Merge tag 'gpio-v4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux...
[deliverable/linux.git] / drivers / edac / i7core_edac.c
CommitLineData
52707f91
MCC
1/* Intel i7 core/Nehalem Memory Controller kernel module
2 *
e7bf068a 3 * This driver supports the memory controllers found on the Intel
52707f91
MCC
4 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
5 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
6 * and Westmere-EP.
a0c36a1f
MCC
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License version 2 only.
10 *
52707f91 11 * Copyright (c) 2009-2010 by:
37e59f87 12 * Mauro Carvalho Chehab
a0c36a1f
MCC
13 *
14 * Red Hat Inc. http://www.redhat.com
15 *
16 * Forked and adapted from the i5400_edac driver
17 *
18 * Based on the following public Intel datasheets:
19 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
20 * Datasheet, Volume 2:
21 * http://download.intel.com/design/processor/datashts/320835.pdf
22 * Intel Xeon Processor 5500 Series Datasheet Volume 2
23 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
24 * also available at:
25 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
26 */
27
a0c36a1f
MCC
28#include <linux/module.h>
29#include <linux/init.h>
30#include <linux/pci.h>
31#include <linux/pci_ids.h>
32#include <linux/slab.h>
3b918c12 33#include <linux/delay.h>
535e9c78 34#include <linux/dmi.h>
a0c36a1f
MCC
35#include <linux/edac.h>
36#include <linux/mmzone.h>
f4742949 37#include <linux/smp.h>
4140c542 38#include <asm/mce.h>
14d2c083 39#include <asm/processor.h>
4fad8098 40#include <asm/div64.h>
a0c36a1f
MCC
41
42#include "edac_core.h"
43
18c29002
MCC
44/* Static vars */
45static LIST_HEAD(i7core_edac_list);
46static DEFINE_MUTEX(i7core_edac_lock);
47static int probed;
48
54a08ab1
MCC
49static int use_pci_fixup;
50module_param(use_pci_fixup, int, 0444);
51MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
f4742949
MCC
52/*
53 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
54 * registers start at bus 255, and are not reported by BIOS.
55 * We currently find devices with only 2 sockets. In order to support more QPI
56 * Quick Path Interconnect, just increment this number.
57 */
58#define MAX_SOCKET_BUSES 2
59
60
a0c36a1f
MCC
61/*
62 * Alter this version for the module when modifications are made
63 */
152ba394 64#define I7CORE_REVISION " Ver: 1.0.0"
a0c36a1f
MCC
65#define EDAC_MOD_STR "i7core_edac"
66
a0c36a1f
MCC
67/*
68 * Debug macros
69 */
70#define i7core_printk(level, fmt, arg...) \
71 edac_printk(level, "i7core", fmt, ##arg)
72
73#define i7core_mc_printk(mci, level, fmt, arg...) \
74 edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
75
76/*
77 * i7core Memory Controller Registers
78 */
79
e9bd2e73
MCC
80 /* OFFSETS for Device 0 Function 0 */
81
82#define MC_CFG_CONTROL 0x90
e8b6a127
SG
83 #define MC_CFG_UNLOCK 0x02
84 #define MC_CFG_LOCK 0x00
e9bd2e73 85
a0c36a1f
MCC
86 /* OFFSETS for Device 3 Function 0 */
87
88#define MC_CONTROL 0x48
89#define MC_STATUS 0x4c
90#define MC_MAX_DOD 0x64
91
442305b1 92/*
15ed103a 93 * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet:
442305b1
MCC
94 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
95 */
96
97#define MC_TEST_ERR_RCV1 0x60
98 #define DIMM2_COR_ERR(r) ((r) & 0x7fff)
99
100#define MC_TEST_ERR_RCV0 0x64
101 #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff)
102 #define DIMM0_COR_ERR(r) ((r) & 0x7fff)
103
15ed103a 104/* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */
e8b6a127
SG
105#define MC_SSRCONTROL 0x48
106 #define SSR_MODE_DISABLE 0x00
107 #define SSR_MODE_ENABLE 0x01
108 #define SSR_MODE_MASK 0x03
109
110#define MC_SCRUB_CONTROL 0x4c
111 #define STARTSCRUB (1 << 24)
535e9c78 112 #define SCRUBINTERVAL_MASK 0xffffff
e8b6a127 113
b4e8f0b6
MCC
114#define MC_COR_ECC_CNT_0 0x80
115#define MC_COR_ECC_CNT_1 0x84
116#define MC_COR_ECC_CNT_2 0x88
117#define MC_COR_ECC_CNT_3 0x8c
118#define MC_COR_ECC_CNT_4 0x90
119#define MC_COR_ECC_CNT_5 0x94
120
121#define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff)
122#define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff)
123
124
a0c36a1f
MCC
125 /* OFFSETS for Devices 4,5 and 6 Function 0 */
126
0b2b7b7e
MCC
127#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
128 #define THREE_DIMMS_PRESENT (1 << 24)
129 #define SINGLE_QUAD_RANK_PRESENT (1 << 23)
130 #define QUAD_RANK_PRESENT (1 << 22)
131 #define REGISTERED_DIMM (1 << 15)
132
f122a892
MCC
133#define MC_CHANNEL_MAPPER 0x60
134 #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1)
135 #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1)
136
0b2b7b7e
MCC
137#define MC_CHANNEL_RANK_PRESENT 0x7c
138 #define RANK_PRESENT_MASK 0xffff
139
a0c36a1f 140#define MC_CHANNEL_ADDR_MATCH 0xf0
194a40fe
MCC
141#define MC_CHANNEL_ERROR_MASK 0xf8
142#define MC_CHANNEL_ERROR_INJECT 0xfc
143 #define INJECT_ADDR_PARITY 0x10
144 #define INJECT_ECC 0x08
145 #define MASK_CACHELINE 0x06
146 #define MASK_FULL_CACHELINE 0x06
147 #define MASK_MSB32_CACHELINE 0x04
148 #define MASK_LSB32_CACHELINE 0x02
149 #define NO_MASK_CACHELINE 0x00
150 #define REPEAT_EN 0x01
a0c36a1f 151
0b2b7b7e 152 /* OFFSETS for Devices 4,5 and 6 Function 1 */
b990538a 153
0b2b7b7e
MCC
154#define MC_DOD_CH_DIMM0 0x48
155#define MC_DOD_CH_DIMM1 0x4c
156#define MC_DOD_CH_DIMM2 0x50
157 #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10))
158 #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10)
159 #define DIMM_PRESENT_MASK (1 << 9)
160 #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9)
854d3349
MCC
161 #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7))
162 #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7)
163 #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5))
164 #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5)
41fcb7fe 165 #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2))
5566cb7c 166 #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2)
854d3349
MCC
167 #define MC_DOD_NUMCOL_MASK 3
168 #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK)
0b2b7b7e 169
f122a892
MCC
170#define MC_RANK_PRESENT 0x7c
171
0b2b7b7e
MCC
172#define MC_SAG_CH_0 0x80
173#define MC_SAG_CH_1 0x84
174#define MC_SAG_CH_2 0x88
175#define MC_SAG_CH_3 0x8c
176#define MC_SAG_CH_4 0x90
177#define MC_SAG_CH_5 0x94
178#define MC_SAG_CH_6 0x98
179#define MC_SAG_CH_7 0x9c
180
181#define MC_RIR_LIMIT_CH_0 0x40
182#define MC_RIR_LIMIT_CH_1 0x44
183#define MC_RIR_LIMIT_CH_2 0x48
184#define MC_RIR_LIMIT_CH_3 0x4C
185#define MC_RIR_LIMIT_CH_4 0x50
186#define MC_RIR_LIMIT_CH_5 0x54
187#define MC_RIR_LIMIT_CH_6 0x58
188#define MC_RIR_LIMIT_CH_7 0x5C
189#define MC_RIR_LIMIT_MASK ((1 << 10) - 1)
190
191#define MC_RIR_WAY_CH 0x80
192 #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7)
193 #define MC_RIR_WAY_RANK_MASK 0x7
194
a0c36a1f
MCC
195/*
196 * i7core structs
197 */
198
199#define NUM_CHANS 3
442305b1
MCC
200#define MAX_DIMMS 3 /* Max DIMMS per channel */
201#define MAX_MCR_FUNC 4
202#define MAX_CHAN_FUNC 3
a0c36a1f
MCC
203
204struct i7core_info {
205 u32 mc_control;
206 u32 mc_status;
207 u32 max_dod;
f122a892 208 u32 ch_map;
a0c36a1f
MCC
209};
210
194a40fe
MCC
211
212struct i7core_inject {
213 int enable;
214
215 u32 section;
216 u32 type;
217 u32 eccmask;
218
219 /* Error address mask */
220 int channel, dimm, rank, bank, page, col;
221};
222
0b2b7b7e 223struct i7core_channel {
0bf09e82
MCC
224 bool is_3dimms_present;
225 bool is_single_4rank;
226 bool has_4rank;
442305b1 227 u32 dimms;
0b2b7b7e
MCC
228};
229
8f331907 230struct pci_id_descr {
66607706
MCC
231 int dev;
232 int func;
233 int dev_id;
de06eeef 234 int optional;
8f331907
MCC
235};
236
bd9e19ca 237struct pci_id_table {
1288c18f
MCC
238 const struct pci_id_descr *descr;
239 int n_devs;
bd9e19ca
VM
240};
241
f4742949
MCC
242struct i7core_dev {
243 struct list_head list;
244 u8 socket;
245 struct pci_dev **pdev;
de06eeef 246 int n_devs;
f4742949
MCC
247 struct mem_ctl_info *mci;
248};
249
a0c36a1f 250struct i7core_pvt {
356f0a30 251 struct device *addrmatch_dev, *chancounts_dev;
5c4cdb5a 252
f4742949
MCC
253 struct pci_dev *pci_noncore;
254 struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1];
255 struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
256
257 struct i7core_dev *i7core_dev;
67166af4 258
a0c36a1f 259 struct i7core_info info;
194a40fe 260 struct i7core_inject inject;
f4742949 261 struct i7core_channel channel[NUM_CHANS];
67166af4 262
f4742949 263 int ce_count_available;
b4e8f0b6
MCC
264
265 /* ECC corrected errors counts per udimm */
f4742949
MCC
266 unsigned long udimm_ce_count[MAX_DIMMS];
267 int udimm_last_ce_count[MAX_DIMMS];
b4e8f0b6 268 /* ECC corrected errors counts per rdimm */
f4742949
MCC
269 unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
270 int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
442305b1 271
27100db0 272 bool is_registered, enable_scrub;
14d2c083 273
ca9c90ba 274 /* Fifo double buffers */
d5381642 275 struct mce mce_entry[MCE_LOG_LEN];
ca9c90ba
MCC
276 struct mce mce_outentry[MCE_LOG_LEN];
277
278 /* Fifo in/out counters */
279 unsigned mce_in, mce_out;
280
281 /* Count indicator to show errors not got */
282 unsigned mce_overrun;
939747bd 283
535e9c78
NC
284 /* DCLK Frequency used for computing scrub rate */
285 int dclk_freq;
286
939747bd
MCC
287 /* Struct to control EDAC polling */
288 struct edac_pci_ctl_info *i7core_pci;
a0c36a1f
MCC
289};
290
8f331907
MCC
291#define PCI_DESCR(device, function, device_id) \
292 .dev = (device), \
293 .func = (function), \
294 .dev_id = (device_id)
295
1288c18f 296static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
8f331907
MCC
297 /* Memory controller */
298 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) },
299 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) },
224e871f 300 /* Exists only for RDIMM */
de06eeef 301 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 },
8f331907
MCC
302 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
303
304 /* Channel 0 */
305 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
306 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
307 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
308 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) },
309
310 /* Channel 1 */
311 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
312 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
313 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
314 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) },
315
316 /* Channel 2 */
317 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
318 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
319 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
320 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) },
224e871f
MCC
321
322 /* Generic Non-core registers */
323 /*
324 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
325 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
326 * the probing code needs to test for the other address in case of
327 * failure of this one
328 */
329 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) },
330
a0c36a1f 331};
8f331907 332
1288c18f 333static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
52a2e4fc
MCC
334 { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) },
335 { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) },
336 { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) },
337
338 { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
339 { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
340 { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
341 { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) },
342
508fa179
MCC
343 { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
344 { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
345 { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
346 { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) },
224e871f
MCC
347
348 /*
349 * This is the PCI device has an alternate address on some
350 * processors like Core i7 860
351 */
352 { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) },
52a2e4fc
MCC
353};
354
1288c18f 355static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
bd9e19ca
VM
356 /* Memory controller */
357 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) },
358 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) },
359 /* Exists only for RDIMM */
360 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 },
361 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
362
363 /* Channel 0 */
364 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
365 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
366 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
367 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) },
368
369 /* Channel 1 */
370 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
371 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
372 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
373 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) },
374
375 /* Channel 2 */
376 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
377 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
378 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
379 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) },
224e871f
MCC
380
381 /* Generic Non-core registers */
382 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) },
383
bd9e19ca
VM
384};
385
1288c18f
MCC
386#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
387static const struct pci_id_table pci_dev_table[] = {
bd9e19ca
VM
388 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
389 PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
390 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
3c52cc57 391 {0,} /* 0 terminated list. */
bd9e19ca
VM
392};
393
8f331907
MCC
394/*
395 * pci_device_id table for which devices we are looking for
8f331907 396 */
ba935f40 397static const struct pci_device_id i7core_pci_tbl[] = {
d1fd4fb6 398 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
f05da2f7 399 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
8f331907
MCC
400 {0,} /* 0 terminated list. */
401};
402
a0c36a1f 403/****************************************************************************
15ed103a 404 Ancillary status routines
a0c36a1f
MCC
405 ****************************************************************************/
406
407 /* MC_CONTROL bits */
ef708b53
MCC
408#define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch)))
409#define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1))
a0c36a1f
MCC
410
411 /* MC_STATUS bits */
61053fde 412#define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4))
ef708b53 413#define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch))
a0c36a1f
MCC
414
415 /* MC_MAX_DOD read functions */
854d3349 416static inline int numdimms(u32 dimms)
a0c36a1f 417{
854d3349 418 return (dimms & 0x3) + 1;
a0c36a1f
MCC
419}
420
854d3349 421static inline int numrank(u32 rank)
a0c36a1f 422{
c31d34fe 423 static const int ranks[] = { 1, 2, 4, -EINVAL };
a0c36a1f 424
854d3349 425 return ranks[rank & 0x3];
a0c36a1f
MCC
426}
427
854d3349 428static inline int numbank(u32 bank)
a0c36a1f 429{
c31d34fe 430 static const int banks[] = { 4, 8, 16, -EINVAL };
a0c36a1f 431
854d3349 432 return banks[bank & 0x3];
a0c36a1f
MCC
433}
434
854d3349 435static inline int numrow(u32 row)
a0c36a1f 436{
c31d34fe 437 static const int rows[] = {
a0c36a1f
MCC
438 1 << 12, 1 << 13, 1 << 14, 1 << 15,
439 1 << 16, -EINVAL, -EINVAL, -EINVAL,
440 };
441
854d3349 442 return rows[row & 0x7];
a0c36a1f
MCC
443}
444
854d3349 445static inline int numcol(u32 col)
a0c36a1f 446{
c31d34fe 447 static const int cols[] = {
a0c36a1f
MCC
448 1 << 10, 1 << 11, 1 << 12, -EINVAL,
449 };
854d3349 450 return cols[col & 0x3];
a0c36a1f
MCC
451}
452
f4742949 453static struct i7core_dev *get_i7core_dev(u8 socket)
66607706
MCC
454{
455 struct i7core_dev *i7core_dev;
456
457 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
458 if (i7core_dev->socket == socket)
459 return i7core_dev;
460 }
461
462 return NULL;
463}
464
848b2f7e
HS
465static struct i7core_dev *alloc_i7core_dev(u8 socket,
466 const struct pci_id_table *table)
467{
468 struct i7core_dev *i7core_dev;
469
470 i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
471 if (!i7core_dev)
472 return NULL;
473
474 i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
475 GFP_KERNEL);
476 if (!i7core_dev->pdev) {
477 kfree(i7core_dev);
478 return NULL;
479 }
480
481 i7core_dev->socket = socket;
482 i7core_dev->n_devs = table->n_devs;
483 list_add_tail(&i7core_dev->list, &i7core_edac_list);
484
485 return i7core_dev;
486}
487
2aa9be44
HS
488static void free_i7core_dev(struct i7core_dev *i7core_dev)
489{
490 list_del(&i7core_dev->list);
491 kfree(i7core_dev->pdev);
492 kfree(i7core_dev);
493}
494
a0c36a1f
MCC
495/****************************************************************************
496 Memory check routines
497 ****************************************************************************/
eb94fc40 498
084a4fcc 499static int get_dimm_config(struct mem_ctl_info *mci)
a0c36a1f
MCC
500{
501 struct i7core_pvt *pvt = mci->pvt_info;
854d3349 502 struct pci_dev *pdev;
ba6c5c62 503 int i, j;
1c6fed80 504 enum edac_type mode;
854d3349 505 enum mem_type mtype;
084a4fcc 506 struct dimm_info *dimm;
a0c36a1f 507
854d3349 508 /* Get data from the MC register, function 0 */
f4742949 509 pdev = pvt->pci_mcr[0];
7dd6953c 510 if (!pdev)
8f331907
MCC
511 return -ENODEV;
512
f122a892 513 /* Device 3 function 0 reads */
7dd6953c
MCC
514 pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
515 pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
516 pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
517 pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
f122a892 518
956b9ba1
JP
519 edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
520 pvt->i7core_dev->socket, pvt->info.mc_control,
521 pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map);
a0c36a1f 522
1c6fed80 523 if (ECC_ENABLED(pvt)) {
956b9ba1 524 edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
1c6fed80
MCC
525 if (ECCx8(pvt))
526 mode = EDAC_S8ECD8ED;
527 else
528 mode = EDAC_S4ECD4ED;
529 } else {
956b9ba1 530 edac_dbg(0, "ECC disabled\n");
1c6fed80
MCC
531 mode = EDAC_NONE;
532 }
a0c36a1f
MCC
533
534 /* FIXME: need to handle the error codes */
956b9ba1
JP
535 edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n",
536 numdimms(pvt->info.max_dod),
537 numrank(pvt->info.max_dod >> 2),
538 numbank(pvt->info.max_dod >> 4),
539 numrow(pvt->info.max_dod >> 6),
540 numcol(pvt->info.max_dod >> 9));
a0c36a1f 541
0b2b7b7e 542 for (i = 0; i < NUM_CHANS; i++) {
854d3349 543 u32 data, dimm_dod[3], value[8];
0b2b7b7e 544
52a2e4fc
MCC
545 if (!pvt->pci_ch[i][0])
546 continue;
547
0b2b7b7e 548 if (!CH_ACTIVE(pvt, i)) {
956b9ba1 549 edac_dbg(0, "Channel %i is not active\n", i);
0b2b7b7e
MCC
550 continue;
551 }
552 if (CH_DISABLED(pvt, i)) {
956b9ba1 553 edac_dbg(0, "Channel %i is disabled\n", i);
0b2b7b7e
MCC
554 continue;
555 }
556
f122a892 557 /* Devices 4-6 function 0 */
f4742949 558 pci_read_config_dword(pvt->pci_ch[i][0],
0b2b7b7e
MCC
559 MC_CHANNEL_DIMM_INIT_PARAMS, &data);
560
0bf09e82
MCC
561
562 if (data & THREE_DIMMS_PRESENT)
563 pvt->channel[i].is_3dimms_present = true;
564
565 if (data & SINGLE_QUAD_RANK_PRESENT)
566 pvt->channel[i].is_single_4rank = true;
567
568 if (data & QUAD_RANK_PRESENT)
569 pvt->channel[i].has_4rank = true;
0b2b7b7e 570
854d3349
MCC
571 if (data & REGISTERED_DIMM)
572 mtype = MEM_RDDR3;
14d2c083 573 else
854d3349 574 mtype = MEM_DDR3;
854d3349
MCC
575
576 /* Devices 4-6 function 1 */
f4742949 577 pci_read_config_dword(pvt->pci_ch[i][1],
854d3349 578 MC_DOD_CH_DIMM0, &dimm_dod[0]);
f4742949 579 pci_read_config_dword(pvt->pci_ch[i][1],
854d3349 580 MC_DOD_CH_DIMM1, &dimm_dod[1]);
f4742949 581 pci_read_config_dword(pvt->pci_ch[i][1],
854d3349 582 MC_DOD_CH_DIMM2, &dimm_dod[2]);
0b2b7b7e 583
956b9ba1
JP
584 edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n",
585 i,
586 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
587 data,
588 pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
589 pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
590 pvt->channel[i].has_4rank ? "HAS_4R " : "",
591 (data & REGISTERED_DIMM) ? 'R' : 'U');
854d3349
MCC
592
593 for (j = 0; j < 3; j++) {
594 u32 banks, ranks, rows, cols;
5566cb7c 595 u32 size, npages;
854d3349
MCC
596
597 if (!DIMM_PRESENT(dimm_dod[j]))
598 continue;
599
0975c16f
MCC
600 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
601 i, j, 0);
854d3349
MCC
602 banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
603 ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
604 rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
605 cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
606
5566cb7c
MCC
607 /* DDR3 has 8 I/O banks */
608 size = (rows * cols * banks * ranks) >> (20 - 3);
609
956b9ba1
JP
610 edac_dbg(0, "\tdimm %d %d Mb offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n",
611 j, size,
612 RANKOFFSET(dimm_dod[j]),
613 banks, ranks, rows, cols);
854d3349 614
e9144601 615 npages = MiB_TO_PAGES(size);
5566cb7c 616
a895bf8b 617 dimm->nr_pages = npages;
b4e8f0b6 618
854d3349
MCC
619 switch (banks) {
620 case 4:
084a4fcc 621 dimm->dtype = DEV_X4;
854d3349
MCC
622 break;
623 case 8:
084a4fcc 624 dimm->dtype = DEV_X8;
854d3349
MCC
625 break;
626 case 16:
084a4fcc 627 dimm->dtype = DEV_X16;
854d3349
MCC
628 break;
629 default:
084a4fcc 630 dimm->dtype = DEV_UNKNOWN;
854d3349
MCC
631 }
632
084a4fcc
MCC
633 snprintf(dimm->label, sizeof(dimm->label),
634 "CPU#%uChannel#%u_DIMM#%u",
635 pvt->i7core_dev->socket, i, j);
636 dimm->grain = 8;
637 dimm->edac_mode = mode;
638 dimm->mtype = mtype;
854d3349 639 }
1c6fed80 640
854d3349
MCC
641 pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
642 pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
643 pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
644 pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
645 pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
646 pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
647 pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
648 pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
956b9ba1 649 edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
854d3349 650 for (j = 0; j < 8; j++)
956b9ba1
JP
651 edac_dbg(1, "\t\t%#x\t%#x\t%#x\n",
652 (value[j] >> 27) & 0x1,
653 (value[j] >> 24) & 0x7,
654 (value[j] & ((1 << 24) - 1)));
0b2b7b7e
MCC
655 }
656
a0c36a1f
MCC
657 return 0;
658}
659
194a40fe
MCC
660/****************************************************************************
661 Error insertion routines
662 ****************************************************************************/
663
5c4cdb5a
MCC
664#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
665
194a40fe
MCC
666/* The i7core has independent error injection features per channel.
667 However, to have a simpler code, we don't allow enabling error injection
668 on more than one channel.
669 Also, since a change at an inject parameter will be applied only at enable,
670 we're disabling error injection on all write calls to the sysfs nodes that
671 controls the error code injection.
672 */
1288c18f 673static int disable_inject(const struct mem_ctl_info *mci)
194a40fe
MCC
674{
675 struct i7core_pvt *pvt = mci->pvt_info;
676
677 pvt->inject.enable = 0;
678
f4742949 679 if (!pvt->pci_ch[pvt->inject.channel][0])
8f331907
MCC
680 return -ENODEV;
681
f4742949 682 pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
4157d9f5 683 MC_CHANNEL_ERROR_INJECT, 0);
8f331907
MCC
684
685 return 0;
194a40fe
MCC
686}
687
688/*
689 * i7core inject inject.section
690 *
691 * accept and store error injection inject.section value
692 * bit 0 - refers to the lower 32-byte half cacheline
693 * bit 1 - refers to the upper 32-byte half cacheline
694 */
5c4cdb5a
MCC
695static ssize_t i7core_inject_section_store(struct device *dev,
696 struct device_attribute *mattr,
194a40fe
MCC
697 const char *data, size_t count)
698{
5c4cdb5a 699 struct mem_ctl_info *mci = to_mci(dev);
194a40fe
MCC
700 struct i7core_pvt *pvt = mci->pvt_info;
701 unsigned long value;
702 int rc;
703
704 if (pvt->inject.enable)
41fcb7fe 705 disable_inject(mci);
194a40fe 706
c7f62fc8 707 rc = kstrtoul(data, 10, &value);
194a40fe 708 if ((rc < 0) || (value > 3))
2068def5 709 return -EIO;
194a40fe
MCC
710
711 pvt->inject.section = (u32) value;
712 return count;
713}
714
5c4cdb5a
MCC
715static ssize_t i7core_inject_section_show(struct device *dev,
716 struct device_attribute *mattr,
717 char *data)
194a40fe 718{
5c4cdb5a 719 struct mem_ctl_info *mci = to_mci(dev);
194a40fe
MCC
720 struct i7core_pvt *pvt = mci->pvt_info;
721 return sprintf(data, "0x%08x\n", pvt->inject.section);
722}
723
724/*
725 * i7core inject.type
726 *
727 * accept and store error injection inject.section value
728 * bit 0 - repeat enable - Enable error repetition
729 * bit 1 - inject ECC error
730 * bit 2 - inject parity error
731 */
5c4cdb5a
MCC
732static ssize_t i7core_inject_type_store(struct device *dev,
733 struct device_attribute *mattr,
194a40fe
MCC
734 const char *data, size_t count)
735{
5c4cdb5a
MCC
736 struct mem_ctl_info *mci = to_mci(dev);
737struct i7core_pvt *pvt = mci->pvt_info;
194a40fe
MCC
738 unsigned long value;
739 int rc;
740
741 if (pvt->inject.enable)
41fcb7fe 742 disable_inject(mci);
194a40fe 743
c7f62fc8 744 rc = kstrtoul(data, 10, &value);
194a40fe 745 if ((rc < 0) || (value > 7))
2068def5 746 return -EIO;
194a40fe
MCC
747
748 pvt->inject.type = (u32) value;
749 return count;
750}
751
5c4cdb5a
MCC
752static ssize_t i7core_inject_type_show(struct device *dev,
753 struct device_attribute *mattr,
754 char *data)
194a40fe 755{
5c4cdb5a 756 struct mem_ctl_info *mci = to_mci(dev);
194a40fe 757 struct i7core_pvt *pvt = mci->pvt_info;
5c4cdb5a 758
194a40fe
MCC
759 return sprintf(data, "0x%08x\n", pvt->inject.type);
760}
761
762/*
763 * i7core_inject_inject.eccmask_store
764 *
765 * The type of error (UE/CE) will depend on the inject.eccmask value:
766 * Any bits set to a 1 will flip the corresponding ECC bit
767 * Correctable errors can be injected by flipping 1 bit or the bits within
768 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
769 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
770 * uncorrectable error to be injected.
771 */
5c4cdb5a
MCC
772static ssize_t i7core_inject_eccmask_store(struct device *dev,
773 struct device_attribute *mattr,
774 const char *data, size_t count)
194a40fe 775{
5c4cdb5a 776 struct mem_ctl_info *mci = to_mci(dev);
194a40fe
MCC
777 struct i7core_pvt *pvt = mci->pvt_info;
778 unsigned long value;
779 int rc;
780
781 if (pvt->inject.enable)
41fcb7fe 782 disable_inject(mci);
194a40fe 783
c7f62fc8 784 rc = kstrtoul(data, 10, &value);
194a40fe 785 if (rc < 0)
2068def5 786 return -EIO;
194a40fe
MCC
787
788 pvt->inject.eccmask = (u32) value;
789 return count;
790}
791
5c4cdb5a
MCC
792static ssize_t i7core_inject_eccmask_show(struct device *dev,
793 struct device_attribute *mattr,
794 char *data)
194a40fe 795{
5c4cdb5a 796 struct mem_ctl_info *mci = to_mci(dev);
194a40fe 797 struct i7core_pvt *pvt = mci->pvt_info;
5c4cdb5a 798
194a40fe
MCC
799 return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
800}
801
802/*
803 * i7core_addrmatch
804 *
805 * The type of error (UE/CE) will depend on the inject.eccmask value:
806 * Any bits set to a 1 will flip the corresponding ECC bit
807 * Correctable errors can be injected by flipping 1 bit or the bits within
808 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
809 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
810 * uncorrectable error to be injected.
811 */
194a40fe 812
a5538e53
MCC
813#define DECLARE_ADDR_MATCH(param, limit) \
814static ssize_t i7core_inject_store_##param( \
5c4cdb5a
MCC
815 struct device *dev, \
816 struct device_attribute *mattr, \
817 const char *data, size_t count) \
a5538e53 818{ \
42709efb 819 struct mem_ctl_info *mci = dev_get_drvdata(dev); \
cc301b3a 820 struct i7core_pvt *pvt; \
a5538e53
MCC
821 long value; \
822 int rc; \
823 \
956b9ba1 824 edac_dbg(1, "\n"); \
cc301b3a
MCC
825 pvt = mci->pvt_info; \
826 \
a5538e53
MCC
827 if (pvt->inject.enable) \
828 disable_inject(mci); \
829 \
4f87fad1 830 if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
a5538e53
MCC
831 value = -1; \
832 else { \
c7f62fc8 833 rc = kstrtoul(data, 10, &value); \
a5538e53
MCC
834 if ((rc < 0) || (value >= limit)) \
835 return -EIO; \
836 } \
837 \
838 pvt->inject.param = value; \
839 \
840 return count; \
841} \
842 \
843static ssize_t i7core_inject_show_##param( \
5c4cdb5a
MCC
844 struct device *dev, \
845 struct device_attribute *mattr, \
846 char *data) \
a5538e53 847{ \
42709efb 848 struct mem_ctl_info *mci = dev_get_drvdata(dev); \
cc301b3a
MCC
849 struct i7core_pvt *pvt; \
850 \
851 pvt = mci->pvt_info; \
956b9ba1 852 edac_dbg(1, "pvt=%p\n", pvt); \
a5538e53
MCC
853 if (pvt->inject.param < 0) \
854 return sprintf(data, "any\n"); \
855 else \
856 return sprintf(data, "%d\n", pvt->inject.param);\
194a40fe
MCC
857}
858
a5538e53 859#define ATTR_ADDR_MATCH(param) \
5c4cdb5a
MCC
860 static DEVICE_ATTR(param, S_IRUGO | S_IWUSR, \
861 i7core_inject_show_##param, \
862 i7core_inject_store_##param)
194a40fe 863
a5538e53
MCC
864DECLARE_ADDR_MATCH(channel, 3);
865DECLARE_ADDR_MATCH(dimm, 3);
866DECLARE_ADDR_MATCH(rank, 4);
867DECLARE_ADDR_MATCH(bank, 32);
868DECLARE_ADDR_MATCH(page, 0x10000);
869DECLARE_ADDR_MATCH(col, 0x4000);
194a40fe 870
5c4cdb5a
MCC
871ATTR_ADDR_MATCH(channel);
872ATTR_ADDR_MATCH(dimm);
873ATTR_ADDR_MATCH(rank);
874ATTR_ADDR_MATCH(bank);
875ATTR_ADDR_MATCH(page);
876ATTR_ADDR_MATCH(col);
877
1288c18f 878static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
276b824c
MCC
879{
880 u32 read;
881 int count;
882
956b9ba1
JP
883 edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n",
884 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
885 where, val);
4157d9f5 886
276b824c
MCC
887 for (count = 0; count < 10; count++) {
888 if (count)
b990538a 889 msleep(100);
276b824c
MCC
890 pci_write_config_dword(dev, where, val);
891 pci_read_config_dword(dev, where, &read);
892
893 if (read == val)
894 return 0;
895 }
896
4157d9f5
MCC
897 i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
898 "write=%08x. Read=%08x\n",
899 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
900 where, val, read);
276b824c
MCC
901
902 return -EINVAL;
903}
904
194a40fe
MCC
905/*
906 * This routine prepares the Memory Controller for error injection.
907 * The error will be injected when some process tries to write to the
908 * memory that matches the given criteria.
909 * The criteria can be set in terms of a mask where dimm, rank, bank, page
910 * and col can be specified.
911 * A -1 value for any of the mask items will make the MCU to ignore
912 * that matching criteria for error injection.
913 *
914 * It should be noticed that the error will only happen after a write operation
915 * on a memory that matches the condition. if REPEAT_EN is not enabled at
916 * inject mask, then it will produce just one error. Otherwise, it will repeat
917 * until the injectmask would be cleaned.
918 *
919 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
920 * is reliable enough to check if the MC is using the
921 * three channels. However, this is not clear at the datasheet.
922 */
5c4cdb5a
MCC
923static ssize_t i7core_inject_enable_store(struct device *dev,
924 struct device_attribute *mattr,
925 const char *data, size_t count)
194a40fe 926{
5c4cdb5a 927 struct mem_ctl_info *mci = to_mci(dev);
194a40fe
MCC
928 struct i7core_pvt *pvt = mci->pvt_info;
929 u32 injectmask;
930 u64 mask = 0;
931 int rc;
932 long enable;
933
f4742949 934 if (!pvt->pci_ch[pvt->inject.channel][0])
8f331907
MCC
935 return 0;
936
c7f62fc8 937 rc = kstrtoul(data, 10, &enable);
194a40fe
MCC
938 if ((rc < 0))
939 return 0;
940
941 if (enable) {
942 pvt->inject.enable = 1;
943 } else {
944 disable_inject(mci);
945 return count;
946 }
947
948 /* Sets pvt->inject.dimm mask */
949 if (pvt->inject.dimm < 0)
486dd09f 950 mask |= 1LL << 41;
194a40fe 951 else {
f4742949 952 if (pvt->channel[pvt->inject.channel].dimms > 2)
486dd09f 953 mask |= (pvt->inject.dimm & 0x3LL) << 35;
194a40fe 954 else
486dd09f 955 mask |= (pvt->inject.dimm & 0x1LL) << 36;
194a40fe
MCC
956 }
957
958 /* Sets pvt->inject.rank mask */
959 if (pvt->inject.rank < 0)
486dd09f 960 mask |= 1LL << 40;
194a40fe 961 else {
f4742949 962 if (pvt->channel[pvt->inject.channel].dimms > 2)
486dd09f 963 mask |= (pvt->inject.rank & 0x1LL) << 34;
194a40fe 964 else
486dd09f 965 mask |= (pvt->inject.rank & 0x3LL) << 34;
194a40fe
MCC
966 }
967
968 /* Sets pvt->inject.bank mask */
969 if (pvt->inject.bank < 0)
486dd09f 970 mask |= 1LL << 39;
194a40fe 971 else
486dd09f 972 mask |= (pvt->inject.bank & 0x15LL) << 30;
194a40fe
MCC
973
974 /* Sets pvt->inject.page mask */
975 if (pvt->inject.page < 0)
486dd09f 976 mask |= 1LL << 38;
194a40fe 977 else
486dd09f 978 mask |= (pvt->inject.page & 0xffff) << 14;
194a40fe
MCC
979
980 /* Sets pvt->inject.column mask */
981 if (pvt->inject.col < 0)
486dd09f 982 mask |= 1LL << 37;
194a40fe 983 else
486dd09f 984 mask |= (pvt->inject.col & 0x3fff);
194a40fe 985
276b824c
MCC
986 /*
987 * bit 0: REPEAT_EN
988 * bits 1-2: MASK_HALF_CACHELINE
989 * bit 3: INJECT_ECC
990 * bit 4: INJECT_ADDR_PARITY
991 */
992
993 injectmask = (pvt->inject.type & 1) |
994 (pvt->inject.section & 0x3) << 1 |
995 (pvt->inject.type & 0x6) << (3 - 1);
996
997 /* Unlock writes to registers - this register is write only */
f4742949 998 pci_write_config_dword(pvt->pci_noncore,
67166af4 999 MC_CFG_CONTROL, 0x2);
e9bd2e73 1000
f4742949 1001 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
194a40fe 1002 MC_CHANNEL_ADDR_MATCH, mask);
f4742949 1003 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
7b029d03 1004 MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
7b029d03 1005
f4742949 1006 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
194a40fe
MCC
1007 MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
1008
f4742949 1009 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
4157d9f5 1010 MC_CHANNEL_ERROR_INJECT, injectmask);
276b824c 1011
194a40fe 1012 /*
276b824c
MCC
1013 * This is something undocumented, based on my tests
1014 * Without writing 8 to this register, errors aren't injected. Not sure
1015 * why.
194a40fe 1016 */
f4742949 1017 pci_write_config_dword(pvt->pci_noncore,
276b824c 1018 MC_CFG_CONTROL, 8);
194a40fe 1019
956b9ba1
JP
1020 edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n",
1021 mask, pvt->inject.eccmask, injectmask);
194a40fe 1022
7b029d03 1023
194a40fe
MCC
1024 return count;
1025}
1026
5c4cdb5a
MCC
1027static ssize_t i7core_inject_enable_show(struct device *dev,
1028 struct device_attribute *mattr,
1029 char *data)
194a40fe 1030{
5c4cdb5a 1031 struct mem_ctl_info *mci = to_mci(dev);
194a40fe 1032 struct i7core_pvt *pvt = mci->pvt_info;
7b029d03
MCC
1033 u32 injectmask;
1034
52a2e4fc
MCC
1035 if (!pvt->pci_ch[pvt->inject.channel][0])
1036 return 0;
1037
f4742949 1038 pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
4157d9f5 1039 MC_CHANNEL_ERROR_INJECT, &injectmask);
7b029d03 1040
956b9ba1 1041 edac_dbg(0, "Inject error read: 0x%018x\n", injectmask);
7b029d03
MCC
1042
1043 if (injectmask & 0x0c)
1044 pvt->inject.enable = 1;
1045
194a40fe
MCC
1046 return sprintf(data, "%d\n", pvt->inject.enable);
1047}
1048
f338d736
MCC
1049#define DECLARE_COUNTER(param) \
1050static ssize_t i7core_show_counter_##param( \
5c4cdb5a
MCC
1051 struct device *dev, \
1052 struct device_attribute *mattr, \
1053 char *data) \
f338d736 1054{ \
42709efb 1055 struct mem_ctl_info *mci = dev_get_drvdata(dev); \
f338d736
MCC
1056 struct i7core_pvt *pvt = mci->pvt_info; \
1057 \
956b9ba1 1058 edac_dbg(1, "\n"); \
f338d736
MCC
1059 if (!pvt->ce_count_available || (pvt->is_registered)) \
1060 return sprintf(data, "data unavailable\n"); \
1061 return sprintf(data, "%lu\n", \
1062 pvt->udimm_ce_count[param]); \
1063}
442305b1 1064
f338d736 1065#define ATTR_COUNTER(param) \
5c4cdb5a
MCC
1066 static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR, \
1067 i7core_show_counter_##param, \
1068 NULL)
442305b1 1069
f338d736
MCC
1070DECLARE_COUNTER(0);
1071DECLARE_COUNTER(1);
1072DECLARE_COUNTER(2);
442305b1 1073
5c4cdb5a
MCC
1074ATTR_COUNTER(0);
1075ATTR_COUNTER(1);
1076ATTR_COUNTER(2);
1077
194a40fe 1078/*
5c4cdb5a 1079 * inject_addrmatch device sysfs struct
194a40fe 1080 */
a5538e53 1081
5c4cdb5a
MCC
1082static struct attribute *i7core_addrmatch_attrs[] = {
1083 &dev_attr_channel.attr,
1084 &dev_attr_dimm.attr,
1085 &dev_attr_rank.attr,
1086 &dev_attr_bank.attr,
1087 &dev_attr_page.attr,
1088 &dev_attr_col.attr,
1089 NULL
a5538e53
MCC
1090};
1091
5c4cdb5a
MCC
1092static struct attribute_group addrmatch_grp = {
1093 .attrs = i7core_addrmatch_attrs,
a5538e53
MCC
1094};
1095
5c4cdb5a
MCC
1096static const struct attribute_group *addrmatch_groups[] = {
1097 &addrmatch_grp,
1098 NULL
f338d736
MCC
1099};
1100
5c4cdb5a
MCC
1101static void addrmatch_release(struct device *device)
1102{
956b9ba1 1103 edac_dbg(1, "Releasing device %s\n", dev_name(device));
356f0a30 1104 kfree(device);
5c4cdb5a
MCC
1105}
1106
1107static struct device_type addrmatch_type = {
1108 .groups = addrmatch_groups,
1109 .release = addrmatch_release,
f338d736
MCC
1110};
1111
5c4cdb5a
MCC
1112/*
1113 * all_channel_counts sysfs struct
1114 */
1115
1116static struct attribute *i7core_udimm_counters_attrs[] = {
1117 &dev_attr_udimm0.attr,
1118 &dev_attr_udimm1.attr,
1119 &dev_attr_udimm2.attr,
1120 NULL
1288c18f
MCC
1121};
1122
5c4cdb5a
MCC
1123static struct attribute_group all_channel_counts_grp = {
1124 .attrs = i7core_udimm_counters_attrs,
194a40fe
MCC
1125};
1126
5c4cdb5a
MCC
1127static const struct attribute_group *all_channel_counts_groups[] = {
1128 &all_channel_counts_grp,
1129 NULL
194a40fe
MCC
1130};
1131
5c4cdb5a
MCC
1132static void all_channel_counts_release(struct device *device)
1133{
956b9ba1 1134 edac_dbg(1, "Releasing device %s\n", dev_name(device));
356f0a30 1135 kfree(device);
5c4cdb5a
MCC
1136}
1137
1138static struct device_type all_channel_counts_type = {
1139 .groups = all_channel_counts_groups,
1140 .release = all_channel_counts_release,
1141};
1142
1143/*
1144 * inject sysfs attributes
1145 */
1146
1147static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
1148 i7core_inject_section_show, i7core_inject_section_store);
1149
1150static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR,
1151 i7core_inject_type_show, i7core_inject_type_store);
1152
1153
1154static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR,
1155 i7core_inject_eccmask_show, i7core_inject_eccmask_store);
1156
1157static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR,
1158 i7core_inject_enable_show, i7core_inject_enable_store);
1159
2eace188
TI
1160static struct attribute *i7core_dev_attrs[] = {
1161 &dev_attr_inject_section.attr,
1162 &dev_attr_inject_type.attr,
1163 &dev_attr_inject_eccmask.attr,
1164 &dev_attr_inject_enable.attr,
1165 NULL
1166};
1167
1168ATTRIBUTE_GROUPS(i7core_dev);
1169
5c4cdb5a
MCC
1170static int i7core_create_sysfs_devices(struct mem_ctl_info *mci)
1171{
1172 struct i7core_pvt *pvt = mci->pvt_info;
1173 int rc;
1174
356f0a30
MCC
1175 pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL);
1176 if (!pvt->addrmatch_dev)
e97d7e38 1177 return -ENOMEM;
356f0a30
MCC
1178
1179 pvt->addrmatch_dev->type = &addrmatch_type;
1180 pvt->addrmatch_dev->bus = mci->dev.bus;
1181 device_initialize(pvt->addrmatch_dev);
1182 pvt->addrmatch_dev->parent = &mci->dev;
1183 dev_set_name(pvt->addrmatch_dev, "inject_addrmatch");
1184 dev_set_drvdata(pvt->addrmatch_dev, mci);
5c4cdb5a 1185
956b9ba1 1186 edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev));
5c4cdb5a 1187
356f0a30 1188 rc = device_add(pvt->addrmatch_dev);
5c4cdb5a
MCC
1189 if (rc < 0)
1190 return rc;
1191
1192 if (!pvt->is_registered) {
356f0a30
MCC
1193 pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev),
1194 GFP_KERNEL);
1195 if (!pvt->chancounts_dev) {
1196 put_device(pvt->addrmatch_dev);
1197 device_del(pvt->addrmatch_dev);
e97d7e38 1198 return -ENOMEM;
356f0a30
MCC
1199 }
1200
1201 pvt->chancounts_dev->type = &all_channel_counts_type;
1202 pvt->chancounts_dev->bus = mci->dev.bus;
1203 device_initialize(pvt->chancounts_dev);
1204 pvt->chancounts_dev->parent = &mci->dev;
1205 dev_set_name(pvt->chancounts_dev, "all_channel_counts");
1206 dev_set_drvdata(pvt->chancounts_dev, mci);
5c4cdb5a 1207
956b9ba1 1208 edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev));
5c4cdb5a 1209
356f0a30 1210 rc = device_add(pvt->chancounts_dev);
5c4cdb5a
MCC
1211 if (rc < 0)
1212 return rc;
1213 }
1214 return 0;
1215}
1216
1217static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci)
1218{
1219 struct i7core_pvt *pvt = mci->pvt_info;
1220
956b9ba1 1221 edac_dbg(1, "\n");
5c4cdb5a 1222
5c4cdb5a 1223 if (!pvt->is_registered) {
356f0a30
MCC
1224 put_device(pvt->chancounts_dev);
1225 device_del(pvt->chancounts_dev);
5c4cdb5a 1226 }
356f0a30
MCC
1227 put_device(pvt->addrmatch_dev);
1228 device_del(pvt->addrmatch_dev);
5c4cdb5a
MCC
1229}
1230
a0c36a1f
MCC
1231/****************************************************************************
1232 Device initialization routines: put/get, init/exit
1233 ****************************************************************************/
1234
1235/*
64c10f6e 1236 * i7core_put_all_devices 'put' all the devices that we have
a0c36a1f
MCC
1237 * reserved via 'get'
1238 */
13d6e9b6 1239static void i7core_put_devices(struct i7core_dev *i7core_dev)
a0c36a1f 1240{
13d6e9b6 1241 int i;
a0c36a1f 1242
956b9ba1 1243 edac_dbg(0, "\n");
de06eeef 1244 for (i = 0; i < i7core_dev->n_devs; i++) {
22e6bcbd
MCC
1245 struct pci_dev *pdev = i7core_dev->pdev[i];
1246 if (!pdev)
1247 continue;
956b9ba1
JP
1248 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1249 pdev->bus->number,
1250 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
22e6bcbd
MCC
1251 pci_dev_put(pdev);
1252 }
13d6e9b6 1253}
66607706 1254
13d6e9b6
MCC
1255static void i7core_put_all_devices(void)
1256{
42538680 1257 struct i7core_dev *i7core_dev, *tmp;
13d6e9b6 1258
39300e71 1259 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
13d6e9b6 1260 i7core_put_devices(i7core_dev);
2aa9be44 1261 free_i7core_dev(i7core_dev);
39300e71 1262 }
a0c36a1f
MCC
1263}
1264
1288c18f 1265static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
bc2d7245
KM
1266{
1267 struct pci_dev *pdev = NULL;
1268 int i;
54a08ab1 1269
bc2d7245 1270 /*
e7bf068a 1271 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
bc2d7245
KM
1272 * aren't announced by acpi. So, we need to use a legacy scan probing
1273 * to detect them
1274 */
bd9e19ca
VM
1275 while (table && table->descr) {
1276 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
1277 if (unlikely(!pdev)) {
1278 for (i = 0; i < MAX_SOCKET_BUSES; i++)
1279 pcibios_scan_specific_bus(255-i);
1280 }
bda14289 1281 pci_dev_put(pdev);
bd9e19ca 1282 table++;
bc2d7245
KM
1283 }
1284}
1285
bda14289
MCC
1286static unsigned i7core_pci_lastbus(void)
1287{
1288 int last_bus = 0, bus;
1289 struct pci_bus *b = NULL;
1290
1291 while ((b = pci_find_next_bus(b)) != NULL) {
1292 bus = b->number;
956b9ba1 1293 edac_dbg(0, "Found bus %d\n", bus);
bda14289
MCC
1294 if (bus > last_bus)
1295 last_bus = bus;
1296 }
1297
956b9ba1 1298 edac_dbg(0, "Last bus %d\n", last_bus);
bda14289
MCC
1299
1300 return last_bus;
1301}
1302
a0c36a1f 1303/*
64c10f6e 1304 * i7core_get_all_devices Find and perform 'get' operation on the MCH's
a0c36a1f
MCC
1305 * device/functions we want to reference for this driver
1306 *
1307 * Need to 'get' device 16 func 1 and func 2
1308 */
b197cba0
HS
1309static int i7core_get_onedevice(struct pci_dev **prev,
1310 const struct pci_id_table *table,
1311 const unsigned devno,
1312 const unsigned last_bus)
a0c36a1f 1313{
66607706 1314 struct i7core_dev *i7core_dev;
b197cba0 1315 const struct pci_id_descr *dev_descr = &table->descr[devno];
66607706 1316
8f331907 1317 struct pci_dev *pdev = NULL;
67166af4
MCC
1318 u8 bus = 0;
1319 u8 socket = 0;
a0c36a1f 1320
c77720b9 1321 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
de06eeef 1322 dev_descr->dev_id, *prev);
c77720b9 1323
224e871f 1324 /*
15ed103a 1325 * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs
224e871f
MCC
1326 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
1327 * to probe for the alternate address in case of failure
1328 */
c0f5eeed
JD
1329 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) {
1330 pci_dev_get(*prev); /* pci_get_device will put it */
224e871f
MCC
1331 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1332 PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
c0f5eeed 1333 }
224e871f 1334
c0f5eeed
JD
1335 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE &&
1336 !pdev) {
1337 pci_dev_get(*prev); /* pci_get_device will put it */
224e871f
MCC
1338 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1339 PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
1340 *prev);
c0f5eeed 1341 }
224e871f 1342
c77720b9
MCC
1343 if (!pdev) {
1344 if (*prev) {
1345 *prev = pdev;
1346 return 0;
d1fd4fb6
MCC
1347 }
1348
de06eeef 1349 if (dev_descr->optional)
c77720b9 1350 return 0;
310cbb72 1351
bd9e19ca
VM
1352 if (devno == 0)
1353 return -ENODEV;
1354
ab089374 1355 i7core_printk(KERN_INFO,
c77720b9 1356 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
de06eeef
MCC
1357 dev_descr->dev, dev_descr->func,
1358 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
67166af4 1359
c77720b9
MCC
1360 /* End of list, leave */
1361 return -ENODEV;
1362 }
1363 bus = pdev->bus->number;
67166af4 1364
bda14289 1365 socket = last_bus - bus;
c77720b9 1366
66607706
MCC
1367 i7core_dev = get_i7core_dev(socket);
1368 if (!i7core_dev) {
848b2f7e 1369 i7core_dev = alloc_i7core_dev(socket, table);
2896637b
HS
1370 if (!i7core_dev) {
1371 pci_dev_put(pdev);
66607706 1372 return -ENOMEM;
2896637b 1373 }
c77720b9 1374 }
67166af4 1375
66607706 1376 if (i7core_dev->pdev[devno]) {
c77720b9
MCC
1377 i7core_printk(KERN_ERR,
1378 "Duplicated device for "
1379 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
de06eeef
MCC
1380 bus, dev_descr->dev, dev_descr->func,
1381 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
c77720b9
MCC
1382 pci_dev_put(pdev);
1383 return -ENODEV;
1384 }
67166af4 1385
66607706 1386 i7core_dev->pdev[devno] = pdev;
c77720b9
MCC
1387
1388 /* Sanity check */
de06eeef
MCC
1389 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1390 PCI_FUNC(pdev->devfn) != dev_descr->func)) {
c77720b9
MCC
1391 i7core_printk(KERN_ERR,
1392 "Device PCI ID %04x:%04x "
1393 "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
de06eeef 1394 PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
c77720b9 1395 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
de06eeef 1396 bus, dev_descr->dev, dev_descr->func);
c77720b9
MCC
1397 return -ENODEV;
1398 }
ef708b53 1399
c77720b9
MCC
1400 /* Be sure that the device is enabled */
1401 if (unlikely(pci_enable_device(pdev) < 0)) {
1402 i7core_printk(KERN_ERR,
1403 "Couldn't enable "
1404 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
de06eeef
MCC
1405 bus, dev_descr->dev, dev_descr->func,
1406 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
c77720b9
MCC
1407 return -ENODEV;
1408 }
ef708b53 1409
956b9ba1
JP
1410 edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1411 socket, bus, dev_descr->dev,
1412 dev_descr->func,
1413 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
8f331907 1414
a3e15416
MCC
1415 /*
1416 * As stated on drivers/pci/search.c, the reference count for
1417 * @from is always decremented if it is not %NULL. So, as we need
1418 * to get all devices up to null, we need to do a get for the device
1419 */
1420 pci_dev_get(pdev);
1421
c77720b9 1422 *prev = pdev;
ef708b53 1423
c77720b9
MCC
1424 return 0;
1425}
a0c36a1f 1426
64c10f6e 1427static int i7core_get_all_devices(void)
c77720b9 1428{
3c52cc57 1429 int i, rc, last_bus;
c77720b9 1430 struct pci_dev *pdev = NULL;
3c52cc57 1431 const struct pci_id_table *table = pci_dev_table;
bd9e19ca 1432
bda14289
MCC
1433 last_bus = i7core_pci_lastbus();
1434
3c52cc57 1435 while (table && table->descr) {
bd9e19ca
VM
1436 for (i = 0; i < table->n_devs; i++) {
1437 pdev = NULL;
1438 do {
b197cba0 1439 rc = i7core_get_onedevice(&pdev, table, i,
bda14289 1440 last_bus);
bd9e19ca
VM
1441 if (rc < 0) {
1442 if (i == 0) {
1443 i = table->n_devs;
1444 break;
1445 }
1446 i7core_put_all_devices();
1447 return -ENODEV;
1448 }
1449 } while (pdev);
1450 }
3c52cc57 1451 table++;
c77720b9 1452 }
66607706 1453
ef708b53 1454 return 0;
ef708b53
MCC
1455}
1456
f4742949
MCC
1457static int mci_bind_devs(struct mem_ctl_info *mci,
1458 struct i7core_dev *i7core_dev)
ef708b53
MCC
1459{
1460 struct i7core_pvt *pvt = mci->pvt_info;
1461 struct pci_dev *pdev;
f4742949 1462 int i, func, slot;
27100db0 1463 char *family;
ef708b53 1464
27100db0
MCC
1465 pvt->is_registered = false;
1466 pvt->enable_scrub = false;
de06eeef 1467 for (i = 0; i < i7core_dev->n_devs; i++) {
f4742949
MCC
1468 pdev = i7core_dev->pdev[i];
1469 if (!pdev)
66607706
MCC
1470 continue;
1471
f4742949
MCC
1472 func = PCI_FUNC(pdev->devfn);
1473 slot = PCI_SLOT(pdev->devfn);
1474 if (slot == 3) {
1475 if (unlikely(func > MAX_MCR_FUNC))
1476 goto error;
1477 pvt->pci_mcr[func] = pdev;
1478 } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
1479 if (unlikely(func > MAX_CHAN_FUNC))
ef708b53 1480 goto error;
f4742949 1481 pvt->pci_ch[slot - 4][func] = pdev;
27100db0 1482 } else if (!slot && !func) {
f4742949 1483 pvt->pci_noncore = pdev;
27100db0
MCC
1484
1485 /* Detect the processor family */
1486 switch (pdev->device) {
1487 case PCI_DEVICE_ID_INTEL_I7_NONCORE:
1488 family = "Xeon 35xx/ i7core";
1489 pvt->enable_scrub = false;
1490 break;
1491 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
1492 family = "i7-800/i5-700";
1493 pvt->enable_scrub = false;
1494 break;
1495 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
1496 family = "Xeon 34xx";
1497 pvt->enable_scrub = false;
1498 break;
1499 case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
1500 family = "Xeon 55xx";
1501 pvt->enable_scrub = true;
1502 break;
1503 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
1504 family = "Xeon 56xx / i7-900";
1505 pvt->enable_scrub = true;
1506 break;
1507 default:
1508 family = "unknown";
1509 pvt->enable_scrub = false;
1510 }
956b9ba1 1511 edac_dbg(0, "Detected a processor type %s\n", family);
27100db0 1512 } else
f4742949 1513 goto error;
ef708b53 1514
956b9ba1
JP
1515 edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n",
1516 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1517 pdev, i7core_dev->socket);
14d2c083 1518
f4742949
MCC
1519 if (PCI_SLOT(pdev->devfn) == 3 &&
1520 PCI_FUNC(pdev->devfn) == 2)
27100db0 1521 pvt->is_registered = true;
a0c36a1f 1522 }
e9bd2e73 1523
a0c36a1f 1524 return 0;
ef708b53
MCC
1525
1526error:
1527 i7core_printk(KERN_ERR, "Device %d, function %d "
1528 "is out of the expected range\n",
1529 slot, func);
1530 return -EINVAL;
a0c36a1f
MCC
1531}
1532
442305b1
MCC
1533/****************************************************************************
1534 Error check routines
1535 ****************************************************************************/
b4e8f0b6
MCC
1536
1537static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1288c18f
MCC
1538 const int chan,
1539 const int new0,
1540 const int new1,
1541 const int new2)
b4e8f0b6
MCC
1542{
1543 struct i7core_pvt *pvt = mci->pvt_info;
1544 int add0 = 0, add1 = 0, add2 = 0;
1545 /* Updates CE counters if it is not the first time here */
f4742949 1546 if (pvt->ce_count_available) {
b4e8f0b6
MCC
1547 /* Updates CE counters */
1548
f4742949
MCC
1549 add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
1550 add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
1551 add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
b4e8f0b6
MCC
1552
1553 if (add2 < 0)
1554 add2 += 0x7fff;
f4742949 1555 pvt->rdimm_ce_count[chan][2] += add2;
b4e8f0b6
MCC
1556
1557 if (add1 < 0)
1558 add1 += 0x7fff;
f4742949 1559 pvt->rdimm_ce_count[chan][1] += add1;
b4e8f0b6
MCC
1560
1561 if (add0 < 0)
1562 add0 += 0x7fff;
f4742949 1563 pvt->rdimm_ce_count[chan][0] += add0;
b4e8f0b6 1564 } else
f4742949 1565 pvt->ce_count_available = 1;
b4e8f0b6
MCC
1566
1567 /* Store the new values */
f4742949
MCC
1568 pvt->rdimm_last_ce_count[chan][2] = new2;
1569 pvt->rdimm_last_ce_count[chan][1] = new1;
1570 pvt->rdimm_last_ce_count[chan][0] = new0;
b4e8f0b6
MCC
1571
1572 /*updated the edac core */
1573 if (add0 != 0)
00d18339
MCC
1574 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0,
1575 0, 0, 0,
1576 chan, 0, -1, "error", "");
b4e8f0b6 1577 if (add1 != 0)
00d18339
MCC
1578 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1,
1579 0, 0, 0,
1580 chan, 1, -1, "error", "");
b4e8f0b6 1581 if (add2 != 0)
00d18339
MCC
1582 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2,
1583 0, 0, 0,
1584 chan, 2, -1, "error", "");
b4e8f0b6
MCC
1585}
1586
f4742949 1587static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
b4e8f0b6
MCC
1588{
1589 struct i7core_pvt *pvt = mci->pvt_info;
1590 u32 rcv[3][2];
1591 int i, new0, new1, new2;
1592
1593 /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/
f4742949 1594 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
b4e8f0b6 1595 &rcv[0][0]);
f4742949 1596 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
b4e8f0b6 1597 &rcv[0][1]);
f4742949 1598 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
b4e8f0b6 1599 &rcv[1][0]);
f4742949 1600 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
b4e8f0b6 1601 &rcv[1][1]);
f4742949 1602 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
b4e8f0b6 1603 &rcv[2][0]);
f4742949 1604 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
b4e8f0b6
MCC
1605 &rcv[2][1]);
1606 for (i = 0 ; i < 3; i++) {
956b9ba1
JP
1607 edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
1608 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
b4e8f0b6 1609 /*if the channel has 3 dimms*/
f4742949 1610 if (pvt->channel[i].dimms > 2) {
b4e8f0b6
MCC
1611 new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
1612 new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
1613 new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
1614 } else {
1615 new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
1616 DIMM_BOT_COR_ERR(rcv[i][0]);
1617 new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
1618 DIMM_BOT_COR_ERR(rcv[i][1]);
1619 new2 = 0;
1620 }
1621
f4742949 1622 i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
b4e8f0b6
MCC
1623 }
1624}
442305b1
MCC
1625
1626/* This function is based on the device 3 function 4 registers as described on:
1627 * Intel Xeon Processor 5500 Series Datasheet Volume 2
1628 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
1629 * also available at:
1630 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
1631 */
f4742949 1632static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
442305b1
MCC
1633{
1634 struct i7core_pvt *pvt = mci->pvt_info;
1635 u32 rcv1, rcv0;
1636 int new0, new1, new2;
1637
f4742949 1638 if (!pvt->pci_mcr[4]) {
956b9ba1 1639 edac_dbg(0, "MCR registers not found\n");
442305b1
MCC
1640 return;
1641 }
1642
b4e8f0b6 1643 /* Corrected test errors */
f4742949
MCC
1644 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
1645 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
442305b1
MCC
1646
1647 /* Store the new values */
1648 new2 = DIMM2_COR_ERR(rcv1);
1649 new1 = DIMM1_COR_ERR(rcv0);
1650 new0 = DIMM0_COR_ERR(rcv0);
1651
442305b1 1652 /* Updates CE counters if it is not the first time here */
f4742949 1653 if (pvt->ce_count_available) {
442305b1
MCC
1654 /* Updates CE counters */
1655 int add0, add1, add2;
1656
f4742949
MCC
1657 add2 = new2 - pvt->udimm_last_ce_count[2];
1658 add1 = new1 - pvt->udimm_last_ce_count[1];
1659 add0 = new0 - pvt->udimm_last_ce_count[0];
442305b1
MCC
1660
1661 if (add2 < 0)
1662 add2 += 0x7fff;
f4742949 1663 pvt->udimm_ce_count[2] += add2;
442305b1
MCC
1664
1665 if (add1 < 0)
1666 add1 += 0x7fff;
f4742949 1667 pvt->udimm_ce_count[1] += add1;
442305b1
MCC
1668
1669 if (add0 < 0)
1670 add0 += 0x7fff;
f4742949 1671 pvt->udimm_ce_count[0] += add0;
b4e8f0b6
MCC
1672
1673 if (add0 | add1 | add2)
1674 i7core_printk(KERN_ERR, "New Corrected error(s): "
1675 "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
1676 add0, add1, add2);
442305b1 1677 } else
f4742949 1678 pvt->ce_count_available = 1;
442305b1
MCC
1679
1680 /* Store the new values */
f4742949
MCC
1681 pvt->udimm_last_ce_count[2] = new2;
1682 pvt->udimm_last_ce_count[1] = new1;
1683 pvt->udimm_last_ce_count[0] = new0;
442305b1
MCC
1684}
1685
8a2f118e
MCC
1686/*
1687 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
1688 * Architectures Software Developer’s Manual Volume 3B.
f237fcf2
MCC
1689 * Nehalem are defined as family 0x06, model 0x1a
1690 *
1691 * The MCA registers used here are the following ones:
8a2f118e 1692 * struct mce field MCA Register
f237fcf2
MCC
1693 * m->status MSR_IA32_MC8_STATUS
1694 * m->addr MSR_IA32_MC8_ADDR
1695 * m->misc MSR_IA32_MC8_MISC
8a2f118e
MCC
1696 * In the case of Nehalem, the error information is masked at .status and .misc
1697 * fields
1698 */
d5381642 1699static void i7core_mce_output_error(struct mem_ctl_info *mci,
1288c18f 1700 const struct mce *m)
d5381642 1701{
b4e8f0b6 1702 struct i7core_pvt *pvt = mci->pvt_info;
f118920b 1703 char *optype, *err;
0975c16f 1704 enum hw_event_mc_err_type tp_event;
8a2f118e 1705 unsigned long error = m->status & 0x1ff0000l;
0975c16f
MCC
1706 bool uncorrected_error = m->mcgstatus & 1ll << 61;
1707 bool ripv = m->mcgstatus & 1;
a639539f 1708 u32 optypenum = (m->status >> 4) & 0x07;
8cf2d239 1709 u32 core_err_cnt = (m->status >> 38) & 0x7fff;
8a2f118e
MCC
1710 u32 dimm = (m->misc >> 16) & 0x3;
1711 u32 channel = (m->misc >> 18) & 0x3;
1712 u32 syndrome = m->misc >> 32;
1713 u32 errnum = find_first_bit(&error, 32);
1714
0975c16f 1715 if (uncorrected_error) {
f118920b 1716 if (ripv)
0975c16f 1717 tp_event = HW_EVENT_ERR_FATAL;
f118920b 1718 else
0975c16f 1719 tp_event = HW_EVENT_ERR_UNCORRECTED;
0975c16f 1720 } else {
0975c16f
MCC
1721 tp_event = HW_EVENT_ERR_CORRECTED;
1722 }
c5d34528 1723
a639539f 1724 switch (optypenum) {
b990538a
MCC
1725 case 0:
1726 optype = "generic undef request";
1727 break;
1728 case 1:
1729 optype = "read error";
1730 break;
1731 case 2:
1732 optype = "write error";
1733 break;
1734 case 3:
1735 optype = "addr/cmd error";
1736 break;
1737 case 4:
1738 optype = "scrubbing error";
1739 break;
1740 default:
1741 optype = "reserved";
1742 break;
a639539f
MCC
1743 }
1744
8a2f118e
MCC
1745 switch (errnum) {
1746 case 16:
1747 err = "read ECC error";
1748 break;
1749 case 17:
1750 err = "RAS ECC error";
1751 break;
1752 case 18:
1753 err = "write parity error";
1754 break;
1755 case 19:
1756 err = "redundacy loss";
1757 break;
1758 case 20:
1759 err = "reserved";
1760 break;
1761 case 21:
1762 err = "memory range error";
1763 break;
1764 case 22:
1765 err = "RTID out of range";
1766 break;
1767 case 23:
1768 err = "address parity error";
1769 break;
1770 case 24:
1771 err = "byte enable parity error";
1772 break;
1773 default:
1774 err = "unknown";
d5381642 1775 }
d5381642 1776
0975c16f
MCC
1777 /*
1778 * Call the helper to output message
1779 * FIXME: what to do if core_err_cnt > 1? Currently, it generates
1780 * only one event
1781 */
1782 if (uncorrected_error || !pvt->is_registered)
00d18339 1783 edac_mc_handle_error(tp_event, mci, core_err_cnt,
0975c16f
MCC
1784 m->addr >> PAGE_SHIFT,
1785 m->addr & ~PAGE_MASK,
1786 syndrome,
1787 channel, dimm, -1,
00d18339 1788 err, optype);
d5381642
MCC
1789}
1790
87d1d272
MCC
1791/*
1792 * i7core_check_error Retrieve and process errors reported by the
1793 * hardware. Called by the Core module.
1794 */
1795static void i7core_check_error(struct mem_ctl_info *mci)
1796{
d5381642
MCC
1797 struct i7core_pvt *pvt = mci->pvt_info;
1798 int i;
1799 unsigned count = 0;
ca9c90ba 1800 struct mce *m;
d5381642 1801
ca9c90ba
MCC
1802 /*
1803 * MCE first step: Copy all mce errors into a temporary buffer
1804 * We use a double buffering here, to reduce the risk of
25985edc 1805 * losing an error.
ca9c90ba
MCC
1806 */
1807 smp_rmb();
321ece4d
MCC
1808 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1809 % MCE_LOG_LEN;
ca9c90ba 1810 if (!count)
8a311e17 1811 goto check_ce_error;
f4742949 1812
ca9c90ba 1813 m = pvt->mce_outentry;
321ece4d
MCC
1814 if (pvt->mce_in + count > MCE_LOG_LEN) {
1815 unsigned l = MCE_LOG_LEN - pvt->mce_in;
f4742949 1816
ca9c90ba
MCC
1817 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1818 smp_wmb();
1819 pvt->mce_in = 0;
1820 count -= l;
1821 m += l;
1822 }
1823 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1824 smp_wmb();
1825 pvt->mce_in += count;
1826
1827 smp_rmb();
1828 if (pvt->mce_overrun) {
1829 i7core_printk(KERN_ERR, "Lost %d memory errors\n",
1830 pvt->mce_overrun);
1831 smp_wmb();
1832 pvt->mce_overrun = 0;
1833 }
d5381642 1834
ca9c90ba
MCC
1835 /*
1836 * MCE second step: parse errors and display
1837 */
d5381642 1838 for (i = 0; i < count; i++)
ca9c90ba 1839 i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
d5381642 1840
ca9c90ba
MCC
1841 /*
1842 * Now, let's increment CE error counts
1843 */
8a311e17 1844check_ce_error:
f4742949
MCC
1845 if (!pvt->is_registered)
1846 i7core_udimm_check_mc_ecc_err(mci);
1847 else
1848 i7core_rdimm_check_mc_ecc_err(mci);
87d1d272
MCC
1849}
1850
d5381642
MCC
1851/*
1852 * i7core_mce_check_error Replicates mcelog routine to get errors
1853 * This routine simply queues mcelog errors, and
1854 * return. The error itself should be handled later
1855 * by i7core_check_error.
6e103be1
MCC
1856 * WARNING: As this routine should be called at NMI time, extra care should
1857 * be taken to avoid deadlocks, and to be as fast as possible.
d5381642 1858 */
4140c542
BP
1859static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
1860 void *data)
d5381642 1861{
4140c542
BP
1862 struct mce *mce = (struct mce *)data;
1863 struct i7core_dev *i7_dev;
1864 struct mem_ctl_info *mci;
1865 struct i7core_pvt *pvt;
1866
1867 i7_dev = get_i7core_dev(mce->socketid);
1868 if (!i7_dev)
c4fc1956 1869 return NOTIFY_DONE;
4140c542
BP
1870
1871 mci = i7_dev->mci;
1872 pvt = mci->pvt_info;
d5381642 1873
8a2f118e
MCC
1874 /*
1875 * Just let mcelog handle it if the error is
1876 * outside the memory controller
1877 */
1878 if (((mce->status & 0xffff) >> 7) != 1)
4140c542 1879 return NOTIFY_DONE;
8a2f118e 1880
f237fcf2
MCC
1881 /* Bank 8 registers are the only ones that we know how to handle */
1882 if (mce->bank != 8)
4140c542 1883 return NOTIFY_DONE;
f237fcf2 1884
ca9c90ba 1885 smp_rmb();
321ece4d 1886 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
ca9c90ba
MCC
1887 smp_wmb();
1888 pvt->mce_overrun++;
4140c542 1889 return NOTIFY_DONE;
d5381642 1890 }
6e103be1
MCC
1891
1892 /* Copy memory error at the ringbuffer */
1893 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
ca9c90ba 1894 smp_wmb();
321ece4d 1895 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
d5381642 1896
c5d34528
MCC
1897 /* Handle fatal errors immediately */
1898 if (mce->mcgstatus & 1)
1899 i7core_check_error(mci);
1900
e7bf068a 1901 /* Advise mcelog that the errors were handled */
4140c542 1902 return NOTIFY_STOP;
d5381642
MCC
1903}
1904
4140c542
BP
1905static struct notifier_block i7_mce_dec = {
1906 .notifier_call = i7core_mce_check_error,
1907};
1908
535e9c78
NC
1909struct memdev_dmi_entry {
1910 u8 type;
1911 u8 length;
1912 u16 handle;
1913 u16 phys_mem_array_handle;
1914 u16 mem_err_info_handle;
1915 u16 total_width;
1916 u16 data_width;
1917 u16 size;
1918 u8 form;
1919 u8 device_set;
1920 u8 device_locator;
1921 u8 bank_locator;
1922 u8 memory_type;
1923 u16 type_detail;
1924 u16 speed;
1925 u8 manufacturer;
1926 u8 serial_number;
1927 u8 asset_tag;
1928 u8 part_number;
1929 u8 attributes;
1930 u32 extended_size;
1931 u16 conf_mem_clk_speed;
1932} __attribute__((__packed__));
1933
1934
1935/*
1936 * Decode the DRAM Clock Frequency, be paranoid, make sure that all
1937 * memory devices show the same speed, and if they don't then consider
1938 * all speeds to be invalid.
1939 */
1940static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
1941{
1942 int *dclk_freq = _dclk_freq;
1943 u16 dmi_mem_clk_speed;
1944
1945 if (*dclk_freq == -1)
1946 return;
1947
1948 if (dh->type == DMI_ENTRY_MEM_DEVICE) {
1949 struct memdev_dmi_entry *memdev_dmi_entry =
1950 (struct memdev_dmi_entry *)dh;
1951 unsigned long conf_mem_clk_speed_offset =
1952 (unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
1953 (unsigned long)&memdev_dmi_entry->type;
1954 unsigned long speed_offset =
1955 (unsigned long)&memdev_dmi_entry->speed -
1956 (unsigned long)&memdev_dmi_entry->type;
1957
1958 /* Check that a DIMM is present */
1959 if (memdev_dmi_entry->size == 0)
1960 return;
1961
1962 /*
1963 * Pick the configured speed if it's available, otherwise
1964 * pick the DIMM speed, or we don't have a speed.
1965 */
1966 if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
1967 dmi_mem_clk_speed =
1968 memdev_dmi_entry->conf_mem_clk_speed;
1969 } else if (memdev_dmi_entry->length > speed_offset) {
1970 dmi_mem_clk_speed = memdev_dmi_entry->speed;
1971 } else {
1972 *dclk_freq = -1;
1973 return;
1974 }
1975
1976 if (*dclk_freq == 0) {
1977 /* First pass, speed was 0 */
1978 if (dmi_mem_clk_speed > 0) {
1979 /* Set speed if a valid speed is read */
1980 *dclk_freq = dmi_mem_clk_speed;
1981 } else {
1982 /* Otherwise we don't have a valid speed */
1983 *dclk_freq = -1;
1984 }
1985 } else if (*dclk_freq > 0 &&
1986 *dclk_freq != dmi_mem_clk_speed) {
1987 /*
1988 * If we have a speed, check that all DIMMS are the same
1989 * speed, otherwise set the speed as invalid.
1990 */
1991 *dclk_freq = -1;
1992 }
1993 }
1994}
1995
1996/*
1997 * The default DCLK frequency is used as a fallback if we
1998 * fail to find anything reliable in the DMI. The value
1999 * is taken straight from the datasheet.
2000 */
2001#define DEFAULT_DCLK_FREQ 800
2002
2003static int get_dclk_freq(void)
2004{
2005 int dclk_freq = 0;
2006
2007 dmi_walk(decode_dclk, (void *)&dclk_freq);
2008
2009 if (dclk_freq < 1)
2010 return DEFAULT_DCLK_FREQ;
2011
2012 return dclk_freq;
2013}
2014
e8b6a127
SG
2015/*
2016 * set_sdram_scrub_rate This routine sets byte/sec bandwidth scrub rate
2017 * to hardware according to SCRUBINTERVAL formula
2018 * found in datasheet.
2019 */
2020static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
2021{
2022 struct i7core_pvt *pvt = mci->pvt_info;
2023 struct pci_dev *pdev;
e8b6a127
SG
2024 u32 dw_scrub;
2025 u32 dw_ssr;
2026
2027 /* Get data from the MC register, function 2 */
2028 pdev = pvt->pci_mcr[2];
2029 if (!pdev)
2030 return -ENODEV;
2031
2032 pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);
2033
2034 if (new_bw == 0) {
2035 /* Prepare to disable petrol scrub */
2036 dw_scrub &= ~STARTSCRUB;
2037 /* Stop the patrol scrub engine */
535e9c78
NC
2038 write_and_test(pdev, MC_SCRUB_CONTROL,
2039 dw_scrub & ~SCRUBINTERVAL_MASK);
e8b6a127
SG
2040
2041 /* Get current status of scrub rate and set bit to disable */
2042 pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
2043 dw_ssr &= ~SSR_MODE_MASK;
2044 dw_ssr |= SSR_MODE_DISABLE;
2045 } else {
535e9c78
NC
2046 const int cache_line_size = 64;
2047 const u32 freq_dclk_mhz = pvt->dclk_freq;
2048 unsigned long long scrub_interval;
e8b6a127
SG
2049 /*
2050 * Translate the desired scrub rate to a register value and
535e9c78 2051 * program the corresponding register value.
e8b6a127 2052 */
535e9c78 2053 scrub_interval = (unsigned long long)freq_dclk_mhz *
4fad8098
SD
2054 cache_line_size * 1000000;
2055 do_div(scrub_interval, new_bw);
535e9c78
NC
2056
2057 if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
2058 return -EINVAL;
2059
2060 dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
e8b6a127
SG
2061
2062 /* Start the patrol scrub engine */
2063 pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
2064 STARTSCRUB | dw_scrub);
2065
2066 /* Get current status of scrub rate and set bit to enable */
2067 pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
2068 dw_ssr &= ~SSR_MODE_MASK;
2069 dw_ssr |= SSR_MODE_ENABLE;
2070 }
2071 /* Disable or enable scrubbing */
2072 pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);
2073
2074 return new_bw;
2075}
2076
2077/*
2078 * get_sdram_scrub_rate This routine convert current scrub rate value
15ed103a 2079 * into byte/sec bandwidth according to
e8b6a127
SG
2080 * SCRUBINTERVAL formula found in datasheet.
2081 */
2082static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
2083{
2084 struct i7core_pvt *pvt = mci->pvt_info;
2085 struct pci_dev *pdev;
2086 const u32 cache_line_size = 64;
535e9c78
NC
2087 const u32 freq_dclk_mhz = pvt->dclk_freq;
2088 unsigned long long scrub_rate;
e8b6a127
SG
2089 u32 scrubval;
2090
2091 /* Get data from the MC register, function 2 */
2092 pdev = pvt->pci_mcr[2];
2093 if (!pdev)
2094 return -ENODEV;
2095
2096 /* Get current scrub control data */
2097 pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);
2098
2099 /* Mask highest 8-bits to 0 */
535e9c78 2100 scrubval &= SCRUBINTERVAL_MASK;
e8b6a127
SG
2101 if (!scrubval)
2102 return 0;
2103
2104 /* Calculate scrub rate value into byte/sec bandwidth */
535e9c78 2105 scrub_rate = (unsigned long long)freq_dclk_mhz *
4fad8098
SD
2106 1000000 * cache_line_size;
2107 do_div(scrub_rate, scrubval);
535e9c78 2108 return (int)scrub_rate;
e8b6a127
SG
2109}
2110
2111static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
2112{
2113 struct i7core_pvt *pvt = mci->pvt_info;
2114 u32 pci_lock;
2115
2116 /* Unlock writes to pci registers */
2117 pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2118 pci_lock &= ~0x3;
2119 pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2120 pci_lock | MC_CFG_UNLOCK);
2121
2122 mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
2123 mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
2124}
2125
2126static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
2127{
2128 struct i7core_pvt *pvt = mci->pvt_info;
2129 u32 pci_lock;
2130
2131 /* Lock writes to pci registers */
2132 pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2133 pci_lock &= ~0x3;
2134 pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2135 pci_lock | MC_CFG_LOCK);
2136}
2137
a3aa0a4a
HS
2138static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
2139{
2140 pvt->i7core_pci = edac_pci_create_generic_ctl(
2141 &pvt->i7core_dev->pdev[0]->dev,
2142 EDAC_MOD_STR);
2143 if (unlikely(!pvt->i7core_pci))
f9902f24
MCC
2144 i7core_printk(KERN_WARNING,
2145 "Unable to setup PCI error report via EDAC\n");
a3aa0a4a
HS
2146}
2147
2148static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
2149{
2150 if (likely(pvt->i7core_pci))
2151 edac_pci_release_generic_ctl(pvt->i7core_pci);
2152 else
2153 i7core_printk(KERN_ERR,
2154 "Couldn't find mem_ctl_info for socket %d\n",
2155 pvt->i7core_dev->socket);
2156 pvt->i7core_pci = NULL;
2157}
2158
1c6edbbe
HS
2159static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
2160{
2161 struct mem_ctl_info *mci = i7core_dev->mci;
2162 struct i7core_pvt *pvt;
2163
2164 if (unlikely(!mci || !mci->pvt_info)) {
956b9ba1 2165 edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev);
1c6edbbe
HS
2166
2167 i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
2168 return;
2169 }
2170
2171 pvt = mci->pvt_info;
2172
956b9ba1 2173 edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
1c6edbbe 2174
e8b6a127 2175 /* Disable scrubrate setting */
27100db0
MCC
2176 if (pvt->enable_scrub)
2177 disable_sdram_scrub_setting(mci);
e8b6a127 2178
1c6edbbe
HS
2179 /* Disable EDAC polling */
2180 i7core_pci_ctl_release(pvt);
2181
2182 /* Remove MC sysfs nodes */
5c4cdb5a 2183 i7core_delete_sysfs_devices(mci);
fd687502 2184 edac_mc_del_mc(mci->pdev);
1c6edbbe 2185
956b9ba1 2186 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1c6edbbe
HS
2187 kfree(mci->ctl_name);
2188 edac_mc_free(mci);
2189 i7core_dev->mci = NULL;
2190}
2191
aace4283 2192static int i7core_register_mci(struct i7core_dev *i7core_dev)
a0c36a1f
MCC
2193{
2194 struct mem_ctl_info *mci;
2195 struct i7core_pvt *pvt;
0975c16f
MCC
2196 int rc;
2197 struct edac_mc_layer layers[2];
a0c36a1f 2198
a0c36a1f 2199 /* allocate a new MC control structure */
0975c16f
MCC
2200
2201 layers[0].type = EDAC_MC_LAYER_CHANNEL;
2202 layers[0].size = NUM_CHANS;
2203 layers[0].is_virt_csrow = false;
2204 layers[1].type = EDAC_MC_LAYER_SLOT;
2205 layers[1].size = MAX_DIMMS;
2206 layers[1].is_virt_csrow = true;
ca0907b9 2207 mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
0975c16f 2208 sizeof(*pvt));
f4742949
MCC
2209 if (unlikely(!mci))
2210 return -ENOMEM;
a0c36a1f 2211
956b9ba1 2212 edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
a0c36a1f 2213
a0c36a1f 2214 pvt = mci->pvt_info;
ef708b53 2215 memset(pvt, 0, sizeof(*pvt));
67166af4 2216
6d37d240
MCC
2217 /* Associates i7core_dev and mci for future usage */
2218 pvt->i7core_dev = i7core_dev;
2219 i7core_dev->mci = mci;
2220
41fcb7fe
MCC
2221 /*
2222 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
2223 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
2224 * memory channels
2225 */
2226 mci->mtype_cap = MEM_FLAG_DDR3;
a0c36a1f
MCC
2227 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2228 mci->edac_cap = EDAC_FLAG_NONE;
2229 mci->mod_name = "i7core_edac.c";
2230 mci->mod_ver = I7CORE_REVISION;
f4742949
MCC
2231 mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
2232 i7core_dev->socket);
2233 mci->dev_name = pci_name(i7core_dev->pdev[0]);
a0c36a1f 2234 mci->ctl_page_to_phys = NULL;
1288c18f 2235
ef708b53 2236 /* Store pci devices at mci for faster access */
f4742949 2237 rc = mci_bind_devs(mci, i7core_dev);
41fcb7fe 2238 if (unlikely(rc < 0))
628c5ddf 2239 goto fail0;
ef708b53 2240
5939813b 2241
ef708b53 2242 /* Get dimm basic config */
2e5185f7 2243 get_dimm_config(mci);
5939813b 2244 /* record ptr to the generic device */
fd687502 2245 mci->pdev = &i7core_dev->pdev[0]->dev;
5939813b
HS
2246 /* Set the function pointer to an actual operation function */
2247 mci->edac_check = i7core_check_error;
ef708b53 2248
e8b6a127 2249 /* Enable scrubrate setting */
27100db0
MCC
2250 if (pvt->enable_scrub)
2251 enable_sdram_scrub_setting(mci);
e8b6a127 2252
a0c36a1f 2253 /* add this new MC control structure to EDAC's list of MCs */
2eace188 2254 if (unlikely(edac_mc_add_mc_with_groups(mci, i7core_dev_groups))) {
956b9ba1 2255 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
a0c36a1f
MCC
2256 /* FIXME: perhaps some code should go here that disables error
2257 * reporting if we just enabled it
2258 */
b7c76151
MCC
2259
2260 rc = -EINVAL;
628c5ddf 2261 goto fail0;
a0c36a1f 2262 }
5c4cdb5a 2263 if (i7core_create_sysfs_devices(mci)) {
956b9ba1 2264 edac_dbg(0, "MC: failed to create sysfs nodes\n");
5c4cdb5a
MCC
2265 edac_mc_del_mc(mci->pdev);
2266 rc = -EINVAL;
2267 goto fail0;
2268 }
a0c36a1f 2269
194a40fe 2270 /* Default error mask is any memory */
ef708b53 2271 pvt->inject.channel = 0;
194a40fe
MCC
2272 pvt->inject.dimm = -1;
2273 pvt->inject.rank = -1;
2274 pvt->inject.bank = -1;
2275 pvt->inject.page = -1;
2276 pvt->inject.col = -1;
2277
a3aa0a4a
HS
2278 /* allocating generic PCI control info */
2279 i7core_pci_ctl_create(pvt);
2280
535e9c78
NC
2281 /* DCLK for scrub rate setting */
2282 pvt->dclk_freq = get_dclk_freq();
2283
628c5ddf
HS
2284 return 0;
2285
628c5ddf
HS
2286fail0:
2287 kfree(mci->ctl_name);
2288 edac_mc_free(mci);
1c6edbbe 2289 i7core_dev->mci = NULL;
f4742949
MCC
2290 return rc;
2291}
2292
2293/*
2294 * i7core_probe Probe for ONE instance of device to see if it is
2295 * present.
2296 * return:
2297 * 0 for FOUND a device
2298 * < 0 for error code
2299 */
2d95d815 2300
9b3c6e85 2301static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id)
f4742949 2302{
40557591 2303 int rc, count = 0;
f4742949
MCC
2304 struct i7core_dev *i7core_dev;
2305
2d95d815
MCC
2306 /* get the pci devices we want to reserve for our use */
2307 mutex_lock(&i7core_edac_lock);
2308
f4742949 2309 /*
d4c27795 2310 * All memory controllers are allocated at the first pass.
f4742949 2311 */
2d95d815
MCC
2312 if (unlikely(probed >= 1)) {
2313 mutex_unlock(&i7core_edac_lock);
76a7bd81 2314 return -ENODEV;
2d95d815
MCC
2315 }
2316 probed++;
de06eeef 2317
64c10f6e 2318 rc = i7core_get_all_devices();
f4742949
MCC
2319 if (unlikely(rc < 0))
2320 goto fail0;
2321
2322 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
40557591 2323 count++;
aace4283 2324 rc = i7core_register_mci(i7core_dev);
d4c27795
MCC
2325 if (unlikely(rc < 0))
2326 goto fail1;
d5381642
MCC
2327 }
2328
40557591
MCC
2329 /*
2330 * Nehalem-EX uses a different memory controller. However, as the
2331 * memory controller is not visible on some Nehalem/Nehalem-EP, we
2332 * need to indirectly probe via a X58 PCI device. The same devices
2333 * are found on (some) Nehalem-EX. So, on those machines, the
2334 * probe routine needs to return -ENODEV, as the actual Memory
2335 * Controller registers won't be detected.
2336 */
2337 if (!count) {
2338 rc = -ENODEV;
2339 goto fail1;
2340 }
2341
2342 i7core_printk(KERN_INFO,
2343 "Driver loaded, %d memory controller(s) found.\n",
2344 count);
8f331907 2345
66607706 2346 mutex_unlock(&i7core_edac_lock);
a0c36a1f
MCC
2347 return 0;
2348
66607706 2349fail1:
88ef5ea9
MCC
2350 list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2351 i7core_unregister_mci(i7core_dev);
2352
13d6e9b6 2353 i7core_put_all_devices();
66607706
MCC
2354fail0:
2355 mutex_unlock(&i7core_edac_lock);
b7c76151 2356 return rc;
a0c36a1f
MCC
2357}
2358
2359/*
2360 * i7core_remove destructor for one instance of device
2361 *
2362 */
9b3c6e85 2363static void i7core_remove(struct pci_dev *pdev)
a0c36a1f 2364{
64c10f6e 2365 struct i7core_dev *i7core_dev;
a0c36a1f 2366
956b9ba1 2367 edac_dbg(0, "\n");
a0c36a1f 2368
22e6bcbd
MCC
2369 /*
2370 * we have a trouble here: pdev value for removal will be wrong, since
2371 * it will point to the X58 register used to detect that the machine
2372 * is a Nehalem or upper design. However, due to the way several PCI
2373 * devices are grouped together to provide MC functionality, we need
2374 * to use a different method for releasing the devices
2375 */
87d1d272 2376
66607706 2377 mutex_lock(&i7core_edac_lock);
71fe0170
HS
2378
2379 if (unlikely(!probed)) {
2380 mutex_unlock(&i7core_edac_lock);
2381 return;
2382 }
2383
88ef5ea9
MCC
2384 list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2385 i7core_unregister_mci(i7core_dev);
64c10f6e
HS
2386
2387 /* Release PCI resources */
2388 i7core_put_all_devices();
2389
2d95d815
MCC
2390 probed--;
2391
66607706 2392 mutex_unlock(&i7core_edac_lock);
a0c36a1f
MCC
2393}
2394
a0c36a1f
MCC
2395MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
2396
2397/*
2398 * i7core_driver pci_driver structure for this module
2399 *
2400 */
2401static struct pci_driver i7core_driver = {
2402 .name = "i7core_edac",
2403 .probe = i7core_probe,
9b3c6e85 2404 .remove = i7core_remove,
a0c36a1f
MCC
2405 .id_table = i7core_pci_tbl,
2406};
2407
2408/*
2409 * i7core_init Module entry function
2410 * Try to initialize this module for its devices
2411 */
2412static int __init i7core_init(void)
2413{
2414 int pci_rc;
2415
956b9ba1 2416 edac_dbg(2, "\n");
a0c36a1f
MCC
2417
2418 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2419 opstate_init();
2420
54a08ab1
MCC
2421 if (use_pci_fixup)
2422 i7core_xeon_pci_fixup(pci_dev_table);
bc2d7245 2423
a0c36a1f
MCC
2424 pci_rc = pci_register_driver(&i7core_driver);
2425
e35fca47
CG
2426 if (pci_rc >= 0) {
2427 mce_register_decode_chain(&i7_mce_dec);
3ef288a9 2428 return 0;
e35fca47 2429 }
3ef288a9
MCC
2430
2431 i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
2432 pci_rc);
2433
2434 return pci_rc;
a0c36a1f
MCC
2435}
2436
2437/*
2438 * i7core_exit() Module exit function
2439 * Unregister the driver
2440 */
2441static void __exit i7core_exit(void)
2442{
956b9ba1 2443 edac_dbg(2, "\n");
a0c36a1f 2444 pci_unregister_driver(&i7core_driver);
e35fca47 2445 mce_unregister_decode_chain(&i7_mce_dec);
a0c36a1f
MCC
2446}
2447
2448module_init(i7core_init);
2449module_exit(i7core_exit);
2450
2451MODULE_LICENSE("GPL");
37e59f87 2452MODULE_AUTHOR("Mauro Carvalho Chehab");
a0c36a1f
MCC
2453MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2454MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
2455 I7CORE_REVISION);
2456
2457module_param(edac_op_state, int, 0444);
2458MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.467454 seconds and 5 git commands to generate.