gdb, gdbserver: detach fork child when detaching from fork parent
[deliverable/binutils-gdb.git] / cpu / bpf.cpu
CommitLineData
ea195bb0
JM
1;; Linux BPF CPU description -*- Scheme -*-
2;; Copyright (C) 2019 Free Software Foundation, Inc.
3;;
4;; Contributed by Oracle Inc.
5;;
6;; This file is part of the GNU Binutils and of GDB.
7;;
8;; This program is free software; you can redistribute it and/or
9;; modify it under the terms of the GNU General Public License as
10;; published by the Free Software Foundation; either version 3 of the
11;; License, or (at your option) any later version.
12;;
13;; This program is distributed in the hope that it will be useful, but
14;; WITHOUT ANY WARRANTY; without even the implied warranty of
15;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16;; General Public License for more details.
17;;
18;; You should have received a copy of the GNU General Public License
19;; along with this program; if not, write to the Free Software
20;; Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
21;; 02110-1301, USA.
22
23;; This file contains a CGEN CPU description for the Linux kernel eBPF
24;; instruction set. eBPF is documented in the linux kernel source
25;; tree. See linux/Documentation/networking/filter.txt, and also the
26;; sources in the networking subsystem, notably
27;; linux/net/core/filter.c.
28
29(include "simplify.inc")
30
31(define-arch
32 (name bpf)
33 (comment "Linux kernel BPF")
34 (insn-lsb0? #t)
78c1c354
JM
35 ;; XXX explain the default-alignment setting is for the simulator.
36 ;; It is confusing that the simulator follows the emulated memory
37 ;; access conventions for fetching instructions by pieces...
38 (default-alignment unaligned)
4449c81a
DF
39 (machs bpf xbpf)
40 (isas ebpfle ebpfbe xbpfle xbpfbe))
ea195bb0
JM
41
42;;;; The ISAs
43
44;; Logically, eBPF comforms a single instruction set featuring two
45;; kind of instructions: 64-bit instructions and 128-bit instructions.
46;;
47;; The 64-bit instructions have the form:
48;;
49;; code:8 regs:8 offset:16 imm:32
50;;
51;; Whereas the 128-bit instructions (at the moment there is only one
52;; of such instructions, lddw) have the form:
53;;
e042e6c3 54;; code:8 regs:8 offset:16 imm:32 unused:32 imm:32
ea195bb0
JM
55;;
56;; In both formats `regs' is itself composed by two fields:
57;;
58;; dst:4 src:4
59;;
60;; The ISA is supposed to be orthogonal to endianness: the endianness
61;; of the instruction fields follow the endianness of the host running
62;; the eBPF program, and that's all. However, this is not entirely
63;; true. The definition of an eBPF code in the Linux kernel is:
64;;
65;; struct bpf_insn {
66;; __u8 code; /* opcode */
67;; __u8 dst_reg:4; /* dest register */
68;; __u8 src_reg:4; /* source register */
69;; __s16 off; /* signed offset */
70;; __s32 imm; /* signed immediate constant */
71;; };
72;;
73;; Since the ordering of fields in C bitmaps is defined by the
74;; implementation, the impact of endianness in the encoding of eBPF
75;; instructions is effectively defined by GCC. In particular, GCC
76;; places dst_reg before src_reg in little-endian code, and the other
77;; way around in big-endian code.
78;;
79;; So, in reality, eBPF comprises two instruction sets: one for
80;; little-endian with instructions like:
81;;
82;; code:8 src:4 dst:4 offset:16 imm:32 [unused:32 imm:32]
83;;
84;; and another for big-endian with instructions like:
85;;
86;; code:8 dst:4 src:4 offset:16 imm:32 [unused:32 imm:32]
87;;
88;; where `offset' and the immediate fields are encoded in
89;; little-endian and big-endian byte-order, respectively.
90
91(define-pmacro (define-bpf-isa x-endian)
92 (define-isa
93 (name (.sym ebpf x-endian))
94 (comment "The eBPF instruction set")
95 ;; Default length to record in ifields. This is used in
96 ;; calculations involving bit numbers.
97 (default-insn-word-bitsize 64)
98 ;; Length of an unknown instruction. Used by disassembly and by the
99 ;; simulator's invalid insn handler.
100 (default-insn-bitsize 64)
d8740be1
JM
101 ;; Number of bits of insn that can be initially fetched. This is
102 ;; the size of the smallest insn.
103 (base-insn-bitsize 64)))
ea195bb0
JM
104
105(define-bpf-isa le)
106(define-bpf-isa be)
107
4449c81a
DF
108(define-pmacro (define-xbpf-isa x-endian)
109 (define-isa
110 (name (.sym xbpf x-endian))
111 (comment "The xBPF instruction set")
112 (default-insn-word-bitsize 64)
113 (default-insn-bitsize 64)
114 (base-insn-bitsize 64)))
115
116(define-xbpf-isa le)
117(define-xbpf-isa be)
118
119(define-pmacro all-isas () (ISA ebpfle,ebpfbe,xbpfle,xbpfbe))
120(define-pmacro xbpf-isas () (ISA xbpfle,xbpfbe))
121
122(define-pmacro (endian-isas x-endian)
123 ((ISA (.sym ebpf x-endian) (.sym xbpf x-endian))))
ea195bb0
JM
124
125;;;; Hardware Hierarchy
126
127;;
4449c81a
DF
128;; bpf architecture
129;; |
130;; bpfbf cpu-family
131;; / \
132;; bpf xbpf machine
133;; | |
134;; bpf-def xbpf-def model
ea195bb0
JM
135
136(define-cpu
137 (name bpfbf)
138 (comment "Linux kernel eBPF virtual CPU")
78c1c354
JM
139 (insn-endian big)
140 (word-bitsize 64))
ea195bb0
JM
141
142(define-mach
143 (name bpf)
144 (comment "Linux eBPF")
145 (cpu bpfbf)
146 (isas ebpfle ebpfbe))
147
148(define-model
149 (name bpf-def)
150 (comment "Linux eBPF default model")
151 (mach bpf)
152 (unit u-exec "execution unit" ()
153 1 ; issue
154 1 ; done
155 () ; state
156 () ; inputs
157 () ; outputs
158 () ; profile action (default)
159 ))
160
4449c81a
DF
161(define-mach
162 (name xbpf)
163 (comment "Experimental BPF")
164 (cpu bpfbf)
165 (isas ebpfle ebpfbe xbpfle xbpfbe))
166
167(define-model
168 (name xbpf-def)
169 (comment "xBPF default model")
170 (mach xbpf)
171 (unit u-exec "execution unit" ()
172 1 ; issue
173 1 ; done
174 () ; state
175 () ; inputs
176 () ; outputs
177 () ; profile action (default)
178 ))
179
ea195bb0
JM
180;;;; Hardware Elements
181
182;; eBPF programs can access 10 general-purpose registers which are
183;; 64-bit.
184
185(define-hardware
186 (name h-gpr)
187 (comment "General Purpose Registers")
4449c81a 188 (attrs all-isas (MACH bpf xbpf))
ea195bb0
JM
189 (type register DI (16))
190 (indices keyword "%"
191 ;; XXX the frame pointer fp is read-only, so it should
192 ;; go in a different hardware.
193 (;; ABI names. Take priority when disassembling.
231097b0 194 (r0 0) (r1 1) (r2 2) (r3 3) (r4 4) (r5 5) (r6 6)
ea195bb0
JM
195 (r7 7) (r8 8) (r9 9) (fp 10)
196 ;; Additional names recognized when assembling.
78c1c354 197 (r0 0) (r6 6) (r10 10))))
ea195bb0
JM
198
199;; The program counter. CGEN requires it, even if it is not visible
200;; to eBPF programs.
201
78c1c354
JM
202(define-hardware
203 (name h-pc)
204 (comment "program counter")
205 (attrs PC PROFILE all-isas)
206 (type pc UDI)
207 (get () (raw-reg h-pc))
208 (set (newval) (set (raw-reg h-pc) newval)))
209
ea195bb0
JM
210;; A 64-bit h-sint to be used by the imm64 operand below. XXX this
211;; shouldn't be needed, as h-sint is supposed to be able to hold
212;; 64-bit values. However, in practice CGEN limits h-sint to 32 bits
213;; in 32-bit hosts. To be fixed in CGEN.
214
215(dnh h-sint64 "signed 64-bit integer" (all-isas) (immediate DI)
216 () () ())
217
218;;;; The Instruction Sets
219
220;;; Fields and Opcodes
221
222;; Convenience macro to shorten the definition of the fields below.
223(define-pmacro (dwf x-name x-comment x-attrs
224 x-word-offset x-word-length x-start x-length
225 x-mode)
226 "Define a field including its containing word."
227 (define-ifield
228 (name x-name)
229 (comment x-comment)
230 (.splice attrs (.unsplice x-attrs))
231 (word-offset x-word-offset)
232 (word-length x-word-length)
233 (start x-start)
234 (length x-length)
235 (mode x-mode)))
236
237;; For arithmetic and jump instructions the 8-bit code field is
238;; subdivided in:
239;;
240;; op-code:4 op-src:1 op-class:3
241
242(dwf f-op-code "eBPF opcode code" (all-isas) 0 8 7 4 UINT)
243(dwf f-op-src "eBPF opcode source" (all-isas) 0 8 3 1 UINT)
244(dwf f-op-class "eBPF opcode instruction class" (all-isas) 0 8 2 3 UINT)
245
246(define-normal-insn-enum insn-op-code-alu "eBPF instruction codes"
247 (all-isas) OP_CODE_ f-op-code
248 (;; Codes for OP_CLASS_ALU and OP_CLASS_ALU64
249 (ADD #x0) (SUB #x1) (MUL #x2) (DIV #x3) (OR #x4) (AND #x5)
250 (LSH #x6) (RSH #x7) (NEG #x8) (MOD #x9) (XOR #xa) (MOV #xb)
251 (ARSH #xc) (END #xd)
6e25f888
DF
252 ;; xBPF-only: signed div, signed mod
253 (SDIV #xe) (SMOD #xf)
ea195bb0
JM
254 ;; Codes for OP_CLASS_JMP
255 (JA #x0) (JEQ #x1) (JGT #x2) (JGE #x3) (JSET #x4)
256 (JNE #x5) (JSGT #x6) (JSGE #x7) (CALL #x8) (EXIT #x9)
257 (JLT #xa) (JLE #xb) (JSLT #xc) (JSLE #xd)))
258
259(define-normal-insn-enum insn-op-src "eBPF instruction source"
260 (all-isas) OP_SRC_ f-op-src
261 ;; X => use `src' as source operand.
262 ;; K => use `imm32' as source operand.
263 ((K #b0) (X #b1)))
264
265(define-normal-insn-enum insn-op-class "eBPF instruction class"
266 (all-isas) OP_CLASS_ f-op-class
267 ((LD #b000) (LDX #b001) (ST #b010) (STX #b011)
c54a9b56 268 (ALU #b100) (JMP #b101) (JMP32 #b110) (ALU64 #b111)))
ea195bb0
JM
269
270;; For load/store instructions, the 8-bit code field is subdivided in:
271;;
272;; op-mode:3 op-size:2 op-class:3
273
274(dwf f-op-mode "eBPF opcode mode" (all-isas) 0 8 7 3 UINT)
275(dwf f-op-size "eBPF opcode size" (all-isas) 0 8 4 2 UINT)
276
277(define-normal-insn-enum insn-op-mode "eBPF load/store instruction modes"
278 (all-isas) OP_MODE_ f-op-mode
279 ((IMM #b000) (ABS #b001) (IND #b010) (MEM #b011)
280 ;; #b100 and #b101 are used in classic BPF only, reserved in eBPF.
281 (XADD #b110)))
282
283(define-normal-insn-enum insn-op-size "eBPF load/store instruction sizes"
284 (all-isas) OP_SIZE_ f-op-size
285 ((W #b00) ;; Word: 4 byte
286 (H #b01) ;; Half-word: 2 byte
287 (B #b10) ;; Byte: 1 byte
288 (DW #b11))) ;; Double-word: 8 byte
289
290;; The fields for the source and destination registers are a bit
291;; tricky. Due to the bizarre nibble swap between little-endian and
292;; big-endian ISAs we need to keep different variants of the fields.
293;;
294;; Note that f-regs is used in the format spec of instructions that do
295;; NOT use registers, where endianness is irrelevant i.e. f-regs is a
296;; constant 0 opcode.
297
4449c81a
DF
298(dwf f-dstle "eBPF dst register field" ((ISA ebpfle xbpfle)) 8 8 3 4 UINT)
299(dwf f-srcle "eBPF source register field" ((ISA ebpfle xbpfle)) 8 8 7 4 UINT)
ea195bb0 300
4449c81a
DF
301(dwf f-dstbe "eBPF dst register field" ((ISA ebpfbe xbpfbe)) 8 8 7 4 UINT)
302(dwf f-srcbe "eBPF source register field" ((ISA ebpfbe xbpfbe)) 8 8 3 4 UINT)
ea195bb0
JM
303
304(dwf f-regs "eBPF registers field" (all-isas) 8 8 7 8 UINT)
305
306;; Finally, the fields for the immediates.
307;;
308;; The 16-bit offsets and 32-bit immediates do not present any special
309;; difficulty: we put them in their own instruction word so the
310;; byte-endianness will be properly applied.
311
d73be611 312(dwf f-offset16 "eBPF offset field" (all-isas) 16 16 15 16 HI)
ea195bb0
JM
313(dwf f-imm32 "eBPF 32-bit immediate field" (all-isas) 32 32 31 32 INT)
314
315;; For the disjoint 64-bit signed immediate, however, we need to use a
316;; multi-ifield.
317
318(dwf f-imm64-a "eBPF 64-bit immediate a" (all-isas) 32 32 31 32 UINT)
319(dwf f-imm64-b "eBPF 64-bit immediate b" (all-isas) 64 32 31 32 UINT)
320(dwf f-imm64-c "eBPF 64-bit immediate c" (all-isas) 96 32 31 32 UINT)
321
322(define-multi-ifield
323 (name f-imm64)
324 (comment "eBPF 64-bit immediate field")
325 (attrs all-isas)
326 (mode DI)
327 (subfields f-imm64-a f-imm64-b f-imm64-c)
328 (insert (sequence ()
329 (set (ifield f-imm64-b) (const 0))
330 (set (ifield f-imm64-c) (srl (ifield f-imm64) (const 32)))
331 (set (ifield f-imm64-a) (and (ifield f-imm64) (const #xffffffff)))))
332 (extract (sequence ()
333 (set (ifield f-imm64)
62e65990
AM
334 (or (sll UDI (zext UDI (ifield f-imm64-c)) (const 32))
335 (zext UDI (ifield f-imm64-a)))))))
ea195bb0
JM
336
337;;; Operands
338
339;; A couple of source and destination register operands are defined
340;; for each ISA: ebpfle and ebpfbe.
341
4449c81a
DF
342(dno dstle "destination register" ((ISA ebpfle xbpfle)) h-gpr f-dstle)
343(dno srcle "source register" ((ISA ebpfle xbpfle)) h-gpr f-srcle)
ea195bb0 344
4449c81a
DF
345(dno dstbe "destination register" ((ISA ebpfbe xbpfbe)) h-gpr f-dstbe)
346(dno srcbe "source register" ((ISA ebpfbe xbpfbe)) h-gpr f-srcbe)
ea195bb0
JM
347
348;; Jump instructions have a 16-bit PC-relative address.
349;; CALL instructions have a 32-bit PC-relative address.
350
351(dno disp16 "16-bit PC-relative address" (all-isas PCREL-ADDR) h-sint
352 f-offset16)
353(dno disp32 "32-bit PC-relative address" (all-isas PCREL-ADDR) h-sint
354 f-imm32)
355
356;; Immediate operands in eBPF are signed, and we want the disassembler
357;; to print negative values in a sane way. Therefore we use the macro
358;; below to register a printer, which is itself defined as a C
359;; function in bpf.opc.
360
361;; define-normal-signed-immediate-operand
362(define-pmacro (dnsio x-name x-comment x-attrs x-type x-index)
363 (define-operand
364 (name x-name)
365 (comment x-comment)
366 (.splice attrs (.unsplice x-attrs))
367 (type x-type)
368 (index x-index)
369 (handlers (print "immediate"))))
370
371(dnsio imm32 "32-bit immediate" (all-isas) h-sint f-imm32)
372(dnsio offset16 "16-bit offset" (all-isas) h-sint f-offset16)
373
374;; The 64-bit immediate cannot use the default
375;; cgen_parse_signed_integer, because it assumes operands are at much
376;; 32-bit wide. Use our own.
377
378(define-operand
379 (name imm64)
380 (comment "64-bit immediate")
381 (attrs all-isas)
382 (type h-sint64)
383 (index f-imm64)
384 (handlers (parse "imm64") (print "immediate")))
385
386;; The endle/endbe instructions take an operand to specify the word
387;; width in endianness conversions. We use both a parser and printer,
388;; which are defined as C functions in bpf.opc.
389
390(define-operand
391 (name endsize)
392 (comment "endianness size immediate: 16, 32 or 64")
393 (attrs all-isas)
394 (type h-uint)
395 (index f-imm32)
396 (handlers (parse "endsize") (print "endsize")))
397
398;;; ALU instructions
399
400;; For each opcode in insn-op-code-alu representing and integer
401;; arithmetic instruction (ADD, SUB, etc) we define a bunch of
402;; instruction variants:
403;;
404;; ADD[32]{i,r}le for the little-endian ISA
405;; ADD[32]{i,r}be for the big-endian ISA
406;;
78c1c354
JM
407;; The `i' variants perform `dst OP imm32 -> dst' operations.
408;; The `r' variants perform `dst OP src -> dst' operations.
ea195bb0
JM
409;;
410;; The variants with 32 in their name are of ALU class. Otherwise
411;; they are ALU64 class.
412
78c1c354
JM
413(define-pmacro (define-alu-insn-un x-basename x-suffix x-op-class x-op-code
414 x-endian x-mode x-semop)
ea195bb0
JM
415 (dni (.sym x-basename x-suffix x-endian)
416 (.str x-basename x-suffix)
4449c81a 417 (endian-isas x-endian)
ea195bb0
JM
418 (.str x-basename x-suffix " $dst" x-endian)
419 (+ (f-imm32 0) (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
78c1c354
JM
420 x-op-class OP_SRC_K x-op-code)
421 (set x-mode (.sym dst x-endian) (x-semop x-mode (.sym dst x-endian)))
422 ()))
ea195bb0 423
78c1c354 424(define-pmacro (define-alu-insn-bin x-basename x-suffix x-op-class x-op-code
6e25f888 425 x-endian x-mode x-semop x-isas)
ea195bb0 426 (begin
78c1c354 427 ;; dst = dst OP immediate
ea195bb0
JM
428 (dni (.sym x-basename x-suffix "i" x-endian)
429 (.str x-basename x-suffix " immediate")
6e25f888 430 (.splice (.unsplice x-isas))
ea195bb0
JM
431 (.str x-basename x-suffix " $dst" x-endian ",$imm32")
432 (+ imm32 (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
78c1c354
JM
433 x-op-class OP_SRC_K x-op-code)
434 (set x-mode (.sym dst x-endian) (x-semop x-mode (.sym dst x-endian) imm32))
435 ())
436 ;; dst = dst OP src
ea195bb0
JM
437 (dni (.sym x-basename x-suffix "r" x-endian)
438 (.str x-basename x-suffix " register")
6e25f888 439 (.splice (.unsplice x-isas))
ea195bb0
JM
440 (.str x-basename x-suffix " $dst" x-endian ",$src" x-endian)
441 (+ (f-imm32 0) (f-offset16 0) (.sym src x-endian) (.sym dst x-endian)
78c1c354
JM
442 x-op-class OP_SRC_X x-op-code)
443 (set x-mode (.sym dst x-endian)
444 (x-semop x-mode (.sym dst x-endian) (.sym src x-endian)))
445 ())))
446
447(define-pmacro (define-alu-insn-mov x-basename x-suffix x-op-class x-op-code
448 x-endian x-mode)
449 (begin
450 (dni (.sym mov x-suffix "i" x-endian)
451 (.str mov x-suffix " immediate")
4449c81a 452 (endian-isas x-endian)
78c1c354
JM
453 (.str x-basename x-suffix " $dst" x-endian ",$imm32")
454 (+ imm32 (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
455 x-op-class OP_SRC_K x-op-code)
456 (set x-mode (.sym dst x-endian) imm32)
457 ())
458 (dni (.sym mov x-suffix "r" x-endian)
459 (.str mov x-suffix " register")
4449c81a 460 (endian-isas x-endian)
78c1c354
JM
461 (.str x-basename x-suffix " $dst" x-endian ",$src" x-endian)
462 (+ (f-imm32 0) (f-offset16 0) (.sym src x-endian) (.sym dst x-endian)
463 x-op-class OP_SRC_X x-op-code)
464 (set x-mode (.sym dst x-endian) (.sym src x-endian))
465 ())))
466
ea195bb0 467
78c1c354
JM
468;; Unary ALU instructions (neg)
469(define-pmacro (daiu x-basename x-op-code x-endian x-semop)
ea195bb0 470 (begin
78c1c354
JM
471 (define-alu-insn-un x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI x-semop)
472 (define-alu-insn-un x-basename "32" OP_CLASS_ALU x-op-code x-endian USI x-semop)))
ea195bb0 473
78c1c354
JM
474;; Binary ALU instructions (all the others)
475;; For ALU32: DST = (u32) DST OP (u32) SRC is correct semantics
6e25f888 476(define-pmacro (daib x-basename x-op-code x-endian x-semop x-isas)
ea195bb0 477 (begin
6e25f888
DF
478 (define-alu-insn-bin x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI x-semop x-isas)
479 (define-alu-insn-bin x-basename "32" OP_CLASS_ALU x-op-code x-endian USI x-semop x-isas)))
78c1c354
JM
480
481;; Move ALU instructions (mov)
482(define-pmacro (daim x-basename x-op-code x-endian)
483 (begin
484 (define-alu-insn-mov x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI)
485 (define-alu-insn-mov x-basename "32" OP_CLASS_ALU x-op-code x-endian USI)))
ea195bb0
JM
486
487(define-pmacro (define-alu-instructions x-endian)
488 (begin
6e25f888
DF
489 (daib add OP_CODE_ADD x-endian add (endian-isas x-endian))
490 (daib sub OP_CODE_SUB x-endian sub (endian-isas x-endian))
491 (daib mul OP_CODE_MUL x-endian mul (endian-isas x-endian))
492 (daib div OP_CODE_DIV x-endian udiv (endian-isas x-endian))
493 (daib or OP_CODE_OR x-endian or (endian-isas x-endian))
494 (daib and OP_CODE_AND x-endian and (endian-isas x-endian))
495 (daib lsh OP_CODE_LSH x-endian sll (endian-isas x-endian))
496 (daib rsh OP_CODE_RSH x-endian srl (endian-isas x-endian))
497 (daib mod OP_CODE_MOD x-endian umod (endian-isas x-endian))
498 (daib xor OP_CODE_XOR x-endian xor (endian-isas x-endian))
499 (daib arsh OP_CODE_ARSH x-endian sra (endian-isas x-endian))
500 (daib sdiv OP_CODE_SDIV x-endian div ((ISA (.sym xbpf x-endian))))
501 (daib smod OP_CODE_SMOD x-endian mod ((ISA (.sym xbpf x-endian))))
78c1c354
JM
502 (daiu neg OP_CODE_NEG x-endian neg)
503 (daim mov OP_CODE_MOV x-endian)))
ea195bb0
JM
504
505(define-alu-instructions le)
506(define-alu-instructions be)
507
508;;; Endianness conversion instructions
509
510;; The endianness conversion instructions come in several variants:
511;;
512;; END{le,be}le for the little-endian ISA
513;; END{le,be}be for the big-endian ISA
514;;
515;; Please do not be confused by the repeated `be' and `le' here. Each
516;; ISA has both endle and endbe instructions. It is the disposition
517;; of the source and destination register fields that change between
518;; ISAs, not the semantics of the instructions themselves (see section
519;; "The ISAs" above in this very file.)
520
521(define-pmacro (define-endian-insn x-suffix x-op-src x-endian)
522 (dni (.sym "end" x-suffix x-endian)
523 (.str "end" x-suffix " register")
4449c81a 524 (endian-isas x-endian)
ea195bb0
JM
525 (.str "end" x-suffix " $dst" x-endian ",$endsize")
526 (+ (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian) endsize
78c1c354
JM
527 OP_CLASS_ALU x-op-src OP_CODE_END)
528 (set (.sym dst x-endian)
d73be611 529 (c-call DI (.str "bpfbf_end" x-suffix) (.sym dst x-endian) endsize))
78c1c354 530 ()))
ea195bb0
JM
531
532(define-endian-insn "le" OP_SRC_K le)
533(define-endian-insn "be" OP_SRC_X le)
534(define-endian-insn "le" OP_SRC_K be)
535(define-endian-insn "be" OP_SRC_X be)
536
537;;; Load/Store instructions
538
539;; The lddw instruction takes a 64-bit immediate as an operand. Since
540;; this instruction also takes a `dst' operand, we need to define a
541;; variant for each ISA:
542;;
543;; LDDWle for the little-endian ISA
544;; LDDWbe for the big-endian ISA
545
546(define-pmacro (define-lddw x-endian)
547 (dni (.sym lddw x-endian)
548 (.str "lddw" x-endian)
4449c81a 549 (endian-isas x-endian)
ea195bb0
JM
550 (.str "lddw $dst" x-endian ",$imm64")
551 (+ imm64 (f-offset16 0) ((.sym f-src x-endian) 0)
552 (.sym dst x-endian)
78c1c354
JM
553 OP_CLASS_LD OP_SIZE_DW OP_MODE_IMM)
554 (set DI (.sym dst x-endian) imm64)
555 ()))
ea195bb0
JM
556
557(define-lddw le)
558(define-lddw be)
559
3719fd55
JM
560;; The absolute load instructions are non-generic loads designed to be
561;; used in socket filters. They come in several variants:
ea195bb0 562;;
3719fd55
JM
563;; LDABS{w,h,b,dw}
564
78c1c354 565(define-pmacro (dlabs x-suffix x-size x-smode)
3719fd55
JM
566 (dni (.sym "ldabs" x-suffix)
567 (.str "ldabs" x-suffix)
568 (all-isas)
569 (.str "ldabs" x-suffix " $imm32")
570 (+ imm32 (f-offset16 0) (f-regs 0)
571 OP_CLASS_LD OP_MODE_ABS (.sym OP_SIZE_ x-size))
78c1c354
JM
572 (set x-smode
573 (reg x-smode h-gpr 0)
574 (mem x-smode
575 (add DI
576 (mem DI
577 (add DI
578 (reg DI h-gpr 6) ;; Pointer to struct sk_buff
d73be611 579 (c-call "bpfbf_skb_data_offset")))
78c1c354
JM
580 imm32)))
581 ;; XXX this clobbers R1-R5
582 ()))
583
584(dlabs "w" W SI)
585(dlabs "h" H HI)
586(dlabs "b" B QI)
587(dlabs "dw" DW DI)
3719fd55
JM
588
589;; The indirect load instructions are non-generic loads designed to be
590;; used in socket filters. They come in several variants:
591;;
592;; LDIND{w,h,b,dw}le for the little-endian ISA
593;; LDIND[w,h,b,dw}be for the big-endian ISA
ea195bb0 594
78c1c354 595(define-pmacro (dlind x-suffix x-size x-endian x-smode)
3719fd55
JM
596 (dni (.sym "ldind" x-suffix x-endian)
597 (.str "ldind" x-suffix)
4449c81a 598 (endian-isas x-endian)
3719fd55 599 (.str "ldind" x-suffix " $src" x-endian ",$imm32")
92434a14 600 (+ imm32 (f-offset16 0) ((.sym f-dst x-endian) 0) (.sym src x-endian)
3719fd55 601 OP_CLASS_LD OP_MODE_IND (.sym OP_SIZE_ x-size))
78c1c354
JM
602 (set x-smode
603 (reg x-smode h-gpr 0)
604 (mem x-smode
605 (add DI
606 (mem DI
607 (add DI
608 (reg DI h-gpr 6) ;; Pointer to struct sk_buff
d73be611 609 (c-call "bpfbf_skb_data_offset")))
78c1c354
JM
610 (add DI
611 (.sym src x-endian)
612 imm32))))
613 ;; XXX this clobbers R1-R5
614 ()))
3719fd55
JM
615
616(define-pmacro (define-ldind x-endian)
617 (begin
78c1c354
JM
618 (dlind "w" W x-endian SI)
619 (dlind "h" H x-endian HI)
620 (dlind "b" B x-endian QI)
621 (dlind "dw" DW x-endian DI)))
3719fd55
JM
622
623(define-ldind le)
624(define-ldind be)
ea195bb0
JM
625
626;; Generic load and store instructions are provided for several word
627;; sizes. They come in several variants:
628;;
629;; LDX{b,h,w,dw}le, STX{b,h,w,dw}le for the little-endian ISA
630;;
631;; LDX{b,h,w,dw}be, STX{b,h,w,dw}be for the big-endian ISA
632;;
633;; Loads operate on [$SRC+-OFFSET] -> $DST
634;; Stores operate on $SRC -> [$DST+-OFFSET]
635
78c1c354 636(define-pmacro (dxli x-basename x-suffix x-size x-endian x-mode)
ea195bb0
JM
637 (dni (.sym x-basename x-suffix x-endian)
638 (.str x-basename x-suffix)
4449c81a 639 (endian-isas x-endian)
ea195bb0
JM
640 (.str x-basename x-suffix " $dst" x-endian ",[$src" x-endian "+$offset16]")
641 (+ (f-imm32 0) offset16 (.sym src x-endian) (.sym dst x-endian)
642 OP_CLASS_LDX (.sym OP_SIZE_ x-size) OP_MODE_MEM)
78c1c354
JM
643 (set x-mode
644 (.sym dst x-endian)
d73be611 645 (mem x-mode (add DI (.sym src x-endian) offset16)))
78c1c354 646 ()))
ea195bb0 647
78c1c354 648(define-pmacro (dxsi x-basename x-suffix x-size x-endian x-mode)
ea195bb0
JM
649 (dni (.sym x-basename x-suffix x-endian)
650 (.str x-basename x-suffix)
4449c81a 651 (endian-isas x-endian)
ea195bb0
JM
652 (.str x-basename x-suffix " [$dst" x-endian "+$offset16],$src" x-endian)
653 (+ (f-imm32 0) offset16 (.sym src x-endian) (.sym dst x-endian)
654 OP_CLASS_STX (.sym OP_SIZE_ x-size) OP_MODE_MEM)
78c1c354 655 (set x-mode
d73be611 656 (mem x-mode (add DI (.sym dst x-endian) offset16))
78c1c354
JM
657 (.sym src x-endian)) ;; XXX address is section-relative
658 ()))
ea195bb0
JM
659
660(define-pmacro (define-ldstx-insns x-endian)
661 (begin
78c1c354
JM
662 (dxli "ldx" "w" W x-endian SI)
663 (dxli "ldx" "h" H x-endian HI)
664 (dxli "ldx" "b" B x-endian QI)
665 (dxli "ldx" "dw" DW x-endian DI)
ea195bb0 666
78c1c354
JM
667 (dxsi "stx" "w" W x-endian SI)
668 (dxsi "stx" "h" H x-endian HI)
669 (dxsi "stx" "b" B x-endian QI)
670 (dxsi "stx" "dw" DW x-endian DI)))
ea195bb0
JM
671
672(define-ldstx-insns le)
673(define-ldstx-insns be)
674
675;; Generic store instructions of the form IMM32 -> [$DST+OFFSET] are
676;; provided in several variants:
677;;
678;; ST{b,h,w,dw}le for the little-endian ISA
679;; ST{b,h,w,dw}be for the big-endian ISA
680
78c1c354 681(define-pmacro (dsti x-suffix x-size x-endian x-mode)
ea195bb0
JM
682 (dni (.sym "st" x-suffix x-endian)
683 (.str "st" x-suffix)
4449c81a 684 (endian-isas x-endian)
ea195bb0
JM
685 (.str "st" x-suffix " [$dst" x-endian "+$offset16],$imm32")
686 (+ imm32 offset16 ((.sym f-src x-endian) 0) (.sym dst x-endian)
78c1c354
JM
687 OP_CLASS_ST (.sym OP_SIZE_ x-size) OP_MODE_MEM)
688 (set x-mode
689 (mem x-mode (add DI (.sym dst x-endian) offset16))
690 imm32) ;; XXX address is section-relative
691 ()))
ea195bb0
JM
692
693(define-pmacro (define-st-insns x-endian)
694 (begin
78c1c354
JM
695 (dsti "b" B x-endian QI)
696 (dsti "h" H x-endian HI)
697 (dsti "w" W x-endian SI)
698 (dsti "dw" DW x-endian DI)))
ea195bb0
JM
699
700(define-st-insns le)
701(define-st-insns be)
702
703;;; Jump instructions
704
705;; Compare-and-jump instructions, on the other hand, make use of
706;; registers. Therefore, we need to define several variants in both
707;; ISAs:
708;;
c54a9b56 709;; J{eq,gt,ge,lt,le,set,ne,sgt,sge,slt,sle}[32]{i,r}le for the
ea195bb0 710;; little-endian ISA.
c54a9b56 711;; J{eq,gt,ge,lt,le,set,ne.sgt,sge,slt,sle}[32]{i,r}be for the
ea195bb0
JM
712;; big-endian ISA.
713
78c1c354 714(define-pmacro (define-cond-jump-insn x-cond x-suffix x-op-class x-op-code x-endian x-mode x-semop)
ea195bb0 715 (begin
c54a9b56
DF
716 (dni (.sym j x-cond x-suffix i x-endian)
717 (.str j x-cond x-suffix " i")
4449c81a 718 (endian-isas x-endian)
c54a9b56 719 (.str "j" x-cond x-suffix " $dst" x-endian ",$imm32,$disp16")
ea195bb0 720 (+ imm32 disp16 ((.sym f-src x-endian) 0) (.sym dst x-endian)
78c1c354
JM
721 x-op-class OP_SRC_K (.sym OP_CODE_ x-op-code))
722 (if VOID (x-semop x-mode (.sym dst x-endian) imm32)
723 (set DI
724 (reg DI h-pc) (add DI (reg DI h-pc)
725 (mul DI (add HI disp16 1) 8))))
726 ())
c54a9b56
DF
727 (dni (.sym j x-cond x-suffix r x-endian)
728 (.str j x-cond x-suffix " r")
4449c81a 729 (endian-isas x-endian)
c54a9b56 730 (.str "j" x-cond x-suffix " $dst" x-endian ",$src" x-endian ",$disp16")
ea195bb0 731 (+ (f-imm32 0) disp16 (.sym src x-endian) (.sym dst x-endian)
78c1c354
JM
732 x-op-class OP_SRC_X (.sym OP_CODE_ x-op-code))
733 (if VOID (x-semop x-mode (.sym dst x-endian) (.sym src x-endian))
734 (set DI
735 (reg DI h-pc) (add DI (reg DI h-pc)
736 (mul DI (add HI disp16 1) 8))))
737 ())))
738
739(define-pmacro (dcji x-cond x-op-code x-endian x-semop)
c54a9b56 740 (begin
78c1c354
JM
741 (define-cond-jump-insn x-cond "" OP_CLASS_JMP x-op-code x-endian DI x-semop)
742 (define-cond-jump-insn x-cond "32" OP_CLASS_JMP32 x-op-code x-endian SI x-semop )))
ea195bb0
JM
743
744(define-pmacro (define-condjump-insns x-endian)
745 (begin
78c1c354
JM
746 (dcji "eq" JEQ x-endian eq)
747 (dcji "gt" JGT x-endian gtu)
748 (dcji "ge" JGE x-endian geu)
749 (dcji "lt" JLT x-endian ltu)
750 (dcji "le" JLE x-endian leu)
751 (dcji "set" JSET x-endian and)
752 (dcji "ne" JNE x-endian ne)
753 (dcji "sgt" JSGT x-endian gt)
754 (dcji "sge" JSGE x-endian ge)
755 (dcji "slt" JSLT x-endian lt)
756 (dcji "sle" JSLE x-endian le)))
ea195bb0
JM
757
758(define-condjump-insns le)
759(define-condjump-insns be)
760
78c1c354
JM
761;; The `call' instruction doesn't make use of registers, but the
762;; semantic routine should have access to the src register in order to
763;; properly interpret the meaning of disp32. Therefore we need one
764;; version per ISA.
765
766(define-pmacro (define-call-insn x-endian)
767 (dni (.sym call x-endian)
768 "call"
4449c81a 769 (endian-isas x-endian)
78c1c354
JM
770 "call $disp32"
771 (+ disp32 (f-offset16 0) (f-regs 0)
772 OP_CLASS_JMP OP_SRC_K OP_CODE_CALL)
773 (c-call VOID
774 "bpfbf_call" disp32 (ifield (.sym f-src x-endian)))
775 ()))
776
777(define-call-insn le)
778(define-call-insn be)
779
4449c81a
DF
780(define-pmacro (define-callr-insn x-endian)
781 (dni (.sym callr x-endian)
782 "callr"
783 ((ISA (.sym xbpf x-endian)))
784 (.str "call $dst" x-endian)
785 (+ (f-imm32 0) (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
786 OP_CLASS_JMP OP_SRC_X OP_CODE_CALL)
787 (c-call VOID
788 "bpfbf_callr" (ifield (.sym f-dst x-endian)))
789 ()))
790
791(define-callr-insn le)
792(define-callr-insn be)
793
78c1c354
JM
794;; The jump-always and `exit' instructions dont make use of either
795;; source nor destination registers, so only one variant per
ea195bb0
JM
796;; instruction is defined.
797
798(dni ja "ja" (all-isas) "ja $disp16"
799 (+ (f-imm32 0) disp16 (f-regs 0)
78c1c354
JM
800 OP_CLASS_JMP OP_SRC_K OP_CODE_JA)
801 (set DI (reg DI h-pc) (add DI (reg DI h-pc)
802 (mul DI (add HI disp16 1) 8)))
803 ())
ea195bb0
JM
804
805(dni "exit" "exit" (all-isas) "exit"
806 (+ (f-imm32 0) (f-offset16 0) (f-regs 0)
78c1c354
JM
807 OP_CLASS_JMP (f-op-src 0) OP_CODE_EXIT)
808 (c-call VOID "bpfbf_exit")
809 ())
ea195bb0
JM
810
811;;; Atomic instructions
812
813;; The atomic exchange-and-add instructions come in two flavors: one
814;; for swapping 64-bit quantities and another for 32-bit quantities.
815
78c1c354
JM
816(define-pmacro (sem-exchange-and-add x-endian x-mode)
817 (sequence VOID ((x-mode tmp))
818 ;; XXX acquire lock in simulator... as a hardware element?
819 (set x-mode tmp (mem x-mode (add DI (.sym dst x-endian) offset16)))
820 (set x-mode
821 (mem x-mode (add DI (.sym dst x-endian) offset16))
822 (add x-mode tmp (.sym src x-endian)))))
823
ea195bb0
JM
824(define-pmacro (define-atomic-insns x-endian)
825 (begin
826 (dni (.str "xadddw" x-endian)
827 "xadddw"
4449c81a 828 (endian-isas x-endian)
ea195bb0
JM
829 (.str "xadddw [$dst" x-endian "+$offset16],$src" x-endian)
830 (+ (f-imm32 0) (.sym src x-endian) (.sym dst x-endian)
78c1c354
JM
831 offset16 OP_MODE_XADD OP_SIZE_DW OP_CLASS_STX)
832 (sem-exchange-and-add x-endian DI)
833 ())
ea195bb0
JM
834 (dni (.str "xaddw" x-endian)
835 "xaddw"
4449c81a 836 (endian-isas x-endian)
ea195bb0
JM
837 (.str "xaddw [$dst" x-endian "+$offset16],$src" x-endian)
838 (+ (f-imm32 0) (.sym src x-endian) (.sym dst x-endian)
78c1c354
JM
839 offset16 OP_MODE_XADD OP_SIZE_W OP_CLASS_STX)
840 (sem-exchange-and-add x-endian SI)
841 ())))
ea195bb0
JM
842
843(define-atomic-insns le)
844(define-atomic-insns be)
78c1c354
JM
845
846;;; Breakpoint instruction
847
848;; The brkpt instruction is used by the BPF simulator and it doesn't
849;; really belong to the eBPF instruction set.
850
851(dni "brkpt" "brkpt" (all-isas) "brkpt"
852 (+ (f-imm32 0) (f-offset16 0) (f-regs 0)
853 OP_CLASS_ALU OP_SRC_X OP_CODE_NEG)
854 (c-call VOID "bpfbf_breakpoint")
855 ())
This page took 0.176044 seconds and 4 git commands to generate.