[PATCH] io-accounting: write-cancel accounting
[deliverable/linux.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
ff856bad
JA
28#include <linux/interrupt.h>
29#include <linux/cpu.h>
2056a782 30#include <linux/blktrace_api.h>
c17bb495 31#include <linux/fault-inject.h>
1da177e4
LT
32
33/*
34 * for max sense size
35 */
36#include <scsi/scsi_cmnd.h>
37
65f27f38 38static void blk_unplug_work(struct work_struct *work);
1da177e4 39static void blk_unplug_timeout(unsigned long data);
93d17d3d 40static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
52d9e675
TH
41static void init_request_from_bio(struct request *req, struct bio *bio);
42static int __make_request(request_queue_t *q, struct bio *bio);
b5deef90 43static struct io_context *current_io_context(gfp_t gfp_flags, int node);
1da177e4
LT
44
45/*
46 * For the allocated request tables
47 */
e18b890b 48static struct kmem_cache *request_cachep;
1da177e4
LT
49
50/*
51 * For queue allocation
52 */
e18b890b 53static struct kmem_cache *requestq_cachep;
1da177e4
LT
54
55/*
56 * For io context allocations
57 */
e18b890b 58static struct kmem_cache *iocontext_cachep;
1da177e4 59
1da177e4
LT
60/*
61 * Controlling structure to kblockd
62 */
ff856bad 63static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
64
65unsigned long blk_max_low_pfn, blk_max_pfn;
66
67EXPORT_SYMBOL(blk_max_low_pfn);
68EXPORT_SYMBOL(blk_max_pfn);
69
ff856bad
JA
70static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
71
1da177e4
LT
72/* Amount of time in which a process may batch requests */
73#define BLK_BATCH_TIME (HZ/50UL)
74
75/* Number of requests a "batching" process may submit */
76#define BLK_BATCH_REQ 32
77
78/*
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
82 */
83static inline int queue_congestion_on_threshold(struct request_queue *q)
84{
85 return q->nr_congestion_on;
86}
87
88/*
89 * The threshold at which a queue is considered to be uncongested
90 */
91static inline int queue_congestion_off_threshold(struct request_queue *q)
92{
93 return q->nr_congestion_off;
94}
95
96static void blk_queue_congestion_threshold(struct request_queue *q)
97{
98 int nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
109}
110
1da177e4
LT
111/**
112 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
113 * @bdev: device
114 *
115 * Locates the passed device's request queue and returns the address of its
116 * backing_dev_info
117 *
118 * Will return NULL if the request queue cannot be located.
119 */
120struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
121{
122 struct backing_dev_info *ret = NULL;
123 request_queue_t *q = bdev_get_queue(bdev);
124
125 if (q)
126 ret = &q->backing_dev_info;
127 return ret;
128}
1da177e4
LT
129EXPORT_SYMBOL(blk_get_backing_dev_info);
130
131void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
132{
133 q->activity_fn = fn;
134 q->activity_data = data;
135}
1da177e4
LT
136EXPORT_SYMBOL(blk_queue_activity_fn);
137
138/**
139 * blk_queue_prep_rq - set a prepare_request function for queue
140 * @q: queue
141 * @pfn: prepare_request function
142 *
143 * It's possible for a queue to register a prepare_request callback which
144 * is invoked before the request is handed to the request_fn. The goal of
145 * the function is to prepare a request for I/O, it can be used to build a
146 * cdb from the request data for instance.
147 *
148 */
149void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
150{
151 q->prep_rq_fn = pfn;
152}
153
154EXPORT_SYMBOL(blk_queue_prep_rq);
155
156/**
157 * blk_queue_merge_bvec - set a merge_bvec function for queue
158 * @q: queue
159 * @mbfn: merge_bvec_fn
160 *
161 * Usually queues have static limitations on the max sectors or segments that
162 * we can put in a request. Stacking drivers may have some settings that
163 * are dynamic, and thus we have to query the queue whether it is ok to
164 * add a new bio_vec to a bio at a given offset or not. If the block device
165 * has such limitations, it needs to register a merge_bvec_fn to control
166 * the size of bio's sent to it. Note that a block device *must* allow a
167 * single page to be added to an empty bio. The block device driver may want
168 * to use the bio_split() function to deal with these bio's. By default
169 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
170 * honored.
171 */
172void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
173{
174 q->merge_bvec_fn = mbfn;
175}
176
177EXPORT_SYMBOL(blk_queue_merge_bvec);
178
ff856bad
JA
179void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
180{
181 q->softirq_done_fn = fn;
182}
183
184EXPORT_SYMBOL(blk_queue_softirq_done);
185
1da177e4
LT
186/**
187 * blk_queue_make_request - define an alternate make_request function for a device
188 * @q: the request queue for the device to be affected
189 * @mfn: the alternate make_request function
190 *
191 * Description:
192 * The normal way for &struct bios to be passed to a device
193 * driver is for them to be collected into requests on a request
194 * queue, and then to allow the device driver to select requests
195 * off that queue when it is ready. This works well for many block
196 * devices. However some block devices (typically virtual devices
197 * such as md or lvm) do not benefit from the processing on the
198 * request queue, and are served best by having the requests passed
199 * directly to them. This can be achieved by providing a function
200 * to blk_queue_make_request().
201 *
202 * Caveat:
203 * The driver that does this *must* be able to deal appropriately
204 * with buffers in "highmemory". This can be accomplished by either calling
205 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
206 * blk_queue_bounce() to create a buffer in normal memory.
207 **/
208void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
209{
210 /*
211 * set defaults
212 */
213 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
214 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
215 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
216 q->make_request_fn = mfn;
217 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
218 q->backing_dev_info.state = 0;
219 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 220 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
221 blk_queue_hardsect_size(q, 512);
222 blk_queue_dma_alignment(q, 511);
223 blk_queue_congestion_threshold(q);
224 q->nr_batching = BLK_BATCH_REQ;
225
226 q->unplug_thresh = 4; /* hmm */
227 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
228 if (q->unplug_delay == 0)
229 q->unplug_delay = 1;
230
65f27f38 231 INIT_WORK(&q->unplug_work, blk_unplug_work);
1da177e4
LT
232
233 q->unplug_timer.function = blk_unplug_timeout;
234 q->unplug_timer.data = (unsigned long)q;
235
236 /*
237 * by default assume old behaviour and bounce for any highmem page
238 */
239 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
240
241 blk_queue_activity_fn(q, NULL, NULL);
1da177e4
LT
242}
243
244EXPORT_SYMBOL(blk_queue_make_request);
245
1ea25ecb 246static void rq_init(request_queue_t *q, struct request *rq)
1da177e4
LT
247{
248 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 249 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
250
251 rq->errors = 0;
1da177e4 252 rq->bio = rq->biotail = NULL;
2e662b65
JA
253 INIT_HLIST_NODE(&rq->hash);
254 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 255 rq->ioprio = 0;
1da177e4
LT
256 rq->buffer = NULL;
257 rq->ref_count = 1;
258 rq->q = q;
1da177e4
LT
259 rq->special = NULL;
260 rq->data_len = 0;
261 rq->data = NULL;
df46b9a4 262 rq->nr_phys_segments = 0;
1da177e4
LT
263 rq->sense = NULL;
264 rq->end_io = NULL;
265 rq->end_io_data = NULL;
ff856bad 266 rq->completion_data = NULL;
1da177e4
LT
267}
268
269/**
270 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
271 * @q: the request queue
272 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 273 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
274 *
275 * Description:
276 * For journalled file systems, doing ordered writes on a commit
277 * block instead of explicitly doing wait_on_buffer (which is bad
278 * for performance) can be a big win. Block drivers supporting this
279 * feature should call this function and indicate so.
280 *
281 **/
797e7dbb
TH
282int blk_queue_ordered(request_queue_t *q, unsigned ordered,
283 prepare_flush_fn *prepare_flush_fn)
284{
285 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
286 prepare_flush_fn == NULL) {
287 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
288 return -EINVAL;
289 }
290
291 if (ordered != QUEUE_ORDERED_NONE &&
292 ordered != QUEUE_ORDERED_DRAIN &&
293 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
294 ordered != QUEUE_ORDERED_DRAIN_FUA &&
295 ordered != QUEUE_ORDERED_TAG &&
296 ordered != QUEUE_ORDERED_TAG_FLUSH &&
297 ordered != QUEUE_ORDERED_TAG_FUA) {
298 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
299 return -EINVAL;
1da177e4 300 }
797e7dbb 301
60481b12 302 q->ordered = ordered;
797e7dbb
TH
303 q->next_ordered = ordered;
304 q->prepare_flush_fn = prepare_flush_fn;
305
306 return 0;
1da177e4
LT
307}
308
309EXPORT_SYMBOL(blk_queue_ordered);
310
311/**
312 * blk_queue_issue_flush_fn - set function for issuing a flush
313 * @q: the request queue
314 * @iff: the function to be called issuing the flush
315 *
316 * Description:
317 * If a driver supports issuing a flush command, the support is notified
318 * to the block layer by defining it through this call.
319 *
320 **/
321void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
322{
323 q->issue_flush_fn = iff;
324}
325
326EXPORT_SYMBOL(blk_queue_issue_flush_fn);
327
328/*
329 * Cache flushing for ordered writes handling
330 */
797e7dbb 331inline unsigned blk_ordered_cur_seq(request_queue_t *q)
1da177e4 332{
797e7dbb
TH
333 if (!q->ordseq)
334 return 0;
335 return 1 << ffz(q->ordseq);
1da177e4
LT
336}
337
797e7dbb 338unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 339{
1da177e4
LT
340 request_queue_t *q = rq->q;
341
797e7dbb 342 BUG_ON(q->ordseq == 0);
8922e16c 343
797e7dbb
TH
344 if (rq == &q->pre_flush_rq)
345 return QUEUE_ORDSEQ_PREFLUSH;
346 if (rq == &q->bar_rq)
347 return QUEUE_ORDSEQ_BAR;
348 if (rq == &q->post_flush_rq)
349 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 350
4aff5e23
JA
351 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
352 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
353 return QUEUE_ORDSEQ_DRAIN;
354 else
355 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
356}
357
797e7dbb 358void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
1da177e4 359{
797e7dbb
TH
360 struct request *rq;
361 int uptodate;
1da177e4 362
797e7dbb
TH
363 if (error && !q->orderr)
364 q->orderr = error;
1da177e4 365
797e7dbb
TH
366 BUG_ON(q->ordseq & seq);
367 q->ordseq |= seq;
1da177e4 368
797e7dbb
TH
369 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
370 return;
1da177e4
LT
371
372 /*
797e7dbb 373 * Okay, sequence complete.
1da177e4 374 */
797e7dbb
TH
375 rq = q->orig_bar_rq;
376 uptodate = q->orderr ? q->orderr : 1;
1da177e4 377
797e7dbb 378 q->ordseq = 0;
1da177e4 379
797e7dbb
TH
380 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
381 end_that_request_last(rq, uptodate);
1da177e4
LT
382}
383
797e7dbb 384static void pre_flush_end_io(struct request *rq, int error)
1da177e4 385{
797e7dbb
TH
386 elv_completed_request(rq->q, rq);
387 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
388}
1da177e4 389
797e7dbb
TH
390static void bar_end_io(struct request *rq, int error)
391{
392 elv_completed_request(rq->q, rq);
393 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
394}
1da177e4 395
797e7dbb
TH
396static void post_flush_end_io(struct request *rq, int error)
397{
398 elv_completed_request(rq->q, rq);
399 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
400}
1da177e4 401
797e7dbb
TH
402static void queue_flush(request_queue_t *q, unsigned which)
403{
404 struct request *rq;
405 rq_end_io_fn *end_io;
1da177e4 406
797e7dbb
TH
407 if (which == QUEUE_ORDERED_PREFLUSH) {
408 rq = &q->pre_flush_rq;
409 end_io = pre_flush_end_io;
410 } else {
411 rq = &q->post_flush_rq;
412 end_io = post_flush_end_io;
1da177e4 413 }
797e7dbb 414
4aff5e23 415 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 416 rq_init(q, rq);
797e7dbb 417 rq->elevator_private = NULL;
c00895ab 418 rq->elevator_private2 = NULL;
797e7dbb 419 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
420 rq->end_io = end_io;
421 q->prepare_flush_fn(q, rq);
422
30e9656c 423 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
424}
425
797e7dbb
TH
426static inline struct request *start_ordered(request_queue_t *q,
427 struct request *rq)
1da177e4 428{
797e7dbb
TH
429 q->bi_size = 0;
430 q->orderr = 0;
431 q->ordered = q->next_ordered;
432 q->ordseq |= QUEUE_ORDSEQ_STARTED;
433
434 /*
435 * Prep proxy barrier request.
436 */
437 blkdev_dequeue_request(rq);
438 q->orig_bar_rq = rq;
439 rq = &q->bar_rq;
4aff5e23 440 rq->cmd_flags = 0;
797e7dbb 441 rq_init(q, rq);
4aff5e23
JA
442 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
443 rq->cmd_flags |= REQ_RW;
444 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
797e7dbb 445 rq->elevator_private = NULL;
c00895ab 446 rq->elevator_private2 = NULL;
797e7dbb
TH
447 init_request_from_bio(rq, q->orig_bar_rq->bio);
448 rq->end_io = bar_end_io;
449
450 /*
451 * Queue ordered sequence. As we stack them at the head, we
452 * need to queue in reverse order. Note that we rely on that
453 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
454 * request gets inbetween ordered sequence.
455 */
456 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
457 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
458 else
459 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
460
30e9656c 461 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
462
463 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
464 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
465 rq = &q->pre_flush_rq;
466 } else
467 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 468
797e7dbb
TH
469 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
470 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
471 else
472 rq = NULL;
473
474 return rq;
1da177e4
LT
475}
476
797e7dbb 477int blk_do_ordered(request_queue_t *q, struct request **rqp)
1da177e4 478{
9a7a67af 479 struct request *rq = *rqp;
797e7dbb 480 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 481
797e7dbb
TH
482 if (!q->ordseq) {
483 if (!is_barrier)
484 return 1;
1da177e4 485
797e7dbb
TH
486 if (q->next_ordered != QUEUE_ORDERED_NONE) {
487 *rqp = start_ordered(q, rq);
488 return 1;
489 } else {
490 /*
491 * This can happen when the queue switches to
492 * ORDERED_NONE while this request is on it.
493 */
494 blkdev_dequeue_request(rq);
495 end_that_request_first(rq, -EOPNOTSUPP,
496 rq->hard_nr_sectors);
497 end_that_request_last(rq, -EOPNOTSUPP);
498 *rqp = NULL;
499 return 0;
500 }
501 }
1da177e4 502
9a7a67af
JA
503 /*
504 * Ordered sequence in progress
505 */
506
507 /* Special requests are not subject to ordering rules. */
508 if (!blk_fs_request(rq) &&
509 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
510 return 1;
511
797e7dbb 512 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 513 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
514 if (is_barrier && rq != &q->bar_rq)
515 *rqp = NULL;
9a7a67af
JA
516 } else {
517 /* Ordered by draining. Wait for turn. */
518 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
519 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
520 *rqp = NULL;
1da177e4
LT
521 }
522
523 return 1;
524}
525
797e7dbb 526static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
1da177e4 527{
797e7dbb
TH
528 request_queue_t *q = bio->bi_private;
529 struct bio_vec *bvec;
530 int i;
531
532 /*
533 * This is dry run, restore bio_sector and size. We'll finish
534 * this request again with the original bi_end_io after an
535 * error occurs or post flush is complete.
536 */
537 q->bi_size += bytes;
538
539 if (bio->bi_size)
540 return 1;
541
542 /* Rewind bvec's */
543 bio->bi_idx = 0;
544 bio_for_each_segment(bvec, bio, i) {
545 bvec->bv_len += bvec->bv_offset;
546 bvec->bv_offset = 0;
547 }
548
549 /* Reset bio */
550 set_bit(BIO_UPTODATE, &bio->bi_flags);
551 bio->bi_size = q->bi_size;
552 bio->bi_sector -= (q->bi_size >> 9);
553 q->bi_size = 0;
554
555 return 0;
1da177e4 556}
1da177e4 557
1ea25ecb
JA
558static int ordered_bio_endio(struct request *rq, struct bio *bio,
559 unsigned int nbytes, int error)
1da177e4 560{
797e7dbb
TH
561 request_queue_t *q = rq->q;
562 bio_end_io_t *endio;
563 void *private;
564
565 if (&q->bar_rq != rq)
566 return 0;
567
568 /*
569 * Okay, this is the barrier request in progress, dry finish it.
570 */
571 if (error && !q->orderr)
572 q->orderr = error;
573
574 endio = bio->bi_end_io;
575 private = bio->bi_private;
576 bio->bi_end_io = flush_dry_bio_endio;
577 bio->bi_private = q;
578
579 bio_endio(bio, nbytes, error);
580
581 bio->bi_end_io = endio;
582 bio->bi_private = private;
583
584 return 1;
1da177e4 585}
1da177e4
LT
586
587/**
588 * blk_queue_bounce_limit - set bounce buffer limit for queue
589 * @q: the request queue for the device
590 * @dma_addr: bus address limit
591 *
592 * Description:
593 * Different hardware can have different requirements as to what pages
594 * it can do I/O directly to. A low level driver can call
595 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 596 * buffers for doing I/O to pages residing above @page.
1da177e4
LT
597 **/
598void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
599{
600 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
601 int dma = 0;
602
603 q->bounce_gfp = GFP_NOIO;
604#if BITS_PER_LONG == 64
605 /* Assume anything <= 4GB can be handled by IOMMU.
606 Actually some IOMMUs can handle everything, but I don't
607 know of a way to test this here. */
8269730b 608 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
609 dma = 1;
610 q->bounce_pfn = max_low_pfn;
611#else
612 if (bounce_pfn < blk_max_low_pfn)
613 dma = 1;
614 q->bounce_pfn = bounce_pfn;
615#endif
616 if (dma) {
1da177e4
LT
617 init_emergency_isa_pool();
618 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
619 q->bounce_pfn = bounce_pfn;
620 }
1da177e4
LT
621}
622
623EXPORT_SYMBOL(blk_queue_bounce_limit);
624
625/**
626 * blk_queue_max_sectors - set max sectors for a request for this queue
627 * @q: the request queue for the device
628 * @max_sectors: max sectors in the usual 512b unit
629 *
630 * Description:
631 * Enables a low level driver to set an upper limit on the size of
632 * received requests.
633 **/
2cb2e147 634void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
1da177e4
LT
635{
636 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
637 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
638 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
639 }
640
defd94b7
MC
641 if (BLK_DEF_MAX_SECTORS > max_sectors)
642 q->max_hw_sectors = q->max_sectors = max_sectors;
643 else {
644 q->max_sectors = BLK_DEF_MAX_SECTORS;
645 q->max_hw_sectors = max_sectors;
646 }
1da177e4
LT
647}
648
649EXPORT_SYMBOL(blk_queue_max_sectors);
650
651/**
652 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
653 * @q: the request queue for the device
654 * @max_segments: max number of segments
655 *
656 * Description:
657 * Enables a low level driver to set an upper limit on the number of
658 * physical data segments in a request. This would be the largest sized
659 * scatter list the driver could handle.
660 **/
661void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
662{
663 if (!max_segments) {
664 max_segments = 1;
665 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
666 }
667
668 q->max_phys_segments = max_segments;
669}
670
671EXPORT_SYMBOL(blk_queue_max_phys_segments);
672
673/**
674 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
675 * @q: the request queue for the device
676 * @max_segments: max number of segments
677 *
678 * Description:
679 * Enables a low level driver to set an upper limit on the number of
680 * hw data segments in a request. This would be the largest number of
681 * address/length pairs the host adapter can actually give as once
682 * to the device.
683 **/
684void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
685{
686 if (!max_segments) {
687 max_segments = 1;
688 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
689 }
690
691 q->max_hw_segments = max_segments;
692}
693
694EXPORT_SYMBOL(blk_queue_max_hw_segments);
695
696/**
697 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
698 * @q: the request queue for the device
699 * @max_size: max size of segment in bytes
700 *
701 * Description:
702 * Enables a low level driver to set an upper limit on the size of a
703 * coalesced segment
704 **/
705void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
706{
707 if (max_size < PAGE_CACHE_SIZE) {
708 max_size = PAGE_CACHE_SIZE;
709 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
710 }
711
712 q->max_segment_size = max_size;
713}
714
715EXPORT_SYMBOL(blk_queue_max_segment_size);
716
717/**
718 * blk_queue_hardsect_size - set hardware sector size for the queue
719 * @q: the request queue for the device
720 * @size: the hardware sector size, in bytes
721 *
722 * Description:
723 * This should typically be set to the lowest possible sector size
724 * that the hardware can operate on (possible without reverting to
725 * even internal read-modify-write operations). Usually the default
726 * of 512 covers most hardware.
727 **/
728void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
729{
730 q->hardsect_size = size;
731}
732
733EXPORT_SYMBOL(blk_queue_hardsect_size);
734
735/*
736 * Returns the minimum that is _not_ zero, unless both are zero.
737 */
738#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
739
740/**
741 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
742 * @t: the stacking driver (top)
743 * @b: the underlying device (bottom)
744 **/
745void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
746{
747 /* zero is "infinity" */
defd94b7
MC
748 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
749 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
750
751 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
752 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
753 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
754 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
755 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
756 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
757}
758
759EXPORT_SYMBOL(blk_queue_stack_limits);
760
761/**
762 * blk_queue_segment_boundary - set boundary rules for segment merging
763 * @q: the request queue for the device
764 * @mask: the memory boundary mask
765 **/
766void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
767{
768 if (mask < PAGE_CACHE_SIZE - 1) {
769 mask = PAGE_CACHE_SIZE - 1;
770 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
771 }
772
773 q->seg_boundary_mask = mask;
774}
775
776EXPORT_SYMBOL(blk_queue_segment_boundary);
777
778/**
779 * blk_queue_dma_alignment - set dma length and memory alignment
780 * @q: the request queue for the device
781 * @mask: alignment mask
782 *
783 * description:
784 * set required memory and length aligment for direct dma transactions.
785 * this is used when buiding direct io requests for the queue.
786 *
787 **/
788void blk_queue_dma_alignment(request_queue_t *q, int mask)
789{
790 q->dma_alignment = mask;
791}
792
793EXPORT_SYMBOL(blk_queue_dma_alignment);
794
795/**
796 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
797 * @q: The request queue for the device
798 * @tag: The tag of the request
799 *
800 * Notes:
801 * Should be used when a device returns a tag and you want to match
802 * it with a request.
803 *
804 * no locks need be held.
805 **/
806struct request *blk_queue_find_tag(request_queue_t *q, int tag)
807{
f583f492 808 return blk_map_queue_find_tag(q->queue_tags, tag);
1da177e4
LT
809}
810
811EXPORT_SYMBOL(blk_queue_find_tag);
812
813/**
492dfb48
JB
814 * __blk_free_tags - release a given set of tag maintenance info
815 * @bqt: the tag map to free
1da177e4 816 *
492dfb48
JB
817 * Tries to free the specified @bqt@. Returns true if it was
818 * actually freed and false if there are still references using it
819 */
820static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 821{
492dfb48 822 int retval;
1da177e4 823
492dfb48
JB
824 retval = atomic_dec_and_test(&bqt->refcnt);
825 if (retval) {
1da177e4
LT
826 BUG_ON(bqt->busy);
827 BUG_ON(!list_empty(&bqt->busy_list));
828
829 kfree(bqt->tag_index);
830 bqt->tag_index = NULL;
831
832 kfree(bqt->tag_map);
833 bqt->tag_map = NULL;
834
835 kfree(bqt);
492dfb48 836
1da177e4
LT
837 }
838
492dfb48
JB
839 return retval;
840}
841
842/**
843 * __blk_queue_free_tags - release tag maintenance info
844 * @q: the request queue for the device
845 *
846 * Notes:
847 * blk_cleanup_queue() will take care of calling this function, if tagging
848 * has been used. So there's no need to call this directly.
849 **/
850static void __blk_queue_free_tags(request_queue_t *q)
851{
852 struct blk_queue_tag *bqt = q->queue_tags;
853
854 if (!bqt)
855 return;
856
857 __blk_free_tags(bqt);
858
1da177e4
LT
859 q->queue_tags = NULL;
860 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
861}
862
492dfb48
JB
863
864/**
865 * blk_free_tags - release a given set of tag maintenance info
866 * @bqt: the tag map to free
867 *
868 * For externally managed @bqt@ frees the map. Callers of this
869 * function must guarantee to have released all the queues that
870 * might have been using this tag map.
871 */
872void blk_free_tags(struct blk_queue_tag *bqt)
873{
874 if (unlikely(!__blk_free_tags(bqt)))
875 BUG();
876}
877EXPORT_SYMBOL(blk_free_tags);
878
1da177e4
LT
879/**
880 * blk_queue_free_tags - release tag maintenance info
881 * @q: the request queue for the device
882 *
883 * Notes:
884 * This is used to disabled tagged queuing to a device, yet leave
885 * queue in function.
886 **/
887void blk_queue_free_tags(request_queue_t *q)
888{
889 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
890}
891
892EXPORT_SYMBOL(blk_queue_free_tags);
893
894static int
895init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
896{
1da177e4
LT
897 struct request **tag_index;
898 unsigned long *tag_map;
fa72b903 899 int nr_ulongs;
1da177e4 900
492dfb48 901 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
902 depth = q->nr_requests * 2;
903 printk(KERN_ERR "%s: adjusted depth to %d\n",
904 __FUNCTION__, depth);
905 }
906
f68110fc 907 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
908 if (!tag_index)
909 goto fail;
910
f7d37d02 911 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 912 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
913 if (!tag_map)
914 goto fail;
915
ba025082 916 tags->real_max_depth = depth;
1da177e4 917 tags->max_depth = depth;
1da177e4
LT
918 tags->tag_index = tag_index;
919 tags->tag_map = tag_map;
920
1da177e4
LT
921 return 0;
922fail:
923 kfree(tag_index);
924 return -ENOMEM;
925}
926
492dfb48
JB
927static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
928 int depth)
929{
930 struct blk_queue_tag *tags;
931
932 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
933 if (!tags)
934 goto fail;
935
936 if (init_tag_map(q, tags, depth))
937 goto fail;
938
939 INIT_LIST_HEAD(&tags->busy_list);
940 tags->busy = 0;
941 atomic_set(&tags->refcnt, 1);
942 return tags;
943fail:
944 kfree(tags);
945 return NULL;
946}
947
948/**
949 * blk_init_tags - initialize the tag info for an external tag map
950 * @depth: the maximum queue depth supported
951 * @tags: the tag to use
952 **/
953struct blk_queue_tag *blk_init_tags(int depth)
954{
955 return __blk_queue_init_tags(NULL, depth);
956}
957EXPORT_SYMBOL(blk_init_tags);
958
1da177e4
LT
959/**
960 * blk_queue_init_tags - initialize the queue tag info
961 * @q: the request queue for the device
962 * @depth: the maximum queue depth supported
963 * @tags: the tag to use
964 **/
965int blk_queue_init_tags(request_queue_t *q, int depth,
966 struct blk_queue_tag *tags)
967{
968 int rc;
969
970 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
971
972 if (!tags && !q->queue_tags) {
492dfb48 973 tags = __blk_queue_init_tags(q, depth);
1da177e4 974
492dfb48 975 if (!tags)
1da177e4 976 goto fail;
1da177e4
LT
977 } else if (q->queue_tags) {
978 if ((rc = blk_queue_resize_tags(q, depth)))
979 return rc;
980 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
981 return 0;
982 } else
983 atomic_inc(&tags->refcnt);
984
985 /*
986 * assign it, all done
987 */
988 q->queue_tags = tags;
989 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
990 return 0;
991fail:
992 kfree(tags);
993 return -ENOMEM;
994}
995
996EXPORT_SYMBOL(blk_queue_init_tags);
997
998/**
999 * blk_queue_resize_tags - change the queueing depth
1000 * @q: the request queue for the device
1001 * @new_depth: the new max command queueing depth
1002 *
1003 * Notes:
1004 * Must be called with the queue lock held.
1005 **/
1006int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1007{
1008 struct blk_queue_tag *bqt = q->queue_tags;
1009 struct request **tag_index;
1010 unsigned long *tag_map;
fa72b903 1011 int max_depth, nr_ulongs;
1da177e4
LT
1012
1013 if (!bqt)
1014 return -ENXIO;
1015
ba025082
TH
1016 /*
1017 * if we already have large enough real_max_depth. just
1018 * adjust max_depth. *NOTE* as requests with tag value
1019 * between new_depth and real_max_depth can be in-flight, tag
1020 * map can not be shrunk blindly here.
1021 */
1022 if (new_depth <= bqt->real_max_depth) {
1023 bqt->max_depth = new_depth;
1024 return 0;
1025 }
1026
492dfb48
JB
1027 /*
1028 * Currently cannot replace a shared tag map with a new
1029 * one, so error out if this is the case
1030 */
1031 if (atomic_read(&bqt->refcnt) != 1)
1032 return -EBUSY;
1033
1da177e4
LT
1034 /*
1035 * save the old state info, so we can copy it back
1036 */
1037 tag_index = bqt->tag_index;
1038 tag_map = bqt->tag_map;
ba025082 1039 max_depth = bqt->real_max_depth;
1da177e4
LT
1040
1041 if (init_tag_map(q, bqt, new_depth))
1042 return -ENOMEM;
1043
1044 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1045 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1046 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1047
1048 kfree(tag_index);
1049 kfree(tag_map);
1050 return 0;
1051}
1052
1053EXPORT_SYMBOL(blk_queue_resize_tags);
1054
1055/**
1056 * blk_queue_end_tag - end tag operations for a request
1057 * @q: the request queue for the device
1058 * @rq: the request that has completed
1059 *
1060 * Description:
1061 * Typically called when end_that_request_first() returns 0, meaning
1062 * all transfers have been done for a request. It's important to call
1063 * this function before end_that_request_last(), as that will put the
1064 * request back on the free list thus corrupting the internal tag list.
1065 *
1066 * Notes:
1067 * queue lock must be held.
1068 **/
1069void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1070{
1071 struct blk_queue_tag *bqt = q->queue_tags;
1072 int tag = rq->tag;
1073
1074 BUG_ON(tag == -1);
1075
ba025082 1076 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1077 /*
1078 * This can happen after tag depth has been reduced.
1079 * FIXME: how about a warning or info message here?
1080 */
1da177e4
LT
1081 return;
1082
1083 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
040c928c
TH
1084 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1085 __FUNCTION__, tag);
1da177e4
LT
1086 return;
1087 }
1088
1089 list_del_init(&rq->queuelist);
4aff5e23 1090 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1091 rq->tag = -1;
1092
1093 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1094 printk(KERN_ERR "%s: tag %d is missing\n",
1095 __FUNCTION__, tag);
1da177e4
LT
1096
1097 bqt->tag_index[tag] = NULL;
1098 bqt->busy--;
1099}
1100
1101EXPORT_SYMBOL(blk_queue_end_tag);
1102
1103/**
1104 * blk_queue_start_tag - find a free tag and assign it
1105 * @q: the request queue for the device
1106 * @rq: the block request that needs tagging
1107 *
1108 * Description:
1109 * This can either be used as a stand-alone helper, or possibly be
1110 * assigned as the queue &prep_rq_fn (in which case &struct request
1111 * automagically gets a tag assigned). Note that this function
1112 * assumes that any type of request can be queued! if this is not
1113 * true for your device, you must check the request type before
1114 * calling this function. The request will also be removed from
1115 * the request queue, so it's the drivers responsibility to readd
1116 * it if it should need to be restarted for some reason.
1117 *
1118 * Notes:
1119 * queue lock must be held.
1120 **/
1121int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1122{
1123 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1124 int tag;
1da177e4 1125
4aff5e23 1126 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1127 printk(KERN_ERR
040c928c
TH
1128 "%s: request %p for device [%s] already tagged %d",
1129 __FUNCTION__, rq,
1130 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1131 BUG();
1132 }
1133
059af497
JA
1134 /*
1135 * Protect against shared tag maps, as we may not have exclusive
1136 * access to the tag map.
1137 */
1138 do {
1139 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1140 if (tag >= bqt->max_depth)
1141 return 1;
1da177e4 1142
059af497 1143 } while (test_and_set_bit(tag, bqt->tag_map));
1da177e4 1144
4aff5e23 1145 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1146 rq->tag = tag;
1147 bqt->tag_index[tag] = rq;
1148 blkdev_dequeue_request(rq);
1149 list_add(&rq->queuelist, &bqt->busy_list);
1150 bqt->busy++;
1151 return 0;
1152}
1153
1154EXPORT_SYMBOL(blk_queue_start_tag);
1155
1156/**
1157 * blk_queue_invalidate_tags - invalidate all pending tags
1158 * @q: the request queue for the device
1159 *
1160 * Description:
1161 * Hardware conditions may dictate a need to stop all pending requests.
1162 * In this case, we will safely clear the block side of the tag queue and
1163 * readd all requests to the request queue in the right order.
1164 *
1165 * Notes:
1166 * queue lock must be held.
1167 **/
1168void blk_queue_invalidate_tags(request_queue_t *q)
1169{
1170 struct blk_queue_tag *bqt = q->queue_tags;
1171 struct list_head *tmp, *n;
1172 struct request *rq;
1173
1174 list_for_each_safe(tmp, n, &bqt->busy_list) {
1175 rq = list_entry_rq(tmp);
1176
1177 if (rq->tag == -1) {
040c928c
TH
1178 printk(KERN_ERR
1179 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4 1180 list_del_init(&rq->queuelist);
4aff5e23 1181 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1182 } else
1183 blk_queue_end_tag(q, rq);
1184
4aff5e23 1185 rq->cmd_flags &= ~REQ_STARTED;
1da177e4
LT
1186 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1187 }
1188}
1189
1190EXPORT_SYMBOL(blk_queue_invalidate_tags);
1191
1da177e4
LT
1192void blk_dump_rq_flags(struct request *rq, char *msg)
1193{
1194 int bit;
1195
4aff5e23
JA
1196 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1197 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1198 rq->cmd_flags);
1da177e4
LT
1199
1200 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1201 rq->nr_sectors,
1202 rq->current_nr_sectors);
1203 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1204
4aff5e23 1205 if (blk_pc_request(rq)) {
1da177e4
LT
1206 printk("cdb: ");
1207 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1208 printk("%02x ", rq->cmd[bit]);
1209 printk("\n");
1210 }
1211}
1212
1213EXPORT_SYMBOL(blk_dump_rq_flags);
1214
1215void blk_recount_segments(request_queue_t *q, struct bio *bio)
1216{
1217 struct bio_vec *bv, *bvprv = NULL;
1218 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1219 int high, highprv = 1;
1220
1221 if (unlikely(!bio->bi_io_vec))
1222 return;
1223
1224 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1225 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1226 bio_for_each_segment(bv, bio, i) {
1227 /*
1228 * the trick here is making sure that a high page is never
1229 * considered part of another segment, since that might
1230 * change with the bounce page.
1231 */
1232 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1233 if (high || highprv)
1234 goto new_hw_segment;
1235 if (cluster) {
1236 if (seg_size + bv->bv_len > q->max_segment_size)
1237 goto new_segment;
1238 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1239 goto new_segment;
1240 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1241 goto new_segment;
1242 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1243 goto new_hw_segment;
1244
1245 seg_size += bv->bv_len;
1246 hw_seg_size += bv->bv_len;
1247 bvprv = bv;
1248 continue;
1249 }
1250new_segment:
1251 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1252 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1253 hw_seg_size += bv->bv_len;
1254 } else {
1255new_hw_segment:
1256 if (hw_seg_size > bio->bi_hw_front_size)
1257 bio->bi_hw_front_size = hw_seg_size;
1258 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1259 nr_hw_segs++;
1260 }
1261
1262 nr_phys_segs++;
1263 bvprv = bv;
1264 seg_size = bv->bv_len;
1265 highprv = high;
1266 }
1267 if (hw_seg_size > bio->bi_hw_back_size)
1268 bio->bi_hw_back_size = hw_seg_size;
1269 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1270 bio->bi_hw_front_size = hw_seg_size;
1271 bio->bi_phys_segments = nr_phys_segs;
1272 bio->bi_hw_segments = nr_hw_segs;
1273 bio->bi_flags |= (1 << BIO_SEG_VALID);
1274}
1275
1276
93d17d3d 1277static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1278 struct bio *nxt)
1279{
1280 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1281 return 0;
1282
1283 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1284 return 0;
1285 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1286 return 0;
1287
1288 /*
1289 * bio and nxt are contigous in memory, check if the queue allows
1290 * these two to be merged into one
1291 */
1292 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1293 return 1;
1294
1295 return 0;
1296}
1297
93d17d3d 1298static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1299 struct bio *nxt)
1300{
1301 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1302 blk_recount_segments(q, bio);
1303 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1304 blk_recount_segments(q, nxt);
1305 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1306 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1307 return 0;
1308 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1309 return 0;
1310
1311 return 1;
1312}
1313
1da177e4
LT
1314/*
1315 * map a request to scatterlist, return number of sg entries setup. Caller
1316 * must make sure sg can hold rq->nr_phys_segments entries
1317 */
1318int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1319{
1320 struct bio_vec *bvec, *bvprv;
1321 struct bio *bio;
1322 int nsegs, i, cluster;
1323
1324 nsegs = 0;
1325 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1326
1327 /*
1328 * for each bio in rq
1329 */
1330 bvprv = NULL;
1331 rq_for_each_bio(bio, rq) {
1332 /*
1333 * for each segment in bio
1334 */
1335 bio_for_each_segment(bvec, bio, i) {
1336 int nbytes = bvec->bv_len;
1337
1338 if (bvprv && cluster) {
1339 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1340 goto new_segment;
1341
1342 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1343 goto new_segment;
1344 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1345 goto new_segment;
1346
1347 sg[nsegs - 1].length += nbytes;
1348 } else {
1349new_segment:
1350 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1351 sg[nsegs].page = bvec->bv_page;
1352 sg[nsegs].length = nbytes;
1353 sg[nsegs].offset = bvec->bv_offset;
1354
1355 nsegs++;
1356 }
1357 bvprv = bvec;
1358 } /* segments in bio */
1359 } /* bios in rq */
1360
1361 return nsegs;
1362}
1363
1364EXPORT_SYMBOL(blk_rq_map_sg);
1365
1366/*
1367 * the standard queue merge functions, can be overridden with device
1368 * specific ones if so desired
1369 */
1370
1371static inline int ll_new_mergeable(request_queue_t *q,
1372 struct request *req,
1373 struct bio *bio)
1374{
1375 int nr_phys_segs = bio_phys_segments(q, bio);
1376
1377 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1378 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1379 if (req == q->last_merge)
1380 q->last_merge = NULL;
1381 return 0;
1382 }
1383
1384 /*
1385 * A hw segment is just getting larger, bump just the phys
1386 * counter.
1387 */
1388 req->nr_phys_segments += nr_phys_segs;
1389 return 1;
1390}
1391
1392static inline int ll_new_hw_segment(request_queue_t *q,
1393 struct request *req,
1394 struct bio *bio)
1395{
1396 int nr_hw_segs = bio_hw_segments(q, bio);
1397 int nr_phys_segs = bio_phys_segments(q, bio);
1398
1399 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1400 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1401 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1402 if (req == q->last_merge)
1403 q->last_merge = NULL;
1404 return 0;
1405 }
1406
1407 /*
1408 * This will form the start of a new hw segment. Bump both
1409 * counters.
1410 */
1411 req->nr_hw_segments += nr_hw_segs;
1412 req->nr_phys_segments += nr_phys_segs;
1413 return 1;
1414}
1415
1416static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1417 struct bio *bio)
1418{
defd94b7 1419 unsigned short max_sectors;
1da177e4
LT
1420 int len;
1421
defd94b7
MC
1422 if (unlikely(blk_pc_request(req)))
1423 max_sectors = q->max_hw_sectors;
1424 else
1425 max_sectors = q->max_sectors;
1426
1427 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1428 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1429 if (req == q->last_merge)
1430 q->last_merge = NULL;
1431 return 0;
1432 }
1433 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1434 blk_recount_segments(q, req->biotail);
1435 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1436 blk_recount_segments(q, bio);
1437 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1438 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1439 !BIOVEC_VIRT_OVERSIZE(len)) {
1440 int mergeable = ll_new_mergeable(q, req, bio);
1441
1442 if (mergeable) {
1443 if (req->nr_hw_segments == 1)
1444 req->bio->bi_hw_front_size = len;
1445 if (bio->bi_hw_segments == 1)
1446 bio->bi_hw_back_size = len;
1447 }
1448 return mergeable;
1449 }
1450
1451 return ll_new_hw_segment(q, req, bio);
1452}
1453
1454static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1455 struct bio *bio)
1456{
defd94b7 1457 unsigned short max_sectors;
1da177e4
LT
1458 int len;
1459
defd94b7
MC
1460 if (unlikely(blk_pc_request(req)))
1461 max_sectors = q->max_hw_sectors;
1462 else
1463 max_sectors = q->max_sectors;
1464
1465
1466 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1467 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1468 if (req == q->last_merge)
1469 q->last_merge = NULL;
1470 return 0;
1471 }
1472 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1473 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1474 blk_recount_segments(q, bio);
1475 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1476 blk_recount_segments(q, req->bio);
1477 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1478 !BIOVEC_VIRT_OVERSIZE(len)) {
1479 int mergeable = ll_new_mergeable(q, req, bio);
1480
1481 if (mergeable) {
1482 if (bio->bi_hw_segments == 1)
1483 bio->bi_hw_front_size = len;
1484 if (req->nr_hw_segments == 1)
1485 req->biotail->bi_hw_back_size = len;
1486 }
1487 return mergeable;
1488 }
1489
1490 return ll_new_hw_segment(q, req, bio);
1491}
1492
1493static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1494 struct request *next)
1495{
dfa1a553
ND
1496 int total_phys_segments;
1497 int total_hw_segments;
1da177e4
LT
1498
1499 /*
1500 * First check if the either of the requests are re-queued
1501 * requests. Can't merge them if they are.
1502 */
1503 if (req->special || next->special)
1504 return 0;
1505
1506 /*
dfa1a553 1507 * Will it become too large?
1da177e4
LT
1508 */
1509 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1510 return 0;
1511
1512 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1513 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1514 total_phys_segments--;
1515
1516 if (total_phys_segments > q->max_phys_segments)
1517 return 0;
1518
1519 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1520 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1521 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1522 /*
1523 * propagate the combined length to the end of the requests
1524 */
1525 if (req->nr_hw_segments == 1)
1526 req->bio->bi_hw_front_size = len;
1527 if (next->nr_hw_segments == 1)
1528 next->biotail->bi_hw_back_size = len;
1529 total_hw_segments--;
1530 }
1531
1532 if (total_hw_segments > q->max_hw_segments)
1533 return 0;
1534
1535 /* Merge is OK... */
1536 req->nr_phys_segments = total_phys_segments;
1537 req->nr_hw_segments = total_hw_segments;
1538 return 1;
1539}
1540
1541/*
1542 * "plug" the device if there are no outstanding requests: this will
1543 * force the transfer to start only after we have put all the requests
1544 * on the list.
1545 *
1546 * This is called with interrupts off and no requests on the queue and
1547 * with the queue lock held.
1548 */
1549void blk_plug_device(request_queue_t *q)
1550{
1551 WARN_ON(!irqs_disabled());
1552
1553 /*
1554 * don't plug a stopped queue, it must be paired with blk_start_queue()
1555 * which will restart the queueing
1556 */
7daac490 1557 if (blk_queue_stopped(q))
1da177e4
LT
1558 return;
1559
2056a782 1560 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1561 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1562 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1563 }
1da177e4
LT
1564}
1565
1566EXPORT_SYMBOL(blk_plug_device);
1567
1568/*
1569 * remove the queue from the plugged list, if present. called with
1570 * queue lock held and interrupts disabled.
1571 */
1572int blk_remove_plug(request_queue_t *q)
1573{
1574 WARN_ON(!irqs_disabled());
1575
1576 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1577 return 0;
1578
1579 del_timer(&q->unplug_timer);
1580 return 1;
1581}
1582
1583EXPORT_SYMBOL(blk_remove_plug);
1584
1585/*
1586 * remove the plug and let it rip..
1587 */
1588void __generic_unplug_device(request_queue_t *q)
1589{
7daac490 1590 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1591 return;
1592
1593 if (!blk_remove_plug(q))
1594 return;
1595
22e2c507 1596 q->request_fn(q);
1da177e4
LT
1597}
1598EXPORT_SYMBOL(__generic_unplug_device);
1599
1600/**
1601 * generic_unplug_device - fire a request queue
1602 * @q: The &request_queue_t in question
1603 *
1604 * Description:
1605 * Linux uses plugging to build bigger requests queues before letting
1606 * the device have at them. If a queue is plugged, the I/O scheduler
1607 * is still adding and merging requests on the queue. Once the queue
1608 * gets unplugged, the request_fn defined for the queue is invoked and
1609 * transfers started.
1610 **/
1611void generic_unplug_device(request_queue_t *q)
1612{
1613 spin_lock_irq(q->queue_lock);
1614 __generic_unplug_device(q);
1615 spin_unlock_irq(q->queue_lock);
1616}
1617EXPORT_SYMBOL(generic_unplug_device);
1618
1619static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1620 struct page *page)
1621{
1622 request_queue_t *q = bdi->unplug_io_data;
1623
1624 /*
1625 * devices don't necessarily have an ->unplug_fn defined
1626 */
2056a782
JA
1627 if (q->unplug_fn) {
1628 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1629 q->rq.count[READ] + q->rq.count[WRITE]);
1630
1da177e4 1631 q->unplug_fn(q);
2056a782 1632 }
1da177e4
LT
1633}
1634
65f27f38 1635static void blk_unplug_work(struct work_struct *work)
1da177e4 1636{
65f27f38 1637 request_queue_t *q = container_of(work, request_queue_t, unplug_work);
1da177e4 1638
2056a782
JA
1639 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1640 q->rq.count[READ] + q->rq.count[WRITE]);
1641
1da177e4
LT
1642 q->unplug_fn(q);
1643}
1644
1645static void blk_unplug_timeout(unsigned long data)
1646{
1647 request_queue_t *q = (request_queue_t *)data;
1648
2056a782
JA
1649 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1650 q->rq.count[READ] + q->rq.count[WRITE]);
1651
1da177e4
LT
1652 kblockd_schedule_work(&q->unplug_work);
1653}
1654
1655/**
1656 * blk_start_queue - restart a previously stopped queue
1657 * @q: The &request_queue_t in question
1658 *
1659 * Description:
1660 * blk_start_queue() will clear the stop flag on the queue, and call
1661 * the request_fn for the queue if it was in a stopped state when
1662 * entered. Also see blk_stop_queue(). Queue lock must be held.
1663 **/
1664void blk_start_queue(request_queue_t *q)
1665{
a038e253
PBG
1666 WARN_ON(!irqs_disabled());
1667
1da177e4
LT
1668 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1669
1670 /*
1671 * one level of recursion is ok and is much faster than kicking
1672 * the unplug handling
1673 */
1674 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1675 q->request_fn(q);
1676 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1677 } else {
1678 blk_plug_device(q);
1679 kblockd_schedule_work(&q->unplug_work);
1680 }
1681}
1682
1683EXPORT_SYMBOL(blk_start_queue);
1684
1685/**
1686 * blk_stop_queue - stop a queue
1687 * @q: The &request_queue_t in question
1688 *
1689 * Description:
1690 * The Linux block layer assumes that a block driver will consume all
1691 * entries on the request queue when the request_fn strategy is called.
1692 * Often this will not happen, because of hardware limitations (queue
1693 * depth settings). If a device driver gets a 'queue full' response,
1694 * or if it simply chooses not to queue more I/O at one point, it can
1695 * call this function to prevent the request_fn from being called until
1696 * the driver has signalled it's ready to go again. This happens by calling
1697 * blk_start_queue() to restart queue operations. Queue lock must be held.
1698 **/
1699void blk_stop_queue(request_queue_t *q)
1700{
1701 blk_remove_plug(q);
1702 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1703}
1704EXPORT_SYMBOL(blk_stop_queue);
1705
1706/**
1707 * blk_sync_queue - cancel any pending callbacks on a queue
1708 * @q: the queue
1709 *
1710 * Description:
1711 * The block layer may perform asynchronous callback activity
1712 * on a queue, such as calling the unplug function after a timeout.
1713 * A block device may call blk_sync_queue to ensure that any
1714 * such activity is cancelled, thus allowing it to release resources
1715 * the the callbacks might use. The caller must already have made sure
1716 * that its ->make_request_fn will not re-add plugging prior to calling
1717 * this function.
1718 *
1719 */
1720void blk_sync_queue(struct request_queue *q)
1721{
1722 del_timer_sync(&q->unplug_timer);
1723 kblockd_flush();
1724}
1725EXPORT_SYMBOL(blk_sync_queue);
1726
1727/**
1728 * blk_run_queue - run a single device queue
1729 * @q: The queue to run
1730 */
1731void blk_run_queue(struct request_queue *q)
1732{
1733 unsigned long flags;
1734
1735 spin_lock_irqsave(q->queue_lock, flags);
1736 blk_remove_plug(q);
dac07ec1
JA
1737
1738 /*
1739 * Only recurse once to avoid overrunning the stack, let the unplug
1740 * handling reinvoke the handler shortly if we already got there.
1741 */
1742 if (!elv_queue_empty(q)) {
1743 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1744 q->request_fn(q);
1745 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1746 } else {
1747 blk_plug_device(q);
1748 kblockd_schedule_work(&q->unplug_work);
1749 }
1750 }
1751
1da177e4
LT
1752 spin_unlock_irqrestore(q->queue_lock, flags);
1753}
1754EXPORT_SYMBOL(blk_run_queue);
1755
1756/**
1757 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
a580290c 1758 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1759 *
1760 * Description:
1761 * blk_cleanup_queue is the pair to blk_init_queue() or
1762 * blk_queue_make_request(). It should be called when a request queue is
1763 * being released; typically when a block device is being de-registered.
1764 * Currently, its primary task it to free all the &struct request
1765 * structures that were allocated to the queue and the queue itself.
1766 *
1767 * Caveat:
1768 * Hopefully the low level driver will have finished any
1769 * outstanding requests first...
1770 **/
483f4afc 1771static void blk_release_queue(struct kobject *kobj)
1da177e4 1772{
483f4afc 1773 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1774 struct request_list *rl = &q->rq;
1775
1da177e4
LT
1776 blk_sync_queue(q);
1777
1778 if (rl->rq_pool)
1779 mempool_destroy(rl->rq_pool);
1780
1781 if (q->queue_tags)
1782 __blk_queue_free_tags(q);
1783
6c5c9341 1784 blk_trace_shutdown(q);
2056a782 1785
1da177e4
LT
1786 kmem_cache_free(requestq_cachep, q);
1787}
1788
483f4afc
AV
1789void blk_put_queue(request_queue_t *q)
1790{
1791 kobject_put(&q->kobj);
1792}
1793EXPORT_SYMBOL(blk_put_queue);
1794
1795void blk_cleanup_queue(request_queue_t * q)
1796{
1797 mutex_lock(&q->sysfs_lock);
1798 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1799 mutex_unlock(&q->sysfs_lock);
1800
1801 if (q->elevator)
1802 elevator_exit(q->elevator);
1803
1804 blk_put_queue(q);
1805}
1806
1da177e4
LT
1807EXPORT_SYMBOL(blk_cleanup_queue);
1808
1809static int blk_init_free_list(request_queue_t *q)
1810{
1811 struct request_list *rl = &q->rq;
1812
1813 rl->count[READ] = rl->count[WRITE] = 0;
1814 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1815 rl->elvpriv = 0;
1da177e4
LT
1816 init_waitqueue_head(&rl->wait[READ]);
1817 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1818
1946089a
CL
1819 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1820 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1821
1822 if (!rl->rq_pool)
1823 return -ENOMEM;
1824
1825 return 0;
1826}
1827
8267e268 1828request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1829{
1946089a
CL
1830 return blk_alloc_queue_node(gfp_mask, -1);
1831}
1832EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1833
483f4afc
AV
1834static struct kobj_type queue_ktype;
1835
8267e268 1836request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a
CL
1837{
1838 request_queue_t *q;
1839
1840 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1da177e4
LT
1841 if (!q)
1842 return NULL;
1843
1844 memset(q, 0, sizeof(*q));
1845 init_timer(&q->unplug_timer);
483f4afc
AV
1846
1847 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1848 q->kobj.ktype = &queue_ktype;
1849 kobject_init(&q->kobj);
1da177e4
LT
1850
1851 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1852 q->backing_dev_info.unplug_io_data = q;
1853
483f4afc
AV
1854 mutex_init(&q->sysfs_lock);
1855
1da177e4
LT
1856 return q;
1857}
1946089a 1858EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1859
1860/**
1861 * blk_init_queue - prepare a request queue for use with a block device
1862 * @rfn: The function to be called to process requests that have been
1863 * placed on the queue.
1864 * @lock: Request queue spin lock
1865 *
1866 * Description:
1867 * If a block device wishes to use the standard request handling procedures,
1868 * which sorts requests and coalesces adjacent requests, then it must
1869 * call blk_init_queue(). The function @rfn will be called when there
1870 * are requests on the queue that need to be processed. If the device
1871 * supports plugging, then @rfn may not be called immediately when requests
1872 * are available on the queue, but may be called at some time later instead.
1873 * Plugged queues are generally unplugged when a buffer belonging to one
1874 * of the requests on the queue is needed, or due to memory pressure.
1875 *
1876 * @rfn is not required, or even expected, to remove all requests off the
1877 * queue, but only as many as it can handle at a time. If it does leave
1878 * requests on the queue, it is responsible for arranging that the requests
1879 * get dealt with eventually.
1880 *
1881 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1882 * request queue; this lock will be taken also from interrupt context, so irq
1883 * disabling is needed for it.
1da177e4
LT
1884 *
1885 * Function returns a pointer to the initialized request queue, or NULL if
1886 * it didn't succeed.
1887 *
1888 * Note:
1889 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1890 * when the block device is deactivated (such as at module unload).
1891 **/
1946089a 1892
1da177e4
LT
1893request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1894{
1946089a
CL
1895 return blk_init_queue_node(rfn, lock, -1);
1896}
1897EXPORT_SYMBOL(blk_init_queue);
1898
1899request_queue_t *
1900blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1901{
1902 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1903
1904 if (!q)
1905 return NULL;
1906
1946089a 1907 q->node = node_id;
8669aafd
AV
1908 if (blk_init_free_list(q)) {
1909 kmem_cache_free(requestq_cachep, q);
1910 return NULL;
1911 }
1da177e4 1912
152587de 1913 /*
1914 * if caller didn't supply a lock, they get per-queue locking with
1915 * our embedded lock
1916 */
1917 if (!lock) {
1918 spin_lock_init(&q->__queue_lock);
1919 lock = &q->__queue_lock;
1920 }
1921
1da177e4
LT
1922 q->request_fn = rfn;
1923 q->back_merge_fn = ll_back_merge_fn;
1924 q->front_merge_fn = ll_front_merge_fn;
1925 q->merge_requests_fn = ll_merge_requests_fn;
1926 q->prep_rq_fn = NULL;
1927 q->unplug_fn = generic_unplug_device;
1928 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1929 q->queue_lock = lock;
1930
1931 blk_queue_segment_boundary(q, 0xffffffff);
1932
1933 blk_queue_make_request(q, __make_request);
1934 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1935
1936 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1937 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1938
1939 /*
1940 * all done
1941 */
1942 if (!elevator_init(q, NULL)) {
1943 blk_queue_congestion_threshold(q);
1944 return q;
1945 }
1946
8669aafd 1947 blk_put_queue(q);
1da177e4
LT
1948 return NULL;
1949}
1946089a 1950EXPORT_SYMBOL(blk_init_queue_node);
1da177e4
LT
1951
1952int blk_get_queue(request_queue_t *q)
1953{
fde6ad22 1954 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1955 kobject_get(&q->kobj);
1da177e4
LT
1956 return 0;
1957 }
1958
1959 return 1;
1960}
1961
1962EXPORT_SYMBOL(blk_get_queue);
1963
1964static inline void blk_free_request(request_queue_t *q, struct request *rq)
1965{
4aff5e23 1966 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 1967 elv_put_request(q, rq);
1da177e4
LT
1968 mempool_free(rq, q->rq.rq_pool);
1969}
1970
1ea25ecb 1971static struct request *
cb78b285 1972blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
1973{
1974 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1975
1976 if (!rq)
1977 return NULL;
1978
1979 /*
4aff5e23 1980 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
1981 * see bio.h and blkdev.h
1982 */
49171e5c 1983 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 1984
cb98fc8b 1985 if (priv) {
cb78b285 1986 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
1987 mempool_free(rq, q->rq.rq_pool);
1988 return NULL;
1989 }
4aff5e23 1990 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 1991 }
1da177e4 1992
cb98fc8b 1993 return rq;
1da177e4
LT
1994}
1995
1996/*
1997 * ioc_batching returns true if the ioc is a valid batching request and
1998 * should be given priority access to a request.
1999 */
2000static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2001{
2002 if (!ioc)
2003 return 0;
2004
2005 /*
2006 * Make sure the process is able to allocate at least 1 request
2007 * even if the batch times out, otherwise we could theoretically
2008 * lose wakeups.
2009 */
2010 return ioc->nr_batch_requests == q->nr_batching ||
2011 (ioc->nr_batch_requests > 0
2012 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2013}
2014
2015/*
2016 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2017 * will cause the process to be a "batcher" on all queues in the system. This
2018 * is the behaviour we want though - once it gets a wakeup it should be given
2019 * a nice run.
2020 */
93d17d3d 2021static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1da177e4
LT
2022{
2023 if (!ioc || ioc_batching(q, ioc))
2024 return;
2025
2026 ioc->nr_batch_requests = q->nr_batching;
2027 ioc->last_waited = jiffies;
2028}
2029
2030static void __freed_request(request_queue_t *q, int rw)
2031{
2032 struct request_list *rl = &q->rq;
2033
2034 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 2035 blk_clear_queue_congested(q, rw);
1da177e4
LT
2036
2037 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2038 if (waitqueue_active(&rl->wait[rw]))
2039 wake_up(&rl->wait[rw]);
2040
2041 blk_clear_queue_full(q, rw);
2042 }
2043}
2044
2045/*
2046 * A request has just been released. Account for it, update the full and
2047 * congestion status, wake up any waiters. Called under q->queue_lock.
2048 */
cb98fc8b 2049static void freed_request(request_queue_t *q, int rw, int priv)
1da177e4
LT
2050{
2051 struct request_list *rl = &q->rq;
2052
2053 rl->count[rw]--;
cb98fc8b
TH
2054 if (priv)
2055 rl->elvpriv--;
1da177e4
LT
2056
2057 __freed_request(q, rw);
2058
2059 if (unlikely(rl->starved[rw ^ 1]))
2060 __freed_request(q, rw ^ 1);
1da177e4
LT
2061}
2062
2063#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2064/*
d6344532
NP
2065 * Get a free request, queue_lock must be held.
2066 * Returns NULL on failure, with queue_lock held.
2067 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2068 */
22e2c507 2069static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
8267e268 2070 gfp_t gfp_mask)
1da177e4
LT
2071{
2072 struct request *rq = NULL;
2073 struct request_list *rl = &q->rq;
88ee5ef1
JA
2074 struct io_context *ioc = NULL;
2075 int may_queue, priv;
2076
cb78b285 2077 may_queue = elv_may_queue(q, rw);
88ee5ef1
JA
2078 if (may_queue == ELV_MQUEUE_NO)
2079 goto rq_starved;
2080
2081 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2082 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 2083 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
2084 /*
2085 * The queue will fill after this allocation, so set
2086 * it as full, and mark this process as "batching".
2087 * This process will be allowed to complete a batch of
2088 * requests, others will be blocked.
2089 */
2090 if (!blk_queue_full(q, rw)) {
2091 ioc_set_batching(q, ioc);
2092 blk_set_queue_full(q, rw);
2093 } else {
2094 if (may_queue != ELV_MQUEUE_MUST
2095 && !ioc_batching(q, ioc)) {
2096 /*
2097 * The queue is full and the allocating
2098 * process is not a "batcher", and not
2099 * exempted by the IO scheduler
2100 */
2101 goto out;
2102 }
2103 }
1da177e4 2104 }
79e2de4b 2105 blk_set_queue_congested(q, rw);
1da177e4
LT
2106 }
2107
082cf69e
JA
2108 /*
2109 * Only allow batching queuers to allocate up to 50% over the defined
2110 * limit of requests, otherwise we could have thousands of requests
2111 * allocated with any setting of ->nr_requests
2112 */
fd782a4a 2113 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2114 goto out;
fd782a4a 2115
1da177e4
LT
2116 rl->count[rw]++;
2117 rl->starved[rw] = 0;
cb98fc8b 2118
64521d1a 2119 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2120 if (priv)
2121 rl->elvpriv++;
2122
1da177e4
LT
2123 spin_unlock_irq(q->queue_lock);
2124
cb78b285 2125 rq = blk_alloc_request(q, rw, priv, gfp_mask);
88ee5ef1 2126 if (unlikely(!rq)) {
1da177e4
LT
2127 /*
2128 * Allocation failed presumably due to memory. Undo anything
2129 * we might have messed up.
2130 *
2131 * Allocating task should really be put onto the front of the
2132 * wait queue, but this is pretty rare.
2133 */
2134 spin_lock_irq(q->queue_lock);
cb98fc8b 2135 freed_request(q, rw, priv);
1da177e4
LT
2136
2137 /*
2138 * in the very unlikely event that allocation failed and no
2139 * requests for this direction was pending, mark us starved
2140 * so that freeing of a request in the other direction will
2141 * notice us. another possible fix would be to split the
2142 * rq mempool into READ and WRITE
2143 */
2144rq_starved:
2145 if (unlikely(rl->count[rw] == 0))
2146 rl->starved[rw] = 1;
2147
1da177e4
LT
2148 goto out;
2149 }
2150
88ee5ef1
JA
2151 /*
2152 * ioc may be NULL here, and ioc_batching will be false. That's
2153 * OK, if the queue is under the request limit then requests need
2154 * not count toward the nr_batch_requests limit. There will always
2155 * be some limit enforced by BLK_BATCH_TIME.
2156 */
1da177e4
LT
2157 if (ioc_batching(q, ioc))
2158 ioc->nr_batch_requests--;
2159
2160 rq_init(q, rq);
2056a782
JA
2161
2162 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2163out:
1da177e4
LT
2164 return rq;
2165}
2166
2167/*
2168 * No available requests for this queue, unplug the device and wait for some
2169 * requests to become available.
d6344532
NP
2170 *
2171 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2172 */
22e2c507
JA
2173static struct request *get_request_wait(request_queue_t *q, int rw,
2174 struct bio *bio)
1da177e4 2175{
1da177e4
LT
2176 struct request *rq;
2177
450991bc
NP
2178 rq = get_request(q, rw, bio, GFP_NOIO);
2179 while (!rq) {
2180 DEFINE_WAIT(wait);
1da177e4
LT
2181 struct request_list *rl = &q->rq;
2182
2183 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2184 TASK_UNINTERRUPTIBLE);
2185
22e2c507 2186 rq = get_request(q, rw, bio, GFP_NOIO);
1da177e4
LT
2187
2188 if (!rq) {
2189 struct io_context *ioc;
2190
2056a782
JA
2191 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2192
d6344532
NP
2193 __generic_unplug_device(q);
2194 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2195 io_schedule();
2196
2197 /*
2198 * After sleeping, we become a "batching" process and
2199 * will be able to allocate at least one request, and
2200 * up to a big batch of them for a small period time.
2201 * See ioc_batching, ioc_set_batching
2202 */
b5deef90 2203 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 2204 ioc_set_batching(q, ioc);
d6344532
NP
2205
2206 spin_lock_irq(q->queue_lock);
1da177e4
LT
2207 }
2208 finish_wait(&rl->wait[rw], &wait);
450991bc 2209 }
1da177e4
LT
2210
2211 return rq;
2212}
2213
8267e268 2214struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2215{
2216 struct request *rq;
2217
2218 BUG_ON(rw != READ && rw != WRITE);
2219
d6344532
NP
2220 spin_lock_irq(q->queue_lock);
2221 if (gfp_mask & __GFP_WAIT) {
22e2c507 2222 rq = get_request_wait(q, rw, NULL);
d6344532 2223 } else {
22e2c507 2224 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2225 if (!rq)
2226 spin_unlock_irq(q->queue_lock);
2227 }
2228 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2229
2230 return rq;
2231}
1da177e4
LT
2232EXPORT_SYMBOL(blk_get_request);
2233
dc72ef4a
JA
2234/**
2235 * blk_start_queueing - initiate dispatch of requests to device
2236 * @q: request queue to kick into gear
2237 *
2238 * This is basically a helper to remove the need to know whether a queue
2239 * is plugged or not if someone just wants to initiate dispatch of requests
2240 * for this queue.
2241 *
2242 * The queue lock must be held with interrupts disabled.
2243 */
2244void blk_start_queueing(request_queue_t *q)
2245{
2246 if (!blk_queue_plugged(q))
2247 q->request_fn(q);
2248 else
2249 __generic_unplug_device(q);
2250}
2251EXPORT_SYMBOL(blk_start_queueing);
2252
1da177e4
LT
2253/**
2254 * blk_requeue_request - put a request back on queue
2255 * @q: request queue where request should be inserted
2256 * @rq: request to be inserted
2257 *
2258 * Description:
2259 * Drivers often keep queueing requests until the hardware cannot accept
2260 * more, when that condition happens we need to put the request back
2261 * on the queue. Must be called with queue lock held.
2262 */
2263void blk_requeue_request(request_queue_t *q, struct request *rq)
2264{
2056a782
JA
2265 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2266
1da177e4
LT
2267 if (blk_rq_tagged(rq))
2268 blk_queue_end_tag(q, rq);
2269
2270 elv_requeue_request(q, rq);
2271}
2272
2273EXPORT_SYMBOL(blk_requeue_request);
2274
2275/**
2276 * blk_insert_request - insert a special request in to a request queue
2277 * @q: request queue where request should be inserted
2278 * @rq: request to be inserted
2279 * @at_head: insert request at head or tail of queue
2280 * @data: private data
1da177e4
LT
2281 *
2282 * Description:
2283 * Many block devices need to execute commands asynchronously, so they don't
2284 * block the whole kernel from preemption during request execution. This is
2285 * accomplished normally by inserting aritficial requests tagged as
2286 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2287 * scheduled for actual execution by the request queue.
2288 *
2289 * We have the option of inserting the head or the tail of the queue.
2290 * Typically we use the tail for new ioctls and so forth. We use the head
2291 * of the queue for things like a QUEUE_FULL message from a device, or a
2292 * host that is unable to accept a particular command.
2293 */
2294void blk_insert_request(request_queue_t *q, struct request *rq,
867d1191 2295 int at_head, void *data)
1da177e4 2296{
867d1191 2297 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2298 unsigned long flags;
2299
2300 /*
2301 * tell I/O scheduler that this isn't a regular read/write (ie it
2302 * must not attempt merges on this) and that it acts as a soft
2303 * barrier
2304 */
4aff5e23
JA
2305 rq->cmd_type = REQ_TYPE_SPECIAL;
2306 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2307
2308 rq->special = data;
2309
2310 spin_lock_irqsave(q->queue_lock, flags);
2311
2312 /*
2313 * If command is tagged, release the tag
2314 */
867d1191
TH
2315 if (blk_rq_tagged(rq))
2316 blk_queue_end_tag(q, rq);
1da177e4 2317
867d1191
TH
2318 drive_stat_acct(rq, rq->nr_sectors, 1);
2319 __elv_add_request(q, rq, where, 0);
dc72ef4a 2320 blk_start_queueing(q);
1da177e4
LT
2321 spin_unlock_irqrestore(q->queue_lock, flags);
2322}
2323
2324EXPORT_SYMBOL(blk_insert_request);
2325
0e75f906
MC
2326static int __blk_rq_unmap_user(struct bio *bio)
2327{
2328 int ret = 0;
2329
2330 if (bio) {
2331 if (bio_flagged(bio, BIO_USER_MAPPED))
2332 bio_unmap_user(bio);
2333 else
2334 ret = bio_uncopy_user(bio);
2335 }
2336
2337 return ret;
2338}
2339
2340static int __blk_rq_map_user(request_queue_t *q, struct request *rq,
2341 void __user *ubuf, unsigned int len)
2342{
2343 unsigned long uaddr;
2344 struct bio *bio, *orig_bio;
2345 int reading, ret;
2346
2347 reading = rq_data_dir(rq) == READ;
2348
2349 /*
2350 * if alignment requirement is satisfied, map in user pages for
2351 * direct dma. else, set up kernel bounce buffers
2352 */
2353 uaddr = (unsigned long) ubuf;
2354 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2355 bio = bio_map_user(q, NULL, uaddr, len, reading);
2356 else
2357 bio = bio_copy_user(q, uaddr, len, reading);
2358
2359 if (IS_ERR(bio)) {
2360 return PTR_ERR(bio);
2361 }
2362
2363 orig_bio = bio;
2364 blk_queue_bounce(q, &bio);
2365 /*
2366 * We link the bounce buffer in and could have to traverse it
2367 * later so we have to get a ref to prevent it from being freed
2368 */
2369 bio_get(bio);
2370
2371 /*
2372 * for most (all? don't know of any) queues we could
2373 * skip grabbing the queue lock here. only drivers with
2374 * funky private ->back_merge_fn() function could be
2375 * problematic.
2376 */
2377 spin_lock_irq(q->queue_lock);
2378 if (!rq->bio)
2379 blk_rq_bio_prep(q, rq, bio);
2380 else if (!q->back_merge_fn(q, rq, bio)) {
2381 ret = -EINVAL;
2382 spin_unlock_irq(q->queue_lock);
2383 goto unmap_bio;
2384 } else {
2385 rq->biotail->bi_next = bio;
2386 rq->biotail = bio;
2387
2388 rq->nr_sectors += bio_sectors(bio);
2389 rq->hard_nr_sectors = rq->nr_sectors;
2390 rq->data_len += bio->bi_size;
2391 }
2392 spin_unlock_irq(q->queue_lock);
2393
2394 return bio->bi_size;
2395
2396unmap_bio:
2397 /* if it was boucned we must call the end io function */
2398 bio_endio(bio, bio->bi_size, 0);
2399 __blk_rq_unmap_user(orig_bio);
2400 bio_put(bio);
2401 return ret;
2402}
2403
1da177e4
LT
2404/**
2405 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2406 * @q: request queue where request should be inserted
73747aed 2407 * @rq: request structure to fill
1da177e4
LT
2408 * @ubuf: the user buffer
2409 * @len: length of user data
2410 *
2411 * Description:
2412 * Data will be mapped directly for zero copy io, if possible. Otherwise
2413 * a kernel bounce buffer is used.
2414 *
2415 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2416 * still in process context.
2417 *
2418 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2419 * before being submitted to the device, as pages mapped may be out of
2420 * reach. It's the callers responsibility to make sure this happens. The
2421 * original bio must be passed back in to blk_rq_unmap_user() for proper
2422 * unmapping.
2423 */
dd1cab95 2424int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
0e75f906 2425 unsigned long len)
1da177e4 2426{
0e75f906
MC
2427 unsigned long bytes_read = 0;
2428 int ret;
1da177e4 2429
defd94b7 2430 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2431 return -EINVAL;
2432 if (!len || !ubuf)
2433 return -EINVAL;
1da177e4 2434
0e75f906
MC
2435 while (bytes_read != len) {
2436 unsigned long map_len, end, start;
1da177e4 2437
0e75f906
MC
2438 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2439 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2440 >> PAGE_SHIFT;
2441 start = (unsigned long)ubuf >> PAGE_SHIFT;
1da177e4 2442
0e75f906
MC
2443 /*
2444 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2445 * pages. If this happens we just lower the requested
2446 * mapping len by a page so that we can fit
2447 */
2448 if (end - start > BIO_MAX_PAGES)
2449 map_len -= PAGE_SIZE;
1da177e4 2450
0e75f906
MC
2451 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2452 if (ret < 0)
2453 goto unmap_rq;
2454 bytes_read += ret;
2455 ubuf += ret;
1da177e4
LT
2456 }
2457
0e75f906
MC
2458 rq->buffer = rq->data = NULL;
2459 return 0;
2460unmap_rq:
2461 blk_rq_unmap_user(rq);
2462 return ret;
1da177e4
LT
2463}
2464
2465EXPORT_SYMBOL(blk_rq_map_user);
2466
f1970baf
JB
2467/**
2468 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2469 * @q: request queue where request should be inserted
2470 * @rq: request to map data to
2471 * @iov: pointer to the iovec
2472 * @iov_count: number of elements in the iovec
2473 *
2474 * Description:
2475 * Data will be mapped directly for zero copy io, if possible. Otherwise
2476 * a kernel bounce buffer is used.
2477 *
2478 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2479 * still in process context.
2480 *
2481 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2482 * before being submitted to the device, as pages mapped may be out of
2483 * reach. It's the callers responsibility to make sure this happens. The
2484 * original bio must be passed back in to blk_rq_unmap_user() for proper
2485 * unmapping.
2486 */
2487int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
0e75f906 2488 struct sg_iovec *iov, int iov_count, unsigned int len)
f1970baf
JB
2489{
2490 struct bio *bio;
2491
2492 if (!iov || iov_count <= 0)
2493 return -EINVAL;
2494
2495 /* we don't allow misaligned data like bio_map_user() does. If the
2496 * user is using sg, they're expected to know the alignment constraints
2497 * and respect them accordingly */
2498 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2499 if (IS_ERR(bio))
2500 return PTR_ERR(bio);
2501
0e75f906
MC
2502 if (bio->bi_size != len) {
2503 bio_endio(bio, bio->bi_size, 0);
2504 bio_unmap_user(bio);
2505 return -EINVAL;
2506 }
2507
2508 bio_get(bio);
f1970baf
JB
2509 blk_rq_bio_prep(q, rq, bio);
2510 rq->buffer = rq->data = NULL;
f1970baf
JB
2511 return 0;
2512}
2513
2514EXPORT_SYMBOL(blk_rq_map_user_iov);
2515
1da177e4
LT
2516/**
2517 * blk_rq_unmap_user - unmap a request with user data
0e75f906 2518 * @rq: rq to be unmapped
1da177e4
LT
2519 *
2520 * Description:
0e75f906
MC
2521 * Unmap a rq previously mapped by blk_rq_map_user().
2522 * rq->bio must be set to the original head of the request.
1da177e4 2523 */
0e75f906 2524int blk_rq_unmap_user(struct request *rq)
1da177e4 2525{
0e75f906 2526 struct bio *bio, *mapped_bio;
1da177e4 2527
0e75f906
MC
2528 while ((bio = rq->bio)) {
2529 if (bio_flagged(bio, BIO_BOUNCED))
2530 mapped_bio = bio->bi_private;
1da177e4 2531 else
0e75f906 2532 mapped_bio = bio;
1da177e4 2533
0e75f906
MC
2534 __blk_rq_unmap_user(mapped_bio);
2535 rq->bio = bio->bi_next;
2536 bio_put(bio);
2537 }
dd1cab95 2538 return 0;
1da177e4
LT
2539}
2540
2541EXPORT_SYMBOL(blk_rq_unmap_user);
2542
df46b9a4
MC
2543/**
2544 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2545 * @q: request queue where request should be inserted
73747aed 2546 * @rq: request to fill
df46b9a4
MC
2547 * @kbuf: the kernel buffer
2548 * @len: length of user data
73747aed 2549 * @gfp_mask: memory allocation flags
df46b9a4 2550 */
dd1cab95 2551int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
8267e268 2552 unsigned int len, gfp_t gfp_mask)
df46b9a4 2553{
df46b9a4
MC
2554 struct bio *bio;
2555
defd94b7 2556 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2557 return -EINVAL;
2558 if (!len || !kbuf)
2559 return -EINVAL;
df46b9a4
MC
2560
2561 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2562 if (IS_ERR(bio))
2563 return PTR_ERR(bio);
df46b9a4 2564
dd1cab95
JA
2565 if (rq_data_dir(rq) == WRITE)
2566 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2567
dd1cab95 2568 blk_rq_bio_prep(q, rq, bio);
dd1cab95 2569 rq->buffer = rq->data = NULL;
dd1cab95 2570 return 0;
df46b9a4
MC
2571}
2572
2573EXPORT_SYMBOL(blk_rq_map_kern);
2574
73747aed
CH
2575/**
2576 * blk_execute_rq_nowait - insert a request into queue for execution
2577 * @q: queue to insert the request in
2578 * @bd_disk: matching gendisk
2579 * @rq: request to insert
2580 * @at_head: insert request at head or tail of queue
2581 * @done: I/O completion handler
2582 *
2583 * Description:
2584 * Insert a fully prepared request at the back of the io scheduler queue
2585 * for execution. Don't wait for completion.
2586 */
f1970baf
JB
2587void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2588 struct request *rq, int at_head,
8ffdc655 2589 rq_end_io_fn *done)
f1970baf
JB
2590{
2591 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2592
2593 rq->rq_disk = bd_disk;
4aff5e23 2594 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2595 rq->end_io = done;
4c5d0bbd
AM
2596 WARN_ON(irqs_disabled());
2597 spin_lock_irq(q->queue_lock);
2598 __elv_add_request(q, rq, where, 1);
2599 __generic_unplug_device(q);
2600 spin_unlock_irq(q->queue_lock);
f1970baf 2601}
6e39b69e
MC
2602EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2603
1da177e4
LT
2604/**
2605 * blk_execute_rq - insert a request into queue for execution
2606 * @q: queue to insert the request in
2607 * @bd_disk: matching gendisk
2608 * @rq: request to insert
994ca9a1 2609 * @at_head: insert request at head or tail of queue
1da177e4
LT
2610 *
2611 * Description:
2612 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2613 * for execution and wait for completion.
1da177e4
LT
2614 */
2615int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
994ca9a1 2616 struct request *rq, int at_head)
1da177e4 2617{
60be6b9a 2618 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2619 char sense[SCSI_SENSE_BUFFERSIZE];
2620 int err = 0;
2621
1da177e4
LT
2622 /*
2623 * we need an extra reference to the request, so we can look at
2624 * it after io completion
2625 */
2626 rq->ref_count++;
2627
2628 if (!rq->sense) {
2629 memset(sense, 0, sizeof(sense));
2630 rq->sense = sense;
2631 rq->sense_len = 0;
2632 }
2633
c00895ab 2634 rq->end_io_data = &wait;
994ca9a1 2635 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2636 wait_for_completion(&wait);
1da177e4
LT
2637
2638 if (rq->errors)
2639 err = -EIO;
2640
2641 return err;
2642}
2643
2644EXPORT_SYMBOL(blk_execute_rq);
2645
2646/**
2647 * blkdev_issue_flush - queue a flush
2648 * @bdev: blockdev to issue flush for
2649 * @error_sector: error sector
2650 *
2651 * Description:
2652 * Issue a flush for the block device in question. Caller can supply
2653 * room for storing the error offset in case of a flush error, if they
2654 * wish to. Caller must run wait_for_completion() on its own.
2655 */
2656int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2657{
2658 request_queue_t *q;
2659
2660 if (bdev->bd_disk == NULL)
2661 return -ENXIO;
2662
2663 q = bdev_get_queue(bdev);
2664 if (!q)
2665 return -ENXIO;
2666 if (!q->issue_flush_fn)
2667 return -EOPNOTSUPP;
2668
2669 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2670}
2671
2672EXPORT_SYMBOL(blkdev_issue_flush);
2673
93d17d3d 2674static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2675{
2676 int rw = rq_data_dir(rq);
2677
2678 if (!blk_fs_request(rq) || !rq->rq_disk)
2679 return;
2680
d72d904a 2681 if (!new_io) {
a362357b 2682 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2683 } else {
1da177e4
LT
2684 disk_round_stats(rq->rq_disk);
2685 rq->rq_disk->in_flight++;
2686 }
2687}
2688
2689/*
2690 * add-request adds a request to the linked list.
2691 * queue lock is held and interrupts disabled, as we muck with the
2692 * request queue list.
2693 */
2694static inline void add_request(request_queue_t * q, struct request * req)
2695{
2696 drive_stat_acct(req, req->nr_sectors, 1);
2697
2698 if (q->activity_fn)
2699 q->activity_fn(q->activity_data, rq_data_dir(req));
2700
2701 /*
2702 * elevator indicated where it wants this request to be
2703 * inserted at elevator_merge time
2704 */
2705 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2706}
2707
2708/*
2709 * disk_round_stats() - Round off the performance stats on a struct
2710 * disk_stats.
2711 *
2712 * The average IO queue length and utilisation statistics are maintained
2713 * by observing the current state of the queue length and the amount of
2714 * time it has been in this state for.
2715 *
2716 * Normally, that accounting is done on IO completion, but that can result
2717 * in more than a second's worth of IO being accounted for within any one
2718 * second, leading to >100% utilisation. To deal with that, we call this
2719 * function to do a round-off before returning the results when reading
2720 * /proc/diskstats. This accounts immediately for all queue usage up to
2721 * the current jiffies and restarts the counters again.
2722 */
2723void disk_round_stats(struct gendisk *disk)
2724{
2725 unsigned long now = jiffies;
2726
b2982649
CK
2727 if (now == disk->stamp)
2728 return;
1da177e4 2729
20e5c81f
CK
2730 if (disk->in_flight) {
2731 __disk_stat_add(disk, time_in_queue,
2732 disk->in_flight * (now - disk->stamp));
2733 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2734 }
1da177e4 2735 disk->stamp = now;
1da177e4
LT
2736}
2737
3eaf840e
JNN
2738EXPORT_SYMBOL_GPL(disk_round_stats);
2739
1da177e4
LT
2740/*
2741 * queue lock must be held
2742 */
6e39b69e 2743void __blk_put_request(request_queue_t *q, struct request *req)
1da177e4 2744{
1da177e4
LT
2745 if (unlikely(!q))
2746 return;
2747 if (unlikely(--req->ref_count))
2748 return;
2749
8922e16c
TH
2750 elv_completed_request(q, req);
2751
1da177e4
LT
2752 /*
2753 * Request may not have originated from ll_rw_blk. if not,
2754 * it didn't come out of our reserved rq pools
2755 */
49171e5c 2756 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2757 int rw = rq_data_dir(req);
4aff5e23 2758 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2759
1da177e4 2760 BUG_ON(!list_empty(&req->queuelist));
9817064b 2761 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2762
2763 blk_free_request(q, req);
cb98fc8b 2764 freed_request(q, rw, priv);
1da177e4
LT
2765 }
2766}
2767
6e39b69e
MC
2768EXPORT_SYMBOL_GPL(__blk_put_request);
2769
1da177e4
LT
2770void blk_put_request(struct request *req)
2771{
8922e16c
TH
2772 unsigned long flags;
2773 request_queue_t *q = req->q;
2774
1da177e4 2775 /*
8922e16c
TH
2776 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2777 * following if (q) test.
1da177e4 2778 */
8922e16c 2779 if (q) {
1da177e4
LT
2780 spin_lock_irqsave(q->queue_lock, flags);
2781 __blk_put_request(q, req);
2782 spin_unlock_irqrestore(q->queue_lock, flags);
2783 }
2784}
2785
2786EXPORT_SYMBOL(blk_put_request);
2787
2788/**
2789 * blk_end_sync_rq - executes a completion event on a request
2790 * @rq: request to complete
fddfdeaf 2791 * @error: end io status of the request
1da177e4 2792 */
8ffdc655 2793void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2794{
c00895ab 2795 struct completion *waiting = rq->end_io_data;
1da177e4 2796
c00895ab 2797 rq->end_io_data = NULL;
1da177e4
LT
2798 __blk_put_request(rq->q, rq);
2799
2800 /*
2801 * complete last, if this is a stack request the process (and thus
2802 * the rq pointer) could be invalid right after this complete()
2803 */
2804 complete(waiting);
2805}
2806EXPORT_SYMBOL(blk_end_sync_rq);
2807
1da177e4
LT
2808/*
2809 * Has to be called with the request spinlock acquired
2810 */
2811static int attempt_merge(request_queue_t *q, struct request *req,
2812 struct request *next)
2813{
2814 if (!rq_mergeable(req) || !rq_mergeable(next))
2815 return 0;
2816
2817 /*
d6e05edc 2818 * not contiguous
1da177e4
LT
2819 */
2820 if (req->sector + req->nr_sectors != next->sector)
2821 return 0;
2822
2823 if (rq_data_dir(req) != rq_data_dir(next)
2824 || req->rq_disk != next->rq_disk
c00895ab 2825 || next->special)
1da177e4
LT
2826 return 0;
2827
2828 /*
2829 * If we are allowed to merge, then append bio list
2830 * from next to rq and release next. merge_requests_fn
2831 * will have updated segment counts, update sector
2832 * counts here.
2833 */
2834 if (!q->merge_requests_fn(q, req, next))
2835 return 0;
2836
2837 /*
2838 * At this point we have either done a back merge
2839 * or front merge. We need the smaller start_time of
2840 * the merged requests to be the current request
2841 * for accounting purposes.
2842 */
2843 if (time_after(req->start_time, next->start_time))
2844 req->start_time = next->start_time;
2845
2846 req->biotail->bi_next = next->bio;
2847 req->biotail = next->biotail;
2848
2849 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2850
2851 elv_merge_requests(q, req, next);
2852
2853 if (req->rq_disk) {
2854 disk_round_stats(req->rq_disk);
2855 req->rq_disk->in_flight--;
2856 }
2857
22e2c507
JA
2858 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2859
1da177e4
LT
2860 __blk_put_request(q, next);
2861 return 1;
2862}
2863
2864static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2865{
2866 struct request *next = elv_latter_request(q, rq);
2867
2868 if (next)
2869 return attempt_merge(q, rq, next);
2870
2871 return 0;
2872}
2873
2874static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2875{
2876 struct request *prev = elv_former_request(q, rq);
2877
2878 if (prev)
2879 return attempt_merge(q, prev, rq);
2880
2881 return 0;
2882}
2883
52d9e675
TH
2884static void init_request_from_bio(struct request *req, struct bio *bio)
2885{
4aff5e23 2886 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2887
2888 /*
2889 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2890 */
2891 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2892 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2893
2894 /*
2895 * REQ_BARRIER implies no merging, but lets make it explicit
2896 */
2897 if (unlikely(bio_barrier(bio)))
4aff5e23 2898 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2899
b31dc66a 2900 if (bio_sync(bio))
4aff5e23 2901 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
2902 if (bio_rw_meta(bio))
2903 req->cmd_flags |= REQ_RW_META;
b31dc66a 2904
52d9e675
TH
2905 req->errors = 0;
2906 req->hard_sector = req->sector = bio->bi_sector;
2907 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2908 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2909 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2910 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2911 req->buffer = bio_data(bio); /* see ->buffer comment above */
52d9e675
TH
2912 req->bio = req->biotail = bio;
2913 req->ioprio = bio_prio(bio);
2914 req->rq_disk = bio->bi_bdev->bd_disk;
2915 req->start_time = jiffies;
2916}
2917
1da177e4
LT
2918static int __make_request(request_queue_t *q, struct bio *bio)
2919{
450991bc 2920 struct request *req;
51da90fc
JA
2921 int el_ret, nr_sectors, barrier, err;
2922 const unsigned short prio = bio_prio(bio);
2923 const int sync = bio_sync(bio);
1da177e4 2924
1da177e4 2925 nr_sectors = bio_sectors(bio);
1da177e4
LT
2926
2927 /*
2928 * low level driver can indicate that it wants pages above a
2929 * certain limit bounced to low memory (ie for highmem, or even
2930 * ISA dma in theory)
2931 */
2932 blk_queue_bounce(q, &bio);
2933
1da177e4 2934 barrier = bio_barrier(bio);
797e7dbb 2935 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2936 err = -EOPNOTSUPP;
2937 goto end_io;
2938 }
2939
1da177e4
LT
2940 spin_lock_irq(q->queue_lock);
2941
450991bc 2942 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2943 goto get_rq;
2944
2945 el_ret = elv_merge(q, &req, bio);
2946 switch (el_ret) {
2947 case ELEVATOR_BACK_MERGE:
2948 BUG_ON(!rq_mergeable(req));
2949
2950 if (!q->back_merge_fn(q, req, bio))
2951 break;
2952
2056a782
JA
2953 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2954
1da177e4
LT
2955 req->biotail->bi_next = bio;
2956 req->biotail = bio;
2957 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2958 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2959 drive_stat_acct(req, nr_sectors, 0);
2960 if (!attempt_back_merge(q, req))
2e662b65 2961 elv_merged_request(q, req, el_ret);
1da177e4
LT
2962 goto out;
2963
2964 case ELEVATOR_FRONT_MERGE:
2965 BUG_ON(!rq_mergeable(req));
2966
2967 if (!q->front_merge_fn(q, req, bio))
2968 break;
2969
2056a782
JA
2970 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2971
1da177e4
LT
2972 bio->bi_next = req->bio;
2973 req->bio = bio;
2974
2975 /*
2976 * may not be valid. if the low level driver said
2977 * it didn't need a bounce buffer then it better
2978 * not touch req->buffer either...
2979 */
2980 req->buffer = bio_data(bio);
51da90fc
JA
2981 req->current_nr_sectors = bio_cur_sectors(bio);
2982 req->hard_cur_sectors = req->current_nr_sectors;
2983 req->sector = req->hard_sector = bio->bi_sector;
1da177e4 2984 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2985 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2986 drive_stat_acct(req, nr_sectors, 0);
2987 if (!attempt_front_merge(q, req))
2e662b65 2988 elv_merged_request(q, req, el_ret);
1da177e4
LT
2989 goto out;
2990
450991bc 2991 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 2992 default:
450991bc 2993 ;
1da177e4
LT
2994 }
2995
450991bc 2996get_rq:
1da177e4 2997 /*
450991bc 2998 * Grab a free request. This is might sleep but can not fail.
d6344532 2999 * Returns with the queue unlocked.
450991bc 3000 */
51da90fc 3001 req = get_request_wait(q, bio_data_dir(bio), bio);
d6344532 3002
450991bc
NP
3003 /*
3004 * After dropping the lock and possibly sleeping here, our request
3005 * may now be mergeable after it had proven unmergeable (above).
3006 * We don't worry about that case for efficiency. It won't happen
3007 * often, and the elevators are able to handle it.
1da177e4 3008 */
52d9e675 3009 init_request_from_bio(req, bio);
1da177e4 3010
450991bc
NP
3011 spin_lock_irq(q->queue_lock);
3012 if (elv_queue_empty(q))
3013 blk_plug_device(q);
1da177e4
LT
3014 add_request(q, req);
3015out:
4a534f93 3016 if (sync)
1da177e4
LT
3017 __generic_unplug_device(q);
3018
3019 spin_unlock_irq(q->queue_lock);
3020 return 0;
3021
3022end_io:
3023 bio_endio(bio, nr_sectors << 9, err);
3024 return 0;
3025}
3026
3027/*
3028 * If bio->bi_dev is a partition, remap the location
3029 */
3030static inline void blk_partition_remap(struct bio *bio)
3031{
3032 struct block_device *bdev = bio->bi_bdev;
3033
3034 if (bdev != bdev->bd_contains) {
3035 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3036 const int rw = bio_data_dir(bio);
3037
3038 p->sectors[rw] += bio_sectors(bio);
3039 p->ios[rw]++;
1da177e4 3040
1da177e4
LT
3041 bio->bi_sector += p->start_sect;
3042 bio->bi_bdev = bdev->bd_contains;
3043 }
3044}
3045
1da177e4
LT
3046static void handle_bad_sector(struct bio *bio)
3047{
3048 char b[BDEVNAME_SIZE];
3049
3050 printk(KERN_INFO "attempt to access beyond end of device\n");
3051 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3052 bdevname(bio->bi_bdev, b),
3053 bio->bi_rw,
3054 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3055 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3056
3057 set_bit(BIO_EOF, &bio->bi_flags);
3058}
3059
c17bb495
AM
3060#ifdef CONFIG_FAIL_MAKE_REQUEST
3061
3062static DECLARE_FAULT_ATTR(fail_make_request);
3063
3064static int __init setup_fail_make_request(char *str)
3065{
3066 return setup_fault_attr(&fail_make_request, str);
3067}
3068__setup("fail_make_request=", setup_fail_make_request);
3069
3070static int should_fail_request(struct bio *bio)
3071{
3072 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3073 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3074 return should_fail(&fail_make_request, bio->bi_size);
3075
3076 return 0;
3077}
3078
3079static int __init fail_make_request_debugfs(void)
3080{
3081 return init_fault_attr_dentries(&fail_make_request,
3082 "fail_make_request");
3083}
3084
3085late_initcall(fail_make_request_debugfs);
3086
3087#else /* CONFIG_FAIL_MAKE_REQUEST */
3088
3089static inline int should_fail_request(struct bio *bio)
3090{
3091 return 0;
3092}
3093
3094#endif /* CONFIG_FAIL_MAKE_REQUEST */
3095
1da177e4
LT
3096/**
3097 * generic_make_request: hand a buffer to its device driver for I/O
3098 * @bio: The bio describing the location in memory and on the device.
3099 *
3100 * generic_make_request() is used to make I/O requests of block
3101 * devices. It is passed a &struct bio, which describes the I/O that needs
3102 * to be done.
3103 *
3104 * generic_make_request() does not return any status. The
3105 * success/failure status of the request, along with notification of
3106 * completion, is delivered asynchronously through the bio->bi_end_io
3107 * function described (one day) else where.
3108 *
3109 * The caller of generic_make_request must make sure that bi_io_vec
3110 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3111 * set to describe the device address, and the
3112 * bi_end_io and optionally bi_private are set to describe how
3113 * completion notification should be signaled.
3114 *
3115 * generic_make_request and the drivers it calls may use bi_next if this
3116 * bio happens to be merged with someone else, and may change bi_dev and
3117 * bi_sector for remaps as it sees fit. So the values of these fields
3118 * should NOT be depended on after the call to generic_make_request.
3119 */
3120void generic_make_request(struct bio *bio)
3121{
3122 request_queue_t *q;
3123 sector_t maxsector;
5ddfe969 3124 sector_t old_sector;
1da177e4 3125 int ret, nr_sectors = bio_sectors(bio);
2056a782 3126 dev_t old_dev;
1da177e4
LT
3127
3128 might_sleep();
3129 /* Test device or partition size, when known. */
3130 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3131 if (maxsector) {
3132 sector_t sector = bio->bi_sector;
3133
3134 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3135 /*
3136 * This may well happen - the kernel calls bread()
3137 * without checking the size of the device, e.g., when
3138 * mounting a device.
3139 */
3140 handle_bad_sector(bio);
3141 goto end_io;
3142 }
3143 }
3144
3145 /*
3146 * Resolve the mapping until finished. (drivers are
3147 * still free to implement/resolve their own stacking
3148 * by explicitly returning 0)
3149 *
3150 * NOTE: we don't repeat the blk_size check for each new device.
3151 * Stacking drivers are expected to know what they are doing.
3152 */
5ddfe969 3153 old_sector = -1;
2056a782 3154 old_dev = 0;
1da177e4
LT
3155 do {
3156 char b[BDEVNAME_SIZE];
3157
3158 q = bdev_get_queue(bio->bi_bdev);
3159 if (!q) {
3160 printk(KERN_ERR
3161 "generic_make_request: Trying to access "
3162 "nonexistent block-device %s (%Lu)\n",
3163 bdevname(bio->bi_bdev, b),
3164 (long long) bio->bi_sector);
3165end_io:
3166 bio_endio(bio, bio->bi_size, -EIO);
3167 break;
3168 }
3169
3170 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3171 printk("bio too big device %s (%u > %u)\n",
3172 bdevname(bio->bi_bdev, b),
3173 bio_sectors(bio),
3174 q->max_hw_sectors);
3175 goto end_io;
3176 }
3177
fde6ad22 3178 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3179 goto end_io;
3180
c17bb495
AM
3181 if (should_fail_request(bio))
3182 goto end_io;
3183
1da177e4
LT
3184 /*
3185 * If this device has partitions, remap block n
3186 * of partition p to block n+start(p) of the disk.
3187 */
3188 blk_partition_remap(bio);
3189
5ddfe969 3190 if (old_sector != -1)
2056a782 3191 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 3192 old_sector);
2056a782
JA
3193
3194 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3195
5ddfe969 3196 old_sector = bio->bi_sector;
2056a782
JA
3197 old_dev = bio->bi_bdev->bd_dev;
3198
5ddfe969
N
3199 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3200 if (maxsector) {
3201 sector_t sector = bio->bi_sector;
3202
df66b855
AM
3203 if (maxsector < nr_sectors ||
3204 maxsector - nr_sectors < sector) {
5ddfe969 3205 /*
df66b855
AM
3206 * This may well happen - partitions are not
3207 * checked to make sure they are within the size
3208 * of the whole device.
5ddfe969
N
3209 */
3210 handle_bad_sector(bio);
3211 goto end_io;
3212 }
3213 }
3214
1da177e4
LT
3215 ret = q->make_request_fn(q, bio);
3216 } while (ret);
3217}
3218
3219EXPORT_SYMBOL(generic_make_request);
3220
3221/**
3222 * submit_bio: submit a bio to the block device layer for I/O
3223 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3224 * @bio: The &struct bio which describes the I/O
3225 *
3226 * submit_bio() is very similar in purpose to generic_make_request(), and
3227 * uses that function to do most of the work. Both are fairly rough
3228 * interfaces, @bio must be presetup and ready for I/O.
3229 *
3230 */
3231void submit_bio(int rw, struct bio *bio)
3232{
3233 int count = bio_sectors(bio);
3234
3235 BIO_BUG_ON(!bio->bi_size);
3236 BIO_BUG_ON(!bio->bi_io_vec);
22e2c507 3237 bio->bi_rw |= rw;
1da177e4 3238 if (rw & WRITE)
f8891e5e 3239 count_vm_events(PGPGOUT, count);
1da177e4 3240 else
f8891e5e 3241 count_vm_events(PGPGIN, count);
1da177e4
LT
3242
3243 if (unlikely(block_dump)) {
3244 char b[BDEVNAME_SIZE];
3245 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3246 current->comm, current->pid,
3247 (rw & WRITE) ? "WRITE" : "READ",
3248 (unsigned long long)bio->bi_sector,
3249 bdevname(bio->bi_bdev,b));
3250 }
3251
3252 generic_make_request(bio);
3253}
3254
3255EXPORT_SYMBOL(submit_bio);
3256
93d17d3d 3257static void blk_recalc_rq_segments(struct request *rq)
1da177e4
LT
3258{
3259 struct bio *bio, *prevbio = NULL;
3260 int nr_phys_segs, nr_hw_segs;
3261 unsigned int phys_size, hw_size;
3262 request_queue_t *q = rq->q;
3263
3264 if (!rq->bio)
3265 return;
3266
3267 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3268 rq_for_each_bio(bio, rq) {
3269 /* Force bio hw/phys segs to be recalculated. */
3270 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3271
3272 nr_phys_segs += bio_phys_segments(q, bio);
3273 nr_hw_segs += bio_hw_segments(q, bio);
3274 if (prevbio) {
3275 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3276 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3277
3278 if (blk_phys_contig_segment(q, prevbio, bio) &&
3279 pseg <= q->max_segment_size) {
3280 nr_phys_segs--;
3281 phys_size += prevbio->bi_size + bio->bi_size;
3282 } else
3283 phys_size = 0;
3284
3285 if (blk_hw_contig_segment(q, prevbio, bio) &&
3286 hseg <= q->max_segment_size) {
3287 nr_hw_segs--;
3288 hw_size += prevbio->bi_size + bio->bi_size;
3289 } else
3290 hw_size = 0;
3291 }
3292 prevbio = bio;
3293 }
3294
3295 rq->nr_phys_segments = nr_phys_segs;
3296 rq->nr_hw_segments = nr_hw_segs;
3297}
3298
93d17d3d 3299static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3300{
3301 if (blk_fs_request(rq)) {
3302 rq->hard_sector += nsect;
3303 rq->hard_nr_sectors -= nsect;
3304
3305 /*
3306 * Move the I/O submission pointers ahead if required.
3307 */
3308 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3309 (rq->sector <= rq->hard_sector)) {
3310 rq->sector = rq->hard_sector;
3311 rq->nr_sectors = rq->hard_nr_sectors;
3312 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3313 rq->current_nr_sectors = rq->hard_cur_sectors;
3314 rq->buffer = bio_data(rq->bio);
3315 }
3316
3317 /*
3318 * if total number of sectors is less than the first segment
3319 * size, something has gone terribly wrong
3320 */
3321 if (rq->nr_sectors < rq->current_nr_sectors) {
3322 printk("blk: request botched\n");
3323 rq->nr_sectors = rq->current_nr_sectors;
3324 }
3325 }
3326}
3327
3328static int __end_that_request_first(struct request *req, int uptodate,
3329 int nr_bytes)
3330{
3331 int total_bytes, bio_nbytes, error, next_idx = 0;
3332 struct bio *bio;
3333
2056a782
JA
3334 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3335
1da177e4
LT
3336 /*
3337 * extend uptodate bool to allow < 0 value to be direct io error
3338 */
3339 error = 0;
3340 if (end_io_error(uptodate))
3341 error = !uptodate ? -EIO : uptodate;
3342
3343 /*
3344 * for a REQ_BLOCK_PC request, we want to carry any eventual
3345 * sense key with us all the way through
3346 */
3347 if (!blk_pc_request(req))
3348 req->errors = 0;
3349
3350 if (!uptodate) {
4aff5e23 3351 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3352 printk("end_request: I/O error, dev %s, sector %llu\n",
3353 req->rq_disk ? req->rq_disk->disk_name : "?",
3354 (unsigned long long)req->sector);
3355 }
3356
d72d904a 3357 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3358 const int rw = rq_data_dir(req);
3359
53e86061 3360 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3361 }
3362
1da177e4
LT
3363 total_bytes = bio_nbytes = 0;
3364 while ((bio = req->bio) != NULL) {
3365 int nbytes;
3366
3367 if (nr_bytes >= bio->bi_size) {
3368 req->bio = bio->bi_next;
3369 nbytes = bio->bi_size;
797e7dbb
TH
3370 if (!ordered_bio_endio(req, bio, nbytes, error))
3371 bio_endio(bio, nbytes, error);
1da177e4
LT
3372 next_idx = 0;
3373 bio_nbytes = 0;
3374 } else {
3375 int idx = bio->bi_idx + next_idx;
3376
3377 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3378 blk_dump_rq_flags(req, "__end_that");
3379 printk("%s: bio idx %d >= vcnt %d\n",
3380 __FUNCTION__,
3381 bio->bi_idx, bio->bi_vcnt);
3382 break;
3383 }
3384
3385 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3386 BIO_BUG_ON(nbytes > bio->bi_size);
3387
3388 /*
3389 * not a complete bvec done
3390 */
3391 if (unlikely(nbytes > nr_bytes)) {
3392 bio_nbytes += nr_bytes;
3393 total_bytes += nr_bytes;
3394 break;
3395 }
3396
3397 /*
3398 * advance to the next vector
3399 */
3400 next_idx++;
3401 bio_nbytes += nbytes;
3402 }
3403
3404 total_bytes += nbytes;
3405 nr_bytes -= nbytes;
3406
3407 if ((bio = req->bio)) {
3408 /*
3409 * end more in this run, or just return 'not-done'
3410 */
3411 if (unlikely(nr_bytes <= 0))
3412 break;
3413 }
3414 }
3415
3416 /*
3417 * completely done
3418 */
3419 if (!req->bio)
3420 return 0;
3421
3422 /*
3423 * if the request wasn't completed, update state
3424 */
3425 if (bio_nbytes) {
797e7dbb
TH
3426 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3427 bio_endio(bio, bio_nbytes, error);
1da177e4
LT
3428 bio->bi_idx += next_idx;
3429 bio_iovec(bio)->bv_offset += nr_bytes;
3430 bio_iovec(bio)->bv_len -= nr_bytes;
3431 }
3432
3433 blk_recalc_rq_sectors(req, total_bytes >> 9);
3434 blk_recalc_rq_segments(req);
3435 return 1;
3436}
3437
3438/**
3439 * end_that_request_first - end I/O on a request
3440 * @req: the request being processed
3441 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3442 * @nr_sectors: number of sectors to end I/O on
3443 *
3444 * Description:
3445 * Ends I/O on a number of sectors attached to @req, and sets it up
3446 * for the next range of segments (if any) in the cluster.
3447 *
3448 * Return:
3449 * 0 - we are done with this request, call end_that_request_last()
3450 * 1 - still buffers pending for this request
3451 **/
3452int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3453{
3454 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3455}
3456
3457EXPORT_SYMBOL(end_that_request_first);
3458
3459/**
3460 * end_that_request_chunk - end I/O on a request
3461 * @req: the request being processed
3462 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3463 * @nr_bytes: number of bytes to complete
3464 *
3465 * Description:
3466 * Ends I/O on a number of bytes attached to @req, and sets it up
3467 * for the next range of segments (if any). Like end_that_request_first(),
3468 * but deals with bytes instead of sectors.
3469 *
3470 * Return:
3471 * 0 - we are done with this request, call end_that_request_last()
3472 * 1 - still buffers pending for this request
3473 **/
3474int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3475{
3476 return __end_that_request_first(req, uptodate, nr_bytes);
3477}
3478
3479EXPORT_SYMBOL(end_that_request_chunk);
3480
ff856bad
JA
3481/*
3482 * splice the completion data to a local structure and hand off to
3483 * process_completion_queue() to complete the requests
3484 */
3485static void blk_done_softirq(struct softirq_action *h)
3486{
626ab0e6 3487 struct list_head *cpu_list, local_list;
ff856bad
JA
3488
3489 local_irq_disable();
3490 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3491 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3492 local_irq_enable();
3493
3494 while (!list_empty(&local_list)) {
3495 struct request *rq = list_entry(local_list.next, struct request, donelist);
3496
3497 list_del_init(&rq->donelist);
3498 rq->q->softirq_done_fn(rq);
3499 }
3500}
3501
ff856bad
JA
3502static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3503 void *hcpu)
3504{
3505 /*
3506 * If a CPU goes away, splice its entries to the current CPU
3507 * and trigger a run of the softirq
3508 */
3509 if (action == CPU_DEAD) {
3510 int cpu = (unsigned long) hcpu;
3511
3512 local_irq_disable();
3513 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3514 &__get_cpu_var(blk_cpu_done));
3515 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3516 local_irq_enable();
3517 }
3518
3519 return NOTIFY_OK;
3520}
3521
3522
054cc8a2 3523static struct notifier_block __devinitdata blk_cpu_notifier = {
ff856bad
JA
3524 .notifier_call = blk_cpu_notify,
3525};
3526
ff856bad
JA
3527/**
3528 * blk_complete_request - end I/O on a request
3529 * @req: the request being processed
3530 *
3531 * Description:
3532 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3533 * unless the driver actually implements this in its completion callback
ff856bad
JA
3534 * through requeueing. Theh actual completion happens out-of-order,
3535 * through a softirq handler. The user must have registered a completion
3536 * callback through blk_queue_softirq_done().
3537 **/
3538
3539void blk_complete_request(struct request *req)
3540{
3541 struct list_head *cpu_list;
3542 unsigned long flags;
3543
3544 BUG_ON(!req->q->softirq_done_fn);
3545
3546 local_irq_save(flags);
3547
3548 cpu_list = &__get_cpu_var(blk_cpu_done);
3549 list_add_tail(&req->donelist, cpu_list);
3550 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3551
3552 local_irq_restore(flags);
3553}
3554
3555EXPORT_SYMBOL(blk_complete_request);
3556
1da177e4
LT
3557/*
3558 * queue lock must be held
3559 */
8ffdc655 3560void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3561{
3562 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3563 int error;
3564
3565 /*
3566 * extend uptodate bool to allow < 0 value to be direct io error
3567 */
3568 error = 0;
3569 if (end_io_error(uptodate))
3570 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3571
3572 if (unlikely(laptop_mode) && blk_fs_request(req))
3573 laptop_io_completion();
3574
fd0ff8aa
JA
3575 /*
3576 * Account IO completion. bar_rq isn't accounted as a normal
3577 * IO on queueing nor completion. Accounting the containing
3578 * request is enough.
3579 */
3580 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3581 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3582 const int rw = rq_data_dir(req);
3583
3584 __disk_stat_inc(disk, ios[rw]);
3585 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3586 disk_round_stats(disk);
3587 disk->in_flight--;
3588 }
3589 if (req->end_io)
8ffdc655 3590 req->end_io(req, error);
1da177e4
LT
3591 else
3592 __blk_put_request(req->q, req);
3593}
3594
3595EXPORT_SYMBOL(end_that_request_last);
3596
3597void end_request(struct request *req, int uptodate)
3598{
3599 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3600 add_disk_randomness(req->rq_disk);
3601 blkdev_dequeue_request(req);
8ffdc655 3602 end_that_request_last(req, uptodate);
1da177e4
LT
3603 }
3604}
3605
3606EXPORT_SYMBOL(end_request);
3607
3608void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3609{
4aff5e23
JA
3610 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3611 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3612
3613 rq->nr_phys_segments = bio_phys_segments(q, bio);
3614 rq->nr_hw_segments = bio_hw_segments(q, bio);
3615 rq->current_nr_sectors = bio_cur_sectors(bio);
3616 rq->hard_cur_sectors = rq->current_nr_sectors;
3617 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3618 rq->buffer = bio_data(bio);
0e75f906 3619 rq->data_len = bio->bi_size;
1da177e4
LT
3620
3621 rq->bio = rq->biotail = bio;
3622}
3623
3624EXPORT_SYMBOL(blk_rq_bio_prep);
3625
3626int kblockd_schedule_work(struct work_struct *work)
3627{
3628 return queue_work(kblockd_workqueue, work);
3629}
3630
3631EXPORT_SYMBOL(kblockd_schedule_work);
3632
3633void kblockd_flush(void)
3634{
3635 flush_workqueue(kblockd_workqueue);
3636}
3637EXPORT_SYMBOL(kblockd_flush);
3638
3639int __init blk_dev_init(void)
3640{
ff856bad
JA
3641 int i;
3642
1da177e4
LT
3643 kblockd_workqueue = create_workqueue("kblockd");
3644 if (!kblockd_workqueue)
3645 panic("Failed to create kblockd\n");
3646
3647 request_cachep = kmem_cache_create("blkdev_requests",
3648 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3649
3650 requestq_cachep = kmem_cache_create("blkdev_queue",
3651 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3652
3653 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3654 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3655
0a945022 3656 for_each_possible_cpu(i)
ff856bad
JA
3657 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3658
3659 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3660 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3661
1da177e4
LT
3662 blk_max_low_pfn = max_low_pfn;
3663 blk_max_pfn = max_pfn;
3664
3665 return 0;
3666}
3667
3668/*
3669 * IO Context helper functions
3670 */
3671void put_io_context(struct io_context *ioc)
3672{
3673 if (ioc == NULL)
3674 return;
3675
3676 BUG_ON(atomic_read(&ioc->refcount) == 0);
3677
3678 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3679 struct cfq_io_context *cic;
3680
334e94de 3681 rcu_read_lock();
1da177e4
LT
3682 if (ioc->aic && ioc->aic->dtor)
3683 ioc->aic->dtor(ioc->aic);
e2d74ac0 3684 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3685 struct rb_node *n = rb_first(&ioc->cic_root);
3686
3687 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3688 cic->dtor(ioc);
3689 }
334e94de 3690 rcu_read_unlock();
1da177e4
LT
3691
3692 kmem_cache_free(iocontext_cachep, ioc);
3693 }
3694}
3695EXPORT_SYMBOL(put_io_context);
3696
3697/* Called by the exitting task */
3698void exit_io_context(void)
3699{
1da177e4 3700 struct io_context *ioc;
e2d74ac0 3701 struct cfq_io_context *cic;
1da177e4 3702
22e2c507 3703 task_lock(current);
1da177e4
LT
3704 ioc = current->io_context;
3705 current->io_context = NULL;
22e2c507 3706 task_unlock(current);
1da177e4 3707
25034d7a 3708 ioc->task = NULL;
1da177e4
LT
3709 if (ioc->aic && ioc->aic->exit)
3710 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3711 if (ioc->cic_root.rb_node != NULL) {
3712 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3713 cic->exit(ioc);
3714 }
25034d7a 3715
1da177e4
LT
3716 put_io_context(ioc);
3717}
3718
3719/*
3720 * If the current task has no IO context then create one and initialise it.
fb3cc432 3721 * Otherwise, return its existing IO context.
1da177e4 3722 *
fb3cc432
NP
3723 * This returned IO context doesn't have a specifically elevated refcount,
3724 * but since the current task itself holds a reference, the context can be
3725 * used in general code, so long as it stays within `current` context.
1da177e4 3726 */
b5deef90 3727static struct io_context *current_io_context(gfp_t gfp_flags, int node)
1da177e4
LT
3728{
3729 struct task_struct *tsk = current;
1da177e4
LT
3730 struct io_context *ret;
3731
1da177e4 3732 ret = tsk->io_context;
fb3cc432
NP
3733 if (likely(ret))
3734 return ret;
1da177e4 3735
b5deef90 3736 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
1da177e4
LT
3737 if (ret) {
3738 atomic_set(&ret->refcount, 1);
22e2c507 3739 ret->task = current;
fc46379d 3740 ret->ioprio_changed = 0;
1da177e4
LT
3741 ret->last_waited = jiffies; /* doesn't matter... */
3742 ret->nr_batch_requests = 0; /* because this is 0 */
3743 ret->aic = NULL;
e2d74ac0 3744 ret->cic_root.rb_node = NULL;
9f83e45e
ON
3745 /* make sure set_task_ioprio() sees the settings above */
3746 smp_wmb();
fb3cc432
NP
3747 tsk->io_context = ret;
3748 }
1da177e4 3749
fb3cc432
NP
3750 return ret;
3751}
3752EXPORT_SYMBOL(current_io_context);
1da177e4 3753
fb3cc432
NP
3754/*
3755 * If the current task has no IO context then create one and initialise it.
3756 * If it does have a context, take a ref on it.
3757 *
3758 * This is always called in the context of the task which submitted the I/O.
3759 */
b5deef90 3760struct io_context *get_io_context(gfp_t gfp_flags, int node)
fb3cc432
NP
3761{
3762 struct io_context *ret;
b5deef90 3763 ret = current_io_context(gfp_flags, node);
fb3cc432 3764 if (likely(ret))
1da177e4 3765 atomic_inc(&ret->refcount);
1da177e4
LT
3766 return ret;
3767}
3768EXPORT_SYMBOL(get_io_context);
3769
3770void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3771{
3772 struct io_context *src = *psrc;
3773 struct io_context *dst = *pdst;
3774
3775 if (src) {
3776 BUG_ON(atomic_read(&src->refcount) == 0);
3777 atomic_inc(&src->refcount);
3778 put_io_context(dst);
3779 *pdst = src;
3780 }
3781}
3782EXPORT_SYMBOL(copy_io_context);
3783
3784void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3785{
3786 struct io_context *temp;
3787 temp = *ioc1;
3788 *ioc1 = *ioc2;
3789 *ioc2 = temp;
3790}
3791EXPORT_SYMBOL(swap_io_context);
3792
3793/*
3794 * sysfs parts below
3795 */
3796struct queue_sysfs_entry {
3797 struct attribute attr;
3798 ssize_t (*show)(struct request_queue *, char *);
3799 ssize_t (*store)(struct request_queue *, const char *, size_t);
3800};
3801
3802static ssize_t
3803queue_var_show(unsigned int var, char *page)
3804{
3805 return sprintf(page, "%d\n", var);
3806}
3807
3808static ssize_t
3809queue_var_store(unsigned long *var, const char *page, size_t count)
3810{
3811 char *p = (char *) page;
3812
3813 *var = simple_strtoul(p, &p, 10);
3814 return count;
3815}
3816
3817static ssize_t queue_requests_show(struct request_queue *q, char *page)
3818{
3819 return queue_var_show(q->nr_requests, (page));
3820}
3821
3822static ssize_t
3823queue_requests_store(struct request_queue *q, const char *page, size_t count)
3824{
3825 struct request_list *rl = &q->rq;
c981ff9f
AV
3826 unsigned long nr;
3827 int ret = queue_var_store(&nr, page, count);
3828 if (nr < BLKDEV_MIN_RQ)
3829 nr = BLKDEV_MIN_RQ;
1da177e4 3830
c981ff9f
AV
3831 spin_lock_irq(q->queue_lock);
3832 q->nr_requests = nr;
1da177e4
LT
3833 blk_queue_congestion_threshold(q);
3834
3835 if (rl->count[READ] >= queue_congestion_on_threshold(q))
79e2de4b 3836 blk_set_queue_congested(q, READ);
1da177e4 3837 else if (rl->count[READ] < queue_congestion_off_threshold(q))
79e2de4b 3838 blk_clear_queue_congested(q, READ);
1da177e4
LT
3839
3840 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
79e2de4b 3841 blk_set_queue_congested(q, WRITE);
1da177e4 3842 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
79e2de4b 3843 blk_clear_queue_congested(q, WRITE);
1da177e4
LT
3844
3845 if (rl->count[READ] >= q->nr_requests) {
3846 blk_set_queue_full(q, READ);
3847 } else if (rl->count[READ]+1 <= q->nr_requests) {
3848 blk_clear_queue_full(q, READ);
3849 wake_up(&rl->wait[READ]);
3850 }
3851
3852 if (rl->count[WRITE] >= q->nr_requests) {
3853 blk_set_queue_full(q, WRITE);
3854 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3855 blk_clear_queue_full(q, WRITE);
3856 wake_up(&rl->wait[WRITE]);
3857 }
c981ff9f 3858 spin_unlock_irq(q->queue_lock);
1da177e4
LT
3859 return ret;
3860}
3861
3862static ssize_t queue_ra_show(struct request_queue *q, char *page)
3863{
3864 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3865
3866 return queue_var_show(ra_kb, (page));
3867}
3868
3869static ssize_t
3870queue_ra_store(struct request_queue *q, const char *page, size_t count)
3871{
3872 unsigned long ra_kb;
3873 ssize_t ret = queue_var_store(&ra_kb, page, count);
3874
3875 spin_lock_irq(q->queue_lock);
1da177e4
LT
3876 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3877 spin_unlock_irq(q->queue_lock);
3878
3879 return ret;
3880}
3881
3882static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3883{
3884 int max_sectors_kb = q->max_sectors >> 1;
3885
3886 return queue_var_show(max_sectors_kb, (page));
3887}
3888
3889static ssize_t
3890queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3891{
3892 unsigned long max_sectors_kb,
3893 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3894 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3895 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3896 int ra_kb;
3897
3898 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3899 return -EINVAL;
3900 /*
3901 * Take the queue lock to update the readahead and max_sectors
3902 * values synchronously:
3903 */
3904 spin_lock_irq(q->queue_lock);
3905 /*
3906 * Trim readahead window as well, if necessary:
3907 */
3908 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3909 if (ra_kb > max_sectors_kb)
3910 q->backing_dev_info.ra_pages =
3911 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3912
3913 q->max_sectors = max_sectors_kb << 1;
3914 spin_unlock_irq(q->queue_lock);
3915
3916 return ret;
3917}
3918
3919static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3920{
3921 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3922
3923 return queue_var_show(max_hw_sectors_kb, (page));
3924}
3925
3926
3927static struct queue_sysfs_entry queue_requests_entry = {
3928 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3929 .show = queue_requests_show,
3930 .store = queue_requests_store,
3931};
3932
3933static struct queue_sysfs_entry queue_ra_entry = {
3934 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3935 .show = queue_ra_show,
3936 .store = queue_ra_store,
3937};
3938
3939static struct queue_sysfs_entry queue_max_sectors_entry = {
3940 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3941 .show = queue_max_sectors_show,
3942 .store = queue_max_sectors_store,
3943};
3944
3945static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3946 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3947 .show = queue_max_hw_sectors_show,
3948};
3949
3950static struct queue_sysfs_entry queue_iosched_entry = {
3951 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3952 .show = elv_iosched_show,
3953 .store = elv_iosched_store,
3954};
3955
3956static struct attribute *default_attrs[] = {
3957 &queue_requests_entry.attr,
3958 &queue_ra_entry.attr,
3959 &queue_max_hw_sectors_entry.attr,
3960 &queue_max_sectors_entry.attr,
3961 &queue_iosched_entry.attr,
3962 NULL,
3963};
3964
3965#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3966
3967static ssize_t
3968queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3969{
3970 struct queue_sysfs_entry *entry = to_queue(attr);
483f4afc
AV
3971 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3972 ssize_t res;
1da177e4 3973
1da177e4 3974 if (!entry->show)
6c1852a0 3975 return -EIO;
483f4afc
AV
3976 mutex_lock(&q->sysfs_lock);
3977 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3978 mutex_unlock(&q->sysfs_lock);
3979 return -ENOENT;
3980 }
3981 res = entry->show(q, page);
3982 mutex_unlock(&q->sysfs_lock);
3983 return res;
1da177e4
LT
3984}
3985
3986static ssize_t
3987queue_attr_store(struct kobject *kobj, struct attribute *attr,
3988 const char *page, size_t length)
3989{
3990 struct queue_sysfs_entry *entry = to_queue(attr);
483f4afc
AV
3991 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3992
3993 ssize_t res;
1da177e4 3994
1da177e4 3995 if (!entry->store)
6c1852a0 3996 return -EIO;
483f4afc
AV
3997 mutex_lock(&q->sysfs_lock);
3998 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3999 mutex_unlock(&q->sysfs_lock);
4000 return -ENOENT;
4001 }
4002 res = entry->store(q, page, length);
4003 mutex_unlock(&q->sysfs_lock);
4004 return res;
1da177e4
LT
4005}
4006
4007static struct sysfs_ops queue_sysfs_ops = {
4008 .show = queue_attr_show,
4009 .store = queue_attr_store,
4010};
4011
93d17d3d 4012static struct kobj_type queue_ktype = {
1da177e4
LT
4013 .sysfs_ops = &queue_sysfs_ops,
4014 .default_attrs = default_attrs,
483f4afc 4015 .release = blk_release_queue,
1da177e4
LT
4016};
4017
4018int blk_register_queue(struct gendisk *disk)
4019{
4020 int ret;
4021
4022 request_queue_t *q = disk->queue;
4023
4024 if (!q || !q->request_fn)
4025 return -ENXIO;
4026
4027 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 4028
483f4afc 4029 ret = kobject_add(&q->kobj);
1da177e4
LT
4030 if (ret < 0)
4031 return ret;
4032
483f4afc
AV
4033 kobject_uevent(&q->kobj, KOBJ_ADD);
4034
1da177e4
LT
4035 ret = elv_register_queue(q);
4036 if (ret) {
483f4afc
AV
4037 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4038 kobject_del(&q->kobj);
1da177e4
LT
4039 return ret;
4040 }
4041
4042 return 0;
4043}
4044
4045void blk_unregister_queue(struct gendisk *disk)
4046{
4047 request_queue_t *q = disk->queue;
4048
4049 if (q && q->request_fn) {
4050 elv_unregister_queue(q);
4051
483f4afc
AV
4052 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4053 kobject_del(&q->kobj);
1da177e4
LT
4054 kobject_put(&disk->kobj);
4055 }
4056}
This page took 0.454781 seconds and 5 git commands to generate.