Updated French translations
[deliverable/binutils-gdb.git] / bfd / reloc.c
CommitLineData
252b5132 1/* BFD support for handling relocation entries.
7898deda 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
fbca6ad9 3 2000, 2001, 2002
252b5132
RH
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7This file is part of BFD, the Binary File Descriptor library.
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with this program; if not, write to the Free Software
21Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23/*
24SECTION
25 Relocations
26
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
3f9b03b5 29 en-masse and translated into an internal form. A common
252b5132
RH
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
32
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
35
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
39
40@menu
41@* typedef arelent::
42@* howto manager::
43@end menu
44
45*/
46
47/* DO compile in the reloc_code name table from libbfd.h. */
48#define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50#include "bfd.h"
51#include "sysdep.h"
52#include "bfdlink.h"
53#include "libbfd.h"
54/*
55DOCDD
56INODE
57 typedef arelent, howto manager, Relocations, Relocations
58
59SUBSECTION
60 typedef arelent
61
62 This is the structure of a relocation entry:
63
64CODE_FRAGMENT
65.
66.typedef enum bfd_reloc_status
67.{
b5f79c76 68. {* No errors detected. *}
252b5132
RH
69. bfd_reloc_ok,
70.
b5f79c76 71. {* The relocation was performed, but there was an overflow. *}
252b5132
RH
72. bfd_reloc_overflow,
73.
b5f79c76 74. {* The address to relocate was not within the section supplied. *}
252b5132
RH
75. bfd_reloc_outofrange,
76.
b5f79c76 77. {* Used by special functions. *}
252b5132
RH
78. bfd_reloc_continue,
79.
b5f79c76 80. {* Unsupported relocation size requested. *}
252b5132
RH
81. bfd_reloc_notsupported,
82.
b5f79c76 83. {* Unused. *}
252b5132
RH
84. bfd_reloc_other,
85.
b5f79c76 86. {* The symbol to relocate against was undefined. *}
252b5132
RH
87. bfd_reloc_undefined,
88.
dc810e39
AM
89. {* The relocation was performed, but may not be ok - presently
90. generated only when linking i960 coff files with i960 b.out
91. symbols. If this type is returned, the error_message argument
92. to bfd_perform_relocation will be set. *}
252b5132
RH
93. bfd_reloc_dangerous
94. }
95. bfd_reloc_status_type;
96.
97.
98.typedef struct reloc_cache_entry
99.{
b5f79c76 100. {* A pointer into the canonical table of pointers. *}
252b5132
RH
101. struct symbol_cache_entry **sym_ptr_ptr;
102.
b5f79c76 103. {* offset in section. *}
252b5132
RH
104. bfd_size_type address;
105.
b5f79c76 106. {* addend for relocation value. *}
252b5132
RH
107. bfd_vma addend;
108.
b5f79c76 109. {* Pointer to how to perform the required relocation. *}
252b5132
RH
110. reloc_howto_type *howto;
111.
b5f79c76
NC
112.}
113.arelent;
114.
252b5132
RH
115*/
116
117/*
118DESCRIPTION
119
120 Here is a description of each of the fields within an <<arelent>>:
121
122 o <<sym_ptr_ptr>>
123
124 The symbol table pointer points to a pointer to the symbol
125 associated with the relocation request. It is
126 the pointer into the table returned by the back end's
127 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
128 through a pointer to a pointer so that tools like the linker
129 can fix up all the symbols of the same name by modifying only
130 one pointer. The relocation routine looks in the symbol and
131 uses the base of the section the symbol is attached to and the
132 value of the symbol as the initial relocation offset. If the
133 symbol pointer is zero, then the section provided is looked up.
134
135 o <<address>>
136
137 The <<address>> field gives the offset in bytes from the base of
138 the section data which owns the relocation record to the first
139 byte of relocatable information. The actual data relocated
140 will be relative to this point; for example, a relocation
141 type which modifies the bottom two bytes of a four byte word
142 would not touch the first byte pointed to in a big endian
143 world.
144
145 o <<addend>>
146
147 The <<addend>> is a value provided by the back end to be added (!)
148 to the relocation offset. Its interpretation is dependent upon
149 the howto. For example, on the 68k the code:
150
252b5132
RH
151| char foo[];
152| main()
153| {
154| return foo[0x12345678];
155| }
156
157 Could be compiled into:
158
159| linkw fp,#-4
160| moveb @@#12345678,d0
161| extbl d0
162| unlk fp
163| rts
164
252b5132
RH
165 This could create a reloc pointing to <<foo>>, but leave the
166 offset in the data, something like:
167
252b5132
RH
168|RELOCATION RECORDS FOR [.text]:
169|offset type value
170|00000006 32 _foo
171|
172|00000000 4e56 fffc ; linkw fp,#-4
173|00000004 1039 1234 5678 ; moveb @@#12345678,d0
174|0000000a 49c0 ; extbl d0
175|0000000c 4e5e ; unlk fp
176|0000000e 4e75 ; rts
177
252b5132
RH
178 Using coff and an 88k, some instructions don't have enough
179 space in them to represent the full address range, and
180 pointers have to be loaded in two parts. So you'd get something like:
181
252b5132
RH
182| or.u r13,r0,hi16(_foo+0x12345678)
183| ld.b r2,r13,lo16(_foo+0x12345678)
184| jmp r1
185
252b5132
RH
186 This should create two relocs, both pointing to <<_foo>>, and with
187 0x12340000 in their addend field. The data would consist of:
188
252b5132
RH
189|RELOCATION RECORDS FOR [.text]:
190|offset type value
191|00000002 HVRT16 _foo+0x12340000
192|00000006 LVRT16 _foo+0x12340000
193|
194|00000000 5da05678 ; or.u r13,r0,0x5678
195|00000004 1c4d5678 ; ld.b r2,r13,0x5678
196|00000008 f400c001 ; jmp r1
197
252b5132
RH
198 The relocation routine digs out the value from the data, adds
199 it to the addend to get the original offset, and then adds the
200 value of <<_foo>>. Note that all 32 bits have to be kept around
201 somewhere, to cope with carry from bit 15 to bit 16.
202
203 One further example is the sparc and the a.out format. The
204 sparc has a similar problem to the 88k, in that some
205 instructions don't have room for an entire offset, but on the
206 sparc the parts are created in odd sized lumps. The designers of
207 the a.out format chose to not use the data within the section
208 for storing part of the offset; all the offset is kept within
209 the reloc. Anything in the data should be ignored.
210
211| save %sp,-112,%sp
212| sethi %hi(_foo+0x12345678),%g2
213| ldsb [%g2+%lo(_foo+0x12345678)],%i0
214| ret
215| restore
216
217 Both relocs contain a pointer to <<foo>>, and the offsets
218 contain junk.
219
252b5132
RH
220|RELOCATION RECORDS FOR [.text]:
221|offset type value
222|00000004 HI22 _foo+0x12345678
223|00000008 LO10 _foo+0x12345678
224|
225|00000000 9de3bf90 ; save %sp,-112,%sp
226|00000004 05000000 ; sethi %hi(_foo+0),%g2
227|00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
228|0000000c 81c7e008 ; ret
229|00000010 81e80000 ; restore
230
252b5132
RH
231 o <<howto>>
232
233 The <<howto>> field can be imagined as a
234 relocation instruction. It is a pointer to a structure which
235 contains information on what to do with all of the other
236 information in the reloc record and data section. A back end
237 would normally have a relocation instruction set and turn
238 relocations into pointers to the correct structure on input -
239 but it would be possible to create each howto field on demand.
240
241*/
242
243/*
244SUBSUBSECTION
245 <<enum complain_overflow>>
246
247 Indicates what sort of overflow checking should be done when
248 performing a relocation.
249
250CODE_FRAGMENT
251.
252.enum complain_overflow
253.{
b5f79c76 254. {* Do not complain on overflow. *}
252b5132
RH
255. complain_overflow_dont,
256.
dc810e39 257. {* Complain if the bitfield overflows, whether it is considered
b5f79c76 258. as signed or unsigned. *}
252b5132
RH
259. complain_overflow_bitfield,
260.
dc810e39 261. {* Complain if the value overflows when considered as signed
b5f79c76 262. number. *}
252b5132
RH
263. complain_overflow_signed,
264.
dc810e39 265. {* Complain if the value overflows when considered as an
b5f79c76 266. unsigned number. *}
252b5132
RH
267. complain_overflow_unsigned
268.};
269
270*/
271
272/*
273SUBSUBSECTION
274 <<reloc_howto_type>>
275
276 The <<reloc_howto_type>> is a structure which contains all the
277 information that libbfd needs to know to tie up a back end's data.
278
279CODE_FRAGMENT
b5f79c76 280.struct symbol_cache_entry; {* Forward declaration. *}
252b5132
RH
281.
282.struct reloc_howto_struct
283.{
dc810e39
AM
284. {* The type field has mainly a documentary use - the back end can
285. do what it wants with it, though normally the back end's
286. external idea of what a reloc number is stored
287. in this field. For example, a PC relative word relocation
288. in a coff environment has the type 023 - because that's
289. what the outside world calls a R_PCRWORD reloc. *}
252b5132
RH
290. unsigned int type;
291.
dc810e39
AM
292. {* The value the final relocation is shifted right by. This drops
293. unwanted data from the relocation. *}
252b5132
RH
294. unsigned int rightshift;
295.
dc810e39
AM
296. {* The size of the item to be relocated. This is *not* a
297. power-of-two measure. To get the number of bytes operated
298. on by a type of relocation, use bfd_get_reloc_size. *}
252b5132
RH
299. int size;
300.
dc810e39
AM
301. {* The number of bits in the item to be relocated. This is used
302. when doing overflow checking. *}
252b5132
RH
303. unsigned int bitsize;
304.
dc810e39
AM
305. {* Notes that the relocation is relative to the location in the
306. data section of the addend. The relocation function will
307. subtract from the relocation value the address of the location
308. being relocated. *}
252b5132
RH
309. boolean pc_relative;
310.
dc810e39
AM
311. {* The bit position of the reloc value in the destination.
312. The relocated value is left shifted by this amount. *}
252b5132
RH
313. unsigned int bitpos;
314.
dc810e39
AM
315. {* What type of overflow error should be checked for when
316. relocating. *}
252b5132
RH
317. enum complain_overflow complain_on_overflow;
318.
dc810e39
AM
319. {* If this field is non null, then the supplied function is
320. called rather than the normal function. This allows really
321. strange relocation methods to be accomodated (e.g., i960 callj
322. instructions). *}
252b5132 323. bfd_reloc_status_type (*special_function)
dc810e39
AM
324. PARAMS ((bfd *, arelent *, struct symbol_cache_entry *, PTR, asection *,
325. bfd *, char **));
252b5132 326.
dc810e39 327. {* The textual name of the relocation type. *}
252b5132
RH
328. char *name;
329.
dc810e39
AM
330. {* Some formats record a relocation addend in the section contents
331. rather than with the relocation. For ELF formats this is the
332. distinction between USE_REL and USE_RELA (though the code checks
333. for USE_REL == 1/0). The value of this field is TRUE if the
334. addend is recorded with the section contents; when performing a
335. partial link (ld -r) the section contents (the data) will be
336. modified. The value of this field is FALSE if addends are
337. recorded with the relocation (in arelent.addend); when performing
338. a partial link the relocation will be modified.
339. All relocations for all ELF USE_RELA targets should set this field
340. to FALSE (values of TRUE should be looked on with suspicion).
341. However, the converse is not true: not all relocations of all ELF
342. USE_REL targets set this field to TRUE. Why this is so is peculiar
343. to each particular target. For relocs that aren't used in partial
344. links (e.g. GOT stuff) it doesn't matter what this is set to. *}
252b5132
RH
345. boolean partial_inplace;
346.
dc810e39
AM
347. {* The src_mask selects which parts of the read in data
348. are to be used in the relocation sum. E.g., if this was an 8 bit
349. byte of data which we read and relocated, this would be
350. 0x000000ff. When we have relocs which have an addend, such as
351. sun4 extended relocs, the value in the offset part of a
352. relocating field is garbage so we never use it. In this case
353. the mask would be 0x00000000. *}
252b5132
RH
354. bfd_vma src_mask;
355.
dc810e39
AM
356. {* The dst_mask selects which parts of the instruction are replaced
357. into the instruction. In most cases src_mask == dst_mask,
358. except in the above special case, where dst_mask would be
359. 0x000000ff, and src_mask would be 0x00000000. *}
252b5132
RH
360. bfd_vma dst_mask;
361.
dc810e39
AM
362. {* When some formats create PC relative instructions, they leave
363. the value of the pc of the place being relocated in the offset
364. slot of the instruction, so that a PC relative relocation can
365. be made just by adding in an ordinary offset (e.g., sun3 a.out).
366. Some formats leave the displacement part of an instruction
367. empty (e.g., m88k bcs); this flag signals the fact. *}
252b5132 368. boolean pcrel_offset;
252b5132 369.};
b5f79c76 370.
252b5132
RH
371*/
372
373/*
374FUNCTION
375 The HOWTO Macro
376
377DESCRIPTION
378 The HOWTO define is horrible and will go away.
379
dc810e39
AM
380.#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
381. { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
252b5132
RH
382
383DESCRIPTION
384 And will be replaced with the totally magic way. But for the
385 moment, we are compatible, so do it this way.
386
dc810e39
AM
387.#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
388. HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
389. NAME, false, 0, 0, IN)
252b5132 390.
5f771d47
ILT
391
392DESCRIPTION
393 This is used to fill in an empty howto entry in an array.
394
395.#define EMPTY_HOWTO(C) \
dc810e39
AM
396. HOWTO ((C), 0, 0, 0, false, 0, complain_overflow_dont, NULL, \
397. NULL, false, 0, 0, false)
5f771d47
ILT
398.
399
252b5132
RH
400DESCRIPTION
401 Helper routine to turn a symbol into a relocation value.
402
dc810e39
AM
403.#define HOWTO_PREPARE(relocation, symbol) \
404. { \
405. if (symbol != (asymbol *) NULL) \
406. { \
407. if (bfd_is_com_section (symbol->section)) \
408. { \
409. relocation = 0; \
410. } \
411. else \
412. { \
413. relocation = symbol->value; \
414. } \
415. } \
416. }
b5f79c76 417.
252b5132
RH
418*/
419
420/*
421FUNCTION
422 bfd_get_reloc_size
423
424SYNOPSIS
425 unsigned int bfd_get_reloc_size (reloc_howto_type *);
426
427DESCRIPTION
428 For a reloc_howto_type that operates on a fixed number of bytes,
429 this returns the number of bytes operated on.
430 */
431
432unsigned int
433bfd_get_reloc_size (howto)
434 reloc_howto_type *howto;
435{
436 switch (howto->size)
437 {
438 case 0: return 1;
439 case 1: return 2;
440 case 2: return 4;
441 case 3: return 0;
442 case 4: return 8;
443 case 8: return 16;
444 case -2: return 4;
445 default: abort ();
446 }
447}
448
449/*
450TYPEDEF
451 arelent_chain
452
453DESCRIPTION
454
455 How relocs are tied together in an <<asection>>:
456
dc810e39
AM
457.typedef struct relent_chain
458.{
252b5132 459. arelent relent;
dc810e39 460. struct relent_chain *next;
b5f79c76
NC
461.}
462.arelent_chain;
463.
252b5132
RH
464*/
465
466/* N_ONES produces N one bits, without overflowing machine arithmetic. */
467#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
468
469/*
470FUNCTION
471 bfd_check_overflow
472
473SYNOPSIS
474 bfd_reloc_status_type
475 bfd_check_overflow
476 (enum complain_overflow how,
477 unsigned int bitsize,
478 unsigned int rightshift,
479 unsigned int addrsize,
480 bfd_vma relocation);
481
482DESCRIPTION
483 Perform overflow checking on @var{relocation} which has
484 @var{bitsize} significant bits and will be shifted right by
485 @var{rightshift} bits, on a machine with addresses containing
486 @var{addrsize} significant bits. The result is either of
487 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
488
489*/
490
491bfd_reloc_status_type
492bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
493 enum complain_overflow how;
494 unsigned int bitsize;
495 unsigned int rightshift;
496 unsigned int addrsize;
497 bfd_vma relocation;
498{
499 bfd_vma fieldmask, addrmask, signmask, ss, a;
500 bfd_reloc_status_type flag = bfd_reloc_ok;
501
502 a = relocation;
503
504 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
505 we'll be permissive: extra bits in the field mask will
506 automatically extend the address mask for purposes of the
507 overflow check. */
508 fieldmask = N_ONES (bitsize);
509 addrmask = N_ONES (addrsize) | fieldmask;
510
511 switch (how)
512 {
513 case complain_overflow_dont:
514 break;
515
516 case complain_overflow_signed:
517 /* If any sign bits are set, all sign bits must be set. That
518 is, A must be a valid negative address after shifting. */
519 a = (a & addrmask) >> rightshift;
520 signmask = ~ (fieldmask >> 1);
521 ss = a & signmask;
522 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
523 flag = bfd_reloc_overflow;
524 break;
525
526 case complain_overflow_unsigned:
527 /* We have an overflow if the address does not fit in the field. */
528 a = (a & addrmask) >> rightshift;
529 if ((a & ~ fieldmask) != 0)
530 flag = bfd_reloc_overflow;
531 break;
532
533 case complain_overflow_bitfield:
534 /* Bitfields are sometimes signed, sometimes unsigned. We
d5afc56e
AM
535 explicitly allow an address wrap too, which means a bitfield
536 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
537 if the value has some, but not all, bits set outside the
538 field. */
252b5132 539 a >>= rightshift;
d5afc56e
AM
540 ss = a & ~ fieldmask;
541 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
542 flag = bfd_reloc_overflow;
252b5132
RH
543 break;
544
545 default:
546 abort ();
547 }
548
549 return flag;
550}
551
552/*
553FUNCTION
554 bfd_perform_relocation
555
556SYNOPSIS
557 bfd_reloc_status_type
558 bfd_perform_relocation
559 (bfd *abfd,
560 arelent *reloc_entry,
561 PTR data,
562 asection *input_section,
563 bfd *output_bfd,
564 char **error_message);
565
566DESCRIPTION
567 If @var{output_bfd} is supplied to this function, the
568 generated image will be relocatable; the relocations are
569 copied to the output file after they have been changed to
570 reflect the new state of the world. There are two ways of
571 reflecting the results of partial linkage in an output file:
572 by modifying the output data in place, and by modifying the
573 relocation record. Some native formats (e.g., basic a.out and
574 basic coff) have no way of specifying an addend in the
575 relocation type, so the addend has to go in the output data.
576 This is no big deal since in these formats the output data
577 slot will always be big enough for the addend. Complex reloc
578 types with addends were invented to solve just this problem.
579 The @var{error_message} argument is set to an error message if
580 this return @code{bfd_reloc_dangerous}.
581
582*/
583
252b5132
RH
584bfd_reloc_status_type
585bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
586 error_message)
587 bfd *abfd;
588 arelent *reloc_entry;
589 PTR data;
590 asection *input_section;
591 bfd *output_bfd;
592 char **error_message;
593{
594 bfd_vma relocation;
595 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 596 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
597 bfd_vma output_base = 0;
598 reloc_howto_type *howto = reloc_entry->howto;
599 asection *reloc_target_output_section;
600 asymbol *symbol;
601
602 symbol = *(reloc_entry->sym_ptr_ptr);
603 if (bfd_is_abs_section (symbol->section)
604 && output_bfd != (bfd *) NULL)
605 {
606 reloc_entry->address += input_section->output_offset;
607 return bfd_reloc_ok;
608 }
609
610 /* If we are not producing relocateable output, return an error if
611 the symbol is not defined. An undefined weak symbol is
612 considered to have a value of zero (SVR4 ABI, p. 4-27). */
613 if (bfd_is_und_section (symbol->section)
614 && (symbol->flags & BSF_WEAK) == 0
615 && output_bfd == (bfd *) NULL)
616 flag = bfd_reloc_undefined;
617
618 /* If there is a function supplied to handle this relocation type,
619 call it. It'll return `bfd_reloc_continue' if further processing
620 can be done. */
621 if (howto->special_function)
622 {
623 bfd_reloc_status_type cont;
624 cont = howto->special_function (abfd, reloc_entry, symbol, data,
625 input_section, output_bfd,
626 error_message);
627 if (cont != bfd_reloc_continue)
628 return cont;
629 }
630
631 /* Is the address of the relocation really within the section? */
e207c4fa
AM
632 if (reloc_entry->address > (input_section->_cooked_size
633 / bfd_octets_per_byte (abfd)))
252b5132
RH
634 return bfd_reloc_outofrange;
635
636 /* Work out which section the relocation is targetted at and the
637 initial relocation command value. */
638
639 /* Get symbol value. (Common symbols are special.) */
640 if (bfd_is_com_section (symbol->section))
641 relocation = 0;
642 else
643 relocation = symbol->value;
644
252b5132
RH
645 reloc_target_output_section = symbol->section->output_section;
646
647 /* Convert input-section-relative symbol value to absolute. */
648 if (output_bfd && howto->partial_inplace == false)
649 output_base = 0;
650 else
651 output_base = reloc_target_output_section->vma;
652
653 relocation += output_base + symbol->section->output_offset;
654
655 /* Add in supplied addend. */
656 relocation += reloc_entry->addend;
657
658 /* Here the variable relocation holds the final address of the
659 symbol we are relocating against, plus any addend. */
660
661 if (howto->pc_relative == true)
662 {
663 /* This is a PC relative relocation. We want to set RELOCATION
664 to the distance between the address of the symbol and the
665 location. RELOCATION is already the address of the symbol.
666
667 We start by subtracting the address of the section containing
668 the location.
669
670 If pcrel_offset is set, we must further subtract the position
671 of the location within the section. Some targets arrange for
672 the addend to be the negative of the position of the location
673 within the section; for example, i386-aout does this. For
674 i386-aout, pcrel_offset is false. Some other targets do not
675 include the position of the location; for example, m88kbcs,
676 or ELF. For those targets, pcrel_offset is true.
677
678 If we are producing relocateable output, then we must ensure
679 that this reloc will be correctly computed when the final
680 relocation is done. If pcrel_offset is false we want to wind
681 up with the negative of the location within the section,
682 which means we must adjust the existing addend by the change
683 in the location within the section. If pcrel_offset is true
684 we do not want to adjust the existing addend at all.
685
686 FIXME: This seems logical to me, but for the case of
687 producing relocateable output it is not what the code
688 actually does. I don't want to change it, because it seems
689 far too likely that something will break. */
690
691 relocation -=
692 input_section->output_section->vma + input_section->output_offset;
693
694 if (howto->pcrel_offset == true)
695 relocation -= reloc_entry->address;
696 }
697
698 if (output_bfd != (bfd *) NULL)
699 {
700 if (howto->partial_inplace == false)
701 {
702 /* This is a partial relocation, and we want to apply the relocation
703 to the reloc entry rather than the raw data. Modify the reloc
704 inplace to reflect what we now know. */
705 reloc_entry->addend = relocation;
706 reloc_entry->address += input_section->output_offset;
707 return flag;
708 }
709 else
710 {
711 /* This is a partial relocation, but inplace, so modify the
712 reloc record a bit.
713
714 If we've relocated with a symbol with a section, change
715 into a ref to the section belonging to the symbol. */
716
717 reloc_entry->address += input_section->output_offset;
718
719 /* WTF?? */
720 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
721 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
722 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
723 {
724#if 1
725 /* For m68k-coff, the addend was being subtracted twice during
726 relocation with -r. Removing the line below this comment
727 fixes that problem; see PR 2953.
728
729However, Ian wrote the following, regarding removing the line below,
730which explains why it is still enabled: --djm
731
732If you put a patch like that into BFD you need to check all the COFF
733linkers. I am fairly certain that patch will break coff-i386 (e.g.,
734SCO); see coff_i386_reloc in coff-i386.c where I worked around the
735problem in a different way. There may very well be a reason that the
736code works as it does.
737
738Hmmm. The first obvious point is that bfd_perform_relocation should
739not have any tests that depend upon the flavour. It's seem like
740entirely the wrong place for such a thing. The second obvious point
741is that the current code ignores the reloc addend when producing
742relocateable output for COFF. That's peculiar. In fact, I really
743have no idea what the point of the line you want to remove is.
744
745A typical COFF reloc subtracts the old value of the symbol and adds in
746the new value to the location in the object file (if it's a pc
747relative reloc it adds the difference between the symbol value and the
748location). When relocating we need to preserve that property.
749
750BFD handles this by setting the addend to the negative of the old
751value of the symbol. Unfortunately it handles common symbols in a
752non-standard way (it doesn't subtract the old value) but that's a
753different story (we can't change it without losing backward
754compatibility with old object files) (coff-i386 does subtract the old
755value, to be compatible with existing coff-i386 targets, like SCO).
756
757So everything works fine when not producing relocateable output. When
758we are producing relocateable output, logically we should do exactly
759what we do when not producing relocateable output. Therefore, your
760patch is correct. In fact, it should probably always just set
761reloc_entry->addend to 0 for all cases, since it is, in fact, going to
762add the value into the object file. This won't hurt the COFF code,
763which doesn't use the addend; I'm not sure what it will do to other
764formats (the thing to check for would be whether any formats both use
765the addend and set partial_inplace).
766
767When I wanted to make coff-i386 produce relocateable output, I ran
768into the problem that you are running into: I wanted to remove that
769line. Rather than risk it, I made the coff-i386 relocs use a special
770function; it's coff_i386_reloc in coff-i386.c. The function
771specifically adds the addend field into the object file, knowing that
772bfd_perform_relocation is not going to. If you remove that line, then
773coff-i386.c will wind up adding the addend field in twice. It's
774trivial to fix; it just needs to be done.
775
776The problem with removing the line is just that it may break some
777working code. With BFD it's hard to be sure of anything. The right
778way to deal with this is simply to build and test at least all the
779supported COFF targets. It should be straightforward if time and disk
780space consuming. For each target:
781 1) build the linker
782 2) generate some executable, and link it using -r (I would
783 probably use paranoia.o and link against newlib/libc.a, which
784 for all the supported targets would be available in
785 /usr/cygnus/progressive/H-host/target/lib/libc.a).
786 3) make the change to reloc.c
787 4) rebuild the linker
788 5) repeat step 2
789 6) if the resulting object files are the same, you have at least
790 made it no worse
791 7) if they are different you have to figure out which version is
792 right
793*/
794 relocation -= reloc_entry->addend;
795#endif
796 reloc_entry->addend = 0;
797 }
798 else
799 {
800 reloc_entry->addend = relocation;
801 }
802 }
803 }
804 else
805 {
806 reloc_entry->addend = 0;
807 }
808
809 /* FIXME: This overflow checking is incomplete, because the value
810 might have overflowed before we get here. For a correct check we
811 need to compute the value in a size larger than bitsize, but we
812 can't reasonably do that for a reloc the same size as a host
813 machine word.
814 FIXME: We should also do overflow checking on the result after
815 adding in the value contained in the object file. */
816 if (howto->complain_on_overflow != complain_overflow_dont
817 && flag == bfd_reloc_ok)
818 flag = bfd_check_overflow (howto->complain_on_overflow,
819 howto->bitsize,
820 howto->rightshift,
821 bfd_arch_bits_per_address (abfd),
822 relocation);
823
b5f79c76
NC
824 /* Either we are relocating all the way, or we don't want to apply
825 the relocation to the reloc entry (probably because there isn't
826 any room in the output format to describe addends to relocs). */
252b5132
RH
827
828 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
829 (OSF version 1.3, compiler version 3.11). It miscompiles the
830 following program:
831
832 struct str
833 {
834 unsigned int i0;
835 } s = { 0 };
836
837 int
838 main ()
839 {
840 unsigned long x;
841
842 x = 0x100000000;
843 x <<= (unsigned long) s.i0;
844 if (x == 0)
845 printf ("failed\n");
846 else
847 printf ("succeeded (%lx)\n", x);
848 }
849 */
850
851 relocation >>= (bfd_vma) howto->rightshift;
852
b5f79c76 853 /* Shift everything up to where it's going to be used. */
252b5132
RH
854 relocation <<= (bfd_vma) howto->bitpos;
855
b5f79c76 856 /* Wait for the day when all have the mask in them. */
252b5132
RH
857
858 /* What we do:
859 i instruction to be left alone
860 o offset within instruction
861 r relocation offset to apply
862 S src mask
863 D dst mask
864 N ~dst mask
865 A part 1
866 B part 2
867 R result
868
869 Do this:
88b6bae0
AM
870 (( i i i i i o o o o o from bfd_get<size>
871 and S S S S S) to get the size offset we want
872 + r r r r r r r r r r) to get the final value to place
252b5132
RH
873 and D D D D D to chop to right size
874 -----------------------
88b6bae0 875 = A A A A A
252b5132 876 And this:
88b6bae0
AM
877 ( i i i i i o o o o o from bfd_get<size>
878 and N N N N N ) get instruction
252b5132 879 -----------------------
88b6bae0 880 = B B B B B
252b5132
RH
881
882 And then:
88b6bae0
AM
883 ( B B B B B
884 or A A A A A)
252b5132 885 -----------------------
88b6bae0 886 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
887 */
888
889#define DOIT(x) \
890 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
891
892 switch (howto->size)
893 {
894 case 0:
895 {
9a968f43 896 char x = bfd_get_8 (abfd, (char *) data + octets);
252b5132 897 DOIT (x);
9a968f43 898 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
899 }
900 break;
901
902 case 1:
903 {
9a968f43 904 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132 905 DOIT (x);
dc810e39 906 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
252b5132
RH
907 }
908 break;
909 case 2:
910 {
9a968f43 911 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132 912 DOIT (x);
dc810e39 913 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
914 }
915 break;
916 case -2:
917 {
9a968f43 918 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132
RH
919 relocation = -relocation;
920 DOIT (x);
dc810e39 921 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
922 }
923 break;
924
925 case -1:
926 {
9a968f43 927 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132
RH
928 relocation = -relocation;
929 DOIT (x);
dc810e39 930 bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
931 }
932 break;
933
934 case 3:
935 /* Do nothing */
936 break;
937
938 case 4:
939#ifdef BFD64
940 {
9a968f43 941 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
252b5132 942 DOIT (x);
9a968f43 943 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
944 }
945#else
946 abort ();
947#endif
948 break;
949 default:
950 return bfd_reloc_other;
951 }
952
953 return flag;
954}
955
956/*
957FUNCTION
958 bfd_install_relocation
959
960SYNOPSIS
961 bfd_reloc_status_type
962 bfd_install_relocation
963 (bfd *abfd,
964 arelent *reloc_entry,
965 PTR data, bfd_vma data_start,
966 asection *input_section,
967 char **error_message);
968
969DESCRIPTION
970 This looks remarkably like <<bfd_perform_relocation>>, except it
971 does not expect that the section contents have been filled in.
972 I.e., it's suitable for use when creating, rather than applying
973 a relocation.
974
975 For now, this function should be considered reserved for the
976 assembler.
252b5132
RH
977*/
978
252b5132
RH
979bfd_reloc_status_type
980bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
981 input_section, error_message)
982 bfd *abfd;
983 arelent *reloc_entry;
984 PTR data_start;
985 bfd_vma data_start_offset;
986 asection *input_section;
987 char **error_message;
988{
989 bfd_vma relocation;
990 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 991 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
992 bfd_vma output_base = 0;
993 reloc_howto_type *howto = reloc_entry->howto;
994 asection *reloc_target_output_section;
995 asymbol *symbol;
996 bfd_byte *data;
997
998 symbol = *(reloc_entry->sym_ptr_ptr);
999 if (bfd_is_abs_section (symbol->section))
1000 {
1001 reloc_entry->address += input_section->output_offset;
1002 return bfd_reloc_ok;
1003 }
1004
1005 /* If there is a function supplied to handle this relocation type,
1006 call it. It'll return `bfd_reloc_continue' if further processing
1007 can be done. */
1008 if (howto->special_function)
1009 {
1010 bfd_reloc_status_type cont;
88b6bae0 1011
252b5132
RH
1012 /* XXX - The special_function calls haven't been fixed up to deal
1013 with creating new relocations and section contents. */
1014 cont = howto->special_function (abfd, reloc_entry, symbol,
1015 /* XXX - Non-portable! */
1016 ((bfd_byte *) data_start
1017 - data_start_offset),
1018 input_section, abfd, error_message);
1019 if (cont != bfd_reloc_continue)
1020 return cont;
1021 }
1022
1023 /* Is the address of the relocation really within the section? */
e207c4fa
AM
1024 if (reloc_entry->address > (input_section->_cooked_size
1025 / bfd_octets_per_byte (abfd)))
252b5132
RH
1026 return bfd_reloc_outofrange;
1027
1028 /* Work out which section the relocation is targetted at and the
1029 initial relocation command value. */
1030
1031 /* Get symbol value. (Common symbols are special.) */
1032 if (bfd_is_com_section (symbol->section))
1033 relocation = 0;
1034 else
1035 relocation = symbol->value;
1036
1037 reloc_target_output_section = symbol->section->output_section;
1038
1039 /* Convert input-section-relative symbol value to absolute. */
1040 if (howto->partial_inplace == false)
1041 output_base = 0;
1042 else
1043 output_base = reloc_target_output_section->vma;
1044
1045 relocation += output_base + symbol->section->output_offset;
1046
1047 /* Add in supplied addend. */
1048 relocation += reloc_entry->addend;
1049
1050 /* Here the variable relocation holds the final address of the
1051 symbol we are relocating against, plus any addend. */
1052
1053 if (howto->pc_relative == true)
1054 {
1055 /* This is a PC relative relocation. We want to set RELOCATION
1056 to the distance between the address of the symbol and the
1057 location. RELOCATION is already the address of the symbol.
1058
1059 We start by subtracting the address of the section containing
1060 the location.
1061
1062 If pcrel_offset is set, we must further subtract the position
1063 of the location within the section. Some targets arrange for
1064 the addend to be the negative of the position of the location
1065 within the section; for example, i386-aout does this. For
1066 i386-aout, pcrel_offset is false. Some other targets do not
1067 include the position of the location; for example, m88kbcs,
1068 or ELF. For those targets, pcrel_offset is true.
1069
1070 If we are producing relocateable output, then we must ensure
1071 that this reloc will be correctly computed when the final
1072 relocation is done. If pcrel_offset is false we want to wind
1073 up with the negative of the location within the section,
1074 which means we must adjust the existing addend by the change
1075 in the location within the section. If pcrel_offset is true
1076 we do not want to adjust the existing addend at all.
1077
1078 FIXME: This seems logical to me, but for the case of
1079 producing relocateable output it is not what the code
1080 actually does. I don't want to change it, because it seems
1081 far too likely that something will break. */
1082
1083 relocation -=
1084 input_section->output_section->vma + input_section->output_offset;
1085
1086 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1087 relocation -= reloc_entry->address;
1088 }
1089
1090 if (howto->partial_inplace == false)
1091 {
1092 /* This is a partial relocation, and we want to apply the relocation
1093 to the reloc entry rather than the raw data. Modify the reloc
1094 inplace to reflect what we now know. */
1095 reloc_entry->addend = relocation;
1096 reloc_entry->address += input_section->output_offset;
1097 return flag;
1098 }
1099 else
1100 {
1101 /* This is a partial relocation, but inplace, so modify the
1102 reloc record a bit.
1103
1104 If we've relocated with a symbol with a section, change
1105 into a ref to the section belonging to the symbol. */
252b5132
RH
1106 reloc_entry->address += input_section->output_offset;
1107
1108 /* WTF?? */
1109 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
1110 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1111 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1112 {
1113#if 1
1114/* For m68k-coff, the addend was being subtracted twice during
1115 relocation with -r. Removing the line below this comment
1116 fixes that problem; see PR 2953.
1117
1118However, Ian wrote the following, regarding removing the line below,
1119which explains why it is still enabled: --djm
1120
1121If you put a patch like that into BFD you need to check all the COFF
1122linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1123SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1124problem in a different way. There may very well be a reason that the
1125code works as it does.
1126
1127Hmmm. The first obvious point is that bfd_install_relocation should
1128not have any tests that depend upon the flavour. It's seem like
1129entirely the wrong place for such a thing. The second obvious point
1130is that the current code ignores the reloc addend when producing
1131relocateable output for COFF. That's peculiar. In fact, I really
1132have no idea what the point of the line you want to remove is.
1133
1134A typical COFF reloc subtracts the old value of the symbol and adds in
1135the new value to the location in the object file (if it's a pc
1136relative reloc it adds the difference between the symbol value and the
1137location). When relocating we need to preserve that property.
1138
1139BFD handles this by setting the addend to the negative of the old
1140value of the symbol. Unfortunately it handles common symbols in a
1141non-standard way (it doesn't subtract the old value) but that's a
1142different story (we can't change it without losing backward
1143compatibility with old object files) (coff-i386 does subtract the old
1144value, to be compatible with existing coff-i386 targets, like SCO).
1145
1146So everything works fine when not producing relocateable output. When
1147we are producing relocateable output, logically we should do exactly
1148what we do when not producing relocateable output. Therefore, your
1149patch is correct. In fact, it should probably always just set
1150reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1151add the value into the object file. This won't hurt the COFF code,
1152which doesn't use the addend; I'm not sure what it will do to other
1153formats (the thing to check for would be whether any formats both use
1154the addend and set partial_inplace).
1155
1156When I wanted to make coff-i386 produce relocateable output, I ran
1157into the problem that you are running into: I wanted to remove that
1158line. Rather than risk it, I made the coff-i386 relocs use a special
1159function; it's coff_i386_reloc in coff-i386.c. The function
1160specifically adds the addend field into the object file, knowing that
1161bfd_install_relocation is not going to. If you remove that line, then
1162coff-i386.c will wind up adding the addend field in twice. It's
1163trivial to fix; it just needs to be done.
1164
1165The problem with removing the line is just that it may break some
1166working code. With BFD it's hard to be sure of anything. The right
1167way to deal with this is simply to build and test at least all the
1168supported COFF targets. It should be straightforward if time and disk
1169space consuming. For each target:
1170 1) build the linker
1171 2) generate some executable, and link it using -r (I would
1172 probably use paranoia.o and link against newlib/libc.a, which
1173 for all the supported targets would be available in
1174 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1175 3) make the change to reloc.c
1176 4) rebuild the linker
1177 5) repeat step 2
1178 6) if the resulting object files are the same, you have at least
1179 made it no worse
1180 7) if they are different you have to figure out which version is
b5f79c76 1181 right. */
252b5132
RH
1182 relocation -= reloc_entry->addend;
1183#endif
1184 reloc_entry->addend = 0;
1185 }
1186 else
1187 {
1188 reloc_entry->addend = relocation;
1189 }
1190 }
1191
1192 /* FIXME: This overflow checking is incomplete, because the value
1193 might have overflowed before we get here. For a correct check we
1194 need to compute the value in a size larger than bitsize, but we
1195 can't reasonably do that for a reloc the same size as a host
1196 machine word.
1197 FIXME: We should also do overflow checking on the result after
1198 adding in the value contained in the object file. */
1199 if (howto->complain_on_overflow != complain_overflow_dont)
1200 flag = bfd_check_overflow (howto->complain_on_overflow,
1201 howto->bitsize,
1202 howto->rightshift,
1203 bfd_arch_bits_per_address (abfd),
1204 relocation);
1205
b5f79c76
NC
1206 /* Either we are relocating all the way, or we don't want to apply
1207 the relocation to the reloc entry (probably because there isn't
1208 any room in the output format to describe addends to relocs). */
252b5132
RH
1209
1210 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1211 (OSF version 1.3, compiler version 3.11). It miscompiles the
1212 following program:
1213
1214 struct str
1215 {
1216 unsigned int i0;
1217 } s = { 0 };
1218
1219 int
1220 main ()
1221 {
1222 unsigned long x;
1223
1224 x = 0x100000000;
1225 x <<= (unsigned long) s.i0;
1226 if (x == 0)
1227 printf ("failed\n");
1228 else
1229 printf ("succeeded (%lx)\n", x);
1230 }
1231 */
1232
1233 relocation >>= (bfd_vma) howto->rightshift;
1234
b5f79c76 1235 /* Shift everything up to where it's going to be used. */
252b5132
RH
1236 relocation <<= (bfd_vma) howto->bitpos;
1237
b5f79c76 1238 /* Wait for the day when all have the mask in them. */
252b5132
RH
1239
1240 /* What we do:
1241 i instruction to be left alone
1242 o offset within instruction
1243 r relocation offset to apply
1244 S src mask
1245 D dst mask
1246 N ~dst mask
1247 A part 1
1248 B part 2
1249 R result
1250
1251 Do this:
88b6bae0
AM
1252 (( i i i i i o o o o o from bfd_get<size>
1253 and S S S S S) to get the size offset we want
1254 + r r r r r r r r r r) to get the final value to place
252b5132
RH
1255 and D D D D D to chop to right size
1256 -----------------------
88b6bae0 1257 = A A A A A
252b5132 1258 And this:
88b6bae0
AM
1259 ( i i i i i o o o o o from bfd_get<size>
1260 and N N N N N ) get instruction
252b5132 1261 -----------------------
88b6bae0 1262 = B B B B B
252b5132
RH
1263
1264 And then:
88b6bae0
AM
1265 ( B B B B B
1266 or A A A A A)
252b5132 1267 -----------------------
88b6bae0 1268 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
1269 */
1270
1271#define DOIT(x) \
1272 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1273
9a968f43 1274 data = (bfd_byte *) data_start + (octets - data_start_offset);
252b5132
RH
1275
1276 switch (howto->size)
1277 {
1278 case 0:
1279 {
1280 char x = bfd_get_8 (abfd, (char *) data);
1281 DOIT (x);
1282 bfd_put_8 (abfd, x, (unsigned char *) data);
1283 }
1284 break;
1285
1286 case 1:
1287 {
1288 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1289 DOIT (x);
dc810e39 1290 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data);
252b5132
RH
1291 }
1292 break;
1293 case 2:
1294 {
1295 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1296 DOIT (x);
dc810e39 1297 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
252b5132
RH
1298 }
1299 break;
1300 case -2:
1301 {
1302 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1303 relocation = -relocation;
1304 DOIT (x);
dc810e39 1305 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
252b5132
RH
1306 }
1307 break;
1308
1309 case 3:
1310 /* Do nothing */
1311 break;
1312
1313 case 4:
1314 {
1315 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1316 DOIT (x);
1317 bfd_put_64 (abfd, x, (bfd_byte *) data);
1318 }
1319 break;
1320 default:
1321 return bfd_reloc_other;
1322 }
1323
1324 return flag;
1325}
1326
1327/* This relocation routine is used by some of the backend linkers.
1328 They do not construct asymbol or arelent structures, so there is no
1329 reason for them to use bfd_perform_relocation. Also,
1330 bfd_perform_relocation is so hacked up it is easier to write a new
1331 function than to try to deal with it.
1332
1333 This routine does a final relocation. Whether it is useful for a
1334 relocateable link depends upon how the object format defines
1335 relocations.
1336
1337 FIXME: This routine ignores any special_function in the HOWTO,
1338 since the existing special_function values have been written for
1339 bfd_perform_relocation.
1340
1341 HOWTO is the reloc howto information.
1342 INPUT_BFD is the BFD which the reloc applies to.
1343 INPUT_SECTION is the section which the reloc applies to.
1344 CONTENTS is the contents of the section.
1345 ADDRESS is the address of the reloc within INPUT_SECTION.
1346 VALUE is the value of the symbol the reloc refers to.
1347 ADDEND is the addend of the reloc. */
1348
1349bfd_reloc_status_type
1350_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1351 value, addend)
1352 reloc_howto_type *howto;
1353 bfd *input_bfd;
1354 asection *input_section;
1355 bfd_byte *contents;
1356 bfd_vma address;
1357 bfd_vma value;
1358 bfd_vma addend;
1359{
1360 bfd_vma relocation;
1361
1362 /* Sanity check the address. */
1363 if (address > input_section->_raw_size)
1364 return bfd_reloc_outofrange;
1365
1366 /* This function assumes that we are dealing with a basic relocation
1367 against a symbol. We want to compute the value of the symbol to
1368 relocate to. This is just VALUE, the value of the symbol, plus
1369 ADDEND, any addend associated with the reloc. */
1370 relocation = value + addend;
1371
1372 /* If the relocation is PC relative, we want to set RELOCATION to
1373 the distance between the symbol (currently in RELOCATION) and the
1374 location we are relocating. Some targets (e.g., i386-aout)
1375 arrange for the contents of the section to be the negative of the
1376 offset of the location within the section; for such targets
1377 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1378 simply leave the contents of the section as zero; for such
1379 targets pcrel_offset is true. If pcrel_offset is false we do not
1380 need to subtract out the offset of the location within the
1381 section (which is just ADDRESS). */
1382 if (howto->pc_relative)
1383 {
1384 relocation -= (input_section->output_section->vma
1385 + input_section->output_offset);
1386 if (howto->pcrel_offset)
1387 relocation -= address;
1388 }
1389
1390 return _bfd_relocate_contents (howto, input_bfd, relocation,
1391 contents + address);
1392}
1393
1394/* Relocate a given location using a given value and howto. */
1395
1396bfd_reloc_status_type
1397_bfd_relocate_contents (howto, input_bfd, relocation, location)
1398 reloc_howto_type *howto;
1399 bfd *input_bfd;
1400 bfd_vma relocation;
1401 bfd_byte *location;
1402{
1403 int size;
7442e600 1404 bfd_vma x = 0;
d5afc56e 1405 bfd_reloc_status_type flag;
252b5132
RH
1406 unsigned int rightshift = howto->rightshift;
1407 unsigned int bitpos = howto->bitpos;
1408
1409 /* If the size is negative, negate RELOCATION. This isn't very
1410 general. */
1411 if (howto->size < 0)
1412 relocation = -relocation;
1413
1414 /* Get the value we are going to relocate. */
1415 size = bfd_get_reloc_size (howto);
1416 switch (size)
1417 {
1418 default:
1419 case 0:
1420 abort ();
1421 case 1:
1422 x = bfd_get_8 (input_bfd, location);
1423 break;
1424 case 2:
1425 x = bfd_get_16 (input_bfd, location);
1426 break;
1427 case 4:
1428 x = bfd_get_32 (input_bfd, location);
1429 break;
1430 case 8:
1431#ifdef BFD64
1432 x = bfd_get_64 (input_bfd, location);
1433#else
1434 abort ();
1435#endif
1436 break;
1437 }
1438
1439 /* Check for overflow. FIXME: We may drop bits during the addition
1440 which we don't check for. We must either check at every single
1441 operation, which would be tedious, or we must do the computations
1442 in a type larger than bfd_vma, which would be inefficient. */
d5afc56e 1443 flag = bfd_reloc_ok;
252b5132
RH
1444 if (howto->complain_on_overflow != complain_overflow_dont)
1445 {
1446 bfd_vma addrmask, fieldmask, signmask, ss;
1447 bfd_vma a, b, sum;
1448
1449 /* Get the values to be added together. For signed and unsigned
1450 relocations, we assume that all values should be truncated to
1451 the size of an address. For bitfields, all the bits matter.
1452 See also bfd_check_overflow. */
1453 fieldmask = N_ONES (howto->bitsize);
1454 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1455 a = relocation;
1456 b = x & howto->src_mask;
1457
1458 switch (howto->complain_on_overflow)
1459 {
1460 case complain_overflow_signed:
1461 a = (a & addrmask) >> rightshift;
1462
1463 /* If any sign bits are set, all sign bits must be set.
1464 That is, A must be a valid negative address after
1465 shifting. */
1466 signmask = ~ (fieldmask >> 1);
1467 ss = a & signmask;
1468 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
d5afc56e 1469 flag = bfd_reloc_overflow;
252b5132
RH
1470
1471 /* We only need this next bit of code if the sign bit of B
1472 is below the sign bit of A. This would only happen if
1473 SRC_MASK had fewer bits than BITSIZE. Note that if
1474 SRC_MASK has more bits than BITSIZE, we can get into
1475 trouble; we would need to verify that B is in range, as
1476 we do for A above. */
1477 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871
AM
1478
1479 /* Set all the bits above the sign bit. */
1480 b = (b ^ signmask) - signmask;
252b5132
RH
1481
1482 b = (b & addrmask) >> bitpos;
1483
1484 /* Now we can do the addition. */
1485 sum = a + b;
1486
1487 /* See if the result has the correct sign. Bits above the
1488 sign bit are junk now; ignore them. If the sum is
1489 positive, make sure we did not have all negative inputs;
1490 if the sum is negative, make sure we did not have all
1491 positive inputs. The test below looks only at the sign
1492 bits, and it really just
1493 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1494 */
1495 signmask = (fieldmask >> 1) + 1;
1496 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
d5afc56e 1497 flag = bfd_reloc_overflow;
252b5132
RH
1498
1499 break;
1500
1501 case complain_overflow_unsigned:
1502 /* Checking for an unsigned overflow is relatively easy:
1503 trim the addresses and add, and trim the result as well.
1504 Overflow is normally indicated when the result does not
1505 fit in the field. However, we also need to consider the
1506 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1507 input is 0x80000000, and bfd_vma is only 32 bits; then we
1508 will get sum == 0, but there is an overflow, since the
1509 inputs did not fit in the field. Instead of doing a
1510 separate test, we can check for this by or-ing in the
1511 operands when testing for the sum overflowing its final
1512 field. */
1513 a = (a & addrmask) >> rightshift;
1514 b = (b & addrmask) >> bitpos;
1515 sum = (a + b) & addrmask;
1516 if ((a | b | sum) & ~ fieldmask)
d5afc56e 1517 flag = bfd_reloc_overflow;
252b5132
RH
1518
1519 break;
1520
1521 case complain_overflow_bitfield:
d5afc56e 1522 /* Much like the signed check, but for a field one bit
8a4ac871 1523 wider, and no trimming inputs with addrmask. We allow a
d5afc56e
AM
1524 bitfield to represent numbers in the range -2**n to
1525 2**n-1, where n is the number of bits in the field.
1526 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1527 overflow, which is exactly what we want. */
252b5132 1528 a >>= rightshift;
252b5132 1529
d5afc56e
AM
1530 signmask = ~ fieldmask;
1531 ss = a & signmask;
1532 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1533 flag = bfd_reloc_overflow;
252b5132 1534
d5afc56e 1535 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871 1536 b = (b ^ signmask) - signmask;
252b5132 1537
d5afc56e 1538 b >>= bitpos;
44257b8b 1539
252b5132 1540 sum = a + b;
d5afc56e 1541
8a4ac871
AM
1542 /* We mask with addrmask here to explicitly allow an address
1543 wrap-around. The Linux kernel relies on it, and it is
1544 the only way to write assembler code which can run when
1545 loaded at a location 0x80000000 away from the location at
1546 which it is linked. */
d5afc56e 1547 signmask = fieldmask + 1;
8a4ac871 1548 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
d5afc56e 1549 flag = bfd_reloc_overflow;
252b5132
RH
1550
1551 break;
1552
1553 default:
1554 abort ();
1555 }
1556 }
1557
1558 /* Put RELOCATION in the right bits. */
1559 relocation >>= (bfd_vma) rightshift;
1560 relocation <<= (bfd_vma) bitpos;
1561
1562 /* Add RELOCATION to the right bits of X. */
1563 x = ((x & ~howto->dst_mask)
1564 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1565
1566 /* Put the relocated value back in the object file. */
1567 switch (size)
1568 {
1569 default:
1570 case 0:
1571 abort ();
1572 case 1:
1573 bfd_put_8 (input_bfd, x, location);
1574 break;
1575 case 2:
1576 bfd_put_16 (input_bfd, x, location);
1577 break;
1578 case 4:
1579 bfd_put_32 (input_bfd, x, location);
1580 break;
1581 case 8:
1582#ifdef BFD64
1583 bfd_put_64 (input_bfd, x, location);
1584#else
1585 abort ();
1586#endif
1587 break;
1588 }
1589
d5afc56e 1590 return flag;
252b5132
RH
1591}
1592
1593/*
1594DOCDD
1595INODE
1596 howto manager, , typedef arelent, Relocations
1597
1598SECTION
1599 The howto manager
1600
1601 When an application wants to create a relocation, but doesn't
1602 know what the target machine might call it, it can find out by
1603 using this bit of code.
1604
1605*/
1606
1607/*
1608TYPEDEF
1609 bfd_reloc_code_type
1610
1611DESCRIPTION
1612 The insides of a reloc code. The idea is that, eventually, there
1613 will be one enumerator for every type of relocation we ever do.
1614 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1615 return a howto pointer.
1616
1617 This does mean that the application must determine the correct
1618 enumerator value; you can't get a howto pointer from a random set
1619 of attributes.
1620
1621SENUM
1622 bfd_reloc_code_real
1623
1624ENUM
1625 BFD_RELOC_64
1626ENUMX
1627 BFD_RELOC_32
1628ENUMX
1629 BFD_RELOC_26
1630ENUMX
1631 BFD_RELOC_24
1632ENUMX
1633 BFD_RELOC_16
1634ENUMX
1635 BFD_RELOC_14
1636ENUMX
1637 BFD_RELOC_8
1638ENUMDOC
1639 Basic absolute relocations of N bits.
1640
1641ENUM
1642 BFD_RELOC_64_PCREL
1643ENUMX
1644 BFD_RELOC_32_PCREL
1645ENUMX
1646 BFD_RELOC_24_PCREL
1647ENUMX
1648 BFD_RELOC_16_PCREL
1649ENUMX
1650 BFD_RELOC_12_PCREL
1651ENUMX
1652 BFD_RELOC_8_PCREL
1653ENUMDOC
1654 PC-relative relocations. Sometimes these are relative to the address
1655of the relocation itself; sometimes they are relative to the start of
1656the section containing the relocation. It depends on the specific target.
1657
1658The 24-bit relocation is used in some Intel 960 configurations.
1659
1660ENUM
1661 BFD_RELOC_32_GOT_PCREL
1662ENUMX
1663 BFD_RELOC_16_GOT_PCREL
1664ENUMX
1665 BFD_RELOC_8_GOT_PCREL
1666ENUMX
1667 BFD_RELOC_32_GOTOFF
1668ENUMX
1669 BFD_RELOC_16_GOTOFF
1670ENUMX
1671 BFD_RELOC_LO16_GOTOFF
1672ENUMX
1673 BFD_RELOC_HI16_GOTOFF
1674ENUMX
1675 BFD_RELOC_HI16_S_GOTOFF
1676ENUMX
1677 BFD_RELOC_8_GOTOFF
5bd4f169
AM
1678ENUMX
1679 BFD_RELOC_64_PLT_PCREL
252b5132
RH
1680ENUMX
1681 BFD_RELOC_32_PLT_PCREL
1682ENUMX
1683 BFD_RELOC_24_PLT_PCREL
1684ENUMX
1685 BFD_RELOC_16_PLT_PCREL
1686ENUMX
1687 BFD_RELOC_8_PLT_PCREL
5bd4f169
AM
1688ENUMX
1689 BFD_RELOC_64_PLTOFF
252b5132
RH
1690ENUMX
1691 BFD_RELOC_32_PLTOFF
1692ENUMX
1693 BFD_RELOC_16_PLTOFF
1694ENUMX
1695 BFD_RELOC_LO16_PLTOFF
1696ENUMX
1697 BFD_RELOC_HI16_PLTOFF
1698ENUMX
1699 BFD_RELOC_HI16_S_PLTOFF
1700ENUMX
1701 BFD_RELOC_8_PLTOFF
1702ENUMDOC
1703 For ELF.
1704
1705ENUM
1706 BFD_RELOC_68K_GLOB_DAT
1707ENUMX
1708 BFD_RELOC_68K_JMP_SLOT
1709ENUMX
1710 BFD_RELOC_68K_RELATIVE
1711ENUMDOC
1712 Relocations used by 68K ELF.
1713
1714ENUM
1715 BFD_RELOC_32_BASEREL
1716ENUMX
1717 BFD_RELOC_16_BASEREL
1718ENUMX
1719 BFD_RELOC_LO16_BASEREL
1720ENUMX
1721 BFD_RELOC_HI16_BASEREL
1722ENUMX
1723 BFD_RELOC_HI16_S_BASEREL
1724ENUMX
1725 BFD_RELOC_8_BASEREL
1726ENUMX
1727 BFD_RELOC_RVA
1728ENUMDOC
1729 Linkage-table relative.
1730
1731ENUM
1732 BFD_RELOC_8_FFnn
1733ENUMDOC
1734 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1735
1736ENUM
1737 BFD_RELOC_32_PCREL_S2
1738ENUMX
1739 BFD_RELOC_16_PCREL_S2
1740ENUMX
1741 BFD_RELOC_23_PCREL_S2
1742ENUMDOC
1743 These PC-relative relocations are stored as word displacements --
1744i.e., byte displacements shifted right two bits. The 30-bit word
1745displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1746SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1747signed 16-bit displacement is used on the MIPS, and the 23-bit
1748displacement is used on the Alpha.
1749
1750ENUM
1751 BFD_RELOC_HI22
1752ENUMX
1753 BFD_RELOC_LO10
1754ENUMDOC
1755 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1756the target word. These are used on the SPARC.
1757
1758ENUM
1759 BFD_RELOC_GPREL16
1760ENUMX
1761 BFD_RELOC_GPREL32
1762ENUMDOC
1763 For systems that allocate a Global Pointer register, these are
1764displacements off that register. These relocation types are
1765handled specially, because the value the register will have is
1766decided relatively late.
1767
252b5132
RH
1768ENUM
1769 BFD_RELOC_I960_CALLJ
1770ENUMDOC
1771 Reloc types used for i960/b.out.
1772
1773ENUM
1774 BFD_RELOC_NONE
1775ENUMX
1776 BFD_RELOC_SPARC_WDISP22
1777ENUMX
1778 BFD_RELOC_SPARC22
1779ENUMX
1780 BFD_RELOC_SPARC13
1781ENUMX
1782 BFD_RELOC_SPARC_GOT10
1783ENUMX
1784 BFD_RELOC_SPARC_GOT13
1785ENUMX
1786 BFD_RELOC_SPARC_GOT22
1787ENUMX
1788 BFD_RELOC_SPARC_PC10
1789ENUMX
1790 BFD_RELOC_SPARC_PC22
1791ENUMX
1792 BFD_RELOC_SPARC_WPLT30
1793ENUMX
1794 BFD_RELOC_SPARC_COPY
1795ENUMX
1796 BFD_RELOC_SPARC_GLOB_DAT
1797ENUMX
1798 BFD_RELOC_SPARC_JMP_SLOT
1799ENUMX
1800 BFD_RELOC_SPARC_RELATIVE
0f2712ed
NC
1801ENUMX
1802 BFD_RELOC_SPARC_UA16
252b5132
RH
1803ENUMX
1804 BFD_RELOC_SPARC_UA32
0f2712ed
NC
1805ENUMX
1806 BFD_RELOC_SPARC_UA64
252b5132
RH
1807ENUMDOC
1808 SPARC ELF relocations. There is probably some overlap with other
1809 relocation types already defined.
1810
1811ENUM
1812 BFD_RELOC_SPARC_BASE13
1813ENUMX
1814 BFD_RELOC_SPARC_BASE22
1815ENUMDOC
1816 I think these are specific to SPARC a.out (e.g., Sun 4).
1817
1818ENUMEQ
1819 BFD_RELOC_SPARC_64
1820 BFD_RELOC_64
1821ENUMX
1822 BFD_RELOC_SPARC_10
1823ENUMX
1824 BFD_RELOC_SPARC_11
1825ENUMX
1826 BFD_RELOC_SPARC_OLO10
1827ENUMX
1828 BFD_RELOC_SPARC_HH22
1829ENUMX
1830 BFD_RELOC_SPARC_HM10
1831ENUMX
1832 BFD_RELOC_SPARC_LM22
1833ENUMX
1834 BFD_RELOC_SPARC_PC_HH22
1835ENUMX
1836 BFD_RELOC_SPARC_PC_HM10
1837ENUMX
1838 BFD_RELOC_SPARC_PC_LM22
1839ENUMX
1840 BFD_RELOC_SPARC_WDISP16
1841ENUMX
1842 BFD_RELOC_SPARC_WDISP19
1843ENUMX
1844 BFD_RELOC_SPARC_7
1845ENUMX
1846 BFD_RELOC_SPARC_6
1847ENUMX
1848 BFD_RELOC_SPARC_5
1849ENUMEQX
1850 BFD_RELOC_SPARC_DISP64
1851 BFD_RELOC_64_PCREL
bd5e6e7e
JJ
1852ENUMX
1853 BFD_RELOC_SPARC_PLT32
252b5132
RH
1854ENUMX
1855 BFD_RELOC_SPARC_PLT64
1856ENUMX
1857 BFD_RELOC_SPARC_HIX22
1858ENUMX
1859 BFD_RELOC_SPARC_LOX10
1860ENUMX
1861 BFD_RELOC_SPARC_H44
1862ENUMX
1863 BFD_RELOC_SPARC_M44
1864ENUMX
1865 BFD_RELOC_SPARC_L44
1866ENUMX
1867 BFD_RELOC_SPARC_REGISTER
1868ENUMDOC
1869 SPARC64 relocations
1870
1871ENUM
1872 BFD_RELOC_SPARC_REV32
1873ENUMDOC
1874 SPARC little endian relocation
1875
1876ENUM
1877 BFD_RELOC_ALPHA_GPDISP_HI16
1878ENUMDOC
1879 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1880 "addend" in some special way.
1881 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1882 writing; when reading, it will be the absolute section symbol. The
1883 addend is the displacement in bytes of the "lda" instruction from
1884 the "ldah" instruction (which is at the address of this reloc).
1885ENUM
1886 BFD_RELOC_ALPHA_GPDISP_LO16
1887ENUMDOC
1888 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1889 with GPDISP_HI16 relocs. The addend is ignored when writing the
1890 relocations out, and is filled in with the file's GP value on
1891 reading, for convenience.
1892
1893ENUM
1894 BFD_RELOC_ALPHA_GPDISP
1895ENUMDOC
1896 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1897 relocation except that there is no accompanying GPDISP_LO16
1898 relocation.
1899
1900ENUM
1901 BFD_RELOC_ALPHA_LITERAL
1902ENUMX
1903 BFD_RELOC_ALPHA_ELF_LITERAL
1904ENUMX
1905 BFD_RELOC_ALPHA_LITUSE
1906ENUMDOC
1907 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1908 the assembler turns it into a LDQ instruction to load the address of
1909 the symbol, and then fills in a register in the real instruction.
1910
1911 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1912 section symbol. The addend is ignored when writing, but is filled
1913 in with the file's GP value on reading, for convenience, as with the
1914 GPDISP_LO16 reloc.
1915
1916 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1917 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1918 but it generates output not based on the position within the .got
1919 section, but relative to the GP value chosen for the file during the
1920 final link stage.
1921
1922 The LITUSE reloc, on the instruction using the loaded address, gives
1923 information to the linker that it might be able to use to optimize
1924 away some literal section references. The symbol is ignored (read
1925 as the absolute section symbol), and the "addend" indicates the type
1926 of instruction using the register:
1927 1 - "memory" fmt insn
1928 2 - byte-manipulation (byte offset reg)
1929 3 - jsr (target of branch)
1930
252b5132
RH
1931ENUM
1932 BFD_RELOC_ALPHA_HINT
1933ENUMDOC
1934 The HINT relocation indicates a value that should be filled into the
1935 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1936 prediction logic which may be provided on some processors.
1937
1938ENUM
1939 BFD_RELOC_ALPHA_LINKAGE
1940ENUMDOC
1941 The LINKAGE relocation outputs a linkage pair in the object file,
1942 which is filled by the linker.
1943
1944ENUM
1945 BFD_RELOC_ALPHA_CODEADDR
1946ENUMDOC
1947 The CODEADDR relocation outputs a STO_CA in the object file,
1948 which is filled by the linker.
1949
dfe57ca0
RH
1950ENUM
1951 BFD_RELOC_ALPHA_GPREL_HI16
1952ENUMX
1953 BFD_RELOC_ALPHA_GPREL_LO16
1954ENUMDOC
dc810e39
AM
1955 The GPREL_HI/LO relocations together form a 32-bit offset from the
1956 GP register.
dfe57ca0 1957
7793f4d0
RH
1958ENUM
1959 BFD_RELOC_ALPHA_BRSGP
1960ENUMDOC
1961 Like BFD_RELOC_23_PCREL_S2, except that the source and target must
1962 share a common GP, and the target address is adjusted for
1963 STO_ALPHA_STD_GPLOAD.
1964
252b5132
RH
1965ENUM
1966 BFD_RELOC_MIPS_JMP
1967ENUMDOC
1968 Bits 27..2 of the relocation address shifted right 2 bits;
1969 simple reloc otherwise.
1970
1971ENUM
1972 BFD_RELOC_MIPS16_JMP
1973ENUMDOC
1974 The MIPS16 jump instruction.
1975
1976ENUM
1977 BFD_RELOC_MIPS16_GPREL
1978ENUMDOC
1979 MIPS16 GP relative reloc.
1980
1981ENUM
1982 BFD_RELOC_HI16
1983ENUMDOC
1984 High 16 bits of 32-bit value; simple reloc.
1985ENUM
1986 BFD_RELOC_HI16_S
1987ENUMDOC
1988 High 16 bits of 32-bit value but the low 16 bits will be sign
1989 extended and added to form the final result. If the low 16
1990 bits form a negative number, we need to add one to the high value
1991 to compensate for the borrow when the low bits are added.
1992ENUM
1993 BFD_RELOC_LO16
1994ENUMDOC
1995 Low 16 bits.
1996ENUM
1997 BFD_RELOC_PCREL_HI16_S
1998ENUMDOC
1999 Like BFD_RELOC_HI16_S, but PC relative.
2000ENUM
2001 BFD_RELOC_PCREL_LO16
2002ENUMDOC
2003 Like BFD_RELOC_LO16, but PC relative.
2004
252b5132
RH
2005ENUM
2006 BFD_RELOC_MIPS_LITERAL
2007ENUMDOC
2008 Relocation against a MIPS literal section.
2009
2010ENUM
2011 BFD_RELOC_MIPS_GOT16
2012ENUMX
2013 BFD_RELOC_MIPS_CALL16
252b5132
RH
2014ENUMX
2015 BFD_RELOC_MIPS_GOT_HI16
2016ENUMX
2017 BFD_RELOC_MIPS_GOT_LO16
2018ENUMX
2019 BFD_RELOC_MIPS_CALL_HI16
2020ENUMX
2021 BFD_RELOC_MIPS_CALL_LO16
3f830999
MM
2022ENUMX
2023 BFD_RELOC_MIPS_SUB
2024ENUMX
2025 BFD_RELOC_MIPS_GOT_PAGE
2026ENUMX
2027 BFD_RELOC_MIPS_GOT_OFST
2028ENUMX
2029 BFD_RELOC_MIPS_GOT_DISP
c2feb664
NC
2030ENUMX
2031 BFD_RELOC_MIPS_SHIFT5
2032ENUMX
2033 BFD_RELOC_MIPS_SHIFT6
2034ENUMX
2035 BFD_RELOC_MIPS_INSERT_A
2036ENUMX
2037 BFD_RELOC_MIPS_INSERT_B
2038ENUMX
2039 BFD_RELOC_MIPS_DELETE
2040ENUMX
2041 BFD_RELOC_MIPS_HIGHEST
2042ENUMX
2043 BFD_RELOC_MIPS_HIGHER
2044ENUMX
2045 BFD_RELOC_MIPS_SCN_DISP
2046ENUMX
2047 BFD_RELOC_MIPS_REL16
2048ENUMX
2049 BFD_RELOC_MIPS_RELGOT
2050ENUMX
2051 BFD_RELOC_MIPS_JALR
252b5132 2052COMMENT
fbca6ad9
AO
2053COMMENT
2054ENUMX
2055 BFD_RELOC_SH_GOT_LOW16
2056ENUMX
2057 BFD_RELOC_SH_GOT_MEDLOW16
2058ENUMX
2059 BFD_RELOC_SH_GOT_MEDHI16
2060ENUMX
2061 BFD_RELOC_SH_GOT_HI16
2062ENUMX
2063 BFD_RELOC_SH_GOTPLT_LOW16
2064ENUMX
2065 BFD_RELOC_SH_GOTPLT_MEDLOW16
2066ENUMX
2067 BFD_RELOC_SH_GOTPLT_MEDHI16
2068ENUMX
2069 BFD_RELOC_SH_GOTPLT_HI16
2070ENUMX
2071 BFD_RELOC_SH_PLT_LOW16
2072ENUMX
2073 BFD_RELOC_SH_PLT_MEDLOW16
2074ENUMX
2075 BFD_RELOC_SH_PLT_MEDHI16
2076ENUMX
2077 BFD_RELOC_SH_PLT_HI16
2078ENUMX
2079 BFD_RELOC_SH_GOTOFF_LOW16
2080ENUMX
2081 BFD_RELOC_SH_GOTOFF_MEDLOW16
2082ENUMX
2083 BFD_RELOC_SH_GOTOFF_MEDHI16
2084ENUMX
2085 BFD_RELOC_SH_GOTOFF_HI16
2086ENUMX
2087 BFD_RELOC_SH_GOTPC_LOW16
2088ENUMX
2089 BFD_RELOC_SH_GOTPC_MEDLOW16
2090ENUMX
2091 BFD_RELOC_SH_GOTPC_MEDHI16
2092ENUMX
2093 BFD_RELOC_SH_GOTPC_HI16
2094ENUMX
2095 BFD_RELOC_SH_COPY64
2096ENUMX
2097 BFD_RELOC_SH_GLOB_DAT64
2098ENUMX
2099 BFD_RELOC_SH_JMP_SLOT64
2100ENUMX
2101 BFD_RELOC_SH_RELATIVE64
2102ENUMX
2103 BFD_RELOC_SH_GOT10BY4
2104ENUMX
2105 BFD_RELOC_SH_GOT10BY8
2106ENUMX
2107 BFD_RELOC_SH_GOTPLT10BY4
2108ENUMX
2109 BFD_RELOC_SH_GOTPLT10BY8
2110ENUMX
2111 BFD_RELOC_SH_GOTPLT32
2112COMMENT
2113ENUMX
2114 BFD_RELOC_SH_SHMEDIA_CODE
2115ENUMX
2116 BFD_RELOC_SH_IMMU5
2117ENUMX
2118 BFD_RELOC_SH_IMMS6
2119ENUMX
2120 BFD_RELOC_SH_IMMS6BY32
2121ENUMX
2122 BFD_RELOC_SH_IMMU6
2123ENUMX
2124 BFD_RELOC_SH_IMMS10
2125ENUMX
2126 BFD_RELOC_SH_IMMS10BY2
2127ENUMX
2128 BFD_RELOC_SH_IMMS10BY4
2129ENUMX
2130 BFD_RELOC_SH_IMMS10BY8
2131ENUMX
2132 BFD_RELOC_SH_IMMS16
2133ENUMX
2134 BFD_RELOC_SH_IMMU16
2135ENUMX
2136 BFD_RELOC_SH_IMM_LOW16
2137ENUMX
2138 BFD_RELOC_SH_IMM_LOW16_PCREL
2139ENUMX
2140 BFD_RELOC_SH_IMM_MEDLOW16
2141ENUMX
2142 BFD_RELOC_SH_IMM_MEDLOW16_PCREL
2143ENUMX
2144 BFD_RELOC_SH_IMM_MEDHI16
2145ENUMX
2146 BFD_RELOC_SH_IMM_MEDHI16_PCREL
2147ENUMX
2148 BFD_RELOC_SH_IMM_HI16
2149ENUMX
2150 BFD_RELOC_SH_IMM_HI16_PCREL
2151ENUMX
2152 BFD_RELOC_SH_PT_16
2153COMMENT
252b5132
RH
2154ENUMDOC
2155 MIPS ELF relocations.
2156
2157COMMENT
2158
2159ENUM
2160 BFD_RELOC_386_GOT32
2161ENUMX
2162 BFD_RELOC_386_PLT32
2163ENUMX
2164 BFD_RELOC_386_COPY
2165ENUMX
2166 BFD_RELOC_386_GLOB_DAT
2167ENUMX
2168 BFD_RELOC_386_JUMP_SLOT
2169ENUMX
2170 BFD_RELOC_386_RELATIVE
2171ENUMX
2172 BFD_RELOC_386_GOTOFF
2173ENUMX
2174 BFD_RELOC_386_GOTPC
2175ENUMDOC
2176 i386/elf relocations
2177
8d88c4ca
NC
2178ENUM
2179 BFD_RELOC_X86_64_GOT32
2180ENUMX
2181 BFD_RELOC_X86_64_PLT32
2182ENUMX
2183 BFD_RELOC_X86_64_COPY
2184ENUMX
2185 BFD_RELOC_X86_64_GLOB_DAT
2186ENUMX
2187 BFD_RELOC_X86_64_JUMP_SLOT
2188ENUMX
2189 BFD_RELOC_X86_64_RELATIVE
2190ENUMX
2191 BFD_RELOC_X86_64_GOTPCREL
2192ENUMX
2193 BFD_RELOC_X86_64_32S
2194ENUMDOC
2195 x86-64/elf relocations
2196
252b5132
RH
2197ENUM
2198 BFD_RELOC_NS32K_IMM_8
2199ENUMX
2200 BFD_RELOC_NS32K_IMM_16
2201ENUMX
2202 BFD_RELOC_NS32K_IMM_32
2203ENUMX
2204 BFD_RELOC_NS32K_IMM_8_PCREL
2205ENUMX
2206 BFD_RELOC_NS32K_IMM_16_PCREL
2207ENUMX
2208 BFD_RELOC_NS32K_IMM_32_PCREL
2209ENUMX
2210 BFD_RELOC_NS32K_DISP_8
2211ENUMX
2212 BFD_RELOC_NS32K_DISP_16
2213ENUMX
2214 BFD_RELOC_NS32K_DISP_32
2215ENUMX
2216 BFD_RELOC_NS32K_DISP_8_PCREL
2217ENUMX
2218 BFD_RELOC_NS32K_DISP_16_PCREL
2219ENUMX
2220 BFD_RELOC_NS32K_DISP_32_PCREL
2221ENUMDOC
2222 ns32k relocations
2223
e135f41b
NC
2224ENUM
2225 BFD_RELOC_PDP11_DISP_8_PCREL
2226ENUMX
2227 BFD_RELOC_PDP11_DISP_6_PCREL
2228ENUMDOC
2229 PDP11 relocations
2230
0bcb993b
ILT
2231ENUM
2232 BFD_RELOC_PJ_CODE_HI16
2233ENUMX
2234 BFD_RELOC_PJ_CODE_LO16
2235ENUMX
2236 BFD_RELOC_PJ_CODE_DIR16
2237ENUMX
2238 BFD_RELOC_PJ_CODE_DIR32
2239ENUMX
2240 BFD_RELOC_PJ_CODE_REL16
2241ENUMX
2242 BFD_RELOC_PJ_CODE_REL32
2243ENUMDOC
2244 Picojava relocs. Not all of these appear in object files.
88b6bae0 2245
252b5132
RH
2246ENUM
2247 BFD_RELOC_PPC_B26
2248ENUMX
2249 BFD_RELOC_PPC_BA26
2250ENUMX
2251 BFD_RELOC_PPC_TOC16
2252ENUMX
2253 BFD_RELOC_PPC_B16
2254ENUMX
2255 BFD_RELOC_PPC_B16_BRTAKEN
2256ENUMX
2257 BFD_RELOC_PPC_B16_BRNTAKEN
2258ENUMX
2259 BFD_RELOC_PPC_BA16
2260ENUMX
2261 BFD_RELOC_PPC_BA16_BRTAKEN
2262ENUMX
2263 BFD_RELOC_PPC_BA16_BRNTAKEN
2264ENUMX
2265 BFD_RELOC_PPC_COPY
2266ENUMX
2267 BFD_RELOC_PPC_GLOB_DAT
2268ENUMX
2269 BFD_RELOC_PPC_JMP_SLOT
2270ENUMX
2271 BFD_RELOC_PPC_RELATIVE
2272ENUMX
2273 BFD_RELOC_PPC_LOCAL24PC
2274ENUMX
2275 BFD_RELOC_PPC_EMB_NADDR32
2276ENUMX
2277 BFD_RELOC_PPC_EMB_NADDR16
2278ENUMX
2279 BFD_RELOC_PPC_EMB_NADDR16_LO
2280ENUMX
2281 BFD_RELOC_PPC_EMB_NADDR16_HI
2282ENUMX
2283 BFD_RELOC_PPC_EMB_NADDR16_HA
2284ENUMX
2285 BFD_RELOC_PPC_EMB_SDAI16
2286ENUMX
2287 BFD_RELOC_PPC_EMB_SDA2I16
2288ENUMX
2289 BFD_RELOC_PPC_EMB_SDA2REL
2290ENUMX
2291 BFD_RELOC_PPC_EMB_SDA21
2292ENUMX
2293 BFD_RELOC_PPC_EMB_MRKREF
2294ENUMX
2295 BFD_RELOC_PPC_EMB_RELSEC16
2296ENUMX
2297 BFD_RELOC_PPC_EMB_RELST_LO
2298ENUMX
2299 BFD_RELOC_PPC_EMB_RELST_HI
2300ENUMX
2301 BFD_RELOC_PPC_EMB_RELST_HA
2302ENUMX
2303 BFD_RELOC_PPC_EMB_BIT_FLD
2304ENUMX
2305 BFD_RELOC_PPC_EMB_RELSDA
5bd4f169
AM
2306ENUMX
2307 BFD_RELOC_PPC64_HIGHER
2308ENUMX
2309 BFD_RELOC_PPC64_HIGHER_S
2310ENUMX
2311 BFD_RELOC_PPC64_HIGHEST
2312ENUMX
2313 BFD_RELOC_PPC64_HIGHEST_S
2314ENUMX
2315 BFD_RELOC_PPC64_TOC16_LO
2316ENUMX
2317 BFD_RELOC_PPC64_TOC16_HI
2318ENUMX
2319 BFD_RELOC_PPC64_TOC16_HA
2320ENUMX
2321 BFD_RELOC_PPC64_TOC
2322ENUMX
dc810e39 2323 BFD_RELOC_PPC64_PLTGOT16
5bd4f169
AM
2324ENUMX
2325 BFD_RELOC_PPC64_PLTGOT16_LO
2326ENUMX
2327 BFD_RELOC_PPC64_PLTGOT16_HI
2328ENUMX
2329 BFD_RELOC_PPC64_PLTGOT16_HA
2330ENUMX
2331 BFD_RELOC_PPC64_ADDR16_DS
2332ENUMX
2333 BFD_RELOC_PPC64_ADDR16_LO_DS
2334ENUMX
2335 BFD_RELOC_PPC64_GOT16_DS
2336ENUMX
2337 BFD_RELOC_PPC64_GOT16_LO_DS
2338ENUMX
2339 BFD_RELOC_PPC64_PLT16_LO_DS
2340ENUMX
2341 BFD_RELOC_PPC64_SECTOFF_DS
2342ENUMX
2343 BFD_RELOC_PPC64_SECTOFF_LO_DS
2344ENUMX
2345 BFD_RELOC_PPC64_TOC16_DS
2346ENUMX
2347 BFD_RELOC_PPC64_TOC16_LO_DS
2348ENUMX
2349 BFD_RELOC_PPC64_PLTGOT16_DS
2350ENUMX
2351 BFD_RELOC_PPC64_PLTGOT16_LO_DS
252b5132
RH
2352ENUMDOC
2353 Power(rs6000) and PowerPC relocations.
2354
5b93d8bb
AM
2355ENUM
2356 BFD_RELOC_I370_D12
2357ENUMDOC
2358 IBM 370/390 relocations
2359
252b5132
RH
2360ENUM
2361 BFD_RELOC_CTOR
2362ENUMDOC
2363 The type of reloc used to build a contructor table - at the moment
2364 probably a 32 bit wide absolute relocation, but the target can choose.
2365 It generally does map to one of the other relocation types.
2366
2367ENUM
2368 BFD_RELOC_ARM_PCREL_BRANCH
2369ENUMDOC
2370 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2371 not stored in the instruction.
dfc5f959
NC
2372ENUM
2373 BFD_RELOC_ARM_PCREL_BLX
2374ENUMDOC
2375 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2376 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2377 field in the instruction.
2378ENUM
2379 BFD_RELOC_THUMB_PCREL_BLX
2380ENUMDOC
2381 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2382 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2383 field in the instruction.
252b5132
RH
2384ENUM
2385 BFD_RELOC_ARM_IMMEDIATE
752149a0
NC
2386ENUMX
2387 BFD_RELOC_ARM_ADRL_IMMEDIATE
252b5132
RH
2388ENUMX
2389 BFD_RELOC_ARM_OFFSET_IMM
2390ENUMX
2391 BFD_RELOC_ARM_SHIFT_IMM
2392ENUMX
2393 BFD_RELOC_ARM_SWI
2394ENUMX
2395 BFD_RELOC_ARM_MULTI
2396ENUMX
2397 BFD_RELOC_ARM_CP_OFF_IMM
2398ENUMX
2399 BFD_RELOC_ARM_ADR_IMM
2400ENUMX
2401 BFD_RELOC_ARM_LDR_IMM
2402ENUMX
2403 BFD_RELOC_ARM_LITERAL
2404ENUMX
2405 BFD_RELOC_ARM_IN_POOL
2406ENUMX
2407 BFD_RELOC_ARM_OFFSET_IMM8
2408ENUMX
2409 BFD_RELOC_ARM_HWLITERAL
2410ENUMX
2411 BFD_RELOC_ARM_THUMB_ADD
2412ENUMX
2413 BFD_RELOC_ARM_THUMB_IMM
2414ENUMX
2415 BFD_RELOC_ARM_THUMB_SHIFT
2416ENUMX
2417 BFD_RELOC_ARM_THUMB_OFFSET
2418ENUMX
2419 BFD_RELOC_ARM_GOT12
2420ENUMX
2421 BFD_RELOC_ARM_GOT32
2422ENUMX
2423 BFD_RELOC_ARM_JUMP_SLOT
2424ENUMX
2425 BFD_RELOC_ARM_COPY
2426ENUMX
2427 BFD_RELOC_ARM_GLOB_DAT
2428ENUMX
2429 BFD_RELOC_ARM_PLT32
2430ENUMX
2431 BFD_RELOC_ARM_RELATIVE
2432ENUMX
2433 BFD_RELOC_ARM_GOTOFF
2434ENUMX
2435 BFD_RELOC_ARM_GOTPC
2436ENUMDOC
2437 These relocs are only used within the ARM assembler. They are not
2438 (at present) written to any object files.
2439
2440ENUM
2441 BFD_RELOC_SH_PCDISP8BY2
2442ENUMX
2443 BFD_RELOC_SH_PCDISP12BY2
2444ENUMX
2445 BFD_RELOC_SH_IMM4
2446ENUMX
2447 BFD_RELOC_SH_IMM4BY2
2448ENUMX
2449 BFD_RELOC_SH_IMM4BY4
2450ENUMX
2451 BFD_RELOC_SH_IMM8
2452ENUMX
2453 BFD_RELOC_SH_IMM8BY2
2454ENUMX
2455 BFD_RELOC_SH_IMM8BY4
2456ENUMX
2457 BFD_RELOC_SH_PCRELIMM8BY2
2458ENUMX
2459 BFD_RELOC_SH_PCRELIMM8BY4
2460ENUMX
2461 BFD_RELOC_SH_SWITCH16
2462ENUMX
2463 BFD_RELOC_SH_SWITCH32
2464ENUMX
2465 BFD_RELOC_SH_USES
2466ENUMX
2467 BFD_RELOC_SH_COUNT
2468ENUMX
2469 BFD_RELOC_SH_ALIGN
2470ENUMX
2471 BFD_RELOC_SH_CODE
2472ENUMX
2473 BFD_RELOC_SH_DATA
2474ENUMX
2475 BFD_RELOC_SH_LABEL
015551fc
JR
2476ENUMX
2477 BFD_RELOC_SH_LOOP_START
2478ENUMX
2479 BFD_RELOC_SH_LOOP_END
3d96075c
L
2480ENUMX
2481 BFD_RELOC_SH_COPY
2482ENUMX
2483 BFD_RELOC_SH_GLOB_DAT
2484ENUMX
2485 BFD_RELOC_SH_JMP_SLOT
2486ENUMX
2487 BFD_RELOC_SH_RELATIVE
2488ENUMX
2489 BFD_RELOC_SH_GOTPC
252b5132
RH
2490ENUMDOC
2491 Hitachi SH relocs. Not all of these appear in object files.
2492
2493ENUM
2494 BFD_RELOC_THUMB_PCREL_BRANCH9
2495ENUMX
2496 BFD_RELOC_THUMB_PCREL_BRANCH12
2497ENUMX
2498 BFD_RELOC_THUMB_PCREL_BRANCH23
2499ENUMDOC
2500 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2501 be zero and is not stored in the instruction.
2502
2503ENUM
2504 BFD_RELOC_ARC_B22_PCREL
2505ENUMDOC
0d2bcfaf 2506 ARC Cores relocs.
252b5132
RH
2507 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2508 not stored in the instruction. The high 20 bits are installed in bits 26
2509 through 7 of the instruction.
2510ENUM
2511 BFD_RELOC_ARC_B26
2512ENUMDOC
2513 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2514 stored in the instruction. The high 24 bits are installed in bits 23
2515 through 0.
2516
2517ENUM
2518 BFD_RELOC_D10V_10_PCREL_R
2519ENUMDOC
2520 Mitsubishi D10V relocs.
2521 This is a 10-bit reloc with the right 2 bits
2522 assumed to be 0.
2523ENUM
2524 BFD_RELOC_D10V_10_PCREL_L
2525ENUMDOC
2526 Mitsubishi D10V relocs.
2527 This is a 10-bit reloc with the right 2 bits
2528 assumed to be 0. This is the same as the previous reloc
2529 except it is in the left container, i.e.,
2530 shifted left 15 bits.
2531ENUM
2532 BFD_RELOC_D10V_18
2533ENUMDOC
2534 This is an 18-bit reloc with the right 2 bits
2535 assumed to be 0.
2536ENUM
2537 BFD_RELOC_D10V_18_PCREL
2538ENUMDOC
2539 This is an 18-bit reloc with the right 2 bits
2540 assumed to be 0.
2541
2542ENUM
2543 BFD_RELOC_D30V_6
2544ENUMDOC
2545 Mitsubishi D30V relocs.
2546 This is a 6-bit absolute reloc.
2547ENUM
2548 BFD_RELOC_D30V_9_PCREL
2549ENUMDOC
88b6bae0
AM
2550 This is a 6-bit pc-relative reloc with
2551 the right 3 bits assumed to be 0.
252b5132
RH
2552ENUM
2553 BFD_RELOC_D30V_9_PCREL_R
2554ENUMDOC
88b6bae0 2555 This is a 6-bit pc-relative reloc with
252b5132
RH
2556 the right 3 bits assumed to be 0. Same
2557 as the previous reloc but on the right side
88b6bae0 2558 of the container.
252b5132
RH
2559ENUM
2560 BFD_RELOC_D30V_15
2561ENUMDOC
88b6bae0
AM
2562 This is a 12-bit absolute reloc with the
2563 right 3 bitsassumed to be 0.
252b5132
RH
2564ENUM
2565 BFD_RELOC_D30V_15_PCREL
2566ENUMDOC
88b6bae0
AM
2567 This is a 12-bit pc-relative reloc with
2568 the right 3 bits assumed to be 0.
252b5132
RH
2569ENUM
2570 BFD_RELOC_D30V_15_PCREL_R
2571ENUMDOC
88b6bae0 2572 This is a 12-bit pc-relative reloc with
252b5132
RH
2573 the right 3 bits assumed to be 0. Same
2574 as the previous reloc but on the right side
88b6bae0 2575 of the container.
252b5132
RH
2576ENUM
2577 BFD_RELOC_D30V_21
2578ENUMDOC
88b6bae0 2579 This is an 18-bit absolute reloc with
252b5132
RH
2580 the right 3 bits assumed to be 0.
2581ENUM
2582 BFD_RELOC_D30V_21_PCREL
2583ENUMDOC
88b6bae0 2584 This is an 18-bit pc-relative reloc with
252b5132
RH
2585 the right 3 bits assumed to be 0.
2586ENUM
2587 BFD_RELOC_D30V_21_PCREL_R
2588ENUMDOC
88b6bae0 2589 This is an 18-bit pc-relative reloc with
252b5132
RH
2590 the right 3 bits assumed to be 0. Same
2591 as the previous reloc but on the right side
2592 of the container.
2593ENUM
2594 BFD_RELOC_D30V_32
2595ENUMDOC
2596 This is a 32-bit absolute reloc.
2597ENUM
2598 BFD_RELOC_D30V_32_PCREL
2599ENUMDOC
2600 This is a 32-bit pc-relative reloc.
2601
2602ENUM
2603 BFD_RELOC_M32R_24
2604ENUMDOC
2605 Mitsubishi M32R relocs.
2606 This is a 24 bit absolute address.
2607ENUM
2608 BFD_RELOC_M32R_10_PCREL
2609ENUMDOC
2610 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2611ENUM
2612 BFD_RELOC_M32R_18_PCREL
2613ENUMDOC
2614 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2615ENUM
2616 BFD_RELOC_M32R_26_PCREL
2617ENUMDOC
2618 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2619ENUM
2620 BFD_RELOC_M32R_HI16_ULO
2621ENUMDOC
2622 This is a 16-bit reloc containing the high 16 bits of an address
2623 used when the lower 16 bits are treated as unsigned.
2624ENUM
2625 BFD_RELOC_M32R_HI16_SLO
2626ENUMDOC
2627 This is a 16-bit reloc containing the high 16 bits of an address
2628 used when the lower 16 bits are treated as signed.
2629ENUM
2630 BFD_RELOC_M32R_LO16
2631ENUMDOC
2632 This is a 16-bit reloc containing the lower 16 bits of an address.
2633ENUM
2634 BFD_RELOC_M32R_SDA16
2635ENUMDOC
2636 This is a 16-bit reloc containing the small data area offset for use in
2637 add3, load, and store instructions.
2638
2639ENUM
2640 BFD_RELOC_V850_9_PCREL
2641ENUMDOC
2642 This is a 9-bit reloc
2643ENUM
2644 BFD_RELOC_V850_22_PCREL
2645ENUMDOC
2646 This is a 22-bit reloc
2647
2648ENUM
2649 BFD_RELOC_V850_SDA_16_16_OFFSET
2650ENUMDOC
2651 This is a 16 bit offset from the short data area pointer.
2652ENUM
2653 BFD_RELOC_V850_SDA_15_16_OFFSET
2654ENUMDOC
2655 This is a 16 bit offset (of which only 15 bits are used) from the
2656 short data area pointer.
2657ENUM
2658 BFD_RELOC_V850_ZDA_16_16_OFFSET
2659ENUMDOC
2660 This is a 16 bit offset from the zero data area pointer.
2661ENUM
2662 BFD_RELOC_V850_ZDA_15_16_OFFSET
2663ENUMDOC
2664 This is a 16 bit offset (of which only 15 bits are used) from the
2665 zero data area pointer.
2666ENUM
2667 BFD_RELOC_V850_TDA_6_8_OFFSET
2668ENUMDOC
2669 This is an 8 bit offset (of which only 6 bits are used) from the
2670 tiny data area pointer.
2671ENUM
2672 BFD_RELOC_V850_TDA_7_8_OFFSET
2673ENUMDOC
2674 This is an 8bit offset (of which only 7 bits are used) from the tiny
2675 data area pointer.
2676ENUM
2677 BFD_RELOC_V850_TDA_7_7_OFFSET
2678ENUMDOC
2679 This is a 7 bit offset from the tiny data area pointer.
2680ENUM
2681 BFD_RELOC_V850_TDA_16_16_OFFSET
2682ENUMDOC
2683 This is a 16 bit offset from the tiny data area pointer.
2684COMMENT
2685ENUM
2686 BFD_RELOC_V850_TDA_4_5_OFFSET
2687ENUMDOC
2688 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2689 data area pointer.
2690ENUM
2691 BFD_RELOC_V850_TDA_4_4_OFFSET
2692ENUMDOC
2693 This is a 4 bit offset from the tiny data area pointer.
2694ENUM
2695 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2696ENUMDOC
2697 This is a 16 bit offset from the short data area pointer, with the
2698 bits placed non-contigously in the instruction.
2699ENUM
2700 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2701ENUMDOC
2702 This is a 16 bit offset from the zero data area pointer, with the
2703 bits placed non-contigously in the instruction.
2704ENUM
2705 BFD_RELOC_V850_CALLT_6_7_OFFSET
2706ENUMDOC
2707 This is a 6 bit offset from the call table base pointer.
2708ENUM
2709 BFD_RELOC_V850_CALLT_16_16_OFFSET
2710ENUMDOC
2711 This is a 16 bit offset from the call table base pointer.
2712COMMENT
2713
2714ENUM
2715 BFD_RELOC_MN10300_32_PCREL
2716ENUMDOC
2717 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2718 instruction.
2719ENUM
2720 BFD_RELOC_MN10300_16_PCREL
2721ENUMDOC
2722 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2723 instruction.
2724
2725ENUM
2726 BFD_RELOC_TIC30_LDP
2727ENUMDOC
2728 This is a 8bit DP reloc for the tms320c30, where the most
2729 significant 8 bits of a 24 bit word are placed into the least
2730 significant 8 bits of the opcode.
2731
81635ce4
TW
2732ENUM
2733 BFD_RELOC_TIC54X_PARTLS7
2734ENUMDOC
2735 This is a 7bit reloc for the tms320c54x, where the least
2736 significant 7 bits of a 16 bit word are placed into the least
2737 significant 7 bits of the opcode.
2738
2739ENUM
2740 BFD_RELOC_TIC54X_PARTMS9
2741ENUMDOC
2742 This is a 9bit DP reloc for the tms320c54x, where the most
2743 significant 9 bits of a 16 bit word are placed into the least
2744 significant 9 bits of the opcode.
2745
2746ENUM
2747 BFD_RELOC_TIC54X_23
2748ENUMDOC
2749 This is an extended address 23-bit reloc for the tms320c54x.
2750
2751ENUM
2752 BFD_RELOC_TIC54X_16_OF_23
2753ENUMDOC
3d855632
KH
2754 This is a 16-bit reloc for the tms320c54x, where the least
2755 significant 16 bits of a 23-bit extended address are placed into
81635ce4
TW
2756 the opcode.
2757
2758ENUM
2759 BFD_RELOC_TIC54X_MS7_OF_23
2760ENUMDOC
2761 This is a reloc for the tms320c54x, where the most
3d855632 2762 significant 7 bits of a 23-bit extended address are placed into
81635ce4 2763 the opcode.
81635ce4 2764
252b5132
RH
2765ENUM
2766 BFD_RELOC_FR30_48
2767ENUMDOC
2768 This is a 48 bit reloc for the FR30 that stores 32 bits.
2769ENUM
2770 BFD_RELOC_FR30_20
2771ENUMDOC
2772 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2773 two sections.
2774ENUM
2775 BFD_RELOC_FR30_6_IN_4
2776ENUMDOC
2777 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2778 4 bits.
2779ENUM
2780 BFD_RELOC_FR30_8_IN_8
2781ENUMDOC
2782 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2783 into 8 bits.
2784ENUM
2785 BFD_RELOC_FR30_9_IN_8
2786ENUMDOC
2787 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2788 into 8 bits.
2789ENUM
2790 BFD_RELOC_FR30_10_IN_8
2791ENUMDOC
2792 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2793 into 8 bits.
2794ENUM
2795 BFD_RELOC_FR30_9_PCREL
2796ENUMDOC
2797 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2798 short offset into 8 bits.
2799ENUM
2800 BFD_RELOC_FR30_12_PCREL
2801ENUMDOC
2802 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2803 short offset into 11 bits.
88b6bae0 2804
252b5132
RH
2805ENUM
2806 BFD_RELOC_MCORE_PCREL_IMM8BY4
2807ENUMX
2808 BFD_RELOC_MCORE_PCREL_IMM11BY2
2809ENUMX
2810 BFD_RELOC_MCORE_PCREL_IMM4BY2
2811ENUMX
2812 BFD_RELOC_MCORE_PCREL_32
2813ENUMX
2814 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
36797d47
NC
2815ENUMX
2816 BFD_RELOC_MCORE_RVA
252b5132
RH
2817ENUMDOC
2818 Motorola Mcore relocations.
88b6bae0 2819
3c3bdf30
NC
2820ENUM
2821 BFD_RELOC_MMIX_GETA
2822ENUMX
2823 BFD_RELOC_MMIX_GETA_1
2824ENUMX
2825 BFD_RELOC_MMIX_GETA_2
2826ENUMX
2827 BFD_RELOC_MMIX_GETA_3
2828ENUMDOC
2829 These are relocations for the GETA instruction.
2830ENUM
2831 BFD_RELOC_MMIX_CBRANCH
2832ENUMX
2833 BFD_RELOC_MMIX_CBRANCH_J
2834ENUMX
2835 BFD_RELOC_MMIX_CBRANCH_1
2836ENUMX
2837 BFD_RELOC_MMIX_CBRANCH_2
2838ENUMX
2839 BFD_RELOC_MMIX_CBRANCH_3
2840ENUMDOC
2841 These are relocations for a conditional branch instruction.
2842ENUM
2843 BFD_RELOC_MMIX_PUSHJ
2844ENUMX
2845 BFD_RELOC_MMIX_PUSHJ_1
2846ENUMX
2847 BFD_RELOC_MMIX_PUSHJ_2
2848ENUMX
2849 BFD_RELOC_MMIX_PUSHJ_3
2850ENUMDOC
2851 These are relocations for the PUSHJ instruction.
2852ENUM
2853 BFD_RELOC_MMIX_JMP
2854ENUMX
2855 BFD_RELOC_MMIX_JMP_1
2856ENUMX
2857 BFD_RELOC_MMIX_JMP_2
2858ENUMX
2859 BFD_RELOC_MMIX_JMP_3
2860ENUMDOC
2861 These are relocations for the JMP instruction.
2862ENUM
2863 BFD_RELOC_MMIX_ADDR19
2864ENUMDOC
2865 This is a relocation for a relative address as in a GETA instruction or
2866 a branch.
2867ENUM
2868 BFD_RELOC_MMIX_ADDR27
2869ENUMDOC
2870 This is a relocation for a relative address as in a JMP instruction.
2871ENUM
2872 BFD_RELOC_MMIX_REG_OR_BYTE
2873ENUMDOC
2874 This is a relocation for an instruction field that may be a general
2875 register or a value 0..255.
2876ENUM
2877 BFD_RELOC_MMIX_REG
2878ENUMDOC
2879 This is a relocation for an instruction field that may be a general
2880 register.
2881ENUM
2882 BFD_RELOC_MMIX_BASE_PLUS_OFFSET
2883ENUMDOC
2884 This is a relocation for two instruction fields holding a register and
2885 an offset, the equivalent of the relocation.
2886ENUM
2887 BFD_RELOC_MMIX_LOCAL
2888ENUMDOC
2889 This relocation is an assertion that the expression is not allocated as
2890 a global register. It does not modify contents.
2891
adde6300
AM
2892ENUM
2893 BFD_RELOC_AVR_7_PCREL
2894ENUMDOC
2895 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2896 short offset into 7 bits.
2897ENUM
2898 BFD_RELOC_AVR_13_PCREL
2899ENUMDOC
2900 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2901 short offset into 12 bits.
2902ENUM
2903 BFD_RELOC_AVR_16_PM
2904ENUMDOC
2905 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
3d855632 2906 program memory address) into 16 bits.
adde6300
AM
2907ENUM
2908 BFD_RELOC_AVR_LO8_LDI
2909ENUMDOC
2910 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2911 data memory address) into 8 bit immediate value of LDI insn.
2912ENUM
2913 BFD_RELOC_AVR_HI8_LDI
2914ENUMDOC
2915 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2916 of data memory address) into 8 bit immediate value of LDI insn.
2917ENUM
2918 BFD_RELOC_AVR_HH8_LDI
2919ENUMDOC
2920 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2921 of program memory address) into 8 bit immediate value of LDI insn.
2922ENUM
2923 BFD_RELOC_AVR_LO8_LDI_NEG
2924ENUMDOC
2925 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2926 (usually data memory address) into 8 bit immediate value of SUBI insn.
2927ENUM
2928 BFD_RELOC_AVR_HI8_LDI_NEG
2929ENUMDOC
2930 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2931 (high 8 bit of data memory address) into 8 bit immediate value of
2932 SUBI insn.
2933ENUM
2934 BFD_RELOC_AVR_HH8_LDI_NEG
2935ENUMDOC
2936 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2937 (most high 8 bit of program memory address) into 8 bit immediate value
2938 of LDI or SUBI insn.
2939ENUM
2940 BFD_RELOC_AVR_LO8_LDI_PM
2941ENUMDOC
2942 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2943 command address) into 8 bit immediate value of LDI insn.
2944ENUM
2945 BFD_RELOC_AVR_HI8_LDI_PM
2946ENUMDOC
2947 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2948 of command address) into 8 bit immediate value of LDI insn.
2949ENUM
2950 BFD_RELOC_AVR_HH8_LDI_PM
2951ENUMDOC
2952 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2953 of command address) into 8 bit immediate value of LDI insn.
2954ENUM
2955 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2956ENUMDOC
2957 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2958 (usually command address) into 8 bit immediate value of SUBI insn.
2959ENUM
2960 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2961ENUMDOC
2962 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2963 (high 8 bit of 16 bit command address) into 8 bit immediate value
2964 of SUBI insn.
2965ENUM
2966 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2967ENUMDOC
2968 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2969 (high 6 bit of 22 bit command address) into 8 bit immediate
2970 value of SUBI insn.
2971ENUM
2972 BFD_RELOC_AVR_CALL
2973ENUMDOC
2974 This is a 32 bit reloc for the AVR that stores 23 bit value
2975 into 22 bits.
2976
a85d7ed0
NC
2977ENUM
2978 BFD_RELOC_390_12
2979ENUMDOC
2980 Direct 12 bit.
2981ENUM
2982 BFD_RELOC_390_GOT12
2983ENUMDOC
2984 12 bit GOT offset.
2985ENUM
2986 BFD_RELOC_390_PLT32
2987ENUMDOC
2988 32 bit PC relative PLT address.
2989ENUM
2990 BFD_RELOC_390_COPY
2991ENUMDOC
2992 Copy symbol at runtime.
2993ENUM
2994 BFD_RELOC_390_GLOB_DAT
2995ENUMDOC
2996 Create GOT entry.
2997ENUM
2998 BFD_RELOC_390_JMP_SLOT
2999ENUMDOC
3000 Create PLT entry.
3001ENUM
3002 BFD_RELOC_390_RELATIVE
3003ENUMDOC
3004 Adjust by program base.
3005ENUM
3006 BFD_RELOC_390_GOTPC
3007ENUMDOC
3008 32 bit PC relative offset to GOT.
3009ENUM
3010 BFD_RELOC_390_GOT16
3011ENUMDOC
3012 16 bit GOT offset.
3013ENUM
3014 BFD_RELOC_390_PC16DBL
3015ENUMDOC
3016 PC relative 16 bit shifted by 1.
3017ENUM
3018 BFD_RELOC_390_PLT16DBL
3019ENUMDOC
3020 16 bit PC rel. PLT shifted by 1.
3021ENUM
3022 BFD_RELOC_390_PC32DBL
3023ENUMDOC
3024 PC relative 32 bit shifted by 1.
3025ENUM
3026 BFD_RELOC_390_PLT32DBL
3027ENUMDOC
3028 32 bit PC rel. PLT shifted by 1.
3029ENUM
3030 BFD_RELOC_390_GOTPCDBL
3031ENUMDOC
3032 32 bit PC rel. GOT shifted by 1.
3033ENUM
3034 BFD_RELOC_390_GOT64
3035ENUMDOC
3036 64 bit GOT offset.
3037ENUM
3038 BFD_RELOC_390_PLT64
3039ENUMDOC
3040 64 bit PC relative PLT address.
3041ENUM
3042 BFD_RELOC_390_GOTENT
3043ENUMDOC
3044 32 bit rel. offset to GOT entry.
dc810e39 3045
252b5132
RH
3046ENUM
3047 BFD_RELOC_VTABLE_INHERIT
3048ENUMX
3049 BFD_RELOC_VTABLE_ENTRY
3050ENUMDOC
88b6bae0 3051 These two relocations are used by the linker to determine which of
252b5132
RH
3052 the entries in a C++ virtual function table are actually used. When
3053 the --gc-sections option is given, the linker will zero out the entries
3054 that are not used, so that the code for those functions need not be
3055 included in the output.
3056
3057 VTABLE_INHERIT is a zero-space relocation used to describe to the
3058 linker the inheritence tree of a C++ virtual function table. The
3059 relocation's symbol should be the parent class' vtable, and the
3060 relocation should be located at the child vtable.
3061
3062 VTABLE_ENTRY is a zero-space relocation that describes the use of a
3063 virtual function table entry. The reloc's symbol should refer to the
3064 table of the class mentioned in the code. Off of that base, an offset
88b6bae0 3065 describes the entry that is being used. For Rela hosts, this offset
252b5132
RH
3066 is stored in the reloc's addend. For Rel hosts, we are forced to put
3067 this offset in the reloc's section offset.
3068
800eeca4
JW
3069ENUM
3070 BFD_RELOC_IA64_IMM14
3071ENUMX
3072 BFD_RELOC_IA64_IMM22
3073ENUMX
3074 BFD_RELOC_IA64_IMM64
3075ENUMX
3076 BFD_RELOC_IA64_DIR32MSB
3077ENUMX
3078 BFD_RELOC_IA64_DIR32LSB
3079ENUMX
3080 BFD_RELOC_IA64_DIR64MSB
3081ENUMX
3082 BFD_RELOC_IA64_DIR64LSB
3083ENUMX
3084 BFD_RELOC_IA64_GPREL22
3085ENUMX
3086 BFD_RELOC_IA64_GPREL64I
3087ENUMX
3088 BFD_RELOC_IA64_GPREL32MSB
3089ENUMX
3090 BFD_RELOC_IA64_GPREL32LSB
3091ENUMX
3092 BFD_RELOC_IA64_GPREL64MSB
3093ENUMX
3094 BFD_RELOC_IA64_GPREL64LSB
3095ENUMX
3096 BFD_RELOC_IA64_LTOFF22
3097ENUMX
3098 BFD_RELOC_IA64_LTOFF64I
3099ENUMX
3100 BFD_RELOC_IA64_PLTOFF22
3101ENUMX
3102 BFD_RELOC_IA64_PLTOFF64I
3103ENUMX
3104 BFD_RELOC_IA64_PLTOFF64MSB
3105ENUMX
3106 BFD_RELOC_IA64_PLTOFF64LSB
3107ENUMX
3108 BFD_RELOC_IA64_FPTR64I
3109ENUMX
3110 BFD_RELOC_IA64_FPTR32MSB
3111ENUMX
3112 BFD_RELOC_IA64_FPTR32LSB
3113ENUMX
3114 BFD_RELOC_IA64_FPTR64MSB
3115ENUMX
3116 BFD_RELOC_IA64_FPTR64LSB
3117ENUMX
3118 BFD_RELOC_IA64_PCREL21B
748abff6
RH
3119ENUMX
3120 BFD_RELOC_IA64_PCREL21BI
800eeca4
JW
3121ENUMX
3122 BFD_RELOC_IA64_PCREL21M
3123ENUMX
3124 BFD_RELOC_IA64_PCREL21F
748abff6
RH
3125ENUMX
3126 BFD_RELOC_IA64_PCREL22
3127ENUMX
3128 BFD_RELOC_IA64_PCREL60B
3129ENUMX
3130 BFD_RELOC_IA64_PCREL64I
800eeca4
JW
3131ENUMX
3132 BFD_RELOC_IA64_PCREL32MSB
3133ENUMX
3134 BFD_RELOC_IA64_PCREL32LSB
3135ENUMX
3136 BFD_RELOC_IA64_PCREL64MSB
3137ENUMX
3138 BFD_RELOC_IA64_PCREL64LSB
3139ENUMX
3140 BFD_RELOC_IA64_LTOFF_FPTR22
3141ENUMX
3142 BFD_RELOC_IA64_LTOFF_FPTR64I
a4bd8390
JW
3143ENUMX
3144 BFD_RELOC_IA64_LTOFF_FPTR32MSB
3145ENUMX
3146 BFD_RELOC_IA64_LTOFF_FPTR32LSB
800eeca4
JW
3147ENUMX
3148 BFD_RELOC_IA64_LTOFF_FPTR64MSB
3149ENUMX
3150 BFD_RELOC_IA64_LTOFF_FPTR64LSB
800eeca4
JW
3151ENUMX
3152 BFD_RELOC_IA64_SEGREL32MSB
3153ENUMX
3154 BFD_RELOC_IA64_SEGREL32LSB
3155ENUMX
3156 BFD_RELOC_IA64_SEGREL64MSB
3157ENUMX
3158 BFD_RELOC_IA64_SEGREL64LSB
3159ENUMX
3160 BFD_RELOC_IA64_SECREL32MSB
3161ENUMX
3162 BFD_RELOC_IA64_SECREL32LSB
3163ENUMX
3164 BFD_RELOC_IA64_SECREL64MSB
3165ENUMX
3166 BFD_RELOC_IA64_SECREL64LSB
3167ENUMX
3168 BFD_RELOC_IA64_REL32MSB
3169ENUMX
3170 BFD_RELOC_IA64_REL32LSB
3171ENUMX
3172 BFD_RELOC_IA64_REL64MSB
3173ENUMX
3174 BFD_RELOC_IA64_REL64LSB
3175ENUMX
3176 BFD_RELOC_IA64_LTV32MSB
3177ENUMX
3178 BFD_RELOC_IA64_LTV32LSB
3179ENUMX
3180 BFD_RELOC_IA64_LTV64MSB
3181ENUMX
3182 BFD_RELOC_IA64_LTV64LSB
3183ENUMX
3184 BFD_RELOC_IA64_IPLTMSB
3185ENUMX
3186 BFD_RELOC_IA64_IPLTLSB
800eeca4
JW
3187ENUMX
3188 BFD_RELOC_IA64_COPY
3189ENUMX
3190 BFD_RELOC_IA64_TPREL22
3191ENUMX
3192 BFD_RELOC_IA64_TPREL64MSB
3193ENUMX
3194 BFD_RELOC_IA64_TPREL64LSB
3195ENUMX
3196 BFD_RELOC_IA64_LTOFF_TP22
3197ENUMX
3198 BFD_RELOC_IA64_LTOFF22X
3199ENUMX
3200 BFD_RELOC_IA64_LDXMOV
3201ENUMDOC
3202 Intel IA64 Relocations.
60bcf0fa
NC
3203
3204ENUM
3205 BFD_RELOC_M68HC11_HI8
3206ENUMDOC
3207 Motorola 68HC11 reloc.
3208 This is the 8 bits high part of an absolute address.
3209ENUM
3210 BFD_RELOC_M68HC11_LO8
3211ENUMDOC
3212 Motorola 68HC11 reloc.
3213 This is the 8 bits low part of an absolute address.
3214ENUM
3215 BFD_RELOC_M68HC11_3B
3216ENUMDOC
3217 Motorola 68HC11 reloc.
3218 This is the 3 bits of a value.
3219
06c15ad7
HPN
3220ENUM
3221 BFD_RELOC_CRIS_BDISP8
3222ENUMX
3223 BFD_RELOC_CRIS_UNSIGNED_5
3224ENUMX
3225 BFD_RELOC_CRIS_SIGNED_6
3226ENUMX
3227 BFD_RELOC_CRIS_UNSIGNED_6
3228ENUMX
3229 BFD_RELOC_CRIS_UNSIGNED_4
3230ENUMDOC
3231 These relocs are only used within the CRIS assembler. They are not
3232 (at present) written to any object files.
58d29fc3
HPN
3233ENUM
3234 BFD_RELOC_CRIS_COPY
3235ENUMX
3236 BFD_RELOC_CRIS_GLOB_DAT
3237ENUMX
3238 BFD_RELOC_CRIS_JUMP_SLOT
3239ENUMX
3240 BFD_RELOC_CRIS_RELATIVE
3241ENUMDOC
3242 Relocs used in ELF shared libraries for CRIS.
3243ENUM
3244 BFD_RELOC_CRIS_32_GOT
3245ENUMDOC
3246 32-bit offset to symbol-entry within GOT.
3247ENUM
3248 BFD_RELOC_CRIS_16_GOT
3249ENUMDOC
3250 16-bit offset to symbol-entry within GOT.
3251ENUM
3252 BFD_RELOC_CRIS_32_GOTPLT
3253ENUMDOC
3254 32-bit offset to symbol-entry within GOT, with PLT handling.
3255ENUM
3256 BFD_RELOC_CRIS_16_GOTPLT
3257ENUMDOC
3258 16-bit offset to symbol-entry within GOT, with PLT handling.
3259ENUM
3260 BFD_RELOC_CRIS_32_GOTREL
3261ENUMDOC
3262 32-bit offset to symbol, relative to GOT.
3263ENUM
3264 BFD_RELOC_CRIS_32_PLT_GOTREL
3265ENUMDOC
3266 32-bit offset to symbol with PLT entry, relative to GOT.
3267ENUM
3268 BFD_RELOC_CRIS_32_PLT_PCREL
3269ENUMDOC
3270 32-bit offset to symbol with PLT entry, relative to this relocation.
06c15ad7 3271
a87fdb8d
JE
3272ENUM
3273 BFD_RELOC_860_COPY
3274ENUMX
3275 BFD_RELOC_860_GLOB_DAT
3276ENUMX
3277 BFD_RELOC_860_JUMP_SLOT
3278ENUMX
3279 BFD_RELOC_860_RELATIVE
3280ENUMX
3281 BFD_RELOC_860_PC26
3282ENUMX
3283 BFD_RELOC_860_PLT26
3284ENUMX
3285 BFD_RELOC_860_PC16
3286ENUMX
3287 BFD_RELOC_860_LOW0
3288ENUMX
3289 BFD_RELOC_860_SPLIT0
3290ENUMX
3291 BFD_RELOC_860_LOW1
3292ENUMX
3293 BFD_RELOC_860_SPLIT1
3294ENUMX
3295 BFD_RELOC_860_LOW2
3296ENUMX
3297 BFD_RELOC_860_SPLIT2
3298ENUMX
3299 BFD_RELOC_860_LOW3
3300ENUMX
3301 BFD_RELOC_860_LOGOT0
3302ENUMX
3303 BFD_RELOC_860_SPGOT0
3304ENUMX
3305 BFD_RELOC_860_LOGOT1
3306ENUMX
3307 BFD_RELOC_860_SPGOT1
3308ENUMX
3309 BFD_RELOC_860_LOGOTOFF0
3310ENUMX
3311 BFD_RELOC_860_SPGOTOFF0
3312ENUMX
3313 BFD_RELOC_860_LOGOTOFF1
3314ENUMX
3315 BFD_RELOC_860_SPGOTOFF1
3316ENUMX
3317 BFD_RELOC_860_LOGOTOFF2
3318ENUMX
3319 BFD_RELOC_860_LOGOTOFF3
3320ENUMX
3321 BFD_RELOC_860_LOPC
3322ENUMX
3323 BFD_RELOC_860_HIGHADJ
3324ENUMX
3325 BFD_RELOC_860_HAGOT
3326ENUMX
3327 BFD_RELOC_860_HAGOTOFF
3328ENUMX
3329 BFD_RELOC_860_HAPC
3330ENUMX
3331 BFD_RELOC_860_HIGH
3332ENUMX
3333 BFD_RELOC_860_HIGOT
3334ENUMX
3335 BFD_RELOC_860_HIGOTOFF
3336ENUMDOC
3337 Intel i860 Relocations.
3338
b3baf5d0
NC
3339ENUM
3340 BFD_RELOC_OPENRISC_ABS_26
3341ENUMX
3342 BFD_RELOC_OPENRISC_REL_26
3343ENUMDOC
3344 OpenRISC Relocations.
3345
e01b0e69
JR
3346ENUM
3347 BFD_RELOC_H8_DIR16A8
3348ENUMX
3349 BFD_RELOC_H8_DIR16R8
3350ENUMX
3351 BFD_RELOC_H8_DIR24A8
3352ENUMX
3353 BFD_RELOC_H8_DIR24R8
3354ENUMX
3355 BFD_RELOC_H8_DIR32A16
3356ENUMDOC
3357 H8 elf Relocations.
3358
93fbbb04
GK
3359ENUM
3360 BFD_RELOC_XSTORMY16_REL_12
3361ENUMX
3362 BFD_RELOC_XSTORMY16_24
3363ENUMX
3364 BFD_RELOC_XSTORMY16_FPTR16
3365ENUMDOC
3366 Sony Xstormy16 Relocations.
3367
252b5132
RH
3368ENDSENUM
3369 BFD_RELOC_UNUSED
3370CODE_FRAGMENT
3371.
3372.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3373*/
3374
252b5132
RH
3375/*
3376FUNCTION
3377 bfd_reloc_type_lookup
3378
3379SYNOPSIS
3380 reloc_howto_type *
3381 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3382
3383DESCRIPTION
3384 Return a pointer to a howto structure which, when
3385 invoked, will perform the relocation @var{code} on data from the
3386 architecture noted.
3387
3388*/
3389
252b5132
RH
3390reloc_howto_type *
3391bfd_reloc_type_lookup (abfd, code)
3392 bfd *abfd;
3393 bfd_reloc_code_real_type code;
3394{
3395 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3396}
3397
3398static reloc_howto_type bfd_howto_32 =
3399HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3400
252b5132
RH
3401/*
3402INTERNAL_FUNCTION
3403 bfd_default_reloc_type_lookup
3404
3405SYNOPSIS
3406 reloc_howto_type *bfd_default_reloc_type_lookup
3407 (bfd *abfd, bfd_reloc_code_real_type code);
3408
3409DESCRIPTION
3410 Provides a default relocation lookup routine for any architecture.
3411
252b5132
RH
3412*/
3413
3414reloc_howto_type *
3415bfd_default_reloc_type_lookup (abfd, code)
3416 bfd *abfd;
3417 bfd_reloc_code_real_type code;
3418{
3419 switch (code)
3420 {
3421 case BFD_RELOC_CTOR:
3422 /* The type of reloc used in a ctor, which will be as wide as the
3423 address - so either a 64, 32, or 16 bitter. */
3424 switch (bfd_get_arch_info (abfd)->bits_per_address)
3425 {
3426 case 64:
3427 BFD_FAIL ();
3428 case 32:
3429 return &bfd_howto_32;
3430 case 16:
3431 BFD_FAIL ();
3432 default:
3433 BFD_FAIL ();
3434 }
3435 default:
3436 BFD_FAIL ();
3437 }
3438 return (reloc_howto_type *) NULL;
3439}
3440
3441/*
3442FUNCTION
3443 bfd_get_reloc_code_name
3444
3445SYNOPSIS
3446 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3447
3448DESCRIPTION
3449 Provides a printable name for the supplied relocation code.
3450 Useful mainly for printing error messages.
3451*/
3452
3453const char *
3454bfd_get_reloc_code_name (code)
3455 bfd_reloc_code_real_type code;
3456{
3457 if (code > BFD_RELOC_UNUSED)
3458 return 0;
3459 return bfd_reloc_code_real_names[(int)code];
3460}
3461
3462/*
3463INTERNAL_FUNCTION
3464 bfd_generic_relax_section
3465
3466SYNOPSIS
3467 boolean bfd_generic_relax_section
3468 (bfd *abfd,
3469 asection *section,
3470 struct bfd_link_info *,
3471 boolean *);
3472
3473DESCRIPTION
3474 Provides default handling for relaxing for back ends which
3475 don't do relaxing -- i.e., does nothing.
3476*/
3477
252b5132
RH
3478boolean
3479bfd_generic_relax_section (abfd, section, link_info, again)
7442e600
ILT
3480 bfd *abfd ATTRIBUTE_UNUSED;
3481 asection *section ATTRIBUTE_UNUSED;
3482 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
3483 boolean *again;
3484{
3485 *again = false;
3486 return true;
3487}
3488
3489/*
3490INTERNAL_FUNCTION
3491 bfd_generic_gc_sections
3492
3493SYNOPSIS
3494 boolean bfd_generic_gc_sections
3495 (bfd *, struct bfd_link_info *);
3496
3497DESCRIPTION
3498 Provides default handling for relaxing for back ends which
3499 don't do section gc -- i.e., does nothing.
3500*/
3501
252b5132
RH
3502boolean
3503bfd_generic_gc_sections (abfd, link_info)
7442e600
ILT
3504 bfd *abfd ATTRIBUTE_UNUSED;
3505 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
3506{
3507 return true;
3508}
3509
8550eb6e
JJ
3510/*
3511INTERNAL_FUNCTION
3512 bfd_generic_merge_sections
3513
3514SYNOPSIS
3515 boolean bfd_generic_merge_sections
3516 (bfd *, struct bfd_link_info *);
3517
3518DESCRIPTION
3519 Provides default handling for SEC_MERGE section merging for back ends
3520 which don't have SEC_MERGE support -- i.e., does nothing.
3521*/
3522
8550eb6e
JJ
3523boolean
3524bfd_generic_merge_sections (abfd, link_info)
3525 bfd *abfd ATTRIBUTE_UNUSED;
3526 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3527{
3528 return true;
3529}
3530
252b5132
RH
3531/*
3532INTERNAL_FUNCTION
3533 bfd_generic_get_relocated_section_contents
3534
3535SYNOPSIS
3536 bfd_byte *
3537 bfd_generic_get_relocated_section_contents (bfd *abfd,
3538 struct bfd_link_info *link_info,
3539 struct bfd_link_order *link_order,
3540 bfd_byte *data,
3541 boolean relocateable,
3542 asymbol **symbols);
3543
3544DESCRIPTION
3545 Provides default handling of relocation effort for back ends
3546 which can't be bothered to do it efficiently.
3547
3548*/
3549
3550bfd_byte *
3551bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3552 relocateable, symbols)
3553 bfd *abfd;
3554 struct bfd_link_info *link_info;
3555 struct bfd_link_order *link_order;
3556 bfd_byte *data;
3557 boolean relocateable;
3558 asymbol **symbols;
3559{
b5f79c76 3560 /* Get enough memory to hold the stuff. */
252b5132
RH
3561 bfd *input_bfd = link_order->u.indirect.section->owner;
3562 asection *input_section = link_order->u.indirect.section;
3563
3564 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3565 arelent **reloc_vector = NULL;
3566 long reloc_count;
3567
3568 if (reloc_size < 0)
3569 goto error_return;
3570
dc810e39 3571 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
252b5132
RH
3572 if (reloc_vector == NULL && reloc_size != 0)
3573 goto error_return;
3574
b5f79c76 3575 /* Read in the section. */
252b5132
RH
3576 if (!bfd_get_section_contents (input_bfd,
3577 input_section,
3578 (PTR) data,
dc810e39 3579 (bfd_vma) 0,
252b5132
RH
3580 input_section->_raw_size))
3581 goto error_return;
3582
b5f79c76 3583 /* We're not relaxing the section, so just copy the size info. */
252b5132
RH
3584 input_section->_cooked_size = input_section->_raw_size;
3585 input_section->reloc_done = true;
3586
3587 reloc_count = bfd_canonicalize_reloc (input_bfd,
3588 input_section,
3589 reloc_vector,
3590 symbols);
3591 if (reloc_count < 0)
3592 goto error_return;
3593
3594 if (reloc_count > 0)
3595 {
3596 arelent **parent;
3597 for (parent = reloc_vector; *parent != (arelent *) NULL;
3598 parent++)
3599 {
3600 char *error_message = (char *) NULL;
3601 bfd_reloc_status_type r =
3602 bfd_perform_relocation (input_bfd,
3603 *parent,
3604 (PTR) data,
3605 input_section,
3606 relocateable ? abfd : (bfd *) NULL,
3607 &error_message);
3608
3609 if (relocateable)
3610 {
3611 asection *os = input_section->output_section;
3612
b5f79c76 3613 /* A partial link, so keep the relocs. */
252b5132
RH
3614 os->orelocation[os->reloc_count] = *parent;
3615 os->reloc_count++;
3616 }
3617
3618 if (r != bfd_reloc_ok)
3619 {
3620 switch (r)
3621 {
3622 case bfd_reloc_undefined:
3623 if (!((*link_info->callbacks->undefined_symbol)
3624 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785
L
3625 input_bfd, input_section, (*parent)->address,
3626 true)))
252b5132
RH
3627 goto error_return;
3628 break;
3629 case bfd_reloc_dangerous:
3630 BFD_ASSERT (error_message != (char *) NULL);
3631 if (!((*link_info->callbacks->reloc_dangerous)
3632 (link_info, error_message, input_bfd, input_section,
3633 (*parent)->address)))
3634 goto error_return;
3635 break;
3636 case bfd_reloc_overflow:
3637 if (!((*link_info->callbacks->reloc_overflow)
3638 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3639 (*parent)->howto->name, (*parent)->addend,
3640 input_bfd, input_section, (*parent)->address)))
3641 goto error_return;
3642 break;
3643 case bfd_reloc_outofrange:
3644 default:
3645 abort ();
3646 break;
3647 }
3648
3649 }
3650 }
3651 }
3652 if (reloc_vector != NULL)
3653 free (reloc_vector);
3654 return data;
3655
3656error_return:
3657 if (reloc_vector != NULL)
3658 free (reloc_vector);
3659 return NULL;
3660}
This page took 0.387638 seconds and 4 git commands to generate.