sparc: Use: generic time config
[deliverable/linux.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
6e736be7 17#include "blk.h"
e98ef89b 18#include "cfq.h"
1da177e4
LT
19
20/*
21 * tunables
22 */
fe094d98 23/* max queue in one round of service */
abc3c744 24static const int cfq_quantum = 8;
64100099 25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
64100099 30static const int cfq_slice_sync = HZ / 10;
3b18152c 31static int cfq_slice_async = HZ / 25;
64100099 32static const int cfq_slice_async_rq = 2;
caaa5f9f 33static int cfq_slice_idle = HZ / 125;
80bdf0c7 34static int cfq_group_idle = HZ / 125;
5db5d642
CZ
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
22e2c507 37
d9e7620e 38/*
0871714e 39 * offset from end of service tree
d9e7620e 40 */
0871714e 41#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT (2)
47
22e2c507 48#define CFQ_SLICE_SCALE (5)
45333d5a 49#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 50#define CFQ_SERVICE_SHIFT 12
22e2c507 51
3dde36dd 52#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 53#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 54#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 55#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 56
a612fddf
TH
57#define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
1da177e4 60
e18b890b 61static struct kmem_cache *cfq_pool;
1da177e4 62
22e2c507
JA
63#define CFQ_PRIO_LISTS IOPRIO_BE_NR
64#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
65#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
206dc69b 67#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 68#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 69
c5869807
TH
70struct cfq_ttime {
71 unsigned long last_end_request;
72
73 unsigned long ttime_total;
74 unsigned long ttime_samples;
75 unsigned long ttime_mean;
76};
77
cc09e299
JA
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
aa6f6a3d 87 unsigned count;
73e9ffdd 88 unsigned total_weight;
1fa8f6d6 89 u64 min_vdisktime;
f5f2b6ce 90 struct cfq_ttime ttime;
cc09e299 91};
f5f2b6ce
SL
92#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
93 .ttime = {.last_end_request = jiffies,},}
cc09e299 94
6118b70b
JA
95/*
96 * Per process-grouping structure
97 */
98struct cfq_queue {
99 /* reference count */
30d7b944 100 int ref;
6118b70b
JA
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
123
dae739eb
VG
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
f75edf2d 126 unsigned int allocated_slice;
c4081ba5 127 unsigned int slice_dispatch;
dae739eb
VG
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
6118b70b
JA
130 unsigned long slice_end;
131 long slice_resid;
6118b70b 132
65299a3b
CH
133 /* pending priority requests */
134 int prio_pending;
6118b70b
JA
135 /* number of requests that are on the dispatch list or inside driver */
136 int dispatched;
137
138 /* io prio of this group */
139 unsigned short ioprio, org_ioprio;
4aede84b 140 unsigned short ioprio_class;
6118b70b 141
c4081ba5
RK
142 pid_t pid;
143
3dde36dd 144 u32 seek_history;
b2c18e1e
JM
145 sector_t last_request_pos;
146
aa6f6a3d 147 struct cfq_rb_root *service_tree;
df5fe3e8 148 struct cfq_queue *new_cfqq;
cdb16e8f 149 struct cfq_group *cfqg;
c4e7893e
VG
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors;
6118b70b
JA
152};
153
c0324a02 154/*
718eee05 155 * First index in the service_trees.
c0324a02
CZ
156 * IDLE is handled separately, so it has negative index
157 */
158enum wl_prio_t {
c0324a02 159 BE_WORKLOAD = 0,
615f0259
VG
160 RT_WORKLOAD = 1,
161 IDLE_WORKLOAD = 2,
b4627321 162 CFQ_PRIO_NR,
c0324a02
CZ
163};
164
718eee05
CZ
165/*
166 * Second index in the service_trees.
167 */
168enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
172};
173
cdb16e8f
VG
174/* This is per cgroup per device grouping structure */
175struct cfq_group {
1fa8f6d6
VG
176 /* group service_tree member */
177 struct rb_node rb_node;
178
179 /* group service_tree key */
180 u64 vdisktime;
25bc6b07 181 unsigned int weight;
8184f93e
JT
182 unsigned int new_weight;
183 bool needs_update;
1fa8f6d6
VG
184
185 /* number of cfqq currently on this group */
186 int nr_cfqq;
187
cdb16e8f 188 /*
4495a7d4 189 * Per group busy queues average. Useful for workload slice calc. We
b4627321
VG
190 * create the array for each prio class but at run time it is used
191 * only for RT and BE class and slot for IDLE class remains unused.
192 * This is primarily done to avoid confusion and a gcc warning.
193 */
194 unsigned int busy_queues_avg[CFQ_PRIO_NR];
195 /*
196 * rr lists of queues with requests. We maintain service trees for
197 * RT and BE classes. These trees are subdivided in subclasses
198 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
199 * class there is no subclassification and all the cfq queues go on
200 * a single tree service_tree_idle.
cdb16e8f
VG
201 * Counts are embedded in the cfq_rb_root
202 */
203 struct cfq_rb_root service_trees[2][3];
204 struct cfq_rb_root service_tree_idle;
dae739eb
VG
205
206 unsigned long saved_workload_slice;
207 enum wl_type_t saved_workload;
208 enum wl_prio_t saved_serving_prio;
25fb5169
VG
209 struct blkio_group blkg;
210#ifdef CONFIG_CFQ_GROUP_IOSCHED
211 struct hlist_node cfqd_node;
329a6781 212 int ref;
25fb5169 213#endif
80bdf0c7
VG
214 /* number of requests that are on the dispatch list or inside driver */
215 int dispatched;
7700fc4f 216 struct cfq_ttime ttime;
cdb16e8f 217};
718eee05 218
c5869807
TH
219struct cfq_io_cq {
220 struct io_cq icq; /* must be the first member */
221 struct cfq_queue *cfqq[2];
222 struct cfq_ttime ttime;
223};
224
22e2c507
JA
225/*
226 * Per block device queue structure
227 */
1da177e4 228struct cfq_data {
165125e1 229 struct request_queue *queue;
1fa8f6d6
VG
230 /* Root service tree for cfq_groups */
231 struct cfq_rb_root grp_service_tree;
cdb16e8f 232 struct cfq_group root_group;
22e2c507 233
c0324a02
CZ
234 /*
235 * The priority currently being served
22e2c507 236 */
c0324a02 237 enum wl_prio_t serving_prio;
718eee05
CZ
238 enum wl_type_t serving_type;
239 unsigned long workload_expires;
cdb16e8f 240 struct cfq_group *serving_group;
a36e71f9
JA
241
242 /*
243 * Each priority tree is sorted by next_request position. These
244 * trees are used when determining if two or more queues are
245 * interleaving requests (see cfq_close_cooperator).
246 */
247 struct rb_root prio_trees[CFQ_PRIO_LISTS];
248
22e2c507 249 unsigned int busy_queues;
ef8a41df 250 unsigned int busy_sync_queues;
22e2c507 251
53c583d2
CZ
252 int rq_in_driver;
253 int rq_in_flight[2];
45333d5a
AC
254
255 /*
256 * queue-depth detection
257 */
258 int rq_queued;
25776e35 259 int hw_tag;
e459dd08
CZ
260 /*
261 * hw_tag can be
262 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
263 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
264 * 0 => no NCQ
265 */
266 int hw_tag_est_depth;
267 unsigned int hw_tag_samples;
1da177e4 268
22e2c507
JA
269 /*
270 * idle window management
271 */
272 struct timer_list idle_slice_timer;
23e018a1 273 struct work_struct unplug_work;
1da177e4 274
22e2c507 275 struct cfq_queue *active_queue;
c5869807 276 struct cfq_io_cq *active_cic;
22e2c507 277
c2dea2d1
VT
278 /*
279 * async queue for each priority case
280 */
281 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
282 struct cfq_queue *async_idle_cfqq;
15c31be4 283
6d048f53 284 sector_t last_position;
1da177e4 285
1da177e4
LT
286 /*
287 * tunables, see top of file
288 */
289 unsigned int cfq_quantum;
22e2c507 290 unsigned int cfq_fifo_expire[2];
1da177e4
LT
291 unsigned int cfq_back_penalty;
292 unsigned int cfq_back_max;
22e2c507
JA
293 unsigned int cfq_slice[2];
294 unsigned int cfq_slice_async_rq;
295 unsigned int cfq_slice_idle;
80bdf0c7 296 unsigned int cfq_group_idle;
963b72fc 297 unsigned int cfq_latency;
5bf14c07 298 unsigned int cfq_target_latency;
d9ff4187 299
6118b70b
JA
300 /*
301 * Fallback dummy cfqq for extreme OOM conditions
302 */
303 struct cfq_queue oom_cfqq;
365722bb 304
573412b2 305 unsigned long last_delayed_sync;
25fb5169
VG
306
307 /* List of cfq groups being managed on this device*/
308 struct hlist_head cfqg_list;
56edf7d7
VG
309
310 /* Number of groups which are on blkcg->blkg_list */
311 unsigned int nr_blkcg_linked_grps;
1da177e4
LT
312};
313
25fb5169
VG
314static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
315
cdb16e8f
VG
316static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
317 enum wl_prio_t prio,
65b32a57 318 enum wl_type_t type)
c0324a02 319{
1fa8f6d6
VG
320 if (!cfqg)
321 return NULL;
322
c0324a02 323 if (prio == IDLE_WORKLOAD)
cdb16e8f 324 return &cfqg->service_tree_idle;
c0324a02 325
cdb16e8f 326 return &cfqg->service_trees[prio][type];
c0324a02
CZ
327}
328
3b18152c 329enum cfqq_state_flags {
b0b8d749
JA
330 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
331 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 332 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 333 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
334 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
335 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
336 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 337 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 338 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 339 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 340 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 341 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 342 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
343};
344
345#define CFQ_CFQQ_FNS(name) \
346static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
347{ \
fe094d98 348 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
349} \
350static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
351{ \
fe094d98 352 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
353} \
354static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
355{ \
fe094d98 356 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
357}
358
359CFQ_CFQQ_FNS(on_rr);
360CFQ_CFQQ_FNS(wait_request);
b029195d 361CFQ_CFQQ_FNS(must_dispatch);
3b18152c 362CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
363CFQ_CFQQ_FNS(fifo_expire);
364CFQ_CFQQ_FNS(idle_window);
365CFQ_CFQQ_FNS(prio_changed);
44f7c160 366CFQ_CFQQ_FNS(slice_new);
91fac317 367CFQ_CFQQ_FNS(sync);
a36e71f9 368CFQ_CFQQ_FNS(coop);
ae54abed 369CFQ_CFQQ_FNS(split_coop);
76280aff 370CFQ_CFQQ_FNS(deep);
f75edf2d 371CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
372#undef CFQ_CFQQ_FNS
373
afc24d49 374#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
375#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
376 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
377 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
4495a7d4 378 blkg_path(&(cfqq)->cfqg->blkg), ##args)
2868ef7b
VG
379
380#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
381 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
4495a7d4 382 blkg_path(&(cfqg)->blkg), ##args) \
2868ef7b
VG
383
384#else
7b679138
JA
385#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
386 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
4495a7d4 387#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
2868ef7b 388#endif
7b679138
JA
389#define cfq_log(cfqd, fmt, args...) \
390 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
391
615f0259
VG
392/* Traverses through cfq group service trees */
393#define for_each_cfqg_st(cfqg, i, j, st) \
394 for (i = 0; i <= IDLE_WORKLOAD; i++) \
395 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
396 : &cfqg->service_tree_idle; \
397 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
398 (i == IDLE_WORKLOAD && j == 0); \
399 j++, st = i < IDLE_WORKLOAD ? \
400 &cfqg->service_trees[i][j]: NULL) \
401
f5f2b6ce
SL
402static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
403 struct cfq_ttime *ttime, bool group_idle)
404{
405 unsigned long slice;
406 if (!sample_valid(ttime->ttime_samples))
407 return false;
408 if (group_idle)
409 slice = cfqd->cfq_group_idle;
410 else
411 slice = cfqd->cfq_slice_idle;
412 return ttime->ttime_mean > slice;
413}
615f0259 414
02b35081
VG
415static inline bool iops_mode(struct cfq_data *cfqd)
416{
417 /*
418 * If we are not idling on queues and it is a NCQ drive, parallel
419 * execution of requests is on and measuring time is not possible
420 * in most of the cases until and unless we drive shallower queue
421 * depths and that becomes a performance bottleneck. In such cases
422 * switch to start providing fairness in terms of number of IOs.
423 */
424 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
425 return true;
426 else
427 return false;
428}
429
c0324a02
CZ
430static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
431{
432 if (cfq_class_idle(cfqq))
433 return IDLE_WORKLOAD;
434 if (cfq_class_rt(cfqq))
435 return RT_WORKLOAD;
436 return BE_WORKLOAD;
437}
438
718eee05
CZ
439
440static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
441{
442 if (!cfq_cfqq_sync(cfqq))
443 return ASYNC_WORKLOAD;
444 if (!cfq_cfqq_idle_window(cfqq))
445 return SYNC_NOIDLE_WORKLOAD;
446 return SYNC_WORKLOAD;
447}
448
58ff82f3
VG
449static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
450 struct cfq_data *cfqd,
451 struct cfq_group *cfqg)
c0324a02
CZ
452{
453 if (wl == IDLE_WORKLOAD)
cdb16e8f 454 return cfqg->service_tree_idle.count;
c0324a02 455
cdb16e8f
VG
456 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
457 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
458 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
459}
460
f26bd1f0
VG
461static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
462 struct cfq_group *cfqg)
463{
464 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
465 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
466}
467
165125e1 468static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 469static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 470 struct io_context *, gfp_t);
91fac317 471
c5869807
TH
472static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
473{
474 /* cic->icq is the first member, %NULL will convert to %NULL */
475 return container_of(icq, struct cfq_io_cq, icq);
476}
477
47fdd4ca
TH
478static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
479 struct io_context *ioc)
480{
481 if (ioc)
482 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
483 return NULL;
484}
485
c5869807 486static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
91fac317 487{
a6151c3a 488 return cic->cfqq[is_sync];
91fac317
VT
489}
490
c5869807
TH
491static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
492 bool is_sync)
91fac317 493{
a6151c3a 494 cic->cfqq[is_sync] = cfqq;
91fac317
VT
495}
496
c5869807 497static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
bca4b914 498{
c5869807 499 return cic->icq.q->elevator->elevator_data;
bca4b914
KK
500}
501
91fac317
VT
502/*
503 * We regard a request as SYNC, if it's either a read or has the SYNC bit
504 * set (in which case it could also be direct WRITE).
505 */
a6151c3a 506static inline bool cfq_bio_sync(struct bio *bio)
91fac317 507{
7b6d91da 508 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 509}
1da177e4 510
99f95e52
AM
511/*
512 * scheduler run of queue, if there are requests pending and no one in the
513 * driver that will restart queueing
514 */
23e018a1 515static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 516{
7b679138
JA
517 if (cfqd->busy_queues) {
518 cfq_log(cfqd, "schedule dispatch");
23e018a1 519 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 520 }
99f95e52
AM
521}
522
44f7c160
JA
523/*
524 * Scale schedule slice based on io priority. Use the sync time slice only
525 * if a queue is marked sync and has sync io queued. A sync queue with async
526 * io only, should not get full sync slice length.
527 */
a6151c3a 528static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 529 unsigned short prio)
44f7c160 530{
d9e7620e 531 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 532
d9e7620e
JA
533 WARN_ON(prio >= IOPRIO_BE_NR);
534
535 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
536}
44f7c160 537
d9e7620e
JA
538static inline int
539cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
540{
541 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
542}
543
25bc6b07
VG
544static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
545{
546 u64 d = delta << CFQ_SERVICE_SHIFT;
547
548 d = d * BLKIO_WEIGHT_DEFAULT;
549 do_div(d, cfqg->weight);
550 return d;
551}
552
553static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
554{
555 s64 delta = (s64)(vdisktime - min_vdisktime);
556 if (delta > 0)
557 min_vdisktime = vdisktime;
558
559 return min_vdisktime;
560}
561
562static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
563{
564 s64 delta = (s64)(vdisktime - min_vdisktime);
565 if (delta < 0)
566 min_vdisktime = vdisktime;
567
568 return min_vdisktime;
569}
570
571static void update_min_vdisktime(struct cfq_rb_root *st)
572{
25bc6b07
VG
573 struct cfq_group *cfqg;
574
25bc6b07
VG
575 if (st->left) {
576 cfqg = rb_entry_cfqg(st->left);
a6032710
GJ
577 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
578 cfqg->vdisktime);
25bc6b07 579 }
25bc6b07
VG
580}
581
5db5d642
CZ
582/*
583 * get averaged number of queues of RT/BE priority.
584 * average is updated, with a formula that gives more weight to higher numbers,
585 * to quickly follows sudden increases and decrease slowly
586 */
587
58ff82f3
VG
588static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
589 struct cfq_group *cfqg, bool rt)
5869619c 590{
5db5d642
CZ
591 unsigned min_q, max_q;
592 unsigned mult = cfq_hist_divisor - 1;
593 unsigned round = cfq_hist_divisor / 2;
58ff82f3 594 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 595
58ff82f3
VG
596 min_q = min(cfqg->busy_queues_avg[rt], busy);
597 max_q = max(cfqg->busy_queues_avg[rt], busy);
598 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 599 cfq_hist_divisor;
58ff82f3
VG
600 return cfqg->busy_queues_avg[rt];
601}
602
603static inline unsigned
604cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
605{
606 struct cfq_rb_root *st = &cfqd->grp_service_tree;
607
5bf14c07 608 return cfqd->cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
609}
610
c553f8e3 611static inline unsigned
ba5bd520 612cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
44f7c160 613{
5db5d642
CZ
614 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
615 if (cfqd->cfq_latency) {
58ff82f3
VG
616 /*
617 * interested queues (we consider only the ones with the same
618 * priority class in the cfq group)
619 */
620 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
621 cfq_class_rt(cfqq));
5db5d642
CZ
622 unsigned sync_slice = cfqd->cfq_slice[1];
623 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
624 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
625
626 if (expect_latency > group_slice) {
5db5d642
CZ
627 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
628 /* scale low_slice according to IO priority
629 * and sync vs async */
630 unsigned low_slice =
631 min(slice, base_low_slice * slice / sync_slice);
632 /* the adapted slice value is scaled to fit all iqs
633 * into the target latency */
58ff82f3 634 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
635 low_slice);
636 }
637 }
c553f8e3
SL
638 return slice;
639}
640
641static inline void
642cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
643{
ba5bd520 644 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3 645
dae739eb 646 cfqq->slice_start = jiffies;
5db5d642 647 cfqq->slice_end = jiffies + slice;
f75edf2d 648 cfqq->allocated_slice = slice;
7b679138 649 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
650}
651
652/*
653 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
654 * isn't valid until the first request from the dispatch is activated
655 * and the slice time set.
656 */
a6151c3a 657static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
658{
659 if (cfq_cfqq_slice_new(cfqq))
c1e44756 660 return false;
44f7c160 661 if (time_before(jiffies, cfqq->slice_end))
c1e44756 662 return false;
44f7c160 663
c1e44756 664 return true;
44f7c160
JA
665}
666
1da177e4 667/*
5e705374 668 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 669 * We choose the request that is closest to the head right now. Distance
e8a99053 670 * behind the head is penalized and only allowed to a certain extent.
1da177e4 671 */
5e705374 672static struct request *
cf7c25cf 673cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 674{
cf7c25cf 675 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 676 unsigned long back_max;
e8a99053
AM
677#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
678#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
679 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 680
5e705374
JA
681 if (rq1 == NULL || rq1 == rq2)
682 return rq2;
683 if (rq2 == NULL)
684 return rq1;
9c2c38a1 685
229836bd
NK
686 if (rq_is_sync(rq1) != rq_is_sync(rq2))
687 return rq_is_sync(rq1) ? rq1 : rq2;
688
65299a3b
CH
689 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
690 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
b53d1ed7 691
83096ebf
TH
692 s1 = blk_rq_pos(rq1);
693 s2 = blk_rq_pos(rq2);
1da177e4 694
1da177e4
LT
695 /*
696 * by definition, 1KiB is 2 sectors
697 */
698 back_max = cfqd->cfq_back_max * 2;
699
700 /*
701 * Strict one way elevator _except_ in the case where we allow
702 * short backward seeks which are biased as twice the cost of a
703 * similar forward seek.
704 */
705 if (s1 >= last)
706 d1 = s1 - last;
707 else if (s1 + back_max >= last)
708 d1 = (last - s1) * cfqd->cfq_back_penalty;
709 else
e8a99053 710 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
711
712 if (s2 >= last)
713 d2 = s2 - last;
714 else if (s2 + back_max >= last)
715 d2 = (last - s2) * cfqd->cfq_back_penalty;
716 else
e8a99053 717 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
718
719 /* Found required data */
e8a99053
AM
720
721 /*
722 * By doing switch() on the bit mask "wrap" we avoid having to
723 * check two variables for all permutations: --> faster!
724 */
725 switch (wrap) {
5e705374 726 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 727 if (d1 < d2)
5e705374 728 return rq1;
e8a99053 729 else if (d2 < d1)
5e705374 730 return rq2;
e8a99053
AM
731 else {
732 if (s1 >= s2)
5e705374 733 return rq1;
e8a99053 734 else
5e705374 735 return rq2;
e8a99053 736 }
1da177e4 737
e8a99053 738 case CFQ_RQ2_WRAP:
5e705374 739 return rq1;
e8a99053 740 case CFQ_RQ1_WRAP:
5e705374
JA
741 return rq2;
742 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
743 default:
744 /*
745 * Since both rqs are wrapped,
746 * start with the one that's further behind head
747 * (--> only *one* back seek required),
748 * since back seek takes more time than forward.
749 */
750 if (s1 <= s2)
5e705374 751 return rq1;
1da177e4 752 else
5e705374 753 return rq2;
1da177e4
LT
754 }
755}
756
498d3aa2
JA
757/*
758 * The below is leftmost cache rbtree addon
759 */
0871714e 760static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 761{
615f0259
VG
762 /* Service tree is empty */
763 if (!root->count)
764 return NULL;
765
cc09e299
JA
766 if (!root->left)
767 root->left = rb_first(&root->rb);
768
0871714e
JA
769 if (root->left)
770 return rb_entry(root->left, struct cfq_queue, rb_node);
771
772 return NULL;
cc09e299
JA
773}
774
1fa8f6d6
VG
775static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
776{
777 if (!root->left)
778 root->left = rb_first(&root->rb);
779
780 if (root->left)
781 return rb_entry_cfqg(root->left);
782
783 return NULL;
784}
785
a36e71f9
JA
786static void rb_erase_init(struct rb_node *n, struct rb_root *root)
787{
788 rb_erase(n, root);
789 RB_CLEAR_NODE(n);
790}
791
cc09e299
JA
792static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
793{
794 if (root->left == n)
795 root->left = NULL;
a36e71f9 796 rb_erase_init(n, &root->rb);
aa6f6a3d 797 --root->count;
cc09e299
JA
798}
799
1da177e4
LT
800/*
801 * would be nice to take fifo expire time into account as well
802 */
5e705374
JA
803static struct request *
804cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
805 struct request *last)
1da177e4 806{
21183b07
JA
807 struct rb_node *rbnext = rb_next(&last->rb_node);
808 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 809 struct request *next = NULL, *prev = NULL;
1da177e4 810
21183b07 811 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
812
813 if (rbprev)
5e705374 814 prev = rb_entry_rq(rbprev);
1da177e4 815
21183b07 816 if (rbnext)
5e705374 817 next = rb_entry_rq(rbnext);
21183b07
JA
818 else {
819 rbnext = rb_first(&cfqq->sort_list);
820 if (rbnext && rbnext != &last->rb_node)
5e705374 821 next = rb_entry_rq(rbnext);
21183b07 822 }
1da177e4 823
cf7c25cf 824 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
825}
826
d9e7620e
JA
827static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
828 struct cfq_queue *cfqq)
1da177e4 829{
d9e7620e
JA
830 /*
831 * just an approximation, should be ok.
832 */
cdb16e8f 833 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 834 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
835}
836
1fa8f6d6
VG
837static inline s64
838cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
839{
840 return cfqg->vdisktime - st->min_vdisktime;
841}
842
843static void
844__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
845{
846 struct rb_node **node = &st->rb.rb_node;
847 struct rb_node *parent = NULL;
848 struct cfq_group *__cfqg;
849 s64 key = cfqg_key(st, cfqg);
850 int left = 1;
851
852 while (*node != NULL) {
853 parent = *node;
854 __cfqg = rb_entry_cfqg(parent);
855
856 if (key < cfqg_key(st, __cfqg))
857 node = &parent->rb_left;
858 else {
859 node = &parent->rb_right;
860 left = 0;
861 }
862 }
863
864 if (left)
865 st->left = &cfqg->rb_node;
866
867 rb_link_node(&cfqg->rb_node, parent, node);
868 rb_insert_color(&cfqg->rb_node, &st->rb);
869}
870
871static void
8184f93e
JT
872cfq_update_group_weight(struct cfq_group *cfqg)
873{
874 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
875 if (cfqg->needs_update) {
876 cfqg->weight = cfqg->new_weight;
877 cfqg->needs_update = false;
878 }
879}
880
881static void
882cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
883{
884 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
885
886 cfq_update_group_weight(cfqg);
887 __cfq_group_service_tree_add(st, cfqg);
888 st->total_weight += cfqg->weight;
889}
890
891static void
892cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
893{
894 struct cfq_rb_root *st = &cfqd->grp_service_tree;
895 struct cfq_group *__cfqg;
896 struct rb_node *n;
897
898 cfqg->nr_cfqq++;
760701bf 899 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1fa8f6d6
VG
900 return;
901
902 /*
903 * Currently put the group at the end. Later implement something
904 * so that groups get lesser vtime based on their weights, so that
25985edc 905 * if group does not loose all if it was not continuously backlogged.
1fa8f6d6
VG
906 */
907 n = rb_last(&st->rb);
908 if (n) {
909 __cfqg = rb_entry_cfqg(n);
910 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
911 } else
912 cfqg->vdisktime = st->min_vdisktime;
8184f93e
JT
913 cfq_group_service_tree_add(st, cfqg);
914}
1fa8f6d6 915
8184f93e
JT
916static void
917cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
918{
919 st->total_weight -= cfqg->weight;
920 if (!RB_EMPTY_NODE(&cfqg->rb_node))
921 cfq_rb_erase(&cfqg->rb_node, st);
1fa8f6d6
VG
922}
923
924static void
8184f93e 925cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
926{
927 struct cfq_rb_root *st = &cfqd->grp_service_tree;
928
929 BUG_ON(cfqg->nr_cfqq < 1);
930 cfqg->nr_cfqq--;
25bc6b07 931
1fa8f6d6
VG
932 /* If there are other cfq queues under this group, don't delete it */
933 if (cfqg->nr_cfqq)
934 return;
935
2868ef7b 936 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
8184f93e 937 cfq_group_service_tree_del(st, cfqg);
dae739eb 938 cfqg->saved_workload_slice = 0;
e98ef89b 939 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
940}
941
167400d3
JT
942static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
943 unsigned int *unaccounted_time)
dae739eb 944{
f75edf2d 945 unsigned int slice_used;
dae739eb
VG
946
947 /*
948 * Queue got expired before even a single request completed or
949 * got expired immediately after first request completion.
950 */
951 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
952 /*
953 * Also charge the seek time incurred to the group, otherwise
954 * if there are mutiple queues in the group, each can dispatch
955 * a single request on seeky media and cause lots of seek time
956 * and group will never know it.
957 */
958 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
959 1);
960 } else {
961 slice_used = jiffies - cfqq->slice_start;
167400d3
JT
962 if (slice_used > cfqq->allocated_slice) {
963 *unaccounted_time = slice_used - cfqq->allocated_slice;
f75edf2d 964 slice_used = cfqq->allocated_slice;
167400d3
JT
965 }
966 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
967 *unaccounted_time += cfqq->slice_start -
968 cfqq->dispatch_start;
dae739eb
VG
969 }
970
dae739eb
VG
971 return slice_used;
972}
973
974static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 975 struct cfq_queue *cfqq)
dae739eb
VG
976{
977 struct cfq_rb_root *st = &cfqd->grp_service_tree;
167400d3 978 unsigned int used_sl, charge, unaccounted_sl = 0;
f26bd1f0
VG
979 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
980 - cfqg->service_tree_idle.count;
981
982 BUG_ON(nr_sync < 0);
167400d3 983 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
dae739eb 984
02b35081
VG
985 if (iops_mode(cfqd))
986 charge = cfqq->slice_dispatch;
987 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
988 charge = cfqq->allocated_slice;
dae739eb
VG
989
990 /* Can't update vdisktime while group is on service tree */
8184f93e 991 cfq_group_service_tree_del(st, cfqg);
02b35081 992 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
8184f93e
JT
993 /* If a new weight was requested, update now, off tree */
994 cfq_group_service_tree_add(st, cfqg);
dae739eb
VG
995
996 /* This group is being expired. Save the context */
997 if (time_after(cfqd->workload_expires, jiffies)) {
998 cfqg->saved_workload_slice = cfqd->workload_expires
999 - jiffies;
1000 cfqg->saved_workload = cfqd->serving_type;
1001 cfqg->saved_serving_prio = cfqd->serving_prio;
1002 } else
1003 cfqg->saved_workload_slice = 0;
2868ef7b
VG
1004
1005 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1006 st->min_vdisktime);
fd16d263
JP
1007 cfq_log_cfqq(cfqq->cfqd, cfqq,
1008 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1009 used_sl, cfqq->slice_dispatch, charge,
1010 iops_mode(cfqd), cfqq->nr_sectors);
167400d3
JT
1011 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1012 unaccounted_sl);
e98ef89b 1013 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
1014}
1015
25fb5169
VG
1016#ifdef CONFIG_CFQ_GROUP_IOSCHED
1017static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1018{
1019 if (blkg)
1020 return container_of(blkg, struct cfq_group, blkg);
1021 return NULL;
1022}
1023
8aea4545
PB
1024static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1025 unsigned int weight)
f8d461d6 1026{
8184f93e
JT
1027 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1028 cfqg->new_weight = weight;
1029 cfqg->needs_update = true;
f8d461d6
VG
1030}
1031
f469a7b4
VG
1032static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1033 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
25fb5169 1034{
22084190
VG
1035 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1036 unsigned int major, minor;
25fb5169 1037
f469a7b4
VG
1038 /*
1039 * Add group onto cgroup list. It might happen that bdi->dev is
1040 * not initialized yet. Initialize this new group without major
1041 * and minor info and this info will be filled in once a new thread
1042 * comes for IO.
1043 */
1044 if (bdi->dev) {
a74b2ada 1045 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
f469a7b4
VG
1046 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1047 (void *)cfqd, MKDEV(major, minor));
1048 } else
1049 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1050 (void *)cfqd, 0);
1051
1052 cfqd->nr_blkcg_linked_grps++;
1053 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1054
1055 /* Add group on cfqd list */
1056 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1057}
1058
1059/*
1060 * Should be called from sleepable context. No request queue lock as per
1061 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1062 * from sleepable context.
1063 */
1064static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1065{
1066 struct cfq_group *cfqg = NULL;
5624a4e4 1067 int i, j, ret;
f469a7b4 1068 struct cfq_rb_root *st;
25fb5169
VG
1069
1070 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1071 if (!cfqg)
f469a7b4 1072 return NULL;
25fb5169 1073
25fb5169
VG
1074 for_each_cfqg_st(cfqg, i, j, st)
1075 *st = CFQ_RB_ROOT;
1076 RB_CLEAR_NODE(&cfqg->rb_node);
1077
7700fc4f
SL
1078 cfqg->ttime.last_end_request = jiffies;
1079
b1c35769
VG
1080 /*
1081 * Take the initial reference that will be released on destroy
1082 * This can be thought of a joint reference by cgroup and
1083 * elevator which will be dropped by either elevator exit
1084 * or cgroup deletion path depending on who is exiting first.
1085 */
329a6781 1086 cfqg->ref = 1;
5624a4e4
VG
1087
1088 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1089 if (ret) {
1090 kfree(cfqg);
1091 return NULL;
1092 }
1093
f469a7b4
VG
1094 return cfqg;
1095}
1096
1097static struct cfq_group *
1098cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1099{
1100 struct cfq_group *cfqg = NULL;
1101 void *key = cfqd;
1102 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1103 unsigned int major, minor;
b1c35769 1104
180be2a0 1105 /*
f469a7b4
VG
1106 * This is the common case when there are no blkio cgroups.
1107 * Avoid lookup in this case
180be2a0 1108 */
f469a7b4
VG
1109 if (blkcg == &blkio_root_cgroup)
1110 cfqg = &cfqd->root_group;
1111 else
1112 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
25fb5169 1113
f469a7b4
VG
1114 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1115 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1116 cfqg->blkg.dev = MKDEV(major, minor);
1117 }
25fb5169 1118
25fb5169
VG
1119 return cfqg;
1120}
1121
1122/*
3e59cf9d
VG
1123 * Search for the cfq group current task belongs to. request_queue lock must
1124 * be held.
25fb5169 1125 */
3e59cf9d 1126static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169 1127{
70087dc3 1128 struct blkio_cgroup *blkcg;
f469a7b4
VG
1129 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1130 struct request_queue *q = cfqd->queue;
25fb5169
VG
1131
1132 rcu_read_lock();
70087dc3 1133 blkcg = task_blkio_cgroup(current);
f469a7b4
VG
1134 cfqg = cfq_find_cfqg(cfqd, blkcg);
1135 if (cfqg) {
1136 rcu_read_unlock();
1137 return cfqg;
1138 }
1139
1140 /*
1141 * Need to allocate a group. Allocation of group also needs allocation
1142 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1143 * we need to drop rcu lock and queue_lock before we call alloc.
1144 *
1145 * Not taking any queue reference here and assuming that queue is
1146 * around by the time we return. CFQ queue allocation code does
1147 * the same. It might be racy though.
1148 */
1149
1150 rcu_read_unlock();
1151 spin_unlock_irq(q->queue_lock);
1152
1153 cfqg = cfq_alloc_cfqg(cfqd);
1154
1155 spin_lock_irq(q->queue_lock);
1156
1157 rcu_read_lock();
1158 blkcg = task_blkio_cgroup(current);
1159
1160 /*
1161 * If some other thread already allocated the group while we were
1162 * not holding queue lock, free up the group
1163 */
1164 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1165
1166 if (__cfqg) {
1167 kfree(cfqg);
1168 rcu_read_unlock();
1169 return __cfqg;
1170 }
1171
3e59cf9d 1172 if (!cfqg)
25fb5169 1173 cfqg = &cfqd->root_group;
f469a7b4
VG
1174
1175 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
25fb5169
VG
1176 rcu_read_unlock();
1177 return cfqg;
1178}
1179
7f1dc8a2
VG
1180static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1181{
329a6781 1182 cfqg->ref++;
7f1dc8a2
VG
1183 return cfqg;
1184}
1185
25fb5169
VG
1186static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1187{
1188 /* Currently, all async queues are mapped to root group */
1189 if (!cfq_cfqq_sync(cfqq))
1190 cfqg = &cfqq->cfqd->root_group;
1191
1192 cfqq->cfqg = cfqg;
b1c35769 1193 /* cfqq reference on cfqg */
329a6781 1194 cfqq->cfqg->ref++;
b1c35769
VG
1195}
1196
1197static void cfq_put_cfqg(struct cfq_group *cfqg)
1198{
1199 struct cfq_rb_root *st;
1200 int i, j;
1201
329a6781
SL
1202 BUG_ON(cfqg->ref <= 0);
1203 cfqg->ref--;
1204 if (cfqg->ref)
b1c35769
VG
1205 return;
1206 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1207 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
5624a4e4 1208 free_percpu(cfqg->blkg.stats_cpu);
b1c35769
VG
1209 kfree(cfqg);
1210}
1211
1212static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1213{
1214 /* Something wrong if we are trying to remove same group twice */
1215 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1216
1217 hlist_del_init(&cfqg->cfqd_node);
1218
a5395b83
VG
1219 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1220 cfqd->nr_blkcg_linked_grps--;
1221
b1c35769
VG
1222 /*
1223 * Put the reference taken at the time of creation so that when all
1224 * queues are gone, group can be destroyed.
1225 */
1226 cfq_put_cfqg(cfqg);
1227}
1228
1229static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1230{
1231 struct hlist_node *pos, *n;
1232 struct cfq_group *cfqg;
1233
1234 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1235 /*
1236 * If cgroup removal path got to blk_group first and removed
1237 * it from cgroup list, then it will take care of destroying
1238 * cfqg also.
1239 */
e98ef89b 1240 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1241 cfq_destroy_cfqg(cfqd, cfqg);
1242 }
25fb5169 1243}
b1c35769
VG
1244
1245/*
1246 * Blk cgroup controller notification saying that blkio_group object is being
1247 * delinked as associated cgroup object is going away. That also means that
1248 * no new IO will come in this group. So get rid of this group as soon as
1249 * any pending IO in the group is finished.
1250 *
1251 * This function is called under rcu_read_lock(). key is the rcu protected
1252 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1253 * read lock.
1254 *
1255 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1256 * it should not be NULL as even if elevator was exiting, cgroup deltion
1257 * path got to it first.
1258 */
8aea4545 1259static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
b1c35769
VG
1260{
1261 unsigned long flags;
1262 struct cfq_data *cfqd = key;
1263
1264 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1265 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1266 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1267}
1268
25fb5169 1269#else /* GROUP_IOSCHED */
3e59cf9d 1270static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169
VG
1271{
1272 return &cfqd->root_group;
1273}
7f1dc8a2
VG
1274
1275static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1276{
50eaeb32 1277 return cfqg;
7f1dc8a2
VG
1278}
1279
25fb5169
VG
1280static inline void
1281cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1282 cfqq->cfqg = cfqg;
1283}
1284
b1c35769
VG
1285static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1286static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1287
25fb5169
VG
1288#endif /* GROUP_IOSCHED */
1289
498d3aa2 1290/*
c0324a02 1291 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1292 * requests waiting to be processed. It is sorted in the order that
1293 * we will service the queues.
1294 */
a36e71f9 1295static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1296 bool add_front)
d9e7620e 1297{
0871714e
JA
1298 struct rb_node **p, *parent;
1299 struct cfq_queue *__cfqq;
d9e7620e 1300 unsigned long rb_key;
c0324a02 1301 struct cfq_rb_root *service_tree;
498d3aa2 1302 int left;
dae739eb 1303 int new_cfqq = 1;
ae30c286 1304
cdb16e8f 1305 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1306 cfqq_type(cfqq));
0871714e
JA
1307 if (cfq_class_idle(cfqq)) {
1308 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1309 parent = rb_last(&service_tree->rb);
0871714e
JA
1310 if (parent && parent != &cfqq->rb_node) {
1311 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1312 rb_key += __cfqq->rb_key;
1313 } else
1314 rb_key += jiffies;
1315 } else if (!add_front) {
b9c8946b
JA
1316 /*
1317 * Get our rb key offset. Subtract any residual slice
1318 * value carried from last service. A negative resid
1319 * count indicates slice overrun, and this should position
1320 * the next service time further away in the tree.
1321 */
edd75ffd 1322 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1323 rb_key -= cfqq->slice_resid;
edd75ffd 1324 cfqq->slice_resid = 0;
48e025e6
CZ
1325 } else {
1326 rb_key = -HZ;
aa6f6a3d 1327 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1328 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1329 }
1da177e4 1330
d9e7620e 1331 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1332 new_cfqq = 0;
99f9628a 1333 /*
d9e7620e 1334 * same position, nothing more to do
99f9628a 1335 */
c0324a02
CZ
1336 if (rb_key == cfqq->rb_key &&
1337 cfqq->service_tree == service_tree)
d9e7620e 1338 return;
1da177e4 1339
aa6f6a3d
CZ
1340 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1341 cfqq->service_tree = NULL;
1da177e4 1342 }
d9e7620e 1343
498d3aa2 1344 left = 1;
0871714e 1345 parent = NULL;
aa6f6a3d
CZ
1346 cfqq->service_tree = service_tree;
1347 p = &service_tree->rb.rb_node;
d9e7620e 1348 while (*p) {
67060e37 1349 struct rb_node **n;
cc09e299 1350
d9e7620e
JA
1351 parent = *p;
1352 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1353
0c534e0a 1354 /*
c0324a02 1355 * sort by key, that represents service time.
0c534e0a 1356 */
c0324a02 1357 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1358 n = &(*p)->rb_left;
c0324a02 1359 else {
67060e37 1360 n = &(*p)->rb_right;
cc09e299 1361 left = 0;
c0324a02 1362 }
67060e37
JA
1363
1364 p = n;
d9e7620e
JA
1365 }
1366
cc09e299 1367 if (left)
aa6f6a3d 1368 service_tree->left = &cfqq->rb_node;
cc09e299 1369
d9e7620e
JA
1370 cfqq->rb_key = rb_key;
1371 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1372 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1373 service_tree->count++;
20359f27 1374 if (add_front || !new_cfqq)
dae739eb 1375 return;
8184f93e 1376 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1da177e4
LT
1377}
1378
a36e71f9 1379static struct cfq_queue *
f2d1f0ae
JA
1380cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1381 sector_t sector, struct rb_node **ret_parent,
1382 struct rb_node ***rb_link)
a36e71f9 1383{
a36e71f9
JA
1384 struct rb_node **p, *parent;
1385 struct cfq_queue *cfqq = NULL;
1386
1387 parent = NULL;
1388 p = &root->rb_node;
1389 while (*p) {
1390 struct rb_node **n;
1391
1392 parent = *p;
1393 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1394
1395 /*
1396 * Sort strictly based on sector. Smallest to the left,
1397 * largest to the right.
1398 */
2e46e8b2 1399 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1400 n = &(*p)->rb_right;
2e46e8b2 1401 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1402 n = &(*p)->rb_left;
1403 else
1404 break;
1405 p = n;
3ac6c9f8 1406 cfqq = NULL;
a36e71f9
JA
1407 }
1408
1409 *ret_parent = parent;
1410 if (rb_link)
1411 *rb_link = p;
3ac6c9f8 1412 return cfqq;
a36e71f9
JA
1413}
1414
1415static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1416{
a36e71f9
JA
1417 struct rb_node **p, *parent;
1418 struct cfq_queue *__cfqq;
1419
f2d1f0ae
JA
1420 if (cfqq->p_root) {
1421 rb_erase(&cfqq->p_node, cfqq->p_root);
1422 cfqq->p_root = NULL;
1423 }
a36e71f9
JA
1424
1425 if (cfq_class_idle(cfqq))
1426 return;
1427 if (!cfqq->next_rq)
1428 return;
1429
f2d1f0ae 1430 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1431 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1432 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1433 if (!__cfqq) {
1434 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1435 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1436 } else
1437 cfqq->p_root = NULL;
a36e71f9
JA
1438}
1439
498d3aa2
JA
1440/*
1441 * Update cfqq's position in the service tree.
1442 */
edd75ffd 1443static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1444{
6d048f53
JA
1445 /*
1446 * Resorting requires the cfqq to be on the RR list already.
1447 */
a36e71f9 1448 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1449 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1450 cfq_prio_tree_add(cfqd, cfqq);
1451 }
6d048f53
JA
1452}
1453
1da177e4
LT
1454/*
1455 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1456 * the pending list according to last request service
1da177e4 1457 */
febffd61 1458static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1459{
7b679138 1460 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1461 BUG_ON(cfq_cfqq_on_rr(cfqq));
1462 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 1463 cfqd->busy_queues++;
ef8a41df
SL
1464 if (cfq_cfqq_sync(cfqq))
1465 cfqd->busy_sync_queues++;
1da177e4 1466
edd75ffd 1467 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1468}
1469
498d3aa2
JA
1470/*
1471 * Called when the cfqq no longer has requests pending, remove it from
1472 * the service tree.
1473 */
febffd61 1474static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1475{
7b679138 1476 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1477 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1478 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1479
aa6f6a3d
CZ
1480 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1481 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1482 cfqq->service_tree = NULL;
1483 }
f2d1f0ae
JA
1484 if (cfqq->p_root) {
1485 rb_erase(&cfqq->p_node, cfqq->p_root);
1486 cfqq->p_root = NULL;
1487 }
d9e7620e 1488
8184f93e 1489 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1da177e4
LT
1490 BUG_ON(!cfqd->busy_queues);
1491 cfqd->busy_queues--;
ef8a41df
SL
1492 if (cfq_cfqq_sync(cfqq))
1493 cfqd->busy_sync_queues--;
1da177e4
LT
1494}
1495
1496/*
1497 * rb tree support functions
1498 */
febffd61 1499static void cfq_del_rq_rb(struct request *rq)
1da177e4 1500{
5e705374 1501 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1502 const int sync = rq_is_sync(rq);
1da177e4 1503
b4878f24
JA
1504 BUG_ON(!cfqq->queued[sync]);
1505 cfqq->queued[sync]--;
1da177e4 1506
5e705374 1507 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1508
f04a6424
VG
1509 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1510 /*
1511 * Queue will be deleted from service tree when we actually
1512 * expire it later. Right now just remove it from prio tree
1513 * as it is empty.
1514 */
1515 if (cfqq->p_root) {
1516 rb_erase(&cfqq->p_node, cfqq->p_root);
1517 cfqq->p_root = NULL;
1518 }
1519 }
1da177e4
LT
1520}
1521
5e705374 1522static void cfq_add_rq_rb(struct request *rq)
1da177e4 1523{
5e705374 1524 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1525 struct cfq_data *cfqd = cfqq->cfqd;
796d5116 1526 struct request *prev;
1da177e4 1527
5380a101 1528 cfqq->queued[rq_is_sync(rq)]++;
1da177e4 1529
796d5116 1530 elv_rb_add(&cfqq->sort_list, rq);
5fccbf61
JA
1531
1532 if (!cfq_cfqq_on_rr(cfqq))
1533 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1534
1535 /*
1536 * check if this request is a better next-serve candidate
1537 */
a36e71f9 1538 prev = cfqq->next_rq;
cf7c25cf 1539 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1540
1541 /*
1542 * adjust priority tree position, if ->next_rq changes
1543 */
1544 if (prev != cfqq->next_rq)
1545 cfq_prio_tree_add(cfqd, cfqq);
1546
5044eed4 1547 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1548}
1549
febffd61 1550static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1551{
5380a101
JA
1552 elv_rb_del(&cfqq->sort_list, rq);
1553 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1554 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1555 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1556 cfq_add_rq_rb(rq);
e98ef89b 1557 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1558 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1559 rq_is_sync(rq));
1da177e4
LT
1560}
1561
206dc69b
JA
1562static struct request *
1563cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1564{
206dc69b 1565 struct task_struct *tsk = current;
c5869807 1566 struct cfq_io_cq *cic;
206dc69b 1567 struct cfq_queue *cfqq;
1da177e4 1568
4ac845a2 1569 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1570 if (!cic)
1571 return NULL;
1572
1573 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1574 if (cfqq) {
1575 sector_t sector = bio->bi_sector + bio_sectors(bio);
1576
21183b07 1577 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1578 }
1da177e4 1579
1da177e4
LT
1580 return NULL;
1581}
1582
165125e1 1583static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1584{
22e2c507 1585 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1586
53c583d2 1587 cfqd->rq_in_driver++;
7b679138 1588 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1589 cfqd->rq_in_driver);
25776e35 1590
5b93629b 1591 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1592}
1593
165125e1 1594static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1595{
b4878f24
JA
1596 struct cfq_data *cfqd = q->elevator->elevator_data;
1597
53c583d2
CZ
1598 WARN_ON(!cfqd->rq_in_driver);
1599 cfqd->rq_in_driver--;
7b679138 1600 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1601 cfqd->rq_in_driver);
1da177e4
LT
1602}
1603
b4878f24 1604static void cfq_remove_request(struct request *rq)
1da177e4 1605{
5e705374 1606 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1607
5e705374
JA
1608 if (cfqq->next_rq == rq)
1609 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1610
b4878f24 1611 list_del_init(&rq->queuelist);
5e705374 1612 cfq_del_rq_rb(rq);
374f84ac 1613
45333d5a 1614 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1615 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1616 rq_data_dir(rq), rq_is_sync(rq));
65299a3b
CH
1617 if (rq->cmd_flags & REQ_PRIO) {
1618 WARN_ON(!cfqq->prio_pending);
1619 cfqq->prio_pending--;
b53d1ed7 1620 }
1da177e4
LT
1621}
1622
165125e1
JA
1623static int cfq_merge(struct request_queue *q, struct request **req,
1624 struct bio *bio)
1da177e4
LT
1625{
1626 struct cfq_data *cfqd = q->elevator->elevator_data;
1627 struct request *__rq;
1da177e4 1628
206dc69b 1629 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1630 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1631 *req = __rq;
1632 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1633 }
1634
1635 return ELEVATOR_NO_MERGE;
1da177e4
LT
1636}
1637
165125e1 1638static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1639 int type)
1da177e4 1640{
21183b07 1641 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1642 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1643
5e705374 1644 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1645 }
1da177e4
LT
1646}
1647
812d4026
DS
1648static void cfq_bio_merged(struct request_queue *q, struct request *req,
1649 struct bio *bio)
1650{
e98ef89b
VG
1651 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1652 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1653}
1654
1da177e4 1655static void
165125e1 1656cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1657 struct request *next)
1658{
cf7c25cf 1659 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4a0b75c7
SL
1660 struct cfq_data *cfqd = q->elevator->elevator_data;
1661
22e2c507
JA
1662 /*
1663 * reposition in fifo if next is older than rq
1664 */
1665 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1666 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1667 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1668 rq_set_fifo_time(rq, rq_fifo_time(next));
1669 }
22e2c507 1670
cf7c25cf
CZ
1671 if (cfqq->next_rq == next)
1672 cfqq->next_rq = rq;
b4878f24 1673 cfq_remove_request(next);
e98ef89b
VG
1674 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1675 rq_data_dir(next), rq_is_sync(next));
4a0b75c7
SL
1676
1677 cfqq = RQ_CFQQ(next);
1678 /*
1679 * all requests of this queue are merged to other queues, delete it
1680 * from the service tree. If it's the active_queue,
1681 * cfq_dispatch_requests() will choose to expire it or do idle
1682 */
1683 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1684 cfqq != cfqd->active_queue)
1685 cfq_del_cfqq_rr(cfqd, cfqq);
22e2c507
JA
1686}
1687
165125e1 1688static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1689 struct bio *bio)
1690{
1691 struct cfq_data *cfqd = q->elevator->elevator_data;
c5869807 1692 struct cfq_io_cq *cic;
da775265 1693 struct cfq_queue *cfqq;
da775265
JA
1694
1695 /*
ec8acb69 1696 * Disallow merge of a sync bio into an async request.
da775265 1697 */
91fac317 1698 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1699 return false;
da775265
JA
1700
1701 /*
f1a4f4d3 1702 * Lookup the cfqq that this bio will be queued with and allow
07c2bd37 1703 * merge only if rq is queued there.
f1a4f4d3 1704 */
07c2bd37
TH
1705 cic = cfq_cic_lookup(cfqd, current->io_context);
1706 if (!cic)
1707 return false;
719d3402 1708
91fac317 1709 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1710 return cfqq == RQ_CFQQ(rq);
da775265
JA
1711}
1712
812df48d
DS
1713static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1714{
1715 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1716 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1717}
1718
febffd61
JA
1719static void __cfq_set_active_queue(struct cfq_data *cfqd,
1720 struct cfq_queue *cfqq)
22e2c507
JA
1721{
1722 if (cfqq) {
b1ffe737
DS
1723 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1724 cfqd->serving_prio, cfqd->serving_type);
62a37f6b
JT
1725 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1726 cfqq->slice_start = 0;
1727 cfqq->dispatch_start = jiffies;
1728 cfqq->allocated_slice = 0;
1729 cfqq->slice_end = 0;
1730 cfqq->slice_dispatch = 0;
1731 cfqq->nr_sectors = 0;
1732
1733 cfq_clear_cfqq_wait_request(cfqq);
1734 cfq_clear_cfqq_must_dispatch(cfqq);
1735 cfq_clear_cfqq_must_alloc_slice(cfqq);
1736 cfq_clear_cfqq_fifo_expire(cfqq);
1737 cfq_mark_cfqq_slice_new(cfqq);
1738
1739 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1740 }
1741
1742 cfqd->active_queue = cfqq;
1743}
1744
7b14e3b5
JA
1745/*
1746 * current cfqq expired its slice (or was too idle), select new one
1747 */
1748static void
1749__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1750 bool timed_out)
7b14e3b5 1751{
7b679138
JA
1752 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1753
7b14e3b5 1754 if (cfq_cfqq_wait_request(cfqq))
812df48d 1755 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1756
7b14e3b5 1757 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1758 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1759
ae54abed
SL
1760 /*
1761 * If this cfqq is shared between multiple processes, check to
1762 * make sure that those processes are still issuing I/Os within
1763 * the mean seek distance. If not, it may be time to break the
1764 * queues apart again.
1765 */
1766 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1767 cfq_mark_cfqq_split_coop(cfqq);
1768
7b14e3b5 1769 /*
6084cdda 1770 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1771 */
c553f8e3
SL
1772 if (timed_out) {
1773 if (cfq_cfqq_slice_new(cfqq))
ba5bd520 1774 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3
SL
1775 else
1776 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1777 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1778 }
7b14e3b5 1779
e5ff082e 1780 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1781
f04a6424
VG
1782 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1783 cfq_del_cfqq_rr(cfqd, cfqq);
1784
edd75ffd 1785 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1786
1787 if (cfqq == cfqd->active_queue)
1788 cfqd->active_queue = NULL;
1789
1790 if (cfqd->active_cic) {
11a3122f 1791 put_io_context(cfqd->active_cic->icq.ioc);
7b14e3b5
JA
1792 cfqd->active_cic = NULL;
1793 }
7b14e3b5
JA
1794}
1795
e5ff082e 1796static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1797{
1798 struct cfq_queue *cfqq = cfqd->active_queue;
1799
1800 if (cfqq)
e5ff082e 1801 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1802}
1803
498d3aa2
JA
1804/*
1805 * Get next queue for service. Unless we have a queue preemption,
1806 * we'll simply select the first cfqq in the service tree.
1807 */
6d048f53 1808static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1809{
c0324a02 1810 struct cfq_rb_root *service_tree =
cdb16e8f 1811 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1812 cfqd->serving_type);
d9e7620e 1813
f04a6424
VG
1814 if (!cfqd->rq_queued)
1815 return NULL;
1816
1fa8f6d6
VG
1817 /* There is nothing to dispatch */
1818 if (!service_tree)
1819 return NULL;
c0324a02
CZ
1820 if (RB_EMPTY_ROOT(&service_tree->rb))
1821 return NULL;
1822 return cfq_rb_first(service_tree);
6d048f53
JA
1823}
1824
f04a6424
VG
1825static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1826{
25fb5169 1827 struct cfq_group *cfqg;
f04a6424
VG
1828 struct cfq_queue *cfqq;
1829 int i, j;
1830 struct cfq_rb_root *st;
1831
1832 if (!cfqd->rq_queued)
1833 return NULL;
1834
25fb5169
VG
1835 cfqg = cfq_get_next_cfqg(cfqd);
1836 if (!cfqg)
1837 return NULL;
1838
f04a6424
VG
1839 for_each_cfqg_st(cfqg, i, j, st)
1840 if ((cfqq = cfq_rb_first(st)) != NULL)
1841 return cfqq;
1842 return NULL;
1843}
1844
498d3aa2
JA
1845/*
1846 * Get and set a new active queue for service.
1847 */
a36e71f9
JA
1848static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1849 struct cfq_queue *cfqq)
6d048f53 1850{
e00ef799 1851 if (!cfqq)
a36e71f9 1852 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1853
22e2c507 1854 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1855 return cfqq;
22e2c507
JA
1856}
1857
d9e7620e
JA
1858static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1859 struct request *rq)
1860{
83096ebf
TH
1861 if (blk_rq_pos(rq) >= cfqd->last_position)
1862 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1863 else
83096ebf 1864 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1865}
1866
b2c18e1e 1867static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1868 struct request *rq)
6d048f53 1869{
e9ce335d 1870 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1871}
1872
a36e71f9
JA
1873static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1874 struct cfq_queue *cur_cfqq)
1875{
f2d1f0ae 1876 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1877 struct rb_node *parent, *node;
1878 struct cfq_queue *__cfqq;
1879 sector_t sector = cfqd->last_position;
1880
1881 if (RB_EMPTY_ROOT(root))
1882 return NULL;
1883
1884 /*
1885 * First, if we find a request starting at the end of the last
1886 * request, choose it.
1887 */
f2d1f0ae 1888 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1889 if (__cfqq)
1890 return __cfqq;
1891
1892 /*
1893 * If the exact sector wasn't found, the parent of the NULL leaf
1894 * will contain the closest sector.
1895 */
1896 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1897 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1898 return __cfqq;
1899
2e46e8b2 1900 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1901 node = rb_next(&__cfqq->p_node);
1902 else
1903 node = rb_prev(&__cfqq->p_node);
1904 if (!node)
1905 return NULL;
1906
1907 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1908 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1909 return __cfqq;
1910
1911 return NULL;
1912}
1913
1914/*
1915 * cfqd - obvious
1916 * cur_cfqq - passed in so that we don't decide that the current queue is
1917 * closely cooperating with itself.
1918 *
1919 * So, basically we're assuming that that cur_cfqq has dispatched at least
1920 * one request, and that cfqd->last_position reflects a position on the disk
1921 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1922 * assumption.
1923 */
1924static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1925 struct cfq_queue *cur_cfqq)
6d048f53 1926{
a36e71f9
JA
1927 struct cfq_queue *cfqq;
1928
39c01b21
DS
1929 if (cfq_class_idle(cur_cfqq))
1930 return NULL;
e6c5bc73
JM
1931 if (!cfq_cfqq_sync(cur_cfqq))
1932 return NULL;
1933 if (CFQQ_SEEKY(cur_cfqq))
1934 return NULL;
1935
b9d8f4c7
GJ
1936 /*
1937 * Don't search priority tree if it's the only queue in the group.
1938 */
1939 if (cur_cfqq->cfqg->nr_cfqq == 1)
1940 return NULL;
1941
6d048f53 1942 /*
d9e7620e
JA
1943 * We should notice if some of the queues are cooperating, eg
1944 * working closely on the same area of the disk. In that case,
1945 * we can group them together and don't waste time idling.
6d048f53 1946 */
a36e71f9
JA
1947 cfqq = cfqq_close(cfqd, cur_cfqq);
1948 if (!cfqq)
1949 return NULL;
1950
8682e1f1
VG
1951 /* If new queue belongs to different cfq_group, don't choose it */
1952 if (cur_cfqq->cfqg != cfqq->cfqg)
1953 return NULL;
1954
df5fe3e8
JM
1955 /*
1956 * It only makes sense to merge sync queues.
1957 */
1958 if (!cfq_cfqq_sync(cfqq))
1959 return NULL;
e6c5bc73
JM
1960 if (CFQQ_SEEKY(cfqq))
1961 return NULL;
df5fe3e8 1962
c0324a02
CZ
1963 /*
1964 * Do not merge queues of different priority classes
1965 */
1966 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1967 return NULL;
1968
a36e71f9 1969 return cfqq;
6d048f53
JA
1970}
1971
a6d44e98
CZ
1972/*
1973 * Determine whether we should enforce idle window for this queue.
1974 */
1975
1976static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1977{
1978 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1979 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1980
f04a6424
VG
1981 BUG_ON(!service_tree);
1982 BUG_ON(!service_tree->count);
1983
b6508c16
VG
1984 if (!cfqd->cfq_slice_idle)
1985 return false;
1986
a6d44e98
CZ
1987 /* We never do for idle class queues. */
1988 if (prio == IDLE_WORKLOAD)
1989 return false;
1990
1991 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1992 if (cfq_cfqq_idle_window(cfqq) &&
1993 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1994 return true;
1995
1996 /*
1997 * Otherwise, we do only if they are the last ones
1998 * in their service tree.
1999 */
f5f2b6ce
SL
2000 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
2001 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
c1e44756 2002 return true;
b1ffe737
DS
2003 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
2004 service_tree->count);
c1e44756 2005 return false;
a6d44e98
CZ
2006}
2007
6d048f53 2008static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 2009{
1792669c 2010 struct cfq_queue *cfqq = cfqd->active_queue;
c5869807 2011 struct cfq_io_cq *cic;
80bdf0c7 2012 unsigned long sl, group_idle = 0;
7b14e3b5 2013
a68bbddb 2014 /*
f7d7b7a7
JA
2015 * SSD device without seek penalty, disable idling. But only do so
2016 * for devices that support queuing, otherwise we still have a problem
2017 * with sync vs async workloads.
a68bbddb 2018 */
f7d7b7a7 2019 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
2020 return;
2021
dd67d051 2022 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 2023 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
2024
2025 /*
2026 * idle is disabled, either manually or by past process history
2027 */
80bdf0c7
VG
2028 if (!cfq_should_idle(cfqd, cfqq)) {
2029 /* no queue idling. Check for group idling */
2030 if (cfqd->cfq_group_idle)
2031 group_idle = cfqd->cfq_group_idle;
2032 else
2033 return;
2034 }
6d048f53 2035
7b679138 2036 /*
8e550632 2037 * still active requests from this queue, don't idle
7b679138 2038 */
8e550632 2039 if (cfqq->dispatched)
7b679138
JA
2040 return;
2041
22e2c507
JA
2042 /*
2043 * task has exited, don't wait
2044 */
206dc69b 2045 cic = cfqd->active_cic;
c5869807 2046 if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
6d048f53
JA
2047 return;
2048
355b659c
CZ
2049 /*
2050 * If our average think time is larger than the remaining time
2051 * slice, then don't idle. This avoids overrunning the allotted
2052 * time slice.
2053 */
383cd721
SL
2054 if (sample_valid(cic->ttime.ttime_samples) &&
2055 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
fd16d263 2056 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
383cd721 2057 cic->ttime.ttime_mean);
355b659c 2058 return;
b1ffe737 2059 }
355b659c 2060
80bdf0c7
VG
2061 /* There are other queues in the group, don't do group idle */
2062 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2063 return;
2064
3b18152c 2065 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 2066
80bdf0c7
VG
2067 if (group_idle)
2068 sl = cfqd->cfq_group_idle;
2069 else
2070 sl = cfqd->cfq_slice_idle;
206dc69b 2071
7b14e3b5 2072 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 2073 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
2074 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2075 group_idle ? 1 : 0);
1da177e4
LT
2076}
2077
498d3aa2
JA
2078/*
2079 * Move request from internal lists to the request queue dispatch list.
2080 */
165125e1 2081static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 2082{
3ed9a296 2083 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2084 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2085
7b679138
JA
2086 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2087
06d21886 2088 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 2089 cfq_remove_request(rq);
6d048f53 2090 cfqq->dispatched++;
80bdf0c7 2091 (RQ_CFQG(rq))->dispatched++;
5380a101 2092 elv_dispatch_sort(q, rq);
3ed9a296 2093
53c583d2 2094 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 2095 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 2096 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 2097 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
2098}
2099
2100/*
2101 * return expired entry, or NULL to just start from scratch in rbtree
2102 */
febffd61 2103static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 2104{
30996f40 2105 struct request *rq = NULL;
1da177e4 2106
3b18152c 2107 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 2108 return NULL;
cb887411
JA
2109
2110 cfq_mark_cfqq_fifo_expire(cfqq);
2111
89850f7e
JA
2112 if (list_empty(&cfqq->fifo))
2113 return NULL;
1da177e4 2114
89850f7e 2115 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2116 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2117 rq = NULL;
1da177e4 2118
30996f40 2119 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2120 return rq;
1da177e4
LT
2121}
2122
22e2c507
JA
2123static inline int
2124cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2125{
2126 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2127
22e2c507 2128 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2129
b9f8ce05 2130 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
1da177e4
LT
2131}
2132
df5fe3e8
JM
2133/*
2134 * Must be called with the queue_lock held.
2135 */
2136static int cfqq_process_refs(struct cfq_queue *cfqq)
2137{
2138 int process_refs, io_refs;
2139
2140 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
30d7b944 2141 process_refs = cfqq->ref - io_refs;
df5fe3e8
JM
2142 BUG_ON(process_refs < 0);
2143 return process_refs;
2144}
2145
2146static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2147{
e6c5bc73 2148 int process_refs, new_process_refs;
df5fe3e8
JM
2149 struct cfq_queue *__cfqq;
2150
c10b61f0
JM
2151 /*
2152 * If there are no process references on the new_cfqq, then it is
2153 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2154 * chain may have dropped their last reference (not just their
2155 * last process reference).
2156 */
2157 if (!cfqq_process_refs(new_cfqq))
2158 return;
2159
df5fe3e8
JM
2160 /* Avoid a circular list and skip interim queue merges */
2161 while ((__cfqq = new_cfqq->new_cfqq)) {
2162 if (__cfqq == cfqq)
2163 return;
2164 new_cfqq = __cfqq;
2165 }
2166
2167 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2168 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2169 /*
2170 * If the process for the cfqq has gone away, there is no
2171 * sense in merging the queues.
2172 */
c10b61f0 2173 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2174 return;
2175
e6c5bc73
JM
2176 /*
2177 * Merge in the direction of the lesser amount of work.
2178 */
e6c5bc73
JM
2179 if (new_process_refs >= process_refs) {
2180 cfqq->new_cfqq = new_cfqq;
30d7b944 2181 new_cfqq->ref += process_refs;
e6c5bc73
JM
2182 } else {
2183 new_cfqq->new_cfqq = cfqq;
30d7b944 2184 cfqq->ref += new_process_refs;
e6c5bc73 2185 }
df5fe3e8
JM
2186}
2187
cdb16e8f 2188static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2189 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2190{
2191 struct cfq_queue *queue;
2192 int i;
2193 bool key_valid = false;
2194 unsigned long lowest_key = 0;
2195 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2196
65b32a57
VG
2197 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2198 /* select the one with lowest rb_key */
2199 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2200 if (queue &&
2201 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2202 lowest_key = queue->rb_key;
2203 cur_best = i;
2204 key_valid = true;
2205 }
2206 }
2207
2208 return cur_best;
2209}
2210
cdb16e8f 2211static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2212{
718eee05
CZ
2213 unsigned slice;
2214 unsigned count;
cdb16e8f 2215 struct cfq_rb_root *st;
58ff82f3 2216 unsigned group_slice;
e4ea0c16 2217 enum wl_prio_t original_prio = cfqd->serving_prio;
1fa8f6d6 2218
718eee05 2219 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2220 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2221 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2222 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2223 cfqd->serving_prio = BE_WORKLOAD;
2224 else {
2225 cfqd->serving_prio = IDLE_WORKLOAD;
2226 cfqd->workload_expires = jiffies + 1;
2227 return;
2228 }
2229
e4ea0c16
SL
2230 if (original_prio != cfqd->serving_prio)
2231 goto new_workload;
2232
718eee05
CZ
2233 /*
2234 * For RT and BE, we have to choose also the type
2235 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2236 * expiration time
2237 */
65b32a57 2238 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2239 count = st->count;
718eee05
CZ
2240
2241 /*
65b32a57 2242 * check workload expiration, and that we still have other queues ready
718eee05 2243 */
65b32a57 2244 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2245 return;
2246
e4ea0c16 2247new_workload:
718eee05
CZ
2248 /* otherwise select new workload type */
2249 cfqd->serving_type =
65b32a57
VG
2250 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2251 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2252 count = st->count;
718eee05
CZ
2253
2254 /*
2255 * the workload slice is computed as a fraction of target latency
2256 * proportional to the number of queues in that workload, over
2257 * all the queues in the same priority class
2258 */
58ff82f3
VG
2259 group_slice = cfq_group_slice(cfqd, cfqg);
2260
2261 slice = group_slice * count /
2262 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2263 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2264
f26bd1f0
VG
2265 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2266 unsigned int tmp;
2267
2268 /*
2269 * Async queues are currently system wide. Just taking
2270 * proportion of queues with-in same group will lead to higher
2271 * async ratio system wide as generally root group is going
2272 * to have higher weight. A more accurate thing would be to
2273 * calculate system wide asnc/sync ratio.
2274 */
5bf14c07
TM
2275 tmp = cfqd->cfq_target_latency *
2276 cfqg_busy_async_queues(cfqd, cfqg);
f26bd1f0
VG
2277 tmp = tmp/cfqd->busy_queues;
2278 slice = min_t(unsigned, slice, tmp);
2279
718eee05
CZ
2280 /* async workload slice is scaled down according to
2281 * the sync/async slice ratio. */
2282 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2283 } else
718eee05
CZ
2284 /* sync workload slice is at least 2 * cfq_slice_idle */
2285 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2286
2287 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2288 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2289 cfqd->workload_expires = jiffies + slice;
2290}
2291
1fa8f6d6
VG
2292static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2293{
2294 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2295 struct cfq_group *cfqg;
1fa8f6d6
VG
2296
2297 if (RB_EMPTY_ROOT(&st->rb))
2298 return NULL;
25bc6b07 2299 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2300 update_min_vdisktime(st);
2301 return cfqg;
1fa8f6d6
VG
2302}
2303
cdb16e8f
VG
2304static void cfq_choose_cfqg(struct cfq_data *cfqd)
2305{
1fa8f6d6
VG
2306 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2307
2308 cfqd->serving_group = cfqg;
dae739eb
VG
2309
2310 /* Restore the workload type data */
2311 if (cfqg->saved_workload_slice) {
2312 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2313 cfqd->serving_type = cfqg->saved_workload;
2314 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2315 } else
2316 cfqd->workload_expires = jiffies - 1;
2317
1fa8f6d6 2318 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2319}
2320
22e2c507 2321/*
498d3aa2
JA
2322 * Select a queue for service. If we have a current active queue,
2323 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2324 */
1b5ed5e1 2325static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2326{
a36e71f9 2327 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2328
22e2c507
JA
2329 cfqq = cfqd->active_queue;
2330 if (!cfqq)
2331 goto new_queue;
1da177e4 2332
f04a6424
VG
2333 if (!cfqd->rq_queued)
2334 return NULL;
c244bb50
VG
2335
2336 /*
2337 * We were waiting for group to get backlogged. Expire the queue
2338 */
2339 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2340 goto expire;
2341
22e2c507 2342 /*
6d048f53 2343 * The active queue has run out of time, expire it and select new.
22e2c507 2344 */
7667aa06
VG
2345 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2346 /*
2347 * If slice had not expired at the completion of last request
2348 * we might not have turned on wait_busy flag. Don't expire
2349 * the queue yet. Allow the group to get backlogged.
2350 *
2351 * The very fact that we have used the slice, that means we
2352 * have been idling all along on this queue and it should be
2353 * ok to wait for this request to complete.
2354 */
82bbbf28
VG
2355 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2356 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2357 cfqq = NULL;
7667aa06 2358 goto keep_queue;
82bbbf28 2359 } else
80bdf0c7 2360 goto check_group_idle;
7667aa06 2361 }
1da177e4 2362
22e2c507 2363 /*
6d048f53
JA
2364 * The active queue has requests and isn't expired, allow it to
2365 * dispatch.
22e2c507 2366 */
dd67d051 2367 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2368 goto keep_queue;
6d048f53 2369
a36e71f9
JA
2370 /*
2371 * If another queue has a request waiting within our mean seek
2372 * distance, let it run. The expire code will check for close
2373 * cooperators and put the close queue at the front of the service
df5fe3e8 2374 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2375 */
b3b6d040 2376 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2377 if (new_cfqq) {
2378 if (!cfqq->new_cfqq)
2379 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2380 goto expire;
df5fe3e8 2381 }
a36e71f9 2382
6d048f53
JA
2383 /*
2384 * No requests pending. If the active queue still has requests in
2385 * flight or is idling for a new request, allow either of these
2386 * conditions to happen (or time out) before selecting a new queue.
2387 */
80bdf0c7
VG
2388 if (timer_pending(&cfqd->idle_slice_timer)) {
2389 cfqq = NULL;
2390 goto keep_queue;
2391 }
2392
8e1ac665
SL
2393 /*
2394 * This is a deep seek queue, but the device is much faster than
2395 * the queue can deliver, don't idle
2396 **/
2397 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2398 (cfq_cfqq_slice_new(cfqq) ||
2399 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2400 cfq_clear_cfqq_deep(cfqq);
2401 cfq_clear_cfqq_idle_window(cfqq);
2402 }
2403
80bdf0c7
VG
2404 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2405 cfqq = NULL;
2406 goto keep_queue;
2407 }
2408
2409 /*
2410 * If group idle is enabled and there are requests dispatched from
2411 * this group, wait for requests to complete.
2412 */
2413check_group_idle:
7700fc4f
SL
2414 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2415 cfqq->cfqg->dispatched &&
2416 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
caaa5f9f
JA
2417 cfqq = NULL;
2418 goto keep_queue;
22e2c507
JA
2419 }
2420
3b18152c 2421expire:
e5ff082e 2422 cfq_slice_expired(cfqd, 0);
3b18152c 2423new_queue:
718eee05
CZ
2424 /*
2425 * Current queue expired. Check if we have to switch to a new
2426 * service tree
2427 */
2428 if (!new_cfqq)
cdb16e8f 2429 cfq_choose_cfqg(cfqd);
718eee05 2430
a36e71f9 2431 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2432keep_queue:
3b18152c 2433 return cfqq;
22e2c507
JA
2434}
2435
febffd61 2436static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2437{
2438 int dispatched = 0;
2439
2440 while (cfqq->next_rq) {
2441 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2442 dispatched++;
2443 }
2444
2445 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2446
2447 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2448 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2449 return dispatched;
2450}
2451
498d3aa2
JA
2452/*
2453 * Drain our current requests. Used for barriers and when switching
2454 * io schedulers on-the-fly.
2455 */
d9e7620e 2456static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2457{
0871714e 2458 struct cfq_queue *cfqq;
d9e7620e 2459 int dispatched = 0;
cdb16e8f 2460
3440c49f 2461 /* Expire the timeslice of the current active queue first */
e5ff082e 2462 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2463 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2464 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2465 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2466 }
1b5ed5e1 2467
1b5ed5e1
TH
2468 BUG_ON(cfqd->busy_queues);
2469
6923715a 2470 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2471 return dispatched;
2472}
2473
abc3c744
SL
2474static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2475 struct cfq_queue *cfqq)
2476{
2477 /* the queue hasn't finished any request, can't estimate */
2478 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2479 return true;
abc3c744
SL
2480 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2481 cfqq->slice_end))
c1e44756 2482 return true;
abc3c744 2483
c1e44756 2484 return false;
abc3c744
SL
2485}
2486
0b182d61 2487static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2488{
2f5cb738 2489 unsigned int max_dispatch;
22e2c507 2490
5ad531db
JA
2491 /*
2492 * Drain async requests before we start sync IO
2493 */
53c583d2 2494 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2495 return false;
5ad531db 2496
2f5cb738
JA
2497 /*
2498 * If this is an async queue and we have sync IO in flight, let it wait
2499 */
53c583d2 2500 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2501 return false;
2f5cb738 2502
abc3c744 2503 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2504 if (cfq_class_idle(cfqq))
2505 max_dispatch = 1;
b4878f24 2506
2f5cb738
JA
2507 /*
2508 * Does this cfqq already have too much IO in flight?
2509 */
2510 if (cfqq->dispatched >= max_dispatch) {
ef8a41df 2511 bool promote_sync = false;
2f5cb738
JA
2512 /*
2513 * idle queue must always only have a single IO in flight
2514 */
3ed9a296 2515 if (cfq_class_idle(cfqq))
0b182d61 2516 return false;
3ed9a296 2517
ef8a41df 2518 /*
c4ade94f
LS
2519 * If there is only one sync queue
2520 * we can ignore async queue here and give the sync
ef8a41df
SL
2521 * queue no dispatch limit. The reason is a sync queue can
2522 * preempt async queue, limiting the sync queue doesn't make
2523 * sense. This is useful for aiostress test.
2524 */
c4ade94f
LS
2525 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2526 promote_sync = true;
ef8a41df 2527
2f5cb738
JA
2528 /*
2529 * We have other queues, don't allow more IO from this one
2530 */
ef8a41df
SL
2531 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2532 !promote_sync)
0b182d61 2533 return false;
9ede209e 2534
365722bb 2535 /*
474b18cc 2536 * Sole queue user, no limit
365722bb 2537 */
ef8a41df 2538 if (cfqd->busy_queues == 1 || promote_sync)
abc3c744
SL
2539 max_dispatch = -1;
2540 else
2541 /*
2542 * Normally we start throttling cfqq when cfq_quantum/2
2543 * requests have been dispatched. But we can drive
2544 * deeper queue depths at the beginning of slice
2545 * subjected to upper limit of cfq_quantum.
2546 * */
2547 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2548 }
2549
2550 /*
2551 * Async queues must wait a bit before being allowed dispatch.
2552 * We also ramp up the dispatch depth gradually for async IO,
2553 * based on the last sync IO we serviced
2554 */
963b72fc 2555 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2556 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2557 unsigned int depth;
365722bb 2558
61f0c1dc 2559 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2560 if (!depth && !cfqq->dispatched)
2561 depth = 1;
8e296755
JA
2562 if (depth < max_dispatch)
2563 max_dispatch = depth;
2f5cb738 2564 }
3ed9a296 2565
0b182d61
JA
2566 /*
2567 * If we're below the current max, allow a dispatch
2568 */
2569 return cfqq->dispatched < max_dispatch;
2570}
2571
2572/*
2573 * Dispatch a request from cfqq, moving them to the request queue
2574 * dispatch list.
2575 */
2576static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2577{
2578 struct request *rq;
2579
2580 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2581
2582 if (!cfq_may_dispatch(cfqd, cfqq))
2583 return false;
2584
2585 /*
2586 * follow expired path, else get first next available
2587 */
2588 rq = cfq_check_fifo(cfqq);
2589 if (!rq)
2590 rq = cfqq->next_rq;
2591
2592 /*
2593 * insert request into driver dispatch list
2594 */
2595 cfq_dispatch_insert(cfqd->queue, rq);
2596
2597 if (!cfqd->active_cic) {
c5869807 2598 struct cfq_io_cq *cic = RQ_CIC(rq);
0b182d61 2599
c5869807 2600 atomic_long_inc(&cic->icq.ioc->refcount);
0b182d61
JA
2601 cfqd->active_cic = cic;
2602 }
2603
2604 return true;
2605}
2606
2607/*
2608 * Find the cfqq that we need to service and move a request from that to the
2609 * dispatch list
2610 */
2611static int cfq_dispatch_requests(struct request_queue *q, int force)
2612{
2613 struct cfq_data *cfqd = q->elevator->elevator_data;
2614 struct cfq_queue *cfqq;
2615
2616 if (!cfqd->busy_queues)
2617 return 0;
2618
2619 if (unlikely(force))
2620 return cfq_forced_dispatch(cfqd);
2621
2622 cfqq = cfq_select_queue(cfqd);
2623 if (!cfqq)
8e296755
JA
2624 return 0;
2625
2f5cb738 2626 /*
0b182d61 2627 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2628 */
0b182d61
JA
2629 if (!cfq_dispatch_request(cfqd, cfqq))
2630 return 0;
2631
2f5cb738 2632 cfqq->slice_dispatch++;
b029195d 2633 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2634
2f5cb738
JA
2635 /*
2636 * expire an async queue immediately if it has used up its slice. idle
2637 * queue always expire after 1 dispatch round.
2638 */
2639 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2640 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2641 cfq_class_idle(cfqq))) {
2642 cfqq->slice_end = jiffies + 1;
e5ff082e 2643 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2644 }
2645
b217a903 2646 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2647 return 1;
1da177e4
LT
2648}
2649
1da177e4 2650/*
5e705374
JA
2651 * task holds one reference to the queue, dropped when task exits. each rq
2652 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2653 *
b1c35769 2654 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2655 * queue lock must be held here.
2656 */
2657static void cfq_put_queue(struct cfq_queue *cfqq)
2658{
22e2c507 2659 struct cfq_data *cfqd = cfqq->cfqd;
0bbfeb83 2660 struct cfq_group *cfqg;
22e2c507 2661
30d7b944 2662 BUG_ON(cfqq->ref <= 0);
1da177e4 2663
30d7b944
SL
2664 cfqq->ref--;
2665 if (cfqq->ref)
1da177e4
LT
2666 return;
2667
7b679138 2668 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2669 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2670 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2671 cfqg = cfqq->cfqg;
1da177e4 2672
28f95cbc 2673 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2674 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2675 cfq_schedule_dispatch(cfqd);
28f95cbc 2676 }
22e2c507 2677
f04a6424 2678 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2679 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2680 cfq_put_cfqg(cfqg);
1da177e4
LT
2681}
2682
d02a2c07 2683static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2684{
df5fe3e8
JM
2685 struct cfq_queue *__cfqq, *next;
2686
df5fe3e8
JM
2687 /*
2688 * If this queue was scheduled to merge with another queue, be
2689 * sure to drop the reference taken on that queue (and others in
2690 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2691 */
2692 __cfqq = cfqq->new_cfqq;
2693 while (__cfqq) {
2694 if (__cfqq == cfqq) {
2695 WARN(1, "cfqq->new_cfqq loop detected\n");
2696 break;
2697 }
2698 next = __cfqq->new_cfqq;
2699 cfq_put_queue(__cfqq);
2700 __cfqq = next;
2701 }
d02a2c07
SL
2702}
2703
2704static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2705{
2706 if (unlikely(cfqq == cfqd->active_queue)) {
2707 __cfq_slice_expired(cfqd, cfqq, 0);
2708 cfq_schedule_dispatch(cfqd);
2709 }
2710
2711 cfq_put_cooperator(cfqq);
df5fe3e8 2712
89850f7e
JA
2713 cfq_put_queue(cfqq);
2714}
22e2c507 2715
9b84cacd
TH
2716static void cfq_init_icq(struct io_cq *icq)
2717{
2718 struct cfq_io_cq *cic = icq_to_cic(icq);
2719
2720 cic->ttime.last_end_request = jiffies;
2721}
2722
c5869807 2723static void cfq_exit_icq(struct io_cq *icq)
89850f7e 2724{
c5869807 2725 struct cfq_io_cq *cic = icq_to_cic(icq);
283287a5 2726 struct cfq_data *cfqd = cic_to_cfqd(cic);
4faa3c81 2727
ff6657c6
JA
2728 if (cic->cfqq[BLK_RW_ASYNC]) {
2729 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2730 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2731 }
2732
ff6657c6
JA
2733 if (cic->cfqq[BLK_RW_SYNC]) {
2734 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2735 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2736 }
89850f7e
JA
2737}
2738
fd0928df 2739static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2740{
2741 struct task_struct *tsk = current;
2742 int ioprio_class;
2743
3b18152c 2744 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2745 return;
2746
fd0928df 2747 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2748 switch (ioprio_class) {
fe094d98
JA
2749 default:
2750 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2751 case IOPRIO_CLASS_NONE:
2752 /*
6d63c275 2753 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2754 */
2755 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2756 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2757 break;
2758 case IOPRIO_CLASS_RT:
2759 cfqq->ioprio = task_ioprio(ioc);
2760 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2761 break;
2762 case IOPRIO_CLASS_BE:
2763 cfqq->ioprio = task_ioprio(ioc);
2764 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2765 break;
2766 case IOPRIO_CLASS_IDLE:
2767 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2768 cfqq->ioprio = 7;
2769 cfq_clear_cfqq_idle_window(cfqq);
2770 break;
22e2c507
JA
2771 }
2772
2773 /*
2774 * keep track of original prio settings in case we have to temporarily
2775 * elevate the priority of this queue
2776 */
2777 cfqq->org_ioprio = cfqq->ioprio;
3b18152c 2778 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2779}
2780
c5869807 2781static void changed_ioprio(struct cfq_io_cq *cic)
22e2c507 2782{
bca4b914 2783 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2784 struct cfq_queue *cfqq;
35e6077c 2785
caaa5f9f
JA
2786 if (unlikely(!cfqd))
2787 return;
2788
ff6657c6 2789 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2790 if (cfqq) {
2791 struct cfq_queue *new_cfqq;
c5869807 2792 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
ff6657c6 2793 GFP_ATOMIC);
caaa5f9f 2794 if (new_cfqq) {
ff6657c6 2795 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2796 cfq_put_queue(cfqq);
2797 }
22e2c507 2798 }
caaa5f9f 2799
ff6657c6 2800 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2801 if (cfqq)
2802 cfq_mark_cfqq_prio_changed(cfqq);
22e2c507
JA
2803}
2804
d5036d77 2805static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2806 pid_t pid, bool is_sync)
d5036d77
JA
2807{
2808 RB_CLEAR_NODE(&cfqq->rb_node);
2809 RB_CLEAR_NODE(&cfqq->p_node);
2810 INIT_LIST_HEAD(&cfqq->fifo);
2811
30d7b944 2812 cfqq->ref = 0;
d5036d77
JA
2813 cfqq->cfqd = cfqd;
2814
2815 cfq_mark_cfqq_prio_changed(cfqq);
2816
2817 if (is_sync) {
2818 if (!cfq_class_idle(cfqq))
2819 cfq_mark_cfqq_idle_window(cfqq);
2820 cfq_mark_cfqq_sync(cfqq);
2821 }
2822 cfqq->pid = pid;
2823}
2824
24610333 2825#ifdef CONFIG_CFQ_GROUP_IOSCHED
c5869807 2826static void changed_cgroup(struct cfq_io_cq *cic)
24610333
VG
2827{
2828 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2829 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2830 struct request_queue *q;
2831
2832 if (unlikely(!cfqd))
2833 return;
2834
2835 q = cfqd->queue;
2836
24610333
VG
2837 if (sync_cfqq) {
2838 /*
2839 * Drop reference to sync queue. A new sync queue will be
2840 * assigned in new group upon arrival of a fresh request.
2841 */
2842 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2843 cic_set_cfqq(cic, NULL, 1);
2844 cfq_put_queue(sync_cfqq);
2845 }
24610333 2846}
24610333
VG
2847#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2848
22e2c507 2849static struct cfq_queue *
a6151c3a 2850cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2851 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2852{
22e2c507 2853 struct cfq_queue *cfqq, *new_cfqq = NULL;
c5869807 2854 struct cfq_io_cq *cic;
cdb16e8f 2855 struct cfq_group *cfqg;
22e2c507
JA
2856
2857retry:
3e59cf9d 2858 cfqg = cfq_get_cfqg(cfqd);
4ac845a2 2859 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2860 /* cic always exists here */
2861 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2862
6118b70b
JA
2863 /*
2864 * Always try a new alloc if we fell back to the OOM cfqq
2865 * originally, since it should just be a temporary situation.
2866 */
2867 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2868 cfqq = NULL;
22e2c507
JA
2869 if (new_cfqq) {
2870 cfqq = new_cfqq;
2871 new_cfqq = NULL;
2872 } else if (gfp_mask & __GFP_WAIT) {
2873 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2874 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2875 gfp_mask | __GFP_ZERO,
94f6030c 2876 cfqd->queue->node);
22e2c507 2877 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2878 if (new_cfqq)
2879 goto retry;
22e2c507 2880 } else {
94f6030c
CL
2881 cfqq = kmem_cache_alloc_node(cfq_pool,
2882 gfp_mask | __GFP_ZERO,
2883 cfqd->queue->node);
22e2c507
JA
2884 }
2885
6118b70b
JA
2886 if (cfqq) {
2887 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2888 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2889 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2890 cfq_log_cfqq(cfqd, cfqq, "alloced");
2891 } else
2892 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2893 }
2894
2895 if (new_cfqq)
2896 kmem_cache_free(cfq_pool, new_cfqq);
2897
22e2c507
JA
2898 return cfqq;
2899}
2900
c2dea2d1
VT
2901static struct cfq_queue **
2902cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2903{
fe094d98 2904 switch (ioprio_class) {
c2dea2d1
VT
2905 case IOPRIO_CLASS_RT:
2906 return &cfqd->async_cfqq[0][ioprio];
2907 case IOPRIO_CLASS_BE:
2908 return &cfqd->async_cfqq[1][ioprio];
2909 case IOPRIO_CLASS_IDLE:
2910 return &cfqd->async_idle_cfqq;
2911 default:
2912 BUG();
2913 }
2914}
2915
15c31be4 2916static struct cfq_queue *
a6151c3a 2917cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2918 gfp_t gfp_mask)
2919{
fd0928df
JA
2920 const int ioprio = task_ioprio(ioc);
2921 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2922 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2923 struct cfq_queue *cfqq = NULL;
2924
c2dea2d1
VT
2925 if (!is_sync) {
2926 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2927 cfqq = *async_cfqq;
2928 }
2929
6118b70b 2930 if (!cfqq)
fd0928df 2931 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2932
2933 /*
2934 * pin the queue now that it's allocated, scheduler exit will prune it
2935 */
c2dea2d1 2936 if (!is_sync && !(*async_cfqq)) {
30d7b944 2937 cfqq->ref++;
c2dea2d1 2938 *async_cfqq = cfqq;
15c31be4
JA
2939 }
2940
30d7b944 2941 cfqq->ref++;
15c31be4
JA
2942 return cfqq;
2943}
2944
22e2c507 2945static void
383cd721 2946__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
1da177e4 2947{
383cd721
SL
2948 unsigned long elapsed = jiffies - ttime->last_end_request;
2949 elapsed = min(elapsed, 2UL * slice_idle);
db3b5848 2950
383cd721
SL
2951 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
2952 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
2953 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
2954}
2955
2956static void
2957cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
c5869807 2958 struct cfq_io_cq *cic)
383cd721 2959{
f5f2b6ce 2960 if (cfq_cfqq_sync(cfqq)) {
383cd721 2961 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
f5f2b6ce
SL
2962 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
2963 cfqd->cfq_slice_idle);
2964 }
7700fc4f
SL
2965#ifdef CONFIG_CFQ_GROUP_IOSCHED
2966 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
2967#endif
22e2c507 2968}
1da177e4 2969
206dc69b 2970static void
b2c18e1e 2971cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2972 struct request *rq)
206dc69b 2973{
3dde36dd 2974 sector_t sdist = 0;
41647e7a 2975 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
2976 if (cfqq->last_request_pos) {
2977 if (cfqq->last_request_pos < blk_rq_pos(rq))
2978 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2979 else
2980 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2981 }
206dc69b 2982
3dde36dd 2983 cfqq->seek_history <<= 1;
41647e7a
CZ
2984 if (blk_queue_nonrot(cfqd->queue))
2985 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2986 else
2987 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 2988}
1da177e4 2989
22e2c507
JA
2990/*
2991 * Disable idle window if the process thinks too long or seeks so much that
2992 * it doesn't matter
2993 */
2994static void
2995cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
c5869807 2996 struct cfq_io_cq *cic)
22e2c507 2997{
7b679138 2998 int old_idle, enable_idle;
1be92f2f 2999
0871714e
JA
3000 /*
3001 * Don't idle for async or idle io prio class
3002 */
3003 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3004 return;
3005
c265a7f4 3006 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3007
76280aff
CZ
3008 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3009 cfq_mark_cfqq_deep(cfqq);
3010
749ef9f8
CZ
3011 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3012 enable_idle = 0;
c5869807
TH
3013 else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
3014 !cfqd->cfq_slice_idle ||
3015 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507 3016 enable_idle = 0;
383cd721
SL
3017 else if (sample_valid(cic->ttime.ttime_samples)) {
3018 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3019 enable_idle = 0;
3020 else
3021 enable_idle = 1;
1da177e4
LT
3022 }
3023
7b679138
JA
3024 if (old_idle != enable_idle) {
3025 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3026 if (enable_idle)
3027 cfq_mark_cfqq_idle_window(cfqq);
3028 else
3029 cfq_clear_cfqq_idle_window(cfqq);
3030 }
22e2c507 3031}
1da177e4 3032
22e2c507
JA
3033/*
3034 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3035 * no or if we aren't sure, a 1 will cause a preempt.
3036 */
a6151c3a 3037static bool
22e2c507 3038cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3039 struct request *rq)
22e2c507 3040{
6d048f53 3041 struct cfq_queue *cfqq;
22e2c507 3042
6d048f53
JA
3043 cfqq = cfqd->active_queue;
3044 if (!cfqq)
a6151c3a 3045 return false;
22e2c507 3046
6d048f53 3047 if (cfq_class_idle(new_cfqq))
a6151c3a 3048 return false;
22e2c507
JA
3049
3050 if (cfq_class_idle(cfqq))
a6151c3a 3051 return true;
1e3335de 3052
875feb63
DS
3053 /*
3054 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3055 */
3056 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3057 return false;
3058
374f84ac
JA
3059 /*
3060 * if the new request is sync, but the currently running queue is
3061 * not, let the sync request have priority.
3062 */
5e705374 3063 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3064 return true;
1e3335de 3065
8682e1f1
VG
3066 if (new_cfqq->cfqg != cfqq->cfqg)
3067 return false;
3068
3069 if (cfq_slice_used(cfqq))
3070 return true;
3071
3072 /* Allow preemption only if we are idling on sync-noidle tree */
3073 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3074 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3075 new_cfqq->service_tree->count == 2 &&
3076 RB_EMPTY_ROOT(&cfqq->sort_list))
3077 return true;
3078
b53d1ed7
JA
3079 /*
3080 * So both queues are sync. Let the new request get disk time if
3081 * it's a metadata request and the current queue is doing regular IO.
3082 */
65299a3b 3083 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
b53d1ed7
JA
3084 return true;
3085
3a9a3f6c
DS
3086 /*
3087 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3088 */
3089 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3090 return true;
3a9a3f6c 3091
d2d59e18
SL
3092 /* An idle queue should not be idle now for some reason */
3093 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3094 return true;
3095
1e3335de 3096 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3097 return false;
1e3335de
JA
3098
3099 /*
3100 * if this request is as-good as one we would expect from the
3101 * current cfqq, let it preempt
3102 */
e9ce335d 3103 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3104 return true;
1e3335de 3105
a6151c3a 3106 return false;
22e2c507
JA
3107}
3108
3109/*
3110 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3111 * let it have half of its nominal slice.
3112 */
3113static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3114{
df0793ab
SL
3115 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3116
7b679138 3117 cfq_log_cfqq(cfqd, cfqq, "preempt");
df0793ab 3118 cfq_slice_expired(cfqd, 1);
22e2c507 3119
f8ae6e3e
SL
3120 /*
3121 * workload type is changed, don't save slice, otherwise preempt
3122 * doesn't happen
3123 */
df0793ab 3124 if (old_type != cfqq_type(cfqq))
f8ae6e3e
SL
3125 cfqq->cfqg->saved_workload_slice = 0;
3126
bf572256
JA
3127 /*
3128 * Put the new queue at the front of the of the current list,
3129 * so we know that it will be selected next.
3130 */
3131 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3132
3133 cfq_service_tree_add(cfqd, cfqq, 1);
eda5e0c9 3134
62a37f6b
JT
3135 cfqq->slice_end = 0;
3136 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3137}
3138
22e2c507 3139/*
5e705374 3140 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3141 * something we should do about it
3142 */
3143static void
5e705374
JA
3144cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3145 struct request *rq)
22e2c507 3146{
c5869807 3147 struct cfq_io_cq *cic = RQ_CIC(rq);
12e9fddd 3148
45333d5a 3149 cfqd->rq_queued++;
65299a3b
CH
3150 if (rq->cmd_flags & REQ_PRIO)
3151 cfqq->prio_pending++;
374f84ac 3152
383cd721 3153 cfq_update_io_thinktime(cfqd, cfqq, cic);
b2c18e1e 3154 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3155 cfq_update_idle_window(cfqd, cfqq, cic);
3156
b2c18e1e 3157 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3158
3159 if (cfqq == cfqd->active_queue) {
3160 /*
b029195d
JA
3161 * Remember that we saw a request from this process, but
3162 * don't start queuing just yet. Otherwise we risk seeing lots
3163 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3164 * and merging. If the request is already larger than a single
3165 * page, let it rip immediately. For that case we assume that
2d870722
JA
3166 * merging is already done. Ditto for a busy system that
3167 * has other work pending, don't risk delaying until the
3168 * idle timer unplug to continue working.
22e2c507 3169 */
d6ceb25e 3170 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3171 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3172 cfqd->busy_queues > 1) {
812df48d 3173 cfq_del_timer(cfqd, cfqq);
554554f6 3174 cfq_clear_cfqq_wait_request(cfqq);
24ecfbe2 3175 __blk_run_queue(cfqd->queue);
a11cdaa7 3176 } else {
e98ef89b 3177 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3178 &cfqq->cfqg->blkg);
bf791937 3179 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3180 }
d6ceb25e 3181 }
5e705374 3182 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3183 /*
3184 * not the active queue - expire current slice if it is
3185 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3186 * has some old slice time left and is of higher priority or
3187 * this new queue is RT and the current one is BE
22e2c507
JA
3188 */
3189 cfq_preempt_queue(cfqd, cfqq);
24ecfbe2 3190 __blk_run_queue(cfqd->queue);
22e2c507 3191 }
1da177e4
LT
3192}
3193
165125e1 3194static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3195{
b4878f24 3196 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3197 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3198
7b679138 3199 cfq_log_cfqq(cfqd, cfqq, "insert_request");
c5869807 3200 cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
1da177e4 3201
30996f40 3202 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3203 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3204 cfq_add_rq_rb(rq);
e98ef89b 3205 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3206 &cfqd->serving_group->blkg, rq_data_dir(rq),
3207 rq_is_sync(rq));
5e705374 3208 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3209}
3210
45333d5a
AC
3211/*
3212 * Update hw_tag based on peak queue depth over 50 samples under
3213 * sufficient load.
3214 */
3215static void cfq_update_hw_tag(struct cfq_data *cfqd)
3216{
1a1238a7
SL
3217 struct cfq_queue *cfqq = cfqd->active_queue;
3218
53c583d2
CZ
3219 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3220 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3221
3222 if (cfqd->hw_tag == 1)
3223 return;
45333d5a
AC
3224
3225 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3226 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3227 return;
3228
1a1238a7
SL
3229 /*
3230 * If active queue hasn't enough requests and can idle, cfq might not
3231 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3232 * case
3233 */
3234 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3235 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3236 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3237 return;
3238
45333d5a
AC
3239 if (cfqd->hw_tag_samples++ < 50)
3240 return;
3241
e459dd08 3242 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3243 cfqd->hw_tag = 1;
3244 else
3245 cfqd->hw_tag = 0;
45333d5a
AC
3246}
3247
7667aa06
VG
3248static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3249{
c5869807 3250 struct cfq_io_cq *cic = cfqd->active_cic;
7667aa06 3251
02a8f01b
JT
3252 /* If the queue already has requests, don't wait */
3253 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3254 return false;
3255
7667aa06
VG
3256 /* If there are other queues in the group, don't wait */
3257 if (cfqq->cfqg->nr_cfqq > 1)
3258 return false;
3259
7700fc4f
SL
3260 /* the only queue in the group, but think time is big */
3261 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3262 return false;
3263
7667aa06
VG
3264 if (cfq_slice_used(cfqq))
3265 return true;
3266
3267 /* if slice left is less than think time, wait busy */
383cd721
SL
3268 if (cic && sample_valid(cic->ttime.ttime_samples)
3269 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
7667aa06
VG
3270 return true;
3271
3272 /*
3273 * If think times is less than a jiffy than ttime_mean=0 and above
3274 * will not be true. It might happen that slice has not expired yet
3275 * but will expire soon (4-5 ns) during select_queue(). To cover the
3276 * case where think time is less than a jiffy, mark the queue wait
3277 * busy if only 1 jiffy is left in the slice.
3278 */
3279 if (cfqq->slice_end - jiffies == 1)
3280 return true;
3281
3282 return false;
3283}
3284
165125e1 3285static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3286{
5e705374 3287 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3288 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3289 const int sync = rq_is_sync(rq);
b4878f24 3290 unsigned long now;
1da177e4 3291
b4878f24 3292 now = jiffies;
33659ebb
CH
3293 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3294 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3295
45333d5a
AC
3296 cfq_update_hw_tag(cfqd);
3297
53c583d2 3298 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3299 WARN_ON(!cfqq->dispatched);
53c583d2 3300 cfqd->rq_in_driver--;
6d048f53 3301 cfqq->dispatched--;
80bdf0c7 3302 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3303 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3304 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3305 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3306
53c583d2 3307 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3308
365722bb 3309 if (sync) {
f5f2b6ce
SL
3310 struct cfq_rb_root *service_tree;
3311
383cd721 3312 RQ_CIC(rq)->ttime.last_end_request = now;
f5f2b6ce
SL
3313
3314 if (cfq_cfqq_on_rr(cfqq))
3315 service_tree = cfqq->service_tree;
3316 else
3317 service_tree = service_tree_for(cfqq->cfqg,
3318 cfqq_prio(cfqq), cfqq_type(cfqq));
3319 service_tree->ttime.last_end_request = now;
573412b2
CZ
3320 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3321 cfqd->last_delayed_sync = now;
365722bb 3322 }
caaa5f9f 3323
7700fc4f
SL
3324#ifdef CONFIG_CFQ_GROUP_IOSCHED
3325 cfqq->cfqg->ttime.last_end_request = now;
3326#endif
3327
caaa5f9f
JA
3328 /*
3329 * If this is the active queue, check if it needs to be expired,
3330 * or if we want to idle in case it has no pending requests.
3331 */
3332 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3333 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3334
44f7c160
JA
3335 if (cfq_cfqq_slice_new(cfqq)) {
3336 cfq_set_prio_slice(cfqd, cfqq);
3337 cfq_clear_cfqq_slice_new(cfqq);
3338 }
f75edf2d
VG
3339
3340 /*
7667aa06
VG
3341 * Should we wait for next request to come in before we expire
3342 * the queue.
f75edf2d 3343 */
7667aa06 3344 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3345 unsigned long extend_sl = cfqd->cfq_slice_idle;
3346 if (!cfqd->cfq_slice_idle)
3347 extend_sl = cfqd->cfq_group_idle;
3348 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3349 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3350 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3351 }
3352
a36e71f9 3353 /*
8e550632
CZ
3354 * Idling is not enabled on:
3355 * - expired queues
3356 * - idle-priority queues
3357 * - async queues
3358 * - queues with still some requests queued
3359 * - when there is a close cooperator
a36e71f9 3360 */
0871714e 3361 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3362 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3363 else if (sync && cfqq_empty &&
3364 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3365 cfq_arm_slice_timer(cfqd);
8e550632 3366 }
caaa5f9f 3367 }
6d048f53 3368
53c583d2 3369 if (!cfqd->rq_in_driver)
23e018a1 3370 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3371}
3372
89850f7e 3373static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3374{
1b379d8d 3375 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3376 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3377 return ELV_MQUEUE_MUST;
3b18152c 3378 }
1da177e4 3379
22e2c507 3380 return ELV_MQUEUE_MAY;
22e2c507
JA
3381}
3382
165125e1 3383static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3384{
3385 struct cfq_data *cfqd = q->elevator->elevator_data;
3386 struct task_struct *tsk = current;
c5869807 3387 struct cfq_io_cq *cic;
22e2c507
JA
3388 struct cfq_queue *cfqq;
3389
3390 /*
3391 * don't force setup of a queue from here, as a call to may_queue
3392 * does not necessarily imply that a request actually will be queued.
3393 * so just lookup a possibly existing queue, or return 'may queue'
3394 * if that fails
3395 */
4ac845a2 3396 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3397 if (!cic)
3398 return ELV_MQUEUE_MAY;
3399
b0b78f81 3400 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3401 if (cfqq) {
c5869807 3402 cfq_init_prio_data(cfqq, cic->icq.ioc);
22e2c507 3403
89850f7e 3404 return __cfq_may_queue(cfqq);
22e2c507
JA
3405 }
3406
3407 return ELV_MQUEUE_MAY;
1da177e4
LT
3408}
3409
1da177e4
LT
3410/*
3411 * queue lock held here
3412 */
bb37b94c 3413static void cfq_put_request(struct request *rq)
1da177e4 3414{
5e705374 3415 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3416
5e705374 3417 if (cfqq) {
22e2c507 3418 const int rw = rq_data_dir(rq);
1da177e4 3419
22e2c507
JA
3420 BUG_ON(!cfqq->allocated[rw]);
3421 cfqq->allocated[rw]--;
1da177e4 3422
7f1dc8a2
VG
3423 /* Put down rq reference on cfqg */
3424 cfq_put_cfqg(RQ_CFQG(rq));
a612fddf
TH
3425 rq->elv.priv[0] = NULL;
3426 rq->elv.priv[1] = NULL;
7f1dc8a2 3427
1da177e4
LT
3428 cfq_put_queue(cfqq);
3429 }
3430}
3431
df5fe3e8 3432static struct cfq_queue *
c5869807 3433cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
df5fe3e8
JM
3434 struct cfq_queue *cfqq)
3435{
3436 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3437 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3438 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3439 cfq_put_queue(cfqq);
3440 return cic_to_cfqq(cic, 1);
3441}
3442
e6c5bc73
JM
3443/*
3444 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3445 * was the last process referring to said cfqq.
3446 */
3447static struct cfq_queue *
c5869807 3448split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
e6c5bc73
JM
3449{
3450 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3451 cfqq->pid = current->pid;
3452 cfq_clear_cfqq_coop(cfqq);
ae54abed 3453 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3454 return cfqq;
3455 }
3456
3457 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3458
3459 cfq_put_cooperator(cfqq);
3460
e6c5bc73
JM
3461 cfq_put_queue(cfqq);
3462 return NULL;
3463}
1da177e4 3464/*
22e2c507 3465 * Allocate cfq data structures associated with this request.
1da177e4 3466 */
22e2c507 3467static int
165125e1 3468cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3469{
3470 struct cfq_data *cfqd = q->elevator->elevator_data;
f1f8cc94 3471 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
1da177e4 3472 const int rw = rq_data_dir(rq);
a6151c3a 3473 const bool is_sync = rq_is_sync(rq);
22e2c507 3474 struct cfq_queue *cfqq;
d705ae6b 3475 unsigned int changed;
1da177e4
LT
3476
3477 might_sleep_if(gfp_mask & __GFP_WAIT);
3478
216284c3 3479 spin_lock_irq(q->queue_lock);
f1f8cc94
TH
3480
3481 /* handle changed notifications */
d705ae6b
TH
3482 changed = icq_get_changed(&cic->icq);
3483 if (unlikely(changed & ICQ_IOPRIO_CHANGED))
3484 changed_ioprio(cic);
f1f8cc94 3485#ifdef CONFIG_CFQ_GROUP_IOSCHED
d705ae6b
TH
3486 if (unlikely(changed & ICQ_CGROUP_CHANGED))
3487 changed_cgroup(cic);
f1f8cc94 3488#endif
22e2c507 3489
e6c5bc73 3490new_queue:
91fac317 3491 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3492 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
c5869807 3493 cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
91fac317 3494 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3495 } else {
e6c5bc73
JM
3496 /*
3497 * If the queue was seeky for too long, break it apart.
3498 */
ae54abed 3499 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3500 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3501 cfqq = split_cfqq(cic, cfqq);
3502 if (!cfqq)
3503 goto new_queue;
3504 }
3505
df5fe3e8
JM
3506 /*
3507 * Check to see if this queue is scheduled to merge with
3508 * another, closely cooperating queue. The merging of
3509 * queues happens here as it must be done in process context.
3510 * The reference on new_cfqq was taken in merge_cfqqs.
3511 */
3512 if (cfqq->new_cfqq)
3513 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3514 }
1da177e4
LT
3515
3516 cfqq->allocated[rw]++;
1da177e4 3517
6fae9c25 3518 cfqq->ref++;
a612fddf
TH
3519 rq->elv.priv[0] = cfqq;
3520 rq->elv.priv[1] = cfq_ref_get_cfqg(cfqq->cfqg);
216284c3 3521 spin_unlock_irq(q->queue_lock);
5e705374 3522 return 0;
1da177e4
LT
3523}
3524
65f27f38 3525static void cfq_kick_queue(struct work_struct *work)
22e2c507 3526{
65f27f38 3527 struct cfq_data *cfqd =
23e018a1 3528 container_of(work, struct cfq_data, unplug_work);
165125e1 3529 struct request_queue *q = cfqd->queue;
22e2c507 3530
40bb54d1 3531 spin_lock_irq(q->queue_lock);
24ecfbe2 3532 __blk_run_queue(cfqd->queue);
40bb54d1 3533 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3534}
3535
3536/*
3537 * Timer running if the active_queue is currently idling inside its time slice
3538 */
3539static void cfq_idle_slice_timer(unsigned long data)
3540{
3541 struct cfq_data *cfqd = (struct cfq_data *) data;
3542 struct cfq_queue *cfqq;
3543 unsigned long flags;
3c6bd2f8 3544 int timed_out = 1;
22e2c507 3545
7b679138
JA
3546 cfq_log(cfqd, "idle timer fired");
3547
22e2c507
JA
3548 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3549
fe094d98
JA
3550 cfqq = cfqd->active_queue;
3551 if (cfqq) {
3c6bd2f8
JA
3552 timed_out = 0;
3553
b029195d
JA
3554 /*
3555 * We saw a request before the queue expired, let it through
3556 */
3557 if (cfq_cfqq_must_dispatch(cfqq))
3558 goto out_kick;
3559
22e2c507
JA
3560 /*
3561 * expired
3562 */
44f7c160 3563 if (cfq_slice_used(cfqq))
22e2c507
JA
3564 goto expire;
3565
3566 /*
3567 * only expire and reinvoke request handler, if there are
3568 * other queues with pending requests
3569 */
caaa5f9f 3570 if (!cfqd->busy_queues)
22e2c507 3571 goto out_cont;
22e2c507
JA
3572
3573 /*
3574 * not expired and it has a request pending, let it dispatch
3575 */
75e50984 3576 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3577 goto out_kick;
76280aff
CZ
3578
3579 /*
3580 * Queue depth flag is reset only when the idle didn't succeed
3581 */
3582 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3583 }
3584expire:
e5ff082e 3585 cfq_slice_expired(cfqd, timed_out);
22e2c507 3586out_kick:
23e018a1 3587 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3588out_cont:
3589 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3590}
3591
3b18152c
JA
3592static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3593{
3594 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3595 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3596}
22e2c507 3597
c2dea2d1
VT
3598static void cfq_put_async_queues(struct cfq_data *cfqd)
3599{
3600 int i;
3601
3602 for (i = 0; i < IOPRIO_BE_NR; i++) {
3603 if (cfqd->async_cfqq[0][i])
3604 cfq_put_queue(cfqd->async_cfqq[0][i]);
3605 if (cfqd->async_cfqq[1][i])
3606 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3607 }
2389d1ef
ON
3608
3609 if (cfqd->async_idle_cfqq)
3610 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3611}
3612
b374d18a 3613static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3614{
22e2c507 3615 struct cfq_data *cfqd = e->elevator_data;
165125e1 3616 struct request_queue *q = cfqd->queue;
56edf7d7 3617 bool wait = false;
22e2c507 3618
3b18152c 3619 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3620
d9ff4187 3621 spin_lock_irq(q->queue_lock);
e2d74ac0 3622
d9ff4187 3623 if (cfqd->active_queue)
e5ff082e 3624 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0 3625
c2dea2d1 3626 cfq_put_async_queues(cfqd);
b1c35769 3627 cfq_release_cfq_groups(cfqd);
56edf7d7
VG
3628
3629 /*
3630 * If there are groups which we could not unlink from blkcg list,
3631 * wait for a rcu period for them to be freed.
3632 */
3633 if (cfqd->nr_blkcg_linked_grps)
3634 wait = true;
15c31be4 3635
d9ff4187 3636 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3637
3638 cfq_shutdown_timer_wq(cfqd);
3639
56edf7d7
VG
3640 /*
3641 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3642 * Do this wait only if there are other unlinked groups out
3643 * there. This can happen if cgroup deletion path claimed the
3644 * responsibility of cleaning up a group before queue cleanup code
3645 * get to the group.
3646 *
3647 * Do not call synchronize_rcu() unconditionally as there are drivers
3648 * which create/delete request queue hundreds of times during scan/boot
3649 * and synchronize_rcu() can take significant time and slow down boot.
3650 */
3651 if (wait)
3652 synchronize_rcu();
2abae55f
VG
3653
3654#ifdef CONFIG_CFQ_GROUP_IOSCHED
3655 /* Free up per cpu stats for root group */
3656 free_percpu(cfqd->root_group.blkg.stats_cpu);
3657#endif
56edf7d7 3658 kfree(cfqd);
1da177e4
LT
3659}
3660
165125e1 3661static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3662{
3663 struct cfq_data *cfqd;
718eee05 3664 int i, j;
cdb16e8f 3665 struct cfq_group *cfqg;
615f0259 3666 struct cfq_rb_root *st;
1da177e4 3667
94f6030c 3668 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
a73f730d 3669 if (!cfqd)
bc1c1169 3670 return NULL;
80b15c73 3671
1fa8f6d6
VG
3672 /* Init root service tree */
3673 cfqd->grp_service_tree = CFQ_RB_ROOT;
3674
cdb16e8f
VG
3675 /* Init root group */
3676 cfqg = &cfqd->root_group;
615f0259
VG
3677 for_each_cfqg_st(cfqg, i, j, st)
3678 *st = CFQ_RB_ROOT;
1fa8f6d6 3679 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3680
25bc6b07
VG
3681 /* Give preference to root group over other groups */
3682 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3683
25fb5169 3684#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769 3685 /*
56edf7d7
VG
3686 * Set root group reference to 2. One reference will be dropped when
3687 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3688 * Other reference will remain there as we don't want to delete this
3689 * group as it is statically allocated and gets destroyed when
3690 * throtl_data goes away.
b1c35769 3691 */
56edf7d7 3692 cfqg->ref = 2;
5624a4e4
VG
3693
3694 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3695 kfree(cfqg);
3696 kfree(cfqd);
3697 return NULL;
3698 }
3699
dcf097b2 3700 rcu_read_lock();
5624a4e4 3701
e98ef89b
VG
3702 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3703 (void *)cfqd, 0);
dcf097b2 3704 rcu_read_unlock();
56edf7d7
VG
3705 cfqd->nr_blkcg_linked_grps++;
3706
3707 /* Add group on cfqd->cfqg_list */
3708 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
25fb5169 3709#endif
26a2ac00
JA
3710 /*
3711 * Not strictly needed (since RB_ROOT just clears the node and we
3712 * zeroed cfqd on alloc), but better be safe in case someone decides
3713 * to add magic to the rb code
3714 */
3715 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3716 cfqd->prio_trees[i] = RB_ROOT;
3717
6118b70b
JA
3718 /*
3719 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3720 * Grab a permanent reference to it, so that the normal code flow
3721 * will not attempt to free it.
3722 */
3723 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
30d7b944 3724 cfqd->oom_cfqq.ref++;
cdb16e8f 3725 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3726
1da177e4 3727 cfqd->queue = q;
1da177e4 3728
22e2c507
JA
3729 init_timer(&cfqd->idle_slice_timer);
3730 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3731 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3732
23e018a1 3733 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3734
1da177e4 3735 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3736 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3737 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3738 cfqd->cfq_back_max = cfq_back_max;
3739 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3740 cfqd->cfq_slice[0] = cfq_slice_async;
3741 cfqd->cfq_slice[1] = cfq_slice_sync;
5bf14c07 3742 cfqd->cfq_target_latency = cfq_target_latency;
22e2c507
JA
3743 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3744 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 3745 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 3746 cfqd->cfq_latency = 1;
e459dd08 3747 cfqd->hw_tag = -1;
edc71131
CZ
3748 /*
3749 * we optimistically start assuming sync ops weren't delayed in last
3750 * second, in order to have larger depth for async operations.
3751 */
573412b2 3752 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 3753 return cfqd;
1da177e4
LT
3754}
3755
1da177e4
LT
3756/*
3757 * sysfs parts below -->
3758 */
1da177e4
LT
3759static ssize_t
3760cfq_var_show(unsigned int var, char *page)
3761{
3762 return sprintf(page, "%d\n", var);
3763}
3764
3765static ssize_t
3766cfq_var_store(unsigned int *var, const char *page, size_t count)
3767{
3768 char *p = (char *) page;
3769
3770 *var = simple_strtoul(p, &p, 10);
3771 return count;
3772}
3773
1da177e4 3774#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3775static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3776{ \
3d1ab40f 3777 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3778 unsigned int __data = __VAR; \
3779 if (__CONV) \
3780 __data = jiffies_to_msecs(__data); \
3781 return cfq_var_show(__data, (page)); \
3782}
3783SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3784SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3785SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3786SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3787SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 3788SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 3789SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
3790SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3791SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3792SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3793SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
5bf14c07 3794SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
1da177e4
LT
3795#undef SHOW_FUNCTION
3796
3797#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3798static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3799{ \
3d1ab40f 3800 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3801 unsigned int __data; \
3802 int ret = cfq_var_store(&__data, (page), count); \
3803 if (__data < (MIN)) \
3804 __data = (MIN); \
3805 else if (__data > (MAX)) \
3806 __data = (MAX); \
3807 if (__CONV) \
3808 *(__PTR) = msecs_to_jiffies(__data); \
3809 else \
3810 *(__PTR) = __data; \
3811 return ret; \
3812}
3813STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3814STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3815 UINT_MAX, 1);
3816STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3817 UINT_MAX, 1);
e572ec7e 3818STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3819STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3820 UINT_MAX, 0);
22e2c507 3821STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 3822STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
3823STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3824STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3825STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3826 UINT_MAX, 0);
963b72fc 3827STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
5bf14c07 3828STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
1da177e4
LT
3829#undef STORE_FUNCTION
3830
e572ec7e
AV
3831#define CFQ_ATTR(name) \
3832 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3833
3834static struct elv_fs_entry cfq_attrs[] = {
3835 CFQ_ATTR(quantum),
e572ec7e
AV
3836 CFQ_ATTR(fifo_expire_sync),
3837 CFQ_ATTR(fifo_expire_async),
3838 CFQ_ATTR(back_seek_max),
3839 CFQ_ATTR(back_seek_penalty),
3840 CFQ_ATTR(slice_sync),
3841 CFQ_ATTR(slice_async),
3842 CFQ_ATTR(slice_async_rq),
3843 CFQ_ATTR(slice_idle),
80bdf0c7 3844 CFQ_ATTR(group_idle),
963b72fc 3845 CFQ_ATTR(low_latency),
5bf14c07 3846 CFQ_ATTR(target_latency),
e572ec7e 3847 __ATTR_NULL
1da177e4
LT
3848};
3849
1da177e4
LT
3850static struct elevator_type iosched_cfq = {
3851 .ops = {
3852 .elevator_merge_fn = cfq_merge,
3853 .elevator_merged_fn = cfq_merged_request,
3854 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3855 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 3856 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 3857 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3858 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3859 .elevator_activate_req_fn = cfq_activate_request,
1da177e4 3860 .elevator_deactivate_req_fn = cfq_deactivate_request,
1da177e4 3861 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3862 .elevator_former_req_fn = elv_rb_former_request,
3863 .elevator_latter_req_fn = elv_rb_latter_request,
9b84cacd 3864 .elevator_init_icq_fn = cfq_init_icq,
7e5a8794 3865 .elevator_exit_icq_fn = cfq_exit_icq,
1da177e4
LT
3866 .elevator_set_req_fn = cfq_set_request,
3867 .elevator_put_req_fn = cfq_put_request,
3868 .elevator_may_queue_fn = cfq_may_queue,
3869 .elevator_init_fn = cfq_init_queue,
3870 .elevator_exit_fn = cfq_exit_queue,
3871 },
3d3c2379
TH
3872 .icq_size = sizeof(struct cfq_io_cq),
3873 .icq_align = __alignof__(struct cfq_io_cq),
3d1ab40f 3874 .elevator_attrs = cfq_attrs,
3d3c2379 3875 .elevator_name = "cfq",
1da177e4
LT
3876 .elevator_owner = THIS_MODULE,
3877};
3878
3e252066
VG
3879#ifdef CONFIG_CFQ_GROUP_IOSCHED
3880static struct blkio_policy_type blkio_policy_cfq = {
3881 .ops = {
3882 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3883 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3884 },
062a644d 3885 .plid = BLKIO_POLICY_PROP,
3e252066
VG
3886};
3887#else
3888static struct blkio_policy_type blkio_policy_cfq;
3889#endif
3890
1da177e4
LT
3891static int __init cfq_init(void)
3892{
3d3c2379
TH
3893 int ret;
3894
22e2c507
JA
3895 /*
3896 * could be 0 on HZ < 1000 setups
3897 */
3898 if (!cfq_slice_async)
3899 cfq_slice_async = 1;
3900 if (!cfq_slice_idle)
3901 cfq_slice_idle = 1;
3902
80bdf0c7
VG
3903#ifdef CONFIG_CFQ_GROUP_IOSCHED
3904 if (!cfq_group_idle)
3905 cfq_group_idle = 1;
3906#else
3907 cfq_group_idle = 0;
3908#endif
3d3c2379
TH
3909 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3910 if (!cfq_pool)
1da177e4
LT
3911 return -ENOMEM;
3912
3d3c2379
TH
3913 ret = elv_register(&iosched_cfq);
3914 if (ret) {
3915 kmem_cache_destroy(cfq_pool);
3916 return ret;
3917 }
3d3c2379 3918
3e252066 3919 blkio_policy_register(&blkio_policy_cfq);
1da177e4 3920
2fdd82bd 3921 return 0;
1da177e4
LT
3922}
3923
3924static void __exit cfq_exit(void)
3925{
3e252066 3926 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 3927 elv_unregister(&iosched_cfq);
3d3c2379 3928 kmem_cache_destroy(cfq_pool);
1da177e4
LT
3929}
3930
3931module_init(cfq_init);
3932module_exit(cfq_exit);
3933
3934MODULE_AUTHOR("Jens Axboe");
3935MODULE_LICENSE("GPL");
3936MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.949371 seconds and 5 git commands to generate.