perf: Allow perf_release() with !event->ctx
[deliverable/linux.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
aedcd72f 24#include <linux/crash_dump.h>
320ae51f
JA
25
26#include <trace/events/block.h>
27
28#include <linux/blk-mq.h>
29#include "blk.h"
30#include "blk-mq.h"
31#include "blk-mq-tag.h"
32
33static DEFINE_MUTEX(all_q_mutex);
34static LIST_HEAD(all_q_list);
35
36static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37
320ae51f
JA
38/*
39 * Check if any of the ctx's have pending work in this hardware queue
40 */
41static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42{
43 unsigned int i;
44
569fd0ce 45 for (i = 0; i < hctx->ctx_map.size; i++)
1429d7c9 46 if (hctx->ctx_map.map[i].word)
320ae51f
JA
47 return true;
48
49 return false;
50}
51
1429d7c9
JA
52static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
54{
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56}
57
58#define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60
320ae51f
JA
61/*
62 * Mark this ctx as having pending work in this hardware queue
63 */
64static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
66{
1429d7c9
JA
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71}
72
73static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75{
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
79}
80
b4c6a028 81void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 82{
4ecd4fef 83 int freeze_depth;
cddd5d17 84
4ecd4fef
CH
85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 if (freeze_depth == 1) {
3ef28e83 87 percpu_ref_kill(&q->q_usage_counter);
b94ec296 88 blk_mq_run_hw_queues(q, false);
cddd5d17 89 }
f3af020b 90}
b4c6a028 91EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
92
93static void blk_mq_freeze_queue_wait(struct request_queue *q)
94{
3ef28e83 95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2
ML
96}
97
f3af020b
TH
98/*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
3ef28e83 102void blk_freeze_queue(struct request_queue *q)
f3af020b 103{
3ef28e83
DW
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
f3af020b
TH
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113}
3ef28e83
DW
114
115void blk_mq_freeze_queue(struct request_queue *q)
116{
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122}
c761d96b 123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 124
b4c6a028 125void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 126{
4ecd4fef 127 int freeze_depth;
320ae51f 128
4ecd4fef
CH
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
3ef28e83 132 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 133 wake_up_all(&q->mq_freeze_wq);
add703fd 134 }
320ae51f 135}
b4c6a028 136EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 137
aed3ea94
JA
138void blk_mq_wake_waiters(struct request_queue *q)
139{
140 struct blk_mq_hw_ctx *hctx;
141 unsigned int i;
142
143 queue_for_each_hw_ctx(q, hctx, i)
144 if (blk_mq_hw_queue_mapped(hctx))
145 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
146
147 /*
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
151 */
152 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
153}
154
320ae51f
JA
155bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156{
157 return blk_mq_has_free_tags(hctx->tags);
158}
159EXPORT_SYMBOL(blk_mq_can_queue);
160
94eddfbe
JA
161static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 struct request *rq, unsigned int rw_flags)
320ae51f 163{
94eddfbe
JA
164 if (blk_queue_io_stat(q))
165 rw_flags |= REQ_IO_STAT;
166
af76e555
CH
167 INIT_LIST_HEAD(&rq->queuelist);
168 /* csd/requeue_work/fifo_time is initialized before use */
169 rq->q = q;
320ae51f 170 rq->mq_ctx = ctx;
0d2602ca 171 rq->cmd_flags |= rw_flags;
af76e555
CH
172 /* do not touch atomic flags, it needs atomic ops against the timer */
173 rq->cpu = -1;
af76e555
CH
174 INIT_HLIST_NODE(&rq->hash);
175 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
176 rq->rq_disk = NULL;
177 rq->part = NULL;
3ee32372 178 rq->start_time = jiffies;
af76e555
CH
179#ifdef CONFIG_BLK_CGROUP
180 rq->rl = NULL;
0fec08b4 181 set_start_time_ns(rq);
af76e555
CH
182 rq->io_start_time_ns = 0;
183#endif
184 rq->nr_phys_segments = 0;
185#if defined(CONFIG_BLK_DEV_INTEGRITY)
186 rq->nr_integrity_segments = 0;
187#endif
af76e555
CH
188 rq->special = NULL;
189 /* tag was already set */
190 rq->errors = 0;
af76e555 191
6f4a1626
TB
192 rq->cmd = rq->__cmd;
193
af76e555
CH
194 rq->extra_len = 0;
195 rq->sense_len = 0;
196 rq->resid_len = 0;
197 rq->sense = NULL;
198
af76e555 199 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
200 rq->timeout = 0;
201
af76e555
CH
202 rq->end_io = NULL;
203 rq->end_io_data = NULL;
204 rq->next_rq = NULL;
205
320ae51f
JA
206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207}
208
5dee8577 209static struct request *
cb96a42c 210__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
211{
212 struct request *rq;
213 unsigned int tag;
214
cb96a42c 215 tag = blk_mq_get_tag(data);
5dee8577 216 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 217 rq = data->hctx->tags->rqs[tag];
5dee8577 218
cb96a42c 219 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 220 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 221 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
222 }
223
224 rq->tag = tag;
cb96a42c 225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
226 return rq;
227 }
228
229 return NULL;
230}
231
6f3b0e8b
CH
232struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
233 unsigned int flags)
320ae51f 234{
d852564f
CH
235 struct blk_mq_ctx *ctx;
236 struct blk_mq_hw_ctx *hctx;
320ae51f 237 struct request *rq;
cb96a42c 238 struct blk_mq_alloc_data alloc_data;
a492f075 239 int ret;
320ae51f 240
6f3b0e8b 241 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
242 if (ret)
243 return ERR_PTR(ret);
320ae51f 244
d852564f
CH
245 ctx = blk_mq_get_ctx(q);
246 hctx = q->mq_ops->map_queue(q, ctx->cpu);
6f3b0e8b 247 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
d852564f 248
cb96a42c 249 rq = __blk_mq_alloc_request(&alloc_data, rw);
6f3b0e8b 250 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
d852564f
CH
251 __blk_mq_run_hw_queue(hctx);
252 blk_mq_put_ctx(ctx);
253
254 ctx = blk_mq_get_ctx(q);
255 hctx = q->mq_ops->map_queue(q, ctx->cpu);
6f3b0e8b 256 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
cb96a42c
ML
257 rq = __blk_mq_alloc_request(&alloc_data, rw);
258 ctx = alloc_data.ctx;
d852564f
CH
259 }
260 blk_mq_put_ctx(ctx);
c76541a9 261 if (!rq) {
3ef28e83 262 blk_queue_exit(q);
a492f075 263 return ERR_PTR(-EWOULDBLOCK);
c76541a9 264 }
320ae51f
JA
265 return rq;
266}
4bb659b1 267EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 268
320ae51f
JA
269static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
270 struct blk_mq_ctx *ctx, struct request *rq)
271{
272 const int tag = rq->tag;
273 struct request_queue *q = rq->q;
274
0d2602ca
JA
275 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
276 atomic_dec(&hctx->nr_active);
683d0e12 277 rq->cmd_flags = 0;
0d2602ca 278
af76e555 279 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 280 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
3ef28e83 281 blk_queue_exit(q);
320ae51f
JA
282}
283
7c7f2f2b 284void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
320ae51f
JA
285{
286 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
287
288 ctx->rq_completed[rq_is_sync(rq)]++;
320ae51f 289 __blk_mq_free_request(hctx, ctx, rq);
7c7f2f2b
JA
290
291}
292EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
293
294void blk_mq_free_request(struct request *rq)
295{
296 struct blk_mq_hw_ctx *hctx;
297 struct request_queue *q = rq->q;
298
299 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
300 blk_mq_free_hctx_request(hctx, rq);
320ae51f 301}
1a3b595a 302EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 303
c8a446ad 304inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 305{
0d11e6ac
ML
306 blk_account_io_done(rq);
307
91b63639 308 if (rq->end_io) {
320ae51f 309 rq->end_io(rq, error);
91b63639
CH
310 } else {
311 if (unlikely(blk_bidi_rq(rq)))
312 blk_mq_free_request(rq->next_rq);
320ae51f 313 blk_mq_free_request(rq);
91b63639 314 }
320ae51f 315}
c8a446ad 316EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 317
c8a446ad 318void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
319{
320 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
321 BUG();
c8a446ad 322 __blk_mq_end_request(rq, error);
63151a44 323}
c8a446ad 324EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 325
30a91cb4 326static void __blk_mq_complete_request_remote(void *data)
320ae51f 327{
3d6efbf6 328 struct request *rq = data;
320ae51f 329
30a91cb4 330 rq->q->softirq_done_fn(rq);
320ae51f 331}
320ae51f 332
ed851860 333static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
334{
335 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 336 bool shared = false;
320ae51f
JA
337 int cpu;
338
38535201 339 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
340 rq->q->softirq_done_fn(rq);
341 return;
342 }
320ae51f
JA
343
344 cpu = get_cpu();
38535201
CH
345 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
346 shared = cpus_share_cache(cpu, ctx->cpu);
347
348 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 349 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
350 rq->csd.info = rq;
351 rq->csd.flags = 0;
c46fff2a 352 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 353 } else {
30a91cb4 354 rq->q->softirq_done_fn(rq);
3d6efbf6 355 }
320ae51f
JA
356 put_cpu();
357}
30a91cb4 358
1fa8cc52 359static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
360{
361 struct request_queue *q = rq->q;
362
363 if (!q->softirq_done_fn)
c8a446ad 364 blk_mq_end_request(rq, rq->errors);
ed851860
JA
365 else
366 blk_mq_ipi_complete_request(rq);
367}
368
30a91cb4
CH
369/**
370 * blk_mq_complete_request - end I/O on a request
371 * @rq: the request being processed
372 *
373 * Description:
374 * Ends all I/O on a request. It does not handle partial completions.
375 * The actual completion happens out-of-order, through a IPI handler.
376 **/
f4829a9b 377void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 378{
95f09684
JA
379 struct request_queue *q = rq->q;
380
381 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 382 return;
f4829a9b
CH
383 if (!blk_mark_rq_complete(rq)) {
384 rq->errors = error;
ed851860 385 __blk_mq_complete_request(rq);
f4829a9b 386 }
30a91cb4
CH
387}
388EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 389
973c0191
KB
390int blk_mq_request_started(struct request *rq)
391{
392 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
393}
394EXPORT_SYMBOL_GPL(blk_mq_request_started);
395
e2490073 396void blk_mq_start_request(struct request *rq)
320ae51f
JA
397{
398 struct request_queue *q = rq->q;
399
400 trace_block_rq_issue(q, rq);
401
742ee69b 402 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
403 if (unlikely(blk_bidi_rq(rq)))
404 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 405
2b8393b4 406 blk_add_timer(rq);
87ee7b11 407
538b7534
JA
408 /*
409 * Ensure that ->deadline is visible before set the started
410 * flag and clear the completed flag.
411 */
412 smp_mb__before_atomic();
413
87ee7b11
JA
414 /*
415 * Mark us as started and clear complete. Complete might have been
416 * set if requeue raced with timeout, which then marked it as
417 * complete. So be sure to clear complete again when we start
418 * the request, otherwise we'll ignore the completion event.
419 */
4b570521
JA
420 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
421 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
422 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
423 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
424
425 if (q->dma_drain_size && blk_rq_bytes(rq)) {
426 /*
427 * Make sure space for the drain appears. We know we can do
428 * this because max_hw_segments has been adjusted to be one
429 * fewer than the device can handle.
430 */
431 rq->nr_phys_segments++;
432 }
320ae51f 433}
e2490073 434EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 435
ed0791b2 436static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
437{
438 struct request_queue *q = rq->q;
439
440 trace_block_rq_requeue(q, rq);
49f5baa5 441
e2490073
CH
442 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
443 if (q->dma_drain_size && blk_rq_bytes(rq))
444 rq->nr_phys_segments--;
445 }
320ae51f
JA
446}
447
ed0791b2
CH
448void blk_mq_requeue_request(struct request *rq)
449{
ed0791b2 450 __blk_mq_requeue_request(rq);
ed0791b2 451
ed0791b2 452 BUG_ON(blk_queued_rq(rq));
6fca6a61 453 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
454}
455EXPORT_SYMBOL(blk_mq_requeue_request);
456
6fca6a61
CH
457static void blk_mq_requeue_work(struct work_struct *work)
458{
459 struct request_queue *q =
460 container_of(work, struct request_queue, requeue_work);
461 LIST_HEAD(rq_list);
462 struct request *rq, *next;
463 unsigned long flags;
464
465 spin_lock_irqsave(&q->requeue_lock, flags);
466 list_splice_init(&q->requeue_list, &rq_list);
467 spin_unlock_irqrestore(&q->requeue_lock, flags);
468
469 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
470 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
471 continue;
472
473 rq->cmd_flags &= ~REQ_SOFTBARRIER;
474 list_del_init(&rq->queuelist);
475 blk_mq_insert_request(rq, true, false, false);
476 }
477
478 while (!list_empty(&rq_list)) {
479 rq = list_entry(rq_list.next, struct request, queuelist);
480 list_del_init(&rq->queuelist);
481 blk_mq_insert_request(rq, false, false, false);
482 }
483
8b957415
JA
484 /*
485 * Use the start variant of queue running here, so that running
486 * the requeue work will kick stopped queues.
487 */
488 blk_mq_start_hw_queues(q);
6fca6a61
CH
489}
490
491void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
492{
493 struct request_queue *q = rq->q;
494 unsigned long flags;
495
496 /*
497 * We abuse this flag that is otherwise used by the I/O scheduler to
498 * request head insertation from the workqueue.
499 */
500 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
501
502 spin_lock_irqsave(&q->requeue_lock, flags);
503 if (at_head) {
504 rq->cmd_flags |= REQ_SOFTBARRIER;
505 list_add(&rq->queuelist, &q->requeue_list);
506 } else {
507 list_add_tail(&rq->queuelist, &q->requeue_list);
508 }
509 spin_unlock_irqrestore(&q->requeue_lock, flags);
510}
511EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
512
c68ed59f
KB
513void blk_mq_cancel_requeue_work(struct request_queue *q)
514{
515 cancel_work_sync(&q->requeue_work);
516}
517EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
518
6fca6a61
CH
519void blk_mq_kick_requeue_list(struct request_queue *q)
520{
521 kblockd_schedule_work(&q->requeue_work);
522}
523EXPORT_SYMBOL(blk_mq_kick_requeue_list);
524
1885b24d
JA
525void blk_mq_abort_requeue_list(struct request_queue *q)
526{
527 unsigned long flags;
528 LIST_HEAD(rq_list);
529
530 spin_lock_irqsave(&q->requeue_lock, flags);
531 list_splice_init(&q->requeue_list, &rq_list);
532 spin_unlock_irqrestore(&q->requeue_lock, flags);
533
534 while (!list_empty(&rq_list)) {
535 struct request *rq;
536
537 rq = list_first_entry(&rq_list, struct request, queuelist);
538 list_del_init(&rq->queuelist);
539 rq->errors = -EIO;
540 blk_mq_end_request(rq, rq->errors);
541 }
542}
543EXPORT_SYMBOL(blk_mq_abort_requeue_list);
544
0e62f51f
JA
545struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
546{
0048b483 547 return tags->rqs[tag];
24d2f903
CH
548}
549EXPORT_SYMBOL(blk_mq_tag_to_rq);
550
320ae51f 551struct blk_mq_timeout_data {
46f92d42
CH
552 unsigned long next;
553 unsigned int next_set;
320ae51f
JA
554};
555
90415837 556void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 557{
46f92d42
CH
558 struct blk_mq_ops *ops = req->q->mq_ops;
559 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
560
561 /*
562 * We know that complete is set at this point. If STARTED isn't set
563 * anymore, then the request isn't active and the "timeout" should
564 * just be ignored. This can happen due to the bitflag ordering.
565 * Timeout first checks if STARTED is set, and if it is, assumes
566 * the request is active. But if we race with completion, then
567 * we both flags will get cleared. So check here again, and ignore
568 * a timeout event with a request that isn't active.
569 */
46f92d42
CH
570 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
571 return;
87ee7b11 572
46f92d42 573 if (ops->timeout)
0152fb6b 574 ret = ops->timeout(req, reserved);
46f92d42
CH
575
576 switch (ret) {
577 case BLK_EH_HANDLED:
578 __blk_mq_complete_request(req);
579 break;
580 case BLK_EH_RESET_TIMER:
581 blk_add_timer(req);
582 blk_clear_rq_complete(req);
583 break;
584 case BLK_EH_NOT_HANDLED:
585 break;
586 default:
587 printk(KERN_ERR "block: bad eh return: %d\n", ret);
588 break;
589 }
87ee7b11 590}
5b3f25fc 591
81481eb4
CH
592static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
593 struct request *rq, void *priv, bool reserved)
594{
595 struct blk_mq_timeout_data *data = priv;
87ee7b11 596
eb130dbf
KB
597 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
598 /*
599 * If a request wasn't started before the queue was
600 * marked dying, kill it here or it'll go unnoticed.
601 */
a59e0f57
KB
602 if (unlikely(blk_queue_dying(rq->q))) {
603 rq->errors = -EIO;
604 blk_mq_end_request(rq, rq->errors);
605 }
46f92d42 606 return;
eb130dbf 607 }
87ee7b11 608
46f92d42
CH
609 if (time_after_eq(jiffies, rq->deadline)) {
610 if (!blk_mark_rq_complete(rq))
0152fb6b 611 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
612 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
613 data->next = rq->deadline;
614 data->next_set = 1;
615 }
87ee7b11
JA
616}
617
287922eb 618static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 619{
287922eb
CH
620 struct request_queue *q =
621 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
622 struct blk_mq_timeout_data data = {
623 .next = 0,
624 .next_set = 0,
625 };
81481eb4 626 int i;
320ae51f 627
287922eb
CH
628 if (blk_queue_enter(q, true))
629 return;
630
0bf6cd5b 631 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 632
81481eb4
CH
633 if (data.next_set) {
634 data.next = blk_rq_timeout(round_jiffies_up(data.next));
635 mod_timer(&q->timeout, data.next);
0d2602ca 636 } else {
0bf6cd5b
CH
637 struct blk_mq_hw_ctx *hctx;
638
f054b56c
ML
639 queue_for_each_hw_ctx(q, hctx, i) {
640 /* the hctx may be unmapped, so check it here */
641 if (blk_mq_hw_queue_mapped(hctx))
642 blk_mq_tag_idle(hctx);
643 }
0d2602ca 644 }
287922eb 645 blk_queue_exit(q);
320ae51f
JA
646}
647
648/*
649 * Reverse check our software queue for entries that we could potentially
650 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
651 * too much time checking for merges.
652 */
653static bool blk_mq_attempt_merge(struct request_queue *q,
654 struct blk_mq_ctx *ctx, struct bio *bio)
655{
656 struct request *rq;
657 int checked = 8;
658
659 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
660 int el_ret;
661
662 if (!checked--)
663 break;
664
665 if (!blk_rq_merge_ok(rq, bio))
666 continue;
667
668 el_ret = blk_try_merge(rq, bio);
669 if (el_ret == ELEVATOR_BACK_MERGE) {
670 if (bio_attempt_back_merge(q, rq, bio)) {
671 ctx->rq_merged++;
672 return true;
673 }
674 break;
675 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
676 if (bio_attempt_front_merge(q, rq, bio)) {
677 ctx->rq_merged++;
678 return true;
679 }
680 break;
681 }
682 }
683
684 return false;
685}
686
1429d7c9
JA
687/*
688 * Process software queues that have been marked busy, splicing them
689 * to the for-dispatch
690 */
691static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
692{
693 struct blk_mq_ctx *ctx;
694 int i;
695
569fd0ce 696 for (i = 0; i < hctx->ctx_map.size; i++) {
1429d7c9
JA
697 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
698 unsigned int off, bit;
699
700 if (!bm->word)
701 continue;
702
703 bit = 0;
704 off = i * hctx->ctx_map.bits_per_word;
705 do {
706 bit = find_next_bit(&bm->word, bm->depth, bit);
707 if (bit >= bm->depth)
708 break;
709
710 ctx = hctx->ctxs[bit + off];
711 clear_bit(bit, &bm->word);
712 spin_lock(&ctx->lock);
713 list_splice_tail_init(&ctx->rq_list, list);
714 spin_unlock(&ctx->lock);
715
716 bit++;
717 } while (1);
718 }
719}
720
320ae51f
JA
721/*
722 * Run this hardware queue, pulling any software queues mapped to it in.
723 * Note that this function currently has various problems around ordering
724 * of IO. In particular, we'd like FIFO behaviour on handling existing
725 * items on the hctx->dispatch list. Ignore that for now.
726 */
727static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
728{
729 struct request_queue *q = hctx->queue;
320ae51f
JA
730 struct request *rq;
731 LIST_HEAD(rq_list);
74c45052
JA
732 LIST_HEAD(driver_list);
733 struct list_head *dptr;
1429d7c9 734 int queued;
320ae51f 735
fd1270d5 736 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 737
5d12f905 738 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
739 return;
740
741 hctx->run++;
742
743 /*
744 * Touch any software queue that has pending entries.
745 */
1429d7c9 746 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
747
748 /*
749 * If we have previous entries on our dispatch list, grab them
750 * and stuff them at the front for more fair dispatch.
751 */
752 if (!list_empty_careful(&hctx->dispatch)) {
753 spin_lock(&hctx->lock);
754 if (!list_empty(&hctx->dispatch))
755 list_splice_init(&hctx->dispatch, &rq_list);
756 spin_unlock(&hctx->lock);
757 }
758
74c45052
JA
759 /*
760 * Start off with dptr being NULL, so we start the first request
761 * immediately, even if we have more pending.
762 */
763 dptr = NULL;
764
320ae51f
JA
765 /*
766 * Now process all the entries, sending them to the driver.
767 */
1429d7c9 768 queued = 0;
320ae51f 769 while (!list_empty(&rq_list)) {
74c45052 770 struct blk_mq_queue_data bd;
320ae51f
JA
771 int ret;
772
773 rq = list_first_entry(&rq_list, struct request, queuelist);
774 list_del_init(&rq->queuelist);
320ae51f 775
74c45052
JA
776 bd.rq = rq;
777 bd.list = dptr;
778 bd.last = list_empty(&rq_list);
779
780 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
781 switch (ret) {
782 case BLK_MQ_RQ_QUEUE_OK:
783 queued++;
784 continue;
785 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 786 list_add(&rq->queuelist, &rq_list);
ed0791b2 787 __blk_mq_requeue_request(rq);
320ae51f
JA
788 break;
789 default:
790 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 791 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 792 rq->errors = -EIO;
c8a446ad 793 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
794 break;
795 }
796
797 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
798 break;
74c45052
JA
799
800 /*
801 * We've done the first request. If we have more than 1
802 * left in the list, set dptr to defer issue.
803 */
804 if (!dptr && rq_list.next != rq_list.prev)
805 dptr = &driver_list;
320ae51f
JA
806 }
807
808 if (!queued)
809 hctx->dispatched[0]++;
810 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
811 hctx->dispatched[ilog2(queued) + 1]++;
812
813 /*
814 * Any items that need requeuing? Stuff them into hctx->dispatch,
815 * that is where we will continue on next queue run.
816 */
817 if (!list_empty(&rq_list)) {
818 spin_lock(&hctx->lock);
819 list_splice(&rq_list, &hctx->dispatch);
820 spin_unlock(&hctx->lock);
9ba52e58
SL
821 /*
822 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
823 * it's possible the queue is stopped and restarted again
824 * before this. Queue restart will dispatch requests. And since
825 * requests in rq_list aren't added into hctx->dispatch yet,
826 * the requests in rq_list might get lost.
827 *
828 * blk_mq_run_hw_queue() already checks the STOPPED bit
829 **/
830 blk_mq_run_hw_queue(hctx, true);
320ae51f
JA
831 }
832}
833
506e931f
JA
834/*
835 * It'd be great if the workqueue API had a way to pass
836 * in a mask and had some smarts for more clever placement.
837 * For now we just round-robin here, switching for every
838 * BLK_MQ_CPU_WORK_BATCH queued items.
839 */
840static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
841{
b657d7e6
CH
842 if (hctx->queue->nr_hw_queues == 1)
843 return WORK_CPU_UNBOUND;
506e931f
JA
844
845 if (--hctx->next_cpu_batch <= 0) {
b657d7e6 846 int cpu = hctx->next_cpu, next_cpu;
506e931f
JA
847
848 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
849 if (next_cpu >= nr_cpu_ids)
850 next_cpu = cpumask_first(hctx->cpumask);
851
852 hctx->next_cpu = next_cpu;
853 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
b657d7e6
CH
854
855 return cpu;
506e931f
JA
856 }
857
b657d7e6 858 return hctx->next_cpu;
506e931f
JA
859}
860
320ae51f
JA
861void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
862{
19c66e59
ML
863 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
864 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
865 return;
866
398205b8 867 if (!async) {
2a90d4aa
PB
868 int cpu = get_cpu();
869 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 870 __blk_mq_run_hw_queue(hctx);
2a90d4aa 871 put_cpu();
398205b8
PB
872 return;
873 }
e4043dcf 874
2a90d4aa 875 put_cpu();
e4043dcf 876 }
398205b8 877
b657d7e6
CH
878 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
879 &hctx->run_work, 0);
320ae51f
JA
880}
881
b94ec296 882void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
883{
884 struct blk_mq_hw_ctx *hctx;
885 int i;
886
887 queue_for_each_hw_ctx(q, hctx, i) {
888 if ((!blk_mq_hctx_has_pending(hctx) &&
889 list_empty_careful(&hctx->dispatch)) ||
5d12f905 890 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
891 continue;
892
b94ec296 893 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
894 }
895}
b94ec296 896EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f
JA
897
898void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
899{
70f4db63
CH
900 cancel_delayed_work(&hctx->run_work);
901 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
902 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
903}
904EXPORT_SYMBOL(blk_mq_stop_hw_queue);
905
280d45f6
CH
906void blk_mq_stop_hw_queues(struct request_queue *q)
907{
908 struct blk_mq_hw_ctx *hctx;
909 int i;
910
911 queue_for_each_hw_ctx(q, hctx, i)
912 blk_mq_stop_hw_queue(hctx);
913}
914EXPORT_SYMBOL(blk_mq_stop_hw_queues);
915
320ae51f
JA
916void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
917{
918 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 919
0ffbce80 920 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
921}
922EXPORT_SYMBOL(blk_mq_start_hw_queue);
923
2f268556
CH
924void blk_mq_start_hw_queues(struct request_queue *q)
925{
926 struct blk_mq_hw_ctx *hctx;
927 int i;
928
929 queue_for_each_hw_ctx(q, hctx, i)
930 blk_mq_start_hw_queue(hctx);
931}
932EXPORT_SYMBOL(blk_mq_start_hw_queues);
933
1b4a3258 934void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
935{
936 struct blk_mq_hw_ctx *hctx;
937 int i;
938
939 queue_for_each_hw_ctx(q, hctx, i) {
940 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
941 continue;
942
943 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1b4a3258 944 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
945 }
946}
947EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
948
70f4db63 949static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
950{
951 struct blk_mq_hw_ctx *hctx;
952
70f4db63 953 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 954
320ae51f
JA
955 __blk_mq_run_hw_queue(hctx);
956}
957
70f4db63
CH
958static void blk_mq_delay_work_fn(struct work_struct *work)
959{
960 struct blk_mq_hw_ctx *hctx;
961
962 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
963
964 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
965 __blk_mq_run_hw_queue(hctx);
966}
967
968void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
969{
19c66e59
ML
970 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
971 return;
70f4db63 972
b657d7e6
CH
973 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
974 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
975}
976EXPORT_SYMBOL(blk_mq_delay_queue);
977
cfd0c552
ML
978static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
979 struct blk_mq_ctx *ctx,
980 struct request *rq,
981 bool at_head)
320ae51f 982{
01b983c9
JA
983 trace_block_rq_insert(hctx->queue, rq);
984
72a0a36e
CH
985 if (at_head)
986 list_add(&rq->queuelist, &ctx->rq_list);
987 else
988 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 989}
4bb659b1 990
cfd0c552
ML
991static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
992 struct request *rq, bool at_head)
993{
994 struct blk_mq_ctx *ctx = rq->mq_ctx;
995
996 __blk_mq_insert_req_list(hctx, ctx, rq, at_head);
320ae51f 997 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
998}
999
eeabc850
CH
1000void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1001 bool async)
320ae51f 1002{
eeabc850 1003 struct request_queue *q = rq->q;
320ae51f 1004 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
1005 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1006
1007 current_ctx = blk_mq_get_ctx(q);
1008 if (!cpu_online(ctx->cpu))
1009 rq->mq_ctx = ctx = current_ctx;
320ae51f 1010
320ae51f
JA
1011 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1012
a57a178a
CH
1013 spin_lock(&ctx->lock);
1014 __blk_mq_insert_request(hctx, rq, at_head);
1015 spin_unlock(&ctx->lock);
320ae51f 1016
320ae51f
JA
1017 if (run_queue)
1018 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
1019
1020 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1021}
1022
1023static void blk_mq_insert_requests(struct request_queue *q,
1024 struct blk_mq_ctx *ctx,
1025 struct list_head *list,
1026 int depth,
1027 bool from_schedule)
1028
1029{
1030 struct blk_mq_hw_ctx *hctx;
1031 struct blk_mq_ctx *current_ctx;
1032
1033 trace_block_unplug(q, depth, !from_schedule);
1034
1035 current_ctx = blk_mq_get_ctx(q);
1036
1037 if (!cpu_online(ctx->cpu))
1038 ctx = current_ctx;
1039 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1040
1041 /*
1042 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1043 * offline now
1044 */
1045 spin_lock(&ctx->lock);
1046 while (!list_empty(list)) {
1047 struct request *rq;
1048
1049 rq = list_first_entry(list, struct request, queuelist);
1050 list_del_init(&rq->queuelist);
1051 rq->mq_ctx = ctx;
cfd0c552 1052 __blk_mq_insert_req_list(hctx, ctx, rq, false);
320ae51f 1053 }
cfd0c552 1054 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1055 spin_unlock(&ctx->lock);
1056
320ae51f 1057 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1058 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1059}
1060
1061static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1062{
1063 struct request *rqa = container_of(a, struct request, queuelist);
1064 struct request *rqb = container_of(b, struct request, queuelist);
1065
1066 return !(rqa->mq_ctx < rqb->mq_ctx ||
1067 (rqa->mq_ctx == rqb->mq_ctx &&
1068 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1069}
1070
1071void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1072{
1073 struct blk_mq_ctx *this_ctx;
1074 struct request_queue *this_q;
1075 struct request *rq;
1076 LIST_HEAD(list);
1077 LIST_HEAD(ctx_list);
1078 unsigned int depth;
1079
1080 list_splice_init(&plug->mq_list, &list);
1081
1082 list_sort(NULL, &list, plug_ctx_cmp);
1083
1084 this_q = NULL;
1085 this_ctx = NULL;
1086 depth = 0;
1087
1088 while (!list_empty(&list)) {
1089 rq = list_entry_rq(list.next);
1090 list_del_init(&rq->queuelist);
1091 BUG_ON(!rq->q);
1092 if (rq->mq_ctx != this_ctx) {
1093 if (this_ctx) {
1094 blk_mq_insert_requests(this_q, this_ctx,
1095 &ctx_list, depth,
1096 from_schedule);
1097 }
1098
1099 this_ctx = rq->mq_ctx;
1100 this_q = rq->q;
1101 depth = 0;
1102 }
1103
1104 depth++;
1105 list_add_tail(&rq->queuelist, &ctx_list);
1106 }
1107
1108 /*
1109 * If 'this_ctx' is set, we know we have entries to complete
1110 * on 'ctx_list'. Do those.
1111 */
1112 if (this_ctx) {
1113 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1114 from_schedule);
1115 }
1116}
1117
1118static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1119{
1120 init_request_from_bio(rq, bio);
4b570521 1121
3ee32372 1122 if (blk_do_io_stat(rq))
4b570521 1123 blk_account_io_start(rq, 1);
320ae51f
JA
1124}
1125
274a5843
JA
1126static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1127{
1128 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1129 !blk_queue_nomerges(hctx->queue);
1130}
1131
07068d5b
JA
1132static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1133 struct blk_mq_ctx *ctx,
1134 struct request *rq, struct bio *bio)
320ae51f 1135{
e18378a6 1136 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1137 blk_mq_bio_to_request(rq, bio);
1138 spin_lock(&ctx->lock);
1139insert_rq:
1140 __blk_mq_insert_request(hctx, rq, false);
1141 spin_unlock(&ctx->lock);
1142 return false;
1143 } else {
274a5843
JA
1144 struct request_queue *q = hctx->queue;
1145
07068d5b
JA
1146 spin_lock(&ctx->lock);
1147 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1148 blk_mq_bio_to_request(rq, bio);
1149 goto insert_rq;
1150 }
320ae51f 1151
07068d5b
JA
1152 spin_unlock(&ctx->lock);
1153 __blk_mq_free_request(hctx, ctx, rq);
1154 return true;
14ec77f3 1155 }
07068d5b 1156}
14ec77f3 1157
07068d5b
JA
1158struct blk_map_ctx {
1159 struct blk_mq_hw_ctx *hctx;
1160 struct blk_mq_ctx *ctx;
1161};
1162
1163static struct request *blk_mq_map_request(struct request_queue *q,
1164 struct bio *bio,
1165 struct blk_map_ctx *data)
1166{
1167 struct blk_mq_hw_ctx *hctx;
1168 struct blk_mq_ctx *ctx;
1169 struct request *rq;
1170 int rw = bio_data_dir(bio);
cb96a42c 1171 struct blk_mq_alloc_data alloc_data;
320ae51f 1172
3ef28e83 1173 blk_queue_enter_live(q);
320ae51f
JA
1174 ctx = blk_mq_get_ctx(q);
1175 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1176
07068d5b 1177 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1178 rw |= REQ_SYNC;
07068d5b 1179
320ae51f 1180 trace_block_getrq(q, bio, rw);
6f3b0e8b 1181 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
cb96a42c 1182 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1183 if (unlikely(!rq)) {
793597a6 1184 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1185 blk_mq_put_ctx(ctx);
1186 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1187
1188 ctx = blk_mq_get_ctx(q);
320ae51f 1189 hctx = q->mq_ops->map_queue(q, ctx->cpu);
6f3b0e8b 1190 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
cb96a42c
ML
1191 rq = __blk_mq_alloc_request(&alloc_data, rw);
1192 ctx = alloc_data.ctx;
1193 hctx = alloc_data.hctx;
320ae51f
JA
1194 }
1195
1196 hctx->queued++;
07068d5b
JA
1197 data->hctx = hctx;
1198 data->ctx = ctx;
1199 return rq;
1200}
1201
7b371636 1202static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
f984df1f
SL
1203{
1204 int ret;
1205 struct request_queue *q = rq->q;
1206 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1207 rq->mq_ctx->cpu);
1208 struct blk_mq_queue_data bd = {
1209 .rq = rq,
1210 .list = NULL,
1211 .last = 1
1212 };
7b371636 1213 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
f984df1f
SL
1214
1215 /*
1216 * For OK queue, we are done. For error, kill it. Any other
1217 * error (busy), just add it to our list as we previously
1218 * would have done
1219 */
1220 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1221 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1222 *cookie = new_cookie;
f984df1f 1223 return 0;
7b371636 1224 }
f984df1f 1225
7b371636
JA
1226 __blk_mq_requeue_request(rq);
1227
1228 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1229 *cookie = BLK_QC_T_NONE;
1230 rq->errors = -EIO;
1231 blk_mq_end_request(rq, rq->errors);
1232 return 0;
f984df1f 1233 }
7b371636
JA
1234
1235 return -1;
f984df1f
SL
1236}
1237
07068d5b
JA
1238/*
1239 * Multiple hardware queue variant. This will not use per-process plugs,
1240 * but will attempt to bypass the hctx queueing if we can go straight to
1241 * hardware for SYNC IO.
1242 */
dece1635 1243static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b
JA
1244{
1245 const int is_sync = rw_is_sync(bio->bi_rw);
1246 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1247 struct blk_map_ctx data;
1248 struct request *rq;
f984df1f
SL
1249 unsigned int request_count = 0;
1250 struct blk_plug *plug;
5b3f341f 1251 struct request *same_queue_rq = NULL;
7b371636 1252 blk_qc_t cookie;
07068d5b
JA
1253
1254 blk_queue_bounce(q, &bio);
1255
1256 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1257 bio_io_error(bio);
dece1635 1258 return BLK_QC_T_NONE;
07068d5b
JA
1259 }
1260
54efd50b
KO
1261 blk_queue_split(q, &bio, q->bio_split);
1262
0809e3ac
JM
1263 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1264 if (blk_attempt_plug_merge(q, bio, &request_count,
1265 &same_queue_rq))
dece1635 1266 return BLK_QC_T_NONE;
0809e3ac
JM
1267 } else
1268 request_count = blk_plug_queued_count(q);
f984df1f 1269
07068d5b
JA
1270 rq = blk_mq_map_request(q, bio, &data);
1271 if (unlikely(!rq))
dece1635 1272 return BLK_QC_T_NONE;
07068d5b 1273
7b371636 1274 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
07068d5b
JA
1275
1276 if (unlikely(is_flush_fua)) {
1277 blk_mq_bio_to_request(rq, bio);
1278 blk_insert_flush(rq);
1279 goto run_queue;
1280 }
1281
f984df1f 1282 plug = current->plug;
e167dfb5
JA
1283 /*
1284 * If the driver supports defer issued based on 'last', then
1285 * queue it up like normal since we can potentially save some
1286 * CPU this way.
1287 */
f984df1f
SL
1288 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1289 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1290 struct request *old_rq = NULL;
07068d5b
JA
1291
1292 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1293
1294 /*
b094f89c 1295 * We do limited pluging. If the bio can be merged, do that.
f984df1f
SL
1296 * Otherwise the existing request in the plug list will be
1297 * issued. So the plug list will have one request at most
07068d5b 1298 */
f984df1f 1299 if (plug) {
5b3f341f
SL
1300 /*
1301 * The plug list might get flushed before this. If that
b094f89c
JA
1302 * happens, same_queue_rq is invalid and plug list is
1303 * empty
1304 */
5b3f341f
SL
1305 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1306 old_rq = same_queue_rq;
f984df1f 1307 list_del_init(&old_rq->queuelist);
07068d5b 1308 }
f984df1f
SL
1309 list_add_tail(&rq->queuelist, &plug->mq_list);
1310 } else /* is_sync */
1311 old_rq = rq;
1312 blk_mq_put_ctx(data.ctx);
1313 if (!old_rq)
7b371636
JA
1314 goto done;
1315 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1316 goto done;
f984df1f 1317 blk_mq_insert_request(old_rq, false, true, true);
7b371636 1318 goto done;
07068d5b
JA
1319 }
1320
1321 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1322 /*
1323 * For a SYNC request, send it to the hardware immediately. For
1324 * an ASYNC request, just ensure that we run it later on. The
1325 * latter allows for merging opportunities and more efficient
1326 * dispatching.
1327 */
1328run_queue:
1329 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1330 }
07068d5b 1331 blk_mq_put_ctx(data.ctx);
7b371636
JA
1332done:
1333 return cookie;
07068d5b
JA
1334}
1335
1336/*
1337 * Single hardware queue variant. This will attempt to use any per-process
1338 * plug for merging and IO deferral.
1339 */
dece1635 1340static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b
JA
1341{
1342 const int is_sync = rw_is_sync(bio->bi_rw);
1343 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
e6c4438b
JM
1344 struct blk_plug *plug;
1345 unsigned int request_count = 0;
07068d5b
JA
1346 struct blk_map_ctx data;
1347 struct request *rq;
7b371636 1348 blk_qc_t cookie;
07068d5b 1349
07068d5b
JA
1350 blk_queue_bounce(q, &bio);
1351
1352 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1353 bio_io_error(bio);
dece1635 1354 return BLK_QC_T_NONE;
07068d5b
JA
1355 }
1356
54efd50b
KO
1357 blk_queue_split(q, &bio, q->bio_split);
1358
e6c4438b 1359 if (!is_flush_fua && !blk_queue_nomerges(q) &&
5b3f341f 1360 blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1361 return BLK_QC_T_NONE;
07068d5b
JA
1362
1363 rq = blk_mq_map_request(q, bio, &data);
ff87bcec 1364 if (unlikely(!rq))
dece1635 1365 return BLK_QC_T_NONE;
320ae51f 1366
7b371636 1367 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
320ae51f
JA
1368
1369 if (unlikely(is_flush_fua)) {
1370 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1371 blk_insert_flush(rq);
1372 goto run_queue;
1373 }
1374
1375 /*
1376 * A task plug currently exists. Since this is completely lockless,
1377 * utilize that to temporarily store requests until the task is
1378 * either done or scheduled away.
1379 */
e6c4438b
JM
1380 plug = current->plug;
1381 if (plug) {
1382 blk_mq_bio_to_request(rq, bio);
676d0607 1383 if (!request_count)
e6c4438b 1384 trace_block_plug(q);
b094f89c
JA
1385
1386 blk_mq_put_ctx(data.ctx);
1387
1388 if (request_count >= BLK_MAX_REQUEST_COUNT) {
e6c4438b
JM
1389 blk_flush_plug_list(plug, false);
1390 trace_block_plug(q);
320ae51f 1391 }
b094f89c 1392
e6c4438b 1393 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1394 return cookie;
320ae51f
JA
1395 }
1396
07068d5b
JA
1397 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1398 /*
1399 * For a SYNC request, send it to the hardware immediately. For
1400 * an ASYNC request, just ensure that we run it later on. The
1401 * latter allows for merging opportunities and more efficient
1402 * dispatching.
1403 */
1404run_queue:
1405 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1406 }
1407
07068d5b 1408 blk_mq_put_ctx(data.ctx);
7b371636 1409 return cookie;
320ae51f
JA
1410}
1411
1412/*
1413 * Default mapping to a software queue, since we use one per CPU.
1414 */
1415struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1416{
1417 return q->queue_hw_ctx[q->mq_map[cpu]];
1418}
1419EXPORT_SYMBOL(blk_mq_map_queue);
1420
24d2f903
CH
1421static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1422 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1423{
e9b267d9 1424 struct page *page;
320ae51f 1425
24d2f903 1426 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1427 int i;
320ae51f 1428
24d2f903
CH
1429 for (i = 0; i < tags->nr_tags; i++) {
1430 if (!tags->rqs[i])
e9b267d9 1431 continue;
24d2f903
CH
1432 set->ops->exit_request(set->driver_data, tags->rqs[i],
1433 hctx_idx, i);
a5164405 1434 tags->rqs[i] = NULL;
e9b267d9 1435 }
320ae51f 1436 }
320ae51f 1437
24d2f903
CH
1438 while (!list_empty(&tags->page_list)) {
1439 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1440 list_del_init(&page->lru);
f75782e4
CM
1441 /*
1442 * Remove kmemleak object previously allocated in
1443 * blk_mq_init_rq_map().
1444 */
1445 kmemleak_free(page_address(page));
320ae51f
JA
1446 __free_pages(page, page->private);
1447 }
1448
24d2f903 1449 kfree(tags->rqs);
320ae51f 1450
24d2f903 1451 blk_mq_free_tags(tags);
320ae51f
JA
1452}
1453
1454static size_t order_to_size(unsigned int order)
1455{
4ca08500 1456 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1457}
1458
24d2f903
CH
1459static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1460 unsigned int hctx_idx)
320ae51f 1461{
24d2f903 1462 struct blk_mq_tags *tags;
320ae51f
JA
1463 unsigned int i, j, entries_per_page, max_order = 4;
1464 size_t rq_size, left;
1465
24d2f903 1466 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
24391c0d
SL
1467 set->numa_node,
1468 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1469 if (!tags)
1470 return NULL;
320ae51f 1471
24d2f903
CH
1472 INIT_LIST_HEAD(&tags->page_list);
1473
a5164405
JA
1474 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1475 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1476 set->numa_node);
24d2f903
CH
1477 if (!tags->rqs) {
1478 blk_mq_free_tags(tags);
1479 return NULL;
1480 }
320ae51f
JA
1481
1482 /*
1483 * rq_size is the size of the request plus driver payload, rounded
1484 * to the cacheline size
1485 */
24d2f903 1486 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1487 cache_line_size());
24d2f903 1488 left = rq_size * set->queue_depth;
320ae51f 1489
24d2f903 1490 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1491 int this_order = max_order;
1492 struct page *page;
1493 int to_do;
1494 void *p;
1495
1496 while (left < order_to_size(this_order - 1) && this_order)
1497 this_order--;
1498
1499 do {
a5164405 1500 page = alloc_pages_node(set->numa_node,
ac211175 1501 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1502 this_order);
320ae51f
JA
1503 if (page)
1504 break;
1505 if (!this_order--)
1506 break;
1507 if (order_to_size(this_order) < rq_size)
1508 break;
1509 } while (1);
1510
1511 if (!page)
24d2f903 1512 goto fail;
320ae51f
JA
1513
1514 page->private = this_order;
24d2f903 1515 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1516
1517 p = page_address(page);
f75782e4
CM
1518 /*
1519 * Allow kmemleak to scan these pages as they contain pointers
1520 * to additional allocations like via ops->init_request().
1521 */
1522 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
320ae51f 1523 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1524 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1525 left -= to_do * rq_size;
1526 for (j = 0; j < to_do; j++) {
24d2f903
CH
1527 tags->rqs[i] = p;
1528 if (set->ops->init_request) {
1529 if (set->ops->init_request(set->driver_data,
1530 tags->rqs[i], hctx_idx, i,
a5164405
JA
1531 set->numa_node)) {
1532 tags->rqs[i] = NULL;
24d2f903 1533 goto fail;
a5164405 1534 }
e9b267d9
CH
1535 }
1536
320ae51f
JA
1537 p += rq_size;
1538 i++;
1539 }
1540 }
24d2f903 1541 return tags;
320ae51f 1542
24d2f903 1543fail:
24d2f903
CH
1544 blk_mq_free_rq_map(set, tags, hctx_idx);
1545 return NULL;
320ae51f
JA
1546}
1547
1429d7c9
JA
1548static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1549{
1550 kfree(bitmap->map);
1551}
1552
1553static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1554{
1555 unsigned int bpw = 8, total, num_maps, i;
1556
1557 bitmap->bits_per_word = bpw;
1558
1559 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1560 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1561 GFP_KERNEL, node);
1562 if (!bitmap->map)
1563 return -ENOMEM;
1564
1429d7c9
JA
1565 total = nr_cpu_ids;
1566 for (i = 0; i < num_maps; i++) {
1567 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1568 total -= bitmap->map[i].depth;
1569 }
1570
1571 return 0;
1572}
1573
484b4061
JA
1574static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1575{
1576 struct request_queue *q = hctx->queue;
1577 struct blk_mq_ctx *ctx;
1578 LIST_HEAD(tmp);
1579
1580 /*
1581 * Move ctx entries to new CPU, if this one is going away.
1582 */
1583 ctx = __blk_mq_get_ctx(q, cpu);
1584
1585 spin_lock(&ctx->lock);
1586 if (!list_empty(&ctx->rq_list)) {
1587 list_splice_init(&ctx->rq_list, &tmp);
1588 blk_mq_hctx_clear_pending(hctx, ctx);
1589 }
1590 spin_unlock(&ctx->lock);
1591
1592 if (list_empty(&tmp))
1593 return NOTIFY_OK;
1594
1595 ctx = blk_mq_get_ctx(q);
1596 spin_lock(&ctx->lock);
1597
1598 while (!list_empty(&tmp)) {
1599 struct request *rq;
1600
1601 rq = list_first_entry(&tmp, struct request, queuelist);
1602 rq->mq_ctx = ctx;
1603 list_move_tail(&rq->queuelist, &ctx->rq_list);
1604 }
1605
1606 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1607 blk_mq_hctx_mark_pending(hctx, ctx);
1608
1609 spin_unlock(&ctx->lock);
1610
1611 blk_mq_run_hw_queue(hctx, true);
1612 blk_mq_put_ctx(ctx);
1613 return NOTIFY_OK;
1614}
1615
484b4061
JA
1616static int blk_mq_hctx_notify(void *data, unsigned long action,
1617 unsigned int cpu)
1618{
1619 struct blk_mq_hw_ctx *hctx = data;
1620
1621 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1622 return blk_mq_hctx_cpu_offline(hctx, cpu);
2a34c087
ML
1623
1624 /*
1625 * In case of CPU online, tags may be reallocated
1626 * in blk_mq_map_swqueue() after mapping is updated.
1627 */
484b4061
JA
1628
1629 return NOTIFY_OK;
1630}
1631
c3b4afca 1632/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1633static void blk_mq_exit_hctx(struct request_queue *q,
1634 struct blk_mq_tag_set *set,
1635 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1636{
f70ced09
ML
1637 unsigned flush_start_tag = set->queue_depth;
1638
08e98fc6
ML
1639 blk_mq_tag_idle(hctx);
1640
f70ced09
ML
1641 if (set->ops->exit_request)
1642 set->ops->exit_request(set->driver_data,
1643 hctx->fq->flush_rq, hctx_idx,
1644 flush_start_tag + hctx_idx);
1645
08e98fc6
ML
1646 if (set->ops->exit_hctx)
1647 set->ops->exit_hctx(hctx, hctx_idx);
1648
1649 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
f70ced09 1650 blk_free_flush_queue(hctx->fq);
08e98fc6
ML
1651 blk_mq_free_bitmap(&hctx->ctx_map);
1652}
1653
624dbe47
ML
1654static void blk_mq_exit_hw_queues(struct request_queue *q,
1655 struct blk_mq_tag_set *set, int nr_queue)
1656{
1657 struct blk_mq_hw_ctx *hctx;
1658 unsigned int i;
1659
1660 queue_for_each_hw_ctx(q, hctx, i) {
1661 if (i == nr_queue)
1662 break;
08e98fc6 1663 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1664 }
624dbe47
ML
1665}
1666
1667static void blk_mq_free_hw_queues(struct request_queue *q,
1668 struct blk_mq_tag_set *set)
1669{
1670 struct blk_mq_hw_ctx *hctx;
1671 unsigned int i;
1672
e09aae7e 1673 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1674 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1675}
1676
08e98fc6
ML
1677static int blk_mq_init_hctx(struct request_queue *q,
1678 struct blk_mq_tag_set *set,
1679 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1680{
08e98fc6 1681 int node;
f70ced09 1682 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1683
1684 node = hctx->numa_node;
1685 if (node == NUMA_NO_NODE)
1686 node = hctx->numa_node = set->numa_node;
1687
1688 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1689 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1690 spin_lock_init(&hctx->lock);
1691 INIT_LIST_HEAD(&hctx->dispatch);
1692 hctx->queue = q;
1693 hctx->queue_num = hctx_idx;
2404e607 1694 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6
ML
1695
1696 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1697 blk_mq_hctx_notify, hctx);
1698 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1699
1700 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1701
1702 /*
08e98fc6
ML
1703 * Allocate space for all possible cpus to avoid allocation at
1704 * runtime
320ae51f 1705 */
08e98fc6
ML
1706 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1707 GFP_KERNEL, node);
1708 if (!hctx->ctxs)
1709 goto unregister_cpu_notifier;
320ae51f 1710
08e98fc6
ML
1711 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1712 goto free_ctxs;
320ae51f 1713
08e98fc6 1714 hctx->nr_ctx = 0;
320ae51f 1715
08e98fc6
ML
1716 if (set->ops->init_hctx &&
1717 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1718 goto free_bitmap;
320ae51f 1719
f70ced09
ML
1720 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1721 if (!hctx->fq)
1722 goto exit_hctx;
320ae51f 1723
f70ced09
ML
1724 if (set->ops->init_request &&
1725 set->ops->init_request(set->driver_data,
1726 hctx->fq->flush_rq, hctx_idx,
1727 flush_start_tag + hctx_idx, node))
1728 goto free_fq;
320ae51f 1729
08e98fc6 1730 return 0;
320ae51f 1731
f70ced09
ML
1732 free_fq:
1733 kfree(hctx->fq);
1734 exit_hctx:
1735 if (set->ops->exit_hctx)
1736 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6
ML
1737 free_bitmap:
1738 blk_mq_free_bitmap(&hctx->ctx_map);
1739 free_ctxs:
1740 kfree(hctx->ctxs);
1741 unregister_cpu_notifier:
1742 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1743
08e98fc6
ML
1744 return -1;
1745}
320ae51f 1746
08e98fc6
ML
1747static int blk_mq_init_hw_queues(struct request_queue *q,
1748 struct blk_mq_tag_set *set)
1749{
1750 struct blk_mq_hw_ctx *hctx;
1751 unsigned int i;
320ae51f 1752
08e98fc6
ML
1753 /*
1754 * Initialize hardware queues
1755 */
1756 queue_for_each_hw_ctx(q, hctx, i) {
1757 if (blk_mq_init_hctx(q, set, hctx, i))
320ae51f
JA
1758 break;
1759 }
1760
1761 if (i == q->nr_hw_queues)
1762 return 0;
1763
1764 /*
1765 * Init failed
1766 */
624dbe47 1767 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1768
1769 return 1;
1770}
1771
1772static void blk_mq_init_cpu_queues(struct request_queue *q,
1773 unsigned int nr_hw_queues)
1774{
1775 unsigned int i;
1776
1777 for_each_possible_cpu(i) {
1778 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1779 struct blk_mq_hw_ctx *hctx;
1780
1781 memset(__ctx, 0, sizeof(*__ctx));
1782 __ctx->cpu = i;
1783 spin_lock_init(&__ctx->lock);
1784 INIT_LIST_HEAD(&__ctx->rq_list);
1785 __ctx->queue = q;
1786
1787 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1788 if (!cpu_online(i))
1789 continue;
1790
e4043dcf 1791 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1792
320ae51f
JA
1793 /*
1794 * Set local node, IFF we have more than one hw queue. If
1795 * not, we remain on the home node of the device
1796 */
1797 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1798 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1799 }
1800}
1801
5778322e
AM
1802static void blk_mq_map_swqueue(struct request_queue *q,
1803 const struct cpumask *online_mask)
320ae51f
JA
1804{
1805 unsigned int i;
1806 struct blk_mq_hw_ctx *hctx;
1807 struct blk_mq_ctx *ctx;
2a34c087 1808 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1809
60de074b
AM
1810 /*
1811 * Avoid others reading imcomplete hctx->cpumask through sysfs
1812 */
1813 mutex_lock(&q->sysfs_lock);
1814
320ae51f 1815 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1816 cpumask_clear(hctx->cpumask);
320ae51f
JA
1817 hctx->nr_ctx = 0;
1818 }
1819
1820 /*
1821 * Map software to hardware queues
1822 */
1823 queue_for_each_ctx(q, ctx, i) {
1824 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 1825 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
1826 continue;
1827
320ae51f 1828 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1829 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1830 ctx->index_hw = hctx->nr_ctx;
1831 hctx->ctxs[hctx->nr_ctx++] = ctx;
1832 }
506e931f 1833
60de074b
AM
1834 mutex_unlock(&q->sysfs_lock);
1835
506e931f 1836 queue_for_each_hw_ctx(q, hctx, i) {
889fa31f
CY
1837 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1838
484b4061 1839 /*
a68aafa5
JA
1840 * If no software queues are mapped to this hardware queue,
1841 * disable it and free the request entries.
484b4061
JA
1842 */
1843 if (!hctx->nr_ctx) {
484b4061
JA
1844 if (set->tags[i]) {
1845 blk_mq_free_rq_map(set, set->tags[i], i);
1846 set->tags[i] = NULL;
484b4061 1847 }
2a34c087 1848 hctx->tags = NULL;
484b4061
JA
1849 continue;
1850 }
1851
2a34c087
ML
1852 /* unmapped hw queue can be remapped after CPU topo changed */
1853 if (!set->tags[i])
1854 set->tags[i] = blk_mq_init_rq_map(set, i);
1855 hctx->tags = set->tags[i];
1856 WARN_ON(!hctx->tags);
1857
e0e827b9 1858 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
889fa31f
CY
1859 /*
1860 * Set the map size to the number of mapped software queues.
1861 * This is more accurate and more efficient than looping
1862 * over all possibly mapped software queues.
1863 */
569fd0ce 1864 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
889fa31f 1865
484b4061
JA
1866 /*
1867 * Initialize batch roundrobin counts
1868 */
506e931f
JA
1869 hctx->next_cpu = cpumask_first(hctx->cpumask);
1870 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1871 }
320ae51f
JA
1872}
1873
2404e607 1874static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
1875{
1876 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
1877 int i;
1878
2404e607
JM
1879 queue_for_each_hw_ctx(q, hctx, i) {
1880 if (shared)
1881 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1882 else
1883 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1884 }
1885}
1886
1887static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1888{
1889 struct request_queue *q;
0d2602ca
JA
1890
1891 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1892 blk_mq_freeze_queue(q);
2404e607 1893 queue_set_hctx_shared(q, shared);
0d2602ca
JA
1894 blk_mq_unfreeze_queue(q);
1895 }
1896}
1897
1898static void blk_mq_del_queue_tag_set(struct request_queue *q)
1899{
1900 struct blk_mq_tag_set *set = q->tag_set;
1901
0d2602ca
JA
1902 mutex_lock(&set->tag_list_lock);
1903 list_del_init(&q->tag_set_list);
2404e607
JM
1904 if (list_is_singular(&set->tag_list)) {
1905 /* just transitioned to unshared */
1906 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1907 /* update existing queue */
1908 blk_mq_update_tag_set_depth(set, false);
1909 }
0d2602ca 1910 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1911}
1912
1913static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1914 struct request_queue *q)
1915{
1916 q->tag_set = set;
1917
1918 mutex_lock(&set->tag_list_lock);
2404e607
JM
1919
1920 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1921 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1922 set->flags |= BLK_MQ_F_TAG_SHARED;
1923 /* update existing queue */
1924 blk_mq_update_tag_set_depth(set, true);
1925 }
1926 if (set->flags & BLK_MQ_F_TAG_SHARED)
1927 queue_set_hctx_shared(q, true);
0d2602ca 1928 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 1929
0d2602ca
JA
1930 mutex_unlock(&set->tag_list_lock);
1931}
1932
e09aae7e
ML
1933/*
1934 * It is the actual release handler for mq, but we do it from
1935 * request queue's release handler for avoiding use-after-free
1936 * and headache because q->mq_kobj shouldn't have been introduced,
1937 * but we can't group ctx/kctx kobj without it.
1938 */
1939void blk_mq_release(struct request_queue *q)
1940{
1941 struct blk_mq_hw_ctx *hctx;
1942 unsigned int i;
1943
1944 /* hctx kobj stays in hctx */
c3b4afca
ML
1945 queue_for_each_hw_ctx(q, hctx, i) {
1946 if (!hctx)
1947 continue;
1948 kfree(hctx->ctxs);
e09aae7e 1949 kfree(hctx);
c3b4afca 1950 }
e09aae7e 1951
a723bab3
AM
1952 kfree(q->mq_map);
1953 q->mq_map = NULL;
1954
e09aae7e
ML
1955 kfree(q->queue_hw_ctx);
1956
1957 /* ctx kobj stays in queue_ctx */
1958 free_percpu(q->queue_ctx);
1959}
1960
24d2f903 1961struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
1962{
1963 struct request_queue *uninit_q, *q;
1964
1965 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1966 if (!uninit_q)
1967 return ERR_PTR(-ENOMEM);
1968
1969 q = blk_mq_init_allocated_queue(set, uninit_q);
1970 if (IS_ERR(q))
1971 blk_cleanup_queue(uninit_q);
1972
1973 return q;
1974}
1975EXPORT_SYMBOL(blk_mq_init_queue);
1976
1977struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1978 struct request_queue *q)
320ae51f
JA
1979{
1980 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1981 struct blk_mq_ctx __percpu *ctx;
f14bbe77 1982 unsigned int *map;
320ae51f
JA
1983 int i;
1984
320ae51f
JA
1985 ctx = alloc_percpu(struct blk_mq_ctx);
1986 if (!ctx)
1987 return ERR_PTR(-ENOMEM);
1988
24d2f903
CH
1989 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1990 set->numa_node);
320ae51f
JA
1991
1992 if (!hctxs)
1993 goto err_percpu;
1994
f14bbe77
JA
1995 map = blk_mq_make_queue_map(set);
1996 if (!map)
1997 goto err_map;
1998
24d2f903 1999 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
2000 int node = blk_mq_hw_queue_to_node(map, i);
2001
cdef54dd
CH
2002 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2003 GFP_KERNEL, node);
320ae51f
JA
2004 if (!hctxs[i])
2005 goto err_hctxs;
2006
a86073e4
JA
2007 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2008 node))
e4043dcf
JA
2009 goto err_hctxs;
2010
0d2602ca 2011 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2012 hctxs[i]->numa_node = node;
320ae51f
JA
2013 hctxs[i]->queue_num = i;
2014 }
2015
287922eb 2016 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2017 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2018
2019 q->nr_queues = nr_cpu_ids;
24d2f903 2020 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 2021 q->mq_map = map;
320ae51f
JA
2022
2023 q->queue_ctx = ctx;
2024 q->queue_hw_ctx = hctxs;
2025
24d2f903 2026 q->mq_ops = set->ops;
94eddfbe 2027 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2028
05f1dd53
JA
2029 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2030 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2031
1be036e9
CH
2032 q->sg_reserved_size = INT_MAX;
2033
6fca6a61
CH
2034 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2035 INIT_LIST_HEAD(&q->requeue_list);
2036 spin_lock_init(&q->requeue_lock);
2037
07068d5b
JA
2038 if (q->nr_hw_queues > 1)
2039 blk_queue_make_request(q, blk_mq_make_request);
2040 else
2041 blk_queue_make_request(q, blk_sq_make_request);
2042
eba71768
JA
2043 /*
2044 * Do this after blk_queue_make_request() overrides it...
2045 */
2046 q->nr_requests = set->queue_depth;
2047
24d2f903
CH
2048 if (set->ops->complete)
2049 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2050
24d2f903 2051 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2052
24d2f903 2053 if (blk_mq_init_hw_queues(q, set))
b62c21b7 2054 goto err_hctxs;
18741986 2055
5778322e 2056 get_online_cpus();
320ae51f 2057 mutex_lock(&all_q_mutex);
320ae51f 2058
4593fdbe 2059 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2060 blk_mq_add_queue_tag_set(set, q);
5778322e 2061 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2062
4593fdbe 2063 mutex_unlock(&all_q_mutex);
5778322e 2064 put_online_cpus();
4593fdbe 2065
320ae51f 2066 return q;
18741986 2067
320ae51f 2068err_hctxs:
f14bbe77 2069 kfree(map);
24d2f903 2070 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
2071 if (!hctxs[i])
2072 break;
e4043dcf 2073 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 2074 kfree(hctxs[i]);
320ae51f 2075 }
f14bbe77 2076err_map:
320ae51f
JA
2077 kfree(hctxs);
2078err_percpu:
2079 free_percpu(ctx);
2080 return ERR_PTR(-ENOMEM);
2081}
b62c21b7 2082EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2083
2084void blk_mq_free_queue(struct request_queue *q)
2085{
624dbe47 2086 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2087
0e626368
AM
2088 mutex_lock(&all_q_mutex);
2089 list_del_init(&q->all_q_node);
2090 mutex_unlock(&all_q_mutex);
2091
0d2602ca
JA
2092 blk_mq_del_queue_tag_set(q);
2093
624dbe47
ML
2094 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2095 blk_mq_free_hw_queues(q, set);
320ae51f 2096}
320ae51f
JA
2097
2098/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2099static void blk_mq_queue_reinit(struct request_queue *q,
2100 const struct cpumask *online_mask)
320ae51f 2101{
4ecd4fef 2102 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2103
67aec14c
JA
2104 blk_mq_sysfs_unregister(q);
2105
5778322e 2106 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
320ae51f
JA
2107
2108 /*
2109 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2110 * we should change hctx numa_node according to new topology (this
2111 * involves free and re-allocate memory, worthy doing?)
2112 */
2113
5778322e 2114 blk_mq_map_swqueue(q, online_mask);
320ae51f 2115
67aec14c 2116 blk_mq_sysfs_register(q);
320ae51f
JA
2117}
2118
f618ef7c
PG
2119static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2120 unsigned long action, void *hcpu)
320ae51f
JA
2121{
2122 struct request_queue *q;
5778322e
AM
2123 int cpu = (unsigned long)hcpu;
2124 /*
2125 * New online cpumask which is going to be set in this hotplug event.
2126 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2127 * one-by-one and dynamically allocating this could result in a failure.
2128 */
2129 static struct cpumask online_new;
320ae51f
JA
2130
2131 /*
5778322e
AM
2132 * Before hotadded cpu starts handling requests, new mappings must
2133 * be established. Otherwise, these requests in hw queue might
2134 * never be dispatched.
2135 *
2136 * For example, there is a single hw queue (hctx) and two CPU queues
2137 * (ctx0 for CPU0, and ctx1 for CPU1).
2138 *
2139 * Now CPU1 is just onlined and a request is inserted into
2140 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2141 * still zero.
2142 *
2143 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2144 * set in pending bitmap and tries to retrieve requests in
2145 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2146 * so the request in ctx1->rq_list is ignored.
320ae51f 2147 */
5778322e
AM
2148 switch (action & ~CPU_TASKS_FROZEN) {
2149 case CPU_DEAD:
2150 case CPU_UP_CANCELED:
2151 cpumask_copy(&online_new, cpu_online_mask);
2152 break;
2153 case CPU_UP_PREPARE:
2154 cpumask_copy(&online_new, cpu_online_mask);
2155 cpumask_set_cpu(cpu, &online_new);
2156 break;
2157 default:
320ae51f 2158 return NOTIFY_OK;
5778322e 2159 }
320ae51f
JA
2160
2161 mutex_lock(&all_q_mutex);
f3af020b
TH
2162
2163 /*
2164 * We need to freeze and reinit all existing queues. Freezing
2165 * involves synchronous wait for an RCU grace period and doing it
2166 * one by one may take a long time. Start freezing all queues in
2167 * one swoop and then wait for the completions so that freezing can
2168 * take place in parallel.
2169 */
2170 list_for_each_entry(q, &all_q_list, all_q_node)
2171 blk_mq_freeze_queue_start(q);
f054b56c 2172 list_for_each_entry(q, &all_q_list, all_q_node) {
f3af020b
TH
2173 blk_mq_freeze_queue_wait(q);
2174
f054b56c
ML
2175 /*
2176 * timeout handler can't touch hw queue during the
2177 * reinitialization
2178 */
2179 del_timer_sync(&q->timeout);
2180 }
2181
320ae51f 2182 list_for_each_entry(q, &all_q_list, all_q_node)
5778322e 2183 blk_mq_queue_reinit(q, &online_new);
f3af020b
TH
2184
2185 list_for_each_entry(q, &all_q_list, all_q_node)
2186 blk_mq_unfreeze_queue(q);
2187
320ae51f
JA
2188 mutex_unlock(&all_q_mutex);
2189 return NOTIFY_OK;
2190}
2191
a5164405
JA
2192static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2193{
2194 int i;
2195
2196 for (i = 0; i < set->nr_hw_queues; i++) {
2197 set->tags[i] = blk_mq_init_rq_map(set, i);
2198 if (!set->tags[i])
2199 goto out_unwind;
2200 }
2201
2202 return 0;
2203
2204out_unwind:
2205 while (--i >= 0)
2206 blk_mq_free_rq_map(set, set->tags[i], i);
2207
a5164405
JA
2208 return -ENOMEM;
2209}
2210
2211/*
2212 * Allocate the request maps associated with this tag_set. Note that this
2213 * may reduce the depth asked for, if memory is tight. set->queue_depth
2214 * will be updated to reflect the allocated depth.
2215 */
2216static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2217{
2218 unsigned int depth;
2219 int err;
2220
2221 depth = set->queue_depth;
2222 do {
2223 err = __blk_mq_alloc_rq_maps(set);
2224 if (!err)
2225 break;
2226
2227 set->queue_depth >>= 1;
2228 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2229 err = -ENOMEM;
2230 break;
2231 }
2232 } while (set->queue_depth);
2233
2234 if (!set->queue_depth || err) {
2235 pr_err("blk-mq: failed to allocate request map\n");
2236 return -ENOMEM;
2237 }
2238
2239 if (depth != set->queue_depth)
2240 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2241 depth, set->queue_depth);
2242
2243 return 0;
2244}
2245
f26cdc85
KB
2246struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2247{
2248 return tags->cpumask;
2249}
2250EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2251
a4391c64
JA
2252/*
2253 * Alloc a tag set to be associated with one or more request queues.
2254 * May fail with EINVAL for various error conditions. May adjust the
2255 * requested depth down, if if it too large. In that case, the set
2256 * value will be stored in set->queue_depth.
2257 */
24d2f903
CH
2258int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2259{
205fb5f5
BVA
2260 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2261
24d2f903
CH
2262 if (!set->nr_hw_queues)
2263 return -EINVAL;
a4391c64 2264 if (!set->queue_depth)
24d2f903
CH
2265 return -EINVAL;
2266 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2267 return -EINVAL;
2268
f9018ac9 2269 if (!set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2270 return -EINVAL;
2271
a4391c64
JA
2272 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2273 pr_info("blk-mq: reduced tag depth to %u\n",
2274 BLK_MQ_MAX_DEPTH);
2275 set->queue_depth = BLK_MQ_MAX_DEPTH;
2276 }
24d2f903 2277
6637fadf
SL
2278 /*
2279 * If a crashdump is active, then we are potentially in a very
2280 * memory constrained environment. Limit us to 1 queue and
2281 * 64 tags to prevent using too much memory.
2282 */
2283 if (is_kdump_kernel()) {
2284 set->nr_hw_queues = 1;
2285 set->queue_depth = min(64U, set->queue_depth);
2286 }
2287
48479005
ML
2288 set->tags = kmalloc_node(set->nr_hw_queues *
2289 sizeof(struct blk_mq_tags *),
24d2f903
CH
2290 GFP_KERNEL, set->numa_node);
2291 if (!set->tags)
a5164405 2292 return -ENOMEM;
24d2f903 2293
a5164405
JA
2294 if (blk_mq_alloc_rq_maps(set))
2295 goto enomem;
24d2f903 2296
0d2602ca
JA
2297 mutex_init(&set->tag_list_lock);
2298 INIT_LIST_HEAD(&set->tag_list);
2299
24d2f903 2300 return 0;
a5164405 2301enomem:
5676e7b6
RE
2302 kfree(set->tags);
2303 set->tags = NULL;
24d2f903
CH
2304 return -ENOMEM;
2305}
2306EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2307
2308void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2309{
2310 int i;
2311
484b4061 2312 for (i = 0; i < set->nr_hw_queues; i++) {
f42d79ab 2313 if (set->tags[i])
484b4061
JA
2314 blk_mq_free_rq_map(set, set->tags[i], i);
2315 }
2316
981bd189 2317 kfree(set->tags);
5676e7b6 2318 set->tags = NULL;
24d2f903
CH
2319}
2320EXPORT_SYMBOL(blk_mq_free_tag_set);
2321
e3a2b3f9
JA
2322int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2323{
2324 struct blk_mq_tag_set *set = q->tag_set;
2325 struct blk_mq_hw_ctx *hctx;
2326 int i, ret;
2327
2328 if (!set || nr > set->queue_depth)
2329 return -EINVAL;
2330
2331 ret = 0;
2332 queue_for_each_hw_ctx(q, hctx, i) {
2333 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2334 if (ret)
2335 break;
2336 }
2337
2338 if (!ret)
2339 q->nr_requests = nr;
2340
2341 return ret;
2342}
2343
676141e4
JA
2344void blk_mq_disable_hotplug(void)
2345{
2346 mutex_lock(&all_q_mutex);
2347}
2348
2349void blk_mq_enable_hotplug(void)
2350{
2351 mutex_unlock(&all_q_mutex);
2352}
2353
320ae51f
JA
2354static int __init blk_mq_init(void)
2355{
320ae51f
JA
2356 blk_mq_cpu_init();
2357
add703fd 2358 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2359
2360 return 0;
2361}
2362subsys_initcall(blk_mq_init);
This page took 0.230334 seconds and 5 git commands to generate.