cpufreq: governor: split cpufreq_governor_dbs()
[deliverable/linux.git] / drivers / cpufreq / cpufreq_governor.c
CommitLineData
2aacdfff 1/*
2 * drivers/cpufreq/cpufreq_governor.c
3 *
4 * CPUFREQ governors common code
5 *
4471a34f
VK
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11 *
2aacdfff 12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
4471a34f
VK
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
2aacdfff 19#include <linux/export.h>
20#include <linux/kernel_stat.h>
4d5dcc42 21#include <linux/slab.h>
4471a34f
VK
22
23#include "cpufreq_governor.h"
24
4d5dcc42
VK
25static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
26{
27 if (have_governor_per_policy())
28 return dbs_data->cdata->attr_group_gov_pol;
29 else
30 return dbs_data->cdata->attr_group_gov_sys;
31}
32
4471a34f
VK
33void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
34{
4d5dcc42 35 struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
4471a34f
VK
36 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38 struct cpufreq_policy *policy;
18b46abd 39 unsigned int sampling_rate;
4471a34f
VK
40 unsigned int max_load = 0;
41 unsigned int ignore_nice;
42 unsigned int j;
43
18b46abd
SB
44 if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45 struct od_cpu_dbs_info_s *od_dbs_info =
46 dbs_data->cdata->get_cpu_dbs_info_s(cpu);
47
48 /*
49 * Sometimes, the ondemand governor uses an additional
50 * multiplier to give long delays. So apply this multiplier to
51 * the 'sampling_rate', so as to keep the wake-up-from-idle
52 * detection logic a bit conservative.
53 */
54 sampling_rate = od_tuners->sampling_rate;
55 sampling_rate *= od_dbs_info->rate_mult;
56
6c4640c3 57 ignore_nice = od_tuners->ignore_nice_load;
18b46abd
SB
58 } else {
59 sampling_rate = cs_tuners->sampling_rate;
6c4640c3 60 ignore_nice = cs_tuners->ignore_nice_load;
18b46abd 61 }
4471a34f
VK
62
63 policy = cdbs->cur_policy;
64
dfa5bb62 65 /* Get Absolute Load */
4471a34f
VK
66 for_each_cpu(j, policy->cpus) {
67 struct cpu_dbs_common_info *j_cdbs;
9366d840
SK
68 u64 cur_wall_time, cur_idle_time;
69 unsigned int idle_time, wall_time;
4471a34f 70 unsigned int load;
9366d840 71 int io_busy = 0;
4471a34f 72
4d5dcc42 73 j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
4471a34f 74
9366d840
SK
75 /*
76 * For the purpose of ondemand, waiting for disk IO is
77 * an indication that you're performance critical, and
78 * not that the system is actually idle. So do not add
79 * the iowait time to the cpu idle time.
80 */
81 if (dbs_data->cdata->governor == GOV_ONDEMAND)
82 io_busy = od_tuners->io_is_busy;
83 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
4471a34f
VK
84
85 wall_time = (unsigned int)
86 (cur_wall_time - j_cdbs->prev_cpu_wall);
87 j_cdbs->prev_cpu_wall = cur_wall_time;
88
89 idle_time = (unsigned int)
90 (cur_idle_time - j_cdbs->prev_cpu_idle);
91 j_cdbs->prev_cpu_idle = cur_idle_time;
92
93 if (ignore_nice) {
94 u64 cur_nice;
95 unsigned long cur_nice_jiffies;
96
97 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
98 cdbs->prev_cpu_nice;
99 /*
100 * Assumption: nice time between sampling periods will
101 * be less than 2^32 jiffies for 32 bit sys
102 */
103 cur_nice_jiffies = (unsigned long)
104 cputime64_to_jiffies64(cur_nice);
105
106 cdbs->prev_cpu_nice =
107 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
108 idle_time += jiffies_to_usecs(cur_nice_jiffies);
109 }
110
4471a34f
VK
111 if (unlikely(!wall_time || wall_time < idle_time))
112 continue;
113
18b46abd
SB
114 /*
115 * If the CPU had gone completely idle, and a task just woke up
116 * on this CPU now, it would be unfair to calculate 'load' the
117 * usual way for this elapsed time-window, because it will show
118 * near-zero load, irrespective of how CPU intensive that task
119 * actually is. This is undesirable for latency-sensitive bursty
120 * workloads.
121 *
122 * To avoid this, we reuse the 'load' from the previous
123 * time-window and give this task a chance to start with a
124 * reasonably high CPU frequency. (However, we shouldn't over-do
125 * this copy, lest we get stuck at a high load (high frequency)
126 * for too long, even when the current system load has actually
127 * dropped down. So we perform the copy only once, upon the
128 * first wake-up from idle.)
129 *
130 * Detecting this situation is easy: the governor's deferrable
131 * timer would not have fired during CPU-idle periods. Hence
132 * an unusually large 'wall_time' (as compared to the sampling
133 * rate) indicates this scenario.
c8ae481b
VK
134 *
135 * prev_load can be zero in two cases and we must recalculate it
136 * for both cases:
137 * - during long idle intervals
138 * - explicitly set to zero
18b46abd 139 */
c8ae481b
VK
140 if (unlikely(wall_time > (2 * sampling_rate) &&
141 j_cdbs->prev_load)) {
18b46abd 142 load = j_cdbs->prev_load;
c8ae481b
VK
143
144 /*
145 * Perform a destructive copy, to ensure that we copy
146 * the previous load only once, upon the first wake-up
147 * from idle.
148 */
149 j_cdbs->prev_load = 0;
18b46abd
SB
150 } else {
151 load = 100 * (wall_time - idle_time) / wall_time;
152 j_cdbs->prev_load = load;
18b46abd 153 }
4471a34f 154
4471a34f
VK
155 if (load > max_load)
156 max_load = load;
157 }
158
4d5dcc42 159 dbs_data->cdata->gov_check_cpu(cpu, max_load);
4471a34f
VK
160}
161EXPORT_SYMBOL_GPL(dbs_check_cpu);
162
031299b3
VK
163static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
164 unsigned int delay)
4471a34f 165{
4d5dcc42 166 struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
4471a34f 167
031299b3 168 mod_delayed_work_on(cpu, system_wq, &cdbs->work, delay);
4471a34f
VK
169}
170
031299b3
VK
171void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
172 unsigned int delay, bool all_cpus)
4471a34f 173{
031299b3
VK
174 int i;
175
6f1e4efd 176 mutex_lock(&cpufreq_governor_lock);
3617f2ca 177 if (!policy->governor_enabled)
6f1e4efd 178 goto out_unlock;
3617f2ca 179
031299b3 180 if (!all_cpus) {
69320783
SB
181 /*
182 * Use raw_smp_processor_id() to avoid preemptible warnings.
183 * We know that this is only called with all_cpus == false from
184 * works that have been queued with *_work_on() functions and
185 * those works are canceled during CPU_DOWN_PREPARE so they
186 * can't possibly run on any other CPU.
187 */
188 __gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
031299b3
VK
189 } else {
190 for_each_cpu(i, policy->cpus)
191 __gov_queue_work(i, dbs_data, delay);
192 }
6f1e4efd
JL
193
194out_unlock:
195 mutex_unlock(&cpufreq_governor_lock);
031299b3
VK
196}
197EXPORT_SYMBOL_GPL(gov_queue_work);
198
199static inline void gov_cancel_work(struct dbs_data *dbs_data,
200 struct cpufreq_policy *policy)
201{
202 struct cpu_dbs_common_info *cdbs;
203 int i;
58ddcead 204
031299b3
VK
205 for_each_cpu(i, policy->cpus) {
206 cdbs = dbs_data->cdata->get_cpu_cdbs(i);
207 cancel_delayed_work_sync(&cdbs->work);
208 }
4471a34f
VK
209}
210
4447266b
VK
211/* Will return if we need to evaluate cpu load again or not */
212bool need_load_eval(struct cpu_dbs_common_info *cdbs,
213 unsigned int sampling_rate)
214{
215 if (policy_is_shared(cdbs->cur_policy)) {
216 ktime_t time_now = ktime_get();
217 s64 delta_us = ktime_us_delta(time_now, cdbs->time_stamp);
218
219 /* Do nothing if we recently have sampled */
220 if (delta_us < (s64)(sampling_rate / 2))
221 return false;
222 else
223 cdbs->time_stamp = time_now;
224 }
225
226 return true;
227}
228EXPORT_SYMBOL_GPL(need_load_eval);
229
4d5dcc42
VK
230static void set_sampling_rate(struct dbs_data *dbs_data,
231 unsigned int sampling_rate)
232{
233 if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
234 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
235 cs_tuners->sampling_rate = sampling_rate;
236 } else {
237 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
238 od_tuners->sampling_rate = sampling_rate;
239 }
240}
241
714a2d9c
VK
242static int cpufreq_governor_init(struct cpufreq_policy *policy,
243 struct dbs_data *dbs_data,
244 struct common_dbs_data *cdata)
4471a34f 245{
714a2d9c
VK
246 unsigned int latency;
247 int ret;
4471a34f 248
714a2d9c
VK
249 if (dbs_data) {
250 if (WARN_ON(have_governor_per_policy()))
251 return -EINVAL;
252 dbs_data->usage_count++;
253 policy->governor_data = dbs_data;
254 return 0;
255 }
4d5dcc42 256
714a2d9c
VK
257 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
258 if (!dbs_data)
259 return -ENOMEM;
4d5dcc42 260
714a2d9c
VK
261 dbs_data->cdata = cdata;
262 dbs_data->usage_count = 1;
4d5dcc42 263
714a2d9c
VK
264 ret = cdata->init(dbs_data, !policy->governor->initialized);
265 if (ret)
266 goto free_dbs_data;
4d5dcc42 267
714a2d9c
VK
268 /* policy latency is in ns. Convert it to us first */
269 latency = policy->cpuinfo.transition_latency / 1000;
270 if (latency == 0)
271 latency = 1;
4d5dcc42 272
714a2d9c
VK
273 /* Bring kernel and HW constraints together */
274 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
275 MIN_LATENCY_MULTIPLIER * latency);
276 set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
277 latency * LATENCY_MULTIPLIER));
2361be23 278
714a2d9c
VK
279 if (!have_governor_per_policy()) {
280 if (WARN_ON(cpufreq_get_global_kobject())) {
281 ret = -EINVAL;
282 goto cdata_exit;
4d5dcc42 283 }
714a2d9c
VK
284 cdata->gdbs_data = dbs_data;
285 }
4d5dcc42 286
714a2d9c
VK
287 ret = sysfs_create_group(get_governor_parent_kobj(policy),
288 get_sysfs_attr(dbs_data));
289 if (ret)
290 goto put_kobj;
4d5dcc42 291
714a2d9c 292 policy->governor_data = dbs_data;
4d5dcc42 293
714a2d9c 294 return 0;
4d5dcc42 295
714a2d9c
VK
296put_kobj:
297 if (!have_governor_per_policy()) {
298 cdata->gdbs_data = NULL;
299 cpufreq_put_global_kobject();
300 }
301cdata_exit:
302 cdata->exit(dbs_data, !policy->governor->initialized);
303free_dbs_data:
304 kfree(dbs_data);
305 return ret;
306}
4d5dcc42 307
714a2d9c
VK
308static void cpufreq_governor_exit(struct cpufreq_policy *policy,
309 struct dbs_data *dbs_data)
310{
311 struct common_dbs_data *cdata = dbs_data->cdata;
4d5dcc42 312
714a2d9c
VK
313 policy->governor_data = NULL;
314 if (!--dbs_data->usage_count) {
315 sysfs_remove_group(get_governor_parent_kobj(policy),
316 get_sysfs_attr(dbs_data));
2361be23 317
714a2d9c 318 if (!have_governor_per_policy()) {
4d5dcc42 319 cdata->gdbs_data = NULL;
714a2d9c 320 cpufreq_put_global_kobject();
4d5dcc42 321 }
4471a34f 322
714a2d9c
VK
323 cdata->exit(dbs_data, policy->governor->initialized == 1);
324 kfree(dbs_data);
4d5dcc42 325 }
714a2d9c 326}
4d5dcc42 327
714a2d9c
VK
328static int cpufreq_governor_start(struct cpufreq_policy *policy,
329 struct dbs_data *dbs_data)
330{
331 struct common_dbs_data *cdata = dbs_data->cdata;
332 unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
333 struct cpu_dbs_common_info *cpu_cdbs = cdata->get_cpu_cdbs(cpu);
334 int io_busy = 0;
335
336 if (!policy->cur)
337 return -EINVAL;
338
339 if (cdata->governor == GOV_CONSERVATIVE) {
340 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
4d5dcc42 341
4d5dcc42 342 sampling_rate = cs_tuners->sampling_rate;
6c4640c3 343 ignore_nice = cs_tuners->ignore_nice_load;
4471a34f 344 } else {
714a2d9c
VK
345 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
346
4d5dcc42 347 sampling_rate = od_tuners->sampling_rate;
6c4640c3 348 ignore_nice = od_tuners->ignore_nice_load;
9366d840 349 io_busy = od_tuners->io_is_busy;
4471a34f
VK
350 }
351
714a2d9c 352 mutex_lock(&dbs_data->mutex);
4471a34f 353
714a2d9c
VK
354 for_each_cpu(j, policy->cpus) {
355 struct cpu_dbs_common_info *j_cdbs = cdata->get_cpu_cdbs(j);
356 unsigned int prev_load;
4471a34f 357
714a2d9c
VK
358 j_cdbs->cpu = j;
359 j_cdbs->cur_policy = policy;
360 j_cdbs->prev_cpu_idle =
361 get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
4471a34f 362
714a2d9c
VK
363 prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
364 j_cdbs->prev_cpu_idle);
365 j_cdbs->prev_load = 100 * prev_load /
366 (unsigned int)j_cdbs->prev_cpu_wall;
18b46abd 367
714a2d9c
VK
368 if (ignore_nice)
369 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
18b46abd 370
714a2d9c
VK
371 mutex_init(&j_cdbs->timer_mutex);
372 INIT_DEFERRABLE_WORK(&j_cdbs->work, cdata->gov_dbs_timer);
373 }
2abfa876 374
714a2d9c
VK
375 if (cdata->governor == GOV_CONSERVATIVE) {
376 struct cs_cpu_dbs_info_s *cs_dbs_info =
377 cdata->get_cpu_dbs_info_s(cpu);
4471a34f 378
714a2d9c
VK
379 cs_dbs_info->down_skip = 0;
380 cs_dbs_info->enable = 1;
381 cs_dbs_info->requested_freq = policy->cur;
382 } else {
383 struct od_ops *od_ops = cdata->gov_ops;
384 struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
4471a34f 385
714a2d9c
VK
386 od_dbs_info->rate_mult = 1;
387 od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
388 od_ops->powersave_bias_init_cpu(cpu);
389 }
4471a34f 390
714a2d9c 391 mutex_unlock(&dbs_data->mutex);
da53d61e 392
714a2d9c
VK
393 /* Initiate timer time stamp */
394 cpu_cdbs->time_stamp = ktime_get();
4471a34f 395
714a2d9c
VK
396 gov_queue_work(dbs_data, policy, delay_for_sampling_rate(sampling_rate),
397 true);
398 return 0;
399}
400
401static void cpufreq_governor_stop(struct cpufreq_policy *policy,
402 struct dbs_data *dbs_data)
403{
404 struct common_dbs_data *cdata = dbs_data->cdata;
405 unsigned int cpu = policy->cpu;
406 struct cpu_dbs_common_info *cpu_cdbs = cdata->get_cpu_cdbs(cpu);
407
408 if (cdata->governor == GOV_CONSERVATIVE) {
409 struct cs_cpu_dbs_info_s *cs_dbs_info =
410 cdata->get_cpu_dbs_info_s(cpu);
4471a34f 411
714a2d9c
VK
412 cs_dbs_info->enable = 0;
413 }
414
415 gov_cancel_work(dbs_data, policy);
416
417 mutex_lock(&dbs_data->mutex);
418 mutex_destroy(&cpu_cdbs->timer_mutex);
419 cpu_cdbs->cur_policy = NULL;
420 mutex_unlock(&dbs_data->mutex);
421}
4471a34f 422
714a2d9c
VK
423static void cpufreq_governor_limits(struct cpufreq_policy *policy,
424 struct dbs_data *dbs_data)
425{
426 struct common_dbs_data *cdata = dbs_data->cdata;
427 unsigned int cpu = policy->cpu;
428 struct cpu_dbs_common_info *cpu_cdbs = cdata->get_cpu_cdbs(cpu);
8eeed095 429
714a2d9c
VK
430 mutex_lock(&dbs_data->mutex);
431 if (!cpu_cdbs->cur_policy) {
4471a34f 432 mutex_unlock(&dbs_data->mutex);
714a2d9c
VK
433 return;
434 }
4471a34f 435
714a2d9c
VK
436 mutex_lock(&cpu_cdbs->timer_mutex);
437 if (policy->max < cpu_cdbs->cur_policy->cur)
438 __cpufreq_driver_target(cpu_cdbs->cur_policy, policy->max,
439 CPUFREQ_RELATION_H);
440 else if (policy->min > cpu_cdbs->cur_policy->cur)
441 __cpufreq_driver_target(cpu_cdbs->cur_policy, policy->min,
442 CPUFREQ_RELATION_L);
443 dbs_check_cpu(dbs_data, cpu);
444 mutex_unlock(&cpu_cdbs->timer_mutex);
445
446 mutex_unlock(&dbs_data->mutex);
447}
4471a34f 448
714a2d9c
VK
449int cpufreq_governor_dbs(struct cpufreq_policy *policy,
450 struct common_dbs_data *cdata, unsigned int event)
451{
452 struct dbs_data *dbs_data;
453 int ret = 0;
454
455 if (have_governor_per_policy())
456 dbs_data = policy->governor_data;
457 else
458 dbs_data = cdata->gdbs_data;
459
460 WARN_ON(!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT));
461
462 switch (event) {
463 case CPUFREQ_GOV_POLICY_INIT:
464 ret = cpufreq_governor_init(policy, dbs_data, cdata);
465 break;
466 case CPUFREQ_GOV_POLICY_EXIT:
467 cpufreq_governor_exit(policy, dbs_data);
468 break;
469 case CPUFREQ_GOV_START:
470 ret = cpufreq_governor_start(policy, dbs_data);
471 break;
472 case CPUFREQ_GOV_STOP:
473 cpufreq_governor_stop(policy, dbs_data);
474 break;
4471a34f 475 case CPUFREQ_GOV_LIMITS:
714a2d9c 476 cpufreq_governor_limits(policy, dbs_data);
4471a34f
VK
477 break;
478 }
714a2d9c
VK
479
480 return ret;
4471a34f
VK
481}
482EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);
This page took 0.216832 seconds and 5 git commands to generate.