block: remove unused variable in bio_attempt_front_merge()
[deliverable/linux.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
55782138
LZ
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/block.h>
1da177e4 34
8324aa91
JA
35#include "blk.h"
36
d07335e5 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 40
165125e1 41static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
42
43/*
44 * For the allocated request tables
45 */
5ece6c52 46static struct kmem_cache *request_cachep;
1da177e4
LT
47
48/*
49 * For queue allocation
50 */
6728cb0e 51struct kmem_cache *blk_requestq_cachep;
1da177e4 52
1da177e4
LT
53/*
54 * Controlling structure to kblockd
55 */
ff856bad 56static struct workqueue_struct *kblockd_workqueue;
1da177e4 57
26b8256e
JA
58static void drive_stat_acct(struct request *rq, int new_io)
59{
28f13702 60 struct hd_struct *part;
26b8256e 61 int rw = rq_data_dir(rq);
c9959059 62 int cpu;
26b8256e 63
c2553b58 64 if (!blk_do_io_stat(rq))
26b8256e
JA
65 return;
66
074a7aca 67 cpu = part_stat_lock();
c9959059 68
09e099d4
JM
69 if (!new_io) {
70 part = rq->part;
074a7aca 71 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
72 } else {
73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 74 if (!hd_struct_try_get(part)) {
09e099d4
JM
75 /*
76 * The partition is already being removed,
77 * the request will be accounted on the disk only
78 *
79 * We take a reference on disk->part0 although that
80 * partition will never be deleted, so we can treat
81 * it as any other partition.
82 */
83 part = &rq->rq_disk->part0;
6c23a968 84 hd_struct_get(part);
09e099d4 85 }
074a7aca 86 part_round_stats(cpu, part);
316d315b 87 part_inc_in_flight(part, rw);
09e099d4 88 rq->part = part;
26b8256e 89 }
e71bf0d0 90
074a7aca 91 part_stat_unlock();
26b8256e
JA
92}
93
8324aa91 94void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
95{
96 int nr;
97
98 nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 if (nr > q->nr_requests)
100 nr = q->nr_requests;
101 q->nr_congestion_on = nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 if (nr < 1)
105 nr = 1;
106 q->nr_congestion_off = nr;
107}
108
1da177e4
LT
109/**
110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111 * @bdev: device
112 *
113 * Locates the passed device's request queue and returns the address of its
114 * backing_dev_info
115 *
116 * Will return NULL if the request queue cannot be located.
117 */
118struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119{
120 struct backing_dev_info *ret = NULL;
165125e1 121 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
122
123 if (q)
124 ret = &q->backing_dev_info;
125 return ret;
126}
1da177e4
LT
127EXPORT_SYMBOL(blk_get_backing_dev_info);
128
2a4aa30c 129void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 130{
1afb20f3
FT
131 memset(rq, 0, sizeof(*rq));
132
1da177e4 133 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 134 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 135 rq->cpu = -1;
63a71386 136 rq->q = q;
a2dec7b3 137 rq->__sector = (sector_t) -1;
2e662b65
JA
138 INIT_HLIST_NODE(&rq->hash);
139 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 140 rq->cmd = rq->__cmd;
e2494e1b 141 rq->cmd_len = BLK_MAX_CDB;
63a71386 142 rq->tag = -1;
1da177e4 143 rq->ref_count = 1;
b243ddcb 144 rq->start_time = jiffies;
9195291e 145 set_start_time_ns(rq);
09e099d4 146 rq->part = NULL;
1da177e4 147}
2a4aa30c 148EXPORT_SYMBOL(blk_rq_init);
1da177e4 149
5bb23a68
N
150static void req_bio_endio(struct request *rq, struct bio *bio,
151 unsigned int nbytes, int error)
1da177e4 152{
143a87f4
TH
153 if (error)
154 clear_bit(BIO_UPTODATE, &bio->bi_flags);
155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 error = -EIO;
797e7dbb 157
143a87f4
TH
158 if (unlikely(nbytes > bio->bi_size)) {
159 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
160 __func__, nbytes, bio->bi_size);
161 nbytes = bio->bi_size;
5bb23a68 162 }
797e7dbb 163
143a87f4
TH
164 if (unlikely(rq->cmd_flags & REQ_QUIET))
165 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 166
143a87f4
TH
167 bio->bi_size -= nbytes;
168 bio->bi_sector += (nbytes >> 9);
7ba1ba12 169
143a87f4
TH
170 if (bio_integrity(bio))
171 bio_integrity_advance(bio, nbytes);
7ba1ba12 172
143a87f4
TH
173 /* don't actually finish bio if it's part of flush sequence */
174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
175 bio_endio(bio, error);
1da177e4 176}
1da177e4 177
1da177e4
LT
178void blk_dump_rq_flags(struct request *rq, char *msg)
179{
180 int bit;
181
6728cb0e 182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 rq->cmd_flags);
1da177e4 185
83096ebf
TH
186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
187 (unsigned long long)blk_rq_pos(rq),
188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 191
33659ebb 192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 193 printk(KERN_INFO " cdb: ");
d34c87e4 194 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
195 printk("%02x ", rq->cmd[bit]);
196 printk("\n");
197 }
198}
1da177e4
LT
199EXPORT_SYMBOL(blk_dump_rq_flags);
200
3cca6dc1 201static void blk_delay_work(struct work_struct *work)
1da177e4 202{
3cca6dc1 203 struct request_queue *q;
1da177e4 204
3cca6dc1
JA
205 q = container_of(work, struct request_queue, delay_work.work);
206 spin_lock_irq(q->queue_lock);
24ecfbe2 207 __blk_run_queue(q);
3cca6dc1 208 spin_unlock_irq(q->queue_lock);
1da177e4 209}
1da177e4
LT
210
211/**
3cca6dc1
JA
212 * blk_delay_queue - restart queueing after defined interval
213 * @q: The &struct request_queue in question
214 * @msecs: Delay in msecs
1da177e4
LT
215 *
216 * Description:
3cca6dc1
JA
217 * Sometimes queueing needs to be postponed for a little while, to allow
218 * resources to come back. This function will make sure that queueing is
219 * restarted around the specified time.
220 */
221void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 222{
4521cc4e
JA
223 queue_delayed_work(kblockd_workqueue, &q->delay_work,
224 msecs_to_jiffies(msecs));
2ad8b1ef 225}
3cca6dc1 226EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 227
1da177e4
LT
228/**
229 * blk_start_queue - restart a previously stopped queue
165125e1 230 * @q: The &struct request_queue in question
1da177e4
LT
231 *
232 * Description:
233 * blk_start_queue() will clear the stop flag on the queue, and call
234 * the request_fn for the queue if it was in a stopped state when
235 * entered. Also see blk_stop_queue(). Queue lock must be held.
236 **/
165125e1 237void blk_start_queue(struct request_queue *q)
1da177e4 238{
a038e253
PBG
239 WARN_ON(!irqs_disabled());
240
75ad23bc 241 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 242 __blk_run_queue(q);
1da177e4 243}
1da177e4
LT
244EXPORT_SYMBOL(blk_start_queue);
245
246/**
247 * blk_stop_queue - stop a queue
165125e1 248 * @q: The &struct request_queue in question
1da177e4
LT
249 *
250 * Description:
251 * The Linux block layer assumes that a block driver will consume all
252 * entries on the request queue when the request_fn strategy is called.
253 * Often this will not happen, because of hardware limitations (queue
254 * depth settings). If a device driver gets a 'queue full' response,
255 * or if it simply chooses not to queue more I/O at one point, it can
256 * call this function to prevent the request_fn from being called until
257 * the driver has signalled it's ready to go again. This happens by calling
258 * blk_start_queue() to restart queue operations. Queue lock must be held.
259 **/
165125e1 260void blk_stop_queue(struct request_queue *q)
1da177e4 261{
ad3d9d7e 262 __cancel_delayed_work(&q->delay_work);
75ad23bc 263 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
264}
265EXPORT_SYMBOL(blk_stop_queue);
266
267/**
268 * blk_sync_queue - cancel any pending callbacks on a queue
269 * @q: the queue
270 *
271 * Description:
272 * The block layer may perform asynchronous callback activity
273 * on a queue, such as calling the unplug function after a timeout.
274 * A block device may call blk_sync_queue to ensure that any
275 * such activity is cancelled, thus allowing it to release resources
59c51591 276 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
277 * that its ->make_request_fn will not re-add plugging prior to calling
278 * this function.
279 *
da527770
VG
280 * This function does not cancel any asynchronous activity arising
281 * out of elevator or throttling code. That would require elevaotor_exit()
282 * and blk_throtl_exit() to be called with queue lock initialized.
283 *
1da177e4
LT
284 */
285void blk_sync_queue(struct request_queue *q)
286{
70ed28b9 287 del_timer_sync(&q->timeout);
3cca6dc1 288 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
289}
290EXPORT_SYMBOL(blk_sync_queue);
291
292/**
80a4b58e 293 * __blk_run_queue - run a single device queue
1da177e4 294 * @q: The queue to run
80a4b58e
JA
295 *
296 * Description:
297 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 298 * held and interrupts disabled.
1da177e4 299 */
24ecfbe2 300void __blk_run_queue(struct request_queue *q)
1da177e4 301{
a538cd03
TH
302 if (unlikely(blk_queue_stopped(q)))
303 return;
304
c21e6beb 305 q->request_fn(q);
75ad23bc
NP
306}
307EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 308
24ecfbe2
CH
309/**
310 * blk_run_queue_async - run a single device queue in workqueue context
311 * @q: The queue to run
312 *
313 * Description:
314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
315 * of us.
316 */
317void blk_run_queue_async(struct request_queue *q)
318{
3ec717b7
SL
319 if (likely(!blk_queue_stopped(q))) {
320 __cancel_delayed_work(&q->delay_work);
24ecfbe2 321 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 322 }
24ecfbe2 323}
c21e6beb 324EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 325
75ad23bc
NP
326/**
327 * blk_run_queue - run a single device queue
328 * @q: The queue to run
80a4b58e
JA
329 *
330 * Description:
331 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 332 * May be used to restart queueing when a request has completed.
75ad23bc
NP
333 */
334void blk_run_queue(struct request_queue *q)
335{
336 unsigned long flags;
337
338 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 339 __blk_run_queue(q);
1da177e4
LT
340 spin_unlock_irqrestore(q->queue_lock, flags);
341}
342EXPORT_SYMBOL(blk_run_queue);
343
165125e1 344void blk_put_queue(struct request_queue *q)
483f4afc
AV
345{
346 kobject_put(&q->kobj);
347}
483f4afc 348
c94a96ac
VG
349/*
350 * Note: If a driver supplied the queue lock, it should not zap that lock
351 * unexpectedly as some queue cleanup components like elevator_exit() and
352 * blk_throtl_exit() need queue lock.
353 */
6728cb0e 354void blk_cleanup_queue(struct request_queue *q)
483f4afc 355{
e3335de9
JA
356 /*
357 * We know we have process context here, so we can be a little
358 * cautious and ensure that pending block actions on this device
359 * are done before moving on. Going into this function, we should
360 * not have processes doing IO to this device.
361 */
362 blk_sync_queue(q);
363
31373d09 364 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 365 mutex_lock(&q->sysfs_lock);
75ad23bc 366 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
367 mutex_unlock(&q->sysfs_lock);
368
369 if (q->elevator)
370 elevator_exit(q->elevator);
371
da527770
VG
372 blk_throtl_exit(q);
373
483f4afc
AV
374 blk_put_queue(q);
375}
1da177e4
LT
376EXPORT_SYMBOL(blk_cleanup_queue);
377
165125e1 378static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
379{
380 struct request_list *rl = &q->rq;
381
1abec4fd
MS
382 if (unlikely(rl->rq_pool))
383 return 0;
384
1faa16d2
JA
385 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
386 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 387 rl->elvpriv = 0;
1faa16d2
JA
388 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
389 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 390
1946089a
CL
391 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
392 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
393
394 if (!rl->rq_pool)
395 return -ENOMEM;
396
397 return 0;
398}
399
165125e1 400struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 401{
1946089a
CL
402 return blk_alloc_queue_node(gfp_mask, -1);
403}
404EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 405
165125e1 406struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 407{
165125e1 408 struct request_queue *q;
e0bf68dd 409 int err;
1946089a 410
8324aa91 411 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 412 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
413 if (!q)
414 return NULL;
415
0989a025
JA
416 q->backing_dev_info.ra_pages =
417 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
418 q->backing_dev_info.state = 0;
419 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 420 q->backing_dev_info.name = "block";
0989a025 421
e0bf68dd
PZ
422 err = bdi_init(&q->backing_dev_info);
423 if (err) {
8324aa91 424 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
425 return NULL;
426 }
427
e43473b7
VG
428 if (blk_throtl_init(q)) {
429 kmem_cache_free(blk_requestq_cachep, q);
430 return NULL;
431 }
432
31373d09
MG
433 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
434 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb
JA
435 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
436 INIT_LIST_HEAD(&q->timeout_list);
ae1b1539
TH
437 INIT_LIST_HEAD(&q->flush_queue[0]);
438 INIT_LIST_HEAD(&q->flush_queue[1]);
439 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 440 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 441
8324aa91 442 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 443
483f4afc 444 mutex_init(&q->sysfs_lock);
e7e72bf6 445 spin_lock_init(&q->__queue_lock);
483f4afc 446
c94a96ac
VG
447 /*
448 * By default initialize queue_lock to internal lock and driver can
449 * override it later if need be.
450 */
451 q->queue_lock = &q->__queue_lock;
452
1da177e4
LT
453 return q;
454}
1946089a 455EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
456
457/**
458 * blk_init_queue - prepare a request queue for use with a block device
459 * @rfn: The function to be called to process requests that have been
460 * placed on the queue.
461 * @lock: Request queue spin lock
462 *
463 * Description:
464 * If a block device wishes to use the standard request handling procedures,
465 * which sorts requests and coalesces adjacent requests, then it must
466 * call blk_init_queue(). The function @rfn will be called when there
467 * are requests on the queue that need to be processed. If the device
468 * supports plugging, then @rfn may not be called immediately when requests
469 * are available on the queue, but may be called at some time later instead.
470 * Plugged queues are generally unplugged when a buffer belonging to one
471 * of the requests on the queue is needed, or due to memory pressure.
472 *
473 * @rfn is not required, or even expected, to remove all requests off the
474 * queue, but only as many as it can handle at a time. If it does leave
475 * requests on the queue, it is responsible for arranging that the requests
476 * get dealt with eventually.
477 *
478 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
479 * request queue; this lock will be taken also from interrupt context, so irq
480 * disabling is needed for it.
1da177e4 481 *
710027a4 482 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
483 * it didn't succeed.
484 *
485 * Note:
486 * blk_init_queue() must be paired with a blk_cleanup_queue() call
487 * when the block device is deactivated (such as at module unload).
488 **/
1946089a 489
165125e1 490struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 491{
1946089a
CL
492 return blk_init_queue_node(rfn, lock, -1);
493}
494EXPORT_SYMBOL(blk_init_queue);
495
165125e1 496struct request_queue *
1946089a
CL
497blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
498{
c86d1b8a 499 struct request_queue *uninit_q, *q;
1da177e4 500
c86d1b8a
MS
501 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
502 if (!uninit_q)
503 return NULL;
504
505 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
506 if (!q)
507 blk_cleanup_queue(uninit_q);
508
509 return q;
01effb0d
MS
510}
511EXPORT_SYMBOL(blk_init_queue_node);
512
513struct request_queue *
514blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
515 spinlock_t *lock)
516{
517 return blk_init_allocated_queue_node(q, rfn, lock, -1);
518}
519EXPORT_SYMBOL(blk_init_allocated_queue);
520
521struct request_queue *
522blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
523 spinlock_t *lock, int node_id)
524{
1da177e4
LT
525 if (!q)
526 return NULL;
527
1946089a 528 q->node = node_id;
c86d1b8a 529 if (blk_init_free_list(q))
8669aafd 530 return NULL;
1da177e4
LT
531
532 q->request_fn = rfn;
1da177e4 533 q->prep_rq_fn = NULL;
28018c24 534 q->unprep_rq_fn = NULL;
bc58ba94 535 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
536
537 /* Override internal queue lock with supplied lock pointer */
538 if (lock)
539 q->queue_lock = lock;
1da177e4 540
f3b144aa
JA
541 /*
542 * This also sets hw/phys segments, boundary and size
543 */
1da177e4 544 blk_queue_make_request(q, __make_request);
1da177e4 545
44ec9542
AS
546 q->sg_reserved_size = INT_MAX;
547
1da177e4
LT
548 /*
549 * all done
550 */
551 if (!elevator_init(q, NULL)) {
552 blk_queue_congestion_threshold(q);
553 return q;
554 }
555
1da177e4
LT
556 return NULL;
557}
01effb0d 558EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 559
165125e1 560int blk_get_queue(struct request_queue *q)
1da177e4 561{
fde6ad22 562 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 563 kobject_get(&q->kobj);
1da177e4
LT
564 return 0;
565 }
566
567 return 1;
568}
1da177e4 569
165125e1 570static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 571{
4aff5e23 572 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 573 elv_put_request(q, rq);
1da177e4
LT
574 mempool_free(rq, q->rq.rq_pool);
575}
576
1ea25ecb 577static struct request *
42dad764 578blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
579{
580 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
581
582 if (!rq)
583 return NULL;
584
2a4aa30c 585 blk_rq_init(q, rq);
1afb20f3 586
42dad764 587 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 588
cb98fc8b 589 if (priv) {
cb78b285 590 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
591 mempool_free(rq, q->rq.rq_pool);
592 return NULL;
593 }
4aff5e23 594 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 595 }
1da177e4 596
cb98fc8b 597 return rq;
1da177e4
LT
598}
599
600/*
601 * ioc_batching returns true if the ioc is a valid batching request and
602 * should be given priority access to a request.
603 */
165125e1 604static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
605{
606 if (!ioc)
607 return 0;
608
609 /*
610 * Make sure the process is able to allocate at least 1 request
611 * even if the batch times out, otherwise we could theoretically
612 * lose wakeups.
613 */
614 return ioc->nr_batch_requests == q->nr_batching ||
615 (ioc->nr_batch_requests > 0
616 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
617}
618
619/*
620 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
621 * will cause the process to be a "batcher" on all queues in the system. This
622 * is the behaviour we want though - once it gets a wakeup it should be given
623 * a nice run.
624 */
165125e1 625static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
626{
627 if (!ioc || ioc_batching(q, ioc))
628 return;
629
630 ioc->nr_batch_requests = q->nr_batching;
631 ioc->last_waited = jiffies;
632}
633
1faa16d2 634static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
635{
636 struct request_list *rl = &q->rq;
637
1faa16d2
JA
638 if (rl->count[sync] < queue_congestion_off_threshold(q))
639 blk_clear_queue_congested(q, sync);
1da177e4 640
1faa16d2
JA
641 if (rl->count[sync] + 1 <= q->nr_requests) {
642 if (waitqueue_active(&rl->wait[sync]))
643 wake_up(&rl->wait[sync]);
1da177e4 644
1faa16d2 645 blk_clear_queue_full(q, sync);
1da177e4
LT
646 }
647}
648
649/*
650 * A request has just been released. Account for it, update the full and
651 * congestion status, wake up any waiters. Called under q->queue_lock.
652 */
1faa16d2 653static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
654{
655 struct request_list *rl = &q->rq;
656
1faa16d2 657 rl->count[sync]--;
cb98fc8b
TH
658 if (priv)
659 rl->elvpriv--;
1da177e4 660
1faa16d2 661 __freed_request(q, sync);
1da177e4 662
1faa16d2
JA
663 if (unlikely(rl->starved[sync ^ 1]))
664 __freed_request(q, sync ^ 1);
1da177e4
LT
665}
666
9d5a4e94
MS
667/*
668 * Determine if elevator data should be initialized when allocating the
669 * request associated with @bio.
670 */
671static bool blk_rq_should_init_elevator(struct bio *bio)
672{
673 if (!bio)
674 return true;
675
676 /*
677 * Flush requests do not use the elevator so skip initialization.
678 * This allows a request to share the flush and elevator data.
679 */
680 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
681 return false;
682
683 return true;
684}
685
1da177e4 686/*
d6344532
NP
687 * Get a free request, queue_lock must be held.
688 * Returns NULL on failure, with queue_lock held.
689 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 690 */
165125e1 691static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 692 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
693{
694 struct request *rq = NULL;
695 struct request_list *rl = &q->rq;
88ee5ef1 696 struct io_context *ioc = NULL;
1faa16d2 697 const bool is_sync = rw_is_sync(rw_flags) != 0;
9d5a4e94 698 int may_queue, priv = 0;
88ee5ef1 699
7749a8d4 700 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
701 if (may_queue == ELV_MQUEUE_NO)
702 goto rq_starved;
703
1faa16d2
JA
704 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
705 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 706 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
707 /*
708 * The queue will fill after this allocation, so set
709 * it as full, and mark this process as "batching".
710 * This process will be allowed to complete a batch of
711 * requests, others will be blocked.
712 */
1faa16d2 713 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 714 ioc_set_batching(q, ioc);
1faa16d2 715 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
716 } else {
717 if (may_queue != ELV_MQUEUE_MUST
718 && !ioc_batching(q, ioc)) {
719 /*
720 * The queue is full and the allocating
721 * process is not a "batcher", and not
722 * exempted by the IO scheduler
723 */
724 goto out;
725 }
726 }
1da177e4 727 }
1faa16d2 728 blk_set_queue_congested(q, is_sync);
1da177e4
LT
729 }
730
082cf69e
JA
731 /*
732 * Only allow batching queuers to allocate up to 50% over the defined
733 * limit of requests, otherwise we could have thousands of requests
734 * allocated with any setting of ->nr_requests
735 */
1faa16d2 736 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 737 goto out;
fd782a4a 738
1faa16d2
JA
739 rl->count[is_sync]++;
740 rl->starved[is_sync] = 0;
cb98fc8b 741
9d5a4e94
MS
742 if (blk_rq_should_init_elevator(bio)) {
743 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
744 if (priv)
745 rl->elvpriv++;
746 }
cb98fc8b 747
f253b86b
JA
748 if (blk_queue_io_stat(q))
749 rw_flags |= REQ_IO_STAT;
1da177e4
LT
750 spin_unlock_irq(q->queue_lock);
751
7749a8d4 752 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 753 if (unlikely(!rq)) {
1da177e4
LT
754 /*
755 * Allocation failed presumably due to memory. Undo anything
756 * we might have messed up.
757 *
758 * Allocating task should really be put onto the front of the
759 * wait queue, but this is pretty rare.
760 */
761 spin_lock_irq(q->queue_lock);
1faa16d2 762 freed_request(q, is_sync, priv);
1da177e4
LT
763
764 /*
765 * in the very unlikely event that allocation failed and no
766 * requests for this direction was pending, mark us starved
767 * so that freeing of a request in the other direction will
768 * notice us. another possible fix would be to split the
769 * rq mempool into READ and WRITE
770 */
771rq_starved:
1faa16d2
JA
772 if (unlikely(rl->count[is_sync] == 0))
773 rl->starved[is_sync] = 1;
1da177e4 774
1da177e4
LT
775 goto out;
776 }
777
88ee5ef1
JA
778 /*
779 * ioc may be NULL here, and ioc_batching will be false. That's
780 * OK, if the queue is under the request limit then requests need
781 * not count toward the nr_batch_requests limit. There will always
782 * be some limit enforced by BLK_BATCH_TIME.
783 */
1da177e4
LT
784 if (ioc_batching(q, ioc))
785 ioc->nr_batch_requests--;
6728cb0e 786
1faa16d2 787 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 788out:
1da177e4
LT
789 return rq;
790}
791
792/*
7eaceacc
JA
793 * No available requests for this queue, wait for some requests to become
794 * available.
d6344532
NP
795 *
796 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 797 */
165125e1 798static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 799 struct bio *bio)
1da177e4 800{
1faa16d2 801 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
802 struct request *rq;
803
7749a8d4 804 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
805 while (!rq) {
806 DEFINE_WAIT(wait);
05caf8db 807 struct io_context *ioc;
1da177e4
LT
808 struct request_list *rl = &q->rq;
809
1faa16d2 810 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
811 TASK_UNINTERRUPTIBLE);
812
1faa16d2 813 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 814
05caf8db
ZY
815 spin_unlock_irq(q->queue_lock);
816 io_schedule();
1da177e4 817
05caf8db
ZY
818 /*
819 * After sleeping, we become a "batching" process and
820 * will be able to allocate at least one request, and
821 * up to a big batch of them for a small period time.
822 * See ioc_batching, ioc_set_batching
823 */
824 ioc = current_io_context(GFP_NOIO, q->node);
825 ioc_set_batching(q, ioc);
d6344532 826
05caf8db 827 spin_lock_irq(q->queue_lock);
1faa16d2 828 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
829
830 rq = get_request(q, rw_flags, bio, GFP_NOIO);
831 };
1da177e4
LT
832
833 return rq;
834}
835
165125e1 836struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
837{
838 struct request *rq;
839
840 BUG_ON(rw != READ && rw != WRITE);
841
d6344532
NP
842 spin_lock_irq(q->queue_lock);
843 if (gfp_mask & __GFP_WAIT) {
22e2c507 844 rq = get_request_wait(q, rw, NULL);
d6344532 845 } else {
22e2c507 846 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
847 if (!rq)
848 spin_unlock_irq(q->queue_lock);
849 }
850 /* q->queue_lock is unlocked at this point */
1da177e4
LT
851
852 return rq;
853}
1da177e4
LT
854EXPORT_SYMBOL(blk_get_request);
855
dc72ef4a 856/**
79eb63e9 857 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 858 * @q: target request queue
79eb63e9
BH
859 * @bio: The bio describing the memory mappings that will be submitted for IO.
860 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 861 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 862 *
79eb63e9
BH
863 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
864 * type commands. Where the struct request needs to be farther initialized by
865 * the caller. It is passed a &struct bio, which describes the memory info of
866 * the I/O transfer.
dc72ef4a 867 *
79eb63e9
BH
868 * The caller of blk_make_request must make sure that bi_io_vec
869 * are set to describe the memory buffers. That bio_data_dir() will return
870 * the needed direction of the request. (And all bio's in the passed bio-chain
871 * are properly set accordingly)
872 *
873 * If called under none-sleepable conditions, mapped bio buffers must not
874 * need bouncing, by calling the appropriate masked or flagged allocator,
875 * suitable for the target device. Otherwise the call to blk_queue_bounce will
876 * BUG.
53674ac5
JA
877 *
878 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
879 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
880 * anything but the first bio in the chain. Otherwise you risk waiting for IO
881 * completion of a bio that hasn't been submitted yet, thus resulting in a
882 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
883 * of bio_alloc(), as that avoids the mempool deadlock.
884 * If possible a big IO should be split into smaller parts when allocation
885 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 886 */
79eb63e9
BH
887struct request *blk_make_request(struct request_queue *q, struct bio *bio,
888 gfp_t gfp_mask)
dc72ef4a 889{
79eb63e9
BH
890 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
891
892 if (unlikely(!rq))
893 return ERR_PTR(-ENOMEM);
894
895 for_each_bio(bio) {
896 struct bio *bounce_bio = bio;
897 int ret;
898
899 blk_queue_bounce(q, &bounce_bio);
900 ret = blk_rq_append_bio(q, rq, bounce_bio);
901 if (unlikely(ret)) {
902 blk_put_request(rq);
903 return ERR_PTR(ret);
904 }
905 }
906
907 return rq;
dc72ef4a 908}
79eb63e9 909EXPORT_SYMBOL(blk_make_request);
dc72ef4a 910
1da177e4
LT
911/**
912 * blk_requeue_request - put a request back on queue
913 * @q: request queue where request should be inserted
914 * @rq: request to be inserted
915 *
916 * Description:
917 * Drivers often keep queueing requests until the hardware cannot accept
918 * more, when that condition happens we need to put the request back
919 * on the queue. Must be called with queue lock held.
920 */
165125e1 921void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 922{
242f9dcb
JA
923 blk_delete_timer(rq);
924 blk_clear_rq_complete(rq);
5f3ea37c 925 trace_block_rq_requeue(q, rq);
2056a782 926
1da177e4
LT
927 if (blk_rq_tagged(rq))
928 blk_queue_end_tag(q, rq);
929
ba396a6c
JB
930 BUG_ON(blk_queued_rq(rq));
931
1da177e4
LT
932 elv_requeue_request(q, rq);
933}
1da177e4
LT
934EXPORT_SYMBOL(blk_requeue_request);
935
73c10101
JA
936static void add_acct_request(struct request_queue *q, struct request *rq,
937 int where)
938{
939 drive_stat_acct(rq, 1);
7eaceacc 940 __elv_add_request(q, rq, where);
73c10101
JA
941}
942
1da177e4 943/**
710027a4 944 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
945 * @q: request queue where request should be inserted
946 * @rq: request to be inserted
947 * @at_head: insert request at head or tail of queue
948 * @data: private data
1da177e4
LT
949 *
950 * Description:
951 * Many block devices need to execute commands asynchronously, so they don't
952 * block the whole kernel from preemption during request execution. This is
953 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
954 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
955 * be scheduled for actual execution by the request queue.
1da177e4
LT
956 *
957 * We have the option of inserting the head or the tail of the queue.
958 * Typically we use the tail for new ioctls and so forth. We use the head
959 * of the queue for things like a QUEUE_FULL message from a device, or a
960 * host that is unable to accept a particular command.
961 */
165125e1 962void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 963 int at_head, void *data)
1da177e4 964{
867d1191 965 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
966 unsigned long flags;
967
968 /*
969 * tell I/O scheduler that this isn't a regular read/write (ie it
970 * must not attempt merges on this) and that it acts as a soft
971 * barrier
972 */
4aff5e23 973 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
974
975 rq->special = data;
976
977 spin_lock_irqsave(q->queue_lock, flags);
978
979 /*
980 * If command is tagged, release the tag
981 */
867d1191
TH
982 if (blk_rq_tagged(rq))
983 blk_queue_end_tag(q, rq);
1da177e4 984
73c10101 985 add_acct_request(q, rq, where);
24ecfbe2 986 __blk_run_queue(q);
1da177e4
LT
987 spin_unlock_irqrestore(q->queue_lock, flags);
988}
1da177e4
LT
989EXPORT_SYMBOL(blk_insert_request);
990
074a7aca
TH
991static void part_round_stats_single(int cpu, struct hd_struct *part,
992 unsigned long now)
993{
994 if (now == part->stamp)
995 return;
996
316d315b 997 if (part_in_flight(part)) {
074a7aca 998 __part_stat_add(cpu, part, time_in_queue,
316d315b 999 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1000 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1001 }
1002 part->stamp = now;
1003}
1004
1005/**
496aa8a9
RD
1006 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1007 * @cpu: cpu number for stats access
1008 * @part: target partition
1da177e4
LT
1009 *
1010 * The average IO queue length and utilisation statistics are maintained
1011 * by observing the current state of the queue length and the amount of
1012 * time it has been in this state for.
1013 *
1014 * Normally, that accounting is done on IO completion, but that can result
1015 * in more than a second's worth of IO being accounted for within any one
1016 * second, leading to >100% utilisation. To deal with that, we call this
1017 * function to do a round-off before returning the results when reading
1018 * /proc/diskstats. This accounts immediately for all queue usage up to
1019 * the current jiffies and restarts the counters again.
1020 */
c9959059 1021void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1022{
1023 unsigned long now = jiffies;
1024
074a7aca
TH
1025 if (part->partno)
1026 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1027 part_round_stats_single(cpu, part, now);
6f2576af 1028}
074a7aca 1029EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1030
1da177e4
LT
1031/*
1032 * queue lock must be held
1033 */
165125e1 1034void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1035{
1da177e4
LT
1036 if (unlikely(!q))
1037 return;
1038 if (unlikely(--req->ref_count))
1039 return;
1040
8922e16c
TH
1041 elv_completed_request(q, req);
1042
1cd96c24
BH
1043 /* this is a bio leak */
1044 WARN_ON(req->bio != NULL);
1045
1da177e4
LT
1046 /*
1047 * Request may not have originated from ll_rw_blk. if not,
1048 * it didn't come out of our reserved rq pools
1049 */
49171e5c 1050 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1051 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1052 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1053
1da177e4 1054 BUG_ON(!list_empty(&req->queuelist));
9817064b 1055 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1056
1057 blk_free_request(q, req);
1faa16d2 1058 freed_request(q, is_sync, priv);
1da177e4
LT
1059 }
1060}
6e39b69e
MC
1061EXPORT_SYMBOL_GPL(__blk_put_request);
1062
1da177e4
LT
1063void blk_put_request(struct request *req)
1064{
8922e16c 1065 unsigned long flags;
165125e1 1066 struct request_queue *q = req->q;
8922e16c 1067
52a93ba8
FT
1068 spin_lock_irqsave(q->queue_lock, flags);
1069 __blk_put_request(q, req);
1070 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1071}
1da177e4
LT
1072EXPORT_SYMBOL(blk_put_request);
1073
66ac0280
CH
1074/**
1075 * blk_add_request_payload - add a payload to a request
1076 * @rq: request to update
1077 * @page: page backing the payload
1078 * @len: length of the payload.
1079 *
1080 * This allows to later add a payload to an already submitted request by
1081 * a block driver. The driver needs to take care of freeing the payload
1082 * itself.
1083 *
1084 * Note that this is a quite horrible hack and nothing but handling of
1085 * discard requests should ever use it.
1086 */
1087void blk_add_request_payload(struct request *rq, struct page *page,
1088 unsigned int len)
1089{
1090 struct bio *bio = rq->bio;
1091
1092 bio->bi_io_vec->bv_page = page;
1093 bio->bi_io_vec->bv_offset = 0;
1094 bio->bi_io_vec->bv_len = len;
1095
1096 bio->bi_size = len;
1097 bio->bi_vcnt = 1;
1098 bio->bi_phys_segments = 1;
1099
1100 rq->__data_len = rq->resid_len = len;
1101 rq->nr_phys_segments = 1;
1102 rq->buffer = bio_data(bio);
1103}
1104EXPORT_SYMBOL_GPL(blk_add_request_payload);
1105
73c10101
JA
1106static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1107 struct bio *bio)
1108{
1109 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1110
73c10101
JA
1111 if (!ll_back_merge_fn(q, req, bio))
1112 return false;
1113
1114 trace_block_bio_backmerge(q, bio);
1115
1116 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1117 blk_rq_set_mixed_merge(req);
1118
1119 req->biotail->bi_next = bio;
1120 req->biotail = bio;
1121 req->__data_len += bio->bi_size;
1122 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1123
1124 drive_stat_acct(req, 0);
95cf3dd9 1125 elv_bio_merged(q, req, bio);
73c10101
JA
1126 return true;
1127}
1128
1129static bool bio_attempt_front_merge(struct request_queue *q,
1130 struct request *req, struct bio *bio)
1131{
1132 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1133
73c10101
JA
1134 if (!ll_front_merge_fn(q, req, bio))
1135 return false;
1136
1137 trace_block_bio_frontmerge(q, bio);
1138
1139 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1140 blk_rq_set_mixed_merge(req);
1141
73c10101
JA
1142 bio->bi_next = req->bio;
1143 req->bio = bio;
1144
1145 /*
1146 * may not be valid. if the low level driver said
1147 * it didn't need a bounce buffer then it better
1148 * not touch req->buffer either...
1149 */
1150 req->buffer = bio_data(bio);
1151 req->__sector = bio->bi_sector;
1152 req->__data_len += bio->bi_size;
1153 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1154
1155 drive_stat_acct(req, 0);
95cf3dd9 1156 elv_bio_merged(q, req, bio);
73c10101
JA
1157 return true;
1158}
1159
1160/*
1161 * Attempts to merge with the plugged list in the current process. Returns
25985edc 1162 * true if merge was successful, otherwise false.
73c10101
JA
1163 */
1164static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1165 struct bio *bio)
1166{
1167 struct blk_plug *plug;
1168 struct request *rq;
1169 bool ret = false;
1170
1171 plug = tsk->plug;
1172 if (!plug)
1173 goto out;
1174
1175 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1176 int el_ret;
1177
1178 if (rq->q != q)
1179 continue;
1180
1181 el_ret = elv_try_merge(rq, bio);
1182 if (el_ret == ELEVATOR_BACK_MERGE) {
1183 ret = bio_attempt_back_merge(q, rq, bio);
1184 if (ret)
1185 break;
1186 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1187 ret = bio_attempt_front_merge(q, rq, bio);
1188 if (ret)
1189 break;
1190 }
1191 }
1192out:
1193 return ret;
1194}
1195
86db1e29 1196void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1197{
c7c22e4d 1198 req->cpu = bio->bi_comp_cpu;
4aff5e23 1199 req->cmd_type = REQ_TYPE_FS;
52d9e675 1200
7b6d91da
CH
1201 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1202 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1203 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1204
52d9e675 1205 req->errors = 0;
a2dec7b3 1206 req->__sector = bio->bi_sector;
52d9e675 1207 req->ioprio = bio_prio(bio);
bc1c56fd 1208 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1209}
1210
165125e1 1211static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1212{
5e00d1b5 1213 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1214 struct blk_plug *plug;
1215 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1216 struct request *req;
1da177e4 1217
1da177e4
LT
1218 /*
1219 * low level driver can indicate that it wants pages above a
1220 * certain limit bounced to low memory (ie for highmem, or even
1221 * ISA dma in theory)
1222 */
1223 blk_queue_bounce(q, &bio);
1224
4fed947c 1225 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1226 spin_lock_irq(q->queue_lock);
ae1b1539 1227 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1228 goto get_rq;
1229 }
1230
73c10101
JA
1231 /*
1232 * Check if we can merge with the plugged list before grabbing
1233 * any locks.
1234 */
1235 if (attempt_plug_merge(current, q, bio))
6728cb0e 1236 goto out;
1da177e4 1237
73c10101 1238 spin_lock_irq(q->queue_lock);
2056a782 1239
73c10101
JA
1240 el_ret = elv_merge(q, &req, bio);
1241 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101
JA
1242 if (bio_attempt_back_merge(q, req, bio)) {
1243 if (!attempt_back_merge(q, req))
1244 elv_merged_request(q, req, el_ret);
1245 goto out_unlock;
1246 }
1247 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101
JA
1248 if (bio_attempt_front_merge(q, req, bio)) {
1249 if (!attempt_front_merge(q, req))
1250 elv_merged_request(q, req, el_ret);
1251 goto out_unlock;
80a761fd 1252 }
1da177e4
LT
1253 }
1254
450991bc 1255get_rq:
7749a8d4
JA
1256 /*
1257 * This sync check and mask will be re-done in init_request_from_bio(),
1258 * but we need to set it earlier to expose the sync flag to the
1259 * rq allocator and io schedulers.
1260 */
1261 rw_flags = bio_data_dir(bio);
1262 if (sync)
7b6d91da 1263 rw_flags |= REQ_SYNC;
7749a8d4 1264
1da177e4 1265 /*
450991bc 1266 * Grab a free request. This is might sleep but can not fail.
d6344532 1267 * Returns with the queue unlocked.
450991bc 1268 */
7749a8d4 1269 req = get_request_wait(q, rw_flags, bio);
d6344532 1270
450991bc
NP
1271 /*
1272 * After dropping the lock and possibly sleeping here, our request
1273 * may now be mergeable after it had proven unmergeable (above).
1274 * We don't worry about that case for efficiency. It won't happen
1275 * often, and the elevators are able to handle it.
1da177e4 1276 */
52d9e675 1277 init_request_from_bio(req, bio);
1da177e4 1278
c7c22e4d 1279 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
73c10101
JA
1280 bio_flagged(bio, BIO_CPU_AFFINE)) {
1281 req->cpu = blk_cpu_to_group(get_cpu());
1282 put_cpu();
1283 }
1284
1285 plug = current->plug;
721a9602 1286 if (plug) {
dc6d36c9
JA
1287 /*
1288 * If this is the first request added after a plug, fire
1289 * of a plug trace. If others have been added before, check
1290 * if we have multiple devices in this plug. If so, make a
1291 * note to sort the list before dispatch.
1292 */
1293 if (list_empty(&plug->list))
1294 trace_block_plug(q);
1295 else if (!plug->should_sort) {
73c10101
JA
1296 struct request *__rq;
1297
1298 __rq = list_entry_rq(plug->list.prev);
1299 if (__rq->q != q)
1300 plug->should_sort = 1;
1301 }
73c10101
JA
1302 list_add_tail(&req->queuelist, &plug->list);
1303 drive_stat_acct(req, 1);
1304 } else {
1305 spin_lock_irq(q->queue_lock);
1306 add_acct_request(q, req, where);
24ecfbe2 1307 __blk_run_queue(q);
73c10101
JA
1308out_unlock:
1309 spin_unlock_irq(q->queue_lock);
1310 }
1da177e4 1311out:
1da177e4 1312 return 0;
1da177e4
LT
1313}
1314
1315/*
1316 * If bio->bi_dev is a partition, remap the location
1317 */
1318static inline void blk_partition_remap(struct bio *bio)
1319{
1320 struct block_device *bdev = bio->bi_bdev;
1321
bf2de6f5 1322 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1323 struct hd_struct *p = bdev->bd_part;
1324
1da177e4
LT
1325 bio->bi_sector += p->start_sect;
1326 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1327
d07335e5
MS
1328 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1329 bdev->bd_dev,
1330 bio->bi_sector - p->start_sect);
1da177e4
LT
1331 }
1332}
1333
1da177e4
LT
1334static void handle_bad_sector(struct bio *bio)
1335{
1336 char b[BDEVNAME_SIZE];
1337
1338 printk(KERN_INFO "attempt to access beyond end of device\n");
1339 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1340 bdevname(bio->bi_bdev, b),
1341 bio->bi_rw,
1342 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1343 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1344
1345 set_bit(BIO_EOF, &bio->bi_flags);
1346}
1347
c17bb495
AM
1348#ifdef CONFIG_FAIL_MAKE_REQUEST
1349
1350static DECLARE_FAULT_ATTR(fail_make_request);
1351
1352static int __init setup_fail_make_request(char *str)
1353{
1354 return setup_fault_attr(&fail_make_request, str);
1355}
1356__setup("fail_make_request=", setup_fail_make_request);
1357
1358static int should_fail_request(struct bio *bio)
1359{
eddb2e26
TH
1360 struct hd_struct *part = bio->bi_bdev->bd_part;
1361
1362 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1363 return should_fail(&fail_make_request, bio->bi_size);
1364
1365 return 0;
1366}
1367
1368static int __init fail_make_request_debugfs(void)
1369{
1370 return init_fault_attr_dentries(&fail_make_request,
1371 "fail_make_request");
1372}
1373
1374late_initcall(fail_make_request_debugfs);
1375
1376#else /* CONFIG_FAIL_MAKE_REQUEST */
1377
1378static inline int should_fail_request(struct bio *bio)
1379{
1380 return 0;
1381}
1382
1383#endif /* CONFIG_FAIL_MAKE_REQUEST */
1384
c07e2b41
JA
1385/*
1386 * Check whether this bio extends beyond the end of the device.
1387 */
1388static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1389{
1390 sector_t maxsector;
1391
1392 if (!nr_sectors)
1393 return 0;
1394
1395 /* Test device or partition size, when known. */
77304d2a 1396 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1397 if (maxsector) {
1398 sector_t sector = bio->bi_sector;
1399
1400 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1401 /*
1402 * This may well happen - the kernel calls bread()
1403 * without checking the size of the device, e.g., when
1404 * mounting a device.
1405 */
1406 handle_bad_sector(bio);
1407 return 1;
1408 }
1409 }
1410
1411 return 0;
1412}
1413
1da177e4 1414/**
710027a4 1415 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1416 * @bio: The bio describing the location in memory and on the device.
1417 *
1418 * generic_make_request() is used to make I/O requests of block
1419 * devices. It is passed a &struct bio, which describes the I/O that needs
1420 * to be done.
1421 *
1422 * generic_make_request() does not return any status. The
1423 * success/failure status of the request, along with notification of
1424 * completion, is delivered asynchronously through the bio->bi_end_io
1425 * function described (one day) else where.
1426 *
1427 * The caller of generic_make_request must make sure that bi_io_vec
1428 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1429 * set to describe the device address, and the
1430 * bi_end_io and optionally bi_private are set to describe how
1431 * completion notification should be signaled.
1432 *
1433 * generic_make_request and the drivers it calls may use bi_next if this
1434 * bio happens to be merged with someone else, and may change bi_dev and
1435 * bi_sector for remaps as it sees fit. So the values of these fields
1436 * should NOT be depended on after the call to generic_make_request.
1437 */
d89d8796 1438static inline void __generic_make_request(struct bio *bio)
1da177e4 1439{
165125e1 1440 struct request_queue *q;
5ddfe969 1441 sector_t old_sector;
1da177e4 1442 int ret, nr_sectors = bio_sectors(bio);
2056a782 1443 dev_t old_dev;
51fd77bd 1444 int err = -EIO;
1da177e4
LT
1445
1446 might_sleep();
1da177e4 1447
c07e2b41
JA
1448 if (bio_check_eod(bio, nr_sectors))
1449 goto end_io;
1da177e4
LT
1450
1451 /*
1452 * Resolve the mapping until finished. (drivers are
1453 * still free to implement/resolve their own stacking
1454 * by explicitly returning 0)
1455 *
1456 * NOTE: we don't repeat the blk_size check for each new device.
1457 * Stacking drivers are expected to know what they are doing.
1458 */
5ddfe969 1459 old_sector = -1;
2056a782 1460 old_dev = 0;
1da177e4
LT
1461 do {
1462 char b[BDEVNAME_SIZE];
1463
1464 q = bdev_get_queue(bio->bi_bdev);
a7384677 1465 if (unlikely(!q)) {
1da177e4
LT
1466 printk(KERN_ERR
1467 "generic_make_request: Trying to access "
1468 "nonexistent block-device %s (%Lu)\n",
1469 bdevname(bio->bi_bdev, b),
1470 (long long) bio->bi_sector);
a7384677 1471 goto end_io;
1da177e4
LT
1472 }
1473
7b6d91da 1474 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1475 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1476 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1477 bdevname(bio->bi_bdev, b),
1478 bio_sectors(bio),
1479 queue_max_hw_sectors(q));
1da177e4
LT
1480 goto end_io;
1481 }
1482
fde6ad22 1483 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1484 goto end_io;
1485
c17bb495
AM
1486 if (should_fail_request(bio))
1487 goto end_io;
1488
1da177e4
LT
1489 /*
1490 * If this device has partitions, remap block n
1491 * of partition p to block n+start(p) of the disk.
1492 */
1493 blk_partition_remap(bio);
1494
7ba1ba12
MP
1495 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1496 goto end_io;
1497
5ddfe969 1498 if (old_sector != -1)
d07335e5 1499 trace_block_bio_remap(q, bio, old_dev, old_sector);
2056a782 1500
5ddfe969 1501 old_sector = bio->bi_sector;
2056a782
JA
1502 old_dev = bio->bi_bdev->bd_dev;
1503
c07e2b41
JA
1504 if (bio_check_eod(bio, nr_sectors))
1505 goto end_io;
a7384677 1506
1e87901e
TH
1507 /*
1508 * Filter flush bio's early so that make_request based
1509 * drivers without flush support don't have to worry
1510 * about them.
1511 */
1512 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1513 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1514 if (!nr_sectors) {
1515 err = 0;
1516 goto end_io;
1517 }
1518 }
1519
8d57a98c
AH
1520 if ((bio->bi_rw & REQ_DISCARD) &&
1521 (!blk_queue_discard(q) ||
1522 ((bio->bi_rw & REQ_SECURE) &&
1523 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1524 err = -EOPNOTSUPP;
1525 goto end_io;
1526 }
5ddfe969 1527
f469a7b4
VG
1528 if (blk_throtl_bio(q, &bio))
1529 goto end_io;
e43473b7
VG
1530
1531 /*
1532 * If bio = NULL, bio has been throttled and will be submitted
1533 * later.
1534 */
1535 if (!bio)
1536 break;
1537
01edede4
MK
1538 trace_block_bio_queue(q, bio);
1539
1da177e4
LT
1540 ret = q->make_request_fn(q, bio);
1541 } while (ret);
a7384677
TH
1542
1543 return;
1544
1545end_io:
1546 bio_endio(bio, err);
1da177e4
LT
1547}
1548
d89d8796
NB
1549/*
1550 * We only want one ->make_request_fn to be active at a time,
1551 * else stack usage with stacked devices could be a problem.
bddd87c7 1552 * So use current->bio_list to keep a list of requests
d89d8796 1553 * submited by a make_request_fn function.
bddd87c7 1554 * current->bio_list is also used as a flag to say if
d89d8796
NB
1555 * generic_make_request is currently active in this task or not.
1556 * If it is NULL, then no make_request is active. If it is non-NULL,
1557 * then a make_request is active, and new requests should be added
1558 * at the tail
1559 */
1560void generic_make_request(struct bio *bio)
1561{
bddd87c7
AM
1562 struct bio_list bio_list_on_stack;
1563
1564 if (current->bio_list) {
d89d8796 1565 /* make_request is active */
bddd87c7 1566 bio_list_add(current->bio_list, bio);
d89d8796
NB
1567 return;
1568 }
1569 /* following loop may be a bit non-obvious, and so deserves some
1570 * explanation.
1571 * Before entering the loop, bio->bi_next is NULL (as all callers
1572 * ensure that) so we have a list with a single bio.
1573 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1574 * we assign bio_list to a pointer to the bio_list_on_stack,
1575 * thus initialising the bio_list of new bios to be
d89d8796
NB
1576 * added. __generic_make_request may indeed add some more bios
1577 * through a recursive call to generic_make_request. If it
1578 * did, we find a non-NULL value in bio_list and re-enter the loop
1579 * from the top. In this case we really did just take the bio
bddd87c7
AM
1580 * of the top of the list (no pretending) and so remove it from
1581 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1582 *
1583 * The loop was structured like this to make only one call to
1584 * __generic_make_request (which is important as it is large and
1585 * inlined) and to keep the structure simple.
1586 */
1587 BUG_ON(bio->bi_next);
bddd87c7
AM
1588 bio_list_init(&bio_list_on_stack);
1589 current->bio_list = &bio_list_on_stack;
d89d8796 1590 do {
d89d8796 1591 __generic_make_request(bio);
bddd87c7 1592 bio = bio_list_pop(current->bio_list);
d89d8796 1593 } while (bio);
bddd87c7 1594 current->bio_list = NULL; /* deactivate */
d89d8796 1595}
1da177e4
LT
1596EXPORT_SYMBOL(generic_make_request);
1597
1598/**
710027a4 1599 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1600 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1601 * @bio: The &struct bio which describes the I/O
1602 *
1603 * submit_bio() is very similar in purpose to generic_make_request(), and
1604 * uses that function to do most of the work. Both are fairly rough
710027a4 1605 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1606 *
1607 */
1608void submit_bio(int rw, struct bio *bio)
1609{
1610 int count = bio_sectors(bio);
1611
22e2c507 1612 bio->bi_rw |= rw;
1da177e4 1613
bf2de6f5
JA
1614 /*
1615 * If it's a regular read/write or a barrier with data attached,
1616 * go through the normal accounting stuff before submission.
1617 */
3ffb52e7 1618 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1619 if (rw & WRITE) {
1620 count_vm_events(PGPGOUT, count);
1621 } else {
1622 task_io_account_read(bio->bi_size);
1623 count_vm_events(PGPGIN, count);
1624 }
1625
1626 if (unlikely(block_dump)) {
1627 char b[BDEVNAME_SIZE];
8dcbdc74 1628 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1629 current->comm, task_pid_nr(current),
bf2de6f5
JA
1630 (rw & WRITE) ? "WRITE" : "READ",
1631 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1632 bdevname(bio->bi_bdev, b),
1633 count);
bf2de6f5 1634 }
1da177e4
LT
1635 }
1636
1637 generic_make_request(bio);
1638}
1da177e4
LT
1639EXPORT_SYMBOL(submit_bio);
1640
82124d60
KU
1641/**
1642 * blk_rq_check_limits - Helper function to check a request for the queue limit
1643 * @q: the queue
1644 * @rq: the request being checked
1645 *
1646 * Description:
1647 * @rq may have been made based on weaker limitations of upper-level queues
1648 * in request stacking drivers, and it may violate the limitation of @q.
1649 * Since the block layer and the underlying device driver trust @rq
1650 * after it is inserted to @q, it should be checked against @q before
1651 * the insertion using this generic function.
1652 *
1653 * This function should also be useful for request stacking drivers
eef35c2d 1654 * in some cases below, so export this function.
82124d60
KU
1655 * Request stacking drivers like request-based dm may change the queue
1656 * limits while requests are in the queue (e.g. dm's table swapping).
1657 * Such request stacking drivers should check those requests agaist
1658 * the new queue limits again when they dispatch those requests,
1659 * although such checkings are also done against the old queue limits
1660 * when submitting requests.
1661 */
1662int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1663{
3383977f
S
1664 if (rq->cmd_flags & REQ_DISCARD)
1665 return 0;
1666
ae03bf63
MP
1667 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1668 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1669 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1670 return -EIO;
1671 }
1672
1673 /*
1674 * queue's settings related to segment counting like q->bounce_pfn
1675 * may differ from that of other stacking queues.
1676 * Recalculate it to check the request correctly on this queue's
1677 * limitation.
1678 */
1679 blk_recalc_rq_segments(rq);
8a78362c 1680 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1681 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1682 return -EIO;
1683 }
1684
1685 return 0;
1686}
1687EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1688
1689/**
1690 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1691 * @q: the queue to submit the request
1692 * @rq: the request being queued
1693 */
1694int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1695{
1696 unsigned long flags;
1697
1698 if (blk_rq_check_limits(q, rq))
1699 return -EIO;
1700
1701#ifdef CONFIG_FAIL_MAKE_REQUEST
1702 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1703 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1704 return -EIO;
1705#endif
1706
1707 spin_lock_irqsave(q->queue_lock, flags);
1708
1709 /*
1710 * Submitting request must be dequeued before calling this function
1711 * because it will be linked to another request_queue
1712 */
1713 BUG_ON(blk_queued_rq(rq));
1714
73c10101 1715 add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
82124d60
KU
1716 spin_unlock_irqrestore(q->queue_lock, flags);
1717
1718 return 0;
1719}
1720EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1721
80a761fd
TH
1722/**
1723 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1724 * @rq: request to examine
1725 *
1726 * Description:
1727 * A request could be merge of IOs which require different failure
1728 * handling. This function determines the number of bytes which
1729 * can be failed from the beginning of the request without
1730 * crossing into area which need to be retried further.
1731 *
1732 * Return:
1733 * The number of bytes to fail.
1734 *
1735 * Context:
1736 * queue_lock must be held.
1737 */
1738unsigned int blk_rq_err_bytes(const struct request *rq)
1739{
1740 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1741 unsigned int bytes = 0;
1742 struct bio *bio;
1743
1744 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1745 return blk_rq_bytes(rq);
1746
1747 /*
1748 * Currently the only 'mixing' which can happen is between
1749 * different fastfail types. We can safely fail portions
1750 * which have all the failfast bits that the first one has -
1751 * the ones which are at least as eager to fail as the first
1752 * one.
1753 */
1754 for (bio = rq->bio; bio; bio = bio->bi_next) {
1755 if ((bio->bi_rw & ff) != ff)
1756 break;
1757 bytes += bio->bi_size;
1758 }
1759
1760 /* this could lead to infinite loop */
1761 BUG_ON(blk_rq_bytes(rq) && !bytes);
1762 return bytes;
1763}
1764EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1765
bc58ba94
JA
1766static void blk_account_io_completion(struct request *req, unsigned int bytes)
1767{
c2553b58 1768 if (blk_do_io_stat(req)) {
bc58ba94
JA
1769 const int rw = rq_data_dir(req);
1770 struct hd_struct *part;
1771 int cpu;
1772
1773 cpu = part_stat_lock();
09e099d4 1774 part = req->part;
bc58ba94
JA
1775 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1776 part_stat_unlock();
1777 }
1778}
1779
1780static void blk_account_io_done(struct request *req)
1781{
bc58ba94 1782 /*
dd4c133f
TH
1783 * Account IO completion. flush_rq isn't accounted as a
1784 * normal IO on queueing nor completion. Accounting the
1785 * containing request is enough.
bc58ba94 1786 */
414b4ff5 1787 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1788 unsigned long duration = jiffies - req->start_time;
1789 const int rw = rq_data_dir(req);
1790 struct hd_struct *part;
1791 int cpu;
1792
1793 cpu = part_stat_lock();
09e099d4 1794 part = req->part;
bc58ba94
JA
1795
1796 part_stat_inc(cpu, part, ios[rw]);
1797 part_stat_add(cpu, part, ticks[rw], duration);
1798 part_round_stats(cpu, part);
316d315b 1799 part_dec_in_flight(part, rw);
bc58ba94 1800
6c23a968 1801 hd_struct_put(part);
bc58ba94
JA
1802 part_stat_unlock();
1803 }
1804}
1805
3bcddeac 1806/**
9934c8c0
TH
1807 * blk_peek_request - peek at the top of a request queue
1808 * @q: request queue to peek at
1809 *
1810 * Description:
1811 * Return the request at the top of @q. The returned request
1812 * should be started using blk_start_request() before LLD starts
1813 * processing it.
1814 *
1815 * Return:
1816 * Pointer to the request at the top of @q if available. Null
1817 * otherwise.
1818 *
1819 * Context:
1820 * queue_lock must be held.
1821 */
1822struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1823{
1824 struct request *rq;
1825 int ret;
1826
1827 while ((rq = __elv_next_request(q)) != NULL) {
1828 if (!(rq->cmd_flags & REQ_STARTED)) {
1829 /*
1830 * This is the first time the device driver
1831 * sees this request (possibly after
1832 * requeueing). Notify IO scheduler.
1833 */
33659ebb 1834 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1835 elv_activate_rq(q, rq);
1836
1837 /*
1838 * just mark as started even if we don't start
1839 * it, a request that has been delayed should
1840 * not be passed by new incoming requests
1841 */
1842 rq->cmd_flags |= REQ_STARTED;
1843 trace_block_rq_issue(q, rq);
1844 }
1845
1846 if (!q->boundary_rq || q->boundary_rq == rq) {
1847 q->end_sector = rq_end_sector(rq);
1848 q->boundary_rq = NULL;
1849 }
1850
1851 if (rq->cmd_flags & REQ_DONTPREP)
1852 break;
1853
2e46e8b2 1854 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1855 /*
1856 * make sure space for the drain appears we
1857 * know we can do this because max_hw_segments
1858 * has been adjusted to be one fewer than the
1859 * device can handle
1860 */
1861 rq->nr_phys_segments++;
1862 }
1863
1864 if (!q->prep_rq_fn)
1865 break;
1866
1867 ret = q->prep_rq_fn(q, rq);
1868 if (ret == BLKPREP_OK) {
1869 break;
1870 } else if (ret == BLKPREP_DEFER) {
1871 /*
1872 * the request may have been (partially) prepped.
1873 * we need to keep this request in the front to
1874 * avoid resource deadlock. REQ_STARTED will
1875 * prevent other fs requests from passing this one.
1876 */
2e46e8b2 1877 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1878 !(rq->cmd_flags & REQ_DONTPREP)) {
1879 /*
1880 * remove the space for the drain we added
1881 * so that we don't add it again
1882 */
1883 --rq->nr_phys_segments;
1884 }
1885
1886 rq = NULL;
1887 break;
1888 } else if (ret == BLKPREP_KILL) {
1889 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1890 /*
1891 * Mark this request as started so we don't trigger
1892 * any debug logic in the end I/O path.
1893 */
1894 blk_start_request(rq);
40cbbb78 1895 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1896 } else {
1897 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1898 break;
1899 }
1900 }
1901
1902 return rq;
1903}
9934c8c0 1904EXPORT_SYMBOL(blk_peek_request);
158dbda0 1905
9934c8c0 1906void blk_dequeue_request(struct request *rq)
158dbda0 1907{
9934c8c0
TH
1908 struct request_queue *q = rq->q;
1909
158dbda0
TH
1910 BUG_ON(list_empty(&rq->queuelist));
1911 BUG_ON(ELV_ON_HASH(rq));
1912
1913 list_del_init(&rq->queuelist);
1914
1915 /*
1916 * the time frame between a request being removed from the lists
1917 * and to it is freed is accounted as io that is in progress at
1918 * the driver side.
1919 */
9195291e 1920 if (blk_account_rq(rq)) {
0a7ae2ff 1921 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1922 set_io_start_time_ns(rq);
1923 }
158dbda0
TH
1924}
1925
9934c8c0
TH
1926/**
1927 * blk_start_request - start request processing on the driver
1928 * @req: request to dequeue
1929 *
1930 * Description:
1931 * Dequeue @req and start timeout timer on it. This hands off the
1932 * request to the driver.
1933 *
1934 * Block internal functions which don't want to start timer should
1935 * call blk_dequeue_request().
1936 *
1937 * Context:
1938 * queue_lock must be held.
1939 */
1940void blk_start_request(struct request *req)
1941{
1942 blk_dequeue_request(req);
1943
1944 /*
5f49f631
TH
1945 * We are now handing the request to the hardware, initialize
1946 * resid_len to full count and add the timeout handler.
9934c8c0 1947 */
5f49f631 1948 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1949 if (unlikely(blk_bidi_rq(req)))
1950 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1951
9934c8c0
TH
1952 blk_add_timer(req);
1953}
1954EXPORT_SYMBOL(blk_start_request);
1955
1956/**
1957 * blk_fetch_request - fetch a request from a request queue
1958 * @q: request queue to fetch a request from
1959 *
1960 * Description:
1961 * Return the request at the top of @q. The request is started on
1962 * return and LLD can start processing it immediately.
1963 *
1964 * Return:
1965 * Pointer to the request at the top of @q if available. Null
1966 * otherwise.
1967 *
1968 * Context:
1969 * queue_lock must be held.
1970 */
1971struct request *blk_fetch_request(struct request_queue *q)
1972{
1973 struct request *rq;
1974
1975 rq = blk_peek_request(q);
1976 if (rq)
1977 blk_start_request(rq);
1978 return rq;
1979}
1980EXPORT_SYMBOL(blk_fetch_request);
1981
3bcddeac 1982/**
2e60e022 1983 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1984 * @req: the request being processed
710027a4 1985 * @error: %0 for success, < %0 for error
8ebf9756 1986 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1987 *
1988 * Description:
8ebf9756
RD
1989 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1990 * the request structure even if @req doesn't have leftover.
1991 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1992 *
1993 * This special helper function is only for request stacking drivers
1994 * (e.g. request-based dm) so that they can handle partial completion.
1995 * Actual device drivers should use blk_end_request instead.
1996 *
1997 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1998 * %false return from this function.
3bcddeac
KU
1999 *
2000 * Return:
2e60e022
TH
2001 * %false - this request doesn't have any more data
2002 * %true - this request has more data
3bcddeac 2003 **/
2e60e022 2004bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2005{
5450d3e1 2006 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2007 struct bio *bio;
2008
2e60e022
TH
2009 if (!req->bio)
2010 return false;
2011
5f3ea37c 2012 trace_block_rq_complete(req->q, req);
2056a782 2013
1da177e4 2014 /*
6f41469c
TH
2015 * For fs requests, rq is just carrier of independent bio's
2016 * and each partial completion should be handled separately.
2017 * Reset per-request error on each partial completion.
2018 *
2019 * TODO: tj: This is too subtle. It would be better to let
2020 * low level drivers do what they see fit.
1da177e4 2021 */
33659ebb 2022 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2023 req->errors = 0;
2024
33659ebb
CH
2025 if (error && req->cmd_type == REQ_TYPE_FS &&
2026 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2027 char *error_type;
2028
2029 switch (error) {
2030 case -ENOLINK:
2031 error_type = "recoverable transport";
2032 break;
2033 case -EREMOTEIO:
2034 error_type = "critical target";
2035 break;
2036 case -EBADE:
2037 error_type = "critical nexus";
2038 break;
2039 case -EIO:
2040 default:
2041 error_type = "I/O";
2042 break;
2043 }
2044 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2045 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2046 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2047 }
2048
bc58ba94 2049 blk_account_io_completion(req, nr_bytes);
d72d904a 2050
1da177e4
LT
2051 total_bytes = bio_nbytes = 0;
2052 while ((bio = req->bio) != NULL) {
2053 int nbytes;
2054
2055 if (nr_bytes >= bio->bi_size) {
2056 req->bio = bio->bi_next;
2057 nbytes = bio->bi_size;
5bb23a68 2058 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2059 next_idx = 0;
2060 bio_nbytes = 0;
2061 } else {
2062 int idx = bio->bi_idx + next_idx;
2063
af498d7f 2064 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2065 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2066 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2067 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2068 break;
2069 }
2070
2071 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2072 BIO_BUG_ON(nbytes > bio->bi_size);
2073
2074 /*
2075 * not a complete bvec done
2076 */
2077 if (unlikely(nbytes > nr_bytes)) {
2078 bio_nbytes += nr_bytes;
2079 total_bytes += nr_bytes;
2080 break;
2081 }
2082
2083 /*
2084 * advance to the next vector
2085 */
2086 next_idx++;
2087 bio_nbytes += nbytes;
2088 }
2089
2090 total_bytes += nbytes;
2091 nr_bytes -= nbytes;
2092
6728cb0e
JA
2093 bio = req->bio;
2094 if (bio) {
1da177e4
LT
2095 /*
2096 * end more in this run, or just return 'not-done'
2097 */
2098 if (unlikely(nr_bytes <= 0))
2099 break;
2100 }
2101 }
2102
2103 /*
2104 * completely done
2105 */
2e60e022
TH
2106 if (!req->bio) {
2107 /*
2108 * Reset counters so that the request stacking driver
2109 * can find how many bytes remain in the request
2110 * later.
2111 */
a2dec7b3 2112 req->__data_len = 0;
2e60e022
TH
2113 return false;
2114 }
1da177e4
LT
2115
2116 /*
2117 * if the request wasn't completed, update state
2118 */
2119 if (bio_nbytes) {
5bb23a68 2120 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2121 bio->bi_idx += next_idx;
2122 bio_iovec(bio)->bv_offset += nr_bytes;
2123 bio_iovec(bio)->bv_len -= nr_bytes;
2124 }
2125
a2dec7b3 2126 req->__data_len -= total_bytes;
2e46e8b2
TH
2127 req->buffer = bio_data(req->bio);
2128
2129 /* update sector only for requests with clear definition of sector */
33659ebb 2130 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2131 req->__sector += total_bytes >> 9;
2e46e8b2 2132
80a761fd
TH
2133 /* mixed attributes always follow the first bio */
2134 if (req->cmd_flags & REQ_MIXED_MERGE) {
2135 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2136 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2137 }
2138
2e46e8b2
TH
2139 /*
2140 * If total number of sectors is less than the first segment
2141 * size, something has gone terribly wrong.
2142 */
2143 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2144 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2145 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2146 }
2147
2148 /* recalculate the number of segments */
1da177e4 2149 blk_recalc_rq_segments(req);
2e46e8b2 2150
2e60e022 2151 return true;
1da177e4 2152}
2e60e022 2153EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2154
2e60e022
TH
2155static bool blk_update_bidi_request(struct request *rq, int error,
2156 unsigned int nr_bytes,
2157 unsigned int bidi_bytes)
5efccd17 2158{
2e60e022
TH
2159 if (blk_update_request(rq, error, nr_bytes))
2160 return true;
5efccd17 2161
2e60e022
TH
2162 /* Bidi request must be completed as a whole */
2163 if (unlikely(blk_bidi_rq(rq)) &&
2164 blk_update_request(rq->next_rq, error, bidi_bytes))
2165 return true;
5efccd17 2166
e2e1a148
JA
2167 if (blk_queue_add_random(rq->q))
2168 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2169
2170 return false;
1da177e4
LT
2171}
2172
28018c24
JB
2173/**
2174 * blk_unprep_request - unprepare a request
2175 * @req: the request
2176 *
2177 * This function makes a request ready for complete resubmission (or
2178 * completion). It happens only after all error handling is complete,
2179 * so represents the appropriate moment to deallocate any resources
2180 * that were allocated to the request in the prep_rq_fn. The queue
2181 * lock is held when calling this.
2182 */
2183void blk_unprep_request(struct request *req)
2184{
2185 struct request_queue *q = req->q;
2186
2187 req->cmd_flags &= ~REQ_DONTPREP;
2188 if (q->unprep_rq_fn)
2189 q->unprep_rq_fn(q, req);
2190}
2191EXPORT_SYMBOL_GPL(blk_unprep_request);
2192
1da177e4
LT
2193/*
2194 * queue lock must be held
2195 */
2e60e022 2196static void blk_finish_request(struct request *req, int error)
1da177e4 2197{
b8286239
KU
2198 if (blk_rq_tagged(req))
2199 blk_queue_end_tag(req->q, req);
2200
ba396a6c 2201 BUG_ON(blk_queued_rq(req));
1da177e4 2202
33659ebb 2203 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2204 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2205
e78042e5
MA
2206 blk_delete_timer(req);
2207
28018c24
JB
2208 if (req->cmd_flags & REQ_DONTPREP)
2209 blk_unprep_request(req);
2210
2211
bc58ba94 2212 blk_account_io_done(req);
b8286239 2213
1da177e4 2214 if (req->end_io)
8ffdc655 2215 req->end_io(req, error);
b8286239
KU
2216 else {
2217 if (blk_bidi_rq(req))
2218 __blk_put_request(req->next_rq->q, req->next_rq);
2219
1da177e4 2220 __blk_put_request(req->q, req);
b8286239 2221 }
1da177e4
LT
2222}
2223
3b11313a 2224/**
2e60e022
TH
2225 * blk_end_bidi_request - Complete a bidi request
2226 * @rq: the request to complete
2227 * @error: %0 for success, < %0 for error
2228 * @nr_bytes: number of bytes to complete @rq
2229 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2230 *
2231 * Description:
e3a04fe3 2232 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2233 * Drivers that supports bidi can safely call this member for any
2234 * type of request, bidi or uni. In the later case @bidi_bytes is
2235 * just ignored.
336cdb40
KU
2236 *
2237 * Return:
2e60e022
TH
2238 * %false - we are done with this request
2239 * %true - still buffers pending for this request
a0cd1285 2240 **/
b1f74493 2241static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2242 unsigned int nr_bytes, unsigned int bidi_bytes)
2243{
336cdb40 2244 struct request_queue *q = rq->q;
2e60e022 2245 unsigned long flags;
32fab448 2246
2e60e022
TH
2247 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2248 return true;
32fab448 2249
336cdb40 2250 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2251 blk_finish_request(rq, error);
336cdb40
KU
2252 spin_unlock_irqrestore(q->queue_lock, flags);
2253
2e60e022 2254 return false;
32fab448
KU
2255}
2256
336cdb40 2257/**
2e60e022
TH
2258 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2259 * @rq: the request to complete
710027a4 2260 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2261 * @nr_bytes: number of bytes to complete @rq
2262 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2263 *
2264 * Description:
2e60e022
TH
2265 * Identical to blk_end_bidi_request() except that queue lock is
2266 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2267 *
2268 * Return:
2e60e022
TH
2269 * %false - we are done with this request
2270 * %true - still buffers pending for this request
336cdb40 2271 **/
b1f74493
FT
2272static bool __blk_end_bidi_request(struct request *rq, int error,
2273 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2274{
2e60e022
TH
2275 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2276 return true;
336cdb40 2277
2e60e022 2278 blk_finish_request(rq, error);
336cdb40 2279
2e60e022 2280 return false;
336cdb40 2281}
e19a3ab0
KU
2282
2283/**
2284 * blk_end_request - Helper function for drivers to complete the request.
2285 * @rq: the request being processed
710027a4 2286 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2287 * @nr_bytes: number of bytes to complete
2288 *
2289 * Description:
2290 * Ends I/O on a number of bytes attached to @rq.
2291 * If @rq has leftover, sets it up for the next range of segments.
2292 *
2293 * Return:
b1f74493
FT
2294 * %false - we are done with this request
2295 * %true - still buffers pending for this request
e19a3ab0 2296 **/
b1f74493 2297bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2298{
b1f74493 2299 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2300}
56ad1740 2301EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2302
2303/**
b1f74493
FT
2304 * blk_end_request_all - Helper function for drives to finish the request.
2305 * @rq: the request to finish
8ebf9756 2306 * @error: %0 for success, < %0 for error
336cdb40
KU
2307 *
2308 * Description:
b1f74493
FT
2309 * Completely finish @rq.
2310 */
2311void blk_end_request_all(struct request *rq, int error)
336cdb40 2312{
b1f74493
FT
2313 bool pending;
2314 unsigned int bidi_bytes = 0;
336cdb40 2315
b1f74493
FT
2316 if (unlikely(blk_bidi_rq(rq)))
2317 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2318
b1f74493
FT
2319 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2320 BUG_ON(pending);
2321}
56ad1740 2322EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2323
b1f74493
FT
2324/**
2325 * blk_end_request_cur - Helper function to finish the current request chunk.
2326 * @rq: the request to finish the current chunk for
8ebf9756 2327 * @error: %0 for success, < %0 for error
b1f74493
FT
2328 *
2329 * Description:
2330 * Complete the current consecutively mapped chunk from @rq.
2331 *
2332 * Return:
2333 * %false - we are done with this request
2334 * %true - still buffers pending for this request
2335 */
2336bool blk_end_request_cur(struct request *rq, int error)
2337{
2338 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2339}
56ad1740 2340EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2341
80a761fd
TH
2342/**
2343 * blk_end_request_err - Finish a request till the next failure boundary.
2344 * @rq: the request to finish till the next failure boundary for
2345 * @error: must be negative errno
2346 *
2347 * Description:
2348 * Complete @rq till the next failure boundary.
2349 *
2350 * Return:
2351 * %false - we are done with this request
2352 * %true - still buffers pending for this request
2353 */
2354bool blk_end_request_err(struct request *rq, int error)
2355{
2356 WARN_ON(error >= 0);
2357 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2358}
2359EXPORT_SYMBOL_GPL(blk_end_request_err);
2360
e3a04fe3 2361/**
b1f74493
FT
2362 * __blk_end_request - Helper function for drivers to complete the request.
2363 * @rq: the request being processed
2364 * @error: %0 for success, < %0 for error
2365 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2366 *
2367 * Description:
b1f74493 2368 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2369 *
2370 * Return:
b1f74493
FT
2371 * %false - we are done with this request
2372 * %true - still buffers pending for this request
e3a04fe3 2373 **/
b1f74493 2374bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2375{
b1f74493 2376 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2377}
56ad1740 2378EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2379
32fab448 2380/**
b1f74493
FT
2381 * __blk_end_request_all - Helper function for drives to finish the request.
2382 * @rq: the request to finish
8ebf9756 2383 * @error: %0 for success, < %0 for error
32fab448
KU
2384 *
2385 * Description:
b1f74493 2386 * Completely finish @rq. Must be called with queue lock held.
32fab448 2387 */
b1f74493 2388void __blk_end_request_all(struct request *rq, int error)
32fab448 2389{
b1f74493
FT
2390 bool pending;
2391 unsigned int bidi_bytes = 0;
2392
2393 if (unlikely(blk_bidi_rq(rq)))
2394 bidi_bytes = blk_rq_bytes(rq->next_rq);
2395
2396 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2397 BUG_ON(pending);
32fab448 2398}
56ad1740 2399EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2400
e19a3ab0 2401/**
b1f74493
FT
2402 * __blk_end_request_cur - Helper function to finish the current request chunk.
2403 * @rq: the request to finish the current chunk for
8ebf9756 2404 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2405 *
2406 * Description:
b1f74493
FT
2407 * Complete the current consecutively mapped chunk from @rq. Must
2408 * be called with queue lock held.
e19a3ab0
KU
2409 *
2410 * Return:
b1f74493
FT
2411 * %false - we are done with this request
2412 * %true - still buffers pending for this request
2413 */
2414bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2415{
b1f74493 2416 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2417}
56ad1740 2418EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2419
80a761fd
TH
2420/**
2421 * __blk_end_request_err - Finish a request till the next failure boundary.
2422 * @rq: the request to finish till the next failure boundary for
2423 * @error: must be negative errno
2424 *
2425 * Description:
2426 * Complete @rq till the next failure boundary. Must be called
2427 * with queue lock held.
2428 *
2429 * Return:
2430 * %false - we are done with this request
2431 * %true - still buffers pending for this request
2432 */
2433bool __blk_end_request_err(struct request *rq, int error)
2434{
2435 WARN_ON(error >= 0);
2436 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2437}
2438EXPORT_SYMBOL_GPL(__blk_end_request_err);
2439
86db1e29
JA
2440void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2441 struct bio *bio)
1da177e4 2442{
a82afdfc 2443 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2444 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2445
fb2dce86
DW
2446 if (bio_has_data(bio)) {
2447 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2448 rq->buffer = bio_data(bio);
2449 }
a2dec7b3 2450 rq->__data_len = bio->bi_size;
1da177e4 2451 rq->bio = rq->biotail = bio;
1da177e4 2452
66846572
N
2453 if (bio->bi_bdev)
2454 rq->rq_disk = bio->bi_bdev->bd_disk;
2455}
1da177e4 2456
2d4dc890
IL
2457#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2458/**
2459 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2460 * @rq: the request to be flushed
2461 *
2462 * Description:
2463 * Flush all pages in @rq.
2464 */
2465void rq_flush_dcache_pages(struct request *rq)
2466{
2467 struct req_iterator iter;
2468 struct bio_vec *bvec;
2469
2470 rq_for_each_segment(bvec, rq, iter)
2471 flush_dcache_page(bvec->bv_page);
2472}
2473EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2474#endif
2475
ef9e3fac
KU
2476/**
2477 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2478 * @q : the queue of the device being checked
2479 *
2480 * Description:
2481 * Check if underlying low-level drivers of a device are busy.
2482 * If the drivers want to export their busy state, they must set own
2483 * exporting function using blk_queue_lld_busy() first.
2484 *
2485 * Basically, this function is used only by request stacking drivers
2486 * to stop dispatching requests to underlying devices when underlying
2487 * devices are busy. This behavior helps more I/O merging on the queue
2488 * of the request stacking driver and prevents I/O throughput regression
2489 * on burst I/O load.
2490 *
2491 * Return:
2492 * 0 - Not busy (The request stacking driver should dispatch request)
2493 * 1 - Busy (The request stacking driver should stop dispatching request)
2494 */
2495int blk_lld_busy(struct request_queue *q)
2496{
2497 if (q->lld_busy_fn)
2498 return q->lld_busy_fn(q);
2499
2500 return 0;
2501}
2502EXPORT_SYMBOL_GPL(blk_lld_busy);
2503
b0fd271d
KU
2504/**
2505 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2506 * @rq: the clone request to be cleaned up
2507 *
2508 * Description:
2509 * Free all bios in @rq for a cloned request.
2510 */
2511void blk_rq_unprep_clone(struct request *rq)
2512{
2513 struct bio *bio;
2514
2515 while ((bio = rq->bio) != NULL) {
2516 rq->bio = bio->bi_next;
2517
2518 bio_put(bio);
2519 }
2520}
2521EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2522
2523/*
2524 * Copy attributes of the original request to the clone request.
2525 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2526 */
2527static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2528{
2529 dst->cpu = src->cpu;
3a2edd0d 2530 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2531 dst->cmd_type = src->cmd_type;
2532 dst->__sector = blk_rq_pos(src);
2533 dst->__data_len = blk_rq_bytes(src);
2534 dst->nr_phys_segments = src->nr_phys_segments;
2535 dst->ioprio = src->ioprio;
2536 dst->extra_len = src->extra_len;
2537}
2538
2539/**
2540 * blk_rq_prep_clone - Helper function to setup clone request
2541 * @rq: the request to be setup
2542 * @rq_src: original request to be cloned
2543 * @bs: bio_set that bios for clone are allocated from
2544 * @gfp_mask: memory allocation mask for bio
2545 * @bio_ctr: setup function to be called for each clone bio.
2546 * Returns %0 for success, non %0 for failure.
2547 * @data: private data to be passed to @bio_ctr
2548 *
2549 * Description:
2550 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2551 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2552 * are not copied, and copying such parts is the caller's responsibility.
2553 * Also, pages which the original bios are pointing to are not copied
2554 * and the cloned bios just point same pages.
2555 * So cloned bios must be completed before original bios, which means
2556 * the caller must complete @rq before @rq_src.
2557 */
2558int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2559 struct bio_set *bs, gfp_t gfp_mask,
2560 int (*bio_ctr)(struct bio *, struct bio *, void *),
2561 void *data)
2562{
2563 struct bio *bio, *bio_src;
2564
2565 if (!bs)
2566 bs = fs_bio_set;
2567
2568 blk_rq_init(NULL, rq);
2569
2570 __rq_for_each_bio(bio_src, rq_src) {
2571 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2572 if (!bio)
2573 goto free_and_out;
2574
2575 __bio_clone(bio, bio_src);
2576
2577 if (bio_integrity(bio_src) &&
7878cba9 2578 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2579 goto free_and_out;
2580
2581 if (bio_ctr && bio_ctr(bio, bio_src, data))
2582 goto free_and_out;
2583
2584 if (rq->bio) {
2585 rq->biotail->bi_next = bio;
2586 rq->biotail = bio;
2587 } else
2588 rq->bio = rq->biotail = bio;
2589 }
2590
2591 __blk_rq_prep_clone(rq, rq_src);
2592
2593 return 0;
2594
2595free_and_out:
2596 if (bio)
2597 bio_free(bio, bs);
2598 blk_rq_unprep_clone(rq);
2599
2600 return -ENOMEM;
2601}
2602EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2603
18887ad9 2604int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2605{
2606 return queue_work(kblockd_workqueue, work);
2607}
1da177e4
LT
2608EXPORT_SYMBOL(kblockd_schedule_work);
2609
e43473b7
VG
2610int kblockd_schedule_delayed_work(struct request_queue *q,
2611 struct delayed_work *dwork, unsigned long delay)
2612{
2613 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2614}
2615EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2616
73c10101
JA
2617#define PLUG_MAGIC 0x91827364
2618
2619void blk_start_plug(struct blk_plug *plug)
2620{
2621 struct task_struct *tsk = current;
2622
2623 plug->magic = PLUG_MAGIC;
2624 INIT_LIST_HEAD(&plug->list);
048c9374 2625 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2626 plug->should_sort = 0;
2627
2628 /*
2629 * If this is a nested plug, don't actually assign it. It will be
2630 * flushed on its own.
2631 */
2632 if (!tsk->plug) {
2633 /*
2634 * Store ordering should not be needed here, since a potential
2635 * preempt will imply a full memory barrier
2636 */
2637 tsk->plug = plug;
2638 }
2639}
2640EXPORT_SYMBOL(blk_start_plug);
2641
2642static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2643{
2644 struct request *rqa = container_of(a, struct request, queuelist);
2645 struct request *rqb = container_of(b, struct request, queuelist);
2646
f83e8261 2647 return !(rqa->q <= rqb->q);
73c10101
JA
2648}
2649
49cac01e
JA
2650/*
2651 * If 'from_schedule' is true, then postpone the dispatch of requests
2652 * until a safe kblockd context. We due this to avoid accidental big
2653 * additional stack usage in driver dispatch, in places where the originally
2654 * plugger did not intend it.
2655 */
f6603783 2656static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2657 bool from_schedule)
99e22598 2658 __releases(q->queue_lock)
94b5eb28 2659{
49cac01e 2660 trace_block_unplug(q, depth, !from_schedule);
99e22598
JA
2661
2662 /*
2663 * If we are punting this to kblockd, then we can safely drop
2664 * the queue_lock before waking kblockd (which needs to take
2665 * this lock).
2666 */
2667 if (from_schedule) {
2668 spin_unlock(q->queue_lock);
24ecfbe2 2669 blk_run_queue_async(q);
99e22598 2670 } else {
24ecfbe2 2671 __blk_run_queue(q);
99e22598
JA
2672 spin_unlock(q->queue_lock);
2673 }
2674
94b5eb28
JA
2675}
2676
048c9374
N
2677static void flush_plug_callbacks(struct blk_plug *plug)
2678{
2679 LIST_HEAD(callbacks);
2680
2681 if (list_empty(&plug->cb_list))
2682 return;
2683
2684 list_splice_init(&plug->cb_list, &callbacks);
2685
2686 while (!list_empty(&callbacks)) {
2687 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2688 struct blk_plug_cb,
2689 list);
2690 list_del(&cb->list);
2691 cb->callback(cb);
2692 }
2693}
2694
49cac01e 2695void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2696{
2697 struct request_queue *q;
2698 unsigned long flags;
2699 struct request *rq;
109b8129 2700 LIST_HEAD(list);
94b5eb28 2701 unsigned int depth;
73c10101
JA
2702
2703 BUG_ON(plug->magic != PLUG_MAGIC);
2704
048c9374 2705 flush_plug_callbacks(plug);
73c10101
JA
2706 if (list_empty(&plug->list))
2707 return;
2708
109b8129
N
2709 list_splice_init(&plug->list, &list);
2710
2711 if (plug->should_sort) {
2712 list_sort(NULL, &list, plug_rq_cmp);
2713 plug->should_sort = 0;
2714 }
73c10101
JA
2715
2716 q = NULL;
94b5eb28 2717 depth = 0;
18811272
JA
2718
2719 /*
2720 * Save and disable interrupts here, to avoid doing it for every
2721 * queue lock we have to take.
2722 */
73c10101 2723 local_irq_save(flags);
109b8129
N
2724 while (!list_empty(&list)) {
2725 rq = list_entry_rq(list.next);
73c10101 2726 list_del_init(&rq->queuelist);
73c10101
JA
2727 BUG_ON(!rq->q);
2728 if (rq->q != q) {
99e22598
JA
2729 /*
2730 * This drops the queue lock
2731 */
2732 if (q)
49cac01e 2733 queue_unplugged(q, depth, from_schedule);
73c10101 2734 q = rq->q;
94b5eb28 2735 depth = 0;
73c10101
JA
2736 spin_lock(q->queue_lock);
2737 }
73c10101
JA
2738 /*
2739 * rq is already accounted, so use raw insert
2740 */
401a18e9
JA
2741 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2742 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2743 else
2744 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2745
2746 depth++;
73c10101
JA
2747 }
2748
99e22598
JA
2749 /*
2750 * This drops the queue lock
2751 */
2752 if (q)
49cac01e 2753 queue_unplugged(q, depth, from_schedule);
73c10101 2754
73c10101
JA
2755 local_irq_restore(flags);
2756}
73c10101
JA
2757
2758void blk_finish_plug(struct blk_plug *plug)
2759{
f6603783 2760 blk_flush_plug_list(plug, false);
73c10101 2761
88b996cd
CH
2762 if (plug == current->plug)
2763 current->plug = NULL;
73c10101 2764}
88b996cd 2765EXPORT_SYMBOL(blk_finish_plug);
73c10101 2766
1da177e4
LT
2767int __init blk_dev_init(void)
2768{
9eb55b03
NK
2769 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2770 sizeof(((struct request *)0)->cmd_flags));
2771
89b90be2
TH
2772 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2773 kblockd_workqueue = alloc_workqueue("kblockd",
2774 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2775 if (!kblockd_workqueue)
2776 panic("Failed to create kblockd\n");
2777
2778 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2779 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2780
8324aa91 2781 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2782 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2783
d38ecf93 2784 return 0;
1da177e4 2785}
This page took 0.717498 seconds and 5 git commands to generate.