cpufreq: Add per policy governor-init/exit infrastructure
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
4471a34f
VK
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/cpufreq.h>
4471a34f
VK
16#include <linux/init.h>
17#include <linux/kernel.h>
1da177e4 18#include <linux/kernel_stat.h>
4471a34f
VK
19#include <linux/kobject.h>
20#include <linux/module.h>
3fc54d37 21#include <linux/mutex.h>
4471a34f
VK
22#include <linux/percpu-defs.h>
23#include <linux/sysfs.h>
80800913 24#include <linux/tick.h>
4471a34f 25#include <linux/types.h>
1da177e4 26
4471a34f 27#include "cpufreq_governor.h"
1da177e4 28
06eb09d1 29/* On-demand governor macros */
e9d95bf7 30#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
1da177e4 31#define DEF_FREQUENCY_UP_THRESHOLD (80)
3f78a9f7
DN
32#define DEF_SAMPLING_DOWN_FACTOR (1)
33#define MAX_SAMPLING_DOWN_FACTOR (100000)
80800913 34#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
35#define MICRO_FREQUENCY_UP_THRESHOLD (95)
cef9615a 36#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
c29f1403 37#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
38#define MAX_FREQUENCY_UP_THRESHOLD (100)
39
4471a34f
VK
40static struct dbs_data od_dbs_data;
41static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
1da177e4 42
3e33ee9e
FB
43#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
44static struct cpufreq_governor cpufreq_gov_ondemand;
45#endif
46
4471a34f 47static struct od_dbs_tuners od_tuners = {
32ee8c3e 48 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
3f78a9f7 49 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
4bd4e428
SK
50 .adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD -
51 DEF_FREQUENCY_DOWN_DIFFERENTIAL,
9cbad61b 52 .ignore_nice = 0,
05ca0350 53 .powersave_bias = 0,
1da177e4
LT
54};
55
4471a34f 56static void ondemand_powersave_bias_init_cpu(int cpu)
6b8fcd90 57{
4471a34f 58 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
6b8fcd90 59
4471a34f
VK
60 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
61 dbs_info->freq_lo = 0;
62}
6b8fcd90 63
4471a34f
VK
64/*
65 * Not all CPUs want IO time to be accounted as busy; this depends on how
66 * efficient idling at a higher frequency/voltage is.
67 * Pavel Machek says this is not so for various generations of AMD and old
68 * Intel systems.
06eb09d1 69 * Mike Chan (android.com) claims this is also not true for ARM.
4471a34f
VK
70 * Because of this, whitelist specific known (series) of CPUs by default, and
71 * leave all others up to the user.
72 */
73static int should_io_be_busy(void)
74{
75#if defined(CONFIG_X86)
76 /*
06eb09d1 77 * For Intel, Core 2 (model 15) and later have an efficient idle.
4471a34f
VK
78 */
79 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
80 boot_cpu_data.x86 == 6 &&
81 boot_cpu_data.x86_model >= 15)
82 return 1;
83#endif
84 return 0;
6b8fcd90
AV
85}
86
05ca0350
AS
87/*
88 * Find right freq to be set now with powersave_bias on.
89 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
90 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
91 */
b5ecf60f 92static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
4471a34f 93 unsigned int freq_next, unsigned int relation)
05ca0350
AS
94{
95 unsigned int freq_req, freq_reduc, freq_avg;
96 unsigned int freq_hi, freq_lo;
97 unsigned int index = 0;
98 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
4471a34f 99 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
245b2e70 100 policy->cpu);
05ca0350
AS
101
102 if (!dbs_info->freq_table) {
103 dbs_info->freq_lo = 0;
104 dbs_info->freq_lo_jiffies = 0;
105 return freq_next;
106 }
107
108 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
109 relation, &index);
110 freq_req = dbs_info->freq_table[index].frequency;
4471a34f 111 freq_reduc = freq_req * od_tuners.powersave_bias / 1000;
05ca0350
AS
112 freq_avg = freq_req - freq_reduc;
113
114 /* Find freq bounds for freq_avg in freq_table */
115 index = 0;
116 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
117 CPUFREQ_RELATION_H, &index);
118 freq_lo = dbs_info->freq_table[index].frequency;
119 index = 0;
120 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
121 CPUFREQ_RELATION_L, &index);
122 freq_hi = dbs_info->freq_table[index].frequency;
123
124 /* Find out how long we have to be in hi and lo freqs */
125 if (freq_hi == freq_lo) {
126 dbs_info->freq_lo = 0;
127 dbs_info->freq_lo_jiffies = 0;
128 return freq_lo;
129 }
4471a34f 130 jiffies_total = usecs_to_jiffies(od_tuners.sampling_rate);
05ca0350
AS
131 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
132 jiffies_hi += ((freq_hi - freq_lo) / 2);
133 jiffies_hi /= (freq_hi - freq_lo);
134 jiffies_lo = jiffies_total - jiffies_hi;
135 dbs_info->freq_lo = freq_lo;
136 dbs_info->freq_lo_jiffies = jiffies_lo;
137 dbs_info->freq_hi_jiffies = jiffies_hi;
138 return freq_hi;
139}
140
141static void ondemand_powersave_bias_init(void)
142{
143 int i;
144 for_each_online_cpu(i) {
5a75c828 145 ondemand_powersave_bias_init_cpu(i);
05ca0350
AS
146 }
147}
148
4471a34f
VK
149static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
150{
151 if (od_tuners.powersave_bias)
152 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
153 else if (p->cur == p->max)
154 return;
0e625ac1 155
4471a34f
VK
156 __cpufreq_driver_target(p, freq, od_tuners.powersave_bias ?
157 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
158}
159
160/*
161 * Every sampling_rate, we check, if current idle time is less than 20%
06eb09d1
SK
162 * (default), then we try to increase frequency. Every sampling_rate, we look
163 * for the lowest frequency which can sustain the load while keeping idle time
4471a34f
VK
164 * over 30%. If such a frequency exist, we try to decrease to this frequency.
165 *
166 * Any frequency increase takes it to the maximum frequency. Frequency reduction
167 * happens at minimum steps of 5% (default) of current frequency
168 */
169static void od_check_cpu(int cpu, unsigned int load_freq)
1da177e4 170{
4471a34f
VK
171 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
172 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
173
174 dbs_info->freq_lo = 0;
175
176 /* Check for frequency increase */
177 if (load_freq > od_tuners.up_threshold * policy->cur) {
178 /* If switching to max speed, apply sampling_down_factor */
179 if (policy->cur < policy->max)
180 dbs_info->rate_mult =
181 od_tuners.sampling_down_factor;
182 dbs_freq_increase(policy, policy->max);
183 return;
184 }
185
186 /* Check for frequency decrease */
187 /* if we cannot reduce the frequency anymore, break out early */
188 if (policy->cur == policy->min)
189 return;
190
191 /*
192 * The optimal frequency is the frequency that is the lowest that can
193 * support the current CPU usage without triggering the up policy. To be
194 * safe, we focus 10 points under the threshold.
195 */
4bd4e428 196 if (load_freq < od_tuners.adj_up_threshold * policy->cur) {
4471a34f 197 unsigned int freq_next;
4bd4e428 198 freq_next = load_freq / od_tuners.adj_up_threshold;
4471a34f
VK
199
200 /* No longer fully busy, reset rate_mult */
201 dbs_info->rate_mult = 1;
202
203 if (freq_next < policy->min)
204 freq_next = policy->min;
205
206 if (!od_tuners.powersave_bias) {
207 __cpufreq_driver_target(policy, freq_next,
208 CPUFREQ_RELATION_L);
209 } else {
210 int freq = powersave_bias_target(policy, freq_next,
211 CPUFREQ_RELATION_L);
212 __cpufreq_driver_target(policy, freq,
213 CPUFREQ_RELATION_L);
214 }
215 }
1da177e4
LT
216}
217
4447266b 218static void od_dbs_timer(struct work_struct *work)
4471a34f 219{
4447266b
VK
220 struct delayed_work *dw = to_delayed_work(work);
221 struct od_cpu_dbs_info_s *dbs_info =
222 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
09dca5ae 223 unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
4447266b
VK
224 struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
225 cpu);
226 int delay, sample_type = core_dbs_info->sample_type;
227 bool eval_load;
228
229 mutex_lock(&core_dbs_info->cdbs.timer_mutex);
230 eval_load = need_load_eval(&core_dbs_info->cdbs,
231 od_tuners.sampling_rate);
1da177e4 232
4471a34f 233 /* Common NORMAL_SAMPLE setup */
4447266b 234 core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
4471a34f 235 if (sample_type == OD_SUB_SAMPLE) {
4447266b
VK
236 delay = core_dbs_info->freq_lo_jiffies;
237 if (eval_load)
238 __cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
239 core_dbs_info->freq_lo,
da53d61e 240 CPUFREQ_RELATION_H);
4471a34f 241 } else {
4447266b 242 if (eval_load)
da53d61e 243 dbs_check_cpu(&od_dbs_data, cpu);
4447266b 244 if (core_dbs_info->freq_lo) {
4471a34f 245 /* Setup timer for SUB_SAMPLE */
4447266b
VK
246 core_dbs_info->sample_type = OD_SUB_SAMPLE;
247 delay = core_dbs_info->freq_hi_jiffies;
4471a34f 248 } else {
d3c31a77 249 delay = delay_for_sampling_rate(od_tuners.sampling_rate
4447266b 250 * core_dbs_info->rate_mult);
4471a34f
VK
251 }
252 }
253
da53d61e 254 schedule_delayed_work_on(smp_processor_id(), dw, delay);
4447266b 255 mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
da53d61e
FB
256}
257
4471a34f
VK
258/************************** sysfs interface ************************/
259
260static ssize_t show_sampling_rate_min(struct kobject *kobj,
261 struct attribute *attr, char *buf)
262{
263 return sprintf(buf, "%u\n", od_dbs_data.min_sampling_rate);
1da177e4 264}
1da177e4 265
fd0ef7a0
MH
266/**
267 * update_sampling_rate - update sampling rate effective immediately if needed.
268 * @new_rate: new sampling rate
269 *
06eb09d1 270 * If new rate is smaller than the old, simply updating
4471a34f
VK
271 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
272 * original sampling_rate was 1 second and the requested new sampling rate is 10
273 * ms because the user needs immediate reaction from ondemand governor, but not
274 * sure if higher frequency will be required or not, then, the governor may
275 * change the sampling rate too late; up to 1 second later. Thus, if we are
276 * reducing the sampling rate, we need to make the new value effective
277 * immediately.
fd0ef7a0
MH
278 */
279static void update_sampling_rate(unsigned int new_rate)
280{
281 int cpu;
282
4471a34f
VK
283 od_tuners.sampling_rate = new_rate = max(new_rate,
284 od_dbs_data.min_sampling_rate);
fd0ef7a0
MH
285
286 for_each_online_cpu(cpu) {
287 struct cpufreq_policy *policy;
4471a34f 288 struct od_cpu_dbs_info_s *dbs_info;
fd0ef7a0
MH
289 unsigned long next_sampling, appointed_at;
290
291 policy = cpufreq_cpu_get(cpu);
292 if (!policy)
293 continue;
3e33ee9e
FB
294 if (policy->governor != &cpufreq_gov_ondemand) {
295 cpufreq_cpu_put(policy);
296 continue;
297 }
8ee2ec51 298 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
fd0ef7a0
MH
299 cpufreq_cpu_put(policy);
300
4471a34f 301 mutex_lock(&dbs_info->cdbs.timer_mutex);
fd0ef7a0 302
4471a34f
VK
303 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
304 mutex_unlock(&dbs_info->cdbs.timer_mutex);
fd0ef7a0
MH
305 continue;
306 }
307
4471a34f
VK
308 next_sampling = jiffies + usecs_to_jiffies(new_rate);
309 appointed_at = dbs_info->cdbs.work.timer.expires;
fd0ef7a0
MH
310
311 if (time_before(next_sampling, appointed_at)) {
312
4471a34f
VK
313 mutex_unlock(&dbs_info->cdbs.timer_mutex);
314 cancel_delayed_work_sync(&dbs_info->cdbs.work);
315 mutex_lock(&dbs_info->cdbs.timer_mutex);
fd0ef7a0 316
8ee2ec51 317 schedule_delayed_work_on(cpu, &dbs_info->cdbs.work,
4471a34f 318 usecs_to_jiffies(new_rate));
fd0ef7a0
MH
319
320 }
4471a34f 321 mutex_unlock(&dbs_info->cdbs.timer_mutex);
fd0ef7a0
MH
322 }
323}
324
0e625ac1
TR
325static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
326 const char *buf, size_t count)
1da177e4
LT
327{
328 unsigned int input;
329 int ret;
ffac80e9 330 ret = sscanf(buf, "%u", &input);
5a75c828 331 if (ret != 1)
332 return -EINVAL;
fd0ef7a0 333 update_sampling_rate(input);
1da177e4
LT
334 return count;
335}
336
19379b11
AV
337static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
338 const char *buf, size_t count)
339{
340 unsigned int input;
341 int ret;
342
343 ret = sscanf(buf, "%u", &input);
344 if (ret != 1)
345 return -EINVAL;
4471a34f 346 od_tuners.io_is_busy = !!input;
19379b11
AV
347 return count;
348}
349
0e625ac1
TR
350static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
351 const char *buf, size_t count)
1da177e4
LT
352{
353 unsigned int input;
354 int ret;
ffac80e9 355 ret = sscanf(buf, "%u", &input);
1da177e4 356
32ee8c3e 357 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 358 input < MIN_FREQUENCY_UP_THRESHOLD) {
1da177e4
LT
359 return -EINVAL;
360 }
4bd4e428
SK
361 /* Calculate the new adj_up_threshold */
362 od_tuners.adj_up_threshold += input;
363 od_tuners.adj_up_threshold -= od_tuners.up_threshold;
364
4471a34f 365 od_tuners.up_threshold = input;
1da177e4
LT
366 return count;
367}
368
3f78a9f7
DN
369static ssize_t store_sampling_down_factor(struct kobject *a,
370 struct attribute *b, const char *buf, size_t count)
371{
372 unsigned int input, j;
373 int ret;
374 ret = sscanf(buf, "%u", &input);
375
376 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
377 return -EINVAL;
4471a34f 378 od_tuners.sampling_down_factor = input;
3f78a9f7
DN
379
380 /* Reset down sampling multiplier in case it was active */
381 for_each_online_cpu(j) {
4471a34f
VK
382 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
383 j);
3f78a9f7
DN
384 dbs_info->rate_mult = 1;
385 }
3f78a9f7
DN
386 return count;
387}
388
0e625ac1
TR
389static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
390 const char *buf, size_t count)
3d5ee9e5
DJ
391{
392 unsigned int input;
393 int ret;
394
395 unsigned int j;
32ee8c3e 396
ffac80e9 397 ret = sscanf(buf, "%u", &input);
2b03f891 398 if (ret != 1)
3d5ee9e5
DJ
399 return -EINVAL;
400
2b03f891 401 if (input > 1)
3d5ee9e5 402 input = 1;
32ee8c3e 403
4471a34f 404 if (input == od_tuners.ignore_nice) { /* nothing to do */
3d5ee9e5
DJ
405 return count;
406 }
4471a34f 407 od_tuners.ignore_nice = input;
3d5ee9e5 408
ccb2fe20 409 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 410 for_each_online_cpu(j) {
4471a34f 411 struct od_cpu_dbs_info_s *dbs_info;
245b2e70 412 dbs_info = &per_cpu(od_cpu_dbs_info, j);
4471a34f
VK
413 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
414 &dbs_info->cdbs.prev_cpu_wall);
415 if (od_tuners.ignore_nice)
416 dbs_info->cdbs.prev_cpu_nice =
417 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
1ca3abdb 418
3d5ee9e5 419 }
3d5ee9e5
DJ
420 return count;
421}
422
0e625ac1
TR
423static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
424 const char *buf, size_t count)
05ca0350
AS
425{
426 unsigned int input;
427 int ret;
428 ret = sscanf(buf, "%u", &input);
429
430 if (ret != 1)
431 return -EINVAL;
432
433 if (input > 1000)
434 input = 1000;
435
4471a34f 436 od_tuners.powersave_bias = input;
05ca0350 437 ondemand_powersave_bias_init();
05ca0350
AS
438 return count;
439}
440
4471a34f
VK
441show_one(od, sampling_rate, sampling_rate);
442show_one(od, io_is_busy, io_is_busy);
443show_one(od, up_threshold, up_threshold);
444show_one(od, sampling_down_factor, sampling_down_factor);
445show_one(od, ignore_nice_load, ignore_nice);
446show_one(od, powersave_bias, powersave_bias);
447
6dad2a29 448define_one_global_rw(sampling_rate);
07d77759 449define_one_global_rw(io_is_busy);
6dad2a29 450define_one_global_rw(up_threshold);
3f78a9f7 451define_one_global_rw(sampling_down_factor);
6dad2a29
BP
452define_one_global_rw(ignore_nice_load);
453define_one_global_rw(powersave_bias);
4471a34f 454define_one_global_ro(sampling_rate_min);
1da177e4 455
2b03f891 456static struct attribute *dbs_attributes[] = {
1da177e4
LT
457 &sampling_rate_min.attr,
458 &sampling_rate.attr,
1da177e4 459 &up_threshold.attr,
3f78a9f7 460 &sampling_down_factor.attr,
001893cd 461 &ignore_nice_load.attr,
05ca0350 462 &powersave_bias.attr,
19379b11 463 &io_is_busy.attr,
1da177e4
LT
464 NULL
465};
466
4471a34f 467static struct attribute_group od_attr_group = {
1da177e4
LT
468 .attrs = dbs_attributes,
469 .name = "ondemand",
470};
471
472/************************** sysfs end ************************/
473
4471a34f 474define_get_cpu_dbs_routines(od_cpu_dbs_info);
6b8fcd90 475
4471a34f
VK
476static struct od_ops od_ops = {
477 .io_busy = should_io_be_busy,
478 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
479 .powersave_bias_target = powersave_bias_target,
480 .freq_increase = dbs_freq_increase,
481};
2f8a835c 482
4471a34f
VK
483static struct dbs_data od_dbs_data = {
484 .governor = GOV_ONDEMAND,
485 .attr_group = &od_attr_group,
486 .tuners = &od_tuners,
487 .get_cpu_cdbs = get_cpu_cdbs,
488 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
489 .gov_dbs_timer = od_dbs_timer,
490 .gov_check_cpu = od_check_cpu,
491 .gov_ops = &od_ops,
492};
1da177e4 493
4471a34f
VK
494static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
495 unsigned int event)
1da177e4 496{
4471a34f 497 return cpufreq_governor_dbs(&od_dbs_data, policy, event);
1da177e4
LT
498}
499
4471a34f
VK
500#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
501static
19379b11 502#endif
4471a34f
VK
503struct cpufreq_governor cpufreq_gov_ondemand = {
504 .name = "ondemand",
505 .governor = od_cpufreq_governor_dbs,
506 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
507 .owner = THIS_MODULE,
508};
1da177e4 509
1da177e4
LT
510static int __init cpufreq_gov_dbs_init(void)
511{
4f6e6b9f
AR
512 u64 idle_time;
513 int cpu = get_cpu();
80800913 514
4471a34f 515 mutex_init(&od_dbs_data.mutex);
21f2e3c8 516 idle_time = get_cpu_idle_time_us(cpu, NULL);
4f6e6b9f 517 put_cpu();
80800913 518 if (idle_time != -1ULL) {
519 /* Idle micro accounting is supported. Use finer thresholds */
4471a34f 520 od_tuners.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
4bd4e428
SK
521 od_tuners.adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD -
522 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
cef9615a 523 /*
bd74b32b 524 * In nohz/micro accounting case we set the minimum frequency
cef9615a
TR
525 * not depending on HZ, but fixed (very low). The deferred
526 * timer might skip some samples if idle/sleeping as needed.
527 */
4471a34f 528 od_dbs_data.min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
cef9615a
TR
529 } else {
530 /* For correct statistics, we need 10 ticks for each measure */
4471a34f
VK
531 od_dbs_data.min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
532 jiffies_to_usecs(10);
80800913 533 }
888a794c 534
57df5573 535 return cpufreq_register_governor(&cpufreq_gov_ondemand);
1da177e4
LT
536}
537
538static void __exit cpufreq_gov_dbs_exit(void)
539{
1c256245 540 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
1da177e4
LT
541}
542
ffac80e9
VP
543MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
544MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
545MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
2b03f891 546 "Low Latency Frequency Transition capable processors");
ffac80e9 547MODULE_LICENSE("GPL");
1da177e4 548
6915719b
JW
549#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
550fs_initcall(cpufreq_gov_dbs_init);
551#else
1da177e4 552module_init(cpufreq_gov_dbs_init);
6915719b 553#endif
1da177e4 554module_exit(cpufreq_gov_dbs_exit);
This page took 0.57258 seconds and 5 git commands to generate.