blk-mq: fix a memory ordering bug in blk_mq_queue_enter()
[deliverable/linux.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
55782138
LZ
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/block.h>
1da177e4 38
8324aa91 39#include "blk.h"
5efd6113 40#include "blk-cgroup.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
320ae51f 54struct kmem_cache *request_cachep = NULL;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
8324aa91 66void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
67{
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79}
80
1da177e4
LT
81/**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info
87 *
88 * Will return NULL if the request queue cannot be located.
89 */
90struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
91{
92 struct backing_dev_info *ret = NULL;
165125e1 93 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
94
95 if (q)
96 ret = &q->backing_dev_info;
97 return ret;
98}
1da177e4
LT
99EXPORT_SYMBOL(blk_get_backing_dev_info);
100
2a4aa30c 101void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 102{
1afb20f3
FT
103 memset(rq, 0, sizeof(*rq));
104
1da177e4 105 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 106 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 107 rq->cpu = -1;
63a71386 108 rq->q = q;
a2dec7b3 109 rq->__sector = (sector_t) -1;
2e662b65
JA
110 INIT_HLIST_NODE(&rq->hash);
111 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 112 rq->cmd = rq->__cmd;
e2494e1b 113 rq->cmd_len = BLK_MAX_CDB;
63a71386 114 rq->tag = -1;
b243ddcb 115 rq->start_time = jiffies;
9195291e 116 set_start_time_ns(rq);
09e099d4 117 rq->part = NULL;
1da177e4 118}
2a4aa30c 119EXPORT_SYMBOL(blk_rq_init);
1da177e4 120
5bb23a68
N
121static void req_bio_endio(struct request *rq, struct bio *bio,
122 unsigned int nbytes, int error)
1da177e4 123{
143a87f4
TH
124 if (error)
125 clear_bit(BIO_UPTODATE, &bio->bi_flags);
126 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
127 error = -EIO;
797e7dbb 128
143a87f4
TH
129 if (unlikely(rq->cmd_flags & REQ_QUIET))
130 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 131
f79ea416 132 bio_advance(bio, nbytes);
7ba1ba12 133
143a87f4 134 /* don't actually finish bio if it's part of flush sequence */
4f024f37 135 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
143a87f4 136 bio_endio(bio, error);
1da177e4 137}
1da177e4 138
1da177e4
LT
139void blk_dump_rq_flags(struct request *rq, char *msg)
140{
141 int bit;
142
5953316d 143 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 144 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 145 (unsigned long long) rq->cmd_flags);
1da177e4 146
83096ebf
TH
147 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
148 (unsigned long long)blk_rq_pos(rq),
149 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
150 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
151 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 152
33659ebb 153 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 154 printk(KERN_INFO " cdb: ");
d34c87e4 155 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
156 printk("%02x ", rq->cmd[bit]);
157 printk("\n");
158 }
159}
1da177e4
LT
160EXPORT_SYMBOL(blk_dump_rq_flags);
161
3cca6dc1 162static void blk_delay_work(struct work_struct *work)
1da177e4 163{
3cca6dc1 164 struct request_queue *q;
1da177e4 165
3cca6dc1
JA
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
24ecfbe2 168 __blk_run_queue(q);
3cca6dc1 169 spin_unlock_irq(q->queue_lock);
1da177e4 170}
1da177e4
LT
171
172/**
3cca6dc1
JA
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
1da177e4
LT
176 *
177 * Description:
3cca6dc1
JA
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
70460571 180 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
181 */
182void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 183{
70460571
BVA
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
2ad8b1ef 187}
3cca6dc1 188EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 189
1da177e4
LT
190/**
191 * blk_start_queue - restart a previously stopped queue
165125e1 192 * @q: The &struct request_queue in question
1da177e4
LT
193 *
194 * Description:
195 * blk_start_queue() will clear the stop flag on the queue, and call
196 * the request_fn for the queue if it was in a stopped state when
197 * entered. Also see blk_stop_queue(). Queue lock must be held.
198 **/
165125e1 199void blk_start_queue(struct request_queue *q)
1da177e4 200{
a038e253
PBG
201 WARN_ON(!irqs_disabled());
202
75ad23bc 203 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 204 __blk_run_queue(q);
1da177e4 205}
1da177e4
LT
206EXPORT_SYMBOL(blk_start_queue);
207
208/**
209 * blk_stop_queue - stop a queue
165125e1 210 * @q: The &struct request_queue in question
1da177e4
LT
211 *
212 * Description:
213 * The Linux block layer assumes that a block driver will consume all
214 * entries on the request queue when the request_fn strategy is called.
215 * Often this will not happen, because of hardware limitations (queue
216 * depth settings). If a device driver gets a 'queue full' response,
217 * or if it simply chooses not to queue more I/O at one point, it can
218 * call this function to prevent the request_fn from being called until
219 * the driver has signalled it's ready to go again. This happens by calling
220 * blk_start_queue() to restart queue operations. Queue lock must be held.
221 **/
165125e1 222void blk_stop_queue(struct request_queue *q)
1da177e4 223{
136b5721 224 cancel_delayed_work(&q->delay_work);
75ad23bc 225 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
226}
227EXPORT_SYMBOL(blk_stop_queue);
228
229/**
230 * blk_sync_queue - cancel any pending callbacks on a queue
231 * @q: the queue
232 *
233 * Description:
234 * The block layer may perform asynchronous callback activity
235 * on a queue, such as calling the unplug function after a timeout.
236 * A block device may call blk_sync_queue to ensure that any
237 * such activity is cancelled, thus allowing it to release resources
59c51591 238 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
239 * that its ->make_request_fn will not re-add plugging prior to calling
240 * this function.
241 *
da527770
VG
242 * This function does not cancel any asynchronous activity arising
243 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 244 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 245 *
1da177e4
LT
246 */
247void blk_sync_queue(struct request_queue *q)
248{
70ed28b9 249 del_timer_sync(&q->timeout);
f04c1fe7
ML
250
251 if (q->mq_ops) {
252 struct blk_mq_hw_ctx *hctx;
253 int i;
254
70f4db63
CH
255 queue_for_each_hw_ctx(q, hctx, i) {
256 cancel_delayed_work_sync(&hctx->run_work);
257 cancel_delayed_work_sync(&hctx->delay_work);
258 }
f04c1fe7
ML
259 } else {
260 cancel_delayed_work_sync(&q->delay_work);
261 }
1da177e4
LT
262}
263EXPORT_SYMBOL(blk_sync_queue);
264
c246e80d
BVA
265/**
266 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
267 * @q: The queue to run
268 *
269 * Description:
270 * Invoke request handling on a queue if there are any pending requests.
271 * May be used to restart request handling after a request has completed.
272 * This variant runs the queue whether or not the queue has been
273 * stopped. Must be called with the queue lock held and interrupts
274 * disabled. See also @blk_run_queue.
275 */
276inline void __blk_run_queue_uncond(struct request_queue *q)
277{
278 if (unlikely(blk_queue_dead(q)))
279 return;
280
24faf6f6
BVA
281 /*
282 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
283 * the queue lock internally. As a result multiple threads may be
284 * running such a request function concurrently. Keep track of the
285 * number of active request_fn invocations such that blk_drain_queue()
286 * can wait until all these request_fn calls have finished.
287 */
288 q->request_fn_active++;
c246e80d 289 q->request_fn(q);
24faf6f6 290 q->request_fn_active--;
c246e80d
BVA
291}
292
1da177e4 293/**
80a4b58e 294 * __blk_run_queue - run a single device queue
1da177e4 295 * @q: The queue to run
80a4b58e
JA
296 *
297 * Description:
298 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 299 * held and interrupts disabled.
1da177e4 300 */
24ecfbe2 301void __blk_run_queue(struct request_queue *q)
1da177e4 302{
a538cd03
TH
303 if (unlikely(blk_queue_stopped(q)))
304 return;
305
c246e80d 306 __blk_run_queue_uncond(q);
75ad23bc
NP
307}
308EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 309
24ecfbe2
CH
310/**
311 * blk_run_queue_async - run a single device queue in workqueue context
312 * @q: The queue to run
313 *
314 * Description:
315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 316 * of us. The caller must hold the queue lock.
24ecfbe2
CH
317 */
318void blk_run_queue_async(struct request_queue *q)
319{
70460571 320 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 321 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 322}
c21e6beb 323EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 324
75ad23bc
NP
325/**
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
80a4b58e
JA
328 *
329 * Description:
330 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 331 * May be used to restart queueing when a request has completed.
75ad23bc
NP
332 */
333void blk_run_queue(struct request_queue *q)
334{
335 unsigned long flags;
336
337 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 338 __blk_run_queue(q);
1da177e4
LT
339 spin_unlock_irqrestore(q->queue_lock, flags);
340}
341EXPORT_SYMBOL(blk_run_queue);
342
165125e1 343void blk_put_queue(struct request_queue *q)
483f4afc
AV
344{
345 kobject_put(&q->kobj);
346}
d86e0e83 347EXPORT_SYMBOL(blk_put_queue);
483f4afc 348
e3c78ca5 349/**
807592a4 350 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 351 * @q: queue to drain
c9a929dd 352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 353 *
c9a929dd
TH
354 * Drain requests from @q. If @drain_all is set, all requests are drained.
355 * If not, only ELVPRIV requests are drained. The caller is responsible
356 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 357 */
807592a4
BVA
358static void __blk_drain_queue(struct request_queue *q, bool drain_all)
359 __releases(q->queue_lock)
360 __acquires(q->queue_lock)
e3c78ca5 361{
458f27a9
AH
362 int i;
363
807592a4
BVA
364 lockdep_assert_held(q->queue_lock);
365
e3c78ca5 366 while (true) {
481a7d64 367 bool drain = false;
e3c78ca5 368
b855b04a
TH
369 /*
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
372 */
373 if (q->elevator)
374 elv_drain_elevator(q);
375
5efd6113 376 blkcg_drain_queue(q);
e3c78ca5 377
4eabc941
TH
378 /*
379 * This function might be called on a queue which failed
b855b04a
TH
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
4eabc941 384 */
b855b04a 385 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 386 __blk_run_queue(q);
c9a929dd 387
8a5ecdd4 388 drain |= q->nr_rqs_elvpriv;
24faf6f6 389 drain |= q->request_fn_active;
481a7d64
TH
390
391 /*
392 * Unfortunately, requests are queued at and tracked from
393 * multiple places and there's no single counter which can
394 * be drained. Check all the queues and counters.
395 */
396 if (drain_all) {
397 drain |= !list_empty(&q->queue_head);
398 for (i = 0; i < 2; i++) {
8a5ecdd4 399 drain |= q->nr_rqs[i];
481a7d64
TH
400 drain |= q->in_flight[i];
401 drain |= !list_empty(&q->flush_queue[i]);
402 }
403 }
e3c78ca5 404
481a7d64 405 if (!drain)
e3c78ca5 406 break;
807592a4
BVA
407
408 spin_unlock_irq(q->queue_lock);
409
e3c78ca5 410 msleep(10);
807592a4
BVA
411
412 spin_lock_irq(q->queue_lock);
e3c78ca5 413 }
458f27a9
AH
414
415 /*
416 * With queue marked dead, any woken up waiter will fail the
417 * allocation path, so the wakeup chaining is lost and we're
418 * left with hung waiters. We need to wake up those waiters.
419 */
420 if (q->request_fn) {
a051661c
TH
421 struct request_list *rl;
422
a051661c
TH
423 blk_queue_for_each_rl(rl, q)
424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 wake_up_all(&rl->wait[i]);
458f27a9 426 }
e3c78ca5
TH
427}
428
d732580b
TH
429/**
430 * blk_queue_bypass_start - enter queue bypass mode
431 * @q: queue of interest
432 *
433 * In bypass mode, only the dispatch FIFO queue of @q is used. This
434 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 435 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437 * inside queue or RCU read lock.
d732580b
TH
438 */
439void blk_queue_bypass_start(struct request_queue *q)
440{
b82d4b19
TH
441 bool drain;
442
d732580b 443 spin_lock_irq(q->queue_lock);
b82d4b19 444 drain = !q->bypass_depth++;
d732580b
TH
445 queue_flag_set(QUEUE_FLAG_BYPASS, q);
446 spin_unlock_irq(q->queue_lock);
447
b82d4b19 448 if (drain) {
807592a4
BVA
449 spin_lock_irq(q->queue_lock);
450 __blk_drain_queue(q, false);
451 spin_unlock_irq(q->queue_lock);
452
b82d4b19
TH
453 /* ensure blk_queue_bypass() is %true inside RCU read lock */
454 synchronize_rcu();
455 }
d732580b
TH
456}
457EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
458
459/**
460 * blk_queue_bypass_end - leave queue bypass mode
461 * @q: queue of interest
462 *
463 * Leave bypass mode and restore the normal queueing behavior.
464 */
465void blk_queue_bypass_end(struct request_queue *q)
466{
467 spin_lock_irq(q->queue_lock);
468 if (!--q->bypass_depth)
469 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
470 WARN_ON_ONCE(q->bypass_depth < 0);
471 spin_unlock_irq(q->queue_lock);
472}
473EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
474
c9a929dd
TH
475/**
476 * blk_cleanup_queue - shutdown a request queue
477 * @q: request queue to shutdown
478 *
c246e80d
BVA
479 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
480 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 481 */
6728cb0e 482void blk_cleanup_queue(struct request_queue *q)
483f4afc 483{
c9a929dd 484 spinlock_t *lock = q->queue_lock;
e3335de9 485
3f3299d5 486 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 487 mutex_lock(&q->sysfs_lock);
3f3299d5 488 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 489 spin_lock_irq(lock);
6ecf23af 490
80fd9979 491 /*
3f3299d5 492 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
493 * that, unlike blk_queue_bypass_start(), we aren't performing
494 * synchronize_rcu() after entering bypass mode to avoid the delay
495 * as some drivers create and destroy a lot of queues while
496 * probing. This is still safe because blk_release_queue() will be
497 * called only after the queue refcnt drops to zero and nothing,
498 * RCU or not, would be traversing the queue by then.
499 */
6ecf23af
TH
500 q->bypass_depth++;
501 queue_flag_set(QUEUE_FLAG_BYPASS, q);
502
c9a929dd
TH
503 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
504 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 505 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
506 spin_unlock_irq(lock);
507 mutex_unlock(&q->sysfs_lock);
508
c246e80d
BVA
509 /*
510 * Drain all requests queued before DYING marking. Set DEAD flag to
511 * prevent that q->request_fn() gets invoked after draining finished.
512 */
43a5e4e2
ML
513 if (q->mq_ops) {
514 blk_mq_drain_queue(q);
515 spin_lock_irq(lock);
516 } else {
517 spin_lock_irq(lock);
518 __blk_drain_queue(q, true);
519 }
c246e80d 520 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 521 spin_unlock_irq(lock);
c9a929dd
TH
522
523 /* @q won't process any more request, flush async actions */
524 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
525 blk_sync_queue(q);
526
5e5cfac0
AH
527 spin_lock_irq(lock);
528 if (q->queue_lock != &q->__queue_lock)
529 q->queue_lock = &q->__queue_lock;
530 spin_unlock_irq(lock);
531
c9a929dd 532 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
533 blk_put_queue(q);
534}
1da177e4
LT
535EXPORT_SYMBOL(blk_cleanup_queue);
536
5b788ce3
TH
537int blk_init_rl(struct request_list *rl, struct request_queue *q,
538 gfp_t gfp_mask)
1da177e4 539{
1abec4fd
MS
540 if (unlikely(rl->rq_pool))
541 return 0;
542
5b788ce3 543 rl->q = q;
1faa16d2
JA
544 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
545 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
546 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
547 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 548
1946089a 549 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 550 mempool_free_slab, request_cachep,
5b788ce3 551 gfp_mask, q->node);
1da177e4
LT
552 if (!rl->rq_pool)
553 return -ENOMEM;
554
555 return 0;
556}
557
5b788ce3
TH
558void blk_exit_rl(struct request_list *rl)
559{
560 if (rl->rq_pool)
561 mempool_destroy(rl->rq_pool);
562}
563
165125e1 564struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 565{
c304a51b 566 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
567}
568EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 569
165125e1 570struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 571{
165125e1 572 struct request_queue *q;
e0bf68dd 573 int err;
1946089a 574
8324aa91 575 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 576 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
577 if (!q)
578 return NULL;
579
00380a40 580 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 581 if (q->id < 0)
3d2936f4 582 goto fail_q;
a73f730d 583
0989a025
JA
584 q->backing_dev_info.ra_pages =
585 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
586 q->backing_dev_info.state = 0;
587 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 588 q->backing_dev_info.name = "block";
5151412d 589 q->node = node_id;
0989a025 590
e0bf68dd 591 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
592 if (err)
593 goto fail_id;
e0bf68dd 594
31373d09
MG
595 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
596 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 597 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 598 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 599 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 600 INIT_LIST_HEAD(&q->icq_list);
4eef3049 601#ifdef CONFIG_BLK_CGROUP
e8989fae 602 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 603#endif
ae1b1539
TH
604 INIT_LIST_HEAD(&q->flush_queue[0]);
605 INIT_LIST_HEAD(&q->flush_queue[1]);
606 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 607 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 608
8324aa91 609 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 610
483f4afc 611 mutex_init(&q->sysfs_lock);
e7e72bf6 612 spin_lock_init(&q->__queue_lock);
483f4afc 613
c94a96ac
VG
614 /*
615 * By default initialize queue_lock to internal lock and driver can
616 * override it later if need be.
617 */
618 q->queue_lock = &q->__queue_lock;
619
b82d4b19
TH
620 /*
621 * A queue starts its life with bypass turned on to avoid
622 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
623 * init. The initial bypass will be finished when the queue is
624 * registered by blk_register_queue().
b82d4b19
TH
625 */
626 q->bypass_depth = 1;
627 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
628
320ae51f
JA
629 init_waitqueue_head(&q->mq_freeze_wq);
630
5efd6113 631 if (blkcg_init_queue(q))
fff4996b 632 goto fail_bdi;
f51b802c 633
1da177e4 634 return q;
a73f730d 635
fff4996b
MP
636fail_bdi:
637 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
638fail_id:
639 ida_simple_remove(&blk_queue_ida, q->id);
640fail_q:
641 kmem_cache_free(blk_requestq_cachep, q);
642 return NULL;
1da177e4 643}
1946089a 644EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
645
646/**
647 * blk_init_queue - prepare a request queue for use with a block device
648 * @rfn: The function to be called to process requests that have been
649 * placed on the queue.
650 * @lock: Request queue spin lock
651 *
652 * Description:
653 * If a block device wishes to use the standard request handling procedures,
654 * which sorts requests and coalesces adjacent requests, then it must
655 * call blk_init_queue(). The function @rfn will be called when there
656 * are requests on the queue that need to be processed. If the device
657 * supports plugging, then @rfn may not be called immediately when requests
658 * are available on the queue, but may be called at some time later instead.
659 * Plugged queues are generally unplugged when a buffer belonging to one
660 * of the requests on the queue is needed, or due to memory pressure.
661 *
662 * @rfn is not required, or even expected, to remove all requests off the
663 * queue, but only as many as it can handle at a time. If it does leave
664 * requests on the queue, it is responsible for arranging that the requests
665 * get dealt with eventually.
666 *
667 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
668 * request queue; this lock will be taken also from interrupt context, so irq
669 * disabling is needed for it.
1da177e4 670 *
710027a4 671 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
672 * it didn't succeed.
673 *
674 * Note:
675 * blk_init_queue() must be paired with a blk_cleanup_queue() call
676 * when the block device is deactivated (such as at module unload).
677 **/
1946089a 678
165125e1 679struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 680{
c304a51b 681 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
682}
683EXPORT_SYMBOL(blk_init_queue);
684
165125e1 685struct request_queue *
1946089a
CL
686blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
687{
c86d1b8a 688 struct request_queue *uninit_q, *q;
1da177e4 689
c86d1b8a
MS
690 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
691 if (!uninit_q)
692 return NULL;
693
5151412d 694 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 695 if (!q)
7982e90c 696 blk_cleanup_queue(uninit_q);
18741986 697
7982e90c 698 return q;
01effb0d
MS
699}
700EXPORT_SYMBOL(blk_init_queue_node);
701
702struct request_queue *
703blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
704 spinlock_t *lock)
01effb0d 705{
1da177e4
LT
706 if (!q)
707 return NULL;
708
7982e90c
MS
709 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
710 if (!q->flush_rq)
711 return NULL;
712
a051661c 713 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 714 goto fail;
1da177e4
LT
715
716 q->request_fn = rfn;
1da177e4 717 q->prep_rq_fn = NULL;
28018c24 718 q->unprep_rq_fn = NULL;
60ea8226 719 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
720
721 /* Override internal queue lock with supplied lock pointer */
722 if (lock)
723 q->queue_lock = lock;
1da177e4 724
f3b144aa
JA
725 /*
726 * This also sets hw/phys segments, boundary and size
727 */
c20e8de2 728 blk_queue_make_request(q, blk_queue_bio);
1da177e4 729
44ec9542
AS
730 q->sg_reserved_size = INT_MAX;
731
eb1c160b
TS
732 /* Protect q->elevator from elevator_change */
733 mutex_lock(&q->sysfs_lock);
734
b82d4b19 735 /* init elevator */
eb1c160b
TS
736 if (elevator_init(q, NULL)) {
737 mutex_unlock(&q->sysfs_lock);
708f04d2 738 goto fail;
eb1c160b
TS
739 }
740
741 mutex_unlock(&q->sysfs_lock);
742
b82d4b19 743 return q;
708f04d2
DJ
744
745fail:
746 kfree(q->flush_rq);
747 return NULL;
1da177e4 748}
5151412d 749EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 750
09ac46c4 751bool blk_get_queue(struct request_queue *q)
1da177e4 752{
3f3299d5 753 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
754 __blk_get_queue(q);
755 return true;
1da177e4
LT
756 }
757
09ac46c4 758 return false;
1da177e4 759}
d86e0e83 760EXPORT_SYMBOL(blk_get_queue);
1da177e4 761
5b788ce3 762static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 763{
f1f8cc94 764 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 765 elv_put_request(rl->q, rq);
f1f8cc94 766 if (rq->elv.icq)
11a3122f 767 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
768 }
769
5b788ce3 770 mempool_free(rq, rl->rq_pool);
1da177e4
LT
771}
772
1da177e4
LT
773/*
774 * ioc_batching returns true if the ioc is a valid batching request and
775 * should be given priority access to a request.
776 */
165125e1 777static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
778{
779 if (!ioc)
780 return 0;
781
782 /*
783 * Make sure the process is able to allocate at least 1 request
784 * even if the batch times out, otherwise we could theoretically
785 * lose wakeups.
786 */
787 return ioc->nr_batch_requests == q->nr_batching ||
788 (ioc->nr_batch_requests > 0
789 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
790}
791
792/*
793 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
794 * will cause the process to be a "batcher" on all queues in the system. This
795 * is the behaviour we want though - once it gets a wakeup it should be given
796 * a nice run.
797 */
165125e1 798static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
799{
800 if (!ioc || ioc_batching(q, ioc))
801 return;
802
803 ioc->nr_batch_requests = q->nr_batching;
804 ioc->last_waited = jiffies;
805}
806
5b788ce3 807static void __freed_request(struct request_list *rl, int sync)
1da177e4 808{
5b788ce3 809 struct request_queue *q = rl->q;
1da177e4 810
a051661c
TH
811 /*
812 * bdi isn't aware of blkcg yet. As all async IOs end up root
813 * blkcg anyway, just use root blkcg state.
814 */
815 if (rl == &q->root_rl &&
816 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 817 blk_clear_queue_congested(q, sync);
1da177e4 818
1faa16d2
JA
819 if (rl->count[sync] + 1 <= q->nr_requests) {
820 if (waitqueue_active(&rl->wait[sync]))
821 wake_up(&rl->wait[sync]);
1da177e4 822
5b788ce3 823 blk_clear_rl_full(rl, sync);
1da177e4
LT
824 }
825}
826
827/*
828 * A request has just been released. Account for it, update the full and
829 * congestion status, wake up any waiters. Called under q->queue_lock.
830 */
5b788ce3 831static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 832{
5b788ce3 833 struct request_queue *q = rl->q;
75eb6c37 834 int sync = rw_is_sync(flags);
1da177e4 835
8a5ecdd4 836 q->nr_rqs[sync]--;
1faa16d2 837 rl->count[sync]--;
75eb6c37 838 if (flags & REQ_ELVPRIV)
8a5ecdd4 839 q->nr_rqs_elvpriv--;
1da177e4 840
5b788ce3 841 __freed_request(rl, sync);
1da177e4 842
1faa16d2 843 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 844 __freed_request(rl, sync ^ 1);
1da177e4
LT
845}
846
e3a2b3f9
JA
847int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
848{
849 struct request_list *rl;
850
851 spin_lock_irq(q->queue_lock);
852 q->nr_requests = nr;
853 blk_queue_congestion_threshold(q);
854
855 /* congestion isn't cgroup aware and follows root blkcg for now */
856 rl = &q->root_rl;
857
858 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
859 blk_set_queue_congested(q, BLK_RW_SYNC);
860 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
861 blk_clear_queue_congested(q, BLK_RW_SYNC);
862
863 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
864 blk_set_queue_congested(q, BLK_RW_ASYNC);
865 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
866 blk_clear_queue_congested(q, BLK_RW_ASYNC);
867
868 blk_queue_for_each_rl(rl, q) {
869 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
870 blk_set_rl_full(rl, BLK_RW_SYNC);
871 } else {
872 blk_clear_rl_full(rl, BLK_RW_SYNC);
873 wake_up(&rl->wait[BLK_RW_SYNC]);
874 }
875
876 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
877 blk_set_rl_full(rl, BLK_RW_ASYNC);
878 } else {
879 blk_clear_rl_full(rl, BLK_RW_ASYNC);
880 wake_up(&rl->wait[BLK_RW_ASYNC]);
881 }
882 }
883
884 spin_unlock_irq(q->queue_lock);
885 return 0;
886}
887
9d5a4e94
MS
888/*
889 * Determine if elevator data should be initialized when allocating the
890 * request associated with @bio.
891 */
892static bool blk_rq_should_init_elevator(struct bio *bio)
893{
894 if (!bio)
895 return true;
896
897 /*
898 * Flush requests do not use the elevator so skip initialization.
899 * This allows a request to share the flush and elevator data.
900 */
901 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
902 return false;
903
904 return true;
905}
906
852c788f
TH
907/**
908 * rq_ioc - determine io_context for request allocation
909 * @bio: request being allocated is for this bio (can be %NULL)
910 *
911 * Determine io_context to use for request allocation for @bio. May return
912 * %NULL if %current->io_context doesn't exist.
913 */
914static struct io_context *rq_ioc(struct bio *bio)
915{
916#ifdef CONFIG_BLK_CGROUP
917 if (bio && bio->bi_ioc)
918 return bio->bi_ioc;
919#endif
920 return current->io_context;
921}
922
da8303c6 923/**
a06e05e6 924 * __get_request - get a free request
5b788ce3 925 * @rl: request list to allocate from
da8303c6
TH
926 * @rw_flags: RW and SYNC flags
927 * @bio: bio to allocate request for (can be %NULL)
928 * @gfp_mask: allocation mask
929 *
930 * Get a free request from @q. This function may fail under memory
931 * pressure or if @q is dead.
932 *
933 * Must be callled with @q->queue_lock held and,
934 * Returns %NULL on failure, with @q->queue_lock held.
935 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 936 */
5b788ce3 937static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 938 struct bio *bio, gfp_t gfp_mask)
1da177e4 939{
5b788ce3 940 struct request_queue *q = rl->q;
b679281a 941 struct request *rq;
7f4b35d1
TH
942 struct elevator_type *et = q->elevator->type;
943 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 944 struct io_cq *icq = NULL;
1faa16d2 945 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 946 int may_queue;
88ee5ef1 947
3f3299d5 948 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
949 return NULL;
950
7749a8d4 951 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
952 if (may_queue == ELV_MQUEUE_NO)
953 goto rq_starved;
954
1faa16d2
JA
955 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
956 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
957 /*
958 * The queue will fill after this allocation, so set
959 * it as full, and mark this process as "batching".
960 * This process will be allowed to complete a batch of
961 * requests, others will be blocked.
962 */
5b788ce3 963 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 964 ioc_set_batching(q, ioc);
5b788ce3 965 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
966 } else {
967 if (may_queue != ELV_MQUEUE_MUST
968 && !ioc_batching(q, ioc)) {
969 /*
970 * The queue is full and the allocating
971 * process is not a "batcher", and not
972 * exempted by the IO scheduler
973 */
b679281a 974 return NULL;
88ee5ef1
JA
975 }
976 }
1da177e4 977 }
a051661c
TH
978 /*
979 * bdi isn't aware of blkcg yet. As all async IOs end up
980 * root blkcg anyway, just use root blkcg state.
981 */
982 if (rl == &q->root_rl)
983 blk_set_queue_congested(q, is_sync);
1da177e4
LT
984 }
985
082cf69e
JA
986 /*
987 * Only allow batching queuers to allocate up to 50% over the defined
988 * limit of requests, otherwise we could have thousands of requests
989 * allocated with any setting of ->nr_requests
990 */
1faa16d2 991 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 992 return NULL;
fd782a4a 993
8a5ecdd4 994 q->nr_rqs[is_sync]++;
1faa16d2
JA
995 rl->count[is_sync]++;
996 rl->starved[is_sync] = 0;
cb98fc8b 997
f1f8cc94
TH
998 /*
999 * Decide whether the new request will be managed by elevator. If
1000 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1001 * prevent the current elevator from being destroyed until the new
1002 * request is freed. This guarantees icq's won't be destroyed and
1003 * makes creating new ones safe.
1004 *
1005 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1006 * it will be created after releasing queue_lock.
1007 */
d732580b 1008 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 1009 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 1010 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1011 if (et->icq_cache && ioc)
1012 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1013 }
cb98fc8b 1014
f253b86b
JA
1015 if (blk_queue_io_stat(q))
1016 rw_flags |= REQ_IO_STAT;
1da177e4
LT
1017 spin_unlock_irq(q->queue_lock);
1018
29e2b09a 1019 /* allocate and init request */
5b788ce3 1020 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1021 if (!rq)
b679281a 1022 goto fail_alloc;
1da177e4 1023
29e2b09a 1024 blk_rq_init(q, rq);
a051661c 1025 blk_rq_set_rl(rq, rl);
29e2b09a
TH
1026 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1027
aaf7c680 1028 /* init elvpriv */
29e2b09a 1029 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 1030 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1031 if (ioc)
1032 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1033 if (!icq)
1034 goto fail_elvpriv;
29e2b09a 1035 }
aaf7c680
TH
1036
1037 rq->elv.icq = icq;
1038 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1039 goto fail_elvpriv;
1040
1041 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1042 if (icq)
1043 get_io_context(icq->ioc);
1044 }
aaf7c680 1045out:
88ee5ef1
JA
1046 /*
1047 * ioc may be NULL here, and ioc_batching will be false. That's
1048 * OK, if the queue is under the request limit then requests need
1049 * not count toward the nr_batch_requests limit. There will always
1050 * be some limit enforced by BLK_BATCH_TIME.
1051 */
1da177e4
LT
1052 if (ioc_batching(q, ioc))
1053 ioc->nr_batch_requests--;
6728cb0e 1054
1faa16d2 1055 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1056 return rq;
b679281a 1057
aaf7c680
TH
1058fail_elvpriv:
1059 /*
1060 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1061 * and may fail indefinitely under memory pressure and thus
1062 * shouldn't stall IO. Treat this request as !elvpriv. This will
1063 * disturb iosched and blkcg but weird is bettern than dead.
1064 */
1065 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1066 dev_name(q->backing_dev_info.dev));
1067
1068 rq->cmd_flags &= ~REQ_ELVPRIV;
1069 rq->elv.icq = NULL;
1070
1071 spin_lock_irq(q->queue_lock);
8a5ecdd4 1072 q->nr_rqs_elvpriv--;
aaf7c680
TH
1073 spin_unlock_irq(q->queue_lock);
1074 goto out;
1075
b679281a
TH
1076fail_alloc:
1077 /*
1078 * Allocation failed presumably due to memory. Undo anything we
1079 * might have messed up.
1080 *
1081 * Allocating task should really be put onto the front of the wait
1082 * queue, but this is pretty rare.
1083 */
1084 spin_lock_irq(q->queue_lock);
5b788ce3 1085 freed_request(rl, rw_flags);
b679281a
TH
1086
1087 /*
1088 * in the very unlikely event that allocation failed and no
1089 * requests for this direction was pending, mark us starved so that
1090 * freeing of a request in the other direction will notice
1091 * us. another possible fix would be to split the rq mempool into
1092 * READ and WRITE
1093 */
1094rq_starved:
1095 if (unlikely(rl->count[is_sync] == 0))
1096 rl->starved[is_sync] = 1;
1097 return NULL;
1da177e4
LT
1098}
1099
da8303c6 1100/**
a06e05e6 1101 * get_request - get a free request
da8303c6
TH
1102 * @q: request_queue to allocate request from
1103 * @rw_flags: RW and SYNC flags
1104 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1105 * @gfp_mask: allocation mask
da8303c6 1106 *
a06e05e6
TH
1107 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1108 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1109 *
da8303c6
TH
1110 * Must be callled with @q->queue_lock held and,
1111 * Returns %NULL on failure, with @q->queue_lock held.
1112 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1113 */
a06e05e6
TH
1114static struct request *get_request(struct request_queue *q, int rw_flags,
1115 struct bio *bio, gfp_t gfp_mask)
1da177e4 1116{
1faa16d2 1117 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1118 DEFINE_WAIT(wait);
a051661c 1119 struct request_list *rl;
1da177e4 1120 struct request *rq;
a051661c
TH
1121
1122 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1123retry:
a051661c 1124 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1125 if (rq)
1126 return rq;
1da177e4 1127
3f3299d5 1128 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1129 blk_put_rl(rl);
a06e05e6 1130 return NULL;
a051661c 1131 }
1da177e4 1132
a06e05e6
TH
1133 /* wait on @rl and retry */
1134 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1135 TASK_UNINTERRUPTIBLE);
1da177e4 1136
a06e05e6 1137 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1138
a06e05e6
TH
1139 spin_unlock_irq(q->queue_lock);
1140 io_schedule();
d6344532 1141
a06e05e6
TH
1142 /*
1143 * After sleeping, we become a "batching" process and will be able
1144 * to allocate at least one request, and up to a big batch of them
1145 * for a small period time. See ioc_batching, ioc_set_batching
1146 */
a06e05e6 1147 ioc_set_batching(q, current->io_context);
05caf8db 1148
a06e05e6
TH
1149 spin_lock_irq(q->queue_lock);
1150 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1151
a06e05e6 1152 goto retry;
1da177e4
LT
1153}
1154
320ae51f
JA
1155static struct request *blk_old_get_request(struct request_queue *q, int rw,
1156 gfp_t gfp_mask)
1da177e4
LT
1157{
1158 struct request *rq;
1159
1160 BUG_ON(rw != READ && rw != WRITE);
1161
7f4b35d1
TH
1162 /* create ioc upfront */
1163 create_io_context(gfp_mask, q->node);
1164
d6344532 1165 spin_lock_irq(q->queue_lock);
a06e05e6 1166 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1167 if (!rq)
1168 spin_unlock_irq(q->queue_lock);
d6344532 1169 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1170
1171 return rq;
1172}
320ae51f
JA
1173
1174struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1175{
1176 if (q->mq_ops)
4ce01dd1 1177 return blk_mq_alloc_request(q, rw, gfp_mask, false);
320ae51f
JA
1178 else
1179 return blk_old_get_request(q, rw, gfp_mask);
1180}
1da177e4
LT
1181EXPORT_SYMBOL(blk_get_request);
1182
dc72ef4a 1183/**
79eb63e9 1184 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1185 * @q: target request queue
79eb63e9
BH
1186 * @bio: The bio describing the memory mappings that will be submitted for IO.
1187 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1188 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1189 *
79eb63e9
BH
1190 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1191 * type commands. Where the struct request needs to be farther initialized by
1192 * the caller. It is passed a &struct bio, which describes the memory info of
1193 * the I/O transfer.
dc72ef4a 1194 *
79eb63e9
BH
1195 * The caller of blk_make_request must make sure that bi_io_vec
1196 * are set to describe the memory buffers. That bio_data_dir() will return
1197 * the needed direction of the request. (And all bio's in the passed bio-chain
1198 * are properly set accordingly)
1199 *
1200 * If called under none-sleepable conditions, mapped bio buffers must not
1201 * need bouncing, by calling the appropriate masked or flagged allocator,
1202 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1203 * BUG.
53674ac5
JA
1204 *
1205 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1206 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1207 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1208 * completion of a bio that hasn't been submitted yet, thus resulting in a
1209 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1210 * of bio_alloc(), as that avoids the mempool deadlock.
1211 * If possible a big IO should be split into smaller parts when allocation
1212 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1213 */
79eb63e9
BH
1214struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1215 gfp_t gfp_mask)
dc72ef4a 1216{
79eb63e9
BH
1217 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1218
1219 if (unlikely(!rq))
1220 return ERR_PTR(-ENOMEM);
1221
f27b087b
JA
1222 blk_rq_set_block_pc(rq);
1223
79eb63e9
BH
1224 for_each_bio(bio) {
1225 struct bio *bounce_bio = bio;
1226 int ret;
1227
1228 blk_queue_bounce(q, &bounce_bio);
1229 ret = blk_rq_append_bio(q, rq, bounce_bio);
1230 if (unlikely(ret)) {
1231 blk_put_request(rq);
1232 return ERR_PTR(ret);
1233 }
1234 }
1235
1236 return rq;
dc72ef4a 1237}
79eb63e9 1238EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1239
f27b087b
JA
1240/**
1241 * blk_rq_set_block_pc - initialize a requeest to type BLOCK_PC
1242 * @rq: request to be initialized
1243 *
1244 */
1245void blk_rq_set_block_pc(struct request *rq)
1246{
1247 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1248 rq->__data_len = 0;
1249 rq->__sector = (sector_t) -1;
1250 rq->bio = rq->biotail = NULL;
1251 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1252 rq->cmd = rq->__cmd;
1253}
1254EXPORT_SYMBOL(blk_rq_set_block_pc);
1255
1da177e4
LT
1256/**
1257 * blk_requeue_request - put a request back on queue
1258 * @q: request queue where request should be inserted
1259 * @rq: request to be inserted
1260 *
1261 * Description:
1262 * Drivers often keep queueing requests until the hardware cannot accept
1263 * more, when that condition happens we need to put the request back
1264 * on the queue. Must be called with queue lock held.
1265 */
165125e1 1266void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1267{
242f9dcb
JA
1268 blk_delete_timer(rq);
1269 blk_clear_rq_complete(rq);
5f3ea37c 1270 trace_block_rq_requeue(q, rq);
2056a782 1271
1da177e4
LT
1272 if (blk_rq_tagged(rq))
1273 blk_queue_end_tag(q, rq);
1274
ba396a6c
JB
1275 BUG_ON(blk_queued_rq(rq));
1276
1da177e4
LT
1277 elv_requeue_request(q, rq);
1278}
1da177e4
LT
1279EXPORT_SYMBOL(blk_requeue_request);
1280
73c10101
JA
1281static void add_acct_request(struct request_queue *q, struct request *rq,
1282 int where)
1283{
320ae51f 1284 blk_account_io_start(rq, true);
7eaceacc 1285 __elv_add_request(q, rq, where);
73c10101
JA
1286}
1287
074a7aca
TH
1288static void part_round_stats_single(int cpu, struct hd_struct *part,
1289 unsigned long now)
1290{
7276d02e
JA
1291 int inflight;
1292
074a7aca
TH
1293 if (now == part->stamp)
1294 return;
1295
7276d02e
JA
1296 inflight = part_in_flight(part);
1297 if (inflight) {
074a7aca 1298 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1299 inflight * (now - part->stamp));
074a7aca
TH
1300 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1301 }
1302 part->stamp = now;
1303}
1304
1305/**
496aa8a9
RD
1306 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1307 * @cpu: cpu number for stats access
1308 * @part: target partition
1da177e4
LT
1309 *
1310 * The average IO queue length and utilisation statistics are maintained
1311 * by observing the current state of the queue length and the amount of
1312 * time it has been in this state for.
1313 *
1314 * Normally, that accounting is done on IO completion, but that can result
1315 * in more than a second's worth of IO being accounted for within any one
1316 * second, leading to >100% utilisation. To deal with that, we call this
1317 * function to do a round-off before returning the results when reading
1318 * /proc/diskstats. This accounts immediately for all queue usage up to
1319 * the current jiffies and restarts the counters again.
1320 */
c9959059 1321void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1322{
1323 unsigned long now = jiffies;
1324
074a7aca
TH
1325 if (part->partno)
1326 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1327 part_round_stats_single(cpu, part, now);
6f2576af 1328}
074a7aca 1329EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1330
c8158819
LM
1331#ifdef CONFIG_PM_RUNTIME
1332static void blk_pm_put_request(struct request *rq)
1333{
1334 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1335 pm_runtime_mark_last_busy(rq->q->dev);
1336}
1337#else
1338static inline void blk_pm_put_request(struct request *rq) {}
1339#endif
1340
1da177e4
LT
1341/*
1342 * queue lock must be held
1343 */
165125e1 1344void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1345{
1da177e4
LT
1346 if (unlikely(!q))
1347 return;
1da177e4 1348
6f5ba581
CH
1349 if (q->mq_ops) {
1350 blk_mq_free_request(req);
1351 return;
1352 }
1353
c8158819
LM
1354 blk_pm_put_request(req);
1355
8922e16c
TH
1356 elv_completed_request(q, req);
1357
1cd96c24
BH
1358 /* this is a bio leak */
1359 WARN_ON(req->bio != NULL);
1360
1da177e4
LT
1361 /*
1362 * Request may not have originated from ll_rw_blk. if not,
1363 * it didn't come out of our reserved rq pools
1364 */
49171e5c 1365 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1366 unsigned int flags = req->cmd_flags;
a051661c 1367 struct request_list *rl = blk_rq_rl(req);
1da177e4 1368
1da177e4 1369 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1370 BUG_ON(ELV_ON_HASH(req));
1da177e4 1371
a051661c
TH
1372 blk_free_request(rl, req);
1373 freed_request(rl, flags);
1374 blk_put_rl(rl);
1da177e4
LT
1375 }
1376}
6e39b69e
MC
1377EXPORT_SYMBOL_GPL(__blk_put_request);
1378
1da177e4
LT
1379void blk_put_request(struct request *req)
1380{
165125e1 1381 struct request_queue *q = req->q;
8922e16c 1382
320ae51f
JA
1383 if (q->mq_ops)
1384 blk_mq_free_request(req);
1385 else {
1386 unsigned long flags;
1387
1388 spin_lock_irqsave(q->queue_lock, flags);
1389 __blk_put_request(q, req);
1390 spin_unlock_irqrestore(q->queue_lock, flags);
1391 }
1da177e4 1392}
1da177e4
LT
1393EXPORT_SYMBOL(blk_put_request);
1394
66ac0280
CH
1395/**
1396 * blk_add_request_payload - add a payload to a request
1397 * @rq: request to update
1398 * @page: page backing the payload
1399 * @len: length of the payload.
1400 *
1401 * This allows to later add a payload to an already submitted request by
1402 * a block driver. The driver needs to take care of freeing the payload
1403 * itself.
1404 *
1405 * Note that this is a quite horrible hack and nothing but handling of
1406 * discard requests should ever use it.
1407 */
1408void blk_add_request_payload(struct request *rq, struct page *page,
1409 unsigned int len)
1410{
1411 struct bio *bio = rq->bio;
1412
1413 bio->bi_io_vec->bv_page = page;
1414 bio->bi_io_vec->bv_offset = 0;
1415 bio->bi_io_vec->bv_len = len;
1416
4f024f37 1417 bio->bi_iter.bi_size = len;
66ac0280
CH
1418 bio->bi_vcnt = 1;
1419 bio->bi_phys_segments = 1;
1420
1421 rq->__data_len = rq->resid_len = len;
1422 rq->nr_phys_segments = 1;
66ac0280
CH
1423}
1424EXPORT_SYMBOL_GPL(blk_add_request_payload);
1425
320ae51f
JA
1426bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1427 struct bio *bio)
73c10101
JA
1428{
1429 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1430
73c10101
JA
1431 if (!ll_back_merge_fn(q, req, bio))
1432 return false;
1433
8c1cf6bb 1434 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1435
1436 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1437 blk_rq_set_mixed_merge(req);
1438
1439 req->biotail->bi_next = bio;
1440 req->biotail = bio;
4f024f37 1441 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1442 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1443
320ae51f 1444 blk_account_io_start(req, false);
73c10101
JA
1445 return true;
1446}
1447
320ae51f
JA
1448bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1449 struct bio *bio)
73c10101
JA
1450{
1451 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1452
73c10101
JA
1453 if (!ll_front_merge_fn(q, req, bio))
1454 return false;
1455
8c1cf6bb 1456 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1457
1458 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1459 blk_rq_set_mixed_merge(req);
1460
73c10101
JA
1461 bio->bi_next = req->bio;
1462 req->bio = bio;
1463
4f024f37
KO
1464 req->__sector = bio->bi_iter.bi_sector;
1465 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1466 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1467
320ae51f 1468 blk_account_io_start(req, false);
73c10101
JA
1469 return true;
1470}
1471
bd87b589 1472/**
320ae51f 1473 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1474 * @q: request_queue new bio is being queued at
1475 * @bio: new bio being queued
1476 * @request_count: out parameter for number of traversed plugged requests
1477 *
1478 * Determine whether @bio being queued on @q can be merged with a request
1479 * on %current's plugged list. Returns %true if merge was successful,
1480 * otherwise %false.
1481 *
07c2bd37
TH
1482 * Plugging coalesces IOs from the same issuer for the same purpose without
1483 * going through @q->queue_lock. As such it's more of an issuing mechanism
1484 * than scheduling, and the request, while may have elvpriv data, is not
1485 * added on the elevator at this point. In addition, we don't have
1486 * reliable access to the elevator outside queue lock. Only check basic
1487 * merging parameters without querying the elevator.
da41a589
RE
1488 *
1489 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1490 */
320ae51f
JA
1491bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1492 unsigned int *request_count)
73c10101
JA
1493{
1494 struct blk_plug *plug;
1495 struct request *rq;
1496 bool ret = false;
92f399c7 1497 struct list_head *plug_list;
73c10101 1498
bd87b589 1499 plug = current->plug;
73c10101
JA
1500 if (!plug)
1501 goto out;
56ebdaf2 1502 *request_count = 0;
73c10101 1503
92f399c7
SL
1504 if (q->mq_ops)
1505 plug_list = &plug->mq_list;
1506 else
1507 plug_list = &plug->list;
1508
1509 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1510 int el_ret;
1511
1b2e19f1
SL
1512 if (rq->q == q)
1513 (*request_count)++;
56ebdaf2 1514
07c2bd37 1515 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1516 continue;
1517
050c8ea8 1518 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1519 if (el_ret == ELEVATOR_BACK_MERGE) {
1520 ret = bio_attempt_back_merge(q, rq, bio);
1521 if (ret)
1522 break;
1523 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1524 ret = bio_attempt_front_merge(q, rq, bio);
1525 if (ret)
1526 break;
1527 }
1528 }
1529out:
1530 return ret;
1531}
1532
86db1e29 1533void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1534{
4aff5e23 1535 req->cmd_type = REQ_TYPE_FS;
52d9e675 1536
7b6d91da
CH
1537 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1538 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1539 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1540
52d9e675 1541 req->errors = 0;
4f024f37 1542 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1543 req->ioprio = bio_prio(bio);
bc1c56fd 1544 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1545}
1546
5a7bbad2 1547void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1548{
5e00d1b5 1549 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1550 struct blk_plug *plug;
1551 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1552 struct request *req;
56ebdaf2 1553 unsigned int request_count = 0;
1da177e4 1554
1da177e4
LT
1555 /*
1556 * low level driver can indicate that it wants pages above a
1557 * certain limit bounced to low memory (ie for highmem, or even
1558 * ISA dma in theory)
1559 */
1560 blk_queue_bounce(q, &bio);
1561
ffecfd1a
DW
1562 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1563 bio_endio(bio, -EIO);
1564 return;
1565 }
1566
4fed947c 1567 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1568 spin_lock_irq(q->queue_lock);
ae1b1539 1569 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1570 goto get_rq;
1571 }
1572
73c10101
JA
1573 /*
1574 * Check if we can merge with the plugged list before grabbing
1575 * any locks.
1576 */
da41a589
RE
1577 if (!blk_queue_nomerges(q) &&
1578 blk_attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1579 return;
1da177e4 1580
73c10101 1581 spin_lock_irq(q->queue_lock);
2056a782 1582
73c10101
JA
1583 el_ret = elv_merge(q, &req, bio);
1584 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1585 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1586 elv_bio_merged(q, req, bio);
73c10101
JA
1587 if (!attempt_back_merge(q, req))
1588 elv_merged_request(q, req, el_ret);
1589 goto out_unlock;
1590 }
1591 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1592 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1593 elv_bio_merged(q, req, bio);
73c10101
JA
1594 if (!attempt_front_merge(q, req))
1595 elv_merged_request(q, req, el_ret);
1596 goto out_unlock;
80a761fd 1597 }
1da177e4
LT
1598 }
1599
450991bc 1600get_rq:
7749a8d4
JA
1601 /*
1602 * This sync check and mask will be re-done in init_request_from_bio(),
1603 * but we need to set it earlier to expose the sync flag to the
1604 * rq allocator and io schedulers.
1605 */
1606 rw_flags = bio_data_dir(bio);
1607 if (sync)
7b6d91da 1608 rw_flags |= REQ_SYNC;
7749a8d4 1609
1da177e4 1610 /*
450991bc 1611 * Grab a free request. This is might sleep but can not fail.
d6344532 1612 * Returns with the queue unlocked.
450991bc 1613 */
a06e05e6 1614 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1615 if (unlikely(!req)) {
1616 bio_endio(bio, -ENODEV); /* @q is dead */
1617 goto out_unlock;
1618 }
d6344532 1619
450991bc
NP
1620 /*
1621 * After dropping the lock and possibly sleeping here, our request
1622 * may now be mergeable after it had proven unmergeable (above).
1623 * We don't worry about that case for efficiency. It won't happen
1624 * often, and the elevators are able to handle it.
1da177e4 1625 */
52d9e675 1626 init_request_from_bio(req, bio);
1da177e4 1627
9562ad9a 1628 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1629 req->cpu = raw_smp_processor_id();
73c10101
JA
1630
1631 plug = current->plug;
721a9602 1632 if (plug) {
dc6d36c9
JA
1633 /*
1634 * If this is the first request added after a plug, fire
7aef2e78 1635 * of a plug trace.
dc6d36c9 1636 */
7aef2e78 1637 if (!request_count)
dc6d36c9 1638 trace_block_plug(q);
3540d5e8 1639 else {
019ceb7d 1640 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1641 blk_flush_plug_list(plug, false);
019ceb7d
SL
1642 trace_block_plug(q);
1643 }
73c10101 1644 }
73c10101 1645 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1646 blk_account_io_start(req, true);
73c10101
JA
1647 } else {
1648 spin_lock_irq(q->queue_lock);
1649 add_acct_request(q, req, where);
24ecfbe2 1650 __blk_run_queue(q);
73c10101
JA
1651out_unlock:
1652 spin_unlock_irq(q->queue_lock);
1653 }
1da177e4 1654}
c20e8de2 1655EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1656
1657/*
1658 * If bio->bi_dev is a partition, remap the location
1659 */
1660static inline void blk_partition_remap(struct bio *bio)
1661{
1662 struct block_device *bdev = bio->bi_bdev;
1663
bf2de6f5 1664 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1665 struct hd_struct *p = bdev->bd_part;
1666
4f024f37 1667 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1668 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1669
d07335e5
MS
1670 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1671 bdev->bd_dev,
4f024f37 1672 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1673 }
1674}
1675
1da177e4
LT
1676static void handle_bad_sector(struct bio *bio)
1677{
1678 char b[BDEVNAME_SIZE];
1679
1680 printk(KERN_INFO "attempt to access beyond end of device\n");
1681 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1682 bdevname(bio->bi_bdev, b),
1683 bio->bi_rw,
f73a1c7d 1684 (unsigned long long)bio_end_sector(bio),
77304d2a 1685 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1686
1687 set_bit(BIO_EOF, &bio->bi_flags);
1688}
1689
c17bb495
AM
1690#ifdef CONFIG_FAIL_MAKE_REQUEST
1691
1692static DECLARE_FAULT_ATTR(fail_make_request);
1693
1694static int __init setup_fail_make_request(char *str)
1695{
1696 return setup_fault_attr(&fail_make_request, str);
1697}
1698__setup("fail_make_request=", setup_fail_make_request);
1699
b2c9cd37 1700static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1701{
b2c9cd37 1702 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1703}
1704
1705static int __init fail_make_request_debugfs(void)
1706{
dd48c085
AM
1707 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1708 NULL, &fail_make_request);
1709
21f9fcd8 1710 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1711}
1712
1713late_initcall(fail_make_request_debugfs);
1714
1715#else /* CONFIG_FAIL_MAKE_REQUEST */
1716
b2c9cd37
AM
1717static inline bool should_fail_request(struct hd_struct *part,
1718 unsigned int bytes)
c17bb495 1719{
b2c9cd37 1720 return false;
c17bb495
AM
1721}
1722
1723#endif /* CONFIG_FAIL_MAKE_REQUEST */
1724
c07e2b41
JA
1725/*
1726 * Check whether this bio extends beyond the end of the device.
1727 */
1728static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1729{
1730 sector_t maxsector;
1731
1732 if (!nr_sectors)
1733 return 0;
1734
1735 /* Test device or partition size, when known. */
77304d2a 1736 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1737 if (maxsector) {
4f024f37 1738 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1739
1740 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1741 /*
1742 * This may well happen - the kernel calls bread()
1743 * without checking the size of the device, e.g., when
1744 * mounting a device.
1745 */
1746 handle_bad_sector(bio);
1747 return 1;
1748 }
1749 }
1750
1751 return 0;
1752}
1753
27a84d54
CH
1754static noinline_for_stack bool
1755generic_make_request_checks(struct bio *bio)
1da177e4 1756{
165125e1 1757 struct request_queue *q;
5a7bbad2 1758 int nr_sectors = bio_sectors(bio);
51fd77bd 1759 int err = -EIO;
5a7bbad2
CH
1760 char b[BDEVNAME_SIZE];
1761 struct hd_struct *part;
1da177e4
LT
1762
1763 might_sleep();
1da177e4 1764
c07e2b41
JA
1765 if (bio_check_eod(bio, nr_sectors))
1766 goto end_io;
1da177e4 1767
5a7bbad2
CH
1768 q = bdev_get_queue(bio->bi_bdev);
1769 if (unlikely(!q)) {
1770 printk(KERN_ERR
1771 "generic_make_request: Trying to access "
1772 "nonexistent block-device %s (%Lu)\n",
1773 bdevname(bio->bi_bdev, b),
4f024f37 1774 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1775 goto end_io;
1776 }
c17bb495 1777
e2a60da7
MP
1778 if (likely(bio_is_rw(bio) &&
1779 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1780 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1781 bdevname(bio->bi_bdev, b),
1782 bio_sectors(bio),
1783 queue_max_hw_sectors(q));
1784 goto end_io;
1785 }
1da177e4 1786
5a7bbad2 1787 part = bio->bi_bdev->bd_part;
4f024f37 1788 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1789 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1790 bio->bi_iter.bi_size))
5a7bbad2 1791 goto end_io;
2056a782 1792
5a7bbad2
CH
1793 /*
1794 * If this device has partitions, remap block n
1795 * of partition p to block n+start(p) of the disk.
1796 */
1797 blk_partition_remap(bio);
2056a782 1798
5a7bbad2
CH
1799 if (bio_check_eod(bio, nr_sectors))
1800 goto end_io;
1e87901e 1801
5a7bbad2
CH
1802 /*
1803 * Filter flush bio's early so that make_request based
1804 * drivers without flush support don't have to worry
1805 * about them.
1806 */
1807 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1808 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1809 if (!nr_sectors) {
1810 err = 0;
51fd77bd
JA
1811 goto end_io;
1812 }
5a7bbad2 1813 }
5ddfe969 1814
5a7bbad2
CH
1815 if ((bio->bi_rw & REQ_DISCARD) &&
1816 (!blk_queue_discard(q) ||
e2a60da7 1817 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1818 err = -EOPNOTSUPP;
1819 goto end_io;
1820 }
01edede4 1821
4363ac7c 1822 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1823 err = -EOPNOTSUPP;
1824 goto end_io;
1825 }
01edede4 1826
7f4b35d1
TH
1827 /*
1828 * Various block parts want %current->io_context and lazy ioc
1829 * allocation ends up trading a lot of pain for a small amount of
1830 * memory. Just allocate it upfront. This may fail and block
1831 * layer knows how to live with it.
1832 */
1833 create_io_context(GFP_ATOMIC, q->node);
1834
bc16a4f9
TH
1835 if (blk_throtl_bio(q, bio))
1836 return false; /* throttled, will be resubmitted later */
27a84d54 1837
5a7bbad2 1838 trace_block_bio_queue(q, bio);
27a84d54 1839 return true;
a7384677
TH
1840
1841end_io:
1842 bio_endio(bio, err);
27a84d54 1843 return false;
1da177e4
LT
1844}
1845
27a84d54
CH
1846/**
1847 * generic_make_request - hand a buffer to its device driver for I/O
1848 * @bio: The bio describing the location in memory and on the device.
1849 *
1850 * generic_make_request() is used to make I/O requests of block
1851 * devices. It is passed a &struct bio, which describes the I/O that needs
1852 * to be done.
1853 *
1854 * generic_make_request() does not return any status. The
1855 * success/failure status of the request, along with notification of
1856 * completion, is delivered asynchronously through the bio->bi_end_io
1857 * function described (one day) else where.
1858 *
1859 * The caller of generic_make_request must make sure that bi_io_vec
1860 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1861 * set to describe the device address, and the
1862 * bi_end_io and optionally bi_private are set to describe how
1863 * completion notification should be signaled.
1864 *
1865 * generic_make_request and the drivers it calls may use bi_next if this
1866 * bio happens to be merged with someone else, and may resubmit the bio to
1867 * a lower device by calling into generic_make_request recursively, which
1868 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1869 */
1870void generic_make_request(struct bio *bio)
1871{
bddd87c7
AM
1872 struct bio_list bio_list_on_stack;
1873
27a84d54
CH
1874 if (!generic_make_request_checks(bio))
1875 return;
1876
1877 /*
1878 * We only want one ->make_request_fn to be active at a time, else
1879 * stack usage with stacked devices could be a problem. So use
1880 * current->bio_list to keep a list of requests submited by a
1881 * make_request_fn function. current->bio_list is also used as a
1882 * flag to say if generic_make_request is currently active in this
1883 * task or not. If it is NULL, then no make_request is active. If
1884 * it is non-NULL, then a make_request is active, and new requests
1885 * should be added at the tail
1886 */
bddd87c7 1887 if (current->bio_list) {
bddd87c7 1888 bio_list_add(current->bio_list, bio);
d89d8796
NB
1889 return;
1890 }
27a84d54 1891
d89d8796
NB
1892 /* following loop may be a bit non-obvious, and so deserves some
1893 * explanation.
1894 * Before entering the loop, bio->bi_next is NULL (as all callers
1895 * ensure that) so we have a list with a single bio.
1896 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1897 * we assign bio_list to a pointer to the bio_list_on_stack,
1898 * thus initialising the bio_list of new bios to be
27a84d54 1899 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1900 * through a recursive call to generic_make_request. If it
1901 * did, we find a non-NULL value in bio_list and re-enter the loop
1902 * from the top. In this case we really did just take the bio
bddd87c7 1903 * of the top of the list (no pretending) and so remove it from
27a84d54 1904 * bio_list, and call into ->make_request() again.
d89d8796
NB
1905 */
1906 BUG_ON(bio->bi_next);
bddd87c7
AM
1907 bio_list_init(&bio_list_on_stack);
1908 current->bio_list = &bio_list_on_stack;
d89d8796 1909 do {
27a84d54
CH
1910 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1911
1912 q->make_request_fn(q, bio);
1913
bddd87c7 1914 bio = bio_list_pop(current->bio_list);
d89d8796 1915 } while (bio);
bddd87c7 1916 current->bio_list = NULL; /* deactivate */
d89d8796 1917}
1da177e4
LT
1918EXPORT_SYMBOL(generic_make_request);
1919
1920/**
710027a4 1921 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1922 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1923 * @bio: The &struct bio which describes the I/O
1924 *
1925 * submit_bio() is very similar in purpose to generic_make_request(), and
1926 * uses that function to do most of the work. Both are fairly rough
710027a4 1927 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1928 *
1929 */
1930void submit_bio(int rw, struct bio *bio)
1931{
22e2c507 1932 bio->bi_rw |= rw;
1da177e4 1933
bf2de6f5
JA
1934 /*
1935 * If it's a regular read/write or a barrier with data attached,
1936 * go through the normal accounting stuff before submission.
1937 */
e2a60da7 1938 if (bio_has_data(bio)) {
4363ac7c
MP
1939 unsigned int count;
1940
1941 if (unlikely(rw & REQ_WRITE_SAME))
1942 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1943 else
1944 count = bio_sectors(bio);
1945
bf2de6f5
JA
1946 if (rw & WRITE) {
1947 count_vm_events(PGPGOUT, count);
1948 } else {
4f024f37 1949 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1950 count_vm_events(PGPGIN, count);
1951 }
1952
1953 if (unlikely(block_dump)) {
1954 char b[BDEVNAME_SIZE];
8dcbdc74 1955 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1956 current->comm, task_pid_nr(current),
bf2de6f5 1957 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 1958 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
1959 bdevname(bio->bi_bdev, b),
1960 count);
bf2de6f5 1961 }
1da177e4
LT
1962 }
1963
1964 generic_make_request(bio);
1965}
1da177e4
LT
1966EXPORT_SYMBOL(submit_bio);
1967
82124d60
KU
1968/**
1969 * blk_rq_check_limits - Helper function to check a request for the queue limit
1970 * @q: the queue
1971 * @rq: the request being checked
1972 *
1973 * Description:
1974 * @rq may have been made based on weaker limitations of upper-level queues
1975 * in request stacking drivers, and it may violate the limitation of @q.
1976 * Since the block layer and the underlying device driver trust @rq
1977 * after it is inserted to @q, it should be checked against @q before
1978 * the insertion using this generic function.
1979 *
1980 * This function should also be useful for request stacking drivers
eef35c2d 1981 * in some cases below, so export this function.
82124d60
KU
1982 * Request stacking drivers like request-based dm may change the queue
1983 * limits while requests are in the queue (e.g. dm's table swapping).
e227867f 1984 * Such request stacking drivers should check those requests against
82124d60
KU
1985 * the new queue limits again when they dispatch those requests,
1986 * although such checkings are also done against the old queue limits
1987 * when submitting requests.
1988 */
1989int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1990{
e2a60da7 1991 if (!rq_mergeable(rq))
3383977f
S
1992 return 0;
1993
f31dc1cd 1994 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1995 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1996 return -EIO;
1997 }
1998
1999 /*
2000 * queue's settings related to segment counting like q->bounce_pfn
2001 * may differ from that of other stacking queues.
2002 * Recalculate it to check the request correctly on this queue's
2003 * limitation.
2004 */
2005 blk_recalc_rq_segments(rq);
8a78362c 2006 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2007 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2008 return -EIO;
2009 }
2010
2011 return 0;
2012}
2013EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2014
2015/**
2016 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2017 * @q: the queue to submit the request
2018 * @rq: the request being queued
2019 */
2020int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2021{
2022 unsigned long flags;
4853abaa 2023 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
2024
2025 if (blk_rq_check_limits(q, rq))
2026 return -EIO;
2027
b2c9cd37
AM
2028 if (rq->rq_disk &&
2029 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2030 return -EIO;
82124d60
KU
2031
2032 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2033 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2034 spin_unlock_irqrestore(q->queue_lock, flags);
2035 return -ENODEV;
2036 }
82124d60
KU
2037
2038 /*
2039 * Submitting request must be dequeued before calling this function
2040 * because it will be linked to another request_queue
2041 */
2042 BUG_ON(blk_queued_rq(rq));
2043
4853abaa
JM
2044 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2045 where = ELEVATOR_INSERT_FLUSH;
2046
2047 add_acct_request(q, rq, where);
e67b77c7
JM
2048 if (where == ELEVATOR_INSERT_FLUSH)
2049 __blk_run_queue(q);
82124d60
KU
2050 spin_unlock_irqrestore(q->queue_lock, flags);
2051
2052 return 0;
2053}
2054EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2055
80a761fd
TH
2056/**
2057 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2058 * @rq: request to examine
2059 *
2060 * Description:
2061 * A request could be merge of IOs which require different failure
2062 * handling. This function determines the number of bytes which
2063 * can be failed from the beginning of the request without
2064 * crossing into area which need to be retried further.
2065 *
2066 * Return:
2067 * The number of bytes to fail.
2068 *
2069 * Context:
2070 * queue_lock must be held.
2071 */
2072unsigned int blk_rq_err_bytes(const struct request *rq)
2073{
2074 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2075 unsigned int bytes = 0;
2076 struct bio *bio;
2077
2078 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2079 return blk_rq_bytes(rq);
2080
2081 /*
2082 * Currently the only 'mixing' which can happen is between
2083 * different fastfail types. We can safely fail portions
2084 * which have all the failfast bits that the first one has -
2085 * the ones which are at least as eager to fail as the first
2086 * one.
2087 */
2088 for (bio = rq->bio; bio; bio = bio->bi_next) {
2089 if ((bio->bi_rw & ff) != ff)
2090 break;
4f024f37 2091 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2092 }
2093
2094 /* this could lead to infinite loop */
2095 BUG_ON(blk_rq_bytes(rq) && !bytes);
2096 return bytes;
2097}
2098EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2099
320ae51f 2100void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2101{
c2553b58 2102 if (blk_do_io_stat(req)) {
bc58ba94
JA
2103 const int rw = rq_data_dir(req);
2104 struct hd_struct *part;
2105 int cpu;
2106
2107 cpu = part_stat_lock();
09e099d4 2108 part = req->part;
bc58ba94
JA
2109 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2110 part_stat_unlock();
2111 }
2112}
2113
320ae51f 2114void blk_account_io_done(struct request *req)
bc58ba94 2115{
bc58ba94 2116 /*
dd4c133f
TH
2117 * Account IO completion. flush_rq isn't accounted as a
2118 * normal IO on queueing nor completion. Accounting the
2119 * containing request is enough.
bc58ba94 2120 */
414b4ff5 2121 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2122 unsigned long duration = jiffies - req->start_time;
2123 const int rw = rq_data_dir(req);
2124 struct hd_struct *part;
2125 int cpu;
2126
2127 cpu = part_stat_lock();
09e099d4 2128 part = req->part;
bc58ba94
JA
2129
2130 part_stat_inc(cpu, part, ios[rw]);
2131 part_stat_add(cpu, part, ticks[rw], duration);
2132 part_round_stats(cpu, part);
316d315b 2133 part_dec_in_flight(part, rw);
bc58ba94 2134
6c23a968 2135 hd_struct_put(part);
bc58ba94
JA
2136 part_stat_unlock();
2137 }
2138}
2139
c8158819
LM
2140#ifdef CONFIG_PM_RUNTIME
2141/*
2142 * Don't process normal requests when queue is suspended
2143 * or in the process of suspending/resuming
2144 */
2145static struct request *blk_pm_peek_request(struct request_queue *q,
2146 struct request *rq)
2147{
2148 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2149 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2150 return NULL;
2151 else
2152 return rq;
2153}
2154#else
2155static inline struct request *blk_pm_peek_request(struct request_queue *q,
2156 struct request *rq)
2157{
2158 return rq;
2159}
2160#endif
2161
320ae51f
JA
2162void blk_account_io_start(struct request *rq, bool new_io)
2163{
2164 struct hd_struct *part;
2165 int rw = rq_data_dir(rq);
2166 int cpu;
2167
2168 if (!blk_do_io_stat(rq))
2169 return;
2170
2171 cpu = part_stat_lock();
2172
2173 if (!new_io) {
2174 part = rq->part;
2175 part_stat_inc(cpu, part, merges[rw]);
2176 } else {
2177 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2178 if (!hd_struct_try_get(part)) {
2179 /*
2180 * The partition is already being removed,
2181 * the request will be accounted on the disk only
2182 *
2183 * We take a reference on disk->part0 although that
2184 * partition will never be deleted, so we can treat
2185 * it as any other partition.
2186 */
2187 part = &rq->rq_disk->part0;
2188 hd_struct_get(part);
2189 }
2190 part_round_stats(cpu, part);
2191 part_inc_in_flight(part, rw);
2192 rq->part = part;
2193 }
2194
2195 part_stat_unlock();
2196}
2197
3bcddeac 2198/**
9934c8c0
TH
2199 * blk_peek_request - peek at the top of a request queue
2200 * @q: request queue to peek at
2201 *
2202 * Description:
2203 * Return the request at the top of @q. The returned request
2204 * should be started using blk_start_request() before LLD starts
2205 * processing it.
2206 *
2207 * Return:
2208 * Pointer to the request at the top of @q if available. Null
2209 * otherwise.
2210 *
2211 * Context:
2212 * queue_lock must be held.
2213 */
2214struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2215{
2216 struct request *rq;
2217 int ret;
2218
2219 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2220
2221 rq = blk_pm_peek_request(q, rq);
2222 if (!rq)
2223 break;
2224
158dbda0
TH
2225 if (!(rq->cmd_flags & REQ_STARTED)) {
2226 /*
2227 * This is the first time the device driver
2228 * sees this request (possibly after
2229 * requeueing). Notify IO scheduler.
2230 */
33659ebb 2231 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2232 elv_activate_rq(q, rq);
2233
2234 /*
2235 * just mark as started even if we don't start
2236 * it, a request that has been delayed should
2237 * not be passed by new incoming requests
2238 */
2239 rq->cmd_flags |= REQ_STARTED;
2240 trace_block_rq_issue(q, rq);
2241 }
2242
2243 if (!q->boundary_rq || q->boundary_rq == rq) {
2244 q->end_sector = rq_end_sector(rq);
2245 q->boundary_rq = NULL;
2246 }
2247
2248 if (rq->cmd_flags & REQ_DONTPREP)
2249 break;
2250
2e46e8b2 2251 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2252 /*
2253 * make sure space for the drain appears we
2254 * know we can do this because max_hw_segments
2255 * has been adjusted to be one fewer than the
2256 * device can handle
2257 */
2258 rq->nr_phys_segments++;
2259 }
2260
2261 if (!q->prep_rq_fn)
2262 break;
2263
2264 ret = q->prep_rq_fn(q, rq);
2265 if (ret == BLKPREP_OK) {
2266 break;
2267 } else if (ret == BLKPREP_DEFER) {
2268 /*
2269 * the request may have been (partially) prepped.
2270 * we need to keep this request in the front to
2271 * avoid resource deadlock. REQ_STARTED will
2272 * prevent other fs requests from passing this one.
2273 */
2e46e8b2 2274 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2275 !(rq->cmd_flags & REQ_DONTPREP)) {
2276 /*
2277 * remove the space for the drain we added
2278 * so that we don't add it again
2279 */
2280 --rq->nr_phys_segments;
2281 }
2282
2283 rq = NULL;
2284 break;
2285 } else if (ret == BLKPREP_KILL) {
2286 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2287 /*
2288 * Mark this request as started so we don't trigger
2289 * any debug logic in the end I/O path.
2290 */
2291 blk_start_request(rq);
40cbbb78 2292 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2293 } else {
2294 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2295 break;
2296 }
2297 }
2298
2299 return rq;
2300}
9934c8c0 2301EXPORT_SYMBOL(blk_peek_request);
158dbda0 2302
9934c8c0 2303void blk_dequeue_request(struct request *rq)
158dbda0 2304{
9934c8c0
TH
2305 struct request_queue *q = rq->q;
2306
158dbda0
TH
2307 BUG_ON(list_empty(&rq->queuelist));
2308 BUG_ON(ELV_ON_HASH(rq));
2309
2310 list_del_init(&rq->queuelist);
2311
2312 /*
2313 * the time frame between a request being removed from the lists
2314 * and to it is freed is accounted as io that is in progress at
2315 * the driver side.
2316 */
9195291e 2317 if (blk_account_rq(rq)) {
0a7ae2ff 2318 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2319 set_io_start_time_ns(rq);
2320 }
158dbda0
TH
2321}
2322
9934c8c0
TH
2323/**
2324 * blk_start_request - start request processing on the driver
2325 * @req: request to dequeue
2326 *
2327 * Description:
2328 * Dequeue @req and start timeout timer on it. This hands off the
2329 * request to the driver.
2330 *
2331 * Block internal functions which don't want to start timer should
2332 * call blk_dequeue_request().
2333 *
2334 * Context:
2335 * queue_lock must be held.
2336 */
2337void blk_start_request(struct request *req)
2338{
2339 blk_dequeue_request(req);
2340
2341 /*
5f49f631
TH
2342 * We are now handing the request to the hardware, initialize
2343 * resid_len to full count and add the timeout handler.
9934c8c0 2344 */
5f49f631 2345 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2346 if (unlikely(blk_bidi_rq(req)))
2347 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2348
4912aa6c 2349 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2350 blk_add_timer(req);
2351}
2352EXPORT_SYMBOL(blk_start_request);
2353
2354/**
2355 * blk_fetch_request - fetch a request from a request queue
2356 * @q: request queue to fetch a request from
2357 *
2358 * Description:
2359 * Return the request at the top of @q. The request is started on
2360 * return and LLD can start processing it immediately.
2361 *
2362 * Return:
2363 * Pointer to the request at the top of @q if available. Null
2364 * otherwise.
2365 *
2366 * Context:
2367 * queue_lock must be held.
2368 */
2369struct request *blk_fetch_request(struct request_queue *q)
2370{
2371 struct request *rq;
2372
2373 rq = blk_peek_request(q);
2374 if (rq)
2375 blk_start_request(rq);
2376 return rq;
2377}
2378EXPORT_SYMBOL(blk_fetch_request);
2379
3bcddeac 2380/**
2e60e022 2381 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2382 * @req: the request being processed
710027a4 2383 * @error: %0 for success, < %0 for error
8ebf9756 2384 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2385 *
2386 * Description:
8ebf9756
RD
2387 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2388 * the request structure even if @req doesn't have leftover.
2389 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2390 *
2391 * This special helper function is only for request stacking drivers
2392 * (e.g. request-based dm) so that they can handle partial completion.
2393 * Actual device drivers should use blk_end_request instead.
2394 *
2395 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2396 * %false return from this function.
3bcddeac
KU
2397 *
2398 * Return:
2e60e022
TH
2399 * %false - this request doesn't have any more data
2400 * %true - this request has more data
3bcddeac 2401 **/
2e60e022 2402bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2403{
f79ea416 2404 int total_bytes;
1da177e4 2405
2e60e022
TH
2406 if (!req->bio)
2407 return false;
2408
af5040da 2409 trace_block_rq_complete(req->q, req, nr_bytes);
2056a782 2410
1da177e4 2411 /*
6f41469c
TH
2412 * For fs requests, rq is just carrier of independent bio's
2413 * and each partial completion should be handled separately.
2414 * Reset per-request error on each partial completion.
2415 *
2416 * TODO: tj: This is too subtle. It would be better to let
2417 * low level drivers do what they see fit.
1da177e4 2418 */
33659ebb 2419 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2420 req->errors = 0;
2421
33659ebb
CH
2422 if (error && req->cmd_type == REQ_TYPE_FS &&
2423 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2424 char *error_type;
2425
2426 switch (error) {
2427 case -ENOLINK:
2428 error_type = "recoverable transport";
2429 break;
2430 case -EREMOTEIO:
2431 error_type = "critical target";
2432 break;
2433 case -EBADE:
2434 error_type = "critical nexus";
2435 break;
d1ffc1f8
HR
2436 case -ETIMEDOUT:
2437 error_type = "timeout";
2438 break;
a9d6ceb8
HR
2439 case -ENOSPC:
2440 error_type = "critical space allocation";
2441 break;
7e782af5
HR
2442 case -ENODATA:
2443 error_type = "critical medium";
2444 break;
79775567
HR
2445 case -EIO:
2446 default:
2447 error_type = "I/O";
2448 break;
2449 }
37d7b34f
YZ
2450 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2451 error_type, req->rq_disk ?
2452 req->rq_disk->disk_name : "?",
2453 (unsigned long long)blk_rq_pos(req));
2454
1da177e4
LT
2455 }
2456
bc58ba94 2457 blk_account_io_completion(req, nr_bytes);
d72d904a 2458
f79ea416
KO
2459 total_bytes = 0;
2460 while (req->bio) {
2461 struct bio *bio = req->bio;
4f024f37 2462 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2463
4f024f37 2464 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2465 req->bio = bio->bi_next;
1da177e4 2466
f79ea416 2467 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2468
f79ea416
KO
2469 total_bytes += bio_bytes;
2470 nr_bytes -= bio_bytes;
1da177e4 2471
f79ea416
KO
2472 if (!nr_bytes)
2473 break;
1da177e4
LT
2474 }
2475
2476 /*
2477 * completely done
2478 */
2e60e022
TH
2479 if (!req->bio) {
2480 /*
2481 * Reset counters so that the request stacking driver
2482 * can find how many bytes remain in the request
2483 * later.
2484 */
a2dec7b3 2485 req->__data_len = 0;
2e60e022
TH
2486 return false;
2487 }
1da177e4 2488
a2dec7b3 2489 req->__data_len -= total_bytes;
2e46e8b2
TH
2490
2491 /* update sector only for requests with clear definition of sector */
e2a60da7 2492 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2493 req->__sector += total_bytes >> 9;
2e46e8b2 2494
80a761fd
TH
2495 /* mixed attributes always follow the first bio */
2496 if (req->cmd_flags & REQ_MIXED_MERGE) {
2497 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2498 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2499 }
2500
2e46e8b2
TH
2501 /*
2502 * If total number of sectors is less than the first segment
2503 * size, something has gone terribly wrong.
2504 */
2505 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2506 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2507 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2508 }
2509
2510 /* recalculate the number of segments */
1da177e4 2511 blk_recalc_rq_segments(req);
2e46e8b2 2512
2e60e022 2513 return true;
1da177e4 2514}
2e60e022 2515EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2516
2e60e022
TH
2517static bool blk_update_bidi_request(struct request *rq, int error,
2518 unsigned int nr_bytes,
2519 unsigned int bidi_bytes)
5efccd17 2520{
2e60e022
TH
2521 if (blk_update_request(rq, error, nr_bytes))
2522 return true;
5efccd17 2523
2e60e022
TH
2524 /* Bidi request must be completed as a whole */
2525 if (unlikely(blk_bidi_rq(rq)) &&
2526 blk_update_request(rq->next_rq, error, bidi_bytes))
2527 return true;
5efccd17 2528
e2e1a148
JA
2529 if (blk_queue_add_random(rq->q))
2530 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2531
2532 return false;
1da177e4
LT
2533}
2534
28018c24
JB
2535/**
2536 * blk_unprep_request - unprepare a request
2537 * @req: the request
2538 *
2539 * This function makes a request ready for complete resubmission (or
2540 * completion). It happens only after all error handling is complete,
2541 * so represents the appropriate moment to deallocate any resources
2542 * that were allocated to the request in the prep_rq_fn. The queue
2543 * lock is held when calling this.
2544 */
2545void blk_unprep_request(struct request *req)
2546{
2547 struct request_queue *q = req->q;
2548
2549 req->cmd_flags &= ~REQ_DONTPREP;
2550 if (q->unprep_rq_fn)
2551 q->unprep_rq_fn(q, req);
2552}
2553EXPORT_SYMBOL_GPL(blk_unprep_request);
2554
1da177e4
LT
2555/*
2556 * queue lock must be held
2557 */
12120077 2558void blk_finish_request(struct request *req, int error)
1da177e4 2559{
b8286239
KU
2560 if (blk_rq_tagged(req))
2561 blk_queue_end_tag(req->q, req);
2562
ba396a6c 2563 BUG_ON(blk_queued_rq(req));
1da177e4 2564
33659ebb 2565 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2566 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2567
e78042e5
MA
2568 blk_delete_timer(req);
2569
28018c24
JB
2570 if (req->cmd_flags & REQ_DONTPREP)
2571 blk_unprep_request(req);
2572
bc58ba94 2573 blk_account_io_done(req);
b8286239 2574
1da177e4 2575 if (req->end_io)
8ffdc655 2576 req->end_io(req, error);
b8286239
KU
2577 else {
2578 if (blk_bidi_rq(req))
2579 __blk_put_request(req->next_rq->q, req->next_rq);
2580
1da177e4 2581 __blk_put_request(req->q, req);
b8286239 2582 }
1da177e4 2583}
12120077 2584EXPORT_SYMBOL(blk_finish_request);
1da177e4 2585
3b11313a 2586/**
2e60e022
TH
2587 * blk_end_bidi_request - Complete a bidi request
2588 * @rq: the request to complete
2589 * @error: %0 for success, < %0 for error
2590 * @nr_bytes: number of bytes to complete @rq
2591 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2592 *
2593 * Description:
e3a04fe3 2594 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2595 * Drivers that supports bidi can safely call this member for any
2596 * type of request, bidi or uni. In the later case @bidi_bytes is
2597 * just ignored.
336cdb40
KU
2598 *
2599 * Return:
2e60e022
TH
2600 * %false - we are done with this request
2601 * %true - still buffers pending for this request
a0cd1285 2602 **/
b1f74493 2603static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2604 unsigned int nr_bytes, unsigned int bidi_bytes)
2605{
336cdb40 2606 struct request_queue *q = rq->q;
2e60e022 2607 unsigned long flags;
32fab448 2608
2e60e022
TH
2609 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2610 return true;
32fab448 2611
336cdb40 2612 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2613 blk_finish_request(rq, error);
336cdb40
KU
2614 spin_unlock_irqrestore(q->queue_lock, flags);
2615
2e60e022 2616 return false;
32fab448
KU
2617}
2618
336cdb40 2619/**
2e60e022
TH
2620 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2621 * @rq: the request to complete
710027a4 2622 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2623 * @nr_bytes: number of bytes to complete @rq
2624 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2625 *
2626 * Description:
2e60e022
TH
2627 * Identical to blk_end_bidi_request() except that queue lock is
2628 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2629 *
2630 * Return:
2e60e022
TH
2631 * %false - we are done with this request
2632 * %true - still buffers pending for this request
336cdb40 2633 **/
4853abaa 2634bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2635 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2636{
2e60e022
TH
2637 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2638 return true;
336cdb40 2639
2e60e022 2640 blk_finish_request(rq, error);
336cdb40 2641
2e60e022 2642 return false;
336cdb40 2643}
e19a3ab0
KU
2644
2645/**
2646 * blk_end_request - Helper function for drivers to complete the request.
2647 * @rq: the request being processed
710027a4 2648 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2649 * @nr_bytes: number of bytes to complete
2650 *
2651 * Description:
2652 * Ends I/O on a number of bytes attached to @rq.
2653 * If @rq has leftover, sets it up for the next range of segments.
2654 *
2655 * Return:
b1f74493
FT
2656 * %false - we are done with this request
2657 * %true - still buffers pending for this request
e19a3ab0 2658 **/
b1f74493 2659bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2660{
b1f74493 2661 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2662}
56ad1740 2663EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2664
2665/**
b1f74493
FT
2666 * blk_end_request_all - Helper function for drives to finish the request.
2667 * @rq: the request to finish
8ebf9756 2668 * @error: %0 for success, < %0 for error
336cdb40
KU
2669 *
2670 * Description:
b1f74493
FT
2671 * Completely finish @rq.
2672 */
2673void blk_end_request_all(struct request *rq, int error)
336cdb40 2674{
b1f74493
FT
2675 bool pending;
2676 unsigned int bidi_bytes = 0;
336cdb40 2677
b1f74493
FT
2678 if (unlikely(blk_bidi_rq(rq)))
2679 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2680
b1f74493
FT
2681 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2682 BUG_ON(pending);
2683}
56ad1740 2684EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2685
b1f74493
FT
2686/**
2687 * blk_end_request_cur - Helper function to finish the current request chunk.
2688 * @rq: the request to finish the current chunk for
8ebf9756 2689 * @error: %0 for success, < %0 for error
b1f74493
FT
2690 *
2691 * Description:
2692 * Complete the current consecutively mapped chunk from @rq.
2693 *
2694 * Return:
2695 * %false - we are done with this request
2696 * %true - still buffers pending for this request
2697 */
2698bool blk_end_request_cur(struct request *rq, int error)
2699{
2700 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2701}
56ad1740 2702EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2703
80a761fd
TH
2704/**
2705 * blk_end_request_err - Finish a request till the next failure boundary.
2706 * @rq: the request to finish till the next failure boundary for
2707 * @error: must be negative errno
2708 *
2709 * Description:
2710 * Complete @rq till the next failure boundary.
2711 *
2712 * Return:
2713 * %false - we are done with this request
2714 * %true - still buffers pending for this request
2715 */
2716bool blk_end_request_err(struct request *rq, int error)
2717{
2718 WARN_ON(error >= 0);
2719 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2720}
2721EXPORT_SYMBOL_GPL(blk_end_request_err);
2722
e3a04fe3 2723/**
b1f74493
FT
2724 * __blk_end_request - Helper function for drivers to complete the request.
2725 * @rq: the request being processed
2726 * @error: %0 for success, < %0 for error
2727 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2728 *
2729 * Description:
b1f74493 2730 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2731 *
2732 * Return:
b1f74493
FT
2733 * %false - we are done with this request
2734 * %true - still buffers pending for this request
e3a04fe3 2735 **/
b1f74493 2736bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2737{
b1f74493 2738 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2739}
56ad1740 2740EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2741
32fab448 2742/**
b1f74493
FT
2743 * __blk_end_request_all - Helper function for drives to finish the request.
2744 * @rq: the request to finish
8ebf9756 2745 * @error: %0 for success, < %0 for error
32fab448
KU
2746 *
2747 * Description:
b1f74493 2748 * Completely finish @rq. Must be called with queue lock held.
32fab448 2749 */
b1f74493 2750void __blk_end_request_all(struct request *rq, int error)
32fab448 2751{
b1f74493
FT
2752 bool pending;
2753 unsigned int bidi_bytes = 0;
2754
2755 if (unlikely(blk_bidi_rq(rq)))
2756 bidi_bytes = blk_rq_bytes(rq->next_rq);
2757
2758 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2759 BUG_ON(pending);
32fab448 2760}
56ad1740 2761EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2762
e19a3ab0 2763/**
b1f74493
FT
2764 * __blk_end_request_cur - Helper function to finish the current request chunk.
2765 * @rq: the request to finish the current chunk for
8ebf9756 2766 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2767 *
2768 * Description:
b1f74493
FT
2769 * Complete the current consecutively mapped chunk from @rq. Must
2770 * be called with queue lock held.
e19a3ab0
KU
2771 *
2772 * Return:
b1f74493
FT
2773 * %false - we are done with this request
2774 * %true - still buffers pending for this request
2775 */
2776bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2777{
b1f74493 2778 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2779}
56ad1740 2780EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2781
80a761fd
TH
2782/**
2783 * __blk_end_request_err - Finish a request till the next failure boundary.
2784 * @rq: the request to finish till the next failure boundary for
2785 * @error: must be negative errno
2786 *
2787 * Description:
2788 * Complete @rq till the next failure boundary. Must be called
2789 * with queue lock held.
2790 *
2791 * Return:
2792 * %false - we are done with this request
2793 * %true - still buffers pending for this request
2794 */
2795bool __blk_end_request_err(struct request *rq, int error)
2796{
2797 WARN_ON(error >= 0);
2798 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2799}
2800EXPORT_SYMBOL_GPL(__blk_end_request_err);
2801
86db1e29
JA
2802void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2803 struct bio *bio)
1da177e4 2804{
a82afdfc 2805 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2806 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2807
b4f42e28 2808 if (bio_has_data(bio))
fb2dce86 2809 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2810
4f024f37 2811 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2812 rq->bio = rq->biotail = bio;
1da177e4 2813
66846572
N
2814 if (bio->bi_bdev)
2815 rq->rq_disk = bio->bi_bdev->bd_disk;
2816}
1da177e4 2817
2d4dc890
IL
2818#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2819/**
2820 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2821 * @rq: the request to be flushed
2822 *
2823 * Description:
2824 * Flush all pages in @rq.
2825 */
2826void rq_flush_dcache_pages(struct request *rq)
2827{
2828 struct req_iterator iter;
7988613b 2829 struct bio_vec bvec;
2d4dc890
IL
2830
2831 rq_for_each_segment(bvec, rq, iter)
7988613b 2832 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2833}
2834EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2835#endif
2836
ef9e3fac
KU
2837/**
2838 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2839 * @q : the queue of the device being checked
2840 *
2841 * Description:
2842 * Check if underlying low-level drivers of a device are busy.
2843 * If the drivers want to export their busy state, they must set own
2844 * exporting function using blk_queue_lld_busy() first.
2845 *
2846 * Basically, this function is used only by request stacking drivers
2847 * to stop dispatching requests to underlying devices when underlying
2848 * devices are busy. This behavior helps more I/O merging on the queue
2849 * of the request stacking driver and prevents I/O throughput regression
2850 * on burst I/O load.
2851 *
2852 * Return:
2853 * 0 - Not busy (The request stacking driver should dispatch request)
2854 * 1 - Busy (The request stacking driver should stop dispatching request)
2855 */
2856int blk_lld_busy(struct request_queue *q)
2857{
2858 if (q->lld_busy_fn)
2859 return q->lld_busy_fn(q);
2860
2861 return 0;
2862}
2863EXPORT_SYMBOL_GPL(blk_lld_busy);
2864
b0fd271d
KU
2865/**
2866 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2867 * @rq: the clone request to be cleaned up
2868 *
2869 * Description:
2870 * Free all bios in @rq for a cloned request.
2871 */
2872void blk_rq_unprep_clone(struct request *rq)
2873{
2874 struct bio *bio;
2875
2876 while ((bio = rq->bio) != NULL) {
2877 rq->bio = bio->bi_next;
2878
2879 bio_put(bio);
2880 }
2881}
2882EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2883
2884/*
2885 * Copy attributes of the original request to the clone request.
b4f42e28 2886 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
b0fd271d
KU
2887 */
2888static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2889{
2890 dst->cpu = src->cpu;
3a2edd0d 2891 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2892 dst->cmd_type = src->cmd_type;
2893 dst->__sector = blk_rq_pos(src);
2894 dst->__data_len = blk_rq_bytes(src);
2895 dst->nr_phys_segments = src->nr_phys_segments;
2896 dst->ioprio = src->ioprio;
2897 dst->extra_len = src->extra_len;
2898}
2899
2900/**
2901 * blk_rq_prep_clone - Helper function to setup clone request
2902 * @rq: the request to be setup
2903 * @rq_src: original request to be cloned
2904 * @bs: bio_set that bios for clone are allocated from
2905 * @gfp_mask: memory allocation mask for bio
2906 * @bio_ctr: setup function to be called for each clone bio.
2907 * Returns %0 for success, non %0 for failure.
2908 * @data: private data to be passed to @bio_ctr
2909 *
2910 * Description:
2911 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
b4f42e28 2912 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
b0fd271d
KU
2913 * are not copied, and copying such parts is the caller's responsibility.
2914 * Also, pages which the original bios are pointing to are not copied
2915 * and the cloned bios just point same pages.
2916 * So cloned bios must be completed before original bios, which means
2917 * the caller must complete @rq before @rq_src.
2918 */
2919int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2920 struct bio_set *bs, gfp_t gfp_mask,
2921 int (*bio_ctr)(struct bio *, struct bio *, void *),
2922 void *data)
2923{
2924 struct bio *bio, *bio_src;
2925
2926 if (!bs)
2927 bs = fs_bio_set;
2928
2929 blk_rq_init(NULL, rq);
2930
2931 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2932 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2933 if (!bio)
2934 goto free_and_out;
2935
b0fd271d
KU
2936 if (bio_ctr && bio_ctr(bio, bio_src, data))
2937 goto free_and_out;
2938
2939 if (rq->bio) {
2940 rq->biotail->bi_next = bio;
2941 rq->biotail = bio;
2942 } else
2943 rq->bio = rq->biotail = bio;
2944 }
2945
2946 __blk_rq_prep_clone(rq, rq_src);
2947
2948 return 0;
2949
2950free_and_out:
2951 if (bio)
4254bba1 2952 bio_put(bio);
b0fd271d
KU
2953 blk_rq_unprep_clone(rq);
2954
2955 return -ENOMEM;
2956}
2957EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2958
59c3d45e 2959int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
2960{
2961 return queue_work(kblockd_workqueue, work);
2962}
1da177e4
LT
2963EXPORT_SYMBOL(kblockd_schedule_work);
2964
59c3d45e
JA
2965int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2966 unsigned long delay)
e43473b7
VG
2967{
2968 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2969}
2970EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2971
8ab14595
JA
2972int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2973 unsigned long delay)
2974{
2975 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2976}
2977EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2978
75df7136
SJ
2979/**
2980 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2981 * @plug: The &struct blk_plug that needs to be initialized
2982 *
2983 * Description:
2984 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2985 * pending I/O should the task end up blocking between blk_start_plug() and
2986 * blk_finish_plug(). This is important from a performance perspective, but
2987 * also ensures that we don't deadlock. For instance, if the task is blocking
2988 * for a memory allocation, memory reclaim could end up wanting to free a
2989 * page belonging to that request that is currently residing in our private
2990 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2991 * this kind of deadlock.
2992 */
73c10101
JA
2993void blk_start_plug(struct blk_plug *plug)
2994{
2995 struct task_struct *tsk = current;
2996
73c10101 2997 INIT_LIST_HEAD(&plug->list);
320ae51f 2998 INIT_LIST_HEAD(&plug->mq_list);
048c9374 2999 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
3000
3001 /*
3002 * If this is a nested plug, don't actually assign it. It will be
3003 * flushed on its own.
3004 */
3005 if (!tsk->plug) {
3006 /*
3007 * Store ordering should not be needed here, since a potential
3008 * preempt will imply a full memory barrier
3009 */
3010 tsk->plug = plug;
3011 }
3012}
3013EXPORT_SYMBOL(blk_start_plug);
3014
3015static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3016{
3017 struct request *rqa = container_of(a, struct request, queuelist);
3018 struct request *rqb = container_of(b, struct request, queuelist);
3019
975927b9
JM
3020 return !(rqa->q < rqb->q ||
3021 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3022}
3023
49cac01e
JA
3024/*
3025 * If 'from_schedule' is true, then postpone the dispatch of requests
3026 * until a safe kblockd context. We due this to avoid accidental big
3027 * additional stack usage in driver dispatch, in places where the originally
3028 * plugger did not intend it.
3029 */
f6603783 3030static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3031 bool from_schedule)
99e22598 3032 __releases(q->queue_lock)
94b5eb28 3033{
49cac01e 3034 trace_block_unplug(q, depth, !from_schedule);
99e22598 3035
70460571 3036 if (from_schedule)
24ecfbe2 3037 blk_run_queue_async(q);
70460571 3038 else
24ecfbe2 3039 __blk_run_queue(q);
70460571 3040 spin_unlock(q->queue_lock);
94b5eb28
JA
3041}
3042
74018dc3 3043static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3044{
3045 LIST_HEAD(callbacks);
3046
2a7d5559
SL
3047 while (!list_empty(&plug->cb_list)) {
3048 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3049
2a7d5559
SL
3050 while (!list_empty(&callbacks)) {
3051 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3052 struct blk_plug_cb,
3053 list);
2a7d5559 3054 list_del(&cb->list);
74018dc3 3055 cb->callback(cb, from_schedule);
2a7d5559 3056 }
048c9374
N
3057 }
3058}
3059
9cbb1750
N
3060struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3061 int size)
3062{
3063 struct blk_plug *plug = current->plug;
3064 struct blk_plug_cb *cb;
3065
3066 if (!plug)
3067 return NULL;
3068
3069 list_for_each_entry(cb, &plug->cb_list, list)
3070 if (cb->callback == unplug && cb->data == data)
3071 return cb;
3072
3073 /* Not currently on the callback list */
3074 BUG_ON(size < sizeof(*cb));
3075 cb = kzalloc(size, GFP_ATOMIC);
3076 if (cb) {
3077 cb->data = data;
3078 cb->callback = unplug;
3079 list_add(&cb->list, &plug->cb_list);
3080 }
3081 return cb;
3082}
3083EXPORT_SYMBOL(blk_check_plugged);
3084
49cac01e 3085void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3086{
3087 struct request_queue *q;
3088 unsigned long flags;
3089 struct request *rq;
109b8129 3090 LIST_HEAD(list);
94b5eb28 3091 unsigned int depth;
73c10101 3092
74018dc3 3093 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3094
3095 if (!list_empty(&plug->mq_list))
3096 blk_mq_flush_plug_list(plug, from_schedule);
3097
73c10101
JA
3098 if (list_empty(&plug->list))
3099 return;
3100
109b8129
N
3101 list_splice_init(&plug->list, &list);
3102
422765c2 3103 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3104
3105 q = NULL;
94b5eb28 3106 depth = 0;
18811272
JA
3107
3108 /*
3109 * Save and disable interrupts here, to avoid doing it for every
3110 * queue lock we have to take.
3111 */
73c10101 3112 local_irq_save(flags);
109b8129
N
3113 while (!list_empty(&list)) {
3114 rq = list_entry_rq(list.next);
73c10101 3115 list_del_init(&rq->queuelist);
73c10101
JA
3116 BUG_ON(!rq->q);
3117 if (rq->q != q) {
99e22598
JA
3118 /*
3119 * This drops the queue lock
3120 */
3121 if (q)
49cac01e 3122 queue_unplugged(q, depth, from_schedule);
73c10101 3123 q = rq->q;
94b5eb28 3124 depth = 0;
73c10101
JA
3125 spin_lock(q->queue_lock);
3126 }
8ba61435
TH
3127
3128 /*
3129 * Short-circuit if @q is dead
3130 */
3f3299d5 3131 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3132 __blk_end_request_all(rq, -ENODEV);
3133 continue;
3134 }
3135
73c10101
JA
3136 /*
3137 * rq is already accounted, so use raw insert
3138 */
401a18e9
JA
3139 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3140 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3141 else
3142 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3143
3144 depth++;
73c10101
JA
3145 }
3146
99e22598
JA
3147 /*
3148 * This drops the queue lock
3149 */
3150 if (q)
49cac01e 3151 queue_unplugged(q, depth, from_schedule);
73c10101 3152
73c10101
JA
3153 local_irq_restore(flags);
3154}
73c10101
JA
3155
3156void blk_finish_plug(struct blk_plug *plug)
3157{
f6603783 3158 blk_flush_plug_list(plug, false);
73c10101 3159
88b996cd
CH
3160 if (plug == current->plug)
3161 current->plug = NULL;
73c10101 3162}
88b996cd 3163EXPORT_SYMBOL(blk_finish_plug);
73c10101 3164
6c954667
LM
3165#ifdef CONFIG_PM_RUNTIME
3166/**
3167 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3168 * @q: the queue of the device
3169 * @dev: the device the queue belongs to
3170 *
3171 * Description:
3172 * Initialize runtime-PM-related fields for @q and start auto suspend for
3173 * @dev. Drivers that want to take advantage of request-based runtime PM
3174 * should call this function after @dev has been initialized, and its
3175 * request queue @q has been allocated, and runtime PM for it can not happen
3176 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3177 * cases, driver should call this function before any I/O has taken place.
3178 *
3179 * This function takes care of setting up using auto suspend for the device,
3180 * the autosuspend delay is set to -1 to make runtime suspend impossible
3181 * until an updated value is either set by user or by driver. Drivers do
3182 * not need to touch other autosuspend settings.
3183 *
3184 * The block layer runtime PM is request based, so only works for drivers
3185 * that use request as their IO unit instead of those directly use bio's.
3186 */
3187void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3188{
3189 q->dev = dev;
3190 q->rpm_status = RPM_ACTIVE;
3191 pm_runtime_set_autosuspend_delay(q->dev, -1);
3192 pm_runtime_use_autosuspend(q->dev);
3193}
3194EXPORT_SYMBOL(blk_pm_runtime_init);
3195
3196/**
3197 * blk_pre_runtime_suspend - Pre runtime suspend check
3198 * @q: the queue of the device
3199 *
3200 * Description:
3201 * This function will check if runtime suspend is allowed for the device
3202 * by examining if there are any requests pending in the queue. If there
3203 * are requests pending, the device can not be runtime suspended; otherwise,
3204 * the queue's status will be updated to SUSPENDING and the driver can
3205 * proceed to suspend the device.
3206 *
3207 * For the not allowed case, we mark last busy for the device so that
3208 * runtime PM core will try to autosuspend it some time later.
3209 *
3210 * This function should be called near the start of the device's
3211 * runtime_suspend callback.
3212 *
3213 * Return:
3214 * 0 - OK to runtime suspend the device
3215 * -EBUSY - Device should not be runtime suspended
3216 */
3217int blk_pre_runtime_suspend(struct request_queue *q)
3218{
3219 int ret = 0;
3220
3221 spin_lock_irq(q->queue_lock);
3222 if (q->nr_pending) {
3223 ret = -EBUSY;
3224 pm_runtime_mark_last_busy(q->dev);
3225 } else {
3226 q->rpm_status = RPM_SUSPENDING;
3227 }
3228 spin_unlock_irq(q->queue_lock);
3229 return ret;
3230}
3231EXPORT_SYMBOL(blk_pre_runtime_suspend);
3232
3233/**
3234 * blk_post_runtime_suspend - Post runtime suspend processing
3235 * @q: the queue of the device
3236 * @err: return value of the device's runtime_suspend function
3237 *
3238 * Description:
3239 * Update the queue's runtime status according to the return value of the
3240 * device's runtime suspend function and mark last busy for the device so
3241 * that PM core will try to auto suspend the device at a later time.
3242 *
3243 * This function should be called near the end of the device's
3244 * runtime_suspend callback.
3245 */
3246void blk_post_runtime_suspend(struct request_queue *q, int err)
3247{
3248 spin_lock_irq(q->queue_lock);
3249 if (!err) {
3250 q->rpm_status = RPM_SUSPENDED;
3251 } else {
3252 q->rpm_status = RPM_ACTIVE;
3253 pm_runtime_mark_last_busy(q->dev);
3254 }
3255 spin_unlock_irq(q->queue_lock);
3256}
3257EXPORT_SYMBOL(blk_post_runtime_suspend);
3258
3259/**
3260 * blk_pre_runtime_resume - Pre runtime resume processing
3261 * @q: the queue of the device
3262 *
3263 * Description:
3264 * Update the queue's runtime status to RESUMING in preparation for the
3265 * runtime resume of the device.
3266 *
3267 * This function should be called near the start of the device's
3268 * runtime_resume callback.
3269 */
3270void blk_pre_runtime_resume(struct request_queue *q)
3271{
3272 spin_lock_irq(q->queue_lock);
3273 q->rpm_status = RPM_RESUMING;
3274 spin_unlock_irq(q->queue_lock);
3275}
3276EXPORT_SYMBOL(blk_pre_runtime_resume);
3277
3278/**
3279 * blk_post_runtime_resume - Post runtime resume processing
3280 * @q: the queue of the device
3281 * @err: return value of the device's runtime_resume function
3282 *
3283 * Description:
3284 * Update the queue's runtime status according to the return value of the
3285 * device's runtime_resume function. If it is successfully resumed, process
3286 * the requests that are queued into the device's queue when it is resuming
3287 * and then mark last busy and initiate autosuspend for it.
3288 *
3289 * This function should be called near the end of the device's
3290 * runtime_resume callback.
3291 */
3292void blk_post_runtime_resume(struct request_queue *q, int err)
3293{
3294 spin_lock_irq(q->queue_lock);
3295 if (!err) {
3296 q->rpm_status = RPM_ACTIVE;
3297 __blk_run_queue(q);
3298 pm_runtime_mark_last_busy(q->dev);
c60855cd 3299 pm_request_autosuspend(q->dev);
6c954667
LM
3300 } else {
3301 q->rpm_status = RPM_SUSPENDED;
3302 }
3303 spin_unlock_irq(q->queue_lock);
3304}
3305EXPORT_SYMBOL(blk_post_runtime_resume);
3306#endif
3307
1da177e4
LT
3308int __init blk_dev_init(void)
3309{
9eb55b03
NK
3310 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3311 sizeof(((struct request *)0)->cmd_flags));
3312
89b90be2
TH
3313 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3314 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3315 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3316 if (!kblockd_workqueue)
3317 panic("Failed to create kblockd\n");
3318
3319 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3320 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3321
8324aa91 3322 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3323 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3324
d38ecf93 3325 return 0;
1da177e4 3326}
This page took 1.219068 seconds and 5 git commands to generate.