Restartable sequences: self-tests
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
93f0822d 38
938d21a2
PL
39#define ATOM_RATIOS 0x66a
40#define ATOM_VIDS 0x66b
41#define ATOM_TURBO_RATIOS 0x66c
42#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 43
9522a2ff
SP
44#ifdef CONFIG_ACPI
45#include <acpi/processor.h>
46#endif
47
f0fe3cd7 48#define FRAC_BITS 8
93f0822d
DB
49#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 51
a1c9787d
RW
52#define EXT_BITS 6
53#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54
93f0822d
DB
55static inline int32_t mul_fp(int32_t x, int32_t y)
56{
57 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
58}
59
7180dddf 60static inline int32_t div_fp(s64 x, s64 y)
93f0822d 61{
7180dddf 62 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
63}
64
d022a65e
DB
65static inline int ceiling_fp(int32_t x)
66{
67 int mask, ret;
68
69 ret = fp_toint(x);
70 mask = (1 << FRAC_BITS) - 1;
71 if (x & mask)
72 ret += 1;
73 return ret;
74}
75
a1c9787d
RW
76static inline u64 mul_ext_fp(u64 x, u64 y)
77{
78 return (x * y) >> EXT_FRAC_BITS;
79}
80
81static inline u64 div_ext_fp(u64 x, u64 y)
82{
83 return div64_u64(x << EXT_FRAC_BITS, y);
84}
85
13ad7701
SP
86/**
87 * struct sample - Store performance sample
a1c9787d 88 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
89 * performance during last sample period
90 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 91 * P state. This can be different than core_avg_perf
13ad7701
SP
92 * to account for cpu idle period
93 * @aperf: Difference of actual performance frequency clock count
94 * read from APERF MSR between last and current sample
95 * @mperf: Difference of maximum performance frequency clock count
96 * read from MPERF MSR between last and current sample
97 * @tsc: Difference of time stamp counter between last and
98 * current sample
99 * @freq: Effective frequency calculated from APERF/MPERF
100 * @time: Current time from scheduler
101 *
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
104 */
93f0822d 105struct sample {
a1c9787d 106 int32_t core_avg_perf;
157386b6 107 int32_t busy_scaled;
93f0822d
DB
108 u64 aperf;
109 u64 mperf;
4055fad3 110 u64 tsc;
93f0822d 111 int freq;
a4675fbc 112 u64 time;
93f0822d
DB
113};
114
13ad7701
SP
115/**
116 * struct pstate_data - Store P state data
117 * @current_pstate: Current requested P state
118 * @min_pstate: Min P state possible for this platform
119 * @max_pstate: Max P state possible for this platform
120 * @max_pstate_physical:This is physical Max P state for a processor
121 * This can be higher than the max_pstate which can
122 * be limited by platform thermal design power limits
123 * @scaling: Scaling factor to convert frequency to cpufreq
124 * frequency units
125 * @turbo_pstate: Max Turbo P state possible for this platform
126 *
127 * Stores the per cpu model P state limits and current P state.
128 */
93f0822d
DB
129struct pstate_data {
130 int current_pstate;
131 int min_pstate;
132 int max_pstate;
3bcc6fa9 133 int max_pstate_physical;
b27580b0 134 int scaling;
93f0822d
DB
135 int turbo_pstate;
136};
137
13ad7701
SP
138/**
139 * struct vid_data - Stores voltage information data
140 * @min: VID data for this platform corresponding to
141 * the lowest P state
142 * @max: VID data corresponding to the highest P State.
143 * @turbo: VID data for turbo P state
144 * @ratio: Ratio of (vid max - vid min) /
145 * (max P state - Min P State)
146 *
147 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
148 * This data is used in Atom platforms, where in addition to target P state,
149 * the voltage data needs to be specified to select next P State.
150 */
007bea09 151struct vid_data {
21855ff5
DB
152 int min;
153 int max;
154 int turbo;
007bea09
DB
155 int32_t ratio;
156};
157
13ad7701
SP
158/**
159 * struct _pid - Stores PID data
160 * @setpoint: Target set point for busyness or performance
161 * @integral: Storage for accumulated error values
162 * @p_gain: PID proportional gain
163 * @i_gain: PID integral gain
164 * @d_gain: PID derivative gain
165 * @deadband: PID deadband
166 * @last_err: Last error storage for integral part of PID calculation
167 *
168 * Stores PID coefficients and last error for PID controller.
169 */
93f0822d
DB
170struct _pid {
171 int setpoint;
172 int32_t integral;
173 int32_t p_gain;
174 int32_t i_gain;
175 int32_t d_gain;
176 int deadband;
d253d2a5 177 int32_t last_err;
93f0822d
DB
178};
179
13ad7701
SP
180/**
181 * struct cpudata - Per CPU instance data storage
182 * @cpu: CPU number for this instance data
183 * @update_util: CPUFreq utility callback information
4578ee7e 184 * @update_util_set: CPUFreq utility callback is set
13ad7701
SP
185 * @pstate: Stores P state limits for this CPU
186 * @vid: Stores VID limits for this CPU
187 * @pid: Stores PID parameters for this CPU
188 * @last_sample_time: Last Sample time
189 * @prev_aperf: Last APERF value read from APERF MSR
190 * @prev_mperf: Last MPERF value read from MPERF MSR
191 * @prev_tsc: Last timestamp counter (TSC) value
192 * @prev_cummulative_iowait: IO Wait time difference from last and
193 * current sample
194 * @sample: Storage for storing last Sample data
9522a2ff
SP
195 * @acpi_perf_data: Stores ACPI perf information read from _PSS
196 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
13ad7701
SP
197 *
198 * This structure stores per CPU instance data for all CPUs.
199 */
93f0822d
DB
200struct cpudata {
201 int cpu;
202
a4675fbc 203 struct update_util_data update_util;
4578ee7e 204 bool update_util_set;
93f0822d 205
93f0822d 206 struct pstate_data pstate;
007bea09 207 struct vid_data vid;
93f0822d 208 struct _pid pid;
93f0822d 209
a4675fbc 210 u64 last_sample_time;
93f0822d
DB
211 u64 prev_aperf;
212 u64 prev_mperf;
4055fad3 213 u64 prev_tsc;
63d1d656 214 u64 prev_cummulative_iowait;
d37e2b76 215 struct sample sample;
9522a2ff
SP
216#ifdef CONFIG_ACPI
217 struct acpi_processor_performance acpi_perf_data;
218 bool valid_pss_table;
219#endif
93f0822d
DB
220};
221
222static struct cpudata **all_cpu_data;
13ad7701
SP
223
224/**
225 * struct pid_adjust_policy - Stores static PID configuration data
226 * @sample_rate_ms: PID calculation sample rate in ms
227 * @sample_rate_ns: Sample rate calculation in ns
228 * @deadband: PID deadband
229 * @setpoint: PID Setpoint
230 * @p_gain_pct: PID proportional gain
231 * @i_gain_pct: PID integral gain
232 * @d_gain_pct: PID derivative gain
233 *
234 * Stores per CPU model static PID configuration data.
235 */
93f0822d
DB
236struct pstate_adjust_policy {
237 int sample_rate_ms;
a4675fbc 238 s64 sample_rate_ns;
93f0822d
DB
239 int deadband;
240 int setpoint;
241 int p_gain_pct;
242 int d_gain_pct;
243 int i_gain_pct;
244};
245
13ad7701
SP
246/**
247 * struct pstate_funcs - Per CPU model specific callbacks
248 * @get_max: Callback to get maximum non turbo effective P state
249 * @get_max_physical: Callback to get maximum non turbo physical P state
250 * @get_min: Callback to get minimum P state
251 * @get_turbo: Callback to get turbo P state
252 * @get_scaling: Callback to get frequency scaling factor
253 * @get_val: Callback to convert P state to actual MSR write value
254 * @get_vid: Callback to get VID data for Atom platforms
255 * @get_target_pstate: Callback to a function to calculate next P state to use
256 *
257 * Core and Atom CPU models have different way to get P State limits. This
258 * structure is used to store those callbacks.
259 */
016c8150
DB
260struct pstate_funcs {
261 int (*get_max)(void);
3bcc6fa9 262 int (*get_max_physical)(void);
016c8150
DB
263 int (*get_min)(void);
264 int (*get_turbo)(void);
b27580b0 265 int (*get_scaling)(void);
fdfdb2b1 266 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 267 void (*get_vid)(struct cpudata *);
157386b6 268 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
269};
270
13ad7701
SP
271/**
272 * struct cpu_defaults- Per CPU model default config data
273 * @pid_policy: PID config data
274 * @funcs: Callback function data
275 */
016c8150
DB
276struct cpu_defaults {
277 struct pstate_adjust_policy pid_policy;
278 struct pstate_funcs funcs;
93f0822d
DB
279};
280
157386b6 281static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 282static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 283
016c8150
DB
284static struct pstate_adjust_policy pid_params;
285static struct pstate_funcs pstate_funcs;
2f86dc4c 286static int hwp_active;
016c8150 287
9522a2ff
SP
288#ifdef CONFIG_ACPI
289static bool acpi_ppc;
290#endif
13ad7701
SP
291
292/**
293 * struct perf_limits - Store user and policy limits
294 * @no_turbo: User requested turbo state from intel_pstate sysfs
295 * @turbo_disabled: Platform turbo status either from msr
296 * MSR_IA32_MISC_ENABLE or when maximum available pstate
297 * matches the maximum turbo pstate
298 * @max_perf_pct: Effective maximum performance limit in percentage, this
299 * is minimum of either limits enforced by cpufreq policy
300 * or limits from user set limits via intel_pstate sysfs
301 * @min_perf_pct: Effective minimum performance limit in percentage, this
302 * is maximum of either limits enforced by cpufreq policy
303 * or limits from user set limits via intel_pstate sysfs
304 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
305 * This value is used to limit max pstate
306 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
307 * This value is used to limit min pstate
308 * @max_policy_pct: The maximum performance in percentage enforced by
309 * cpufreq setpolicy interface
310 * @max_sysfs_pct: The maximum performance in percentage enforced by
311 * intel pstate sysfs interface
312 * @min_policy_pct: The minimum performance in percentage enforced by
313 * cpufreq setpolicy interface
314 * @min_sysfs_pct: The minimum performance in percentage enforced by
315 * intel pstate sysfs interface
316 *
317 * Storage for user and policy defined limits.
318 */
93f0822d
DB
319struct perf_limits {
320 int no_turbo;
dd5fbf70 321 int turbo_disabled;
93f0822d
DB
322 int max_perf_pct;
323 int min_perf_pct;
324 int32_t max_perf;
325 int32_t min_perf;
d8f469e9
DB
326 int max_policy_pct;
327 int max_sysfs_pct;
a0475992
KCA
328 int min_policy_pct;
329 int min_sysfs_pct;
93f0822d
DB
330};
331
51443fbf
PB
332static struct perf_limits performance_limits = {
333 .no_turbo = 0,
334 .turbo_disabled = 0,
335 .max_perf_pct = 100,
336 .max_perf = int_tofp(1),
337 .min_perf_pct = 100,
338 .min_perf = int_tofp(1),
339 .max_policy_pct = 100,
340 .max_sysfs_pct = 100,
341 .min_policy_pct = 0,
342 .min_sysfs_pct = 0,
343};
344
345static struct perf_limits powersave_limits = {
93f0822d 346 .no_turbo = 0,
4521e1a0 347 .turbo_disabled = 0,
93f0822d
DB
348 .max_perf_pct = 100,
349 .max_perf = int_tofp(1),
350 .min_perf_pct = 0,
351 .min_perf = 0,
d8f469e9
DB
352 .max_policy_pct = 100,
353 .max_sysfs_pct = 100,
a0475992
KCA
354 .min_policy_pct = 0,
355 .min_sysfs_pct = 0,
93f0822d
DB
356};
357
51443fbf
PB
358#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
359static struct perf_limits *limits = &performance_limits;
360#else
361static struct perf_limits *limits = &powersave_limits;
362#endif
363
9522a2ff 364#ifdef CONFIG_ACPI
2b3ec765
SP
365
366static bool intel_pstate_get_ppc_enable_status(void)
367{
368 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
369 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
370 return true;
371
372 return acpi_ppc;
373}
374
9522a2ff
SP
375static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
376{
377 struct cpudata *cpu;
9522a2ff
SP
378 int ret;
379 int i;
380
e59a8f7f
SP
381 if (hwp_active)
382 return;
383
2b3ec765 384 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
385 return;
386
387 cpu = all_cpu_data[policy->cpu];
388
389 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
390 policy->cpu);
391 if (ret)
392 return;
393
394 /*
395 * Check if the control value in _PSS is for PERF_CTL MSR, which should
396 * guarantee that the states returned by it map to the states in our
397 * list directly.
398 */
399 if (cpu->acpi_perf_data.control_register.space_id !=
400 ACPI_ADR_SPACE_FIXED_HARDWARE)
401 goto err;
402
403 /*
404 * If there is only one entry _PSS, simply ignore _PSS and continue as
405 * usual without taking _PSS into account
406 */
407 if (cpu->acpi_perf_data.state_count < 2)
408 goto err;
409
410 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
411 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
412 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
413 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
414 (u32) cpu->acpi_perf_data.states[i].core_frequency,
415 (u32) cpu->acpi_perf_data.states[i].power,
416 (u32) cpu->acpi_perf_data.states[i].control);
417 }
418
419 /*
420 * The _PSS table doesn't contain whole turbo frequency range.
421 * This just contains +1 MHZ above the max non turbo frequency,
422 * with control value corresponding to max turbo ratio. But
423 * when cpufreq set policy is called, it will call with this
424 * max frequency, which will cause a reduced performance as
425 * this driver uses real max turbo frequency as the max
426 * frequency. So correct this frequency in _PSS table to
b00345d1 427 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
428 * Also need to convert to MHz as _PSS freq is in MHz.
429 */
b00345d1 430 if (!limits->turbo_disabled)
9522a2ff
SP
431 cpu->acpi_perf_data.states[0].core_frequency =
432 policy->cpuinfo.max_freq / 1000;
433 cpu->valid_pss_table = true;
6cacd115 434 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
435
436 return;
437
438 err:
439 cpu->valid_pss_table = false;
440 acpi_processor_unregister_performance(policy->cpu);
441}
442
443static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
444{
445 struct cpudata *cpu;
446
447 cpu = all_cpu_data[policy->cpu];
448 if (!cpu->valid_pss_table)
449 return;
450
451 acpi_processor_unregister_performance(policy->cpu);
452}
453
454#else
455static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
456{
457}
458
459static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
460{
461}
462#endif
463
93f0822d 464static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 465 int deadband, int integral) {
b54a0dfd
PL
466 pid->setpoint = int_tofp(setpoint);
467 pid->deadband = int_tofp(deadband);
93f0822d 468 pid->integral = int_tofp(integral);
d98d099b 469 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
470}
471
472static inline void pid_p_gain_set(struct _pid *pid, int percent)
473{
22590efb 474 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
475}
476
477static inline void pid_i_gain_set(struct _pid *pid, int percent)
478{
22590efb 479 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
480}
481
482static inline void pid_d_gain_set(struct _pid *pid, int percent)
483{
22590efb 484 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
485}
486
d253d2a5 487static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 488{
d253d2a5 489 signed int result;
93f0822d
DB
490 int32_t pterm, dterm, fp_error;
491 int32_t integral_limit;
492
b54a0dfd 493 fp_error = pid->setpoint - busy;
93f0822d 494
b54a0dfd 495 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
496 return 0;
497
498 pterm = mul_fp(pid->p_gain, fp_error);
499
500 pid->integral += fp_error;
501
e0d4c8f8
KCA
502 /*
503 * We limit the integral here so that it will never
504 * get higher than 30. This prevents it from becoming
505 * too large an input over long periods of time and allows
506 * it to get factored out sooner.
507 *
508 * The value of 30 was chosen through experimentation.
509 */
93f0822d
DB
510 integral_limit = int_tofp(30);
511 if (pid->integral > integral_limit)
512 pid->integral = integral_limit;
513 if (pid->integral < -integral_limit)
514 pid->integral = -integral_limit;
515
d253d2a5
BS
516 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
517 pid->last_err = fp_error;
93f0822d
DB
518
519 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 520 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
521 return (signed int)fp_toint(result);
522}
523
524static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
525{
016c8150
DB
526 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
527 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
528 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 529
2d8d1f18 530 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
531}
532
93f0822d
DB
533static inline void intel_pstate_reset_all_pid(void)
534{
535 unsigned int cpu;
845c1cbe 536
93f0822d
DB
537 for_each_online_cpu(cpu) {
538 if (all_cpu_data[cpu])
539 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
540 }
541}
542
4521e1a0
GM
543static inline void update_turbo_state(void)
544{
545 u64 misc_en;
546 struct cpudata *cpu;
547
548 cpu = all_cpu_data[0];
549 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 550 limits->turbo_disabled =
4521e1a0
GM
551 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
552 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
553}
554
41cfd64c 555static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 556{
74da56ce
KCA
557 int min, hw_min, max, hw_max, cpu, range, adj_range;
558 u64 value, cap;
559
560 rdmsrl(MSR_HWP_CAPABILITIES, cap);
561 hw_min = HWP_LOWEST_PERF(cap);
562 hw_max = HWP_HIGHEST_PERF(cap);
563 range = hw_max - hw_min;
2f86dc4c 564
41cfd64c 565 for_each_cpu(cpu, cpumask) {
2f86dc4c 566 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
51443fbf 567 adj_range = limits->min_perf_pct * range / 100;
74da56ce 568 min = hw_min + adj_range;
2f86dc4c
DB
569 value &= ~HWP_MIN_PERF(~0L);
570 value |= HWP_MIN_PERF(min);
571
51443fbf 572 adj_range = limits->max_perf_pct * range / 100;
74da56ce 573 max = hw_min + adj_range;
51443fbf 574 if (limits->no_turbo) {
74da56ce
KCA
575 hw_max = HWP_GUARANTEED_PERF(cap);
576 if (hw_max < max)
577 max = hw_max;
2f86dc4c
DB
578 }
579
580 value &= ~HWP_MAX_PERF(~0L);
581 value |= HWP_MAX_PERF(max);
582 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
583 }
41cfd64c 584}
2f86dc4c 585
ba41e1bc
RW
586static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
587{
588 if (hwp_active)
589 intel_pstate_hwp_set(policy->cpus);
590
591 return 0;
592}
593
41cfd64c
VK
594static void intel_pstate_hwp_set_online_cpus(void)
595{
596 get_online_cpus();
597 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
598 put_online_cpus();
599}
600
93f0822d
DB
601/************************** debugfs begin ************************/
602static int pid_param_set(void *data, u64 val)
603{
604 *(u32 *)data = val;
605 intel_pstate_reset_all_pid();
606 return 0;
607}
845c1cbe 608
93f0822d
DB
609static int pid_param_get(void *data, u64 *val)
610{
611 *val = *(u32 *)data;
612 return 0;
613}
2d8d1f18 614DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
615
616struct pid_param {
617 char *name;
618 void *value;
619};
620
621static struct pid_param pid_files[] = {
016c8150
DB
622 {"sample_rate_ms", &pid_params.sample_rate_ms},
623 {"d_gain_pct", &pid_params.d_gain_pct},
624 {"i_gain_pct", &pid_params.i_gain_pct},
625 {"deadband", &pid_params.deadband},
626 {"setpoint", &pid_params.setpoint},
627 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
628 {NULL, NULL}
629};
630
317dd50e 631static void __init intel_pstate_debug_expose_params(void)
93f0822d 632{
317dd50e 633 struct dentry *debugfs_parent;
93f0822d
DB
634 int i = 0;
635
2f86dc4c
DB
636 if (hwp_active)
637 return;
93f0822d
DB
638 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
639 if (IS_ERR_OR_NULL(debugfs_parent))
640 return;
641 while (pid_files[i].name) {
642 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
643 debugfs_parent, pid_files[i].value,
644 &fops_pid_param);
93f0822d
DB
645 i++;
646 }
647}
648
649/************************** debugfs end ************************/
650
651/************************** sysfs begin ************************/
652#define show_one(file_name, object) \
653 static ssize_t show_##file_name \
654 (struct kobject *kobj, struct attribute *attr, char *buf) \
655 { \
51443fbf 656 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
657 }
658
d01b1f48
KCA
659static ssize_t show_turbo_pct(struct kobject *kobj,
660 struct attribute *attr, char *buf)
661{
662 struct cpudata *cpu;
663 int total, no_turbo, turbo_pct;
664 uint32_t turbo_fp;
665
666 cpu = all_cpu_data[0];
667
668 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
669 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 670 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
671 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
672 return sprintf(buf, "%u\n", turbo_pct);
673}
674
0522424e
KCA
675static ssize_t show_num_pstates(struct kobject *kobj,
676 struct attribute *attr, char *buf)
677{
678 struct cpudata *cpu;
679 int total;
680
681 cpu = all_cpu_data[0];
682 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
683 return sprintf(buf, "%u\n", total);
684}
685
4521e1a0
GM
686static ssize_t show_no_turbo(struct kobject *kobj,
687 struct attribute *attr, char *buf)
688{
689 ssize_t ret;
690
691 update_turbo_state();
51443fbf
PB
692 if (limits->turbo_disabled)
693 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 694 else
51443fbf 695 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
696
697 return ret;
698}
699
93f0822d 700static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 701 const char *buf, size_t count)
93f0822d
DB
702{
703 unsigned int input;
704 int ret;
845c1cbe 705
93f0822d
DB
706 ret = sscanf(buf, "%u", &input);
707 if (ret != 1)
708 return -EINVAL;
4521e1a0
GM
709
710 update_turbo_state();
51443fbf 711 if (limits->turbo_disabled) {
4836df17 712 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 713 return -EPERM;
dd5fbf70 714 }
2f86dc4c 715
51443fbf 716 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 717
2f86dc4c 718 if (hwp_active)
41cfd64c 719 intel_pstate_hwp_set_online_cpus();
2f86dc4c 720
93f0822d
DB
721 return count;
722}
723
724static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 725 const char *buf, size_t count)
93f0822d
DB
726{
727 unsigned int input;
728 int ret;
845c1cbe 729
93f0822d
DB
730 ret = sscanf(buf, "%u", &input);
731 if (ret != 1)
732 return -EINVAL;
733
51443fbf
PB
734 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
735 limits->max_perf_pct = min(limits->max_policy_pct,
736 limits->max_sysfs_pct);
737 limits->max_perf_pct = max(limits->min_policy_pct,
738 limits->max_perf_pct);
739 limits->max_perf_pct = max(limits->min_perf_pct,
740 limits->max_perf_pct);
22590efb 741 limits->max_perf = div_fp(limits->max_perf_pct, 100);
845c1cbe 742
2f86dc4c 743 if (hwp_active)
41cfd64c 744 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
745 return count;
746}
747
748static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 749 const char *buf, size_t count)
93f0822d
DB
750{
751 unsigned int input;
752 int ret;
845c1cbe 753
93f0822d
DB
754 ret = sscanf(buf, "%u", &input);
755 if (ret != 1)
756 return -EINVAL;
a0475992 757
51443fbf
PB
758 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
759 limits->min_perf_pct = max(limits->min_policy_pct,
760 limits->min_sysfs_pct);
761 limits->min_perf_pct = min(limits->max_policy_pct,
762 limits->min_perf_pct);
763 limits->min_perf_pct = min(limits->max_perf_pct,
764 limits->min_perf_pct);
22590efb 765 limits->min_perf = div_fp(limits->min_perf_pct, 100);
93f0822d 766
2f86dc4c 767 if (hwp_active)
41cfd64c 768 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
769 return count;
770}
771
93f0822d
DB
772show_one(max_perf_pct, max_perf_pct);
773show_one(min_perf_pct, min_perf_pct);
774
775define_one_global_rw(no_turbo);
776define_one_global_rw(max_perf_pct);
777define_one_global_rw(min_perf_pct);
d01b1f48 778define_one_global_ro(turbo_pct);
0522424e 779define_one_global_ro(num_pstates);
93f0822d
DB
780
781static struct attribute *intel_pstate_attributes[] = {
782 &no_turbo.attr,
783 &max_perf_pct.attr,
784 &min_perf_pct.attr,
d01b1f48 785 &turbo_pct.attr,
0522424e 786 &num_pstates.attr,
93f0822d
DB
787 NULL
788};
789
790static struct attribute_group intel_pstate_attr_group = {
791 .attrs = intel_pstate_attributes,
792};
93f0822d 793
317dd50e 794static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 795{
317dd50e 796 struct kobject *intel_pstate_kobject;
93f0822d
DB
797 int rc;
798
799 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
800 &cpu_subsys.dev_root->kobj);
801 BUG_ON(!intel_pstate_kobject);
2d8d1f18 802 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
803 BUG_ON(rc);
804}
93f0822d 805/************************** sysfs end ************************/
2f86dc4c 806
ba88d433 807static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 808{
f05c9665
SP
809 /* First disable HWP notification interrupt as we don't process them */
810 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
811
ba88d433 812 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
813}
814
938d21a2 815static int atom_get_min_pstate(void)
19e77c28
DB
816{
817 u64 value;
845c1cbe 818
938d21a2 819 rdmsrl(ATOM_RATIOS, value);
c16ed060 820 return (value >> 8) & 0x7F;
19e77c28
DB
821}
822
938d21a2 823static int atom_get_max_pstate(void)
19e77c28
DB
824{
825 u64 value;
845c1cbe 826
938d21a2 827 rdmsrl(ATOM_RATIOS, value);
c16ed060 828 return (value >> 16) & 0x7F;
19e77c28 829}
93f0822d 830
938d21a2 831static int atom_get_turbo_pstate(void)
61d8d2ab
DB
832{
833 u64 value;
845c1cbe 834
938d21a2 835 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 836 return value & 0x7F;
61d8d2ab
DB
837}
838
fdfdb2b1 839static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
840{
841 u64 val;
842 int32_t vid_fp;
843 u32 vid;
844
144c8e17 845 val = (u64)pstate << 8;
51443fbf 846 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
847 val |= (u64)1 << 32;
848
849 vid_fp = cpudata->vid.min + mul_fp(
850 int_tofp(pstate - cpudata->pstate.min_pstate),
851 cpudata->vid.ratio);
852
853 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 854 vid = ceiling_fp(vid_fp);
007bea09 855
21855ff5
DB
856 if (pstate > cpudata->pstate.max_pstate)
857 vid = cpudata->vid.turbo;
858
fdfdb2b1 859 return val | vid;
007bea09
DB
860}
861
1421df63 862static int silvermont_get_scaling(void)
b27580b0
DB
863{
864 u64 value;
865 int i;
1421df63
PL
866 /* Defined in Table 35-6 from SDM (Sept 2015) */
867 static int silvermont_freq_table[] = {
868 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
869
870 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
871 i = value & 0x7;
872 WARN_ON(i > 4);
b27580b0 873
1421df63
PL
874 return silvermont_freq_table[i];
875}
b27580b0 876
1421df63
PL
877static int airmont_get_scaling(void)
878{
879 u64 value;
880 int i;
881 /* Defined in Table 35-10 from SDM (Sept 2015) */
882 static int airmont_freq_table[] = {
883 83300, 100000, 133300, 116700, 80000,
884 93300, 90000, 88900, 87500};
885
886 rdmsrl(MSR_FSB_FREQ, value);
887 i = value & 0xF;
888 WARN_ON(i > 8);
889
890 return airmont_freq_table[i];
b27580b0
DB
891}
892
938d21a2 893static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
894{
895 u64 value;
896
938d21a2 897 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
898 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
899 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
900 cpudata->vid.ratio = div_fp(
901 cpudata->vid.max - cpudata->vid.min,
902 int_tofp(cpudata->pstate.max_pstate -
903 cpudata->pstate.min_pstate));
21855ff5 904
938d21a2 905 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 906 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
907}
908
016c8150 909static int core_get_min_pstate(void)
93f0822d
DB
910{
911 u64 value;
845c1cbe 912
05e99c8c 913 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
914 return (value >> 40) & 0xFF;
915}
916
3bcc6fa9 917static int core_get_max_pstate_physical(void)
93f0822d
DB
918{
919 u64 value;
845c1cbe 920
05e99c8c 921 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
922 return (value >> 8) & 0xFF;
923}
924
016c8150 925static int core_get_max_pstate(void)
93f0822d 926{
6a35fc2d
SP
927 u64 tar;
928 u64 plat_info;
929 int max_pstate;
930 int err;
931
932 rdmsrl(MSR_PLATFORM_INFO, plat_info);
933 max_pstate = (plat_info >> 8) & 0xFF;
934
935 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
936 if (!err) {
937 /* Do some sanity checking for safety */
938 if (plat_info & 0x600000000) {
939 u64 tdp_ctrl;
940 u64 tdp_ratio;
941 int tdp_msr;
942
943 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
944 if (err)
945 goto skip_tar;
946
947 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
948 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
949 if (err)
950 goto skip_tar;
951
1becf035
SP
952 /* For level 1 and 2, bits[23:16] contain the ratio */
953 if (tdp_ctrl)
954 tdp_ratio >>= 16;
955
956 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
6a35fc2d
SP
957 if (tdp_ratio - 1 == tar) {
958 max_pstate = tar;
959 pr_debug("max_pstate=TAC %x\n", max_pstate);
960 } else {
961 goto skip_tar;
962 }
963 }
964 }
845c1cbe 965
6a35fc2d
SP
966skip_tar:
967 return max_pstate;
93f0822d
DB
968}
969
016c8150 970static int core_get_turbo_pstate(void)
93f0822d
DB
971{
972 u64 value;
973 int nont, ret;
845c1cbe 974
05e99c8c 975 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
016c8150 976 nont = core_get_max_pstate();
285cb990 977 ret = (value) & 255;
93f0822d
DB
978 if (ret <= nont)
979 ret = nont;
980 return ret;
981}
982
b27580b0
DB
983static inline int core_get_scaling(void)
984{
985 return 100000;
986}
987
fdfdb2b1 988static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
989{
990 u64 val;
991
144c8e17 992 val = (u64)pstate << 8;
51443fbf 993 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
994 val |= (u64)1 << 32;
995
fdfdb2b1 996 return val;
016c8150
DB
997}
998
b34ef932
DC
999static int knl_get_turbo_pstate(void)
1000{
1001 u64 value;
1002 int nont, ret;
1003
1004 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1005 nont = core_get_max_pstate();
1006 ret = (((value) >> 8) & 0xFF);
1007 if (ret <= nont)
1008 ret = nont;
1009 return ret;
1010}
1011
016c8150
DB
1012static struct cpu_defaults core_params = {
1013 .pid_policy = {
1014 .sample_rate_ms = 10,
1015 .deadband = 0,
1016 .setpoint = 97,
1017 .p_gain_pct = 20,
1018 .d_gain_pct = 0,
1019 .i_gain_pct = 0,
1020 },
1021 .funcs = {
1022 .get_max = core_get_max_pstate,
3bcc6fa9 1023 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1024 .get_min = core_get_min_pstate,
1025 .get_turbo = core_get_turbo_pstate,
b27580b0 1026 .get_scaling = core_get_scaling,
fdfdb2b1 1027 .get_val = core_get_val,
157386b6 1028 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1029 },
1030};
1031
1421df63
PL
1032static struct cpu_defaults silvermont_params = {
1033 .pid_policy = {
1034 .sample_rate_ms = 10,
1035 .deadband = 0,
1036 .setpoint = 60,
1037 .p_gain_pct = 14,
1038 .d_gain_pct = 0,
1039 .i_gain_pct = 4,
1040 },
1041 .funcs = {
1042 .get_max = atom_get_max_pstate,
1043 .get_max_physical = atom_get_max_pstate,
1044 .get_min = atom_get_min_pstate,
1045 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1046 .get_val = atom_get_val,
1421df63
PL
1047 .get_scaling = silvermont_get_scaling,
1048 .get_vid = atom_get_vid,
e70eed2b 1049 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1050 },
1051};
1052
1053static struct cpu_defaults airmont_params = {
19e77c28
DB
1054 .pid_policy = {
1055 .sample_rate_ms = 10,
1056 .deadband = 0,
6a82ba6d 1057 .setpoint = 60,
19e77c28
DB
1058 .p_gain_pct = 14,
1059 .d_gain_pct = 0,
1060 .i_gain_pct = 4,
1061 },
1062 .funcs = {
938d21a2
PL
1063 .get_max = atom_get_max_pstate,
1064 .get_max_physical = atom_get_max_pstate,
1065 .get_min = atom_get_min_pstate,
1066 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1067 .get_val = atom_get_val,
1421df63 1068 .get_scaling = airmont_get_scaling,
938d21a2 1069 .get_vid = atom_get_vid,
e70eed2b 1070 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1071 },
1072};
1073
b34ef932
DC
1074static struct cpu_defaults knl_params = {
1075 .pid_policy = {
1076 .sample_rate_ms = 10,
1077 .deadband = 0,
1078 .setpoint = 97,
1079 .p_gain_pct = 20,
1080 .d_gain_pct = 0,
1081 .i_gain_pct = 0,
1082 },
1083 .funcs = {
1084 .get_max = core_get_max_pstate,
3bcc6fa9 1085 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1086 .get_min = core_get_min_pstate,
1087 .get_turbo = knl_get_turbo_pstate,
69cefc27 1088 .get_scaling = core_get_scaling,
fdfdb2b1 1089 .get_val = core_get_val,
157386b6 1090 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1091 },
1092};
1093
93f0822d
DB
1094static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1095{
1096 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1097 int max_perf_adj;
93f0822d 1098 int min_perf;
845c1cbe 1099
51443fbf 1100 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1101 max_perf = cpu->pstate.max_pstate;
1102
e0d4c8f8
KCA
1103 /*
1104 * performance can be limited by user through sysfs, by cpufreq
1105 * policy, or by cpu specific default values determined through
1106 * experimentation.
1107 */
a158bed5 1108 max_perf_adj = fp_toint(max_perf * limits->max_perf);
799281a3
RW
1109 *max = clamp_t(int, max_perf_adj,
1110 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1111
a158bed5 1112 min_perf = fp_toint(max_perf * limits->min_perf);
799281a3 1113 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1114}
1115
fdfdb2b1 1116static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
93f0822d 1117{
b27580b0 1118 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
93f0822d 1119 cpu->pstate.current_pstate = pstate;
fdfdb2b1 1120}
93f0822d 1121
fdfdb2b1
RW
1122static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1123{
1124 int pstate = cpu->pstate.min_pstate;
1125
1126 intel_pstate_record_pstate(cpu, pstate);
1127 /*
1128 * Generally, there is no guarantee that this code will always run on
1129 * the CPU being updated, so force the register update to run on the
1130 * right CPU.
1131 */
1132 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1133 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1134}
1135
93f0822d
DB
1136static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1137{
016c8150
DB
1138 cpu->pstate.min_pstate = pstate_funcs.get_min();
1139 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1140 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1141 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1142 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 1143
007bea09
DB
1144 if (pstate_funcs.get_vid)
1145 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1146
1147 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1148}
1149
a1c9787d 1150static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1151{
6b17ddb2 1152 struct sample *sample = &cpu->sample;
e66c1768 1153
a1c9787d 1154 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1155}
1156
4fec7ad5 1157static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1158{
93f0822d 1159 u64 aperf, mperf;
4ab60c3f 1160 unsigned long flags;
4055fad3 1161 u64 tsc;
93f0822d 1162
4ab60c3f 1163 local_irq_save(flags);
93f0822d
DB
1164 rdmsrl(MSR_IA32_APERF, aperf);
1165 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1166 tsc = rdtsc();
4fec7ad5 1167 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1168 local_irq_restore(flags);
4fec7ad5 1169 return false;
8e601a9f 1170 }
4ab60c3f 1171 local_irq_restore(flags);
b69880f9 1172
c4ee841f 1173 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1174 cpu->sample.time = time;
d37e2b76
DB
1175 cpu->sample.aperf = aperf;
1176 cpu->sample.mperf = mperf;
4055fad3 1177 cpu->sample.tsc = tsc;
d37e2b76
DB
1178 cpu->sample.aperf -= cpu->prev_aperf;
1179 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1180 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1181
93f0822d
DB
1182 cpu->prev_aperf = aperf;
1183 cpu->prev_mperf = mperf;
4055fad3 1184 cpu->prev_tsc = tsc;
febce40f
RW
1185 /*
1186 * First time this function is invoked in a given cycle, all of the
1187 * previous sample data fields are equal to zero or stale and they must
1188 * be populated with meaningful numbers for things to work, so assume
1189 * that sample.time will always be reset before setting the utilization
1190 * update hook and make the caller skip the sample then.
1191 */
1192 return !!cpu->last_sample_time;
93f0822d
DB
1193}
1194
8fa520af
PL
1195static inline int32_t get_avg_frequency(struct cpudata *cpu)
1196{
a1c9787d
RW
1197 return mul_ext_fp(cpu->sample.core_avg_perf,
1198 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1199}
1200
bdcaa23f
PL
1201static inline int32_t get_avg_pstate(struct cpudata *cpu)
1202{
8edb0a6e
RW
1203 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1204 cpu->sample.core_avg_perf);
bdcaa23f
PL
1205}
1206
e70eed2b
PL
1207static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1208{
1209 struct sample *sample = &cpu->sample;
63d1d656
PL
1210 u64 cummulative_iowait, delta_iowait_us;
1211 u64 delta_iowait_mperf;
1212 u64 mperf, now;
e70eed2b
PL
1213 int32_t cpu_load;
1214
63d1d656
PL
1215 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1216
1217 /*
1218 * Convert iowait time into number of IO cycles spent at max_freq.
1219 * IO is considered as busy only for the cpu_load algorithm. For
1220 * performance this is not needed since we always try to reach the
1221 * maximum P-State, so we are already boosting the IOs.
1222 */
1223 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1224 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1225 cpu->pstate.max_pstate, MSEC_PER_SEC);
1226
1227 mperf = cpu->sample.mperf + delta_iowait_mperf;
1228 cpu->prev_cummulative_iowait = cummulative_iowait;
1229
e70eed2b
PL
1230 /*
1231 * The load can be estimated as the ratio of the mperf counter
1232 * running at a constant frequency during active periods
1233 * (C0) and the time stamp counter running at the same frequency
1234 * also during C-states.
1235 */
63d1d656 1236 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
e70eed2b
PL
1237 cpu->sample.busy_scaled = cpu_load;
1238
bdcaa23f 1239 return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
e70eed2b
PL
1240}
1241
157386b6 1242static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1243{
1aa7a6e2 1244 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1245 u64 duration_ns;
93f0822d 1246
e0d4c8f8 1247 /*
1aa7a6e2
RW
1248 * perf_scaled is the average performance during the last sampling
1249 * period scaled by the ratio of the maximum P-state to the P-state
1250 * requested last time (in percent). That measures the system's
1251 * response to the previous P-state selection.
e0d4c8f8 1252 */
22590efb
RW
1253 max_pstate = cpu->pstate.max_pstate_physical;
1254 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1255 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1256 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1257
e0d4c8f8 1258 /*
a4675fbc
RW
1259 * Since our utilization update callback will not run unless we are
1260 * in C0, check if the actual elapsed time is significantly greater (3x)
1261 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1262 * enough period of time to adjust our performance metric.
e0d4c8f8 1263 */
a4675fbc 1264 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1265 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1266 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1267 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1268 } else {
1269 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1270 if (sample_ratio < int_tofp(1))
1aa7a6e2 1271 perf_scaled = 0;
c4ee841f
DB
1272 }
1273
1aa7a6e2
RW
1274 cpu->sample.busy_scaled = perf_scaled;
1275 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1276}
1277
fdfdb2b1
RW
1278static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1279{
1280 int max_perf, min_perf;
1281
1282 update_turbo_state();
1283
1284 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1285 pstate = clamp_t(int, pstate, min_perf, max_perf);
1286 if (pstate == cpu->pstate.current_pstate)
1287 return;
1288
1289 intel_pstate_record_pstate(cpu, pstate);
1290 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1291}
1292
93f0822d
DB
1293static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1294{
157386b6 1295 int from, target_pstate;
4055fad3
DS
1296 struct sample *sample;
1297
1298 from = cpu->pstate.current_pstate;
93f0822d 1299
157386b6 1300 target_pstate = pstate_funcs.get_target_pstate(cpu);
93f0822d 1301
fdfdb2b1 1302 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1303
1304 sample = &cpu->sample;
a1c9787d 1305 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1306 fp_toint(sample->busy_scaled),
4055fad3
DS
1307 from,
1308 cpu->pstate.current_pstate,
1309 sample->mperf,
1310 sample->aperf,
1311 sample->tsc,
8fa520af 1312 get_avg_frequency(cpu));
93f0822d
DB
1313}
1314
a4675fbc
RW
1315static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1316 unsigned long util, unsigned long max)
93f0822d 1317{
a4675fbc
RW
1318 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1319 u64 delta_ns = time - cpu->sample.time;
b69880f9 1320
a4675fbc 1321 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1322 bool sample_taken = intel_pstate_sample(cpu, time);
1323
6d45b719 1324 if (sample_taken) {
a1c9787d 1325 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1326 if (!hwp_active)
1327 intel_pstate_adjust_busy_pstate(cpu);
1328 }
a4675fbc 1329 }
93f0822d
DB
1330}
1331
1332#define ICPU(model, policy) \
6cbd7ee1
DB
1333 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1334 (unsigned long)&policy }
93f0822d
DB
1335
1336static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
016c8150
DB
1337 ICPU(0x2a, core_params),
1338 ICPU(0x2d, core_params),
1421df63 1339 ICPU(0x37, silvermont_params),
016c8150
DB
1340 ICPU(0x3a, core_params),
1341 ICPU(0x3c, core_params),
c7e241df 1342 ICPU(0x3d, core_params),
016c8150
DB
1343 ICPU(0x3e, core_params),
1344 ICPU(0x3f, core_params),
1345 ICPU(0x45, core_params),
1346 ICPU(0x46, core_params),
43f8a966 1347 ICPU(0x47, core_params),
1421df63 1348 ICPU(0x4c, airmont_params),
7ab0256e 1349 ICPU(0x4e, core_params),
c7e241df 1350 ICPU(0x4f, core_params),
1c939123 1351 ICPU(0x5e, core_params),
c7e241df 1352 ICPU(0x56, core_params),
b34ef932 1353 ICPU(0x57, knl_params),
93f0822d
DB
1354 {}
1355};
1356MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1357
2f86dc4c
DB
1358static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1359 ICPU(0x56, core_params),
1360 {}
1361};
1362
93f0822d
DB
1363static int intel_pstate_init_cpu(unsigned int cpunum)
1364{
93f0822d
DB
1365 struct cpudata *cpu;
1366
c0348717
DB
1367 if (!all_cpu_data[cpunum])
1368 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1369 GFP_KERNEL);
93f0822d
DB
1370 if (!all_cpu_data[cpunum])
1371 return -ENOMEM;
1372
1373 cpu = all_cpu_data[cpunum];
1374
93f0822d 1375 cpu->cpu = cpunum;
ba88d433 1376
a4675fbc 1377 if (hwp_active) {
ba88d433 1378 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1379 pid_params.sample_rate_ms = 50;
1380 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1381 }
ba88d433 1382
179e8471 1383 intel_pstate_get_cpu_pstates(cpu);
016c8150 1384
93f0822d 1385 intel_pstate_busy_pid_reset(cpu);
93f0822d 1386
4836df17 1387 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1388
1389 return 0;
1390}
1391
1392static unsigned int intel_pstate_get(unsigned int cpu_num)
1393{
f96fd0c8 1394 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1395
f96fd0c8 1396 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1397}
1398
febce40f 1399static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1400{
febce40f
RW
1401 struct cpudata *cpu = all_cpu_data[cpu_num];
1402
5ab666e0
RW
1403 if (cpu->update_util_set)
1404 return;
1405
febce40f
RW
1406 /* Prevent intel_pstate_update_util() from using stale data. */
1407 cpu->sample.time = 0;
0bed612b
RW
1408 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1409 intel_pstate_update_util);
4578ee7e 1410 cpu->update_util_set = true;
bb6ab52f
RW
1411}
1412
1413static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1414{
4578ee7e
CY
1415 struct cpudata *cpu_data = all_cpu_data[cpu];
1416
1417 if (!cpu_data->update_util_set)
1418 return;
1419
0bed612b 1420 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1421 cpu_data->update_util_set = false;
bb6ab52f
RW
1422 synchronize_sched();
1423}
1424
30a39153
SP
1425static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1426{
1427 limits->no_turbo = 0;
1428 limits->turbo_disabled = 0;
1429 limits->max_perf_pct = 100;
1430 limits->max_perf = int_tofp(1);
1431 limits->min_perf_pct = 100;
1432 limits->min_perf = int_tofp(1);
1433 limits->max_policy_pct = 100;
1434 limits->max_sysfs_pct = 100;
1435 limits->min_policy_pct = 0;
1436 limits->min_sysfs_pct = 0;
1437}
1438
93f0822d
DB
1439static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1440{
3be9200d
SP
1441 struct cpudata *cpu;
1442
d3929b83
DB
1443 if (!policy->cpuinfo.max_freq)
1444 return -ENODEV;
1445
2c2c1af4
SP
1446 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1447 policy->cpuinfo.max_freq, policy->max);
1448
3be9200d 1449 cpu = all_cpu_data[0];
c749c64f
RW
1450 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1451 policy->max < policy->cpuinfo.max_freq &&
1452 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1453 pr_debug("policy->max > max non turbo frequency\n");
1454 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
1455 }
1456
30a39153 1457 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
51443fbf 1458 limits = &performance_limits;
30a39153 1459 if (policy->max >= policy->cpuinfo.max_freq) {
4836df17 1460 pr_debug("set performance\n");
30a39153
SP
1461 intel_pstate_set_performance_limits(limits);
1462 goto out;
1463 }
1464 } else {
4836df17 1465 pr_debug("set powersave\n");
30a39153 1466 limits = &powersave_limits;
93f0822d 1467 }
2f86dc4c 1468
51443fbf
PB
1469 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1470 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
8478f539
PB
1471 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1472 policy->cpuinfo.max_freq);
51443fbf 1473 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
43717aad
CY
1474
1475 /* Normalize user input to [min_policy_pct, max_policy_pct] */
51443fbf
PB
1476 limits->min_perf_pct = max(limits->min_policy_pct,
1477 limits->min_sysfs_pct);
1478 limits->min_perf_pct = min(limits->max_policy_pct,
1479 limits->min_perf_pct);
1480 limits->max_perf_pct = min(limits->max_policy_pct,
1481 limits->max_sysfs_pct);
1482 limits->max_perf_pct = max(limits->min_policy_pct,
1483 limits->max_perf_pct);
43717aad
CY
1484
1485 /* Make sure min_perf_pct <= max_perf_pct */
51443fbf 1486 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
43717aad 1487
22590efb
RW
1488 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1489 limits->max_perf = div_fp(limits->max_perf_pct, 100);
2c2c1af4 1490 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
93f0822d 1491
bb6ab52f
RW
1492 out:
1493 intel_pstate_set_update_util_hook(policy->cpu);
1494
ba41e1bc 1495 intel_pstate_hwp_set_policy(policy);
2f86dc4c 1496
93f0822d
DB
1497 return 0;
1498}
1499
1500static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1501{
be49e346 1502 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1503
285cb990 1504 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1505 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1506 return -EINVAL;
1507
1508 return 0;
1509}
1510
bb18008f 1511static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1512{
bb18008f
DB
1513 int cpu_num = policy->cpu;
1514 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1515
4836df17 1516 pr_debug("CPU %d exiting\n", cpu_num);
bb18008f 1517
bb6ab52f 1518 intel_pstate_clear_update_util_hook(cpu_num);
a4675fbc 1519
2f86dc4c
DB
1520 if (hwp_active)
1521 return;
1522
fdfdb2b1 1523 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1524}
1525
2760984f 1526static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1527{
93f0822d 1528 struct cpudata *cpu;
52e0a509 1529 int rc;
93f0822d
DB
1530
1531 rc = intel_pstate_init_cpu(policy->cpu);
1532 if (rc)
1533 return rc;
1534
1535 cpu = all_cpu_data[policy->cpu];
1536
51443fbf 1537 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1538 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1539 else
1540 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1541
b27580b0
DB
1542 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1543 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1544
1545 /* cpuinfo and default policy values */
b27580b0 1546 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e
SP
1547 update_turbo_state();
1548 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1549 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1550 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1551
9522a2ff 1552 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
1553 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1554 cpumask_set_cpu(policy->cpu, policy->cpus);
1555
1556 return 0;
1557}
1558
9522a2ff
SP
1559static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1560{
1561 intel_pstate_exit_perf_limits(policy);
1562
1563 return 0;
1564}
1565
93f0822d
DB
1566static struct cpufreq_driver intel_pstate_driver = {
1567 .flags = CPUFREQ_CONST_LOOPS,
1568 .verify = intel_pstate_verify_policy,
1569 .setpolicy = intel_pstate_set_policy,
ba41e1bc 1570 .resume = intel_pstate_hwp_set_policy,
93f0822d
DB
1571 .get = intel_pstate_get,
1572 .init = intel_pstate_cpu_init,
9522a2ff 1573 .exit = intel_pstate_cpu_exit,
bb18008f 1574 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1575 .name = "intel_pstate",
93f0822d
DB
1576};
1577
6be26498 1578static int __initdata no_load;
2f86dc4c 1579static int __initdata no_hwp;
d64c3b0b 1580static int __initdata hwp_only;
aa4ea34d 1581static unsigned int force_load;
6be26498 1582
b563b4e3
DB
1583static int intel_pstate_msrs_not_valid(void)
1584{
016c8150 1585 if (!pstate_funcs.get_max() ||
c410833a
SK
1586 !pstate_funcs.get_min() ||
1587 !pstate_funcs.get_turbo())
b563b4e3
DB
1588 return -ENODEV;
1589
b563b4e3
DB
1590 return 0;
1591}
016c8150 1592
e0a261a2 1593static void copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1594{
1595 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1596 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1597 pid_params.p_gain_pct = policy->p_gain_pct;
1598 pid_params.i_gain_pct = policy->i_gain_pct;
1599 pid_params.d_gain_pct = policy->d_gain_pct;
1600 pid_params.deadband = policy->deadband;
1601 pid_params.setpoint = policy->setpoint;
1602}
1603
e0a261a2 1604static void copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1605{
1606 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1607 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1608 pstate_funcs.get_min = funcs->get_min;
1609 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1610 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1611 pstate_funcs.get_val = funcs->get_val;
007bea09 1612 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1613 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1614
016c8150
DB
1615}
1616
9522a2ff 1617#ifdef CONFIG_ACPI
fbbcdc07
AH
1618
1619static bool intel_pstate_no_acpi_pss(void)
1620{
1621 int i;
1622
1623 for_each_possible_cpu(i) {
1624 acpi_status status;
1625 union acpi_object *pss;
1626 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1627 struct acpi_processor *pr = per_cpu(processors, i);
1628
1629 if (!pr)
1630 continue;
1631
1632 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1633 if (ACPI_FAILURE(status))
1634 continue;
1635
1636 pss = buffer.pointer;
1637 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1638 kfree(pss);
1639 return false;
1640 }
1641
1642 kfree(pss);
1643 }
1644
1645 return true;
1646}
1647
966916ea 1648static bool intel_pstate_has_acpi_ppc(void)
1649{
1650 int i;
1651
1652 for_each_possible_cpu(i) {
1653 struct acpi_processor *pr = per_cpu(processors, i);
1654
1655 if (!pr)
1656 continue;
1657 if (acpi_has_method(pr->handle, "_PPC"))
1658 return true;
1659 }
1660 return false;
1661}
1662
1663enum {
1664 PSS,
1665 PPC,
1666};
1667
fbbcdc07
AH
1668struct hw_vendor_info {
1669 u16 valid;
1670 char oem_id[ACPI_OEM_ID_SIZE];
1671 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1672 int oem_pwr_table;
fbbcdc07
AH
1673};
1674
1675/* Hardware vendor-specific info that has its own power management modes */
1676static struct hw_vendor_info vendor_info[] = {
966916ea 1677 {1, "HP ", "ProLiant", PSS},
1678 {1, "ORACLE", "X4-2 ", PPC},
1679 {1, "ORACLE", "X4-2L ", PPC},
1680 {1, "ORACLE", "X4-2B ", PPC},
1681 {1, "ORACLE", "X3-2 ", PPC},
1682 {1, "ORACLE", "X3-2L ", PPC},
1683 {1, "ORACLE", "X3-2B ", PPC},
1684 {1, "ORACLE", "X4470M2 ", PPC},
1685 {1, "ORACLE", "X4270M3 ", PPC},
1686 {1, "ORACLE", "X4270M2 ", PPC},
1687 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1688 {1, "ORACLE", "X4170 M3", PPC},
1689 {1, "ORACLE", "X4275 M3", PPC},
1690 {1, "ORACLE", "X6-2 ", PPC},
1691 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1692 {0, "", ""},
1693};
1694
1695static bool intel_pstate_platform_pwr_mgmt_exists(void)
1696{
1697 struct acpi_table_header hdr;
1698 struct hw_vendor_info *v_info;
2f86dc4c
DB
1699 const struct x86_cpu_id *id;
1700 u64 misc_pwr;
1701
1702 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1703 if (id) {
1704 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1705 if ( misc_pwr & (1 << 8))
1706 return true;
1707 }
fbbcdc07 1708
c410833a
SK
1709 if (acpi_disabled ||
1710 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1711 return false;
1712
1713 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1714 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1715 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1716 ACPI_OEM_TABLE_ID_SIZE))
1717 switch (v_info->oem_pwr_table) {
1718 case PSS:
1719 return intel_pstate_no_acpi_pss();
1720 case PPC:
aa4ea34d
EZ
1721 return intel_pstate_has_acpi_ppc() &&
1722 (!force_load);
966916ea 1723 }
fbbcdc07
AH
1724 }
1725
1726 return false;
1727}
1728#else /* CONFIG_ACPI not enabled */
1729static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1730static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1731#endif /* CONFIG_ACPI */
1732
7791e4aa
SP
1733static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1734 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1735 {}
1736};
1737
93f0822d
DB
1738static int __init intel_pstate_init(void)
1739{
907cc908 1740 int cpu, rc = 0;
93f0822d 1741 const struct x86_cpu_id *id;
64df1fdf 1742 struct cpu_defaults *cpu_def;
93f0822d 1743
6be26498
DB
1744 if (no_load)
1745 return -ENODEV;
1746
7791e4aa
SP
1747 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1748 copy_cpu_funcs(&core_params.funcs);
1749 hwp_active++;
1750 goto hwp_cpu_matched;
1751 }
1752
93f0822d
DB
1753 id = x86_match_cpu(intel_pstate_cpu_ids);
1754 if (!id)
1755 return -ENODEV;
1756
64df1fdf 1757 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1758
64df1fdf
BP
1759 copy_pid_params(&cpu_def->pid_policy);
1760 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1761
b563b4e3
DB
1762 if (intel_pstate_msrs_not_valid())
1763 return -ENODEV;
1764
7791e4aa
SP
1765hwp_cpu_matched:
1766 /*
1767 * The Intel pstate driver will be ignored if the platform
1768 * firmware has its own power management modes.
1769 */
1770 if (intel_pstate_platform_pwr_mgmt_exists())
1771 return -ENODEV;
1772
4836df17 1773 pr_info("Intel P-state driver initializing\n");
93f0822d 1774
b57ffac5 1775 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1776 if (!all_cpu_data)
1777 return -ENOMEM;
93f0822d 1778
d64c3b0b
KCA
1779 if (!hwp_active && hwp_only)
1780 goto out;
1781
93f0822d
DB
1782 rc = cpufreq_register_driver(&intel_pstate_driver);
1783 if (rc)
1784 goto out;
1785
1786 intel_pstate_debug_expose_params();
1787 intel_pstate_sysfs_expose_params();
b69880f9 1788
7791e4aa 1789 if (hwp_active)
4836df17 1790 pr_info("HWP enabled\n");
7791e4aa 1791
93f0822d
DB
1792 return rc;
1793out:
907cc908
DB
1794 get_online_cpus();
1795 for_each_online_cpu(cpu) {
1796 if (all_cpu_data[cpu]) {
bb6ab52f 1797 intel_pstate_clear_update_util_hook(cpu);
907cc908
DB
1798 kfree(all_cpu_data[cpu]);
1799 }
1800 }
1801
1802 put_online_cpus();
1803 vfree(all_cpu_data);
93f0822d
DB
1804 return -ENODEV;
1805}
1806device_initcall(intel_pstate_init);
1807
6be26498
DB
1808static int __init intel_pstate_setup(char *str)
1809{
1810 if (!str)
1811 return -EINVAL;
1812
1813 if (!strcmp(str, "disable"))
1814 no_load = 1;
539342f6 1815 if (!strcmp(str, "no_hwp")) {
4836df17 1816 pr_info("HWP disabled\n");
2f86dc4c 1817 no_hwp = 1;
539342f6 1818 }
aa4ea34d
EZ
1819 if (!strcmp(str, "force"))
1820 force_load = 1;
d64c3b0b
KCA
1821 if (!strcmp(str, "hwp_only"))
1822 hwp_only = 1;
9522a2ff
SP
1823
1824#ifdef CONFIG_ACPI
1825 if (!strcmp(str, "support_acpi_ppc"))
1826 acpi_ppc = true;
1827#endif
1828
6be26498
DB
1829 return 0;
1830}
1831early_param("intel_pstate", intel_pstate_setup);
1832
93f0822d
DB
1833MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1834MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1835MODULE_LICENSE("GPL");
This page took 0.375427 seconds and 5 git commands to generate.