Merge remote-tracking branch 'vfio/next'
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
938d21a2
PL
40#define ATOM_RATIOS 0x66a
41#define ATOM_VIDS 0x66b
42#define ATOM_TURBO_RATIOS 0x66c
43#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 44
9522a2ff
SP
45#ifdef CONFIG_ACPI
46#include <acpi/processor.h>
47#endif
48
f0fe3cd7 49#define FRAC_BITS 8
93f0822d
DB
50#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 52
a1c9787d
RW
53#define EXT_BITS 6
54#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
93f0822d
DB
56static inline int32_t mul_fp(int32_t x, int32_t y)
57{
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59}
60
7180dddf 61static inline int32_t div_fp(s64 x, s64 y)
93f0822d 62{
7180dddf 63 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
64}
65
d022a65e
DB
66static inline int ceiling_fp(int32_t x)
67{
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75}
76
a1c9787d
RW
77static inline u64 mul_ext_fp(u64 x, u64 y)
78{
79 return (x * y) >> EXT_FRAC_BITS;
80}
81
82static inline u64 div_ext_fp(u64 x, u64 y)
83{
84 return div64_u64(x << EXT_FRAC_BITS, y);
85}
86
13ad7701
SP
87/**
88 * struct sample - Store performance sample
a1c9787d 89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
90 * performance during last sample period
91 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 92 * P state. This can be different than core_avg_perf
13ad7701
SP
93 * to account for cpu idle period
94 * @aperf: Difference of actual performance frequency clock count
95 * read from APERF MSR between last and current sample
96 * @mperf: Difference of maximum performance frequency clock count
97 * read from MPERF MSR between last and current sample
98 * @tsc: Difference of time stamp counter between last and
99 * current sample
13ad7701
SP
100 * @time: Current time from scheduler
101 *
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
104 */
93f0822d 105struct sample {
a1c9787d 106 int32_t core_avg_perf;
157386b6 107 int32_t busy_scaled;
93f0822d
DB
108 u64 aperf;
109 u64 mperf;
4055fad3 110 u64 tsc;
a4675fbc 111 u64 time;
93f0822d
DB
112};
113
13ad7701
SP
114/**
115 * struct pstate_data - Store P state data
116 * @current_pstate: Current requested P state
117 * @min_pstate: Min P state possible for this platform
118 * @max_pstate: Max P state possible for this platform
119 * @max_pstate_physical:This is physical Max P state for a processor
120 * This can be higher than the max_pstate which can
121 * be limited by platform thermal design power limits
122 * @scaling: Scaling factor to convert frequency to cpufreq
123 * frequency units
124 * @turbo_pstate: Max Turbo P state possible for this platform
125 *
126 * Stores the per cpu model P state limits and current P state.
127 */
93f0822d
DB
128struct pstate_data {
129 int current_pstate;
130 int min_pstate;
131 int max_pstate;
3bcc6fa9 132 int max_pstate_physical;
b27580b0 133 int scaling;
93f0822d
DB
134 int turbo_pstate;
135};
136
13ad7701
SP
137/**
138 * struct vid_data - Stores voltage information data
139 * @min: VID data for this platform corresponding to
140 * the lowest P state
141 * @max: VID data corresponding to the highest P State.
142 * @turbo: VID data for turbo P state
143 * @ratio: Ratio of (vid max - vid min) /
144 * (max P state - Min P State)
145 *
146 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147 * This data is used in Atom platforms, where in addition to target P state,
148 * the voltage data needs to be specified to select next P State.
149 */
007bea09 150struct vid_data {
21855ff5
DB
151 int min;
152 int max;
153 int turbo;
007bea09
DB
154 int32_t ratio;
155};
156
13ad7701
SP
157/**
158 * struct _pid - Stores PID data
159 * @setpoint: Target set point for busyness or performance
160 * @integral: Storage for accumulated error values
161 * @p_gain: PID proportional gain
162 * @i_gain: PID integral gain
163 * @d_gain: PID derivative gain
164 * @deadband: PID deadband
165 * @last_err: Last error storage for integral part of PID calculation
166 *
167 * Stores PID coefficients and last error for PID controller.
168 */
93f0822d
DB
169struct _pid {
170 int setpoint;
171 int32_t integral;
172 int32_t p_gain;
173 int32_t i_gain;
174 int32_t d_gain;
175 int deadband;
d253d2a5 176 int32_t last_err;
93f0822d
DB
177};
178
13ad7701
SP
179/**
180 * struct cpudata - Per CPU instance data storage
181 * @cpu: CPU number for this instance data
182 * @update_util: CPUFreq utility callback information
4578ee7e 183 * @update_util_set: CPUFreq utility callback is set
13ad7701
SP
184 * @pstate: Stores P state limits for this CPU
185 * @vid: Stores VID limits for this CPU
186 * @pid: Stores PID parameters for this CPU
187 * @last_sample_time: Last Sample time
188 * @prev_aperf: Last APERF value read from APERF MSR
189 * @prev_mperf: Last MPERF value read from MPERF MSR
190 * @prev_tsc: Last timestamp counter (TSC) value
191 * @prev_cummulative_iowait: IO Wait time difference from last and
192 * current sample
193 * @sample: Storage for storing last Sample data
9522a2ff
SP
194 * @acpi_perf_data: Stores ACPI perf information read from _PSS
195 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
13ad7701
SP
196 *
197 * This structure stores per CPU instance data for all CPUs.
198 */
93f0822d
DB
199struct cpudata {
200 int cpu;
201
a4675fbc 202 struct update_util_data update_util;
4578ee7e 203 bool update_util_set;
93f0822d 204
93f0822d 205 struct pstate_data pstate;
007bea09 206 struct vid_data vid;
93f0822d 207 struct _pid pid;
93f0822d 208
a4675fbc 209 u64 last_sample_time;
93f0822d
DB
210 u64 prev_aperf;
211 u64 prev_mperf;
4055fad3 212 u64 prev_tsc;
63d1d656 213 u64 prev_cummulative_iowait;
d37e2b76 214 struct sample sample;
9522a2ff
SP
215#ifdef CONFIG_ACPI
216 struct acpi_processor_performance acpi_perf_data;
217 bool valid_pss_table;
218#endif
93f0822d
DB
219};
220
221static struct cpudata **all_cpu_data;
13ad7701
SP
222
223/**
224 * struct pid_adjust_policy - Stores static PID configuration data
225 * @sample_rate_ms: PID calculation sample rate in ms
226 * @sample_rate_ns: Sample rate calculation in ns
227 * @deadband: PID deadband
228 * @setpoint: PID Setpoint
229 * @p_gain_pct: PID proportional gain
230 * @i_gain_pct: PID integral gain
231 * @d_gain_pct: PID derivative gain
232 *
233 * Stores per CPU model static PID configuration data.
234 */
93f0822d
DB
235struct pstate_adjust_policy {
236 int sample_rate_ms;
a4675fbc 237 s64 sample_rate_ns;
93f0822d
DB
238 int deadband;
239 int setpoint;
240 int p_gain_pct;
241 int d_gain_pct;
242 int i_gain_pct;
243};
244
13ad7701
SP
245/**
246 * struct pstate_funcs - Per CPU model specific callbacks
247 * @get_max: Callback to get maximum non turbo effective P state
248 * @get_max_physical: Callback to get maximum non turbo physical P state
249 * @get_min: Callback to get minimum P state
250 * @get_turbo: Callback to get turbo P state
251 * @get_scaling: Callback to get frequency scaling factor
252 * @get_val: Callback to convert P state to actual MSR write value
253 * @get_vid: Callback to get VID data for Atom platforms
254 * @get_target_pstate: Callback to a function to calculate next P state to use
255 *
256 * Core and Atom CPU models have different way to get P State limits. This
257 * structure is used to store those callbacks.
258 */
016c8150
DB
259struct pstate_funcs {
260 int (*get_max)(void);
3bcc6fa9 261 int (*get_max_physical)(void);
016c8150
DB
262 int (*get_min)(void);
263 int (*get_turbo)(void);
b27580b0 264 int (*get_scaling)(void);
fdfdb2b1 265 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 266 void (*get_vid)(struct cpudata *);
157386b6 267 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
268};
269
13ad7701
SP
270/**
271 * struct cpu_defaults- Per CPU model default config data
272 * @pid_policy: PID config data
273 * @funcs: Callback function data
274 */
016c8150
DB
275struct cpu_defaults {
276 struct pstate_adjust_policy pid_policy;
277 struct pstate_funcs funcs;
93f0822d
DB
278};
279
157386b6 280static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 281static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 282
4a7cb7a9
JZ
283static struct pstate_adjust_policy pid_params __read_mostly;
284static struct pstate_funcs pstate_funcs __read_mostly;
285static int hwp_active __read_mostly;
016c8150 286
9522a2ff
SP
287#ifdef CONFIG_ACPI
288static bool acpi_ppc;
289#endif
13ad7701
SP
290
291/**
292 * struct perf_limits - Store user and policy limits
293 * @no_turbo: User requested turbo state from intel_pstate sysfs
294 * @turbo_disabled: Platform turbo status either from msr
295 * MSR_IA32_MISC_ENABLE or when maximum available pstate
296 * matches the maximum turbo pstate
297 * @max_perf_pct: Effective maximum performance limit in percentage, this
298 * is minimum of either limits enforced by cpufreq policy
299 * or limits from user set limits via intel_pstate sysfs
300 * @min_perf_pct: Effective minimum performance limit in percentage, this
301 * is maximum of either limits enforced by cpufreq policy
302 * or limits from user set limits via intel_pstate sysfs
303 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
304 * This value is used to limit max pstate
305 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
306 * This value is used to limit min pstate
307 * @max_policy_pct: The maximum performance in percentage enforced by
308 * cpufreq setpolicy interface
309 * @max_sysfs_pct: The maximum performance in percentage enforced by
310 * intel pstate sysfs interface
311 * @min_policy_pct: The minimum performance in percentage enforced by
312 * cpufreq setpolicy interface
313 * @min_sysfs_pct: The minimum performance in percentage enforced by
314 * intel pstate sysfs interface
315 *
316 * Storage for user and policy defined limits.
317 */
93f0822d
DB
318struct perf_limits {
319 int no_turbo;
dd5fbf70 320 int turbo_disabled;
93f0822d
DB
321 int max_perf_pct;
322 int min_perf_pct;
323 int32_t max_perf;
324 int32_t min_perf;
d8f469e9
DB
325 int max_policy_pct;
326 int max_sysfs_pct;
a0475992
KCA
327 int min_policy_pct;
328 int min_sysfs_pct;
93f0822d
DB
329};
330
51443fbf
PB
331static struct perf_limits performance_limits = {
332 .no_turbo = 0,
333 .turbo_disabled = 0,
334 .max_perf_pct = 100,
335 .max_perf = int_tofp(1),
336 .min_perf_pct = 100,
337 .min_perf = int_tofp(1),
338 .max_policy_pct = 100,
339 .max_sysfs_pct = 100,
340 .min_policy_pct = 0,
341 .min_sysfs_pct = 0,
342};
343
344static struct perf_limits powersave_limits = {
93f0822d 345 .no_turbo = 0,
4521e1a0 346 .turbo_disabled = 0,
93f0822d
DB
347 .max_perf_pct = 100,
348 .max_perf = int_tofp(1),
349 .min_perf_pct = 0,
350 .min_perf = 0,
d8f469e9
DB
351 .max_policy_pct = 100,
352 .max_sysfs_pct = 100,
a0475992
KCA
353 .min_policy_pct = 0,
354 .min_sysfs_pct = 0,
93f0822d
DB
355};
356
51443fbf
PB
357#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
358static struct perf_limits *limits = &performance_limits;
359#else
360static struct perf_limits *limits = &powersave_limits;
361#endif
362
9522a2ff 363#ifdef CONFIG_ACPI
2b3ec765
SP
364
365static bool intel_pstate_get_ppc_enable_status(void)
366{
367 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
368 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
369 return true;
370
371 return acpi_ppc;
372}
373
9522a2ff
SP
374static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
375{
376 struct cpudata *cpu;
9522a2ff
SP
377 int ret;
378 int i;
379
e59a8f7f
SP
380 if (hwp_active)
381 return;
382
2b3ec765 383 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
384 return;
385
386 cpu = all_cpu_data[policy->cpu];
387
388 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
389 policy->cpu);
390 if (ret)
391 return;
392
393 /*
394 * Check if the control value in _PSS is for PERF_CTL MSR, which should
395 * guarantee that the states returned by it map to the states in our
396 * list directly.
397 */
398 if (cpu->acpi_perf_data.control_register.space_id !=
399 ACPI_ADR_SPACE_FIXED_HARDWARE)
400 goto err;
401
402 /*
403 * If there is only one entry _PSS, simply ignore _PSS and continue as
404 * usual without taking _PSS into account
405 */
406 if (cpu->acpi_perf_data.state_count < 2)
407 goto err;
408
409 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
410 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
411 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
412 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
413 (u32) cpu->acpi_perf_data.states[i].core_frequency,
414 (u32) cpu->acpi_perf_data.states[i].power,
415 (u32) cpu->acpi_perf_data.states[i].control);
416 }
417
418 /*
419 * The _PSS table doesn't contain whole turbo frequency range.
420 * This just contains +1 MHZ above the max non turbo frequency,
421 * with control value corresponding to max turbo ratio. But
422 * when cpufreq set policy is called, it will call with this
423 * max frequency, which will cause a reduced performance as
424 * this driver uses real max turbo frequency as the max
425 * frequency. So correct this frequency in _PSS table to
b00345d1 426 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
427 * Also need to convert to MHz as _PSS freq is in MHz.
428 */
b00345d1 429 if (!limits->turbo_disabled)
9522a2ff
SP
430 cpu->acpi_perf_data.states[0].core_frequency =
431 policy->cpuinfo.max_freq / 1000;
432 cpu->valid_pss_table = true;
6cacd115 433 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
434
435 return;
436
437 err:
438 cpu->valid_pss_table = false;
439 acpi_processor_unregister_performance(policy->cpu);
440}
441
442static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
443{
444 struct cpudata *cpu;
445
446 cpu = all_cpu_data[policy->cpu];
447 if (!cpu->valid_pss_table)
448 return;
449
450 acpi_processor_unregister_performance(policy->cpu);
451}
452
453#else
454static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
455{
456}
457
458static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
459{
460}
461#endif
462
93f0822d 463static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 464 int deadband, int integral) {
b54a0dfd
PL
465 pid->setpoint = int_tofp(setpoint);
466 pid->deadband = int_tofp(deadband);
93f0822d 467 pid->integral = int_tofp(integral);
d98d099b 468 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
469}
470
471static inline void pid_p_gain_set(struct _pid *pid, int percent)
472{
22590efb 473 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
474}
475
476static inline void pid_i_gain_set(struct _pid *pid, int percent)
477{
22590efb 478 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
479}
480
481static inline void pid_d_gain_set(struct _pid *pid, int percent)
482{
22590efb 483 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
484}
485
d253d2a5 486static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 487{
d253d2a5 488 signed int result;
93f0822d
DB
489 int32_t pterm, dterm, fp_error;
490 int32_t integral_limit;
491
b54a0dfd 492 fp_error = pid->setpoint - busy;
93f0822d 493
b54a0dfd 494 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
495 return 0;
496
497 pterm = mul_fp(pid->p_gain, fp_error);
498
499 pid->integral += fp_error;
500
e0d4c8f8
KCA
501 /*
502 * We limit the integral here so that it will never
503 * get higher than 30. This prevents it from becoming
504 * too large an input over long periods of time and allows
505 * it to get factored out sooner.
506 *
507 * The value of 30 was chosen through experimentation.
508 */
93f0822d
DB
509 integral_limit = int_tofp(30);
510 if (pid->integral > integral_limit)
511 pid->integral = integral_limit;
512 if (pid->integral < -integral_limit)
513 pid->integral = -integral_limit;
514
d253d2a5
BS
515 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
516 pid->last_err = fp_error;
93f0822d
DB
517
518 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 519 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
520 return (signed int)fp_toint(result);
521}
522
523static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
524{
016c8150
DB
525 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
526 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
527 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 528
2d8d1f18 529 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
530}
531
93f0822d
DB
532static inline void intel_pstate_reset_all_pid(void)
533{
534 unsigned int cpu;
845c1cbe 535
93f0822d
DB
536 for_each_online_cpu(cpu) {
537 if (all_cpu_data[cpu])
538 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
539 }
540}
541
4521e1a0
GM
542static inline void update_turbo_state(void)
543{
544 u64 misc_en;
545 struct cpudata *cpu;
546
547 cpu = all_cpu_data[0];
548 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 549 limits->turbo_disabled =
4521e1a0
GM
550 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
551 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
552}
553
41cfd64c 554static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 555{
74da56ce
KCA
556 int min, hw_min, max, hw_max, cpu, range, adj_range;
557 u64 value, cap;
558
559 rdmsrl(MSR_HWP_CAPABILITIES, cap);
560 hw_min = HWP_LOWEST_PERF(cap);
561 hw_max = HWP_HIGHEST_PERF(cap);
562 range = hw_max - hw_min;
2f86dc4c 563
41cfd64c 564 for_each_cpu(cpu, cpumask) {
2f86dc4c 565 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
51443fbf 566 adj_range = limits->min_perf_pct * range / 100;
74da56ce 567 min = hw_min + adj_range;
2f86dc4c
DB
568 value &= ~HWP_MIN_PERF(~0L);
569 value |= HWP_MIN_PERF(min);
570
51443fbf 571 adj_range = limits->max_perf_pct * range / 100;
74da56ce 572 max = hw_min + adj_range;
51443fbf 573 if (limits->no_turbo) {
74da56ce
KCA
574 hw_max = HWP_GUARANTEED_PERF(cap);
575 if (hw_max < max)
576 max = hw_max;
2f86dc4c
DB
577 }
578
579 value &= ~HWP_MAX_PERF(~0L);
580 value |= HWP_MAX_PERF(max);
581 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
582 }
41cfd64c 583}
2f86dc4c 584
ba41e1bc
RW
585static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
586{
587 if (hwp_active)
588 intel_pstate_hwp_set(policy->cpus);
589
590 return 0;
591}
592
41cfd64c
VK
593static void intel_pstate_hwp_set_online_cpus(void)
594{
595 get_online_cpus();
596 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
597 put_online_cpus();
598}
599
93f0822d
DB
600/************************** debugfs begin ************************/
601static int pid_param_set(void *data, u64 val)
602{
603 *(u32 *)data = val;
604 intel_pstate_reset_all_pid();
605 return 0;
606}
845c1cbe 607
93f0822d
DB
608static int pid_param_get(void *data, u64 *val)
609{
610 *val = *(u32 *)data;
611 return 0;
612}
2d8d1f18 613DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
614
615struct pid_param {
616 char *name;
617 void *value;
618};
619
620static struct pid_param pid_files[] = {
016c8150
DB
621 {"sample_rate_ms", &pid_params.sample_rate_ms},
622 {"d_gain_pct", &pid_params.d_gain_pct},
623 {"i_gain_pct", &pid_params.i_gain_pct},
624 {"deadband", &pid_params.deadband},
625 {"setpoint", &pid_params.setpoint},
626 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
627 {NULL, NULL}
628};
629
317dd50e 630static void __init intel_pstate_debug_expose_params(void)
93f0822d 631{
317dd50e 632 struct dentry *debugfs_parent;
93f0822d
DB
633 int i = 0;
634
2f86dc4c
DB
635 if (hwp_active)
636 return;
93f0822d
DB
637 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
638 if (IS_ERR_OR_NULL(debugfs_parent))
639 return;
640 while (pid_files[i].name) {
641 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
642 debugfs_parent, pid_files[i].value,
643 &fops_pid_param);
93f0822d
DB
644 i++;
645 }
646}
647
648/************************** debugfs end ************************/
649
650/************************** sysfs begin ************************/
651#define show_one(file_name, object) \
652 static ssize_t show_##file_name \
653 (struct kobject *kobj, struct attribute *attr, char *buf) \
654 { \
51443fbf 655 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
656 }
657
d01b1f48
KCA
658static ssize_t show_turbo_pct(struct kobject *kobj,
659 struct attribute *attr, char *buf)
660{
661 struct cpudata *cpu;
662 int total, no_turbo, turbo_pct;
663 uint32_t turbo_fp;
664
665 cpu = all_cpu_data[0];
666
667 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
668 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 669 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
670 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
671 return sprintf(buf, "%u\n", turbo_pct);
672}
673
0522424e
KCA
674static ssize_t show_num_pstates(struct kobject *kobj,
675 struct attribute *attr, char *buf)
676{
677 struct cpudata *cpu;
678 int total;
679
680 cpu = all_cpu_data[0];
681 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
682 return sprintf(buf, "%u\n", total);
683}
684
4521e1a0
GM
685static ssize_t show_no_turbo(struct kobject *kobj,
686 struct attribute *attr, char *buf)
687{
688 ssize_t ret;
689
690 update_turbo_state();
51443fbf
PB
691 if (limits->turbo_disabled)
692 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 693 else
51443fbf 694 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
695
696 return ret;
697}
698
93f0822d 699static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 700 const char *buf, size_t count)
93f0822d
DB
701{
702 unsigned int input;
703 int ret;
845c1cbe 704
93f0822d
DB
705 ret = sscanf(buf, "%u", &input);
706 if (ret != 1)
707 return -EINVAL;
4521e1a0
GM
708
709 update_turbo_state();
51443fbf 710 if (limits->turbo_disabled) {
4836df17 711 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 712 return -EPERM;
dd5fbf70 713 }
2f86dc4c 714
51443fbf 715 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 716
2f86dc4c 717 if (hwp_active)
41cfd64c 718 intel_pstate_hwp_set_online_cpus();
2f86dc4c 719
93f0822d
DB
720 return count;
721}
722
723static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 724 const char *buf, size_t count)
93f0822d
DB
725{
726 unsigned int input;
727 int ret;
845c1cbe 728
93f0822d
DB
729 ret = sscanf(buf, "%u", &input);
730 if (ret != 1)
731 return -EINVAL;
732
51443fbf
PB
733 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
734 limits->max_perf_pct = min(limits->max_policy_pct,
735 limits->max_sysfs_pct);
736 limits->max_perf_pct = max(limits->min_policy_pct,
737 limits->max_perf_pct);
738 limits->max_perf_pct = max(limits->min_perf_pct,
739 limits->max_perf_pct);
22590efb 740 limits->max_perf = div_fp(limits->max_perf_pct, 100);
845c1cbe 741
2f86dc4c 742 if (hwp_active)
41cfd64c 743 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
744 return count;
745}
746
747static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 748 const char *buf, size_t count)
93f0822d
DB
749{
750 unsigned int input;
751 int ret;
845c1cbe 752
93f0822d
DB
753 ret = sscanf(buf, "%u", &input);
754 if (ret != 1)
755 return -EINVAL;
a0475992 756
51443fbf
PB
757 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
758 limits->min_perf_pct = max(limits->min_policy_pct,
759 limits->min_sysfs_pct);
760 limits->min_perf_pct = min(limits->max_policy_pct,
761 limits->min_perf_pct);
762 limits->min_perf_pct = min(limits->max_perf_pct,
763 limits->min_perf_pct);
22590efb 764 limits->min_perf = div_fp(limits->min_perf_pct, 100);
93f0822d 765
2f86dc4c 766 if (hwp_active)
41cfd64c 767 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
768 return count;
769}
770
93f0822d
DB
771show_one(max_perf_pct, max_perf_pct);
772show_one(min_perf_pct, min_perf_pct);
773
774define_one_global_rw(no_turbo);
775define_one_global_rw(max_perf_pct);
776define_one_global_rw(min_perf_pct);
d01b1f48 777define_one_global_ro(turbo_pct);
0522424e 778define_one_global_ro(num_pstates);
93f0822d
DB
779
780static struct attribute *intel_pstate_attributes[] = {
781 &no_turbo.attr,
782 &max_perf_pct.attr,
783 &min_perf_pct.attr,
d01b1f48 784 &turbo_pct.attr,
0522424e 785 &num_pstates.attr,
93f0822d
DB
786 NULL
787};
788
789static struct attribute_group intel_pstate_attr_group = {
790 .attrs = intel_pstate_attributes,
791};
93f0822d 792
317dd50e 793static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 794{
317dd50e 795 struct kobject *intel_pstate_kobject;
93f0822d
DB
796 int rc;
797
798 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
799 &cpu_subsys.dev_root->kobj);
800 BUG_ON(!intel_pstate_kobject);
2d8d1f18 801 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
802 BUG_ON(rc);
803}
93f0822d 804/************************** sysfs end ************************/
2f86dc4c 805
ba88d433 806static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 807{
f05c9665 808 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
809 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
810 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 811
ba88d433 812 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
813}
814
938d21a2 815static int atom_get_min_pstate(void)
19e77c28
DB
816{
817 u64 value;
845c1cbe 818
938d21a2 819 rdmsrl(ATOM_RATIOS, value);
c16ed060 820 return (value >> 8) & 0x7F;
19e77c28
DB
821}
822
938d21a2 823static int atom_get_max_pstate(void)
19e77c28
DB
824{
825 u64 value;
845c1cbe 826
938d21a2 827 rdmsrl(ATOM_RATIOS, value);
c16ed060 828 return (value >> 16) & 0x7F;
19e77c28 829}
93f0822d 830
938d21a2 831static int atom_get_turbo_pstate(void)
61d8d2ab
DB
832{
833 u64 value;
845c1cbe 834
938d21a2 835 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 836 return value & 0x7F;
61d8d2ab
DB
837}
838
fdfdb2b1 839static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
840{
841 u64 val;
842 int32_t vid_fp;
843 u32 vid;
844
144c8e17 845 val = (u64)pstate << 8;
51443fbf 846 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
847 val |= (u64)1 << 32;
848
849 vid_fp = cpudata->vid.min + mul_fp(
850 int_tofp(pstate - cpudata->pstate.min_pstate),
851 cpudata->vid.ratio);
852
853 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 854 vid = ceiling_fp(vid_fp);
007bea09 855
21855ff5
DB
856 if (pstate > cpudata->pstate.max_pstate)
857 vid = cpudata->vid.turbo;
858
fdfdb2b1 859 return val | vid;
007bea09
DB
860}
861
1421df63 862static int silvermont_get_scaling(void)
b27580b0
DB
863{
864 u64 value;
865 int i;
1421df63
PL
866 /* Defined in Table 35-6 from SDM (Sept 2015) */
867 static int silvermont_freq_table[] = {
868 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
869
870 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
871 i = value & 0x7;
872 WARN_ON(i > 4);
b27580b0 873
1421df63
PL
874 return silvermont_freq_table[i];
875}
b27580b0 876
1421df63
PL
877static int airmont_get_scaling(void)
878{
879 u64 value;
880 int i;
881 /* Defined in Table 35-10 from SDM (Sept 2015) */
882 static int airmont_freq_table[] = {
883 83300, 100000, 133300, 116700, 80000,
884 93300, 90000, 88900, 87500};
885
886 rdmsrl(MSR_FSB_FREQ, value);
887 i = value & 0xF;
888 WARN_ON(i > 8);
889
890 return airmont_freq_table[i];
b27580b0
DB
891}
892
938d21a2 893static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
894{
895 u64 value;
896
938d21a2 897 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
898 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
899 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
900 cpudata->vid.ratio = div_fp(
901 cpudata->vid.max - cpudata->vid.min,
902 int_tofp(cpudata->pstate.max_pstate -
903 cpudata->pstate.min_pstate));
21855ff5 904
938d21a2 905 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 906 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
907}
908
016c8150 909static int core_get_min_pstate(void)
93f0822d
DB
910{
911 u64 value;
845c1cbe 912
05e99c8c 913 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
914 return (value >> 40) & 0xFF;
915}
916
3bcc6fa9 917static int core_get_max_pstate_physical(void)
93f0822d
DB
918{
919 u64 value;
845c1cbe 920
05e99c8c 921 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
922 return (value >> 8) & 0xFF;
923}
924
016c8150 925static int core_get_max_pstate(void)
93f0822d 926{
6a35fc2d
SP
927 u64 tar;
928 u64 plat_info;
929 int max_pstate;
930 int err;
931
932 rdmsrl(MSR_PLATFORM_INFO, plat_info);
933 max_pstate = (plat_info >> 8) & 0xFF;
934
935 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
936 if (!err) {
937 /* Do some sanity checking for safety */
938 if (plat_info & 0x600000000) {
939 u64 tdp_ctrl;
940 u64 tdp_ratio;
941 int tdp_msr;
942
943 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
944 if (err)
945 goto skip_tar;
946
5fc8f707 947 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
6a35fc2d
SP
948 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
949 if (err)
950 goto skip_tar;
951
1becf035
SP
952 /* For level 1 and 2, bits[23:16] contain the ratio */
953 if (tdp_ctrl)
954 tdp_ratio >>= 16;
955
956 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
6a35fc2d
SP
957 if (tdp_ratio - 1 == tar) {
958 max_pstate = tar;
959 pr_debug("max_pstate=TAC %x\n", max_pstate);
960 } else {
961 goto skip_tar;
962 }
963 }
964 }
845c1cbe 965
6a35fc2d
SP
966skip_tar:
967 return max_pstate;
93f0822d
DB
968}
969
016c8150 970static int core_get_turbo_pstate(void)
93f0822d
DB
971{
972 u64 value;
973 int nont, ret;
845c1cbe 974
100cf6f2 975 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 976 nont = core_get_max_pstate();
285cb990 977 ret = (value) & 255;
93f0822d
DB
978 if (ret <= nont)
979 ret = nont;
980 return ret;
981}
982
b27580b0
DB
983static inline int core_get_scaling(void)
984{
985 return 100000;
986}
987
fdfdb2b1 988static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
989{
990 u64 val;
991
144c8e17 992 val = (u64)pstate << 8;
51443fbf 993 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
994 val |= (u64)1 << 32;
995
fdfdb2b1 996 return val;
016c8150
DB
997}
998
b34ef932
DC
999static int knl_get_turbo_pstate(void)
1000{
1001 u64 value;
1002 int nont, ret;
1003
100cf6f2 1004 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1005 nont = core_get_max_pstate();
1006 ret = (((value) >> 8) & 0xFF);
1007 if (ret <= nont)
1008 ret = nont;
1009 return ret;
1010}
1011
016c8150
DB
1012static struct cpu_defaults core_params = {
1013 .pid_policy = {
1014 .sample_rate_ms = 10,
1015 .deadband = 0,
1016 .setpoint = 97,
1017 .p_gain_pct = 20,
1018 .d_gain_pct = 0,
1019 .i_gain_pct = 0,
1020 },
1021 .funcs = {
1022 .get_max = core_get_max_pstate,
3bcc6fa9 1023 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1024 .get_min = core_get_min_pstate,
1025 .get_turbo = core_get_turbo_pstate,
b27580b0 1026 .get_scaling = core_get_scaling,
fdfdb2b1 1027 .get_val = core_get_val,
157386b6 1028 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1029 },
1030};
1031
1421df63
PL
1032static struct cpu_defaults silvermont_params = {
1033 .pid_policy = {
1034 .sample_rate_ms = 10,
1035 .deadband = 0,
1036 .setpoint = 60,
1037 .p_gain_pct = 14,
1038 .d_gain_pct = 0,
1039 .i_gain_pct = 4,
1040 },
1041 .funcs = {
1042 .get_max = atom_get_max_pstate,
1043 .get_max_physical = atom_get_max_pstate,
1044 .get_min = atom_get_min_pstate,
1045 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1046 .get_val = atom_get_val,
1421df63
PL
1047 .get_scaling = silvermont_get_scaling,
1048 .get_vid = atom_get_vid,
e70eed2b 1049 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1050 },
1051};
1052
1053static struct cpu_defaults airmont_params = {
19e77c28
DB
1054 .pid_policy = {
1055 .sample_rate_ms = 10,
1056 .deadband = 0,
6a82ba6d 1057 .setpoint = 60,
19e77c28
DB
1058 .p_gain_pct = 14,
1059 .d_gain_pct = 0,
1060 .i_gain_pct = 4,
1061 },
1062 .funcs = {
938d21a2
PL
1063 .get_max = atom_get_max_pstate,
1064 .get_max_physical = atom_get_max_pstate,
1065 .get_min = atom_get_min_pstate,
1066 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1067 .get_val = atom_get_val,
1421df63 1068 .get_scaling = airmont_get_scaling,
938d21a2 1069 .get_vid = atom_get_vid,
e70eed2b 1070 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1071 },
1072};
1073
b34ef932
DC
1074static struct cpu_defaults knl_params = {
1075 .pid_policy = {
1076 .sample_rate_ms = 10,
1077 .deadband = 0,
1078 .setpoint = 97,
1079 .p_gain_pct = 20,
1080 .d_gain_pct = 0,
1081 .i_gain_pct = 0,
1082 },
1083 .funcs = {
1084 .get_max = core_get_max_pstate,
3bcc6fa9 1085 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1086 .get_min = core_get_min_pstate,
1087 .get_turbo = knl_get_turbo_pstate,
69cefc27 1088 .get_scaling = core_get_scaling,
fdfdb2b1 1089 .get_val = core_get_val,
157386b6 1090 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1091 },
1092};
1093
41bad47f
SP
1094static struct cpu_defaults bxt_params = {
1095 .pid_policy = {
1096 .sample_rate_ms = 10,
1097 .deadband = 0,
1098 .setpoint = 60,
1099 .p_gain_pct = 14,
1100 .d_gain_pct = 0,
1101 .i_gain_pct = 4,
1102 },
1103 .funcs = {
1104 .get_max = core_get_max_pstate,
1105 .get_max_physical = core_get_max_pstate_physical,
1106 .get_min = core_get_min_pstate,
1107 .get_turbo = core_get_turbo_pstate,
1108 .get_scaling = core_get_scaling,
1109 .get_val = core_get_val,
1110 .get_target_pstate = get_target_pstate_use_cpu_load,
1111 },
1112};
1113
93f0822d
DB
1114static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1115{
1116 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1117 int max_perf_adj;
93f0822d 1118 int min_perf;
845c1cbe 1119
51443fbf 1120 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1121 max_perf = cpu->pstate.max_pstate;
1122
e0d4c8f8
KCA
1123 /*
1124 * performance can be limited by user through sysfs, by cpufreq
1125 * policy, or by cpu specific default values determined through
1126 * experimentation.
1127 */
a158bed5 1128 max_perf_adj = fp_toint(max_perf * limits->max_perf);
799281a3
RW
1129 *max = clamp_t(int, max_perf_adj,
1130 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1131
a158bed5 1132 min_perf = fp_toint(max_perf * limits->min_perf);
799281a3 1133 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1134}
1135
fdfdb2b1
RW
1136static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1137{
1138 int pstate = cpu->pstate.min_pstate;
1139
bc95a454
RW
1140 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1141 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1142 /*
1143 * Generally, there is no guarantee that this code will always run on
1144 * the CPU being updated, so force the register update to run on the
1145 * right CPU.
1146 */
1147 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1148 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1149}
1150
93f0822d
DB
1151static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1152{
016c8150
DB
1153 cpu->pstate.min_pstate = pstate_funcs.get_min();
1154 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1155 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1156 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1157 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 1158
007bea09
DB
1159 if (pstate_funcs.get_vid)
1160 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1161
1162 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1163}
1164
a1c9787d 1165static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1166{
6b17ddb2 1167 struct sample *sample = &cpu->sample;
e66c1768 1168
a1c9787d 1169 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1170}
1171
4fec7ad5 1172static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1173{
93f0822d 1174 u64 aperf, mperf;
4ab60c3f 1175 unsigned long flags;
4055fad3 1176 u64 tsc;
93f0822d 1177
4ab60c3f 1178 local_irq_save(flags);
93f0822d
DB
1179 rdmsrl(MSR_IA32_APERF, aperf);
1180 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1181 tsc = rdtsc();
4fec7ad5 1182 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1183 local_irq_restore(flags);
4fec7ad5 1184 return false;
8e601a9f 1185 }
4ab60c3f 1186 local_irq_restore(flags);
b69880f9 1187
c4ee841f 1188 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1189 cpu->sample.time = time;
d37e2b76
DB
1190 cpu->sample.aperf = aperf;
1191 cpu->sample.mperf = mperf;
4055fad3 1192 cpu->sample.tsc = tsc;
d37e2b76
DB
1193 cpu->sample.aperf -= cpu->prev_aperf;
1194 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1195 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1196
93f0822d
DB
1197 cpu->prev_aperf = aperf;
1198 cpu->prev_mperf = mperf;
4055fad3 1199 cpu->prev_tsc = tsc;
febce40f
RW
1200 /*
1201 * First time this function is invoked in a given cycle, all of the
1202 * previous sample data fields are equal to zero or stale and they must
1203 * be populated with meaningful numbers for things to work, so assume
1204 * that sample.time will always be reset before setting the utilization
1205 * update hook and make the caller skip the sample then.
1206 */
1207 return !!cpu->last_sample_time;
93f0822d
DB
1208}
1209
8fa520af
PL
1210static inline int32_t get_avg_frequency(struct cpudata *cpu)
1211{
a1c9787d
RW
1212 return mul_ext_fp(cpu->sample.core_avg_perf,
1213 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1214}
1215
bdcaa23f
PL
1216static inline int32_t get_avg_pstate(struct cpudata *cpu)
1217{
8edb0a6e
RW
1218 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1219 cpu->sample.core_avg_perf);
bdcaa23f
PL
1220}
1221
e70eed2b
PL
1222static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1223{
1224 struct sample *sample = &cpu->sample;
63d1d656
PL
1225 u64 cummulative_iowait, delta_iowait_us;
1226 u64 delta_iowait_mperf;
1227 u64 mperf, now;
e70eed2b
PL
1228 int32_t cpu_load;
1229
63d1d656
PL
1230 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1231
1232 /*
1233 * Convert iowait time into number of IO cycles spent at max_freq.
1234 * IO is considered as busy only for the cpu_load algorithm. For
1235 * performance this is not needed since we always try to reach the
1236 * maximum P-State, so we are already boosting the IOs.
1237 */
1238 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1239 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1240 cpu->pstate.max_pstate, MSEC_PER_SEC);
1241
1242 mperf = cpu->sample.mperf + delta_iowait_mperf;
1243 cpu->prev_cummulative_iowait = cummulative_iowait;
1244
e70eed2b
PL
1245 /*
1246 * The load can be estimated as the ratio of the mperf counter
1247 * running at a constant frequency during active periods
1248 * (C0) and the time stamp counter running at the same frequency
1249 * also during C-states.
1250 */
63d1d656 1251 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
e70eed2b
PL
1252 cpu->sample.busy_scaled = cpu_load;
1253
bdcaa23f 1254 return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
e70eed2b
PL
1255}
1256
157386b6 1257static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1258{
1aa7a6e2 1259 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1260 u64 duration_ns;
93f0822d 1261
e0d4c8f8 1262 /*
1aa7a6e2
RW
1263 * perf_scaled is the average performance during the last sampling
1264 * period scaled by the ratio of the maximum P-state to the P-state
1265 * requested last time (in percent). That measures the system's
1266 * response to the previous P-state selection.
e0d4c8f8 1267 */
22590efb
RW
1268 max_pstate = cpu->pstate.max_pstate_physical;
1269 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1270 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1271 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1272
e0d4c8f8 1273 /*
a4675fbc
RW
1274 * Since our utilization update callback will not run unless we are
1275 * in C0, check if the actual elapsed time is significantly greater (3x)
1276 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1277 * enough period of time to adjust our performance metric.
e0d4c8f8 1278 */
a4675fbc 1279 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1280 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1281 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1282 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1283 } else {
1284 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1285 if (sample_ratio < int_tofp(1))
1aa7a6e2 1286 perf_scaled = 0;
c4ee841f
DB
1287 }
1288
1aa7a6e2
RW
1289 cpu->sample.busy_scaled = perf_scaled;
1290 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1291}
1292
fdfdb2b1
RW
1293static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1294{
1295 int max_perf, min_perf;
1296
1297 update_turbo_state();
1298
1299 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1300 pstate = clamp_t(int, pstate, min_perf, max_perf);
bc95a454 1301 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1
RW
1302 if (pstate == cpu->pstate.current_pstate)
1303 return;
1304
bc95a454 1305 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1306 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1307}
1308
93f0822d
DB
1309static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1310{
157386b6 1311 int from, target_pstate;
4055fad3
DS
1312 struct sample *sample;
1313
1314 from = cpu->pstate.current_pstate;
93f0822d 1315
157386b6 1316 target_pstate = pstate_funcs.get_target_pstate(cpu);
93f0822d 1317
fdfdb2b1 1318 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1319
1320 sample = &cpu->sample;
a1c9787d 1321 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1322 fp_toint(sample->busy_scaled),
4055fad3
DS
1323 from,
1324 cpu->pstate.current_pstate,
1325 sample->mperf,
1326 sample->aperf,
1327 sample->tsc,
8fa520af 1328 get_avg_frequency(cpu));
93f0822d
DB
1329}
1330
a4675fbc 1331static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1332 unsigned int flags)
93f0822d 1333{
a4675fbc
RW
1334 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1335 u64 delta_ns = time - cpu->sample.time;
b69880f9 1336
a4675fbc 1337 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1338 bool sample_taken = intel_pstate_sample(cpu, time);
1339
6d45b719 1340 if (sample_taken) {
a1c9787d 1341 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1342 if (!hwp_active)
1343 intel_pstate_adjust_busy_pstate(cpu);
1344 }
a4675fbc 1345 }
93f0822d
DB
1346}
1347
1348#define ICPU(model, policy) \
6cbd7ee1
DB
1349 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1350 (unsigned long)&policy }
93f0822d
DB
1351
1352static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1353 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1354 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1355 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1356 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1357 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1358 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1359 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1360 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1361 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1362 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1363 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1364 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1365 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1366 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1367 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1368 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1369 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
41bad47f 1370 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1371 {}
1372};
1373MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1374
29327c84 1375static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1376 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
65c1262f
SP
1377 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1378 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
2f86dc4c
DB
1379 {}
1380};
1381
93f0822d
DB
1382static int intel_pstate_init_cpu(unsigned int cpunum)
1383{
93f0822d
DB
1384 struct cpudata *cpu;
1385
c0348717
DB
1386 if (!all_cpu_data[cpunum])
1387 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1388 GFP_KERNEL);
93f0822d
DB
1389 if (!all_cpu_data[cpunum])
1390 return -ENOMEM;
1391
1392 cpu = all_cpu_data[cpunum];
1393
93f0822d 1394 cpu->cpu = cpunum;
ba88d433 1395
a4675fbc 1396 if (hwp_active) {
ba88d433 1397 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1398 pid_params.sample_rate_ms = 50;
1399 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1400 }
ba88d433 1401
179e8471 1402 intel_pstate_get_cpu_pstates(cpu);
016c8150 1403
93f0822d 1404 intel_pstate_busy_pid_reset(cpu);
93f0822d 1405
4836df17 1406 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1407
1408 return 0;
1409}
1410
1411static unsigned int intel_pstate_get(unsigned int cpu_num)
1412{
f96fd0c8 1413 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1414
f96fd0c8 1415 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1416}
1417
febce40f 1418static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1419{
febce40f
RW
1420 struct cpudata *cpu = all_cpu_data[cpu_num];
1421
5ab666e0
RW
1422 if (cpu->update_util_set)
1423 return;
1424
febce40f
RW
1425 /* Prevent intel_pstate_update_util() from using stale data. */
1426 cpu->sample.time = 0;
0bed612b
RW
1427 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1428 intel_pstate_update_util);
4578ee7e 1429 cpu->update_util_set = true;
bb6ab52f
RW
1430}
1431
1432static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1433{
4578ee7e
CY
1434 struct cpudata *cpu_data = all_cpu_data[cpu];
1435
1436 if (!cpu_data->update_util_set)
1437 return;
1438
0bed612b 1439 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1440 cpu_data->update_util_set = false;
bb6ab52f
RW
1441 synchronize_sched();
1442}
1443
30a39153
SP
1444static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1445{
1446 limits->no_turbo = 0;
1447 limits->turbo_disabled = 0;
1448 limits->max_perf_pct = 100;
1449 limits->max_perf = int_tofp(1);
1450 limits->min_perf_pct = 100;
1451 limits->min_perf = int_tofp(1);
1452 limits->max_policy_pct = 100;
1453 limits->max_sysfs_pct = 100;
1454 limits->min_policy_pct = 0;
1455 limits->min_sysfs_pct = 0;
1456}
1457
93f0822d
DB
1458static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1459{
3be9200d
SP
1460 struct cpudata *cpu;
1461
d3929b83
DB
1462 if (!policy->cpuinfo.max_freq)
1463 return -ENODEV;
1464
2c2c1af4
SP
1465 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1466 policy->cpuinfo.max_freq, policy->max);
1467
3be9200d 1468 cpu = all_cpu_data[0];
c749c64f
RW
1469 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1470 policy->max < policy->cpuinfo.max_freq &&
1471 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1472 pr_debug("policy->max > max non turbo frequency\n");
1473 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
1474 }
1475
30a39153 1476 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
51443fbf 1477 limits = &performance_limits;
30a39153 1478 if (policy->max >= policy->cpuinfo.max_freq) {
4836df17 1479 pr_debug("set performance\n");
30a39153
SP
1480 intel_pstate_set_performance_limits(limits);
1481 goto out;
1482 }
1483 } else {
4836df17 1484 pr_debug("set powersave\n");
30a39153 1485 limits = &powersave_limits;
93f0822d 1486 }
2f86dc4c 1487
51443fbf
PB
1488 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1489 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
8478f539
PB
1490 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1491 policy->cpuinfo.max_freq);
51443fbf 1492 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
43717aad
CY
1493
1494 /* Normalize user input to [min_policy_pct, max_policy_pct] */
51443fbf
PB
1495 limits->min_perf_pct = max(limits->min_policy_pct,
1496 limits->min_sysfs_pct);
1497 limits->min_perf_pct = min(limits->max_policy_pct,
1498 limits->min_perf_pct);
1499 limits->max_perf_pct = min(limits->max_policy_pct,
1500 limits->max_sysfs_pct);
1501 limits->max_perf_pct = max(limits->min_policy_pct,
1502 limits->max_perf_pct);
43717aad
CY
1503
1504 /* Make sure min_perf_pct <= max_perf_pct */
51443fbf 1505 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
43717aad 1506
22590efb
RW
1507 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1508 limits->max_perf = div_fp(limits->max_perf_pct, 100);
2c2c1af4 1509 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
93f0822d 1510
bb6ab52f
RW
1511 out:
1512 intel_pstate_set_update_util_hook(policy->cpu);
1513
ba41e1bc 1514 intel_pstate_hwp_set_policy(policy);
2f86dc4c 1515
93f0822d
DB
1516 return 0;
1517}
1518
1519static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1520{
be49e346 1521 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1522
285cb990 1523 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1524 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1525 return -EINVAL;
1526
1527 return 0;
1528}
1529
bb18008f 1530static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1531{
bb18008f
DB
1532 int cpu_num = policy->cpu;
1533 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1534
4836df17 1535 pr_debug("CPU %d exiting\n", cpu_num);
bb18008f 1536
bb6ab52f 1537 intel_pstate_clear_update_util_hook(cpu_num);
a4675fbc 1538
2f86dc4c
DB
1539 if (hwp_active)
1540 return;
1541
fdfdb2b1 1542 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1543}
1544
2760984f 1545static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1546{
93f0822d 1547 struct cpudata *cpu;
52e0a509 1548 int rc;
93f0822d
DB
1549
1550 rc = intel_pstate_init_cpu(policy->cpu);
1551 if (rc)
1552 return rc;
1553
1554 cpu = all_cpu_data[policy->cpu];
1555
51443fbf 1556 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1557 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1558 else
1559 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1560
b27580b0
DB
1561 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1562 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1563
1564 /* cpuinfo and default policy values */
b27580b0 1565 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e
SP
1566 update_turbo_state();
1567 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1568 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1569 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1570
9522a2ff 1571 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
1572 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1573 cpumask_set_cpu(policy->cpu, policy->cpus);
1574
1575 return 0;
1576}
1577
9522a2ff
SP
1578static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1579{
1580 intel_pstate_exit_perf_limits(policy);
1581
1582 return 0;
1583}
1584
93f0822d
DB
1585static struct cpufreq_driver intel_pstate_driver = {
1586 .flags = CPUFREQ_CONST_LOOPS,
1587 .verify = intel_pstate_verify_policy,
1588 .setpolicy = intel_pstate_set_policy,
ba41e1bc 1589 .resume = intel_pstate_hwp_set_policy,
93f0822d
DB
1590 .get = intel_pstate_get,
1591 .init = intel_pstate_cpu_init,
9522a2ff 1592 .exit = intel_pstate_cpu_exit,
bb18008f 1593 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1594 .name = "intel_pstate",
93f0822d
DB
1595};
1596
eed43609
JZ
1597static int no_load __initdata;
1598static int no_hwp __initdata;
1599static int hwp_only __initdata;
29327c84 1600static unsigned int force_load __initdata;
6be26498 1601
29327c84 1602static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 1603{
016c8150 1604 if (!pstate_funcs.get_max() ||
c410833a
SK
1605 !pstate_funcs.get_min() ||
1606 !pstate_funcs.get_turbo())
b563b4e3
DB
1607 return -ENODEV;
1608
b563b4e3
DB
1609 return 0;
1610}
016c8150 1611
29327c84 1612static void __init copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1613{
1614 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1615 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1616 pid_params.p_gain_pct = policy->p_gain_pct;
1617 pid_params.i_gain_pct = policy->i_gain_pct;
1618 pid_params.d_gain_pct = policy->d_gain_pct;
1619 pid_params.deadband = policy->deadband;
1620 pid_params.setpoint = policy->setpoint;
1621}
1622
29327c84 1623static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1624{
1625 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1626 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1627 pstate_funcs.get_min = funcs->get_min;
1628 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1629 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1630 pstate_funcs.get_val = funcs->get_val;
007bea09 1631 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1632 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1633
016c8150
DB
1634}
1635
9522a2ff 1636#ifdef CONFIG_ACPI
fbbcdc07 1637
29327c84 1638static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
1639{
1640 int i;
1641
1642 for_each_possible_cpu(i) {
1643 acpi_status status;
1644 union acpi_object *pss;
1645 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1646 struct acpi_processor *pr = per_cpu(processors, i);
1647
1648 if (!pr)
1649 continue;
1650
1651 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1652 if (ACPI_FAILURE(status))
1653 continue;
1654
1655 pss = buffer.pointer;
1656 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1657 kfree(pss);
1658 return false;
1659 }
1660
1661 kfree(pss);
1662 }
1663
1664 return true;
1665}
1666
29327c84 1667static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 1668{
1669 int i;
1670
1671 for_each_possible_cpu(i) {
1672 struct acpi_processor *pr = per_cpu(processors, i);
1673
1674 if (!pr)
1675 continue;
1676 if (acpi_has_method(pr->handle, "_PPC"))
1677 return true;
1678 }
1679 return false;
1680}
1681
1682enum {
1683 PSS,
1684 PPC,
1685};
1686
fbbcdc07
AH
1687struct hw_vendor_info {
1688 u16 valid;
1689 char oem_id[ACPI_OEM_ID_SIZE];
1690 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1691 int oem_pwr_table;
fbbcdc07
AH
1692};
1693
1694/* Hardware vendor-specific info that has its own power management modes */
29327c84 1695static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 1696 {1, "HP ", "ProLiant", PSS},
1697 {1, "ORACLE", "X4-2 ", PPC},
1698 {1, "ORACLE", "X4-2L ", PPC},
1699 {1, "ORACLE", "X4-2B ", PPC},
1700 {1, "ORACLE", "X3-2 ", PPC},
1701 {1, "ORACLE", "X3-2L ", PPC},
1702 {1, "ORACLE", "X3-2B ", PPC},
1703 {1, "ORACLE", "X4470M2 ", PPC},
1704 {1, "ORACLE", "X4270M3 ", PPC},
1705 {1, "ORACLE", "X4270M2 ", PPC},
1706 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1707 {1, "ORACLE", "X4170 M3", PPC},
1708 {1, "ORACLE", "X4275 M3", PPC},
1709 {1, "ORACLE", "X6-2 ", PPC},
1710 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1711 {0, "", ""},
1712};
1713
29327c84 1714static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
1715{
1716 struct acpi_table_header hdr;
1717 struct hw_vendor_info *v_info;
2f86dc4c
DB
1718 const struct x86_cpu_id *id;
1719 u64 misc_pwr;
1720
1721 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1722 if (id) {
1723 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1724 if ( misc_pwr & (1 << 8))
1725 return true;
1726 }
fbbcdc07 1727
c410833a
SK
1728 if (acpi_disabled ||
1729 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1730 return false;
1731
1732 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1733 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1734 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1735 ACPI_OEM_TABLE_ID_SIZE))
1736 switch (v_info->oem_pwr_table) {
1737 case PSS:
1738 return intel_pstate_no_acpi_pss();
1739 case PPC:
aa4ea34d
EZ
1740 return intel_pstate_has_acpi_ppc() &&
1741 (!force_load);
966916ea 1742 }
fbbcdc07
AH
1743 }
1744
1745 return false;
1746}
1747#else /* CONFIG_ACPI not enabled */
1748static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1749static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1750#endif /* CONFIG_ACPI */
1751
7791e4aa
SP
1752static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1753 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1754 {}
1755};
1756
93f0822d
DB
1757static int __init intel_pstate_init(void)
1758{
907cc908 1759 int cpu, rc = 0;
93f0822d 1760 const struct x86_cpu_id *id;
64df1fdf 1761 struct cpu_defaults *cpu_def;
93f0822d 1762
6be26498
DB
1763 if (no_load)
1764 return -ENODEV;
1765
7791e4aa
SP
1766 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1767 copy_cpu_funcs(&core_params.funcs);
1768 hwp_active++;
1769 goto hwp_cpu_matched;
1770 }
1771
93f0822d
DB
1772 id = x86_match_cpu(intel_pstate_cpu_ids);
1773 if (!id)
1774 return -ENODEV;
1775
64df1fdf 1776 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1777
64df1fdf
BP
1778 copy_pid_params(&cpu_def->pid_policy);
1779 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1780
b563b4e3
DB
1781 if (intel_pstate_msrs_not_valid())
1782 return -ENODEV;
1783
7791e4aa
SP
1784hwp_cpu_matched:
1785 /*
1786 * The Intel pstate driver will be ignored if the platform
1787 * firmware has its own power management modes.
1788 */
1789 if (intel_pstate_platform_pwr_mgmt_exists())
1790 return -ENODEV;
1791
4836df17 1792 pr_info("Intel P-state driver initializing\n");
93f0822d 1793
b57ffac5 1794 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1795 if (!all_cpu_data)
1796 return -ENOMEM;
93f0822d 1797
d64c3b0b
KCA
1798 if (!hwp_active && hwp_only)
1799 goto out;
1800
93f0822d
DB
1801 rc = cpufreq_register_driver(&intel_pstate_driver);
1802 if (rc)
1803 goto out;
1804
1805 intel_pstate_debug_expose_params();
1806 intel_pstate_sysfs_expose_params();
b69880f9 1807
7791e4aa 1808 if (hwp_active)
4836df17 1809 pr_info("HWP enabled\n");
7791e4aa 1810
93f0822d
DB
1811 return rc;
1812out:
907cc908
DB
1813 get_online_cpus();
1814 for_each_online_cpu(cpu) {
1815 if (all_cpu_data[cpu]) {
bb6ab52f 1816 intel_pstate_clear_update_util_hook(cpu);
907cc908
DB
1817 kfree(all_cpu_data[cpu]);
1818 }
1819 }
1820
1821 put_online_cpus();
1822 vfree(all_cpu_data);
93f0822d
DB
1823 return -ENODEV;
1824}
1825device_initcall(intel_pstate_init);
1826
6be26498
DB
1827static int __init intel_pstate_setup(char *str)
1828{
1829 if (!str)
1830 return -EINVAL;
1831
1832 if (!strcmp(str, "disable"))
1833 no_load = 1;
539342f6 1834 if (!strcmp(str, "no_hwp")) {
4836df17 1835 pr_info("HWP disabled\n");
2f86dc4c 1836 no_hwp = 1;
539342f6 1837 }
aa4ea34d
EZ
1838 if (!strcmp(str, "force"))
1839 force_load = 1;
d64c3b0b
KCA
1840 if (!strcmp(str, "hwp_only"))
1841 hwp_only = 1;
9522a2ff
SP
1842
1843#ifdef CONFIG_ACPI
1844 if (!strcmp(str, "support_acpi_ppc"))
1845 acpi_ppc = true;
1846#endif
1847
6be26498
DB
1848 return 0;
1849}
1850early_param("intel_pstate", intel_pstate_setup);
1851
93f0822d
DB
1852MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1853MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1854MODULE_LICENSE("GPL");
This page took 0.288518 seconds and 5 git commands to generate.