Consolidate min_not_zero
[deliverable/linux.git] / block / blk-settings.c
CommitLineData
86db1e29
JA
1/*
2 * Functions related to setting various queue properties from drivers
3 */
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/init.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
70dd5bf3 10#include <linux/gcd.h>
2cda2728 11#include <linux/lcm.h>
ad5ebd2f 12#include <linux/jiffies.h>
5a0e3ad6 13#include <linux/gfp.h>
86db1e29
JA
14
15#include "blk.h"
16
6728cb0e 17unsigned long blk_max_low_pfn;
86db1e29 18EXPORT_SYMBOL(blk_max_low_pfn);
6728cb0e
JA
19
20unsigned long blk_max_pfn;
86db1e29
JA
21
22/**
23 * blk_queue_prep_rq - set a prepare_request function for queue
24 * @q: queue
25 * @pfn: prepare_request function
26 *
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
31 *
32 */
33void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34{
35 q->prep_rq_fn = pfn;
36}
86db1e29
JA
37EXPORT_SYMBOL(blk_queue_prep_rq);
38
28018c24
JB
39/**
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
41 * @q: queue
42 * @ufn: unprepare_request function
43 *
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
48 *
49 */
50void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51{
52 q->unprep_rq_fn = ufn;
53}
54EXPORT_SYMBOL(blk_queue_unprep_rq);
55
86db1e29
JA
56/**
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
58 * @q: queue
59 * @mbfn: merge_bvec_fn
60 *
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70 * honored.
71 */
72void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73{
74 q->merge_bvec_fn = mbfn;
75}
86db1e29
JA
76EXPORT_SYMBOL(blk_queue_merge_bvec);
77
78void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79{
80 q->softirq_done_fn = fn;
81}
86db1e29
JA
82EXPORT_SYMBOL(blk_queue_softirq_done);
83
242f9dcb
JA
84void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85{
86 q->rq_timeout = timeout;
87}
88EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89
90void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91{
92 q->rq_timed_out_fn = fn;
93}
94EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95
ef9e3fac
KU
96void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97{
98 q->lld_busy_fn = fn;
99}
100EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101
e475bba2
MP
102/**
103 * blk_set_default_limits - reset limits to default values
f740f5ca 104 * @lim: the queue_limits structure to reset
e475bba2
MP
105 *
106 * Description:
107 * Returns a queue_limit struct to its default state. Can be used by
108 * stacking drivers like DM that stage table swaps and reuse an
109 * existing device queue.
110 */
111void blk_set_default_limits(struct queue_limits *lim)
112{
8a78362c 113 lim->max_segments = BLK_MAX_SEGMENTS;
e475bba2 114 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
eb28d31b 115 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
5dee2477
MP
116 lim->max_sectors = BLK_DEF_MAX_SECTORS;
117 lim->max_hw_sectors = INT_MAX;
86b37281
MP
118 lim->max_discard_sectors = 0;
119 lim->discard_granularity = 0;
120 lim->discard_alignment = 0;
121 lim->discard_misaligned = 0;
98262f27 122 lim->discard_zeroes_data = -1;
e475bba2 123 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
3a02c8e8 124 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
e475bba2
MP
125 lim->alignment_offset = 0;
126 lim->io_opt = 0;
127 lim->misaligned = 0;
128 lim->no_cluster = 0;
129}
130EXPORT_SYMBOL(blk_set_default_limits);
131
86db1e29
JA
132/**
133 * blk_queue_make_request - define an alternate make_request function for a device
134 * @q: the request queue for the device to be affected
135 * @mfn: the alternate make_request function
136 *
137 * Description:
138 * The normal way for &struct bios to be passed to a device
139 * driver is for them to be collected into requests on a request
140 * queue, and then to allow the device driver to select requests
141 * off that queue when it is ready. This works well for many block
142 * devices. However some block devices (typically virtual devices
143 * such as md or lvm) do not benefit from the processing on the
144 * request queue, and are served best by having the requests passed
145 * directly to them. This can be achieved by providing a function
146 * to blk_queue_make_request().
147 *
148 * Caveat:
149 * The driver that does this *must* be able to deal appropriately
150 * with buffers in "highmemory". This can be accomplished by either calling
151 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
152 * blk_queue_bounce() to create a buffer in normal memory.
153 **/
6728cb0e 154void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
86db1e29
JA
155{
156 /*
157 * set defaults
158 */
159 q->nr_requests = BLKDEV_MAX_RQ;
0e435ac2 160
86db1e29 161 q->make_request_fn = mfn;
86db1e29
JA
162 blk_queue_dma_alignment(q, 511);
163 blk_queue_congestion_threshold(q);
164 q->nr_batching = BLK_BATCH_REQ;
165
166 q->unplug_thresh = 4; /* hmm */
ad5ebd2f 167 q->unplug_delay = msecs_to_jiffies(3); /* 3 milliseconds */
86db1e29
JA
168 if (q->unplug_delay == 0)
169 q->unplug_delay = 1;
170
86db1e29
JA
171 q->unplug_timer.function = blk_unplug_timeout;
172 q->unplug_timer.data = (unsigned long)q;
173
e475bba2 174 blk_set_default_limits(&q->limits);
086fa5ff 175 blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
e475bba2 176
a4e7d464
JA
177 /*
178 * If the caller didn't supply a lock, fall back to our embedded
179 * per-queue locks
180 */
181 if (!q->queue_lock)
182 q->queue_lock = &q->__queue_lock;
183
86db1e29
JA
184 /*
185 * by default assume old behaviour and bounce for any highmem page
186 */
187 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
188}
86db1e29
JA
189EXPORT_SYMBOL(blk_queue_make_request);
190
191/**
192 * blk_queue_bounce_limit - set bounce buffer limit for queue
cd0aca2d
TH
193 * @q: the request queue for the device
194 * @dma_mask: the maximum address the device can handle
86db1e29
JA
195 *
196 * Description:
197 * Different hardware can have different requirements as to what pages
198 * it can do I/O directly to. A low level driver can call
199 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
cd0aca2d 200 * buffers for doing I/O to pages residing above @dma_mask.
86db1e29 201 **/
cd0aca2d 202void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
86db1e29 203{
cd0aca2d 204 unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
86db1e29
JA
205 int dma = 0;
206
207 q->bounce_gfp = GFP_NOIO;
208#if BITS_PER_LONG == 64
cd0aca2d
TH
209 /*
210 * Assume anything <= 4GB can be handled by IOMMU. Actually
211 * some IOMMUs can handle everything, but I don't know of a
212 * way to test this here.
213 */
214 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
86db1e29 215 dma = 1;
025146e1 216 q->limits.bounce_pfn = max_low_pfn;
86db1e29 217#else
6728cb0e 218 if (b_pfn < blk_max_low_pfn)
86db1e29 219 dma = 1;
025146e1 220 q->limits.bounce_pfn = b_pfn;
86db1e29
JA
221#endif
222 if (dma) {
223 init_emergency_isa_pool();
224 q->bounce_gfp = GFP_NOIO | GFP_DMA;
025146e1 225 q->limits.bounce_pfn = b_pfn;
86db1e29
JA
226 }
227}
86db1e29
JA
228EXPORT_SYMBOL(blk_queue_bounce_limit);
229
230/**
086fa5ff 231 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
86db1e29 232 * @q: the request queue for the device
2800aac1 233 * @max_hw_sectors: max hardware sectors in the usual 512b unit
86db1e29
JA
234 *
235 * Description:
2800aac1
MP
236 * Enables a low level driver to set a hard upper limit,
237 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
238 * the device driver based upon the combined capabilities of I/O
239 * controller and storage device.
240 *
241 * max_sectors is a soft limit imposed by the block layer for
242 * filesystem type requests. This value can be overridden on a
243 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
244 * The soft limit can not exceed max_hw_sectors.
86db1e29 245 **/
086fa5ff 246void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
86db1e29 247{
2800aac1
MP
248 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
249 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
24c03d47 250 printk(KERN_INFO "%s: set to minimum %d\n",
2800aac1 251 __func__, max_hw_sectors);
86db1e29
JA
252 }
253
2800aac1
MP
254 q->limits.max_hw_sectors = max_hw_sectors;
255 q->limits.max_sectors = min_t(unsigned int, max_hw_sectors,
256 BLK_DEF_MAX_SECTORS);
86db1e29 257}
086fa5ff 258EXPORT_SYMBOL(blk_queue_max_hw_sectors);
86db1e29 259
67efc925
CH
260/**
261 * blk_queue_max_discard_sectors - set max sectors for a single discard
262 * @q: the request queue for the device
c7ebf065 263 * @max_discard_sectors: maximum number of sectors to discard
67efc925
CH
264 **/
265void blk_queue_max_discard_sectors(struct request_queue *q,
266 unsigned int max_discard_sectors)
267{
268 q->limits.max_discard_sectors = max_discard_sectors;
269}
270EXPORT_SYMBOL(blk_queue_max_discard_sectors);
271
86db1e29 272/**
8a78362c 273 * blk_queue_max_segments - set max hw segments for a request for this queue
86db1e29
JA
274 * @q: the request queue for the device
275 * @max_segments: max number of segments
276 *
277 * Description:
278 * Enables a low level driver to set an upper limit on the number of
8a78362c 279 * hw data segments in a request.
86db1e29 280 **/
8a78362c 281void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
86db1e29
JA
282{
283 if (!max_segments) {
284 max_segments = 1;
24c03d47
HH
285 printk(KERN_INFO "%s: set to minimum %d\n",
286 __func__, max_segments);
86db1e29
JA
287 }
288
8a78362c 289 q->limits.max_segments = max_segments;
86db1e29 290}
8a78362c 291EXPORT_SYMBOL(blk_queue_max_segments);
86db1e29
JA
292
293/**
294 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
295 * @q: the request queue for the device
296 * @max_size: max size of segment in bytes
297 *
298 * Description:
299 * Enables a low level driver to set an upper limit on the size of a
300 * coalesced segment
301 **/
302void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
303{
304 if (max_size < PAGE_CACHE_SIZE) {
305 max_size = PAGE_CACHE_SIZE;
24c03d47
HH
306 printk(KERN_INFO "%s: set to minimum %d\n",
307 __func__, max_size);
86db1e29
JA
308 }
309
025146e1 310 q->limits.max_segment_size = max_size;
86db1e29 311}
86db1e29
JA
312EXPORT_SYMBOL(blk_queue_max_segment_size);
313
314/**
e1defc4f 315 * blk_queue_logical_block_size - set logical block size for the queue
86db1e29 316 * @q: the request queue for the device
e1defc4f 317 * @size: the logical block size, in bytes
86db1e29
JA
318 *
319 * Description:
e1defc4f
MP
320 * This should be set to the lowest possible block size that the
321 * storage device can address. The default of 512 covers most
322 * hardware.
86db1e29 323 **/
e1defc4f 324void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
86db1e29 325{
025146e1 326 q->limits.logical_block_size = size;
c72758f3
MP
327
328 if (q->limits.physical_block_size < size)
329 q->limits.physical_block_size = size;
330
331 if (q->limits.io_min < q->limits.physical_block_size)
332 q->limits.io_min = q->limits.physical_block_size;
86db1e29 333}
e1defc4f 334EXPORT_SYMBOL(blk_queue_logical_block_size);
86db1e29 335
c72758f3
MP
336/**
337 * blk_queue_physical_block_size - set physical block size for the queue
338 * @q: the request queue for the device
339 * @size: the physical block size, in bytes
340 *
341 * Description:
342 * This should be set to the lowest possible sector size that the
343 * hardware can operate on without reverting to read-modify-write
344 * operations.
345 */
346void blk_queue_physical_block_size(struct request_queue *q, unsigned short size)
347{
348 q->limits.physical_block_size = size;
349
350 if (q->limits.physical_block_size < q->limits.logical_block_size)
351 q->limits.physical_block_size = q->limits.logical_block_size;
352
353 if (q->limits.io_min < q->limits.physical_block_size)
354 q->limits.io_min = q->limits.physical_block_size;
355}
356EXPORT_SYMBOL(blk_queue_physical_block_size);
357
358/**
359 * blk_queue_alignment_offset - set physical block alignment offset
360 * @q: the request queue for the device
8ebf9756 361 * @offset: alignment offset in bytes
c72758f3
MP
362 *
363 * Description:
364 * Some devices are naturally misaligned to compensate for things like
365 * the legacy DOS partition table 63-sector offset. Low-level drivers
366 * should call this function for devices whose first sector is not
367 * naturally aligned.
368 */
369void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
370{
371 q->limits.alignment_offset =
372 offset & (q->limits.physical_block_size - 1);
373 q->limits.misaligned = 0;
374}
375EXPORT_SYMBOL(blk_queue_alignment_offset);
376
7c958e32
MP
377/**
378 * blk_limits_io_min - set minimum request size for a device
379 * @limits: the queue limits
380 * @min: smallest I/O size in bytes
381 *
382 * Description:
383 * Some devices have an internal block size bigger than the reported
384 * hardware sector size. This function can be used to signal the
385 * smallest I/O the device can perform without incurring a performance
386 * penalty.
387 */
388void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
389{
390 limits->io_min = min;
391
392 if (limits->io_min < limits->logical_block_size)
393 limits->io_min = limits->logical_block_size;
394
395 if (limits->io_min < limits->physical_block_size)
396 limits->io_min = limits->physical_block_size;
397}
398EXPORT_SYMBOL(blk_limits_io_min);
399
c72758f3
MP
400/**
401 * blk_queue_io_min - set minimum request size for the queue
402 * @q: the request queue for the device
8ebf9756 403 * @min: smallest I/O size in bytes
c72758f3
MP
404 *
405 * Description:
7e5f5fb0
MP
406 * Storage devices may report a granularity or preferred minimum I/O
407 * size which is the smallest request the device can perform without
408 * incurring a performance penalty. For disk drives this is often the
409 * physical block size. For RAID arrays it is often the stripe chunk
410 * size. A properly aligned multiple of minimum_io_size is the
411 * preferred request size for workloads where a high number of I/O
412 * operations is desired.
c72758f3
MP
413 */
414void blk_queue_io_min(struct request_queue *q, unsigned int min)
415{
7c958e32 416 blk_limits_io_min(&q->limits, min);
c72758f3
MP
417}
418EXPORT_SYMBOL(blk_queue_io_min);
419
3c5820c7
MP
420/**
421 * blk_limits_io_opt - set optimal request size for a device
422 * @limits: the queue limits
423 * @opt: smallest I/O size in bytes
424 *
425 * Description:
426 * Storage devices may report an optimal I/O size, which is the
427 * device's preferred unit for sustained I/O. This is rarely reported
428 * for disk drives. For RAID arrays it is usually the stripe width or
429 * the internal track size. A properly aligned multiple of
430 * optimal_io_size is the preferred request size for workloads where
431 * sustained throughput is desired.
432 */
433void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
434{
435 limits->io_opt = opt;
436}
437EXPORT_SYMBOL(blk_limits_io_opt);
438
c72758f3
MP
439/**
440 * blk_queue_io_opt - set optimal request size for the queue
441 * @q: the request queue for the device
8ebf9756 442 * @opt: optimal request size in bytes
c72758f3
MP
443 *
444 * Description:
7e5f5fb0
MP
445 * Storage devices may report an optimal I/O size, which is the
446 * device's preferred unit for sustained I/O. This is rarely reported
447 * for disk drives. For RAID arrays it is usually the stripe width or
448 * the internal track size. A properly aligned multiple of
449 * optimal_io_size is the preferred request size for workloads where
450 * sustained throughput is desired.
c72758f3
MP
451 */
452void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
453{
3c5820c7 454 blk_limits_io_opt(&q->limits, opt);
c72758f3
MP
455}
456EXPORT_SYMBOL(blk_queue_io_opt);
457
86db1e29
JA
458/**
459 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
460 * @t: the stacking driver (top)
461 * @b: the underlying device (bottom)
462 **/
463void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
464{
fef24667 465 blk_stack_limits(&t->limits, &b->limits, 0);
025146e1 466
e7e72bf6
NB
467 if (!t->queue_lock)
468 WARN_ON_ONCE(1);
469 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
470 unsigned long flags;
471 spin_lock_irqsave(t->queue_lock, flags);
75ad23bc 472 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
e7e72bf6
NB
473 spin_unlock_irqrestore(t->queue_lock, flags);
474 }
86db1e29 475}
86db1e29
JA
476EXPORT_SYMBOL(blk_queue_stack_limits);
477
c72758f3
MP
478/**
479 * blk_stack_limits - adjust queue_limits for stacked devices
81744ee4
MP
480 * @t: the stacking driver limits (top device)
481 * @b: the underlying queue limits (bottom, component device)
e03a72e1 482 * @start: first data sector within component device
c72758f3
MP
483 *
484 * Description:
81744ee4
MP
485 * This function is used by stacking drivers like MD and DM to ensure
486 * that all component devices have compatible block sizes and
487 * alignments. The stacking driver must provide a queue_limits
488 * struct (top) and then iteratively call the stacking function for
489 * all component (bottom) devices. The stacking function will
490 * attempt to combine the values and ensure proper alignment.
491 *
492 * Returns 0 if the top and bottom queue_limits are compatible. The
493 * top device's block sizes and alignment offsets may be adjusted to
494 * ensure alignment with the bottom device. If no compatible sizes
495 * and alignments exist, -1 is returned and the resulting top
496 * queue_limits will have the misaligned flag set to indicate that
497 * the alignment_offset is undefined.
c72758f3
MP
498 */
499int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
e03a72e1 500 sector_t start)
c72758f3 501{
e03a72e1 502 unsigned int top, bottom, alignment, ret = 0;
86b37281 503
c72758f3
MP
504 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
505 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
77634f33 506 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
c72758f3
MP
507
508 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
509 b->seg_boundary_mask);
510
8a78362c 511 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
c72758f3
MP
512
513 t->max_segment_size = min_not_zero(t->max_segment_size,
514 b->max_segment_size);
515
fe0b393f
MP
516 t->misaligned |= b->misaligned;
517
e03a72e1 518 alignment = queue_limit_alignment_offset(b, start);
9504e086 519
81744ee4
MP
520 /* Bottom device has different alignment. Check that it is
521 * compatible with the current top alignment.
522 */
9504e086
MP
523 if (t->alignment_offset != alignment) {
524
525 top = max(t->physical_block_size, t->io_min)
526 + t->alignment_offset;
81744ee4 527 bottom = max(b->physical_block_size, b->io_min) + alignment;
9504e086 528
81744ee4 529 /* Verify that top and bottom intervals line up */
fe0b393f 530 if (max(top, bottom) & (min(top, bottom) - 1)) {
9504e086 531 t->misaligned = 1;
fe0b393f
MP
532 ret = -1;
533 }
9504e086
MP
534 }
535
c72758f3
MP
536 t->logical_block_size = max(t->logical_block_size,
537 b->logical_block_size);
538
539 t->physical_block_size = max(t->physical_block_size,
540 b->physical_block_size);
541
542 t->io_min = max(t->io_min, b->io_min);
9504e086
MP
543 t->io_opt = lcm(t->io_opt, b->io_opt);
544
c72758f3 545 t->no_cluster |= b->no_cluster;
98262f27 546 t->discard_zeroes_data &= b->discard_zeroes_data;
c72758f3 547
81744ee4 548 /* Physical block size a multiple of the logical block size? */
9504e086
MP
549 if (t->physical_block_size & (t->logical_block_size - 1)) {
550 t->physical_block_size = t->logical_block_size;
c72758f3 551 t->misaligned = 1;
fe0b393f 552 ret = -1;
86b37281
MP
553 }
554
81744ee4 555 /* Minimum I/O a multiple of the physical block size? */
9504e086
MP
556 if (t->io_min & (t->physical_block_size - 1)) {
557 t->io_min = t->physical_block_size;
558 t->misaligned = 1;
fe0b393f 559 ret = -1;
c72758f3
MP
560 }
561
81744ee4 562 /* Optimal I/O a multiple of the physical block size? */
9504e086
MP
563 if (t->io_opt & (t->physical_block_size - 1)) {
564 t->io_opt = 0;
565 t->misaligned = 1;
fe0b393f 566 ret = -1;
9504e086 567 }
c72758f3 568
81744ee4 569 /* Find lowest common alignment_offset */
9504e086
MP
570 t->alignment_offset = lcm(t->alignment_offset, alignment)
571 & (max(t->physical_block_size, t->io_min) - 1);
86b37281 572
81744ee4 573 /* Verify that new alignment_offset is on a logical block boundary */
fe0b393f 574 if (t->alignment_offset & (t->logical_block_size - 1)) {
c72758f3 575 t->misaligned = 1;
fe0b393f
MP
576 ret = -1;
577 }
c72758f3 578
9504e086
MP
579 /* Discard alignment and granularity */
580 if (b->discard_granularity) {
e03a72e1 581 alignment = queue_limit_discard_alignment(b, start);
9504e086
MP
582
583 if (t->discard_granularity != 0 &&
584 t->discard_alignment != alignment) {
585 top = t->discard_granularity + t->discard_alignment;
586 bottom = b->discard_granularity + alignment;
70dd5bf3 587
9504e086
MP
588 /* Verify that top and bottom intervals line up */
589 if (max(top, bottom) & (min(top, bottom) - 1))
590 t->discard_misaligned = 1;
591 }
592
81744ee4
MP
593 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
594 b->max_discard_sectors);
9504e086
MP
595 t->discard_granularity = max(t->discard_granularity,
596 b->discard_granularity);
597 t->discard_alignment = lcm(t->discard_alignment, alignment) &
598 (t->discard_granularity - 1);
599 }
70dd5bf3 600
fe0b393f 601 return ret;
c72758f3 602}
5d85d324 603EXPORT_SYMBOL(blk_stack_limits);
c72758f3 604
17be8c24
MP
605/**
606 * bdev_stack_limits - adjust queue limits for stacked drivers
607 * @t: the stacking driver limits (top device)
608 * @bdev: the component block_device (bottom)
609 * @start: first data sector within component device
610 *
611 * Description:
612 * Merges queue limits for a top device and a block_device. Returns
613 * 0 if alignment didn't change. Returns -1 if adding the bottom
614 * device caused misalignment.
615 */
616int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
617 sector_t start)
618{
619 struct request_queue *bq = bdev_get_queue(bdev);
620
621 start += get_start_sect(bdev);
622
e03a72e1 623 return blk_stack_limits(t, &bq->limits, start);
17be8c24
MP
624}
625EXPORT_SYMBOL(bdev_stack_limits);
626
c72758f3
MP
627/**
628 * disk_stack_limits - adjust queue limits for stacked drivers
77634f33 629 * @disk: MD/DM gendisk (top)
c72758f3
MP
630 * @bdev: the underlying block device (bottom)
631 * @offset: offset to beginning of data within component device
632 *
633 * Description:
e03a72e1
MP
634 * Merges the limits for a top level gendisk and a bottom level
635 * block_device.
c72758f3
MP
636 */
637void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
638 sector_t offset)
639{
640 struct request_queue *t = disk->queue;
641 struct request_queue *b = bdev_get_queue(bdev);
642
e03a72e1 643 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
c72758f3
MP
644 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
645
646 disk_name(disk, 0, top);
647 bdevname(bdev, bottom);
648
649 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
650 top, bottom);
651 }
652
653 if (!t->queue_lock)
654 WARN_ON_ONCE(1);
655 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
656 unsigned long flags;
657
658 spin_lock_irqsave(t->queue_lock, flags);
659 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
660 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
661 spin_unlock_irqrestore(t->queue_lock, flags);
662 }
663}
664EXPORT_SYMBOL(disk_stack_limits);
665
e3790c7d
TH
666/**
667 * blk_queue_dma_pad - set pad mask
668 * @q: the request queue for the device
669 * @mask: pad mask
670 *
27f8221a 671 * Set dma pad mask.
e3790c7d 672 *
27f8221a
FT
673 * Appending pad buffer to a request modifies the last entry of a
674 * scatter list such that it includes the pad buffer.
e3790c7d
TH
675 **/
676void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
677{
678 q->dma_pad_mask = mask;
679}
680EXPORT_SYMBOL(blk_queue_dma_pad);
681
27f8221a
FT
682/**
683 * blk_queue_update_dma_pad - update pad mask
684 * @q: the request queue for the device
685 * @mask: pad mask
686 *
687 * Update dma pad mask.
688 *
689 * Appending pad buffer to a request modifies the last entry of a
690 * scatter list such that it includes the pad buffer.
691 **/
692void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
693{
694 if (mask > q->dma_pad_mask)
695 q->dma_pad_mask = mask;
696}
697EXPORT_SYMBOL(blk_queue_update_dma_pad);
698
86db1e29
JA
699/**
700 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
86db1e29 701 * @q: the request queue for the device
2fb98e84 702 * @dma_drain_needed: fn which returns non-zero if drain is necessary
86db1e29
JA
703 * @buf: physically contiguous buffer
704 * @size: size of the buffer in bytes
705 *
706 * Some devices have excess DMA problems and can't simply discard (or
707 * zero fill) the unwanted piece of the transfer. They have to have a
708 * real area of memory to transfer it into. The use case for this is
709 * ATAPI devices in DMA mode. If the packet command causes a transfer
710 * bigger than the transfer size some HBAs will lock up if there
711 * aren't DMA elements to contain the excess transfer. What this API
712 * does is adjust the queue so that the buf is always appended
713 * silently to the scatterlist.
714 *
8a78362c
MP
715 * Note: This routine adjusts max_hw_segments to make room for appending
716 * the drain buffer. If you call blk_queue_max_segments() after calling
717 * this routine, you must set the limit to one fewer than your device
718 * can support otherwise there won't be room for the drain buffer.
86db1e29 719 */
448da4d2 720int blk_queue_dma_drain(struct request_queue *q,
2fb98e84
TH
721 dma_drain_needed_fn *dma_drain_needed,
722 void *buf, unsigned int size)
86db1e29 723{
8a78362c 724 if (queue_max_segments(q) < 2)
86db1e29
JA
725 return -EINVAL;
726 /* make room for appending the drain */
8a78362c 727 blk_queue_max_segments(q, queue_max_segments(q) - 1);
2fb98e84 728 q->dma_drain_needed = dma_drain_needed;
86db1e29
JA
729 q->dma_drain_buffer = buf;
730 q->dma_drain_size = size;
731
732 return 0;
733}
86db1e29
JA
734EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
735
736/**
737 * blk_queue_segment_boundary - set boundary rules for segment merging
738 * @q: the request queue for the device
739 * @mask: the memory boundary mask
740 **/
741void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
742{
743 if (mask < PAGE_CACHE_SIZE - 1) {
744 mask = PAGE_CACHE_SIZE - 1;
24c03d47
HH
745 printk(KERN_INFO "%s: set to minimum %lx\n",
746 __func__, mask);
86db1e29
JA
747 }
748
025146e1 749 q->limits.seg_boundary_mask = mask;
86db1e29 750}
86db1e29
JA
751EXPORT_SYMBOL(blk_queue_segment_boundary);
752
753/**
754 * blk_queue_dma_alignment - set dma length and memory alignment
755 * @q: the request queue for the device
756 * @mask: alignment mask
757 *
758 * description:
710027a4 759 * set required memory and length alignment for direct dma transactions.
8feb4d20 760 * this is used when building direct io requests for the queue.
86db1e29
JA
761 *
762 **/
763void blk_queue_dma_alignment(struct request_queue *q, int mask)
764{
765 q->dma_alignment = mask;
766}
86db1e29
JA
767EXPORT_SYMBOL(blk_queue_dma_alignment);
768
769/**
770 * blk_queue_update_dma_alignment - update dma length and memory alignment
771 * @q: the request queue for the device
772 * @mask: alignment mask
773 *
774 * description:
710027a4 775 * update required memory and length alignment for direct dma transactions.
86db1e29
JA
776 * If the requested alignment is larger than the current alignment, then
777 * the current queue alignment is updated to the new value, otherwise it
778 * is left alone. The design of this is to allow multiple objects
779 * (driver, device, transport etc) to set their respective
780 * alignments without having them interfere.
781 *
782 **/
783void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
784{
785 BUG_ON(mask > PAGE_SIZE);
786
787 if (mask > q->dma_alignment)
788 q->dma_alignment = mask;
789}
86db1e29
JA
790EXPORT_SYMBOL(blk_queue_update_dma_alignment);
791
aeb3d3a8 792static int __init blk_settings_init(void)
86db1e29
JA
793{
794 blk_max_low_pfn = max_low_pfn - 1;
795 blk_max_pfn = max_pfn - 1;
796 return 0;
797}
798subsys_initcall(blk_settings_init);
This page took 0.24556 seconds and 5 git commands to generate.