Merge remote-tracking branch 'selinux/next'
[deliverable/linux.git] / drivers / acpi / cppc_acpi.c
CommitLineData
337aadff
AC
1/*
2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3 *
4 * (C) Copyright 2014, 2015 Linaro Ltd.
5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * CPPC describes a few methods for controlling CPU performance using
13 * information from a per CPU table called CPC. This table is described in
14 * the ACPI v5.0+ specification. The table consists of a list of
15 * registers which may be memory mapped or hardware registers and also may
16 * include some static integer values.
17 *
18 * CPU performance is on an abstract continuous scale as against a discretized
19 * P-state scale which is tied to CPU frequency only. In brief, the basic
20 * operation involves:
21 *
22 * - OS makes a CPU performance request. (Can provide min and max bounds)
23 *
24 * - Platform (such as BMC) is free to optimize request within requested bounds
25 * depending on power/thermal budgets etc.
26 *
27 * - Platform conveys its decision back to OS
28 *
29 * The communication between OS and platform occurs through another medium
30 * called (PCC) Platform Communication Channel. This is a generic mailbox like
31 * mechanism which includes doorbell semantics to indicate register updates.
32 * See drivers/mailbox/pcc.c for details on PCC.
33 *
34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35 * above specifications.
36 */
37
38#define pr_fmt(fmt) "ACPI CPPC: " fmt
39
40#include <linux/cpufreq.h>
41#include <linux/delay.h>
ad62e1e6 42#include <linux/ktime.h>
80b8286a
PP
43#include <linux/rwsem.h>
44#include <linux/wait.h>
337aadff
AC
45
46#include <acpi/cppc_acpi.h>
80b8286a 47
8482ef8c
PP
48struct cppc_pcc_data {
49 struct mbox_chan *pcc_channel;
50 void __iomem *pcc_comm_addr;
51 int pcc_subspace_idx;
52 bool pcc_channel_acquired;
53 ktime_t deadline;
54 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
80b8286a 55
8482ef8c 56 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
139aee73 57 bool platform_owns_pcc; /* Ownership of PCC subspace */
8482ef8c 58 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
80b8286a 59
8482ef8c
PP
60 /*
61 * Lock to provide controlled access to the PCC channel.
62 *
63 * For performance critical usecases(currently cppc_set_perf)
64 * We need to take read_lock and check if channel belongs to OSPM
65 * before reading or writing to PCC subspace
66 * We need to take write_lock before transferring the channel
67 * ownership to the platform via a Doorbell
68 * This allows us to batch a number of CPPC requests if they happen
69 * to originate in about the same time
70 *
71 * For non-performance critical usecases(init)
72 * Take write_lock for all purposes which gives exclusive access
73 */
74 struct rw_semaphore pcc_lock;
75
76 /* Wait queue for CPUs whose requests were batched */
77 wait_queue_head_t pcc_write_wait_q;
78};
80b8286a 79
8482ef8c
PP
80/* Structure to represent the single PCC channel */
81static struct cppc_pcc_data pcc_data = {
82 .pcc_subspace_idx = -1,
139aee73 83 .platform_owns_pcc = true,
8482ef8c 84};
337aadff
AC
85
86/*
87 * The cpc_desc structure contains the ACPI register details
88 * as described in the per CPU _CPC tables. The details
89 * include the type of register (e.g. PCC, System IO, FFH etc.)
90 * and destination addresses which lets us READ/WRITE CPU performance
91 * information using the appropriate I/O methods.
92 */
93static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94
77e3d86f 95/* pcc mapped address + header size + offset within PCC subspace */
8482ef8c 96#define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
77e3d86f 97
80b8286a
PP
98/* Check if a CPC regsiter is in PCC */
99#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
102
158c998e
AC
103/* Evalutes to True if reg is a NULL register descriptor */
104#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
109
110/* Evalutes to True if an optional cpc field is supported */
111#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
337aadff
AC
114/*
115 * Arbitrary Retries in case the remote processor is slow to respond
ad62e1e6
AC
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
337aadff
AC
118 */
119#define NUM_RETRIES 500
120
158c998e
AC
121struct cppc_attr {
122 struct attribute attr;
123 ssize_t (*show)(struct kobject *kobj,
124 struct attribute *attr, char *buf);
125 ssize_t (*store)(struct kobject *kobj,
126 struct attribute *attr, const char *c, ssize_t count);
127};
128
129#define define_one_cppc_ro(_name) \
130static struct cppc_attr _name = \
131__ATTR(_name, 0444, show_##_name, NULL)
132
133#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
134
135static ssize_t show_feedback_ctrs(struct kobject *kobj,
136 struct attribute *attr, char *buf)
137{
138 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
139 struct cppc_perf_fb_ctrs fb_ctrs = {0};
140
141 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
142
143 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
144 fb_ctrs.reference, fb_ctrs.delivered);
145}
146define_one_cppc_ro(feedback_ctrs);
147
148static ssize_t show_reference_perf(struct kobject *kobj,
149 struct attribute *attr, char *buf)
150{
151 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
152 struct cppc_perf_fb_ctrs fb_ctrs = {0};
153
154 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
155
156 return scnprintf(buf, PAGE_SIZE, "%llu\n",
157 fb_ctrs.reference_perf);
158}
159define_one_cppc_ro(reference_perf);
160
161static ssize_t show_wraparound_time(struct kobject *kobj,
162 struct attribute *attr, char *buf)
163{
164 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
165 struct cppc_perf_fb_ctrs fb_ctrs = {0};
166
167 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
168
169 return scnprintf(buf, PAGE_SIZE, "%llu\n", fb_ctrs.ctr_wrap_time);
170
171}
172define_one_cppc_ro(wraparound_time);
173
174static struct attribute *cppc_attrs[] = {
175 &feedback_ctrs.attr,
176 &reference_perf.attr,
177 &wraparound_time.attr,
178 NULL
179};
180
181static struct kobj_type cppc_ktype = {
182 .sysfs_ops = &kobj_sysfs_ops,
183 .default_attrs = cppc_attrs,
184};
185
139aee73 186static int check_pcc_chan(bool chk_err_bit)
ad62e1e6 187{
139aee73 188 int ret = -EIO, status = 0;
8482ef8c
PP
189 struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
190 ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
ad62e1e6 191
139aee73
PP
192 if (!pcc_data.platform_owns_pcc)
193 return 0;
194
ad62e1e6
AC
195 /* Retry in case the remote processor was too slow to catch up. */
196 while (!ktime_after(ktime_get(), next_deadline)) {
f387e5b9
PP
197 /*
198 * Per spec, prior to boot the PCC space wil be initialized by
199 * platform and should have set the command completion bit when
200 * PCC can be used by OSPM
201 */
139aee73
PP
202 status = readw_relaxed(&generic_comm_base->status);
203 if (status & PCC_CMD_COMPLETE_MASK) {
ad62e1e6 204 ret = 0;
139aee73
PP
205 if (chk_err_bit && (status & PCC_ERROR_MASK))
206 ret = -EIO;
ad62e1e6
AC
207 break;
208 }
209 /*
210 * Reducing the bus traffic in case this loop takes longer than
211 * a few retries.
212 */
213 udelay(3);
214 }
215
139aee73
PP
216 if (likely(!ret))
217 pcc_data.platform_owns_pcc = false;
218 else
219 pr_err("PCC check channel failed. Status=%x\n", status);
220
ad62e1e6
AC
221 return ret;
222}
223
80b8286a
PP
224/*
225 * This function transfers the ownership of the PCC to the platform
226 * So it must be called while holding write_lock(pcc_lock)
227 */
337aadff
AC
228static int send_pcc_cmd(u16 cmd)
229{
80b8286a 230 int ret = -EIO, i;
337aadff 231 struct acpi_pcct_shared_memory *generic_comm_base =
8482ef8c 232 (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
f387e5b9
PP
233 static ktime_t last_cmd_cmpl_time, last_mpar_reset;
234 static int mpar_count;
235 unsigned int time_delta;
337aadff 236
ad62e1e6
AC
237 /*
238 * For CMD_WRITE we know for a fact the caller should have checked
239 * the channel before writing to PCC space
240 */
241 if (cmd == CMD_READ) {
80b8286a
PP
242 /*
243 * If there are pending cpc_writes, then we stole the channel
244 * before write completion, so first send a WRITE command to
245 * platform
246 */
8482ef8c 247 if (pcc_data.pending_pcc_write_cmd)
80b8286a
PP
248 send_pcc_cmd(CMD_WRITE);
249
139aee73 250 ret = check_pcc_chan(false);
ad62e1e6 251 if (ret)
80b8286a
PP
252 goto end;
253 } else /* CMD_WRITE */
8482ef8c 254 pcc_data.pending_pcc_write_cmd = FALSE;
337aadff 255
f387e5b9
PP
256 /*
257 * Handle the Minimum Request Turnaround Time(MRTT)
258 * "The minimum amount of time that OSPM must wait after the completion
259 * of a command before issuing the next command, in microseconds"
260 */
8482ef8c 261 if (pcc_data.pcc_mrtt) {
f387e5b9 262 time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
8482ef8c
PP
263 if (pcc_data.pcc_mrtt > time_delta)
264 udelay(pcc_data.pcc_mrtt - time_delta);
f387e5b9
PP
265 }
266
267 /*
268 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
269 * "The maximum number of periodic requests that the subspace channel can
270 * support, reported in commands per minute. 0 indicates no limitation."
271 *
272 * This parameter should be ideally zero or large enough so that it can
273 * handle maximum number of requests that all the cores in the system can
274 * collectively generate. If it is not, we will follow the spec and just
275 * not send the request to the platform after hitting the MPAR limit in
276 * any 60s window
277 */
8482ef8c 278 if (pcc_data.pcc_mpar) {
f387e5b9
PP
279 if (mpar_count == 0) {
280 time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
281 if (time_delta < 60 * MSEC_PER_SEC) {
282 pr_debug("PCC cmd not sent due to MPAR limit");
80b8286a
PP
283 ret = -EIO;
284 goto end;
f387e5b9
PP
285 }
286 last_mpar_reset = ktime_get();
8482ef8c 287 mpar_count = pcc_data.pcc_mpar;
f387e5b9
PP
288 }
289 mpar_count--;
290 }
291
337aadff 292 /* Write to the shared comm region. */
beee23ae 293 writew_relaxed(cmd, &generic_comm_base->command);
337aadff
AC
294
295 /* Flip CMD COMPLETE bit */
beee23ae 296 writew_relaxed(0, &generic_comm_base->status);
337aadff 297
139aee73
PP
298 pcc_data.platform_owns_pcc = true;
299
337aadff 300 /* Ring doorbell */
8482ef8c 301 ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
ad62e1e6 302 if (ret < 0) {
337aadff 303 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
ad62e1e6 304 cmd, ret);
80b8286a 305 goto end;
337aadff
AC
306 }
307
139aee73
PP
308 /* wait for completion and check for PCC errro bit */
309 ret = check_pcc_chan(true);
310
311 if (pcc_data.pcc_mrtt)
312 last_cmd_cmpl_time = ktime_get();
337aadff 313
8482ef8c 314 mbox_client_txdone(pcc_data.pcc_channel, ret);
80b8286a
PP
315
316end:
317 if (cmd == CMD_WRITE) {
318 if (unlikely(ret)) {
319 for_each_possible_cpu(i) {
320 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
321 if (!desc)
322 continue;
323
8482ef8c 324 if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
80b8286a
PP
325 desc->write_cmd_status = ret;
326 }
327 }
8482ef8c
PP
328 pcc_data.pcc_write_cnt++;
329 wake_up_all(&pcc_data.pcc_write_wait_q);
80b8286a
PP
330 }
331
ad62e1e6 332 return ret;
337aadff
AC
333}
334
335static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
336{
ad62e1e6 337 if (ret < 0)
337aadff
AC
338 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
339 *(u16 *)msg, ret);
340 else
341 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
342 *(u16 *)msg, ret);
343}
344
345struct mbox_client cppc_mbox_cl = {
346 .tx_done = cppc_chan_tx_done,
347 .knows_txdone = true,
348};
349
350static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
351{
352 int result = -EFAULT;
353 acpi_status status = AE_OK;
354 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
355 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
356 struct acpi_buffer state = {0, NULL};
357 union acpi_object *psd = NULL;
358 struct acpi_psd_package *pdomain;
359
360 status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
361 ACPI_TYPE_PACKAGE);
362 if (ACPI_FAILURE(status))
363 return -ENODEV;
364
365 psd = buffer.pointer;
366 if (!psd || psd->package.count != 1) {
367 pr_debug("Invalid _PSD data\n");
368 goto end;
369 }
370
371 pdomain = &(cpc_ptr->domain_info);
372
373 state.length = sizeof(struct acpi_psd_package);
374 state.pointer = pdomain;
375
376 status = acpi_extract_package(&(psd->package.elements[0]),
377 &format, &state);
378 if (ACPI_FAILURE(status)) {
379 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
380 goto end;
381 }
382
383 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
384 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
385 goto end;
386 }
387
388 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
389 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
390 goto end;
391 }
392
393 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
394 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
395 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
396 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
397 goto end;
398 }
399
400 result = 0;
401end:
402 kfree(buffer.pointer);
403 return result;
404}
405
406/**
407 * acpi_get_psd_map - Map the CPUs in a common freq domain.
408 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
409 *
410 * Return: 0 for success or negative value for err.
411 */
41dd6403 412int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
337aadff
AC
413{
414 int count_target;
415 int retval = 0;
416 unsigned int i, j;
417 cpumask_var_t covered_cpus;
41dd6403 418 struct cppc_cpudata *pr, *match_pr;
337aadff
AC
419 struct acpi_psd_package *pdomain;
420 struct acpi_psd_package *match_pdomain;
421 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
422
423 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
424 return -ENOMEM;
425
426 /*
427 * Now that we have _PSD data from all CPUs, lets setup P-state
428 * domain info.
429 */
430 for_each_possible_cpu(i) {
431 pr = all_cpu_data[i];
432 if (!pr)
433 continue;
434
435 if (cpumask_test_cpu(i, covered_cpus))
436 continue;
437
438 cpc_ptr = per_cpu(cpc_desc_ptr, i);
8343c40d
HT
439 if (!cpc_ptr) {
440 retval = -EFAULT;
441 goto err_ret;
442 }
337aadff
AC
443
444 pdomain = &(cpc_ptr->domain_info);
445 cpumask_set_cpu(i, pr->shared_cpu_map);
446 cpumask_set_cpu(i, covered_cpus);
447 if (pdomain->num_processors <= 1)
448 continue;
449
450 /* Validate the Domain info */
451 count_target = pdomain->num_processors;
452 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
453 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
454 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
455 pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
456 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
457 pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
458
459 for_each_possible_cpu(j) {
460 if (i == j)
461 continue;
462
463 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
8343c40d
HT
464 if (!match_cpc_ptr) {
465 retval = -EFAULT;
466 goto err_ret;
467 }
337aadff
AC
468
469 match_pdomain = &(match_cpc_ptr->domain_info);
470 if (match_pdomain->domain != pdomain->domain)
471 continue;
472
473 /* Here i and j are in the same domain */
474 if (match_pdomain->num_processors != count_target) {
475 retval = -EFAULT;
476 goto err_ret;
477 }
478
479 if (pdomain->coord_type != match_pdomain->coord_type) {
480 retval = -EFAULT;
481 goto err_ret;
482 }
483
484 cpumask_set_cpu(j, covered_cpus);
485 cpumask_set_cpu(j, pr->shared_cpu_map);
486 }
487
488 for_each_possible_cpu(j) {
489 if (i == j)
490 continue;
491
492 match_pr = all_cpu_data[j];
493 if (!match_pr)
494 continue;
495
496 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
8343c40d
HT
497 if (!match_cpc_ptr) {
498 retval = -EFAULT;
499 goto err_ret;
500 }
337aadff
AC
501
502 match_pdomain = &(match_cpc_ptr->domain_info);
503 if (match_pdomain->domain != pdomain->domain)
504 continue;
505
506 match_pr->shared_type = pr->shared_type;
507 cpumask_copy(match_pr->shared_cpu_map,
508 pr->shared_cpu_map);
509 }
510 }
511
512err_ret:
513 for_each_possible_cpu(i) {
514 pr = all_cpu_data[i];
515 if (!pr)
516 continue;
517
518 /* Assume no coordination on any error parsing domain info */
519 if (retval) {
520 cpumask_clear(pr->shared_cpu_map);
521 cpumask_set_cpu(i, pr->shared_cpu_map);
522 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
523 }
524 }
525
526 free_cpumask_var(covered_cpus);
527 return retval;
528}
529EXPORT_SYMBOL_GPL(acpi_get_psd_map);
530
32c0b2f6 531static int register_pcc_channel(int pcc_subspace_idx)
337aadff 532{
d29d6735 533 struct acpi_pcct_hw_reduced *cppc_ss;
ad62e1e6 534 u64 usecs_lat;
337aadff
AC
535
536 if (pcc_subspace_idx >= 0) {
8482ef8c 537 pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
337aadff
AC
538 pcc_subspace_idx);
539
8482ef8c 540 if (IS_ERR(pcc_data.pcc_channel)) {
337aadff
AC
541 pr_err("Failed to find PCC communication channel\n");
542 return -ENODEV;
543 }
544
545 /*
546 * The PCC mailbox controller driver should
547 * have parsed the PCCT (global table of all
548 * PCC channels) and stored pointers to the
549 * subspace communication region in con_priv.
550 */
8482ef8c 551 cppc_ss = (pcc_data.pcc_channel)->con_priv;
337aadff
AC
552
553 if (!cppc_ss) {
554 pr_err("No PCC subspace found for CPPC\n");
555 return -ENODEV;
556 }
557
ad62e1e6
AC
558 /*
559 * cppc_ss->latency is just a Nominal value. In reality
560 * the remote processor could be much slower to reply.
561 * So add an arbitrary amount of wait on top of Nominal.
562 */
563 usecs_lat = NUM_RETRIES * cppc_ss->latency;
8482ef8c
PP
564 pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
565 pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
566 pcc_data.pcc_mpar = cppc_ss->max_access_rate;
567 pcc_data.pcc_nominal = cppc_ss->latency;
337aadff 568
8482ef8c
PP
569 pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
570 if (!pcc_data.pcc_comm_addr) {
337aadff
AC
571 pr_err("Failed to ioremap PCC comm region mem\n");
572 return -ENOMEM;
573 }
574
575 /* Set flag so that we dont come here for each CPU. */
8482ef8c 576 pcc_data.pcc_channel_acquired = true;
337aadff
AC
577 }
578
579 return 0;
580}
581
a6cbcdd5
SP
582/**
583 * cpc_ffh_supported() - check if FFH reading supported
584 *
585 * Check if the architecture has support for functional fixed hardware
586 * read/write capability.
587 *
588 * Return: true for supported, false for not supported
589 */
590bool __weak cpc_ffh_supported(void)
591{
592 return false;
593}
594
337aadff
AC
595/*
596 * An example CPC table looks like the following.
597 *
598 * Name(_CPC, Package()
599 * {
600 * 17,
601 * NumEntries
602 * 1,
603 * // Revision
604 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
605 * // Highest Performance
606 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
607 * // Nominal Performance
608 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
609 * // Lowest Nonlinear Performance
610 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
611 * // Lowest Performance
612 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
613 * // Guaranteed Performance Register
614 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
615 * // Desired Performance Register
616 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
617 * ..
618 * ..
619 * ..
620 *
621 * }
622 * Each Register() encodes how to access that specific register.
623 * e.g. a sample PCC entry has the following encoding:
624 *
625 * Register (
626 * PCC,
627 * AddressSpaceKeyword
628 * 8,
629 * //RegisterBitWidth
630 * 8,
631 * //RegisterBitOffset
632 * 0x30,
633 * //RegisterAddress
634 * 9
635 * //AccessSize (subspace ID)
636 * 0
637 * )
638 * }
639 */
640
641/**
642 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
643 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
644 *
645 * Return: 0 for success or negative value for err.
646 */
647int acpi_cppc_processor_probe(struct acpi_processor *pr)
648{
649 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
650 union acpi_object *out_obj, *cpc_obj;
651 struct cpc_desc *cpc_ptr;
652 struct cpc_reg *gas_t;
158c998e 653 struct device *cpu_dev;
337aadff
AC
654 acpi_handle handle = pr->handle;
655 unsigned int num_ent, i, cpc_rev;
656 acpi_status status;
657 int ret = -EFAULT;
658
659 /* Parse the ACPI _CPC table for this cpu. */
660 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
661 ACPI_TYPE_PACKAGE);
662 if (ACPI_FAILURE(status)) {
663 ret = -ENODEV;
664 goto out_buf_free;
665 }
666
667 out_obj = (union acpi_object *) output.pointer;
668
669 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
670 if (!cpc_ptr) {
671 ret = -ENOMEM;
672 goto out_buf_free;
673 }
674
675 /* First entry is NumEntries. */
676 cpc_obj = &out_obj->package.elements[0];
677 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
678 num_ent = cpc_obj->integer.value;
679 } else {
680 pr_debug("Unexpected entry type(%d) for NumEntries\n",
681 cpc_obj->type);
682 goto out_free;
683 }
684
685 /* Only support CPPCv2. Bail otherwise. */
686 if (num_ent != CPPC_NUM_ENT) {
687 pr_debug("Firmware exports %d entries. Expected: %d\n",
688 num_ent, CPPC_NUM_ENT);
689 goto out_free;
690 }
691
5bbb86aa
AC
692 cpc_ptr->num_entries = num_ent;
693
337aadff
AC
694 /* Second entry should be revision. */
695 cpc_obj = &out_obj->package.elements[1];
696 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
697 cpc_rev = cpc_obj->integer.value;
698 } else {
699 pr_debug("Unexpected entry type(%d) for Revision\n",
700 cpc_obj->type);
701 goto out_free;
702 }
703
704 if (cpc_rev != CPPC_REV) {
705 pr_debug("Firmware exports revision:%d. Expected:%d\n",
706 cpc_rev, CPPC_REV);
707 goto out_free;
708 }
709
710 /* Iterate through remaining entries in _CPC */
711 for (i = 2; i < num_ent; i++) {
712 cpc_obj = &out_obj->package.elements[i];
713
714 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
715 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
716 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
717 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
718 gas_t = (struct cpc_reg *)
719 cpc_obj->buffer.pointer;
720
721 /*
722 * The PCC Subspace index is encoded inside
723 * the CPC table entries. The same PCC index
724 * will be used for all the PCC entries,
725 * so extract it only once.
726 */
727 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
8482ef8c
PP
728 if (pcc_data.pcc_subspace_idx < 0)
729 pcc_data.pcc_subspace_idx = gas_t->access_width;
730 else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
337aadff
AC
731 pr_debug("Mismatched PCC ids.\n");
732 goto out_free;
733 }
5bbb86aa
AC
734 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
735 if (gas_t->address) {
736 void __iomem *addr;
737
738 addr = ioremap(gas_t->address, gas_t->bit_width/8);
739 if (!addr)
740 goto out_free;
741 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
742 }
743 } else {
a6cbcdd5
SP
744 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
745 /* Support only PCC ,SYS MEM and FFH type regs */
746 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
747 goto out_free;
748 }
337aadff
AC
749 }
750
751 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
752 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
753 } else {
754 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
755 goto out_free;
756 }
757 }
758 /* Store CPU Logical ID */
759 cpc_ptr->cpu_id = pr->id;
760
337aadff
AC
761 /* Parse PSD data for this CPU */
762 ret = acpi_get_psd(cpc_ptr, handle);
763 if (ret)
764 goto out_free;
765
766 /* Register PCC channel once for all CPUs. */
8482ef8c
PP
767 if (!pcc_data.pcc_channel_acquired) {
768 ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
337aadff
AC
769 if (ret)
770 goto out_free;
8482ef8c
PP
771
772 init_rwsem(&pcc_data.pcc_lock);
773 init_waitqueue_head(&pcc_data.pcc_write_wait_q);
337aadff
AC
774 }
775
2324d154
HT
776 /* Plug PSD data into this CPUs CPC descriptor. */
777 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
778
337aadff
AC
779 /* Everything looks okay */
780 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
781
158c998e
AC
782 /* Add per logical CPU nodes for reading its feedback counters. */
783 cpu_dev = get_cpu_device(pr->id);
784 if (!cpu_dev)
785 goto out_free;
786
787 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
788 "acpi_cppc");
789 if (ret)
790 goto out_free;
791
337aadff
AC
792 kfree(output.pointer);
793 return 0;
794
795out_free:
5bbb86aa
AC
796 /* Free all the mapped sys mem areas for this CPU */
797 for (i = 2; i < cpc_ptr->num_entries; i++) {
798 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
799
800 if (addr)
801 iounmap(addr);
802 }
337aadff
AC
803 kfree(cpc_ptr);
804
805out_buf_free:
806 kfree(output.pointer);
807 return ret;
808}
809EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
810
811/**
812 * acpi_cppc_processor_exit - Cleanup CPC structs.
813 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
814 *
815 * Return: Void
816 */
817void acpi_cppc_processor_exit(struct acpi_processor *pr)
818{
819 struct cpc_desc *cpc_ptr;
5bbb86aa
AC
820 unsigned int i;
821 void __iomem *addr;
158c998e 822
337aadff 823 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
5bbb86aa
AC
824
825 /* Free all the mapped sys mem areas for this CPU */
826 for (i = 2; i < cpc_ptr->num_entries; i++) {
827 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
828 if (addr)
829 iounmap(addr);
830 }
831
158c998e 832 kobject_put(&cpc_ptr->kobj);
337aadff
AC
833 kfree(cpc_ptr);
834}
835EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
836
a6cbcdd5
SP
837/**
838 * cpc_read_ffh() - Read FFH register
839 * @cpunum: cpu number to read
840 * @reg: cppc register information
841 * @val: place holder for return value
842 *
843 * Read bit_width bits from a specified address and bit_offset
844 *
845 * Return: 0 for success and error code
846 */
847int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
848{
849 return -ENOTSUPP;
850}
851
852/**
853 * cpc_write_ffh() - Write FFH register
854 * @cpunum: cpu number to write
855 * @reg: cppc register information
856 * @val: value to write
857 *
858 * Write value of bit_width bits to a specified address and bit_offset
859 *
860 * Return: 0 for success and error code
861 */
862int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
863{
864 return -ENOTSUPP;
865}
866
77e3d86f
PP
867/*
868 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
869 * as fast as possible. We have already mapped the PCC subspace during init, so
870 * we can directly write to it.
871 */
337aadff 872
a6cbcdd5 873static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
337aadff 874{
77e3d86f 875 int ret_val = 0;
5bbb86aa
AC
876 void __iomem *vaddr = 0;
877 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
878
879 if (reg_res->type == ACPI_TYPE_INTEGER) {
880 *val = reg_res->cpc_entry.int_value;
881 return ret_val;
882 }
77e3d86f
PP
883
884 *val = 0;
5bbb86aa
AC
885 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
886 vaddr = GET_PCC_VADDR(reg->address);
887 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
888 vaddr = reg_res->sys_mem_vaddr;
a6cbcdd5
SP
889 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
890 return cpc_read_ffh(cpu, reg, val);
5bbb86aa
AC
891 else
892 return acpi_os_read_memory((acpi_physical_address)reg->address,
893 val, reg->bit_width);
337aadff 894
5bbb86aa 895 switch (reg->bit_width) {
77e3d86f 896 case 8:
beee23ae 897 *val = readb_relaxed(vaddr);
77e3d86f
PP
898 break;
899 case 16:
beee23ae 900 *val = readw_relaxed(vaddr);
77e3d86f
PP
901 break;
902 case 32:
beee23ae 903 *val = readl_relaxed(vaddr);
77e3d86f
PP
904 break;
905 case 64:
beee23ae 906 *val = readq_relaxed(vaddr);
77e3d86f
PP
907 break;
908 default:
909 pr_debug("Error: Cannot read %u bit width from PCC\n",
5bbb86aa 910 reg->bit_width);
77e3d86f 911 ret_val = -EFAULT;
5bbb86aa
AC
912 }
913
77e3d86f 914 return ret_val;
337aadff
AC
915}
916
a6cbcdd5 917static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
337aadff 918{
77e3d86f 919 int ret_val = 0;
5bbb86aa
AC
920 void __iomem *vaddr = 0;
921 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
77e3d86f 922
5bbb86aa
AC
923 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
924 vaddr = GET_PCC_VADDR(reg->address);
925 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
926 vaddr = reg_res->sys_mem_vaddr;
a6cbcdd5
SP
927 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
928 return cpc_write_ffh(cpu, reg, val);
5bbb86aa
AC
929 else
930 return acpi_os_write_memory((acpi_physical_address)reg->address,
931 val, reg->bit_width);
337aadff 932
5bbb86aa 933 switch (reg->bit_width) {
77e3d86f 934 case 8:
beee23ae 935 writeb_relaxed(val, vaddr);
77e3d86f
PP
936 break;
937 case 16:
beee23ae 938 writew_relaxed(val, vaddr);
77e3d86f
PP
939 break;
940 case 32:
beee23ae 941 writel_relaxed(val, vaddr);
77e3d86f
PP
942 break;
943 case 64:
beee23ae 944 writeq_relaxed(val, vaddr);
77e3d86f
PP
945 break;
946 default:
947 pr_debug("Error: Cannot write %u bit width to PCC\n",
5bbb86aa 948 reg->bit_width);
77e3d86f
PP
949 ret_val = -EFAULT;
950 break;
5bbb86aa
AC
951 }
952
77e3d86f 953 return ret_val;
337aadff
AC
954}
955
956/**
957 * cppc_get_perf_caps - Get a CPUs performance capabilities.
958 * @cpunum: CPU from which to get capabilities info.
959 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
960 *
961 * Return: 0 for success with perf_caps populated else -ERRNO.
962 */
963int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
964{
965 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
966 struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
967 *nom_perf;
158c998e 968 u64 high, low, nom;
850d64a4 969 int ret = 0, regs_in_pcc = 0;
337aadff
AC
970
971 if (!cpc_desc) {
972 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
973 return -ENODEV;
974 }
975
976 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
977 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
978 ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
979 nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
980
337aadff 981 /* Are any of the regs PCC ?*/
80b8286a
PP
982 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
983 CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
850d64a4 984 regs_in_pcc = 1;
8482ef8c 985 down_write(&pcc_data.pcc_lock);
337aadff 986 /* Ring doorbell once to update PCC subspace */
ad62e1e6 987 if (send_pcc_cmd(CMD_READ) < 0) {
337aadff
AC
988 ret = -EIO;
989 goto out_err;
990 }
991 }
992
a6cbcdd5 993 cpc_read(cpunum, highest_reg, &high);
337aadff
AC
994 perf_caps->highest_perf = high;
995
a6cbcdd5 996 cpc_read(cpunum, lowest_reg, &low);
337aadff
AC
997 perf_caps->lowest_perf = low;
998
a6cbcdd5 999 cpc_read(cpunum, nom_perf, &nom);
337aadff
AC
1000 perf_caps->nominal_perf = nom;
1001
337aadff
AC
1002 if (!high || !low || !nom)
1003 ret = -EFAULT;
1004
1005out_err:
850d64a4 1006 if (regs_in_pcc)
8482ef8c 1007 up_write(&pcc_data.pcc_lock);
337aadff
AC
1008 return ret;
1009}
1010EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1011
1012/**
1013 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1014 * @cpunum: CPU from which to read counters.
1015 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1016 *
1017 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1018 */
1019int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1020{
1021 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
158c998e
AC
1022 struct cpc_register_resource *delivered_reg, *reference_reg,
1023 *ref_perf_reg, *ctr_wrap_reg;
1024 u64 delivered, reference, ref_perf, ctr_wrap_time;
850d64a4 1025 int ret = 0, regs_in_pcc = 0;
337aadff
AC
1026
1027 if (!cpc_desc) {
1028 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1029 return -ENODEV;
1030 }
1031
1032 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1033 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
158c998e
AC
1034 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1035 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1036
1037 /*
1038 * If refernce perf register is not supported then we should
1039 * use the nominal perf value
1040 */
1041 if (!CPC_SUPPORTED(ref_perf_reg))
1042 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
337aadff 1043
337aadff 1044 /* Are any of the regs PCC ?*/
158c998e
AC
1045 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1046 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
8482ef8c 1047 down_write(&pcc_data.pcc_lock);
850d64a4 1048 regs_in_pcc = 1;
337aadff 1049 /* Ring doorbell once to update PCC subspace */
ad62e1e6 1050 if (send_pcc_cmd(CMD_READ) < 0) {
337aadff
AC
1051 ret = -EIO;
1052 goto out_err;
1053 }
1054 }
1055
a6cbcdd5
SP
1056 cpc_read(cpunum, delivered_reg, &delivered);
1057 cpc_read(cpunum, reference_reg, &reference);
1058 cpc_read(cpunum, ref_perf_reg, &ref_perf);
158c998e
AC
1059
1060 /*
1061 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1062 * performance counters are assumed to never wrap during the lifetime of
1063 * platform
1064 */
1065 ctr_wrap_time = (u64)(~((u64)0));
1066 if (CPC_SUPPORTED(ctr_wrap_reg))
a6cbcdd5 1067 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
337aadff 1068
158c998e 1069 if (!delivered || !reference || !ref_perf) {
337aadff
AC
1070 ret = -EFAULT;
1071 goto out_err;
1072 }
1073
1074 perf_fb_ctrs->delivered = delivered;
1075 perf_fb_ctrs->reference = reference;
158c998e
AC
1076 perf_fb_ctrs->reference_perf = ref_perf;
1077 perf_fb_ctrs->ctr_wrap_time = ctr_wrap_time;
337aadff 1078out_err:
850d64a4 1079 if (regs_in_pcc)
8482ef8c 1080 up_write(&pcc_data.pcc_lock);
337aadff
AC
1081 return ret;
1082}
1083EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1084
1085/**
1086 * cppc_set_perf - Set a CPUs performance controls.
1087 * @cpu: CPU for which to set performance controls.
1088 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1089 *
1090 * Return: 0 for success, -ERRNO otherwise.
1091 */
1092int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1093{
1094 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1095 struct cpc_register_resource *desired_reg;
1096 int ret = 0;
1097
1098 if (!cpc_desc) {
1099 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1100 return -ENODEV;
1101 }
1102
1103 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1104
80b8286a
PP
1105 /*
1106 * This is Phase-I where we want to write to CPC registers
1107 * -> We want all CPUs to be able to execute this phase in parallel
1108 *
1109 * Since read_lock can be acquired by multiple CPUs simultaneously we
1110 * achieve that goal here
1111 */
1112 if (CPC_IN_PCC(desired_reg)) {
8482ef8c 1113 down_read(&pcc_data.pcc_lock); /* BEGIN Phase-I */
139aee73
PP
1114 if (pcc_data.platform_owns_pcc) {
1115 ret = check_pcc_chan(false);
80b8286a 1116 if (ret) {
8482ef8c 1117 up_read(&pcc_data.pcc_lock);
80b8286a
PP
1118 return ret;
1119 }
80b8286a 1120 }
139aee73
PP
1121 /*
1122 * Update the pending_write to make sure a PCC CMD_READ will not
1123 * arrive and steal the channel during the switch to write lock
1124 */
1125 pcc_data.pending_pcc_write_cmd = true;
8482ef8c 1126 cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
80b8286a 1127 cpc_desc->write_cmd_status = 0;
ad62e1e6
AC
1128 }
1129
337aadff
AC
1130 /*
1131 * Skip writing MIN/MAX until Linux knows how to come up with
1132 * useful values.
1133 */
a6cbcdd5 1134 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
337aadff 1135
80b8286a 1136 if (CPC_IN_PCC(desired_reg))
8482ef8c 1137 up_read(&pcc_data.pcc_lock); /* END Phase-I */
80b8286a
PP
1138 /*
1139 * This is Phase-II where we transfer the ownership of PCC to Platform
1140 *
1141 * Short Summary: Basically if we think of a group of cppc_set_perf
1142 * requests that happened in short overlapping interval. The last CPU to
1143 * come out of Phase-I will enter Phase-II and ring the doorbell.
1144 *
1145 * We have the following requirements for Phase-II:
1146 * 1. We want to execute Phase-II only when there are no CPUs
1147 * currently executing in Phase-I
1148 * 2. Once we start Phase-II we want to avoid all other CPUs from
1149 * entering Phase-I.
1150 * 3. We want only one CPU among all those who went through Phase-I
1151 * to run phase-II
1152 *
1153 * If write_trylock fails to get the lock and doesn't transfer the
1154 * PCC ownership to the platform, then one of the following will be TRUE
1155 * 1. There is at-least one CPU in Phase-I which will later execute
1156 * write_trylock, so the CPUs in Phase-I will be responsible for
1157 * executing the Phase-II.
1158 * 2. Some other CPU has beaten this CPU to successfully execute the
1159 * write_trylock and has already acquired the write_lock. We know for a
1160 * fact it(other CPU acquiring the write_lock) couldn't have happened
1161 * before this CPU's Phase-I as we held the read_lock.
1162 * 3. Some other CPU executing pcc CMD_READ has stolen the
1163 * down_write, in which case, send_pcc_cmd will check for pending
1164 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1165 * So this CPU can be certain that its request will be delivered
1166 * So in all cases, this CPU knows that its request will be delivered
1167 * by another CPU and can return
1168 *
1169 * After getting the down_write we still need to check for
1170 * pending_pcc_write_cmd to take care of the following scenario
1171 * The thread running this code could be scheduled out between
1172 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1173 * could have delivered the request to Platform by triggering the
1174 * doorbell and transferred the ownership of PCC to platform. So this
1175 * avoids triggering an unnecessary doorbell and more importantly before
1176 * triggering the doorbell it makes sure that the PCC channel ownership
1177 * is still with OSPM.
1178 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1179 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1180 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1181 * case during a CMD_READ and if there are pending writes it delivers
1182 * the write command before servicing the read command
1183 */
1184 if (CPC_IN_PCC(desired_reg)) {
8482ef8c 1185 if (down_write_trylock(&pcc_data.pcc_lock)) { /* BEGIN Phase-II */
80b8286a 1186 /* Update only if there are pending write commands */
8482ef8c 1187 if (pcc_data.pending_pcc_write_cmd)
80b8286a 1188 send_pcc_cmd(CMD_WRITE);
8482ef8c 1189 up_write(&pcc_data.pcc_lock); /* END Phase-II */
80b8286a
PP
1190 } else
1191 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
8482ef8c
PP
1192 wait_event(pcc_data.pcc_write_wait_q,
1193 cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
80b8286a
PP
1194
1195 /* send_pcc_cmd updates the status in case of failure */
1196 ret = cpc_desc->write_cmd_status;
337aadff 1197 }
337aadff
AC
1198 return ret;
1199}
1200EXPORT_SYMBOL_GPL(cppc_set_perf);
be8b88d7
PP
1201
1202/**
1203 * cppc_get_transition_latency - returns frequency transition latency in ns
1204 *
1205 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1206 * transition latency for perfromance change requests. The closest we have
1207 * is the timing information from the PCCT tables which provides the info
1208 * on the number and frequency of PCC commands the platform can handle.
1209 */
1210unsigned int cppc_get_transition_latency(int cpu_num)
1211{
1212 /*
1213 * Expected transition latency is based on the PCCT timing values
1214 * Below are definition from ACPI spec:
1215 * pcc_nominal- Expected latency to process a command, in microseconds
1216 * pcc_mpar - The maximum number of periodic requests that the subspace
1217 * channel can support, reported in commands per minute. 0
1218 * indicates no limitation.
1219 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1220 * completion of a command before issuing the next command,
1221 * in microseconds.
1222 */
1223 unsigned int latency_ns = 0;
1224 struct cpc_desc *cpc_desc;
1225 struct cpc_register_resource *desired_reg;
1226
1227 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1228 if (!cpc_desc)
1229 return CPUFREQ_ETERNAL;
1230
1231 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1232 if (!CPC_IN_PCC(desired_reg))
1233 return CPUFREQ_ETERNAL;
1234
8482ef8c
PP
1235 if (pcc_data.pcc_mpar)
1236 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
be8b88d7 1237
8482ef8c
PP
1238 latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
1239 latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
be8b88d7
PP
1240
1241 return latency_ns;
1242}
1243EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
This page took 0.213233 seconds and 5 git commands to generate.