_offset);
10884 sym->st_size = hmips->fn_stub->size;
10885 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10886 }
10887
b49e97c9 10888 BFD_ASSERT (h->dynindx != -1
f5385ebf 10889 || h->forced_local);
b49e97c9 10890
ce558b89 10891 sgot = htab->root.sgot;
a8028dd0 10892 g = htab->got_info;
b49e97c9
TS
10893 BFD_ASSERT (g != NULL);
10894
10895 /* Run through the global symbol table, creating GOT entries for all
10896 the symbols that need them. */
020d7251 10897 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
10898 {
10899 bfd_vma offset;
10900 bfd_vma value;
10901
6eaa6adc 10902 value = sym->st_value;
13fbec83 10903 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
10904 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10905 }
10906
e641e783 10907 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
10908 {
10909 struct mips_got_entry e, *p;
0626d451 10910 bfd_vma entry;
f4416af6 10911 bfd_vma offset;
f4416af6
AO
10912
10913 gg = g;
10914
10915 e.abfd = output_bfd;
10916 e.symndx = -1;
738e5348 10917 e.d.h = hmips;
9ab066b4 10918 e.tls_type = GOT_TLS_NONE;
143d77c5 10919
f4416af6
AO
10920 for (g = g->next; g->next != gg; g = g->next)
10921 {
10922 if (g->got_entries
10923 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10924 &e)))
10925 {
10926 offset = p->gotidx;
ce558b89 10927 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 10928 if (bfd_link_pic (info)
0626d451
RS
10929 || (elf_hash_table (info)->dynamic_sections_created
10930 && p->d.h != NULL
f5385ebf
AM
10931 && p->d.h->root.def_dynamic
10932 && !p->d.h->root.def_regular))
0626d451
RS
10933 {
10934 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10935 the various compatibility problems, it's easier to mock
10936 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10937 mips_elf_create_dynamic_relocation to calculate the
10938 appropriate addend. */
10939 Elf_Internal_Rela rel[3];
10940
10941 memset (rel, 0, sizeof (rel));
10942 if (ABI_64_P (output_bfd))
10943 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10944 else
10945 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10946 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10947
10948 entry = 0;
10949 if (! (mips_elf_create_dynamic_relocation
10950 (output_bfd, info, rel,
10951 e.d.h, NULL, sym->st_value, &entry, sgot)))
10952 return FALSE;
10953 }
10954 else
10955 entry = sym->st_value;
10956 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10957 }
10958 }
10959 }
10960
b49e97c9
TS
10961 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10962 name = h->root.root.string;
9637f6ef 10963 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10964 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10965 sym->st_shndx = SHN_ABS;
10966 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10967 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10968 {
10969 sym->st_shndx = SHN_ABS;
10970 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10971 sym->st_value = 1;
10972 }
b49e97c9
TS
10973 else if (SGI_COMPAT (output_bfd))
10974 {
10975 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10976 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10977 {
10978 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10979 sym->st_other = STO_PROTECTED;
10980 sym->st_value = 0;
10981 sym->st_shndx = SHN_MIPS_DATA;
10982 }
10983 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10984 {
10985 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10986 sym->st_other = STO_PROTECTED;
10987 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10988 sym->st_shndx = SHN_ABS;
10989 }
10990 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10991 {
10992 if (h->type == STT_FUNC)
10993 sym->st_shndx = SHN_MIPS_TEXT;
10994 else if (h->type == STT_OBJECT)
10995 sym->st_shndx = SHN_MIPS_DATA;
10996 }
10997 }
10998
861fb55a
DJ
10999 /* Emit a copy reloc, if needed. */
11000 if (h->needs_copy)
11001 {
11002 asection *s;
11003 bfd_vma symval;
11004
11005 BFD_ASSERT (h->dynindx != -1);
11006 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11007
11008 s = mips_elf_rel_dyn_section (info, FALSE);
11009 symval = (h->root.u.def.section->output_section->vma
11010 + h->root.u.def.section->output_offset
11011 + h->root.u.def.value);
11012 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11013 h->dynindx, R_MIPS_COPY, symval);
11014 }
11015
b49e97c9
TS
11016 /* Handle the IRIX6-specific symbols. */
11017 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11018 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11019
cbf8d970
MR
11020 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11021 to treat compressed symbols like any other. */
30c09090 11022 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11023 {
11024 BFD_ASSERT (sym->st_value & 1);
11025 sym->st_other -= STO_MIPS16;
11026 }
cbf8d970
MR
11027 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11028 {
11029 BFD_ASSERT (sym->st_value & 1);
11030 sym->st_other -= STO_MICROMIPS;
11031 }
b49e97c9 11032
b34976b6 11033 return TRUE;
b49e97c9
TS
11034}
11035
0a44bf69
RS
11036/* Likewise, for VxWorks. */
11037
11038bfd_boolean
11039_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11040 struct bfd_link_info *info,
11041 struct elf_link_hash_entry *h,
11042 Elf_Internal_Sym *sym)
11043{
11044 bfd *dynobj;
11045 asection *sgot;
11046 struct mips_got_info *g;
11047 struct mips_elf_link_hash_table *htab;
020d7251 11048 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11049
11050 htab = mips_elf_hash_table (info);
4dfe6ac6 11051 BFD_ASSERT (htab != NULL);
0a44bf69 11052 dynobj = elf_hash_table (info)->dynobj;
020d7251 11053 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11054
1bbce132 11055 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11056 {
6d79d2ed 11057 bfd_byte *loc;
1bbce132 11058 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11059 Elf_Internal_Rela rel;
11060 static const bfd_vma *plt_entry;
1bbce132
MR
11061 bfd_vma gotplt_index;
11062 bfd_vma plt_offset;
11063
11064 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11065 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11066
11067 BFD_ASSERT (h->dynindx != -1);
ce558b89 11068 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11069 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11070 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11071
11072 /* Calculate the address of the .plt entry. */
ce558b89
AM
11073 plt_address = (htab->root.splt->output_section->vma
11074 + htab->root.splt->output_offset
1bbce132 11075 + plt_offset);
0a44bf69
RS
11076
11077 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11078 got_address = (htab->root.sgotplt->output_section->vma
11079 + htab->root.sgotplt->output_offset
1bbce132 11080 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11081
11082 /* Calculate the offset of the .got.plt entry from
11083 _GLOBAL_OFFSET_TABLE_. */
11084 got_offset = mips_elf_gotplt_index (info, h);
11085
11086 /* Calculate the offset for the branch at the start of the PLT
11087 entry. The branch jumps to the beginning of .plt. */
1bbce132 11088 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11089
11090 /* Fill in the initial value of the .got.plt entry. */
11091 bfd_put_32 (output_bfd, plt_address,
ce558b89 11092 (htab->root.sgotplt->contents
1bbce132 11093 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11094
11095 /* Find out where the .plt entry should go. */
ce558b89 11096 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11097
0e1862bb 11098 if (bfd_link_pic (info))
0a44bf69
RS
11099 {
11100 plt_entry = mips_vxworks_shared_plt_entry;
11101 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11102 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11103 }
11104 else
11105 {
11106 bfd_vma got_address_high, got_address_low;
11107
11108 plt_entry = mips_vxworks_exec_plt_entry;
11109 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11110 got_address_low = got_address & 0xffff;
11111
11112 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11113 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11114 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11115 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11116 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11117 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11118 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11119 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11120
11121 loc = (htab->srelplt2->contents
1bbce132 11122 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11123
11124 /* Emit a relocation for the .got.plt entry. */
11125 rel.r_offset = got_address;
11126 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11127 rel.r_addend = plt_offset;
0a44bf69
RS
11128 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11129
11130 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11131 loc += sizeof (Elf32_External_Rela);
11132 rel.r_offset = plt_address + 8;
11133 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11134 rel.r_addend = got_offset;
11135 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11136
11137 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11138 loc += sizeof (Elf32_External_Rela);
11139 rel.r_offset += 4;
11140 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11141 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11142 }
11143
11144 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11145 loc = (htab->root.srelplt->contents
1bbce132 11146 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11147 rel.r_offset = got_address;
11148 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11149 rel.r_addend = 0;
11150 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11151
11152 if (!h->def_regular)
11153 sym->st_shndx = SHN_UNDEF;
11154 }
11155
11156 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11157
ce558b89 11158 sgot = htab->root.sgot;
a8028dd0 11159 g = htab->got_info;
0a44bf69
RS
11160 BFD_ASSERT (g != NULL);
11161
11162 /* See if this symbol has an entry in the GOT. */
020d7251 11163 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11164 {
11165 bfd_vma offset;
11166 Elf_Internal_Rela outrel;
11167 bfd_byte *loc;
11168 asection *s;
11169
11170 /* Install the symbol value in the GOT. */
13fbec83 11171 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11172 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11173
11174 /* Add a dynamic relocation for it. */
11175 s = mips_elf_rel_dyn_section (info, FALSE);
11176 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11177 outrel.r_offset = (sgot->output_section->vma
11178 + sgot->output_offset
11179 + offset);
11180 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11181 outrel.r_addend = 0;
11182 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11183 }
11184
11185 /* Emit a copy reloc, if needed. */
11186 if (h->needs_copy)
11187 {
11188 Elf_Internal_Rela rel;
5474d94f
AM
11189 asection *srel;
11190 bfd_byte *loc;
0a44bf69
RS
11191
11192 BFD_ASSERT (h->dynindx != -1);
11193
11194 rel.r_offset = (h->root.u.def.section->output_section->vma
11195 + h->root.u.def.section->output_offset
11196 + h->root.u.def.value);
11197 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11198 rel.r_addend = 0;
afbf7e8e 11199 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
11200 srel = htab->root.sreldynrelro;
11201 else
11202 srel = htab->root.srelbss;
11203 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11204 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11205 ++srel->reloc_count;
0a44bf69
RS
11206 }
11207
df58fc94
RS
11208 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11209 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11210 sym->st_value &= ~1;
11211
11212 return TRUE;
11213}
11214
861fb55a
DJ
11215/* Write out a plt0 entry to the beginning of .plt. */
11216
1bbce132 11217static bfd_boolean
861fb55a
DJ
11218mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11219{
11220 bfd_byte *loc;
11221 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11222 static const bfd_vma *plt_entry;
11223 struct mips_elf_link_hash_table *htab;
11224
11225 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11226 BFD_ASSERT (htab != NULL);
11227
861fb55a
DJ
11228 if (ABI_64_P (output_bfd))
11229 plt_entry = mips_n64_exec_plt0_entry;
11230 else if (ABI_N32_P (output_bfd))
11231 plt_entry = mips_n32_exec_plt0_entry;
833794fc 11232 else if (!htab->plt_header_is_comp)
861fb55a 11233 plt_entry = mips_o32_exec_plt0_entry;
833794fc
MR
11234 else if (htab->insn32)
11235 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11236 else
11237 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11238
11239 /* Calculate the value of .got.plt. */
ce558b89
AM
11240 gotplt_value = (htab->root.sgotplt->output_section->vma
11241 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11242 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11243 gotplt_value_low = gotplt_value & 0xffff;
11244
11245 /* The PLT sequence is not safe for N64 if .got.plt's address can
11246 not be loaded in two instructions. */
11247 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11248 || ~(gotplt_value | 0x7fffffff) == 0);
11249
11250 /* Install the PLT header. */
ce558b89 11251 loc = htab->root.splt->contents;
1bbce132
MR
11252 if (plt_entry == micromips_o32_exec_plt0_entry)
11253 {
11254 bfd_vma gotpc_offset;
11255 bfd_vma loc_address;
11256 size_t i;
11257
11258 BFD_ASSERT (gotplt_value % 4 == 0);
11259
ce558b89
AM
11260 loc_address = (htab->root.splt->output_section->vma
11261 + htab->root.splt->output_offset);
1bbce132
MR
11262 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11263
11264 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11265 if (gotpc_offset + 0x1000000 >= 0x2000000)
11266 {
4eca0228 11267 _bfd_error_handler
695344c0 11268 /* xgettext:c-format */
2dcf00ce
AM
11269 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11270 "beyond the range of ADDIUPC"),
1bbce132 11271 output_bfd,
ce558b89 11272 htab->root.sgotplt->output_section,
2dcf00ce 11273 (int64_t) gotpc_offset,
c08bb8dd 11274 htab->root.splt->output_section);
1bbce132
MR
11275 bfd_set_error (bfd_error_no_error);
11276 return FALSE;
11277 }
11278 bfd_put_16 (output_bfd,
11279 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11280 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11281 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11282 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11283 }
833794fc
MR
11284 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11285 {
11286 size_t i;
11287
11288 bfd_put_16 (output_bfd, plt_entry[0], loc);
11289 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11290 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11291 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11292 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11293 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11294 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11295 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11296 }
1bbce132
MR
11297 else
11298 {
11299 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11300 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11301 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11302 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11303 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11304 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11305 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11306 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11307 }
11308
11309 return TRUE;
861fb55a
DJ
11310}
11311
0a44bf69
RS
11312/* Install the PLT header for a VxWorks executable and finalize the
11313 contents of .rela.plt.unloaded. */
11314
11315static void
11316mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11317{
11318 Elf_Internal_Rela rela;
11319 bfd_byte *loc;
11320 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11321 static const bfd_vma *plt_entry;
11322 struct mips_elf_link_hash_table *htab;
11323
11324 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11325 BFD_ASSERT (htab != NULL);
11326
0a44bf69
RS
11327 plt_entry = mips_vxworks_exec_plt0_entry;
11328
11329 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11330 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11331 + htab->root.hgot->root.u.def.section->output_offset
11332 + htab->root.hgot->root.u.def.value);
11333
11334 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11335 got_value_low = got_value & 0xffff;
11336
11337 /* Calculate the address of the PLT header. */
ce558b89
AM
11338 plt_address = (htab->root.splt->output_section->vma
11339 + htab->root.splt->output_offset);
0a44bf69
RS
11340
11341 /* Install the PLT header. */
ce558b89 11342 loc = htab->root.splt->contents;
0a44bf69
RS
11343 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11344 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11345 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11346 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11347 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11348 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11349
11350 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11351 loc = htab->srelplt2->contents;
11352 rela.r_offset = plt_address;
11353 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11354 rela.r_addend = 0;
11355 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11356 loc += sizeof (Elf32_External_Rela);
11357
11358 /* Output the relocation for the following addiu of
11359 %lo(_GLOBAL_OFFSET_TABLE_). */
11360 rela.r_offset += 4;
11361 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11362 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11363 loc += sizeof (Elf32_External_Rela);
11364
11365 /* Fix up the remaining relocations. They may have the wrong
11366 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11367 in which symbols were output. */
11368 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11369 {
11370 Elf_Internal_Rela rel;
11371
11372 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11373 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11374 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11375 loc += sizeof (Elf32_External_Rela);
11376
11377 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11378 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11379 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11380 loc += sizeof (Elf32_External_Rela);
11381
11382 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11383 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11384 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11385 loc += sizeof (Elf32_External_Rela);
11386 }
11387}
11388
11389/* Install the PLT header for a VxWorks shared library. */
11390
11391static void
11392mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11393{
11394 unsigned int i;
11395 struct mips_elf_link_hash_table *htab;
11396
11397 htab = mips_elf_hash_table (info);
4dfe6ac6 11398 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11399
11400 /* We just need to copy the entry byte-by-byte. */
11401 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11402 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11403 htab->root.splt->contents + i * 4);
0a44bf69
RS
11404}
11405
b49e97c9
TS
11406/* Finish up the dynamic sections. */
11407
b34976b6 11408bfd_boolean
9719ad41
RS
11409_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11410 struct bfd_link_info *info)
b49e97c9
TS
11411{
11412 bfd *dynobj;
11413 asection *sdyn;
11414 asection *sgot;
f4416af6 11415 struct mips_got_info *gg, *g;
0a44bf69 11416 struct mips_elf_link_hash_table *htab;
b49e97c9 11417
0a44bf69 11418 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11419 BFD_ASSERT (htab != NULL);
11420
b49e97c9
TS
11421 dynobj = elf_hash_table (info)->dynobj;
11422
3d4d4302 11423 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11424
ce558b89 11425 sgot = htab->root.sgot;
23cc69b6 11426 gg = htab->got_info;
b49e97c9
TS
11427
11428 if (elf_hash_table (info)->dynamic_sections_created)
11429 {
11430 bfd_byte *b;
943284cc 11431 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11432
11433 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11434 BFD_ASSERT (gg != NULL);
11435
d7206569 11436 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11437 BFD_ASSERT (g != NULL);
11438
11439 for (b = sdyn->contents;
eea6121a 11440 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11441 b += MIPS_ELF_DYN_SIZE (dynobj))
11442 {
11443 Elf_Internal_Dyn dyn;
11444 const char *name;
11445 size_t elemsize;
11446 asection *s;
b34976b6 11447 bfd_boolean swap_out_p;
b49e97c9
TS
11448
11449 /* Read in the current dynamic entry. */
11450 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11451
11452 /* Assume that we're going to modify it and write it out. */
b34976b6 11453 swap_out_p = TRUE;
b49e97c9
TS
11454
11455 switch (dyn.d_tag)
11456 {
11457 case DT_RELENT:
b49e97c9
TS
11458 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11459 break;
11460
0a44bf69
RS
11461 case DT_RELAENT:
11462 BFD_ASSERT (htab->is_vxworks);
11463 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11464 break;
11465
b49e97c9
TS
11466 case DT_STRSZ:
11467 /* Rewrite DT_STRSZ. */
11468 dyn.d_un.d_val =
11469 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11470 break;
11471
11472 case DT_PLTGOT:
ce558b89 11473 s = htab->root.sgot;
861fb55a
DJ
11474 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11475 break;
11476
11477 case DT_MIPS_PLTGOT:
ce558b89 11478 s = htab->root.sgotplt;
861fb55a 11479 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11480 break;
11481
11482 case DT_MIPS_RLD_VERSION:
11483 dyn.d_un.d_val = 1; /* XXX */
11484 break;
11485
11486 case DT_MIPS_FLAGS:
11487 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11488 break;
11489
b49e97c9 11490 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11491 {
11492 time_t t;
11493 time (&t);
11494 dyn.d_un.d_val = t;
11495 }
b49e97c9
TS
11496 break;
11497
11498 case DT_MIPS_ICHECKSUM:
11499 /* XXX FIXME: */
b34976b6 11500 swap_out_p = FALSE;
b49e97c9
TS
11501 break;
11502
11503 case DT_MIPS_IVERSION:
11504 /* XXX FIXME: */
b34976b6 11505 swap_out_p = FALSE;
b49e97c9
TS
11506 break;
11507
11508 case DT_MIPS_BASE_ADDRESS:
11509 s = output_bfd->sections;
11510 BFD_ASSERT (s != NULL);
11511 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11512 break;
11513
11514 case DT_MIPS_LOCAL_GOTNO:
11515 dyn.d_un.d_val = g->local_gotno;
11516 break;
11517
11518 case DT_MIPS_UNREFEXTNO:
11519 /* The index into the dynamic symbol table which is the
11520 entry of the first external symbol that is not
11521 referenced within the same object. */
11522 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11523 break;
11524
11525 case DT_MIPS_GOTSYM:
d222d210 11526 if (htab->global_gotsym)
b49e97c9 11527 {
d222d210 11528 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11529 break;
11530 }
11531 /* In case if we don't have global got symbols we default
11532 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11533 DT_MIPS_SYMTABNO. */
11534 /* Fall through. */
b49e97c9
TS
11535
11536 case DT_MIPS_SYMTABNO:
11537 name = ".dynsym";
11538 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11539 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11540
131e2f8e
MF
11541 if (s != NULL)
11542 dyn.d_un.d_val = s->size / elemsize;
11543 else
11544 dyn.d_un.d_val = 0;
b49e97c9
TS
11545 break;
11546
11547 case DT_MIPS_HIPAGENO:
861fb55a 11548 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11549 break;
11550
11551 case DT_MIPS_RLD_MAP:
b4082c70
DD
11552 {
11553 struct elf_link_hash_entry *h;
11554 h = mips_elf_hash_table (info)->rld_symbol;
11555 if (!h)
11556 {
11557 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11558 swap_out_p = FALSE;
11559 break;
11560 }
11561 s = h->root.u.def.section;
a5499fa4
MF
11562
11563 /* The MIPS_RLD_MAP tag stores the absolute address of the
11564 debug pointer. */
b4082c70
DD
11565 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11566 + h->root.u.def.value);
11567 }
b49e97c9
TS
11568 break;
11569
a5499fa4
MF
11570 case DT_MIPS_RLD_MAP_REL:
11571 {
11572 struct elf_link_hash_entry *h;
11573 bfd_vma dt_addr, rld_addr;
11574 h = mips_elf_hash_table (info)->rld_symbol;
11575 if (!h)
11576 {
11577 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11578 swap_out_p = FALSE;
11579 break;
11580 }
11581 s = h->root.u.def.section;
11582
11583 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11584 pointer, relative to the address of the tag. */
11585 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11586 + (b - sdyn->contents));
a5499fa4
MF
11587 rld_addr = (s->output_section->vma + s->output_offset
11588 + h->root.u.def.value);
11589 dyn.d_un.d_ptr = rld_addr - dt_addr;
11590 }
11591 break;
11592
b49e97c9
TS
11593 case DT_MIPS_OPTIONS:
11594 s = (bfd_get_section_by_name
11595 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11596 dyn.d_un.d_ptr = s->vma;
11597 break;
11598
0a44bf69 11599 case DT_PLTREL:
861fb55a
DJ
11600 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11601 if (htab->is_vxworks)
11602 dyn.d_un.d_val = DT_RELA;
11603 else
11604 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11605 break;
11606
11607 case DT_PLTRELSZ:
861fb55a 11608 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11609 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11610 break;
11611
11612 case DT_JMPREL:
861fb55a 11613 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11614 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11615 + htab->root.srelplt->output_offset);
0a44bf69
RS
11616 break;
11617
943284cc
DJ
11618 case DT_TEXTREL:
11619 /* If we didn't need any text relocations after all, delete
11620 the dynamic tag. */
11621 if (!(info->flags & DF_TEXTREL))
11622 {
11623 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11624 swap_out_p = FALSE;
11625 }
11626 break;
11627
11628 case DT_FLAGS:
11629 /* If we didn't need any text relocations after all, clear
11630 DF_TEXTREL from DT_FLAGS. */
11631 if (!(info->flags & DF_TEXTREL))
11632 dyn.d_un.d_val &= ~DF_TEXTREL;
11633 else
11634 swap_out_p = FALSE;
11635 break;
11636
b49e97c9 11637 default:
b34976b6 11638 swap_out_p = FALSE;
7a2b07ff
NS
11639 if (htab->is_vxworks
11640 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11641 swap_out_p = TRUE;
b49e97c9
TS
11642 break;
11643 }
11644
943284cc 11645 if (swap_out_p || dyn_skipped)
b49e97c9 11646 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11647 (dynobj, &dyn, b - dyn_skipped);
11648
11649 if (dyn_to_skip)
11650 {
11651 dyn_skipped += dyn_to_skip;
11652 dyn_to_skip = 0;
11653 }
b49e97c9 11654 }
943284cc
DJ
11655
11656 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11657 if (dyn_skipped > 0)
11658 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11659 }
11660
b55fd4d4
DJ
11661 if (sgot != NULL && sgot->size > 0
11662 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11663 {
0a44bf69
RS
11664 if (htab->is_vxworks)
11665 {
11666 /* The first entry of the global offset table points to the
11667 ".dynamic" section. The second is initialized by the
11668 loader and contains the shared library identifier.
11669 The third is also initialized by the loader and points
11670 to the lazy resolution stub. */
11671 MIPS_ELF_PUT_WORD (output_bfd,
11672 sdyn->output_offset + sdyn->output_section->vma,
11673 sgot->contents);
11674 MIPS_ELF_PUT_WORD (output_bfd, 0,
11675 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11676 MIPS_ELF_PUT_WORD (output_bfd, 0,
11677 sgot->contents
11678 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11679 }
11680 else
11681 {
11682 /* The first entry of the global offset table will be filled at
11683 runtime. The second entry will be used by some runtime loaders.
11684 This isn't the case of IRIX rld. */
11685 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 11686 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
11687 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11688 }
b49e97c9 11689
54938e2a
TS
11690 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11691 = MIPS_ELF_GOT_SIZE (output_bfd);
11692 }
b49e97c9 11693
f4416af6
AO
11694 /* Generate dynamic relocations for the non-primary gots. */
11695 if (gg != NULL && gg->next)
11696 {
11697 Elf_Internal_Rela rel[3];
11698 bfd_vma addend = 0;
11699
11700 memset (rel, 0, sizeof (rel));
11701 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11702
11703 for (g = gg->next; g->next != gg; g = g->next)
11704 {
91d6fa6a 11705 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 11706 + g->next->tls_gotno;
f4416af6 11707
9719ad41 11708 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 11709 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
11710 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11711 sgot->contents
91d6fa6a 11712 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 11713
0e1862bb 11714 if (! bfd_link_pic (info))
f4416af6
AO
11715 continue;
11716
cb22ccf4 11717 for (; got_index < g->local_gotno; got_index++)
f4416af6 11718 {
cb22ccf4
KCY
11719 if (got_index >= g->assigned_low_gotno
11720 && got_index <= g->assigned_high_gotno)
11721 continue;
11722
f4416af6 11723 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 11724 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
11725 if (!(mips_elf_create_dynamic_relocation
11726 (output_bfd, info, rel, NULL,
11727 bfd_abs_section_ptr,
11728 0, &addend, sgot)))
11729 return FALSE;
11730 BFD_ASSERT (addend == 0);
11731 }
11732 }
11733 }
11734
3133ddbf
DJ
11735 /* The generation of dynamic relocations for the non-primary gots
11736 adds more dynamic relocations. We cannot count them until
11737 here. */
11738
11739 if (elf_hash_table (info)->dynamic_sections_created)
11740 {
11741 bfd_byte *b;
11742 bfd_boolean swap_out_p;
11743
11744 BFD_ASSERT (sdyn != NULL);
11745
11746 for (b = sdyn->contents;
11747 b < sdyn->contents + sdyn->size;
11748 b += MIPS_ELF_DYN_SIZE (dynobj))
11749 {
11750 Elf_Internal_Dyn dyn;
11751 asection *s;
11752
11753 /* Read in the current dynamic entry. */
11754 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11755
11756 /* Assume that we're going to modify it and write it out. */
11757 swap_out_p = TRUE;
11758
11759 switch (dyn.d_tag)
11760 {
11761 case DT_RELSZ:
11762 /* Reduce DT_RELSZ to account for any relocations we
11763 decided not to make. This is for the n64 irix rld,
11764 which doesn't seem to apply any relocations if there
11765 are trailing null entries. */
0a44bf69 11766 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
11767 dyn.d_un.d_val = (s->reloc_count
11768 * (ABI_64_P (output_bfd)
11769 ? sizeof (Elf64_Mips_External_Rel)
11770 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
11771 /* Adjust the section size too. Tools like the prelinker
11772 can reasonably expect the values to the same. */
11773 elf_section_data (s->output_section)->this_hdr.sh_size
11774 = dyn.d_un.d_val;
3133ddbf
DJ
11775 break;
11776
11777 default:
11778 swap_out_p = FALSE;
11779 break;
11780 }
11781
11782 if (swap_out_p)
11783 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11784 (dynobj, &dyn, b);
11785 }
11786 }
11787
b49e97c9 11788 {
b49e97c9
TS
11789 asection *s;
11790 Elf32_compact_rel cpt;
11791
b49e97c9
TS
11792 if (SGI_COMPAT (output_bfd))
11793 {
11794 /* Write .compact_rel section out. */
3d4d4302 11795 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
11796 if (s != NULL)
11797 {
11798 cpt.id1 = 1;
11799 cpt.num = s->reloc_count;
11800 cpt.id2 = 2;
11801 cpt.offset = (s->output_section->filepos
11802 + sizeof (Elf32_External_compact_rel));
11803 cpt.reserved0 = 0;
11804 cpt.reserved1 = 0;
11805 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11806 ((Elf32_External_compact_rel *)
11807 s->contents));
11808
11809 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 11810 if (htab->sstubs != NULL)
b49e97c9
TS
11811 {
11812 file_ptr dummy_offset;
11813
4e41d0d7
RS
11814 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11815 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11816 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 11817 htab->function_stub_size);
b49e97c9
TS
11818 }
11819 }
11820 }
11821
0a44bf69
RS
11822 /* The psABI says that the dynamic relocations must be sorted in
11823 increasing order of r_symndx. The VxWorks EABI doesn't require
11824 this, and because the code below handles REL rather than RELA
11825 relocations, using it for VxWorks would be outright harmful. */
11826 if (!htab->is_vxworks)
b49e97c9 11827 {
0a44bf69
RS
11828 s = mips_elf_rel_dyn_section (info, FALSE);
11829 if (s != NULL
11830 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11831 {
11832 reldyn_sorting_bfd = output_bfd;
b49e97c9 11833
0a44bf69
RS
11834 if (ABI_64_P (output_bfd))
11835 qsort ((Elf64_External_Rel *) s->contents + 1,
11836 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11837 sort_dynamic_relocs_64);
11838 else
11839 qsort ((Elf32_External_Rel *) s->contents + 1,
11840 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11841 sort_dynamic_relocs);
11842 }
b49e97c9 11843 }
b49e97c9
TS
11844 }
11845
ce558b89 11846 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 11847 {
861fb55a
DJ
11848 if (htab->is_vxworks)
11849 {
0e1862bb 11850 if (bfd_link_pic (info))
861fb55a
DJ
11851 mips_vxworks_finish_shared_plt (output_bfd, info);
11852 else
11853 mips_vxworks_finish_exec_plt (output_bfd, info);
11854 }
0a44bf69 11855 else
861fb55a 11856 {
0e1862bb 11857 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
11858 if (!mips_finish_exec_plt (output_bfd, info))
11859 return FALSE;
861fb55a 11860 }
0a44bf69 11861 }
b34976b6 11862 return TRUE;
b49e97c9
TS
11863}
11864
b49e97c9 11865
64543e1a
RS
11866/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11867
11868static void
9719ad41 11869mips_set_isa_flags (bfd *abfd)
b49e97c9 11870{
64543e1a 11871 flagword val;
b49e97c9
TS
11872
11873 switch (bfd_get_mach (abfd))
11874 {
11875 default:
11876 case bfd_mach_mips3000:
11877 val = E_MIPS_ARCH_1;
11878 break;
11879
11880 case bfd_mach_mips3900:
11881 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11882 break;
11883
11884 case bfd_mach_mips6000:
11885 val = E_MIPS_ARCH_2;
11886 break;
11887
b417536f
MR
11888 case bfd_mach_mips4010:
11889 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11890 break;
11891
b49e97c9
TS
11892 case bfd_mach_mips4000:
11893 case bfd_mach_mips4300:
11894 case bfd_mach_mips4400:
11895 case bfd_mach_mips4600:
11896 val = E_MIPS_ARCH_3;
11897 break;
11898
b49e97c9
TS
11899 case bfd_mach_mips4100:
11900 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11901 break;
11902
11903 case bfd_mach_mips4111:
11904 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11905 break;
11906
00707a0e
RS
11907 case bfd_mach_mips4120:
11908 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11909 break;
11910
b49e97c9
TS
11911 case bfd_mach_mips4650:
11912 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11913 break;
11914
00707a0e
RS
11915 case bfd_mach_mips5400:
11916 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11917 break;
11918
11919 case bfd_mach_mips5500:
11920 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11921 break;
11922
e407c74b
NC
11923 case bfd_mach_mips5900:
11924 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11925 break;
11926
0d2e43ed
ILT
11927 case bfd_mach_mips9000:
11928 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11929 break;
11930
b49e97c9 11931 case bfd_mach_mips5000:
5a7ea749 11932 case bfd_mach_mips7000:
b49e97c9
TS
11933 case bfd_mach_mips8000:
11934 case bfd_mach_mips10000:
11935 case bfd_mach_mips12000:
3aa3176b
TS
11936 case bfd_mach_mips14000:
11937 case bfd_mach_mips16000:
b49e97c9
TS
11938 val = E_MIPS_ARCH_4;
11939 break;
11940
11941 case bfd_mach_mips5:
11942 val = E_MIPS_ARCH_5;
11943 break;
11944
350cc38d
MS
11945 case bfd_mach_mips_loongson_2e:
11946 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11947 break;
11948
11949 case bfd_mach_mips_loongson_2f:
11950 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11951 break;
11952
b49e97c9
TS
11953 case bfd_mach_mips_sb1:
11954 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11955 break;
11956
d051516a 11957 case bfd_mach_mips_loongson_3a:
4ba154f5 11958 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
d051516a
NC
11959 break;
11960
6f179bd0 11961 case bfd_mach_mips_octeon:
dd6a37e7 11962 case bfd_mach_mips_octeonp:
6f179bd0
AN
11963 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11964 break;
11965
2c629856
N
11966 case bfd_mach_mips_octeon3:
11967 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11968 break;
11969
52b6b6b9
JM
11970 case bfd_mach_mips_xlr:
11971 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11972 break;
11973
432233b3
AP
11974 case bfd_mach_mips_octeon2:
11975 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11976 break;
11977
b49e97c9
TS
11978 case bfd_mach_mipsisa32:
11979 val = E_MIPS_ARCH_32;
11980 break;
11981
11982 case bfd_mach_mipsisa64:
11983 val = E_MIPS_ARCH_64;
af7ee8bf
CD
11984 break;
11985
11986 case bfd_mach_mipsisa32r2:
ae52f483
AB
11987 case bfd_mach_mipsisa32r3:
11988 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
11989 val = E_MIPS_ARCH_32R2;
11990 break;
5f74bc13 11991
38bf472a
MR
11992 case bfd_mach_mips_interaptiv_mr2:
11993 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11994 break;
11995
5f74bc13 11996 case bfd_mach_mipsisa64r2:
ae52f483
AB
11997 case bfd_mach_mipsisa64r3:
11998 case bfd_mach_mipsisa64r5:
5f74bc13
CD
11999 val = E_MIPS_ARCH_64R2;
12000 break;
7361da2c
AB
12001
12002 case bfd_mach_mipsisa32r6:
12003 val = E_MIPS_ARCH_32R6;
12004 break;
12005
12006 case bfd_mach_mipsisa64r6:
12007 val = E_MIPS_ARCH_64R6;
12008 break;
b49e97c9 12009 }
b49e97c9
TS
12010 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12011 elf_elfheader (abfd)->e_flags |= val;
12012
64543e1a
RS
12013}
12014
12015
28dbcedc
AM
12016/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12017 Don't do so for code sections. We want to keep ordering of HI16/LO16
12018 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12019 relocs to be sorted. */
12020
12021bfd_boolean
12022_bfd_mips_elf_sort_relocs_p (asection *sec)
12023{
12024 return (sec->flags & SEC_CODE) == 0;
12025}
12026
12027
64543e1a
RS
12028/* The final processing done just before writing out a MIPS ELF object
12029 file. This gets the MIPS architecture right based on the machine
12030 number. This is used by both the 32-bit and the 64-bit ABI. */
12031
12032void
9719ad41
RS
12033_bfd_mips_elf_final_write_processing (bfd *abfd,
12034 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
12035{
12036 unsigned int i;
12037 Elf_Internal_Shdr **hdrpp;
12038 const char *name;
12039 asection *sec;
12040
12041 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12042 is nonzero. This is for compatibility with old objects, which used
12043 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12044 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12045 mips_set_isa_flags (abfd);
12046
b49e97c9
TS
12047 /* Set the sh_info field for .gptab sections and other appropriate
12048 info for each special section. */
12049 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12050 i < elf_numsections (abfd);
12051 i++, hdrpp++)
12052 {
12053 switch ((*hdrpp)->sh_type)
12054 {
12055 case SHT_MIPS_MSYM:
12056 case SHT_MIPS_LIBLIST:
12057 sec = bfd_get_section_by_name (abfd, ".dynstr");
12058 if (sec != NULL)
12059 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12060 break;
12061
12062 case SHT_MIPS_GPTAB:
12063 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12064 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12065 BFD_ASSERT (name != NULL
0112cd26 12066 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12067 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12068 BFD_ASSERT (sec != NULL);
12069 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12070 break;
12071
12072 case SHT_MIPS_CONTENT:
12073 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12074 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12075 BFD_ASSERT (name != NULL
0112cd26 12076 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12077 sec = bfd_get_section_by_name (abfd,
12078 name + sizeof ".MIPS.content" - 1);
12079 BFD_ASSERT (sec != NULL);
12080 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12081 break;
12082
12083 case SHT_MIPS_SYMBOL_LIB:
12084 sec = bfd_get_section_by_name (abfd, ".dynsym");
12085 if (sec != NULL)
12086 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12087 sec = bfd_get_section_by_name (abfd, ".liblist");
12088 if (sec != NULL)
12089 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12090 break;
12091
12092 case SHT_MIPS_EVENTS:
12093 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12094 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12095 BFD_ASSERT (name != NULL);
0112cd26 12096 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12097 sec = bfd_get_section_by_name (abfd,
12098 name + sizeof ".MIPS.events" - 1);
12099 else
12100 {
0112cd26 12101 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12102 sec = bfd_get_section_by_name (abfd,
12103 (name
12104 + sizeof ".MIPS.post_rel" - 1));
12105 }
12106 BFD_ASSERT (sec != NULL);
12107 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12108 break;
12109
12110 }
12111 }
12112}
12113\f
8dc1a139 12114/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12115 segments. */
12116
12117int
a6b96beb
AM
12118_bfd_mips_elf_additional_program_headers (bfd *abfd,
12119 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12120{
12121 asection *s;
12122 int ret = 0;
12123
12124 /* See if we need a PT_MIPS_REGINFO segment. */
12125 s = bfd_get_section_by_name (abfd, ".reginfo");
12126 if (s && (s->flags & SEC_LOAD))
12127 ++ret;
12128
351cdf24
MF
12129 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12130 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12131 ++ret;
12132
b49e97c9
TS
12133 /* See if we need a PT_MIPS_OPTIONS segment. */
12134 if (IRIX_COMPAT (abfd) == ict_irix6
12135 && bfd_get_section_by_name (abfd,
12136 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12137 ++ret;
12138
12139 /* See if we need a PT_MIPS_RTPROC segment. */
12140 if (IRIX_COMPAT (abfd) == ict_irix5
12141 && bfd_get_section_by_name (abfd, ".dynamic")
12142 && bfd_get_section_by_name (abfd, ".mdebug"))
12143 ++ret;
12144
98c904a8
RS
12145 /* Allocate a PT_NULL header in dynamic objects. See
12146 _bfd_mips_elf_modify_segment_map for details. */
12147 if (!SGI_COMPAT (abfd)
12148 && bfd_get_section_by_name (abfd, ".dynamic"))
12149 ++ret;
12150
b49e97c9
TS
12151 return ret;
12152}
12153
8dc1a139 12154/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12155
b34976b6 12156bfd_boolean
9719ad41 12157_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12158 struct bfd_link_info *info)
b49e97c9
TS
12159{
12160 asection *s;
12161 struct elf_segment_map *m, **pm;
12162 bfd_size_type amt;
12163
12164 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12165 segment. */
12166 s = bfd_get_section_by_name (abfd, ".reginfo");
12167 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12168 {
12bd6957 12169 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12170 if (m->p_type == PT_MIPS_REGINFO)
12171 break;
12172 if (m == NULL)
12173 {
12174 amt = sizeof *m;
9719ad41 12175 m = bfd_zalloc (abfd, amt);
b49e97c9 12176 if (m == NULL)
b34976b6 12177 return FALSE;
b49e97c9
TS
12178
12179 m->p_type = PT_MIPS_REGINFO;
12180 m->count = 1;
12181 m->sections[0] = s;
12182
12183 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12184 pm = &elf_seg_map (abfd);
b49e97c9
TS
12185 while (*pm != NULL
12186 && ((*pm)->p_type == PT_PHDR
12187 || (*pm)->p_type == PT_INTERP))
12188 pm = &(*pm)->next;
12189
12190 m->next = *pm;
12191 *pm = m;
12192 }
12193 }
12194
351cdf24
MF
12195 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12196 segment. */
12197 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12198 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12199 {
12200 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12201 if (m->p_type == PT_MIPS_ABIFLAGS)
12202 break;
12203 if (m == NULL)
12204 {
12205 amt = sizeof *m;
12206 m = bfd_zalloc (abfd, amt);
12207 if (m == NULL)
12208 return FALSE;
12209
12210 m->p_type = PT_MIPS_ABIFLAGS;
12211 m->count = 1;
12212 m->sections[0] = s;
12213
12214 /* We want to put it after the PHDR and INTERP segments. */
12215 pm = &elf_seg_map (abfd);
12216 while (*pm != NULL
12217 && ((*pm)->p_type == PT_PHDR
12218 || (*pm)->p_type == PT_INTERP))
12219 pm = &(*pm)->next;
12220
12221 m->next = *pm;
12222 *pm = m;
12223 }
12224 }
12225
b49e97c9
TS
12226 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12227 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12228 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12229 table. */
c1fd6598
AO
12230 if (NEWABI_P (abfd)
12231 /* On non-IRIX6 new abi, we'll have already created a segment
12232 for this section, so don't create another. I'm not sure this
12233 is not also the case for IRIX 6, but I can't test it right
12234 now. */
12235 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12236 {
12237 for (s = abfd->sections; s; s = s->next)
12238 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12239 break;
12240
12241 if (s)
12242 {
12243 struct elf_segment_map *options_segment;
12244
12bd6957 12245 pm = &elf_seg_map (abfd);
98a8deaf
RS
12246 while (*pm != NULL
12247 && ((*pm)->p_type == PT_PHDR
12248 || (*pm)->p_type == PT_INTERP))
12249 pm = &(*pm)->next;
b49e97c9 12250
8ded5a0f
AM
12251 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12252 {
12253 amt = sizeof (struct elf_segment_map);
12254 options_segment = bfd_zalloc (abfd, amt);
12255 options_segment->next = *pm;
12256 options_segment->p_type = PT_MIPS_OPTIONS;
12257 options_segment->p_flags = PF_R;
12258 options_segment->p_flags_valid = TRUE;
12259 options_segment->count = 1;
12260 options_segment->sections[0] = s;
12261 *pm = options_segment;
12262 }
b49e97c9
TS
12263 }
12264 }
12265 else
12266 {
12267 if (IRIX_COMPAT (abfd) == ict_irix5)
12268 {
12269 /* If there are .dynamic and .mdebug sections, we make a room
12270 for the RTPROC header. FIXME: Rewrite without section names. */
12271 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12272 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12273 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12274 {
12bd6957 12275 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12276 if (m->p_type == PT_MIPS_RTPROC)
12277 break;
12278 if (m == NULL)
12279 {
12280 amt = sizeof *m;
9719ad41 12281 m = bfd_zalloc (abfd, amt);
b49e97c9 12282 if (m == NULL)
b34976b6 12283 return FALSE;
b49e97c9
TS
12284
12285 m->p_type = PT_MIPS_RTPROC;
12286
12287 s = bfd_get_section_by_name (abfd, ".rtproc");
12288 if (s == NULL)
12289 {
12290 m->count = 0;
12291 m->p_flags = 0;
12292 m->p_flags_valid = 1;
12293 }
12294 else
12295 {
12296 m->count = 1;
12297 m->sections[0] = s;
12298 }
12299
12300 /* We want to put it after the DYNAMIC segment. */
12bd6957 12301 pm = &elf_seg_map (abfd);
b49e97c9
TS
12302 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12303 pm = &(*pm)->next;
12304 if (*pm != NULL)
12305 pm = &(*pm)->next;
12306
12307 m->next = *pm;
12308 *pm = m;
12309 }
12310 }
12311 }
8dc1a139 12312 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12313 .dynstr, .dynsym, and .hash sections, and everything in
12314 between. */
12bd6957 12315 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12316 pm = &(*pm)->next)
12317 if ((*pm)->p_type == PT_DYNAMIC)
12318 break;
12319 m = *pm;
f6f62d6f
RS
12320 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12321 glibc's dynamic linker has traditionally derived the number of
12322 tags from the p_filesz field, and sometimes allocates stack
12323 arrays of that size. An overly-big PT_DYNAMIC segment can
12324 be actively harmful in such cases. Making PT_DYNAMIC contain
12325 other sections can also make life hard for the prelinker,
12326 which might move one of the other sections to a different
12327 PT_LOAD segment. */
12328 if (SGI_COMPAT (abfd)
12329 && m != NULL
12330 && m->count == 1
12331 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12332 {
12333 static const char *sec_names[] =
12334 {
12335 ".dynamic", ".dynstr", ".dynsym", ".hash"
12336 };
12337 bfd_vma low, high;
12338 unsigned int i, c;
12339 struct elf_segment_map *n;
12340
792b4a53 12341 low = ~(bfd_vma) 0;
b49e97c9
TS
12342 high = 0;
12343 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12344 {
12345 s = bfd_get_section_by_name (abfd, sec_names[i]);
12346 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12347 {
12348 bfd_size_type sz;
12349
12350 if (low > s->vma)
12351 low = s->vma;
eea6121a 12352 sz = s->size;
b49e97c9
TS
12353 if (high < s->vma + sz)
12354 high = s->vma + sz;
12355 }
12356 }
12357
12358 c = 0;
12359 for (s = abfd->sections; s != NULL; s = s->next)
12360 if ((s->flags & SEC_LOAD) != 0
12361 && s->vma >= low
eea6121a 12362 && s->vma + s->size <= high)
b49e97c9
TS
12363 ++c;
12364
12365 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12366 n = bfd_zalloc (abfd, amt);
b49e97c9 12367 if (n == NULL)
b34976b6 12368 return FALSE;
b49e97c9
TS
12369 *n = *m;
12370 n->count = c;
12371
12372 i = 0;
12373 for (s = abfd->sections; s != NULL; s = s->next)
12374 {
12375 if ((s->flags & SEC_LOAD) != 0
12376 && s->vma >= low
eea6121a 12377 && s->vma + s->size <= high)
b49e97c9
TS
12378 {
12379 n->sections[i] = s;
12380 ++i;
12381 }
12382 }
12383
12384 *pm = n;
12385 }
12386 }
12387
98c904a8
RS
12388 /* Allocate a spare program header in dynamic objects so that tools
12389 like the prelinker can add an extra PT_LOAD entry.
12390
12391 If the prelinker needs to make room for a new PT_LOAD entry, its
12392 standard procedure is to move the first (read-only) sections into
12393 the new (writable) segment. However, the MIPS ABI requires
12394 .dynamic to be in a read-only segment, and the section will often
12395 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12396
12397 Although the prelinker could in principle move .dynamic to a
12398 writable segment, it seems better to allocate a spare program
12399 header instead, and avoid the need to move any sections.
12400 There is a long tradition of allocating spare dynamic tags,
12401 so allocating a spare program header seems like a natural
7c8b76cc
JM
12402 extension.
12403
12404 If INFO is NULL, we may be copying an already prelinked binary
12405 with objcopy or strip, so do not add this header. */
12406 if (info != NULL
12407 && !SGI_COMPAT (abfd)
98c904a8
RS
12408 && bfd_get_section_by_name (abfd, ".dynamic"))
12409 {
12bd6957 12410 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12411 if ((*pm)->p_type == PT_NULL)
12412 break;
12413 if (*pm == NULL)
12414 {
12415 m = bfd_zalloc (abfd, sizeof (*m));
12416 if (m == NULL)
12417 return FALSE;
12418
12419 m->p_type = PT_NULL;
12420 *pm = m;
12421 }
12422 }
12423
b34976b6 12424 return TRUE;
b49e97c9
TS
12425}
12426\f
12427/* Return the section that should be marked against GC for a given
12428 relocation. */
12429
12430asection *
9719ad41 12431_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12432 struct bfd_link_info *info,
9719ad41
RS
12433 Elf_Internal_Rela *rel,
12434 struct elf_link_hash_entry *h,
12435 Elf_Internal_Sym *sym)
b49e97c9
TS
12436{
12437 /* ??? Do mips16 stub sections need to be handled special? */
12438
12439 if (h != NULL)
07adf181
AM
12440 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12441 {
12442 case R_MIPS_GNU_VTINHERIT:
12443 case R_MIPS_GNU_VTENTRY:
12444 return NULL;
12445 }
b49e97c9 12446
07adf181 12447 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12448}
12449
351cdf24
MF
12450/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12451
12452bfd_boolean
12453_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12454 elf_gc_mark_hook_fn gc_mark_hook)
12455{
12456 bfd *sub;
12457
12458 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12459
12460 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12461 {
12462 asection *o;
12463
12464 if (! is_mips_elf (sub))
12465 continue;
12466
12467 for (o = sub->sections; o != NULL; o = o->next)
12468 if (!o->gc_mark
12469 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12470 (bfd_get_section_name (sub, o)))
12471 {
12472 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12473 return FALSE;
12474 }
12475 }
12476
12477 return TRUE;
12478}
b49e97c9
TS
12479\f
12480/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12481 hiding the old indirect symbol. Process additional relocation
12482 information. Also called for weakdefs, in which case we just let
12483 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12484
12485void
fcfa13d2 12486_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12487 struct elf_link_hash_entry *dir,
12488 struct elf_link_hash_entry *ind)
b49e97c9
TS
12489{
12490 struct mips_elf_link_hash_entry *dirmips, *indmips;
12491
fcfa13d2 12492 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12493
861fb55a
DJ
12494 dirmips = (struct mips_elf_link_hash_entry *) dir;
12495 indmips = (struct mips_elf_link_hash_entry *) ind;
12496 /* Any absolute non-dynamic relocations against an indirect or weak
12497 definition will be against the target symbol. */
12498 if (indmips->has_static_relocs)
12499 dirmips->has_static_relocs = TRUE;
12500
b49e97c9
TS
12501 if (ind->root.type != bfd_link_hash_indirect)
12502 return;
12503
b49e97c9
TS
12504 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12505 if (indmips->readonly_reloc)
b34976b6 12506 dirmips->readonly_reloc = TRUE;
b49e97c9 12507 if (indmips->no_fn_stub)
b34976b6 12508 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12509 if (indmips->fn_stub)
12510 {
12511 dirmips->fn_stub = indmips->fn_stub;
12512 indmips->fn_stub = NULL;
12513 }
12514 if (indmips->need_fn_stub)
12515 {
12516 dirmips->need_fn_stub = TRUE;
12517 indmips->need_fn_stub = FALSE;
12518 }
12519 if (indmips->call_stub)
12520 {
12521 dirmips->call_stub = indmips->call_stub;
12522 indmips->call_stub = NULL;
12523 }
12524 if (indmips->call_fp_stub)
12525 {
12526 dirmips->call_fp_stub = indmips->call_fp_stub;
12527 indmips->call_fp_stub = NULL;
12528 }
634835ae
RS
12529 if (indmips->global_got_area < dirmips->global_got_area)
12530 dirmips->global_got_area = indmips->global_got_area;
12531 if (indmips->global_got_area < GGA_NONE)
12532 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12533 if (indmips->has_nonpic_branches)
12534 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12535}
b49e97c9 12536\f
d01414a5
TS
12537#define PDR_SIZE 32
12538
b34976b6 12539bfd_boolean
9719ad41
RS
12540_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12541 struct bfd_link_info *info)
d01414a5
TS
12542{
12543 asection *o;
b34976b6 12544 bfd_boolean ret = FALSE;
d01414a5
TS
12545 unsigned char *tdata;
12546 size_t i, skip;
12547
12548 o = bfd_get_section_by_name (abfd, ".pdr");
12549 if (! o)
b34976b6 12550 return FALSE;
eea6121a 12551 if (o->size == 0)
b34976b6 12552 return FALSE;
eea6121a 12553 if (o->size % PDR_SIZE != 0)
b34976b6 12554 return FALSE;
d01414a5
TS
12555 if (o->output_section != NULL
12556 && bfd_is_abs_section (o->output_section))
b34976b6 12557 return FALSE;
d01414a5 12558
eea6121a 12559 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12560 if (! tdata)
b34976b6 12561 return FALSE;
d01414a5 12562
9719ad41 12563 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12564 info->keep_memory);
d01414a5
TS
12565 if (!cookie->rels)
12566 {
12567 free (tdata);
b34976b6 12568 return FALSE;
d01414a5
TS
12569 }
12570
12571 cookie->rel = cookie->rels;
12572 cookie->relend = cookie->rels + o->reloc_count;
12573
eea6121a 12574 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12575 {
c152c796 12576 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12577 {
12578 tdata[i] = 1;
12579 skip ++;
12580 }
12581 }
12582
12583 if (skip != 0)
12584 {
f0abc2a1 12585 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12586 if (o->rawsize == 0)
12587 o->rawsize = o->size;
eea6121a 12588 o->size -= skip * PDR_SIZE;
b34976b6 12589 ret = TRUE;
d01414a5
TS
12590 }
12591 else
12592 free (tdata);
12593
12594 if (! info->keep_memory)
12595 free (cookie->rels);
12596
12597 return ret;
12598}
12599
b34976b6 12600bfd_boolean
9719ad41 12601_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12602{
12603 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12604 return TRUE;
12605 return FALSE;
53bfd6b4 12606}
d01414a5 12607
b34976b6 12608bfd_boolean
c7b8f16e
JB
12609_bfd_mips_elf_write_section (bfd *output_bfd,
12610 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
07d6d2b8 12611 asection *sec, bfd_byte *contents)
d01414a5
TS
12612{
12613 bfd_byte *to, *from, *end;
12614 int i;
12615
12616 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12617 return FALSE;
d01414a5 12618
f0abc2a1 12619 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12620 return FALSE;
d01414a5
TS
12621
12622 to = contents;
eea6121a 12623 end = contents + sec->size;
d01414a5
TS
12624 for (from = contents, i = 0;
12625 from < end;
12626 from += PDR_SIZE, i++)
12627 {
f0abc2a1 12628 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12629 continue;
12630 if (to != from)
12631 memcpy (to, from, PDR_SIZE);
12632 to += PDR_SIZE;
12633 }
12634 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12635 sec->output_offset, sec->size);
b34976b6 12636 return TRUE;
d01414a5 12637}
53bfd6b4 12638\f
df58fc94
RS
12639/* microMIPS code retains local labels for linker relaxation. Omit them
12640 from output by default for clarity. */
12641
12642bfd_boolean
12643_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12644{
12645 return _bfd_elf_is_local_label_name (abfd, sym->name);
12646}
12647
b49e97c9
TS
12648/* MIPS ELF uses a special find_nearest_line routine in order the
12649 handle the ECOFF debugging information. */
12650
12651struct mips_elf_find_line
12652{
12653 struct ecoff_debug_info d;
12654 struct ecoff_find_line i;
12655};
12656
b34976b6 12657bfd_boolean
fb167eb2
AM
12658_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12659 asection *section, bfd_vma offset,
9719ad41
RS
12660 const char **filename_ptr,
12661 const char **functionname_ptr,
fb167eb2
AM
12662 unsigned int *line_ptr,
12663 unsigned int *discriminator_ptr)
b49e97c9
TS
12664{
12665 asection *msec;
12666
fb167eb2 12667 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 12668 filename_ptr, functionname_ptr,
fb167eb2
AM
12669 line_ptr, discriminator_ptr,
12670 dwarf_debug_sections,
12671 ABI_64_P (abfd) ? 8 : 0,
46d09186
NC
12672 &elf_tdata (abfd)->dwarf2_find_line_info)
12673 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12674 filename_ptr, functionname_ptr,
12675 line_ptr))
12676 {
12677 /* PR 22789: If the function name or filename was not found through
12678 the debug information, then try an ordinary lookup instead. */
12679 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12680 || (filename_ptr != NULL && *filename_ptr == NULL))
12681 {
12682 /* Do not override already discovered names. */
12683 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12684 functionname_ptr = NULL;
b49e97c9 12685
46d09186
NC
12686 if (filename_ptr != NULL && *filename_ptr != NULL)
12687 filename_ptr = NULL;
12688
12689 _bfd_elf_find_function (abfd, symbols, section, offset,
12690 filename_ptr, functionname_ptr);
12691 }
12692
12693 return TRUE;
12694 }
b49e97c9
TS
12695
12696 msec = bfd_get_section_by_name (abfd, ".mdebug");
12697 if (msec != NULL)
12698 {
12699 flagword origflags;
12700 struct mips_elf_find_line *fi;
12701 const struct ecoff_debug_swap * const swap =
12702 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12703
12704 /* If we are called during a link, mips_elf_final_link may have
12705 cleared the SEC_HAS_CONTENTS field. We force it back on here
12706 if appropriate (which it normally will be). */
12707 origflags = msec->flags;
12708 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12709 msec->flags |= SEC_HAS_CONTENTS;
12710
698600e4 12711 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
12712 if (fi == NULL)
12713 {
12714 bfd_size_type external_fdr_size;
12715 char *fraw_src;
12716 char *fraw_end;
12717 struct fdr *fdr_ptr;
12718 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12719
9719ad41 12720 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
12721 if (fi == NULL)
12722 {
12723 msec->flags = origflags;
b34976b6 12724 return FALSE;
b49e97c9
TS
12725 }
12726
12727 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12728 {
12729 msec->flags = origflags;
b34976b6 12730 return FALSE;
b49e97c9
TS
12731 }
12732
12733 /* Swap in the FDR information. */
12734 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 12735 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
12736 if (fi->d.fdr == NULL)
12737 {
12738 msec->flags = origflags;
b34976b6 12739 return FALSE;
b49e97c9
TS
12740 }
12741 external_fdr_size = swap->external_fdr_size;
12742 fdr_ptr = fi->d.fdr;
12743 fraw_src = (char *) fi->d.external_fdr;
12744 fraw_end = (fraw_src
12745 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12746 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 12747 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 12748
698600e4 12749 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
12750
12751 /* Note that we don't bother to ever free this information.
07d6d2b8
AM
12752 find_nearest_line is either called all the time, as in
12753 objdump -l, so the information should be saved, or it is
12754 rarely called, as in ld error messages, so the memory
12755 wasted is unimportant. Still, it would probably be a
12756 good idea for free_cached_info to throw it away. */
b49e97c9
TS
12757 }
12758
12759 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12760 &fi->i, filename_ptr, functionname_ptr,
12761 line_ptr))
12762 {
12763 msec->flags = origflags;
b34976b6 12764 return TRUE;
b49e97c9
TS
12765 }
12766
12767 msec->flags = origflags;
12768 }
12769
12770 /* Fall back on the generic ELF find_nearest_line routine. */
12771
fb167eb2 12772 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12773 filename_ptr, functionname_ptr,
fb167eb2 12774 line_ptr, discriminator_ptr);
b49e97c9 12775}
4ab527b0
FF
12776
12777bfd_boolean
12778_bfd_mips_elf_find_inliner_info (bfd *abfd,
12779 const char **filename_ptr,
12780 const char **functionname_ptr,
12781 unsigned int *line_ptr)
12782{
12783 bfd_boolean found;
12784 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12785 functionname_ptr, line_ptr,
12786 & elf_tdata (abfd)->dwarf2_find_line_info);
12787 return found;
12788}
12789
b49e97c9
TS
12790\f
12791/* When are writing out the .options or .MIPS.options section,
12792 remember the bytes we are writing out, so that we can install the
12793 GP value in the section_processing routine. */
12794
b34976b6 12795bfd_boolean
9719ad41
RS
12796_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12797 const void *location,
12798 file_ptr offset, bfd_size_type count)
b49e97c9 12799{
cc2e31b9 12800 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
12801 {
12802 bfd_byte *c;
12803
12804 if (elf_section_data (section) == NULL)
12805 {
12806 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 12807 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 12808 if (elf_section_data (section) == NULL)
b34976b6 12809 return FALSE;
b49e97c9 12810 }
f0abc2a1 12811 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
12812 if (c == NULL)
12813 {
eea6121a 12814 c = bfd_zalloc (abfd, section->size);
b49e97c9 12815 if (c == NULL)
b34976b6 12816 return FALSE;
f0abc2a1 12817 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
12818 }
12819
9719ad41 12820 memcpy (c + offset, location, count);
b49e97c9
TS
12821 }
12822
12823 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12824 count);
12825}
12826
12827/* This is almost identical to bfd_generic_get_... except that some
12828 MIPS relocations need to be handled specially. Sigh. */
12829
12830bfd_byte *
9719ad41
RS
12831_bfd_elf_mips_get_relocated_section_contents
12832 (bfd *abfd,
12833 struct bfd_link_info *link_info,
12834 struct bfd_link_order *link_order,
12835 bfd_byte *data,
12836 bfd_boolean relocatable,
12837 asymbol **symbols)
b49e97c9
TS
12838{
12839 /* Get enough memory to hold the stuff */
12840 bfd *input_bfd = link_order->u.indirect.section->owner;
12841 asection *input_section = link_order->u.indirect.section;
eea6121a 12842 bfd_size_type sz;
b49e97c9
TS
12843
12844 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12845 arelent **reloc_vector = NULL;
12846 long reloc_count;
12847
12848 if (reloc_size < 0)
12849 goto error_return;
12850
9719ad41 12851 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
12852 if (reloc_vector == NULL && reloc_size != 0)
12853 goto error_return;
12854
12855 /* read in the section */
eea6121a
AM
12856 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12857 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
12858 goto error_return;
12859
b49e97c9
TS
12860 reloc_count = bfd_canonicalize_reloc (input_bfd,
12861 input_section,
12862 reloc_vector,
12863 symbols);
12864 if (reloc_count < 0)
12865 goto error_return;
12866
12867 if (reloc_count > 0)
12868 {
12869 arelent **parent;
12870 /* for mips */
12871 int gp_found;
12872 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12873
12874 {
12875 struct bfd_hash_entry *h;
12876 struct bfd_link_hash_entry *lh;
12877 /* Skip all this stuff if we aren't mixing formats. */
12878 if (abfd && input_bfd
12879 && abfd->xvec == input_bfd->xvec)
12880 lh = 0;
12881 else
12882 {
b34976b6 12883 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
12884 lh = (struct bfd_link_hash_entry *) h;
12885 }
12886 lookup:
12887 if (lh)
12888 {
12889 switch (lh->type)
12890 {
12891 case bfd_link_hash_undefined:
12892 case bfd_link_hash_undefweak:
12893 case bfd_link_hash_common:
12894 gp_found = 0;
12895 break;
12896 case bfd_link_hash_defined:
12897 case bfd_link_hash_defweak:
12898 gp_found = 1;
12899 gp = lh->u.def.value;
12900 break;
12901 case bfd_link_hash_indirect:
12902 case bfd_link_hash_warning:
12903 lh = lh->u.i.link;
12904 /* @@FIXME ignoring warning for now */
12905 goto lookup;
12906 case bfd_link_hash_new:
12907 default:
12908 abort ();
12909 }
12910 }
12911 else
12912 gp_found = 0;
12913 }
12914 /* end mips */
9719ad41 12915 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 12916 {
9719ad41 12917 char *error_message = NULL;
b49e97c9
TS
12918 bfd_reloc_status_type r;
12919
12920 /* Specific to MIPS: Deal with relocation types that require
12921 knowing the gp of the output bfd. */
12922 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 12923
8236346f
EC
12924 /* If we've managed to find the gp and have a special
12925 function for the relocation then go ahead, else default
12926 to the generic handling. */
12927 if (gp_found
12928 && (*parent)->howto->special_function
12929 == _bfd_mips_elf32_gprel16_reloc)
12930 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12931 input_section, relocatable,
12932 data, gp);
12933 else
86324f90 12934 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
12935 input_section,
12936 relocatable ? abfd : NULL,
12937 &error_message);
b49e97c9 12938
1049f94e 12939 if (relocatable)
b49e97c9
TS
12940 {
12941 asection *os = input_section->output_section;
12942
12943 /* A partial link, so keep the relocs */
12944 os->orelocation[os->reloc_count] = *parent;
12945 os->reloc_count++;
12946 }
12947
12948 if (r != bfd_reloc_ok)
12949 {
12950 switch (r)
12951 {
12952 case bfd_reloc_undefined:
1a72702b
AM
12953 (*link_info->callbacks->undefined_symbol)
12954 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12955 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
12956 break;
12957 case bfd_reloc_dangerous:
9719ad41 12958 BFD_ASSERT (error_message != NULL);
1a72702b
AM
12959 (*link_info->callbacks->reloc_dangerous)
12960 (link_info, error_message,
12961 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
12962 break;
12963 case bfd_reloc_overflow:
1a72702b
AM
12964 (*link_info->callbacks->reloc_overflow)
12965 (link_info, NULL,
12966 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12967 (*parent)->howto->name, (*parent)->addend,
12968 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
12969 break;
12970 case bfd_reloc_outofrange:
12971 default:
12972 abort ();
12973 break;
12974 }
12975
12976 }
12977 }
12978 }
12979 if (reloc_vector != NULL)
12980 free (reloc_vector);
12981 return data;
12982
12983error_return:
12984 if (reloc_vector != NULL)
12985 free (reloc_vector);
12986 return NULL;
12987}
12988\f
df58fc94
RS
12989static bfd_boolean
12990mips_elf_relax_delete_bytes (bfd *abfd,
12991 asection *sec, bfd_vma addr, int count)
12992{
12993 Elf_Internal_Shdr *symtab_hdr;
12994 unsigned int sec_shndx;
12995 bfd_byte *contents;
12996 Elf_Internal_Rela *irel, *irelend;
12997 Elf_Internal_Sym *isym;
12998 Elf_Internal_Sym *isymend;
12999 struct elf_link_hash_entry **sym_hashes;
13000 struct elf_link_hash_entry **end_hashes;
13001 struct elf_link_hash_entry **start_hashes;
13002 unsigned int symcount;
13003
13004 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13005 contents = elf_section_data (sec)->this_hdr.contents;
13006
13007 irel = elf_section_data (sec)->relocs;
13008 irelend = irel + sec->reloc_count;
13009
13010 /* Actually delete the bytes. */
13011 memmove (contents + addr, contents + addr + count,
13012 (size_t) (sec->size - addr - count));
13013 sec->size -= count;
13014
13015 /* Adjust all the relocs. */
13016 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13017 {
13018 /* Get the new reloc address. */
13019 if (irel->r_offset > addr)
13020 irel->r_offset -= count;
13021 }
13022
13023 BFD_ASSERT (addr % 2 == 0);
13024 BFD_ASSERT (count % 2 == 0);
13025
13026 /* Adjust the local symbols defined in this section. */
13027 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13028 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13029 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13030 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13031 isym->st_value -= count;
13032
13033 /* Now adjust the global symbols defined in this section. */
13034 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13035 - symtab_hdr->sh_info);
13036 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13037 end_hashes = sym_hashes + symcount;
13038
13039 for (; sym_hashes < end_hashes; sym_hashes++)
13040 {
13041 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13042
13043 if ((sym_hash->root.type == bfd_link_hash_defined
13044 || sym_hash->root.type == bfd_link_hash_defweak)
13045 && sym_hash->root.u.def.section == sec)
13046 {
2309ddf2 13047 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13048
df58fc94
RS
13049 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13050 value &= MINUS_TWO;
13051 if (value > addr)
13052 sym_hash->root.u.def.value -= count;
13053 }
13054 }
13055
13056 return TRUE;
13057}
13058
13059
13060/* Opcodes needed for microMIPS relaxation as found in
13061 opcodes/micromips-opc.c. */
13062
13063struct opcode_descriptor {
13064 unsigned long match;
13065 unsigned long mask;
13066};
13067
13068/* The $ra register aka $31. */
13069
13070#define RA 31
13071
13072/* 32-bit instruction format register fields. */
13073
13074#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13075#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13076
13077/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13078
13079#define OP16_VALID_REG(r) \
13080 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13081
13082
13083/* 32-bit and 16-bit branches. */
13084
13085static const struct opcode_descriptor b_insns_32[] = {
13086 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13087 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13088 { 0, 0 } /* End marker for find_match(). */
13089};
13090
13091static const struct opcode_descriptor bc_insn_32 =
13092 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13093
13094static const struct opcode_descriptor bz_insn_32 =
13095 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13096
13097static const struct opcode_descriptor bzal_insn_32 =
13098 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13099
13100static const struct opcode_descriptor beq_insn_32 =
13101 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13102
13103static const struct opcode_descriptor b_insn_16 =
13104 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13105
13106static const struct opcode_descriptor bz_insn_16 =
c088dedf 13107 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13108
13109
13110/* 32-bit and 16-bit branch EQ and NE zero. */
13111
13112/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13113 eq and second the ne. This convention is used when replacing a
13114 32-bit BEQ/BNE with the 16-bit version. */
13115
13116#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13117
13118static const struct opcode_descriptor bz_rs_insns_32[] = {
13119 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13120 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13121 { 0, 0 } /* End marker for find_match(). */
13122};
13123
13124static const struct opcode_descriptor bz_rt_insns_32[] = {
13125 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13126 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13127 { 0, 0 } /* End marker for find_match(). */
13128};
13129
13130static const struct opcode_descriptor bzc_insns_32[] = {
13131 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13132 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13133 { 0, 0 } /* End marker for find_match(). */
13134};
13135
13136static const struct opcode_descriptor bz_insns_16[] = {
13137 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13138 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13139 { 0, 0 } /* End marker for find_match(). */
13140};
13141
13142/* Switch between a 5-bit register index and its 3-bit shorthand. */
13143
e67f83e5 13144#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13145#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13146
13147
13148/* 32-bit instructions with a delay slot. */
13149
13150static const struct opcode_descriptor jal_insn_32_bd16 =
13151 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13152
13153static const struct opcode_descriptor jal_insn_32_bd32 =
13154 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13155
13156static const struct opcode_descriptor jal_x_insn_32_bd32 =
13157 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13158
13159static const struct opcode_descriptor j_insn_32 =
13160 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13161
13162static const struct opcode_descriptor jalr_insn_32 =
13163 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13164
13165/* This table can be compacted, because no opcode replacement is made. */
13166
13167static const struct opcode_descriptor ds_insns_32_bd16[] = {
13168 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13169
13170 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13171 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13172
13173 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13174 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13175 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13176 { 0, 0 } /* End marker for find_match(). */
13177};
13178
13179/* This table can be compacted, because no opcode replacement is made. */
13180
13181static const struct opcode_descriptor ds_insns_32_bd32[] = {
13182 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13183
13184 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13185 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13186 { 0, 0 } /* End marker for find_match(). */
13187};
13188
13189
13190/* 16-bit instructions with a delay slot. */
13191
13192static const struct opcode_descriptor jalr_insn_16_bd16 =
13193 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13194
13195static const struct opcode_descriptor jalr_insn_16_bd32 =
13196 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13197
13198static const struct opcode_descriptor jr_insn_16 =
13199 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13200
13201#define JR16_REG(opcode) ((opcode) & 0x1f)
13202
13203/* This table can be compacted, because no opcode replacement is made. */
13204
13205static const struct opcode_descriptor ds_insns_16_bd16[] = {
13206 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13207
13208 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13209 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13210 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13211 { 0, 0 } /* End marker for find_match(). */
13212};
13213
13214
13215/* LUI instruction. */
13216
13217static const struct opcode_descriptor lui_insn =
13218 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13219
13220
13221/* ADDIU instruction. */
13222
13223static const struct opcode_descriptor addiu_insn =
13224 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13225
13226static const struct opcode_descriptor addiupc_insn =
13227 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13228
13229#define ADDIUPC_REG_FIELD(r) \
13230 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13231
13232
13233/* Relaxable instructions in a JAL delay slot: MOVE. */
13234
13235/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13236 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13237#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13238#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13239
13240#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13241#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13242
13243static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13244 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13245 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13246 { 0, 0 } /* End marker for find_match(). */
13247};
13248
13249static const struct opcode_descriptor move_insn_16 =
13250 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13251
13252
13253/* NOP instructions. */
13254
13255static const struct opcode_descriptor nop_insn_32 =
13256 { /* "nop", "", */ 0x00000000, 0xffffffff };
13257
13258static const struct opcode_descriptor nop_insn_16 =
13259 { /* "nop", "", */ 0x0c00, 0xffff };
13260
13261
13262/* Instruction match support. */
13263
13264#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13265
13266static int
13267find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13268{
13269 unsigned long indx;
13270
13271 for (indx = 0; insn[indx].mask != 0; indx++)
13272 if (MATCH (opcode, insn[indx]))
13273 return indx;
13274
13275 return -1;
13276}
13277
13278
13279/* Branch and delay slot decoding support. */
13280
13281/* If PTR points to what *might* be a 16-bit branch or jump, then
13282 return the minimum length of its delay slot, otherwise return 0.
13283 Non-zero results are not definitive as we might be checking against
13284 the second half of another instruction. */
13285
13286static int
13287check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13288{
13289 unsigned long opcode;
13290 int bdsize;
13291
13292 opcode = bfd_get_16 (abfd, ptr);
13293 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13294 /* 16-bit branch/jump with a 32-bit delay slot. */
13295 bdsize = 4;
13296 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13297 || find_match (opcode, ds_insns_16_bd16) >= 0)
13298 /* 16-bit branch/jump with a 16-bit delay slot. */
13299 bdsize = 2;
13300 else
13301 /* No delay slot. */
13302 bdsize = 0;
13303
13304 return bdsize;
13305}
13306
13307/* If PTR points to what *might* be a 32-bit branch or jump, then
13308 return the minimum length of its delay slot, otherwise return 0.
13309 Non-zero results are not definitive as we might be checking against
13310 the second half of another instruction. */
13311
13312static int
13313check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13314{
13315 unsigned long opcode;
13316 int bdsize;
13317
d21911ea 13318 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13319 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13320 /* 32-bit branch/jump with a 32-bit delay slot. */
13321 bdsize = 4;
13322 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13323 /* 32-bit branch/jump with a 16-bit delay slot. */
13324 bdsize = 2;
13325 else
13326 /* No delay slot. */
13327 bdsize = 0;
13328
13329 return bdsize;
13330}
13331
13332/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13333 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13334
13335static bfd_boolean
13336check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13337{
13338 unsigned long opcode;
13339
13340 opcode = bfd_get_16 (abfd, ptr);
13341 if (MATCH (opcode, b_insn_16)
13342 /* B16 */
13343 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13344 /* JR16 */
13345 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13346 /* BEQZ16, BNEZ16 */
13347 || (MATCH (opcode, jalr_insn_16_bd32)
13348 /* JALR16 */
13349 && reg != JR16_REG (opcode) && reg != RA))
13350 return TRUE;
13351
13352 return FALSE;
13353}
13354
13355/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13356 then return TRUE, otherwise FALSE. */
13357
f41e5fcc 13358static bfd_boolean
df58fc94
RS
13359check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13360{
13361 unsigned long opcode;
13362
d21911ea 13363 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13364 if (MATCH (opcode, j_insn_32)
13365 /* J */
13366 || MATCH (opcode, bc_insn_32)
13367 /* BC1F, BC1T, BC2F, BC2T */
13368 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13369 /* JAL, JALX */
13370 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13371 /* BGEZ, BGTZ, BLEZ, BLTZ */
13372 || (MATCH (opcode, bzal_insn_32)
13373 /* BGEZAL, BLTZAL */
13374 && reg != OP32_SREG (opcode) && reg != RA)
13375 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13376 /* JALR, JALR.HB, BEQ, BNE */
13377 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13378 return TRUE;
13379
13380 return FALSE;
13381}
13382
80cab405
MR
13383/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13384 IRELEND) at OFFSET indicate that there must be a compact branch there,
13385 then return TRUE, otherwise FALSE. */
df58fc94
RS
13386
13387static bfd_boolean
80cab405
MR
13388check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13389 const Elf_Internal_Rela *internal_relocs,
13390 const Elf_Internal_Rela *irelend)
df58fc94 13391{
80cab405
MR
13392 const Elf_Internal_Rela *irel;
13393 unsigned long opcode;
13394
d21911ea 13395 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13396 if (find_match (opcode, bzc_insns_32) < 0)
13397 return FALSE;
df58fc94
RS
13398
13399 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13400 if (irel->r_offset == offset
13401 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13402 return TRUE;
13403
df58fc94
RS
13404 return FALSE;
13405}
80cab405
MR
13406
13407/* Bitsize checking. */
13408#define IS_BITSIZE(val, N) \
13409 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13410 - (1ULL << ((N) - 1))) == (val))
13411
df58fc94
RS
13412\f
13413bfd_boolean
13414_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13415 struct bfd_link_info *link_info,
13416 bfd_boolean *again)
13417{
833794fc 13418 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13419 Elf_Internal_Shdr *symtab_hdr;
13420 Elf_Internal_Rela *internal_relocs;
13421 Elf_Internal_Rela *irel, *irelend;
13422 bfd_byte *contents = NULL;
13423 Elf_Internal_Sym *isymbuf = NULL;
13424
13425 /* Assume nothing changes. */
13426 *again = FALSE;
13427
13428 /* We don't have to do anything for a relocatable link, if
13429 this section does not have relocs, or if this is not a
13430 code section. */
13431
0e1862bb 13432 if (bfd_link_relocatable (link_info)
df58fc94
RS
13433 || (sec->flags & SEC_RELOC) == 0
13434 || sec->reloc_count == 0
13435 || (sec->flags & SEC_CODE) == 0)
13436 return TRUE;
13437
13438 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13439
13440 /* Get a copy of the native relocations. */
13441 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13442 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13443 link_info->keep_memory));
13444 if (internal_relocs == NULL)
13445 goto error_return;
13446
13447 /* Walk through them looking for relaxing opportunities. */
13448 irelend = internal_relocs + sec->reloc_count;
13449 for (irel = internal_relocs; irel < irelend; irel++)
13450 {
13451 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13452 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13453 bfd_boolean target_is_micromips_code_p;
13454 unsigned long opcode;
13455 bfd_vma symval;
13456 bfd_vma pcrval;
2309ddf2 13457 bfd_byte *ptr;
df58fc94
RS
13458 int fndopc;
13459
13460 /* The number of bytes to delete for relaxation and from where
07d6d2b8 13461 to delete these bytes starting at irel->r_offset. */
df58fc94
RS
13462 int delcnt = 0;
13463 int deloff = 0;
13464
13465 /* If this isn't something that can be relaxed, then ignore
07d6d2b8 13466 this reloc. */
df58fc94
RS
13467 if (r_type != R_MICROMIPS_HI16
13468 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13469 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13470 continue;
13471
13472 /* Get the section contents if we haven't done so already. */
13473 if (contents == NULL)
13474 {
13475 /* Get cached copy if it exists. */
13476 if (elf_section_data (sec)->this_hdr.contents != NULL)
13477 contents = elf_section_data (sec)->this_hdr.contents;
13478 /* Go get them off disk. */
13479 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13480 goto error_return;
13481 }
2309ddf2 13482 ptr = contents + irel->r_offset;
df58fc94
RS
13483
13484 /* Read this BFD's local symbols if we haven't done so already. */
13485 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13486 {
13487 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13488 if (isymbuf == NULL)
13489 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13490 symtab_hdr->sh_info, 0,
13491 NULL, NULL, NULL);
13492 if (isymbuf == NULL)
13493 goto error_return;
13494 }
13495
13496 /* Get the value of the symbol referred to by the reloc. */
13497 if (r_symndx < symtab_hdr->sh_info)
13498 {
13499 /* A local symbol. */
13500 Elf_Internal_Sym *isym;
13501 asection *sym_sec;
13502
13503 isym = isymbuf + r_symndx;
13504 if (isym->st_shndx == SHN_UNDEF)
13505 sym_sec = bfd_und_section_ptr;
13506 else if (isym->st_shndx == SHN_ABS)
13507 sym_sec = bfd_abs_section_ptr;
13508 else if (isym->st_shndx == SHN_COMMON)
13509 sym_sec = bfd_com_section_ptr;
13510 else
13511 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13512 symval = (isym->st_value
13513 + sym_sec->output_section->vma
13514 + sym_sec->output_offset);
13515 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13516 }
13517 else
13518 {
13519 unsigned long indx;
13520 struct elf_link_hash_entry *h;
13521
13522 /* An external symbol. */
13523 indx = r_symndx - symtab_hdr->sh_info;
13524 h = elf_sym_hashes (abfd)[indx];
13525 BFD_ASSERT (h != NULL);
13526
13527 if (h->root.type != bfd_link_hash_defined
13528 && h->root.type != bfd_link_hash_defweak)
13529 /* This appears to be a reference to an undefined
13530 symbol. Just ignore it -- it will be caught by the
13531 regular reloc processing. */
13532 continue;
13533
13534 symval = (h->root.u.def.value
13535 + h->root.u.def.section->output_section->vma
13536 + h->root.u.def.section->output_offset);
13537 target_is_micromips_code_p = (!h->needs_plt
13538 && ELF_ST_IS_MICROMIPS (h->other));
13539 }
13540
13541
13542 /* For simplicity of coding, we are going to modify the
07d6d2b8
AM
13543 section contents, the section relocs, and the BFD symbol
13544 table. We must tell the rest of the code not to free up this
13545 information. It would be possible to instead create a table
13546 of changes which have to be made, as is done in coff-mips.c;
13547 that would be more work, but would require less memory when
13548 the linker is run. */
df58fc94
RS
13549
13550 /* Only 32-bit instructions relaxed. */
13551 if (irel->r_offset + 4 > sec->size)
13552 continue;
13553
d21911ea 13554 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13555
13556 /* This is the pc-relative distance from the instruction the
07d6d2b8 13557 relocation is applied to, to the symbol referred. */
df58fc94
RS
13558 pcrval = (symval
13559 - (sec->output_section->vma + sec->output_offset)
13560 - irel->r_offset);
13561
13562 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
07d6d2b8
AM
13563 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13564 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
df58fc94 13565
07d6d2b8 13566 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
df58fc94 13567
07d6d2b8
AM
13568 where pcrval has first to be adjusted to apply against the LO16
13569 location (we make the adjustment later on, when we have figured
13570 out the offset). */
df58fc94
RS
13571 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13572 {
80cab405 13573 bfd_boolean bzc = FALSE;
df58fc94
RS
13574 unsigned long nextopc;
13575 unsigned long reg;
13576 bfd_vma offset;
13577
13578 /* Give up if the previous reloc was a HI16 against this symbol
13579 too. */
13580 if (irel > internal_relocs
13581 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13582 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13583 continue;
13584
13585 /* Or if the next reloc is not a LO16 against this symbol. */
13586 if (irel + 1 >= irelend
13587 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13588 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13589 continue;
13590
13591 /* Or if the second next reloc is a LO16 against this symbol too. */
13592 if (irel + 2 >= irelend
13593 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13594 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13595 continue;
13596
80cab405
MR
13597 /* See if the LUI instruction *might* be in a branch delay slot.
13598 We check whether what looks like a 16-bit branch or jump is
13599 actually an immediate argument to a compact branch, and let
13600 it through if so. */
df58fc94 13601 if (irel->r_offset >= 2
2309ddf2 13602 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13603 && !(irel->r_offset >= 4
80cab405
MR
13604 && (bzc = check_relocated_bzc (abfd,
13605 ptr - 4, irel->r_offset - 4,
13606 internal_relocs, irelend))))
df58fc94
RS
13607 continue;
13608 if (irel->r_offset >= 4
80cab405 13609 && !bzc
2309ddf2 13610 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13611 continue;
13612
13613 reg = OP32_SREG (opcode);
13614
13615 /* We only relax adjacent instructions or ones separated with
13616 a branch or jump that has a delay slot. The branch or jump
13617 must not fiddle with the register used to hold the address.
13618 Subtract 4 for the LUI itself. */
13619 offset = irel[1].r_offset - irel[0].r_offset;
13620 switch (offset - 4)
13621 {
13622 case 0:
13623 break;
13624 case 2:
2309ddf2 13625 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13626 break;
13627 continue;
13628 case 4:
2309ddf2 13629 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13630 break;
13631 continue;
13632 default:
13633 continue;
13634 }
13635
d21911ea 13636 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13637
13638 /* Give up unless the same register is used with both
13639 relocations. */
13640 if (OP32_SREG (nextopc) != reg)
13641 continue;
13642
13643 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13644 and rounding up to take masking of the two LSBs into account. */
13645 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13646
13647 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13648 if (IS_BITSIZE (symval, 16))
13649 {
13650 /* Fix the relocation's type. */
13651 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13652
13653 /* Instructions using R_MICROMIPS_LO16 have the base or
07d6d2b8
AM
13654 source register in bits 20:16. This register becomes $0
13655 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
df58fc94
RS
13656 nextopc &= ~0x001f0000;
13657 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13658 contents + irel[1].r_offset);
13659 }
13660
13661 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13662 We add 4 to take LUI deletion into account while checking
13663 the PC-relative distance. */
13664 else if (symval % 4 == 0
13665 && IS_BITSIZE (pcrval + 4, 25)
13666 && MATCH (nextopc, addiu_insn)
13667 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13668 && OP16_VALID_REG (OP32_TREG (nextopc)))
13669 {
13670 /* Fix the relocation's type. */
13671 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13672
13673 /* Replace ADDIU with the ADDIUPC version. */
13674 nextopc = (addiupc_insn.match
13675 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13676
d21911ea
MR
13677 bfd_put_micromips_32 (abfd, nextopc,
13678 contents + irel[1].r_offset);
df58fc94
RS
13679 }
13680
13681 /* Can't do anything, give up, sigh... */
13682 else
13683 continue;
13684
13685 /* Fix the relocation's type. */
13686 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13687
13688 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13689 delcnt = 4;
13690 deloff = 0;
13691 }
13692
13693 /* Compact branch relaxation -- due to the multitude of macros
07d6d2b8
AM
13694 employed by the compiler/assembler, compact branches are not
13695 always generated. Obviously, this can/will be fixed elsewhere,
13696 but there is no drawback in double checking it here. */
df58fc94
RS
13697 else if (r_type == R_MICROMIPS_PC16_S1
13698 && irel->r_offset + 5 < sec->size
13699 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13700 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
13701 && ((!insn32
13702 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13703 nop_insn_16) ? 2 : 0))
13704 || (irel->r_offset + 7 < sec->size
13705 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13706 ptr + 4),
13707 nop_insn_32) ? 4 : 0))))
df58fc94
RS
13708 {
13709 unsigned long reg;
13710
13711 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13712
13713 /* Replace BEQZ/BNEZ with the compact version. */
13714 opcode = (bzc_insns_32[fndopc].match
13715 | BZC32_REG_FIELD (reg)
13716 | (opcode & 0xffff)); /* Addend value. */
13717
d21911ea 13718 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 13719
833794fc
MR
13720 /* Delete the delay slot NOP: two or four bytes from
13721 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
13722 deloff = 4;
13723 }
13724
13725 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
07d6d2b8 13726 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13727 else if (!insn32
13728 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13729 && IS_BITSIZE (pcrval - 2, 11)
13730 && find_match (opcode, b_insns_32) >= 0)
13731 {
13732 /* Fix the relocation's type. */
13733 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13734
a8685210 13735 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13736 bfd_put_16 (abfd,
13737 (b_insn_16.match
13738 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 13739 ptr);
df58fc94
RS
13740
13741 /* Delete 2 bytes from irel->r_offset + 2. */
13742 delcnt = 2;
13743 deloff = 2;
13744 }
13745
13746 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
07d6d2b8 13747 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13748 else if (!insn32
13749 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13750 && IS_BITSIZE (pcrval - 2, 8)
13751 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13752 && OP16_VALID_REG (OP32_SREG (opcode)))
13753 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13754 && OP16_VALID_REG (OP32_TREG (opcode)))))
13755 {
13756 unsigned long reg;
13757
13758 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13759
13760 /* Fix the relocation's type. */
13761 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13762
a8685210 13763 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13764 bfd_put_16 (abfd,
13765 (bz_insns_16[fndopc].match
13766 | BZ16_REG_FIELD (reg)
13767 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 13768 ptr);
df58fc94
RS
13769
13770 /* Delete 2 bytes from irel->r_offset + 2. */
13771 delcnt = 2;
13772 deloff = 2;
13773 }
13774
13775 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
13776 else if (!insn32
13777 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
13778 && target_is_micromips_code_p
13779 && irel->r_offset + 7 < sec->size
13780 && MATCH (opcode, jal_insn_32_bd32))
13781 {
13782 unsigned long n32opc;
13783 bfd_boolean relaxed = FALSE;
13784
d21911ea 13785 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
13786
13787 if (MATCH (n32opc, nop_insn_32))
13788 {
13789 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 13790 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
13791
13792 relaxed = TRUE;
13793 }
13794 else if (find_match (n32opc, move_insns_32) >= 0)
13795 {
13796 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13797 bfd_put_16 (abfd,
13798 (move_insn_16.match
13799 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13800 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 13801 ptr + 4);
df58fc94
RS
13802
13803 relaxed = TRUE;
13804 }
13805 /* Other 32-bit instructions relaxable to 16-bit
13806 instructions will be handled here later. */
13807
13808 if (relaxed)
13809 {
13810 /* JAL with 32-bit delay slot that is changed to a JALS
07d6d2b8 13811 with 16-bit delay slot. */
d21911ea 13812 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
13813
13814 /* Delete 2 bytes from irel->r_offset + 6. */
13815 delcnt = 2;
13816 deloff = 6;
13817 }
13818 }
13819
13820 if (delcnt != 0)
13821 {
13822 /* Note that we've changed the relocs, section contents, etc. */
13823 elf_section_data (sec)->relocs = internal_relocs;
13824 elf_section_data (sec)->this_hdr.contents = contents;
13825 symtab_hdr->contents = (unsigned char *) isymbuf;
13826
13827 /* Delete bytes depending on the delcnt and deloff. */
13828 if (!mips_elf_relax_delete_bytes (abfd, sec,
13829 irel->r_offset + deloff, delcnt))
13830 goto error_return;
13831
13832 /* That will change things, so we should relax again.
13833 Note that this is not required, and it may be slow. */
13834 *again = TRUE;
13835 }
13836 }
13837
13838 if (isymbuf != NULL
13839 && symtab_hdr->contents != (unsigned char *) isymbuf)
13840 {
13841 if (! link_info->keep_memory)
13842 free (isymbuf);
13843 else
13844 {
13845 /* Cache the symbols for elf_link_input_bfd. */
13846 symtab_hdr->contents = (unsigned char *) isymbuf;
13847 }
13848 }
13849
13850 if (contents != NULL
13851 && elf_section_data (sec)->this_hdr.contents != contents)
13852 {
13853 if (! link_info->keep_memory)
13854 free (contents);
13855 else
13856 {
13857 /* Cache the section contents for elf_link_input_bfd. */
13858 elf_section_data (sec)->this_hdr.contents = contents;
13859 }
13860 }
13861
13862 if (internal_relocs != NULL
13863 && elf_section_data (sec)->relocs != internal_relocs)
13864 free (internal_relocs);
13865
13866 return TRUE;
13867
13868 error_return:
13869 if (isymbuf != NULL
13870 && symtab_hdr->contents != (unsigned char *) isymbuf)
13871 free (isymbuf);
13872 if (contents != NULL
13873 && elf_section_data (sec)->this_hdr.contents != contents)
13874 free (contents);
13875 if (internal_relocs != NULL
13876 && elf_section_data (sec)->relocs != internal_relocs)
13877 free (internal_relocs);
13878
13879 return FALSE;
13880}
13881\f
b49e97c9
TS
13882/* Create a MIPS ELF linker hash table. */
13883
13884struct bfd_link_hash_table *
9719ad41 13885_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
13886{
13887 struct mips_elf_link_hash_table *ret;
13888 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13889
7bf52ea2 13890 ret = bfd_zmalloc (amt);
9719ad41 13891 if (ret == NULL)
b49e97c9
TS
13892 return NULL;
13893
66eb6687
AM
13894 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13895 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
13896 sizeof (struct mips_elf_link_hash_entry),
13897 MIPS_ELF_DATA))
b49e97c9 13898 {
e2d34d7d 13899 free (ret);
b49e97c9
TS
13900 return NULL;
13901 }
1bbce132
MR
13902 ret->root.init_plt_refcount.plist = NULL;
13903 ret->root.init_plt_offset.plist = NULL;
b49e97c9 13904
b49e97c9
TS
13905 return &ret->root.root;
13906}
0a44bf69
RS
13907
13908/* Likewise, but indicate that the target is VxWorks. */
13909
13910struct bfd_link_hash_table *
13911_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13912{
13913 struct bfd_link_hash_table *ret;
13914
13915 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13916 if (ret)
13917 {
13918 struct mips_elf_link_hash_table *htab;
13919
13920 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
13921 htab->use_plts_and_copy_relocs = TRUE;
13922 htab->is_vxworks = TRUE;
0a44bf69
RS
13923 }
13924 return ret;
13925}
861fb55a
DJ
13926
13927/* A function that the linker calls if we are allowed to use PLTs
13928 and copy relocs. */
13929
13930void
13931_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13932{
13933 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13934}
833794fc
MR
13935
13936/* A function that the linker calls to select between all or only
8b10b0b3
MR
13937 32-bit microMIPS instructions, and between making or ignoring
13938 branch relocation checks for invalid transitions between ISA modes. */
833794fc
MR
13939
13940void
8b10b0b3
MR
13941_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13942 bfd_boolean ignore_branch_isa)
833794fc 13943{
8b10b0b3
MR
13944 mips_elf_hash_table (info)->insn32 = insn32;
13945 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
833794fc 13946}
b49e97c9 13947\f
c97c330b
MF
13948/* Structure for saying that BFD machine EXTENSION extends BASE. */
13949
13950struct mips_mach_extension
13951{
13952 unsigned long extension, base;
13953};
13954
13955
13956/* An array describing how BFD machines relate to one another. The entries
13957 are ordered topologically with MIPS I extensions listed last. */
13958
13959static const struct mips_mach_extension mips_mach_extensions[] =
13960{
13961 /* MIPS64r2 extensions. */
13962 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13963 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13964 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13965 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13966 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13967
13968 /* MIPS64 extensions. */
13969 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13970 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13971 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13972
13973 /* MIPS V extensions. */
13974 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13975
13976 /* R10000 extensions. */
13977 { bfd_mach_mips12000, bfd_mach_mips10000 },
13978 { bfd_mach_mips14000, bfd_mach_mips10000 },
13979 { bfd_mach_mips16000, bfd_mach_mips10000 },
13980
13981 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13982 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13983 better to allow vr5400 and vr5500 code to be merged anyway, since
13984 many libraries will just use the core ISA. Perhaps we could add
13985 some sort of ASE flag if this ever proves a problem. */
13986 { bfd_mach_mips5500, bfd_mach_mips5400 },
13987 { bfd_mach_mips5400, bfd_mach_mips5000 },
13988
13989 /* MIPS IV extensions. */
13990 { bfd_mach_mips5, bfd_mach_mips8000 },
13991 { bfd_mach_mips10000, bfd_mach_mips8000 },
13992 { bfd_mach_mips5000, bfd_mach_mips8000 },
13993 { bfd_mach_mips7000, bfd_mach_mips8000 },
13994 { bfd_mach_mips9000, bfd_mach_mips8000 },
13995
13996 /* VR4100 extensions. */
13997 { bfd_mach_mips4120, bfd_mach_mips4100 },
13998 { bfd_mach_mips4111, bfd_mach_mips4100 },
13999
14000 /* MIPS III extensions. */
14001 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14002 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14003 { bfd_mach_mips8000, bfd_mach_mips4000 },
14004 { bfd_mach_mips4650, bfd_mach_mips4000 },
14005 { bfd_mach_mips4600, bfd_mach_mips4000 },
14006 { bfd_mach_mips4400, bfd_mach_mips4000 },
14007 { bfd_mach_mips4300, bfd_mach_mips4000 },
14008 { bfd_mach_mips4100, bfd_mach_mips4000 },
c97c330b
MF
14009 { bfd_mach_mips5900, bfd_mach_mips4000 },
14010
38bf472a
MR
14011 /* MIPS32r3 extensions. */
14012 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14013
14014 /* MIPS32r2 extensions. */
14015 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14016
c97c330b
MF
14017 /* MIPS32 extensions. */
14018 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14019
14020 /* MIPS II extensions. */
14021 { bfd_mach_mips4000, bfd_mach_mips6000 },
14022 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
b417536f 14023 { bfd_mach_mips4010, bfd_mach_mips6000 },
c97c330b
MF
14024
14025 /* MIPS I extensions. */
14026 { bfd_mach_mips6000, bfd_mach_mips3000 },
14027 { bfd_mach_mips3900, bfd_mach_mips3000 }
14028};
14029
14030/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14031
14032static bfd_boolean
14033mips_mach_extends_p (unsigned long base, unsigned long extension)
14034{
14035 size_t i;
14036
14037 if (extension == base)
14038 return TRUE;
14039
14040 if (base == bfd_mach_mipsisa32
14041 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14042 return TRUE;
14043
14044 if (base == bfd_mach_mipsisa32r2
14045 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14046 return TRUE;
14047
14048 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14049 if (extension == mips_mach_extensions[i].extension)
14050 {
14051 extension = mips_mach_extensions[i].base;
14052 if (extension == base)
14053 return TRUE;
14054 }
14055
14056 return FALSE;
14057}
14058
14059/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14060
14061static unsigned long
14062bfd_mips_isa_ext_mach (unsigned int isa_ext)
14063{
14064 switch (isa_ext)
14065 {
07d6d2b8
AM
14066 case AFL_EXT_3900: return bfd_mach_mips3900;
14067 case AFL_EXT_4010: return bfd_mach_mips4010;
14068 case AFL_EXT_4100: return bfd_mach_mips4100;
14069 case AFL_EXT_4111: return bfd_mach_mips4111;
14070 case AFL_EXT_4120: return bfd_mach_mips4120;
14071 case AFL_EXT_4650: return bfd_mach_mips4650;
14072 case AFL_EXT_5400: return bfd_mach_mips5400;
14073 case AFL_EXT_5500: return bfd_mach_mips5500;
14074 case AFL_EXT_5900: return bfd_mach_mips5900;
14075 case AFL_EXT_10000: return bfd_mach_mips10000;
c97c330b
MF
14076 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14077 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14078 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
07d6d2b8 14079 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
c97c330b
MF
14080 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14081 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14082 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
07d6d2b8
AM
14083 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14084 default: return bfd_mach_mips3000;
c97c330b
MF
14085 }
14086}
14087
351cdf24
MF
14088/* Return the .MIPS.abiflags value representing each ISA Extension. */
14089
14090unsigned int
14091bfd_mips_isa_ext (bfd *abfd)
14092{
14093 switch (bfd_get_mach (abfd))
14094 {
07d6d2b8
AM
14095 case bfd_mach_mips3900: return AFL_EXT_3900;
14096 case bfd_mach_mips4010: return AFL_EXT_4010;
14097 case bfd_mach_mips4100: return AFL_EXT_4100;
14098 case bfd_mach_mips4111: return AFL_EXT_4111;
14099 case bfd_mach_mips4120: return AFL_EXT_4120;
14100 case bfd_mach_mips4650: return AFL_EXT_4650;
14101 case bfd_mach_mips5400: return AFL_EXT_5400;
14102 case bfd_mach_mips5500: return AFL_EXT_5500;
14103 case bfd_mach_mips5900: return AFL_EXT_5900;
14104 case bfd_mach_mips10000: return AFL_EXT_10000;
c97c330b
MF
14105 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14106 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14107 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
07d6d2b8
AM
14108 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14109 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14110 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14111 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14112 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14113 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
38bf472a
MR
14114 case bfd_mach_mips_interaptiv_mr2:
14115 return AFL_EXT_INTERAPTIV_MR2;
07d6d2b8 14116 default: return 0;
c97c330b
MF
14117 }
14118}
14119
14120/* Encode ISA level and revision as a single value. */
14121#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14122
14123/* Decode a single value into level and revision. */
14124#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14125#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14126
14127/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14128
14129static void
14130update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14131{
c97c330b 14132 int new_isa = 0;
351cdf24
MF
14133 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14134 {
c97c330b
MF
14135 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14136 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14137 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14138 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14139 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14140 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14141 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14142 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14143 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14144 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14145 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14146 default:
4eca0228 14147 _bfd_error_handler
695344c0 14148 /* xgettext:c-format */
2c1c9679 14149 (_("%pB: unknown architecture %s"),
351cdf24
MF
14150 abfd, bfd_printable_name (abfd));
14151 }
14152
c97c330b
MF
14153 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14154 {
14155 abiflags->isa_level = ISA_LEVEL (new_isa);
14156 abiflags->isa_rev = ISA_REV (new_isa);
14157 }
14158
14159 /* Update the isa_ext if ABFD describes a further extension. */
14160 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14161 bfd_get_mach (abfd)))
14162 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14163}
14164
14165/* Return true if the given ELF header flags describe a 32-bit binary. */
14166
14167static bfd_boolean
14168mips_32bit_flags_p (flagword flags)
14169{
14170 return ((flags & EF_MIPS_32BITMODE) != 0
14171 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14172 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14173 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14174 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14175 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14176 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14177 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14178}
14179
14180/* Infer the content of the ABI flags based on the elf header. */
14181
14182static void
14183infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14184{
14185 obj_attribute *in_attr;
14186
14187 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14188 update_mips_abiflags_isa (abfd, abiflags);
14189
14190 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14191 abiflags->gpr_size = AFL_REG_32;
14192 else
14193 abiflags->gpr_size = AFL_REG_64;
14194
14195 abiflags->cpr1_size = AFL_REG_NONE;
14196
14197 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14198 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14199
14200 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14201 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14202 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14203 && abiflags->gpr_size == AFL_REG_32))
14204 abiflags->cpr1_size = AFL_REG_32;
14205 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14206 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14207 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14208 abiflags->cpr1_size = AFL_REG_64;
14209
14210 abiflags->cpr2_size = AFL_REG_NONE;
14211
14212 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14213 abiflags->ases |= AFL_ASE_MDMX;
14214 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14215 abiflags->ases |= AFL_ASE_MIPS16;
14216 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14217 abiflags->ases |= AFL_ASE_MICROMIPS;
14218
14219 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14220 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14221 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14222 && abiflags->isa_level >= 32
14223 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14224 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14225}
14226
b49e97c9
TS
14227/* We need to use a special link routine to handle the .reginfo and
14228 the .mdebug sections. We need to merge all instances of these
14229 sections together, not write them all out sequentially. */
14230
b34976b6 14231bfd_boolean
9719ad41 14232_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14233{
b49e97c9
TS
14234 asection *o;
14235 struct bfd_link_order *p;
14236 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14237 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14238 Elf32_RegInfo reginfo;
14239 struct ecoff_debug_info debug;
861fb55a 14240 struct mips_htab_traverse_info hti;
7a2a6943
NC
14241 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14242 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14243 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14244 void *mdebug_handle = NULL;
b49e97c9
TS
14245 asection *s;
14246 EXTR esym;
14247 unsigned int i;
14248 bfd_size_type amt;
0a44bf69 14249 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14250
14251 static const char * const secname[] =
14252 {
14253 ".text", ".init", ".fini", ".data",
14254 ".rodata", ".sdata", ".sbss", ".bss"
14255 };
14256 static const int sc[] =
14257 {
14258 scText, scInit, scFini, scData,
14259 scRData, scSData, scSBss, scBss
14260 };
14261
0a44bf69 14262 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14263 BFD_ASSERT (htab != NULL);
14264
64575f78
MR
14265 /* Sort the dynamic symbols so that those with GOT entries come after
14266 those without. */
d4596a51
RS
14267 if (!mips_elf_sort_hash_table (abfd, info))
14268 return FALSE;
b49e97c9 14269
861fb55a
DJ
14270 /* Create any scheduled LA25 stubs. */
14271 hti.info = info;
14272 hti.output_bfd = abfd;
14273 hti.error = FALSE;
14274 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14275 if (hti.error)
14276 return FALSE;
14277
b49e97c9
TS
14278 /* Get a value for the GP register. */
14279 if (elf_gp (abfd) == 0)
14280 {
14281 struct bfd_link_hash_entry *h;
14282
b34976b6 14283 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14284 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14285 elf_gp (abfd) = (h->u.def.value
14286 + h->u.def.section->output_section->vma
14287 + h->u.def.section->output_offset);
0a44bf69
RS
14288 else if (htab->is_vxworks
14289 && (h = bfd_link_hash_lookup (info->hash,
14290 "_GLOBAL_OFFSET_TABLE_",
14291 FALSE, FALSE, TRUE))
14292 && h->type == bfd_link_hash_defined)
14293 elf_gp (abfd) = (h->u.def.section->output_section->vma
14294 + h->u.def.section->output_offset
14295 + h->u.def.value);
0e1862bb 14296 else if (bfd_link_relocatable (info))
b49e97c9
TS
14297 {
14298 bfd_vma lo = MINUS_ONE;
14299
14300 /* Find the GP-relative section with the lowest offset. */
9719ad41 14301 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14302 if (o->vma < lo
14303 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14304 lo = o->vma;
14305
14306 /* And calculate GP relative to that. */
0a44bf69 14307 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14308 }
14309 else
14310 {
14311 /* If the relocate_section function needs to do a reloc
14312 involving the GP value, it should make a reloc_dangerous
14313 callback to warn that GP is not defined. */
14314 }
14315 }
14316
14317 /* Go through the sections and collect the .reginfo and .mdebug
14318 information. */
351cdf24 14319 abiflags_sec = NULL;
b49e97c9
TS
14320 reginfo_sec = NULL;
14321 mdebug_sec = NULL;
14322 gptab_data_sec = NULL;
14323 gptab_bss_sec = NULL;
9719ad41 14324 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14325 {
351cdf24
MF
14326 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14327 {
14328 /* We have found the .MIPS.abiflags section in the output file.
14329 Look through all the link_orders comprising it and remove them.
14330 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14331 for (p = o->map_head.link_order; p != NULL; p = p->next)
14332 {
14333 asection *input_section;
14334
14335 if (p->type != bfd_indirect_link_order)
14336 {
14337 if (p->type == bfd_data_link_order)
14338 continue;
14339 abort ();
14340 }
14341
14342 input_section = p->u.indirect.section;
14343
14344 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14345 elf_link_input_bfd ignores this section. */
14346 input_section->flags &= ~SEC_HAS_CONTENTS;
14347 }
14348
14349 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14350 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14351
14352 /* Skip this section later on (I don't think this currently
14353 matters, but someday it might). */
14354 o->map_head.link_order = NULL;
14355
14356 abiflags_sec = o;
14357 }
14358
b49e97c9
TS
14359 if (strcmp (o->name, ".reginfo") == 0)
14360 {
14361 memset (&reginfo, 0, sizeof reginfo);
14362
14363 /* We have found the .reginfo section in the output file.
14364 Look through all the link_orders comprising it and merge
14365 the information together. */
8423293d 14366 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14367 {
14368 asection *input_section;
14369 bfd *input_bfd;
14370 Elf32_External_RegInfo ext;
14371 Elf32_RegInfo sub;
6798f8bf 14372 bfd_size_type sz;
b49e97c9
TS
14373
14374 if (p->type != bfd_indirect_link_order)
14375 {
14376 if (p->type == bfd_data_link_order)
14377 continue;
14378 abort ();
14379 }
14380
14381 input_section = p->u.indirect.section;
14382 input_bfd = input_section->owner;
14383
6798f8bf
MR
14384 sz = (input_section->size < sizeof (ext)
14385 ? input_section->size : sizeof (ext));
14386 memset (&ext, 0, sizeof (ext));
b49e97c9 14387 if (! bfd_get_section_contents (input_bfd, input_section,
6798f8bf 14388 &ext, 0, sz))
b34976b6 14389 return FALSE;
b49e97c9
TS
14390
14391 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14392
14393 reginfo.ri_gprmask |= sub.ri_gprmask;
14394 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14395 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14396 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14397 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14398
14399 /* ri_gp_value is set by the function
1c5e4ee9 14400 `_bfd_mips_elf_section_processing' when the section is
b49e97c9
TS
14401 finally written out. */
14402
14403 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14404 elf_link_input_bfd ignores this section. */
14405 input_section->flags &= ~SEC_HAS_CONTENTS;
14406 }
14407
14408 /* Size has been set in _bfd_mips_elf_always_size_sections. */
b248d650 14409 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14410
14411 /* Skip this section later on (I don't think this currently
14412 matters, but someday it might). */
8423293d 14413 o->map_head.link_order = NULL;
b49e97c9
TS
14414
14415 reginfo_sec = o;
14416 }
14417
14418 if (strcmp (o->name, ".mdebug") == 0)
14419 {
14420 struct extsym_info einfo;
14421 bfd_vma last;
14422
14423 /* We have found the .mdebug section in the output file.
14424 Look through all the link_orders comprising it and merge
14425 the information together. */
14426 symhdr->magic = swap->sym_magic;
14427 /* FIXME: What should the version stamp be? */
14428 symhdr->vstamp = 0;
14429 symhdr->ilineMax = 0;
14430 symhdr->cbLine = 0;
14431 symhdr->idnMax = 0;
14432 symhdr->ipdMax = 0;
14433 symhdr->isymMax = 0;
14434 symhdr->ioptMax = 0;
14435 symhdr->iauxMax = 0;
14436 symhdr->issMax = 0;
14437 symhdr->issExtMax = 0;
14438 symhdr->ifdMax = 0;
14439 symhdr->crfd = 0;
14440 symhdr->iextMax = 0;
14441
14442 /* We accumulate the debugging information itself in the
14443 debug_info structure. */
14444 debug.line = NULL;
14445 debug.external_dnr = NULL;
14446 debug.external_pdr = NULL;
14447 debug.external_sym = NULL;
14448 debug.external_opt = NULL;
14449 debug.external_aux = NULL;
14450 debug.ss = NULL;
14451 debug.ssext = debug.ssext_end = NULL;
14452 debug.external_fdr = NULL;
14453 debug.external_rfd = NULL;
14454 debug.external_ext = debug.external_ext_end = NULL;
14455
14456 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14457 if (mdebug_handle == NULL)
b34976b6 14458 return FALSE;
b49e97c9
TS
14459
14460 esym.jmptbl = 0;
14461 esym.cobol_main = 0;
14462 esym.weakext = 0;
14463 esym.reserved = 0;
14464 esym.ifd = ifdNil;
14465 esym.asym.iss = issNil;
14466 esym.asym.st = stLocal;
14467 esym.asym.reserved = 0;
14468 esym.asym.index = indexNil;
14469 last = 0;
14470 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14471 {
14472 esym.asym.sc = sc[i];
14473 s = bfd_get_section_by_name (abfd, secname[i]);
14474 if (s != NULL)
14475 {
14476 esym.asym.value = s->vma;
eea6121a 14477 last = s->vma + s->size;
b49e97c9
TS
14478 }
14479 else
14480 esym.asym.value = last;
14481 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14482 secname[i], &esym))
b34976b6 14483 return FALSE;
b49e97c9
TS
14484 }
14485
8423293d 14486 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14487 {
14488 asection *input_section;
14489 bfd *input_bfd;
14490 const struct ecoff_debug_swap *input_swap;
14491 struct ecoff_debug_info input_debug;
14492 char *eraw_src;
14493 char *eraw_end;
14494
14495 if (p->type != bfd_indirect_link_order)
14496 {
14497 if (p->type == bfd_data_link_order)
14498 continue;
14499 abort ();
14500 }
14501
14502 input_section = p->u.indirect.section;
14503 input_bfd = input_section->owner;
14504
d5eaccd7 14505 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14506 {
14507 /* I don't know what a non MIPS ELF bfd would be
14508 doing with a .mdebug section, but I don't really
14509 want to deal with it. */
14510 continue;
14511 }
14512
14513 input_swap = (get_elf_backend_data (input_bfd)
14514 ->elf_backend_ecoff_debug_swap);
14515
eea6121a 14516 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14517
14518 /* The ECOFF linking code expects that we have already
14519 read in the debugging information and set up an
14520 ecoff_debug_info structure, so we do that now. */
14521 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14522 &input_debug))
b34976b6 14523 return FALSE;
b49e97c9
TS
14524
14525 if (! (bfd_ecoff_debug_accumulate
14526 (mdebug_handle, abfd, &debug, swap, input_bfd,
14527 &input_debug, input_swap, info)))
b34976b6 14528 return FALSE;
b49e97c9
TS
14529
14530 /* Loop through the external symbols. For each one with
14531 interesting information, try to find the symbol in
14532 the linker global hash table and save the information
14533 for the output external symbols. */
14534 eraw_src = input_debug.external_ext;
14535 eraw_end = (eraw_src
14536 + (input_debug.symbolic_header.iextMax
14537 * input_swap->external_ext_size));
14538 for (;
14539 eraw_src < eraw_end;
14540 eraw_src += input_swap->external_ext_size)
14541 {
14542 EXTR ext;
14543 const char *name;
14544 struct mips_elf_link_hash_entry *h;
14545
9719ad41 14546 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14547 if (ext.asym.sc == scNil
14548 || ext.asym.sc == scUndefined
14549 || ext.asym.sc == scSUndefined)
14550 continue;
14551
14552 name = input_debug.ssext + ext.asym.iss;
14553 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14554 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14555 if (h == NULL || h->esym.ifd != -2)
14556 continue;
14557
14558 if (ext.ifd != -1)
14559 {
14560 BFD_ASSERT (ext.ifd
14561 < input_debug.symbolic_header.ifdMax);
14562 ext.ifd = input_debug.ifdmap[ext.ifd];
14563 }
14564
14565 h->esym = ext;
14566 }
14567
14568 /* Free up the information we just read. */
14569 free (input_debug.line);
14570 free (input_debug.external_dnr);
14571 free (input_debug.external_pdr);
14572 free (input_debug.external_sym);
14573 free (input_debug.external_opt);
14574 free (input_debug.external_aux);
14575 free (input_debug.ss);
14576 free (input_debug.ssext);
14577 free (input_debug.external_fdr);
14578 free (input_debug.external_rfd);
14579 free (input_debug.external_ext);
14580
14581 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14582 elf_link_input_bfd ignores this section. */
14583 input_section->flags &= ~SEC_HAS_CONTENTS;
14584 }
14585
0e1862bb 14586 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14587 {
14588 /* Create .rtproc section. */
87e0a731 14589 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14590 if (rtproc_sec == NULL)
14591 {
14592 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14593 | SEC_LINKER_CREATED | SEC_READONLY);
14594
87e0a731
AM
14595 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14596 ".rtproc",
14597 flags);
b49e97c9 14598 if (rtproc_sec == NULL
b49e97c9 14599 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14600 return FALSE;
b49e97c9
TS
14601 }
14602
14603 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14604 info, rtproc_sec,
14605 &debug))
b34976b6 14606 return FALSE;
b49e97c9
TS
14607 }
14608
14609 /* Build the external symbol information. */
14610 einfo.abfd = abfd;
14611 einfo.info = info;
14612 einfo.debug = &debug;
14613 einfo.swap = swap;
b34976b6 14614 einfo.failed = FALSE;
b49e97c9 14615 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14616 mips_elf_output_extsym, &einfo);
b49e97c9 14617 if (einfo.failed)
b34976b6 14618 return FALSE;
b49e97c9
TS
14619
14620 /* Set the size of the .mdebug section. */
eea6121a 14621 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14622
14623 /* Skip this section later on (I don't think this currently
14624 matters, but someday it might). */
8423293d 14625 o->map_head.link_order = NULL;
b49e97c9
TS
14626
14627 mdebug_sec = o;
14628 }
14629
0112cd26 14630 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
14631 {
14632 const char *subname;
14633 unsigned int c;
14634 Elf32_gptab *tab;
14635 Elf32_External_gptab *ext_tab;
14636 unsigned int j;
14637
14638 /* The .gptab.sdata and .gptab.sbss sections hold
14639 information describing how the small data area would
14640 change depending upon the -G switch. These sections
14641 not used in executables files. */
0e1862bb 14642 if (! bfd_link_relocatable (info))
b49e97c9 14643 {
8423293d 14644 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14645 {
14646 asection *input_section;
14647
14648 if (p->type != bfd_indirect_link_order)
14649 {
14650 if (p->type == bfd_data_link_order)
14651 continue;
14652 abort ();
14653 }
14654
14655 input_section = p->u.indirect.section;
14656
14657 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14658 elf_link_input_bfd ignores this section. */
14659 input_section->flags &= ~SEC_HAS_CONTENTS;
14660 }
14661
14662 /* Skip this section later on (I don't think this
14663 currently matters, but someday it might). */
8423293d 14664 o->map_head.link_order = NULL;
b49e97c9
TS
14665
14666 /* Really remove the section. */
5daa8fe7 14667 bfd_section_list_remove (abfd, o);
b49e97c9
TS
14668 --abfd->section_count;
14669
14670 continue;
14671 }
14672
14673 /* There is one gptab for initialized data, and one for
14674 uninitialized data. */
14675 if (strcmp (o->name, ".gptab.sdata") == 0)
14676 gptab_data_sec = o;
14677 else if (strcmp (o->name, ".gptab.sbss") == 0)
14678 gptab_bss_sec = o;
14679 else
14680 {
4eca0228 14681 _bfd_error_handler
695344c0 14682 /* xgettext:c-format */
871b3ab2 14683 (_("%pB: illegal section name `%pA'"), abfd, o);
b49e97c9 14684 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 14685 return FALSE;
b49e97c9
TS
14686 }
14687
14688 /* The linker script always combines .gptab.data and
14689 .gptab.sdata into .gptab.sdata, and likewise for
14690 .gptab.bss and .gptab.sbss. It is possible that there is
14691 no .sdata or .sbss section in the output file, in which
14692 case we must change the name of the output section. */
14693 subname = o->name + sizeof ".gptab" - 1;
14694 if (bfd_get_section_by_name (abfd, subname) == NULL)
14695 {
14696 if (o == gptab_data_sec)
14697 o->name = ".gptab.data";
14698 else
14699 o->name = ".gptab.bss";
14700 subname = o->name + sizeof ".gptab" - 1;
14701 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14702 }
14703
14704 /* Set up the first entry. */
14705 c = 1;
14706 amt = c * sizeof (Elf32_gptab);
9719ad41 14707 tab = bfd_malloc (amt);
b49e97c9 14708 if (tab == NULL)
b34976b6 14709 return FALSE;
b49e97c9
TS
14710 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14711 tab[0].gt_header.gt_unused = 0;
14712
14713 /* Combine the input sections. */
8423293d 14714 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14715 {
14716 asection *input_section;
14717 bfd *input_bfd;
14718 bfd_size_type size;
14719 unsigned long last;
14720 bfd_size_type gpentry;
14721
14722 if (p->type != bfd_indirect_link_order)
14723 {
14724 if (p->type == bfd_data_link_order)
14725 continue;
14726 abort ();
14727 }
14728
14729 input_section = p->u.indirect.section;
14730 input_bfd = input_section->owner;
14731
14732 /* Combine the gptab entries for this input section one
14733 by one. We know that the input gptab entries are
14734 sorted by ascending -G value. */
eea6121a 14735 size = input_section->size;
b49e97c9
TS
14736 last = 0;
14737 for (gpentry = sizeof (Elf32_External_gptab);
14738 gpentry < size;
14739 gpentry += sizeof (Elf32_External_gptab))
14740 {
14741 Elf32_External_gptab ext_gptab;
14742 Elf32_gptab int_gptab;
14743 unsigned long val;
14744 unsigned long add;
b34976b6 14745 bfd_boolean exact;
b49e97c9
TS
14746 unsigned int look;
14747
14748 if (! (bfd_get_section_contents
9719ad41
RS
14749 (input_bfd, input_section, &ext_gptab, gpentry,
14750 sizeof (Elf32_External_gptab))))
b49e97c9
TS
14751 {
14752 free (tab);
b34976b6 14753 return FALSE;
b49e97c9
TS
14754 }
14755
14756 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14757 &int_gptab);
14758 val = int_gptab.gt_entry.gt_g_value;
14759 add = int_gptab.gt_entry.gt_bytes - last;
14760
b34976b6 14761 exact = FALSE;
b49e97c9
TS
14762 for (look = 1; look < c; look++)
14763 {
14764 if (tab[look].gt_entry.gt_g_value >= val)
14765 tab[look].gt_entry.gt_bytes += add;
14766
14767 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 14768 exact = TRUE;
b49e97c9
TS
14769 }
14770
14771 if (! exact)
14772 {
14773 Elf32_gptab *new_tab;
14774 unsigned int max;
14775
14776 /* We need a new table entry. */
14777 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 14778 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
14779 if (new_tab == NULL)
14780 {
14781 free (tab);
b34976b6 14782 return FALSE;
b49e97c9
TS
14783 }
14784 tab = new_tab;
14785 tab[c].gt_entry.gt_g_value = val;
14786 tab[c].gt_entry.gt_bytes = add;
14787
14788 /* Merge in the size for the next smallest -G
14789 value, since that will be implied by this new
14790 value. */
14791 max = 0;
14792 for (look = 1; look < c; look++)
14793 {
14794 if (tab[look].gt_entry.gt_g_value < val
14795 && (max == 0
14796 || (tab[look].gt_entry.gt_g_value
14797 > tab[max].gt_entry.gt_g_value)))
14798 max = look;
14799 }
14800 if (max != 0)
14801 tab[c].gt_entry.gt_bytes +=
14802 tab[max].gt_entry.gt_bytes;
14803
14804 ++c;
14805 }
14806
14807 last = int_gptab.gt_entry.gt_bytes;
14808 }
14809
14810 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14811 elf_link_input_bfd ignores this section. */
14812 input_section->flags &= ~SEC_HAS_CONTENTS;
14813 }
14814
14815 /* The table must be sorted by -G value. */
14816 if (c > 2)
14817 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14818
14819 /* Swap out the table. */
14820 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 14821 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
14822 if (ext_tab == NULL)
14823 {
14824 free (tab);
b34976b6 14825 return FALSE;
b49e97c9
TS
14826 }
14827
14828 for (j = 0; j < c; j++)
14829 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14830 free (tab);
14831
eea6121a 14832 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
14833 o->contents = (bfd_byte *) ext_tab;
14834
14835 /* Skip this section later on (I don't think this currently
14836 matters, but someday it might). */
8423293d 14837 o->map_head.link_order = NULL;
b49e97c9
TS
14838 }
14839 }
14840
14841 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 14842 if (!bfd_elf_final_link (abfd, info))
b34976b6 14843 return FALSE;
b49e97c9
TS
14844
14845 /* Now write out the computed sections. */
14846
351cdf24
MF
14847 if (abiflags_sec != NULL)
14848 {
14849 Elf_External_ABIFlags_v0 ext;
14850 Elf_Internal_ABIFlags_v0 *abiflags;
14851
14852 abiflags = &mips_elf_tdata (abfd)->abiflags;
14853
14854 /* Set up the abiflags if no valid input sections were found. */
14855 if (!mips_elf_tdata (abfd)->abiflags_valid)
14856 {
14857 infer_mips_abiflags (abfd, abiflags);
14858 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14859 }
14860 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14861 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14862 return FALSE;
14863 }
14864
9719ad41 14865 if (reginfo_sec != NULL)
b49e97c9
TS
14866 {
14867 Elf32_External_RegInfo ext;
14868
14869 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 14870 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 14871 return FALSE;
b49e97c9
TS
14872 }
14873
9719ad41 14874 if (mdebug_sec != NULL)
b49e97c9
TS
14875 {
14876 BFD_ASSERT (abfd->output_has_begun);
14877 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14878 swap, info,
14879 mdebug_sec->filepos))
b34976b6 14880 return FALSE;
b49e97c9
TS
14881
14882 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14883 }
14884
9719ad41 14885 if (gptab_data_sec != NULL)
b49e97c9
TS
14886 {
14887 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14888 gptab_data_sec->contents,
eea6121a 14889 0, gptab_data_sec->size))
b34976b6 14890 return FALSE;
b49e97c9
TS
14891 }
14892
9719ad41 14893 if (gptab_bss_sec != NULL)
b49e97c9
TS
14894 {
14895 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14896 gptab_bss_sec->contents,
eea6121a 14897 0, gptab_bss_sec->size))
b34976b6 14898 return FALSE;
b49e97c9
TS
14899 }
14900
14901 if (SGI_COMPAT (abfd))
14902 {
14903 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14904 if (rtproc_sec != NULL)
14905 {
14906 if (! bfd_set_section_contents (abfd, rtproc_sec,
14907 rtproc_sec->contents,
eea6121a 14908 0, rtproc_sec->size))
b34976b6 14909 return FALSE;
b49e97c9
TS
14910 }
14911 }
14912
b34976b6 14913 return TRUE;
b49e97c9
TS
14914}
14915\f
b2e9744f
MR
14916/* Merge object file header flags from IBFD into OBFD. Raise an error
14917 if there are conflicting settings. */
14918
14919static bfd_boolean
50e03d47 14920mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 14921{
50e03d47 14922 bfd *obfd = info->output_bfd;
b2e9744f
MR
14923 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14924 flagword old_flags;
14925 flagword new_flags;
14926 bfd_boolean ok;
14927
14928 new_flags = elf_elfheader (ibfd)->e_flags;
14929 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14930 old_flags = elf_elfheader (obfd)->e_flags;
14931
14932 /* Check flag compatibility. */
14933
14934 new_flags &= ~EF_MIPS_NOREORDER;
14935 old_flags &= ~EF_MIPS_NOREORDER;
14936
14937 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14938 doesn't seem to matter. */
14939 new_flags &= ~EF_MIPS_XGOT;
14940 old_flags &= ~EF_MIPS_XGOT;
14941
14942 /* MIPSpro generates ucode info in n64 objects. Again, we should
14943 just be able to ignore this. */
14944 new_flags &= ~EF_MIPS_UCODE;
14945 old_flags &= ~EF_MIPS_UCODE;
14946
14947 /* DSOs should only be linked with CPIC code. */
14948 if ((ibfd->flags & DYNAMIC) != 0)
14949 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14950
14951 if (new_flags == old_flags)
14952 return TRUE;
14953
14954 ok = TRUE;
14955
14956 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14957 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14958 {
4eca0228 14959 _bfd_error_handler
871b3ab2 14960 (_("%pB: warning: linking abicalls files with non-abicalls files"),
b2e9744f
MR
14961 ibfd);
14962 ok = TRUE;
14963 }
14964
14965 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14966 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14967 if (! (new_flags & EF_MIPS_PIC))
14968 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14969
14970 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14971 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14972
14973 /* Compare the ISAs. */
14974 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14975 {
4eca0228 14976 _bfd_error_handler
871b3ab2 14977 (_("%pB: linking 32-bit code with 64-bit code"),
b2e9744f
MR
14978 ibfd);
14979 ok = FALSE;
14980 }
14981 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14982 {
14983 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14984 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14985 {
14986 /* Copy the architecture info from IBFD to OBFD. Also copy
14987 the 32-bit flag (if set) so that we continue to recognise
14988 OBFD as a 32-bit binary. */
14989 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14990 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14991 elf_elfheader (obfd)->e_flags
14992 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14993
14994 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14995 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14996
14997 /* Copy across the ABI flags if OBFD doesn't use them
14998 and if that was what caused us to treat IBFD as 32-bit. */
14999 if ((old_flags & EF_MIPS_ABI) == 0
15000 && mips_32bit_flags_p (new_flags)
15001 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15002 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15003 }
15004 else
15005 {
15006 /* The ISAs aren't compatible. */
4eca0228 15007 _bfd_error_handler
695344c0 15008 /* xgettext:c-format */
871b3ab2 15009 (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15010 ibfd,
15011 bfd_printable_name (ibfd),
15012 bfd_printable_name (obfd));
15013 ok = FALSE;
15014 }
15015 }
15016
15017 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15018 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15019
15020 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15021 does set EI_CLASS differently from any 32-bit ABI. */
15022 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15023 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15024 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15025 {
15026 /* Only error if both are set (to different values). */
15027 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15028 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15029 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15030 {
4eca0228 15031 _bfd_error_handler
695344c0 15032 /* xgettext:c-format */
871b3ab2 15033 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15034 ibfd,
15035 elf_mips_abi_name (ibfd),
15036 elf_mips_abi_name (obfd));
15037 ok = FALSE;
15038 }
15039 new_flags &= ~EF_MIPS_ABI;
15040 old_flags &= ~EF_MIPS_ABI;
15041 }
15042
15043 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15044 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15045 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15046 {
15047 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15048 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15049 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15050 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15051 int micro_mis = old_m16 && new_micro;
15052 int m16_mis = old_micro && new_m16;
15053
15054 if (m16_mis || micro_mis)
15055 {
4eca0228 15056 _bfd_error_handler
695344c0 15057 /* xgettext:c-format */
871b3ab2 15058 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15059 ibfd,
15060 m16_mis ? "MIPS16" : "microMIPS",
15061 m16_mis ? "microMIPS" : "MIPS16");
15062 ok = FALSE;
15063 }
15064
15065 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15066
15067 new_flags &= ~ EF_MIPS_ARCH_ASE;
15068 old_flags &= ~ EF_MIPS_ARCH_ASE;
15069 }
15070
15071 /* Compare NaN encodings. */
15072 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15073 {
695344c0 15074 /* xgettext:c-format */
871b3ab2 15075 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15076 ibfd,
15077 (new_flags & EF_MIPS_NAN2008
15078 ? "-mnan=2008" : "-mnan=legacy"),
15079 (old_flags & EF_MIPS_NAN2008
15080 ? "-mnan=2008" : "-mnan=legacy"));
15081 ok = FALSE;
15082 new_flags &= ~EF_MIPS_NAN2008;
15083 old_flags &= ~EF_MIPS_NAN2008;
15084 }
15085
15086 /* Compare FP64 state. */
15087 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15088 {
695344c0 15089 /* xgettext:c-format */
871b3ab2 15090 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15091 ibfd,
15092 (new_flags & EF_MIPS_FP64
15093 ? "-mfp64" : "-mfp32"),
15094 (old_flags & EF_MIPS_FP64
15095 ? "-mfp64" : "-mfp32"));
15096 ok = FALSE;
15097 new_flags &= ~EF_MIPS_FP64;
15098 old_flags &= ~EF_MIPS_FP64;
15099 }
15100
15101 /* Warn about any other mismatches */
15102 if (new_flags != old_flags)
15103 {
695344c0 15104 /* xgettext:c-format */
4eca0228 15105 _bfd_error_handler
871b3ab2 15106 (_("%pB: uses different e_flags (%#x) fields than previous modules "
d42c267e
AM
15107 "(%#x)"),
15108 ibfd, new_flags, old_flags);
b2e9744f
MR
15109 ok = FALSE;
15110 }
15111
15112 return ok;
15113}
15114
2cf19d5c
JM
15115/* Merge object attributes from IBFD into OBFD. Raise an error if
15116 there are conflicting attributes. */
15117static bfd_boolean
50e03d47 15118mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15119{
50e03d47 15120 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15121 obj_attribute *in_attr;
15122 obj_attribute *out_attr;
6ae68ba3 15123 bfd *abi_fp_bfd;
b60bf9be 15124 bfd *abi_msa_bfd;
6ae68ba3
MR
15125
15126 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15127 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15128 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15129 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15130
b60bf9be
CF
15131 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15132 if (!abi_msa_bfd
15133 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15134 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15135
2cf19d5c
JM
15136 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15137 {
15138 /* This is the first object. Copy the attributes. */
15139 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15140
15141 /* Use the Tag_null value to indicate the attributes have been
15142 initialized. */
15143 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15144
15145 return TRUE;
15146 }
15147
15148 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15149 non-conflicting ones. */
2cf19d5c
JM
15150 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15151 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15152 {
757a636f 15153 int out_fp, in_fp;
6ae68ba3 15154
757a636f
RS
15155 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15156 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15157 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15158 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15159 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15160 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15161 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15162 || in_fp == Val_GNU_MIPS_ABI_FP_64
15163 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15164 {
15165 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15166 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15167 }
15168 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15169 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15170 || out_fp == Val_GNU_MIPS_ABI_FP_64
15171 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15172 /* Keep the current setting. */;
15173 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15174 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15175 {
15176 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15177 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15178 }
15179 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15180 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15181 /* Keep the current setting. */;
757a636f
RS
15182 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15183 {
15184 const char *out_string, *in_string;
6ae68ba3 15185
757a636f
RS
15186 out_string = _bfd_mips_fp_abi_string (out_fp);
15187 in_string = _bfd_mips_fp_abi_string (in_fp);
15188 /* First warn about cases involving unrecognised ABIs. */
15189 if (!out_string && !in_string)
695344c0 15190 /* xgettext:c-format */
757a636f 15191 _bfd_error_handler
2c1c9679 15192 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15193 "(set by %pB), %pB uses unknown floating point ABI %d"),
c08bb8dd 15194 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15195 else if (!out_string)
15196 _bfd_error_handler
695344c0 15197 /* xgettext:c-format */
2c1c9679 15198 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15199 "(set by %pB), %pB uses %s"),
c08bb8dd 15200 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15201 else if (!in_string)
15202 _bfd_error_handler
695344c0 15203 /* xgettext:c-format */
2c1c9679 15204 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15205 "%pB uses unknown floating point ABI %d"),
c08bb8dd 15206 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15207 else
15208 {
15209 /* If one of the bfds is soft-float, the other must be
15210 hard-float. The exact choice of hard-float ABI isn't
15211 really relevant to the error message. */
15212 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15213 out_string = "-mhard-float";
15214 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15215 in_string = "-mhard-float";
15216 _bfd_error_handler
695344c0 15217 /* xgettext:c-format */
2c1c9679 15218 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
c08bb8dd 15219 obfd, out_string, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15220 }
15221 }
2cf19d5c
JM
15222 }
15223
b60bf9be
CF
15224 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15225 non-conflicting ones. */
15226 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15227 {
15228 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15229 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15230 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15231 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15232 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15233 {
15234 case Val_GNU_MIPS_ABI_MSA_128:
15235 _bfd_error_handler
695344c0 15236 /* xgettext:c-format */
2c1c9679 15237 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15238 "%pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15239 obfd, "-mmsa", abi_msa_bfd,
15240 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15241 break;
15242
15243 default:
15244 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15245 {
15246 case Val_GNU_MIPS_ABI_MSA_128:
15247 _bfd_error_handler
695344c0 15248 /* xgettext:c-format */
2c1c9679 15249 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15250 "(set by %pB), %pB uses %s"),
c08bb8dd
AM
15251 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15252 abi_msa_bfd, ibfd, "-mmsa");
b60bf9be
CF
15253 break;
15254
15255 default:
15256 _bfd_error_handler
695344c0 15257 /* xgettext:c-format */
2c1c9679 15258 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15259 "(set by %pB), %pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15260 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15261 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15262 break;
15263 }
15264 }
15265 }
15266
2cf19d5c 15267 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15268 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15269}
15270
a3dc0a7f
MR
15271/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15272 there are conflicting settings. */
15273
15274static bfd_boolean
15275mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15276{
15277 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15278 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15279 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15280
15281 /* Update the output abiflags fp_abi using the computed fp_abi. */
15282 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15283
15284#define max(a, b) ((a) > (b) ? (a) : (b))
15285 /* Merge abiflags. */
15286 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15287 in_tdata->abiflags.isa_level);
15288 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15289 in_tdata->abiflags.isa_rev);
15290 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15291 in_tdata->abiflags.gpr_size);
15292 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15293 in_tdata->abiflags.cpr1_size);
15294 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15295 in_tdata->abiflags.cpr2_size);
15296#undef max
15297 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15298 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15299
15300 return TRUE;
15301}
15302
b49e97c9
TS
15303/* Merge backend specific data from an object file to the output
15304 object file when linking. */
15305
b34976b6 15306bfd_boolean
50e03d47 15307_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15308{
50e03d47 15309 bfd *obfd = info->output_bfd;
cf8502c1
MR
15310 struct mips_elf_obj_tdata *out_tdata;
15311 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15312 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15313 asection *sec;
d537eeb5 15314 bfd_boolean ok;
b49e97c9 15315
58238693 15316 /* Check if we have the same endianness. */
50e03d47 15317 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15318 {
4eca0228 15319 _bfd_error_handler
871b3ab2 15320 (_("%pB: endianness incompatible with that of the selected emulation"),
d003868e 15321 ibfd);
aa701218
AO
15322 return FALSE;
15323 }
b49e97c9 15324
d5eaccd7 15325 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15326 return TRUE;
b49e97c9 15327
cf8502c1
MR
15328 in_tdata = mips_elf_tdata (ibfd);
15329 out_tdata = mips_elf_tdata (obfd);
15330
aa701218
AO
15331 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15332 {
4eca0228 15333 _bfd_error_handler
871b3ab2 15334 (_("%pB: ABI is incompatible with that of the selected emulation"),
d003868e 15335 ibfd);
aa701218
AO
15336 return FALSE;
15337 }
15338
23ba6f18
MR
15339 /* Check to see if the input BFD actually contains any sections. If not,
15340 then it has no attributes, and its flags may not have been initialized
15341 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15342 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15343 {
15344 /* Ignore synthetic sections and empty .text, .data and .bss sections
15345 which are automatically generated by gas. Also ignore fake
15346 (s)common sections, since merely defining a common symbol does
15347 not affect compatibility. */
15348 if ((sec->flags & SEC_IS_COMMON) == 0
15349 && strcmp (sec->name, ".reginfo")
15350 && strcmp (sec->name, ".mdebug")
15351 && (sec->size != 0
15352 || (strcmp (sec->name, ".text")
15353 && strcmp (sec->name, ".data")
15354 && strcmp (sec->name, ".bss"))))
15355 {
15356 null_input_bfd = FALSE;
15357 break;
15358 }
15359 }
15360 if (null_input_bfd)
15361 return TRUE;
15362
28d45e28 15363 /* Populate abiflags using existing information. */
23ba6f18
MR
15364 if (in_tdata->abiflags_valid)
15365 {
15366 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15367 Elf_Internal_ABIFlags_v0 in_abiflags;
15368 Elf_Internal_ABIFlags_v0 abiflags;
15369
15370 /* Set up the FP ABI attribute from the abiflags if it is not already
07d6d2b8 15371 set. */
23ba6f18 15372 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
07d6d2b8 15373 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15374
351cdf24 15375 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15376 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15377
15378 /* It is not possible to infer the correct ISA revision
07d6d2b8 15379 for R3 or R5 so drop down to R2 for the checks. */
351cdf24
MF
15380 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15381 in_abiflags.isa_rev = 2;
15382
c97c330b
MF
15383 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15384 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15385 _bfd_error_handler
2c1c9679 15386 (_("%pB: warning: inconsistent ISA between e_flags and "
351cdf24
MF
15387 ".MIPS.abiflags"), ibfd);
15388 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15389 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15390 _bfd_error_handler
2c1c9679 15391 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15392 ".MIPS.abiflags"), ibfd);
15393 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15394 _bfd_error_handler
2c1c9679 15395 (_("%pB: warning: inconsistent ASEs between e_flags and "
351cdf24 15396 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15397 /* The isa_ext is allowed to be an extension of what can be inferred
15398 from e_flags. */
15399 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15400 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15401 _bfd_error_handler
2c1c9679 15402 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
351cdf24
MF
15403 ".MIPS.abiflags"), ibfd);
15404 if (in_abiflags.flags2 != 0)
4eca0228 15405 _bfd_error_handler
2c1c9679 15406 (_("%pB: warning: unexpected flag in the flags2 field of "
351cdf24 15407 ".MIPS.abiflags (0x%lx)"), ibfd,
d42c267e 15408 in_abiflags.flags2);
351cdf24 15409 }
28d45e28
MR
15410 else
15411 {
15412 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15413 in_tdata->abiflags_valid = TRUE;
15414 }
15415
cf8502c1 15416 if (!out_tdata->abiflags_valid)
351cdf24
MF
15417 {
15418 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15419 out_tdata->abiflags = in_tdata->abiflags;
15420 out_tdata->abiflags_valid = TRUE;
351cdf24 15421 }
b49e97c9
TS
15422
15423 if (! elf_flags_init (obfd))
15424 {
b34976b6 15425 elf_flags_init (obfd) = TRUE;
351cdf24 15426 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15427 elf_elfheader (obfd)->e_ident[EI_CLASS]
15428 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15429
15430 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15431 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15432 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15433 bfd_get_mach (ibfd))))
b49e97c9
TS
15434 {
15435 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15436 bfd_get_mach (ibfd)))
b34976b6 15437 return FALSE;
351cdf24
MF
15438
15439 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15440 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15441 }
15442
d537eeb5 15443 ok = TRUE;
b49e97c9 15444 }
d537eeb5 15445 else
50e03d47 15446 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15447
50e03d47 15448 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15449
a3dc0a7f 15450 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15451
d537eeb5 15452 if (!ok)
b49e97c9
TS
15453 {
15454 bfd_set_error (bfd_error_bad_value);
b34976b6 15455 return FALSE;
b49e97c9
TS
15456 }
15457
b34976b6 15458 return TRUE;
b49e97c9
TS
15459}
15460
15461/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15462
b34976b6 15463bfd_boolean
9719ad41 15464_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15465{
15466 BFD_ASSERT (!elf_flags_init (abfd)
15467 || elf_elfheader (abfd)->e_flags == flags);
15468
15469 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15470 elf_flags_init (abfd) = TRUE;
15471 return TRUE;
b49e97c9
TS
15472}
15473
ad9563d6
CM
15474char *
15475_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15476{
15477 switch (dtag)
15478 {
15479 default: return "";
15480 case DT_MIPS_RLD_VERSION:
15481 return "MIPS_RLD_VERSION";
15482 case DT_MIPS_TIME_STAMP:
15483 return "MIPS_TIME_STAMP";
15484 case DT_MIPS_ICHECKSUM:
15485 return "MIPS_ICHECKSUM";
15486 case DT_MIPS_IVERSION:
15487 return "MIPS_IVERSION";
15488 case DT_MIPS_FLAGS:
15489 return "MIPS_FLAGS";
15490 case DT_MIPS_BASE_ADDRESS:
15491 return "MIPS_BASE_ADDRESS";
15492 case DT_MIPS_MSYM:
15493 return "MIPS_MSYM";
15494 case DT_MIPS_CONFLICT:
15495 return "MIPS_CONFLICT";
15496 case DT_MIPS_LIBLIST:
15497 return "MIPS_LIBLIST";
15498 case DT_MIPS_LOCAL_GOTNO:
15499 return "MIPS_LOCAL_GOTNO";
15500 case DT_MIPS_CONFLICTNO:
15501 return "MIPS_CONFLICTNO";
15502 case DT_MIPS_LIBLISTNO:
15503 return "MIPS_LIBLISTNO";
15504 case DT_MIPS_SYMTABNO:
15505 return "MIPS_SYMTABNO";
15506 case DT_MIPS_UNREFEXTNO:
15507 return "MIPS_UNREFEXTNO";
15508 case DT_MIPS_GOTSYM:
15509 return "MIPS_GOTSYM";
15510 case DT_MIPS_HIPAGENO:
15511 return "MIPS_HIPAGENO";
15512 case DT_MIPS_RLD_MAP:
15513 return "MIPS_RLD_MAP";
a5499fa4
MF
15514 case DT_MIPS_RLD_MAP_REL:
15515 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15516 case DT_MIPS_DELTA_CLASS:
15517 return "MIPS_DELTA_CLASS";
15518 case DT_MIPS_DELTA_CLASS_NO:
15519 return "MIPS_DELTA_CLASS_NO";
15520 case DT_MIPS_DELTA_INSTANCE:
15521 return "MIPS_DELTA_INSTANCE";
15522 case DT_MIPS_DELTA_INSTANCE_NO:
15523 return "MIPS_DELTA_INSTANCE_NO";
15524 case DT_MIPS_DELTA_RELOC:
15525 return "MIPS_DELTA_RELOC";
15526 case DT_MIPS_DELTA_RELOC_NO:
15527 return "MIPS_DELTA_RELOC_NO";
15528 case DT_MIPS_DELTA_SYM:
15529 return "MIPS_DELTA_SYM";
15530 case DT_MIPS_DELTA_SYM_NO:
15531 return "MIPS_DELTA_SYM_NO";
15532 case DT_MIPS_DELTA_CLASSSYM:
15533 return "MIPS_DELTA_CLASSSYM";
15534 case DT_MIPS_DELTA_CLASSSYM_NO:
15535 return "MIPS_DELTA_CLASSSYM_NO";
15536 case DT_MIPS_CXX_FLAGS:
15537 return "MIPS_CXX_FLAGS";
15538 case DT_MIPS_PIXIE_INIT:
15539 return "MIPS_PIXIE_INIT";
15540 case DT_MIPS_SYMBOL_LIB:
15541 return "MIPS_SYMBOL_LIB";
15542 case DT_MIPS_LOCALPAGE_GOTIDX:
15543 return "MIPS_LOCALPAGE_GOTIDX";
15544 case DT_MIPS_LOCAL_GOTIDX:
15545 return "MIPS_LOCAL_GOTIDX";
15546 case DT_MIPS_HIDDEN_GOTIDX:
15547 return "MIPS_HIDDEN_GOTIDX";
15548 case DT_MIPS_PROTECTED_GOTIDX:
15549 return "MIPS_PROTECTED_GOT_IDX";
15550 case DT_MIPS_OPTIONS:
15551 return "MIPS_OPTIONS";
15552 case DT_MIPS_INTERFACE:
15553 return "MIPS_INTERFACE";
15554 case DT_MIPS_DYNSTR_ALIGN:
15555 return "DT_MIPS_DYNSTR_ALIGN";
15556 case DT_MIPS_INTERFACE_SIZE:
15557 return "DT_MIPS_INTERFACE_SIZE";
15558 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15559 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15560 case DT_MIPS_PERF_SUFFIX:
15561 return "DT_MIPS_PERF_SUFFIX";
15562 case DT_MIPS_COMPACT_SIZE:
15563 return "DT_MIPS_COMPACT_SIZE";
15564 case DT_MIPS_GP_VALUE:
15565 return "DT_MIPS_GP_VALUE";
15566 case DT_MIPS_AUX_DYNAMIC:
15567 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15568 case DT_MIPS_PLTGOT:
15569 return "DT_MIPS_PLTGOT";
15570 case DT_MIPS_RWPLT:
15571 return "DT_MIPS_RWPLT";
ad9563d6
CM
15572 }
15573}
15574
757a636f
RS
15575/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15576 not known. */
15577
15578const char *
15579_bfd_mips_fp_abi_string (int fp)
15580{
15581 switch (fp)
15582 {
15583 /* These strings aren't translated because they're simply
15584 option lists. */
15585 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15586 return "-mdouble-float";
15587
15588 case Val_GNU_MIPS_ABI_FP_SINGLE:
15589 return "-msingle-float";
15590
15591 case Val_GNU_MIPS_ABI_FP_SOFT:
15592 return "-msoft-float";
15593
351cdf24
MF
15594 case Val_GNU_MIPS_ABI_FP_OLD_64:
15595 return _("-mips32r2 -mfp64 (12 callee-saved)");
15596
15597 case Val_GNU_MIPS_ABI_FP_XX:
15598 return "-mfpxx";
15599
757a636f 15600 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15601 return "-mgp32 -mfp64";
15602
15603 case Val_GNU_MIPS_ABI_FP_64A:
15604 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15605
15606 default:
15607 return 0;
15608 }
15609}
15610
351cdf24
MF
15611static void
15612print_mips_ases (FILE *file, unsigned int mask)
15613{
15614 if (mask & AFL_ASE_DSP)
15615 fputs ("\n\tDSP ASE", file);
15616 if (mask & AFL_ASE_DSPR2)
15617 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
15618 if (mask & AFL_ASE_DSPR3)
15619 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
15620 if (mask & AFL_ASE_EVA)
15621 fputs ("\n\tEnhanced VA Scheme", file);
15622 if (mask & AFL_ASE_MCU)
15623 fputs ("\n\tMCU (MicroController) ASE", file);
15624 if (mask & AFL_ASE_MDMX)
15625 fputs ("\n\tMDMX ASE", file);
15626 if (mask & AFL_ASE_MIPS3D)
15627 fputs ("\n\tMIPS-3D ASE", file);
15628 if (mask & AFL_ASE_MT)
15629 fputs ("\n\tMT ASE", file);
15630 if (mask & AFL_ASE_SMARTMIPS)
15631 fputs ("\n\tSmartMIPS ASE", file);
15632 if (mask & AFL_ASE_VIRT)
15633 fputs ("\n\tVZ ASE", file);
15634 if (mask & AFL_ASE_MSA)
15635 fputs ("\n\tMSA ASE", file);
15636 if (mask & AFL_ASE_MIPS16)
15637 fputs ("\n\tMIPS16 ASE", file);
15638 if (mask & AFL_ASE_MICROMIPS)
15639 fputs ("\n\tMICROMIPS ASE", file);
15640 if (mask & AFL_ASE_XPA)
15641 fputs ("\n\tXPA ASE", file);
25499ac7
MR
15642 if (mask & AFL_ASE_MIPS16E2)
15643 fputs ("\n\tMIPS16e2 ASE", file);
730c3174
SE
15644 if (mask & AFL_ASE_CRC)
15645 fputs ("\n\tCRC ASE", file);
351cdf24
MF
15646 if (mask == 0)
15647 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
15648 else if ((mask & ~AFL_ASE_MASK) != 0)
15649 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
15650}
15651
15652static void
15653print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15654{
15655 switch (isa_ext)
15656 {
15657 case 0:
15658 fputs (_("None"), file);
15659 break;
15660 case AFL_EXT_XLR:
15661 fputs ("RMI XLR", file);
15662 break;
2c629856
N
15663 case AFL_EXT_OCTEON3:
15664 fputs ("Cavium Networks Octeon3", file);
15665 break;
351cdf24
MF
15666 case AFL_EXT_OCTEON2:
15667 fputs ("Cavium Networks Octeon2", file);
15668 break;
15669 case AFL_EXT_OCTEONP:
15670 fputs ("Cavium Networks OcteonP", file);
15671 break;
15672 case AFL_EXT_LOONGSON_3A:
15673 fputs ("Loongson 3A", file);
15674 break;
15675 case AFL_EXT_OCTEON:
15676 fputs ("Cavium Networks Octeon", file);
15677 break;
15678 case AFL_EXT_5900:
15679 fputs ("Toshiba R5900", file);
15680 break;
15681 case AFL_EXT_4650:
15682 fputs ("MIPS R4650", file);
15683 break;
15684 case AFL_EXT_4010:
15685 fputs ("LSI R4010", file);
15686 break;
15687 case AFL_EXT_4100:
15688 fputs ("NEC VR4100", file);
15689 break;
15690 case AFL_EXT_3900:
15691 fputs ("Toshiba R3900", file);
15692 break;
15693 case AFL_EXT_10000:
15694 fputs ("MIPS R10000", file);
15695 break;
15696 case AFL_EXT_SB1:
15697 fputs ("Broadcom SB-1", file);
15698 break;
15699 case AFL_EXT_4111:
15700 fputs ("NEC VR4111/VR4181", file);
15701 break;
15702 case AFL_EXT_4120:
15703 fputs ("NEC VR4120", file);
15704 break;
15705 case AFL_EXT_5400:
15706 fputs ("NEC VR5400", file);
15707 break;
15708 case AFL_EXT_5500:
15709 fputs ("NEC VR5500", file);
15710 break;
15711 case AFL_EXT_LOONGSON_2E:
15712 fputs ("ST Microelectronics Loongson 2E", file);
15713 break;
15714 case AFL_EXT_LOONGSON_2F:
15715 fputs ("ST Microelectronics Loongson 2F", file);
15716 break;
38bf472a
MR
15717 case AFL_EXT_INTERAPTIV_MR2:
15718 fputs ("Imagination interAptiv MR2", file);
15719 break;
351cdf24 15720 default:
00ac7aa0 15721 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
15722 break;
15723 }
15724}
15725
15726static void
15727print_mips_fp_abi_value (FILE *file, int val)
15728{
15729 switch (val)
15730 {
15731 case Val_GNU_MIPS_ABI_FP_ANY:
15732 fprintf (file, _("Hard or soft float\n"));
15733 break;
15734 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15735 fprintf (file, _("Hard float (double precision)\n"));
15736 break;
15737 case Val_GNU_MIPS_ABI_FP_SINGLE:
15738 fprintf (file, _("Hard float (single precision)\n"));
15739 break;
15740 case Val_GNU_MIPS_ABI_FP_SOFT:
15741 fprintf (file, _("Soft float\n"));
15742 break;
15743 case Val_GNU_MIPS_ABI_FP_OLD_64:
15744 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15745 break;
15746 case Val_GNU_MIPS_ABI_FP_XX:
15747 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15748 break;
15749 case Val_GNU_MIPS_ABI_FP_64:
15750 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15751 break;
15752 case Val_GNU_MIPS_ABI_FP_64A:
15753 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15754 break;
15755 default:
15756 fprintf (file, "??? (%d)\n", val);
15757 break;
15758 }
15759}
15760
15761static int
15762get_mips_reg_size (int reg_size)
15763{
15764 return (reg_size == AFL_REG_NONE) ? 0
15765 : (reg_size == AFL_REG_32) ? 32
15766 : (reg_size == AFL_REG_64) ? 64
15767 : (reg_size == AFL_REG_128) ? 128
15768 : -1;
15769}
15770
b34976b6 15771bfd_boolean
9719ad41 15772_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 15773{
9719ad41 15774 FILE *file = ptr;
b49e97c9
TS
15775
15776 BFD_ASSERT (abfd != NULL && ptr != NULL);
15777
15778 /* Print normal ELF private data. */
15779 _bfd_elf_print_private_bfd_data (abfd, ptr);
15780
15781 /* xgettext:c-format */
15782 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15783
15784 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15785 fprintf (file, _(" [abi=O32]"));
15786 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15787 fprintf (file, _(" [abi=O64]"));
15788 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15789 fprintf (file, _(" [abi=EABI32]"));
15790 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15791 fprintf (file, _(" [abi=EABI64]"));
15792 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15793 fprintf (file, _(" [abi unknown]"));
15794 else if (ABI_N32_P (abfd))
15795 fprintf (file, _(" [abi=N32]"));
15796 else if (ABI_64_P (abfd))
15797 fprintf (file, _(" [abi=64]"));
15798 else
15799 fprintf (file, _(" [no abi set]"));
15800
15801 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 15802 fprintf (file, " [mips1]");
b49e97c9 15803 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 15804 fprintf (file, " [mips2]");
b49e97c9 15805 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 15806 fprintf (file, " [mips3]");
b49e97c9 15807 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 15808 fprintf (file, " [mips4]");
b49e97c9 15809 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 15810 fprintf (file, " [mips5]");
b49e97c9 15811 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 15812 fprintf (file, " [mips32]");
b49e97c9 15813 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 15814 fprintf (file, " [mips64]");
af7ee8bf 15815 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 15816 fprintf (file, " [mips32r2]");
5f74bc13 15817 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 15818 fprintf (file, " [mips64r2]");
7361da2c
AB
15819 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15820 fprintf (file, " [mips32r6]");
15821 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15822 fprintf (file, " [mips64r6]");
b49e97c9
TS
15823 else
15824 fprintf (file, _(" [unknown ISA]"));
15825
40d32fc6 15826 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 15827 fprintf (file, " [mdmx]");
40d32fc6
CD
15828
15829 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 15830 fprintf (file, " [mips16]");
40d32fc6 15831
df58fc94
RS
15832 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15833 fprintf (file, " [micromips]");
15834
ba92f887
MR
15835 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15836 fprintf (file, " [nan2008]");
15837
5baf5e34 15838 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 15839 fprintf (file, " [old fp64]");
5baf5e34 15840
b49e97c9 15841 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 15842 fprintf (file, " [32bitmode]");
b49e97c9
TS
15843 else
15844 fprintf (file, _(" [not 32bitmode]"));
15845
c0e3f241 15846 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 15847 fprintf (file, " [noreorder]");
c0e3f241
CD
15848
15849 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 15850 fprintf (file, " [PIC]");
c0e3f241
CD
15851
15852 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 15853 fprintf (file, " [CPIC]");
c0e3f241
CD
15854
15855 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 15856 fprintf (file, " [XGOT]");
c0e3f241
CD
15857
15858 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 15859 fprintf (file, " [UCODE]");
c0e3f241 15860
b49e97c9
TS
15861 fputc ('\n', file);
15862
351cdf24
MF
15863 if (mips_elf_tdata (abfd)->abiflags_valid)
15864 {
15865 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15866 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15867 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15868 if (abiflags->isa_rev > 1)
15869 fprintf (file, "r%d", abiflags->isa_rev);
15870 fprintf (file, "\nGPR size: %d",
15871 get_mips_reg_size (abiflags->gpr_size));
15872 fprintf (file, "\nCPR1 size: %d",
15873 get_mips_reg_size (abiflags->cpr1_size));
15874 fprintf (file, "\nCPR2 size: %d",
15875 get_mips_reg_size (abiflags->cpr2_size));
15876 fputs ("\nFP ABI: ", file);
15877 print_mips_fp_abi_value (file, abiflags->fp_abi);
15878 fputs ("ISA Extension: ", file);
15879 print_mips_isa_ext (file, abiflags->isa_ext);
15880 fputs ("\nASEs:", file);
15881 print_mips_ases (file, abiflags->ases);
15882 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15883 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15884 fputc ('\n', file);
15885 }
15886
b34976b6 15887 return TRUE;
b49e97c9 15888}
2f89ff8d 15889
b35d266b 15890const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 15891{
07d6d2b8
AM
15892 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15893 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26 15894 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
07d6d2b8 15895 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26
NC
15896 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15897 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
07d6d2b8 15898 { NULL, 0, 0, 0, 0 }
2f89ff8d 15899};
5e2b0d47 15900
8992f0d7
TS
15901/* Merge non visibility st_other attributes. Ensure that the
15902 STO_OPTIONAL flag is copied into h->other, even if this is not a
15903 definiton of the symbol. */
5e2b0d47
NC
15904void
15905_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15906 const Elf_Internal_Sym *isym,
15907 bfd_boolean definition,
15908 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15909{
8992f0d7
TS
15910 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15911 {
15912 unsigned char other;
15913
15914 other = (definition ? isym->st_other : h->other);
15915 other &= ~ELF_ST_VISIBILITY (-1);
15916 h->other = other | ELF_ST_VISIBILITY (h->other);
15917 }
15918
15919 if (!definition
5e2b0d47
NC
15920 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15921 h->other |= STO_OPTIONAL;
15922}
12ac1cf5
NC
15923
15924/* Decide whether an undefined symbol is special and can be ignored.
15925 This is the case for OPTIONAL symbols on IRIX. */
15926bfd_boolean
15927_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15928{
15929 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15930}
e0764319
NC
15931
15932bfd_boolean
15933_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15934{
15935 return (sym->st_shndx == SHN_COMMON
15936 || sym->st_shndx == SHN_MIPS_ACOMMON
15937 || sym->st_shndx == SHN_MIPS_SCOMMON);
15938}
861fb55a
DJ
15939
15940/* Return address for Ith PLT stub in section PLT, for relocation REL
15941 or (bfd_vma) -1 if it should not be included. */
15942
15943bfd_vma
15944_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15945 const arelent *rel ATTRIBUTE_UNUSED)
15946{
15947 return (plt->vma
15948 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15949 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15950}
15951
1bbce132
MR
15952/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15953 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15954 and .got.plt and also the slots may be of a different size each we walk
15955 the PLT manually fetching instructions and matching them against known
15956 patterns. To make things easier standard MIPS slots, if any, always come
15957 first. As we don't create proper ELF symbols we use the UDATA.I member
15958 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15959 with the ST_OTHER member of the ELF symbol. */
15960
15961long
15962_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15963 long symcount ATTRIBUTE_UNUSED,
15964 asymbol **syms ATTRIBUTE_UNUSED,
15965 long dynsymcount, asymbol **dynsyms,
15966 asymbol **ret)
15967{
15968 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15969 static const char microsuffix[] = "@micromipsplt";
15970 static const char m16suffix[] = "@mips16plt";
15971 static const char mipssuffix[] = "@plt";
15972
15973 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15974 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15975 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15976 Elf_Internal_Shdr *hdr;
15977 bfd_byte *plt_data;
15978 bfd_vma plt_offset;
15979 unsigned int other;
15980 bfd_vma entry_size;
15981 bfd_vma plt0_size;
15982 asection *relplt;
15983 bfd_vma opcode;
15984 asection *plt;
15985 asymbol *send;
15986 size_t size;
15987 char *names;
15988 long counti;
15989 arelent *p;
15990 asymbol *s;
15991 char *nend;
15992 long count;
15993 long pi;
15994 long i;
15995 long n;
15996
15997 *ret = NULL;
15998
15999 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16000 return 0;
16001
16002 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16003 if (relplt == NULL)
16004 return 0;
16005
16006 hdr = &elf_section_data (relplt)->this_hdr;
16007 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16008 return 0;
16009
16010 plt = bfd_get_section_by_name (abfd, ".plt");
16011 if (plt == NULL)
16012 return 0;
16013
16014 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16015 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16016 return -1;
16017 p = relplt->relocation;
16018
16019 /* Calculating the exact amount of space required for symbols would
16020 require two passes over the PLT, so just pessimise assuming two
16021 PLT slots per relocation. */
16022 count = relplt->size / hdr->sh_entsize;
16023 counti = count * bed->s->int_rels_per_ext_rel;
16024 size = 2 * count * sizeof (asymbol);
16025 size += count * (sizeof (mipssuffix) +
16026 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16027 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16028 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16029
16030 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16031 size += sizeof (asymbol) + sizeof (pltname);
16032
16033 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16034 return -1;
16035
16036 if (plt->size < 16)
16037 return -1;
16038
16039 s = *ret = bfd_malloc (size);
16040 if (s == NULL)
16041 return -1;
16042 send = s + 2 * count + 1;
16043
16044 names = (char *) send;
16045 nend = (char *) s + size;
16046 n = 0;
16047
16048 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16049 if (opcode == 0x3302fffe)
16050 {
16051 if (!micromips_p)
16052 return -1;
16053 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16054 other = STO_MICROMIPS;
16055 }
833794fc
MR
16056 else if (opcode == 0x0398c1d0)
16057 {
16058 if (!micromips_p)
16059 return -1;
16060 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16061 other = STO_MICROMIPS;
16062 }
1bbce132
MR
16063 else
16064 {
16065 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16066 other = 0;
16067 }
16068
16069 s->the_bfd = abfd;
16070 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16071 s->section = plt;
16072 s->value = 0;
16073 s->name = names;
16074 s->udata.i = other;
16075 memcpy (names, pltname, sizeof (pltname));
16076 names += sizeof (pltname);
16077 ++s, ++n;
16078
16079 pi = 0;
16080 for (plt_offset = plt0_size;
16081 plt_offset + 8 <= plt->size && s < send;
16082 plt_offset += entry_size)
16083 {
16084 bfd_vma gotplt_addr;
16085 const char *suffix;
16086 bfd_vma gotplt_hi;
16087 bfd_vma gotplt_lo;
16088 size_t suffixlen;
16089
16090 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16091
16092 /* Check if the second word matches the expected MIPS16 instruction. */
16093 if (opcode == 0x651aeb00)
16094 {
16095 if (micromips_p)
16096 return -1;
16097 /* Truncated table??? */
16098 if (plt_offset + 16 > plt->size)
16099 break;
16100 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16101 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16102 suffixlen = sizeof (m16suffix);
16103 suffix = m16suffix;
16104 other = STO_MIPS16;
16105 }
833794fc 16106 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16107 else if (opcode == 0xff220000)
16108 {
16109 if (!micromips_p)
16110 return -1;
16111 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16112 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16113 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16114 gotplt_lo <<= 2;
16115 gotplt_addr = gotplt_hi + gotplt_lo;
16116 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16117 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16118 suffixlen = sizeof (microsuffix);
16119 suffix = microsuffix;
16120 other = STO_MICROMIPS;
16121 }
833794fc
MR
16122 /* Likewise the expected microMIPS instruction (insn32 mode). */
16123 else if ((opcode & 0xffff0000) == 0xff2f0000)
16124 {
16125 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16126 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16127 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16128 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16129 gotplt_addr = gotplt_hi + gotplt_lo;
16130 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16131 suffixlen = sizeof (microsuffix);
16132 suffix = microsuffix;
16133 other = STO_MICROMIPS;
16134 }
1bbce132
MR
16135 /* Otherwise assume standard MIPS code. */
16136 else
16137 {
16138 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16139 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16140 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16141 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16142 gotplt_addr = gotplt_hi + gotplt_lo;
16143 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16144 suffixlen = sizeof (mipssuffix);
16145 suffix = mipssuffix;
16146 other = 0;
16147 }
16148 /* Truncated table??? */
16149 if (plt_offset + entry_size > plt->size)
16150 break;
16151
16152 for (i = 0;
16153 i < count && p[pi].address != gotplt_addr;
16154 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16155
16156 if (i < count)
16157 {
16158 size_t namelen;
16159 size_t len;
16160
16161 *s = **p[pi].sym_ptr_ptr;
16162 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16163 we are defining a symbol, ensure one of them is set. */
16164 if ((s->flags & BSF_LOCAL) == 0)
16165 s->flags |= BSF_GLOBAL;
16166 s->flags |= BSF_SYNTHETIC;
16167 s->section = plt;
16168 s->value = plt_offset;
16169 s->name = names;
16170 s->udata.i = other;
16171
16172 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16173 namelen = len + suffixlen;
16174 if (names + namelen > nend)
16175 break;
16176
16177 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16178 names += len;
16179 memcpy (names, suffix, suffixlen);
16180 names += suffixlen;
16181
16182 ++s, ++n;
16183 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16184 }
16185 }
16186
16187 free (plt_data);
16188
16189 return n;
16190}
16191
5e7fc731
MR
16192/* Return the ABI flags associated with ABFD if available. */
16193
16194Elf_Internal_ABIFlags_v0 *
16195bfd_mips_elf_get_abiflags (bfd *abfd)
16196{
16197 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16198
16199 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16200}
16201
861fb55a
DJ
16202void
16203_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16204{
16205 struct mips_elf_link_hash_table *htab;
16206 Elf_Internal_Ehdr *i_ehdrp;
16207
16208 i_ehdrp = elf_elfheader (abfd);
16209 if (link_info)
16210 {
16211 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
16212 BFD_ASSERT (htab != NULL);
16213
861fb55a
DJ
16214 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16215 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16216 }
0af03126
L
16217
16218 _bfd_elf_post_process_headers (abfd, link_info);
351cdf24
MF
16219
16220 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16221 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16222 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
861fb55a 16223}
2f0c68f2
CM
16224
16225int
16226_bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16227{
16228 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16229}
16230
16231/* Return the opcode for can't unwind. */
16232
16233int
16234_bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16235{
16236 return COMPACT_EH_CANT_UNWIND_OPCODE;
16237}
This page took 2.379349 seconds and 4 git commands to generate.