1999-09-11 Donn Terry <donn@interix.com>
[deliverable/binutils-gdb.git] / bfd / syms.c
CommitLineData
252b5132 1/* Generic symbol-table support for the BFD library.
7442e600 2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 1999
252b5132
RH
3 Free Software Foundation, Inc.
4 Written by Cygnus Support.
5
6This file is part of BFD, the Binary File Descriptor library.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22/*
23SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49@menu
50@* Reading Symbols::
51@* Writing Symbols::
52@* Mini Symbols::
53@* typedef asymbol::
54@* symbol handling functions::
55@end menu
56
57INODE
58Reading Symbols, Writing Symbols, Symbols, Symbols
59SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66| long storage_needed;
67| asymbol **symbol_table;
68| long number_of_symbols;
69| long i;
70|
71| storage_needed = bfd_get_symtab_upper_bound (abfd);
72|
73| if (storage_needed < 0)
74| FAIL
75|
76| if (storage_needed == 0) {
77| return ;
78| }
79| symbol_table = (asymbol **) xmalloc (storage_needed);
80| ...
81| number_of_symbols =
82| bfd_canonicalize_symtab (abfd, symbol_table);
83|
84| if (number_of_symbols < 0)
85| FAIL
86|
87| for (i = 0; i < number_of_symbols; i++) {
88| process_symbol (symbol_table[i]);
89| }
90
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
93
94
95INODE
96Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110| #include "bfd.h"
111| main()
112| {
113| bfd *abfd;
114| asymbol *ptrs[2];
115| asymbol *new;
116|
117| abfd = bfd_openw("foo","a.out-sunos-big");
118| bfd_set_format(abfd, bfd_object);
119| new = bfd_make_empty_symbol(abfd);
120| new->name = "dummy_symbol";
121| new->section = bfd_make_section_old_way(abfd, ".text");
122| new->flags = BSF_GLOBAL;
123| new->value = 0x12345;
124|
125| ptrs[0] = new;
126| ptrs[1] = (asymbol *)0;
127|
128| bfd_set_symtab(abfd, ptrs, 1);
129| bfd_close(abfd);
130| }
131|
132| ./makesym
133| nm foo
134| 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142INODE
143Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164*/
165
166
167
168/*
169DOCDD
170INODE
171typedef asymbol, symbol handling functions, Mini Symbols, Symbols
172
173*/
174/*
175SUBSECTION
176 typedef asymbol
177
178 An <<asymbol>> has the form:
179
180*/
181
182/*
183CODE_FRAGMENT
184
185.
186.typedef struct symbol_cache_entry
187.{
188. {* A pointer to the BFD which owns the symbol. This information
189. is necessary so that a back end can work out what additional
190. information (invisible to the application writer) is carried
191. with the symbol.
192.
193. This field is *almost* redundant, since you can use section->owner
194. instead, except that some symbols point to the global sections
195. bfd_{abs,com,und}_section. This could be fixed by making
196. these globals be per-bfd (or per-target-flavor). FIXME. *}
197.
198. struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
199.
200. {* The text of the symbol. The name is left alone, and not copied; the
201. application may not alter it. *}
202. CONST char *name;
203.
204. {* The value of the symbol. This really should be a union of a
205. numeric value with a pointer, since some flags indicate that
206. a pointer to another symbol is stored here. *}
207. symvalue value;
208.
209. {* Attributes of a symbol: *}
210.
211.#define BSF_NO_FLAGS 0x00
212.
213. {* The symbol has local scope; <<static>> in <<C>>. The value
214. is the offset into the section of the data. *}
215.#define BSF_LOCAL 0x01
216.
217. {* The symbol has global scope; initialized data in <<C>>. The
218. value is the offset into the section of the data. *}
219.#define BSF_GLOBAL 0x02
220.
221. {* The symbol has global scope and is exported. The value is
222. the offset into the section of the data. *}
223.#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
224.
225. {* A normal C symbol would be one of:
226. <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
227. <<BSF_GLOBAL>> *}
228.
229. {* The symbol is a debugging record. The value has an arbitary
230. meaning. *}
231.#define BSF_DEBUGGING 0x08
232.
233. {* The symbol denotes a function entry point. Used in ELF,
234. perhaps others someday. *}
235.#define BSF_FUNCTION 0x10
236.
237. {* Used by the linker. *}
238.#define BSF_KEEP 0x20
239.#define BSF_KEEP_G 0x40
240.
241. {* A weak global symbol, overridable without warnings by
242. a regular global symbol of the same name. *}
243.#define BSF_WEAK 0x80
244.
245. {* This symbol was created to point to a section, e.g. ELF's
246. STT_SECTION symbols. *}
247.#define BSF_SECTION_SYM 0x100
248.
249. {* The symbol used to be a common symbol, but now it is
250. allocated. *}
251.#define BSF_OLD_COMMON 0x200
252.
253. {* The default value for common data. *}
254.#define BFD_FORT_COMM_DEFAULT_VALUE 0
255.
256. {* In some files the type of a symbol sometimes alters its
257. location in an output file - ie in coff a <<ISFCN>> symbol
258. which is also <<C_EXT>> symbol appears where it was
259. declared and not at the end of a section. This bit is set
260. by the target BFD part to convey this information. *}
261.
262.#define BSF_NOT_AT_END 0x400
263.
264. {* Signal that the symbol is the label of constructor section. *}
265.#define BSF_CONSTRUCTOR 0x800
266.
267. {* Signal that the symbol is a warning symbol. The name is a
268. warning. The name of the next symbol is the one to warn about;
269. if a reference is made to a symbol with the same name as the next
270. symbol, a warning is issued by the linker. *}
271.#define BSF_WARNING 0x1000
272.
273. {* Signal that the symbol is indirect. This symbol is an indirect
274. pointer to the symbol with the same name as the next symbol. *}
275.#define BSF_INDIRECT 0x2000
276.
277. {* BSF_FILE marks symbols that contain a file name. This is used
278. for ELF STT_FILE symbols. *}
279.#define BSF_FILE 0x4000
280.
281. {* Symbol is from dynamic linking information. *}
282.#define BSF_DYNAMIC 0x8000
283.
284. {* The symbol denotes a data object. Used in ELF, and perhaps
285. others someday. *}
286.#define BSF_OBJECT 0x10000
287.
288. flagword flags;
289.
290. {* A pointer to the section to which this symbol is
291. relative. This will always be non NULL, there are special
292. sections for undefined and absolute symbols. *}
293. struct sec *section;
294.
295. {* Back end special data. *}
296. union
297. {
298. PTR p;
299. bfd_vma i;
300. } udata;
301.
302.} asymbol;
303*/
304
305#include "bfd.h"
306#include "sysdep.h"
307#include "libbfd.h"
308#include "bfdlink.h"
309#include "aout/stab_gnu.h"
310
311static char coff_section_type PARAMS ((const char *));
312
313/*
314DOCDD
315INODE
316symbol handling functions, , typedef asymbol, Symbols
317SUBSECTION
318 Symbol handling functions
319*/
320
321/*
322FUNCTION
323 bfd_get_symtab_upper_bound
324
325DESCRIPTION
326 Return the number of bytes required to store a vector of pointers
327 to <<asymbols>> for all the symbols in the BFD @var{abfd},
328 including a terminal NULL pointer. If there are no symbols in
329 the BFD, then return 0. If an error occurs, return -1.
330
331.#define bfd_get_symtab_upper_bound(abfd) \
332. BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
333
334*/
335
336/*
337FUNCTION
338 bfd_is_local_label
339
340SYNOPSIS
341 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
342
343DESCRIPTION
344 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
345 a compiler generated local label, else return false.
346*/
347
348boolean
349bfd_is_local_label (abfd, sym)
350 bfd *abfd;
351 asymbol *sym;
352{
353 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
354 return false;
355 if (sym->name == NULL)
356 return false;
357 return bfd_is_local_label_name (abfd, sym->name);
358}
359
360/*
361FUNCTION
362 bfd_is_local_label_name
363
364SYNOPSIS
365 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
366
367DESCRIPTION
368 Return true if a symbol with the name @var{name} in the BFD
369 @var{abfd} is a compiler generated local label, else return
370 false. This just checks whether the name has the form of a
371 local label.
372
373.#define bfd_is_local_label_name(abfd, name) \
374. BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
375*/
376
377/*
378FUNCTION
379 bfd_canonicalize_symtab
380
381DESCRIPTION
382 Read the symbols from the BFD @var{abfd}, and fills in
383 the vector @var{location} with pointers to the symbols and
384 a trailing NULL.
385 Return the actual number of symbol pointers, not
386 including the NULL.
387
388
389.#define bfd_canonicalize_symtab(abfd, location) \
390. BFD_SEND (abfd, _bfd_canonicalize_symtab,\
391. (abfd, location))
392
393*/
394
395
396/*
397FUNCTION
398 bfd_set_symtab
399
400SYNOPSIS
401 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
402
403DESCRIPTION
404 Arrange that when the output BFD @var{abfd} is closed,
405 the table @var{location} of @var{count} pointers to symbols
406 will be written.
407*/
408
409boolean
410bfd_set_symtab (abfd, location, symcount)
411 bfd *abfd;
412 asymbol **location;
413 unsigned int symcount;
414{
415 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
416 {
417 bfd_set_error (bfd_error_invalid_operation);
418 return false;
419 }
420
421 bfd_get_outsymbols (abfd) = location;
422 bfd_get_symcount (abfd) = symcount;
423 return true;
424}
425
426/*
427FUNCTION
428 bfd_print_symbol_vandf
429
430SYNOPSIS
431 void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
432
433DESCRIPTION
434 Print the value and flags of the @var{symbol} supplied to the
435 stream @var{file}.
436*/
437void
438bfd_print_symbol_vandf (arg, symbol)
439 PTR arg;
440 asymbol *symbol;
441{
442 FILE *file = (FILE *) arg;
443 flagword type = symbol->flags;
444 if (symbol->section != (asection *) NULL)
445 {
446 fprintf_vma (file, symbol->value + symbol->section->vma);
447 }
448 else
449 {
450 fprintf_vma (file, symbol->value);
451 }
452
453 /* This presumes that a symbol can not be both BSF_DEBUGGING and
454 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
455 BSF_OBJECT. */
456 fprintf (file, " %c%c%c%c%c%c%c",
457 ((type & BSF_LOCAL)
458 ? (type & BSF_GLOBAL) ? '!' : 'l'
459 : (type & BSF_GLOBAL) ? 'g' : ' '),
460 (type & BSF_WEAK) ? 'w' : ' ',
461 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
462 (type & BSF_WARNING) ? 'W' : ' ',
463 (type & BSF_INDIRECT) ? 'I' : ' ',
464 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
465 ((type & BSF_FUNCTION)
466 ? 'F'
467 : ((type & BSF_FILE)
468 ? 'f'
469 : ((type & BSF_OBJECT) ? 'O' : ' '))));
470}
471
472
473/*
474FUNCTION
475 bfd_make_empty_symbol
476
477DESCRIPTION
478 Create a new <<asymbol>> structure for the BFD @var{abfd}
479 and return a pointer to it.
480
481 This routine is necessary because each back end has private
482 information surrounding the <<asymbol>>. Building your own
483 <<asymbol>> and pointing to it will not create the private
484 information, and will cause problems later on.
485
486.#define bfd_make_empty_symbol(abfd) \
487. BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
488*/
489
490/*
491FUNCTION
492 bfd_make_debug_symbol
493
494DESCRIPTION
495 Create a new <<asymbol>> structure for the BFD @var{abfd},
496 to be used as a debugging symbol. Further details of its use have
497 yet to be worked out.
498
499.#define bfd_make_debug_symbol(abfd,ptr,size) \
500. BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
501*/
502
503struct section_to_type
504{
505 CONST char *section;
506 char type;
507};
508
509/* Map section names to POSIX/BSD single-character symbol types.
510 This table is probably incomplete. It is sorted for convenience of
511 adding entries. Since it is so short, a linear search is used. */
512static CONST struct section_to_type stt[] =
513{
514 {"*DEBUG*", 'N'},
515 {".bss", 'b'},
516 {"zerovars", 'b'}, /* MRI .bss */
517 {".data", 'd'},
518 {"vars", 'd'}, /* MRI .data */
519 {".rdata", 'r'}, /* Read only data. */
520 {".rodata", 'r'}, /* Read only data. */
521 {".sbss", 's'}, /* Small BSS (uninitialized data). */
522 {".scommon", 'c'}, /* Small common. */
523 {".sdata", 'g'}, /* Small initialized data. */
524 {".text", 't'},
525 {"code", 't'}, /* MRI .text */
92962560
ILT
526 {".drectve", 'i'}, /* MSVC's .drective section */
527 {".idata", 'i'}, /* MSVC's .idata (import) section */
528 {".edata", 'e'}, /* MSVC's .edata (export) section */
529 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
530 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
252b5132
RH
531 {0, 0}
532};
533
534/* Return the single-character symbol type corresponding to
535 section S, or '?' for an unknown COFF section.
536
537 Check for any leading string which matches, so .text5 returns
538 't' as well as .text */
539
540static char
541coff_section_type (s)
542 const char *s;
543{
544 CONST struct section_to_type *t;
545
546 for (t = &stt[0]; t->section; t++)
547 if (!strncmp (s, t->section, strlen (t->section)))
548 return t->type;
549
550 return '?';
551}
552
553#ifndef islower
554#define islower(c) ((c) >= 'a' && (c) <= 'z')
555#endif
556#ifndef toupper
557#define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
558#endif
559
560/*
561FUNCTION
562 bfd_decode_symclass
563
564DESCRIPTION
565 Return a character corresponding to the symbol
566 class of @var{symbol}, or '?' for an unknown class.
567
568SYNOPSIS
569 int bfd_decode_symclass(asymbol *symbol);
570*/
571int
572bfd_decode_symclass (symbol)
573 asymbol *symbol;
574{
575 char c;
576
577 if (bfd_is_com_section (symbol->section))
578 return 'C';
579 if (bfd_is_und_section (symbol->section))
92962560
ILT
580 {
581 if (symbol->flags & BSF_WEAK)
582 return 'w';
583 else
584 return 'U';
585 }
252b5132
RH
586 if (bfd_is_ind_section (symbol->section))
587 return 'I';
588 if (symbol->flags & BSF_WEAK)
589 return 'W';
590 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
591 return '?';
592
593 if (bfd_is_abs_section (symbol->section))
594 c = 'a';
595 else if (symbol->section)
596 c = coff_section_type (symbol->section->name);
597 else
598 return '?';
599 if (symbol->flags & BSF_GLOBAL)
600 c = toupper (c);
601 return c;
602
603 /* We don't have to handle these cases just yet, but we will soon:
604 N_SETV: 'v';
605 N_SETA: 'l';
606 N_SETT: 'x';
607 N_SETD: 'z';
608 N_SETB: 's';
609 N_INDR: 'i';
610 */
611}
612
613/*
614FUNCTION
615 bfd_symbol_info
616
617DESCRIPTION
618 Fill in the basic info about symbol that nm needs.
619 Additional info may be added by the back-ends after
620 calling this function.
621
622SYNOPSIS
623 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
624*/
625
626void
627bfd_symbol_info (symbol, ret)
628 asymbol *symbol;
629 symbol_info *ret;
630{
631 ret->type = bfd_decode_symclass (symbol);
92962560 632 if (ret->type != 'U' && ret->type != 'w')
252b5132
RH
633 ret->value = symbol->value + symbol->section->vma;
634 else
635 ret->value = 0;
636 ret->name = symbol->name;
637}
638
639/*
640FUNCTION
641 bfd_copy_private_symbol_data
642
643SYNOPSIS
644 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
645
646DESCRIPTION
647 Copy private symbol information from @var{isym} in the BFD
648 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
649 Return <<true>> on success, <<false>> on error. Possible error
650 returns are:
651
652 o <<bfd_error_no_memory>> -
653 Not enough memory exists to create private data for @var{osec}.
654
655.#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
656. BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
657. (ibfd, isymbol, obfd, osymbol))
658
659*/
660
661/* The generic version of the function which returns mini symbols.
662 This is used when the backend does not provide a more efficient
663 version. It just uses BFD asymbol structures as mini symbols. */
664
665long
666_bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
667 bfd *abfd;
668 boolean dynamic;
669 PTR *minisymsp;
670 unsigned int *sizep;
671{
672 long storage;
673 asymbol **syms = NULL;
674 long symcount;
675
676 if (dynamic)
677 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
678 else
679 storage = bfd_get_symtab_upper_bound (abfd);
680 if (storage < 0)
681 goto error_return;
682
683 syms = (asymbol **) bfd_malloc ((size_t) storage);
684 if (syms == NULL)
685 goto error_return;
686
687 if (dynamic)
688 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
689 else
690 symcount = bfd_canonicalize_symtab (abfd, syms);
691 if (symcount < 0)
692 goto error_return;
693
694 *minisymsp = (PTR) syms;
695 *sizep = sizeof (asymbol *);
696 return symcount;
697
698 error_return:
699 if (syms != NULL)
700 free (syms);
701 return -1;
702}
703
704/* The generic version of the function which converts a minisymbol to
705 an asymbol. We don't worry about the sym argument we are passed;
706 we just return the asymbol the minisymbol points to. */
707
708/*ARGSUSED*/
709asymbol *
710_bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
7442e600
ILT
711 bfd *abfd ATTRIBUTE_UNUSED;
712 boolean dynamic ATTRIBUTE_UNUSED;
252b5132 713 const PTR minisym;
7442e600 714 asymbol *sym ATTRIBUTE_UNUSED;
252b5132
RH
715{
716 return *(asymbol **) minisym;
717}
718
719/* Look through stabs debugging information in .stab and .stabstr
720 sections to find the source file and line closest to a desired
721 location. This is used by COFF and ELF targets. It sets *pfound
722 to true if it finds some information. The *pinfo field is used to
723 pass cached information in and out of this routine; this first time
724 the routine is called for a BFD, *pinfo should be NULL. The value
725 placed in *pinfo should be saved with the BFD, and passed back each
726 time this function is called. */
727
728/* We use a cache by default. */
729
730#define ENABLE_CACHING
731
732/* We keep an array of indexentry structures to record where in the
733 stabs section we should look to find line number information for a
734 particular address. */
735
736struct indexentry
737{
738 bfd_vma val;
739 bfd_byte *stab;
740 bfd_byte *str;
741 char *directory_name;
742 char *file_name;
743 char *function_name;
744};
745
746/* Compare two indexentry structures. This is called via qsort. */
747
748static int
749cmpindexentry (a, b)
750 const PTR *a;
751 const PTR *b;
752{
753 const struct indexentry *contestantA = (const struct indexentry *) a;
754 const struct indexentry *contestantB = (const struct indexentry *) b;
755
756 if (contestantA->val < contestantB->val)
757 return -1;
758 else if (contestantA->val > contestantB->val)
759 return 1;
760 else
761 return 0;
762}
763
764/* A pointer to this structure is stored in *pinfo. */
765
766struct stab_find_info
767{
768 /* The .stab section. */
769 asection *stabsec;
770 /* The .stabstr section. */
771 asection *strsec;
772 /* The contents of the .stab section. */
773 bfd_byte *stabs;
774 /* The contents of the .stabstr section. */
775 bfd_byte *strs;
776
777 /* A table that indexes stabs by memory address. */
778 struct indexentry *indextable;
779 /* The number of entries in indextable. */
780 int indextablesize;
781
782#ifdef ENABLE_CACHING
783 /* Cached values to restart quickly. */
784 struct indexentry *cached_indexentry;
785 bfd_vma cached_offset;
786 bfd_byte *cached_stab;
787 char *cached_file_name;
788#endif
789
790 /* Saved ptr to malloc'ed filename. */
791 char *filename;
792};
793
794boolean
795_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
796 pfilename, pfnname, pline, pinfo)
797 bfd *abfd;
798 asymbol **symbols;
799 asection *section;
800 bfd_vma offset;
801 boolean *pfound;
802 const char **pfilename;
803 const char **pfnname;
804 unsigned int *pline;
805 PTR *pinfo;
806{
807 struct stab_find_info *info;
808 bfd_size_type stabsize, strsize;
7442e600
ILT
809 bfd_byte *stab, *str;
810 bfd_byte *last_stab = NULL;
252b5132
RH
811 bfd_size_type stroff;
812 struct indexentry *indexentry;
813 char *directory_name, *file_name;
814 int saw_fun;
815
816 *pfound = false;
817 *pfilename = bfd_get_filename (abfd);
818 *pfnname = NULL;
819 *pline = 0;
820
821 /* Stabs entries use a 12 byte format:
822 4 byte string table index
823 1 byte stab type
824 1 byte stab other field
825 2 byte stab desc field
826 4 byte stab value
827 FIXME: This will have to change for a 64 bit object format.
828
829 The stabs symbols are divided into compilation units. For the
830 first entry in each unit, the type of 0, the value is the length
831 of the string table for this unit, and the desc field is the
832 number of stabs symbols for this unit. */
833
834#define STRDXOFF (0)
835#define TYPEOFF (4)
836#define OTHEROFF (5)
837#define DESCOFF (6)
838#define VALOFF (8)
839#define STABSIZE (12)
840
841 info = (struct stab_find_info *) *pinfo;
842 if (info != NULL)
843 {
844 if (info->stabsec == NULL || info->strsec == NULL)
845 {
846 /* No stabs debugging information. */
847 return true;
848 }
849
850 stabsize = info->stabsec->_raw_size;
851 strsize = info->strsec->_raw_size;
852 }
853 else
854 {
855 long reloc_size, reloc_count;
856 arelent **reloc_vector;
857 int i;
858 char *name;
859 char *file_name;
860 char *directory_name;
861 char *function_name;
862
863 info = (struct stab_find_info *) bfd_zalloc (abfd, sizeof *info);
864 if (info == NULL)
865 return false;
866
867 /* FIXME: When using the linker --split-by-file or
868 --split-by-reloc options, it is possible for the .stab and
869 .stabstr sections to be split. We should handle that. */
870
871 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
872 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
873
874 if (info->stabsec == NULL || info->strsec == NULL)
875 {
876 /* No stabs debugging information. Set *pinfo so that we
877 can return quickly in the info != NULL case above. */
878 *pinfo = (PTR) info;
879 return true;
880 }
881
882 stabsize = info->stabsec->_raw_size;
883 strsize = info->strsec->_raw_size;
884
885 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
886 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
887 if (info->stabs == NULL || info->strs == NULL)
888 return false;
889
890 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 0,
891 stabsize)
892 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 0,
893 strsize))
894 return false;
895
896 /* If this is a relocateable object file, we have to relocate
897 the entries in .stab. This should always be simple 32 bit
898 relocations against symbols defined in this object file, so
899 this should be no big deal. */
900 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
901 if (reloc_size < 0)
902 return false;
903 reloc_vector = (arelent **) bfd_malloc (reloc_size);
904 if (reloc_vector == NULL && reloc_size != 0)
905 return false;
906 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
907 symbols);
908 if (reloc_count < 0)
909 {
910 if (reloc_vector != NULL)
911 free (reloc_vector);
912 return false;
913 }
914 if (reloc_count > 0)
915 {
916 arelent **pr;
917
918 for (pr = reloc_vector; *pr != NULL; pr++)
919 {
920 arelent *r;
921 unsigned long val;
922 asymbol *sym;
923
924 r = *pr;
925 if (r->howto->rightshift != 0
926 || r->howto->size != 2
927 || r->howto->bitsize != 32
928 || r->howto->pc_relative
929 || r->howto->bitpos != 0
930 || r->howto->dst_mask != 0xffffffff)
931 {
932 (*_bfd_error_handler)
933 (_("Unsupported .stab relocation"));
934 bfd_set_error (bfd_error_invalid_operation);
935 if (reloc_vector != NULL)
936 free (reloc_vector);
937 return false;
938 }
939
940 val = bfd_get_32 (abfd, info->stabs + r->address);
941 val &= r->howto->src_mask;
942 sym = *r->sym_ptr_ptr;
943 val += sym->value + sym->section->vma + r->addend;
944 bfd_put_32 (abfd, val, info->stabs + r->address);
945 }
946 }
947
948 if (reloc_vector != NULL)
949 free (reloc_vector);
950
951 /* First time through this function, build a table matching
952 function VM addresses to stabs, then sort based on starting
953 VM address. Do this in two passes: once to count how many
954 table entries we'll need, and a second to actually build the
955 table. */
956
957 info->indextablesize = 0;
958 saw_fun = 1;
959 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
960 {
961 if (stab[TYPEOFF] == N_SO)
962 {
963 /* N_SO with null name indicates EOF */
964 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
965 continue;
966
967 /* if we did not see a function def, leave space for one. */
968 if (saw_fun == 0)
969 ++info->indextablesize;
970
971 saw_fun = 0;
972
973 /* two N_SO's in a row is a filename and directory. Skip */
974 if (stab + STABSIZE < info->stabs + stabsize
975 && *(stab + STABSIZE + TYPEOFF) == N_SO)
976 {
977 stab += STABSIZE;
978 }
979 }
980 else if (stab[TYPEOFF] == N_FUN)
981 {
982 saw_fun = 1;
983 ++info->indextablesize;
984 }
985 }
986
987 if (saw_fun == 0)
988 ++info->indextablesize;
989
990 if (info->indextablesize == 0)
991 return true;
992 ++info->indextablesize;
993
994 info->indextable = ((struct indexentry *)
995 bfd_alloc (abfd,
996 (sizeof (struct indexentry)
997 * info->indextablesize)));
998 if (info->indextable == NULL)
999 return false;
1000
1001 file_name = NULL;
1002 directory_name = NULL;
1003 saw_fun = 1;
1004
1005 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1006 i < info->indextablesize && stab < info->stabs + stabsize;
1007 stab += STABSIZE)
1008 {
1009 switch (stab[TYPEOFF])
1010 {
1011 case 0:
1012 /* This is the first entry in a compilation unit. */
1013 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1014 break;
1015 str += stroff;
1016 stroff = bfd_get_32 (abfd, stab + VALOFF);
1017 break;
1018
1019 case N_SO:
1020 /* The main file name. */
1021
1022 /* The following code creates a new indextable entry with
1023 a NULL function name if there were no N_FUNs in a file.
1024 Note that a N_SO without a file name is an EOF and
1025 there could be 2 N_SO following it with the new filename
1026 and directory. */
1027 if (saw_fun == 0)
1028 {
1029 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1030 info->indextable[i].stab = last_stab;
1031 info->indextable[i].str = str;
1032 info->indextable[i].directory_name = directory_name;
1033 info->indextable[i].file_name = file_name;
1034 info->indextable[i].function_name = NULL;
1035 ++i;
1036 }
1037 saw_fun = 0;
1038
1039 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1040 if (*file_name == '\0')
1041 {
1042 directory_name = NULL;
1043 file_name = NULL;
1044 saw_fun = 1;
1045 }
7442e600
ILT
1046 else
1047 {
1048 last_stab = stab;
1049 if (stab + STABSIZE >= info->stabs + stabsize
1050 || *(stab + STABSIZE + TYPEOFF) != N_SO)
1051 {
1052 directory_name = NULL;
1053 }
1054 else
1055 {
1056 /* Two consecutive N_SOs are a directory and a
1057 file name. */
1058 stab += STABSIZE;
1059 directory_name = file_name;
1060 file_name = ((char *) str
1061 + bfd_get_32 (abfd, stab + STRDXOFF));
1062 }
1063 }
252b5132
RH
1064 break;
1065
1066 case N_SOL:
1067 /* The name of an include file. */
1068 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1069 break;
1070
1071 case N_FUN:
1072 /* A function name. */
1073 saw_fun = 1;
1074 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1075
1076 if (*name == '\0')
1077 name = NULL;
1078
1079 function_name = name;
1080
1081 if (name == NULL)
1082 continue;
1083
1084 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1085 info->indextable[i].stab = stab;
1086 info->indextable[i].str = str;
1087 info->indextable[i].directory_name = directory_name;
1088 info->indextable[i].file_name = file_name;
1089 info->indextable[i].function_name = function_name;
1090 ++i;
1091 break;
1092 }
1093 }
1094
1095 if (saw_fun == 0)
1096 {
1097 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1098 info->indextable[i].stab = last_stab;
1099 info->indextable[i].str = str;
1100 info->indextable[i].directory_name = directory_name;
1101 info->indextable[i].file_name = file_name;
1102 info->indextable[i].function_name = NULL;
1103 ++i;
1104 }
1105
1106 info->indextable[i].val = (bfd_vma) -1;
1107 info->indextable[i].stab = info->stabs + stabsize;
1108 info->indextable[i].str = str;
1109 info->indextable[i].directory_name = NULL;
1110 info->indextable[i].file_name = NULL;
1111 info->indextable[i].function_name = NULL;
1112 ++i;
1113
1114 info->indextablesize = i;
1115 qsort (info->indextable, i, sizeof (struct indexentry), cmpindexentry);
1116
1117 *pinfo = (PTR) info;
1118 }
1119
1120 /* We are passed a section relative offset. The offsets in the
1121 stabs information are absolute. */
1122 offset += bfd_get_section_vma (abfd, section);
1123
1124#ifdef ENABLE_CACHING
1125 if (info->cached_indexentry != NULL
1126 && offset >= info->cached_offset
1127 && offset < (info->cached_indexentry + 1)->val)
1128 {
1129 stab = info->cached_stab;
1130 indexentry = info->cached_indexentry;
1131 file_name = info->cached_file_name;
1132 }
1133 else
1134#endif
1135 {
1136 /* Cache non-existant or invalid. Do binary search on
1137 indextable. */
1138
1139 long low, high;
1140 long mid = -1;
1141
1142 indexentry = NULL;
1143
1144 low = 0;
1145 high = info->indextablesize - 1;
1146 while (low != high)
1147 {
1148 mid = (high + low) / 2;
1149 if (offset >= info->indextable[mid].val
1150 && offset < info->indextable[mid + 1].val)
1151 {
1152 indexentry = &info->indextable[mid];
1153 break;
1154 }
1155
1156 if (info->indextable[mid].val > offset)
1157 high = mid;
1158 else
1159 low = mid + 1;
1160 }
1161
1162 if (indexentry == NULL)
1163 return true;
1164
1165 stab = indexentry->stab + STABSIZE;
1166 file_name = indexentry->file_name;
1167 }
1168
1169 directory_name = indexentry->directory_name;
1170 str = indexentry->str;
1171
1172 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1173 {
1174 boolean done;
1175 bfd_vma val;
1176
1177 done = false;
1178
1179 switch (stab[TYPEOFF])
1180 {
1181 case N_SOL:
1182 /* The name of an include file. */
1183 val = bfd_get_32 (abfd, stab + VALOFF);
1184 if (val <= offset)
1185 {
1186 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1187 *pline = 0;
1188 }
1189 break;
1190
1191 case N_SLINE:
1192 case N_DSLINE:
1193 case N_BSLINE:
1194 /* A line number. The value is relative to the start of the
1195 current function. */
1196 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1197 if (val <= offset)
1198 {
1199 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1200
1201#ifdef ENABLE_CACHING
1202 info->cached_stab = stab;
1203 info->cached_offset = val;
1204 info->cached_file_name = file_name;
1205 info->cached_indexentry = indexentry;
1206#endif
1207 }
1208 if (val > offset)
1209 done = true;
1210 break;
1211
1212 case N_FUN:
1213 case N_SO:
1214 done = true;
1215 break;
1216 }
1217
1218 if (done)
1219 break;
1220 }
1221
1222 *pfound = true;
1223
1224 if (file_name[0] == '/' || directory_name == NULL)
1225 *pfilename = file_name;
1226 else
1227 {
1228 size_t dirlen;
1229
1230 dirlen = strlen (directory_name);
1231 if (info->filename == NULL
1232 || strncmp (info->filename, directory_name, dirlen) != 0
1233 || strcmp (info->filename + dirlen, file_name) != 0)
1234 {
1235 if (info->filename != NULL)
1236 free (info->filename);
1237 info->filename = (char *) bfd_malloc (dirlen +
1238 strlen (file_name)
1239 + 1);
1240 if (info->filename == NULL)
1241 return false;
1242 strcpy (info->filename, directory_name);
1243 strcpy (info->filename + dirlen, file_name);
1244 }
1245
1246 *pfilename = info->filename;
1247 }
1248
1249 if (indexentry->function_name != NULL)
1250 {
1251 char *s;
1252
1253 /* This will typically be something like main:F(0,1), so we want
1254 to clobber the colon. It's OK to change the name, since the
1255 string is in our own local storage anyhow. */
1256
1257 s = strchr (indexentry->function_name, ':');
1258 if (s != NULL)
1259 *s = '\0';
1260
1261 *pfnname = indexentry->function_name;
1262 }
1263
1264 return true;
1265}
This page took 0.081171 seconds and 4 git commands to generate.